
Intel® 64 and IA-32
Architectures

Software Developer’s Manual

Combined Volumes:
1, 2A, 2B, 2C, 3A, 3B and 3C

NOTE: This document contains all seven volumes of the Intel 64
and IA-32 Architectures Software Developer's Manual: Basic
Architecture, Instruction Set Reference A-L, Instruction Set
Reference M-Z, Instruction Set Reference, and the System
Programming Guide, Parts 1, 2 and 3. Refer to all seven volumes
when evaluating your design needs.

Order Number: 325462-042US
March 2012

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANT-
ED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH
PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or
indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH
MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUB-
CONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS
AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING
OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARIS-
ING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUB-
CONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR
ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers
must not rely on the absence or characteristics of any features or instructions marked "reserved" or "unde-
fined". Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or
incompatibilities arising from future changes to them. The information here is subject to change without no-
tice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Intel® AES-NI requires a computer system with an AES-NI enabled processor, as well as non-Intel software
to execute the instructions in the correct sequence. AES-NI is available on select Intel® processors. For
availability, consult your reseller or system manufacturer. For more information, see http://software.in-
tel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni/.

Intel® Hyper-Threading Technology (Intel® HT Technology) is available on select Intel® Core™ processors.
Requires an Intel® HT Technology-enabled system. Consult your PC manufacturer. Performance will vary
depending on the specific hardware and software used. For more information including details on which
processors support HT Technology, visit http://www.intel.com/info/hyperthreading.

Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, and
virtual machine monitor (VMM). Functionality, performance or other benefits will vary depending on hard-
ware and software configurations. Software applications may not be compatible with all operating systems.
Consult your PC manufacturer. For more information, visit http://www.intel.com/go/virtualization.

Intel® 64 architecture Requires a system with a 64-bit enabled processor, chipset, BIOS and software. Per-
formance will vary depending on the specific hardware and software you use. Consult your PC manufacturer
for more information. For more information, visit http://www.intel.com/info/em64t.

Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability
and a supporting operating system. Check with your PC manufacturer on whether your system delivers Ex-
ecute Disable Bit functionality.

Intel, the Intel logo, Pentium, Xeon, Intel NetBurst, Intel Core, Intel Core Solo, Intel Core Duo, Intel Core
2 Duo, Intel Core 2 Extreme, Intel Pentium D, Itanium, Intel SpeedStep, MMX, Intel Atom, and VTune are
trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing
your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel lit-
erature, may be obtained by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

Copyright © 1997-2012 Intel Corporation. All rights reserved.
ii Combined Volumes 1, 2A, 2B, 2C, 3A, 3B, 3C

http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni/
http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni/
http://www.intel.com/info/hyperthreading
http://www.intel.com/go/virtualization
http://www.intel.com/go/virtualization
http://www.intel.com/go/virtualization
http://www.intel.com/info/em64t
http://www.intel.com/info/em64t
http://www.intel.com/info/em64t
http://www.intel.com/design/literature.htm
http://www.intel.com/design/literature.htm

Intel® 64 and IA-32 Architectures
Software Developer’s Manual

Volume 1:
Basic Architecture

NOTE: The Intel® 64 and IA-32 Architectures Software Developer's
Manual consists of seven volumes: Basic Architecture, Order Number
253665; Instruction Set Reference A-L, Order Number 253666; Instruction
Set Reference M-Z, Order Number 253667; Instruction Set Reference,
Order Number 326018; System Programming Guide, Part 1, Order Number
253668; System Programming Guide, Part 2, Order Number 253669;
System Programming Guide, Part 3, Order Number 326019. Refer to all
seven volumes when evaluating your design needs.

Order Number: 253665-042US
 March 2012

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANT-
ED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH
PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or
indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH
MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUB-
CONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS
AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING
OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARIS-
ING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUB-
CONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR
ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers
must not rely on the absence or characteristics of any features or instructions marked "reserved" or "unde-
fined". Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or
incompatibilities arising from future changes to them. The information here is subject to change without no-
tice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Intel® AES-NI requires a computer system with an AES-NI enabled processor, as well as non-Intel software
to execute the instructions in the correct sequence. AES-NI is available on select Intel® processors. For
availability, consult your reseller or system manufacturer. For more information, see http://software.in-
tel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni/.

Intel® Hyper-Threading Technology (Intel® HT Technology) is available on select Intel® Core™ processors.
Requires an Intel® HT Technology-enabled system. Consult your PC manufacturer. Performance will vary
depending on the specific hardware and software used. For more information including details on which
processors support HT Technology, visit http://www.intel.com/info/hyperthreading.

Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, and
virtual machine monitor (VMM). Functionality, performance or other benefits will vary depending on hard-
ware and software configurations. Software applications may not be compatible with all operating systems.
Consult your PC manufacturer. For more information, visit http://www.intel.com/go/virtualization.

Intel® 64 architecture Requires a system with a 64-bit enabled processor, chipset, BIOS and software. Per-
formance will vary depending on the specific hardware and software you use. Consult your PC manufacturer
for more information. For more information, visit http://www.intel.com/info/em64t.

Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability
and a supporting operating system. Check with your PC manufacturer on whether your system delivers Ex-
ecute Disable Bit functionality.

Intel, the Intel logo, Pentium, Xeon, Intel NetBurst, Intel Core, Intel Core Solo, Intel Core Duo, Intel Core
2 Duo, Intel Core 2 Extreme, Intel Pentium D, Itanium, Intel SpeedStep, MMX, Intel Atom, and VTune are
trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing
your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel lit-
erature, may be obtained by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

Copyright © 1997-2012 Intel Corporation. All rights reserved.

http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni/
http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni/
http://www.intel.com/info/hyperthreading
http://www.intel.com/go/virtualization
http://www.intel.com/go/virtualization
http://www.intel.com/go/virtualization
http://www.intel.com/info/em64t
http://www.intel.com/info/em64t
http://www.intel.com/info/em64t
http://www.intel.com/design/literature.htm
http://www.intel.com/design/literature.htm

CONTENTS
PAGE
CHAPTER 1
ABOUT THIS MANUAL
1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN THIS MANUAL. 1-1
1.2 OVERVIEW OF VOLUME 1: BASIC ARCHITECTURE . 1-3
1.3 NOTATIONAL CONVENTIONS . 1-5
1.3.1 Bit and Byte Order . 1-5
1.3.2 Reserved Bits and Software Compatibility . 1-6
1.3.2.1 Instruction Operands . 1-7
1.3.3 Hexadecimal and Binary Numbers. 1-7
1.3.4 Segmented Addressing. 1-7
1.3.5 A New Syntax for CPUID, CR, and MSR Values . 1-8
1.3.6 Exceptions . 1-9
1.4 RELATED LITERATURE . 1-10

CHAPTER 2
INTEL® 64 AND IA-32 ARCHITECTURES
2.1 BRIEF HISTORY OF INTEL® 64 AND IA-32 ARCHITECTURE. 2-1
2.1.1 16-bit Processors and Segmentation (1978) . 2-1
2.1.2 The Intel® 286 Processor (1982) . 2-1
2.1.3 The Intel386™ Processor (1985) . 2-2
2.1.4 The Intel486™ Processor (1989) . 2-2
2.1.5 The Intel® Pentium® Processor (1993) . 2-2
2.1.6 The P6 Family of Processors (1995-1999) . 2-3
2.1.7 The Intel® Pentium® 4 Processor Family (2000-2006) . 2-4
2.1.8 The Intel® Xeon® Processor (2001- 2007) . 2-4
2.1.9 The Intel® Pentium® M Processor (2003-Current). 2-5
2.1.10 The Intel® Pentium® Processor Extreme Edition (2005-2007). 2-5
2.1.11 The Intel® Core™ Duo and Intel® Core™ Solo Processors (2006-2007) 2-5
2.1.12 The Intel® Xeon® Processor 5100, 5300 Series and Intel® Core™2 Processor Family

(2006-Current) . 2-6
2.1.13 The Intel® Xeon® Processor 5200, 5400, 7400 Series and Intel® Core™2 Processor

Family (2007-Current) . 2-6
2.1.14 The Intel® Atom™ Processor Family (2008-Current) . 2-7
2.1.15 The Intel® Core™i7 Processor Family (2008-Current) . 2-7
2.1.16 The Intel® Xeon® Processor 7500 Series (2010) . 2-8
2.1.17 2010 Intel® Core™ Processor Family (2010) . 2-8
2.1.18 The Intel® Xeon® Processor 5600 Series (2010) . 2-8
2.1.19 Second Generation Intel® Core™ Processor Family (2011). 2-9
2.2 MORE ON SPECIFIC ADVANCES. 2-9
2.2.1 P6 Family Microarchitecture . 2-9
2.2.2 Intel NetBurst® Microarchitecture. 2-11
2.2.2.1 The Front End Pipeline . 2-13
2.2.2.2 Out-Of-Order Execution Core . 2-14
2.2.2.3 Retirement Unit . 2-14
Vol. 1 iii

CONTENTS

PAGE
2.2.3 Intel® Core™ Microarchitecture . 2-14
2.2.3.1 The Front End . 2-16
2.2.3.2 Execution Core . 2-17
2.2.4 Intel® Atom™ Microarchitecture . 2-17
2.2.5 Intel® Microarchitecture Code Name Nehalem . 2-18
2.2.6 Intel® Microarchitecture Code Name Sandy Bridge . 2-19
2.2.7 SIMD Instructions . 2-20
2.2.8 Intel® Hyper-Threading Technology . 2-23
2.2.8.1 Some Implementation Notes. 2-24
2.2.9 Multi-Core Technology . 2-24
2.2.10 Intel® 64 Architecture. 2-28
2.2.11 Intel® Virtualization Technology (Intel® VT) . 2-29
2.3 INTEL® 64 AND IA-32 PROCESSOR GENERATIONS . 2-29

CHAPTER 3
BASIC EXECUTION ENVIRONMENT
3.1 MODES OF OPERATION . 3-1
3.1.1 Intel® 64 Architecture . 3-2
3.2 OVERVIEW OF THE BASIC EXECUTION ENVIRONMENT . 3-2
3.2.1 64-Bit Mode Execution Environment . 3-6
3.3 MEMORY ORGANIZATION. 3-8
3.3.1 IA-32 Memory Models . 3-8
3.3.2 Paging and Virtual Memory . 3-10
3.3.3 Memory Organization in 64-Bit Mode. 3-10
3.3.4 Modes of Operation vs. Memory Model . 3-10
3.3.5 32-Bit and 16-Bit Address and Operand Sizes . 3-11
3.3.6 Extended Physical Addressing in Protected Mode . 3-12
3.3.7 Address Calculations in 64-Bit Mode . 3-12
3.3.7.1 Canonical Addressing. 3-13
3.4 BASIC PROGRAM EXECUTION REGISTERS. 3-13
3.4.1 General-Purpose Registers . 3-14
3.4.1.1 General-Purpose Registers in 64-Bit Mode . 3-16
3.4.2 Segment Registers. 3-17
3.4.2.1 Segment Registers in 64-Bit Mode . 3-20
3.4.3 EFLAGS Register . 3-20
3.4.3.1 Status Flags . 3-21
3.4.3.2 DF Flag . 3-22
3.4.3.3 System Flags and IOPL Field . 3-23
3.4.3.4 RFLAGS Register in 64-Bit Mode . 3-24
3.5 INSTRUCTION POINTER. 3-24
3.5.1 Instruction Pointer in 64-Bit Mode . 3-24
3.6 OPERAND-SIZE AND ADDRESS-SIZE ATTRIBUTES. 3-24
3.6.1 Operand Size and Address Size in 64-Bit Mode . 3-25
3.7 OPERAND ADDRESSING . 3-26
3.7.1 Immediate Operands . 3-27
3.7.2 Register Operands . 3-27
3.7.2.1 Register Operands in 64-Bit Mode . 3-28
iv Vol. 1

CONTENTS

PAGE
3.7.3 Memory Operands .3-28
3.7.3.1 Memory Operands in 64-Bit Mode .3-29
3.7.4 Specifying a Segment Selector .3-29
3.7.4.1 Segmentation in 64-Bit Mode .3-30
3.7.5 Specifying an Offset .3-30
3.7.5.1 Specifying an Offset in 64-Bit Mode .3-32
3.7.6 Assembler and Compiler Addressing Modes .3-32
3.7.7 I/O Port Addressing. .3-33

CHAPTER 4
DATA TYPES
4.1 FUNDAMENTAL DATA TYPES . 4-1
4.1.1 Alignment of Words, Doublewords, Quadwords, and Double Quadwords 4-2
4.2 NUMERIC DATA TYPES. 4-3
4.2.1 Integers. 4-4
4.2.1.1 Unsigned Integers . 4-5
4.2.1.2 Signed Integers . 4-5
4.2.2 Floating-Point Data Types . 4-6
4.3 POINTER DATA TYPES . 4-9
4.3.1 Pointer Data Types in 64-Bit Mode . 4-9
4.4 BIT FIELD DATA TYPE. 4-10
4.5 STRING DATA TYPES . 4-11
4.6 PACKED SIMD DATA TYPES . 4-11
4.6.1 64-Bit SIMD Packed Data Types .4-11
4.6.2 128-Bit Packed SIMD Data Types. .4-12
4.7 BCD AND PACKED BCD INTEGERS. 4-13
4.8 REAL NUMBERS AND FLOATING-POINT FORMATS. 4-15
4.8.1 Real Number System .4-16
4.8.2 Floating-Point Format .4-16
4.8.2.1 Normalized Numbers .4-18
4.8.2.2 Biased Exponent .4-18
4.8.3 Real Number and Non-number Encodings .4-18
4.8.3.1 Signed Zeros .4-20
4.8.3.2 Normalized and Denormalized Finite Numbers .4-20
4.8.3.3 Signed Infinities .4-21
4.8.3.4 NaNs .4-21
4.8.3.5 Operating on SNaNs and QNaNs .4-22
4.8.3.6 Using SNaNs and QNaNs in Applications .4-23
4.8.3.7 QNaN Floating-Point Indefinite .4-24
4.8.3.8 Half-Precision Floating-Point Operation .4-24
4.8.4 Rounding .4-24
4.8.4.1 Rounding Control (RC) Fields .4-26
4.8.4.2 Truncation with SSE and SSE2 Conversion Instructions .4-26
4.9 OVERVIEW OF FLOATING-POINT EXCEPTIONS. 4-26
4.9.1 Floating-Point Exception Conditions .4-28
4.9.1.1 Invalid Operation Exception (#I) .4-28
4.9.1.2 Denormal Operand Exception (#D). .4-28
Vol. 1 v

CONTENTS

PAGE
4.9.1.3 Divide-By-Zero Exception (#Z) . 4-29
4.9.1.4 Numeric Overflow Exception (#O). 4-29
4.9.1.5 Numeric Underflow Exception (#U) . 4-30
4.9.1.6 Inexact-Result (Precision) Exception (#P). 4-31
4.9.2 Floating-Point Exception Priority. 4-32
4.9.3 Typical Actions of a Floating-Point Exception Handler . 4-33

CHAPTER 5
INSTRUCTION SET SUMMARY
5.1 GENERAL-PURPOSE INSTRUCTIONS . 5-3
5.1.1 Data Transfer Instructions. 5-3
5.1.2 Binary Arithmetic Instructions . 5-5
5.1.3 Decimal Arithmetic Instructions . 5-5
5.1.4 Logical Instructions . 5-5
5.1.5 Shift and Rotate Instructions . 5-6
5.1.6 Bit and Byte Instructions . 5-6
5.1.7 Control Transfer Instructions . 5-7
5.1.8 String Instructions . 5-8
5.1.9 I/O Instructions . 5-8
5.1.10 Enter and Leave Instructions . 5-9
5.1.11 Flag Control (EFLAG) Instructions . 5-9
5.1.12 Segment Register Instructions. 5-9
5.1.13 Miscellaneous Instructions. 5-9
5.1.14 Random Number Generator Instruction. 5-10
5.2 X87 FPU INSTRUCTIONS . 5-10
5.2.1 x87 FPU Data Transfer Instructions. 5-10
5.2.2 x87 FPU Basic Arithmetic Instructions . 5-11
5.2.3 x87 FPU Comparison Instructions . 5-11
5.2.4 x87 FPU Transcendental Instructions . 5-12
5.2.5 x87 FPU Load Constants Instructions . 5-12
5.2.6 x87 FPU Control Instructions . 5-13
5.3 X87 FPU AND SIMD STATE MANAGEMENT INSTRUCTIONS . 5-13
5.4 MMX™ INSTRUCTIONS . 5-14
5.4.1 MMX Data Transfer Instructions . 5-14
5.4.2 MMX Conversion Instructions . 5-14
5.4.3 MMX Packed Arithmetic Instructions . 5-15
5.4.4 MMX Comparison Instructions . 5-15
5.4.5 MMX Logical Instructions . 5-16
5.4.6 MMX Shift and Rotate Instructions . 5-16
5.4.7 MMX State Management Instructions . 5-16
5.5 SSE INSTRUCTIONS . 5-16
5.5.1 SSE SIMD Single-Precision Floating-Point Instructions . 5-17
5.5.1.1 SSE Data Transfer Instructions . 5-17
5.5.1.2 SSE Packed Arithmetic Instructions . 5-18
5.5.1.3 SSE Comparison Instructions. 5-18
5.5.1.4 SSE Logical Instructions . 5-19
5.5.1.5 SSE Shuffle and Unpack Instructions . 5-19
vi Vol. 1

CONTENTS

PAGE
5.5.1.6 SSE Conversion Instructions. .5-19
5.5.2 SSE MXCSR State Management Instructions .5-20
5.5.3 SSE 64-Bit SIMD Integer Instructions .5-20
5.5.4 SSE Cacheability Control, Prefetch, and Instruction Ordering Instructions5-20
5.6 SSE2 INSTRUCTIONS . 5-21
5.6.1 SSE2 Packed and Scalar Double-Precision Floating-Point Instructions5-21
5.6.1.1 SSE2 Data Movement Instructions. .5-21
5.6.1.2 SSE2 Packed Arithmetic Instructions .5-22
5.6.1.3 SSE2 Logical Instructions .5-22
5.6.1.4 SSE2 Compare Instructions .5-23
5.6.1.5 SSE2 Shuffle and Unpack Instructions .5-23
5.6.1.6 SSE2 Conversion Instructions .5-23
5.6.2 SSE2 Packed Single-Precision Floating-Point Instructions .5-24
5.6.3 SSE2 128-Bit SIMD Integer Instructions. .5-24
5.6.4 SSE2 Cacheability Control and Ordering Instructions .5-25
5.7 SSE3 INSTRUCTIONS . 5-25
5.7.1 SSE3 x87-FP Integer Conversion Instruction .5-26
5.7.2 SSE3 Specialized 128-bit Unaligned Data Load Instruction .5-26
5.7.3 SSE3 SIMD Floating-Point Packed ADD/SUB Instructions .5-26
5.7.4 SSE3 SIMD Floating-Point Horizontal ADD/SUB Instructions .5-26
5.7.5 SSE3 SIMD Floating-Point LOAD/MOVE/DUPLICATE Instructions.5-27
5.7.6 SSE3 Agent Synchronization Instructions .5-27
5.8 SUPPLEMENTAL STREAMING SIMD EXTENSIONS 3 (SSSE3) INSTRUCTIONS 5-27
5.8.1 Horizontal Addition/Subtraction .5-28
5.8.2 Packed Absolute Values .5-29
5.8.3 Multiply and Add Packed Signed and Unsigned Bytes .5-29
5.8.4 Packed Multiply High with Round and Scale .5-29
5.8.5 Packed Shuffle Bytes .5-29
5.8.6 Packed Sign .5-29
5.8.7 Packed Align Right. .5-30
5.9 SSE4 INSTRUCTIONS . 5-30
5.10 SSE4.1 INSTRUCTIONS. 5-31
5.10.1 Dword Multiply Instructions .5-31
5.10.2 Floating-Point Dot Product Instructions .5-31
5.10.3 Streaming Load Hint Instruction .5-31
5.10.4 Packed Blending Instructions .5-31
5.10.5 Packed Integer MIN/MAX Instructions .5-32
5.10.6 Floating-Point Round Instructions with Selectable Rounding Mode5-32
5.10.7 Insertion and Extractions from XMM Registers .5-33
5.10.8 Packed Integer Format Conversions .5-33
5.10.9 Improved Sums of Absolute Differences (SAD) for 4-Byte Blocks5-34
5.10.10 Horizontal Search .5-34
5.10.11 Packed Test. .5-34
5.10.12 Packed Qword Equality Comparisons .5-34
5.10.13 Dword Packing With Unsigned Saturation .5-34
5.11 SSE4.2 INSTRUCTION SET. 5-34
5.11.1 String and Text Processing Instructions .5-35
Vol. 1 vii

CONTENTS

PAGE
5.11.2 Packed Comparison SIMD integer Instruction . 5-35
5.11.3 Application-Targeted Accelerator Instructions . 5-35
5.12 AESNI AND PCLMULQDQ. 5-35
5.13 INTEL® ADVANCED VECTOR EXTENSIONS (AVX) . 5-36
5.14 16-BIT FLOATING-POINT CONVERSION . 5-36
5.15 SYSTEM INSTRUCTIONS . 5-37
5.16 64-BIT MODE INSTRUCTIONS . 5-38
5.17 VIRTUAL-MACHINE EXTENSIONS. 5-38
5.18 SAFER MODE EXTENSIONS . 5-39

CHAPTER 6
PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS
6.1 PROCEDURE CALL TYPES . 6-1
6.2 STACKS . 6-1
6.2.1 Setting Up a Stack . 6-2
6.2.2 Stack Alignment . 6-3
6.2.3 Address-Size Attributes for Stack Accesses . 6-3
6.2.4 Procedure Linking Information . 6-4
6.2.4.1 Stack-Frame Base Pointer . 6-4
6.2.4.2 Return Instruction Pointer. 6-4
6.2.5 Stack Behavior in 64-Bit Mode . 6-5
6.3 CALLING PROCEDURES USING CALL AND RET. 6-5
6.3.1 Near CALL and RET Operation . 6-5
6.3.2 Far CALL and RET Operation. 6-6
6.3.3 Parameter Passing . 6-7
6.3.3.1 Passing Parameters Through the General-Purpose Registers 6-7
6.3.3.2 Passing Parameters on the Stack . 6-7
6.3.3.3 Passing Parameters in an Argument List . 6-8
6.3.4 Saving Procedure State Information . 6-8
6.3.5 Calls to Other Privilege Levels . 6-8
6.3.6 CALL and RET Operation Between Privilege Levels . 6-10
6.3.7 Branch Functions in 64-Bit Mode. 6-11
6.4 INTERRUPTS AND EXCEPTIONS. 6-13
6.4.1 Call and Return Operation for Interrupt or Exception Handling Procedures 6-14
6.4.2 Calls to Interrupt or Exception Handler Tasks . 6-17
6.4.3 Interrupt and Exception Handling in Real-Address Mode. 6-17
6.4.4 INT n, INTO, INT 3, and BOUND Instructions. 6-18
6.4.5 Handling Floating-Point Exceptions . 6-18
6.4.6 Interrupt and Exception Behavior in 64-Bit Mode . 6-19
6.5 PROCEDURE CALLS FOR BLOCK-STRUCTURED LANGUAGES . 6-19
6.5.1 ENTER Instruction . 6-20
6.5.2 LEAVE Instruction. 6-25

CHAPTER 7
PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS
7.1 PROGRAMMING ENVIRONMENT FOR GP INSTRUCTIONS . 7-1
7.2 PROGRAMMING ENVIRONMENT FOR GP INSTRUCTIONS IN 64-BIT MODE 7-2
viii Vol. 1

CONTENTS

PAGE
7.3 SUMMARY OF GP INSTRUCTIONS . 7-3
7.3.1 Data Transfer Instructions . 7-3
7.3.1.1 General Data Movement Instructions . 7-4
7.3.1.2 Exchange Instructions . 7-5
7.3.1.3 Exchange Instructions in 64-Bit Mode . 7-7
7.3.1.4 Stack Manipulation Instructions . 7-7
7.3.1.5 Stack Manipulation Instructions in 64-Bit Mode. 7-9
7.3.1.6 Type Conversion Instructions .7-10
7.3.1.7 Type Conversion Instructions in 64-Bit Mode .7-11
7.3.2 Binary Arithmetic Instructions. .7-12
7.3.2.1 Addition and Subtraction Instructions. .7-12
7.3.2.2 Increment and Decrement Instructions .7-12
7.3.2.3 Increment and Decrement Instructions in 64-Bit Mode. .7-12
7.3.2.4 Comparison and Sign Change Instruction .7-12
7.3.2.5 Multiplication and Divide Instructions .7-13
7.3.3 Decimal Arithmetic Instructions .7-13
7.3.3.1 Packed BCD Adjustment Instructions .7-14
7.3.3.2 Unpacked BCD Adjustment Instructions. .7-14
7.3.4 Decimal Arithmetic Instructions in 64-Bit Mode. .7-15
7.3.5 Logical Instructions .7-15
7.3.6 Shift and Rotate Instructions. .7-15
7.3.6.1 Shift Instructions .7-15
7.3.6.2 Double-Shift Instructions .7-17
7.3.6.3 Rotate Instructions .7-18
7.3.7 Bit and Byte Instructions. .7-20
7.3.7.1 Bit Test and Modify Instructions. .7-20
7.3.7.2 Bit Scan Instructions. .7-20
7.3.7.3 Byte Set on Condition Instructions .7-20
7.3.7.4 Test Instruction .7-21
7.3.8 Control Transfer Instructions. .7-21
7.3.8.1 Unconditional Transfer Instructions .7-21
7.3.8.2 Conditional Transfer Instructions .7-23
7.3.8.3 Control Transfer Instructions in 64-Bit Mode .7-25
7.3.8.4 Software Interrupt Instructions .7-25
7.3.8.5 Software Interrupt Instructions in 64-bit Mode and Compatibility Mode 7-26
7.3.9 String Operations. .7-26
7.3.9.1 String Instructions. .7-26
7.3.9.2 Repeated String Operations. .7-28
7.3.9.3 Fast-String Operation. .7-28
7.3.9.4 String Operations in 64-Bit Mode .7-29
7.3.10 I/O Instructions .7-29
7.3.11 I/O Instructions in 64-Bit Mode .7-30
7.3.12 Enter and Leave Instructions. .7-30
7.3.13 Flag Control (EFLAG) Instructions .7-30
7.3.13.1 Carry and Direction Flag Instructions .7-31
7.3.13.2 EFLAGS Transfer Instructions .7-31
7.3.13.3 Interrupt Flag Instructions .7-32
Vol. 1 ix

CONTENTS

PAGE
7.3.14 Flag Control (RFLAG) Instructions in 64-Bit Mode . 7-32
7.3.15 Segment Register Instructions. 7-32
7.3.15.1 Segment-Register Load and Store Instructions . 7-33
7.3.15.2 Far Control Transfer Instructions . 7-33
7.3.15.3 Software Interrupt Instructions. 7-33
7.3.15.4 Load Far Pointer Instructions . 7-33
7.3.16 Miscellaneous Instructions. 7-34
7.3.16.1 Address Computation Instruction . 7-34
7.3.16.2 Table Lookup Instructions . 7-34
7.3.16.3 Processor Identification Instruction . 7-34
7.3.16.4 No-Operation and Undefined Instructions . 7-34
7.3.17 Random Number Generator Instruction. 7-35

CHAPTER 8
PROGRAMMING WITH THE X87 FPU
8.1 X87 FPU EXECUTION ENVIRONMENT . 8-1
8.1.1 x87 FPU in 64-Bit Mode and Compatibility Mode . 8-2
8.1.2 x87 FPU Data Registers . 8-2
8.1.2.1 Parameter Passing With the x87 FPU Register Stack . 8-5
8.1.3 x87 FPU Status Register . 8-6
8.1.3.1 Top of Stack (TOP) Pointer . 8-6
8.1.3.2 Condition Code Flags . 8-6
8.1.3.3 x87 FPU Floating-Point Exception Flags. 8-7
8.1.3.4 Stack Fault Flag. 8-9
8.1.4 Branching and Conditional Moves on Condition Codes . 8-9
8.1.5 x87 FPU Control Word . 8-10
8.1.5.1 x87 FPU Floating-Point Exception Mask Bits. 8-11
8.1.5.2 Precision Control Field. 8-11
8.1.5.3 Rounding Control Field . 8-12
8.1.6 Infinity Control Flag . 8-12
8.1.7 x87 FPU Tag Word . 8-12
8.1.8 x87 FPU Instruction and Data (Operand) Pointers. 8-13
8.1.9 Last Instruction Opcode . 8-15
8.1.9.1 Fopcode Compatibility Sub-mode . 8-15
8.1.10 Saving the x87 FPU’s State with FSTENV/FNSTENV and FSAVE/FNSAVE 8-16
8.1.11 Saving the x87 FPU’s State with FXSAVE . 8-18
8.2 X87 FPU DATA TYPES . 8-18
8.2.1 Indefinites . 8-20
8.2.2 Unsupported Double Extended-Precision Floating-Point Encodings and Pseudo-

Denormals . 8-21
8.3 X86 FPU INSTRUCTION SET . 8-22
8.3.1 Escape (ESC) Instructions . 8-23
8.3.2 x87 FPU Instruction Operands . 8-23
8.3.3 Data Transfer Instructions. 8-23
8.3.4 Load Constant Instructions . 8-25
8.3.5 Basic Arithmetic Instructions . 8-25
8.3.6 Comparison and Classification Instructions. 8-27
x Vol. 1

CONTENTS

PAGE
8.3.6.1 Branching on the x87 FPU Condition Codes .8-29
8.3.7 Trigonometric Instructions .8-30
8.3.8 Pi .8-31
8.3.9 Logarithmic, Exponential, and Scale. .8-32
8.3.10 Transcendental Instruction Accuracy .8-32
8.3.11 x87 FPU Control Instructions. .8-33
8.3.12 Waiting vs. Non-waiting Instructions .8-34
8.3.13 Unsupported x87 FPU Instructions .8-35
8.4 X87 FPU FLOATING-POINT EXCEPTION HANDLING . 8-35
8.4.1 Arithmetic vs. Non-arithmetic Instructions .8-36
8.5 X87 FPU FLOATING-POINT EXCEPTION CONDITIONS . 8-37
8.5.1 Invalid Operation Exception .8-37
8.5.1.1 Stack Overflow or Underflow Exception (#IS) .8-38
8.5.1.2 Invalid Arithmetic Operand Exception (#IA) .8-39
8.5.2 Denormal Operand Exception (#D). .8-40
8.5.3 Divide-By-Zero Exception (#Z) .8-41
8.5.4 Numeric Overflow Exception (#O) .8-41
8.5.5 Numeric Underflow Exception (#U) .8-42
8.5.6 Inexact-Result (Precision) Exception (#P) .8-43
8.6 X87 FPU EXCEPTION SYNCHRONIZATION. 8-44
8.7 HANDLING X87 FPU EXCEPTIONS IN SOFTWARE . 8-46
8.7.1 Native Mode .8-46
8.7.2 MS-DOS* Compatibility Sub-mode .8-46
8.7.3 Handling x87 FPU Exceptions in Software .8-48

CHAPTER 9
PROGRAMMING WITH INTEL® MMX™ TECHNOLOGY
9.1 OVERVIEW OF MMX TECHNOLOGY. 9-1
9.2 THE MMX TECHNOLOGY PROGRAMMING ENVIRONMENT . 9-2
9.2.1 MMX Technology in 64-Bit Mode and Compatibility Mode . 9-2
9.2.2 MMX Registers . 9-3
9.2.3 MMX Data Types . 9-3
9.2.4 Memory Data Formats . 9-4
9.2.5 Single Instruction, Multiple Data (SIMD) Execution Model . 9-4
9.3 SATURATION AND WRAPAROUND MODES . 9-5
9.4 MMX INSTRUCTIONS. 9-6
9.4.1 Data Transfer Instructions . 9-8
9.4.2 Arithmetic Instructions . 9-8
9.4.3 Comparison Instructions . 9-9
9.4.4 Conversion Instructions . 9-9
9.4.5 Unpack Instructions . 9-9
9.4.6 Logical Instructions .9-10
9.4.7 Shift Instructions .9-10
9.4.8 EMMS Instruction .9-10
9.5 COMPATIBILITY WITH X87 FPU ARCHITECTURE . 9-10
9.5.1 MMX Instructions and the x87 FPU Tag Word .9-11
9.6 WRITING APPLICATIONS WITH MMX CODE . 9-11
Vol. 1 xi

CONTENTS

PAGE
9.6.1 Checking for MMX Technology Support. 9-11
9.6.2 Transitions Between x87 FPU and MMX Code . 9-12
9.6.3 Using the EMMS Instruction. 9-12
9.6.4 Mixing MMX and x87 FPU Instructions . 9-13
9.6.5 Interfacing with MMX Code . 9-13
9.6.6 Using MMX Code in a Multitasking Operating System Environment 9-14
9.6.7 Exception Handling in MMX Code. 9-14
9.6.8 Register Mapping . 9-14
9.6.9 Effect of Instruction Prefixes on MMX Instructions . 9-14

CHAPTER 10
PROGRAMMING WITH STREAMING SIMD EXTENSIONS (SSE)
10.1 OVERVIEW OF SSE EXTENSIONS . 10-1
10.2 SSE PROGRAMMING ENVIRONMENT. 10-3
10.2.1 SSE in 64-Bit Mode and Compatibility Mode. 10-4
10.2.2 XMM Registers. 10-4
10.2.3 MXCSR Control and Status Register . 10-5
10.2.3.1 SIMD Floating-Point Mask and Flag Bits. 10-6
10.2.3.2 SIMD Floating-Point Rounding Control Field. 10-7
10.2.3.3 Flush-To-Zero . 10-7
10.2.3.4 Denormals-Are-Zeros . 10-7
10.2.4 Compatibility of SSE Extensions with SSE2/SSE3/MMX and the x87 FPU 10-8
10.3 SSE DATA TYPES . 10-8
10.4 SSE INSTRUCTION SET . 10-9
10.4.1 SSE Packed and Scalar Floating-Point Instructions . 10-9
10.4.1.1 SSE Data Movement Instructions .10-11
10.4.1.2 SSE Arithmetic Instructions. .10-11
10.4.2 SSE Logical Instructions .10-13
10.4.2.1 SSE Comparison Instructions. .10-13
10.4.2.2 SSE Shuffle and Unpack Instructions .10-14
10.4.3 SSE Conversion Instructions .10-15
10.4.4 SSE 64-Bit SIMD Integer Instructions .10-16
10.4.5 MXCSR State Management Instructions .10-17
10.4.6 Cacheability Control, Prefetch, and Memory Ordering Instructions 10-18
10.4.6.1 Cacheability Control Instructions .10-18
10.4.6.2 Caching of Temporal vs. Non-Temporal Data. .10-18
10.4.6.3 PREFETCHh Instructions .10-19
10.4.6.4 SFENCE Instruction. .10-20
10.5 FXSAVE AND FXRSTOR INSTRUCTIONS . 10-20
10.6 HANDLING SSE INSTRUCTION EXCEPTIONS. 10-21
10.7 WRITING APPLICATIONS WITH THE SSE EXTENSIONS . 10-21

CHAPTER 11
PROGRAMMING WITH STREAMING SIMD EXTENSIONS 2 (SSE2)
11.1 OVERVIEW OF SSE2 EXTENSIONS. 11-1
11.2 SSE2 PROGRAMMING ENVIRONMENT . 11-3
11.2.1 SSE2 in 64-Bit Mode and Compatibility Mode . 11-4
xii Vol. 1

CONTENTS

PAGE
11.2.2 Compatibility of SSE2 Extensions with SSE, MMX Technology and x87 FPU Programming
Environment .11-4

11.2.3 Denormals-Are-Zeros Flag .11-4
11.3 SSE2 DATA TYPES. 11-5
11.4 SSE2 INSTRUCTIONS . 11-6
11.4.1 Packed and Scalar Double-Precision Floating-Point Instructions11-6
11.4.1.1 Data Movement Instructions .11-7
11.4.1.2 SSE2 Arithmetic Instructions .11-8
11.4.1.3 SSE2 Logical Instructions .11-9
11.4.1.4 SSE2 Comparison Instructions. .11-9
11.4.1.5 SSE2 Shuffle and Unpack Instructions . 11-10
11.4.1.6 SSE2 Conversion Instructions . 11-12
11.4.2 SSE2 64-Bit and 128-Bit SIMD Integer Instructions . 11-15
11.4.3 128-Bit SIMD Integer Instruction Extensions . 11-16
11.4.4 Cacheability Control and Memory Ordering Instructions . 11-16
11.4.4.1 FLUSH Cache Line . 11-17
11.4.4.2 Cacheability Control Instructions . 11-17
11.4.4.3 Memory Ordering Instructions. 11-17
11.4.4.4 Pause. 11-18
11.4.5 Branch Hints . 11-18
11.5 SSE, SSE2, AND SSE3 EXCEPTIONS . 11-18
11.5.1 SIMD Floating-Point Exceptions . 11-19
11.5.2 SIMD Floating-Point Exception Conditions . 11-19
11.5.2.1 Invalid Operation Exception (#I) . 11-20
11.5.2.2 Denormal-Operand Exception (#D) . 11-21
11.5.2.3 Divide-By-Zero Exception (#Z) . 11-22
11.5.2.4 Numeric Overflow Exception (#O) . 11-22
11.5.2.5 Numeric Underflow Exception (#U) . 11-22
11.5.2.6 Inexact-Result (Precision) Exception (#P) . 11-23
11.5.3 Generating SIMD Floating-Point Exceptions . 11-23
11.5.3.1 Handling Masked Exceptions . 11-23
11.5.3.2 Handling Unmasked Exceptions . 11-25
11.5.3.3 Handling Combinations of Masked and Unmasked Exceptions 11-26
11.5.4 Handling SIMD Floating-Point Exceptions in Software. 11-26
11.5.5 Interaction of SIMD and x87 FPU Floating-Point Exceptions. 11-26
11.6 WRITING APPLICATIONS WITH SSE/SSE2 EXTENSIONS . 11-27
11.6.1 General Guidelines for Using SSE/SSE2 Extensions . 11-27
11.6.2 Checking for SSE/SSE2 Support . 11-28
11.6.3 Checking for the DAZ Flag in the MXCSR Register . 11-28
11.6.4 Initialization of SSE/SSE2 Extensions . 11-29
11.6.5 Saving and Restoring the SSE/SSE2 State . 11-30
11.6.6 Guidelines for Writing to the MXCSR Register . 11-30
11.6.7 Interaction of SSE/SSE2 Instructions with x87 FPU and MMX Instructions 11-31
11.6.8 Compatibility of SIMD and x87 FPU Floating-Point Data Types 11-32
11.6.9 Mixing Packed and Scalar Floating-Point and 128-Bit SIMD Integer Instructions and

Data . 11-32
11.6.10 Interfacing with SSE/SSE2 Procedures and Functions. 11-34
Vol. 1 xiii

CONTENTS

PAGE
11.6.10.1 Passing Parameters in XMM Registers .11-34
11.6.10.2 Saving XMM Register State on a Procedure or Function Call11-34
11.6.10.3 Caller-Save Recommendation for Procedure and Function Calls11-35
11.6.11 Updating Existing MMX Technology Routines Using 128-Bit SIMD Integer

Instructions. .11-35
11.6.12 Branching on Arithmetic Operations. .11-36
11.6.13 Cacheability Hint Instructions .11-36
11.6.14 Effect of Instruction Prefixes on the SSE/SSE2 Instructions .11-37

CHAPTER 12
PROGRAMMING WITH SSE3, SSSE3, SSE4 AND AESNI
12.1 PROGRAMMING ENVIRONMENT AND DATA TYPES . 12-1
12.1.1 SSE3, SSSE3, SSE4 in 64-Bit Mode and Compatibility Mode . 12-1
12.1.2 Compatibility of SSE3/SSSE3 with MMX Technology, the x87 FPU Environment, and

SSE/SSE2 Extensions . 12-2
12.1.3 Horizontal and Asymmetric Processing . 12-2
12.2 OVERVIEW OF SSE3 INSTRUCTIONS. 12-3
12.3 SSE3 INSTRUCTIONS . 12-3
12.3.1 x87 FPU Instruction for Integer Conversion . 12-4
12.3.2 SIMD Integer Instruction for Specialized 128-bit Unaligned Data Load. 12-4
12.3.3 SIMD Floating-Point Instructions That Enhance LOAD/MOVE/DUPLICATE

Performance. 12-4
12.3.4 SIMD Floating-Point Instructions Provide Packed Addition/Subtraction 12-5
12.3.5 SIMD Floating-Point Instructions Provide Horizontal Addition/Subtraction 12-5
12.3.6 Two Thread Synchronization Instructions . 12-7
12.4 WRITING APPLICATIONS WITH SSE3 EXTENSIONS . 12-7
12.4.1 Guidelines for Using SSE3 Extensions . 12-7
12.4.2 Checking for SSE3 Support . 12-7
12.4.3 Enable FTZ and DAZ for SIMD Floating-Point Computation. 12-8
12.4.4 Programming SSE3 with SSE/SSE2 Extensions. 12-8
12.5 OVERVIEW OF SSSE3 INSTRUCTIONS . 12-8
12.6 SSSE3 INSTRUCTIONS . 12-9
12.6.1 Horizontal Addition/Subtraction . 12-9
12.6.2 Packed Absolute Values .12-11
12.6.3 Multiply and Add Packed Signed and Unsigned Bytes. .12-11
12.6.4 Packed Multiply High with Round and Scale. .12-11
12.6.5 Packed Shuffle Bytes .12-12
12.6.6 Packed Sign .12-12
12.6.7 Packed Align Right .12-12
12.7 WRITING APPLICATIONS WITH SSSE3 EXTENSIONS . 12-12
12.7.1 Guidelines for Using SSSE3 Extensions .12-12
12.7.2 Checking for SSSE3 Support .12-13
12.8 SSE3/SSSE3 AND SSE4 EXCEPTIONS . 12-13
12.8.1 Device Not Available (DNA) Exceptions .12-13
12.8.2 Numeric Error flag and IGNNE# .12-14
12.8.3 Emulation .12-14
12.8.4 IEEE 754 Compliance of SSE4.1 Floating-Point Instructions .12-14
xiv Vol. 1

CONTENTS

PAGE
12.9 SSE4 OVERVIEW. 12-15
12.10 SSE4.1 INSTRUCTION SET. 12-16
12.10.1 Dword Multiply Instructions . 12-16
12.10.2 Floating-Point Dot Product Instructions . 12-16
12.10.3 Streaming Load Hint Instruction . 12-17
12.10.4 Packed Blending Instructions . 12-21
12.10.5 Packed Integer MIN/MAX Instructions . 12-22
12.10.6 Floating-Point Round Instructions with Selectable Rounding Mode 12-23
12.10.7 Insertion and Extractions from XMM Registers . 12-23
12.10.8 Packed Integer Format Conversions . 12-23
12.10.9 Improved Sums of Absolute Differences (SAD) for 4-Byte Blocks 12-24
12.10.10 Horizontal Search . 12-25
12.10.11 Packed Test. 12-25
12.10.12 Packed Qword Equality Comparisons . 12-26
12.10.13 Dword Packing With Unsigned Saturation . 12-26
12.11 SSE4.2 INSTRUCTION SET. 12-26
12.11.1 String and Text Processing Instructions . 12-26
12.11.1.1 Memory Operand Alignment . 12-27
12.11.2 Packed Comparison SIMD Integer Instruction . 12-28
12.11.3 Application-Targeted Accelerator Instructions . 12-28
12.12 WRITING APPLICATIONS WITH SSE4 EXTENSIONS . 12-28
12.12.1 Guidelines for Using SSE4 Extensions. 12-28
12.12.2 Checking for SSE4.1 Support . 12-28
12.12.3 Checking for SSE4.2 Support . 12-29
12.13 AESNI OVERVIEW. 12-29
12.13.1 Little-Endian Architecture and Big-Endian Specification (FIPS 197) 12-30
12.13.1.1 AES Data Structure in Intel 64 Architecture. 12-30
12.13.2 AES Transformations and Functions . 12-32
12.13.3 PCLMULQDQ . 12-36
12.13.4 Checking for AESNI Support . 12-37

CHAPTER 13
PROGRAMMING WITH AVX
13.1 INTEL AVX OVERVIEW . 13-1
13.1.1 256-Bit Wide SIMD Register Support .13-1
13.1.2 Instruction Syntax Enhancements .13-2
13.1.3 VEX Prefix Instruction Encoding Support .13-3
13.2 FUNCTIONAL OVERVIEW . 13-3
13.2.1 256-bit Floating-Point Arithmetic Processing Enhancements. 13-11
13.2.2 256-bit Non-Arithmetic Instruction Enhancements . 13-11
13.2.3 Arithmetic Primitives for 128-bit Vector and Scalar processing 13-14
13.2.4 Non-Arithmetic Primitives for 128-bit Vector and Scalar Processing. 13-16
13.3 MEMORY ALIGNMENT. 13-19
13.4 SIMD FLOATING-POINT EXCEPTIONS. 13-22
13.5 DETECTION OF AVX INSTRUCTIONS . 13-22
13.5.1 Detection of VEX-Encoded AES and VPCLMULQDQ . 13-24
13.6 EMULATION . 13-26
Vol. 1 xv

CONTENTS

PAGE
13.7 WRITING AVX FLOATING-POINT EXCEPTION HANDLERS. 13-26
13.8 HALF-PRECISION FLOATING-POINT CONVERSION . 13-26
13.8.1 Detection of F16C Instructions .13-30

CHAPTER 14
INPUT/OUTPUT
14.1 I/O PORT ADDRESSING . 14-1
14.2 I/O PORT HARDWARE . 14-1
14.3 I/O ADDRESS SPACE. 14-2
14.3.1 Memory-Mapped I/O. 14-2
14.4 I/O INSTRUCTIONS . 14-3
14.5 PROTECTED-MODE I/O. 14-4
14.5.1 I/O Privilege Level. 14-4
14.5.2 I/O Permission Bit Map . 14-5
14.6 ORDERING I/O. 14-7

CHAPTER 15
PROCESSOR IDENTIFICATION AND FEATURE DETERMINATION
15.1 USING THE CPUID INSTRUCTION . 15-1
15.1.1 Notes on Where to Start . 15-1
15.1.2 Identification of Earlier IA-32 Processors . 15-2

APPENDIX A
EFLAGS CROSS-REFERENCE
A.1 EFLAGS AND INSTRUCTIONS. A-1

APPENDIX B
EFLAGS CONDITION CODES
B.1 CONDITION CODES . B-1

APPENDIX C
FLOATING-POINT EXCEPTIONS SUMMARY
C.1 OVERVIEW. C-1
C.2 X87 FPU INSTRUCTIONS . C-2
C.3 SSE INSTRUCTIONS . C-4
C.4 SSE2 INSTRUCTIONS . C-7
C.5 SSE3 INSTRUCTIONS . C-11
C.6 SSSE3 INSTRUCTIONS . C-12
C.7 SSE4 INSTRUCTIONS . C-12

APPENDIX D
GUIDELINES FOR WRITING X87 FPU EXCEPTION HANDLERS
D.1 MS-DOS COMPATIBILITY SUB-MODE FOR HANDLING X87 FPU EXCEPTIONS D-1
D.2 IMPLEMENTATION OF THE MS-DOS* COMPATIBILITY SUB-MODE IN THE INTEL486™,

PENTIUM®, AND P6 PROCESSOR FAMILY, AND PENTIUM® 4 PROCESSORS D-3
D.2.1 MS-DOS* Compatibility Sub-mode in the Intel486™ and Pentium® Processors D-3
D.2.1.1 Basic Rules: When FERR# Is Generated. D-4
xvi Vol. 1

CONTENTS

PAGE
D.2.1.2 Recommended External Hardware to Support the MS-DOS* Compatibility
Sub-mode . D-5

D.2.1.3 No-Wait x87 FPU Instructions Can Get x87 FPU Interrupt in Window D-8
D.2.2 MS-DOS* Compatibility Sub-mode in the P6 Family and Pentium® 4 Processors.D-10
D.3 RECOMMENDED PROTOCOL FOR MS-DOS* COMPATIBILITY HANDLERS D-11
D.3.1 Floating-Point Exceptions and Their Defaults .D-12
D.3.2 Two Options for Handling Numeric Exceptions .D-12
D.3.2.1 Automatic Exception Handling: Using Masked Exceptions .D-12
D.3.2.2 Software Exception Handling .D-14
D.3.3 Synchronization Required for Use of x87 FPU Exception HandlersD-15
D.3.3.1 Exception Synchronization: What, Why, and When .D-16
D.3.3.2 Exception Synchronization Examples .D-17
D.3.3.3 Proper Exception Synchronization. .D-18
D.3.4 x87 FPU Exception Handling Examples .D-18
D.3.5 Need for Storing State of IGNNE# Circuit If Using x87 FPU and SMMD-22
D.3.6 Considerations When x87 FPU Shared Between Tasks .D-23
D.3.6.1 Speculatively Deferring x87 FPU Saves, General Overview .D-23
D.3.6.2 Tracking x87 FPU Ownership .D-24
D.3.6.3 Interaction of x87 FPU State Saves and Floating-Point Exception Association . .D-25
D.3.6.4 Interrupt Routing From the Kernel .D-28
D.3.6.5 Special Considerations for Operating Systems that Support Streaming SIMD

Extensions .D-28
D.4 DIFFERENCES FOR HANDLERS USING NATIVE MODE. D-29
D.4.1 Origin with the Intel 286 and Intel 287, and Intel386 and Intel 387 ProcessorsD-29
D.4.2 Changes with Intel486, Pentium and Pentium Pro Processors with

CR0.NE[bit 5] = 1 .D-30
D.4.3 Considerations When x87 FPU Shared Between Tasks Using Native Mode.D-30

APPENDIX E
GUIDELINES FOR WRITING SIMD FLOATING-POINT EXCEPTION HANDLERS
E.1 TWO OPTIONS FOR HANDLING FLOATING-POINT EXCEPTIONS . E-1
E.2 SOFTWARE EXCEPTION HANDLING . E-1
E.3 EXCEPTION SYNCHRONIZATION . E-3
E.4 SIMD FLOATING-POINT EXCEPTIONS AND THE IEEE STANDARD 754 E-4
E.4.1 Floating-Point Emulation . E-4
E.4.2 SSE/SSE2/SSE3 Response To Floating-Point Exceptions . E-6
E.4.2.1 Numeric Exceptions . E-7
E.4.2.2 Results of Operations with NaN Operands or a NaN Result for SSE/SSE2/SSE3

Numeric Instructions . E-7
E.4.2.3 Condition Codes, Exception Flags, and Response for Masked and Unmasked Numeric

Exceptions .E-12
E.4.3 Example SIMD Floating-Point Emulation Implementation .E-22
Vol. 1 xvii

CONTENTS

PAGE
FIGURES

Figure 1-1. Bit and Byte Order . 1-6
Figure 1-2. Syntax for CPUID, CR, and MSR Data Presentation . 1-9
Figure 2-1. The P6 Processor Microarchitecture with Advanced Transfer Cache

Enhancement . 2-10
Figure 2-2. The Intel NetBurst Microarchitecture . 2-13
Figure 2-3. The Intel Core Microarchitecture Pipeline Functionality. 2-16
Figure 2-4. SIMD Extensions, Register Layouts, and Data Types . 2-22
Figure 2-5. Comparison of an IA-32 Processor Supporting Hyper-Threading Technology and a

Traditional Dual Processor System . 2-23
Figure 2-6. Intel 64 and IA-32 Processors that Support Dual-Core . 2-26
Figure 2-7. Intel 64 Processors that Support Quad-Core. 2-27
Figure 2-8. Intel Core i7 Processor . 2-28
Figure 3-1. IA-32 Basic Execution Environment for Non-64-bit Modes. 3-4
Figure 3-2. 64-Bit Mode Execution Environment . 3-7
Figure 3-3. Three Memory Management Models . 3-9
Figure 3-4. General System and Application Programming Registers . 3-15
Figure 3-5. Alternate General-Purpose Register Names . 3-16
Figure 3-6. Use of Segment Registers for Flat Memory Model . 3-18
Figure 3-7. Use of Segment Registers in Segmented Memory Model . 3-19
Figure 3-8. EFLAGS Register . 3-21
Figure 3-9. Memory Operand Address . 3-28
Figure 3-10. Memory Operand Address in 64-Bit Mode . 3-29
Figure 3-11. Offset (or Effective Address) Computation . 3-31
Figure 4-1. Fundamental Data Types . 4-1
Figure 4-2. Bytes, Words, Doublewords, Quadwords, and Double Quadwords in Memory 4-2
Figure 4-3. Numeric Data Types . 4-4
Figure 4-4. Pointer Data Types . 4-9
Figure 4-5. Pointers in 64-Bit Mode . 4-10
Figure 4-6. Bit Field Data Type. 4-10
Figure 4-7. 64-Bit Packed SIMD Data Types . 4-12
Figure 4-8. 128-Bit Packed SIMD Data Types . 4-13
Figure 4-9. BCD Data Types . 4-14
Figure 4-10. Binary Real Number System . 4-17
Figure 4-11. Binary Floating-Point Format . 4-17
Figure 4-12. Real Numbers and NaNs. 4-19
Figure 6-1. Stack Structure . 6-2
Figure 6-2. Stack on Near and Far Calls . 6-7
Figure 6-3. Protection Rings . 6-9
Figure 6-4. Stack Switch on a Call to a Different Privilege Level. 6-10
Figure 6-5. Stack Usage on Transfers to Interrupt and Exception Handling Routines 6-16
Figure 6-6. Nested Procedures. 6-22
Figure 6-7. Stack Frame After Entering the MAIN Procedure . 6-23
Figure 6-8. Stack Frame After Entering Procedure A . 6-23
Figure 6-9. Stack Frame After Entering Procedure B . 6-24
Figure 6-10. Stack Frame After Entering Procedure C . 6-25
xviii Vol. 1

CONTENTS

PAGE
Figure 7-1. Operation of the PUSH Instruction . 7-8
Figure 7-2. Operation of the PUSHA Instruction . 7-8
Figure 7-3. Operation of the POP Instruction . 7-9
Figure 7-4. Operation of the POPA Instruction . 7-9
Figure 7-5. Sign Extension .7-11
Figure 7-7. SHR Instruction Operation .7-16
Figure 7-6. SHL/SAL Instruction Operation .7-16
Figure 7-8. SAR Instruction Operation .7-17
Figure 7-9. SHLD and SHRD Instruction Operations .7-18
Figure 7-10. ROL, ROR, RCL, and RCR Instruction Operations .7-19
Figure 7-11. Flags Affected by the PUSHF, POPF, PUSHFD, and POPFD Instructions7-31
Figure 8-1. x87 FPU Execution Environment . 8-3
Figure 8-2. x87 FPU Data Register Stack . 8-4
Figure 8-3. Example x87 FPU Dot Product Computation . 8-5
Figure 8-4. x87 FPU Status Word. 8-6
Figure 8-5. Moving the Condition Codes to the EFLAGS Register .8-10
Figure 8-6. x87 FPU Control Word .8-11
Figure 8-7. x87 FPU Tag Word .8-13
Figure 8-8. Contents of x87 FPU Opcode Registers. .8-16
Figure 8-10. Real Mode x87 FPU State Image in Memory, 32-Bit Format .8-17
Figure 8-9. Protected Mode x87 FPU State Image in Memory, 32-Bit Format 8-17
Figure 8-12. Real Mode x87 FPU State Image in Memory, 16-Bit Format .8-18
Figure 8-11. Protected Mode x87 FPU State Image in Memory, 16-Bit Format 8-18
Figure 8-13. x87 FPU Data Type Formats .8-20
Figure 9-1. MMX Technology Execution Environment . 9-2
Figure 9-2. MMX Register Set . 9-3
Figure 9-3. Data Types Introduced with the MMX Technology. 9-4
Figure 9-4. SIMD Execution Model . 9-5
Figure 10-1. SSE Execution Environment .10-3
Figure 10-2. XMM Registers .10-4
Figure 10-3. MXCSR Control/Status Register .10-6
Figure 10-4. 128-Bit Packed Single-Precision Floating-Point Data Type .10-8
Figure 10-5. Packed Single-Precision Floating-Point Operation . 10-10
Figure 10-6. Scalar Single-Precision Floating-Point Operation. 10-10
Figure 10-7. SHUFPS Instruction, Packed Shuffle Operation . 10-14
Figure 10-8. UNPCKHPS Instruction, High Unpack and Interleave Operation 10-15
Figure 10-9. UNPCKLPS Instruction, Low Unpack and Interleave Operation. 10-15
Figure 11-1. Steaming SIMD Extensions 2 Execution Environment .11-3
Figure 11-2. Data Types Introduced with the SSE2 Extensions .11-5
Figure 11-3. Packed Double-Precision Floating-Point Operations. .11-6
Figure 11-4. Scalar Double-Precision Floating-Point Operations. .11-7
Figure 11-5. SHUFPD Instruction, Packed Shuffle Operation . 11-11
Figure 11-6. UNPCKHPD Instruction, High Unpack and Interleave Operation 11-11
Figure 11-7. UNPCKLPD Instruction, Low Unpack and Interleave Operation 11-12
Figure 11-8. SSE and SSE2 Conversion Instructions . 11-13
Figure 11-9. Example Masked Response for Packed Operations . 11-24
Figure 12-1. Asymmetric Processing in ADDSUBPD .12-2
Vol. 1 xix

CONTENTS

PAGE
Figure 12-2. Horizontal Data Movement in HADDPD . 12-3
Figure 12-3. Horizontal Data Movement in PHADDD .12-10
Figure 12-4. MPSADBW Operation. .12-25
Figure 12-5. AES State Flow .12-29
Figure 13-1. General Procedural Flow of Application Detection of AVX .13-23
Figure 13-2. General Procedural Flow of Application Detection of Float-1613-30
Figure 14-1. Memory-Mapped I/O. 14-3
Figure 14-2. I/O Permission Bit Map . 14-6
Figure D-1. Recommended Circuit for MS-DOS Compatibility x87 FPU Exception Handling . . . D-7
Figure D-2. Behavior of Signals During x87 FPU Exception Handling . D-8
Figure D-3. Timing of Receipt of External Interrupt . D-9
Figure D-4. Arithmetic Example Using Infinity . D-13
Figure D-5. General Program Flow for DNA Exception Handler . D-26
Figure D-6. Program Flow for a Numeric Exception Dispatch Routine. D-27
Figure E-1. Control Flow for Handling Unmasked Floating-Point Exceptions E-6
xx Vol. 1

CONTENTS

PAGE
TABLES

Table 2-1. Key Features of Most Recent IA-32 Processors .2-30
Table 2-2. Key Features of Most Recent Intel 64 Processors .2-30
Table 2-3. Key Features of Previous Generations of IA-32 Processors .2-35
Table 3-1. Instruction Pointer Sizes .3-12
Table 3-2. Addressable General Purpose Registers .3-17
Table 3-3. Effective Operand- and Address-Size Attributes .3-25
Table 3-4. Effective Operand- and Address-Size Attributes in 64-Bit Mode.3-26
Table 3-5. Default Segment Selection Rules .3-29
Table 4-1. Signed Integer Encodings . 4-6
Table 4-2. Length, Precision, and Range of Floating-Point Data Types . 4-7
Table 4-3. Floating-Point Number and NaN Encodings. 4-8
Table 4-4. Packed Decimal Integer Encodings. .4-15
Table 4-5. Real and Floating-Point Number Notation .4-18
Table 4-6. Denormalization Process. .4-21
Table 4-7. Rules for Handling NaNs .4-23
Table 4-8. Rounding Modes and Encoding of Rounding Control (RC) Field4-25
Table 4-10. Masked Responses to Numeric Overflow .4-30
Table 4-9. Numeric Overflow Thresholds. .4-30
Table 4-11. Numeric Underflow (Normalized) Thresholds .4-31
Table 5-1. Instruction Groups in Intel 64 and IA-32 Processors . 5-1
Table 5-2. Recent Instruction Set Extensions in Intel 64 and IA-32 Processors 5-2
Table 6-1. Exceptions and Interrupts. .6-14
Table 7-1. Move Instruction Operations . 7-4
Table 7-2. Conditional Move Instructions . 7-6
Table 7-3. Bit Test and Modify Instructions. .7-20
Table 7-4. Conditional Jump Instructions .7-23
Table 8-1. Condition Code Interpretation . 8-8
Table 8-2. Precision Control Field (PC). .8-12
Table 8-3. Unsupported Double Extended-Precision Floating-Point Encodings and Pseudo-

Denormals .8-22
Table 8-4. Data Transfer Instructions .8-24
Table 8-5. Floating-Point Conditional Move Instructions .8-24
Table 8-6. Setting of x87 FPU Condition Code Flags for Floating-Point Number

Comparisons .8-28
Table 8-7. Setting of EFLAGS Status Flags for Floating-Point Number Comparisons.8-29
Table 8-8. TEST Instruction Constants for Conditional Branching .8-30
Table 8-9. Arithmetic and Non-arithmetic Instructions .8-36
Table 8-10. Invalid Arithmetic Operations and the Masked Responses to Them 8-39
Table 8-11. Divide-By-Zero Conditions and the Masked Responses to Them8-41
Table 9-1. Data Range Limits for Saturation . 9-6
Table 9-2. MMX Instruction Set Summary . 9-7
Table 9-3. Effect of Prefixes on MMX Instructions .9-15
Table 10-1. PREFETCHh Instructions Caching Hints . 10-20
Table 11-1. Masked Responses of SSE/SSE2/SSE3 Instructions to Invalid Arithmetic

Operations . 11-20
Vol. 1 xxi

CONTENTS

PAGE
Table 11-2. SSE and SSE2 State Following a Power-up/Reset or INIT .11-30
Table 11-3. Effect of Prefixes on SSE, SSE2, and SSE3 Instructions .11-37
Table 12-1. SIMD numeric exceptions signaled by SSE4.1 .12-15
Table 12-2. Enhanced 32-bit SIMD Multiply Supported by SSE4.1. .12-16
Table 12-3. Blend Field Size and Control Modes Supported by SSE4.1 .12-22
Table 12-4. Enhanced SIMD Integer MIN/MAX Instructions Supported by SSE4.112-22
Table 12-5. New SIMD Integer conversions supported by SSE4.1 .12-24
Table 12-6. New SIMD Integer Conversions Supported by SSE4.1 .12-24
Table 12-7. Enhanced SIMD Pack support by SSE4.1 .12-26
Table 12-8. Byte and 32-bit Word Representation of a 128-bit State. .12-31
Table 12-9. Matrix Representation of a 128-bit State .12-31
Table 12-10. Little Endian Representation of a 128-bit State .12-31
Table 12-11. Little Endian Representation of a 4x4 Byte Matrix. .12-31
Table 12-12. The ShiftRows Transformation .12-33
Table 12-13. Look-up Table Associated with S-Box Transformation .12-34
Table 12-14. The InvShiftRows Transformation .12-35
Table 12-15. Look-up Table Associated with InvS-Box Transformation. .12-36
Table 13-1. Promoted SSE/SSE2/SSE3/SSSE3/SSE4 Instructions . 13-4
Table 13-2. Promoted 256-Bit and 128-bit Arithmetic AVX Instructions13-11
Table 13-3. Promoted 256-bit and 128-bit Data Movement AVX Instructions13-12
Table 13-4. 256-bit AVX Instruction Enhancement .13-13
Table 13-5. Promotion of Legacy SIMD ISA to 128-bit Arithmetic AVX instruction13-14
Table 13-6. 128-bit AVX Instruction Enhancement .13-17
Table 13-7. Promotion of Legacy SIMD ISA to 128-bit Non-Arithmetic AVX instruction13-18
Table 13-8. Alignment Faulting Conditions when Memory Access is Not Aligned.13-21
Table 13-9. Instructions Requiring Explicitly Aligned Memory .13-21
Table 13-10. Instructions Not Requiring Explicit Memory Alignment .13-22
Table 13-11. Immediate Byte Encoding for 16-bit Floating-Point Conversion Instructions . . .13-27
Table 13-12. Non-Numerical Behavior for VCVTPH2PS, VCVTPS2PH .13-27
Table 13-13. Invalid Operation for VCVTPH2PS, VCVTPS2PH .13-27
Table 13-14. Denormal Condition for VCVTPS2PH .13-28
Table 13-15. Underflow Condition for VCVTPS2PH .13-29
Table 13-16. Overflow Condition for VCVTPS2PH .13-29
Table 13-17. Inexact Condition for VCVTPS2PH .13-29
Table 14-1. I/O Instruction Serialization . 14-8
Table A-1. Codes Describing Flags . A-1
Table A-2. EFLAGS Cross-Reference . A-1
Table B-1. EFLAGS Condition Codes . B-1
Table C-1. x87 FPU and SIMD Floating-Point Exceptions .C-1
Table C-2. Exceptions Generated with x87 FPU Floating-Point Instructions.C-2
Table C-3. Exceptions Generated with SSE Instructions. .C-4
Table C-4. Exceptions Generated with SSE2 Instructions .C-7
Table C-5. Exceptions Generated with SSE3 Instructions . C-11
Table C-6. Exceptions Generated with SSE4 Instructions . C-13
Table E-1. ADDPS, ADDSS, SUBPS, SUBSS, MULPS, MULSS, DIVPS, DIVSS, ADDPD, ADDSD,

SUBPD, SUBSD, MULPD, MULSD, DIVPD, DIVSD, ADDSUBPS, ADDSUBPD, HADDPS,
HADDPD, HSUBPS, HSUBPD .E-8
xxii Vol. 1

CONTENTS

PAGE
Table E-2. CMPPS.EQ, CMPSS.EQ, CMPPS.ORD, CMPSS.ORD, CMPPD.EQ, CMPSD.EQ, CMPPD.ORD,
CMPSD.ORD . E-9

Table E-3. CMPPS.NEQ, CMPSS.NEQ, CMPPS.UNORD, CMPSS.UNORD, CMPPD.NEQ, CMPSD.NEQ,
CMPPD.UNORD, CMPSD.UNORD. E-9

Table E-4. CMPPS.LT, CMPSS.LT, CMPPS.LE, CMPSS.LE, CMPPD.LT, CMPSD.LT, CMPPD.LE,
CMPSD.LE . E-9

Table E-5. CMPPS.NLT, CMPSS.NLT, CMPPS.NLE, CMPSS.NLE, CMPPD.NLT, CMPSD.NLT,
CMPPD.NLE, CMPSD.NLE .E-10

Table E-6. COMISS, COMISD. .E-10
Table E-7. UCOMISS, UCOMISD .E-10
Table E-8. CVTPS2PI, CVTSS2SI, CVTTPS2PI, CVTTSS2SI, CVTPD2PI, CVTSD2SI, CVTTPD2PI,

CVTTSD2SI, CVTPS2DQ, CVTTPS2DQ, CVTPD2DQ, CVTTPD2DQ.E-11
Table E-9. MAXPS, MAXSS, MINPS, MINSS, MAXPD, MAXSD, MINPD, MINSDE-11
Table E-10. SQRTPS, SQRTSS, SQRTPD, SQRTSD. .E-11
Table E-11. CVTPS2PD, CVTSS2SD. .E-12
Table E-12. CVTPD2PS, CVTSD2SS. .E-12
Table E-13. #I - Invalid Operations .E-13
Table E-14. #Z - Divide-by-Zero. .E-16
Table E-15. #D - Denormal Operand .E-17
Table E-16. #O - Numeric Overflow .E-18
Table E-17. #U - Numeric Underflow .E-20
Table E-18. #P - Inexact Result (Precision) .E-21
Vol. 1 xxiii

CONTENTS

PAGE
xxiv Vol. 1

CHAPTER 1
ABOUT THIS MANUAL

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1:
Basic Architecture (order number 253665) is part of a set that describes the architec-
ture and programming environment of Intel® 64 and IA-32 architecture processors.
Other volumes in this set are:
• The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes

2A, 2B & 2C: Instruction Set Reference (order numbers 253666, 253667 and
326018).

• The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes
3A, 3B & 3C: System Programming Guide (order numbers 253668, 253669 and
326019).

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1,
describes the basic architecture and programming environment of Intel 64 and IA-32
processors. The Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volumes 2A, 2B & 2C, describe the instruction set of the processor and the opcode
structure. These volumes apply to application programmers and to programmers
who write operating systems or executives. The Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volumes 3A, 3B & 3C, describe the operating-system
support environment of Intel 64 and IA-32 processors. These volumes target oper-
ating-system and BIOS designers. In addition, the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3B, addresses the programming environment
for classes of software that host operating systems.

1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN
THIS MANUAL

This manual set includes information pertaining primarily to the most recent Intel 64
and IA-32 processors, which include:
• Pentium® processors
• P6 family processors
• Pentium® 4 processors
• Pentium® M processors
• Intel® Xeon® processors
• Pentium® D processors
• Pentium® processor Extreme Editions
• 64-bit Intel® Xeon® processors
Vol. 1 1-1

ABOUT THIS MANUAL
• Intel® CoreTM Duo processor
• Intel® CoreTM Solo processor
• Dual-Core Intel® Xeon® processor LV
• Intel® CoreTM2 Duo processor
• Intel® CoreTM2 Quad processor Q6000 series
• Intel® Xeon® processor 3000, 3200 series
• Intel® Xeon® processor 5000 series
• Intel® Xeon® processor 5100, 5300 series
• Intel® CoreTM2 Extreme processor X7000 and X6800 series
• Intel® CoreTM2 Extreme processor QX6000 series
• Intel® Xeon® processor 7100 series
• Intel® Pentium® Dual-Core processor
• Intel® Xeon® processor 7200, 7300 series
• Intel® Xeon® processor 5200, 5400, 7400 series
• Intel® CoreTM2 Extreme processor QX9000 and X9000 series
• Intel® CoreTM2 Quad processor Q9000 series
• Intel® CoreTM2 Duo processor E8000, T9000 series
• Intel® AtomTM processor family
• Intel® CoreTM i7 processor
• Intel® CoreTM i5 processor
• Intel® Xeon® processor E7-8800/4800/2800 product families
• Intel® Xeon® processor E5 family
• Intel® Xeon® processor E3 family
• Intel® CoreTM i7-3930K processor
• 2nd generation Intel® CoreTM i7-2xxx, Intel® CoreTM i5-2xxx, Intel® CoreTM i3-

2xxx processor series

P6 family processors are IA-32 processors based on the P6 family microarchitecture.
This includes the Pentium® Pro, Pentium® II, Pentium® III, and Pentium® III Xeon®
processors.

The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based
on the Intel NetBurst® microarchitecture. Most early Intel® Xeon® processors are
based on the Intel NetBurst® microarchitecture. Intel Xeon processor 5000, 7100
series are based on the Intel NetBurst® microarchitecture.

The Intel® CoreTM Duo, Intel® CoreTM Solo and dual-core Intel® Xeon® processor LV
are based on an improved Pentium® M processor microarchitecture.
1-2 Vol. 1

ABOUT THIS MANUAL
The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200 and 7300 series, Intel®
Pentium® dual-core, Intel® CoreTM2 Duo, Intel® CoreTM2 Quad, and Intel® CoreTM2
Extreme processors are based on Intel® CoreTM microarchitecture.

The Intel® Xeon® processor 5200, 5400, 7400 series, Intel® CoreTM2 Quad processor
Q9000 series, and Intel® CoreTM2 Extreme processor QX9000, X9000 series, Intel®
CoreTM2 processor E8000 series are based on Enhanced Intel® CoreTM microarchitec-
ture.

The Intel® AtomTM processor family is based on the Intel® AtomTM microarchitecture
and supports Intel 64 architecture.

The Intel® CoreTM i7 processor and the Intel® CoreTM i5 processor are based on the
Intel® microarchitecture code name Nehalem and support Intel 64 architecture.

Processors based on Intel® microarchitecture code name Westmere support Intel 64
architecture.

P6 family, Pentium® M, Intel® CoreTM Solo, Intel® CoreTM Duo processors, dual-core
Intel® Xeon® processor LV, and early generations of Pentium 4 and Intel Xeon
processors support IA-32 architecture. The Intel® AtomTM processor Z5xx series
support IA-32 architecture.

The Intel® Xeon® processor E5 family, Intel® Xeon® processor E3 family, Intel®
CoreTM i7-3930K processor, 2nd generation Intel® CoreTM i7-2xxx, Intel® CoreTM i5-
2xxx, Intel® CoreTM i3-2xxx processor series, Intel® Xeon® processor E7-
8800/4800/2800 product families, Intel® Xeon® processor 3000, 3200, 5000, 5100,
5200, 5300, 5400, 7100, 7200, 7300, 7400 series, Intel® CoreTM2 Duo, Intel®
CoreTM2 Extreme processors, Intel Core 2 Quad processors, Pentium® D processors,
Pentium® Dual-Core processor, newer generations of Pentium 4 and Intel Xeon
processor family support Intel® 64 architecture.

IA-32 architecture is the instruction set architecture and programming environment
for Intel's 32-bit microprocessors.

Intel® 64 architecture is the instruction set architecture and programming environ-
ment which is the superset of Intel’s 32-bit and 64-bit architectures. It is compatible
with the IA-32 architecture.

1.2 OVERVIEW OF VOLUME 1: BASIC ARCHITECTURE
A description of this manual’s content follows:

Chapter 1 — About This Manual. Gives an overview of all five volumes of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual. It also describes
the notational conventions in these manuals and lists related Intel manuals and
documentation of interest to programmers and hardware designers.

Chapter 2 — Intel® 64 and IA-32 Architectures. Introduces the Intel 64 and
IA-32 architectures along with the families of Intel processors that are based on
Vol. 1 1-3

ABOUT THIS MANUAL
these architectures. It also gives an overview of the common features found in these
processors and brief history of the Intel 64 and IA-32 architectures.

Chapter 3 — Basic Execution Environment. Introduces the models of memory
organization and describes the register set used by applications.

Chapter 4 — Data Types. Describes the data types and addressing modes recog-
nized by the processor; provides an overview of real numbers and floating-point
formats and of floating-point exceptions.

Chapter 5 — Instruction Set Summary. Lists all Intel 64 and IA-32 instructions,
divided into technology groups.

Chapter 6 — Procedure Calls, Interrupts, and Exceptions. Describes the proce-
dure stack and mechanisms provided for making procedure calls and for servicing
interrupts and exceptions.

Chapter 7 — Programming with General-Purpose Instructions. Describes
basic load and store, program control, arithmetic, and string instructions that
operate on basic data types, general-purpose and segment registers; also describes
system instructions that are executed in protected mode.

Chapter 8 — Programming with the x87 FPU. Describes the x87 floating-point
unit (FPU), including floating-point registers and data types; gives an overview of the
floating-point instruction set and describes the processor's floating-point exception
conditions.

Chapter 9 — Programming with Intel® MMX™ Technology. Describes Intel
MMX technology, including MMX registers and data types; also provides an overview
of the MMX instruction set.

Chapter 10 — Programming with Streaming SIMD Extensions (SSE).
Describes SSE extensions, including XMM registers, the MXCSR register, and packed
single-precision floating-point data types; provides an overview of the SSE instruc-
tion set and gives guidelines for writing code that accesses the SSE extensions.

Chapter 11 — Programming with Streaming SIMD Extensions 2 (SSE2).
Describes SSE2 extensions, including XMM registers and packed double-precision
floating-point data types; provides an overview of the SSE2 instruction set and gives
guidelines for writing code that accesses SSE2 extensions. This chapter also
describes SIMD floating-point exceptions that can be generated with SSE and SSE2
instructions. It also provides general guidelines for incorporating support for SSE and
SSE2 extensions into operating system and applications code.

Chapter 12 — Programming with SSE3, SSSE3 and SSE4. Provides an overview
of the SSE3 instruction set, Supplemental SSE3, SSE4, and guidelines for writing
code that accesses these extensions.

Chapter 13 — Input/Output. Describes the processor’s I/O mechanism, including
I/O port addressing, I/O instructions, and I/O protection mechanisms.

Chapter 14 — Processor Identification and Feature Determination. Describes
how to determine the CPU type and features available in the processor.
1-4 Vol. 1

ABOUT THIS MANUAL
Appendix A — EFLAGS Cross-Reference. Summarizes how the IA-32 instructions
affect the flags in the EFLAGS register.

Appendix B — EFLAGS Condition Codes. Summarizes how conditional jump,
move, and ‘byte set on condition code’ instructions use condition code flags (OF, CF,
ZF, SF, and PF) in the EFLAGS register.

Appendix C — Floating-Point Exceptions Summary. Summarizes exceptions
raised by the x87 FPU floating-point and SSE/SSE2/SSE3 floating-point instructions.

Appendix D — Guidelines for Writing x87 FPU Exception Handlers. Describes
how to design and write MS-DOS* compatible exception handling facilities for FPU
exceptions (includes software and hardware requirements and assembly-language
code examples). This appendix also describes general techniques for writing robust
FPU exception handlers.

Appendix E — Guidelines for Writing SIMD Floating-Point Exception
Handlers. Gives guidelines for writing exception handlers for exceptions generated
by SSE/SSE2/SSE3 floating-point instructions.

1.3 NOTATIONAL CONVENTIONS
This manual uses specific notation for data-structure formats, for symbolic represen-
tation of instructions, and for hexadecimal and binary numbers. This notation is
described below.

1.3.1 Bit and Byte Order
In illustrations of data structures in memory, smaller addresses appear toward the
bottom of the figure; addresses increase toward the top. Bit positions are numbered
from right to left. The numerical value of a set bit is equal to two raised to the power
of the bit position. Intel 64 and IA-32 processors are “little endian” machines; this
means the bytes of a word are numbered starting from the least significant byte. See
Figure 1-1.
Vol. 1 1-5

ABOUT THIS MANUAL
1.3.2 Reserved Bits and Software Compatibility
In many register and memory layout descriptions, certain bits are marked as
reserved. When bits are marked as reserved, it is essential for compatibility with
future processors that software treat these bits as having a future, though unknown,
effect. The behavior of reserved bits should be regarded as not only undefined, but
unpredictable.

Software should follow these guidelines in dealing with reserved bits:
• Do not depend on the states of any reserved bits when testing the values of

registers that contain such bits. Mask out the reserved bits before testing.
• Do not depend on the states of any reserved bits when storing to memory or to a

register.
• Do not depend on the ability to retain information written into any reserved bits.
• When loading a register, always load the reserved bits with the values indicated

in the documentation, if any, or reload them with values previously read from the
same register.

NOTE
Avoid any software dependence upon the state of reserved bits in
Intel 64 and IA-32 registers. Depending upon the values of reserved
register bits will make software dependent upon the unspecified
manner in which the processor handles these bits. Programs that
depend upon reserved values risk incompatibility with future
processors.

Figure 1-1. Bit and Byte Order

Byte 3

Data Structure

Byte 1Byte 2 Byte 0
Lowest

Bit offset

28
24
20
16
12
8
4

0

Address

Byte Offset

Highest
Address 32 24 23 16 15 8 7 0
1-6 Vol. 1

ABOUT THIS MANUAL
1.3.2.1 Instruction Operands
When instructions are represented symbolically, a subset of the IA-32 assembly
language is used. In this subset, an instruction has the following format:

label: mnemonic argument1, argument2, argument3

where:
• A label is an identifier which is followed by a colon.
• A mnemonic is a reserved name for a class of instruction opcodes which have

the same function.
• The operands argument1, argument2, and argument3 are optional. There

may be from zero to three operands, depending on the opcode. When present,
they take the form of either literals or identifiers for data items. Operand
identifiers are either reserved names of registers or are assumed to be assigned
to data items declared in another part of the program (which may not be shown
in the example).

When two operands are present in an arithmetic or logical instruction, the right
operand is the source and the left operand is the destination.

For example:

LOADREG: MOV EAX, SUBTOTAL

In this example, LOADREG is a label, MOV is the mnemonic identifier of an opcode,
EAX is the destination operand, and SUBTOTAL is the source operand. Some
assembly languages put the source and destination in reverse order.

1.3.3 Hexadecimal and Binary Numbers
Base 16 (hexadecimal) numbers are represented by a string of hexadecimal digits
followed by the character H (for example, 0F82EH). A hexadecimal digit is a char-
acter from the following set: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F.

Base 2 (binary) numbers are represented by a string of 1s and 0s, sometimes
followed by the character B (for example, 1010B). The “B” designation is only used in
situations where confusion as to the type of number might arise.

1.3.4 Segmented Addressing
The processor uses byte addressing. This means memory is organized and accessed
as a sequence of bytes. Whether one or more bytes are being accessed, a byte
address is used to locate the byte or bytes memory. The range of memory that can
be addressed is called an address space.

The processor also supports segmented addressing. This is a form of addressing
where a program may have many independent address spaces, called segments.
Vol. 1 1-7

ABOUT THIS MANUAL
For example, a program can keep its code (instructions) and stack in separate
segments. Code addresses would always refer to the code space, and stack
addresses would always refer to the stack space. The following notation is used to
specify a byte address within a segment:

Segment-register:Byte-address

For example, the following segment address identifies the byte at address FF79H in
the segment pointed by the DS register:

DS:FF79H

The following segment address identifies an instruction address in the code segment.
The CS register points to the code segment and the EIP register contains the address
of the instruction.

CS:EIP

1.3.5 A New Syntax for CPUID, CR, and MSR Values
Obtain feature flags, status, and system information by using the CPUID instruction,
by checking control register bits, and by reading model-specific registers. We are
moving toward a new syntax to represent this information. See Figure 1-2.
1-8 Vol. 1

ABOUT THIS MANUAL
1.3.6 Exceptions
An exception is an event that typically occurs when an instruction causes an error.
For example, an attempt to divide by zero generates an exception. However, some
exceptions, such as breakpoints, occur under other conditions. Some types of excep-
tions may provide error codes. An error code reports additional information about the
error. An example of the notation used to show an exception and error code is shown
below:

#PF(fault code)

Figure 1-2. Syntax for CPUID, CR, and MSR Data Presentation
Vol. 1 1-9

ABOUT THIS MANUAL
This example refers to a page-fault exception under conditions where an error code
naming a type of fault is reported. Under some conditions, exceptions that produce
error codes may not be able to report an accurate code. In this case, the error code
is zero, as shown below for a general-protection exception:

#GP(0)

1.4 RELATED LITERATURE
Literature related to Intel 64 and IA-32 processors is listed on-line at:
http://www.intel.com/content/www/us/en/processors/architectures-software-
developer-manuals.html.html

Some of the documents listed at this web site can be viewed on-line; others can be
ordered. The literature available is listed by Intel processor and then by the following
literature types: applications notes, data sheets, manuals, papers, and specification
updates.

See also:
• The data sheet for a particular Intel 64 or IA-32 processor
• The specification update for a particular Intel 64 or IA-32 processor
• Intel® C++ Compiler documentation and online help:

http://software.intel.com/en-us/articles/intel-compilers/
• Intel® Fortran Compiler documentation and online help:

http://software.intel.com/en-us/articles/intel-compilers/
• Intel® VTune™ Performance Analyzer documentation and online help:

http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
• Intel® 64 and IA-32 Architectures Software Developer’s Manual (in three or five

volumes):
http://www.intel.com/content/www/us/en/processors/architectures-software-
developer-manuals.html.html

• Intel® 64 and IA-32 Architectures Optimization Reference Manual:
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-
32-architectures-optimization-manual.html

• Intel® Processor Identification with the CPUID Instruction, AP-485:
http://www.intel.com/Assets/PDF/appnote/241618.pdf

• Intel 64 Architecture x2APIC Specification:
http://www.intel.com/content/www/us/en/architecture-and-technology/64-
architecture-x2apic-specification.html

• Intel 64 Architecture Processor Topology Enumeration:
http://softwarecommunity.intel.com/articles/eng/3887.htm
1-10 Vol. 1

http://developer.intel.com/products/processor/manuals/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://developer.intel.com/products/processor/manuals/index.htm

http://developer.intel.com/products/processor/manuals/index.htm
http://www.intel.com/support/processors/sb/cs-009861.htm
http://softwarecommunity.intel.com/articles/eng/3887.htm

ABOUT THIS MANUAL
• Intel® Trusted Execution Technology Measured Launched Environment
Programming Guide:

http://www.intel.com/content/www/us/en/software-developers/intel-txt-
software-development-guide.html

• Intel® SSE4 Programming Reference:
http://edc.intel.com/Link.aspx?id=1630&wapkw=intel® sse4 programming
reference

• Developing Multi-threaded Applications: A Platform Consistent Approach:
http://cache-
www.intel.com/cd/00/00/05/15/51534_developing_multithreaded_applications.
pdf

• Using Spin-Loops on Intel® Pentium® 4 Processor and Intel® Xeon® Processor:
http://software.intel.com/en-us/articles/ap949-using-spin-loops-on-intel-
pentiumr-4-processor-and-intel-xeonr-processor/

• Performance Monitoring Unit Sharing Guide
http://software.intel.com/file/30388

More relevant links are:
• Software network link:

http://softwarecommunity.intel.com/isn/home/
• Developer centers:

http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/index.htm
• Processor support general link:

http://www.intel.com/support/processors/
• Software products and packages:

http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
• Intel 64 and IA-32 processor manuals (printed or PDF downloads):

http://www.intel.com/content/www/us/en/processors/architectures-software-
developer-manuals.html.html

• Intel® Multi-Core Technology:
http://software.intel.com/partner/multicore

• Intel® Hyper-Threading Technology (Intel® HT Technology):
http://www.intel.com/technology/platform-technology/hyper-
threading/index.htm
Vol. 1 1-11

http://www3.intel.com/cd/ids/developer/asmo-na/eng/dc/threading/knowledgebase/19083.htm
http://softwarecommunity.intel.com/isn/home/
http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/index.htm
http://www.intel.com/support/processors/
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://developer.intel.com/technology/hyperthread/

CHAPTER 2
INTEL® 64 AND IA-32 ARCHITECTURES

The exponential growth of computing power and ownership has made the computer
one of the most important forces shaping business and society. Intel 64 and IA-32
architectures have been at the forefront of the computer revolution and is today the
preferred computer architecture, as measured by computers in use and the total
computing power available in the world.

2.1 BRIEF HISTORY OF INTEL® 64 AND IA-32
ARCHITECTURE

The following sections provide a summary of the major technical evolutions from
IA-32 to Intel 64 architecture: starting from the Intel 8086 processor to the latest
Intel® Core® 2 Duo, Core 2 Quad and Intel Xeon processor 5300 and 7300 series.
Object code created for processors released as early as 1978 still executes on the
latest processors in the Intel 64 and IA-32 architecture families.

2.1.1 16-bit Processors and Segmentation (1978)
The IA-32 architecture family was preceded by 16-bit processors, the 8086 and
8088. The 8086 has 16-bit registers and a 16-bit external data bus, with 20-bit
addressing giving a 1-MByte address space. The 8088 is similar to the 8086 except it
has an 8-bit external data bus.

The 8086/8088 introduced segmentation to the IA-32 architecture. With segmenta-
tion, a 16-bit segment register contains a pointer to a memory segment of up to
64 KBytes. Using four segment registers at a time, 8086/8088 processors are able to
address up to 256 KBytes without switching between segments. The 20-bit
addresses that can be formed using a segment register and an additional 16-bit
pointer provide a total address range of 1 MByte.

2.1.2 The Intel® 286 Processor (1982)
The Intel 286 processor introduced protected mode operation into the IA-32 archi-
tecture. Protected mode uses the segment register content as selectors or pointers
into descriptor tables. Descriptors provide 24-bit base addresses with a physical
memory size of up to 16 MBytes, support for virtual memory management on a
segment swapping basis, and a number of protection mechanisms. These mecha-
nisms include:
• Segment limit checking
Vol. 1 2-1

INTEL® 64 AND IA-32 ARCHITECTURES
• Read-only and execute-only segment options
• Four privilege levels

2.1.3 The Intel386™ Processor (1985)
The Intel386 processor was the first 32-bit processor in the IA-32 architecture family.
It introduced 32-bit registers for use both to hold operands and for addressing. The
lower half of each 32-bit Intel386 register retains the properties of the 16-bit regis-
ters of earlier generations, permitting backward compatibility. The processor also
provides a virtual-8086 mode that allows for even greater efficiency when executing
programs created for 8086/8088 processors.

In addition, the Intel386 processor has support for:
• A 32-bit address bus that supports up to 4-GBytes of physical memory
• A segmented-memory model and a flat memory model
• Paging, with a fixed 4-KByte page size providing a method for virtual memory

management
• Support for parallel stages

2.1.4 The Intel486™ Processor (1989)
The Intel486™ processor added more parallel execution capability by expanding the
Intel386 processor’s instruction decode and execution units into five pipelined
stages. Each stage operates in parallel with the others on up to five instructions in
different stages of execution.

In addition, the processor added:
• An 8-KByte on-chip first-level cache that increased the percent of instructions

that could execute at the scalar rate of one per clock
• An integrated x87 FPU
• Power saving and system management capabilities

2.1.5 The Intel® Pentium® Processor (1993)
The introduction of the Intel Pentium processor added a second execution pipeline to
achieve superscalar performance (two pipelines, known as u and v, together can
execute two instructions per clock). The on-chip first-level cache doubled, with 8
KBytes devoted to code and another 8 KBytes devoted to data. The data cache uses
the MESI protocol to support more efficient write-back cache in addition to the write-
through cache previously used by the Intel486 processor. Branch prediction with an
on-chip branch table was added to increase performance in looping constructs.

In addition, the processor added:
2-2 Vol. 1

INTEL® 64 AND IA-32 ARCHITECTURES
• Extensions to make the virtual-8086 mode more efficient and allow for 4-MByte
as well as 4-KByte pages

• Internal data paths of 128 and 256 bits add speed to internal data transfers
• Burstable external data bus was increased to 64 bits
• An APIC to support systems with multiple processors
• A dual processor mode to support glueless two processor systems

A subsequent stepping of the Pentium family introduced Intel MMX technology (the
Pentium Processor with MMX technology). Intel MMX technology uses the single-
instruction, multiple-data (SIMD) execution model to perform parallel computations
on packed integer data contained in 64-bit registers.

See Section 2.2.7, “SIMD Instructions.”

2.1.6 The P6 Family of Processors (1995-1999)
The P6 family of processors was based on a superscalar microarchitecture that set
new performance standards; see also Section 2.2.1, “P6 Family Microarchitecture.”
One of the goals in the design of the P6 family microarchitecture was to exceed the
performance of the Pentium processor significantly while using the same 0.6-
micrometer, four-layer, metal BICMOS manufacturing process. Members of this
family include the following:
• The Intel Pentium Pro processor is three-way superscalar. Using parallel

processing techniques, the processor is able on average to decode, dispatch, and
complete execution of (retire) three instructions per clock cycle. The Pentium Pro
introduced the dynamic execution (micro-data flow analysis, out-of-order
execution, superior branch prediction, and speculative execution) in a
superscalar implementation. The processor was further enhanced by its caches.
It has the same two on-chip 8-KByte 1st-Level caches as the Pentium processor
and an additional 256-KByte Level 2 cache in the same package as the processor.

• The Intel Pentium II processor added Intel MMX technology to the P6 family
processors along with new packaging and several hardware enhancements. The
processor core is packaged in the single edge contact cartridge (SECC). The Level
l data and instruction caches were enlarged to 16 KBytes each, and Level 2 cache
sizes of 256 KBytes, 512 KBytes, and 1 MByte are supported. A half-clock speed
backside bus connects the Level 2 cache to the processor. Multiple low-power
states such as AutoHALT, Stop-Grant, Sleep, and Deep Sleep are supported to
conserve power when idling.

• The Pentium II Xeon processor combined the premium characteristics of
previous generations of Intel processors. This includes: 4-way, 8-way (and up)
scalability and a 2 MByte 2nd-Level cache running on a full-clock speed backside
bus.

• The Intel Celeron processor family focused on the value PC market segment.
Its introduction offers an integrated 128 KBytes of Level 2 cache and a plastic pin
grid array (P.P.G.A.) form factor to lower system design cost.
Vol. 1 2-3

INTEL® 64 AND IA-32 ARCHITECTURES
• The Intel Pentium III processor introduced the Streaming SIMD Extensions
(SSE) to the IA-32 architecture. SSE extensions expand the SIMD execution
model introduced with the Intel MMX technology by providing a new set of 128-
bit registers and the ability to perform SIMD operations on packed single-
precision floating-point values. See Section 2.2.7, “SIMD Instructions.”

• The Pentium III Xeon processor extended the performance levels of the IA-32
processors with the enhancement of a full-speed, on-die, and Advanced Transfer
Cache.

2.1.7 The Intel® Pentium® 4 Processor Family (2000-2006)
The Intel Pentium 4 processor family is based on Intel NetBurst microarchitecture;
see Section 2.2.2, “Intel NetBurst® Microarchitecture.”

The Intel Pentium 4 processor introduced Streaming SIMD Extensions 2 (SSE2); see
Section 2.2.7, “SIMD Instructions.” The Intel Pentium 4 processor 3.40 GHz,
supporting Hyper-Threading Technology introduced Streaming SIMD Extensions 3
(SSE3); see Section 2.2.7, “SIMD Instructions.”

Intel 64 architecture was introduced in the Intel Pentium 4 Processor Extreme Edition
supporting Hyper-Threading Technology and in the Intel Pentium 4 Processor 6xx and
5xx sequences.

Intel® Virtualization Technology (Intel® VT) was introduced in the Intel Pentium 4
processor 672 and 662.

2.1.8 The Intel® Xeon® Processor (2001- 2007)
Intel Xeon processors (with exception for dual-core Intel Xeon processor LV, Intel
Xeon processor 5100 series) are based on the Intel NetBurst microarchitecture; see
Section 2.2.2, “Intel NetBurst® Microarchitecture.” As a family, this group of IA-32
processors (more recently Intel 64 processors) is designed for use in multi-processor
server systems and high-performance workstations.

The Intel Xeon processor MP introduced support for Intel® Hyper-Threading Tech-
nology; see Section 2.2.8, “Intel® Hyper-Threading Technology.”

The 64-bit Intel Xeon processor 3.60 GHz (with an 800 MHz System Bus) was used to
introduce Intel 64 architecture. The Dual-Core Intel Xeon processor includes dual
core technology. The Intel Xeon processor 70xx series includes Intel Virtualization
Technology.

The Intel Xeon processor 5100 series introduces power-efficient, high performance
Intel Core microarchitecture. This processor is based on Intel 64 architecture; it
includes Intel Virtualization Technology and dual-core technology. The Intel Xeon
processor 3000 series are also based on Intel Core microarchitecture. The Intel Xeon
processor 5300 series introduces four processor cores in a physical package, they are
also based on Intel Core microarchitecture.
2-4 Vol. 1

INTEL® 64 AND IA-32 ARCHITECTURES
2.1.9 The Intel® Pentium® M Processor (2003-Current)
The Intel Pentium M processor family is a high performance, low power mobile
processor family with microarchitectural enhancements over previous generations of
IA-32 Intel mobile processors. This family is designed for extending battery life and
seamless integration with platform innovations that enable new usage models (such
as extended mobility, ultra thin form-factors, and integrated wireless networking).

Its enhanced microarchitecture includes:
• Support for Intel Architecture with Dynamic Execution
• A high performance, low-power core manufactured using Intel’s advanced

process technology with copper interconnect
• On-die, primary 32-KByte instruction cache and 32-KByte write-back data cache
• On-die, second-level cache (up to 2 MByte) with Advanced Transfer Cache Archi-

tecture
• Advanced Branch Prediction and Data Prefetch Logic
• Support for MMX technology, Streaming SIMD instructions, and the SSE2

instruction set
• A 400 or 533 MHz, Source-Synchronous Processor System Bus
• Advanced power management using Enhanced Intel SpeedStep® technology

2.1.10 The Intel® Pentium® Processor Extreme Edition (2005-2007)
The Intel Pentium processor Extreme Edition introduced dual-core technology. This
technology provides advanced hardware multi-threading support. The processor is
based on Intel NetBurst microarchitecture and supports SSE, SSE2, SSE3, Hyper-
Threading Technology, and Intel 64 architecture.

See also:
• Section 2.2.2, “Intel NetBurst® Microarchitecture”
• Section 2.2.3, “Intel® Core™ Microarchitecture”
• Section 2.2.7, “SIMD Instructions”
• Section 2.2.8, “Intel® Hyper-Threading Technology”
• Section 2.2.9, “Multi-Core Technology”
• Section 2.2.10, “Intel® 64 Architecture”

2.1.11 The Intel® Core™ Duo and Intel® Core™ Solo Processors
(2006-2007)

The Intel Core Duo processor offers power-efficient, dual-core performance with a
low-power design that extends battery life. This family and the single-core Intel Core
Vol. 1 2-5

INTEL® 64 AND IA-32 ARCHITECTURES
Solo processor offer microarchitectural enhancements over Pentium M processor
family.

Its enhanced microarchitecture includes:
• Intel® Smart Cache which allows for efficient data sharing between two

processor cores
• Improved decoding and SIMD execution
• Intel® Dynamic Power Coordination and Enhanced Intel® Deeper Sleep to reduce

power consumption
• Intel® Advanced Thermal Manager which features digital thermal sensor

interfaces
• Support for power-optimized 667 MHz bus

The dual-core Intel Xeon processor LV is based on the same microarchitecture as
Intel Core Duo processor, and supports IA-32 architecture.

2.1.12 The Intel® Xeon® Processor 5100, 5300 Series and
Intel® Core™2 Processor Family (2006-Current)

The Intel Xeon processor 3000, 3200, 5100, 5300, and 7300 series, Intel Pentium
Dual-Core, Intel Core 2 Extreme, Intel Core 2 Quad processors, and Intel Core 2 Duo
processor family support Intel 64 architecture; they are based on the high-perfor-
mance, power-efficient Intel® Core microarchitecture built on 65 nm process tech-
nology. The Intel Core microarchitecture includes the following innovative features:
• Intel® Wide Dynamic Execution to increase performance and execution

throughput
• Intel® Intelligent Power Capability to reduce power consumption
• Intel® Advanced Smart Cache which allows for efficient data sharing between

two processor cores
• Intel® Smart Memory Access to increase data bandwidth and hide latency of

memory accesses
• Intel® Advanced Digital Media Boost which improves application performance

using multiple generations of Streaming SIMD extensions

The Intel Xeon processor 5300 series, Intel Core 2 Extreme processor QX6800 series,
and Intel Core 2 Quad processors support Intel quad-core technology.

2.1.13 The Intel® Xeon® Processor 5200, 5400, 7400 Series and
Intel® Core™2 Processor Family (2007-Current)

The Intel Xeon processor 5200, 5400, and 7400 series, Intel Core 2 Quad processor
Q9000 Series, Intel Core 2 Duo processor E8000 series support Intel 64 architecture;
they are based on the Enhanced Intel® Core microarchitecture using 45 nm process
2-6 Vol. 1

INTEL® 64 AND IA-32 ARCHITECTURES
technology. The Enhanced Intel Core microarchitecture provides the following
improved features:
• A radix-16 divider, faster OS primitives further increases the performance of

Intel® Wide Dynamic Execution.
• Improves Intel® Advanced Smart Cache with Up to 50% larger level-two cache

and up to 50% increase in way-set associativity.
• A 128-bit shuffler engine significantly improves the performance of Intel®

Advanced Digital Media Boost and SSE4.

Intel Xeon processor 5400 series and Intel Core 2 Quad processor Q9000 Series
support Intel quad-core technology. Intel Xeon processor 7400 series offers up to six
processor cores and an L3 cache up to 16 MBytes.

2.1.14 The Intel® Atom™ Processor Family (2008-Current)
The Intel® AtomTM processors are built on 45 nm process technology. They are based
on a new microarchitecture, Intel® AtomTM microarchitecture, which is optimized for
ultra low power devices. The Intel® AtomTM microarchitecture features two in-order
execution pipelines that minimize power consumption, increase battery life, and
enable ultra-small form factors. It provides the following features:
• Enhanced Intel® SpeedStep® Technology
• Intel® Hyper-Threading Technology
• Deep Power Down Technology with Dynamic Cache Sizing
• Support for new instructions up to and including Supplemental Streaming SIMD

Extensions 3 (SSSE3).
• Support for Intel® Virtualization Technology
• Support for Intel® 64 Architecture (excluding Intel Atom processor Z5xx Series)

2.1.15 The Intel® Core™i7 Processor Family (2008-Current)
The Intel Core i7 processor 900 series support Intel 64 architecture; they are based
on Intel® microarchitecture code name Nehalem using 45 nm process technology.
The Intel Core i7 processor and Intel Xeon processor 5500 series include the
following innovative features:
• Intel® Turbo Boost Technology converts thermal headroom into higher perfor-

mance.
• Intel® HyperThreading Technology in conjunction with Quadcore to provide four

cores and eight threads.
• Dedicated power control unit to reduce active and idle power consumption.
• Integrated memory controller on the processor supporting three channel of DDR3

memory.
Vol. 1 2-7

INTEL® 64 AND IA-32 ARCHITECTURES
• 8 MB inclusive Intel® Smart Cache.
• Intel® QuickPath interconnect (QPI) providing point-to-point link to chipset.
• Support for SSE4.2 and SSE4.1 instruction sets.
• Second generation Intel Virtualization Technology.

2.1.16 The Intel® Xeon® Processor 7500 Series (2010)
The Intel Xeon processor 7500 and 6500 series are based on Intel microarchitecture
code name Nehalem using 45 nm process technology. They support the same
features described in Section 2.1.15, plus the following innovative features:
• Up to eight cores per physical processor package.
• Up to 24 MB inclusive Intel® Smart Cache.
• Provides Intel® Scalable Memory Interconnect (Intel® SMI) channels with Intel®

7500 Scalable Memory Buffer to connect to system memory.
• Advanced RAS supporting software recoverable machine check architecture.

2.1.17 2010 Intel® Core™ Processor Family (2010)
2010 Intel Core processor family spans Intel Core i7, i5 and i3 processors. They are
based on Intel® microarchitecture code name Westmere using 32 nm process tech-
nology. The innovative features can include:
• Deliver smart performance using Intel Hyper-Threading Technology plus Intel

Turbo Boost Technology.
• Enhanced Intel Smart Cache and integrated memory controller.
• Intelligent power gating.
• Repartitioned platform with on-die integration of 45nm integrated graphics.
• Range of instruction set support up to AESNI, PCLMULQDQ, SSE4.2 and SSE4.1.

2.1.18 The Intel® Xeon® Processor 5600 Series (2010)
The Intel Xeon processor 5600 series are based on Intel microarchitecture code
name Westmere using 32 nm process technology. They support the same features
described in Section 2.1.15, plus the following innovative features:
• Up to six cores per physical processor package.
• Up to 12 MB enhanced Intel® Smart Cache.
• Support for AESNI, PCLMULQDQ, SSE4.2 and SSE4.1 instruction sets.
• Flexible Intel Virtualization Technologies across processor and I/O.
2-8 Vol. 1

INTEL® 64 AND IA-32 ARCHITECTURES
2.1.19 Second Generation Intel® Core™ Processor Family (2011)
Second Generation Intel Core processor family spans Intel Core i7, i5 and i3 proces-
sors based on Intel® microarchitecture code name Sandy Bridge. They are built from
32 nm process technology and have innovative features including:
• Intel Turbo Boost Technology for Intel Core i5 and i7 processors
• Intel Hyper-Threading Technology.
• Enhanced Intel Smart Cache and integrated memory controller.
• Processor graphics and built-in visual features like Intel® Quick Sync Video,

Intel® InsiderTM etc.
• Range of instruction set support up to AVX, AESNI, PCLMULQDQ, SSE4.2 and

SSE4.1.

2.2 MORE ON SPECIFIC ADVANCES
The following sections provide more information on major innovations.

2.2.1 P6 Family Microarchitecture
The Pentium Pro processor introduced a new microarchitecture commonly referred to
as P6 processor microarchitecture. The P6 processor microarchitecture was later
enhanced with an on-die, Level 2 cache, called Advanced Transfer Cache.

The microarchitecture is a three-way superscalar, pipelined architecture. Three-way
superscalar means that by using parallel processing techniques, the processor is able
on average to decode, dispatch, and complete execution of (retire) three instructions
per clock cycle. To handle this level of instruction throughput, the P6 processor family
uses a decoupled, 12-stage superpipeline that supports out-of-order instruction
execution.

Figure 2-1 shows a conceptual view of the P6 processor microarchitecture pipeline
with the Advanced Transfer Cache enhancement.
Vol. 1 2-9

INTEL® 64 AND IA-32 ARCHITECTURES
To ensure a steady supply of instructions and data for the instruction execution pipe-
line, the P6 processor microarchitecture incorporates two cache levels. The Level 1
cache provides an 8-KByte instruction cache and an 8-KByte data cache, both closely
coupled to the pipeline. The Level 2 cache provides 256-KByte, 512-KByte, or
1-MByte static RAM that is coupled to the core processor through a full clock-speed
64-bit cache bus.

The centerpiece of the P6 processor microarchitecture is an out-of-order execution
mechanism called dynamic execution. Dynamic execution incorporates three data-
processing concepts:
• Deep branch prediction allows the processor to decode instructions beyond

branches to keep the instruction pipeline full. The P6 processor family
implements highly optimized branch prediction algorithms to predict the direction
of the instruction.

• Dynamic data flow analysis requires real-time analysis of the flow of data
through the processor to determine dependencies and to detect opportunities for
out-of-order instruction execution. The out-of-order execution core can monitor

Figure 2-1. The P6 Processor Microarchitecture with Advanced Transfer Cache
Enhancement

Bus Unit

2nd Level Cache
On-die, 8-way

1st Level Cache
4-way, low latency

Fetch/
Decode

Execution
Instruction

Cache
Microcode

ROM

Execution
Out-of-Order

Core
Retirement

BTSs/Branch Prediction

System Bus

Branch History Update

Frequently used

Less frequently used

Front End

OM16520
2-10 Vol. 1

INTEL® 64 AND IA-32 ARCHITECTURES
many instructions and execute these instructions in the order that best optimizes
the use of the processor’s multiple execution units, while maintaining the data
integrity.

• Speculative execution refers to the processor’s ability to execute instructions
that lie beyond a conditional branch that has not yet been resolved, and
ultimately to commit the results in the order of the original instruction stream. To
make speculative execution possible, the P6 processor microarchitecture
decouples the dispatch and execution of instructions from the commitment of
results. The processor’s out-of-order execution core uses data-flow analysis to
execute all available instructions in the instruction pool and store the results in
temporary registers. The retirement unit then linearly searches the instruction
pool for completed instructions that no longer have data dependencies with other
instructions or unresolved branch predictions. When completed instructions are
found, the retirement unit commits the results of these instructions to memory
and/or the IA-32 registers (the processor’s eight general-purpose registers and
eight x87 FPU data registers) in the order they were originally issued and retires
the instructions from the instruction pool.

2.2.2 Intel NetBurst® Microarchitecture
The Intel NetBurst microarchitecture provides:
• The Rapid Execution Engine

— Arithmetic Logic Units (ALUs) run at twice the processor frequency

— Basic integer operations can dispatch in 1/2 processor clock tick
• Hyper-Pipelined Technology

— Deep pipeline to enable industry-leading clock rates for desktop PCs and
servers

— Frequency headroom and scalability to continue leadership into the future
• Advanced Dynamic Execution

— Deep, out-of-order, speculative execution engine

• Up to 126 instructions in flight

• Up to 48 loads and 24 stores in pipeline1

— Enhanced branch prediction capability

• Reduces the misprediction penalty associated with deeper pipelines

• Advanced branch prediction algorithm

• 4K-entry branch target array

1. Intel 64 and IA-32 processors based on the Intel NetBurst microarchitecture at 90 nm process
can handle more than 24 stores in flight.
Vol. 1 2-11

INTEL® 64 AND IA-32 ARCHITECTURES
• New cache subsystem

— First level caches

• Advanced Execution Trace Cache stores decoded instructions

• Execution Trace Cache removes decoder latency from main execution
loops

• Execution Trace Cache integrates path of program execution flow into a
single line

• Low latency data cache

— Second level cache

• Full-speed, unified 8-way Level 2 on-die Advance Transfer Cache

• Bandwidth and performance increases with processor frequency
• High-performance, quad-pumped bus interface to the Intel NetBurst microarchi-

tecture system bus

— Supports quad-pumped, scalable bus clock to achieve up to 4X effective
speed

— Capable of delivering up to 8.5 GBytes of bandwidth per second
• Superscalar issue to enable parallelism
• Expanded hardware registers with renaming to avoid register name space

limitations
• 64-byte cache line size (transfers data up to two lines per sector)

Figure 2-2 is an overview of the Intel NetBurst microarchitecture. This microarchitec-
ture pipeline is made up of three sections: (1) the front end pipeline, (2) the out-of-
order execution core, and (3) the retirement unit.
2-12 Vol. 1

INTEL® 64 AND IA-32 ARCHITECTURES
2.2.2.1 The Front End Pipeline
The front end supplies instructions in program order to the out-of-order execution
core. It performs a number of functions:
• Prefetches instructions that are likely to be executed
• Fetches instructions that have not already been prefetched
• Decodes instructions into micro-operations
• Generates microcode for complex instructions and special-purpose code
• Delivers decoded instructions from the execution trace cache
• Predicts branches using highly advanced algorithm

The pipeline is designed to address common problems in high-speed, pipelined
microprocessors. Two of these problems contribute to major sources of delays:
• time to decode instructions fetched from the target

Figure 2-2. The Intel NetBurst Microarchitecture

Fetch/Decode
Trace Cache

Microcode ROM

Execution
Out-Of-Order

Core
Retirement

1st Level Cache
4-way

2nd Level Cache
 8-Way

BTBs/Branch Prediction

Bus Unit

System Bus
Frequently used paths

Less frequently used
paths

Front End

3rd Level Cache
Optional

Branch History Update

OM16521
Vol. 1 2-13

INTEL® 64 AND IA-32 ARCHITECTURES
• wasted decode bandwidth due to branches or branch target in the middle of
cache lines

The operation of the pipeline’s trace cache addresses these issues. Instructions are
constantly being fetched and decoded by the translation engine (part of the
fetch/decode logic) and built into sequences of µops called traces. At any time,
multiple traces (representing prefetched branches) are being stored in the trace
cache. The trace cache is searched for the instruction that follows the active branch.
If the instruction also appears as the first instruction in a pre-fetched branch, the
fetch and decode of instructions from the memory hierarchy ceases and the pre-
fetched branch becomes the new source of instructions (see Figure 2-2).

The trace cache and the translation engine have cooperating branch prediction hard-
ware. Branch targets are predicted based on their linear addresses using branch
target buffers (BTBs) and fetched as soon as possible.

2.2.2.2 Out-Of-Order Execution Core
The out-of-order execution core’s ability to execute instructions out of order is a key
factor in enabling parallelism. This feature enables the processor to reorder instruc-
tions so that if one µop is delayed, other µops may proceed around it. The processor
employs several buffers to smooth the flow of µops.

The core is designed to facilitate parallel execution. It can dispatch up to six µops per
cycle (this exceeds trace cache and retirement µop bandwidth). Most pipelines can
start executing a new µop every cycle, so several instructions can be in flight at a
time for each pipeline. A number of arithmetic logical unit (ALU) instructions can
start at two per cycle; many floating-point instructions can start once every two
cycles.

2.2.2.3 Retirement Unit
The retirement unit receives the results of the executed µops from the out-of-order
execution core and processes the results so that the architectural state updates
according to the original program order.

When a µop completes and writes its result, it is retired. Up to three µops may be
retired per cycle. The Reorder Buffer (ROB) is the unit in the processor which buffers
completed µops, updates the architectural state in order, and manages the ordering
of exceptions. The retirement section also keeps track of branches and sends
updated branch target information to the BTB. The BTB then purges pre-fetched
traces that are no longer needed.

2.2.3 Intel® Core™ Microarchitecture
Intel Core microarchitecture introduces the following features that enable high
performance and power-efficient performance for single-threaded as well as multi-
threaded workloads:
2-14 Vol. 1

INTEL® 64 AND IA-32 ARCHITECTURES
• Intel® Wide Dynamic Execution enable each processor core to fetch,
dispatch, execute in high bandwidths to support retirement of up to four instruc-
tions per cycle.

— Fourteen-stage efficient pipeline

— Three arithmetic logical units

— Four decoders to decode up to five instruction per cycle

— Macro-fusion and micro-fusion to improve front-end throughput

— Peak issue rate of dispatching up to six micro-ops per cycle

— Peak retirement bandwidth of up to 4 micro-ops per cycle

— Advanced branch prediction

— Stack pointer tracker to improve efficiency of executing function/procedure
entries and exits

• Intel® Advanced Smart Cache delivers higher bandwidth from the second
level cache to the core, and optimal performance and flexibility for single-
threaded and multi-threaded applications.

— Large second level cache up to 4 MB and 16-way associativity

— Optimized for multicore and single-threaded execution environments

— 256 bit internal data path to improve bandwidth from L2 to first-level data
cache

• Intel® Smart Memory Access prefetches data from memory in response to
data access patterns and reduces cache-miss exposure of out-of-order
execution.

— Hardware prefetchers to reduce effective latency of second-level cache
misses

— Hardware prefetchers to reduce effective latency of first-level data cache
misses

— Memory disambiguation to improve efficiency of speculative execution
execution engine

• Intel® Advanced Digital Media Boost improves most 128-bit SIMD instruction
with single-cycle throughput and floating-point operations.

— Single-cycle throughput of most 128-bit SIMD instructions

— Up to eight floating-point operation per cycle

— Three issue ports available to dispatching SIMD instructions for execution

Intel Core 2 Extreme, Intel Core 2 Duo processors and Intel Xeon processor 5100
series implement two processor cores based on the Intel Core microarchitecture, the
functionality of the subsystems in each core are depicted in Figure 2-3.
Vol. 1 2-15

INTEL® 64 AND IA-32 ARCHITECTURES
2.2.3.1 The Front End
The front end of Intel Core microarchitecture provides several enhancements to feed
the Intel Wide Dynamic Execution engine:
• Instruction fetch unit prefetches instructions into an instruction queue to

maintain steady supply of instruction to the decode units.
• Four-wide decode unit can decode 4 instructions per cycle or 5 instructions per

cycle with Macrofusion.
• Macrofusion fuses common sequence of two instructions as one decoded

instruction (micro-ops) to increase decoding throughput.
• Microfusion fuses common sequence of two micro-ops as one micro-ops to

improve retirement throughput.
• Instruction queue provides caching of short loops to improve efficiency.
• Stack pointer tracker improves efficiency of executing procedure/function entries

and exits.

Figure 2-3. The Intel Core Microarchitecture Pipeline Functionality

Decode

ALU
Branch

MMX/SSE/FP
Move

Load

Shared L2 Cache
Up to 10.7 GB/s

FSB

Retirement Unit
(Re-Order Buffer)

L1D Cache and DTLB

Instruction Fetch and PreDecode

Instruction Queue

Rename/Alloc

ALU
FAdd

MMX/SSE

ALU
FMul

MMX/SSE

Scheduler

Micro-
code
ROM

Store
2-16 Vol. 1

INTEL® 64 AND IA-32 ARCHITECTURES
• Branch prediction unit employs dedicated hardware to handle different types of
branches for improved branch prediction.

• Advanced branch prediction algorithm directs instruction fetch unit to fetch
instructions likely in the architectural code path for decoding.

2.2.3.2 Execution Core
The execution core of the Intel Core microarchitecture is superscalar and can process
instructions out of order to increase the overall rate of instructions executed per cycle
(IPC). The execution core employs the following feature to improve execution
throughput and efficiency:
• Up to six micro-ops can be dispatched to execute per cycle
• Up to four instructions can be retired per cycle
• Three full arithmetic logical units
• SIMD instructions can be dispatched through three issue ports
• Most SIMD instructions have 1-cycle throughput (including 128-bit SIMD instruc-

tions)
• Up to eight floating-point operation per cycle
• Many long-latency computation operation are pipelined in hardware to increase

overall throughput
• Reduced exposure to data access delays using Intel Smart Memory Access

2.2.4 Intel® Atom™ Microarchitecture
Intel Atom microarchitecture maximizes power-efficient performance for single-
threaded and multi-threaded workloads by providing:
• Advanced Micro-Ops Execution

— Single-micro-op instruction execution from decode to retirement, including
instructions with register-only, load, and store semantics.

— Sixteen-stage, in-order pipeline optimized for throughput and reduced power
consumption.

— Dual pipelines to enable decode, issue, execution and retirement of two
instructions per cycle.

— Advanced stack pointer to improve efficiency of executing function
entry/returns.

• Intel® Smart Cache

— Second level cache is 512 KB and 8-way associativity.

— Optimized for multi-threaded and single-threaded execution environments
Vol. 1 2-17

INTEL® 64 AND IA-32 ARCHITECTURES
— 256 bit internal data path between L2 and L1 data cache improves high
bandwidth.

• Efficient Memory Access

— Efficient hardware prefetchers to L1 and L2, speculatively loading data likely
to be requested by processor to reduce cache miss impact.

• Intel® Digital Media Boost

— Two issue ports for dispatching SIMD instructions to execution units.

— Single-cycle throughput for most 128-bit integer SIMD instructions

— Up to six floating-point operations per cycle

— Up to two 128-bit SIMD integer operations per cycle

— Safe Instruction Recognition (SIR) to allow long-latency floating-point
operations to retire out of order with respect to integer instructions.

2.2.5 Intel® Microarchitecture Code Name Nehalem
Intel microarchitecture code name Nehalem provides the foundation for many inno-
vative features of Intel Core i7 processors. It builds on the success of 45nm Intel
Core microarchitecture and provides the following feature enhancements:
• Enhanced processor core

— Improved branch prediction and recovery from misprediction.

— Enhanced loop streaming to improve front end performance and reduce
power consumption.

— Deeper buffering in out-of-order engine to extract parallelism.

— Enhanced execution units to provide acceleration in CRC, string/text
processing and data shuffling.

• Smart Memory Access

— Integrated memory controller provides low-latency access to system memory
and scalable memory bandwidth

— New cache hierarchy organization with shared, inclusive L3 to reduce snoop
traffic

— Two level TLBs and increased TLB size.

— Fast unaligned memory access.
• HyperThreading Technology

— Provides two hardware threads (logical processors) per core.

— Takes advantage of 4-wide execution engine, large L3, and massive memory
bandwidth.

• Dedicated Power management Innovations
2-18 Vol. 1

INTEL® 64 AND IA-32 ARCHITECTURES
— Integrated microcontroller with optimized embedded firmware to manage
power consumption.

— Embedded real-time sensors for temperature, current, and power.

— Integrated power gate to turn off/on per-core power consumption

— Versatility to reduce power consumption of memory, link subsystems.

2.2.6 Intel® Microarchitecture Code Name Sandy Bridge
Intel® microarchitecture code name Sandy Bridge builds on the successes of Intel®
Core™ microarchitecture and Intel microarchitecture code name Nehalem. It offers
the following innovative features:
• Intel Advanced Vector Extensions (Intel AVX)

— 256-bit floating-point instruction set extensions to the 128-bit Intel
Streaming SIMD Extensions, providing up to 2X performance benefits relative
to 128-bit code.

— Non-destructive destination encoding offers more flexible coding techniques.

— Supports flexible migration and co-existence between 256-bit AVX code,
128-bit AVX code and legacy 128-bit SSE code.

• Enhanced front-end and execution engine

— New decoded Icache component that improves front-end bandwidth and
reduces branch misprediction penalty.

— Advanced branch prediction.

— Additional macro-fusion support.

— Larger dynamic execution window.

— Multi-precision integer arithmetic enhancements (ADC/SBB, MUL/IMUL).

— LEA bandwidth improvement.

— Reduction of general execution stalls (read ports, writeback conflicts, bypass
latency, partial stalls).

— Fast floating-point exception handling.

— XSAVE/XRSTORE performance improvements and XSAVEOPT new
instruction.

• Cache hierarchy improvements for wider data path

— Doubling of bandwidth enabled by two symmetric ports for memory
operation.

— Simultaneous handling of more in-flight loads and stores enabled by
increased buffers.

— Internal bandwidth of two loads and one store each cycle.
Vol. 1 2-19

INTEL® 64 AND IA-32 ARCHITECTURES
— Improved prefetching.

— High bandwidth low latency LLC architecture.

— High bandwidth ring architecture of on-die interconnect.

For additional information on Intel® Advanced Vector Extensions (AVX), see Section
5.13, “Intel® Advanced Vector Extensions (AVX)” and Chapter 13, “Programming
with AVX” in Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1.

2.2.7 SIMD Instructions
Beginning with the Pentium II and Pentium with Intel MMX technology processor
families, six extensions have been introduced into the Intel 64 and IA-32 architec-
tures to perform single-instruction multiple-data (SIMD) operations. These exten-
sions include the MMX technology, SSE extensions, SSE2 extensions, SSE3
extensions, Supplemental Streaming SIMD Extensions 3, and SSE4. Each of these
extensions provides a group of instructions that perform SIMD operations on packed
integer and/or packed floating-point data elements.

SIMD integer operations can use the 64-bit MMX or the 128-bit XMM registers. SIMD
floating-point operations use 128-bit XMM registers. Figure 2-4 shows a summary of
the various SIMD extensions (MMX technology, SSE, SSE2, SSE3, SSSE3, and SSE4),
the data types they operate on, and how the data types are packed into MMX and
XMM registers.

The Intel MMX technology was introduced in the Pentium II and Pentium with MMX
technology processor families. MMX instructions perform SIMD operations on packed
byte, word, or doubleword integers located in MMX registers. These instructions are
useful in applications that operate on integer arrays and streams of integer data that
lend themselves to SIMD processing.

SSE extensions were introduced in the Pentium III processor family. SSE instructions
operate on packed single-precision floating-point values contained in XMM registers
and on packed integers contained in MMX registers. Several SSE instructions provide
state management, cache control, and memory ordering operations. Other SSE
instructions are targeted at applications that operate on arrays of single-precision
floating-point data elements (3-D geometry, 3-D rendering, and video encoding and
decoding applications).

SSE2 extensions were introduced in Pentium 4 and Intel Xeon processors. SSE2
instructions operate on packed double-precision floating-point values contained in
XMM registers and on packed integers contained in MMX and XMM registers. SSE2
integer instructions extend IA-32 SIMD operations by adding new 128-bit SIMD
integer operations and by expanding existing 64-bit SIMD integer operations to
128-bit XMM capability. SSE2 instructions also provide new cache control and
memory ordering operations.

SSE3 extensions were introduced with the Pentium 4 processor supporting Hyper-
Threading Technology (built on 90 nm process technology). SSE3 offers 13 instruc-
2-20 Vol. 1

INTEL® 64 AND IA-32 ARCHITECTURES
tions that accelerate performance of Streaming SIMD Extensions technology,
Streaming SIMD Extensions 2 technology, and x87-FP math capabilities.

SSSE3 extensions were introduced with the Intel Xeon processor 5100 series and
Intel Core 2 processor family. SSSE3 offer 32 instructions to accelerate processing of
SIMD integer data.

SSE4 extensions offer 54 instructions. 47 of them are referred to as SSE4.1 instruc-
tions. SSE4.1 are introduced with Intel Xeon processor 5400 series and Intel Core 2
Extreme processor QX9650. The other 7 SSE4 instructions are referred to as SSE4.2
instructions.

AESNI and PCLMULQDQ introduce 7 new instructions. Six of them are primitives for
accelerating algorithms based on AES encryption/decryption standard, referred to as
AESNI.

The PCLMULQDQ instruction accelerates general-purpose block encryption, which
can perform carry-less multiplication for two binary numbers up to 64-bit wide.

Intel 64 architecture allows four generations of 128-bit SIMD extensions to access up
to 16 XMM registers. IA-32 architecture provides 8 XMM registers.

Intel® Advanced Vector Extensions offers comprehensive architectural enhance-
ments over previous generations of Streaming SIMD Extensions. Intel AVX intro-
duces the following architectural enhancements:
• Support for 256-bit wide vectors and SIMD register set.
• 256-bit floating-point instruction set enhancement with up to 2X performance

gain relative to 128-bit Streaming SIMD extensions.
• Instruction syntax support for generalized three-operand syntax to improve

instruction programming flexibility and efficient encoding of new instruction
extensions.

• Enhancement of legacy 128-bit SIMD instruction extensions to support three
operand syntax and to simplify compiler vectorization of high-level language
expressions.

• Support flexible deployment of 256-bit AVX code, 128-bit AVX code, legacy 128-
bit code and scalar code.

In addition to performance considerations, programmers should also be cognizant of
the implications of VEX-encoded AVX instructions with the expectations of system
software components that manage the processor state components enabled by
XCR0. For additional information see Section 2.3.10.1, “Vector Length Transition and
Programming Considerations” in Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 2A.

See also:
• Section 5.4, “MMX™ Instructions,” and Chapter 9, “Programming with Intel®

MMX™ Technology”
• Section 5.5, “SSE Instructions,” and Chapter 10, “Programming with Streaming

SIMD Extensions (SSE)”
Vol. 1 2-21

INTEL® 64 AND IA-32 ARCHITECTURES
• Section 5.6, “SSE2 Instructions,” and Chapter 11, “Programming with Streaming
SIMD Extensions 2 (SSE2)”

• Section 5.7, “SSE3 Instructions”, Section 5.8, “Supplemental Streaming SIMD
Extensions 3 (SSSE3) Instructions”, Section 5.9, “SSE4 Instructions”, and
Chapter 12, “Programming with SSE3, SSSE3, SSE4 and AESNI”

Figure 2-4. SIMD Extensions, Register Layouts, and Data Types

4 Packed Word Integers

8 Packed Byte Integers

2 Packed Doubleword Integers

MMX Registers

Quadword

MMX Technology - SSSE3

Data TypeRegister LayoutSIMD Extension

SSE - AVX

4 Packed Single-Precision
Floating-Point Values

2 Packed Double-Precision
Floating-Point Values

8 Packed Word Integers

16 Packed Byte Integers

4 Packed Doubleword

2 Quadword Integers

Double Quadword

Integers

XMM Registers

8 Packed SP FP Values

4 Packed DP FP Values

YMM Registers
AVX

2 128-bit Data
2-22 Vol. 1

INTEL® 64 AND IA-32 ARCHITECTURES
2.2.8 Intel® Hyper-Threading Technology
Intel Hyper-Threading Technology (Intel HT Technology) was developed to improve
the performance of IA-32 processors when executing multi-threaded operating
system and application code or single-threaded applications under multi-tasking
environments. The technology enables a single physical processor to execute two or
more separate code streams (threads) concurrently using shared execution
resources.

Intel HT Technology is one form of hardware multi-threading capability in IA-32
processor families. It differs from multi-processor capability using separate physi-
cally distinct packages with each physical processor package mated with a physical
socket. Intel HT Technology provides hardware multi-threading capability with a
single physical package by using shared execution resources in a processor core.

Architecturally, an IA-32 processor that supports Intel HT Technology consists of two
or more logical processors, each of which has its own IA-32 architectural state. Each
logical processor consists of a full set of IA-32 data registers, segment registers,
control registers, debug registers, and most of the MSRs. Each also has its own
advanced programmable interrupt controller (APIC).

Figure 2-5 shows a comparison of a processor that supports Intel HT Technology
(implemented with two logical processors) and a traditional dual processor system.

Unlike a traditional MP system configuration that uses two or more separate physical
IA-32 processors, the logical processors in an IA-32 processor supporting Intel HT
Technology share the core resources of the physical processor. This includes the

Figure 2-5. Comparison of an IA-32 Processor Supporting Hyper-Threading
Technology and a Traditional Dual Processor System

Processor Core Processor CoreProcessor Core

AS ASASAS

Traditional Multiple Processor (MP) System
IA-32 Processor Supporting

Hyper-Threading Technology

AS = IA-32 Architectural State

IA-32 processor IA-32 processor

Two logical
processors that share
a single core

Each processor is a
separate physical
package

IA-32 processor

OM16522
Vol. 1 2-23

INTEL® 64 AND IA-32 ARCHITECTURES
execution engine and the system bus interface. After power up and initialization,
each logical processor can be independently directed to execute a specified thread,
interrupted, or halted.

Intel HT Technology leverages the process and thread-level parallelism found in
contemporary operating systems and high-performance applications by providing
two or more logical processors on a single chip. This configuration allows two or more
threads1 to be executed simultaneously on each a physical processor. Each logical
processor executes instructions from an application thread using the resources in the
processor core. The core executes these threads concurrently, using out-of-order
instruction scheduling to maximize the use of execution units during each clock cycle.

2.2.8.1 Some Implementation Notes
All Intel HT Technology configurations require:
• A processor that supports Intel HT Technology
• A chipset and BIOS that utilize the technology
• Operating system optimizations

See http://www.intel.com/products/ht/hyperthreading_more.htm for information.

At the firmware (BIOS) level, the basic procedures to initialize the logical processors
in a processor supporting Intel HT Technology are the same as those for a traditional
DP or MP platform. The mechanisms that are described in the Multiprocessor Specifi-
cation, Version 1.4 to power-up and initialize physical processors in an MP system
also apply to logical processors in a processor that supports Intel HT Technology.

An operating system designed to run on a traditional DP or MP platform may use
CPUID to determine the presence of hardware multi-threading support feature and
the number of logical processors they provide.

Although existing operating system and application code should run correctly on a
processor that supports Intel HT Technology, some code modifications are recom-
mended to get the optimum benefit. These modifications are discussed in Chapter 7,
“Multiple-Processor Management,” Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3A.

2.2.9 Multi-Core Technology
Multi-core technology is another form of hardware multi-threading capability in IA-32
processor families. Multi-core technology enhances hardware multi-threading capa-
bility by providing two or more execution cores in a physical package.

The Intel Pentium processor Extreme Edition is the first member in the IA-32
processor family to introduce multi-core technology. The processor provides hard-

1. In the remainder of this document, the term “thread” will be used as a general term for the terms
“process” and “thread.”
2-24 Vol. 1

INTEL® 64 AND IA-32 ARCHITECTURES
ware multi-threading support with both two processor cores and Intel Hyper-
Threading Technology. This means that the Intel Pentium processor Extreme Edition
provides four logical processors in a physical package (two logical processors for
each processor core). The Dual-Core Intel Xeon processor features multi-core, Intel
Hyper-Threading Technology and supports multi-processor platforms.

The Intel Pentium D processor also features multi-core technology. This processor
provides hardware multi-threading support with two processor cores but does not
offer Intel Hyper-Threading Technology. This means that the Intel Pentium D
processor provides two logical processors in a physical package, with each logical
processor owning the complete execution resources of a processor core.

The Intel Core 2 processor family, Intel Xeon processor 3000 series, Intel Xeon
processor 5100 series, and Intel Core Duo processor offer power-efficient multi-core
technology. The processor contains two cores that share a smart second level cache.
The Level 2 cache enables efficient data sharing between two cores to reduce
memory traffic to the system bus.
Vol. 1 2-25

INTEL® 64 AND IA-32 ARCHITECTURES
The Pentium® dual-core processor is based on the same technology as the Intel Core
2 Duo processor family.

The Intel Xeon processor 7300, 5300 and 3200 series, Intel Core 2 Extreme Quad-
Core processor, and Intel Core 2 Quad processors support Intel quad-core tech-
nology. The Quad-core Intel Xeon processors and the Quad-Core Intel Core 2
processor family are also in Figure 2-7.

Figure 2-6. Intel 64 and IA-32 Processors that Support Dual-Core

Architectual
State

System Bus

Execution Engine

Local APIC Local APIC

Execution Engine

Architectual
State

Bus Interface Bus Interface

Local APIC Local APIC

Architectual
State

Architectual
State

Pentium Processor Extreme Edition

System Bus

Architectual State

Execution Engine

Local APIC Local APIC

Execution Engine

Architectual State

Bus Interface

Intel Core Duo Processor
Intel Core 2 Duo Processor

Intel Pentium dual-core Processor

Second Level Cache

Architectual State

System Bus

Execution Engine

Local APIC Local APIC

Execution Engine

Architectual State

Bus Interface Bus Interface

Pentium D Processor

OM19809
2-26 Vol. 1

INTEL® 64 AND IA-32 ARCHITECTURES
Intel Core i7 processors support Intel quad-core technology, Intel HyperThreading
Technology, provides Intel QuickPath interconnect link to the chipset and have inte-
grated memory controller supporting three channel to DDR3 memory.

Figure 2-7. Intel 64 Processors that Support Quad-Core

System Bus

Intel Core 2 Extreme Quad-core Processor
Intel Core 2 Quad Processor

Intel Xeon Processor 3200 Series
Intel Xeon Processor 5300 Series

Architectual State

Execution Engine

Local APIC Local APIC

Execution Engine

Architectual State

Bus Interface

Second Level Cache

Architectual State

Execution Engine

Local APIC Local APIC

Execution Engine

Architectual State

Bus Interface

Second Level Cache

OM19810
Vol. 1 2-27

INTEL® 64 AND IA-32 ARCHITECTURES
2.2.10 Intel® 64 Architecture
Intel 64 architecture increases the linear address space for software to 64 bits and
supports physical address space up to 40 bits. The technology also introduces a new
operating mode referred to as IA-32e mode.

IA-32e mode operates in one of two sub-modes: (1) compatibility mode enables a
64-bit operating system to run most legacy 32-bit software unmodified, (2) 64-bit
mode enables a 64-bit operating system to run applications written to access 64-bit
address space.

In the 64-bit mode, applications may access:
• 64-bit flat linear addressing
• 8 additional general-purpose registers (GPRs)
• 8 additional registers for streaming SIMD extensions (SSE, SSE2, SSE3 and

SSSE3)
• 64-bit-wide GPRs and instruction pointers
• uniform byte-register addressing
• fast interrupt-prioritization mechanism

Figure 2-8. Intel Core i7 Processor

Chipset

Intel Core i7 Processor

QPI

Logical
Proces

sor

L1 and L2

Execution Engine Execution Engine

L1 and L2 L1 and L2

Execution Engine Execution Engine

L1 and L2

QuickPath Interconnect (QPI) Interface, Integrated Memory Controller

Third Level Cache

OM19810b

Logical
Proces

sor

Logical
Proces

sor

Logical
Proces

sor

Logical
Proces

sor

Logical
Proces

sor

Logical
Proces

sor

Logical
Proces

sor

DDR3

IMC
2-28 Vol. 1

INTEL® 64 AND IA-32 ARCHITECTURES
• a new instruction-pointer relative-addressing mode

An Intel 64 architecture processor supports existing IA-32 software because it is able
to run all non-64-bit legacy modes supported by IA-32 architecture. Most existing
IA-32 applications also run in compatibility mode.

2.2.11 Intel® Virtualization Technology (Intel® VT)
Intel® Virtualization Technology for Intel 64 and IA-32 architectures provide exten-
sions that support virtualization. The extensions are referred to as Virtual Machine
Extensions (VMX). An Intel 64 or IA-32 platform with VMX can function as multiple
virtual systems (or virtual machines). Each virtual machine can run operating
systems and applications in separate partitions.

VMX also provides programming interface for a new layer of system software (called
the Virtual Machine Monitor (VMM)) used to manage the operation of virtual
machines. Information on VMX and on the programming of VMMs is in Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3B. Chapter 5, “VMX
Instruction Reference,” in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 2B, provides information on VMX instructions.

Intel Core i7 processor provides the following enhancements to Intel Virtualization
Technology:
• Virtual processor ID (VPID) to reduce the cost of VMM managing transitions.
• Extended page table (EPT) to reduce the number of transitions for VMM to

manage memory virtualization.
• Reduced latency of VM transitions.

2.3 INTEL® 64 AND IA-32 PROCESSOR GENERATIONS
In the mid-1960s, Intel cofounder and Chairman Emeritus Gordon Moore had this
observation: “... the number of transistors that would be incorporated on a silicon die
would double every 18 months for the next several years.” Over the past three and
half decades, this prediction known as “Moore's Law” has continued to hold true.

The computing power and the complexity (or roughly, the number of transistors per
processor) of Intel architecture processors has grown in close relation to Moore's law.
By taking advantage of new process technology and new microarchitecture designs,
each new generation of IA-32 processors has demonstrated frequency-scaling head-
room and new performance levels over the previous generation processors.

The key features of the Intel Pentium 4 processor, Intel Xeon processor, Intel Xeon
processor MP, Pentium III processor, and Pentium III Xeon processor with advanced
Vol. 1 2-29

INTEL® 64 AND IA-32 ARCHITECTURES
transfer cache are shown in Table 2-1. Older generation IA-32 processors, which do
not employ on-die Level 2 cache, are shown in Table 2-2.

Table 2-1. Key Features of Most Recent IA-32 Processors

Intel
Processor

Date
Intro-
duced

Micro-
architecture

Top-Bin
Clock Fre-
quency at
Intro-
duction

Tran-
sistors

Register
Sizes1

NOTES:
1. The register size and external data bus size are given in bits.

Syste
m Bus
Band-
width

Max.
Extern.
Addr.
Space

On-Die
Caches2

2. First level cache is denoted using the abbreviation L1, 2nd level cache is denoted as L2. The size
of L1 includes the first-level data cache and the instruction cache where applicable, but
does not include the trace cache.

Intel Pentium M
Processor 7553

3. Intel processor numbers are not a measure of performance. Processor numbers differentiate
features within each processor family, not across different processor families.
See http://www.intel.com/products/processor_number for details.

2004 Intel Pentium M
Processor

2.00 GHz 140 M GP: 32
FPU: 80
MMX: 64
XMM: 128

3.2 GB/s 4 GB L1: 64 KB
L2: 2 MB

Intel Core Duo
Processor
T26003

2006 Improved Intel Pentium
M Processor
Microarchitecture; Dual
Core;
Intel Smart Cache,
Advanced Thermal
Manager

2.16 GHz 152M GP: 32
FPU: 80
MMX: 64
XMM: 128

5.3 GB/s 4 GB L1: 64 KB
L2: 2 MB (2MB
Total)

Intel Atom
Processor Z5xx
series

2008 Intel Atom
Microarchitecture;
Intel Virtualization
Technology.

1.86 GHz - 800
MHz

 47M GP: 32
FPU: 80
MMX: 64
XMM: 128

Up to 4.2
GB/s

4 GB L1: 56 KB4

L2: 512KB

4. In Intel Atom Processor, the size of L1 instruction cache is 32 KBytes, L1 data cache is 24 KBytes.

Table 2-2. Key Features of Most Recent Intel 64 Processors

Intel
Processor

Date
Intro-
duced

Micro-
architec-ture

Top-Bin
Fre-
quency
at Intro-
duction

Tran-
sistor
s

Register
Sizes

System
Bus/QP
I Link
Speed

Max.
Extern
. Addr.
Space

On-Die
Caches

64-bit Intel Xeon
Processor with
800 MHz
System Bus

2004 Intel NetBurst
Microarchitecture;
Intel Hyper-Threading
Technology; Intel 64
Architecture

3.60 GHz 125 M GP: 32, 64
FPU: 80
MMX: 64
XMM: 128

6.4 GB/s 64 GB 12K µop
Execution
Trace Cache;
16 KB L1;
1 MB L2

64-bit Intel Xeon
Processor MP
with 8MB L3

2005 Intel NetBurst
Microarchitecture;
Intel Hyper-Threading
Technology; Intel 64
Architecture

3.33 GHz 675M GP: 32, 64
FPU: 80
MMX: 64
XMM: 128

5.3 GB/s 1 1024 GB
(1 TB)

12K µop
Execution
Trace Cache;
16 KB L1;
1 MB L2,
8 MB L3
2-30 Vol. 1

INTEL® 64 AND IA-32 ARCHITECTURES
Intel Pentium 4
Processor
Extreme Edition
Supporting
Hyper-Threading
Technology

2005 Intel NetBurst
Microarchitecture;
Intel Hyper-Threading
Technology; Intel 64
Architecture

3.73 GHz 164 M GP: 32, 64
FPU: 80
MMX: 64
XMM: 128

8.5 GB/s 64 GB 12K µop
Execution
Trace Cache;
16 KB L1;
2 MB L2

Intel Pentium
Processor
Extreme Edition
840

2005 Intel NetBurst
Microarchitecture;
Intel Hyper-Threading
Technology; Intel 64
Architecture;
Dual-core 2

3.20 GHz 230 M GP: 32, 64
FPU: 80
MMX: 64
XMM: 128

6.4 GB/s 64 GB 12K µop
Execution
Trace Cache;
16 KB L1;
1MB L2 (2MB
Total)

Dual-Core Intel
Xeon
Processor 7041

2005 Intel NetBurst
Microarchitecture;
Intel Hyper-Threading
Technology; Intel 64
Architecture;
Dual-core 3

3.00 GHz 321M GP: 32, 64
FPU: 80
MMX: 64
XMM: 128

6.4 GB/s 64 GB 12K µop
Execution
Trace Cache;
16 KB L1;
2MB L2 (4MB
Total)

Intel Pentium 4
Processor 672

2005 Intel NetBurst
Microarchitecture;
Intel Hyper-Threading
Technology; Intel 64
Architecture;
Intel Virtualization
Technology.

3.80 GHz 164 M GP: 32, 64
FPU: 80
MMX: 64
XMM: 128

6.4 GB/s 64 GB 12K µop
Execution
Trace Cache;
16 KB L1;
2MB L2

Intel Pentium
Processor
Extreme Edition
955

2006 Intel NetBurst
Microarchitecture;
Intel 64 Architecture;
Dual Core;
Intel Virtualization
Technology.

3.46 GHz 376M GP: 32, 64
FPU: 80
MMX: 64
XMM: 128

8.5 GB/s 64 GB 12K µop
Execution
Trace Cache;
16 KB L1;
2MB L2
(4MB Total)

Intel Core 2
Extreme
Processor
X6800

2006 Intel Core
Microarchitecture;
Dual Core;
Intel 64 Architecture;
Intel Virtualization
Technology.

2.93 GHz 291M GP: 32,64
FPU: 80
MMX: 64
XMM: 128

8.5 GB/s 64 GB L1: 64 KB
L2: 4MB (4MB
Total)

Intel Xeon
Processor 5160

2006 Intel Core
Microarchitecture;
Dual Core;
Intel 64 Architecture;
Intel Virtualization
Technology.

3.00 GHz 291M GP: 32, 64
FPU: 80
MMX: 64
XMM: 128

10.6 GB/s 64 GB L1: 64 KB
L2: 4MB (4MB
Total)

Intel Xeon
Processor 7140

2006 Intel NetBurst
Microarchitecture;
Dual Core;
Intel 64 Architecture;
Intel Virtualization
Technology.

3.40 GHz 1.3 B GP: 32, 64
FPU: 80
MMX: 64
XMM: 128

12.8 GB/s 64 GB L1: 64 KB
L2: 1MB (2MB
Total)
L3: 16 MB
(16MB Total)

Intel Core 2
Extreme
Processor
QX6700

2006 Intel Core
Microarchitecture;
Quad Core;
Intel 64 Architecture;
Intel Virtualization
Technology.

2.66 GHz 582M GP: 32,64
FPU: 80
MMX: 64
XMM: 128

8.5 GB/s 64 GB L1: 64 KB
L2: 4MB (4MB
Total)

Table 2-2. Key Features of Most Recent Intel 64 Processors (Contd.)

Intel
Processor

Date
Intro-
duced

Micro-
architec-ture

Top-Bin
Fre-
quency
at Intro-
duction

Tran-
sistor
s

Register
Sizes

System
Bus/QP
I Link
Speed

Max.
Extern
. Addr.
Space

On-Die
Caches
Vol. 1 2-31

INTEL® 64 AND IA-32 ARCHITECTURES
Quad-core Intel
Xeon
Processor 5355

2006 Intel Core
Microarchitecture;
Quad Core;
Intel 64 Architecture;
Intel Virtualization
Technology.

2.66 GHz 582 M GP: 32, 64
FPU: 80
MMX: 64
XMM: 128

10.6 GB/s 256 GB L1: 64 KB
L2: 4MB (8 MB
Total)

Intel Core 2 Duo
Processor
E6850

2007 Intel Core
Microarchitecture;
Dual Core;
Intel 64 Architecture;
Intel Virtualization
Technology;
Intel Trusted
Execution Technology

3.00 GHz 291 M GP: 32, 64
FPU: 80
MMX: 64
XMM: 128

10.6 GB/s 64 GB L1: 64 KB
L2: 4MB (4MB
Total)

Intel Xeon
Processor 7350

2007 Intel Core
Microarchitecture;
Quad Core;
Intel 64 Architecture;
Intel Virtualization
Technology.

2.93 GHz 582 M GP: 32, 64
FPU: 80
MMX: 64
XMM: 128

8.5 GB/s 1024 GB L1: 64 KB
L2: 4MB (8MB
Total)

Intel Xeon
Processor 5472

2007 Enhanced Intel Core
Microarchitecture;
Quad Core;
Intel 64 Architecture;
Intel Virtualization
Technology.

3.00 GHz 820 M GP: 32, 64
FPU: 80
MMX: 64
XMM: 128

12.8 GB/s 256 GB L1: 64 KB
L2: 6MB
(12MB Total)

Intel Atom
Processor

2008 Intel Atom
Microarchitecture;
Intel 64 Architecture;
Intel Virtualization
Technology.

2.0 - 1.60 GHz 47 M GP: 32, 64
FPU: 80
MMX: 64
XMM: 128

Up to 4.2
GB/s

Up to 64GB L1: 56 KB4

L2: 512KB

Intel Xeon
Processor 7460

2008 Enhanced Intel Core
Microarchitecture; Six
Cores;
Intel 64 Architecture;
Intel Virtualization
Technology.

2.67 GHz 1.9 B GP: 32, 64
FPU: 80
MMX: 64
XMM: 128

8.5 GB/s 1024 GB L1: 64 KB
L2: 3MB (9MB
Total)
L3: 16MB

Intel Atom
Processor 330

2008 Intel Atom
Microarchitecture;
Intel 64 Architecture;
Dual core;
Intel Virtualization
Technology.

1.60 GHz 94 M GP: 32, 64
FPU: 80
MMX: 64
XMM: 128

Up to 4.2
GB/s

Up to 64GB L1: 56 KB5

L2: 512KB
(1MB Total)

Intel Core i7-965
Processor
Extreme Edition

2008 Intel microarchitecture
code name Nehalem;
Quadcore;
HyperThreading
Technology; Intel QPI;
Intel 64 Architecture;
Intel Virtualization
Technology.

3.20 GHz 731 M GP: 32, 64
FPU: 80
MMX: 64
XMM: 128

QPI: 6.4
GT/s;
Memory: 25
GB/s

64 GB L1: 64 KB
L2: 256KB
L3: 8MB

Table 2-2. Key Features of Most Recent Intel 64 Processors (Contd.)

Intel
Processor

Date
Intro-
duced

Micro-
architec-ture

Top-Bin
Fre-
quency
at Intro-
duction

Tran-
sistor
s

Register
Sizes

System
Bus/QP
I Link
Speed

Max.
Extern
. Addr.
Space

On-Die
Caches
2-32 Vol. 1

INTEL® 64 AND IA-32 ARCHITECTURES
Intel Core i7-
620M
Processor

2010 Intel Turbo Boost
Technology, Intel
microarchitecture
code name Westmere;
Dualcore;
HyperThreading
Technology; Intel 64
Architecture;
Intel Virtualization
Technology.,
Integrated graphics

2.66 GHz 383 M GP: 32, 64
FPU: 80
MMX: 64
XMM: 128

64 GB L1: 64 KB
L2: 256KB
L3: 4MB

Intel Xeon-
Processor 5680

2010 Intel Turbo Boost
Technology, Intel
microarchitecture
code name Westmere;
Six core;
HyperThreading
Technology; Intel 64
Architecture;
Intel Virtualization
Technology.

3.33 GHz 1.1B GP: 32, 64
FPU: 80
MMX: 64
XMM: 128

QPI: 6.4
GT/s; 32
GB/s

1 TB L1: 64 KB
L2: 256KB
L3: 12MB

Intel Xeon-
Processor 7560

2010 Intel Turbo Boost
Technology, Intel
microarchitecture
code name Nehalem;
Eight core;
HyperThreading
Technology; Intel 64
Architecture;
Intel Virtualization
Technology.

2.26 GHz 2.3B GP: 32, 64
FPU: 80
MMX: 64
XMM: 128

QPI: 6.4
GT/s;
Memory: 76
GB/s

16 TB L1: 64 KB
L2: 256KB
L3: 24MB

Intel Core i7-
2600K
Processor

2011 Intel Turbo Boost
Technology, Intel
microarchitecture
code name Sandy
Bridge; Four core;
HyperThreading
Technology; Intel 64
Architecture;
Intel Virtualization
Technology.,
Processor graphics,
Quicksync Video

3.40 GHz 995M GP: 32, 64
FPU: 80
MMX: 64
XMM: 128
YMM: 256

DMI: 5 GT/s;
Memory: 21
GB/s

64 GB L1: 64 KB
L2: 256KB
L3: 8MB

Intel Xeon-
Processor E3-
1280

2011 Intel Turbo Boost
Technology, Intel
microarchitecture
code name Sandy
Bridge; Four core;
HyperThreading
Technology; Intel 64
Architecture;
Intel Virtualization
Technology.

3.50 GHz GP: 32, 64
FPU: 80
MMX: 64
XMM: 128
YMM: 256

DMI: 5 GT/s;
Memory: 21
GB/s

1 TB L1: 64 KB
L2: 256KB
L3: 8MB

Intel Xeon-
Processor E7-
8870

2011 Intel Turbo Boost
Technology, Intel
microarchitecture
code name Westmere;
Ten core;
HyperThreading
Technology; Intel 64
Architecture;
Intel Virtualization
Technology.

2.40 GHz 2.2B GP: 32, 64
FPU: 80
MMX: 64
XMM: 128

QPI: 6.4
GT/s;
Memory:
102 GB/s

16 TB L1: 64 KB
L2: 256KB
L3: 30MB

Table 2-2. Key Features of Most Recent Intel 64 Processors (Contd.)

Intel
Processor

Date
Intro-
duced

Micro-
architec-ture

Top-Bin
Fre-
quency
at Intro-
duction

Tran-
sistor
s

Register
Sizes

System
Bus/QP
I Link
Speed

Max.
Extern
. Addr.
Space

On-Die
Caches
Vol. 1 2-33

INTEL® 64 AND IA-32 ARCHITECTURES
NOTES:
1. The 64-bit Intel Xeon Processor MP with an 8-MByte L3 supports a multi-processor platform with a

dual system bus; this creates a platform bandwidth with 10.6 GBytes.
2. In Intel Pentium Processor Extreme Edition 840, the size of on-die cache is listed for each core. The

total size of L2 in the physical package in 2 MBytes.
3. In Dual-Core Intel Xeon Processor 7041, the size of on-die cache is listed for each core. The total

size of L2 in the physical package in 4 MBytes.
4. In Intel Atom Processor, the size of L1 instruction cache is 32 KBytes, L1 data cache is 24 KBytes.
5. In Intel Atom Processor, the size of L1 instruction cache is 32 KBytes, L1 data cache is 24 KBytes.
2-34 Vol. 1

INTEL® 64 AND IA-32 ARCHITECTURES
NOTE:
1. The register size and external data bus size are given in bits. Note also that each 32-bit general-

purpose (GP) registers can be addressed as an 8- or a 16-bit data registers in all of the processors.
2. Internal data paths are 2 to 4 times wider than the external data bus for each processor.

Table 2-3. Key Features of Previous Generations of IA-32 Processors

Intel
Processor

Date
Intro-
duced

Max. Clock
Frequency/
Technology at
Introduction

Tran-
sistors

Register
Sizes1

Ext. Data
Bus
Size2

Max.
Extern.
Addr.
Space

Caches

8086 1978 8 MHz 29 K 16 GP 16 1 MB None

Intel 286 1982 12.5 MHz 134 K 16 GP 16 16 MB Note 3

Intel386 DX Processor 1985 20 MHz 275 K 32 GP 32 4 GB Note 3

Intel486 DX Processor 1989 25 MHz 1.2 M 32 GP
80 FPU

32 4 GB L1: 8 KB

Pentium Processor 1993 60 MHz 3.1 M 32 GP
80 FPU

64 4 GB L1:16 KB

Pentium Pro Processor 1995 200 MHz 5.5 M 32 GP
80 FPU

64 64 GB L1: 16 KB
L2: 256 KB or
512 KB

Pentium II Processor 1997 266 MHz 7 M 32 GP
80 FPU
64 MMX

64 64 GB L1: 32 KB
L2: 256 KB or
512 KB

Pentium III Processor 1999 500 MHz 8.2 M 32 GP
80 FPU
64 MMX
128 XMM

64 64 GB L1: 32 KB
L2: 512 KB

Pentium III and Pentium
III Xeon Processors

1999 700 MHz 28 M 32 GP
80 FPU
64 MMX
128 XMM

64 64 GB L1: 32 KB
L2: 256 KB

Pentium 4 Processor 2000 1.50 GHz, Intel NetBurst
Microarchitecture

42 M 32 GP
80 FPU
64 MMX
128 XMM

64 64 GB 12K µop
Execution Trace
Cache; L1: 8KB
L2: 256 KB

Intel Xeon Processor 2001 1.70 GHz, Intel NetBurst
Microarchitecture

42 M 32 GP
80 FPU
64 MMX
128 XMM

64 64 GB 12K µop
Execution Trace
Cache; L1: 8KB
L2: 512KB

Intel Xeon Processor 2002 2.20 GHz, Intel NetBurst
Microarchitecture,
HyperThreading
Technology

55 M 32 GP
80 FPU
64 MMX
128 XMM

64 64 GB 12K µop
Execution Trace
Cache; L1: 8KB
L2: 512KB

Pentium M Processor 2003 1.60 GHz, Intel NetBurst
Microarchitecture

77 M 32 GP
80 FPU
64 MMX
128 XMM

64 4 GB L1: 64KB
L2: 1 MB

Intel Pentium 4
Processor Supporting
Hyper-Threading
Technology at 90 nm
process

2004 3.40 GHz, Intel NetBurst
Microarchitecture,
HyperThreading
Technology

125 M 32 GP
80 FPU
64 MMX
128 XMM

64 64 GB 12K µop
Execution Trace
Cache; L1: 16KB
L2: 1 MB
Vol. 1 2-35

CHAPTER 3
BASIC EXECUTION ENVIRONMENT

This chapter describes the basic execution environment of an Intel 64 or IA-32
processor as seen by assembly-language programmers. It describes how the
processor executes instructions and how it stores and manipulates data. The execu-
tion environment described here includes memory (the address space), general-
purpose data registers, segment registers, the flag register, and the instruction
pointer register.

3.1 MODES OF OPERATION
The IA-32 architecture supports three basic operating modes: protected mode, real-
address mode, and system management mode. The operating mode determines
which instructions and architectural features are accessible:
• Protected mode — This mode is the native state of the processor. Among the

capabilities of protected mode is the ability to directly execute “real-address
mode” 8086 software in a protected, multi-tasking environment. This feature is
called virtual-8086 mode, although it is not actually a processor mode. Virtual-
8086 mode is actually a protected mode attribute that can be enabled for any
task.

• Real-address mode — This mode implements the programming environment of
the Intel 8086 processor with extensions (such as the ability to switch to
protected or system management mode). The processor is placed in real-address
mode following power-up or a reset.

• System management mode (SMM) — This mode provides an operating
system or executive with a transparent mechanism for implementing platform-
specific functions such as power management and system security. The
processor enters SMM when the external SMM interrupt pin (SMI#) is activated
or an SMI is received from the advanced programmable interrupt controller
(APIC).
In SMM, the processor switches to a separate address space while saving the
basic context of the currently running program or task. SMM-specific code may
then be executed transparently. Upon returning from SMM, the processor is
placed back into its state prior to the system management interrupt. SMM was
introduced with the Intel386™ SL and Intel486™ SL processors and became a
standard IA-32 feature with the Pentium processor family.
Vol. 1 3-1

BASIC EXECUTION ENVIRONMENT
3.1.1 Intel® 64 Architecture
Intel 64 architecture adds IA-32e mode. IA-32e mode has two sub-modes.
These are:
• Compatibility mode (sub-mode of IA-32e mode) — Compatibility mode

permits most legacy 16-bit and 32-bit applications to run without re-compilation
under a 64-bit operating system. For brevity, the compatibility sub-mode is
referred to as compatibility mode in IA-32 architecture. The execution
environment of compatibility mode is the same as described in Section 3.2.
Compatibility mode also supports all of the privilege levels that are supported in
64-bit and protected modes. Legacy applications that run in Virtual 8086 mode or
use hardware task management will not work in this mode.
Compatibility mode is enabled by the operating system (OS) on a code segment
basis. This means that a single 64-bit OS can support 64-bit applications running
in 64-bit mode and support legacy 32-bit applications (not recompiled for
64-bits) running in compatibility mode.
Compatibility mode is similar to 32-bit protected mode. Applications access only
the first 4 GByte of linear-address space. Compatibility mode uses 16-bit and 32-
bit address and operand sizes. Like protected mode, this mode allows applica-
tions to access physical memory greater than 4 GByte using PAE (Physical
Address Extensions).

• 64-bit mode (sub-mode of IA-32e mode) — This mode enables a 64-bit
operating system to run applications written to access 64-bit linear address
space. For brevity, the 64-bit sub-mode is referred to as 64-bit mode in IA-32
architecture.
64-bit mode extends the number of general purpose registers and SIMD
extension registers from 8 to 16. General purpose registers are widened to 64
bits. The mode also introduces a new opcode prefix (REX) to access the register
extensions. See Section 3.2.1 for a detailed description.
64-bit mode is enabled by the operating system on a code-segment basis. Its
default address size is 64 bits and its default operand size is 32 bits. The default
operand size can be overridden on an instruction-by-instruction basis using a REX
opcode prefix in conjunction with an operand size override prefix.
REX prefixes allow a 64-bit operand to be specified when operating in 64-bit
mode. By using this mechanism, many existing instructions have been promoted
to allow the use of 64-bit registers and 64-bit addresses.

3.2 OVERVIEW OF THE BASIC EXECUTION
ENVIRONMENT

Any program or task running on an IA-32 processor is given a set of resources for
executing instructions and for storing code, data, and state information. These
3-2 Vol. 1

BASIC EXECUTION ENVIRONMENT
resources (described briefly in the following paragraphs and shown in Figure 3-1)
make up the basic execution environment for an IA-32 processor.

An Intel 64 processor supports the basic execution environment of an IA-32
processor, and a similar environment under IA-32e mode that can execute 64-bit
programs (64-bit sub-mode) and 32-bit programs (compatibility sub-mode).

The basic execution environment is used jointly by the application programs and the
operating system or executive running on the processor.
• Address space — Any task or program running on an IA-32 processor can

address a linear address space of up to 4 GBytes (232 bytes) and a physical
address space of up to 64 GBytes (236 bytes). See Section 3.3.6, “Extended
Physical Addressing in Protected Mode,” for more information about addressing
an address space greater than 4 GBytes.

• Basic program execution registers — The eight general-purpose registers,
the six segment registers, the EFLAGS register, and the EIP (instruction pointer)
register comprise a basic execution environment in which to execute a set of
general-purpose instructions. These instructions perform basic integer arithmetic
on byte, word, and doubleword integers, handle program flow control, operate on
bit and byte strings, and address memory. See Section 3.4, “Basic Program
Execution Registers,” for more information about these registers.

• x87 FPU registers — The eight x87 FPU data registers, the x87 FPU control
register, the status register, the x87 FPU instruction pointer register, the x87 FPU
operand (data) pointer register, the x87 FPU tag register, and the x87 FPU opcode
register provide an execution environment for operating on single-precision,
double-precision, and double extended-precision floating-point values, word
integers, doubleword integers, quadword integers, and binary coded decimal
(BCD) values. See Section 8.1, “x87 FPU Execution Environment,” for more
information about these registers.

• MMX registers — The eight MMX registers support execution of single-
instruction, multiple-data (SIMD) operations on 64-bit packed byte, word, and
doubleword integers. See Section 9.2, “The MMX Technology Programming
Environment,” for more information about these registers.

• XMM registers — The eight XMM data registers and the MXCSR register support
execution of SIMD operations on 128-bit packed single-precision and double-
precision floating-point values and on 128-bit packed byte, word, doubleword,
and quadword integers. See Section 10.2, “SSE Programming Environment,” for
more information about these registers.
Vol. 1 3-3

BASIC EXECUTION ENVIRONMENT
Figure 3-1. IA-32 Basic Execution Environment for Non-64-bit Modes

0

2^32 -1

Eight 32-bit

32-bits

32-bits

General-Purpose Registers

Segment Registers

EFLAGS Register

EIP (Instruction Pointer Register)

Address Space*

*The address space can be

Six 16-bit
Registers

Registers

Eight 80-bit
Registers

Floating-Point
Data Registers

Eight 64-bit
Registers MMX Registers

flat or segmented. Using

XMM RegistersEight 128-bit
Registers

16 bits Control Register

16 bits Status Register

48 bits FPU Instruction Pointer Register

48 bits FPU Data (Operand) Pointer Register

FPU Registers

MMX Registers

XMM Registers

32-bits MXCSR Register

Opcode Register (11-bits)

Basic Program Execution Registers

16 bits Tag Register

the physical address
extension mechanism, a
physical address space of
2^36 - 1 can be addressed.
3-4 Vol. 1

BASIC EXECUTION ENVIRONMENT
• Stack — To support procedure or subroutine calls and the passing of parameters
between procedures or subroutines, a stack and stack management resources
are included in the execution environment. The stack (not shown in Figure 3-1) is
located in memory. See Section 6.2, “Stacks,” for more information about stack
structure.

In addition to the resources provided in the basic execution environment, the IA-32
architecture provides the following resources as part of its system-level architecture.
They provide extensive support for operating-system and system-development soft-
ware. Except for the I/O ports, the system resources are described in detail in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 3A & 3B.
• I/O ports — The IA-32 architecture supports a transfers of data to and from

input/output (I/O) ports. See Chapter 14, “Input/Output,” in this volume.
• Control registers — The five control registers (CR0 through CR4) determine the

operating mode of the processor and the characteristics of the currently
executing task. See Chapter 2, “System Architecture Overview,” in the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 3A.

• Memory management registers — The GDTR, IDTR, task register, and LDTR
specify the locations of data structures used in protected mode memory
management. See Chapter 2, “System Architecture Overview,” in the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 3A.

• Debug registers — The debug registers (DR0 through DR7) control and allow
monitoring of the processor’s debugging operations. See in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3B.

• Memory type range registers (MTRRs) — The MTRRs are used to assign
memory types to regions of memory. See the sections on MTRRs in the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volumes 3A & 3B.

• Machine specific registers (MSRs) — The processor provides a variety of
machine specific registers that are used to control and report on processor
performance. Virtually all MSRs handle system related functions and are not
accessible to an application program. One exception to this rule is the time-
stamp counter. The MSRs are described in Chapter 34, “Model-Specific Registers
(MSRs),” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3C.

• Machine check registers — The machine check registers consist of a set of
control, status, and error-reporting MSRs that are used to detect and report on
hardware (machine) errors. See Chapter 15, “Machine-Check Architecture,” of
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

• Performance monitoring counters — The performance monitoring counters
allow processor performance events to be monitored. See Chapter 23, “Intro-
duction to Virtual-Machine Extensions,” in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3C.

The remainder of this chapter describes the organization of memory and the address
space, the basic program execution registers, and addressing modes. Refer to the
Vol. 1 3-5

BASIC EXECUTION ENVIRONMENT
following chapters in this volume for descriptions of the other program execution
resources shown in Figure 3-1:
• x87 FPU registers — See Chapter 8, “Programming with the x87 FPU.”
• MMX Registers — See Chapter 9, “Programming with Intel® MMX™

Technology.”
• XMM registers — See Chapter 10, “Programming with Streaming SIMD

Extensions (SSE),” Chapter 11, “Programming with Streaming SIMD Extensions 2
(SSE2),” and Chapter 12, “Programming with SSE3, SSSE3, SSE4 and AESNI.”

• Stack implementation and procedure calls — See Chapter 6, “Procedure
Calls, Interrupts, and Exceptions.”

3.2.1 64-Bit Mode Execution Environment
The execution environment for 64-bit mode is similar to that described in Section
3.2. The following paragraphs describe the differences that apply.
• Address space — A task or program running in 64-bit mode on an IA-32

processor can address linear address space of up to 264 bytes (subject to the
canonical addressing requirement described in Section 3.3.7.1) and physical
address space of up to 240 bytes. Software can query CPUID for the physical
address size supported by a processor.

• Basic program execution registers — The number of general-purpose
registers (GPRs) available is 16. GPRs are 64-bits wide and they support
operations on byte, word, doubleword and quadword integers. Accessing byte
registers is done uniformly to the lowest 8 bits. The instruction pointer register
becomes 64 bits. The EFLAGS register is extended to 64 bits wide, and is referred
to as the RFLAGS register. The upper 32 bits of RFLAGS is reserved. The lower 32
bits of RFLAGS is the same as EFLAGS. See Figure 3-2.

• XMM registers — There are 16 XMM data registers for SIMD operations. See
Section 10.2, “SSE Programming Environment,” for more information about
these registers.

• Stack — The stack pointer size is 64 bits. Stack size is not controlled by a bit in
the SS descriptor (as it is in non-64-bit modes) nor can the pointer size be
overridden by an instruction prefix.

• Control registers — Control registers expand to 64 bits. A new control register
(the task priority register: CR8 or TPR) has been added. See Chapter 2, “Intel®
64 and IA-32 Architectures,” in this volume.

• Debug registers — Debug registers expand to 64 bits. See Chapter 17,
“Debugging, Branch Profiles and Time-Stamp Counter,” in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3A.

• Descriptor table registers — The global descriptor table register (GDTR) and
interrupt descriptor table register (IDTR) expand to 10 bytes so that they can
3-6 Vol. 1

BASIC EXECUTION ENVIRONMENT
hold a full 64-bit base address. The local descriptor table register (LDTR) and the
task register (TR) also expand to hold a full 64-bit base address.

Figure 3-2. 64-Bit Mode Execution Environment

0

2^64 -1

Sixteen 64-bit

64-bits

64-bits

General-Purpose Registers

Segment Registers

RFLAGS Register

RIP (Instruction Pointer Register)

Address Space

Six 16-bit
Registers

Registers

Eight 80-bit
Registers

Floating-Point
Data Registers

Eight 64-bit
Registers MMX Registers

XMM RegistersSixteen 128-bit
Registers

16 bits Control Register

16 bits Status Register

64 bits FPU Instruction Pointer Register

64 bits FPU Data (Operand) Pointer Register

FPU Registers

MMX Registers

XMM Registers

32-bits MXCSR Register

Opcode Register (11-bits)

Basic Program Execution Registers

16 bits Tag Register
Vol. 1 3-7

BASIC EXECUTION ENVIRONMENT
3.3 MEMORY ORGANIZATION
The memory that the processor addresses on its bus is called physical memory.
Physical memory is organized as a sequence of 8-bit bytes. Each byte is assigned a
unique address, called a physical address. The physical address space ranges
from zero to a maximum of 236 − 1 (64 GBytes) if the processor does not support
Intel 64 architecture. Intel 64 architecture introduces a changes in physical and
linear address space; these are described in Section 3.3.3, Section 3.3.4, and
Section 3.3.7.

Virtually any operating system or executive designed to work with an IA-32 or Intel
64 processor will use the processor’s memory management facilities to access
memory. These facilities provide features such as segmentation and paging, which
allow memory to be managed efficiently and reliably. Memory management is
described in detail in Chapter 3, “Protected-Mode Memory Management,” in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A. The
following paragraphs describe the basic methods of addressing memory when
memory management is used.

3.3.1 IA-32 Memory Models
When employing the processor’s memory management facilities, programs do not
directly address physical memory. Instead, they access memory using one of three
memory models: flat, segmented, or real address mode:
• Flat memory model — Memory appears to a program as a single, continuous

address space (Figure 3-3). This space is called a linear address space. Code,
data, and stacks are all contained in this address space. Linear address space is
byte addressable, with addresses running contiguously from 0 to 232 - 1 (if not in
64-bit mode). An address for any byte in linear address space is called a linear
address.

• Segmented memory model — Memory appears to a program as a group of
independent address spaces called segments. Code, data, and stacks are
typically contained in separate segments. To address a byte in a segment, a
program issues a logical address. This consists of a segment selector and an
offset (logical addresses are often referred to as far pointers). The segment
selector identifies the segment to be accessed and the offset identifies a byte in
the address space of the segment. Programs running on an IA-32 processor can
address up to 16,383 segments of different sizes and types, and each segment
can be as large as 232 bytes.
Internally, all the segments that are defined for a system are mapped into the
processor’s linear address space. To access a memory location, the processor
thus translates each logical address into a linear address. This translation is
transparent to the application program.
The primary reason for using segmented memory is to increase the reliability of
programs and systems. For example, placing a program’s stack in a separate
3-8 Vol. 1

BASIC EXECUTION ENVIRONMENT
segment prevents the stack from growing into the code or data space and
overwriting instructions or data, respectively.

• Real-address mode memory model — This is the memory model for the Intel
8086 processor. It is supported to provide compatibility with existing programs
written to run on the Intel 8086 processor. The real-address mode uses a specific
implementation of segmented memory in which the linear address space for the
program and the operating system/executive consists of an array of segments of
up to 64 KBytes in size each. The maximum size of the linear address space in
real-address mode is 220 bytes.
See also: Chapter 20, “8086 Emulation,” Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3B.

Figure 3-3. Three Memory Management Models

Linear Address

Flat Model

Linear
Address
Space*

Segment Selector

Offset

Segment Selector

Segmented Model

Real-Address Mode Model

Linear Address

Logical

Offset (effective address)

Space Divided
Into Equal

Sized Segments

Address

Logical
Address

Linear
Address

Space*

Segments

* The linear address space
can be paged when using the
flat or segmented model.
Vol. 1 3-9

BASIC EXECUTION ENVIRONMENT
3.3.2 Paging and Virtual Memory
With the flat or the segmented memory model, linear address space is mapped into
the processor’s physical address space either directly or through paging. When using
direct mapping (paging disabled), each linear address has a one-to-one correspon-
dence with a physical address. Linear addresses are sent out on the processor’s
address lines without translation.

When using the IA-32 architecture’s paging mechanism (paging enabled), linear
address space is divided into pages which are mapped to virtual memory. The pages
of virtual memory are then mapped as needed into physical memory. When an oper-
ating system or executive uses paging, the paging mechanism is transparent to an
application program. All that the application sees is linear address space.

In addition, IA-32 architecture’s paging mechanism includes extensions that
support:
• Page Address Extensions (PAE) to address physical address space greater than

4 GBytes.
• Page Size Extensions (PSE) to map linear address to physical address in

4-MBytes pages.

See also: Chapter 3, “Protected-Mode Memory Management,” in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3A.

3.3.3 Memory Organization in 64-Bit Mode
Intel 64 architecture supports physical address space greater than 64 GBytes; the
actual physical address size of IA-32 processors is implementation specific. In 64-bit
mode, there is architectural support for 64-bit linear address space. However,
processors supporting Intel 64 architecture may implement less than 64-bits (see
Section 3.3.7.1). The linear address space is mapped into the processor physical
address space through the PAE paging mechanism.

3.3.4 Modes of Operation vs. Memory Model
When writing code for an IA-32 or Intel 64 processor, a programmer needs to know
the operating mode the processor is going to be in when executing the code and the
memory model being used. The relationship between operating modes and memory
models is as follows:
• Protected mode — When in protected mode, the processor can use any of the

memory models described in this section. (The real-addressing mode memory
model is ordinarily used only when the processor is in the virtual-8086 mode.)
The memory model used depends on the design of the operating system or
executive. When multitasking is implemented, individual tasks can use different
memory models.
3-10 Vol. 1

BASIC EXECUTION ENVIRONMENT
• Real-address mode — When in real-address mode, the processor only supports
the real-address mode memory model.

• System management mode — When in SMM, the processor switches to a
separate address space, called the system management RAM (SMRAM). The
memory model used to address bytes in this address space is similar to the real-
address mode model. See Chapter 33, “System Management Mode,” in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C, for
more information on the memory model used in SMM.

• Compatibility mode — Software that needs to run in compatibility mode should
observe the same memory model as those targeted to run in 32-bit protected
mode. The effect of segmentation is the same as it is in 32-bit protected mode
semantics.

• 64-bit mode — Segmentation is generally (but not completely) disabled,
creating a flat 64-bit linear-address space. Specifically, the processor treats the
segment base of CS, DS, ES, and SS as zero in 64-bit mode (this makes a linear
address equal an effective address). Segmented and real address modes are not
available in 64-bit mode.

3.3.5 32-Bit and 16-Bit Address and Operand Sizes
IA-32 processors in protected mode can be configured for 32-bit or 16-bit address
and operand sizes. With 32-bit address and operand sizes, the maximum linear
address or segment offset is FFFFFFFFH (232-1); operand sizes are typically 8 bits or
32 bits. With 16-bit address and operand sizes, the maximum linear address or
segment offset is FFFFH (216-1); operand sizes are typically 8 bits or 16 bits.

When using 32-bit addressing, a logical address (or far pointer) consists of a 16-bit
segment selector and a 32-bit offset; when using 16-bit addressing, an address
consists of a 16-bit segment selector and a 16-bit offset.

Instruction prefixes allow temporary overrides of the default address and/or operand
sizes from within a program.

When operating in protected mode, the segment descriptor for the currently
executing code segment defines the default address and operand size. A segment
descriptor is a system data structure not normally visible to application code. Assem-
bler directives allow the default addressing and operand size to be chosen for a
program. The assembler and other tools then set up the segment descriptor for the
code segment appropriately.

When operating in real-address mode, the default addressing and operand size is 16
bits. An address-size override can be used in real-address mode to enable 32-bit
addressing. However, the maximum allowable 32-bit linear address is still 000FFFFFH
(220-1).
Vol. 1 3-11

BASIC EXECUTION ENVIRONMENT
3.3.6 Extended Physical Addressing in Protected Mode
Beginning with P6 family processors, the IA-32 architecture supports addressing of
up to 64 GBytes (236 bytes) of physical memory. A program or task could not
address locations in this address space directly. Instead, it addresses individual linear
address spaces of up to 4 GBytes that mapped to 64-GByte physical address space
through a virtual memory management mechanism. Using this mechanism, an oper-
ating system can enable a program to switch 4-GByte linear address spaces within
64-GByte physical address space.

The use of extended physical addressing requires the processor to operate in
protected mode and the operating system to provide a virtual memory management
system. See “36-Bit Physical Addressing Using the PAE Paging Mechanism” in
Chapter 3, “Protected-Mode Memory Management,” of the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

3.3.7 Address Calculations in 64-Bit Mode
In most cases, 64-bit mode uses flat address space for code, data, and stacks. In
64-bit mode (if there is no address-size override), the size of effective address calcu-
lations is 64 bits. An effective-address calculation uses a 64-bit base and index regis-
ters and sign-extend displacements to 64 bits.

In the flat address space of 64-bit mode, linear addresses are equal to effective
addresses because the base address is zero. In the event that FS or GS segments are
used with a non-zero base, this rule does not hold. In 64-bit mode, the effective
address components are added and the effective address is truncated (See for
example the instruction LEA) before adding the full 64-bit segment base. The base is
never truncated, regardless of addressing mode in 64-bit mode.

The instruction pointer is extended to 64 bits to support 64-bit code offsets. The
64-bit instruction pointer is called the RIP. Table 3-1 shows the relationship between
RIP, EIP, and IP.

Table 3-1. Instruction Pointer Sizes

Generally, displacements and immediates in 64-bit mode are not extended to 64 bits.
They are still limited to 32 bits and sign-extended during effective-address calcula-
tions. In 64-bit mode, however, support is provided for 64-bit displacement and
immediate forms of the MOV instruction.

All 16-bit and 32-bit address calculations are zero-extended in IA-32e mode to form
64-bit addresses. Address calculations are first truncated to the effective address

Bits 63:32 Bits 31:16 Bits 15:0

16-bit instruction pointer Not Modified IP

32-bit instruction pointer Zero Extension EIP

64-bit instruction pointer RIP
3-12 Vol. 1

BASIC EXECUTION ENVIRONMENT
size of the current mode (64-bit mode or compatibility mode), as overridden by any
address-size prefix. The result is then zero-extended to the full 64-bit address width.
Because of this, 16-bit and 32-bit applications running in compatibility mode can
access only the low 4 GBytes of the 64-bit mode effective addresses. Likewise, a
32-bit address generated in 64-bit mode can access only the low 4 GBytes of the
64-bit mode effective addresses.

3.3.7.1 Canonical Addressing
In 64-bit mode, an address is considered to be in canonical form if address bits 63
through to the most-significant implemented bit by the microarchitecture are set to
either all ones or all zeros.

Intel 64 architecture defines a 64-bit linear address. Implementations can support
less. The first implementation of IA-32 processors with Intel 64 architecture supports
a 48-bit linear address. This means a canonical address must have bits 63 through 48
set to zeros or ones (depending on whether bit 47 is a zero or one).

Although implementations may not use all 64 bits of the linear address, they should
check bits 63 through the most-significant implemented bit to see if the address is in
canonical form. If a linear-memory reference is not in canonical form, the implemen-
tation should generate an exception. In most cases, a general-protection exception
(#GP) is generated. However, in the case of explicit or implied stack references, a
stack fault (#SS) is generated.

Instructions that have implied stack references, by default, use the SS segment
register. These include PUSH/POP-related instructions and instructions using
RSP/RBP as base registers. In these cases, the canonical fault is #SF.

If an instruction uses base registers RSP/RBP and uses a segment override prefix to
specify a non-SS segment, a canonical fault generates a #GP (instead of an #SF). In
64-bit mode, only FS and GS segment-overrides are applicable in this situation.
Other segment override prefixes (CS, DS, ES and SS) are ignored. Note that this also
means that an SS segment-override applied to a “non-stack” register reference is
ignored. Such a sequence still produces a #GP for a canonical fault (and not an #SF).

3.4 BASIC PROGRAM EXECUTION REGISTERS
IA-32 architecture provides 16 basic program execution registers for use in general
system and application programing (see Figure 3-4). These registers can be grouped
as follows:
• General-purpose registers. These eight registers are available for storing

operands and pointers.
• Segment registers. These registers hold up to six segment selectors.
Vol. 1 3-13

BASIC EXECUTION ENVIRONMENT
• EFLAGS (program status and control) register. The EFLAGS register report
on the status of the program being executed and allows limited (application-
program level) control of the processor.

• EIP (instruction pointer) register. The EIP register contains a 32-bit pointer
to the next instruction to be executed.

3.4.1 General-Purpose Registers
The 32-bit general-purpose registers EAX, EBX, ECX, EDX, ESI, EDI, EBP, and ESP
are provided for holding the following items:
• Operands for logical and arithmetic operations
• Operands for address calculations
• Memory pointers

Although all of these registers are available for general storage of operands, results,
and pointers, caution should be used when referencing the ESP register. The ESP
register holds the stack pointer and as a general rule should not be used for another
purpose.

Many instructions assign specific registers to hold operands. For example, string
instructions use the contents of the ECX, ESI, and EDI registers as operands. When
using a segmented memory model, some instructions assume that pointers in certain
registers are relative to specific segments. For instance, some instructions assume
that a pointer in the EBX register points to a memory location in the DS segment.
3-14 Vol. 1

BASIC EXECUTION ENVIRONMENT
The special uses of general-purpose registers by instructions are described in
Chapter 5, “Instruction Set Summary,” in this volume. See also: Chapter 3 and
Chapter 4 of Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volumes 2A & 2B. The following is a summary of special uses:
• EAX — Accumulator for operands and results data
• EBX — Pointer to data in the DS segment
• ECX — Counter for string and loop operations
• EDX — I/O pointer
• ESI — Pointer to data in the segment pointed to by the DS register; source

pointer for string operations
• EDI — Pointer to data (or destination) in the segment pointed to by the ES

register; destination pointer for string operations
• ESP — Stack pointer (in the SS segment)

Figure 3-4. General System and Application Programming Registers

031
EAX
EBX
ECX

EDX
ESI

EDI
EBP

ESP

Segment Registers

CS

DS
SS

ES
FS

GS

015

031
EFLAGS

EIP
31 0

General-Purpose Registers

Program Status and Control Register

Instruction Pointer
Vol. 1 3-15

BASIC EXECUTION ENVIRONMENT
• EBP — Pointer to data on the stack (in the SS segment)

As shown in Figure 3-5, the lower 16 bits of the general-purpose registers map
directly to the register set found in the 8086 and Intel 286 processors and can be
referenced with the names AX, BX, CX, DX, BP, SI, DI, and SP. Each of the lower two
bytes of the EAX, EBX, ECX, and EDX registers can be referenced by the names AH,
BH, CH, and DH (high bytes) and AL, BL, CL, and DL (low bytes).

3.4.1.1 General-Purpose Registers in 64-Bit Mode
In 64-bit mode, there are 16 general purpose registers and the default operand size
is 32 bits. However, general-purpose registers are able to work with either 32-bit or
64-bit operands. If a 32-bit operand size is specified: EAX, EBX, ECX, EDX, EDI, ESI,
EBP, ESP, R8D - R15D are available. If a 64-bit operand size is specified: RAX, RBX,
RCX, RDX, RDI, RSI, RBP, RSP, R8-R15 are available. R8D-R15D/R8-R15 represent
eight new general-purpose registers. All of these registers can be accessed at the
byte, word, dword, and qword level. REX prefixes are used to generate 64-bit
operand sizes or to reference registers R8-R15.

Registers only available in 64-bit mode (R8-R15 and XMM8-XMM15) are preserved
across transitions from 64-bit mode into compatibility mode then back into 64-bit
mode. However, values of R8-R15 and XMM8-XMM15 are undefined after transitions
from 64-bit mode through compatibility mode to legacy or real mode and then back
through compatibility mode to 64-bit mode.

Figure 3-5. Alternate General-Purpose Register Names

071531 16 8

AH AL

BH BL

CH CL

DH DL

BP

SI

DI

SP

16-bit

AX

DX

CX

BX

32-bit

EAX

EBX

ECX

EDX

EBP

ESI

ESP

General-Purpose Registers

EDI
3-16 Vol. 1

BASIC EXECUTION ENVIRONMENT
In 64-bit mode, there are limitations on accessing byte registers. An instruction
cannot reference legacy high-bytes (for example: AH, BH, CH, DH) and one of the
new byte registers at the same time (for example: the low byte of the RAX register).
However, instructions may reference legacy low-bytes (for example: AL, BL, CL or
DL) and new byte registers at the same time (for example: the low byte of the R8
register, or RBP). The architecture enforces this limitation by changing high-byte
references (AH, BH, CH, DH) to low byte references (BPL, SPL, DIL, SIL: the low 8
bits for RBP, RSP, RDI and RSI) for instructions using a REX prefix.

When in 64-bit mode, operand size determines the number of valid bits in the desti-
nation general-purpose register:
• 64-bit operands generate a 64-bit result in the destination general-purpose

register.
• 32-bit operands generate a 32-bit result, zero-extended to a 64-bit result in the

destination general-purpose register.
• 8-bit and 16-bit operands generate an 8-bit or 16-bit result. The upper 56 bits or

48 bits (respectively) of the destination general-purpose register are not
modified by the operation. If the result of an 8-bit or 16-bit operation is intended
for 64-bit address calculation, explicitly sign-extend the register to the full
64-bits.

Because the upper 32 bits of 64-bit general-purpose registers are undefined in 32-bit
modes, the upper 32 bits of any general-purpose register are not preserved when
switching from 64-bit mode to a 32-bit mode (to protected mode or compatibility
mode). Software must not depend on these bits to maintain a value after a 64-bit to
32-bit mode switch.

3.4.2 Segment Registers
The segment registers (CS, DS, SS, ES, FS, and GS) hold 16-bit segment selectors.
A segment selector is a special pointer that identifies a segment in memory. To
access a particular segment in memory, the segment selector for that segment must
be present in the appropriate segment register.

Table 3-2. Addressable General Purpose Registers
Register Type Without REX With REX

Byte Registers AL, BL, CL, DL, AH, BH, CH,
DH

AL, BL, CL, DL, DIL, SIL, BPL, SPL,
R8L - R15L

Word Registers AX, BX, CX, DX, DI, SI, BP, SP AX, BX, CX, DX, DI, SI, BP, SP, R8W -
R15W

Doubleword Registers EAX, EBX, ECX, EDX, EDI, ESI,
EBP, ESP

EAX, EBX, ECX, EDX, EDI, ESI, EBP,
ESP, R8D - R15D

Quadword Registers N.A. RAX, RBX, RCX, RDX, RDI, RSI,
RBP, RSP, R8 - R15
Vol. 1 3-17

BASIC EXECUTION ENVIRONMENT
When writing application code, programmers generally create segment selectors
with assembler directives and symbols. The assembler and other tools then create
the actual segment selector values associated with these directives and symbols. If
writing system code, programmers may need to create segment selectors directly.
See Chapter 3, “Protected-Mode Memory Management,” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

How segment registers are used depends on the type of memory management model
that the operating system or executive is using. When using the flat (unsegmented)
memory model, segment registers are loaded with segment selectors that point to
overlapping segments, each of which begins at address 0 of the linear address space
(see Figure 3-6). These overlapping segments then comprise the linear address
space for the program. Typically, two overlapping segments are defined: one for code
and another for data and stacks. The CS segment register points to the code
segment and all the other segment registers point to the data and stack segment.

When using the segmented memory model, each segment register is ordinarily
loaded with a different segment selector so that each segment register points to a
different segment within the linear address space (see Figure 3-7). At any time, a
program can thus access up to six segments in the linear address space. To access a
segment not pointed to by one of the segment registers, a program must first load
the segment selector for the segment to be accessed into a segment register.

Figure 3-6. Use of Segment Registers for Flat Memory Model

Segment Registers

CS

SS
DS

ES
FS
GS

Linear Address
Space for Program

The segment selector in
each segment register
points to an overlapping

Overlapping
Segments

of up to
4 GBytes

segment in the linear
address space.

Beginning at
Address 0
3-18 Vol. 1

BASIC EXECUTION ENVIRONMENT
Each of the segment registers is associated with one of three types of storage: code,
data, or stack. For example, the CS register contains the segment selector for the
code segment, where the instructions being executed are stored. The processor
fetches instructions from the code segment, using a logical address that consists of
the segment selector in the CS register and the contents of the EIP register. The EIP
register contains the offset within the code segment of the next instruction to be
executed. The CS register cannot be loaded explicitly by an application program.
Instead, it is loaded implicitly by instructions or internal processor operations that
change program control (such as, procedure calls, interrupt handling, or task
switching).

The DS, ES, FS, and GS registers point to four data segments. The availability of
four data segments permits efficient and secure access to different types of data
structures. For example, four separate data segments might be created: one for the
data structures of the current module, another for the data exported from a higher-
level module, a third for a dynamically created data structure, and a fourth for data
shared with another program. To access additional data segments, the application
program must load segment selectors for these segments into the DS, ES, FS, and
GS registers, as needed.

The SS register contains the segment selector for the stack segment, where the
procedure stack is stored for the program, task, or handler currently being executed.
All stack operations use the SS register to find the stack segment. Unlike the CS
register, the SS register can be loaded explicitly, which permits application programs
to set up multiple stacks and switch among them.

Figure 3-7. Use of Segment Registers in Segmented Memory Model

Segment Registers

CS
DS
SS
ES
FS
GS

Code
Segment

Data
Segment

Stack
Segment

Data
Segment

Data
Segment

Data
Segment

All segments
are mapped
to the same
linear-address
space
Vol. 1 3-19

BASIC EXECUTION ENVIRONMENT
See Section 3.3, “Memory Organization,” for an overview of how the segment regis-
ters are used in real-address mode.

The four segment registers CS, DS, SS, and ES are the same as the segment regis-
ters found in the Intel 8086 and Intel 286 processors and the FS and GS registers
were introduced into the IA-32 Architecture with the Intel386™ family of processors.

3.4.2.1 Segment Registers in 64-Bit Mode
In 64-bit mode: CS, DS, ES, SS are treated as if each segment base is 0, regardless
of the value of the associated segment descriptor base. This creates a flat address
space for code, data, and stack. FS and GS are exceptions. Both segment registers
may be used as additional base registers in linear address calculations (in the
addressing of local data and certain operating system data structures).

Even though segmentation is generally disabled, segment register loads may cause
the processor to perform segment access assists. During these activities, enabled
processors will still perform most of the legacy checks on loaded values (even if the
checks are not applicable in 64-bit mode). Such checks are needed because a
segment register loaded in 64-bit mode may be used by an application running in
compatibility mode.

Limit checks for CS, DS, ES, SS, FS, and GS are disabled in 64-bit mode.

3.4.3 EFLAGS Register
The 32-bit EFLAGS register contains a group of status flags, a control flag, and a
group of system flags. Figure 3-8 defines the flags within this register. Following
initialization of the processor (either by asserting the RESET pin or the INIT pin), the
state of the EFLAGS register is 00000002H. Bits 1, 3, 5, 15, and 22 through 31 of this
register are reserved. Software should not use or depend on the states of any of
these bits.

Some of the flags in the EFLAGS register can be modified directly, using special-
purpose instructions (described in the following sections). There are no instructions
that allow the whole register to be examined or modified directly.

The following instructions can be used to move groups of flags to and from the proce-
dure stack or the EAX register: LAHF, SAHF, PUSHF, PUSHFD, POPF, and POPFD. After
the contents of the EFLAGS register have been transferred to the procedure stack or
EAX register, the flags can be examined and modified using the processor’s bit
manipulation instructions (BT, BTS, BTR, and BTC).

When suspending a task (using the processor’s multitasking facilities), the processor
automatically saves the state of the EFLAGS register in the task state segment (TSS)
for the task being suspended. When binding itself to a new task, the processor loads
the EFLAGS register with data from the new task’s TSS.

When a call is made to an interrupt or exception handler procedure, the processor
automatically saves the state of the EFLAGS registers on the procedure stack. When
3-20 Vol. 1

BASIC EXECUTION ENVIRONMENT
an interrupt or exception is handled with a task switch, the state of the EFLAGS
register is saved in the TSS for the task being suspended.

As the IA-32 Architecture has evolved, flags have been added to the EFLAGS register,
but the function and placement of existing flags have remained the same from one
family of the IA-32 processors to the next. As a result, code that accesses or modifies
these flags for one family of IA-32 processors works as expected when run on later
families of processors.

3.4.3.1 Status Flags
The status flags (bits 0, 2, 4, 6, 7, and 11) of the EFLAGS register indicate the results
of arithmetic instructions, such as the ADD, SUB, MUL, and DIV instructions. The
status flag functions are:
CF (bit 0) Carry flag — Set if an arithmetic operation generates a carry or

a borrow out of the most-significant bit of the result; cleared

Figure 3-8. EFLAGS Register

31 2930 28 27 26 25 24 23 22 21 20 19 18 17 16

0 R
F

I
D

A
C

V
M

X Virtual-8086 Mode (VM)
X Resume Flag (RF)
X Nested Task (NT)
X I/O Privilege Level (IOPL)
S Overflow Flag (OF)
C Direction Flag (DF)
X Interrupt Enable Flag (IF)

X Alignment Check (AC)

X ID Flag (ID)
X Virtual Interrupt Pending (VIP)

15 1314 12 11 10 9 8 7 6 5 4 3 2 1 0

0 C
F

A
F

P
F 1D

F
I
F

T
F

S
F

Z
F

N
T 000 0 0 0 0 0 0 0 0

V
I
P

V
I
F

O
F

I
O
P
L

X Virtual Interrupt Flag (VIF)

X Trap Flag (TF)
S Sign Flag (SF)
S Zero Flag (ZF)
S Auxiliary Carry Flag (AF)
S Parity Flag (PF)
S Carry Flag (CF)

S Indicates a Status Flag
C Indicates a Control Flag
X Indicates a System Flag

Reserved bit positions. DO NOT USE.
Always set to values previously read.
Vol. 1 3-21

BASIC EXECUTION ENVIRONMENT
otherwise. This flag indicates an overflow condition for
unsigned-integer arithmetic. It is also used in multiple-precision
arithmetic.

PF (bit 2) Parity flag — Set if the least-significant byte of the result
contains an even number of 1 bits; cleared otherwise.

AF (bit 4) Adjust flag — Set if an arithmetic operation generates a carry
or a borrow out of bit 3 of the result; cleared otherwise. This flag
is used in binary-coded decimal (BCD) arithmetic.

ZF (bit 6) Zero flag — Set if the result is zero; cleared otherwise.
SF (bit 7) Sign flag — Set equal to the most-significant bit of the result,

which is the sign bit of a signed integer. (0 indicates a positive
value and 1 indicates a negative value.)

OF (bit 11) Overflow flag — Set if the integer result is too large a positive
number or too small a negative number (excluding the sign-bit)
to fit in the destination operand; cleared otherwise. This flag
indicates an overflow condition for signed-integer (two’s
complement) arithmetic.

Of these status flags, only the CF flag can be modified directly, using the STC, CLC,
and CMC instructions. Also the bit instructions (BT, BTS, BTR, and BTC) copy a spec-
ified bit into the CF flag.

The status flags allow a single arithmetic operation to produce results for three
different data types: unsigned integers, signed integers, and BCD integers. If the
result of an arithmetic operation is treated as an unsigned integer, the CF flag indi-
cates an out-of-range condition (carry or a borrow); if treated as a signed integer
(two’s complement number), the OF flag indicates a carry or borrow; and if treated
as a BCD digit, the AF flag indicates a carry or borrow. The SF flag indicates the sign
of a signed integer. The ZF flag indicates either a signed- or an unsigned-integer
zero.

When performing multiple-precision arithmetic on integers, the CF flag is used in
conjunction with the add with carry (ADC) and subtract with borrow (SBB) instruc-
tions to propagate a carry or borrow from one computation to the next.

The condition instructions Jcc (jump on condition code cc), SETcc (byte set on condi-
tion code cc), LOOPcc, and CMOVcc (conditional move) use one or more of the status
flags as condition codes and test them for branch, set-byte, or end-loop conditions.

3.4.3.2 DF Flag
The direction flag (DF, located in bit 10 of the EFLAGS register) controls string
instructions (MOVS, CMPS, SCAS, LODS, and STOS). Setting the DF flag causes the
string instructions to auto-decrement (to process strings from high addresses to low
addresses). Clearing the DF flag causes the string instructions to auto-increment
(process strings from low addresses to high addresses).

The STD and CLD instructions set and clear the DF flag, respectively.
3-22 Vol. 1

BASIC EXECUTION ENVIRONMENT
3.4.3.3 System Flags and IOPL Field
The system flags and IOPL field in the EFLAGS register control operating-system or
executive operations. They should not be modified by application programs.
The functions of the system flags are as follows:
TF (bit 8) Trap flag — Set to enable single-step mode for debugging;

clear to disable single-step mode.
IF (bit 9) Interrupt enable flag — Controls the response of the

processor to maskable interrupt requests. Set to respond to
maskable interrupts; cleared to inhibit maskable interrupts.

IOPL (bits 12 and 13)
I/O privilege level field — Indicates the I/O privilege level of
the currently running program or task. The current privilege
level (CPL) of the currently running program or task must be
less than or equal to the I/O privilege level to access the I/O
address space. This field can only be modified by the POPF and
IRET instructions when operating at a CPL of 0.

NT (bit 14) Nested task flag — Controls the chaining of interrupted and
called tasks. Set when the current task is linked to the previ-
ously executed task; cleared when the current task is not linked
to another task.

RF (bit 16) Resume flag — Controls the processor’s response to debug
exceptions.

VM (bit 17) Virtual-8086 mode flag — Set to enable virtual-8086 mode;
clear to return to protected mode without virtual-8086 mode
semantics.

AC (bit 18) Alignment check flag — Set this flag and the AM bit in the CR0
register to enable alignment checking of memory references;
clear the AC flag and/or the AM bit to disable alignment
checking.

VIF (bit 19) Virtual interrupt flag — Virtual image of the IF flag. Used in
conjunction with the VIP flag. (To use this flag and the VIP flag
the virtual mode extensions are enabled by setting the VME flag
in control register CR4.)

VIP (bit 20) Virtual interrupt pending flag — Set to indicate that an inter-
rupt is pending; clear when no interrupt is pending. (Software
sets and clears this flag; the processor only reads it.) Used in
conjunction with the VIF flag.

ID (bit 21) Identification flag — The ability of a program to set or clear
this flag indicates support for the CPUID instruction.

For a detailed description of these flags: see Chapter 3, “Protected-Mode Memory
Management,” in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A.
Vol. 1 3-23

BASIC EXECUTION ENVIRONMENT
3.4.3.4 RFLAGS Register in 64-Bit Mode
In 64-bit mode, EFLAGS is extended to 64 bits and called RFLAGS. The upper 32 bits
of RFLAGS register is reserved. The lower 32 bits of RFLAGS is the same as EFLAGS.

3.5 INSTRUCTION POINTER
The instruction pointer (EIP) register contains the offset in the current code segment
for the next instruction to be executed. It is advanced from one instruction boundary
to the next in straight-line code or it is moved ahead or backwards by a number of
instructions when executing JMP, Jcc, CALL, RET, and IRET instructions.

The EIP register cannot be accessed directly by software; it is controlled implicitly by
control-transfer instructions (such as JMP, Jcc, CALL, and RET), interrupts, and
exceptions. The only way to read the EIP register is to execute a CALL instruction and
then read the value of the return instruction pointer from the procedure stack. The
EIP register can be loaded indirectly by modifying the value of a return instruction
pointer on the procedure stack and executing a return instruction (RET or IRET). See
Section 6.2.4.2, “Return Instruction Pointer.”

All IA-32 processors prefetch instructions. Because of instruction prefetching, an
instruction address read from the bus during an instruction load does not match the
value in the EIP register. Even though different processor generations use different
prefetching mechanisms, the function of the EIP register to direct program flow
remains fully compatible with all software written to run on IA-32 processors.

3.5.1 Instruction Pointer in 64-Bit Mode
In 64-bit mode, the RIP register becomes the instruction pointer. This register holds
the 64-bit offset of the next instruction to be executed. 64-bit mode also supports a
technique called RIP-relative addressing. Using this technique, the effective address
is determined by adding a displacement to the RIP of the next instruction.

3.6 OPERAND-SIZE AND ADDRESS-SIZE ATTRIBUTES
When the processor is executing in protected mode, every code segment has a
default operand-size attribute and address-size attribute. These attributes are
selected with the D (default size) flag in the segment descriptor for the code segment
(see Chapter 3, “Protected-Mode Memory Management,” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A). When the D flag is set, the
32-bit operand-size and address-size attributes are selected; when the flag is clear,
the 16-bit size attributes are selected. When the processor is executing in real-
address mode, virtual-8086 mode, or SMM, the default operand-size and address-
size attributes are always 16 bits.
3-24 Vol. 1

BASIC EXECUTION ENVIRONMENT
The operand-size attribute selects the size of operands. When the 16-bit operand-
size attribute is in force, operands can generally be either 8 bits or 16 bits, and when
the 32-bit operand-size attribute is in force, operands can generally be 8 bits or 32
bits.

The address-size attribute selects the sizes of addresses used to address memory:
16 bits or 32 bits. When the 16-bit address-size attribute is in force, segment offsets
and displacements are 16 bits. This restriction limits the size of a segment to 64
KBytes. When the 32-bit address-size attribute is in force, segment offsets and
displacements are 32 bits, allowing up to 4 GBytes to be addressed.

The default operand-size attribute and/or address-size attribute can be overridden
for a particular instruction by adding an operand-size and/or address-size prefix to
an instruction. See Chapter 2, “Instruction Format,” in the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2A. The effect of this prefix applies
only to the targeted instruction.

Table 3-4 shows effective operand size and address size (when executing in
protected mode or compatibility mode) depending on the settings of the D flag and
the operand-size and address-size prefixes.

3.6.1 Operand Size and Address Size in 64-Bit Mode
In 64-bit mode, the default address size is 64 bits and the default operand size is 32
bits. Defaults can be overridden using prefixes. Address-size and operand-size
prefixes allow mixing of 32/64-bit data and 32/64-bit addresses on an instruction-
by-instruction basis. Table 3-4 shows valid combinations of the 66H instruction prefix
and the REX.W prefix that may be used to specify operand-size overrides in 64-bit
mode. Note that 16-bit addresses are not supported in 64-bit mode.

REX prefixes consist of 4-bit fields that form 16 different values. The W-bit field in the
REX prefixes is referred to as REX.W. If the REX.W field is properly set, the prefix
specifies an operand size override to 64 bits. Note that software can still use the
operand-size 66H prefix to toggle to a 16-bit operand size. However, setting REX.W
takes precedence over the operand-size prefix (66H) when both are used.

Table 3-3. Effective Operand- and Address-Size Attributes
D Flag in Code Segment Descriptor 0 0 0 0 1 1 1 1

Operand-Size Prefix 66H N N Y Y N N Y Y

Address-Size Prefix 67H N Y N Y N Y N Y

Effective Operand Size 16 16 32 32 32 32 16 16

Effective Address Size 16 32 16 32 32 16 32 16

NOTES:
Y: Yes - this instruction prefix is present.
N: No - this instruction prefix is not present.
Vol. 1 3-25

BASIC EXECUTION ENVIRONMENT
In the case of SSE/SSE2/SSE3/SSSE3 SIMD instructions: the 66H, F2H, and F3H
prefixes are mandatory for opcode extensions. In such a case, there is no interaction
between a valid REX.W prefix and a 66H opcode extension prefix.

See Chapter 2, “Instruction Format,” in the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2A.

3.7 OPERAND ADDRESSING
IA-32 machine-instructions act on zero or more operands. Some operands are spec-
ified explicitly and others are implicit. The data for a source operand can be located
in:
• the instruction itself (an immediate operand)
• a register
• a memory location
• an I/O port

When an instruction returns data to a destination operand, it can be returned to:
• a register
• a memory location
• an I/O port

Table 3-4. Effective Operand- and Address-Size Attributes in 64-Bit Mode

L Flag in Code Segment
Descriptor 1 1 1 1 1 1 1 1

REX.W Prefix 0 0 0 0 1 1 1 1

Operand-Size Prefix 66H N N Y Y N N Y Y

Address-Size Prefix 67H N Y N Y N Y N Y

Effective Operand Size 32 32 16 16 64 64 64 64

Effective Address Size 64 32 64 32 64 32 64 32

NOTES:
Y: Yes - this instruction prefix is present.
N: No - this instruction prefix is not present.
3-26 Vol. 1

BASIC EXECUTION ENVIRONMENT
3.7.1 Immediate Operands
Some instructions use data encoded in the instruction itself as a source operand.
These operands are called immediate operands (or simply immediates). For
example, the following ADD instruction adds an immediate value of 14 to the
contents of the EAX register:

ADD EAX, 14

All arithmetic instructions (except the DIV and IDIV instructions) allow the source
operand to be an immediate value. The maximum value allowed for an immediate
operand varies among instructions, but can never be greater than the maximum
value of an unsigned doubleword integer (232).

3.7.2 Register Operands
Source and destination operands can be any of the following registers, depending on
the instruction being executed:
• 32-bit general-purpose registers (EAX, EBX, ECX, EDX, ESI, EDI, ESP, or EBP)
• 16-bit general-purpose registers (AX, BX, CX, DX, SI, DI, SP, or BP)
• 8-bit general-purpose registers (AH, BH, CH, DH, AL, BL, CL, or DL)
• segment registers (CS, DS, SS, ES, FS, and GS)
• EFLAGS register
• x87 FPU registers (ST0 through ST7, status word, control word, tag word, data

operand pointer, and instruction pointer)
• MMX registers (MM0 through MM7)
• XMM registers (XMM0 through XMM7) and the MXCSR register
• control registers (CR0, CR2, CR3, and CR4) and system table pointer registers

(GDTR, LDTR, IDTR, and task register)
• debug registers (DR0, DR1, DR2, DR3, DR6, and DR7)
• MSR registers

Some instructions (such as the DIV and MUL instructions) use quadword operands
contained in a pair of 32-bit registers. Register pairs are represented with a colon
separating them. For example, in the register pair EDX:EAX, EDX contains the high
order bits and EAX contains the low order bits of a quadword operand.

Several instructions (such as the PUSHFD and POPFD instructions) are provided to
load and store the contents of the EFLAGS register or to set or clear individual flags
in this register. Other instructions (such as the Jcc instructions) use the state of the
status flags in the EFLAGS register as condition codes for branching or other decision
making operations.

The processor contains a selection of system registers that are used to control
memory management, interrupt and exception handling, task management,
Vol. 1 3-27

BASIC EXECUTION ENVIRONMENT
processor management, and debugging activities. Some of these system registers
are accessible by an application program, the operating system, or the executive
through a set of system instructions. When accessing a system register with a
system instruction, the register is generally an implied operand of the instruction.

3.7.2.1 Register Operands in 64-Bit Mode
Register operands in 64-bit mode can be any of the following:
• 64-bit general-purpose registers (RAX, RBX, RCX, RDX, RSI, RDI, RSP, RBP, or

R8-R15)
• 32-bit general-purpose registers (EAX, EBX, ECX, EDX, ESI, EDI, ESP, EBP, or

R8D-R15D)
• 16-bit general-purpose registers (AX, BX, CX, DX, SI, DI, SP, BP, or R8W-R15W)
• 8-bit general-purpose registers: AL, BL, CL, DL, SIL, DIL, SPL, BPL, and R8L-

R15L are available using REX prefixes; AL, BL, CL, DL, AH, BH, CH, DH are
available without using REX prefixes.

• Segment registers (CS, DS, SS, ES, FS, and GS)
• RFLAGS register
• x87 FPU registers (ST0 through ST7, status word, control word, tag word, data

operand pointer, and instruction pointer)
• MMX registers (MM0 through MM7)
• XMM registers (XMM0 through XMM15) and the MXCSR register
• Control registers (CR0, CR2, CR3, CR4, and CR8) and system table pointer

registers (GDTR, LDTR, IDTR, and task register)
• Debug registers (DR0, DR1, DR2, DR3, DR6, and DR7)
• MSR registers
• RDX:RAX register pair representing a 128-bit operand

3.7.3 Memory Operands
Source and destination operands in memory are referenced by means of a segment
selector and an offset (see Figure 3-9). Segment selectors specify the segment
containing the operand. Offsets specify the linear or effective address of the operand.
Offsets can be 32 bits (represented by the notation m16:32) or 16 bits (represented
by the notation m16:16).

Figure 3-9. Memory Operand Address

Offset (or Linear Address)
015

Segment
310

Selector
3-28 Vol. 1

BASIC EXECUTION ENVIRONMENT
3.7.3.1 Memory Operands in 64-Bit Mode
In 64-bit mode, a memory operand can be referenced by a segment selector and an
offset. The offset can be 16 bits, 32 bits or 64 bits (see Figure 3-10).

3.7.4 Specifying a Segment Selector
The segment selector can be specified either implicitly or explicitly. The most
common method of specifying a segment selector is to load it in a segment register
and then allow the processor to select the register implicitly, depending on the type
of operation being performed. The processor automatically chooses a segment
according to the rules given in Table 3-5.

When storing data in memory or loading data from memory, the DS segment default
can be overridden to allow other segments to be accessed. Within an assembler, the
segment override is generally handled with a colon “:” operator. For example, the
following MOV instruction moves a value from register EAX into the segment pointed
to by the ES register. The offset into the segment is contained in the EBX register:

MOV ES:[EBX], EAX;

At the machine level, a segment override is specified with a segment-override prefix,
which is a byte placed at the beginning of an instruction. The following default
segment selections cannot be overridden:
• Instruction fetches must be made from the code segment.

Figure 3-10. Memory Operand Address in 64-Bit Mode

Table 3-5. Default Segment Selection Rules

Reference
Type

Register
Used

Segment
Used Default Selection Rule

Instructions CS Code Segment All instruction fetches.

Stack SS Stack Segment All stack pushes and pops.
Any memory reference which uses the ESP or EBP
register as a base register.

Local Data DS Data Segment All data references, except when relative to stack or
string destination.

Destination
Strings

ES Data Segment
pointed to with
the ES register

Destination of string instructions.

Offset (or Linear Address)
015

Segment
630

Selector
Vol. 1 3-29

BASIC EXECUTION ENVIRONMENT
• Destination strings in string instructions must be stored in the data segment
pointed to by the ES register.

• Push and pop operations must always reference the SS segment.

Some instructions require a segment selector to be specified explicitly. In these
cases, the 16-bit segment selector can be located in a memory location or in a 16-bit
register. For example, the following MOV instruction moves a segment selector
located in register BX into segment register DS:

MOV DS, BX

Segment selectors can also be specified explicitly as part of a 48-bit far pointer in
memory. Here, the first doubleword in memory contains the offset and the next word
contains the segment selector.

3.7.4.1 Segmentation in 64-Bit Mode
In IA-32e mode, the effects of segmentation depend on whether the processor is
running in compatibility mode or 64-bit mode. In compatibility mode, segmentation
functions just as it does in legacy IA-32 mode, using the 16-bit or 32-bit protected
mode semantics described above.

In 64-bit mode, segmentation is generally (but not completely) disabled, creating a
flat 64-bit linear-address space. The processor treats the segment base of CS, DS,
ES, SS as zero, creating a linear address that is equal to the effective address. The
exceptions are the FS and GS segments, whose segment registers (which hold the
segment base) can be used as additional base registers in some linear address calcu-
lations.

3.7.5 Specifying an Offset
The offset part of a memory address can be specified directly as a static value (called
a displacement) or through an address computation made up of one or more of the
following components:
• Displacement — An 8-, 16-, or 32-bit value.
• Base — The value in a general-purpose register.
• Index — The value in a general-purpose register.
• Scale factor — A value of 2, 4, or 8 that is multiplied by the index value.

The offset which results from adding these components is called an effective
address. Each of these components can have either a positive or negative (2s
complement) value, with the exception of the scaling factor. Figure 3-11 shows all
the possible ways that these components can be combined to create an effective
address in the selected segment.
3-30 Vol. 1

BASIC EXECUTION ENVIRONMENT
The uses of general-purpose registers as base or index components are restricted in
the following manner:
• The ESP register cannot be used as an index register.
• When the ESP or EBP register is used as the base, the SS segment is the default

segment. In all other cases, the DS segment is the default segment.

The base, index, and displacement components can be used in any combination, and
any of these components can be NULL. A scale factor may be used only when an
index also is used. Each possible combination is useful for data structures commonly
used by programmers in high-level languages and assembly language.

The following addressing modes suggest uses for common combinations of address
components.
• Displacement ⎯ A displacement alone represents a direct (uncomputed) offset

to the operand. Because the displacement is encoded in the instruction, this form
of an address is sometimes called an absolute or static address. It is commonly
used to access a statically allocated scalar operand.

• Base ⎯ A base alone represents an indirect offset to the operand. Since the
value in the base register can change, it can be used for dynamic storage of
variables and data structures.

• Base + Displacement ⎯ A base register and a displacement can be used
together for two distinct purposes:

— As an index into an array when the element size is not 2, 4, or 8 bytes—The
displacement component encodes the static offset to the beginning of the
array. The base register holds the results of a calculation to determine the
offset to a specific element within the array.

— To access a field of a record: the base register holds the address of the
beginning of the record, while the displacement is a static offset to the field.

An important special case of this combination is access to parameters in a
procedure activation record. A procedure activation record is the stack frame

Figure 3-11. Offset (or Effective Address) Computation

Offset = Base + (Index * Scale) + Displacement

Base

EAX
EBX
ECX
EDX
ESP
EBP
ESI
EDI

EAX
EBX
ECX
EDX
EBP
ESI
EDI

1 None

2

4

8

8-bit

16-bit

32-bit

Index Scale Displacement

*
+ +
Vol. 1 3-31

BASIC EXECUTION ENVIRONMENT
created when a procedure is entered. Here, the EBP register is the best choice for
the base register, because it automatically selects the stack segment. This is a
compact encoding for this common function.

• (Index ∗ Scale) + Displacement ⎯ This address mode offers an efficient way
to index into a static array when the element size is 2, 4, or 8 bytes. The
displacement locates the beginning of the array, the index register holds the
subscript of the desired array element, and the processor automatically converts
the subscript into an index by applying the scaling factor.

• Base + Index + Displacement ⎯ Using two registers together supports either
a two-dimensional array (the displacement holds the address of the beginning of
the array) or one of several instances of an array of records (the displacement is
an offset to a field within the record).

• Base + (Index ∗ Scale) + Displacement ⎯ Using all the addressing
components together allows efficient indexing of a two-dimensional array when
the elements of the array are 2, 4, or 8 bytes in size.

3.7.5.1 Specifying an Offset in 64-Bit Mode
The offset part of a memory address in 64-bit mode can be specified directly as a
static value or through an address computation made up of one or more of the
following components:
• Displacement — An 8-bit, 16-bit, or 32-bit value.
• Base — The value in a 32-bit (or 64-bit if REX.W is set) general-purpose register.
• Index — The value in a 32-bit (or 64-bit if REX.W is set) general-purpose

register.
• Scale factor — A value of 2, 4, or 8 that is multiplied by the index value.

The base and index value can be specified in one of sixteen available general-purpose
registers in most cases. See Chapter 2, “Instruction Format,” in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 2A.

The following unique combination of address components is also available.
• RIP + Displacement ⎯ In 64-bit mode, RIP-relative addressing uses a signed

32-bit displacement to calculate the effective address of the next instruction by
sign-extend the 32-bit value and add to the 64-bit value in RIP.

3.7.6 Assembler and Compiler Addressing Modes
At the machine-code level, the selected combination of displacement, base register,
index register, and scale factor is encoded in an instruction. All assemblers permit a
programmer to use any of the allowable combinations of these addressing compo-
nents to address operands. High-level language compilers will select an appropriate
combination of these components based on the language construct a programmer
defines.
3-32 Vol. 1

BASIC EXECUTION ENVIRONMENT
3.7.7 I/O Port Addressing
The processor supports an I/O address space that contains up to 65,536 8-bit I/O
ports. Ports that are 16-bit and 32-bit may also be defined in the I/O address space.
An I/O port can be addressed with either an immediate operand or a value in the DX
register. See Chapter 14, “Input/Output,” for more information about I/O port
addressing.
Vol. 1 3-33

CHAPTER 4
DATA TYPES

This chapter introduces data types defined for the Intel 64 and IA-32 architectures.
A section at the end of this chapter describes the real-number and floating-point
concepts used in x87 FPU, SSE, SSE2, SSE3, SSSE3, SSE4 and Intel AVX extensions.

4.1 FUNDAMENTAL DATA TYPES
The fundamental data types are bytes, words, doublewords, quadwords, and double
quadwords (see Figure 4-1). A byte is eight bits, a word is 2 bytes (16 bits), a
doubleword is 4 bytes (32 bits), a quadword is 8 bytes (64 bits), and a double quad-
word is 16 bytes (128 bits). A subset of the IA-32 architecture instructions operates
on these fundamental data types without any additional operand typing.

The quadword data type was introduced into the IA-32 architecture in the Intel486
processor; the double quadword data type was introduced in the Pentium III
processor with the SSE extensions.

Figure 4-2 shows the byte order of each of the fundamental data types when refer-
enced as operands in memory. The low byte (bits 0 through 7) of each data type
occupies the lowest address in memory and that address is also the address of the
operand.

Figure 4-1. Fundamental Data Types

0

63

Double

0

Word

31

0

Doubleword

15

0

Byte

7

78

Low WordHigh Word

Low DoublewordHigh Doubleword

1516

3132

N+1

N+2

N+4

Low
Byte

High
Byte

N

Low QuadwordHigh Quadword
Quadword

N

N

N

N

N+8

0

Quadword

127 6364
Vol. 1 4-1

DATA TYPES
4.1.1 Alignment of Words, Doublewords, Quadwords, and Double
Quadwords

Words, doublewords, and quadwords do not need to be aligned in memory on natural
boundaries. The natural boundaries for words, double words, and quadwords are
even-numbered addresses, addresses evenly divisible by four, and addresses evenly
divisible by eight, respectively. However, to improve the performance of programs,
data structures (especially stacks) should be aligned on natural boundaries when-
ever possible. The reason for this is that the processor requires two memory
accesses to make an unaligned memory access; aligned accesses require only one
memory access. A word or doubleword operand that crosses a 4-byte boundary or a
quadword operand that crosses an 8-byte boundary is considered unaligned and
requires two separate memory bus cycles for access.

Some instructions that operate on double quadwords require memory operands to be
aligned on a natural boundary. These instructions generate a general-protection
exception (#GP) if an unaligned operand is specified. A natural boundary for a double
quadword is any address evenly divisible by 16. Other instructions that operate on
double quadwords permit unaligned access (without generating a general-protection

Figure 4-2. Bytes, Words, Doublewords, Quadwords, and Double Quadwords in
Memory

EH

DH7AH

CHFEH

BH06H

AH36H

9H1FH

8HA4H

7H23H

6H0BH

5H

4H

3H74H

2HCBH

1H31H

0H

Quadword at Address 6H
Contains

Doubleword at Address AH
Contains 7AFE0636H

Word at Address BH
Contains FE06H

Byte at Address 9H
Contains 1FH

Word at Address 6H
Contains 230BH

Word at Address 1H
Contains CB31H

Word at Address 2H
Contains 74CBH

Double quadword at Address 0H

45H

67H

12H

Contains

12H

7AFE06361FA4230BH

4E127AFE06361FA4230B456774CB3112

4EH FH
4-2 Vol. 1

DATA TYPES
exception). However, additional memory bus cycles are required to access unaligned
data from memory.

4.2 NUMERIC DATA TYPES
Although bytes, words, and doublewords are fundamental data types, some instruc-
tions support additional interpretations of these data types to allow operations to be
performed on numeric data types (signed and unsigned integers, and floating-point
numbers). Single-precision (32-bit) floating-point and double-precision (64-bit)
floating-point data types are supported across all generations of SSE extensions and
Intel AVX extensions. Half-precision (16-bit) floating-point data type is supported
only with F16C extensions (VCVTPH2PS, VCVTPS2PH). See Figure 4-3.
Vol. 1 4-3

DATA TYPES
4.2.1 Integers
The Intel 64 and IA-32 architectures define two types of integers: unsigned and
signed. Unsigned integers are ordinary binary values ranging from 0 to the maximum
positive number that can be encoded in the selected operand size. Signed integers

Figure 4-3. Numeric Data Types

0

0

022

0

Double Extended Precision

63 62

0

Word Signed Integer

0

Byte Signed Integer

7 6

Sign

Sign

Doubleword Signed Integer

15 14

Sign

31 30

Sign

Quadword Signed Integer

0

0

Word Unsigned Integer

0
Byte Unsigned Integer

7

Doubleword Unsigned Integer

15

31

Quadword Unsigned Integer

63

0

0

233031

51526263

64 63 62 79 78
Floating Point

Single Precision
Floating Point

Double Precision
Floating Point

Sign

Integer Bit

Sign

Sign

091415

Half Precision
Floating Point

Sign
4-4 Vol. 1

DATA TYPES
are two’s complement binary values that can be used to represent both positive and
negative integer values.

Some integer instructions (such as the ADD, SUB, PADDB, and PSUBB instructions)
operate on either unsigned or signed integer operands. Other integer instructions
(such as IMUL, MUL, IDIV, DIV, FIADD, and FISUB) operate on only one integer type.

The following sections describe the encodings and ranges of the two types of
integers.

4.2.1.1 Unsigned Integers
Unsigned integers are unsigned binary numbers contained in a byte, word, double-
word, and quadword. Their values range from 0 to 255 for an unsigned byte integer,
from 0 to 65,535 for an unsigned word integer, from 0 to 232 – 1 for an unsigned
doubleword integer, and from 0 to 264 – 1 for an unsigned quadword integer.
Unsigned integers are sometimes referred to as ordinals.

4.2.1.2 Signed Integers
Signed integers are signed binary numbers held in a byte, word, doubleword, or
quadword. All operations on signed integers assume a two's complement representa-
tion. The sign bit is located in bit 7 in a byte integer, bit 15 in a word integer, bit 31 in
a doubleword integer, and bit 63 in a quadword integer (see the signed integer
encodings in Table 4-1).
Vol. 1 4-5

DATA TYPES
The sign bit is set for negative integers and cleared for positive integers and zero.
Integer values range from –128 to +127 for a byte integer, from –32,768 to +32,767
for a word integer, from –231 to +231 – 1 for a doubleword integer, and from –263 to
+263 – 1 for a quadword integer.

When storing integer values in memory, word integers are stored in 2 consecutive
bytes; doubleword integers are stored in 4 consecutive bytes; and quadword inte-
gers are stored in 8 consecutive bytes.

The integer indefinite is a special value that is sometimes returned by the x87 FPU
when operating on integer values. For more information, see Section 8.2.1, “Indefi-
nites.”

4.2.2 Floating-Point Data Types
The IA-32 architecture defines and operates on three floating-point data types:
single-precision floating-point, double-precision floating-point, and double-extended
precision floating-point (see Figure 4-3). The data formats for these data types
correspond directly to formats specified in the IEEE Standard 754 for Binary Floating-
Point Arithmetic.

Table 4-1. Signed Integer Encodings
Class Two’s Complement Encoding

Sign

Positive Largest 0 11..11

. .

. .

Smallest 0 00..01

Zero 0 00..00

Negative Smallest 1 11..11

. .

. .

Largest 1 00..00

Integer indefinite 1 00..00

Signed Byte Integer:
Signed Word Integer:
Signed Doubleword Integer:
Signed Quadword Integer:

← 7 bits →
← 15 bits →
← 31 bits →
← 63 bits →
4-6 Vol. 1

DATA TYPES
Half-precision (16-bit) floating-point data type is supported only for conversion oper-
ation with single-precision floating data using F16C extensions (VCVTPH2PS,
VCVTPS2PH).

Table 4-2 gives the length, precision, and approximate normalized range that can be
represented by each of these data types. Denormal values are also supported in each
of these types.

NOTE
Section 4.8, “Real Numbers and Floating-Point Formats,” gives an
overview of the IEEE Standard 754 floating-point formats and defines
the terms integer bit, QNaN, SNaN, and denormal value.

Table 4-3 shows the floating-point encodings for zeros, denormalized finite numbers,
normalized finite numbers, infinites, and NaNs for each of the three floating-point
data types. It also gives the format for the QNaN floating-point indefinite value. (See
Section 4.8.3.7, “QNaN Floating-Point Indefinite,” for a discussion of the use of the
QNaN floating-point indefinite value.)

For the single-precision and double-precision formats, only the fraction part of the
significand is encoded. The integer is assumed to be 1 for all numbers except 0 and
denormalized finite numbers. For the double extended-precision format, the integer
is contained in bit 63, and the most-significant fraction bit is bit 62. Here, the integer
is explicitly set to 1 for normalized numbers, infinities, and NaNs, and to 0 for zero
and denormalized numbers.

Table 4-2. Length, Precision, and Range of Floating-Point Data Types
Data Type Length Precision

(Bits)
Approximate Normalized Range

Binary Decimal

Half Precision 16 11 2–14 to 215 3.1 × 10–5 to 6.50 × 104

Single Precision 32 24 2–126 to 2127 1.18 × 10–38 to 3.40 × 1038

Double Precision 64 53 2–1022 to 21023 2.23 × 10–308 to 1.79 × 10308

Double Extended
Precision

80 64 2–16382 to 216383 3.37 × 10–4932 to 1.18 × 104932
Vol. 1 4-7

DATA TYPES
The exponent of each floating-point data type is encoded in biased format; see
Section 4.8.2.2, “Biased Exponent.” The biasing constant is 15 for the half-precision

Table 4-3. Floating-Point Number and NaN Encodings

Class Sign Biased Exponent Significand

Integer1 Fraction

Positive +∞ 0 11..11 1 00..00

+Normals 0
.
.
0

11..10
 .
 .

00..01

1
.
.
1

11..11
 .
 .

00..00

+Denormals 0
.
.
0

00..00
 .
 .

00..00

0
.
.
0

11.11
 .
 .

00..01

+Zero 0 00..00 0 00..00

Negative −Zero 1 00..00 0 00..00

−Denormals 1
.
.
1

00..00
 .
 .

00..00

0
.
.
0

00..01
 .
 .

11..11

−Normals 1
.
.
1

00..01
 .
 .

11..10

1
.
.
1

00..00
 .
 .

11..11

-∞ 1 11..11 1 00..00

NaNs SNaN X 11..11 1 0X..XX2

QNaN X 11..11 1 1X..XX

QNaN
Floating-Point
Indefinite

1 11..11 1 10..00

Half-Precision

Single-Precision:
Double-Precision:
Double Extended-Precision:

← 5Bits →
← 8 Bits →
← 11 Bits →
← 15 Bits →

← 10 Bits →
← 23 Bits →
← 52 Bits →
← 63 Bits →

NOTES:
1. Integer bit is implied and not stored for single-precision and double-precision formats.
2. The fraction for SNaN encodings must be non-zero with the most-significant bit 0.
4-8 Vol. 1

DATA TYPES
Vol. 1 4-9

format, 127 for the single-precision format, 1023 for the double-precision format,
and 16,383 for the double extended-precision format.

When storing floating-point values in memory, half-precision values are stored in 2
consecutive bytes in memory; single-precision values are stored in 4 consecutive
bytes in memory; double-precision values are stored in 8 consecutive bytes; and
double extended-precision values are stored in 10 consecutive bytes.

The single-precision and double-precision floating-point data types are operated on
by x87 FPU, and SSE/SSE2/SSE3/SSE4.1 and Intel AVX instructions. The double-
extended-precision floating-point format is only operated on by the x87 FPU. See
Section 11.6.8, “Compatibility of SIMD and x87 FPU Floating-Point Data Types,” for a
discussion of the compatibility of single-precision and double-precision floating-point
data types between the x87 FPU and SSE/SSE2/SSE3 extensions.

4.3 POINTER DATA TYPES
Pointers are addresses of locations in memory.

In non-64-bit modes, the architecture defines two types of pointers: a near pointer
and a far pointer. A near pointer is a 32-bit (or 16-bit) offset (also called an effec-
tive address) within a segment. Near pointers are used for all memory references in
a flat memory model or for references in a segmented model where the identity of
the segment being accessed is implied.

A far pointer is a logical address, consisting of a 16-bit segment selector and a 32-bit
(or 16-bit) offset. Far pointers are used for memory references in a segmented
memory model where the identity of a segment being accessed must be specified
explicitly. Near and far pointers with 32-bit offsets are shown in Figure 4-4.

4.3.1 Pointer Data Types in 64-Bit Mode
In 64-bit mode (a sub-mode of IA-32e mode), a near pointer is 64 bits. This
equates to an effective address. Far pointers in 64-bit mode can be one of three
forms:
• 16-bit segment selector, 16-bit offset if the operand size is 32 bits
• 16-bit segment selector, 32-bit offset if the operand size is 32 bits

Figure 4-4. Pointer Data Types

047

Far Pointer or Logical Address

Segment Selector

32 31

Offset

Near Pointer

031

Offset

DATA TYPES
• 16-bit segment selector, 64-bit offset if the operand size is 64 bits

See Figure 4-5.

4.4 BIT FIELD DATA TYPE
A bit field (see Figure 4-6) is a contiguous sequence of bits. It can begin at any bit
position of any byte in memory and can contain up to 32 bits.

Figure 4-5. Pointers in 64-Bit Mode

Figure 4-6. Bit Field Data Type

16-bit Segment Selector 16-bit Offset

016 1531

16-bit Segment Selector 32-bit Offset

032 3147

16-bit Segment Selector 64-bit Offset

064 6379

64-bit Offset

063

Near Pointer

Far Pointer with 64-bit Operand Size

Far Pointer with 32-bit Operand Size

Far Pointer with 32-bit Operand Size

Bit Field

Field Length

Least

Bit
Significant
4-10 Vol. 1

DATA TYPES
4.5 STRING DATA TYPES
Strings are continuous sequences of bits, bytes, words, or doublewords. A bit string
can begin at any bit position of any byte and can contain up to 232 – 1 bits. A byte
string can contain bytes, words, or doublewords and can range from zero to 232 – 1
bytes (4 GBytes).

4.6 PACKED SIMD DATA TYPES
Intel 64 and IA-32 architectures define and operate on a set of 64-bit and 128-bit
packed data type for use in SIMD operations. These data types consist of funda-
mental data types (packed bytes, words, doublewords, and quadwords) and numeric
interpretations of fundamental types for use in packed integer and packed floating-
point operations.

4.6.1 64-Bit SIMD Packed Data Types
The 64-bit packed SIMD data types were introduced into the IA-32 architecture in the
Intel MMX technology. They are operated on in MMX registers. The fundamental
64-bit packed data types are packed bytes, packed words, and packed doublewords
(see Figure 4-7). When performing numeric SIMD operations on these data types,
these data types are interpreted as containing byte, word, or doubleword integer
values.
Vol. 1 4-11

DATA TYPES
4.6.2 128-Bit Packed SIMD Data Types
The 128-bit packed SIMD data types were introduced into the IA-32 architecture in
the SSE extensions and used with SSE2, SSE3 and SSSE3 extensions. They are oper-
ated on primarily in the 128-bit XMM registers and memory. The fundamental 128-bit
packed data types are packed bytes, packed words, packed doublewords, and
packed quadwords (see Figure 4-8). When performing SIMD operations on these
fundamental data types in XMM registers, these data types are interpreted as
containing packed or scalar single-precision floating-point or double-precision
floating-point values, or as containing packed byte, word, doubleword, or quadword
integer values.

Figure 4-7. 64-Bit Packed SIMD Data Types

Packed Words

Packed Bytes

Packed Doublewords

063

063

063

Packed Word Integers

Packed Byte Integers

Packed Doubleword Integers

063

063

063

Fundamental 64-Bit Packed SIMD Data Types

64-Bit Packed Integer Data Types
4-12 Vol. 1

DATA TYPES
4.7 BCD AND PACKED BCD INTEGERS
Binary-coded decimal integers (BCD integers) are unsigned 4-bit integers with valid
values ranging from 0 to 9. IA-32 architecture defines operations on BCD integers
located in one or more general-purpose registers or in one or more x87 FPU registers
(see Figure 4-9).

Figure 4-8. 128-Bit Packed SIMD Data Types

0127

Packed Words

Packed Bytes

Packed Doublewords

Packed Word Integers

Packed Byte Integers

Packed Doubleword Integers

Fundamental 128-Bit Packed SIMD Data Types

128-Bit Packed Floating-Point and Integer Data Types

Packed Quadwords

0127

0127

0127

0127

0127

0127

0127

0127

0127

Packed Quadword Integers

Packed Single Precision
Floating Point

Packed Double Precision
Floating Point
Vol. 1 4-13

DATA TYPES
When operating on BCD integers in general-purpose registers, the BCD values can be
unpacked (one BCD digit per byte) or packed (two BCD digits per byte). The value of
an unpacked BCD integer is the binary value of the low half-byte (bits 0 through 3).
The high half-byte (bits 4 through 7) can be any value during addition and subtrac-
tion, but must be zero during multiplication and division. Packed BCD integers allow
two BCD digits to be contained in one byte. Here, the digit in the high half-byte is
more significant than the digit in the low half-byte.

When operating on BCD integers in x87 FPU data registers, BCD values are packed in
an 80-bit format and referred to as decimal integers. In this format, the first 9 bytes
hold 18 BCD digits, 2 digits per byte. The least-significant digit is contained in the
lower half-byte of byte 0 and the most-significant digit is contained in the upper half-
byte of byte 9. The most significant bit of byte 10 contains the sign bit (0 = positive
and 1 = negative; bits 0 through 6 of byte 10 are don’t care bits). Negative decimal
integers are not stored in two's complement form; they are distinguished from posi-
tive decimal integers only by the sign bit. The range of decimal integers that can be
encoded in this format is –1018 + 1 to 1018 – 1.
The decimal integer format exists in memory only. When a decimal integer is loaded
in an x87 FPU data register, it is automatically converted to the double-extended-
precision floating-point format. All decimal integers are exactly representable in
double extended-precision format.

Table 4-4 gives the possible encodings of value in the decimal integer data type.

Figure 4-9. BCD Data Types

Packed BCD Integers

BCDBCD

0

BCD Integers

7

BCDX

34

0

80-Bit Packed BCD Decimal Integers

79

D0

4 Bits = 1 BCD Digit

Sign

D1D2D3D4D5D6D7D8D9D10D11D12D13D14D15D16D17

78 72 71

X

07 34
4-14 Vol. 1

DATA TYPES
The packed BCD integer indefinite encoding (FFFFC000000000000000H) is stored by
the FBSTP instruction in response to a masked floating-point invalid-operation
exception. Attempting to load this value with the FBLD instruction produces an unde-
fined result.

4.8 REAL NUMBERS AND FLOATING-POINT FORMATS
This section describes how real numbers are represented in floating-point format in
x87 FPU and SSE/SSE2/SSE3/SSE4.1 and Intel AVX floating-point instructions. It
also introduces terms such as normalized numbers, denormalized numbers, biased
exponents, signed zeros, and NaNs. Readers who are already familiar with floating-
point processing techniques and the IEEE Standard 754 for Binary Floating-Point
Arithmetic may wish to skip this section.

Table 4-4. Packed Decimal Integer Encodings

Magnitude

Class Sign digit digit digit digit ... digit

Positive

 Largest 0 0000000 1001 1001 1001 1001 ... 1001

. . .

. . .

 Smallest 0 0000000 0000 0000 0000 0000 ... 0001

 Zero 0 0000000 0000 0000 0000 0000 ... 0000

Negative

 Zero 1 0000000 0000 0000 0000 0000 ... 0000

 Smallest 1 0000000 0000 0000 0000 0000 ... 0001

. . .

. . .

 Largest 1 0000000 1001 1001 1001 1001 ... 1001

Packed
BCD
Integer
Indefinit
e

1 1111111 1111 1111 1100 0000 ... 0000

← 1 byte → ← 9 bytes →
Vol. 1 4-15

DATA TYPES
4.8.1 Real Number System
As shown in Figure 4-10, the real-number system comprises the continuum of real
numbers from minus infinity (− ∞) to plus infinity (+ ∞).

Because the size and number of registers that any computer can have is limited, only
a subset of the real-number continuum can be used in real-number (floating-point)
calculations. As shown at the bottom of Figure 4-10, the subset of real numbers that
the IA-32 architecture supports represents an approximation of the real number
system. The range and precision of this real-number subset is determined by the
IEEE Standard 754 floating-point formats.

4.8.2 Floating-Point Format
To increase the speed and efficiency of real-number computations, computers and
microprocessors typically represent real numbers in a binary floating-point format.
In this format, a real number has three parts: a sign, a significand, and an exponent
(see Figure 4-11).

The sign is a binary value that indicates whether the number is positive (0) or nega-
tive (1). The significand has two parts: a 1-bit binary integer (also referred to as
the J-bit) and a binary fraction. The integer-bit is often not represented, but instead
is an implied value. The exponent is a binary integer that represents the base-2
power by which the significand is multiplied.

Table 4-5 shows how the real number 178.125 (in ordinary decimal format) is stored
in IEEE Standard 754 floating-point format. The table lists a progression of real
number notations that leads to the single-precision, 32-bit floating-point format. In
this format, the significand is normalized (see Section 4.8.2.1, “Normalized
Numbers”) and the exponent is biased (see Section 4.8.2.2, “Biased Exponent”). For
the single-precision floating-point format, the biasing constant is +127.
4-16 Vol. 1

DATA TYPES
Figure 4-10. Binary Real Number System

Figure 4-11. Binary Floating-Point Format

Binary Real Number System

Subset of binary real numbers that can be represented with
IEEE single-precision (32-bit) floating-point format

+10

10.0000000000000000000000

1.11111111111111111111111
Precision 24 Binary Digits

Numbers within this range
cannot be represented.

ςς ςς
-100 -10 -1 0 1 10 100

ςς ςς
-100 -10 -1 0 1 10 100

Sign

Integer or J-Bit

Exponent Significand

Fraction
Vol. 1 4-17

DATA TYPES
4.8.2.1 Normalized Numbers
In most cases, floating-point numbers are encoded in normalized form. This means
that except for zero, the significand is always made up of an integer of 1 and the
following fraction:

1.fff...ff

For values less than 1, leading zeros are eliminated. (For each leading zero elimi-
nated, the exponent is decremented by one.)

Representing numbers in normalized form maximizes the number of significant digits
that can be accommodated in a significand of a given width. To summarize, a normal-
ized real number consists of a normalized significand that represents a real number
between 1 and 2 and an exponent that specifies the number’s binary point.

4.8.2.2 Biased Exponent
In the IA-32 architecture, the exponents of floating-point numbers are encoded in a
biased form. This means that a constant is added to the actual exponent so that the
biased exponent is always a positive number. The value of the biasing constant
depends on the number of bits available for representing exponents in the floating-
point format being used. The biasing constant is chosen so that the smallest normal-
ized number can be reciprocated without overflow.

See Section 4.2.2, “Floating-Point Data Types,” for a list of the biasing constants that
the IA-32 architecture uses for the various sizes of floating-point data-types.

4.8.3 Real Number and Non-number Encodings
A variety of real numbers and special values can be encoded in the IEEE Standard
754 floating-point format. These numbers and values are generally divided into the
following classes:

Table 4-5. Real and Floating-Point Number Notation

Notation Value

Ordinary Decimal 178.125

Scientific Decimal 1.78125E10 2

Scientific Binary 1.0110010001E2111

Scientific Binary
(Biased Exponent)

 1.0110010001E210000110

IEEE Single-Precision
Format

Sign Biased Exponent Normalized Significand

0 10000110 01100100010000000000000

 1. (Implied)
4-18 Vol. 1

DATA TYPES
• Signed zeros
• Denormalized finite numbers
• Normalized finite numbers
• Signed infinities
• NaNs
• Indefinite numbers

(The term NaN stands for “Not a Number.”)

Figure 4-12 shows how the encodings for these numbers and non-numbers fit into
the real number continuum. The encodings shown here are for the IEEE single-preci-
sion floating-point format. The term “S” indicates the sign bit, “E” the biased expo-
nent, and “Sig” the significand. The exponent values are given in decimal. The
integer bit is shown for the significands, even though the integer bit is implied in
single-precision floating-point format.

An IA-32 processor can operate on and/or return any of these values, depending on
the type of computation being performed. The following sections describe these
number and non-number classes.

Figure 4-12. Real Numbers and NaNs

1 0
S E Sig1

− 0

1 0 − Denormalized
Finite

NaN

1 1...254 − Normalized
Finite

1 255 − ∞

255 SNaN

255 QNaN

NOTES:

3. Sign bit ignored.
2. Fraction must be non-zero.

0 0
S E Sig1

0 0

NaN

0 1...254

0 255

X3 255 1.0XX...2

255 1.1XX...

+ 0

+Denormalized
Finite

+Normalized
Finite

+ ∞

SNaN

QNaN X3

X3

X3

Real Number and NaN Encodings For 32-Bit Floating-Point Format

− Denormalized Finite

− Normalized Finite − 0− ∞ + ∞
+ Denormalized Finite

+ Normalized Finite+ 0

0.XXX...2

0.000...

1.000...

1.XXX...

1.000...

0.000...

0.XXX...2

1.XXX...

1.0XX...2

1.1XX...

1. Integer bit of fraction implied for
single-precision floating-point format.
Vol. 1 4-19

DATA TYPES
4.8.3.1 Signed Zeros
Zero can be represented as a +0 or a −0 depending on the sign bit. Both encodings
are equal in value. The sign of a zero result depends on the operation being
performed and the rounding mode being used. Signed zeros have been provided to
aid in implementing interval arithmetic. The sign of a zero may indicate the direction
from which underflow occurred, or it may indicate the sign of an ∞ that has been
reciprocated.

4.8.3.2 Normalized and Denormalized Finite Numbers
Non-zero, finite numbers are divided into two classes: normalized and denormalized.
The normalized finite numbers comprise all the non-zero finite values that can be
encoded in a normalized real number format between zero and ∞. In the single-preci-
sion floating-point format shown in Figure 4-12, this group of numbers includes all
the numbers with biased exponents ranging from 1 to 25410 (unbiased, the exponent
range is from −12610 to +12710).

When floating-point numbers become very close to zero, the normalized-number
format can no longer be used to represent the numbers. This is because the range of
the exponent is not large enough to compensate for shifting the binary point to the
right to eliminate leading zeros.

When the biased exponent is zero, smaller numbers can only be represented by
making the integer bit (and perhaps other leading bits) of the significand zero. The
numbers in this range are called denormalized (or tiny) numbers. The use of
leading zeros with denormalized numbers allows smaller numbers to be represented.
However, this denormalization causes a loss of precision (the number of significant
bits in the fraction is reduced by the leading zeros).

When performing normalized floating-point computations, an IA-32 processor
normally operates on normalized numbers and produces normalized numbers as
results. Denormalized numbers represent an underflow condition. The exact condi-
tions are specified in Section 4.9.1.5, “Numeric Underflow Exception (#U).”

A denormalized number is computed through a technique called gradual underflow.
Table 4-6 gives an example of gradual underflow in the denormalization process.
Here the single-precision format is being used, so the minimum exponent (unbiased)
is −12610. The true result in this example requires an exponent of −12910 in order to
have a normalized number. Since −12910 is beyond the allowable exponent range,
the result is denormalized by inserting leading zeros until the minimum exponent of
−12610 is reached.
4-20 Vol. 1

DATA TYPES
In the extreme case, all the significant bits are shifted out to the right by leading
zeros, creating a zero result.

The Intel 64 and IA-32 architectures deal with denormal values in the following ways:
• It avoids creating denormals by normalizing numbers whenever possible.
• It provides the floating-point underflow exception to permit programmers to

detect cases when denormals are created.
• It provides the floating-point denormal-operand exception to permit procedures

or programs to detect when denormals are being used as source operands for
computations.

4.8.3.3 Signed Infinities
The two infinities, + ∞ and − ∞, represent the maximum positive and negative real
numbers, respectively, that can be represented in the floating-point format. Infinity
is always represented by a significand of 1.00...00 (the integer bit may be implied)
and the maximum biased exponent allowed in the specified format (for example,
25510 for the single-precision format).

The signs of infinities are observed, and comparisons are possible. Infinities are
always interpreted in the affine sense; that is, –∞ is less than any finite number and
+∞ is greater than any finite number. Arithmetic on infinities is always exact. Excep-
tions are generated only when the use of an infinity as a source operand constitutes
an invalid operation.

Whereas denormalized numbers may represent an underflow condition, the two ∞
numbers may represent the result of an overflow condition. Here, the normalized
result of a computation has a biased exponent greater than the largest allowable
exponent for the selected result format.

4.8.3.4 NaNs
Since NaNs are non-numbers, they are not part of the real number line. In
Figure 4-12, the encoding space for NaNs in the floating-point formats is shown

Table 4-6. Denormalization Process

Operation Sign Exponent* Significand

True Result 0 −129 1.01011100000...00

Denormalize 0 −128 0.10101110000...00

Denormalize 0 −127 0.01010111000...00

Denormalize 0 −126 0.00101011100...00

Denormal Result 0 −126 0.00101011100...00

* Expressed as an unbiased, decimal number.
Vol. 1 4-21

DATA TYPES
above the ends of the real number line. This space includes any value with the
maximum allowable biased exponent and a non-zero fraction (the sign bit is ignored
for NaNs).

The IA-32 architecture defines two classes of NaNs: quiet NaNs (QNaNs) and
signaling NaNs (SNaNs). A QNaN is a NaN with the most significant fraction bit set;
an SNaN is a NaN with the most significant fraction bit clear. QNaNs are allowed to
propagate through most arithmetic operations without signaling an exception.
SNaNs generally signal a floating-point invalid-operation exception whenever they
appear as operands in arithmetic operations.

SNaNs are typically used to trap or invoke an exception handler. They must be
inserted by software; that is, the processor never generates an SNaN as a result of a
floating-point operation.

4.8.3.5 Operating on SNaNs and QNaNs
When a floating-point operation is performed on an SNaN and/or a QNaN, the result
of the operation is either a QNaN delivered to the destination operand or the genera-
tion of a floating-point invalid operating exception, depending on the following rules:
• If one of the source operands is an SNaN and the floating-point invalid-operating

exception is not masked (see Section 4.9.1.1, “Invalid Operation Exception
(#I)”), the a floating-point invalid-operation exception is signaled and no result is
stored in the destination operand.

• If either or both of the source operands are NaNs and floating-point invalid-
operation exception is masked, the result is as shown in Table 4-7. When an
SNaN is converted to a QNaN, the conversion is handled by setting the most-
significant fraction bit of the SNaN to 1. Also, when one of the source operands is
an SNaN, the floating-point invalid-operation exception flag it set. Note that for
some combinations of source operands, the result is different for x87 FPU
operations and for SSE/SSE2/SSE3/SSE4.1 operations. Intel AVX follows the
same behavior as SSE/SSE2/SSE3/SSE4.1 in this respect.

• When neither of the source operands is a NaN, but the operation generates a
floating-point invalid-operation exception (see Tables 8-10 and 11-1), the result
is commonly an SNaN source operand converted to a QNaN or the QNaN floating-
point indefinite value.

Any exceptions to the behavior described in Table 4-7 are described in Section
8.5.1.2, “Invalid Arithmetic Operand Exception (#IA),” and Section 11.5.2.1, “Invalid
Operation Exception (#I).”
4-22 Vol. 1

DATA TYPES
4.8.3.6 Using SNaNs and QNaNs in Applications
Except for the rules given at the beginning of Section 4.8.3.4, “NaNs,” for encoding
SNaNs and QNaNs, software is free to use the bits in the significand of a NaN for any
purpose. Both SNaNs and QNaNs can be encoded to carry and store data, such as
diagnostic information.

By unmasking the invalid operation exception, the programmer can use signaling
NaNs to trap to the exception handler. The generality of this approach and the large
number of NaN values that are available provide the sophisticated programmer with
a tool that can be applied to a variety of special situations.

For example, a compiler can use signaling NaNs as references to uninitialized (real)
array elements. The compiler can preinitialize each array element with a signaling
NaN whose significand contained the index (relative position) of the element. Then,
if an application program attempts to access an element that it had not initialized, it

Table 4-7. Rules for Handling NaNs

Source Operands Result1

SNaN and QNaN x87 FPU — QNaN source operand.

SSE/SSE2/SSE3/SSE4.1/AVX — First source
operand (if this operand is an SNaN, it is converted
to a QNaN)

Two SNaNs x87 FPU—SNaN source operand with the larger
significand, converted into a QNaN

SSE/SSE2/SSE3/SSE4.1/AVX — First source
operand converted to a QNaN

Two QNaNs x87 FPU — QNaN source operand with the larger
significand

SSE/SSE2/SSE3/SSE4.1/AVX — First source
operand

SNaN and a floating-point value SNaN source operand, converted into a QNaN

QNaN and a floating-point value QNaN source operand

SNaN (for instructions that take only one
operand)

SNaN source operand, converted into a QNaN

QNaN (for instructions that take only one
operand)

QNaN source operand

NOTE:
1. For SSE/SSE2/SSE3/SSE4.1 instructions, the first operand is generally a source operand that

becomes the destination operand. For AVX instructions, the first source operand is usually the
2nd operand in a non-destructive source syntax. Within the Result column, the x87 FPU nota-
tion also applies to the FISTTP instruction in SSE3; the SSE3 notation applies to the SIMD float-
ing-point instructions.
Vol. 1 4-23

DATA TYPES
can use the NaN placed there by the compiler. If the invalid operation exception is
unmasked, an interrupt will occur, and the exception handler will be invoked. The
exception handler can determine which element has been accessed, since the
operand address field of the exception pointer will point to the NaN, and the NaN will
contain the index number of the array element.

Quiet NaNs are often used to speed up debugging. In its early testing phase, a
program often contains multiple errors. An exception handler can be written to save
diagnostic information in memory whenever it was invoked. After storing the diag-
nostic data, it can supply a quiet NaN as the result of the erroneous instruction, and
that NaN can point to its associated diagnostic area in memory. The program will
then continue, creating a different NaN for each error. When the program ends, the
NaN results can be used to access the diagnostic data saved at the time the errors
occurred. Many errors can thus be diagnosed and corrected in one test run.

In embedded applications that use computed results in further computations, an
undetected QNaN can invalidate all subsequent results. Such applications should
therefore periodically check for QNaNs and provide a recovery mechanism to be used
if a QNaN result is detected.

4.8.3.7 QNaN Floating-Point Indefinite
For the floating-point data type encodings (single-precision, double-precision, and
double-extended-precision), one unique encoding (a QNaN) is reserved for repre-
senting the special value QNaN floating-point indefinite. The x87 FPU and the
SSE/SSE2/SSE3/SSE4.1/AVX extensions return these indefinite values as responses
to some masked floating-point exceptions. Table 4-3 shows the encoding used for the
QNaN floating-point indefinite.

4.8.3.8 Half-Precision Floating-Point Operation
Half-precision floating-point values are not used by the processor directly for arith-
metic operations. Two instructions, VCVTPH2PS, VCVTPS2PH, provide conversion
only between half-precision and single-precision floating-point values.

The SIMD floating-point exception behavior of VCVTPH2PS and VCVTPS2PH are
described in Section 13.8.1.

4.8.4 Rounding
When performing floating-point operations, the processor produces an infinitely
precise floating-point result in the destination format (single-precision, double-preci-
sion, or double extended-precision floating-point) whenever possible. However,
because only a subset of the numbers in the real number continuum can be repre-
sented in IEEE Standard 754 floating-point formats, it is often the case that an infi-
nitely precise result cannot be encoded exactly in the format of the destination
operand.
4-24 Vol. 1

DATA TYPES
For example, the following value (a) has a 24-bit fraction. The least-significant bit of
this fraction (the underlined bit) cannot be encoded exactly in the single-precision
format (which has only a 23-bit fraction):

(a) 1.0001 0000 1000 0011 1001 0111E2 101

To round this result (a), the processor first selects two representable fractions b and
c that most closely bracket a in value (b < a < c).

(b) 1.0001 0000 1000 0011 1001 011E2 101

(c) 1.0001 0000 1000 0011 1001 100E2 101

The processor then sets the result to b or to c according to the selected rounding
mode. Rounding introduces an error in a result that is less than one unit in the last
place (the least significant bit position of the floating-point value) to which the result
is rounded.

The IEEE Standard 754 defines four rounding modes (see Table 4-8): round to
nearest, round up, round down, and round toward zero. The default rounding mode
(for the Intel 64 and IA-32 architectures) is round to nearest. This mode provides the
most accurate and statistically unbiased estimate of the true result and is suitable for
most applications.

The round up and round down modes are termed directed rounding and can be
used to implement interval arithmetic. Interval arithmetic is used to determine upper
and lower bounds for the true result of a multistep computation, when the interme-
diate results of the computation are subject to rounding.

The round toward zero mode (sometimes called the “chop” mode) is commonly used
when performing integer arithmetic with the x87 FPU.

The rounded result is called the inexact result. When the processor produces an
inexact result, the floating-point precision (inexact) flag (PE) is set (see Section
4.9.1.6, “Inexact-Result (Precision) Exception (#P)”).

Table 4-8. Rounding Modes and Encoding of Rounding Control (RC) Field

Rounding
Mode

RC Field
Setting

Description

Round to
nearest (even)

00B Rounded result is the closest to the infinitely precise result. If two
values are equally close, the result is the even value (that is, the
one with the least-significant bit of zero). Default

Round down
(toward −∞)

01B Rounded result is closest to but no greater than the infinitely
precise result.

Round up
(toward +∞)

10B Rounded result is closest to but no less than the infinitely precise
result.

Round toward
zero (Truncate)

11B Rounded result is closest to but no greater in absolute value than
the infinitely precise result.
Vol. 1 4-25

DATA TYPES
The rounding modes have no effect on comparison operations, operations that
produce exact results, or operations that produce NaN results.

4.8.4.1 Rounding Control (RC) Fields
In the Intel 64 and IA-32 architectures, the rounding mode is controlled by a 2-bit
rounding-control (RC) field (Table 4-8 shows the encoding of this field). The RC field
is implemented in two different locations:
• x87 FPU control register (bits 10 and 11)
• The MXCSR register (bits 13 and 14)

Although these two RC fields perform the same function, they control rounding for
different execution environments within the processor. The RC field in the x87 FPU
control register controls rounding for computations performed with the x87 FPU
instructions; the RC field in the MXCSR register controls rounding for SIMD floating-
point computations performed with the SSE/SSE2 instructions.

4.8.4.2 Truncation with SSE and SSE2 Conversion Instructions
The following SSE/SSE2 instructions automatically truncate the results of conver-
sions from floating-point values to integers when the result it inexact: CVTTPD2DQ,
CVTTPS2DQ, CVTTPD2PI, CVTTPS2PI, CVTTSD2SI, CVTTSS2SI. Here, truncation
means the round toward zero mode described in Table 4-8.

4.9 OVERVIEW OF FLOATING-POINT EXCEPTIONS
The following section provides an overview of floating-point exceptions and their
handling in the IA-32 architecture. For information specific to the x87 FPU and to the
SSE/SSE2/SSE3/SSE4.1 extensions, refer to the following sections:
• Section 8.4, “x87 FPU Floating-Point Exception Handling”
• Section 11.5, “SSE, SSE2, and SSE3 Exceptions”

When operating on floating-point operands, the IA-32 architecture recognizes and
detects six classes of exception conditions:
• Invalid operation (#I)
• Divide-by-zero (#Z)
• Denormalized operand (#D)
• Numeric overflow (#O)
• Numeric underflow (#U)
• Inexact result (precision) (#P)
4-26 Vol. 1

DATA TYPES
The nomenclature of “#” symbol followed by one or two letters (for example, #P) is
used in this manual to indicate exception conditions. It is merely a short-hand form
and is not related to assembler mnemonics.

NOTE
All of the exceptions listed above except the denormal-operand
exception (#D) are defined in IEEE Standard 754.

The invalid-operation, divide-by-zero and denormal-operand exceptions are pre-
computation exceptions (that is, they are detected before any arithmetic operation
occurs). The numeric-underflow, numeric-overflow and precision exceptions are
post-computation exceptions.

Each of the six exception classes has a corresponding flag bit (IE, ZE, OE, UE, DE, or
PE) and mask bit (IM, ZM, OM, UM, DM, or PM). When one or more floating-point
exception conditions are detected, the processor sets the appropriate flag bits, then
takes one of two possible courses of action, depending on the settings of the corre-
sponding mask bits:
• Mask bit set. Handles the exception automatically, producing a predefined (and

often times usable) result, while allowing program execution to continue undis-
turbed.

• Mask bit clear. Invokes a software exception handler to handle the exception.

The masked (default) responses to exceptions have been chosen to deliver a reason-
able result for each exception condition and are generally satisfactory for most
floating-point applications. By masking or unmasking specific floating-point excep-
tions, programmers can delegate responsibility for most exceptions to the processor
and reserve the most severe exception conditions for software exception handlers.

Because the exception flags are “sticky,” they provide a cumulative record of the
exceptions that have occurred since they were last cleared. A programmer can thus
mask all exceptions, run a calculation, and then inspect the exception flags to see if
any exceptions were detected during the calculation.

In the IA-32 architecture, floating-point exception flag and mask bits are imple-
mented in two different locations:
• x87 FPU status word and control word. The flag bits are located at bits 0 through

5 of the x87 FPU status word and the mask bits are located at bits 0 through 5 of
the x87 FPU control word (see Figures 8-4 and 8-6).

• MXCSR register. The flag bits are located at bits 0 through 5 of the MXCSR
register and the mask bits are located at bits 7 through 12 of the register (see
Figure 10-3).

Although these two sets of flag and mask bits perform the same function, they report
on and control exceptions for different execution environments within the processor.
The flag and mask bits in the x87 FPU status and control words control exception
reporting and masking for computations performed with the x87 FPU instructions;
the companion bits in the MXCSR register control exception reporting and masking
Vol. 1 4-27

DATA TYPES
for SIMD floating-point computations performed with the SSE/SSE2/SSE3 instruc-
tions.

Note that when exceptions are masked, the processor may detect multiple excep-
tions in a single instruction, because it continues executing the instruction after
performing its masked response. For example, the processor can detect a denormal-
ized operand, perform its masked response to this exception, and then detect
numeric underflow.

See Section 4.9.2, “Floating-Point Exception Priority,” for a description of the rules for
exception precedence when more than one floating-point exception condition is
detected for an instruction.

4.9.1 Floating-Point Exception Conditions
The following sections describe the various conditions that cause a floating-point
exception to be generated and the masked response of the processor when these
conditions are detected. The Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volumes 3A & 3B, list the floating-point exceptions that can be signaled for
each floating-point instruction.

4.9.1.1 Invalid Operation Exception (#I)
The processor reports an invalid operation exception in response to one or more
invalid arithmetic operands. If the invalid operation exception is masked, the
processor sets the IE flag and returns an indefinite value or a QNaN. This value over-
writes the destination register specified by the instruction. If the invalid operation
exception is not masked, the IE flag is set, a software exception handler is invoked,
and the operands remain unaltered.

See Section 4.8.3.6, “Using SNaNs and QNaNs in Applications,” for information about
the result returned when an exception is caused by an SNaN.

The processor can detect a variety of invalid arithmetic operations that can be coded
in a program. These operations generally indicate a programming error, such as
dividing ∞ by ∞ . See the following sections for information regarding the invalid-
operation exception when detected while executing x87 FPU or SSE/SSE2/SSE3
instructions:
• x87 FPU; Section 8.5.1, “Invalid Operation Exception”
• SIMD floating-point exceptions; Section 11.5.2.1, “Invalid Operation Exception

(#I)”

4.9.1.2 Denormal Operand Exception (#D)
The processor reports the denormal-operand exception if an arithmetic instruction
attempts to operate on a denormal operand (see Section 4.8.3.2, “Normalized and
Denormalized Finite Numbers”). When the exception is masked, the processor sets
4-28 Vol. 1

DATA TYPES
the DE flag and proceeds with the instruction. Operating on denormal numbers will
produce results at least as good as, and often better than, what can be obtained
when denormal numbers are flushed to zero. Programmers can mask this exception
so that a computation may proceed, then analyze any loss of accuracy when the final
result is delivered.

When a denormal-operand exception is not masked, the DE flag is set, a software
exception handler is invoked, and the operands remain unaltered. When denormal
operands have reduced significance due to loss of low-order bits, it may be advisable
to not operate on them. Precluding denormal operands from computations can be
accomplished by an exception handler that responds to unmasked denormal-
operand exceptions.

See the following sections for information regarding the denormal-operand exception
when detected while executing x87 FPU or SSE/SSE2/SSE3 instructions:
• x87 FPU; Section 8.5.2, “Denormal Operand Exception (#D)”
• SIMD floating-point exceptions; Section 11.5.2.2, “Denormal-Operand Exception

(#D)”

4.9.1.3 Divide-By-Zero Exception (#Z)
The processor reports the floating-point divide-by-zero exception whenever an
instruction attempts to divide a finite non-zero operand by 0. The masked response
for the divide-by-zero exception is to set the ZE flag and return an infinity signed with
the exclusive OR of the sign of the operands. If the divide-by-zero exception is not
masked, the ZE flag is set, a software exception handler is invoked, and the operands
remain unaltered.

See the following sections for information regarding the divide-by-zero exception
when detected while executing x87 FPU or SSE/SSE2 instructions:
• x87 FPU; Section 8.5.3, “Divide-By-Zero Exception (#Z)”
• SIMD floating-point exceptions; Section 11.5.2.3, “Divide-By-Zero Exception

(#Z)”

4.9.1.4 Numeric Overflow Exception (#O)
The processor reports a floating-point numeric overflow exception whenever the
rounded result of an instruction exceeds the largest allowable finite value that will fit
into the destination operand. Table 4-9 shows the threshold range for numeric over-
flow for each of the floating-point formats; overflow occurs when a rounded result
falls at or outside this threshold range.
Vol. 1 4-29

DATA TYPES
When a numeric-overflow exception occurs and the exception is masked, the
processor sets the OE flag and returns one of the values shown in Table 4-10,
according to the current rounding mode. See Section 4.8.4, “Rounding.”

When numeric overflow occurs and the numeric-overflow exception is not masked,
the OE flag is set, a software exception handler is invoked, and the source and desti-
nation operands either remain unchanged or a biased result is stored in the destina-
tion operand (depending whether the overflow exception was generated during an
SSE/SSE2/SSE3 floating-point operation or an x87 FPU operation).

See the following sections for information regarding the numeric overflow exception
when detected while executing x87 FPU instructions or while executing
SSE/SSE2/SSE3 instructions:
• x87 FPU; Section 8.5.4, “Numeric Overflow Exception (#O)”
• SIMD floating-point exceptions; Section 11.5.2.4, “Numeric Overflow Exception

(#O)”

4.9.1.5 Numeric Underflow Exception (#U)
The processor detects a floating-point numeric underflow condition whenever the
result of rounding with unbounded exponent (taking into account precision control
for x87) is tiny; that is, less than the smallest possible normalized, finite value that
will fit into the destination operand. Table 4-11 shows the threshold range for

Table 4-9. Numeric Overflow Thresholds

Floating-Point Format Overflow Thresholds

Single Precision | x | ≥ 1.0 ∗ 2128

Double Precision | x | ≥ 1.0 ∗ 21024

Double Extended Precision | x | ≥ 1.0 ∗ 216384

Table 4-10. Masked Responses to Numeric Overflow

Rounding Mode Sign of True Result Result

To nearest + +∞

– –∞

Toward –∞ + Largest finite positive number

– –∞

Toward +∞ + +∞

– Largest finite negative number

Toward zero + Largest finite positive number

– Largest finite negative number
4-30 Vol. 1

DATA TYPES
numeric underflow for each of the floating-point formats (assuming normalized
results); underflow occurs when a rounded result falls strictly within the threshold
range. The ability to detect and handle underflow is provided to prevent a very small
result from propagating through a computation and causing another exception (such
as overflow during division) to be generated at a later time.

How the processor handles an underflow condition, depends on two related condi-
tions:
• creation of a tiny result
• creation of an inexact result; that is, a result that cannot be represented exactly

in the destination format

Which of these events causes an underflow exception to be reported and how the
processor responds to the exception condition depends on whether the underflow
exception is masked:
• Underflow exception masked — The underflow exception is reported (the UE

flag is set) only when the result is both tiny and inexact. The processor returns a
denormalized result to the destination operand, regardless of inexactness.

• Underflow exception not masked — The underflow exception is reported
when the result is tiny, regardless of inexactness. The processor leaves the
source and destination operands unaltered or stores a biased result in the
designating operand (depending whether the underflow exception was generated
during an SSE/SSE2/SSE3 floating-point operation or an x87 FPU operation) and
invokes a software exception handler.

See the following sections for information regarding the numeric underflow exception
when detected while executing x87 FPU instructions or while executing
SSE/SSE2/SSE3 instructions:
• x87 FPU; Section 8.5.5, “Numeric Underflow Exception (#U)”
• SIMD floating-point exceptions; Section 11.5.2.5, “Numeric Underflow Exception

(#U)”

4.9.1.6 Inexact-Result (Precision) Exception (#P)
The inexact-result exception (also called the precision exception) occurs if the result
of an operation is not exactly representable in the destination format. For example,
the fraction 1/3 cannot be precisely represented in binary floating-point form. This

Table 4-11. Numeric Underflow (Normalized) Thresholds

Floating-Point Format Underflow Thresholds*

Single Precision | x | < 1.0 ∗ 2−126

Double Precision | x | < 1.0 ∗ 2−1022

Double Extended Precision | x | < 1.0 ∗ 2−16382

* Where ‘x’ is the result rounded to destination precision with an unbounded exponent range.
Vol. 1 4-31

DATA TYPES
exception occurs frequently and indicates that some (normally acceptable) accuracy
will be lost due to rounding. The exception is supported for applications that need to
perform exact arithmetic only. Because the rounded result is generally satisfactory
for most applications, this exception is commonly masked.

If the inexact-result exception is masked when an inexact-result condition occurs and
a numeric overflow or underflow condition has not occurred, the processor sets the
PE flag and stores the rounded result in the destination operand. The current
rounding mode determines the method used to round the result. See Section 4.8.4,
“Rounding.”

If the inexact-result exception is not masked when an inexact result occurs and
numeric overflow or underflow has not occurred, the PE flag is set, the rounded result
is stored in the destination operand, and a software exception handler is invoked.

If an inexact result occurs in conjunction with numeric overflow or underflow, one of
the following operations is carried out:
• If an inexact result occurs along with masked overflow or underflow, the OE flag

or UE flag and the PE flag are set and the result is stored as described for the
overflow or underflow exceptions; see Section 4.9.1.4, “Numeric Overflow
Exception (#O),” or Section 4.9.1.5, “Numeric Underflow Exception (#U).” If the
inexact result exception is unmasked, the processor also invokes a software
exception handler.

• If an inexact result occurs along with unmasked overflow or underflow and the
destination operand is a register, the OE or UE flag and the PE flag are set, the
result is stored as described for the overflow or underflow exceptions, and a
software exception handler is invoked.

If an unmasked numeric overflow or underflow exception occurs and the destination
operand is a memory location (which can happen only for a floating-point store), the
inexact-result condition is not reported and the C1 flag is cleared.

See the following sections for information regarding the inexact-result exception
when detected while executing x87 FPU or SSE/SSE2/SSE3 instructions:
• x87 FPU; Section 8.5.6, “Inexact-Result (Precision) Exception (#P)”
• SIMD floating-point exceptions; Section 11.5.2.3, “Divide-By-Zero Exception

(#Z)”

4.9.2 Floating-Point Exception Priority
The processor handles exceptions according to a predetermined precedence. When
an instruction generates two or more exception conditions, the exception precedence
sometimes results in the higher-priority exception being handled and the lower-
priority exceptions being ignored. For example, dividing an SNaN by zero can poten-
tially signal an invalid-operation exception (due to the SNaN operand) and a divide-
by-zero exception. Here, if both exceptions are masked, the processor handles the
higher-priority exception only (the invalid-operation exception), returning a QNaN to
the destination. Alternately, a denormal-operand or inexact-result exception can
4-32 Vol. 1

DATA TYPES
accompany a numeric underflow or overflow exception with both exceptions being
handled.

The precedence for floating-point exceptions is as follows:

1. Invalid-operation exception, subdivided as follows:

a. stack underflow (occurs with x87 FPU only)

b. stack overflow (occurs with x87 FPU only)

c. operand of unsupported format (occurs with x87 FPU only when using the
double extended-precision floating-point format)

d. SNaN operand

2. QNaN operand. Though this is not an exception, the handling of a QNaN operand
has precedence over lower-priority exceptions. For example, a QNaN divided by
zero results in a QNaN, not a zero-divide exception.

3. Any other invalid-operation exception not mentioned above or a divide-by-zero
exception.

4. Denormal-operand exception. If masked, then instruction execution continues
and a lower-priority exception can occur as well.

5. Numeric overflow and underflow exceptions; possibly in conjunction with the
inexact-result exception.

6. Inexact-result exception.

Invalid operation, zero divide, and denormal operand exceptions are detected before
a floating-point operation begins. Overflow, underflow, and precision exceptions are
not detected until a true result has been computed. When an unmasked pre-opera-
tion exception is detected, the destination operand has not yet been updated, and
appears as if the offending instruction has not been executed. When an unmasked
post-operation exception is detected, the destination operand may be updated with
a result, depending on the nature of the exception (except for SSE/SSE2/SSE3
instructions, which do not update their destination operands in such cases).

4.9.3 Typical Actions of a Floating-Point Exception Handler
After the floating-point exception handler is invoked, the processor handles the
exception in the same manner that it handles non-floating-point exceptions. The
floating-point exception handler is normally part of the operating system or execu-
tive software, and it usually invokes a user-registered floating-point exception
handle.

A typical action of the exception handler is to store state information in memory.
Other typical exception handler actions include:
• Examining the stored state information to determine the nature of the error
• Taking actions to correct the condition that caused the error
Vol. 1 4-33

DATA TYPES
• Clearing the exception flags
• Returning to the interrupted program and resuming normal execution

In lieu of writing recovery procedures, the exception handler can do the following:
• Increment in software an exception counter for later display or printing
• Print or display diagnostic information (such as the state information)
• Halt further program execution
4-34 Vol. 1

CHAPTER 5
INSTRUCTION SET SUMMARY

This chapter provides an abridged overview of Intel 64 and IA-32 instructions.
Instructions are divided into the following groups:
• General purpose
• x87 FPU
• x87 FPU and SIMD state management
• Intel MMX technology
• SSE extensions
• SSE2 extensions
• SSE3 extensions
• SSSE3 extensions
• SSE4 extensions
• AESNI and PCLMULQDQ
• Intel AVX extensions
• F16C, RDRAND, FS/GS base access
• System instructions
• IA-32e mode: 64-bit mode instructions
• VMX instructions
• SMX instructions

Table 5-1 lists the groups and IA-32 processors that support each group. More recent
instruction set extensions are listed in Table 5-2. Within these groups, most instruc-
tions are collected into functional subgroups.

Table 5-1. Instruction Groups in Intel 64 and IA-32 Processors

Instruction Set
Architecture Intel 64 and IA-32 Processor Support

General Purpose All Intel 64 and IA-32 processors

 x87 FPU Intel486, Pentium, Pentium with MMX Technology, Celeron, Pentium
Pro, Pentium II, Pentium II Xeon, Pentium III, Pentium III Xeon,
Pentium 4, Intel Xeon processors, Pentium M, Intel Core Solo, Intel Core
Duo, Intel Core 2 Duo processors, Intel Atom processors

x87 FPU and SIMD State
Management

Pentium II, Pentium II Xeon, Pentium III, Pentium III Xeon, Pentium 4,
Intel Xeon processors, Pentium M, Intel Core Solo, Intel Core Duo, Intel
Core 2 Duo processors, Intel Atom processors
Vol. 1 5-1

INSTRUCTION SET SUMMARY
MMX Technology Pentium with MMX Technology, Celeron, Pentium II, Pentium II Xeon,
Pentium III, Pentium III Xeon, Pentium 4, Intel Xeon processors,
Pentium M, Intel Core Solo, Intel Core Duo, Intel Core 2 Duo processors,
Intel Atom processors

SSE Extensions Pentium III, Pentium III Xeon, Pentium 4, Intel Xeon processors,
Pentium M, Intel Core Solo, Intel Core Duo, Intel Core 2 Duo processors,
Intel Atom processors

SSE2 Extensions Pentium 4, Intel Xeon processors, Pentium M, Intel Core Solo, Intel Core
Duo, Intel Core 2 Duo processors, Intel Atom processors

SSE3 Extensions Pentium 4 supporting HT Technology (built on 90nm process
technology), Intel Core Solo, Intel Core Duo, Intel Core 2 Duo processors,
Intel Xeon processor 3xxxx, 5xxx, 7xxx Series, Intel Atom processors

SSSE3 Extensions Intel Xeon processor 3xxx, 5100, 5200, 5300, 5400, 5500, 5600,
7300, 7400, 7500 series, Intel Core 2 Extreme processors QX6000
series, Intel Core 2 Duo, Intel Core 2 Quad processors, Intel Pentium
Dual-Core processors, Intel Atom processors

IA-32e mode: 64-bit
mode instructions

Intel 64 processors

System Instructions Intel 64 and IA-32 processors

VMX Instructions Intel 64 and IA-32 processors supporting Intel Virtualization
Technology

SMX Instructions Intel Core 2 Duo processor E6x50, E8xxx; Intel Core 2 Quad processor
Q9xxx

Table 5-2. Recent Instruction Set Extensions in Intel 64 and IA-32 Processors

Instruction Set
Architecture Processor Generation Introduction

SSE4.1 Extensions Intel Xeon processor 3100, 3300, 5200, 5400, 7400, 7500 series,
Intel Core 2 Extreme processors QX9000 series, Intel Core 2 Quad
processor Q9000 series, Intel Core 2 Duo processors 8000 series,
T9000 series.

SSE4.2 Extensions Intel Core i7 965 processor, Intel Xeon processors X3400, X3500,
X5500, X6500, X7500 series.

AESNI, PCLMULQDQ InteL Xeon processor E7 series, Intel Xeon processors X3600, X5600,
Intel Core i7 980X processor; Use CPUID to verify presence of AESNI
and PCLMULQDQ across Intel Core processor families.

Table 5-1. Instruction Groups in Intel 64 and IA-32 Processors (Contd.)

Instruction Set
Architecture Intel 64 and IA-32 Processor Support
5-2 Vol. 1

INSTRUCTION SET SUMMARY
The following sections list instructions in each major group and subgroup. Given for
each instruction is its mnemonic and descriptive names. When two or more
mnemonics are given (for example, CMOVA/CMOVNBE), they represent different
mnemonics for the same instruction opcode. Assemblers support redundant
mnemonics for some instructions to make it easier to read code listings. For instance,
CMOVA (Conditional move if above) and CMOVNBE (Conditional move if not below or
equal) represent the same condition. For detailed information about specific instruc-
tions, see the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volumes 3A & 3B.

5.1 GENERAL-PURPOSE INSTRUCTIONS
The general-purpose instructions preform basic data movement, arithmetic, logic,
program flow, and string operations that programmers commonly use to write appli-
cation and system software to run on Intel 64 and IA-32 processors. They operate on
data contained in memory, in the general-purpose registers (EAX, EBX, ECX, EDX,
EDI, ESI, EBP, and ESP) and in the EFLAGS register. They also operate on address
information contained in memory, the general-purpose registers, and the segment
registers (CS, DS, SS, ES, FS, and GS).

This group of instructions includes the data transfer, binary integer arithmetic,
decimal arithmetic, logic operations, shift and rotate, bit and byte operations,
program control, string, flag control, segment register operations, and miscellaneous
subgroups. The sections that following introduce each subgroup.

For more detailed information on general purpose-instructions, see Chapter 7,
“Programming With General-Purpose Instructions.”

5.1.1 Data Transfer Instructions
The data transfer instructions move data between memory and the general-purpose
and segment registers. They also perform specific operations such as conditional
moves, stack access, and data conversion.

Intel AVX Intel Xeon processor E3 series; Intel Core i7, i5, i3 processor 2xxx
series.

F16C, RDRAND, FS/GS
base access

Next-Generation, 22 nm Intel Xeon processor and Intel Core processors.

Table 5-2. Recent Instruction Set Extensions in Intel 64 and IA-32 Processors

Instruction Set
Architecture Processor Generation Introduction
Vol. 1 5-3

INSTRUCTION SET SUMMARY
MOV Move data between general-purpose registers; move data
between memory and general-purpose or segment registers;
move immediates to general-purpose registers

CMOVE/CMOVZ Conditional move if equal/Conditional move if zero
CMOVNE/CMOVNZ Conditional move if not equal/Conditional move if not zero
CMOVA/CMOVNBE Conditional move if above/Conditional move if not below or

equal
CMOVAE/CMOVNB Conditional move if above or equal/Conditional move if not

below
CMOVB/CMOVNAE Conditional move if below/Conditional move if not above or

equal
CMOVBE/CMOVNA Conditional move if below or equal/Conditional move if not

above
CMOVG/CMOVNLE Conditional move if greater/Conditional move if not less or equal
CMOVGE/CMOVNL Conditional move if greater or equal/Conditional move if not less
CMOVL/CMOVNGE Conditional move if less/Conditional move if not greater or equal
CMOVLE/CMOVNG Conditional move if less or equal/Conditional move if not greater
CMOVC Conditional move if carry
CMOVNC Conditional move if not carry
CMOVO Conditional move if overflow
CMOVNO Conditional move if not overflow
CMOVS Conditional move if sign (negative)
CMOVNS Conditional move if not sign (non-negative)
CMOVP/CMOVPE Conditional move if parity/Conditional move if parity even
CMOVNP/CMOVPO Conditional move if not parity/Conditional move if parity odd
XCHG Exchange
BSWAP Byte swap
XADD Exchange and add
CMPXCHG Compare and exchange
CMPXCHG8B Compare and exchange 8 bytes
PUSH Push onto stack
POP Pop off of stack
PUSHA/PUSHAD Push general-purpose registers onto stack
POPA/POPAD Pop general-purpose registers from stack
CWD/CDQ Convert word to doubleword/Convert doubleword to quadword
CBW/CWDE Convert byte to word/Convert word to doubleword in EAX

register
MOVSX Move and sign extend
MOVZX Move and zero extend
5-4 Vol. 1

INSTRUCTION SET SUMMARY
5.1.2 Binary Arithmetic Instructions
The binary arithmetic instructions perform basic binary integer computations on
byte, word, and doubleword integers located in memory and/or the general purpose
registers.
ADD Integer add
ADC Add with carry
SUB Subtract
SBB Subtract with borrow
IMUL Signed multiply
MUL Unsigned multiply
IDIV Signed divide
DIV Unsigned divide
INC Increment
DEC Decrement
NEG Negate
CMP Compare

5.1.3 Decimal Arithmetic Instructions
The decimal arithmetic instructions perform decimal arithmetic on binary coded
decimal (BCD) data.
DAA Decimal adjust after addition
DAS Decimal adjust after subtraction
AAA ASCII adjust after addition
AAS ASCII adjust after subtraction
AAM ASCII adjust after multiplication
AAD ASCII adjust before division

5.1.4 Logical Instructions
The logical instructions perform basic AND, OR, XOR, and NOT logical operations on
byte, word, and doubleword values.
AND Perform bitwise logical AND
OR Perform bitwise logical OR
XOR Perform bitwise logical exclusive OR
NOT Perform bitwise logical NOT
Vol. 1 5-5

INSTRUCTION SET SUMMARY
5.1.5 Shift and Rotate Instructions
The shift and rotate instructions shift and rotate the bits in word and doubleword
operands.
SAR Shift arithmetic right
SHR Shift logical right
SAL/SHL Shift arithmetic left/Shift logical left
SHRD Shift right double
SHLD Shift left double
ROR Rotate right
ROL Rotate left
RCR Rotate through carry right
RCL Rotate through carry left

5.1.6 Bit and Byte Instructions
Bit instructions test and modify individual bits in word and doubleword operands.
Byte instructions set the value of a byte operand to indicate the status of flags in the
EFLAGS register.
BT Bit test
BTS Bit test and set
BTR Bit test and reset
BTC Bit test and complement
BSF Bit scan forward
BSR Bit scan reverse
SETE/SETZ Set byte if equal/Set byte if zero
SETNE/SETNZ Set byte if not equal/Set byte if not zero
SETA/SETNBE Set byte if above/Set byte if not below or equal
SETAE/SETNB/SETNC Set byte if above or equal/Set byte if not below/Set byte if not

carry
SETB/SETNAE/SETCSet byte if below/Set byte if not above or equal/Set byte if carry
SETBE/SETNA Set byte if below or equal/Set byte if not above
SETG/SETNLE Set byte if greater/Set byte if not less or equal
SETGE/SETNL Set byte if greater or equal/Set byte if not less
SETL/SETNGE Set byte if less/Set byte if not greater or equal
SETLE/SETNG Set byte if less or equal/Set byte if not greater
SETS Set byte if sign (negative)
SETNS Set byte if not sign (non-negative)
SETO Set byte if overflow
5-6 Vol. 1

INSTRUCTION SET SUMMARY
SETNO Set byte if not overflow
SETPE/SETP Set byte if parity even/Set byte if parity
SETPO/SETNP Set byte if parity odd/Set byte if not parity
TEST Logical compare

5.1.7 Control Transfer Instructions
The control transfer instructions provide jump, conditional jump, loop, and call and
return operations to control program flow.
JMP Jump
JE/JZ Jump if equal/Jump if zero
JNE/JNZ Jump if not equal/Jump if not zero
JA/JNBE Jump if above/Jump if not below or equal
JAE/JNB Jump if above or equal/Jump if not below
JB/JNAE Jump if below/Jump if not above or equal
JBE/JNA Jump if below or equal/Jump if not above
JG/JNLE Jump if greater/Jump if not less or equal
JGE/JNL Jump if greater or equal/Jump if not less
JL/JNGE Jump if less/Jump if not greater or equal
JLE/JNG Jump if less or equal/Jump if not greater
JC Jump if carry
JNC Jump if not carry
JO Jump if overflow
JNO Jump if not overflow
JS Jump if sign (negative)
JNS Jump if not sign (non-negative)
JPO/JNP Jump if parity odd/Jump if not parity
JPE/JP Jump if parity even/Jump if parity
JCXZ/JECXZ Jump register CX zero/Jump register ECX zero
LOOP Loop with ECX counter
LOOPZ/LOOPE Loop with ECX and zero/Loop with ECX and equal
LOOPNZ/LOOPNE Loop with ECX and not zero/Loop with ECX and not equal
CALL Call procedure
RET Return
IRET Return from interrupt
INT Software interrupt
INTO Interrupt on overflow
BOUND Detect value out of range
Vol. 1 5-7

INSTRUCTION SET SUMMARY
ENTER High-level procedure entry
LEAVE High-level procedure exit

5.1.8 String Instructions
The string instructions operate on strings of bytes, allowing them to be moved to and
from memory.
MOVS/MOVSB Move string/Move byte string
MOVS/MOVSW Move string/Move word string
MOVS/MOVSD Move string/Move doubleword string
CMPS/CMPSB Compare string/Compare byte string
CMPS/CMPSW Compare string/Compare word string
CMPS/CMPSD Compare string/Compare doubleword string
SCAS/SCASB Scan string/Scan byte string
SCAS/SCASW Scan string/Scan word string
SCAS/SCASD Scan string/Scan doubleword string
LODS/LODSB Load string/Load byte string
LODS/LODSW Load string/Load word string
LODS/LODSD Load string/Load doubleword string
STOS/STOSB Store string/Store byte string
STOS/STOSW Store string/Store word string
STOS/STOSD Store string/Store doubleword string
REP Repeat while ECX not zero
REPE/REPZ Repeat while equal/Repeat while zero
REPNE/REPNZ Repeat while not equal/Repeat while not zero

5.1.9 I/O Instructions
These instructions move data between the processor’s I/O ports and a register or
memory.
IN Read from a port
OUT Write to a port
INS/INSB Input string from port/Input byte string from port
INS/INSW Input string from port/Input word string from port
INS/INSD Input string from port/Input doubleword string from port
OUTS/OUTSB Output string to port/Output byte string to port
OUTS/OUTSW Output string to port/Output word string to port
OUTS/OUTSD Output string to port/Output doubleword string to port
5-8 Vol. 1

INSTRUCTION SET SUMMARY
5.1.10 Enter and Leave Instructions
These instructions provide machine-language support for procedure calls in block-
structured languages.
ENTER High-level procedure entry
LEAVE High-level procedure exit

5.1.11 Flag Control (EFLAG) Instructions
The flag control instructions operate on the flags in the EFLAGS register.
STC Set carry flag
CLC Clear the carry flag
CMC Complement the carry flag
CLD Clear the direction flag
STD Set direction flag
LAHF Load flags into AH register
SAHF Store AH register into flags
PUSHF/PUSHFD Push EFLAGS onto stack
POPF/POPFD Pop EFLAGS from stack
STI Set interrupt flag
CLI Clear the interrupt flag

5.1.12 Segment Register Instructions
The segment register instructions allow far pointers (segment addresses) to be
loaded into the segment registers.
LDS Load far pointer using DS
LES Load far pointer using ES
LFS Load far pointer using FS
LGS Load far pointer using GS
LSS Load far pointer using SS

5.1.13 Miscellaneous Instructions
The miscellaneous instructions provide such functions as loading an effective
address, executing a “no-operation,” and retrieving processor identification informa-
tion.
LEA Load effective address
NOP No operation
Vol. 1 5-9

INSTRUCTION SET SUMMARY
UD2 Undefined instruction
XLAT/XLATB Table lookup translation
CPUID Processor identification
MOVBE Move data after swapping data bytes

5.1.14 Random Number Generator Instruction
RDRAND retrieves a random number generated from hardware.

5.2 X87 FPU INSTRUCTIONS
The x87 FPU instructions are executed by the processor’s x87 FPU. These instructions
operate on floating-point, integer, and binary-coded decimal (BCD) operands. For
more detail on x87 FPU instructions, see Chapter 8, “Programming with the x87 FPU.”

These instructions are divided into the following subgroups: data transfer, load
constants, and FPU control instructions. The sections that follow introduce each
subgroup.

5.2.1 x87 FPU Data Transfer Instructions
The data transfer instructions move floating-point, integer, and BCD values between
memory and the x87 FPU registers. They also perform conditional move operations
on floating-point operands.
FLD Load floating-point value
FST Store floating-point value
FSTP Store floating-point value and pop
FILD Load integer
FIST Store integer
FISTP1 Store integer and pop
FBLD Load BCD
FBSTP Store BCD and pop
FXCH Exchange registers
FCMOVE Floating-point conditional move if equal
FCMOVNE Floating-point conditional move if not equal
FCMOVB Floating-point conditional move if below
FCMOVBE Floating-point conditional move if below or equal
FCMOVNB Floating-point conditional move if not below

1. SSE3 provides an instruction FISTTP for integer conversion.
5-10 Vol. 1

INSTRUCTION SET SUMMARY
FCMOVNBE Floating-point conditional move if not below or equal
FCMOVU Floating-point conditional move if unordered
FCMOVNU Floating-point conditional move if not unordered

5.2.2 x87 FPU Basic Arithmetic Instructions
The basic arithmetic instructions perform basic arithmetic operations on floating-
point and integer operands.
FADD Add floating-point
FADDP Add floating-point and pop
FIADD Add integer
FSUB Subtract floating-point
FSUBP Subtract floating-point and pop
FISUB Subtract integer
FSUBR Subtract floating-point reverse
FSUBRP Subtract floating-point reverse and pop
FISUBR Subtract integer reverse
FMUL Multiply floating-point
FMULP Multiply floating-point and pop
FIMUL Multiply integer
FDIV Divide floating-point
FDIVP Divide floating-point and pop
FIDIV Divide integer
FDIVR Divide floating-point reverse
FDIVRP Divide floating-point reverse and pop
FIDIVR Divide integer reverse
FPREM Partial remainder
FPREM1 IEEE Partial remainder
FABS Absolute value
FCHS Change sign
FRNDINT Round to integer
FSCALE Scale by power of two
FSQRT Square root
FXTRACT Extract exponent and significand

5.2.3 x87 FPU Comparison Instructions
The compare instructions examine or compare floating-point or integer operands.
Vol. 1 5-11

INSTRUCTION SET SUMMARY
FCOM Compare floating-point
FCOMP Compare floating-point and pop
FCOMPP Compare floating-point and pop twice
FUCOM Unordered compare floating-point
FUCOMP Unordered compare floating-point and pop
FUCOMPP Unordered compare floating-point and pop twice
FICOM Compare integer
FICOMP Compare integer and pop
FCOMI Compare floating-point and set EFLAGS
FUCOMI Unordered compare floating-point and set EFLAGS
FCOMIP Compare floating-point, set EFLAGS, and pop
FUCOMIP Unordered compare floating-point, set EFLAGS, and pop
FTST Test floating-point (compare with 0.0)
FXAM Examine floating-point

5.2.4 x87 FPU Transcendental Instructions
The transcendental instructions perform basic trigonometric and logarithmic opera-
tions on floating-point operands.
FSIN Sine
FCOS Cosine
FSINCOS Sine and cosine
FPTAN Partial tangent
FPATAN Partial arctangent
F2XM1 2x − 1
FYL2X y∗log2x
FYL2XP1 y∗log2(x+1)

5.2.5 x87 FPU Load Constants Instructions
The load constants instructions load common constants, such as π, into the x87
floating-point registers.
FLD1 Load +1.0
FLDZ Load +0.0
FLDPI Load π
FLDL2E Load log2e
FLDLN2 Load loge2
FLDL2T Load log210
5-12 Vol. 1

INSTRUCTION SET SUMMARY
FLDLG2 Load log102

5.2.6 x87 FPU Control Instructions
The x87 FPU control instructions operate on the x87 FPU register stack and save and
restore the x87 FPU state.
FINCSTP Increment FPU register stack pointer
FDECSTP Decrement FPU register stack pointer
FFREE Free floating-point register
FINIT Initialize FPU after checking error conditions
FNINIT Initialize FPU without checking error conditions
FCLEX Clear floating-point exception flags after checking for error

conditions
FNCLEX Clear floating-point exception flags without checking for error

conditions
FSTCW Store FPU control word after checking error conditions
FNSTCW Store FPU control word without checking error conditions
FLDCW Load FPU control word
FSTENV Store FPU environment after checking error conditions
FNSTENV Store FPU environment without checking error conditions
FLDENV Load FPU environment
FSAVE Save FPU state after checking error conditions
FNSAVE Save FPU state without checking error conditions
FRSTOR Restore FPU state
FSTSW Store FPU status word after checking error conditions
FNSTSW Store FPU status word without checking error conditions
WAIT/FWAIT Wait for FPU
FNOP FPU no operation

5.3 X87 FPU AND SIMD STATE MANAGEMENT
INSTRUCTIONS

Two state management instructions were introduced into the IA-32 architecture with
the Pentium II processor family:
FXSAVE Save x87 FPU and SIMD state
FXRSTOR Restore x87 FPU and SIMD state

Initially, these instructions operated only on the x87 FPU (and MMX) registers to
perform a fast save and restore, respectively, of the x87 FPU and MMX state. With the
introduction of SSE extensions in the Pentium III processor family, these instructions
Vol. 1 5-13

INSTRUCTION SET SUMMARY
were expanded to also save and restore the state of the XMM and MXCSR registers.
Intel 64 architecture also supports these instructions.

See Section 10.5, “FXSAVE and FXRSTOR Instructions,” for more detail.

5.4 MMX™ INSTRUCTIONS
Four extensions have been introduced into the IA-32 architecture to permit IA-32
processors to perform single-instruction multiple-data (SIMD) operations. These
extensions include the MMX technology, SSE extensions, SSE2 extensions, and SSE3
extensions. For a discussion that puts SIMD instructions in their historical context,
see Section 2.2.7, “SIMD Instructions.”

MMX instructions operate on packed byte, word, doubleword, or quadword integer
operands contained in memory, in MMX registers, and/or in general-purpose regis-
ters. For more detail on these instructions, see Chapter 9, “Programming with Intel®
MMX™ Technology.”

MMX instructions can only be executed on Intel 64 and IA-32 processors that support
the MMX technology. Support for these instructions can be detected with the CPUID
instruction. See the description of the CPUID instruction in Chapter 3, “Instruction
Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2A.

MMX instructions are divided into the following subgroups: data transfer, conversion,
packed arithmetic, comparison, logical, shift and rotate, and state management
instructions. The sections that follow introduce each subgroup.

5.4.1 MMX Data Transfer Instructions
The data transfer instructions move doubleword and quadword operands between
MMX registers and between MMX registers and memory.
MOVD Move doubleword
MOVQ Move quadword

5.4.2 MMX Conversion Instructions
The conversion instructions pack and unpack bytes, words, and doublewords
PACKSSWB Pack words into bytes with signed saturation
PACKSSDW Pack doublewords into words with signed saturation
PACKUSWB Pack words into bytes with unsigned saturation.
PUNPCKHBW Unpack high-order bytes
PUNPCKHWD Unpack high-order words
PUNPCKHDQ Unpack high-order doublewords
5-14 Vol. 1

INSTRUCTION SET SUMMARY
PUNPCKLBW Unpack low-order bytes
PUNPCKLWD Unpack low-order words
PUNPCKLDQ Unpack low-order doublewords

5.4.3 MMX Packed Arithmetic Instructions
The packed arithmetic instructions perform packed integer arithmetic on packed
byte, word, and doubleword integers.
PADDB Add packed byte integers
PADDW Add packed word integers
PADDD Add packed doubleword integers
PADDSB Add packed signed byte integers with signed saturation
PADDSW Add packed signed word integers with signed saturation
PADDUSB Add packed unsigned byte integers with unsigned saturation
PADDUSW Add packed unsigned word integers with unsigned saturation
PSUBB Subtract packed byte integers
PSUBW Subtract packed word integers
PSUBD Subtract packed doubleword integers
PSUBSB Subtract packed signed byte integers with signed saturation
PSUBSW Subtract packed signed word integers with signed saturation
PSUBUSB Subtract packed unsigned byte integers with unsigned saturation
PSUBUSW Subtract packed unsigned word integers with unsigned

saturation
PMULHW Multiply packed signed word integers and store high result
PMULLW Multiply packed signed word integers and store low result
PMADDWD Multiply and add packed word integers

5.4.4 MMX Comparison Instructions
The compare instructions compare packed bytes, words, or doublewords.
PCMPEQB Compare packed bytes for equal
PCMPEQW Compare packed words for equal
PCMPEQD Compare packed doublewords for equal
PCMPGTB Compare packed signed byte integers for greater than
PCMPGTW Compare packed signed word integers for greater than
PCMPGTD Compare packed signed doubleword integers for greater than
Vol. 1 5-15

INSTRUCTION SET SUMMARY
5.4.5 MMX Logical Instructions
The logical instructions perform AND, AND NOT, OR, and XOR operations on quad-
word operands.
PAND Bitwise logical AND
PANDN Bitwise logical AND NOT
POR Bitwise logical OR
PXOR Bitwise logical exclusive OR

5.4.6 MMX Shift and Rotate Instructions
The shift and rotate instructions shift and rotate packed bytes, words, or double-
words, or quadwords in 64-bit operands.
PSLLW Shift packed words left logical
PSLLD Shift packed doublewords left logical
PSLLQ Shift packed quadword left logical
PSRLW Shift packed words right logical
PSRLD Shift packed doublewords right logical
PSRLQ Shift packed quadword right logical
PSRAW Shift packed words right arithmetic
PSRAD Shift packed doublewords right arithmetic

5.4.7 MMX State Management Instructions
The EMMS instruction clears the MMX state from the MMX registers.
EMMS Empty MMX state

5.5 SSE INSTRUCTIONS
SSE instructions represent an extension of the SIMD execution model introduced
with the MMX technology. For more detail on these instructions, see Chapter 10,
“Programming with Streaming SIMD Extensions (SSE).”

SSE instructions can only be executed on Intel 64 and IA-32 processors that support
SSE extensions. Support for these instructions can be detected with the CPUID
instruction. See the description of the CPUID instruction in Chapter 3, “Instruction
Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2A.

SSE instructions are divided into four subgroups (note that the first subgroup has
subordinate subgroups of its own):
5-16 Vol. 1

INSTRUCTION SET SUMMARY
• SIMD single-precision floating-point instructions that operate on the XMM
registers

• MXSCR state management instructions
• 64-bit SIMD integer instructions that operate on the MMX registers
• Cacheability control, prefetch, and instruction ordering instructions

The following sections provide an overview of these groups.

5.5.1 SSE SIMD Single-Precision Floating-Point Instructions
These instructions operate on packed and scalar single-precision floating-point
values located in XMM registers and/or memory. This subgroup is further divided into
the following subordinate subgroups: data transfer, packed arithmetic, comparison,
logical, shuffle and unpack, and conversion instructions.

5.5.1.1 SSE Data Transfer Instructions
SSE data transfer instructions move packed and scalar single-precision floating-point
operands between XMM registers and between XMM registers and memory.
MOVAPS Move four aligned packed single-precision floating-point values

between XMM registers or between and XMM register and
memory

MOVUPS Move four unaligned packed single-precision floating-point
values between XMM registers or between and XMM register and
memory

MOVHPS Move two packed single-precision floating-point values to an
from the high quadword of an XMM register and memory

MOVHLPS Move two packed single-precision floating-point values from the
high quadword of an XMM register to the low quadword of
another XMM register

MOVLPS Move two packed single-precision floating-point values to an
from the low quadword of an XMM register and memory

MOVLHPS Move two packed single-precision floating-point values from the
low quadword of an XMM register to the high quadword of
another XMM register

MOVMSKPS Extract sign mask from four packed single-precision floating-
point values

MOVSS Move scalar single-precision floating-point value between XMM
registers or between an XMM register and memory
Vol. 1 5-17

INSTRUCTION SET SUMMARY
5.5.1.2 SSE Packed Arithmetic Instructions
SSE packed arithmetic instructions perform packed and scalar arithmetic operations
on packed and scalar single-precision floating-point operands.
ADDPS Add packed single-precision floating-point values
ADDSS Add scalar single-precision floating-point values
SUBPS Subtract packed single-precision floating-point values
SUBSS Subtract scalar single-precision floating-point values
MULPS Multiply packed single-precision floating-point values
MULSS Multiply scalar single-precision floating-point values
DIVPS Divide packed single-precision floating-point values
DIVSS Divide scalar single-precision floating-point values
RCPPS Compute reciprocals of packed single-precision floating-point

values
RCPSS Compute reciprocal of scalar single-precision floating-point

values
SQRTPS Compute square roots of packed single-precision floating-point

values
SQRTSS Compute square root of scalar single-precision floating-point

values
RSQRTPS Compute reciprocals of square roots of packed single-precision

floating-point values
RSQRTSS Compute reciprocal of square root of scalar single-precision

floating-point values
MAXPS Return maximum packed single-precision floating-point values
MAXSS Return maximum scalar single-precision floating-point values
MINPS Return minimum packed single-precision floating-point values
MINSS Return minimum scalar single-precision floating-point values

5.5.1.3 SSE Comparison Instructions
SSE compare instructions compare packed and scalar single-precision floating-point
operands.
CMPPS Compare packed single-precision floating-point values
CMPSS Compare scalar single-precision floating-point values
COMISS Perform ordered comparison of scalar single-precision floating-

point values and set flags in EFLAGS register
UCOMISS Perform unordered comparison of scalar single-precision

floating-point values and set flags in EFLAGS register
5-18 Vol. 1

INSTRUCTION SET SUMMARY
5.5.1.4 SSE Logical Instructions
SSE logical instructions perform bitwise AND, AND NOT, OR, and XOR operations on
packed single-precision floating-point operands.
ANDPS Perform bitwise logical AND of packed single-precision floating-

point values
ANDNPS Perform bitwise logical AND NOT of packed single-precision

floating-point values
ORPS Perform bitwise logical OR of packed single-precision floating-

point values
XORPS Perform bitwise logical XOR of packed single-precision floating-

point values

5.5.1.5 SSE Shuffle and Unpack Instructions
SSE shuffle and unpack instructions shuffle or interleave single-precision floating-
point values in packed single-precision floating-point operands.
SHUFPS Shuffles values in packed single-precision floating-point

operands
UNPCKHPS Unpacks and interleaves the two high-order values from two

single-precision floating-point operands
UNPCKLPS Unpacks and interleaves the two low-order values from two

single-precision floating-point operands

5.5.1.6 SSE Conversion Instructions
SSE conversion instructions convert packed and individual doubleword integers into
packed and scalar single-precision floating-point values and vice versa.
CVTPI2PS Convert packed doubleword integers to packed single-precision

floating-point values
CVTSI2SS Convert doubleword integer to scalar single-precision floating-

point value
CVTPS2PI Convert packed single-precision floating-point values to packed

doubleword integers
CVTTPS2PI Convert with truncation packed single-precision floating-point

values to packed doubleword integers
CVTSS2SI Convert a scalar single-precision floating-point value to a

doubleword integer
CVTTSS2SI Convert with truncation a scalar single-precision floating-point

value to a scalar doubleword integer
Vol. 1 5-19

INSTRUCTION SET SUMMARY
5.5.2 SSE MXCSR State Management Instructions
MXCSR state management instructions allow saving and restoring the state of the
MXCSR control and status register.
LDMXCSR Load MXCSR register
STMXCSR Save MXCSR register state

5.5.3 SSE 64-Bit SIMD Integer Instructions
These SSE 64-bit SIMD integer instructions perform additional operations on packed
bytes, words, or doublewords contained in MMX registers. They represent enhance-
ments to the MMX instruction set described in Section 5.4, “MMX™ Instructions.”
PAVGB Compute average of packed unsigned byte integers
PAVGW Compute average of packed unsigned word integers
PEXTRW Extract word
PINSRW Insert word
PMAXUB Maximum of packed unsigned byte integers
PMAXSW Maximum of packed signed word integers
PMINUB Minimum of packed unsigned byte integers
PMINSW Minimum of packed signed word integers
PMOVMSKB Move byte mask
PMULHUW Multiply packed unsigned integers and store high result
PSADBW Compute sum of absolute differences
PSHUFW Shuffle packed integer word in MMX register

5.5.4 SSE Cacheability Control, Prefetch, and Instruction Ordering
Instructions

The cacheability control instructions provide control over the caching of non-
temporal data when storing data from the MMX and XMM registers to memory. The
PREFETCHh allows data to be prefetched to a selected cache level. The SFENCE
instruction controls instruction ordering on store operations.
MASKMOVQ Non-temporal store of selected bytes from an MMX register into

memory
MOVNTQ Non-temporal store of quadword from an MMX register into

memory
MOVNTPS Non-temporal store of four packed single-precision floating-

point values from an XMM register into memory
PREFETCHh Load 32 or more of bytes from memory to a selected level of the

processor’s cache hierarchy
5-20 Vol. 1

INSTRUCTION SET SUMMARY
SFENCE Serializes store operations

5.6 SSE2 INSTRUCTIONS
SSE2 extensions represent an extension of the SIMD execution model introduced
with MMX technology and the SSE extensions. SSE2 instructions operate on packed
double-precision floating-point operands and on packed byte, word, doubleword, and
quadword operands located in the XMM registers. For more detail on these instruc-
tions, see Chapter 11, “Programming with Streaming SIMD Extensions 2 (SSE2).”

SSE2 instructions can only be executed on Intel 64 and IA-32 processors that
support the SSE2 extensions. Support for these instructions can be detected with the
CPUID instruction. See the description of the CPUID instruction in Chapter 3,
“Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2A.

These instructions are divided into four subgroups (note that the first subgroup is
further divided into subordinate subgroups):
• Packed and scalar double-precision floating-point instructions
• Packed single-precision floating-point conversion instructions
• 128-bit SIMD integer instructions
• Cacheability-control and instruction ordering instructions

The following sections give an overview of each subgroup.

5.6.1 SSE2 Packed and Scalar Double-Precision Floating-Point
Instructions

SSE2 packed and scalar double-precision floating-point instructions are divided into
the following subordinate subgroups: data movement, arithmetic, comparison,
conversion, logical, and shuffle operations on double-precision floating-point oper-
ands. These are introduced in the sections that follow.

5.6.1.1 SSE2 Data Movement Instructions
SSE2 data movement instructions move double-precision floating-point data
between XMM registers and between XMM registers and memory.
MOVAPD Move two aligned packed double-precision floating-point values

between XMM registers or between and XMM register and
memory

MOVUPD Move two unaligned packed double-precision floating-point
values between XMM registers or between and XMM register and
memory
Vol. 1 5-21

INSTRUCTION SET SUMMARY
MOVHPD Move high packed double-precision floating-point value to an
from the high quadword of an XMM register and memory

MOVLPD Move low packed single-precision floating-point value to an from
the low quadword of an XMM register and memory

MOVMSKPD Extract sign mask from two packed double-precision floating-
point values

MOVSD Move scalar double-precision floating-point value between XMM
registers or between an XMM register and memory

5.6.1.2 SSE2 Packed Arithmetic Instructions
The arithmetic instructions perform addition, subtraction, multiply, divide, square
root, and maximum/minimum operations on packed and scalar double-precision
floating-point operands.
ADDPD Add packed double-precision floating-point values
ADDSD Add scalar double precision floating-point values
SUBPD Subtract scalar double-precision floating-point values
SUBSD Subtract scalar double-precision floating-point values
MULPD Multiply packed double-precision floating-point values
MULSD Multiply scalar double-precision floating-point values
DIVPD Divide packed double-precision floating-point values
DIVSD Divide scalar double-precision floating-point values
SQRTPD Compute packed square roots of packed double-precision

floating-point values
SQRTSD Compute scalar square root of scalar double-precision floating-

point values
MAXPD Return maximum packed double-precision floating-point values
MAXSD Return maximum scalar double-precision floating-point values
MINPD Return minimum packed double-precision floating-point values
MINSD Return minimum scalar double-precision floating-point values

5.6.1.3 SSE2 Logical Instructions
SSE2 logical instructions preform AND, AND NOT, OR, and XOR operations on packed
double-precision floating-point values.
ANDPD Perform bitwise logical AND of packed double-precision floating-

point values
ANDNPD Perform bitwise logical AND NOT of packed double-precision

floating-point values
ORPD Perform bitwise logical OR of packed double-precision floating-

point values
5-22 Vol. 1

INSTRUCTION SET SUMMARY
XORPD Perform bitwise logical XOR of packed double-precision floating-
point values

5.6.1.4 SSE2 Compare Instructions
SSE2 compare instructions compare packed and scalar double-precision floating-
point values and return the results of the comparison either to the destination
operand or to the EFLAGS register.
CMPPD Compare packed double-precision floating-point values
CMPSD Compare scalar double-precision floating-point values
COMISD Perform ordered comparison of scalar double-precision floating-

point values and set flags in EFLAGS register
UCOMISD Perform unordered comparison of scalar double-precision

floating-point values and set flags in EFLAGS register.

5.6.1.5 SSE2 Shuffle and Unpack Instructions
SSE2 shuffle and unpack instructions shuffle or interleave double-precision floating-
point values in packed double-precision floating-point operands.
SHUFPD Shuffles values in packed double-precision floating-point

operands
UNPCKHPD Unpacks and interleaves the high values from two packed

double-precision floating-point operands
UNPCKLPD Unpacks and interleaves the low values from two packed

double-precision floating-point operands

5.6.1.6 SSE2 Conversion Instructions
SSE2 conversion instructions convert packed and individual doubleword integers into
packed and scalar double-precision floating-point values and vice versa. They also
convert between packed and scalar single-precision and double-precision floating-
point values.
CVTPD2PI Convert packed double-precision floating-point values to packed

doubleword integers.
CVTTPD2PI Convert with truncation packed double-precision floating-point

values to packed doubleword integers
CVTPI2PD Convert packed doubleword integers to packed double-precision

floating-point values
CVTPD2DQ Convert packed double-precision floating-point values to packed

doubleword integers
CVTTPD2DQ Convert with truncation packed double-precision floating-point

values to packed doubleword integers
Vol. 1 5-23

INSTRUCTION SET SUMMARY
CVTDQ2PD Convert packed doubleword integers to packed double-precision
floating-point values

CVTPS2PD Convert packed single-precision floating-point values to packed
double-precision floating-point values

CVTPD2PS Convert packed double-precision floating-point values to packed
single-precision floating-point values

CVTSS2SD Convert scalar single-precision floating-point values to scalar
double-precision floating-point values

CVTSD2SS Convert scalar double-precision floating-point values to scalar
single-precision floating-point values

CVTSD2SI Convert scalar double-precision floating-point values to a
doubleword integer

CVTTSD2SI Convert with truncation scalar double-precision floating-point
values to scalar doubleword integers

CVTSI2SD Convert doubleword integer to scalar double-precision floating-
point value

5.6.2 SSE2 Packed Single-Precision Floating-Point Instructions
SSE2 packed single-precision floating-point instructions perform conversion opera-
tions on single-precision floating-point and integer operands. These instructions
represent enhancements to the SSE single-precision floating-point instructions.
CVTDQ2PS Convert packed doubleword integers to packed single-precision

floating-point values
CVTPS2DQ Convert packed single-precision floating-point values to packed

doubleword integers
CVTTPS2DQ Convert with truncation packed single-precision floating-point

values to packed doubleword integers

5.6.3 SSE2 128-Bit SIMD Integer Instructions
SSE2 SIMD integer instructions perform additional operations on packed words,
doublewords, and quadwords contained in XMM and MMX registers.
MOVDQA Move aligned double quadword.
MOVDQU Move unaligned double quadword
MOVQ2DQ Move quadword integer from MMX to XMM registers
MOVDQ2Q Move quadword integer from XMM to MMX registers
PMULUDQ Multiply packed unsigned doubleword integers
PADDQ Add packed quadword integers
PSUBQ Subtract packed quadword integers
PSHUFLW Shuffle packed low words
5-24 Vol. 1

INSTRUCTION SET SUMMARY
PSHUFHW Shuffle packed high words
PSHUFD Shuffle packed doublewords
PSLLDQ Shift double quadword left logical
PSRLDQ Shift double quadword right logical
PUNPCKHQDQ Unpack high quadwords
PUNPCKLQDQ Unpack low quadwords

5.6.4 SSE2 Cacheability Control and Ordering Instructions
SSE2 cacheability control instructions provide additional operations for caching of
non-temporal data when storing data from XMM registers to memory. LFENCE and
MFENCE provide additional control of instruction ordering on store operations.
CLFLUSH Flushes and invalidates a memory operand and its associated

cache line from all levels of the processor’s cache hierarchy
LFENCE Serializes load operations
MFENCE Serializes load and store operations
PAUSE Improves the performance of “spin-wait loops”
MASKMOVDQU Non-temporal store of selected bytes from an XMM register into

memory
MOVNTPD Non-temporal store of two packed double-precision floating-

point values from an XMM register into memory
MOVNTDQ Non-temporal store of double quadword from an XMM register

into memory
MOVNTI Non-temporal store of a doubleword from a general-purpose

register into memory

5.7 SSE3 INSTRUCTIONS
The SSE3 extensions offers 13 instructions that accelerate performance of Streaming
SIMD Extensions technology, Streaming SIMD Extensions 2 technology, and x87-FP
math capabilities. These instructions can be grouped into the following categories:
• One x87FPU instruction used in integer conversion
• One SIMD integer instruction that addresses unaligned data loads
• Two SIMD floating-point packed ADD/SUB instructions
• Four SIMD floating-point horizontal ADD/SUB instructions
• Three SIMD floating-point LOAD/MOVE/DUPLICATE instructions
• Two thread synchronization instructions

SSE3 instructions can only be executed on Intel 64 and IA-32 processors that
support SSE3 extensions. Support for these instructions can be detected with the
Vol. 1 5-25

INSTRUCTION SET SUMMARY
CPUID instruction. See the description of the CPUID instruction in Chapter 3,
“Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2A.

The sections that follow describe each subgroup.

5.7.1 SSE3 x87-FP Integer Conversion Instruction
FISTTP Behaves like the FISTP instruction but uses truncation, irrespec-

tive of the rounding mode specified in the floating-point control
word (FCW)

5.7.2 SSE3 Specialized 128-bit Unaligned Data Load Instruction
LDDQU Special 128-bit unaligned load designed to avoid cache line

splits

5.7.3 SSE3 SIMD Floating-Point Packed ADD/SUB Instructions
ADDSUBPS Performs single-precision addition on the second and fourth

pairs of 32-bit data elements within the operands; single-preci-
sion subtraction on the first and third pairs

ADDSUBPD Performs double-precision addition on the second pair of quad-
words, and double-precision subtraction on the first pair

5.7.4 SSE3 SIMD Floating-Point Horizontal ADD/SUB Instructions
HADDPS Performs a single-precision addition on contiguous data

elements. The first data element of the result is obtained by
adding the first and second elements of the first operand; the
second element by adding the third and fourth elements of the
first operand; the third by adding the first and second elements
of the second operand; and the fourth by adding the third and
fourth elements of the second operand.

HSUBPS Performs a single-precision subtraction on contiguous data
elements. The first data element of the result is obtained by
subtracting the second element of the first operand from the
first element of the first operand; the second element by
subtracting the fourth element of the first operand from the third
element of the first operand; the third by subtracting the second
element of the second operand from the first element of the
second operand; and the fourth by subtracting the fourth
element of the second operand from the third element of the
second operand.
5-26 Vol. 1

INSTRUCTION SET SUMMARY
HADDPD Performs a double-precision addition on contiguous data
elements. The first data element of the result is obtained by
adding the first and second elements of the first operand; the
second element by adding the first and second elements of the
second operand.

HSUBPD Performs a double-precision subtraction on contiguous data
elements. The first data element of the result is obtained by
subtracting the second element of the first operand from the
first element of the first operand; the second element by
subtracting the second element of the second operand from the
first element of the second operand.

5.7.5 SSE3 SIMD Floating-Point LOAD/MOVE/DUPLICATE
Instructions

MOVSHDUP Loads/moves 128 bits; duplicating the second and fourth 32-bit
data elements

MOVSLDUP Loads/moves 128 bits; duplicating the first and third 32-bit data
elements

MOVDDUP Loads/moves 64 bits (bits[63:0] if the source is a register) and
returns the same 64 bits in both the lower and upper halves of
the 128-bit result register; duplicates the 64 bits from the
source

5.7.6 SSE3 Agent Synchronization Instructions
MONITOR Sets up an address range used to monitor write-back stores
MWAIT Enables a logical processor to enter into an optimized state while

waiting for a write-back store to the address range set up by the
MONITOR instruction

5.8 SUPPLEMENTAL STREAMING SIMD EXTENSIONS 3
(SSSE3) INSTRUCTIONS

SSSE3 provide 32 instructions (represented by 14 mnemonics) to accelerate compu-
tations on packed integers. These include:
• Twelve instructions that perform horizontal addition or subtraction operations.
• Six instructions that evaluate absolute values.
• Two instructions that perform multiply and add operations and speed up the

evaluation of dot products.
Vol. 1 5-27

INSTRUCTION SET SUMMARY
• Two instructions that accelerate packed-integer multiply operations and produce
integer values with scaling.

• Two instructions that perform a byte-wise, in-place shuffle according to the
second shuffle control operand.

• Six instructions that negate packed integers in the destination operand if the
signs of the corresponding element in the source operand is less than zero.

• Two instructions that align data from the composite of two operands.

SSSE3 instructions can only be executed on Intel 64 and IA-32 processors that
support SSSE3 extensions. Support for these instructions can be detected with the
CPUID instruction. See the description of the CPUID instruction in Chapter 3,
“Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2A.

The sections that follow describe each subgroup.

5.8.1 Horizontal Addition/Subtraction
PHADDW Adds two adjacent, signed 16-bit integers horizontally from the

source and destination operands and packs the signed 16-bit
results to the destination operand.

PHADDSW Adds two adjacent, signed 16-bit integers horizontally from the
source and destination operands and packs the signed, satu-
rated 16-bit results to the destination operand.

PHADDD Adds two adjacent, signed 32-bit integers horizontally from the
source and destination operands and packs the signed 32-bit
results to the destination operand.

PHSUBW Performs horizontal subtraction on each adjacent pair of 16-bit
signed integers by subtracting the most significant word from
the least significant word of each pair in the source and destina-
tion operands. The signed 16-bit results are packed and written
to the destination operand.

PHSUBSW Performs horizontal subtraction on each adjacent pair of 16-bit
signed integers by subtracting the most significant word from
the least significant word of each pair in the source and destina-
tion operands. The signed, saturated 16-bit results are packed
and written to the destination operand.

PHSUBD Performs horizontal subtraction on each adjacent pair of 32-bit
signed integers by subtracting the most significant doubleword
from the least significant double word of each pair in the source
and destination operands. The signed 32-bit results are packed
and written to the destination operand.
5-28 Vol. 1

INSTRUCTION SET SUMMARY
5.8.2 Packed Absolute Values
PABSB Computes the absolute value of each signed byte data element.
PABSW Computes the absolute value of each signed 16-bit data

element.
PABSD Computes the absolute value of each signed 32-bit data

element.

5.8.3 Multiply and Add Packed Signed and Unsigned Bytes
PMADDUBSW Multiplies each unsigned byte value with the corresponding

signed byte value to produce an intermediate, 16-bit signed
integer. Each adjacent pair of 16-bit signed values are added
horizontally. The signed, saturated 16-bit results are packed to
the destination operand.

5.8.4 Packed Multiply High with Round and Scale
PMULHRSW Multiplies vertically each signed 16-bit integer from the destina-

tion operand with the corresponding signed 16-bit integer of the
source operand, producing intermediate, signed 32-bit integers.
Each intermediate 32-bit integer is truncated to the 18 most
significant bits. Rounding is always performed by adding 1 to the
least significant bit of the 18-bit intermediate result. The final
result is obtained by selecting the 16 bits immediately to the
right of the most significant bit of each 18-bit intermediate
result and packed to the destination operand.

5.8.5 Packed Shuffle Bytes
PSHUFB Permutes each byte in place, according to a shuffle control

mask. The least significant three or four bits of each shuffle
control byte of the control mask form the shuffle index. The
shuffle mask is unaffected. If the most significant bit (bit 7) of a
shuffle control byte is set, the constant zero is written in the
result byte.

5.8.6 Packed Sign
PSIGNB/W/D Negates each signed integer element of the destination operand

if the sign of the corresponding data element in the source
operand is less than zero.
Vol. 1 5-29

INSTRUCTION SET SUMMARY
5.8.7 Packed Align Right
PALIGNR Source operand is appended after the destination operand

forming an intermediate value of twice the width of an operand.
The result is extracted from the intermediate value into the
destination operand by selecting the 128 bit or 64 bit value that
are right-aligned to the byte offset specified by the immediate
value.

5.9 SSE4 INSTRUCTIONS
Intel® Streaming SIMD Extensions 4 (SSE4) introduces 54 new instructions. 47 of
the SSE4 instructions are referred to as SSE4.1 in this document, 7 new SSE4
instructions are referred to as SSE4.2.

SSE4.1 is targeted to improve the performance of media, imaging, and 3D work-
loads. SSE4.1 adds instructions that improve compiler vectorization and significantly
increase support for packed dword computation. The technology also provides a hint
that can improve memory throughput when reading from uncacheable WC memory
type.

The 47 SSE4.1 instructions include:
• Two instructions perform packed dword multiplies.
• Two instructions perform floating-point dot products with input/output selects.
• One instruction performs a load with a streaming hint.
• Six instructions simplify packed blending.
• Eight instructions expand support for packed integer MIN/MAX.
• Four instructions support floating-point round with selectable rounding mode and

precision exception override.
• Seven instructions improve data insertion and extractions from XMM registers
• Twelve instructions improve packed integer format conversions (sign and zero

extensions).
• One instruction improves SAD (sum absolute difference) generation for small

block sizes.
• One instruction aids horizontal searching operations.
• One instruction improves masked comparisons.
• One instruction adds qword packed equality comparisons.
• One instruction adds dword packing with unsigned saturation.

The seven SSE4.2 instructions include:
• String and text processing that can take advantage of single-instruction multiple-

data programming techniques.
5-30 Vol. 1

INSTRUCTION SET SUMMARY
• Application-targeted accelerator (ATA) instructions.
• A SIMD integer instruction that enhances the capability of the 128-bit integer

SIMD capability in SSE4.1.

5.10 SSE4.1 INSTRUCTIONS
SSE4.1 instructions can use an XMM register as a source or destination. Program-
ming SSE4.1 is similar to programming 128-bit Integer SIMD and floating-point
SIMD instructions in SSE/SSE2/SSE3/SSSE3. SSE4.1 does not provide any 64-bit
integer SIMD instructions operating on MMX registers. The sections that follow
describe each subgroup.

5.10.1 Dword Multiply Instructions
PMULLD Returns four lower 32-bits of the 64-bit results of signed 32-bit

integer multiplies.
PMULDQ Returns two 64-bit signed result of signed 32-bit integer multi-

plies.

5.10.2 Floating-Point Dot Product Instructions
DPPD Perform double-precision dot product for up to 2 elements and

broadcast.
DPPS Perform single-precision dot products for up to 4 elements and

broadcast

5.10.3 Streaming Load Hint Instruction
MOVNTDQA Provides a non-temporal hint that can cause adjacent 16-byte

items within an aligned 64-byte region (a streaming line) to be
fetched and held in a small set of temporary buffers (“streaming
load buffers”). Subsequent streaming loads to other aligned 16-
byte items in the same streaming line may be supplied from the
streaming load buffer and can improve throughput.

5.10.4 Packed Blending Instructions
BLENDPD Conditionally copies specified double-precision floating-point

data elements in the source operand to the corresponding data
elements in the destination, using an immediate byte control.
Vol. 1 5-31

INSTRUCTION SET SUMMARY
BLENDPS Conditionally copies specified single-precision floating-point
data elements in the source operand to the corresponding data
elements in the destination, using an immediate byte control.

BLENDVPD Conditionally copies specified double-precision floating-point
data elements in the source operand to the corresponding data
elements in the destination, using an implied mask.

BLENDVPS Conditionally copies specified single-precision floating-point
data elements in the source operand to the corresponding data
elements in the destination, using an implied mask.

PBLENDVB Conditionally copies specified byte elements in the source
operand to the corresponding elements in the destination, using
an implied mask.

PBLENDW Conditionally copies specified word elements in the source
operand to the corresponding elements in the destination, using
an immediate byte control.

5.10.5 Packed Integer MIN/MAX Instructions
PMINUW Compare packed unsigned word integers.
PMINUD Compare packed unsigned dword integers.
PMINSB Compare packed signed byte integers.
PMINSD Compare packed signed dword integers.
PMAXUW Compare packed unsigned word integers.
PMAXUD Compare packed unsigned dword integers.
PMAXSB Compare packed signed byte integers.
PMAXSD Compare packed signed dword integers.

5.10.6 Floating-Point Round Instructions with Selectable Rounding
Mode

ROUNDPS Round packed single precision floating-point values into integer
values and return rounded floating-point values.

ROUNDPD Round packed double precision floating-point values into integer
values and return rounded floating-point values.

ROUNDSS Round the low packed single precision floating-point value into
an integer value and return a rounded floating-point value.

ROUNDSD Round the low packed double precision floating-point value into
an integer value and return a rounded floating-point value.
5-32 Vol. 1

INSTRUCTION SET SUMMARY
5.10.7 Insertion and Extractions from XMM Registers
EXTRACTPS Extracts a single-precision floating-point value from a specified

offset in an XMM register and stores the result to memory or a
general-purpose register

INSERTPS Inserts a single-precision floating-point value from either a 32-
bit memory location or selected from a specified offset in an
XMM register to a specified offset in the destination XMM
register. In addition, INSERTPS allows zeroing out selected data
elements in the destination, using a mask.

PINSRB Insert a byte value from a register or memory into an XMM
register

PINSRD Insert a dword value from 32-bit register or memory into an
XMM register

PINSRQ Insert a qword value from 64-bit register or memory into an
XMM register

PEXTRB Extract a byte from an XMM register and insert the value into a
general-purpose register or memory

PEXTRW Extract a word from an XMM register and insert the value into a
general-purpose register or memory

PEXTRD Extract a dword from an XMM register and insert the value into a
general-purpose register or memory

PEXTRQ Extract a qword from an XMM register and insert the value into a
general-purpose register or memory

5.10.8 Packed Integer Format Conversions
PMOVSXBW Sign extend the lower 8-bit integer of each packed word

element into packed signed word integers.
PMOVZXBW Zero extend the lower 8-bit integer of each packed word

element into packed signed word integers.
PMOVSXBD Sign extend the lower 8-bit integer of each packed dword

element into packed signed dword integers.
PMOVZXBD Zero extend the lower 8-bit integer of each packed dword

element into packed signed dword integers.
PMOVSXWD Sign extend the lower 16-bit integer of each packed dword

element into packed signed dword integers.
PMOVZXWD Zero extend the lower 16-bit integer of each packed dword

element into packed signed dword integers..

PMOVSXBQ Sign extend the lower 8-bit integer of each packed qword
element into packed signed qword integers.

PMOVZXBQ Zero extend the lower 8-bit integer of each packed qword
element into packed signed qword integers.
Vol. 1 5-33

INSTRUCTION SET SUMMARY
PMOVSXWQ Sign extend the lower 16-bit integer of each packed qword
element into packed signed qword integers.

PMOVZXWQ Zero extend the lower 16-bit integer of each packed qword
element into packed signed qword integers.

PMOVSXDQ Sign extend the lower 32-bit integer of each packed qword
element into packed signed qword integers.

PMOVZXDQ Zero extend the lower 32-bit integer of each packed qword
element into packed signed qword integers.

5.10.9 Improved Sums of Absolute Differences (SAD) for 4-Byte
Blocks

MPSADBW Performs eight 4-byte wide Sum of Absolute Differences opera-
tions to produce eight word integers.

5.10.10 Horizontal Search
PHMINPOSUW Finds the value and location of the minimum unsigned word

from one of 8 horizontally packed unsigned words. The resulting
value and location (offset within the source) are packed into the
low dword of the destination XMM register.

5.10.11 Packed Test
PTEST Performs a logical AND between the destination with this mask

and sets the ZF flag if the result is zero. The CF flag (zero for
TEST) is set if the inverted mask AND’d with the destination is all
zero

5.10.12 Packed Qword Equality Comparisons
PCMPEQQ 128-bit packed qword equality test

5.10.13 Dword Packing With Unsigned Saturation
PACKUSDW PACKUSDW packs dword to word with unsigned saturation

5.11 SSE4.2 INSTRUCTION SET
Five of the seven SSE4.2 instructions can use an XMM register as a source or desti-
nation. These include four text/string processing instructions and one packed quad-
5-34 Vol. 1

INSTRUCTION SET SUMMARY
word compare SIMD instruction. Programming these five SSE4.2 instructions is
similar to programming 128-bit Integer SIMD in SSE2/SSSE3. SSE4.2 does not
provide any 64-bit integer SIMD instructions.
The remaining two SSE4.2 instructions uses general-purpose registers to perform
accelerated processing functions in specific application areas.

The sections that follow describe each subgroup.

5.11.1 String and Text Processing Instructions
PCMPESTRI Packed compare explicit-length strings, return index in ECX/RCX
PCMPESTRM Packed compare explicit-length strings, return mask in XMM0
PCMPISTRI Packed compare implicit-length strings, return index in ECX/RCX
PCMPISTRM Packed compare implicit-length strings, return mask in XMM0

5.11.2 Packed Comparison SIMD integer Instruction
PCMPGTQ Performs logical compare of greater-than on packed integer

quadwords.

5.11.3 Application-Targeted Accelerator Instructions
CRC32 Provides hardware acceleration to calculate cyclic redundancy

checks for fast and efficient implementation of data integrity
protocols.

POPCNT This instruction calculates of number of bits set to 1 in the
second operand (source) and returns the count in the first
operand (a destination register)

5.12 AESNI AND PCLMULQDQ
Six AESNI instructions operate on XMM registers to provide accelerated primitives for
block encryption/decryption using Advanced Encryption Standard (FIPS-197).
PCLMULQDQ instruction perform carry-less multiplication for two binary numbers up
to 64-bit wide.
AESDEC Perform an AES decryption round using an 128-bit state and a

round key
AESDECLAST Perform the last AES decryption round using an 128-bit state

and a round key
AESENC Perform an AES encryption round using an 128-bit state and a

round key
Vol. 1 5-35

INSTRUCTION SET SUMMARY
AESENCLAST Perform the last AES encryption round using an 128-bit state
and a round key

AESIMC Perform an inverse mix column transformation primitive
AESKEYGENASSIST Assist the creation of round keys with a key expansion schedule
PCLMULQDQ Perform carryless multiplication of two 64-bit numbers

5.13 INTEL® ADVANCED VECTOR EXTENSIONS (AVX)
Intel® Advanced Vector Extensions (AVX) promotes legacy 128-bit SIMD instruction
sets that operate on XMM register set to use a “vector extension“ (VEX) prefix and
operates on 256-bit vector registers (YMM). Almost all prior generations of 128-bit
SIMD instructions that operates on XMM (but not on MMX registers) are promoted to
support three-operand syntax with VEX-128 encoding.

VEX-prefix encoded AVX instructions support 256-bit and 128-bit floating-point oper-
ations by extending the legacy 128-bit SIMD floating-point instructions to support
three-operand syntax.

Additional functional enhancements are also provided with VEX-encoded AVX
instructions.
The list of AVX instructions are listed in the following tables:
• Table 13-2 lists 256-bit and 128-bit floating-point arithmetic instructions

promoted from legacy 128-bit SIMD instruction sets.
• Table 13-3 lists 256-bit and 128-bit data movement and processing instructions

promoted from legacy 128-bit SIMD instruction sets.
• Table 13-4 lists functional enhancements of 256-bit AVX instructions not

available from legacy 128-bit SIMD instruction sets.
• Table 13-5 lists 128-bit integer and floating-point instructions promoted from

legacy 128-bit SIMD instruction sets.
• Table 13-6 lists functional enhancements of 128-bit AVX instructions not

available from legacy 128-bit SIMD instruction sets.
• Table 13-7 lists 128-bit data movement and processing instructions promoted

from legacy instruction sets.

5.14 16-BIT FLOATING-POINT CONVERSION
Conversion between single-precision floating-point (32-bit) and half-precision FP
(16-bit) data are provided by VCVTPS2PH, VCVTPH2PS:
VCVTPH2PS Convert eight/four data element containing 16-bit floating-point

data into eight/four single-precision floating-point data.
VCVTPS2PH Convert eight/four data element containing single-precision

floating-point data into eight/four 16-bit floating-point data.
5-36 Vol. 1

INSTRUCTION SET SUMMARY
5.15 SYSTEM INSTRUCTIONS
The following system instructions are used to control those functions of the processor
that are provided to support for operating systems and executives.
LGDT Load global descriptor table (GDT) register
SGDT Store global descriptor table (GDT) register
LLDT Load local descriptor table (LDT) register
SLDT Store local descriptor table (LDT) register
LTR Load task register
STR Store task register
LIDT Load interrupt descriptor table (IDT) register
SIDT Store interrupt descriptor table (IDT) register
MOV Load and store control registers
LMSW Load machine status word
SMSW Store machine status word
CLTS Clear the task-switched flag
ARPL Adjust requested privilege level
LAR Load access rights
LSL Load segment limit
VERR Verify segment for reading
VERW Verify segment for writing
MOV Load and store debug registers
INVD Invalidate cache, no writeback
WBINVD Invalidate cache, with writeback
INVLPG Invalidate TLB Entry
INVPCID Invalidate Process-Context Identifier
LOCK (prefix) Lock Bus
HLT Halt processor
RSM Return from system management mode (SMM)
RDMSR Read model-specific register
WRMSR Write model-specific register
RDPMC Read performance monitoring counters
RDTSC Read time stamp counter
RDTSCP Read time stamp counter and processor ID
SYSENTER Fast System Call, transfers to a flat protected mode kernel at

CPL = 0
SYSEXIT Fast System Call, transfers to a flat protected mode kernel at

CPL = 3
Vol. 1 5-37

INSTRUCTION SET SUMMARY
XSAVE Save processor extended states to memory
XSAVEOPT Save processor extended states to memory, optimized
XRSTOR Restore processor extended states from memory
XGETBV Reads the state of an extended control register
XSETBV Writes the state of an extended control register
RDFSBASE Reads from FS base address at any privilege level
RDGSBASE Reads from GS base address at any privilege level
WRFSBASE Writes to FS base address at any privilege level
WRGSBASE Writes to GS base address at any privilege level

5.16 64-BIT MODE INSTRUCTIONS
The following instructions are introduced in 64-bit mode. This mode is a sub-mode of
IA-32e mode.
CDQE Convert doubleword to quadword
CMPSQ Compare string operands
CMPXCHG16B Compare RDX:RAX with m128
LODSQ Load qword at address (R)SI into RAX
MOVSQ Move qword from address (R)SI to (R)DI
MOVZX (64-bits) Move doubleword to quadword, zero-extension
STOSQ Store RAX at address RDI
SWAPGS Exchanges current GS base register value with value in MSR

address C0000102H
SYSCALL Fast call to privilege level 0 system procedures
SYSRET Return from fast system call

5.17 VIRTUAL-MACHINE EXTENSIONS
The behavior of the VMCS-maintenance instructions is summarized below:
VMPTRLD Takes a single 64-bit source operand in memory. It makes the

referenced VMCS active and current.
VMPTRST Takes a single 64-bit destination operand that is in memory.

Current-VMCS pointer is stored into the destination operand.
VMCLEAR Takes a single 64-bit operand in memory. The instruction sets

the launch state of the VMCS referenced by the operand to
“clear”, renders that VMCS inactive, and ensures that data for
the VMCS have been written to the VMCS-data area in the refer-
enced VMCS region.
5-38 Vol. 1

INSTRUCTION SET SUMMARY
VMREAD Reads a component from the VMCS (the encoding of that field is
given in a register operand) and stores it into a destination
operand.

VMWRITE Writes a component to the VMCS (the encoding of that field is
given in a register operand) from a source operand.

The behavior of the VMX management instructions is summarized below:
VMLAUNCH Launches a virtual machine managed by the VMCS. A VM entry

occurs, transferring control to the VM.
VMRESUME Resumes a virtual machine managed by the VMCS. A VM entry

occurs, transferring control to the VM.
VMXOFF Causes the processor to leave VMX operation.
VMXON Takes a single 64-bit source operand in memory. It causes a

logical processor to enter VMX root operation and to use the
memory referenced by the operand to support VMX operation.

The behavior of the VMX-specific TLB-management instructions is summarized
below:
INVEPT Invalidate cached Extended Page Table (EPT) mappings in the

processor to synchronize address translation in virtual machines
with memory-resident EPT pages.

INVVPID Invalidate cached mappings of address translation based on the
Virtual Processor ID (VPID).

None of the instructions above can be executed in compatibility mode; they generate
invalid-opcode exceptions if executed in compatibility mode.

The behavior of the guest-available instructions is summarized below:
VMCALL Allows a guest in VMX non-root operation to call the VMM for

service. A VM exit occurs, transferring control to the VMM.
VMFUNC This instruction allows software in VMX non-root operation to

invoke a VM function, which is processor functionality enabled
and configured by software in VMX root operation. No VM exit
occurs.

5.18 SAFER MODE EXTENSIONS
The behavior of the GETSEC instruction leaves of the Safer Mode Extensions (SMX)
are summarized below:
GETSEC[CAPABILITIES]Returns the available leaf functions of the GETSEC instruc-

tion.
GETSEC[ENTERACCS] Loads an authenticated code chipset module and enters

authenticated code execution mode.
GETSEC[EXITAC] Exits authenticated code execution mode.
Vol. 1 5-39

INSTRUCTION SET SUMMARY
GETSEC[SENTER] Establishes a Measured Launched Environment (MLE) which has
its dynamic root of trust anchored to a chipset supporting Intel
Trusted Execution Technology.

GETSEC[SEXIT] Exits the MLE.
GETSEC[PARAMETERS]Returns SMX related parameter information.
GETSEC[SMCRTL] SMX mode control.
GETSEC[WAKEUP] Wakes up sleeping logical processors inside an MLE.
5-40 Vol. 1

CHAPTER 6
PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

This chapter describes the facilities in the Intel 64 and IA-32 architectures for
executing calls to procedures or subroutines. It also describes how interrupts and
exceptions are handled from the perspective of an application programmer.

6.1 PROCEDURE CALL TYPES
The processor supports procedure calls in the following two different ways:
• CALL and RET instructions.
• ENTER and LEAVE instructions, in conjunction with the CALL and RET

instructions.

Both of these procedure call mechanisms use the procedure stack, commonly
referred to simply as “the stack,” to save the state of the calling procedure, pass
parameters to the called procedure, and store local variables for the currently
executing procedure.

The processor’s facilities for handling interrupts and exceptions are similar to those
used by the CALL and RET instructions.

6.2 STACKS
The stack (see Figure 6-1) is a contiguous array of memory locations. It is contained
in a segment and identified by the segment selector in the SS register. When using
the flat memory model, the stack can be located anywhere in the linear address
space for the program. A stack can be up to 4 GBytes long, the maximum size of a
segment.

Items are placed on the stack using the PUSH instruction and removed from the
stack using the POP instruction. When an item is pushed onto the stack, the
processor decrements the ESP register, then writes the item at the new top of stack.
When an item is popped off the stack, the processor reads the item from the top of
stack, then increments the ESP register. In this manner, the stack grows down in
memory (towards lesser addresses) when items are pushed on the stack and shrinks
up (towards greater addresses) when the items are popped from the stack.

A program or operating system/executive can set up many stacks. For example, in
multitasking systems, each task can be given its own stack. The number of stacks in
a system is limited by the maximum number of segments and the available physical
memory.
Vol. 1 6-1

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS
When a system sets up many stacks, only one stack—the current stack—is avail-
able at a time. The current stack is the one contained in the segment referenced by
the SS register.

The processor references the SS register automatically for all stack operations. For
example, when the ESP register is used as a memory address, it automatically points
to an address in the current stack. Also, the CALL, RET, PUSH, POP, ENTER, and
LEAVE instructions all perform operations on the current stack.

6.2.1 Setting Up a Stack
To set a stack and establish it as the current stack, the program or operating
system/executive must do the following:

1. Establish a stack segment.

2. Load the segment selector for the stack segment into the SS register using a
MOV, POP, or LSS instruction.

Figure 6-1. Stack Structure

Bottom of Stack
(Initial ESP Value)

Local Variables
for Calling
Procedure

Parameters
Passed to

Called
Procedure

Frame Boundary
EBP Register

ESP Register

Return Instruction

Top of Stack

Stack Segment

Pushes Move the
Top Of Stack to
Lower Addresses

Pops Move the
Top Of Stack to
Higher Addresses

The EBP register is

The Stack Can Be
16 or 32 Bits Wide

typically set to point
to the return
instruction pointer.

Pointer
6-2 Vol. 1

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS
3. Load the stack pointer for the stack into the ESP register using a MOV, POP, or
LSS instruction. The LSS instruction can be used to load the SS and ESP registers
in one operation.

See “Segment Descriptors” in of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3A, for information on how to set up a segment
descriptor and segment limits for a stack segment.

6.2.2 Stack Alignment
The stack pointer for a stack segment should be aligned on 16-bit (word) or 32-bit
(double-word) boundaries, depending on the width of the stack segment. The D flag
in the segment descriptor for the current code segment sets the stack-segment width
(see “Segment Descriptors” in Chapter 3, “Protected-Mode Memory Management,” of
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A).
The PUSH and POP instructions use the D flag to determine how much to decrement
or increment the stack pointer on a push or pop operation, respectively. When the
stack width is 16 bits, the stack pointer is incremented or decremented in 16-bit
increments; when the width is 32 bits, the stack pointer is incremented or decre-
mented in 32-bit increments. Pushing a 16-bit value onto a 32-bit wide stack can
result in stack misaligned (that is, the stack pointer is not aligned on a doubleword
boundary). One exception to this rule is when the contents of a segment register (a
16-bit segment selector) are pushed onto a 32-bit wide stack. Here, the processor
automatically aligns the stack pointer to the next 32-bit boundary.

The processor does not check stack pointer alignment. It is the responsibility of the
programs, tasks, and system procedures running on the processor to maintain
proper alignment of stack pointers. Misaligning a stack pointer can cause serious
performance degradation and in some instances program failures.

6.2.3 Address-Size Attributes for Stack Accesses
Instructions that use the stack implicitly (such as the PUSH and POP instructions)
have two address-size attributes each of either 16 or 32 bits. This is because they
always have the implicit address of the top of the stack, and they may also have an
explicit memory address (for example, PUSH Array1[EBX]). The attribute of the
explicit address is determined by the D flag of the current code segment and the
presence or absence of the 67H address-size prefix.

The address-size attribute of the top of the stack determines whether SP or ESP is
used for the stack access. Stack operations with an address-size attribute of 16 use
the 16-bit SP stack pointer register and can use a maximum stack address of FFFFH;
stack operations with an address-size attribute of 32 bits use the 32-bit ESP register
and can use a maximum address of FFFFFFFFH. The default address-size attribute for
data segments used as stacks is controlled by the B flag of the segment’s descriptor.
When this flag is clear, the default address-size attribute is 16; when the flag is set,
the address-size attribute is 32.
Vol. 1 6-3

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS
6.2.4 Procedure Linking Information
The processor provides two pointers for linking of procedures: the stack-frame base
pointer and the return instruction pointer. When used in conjunction with a standard
software procedure-call technique, these pointers permit reliable and coherent
linking of procedures.

6.2.4.1 Stack-Frame Base Pointer
The stack is typically divided into frames. Each stack frame can then contain local
variables, parameters to be passed to another procedure, and procedure linking
information. The stack-frame base pointer (contained in the EBP register) identifies a
fixed reference point within the stack frame for the called procedure. To use the
stack-frame base pointer, the called procedure typically copies the contents of the
ESP register into the EBP register prior to pushing any local variables on the stack.
The stack-frame base pointer then permits easy access to data structures passed on
the stack, to the return instruction pointer, and to local variables added to the stack
by the called procedure.

Like the ESP register, the EBP register automatically points to an address in the
current stack segment (that is, the segment specified by the current contents of the
SS register).

6.2.4.2 Return Instruction Pointer
Prior to branching to the first instruction of the called procedure, the CALL instruction
pushes the address in the EIP register onto the current stack. This address is then
called the return-instruction pointer and it points to the instruction where execution
of the calling procedure should resume following a return from the called procedure.
Upon returning from a called procedure, the RET instruction pops the return-instruc-
tion pointer from the stack back into the EIP register. Execution of the calling proce-
dure then resumes.

The processor does not keep track of the location of the return-instruction pointer. It
is thus up to the programmer to insure that stack pointer is pointing to the return-
instruction pointer on the stack, prior to issuing a RET instruction. A common way to
reset the stack pointer to the point to the return-instruction pointer is to move the
contents of the EBP register into the ESP register. If the EBP register is loaded with
the stack pointer immediately following a procedure call, it should point to the return
instruction pointer on the stack.

The processor does not require that the return instruction pointer point back to the
calling procedure. Prior to executing the RET instruction, the return instruction
pointer can be manipulated in software to point to any address in the current code
segment (near return) or another code segment (far return). Performing such an
operation, however, should be undertaken very cautiously, using only well defined
code entry points.
6-4 Vol. 1

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS
6.2.5 Stack Behavior in 64-Bit Mode
In 64-bit mode, address calculations that reference SS segments are treated as if the
segment base is zero. Fields (base, limit, and attribute) in segment descriptor regis-
ters are ignored. SS DPL is modified such that it is always equal to CPL. This will be
true even if it is the only field in the SS descriptor that is modified.

Registers E(SP), E(IP) and E(BP) are promoted to 64-bits and are re-named RSP, RIP,
and RBP respectively. Some forms of segment load instructions are invalid (for
example, LDS, POP ES).

PUSH/POP instructions increment/decrement the stack using a 64-bit width. When
the contents of a segment register is pushed onto 64-bit stack, the pointer is auto-
matically aligned to 64 bits (as with a stack that has a 32-bit width).

6.3 CALLING PROCEDURES USING CALL AND RET
The CALL instruction allows control transfers to procedures within the current code
segment (near call) and in a different code segment (far call). Near calls usually
provide access to local procedures within the currently running program or task. Far
calls are usually used to access operating system procedures or procedures in a
different task. See “CALL—Call Procedure” in Chapter 3, “Instruction Set Reference,
A-L,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
2A, for a detailed description of the CALL instruction.

The RET instruction also allows near and far returns to match the near and far
versions of the CALL instruction. In addition, the RET instruction allows a program to
increment the stack pointer on a return to release parameters from the stack. The
number of bytes released from the stack is determined by an optional argument (n)
to the RET instruction. See “RET—Return from Procedure” in Chapter 4, “Instruction
Set Reference, M-Z,” of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2B, for a detailed description of the RET instruction.

6.3.1 Near CALL and RET Operation
When executing a near call, the processor does the following (see Figure 6-2):
1. Pushes the current value of the EIP register on the stack.
2. Loads the offset of the called procedure in the EIP register.
3. Begins execution of the called procedure.

When executing a near return, the processor performs these actions:
1. Pops the top-of-stack value (the return instruction pointer) into the EIP register.
2. If the RET instruction has an optional n argument, increments the stack pointer

by the number of bytes specified with the n operand to release parameters from
the stack.

3. Resumes execution of the calling procedure.
Vol. 1 6-5

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS
6.3.2 Far CALL and RET Operation
When executing a far call, the processor performs these actions (see Figure 6-2):

1. Pushes the current value of the CS register on the stack.

2. Pushes the current value of the EIP register on the stack.

3. Loads the segment selector of the segment that contains the called procedure in
the CS register.

4. Loads the offset of the called procedure in the EIP register.

5. Begins execution of the called procedure.

When executing a far return, the processor does the following:

1. Pops the top-of-stack value (the return instruction pointer) into the EIP register.

2. Pops the top-of-stack value (the segment selector for the code segment being
returned to) into the CS register.

3. If the RET instruction has an optional n argument, increments the stack pointer
by the number of bytes specified with the n operand to release parameters from
the stack.

4. Resumes execution of the calling procedure.
6-6 Vol. 1

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS
6.3.3 Parameter Passing
Parameters can be passed between procedures in any of three ways: through
general-purpose registers, in an argument list, or on the stack.

6.3.3.1 Passing Parameters Through the General-Purpose Registers
The processor does not save the state of the general-purpose registers on procedure
calls. A calling procedure can thus pass up to six parameters to the called procedure
by copying the parameters into any of these registers (except the ESP and EBP regis-
ters) prior to executing the CALL instruction. The called procedure can likewise pass
parameters back to the calling procedure through general-purpose registers.

6.3.3.2 Passing Parameters on the Stack
To pass a large number of parameters to the called procedure, the parameters can be
placed on the stack, in the stack frame for the calling procedure. Here, it is useful to

Figure 6-2. Stack on Near and Far Calls

Param 1
Param 2

ESP Before Call

Stack During
Near Call

Stack During
Far Call

Calling CS

Param 1
Param 2

Calling EIP

Param 3 Param 3

ESP After Return

Calling CS

Param 1
Param 2

Calling EIP

Param 3

Param 1
Param 2
Param 3

Note: On a near or far return, parameters are

Calling EIP ESP After Call

Stack During
Near Return

Calling EIP

released from the stack based on the
optional n operand in the RET n instruction.

ESP Before Return

ESP Before Call

ESP After Call

ESP Before Return

ESP After Return

Stack During
Far Return

Stack
Frame
Before
Call

Stack
Frame
Before
Call

Stack
Frame
After
Call

Stack
Frame
After
Call
Vol. 1 6-7

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS
use the stack-frame base pointer (in the EBP register) to make a frame boundary for
easy access to the parameters.

The stack can also be used to pass parameters back from the called procedure to the
calling procedure.

6.3.3.3 Passing Parameters in an Argument List
An alternate method of passing a larger number of parameters (or a data structure)
to the called procedure is to place the parameters in an argument list in one of the
data segments in memory. A pointer to the argument list can then be passed to the
called procedure through a general-purpose register or the stack. Parameters can
also be passed back to the calling procedure in this same manner.

6.3.4 Saving Procedure State Information
The processor does not save the contents of the general-purpose registers, segment
registers, or the EFLAGS register on a procedure call. A calling procedure should
explicitly save the values in any of the general-purpose registers that it will need
when it resumes execution after a return. These values can be saved on the stack or
in memory in one of the data segments.

The PUSHA and POPA instructions facilitate saving and restoring the contents of the
general-purpose registers. PUSHA pushes the values in all the general-purpose
registers on the stack in the following order: EAX, ECX, EDX, EBX, ESP (the value
prior to executing the PUSHA instruction), EBP, ESI, and EDI. The POPA instruction
pops all the register values saved with a PUSHA instruction (except the ESP value)
from the stack to their respective registers.

If a called procedure changes the state of any of the segment registers explicitly, it
should restore them to their former values before executing a return to the calling
procedure.

If a calling procedure needs to maintain the state of the EFLAGS register, it can save
and restore all or part of the register using the PUSHF/PUSHFD and POPF/POPFD
instructions. The PUSHF instruction pushes the lower word of the EFLAGS register on
the stack, while the PUSHFD instruction pushes the entire register. The POPF instruc-
tion pops a word from the stack into the lower word of the EFLAGS register, while the
POPFD instruction pops a double word from the stack into the register.

6.3.5 Calls to Other Privilege Levels
The IA-32 architecture’s protection mechanism recognizes four privilege levels,
numbered from 0 to 3, where a greater number mean less privilege. The reason to
use privilege levels is to improve the reliability of operating systems. For example,
Figure 6-3 shows how privilege levels can be interpreted as rings of protection.
6-8 Vol. 1

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS
In this example, the highest privilege level 0 (at the center of the diagram) is used for
segments that contain the most critical code modules in the system, usually the
kernel of an operating system. The outer rings (with progressively lower privileges)
are used for segments that contain code modules for less critical software.

Code modules in lower privilege segments can only access modules operating at
higher privilege segments by means of a tightly controlled and protected interface
called a gate. Attempts to access higher privilege segments without going through a
protection gate and without having sufficient access rights causes a general-protec-
tion exception (#GP) to be generated.

If an operating system or executive uses this multilevel protection mechanism, a call
to a procedure that is in a more privileged protection level than the calling procedure
is handled in a similar manner as a far call (see Section 6.3.2, “Far CALL and RET
Operation”). The differences are as follows:
• The segment selector provided in the CALL instruction references a special data

structure called a call gate descriptor. Among other things, the call gate
descriptor provides the following:

— access rights information

— the segment selector for the code segment of the called procedure

— an offset into the code segment (that is, the instruction pointer for the called
procedure)

Figure 6-3. Protection Rings

Level 0

Level 1

Level 2

Level 3

Protection Rings

Operating

Operating System
Services (Device

Drivers, Etc.)

Applications

0 1 2 3
Highest Lowest

Privilege Levels

System
Kernel
Vol. 1 6-9

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS
• The processor switches to a new stack to execute the called procedure. Each
privilege level has its own stack. The segment selector and stack pointer for the
privilege level 3 stack are stored in the SS and ESP registers, respectively, and
are automatically saved when a call to a more privileged level occurs. The
segment selectors and stack pointers for the privilege level 2, 1, and 0 stacks are
stored in a system segment called the task state segment (TSS).

The use of a call gate and the TSS during a stack switch are transparent to the calling
procedure, except when a general-protection exception is raised.

6.3.6 CALL and RET Operation Between Privilege Levels
When making a call to a more privileged protection level, the processor does the
following (see Figure 6-4):

1. Performs an access rights check (privilege check).

2. Temporarily saves (internally) the current contents of the SS, ESP, CS, and EIP
registers.

Figure 6-4. Stack Switch on a Call to a Different Privilege Level

Param 1
Param 2

ESP Before Call

Stack for
Calling Procedure

ESP After Call

Stack for
Called Procedure

Calling SS

Calling ESP

Calling CS

Param 1
Param 2

Calling EIP

Stack Frame
Before Call

Stack Frame
After CallParam 3 Param 3

ESP After Return

ESP Before Return

Calling SS

Calling ESP

Calling CS

Param 1
Param 2

Calling EIP

Param 3

Param 1
Param 2
Param 3

Note: On a return, parameters are
released on both stacks based on the
optional n operand in the RET n instruction.
6-10 Vol. 1

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS
3. Loads the segment selector and stack pointer for the new stack (that is, the stack
for the privilege level being called) from the TSS into the SS and ESP registers
and switches to the new stack.

4. Pushes the temporarily saved SS and ESP values for the calling procedure’s stack
onto the new stack.

5. Copies the parameters from the calling procedure’s stack to the new stack. A
value in the call gate descriptor determines how many parameters to copy to the
new stack.

6. Pushes the temporarily saved CS and EIP values for the calling procedure to the
new stack.

7. Loads the segment selector for the new code segment and the new instruction
pointer from the call gate into the CS and EIP registers, respectively.

8. Begins execution of the called procedure at the new privilege level.

When executing a return from the privileged procedure, the processor performs
these actions:

1. Performs a privilege check.

2. Restores the CS and EIP registers to their values prior to the call.

3. If the RET instruction has an optional n argument, increments the stack pointer
by the number of bytes specified with the n operand to release parameters from
the stack. If the call gate descriptor specifies that one or more parameters be
copied from one stack to the other, a RET n instruction must be used to release
the parameters from both stacks. Here, the n operand specifies the number of
bytes occupied on each stack by the parameters. On a return, the processor
increments ESP by n for each stack to step over (effectively remove) these
parameters from the stacks.

4. Restores the SS and ESP registers to their values prior to the call, which causes a
switch back to the stack of the calling procedure.

5. If the RET instruction has an optional n argument, increments the stack pointer
by the number of bytes specified with the n operand to release parameters from
the stack (see explanation in step 3).

6. Resumes execution of the calling procedure.

See Chapter 5, “Protection,” in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3A, for detailed information on calls to privileged levels
and the call gate descriptor.

6.3.7 Branch Functions in 64-Bit Mode
The 64-bit extensions expand branching mechanisms to accommodate branches in
64-bit linear-address space. These are:
• Near-branch semantics are redefined in 64-bit mode
Vol. 1 6-11

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS
• In 64-bit mode and compatibility mode, 64-bit call-gate descriptors for far calls
are available

In 64-bit mode, the operand size for all near branches (CALL, RET, JCC, JCXZ, JMP,
and LOOP) is forced to 64 bits. These instructions update the 64-bit RIP without the
need for a REX operand-size prefix.

The following aspects of near branches are controlled by the effective operand size:
• Truncation of the size of the instruction pointer
• Size of a stack pop or push, due to a CALL or RET
• Size of a stack-pointer increment or decrement, due to a CALL or RET
• Indirect-branch operand size

In 64-bit mode, all of the above actions are forced to 64 bits regardless of operand
size prefixes (operand size prefixes are silently ignored). However, the displacement
field for relative branches is still limited to 32 bits and the address size for near
branches is not forced in 64-bit mode.

Address sizes affect the size of RCX used for JCXZ and LOOP; they also impact the
address calculation for memory indirect branches. Such addresses are 64 bits by
default; but they can be overridden to 32 bits by an address size prefix.

Software typically uses far branches to change privilege levels. The legacy IA-32
architecture provides the call-gate mechanism to allow software to branch from one
privilege level to another, although call gates can also be used for branches that do
not change privilege levels. When call gates are used, the selector portion of the
direct or indirect pointer references a gate descriptor (the offset in the instruction is
ignored). The offset to the destination’s code segment is taken from the call-gate
descriptor.

64-bit mode redefines the type value of a 32-bit call-gate descriptor type to a 64-bit
call gate descriptor and expands the size of the 64-bit descriptor to hold a 64-bit
offset. The 64-bit mode call-gate descriptor allows far branches that reference any
location in the supported linear-address space. These call gates also hold the target
code selector (CS), allowing changes to privilege level and default size as a result of
the gate transition.

Because immediates are generally specified up to 32 bits, the only way to specify a
full 64-bit absolute RIP in 64-bit mode is with an indirect branch. For this reason,
direct far branches are eliminated from the instruction set in 64-bit mode.

64-bit mode also expands the semantics of the SYSENTER and SYSEXIT instructions
so that the instructions operate within a 64-bit memory space. The mode also intro-
duces two new instructions: SYSCALL and SYSRET (which are valid only in 64-bit
mode). For details, see “SYSENTER—Fast System Call” and “SYSEXIT—Fast Return
from Fast System Call” in Chapter 4, “Instruction Set Reference, M-Z,” of the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 2B.
6-12 Vol. 1

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS
6.4 INTERRUPTS AND EXCEPTIONS
The processor provides two mechanisms for interrupting program execution, inter-
rupts and exceptions:
• An interrupt is an asynchronous event that is typically triggered by an I/O

device.
• An exception is a synchronous event that is generated when the processor

detects one or more predefined conditions while executing an instruction. The
IA-32 architecture specifies three classes of exceptions: faults, traps, and aborts.

The processor responds to interrupts and exceptions in essentially the same way.
When an interrupt or exception is signaled, the processor halts execution of the
current program or task and switches to a handler procedure that has been written
specifically to handle the interrupt or exception condition. The processor accesses
the handler procedure through an entry in the interrupt descriptor table (IDT). When
the handler has completed handling the interrupt or exception, program control is
returned to the interrupted program or task.

The operating system, executive, and/or device drivers normally handle interrupts
and exceptions independently from application programs or tasks. Application
programs can, however, access the interrupt and exception handlers incorporated in
an operating system or executive through assembly-language calls. The remainder
of this section gives a brief overview of the processor’s interrupt and exception
handling mechanism. See Chapter 6, “Interrupt and Exception Handling,” in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B, for a
description of this mechanism.

The IA-32 Architecture defines 18 predefined interrupts and exceptions and 224 user
defined interrupts, which are associated with entries in the IDT. Each interrupt and
exception in the IDT is identified with a number, called a vector. Table 6-1 lists the
interrupts and exceptions with entries in the IDT and their respective vector
numbers. Vectors 0 through 8, 10 through 14, and 16 through 19 are the predefined
interrupts and exceptions, and vectors 32 through 255 are the user-defined inter-
rupts, called maskable interrupts.

Note that the processor defines several additional interrupts that do not point to
entries in the IDT; the most notable of these interrupts is the SMI interrupt. See
Chapter 6, “Interrupt and Exception Handling,” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3B, for more information about the
interrupts and exceptions.

When the processor detects an interrupt or exception, it does one of the following
things:
• Executes an implicit call to a handler procedure.
• Executes an implicit call to a handler task.
Vol. 1 6-13

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS
6.4.1 Call and Return Operation for Interrupt or Exception
Handling Procedures

A call to an interrupt or exception handler procedure is similar to a procedure call to
another protection level (see Section 6.3.6, “CALL and RET Operation Between Privi-
lege Levels”). Here, the interrupt vector references one of two kinds of gates: an
interrupt gate or a trap gate. Interrupt and trap gates are similar to call gates in
that they provide the following information:
• Access rights information
• The segment selector for the code segment that contains the handler procedure
• An offset into the code segment to the first instruction of the handler procedure

The difference between an interrupt gate and a trap gate is as follows. If an interrupt
or exception handler is called through an interrupt gate, the processor clears the
interrupt enable (IF) flag in the EFLAGS register to prevent subsequent interrupts
from interfering with the execution of the handler. When a handler is called through
a trap gate, the state of the IF flag is not changed.

Table 6-1. Exceptions and Interrupts
Vector No. Mnemonic Description Source

 0 #DE Divide Error DIV and IDIV instructions.

 1 #DB Debug Any code or data reference.

 2 NMI Interrupt Non-maskable external interrupt.

 3 #BP Breakpoint INT 3 instruction.

 4 #OF Overflow INTO instruction.

 5 #BR BOUND Range Exceeded BOUND instruction.

 6 #UD Invalid Opcode (UnDefined
Opcode)

UD2 instruction or reserved opcode.1

 7 #NM Device Not Available (No Math
Coprocessor)

Floating-point or WAIT/FWAIT
instruction.

 8 #DF Double Fault Any instruction that can generate an
exception, an NMI, or an INTR.

 9 #MF CoProcessor Segment Overrun
(reserved)

Floating-point instruction.2

10 #TS Invalid TSS Task switch or TSS access.

11 #NP Segment Not Present Loading segment registers or accessing
system segments.

12 #SS Stack Segment Fault Stack operations and SS register loads.

13 #GP General Protection Any memory reference and other
protection checks.
6-14 Vol. 1

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS
If the code segment for the handler procedure has the same privilege level as the
currently executing program or task, the handler procedure uses the current stack; if
the handler executes at a more privileged level, the processor switches to the stack
for the handler’s privilege level.

If no stack switch occurs, the processor does the following when calling an interrupt
or exception handler (see Figure 6-5):

1. Pushes the current contents of the EFLAGS, CS, and EIP registers (in that order)
on the stack.

2. Pushes an error code (if appropriate) on the stack.

3. Loads the segment selector for the new code segment and the new instruction
pointer (from the interrupt gate or trap gate) into the CS and EIP registers,
respectively.

4. If the call is through an interrupt gate, clears the IF flag in the EFLAGS register.

5. Begins execution of the handler procedure.

14 #PF Page Fault Any memory reference.

15 Reserved

16 #MF Floating-Point Error (Math
Fault)

Floating-point or WAIT/FWAIT
instruction.

17 #AC Alignment Check Any data reference in memory.3

18 #MC Machine Check Error codes (if any) and source are model
dependent.4

19 #XM SIMD Floating-Point Exception SIMD Floating-Point Instruction5

20-31 Reserved

32-255 Maskable Interrupts External interrupt from INTR pin or INT n
instruction.

NOTES:
1. The UD2 instruction was introduced in the Pentium Pro processor.
2. IA-32 processors after the Intel386 processor do not generate this exception.
3. This exception was introduced in the Intel486 processor.
4. This exception was introduced in the Pentium processor and enhanced in the P6 family processors.
5. This exception was introduced in the Pentium III processor.

Table 6-1. Exceptions and Interrupts (Contd.)
Vector No. Mnemonic Description Source
Vol. 1 6-15

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS
If a stack switch does occur, the processor does the following:

1. Temporarily saves (internally) the current contents of the SS, ESP, EFLAGS, CS,
and EIP registers.

2. Loads the segment selector and stack pointer for the new stack (that is, the stack
for the privilege level being called) from the TSS into the SS and ESP registers
and switches to the new stack.

3. Pushes the temporarily saved SS, ESP, EFLAGS, CS, and EIP values for the
interrupted procedure’s stack onto the new stack.

4. Pushes an error code on the new stack (if appropriate).

5. Loads the segment selector for the new code segment and the new instruction
pointer (from the interrupt gate or trap gate) into the CS and EIP registers,
respectively.

6. If the call is through an interrupt gate, clears the IF flag in the EFLAGS register.

7. Begins execution of the handler procedure at the new privilege level.

Figure 6-5. Stack Usage on Transfers to Interrupt and Exception Handling Routines

 CS

Error Code

EFLAGS
CS

 EIP
ESP After
Transfer to Handler

Error Code

ESP Before
Transfer to Handler

 EFLAGS

 EIP

 SS
 ESP

Stack Usage with No
Privilege-Level Change

Stack Usage with
Privilege-Level Change

Interrupted Procedure’s

Interrupted Procedure’s
and Handler’s Stack

Handler’s Stack

ESP After
Transfer to Handler

Transfer to Handler
ESP Before

Stack
6-16 Vol. 1

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS
A return from an interrupt or exception handler is initiated with the IRET instruction.
The IRET instruction is similar to the far RET instruction, except that it also restores
the contents of the EFLAGS register for the interrupted procedure. When executing a
return from an interrupt or exception handler from the same privilege level as the
interrupted procedure, the processor performs these actions:

1. Restores the CS and EIP registers to their values prior to the interrupt or
exception.

2. Restores the EFLAGS register.

3. Increments the stack pointer appropriately.

4. Resumes execution of the interrupted procedure.

When executing a return from an interrupt or exception handler from a different priv-
ilege level than the interrupted procedure, the processor performs these actions:

1. Performs a privilege check.

2. Restores the CS and EIP registers to their values prior to the interrupt or
exception.

3. Restores the EFLAGS register.

4. Restores the SS and ESP registers to their values prior to the interrupt or
exception, resulting in a stack switch back to the stack of the interrupted
procedure.

5. Resumes execution of the interrupted procedure.

6.4.2 Calls to Interrupt or Exception Handler Tasks
Interrupt and exception handler routines can also be executed in a separate task.
Here, an interrupt or exception causes a task switch to a handler task. The handler
task is given its own address space and (optionally) can execute at a higher protec-
tion level than application programs or tasks.

The switch to the handler task is accomplished with an implicit task call that refer-
ences a task gate descriptor. The task gate provides access to the address space
for the handler task. As part of the task switch, the processor saves complete state
information for the interrupted program or task. Upon returning from the handler
task, the state of the interrupted program or task is restored and execution
continues. See Chapter 6, “Interrupt and Exception Handling,” in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3B, for more information
on handling interrupts and exceptions through handler tasks.

6.4.3 Interrupt and Exception Handling in Real-Address Mode
When operating in real-address mode, the processor responds to an interrupt or
exception with an implicit far call to an interrupt or exception handler. The processor
uses the interrupt or exception vector number as an index into an interrupt table. The
Vol. 1 6-17

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS
interrupt table contains instruction pointers to the interrupt and exception handler
procedures.

The processor saves the state of the EFLAGS register, the EIP register, the CS
register, and an optional error code on the stack before switching to the handler
procedure.

A return from the interrupt or exception handler is carried out with the IRET
instruction.

See Chapter 20, “8086 Emulation,” in the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3B, for more information on handling interrupts
and exceptions in real-address mode.

6.4.4 INT n, INTO, INT 3, and BOUND Instructions
The INT n, INTO, INT 3, and BOUND instructions allow a program or task to explicitly
call an interrupt or exception handler. The INT n instruction uses an interrupt vector
as an argument, which allows a program to call any interrupt handler.

The INTO instruction explicitly calls the overflow exception (#OF) handler if the over-
flow flag (OF) in the EFLAGS register is set. The OF flag indicates overflow on arith-
metic instructions, but it does not automatically raise an overflow exception. An
overflow exception can only be raised explicitly in either of the following ways:
• Execute the INTO instruction.
• Test the OF flag and execute the INT n instruction with an argument of 4 (the

vector number of the overflow exception) if the flag is set.

Both the methods of dealing with overflow conditions allow a program to test for
overflow at specific places in the instruction stream.

The INT 3 instruction explicitly calls the breakpoint exception (#BP) handler.

The BOUND instruction explicitly calls the BOUND-range exceeded exception (#BR)
handler if an operand is found to be not within predefined boundaries in memory.
This instruction is provided for checking references to arrays and other data struc-
tures. Like the overflow exception, the BOUND-range exceeded exception can only
be raised explicitly with the BOUND instruction or the INT n instruction with an argu-
ment of 5 (the vector number of the bounds-check exception). The processor does
not implicitly perform bounds checks and raise the BOUND-range exceeded excep-
tion.

6.4.5 Handling Floating-Point Exceptions
When operating on individual or packed floating-point values, the IA-32 architecture
supports a set of six floating-point exceptions. These exceptions can be generated
during operations performed by the x87 FPU instructions or by SSE/SSE2/SSE3
instructions. When an x87 FPU instruction (including the FISTTP instruction in SSE3)
generates one or more of these exceptions, it in turn generates floating-point error
6-18 Vol. 1

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS
exception (#MF); when an SSE/SSE2/SSE3 instruction generates a floating-point
exception, it in turn generates SIMD floating-point exception (#XM).

See the following sections for further descriptions of the floating-point exceptions,
how they are generated, and how they are handled:
• Section 4.9.1, “Floating-Point Exception Conditions,” and Section 4.9.3, “Typical

Actions of a Floating-Point Exception Handler”
• Section 8.4, “x87 FPU Floating-Point Exception Handling,” and Section 8.5, “x87

FPU Floating-Point Exception Conditions”
• Section 11.5.1, “SIMD Floating-Point Exceptions”
• Interrupt Behavior

6.4.6 Interrupt and Exception Behavior in 64-Bit Mode
64-bit extensions expand the legacy IA-32 interrupt-processing and exception-
processing mechanism to allow support for 64-bit operating systems and applica-
tions. Changes include:
• All interrupt handlers pointed to by the IDT are 64-bit code (does not apply to the

SMI handler).
• The size of interrupt-stack pushes is fixed at 64 bits. The processor uses 8-byte,

zero extended stores.
• The stack pointer (SS:RSP) is pushed unconditionally on interrupts. In legacy

environments, this push is conditional and based on a change in current privilege
level (CPL).

• The new SS is set to NULL if there is a change in CPL.
• IRET behavior changes.
• There is a new interrupt stack-switch mechanism.
• The alignment of interrupt stack frame is different.

6.5 PROCEDURE CALLS FOR BLOCK-STRUCTURED
LANGUAGES

The IA-32 architecture supports an alternate method of performing procedure calls
with the ENTER (enter procedure) and LEAVE (leave procedure) instructions. These
instructions automatically create and release, respectively, stack frames for called
procedures. The stack frames have predefined spaces for local variables and the
necessary pointers to allow coherent returns from called procedures. They also allow
scope rules to be implemented so that procedures can access their own local vari-
ables and some number of other variables located in other stack frames.
Vol. 1 6-19

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS
ENTER and LEAVE offer two benefits:
• They provide machine-language support for implementing block-structured

languages, such as C and Pascal.
• They simplify procedure entry and exit in compiler-generated code.

6.5.1 ENTER Instruction
The ENTER instruction creates a stack frame compatible with the scope rules typically
used in block-structured languages. In block-structured languages, the scope of a
procedure is the set of variables to which it has access. The rules for scope vary
among languages. They may be based on the nesting of procedures, the division of
the program into separately compiled files, or some other modularization scheme.

ENTER has two operands. The first specifies the number of bytes to be reserved on
the stack for dynamic storage for the procedure being called. Dynamic storage is the
memory allocated for variables created when the procedure is called, also known as
automatic variables. The second parameter is the lexical nesting level (from 0 to 31)
of the procedure. The nesting level is the depth of a procedure in a hierarchy of
procedure calls. The lexical level is unrelated to either the protection privilege level or
to the I/O privilege level of the currently running program or task.

ENTER, in the following example, allocates 2 Kbytes of dynamic storage on the stack
and sets up pointers to two previous stack frames in the stack frame for this proce-
dure:

ENTER 2048,3

The lexical nesting level determines the number of stack frame pointers to copy into
the new stack frame from the preceding frame. A stack frame pointer is a doubleword
used to access the variables of a procedure. The set of stack frame pointers used by
a procedure to access the variables of other procedures is called the display. The first
doubleword in the display is a pointer to the previous stack frame. This pointer is
used by a LEAVE instruction to undo the effect of an ENTER instruction by discarding
the current stack frame.

After the ENTER instruction creates the display for a procedure, it allocates the
dynamic local variables for the procedure by decrementing the contents of the ESP
register by the number of bytes specified in the first parameter. This new value in the
ESP register serves as the initial top-of-stack for all PUSH and POP operations within
the procedure.

To allow a procedure to address its display, the ENTER instruction leaves the EBP
register pointing to the first doubleword in the display. Because stacks grow down,
this is actually the doubleword with the highest address in the display. Data manipu-
lation instructions that specify the EBP register as a base register automatically
address locations within the stack segment instead of the data segment.

The ENTER instruction can be used in two ways: nested and non-nested. If the lexical
level is 0, the non-nested form is used. The non-nested form pushes the contents of
6-20 Vol. 1

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS
the EBP register on the stack, copies the contents of the ESP register into the EBP
register, and subtracts the first operand from the contents of the ESP register to allo-
cate dynamic storage. The non-nested form differs from the nested form in that no
stack frame pointers are copied. The nested form of the ENTER instruction occurs
when the second parameter (lexical level) is not zero.

The following pseudo code shows the formal definition of the ENTER instruction.
STORAGE is the number of bytes of dynamic storage to allocate for local variables,
and LEVEL is the lexical nesting level.

PUSH EBP;
FRAME_PTR ← ESP;
IF LEVEL > 0

THEN
DO (LEVEL − 1) times

EBP ← EBP − 4;
PUSH Pointer(EBP); (* doubleword pointed to by EBP *)

OD;
PUSH FRAME_PTR;

FI;
EBP ← FRAME_PTR;
ESP ← ESP − STORAGE;

The main procedure (in which all other procedures are nested) operates at the
highest lexical level, level 1. The first procedure it calls operates at the next deeper
lexical level, level 2. A level 2 procedure can access the variables of the main
program, which are at fixed locations specified by the compiler. In the case of level 1,
the ENTER instruction allocates only the requested dynamic storage on the stack
because there is no previous display to copy.

A procedure that calls another procedure at a lower lexical level gives the called
procedure access to the variables of the caller. The ENTER instruction provides this
access by placing a pointer to the calling procedure's stack frame in the display.

A procedure that calls another procedure at the same lexical level should not give
access to its variables. In this case, the ENTER instruction copies only that part of the
display from the calling procedure which refers to previously nested procedures
operating at higher lexical levels. The new stack frame does not include the pointer
for addressing the calling procedure’s stack frame.

The ENTER instruction treats a re-entrant procedure as a call to a procedure at the
same lexical level. In this case, each succeeding iteration of the re-entrant procedure
can address only its own variables and the variables of the procedures within which it
is nested. A re-entrant procedure always can address its own variables; it does not
require pointers to the stack frames of previous iterations.

By copying only the stack frame pointers of procedures at higher lexical levels, the
ENTER instruction makes certain that procedures access only those variables of
higher lexical levels, not those at parallel lexical levels (see Figure 6-6).
Vol. 1 6-21

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS
Block-structured languages can use the lexical levels defined by ENTER to control
access to the variables of nested procedures. In Figure 6-6, for example, if procedure
A calls procedure B which, in turn, calls procedure C, then procedure C will have
access to the variables of the MAIN procedure and procedure A, but not those of
procedure B because they are at the same lexical level. The following definition
describes the access to variables for the nested procedures in Figure 6-6.

1. MAIN has variables at fixed locations.

2. Procedure A can access only the variables of MAIN.

3. Procedure B can access only the variables of procedure A and MAIN. Procedure B
cannot access the variables of procedure C or procedure D.

4. Procedure C can access only the variables of procedure A and MAIN. Procedure C
cannot access the variables of procedure B or procedure D.

5. Procedure D can access the variables of procedure C, procedure A, and MAIN.
Procedure D cannot access the variables of procedure B.

In Figure 6-7, an ENTER instruction at the beginning of the MAIN procedure creates
three doublewords of dynamic storage for MAIN, but copies no pointers from other
stack frames. The first doubleword in the display holds a copy of the last value in the
EBP register before the ENTER instruction was executed. The second doubleword
holds a copy of the contents of the EBP register following the ENTER instruction. After
the instruction is executed, the EBP register points to the first doubleword pushed on
the stack, and the ESP register points to the last doubleword in the stack frame.

When MAIN calls procedure A, the ENTER instruction creates a new display (see
Figure 6-8). The first doubleword is the last value held in MAIN's EBP register. The
second doubleword is a pointer to MAIN's stack frame which is copied from the
second doubleword in MAIN's display. This happens to be another copy of the last
value held in MAIN’s EBP register. Procedure A can access variables in MAIN because
MAIN is at level 1.

Figure 6-6. Nested Procedures

Main (Lexical Level 1)

Procedure A (Lexical Level 2)

Procedure B (Lexical Level 3)

Procedure C (Lexical Level 3)

Procedure D (Lexical Level 4)
6-22 Vol. 1

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS
Therefore the base address for the dynamic storage used in MAIN is the current
address in the EBP register, plus four bytes to account for the saved contents of
MAIN’s EBP register. All dynamic variables for MAIN are at fixed, positive offsets from
this value.

When procedure A calls procedure B, the ENTER instruction creates a new display
(see Figure 6-9). The first doubleword holds a copy of the last value in procedure A’s
EBP register. The second and third doublewords are copies of the two stack frame
pointers in procedure A’s display. Procedure B can access variables in procedure A
and MAIN by using the stack frame pointers in its display.

Figure 6-7. Stack Frame After Entering the MAIN Procedure

Figure 6-8. Stack Frame After Entering Procedure A

EBP
Display

Old EBP

ESP

Main’s EBP

Dynamic
Storage

EBP
Display

Old EBP

ESP

Main’s EBP

Dynamic
Storage

Procedure A’s EBP

Main’s EBP

Main’s EBP
Vol. 1 6-23

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS
When procedure B calls procedure C, the ENTER instruction creates a new display for
procedure C (see Figure 6-10). The first doubleword holds a copy of the last value in
procedure B’s EBP register. This is used by the LEAVE instruction to restore procedure
B’s stack frame. The second and third doublewords are copies of the two stack frame
pointers in procedure A’s display. If procedure C were at the next deeper lexical level
from procedure B, a fourth doubleword would be copied, which would be the stack
frame pointer to procedure B’s local variables.

Note that procedure B and procedure C are at the same level, so procedure C is not
intended to access procedure B’s variables. This does not mean that procedure C is
completely isolated from procedure B; procedure C is called by procedure B, so the
pointer to the returning stack frame is a pointer to procedure B’s stack frame. In
addition, procedure B can pass parameters to procedure C either on the stack or
through variables global to both procedures (that is, variables in the scope of both
procedures).

Figure 6-9. Stack Frame After Entering Procedure B

EBP

Display

Old EBP

ESP

Main’s EBP

Dynamic
Storage

Procedure A’s EBP

Main’s EBP

Main’s EBP

Procedure A’s EBP

Procedure B’s EBP

Main’s EBP

Procedure A’s EBP
6-24 Vol. 1

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS
6.5.2 LEAVE Instruction
The LEAVE instruction, which does not have any operands, reverses the action of the
previous ENTER instruction. The LEAVE instruction copies the contents of the EBP
register into the ESP register to release all stack space allocated to the procedure.
Then it restores the old value of the EBP register from the stack. This simultaneously
restores the ESP register to its original value. A subsequent RET instruction then can
remove any arguments and the return address pushed on the stack by the calling
program for use by the procedure.

Figure 6-10. Stack Frame After Entering Procedure C

EBP

Display

Old EBP

ESP

Main’s EBP

Dynamic
Storage

Procedure A’s EBP

Main’s EBP

Main’s EBP

Procedure A’s EBP

Procedure B’s EBP

Main’s EBP

Procedure A’s EBP

Procedure B’s EBP

Procedure C’s EBP

Main’s EBP

Procedure A’s EBP
Vol. 1 6-25

CHAPTER 7
PROGRAMMING WITH

GENERAL-PURPOSE INSTRUCTIONS

General-purpose (GP) instructions are a subset of the IA-32 instructions that repre-
sent the fundamental instruction set for the Intel IA-32 processors. These instruc-
tions were introduced into the IA-32 architecture with the first IA-32 processors (the
Intel 8086 and 8088). Additional instructions were added to the general-purpose
instruction set in subsequent families of IA-32 processors (the Intel 286, Intel386,
Intel486, Pentium, Pentium Pro, and Pentium II processors).

Intel 64 architecture further extends the capability of most general-purpose instruc-
tions so that they are able to handle 64-bit data in 64-bit mode. A small number of
general-purpose instructions (still supported in non-64-bit modes) are not supported
in 64-bit mode.

General-purpose instructions perform basic data movement, memory addressing,
arithmetic and logical, program flow control, input/output, and string operations on a
set of integer, pointer, and BCD data types. This chapter provides an overview of the
general-purpose instructions. See Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volumes 3A & 3B, for detailed descriptions of individual instruc-
tions.

7.1 PROGRAMMING ENVIRONMENT FOR GP
INSTRUCTIONS

The programming environment for the general-purpose instructions consists of the
set of registers and address space. The environment includes the following items:
• General-purpose registers — Eight 32-bit general-purpose registers (see

Section 3.4.1, “General-Purpose Registers”) are used in non-64-bit modes to
address operands in memory. These registers are referenced by the names EAX,
EBX, ECX, EDX, EBP, ESI EDI, and ESP.

• Segment registers — The six 16-bit segment registers contain segment
pointers for use in accessing memory (see Section 3.4.2, “Segment Registers”).
These registers are referenced by the names CS, DS, SS, ES, FS, and GS.

• EFLAGS register — This 32-bit register (see Section 3.4.3, “EFLAGS Register”)
is used to provide status and control for basic arithmetic, compare, and system
operations.

• EIP register — This 32-bit register contains the current instruction pointer (see
Section 3.4.3, “EFLAGS Register”).

General-purpose instructions operate on the following data types. The width of valid
data types is dependent on processor mode (see Chapter 4):
Vol. 1 7-1

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS
• Bytes, words, doublewords
• Signed and unsigned byte, word, doubleword integers
• Near and far pointers
• Bit fields
• BCD integers

7.2 PROGRAMMING ENVIRONMENT FOR GP
INSTRUCTIONS IN 64-BIT MODE

The programming environment for the general-purpose instructions in 64-bit mode is
similar to that described in Section 7.1.
• General-purpose registers — In 64-bit mode, sixteen general-purpose

registers available. These include the eight GPRs described in Section 7.1 and
eight new GPRs (R8D-R15D). R8D-R15D are available by using a REX prefix. All
sixteen GPRs can be promoted to 64 bits. The 64-bit registers are referenced as
RAX, RBX, RCX, RDX, RBP, RSI, RDI, RSP and R8-R15 (see Section 3.4.1.1,
“General-Purpose Registers in 64-Bit Mode”). Promotion to 64-bit operand
requires REX prefix encodings.

• Segment registers — In 64-bit mode, segmentation is available but it is set up
uniquely (see Section 3.4.2.1, “Segment Registers in 64-Bit Mode”).

• Flags and Status register — When the processor is running in 64-bit mode,
EFLAGS becomes the 64-bit RFLAGS register (see Section 3.4.3, “EFLAGS
Register”).

• Instruction Pointer register — In 64-bit mode, the EIP register becomes the
64-bit RIP register (see Section 3.5.1, “Instruction Pointer in 64-Bit Mode”).

General-purpose instructions operate on the following data types in 64-bit mode. The
width of valid data types is dependent on default operand size, address size, or a
prefix that overrides the default size:
• Bytes, words, doublewords, quadwords
• Signed and unsigned byte, word, doubleword, quadword integers
• Near and far pointers
• Bit fields

See also:
• Chapter 3, “Basic Execution Environment,” for more information about IA-32e

modes.
• Chapter 2, “Instruction Format,” in the Intel® 64 and IA-32 Architectures

Software Developer’s Manual, Volume 2A, for more detailed information about
REX prefixes.
7-2 Vol. 1

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS
• Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes
2A & 2B for a complete listing of all instructions. This information documents the
behavior of individual instructions in the 64-bit mode context.

7.3 SUMMARY OF GP INSTRUCTIONS
General purpose instructions are divided into the following subgroups:
• Data transfer
• Binary arithmetic
• Decimal arithmetic
• Logical
• Shift and rotate
• Bit and byte
• Control transfer
• String
• I/O
• Enter and Leave
• Flag control
• Segment register
• Miscellaneous

Each sub-group of general-purpose instructions is discussed in the context of non-
64-bit mode operation first. Changes in 64-bit mode beyond those affected by the
use of the REX prefixes are discussed in separate sub-sections within each subgroup.
For a simple list of general-purpose instructions by subgroup, see Chapter 5.

7.3.1 Data Transfer Instructions
The data transfer instructions move bytes, words, doublewords, or quadwords both
between memory and the processor’s registers and between registers. For the
purpose of this discussion, these instructions are divided into subordinate subgroups
that provide for:
• General data movement
• Exchange
• Stack manipulation
• Type conversion
Vol. 1 7-3

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS
7.3.1.1 General Data Movement Instructions
Move instructions — The MOV (move) and CMOVcc (conditional move) instructions
transfer data between memory and registers or between registers.

The MOV instruction performs basic load data and store data operations between
memory and the processor’s registers and data movement operations between regis-
ters. It handles data transfers along the paths listed in Table 7-1. (See “MOV—Move
to/from Control Registers” and “MOV—Move to/from Debug Registers” in Chapter 3,
“Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2A, for information on moving data to and from the
control and debug registers.)

The MOV instruction cannot move data from one memory location to another or from
one segment register to another segment register. Memory-to-memory moves are
performed with the MOVS (string move) instruction (see Section 7.3.9, “String Oper-
ations”).

Conditional move instructions — The CMOVcc instructions are a group of instruc-
tions that check the state of the status flags in the EFLAGS register and perform a
move operation if the flags are in a specified state. These instructions can be used to
move a 16-bit or 32-bit value from memory to a general-purpose register or from
one general-purpose register to another. The flag state being tested is specified with
a condition code (cc) associated with the instruction. If the condition is not satisfied,
a move is not performed and execution continues with the instruction following the
CMOVcc instruction.

Table 7-1. Move Instruction Operations

Type of Data Movement Source → Destination

From memory to a register Memory location → General-purpose register

Memory location → Segment register

From a register to memory General-purpose register → Memory location

Segment register → Memory location

Between registers General-purpose register → General-purpose register

General-purpose register → Segment register

Segment register → General-purpose register

General-purpose register → Control register

Control register → General-purpose register

General-purpose register → Debug register

Debug register → General-purpose register

Immediate data to a register Immediate → General-purpose register

Immediate data to memory Immediate → Memory location
7-4 Vol. 1

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS
Table 7-2 shows mnemonics for CMOVcc instructions and the conditions being tested
for each instruction. The condition code mnemonics are appended to the letters
“CMOV” to form the mnemonics for CMOVcc instructions. The instructions listed in
Table 7-2 as pairs (for example, CMOVA/CMOVNBE) are alternate names for the
same instruction. The assembler provides these alternate names to make it easier to
read program listings.

CMOVcc instructions are useful for optimizing small IF constructions. They also help
eliminate branching overhead for IF statements and the possibility of branch mispre-
dictions by the processor.

These conditional move instructions are supported in the P6 family, Pentium 4, and
Intel Xeon processors. Software can check if CMOVcc instructions are supported by
checking the processor’s feature information with the CPUID instruction.

7.3.1.2 Exchange Instructions
The exchange instructions swap the contents of one or more operands and, in some
cases, perform additional operations such as asserting the LOCK signal or modifying
flags in the EFLAGS register.

The XCHG (exchange) instruction swaps the contents of two operands. This instruc-
tion takes the place of three MOV instructions and does not require a temporary loca-
tion to save the contents of one operand location while the other is being loaded.
When a memory operand is used with the XCHG instruction, the processor’s LOCK
signal is automatically asserted. This instruction is thus useful for implementing
semaphores or similar data structures for process synchronization. See “Bus
Locking” in Chapter 8, “Multiple-Processor Management,”of the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A, for more information on bus
locking.

The BSWAP (byte swap) instruction reverses the byte order in a 32-bit register
operand. Bit positions 0 through 7 are exchanged with 24 through 31, and bit posi-
tions 8 through 15 are exchanged with 16 through 23. Executing this instruction
twice in a row leaves the register with the same value as before. The BSWAP instruc-
tion is useful for converting between “big-endian” and “little-endian” data formats.
This instruction also speeds execution of decimal arithmetic. (The XCHG instruction
can be used to swap the bytes in a word.)
Vol. 1 7-5

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS
The XADD (exchange and add) instruction swaps two operands and then stores the
sum of the two operands in the destination operand. The status flags in the EFLAGS
register indicate the result of the addition. This instruction can be combined with the
LOCK prefix (see “LOCK—Assert LOCK# Signal Prefix” in Chapter 3, “Instruction Set
Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2A) in a multiprocessing system to allow multiple processors to
execute one DO loop.

The CMPXCHG (compare and exchange) and CMPXCHG8B (compare and exchange
8 bytes) instructions are used to synchronize operations in systems that use
multiple processors. The CMPXCHG instruction requires three operands: a source
operand in a register, another source operand in the EAX register, and a destination
operand. If the values contained in the destination operand and the EAX register are
equal, the destination operand is replaced with the value of the other source
operand (the value not in the EAX register). Otherwise, the original value of the
destination operand is loaded in the EAX register. The status flags in the EFLAGS

Table 7-2. Conditional Move Instructions

Instruction Mnemonic Status Flag States Condition Description

Unsigned Conditional Moves

 CMOVA/CMOVNBE (CF or ZF) = 0 Above/not below or equal

 CMOVAE/CMOVNB CF = 0 Above or equal/not below

 CMOVNC CF = 0 Not carry

 CMOVB/CMOVNAE CF = 1 Below/not above or equal

 CMOVC CF = 1 Carry

 CMOVBE/CMOVNA (CF or ZF) = 1 Below or equal/not above

 CMOVE/CMOVZ ZF = 1 Equal/zero

 CMOVNE/CMOVNZ ZF = 0 Not equal/not zero

 CMOVP/CMOVPE PF = 1 Parity/parity even

 CMOVNP/CMOVPO PF = 0 Not parity/parity odd

Signed Conditional Moves

 CMOVGE/CMOVNL (SF xor OF) = 0 Greater or equal/not less

 CMOVL/CMOVNGE (SF xor OF) = 1 Less/not greater or equal

 CMOVLE/CMOVNG ((SF xor OF) or ZF) = 1 Less or equal/not greater

 CMOVO OF = 1 Overflow

 CMOVNO OF = 0 Not overflow

 CMOVS SF = 1 Sign (negative)

 CMOVNS SF = 0 Not sign (non-negative)
7-6 Vol. 1

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS
register reflect the result that would have been obtained by subtracting the destina-
tion operand from the value in the EAX register.

The CMPXCHG instruction is commonly used for testing and modifying semaphores.
It checks to see if a semaphore is free. If the semaphore is free, it is marked allo-
cated; otherwise it gets the ID of the current owner. This is all done in one uninter-
ruptible operation. In a single-processor system, the CMPXCHG instruction
eliminates the need to switch to protection level 0 (to disable interrupts) before
executing multiple instructions to test and modify a semaphore.

For multiple processor systems, CMPXCHG can be combined with the LOCK prefix to
perform the compare and exchange operation atomically. (See “Locked Atomic Oper-
ations” in Chapter 8, “Multiple-Processor Management,” of the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A, for more information on
atomic operations.)

The CMPXCHG8B instruction also requires three operands: a 64-bit value in
EDX:EAX, a 64-bit value in ECX:EBX, and a destination operand in memory. The
instruction compares the 64-bit value in the EDX:EAX registers with the destination
operand. If they are equal, the 64-bit value in the ECX:EBX register is stored in the
destination operand. If the EDX:EAX register and the destination are not equal, the
destination is loaded in the EDX:EAX register. The CMPXCHG8B instruction can be
combined with the LOCK prefix to perform the operation atomically.

7.3.1.3 Exchange Instructions in 64-Bit Mode
The CMPXCHG16B instruction is available in 64-bit mode only. It is an extension of
the functionality provided by CMPXCHG8B that operates on 128-bits of data.

7.3.1.4 Stack Manipulation Instructions
The PUSH, POP, PUSHA (push all registers), and POPA (pop all registers) instructions
move data to and from the stack. The PUSH instruction decrements the stack pointer
(contained in the ESP register), then copies the source operand to the top of stack
(see Figure 7-1). It operates on memory operands, immediate operands, and
register operands (including segment registers). The PUSH instruction is commonly
used to place parameters on the stack before calling a procedure. It can also be used
to reserve space on the stack for temporary variables.
Vol. 1 7-7

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS
The PUSHA instruction saves the contents of the eight general-purpose registers on
the stack (see Figure 7-2). This instruction simplifies procedure calls by reducing the
number of instructions required to save the contents of the general-purpose regis-
ters. The registers are pushed on the stack in the following order: EAX, ECX, EDX,
EBX, the initial value of ESP before EAX was pushed, EBP, ESI, and EDI.

The POP instruction copies the word or doubleword at the current top of stack (indi-
cated by the ESP register) to the location specified with the destination operand. It
then increments the ESP register to point to the new top of stack (see Figure 7-3).
The destination operand may specify a general-purpose register, a segment register,
or a memory location.

Figure 7-1. Operation of the PUSH Instruction

Figure 7-2. Operation of the PUSHA Instruction

0
Stack

31

Before Pushing Doubleword

Growth

ESP

n − 4

n − 8

n

Stack

031

After Pushing Doubleword

ESPDoubleword Value

0Stack 31

Before Pushing Registers

Growth

ESPn - 4
n - 8

n

Stack

031

After Pushing Registers

ESP

EAX

EDI

EBX

EBP

ECX
EDX

Old ESP

ESI

n - 36

n - 20

n - 28

n - 12

n - 16

n - 24

n - 32
7-8 Vol. 1

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS
The POPA instruction reverses the effect of the PUSHA instruction. It pops the top
eight words or doublewords from the top of the stack into the general-purpose regis-
ters, except for the ESP register (see Figure 7-4). If the operand-size attribute is 32,
the doublewords on the stack are transferred to the registers in the following order:
EDI, ESI, EBP, ignore doubleword, EBX, EDX, ECX, and EAX. The ESP register is
restored by the action of popping the stack. If the operand-size attribute is 16, the
words on the stack are transferred to the registers in the following order: DI, SI, BP,
ignore word, BX, DX, CX, and AX.

7.3.1.5 Stack Manipulation Instructions in 64-Bit Mode
In 64-bit mode, the stack pointer size is 64 bits and cannot be overridden by an
instruction prefix. In implicit stack references, address-size overrides are ignored.
Pushes and pops of 32-bit values on the stack are not possible in 64-bit mode. 16-bit

Figure 7-3. Operation of the POP Instruction

Figure 7-4. Operation of the POPA Instruction

031
Stack

After Popping Doubleword

Growth

ESPn - 4
n - 8

n

Stack

Before Popping Doubleword

ESPDoubleword Value

031

Stack

After Popping Registers

Growth

ESPn - 4
n - 8

n

Stack

Before Popping Registers

ESP

EAX

EDI

EBX

EBP

ECX
EDX

Ignored

ESI
n - 36

n - 20

n - 28

n - 12
n - 16

n - 24

n - 32

0 310 31
Vol. 1 7-9

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS
pushes and pops are supported by using the 66H operand-size prefix. PUSHA,
PUSHAD, POPA, and POPAD are not supported.

7.3.1.6 Type Conversion Instructions
The type conversion instructions convert bytes into words, words into doublewords,
and doublewords into quadwords. These instructions are especially useful for
converting integers to larger integer formats, because they perform sign extension
(see Figure 7-5).

Two kinds of type conversion instructions are provided: simple conversion and move
and convert.
7-10 Vol. 1

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS
Simple conversion — The CBW (convert byte to word), CWDE (convert word to
doubleword extended), CWD (convert word to doubleword), and CDQ (convert
doubleword to quadword) instructions perform sign extension to double the size of
the source operand.

The CBW instruction copies the sign (bit 7) of the byte in the AL register into every bit
position of the upper byte of the AX register. The CWDE instruction copies the sign
(bit 15) of the word in the AX register into every bit position of the high word of the
EAX register.

The CWD instruction copies the sign (bit 15) of the word in the AX register into every
bit position in the DX register. The CDQ instruction copies the sign (bit 31) of the
doubleword in the EAX register into every bit position in the EDX register. The CWD
instruction can be used to produce a doubleword dividend from a word before a word
division, and the CDQ instruction can be used to produce a quadword dividend from
a doubleword before doubleword division.

Move with sign or zero extension — The MOVSX (move with sign extension) and
MOVZX (move with zero extension) instructions move the source operand into a
register then perform the sign extension.

The MOVSX instruction extends an 8-bit value to a 16-bit value or an 8-bit or 16-bit
value to a 32-bit value by sign extending the source operand, as shown in Figure 7-5.
The MOVZX instruction extends an 8-bit value to a 16-bit value or an 8-bit or 16-bit
value to a 32-bit value by zero extending the source operand.

7.3.1.7 Type Conversion Instructions in 64-Bit Mode
The MOVSXD instruction operates on 64-bit data. It sign-extends a 32-bit value to 64
bits. This instruction is not encodable in non-64-bit modes.

Figure 7-5. Sign Extension

31

After Sign
15 0

S N N N N N N N N N NN N N N NSSSSSSSSSSSS SSSS
Extension

Before Sign
15 0

S N N N N N N N N N NN N N N N
Extension
Vol. 1 7-11

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS
7.3.2 Binary Arithmetic Instructions
Binary arithmetic instructions operate on 8-, 16-, and 32-bit numeric data encoded
as signed or unsigned binary integers. The binary arithmetic instructions may also be
used in algorithms that operate on decimal (BCD) values.

For the purpose of this discussion, these instructions are divided subordinate
subgroups of instructions that:
• Add and subtract
• Increment and decrement
• Compare and change signs
• Multiply and divide

7.3.2.1 Addition and Subtraction Instructions
The ADD (add integers), ADC (add integers with carry), SUB (subtract integers), and
SBB (subtract integers with borrow) instructions perform addition and subtraction
operations on signed or unsigned integer operands.

The ADD instruction computes the sum of two integer operands.

The ADC instruction computes the sum of two integer operands, plus 1 if the CF flag
is set. This instruction is used to propagate a carry when adding numbers in stages.

The SUB instruction computes the difference of two integer operands.

The SBB instruction computes the difference of two integer operands, minus 1 if the
CF flag is set. This instruction is used to propagate a borrow when subtracting
numbers in stages.

7.3.2.2 Increment and Decrement Instructions
The INC (increment) and DEC (decrement) instructions add 1 to or subtract 1 from
an unsigned integer operand, respectively. A primary use of these instructions is for
implementing counters.

7.3.2.3 Increment and Decrement Instructions in 64-Bit Mode
The INC and DEC instructions are supported in 64-bit mode. However, some forms of
INC and DEC (the register operand being encoded using register extension field in
the MOD R/M byte) are not encodable in 64-bit mode because the opcodes are
treated as REX prefixes.

7.3.2.4 Comparison and Sign Change Instruction
The CMP (compare) instruction computes the difference between two integer oper-
ands and updates the OF, SF, ZF, AF, PF, and CF flags according to the result. The
7-12 Vol. 1

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS
source operands are not modified, nor is the result saved. The CMP instruction is
commonly used in conjunction with a Jcc (jump) or SETcc (byte set on condition)
instruction, with the latter instructions performing an action based on the result of a
CMP instruction.

The NEG (negate) instruction subtracts a signed integer operand from zero. The
effect of the NEG instruction is to change the sign of a two's complement operand
while keeping its magnitude.

7.3.2.5 Multiplication and Divide Instructions
The processor provides two multiply instructions, MUL (unsigned multiply) and IMUL
signed multiply), and two divide instructions, DIV (unsigned divide) and IDIV (signed
divide).

The MUL instruction multiplies two unsigned integer operands. The result is
computed to twice the size of the source operands (for example, if word operands are
being multiplied, the result is a doubleword).

The IMUL instruction multiplies two signed integer operands. The result is computed
to twice the size of the source operands; however, in some cases the result is trun-
cated to the size of the source operands (see “IMUL—Signed Multiply” in Chapter 3,
“Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2A).

The DIV instruction divides one unsigned operand by another unsigned operand and
returns a quotient and a remainder.

The IDIV instruction is identical to the DIV instruction, except that IDIV performs a
signed division.

7.3.3 Decimal Arithmetic Instructions
Decimal arithmetic can be performed by combining the binary arithmetic instructions
ADD, SUB, MUL, and DIV (discussed in Section 7.3.2, “Binary Arithmetic Instruc-
tions”) with the decimal arithmetic instructions. The decimal arithmetic instructions
are provided to carry out the following operations:
• To adjust the results of a previous binary arithmetic operation to produce a valid

BCD result.
• To adjust the operands of a subsequent binary arithmetic operation so that the

operation will produce a valid BCD result.

These instructions operate on both packed and unpacked BCD values. For the
purpose of this discussion, the decimal arithmetic instructions are divided subordi-
nate subgroups of instructions that provide:
• Packed BCD adjustments
• Unpacked BCD adjustments
Vol. 1 7-13

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS
7.3.3.1 Packed BCD Adjustment Instructions
The DAA (decimal adjust after addition) and DAS (decimal adjust after subtraction)
instructions adjust the results of operations performed on packed BCD integers
(see Section 4.7, “BCD and Packed BCD Integers”). Adding two packed BCD values
requires two instructions: an ADD instruction followed by a DAA instruction. The ADD
instruction adds (binary addition) the two values and stores the result in the AL
register. The DAA instruction then adjusts the value in the AL register to obtain a
valid, 2-digit, packed BCD value and sets the CF flag if a decimal carry occurred as
the result of the addition.

Likewise, subtracting one packed BCD value from another requires a SUB instruction
followed by a DAS instruction. The SUB instruction subtracts (binary subtraction) one
BCD value from another and stores the result in the AL register. The DAS instruction
then adjusts the value in the AL register to obtain a valid, 2-digit, packed BCD value
and sets the CF flag if a decimal borrow occurred as the result of the subtraction.

7.3.3.2 Unpacked BCD Adjustment Instructions
The AAA (ASCII adjust after addition), AAS (ASCII adjust after subtraction), AAM
(ASCII adjust after multiplication), and AAD (ASCII adjust before division) instruc-
tions adjust the results of arithmetic operations performed in unpacked BCD
values (see Section 4.7, “BCD and Packed BCD Integers”). All these instructions
assume that the value to be adjusted is stored in the AL register or, in one instance,
the AL and AH registers.

The AAA instruction adjusts the contents of the AL register following the addition of
two unpacked BCD values. It converts the binary value in the AL register into a
decimal value and stores the result in the AL register in unpacked BCD format (the
decimal number is stored in the lower 4 bits of the register and the upper 4 bits are
cleared). If a decimal carry occurred as a result of the addition, the CF flag is set and
the contents of the AH register are incremented by 1.

The AAS instruction adjusts the contents of the AL register following the subtraction
of two unpacked BCD values. Here again, a binary value is converted into an
unpacked BCD value. If a borrow was required to complete the decimal subtract, the
CF flag is set and the contents of the AH register are decremented by 1.

The AAM instruction adjusts the contents of the AL register following a multiplication
of two unpacked BCD values. It converts the binary value in the AL register into a
decimal value and stores the least significant digit of the result in the AL register (in
unpacked BCD format) and the most significant digit, if there is one, in the AH
register (also in unpacked BCD format).

The AAD instruction adjusts a two-digit BCD value so that when the value is divided
with the DIV instruction, a valid unpacked BCD result is obtained. The instruction
converts the BCD value in registers AH (most significant digit) and AL (least signifi-
cant digit) into a binary value and stores the result in register AL. When the value in
AL is divided by an unpacked BCD value, the quotient and remainder will be automat-
ically encoded in unpacked BCD format.
7-14 Vol. 1

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS
7.3.4 Decimal Arithmetic Instructions in 64-Bit Mode
Decimal arithmetic instructions are not supported in 64-bit mode, They are either
invalid or not encodable.

7.3.5 Logical Instructions
The logical instructions AND, OR, XOR (exclusive or), and NOT perform the standard
Boolean operations for which they are named. The AND, OR, and XOR instructions
require two operands; the NOT instruction operates on a single operand.

7.3.6 Shift and Rotate Instructions
The shift and rotate instructions rearrange the bits within an operand. For the
purpose of this discussion, these instructions are further divided subordinate
subgroups of instructions that:
• Shift bits
• Double-shift bits (move them between operands)
• Rotate bits

7.3.6.1 Shift Instructions
The SAL (shift arithmetic left), SHL (shift logical left), SAR (shift arithmetic right),
SHR (shift logical right) instructions perform an arithmetic or logical shift of the bits
in a byte, word, or doubleword.

The SAL and SHL instructions perform the same operation (see Figure 7-6). They
shift the source operand left by from 1 to 31 bit positions. Empty bit positions are
cleared. The CF flag is loaded with the last bit shifted out of the operand.
Vol. 1 7-15

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS
The SHR instruction shifts the source operand right by from 1 to 31 bit positions (see
Figure 7-7). As with the SHL/SAL instruction, the empty bit positions are cleared and
the CF flag is loaded with the last bit shifted out of the operand.

Figure 7-6. SHL/SAL Instruction Operation

Figure 7-7. SHR Instruction Operation

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1X

Initial State

CF

0

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 01

After 1-bit SHL/SAL Instruction

0

0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 00

After 10-bit SHL/SAL Instruction

Operand

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 X

Initial State CF

0

0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1

After 1-bit SHR Instruction

0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0

After 10-bit SHR Instruction

Operand
7-16 Vol. 1

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS
The SAR instruction shifts the source operand right by from 1 to 31 bit positions (see
Figure 7-8). This instruction differs from the SHR instruction in that it preserves the
sign of the source operand by clearing empty bit positions if the operand is positive or
setting the empty bits if the operand is negative. Again, the CF flag is loaded with the
last bit shifted out of the operand.

The SAR and SHR instructions can also be used to perform division by powers of
2 (see “SAL/SAR/SHL/SHR—Shift Instructions” in Chapter 4, “Instruction Set Refer-
ence, M-Z,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2B).

7.3.6.2 Double-Shift Instructions
The SHLD (shift left double) and SHRD (shift right double) instructions shift a speci-
fied number of bits from one operand to another (see Figure 7-9). They are provided
to facilitate operations on unaligned bit strings. They can also be used to implement a
variety of bit string move operations.

Figure 7-8. SAR Instruction Operation

0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 X

Initial State (Positive Operand) CF

0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1

After 1-bit SAR Instruction

1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 X

Initial State (Negative Operand)

Operand

1 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1

After 1-bit SAR Instruction

CF
Vol. 1 7-17

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS
The SHLD instruction shifts the bits in the destination operand to the left and fills the
empty bit positions (in the destination operand) with bits shifted out of the source
operand. The destination and source operands must be the same length (either
words or doublewords). The shift count can range from 0 to 31 bits. The result of this
shift operation is stored in the destination operand, and the source operand is not
modified. The CF flag is loaded with the last bit shifted out of the destination operand.

The SHRD instruction operates the same as the SHLD instruction except bits are
shifted to the right in the destination operand, with the empty bit positions filled with
bits shifted out of the source operand.

7.3.6.3 Rotate Instructions
The ROL (rotate left), ROR (rotate right), RCL (rotate through carry left) and RCR
(rotate through carry right) instructions rotate the bits in the destination operand out
of one end and back through the other end (see Figure 7-10). Unlike a shift, no bits
are lost during a rotation. The rotate count can range from 0 to 31.

Figure 7-9. SHLD and SHRD Instruction Operations

Destination (Memory or Register)CF

31 0

Source (Register)

31 0

Destination (Memory or Register) CF

31 0

Source (Register)

31 0

SHRD Instruction

SHLD Instruction
7-18 Vol. 1

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS
The ROL instruction rotates the bits in the operand to the left (toward more signifi-
cant bit locations). The ROR instruction rotates the operand right (toward less signif-
icant bit locations).

The RCL instruction rotates the bits in the operand to the left, through the CF flag.
This instruction treats the CF flag as a one-bit extension on the upper end of the
operand. Each bit that exits from the most significant bit location of the operand
moves into the CF flag. At the same time, the bit in the CF flag enters the least signif-
icant bit location of the operand.

The RCR instruction rotates the bits in the operand to the right through the CF flag.

For all the rotate instructions, the CF flag always contains the value of the last bit
rotated out of the operand, even if the instruction does not use the CF flag as an
extension of the operand. The value of this flag can then be tested by a conditional
jump instruction (JC or JNC).

Figure 7-10. ROL, ROR, RCL, and RCR Instruction Operations

Destination (Memory or Register)CF

31 0

Destination (Memory or Register) CF

031

Destination (Memory or Register)CF

31 0

Destination (Memory or Register) CF

31 0

ROL Instruction

RCL Instruction

RCR Instruction

ROR Instruction
Vol. 1 7-19

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS
7.3.7 Bit and Byte Instructions
These instructions operate on bit or byte strings. For the purpose of this discussion,
they are further divided subordinate subgroups that:
• Test and modify a single bit
• Scan a bit string
• Set a byte given conditions
• Test operands and report results

7.3.7.1 Bit Test and Modify Instructions
The bit test and modify instructions (see Table 7-3) operate on a single bit, which can
be in an operand. The location of the bit is specified as an offset from the least signif-
icant bit of the operand. When the processor identifies the bit to be tested and modi-
fied, it first loads the CF flag with the current value of the bit. Then it assigns a new
value to the selected bit, as determined by the modify operation for the instruction.

7.3.7.2 Bit Scan Instructions
The BSF (bit scan forward) and BSR (bit scan reverse) instructions scan a bit string in
a source operand for a set bit and store the bit index of the first set bit found in a
destination register. The bit index is the offset from the least significant bit (bit 0) in
the bit string to the first set bit. The BSF instruction scans the source operand low-to-
high (from bit 0 of the source operand toward the most significant bit); the BSR
instruction scans high-to-low (from the most significant bit toward the least signifi-
cant bit).

7.3.7.3 Byte Set on Condition Instructions
The SETcc (set byte on condition) instructions set a destination-operand byte to 0 or
1, depending on the state of selected status flags (CF, OF, SF, ZF, and PF) in the
EFLAGS register. The suffix (cc) added to the SET mnemonic determines the condi-
tion being tested for.

For example, the SETO instruction tests for overflow. If the OF flag is set, the desti-
nation byte is set to 1; if OF is clear, the destination byte is cleared to 0. Appendix B,

Table 7-3. Bit Test and Modify Instructions

Instruction Effect on CF Flag Effect on Selected Bit

BT (Bit Test) CF flag ← Selected Bit No effect

BTS (Bit Test and Set) CF flag ← Selected Bit Selected Bit ← 1

BTR (Bit Test and Reset) CF flag ← Selected Bit Selected Bit ← 0

BTC (Bit Test and
Complement)

CF flag ← Selected Bit Selected Bit ← NOT (Selected Bit)
7-20 Vol. 1

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS
“EFLAGS Condition Codes,” lists the conditions it is possible to test for with this
instruction.

7.3.7.4 Test Instruction
The TEST instruction performs a logical AND of two operands and sets the SF, ZF, and
PF flags according to the results. The flags can then be tested by the conditional jump
or loop instructions or the SETcc instructions. The TEST instruction differs from the
AND instruction in that it does not alter either of the operands.

7.3.8 Control Transfer Instructions
The processor provides both conditional and unconditional control transfer instruc-
tions to direct the flow of program execution. Conditional transfers are taken only for
specified states of the status flags in the EFLAGS register. Unconditional control
transfers are always executed.

For the purpose of this discussion, these instructions are further divided subordinate
subgroups that process:
• Unconditional transfers
• Conditional transfers
• Software interrupts

7.3.8.1 Unconditional Transfer Instructions
The JMP, CALL, RET, INT, and IRET instructions transfer program control to another
location (destination address) in the instruction stream. The destination can be
within the same code segment (near transfer) or in a different code segment (far
transfer).

Jump instruction — The JMP (jump) instruction unconditionally transfers program
control to a destination instruction. The transfer is one-way; that is, a return address
is not saved. A destination operand specifies the address (the instruction pointer) of
the destination instruction. The address can be a relative address or an absolute
address.

A relative address is a displacement (offset) with respect to the address in the EIP
register. The destination address (a near pointer) is formed by adding the displace-
ment to the address in the EIP register. The displacement is specified with a signed
integer, allowing jumps either forward or backward in the instruction stream.

An absolute address is a offset from address 0 of a segment. It can be specified in
either of the following ways:
• An address in a general-purpose register — This address is treated as a near

pointer, which is copied into the EIP register. Program execution then continues at
the new address within the current code segment.
Vol. 1 7-21

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS
• An address specified using the standard addressing modes of the
processor — Here, the address can be a near pointer or a far pointer. If the
address is for a near pointer, the address is translated into an offset and copied
into the EIP register. If the address is for a far pointer, the address is translated
into a segment selector (which is copied into the CS register) and an offset
(which is copied into the EIP register).

In protected mode, the JMP instruction also allows jumps to a call gate, a task gate,
and a task-state segment.

Call and return instructions — The CALL (call procedure) and RET (return from
procedure) instructions allow a jump from one procedure (or subroutine) to another
and a subsequent jump back (return) to the calling procedure.

The CALL instruction transfers program control from the current (or calling proce-
dure) to another procedure (the called procedure). To allow a subsequent return to
the calling procedure, the CALL instruction saves the current contents of the EIP
register on the stack before jumping to the called procedure. The EIP register (prior
to transferring program control) contains the address of the instruction following the
CALL instruction. When this address is pushed on the stack, it is referred to as the
return instruction pointer or return address.

The address of the called procedure (the address of the first instruction in the proce-
dure being jumped to) is specified in a CALL instruction the same way as it is in a JMP
instruction (see “Jump instruction” on page 7-21). The address can be specified as a
relative address or an absolute address. If an absolute address is specified, it can be
either a near or a far pointer.

The RET instruction transfers program control from the procedure currently being
executed (the called procedure) back to the procedure that called it (the calling
procedure). Transfer of control is accomplished by copying the return instruction
pointer from the stack into the EIP register. Program execution then continues with
the instruction pointed to by the EIP register.

The RET instruction has an optional operand, the value of which is added to the
contents of the ESP register as part of the return operation. This operand allows the
stack pointer to be incremented to remove parameters from the stack that were
pushed on the stack by the calling procedure.

See Section 6.3, “Calling Procedures Using CALL and RET,” for more information on
the mechanics of making procedure calls with the CALL and RET instructions.

Return from interrupt instruction — When the processor services an interrupt, it
performs an implicit call to an interrupt-handling procedure. The IRET (return from
interrupt) instruction returns program control from an interrupt handler to the inter-
rupted procedure (that is, the procedure that was executing when the interrupt
occurred). The IRET instruction performs a similar operation to the RET instruction
(see “Call and return instructions” on page 7-22) except that it also restores the
EFLAGS register from the stack. The contents of the EFLAGS register are automati-
cally stored on the stack along with the return instruction pointer when the processor
services an interrupt.
7-22 Vol. 1

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS
7.3.8.2 Conditional Transfer Instructions
The conditional transfer instructions execute jumps or loops that transfer program
control to another instruction in the instruction stream if specified conditions are
met. The conditions for control transfer are specified with a set of condition codes
that define various states of the status flags (CF, ZF, OF, PF, and SF) in the EFLAGS
register.

Conditional jump instructions — The Jcc (conditional) jump instructions transfer
program control to a destination instruction if the conditions specified with the condi-
tion code (cc) associated with the instruction are satisfied (see Table 7-4). If the
condition is not satisfied, execution continues with the instruction following the Jcc
instruction. As with the JMP instruction, the transfer is one-way; that is, a return
address is not saved.

Table 7-4. Conditional Jump Instructions
Instruction Mnemonic Condition (Flag States) Description

Unsigned Conditional Jumps

 JA/JNBE (CF or ZF) = 0 Above/not below or equal

 JAE/JNB CF = 0 Above or equal/not below

 JB/JNAE CF = 1 Below/not above or equal

 JBE/JNA (CF or ZF) = 1 Below or equal/not above

 JC CF = 1 Carry

 JE/JZ ZF = 1 Equal/zero

 JNC CF = 0 Not carry

 JNE/JNZ ZF = 0 Not equal/not zero

 JNP/JPO PF = 0 Not parity/parity odd

 JP/JPE PF = 1 Parity/parity even

 JCXZ CX = 0 Register CX is zero

 JECXZ ECX = 0 Register ECX is zero

Signed Conditional Jumps

 JG/JNLE ((SF xor OF) or ZF) = 0 Greater/not less or equal

 JGE/JNL (SF xor OF) = 0 Greater or equal/not less

 JL/JNGE (SF xor OF) = 1 Less/not greater or equal

 JLE/JNG ((SF xor OF) or ZF) = 1 Less or equal/not greater

 JNO OF = 0 Not overflow

 JNS SF = 0 Not sign (non-negative)

 JO OF = 1 Overflow

 JS SF = 1 Sign (negative)
Vol. 1 7-23

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS
The destination operand specifies a relative address (a signed offset with respect to
the address in the EIP register) that points to an instruction in the current code
segment. The Jcc instructions do not support far transfers; however, far transfers can
be accomplished with a combination of a Jcc and a JMP instruction (see “Jcc—Jump if
Condition Is Met” in Chapter 3, “Instruction Set Reference, A-L,” of the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 2A).

Table 7-4 shows the mnemonics for the Jcc instructions and the conditions being
tested for each instruction. The condition code mnemonics are appended to the letter
“J” to form the mnemonic for a Jcc instruction. The instructions are divided into two
groups: unsigned and signed conditional jumps. These groups correspond to the
results of operations performed on unsigned and signed integers respectively. Those
instructions listed as pairs (for example, JA/JNBE) are alternate names for the same
instruction. Assemblers provide alternate names to make it easier to read program
listings.

The JCXZ and JECXZ instructions test the CX and ECX registers, respectively, instead
of one or more status flags. See “Jump if zero instructions” on page 7-25 for more
information about these instructions.

Loop instructions — The LOOP, LOOPE (loop while equal), LOOPZ (loop while zero),
LOOPNE (loop while not equal), and LOOPNZ (loop while not zero) instructions are
conditional jump instructions that use the value of the ECX register as a count for the
number of times to execute a loop. All the loop instructions decrement the count in
the ECX register each time they are executed and terminate a loop when zero is
reached. The LOOPE, LOOPZ, LOOPNE, and LOOPNZ instructions also accept the ZF
flag as a condition for terminating the loop before the count reaches zero.

The LOOP instruction decrements the contents of the ECX register (or the CX register,
if the address-size attribute is 16), then tests the register for the loop-termination
condition. If the count in the ECX register is non-zero, program control is transferred
to the instruction address specified by the destination operand. The destination
operand is a relative address (that is, an offset relative to the contents of the EIP
register), and it generally points to the first instruction in the block of code that is to
be executed in the loop. When the count in the ECX register reaches zero, program
control is transferred to the instruction immediately following the LOOP instruc-
tion, which terminates the loop. If the count in the ECX register is zero when the
LOOP instruction is first executed, the register is pre-decremented to FFFFFFFFH,
causing the loop to be executed 232 times.

The LOOPE and LOOPZ instructions perform the same operation (they are
mnemonics for the same instruction). These instructions operate the same as the
LOOP instruction, except that they also test the ZF flag.

If the count in the ECX register is not zero and the ZF flag is set, program control is
transferred to the destination operand. When the count reaches zero or the ZF flag is
clear, the loop is terminated by transferring program control to the instruction imme-
diately following the LOOPE/LOOPZ instruction.
7-24 Vol. 1

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS
The LOOPNE and LOOPNZ instructions (mnemonics for the same instruction) operate
the same as the LOOPE/LOOPPZ instructions, except that they terminate the loop if
the ZF flag is set.

Jump if zero instructions — The JECXZ (jump if ECX zero) instruction jumps to the
location specified in the destination operand if the ECX register contains the value
zero. This instruction can be used in combination with a loop instruction (LOOP,
LOOPE, LOOPZ, LOOPNE, or LOOPNZ) to test the ECX register prior to beginning a
loop. As described in “Loop instructions on page 7-24, the loop instructions decre-
ment the contents of the ECX register before testing for zero. If the value in the ECX
register is zero initially, it will be decremented to FFFFFFFFH on the first loop instruc-
tion, causing the loop to be executed 232 times. To prevent this problem, a JECXZ
instruction can be inserted at the beginning of the code block for the loop, causing a
jump out the loop if the EAX register count is initially zero. When used with repeated
string scan and compare instructions, the JECXZ instruction can determine whether
the loop terminated because the count reached zero or because the scan or compare
conditions were satisfied.

The JCXZ (jump if CX is zero) instruction operates the same as the JECXZ instruction
when the 16-bit address-size attribute is used. Here, the CX register is tested for
zero.

7.3.8.3 Control Transfer Instructions in 64-Bit Mode
In 64-bit mode, the operand size for all near branches (CALL, RET, JCC, JCXZ, JMP,
and LOOP) is forced to 64 bits. The listed instructions update the 64-bit RIP without
need for a REX operand-size prefix.

Near branches in the following operations are forced to 64-bits (regardless of
operand size prefixes):
• Truncation of the size of the instruction pointer
• Size of a stack pop or push, due to CALL or RET
• Size of a stack-pointer increment or decrement, due to CALL or RET
• Indirect-branch operand size

Note that the displacement field for relative branches is still limited to 32 bits and the
address size for near branches is not forced.

Address size determines the register size (CX/ECX/RCX) used for JCXZ and LOOP. It
also impacts the address calculation for memory indirect branches. Addresses size is
64 bits by default, although it can be over-ridden to 32 bits (using a prefix).

7.3.8.4 Software Interrupt Instructions
The INT n (software interrupt), INTO (interrupt on overflow), and BOUND (detect
value out of range) instructions allow a program to explicitly raise a specified inter-
rupt or exception, which in turn causes the handler routine for the interrupt or excep-
tion to be called.
Vol. 1 7-25

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS
The INT n instruction can raise any of the processor’s interrupts or exceptions by
encoding the vector number or the interrupt or exception in the instruction. This
instruction can be used to support software generated interrupts or to test the oper-
ation of interrupt and exception handlers.

The IRET (return from interrupt) instruction returns program control from an inter-
rupt handler to the interrupted procedure. The IRET instruction performs a similar
operation to the RET instruction.

The CALL (call procedure) and RET (return from procedure) instructions allow a jump
from one procedure to another and a subsequent return to the calling procedure.
EFLAGS register contents are automatically stored on the stack along with the return
instruction pointer when the processor services an interrupt.

The INTO instruction raises the overflow exception if the OF flag is set. If the flag is
clear, execution continues without raising the exception. This instruction allows soft-
ware to access the overflow exception handler explicitly to check for overflow condi-
tions.

The BOUND instruction compares a signed value against upper and lower bounds,
and raises the “BOUND range exceeded” exception if the value is less than the lower
bound or greater than the upper bound. This instruction is useful for operations such
as checking an array index to make sure it falls within the range defined for the array.

7.3.8.5 Software Interrupt Instructions in 64-bit Mode and Compatibility
Mode

In 64-bit mode, the stack size is 8 bytes wide. IRET must pop 8-byte items off the
stack. SS:RSP pops unconditionally. BOUND is not supported.

In compatibility mode, SS:RSP is popped only if the CPL changes.

7.3.9 String Operations
The GP instructions includes a set of string instructions that are designed to access
large data structures; these are introduced in Section 7.3.9.1. Section 7.3.9.2
describes how REP prefixes can be used with these instructions to perform more
complex repeated string operations. Certain processors optimize repeated string
operations with fast-string operation, as described in Section 7.3.9.3. Section
7.3.9.4 explains how string operations can be used in 64-bit mode.

7.3.9.1 String Instructions
The MOVS (Move String), CMPS (Compare string), SCAS (Scan string), LODS (Load
string), and STOS (Store string) instructions permit large data structures, such as
alphanumeric character strings, to be moved and examined in memory. These
instructions operate on individual elements in a string, which can be a byte, word, or
doubleword. The string elements to be operated on are identified with the ESI
(source string element) and EDI (destination string element) registers. Both of these
7-26 Vol. 1

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS
registers contain absolute addresses (offsets into a segment) that point to a string
element.

By default, the ESI register addresses the segment identified with the DS segment
register. A segment-override prefix allows the ESI register to be associated with the
CS, SS, ES, FS, or GS segment register. The EDI register addresses the segment
identified with the ES segment register; no segment override is allowed for the EDI
register. The use of two different segment registers in the string instructions permits
operations to be performed on strings located in different segments. Or by associ-
ating the ESI register with the ES segment register, both the source and destination
strings can be located in the same segment. (This latter condition can also be
achieved by loading the DS and ES segment registers with the same segment
selector and allowing the ESI register to default to the DS register.)

The MOVS instruction moves the string element addressed by the ESI register to the
location addressed by the EDI register. The assembler recognizes three “short forms”
of this instruction, which specify the size of the string to be moved: MOVSB (move
byte string), MOVSW (move word string), and MOVSD (move doubleword string).

The CMPS instruction subtracts the destination string element from the source string
element and updates the status flags (CF, ZF, OF, SF, PF, and AF) in the EFLAGS
register according to the results. Neither string element is written back to memory.
The assembler recognizes three “short forms” of the CMPS instruction: CMPSB
(compare byte strings), CMPSW (compare word strings), and CMPSD (compare
doubleword strings).

The SCAS instruction subtracts the destination string element from the contents of
the EAX, AX, or AL register (depending on operand length) and updates the status
flags according to the results. The string element and register contents are not modi-
fied. The following “short forms” of the SCAS instruction specify the operand length:
SCASB (scan byte string), SCASW (scan word string), and SCASD (scan doubleword
string).

The LODS instruction loads the source string element identified by the ESI register
into the EAX register (for a doubleword string), the AX register (for a word string), or
the AL register (for a byte string). The “short forms” for this instruction are LODSB
(load byte string), LODSW (load word string), and LODSD (load doubleword string).
This instruction is usually used in a loop, where other instructions process each
element of the string after they are loaded into the target register.

The STOS instruction stores the source string element from the EAX (doubleword
string), AX (word string), or AL (byte string) register into the memory location iden-
tified with the EDI register. The “short forms” for this instruction are STOSB (store
byte string), STOSW (store word string), and STOSD (store doubleword string). This
instruction is also normally used in a loop. Here a string is commonly loaded into
the register with a LODS instruction, operated on by other instructions, and then
stored again in memory with a STOS instruction.

The I/O instructions (see Section 7.3.10, “I/O Instructions”) also perform operations
on strings in memory.
Vol. 1 7-27

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS
7.3.9.2 Repeated String Operations
Each of the string instructions described in Section 7.3.9.1 each perform one itera-
tion of a string operation. To operate strings longer than a doubleword, the string
instructions can be combined with a repeat prefix (REP) to create a repeating instruc-
tion or be placed in a loop.

When used in string instructions, the ESI and EDI registers are automatically incre-
mented or decremented after each iteration of an instruction to point to the next
element (byte, word, or doubleword) in the string. String operations can thus begin
at higher addresses and work toward lower ones, or they can begin at lower
addresses and work toward higher ones. The DF flag in the EFLAGS register controls
whether the registers are incremented (DF = 0) or decremented (DF = 1). The STD
and CLD instructions set and clear this flag, respectively.

The following repeat prefixes can be used in conjunction with a count in the ECX
register to cause a string instruction to repeat:
• REP — Repeat while the ECX register not zero.
• REPE/REPZ — Repeat while the ECX register not zero and the ZF flag is set.
• REPNE/REPNZ — Repeat while the ECX register not zero and the ZF flag is clear.

When a string instruction has a repeat prefix, the operation executes until one of the
termination conditions specified by the prefix is satisfied. The REPE/REPZ and
REPNE/REPNZ prefixes are used only with the CMPS and SCAS instructions. Also,
note that a REP STOS instruction is the fastest way to initialize a large block of
memory.

7.3.9.3 Fast-String Operation
To improve performance, more recent processors support modifications to the
processor’s operation during the string store operations initiated with the MOVS,
MOVSB, STOS, and STOSB instructions. This optimized operation, called fast-string
operation, is used when the execution of one of those instructions meets certain
initial conditions (see below). Instructions using fast-string operation effectively
operate on the string in groups that may include multiple elements of the native data
size (byte, word, doubleword, or quadword). With fast-string operation, the
processor recognizes interrupts and data breakpoints only on boundaries between
these groups. Fast-string operation is used only if the source and destination
addresses both use either the WB or WC memory types.

The initial conditions for fast-string operation are implementation-specific and may
vary with the native string size. Examples of parameters that may impact the use of
fast-string operation include the following:
• the alignment indicated in the EDI and ESI alignment registers;
• the address order of the string operation;
• the value of the initial operation counter (ECX); and
• the difference between the source and destination addresses.
7-28 Vol. 1

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS
NOTE
Initial conditions for fast-string operation in future Intel 64 or IA-32
processor families may differ from above. The Intel® 64 and IA-32
Architectures Optimization Reference Manual may contain model-
specific information.

Software can disable fast-string operation by clearing the fast-string-enable bit (bit
0) of IA32_MISC_ENABLE MSR. However, Intel recommends that system software
always enable fast-string operation.

When fast-string operation is enabled (because IA32_MISC_ENABLE[0] = 1), some
processors may further enhance the operation of the REP MOVSB and REP STOSB
instructions. A processors supports these enhancements if
CPUID.(EAX=07H, ECX=0H):EBX[bit 9] is 1. The Intel® 64 and IA-32 Architectures
Optimization Reference Manual may include model-specific recommendations for use
of these enhancements.

The stores produced by fast-string operation may appear to execute out of order.
Software dependent upon sequential store ordering should not use string operations
for the entire data structure to be stored. Data and semaphores should be separated.
Order-dependent code should write to a discrete semaphore variable after any string
operations to allow correctly ordered data to be seen by all processors. Atomicity of
load and store operations is guaranteed only for native data elements of the string
with native data size, and only if they are included in a single cache line. See Section
8.2.4, “Fast-String Operation and Out-of-Order Stores” of Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3A.

7.3.9.4 String Operations in 64-Bit Mode
The behavior of MOVS (Move String), CMPS (Compare string), SCAS (Scan string),
LODS (Load string), and STOS (Store string) instructions in 64-bit mode is similar to
their behavior in non-64-bit modes, with the following differences:
• The source operand is specified by RSI or DS:ESI, depending on the address size

attribute of the operation.
• The destination operand is specified by RDI or DS:EDI, depending on the address

size attribute of the operation.
• Operation on 64-bit data is supported by using the REX.W prefix.

When using REP prefixes for string operations in 64-bit mode, the repeat count is
specified by RCX or ECX (depending on the address size attribute of the operation).
The default address size is 64 bits.

7.3.10 I/O Instructions
The IN (input from port to register), INS (input from port to string), OUT (output
from register to port), and OUTS (output string to port) instructions move data
between the processor’s I/O ports and either a register or memory.
Vol. 1 7-29

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS
The register I/O instructions (IN and OUT) move data between an I/O port and the
EAX register (32-bit I/O), the AX register (16-bit I/O), or the AL (8-bit I/O) register.
The I/O port being read or written to is specified with an immediate operand or an
address in the DX register.

The block I/O instructions (INS and OUTS) instructions move blocks of data (strings)
between an I/O port and memory. These instructions operate similar to the string
instructions (see Section 7.3.9, “String Operations”). The ESI and EDI registers are
used to specify string elements in memory and the repeat prefixes (REP) are used to
repeat the instructions to implement block moves. The assembler recognizes the
following alternate mnemonics for these instructions: INSB (input byte), INSW (input
word), and INSD (input doubleword), and OUTB (output byte), OUTW (output word),
and OUTD (output doubleword).

The INS and OUTS instructions use an address in the DX register to specify the I/O
port to be read or written to.

7.3.11 I/O Instructions in 64-Bit Mode
For I/O instructions to and from memory, the differences in 64-bit mode are:
• The source operand is specified by RSI or DS:ESI, depending on the address size

attribute of the operation.
• The destination operand is specified by RDI or DS:EDI, depending on the address

size attribute of the operation.
• Operation on 64-bit data is not encodable and REX prefixes are silently ignored.

7.3.12 Enter and Leave Instructions
The ENTER and LEAVE instructions provide machine-language support for procedure
calls in block-structured languages, such as C and Pascal. These instructions and the
call and return mechanism that they support are described in detail in Section 6.5,
“Procedure Calls for Block-Structured Languages”.

7.3.13 Flag Control (EFLAG) Instructions
The Flag Control (EFLAG) instructions allow the state of selected flags in the EFLAGS
register to be read or modified. For the purpose of this discussion, these instructions
are further divided subordinate subgroups of instructions that manipulate:
• Carry and direction flags
• The EFLAGS register
• Interrupt flags
7-30 Vol. 1

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS
7.3.13.1 Carry and Direction Flag Instructions
The STC (set carry flag), CLC (clear carry flag), and CMC (complement carry flag)
instructions allow the CF flags in the EFLAGS register to be modified directly. They
are typically used to initialize the CF flag to a known state before an instruction that
uses the flag in an operation is executed. They are also used in conjunction with the
rotate-with-carry instructions (RCL and RCR).

The STD (set direction flag) and CLD (clear direction flag) instructions allow the DF
flag in the EFLAGS register to be modified directly. The DF flag determines the direc-
tion in which index registers ESI and EDI are stepped when executing string
processing instructions. If the DF flag is clear, the index registers are incremented
after each iteration of a string instruction; if the DF flag is set, the registers are
decremented.

7.3.13.2 EFLAGS Transfer Instructions
The EFLAGS transfer instructions allow groups of flags in the EFLAGS register to be
copied to a register or memory or be loaded from a register or memory.

The LAHF (load AH from flags) and SAHF (store AH into flags) instructions operate on
five of the EFLAGS status flags (SF, ZF, AF, PF, and CF). The LAHF instruction copies
the status flags to bits 7, 6, 4, 2, and 0 of the AH register, respectively. The contents
of the remaining bits in the register (bits 5, 3, and 1) are unaffected, and the
contents of the EFLAGS register remain unchanged. The SAHF instruction copies bits
7, 6, 4, 2, and 0 from the AH register into the SF, ZF, AF, PF, and CF flags, respec-
tively in the EFLAGS register.

The PUSHF (push flags), PUSHFD (push flags double), POPF (pop flags), and POPFD
(pop flags double) instructions copy the flags in the EFLAGS register to and from the
stack. The PUSHF instruction pushes the lower word of the EFLAGS register onto the
stack (see Figure 7-11). The PUSHFD instruction pushes the entire EFLAGS register
onto the stack (with the RF and VM flags read as clear).

The POPF instruction pops a word from the stack into the EFLAGS register. Only bits
11, 10, 8, 7, 6, 4, 2, and 0 of the EFLAGS register are affected with all uses of this
instruction. If the current privilege level (CPL) of the current code segment is 0 (most

Figure 7-11. Flags Affected by the PUSHF, POPF, PUSHFD, and POPFD Instructions

PUSHFD/POPFD

PUSHF/POPF

31 2930 28 27 26 25 24 23 22 21 20 19 18 17 16

0 R
F

I
D

A
C

V
M

15 1314 12 11 10 9 8 7 6 5 4 3 2 1 0

0 C
F

A
F

P
F 1D

F
I
F

T
F

S
F

Z
F

N
T 000 0 0 0 0 0 0 0 0

V
I
P

V
I
F

O
F

I
O
P
L

Vol. 1 7-31

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS
privileged), the IOPL bits (bits 13 and 12) also are affected. If the I/O privilege level
(IOPL) is greater than or equal to the CPL, numerically, the IF flag (bit 9) also is
affected.

The POPFD instruction pops a doubleword into the EFLAGS register. This instruction
can change the state of the AC bit (bit 18) and the ID bit (bit 21), as well as the bits
affected by a POPF instruction. The restrictions for changing the IOPL bits and the IF
flag that were given for the POPF instruction also apply to the POPFD instruction.

7.3.13.3 Interrupt Flag Instructions
The STI (set interrupt flag) and CTI (clear interrupt flag) instructions allow the inter-
rupt IF flag in the EFLAGS register to be modified directly. The IF flag controls the
servicing of hardware-generated interrupts (those received at the processor’s INTR
pin). If the IF flag is set, the processor services hardware interrupts; if the IF flag is
clear, hardware interrupts are masked.

The ability to execute these instructions depends on the operating mode of the
processor and the current privilege level (CPL) of the program or task attempting to
execute these instructions.

7.3.14 Flag Control (RFLAG) Instructions in 64-Bit Mode
In 64-bit mode, the LAHF and SAHF instructions are supported if
CPUID.80000001H:ECX.LAHF-SAHF[bit 0] = 1.

PUSHF and POPF behave the same in 64-bit mode as in non-64-bit mode. PUSHFD
always pushes 64-bit RFLAGS onto the stack (with the RF and VM flags read as clear).
POPFD always pops a 64-bit value from the top of the stack and loads the lower 32
bits into RFLAGS. It then zero extends the upper bits of RFLAGS.

7.3.15 Segment Register Instructions
The processor provides a variety of instructions that address the segment registers
of the processor directly. These instructions are only used when an operating system
or executive is using the segmented or the real-address mode memory model.

For the purpose of this discussion, these instructions are divided subordinate
subgroups of instructions that allow:
• Segment-register load and store
• Far control transfers
• Software interrupt calls
• Handling of far pointers
7-32 Vol. 1

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS
7.3.15.1 Segment-Register Load and Store Instructions
The MOV instruction (introduced in Section 7.3.1.1, “General Data Movement
Instructions”) and the PUSH and POP instructions (introduced in Section 7.3.1.4,
“Stack Manipulation Instructions”) can transfer 16-bit segment selectors to and from
segment registers (DS, ES, FS, GS, and SS). The transfers are always made to or
from a segment register and a general-purpose register or memory. Transfers
between segment registers are not supported.

The POP and MOV instructions cannot place a value in the CS register. Only the far
control-transfer versions of the JMP, CALL, and RET instructions (see Section
7.3.15.2, “Far Control Transfer Instructions”) affect the CS register directly.

7.3.15.2 Far Control Transfer Instructions
The JMP and CALL instructions (see Section 7.3.8, “Control Transfer Instructions”)
both accept a far pointer as a source operand to transfer program control to a
segment other than the segment currently being pointed to by the CS register. When
a far call is made with the CALL instruction, the current values of the EIP and CS
registers are both pushed on the stack.

The RET instruction (see “Call and return instructions” on page 7-22) can be used to
execute a far return. Here, program control is transferred from a code segment that
contains a called procedure back to the code segment that contained the calling
procedure. The RET instruction restores the values of the CS and EIP registers for the
calling procedure from the stack.

7.3.15.3 Software Interrupt Instructions
The software interrupt instructions INT, INTO, BOUND, and IRET (see Section
7.3.8.4, “Software Interrupt Instructions”) can also call and return from interrupt
and exception handler procedures that are located in a code segment other than the
current code segment. With these instructions, however, the switching of code
segments is handled transparently from the application program.

7.3.15.4 Load Far Pointer Instructions
The load far pointer instructions LDS (load far pointer using DS), LES (load far
pointer using ES), LFS (load far pointer using FS), LGS (load far pointer using GS),
and LSS (load far pointer using SS) load a far pointer from memory into a segment
register and a general-purpose general register. The segment selector part of the far
pointer is loaded into the selected segment register and the offset is loaded into the
selected general-purpose register.
Vol. 1 7-33

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS
7.3.16 Miscellaneous Instructions
The following instructions perform operations that are of interest to applications
programmers. For the purpose of this discussion, these instructions are further
divided into subordinate subgroups of instructions that provide for:
• Address computations
• Table lookup
• Processor identification
• NOP and undefined instruction entry

7.3.16.1 Address Computation Instruction
The LEA (load effective address) instruction computes the effective address in
memory (offset within a segment) of a source operand and places it in a general-
purpose register. This instruction can interpret any of the processor’s addressing
modes and can perform any indexing or scaling that may be needed. It is especially
useful for initializing the ESI or EDI registers before the execution of string instruc-
tions or for initializing the EBX register before an XLAT instruction.

7.3.16.2 Table Lookup Instructions
The XLAT and XLATB (table lookup) instructions replace the contents of the AL
register with a byte read from a translation table in memory. The initial value in the
AL register is interpreted as an unsigned index into the translation table. This index
is added to the contents of the EBX register (which contains the base address of the
table) to calculate the address of the table entry. These instructions are used for
applications such as converting character codes from one alphabet into another (for
example, an ASCII code could be used to look up its EBCDIC equivalent in a table).

7.3.16.3 Processor Identification Instruction
The CPUID (processor identification) instruction returns information about the
processor on which the instruction is executed.

7.3.16.4 No-Operation and Undefined Instructions
The NOP (no operation) instruction increments the EIP register to point at the next
instruction, but affects nothing else.

The UD2 (undefined) instruction generates an invalid opcode exception. Intel
reserves the opcode for this instruction for this function. The instruction is provided
to allow software to test an invalid opcode exception handler.
7-34 Vol. 1

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS
7.3.17 Random Number Generator Instruction
The RDRAND instruction returns a random number. All Intel processors that support
the RDRAND instruction indicate the availability of the RDRAND instruction via
reporting CPUID.01H:ECX.RDRAND[bit 30] = 1.
RDRAND returns random numbers that are supplied by a cryptographically secure,
deterministic random bit generator DRBG. The DRBG is designed to meet the NIST
SP 800-90 standard. The DRBG is re-seeded frequently from a on-chip non-deter-
ministic entropy source to guarantee data returned by RDRAND is statistically
uniform, non-periodic and non-deterministic.
In order for the hardware design to meet its security goals, the random number
generator continuously tests itself and the random data it is generating. Runtime fail-
ures in the random number generator circuitry or statistically anomalous data occur-
ring by chance will be detected by the self test hardware and flag the resulting data
as being bad. In such extremely rare cases, the RDRAND instruction will return no
data instead of bad data.
Under heavy load, with multiple cores executing RDRAND in parallel, it is possible,
though unlikely, for the demand of random numbers by software processes/threads
to exceed the rate at which the random number generator hardware can supply
them. This will lead to the RDRAND instruction returning no data transitorily. The
RDRAND instruction indicates the occurrence of this rare situation by clearing the CF
flag.
The RDRAND instruction returns with the carry flag set (CF = 1) to indicate valid data
is returned. It is recommended that software using the RDRAND instruction to get
random numbers retry for a limited number of iterations while RDRAND returns CF=0
and complete when valid data is returned, indicated with CF=1. This will deal with
transitory underflows. A retry limit should be employed to prevent a hard failure in
the RNG (expected to be extremely rare) leading to a busy loop in software.
The intrinsic primitive for RDRAND is defined to address software’s need for the
common cases (CF = 1) and the rare situations (CF = 0). The intrinsic primitive
returns a value that reflects the value of the carry flag returned by the underlying
RDRAND instruction. The example below illustrates the recommended usage of an
RDRAND instrinsic in a utility function, a loop to fetch a 64 bit random value with a
retry count limit of 10. A C implementation might be written as follows:

--
#define SUCCESS 1
#define RETRY_LIMIT_EXCEEDED 0
#define RETRY_LIMIT 10

int get_random_64(unsigned __int 64 * arand)
{int i ;

for (i = 0; i < RETRY_LIMIT; i ++) {
if(_rdrand64_step(arand)) return SUCCESS;
Vol. 1 7-35

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS
}
return RETRY_LIMIT_EXCEEDED;

}

7-36 Vol. 1

CHAPTER 8
PROGRAMMING WITH THE X87 FPU

The x87 Floating-Point Unit (FPU) provides high-performance floating-point
processing capabilities for use in graphics processing, scientific, engineering, and
business applications. It supports the floating-point, integer, and packed BCD integer
data types and the floating-point processing algorithms and exception handling
architecture defined in the IEEE Standard 754 for Binary Floating-Point Arithmetic.

This chapter describes the x87 FPU’s execution environment and instruction set. It
also provides exception handling information that is specific to the x87 FPU. Refer to
the following chapters or sections of chapters for additional information about x87
FPU instructions and floating-point operations:
• Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes

2A & 2B, provide detailed descriptions of x87 FPU instructions.
• Section 4.2.2, “Floating-Point Data Types,” Section 4.2.1.2, “Signed Integers,”

and Section 4.7, “BCD and Packed BCD Integers,” describe the floating-point,
integer, and BCD data types.

• Section 4.9, “Overview of Floating-Point Exceptions,” Section 4.9.1, “Floating-
Point Exception Conditions,” and Section 4.9.2, “Floating-Point Exception
Priority,” give an overview of the floating-point exceptions that the x87 FPU can
detect and report.

8.1 X87 FPU EXECUTION ENVIRONMENT
The x87 FPU represents a separate execution environment within the IA-32 architec-
ture (see Figure 8-1). This execution environment consists of eight data registers
(called the x87 FPU data registers) and the following special-purpose registers:
• Status register
• Control register
• Tag word register
• Last instruction pointer register
• Last data (operand) pointer register
• Opcode register

These registers are described in the following sections.

The x87 FPU executes instructions from the processor’s normal instruction stream.
The state of the x87 FPU is independent from the state of the basic execution envi-
ronment and from the state of SSE/SSE2/SSE3 extensions.

However, the x87 FPU and Intel MMX technology share state because the MMX regis-
ters are aliased to the x87 FPU data registers. Therefore, when writing code that uses
Vol. 1 8-1

PROGRAMMING WITH THE X87 FPU
x87 FPU and MMX instructions, the programmer must explicitly manage the x87 FPU
and MMX state (see Section 9.5, “Compatibility with x87 FPU Architecture”).

8.1.1 x87 FPU in 64-Bit Mode and Compatibility Mode
In compatibility mode and 64-bit mode, x87 FPU instructions function like they do in
protected mode. Memory operands are specified using the ModR/M, SIB encoding
that is described in Section 3.7.5, “Specifying an Offset.”

8.1.2 x87 FPU Data Registers
The x87 FPU data registers (shown in Figure 8-1) consist of eight 80-bit registers.
Values are stored in these registers in the double extended-precision floating-point
format shown in Figure 4-3. When floating-point, integer, or packed BCD integer
values are loaded from memory into any of the x87 FPU data registers, the values are
automatically converted into double extended-precision floating-point format (if they
are not already in that format). When computation results are subsequently trans-
ferred back into memory from any of the x87 FPU registers, the results can be left in
the double extended-precision floating-point format or converted back into a shorter
floating-point format, an integer format, or the packed BCD integer format. (See
Section 8.2, “x87 FPU Data Types,” for a description of the data types operated on by
the x87 FPU.)
8-2 Vol. 1

PROGRAMMING WITH THE X87 FPU
The x87 FPU instructions treat the eight x87 FPU data registers as a register stack (see
Figure 8-2). All addressing of the data registers is relative to the register on the top of
the stack. The register number of the current top-of-stack register is stored in the
TOP (stack TOP) field in the x87 FPU status word. Load operations decrement TOP by
one and load a value into the new top-of-stack register, and store operations store
the value from the current TOP register in memory and then increment TOP by one.
(For the x87 FPU, a load operation is equivalent to a push and a store operation is
equivalent to a pop.) Note that load and store operations are also available that do
not push and pop the stack.

Figure 8-1. x87 FPU Execution Environment

079

R7

R6

R5

R4

R3

R2

R1

R0

Data Registers

Exponent Significand

78 64 63

15
Control
Register

0

Status
Register

Tag
Register

047

Last Instruction Pointer

Last Data (Operand) Pointer

10

Opcode

0

Sign
Vol. 1 8-3

PROGRAMMING WITH THE X87 FPU
If a load operation is performed when TOP is at 0, register wraparound occurs and
the new value of TOP is set to 7. The floating-point stack-overflow exception indicates
when wraparound might cause an unsaved value to be overwritten (see Section
8.5.1.1, “Stack Overflow or Underflow Exception (#IS)”).

Many floating-point instructions have several addressing modes that permit the
programmer to implicitly operate on the top of the stack, or to explicitly operate on
specific registers relative to the TOP. Assemblers support these register addressing
modes, using the expression ST(0), or simply ST, to represent the current stack top
and ST(i) to specify the ith register from TOP in the stack (0 ≤ i ≤ 7). For example, if
TOP contains 011B (register 3 is the top of the stack), the following instruction would
add the contents of two registers in the stack (registers 3 and 5):

FADD ST, ST(2);

Figure 8-3 shows an example of how the stack structure of the x87 FPU registers and
instructions are typically used to perform a series of computations. Here, a two-
dimensional dot product is computed, as follows:

1. The first instruction (FLD value1) decrements the stack register pointer (TOP)
and loads the value 5.6 from memory into ST(0). The result of this operation is
shown in snap-shot (a).

2. The second instruction multiplies the value in ST(0) by the value 2.4 from
memory and stores the result in ST(0), shown in snap-shot (b).

3. The third instruction decrements TOP and loads the value 3.8 in ST(0).

4. The fourth instruction multiplies the value in ST(0) by the value 10.3 from
memory and stores the result in ST(0), shown in snap-shot (c).

5. The fifth instruction adds the value and the value in ST(1) and stores the result in
ST(0), shown in snap-shot (d).

Figure 8-2. x87 FPU Data Register Stack

7

6

5

4

3

2

1

0

FPU Data Register Stack

ST(2)

ST(1)

ST(0)

Top

011B

Growth
Stack
8-4 Vol. 1

PROGRAMMING WITH THE X87 FPU
The style of programming demonstrated in this example is supported by the floating-
point instruction set. In cases where the stack structure causes computation bottle-
necks, the FXCH (exchange x87 FPU register contents) instruction can be used to
streamline a computation.

8.1.2.1 Parameter Passing With the x87 FPU Register Stack
Like the general-purpose registers, the contents of the x87 FPU data registers are
unaffected by procedure calls, or in other words, the values are maintained across
procedure boundaries. A calling procedure can thus use the x87 FPU data registers
(as well as the procedure stack) for passing parameter between procedures. The
called procedure can reference parameters passed through the register stack using
the current stack register pointer (TOP) and the ST(0) and ST(i) nomenclature. It is
also common practice for a called procedure to leave a return value or result in
register ST(0) when returning execution to the calling procedure or program.

When mixing MMX and x87 FPU instructions in the procedures or code sequences,
the programmer is responsible for maintaining the integrity of parameters being
passed in the x87 FPU data registers. If an MMX instruction is executed before the
parameters in the x87 FPU data registers have been passed to another procedure,
the parameters may be lost (see Section 9.5, “Compatibility with x87 FPU Architec-
ture”).

Figure 8-3. Example x87 FPU Dot Product Computation

(a)

R7

R6

R5

R4

R3

R2

R1

R0

Computation

ST(0)5.6

(b)

R7

R6

R5

R4

R3

R2

R1

R0

ST(0)13.44

(c)

R7

R6

R5

R4

R3

R2

R1

R0

ST(1)

ST(0)

13.44

(d)

R7

R6

R5

R4

R3

R2

R1

R0

ST(

ST39.14

13.44

52.58

Dot Product = (5.6 x 2.4) + (3.8 x 10.3)

Code:
FLD value1 ;(a) value1 = 5.6
FMUL value2 ;(b) value2 = 2.4
FLD value3 ; value3 = 3.8
FMUL value4 ;(c)value4 = 10.3
FADD ST(1) ;(d)
Vol. 1 8-5

PROGRAMMING WITH THE X87 FPU
8.1.3 x87 FPU Status Register
The 16-bit x87 FPU status register (see Figure 8-4) indicates the current state of the
x87 FPU. The flags in the x87 FPU status register include the FPU busy flag, top-of-
stack (TOP) pointer, condition code flags, error summary status flag, stack fault flag,
and exception flags. The x87 FPU sets the flags in this register to show the results of
operations.

The contents of the x87 FPU status register (referred to as the x87 FPU status word)
can be stored in memory using the FSTSW/FNSTSW, FSTENV/FNSTENV,
FSAVE/FNSAVE, and FXSAVE instructions. It can also be stored in the AX register of
the integer unit, using the FSTSW/FNSTSW instructions.

8.1.3.1 Top of Stack (TOP) Pointer
A pointer to the x87 FPU data register that is currently at the top of the x87 FPU
register stack is contained in bits 11 through 13 of the x87 FPU status word. This
pointer, which is commonly referred to as TOP (for top-of-stack), is a binary value
from 0 to 7. See Section 8.1.2, “x87 FPU Data Registers,” for more information
about the TOP pointer.

8.1.3.2 Condition Code Flags
The four condition code flags (C0 through C3) indicate the results of floating-point
comparison and arithmetic operations. Table 8-1 summarizes the manner in which
the floating-point instructions set the condition code flags. These condition code bits

Figure 8-4. x87 FPU Status Word

FPU Busy

15 1314 11 10 9 8 7 6 5 4 3 2 1 0

B I
E

P
E

O
E

U
E

Z
E

D
ETOP

Top of Stack Pointer

Exception Flags
 Precision
 Underflow
 Overflow
 Zero Divide
 Denormalized Operand
 Invalid Operation

Stack Fault
Error Summary Status

Condition
 Code

C
2

C
1

C
0

E
S

S
F

C
3

8-6 Vol. 1

PROGRAMMING WITH THE X87 FPU
are used principally for conditional branching and for storage of information used in
exception handling (see Section 8.1.4, “Branching and Conditional Moves on Condi-
tion Codes”).

As shown in Table 8-1, the C1 condition code flag is used for a variety of functions.
When both the IE and SF flags in the x87 FPU status word are set, indicating a stack
overflow or underflow exception (#IS), the C1 flag distinguishes between overflow
(C1 = 1) and underflow (C1 = 0). When the PE flag in the status word is set, indi-
cating an inexact (rounded) result, the C1 flag is set to 1 if the last rounding by the
instruction was upward. The FXAM instruction sets C1 to the sign of the value being
examined.

The C2 condition code flag is used by the FPREM and FPREM1 instructions to indicate
an incomplete reduction (or partial remainder). When a successful reduction has
been completed, the C0, C3, and C1 condition code flags are set to the three least-
significant bits of the quotient (Q2, Q1, and Q0, respectively). See “FPREM1—Partial
Remainder” in Chapter 3, “Instruction Set Reference, A-L,” of the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 2A, for more information
on how these instructions use the condition code flags.

The FPTAN, FSIN, FCOS, and FSINCOS instructions set the C2 flag to 1 to indicate
that the source operand is beyond the allowable range of ±263 and clear the C2 flag
if the source operand is within the allowable range.

Where the state of the condition code flags are listed as undefined in Table 8-1, do
not rely on any specific value in these flags.

8.1.3.3 x87 FPU Floating-Point Exception Flags
The six x87 FPU floating-point exception flags (bits 0 through 5) of the x87 FPU
status word indicate that one or more floating-point exceptions have been detected
since the bits were last cleared. The individual exception flags (IE, DE, ZE, OE, UE,
and PE) are described in detail in Section 8.4, “x87 FPU Floating-Point Exception
Handling.” Each of the exception flags can be masked by an exception mask bit in the
x87 FPU control word (see Section 8.1.5, “x87 FPU Control Word”). The exception
summary status flag (ES, bit 7) is set when any of the unmasked exception flags are
set. When the ES flag is set, the x87 FPU exception handler is invoked, using one of
the techniques described in Section 8.7, “Handling x87 FPU Exceptions in Software.”
(Note that if an exception flag is masked, the x87 FPU will still set the appropriate
flag if the associated exception occurs, but it will not set the ES flag.)

The exception flags are “sticky” bits (once set, they remain set until explicitly
cleared). They can be cleared by executing the FCLEX/FNCLEX (clear exceptions)
instructions, by reinitializing the x87 FPU with the FINIT/FNINIT or FSAVE/FNSAVE
instructions, or by overwriting the flags with an FRSTOR or FLDENV instruction.

The B-bit (bit 15) is included for 8087 compatibility only. It reflects the contents of
the ES flag.
Vol. 1 8-7

PROGRAMMING WITH THE X87 FPU
Table 8-1. Condition Code Interpretation

Instruction C0 C3 C2 C1

FCOM, FCOMP, FCOMPP,
FICOM, FICOMP, FTST,
FUCOM, FUCOMP, FUCOMPP

Result of Comparison Operands
are not
Comparable

0 or #IS

FCOMI, FCOMIP, FUCOMI,
FUCOMIP

Undefined. (These instructions set the
status flags in the EFLAGS register.)

#IS

FXAM Operand class Sign

FPREM, FPREM1 Q2 Q1 0 = reduction
complete

1 = reduction
incomplete

Q0 or #IS

F2XM1, FADD, FADDP,
FBSTP, FCMOVcc, FIADD,
FDIV, FDIVP, FDIVR, FDIVRP,
FIDIV, FIDIVR, FIMUL, FIST,
FISTP, FISUB, FISUBR,FMUL,
FMULP, FPATAN, FRNDINT,
FSCALE, FST, FSTP, FSUB,
FSUBP, FSUBR,
FSUBRP,FSQRT, FYL2X,
FYL2XP1

Undefined Roundup or #IS

FCOS, FSIN, FSINCOS,
FPTAN

Undefined 0 = source
operand
within range
1 = source
operand out
of range

Roundup or #IS
(Undefined if
C2 = 1)

FABS, FBLD, FCHS,
FDECSTP, FILD, FINCSTP,
FLD, Load Constants, FSTP
(ext. prec.), FXCH, FXTRACT

Undefined 0 or #IS

FLDENV, FRSTOR Each bit loaded from memory

FFREE, FLDCW,
FCLEX/FNCLEX, FNOP,
FSTCW/FNSTCW,
FSTENV/FNSTENV,
FSTSW/FNSTSW,

Undefined

FINIT/FNINIT,
FSAVE/FNSAVE

0 0 0 0
8-8 Vol. 1

PROGRAMMING WITH THE X87 FPU
8.1.3.4 Stack Fault Flag
The stack fault flag (bit 6 of the x87 FPU status word) indicates that stack overflow or
stack underflow has occurred with data in the x87 FPU data register stack. The x87
FPU explicitly sets the SF flag when it detects a stack overflow or underflow condi-
tion, but it does not explicitly clear the flag when it detects an invalid-arithmetic-
operand condition.

When this flag is set, the condition code flag C1 indicates the nature of the fault:
overflow (C1 = 1) and underflow (C1 = 0). The SF flag is a “sticky” flag, meaning
that after it is set, the processor does not clear it until it is explicitly instructed to do
so (for example, by an FINIT/FNINIT, FCLEX/FNCLEX, or FSAVE/FNSAVE instruction).

See Section 8.1.7, “x87 FPU Tag Word,” for more information on x87 FPU stack faults.

8.1.4 Branching and Conditional Moves on Condition Codes
The x87 FPU (beginning with the P6 family processors) supports two mechanisms for
branching and performing conditional moves according to comparisons of two
floating-point values. These mechanism are referred to here as the “old mechanism”
and the “new mechanism.”

The old mechanism is available in x87 FPU’s prior to the P6 family processors and in
P6 family processors. This mechanism uses the floating-point compare instructions
(FCOM, FCOMP, FCOMPP, FTST, FUCOMPP, FICOM, and FICOMP) to compare two
floating-point values and set the condition code flags (C0 through C3) according to
the results. The contents of the condition code flags are then copied into the status
flags of the EFLAGS register using a two step process (see Figure 8-5):

1. The FSTSW AX instruction moves the x87 FPU status word into the AX register.

2. The SAHF instruction copies the upper 8 bits of the AX register, which includes the
condition code flags, into the lower 8 bits of the EFLAGS register.

When the condition code flags have been loaded into the EFLAGS register, conditional
jumps or conditional moves can be performed based on the new settings of the
status flags in the EFLAGS register.
Vol. 1 8-9

PROGRAMMING WITH THE X87 FPU
The new mechanism is available beginning with the P6 family processors. Using this
mechanism, the new floating-point compare and set EFLAGS instructions (FCOMI,
FCOMIP, FUCOMI, and FUCOMIP) compare two floating-point values and set the ZF,
PF, and CF flags in the EFLAGS register directly. A single instruction thus replaces the
three instructions required by the old mechanism.

Note also that the FCMOVcc instructions (also new in the P6 family processors) allow
conditional moves of floating-point values (values in the x87 FPU data registers)
based on the setting of the status flags (ZF, PF, and CF) in the EFLAGS register. These
instructions eliminate the need for an IF statement to perform conditional moves of
floating-point values.

8.1.5 x87 FPU Control Word
The 16-bit x87 FPU control word (see Figure 8-6) controls the precision of the x87
FPU and rounding method used. It also contains the x87 FPU floating-point exception
mask bits. The control word is cached in the x87 FPU control register. The contents of
this register can be loaded with the FLDCW instruction and stored in memory with the
FSTCW/FNSTCW instructions.

Figure 8-5. Moving the Condition Codes to the EFLAGS Register

0

Condition
Code

Status
Flag

C0
C1
C2
C3

CF
(none)

PF
ZF

C
F1P

F
Z
F

731 EFLAGS Register

0

C
2

C
1

C
3

AX Register

0
C

15

0

C
2

C
1

C
3

x87 FPU Status Word

0
C

15

FSTSW AX Instruction

SAHF Instruction
8-10 Vol. 1

PROGRAMMING WITH THE X87 FPU
When the x87 FPU is initialized with either an FINIT/FNINIT or FSAVE/FNSAVE
instruction, the x87 FPU control word is set to 037FH, which masks all floating-point
exceptions, sets rounding to nearest, and sets the x87 FPU precision to 64 bits.

8.1.5.1 x87 FPU Floating-Point Exception Mask Bits
The exception-flag mask bits (bits 0 through 5 of the x87 FPU control word) mask the
6 floating-point exception flags in the x87 FPU status word. When one of these mask
bits is set, its corresponding x87 FPU floating-point exception is blocked from being
generated.

8.1.5.2 Precision Control Field
The precision-control (PC) field (bits 8 and 9 of the x87 FPU control word) determines
the precision (64, 53, or 24 bits) of floating-point calculations made by the x87 FPU
(see Table 8-2). The default precision is double extended precision, which uses the
full 64-bit significand available with the double extended-precision floating-point
format of the x87 FPU data registers. This setting is best suited for most applications,
because it allows applications to take full advantage of the maximum precision avail-
able with the x87 FPU data registers.

Figure 8-6. x87 FPU Control Word

15 1314 12 11 10 9 8 7 6 5 4 3 2 1 0

X I
M

P
M

O
M

U
M

Z
M

D
MRC PC

Infinity Control
Rounding Control
Precision Control

Exception Masks
 Precision
 Underflow
 Overflow
 Zero Divide
 Denormal Operand
 Invalid Operation

Reserved
Vol. 1 8-11

PROGRAMMING WITH THE X87 FPU
The double precision and single precision settings reduce the size of the significand to
53 bits and 24 bits, respectively. These settings are provided to support IEEE Stan-
dard 754 and to provide compatibility with the specifications of certain existing
programming languages. Using these settings nullifies the advantages of the double
extended-precision floating-point format's 64-bit significand length. When reduced
precision is specified, the rounding of the significand value clears the unused bits on
the right to zeros.

The precision-control bits only affect the results of the following floating-point
instructions: FADD, FADDP, FIADD, FSUB, FSUBP, FISUB, FSUBR, FSUBRP, FISUBR,
FMUL, FMULP, FIMUL, FDIV, FDIVP, FIDIV, FDIVR, FDIVRP, FIDIVR, and FSQRT.

8.1.5.3 Rounding Control Field
The rounding-control (RC) field of the x87 FPU control register (bits 10 and 11)
controls how the results of x87 FPU floating-point instructions are rounded. See
Section 4.8.4, “Rounding,” for a discussion of rounding of floating-point values; See
Section 4.8.4.1, “Rounding Control (RC) Fields”, for the encodings of the RC field.

8.1.6 Infinity Control Flag
The infinity control flag (bit 12 of the x87 FPU control word) is provided for compati-
bility with the Intel 287 Math Coprocessor; it is not meaningful for later version x87
FPU coprocessors or IA-32 processors. See Section 4.8.3.3, “Signed Infinities,” for
information on how the x87 FPUs handle infinity values.

8.1.7 x87 FPU Tag Word
The 16-bit tag word (see Figure 8-7) indicates the contents of each the 8 registers in
the x87 FPU data-register stack (one 2-bit tag per register). The tag codes indicate
whether a register contains a valid number, zero, or a special floating-point number
(NaN, infinity, denormal, or unsupported format), or whether it is empty. The x87
FPU tag word is cached in the x87 FPU in the x87 FPU tag word register. When the x87
FPU is initialized with either an FINIT/FNINIT or FSAVE/FNSAVE instruction, the x87
FPU tag word is set to FFFFH, which marks all the x87 FPU data registers as empty.

Table 8-2. Precision Control Field (PC)
Precision PC Field

Single Precision (24 bits) 00B

Reserved 01B

Double Precision (53 bits) 10B

Double Extended Precision (64 bits) 11B
8-12 Vol. 1

PROGRAMMING WITH THE X87 FPU
.

Each tag in the x87 FPU tag word corresponds to a physical register (numbers 0
through 7). The current top-of-stack (TOP) pointer stored in the x87 FPU status word
can be used to associate tags with registers relative to ST(0).

The x87 FPU uses the tag values to detect stack overflow and underflow conditions
(see Section 8.5.1.1, “Stack Overflow or Underflow Exception (#IS)”).

Application programs and exception handlers can use this tag information to check
the contents of an x87 FPU data register without performing complex decoding of the
actual data in the register. To read the tag register, it must be stored in memory using
either the FSTENV/FNSTENV or FSAVE/FNSAVE instructions. The location of the tag
word in memory after being saved with one of these instructions is shown in Figures
8-9 through 8-12.

Software cannot directly load or modify the tags in the tag register. The FLDENV and
FRSTOR instructions load an image of the tag register into the x87 FPU; however, the
x87 FPU uses those tag values only to determine if the data registers are empty
(11B) or non-empty (00B, 01B, or 10B).

If the tag register image indicates that a data register is empty, the tag in the tag
register for that data register is marked empty (11B); if the tag register image indi-
cates that the data register is non-empty, the x87 FPU reads the actual value in the
data register and sets the tag for the register accordingly. This action prevents a
program from setting the values in the tag register to incorrectly represent the actual
contents of non-empty data registers.

8.1.8 x87 FPU Instruction and Data (Operand) Pointers
The x87 FPU stores pointers to the instruction and data (operand) for the last non-
control instruction executed. These are the x87 FPU instruction pointer and x87 FPU
operand (data) pointers; software can save these pointers to provide state informa-
tion for exception handlers. The pointers are illustrated in Figure 8-1 (the figure illus-
trates the pointers as used outside 64-bit mode; see below).

Figure 8-7. x87 FPU Tag Word

015

TAG Values

TAG(7) TAG(5)TAG(6) TAG(4) TAG(3) TAG(2) TAG(1) TAG(0)

00 — Valid
01 — Zero
10 — Special: invalid (NaN, unsupported), infinity, or denormal
11 — Empty
Vol. 1 8-13

PROGRAMMING WITH THE X87 FPU
Note that the value in the x87 FPU data pointer register is always a pointer to a
memory operand, If the last non-control instruction that was executed did not have
a memory operand, the value in the data pointer register is undefined (reserved).

The contents of the x87 FPU instruction and data pointer registers remain unchanged
when any of the control instructions (FCLEX/FNCLEX, FLDCW, FSTCW/FNSTCW,
FSTSW/FNSTSW, FSTENV/FNSTENV, FLDENV, and WAIT/FWAIT) are executed.

For all the x87 FPUs and NPXs except the 8087, the x87 FPU instruction pointer points
to any prefixes that preceded the instruction. For the 8087, the x87 FPU instruction
pointer points only to the actual opcode.

The x87 FPU instruction and data pointers each consists of an offset and a segment
selector. On processors that support IA-32e mode, each offset comprises 64 bits; on
other processors, each offset comprises 32 bits. Each segment selector comprises 16
bits.

The pointers are accessed by the FINIT/FNINIT, FLDENV, FRSTOR, FSAVE/FNSAVE,
FSTENV/FNSTENV, FXRSTOR, FXSAVE, XRSTOR, XSAVE, and XSAVEOPT instructions
as follows:
• FINIT/FNINIT. Each instruction clears each 64-bit offset and 16-bit segment

selector.
• FLDENV, FRSTOR. These instructions use the memory formats given in

Figures 8-9 through 8-12:

— For each 64-bit offset, each instruction loads the lower 32 bits from memory
and clears the upper 32 bits.

— If CR0.PE = 1, each instruction loads each 16-bit segment selector from
memory; otherwise, it clears each 16-bit segment selector.

• FSAVE/FNSAVE, FSTENV/FNSTENV. These instructions use the memory formats
given in Figures 8-9 through 8-12.

— Each instruction saves the lower 32 bits of each 64-bit offset into memory.
the upper 32 bits are not saved.

— If CR0.PE = 1, each instruction saves each 16-bit segment selector into
memory.

— After saving these data into memory, FSAVE/FNSAVE clears each 64-bit
offset and 16-bit segment selector.

• FXRSTOR, XRSTOR. These instructions load data from a memory image whose
format depend on operating mode and the REX prefix. The memory formats are
given in Tables 3-53, 3-56, and 3-57 in Chapter 3, “Instruction Set Reference, A-
L,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A.

— Outside of 64-bit mode or if REX.W = 0, the instructions operate as follows:

• For each 64-bit offset, each instruction loads the lower 32 bits from
memory and clears the upper 32 bits.
8-14 Vol. 1

PROGRAMMING WITH THE X87 FPU
• Each instruction loads each 16-bit segment selector from memory.

— In 64-bit mode with REX.W = 1, the instructions operate as follows:

• Each instruction loads each 64-bit offset from memory.

• Each instruction clears each 16-bit segment selector.
• FXSAVE, XSAVE, and XSAVEOPT. These instructions store data into a memory

image whose format depend on operating mode and the REX prefix. The memory
formats are given in Tables 3-53, 3-56, and 3-57 in Chapter 3, “Instruction Set
Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2A.

— Outside of 64-bit mode or if REX.W = 0, the instructions operate as follows:

• Each instruction saves the lower 32 bits of each 64-bit offset into
memory. The upper 32 bits are not saved.

• Each instruction saves each 16-bit segment selector into memory.

— In 64-bit mode with REX.W = 1, each instruction saves each 64-bit offset into
memory. The 16-bit segment selectors are not saved.

8.1.9 Last Instruction Opcode
The x87 FPU stores the opcode of the last non-control instruction executed in an
11-bit x87 FPU opcode register. (This information provides state information for
exception handlers.) Only the first and second opcode bytes (after all prefixes) are
stored in the x87 FPU opcode register. Figure 8-8 shows the encoding of these two
bytes. Since the upper 5 bits of the first opcode byte are the same for all floating-
point opcodes (11011B), only the lower 3 bits of this byte are stored in the opcode
register.

8.1.9.1 Fopcode Compatibility Sub-mode
Beginning with the Pentium 4 and Intel Xeon processors, the IA-32 architecture
provides program control over the storing of the last instruction opcode (sometimes
referred to as the fopcode). Here, bit 2 of the IA32_MISC_ENABLE MSR enables (set)
or disables (clear) the fopcode compatibility mode.

If FOP code compatibility mode is enabled, the FOP is defined as it has always been
in previous IA32 implementations (always defined as the FOP of the last non-trans-
parent FP instruction executed before a FSAVE/FSTENV/FXSAVE). If FOP code
compatibility mode is disabled (default), FOP is only valid if the last non-transparent
FP instruction executed before a FSAVE/FSTENV/FXSAVE had an unmasked exception.
Vol. 1 8-15

PROGRAMMING WITH THE X87 FPU
The fopcode compatibility mode should be enabled only when x87 FPU floating-point
exception handlers are designed to use the fopcode to analyze program performance
or restart a program after an exception has been handled.

8.1.10 Saving the x87 FPU’s State with FSTENV/FNSTENV and
FSAVE/FNSAVE

The FSTENV/FNSTENV and FSAVE/FNSAVE instructions store x87 FPU state informa-
tion in memory for use by exception handlers and other system and application soft-
ware. The FSTENV/FNSTENV instruction saves the contents of the status, control,
tag, x87 FPU instruction pointer, x87 FPU operand pointer, and opcode registers. The
FSAVE/FNSAVE instruction stores that information plus the contents of the x87 FPU
data registers. Note that the FSAVE/FNSAVE instruction also initializes the x87 FPU to
default values (just as the FINIT/FNINIT instruction does) after it has saved the orig-
inal state of the x87 FPU.

The manner in which this information is stored in memory depends on the operating
mode of the processor (protected mode or real-address mode) and on the operand-
size attribute in effect (32-bit or 16-bit). See Figures 8-9 through 8-12. In virtual-
8086 mode or SMM, the real-address mode formats shown in Figure 8-12 is used.
See Chapter 33, “System Management Mode,” of the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3C, for information on using the x87 FPU
while in SMM.

The FLDENV and FRSTOR instructions allow x87 FPU state information to be loaded
from memory into the x87 FPU. Here, the FLDENV instruction loads only the status,
control, tag, x87 FPU instruction pointer, x87 FPU operand pointer, and opcode regis-
ters, and the FRSTOR instruction loads all the x87 FPU registers, including the x87
FPU stack registers.

Figure 8-8. Contents of x87 FPU Opcode Registers

0

x87 FPU Opcode Register

10

0
2nd Instruction Byte

70
1st Instruction Byte

7 2

78
8-16 Vol. 1

PROGRAMMING WITH THE X87 FPU
Figure 8-9. Protected Mode x87 FPU State Image in Memory, 32-Bit Format

Figure 8-10. Real Mode x87 FPU State Image in Memory, 32-Bit Format

031

0

4

8

12

16

20

24

32-Bit Protected Mode Format

Control Word

Opcode 10...00

Status Word

Tag Word

FPU Instruction Pointer Selector

FPU Operand Pointer Selector

FPU Operand Pointer Offset

0 0 0 0 0

FPU Instruction Pointer Offset

16 15

For instructions that also store x87 FPU data registers, the eight
80-bit registers (R0-R7) follow the above structure in sequence.

031

0

4

8

12

16

20

24

32-Bit Real-Address Mode Format

Control Word

FPU Operand Pointer 31...16

FPU Instruction Pointer 31...16

Status Word

Tag Word

Opcode 10...00

0 0 0 0 0 0 0 0 0 0 0 0

FPU Operand Pointer 15...00

0 0 0 0

FPU Instruction Pointer 15...00

0 0 0 0

0

16 15

For instructions that also store x87 FPU data registers, the eight
80-bit registers (R0-R7) follow the above structure in sequence.
Vol. 1 8-17

PROGRAMMING WITH THE X87 FPU
8.1.11 Saving the x87 FPU’s State with FXSAVE
The FXSAVE and FXRSTOR instructions save and restore, respectively, the x87 FPU
state along with the state of the XMM registers and the MXCSR register. Using the
FXSAVE instruction to save the x87 FPU state has two benefits: (1) FXSAVE executes
faster than FSAVE, and (2) FXSAVE saves the entire x87 FPU, MMX, and XMM state in
one operation. See Section 10.5, “FXSAVE and FXRSTOR Instructions,” for additional
information about these instructions.

8.2 X87 FPU DATA TYPES
The x87 FPU recognizes and operates on the following seven data types (see Figures
8-13): single-precision floating point, double-precision floating point, double

Figure 8-11. Protected Mode x87 FPU State Image in Memory, 16-Bit Format

Figure 8-12. Real Mode x87 FPU State Image in Memory, 16-Bit Format

0

0

2

4

6

8

10

12

16-Bit Protected Mode Format

Control Word

15

Status Word

Tag Word

FPU Instruction Pointer Selector

FPU Operand Pointer Selector

FPU Operand Pointer Offset

FPU Instruction Pointer Offset

0

0

2

4

6

8

10

12

16-Bit Real-Address Mode and

Control Word

15

Status Word

Tag Word

Virtual-8086 Mode Format

0 0 0 0 0 0 0 0 0 0 0 0

Opcode 10...000

FPU Instruction Pointer 15...00

IP 19..16

OP 19..16

FPU Operand Pointer 15...00
8-18 Vol. 1

PROGRAMMING WITH THE X87 FPU
extended-precision floating point, signed word integer, signed doubleword integer,
signed quadword integer, and packed BCD decimal integers.

For detailed information about these data types, see Section 4.2.2, “Floating-Point
Data Types,” Section 4.2.1.2, “Signed Integers,” and Section 4.7, “BCD and Packed
BCD Integers.”

With the exception of the 80-bit double extended-precision floating-point format, all
of these data types exist in memory only. When they are loaded into x87 FPU data
registers, they are converted into double extended-precision floating-point format
and operated on in that format.

Denormal values are also supported in each of the floating-point types, as required
by IEEE Standard 754. When a denormal number in single-precision or double-preci-
sion floating-point format is used as a source operand and the denormal exception is
masked, the x87 FPU automatically normalizes the number when it is converted to
double extended-precision format.

When stored in memory, the least significant byte of an x87 FPU data-type value is
stored at the initial address specified for the value. Successive bytes from the value
are then stored in successively higher addresses in memory. The floating-point
instructions load and store memory operands using only the initial address of the
operand.
Vol. 1 8-19

PROGRAMMING WITH THE X87 FPU
As a general rule, values should be stored in memory in double-precision format. This
format provides sufficient range and precision to return correct results with a
minimum of programmer attention. The single-precision format is useful for debug-
ging algorithms, because rounding problems will manifest themselves more quickly
in this format. The double extended-precision format is normally reserved for holding
intermediate results in the x87 FPU registers and constants. Its extra length is
designed to shield final results from the effects of rounding and overflow/underflow
in intermediate calculations. However, when an application requires the maximum
range and precision of the x87 FPU (for data storage, computations, and results),
values can be stored in memory in double extended-precision format.

8.2.1 Indefinites
For each x87 FPU data type, one unique encoding is reserved for representing the
special value indefinite. The x87 FPU produces indefinite values as responses to
some masked floating-point invalid-operation exceptions. See Tables 4-1, 4-3, and

Figure 8-13. x87 FPU Data Type Formats

0

Packed BCD Integers

79

D0

0

Quadword Integer

63

4 Bits = 1 BCD Digit

0

Doubleword Integer

31

0

Word Integer

15

Sign

D1D2D3D4D5D6D7D8D9D10D11D12D13D14D15D16D17

78 72 71

X

62

14

30

0

Double Extended-Precision Floating-Point

79

Sign

78 6463

0

Double-Precision Floating-Point

63 62

0

Single-Precision Floating-Point

3130 23 22

FractionExp.Sign

Implied Integer

Implied Integer

Sign Exponent Fraction

52 51

FractionExponent

62 Integer

Sign

Sign

Sign
8-20 Vol. 1

PROGRAMMING WITH THE X87 FPU
4-4 for the encoding of the integer indefinite, QNaN floating-point indefinite, and
packed BCD integer indefinite, respectively.

The binary integer encoding 100..00B represents either of two things, depending on
the circumstances of its use:
• The largest negative number supported by the format (–215, –231, or –263)
• The integer indefinite value

If this encoding is used as a source operand (as in an integer load or integer arith-
metic instruction), the x87 FPU interprets it as the largest negative number repre-
sentable in the format being used. If the x87 FPU detects an invalid operation when
storing an integer value in memory with an FIST/FISTP instruction and the invalid-
operation exception is masked, the x87 FPU stores the integer indefinite encoding in
the destination operand as a masked response to the exception. In situations where
the origin of a value with this encoding may be ambiguous, the invalid-operation
exception flag can be examined to see if the value was produced as a response to an
exception.

8.2.2 Unsupported Double Extended-Precision
Floating-Point Encodings and Pseudo-Denormals

The double extended-precision floating-point format permits many encodings that do
not fall into any of the categories shown in Table 4-3. Table 8-3 shows these unsup-
ported encodings. Some of these encodings were supported by the Intel 287 math
coprocessor; however, most of them are not supported by the Intel 387 math copro-
cessor and later IA-32 processors. These encodings are no longer supported due to
changes made in the final version of IEEE Standard 754 that eliminated these encod-
ings.

Specifically, the categories of encodings formerly known as pseudo-NaNs, pseudo-
infinities, and un-normal numbers are not supported and should not be used as
operand values. The Intel 387 math coprocessor and later IA-32 processors generate
an invalid-operation exception when these encodings are encountered as operands.

Beginning with the Intel 387 math coprocessor, the encodings formerly known as
pseudo-denormal numbers are not generated by IA-32 processors. When encoun-
tered as operands, however, they are handled correctly; that is, they are treated as
denormals and a denormal exception is generated. Pseudo-denormal numbers
should not be used as operand values. They are supported by current IA-32 proces-
sors (as described here) to support legacy code.
Vol. 1 8-21

PROGRAMMING WITH THE X87 FPU
8.3 X86 FPU INSTRUCTION SET
The floating-point instructions that the x87 FPU supports can be grouped into six
functional categories:
• Data transfer instructions
• Basic arithmetic instructions
• Comparison instructions
• Transcendental instructions

Table 8-3. Unsupported Double Extended-Precision Floating-Point Encodings and
Pseudo-Denormals

Class Sign Biased Exponent
Significand

Integer Fraction

Positive
Pseudo-NaNs Quiet

0
.
0

11..11
.

11..11

0 11..11
.

10..00

Signaling

0
.
0

11..11
.

11..11

0 01..11
.

00..01

Positive Floating
Point

Pseudo-infinity 0 11..11 0 00..00

Unnormals

0
.
0

11..10
.

00..01

0 11..11
.

00..00

Pseudo-denormals 0
.
0

00..00
.

00..00

1 11..11
.

00..00

Negative
Floating Point

Pseudo-denormals 1
.
1

00..00
.

00..00

1 11..11
.

00..00

Unnormals

1
.
1

11..10
.

00..01

0 11..01
.

00..00

Pseudo-infinity 1 11..11 0 00..00

Negative
Pseudo-NaNs Signaling

1
.
1

11..11
.

11..11

0 01..11
.

00..01

Quiet

1
.
1

11..11
.

11..11

0 11..11
.

10..00

← 15 bits → ← 63 bits →
8-22 Vol. 1

PROGRAMMING WITH THE X87 FPU
• Load constant instructions
• x87 FPU control instructions

See Section 5.2, “x87 FPU Instructions,” for a list of the floating-point instructions by
category.

The following section briefly describes the instructions in each category. Detailed
descriptions of the floating-point instructions are given in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volumes 3A & 3B.

8.3.1 Escape (ESC) Instructions
All of the instructions in the x87 FPU instruction set fall into a class of instructions
known as escape (ESC) instructions. All of these instructions have a common opcode
format, where the first byte of the opcode is one of the numbers from D8H through
DFH.

8.3.2 x87 FPU Instruction Operands
Most floating-point instructions require one or two operands, located on the x87 FPU
data-register stack or in memory. (None of the floating-point instructions accept
immediate operands.)

When an operand is located in a data register, it is referenced relative to the ST(0)
register (the register at the top of the register stack), rather than by a physical
register number. Often the ST(0) register is an implied operand.

Operands in memory can be referenced using the same operand addressing methods
described in Section 3.7, “Operand Addressing.”

8.3.3 Data Transfer Instructions
The data transfer instructions (see Table 8-4) perform the following operations:
• Load a floating-point, integer, or packed BCD operand from memory into the

ST(0) register.
• Store the value in an ST(0) register to memory in floating-point, integer, or

packed BCD format.
• Move values between registers in the x87 FPU register stack.

The FLD (load floating point) instruction pushes a floating-point operand from
memory onto the top of the x87 FPU data-register stack. If the operand is in single-
precision or double-precision floating-point format, it is automatically converted to
double extended-precision floating-point format. This instruction can also be used to
push the value in a selected x87 FPU data register onto the top of the register stack.
Vol. 1 8-23

PROGRAMMING WITH THE X87 FPU
The FILD (load integer) instruction converts an integer operand in memory into
double extended-precision floating-point format and pushes the value onto the top of
the register stack. The FBLD (load packed decimal) instruction performs the same
load operation for a packed BCD operand in memory.

The FST (store floating point) and FIST (store integer) instructions store the value in
register ST(0) in memory in the destination format (floating point or integer, respec-
tively). Again, the format conversion is carried out automatically.

The FSTP (store floating point and pop), FISTP (store integer and pop), and FBSTP
(store packed decimal and pop) instructions store the value in the ST(0) registers
into memory in the destination format (floating point, integer, or packed BCD), then
performs a pop operation on the register stack. A pop operation causes the ST(0)
register to be marked empty and the stack pointer (TOP) in the x87 FPU control work
to be incremented by 1. The FSTP instruction can also be used to copy the value in
the ST(0) register to another x87 FPU register [ST(i)].

The FXCH (exchange register contents) instruction exchanges the value in a selected
register in the stack [ST(i)] with the value in ST(0).

The FCMOVcc (conditional move) instructions move the value in a selected register in
the stack [ST(i)] to register ST(0) if a condition specified with a condition code (cc) is
satisfied (see Table 8-5). The condition being tested for is represented by the status
flags in the EFLAGS register. The condition code mnemonics are appended to the
letters “FCMOV” to form the mnemonic for a FCMOVcc instruction.

Table 8-4. Data Transfer Instructions

Floating Point Integer Packed Decimal

FLD Load Floating
Point

FILD Load Integer FBLD Load Packed
Decimal

FST Store Floating
Point

FIST Store Integer

FSTP Store Floating
Point and Pop

FISTP Store Integer
and Pop

FBSTP Store Packed
Decimal and Pop

FXCH Exchange Register
Contents

FCMOVcc Conditional Move

Table 8-5. Floating-Point Conditional Move Instructions
Instruction Mnemonic Status Flag States Condition Description

FCMOVB CF=1 Below

FCMOVNB CF=0 Not below

FCMOVE ZF=1 Equal

FCMOVNE ZF=0 Not equal
8-24 Vol. 1

PROGRAMMING WITH THE X87 FPU
Like the CMOVcc instructions, the FCMOVcc instructions are useful for optimizing
small IF constructions. They also help eliminate branching overhead for IF operations
and the possibility of branch mispredictions by the processor.

Software can check if the FCMOVcc instructions are supported by checking the
processor’s feature information with the CPUID instruction.

8.3.4 Load Constant Instructions
The following instructions push commonly used constants onto the top [ST(0)] of the
x87 FPU register stack:

FLDZ Load +0.0
FLD1 Load +1.0
FLDPI Load π
FLDL2T Load log2 10
FLDL2E Load log2e
FLDLG2 Load log102
FLDLN2 Load loge2

The constant values have full double extended-precision floating-point precision
(64 bits) and are accurate to approximately 19 decimal digits. They are stored
internally in a format more precise than double extended-precision floating point.
When loading the constant, the x87 FPU rounds the more precise internal constant
according to the RC (rounding control) field of the x87 FPU control word. The
inexact-result exception (#P) is not generated as a result of this rounding, nor is
the C1 flag set in the x87 FPU status word if the value is rounded up. See Section
8.3.8, “Pi,” for information on the π constant.

8.3.5 Basic Arithmetic Instructions
The following floating-point instructions perform basic arithmetic operations on
floating-point numbers. Where applicable, these instructions match IEEE Standard
754:
FADD/FADDP Add floating point

Instruction Mnemonic Status Flag States Condition Description

FCMOVBE CF=1 or ZF=1 Below or equal

FCMOVNBE CF=0 or ZF=0 Not below nor equal

FCMOVU PF=1 Unordered

FCMOVNU PF=0 Not unordered

Table 8-5. Floating-Point Conditional Move Instructions (Contd.)
Vol. 1 8-25

PROGRAMMING WITH THE X87 FPU
FIADD Add integer to floating point
FSUB/FSUBP Subtract floating point
FISUB Subtract integer from floating point
FSUBR/FSUBRP Reverse subtract floating point
FISUBR Reverse subtract floating point from integer
FMUL/FMULP Multiply floating point
FIMUL Multiply integer by floating point
FDIV/FDIVP Divide floating point
FIDIV Divide floating point by integer
FDIVR/FDIVRP Reverse divide
FIDIVR Reverse divide integer by floating point
FABS Absolute value
FCHS Change sign
FSQRT Square root
FPREM Partial remainder
FPREM1 IEEE partial remainder
FRNDINT Round to integral value
FXTRACT Extract exponent and significand

The add, subtract, multiply and divide instructions operate on the following types of
operands:
• Two x87 FPU data registers
• An x87 FPU data register and a floating-point or integer value in memory

See Section 8.1.2, “x87 FPU Data Registers,” for a description of how operands are
referenced on the data register stack.

Operands in memory can be in single-precision floating-point, double-precision
floating-point, word-integer, or doubleword-integer format. They are converted to
double extended-precision floating-point format automatically.

Reverse versions of the subtract (FSUBR) and divide (FDIVR) instructions enable effi-
cient coding. For example, the following options are available with the FSUB and
FSUBR instructions for operating on values in a specified x87 FPU data register ST(i)
and the ST(0) register:

FSUB:
ST(0) ← ST(0) − ST(i)
ST(i) ← ST(i) − ST(0)

FSUBR:
ST(0) ← ST(i) − ST(0)
ST(i) ← ST(0) − ST(i)

These instructions eliminate the need to exchange values between the ST(0) register
and another x87 FPU register to perform a subtraction or division.
8-26 Vol. 1

PROGRAMMING WITH THE X87 FPU
The pop versions of the add, subtract, multiply, and divide instructions offer the
option of popping the x87 FPU register stack following the arithmetic operation.
These instructions operate on values in the ST(i) and ST(0) registers, store the result
in the ST(i) register, and pop the ST(0) register.

The FPREM instruction computes the remainder from the division of two operands in
the manner used by the Intel 8087 and Intel 287 math coprocessors; the FPREM1
instruction computes the remainder in the manner specified in IEEE Standard 754.

The FSQRT instruction computes the square root of the source operand.

The FRNDINT instruction returns a floating-point value that is the integral value
closest to the source value in the direction of the rounding mode specified in the RC
field of the x87 FPU control word.

The FABS, FCHS, and FXTRACT instructions perform convenient arithmetic opera-
tions. The FABS instruction produces the absolute value of the source operand. The
FCHS instruction changes the sign of the source operand. The FXTRACT instruction
separates the source operand into its exponent and fraction and stores each value in
a register in floating-point format.

8.3.6 Comparison and Classification Instructions
The following instructions compare or classify floating-point values:

FCOM/FCOMP/FCOMPPCompare floating point and set x87 FPU
condition code flags.

FUCOM/FUCOMP/FUCOMPPUnordered compare floating point and set
x87 FPU condition code flags.

FICOM/FICOMPCompare integer and set x87 FPU
condition code flags.

FCOMI/FCOMIPCompare floating point and set EFLAGS
status flags.

FUCOMI/FUCOMIPUnordered compare floating point and
set EFLAGS status flags.

FTST Test (compare floating point with 0.0).
FXAMExamine.

Comparison of floating-point values differ from comparison of integers because
floating-point values have four (rather than three) mutually exclusive relationships:
less than, equal, greater than, and unordered.

The unordered relationship is true when at least one of the two values being
compared is a NaN or in an unsupported format. This additional relationship is
required because, by definition, NaNs are not numbers, so they cannot have less
than, equal, or greater than relationships with other floating-point values.
Vol. 1 8-27

PROGRAMMING WITH THE X87 FPU
The FCOM, FCOMP, and FCOMPP instructions compare the value in register ST(0) with
a floating-point source operand and set the condition code flags (C0, C2, and C3) in
the x87 FPU status word according to the results (see Table 8-6).

If an unordered condition is detected (one or both of the values are NaNs or in an
undefined format), a floating-point invalid-operation exception is generated.

The pop versions of the instruction pop the x87 FPU register stack once or twice after
the comparison operation is complete.

The FUCOM, FUCOMP, and FUCOMPP instructions operate the same as the FCOM,
FCOMP, and FCOMPP instructions. The only difference is that with the FUCOM,
FUCOMP, and FUCOMPP instructions, if an unordered condition is detected because
one or both of the operands are QNaNs, the floating-point invalid-operation excep-
tion is not generated.

The FICOM and FICOMP instructions also operate the same as the FCOM and FCOMP
instructions, except that the source operand is an integer value in memory. The
integer value is automatically converted into an double extended-precision floating-
point value prior to making the comparison. The FICOMP instruction pops the x87
FPU register stack following the comparison operation.

The FTST instruction performs the same operation as the FCOM instruction, except
that the value in register ST(0) is always compared with the value 0.0.

The FCOMI and FCOMIP instructions were introduced into the IA-32 architecture in
the P6 family processors. They perform the same comparison as the FCOM and
FCOMP instructions, except that they set the status flags (ZF, PF, and CF) in the
EFLAGS register to indicate the results of the comparison (see Table 8-7) instead of
the x87 FPU condition code flags. The FCOMI and FCOMIP instructions allow condition
branch instructions (Jcc) to be executed directly from the results of their comparison.

Table 8-6. Setting of x87 FPU Condition Code Flags for Floating-Point Number
Comparisons

Condition C3 C2 C0

ST(0) > Source Operand 0 0 0

ST(0) < Source Operand 0 0 1

ST(0) = Source Operand 1 0 0

Unordered 1 1 1
8-28 Vol. 1

PROGRAMMING WITH THE X87 FPU
Software can check if the FCOMI and FCOMIP instructions are supported by checking
the processor’s feature information with the CPUID instruction.

The FUCOMI and FUCOMIP instructions operate the same as the FCOMI and FCOMIP
instructions, except that they do not generate a floating-point invalid-operation
exception if the unordered condition is the result of one or both of the operands being
a QNaN. The FCOMIP and FUCOMIP instructions pop the x87 FPU register stack
following the comparison operation.

The FXAM instruction determines the classification of the floating-point value in the
ST(0) register (that is, whether the value is zero, a denormal number, a normal finite
number, ∞, a NaN, or an unsupported format) or that the register is empty. It sets the
x87 FPU condition code flags to indicate the classification (see “FXAM—Examine” in
Chapter 3, “Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 2A). It also sets the C1 flag to indicate the sign
of the value.

8.3.6.1 Branching on the x87 FPU Condition Codes
The processor does not offer any control-flow instructions that branch on the setting
of the condition code flags (C0, C2, and C3) in the x87 FPU status word. To branch on
the state of these flags, the x87 FPU status word must first be moved to the AX
register in the integer unit. The FSTSW AX (store status word) instruction can be
used for this purpose. When these flags are in the AX register, the TEST instruction
can be used to control conditional branching as follows:

1. Check for an unordered result. Use the TEST instruction to compare the contents
of the AX register with the constant 0400H (see Table 8-8). This operation will
clear the ZF flag in the EFLAGS register if the condition code flags indicate an
unordered result; otherwise, the ZF flag will be set. The JNZ instruction can then
be used to transfer control (if necessary) to a procedure for handling unordered
operands.

Table 8-7. Setting of EFLAGS Status Flags for Floating-Point Number Comparisons
Comparison Results ZF PF CF

ST0 > ST(i) 0 0 0

ST0 < ST(i) 0 0 1

ST0 = ST(i) 1 0 0

Unordered 1 1 1
Vol. 1 8-29

PROGRAMMING WITH THE X87 FPU
2. Check ordered comparison result. Use the constants given in Table 8-8 in the
TEST instruction to test for a less than, equal to, or greater than result, then use
the corresponding conditional branch instruction to transfer program control to
the appropriate procedure or section of code.

If a program or procedure has been thoroughly tested and it incorporates periodic
checks for QNaN results, then it is not necessary to check for the unordered result
every time a comparison is made.

See Section 8.1.4, “Branching and Conditional Moves on Condition Codes,” for
another technique for branching on x87 FPU condition codes.

Some non-comparison x87 FPU instructions update the condition code flags in the
x87 FPU status word. To ensure that the status word is not altered inadvertently,
store it immediately following a comparison operation.

8.3.7 Trigonometric Instructions
The following instructions perform four common trigonometric functions:

FSIN Sine
FCOS Cosine
FSINCOS Sine and cosine
FPTAN Tangent
FPATAN Arctangent

These instructions operate on the top one or two registers of the x87 FPU register
stack and they return their results to the stack. The source operands for the FSIN,
FCOS, FSINCOS, and FPTAN instructions must be given in radians; the source
operand for the FPATAN instruction is given in rectangular coordinate units.

The FSINCOS instruction returns both the sine and the cosine of a source operand
value. It operates faster than executing the FSIN and FCOS instructions in succes-
sion.

The FPATAN instruction computes the arctangent of ST(1) divided by ST(0),
returning a result in radians. It is useful for converting rectangular coordinates to
polar coordinates.

Table 8-8. TEST Instruction Constants for Conditional Branching
Order Constant Branch

ST(0) > Source Operand 4500H JZ

ST(0) < Source Operand 0100H JNZ

ST(0) = Source Operand 4000H JNZ

Unordered 0400H JNZ
8-30 Vol. 1

PROGRAMMING WITH THE X87 FPU
8.3.8 Pi
When the argument (source operand) of a trigonometric function is within the range
of the function, the argument is automatically reduced by the appropriate multiple of
2π through the same reduction mechanism used by the FPREM and FPREM1 instruc-
tions. The internal value of π that the x87 FPU uses for argument reduction and other
computations is as follows:

π = 0.f ∗ 22

where:
f = C90FDAA2 2168C234 C

(The spaces in the fraction above indicate 32-bit boundaries.)

This internal π value has a 66-bit mantissa, which is 2 bits more than is allowed in the
significand of an double extended-precision floating-point value. (Since 66 bits is not
an even number of hexadecimal digits, two additional zeros have been added to the
value so that it can be represented in hexadecimal format. The least-significant
hexadecimal digit (C) is thus 1100B, where the two least-significant bits represent
bits 67 and 68 of the mantissa.)

This value of π has been chosen to guarantee no loss of significance in a source
operand, provided the operand is within the specified range for the instruction.

If the results of computations that explicitly use π are to be used in the FSIN, FCOS,
FSINCOS, or FPTAN instructions, the full 66-bit fraction of π should be used. This
insures that the results are consistent with the argument-reduction algorithms that
these instructions use. Using a rounded version of π can cause inaccuracies in result
values, which if propagated through several calculations, might result in meaningless
results.

A common method of representing the full 66-bit fraction of π is to separate the value
into two numbers (highπ and lowπ) that when added together give the value for π
shown earlier in this section with the full 66-bit fraction:

π = highπ + lowπ

For example, the following two values (given in scientific notation with the fraction in
hexadecimal and the exponent in decimal) represent the 33 most-significant and the
33 least-significant bits of the fraction:

highπ (unnormalized) = 0.C90FDAA20 * 2+2
lowπ (unnormalized) = 0.42D184698 * 2− 31

These values encoded in the IEEE double-precision floating-point format are as
follows:

highπ = 400921FB 54400000
lowπ = 3DE0B461 1A600000

(Note that in the IEEE double-precision floating-point format, the exponents are
biased (by 1023) and the fractions are normalized.)

Similar versions of π can also be written in double extended-precision floating-point
format.
Vol. 1 8-31

PROGRAMMING WITH THE X87 FPU
When using this two-part π value in an algorithm, parallel computations should be
performed on each part, with the results kept separate. When all the computations
are complete, the two results can be added together to form the final result.

The complications of maintaining a consistent value of π for argument reduction can
be avoided, either by applying the trigonometric functions only to arguments within
the range of the automatic reduction mechanism, or by performing all argument
reductions (down to a magnitude less than π/4) explicitly in software.

8.3.9 Logarithmic, Exponential, and Scale
The following instructions provide two different logarithmic functions, an exponential
function and a scale function:

FYL2X Logarithm
FYL2XP1 Logarithm epsilon
F2XM1 Exponential
FSCALE Scale

The FYL2X and FYL2XP1 instructions perform two different base 2 logarithmic opera-
tions. The FYL2X instruction computes (y ∗ log2x). This operation permits the calcu-
lation of the log of any base using the following equation:

logb x = (1/log2 b) ∗ log2 x

The FYL2XP1 instruction computes (y ∗ log2(x + 1)). This operation provides
optimum accuracy for values of x that are close to 0.

The F2XM1 instruction computes (2x − 1). This instruction only operates on source
values in the range −1.0 to +1.0.

The FSCALE instruction multiplies the source operand by a power of 2.

8.3.10 Transcendental Instruction Accuracy
New transcendental instruction algorithms were incorporated into the IA-32 architec-
ture beginning with the Pentium processors. These new algorithms (used in tran-
scendental instructions FSIN, FCOS, FSINCOS, FPTAN, FPATAN, F2XM1, FYL2X, and
FYL2XP1) allow a higher level of accuracy than was possible in earlier IA-32 proces-
sors and x87 math coprocessors. The accuracy of these instructions is measured in
terms of units in the last place (ulp). For a given argument x, let f(x) and F(x) be
the correct and computed (approximate) function values, respectively. The error in
ulps is defined to be:

error f x() F x()–

2k 63–
---------------------------=
8-32 Vol. 1

PROGRAMMING WITH THE X87 FPU
where k is an integer such that:

With the Pentium processor and later IA-32 processors, the worst case error on
transcendental functions is less than 1 ulp when rounding to the nearest (even) and
less than 1.5 ulps when rounding in other modes. The functions are guaranteed to be
monotonic, with respect to the input operands, throughout the domain supported by
the instruction.

The instructions FYL2X and FYL2XP1 are two operand instructions and are guaran-
teed to be within 1 ulp only when y equals 1. When y is not equal to 1, the maximum
ulp error is always within 1.35 ulps in round to nearest mode. (For the two operand
functions, monotonicity was proved by holding one of the operands constant.)

8.3.11 x87 FPU Control Instructions
The following instructions control the state and modes of operation of the x87 FPU.
They also allow the status of the x87 FPU to be examined:

FINIT/FNINIT Initialize x87 FPU

FLDCW Load x87 FPU control word

FSTCW/FNSTCWStore x87 FPU control word

FSTSW/FNSTSWStore x87 FPU status word

FCLEX/FNCLEXClear x87 FPU exception flags

FLDENV Load x87 FPU environment

FSTENV/FNSTENVStore x87 FPU environment

FRSTOR Restore x87 FPU state

FSAVE/FNSAVESave x87 FPU state

FINCSTP Increment x87 FPU register stack pointer

FDECSTP Decrement x87 FPU register stack pointer

FFREE Free x87 FPU register

FNOP No operation

WAIT/FWAIT Check for and handle pending unmasked
x87 FPU exceptions

The FINIT/FNINIT instructions initialize the x87 FPU and its internal registers to
default values.

The FLDCW instructions loads the x87 FPU control word register with a value from
memory. The FSTCW/FNSTCW and FSTSW/FNSTSW instructions store the x87 FPU

1 2
k–

f x() 2.<≤
Vol. 1 8-33

PROGRAMMING WITH THE X87 FPU
control and status words, respectively, in memory (or for an FSTSW/FNSTSW
instruction in a general-purpose register).

The FSTENV/FNSTENV and FSAVE/FNSAVE instructions save the x87 FPU environ-
ment and state, respectively, in memory. The x87 FPU environment includes all the
x87 FPU’s control and status registers; the x87 FPU state includes the x87 FPU envi-
ronment and the data registers in the x87 FPU register stack. (The FSAVE/FNSAVE
instruction also initializes the x87 FPU to default values, like the FINIT/FNINIT
instruction, after it saves the original state of the x87 FPU.)

The FLDENV and FRSTOR instructions load the x87 FPU environment and state,
respectively, from memory into the x87 FPU. These instructions are commonly used
when switching tasks or contexts.

The WAIT/FWAIT instructions are synchronization instructions. (They are actually
mnemonics for the same opcode.) These instructions check the x87 FPU status word
for pending unmasked x87 FPU exceptions. If any pending unmasked x87 FPU excep-
tions are found, they are handled before the processor resumes execution of the
instructions (integer, floating-point, or system instruction) in the instruction stream.
The WAIT/FWAIT instructions are provided to allow synchronization of instruction
execution between the x87 FPU and the processor’s integer unit. See Section 8.6,
“x87 FPU Exception Synchronization,” for more information on the use of the
WAIT/FWAIT instructions.

8.3.12 Waiting vs. Non-waiting Instructions
All of the x87 FPU instructions except a few special control instructions perform a wait
operation (similar to the WAIT/FWAIT instructions), to check for and handle pending
unmasked x87 FPU floating-point exceptions, before they perform their primary
operation (such as adding two floating-point numbers). These instructions are called
waiting instructions. Some of the x87 FPU control instructions, such as
FSTSW/FNSTSW, have both a waiting and a non-waiting version. The waiting version
(with the “F” prefix) executes a wait operation before it performs its primary opera-
tion; whereas, the non-waiting version (with the “FN” prefix) ignores pending
unmasked exceptions.

Non-waiting instructions allow software to save the current x87 FPU state without
first handling pending exceptions or to reset or reinitialize the x87 FPU without
regard for pending exceptions.

NOTES
When operating a Pentium or Intel486 processor in MS-DOS compat-
ibility mode, it is possible (under unusual circumstances) for a non-
waiting instruction to be interrupted prior to being executed to
handle a pending x87 FPU exception. The circumstances where this
can happen and the resulting action of the processor are described in
8-34 Vol. 1

PROGRAMMING WITH THE X87 FPU
Section D.2.1.3, “No-Wait x87 FPU Instructions Can Get x87 FPU
Interrupt in Window.”
When operating a P6 family, Pentium 4, or Intel Xeon processor in
MS-DOS compatibility mode, non-waiting instructions can not be
interrupted in this way (see Section D.2.2, “MS-DOS* Compatibility
Sub-mode in the P6 Family and Pentium® 4 Processors”).

8.3.13 Unsupported x87 FPU Instructions
The Intel 8087 instructions FENI and FDISI and the Intel 287 math coprocessor
instruction FSETPM perform no function in the Intel 387 math coprocessor and later
IA-32 processors. If these opcodes are detected in the instruction stream, the x87
FPU performs no specific operation and no internal x87 FPU states are affected.

8.4 X87 FPU FLOATING-POINT EXCEPTION HANDLING
The x87 FPU detects the six classes of exception conditions described in Section 4.9,
“Overview of Floating-Point Exceptions”:
• Invalid operation (#I), with two subclasses:

— Stack overflow or underflow (#IS)

— Invalid arithmetic operation (#IA)
• Denormalized operand (#D)
• Divide-by-zero (#Z)
• Numeric overflow (#O)
• Numeric underflow (#U)
• Inexact result (precision) (#P)

Each of the six exception classes has a corresponding flag bit in the x87 FPU status
word and a mask bit in the x87 FPU control word (see Section 8.1.3, “x87 FPU Status
Register,” and Section 8.1.5, “x87 FPU Control Word,” respectively). In addition, the
exception summary (ES) flag in the status word indicates when one or more
unmasked exceptions has been detected. The stack fault (SF) flag (also in the status
word) distinguishes between the two types of invalid-operation exceptions.

The mask bits can be set with FLDCW, FRSTOR, or FXRSTOR; they can be read with
either FSTCW/FNSTCW, FSAVE/FNSAVE, or FXSAVE. The flag bits can be read with
the FSTSW/FNSTSW, FSAVE/FNSAVE, or FXSAVE instruction.

NOTE
Section 4.9.1, “Floating-Point Exception Conditions,” provides a
general overview of how the IA-32 processor detects and handles the
various classes of floating-point exceptions. This information pertains
to x87 FPU as well as SSE/SSE2/SSE3 extensions.
Vol. 1 8-35

PROGRAMMING WITH THE X87 FPU
The following sections give specific information about how the x87 FPU handles
floating-point exceptions that are unique to the x87 FPU.

8.4.1 Arithmetic vs. Non-arithmetic Instructions
When dealing with floating-point exceptions, it is useful to distinguish between
arithmetic instructions and non-arithmetic instructions. Non-arithmetic
instructions have no operands or do not make substantial changes to their operands.
Arithmetic instructions do make significant changes to their operands; in particular,
they make changes that could result in floating-point exceptions being signaled.
Table 8-9 lists the non-arithmetic and arithmetic instructions. It should be noted that
some non-arithmetic instructions can signal a floating-point stack (fault) exception,
but this exception is not the result of an operation on an operand.

Table 8-9. Arithmetic and Non-arithmetic Instructions

Non-arithmetic Instructions Arithmetic Instructions

FABS F2XM1

FCHS FADD/FADDP

FCLEX FBLD

FDECSTP FBSTP

FFREE FCOM/FCOMP/FCOMPP

FINCSTP FCOS

FINIT/FNINIT FDIV/FDIVP/FDIVR/FDIVRP

FLD (register-to-register) FIADD

FLD (extended format from memory) FICOM/FICOMP

FLD constant FIDIV/FIDIVR

FLDCW FILD

FLDENV FIMUL

FNOP FIST/FISTP1

FRSTOR FISUB/FISUBR

FSAVE/FNSAVE FLD (single and double)

FST/FSTP (register-to-register) FMUL/FMULP

FSTP (extended format to memory) FPATAN

FSTCW/FNSTCW FPREM/FPREM1

FSTENV/FNSTENV FPTAN

FSTSW/FNSTSW FRNDINT
8-36 Vol. 1

PROGRAMMING WITH THE X87 FPU
8.5 X87 FPU FLOATING-POINT EXCEPTION CONDITIONS
The following sections describe the various conditions that cause a floating-point
exception to be generated by the x87 FPU and the masked response of the x87 FPU
when these conditions are detected. Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volumes 2A & 2B, list the floating-point exceptions that can be
signaled for each floating-point instruction.

See Section 4.9.2, “Floating-Point Exception Priority,” for a description of the rules for
exception precedence when more than one floating-point exception condition is
detected for an instruction.

8.5.1 Invalid Operation Exception
The floating-point invalid-operation exception occurs in response to two sub-classes
of operations:
• Stack overflow or underflow (#IS)
• Invalid arithmetic operand (#IA)

The flag for this exception (IE) is bit 0 of the x87 FPU status word, and the mask bit
(IM) is bit 0 of the x87 FPU control word. The stack fault flag (SF) of the x87 FPU
status word indicates the type of operation that caused the exception. When the SF
flag is set to 1, a stack operation has resulted in stack overflow or underflow; when
the flag is cleared to 0, an arithmetic instruction has encountered an invalid operand.
Note that the x87 FPU explicitly sets the SF flag when it detects a stack overflow or

WAIT/FWAIT FSCALE

FXAM FSIN

FXCH FSINCOS

FSQRT

FST/FSTP (single and double)

FSUB/FSUBP/FSUBR/FSUBRP

FTST

FUCOM/FUCOMP/FUCOMPP

FXTRACT

FYL2X/FYL2XP1

NOTE:
1. The FISTTP instruction in SSE3 is an arithmetic x87 FPU instruction.

Table 8-9. Arithmetic and Non-arithmetic Instructions (Contd.)

Non-arithmetic Instructions Arithmetic Instructions
Vol. 1 8-37

PROGRAMMING WITH THE X87 FPU
underflow condition, but it does not explicitly clear the flag when it detects an invalid-
arithmetic-operand condition. As a result, the state of the SF flag can be 1 following
an invalid-arithmetic-operation exception, if it was not cleared from the last time a
stack overflow or underflow condition occurred. See Section 8.1.3.4, “Stack Fault
Flag,” for more information about the SF flag.

8.5.1.1 Stack Overflow or Underflow Exception (#IS)
The x87 FPU tag word keeps track of the contents of the registers in the x87 FPU
register stack (see Section 8.1.7, “x87 FPU Tag Word”). It then uses this information
to detect two different types of stack faults:
• Stack overflow — An instruction attempts to load a non-empty x87 FPU register

from memory. A non-empty register is defined as a register containing a zero
(tag value of 01), a valid value (tag value of 00), or a special value (tag value of
10).

• Stack underflow — An instruction references an empty x87 FPU register as a
source operand, including attempting to write the contents of an empty register
to memory. An empty register has a tag value of 11.

NOTES
The term stack overflow originates from the situation where the
program has loaded (pushed) eight values from memory onto the
x87 FPU register stack and the next value pushed on the stack causes
a stack wraparound to a register that already contains a value.
The term stack underflow originates from the opposite situation.
Here, a program has stored (popped) eight values from the x87 FPU
register stack to memory and the next value popped from the stack
causes stack wraparound to an empty register.

When the x87 FPU detects stack overflow or underflow, it sets the IE flag (bit 0) and
the SF flag (bit 6) in the x87 FPU status word to 1. It then sets condition-code flag C1
(bit 9) in the x87 FPU status word to 1 if stack overflow occurred or to 0 if stack
underflow occurred.

If the invalid-operation exception is masked, the x87 FPU returns the floating point,
integer, or packed decimal integer indefinite value to the destination operand,
depending on the instruction being executed. This value overwrites the destination
register or memory location specified by the instruction.

If the invalid-operation exception is not masked, a software exception handler is
invoked (see Section 8.7, “Handling x87 FPU Exceptions in Software”) and the top-
of-stack pointer (TOP) and source operands remain unchanged.
8-38 Vol. 1

PROGRAMMING WITH THE X87 FPU
8.5.1.2 Invalid Arithmetic Operand Exception (#IA)
The x87 FPU is able to detect a variety of invalid arithmetic operations that can be
coded in a program. These operations are listed in Table 8-10. (This list includes the
invalid operations defined in IEEE Standard 754.)

When the x87 FPU detects an invalid arithmetic operand, it sets the IE flag (bit 0) in
the x87 FPU status word to 1. If the invalid-operation exception is masked, the x87
FPU then returns an indefinite value or QNaN to the destination operand and/or sets
the floating-point condition codes as shown in Table 8-10. If the invalid-operation
exception is not masked, a software exception handler is invoked (see Section 8.7,
“Handling x87 FPU Exceptions in Software”) and the top-of-stack pointer (TOP) and
source operands remain unchanged.

Table 8-10. Invalid Arithmetic Operations and the
Masked Responses to Them

Condition Masked Response

Any arithmetic operation on an operand that is in
an unsupported format.

Return the QNaN floating-point indefinite
value to the destination operand.

Any arithmetic operation on a SNaN. Return a QNaN to the destination operand
(see Table 4-7).

Ordered compare and test operations: one or both
operands are NaNs.

Set the condition code flags (C0, C2, and C3) in
the x87 FPU status word or the CF, PF, and ZF
flags in the EFLAGS register to 111B (not
comparable).

Addition: operands are opposite-signed infinities.
Subtraction: operands are like-signed infinities.

Return the QNaN floating-point indefinite
value to the destination operand.

Multiplication: ∞ by 0; 0 by ∞ . Return the QNaN floating-point indefinite
value to the destination operand.

Division: ∞ by ∞ ; 0 by 0. Return the QNaN floating-point indefinite
value to the destination operand.

Remainder instructions FPREM, FPREM1: modulus
(divisor) is 0 or dividend is ∞ .

Return the QNaN floating-point indefinite;
clear condition code flag C2 to 0.

Trigonometric instructions FCOS, FPTAN, FSIN,
FSINCOS: source operand is ∞ .

Return the QNaN floating-point indefinite;
clear condition code flag C2 to 0.

FSQRT: negative operand (except FSQRT (–0) = –
0); FYL2X: negative operand (except FYL2X (–0) =
–∞); FYL2XP1: operand more negative than –1.

Return the QNaN floating-point indefinite
value to the destination operand.

FBSTP: Converted value cannot be represented in
18 decimal digits, or source value is an SNaN,
QNaN, ± ∞ , or in an unsupported format.

Store packed BCD integer indefinite value in
the destination operand.
Vol. 1 8-39

PROGRAMMING WITH THE X87 FPU
Normally, when one or both of the source operands is a QNaN (and neither is an
SNaN or in an unsupported format), an invalid-operand exception is not generated.
An exception to this rule is most of the compare instructions (such as the FCOM and
FCOMI instructions) and the floating-point to integer conversion instructions
(FIST/FISTP and FBSTP). With these instructions, a QNaN source operand will
generate an invalid-operand exception.

8.5.2 Denormal Operand Exception (#D)
The x87 FPU signals the denormal-operand exception under the following conditions:
• If an arithmetic instruction attempts to operate on a denormal operand (see

Section 4.8.3.2, “Normalized and Denormalized Finite Numbers”).
• If an attempt is made to load a denormal single-precision or double-precision

floating-point value into an x87 FPU register. (If the denormal value being loaded
is a double extended-precision floating-point value, the denormal-operand
exception is not reported.)

The flag (DE) for this exception is bit 1 of the x87 FPU status word, and the mask bit
(DM) is bit 1 of the x87 FPU control word.

When a denormal-operand exception occurs and the exception is masked, the x87
FPU sets the DE flag, then proceeds with the instruction. The denormal operand in
single- or double-precision floating-point format is automatically normalized when
converted to the double extended-precision floating-point format. Subsequent oper-
ations will benefit from the additional precision of the internal double extended-preci-
sion floating-point format.

When a denormal-operand exception occurs and the exception is not masked, the DE
flag is set and a software exception handler is invoked (see Section 8.7, “Handling
x87 FPU Exceptions in Software”). The top-of-stack pointer (TOP) and source oper-
ands remain unchanged.

For additional information about the denormal-operation exception, see Section
4.9.1.2, “Denormal Operand Exception (#D).”

FIST/FISTP: Converted value exceeds
representable integer range of the destination
operand, or source value is an SNaN, QNaN, ±∞, or
in an unsupported format.

Store integer indefinite value in the
destination operand.

FXCH: one or both registers are tagged empty. Load empty registers with the QNaN floating-
point indefinite value, then perform the
exchange.

Table 8-10. Invalid Arithmetic Operations and the
Masked Responses to Them (Contd.)
8-40 Vol. 1

PROGRAMMING WITH THE X87 FPU
8.5.3 Divide-By-Zero Exception (#Z)
The x87 FPU reports a floating-point divide-by-zero exception whenever an instruc-
tion attempts to divide a finite non-zero operand by 0. The flag (ZE) for this exception
is bit 2 of the x87 FPU status word, and the mask bit (ZM) is bit 2 of the x87 FPU
control word. The FDIV, FDIVP, FDIVR, FDIVRP, FIDIV, and FIDIVR instructions and
the other instructions that perform division internally (FYL2X and FXTRACT) can
report the divide-by-zero exception.

When a divide-by-zero exception occurs and the exception is masked, the x87 FPU
sets the ZE flag and returns the values shown in Table 8-10. If the divide-by-zero
exception is not masked, the ZE flag is set, a software exception handler is invoked
(see Section 8.7, “Handling x87 FPU Exceptions in Software”), and the top-of-stack
pointer (TOP) and source operands remain unchanged.

8.5.4 Numeric Overflow Exception (#O)
The x87 FPU reports a floating-point numeric overflow exception (#O) whenever the
rounded result of an arithmetic instruction exceeds the largest allowable finite value
that will fit into the floating-point format of the destination operand. (See Section
4.9.1.4, “Numeric Overflow Exception (#O),” for additional information about the
numeric overflow exception.)

When using the x87 FPU, numeric overflow can occur on arithmetic operations where
the result is stored in an x87 FPU data register. It can also occur on store floating-
point operations (using the FST and FSTP instructions), where a within-range value
in a data register is stored in memory in a single-precision or double-precision
floating-point format. The numeric overflow exception cannot occur when storing
values in an integer or BCD integer format. Instead, the invalid-arithmetic-operand
exception is signaled.

The flag (OE) for the numeric-overflow exception is bit 3 of the x87 FPU status word,
and the mask bit (OM) is bit 3 of the x87 FPU control word.

When a numeric-overflow exception occurs and the exception is masked, the x87
FPU sets the OE flag and returns one of the values shown in Table 4-10. The value
returned depends on the current rounding mode of the x87 FPU (see Section 8.1.5.3,
“Rounding Control Field”).

Table 8-11. Divide-By-Zero Conditions and the Masked Responses to Them

Condition Masked Response

Divide or reverse divide operation
with a 0 divisor.

Returns an ∞ signed with the exclusive OR of the sign of the
two operands to the destination operand.

FYL2X instruction. Returns an ∞ signed with the opposite sign of the non-zero
operand to the destination operand.

FXTRACT instruction. ST(1) is set to –∞; ST(0) is set to 0 with the same sign as the
source operand.
Vol. 1 8-41

PROGRAMMING WITH THE X87 FPU
The action that the x87 FPU takes when numeric overflow occurs and the numeric-
overflow exception is not masked, depends on whether the instruction is supposed to
store the result in memory or on the register stack.
• Destination is a memory location — The OE flag is set and a software

exception handler is invoked (see Section 8.7, “Handling x87 FPU Exceptions in
Software”). The top-of-stack pointer (TOP) and source and destination operands
remain unchanged. Because the data in the stack is in double extended-precision
format, the exception handler has the option either of re-executing the store
instruction after proper adjustment of the operand or of rounding the significand
on the stack to the destination's precision as the standard requires. The
exception handler should ultimately store a value into the destination location in
memory if the program is to continue.

• Destination is the register stack — The significand of the result is rounded
according to current settings of the precision and rounding control bits in the x87
FPU control word and the exponent of the result is adjusted by dividing it by
224576. (For instructions not affected by the precision field, the significand is
rounded to double-extended precision.) The resulting value is stored in the
destination operand. Condition code bit C1 in the x87 FPU status word (called in
this situation the “round-up bit”) is set if the significand was rounded upward and
cleared if the result was rounded toward 0. After the result is stored, the OE flag
is set and a software exception handler is invoked. The scaling bias value 24,576
is equal to 3 ∗ 213. Biasing the exponent by 24,576 normally translates the
number as nearly as possible to the middle of the double extended-precision
floating-point exponent range so that, if desired, it can be used in subsequent
scaled operations with less risk of causing further exceptions.
When using the FSCALE instruction, massive overflow can occur, where the result
is too large to be represented, even with a bias-adjusted exponent. Here, if
overflow occurs again, after the result has been biased, a properly signed ∞ is
stored in the destination operand.

8.5.5 Numeric Underflow Exception (#U)
The x87 FPU detects a floating-point numeric underflow condition whenever the
rounded result of an arithmetic instruction is tiny; that is, less than the smallest
possible normalized, finite value that will fit into the floating-point format of the
destination operand. (See Section 4.9.1.5, “Numeric Underflow Exception (#U),” for
additional information about the numeric underflow exception.)

Like numeric overflow, numeric underflow can occur on arithmetic operations where
the result is stored in an x87 FPU data register. It can also occur on store floating-
point operations (with the FST and FSTP instructions), where a within-range value in
a data register is stored in memory in the smaller single-precision or double-preci-
sion floating-point formats. A numeric underflow exception cannot occur when
storing values in an integer or BCD integer format, because a tiny value is always
rounded to an integral value of 0 or 1, depending on the rounding mode in effect.
8-42 Vol. 1

PROGRAMMING WITH THE X87 FPU
The flag (UE) for the numeric-underflow exception is bit 4 of the x87 FPU status
word, and the mask bit (UM) is bit 4 of the x87 FPU control word.

When a numeric-underflow condition occurs and the exception is masked, the x87
FPU performs the operation described in Section 4.9.1.5, “Numeric Underflow Excep-
tion (#U).”

When the exception is not masked, the action of the x87 FPU depends on whether the
instruction is supposed to store the result in a memory location or on the x87 FPU
resister stack.
• Destination is a memory location — (Can occur only with a store instruction.)

The UE flag is set and a software exception handler is invoked (see Section 8.7,
“Handling x87 FPU Exceptions in Software”). The top-of-stack pointer (TOP) and
source and destination operands remain unchanged, and no result is stored in
memory.
Because the data in the stack is in double extended-precision format, the
exception handler has the option either of re-exchanges the store instruction
after proper adjustment of the operand or of rounding the significand on the
stack to the destination's precision as the standard requires. The exception
handler should ultimately store a value into the destination location in memory if
the program is to continue.

• Destination is the register stack — The significand of the result is rounded
according to current settings of the precision and rounding control bits in the x87
FPU control word and the exponent of the result is adjusted by multiplying it by
224576. (For instructions not affected by the precision field, the significand is
rounded to double extended precision.) The resulting value is stored in the
destination operand. Condition code bit C1 in the x87 FPU status register (acting
here as a “round-up bit”) is set if the significand was rounded upward and cleared
if the result was rounded toward 0. After the result is stored, the UE flag is set
and a software exception handler is invoked. The scaling bias value 24,576 is the
same as is used for the overflow exception and has the same effect, which is to
translate the result as nearly as possible to the middle of the double extended-
precision floating-point exponent range.
When using the FSCALE instruction, massive underflow can occur, where the
result is too tiny to be represented, even with a bias-adjusted exponent. Here, if
underflow occurs again after the result has been biased, a properly signed 0 is
stored in the destination operand.

8.5.6 Inexact-Result (Precision) Exception (#P)
The inexact-result exception (also called the precision exception) occurs if the result
of an operation is not exactly representable in the destination format. (See Section
4.9.1.6, “Inexact-Result (Precision) Exception (#P),” for additional information about
the numeric overflow exception.) Note that the transcendental instructions (FSIN,
FCOS, FSINCOS, FPTAN, FPATAN, F2XM1, FYL2X, and FYL2XP1) by nature produce
inexact results.
Vol. 1 8-43

PROGRAMMING WITH THE X87 FPU
The inexact-result exception flag (PE) is bit 5 of the x87 FPU status word, and the
mask bit (PM) is bit 5 of the x87 FPU control word.

If the inexact-result exception is masked when an inexact-result condition occurs and
a numeric overflow or underflow condition has not occurred, the x87 FPU handles the
exception as describe in Section 4.9.1.6, “Inexact-Result (Precision) Exception (#P),”
with one additional action. The C1 (round-up) bit in the x87 FPU status word is set to
indicate whether the inexact result was rounded up (C1 is set) or “not rounded up”
(C1 is cleared). In the “not rounded up” case, the least-significant bits of the inexact
result are truncated so that the result fits in the destination format.

If the inexact-result exception is not masked when an inexact result occurs and
numeric overflow or underflow has not occurred, the x87 FPU handles the exception
as described in the previous paragraph and, in addition, invokes a software exception
handler.

If an inexact result occurs in conjunction with numeric overflow or underflow, the x87
FPU carries out one of the following operations:
• If an inexact result occurs in conjunction with masked overflow or underflow, the

OE or UE flag and the PE flag are set and the result is stored as described for the
overflow or underflow exceptions (see Section 8.5.4, “Numeric Overflow
Exception (#O),” or Section 8.5.5, “Numeric Underflow Exception (#U)”). If the
inexact result exception is unmasked, the x87 FPU also invokes a software
exception handler.

• If an inexact result occurs in conjunction with unmasked overflow or underflow
and the destination operand is a register, the OE or UE flag and the PE flag are
set, the result is stored as described for the overflow or underflow exceptions
(see Section 8.5.4, “Numeric Overflow Exception (#O),” or Section 8.5.5,
“Numeric Underflow Exception (#U)”) and a software exception handler is
invoked.

If an unmasked numeric overflow or underflow exception occurs and the destination
operand is a memory location (which can happen only for a floating-point store), the
inexact-result condition is not reported and the C1 flag is cleared.

8.6 X87 FPU EXCEPTION SYNCHRONIZATION
Because the integer unit and x87 FPU are separate execution units, it is possible for
the processor to execute floating-point, integer, and system instructions concur-
rently. No special programming techniques are required to gain the advantages of
concurrent execution. (Floating-point instructions are placed in the instruction
stream along with the integer and system instructions.) However, concurrent execu-
tion can cause problems for floating-point exception handlers.

This problem is related to the way the x87 FPU signals the existence of unmasked
floating-point exceptions. (Special exception synchronization is not required for
masked floating-point exceptions, because the x87 FPU always returns a masked
result to the destination operand.)
8-44 Vol. 1

PROGRAMMING WITH THE X87 FPU
When a floating-point exception is unmasked and the exception condition occurs, the
x87 FPU stops further execution of the floating-point instruction and signals the
exception event. On the next occurrence of a floating-point instruction or a
WAIT/FWAIT instruction in the instruction stream, the processor checks the ES flag in
the x87 FPU status word for pending floating-point exceptions. If floating-point
exceptions are pending, the x87 FPU makes an implicit call (traps) to the floating-
point software exception handler. The exception handler can then execute recovery
procedures for selected or all floating-point exceptions.

Synchronization problems occur in the time between the moment when the excep-
tion is signaled and when it is actually handled. Because of concurrent execution,
integer or system instructions can be executed during this time. It is thus possible for
the source or destination operands for a floating-point instruction that faulted to be
overwritten in memory, making it impossible for the exception handler to analyze or
recover from the exception.

To solve this problem, an exception synchronizing instruction (either a floating-point
instruction or a WAIT/FWAIT instruction) can be placed immediately after any
floating-point instruction that might present a situation where state information
pertaining to a floating-point exception might be lost or corrupted. Floating-point
instructions that store data in memory are prime candidates for synchronization. For
example, the following three lines of code have the potential for exception synchro-
nization problems:

FILD COUNT ;Floating-point instruction
INC COUNT ;Integer instruction
FSQRT ;Subsequent floating-point instruction

In this example, the INC instruction modifies the source operand of the floating-point
instruction, FILD. If an exception is signaled during the execution of the FILD instruc-
tion, the INC instruction would be allowed to overwrite the value stored in the COUNT
memory location before the floating-point exception handler is called. With the
COUNT variable modified, the floating-point exception handler would not be able to
recover from the error.

Rearranging the instructions, as follows, so that the FSQRT instruction follows the
FILD instruction, synchronizes floating-point exception handling and eliminates the
possibility of the COUNT variable being overwritten before the floating-point excep-
tion handler is invoked.

FILD COUNT ;Floating-point instruction
FSQRT ;Subsequent floating-point instruction synchronizes

 ;any exceptions generated by the FILD instruction.
INC COUNT ;Integer instruction

The FSQRT instruction does not require any synchronization, because the results of
this instruction are stored in the x87 FPU data registers and will remain there, undis-
turbed, until the next floating-point or WAIT/FWAIT instruction is executed. To abso-
lutely insure that any exceptions emanating from the FSQRT instruction are handled
(for example, prior to a procedure call), a WAIT instruction can be placed directly
after the FSQRT instruction.
Vol. 1 8-45

PROGRAMMING WITH THE X87 FPU
Note that some floating-point instructions (non-waiting instructions) do not check for
pending unmasked exceptions (see Section 8.3.11, “x87 FPU Control Instructions”).
They include the FNINIT, FNSTENV, FNSAVE, FNSTSW, FNSTCW, and FNCLEX instruc-
tions. When an FNINIT, FNSTENV, FNSAVE, or FNCLEX instruction is executed, all
pending exceptions are essentially lost (either the x87 FPU status register is cleared
or all exceptions are masked). The FNSTSW and FNSTCW instructions do not check
for pending interrupts, but they do not modify the x87 FPU status and control regis-
ters. A subsequent “waiting” floating-point instruction can then handle any pending
exceptions.

8.7 HANDLING X87 FPU EXCEPTIONS IN SOFTWARE
The x87 FPU in Pentium and later IA-32 processors provides two different modes of
operation for invoking a software exception handler for floating-point exceptions:
native mode and MS-DOS compatibility mode. The mode of operation is selected by
CR0.NE[bit 5]. (See Chapter 2, “System Architecture Overview,” in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3A, for more information
about the NE flag.)

8.7.1 Native Mode
The native mode for handling floating-point exceptions is selected by setting
CR0.NE[bit 5] to 1. In this mode, if the x87 FPU detects an exception condition while
executing a floating-point instruction and the exception is unmasked (the mask bit
for the exception is cleared), the x87 FPU sets the flag for the exception and the ES
flag in the x87 FPU status word. It then invokes the software exception handler
through the floating-point-error exception (#MF, vector 16), immediately before
execution of any of the following instructions in the processor’s instruction stream:
• The next floating-point instruction, unless it is one of the non-waiting instructions

(FNINIT, FNCLEX, FNSTSW, FNSTCW, FNSTENV, and FNSAVE).
• The next WAIT/FWAIT instruction.
• The next MMX instruction.

If the next floating-point instruction in the instruction stream is a non-waiting
instruction, the x87 FPU executes the instruction without invoking the software
exception handler.

8.7.2 MS-DOS* Compatibility Sub-mode
If CR0.NE[bit 5] is 0, the MS-DOS compatibility mode for handling floating-point
exceptions is selected. In this mode, the software exception handler for floating-
point exceptions is invoked externally using the processor’s FERR#, INTR, and
IGNNE# pins. This method of reporting floating-point errors and invoking an excep-
8-46 Vol. 1

PROGRAMMING WITH THE X87 FPU
tion handler is provided to support the floating-point exception handling mechanism
used in PC systems that are running the MS-DOS or Windows* 95 operating system.

Using FERR# and IGNNE# to handle floating-point exception is deprecated by
modern operating systems, this approach also limits newer processors to operate
with one logical processor active.

The MS-DOS compatibility mode is typically used as follows to invoke the floating-
point exception handler:

1. If the x87 FPU detects an unmasked floating-point exception, it sets the flag for
the exception and the ES flag in the x87 FPU status word.

2. If the IGNNE# pin is deasserted, the x87 FPU then asserts the FERR# pin either
immediately, or else delayed (deferred) until just before the execution of the next
waiting floating-point instruction or MMX instruction. Whether the FERR# pin is
asserted immediately or delayed depends on the type of processor, the
instruction, and the type of exception.

3. If a preceding floating-point instruction has set the exception flag for an
unmasked x87 FPU exception, the processor freezes just before executing the
next WAIT instruction, waiting floating-point instruction, or MMX instruction.
Whether the FERR# pin was asserted at the preceding floating-point instruction
or is just now being asserted, the freezing of the processor assures that the x87
FPU exception handler will be invoked before the new floating-point (or MMX)
instruction gets executed.

4. The FERR# pin is connected through external hardware to IRQ13 of a cascaded,
programmable interrupt controller (PIC). When the FERR# pin is asserted, the
PIC is programmed to generate an interrupt 75H.

5. The PIC asserts the INTR pin on the processor to signal the interrupt 75H.

6. The BIOS for the PC system handles the interrupt 75H by branching to the
interrupt 02H (NMI) interrupt handler.

7. The interrupt 02H handler determines if the interrupt is the result of an NMI
interrupt or a floating-point exception.

8. If a floating-point exception is detected, the interrupt 02H handler branches to
the floating-point exception handler.

If the IGNNE# pin is asserted, the processor ignores floating-point error conditions.
This pin is provided to inhibit floating-point exceptions from being generated while
the floating-point exception handler is servicing a previously signaled floating-point
exception.

Appendix D, “Guidelines for Writing x87 FPU Exception Handlers,” describes the
MS-DOS compatibility mode in much greater detail. This mode is somewhat more
complicated in the Intel486 and Pentium processor implementations, as described in
Appendix D.
Vol. 1 8-47

PROGRAMMING WITH THE X87 FPU
8.7.3 Handling x87 FPU Exceptions in Software
Section 4.9.3, “Typical Actions of a Floating-Point Exception Handler,” shows actions
that may be carried out by a floating-point exception handler. The state of the x87
FPU can be saved with the FSTENV/FNSTENV or FSAVE/FNSAVE instructions (see
Section 8.1.10, “Saving the x87 FPU’s State with FSTENV/FNSTENV and
FSAVE/FNSAVE”).

If the faulting floating-point instruction is followed by one or more non-floating-point
instructions, it may not be useful to re-execute the faulting instruction. See Section
8.6, “x87 FPU Exception Synchronization,” for more information on synchronizing
floating-point exceptions.

In cases where the handler needs to restart program execution with the faulting
instruction, the IRET instruction cannot be used directly. The reason for this is that
because the exception is not generated until the next floating-point or WAIT/FWAIT
instruction following the faulting floating-point instruction, the return instruction
pointer on the stack may not point to the faulting instruction. To restart program
execution at the faulting instruction, the exception handler must obtain a pointer to
the instruction from the saved x87 FPU state information, load it into the return
instruction pointer location on the stack, and then execute the IRET instruction.

See Section D.3.4, “x87 FPU Exception Handling Examples,” for general examples of
floating-point exception handlers and for specific examples of how to write a floating-
point exception handler when using the MS-DOS compatibility mode.
8-48 Vol. 1

CHAPTER 9
PROGRAMMING WITH INTEL® MMX™ TECHNOLOGY

The Intel MMX technology was introduced into the IA-32 architecture in the
Pentium II processor family and Pentium processor with MMX technology. The exten-
sions introduced in MMX technology support a single-instruction, multiple-data
(SIMD) execution model that is designed to accelerate the performance of advanced
media and communications applications.

This chapter describes MMX technology.

9.1 OVERVIEW OF MMX TECHNOLOGY
MMX technology defines a simple and flexible SIMD execution model to handle 64-bit
packed integer data. This model adds the following features to the IA-32 architec-
ture, while maintaining backwards compatibility with all IA-32 applications and
operating-system code:
• Eight new 64-bit data registers, called MMX registers
• Three new packed data types:

— 64-bit packed byte integers (signed and unsigned)

— 64-bit packed word integers (signed and unsigned)

— 64-bit packed doubleword integers (signed and unsigned)
• Instructions that support the new data types and to handle MMX state

management
• Extensions to the CPUID instruction

MMX technology is accessible from all the IA32-architecture execution modes
(protected mode, real address mode, and virtual 8086 mode). It does not add any
new modes to the architecture.

The following sections of this chapter describe MMX technology’s programming envi-
ronment, including MMX register set, data types, and instruction set. Additional
instructions that operate on MMX registers have been added to the IA-32 architec-
ture by the SSE/SSE2 extensions.

For more information, see:
• Section 10.4.4, “SSE 64-Bit SIMD Integer Instructions,” describes MMX instruc-

tions added to the IA-32 architecture with the SSE extensions.
• Section 11.4.2, “SSE2 64-Bit and 128-Bit SIMD Integer Instructions,” describes

MMX instructions added to the IA-32 architecture with SSE2 extensions.
• Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes

2A & 2B, give detailed descriptions of MMX instructions.
Vol. 1 9-1

PROGRAMMING WITH INTEL® MMX™ TECHNOLOGY
• Chapter 12, “Intel® MMX™ Technology System Programming,” in the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 3B, describes the
manner in which MMX technology is integrated into the IA-32 system
programming model.

9.2 THE MMX TECHNOLOGY PROGRAMMING
ENVIRONMENT

Figure 9-1 shows the execution environment for MMX technology. All MMX instruc-
tions operate on MMX registers, the general-purpose registers, and/or memory as
follows:
• MMX registers — These eight registers (see Figure 9-1) are used to perform

operations on 64-bit packed integer data. They are named MM0 through MM7.

• General-purpose registers — The eight general-purpose registers (see
Figure 3-5) are used with existing IA-32 addressing modes to address operands
in memory. (MMX registers cannot be used to address memory). General-
purpose registers are also used to hold operands for some MMX technology
operations. They are EAX, EBX, ECX, EDX, EBP, ESI, EDI, and ESP.

9.2.1 MMX Technology in 64-Bit Mode and Compatibility Mode
In compatibility mode and 64-bit mode, MMX instructions function like they do in
protected mode. Memory operands are specified using the ModR/M, SIB encoding
described in Section 3.7.5.

Figure 9-1. MMX Technology Execution Environment

0

232 -1

Eight 32-Bit

Address Space

General-Purpose

Eight 64-Bit
MMX Registers

Registers
9-2 Vol. 1

PROGRAMMING WITH INTEL® MMX™ TECHNOLOGY
9.2.2 MMX Registers
The MMX register set consists of eight 64-bit registers (see Figure 9-2), that are used
to perform calculations on the MMX packed integer data types. Values in MMX regis-
ters have the same format as a 64-bit quantity in memory.

The MMX registers have two data access modes: 64-bit access mode and 32-bit
access mode. The 64-bit access mode is used for:
• 64-bit memory accesses
• 64-bit transfers between MMX registers
• All pack, logical, and arithmetic instructions
• Some unpack instructions

The 32-bit access mode is used for:
• 32-bit memory accesses
• 32-bit transfer between general-purpose registers and MMX registers
• Some unpack instructions

Although MMX registers are defined in the IA-32 architecture as separate registers,
they are aliased to the registers in the FPU data register stack (R0 through R7).

See also Section 9.5, “Compatibility with x87 FPU Architecture.”

9.2.3 MMX Data Types
MMX technology introduced the following 64-bit data types to the IA-32 architecture
(see Figure 9-3):
• 64-bit packed byte integers — eight packed bytes

Figure 9-2. MMX Register Set

MM7

MM6

MM5

MM4

MM3

MM2

MM1

MM0

63 0
Vol. 1 9-3

PROGRAMMING WITH INTEL® MMX™ TECHNOLOGY
• 64-bit packed word integers — four packed words
• 64-bit packed doubleword integers — two packed doublewords

MMX instructions move 64-bit packed data types (packed bytes, packed words, or
packed doublewords) and the quadword data type between MMX registers and
memory or between MMX registers in 64-bit blocks. However, when performing arith-
metic or logical operations on the packed data types, MMX instructions operate in
parallel on the individual bytes, words, or doublewords contained in MMX registers
(see Section 9.2.5, “Single Instruction, Multiple Data (SIMD) Execution Model”).

9.2.4 Memory Data Formats
When stored in memory: bytes, words and doublewords in the packed data types are
stored in consecutive addresses. The least significant byte, word, or doubleword is
stored at the lowest address and the most significant byte, word, or doubleword is
stored at the high address. The ordering of bytes, words, or doublewords in memory
is always little endian. That is, the bytes with the low addresses are less significant
than the bytes with high addresses.

9.2.5 Single Instruction, Multiple Data (SIMD) Execution Model
MMX technology uses the single instruction, multiple data (SIMD) technique for
performing arithmetic and logical operations on bytes, words, or doublewords packed
into MMX registers (see Figure 9-4). For example, the PADDSW instruction adds 4
signed word integers from one source operand to 4 signed word integers in a second
source operand and stores 4 word integer results in a destination operand. This SIMD
technique speeds up software performance by allowing the same operation to be
carried out on multiple data elements in parallel. MMX technology supports parallel
operations on byte, word, and doubleword data elements when contained in MMX
registers.

Figure 9-3. Data Types Introduced with the MMX Technology

Packed Word Integers

Packed Byte Integers

Packed Doubleword Integers

063

063

063
9-4 Vol. 1

PROGRAMMING WITH INTEL® MMX™ TECHNOLOGY
The SIMD execution model supported in the MMX technology directly addresses the
needs of modern media, communications, and graphics applications, which often use
sophisticated algorithms that perform the same operations on a large number of
small data types (bytes, words, and doublewords). For example, most audio data is
represented in 16-bit (word) quantities. The MMX instructions can operate on 4
words simultaneously with one instruction. Video and graphics information is
commonly represented as palletized 8-bit (byte) quantities. In Figure 9-4, one MMX
instruction operates on 8 bytes simultaneously.

9.3 SATURATION AND WRAPAROUND MODES
When performing integer arithmetic, an operation may result in an out-of-range
condition, where the true result cannot be represented in the destination format. For
example, when performing arithmetic on signed word integers, positive overflow can
occur when the true signed result is larger than 16 bits.

The MMX technology provides three ways of handling out-of-range conditions:
• Wraparound arithmetic — With wraparound arithmetic, a true out-of-range

result is truncated (that is, the carry or overflow bit is ignored and only the least
significant bits of the result are returned to the destination). Wraparound
arithmetic is suitable for applications that control the range of operands to
prevent out-of-range results. If the range of operands is not controlled, however,
wraparound arithmetic can lead to large errors. For example, adding two large
signed numbers can cause positive overflow and produce a negative result.

• Signed saturation arithmetic — With signed saturation arithmetic, out-of-
range results are limited to the representable range of signed integers for the
integer size being operated on (see Table 9-1). For example, if positive overflow
occurs when operating on signed word integers, the result is “saturated” to
7FFFH, which is the largest positive integer that can be represented in 16 bits; if
negative overflow occurs, the result is saturated to 8000H.

Figure 9-4. SIMD Execution Model

X3 X2 X1 X0

Y3 Y2 Y1 Y0

X3 OP Y3 X2 OP Y2 X1 OP Y1 X0 OP Y0

OPOPOPOP

Source 1

Source 2

Destination
Vol. 1 9-5

PROGRAMMING WITH INTEL® MMX™ TECHNOLOGY
• Unsigned saturation arithmetic — With unsigned saturation arithmetic, out-
of-range results are limited to the representable range of unsigned integers for
the integer size. So, positive overflow when operating on unsigned byte integers
results in FFH being returned and negative overflow results in 00H being
returned.

.

Saturation arithmetic provides an answer for many overflow situations. For example,
in color calculations, saturation causes a color to remain pure black or pure white
without allowing inversion. It also prevents wraparound artifacts from entering into
computations when range checking of source operands it not used.

MMX instructions do not indicate overflow or underflow occurrence by generating
exceptions or setting flags in the EFLAGS register.

9.4 MMX INSTRUCTIONS
The MMX instruction set consists of 47 instructions, grouped into the following cate-
gories:
• Data transfer
• Arithmetic
• Comparison
• Conversion
• Unpacking
• Logical
• Shift
• Empty MMX state instruction (EMMS)

Table 9-2 gives a summary of the instructions in the MMX instruction set. The
following sections give a brief overview of the instructions within each group.

Table 9-1. Data Range Limits for Saturation

Data Type Lower Limit Upper Limit

Hexadecimal Decimal Hexadecimal Decimal

Signed Byte 80H -128 7FH 127

Signed Word 8000H -32,768 7FFFH 32,767

Unsigned Byte 00H 0 FFH 255

Unsigned Word 0000H 0 FFFFH 65,535
9-6 Vol. 1

PROGRAMMING WITH INTEL® MMX™ TECHNOLOGY
NOTES
The MMX instructions described in this chapter are those instructions
that are available in an IA-32 processor when
CPUID.01H:EDX.MMX[bit 23] = 1.
Section 10.4.4, “SSE 64-Bit SIMD Integer Instructions,” and Section
11.4.2, “SSE2 64-Bit and 128-Bit SIMD Integer Instructions,” list
additional instructions included with SSE/SSE2 extensions that
operate on the MMX registers but are not considered part of the MMX
instruction set.

Table 9-2. MMX Instruction Set Summary

Category Wraparound Signed
Saturation

Unsigned Saturation

Arithmetic Addition

Subtraction

Multiplication

Multiply and Add

PADDB, PADDW,
PADDD

PSUBB, PSUBW,
PSUBD

PMULL, PMULH

PMADD

PADDSB, PADDSW

PSUBSB, PSUBSW

PADDUSB, PADDUSW

PSUBUSB, PSUBUSW

Comparison Compare for Equal

Compare for
Greater Than

PCMPEQB,
PCMPEQW,
PCMPEQD

PCMPGTPB,
PCMPGTPW,
PCMPGTPD

Conversion Pack PACKSSWB,
PACKSSDW

PACKUSWB

Unpack Unpack High

Unpack Low

PUNPCKHBW,
PUNPCKHWD,
PUNPCKHDQ

PUNPCKLBW,
PUNPCKLWD,
PUNPCKLDQ

Packed Full Quadword

Logical And

And Not

Or

Exclusive OR

PAND

PANDN

POR

PXOR
Vol. 1 9-7

PROGRAMMING WITH INTEL® MMX™ TECHNOLOGY
9.4.1 Data Transfer Instructions
The MOVD (Move 32 Bits) instruction transfers 32 bits of packed data from memory
to an MMX register and vice versa; or from a general-purpose register to an MMX
register and vice versa.

The MOVQ (Move 64 Bits) instruction transfers 64 bits of packed data from memory
to an MMX register and vice versa; or transfers data between MMX registers.

9.4.2 Arithmetic Instructions
The arithmetic instructions perform addition, subtraction, multiplication, and
multiply/add operations on packed data types.

The PADDB/PADDW/PADDD (add packed integers) instructions and the
PSUBB/PSUBW/ PSUBD (subtract packed integers) instructions add or subtract the
corresponding signed or unsigned data elements of the source and destination oper-
ands in wraparound mode. These instructions operate on packed byte, word, and
doubleword data types.

The PADDSB/PADDSW (add packed signed integers with signed saturation) instruc-
tions and the PSUBSB/PSUBSW (subtract packed signed integers with signed satura-
tion) instructions add or subtract the corresponding signed data elements of the
source and destination operands and saturate the result to the limits of the signed
data-type range. These instructions operate on packed byte and word data types.

The PADDUSB/PADDUSW (add packed unsigned integers with unsigned saturation)
instructions and the PSUBUSB/PSUBUSW (subtract packed unsigned integers with

Shift Shift Left Logical

Shift Right Logical

Shift Right
Arithmetic

PSLLW, PSLLD

PSRLW, PSRLD

PSRAW, PSRAD

PSLLQ

PSRLQ

Doubleword Transfers Quadword Transfers

Data
Transfer

Register to
Register

Load from
Memory

Store to Memory

MOVD

MOVD

MOVD

MOVQ

MOVQ

MOVQ

Empty MMX
State

EMMS

Table 9-2. MMX Instruction Set Summary (Contd.)

Category Wraparound Signed
Saturation

Unsigned Saturation
9-8 Vol. 1

PROGRAMMING WITH INTEL® MMX™ TECHNOLOGY
unsigned saturation) instructions add or subtract the corresponding unsigned data
elements of the source and destination operands and saturate the result to the limits
of the unsigned data-type range. These instructions operate on packed byte and
word data types.

The PMULHW (multiply packed signed integers and store high result) and PMULLW
(multiply packed signed integers and store low result) instructions perform a signed
multiply of the corresponding words of the source and destination operands and write
the high-order or low-order 16 bits of each of the results, respectively, to the desti-
nation operand.

The PMADDWD (multiply and add packed integers) instruction computes the prod-
ucts of the corresponding signed words of the source and destination operands. The
four intermediate 32-bit doubleword products are summed in pairs (high-order pair
and low-order pair) to produce two 32-bit doubleword results.

9.4.3 Comparison Instructions
The PCMPEQB/PCMPEQW/PCMPEQD (compare packed data for equal) instructions
and the PCMPGTB/PCMPGTW/PCMPGTD (compare packed signed integers for greater
than) instructions compare the corresponding signed data elements (bytes, words,
or doublewords) in the source and destination operands for equal to or greater than,
respectively.

These instructions generate a mask of ones or zeros which are written to the destina-
tion operand. Logical operations can use the mask to select packed elements. This
can be used to implement a packed conditional move operation without a branch or a
set of branch instructions. No flags in the EFLAGS register are affected.

9.4.4 Conversion Instructions
The PACKSSWB (pack words into bytes with signed saturation) and PACKSSDW (pack
doublewords into words with signed saturation) instructions convert signed words
into signed bytes and signed doublewords into signed words, respectively, using
signed saturation.

PACKUSWB (pack words into bytes with unsigned saturation) converts signed words
into unsigned bytes, using unsigned saturation.

9.4.5 Unpack Instructions
The PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ (unpack high-order data elements)
instructions and the PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ (unpack low-order data
elements) instructions unpack bytes, words, or doublewords from the high- or low-
order data elements of the source and destination operands and interleave them in
the destination operand. By placing all 0s in the source operand, these instructions
Vol. 1 9-9

PROGRAMMING WITH INTEL® MMX™ TECHNOLOGY
can be used to convert byte integers to word integers, word integers to doubleword
integers, or doubleword integers to quadword integers.

9.4.6 Logical Instructions
PAND (bitwise logical AND), PANDN (bitwise logical AND NOT), POR (bitwise logical
OR), and PXOR (bitwise logical exclusive OR) perform bitwise logical operations on
the quadword source and destination operands.

9.4.7 Shift Instructions
The logical shift left, logical shift right and arithmetic shift right instructions shift each
element by a specified number of bit positions.

The PSLLW/PSLLD/PSLLQ (shift packed data left logical) instructions and the
PSRLW/PSRLD/PSRLQ (shift packed data right logical) instructions perform a logical
left or right shift of the data elements and fill the empty high or low order bit posi-
tions with zeros. These instructions operate on packed words, doublewords, and
quadwords.

The PSRAW/PSRAD (shift packed data right arithmetic) instructions perform an arith-
metic right shift, copying the sign bit for each data element into empty bit positions
on the upper end of each data element. This instruction operates on packed words
and doublewords.

9.4.8 EMMS Instruction
The EMMS instruction empties the MMX state by setting the tags in x87 FPU tag word
to 11B, indicating empty registers. This instruction must be executed at the end of an
MMX routine before calling other routines that can execute floating-point instruc-
tions. See Section 9.6.3, “Using the EMMS Instruction,” for more information on the
use of this instruction.

9.5 COMPATIBILITY WITH X87 FPU ARCHITECTURE
The MMX state is aliased to the x87 FPU state. No new states or modes have been
added to IA-32 architecture to support the MMX technology. The same floating-point
instructions that save and restore the x87 FPU state also handle the MMX state (for
example, during context switching).

MMX technology uses the same interface techniques between the x87 FPU and the
operating system (primarily for task switching purposes). For more details, see
Chapter 12, “Intel® MMX™ Technology System Programming,” in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3A.
9-10 Vol. 1

PROGRAMMING WITH INTEL® MMX™ TECHNOLOGY
9.5.1 MMX Instructions and the x87 FPU Tag Word
After each MMX instruction, the entire x87 FPU tag word is set to valid (00B). The
EMMS instruction (empty MMX state) sets the entire x87 FPU tag word to empty
(11B).

Chapter 12, “Intel® MMX™ Technology System Programming,” in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3A, provides additional
information about the effects of x87 FPU and MMX instructions on the x87 FPU tag
word. For a description of the tag word, see Section 8.1.7, “x87 FPU Tag Word.”

9.6 WRITING APPLICATIONS WITH MMX CODE
The following sections give guidelines for writing application code that uses MMX
technology.

9.6.1 Checking for MMX Technology Support
Before an application attempts to use the MMX technology, it should check that it is
present on the processor. Check by following these steps:

1. Check that the processor supports the CPUID instruction by attempting to
execute the CPUID instruction. If the processor does not support the CPUID
instruction, this will generate an invalid-opcode exception (#UD).

2. Check that the processor supports the MMX technology
(if CPUID.01H:EDX.MMX[bit 23] = 1).

3. Check that emulation of the x87 FPU is disabled (if CR0.EM[bit 2] = 0).

If the processor attempts to execute an unsupported MMX instruction or attempts to
execute an MMX instruction with CR0.EM[bit 2] set, this generates an invalid-opcode
exception (#UD).

Example 9-1 illustrates how to use the CPUID instruction to detect the MMX tech-
nology. This example does not represent the entire CPUID sequence, but shows the
portion used for detection of MMX technology.

Example 9-1. Partial Routine for Detecting MMX Technology with the CPUID Instruction

... ; identify existence of CPUID instruction

... ; identify Intel processor
mov EAX, 1 ; request for feature flags
CPUID ; 0FH, 0A2H CPUID instruction
test EDX, 00800000H ; Is IA MMX technology bit (Bit 23 of EDX) set?
jnz ; MMX_Technology_Found
Vol. 1 9-11

PROGRAMMING WITH INTEL® MMX™ TECHNOLOGY
9.6.2 Transitions Between x87 FPU and MMX Code
Applications can contain both x87 FPU floating-point and MMX instructions. However,
because the MMX registers are aliased to the x87 FPU register stack, care must be
taken when making transitions between x87 FPU instructions and MMX instructions
to prevent incoherent or unexpected results.

When an MMX instruction (other than the EMMS instruction) is executed, the
processor changes the x87 FPU state as follows:
• The TOS (top of stack) value of the x87 FPU status word is set to 0.
• The entire x87 FPU tag word is set to the valid state (00B in all tag fields).
• When an MMX instruction writes to an MMX register, it writes ones (11B) to the

exponent part of the corresponding floating-point register (bits 64 through 79).

The net result of these actions is that any x87 FPU state prior to the execution of the
MMX instruction is essentially lost.

When an x87 FPU instruction is executed, the processor assumes that the current
state of the x87 FPU register stack and control registers is valid and executes the
instruction without any preparatory modifications to the x87 FPU state.

If the application contains both x87 FPU floating-point and MMX instructions, the
following guidelines are recommended:
• When transitioning between x87 FPU and MMX code, save the state of any x87

FPU data or control registers that need to be preserved for future use. The FSAVE
and FXSAVE instructions save the entire x87 FPU state.

• When transitioning between MMX and x87 FPU code, do the following:

— Save any data in the MMX registers that needs to be preserved for future use.
FSAVE and FXSAVE also save the state of MMX registers.

— Execute the EMMS instruction to clear the MMX state from the x87 data and
control registers.

The following sections describe the use of the EMMS instruction and give additional
guidelines for mixing x87 FPU and MMX code.

9.6.3 Using the EMMS Instruction
As described in Section 9.6.2, “Transitions Between x87 FPU and MMX Code,” when
an MMX instruction executes, the x87 FPU tag word is marked valid (00B). In this
state, the execution of subsequent x87 FPU instructions may produce unexpected
x87 FPU floating-point exceptions and/or incorrect results because the x87 FPU
register stack appears to contain valid data. The EMMS instruction is provided to
prevent this problem by marking the x87 FPU tag word as empty.

The EMMS instruction should be used in each of the following cases:
• When an application using the x87 FPU instructions calls an MMX technology

library/DLL (use the EMMS instruction at the end of the MMX code).
9-12 Vol. 1

PROGRAMMING WITH INTEL® MMX™ TECHNOLOGY
• When an application using MMX instructions calls a x87 FPU floating-point
library/DLL (use the EMMS instruction before calling the x87 FPU code).

• When a switch is made between MMX code in a task or thread and other tasks or
threads in cooperative operating systems, unless it is certain that more MMX
instructions will be executed before any x87 FPU code.

EMMS is not required when mixing MMX technology instructions with
SSE/SSE2/SSE3 instructions (see Section 11.6.7, “Interaction of SSE/SSE2 Instruc-
tions with x87 FPU and MMX Instructions”).

9.6.4 Mixing MMX and x87 FPU Instructions
An application can contain both x87 FPU floating-point and MMX instructions.
However, frequent transitions between MMX and x87 FPU instructions are not recom-
mended, because they can degrade performance in some processor implementa-
tions. When mixing MMX code with x87 FPU code, follow these guidelines:
• Keep the code in separate modules, procedures, or routines.
• Do not rely on register contents across transitions between x87 FPU and MMX

code modules.
• When transitioning between MMX code and x87 FPU code, save the MMX register

state (if it will be needed in the future) and execute an EMMS instruction to empty
the MMX state.

• When transitioning between x87 FPU code and MMX code, save the x87 FPU state
if it will be needed in the future.

9.6.5 Interfacing with MMX Code
MMX technology enables direct access to all the MMX registers. This means that all
existing interface conventions that apply to the use of the processor’s general-
purpose registers (EAX, EBX, etc.) also apply to the use of MMX registers.

An efficient interface to MMX routines might pass parameters and return values
through the MMX registers or through a combination of memory locations (via the
stack) and MMX registers. Do not use the EMMS instruction or mix MMX and x87 FPU
code when using to the MMX registers to pass parameters.

If a high-level language that does not support the MMX data types directly is used,
the MMX data types can be defined as a 64-bit structure containing packed data
types.

When implementing MMX instructions in high-level languages, other approaches can
be taken, such as:
• Passing parameters to an MMX routine by passing a pointer to a structure via the

stack.
• Returning a value from a function by returning a pointer to a structure.
Vol. 1 9-13

PROGRAMMING WITH INTEL® MMX™ TECHNOLOGY
9.6.6 Using MMX Code in a Multitasking Operating System
Environment

An application needs to identify the nature of the multitasking operating system on
which it runs. Each task retains its own state which must be saved when a task switch
occurs. The processor state (context) consists of the general-purpose registers and
the floating-point and MMX registers.

Operating systems can be classified into two types:
• Cooperative multitasking operating system
• Preemptive multitasking operating system

Cooperative multitasking operating systems do not save the FPU or MMX state when
performing a context switch. Therefore, the application needs to save the relevant
state before relinquishing direct or indirect control to the operating system.

Preemptive multitasking operating systems are responsible for saving and restoring
the FPU and MMX state when performing a context switch. Therefore, the application
does not have to save or restore the FPU and MMX state.

9.6.7 Exception Handling in MMX Code
MMX instructions generate the same type of memory-access exceptions as other
IA-32 instructions (page fault, segment not present, and limit violations). Existing
exception handlers do not have to be modified to handle these types of exceptions for
MMX code.

Unless there is a pending floating-point exception, MMX instructions do not generate
numeric exceptions. Therefore, there is no need to modify existing exception
handlers or add new ones to handle numeric exceptions.

If a floating-point exception is pending, the subsequent MMX instruction generates a
numeric error exception (interrupt 16 and/or assertion of the FERR# pin). The MMX
instruction resumes execution upon return from the exception handler.

9.6.8 Register Mapping
MMX registers and their tags are mapped to physical locations of the floating-point
registers and their tags. Register aliasing and mapping is described in more detail in
Chapter 12, “Intel® MMX™ Technology System Programming,” in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3A.

9.6.9 Effect of Instruction Prefixes on MMX Instructions
Table 9-3 describes the effect of instruction prefixes on MMX instructions. Unpredict-
able behavior can range from being treated as a reserved operation on one genera-
9-14 Vol. 1

PROGRAMMING WITH INTEL® MMX™ TECHNOLOGY
tion of IA-32 processors to generating an invalid opcode exception on another
generation of processors.

See “Instruction Prefixes” in Chapter 2, “Instruction Format,” of the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 2A, for a description of the
instruction prefixes.

Table 9-3. Effect of Prefixes on MMX Instructions

Prefix Type Effect on MMX Instructions

Address Size Prefix (67H) Affects instructions with a memory operand.

Reserved for instructions without a memory operand and
may result in unpredictable behavior.

Operand Size (66H) Reserved and may result in unpredictable behavior.

Segment Override (2EH, 36H,
3EH, 26H, 64H, 65H)

Affects instructions with a memory operand.

Reserved for instructions without a memory operand and
may result in unpredictable behavior.

Repeat Prefix (F3H) Reserved and may result in unpredictable behavior.

Repeat NE Prefix(F2H) Reserved and may result in unpredictable behavior.

Lock Prefix (F0H) Reserved; generates invalid opcode exception (#UD).

Branch Hint Prefixes (2EH and
3EH)

Reserved and may result in unpredictable behavior.
Vol. 1 9-15

CHAPTER 10
PROGRAMMING WITH

STREAMING SIMD EXTENSIONS (SSE)

The streaming SIMD extensions (SSE) were introduced into the IA-32 architecture in
the Pentium III processor family. These extensions enhance the performance of IA-32
processors for advanced 2-D and 3-D graphics, motion video, image processing,
speech recognition, audio synthesis, telephony, and video conferencing.

This chapter describes SSE. Chapter 11, “Programming with Streaming SIMD Exten-
sions 2 (SSE2),” provides information to assist in writing application programs that
use SSE2 extensions. Chapter 12, “Programming with SSE3, SSSE3, SSE4 and
AESNI,” provides this information for SSE3 extensions.

10.1 OVERVIEW OF SSE EXTENSIONS
Intel MMX technology introduced single-instruction multiple-data (SIMD) capability
into the IA-32 architecture, with the 64-bit MMX registers, 64-bit packed integer data
types, and instructions that allowed SIMD operations to be performed on packed
integers. SSE extensions expand the SIMD execution model by adding facilities for
handling packed and scalar single-precision floating-point values contained in
128-bit registers.

If CPUID.01H:EDX.SSE[bit 25] = 1, SSE extensions are present.

SSE extensions add the following features to the IA-32 architecture, while main-
taining backward compatibility with all existing IA-32 processors, applications and
operating systems.
• Eight 128-bit data registers (called XMM registers) in non-64-bit modes; sixteen

XMM registers are available in 64-bit mode.
• The 32-bit MXCSR register, which provides control and status bits for operations

performed on XMM registers.
• The 128-bit packed single-precision floating-point data type (four IEEE single-

precision floating-point values packed into a double quadword).
• Instructions that perform SIMD operations on single-precision floating-point

values and that extend SIMD operations that can be performed on integers:

— 128-bit Packed and scalar single-precision floating-point instructions that
operate on data located in MMX registers

— 64-bit SIMD integer instructions that support additional operations on packed
integer operands located in MMX registers

• Instructions that save and restore the state of the MXCSR register.
Vol. 1 10-1

PROGRAMMING WITH STREAMING SIMD EXTENSIONS (SSE)
• Instructions that support explicit prefetching of data, control of the cacheability
of data, and control the ordering of store operations.

• Extensions to the CPUID instruction.

These features extend the IA-32 architecture’s SIMD programming model in four
important ways:
• The ability to perform SIMD operations on four packed single-precision floating-

point values enhances the performance of IA-32 processors for advanced media
and communications applications that use computation-intensive algorithms to
perform repetitive operations on large arrays of simple, native data elements.

• The ability to perform SIMD single-precision floating-point operations in XMM
registers and SIMD integer operations in MMX registers provides greater
flexibility and throughput for executing applications that operate on large arrays
of floating-point and integer data.

• Cache control instructions provide the ability to stream data in and out of XMM
registers without polluting the caches and the ability to prefetch data to selected
cache levels before it is actually used. Applications that require regular access to
large amounts of data benefit from these prefetching and streaming store
capabilities.

• The SFENCE (store fence) instruction provides greater control over the ordering
of store operations when using weakly-ordered memory types.

SSE extensions are fully compatible with all software written for IA-32 processors. All
existing software continues to run correctly, without modification, on processors that
incorporate SSE extensions. Enhancements to CPUID permit detection of SSE exten-
sions. SSE extensions are accessible from all IA-32 execution modes: protected
mode, real address mode, and virtual-8086 mode.

The following sections of this chapter describe the programming environment for SSE
extensions, including: XMM registers, the packed single-precision floating-point data
type, and SSE instructions. For additional information, see:
• Section 11.6, “Writing Applications with SSE/SSE2 Extensions”.
• Section 11.5, “SSE, SSE2, and SSE3 Exceptions,” describes the exceptions that

can be generated with SSE/SSE2/SSE3 instructions.
• Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes

2A & 2B, provide a detailed description of these instructions.
• Chapter 13, “System Programming for Instruction Set Extensions and Processor

Extended States,” in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A, gives guidelines for integrating these extensions into an
operating-system environment.
10-2 Vol. 1

PROGRAMMING WITH STREAMING SIMD EXTENSIONS (SSE)
10.2 SSE PROGRAMMING ENVIRONMENT
Figure 10-1 shows the execution environment for the SSE extensions. All SSE
instructions operate on the XMM registers, MMX registers, and/or memory as
follows:
• XMM registers — These eight registers (see Figure 10-2 and Section 10.2.2,

“XMM Registers”) are used to operate on packed or scalar single-precision
floating-point data. Scalar operations are operations performed on individual
(unpacked) single-precision floating-point values stored in the low doubleword of
an XMM register. XMM registers are referenced by the names XMM0 through
XMM7.

• MXCSR register — This 32-bit register (see Figure 10-3 and Section 10.2.3,
“MXCSR Control and Status Register”) provides status and control bits used in
SIMD floating-point operations.

• MMX registers — These eight registers (see Figure 9-2) are used to perform
operations on 64-bit packed integer data. They are also used to hold operands for
some operations performed between the MMX and XMM registers. MMX registers
are referenced by the names MM0 through MM7.

• General-purpose registers — The eight general-purpose registers (see
Figure 3-5) are used along with the existing IA-32 addressing modes to address
operands in memory. (MMX and XMM registers cannot be used to address
memory). The general-purpose registers are also used to hold operands for some

Figure 10-1. SSE Execution Environment

0

232 -1

Eight 32-Bit

32 BitsEFLAGS Register

Address Space

General-Purpose

Eight 64-Bit
MMX Registers

Eight 128-Bit
XMM Registers

32 BitsMXCSR Register

Registers
Vol. 1 10-3

PROGRAMMING WITH STREAMING SIMD EXTENSIONS (SSE)
SSE instructions and are referenced as EAX, EBX, ECX, EDX, EBP, ESI, EDI, and
ESP.

• EFLAGS register — This 32-bit register (see Figure 3-8) is used to record result
of some compare operations.

10.2.1 SSE in 64-Bit Mode and Compatibility Mode
In compatibility mode, SSE extensions function like they do in protected mode. In
64-bit mode, eight additional XMM registers are accessible. Registers XMM8-XMM15
are accessed by using REX prefixes. Memory operands are specified using the
ModR/M, SIB encoding described in Section 3.7.5.

Some SSE instructions may be used to operate on general-purpose registers. Use the
REX.W prefix to access 64-bit general-purpose registers. Note that if a REX prefix is
used when it has no meaning, the prefix is ignored.

10.2.2 XMM Registers
Eight 128-bit XMM data registers were introduced into the IA-32 architecture with
SSE extensions (see Figure 10-2). These registers can be accessed directly using the
names XMM0 to XMM7; and they can be accessed independently from the x87 FPU
and MMX registers and the general-purpose registers (that is, they are not aliased to
any other of the processor’s registers).

SSE instructions use the XMM registers only to operate on packed single-precision
floating-point operands. SSE2 extensions expand the functions of the XMM registers
to operand on packed or scalar double-precision floating-point operands and packed

Figure 10-2. XMM Registers

XMM7

XMM6

XMM5

XMM4

XMM3

XMM2

XMM1

XMM0

127 0
10-4 Vol. 1

PROGRAMMING WITH STREAMING SIMD EXTENSIONS (SSE)
integer operands (see Section 11.2, “SSE2 Programming Environment,” and Section
12.1, “Programming Environment and Data types”).

XMM registers can only be used to perform calculations on data; they cannot be used
to address memory. Addressing memory is accomplished by using the general-
purpose registers.

Data can be loaded into XMM registers or written from the registers to memory in
32-bit, 64-bit, and 128-bit increments. When storing the entire contents of an XMM
register in memory (128-bit store), the data is stored in 16 consecutive bytes, with
the low-order byte of the register being stored in the first byte in memory.

10.2.3 MXCSR Control and Status Register
The 32-bit MXCSR register (see Figure 10-3) contains control and status information
for SSE, SSE2, and SSE3 SIMD floating-point operations. This register contains:
• flag and mask bits for SIMD floating-point exceptions
• rounding control field for SIMD floating-point operations
• flush-to-zero flag that provides a means of controlling underflow conditions on

SIMD floating-point operations
• denormals-are-zeros flag that controls how SIMD floating-point instructions

handle denormal source operands

The contents of this register can be loaded from memory with the LDMXCSR and
FXRSTOR instructions and stored in memory with STMXCSR and FXSAVE.

Bits 16 through 31 of the MXCSR register are reserved and are cleared on a power-
up or reset of the processor; attempting to write a non-zero value to these bits, using
either the FXRSTOR or LDMXCSR instructions, will result in a general-protection
exception (#GP) being generated.
Vol. 1 10-5

PROGRAMMING WITH STREAMING SIMD EXTENSIONS (SSE)
10.2.3.1 SIMD Floating-Point Mask and Flag Bits
Bits 0 through 5 of the MXCSR register indicate whether a SIMD floating-point excep-
tion has been detected. They are “sticky” flags. That is, after a flag is set, it remains
set until explicitly cleared. To clear these flags, use the LDMXCSR or the FXRSTOR
instruction to write zeroes to them.

Bits 7 through 12 provide individual mask bits for the SIMD floating-point exceptions.
An exception type is masked if the corresponding mask bit is set, and it is unmasked
if the bit is clear. These mask bits are set upon a power-up or reset. This causes all
SIMD floating-point exceptions to be initially masked.

If LDMXCSR or FXRSTOR clears a mask bit and sets the corresponding exception flag
bit, a SIMD floating-point exception will not be generated as a result of this change.
The unmasked exception will be generated only upon the execution of the next
SSE/SSE2/SSE3 instruction that detects the unmasked exception condition.

For more information about the use of the SIMD floating-point exception mask and
flag bits, see Section 11.5, “SSE, SSE2, and SSE3 Exceptions,” and Section 12.8,
“SSE3/SSSE3 and SSE4 Exceptions.”

Figure 10-3. MXCSR Control/Status Register

31 16

Overflow Mask
Divide-by-Zero Mask
Denormal Operation Mask
Invalid Operation Mask
Denormals Are Zeros*
Precision Flag
Underflow Flag

Underflow Mask

Flush to Zero
Rounding Control

15 1314 12 11 10 9 8 7 6 5 4 3 2 1 0

Precision Mask

Overflow Flag
Divide-by-Zero Flag
Denormal Flag
Invalid Operation Flag

F
Z

R
C

P
M

Z
E

O
E

U
E

P
E

I
M

D
M

Z
M

O
M

U
MReserved

D
E E

ID
A
Z

* The denormals-are-zeros flag was introduced in the Pentium 4 and Intel Xeon processor.
10-6 Vol. 1

PROGRAMMING WITH STREAMING SIMD EXTENSIONS (SSE)
10.2.3.2 SIMD Floating-Point Rounding Control Field
Bits 13 and 14 of the MXCSR register (the rounding control [RC] field) control how the
results of SIMD floating-point instructions are rounded. See Section 4.8.4,
“Rounding,” for a description of the function and encoding of the rounding control bits.

10.2.3.3 Flush-To-Zero
Bit 15 (FZ) of the MXCSR register enables the flush-to-zero mode, which controls the
masked response to a SIMD floating-point underflow condition. When the underflow
exception is masked and the flush-to-zero mode is enabled, the processor performs
the following operations when it detects a floating-point underflow condition:
• Returns a zero result with the sign of the true result
• Sets the precision and underflow exception flags

If the underflow exception is not masked, the flush-to-zero bit is ignored.

The flush-to-zero mode is not compatible with IEEE Standard 754. The IEEE-
mandated masked response to underflow is to deliver the denormalized result (see
Section 4.8.3.2, “Normalized and Denormalized Finite Numbers”). The flush-to-zero
mode is provided primarily for performance reasons. At the cost of a slight precision
loss, faster execution can be achieved for applications where underflows are common
and rounding the underflow result to zero can be tolerated.

The flush-to-zero bit is cleared upon a power-up or reset of the processor, disabling
the flush-to-zero mode.

10.2.3.4 Denormals-Are-Zeros
Bit 6 (DAZ) of the MXCSR register enables the denormals-are-zeros mode, which
controls the processor’s response to a SIMD floating-point denormal operand condi-
tion. When the denormals-are-zeros flag is set, the processor converts all denormal
source operands to a zero with the sign of the original operand before performing any
computations on them. The processor does not set the denormal-operand exception
flag (DE), regardless of the setting of the denormal-operand exception mask bit
(DM); and it does not generate a denormal-operand exception if the exception is
unmasked.

The denormals-are-zeros mode is not compatible with IEEE Standard 754 (see
Section 4.8.3.2, “Normalized and Denormalized Finite Numbers”). The denormals-
are-zeros mode is provided to improve processor performance for applications such
as streaming media processing, where rounding a denormal operand to zero does
not appreciably affect the quality of the processed data.

The denormals-are-zeros flag is cleared upon a power-up or reset of the processor,
disabling the denormals-are-zeros mode.

The denormals-are-zeros mode was introduced in the Pentium 4 and Intel Xeon
processor with the SSE2 extensions; however, it is fully compatible with the SSE
Vol. 1 10-7

PROGRAMMING WITH STREAMING SIMD EXTENSIONS (SSE)
SIMD floating-point instructions (that is, the denormals-are-zeros flag affects the
operation of the SSE SIMD floating-point instructions). In earlier IA-32 processors
and in some models of the Pentium 4 processor, this flag (bit 6) is reserved. See
Section 11.6.3, “Checking for the DAZ Flag in the MXCSR Register,” for instructions
for detecting the availability of this feature.

Attempting to set bit 6 of the MXCSR register on processors that do not support the
DAZ flag will cause a general-protection exception (#GP). See Section 11.6.6,
“Guidelines for Writing to the MXCSR Register,” for instructions for preventing such
general-protection exceptions by using the MXCSR_MASK value returned by the
FXSAVE instruction.

10.2.4 Compatibility of SSE Extensions with SSE2/SSE3/MMX and
the x87 FPU

The state (XMM registers and MXCSR register) introduced into the IA-32 execution
environment with the SSE extensions is shared with SSE2 and SSE3 extensions.
SSE/SSE2/SSE3 instructions are fully compatible; they can be executed together in
the same instruction stream with no need to save state when switching between
instruction sets.

XMM registers are independent of the x87 FPU and MMX registers, so
SSE/SSE2/SSE3 operations performed on the XMM registers can be performed in
parallel with operations on the x87 FPU and MMX registers (see Section 11.6.7,
“Interaction of SSE/SSE2 Instructions with x87 FPU and MMX Instructions”).

The FXSAVE and FXRSTOR instructions save and restore the SSE/SSE2/SSE3 states
along with the x87 FPU and MMX state.

10.3 SSE DATA TYPES
SSE extensions introduced one data type, the 128-bit packed single-precision
floating-point data type, to the IA-32 architecture (see Figure 10-4). This data type
consists of four IEEE 32-bit single-precision floating-point values packed into a
double quadword. (See Figure 4-3 for the layout of a single-precision floating-point
value; refer to Section 4.2.2, “Floating-Point Data Types,” for a detailed description of
the single-precision floating-point format.)

Figure 10-4. 128-Bit Packed Single-Precision Floating-Point Data Type

0127

Contains 4 Single-Precision
Floating-Point Values

64 63 31329596
10-8 Vol. 1

PROGRAMMING WITH STREAMING SIMD EXTENSIONS (SSE)
This 128-bit packed single-precision floating-point data type is operated on in the
XMM registers or in memory. Conversion instructions are provided to convert two
packed single-precision floating-point values into two packed doubleword integers or
a scalar single-precision floating-point value into a doubleword integer (see
Figure 11-8).

SSE extensions provide conversion instructions between XMM registers and MMX
registers, and between XMM registers and general-purpose bit registers. See
Figure 11-8.

The address of a 128-bit packed memory operand must be aligned on a 16-byte
boundary, except in the following cases:
• The MOVUPS instruction supports unaligned accesses.
• Scalar instructions that use a 4-byte memory operand that is not subject to

alignment requirements.

Figure 4-2 shows the byte order of 128-bit (double quadword) data types in memory.

10.4 SSE INSTRUCTION SET
SSE instructions are divided into four functional groups
• Packed and scalar single-precision floating-point instructions
• 64-bit SIMD integer instructions
• State management instructions
• Cacheability control, prefetch, and memory ordering instructions

The following sections give an overview of each of the instructions in these groups.

10.4.1 SSE Packed and Scalar Floating-Point Instructions
The packed and scalar single-precision floating-point instructions are divided into the
following subgroups:
• Data movement instructions
• Arithmetic instructions
• Logical instructions
• Comparison instructions
• Shuffle instructions
• Conversion instructions

The packed single-precision floating-point instructions perform SIMD operations on
packed single-precision floating-point operands (see Figure 10-5). Each source
operand contains four single-precision floating-point values, and the destination
Vol. 1 10-9

PROGRAMMING WITH STREAMING SIMD EXTENSIONS (SSE)
operand contains the results of the operation (OP) performed in parallel on the corre-
sponding values (X0 and Y0, X1 and Y1, X2 and Y2, and X3 and Y3) in each operand.

The scalar single-precision floating-point instructions operate on the low (least
significant) doublewords of the two source operands (X0 and Y0); see Figure 10-6.
The three most significant doublewords (X1, X2, and X3) of the first source operand
are passed through to the destination. The scalar operations are similar to the
floating-point operations performed in the x87 FPU data registers with the precision
control field in the x87 FPU control word set for single precision (24-bit significand),
except that x87 stack operations use a 15-bit exponent range for the result, while
SSE operations use an 8-bit exponent range.

Figure 10-5. Packed Single-Precision Floating-Point Operation

Figure 10-6. Scalar Single-Precision Floating-Point Operation

X3 X2 X1 X0

Y3 Y2 Y1 Y0

X3 OP Y3 X2 OP Y2 X1 OP Y1 X0 OP Y0

OPOPOPOP

X3 X2 X1 X0

Y3 Y2 Y1 Y0

X3 X2 X1 X0 OP Y0

OP
10-10 Vol. 1

PROGRAMMING WITH STREAMING SIMD EXTENSIONS (SSE)
10.4.1.1 SSE Data Movement Instructions
SSE data movement instructions move single-precision floating-point data between
XMM registers and between an XMM register and memory.

The MOVAPS (move aligned packed single-precision floating-point values) instruction
transfers a double quadword operand containing four packed single-precision
floating-point values from memory to an XMM register and vice versa, or between
XMM registers. The memory address must be aligned to a 16-byte boundary; other-
wise, a general-protection exception (#GP) is generated.

The MOVUPS (move unaligned packed single-precision, floating-point) instruction
performs the same operations as the MOVAPS instruction, except that 16-byte align-
ment of a memory address is not required.

The MOVSS (move scalar single-precision floating-point) instruction transfers a 32-
bit single-precision floating-point operand from memory to the low doubleword of an
XMM register and vice versa, or between XMM registers.

The MOVLPS (move low packed single-precision floating-point) instruction moves
two packed single-precision floating-point values from memory to the low quadword
of an XMM register and vice versa. The high quadword of the register is left
unchanged.

The MOVHPS (move high packed single-precision floating-point) instruction moves
two packed single-precision floating-point values from memory to the high quadword
of an XMM register and vice versa. The low quadword of the register is left
unchanged.

The MOVLHPS (move packed single-precision floating-point low to high) instruction
moves two packed single-precision floating-point values from the low quadword of
the source XMM register into the high quadword of the destination XMM register. The
low quadword of the destination register is left unchanged.

The MOVHLPS (move packed single-precision floating-point high to low) instruction
moves two packed single-precision floating-point values from the high quadword of
the source XMM register into the low quadword of the destination XMM register. The
high quadword of the destination register is left unchanged.

The MOVMSKPS (move packed single-precision floating-point mask) instruction
transfers the most significant bit of each of the four packed single-precision floating-
point numbers in an XMM register to a general-purpose register. This 4-bit value can
then be used as a condition to perform branching.

10.4.1.2 SSE Arithmetic Instructions
SSE arithmetic instructions perform addition, subtraction, multiply, divide, recip-
rocal, square root, reciprocal of square root, and maximum/minimum operations on
packed and scalar single-precision floating-point values.
Vol. 1 10-11

PROGRAMMING WITH STREAMING SIMD EXTENSIONS (SSE)
The ADDPS (add packed single-precision floating-point values) and SUBPS (subtract
packed single-precision floating-point values) instructions add and subtract, respec-
tively, two packed single-precision floating-point operands.

The ADDSS (add scalar single-precision floating-point values) and SUBSS (subtract
scalar single-precision floating-point values) instructions add and subtract, respec-
tively, the low single-precision floating-point values of two operands and store the
result in the low doubleword of the destination operand.

The MULPS (multiply packed single-precision floating-point values) instruction multi-
plies two packed single-precision floating-point operands.

The MULSS (multiply scalar single-precision floating-point values) instruction multi-
plies the low single-precision floating-point values of two operands and stores the
result in the low doubleword of the destination operand.

The DIVPS (divide packed, single-precision floating-point values) instruction divides
two packed single-precision floating-point operands.

The DIVSS (divide scalar single-precision floating-point values) instruction divides
the low single-precision floating-point values of two operands and stores the result in
the low doubleword of the destination operand.

The RCPPS (compute reciprocals of packed single-precision floating-point values)
instruction computes the approximate reciprocals of values in a packed single-preci-
sion floating-point operand.

The RCPSS (compute reciprocal of scalar single-precision floating-point values)
instruction computes the approximate reciprocal of the low single-precision floating-
point value in the source operand and stores the result in the low doubleword of the
destination operand.

The SQRTPS (compute square roots of packed single-precision floating-point values)
instruction computes the square roots of the values in a packed single-precision
floating-point operand.

The SQRTSS (compute square root of scalar single-precision floating-point values)
instruction computes the square root of the low single-precision floating-point value
in the source operand and stores the result in the low doubleword of the destination
operand.

The RSQRTPS (compute reciprocals of square roots of packed single-precision
floating-point values) instruction computes the approximate reciprocals of the
square roots of the values in a packed single-precision floating-point operand.

The RSQRTSS (reciprocal of square root of scalar single-precision floating-point
value) instruction computes the approximate reciprocal of the square root of the low
single-precision floating-point value in the source operand and stores the result in
the low doubleword of the destination operand.

The MAXPS (return maximum of packed single-precision floating-point values)
instruction compares the corresponding values from two packed single-precision
floating-point operands and returns the numerically greater value from each compar-
ison to the destination operand.
10-12 Vol. 1

PROGRAMMING WITH STREAMING SIMD EXTENSIONS (SSE)
The MAXSS (return maximum of scalar single-precision floating-point values)
instruction compares the low values from two packed single-precision floating-point
operands and returns the numerically greater value from the comparison to the low
doubleword of the destination operand.

The MINPS (return minimum of packed single-precision floating-point values)
instruction compares the corresponding values from two packed single-precision
floating-point operands and returns the numerically lesser value from each compar-
ison to the destination operand.

The MINSS (return minimum of scalar single-precision floating-point values) instruc-
tion compares the low values from two packed single-precision floating-point oper-
ands and returns the numerically lesser value from the comparison to the low
doubleword of the destination operand.

10.4.2 SSE Logical Instructions
SSE logical instructions perform AND, AND NOT, OR, and XOR operations on packed
single-precision floating-point values.

The ANDPS (bitwise logical AND of packed single-precision floating-point values)
instruction returns the logical AND of two packed single-precision floating-point
operands.

The ANDNPS (bitwise logical AND NOT of packed single-precision, floating-point
values) instruction returns the logical AND NOT of two packed single-precision
floating-point operands.

The ORPS (bitwise logical OR of packed single-precision, floating-point values)
instruction returns the logical OR of two packed single-precision floating-point oper-
ands.

The XORPS (bitwise logical XOR of packed single-precision, floating-point values)
instruction returns the logical XOR of two packed single-precision floating-point oper-
ands.

10.4.2.1 SSE Comparison Instructions
The compare instructions compare packed and scalar single-precision floating-point
values and return the results of the comparison either to the destination operand or
to the EFLAGS register.

The CMPPS (compare packed single-precision floating-point values) instruction
compares the corresponding values from two packed single-precision floating-point
operands, using an immediate operand as a predicate, and returns a 32-bit mask
result of all 1s or all 0s for each comparison to the destination operand. The value of
the immediate operand allows the selection of any of 8 compare conditions: equal,
less than, less than equal, unordered, not equal, not less than, not less than or equal,
or ordered.
Vol. 1 10-13

PROGRAMMING WITH STREAMING SIMD EXTENSIONS (SSE)
The CMPSS (compare scalar single-precision, floating-point values) instruction
compares the low values from two packed single-precision floating-point operands,
using an immediate operand as a predicate, and returns a 32-bit mask result of all 1s
or all 0s for the comparison to the low doubleword of the destination operand. The
immediate operand selects the compare conditions as with the CMPPS instruction.

The COMISS (compare scalar single-precision floating-point values and set EFLAGS)
and UCOMISS (unordered compare scalar single-precision floating-point values and
set EFLAGS) instructions compare the low values of two packed single-precision
floating-point operands and set the ZF, PF, and CF flags in the EFLAGS register to
show the result (greater than, less than, equal, or unordered). These two instruc-
tions differ as follows: the COMISS instruction signals a floating-point invalid-opera-
tion (#I) exception when a source operand is either a QNaN or an SNaN; the
UCOMISS instruction only signals an invalid-operation exception when a source
operand is an SNaN.

10.4.2.2 SSE Shuffle and Unpack Instructions
SSE shuffle and unpack instructions shuffle or interleave the contents of two packed
single-precision floating-point values and store the results in the destination
operand.

The SHUFPS (shuffle packed single-precision floating-point values) instruction places
any two of the four packed single-precision floating-point values from the destination
operand into the two low-order doublewords of the destination operand, and places
any two of the four packed single-precision floating-point values from the source
operand in the two high-order doublewords of the destination operand (see
Figure 10-7). By using the same register for the source and destination operands,
the SHUFPS instruction can shuffle four single-precision floating-point values into
any order.

Figure 10-7. SHUFPS Instruction, Packed Shuffle Operation

X3 X2 X1 X0

Y3 Y2 Y1 Y0

Y3 ... Y0 Y3 ... Y0 X3 ... X0 X3 ... X0

DEST

SRC

DEST
10-14 Vol. 1

PROGRAMMING WITH STREAMING SIMD EXTENSIONS (SSE)
The UNPCKHPS (unpack and interleave high packed single-precision floating-point
values) instruction performs an interleaved unpack of the high-order single-precision
floating-point values from the source and destination operands and stores the result
in the destination operand (see Figure 10-8).

The UNPCKLPS (unpack and interleave low packed single-precision floating-point
values) instruction performs an interleaved unpack of the low-order single-precision
floating-point values from the source and destination operands and stores the result
in the destination operand (see Figure 10-9).

10.4.3 SSE Conversion Instructions
SSE conversion instructions (see Figure 11-8) support packed and scalar conversions
between single-precision floating-point and doubleword integer formats.

Figure 10-8. UNPCKHPS Instruction, High Unpack and Interleave Operation

Figure 10-9. UNPCKLPS Instruction, Low Unpack and Interleave Operation

X3 X2 X1 X0

Y3 Y2 Y1 Y0

Y3 X3 Y2 X2

DEST

SRC

DEST

X3 X2 X1 X0

Y3 Y2 Y1 Y0

Y1 X1 Y0 X0

DEST

SRC

DEST
Vol. 1 10-15

PROGRAMMING WITH STREAMING SIMD EXTENSIONS (SSE)
The CVTPI2PS (convert packed doubleword integers to packed single-precision
floating-point values) instruction converts two packed signed doubleword integers
into two packed single-precision floating-point values. When the conversion is
inexact, the result is rounded according to the rounding mode selected in the MXCSR
register.

The CVTSI2SS (convert doubleword integer to scalar single-precision floating-point
value) instruction converts a signed doubleword integer into a single-precision
floating-point value. When the conversion is inexact, the result is rounded according
to the rounding mode selected in the MXCSR register.

The CVTPS2PI (convert packed single-precision floating-point values to packed
doubleword integers) instruction converts two packed single-precision floating-point
values into two packed signed doubleword integers. When the conversion is inexact,
the result is rounded according to the rounding mode selected in the MXCSR register.
The CVTTPS2PI (convert with truncation packed single-precision floating-point
values to packed doubleword integers) instruction is similar to the CVTPS2PI instruc-
tion, except that truncation is used to round a source value to an integer value (see
Section 4.8.4.2, “Truncation with SSE and SSE2 Conversion Instructions”).

The CVTSS2SI (convert scalar single-precision floating-point value to doubleword
integer) instruction converts a single-precision floating-point value into a signed
doubleword integer. When the conversion is inexact, the result is rounded according
to the rounding mode selected in the MXCSR register. The CVTTSS2SI (convert with
truncation scalar single-precision floating-point value to doubleword integer) instruc-
tion is similar to the CVTSS2SI instruction, except that truncation is used to round
the source value to an integer value (see Section 4.8.4.2, “Truncation with SSE and
SSE2 Conversion Instructions”).

10.4.4 SSE 64-Bit SIMD Integer Instructions
SSE extensions add the following 64-bit packed integer instructions to the IA-32
architecture. These instructions operate on data in MMX registers and 64-bit memory
locations.

NOTE
When SSE2 extensions are present in an IA-32 processor, these
instructions are extended to operate on 128-bit operands in XMM
registers and 128-bit memory locations.

The PAVGB (compute average of packed unsigned byte integers) and PAVGW
(compute average of packed unsigned word integers) instructions compute a SIMD
average of two packed unsigned byte or word integer operands, respectively. For
each corresponding pair of data elements in the packed source operands, the
elements are added together, a 1 is added to the temporary sum, and that result is
shifted right one bit position.
10-16 Vol. 1

PROGRAMMING WITH STREAMING SIMD EXTENSIONS (SSE)
The PEXTRW (extract word) instruction copies a selected word from an MMX register
into a general-purpose register.

The PINSRW (insert word) instruction copies a word from a general-purpose register
or from memory into a selected word location in an MMX register.

The PMAXUB (maximum of packed unsigned byte integers) instruction compares the
corresponding unsigned byte integers in two packed operands and returns the
greater of each comparison to the destination operand.

The PMINUB (minimum of packed unsigned byte integers) instruction compares the
corresponding unsigned byte integers in two packed operands and returns the lesser
of each comparison to the destination operand.

The PMAXSW (maximum of packed signed word integers) instruction compares the
corresponding signed word integers in two packed operands and returns the greater
of each comparison to the destination operand.

The PMINSW (minimum of packed signed word integers) instruction compares the
corresponding signed word integers in two packed operands and returns the lesser of
each comparison to the destination operand.

The PMOVMSKB (move byte mask) instruction creates an 8-bit mask from the packed
byte integers in an MMX register and stores the result in the low byte of a general-
purpose register. The mask contains the most significant bit of each byte in the MMX
register. (When operating on 128-bit operands, a 16-bit mask is created.)

The PMULHUW (multiply packed unsigned word integers and store high result)
instruction performs a SIMD unsigned multiply of the words in the two source oper-
ands and returns the high word of each result to an MMX register.

The PSADBW (compute sum of absolute differences) instruction computes the SIMD
absolute differences of the corresponding unsigned byte integers in two source oper-
ands, sums the differences, and stores the sum in the low word of the destination
operand.

The PSHUFW (shuffle packed word integers) instruction shuffles the words in the
source operand according to the order specified by an 8-bit immediate operand and
returns the result to the destination operand.

10.4.5 MXCSR State Management Instructions
The MXCSR state management instructions (LDMXCSR and STMXCSR) load and save
the state of the MXCSR register, respectively. The LDMXCSR instruction loads the
MXCSR register from memory, while the STMXCSR instruction stores the contents of
the register to memory.
Vol. 1 10-17

PROGRAMMING WITH STREAMING SIMD EXTENSIONS (SSE)
10.4.6 Cacheability Control, Prefetch, and Memory Ordering
Instructions

SSE extensions introduce several new instructions to give programs more control
over the caching of data. They also introduces the PREFETCHh instructions, which
provide the ability to prefetch data to a specified cache level, and the SFENCE
instruction, which enforces program ordering on stores. These instructions are
described in the following sections.

10.4.6.1 Cacheability Control Instructions
The following three instructions enable data from the MMX and XMM registers to be
stored to memory using a non-temporal hint. The non-temporal hint directs the
processor to when possible store the data to memory without writing the data into
the cache hierarchy. See Section 10.4.6.2, “Caching of Temporal vs. Non-Temporal
Data,” for information about non-temporal stores and hints.

The MOVNTQ (store quadword using non-temporal hint) instruction stores packed
integer data from an MMX register to memory, using a non-temporal hint.

The MOVNTPS (store packed single-precision floating-point values using non-
temporal hint) instruction stores packed floating-point data from an XMM register to
memory, using a non-temporal hint.

The MASKMOVQ (store selected bytes of quadword) instruction stores selected byte
integers from an MMX register to memory, using a byte mask to selectively write the
individual bytes. This instruction also uses a non-temporal hint.

10.4.6.2 Caching of Temporal vs. Non-Temporal Data
Data referenced by a program can be temporal (data will be used again) or non-
temporal (data will be referenced once and not reused in the immediate future). For
example, program code is generally temporal, whereas, multimedia data, such as the
display list in a 3-D graphics application, is often non-temporal. To make efficient use
of the processor’s caches, it is generally desirable to cache temporal data and not
cache non-temporal data. Overloading the processor’s caches with non-temporal
data is sometimes referred to as “polluting the caches.” The SSE and SSE2 cache-
ability control instructions enable a program to write non-temporal data to memory
in a manner that minimizes pollution of caches.

These SSE and SSE2 non-temporal store instructions minimize cache pollutions by
treating the memory being accessed as the write combining (WC) type. If a program
specifies a non-temporal store with one of these instructions and the destination
region is mapped as cacheable memory (write back [WB], write through [WT] or WC
memory type), the processor will do the following:
• If the memory location being written to is present in the cache hierarchy, the data

in the caches is evicted.
• The non-temporal data is written to memory with WC semantics.
10-18 Vol. 1

PROGRAMMING WITH STREAMING SIMD EXTENSIONS (SSE)
See also: Chapter 11, “Memory Cache Control,” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3A.

Using the WC semantics, the store transaction will be weakly ordered, meaning that
the data may not be written to memory in program order, and the store will not write
allocate (that is, the processor will not fetch the corresponding cache line into the
cache hierarchy, prior to performing the store). Also, different processor implemen-
tations may choose to collapse and combine these stores.

The memory type of the region being written to can override the non-temporal hint,
if the memory address specified for the non-temporal store is in uncacheable
memory. Uncacheable as referred to here means that the region being written to has
been mapped with either an uncacheable (UC) or write protected (WP) memory type.

In general, WC semantics require software to ensure coherence, with respect to
other processors and other system agents (such as graphics cards). Appropriate use
of synchronization and fencing must be performed for producer-consumer usage
models. Fencing ensures that all system agents have global visibility of the stored
data; for instance, failure to fence may result in a written cache line staying within a
processor and not being visible to other agents.

For processors that implement non-temporal stores by updating data in-place that
already resides in the cache hierarchy, the destination region should also be mapped
as WC. If mapped as WB or WT, there is the potential for speculative processor reads
to bring the data into the caches; in this case, non-temporal stores would then
update in place, and data would not be flushed from the processor by a subsequent
fencing operation.

The memory type visible on the bus in the presence of memory type aliasing is imple-
mentation specific. As one possible example, the memory type written to the bus
may reflect the memory type for the first store to this line, as seen in program order;
other alternatives are possible. This behavior should be considered reserved, and
dependence on the behavior of any particular implementation risks future incompat-
ibility.

10.4.6.3 PREFETCHh Instructions
The PREFETCHh instructions permit programs to load data into the processor at a
suggested cache level, so that the data is closer to the processor’s load and store unit
when it is needed. These instructions fetch 32 aligned bytes (or more, depending on
the implementation) containing the addressed byte to a location in the cache hier-
archy specified by the temporal locality hint (see Table 10-1). In this table, the first-
level cache is closest to the processor and second-level cache is farther away from
the processor than the first-level cache. The hints specify a prefetch of either
temporal or non-temporal data (see Section 10.4.6.2, “Caching of Temporal vs. Non-
Temporal Data”). Subsequent accesses to temporal data are treated like normal
accesses, while those to non-temporal data will continue to minimize cache pollution.
If the data is already present at a level of the cache hierarchy that is closer to the
processor, the PREFETCHh instruction will not result in any data movement. The
PREFETCHh instructions do not affect functional behavior of the program.
Vol. 1 10-19

PROGRAMMING WITH STREAMING SIMD EXTENSIONS (SSE)
See Section 11.6.13, “Cacheability Hint Instructions,” for additional information
about the PREFETCHh instructions.

10.4.6.4 SFENCE Instruction
The SFENCE (Store Fence) instruction controls write ordering by creating a fence for
memory store operations. This instruction guarantees that the result of every store
instruction that precedes the store fence in program order is globally visible before
any store instruction that follows the fence. The SFENCE instruction provides an effi-
cient way of ensuring ordering between procedures that produce weakly-ordered
data and procedures that consume that data.

10.5 FXSAVE AND FXRSTOR INSTRUCTIONS
The FXSAVE and FXRSTOR instructions were introduced into the IA-32 architecture in
the Pentium II processor family (prior to the introduction of the SSE extensions). The
original versions of these instructions performed a fast save and restore, respec-
tively, of the x87 FPU register state. (By saving the state of the x87 FPU data regis-
ters, the FXSAVE and FXRSTOR instructions implicitly save and restore the state of
the MMX registers.)

The SSE extensions expanded the scope of these instructions to save and restore the
states of the XMM registers and the MXCSR register, along with the x87 FPU and MMX
state.

Table 10-1. PREFETCHh Instructions Caching Hints

PREFETCHh
Instruction Mnemonic Actions

PREFETCHT0 Temporal data—fetch data into all levels of cache hierarchy:

• Pentium III processor—1st-level cache or 2nd-level cache

• Pentium 4 and Intel Xeon processor—2nd-level cache

PREFETCHT1 Temporal data—fetch data into level 2 cache and higher

• Pentium III processor—2nd-level cache

• Pentium 4 and Intel Xeon processor—2nd-level cache

PREFETCHT2 Temporal data—fetch data into level 2 cache and higher

• Pentium III processor—2nd-level cache

• Pentium 4 and Intel Xeon processor—2nd-level cache

PREFETCHNTA Non-temporal data—fetch data into location close to the processor,
minimizing cache pollution

• Pentium III processor—1st-level cache

• Pentium 4 and Intel Xeon processor—2nd-level cache
10-20 Vol. 1

PROGRAMMING WITH STREAMING SIMD EXTENSIONS (SSE)
The FXSAVE and FXRSTOR instructions can be used in place of the FSAVE/FNSAVE
and FRSTOR instructions; however, the operation of the FXSAVE and FXRSTOR
instructions are not identical to the operation of FSAVE/FNSAVE and FRSTOR.

NOTE
The FXSAVE and FXRSTOR instructions are not considered part
of the SSE instruction group. They have a separate CPUID
feature bit to indicate whether they are present (if
CPUID.01H:EDX.FXSR[bit 24] = 1).

The CPUID feature bit for SSE extensions does not indicate the
presence of FXSAVE and FXRSTOR.

10.6 HANDLING SSE INSTRUCTION EXCEPTIONS
See Section 11.5, “SSE, SSE2, and SSE3 Exceptions,” for a detailed discussion of the
general and SIMD floating-point exceptions that can be generated with the SSE
instructions and for guidelines for handling these exceptions when they occur.

10.7 WRITING APPLICATIONS WITH THE SSE EXTENSIONS
See Section 11.6, “Writing Applications with SSE/SSE2 Extensions,” for additional
information about writing applications and operating-system code using the SSE
extensions.
Vol. 1 10-21

CHAPTER 11
PROGRAMMING WITH

STREAMING SIMD EXTENSIONS 2 (SSE2)

The streaming SIMD extensions 2 (SSE2) were introduced into the IA-32 architecture
in the Pentium 4 and Intel Xeon processors. These extensions enhance the perfor-
mance of IA-32 processors for advanced 3-D graphics, video decoding/encoding,
speech recognition, E-commerce, Internet, scientific, and engineering applications.

This chapter describes the SSE2 extensions and provides information to assist in
writing application programs that use these and the SSE extensions.

11.1 OVERVIEW OF SSE2 EXTENSIONS
SSE2 extensions use the single instruction multiple data (SIMD) execution model
that is used with MMX technology and SSE extensions. They extend this model with
support for packed double-precision floating-point values and for 128-bit packed
integers.

If CPUID.01H:EDX.SSE2[bit 26] = 1, SSE2 extensions are present.

SSE2 extensions add the following features to the IA-32 architecture, while main-
taining backward compatibility with all existing IA-32 processors, applications and
operating systems.
• Six data types:

— 128-bit packed double-precision floating-point (two IEEE Standard 754
double-precision floating-point values packed into a double quadword)

— 128-bit packed byte integers
— 128-bit packed word integers
— 128-bit packed doubleword integers
— 128-bit packed quadword integers

• Instructions to support the additional data types and extend existing SIMD
integer operations:
— Packed and scalar double-precision floating-point instructions
— Additional 64-bit and 128-bit SIMD integer instructions
— 128-bit versions of SIMD integer instructions introduced with the MMX

technology and the SSE extensions
— Additional cacheability-control and instruction-ordering instructions

• Modifications to existing IA-32 instructions to support SSE2 features:
— Extensions and modifications to the CPUID instruction
— Modifications to the RDPMC instruction
Vol. 1 11-1

PROGRAMMING WITH STREAMING SIMD EXTENSIONS 2 (SSE2)
These new features extend the IA-32 architecture’s SIMD programming model in
three important ways:
• They provide the ability to perform SIMD operations on pairs of packed double-

precision floating-point values. This permits higher precision computations to be
carried out in XMM registers, which enhances processor performance in scientific
and engineering applications and in applications that use advanced 3-D geometry
techniques (such as ray tracing). Additional flexibility is provided with instruc-
tions that operate on single (scalar) double-precision floating-point values
located in the low quadword of an XMM register.

• They provide the ability to operate on 128-bit packed integers (bytes, words,
doublewords, and quadwords) in XMM registers. This provides greater flexibility
and greater throughput when performing SIMD operations on packed integers.
The capability is particularly useful for applications such as RSA authentication
and RC5 encryption. Using the full set of SIMD registers, data types, and instruc-
tions provided with the MMX technology and SSE/SSE2 extensions, programmers
can develop algorithms that finely mix packed single- and double-precision
floating-point data and 64- and 128-bit packed integer data.

• SSE2 extensions enhance the support introduced with SSE extensions for
controlling the cacheability of SIMD data. SSE2 cache control instructions provide
the ability to stream data in and out of the XMM registers without polluting the
caches and the ability to prefetch data before it is actually used.

SSE2 extensions are fully compatible with all software written for IA-32 processors.
All existing software continues to run correctly, without modification, on processors
that incorporate SSE2 extensions, as well as in the presence of applications that
incorporate these extensions. Enhancements to the CPUID instruction permit detec-
tion of the SSE2 extensions. Also, because the SSE2 extensions use the same regis-
ters as the SSE extensions, no new operating-system support is required for saving
and restoring program state during a context switch beyond that provided for the
SSE extensions.

SSE2 extensions are accessible from all IA-32 execution modes: protected mode,
real address mode, virtual 8086 mode.

The following sections in this chapter describe the programming environment for
SSE2 extensions including: the 128-bit XMM floating-point register set, data types,
and SSE2 instructions. It also describes exceptions that can be generated with the
SSE and SSE2 instructions and gives guidelines for writing applications with SSE and
SSE2 extensions.

For additional information about SSE2 extensions, see:
• Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes

2A & 2B, provide a detailed description of individual SSE3 instructions.
• Chapter 13, “System Programming for Instruction Set Extensions and Processor

Extended States,” in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A, gives guidelines for integrating the SSE and SSE2 extensions
into an operating-system environment.
11-2 Vol. 1

PROGRAMMING WITH STREAMING SIMD EXTENSIONS 2 (SSE2)
11.2 SSE2 PROGRAMMING ENVIRONMENT
Figure 11-1 shows the programming environment for SSE2 extensions. No new
registers or other instruction execution state are defined with SSE2 extensions. SSE2
instructions use the XMM registers, the MMX registers, and/or IA-32 general-purpose
registers, as follows:
• XMM registers — These eight registers (see Figure 10-2) are used to operate on

packed or scalar double-precision floating-point data. Scalar operations are
operations performed on individual (unpacked) double-precision floating-point
values stored in the low quadword of an XMM register. XMM registers are also
used to perform operations on 128-bit packed integer data. They are referenced
by the names XMM0 through XMM7.

• MXCSR register — This 32-bit register (see Figure 10-3) provides status and
control bits used in floating-point operations. The denormals-are-zeros and
flush-to-zero flags in this register provide a higher performance alternative for
the handling of denormal source operands and denormal (underflow) results. For
more information on the functions of these flags see Section 10.2.3.4,
“Denormals-Are-Zeros,” and Section 10.2.3.3, “Flush-To-Zero.”

• MMX registers — These eight registers (see Figure 9-2) are used to perform
operations on 64-bit packed integer data. They are also used to hold operands for
some operations performed between MMX and XMM registers. MMX registers are
referenced by the names MM0 through MM7.

Figure 11-1. Steaming SIMD Extensions 2 Execution Environment

0

232 -1

Eight 32-Bit

32 BitsEFLAGS Register

Address Space

General-Purpose

Eight 64-Bit
MMX Registers

Eight 128-Bit
XMM Registers

32 BitsMXCSR Register

Registers
Vol. 1 11-3

PROGRAMMING WITH STREAMING SIMD EXTENSIONS 2 (SSE2)
• General-purpose registers — The eight general-purpose registers (see
Figure 3-5) are used along with the existing IA-32 addressing modes to address
operands in memory. MMX and XMM registers cannot be used to address
memory. The general-purpose registers are also used to hold operands for some
SSE2 instructions. These registers are referenced by the names EAX, EBX, ECX,
EDX, EBP, ESI, EDI, and ESP.

• EFLAGS register — This 32-bit register (see Figure 3-8) is used to record the
results of some compare operations.

11.2.1 SSE2 in 64-Bit Mode and Compatibility Mode
In compatibility mode, SSE2 extensions function like they do in protected mode. In
64-bit mode, eight additional XMM registers are accessible. Registers XMM8-XMM15
are accessed by using REX prefixes.

Memory operands are specified using the ModR/M, SIB encoding described in Section
3.7.5.

Some SSE2 instructions may be used to operate on general-purpose registers. Use
the REX.W prefix to access 64-bit general-purpose registers. Note that if a REX prefix
is used when it has no meaning, the prefix is ignored.

11.2.2 Compatibility of SSE2 Extensions with SSE, MMX
Technology and x87 FPU Programming Environment

SSE2 extensions do not introduce any new state to the IA-32 execution environment
beyond that of SSE. SSE2 extensions represent an enhancement of SSE extensions;
they are fully compatible and share the same state information. SSE and SSE2
instructions can be executed together in the same instruction stream without the
need to save state when switching between instruction sets.

XMM registers are independent of the x87 FPU and MMX registers; so SSE and SSE2
operations performed on XMM registers can be performed in parallel with x87 FPU or
MMX technology operations (see Section 11.6.7, “Interaction of SSE/SSE2 Instruc-
tions with x87 FPU and MMX Instructions”).

The FXSAVE and FXRSTOR instructions save and restore the SSE and SSE2 states
along with the x87 FPU and MMX states.

11.2.3 Denormals-Are-Zeros Flag
The denormals-are-zeros flag (bit 6 in the MXCSR register) was introduced into the
IA-32 architecture with the SSE2 extensions. See Section 10.2.3.4, “Denormals-Are-
Zeros,” for a description of this flag.
11-4 Vol. 1

PROGRAMMING WITH STREAMING SIMD EXTENSIONS 2 (SSE2)
11.3 SSE2 DATA TYPES
SSE2 extensions introduced one 128-bit packed floating-point data type and four
128-bit SIMD integer data types to the IA-32 architecture (see Figure 11-2).
• Packed double-precision floating-point — This 128-bit data type consists of

two IEEE 64-bit double-precision floating-point values packed into a double
quadword. (See Figure 4-3 for the layout of a 64-bit double-precision floating-
point value; refer to Section 4.2.2, “Floating-Point Data Types,” for a detailed
description of double-precision floating-point values.)

• 128-bit packed integers — The four 128-bit packed integer data types can
contain 16 byte integers, 8 word integers, 4 doubleword integers, or 2 quadword
integers. (Refer to Section 4.6.2, “128-Bit Packed SIMD Data Types,” for a
detailed description of the 128-bit packed integers.)

All of these data types are operated on in XMM registers or memory. Instructions are
provided to convert between these 128-bit data types and the 64-bit and 32-bit data
types.

The address of a 128-bit packed memory operand must be aligned on a 16-byte
boundary, except in the following cases:
• a MOVUPD instruction which supports unaligned accesses
• scalar instructions that use an 8-byte memory operand that is not subject to

alignment requirements

Figure 4-2 shows the byte order of 128-bit (double quadword) and 64-bit (quad-
word) data types in memory.

Figure 11-2. Data Types Introduced with the SSE2 Extensions

128-Bit Packed Word Integers

128-Bit Packed Byte Integers

128-Bit Packed Doubleword
Integers

0127

0127

0127

0127

0127

128-Bit Packed Quadword
Integers

128-Bit Packed Double-
Precision Floating-Point

64 63
Vol. 1 11-5

PROGRAMMING WITH STREAMING SIMD EXTENSIONS 2 (SSE2)
11.4 SSE2 INSTRUCTIONS
The SSE2 instructions are divided into four functional groups:
• Packed and scalar double-precision floating-point instructions
• 64-bit and 128-bit SIMD integer instructions
• 128-bit extensions of SIMD integer instructions introduced with the MMX

technology and the SSE extensions
• Cacheability-control and instruction-ordering instructions

The following sections provide more information about each group.

11.4.1 Packed and Scalar Double-Precision Floating-Point
Instructions

The packed and scalar double-precision floating-point instructions are divided into
the following sub-groups:
• Data movement instructions
• Arithmetic instructions
• Comparison instructions
• Conversion instructions
• Logical instructions
• Shuffle instructions

The packed double-precision floating-point instructions perform SIMD operations
similarly to the packed single-precision floating-point instructions (see Figure 11-3).
Each source operand contains two double-precision floating-point values, and the
destination operand contains the results of the operation (OP) performed in parallel
on the corresponding values (X0 and Y0, and X1 and Y1) in each operand.

Figure 11-3. Packed Double-Precision Floating-Point Operations

X1 X0

 X1 OP Y1 X0 OP Y0

OP

Y1 Y0

OP
11-6 Vol. 1

PROGRAMMING WITH STREAMING SIMD EXTENSIONS 2 (SSE2)
The scalar double-precision floating-point instructions operate on the low (least
significant) quadwords of two source operands (X0 and Y0), as shown in Figure 11-4.
The high quadword (X1) of the first source operand is passed through to the destina-
tion. The scalar operations are similar to the floating-point operations performed in
x87 FPU data registers with the precision control field in the x87 FPU control word set
for double precision (53-bit significand), except that x87 stack operations use a
15-bit exponent range for the result while SSE2 operations use an 11-bit exponent
range.

See Section 11.6.8, “Compatibility of SIMD and x87 FPU Floating-Point Data Types,”
for more information about obtaining compatible results when performing both
scalar double-precision floating-point operations in XMM registers and in x87 FPU
data registers.

11.4.1.1 Data Movement Instructions
Data movement instructions move double-precision floating-point data between
XMM registers and between XMM registers and memory.

The MOVAPD (move aligned packed double-precision floating-point) instruction
transfers a 128-bit packed double-precision floating-point operand from memory to
an XMM register or vice versa, or between XMM registers. The memory address must
be aligned to a 16-byte boundary; if not, a general-protection exception (GP#) is
generated.

The MOVUPD (move unaligned packed double-precision floating-point) instruction
transfers a 128-bit packed double-precision floating-point operand from memory to
an XMM register or vice versa, or between XMM registers. Alignment of the memory
address is not required.

The MOVSD (move scalar double-precision floating-point) instruction transfers a
64-bit double-precision floating-point operand from memory to the low quadword of

Figure 11-4. Scalar Double-Precision Floating-Point Operations

X1 X0

 X1 X0 OP Y0

OP

Y1 Y0
Vol. 1 11-7

PROGRAMMING WITH STREAMING SIMD EXTENSIONS 2 (SSE2)
an XMM register or vice versa, or between XMM registers. Alignment of the memory
address is not required, unless alignment checking is enabled.

The MOVHPD (move high packed double-precision floating-point) instruction trans-
fers a 64-bit double-precision floating-point operand from memory to the high quad-
word of an XMM register or vice versa. The low quadword of the register is left
unchanged. Alignment of the memory address is not required, unless alignment
checking is enabled.

The MOVLPD (move low packed double-precision floating-point) instruction transfers
a 64-bit double-precision floating-point operand from memory to the low quadword
of an XMM register or vice versa. The high quadword of the register is left unchanged.
Alignment of the memory address is not required, unless alignment checking is
enabled.

The MOVMSKPD (move packed double-precision floating-point mask) instruction
extracts the sign bit of each of the two packed double-precision floating-point
numbers in an XMM register and saves them in a general-purpose register. This 2-bit
value can then be used as a condition to perform branching.

11.4.1.2 SSE2 Arithmetic Instructions
SSE2 arithmetic instructions perform addition, subtraction, multiply, divide, square
root, and maximum/minimum operations on packed and scalar double-precision
floating-point values.

The ADDPD (add packed double-precision floating-point values) and SUBPD
(subtract packed double-precision floating-point values) instructions add and
subtract, respectively, two packed double-precision floating-point operands.

The ADDSD (add scalar double-precision floating-point values) and SUBSD (subtract
scalar double-precision floating-point values) instructions add and subtract, respec-
tively, the low double-precision floating-point values of two operands and stores the
result in the low quadword of the destination operand.

The MULPD (multiply packed double-precision floating-point values) instruction
multiplies two packed double-precision floating-point operands.

The MULSD (multiply scalar double-precision floating-point values) instruction multi-
plies the low double-precision floating-point values of two operands and stores the
result in the low quadword of the destination operand.

The DIVPD (divide packed double-precision floating-point values) instruction divides
two packed double-precision floating-point operands.

The DIVSD (divide scalar double-precision floating-point values) instruction divides
the low double-precision floating-point values of two operands and stores the result
in the low quadword of the destination operand.

The SQRTPD (compute square roots of packed double-precision floating-point
values) instruction computes the square roots of the values in a packed double-preci-
sion floating-point operand.
11-8 Vol. 1

PROGRAMMING WITH STREAMING SIMD EXTENSIONS 2 (SSE2)
The SQRTSD (compute square root of scalar double-precision floating-point values)
instruction computes the square root of the low double-precision floating-point value
in the source operand and stores the result in the low quadword of the destination
operand.

The MAXPD (return maximum of packed double-precision floating-point values)
instruction compares the corresponding values in two packed double-precision
floating-point operands and returns the numerically greater value from each compar-
ison to the destination operand.

The MAXSD (return maximum of scalar double-precision floating-point values)
instruction compares the low double-precision floating-point values from two packed
double-precision floating-point operands and returns the numerically higher value
from the comparison to the low quadword of the destination operand.

The MINPD (return minimum of packed double-precision floating-point values)
instruction compares the corresponding values from two packed double-precision
floating-point operands and returns the numerically lesser value from each compar-
ison to the destination operand.

The MINSD (return minimum of scalar double-precision floating-point values)
instruction compares the low values from two packed double-precision floating-point
operands and returns the numerically lesser value from the comparison to the low
quadword of the destination operand.

11.4.1.3 SSE2 Logical Instructions
SSE2 logical instructions perform AND, AND NOT, OR, and XOR operations on packed
double-precision floating-point values.

The ANDPD (bitwise logical AND of packed double-precision floating-point values)
instruction returns the logical AND of two packed double-precision floating-point
operands.

The ANDNPD (bitwise logical AND NOT of packed double-precision floating-point
values) instruction returns the logical AND NOT of two packed double-precision
floating-point operands.

The ORPD (bitwise logical OR of packed double-precision floating-point values)
instruction returns the logical OR of two packed double-precision floating-point oper-
ands.

The XORPD (bitwise logical XOR of packed double-precision floating-point values)
instruction returns the logical XOR of two packed double-precision floating-point
operands.

11.4.1.4 SSE2 Comparison Instructions
SSE2 compare instructions compare packed and scalar double-precision floating-
point values and return the results of the comparison either to the destination
operand or to the EFLAGS register.
Vol. 1 11-9

PROGRAMMING WITH STREAMING SIMD EXTENSIONS 2 (SSE2)
The CMPPD (compare packed double-precision floating-point values) instruction
compares the corresponding values from two packed double-precision floating-point
operands, using an immediate operand as a predicate, and returns a 64-bit mask
result of all 1s or all 0s for each comparison to the destination operand. The value of
the immediate operand allows the selection of any of eight compare conditions:
equal, less than, less than equal, unordered, not equal, not less than, not less than
or equal, or ordered.

The CMPSD (compare scalar double-precision floating-point values) instruction
compares the low values from two packed double-precision floating-point operands,
using an immediate operand as a predicate, and returns a 64-bit mask result of all 1s
or all 0s for the comparison to the low quadword of the destination operand. The
immediate operand selects the compare condition as with the CMPPD instruction.

The COMISD (compare scalar double-precision floating-point values and set EFLAGS)
and UCOMISD (unordered compare scalar double-precision floating-point values and
set EFLAGS) instructions compare the low values of two packed double-precision
floating-point operands and set the ZF, PF, and CF flags in the EFLAGS register to
show the result (greater than, less than, equal, or unordered). These two instruc-
tions differ as follows: the COMISD instruction signals a floating-point invalid-opera-
tion (#I) exception when a source operand is either a QNaN or an SNaN; the
UCOMISD instruction only signals an invalid-operation exception when a source
operand is an SNaN.

11.4.1.5 SSE2 Shuffle and Unpack Instructions
SSE2 shuffle instructions shuffle the contents of two packed double-precision
floating-point values and store the results in the destination operand.

The SHUFPD (shuffle packed double-precision floating-point values) instruction
places either of the two packed double-precision floating-point values from the desti-
nation operand in the low quadword of the destination operand, and places either of
the two packed double-precision floating-point values from source operand in the
high quadword of the destination operand (see Figure 11-5). By using the same
register for the source and destination operands, the SHUFPD instruction can swap
two packed double-precision floating-point values.
11-10 Vol. 1

PROGRAMMING WITH STREAMING SIMD EXTENSIONS 2 (SSE2)
The UNPCKHPD (unpack and interleave high packed double-precision floating-point
values) instruction performs an interleaved unpack of the high values from the
source and destination operands and stores the result in the destination operand
(see Figure 11-6).

The UNPCKLPD (unpack and interleave low packed double-precision floating-point
values) instruction performs an interleaved unpack of the low values from the source
and destination operands and stores the result in the destination operand (see
Figure 11-7).

Figure 11-5. SHUFPD Instruction, Packed Shuffle Operation

Figure 11-6. UNPCKHPD Instruction, High Unpack and Interleave Operation

X1 X0

Y1 Y0

Y1 or Y0 X1 or X0

DEST

SRC

DEST

X1 X0

Y1 Y0

Y1 X1

DEST

SRC

DEST
Vol. 1 11-11

PROGRAMMING WITH STREAMING SIMD EXTENSIONS 2 (SSE2)
11.4.1.6 SSE2 Conversion Instructions
SSE2 conversion instructions (see Figure 11-8) support packed and scalar conver-
sions between:
• Double-precision and single-precision floating-point formats
• Double-precision floating-point and doubleword integer formats
• Single-precision floating-point and doubleword integer formats

Conversion between double-precision and single-precision floating-points
values — The following instructions convert operands between double-precision and
single-precision floating-point formats. The operands being operated on are
contained in XMM registers or memory (at most, one operand can reside in memory;
the destination is always an MMX register).

The CVTPS2PD (convert packed single-precision floating-point values to packed
double-precision floating-point values) instruction converts two packed single-
precision floating-point values to two double-precision floating-point values.

The CVTPD2PS (convert packed double-precision floating-point values to packed
single-precision floating-point values) instruction converts two packed double-
precision floating-point values to two single-precision floating-point values. When a
conversion is inexact, the result is rounded according to the rounding mode selected
in the MXCSR register.

The CVTSS2SD (convert scalar single-precision floating-point value to scalar double-
precision floating-point value) instruction converts a single-precision floating-point
value to a double-precision floating-point value.

The CVTSD2SS (convert scalar double-precision floating-point value to scalar single-
precision floating-point value) instruction converts a double-precision floating-point
value to a single-precision floating-point value. When the conversion is inexact, the
result is rounded according to the rounding mode selected in the MXCSR register.

Figure 11-7. UNPCKLPD Instruction, Low Unpack and Interleave Operation

X1 X0

Y1 Y0

Y0 X0

DEST

SRC

DEST
11-12 Vol. 1

PROGRAMMING WITH STREAMING SIMD EXTENSIONS 2 (SSE2)
Conversion between double-precision floating-point values and doubleword
integers — The following instructions convert operands between double-precision
floating-point and doubleword integer formats. Operands are housed in XMM regis-
ters, MMX registers, general registers or memory (at most one operand can reside in
memory; the destination is always an XMM, MMX, or general register).

The CVTPD2PI (convert packed double-precision floating-point values to packed
doubleword integers) instruction converts two packed double-precision floating-point
numbers to two packed signed doubleword integers, with the result stored in an MMX
register. When rounding to an integer value, the source value is rounded according to
the rounding mode in the MXCSR register. The CVTTPD2PI (convert with truncation
packed double-precision floating-point values to packed doubleword integers)
instruction is similar to the CVTPD2PI instruction except that truncation is used to
round a source value to an integer value (see Section 4.8.4.2, “Truncation with SSE
and SSE2 Conversion Instructions”).

The CVTPI2PD (convert packed doubleword integers to packed double-precision
floating-point values) instruction converts two packed signed doubleword integers to
two double-precision floating-point values.

Figure 11-8. SSE and SSE2 Conversion Instructions

CVTPS2P
I

CVTTPS2DQ

CVTDQ
2PS

CVTPI2
PS

C
V

T
P

D
2P

S

C
V

T
P

S
2P

D

CVTPD2D
Q

CVTDQ2P
D

CVTTPD2PI

CVTPI2PD

CVTSS2S
I

CVTSI2S
S

CVTSI2SD
CVTTSD2SI

C
V

T
S

D
2S

S

C
V

T
S

S
2S

D

CVTPS2DQ

4 Doubleword
Integer

Floating-Point

Doubleword
Integer

2 Doubleword
Integer

Single-Precision
Floating Point

CVTSD2SI

CVTPD2PI CVTTPD2D
Q

CVTTPS2P
ICVTTSS2S

I

2 Doubleword
Integer (r32/mem) (MMX/mem)

(XMM/mem)

Double-Precision

 (XMM/mem)

(XMM/mem)

(XMM/mem)
Vol. 1 11-13

PROGRAMMING WITH STREAMING SIMD EXTENSIONS 2 (SSE2)
The CVTPD2DQ (convert packed double-precision floating-point values to packed
doubleword integers) instruction converts two packed double-precision floating-point
numbers to two packed signed doubleword integers, with the result stored in the low
quadword of an XMM register. When rounding an integer value, the source value is
rounded according to the rounding mode selected in the MXCSR register. The
CVTTPD2DQ (convert with truncation packed double-precision floating-point values
to packed doubleword integers) instruction is similar to the CVTPD2DQ instruction
except that truncation is used to round a source value to an integer value (see
Section 4.8.4.2, “Truncation with SSE and SSE2 Conversion Instructions”).

The CVTDQ2PD (convert packed doubleword integers to packed double-precision
floating-point values) instruction converts two packed signed doubleword integers
located in the low-order doublewords of an XMM register to two double-precision
floating-point values.

The CVTSD2SI (convert scalar double-precision floating-point value to doubleword
integer) instruction converts a double-precision floating-point value to a doubleword
integer, and stores the result in a general-purpose register. When rounding an
integer value, the source value is rounded according to the rounding mode selected
in the MXCSR register. The CVTTSD2SI (convert with truncation scalar double-preci-
sion floating-point value to doubleword integer) instruction is similar to the
CVTSD2SI instruction except that truncation is used to round the source value to an
integer value (see Section 4.8.4.2, “Truncation with SSE and SSE2 Conversion
Instructions”).

The CVTSI2SD (convert doubleword integer to scalar double-precision floating-point
value) instruction converts a signed doubleword integer in a general-purpose register
to a double-precision floating-point number, and stores the result in an XMM register.

Conversion between single-precision floating-point and doubleword integer
formats — These instructions convert between packed single-precision floating-
point and packed doubleword integer formats. Operands are housed in XMM regis-
ters, MMX registers, general registers, or memory (the latter for at most one source
operand). The destination is always an XMM, MMX, or general register. These SSE2
instructions supplement conversion instructions (CVTPI2PS, CVTPS2PI, CVTTPS2PI,
CVTSI2SS, CVTSS2SI, and CVTTSS2SI) introduced with SSE extensions.

The CVTPS2DQ (convert packed single-precision floating-point values to packed
doubleword integers) instruction converts four packed single-precision floating-point
values to four packed signed doubleword integers, with the source and destination
operands in XMM registers or memory (the latter for at most one source operand).
When the conversion is inexact, the rounded value according to the rounding mode
selected in the MXCSR register is returned. The CVTTPS2DQ (convert with truncation
packed single-precision floating-point values to packed doubleword integers)
instruction is similar to the CVTPS2DQ instruction except that truncation is used to
round a source value to an integer value (see Section 4.8.4.2, “Truncation with SSE
and SSE2 Conversion Instructions”).

The CVTDQ2PS (convert packed doubleword integers to packed single-precision
floating-point values) instruction converts four packed signed doubleword integers to
four packed single-precision floating-point numbers, with the source and destination
11-14 Vol. 1

PROGRAMMING WITH STREAMING SIMD EXTENSIONS 2 (SSE2)
operands in XMM registers or memory (the latter for at most one source operand).
When the conversion is inexact, the rounded value according to the rounding mode
selected in the MXCSR register is returned.

11.4.2 SSE2 64-Bit and 128-Bit SIMD Integer Instructions
SSE2 extensions add several 128-bit packed integer instructions to the IA-32 archi-
tecture. Where appropriate, a 64-bit version of each of these instructions is also
provided. The 128-bit versions of instructions operate on data in XMM registers;
64-bit versions operate on data in MMX registers. The instructions follow.

The MOVDQA (move aligned double quadword) instruction transfers a double quad-
word operand from memory to an XMM register or vice versa; or between XMM regis-
ters. The memory address must be aligned to a 16-byte boundary; otherwise, a
general-protection exception (#GP) is generated.

The MOVDQU (move unaligned double quadword) instruction performs the same
operations as the MOVDQA instruction, except that 16-byte alignment of a memory
address is not required.

The PADDQ (packed quadword add) instruction adds two packed quadword integer
operands or two single quadword integer operands, and stores the results in an XMM
or MMX register, respectively. This instruction can operate on either unsigned or
signed (two’s complement notation) integer operands.

The PSUBQ (packed quadword subtract) instruction subtracts two packed quadword
integer operands or two single quadword integer operands, and stores the results in
an XMM or MMX register, respectively. Like the PADDQ instruction, PSUBQ can
operate on either unsigned or signed (two’s complement notation) integer operands.

The PMULUDQ (multiply packed unsigned doubleword integers) instruction performs
an unsigned multiply of unsigned doubleword integers and returns a quadword
result. Both 64-bit and 128-bit versions of this instruction are available. The 64-bit
version operates on two doubleword integers stored in the low doubleword of each
source operand, and the quadword result is returned to an MMX register. The 128-bit
version performs a packed multiply of two pairs of doubleword integers. Here, the
doublewords are packed in the first and third doublewords of the source operands,
and the quadword results are stored in the low and high quadwords of an XMM
register.

The PSHUFLW (shuffle packed low words) instruction shuffles the word integers
packed into the low quadword of the source operand and stores the shuffled result in
the low quadword of the destination operand. An 8-bit immediate operand specifies
the shuffle order.

The PSHUFHW (shuffle packed high words) instruction shuffles the word integers
packed into the high quadword of the source operand and stores the shuffled result
in the high quadword of the destination operand. An 8-bit immediate operand speci-
fies the shuffle order.
Vol. 1 11-15

PROGRAMMING WITH STREAMING SIMD EXTENSIONS 2 (SSE2)
The PSHUFD (shuffle packed doubleword integers) instruction shuffles the double-
word integers packed into the source operand and stores the shuffled result in the
destination operand. An 8-bit immediate operand specifies the shuffle order.

The PSLLDQ (shift double quadword left logical) instruction shifts the contents of the
source operand to the left by the amount of bytes specified by an immediate
operand. The empty low-order bytes are cleared (set to 0).

The PSRLDQ (shift double quadword right logical) instruction shifts the contents of
the source operand to the right by the amount of bytes specified by an immediate
operand. The empty high-order bytes are cleared (set to 0).

The PUNPCKHQDQ (Unpack high quadwords) instruction interleaves the high quad-
word of the source operand and the high quadword of the destination operand and
writes them to the destination register.

The PUNPCKLQDQ (Unpack low quadwords) instruction interleaves the low quad-
words of the source operand and the low quadwords of the destination operand and
writes them to the destination register.

Two additional SSE instructions enable data movement from the MMX registers to the
XMM registers.

The MOVQ2DQ (move quadword integer from MMX to XMM registers) instruction
moves the quadword integer from an MMX source register to an XMM destination
register.

The MOVDQ2Q (move quadword integer from XMM to MMX registers) instruction
moves the low quadword integer from an XMM source register to an MMX destination
register.

11.4.3 128-Bit SIMD Integer Instruction Extensions
All of 64-bit SIMD integer instructions introduced with MMX technology and SSE
extensions (with the exception of the PSHUFW instruction) have been extended by
SSE2 extensions to operate on 128-bit packed integer operands located in XMM
registers. The 128-bit versions of these instructions follow the same SIMD conven-
tions regarding packed operands as the 64-bit versions. For example, where the
64-bit version of the PADDB instruction operates on 8 packed bytes, the 128-bit
version operates on 16 packed bytes.

11.4.4 Cacheability Control and Memory Ordering Instructions
SSE2 extensions that give programs more control over the caching, loading, and
storing of data. are described below.
11-16 Vol. 1

PROGRAMMING WITH STREAMING SIMD EXTENSIONS 2 (SSE2)
11.4.4.1 FLUSH Cache Line
The CLFLUSH (flush cache line) instruction writes and invalidates the cache line asso-
ciated with a specified linear address. The invalidation is for all levels of the
processor’s cache hierarchy, and it is broadcast throughout the cache coherency
domain.

NOTE
CLFLUSH was introduced with the SSE2 extensions. However, the
instruction can be implemented in IA-32 processors that do not
implement the SSE2 extensions. Detect CLFLUSH using the feature
bit (if CPUID.01H:EDX.CLFSH[bit 19] = 1).

11.4.4.2 Cacheability Control Instructions
The following four instructions enable data from XMM and general-purpose registers
to be stored to memory using a non-temporal hint. The non-temporal hint directs the
processor to store data to memory without writing the data into the cache hierarchy
whenever this is possible. See Section 10.4.6.2, “Caching of Temporal vs. Non-
Temporal Data,” for more information about non-temporal stores and hints.

The MOVNTDQ (store double quadword using non-temporal hint) instruction stores
packed integer data from an XMM register to memory, using a non-temporal hint.

The MOVNTPD (store packed double-precision floating-point values using non-
temporal hint) instruction stores packed double-precision floating-point data from an
XMM register to memory, using a non-temporal hint.

The MOVNTI (store doubleword using non-temporal hint) instruction stores integer
data from a general-purpose register to memory, using a non-temporal hint.

The MASKMOVDQU (store selected bytes of double quadword) instruction stores
selected byte integers from an XMM register to memory, using a byte mask to selec-
tively write the individual bytes. The memory location does not need to be aligned on
a natural boundary. This instruction also uses a non-temporal hint.

11.4.4.3 Memory Ordering Instructions
SSE2 extensions introduce two new fence instructions (LFENCE and MFENCE) as
companions to the SFENCE instruction introduced with SSE extensions.

The LFENCE instruction establishes a memory fence for loads. It guarantees ordering
between two loads and prevents speculative loads from passing the load fence (that
is, no speculative loads are allowed until all loads specified before the load fence have
been carried out).

The MFENCE instruction combines the functions of LFENCE and SFENCE by estab-
lishing a memory fence for both loads and stores. It guarantees that all loads and
stores specified before the fence are globally observable prior to any loads or stores
being carried out after the fence.
Vol. 1 11-17

PROGRAMMING WITH STREAMING SIMD EXTENSIONS 2 (SSE2)
11.4.4.4 Pause
The PAUSE instruction is provided to improve the performance of “spin-wait loops”
executed on a Pentium 4 or Intel Xeon processor. On a Pentium 4 processor, it also
provides the added benefit of reducing processor power consumption while executing
a spin-wait loop. It is recommended that a PAUSE instruction always be included in
the code sequence for a spin-wait loop.

11.4.5 Branch Hints
SSE2 extensions designate two instruction prefixes (2EH and 3EH) to provide branch
hints to the processor (see “Instruction Prefixes” in Chapter 2 of the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 2A). These prefixes can
only be used with the Jcc instruction and only at the machine code level (that is,
there are no mnemonics for the branch hints).

11.5 SSE, SSE2, AND SSE3 EXCEPTIONS
SSE/SSE2/SSE3 extensions generate two general types of exceptions:
• Non-numeric exceptions
• SIMD floating-point exceptions1

SSE/SSE2/SSE3 instructions can generate the same type of memory-access and
non-numeric exceptions as other IA-32 architecture instructions. Existing exception
handlers can generally handle these exceptions without any code modification. See
“Providing Non-Numeric Exception Handlers for Exceptions Generated by the SSE,
SSE2 and SSE3 Instructions” in Chapter 13 of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3A, for a list of the non-numeric exceptions
that can be generated by SSE/SSE2/SSE3 instructions and for guidelines for handling
these exceptions.

SSE/SSE2/SSE3 instructions do not generate numeric exceptions on packed integer
operations; however, they can generate numeric (SIMD floating-point) exceptions on
packed single-precision and double-precision floating-point operations. These SIMD
floating-point exceptions are defined in the IEEE Standard 754 for Binary Floating-
Point Arithmetic and are the same exceptions that are generated for x87 FPU instruc-
tions. See Section 11.5.1, “SIMD Floating-Point Exceptions,” for a description of
these exceptions.

1. The FISTTP instruction in SSE3 does not generate SIMD floating-point exceptions, but it can gen-
erate x87 FPU floating-point exceptions.
11-18 Vol. 1

PROGRAMMING WITH STREAMING SIMD EXTENSIONS 2 (SSE2)
11.5.1 SIMD Floating-Point Exceptions
SIMD floating-point exceptions are those exceptions that can be generated by
SSE/SSE2/SSE3 instructions that operate on packed or scalar floating-point operands.

Six classes of SIMD floating-point exceptions can be generated:
• Invalid operation (#I)
• Divide-by-zero (#Z)
• Denormal operand (#D)
• Numeric overflow (#O)
• Numeric underflow (#U)
• Inexact result (Precision) (#P)

All of these exceptions (except the denormal operand exception) are defined in IEEE
Standard 754, and they are the same exceptions that are generated with the x87
floating-point instructions. Section 4.9, “Overview of Floating-Point Exceptions,”
gives a detailed description of these exceptions and of how and when they are gener-
ated. The following sections discuss the implementation of these exceptions in
SSE/SSE2/SSE3 extensions.

All SIMD floating-point exceptions are precise and occur as soon as the instruction
completes execution.

Each of the six exception conditions has a corresponding flag (IE, DE, ZE, OE, UE,
and PE) and mask bit (IM, DM, ZM, OM, UM, and PM) in the MXCSR register (see
Figure 10-3). The mask bits can be set with the LDMXCSR or FXRSTOR instruction;
the mask and flag bits can be read with the STMXCSR or FXSAVE instruction.

The OSXMMEXCEPT flag (bit 10) of control register CR4 provides additional control
over generation of SIMD floating-point exceptions by allowing the operating system
to indicate whether or not it supports software exception handlers for SIMD floating-
point exceptions. If an unmasked SIMD floating-point exception is generated and the
OSXMMEXCEPT flag is set, the processor invokes a software exception handler by
generating a SIMD floating-point exception (#XM). If the OSXMMEXCEPT bit is clear,
the processor generates an invalid-opcode exception (#UD) on the first SSE or SSE2
instruction that detects a SIMD floating-point exception condition. See Section
11.6.2, “Checking for SSE/SSE2 Support.”

11.5.2 SIMD Floating-Point Exception Conditions
The following sections describe the conditions that cause a SIMD floating-point
exception to be generated and the masked response of the processor when these
conditions are detected.

See Section 4.9.2, “Floating-Point Exception Priority,” for a description of the rules for
exception precedence when more than one floating-point exception condition is
detected for an instruction.
Vol. 1 11-19

PROGRAMMING WITH STREAMING SIMD EXTENSIONS 2 (SSE2)
11.5.2.1 Invalid Operation Exception (#I)
The floating-point invalid-operation exception (#I) occurs in response to an invalid
arithmetic operand. The flag (IE) and mask (IM) bits for the invalid operation excep-
tion are bits 0 and 7, respectively, in the MXCSR register.

If the invalid-operation exception is masked, the processor returns a QNaN, QNaN
floating-point indefinite, integer indefinite, one of the source operands to the destina-
tion operand, or it sets the EFLAGS, depending on the operation being performed.
When a value is returned to the destination operand, it overwrites the destination
register specified by the instruction. Table 11-1 lists the invalid-arithmetic operations
that the processor detects for instructions and the masked responses to these opera-
tions.

Table 11-1. Masked Responses of SSE/SSE2/SSE3 Instructions to Invalid Arithmetic
Operations

Condition Masked Response

ADDPS, ADDSS, ADDPD, ADDSD, SUBPS, SUBSS,
SUBPD, SUBSD, MULPS, MULSS, MULPD,
MULSD, DIVPS, DIVSS, DIVPD, DIVSD,
ADDSUBPD, ADDSUBPD, HADDPD, HADDPS,
HSUBPD or HSUBPS instruction with an SNaN
operand

Return the SNaN converted to a QNaN; Refer to
Table 4-7 for more details

SQRTPS, SQRTSS, SQRTPD, or SQRTSD with
SNaN operands

Return the SNaN converted to a QNaN

SQRTPS, SQRTSS, SQRTPD, or SQRTSD with
negative operands (except zero)

Return the QNaN floating-point Indefinite

MAXPS, MAXSS, MAXPD, MAXSD, MINPS,
MINSS, MINPD, or MINSD instruction with QNaN
or SNaN operands

Return the source 2 operand value

CMPPS, CMPSS, CMPPD or CMPSD instruction
with QNaN or SNaN operands

Return a mask of all 0s (except for the
predicates “not-equal,” “unordered,” “not-less-
than,” or “not-less-than-or-equal,” which returns
a mask of all 1s)

CVTPD2PS, CVTSD2SS, CVTPS2PD, CVTSS2SD
with SNaN operands

Return the SNaN converted to a QNaN

COMISS or COMISD with QNaN or SNaN
operand(s)

Set EFLAGS values to “not comparable”

Addition of opposite signed infinities or
subtraction of like-signed infinities

Return the QNaN floating-point Indefinite

Multiplication of infinity by zero Return the QNaN floating-point Indefinite

Divide of (0/0) or (∞ / ∞) Return the QNaN floating-point Indefinite
11-20 Vol. 1

PROGRAMMING WITH STREAMING SIMD EXTENSIONS 2 (SSE2)
If the invalid operation exception is not masked, a software exception handler is
invoked and the operands remain unchanged. See Section 11.5.4, “Handling SIMD
Floating-Point Exceptions in Software.”

Normally, when one or more of the source operands are QNaNs (and neither is an
SNaN or in an unsupported format), an invalid-operation exception is not generated.
The following instructions are exceptions to this rule: the COMISS and COMISD
instructions; and the CMPPS, CMPSS, CMPPD, and CMPSD instructions (when the
predicate is less than, less-than or equal, not less-than, or not less-than or equal).
With these instructions, a QNaN source operand will generate an invalid-operation
exception.

The invalid-operation exception is not affected by the flush-to-zero mode or by the
denormals-are-zeros mode.

11.5.2.2 Denormal-Operand Exception (#D)
The processor signals the denormal-operand exception if an arithmetic instruction
attempts to operate on a denormal operand. The flag (DE) and mask (DM) bits for
the denormal-operand exception are bits 1 and 8, respectively, in the MXCSR
register.

The CVTPI2PD, CVTPD2PI, CVTTPD2PI, CVTDQ2PD, CVTPD2DQ, CVTTPD2DQ,
CVTSI2SD, CVTSD2SI, CVTTSD2SI, CVTPI2PS, CVTPS2PI, CVTTPS2PI, CVTSS2SI,
CVTTSS2SI, CVTSI2SS, CVTDQ2PS, CVTPS2DQ, and CVTTPS2DQ conversion instruc-
tions do not signal denormal exceptions. The RCPSS, RCPPS, RSQRTSS, and
RSQRTPS instructions do not signal any kind of floating-point exception.

The denormals-are-zero flag (bit 6) of the MXCSR register provides an additional
option for handling denormal-operand exceptions. When this flag is set, denormal
source operands are automatically converted to zeros with the sign of the source
operand (see Section 10.2.3.4, “Denormals-Are-Zeros”). The denormal operand
exception is not affected by the flush-to-zero mode.

See Section 4.9.1.2, “Denormal Operand Exception (#D),” for more information
about the denormal exception. See Section 11.5.4, “Handling SIMD Floating-Point
Exceptions in Software,” for information on handling unmasked exceptions.

Conversion to integer when the value in the
source register is a NaN, ∞, or exceeds the
representable range for CVTPS2PI, CVTTPS2PI,
CVTSS2SI, CVTTSS2SI, CVTPD2PI, CVTSD2SI,
CVTPD2DQ, CVTTPD2PI, CVTTSD2SI,
CVTTPD2DQ, CVTPS2DQ, or CVTTPS2DQ

Return the integer Indefinite

Table 11-1. Masked Responses of SSE/SSE2/SSE3 Instructions to Invalid Arithmetic
Operations (Contd.)

Condition Masked Response
Vol. 1 11-21

PROGRAMMING WITH STREAMING SIMD EXTENSIONS 2 (SSE2)
11.5.2.3 Divide-By-Zero Exception (#Z)
The processor reports a divide-by-zero exception when a DIVPS, DIVSS, DIVPD or
DIVSD instruction attempts to divide a finite non-zero operand by 0. The flag (ZE)
and mask (ZM) bits for the divide-by-zero exception are bits 2 and 9, respectively, in
the MXCSR register.

See Section 4.9.1.3, “Divide-By-Zero Exception (#Z),” for more information about
the divide-by-zero exception. See Section 11.5.4, “Handling SIMD Floating-Point
Exceptions in Software,” for information on handling unmasked exceptions.

The divide-by-zero exception is not affected by the flush-to-zero mode or by the
denormals-are-zeros mode.

11.5.2.4 Numeric Overflow Exception (#O)
The processor reports a numeric overflow exception whenever the rounded result of
an arithmetic instruction exceeds the largest allowable finite value that fits in the
destination operand. This exception can be generated with the ADDPS, ADDSS,
ADDPD, ADDSD, SUBPS, SUBSS, SUBPD, SUBSD, MULPS, MULSS, MULPD, MULSD,
DIVPS, DIVSS, DIVPD, DIVSD, CVTPD2PS, CVTSD2SS, ADDSUBPD, ADDSUBPS,
HADDPD, HADDPS, HSUBPD and HSUBPS instructions. The flag (OE) and mask (OM)
bits for the numeric overflow exception are bits 3 and 10, respectively, in the MXCSR
register.

See Section 4.9.1.4, “Numeric Overflow Exception (#O),” for more information about
the numeric-overflow exception. See Section 11.5.4, “Handling SIMD Floating-Point
Exceptions in Software,” for information on handling unmasked exceptions.

The numeric overflow exception is not affected by the flush-to-zero mode or by the
denormals-are-zeros mode.

11.5.2.5 Numeric Underflow Exception (#U)
The processor reports a numeric underflow exception whenever the rounded result of
an arithmetic instruction is less than the smallest possible normalized, finite value
that will fit in the destination operand and the numeric-underflow exception is not
masked. If the numeric underflow exception is masked, both underflow and the
inexact-result condition must be detected before numeric underflow is reported. This
exception can be generated with the ADDPS, ADDSS, ADDPD, ADDSD, SUBPS,
SUBSS, SUBPD, SUBSD, MULPS, MULSS, MULPD, MULSD, DIVPS, DIVSS, DIVPD,
DIVSD, CVTPD2PS, CVTSD2SS, ADDSUBPD, ADDSUBPS, HADDPD, HADDPS,
HSUBPD, and HSUBPS instructions. The flag (UE) and mask (UM) bits for the numeric
underflow exception are bits 4 and 11, respectively, in the MXCSR register.

The flush-to-zero flag (bit 15) of the MXCSR register provides an additional option for
handling numeric underflow exceptions. When this flag is set and the numeric under-
flow exception is masked, tiny results (results that trigger the underflow exception)
are returned as a zero with the sign of the true result (see Section 10.2.3.3, “Flush-
11-22 Vol. 1

PROGRAMMING WITH STREAMING SIMD EXTENSIONS 2 (SSE2)
To-Zero”). The numeric underflow exception is not affected by the denormals-are-
zero mode.

See Section 4.9.1.5, “Numeric Underflow Exception (#U),” for more information
about the numeric underflow exception. See Section 11.5.4, “Handling SIMD
Floating-Point Exceptions in Software,” for information on handling unmasked
exceptions.

11.5.2.6 Inexact-Result (Precision) Exception (#P)
The inexact-result exception (also called the precision exception) occurs if the result
of an operation is not exactly representable in the destination format. For example,
the fraction 1/3 cannot be precisely represented in binary form. This exception
occurs frequently and indicates that some (normally acceptable) accuracy has been
lost. The exception is supported for applications that need to perform exact arith-
metic only. Because the rounded result is generally satisfactory for most applica-
tions, this exception is commonly masked.

The flag (PE) and mask (PM) bits for the inexact-result exception are bits 2 and 12,
respectively, in the MXCSR register.

See Section 4.9.1.6, “Inexact-Result (Precision) Exception (#P),” for more informa-
tion about the inexact-result exception. See Section 11.5.4, “Handling SIMD
Floating-Point Exceptions in Software,” for information on handling unmasked excep-
tions.

In flush-to-zero mode, the inexact result exception is reported. The inexact result
exception is not affected by the denormals-are-zero mode.

11.5.3 Generating SIMD Floating-Point Exceptions
When the processor executes a packed or scalar floating-point instruction, it looks for
and reports on SIMD floating-point exception conditions using two sequential steps:

1. Looks for, reports on, and handles pre-computation exception conditions (invalid-
operand, divide-by-zero, and denormal operand)

2. Looks for, reports on, and handles post-computation exception conditions
(numeric overflow, numeric underflow, and inexact result)

If both pre- and post-computational exceptions are unmasked, it is possible for the
processor to generate a SIMD floating-point exception (#XM) twice during the execu-
tion of an SSE, SSE2 or SSE3 instruction: once when it detects and handles a pre-
computational exception and when it detects a post-computational exception.

11.5.3.1 Handling Masked Exceptions
If all exceptions are masked, the processor handles the exceptions it detects by
placing the masked result (or results for packed operands) in a destination operand
Vol. 1 11-23

PROGRAMMING WITH STREAMING SIMD EXTENSIONS 2 (SSE2)
and continuing program execution. The masked result may be a rounded normalized
value, signed infinity, a denormal finite number, zero, a QNaN floating-point indefi-
nite, or a QNaN depending on the exception condition detected. In most cases, the
corresponding exception flag bit in MXCSR is also set. The one situation where an
exception flag is not set is when an underflow condition is detected and it is not
accompanied by an inexact result.

When operating on packed floating-point operands, the processor returns a masked
result for each of the sub-operand computations and sets a separate set of internal
exception flags for each computation. It then performs a logical-OR on the internal
exception flag settings and sets the exception flags in the MXCSR register according
to the results of OR operations.

For example, Figure 11-9 shows the results of an MULPS instruction. In the example,
all SIMD floating-point exceptions are masked. Assume that a denormal exception
condition is detected prior to the multiplication of sub-operands X0 and Y0, no excep-
tion condition is detected for the multiplication of X1 and Y1, a numeric overflow
exception condition is detected for the multiplication of X2 and Y2, and another
denormal exception is detected prior to the multiplication of sub-operands X3 and
Y3. Because denormal exceptions are masked, the processor uses the denormal
source values in the multiplications of (X0 and Y0) and of (X3 and Y3) passing the
results of the multiplications through to the destination operand. With the denormal
operand, the result of the X0 and Y0 computation is a normalized finite value, with no
exceptions detected. However, the X3 and Y3 computation produces a tiny and
inexact result. This causes the corresponding internal numeric underflow and
inexact-result exception flags to be set.

For the multiplication of X2 and Y2, the processor stores the floating-point ∞ in the
destination operand, and sets the corresponding internal sub-operand numeric over-
flow flag. The result of the X1 and Y1 multiplication is passed through to the destina-
tion operand, with no internal sub-operand exception flags being set. Following the

Figure 11-9. Example Masked Response for Packed Operations

X3 X2 X1 X0 (Denormal)

Y3 (Denormal) Y2 Y1 Y0

Tiny, Inexact, Finite Normalized Finite

MULPS MULPS MULPS MULPS

∞ Normalized Finite
11-24 Vol. 1

PROGRAMMING WITH STREAMING SIMD EXTENSIONS 2 (SSE2)
computations, the individual sub-operand exceptions flags for denormal operand,
numeric underflow, inexact result, and numeric overflow are OR’d and the corre-
sponding flags are set in the MXCSR register.

The net result of this computation is that:
• Multiplication of X0 and Y0 produces a normalized finite result
• Multiplication of X1 and Y1 produces a normalized finite result
• Multiplication of X2 and Y2 produces a floating-point ∞ result
• Multiplication of X3 and Y3 produces a tiny, inexact, finite result
• Denormal operand, numeric underflow, numeric underflow, and inexact result

flags are set in the MXCSR register

11.5.3.2 Handling Unmasked Exceptions
If all exceptions are unmasked, the processor:

1. First detects any pre-computation exceptions: it ORs those exceptions, sets the
appropriate exception flags, leaves the source and destination operands
unaltered, and goes to step 2. If it does not detect any pre-computation
exceptions, it goes to step 5.

2. Checks CR4.OSXMMEXCPT[bit 10]. If this flag is set, the processor goes to step
3; if the flag is clear, it generates an invalid-opcode exception (#UD) and makes
an implicit call to the invalid-opcode exception handler.

3. Generates a SIMD floating-point exception (#XM) and makes an implicit call to
the SIMD floating-point exception handler.

4. If the exception handler is able to fix the source operands that generated the pre-
computation exceptions or mask the condition in such a way as to allow the
processor to continue executing the instruction, the processor resumes
instruction execution as described in step 5.

5. Upon returning from the exception handler (or if no pre-computation exceptions
were detected), the processor checks for post-computation exceptions. If the
processor detects any post-computation exceptions: it ORs those exceptions,
sets the appropriate exception flags, leaves the source and destination operands
unaltered, and repeats steps 2, 3, and 4.

6. Upon returning from the exceptions handler in step 4 (or if no post-computation
exceptions were detected), the processor completes the execution of the
instruction.

The implication of this procedure is that for unmasked exceptions, the processor can
generate a SIMD floating-point exception (#XM) twice: once if it detects pre-compu-
tation exception conditions and a second time if it detects post-computation excep-
tion conditions. For example, if SIMD floating-point exceptions are unmasked for the
computation shown in Figure 11-9, the processor would generate one SIMD floating-
point exception for denormal operand conditions and a second SIMD floating-point
Vol. 1 11-25

PROGRAMMING WITH STREAMING SIMD EXTENSIONS 2 (SSE2)
exception for overflow and underflow (no inexact result exception would be gener-
ated because the multiplications of X0 and Y0 and of X1 and Y1 are exact).

11.5.3.3 Handling Combinations of Masked and Unmasked Exceptions
In situations where both masked and unmasked exceptions are detected, the
processor will set exception flags for the masked and the unmasked exceptions.
However, it will not return masked results until after the processor has detected and
handled unmasked post-computation exceptions and returned from the exception
handler (as in step 6 above) to finish executing the instruction.

11.5.4 Handling SIMD Floating-Point Exceptions in Software
Section 4.9.3, “Typical Actions of a Floating-Point Exception Handler,” shows actions
that may be carried out by a SIMD floating-point exception handler. The
SSE/SSE2/SSE3 state is saved with the FXSAVE instruction (see Section 11.6.5,
“Saving and Restoring the SSE/SSE2 State”).

11.5.5 Interaction of SIMD and x87 FPU Floating-Point Exceptions
SIMD floating-point exceptions are generated independently from x87 FPU floating-
point exceptions. SIMD floating-point exceptions do not cause assertion of the
FERR# pin (independent of the value of CR0.NE[bit 5]). They ignore the assertion
and deassertion of the IGNNE# pin.

If applications use SSE/SSE2/SSE3 instructions along with x87 FPU instructions (in
the same task or program), consider the following:
• SIMD floating-point exceptions are reported independently from the x87 FPU

floating-point exceptions. SIMD and x87 FPU floating-point exceptions can be
unmasked independently. Separate x87 FPU and SIMD floating-point exception
handlers must be provided if the same exception is unmasked for x87 FPU and for
SSE/SSE2/SSE3 operations.

• The rounding mode specified in the MXCSR register does not affect x87 FPU
instructions. Likewise, the rounding mode specified in the x87 FPU control word
does not affect the SSE/SSE2/SSE3 instructions. To use the same rounding
mode, the rounding control bits in the MXCSR register and in the x87 FPU control
word must be set explicitly to the same value.

• The flush-to-zero mode set in the MXCSR register for SSE/SSE2/SSE3 instruc-
tions has no counterpart in the x87 FPU. For compatibility with the x87 FPU, set
the flush-to-zero bit to 0.

• The denormals-are-zeros mode set in the MXCSR register for SSE/SSE2/SSE3
instructions has no counterpart in the x87 FPU. For compatibility with the x87
FPU, set the denormals-are-zeros bit to 0.
11-26 Vol. 1

PROGRAMMING WITH STREAMING SIMD EXTENSIONS 2 (SSE2)
• An application that expects to detect x87 FPU exceptions that occur during the
execution of x87 FPU instructions will not be notified if exceptions occurs during
the execution of corresponding SSE/SSE2/SSE31 instructions, unless the
exception masks that are enabled in the x87 FPU control word have also been
enabled in the MXCSR register and the application is capable of handling SIMD
floating-point exceptions (#XM).

— Masked exceptions that occur during an SSE/SSE2/SSE3 library call cannot
be detected by unmasking the exceptions after the call (in an attempt to
generate the fault based on the fact that an exception flag is set). A SIMD
floating-point exception flag that is set when the corresponding exception is
unmasked will not generate a fault; only the next occurrence of that
unmasked exception will generate a fault.

— An application which checks the x87 FPU status word to determine if any
masked exception flags were set during an x87 FPU library call will also need
to check the MXCSR register to detect a similar occurrence of a masked
exception flag being set during an SSE/SSE2/SSE3 library call.

11.6 WRITING APPLICATIONS WITH SSE/SSE2
EXTENSIONS

The following sections give some guidelines for writing application programs and
operating-system code that uses the SSE and SSE2 extensions. Because SSE and
SSE2 extensions share the same state and perform companion operations, these
guidelines apply to both sets of extensions.

Chapter 13 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A, discusses the interface to the processor for context switching as well as
other operating system considerations when writing code that uses SSE/SSE2/SSE3
extensions.

11.6.1 General Guidelines for Using SSE/SSE2 Extensions
The following guidelines describe how to take full advantage of the performance
gains available with the SSE and SSE2 extensions:
• Ensure that the processor supports the SSE and SSE2 extensions.
• Ensure that your operating system supports the SSE and SSE2 extensions.

(Operating system support for the SSE extensions implies support for SSE2
extension and vice versa.)

1. SSE3 refers to ADDSUBPD, ADDSUBPS, HADDPD, HADDPS, HSUBPD and HSUBPS; the only other
SSE3 instruction that can raise floating-point exceptions is FISTTP: it can generate x87 FPU
invalid operation and inexact result exceptions.
Vol. 1 11-27

PROGRAMMING WITH STREAMING SIMD EXTENSIONS 2 (SSE2)
• Use stack and data alignment techniques to keep data properly aligned for
efficient memory use.

• Use the non-temporal store instructions offered with the SSE and SSE2
extensions.

• Employ the optimization and scheduling techniques described in the Intel
Pentium 4 Optimization Reference Manual (see Section 1.4, “Related Literature,”
for the order number for this manual).

11.6.2 Checking for SSE/SSE2 Support
Before an application attempts to use the SSE and/or SSE2 extensions, it should
check that they are present on the processor:

1. Check that the processor supports the CPUID instruction. Bit 21 of the EFLAGS
register can be used to check processor’s support the CPUID instruction.

2. Check that the processor supports the SSE and/or SSE2 extensions (true if
CPUID.01H:EDX.SSE[bit 25] = 1 and/or CPUID.01H:EDX.SSE2[bit 26] = 1).

Operating system must provide system level support for handling SSE state, excep-
tions before an application can use the SSE and/or SSE2 extensions (see Chapter 13
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A,).

If the processor attempts to execute an unsupported SSE or SSE2 instruction, the
processor will generate an invalid-opcode exception (#UD). If an operating system
did not provide adequate system level support for SSE, executing an SSE or SSE2
instructions can also generate #UD.

11.6.3 Checking for the DAZ Flag in the MXCSR Register
The denormals-are-zero flag in the MXCSR register is available in most of the
Pentium 4 processors and in the Intel Xeon processor, with the exception of some
early steppings. To check for the presence of the DAZ flag in the MXCSR register, do
the following:

1. Establish a 512-byte FXSAVE area in memory.

2. Clear the FXSAVE area to all 0s.

3. Execute the FXSAVE instruction, using the address of the first byte of the cleared
FXSAVE area as a source operand. See “FXSAVE—Save x87 FPU, MMX, SSE, and
SSE2 State” in Chapter 3 of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2A, for a description of the FXSAVE instruction and
the layout of the FXSAVE image.

4. Check the value in the MXCSR_MASK field in the FXSAVE image (bytes 28
through 31).

— If the value of the MXCSR_MASK field is 00000000H, the DAZ flag and
denormals-are-zero mode are not supported.
11-28 Vol. 1

PROGRAMMING WITH STREAMING SIMD EXTENSIONS 2 (SSE2)
— If the value of the MXCSR_MASK field is non-zero and bit 6 is set, the DAZ
flag and denormals-are-zero mode are supported.

If the DAZ flag is not supported, then it is a reserved bit and attempting to write a 1
to it will cause a general-protection exception (#GP). See Section 11.6.6, “Guidelines
for Writing to the MXCSR Register,” for general guidelines for preventing general-
protection exceptions when writing to the MXCSR register.

11.6.4 Initialization of SSE/SSE2 Extensions
The SSE and SSE2 state is contained in the XMM and MXCSR registers. Upon a hard-
ware reset of the processor, this state is initialized as follows (see Table 11-2):
• All SIMD floating-point exceptions are masked (bits 7 through 12 of the MXCSR

register is set to 1).
• All SIMD floating-point exception flags are cleared (bits 0 through 5 of the MXCSR

register is set to 0).
• The rounding control is set to round-nearest (bits 13 and 14 of the MXCSR

register are set to 00B).
• The flush-to-zero mode is disabled (bit 15 of the MXCSR register is set to 0).
• The denormals-are-zeros mode is disabled (bit 6 of the MXCSR register is set to

0). If the denormals-are-zeros mode is not supported, this bit is reserved and will
be set to 0 on initialization.

• Each of the XMM registers is cleared (set to all zeros).
Vol. 1 11-29

PROGRAMMING WITH STREAMING SIMD EXTENSIONS 2 (SSE2)
If the processor is reset by asserting the INIT# pin, the SSE and SSE2 state is not
changed.

11.6.5 Saving and Restoring the SSE/SSE2 State
The FXSAVE instruction saves the x87 FPU, MMX, SSE and SSE2 states (which
includes the contents of eight XMM registers and the MXCSR registers) in a 512-byte
block of memory. The FXRSTOR instruction restores the saved SSE and SSE2 state
from memory. See the FXSAVE instruction in Chapter 3 of the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A, for the layout of the
512-byte state block.

In addition to saving and restoring the SSE and SSE2 state, FXSAVE and FXRSTOR
also save and restore the x87 FPU state (because MMX registers are aliased to the
x87 FPU data registers this includes saving and restoring the MMX state). For greater
code efficiency, it is suggested that FXSAVE and FXRSTOR be substituted for the
FSAVE, FNSAVE and FRSTOR instructions in the following situations:
• When a context switch is being made in a multitasking environment
• During calls and returns from interrupt and exception handlers

In situations where the code is switching between x87 FPU and MMX technology
computations (without a context switch or a call to an interrupt or exception), the
FSAVE/FNSAVE and FRSTOR instructions are more efficient than the FXSAVE and
FXRSTOR instructions.

11.6.6 Guidelines for Writing to the MXCSR Register
The MXCSR has several reserved bits, and attempting to write a 1 to any of these bits
will cause a general-protection exception (#GP) to be generated. To allow software to
identify these reserved bits, the MXCSR_MASK value is provided. Software can deter-
mine this mask value as follows:

1. Establish a 512-byte FXSAVE area in memory.

2. Clear the FXSAVE area to all 0s.

3. Execute the FXSAVE instruction, using the address of the first byte of the cleared
FXSAVE area as a source operand. See “FXSAVE—Save x87 FPU, MMX, SSE, and
SSE2 State” in Chapter 3 of the Intel® 64 and IA-32 Architectures Software

Table 11-2. SSE and SSE2 State Following a Power-up/Reset or INIT

Registers Power-Up or
Reset

INIT

XMM0 through XMM7 +0.0 Unchanged

MXCSR 1F80H Unchanged
11-30 Vol. 1

PROGRAMMING WITH STREAMING SIMD EXTENSIONS 2 (SSE2)
Developer’s Manual, Volume 2A, for a description of FXSAVE and the layout of the
FXSAVE image.

4. Check the value in the MXCSR_MASK field in the FXSAVE image (bytes 28
through 31).

— If the value of the MXCSR_MASK field is 00000000H, then the MXCSR_MASK
value is the default value of 0000FFBFH. Note that this value indicates that bit
6 of the MXCSR register is reserved; this setting indicates that the
denormals-are-zero mode is not supported on the processor.

— If the value of the MXCSR_MASK field is non-zero, the MXCSR_MASK value
should be used as the MXCSR_MASK.

All bits set to 0 in the MXCSR_MASK value indicate reserved bits in the MXCSR
register. Thus, if the MXCSR_MASK value is AND’d with a value to be written into the
MXCSR register, the resulting value will be assured of having all its reserved bits set
to 0, preventing the possibility of a general-protection exception being generated
when the value is written to the MXCSR register.

For example, the default MXCSR_MASK value when 00000000H is returned in the
FXSAVE image is 0000FFBFH. If software AND’s a value to be written to MXCSR
register with 0000FFBFH, bit 6 of the result (the DAZ flag) will be ensured of being
set to 0, which is the required setting to prevent general-protection exceptions on
processors that do not support the denormals-are-zero mode.

To prevent general-protection exceptions, the MXCSR_MASK value should be AND’d
with the value to be written into the MXCSR register in the following situations:
• Operating system routines that receive a parameter from an application program

and then write that value to the MXCSR register (either with an FXRSTOR or
LDMXCSR instruction)

• Any application program that writes to the MXCSR register and that needs to run
robustly on several different IA-32 processors

Note that all bits in the MXCSR_MASK value that are set to 1 indicate features that
are supported by the MXCSR register; they can be treated as feature flags for identi-
fying processor capabilities.

11.6.7 Interaction of SSE/SSE2 Instructions with x87 FPU and MMX
Instructions

The XMM registers and the x87 FPU and MMX registers represent separate execution
environments, which has certain ramifications when executing SSE, SSE2, MMX, and
x87 FPU instructions in the same code module or when mixing code modules that
contain these instructions:
• Those SSE and SSE2 instructions that operate only on XMM registers (such as the

packed and scalar floating-point instructions and the 128-bit SIMD integer
instructions) in the same instruction stream with 64-bit SIMD integer or x87 FPU
instructions without any restrictions. For example, an application can perform the
Vol. 1 11-31

PROGRAMMING WITH STREAMING SIMD EXTENSIONS 2 (SSE2)
majority of its floating-point computations in the XMM registers, using the packed
and scalar floating-point instructions, and at the same time use the x87 FPU to
perform trigonometric and other transcendental computations. Likewise, an
application can perform packed 64-bit and 128-bit SIMD integer operations
together without restrictions.

• Those SSE and SSE2 instructions that operate on MMX registers (such as the
CVTPS2PI, CVTTPS2PI, CVTPI2PS, CVTPD2PI, CVTTPD2PI, CVTPI2PD,
MOVDQ2Q, MOVQ2DQ, PADDQ, and PSUBQ instructions) can also be executed in
the same instruction stream as 64-bit SIMD integer or x87 FPU instructions,
however, here they are subject to the restrictions on the simultaneous use of
MMX technology and x87 FPU instructions, which include:

— Transition from x87 FPU to MMX technology instructions or to SSE or SSE2
instructions that operate on MMX registers should be preceded by saving the
state of the x87 FPU.

— Transition from MMX technology instructions or from SSE or SSE2 instruc-
tions that operate on MMX registers to x87 FPU instructions should be
preceded by execution of the EMMS instruction.

11.6.8 Compatibility of SIMD and x87 FPU Floating-Point Data
Types

SSE and SSE2 extensions operate on the same single-precision and double-precision
floating-point data types that the x87 FPU operates on. However, when operating on
these data types, the SSE and SSE2 extensions operate on them in their native
format (single-precision or double-precision), in contrast to the x87 FPU which
extends them to double extended-precision floating-point format to perform compu-
tations and then rounds the result back to a single-precision or double-precision
format before writing results to memory. Because the x87 FPU operates on a higher
precision format and then rounds the result to a lower precision format, it may return
a slightly different result when performing the same operation on the same single-
precision or double-precision floating-point values than is returned by the SSE and
SSE2 extensions. The difference occurs only in the least-significant bits of the signif-
icand.

11.6.9 Mixing Packed and Scalar Floating-Point and 128-Bit SIMD
Integer Instructions and Data

SSE and SSE2 extensions define typed operations on packed and scalar floating-
point data types and on 128-bit SIMD integer data types, but IA-32 processors do not
enforce this typing at the architectural level. They only enforce it at the microarchi-
tectural level. Therefore, when a Pentium 4 or Intel Xeon processor loads a packed or
scalar floating-point operand or a 128-bit packed integer operand from memory into
an XMM register, it does not check that the actual data being loaded matches the
data type specified in the instruction. Likewise, when the processor performs an
11-32 Vol. 1

PROGRAMMING WITH STREAMING SIMD EXTENSIONS 2 (SSE2)
arithmetic operation on the data in an XMM register, it does not check that the data
being operated on matches the data type specified in the instruction.

As a general rule, because data typing of SIMD floating-point and integer data types
is not enforced at the architectural level, it is the responsibility of the programmer,
assembler, or compiler to insure that code enforces data typing. Failure to enforce
correct data typing can lead to computations that return unexpected results.

For example, in the following code sample, two packed single-precision floating-point
operands are moved from memory into XMM registers (using MOVAPS instructions);
then a double-precision packed add operation (using the ADDPD instruction) is
performed on the operands:

movaps xmm0, [eax] ; EAX register contains pointer to packed

; single-precision floating-point operand

movaps xmm1, [ebx]

addpd xmm0, xmm1

Pentium 4 and Intel Xeon processors execute these instructions without generating
an invalid-operand exception (#UD) and will produce the expected results in register
XMM0 (that is, the high and low 64-bits of each register will be treated as a double-
precision floating-point value and the processor will operate on them accordingly).
Because the data types operated on and the data type expected by the ADDPD
instruction were inconsistent, the instruction may result in a SIMD floating-point
exception (such as numeric overflow [#O] or invalid operation [#I]) being gener-
ated, but the actual source of the problem (inconsistent data types) is not detected.

The ability to operate on an operand that contains a data type that is inconsistent
with the typing of the instruction being executed, permits some valid operations to be
performed. For example, the following instructions load a packed double-precision
floating-point operand from memory to register XMM0, and a mask to register
XMM1; then they use XORPD to toggle the sign bits of the two packed values in
register XMM0.

movapd xmm0, [eax] ; EAX register contains pointer to packed

; double-precision floating-point operand

movaps xmm1, [ebx] ; EBX register contains pointer to packed

; double-precision floating-point mask

xorpd xmm0, xmm1 ; XOR operation toggles sign bits using

; the mask in xmm1

In this example: XORPS or PXOR can be used in place of XORPD and yield the same
correct result. However, because of the type mismatch between the operand data
type and the instruction data type, a latency penalty will be incurred due to imple-
mentations of the instructions at the microarchitecture level.

Latency penalties can also be incurred by using move instructions of the wrong type.
For example, MOVAPS and MOVAPD can both be used to move a packed single-preci-
Vol. 1 11-33

PROGRAMMING WITH STREAMING SIMD EXTENSIONS 2 (SSE2)
sion operand from memory to an XMM register. However, if MOVAPD is used, a
latency penalty will be incurred when a correctly typed instruction attempts to use
the data in the register.

Note that these latency penalties are not incurred when moving data from XMM
registers to memory.

11.6.10 Interfacing with SSE/SSE2 Procedures and Functions
SSE and SSE2 extensions allow direct access to XMM registers. This means that all
existing interface conventions between procedures and functions that apply to the
use of the general-purpose registers (EAX, EBX, etc.) also apply to XMM register
usage.

11.6.10.1 Passing Parameters in XMM Registers
The state of XMM registers is preserved across procedure (or function) boundaries.
Parameters can be passed from one procedure to another using XMM registers.

11.6.10.2 Saving XMM Register State on a Procedure or Function Call
The state of XMM registers can be saved in two ways: using an FXSAVE instruction or
a move instruction. FXSAVE saves the state of all XMM registers (along with the state
of MXCSR and the x87 FPU registers). This instruction is typically used for major
changes in the context of the execution environment, such as a task switch.
FXRSTOR restores the XMM, MXCSR, and x87 FPU registers stored with FXSAVE.

In cases where only XMM registers must be saved, or where selected XMM registers
need to be saved, move instructions (MOVAPS, MOVUPS, MOVSS, MOVAPD,
MOVUPD, MOVSD, MOVDQA, and MOVDQU) can be used. These instructions can also
be used to restore the contents of XMM registers. To avoid performance degradation
when saving XMM registers to memory or when loading XMM registers from memory,
be sure to use the appropriately typed move instructions.

The move instructions can also be used to save the contents of XMM registers on the
stack. Here, the stack pointer (in the ESP register) can be used as the memory
address to the next available byte in the stack. Note that the stack pointer is not
automatically incremented when using a move instruction (as it is with PUSH).

A move-instruction procedure that saves the contents of an XMM register to the stack
is responsible for decrementing the value in the ESP register by 16. Likewise, a
move-instruction procedure that loads an XMM register from the stack needs also to
increment the ESP register by 16. To avoid performance degradation when moving
the contents of XMM registers, use the appropriately typed move instructions.

Use the LDMXCSR and STMXCSR instructions to save and restore, respectively, the
contents of the MXCSR register on a procedure call and return.
11-34 Vol. 1

PROGRAMMING WITH STREAMING SIMD EXTENSIONS 2 (SSE2)
11.6.10.3 Caller-Save Recommendation for Procedure and Function Calls
When making procedure (or function) calls from SSE or SSE2 code, a caller-save
convention is recommended for saving the state of the calling procedure. Using this
convention, any register whose content must survive intact across a procedure call
must be stored in memory by the calling procedure prior to executing the call.

The primary reason for using the caller-save convention is to prevent performance
degradation. XMM registers can contain packed or scalar double-precision floating-
point, packed single-precision floating-point, and 128-bit packed integer data types.
The called procedure has no way of knowing the data types in XMM registers
following a call; so it is unlikely to use the correctly typed move instruction to store
the contents of XMM registers in memory or to restore the contents of XMM registers
from memory.

As described in Section 11.6.9, “Mixing Packed and Scalar Floating-Point and 128-Bit
SIMD Integer Instructions and Data,” executing a move instruction that does not
match the type for the data being moved to/from XMM registers will be carried out
correctly, but can lead to a greater instruction latency.

11.6.11 Updating Existing MMX Technology Routines
Using 128-Bit SIMD Integer Instructions

SSE2 extensions extend all 64-bit MMX SIMD integer instructions to operate on 128-
bit SIMD integers using XMM registers. The extended 128-bit SIMD integer instruc-
tions operate like the 64-bit SIMD integer instructions; this simplifies the porting of
MMX technology applications. However, there are considerations:
• To take advantage of wider 128-bit SIMD integer instructions, MMX technology

code must be recompiled to reference the XMM registers instead of MMX
registers.

• Computation instructions that reference memory operands that are not aligned
on 16-byte boundaries should be replaced with an unaligned 128-bit load
(MOVUDQ instruction) followed by a version of the same computation operation
that uses register instead of memory operands. Use of 128-bit packed integer
computation instructions with memory operands that are not 16-byte aligned
results in a general protection exception (#GP).

• Extension of the PSHUFW instruction (shuffle word across 64-bit integer
operand) across a full 128-bit operand is emulated by a combination of the
following instructions: PSHUFHW, PSHUFLW, and PSHUFD.

• Use of the 64-bit shift by bit instructions (PSRLQ, PSLLQ) can be extended to 128
bits in either of two ways:

— Use of PSRLQ and PSLLQ, along with masking logic operations.

— Rewriting the code sequence to use PSRLDQ and PSLLDQ (shift double
quadword operand by bytes)
Vol. 1 11-35

PROGRAMMING WITH STREAMING SIMD EXTENSIONS 2 (SSE2)
• Loop counters need to be updated, since each 128-bit SIMD integer instruction
operates on twice the amount of data as its 64-bit SIMD integer counterpart.

11.6.12 Branching on Arithmetic Operations
There are no condition codes in SSE or SSE2 states. A packed-data comparison
instruction generates a mask which can then be transferred to an integer register.
The following code sequence provides an example of how to perform a conditional
branch, based on the result of an SSE2 arithmetic operation.

cmppd XMM0, XMM1 ; generates a mask in XMM0
movmskpd EAX, XMM0 ; moves a 2 bit mask to eax
test EAX, 0 ; compare with desired result
jne BRANCH TARGET

The COMISD and UCOMISD instructions update the EFLAGS as the result of a scalar
comparison. A conditional branch can then be scheduled immediately following
COMISD/UCOMISD.

11.6.13 Cacheability Hint Instructions
SSE and SSE2 cacheability control instructions enable the programmer to control
prefetching, caching, loading and storing of data. When correctly used, these instruc-
tions improve application performance.

To make efficient use of the processor’s super-scalar microarchitecture, a program
needs to provide a steady stream of data to the executing program to avoid stalling
the processor. PREFETCHh instructions minimize the latency of data accesses in
performance-critical sections of application code by allowing data to be fetched into
the processor cache hierarchy in advance of actual usage.

PREFETCHh instructions do not change the user-visible semantics of a program,
although they may affect performance. The operation of these instructions is imple-
mentation-dependent. Programmers may need to tune code for each IA-32
processor implementation. Excessive usage of PREFETCHh instructions may waste
memory bandwidth and reduce performance. For more detailed information on the
use of prefetch hints, refer to Chapter 7, “Optimizing Cache Usage,”, in the Intel® 64
and IA-32 Architectures Optimization Reference Manual.

The non-temporal store instructions (MOVNTI, MOVNTPD, MOVNTPS, MOVNTDQ,
MOVNTQ, MASKMOVQ, and MASKMOVDQU) minimize cache pollution when writing
non-temporal data to memory (see Section 10.4.6.2, “Caching of Temporal vs. Non-
Temporal Data,” and Section 10.4.6.1, “Cacheability Control Instructions”). They
prevent non-temporal data from being written into processor caches on a store oper-
ation. These instructions are implementation specific. Programmers may have to
tune their applications for each IA-32 processor implementation to take advantage of
these instructions.
11-36 Vol. 1

PROGRAMMING WITH STREAMING SIMD EXTENSIONS 2 (SSE2)
Besides reducing cache pollution, the use of weakly-ordered memory types can be
important under certain data sharing relationships, such as a producer-consumer
relationship. The use of weakly ordered memory can make the assembling of data
more efficient; but care must be taken to ensure that the consumer obtains the data
that the producer intended. Some common usage models that may be affected in this
way by weakly-ordered stores are:
• Library functions that use weakly ordered memory to write results
• Compiler-generated code that writes weakly-ordered results
• Hand-crafted code

The degree to which a consumer of data knows that the data is weakly ordered can
vary for these cases. As a result, the SFENCE or MFENCE instruction should be used
to ensure ordering between routines that produce weakly-ordered data and routines
that consume the data. SFENCE and MFENCE provide a performance-efficient way to
ensure ordering by guaranteeing that every store instruction that precedes
SFENCE/MFENCE in program order is globally visible before a store instruction that
follows the fence.

11.6.14 Effect of Instruction Prefixes on the SSE/SSE2 Instructions
Table 11-3 describes the effects of instruction prefixes on SSE and SSE2 instructions.
(Table 11-3 also applies to SIMD integer and SIMD floating-point instructions in
SSE3.) Unpredictable behavior can range from prefixes being treated as a reserved
operation on one generation of IA-32 processors to generating an invalid opcode
exception on another generation of processors.

See also “Instruction Prefixes” in Chapter 2 of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 2A, for complete description of instruction
prefixes.

NOTE
Some SSE/SSE2/SSE3 instructions have two-byte opcodes that are
either 2 bytes or 3 bytes in length. Two-byte opcodes that are 3 bytes
in length consist of: a mandatory prefix (F2H, F3H, or 66H), 0FH, and
an opcode byte. See Table 11-3.

Table 11-3. Effect of Prefixes on SSE, SSE2, and SSE3 Instructions

Prefix Type Effect on SSE, SSE2 and SSE3 Instructions

Address Size Prefix (67H) Affects instructions with a memory operand.

Reserved for instructions without a memory operand and
may result in unpredictable behavior.

Operand Size (66H) Reserved and may result in unpredictable behavior.
Vol. 1 11-37

PROGRAMMING WITH STREAMING SIMD EXTENSIONS 2 (SSE2)
Segment Override
(2EH,36H,3EH,26H,64H,65H)

Affects instructions with a memory operand.

Reserved for instructions without a memory operand and
may result in unpredictable behavior.

Repeat Prefixes (F2H and F3H) Reserved and may result in unpredictable behavior.

Lock Prefix (F0H) Reserved; generates invalid opcode exception (#UD).

Branch Hint Prefixes(E2H and
E3H)

Reserved and may result in unpredictable behavior.

Table 11-3. Effect of Prefixes on SSE, SSE2, and SSE3 Instructions

Prefix Type Effect on SSE, SSE2 and SSE3 Instructions
11-38 Vol. 1

CHAPTER 12
PROGRAMMING WITH SSE3, SSSE3, SSE4 AND AESNI

The Pentium 4 processor supporting Hyper-Threading Technology (HT Technology)
introduces Streaming SIMD Extensions 3 (SSE3). The Intel Xeon processor 5100
series, Intel Core 2 processor families introduced Supplemental Streaming SIMD
Extensions 3 (SSSE3). SSE4 are introduced in Intel processor generations built from
45nm process technology. This chapter describes SSE3, SSSE3, SSE4, and provides
information to assist in writing application programs that use these extensions.

AESNI and PCLMLQDQ are instruction extensions targeted to accelerate high-speed
block encryption and cryptographic processing. Section 12.13 covers these instruc-
tions and their relationship to the Advanced Encryption Standard (AES).

12.1 PROGRAMMING ENVIRONMENT AND DATA TYPES
The programming environment for using SSE3, SSSE3, and SSE4 is unchanged from
those shown in Figure 3-1 and Figure 3-2. SSE3, SSSE3, and SSE4 do not introduce
new data types. XMM registers are used to operate on packed integer data, single-
precision floating-point data, or double-precision floating-point data.

One SSE3 instruction uses the x87 FPU for x87-style programming. There are two
SSE3 instructions that use the general registers for thread synchronization. The
MXCSR register governs SIMD floating-point operations. Note, however, that the
x87FPU control word does not affect the SSE3 instruction that is executed by the x87
FPU (FISTTP), other than by unmasking an invalid operand or inexact result excep-
tion.

SSE4 instructions do not use MMX registers. Two of the SSE4.2 instructions operate
on general-purpose registers; the rest of SSE4.2 instruction and SSE4.1 instructions
operate on XMM registers.

12.1.1 SSE3, SSSE3, SSE4 in 64-Bit Mode and Compatibility Mode
In compatibility mode, SSE3, SSSE3, and SSE4 function like they do in protected
mode. In 64-bit mode, eight additional XMM registers are accessible. Registers
XMM8-XMM15 are accessed by using REX prefixes.

Memory operands are specified using the ModR/M, SIB encoding described in Section
3.7.5.

Some SSE3, SSSE3, and SSE4 instructions may be used to operate on general-
purpose registers. Use the REX.W prefix to access 64-bit general-purpose registers.
Note that if a REX prefix is used when it has no meaning, the prefix is ignored.
Vol. 1 12-1

PROGRAMMING WITH SSE3, SSSE3, SSE4 AND AESNI
12.1.2 Compatibility of SSE3/SSSE3 with MMX Technology, the x87
FPU Environment, and SSE/SSE2 Extensions

SSE3, SSSE3, and SSE4 do not introduce any new state to the Intel 64 and IA-32
execution environments.

For SIMD and x87 programming, the FXSAVE and FXRSTOR instructions save and
restore the architectural states of XMM, MXCSR, x87 FPU, and MMX registers. The
MONITOR and MWAIT instructions use general purpose registers on input, they do
not modify the content of those registers.

12.1.3 Horizontal and Asymmetric Processing
Many SSE/SSE2/SSE3/SSSE3 instructions accelerate SIMD data processing using a
model referred to as vertical computation. Using this model, data flow is vertical
between the data elements of the inputs and the output.

Figure 12-1 illustrates the asymmetric processing of the SSE3 instruction
ADDSUBPD. Figure 12-2 illustrates the horizontal data movement of the SSE3
instruction HADDPD.

Figure 12-1. Asymmetric Processing in ADDSUBPD

X1 X0

 X1 + Y1 X0 -Y0

SUB

Y1 Y0

ADD
12-2 Vol. 1

PROGRAMMING WITH SSE3, SSSE3, SSE4 AND AESNI
12.2 OVERVIEW OF SSE3 INSTRUCTIONS
SSE3 extensions include 13 instructions. See:
• Section 12.3, “SSE3 Instructions,” provides an introduction to individual SSE3

instructions.
• Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes

2A & 2B, provide detailed information on individual instructions.
• Chapter 13, “System Programming for Instruction Set Extensions and Processor

Extended States,” in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A, gives guidelines for integrating SSE/SSE2/SSE3 extensions
into an operating-system environment.

12.3 SSE3 INSTRUCTIONS
SSE3 instructions are grouped as follows:
• x87 FPU instruction

— One instruction that improves x87 FPU floating-point to integer conversion
• SIMD integer instruction

— One instruction that provides a specialized 128-bit unaligned data load
• SIMD floating-point instructions

— Three instructions that enhance LOAD/MOVE/DUPLICATE performance

— Two instructions that provide packed addition/subtraction

— Four instructions that provide horizontal addition/subtraction

Figure 12-2. Horizontal Data Movement in HADDPD

X1 X0

 Y0 + Y1 X0 + X1

ADD

Y1 Y0

ADD
Vol. 1 12-3

PROGRAMMING WITH SSE3, SSSE3, SSE4 AND AESNI
• Thread synchronization instructions

— Two instructions that improve synchronization between multi-threaded
agents

The instructions are discussed in more detail in the following paragraphs.

12.3.1 x87 FPU Instruction for Integer Conversion
The FISTTP instruction (x87 FPU Store Integer and Pop with Truncation) behaves like
FISTP, but uses truncation regardless of what rounding mode is specified in the x87
FPU control word. The instruction converts the top of stack (ST0) to integer with
rounding to and pops the stack.

The FISTTP instruction is available in three precisions: short integer (word or 16-bit),
integer (double word or 32-bit), and long integer (64-bit). With FISTTP, applications
no longer need to change the FCW when truncation is required.

12.3.2 SIMD Integer Instruction for Specialized 128-bit Unaligned
Data Load

The LDDQU instruction is a special 128-bit unaligned load designed to avoid cache
line splits. If the address of a 16-byte load is on a 16-byte boundary, LDQQU loads
the bytes requested. If the address of the load is not aligned on a 16-byte boundary,
LDDQU loads a 32-byte block starting at the 16-byte aligned address immediately
below the load request. It then extracts the requested 16 bytes.

The instruction provides significant performance improvement on 128-bit unaligned
memory accesses at the cost of some usage model restrictions.

12.3.3 SIMD Floating-Point Instructions That Enhance
LOAD/MOVE/DUPLICATE Performance

The MOVSHDUP instruction loads/moves 128-bits, duplicating the second and fourth
32-bit data elements.
• MOVSHDUP OperandA, OperandB

— OperandA (128 bits, four data elements): 3a, 2a, 1a, 0a

— OperandB (128 bits, four data elements): 3b, 2b, 1b, 0b

— Result (stored in OperandA): 3b, 3b, 1b, 1b

The MOVSLDUP instruction loads/moves 128-bits, duplicating the first and third
32-bit data elements.
• MOVSLDUP OperandA, OperandB

— OperandA (128 bits, four data elements): 3a, 2a, 1a, 0a
12-4 Vol. 1

PROGRAMMING WITH SSE3, SSSE3, SSE4 AND AESNI
— OperandB (128 bits, four data elements): 3b, 2b, 1b, 0b

— Result (stored in OperandA): 2b, 2b, 0b, 0b

The MOVDDUP instruction loads/moves 64-bits; duplicating the 64 bits from the
source.
• MOVDDUP OperandA, OperandB

— OperandA (128 bits, two data elements): 1a, 0a

— OperandB (64 bits, one data element): 0b

— Result (stored in OperandA): 0b, 0b

12.3.4 SIMD Floating-Point Instructions Provide Packed
Addition/Subtraction

The ADDSUBPS instruction has two 128-bit operands. The instruction performs
single-precision addition on the second and fourth pairs of 32-bit data elements
within the operands; and single-precision subtraction on the first and third pairs.
• ADDSUBPS OperandA, OperandB

— OperandA (128 bits, four data elements): 3a, 2a, 1a, 0a

— OperandB (128 bits, four data elements): 3b, 2b, 1b, 0b

— Result (stored in OperandA): 3a+3b, 2a-2b, 1a+1b, 0a-0b

The ADDSUBPD instruction has two 128-bit operands. The instruction performs
double-precision addition on the second pair of quadwords, and double-precision
subtraction on the first pair.
• ADDSUBPD OperandA, OperandB

— OperandA (128 bits, two data elements): 1a, 0a

— OperandB (128 bits, two data elements): 1b, 0b

— Result (stored in OperandA): 1a+1b, 0a-0b

12.3.5 SIMD Floating-Point Instructions Provide Horizontal
Addition/Subtraction

Most SIMD instructions operate vertically. This means that the result in position i is a
function of the elements in position i of both operands. Horizontal addition/subtrac-
tion operates horizontally. This means that contiguous data elements in the same
source operand are used to produce a result.

The HADDPS instruction performs a single-precision addition on contiguous data
elements. The first data element of the result is obtained by adding the first and
second elements of the first operand; the second element by adding the third and
fourth elements of the first operand; the third by adding the first and second
Vol. 1 12-5

PROGRAMMING WITH SSE3, SSSE3, SSE4 AND AESNI
elements of the second operand; and the fourth by adding the third and fourth
elements of the second operand.
• HADDPS OperandA, OperandB

— OperandA (128 bits, four data elements): 3a, 2a, 1a, 0a

— OperandB (128 bits, four data elements): 3b, 2b, 1b, 0b

— Result (Stored in OperandA): 3b+2b, 1b+0b, 3a+2a, 1a+0a

The HSUBPS instruction performs a single-precision subtraction on contiguous data
elements. The first data element of the result is obtained by subtracting the second
element of the first operand from the first element of the first operand; the second
element by subtracting the fourth element of the first operand from the third element
of the first operand; the third by subtracting the second element of the second
operand from the first element of the second operand; and the fourth by subtracting
the fourth element of the second operand from the third element of the second
operand.
• HSUBPS OperandA, OperandB

— OperandA (128 bits, four data elements): 3a, 2a, 1a, 0a

— OperandB (128 bits, four data elements): 3b, 2b, 1b, 0b

— Result (Stored in OperandA): 2b-3b, 0b-1b, 2a-3a, 0a-1a

The HADDPD instruction performs a double-precision addition on contiguous data
elements. The first data element of the result is obtained by adding the first and
second elements of the first operand; the second element by adding the first and
second elements of the second operand.
• HADDPD OperandA, OperandB

— OperandA (128 bits, two data elements): 1a, 0a

— OperandB (128 bits, two data elements): 1b, 0b

— Result (Stored in OperandA): 1b+0b, 1a+0a

The HSUBPD instruction performs a double-precision subtraction on contiguous data
elements. The first data element of the result is obtained by subtracting the second
element of the first operand from the first element of the first operand; the second
element by subtracting the second element of the second operand from the first
element of the second operand.
• HSUBPD OperandA OperandB

— OperandA (128 bits, two data elements): 1a, 0a

— OperandB (128 bits, two data elements): 1b, 0b

— Result (Stored in OperandA): 0b-1b, 0a-1a
12-6 Vol. 1

PROGRAMMING WITH SSE3, SSSE3, SSE4 AND AESNI
12.3.6 Two Thread Synchronization Instructions
The MONITOR instruction sets up an address range that is used to monitor write-
back-stores.

MWAIT enables a logical processor to enter into an optimized state while waiting for
a write-back-store to the address range set up by MONITOR. MONITOR and MWAIT
require the use of general purpose registers for its input. The registers used by
MONITOR and MWAIT must be initialized properly; register content is not modified by
these instructions.

12.4 WRITING APPLICATIONS WITH SSE3 EXTENSIONS
The following sections give guidelines for writing application programs and oper-
ating-system code that use SSE3 instructions.

12.4.1 Guidelines for Using SSE3 Extensions
The following guidelines describe how to maximize the benefits of using SSE3 exten-
sions:
• Check that the processor supports SSE3 extensions.

— Application may need to ensure that the target operating system supports
SSE3. (Operating system support for the SSE extensions implies sufficient
support for SSE2 extensions and SSE3 extensions.)

• Ensure your operating system supports MONITOR and MWAIT.
• Employ the optimization and scheduling techniques described in the Intel® 64

and IA-32 Architectures Optimization Reference Manual (see Section 1.4,
“Related Literature”).

12.4.2 Checking for SSE3 Support
Before an application attempts to use the SIMD subset of SSE3 extensions, the appli-
cation should follow the steps illustrated in Section 11.6.2, “Checking for SSE/SSE2
Support.” Next, use the additional step provided below:
• Check that the processor supports the SIMD and x87 SSE3 extensions (if

CPUID.01H:ECX.SSE3[bit 0] = 1).

An operating systems that provides application support for SSE, SSE2 also provides
sufficient application support for SSE3. To use FISTTP, software only needs to check
support for SSE3.

In the initial implementation of MONITOR and MWAIT, these two instructions are
available to ring 0 and conditionally available at ring level greater than 0. Before an
Vol. 1 12-7

PROGRAMMING WITH SSE3, SSSE3, SSE4 AND AESNI
application attempts to use the MONITOR and MWAIT instructions, the application
should use the following steps:

1. Check that the processor supports MONITOR and MWAIT. If
CPUID.01H:ECX.MONITOR[bit 3] = 1, MONITOR and MWAIT are available at
ring 0.

2. Query the smallest and largest line size that MONITOR uses. Use
CPUID.05H:EAX.smallest[bits 15:0];EBX.largest[bits15:0]. Values are returned
in bytes in EAX and EBX.

3. Ensure the memory address range(s) that will be supplied to MONITOR meets
memory type requirements.

MONITOR and MWAIT are targeted for system software that supports efficient thread
synchronization, See Chapter 13 in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3A for details.

12.4.3 Enable FTZ and DAZ for SIMD Floating-Point Computation
Enabling the FTZ and DAZ flags in the MXCSR register is likely to accelerate SIMD
floating-point computation where strict compliance to the IEEE standard 754-1985 is
not required. The FTZ flag is available to Intel 64 and IA-32 processors that support
the SSE; DAZ is available to Intel 64 processors and to most IA-32 processors that
support SSE/SSE2/SSE3.

Software can detect the presence of DAZ, modify the MXCSR register, and save and
restore state information by following the techniques discussed in Section 11.6.3
through Section 11.6.6.

12.4.4 Programming SSE3 with SSE/SSE2 Extensions
SIMD instructions in SSE3 extensions are intended to complement the use of
SSE/SSE2 in programming SIMD applications. Application software that intends to
use SSE3 instructions should also check for the availability of SSE/SSE2 instructions.

The FISTTP instruction in SSE3 is intended to accelerate x87 style programming
where performance is limited by frequent floating-point conversion to integers; this
happens when the x87 FPU control word is modified frequently. Use of FISTTP can
eliminate the need to access the x87 FPU control word.

12.5 OVERVIEW OF SSSE3 INSTRUCTIONS
SSSE3 provides 32 instructions to accelerate a variety of multimedia and signal
processing applications employing SIMD integer data. See:
• Section 12.6, “SSSE3 Instructions,” provides an introduction to individual SSE3

instructions.
12-8 Vol. 1

PROGRAMMING WITH SSE3, SSSE3, SSE4 AND AESNI
• Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes
2A & 2B, provide detailed information on individual instructions.

• Chapter 13, “System Programming for Instruction Set Extensions and Processor
Extended States,” in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A, gives guidelines for integrating SSE/SSE2/SSE3/SSSE3
extensions into an operating-system environment.

12.6 SSSE3 INSTRUCTIONS
SSSE3 instructions include:
• Twelve instructions that perform horizontal addition or subtraction operations.
• Six instructions that evaluate the absolute values.
• Two instructions that perform multiply and add operations and speed up the

evaluation of dot products.
• Two instructions that accelerate packed-integer multiply operations and produce

integer values with scaling.
• Two instructions that perform a byte-wise, in-place shuffle according to the

second shuffle control operand.
• Six instructions that negate packed integers in the destination operand if the

signs of the corresponding element in the source operand is less than zero.
• Two instructions that align data from the composite of two operands.

The operands of these instructions are packed integers of byte, word, or double word
sizes. The operands are stored as 64 or 128 bit data in MMX registers, XMM registers,
or memory.

The instructions are discussed in more detail in the following paragraphs.

12.6.1 Horizontal Addition/Subtraction
In analogy to the packed, floating-point horizontal add and subtract instructions in
SSE3, SSSE3 offers similar capabilities on packed integer data. Data elements of
signed words, doublewords are supported. Saturated version for horizontal add and
subtract on signed words are also supported. The horizontal data movement of
PHADD is shown in Figure 12-3.
Vol. 1 12-9

PROGRAMMING WITH SSE3, SSSE3, SSE4 AND AESNI
There are six horizontal add instructions (represented by three mnemonics); three
operate on 128-bit operands and three operate on 64-bit operands. The width of
each data element is either 16 bits or 32 bits. The mnemonics are listed below.
• PHADDW adds two adjacent, signed 16-bit integers horizontally from the source

and destination operands and packs the signed 16-bit results to the destination
operand.

• PHADDSW adds two adjacent, signed 16-bit integers horizontally from the source
and destination operands and packs the signed, saturated 16-bit results to the
destination operand.

• PHADDD adds two adjacent, signed 32-bit integers horizontally from the source
and destination operands and packs the signed 32-bit results to the destination
operand.

There are six horizontal subtract instructions (represented by three mnemonics);
three operate on 128-bit operands and three operate on 64-bit operands. The width
of each data element is either 16 bits or 32 bits. These are listed below.
• PHSUBW performs horizontal subtraction on each adjacent pair of 16-bit signed

integers by subtracting the most significant word from the least significant word
of each pair in the source and destination operands. The signed 16-bit results are
packed and written to the destination operand.

• PHSUBSW performs horizontal subtraction on each adjacent pair of 16-bit signed
integers by subtracting the most significant word from the least significant word
of each pair in the source and destination operands. The signed, saturated 16-bit
results are packed and written to the destination operand.

• PHSUBD performs horizontal subtraction on each adjacent pair of 32-bit signed
integers by subtracting the most significant doubleword from the least significant

Figure 12-3. Horizontal Data Movement in PHADDD

X0 + X1X2 + X3Y0 + Y1Y2 + Y3

X2 X0

ADD

Y1 Y0

ADD

Y2Y3

X1X3

ADDADD
12-10 Vol. 1

PROGRAMMING WITH SSE3, SSSE3, SSE4 AND AESNI
double word of each pair in the source and destination operands. The signed
32-bit results are packed and written to the destination operand.

12.6.2 Packed Absolute Values
There are six packed-absolute-value instructions (represented by three mnemonics).
Three operate on 128-bit operands and three operate on 64-bit operands. The widths
of data elements are 8 bits, 16 bits or 32 bits. The absolute value of each data
element of the source operand is stored as an UNSIGNED result in the destination
operand.
• PABSB computes the absolute value of each signed byte data element.
• PABSW computes the absolute value of each signed 16-bit data element.
• PABSD computes the absolute value of each signed 32-bit data element.

12.6.3 Multiply and Add Packed Signed and Unsigned Bytes
There are two multiply-and-add-packed-signed-unsigned-byte instructions (repre-
sented by one mnemonic). One operates on 128-bit operands and the other operates
on 64-bit operands. Multiplications are performed on each vertical pair of data
elements. The data elements in the source operand are signed byte values, the input
data elements of the destination operand are unsigned byte values.
• PMADDUBSW multiplies each unsigned byte value with the corresponding signed

byte value to produce an intermediate, 16-bit signed integer. Each adjacent pair
of 16-bit signed values are added horizontally. The signed, saturated 16-bit
results are packed to the destination operand.

12.6.4 Packed Multiply High with Round and Scale
There are two packed-multiply-high-with-round-and-scale instructions (represented
by one mnemonic). One operates on 128-bit operands and the other operates on
64-bit operands.
• PMULHRSW multiplies vertically each signed 16-bit integer from the destination

operand with the corresponding signed 16-bit integer of the source operand,
producing intermediate, signed 32-bit integers. Each intermediate 32-bit integer
is truncated to the 18 most significant bits. Rounding is always performed by
adding 1 to the least significant bit of the 18-bit intermediate result. The final
result is obtained by selecting the 16 bits immediately to the right of the most
significant bit of each 18-bit intermediate result and packed to the destination
operand.
Vol. 1 12-11

PROGRAMMING WITH SSE3, SSSE3, SSE4 AND AESNI
12.6.5 Packed Shuffle Bytes
There are two packed-shuffle-bytes instructions (represented by one mnemonic).
One operates on 128-bit operands and the other operates on 64-bit operands. The
shuffle operations are performed bytewise on the destination operand using the
source operand as a control mask.
• PSHUFB permutes each byte in place, according to a shuffle control mask. The

least significant three or four bits of each shuffle control byte of the control mask
form the shuffle index. The shuffle mask is unaffected. If the most significant bit
(bit 7) of a shuffle control byte is set, the constant zero is written in the result
byte.

12.6.6 Packed Sign
There are six packed-sign instructions (represented by three mnemonics). Three
operate on 128-bit operands and three operate on 64-bit operands. The widths of
each data element for these instructions are 8 bit, 16 bit or 32 bit signed integers.
• PSIGNB/W/D negates each signed integer element of the destination operand if

the sign of the corresponding data element in the source operand is less than
zero.

12.6.7 Packed Align Right
There are two packed-align-right instructions (represented by one mnemonic). One
operates on 128-bit operands and the other operates on 64-bit operands. These
instructions concatenate the destination and source operand into a composite, and
extract the result from the composite according to an immediate constant.
• PALIGNR’s source operand is appended after the destination operand forming an

intermediate value of twice the width of an operand. The result is extracted from
the intermediate value into the destination operand by selecting the 128-bit or
64-bit value that are right-aligned to the byte offset specified by the immediate
value.

12.7 WRITING APPLICATIONS WITH SSSE3 EXTENSIONS
The following sections give guidelines for writing application programs and oper-
ating-system code that use SSSE3 instructions.

12.7.1 Guidelines for Using SSSE3 Extensions
The following guidelines describe how to maximize the benefits of using SSSE3
extensions:
12-12 Vol. 1

PROGRAMMING WITH SSE3, SSSE3, SSE4 AND AESNI
• Check that the processor supports SSSE3 extensions.
• Ensure that your operating system supports SSE/SSE2/SSE3/SSSE3 extensions.

(Operating system support for the SSE extensions implies sufficient support for
SSE2, SSE3, and SSSE3.)

• Employ the optimization and scheduling techniques described in the Intel® 64
and IA-32 Architectures Optimization Reference Manual (see Section 1.4,
“Related Literature”).

12.7.2 Checking for SSSE3 Support
Before an application attempts to use the SSSE3 extensions, the application should
follow the steps illustrated in Section 11.6.2, “Checking for SSE/SSE2 Support.”
Next, use the additional step provided below:
• Check that the processor supports SSSE3 (if CPUID.01H:ECX.SSSE3[bit 9] = 1).

12.8 SSE3/SSSE3 AND SSE4 EXCEPTIONS
SSE3, SSSE3, and SSE4 instructions can generate the same type of memory-access
and non-numeric exceptions as other Intel 64 or IA-32 instructions. Existing excep-
tion handlers generally handle these exceptions without code modification.

FISTTP can generate floating-point exceptions. Some SSE3 instructions can also
generate SIMD floating-point exceptions.

SSE3 additions and changes are noted in the following sections. See also: Section
11.5, “SSE, SSE2, and SSE3 Exceptions”.

12.8.1 Device Not Available (DNA) Exceptions
SSE3, SSSE3, and SSE4 will cause a DNA Exception (#NM) if the processor attempts
to execute an SSE3 instruction while CR0.TS[bit 3] = 1. If
CPUID.01H:ECX.SSE3[bit 0] = 0, execution of an SSE3 extension will cause an
invalid opcode fault regardless of the state of CR0.TS[bit 3].

Similarly, an attempt to execute an SSSE3 instruction on a processor that reports
CPUID.01H:ECX.SSSE3[bit 9] = 0 will cause an invalid opcode fault regardless of the
state of CR0.TS[bit 3]. An attempt to execute an SSE4.1 instruction on a processor
that reports CPUID.01H:ECX.SSE4_1[bit 19] = 0 will cause an invalid opcode fault
regardless of the state of CR0.TS[bit 3].

An attempt to execute PCMPGTQ or any one of the four string processing instructions
in SSE4.2 on a processor that reports CPUID.01H:ECX.SSSE3[bit 20] = 0 will cause
an invalid opcode fault regardless of the state of CR0.TS[bit 3]. CRC32 and POPCNT
do not cause #NM.
Vol. 1 12-13

PROGRAMMING WITH SSE3, SSSE3, SSE4 AND AESNI
12.8.2 Numeric Error flag and IGNNE#
Most SSE3 instructions ignore CR0.NE[bit 5] (treats it as if it were always set) and
the IGNNE# pin. With one exception, all use the vector 19 software exception for
error reporting. The exception is FISTTP; it behaves like other x87-FP instructions.

SSSE3 instructions ignore CR0.NE[bit 5] (treats it as if it were always set) and the
IGNNE# pin.

SSSE3 instructions do not cause floating-point errors. Floating-point numeric errors
for SSE4.1 are described in Section 12.8.4. SSE4.2 instructions do not cause
floating-point errors.

12.8.3 Emulation
CR0.EM is used by some software to emulate x87 floating-point instructions,
CR0.EM[bit 2] cannot be used for emulation of SSE, SSE2, SSE3, SSSE3, and SSE4.
If an SSE3, SSSE3, and SSE4 instruction executes with CR0.EM[bit 2] set, an invalid
opcode exception (INT 6) is generated instead of a device not available exception
(INT 7).

12.8.4 IEEE 754 Compliance of SSE4.1 Floating-Point Instructions
The six SSE4.1 instructions that perform floating-point arithmetic are:
• DPPS
• DPPD
• ROUNDPS
• ROUNDPD
• ROUNDSS
• ROUNDSD

Dot Product operations are not specified in IEEE-754. When neither FTZ nor DAZ are
enabled, the dot product instructions resemble sequences of IEEE-754 multiplies and
adds (with rounding at each stage), except that the treatment of input NaN’s is
implementation specific (there will be at least one NaN in the output). The input
select fields (bits imm8[4:7]) force input elements to +0.0f prior to the first multiply
and will suppress input exceptions that would otherwise have been be generated.

As a convenience to the exception handler, any exceptions signaled from DPPS or
DPPD leave the destination unmodified.

Round operations signal invalid and precision only.
12-14 Vol. 1

PROGRAMMING WITH SSE3, SSSE3, SSE4 AND AESNI
The other SSE4.1 instructions with floating-point arguments (BLENDPS, BLENDPD,
BLENDVPS, BLENDVPD, INSERTPS, EXTRACTPS) do not signal any SIMD numeric
exceptions.

12.9 SSE4 OVERVIEW
SSE4 comprises of two sets of extensions: SSE4.1 and SSE4.2. SSE4.1 is targeted to
improve the performance of media, imaging, and 3D workloads. SSE4.1 adds
instructions that improve compiler vectorization and significantly increase support
for packed dword computation. The technology also provides a hint that can improve
memory throughput when reading from uncacheable WC memory type.

The 47 SSE4.1 instructions include:
• Two instructions perform packed dword multiplies.
• Two instructions perform floating-point dot products with input/output selects.
• One instruction performs a load with a streaming hint.
• Six instructions simplify packed blending.
• Eight instructions expand support for packed integer MIN/MAX.
• Four instructions support floating-point round with selectable rounding mode and

precision exception override.
• Seven instructions improve data insertion and extractions from XMM registers
• Twelve instructions improve packed integer format conversions (sign and zero

extensions).
• One instruction improves SAD (sum absolute difference) generation for small

block sizes.
• One instruction aids horizontal searching operations.

Table 12-1. SIMD numeric exceptions signaled by SSE4.1

DPPS DPPD ROUNDPS
ROUNDSS

ROUNDPD
ROUNDSD

Overflow X X

Underflow X X

Invalid X X X (1) X (1)

Inexact Precision X X X (2) X (2)

Denormal X X

NOTE:
1. Invalid is signaled only if Src = SNaN.
2. Precision is ignored (regardless of the MXCSR precision mask) if if imm8[3] = ‘1’.
Vol. 1 12-15

PROGRAMMING WITH SSE3, SSSE3, SSE4 AND AESNI
• One instruction improves masked comparisons.
• One instruction adds qword packed equality comparisons.
• One instruction adds dword packing with unsigned saturation.

The seven SSE4.2 instructions improve performance in the following areas:
• String and text processing that can take advantage of single-instruction multiple-

data programming techniques.
• Application-targeted accelerator (ATA) instructions.
• A SIMD integer instruction that enhances the capability of the 128-bit integer

SIMD capability in SSE4.1.

12.10 SSE4.1 INSTRUCTION SET

12.10.1 Dword Multiply Instructions
SSE4.1 adds two dword multiply instructions that aid vectorization. They allow four
simultaneous 32 bit by 32 bit multiplies. PMULLD returns a low 32-bits of the result
and PMULDQ returns a 64-bit signed result. These represent the most common
integer multiply operation. See Table 12-2.

12.10.2 Floating-Point Dot Product Instructions
SSE4.1 adds two instructions for double-precision (for up to 2 elements; DPPD) and
single-precision dot products (for up to 4 elements; DPPS).

These dot-product instructions include source select and destination broadcast which
generally improves the flexibility. For example, a single DPPS instruction can be used
for a 2, 3, or 4 element dot product.

Table 12-2. Enhanced 32-bit SIMD Multiply Supported by SSE4.1

32 bit Integer Operation

unsigned x unsigned signed x signed

R
es

ul
t Low 32-bit (not available) PMULLD

High 32-bit (not available) (not available)

64-bit PMULUDQ* PMULDQ

NOTE:
* Available prior to SSE4.1.
12-16 Vol. 1

PROGRAMMING WITH SSE3, SSSE3, SSE4 AND AESNI
12.10.3 Streaming Load Hint Instruction
Historically, CPU read accesses of WC memory type regions have significantly lower
throughput than accesses to cacheable memory.

The streaming load instruction in SSE4.1, MOVNTDQA, provides a non-temporal hint
that can cause adjacent 16-byte items within an aligned 64-byte region of WC
memory type (a streaming line) to be fetched and held in a small set of temporary
buffers (“streaming load buffers”). Subsequent streaming loads to other aligned 16-
byte items in the same streaming line may be satisfied from the streaming load
buffer and can improve throughput.

Programmers are advised to use the following practices to improve the efficiency of
MOVNTDQA streaming loads from WC memory:
• Streaming loads must be 16-byte aligned.
• Temporally group streaming loads of the same streaming cache line for effective

use of the small number of streaming load buffers. If loads to the same streaming
line are excessively spaced apart, it may cause the streaming line to be re-
fetched from memory.

• Temporally group streaming loads from at most a few streaming lines together.
The number of streaming load buffers is small; grouping a modest number of
streams will avoid running out of streaming load buffers and the resultant re-
fetching of streaming lines from memory.

• Avoid writing to a streaming line until all 16-byte-aligned reads from the
streaming line have occurred. Reading a 16-byte item from a streaming line that
has been written, may cause the streaming line to be re-fetched.

• Avoid reading a given 16-byte item within a streaming line more than once;
repeated loads of a particular 16-byte item are likely to cause the streaming line
to be re-fetched.

• The streaming load buffers, reflecting the WC memory type characteristics, are
not required to be snooped by operations from other agents. Software should not
rely upon such coherency actions to provide any data coherency with respect to
other logical processors or bus agents. Rather, software must insure the
consistency of WC memory accesses between producers and consumers.

• Streaming loads may be weakly ordered and may appear to software to execute
out of order with respect to other memory operations. Software must explicitly
use fences (e.g. MFENCE) if it needs to preserve order among streaming loads or
between streaming loads and other memory operations.

• Streaming loads must not be used to reference memory addresses that are
mapped to I/O devices having side effects or when reads to these devices are
destructive. This is because MOVNTDQA is speculative in nature.

Example 12-1 and Example 12-2 give two sketches of the basic assembly sequences
that illustrate the principles of using MOVNTDQA in a situation of a pair of producer-
consumer accessing a WC memory region.
Vol. 1 12-17

PROGRAMMING WITH SSE3, SSSE3, SSE4 AND AESNI
Example 12-1. Sketch of MOVNTDQA Usage of a Consumer and a PCI Producer
// P0: producer is a PCI device writing into the WC space
the PCI device updates status through a UC flag, "u_dev_status" .
the protocol for "u_dev_status" : 0: produce; 1: consume; 2: all done

mov eax, $0
mov [u_dev_status], eax

producerStart:
mov eax, [u_dev_status] # poll status flag to see if consumer is requestion data
cmp eax, $0 #
jne done # I no longer need to produce
commence PCI writes to WC region..

mov eax, $1 # producer ready to notify the consumer via status flag
mov [u_dev_status], eax

now wait for consumer to signal its status
spinloop:

cmp [u_dev_status], $1 # did I get a signal from the consumer ?
jne producerStart # yes I did
jmp spinloop # check again

done:
// producer is finished at this point
12-18 Vol. 1

PROGRAMMING WITH SSE3, SSSE3, SSE4 AND AESNI
// P1: consumer check PCI status flag to consume WC data
mov eax, $0 # request to the producer
mov [u_dev_status], eax

consumerStart:
mov; eax, [u_dev_status] # reads the value of the PCI status
cmp eax, $1 # has producer written
jne consumerStart # tight loop; make it more efficient with pause, etc.
mfence # producer finished device writes to WC, ensure WC region is coherent

ntread:
movntdqa xmm0, [addr]
movntdqa xmm1, [addr + 16]
movntdqa xmm2, [addr + 32]
movntdqa xmm3, [addr + 48]
… # do any more NT reads as needed
mfence # ensure PCI device reads the correct value of [u_dev_status]

now decide whether we are done or we need the producer to produce more data
if we are done write a 2 into the variable, otherwise write a 0 into the variable

mov eax, $0/$2 # end or continue producing
mov [u_dev_status], eax

if I want to consume again I will jump back to consumerStart after storing a 0 into eax
otherwise I am done

Example 12-1. Sketch of MOVNTDQA Usage of a Consumer and a PCI Producer (Contd.)
Vol. 1 12-19

PROGRAMMING WITH SSE3, SSSE3, SSE4 AND AESNI
Example 12-2. Sketch of MOVNTDQA Usage of Producer-Consumer Threads
// P0: producer writes into the WC space
xchg is an implicitly locked operation.

producerStart:
We use a locked operation to prevent any races between the producer and the consumer
updating this variable. Assume initial value is 0

mov eax, $0
xchg eax, [signalVariable] # signalVariable is used for communicating
cmp eax, $0 # am I supposed to be writing for the consumer
jne done # I no longer need to produce
movntdq [addr1], xmm0 # producer writes the data
movntdq [addr2], xmm1 # ..

.
We will again use a locked instruction. Serves 2 purposes. Updated value signals to the consumer
and
the serialization of the lock flushes all the WC stores to memory

mov eax, $1
xchg [signalVariable], eax # signal to the consumer

For simplicity, we show a spin loop, more efficient spin loop can be done using PAUSE
spinloop:

cmp [signalVariable], $1 # did I get a signal from the consumer ?
jne producerStart # yes I did
jmp spinloop # check again

done:
// producer is finished at this point
12-20 Vol. 1

PROGRAMMING WITH SSE3, SSSE3, SSE4 AND AESNI
12.10.4 Packed Blending Instructions
SSE4.1 adds 6 instructions used for blending (BLENDPS, BLENDPD, BLENDVPS,
BLENDVPD, PBLENDVB, PBLENDW).

Blending conditionally copies a data element in a source operand to the same
element in the destination. SSE4.1 instructions improve blending operations for most
field sizes. A single new SSE4.1 instruction can generally replace a sequence of 2 to
4 operations using previous architectures.

The variable blend instructions (BLENDVPS, PBLENDVPD, PBLENDW) introduce the
use of control bits stored in an implicit XMM register (XMM0). The most significant bit
in each field (the sign bit, for 2’s complement integer or floating-point) is used as a
selector. See Table 12-3.

// P1: consumer reads from write combining space
mov eax, $0

consumerStart:
lock; xadd [signalVariable], eax # reads the value of the signal variable in
cmp eax, $1 # has producer written to signal its state?
jne consumerStart # simple loop; replace with PAUSE to make it more efficient.

read the data from the WC memory space with MOVNTDQA to achieve higher throughput
ntread: # keep reads from the same cache line as close together as possible

movntdqa xmm0, [addr]
movntdqa xmm1, [addr + 16]
movntdqa xmm2, [addr + 32]
movntdqa xmm3, [addr + 48]

since a lock prevents younger MOVNTDQA from passing it, the
above non temporal loads will happen only after the producer has signaled

… # do any more NT reads as needed

now decide whether we are done or we need the producer to produce more data
if we are done write a 2 into the variable, otherwise write a 0 into the variable

mov eax, $0/$2 # end or continue producing
xchg [signalVariable], eax

if I want to consume again I will jump back to consumerStart after storing a 0 into eax
otherwise I am done

Example 12-2. Sketch of MOVNTDQA Usage of Producer-Consumer Threads (Contd.)
Vol. 1 12-21

PROGRAMMING WITH SSE3, SSSE3, SSE4 AND AESNI
12.10.5 Packed Integer MIN/MAX Instructions
SSE4.1 adds 8 packed integer MIN and MAX instructions (PMINUW, PMINUD,
PMINSB, PMINSD; PMAXUW, PMAXUD, PMAXSB, PMAXSD).

Four 32-bit integer packed MIN and MAX instructions operate on unsigned and signed
dwords. Two instructions operate on signed bytes. Two instructions operate on
unsigned words. See Table 12-4.

Table 12-3. Blend Field Size and Control Modes Supported by SSE4.1

Instructions

Packed
Double
FP

Packed
Single
FP

Packed
QWord

Packed
DWord

Packed
Word

Packed
Byte

Blend
Control

BLENDPS X Imm8

BLENDPD X Imm8

BLENDVPS X X(1) XMM0

BLENDVPD X X(1) XMM0

PBLENDVB (2) (2) (2) X XMM0

PBLENDW X X X Imm8

NOTE:
1. Use of floating-point SIMD instructions on integer data types may incur performance penalties.
2. Byte variable blend can be used for larger sized fields by reformatting (or shuffling) the blend

control.

Table 12-4. Enhanced SIMD Integer MIN/MAX Instructions Supported by SSE4.1

Integer Width

Byte Word DWord

Integer
Format Unsigned

PMINUB*
PMAXUB*

PMINUW
PMAXUW

PMINUD
PMAXUD

Signed
PMINSB
PMAXSB

PMINSW*
PMAXSW*

PMINSD
PMAXSD

NOTE:
* Available prior to SSE4.1.
12-22 Vol. 1

PROGRAMMING WITH SSE3, SSSE3, SSE4 AND AESNI
12.10.6 Floating-Point Round Instructions with Selectable Rounding
Mode

High level languages and libraries often expose rounding operations having a variety
of numeric rounding and exception behaviors. Using SSE/SSE2/SSE3 instructions to
mitigate the rounding-mode-related problem is sometimes not straight forward.

SSE4.1 introduces four rounding instructions (ROUNDPS, ROUNDPD, ROUNDSS,
ROUNDSD) that cover scalar and packed single- and double-precision floating-point
operands. The rounding mode can be selected using an immediate from one of the
IEEE-754 modes (Nearest, -Inf, +Inf, and Truncate) without changing the current
rounding mode; or the the instruction can be forced to use the current rounding
mode. Another bit in the immediate is used to suppress inexact precision exceptions.

Rounding instructions in SSE4.1 generally permit single-instruction solutions to C99
functions ceil(), floor(), trunc(), rint(), nearbyint(). These instructions simplify the
implementations of half-way-away-from-zero rounding modes as used by C99
round() and F90’s nint().

12.10.7 Insertion and Extractions from XMM Registers
SSE4.1 adds 7 instructions (corresponding to 9 assembly instruction mnemonics)
that simplify data insertion and extraction between general-purpose register (GPR)
and XMM registers (EXTRACTPS, INSERTPS, PINSRB, PINSRD, PINSRQ, PEXTRB,
PEXTRW, PEXTRD, and PEXTRQ). When accessing memory, no alignment is required
for any of these instructions (unless alignment checking is enabled).

EXTRACTPS extracts a single-precision floating-point value from any dword offset in
an XMM register and stores the result to memory or a general-purpose register.
INSERTPS inserts a single floating-point value from either a 32-bit memory location
or from specified element in an XMM register to a selected element in the destination
XMM register. In addition, INSERTPS allows the insertion of +0.0f into any destina-
tion elements using a mask.

PINSRB, PINSRD, and PINSRQ insert byte, dword, or qword integer values from a
register or memory into an XMM register. Insertion of integer word values were
already supported by SSE2 (PINSRW).

PEXTRB, PEXTRW, PEXTRD, and PEXTRQ extract byte, word, dword, and qword from
an XMM register and insert the values into a general-purpose register or memory.

12.10.8 Packed Integer Format Conversions
A common type of operation on packed integers is the conversion by zero- or sign-
extension of packed integers into wider data types. SSE4.1 adds 12 instructions that
convert from a smaller packed integer type to a larger integer type (PMOVSXBW,
PMOVZXBW, PMOVSXBD, PMOVZXBD, PMOVSXWD, PMOVZXWD, PMOVSXBQ,
PMOVZXBQ, PMOVSXWQ, PMOVZXWQ, PMOVSXDQ, PMOVZXDQ).
Vol. 1 12-23

PROGRAMMING WITH SSE3, SSSE3, SSE4 AND AESNI
The source operand is from either an XMM register or memory; the destination is an
XMM register. See Table 12-5.

When accessing memory, no alignment is required for any of the instructions unless
alignment checking is enabled. In which case, all conversions must be aligned to the
width of the memory reference. The number of elements converted (and width of
memory reference) is illustrated in Table 12-6. The alignment requirement is shown
in parenthesis.

12.10.9 Improved Sums of Absolute Differences (SAD) for 4-Byte
Blocks

SSE4.1 adds an instruction (MPSADBW) that performs eight 4-byte wide SAD opera-
tions per instruction to produce eight results. Compared to PSADBW, MPSADBW
operates on smaller chunks (4-byte instead of 8-byte chunks); this makes the
instruction better suited to video coding standards such as VC.1 and H.264.
MPSADBW performs four times the number of absolute difference operations than
that of PSADBW (per instruction). This can improve performance for dense motion
searches.

MPSADBW uses a 4-byte wide field from a source operand; the offset of the 4-byte
field within the 128-bit source operand is specified by two immediate control bits.
MPSADBW produces eight 16-bit SAD results. Each 16-bit SAD result is formed from

Table 12-5. New SIMD Integer conversions supported by SSE4.1

Source Type

Byte Word Dword

D
es

ti
na

ti
on

Ty
pe

Signed Word
Unsigned Word

PMOVSXBW
PMOVZXBW

Signed Dword
Unsigned Dword

PMOVSXBD
PMOVZXBD

PMOVSXWD
PMOVZXWD

Signed Qword
Unsigned Qword

PMOVSXBQ
PMOVZXBQ

PMOVSXWQ
PMOVZXWQ

PMOVSXDQ
PMOVZXDQ

Table 12-6. New SIMD Integer Conversions Supported by SSE4.1

Source Type

Byte Word Dword

D
es

ti
na

ti
on

Ty
pe

Word 8 (64 bits)

Dword 4 (32 bits) 4 (64 bits)

Qword 2 (16 bits) 2 (32 bits) 2 (64 bits)
12-24 Vol. 1

PROGRAMMING WITH SSE3, SSSE3, SSE4 AND AESNI
overlapping pairs of 4 bytes in the destination with the 4-byte field from the source
operand. MPSADBW uses eleven consecutive bytes in the destination operand, its
offset is specified by a control bit in the immediate byte (i.e. the offset can be from
byte 0 or from byte 4). Figure 12-4 illustrates the operation of MPSADBW. MPSADBW
can simplify coding of dense motion estimation by providing source and destination
offset control, higher throughput of SAD operations, and the smaller chunk size.

12.10.10 Horizontal Search
SSE4.1 adds a search instruction (PHMINPOSUW) that finds the value and location of
the minimum unsigned word from one of 8 horizontally packed unsigned words. The
resulting value and location (offset within the source) are packed into the low dword
of the destination XMM register.

Rapid search is often a significant component of motion estimation. MPSADBW and
PHMINPOSUW can be used together to improve video encode.

12.10.11 Packed Test
The packed test instruction PTEST is similar to a 128-bit equivalent to the legacy
instruction TEST. With PTEST, the source argument is typically used like a bit mask.

PTEST performs a logical AND between the destination with this mask and sets the ZF
flag if the result is zero. The CF flag (zero for TEST) is set if the inverted mask AND’d
with the destination is all zero. Because the destination is not modified, PTEST
simplifies branching operations (such as branching on signs of packed floating-point
numbers, or branching on zero fields).

Figure 12-4. MPSADBW Operation

Abs. Diff.

Sum

Imm[1:0]*32

Imm[2]*32
Source

Destination

0127 16

0127 96 64
Vol. 1 12-25

PROGRAMMING WITH SSE3, SSSE3, SSE4 AND AESNI
12.10.12 Packed Qword Equality Comparisons
SSE4.1 adds a 128-bit packed qword equality test. The new instruction (PCMPEQQ)
is identical to PCMPEQD, but has qword granularity.

12.10.13 Dword Packing With Unsigned Saturation
SSE4.1 adds a new instruction PACKUSDW to complete the set of small integer pack
instructions in the family of SIMD instruction extensions. PACKUSDW packs dword to
word with unsigned saturation. See Table 12-7 for the complete set of packing
instructions for small integers.

12.11 SSE4.2 INSTRUCTION SET
Five of the seven SSE4.2 instructions can use an XMM register as a source or desti-
nation. These include four text/string processing instructions and one packed quad-
word compare SIMD instruction. Programming these five SSE4.2 instructions is
similar to programming 128-bit Integer SIMD in SSE2/SSSE3. SSE4.2 does not
provide any 64-bit integer SIMD instructions.

The remaining two SSE4.2 instructions uses general-purpose registers to perform
accelerated processing functions in specific application areas.

12.11.1 String and Text Processing Instructions
String and text processing instructions in SSE4.2 allocates 4 opcodes to provide a
rich set of string and text processing capabilities that traditionally required many
more opcodes. These 4 instructions use XMM registers to process string or text
elements of up to 128-bits (16 bytes or 8 words). Each instruction uses an immediate
byte to support a rich set of programmable controls. A string-processing SSE4.2
instruction returns the result of processing each pair of string elements using either
an index or a mask.

The capabilities of the string/text processing instructions include:

Table 12-7. Enhanced SIMD Pack support by SSE4.1

Pack Type

DWord -> word Word -> Byte

Sa
tu

ra
ti

on

Ty
pe

Unsigned PACKUSDW (new!) PACKUSWB

Signed PACKSSDW PACKSSWB
12-26 Vol. 1

PROGRAMMING WITH SSE3, SSSE3, SSE4 AND AESNI
• Handling string/text fragments consisting of bytes or words, either signed or
unsigned

• Support for partial string or fragments less than 16 bytes in length, using either
explicit length or implicit null-termination

• Four types of string compare operations on word/byte elements
• Up to 256 compare operations performed in a single instruction on all string/text

element pairs
• Built-in aggregation of intermediate results from comparisons
• Programmable control of processing on intermediate results
• Programmable control of output formats in terms of an index or mask
• Bi-directional support for the index format
• Support for two mask formats: bit or natural element width
• Not requiring 16-byte alignment for memory operand

The four SSE4.2 instructions that process text/string fragments are:
• PCMPESTRI — Packed compare explicit-length strings, return index in ECX/RCX
• PCMPESTRM — Packed compare explicit-length strings, return mask in XMM0
• PCMPISTRI — Packed compare implicit-length strings, return index in ECX/RCX
• PCMPISTRM — Packed compare implicit-length strings, return mask in XMM0

All four require the use of an immediate byte to control operation. The two source
operands can be XMM registers or a combination of XMM register and memory
address. The immediate byte provides programmable control with the following
attributes:
• Input data format
• Compare operation mode
• Intermediate result processing
• Output selection

Depending on the output format associated with the instruction, the text/string
processing instructions implicitly uses either a general-purpose register (ECX/RCX)
or an XMM register (XMM0) to return the final result.

Two of the four text-string processing instructions specify string length explicitly.
They use two general-purpose registers (EDX, EAX) to specify the number of valid
data elements (either word or byte) in the source operands. The other two instruc-
tions specify valid string elements using null termination. A data element is consid-
ered valid only if it has a lower index than the least significant null data element.

12.11.1.1 Memory Operand Alignment
The text and string processing instructions in SSE4.2 do not perform alignment
checking on memory operands. This is different from most other 128-bit SIMD
Vol. 1 12-27

PROGRAMMING WITH SSE3, SSSE3, SSE4 AND AESNI
instructions accessing the XMM registers. The absence of an alignment check for
these four instructions does not imply any modification to the existing definitions of
other instructions.

12.11.2 Packed Comparison SIMD Integer Instruction
SSE4.2 also provides a 128-bit integer SIMD instruction PCMPGTQ that performs
logical compare of greater-than on packed integer quadwords.

12.11.3 Application-Targeted Accelerator Instructions
There are two application-targeted accelerator instructions in SSE4.2:
• CRC32 — Provides hardware acceleration to calculate cyclic redundancy checks

for fast and efficient implementation of data integrity protocols.
• POPCNT — Accelerates software performance in the searching of bit patterns.

12.12 WRITING APPLICATIONS WITH SSE4 EXTENSIONS

12.12.1 Guidelines for Using SSE4 Extensions
The following guidelines describe how to maximize the benefits of using SSE4 exten-
sions:
• Check that the processor supports SSE4 extensions.
• Ensure that your operating system supports SSE/SSE2/SSE3/SSSE3 extensions.

(Operating system support for the SSE extensions implies sufficient support for
SSE2, SSE3, SSSE3, and SSE4.)

• Employ the optimization and scheduling techniques described in the Intel® 64
and IA-32 Architectures Optimization Reference Manual (see Section 1.4,
“Related Literature”).

12.12.2 Checking for SSE4.1 Support
Before an application attempts to use SSE4.1 instructions, the application should
follow the steps illustrated in Section 11.6.2, “Checking for SSE/SSE2 Support.”
Next, use the additional step provided below:

Check that the processor supports SSE4.1 (if CPUID.01H:ECX.SSE4_1[bit 19] = 1),
SSE3 (if CPUID.01H:ECX.SSE3[bit 0] = 1), and SSSE3 (if CPUID.01H:ECX.SSSE3[bit
9] = 1).
12-28 Vol. 1

PROGRAMMING WITH SSE3, SSSE3, SSE4 AND AESNI
12.12.3 Checking for SSE4.2 Support
Before an application attempts to use the following SSE4.2 instructions:
PCMPESTRI/PCMPESTRM/PCMPISTRI/PCMPISTRM, PCMPGTQ;the application should
follow the steps illustrated in Section 11.6.2, “Checking for SSE/SSE2 Support.”
Next, use the additional step provided below:

Check that the processor supports SSE4.2 (if CPUID.01H:ECX.SSE4_2[bit 20] = 1),
SSE4.1 (if CPUID.01H:ECX.SSE4_1[bit 19] = 1), and SSSE3 (if
CPUID.01H:ECX.SSSE3[bit 9] = 1).

Before an application attempts to use the CRC32 instruction, it must check that the
processor supports SSE4.2 (if CPUID.01H:ECX.SSE4_2[bit 20] = 1).

Before an application attempts to use the POPCNT instruction, it must check that the
processor supports SSE4.2 (if CPUID.01H:ECX.SSE4_2[bit 20] = 1) and POPCNT (if
CPUID.01H:ECX.POPCNT[bit 23] = 1).

12.13 AESNI OVERVIEW
The AESNI extension provides six instructions to accelerate symmetric block encryp-
tion/decryption of 128-bit data blocks using the Advanced Encryption Standard
(AES) specified by the NIST publication FIPS 197. Specifically, two instructions
(AESENC, AESENCLAST) target the AES encryption rounds, two instructions
(AESDEC, AESDECLAST) target AES decryption rounds using the Equivalent Inverse
Cipher. One instruction (AESIMC) targets the Inverse MixColumn transformation
primitive and one instruction (AESKEYGEN) targets generation of round keys from
the cipher key for the AES encryption/decryption rounds.

AES supports encryption/decryption using cipher key lengths of 128, 192, and 256
bits by processing the data block in 10, 12, 14 rounds of predefined transformations.
Figure 12-5 depicts the cryptographic processing of a block of 128-bit plain text into
cipher text.

Figure 12-5. AES State Flow

Plain text AES State

RK(0)

XOR Rounds 2.. n-2

Round 1 Last

RK(1) RK(n-1)

AES State AES State Cipher text

AES-128: n = 10
AES-192: n = 12
AES-256: n = 14

Round
n-1
Vol. 1 12-29

PROGRAMMING WITH SSE3, SSSE3, SSE4 AND AESNI
The predefined AES transformation primitives are described in the next few sections,
they are also referenced in the operation flow of instruction reference page of these
instructions.

12.13.1 Little-Endian Architecture and Big-Endian Specification (FIPS
197)

FIPS 197 document defines the Advanced Encryption Standard (AES) and includes a
set of test vectors for testing all of the steps in the algorithm, and can be used for
testing and debugging.
The following observation is important for using the AES instructions offered in Intel
64 Architecture: FIPS 197 text convention is to write hex strings with the low-
memory byte on the left and the high-memory byte on the right. Intel’s convention is
the reverse. It is similar to the difference between Big Endian and Little Endian nota-
tions.
In other words, a 128 bits vector in the FIPS document, when read from left to right,
is encoded as [7:0, 15:8, 23:16, 31:24, …127:120]. Note that inside the byte, the
encoding is [7:0], so the first bit from the left is the most significant bit. In practice,
the test vectors are written in hexadecimal notation, where pairs of hexadecimal
digits define the different bytes. To translate the FIPS 197 notation to an Intel 64
architecture compatible (“Little Endian”) format, each test vector needs to be byte-
reflected to [127:120,… 31:24, 23:16, 15:8, 7:0].
Example A:
FIPS Test vector: 0x000102030405060708090a0b0c0d0e0f
Intel AES Hardware: 0x0f0e0d0c0b0a09080706050403020100

It should be pointed out that the only thing at issue is a textual convention, and
programmers do not need to perform byte-reversal in their code, when using the AES
instructions.

12.13.1.1 AES Data Structure in Intel 64 Architecture
The AES instructions that are defined in this document operate on one or on two 128
bits source operands: State and Round Key. From the architectural point of view, the
state is input in an xmm register and the Round key is input either in an xmm register
or a 128-bit memory location.
In AES algorithm, the state (128 bits) can be viewed as 4 32-bit doublewords
(“Word”s in AES terminology): X3, X2, X1, X0.
The state may also be viewed as a set of 16 bytes. The 16 bytes can also be viewed
as a 4x4 matrix of bytes where S(i, j) with i, j = 0, 1, 2, 3 compose the 32-bit “word”s
as follows:
X0 = S (3, 0) S (2, 0) S (1, 0) S (0, 0)
12-30 Vol. 1

PROGRAMMING WITH SSE3, SSSE3, SSE4 AND AESNI
X1 = S (3, 1) S (2, 1) S (1, 1) S (0, 1)
X2 = S (3, 2) S (2, 2) S (1, 2) S (0, 2)
X3 = S (3, 3) S (2, 3) S (1, 3) S (0, 3)
The following tables, Table 12-8 through Table 12-11, illustrate various representa-
tions of a 128-bit state.

Example:
FIPS vector: d4 bf 5d 30 e0 b4 52 ae b8 41 11 f1 1e 27 98 e5
This vector has the “least significant” byte d4 and the significant byte e5 (written in
Big Endian format in the FIPS document). When it is translated to IA notations, the
encoding is:

Table 12-8. Byte and 32-bit Word Representation of a 128-bit State

Byte # 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bit
Position

127
-
120

119
-
112

111
-
103

103
-
96

95
-88

87
-80

79
-72

71
-64

63
-56

55
-48

47
-40

39
-32

31
-24

23
-16

15
-8

7 -
0

127 - 96 95 - 64 64 - 32 31 - 0

State Word X3 X2 X1 X0

State Byte P O N M L K J I H G F E D C B A

Table 12-9. Matrix Representation of a 128-bit State

A E I M S(0, 0) S(0, 1) S(0, 2) S(0, 3)

B F J N S(1, 0) S(1, 1) S(1, 2) S(1, 3)

C G K O S(2, 0) S(2, 1) S(2, 2) S(2, 3)

D H L P S(3, 0) S(3, 1) S(3, 2) S(3, 3)

Table 12-10. Little Endian Representation of a 128-bit State

Byte # 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

State Byte P O N M L K J I H G F E D C B A

State Value e5 98 27 1e f1 11 41 b8 ae 52 b4 e0 30 5d bf d4

Table 12-11. Little Endian Representation of a 4x4 Byte Matrix

A E I M d4 e0 b8 1e

B F J N bf b4 41 27
Vol. 1 12-31

PROGRAMMING WITH SSE3, SSSE3, SSE4 AND AESNI
12.13.2 AES Transformations and Functions
The following functions and transformations are used in the algorithmic descriptions
of AES instruction extensions AESDEC, AESDECLAST, AESENC, AESENCLAST,
AESIMC, AESKEYGENASSIST.
Note that these transformations are expressed here in a Little Endian format (and not
as in the FIPS 197 document).
• MixColumns(): A byte-oriented 4x4 matrix transformation on the matrix repre-

sentation of a 128-bit AES state. A FIPS-197 defined 4x4 matrix is multiplied to
each 4x1 column vector of the AES state. The columns are considered
polynomials with coefficients in the Finite Field that is used in the definition of
FIPS 197, the operations (“multiplication” and “addition”) are in that Finite Field,
and the polynomials are reduced modulo x4+1.
The MixColumns() transformation defines the relationship between each byte of
the result state, represented as S’(i, j) of a 4x4 matrix (see Section 12.13.1), as
a function of input state bytes, S(i, j), as follows
S’(0, j) FF_MUL(02H, S(0, j)) XOR FF_MUL(03H, S(1, j)) XOR S(2, j) XOR
S(3, j)
S’(1, j) S(0, j) XOR FF_MUL(02H, S(1, j)) XOR FF_MUL(03H, S(2, j)) XOR
S(3, j)
S’(2, j) S(0, j) XOR S(1, j) XOR FF_MUL(02H, S(2, j)) XOR FF_MUL(03H,
S(3, j))
S’(3, j) FF_MUL(03H, S(0, j)) XOR S(1, j) XOR S(2, j) XOR FF_MUL(02H,
S(3, j))
where j = 0, 1, 2, 3. FF_MUL(Byte1, Byte2) denotes the result of multiplying
two elements (represented by Byte1 and byte2) in the Finite Field represen-
tation that defines AES. The result of produced bye FF_MUL(Byte1, Byte2) is an
element in the Finite Field (represented as a byte). A Finite Field is a field with a
finite number of elements, and when this number can be represented as a
power of 2 (2n), its elements can be represented as the set of 2n binary strings
of length n. AES uses a finite field with n=8 (having 256 elements). With this
representation, “addition” of two elements in that field is a bit-wise XOR of their
binary-string representation, producing another element in the field. Multipli-
cation of two elements in that field is defined using an irreducible polynomial
(for AES, this polynomial is m(x) = x8 + x4 + x3 + x + 1). In this Finite Field
representation, the bit value of bit position k of a byte represents the coefficient
of a polynomial of order k, e.g., 1010_1101B (ADH) is represented by the
polynomial (x7 + x5 + x3 + x2 + 1). The byte value result of multiplication of
two elements is obtained by a carry-less multiplication of the two corresponding

C G K O 5d 52 11 98

D H L P 30 ae f1 e5

Table 12-11. Little Endian Representation of a 4x4 Byte Matrix
12-32 Vol. 1

PROGRAMMING WITH SSE3, SSSE3, SSE4 AND AESNI
polynomials, followed by reduction modulo the polynomial, where the remainder
is calculated using operations defined in the field. For example, FF_MUL(57H,
83H) = C1H, because the carry-less polynomial multiplication of the
polynomials represented by 57H and 83H produces (x13 + x11 + x9 + x8 + x6 +
x5 + x4 + x3 + 1), and the remainder modulo m(x) is (x7 + x6 + 1).

• RotWord(): performs a byte-wise cyclic permutation (rotate right in little-endian
byte order) on a 32-bit AES word.
The output word X’[j] of RotWord(X[j]) where X[j] represent the four bytes of
column j, S(i, j), in descending order X[j] = (S(3, j), S(2, j), S(1, j), S(0, j));
X’[j] = (S’(3, j), S’(2, j), S’(1, j), S’(0, j)) (S(0, j), S(3, j), S(2, j), S(1, j))

• ShiftRows(): A byte-oriented matrix transformation that processes the matrix
representation of a 16-byte AES state by cyclically shifting the last three rows of
the state by different offset to the left, see Table 12-12.

• SubBytes(): A byte-oriented transformation that processes the 128-bit AES state
by applying a non-linear substitution table (S-BOX) on each byte of the state.
The SubBytes() function defines the relationship between each byte of the
result state S’(i, j) as a function of input state byte S(i, j), by

S’(i, j) S-Box (S(i, j)[7:4], S(i, j)[3:0])

where S-BOX(S[7:4], S[3:0]) represents a look-up operation on a 16x16 table
to return a byte value, see Table 12-13.

Table 12-12. The ShiftRows Transformation

Matrix Representation of Input State Output of ShiftRows

A E I M A E I M

B F J N F J N B

C G K O K O C G

D H L P P D H L
Vol. 1 12-33

PROGRAMMING WITH SSE3, SSSE3, SSE4 AND AESNI
• SubWord(): produces an output AES word (four bytes) from the four bytes of an
input word using a non-linear substitution table (S-BOX).
X’[j] = (S’(3, j), S’(2, j), S’(1, j), S’(0, j)) (S-Box (S(3, j)), S-Box(S(2, j)),
S-Box(S(1, j)), S-Box(S(0, j)))

• InvMixColumns(): The inverse transformation of MixColumns().
The InvMixColumns() transformation defines the relationship between each byte
of the result state S’(i, j) as a function of input state bytes, S(i, j), by
S’(0, j) FF_MUL(0eH, S(0, j)) XOR FF_MUL(0bH, S(1, j)) XOR FF_MUL(0dH,
S(2, j)) XOR FF_MUL(09H, S(3, j))
S’(1, j) FF_MUL(09H, S(0, j)) XOR FF_MUL(0eH, S(1, j)) XOR FF_MUL(0bH,
S(2, j)) XOR FF_MUL(0dH, S(3, j))
S’(2, j) FF_MUL(0dH, S(0, j)) XOR FF_MUL(09H, S(1, j)) XOR FF_MUL(0eH,
S(2, j)) XOR FF_MUL(0bH, S(3, j))

Table 12-13. Look-up Table Associated with S-Box Transformation

S[3:0]

0 1 2 3 4 5 6 7 8 9 a b c d e f

S[7:4]

0 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76

1 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0

2 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15

3 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75

4 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84

5 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf

6 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8

7 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2

8 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73

9 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db

a e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79

b e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08

c ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a

d 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e

e e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df

f 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16
12-34 Vol. 1

PROGRAMMING WITH SSE3, SSSE3, SSE4 AND AESNI
S’(3, j) FF_MUL(0bH, S(0, j)) XOR FF_MUL(0dH, S(1, j)) XOR FF_MUL(09H,
S(2, j)) XOR FF_MUL(0eH, S(3, j)), where j = 0, 1, 2, 3.

• InvShiftRows(): The inverse transformation of InvShiftRows(). The
InvShiftRows() transforms the matrix representation of a 16-byte AES state by
cyclically shifting the last three rows of the state by different offset to the right,
see Table 12-14.

• InvSubBytes(): The inverse transformation of SubBytes().
The InvSubBytes() transformation defines the relationship between each byte of
the result state S’(i, j) as a function of input state byte S(i, j), by

S’(i, j) InvS-Box (S(i, j)[7:4], S(i, j)[3:0])

where InvS-BOX(S[7:4], S[3:0]) represents a look-up operation on a 16x16
table to return a byte value, see Table 12-15.

Table 12-14. The InvShiftRows Transformation

Matrix Representation of Input State Output of ShiftRows

A E I M A E I M

B F J N N B F J

C G K O K O C G

D H L P H L P D
Vol. 1 12-35

PROGRAMMING WITH SSE3, SSSE3, SSE4 AND AESNI
12.13.3 PCLMULQDQ
The PCLMULQDQ instruction performs carry-less multiplication of two 64-bit data
into a 128-bit result. Carry-less multiplication of two 128-bit data into a 256-bit
result can use PCLMULQDQ as building blocks.

Carry-less multiplication is a component of many cryptographic systems. It is an
important piece of implementing Galois Counter Mode (GCM) operation of block
ciphers. GCM operation can be used in conjunction with AES algorithms to add
authentication capability. GCM usage models also include IPsec, storage standard,
and security protocols over fiber channel. Additionally, PCLMULQDQ can be used in
calculations of hash functions and CRC using arbitrary polynomials.

Table 12-15. Look-up Table Associated with InvS-Box Transformation

S[3:0]

0 1 2 3 4 5 6 7 8 9 a b c d e f

S[7:4]

0 52 09 6a d5 30 36 a5 38 bf 40 a3 9e 81 f3 d7 fb

1 7c e3 39 82 9b 2f ff 87 34 8e 43 44 c4 de e9 cb

2 54 7b 94 32 a6 c2 23 3d ee 4c 95 0b 42 fa c3 4e

3 08 2e a1 66 28 d9 24 b2 76 5b a2 49 6d 8b d1 25

4 72 f8 f6 64 86 68 98 16 d4 a4 5c cc 5d 65 b6 92

5 6c 70 48 50 fd ed b9 da 5e 15 46 57 a7 8d 9d 84

6 90 d8 ab 00 8c bc d3 0a f7 e4 58 05 b8 b3 45 06

7 d0 2c 1e 8f ca 3f 0f 02 c1 af bd 03 01 13 8a 6b

8 3a 91 11 41 4f 67 dc ea 97 f2 cf ce f0 b4 e6 73

9 96 ac 74 22 e7 ad 35 85 e2 f9 37 e8 1c 75 df 6e

a 47 f1 1a 71 1d 29 c5 89 6f b7 62 0e aa 18 be 1b

b fc 56 3e 4b c6 d2 79 20 9a db c0 fe 78 cd 5a f4

c 1f dd a8 33 88 07 c7 31 b1 12 10 59 27 80 ec 5f

d 60 51 7f a9 19 b5 4a 0d 2d e5 7a 9f 93 c9 9c ef

e a0 e0 3b 4d ae 2a f5 b0 c8 eb bb 3c 83 53 99 61

f 17 2b 04 7e ba 77 d6 26 e1 69 14 63 55 21 0c 7d
12-36 Vol. 1

PROGRAMMING WITH SSE3, SSSE3, SSE4 AND AESNI
12.13.4 Checking for AESNI Support
Before an application attempts to use AESNI instructions or PCLMULQDQ, the appli-
cation should follow the steps illustrated in Section 11.6.2, “Checking for SSE/SSE2
Support.” Next, use the additional step provided below:

Check that the processor supports AESNI (if CPUID.01H:ECX.AESNI[bit 25] = 1);
Check that the processor supports PCLMULQDQ (if CPUID.01H:ECX.PCLMULQDQ[bit
1] = 1)
Vol. 1 12-37

CHAPTER 13
PROGRAMMING WITH AVX

Intel® Advanced Vector Extensions (AVX) introduces 256-bit vector processing
capability. The Intel AVX instruction set extends 128-bit SIMD instruction sets by
employing a new instruction encoding scheme via a vector extension prefix (VEX).
Intel AVX also offers several enhanced features beyond those available in prior
generations of 128-bit SIMD extensions. This chapter summarizes the key features
of Intel AVX.

13.1 INTEL AVX OVERVIEW
Intel AVX introduces the following architectural enhancements:
• Support for 256-bit wide vectors with the YMM vector register set.
• 256-bit floating-point instruction set enhancement with up to 2X performance

gain relative to 128-bit Streaming SIMD extensions.
• Enhancement of legacy 128-bit SIMD instruction extensions to support three-

operand syntax and to simplify compiler vectorization of high-level language
expressions.

• VEX prefix-encoded instruction syntax support for generalized three-operand
syntax to improve instruction programming flexibility and efficient encoding of
new instruction extensions.

• Most VEX-encoded 128-bit and 256-bit AVX instructions (with both load and
computational operation semantics) are not restricted to 16-byte or 32-byte
memory alignment.

• Support flexible deployment of 256-bit AVX code, 128-bit AVX code, legacy 128-
bit code and scalar code.

With the exception of SIMD instructions operating on MMX registers, almost all
legacy 128-bit SIMD instructions have AVX equivalents that support three operand
syntax. 256-bit AVX instructions employ three-operand syntax and some with 4-
operand syntax.

13.1.1 256-Bit Wide SIMD Register Support
Intel AVX introduces support for 256-bit wide SIMD registers (YMM0-YMM7 in oper-
ating modes that are 32-bit or less, YMM0-YMM15 in 64-bit mode). The lower 128-
bits of the YMM registers are aliased to the respective 128-bit XMM registers.
Vol. 1 13-1

PROGRAMMING WITH AVX
The lower 128 bits of a YMM register is aliased to the corresponding XMM register.
Legacy SSE instructions (i.e. SIMD instructions operating on XMM state but not using
the VEX prefix, also referred to non-VEX encoded SIMD instructions) will not access
the upper bits beyond bit 128 of the YMM registers. AVX instructions with a VEX
prefix and vector length of 128-bits zeroes the upper bits (above bit 128) of the YMM
register.

13.1.2 Instruction Syntax Enhancements
Intel AVX employs an instruction encoding scheme using a new prefix (known as
“VEX” prefix). Instruction encoding using the VEX prefix can directly encode a
register operand within the VEX prefix. This support two new instruction syntax in
Intel 64 architecture:
• A non-destructive operand (in a three-operand instruction syntax): The non-

destructive source reduces the number of registers, register-register copies and
explicit load operations required in typical SSE loops, reduces code size, and
improves micro-fusion opportunities.

• A third source operand (in a four-operand instruction syntax) via the upper 4 bits
in an 8-bit immediate field. Support for the third source operand is defined for
selected instructions (e.g. VBLENDVPD, VBLENDVPS, PBLENDVB).

Two-operand instruction syntax previously expressed in legacy SSE instruction has

ADDPS xmm1, xmm2/m128

128-bit AVX equivalent can be expressed in three-operand syntax as

XMM0YMM0

XMM1YMM1

. . .
XMM15YMM15

Bit#
0127128255
13-2 Vol. 1

PROGRAMMING WITH AVX
VADDPS xmm1, xmm2, xmm3/m128

In four-operand syntax, the extra register operand is encoded in the immediate byte.
Note SIMD instructions supporting three-operand syntax but processing only 128-
bits of data are considered part of the 256-bit SIMD instruction set extensions of
AVX, because bits 255:128 of the destination register are zeroed by the processor.

13.1.3 VEX Prefix Instruction Encoding Support
Intel AVX introduces a new prefix, referred to as VEX, in the Intel 64 and IA-32
instruction encoding format. Instruction encoding using the VEX prefix provides the
following capabilities:
• Direct encoding of a register operand within VEX. This provides instruction syntax

support for non-destructive source operand.
• Efficient encoding of instruction syntax operating on 128-bit and 256-bit register

sets.
• Compaction of REX prefix functionality: The equivalent functionality of the REX

prefix is encoded within VEX.
• Compaction of SIMD prefix functionality and escape byte encoding: The function-

ality of SIMD prefix (66H, F2H, F3H) on opcode is equivalent to an opcode
extension field to introduce new processing primitives. This functionality is
replaced by a more compact representation of opcode extension within the VEX
prefix. Similarly, the functionality of the escape opcode byte (0FH) and two-byte
escape (0F38H, 0F3AH) are also compacted within the VEX prefix encoding.

• Most VEX-encoded SIMD numeric and data processing instruction semantics with
memory operand have relaxed memory alignment requirements than instruc-
tions encoded using SIMD prefixes (see Section 13.3).

VEX prefix encoding applies to SIMD instructions operating on YMM registers, XMM
registers, and in some cases with a general-purpose register as one of the operand.
VEX prefix is not supported for instructions operating on MMX or x87 registers.
Details of VEX prefix and instruction encoding are discussed in Chapter 2, “Instruc-
tion Format,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A.

13.2 FUNCTIONAL OVERVIEW
Intel AVX provide comprehensive functional improvements over previous genera-
tions of SIMD instruction extensions. The functional improvements include:
• 256-bit floating-point arithmetic primitives: AVX enhances existing 128-bit

floating-point arithmetic instructions with 256-bit capabilities for floating-point
processing.
Vol. 1 13-3

PROGRAMMING WITH AVX
• Enhancements for flexible SIMD data movements: AVX provides a number of
new data movement primitives to enable efficient SIMD programming in relation
to loading non-unit-strided data into SIMD registers, intra-register SIMD data
manipulation, conditional expression and branch handling, etc. Enhancements
for SIMD data movement primitives cover 256-bit and 128-bit vector floating-
point data, and across 128-bit integer SIMD data processing using VEX-encoded
instructions.

Table 13-1. Promoted SSE/SSE2/SSE3/SSSE3/SSE4 Instructions
VEX.256
Encoding

VEX.128
Encoding

Group Instruction If No, Reason?

yes yes YY 0F 1X MOVUPS

no yes MOVSS scalar

yes yes MOVUPD

no yes MOVSD scalar

no yes MOVLPS Note 1

no yes MOVLPD Note 1

no yes MOVLHPS Redundant with VPERMILPS

yes yes MOVDDUP

yes yes MOVSLDUP

yes yes UNPCKLPS

yes yes UNPCKLPD

yes yes UNPCKHPS

yes yes UNPCKHPD

no yes MOVHPS Note 1

no yes MOVHPD Note 1

no yes MOVHLPS Redundant with VPERMILPS

yes yes MOVAPS

yes yes MOVSHDUP

yes yes MOVAPD

no no CVTPI2PS MMX

no yes CVTSI2SS scalar

no no CVTPI2PD MMX

no yes CVTSI2SD scalar

no yes MOVNTPS

no yes MOVNTPD

no no CVTTPS2PI MMX

no yes CVTTSS2SI scalar

no no CVTTPD2PI MMX
13-4 Vol. 1

PROGRAMMING WITH AVX
no yes CVTTSD2SI scalar

no no CVTPS2PI MMX

no yes CVTSS2SI scalar

no no CVTPD2PI MMX

no yes CVTSD2SI scalar

no yes UCOMISS scalar

no yes UCOMISD scalar

no yes COMISS scalar

no yes COMISD scalar

yes yes YY 0F 5X MOVMSKPS

yes yes MOVMSKPD

yes yes SQRTPS

no yes SQRTSS scalar

yes yes SQRTPD

no yes SQRTSD scalar

yes yes RSQRTPS

no yes RSQRTSS scalar

yes yes RCPPS

no yes RCPSS scalar

yes yes ANDPS

yes yes ANDPD

yes yes ANDNPS

yes yes ANDNPD

yes yes ORPS

yes yes ORPD

yes yes XORPS

yes yes XORPD

yes yes ADDPS

no yes ADDSS scalar

yes yes ADDPD

no yes ADDSD scalar

yes yes MULPS

no yes MULSS scalar

yes yes MULPD

no yes MULSD scalar

VEX.256
Encoding

VEX.128
Encoding Group Instruction If No, Reason?
Vol. 1 13-5

PROGRAMMING WITH AVX
yes yes CVTPS2PD

no yes CVTSS2SD scalar

yes yes CVTPD2PS

no yes CVTSD2SS scalar

yes yes CVTDQ2PS

yes yes CVTPS2DQ

yes yes CVTTPS2DQ

yes yes SUBPS

no yes SUBSS scalar

yes yes SUBPD

no yes SUBSD scalar

yes yes MINPS

no yes MINSS scalar

yes yes MINPD

no yes MINSD scalar

yes yes DIVPS

no yes DIVSS scalar

yes yes DIVPD

no yes DIVSD scalar

yes yes MAXPS

no yes MAXSS scalar

yes yes MAXPD

no yes MAXSD scalar

no yes YY 0F 6X PUNPCKLBW VI

no yes PUNPCKLWD VI

no yes PUNPCKLDQ VI

no yes PACKSSWB VI

no yes PCMPGTB VI

no yes PCMPGTW VI

no yes PCMPGTD VI

no yes PACKUSWB VI

no yes PUNPCKHBW VI

no yes PUNPCKHWD VI

no yes PUNPCKHDQ VI

no yes PACKSSDW VI

VEX.256
Encoding

VEX.128
Encoding Group Instruction If No, Reason?
13-6 Vol. 1

PROGRAMMING WITH AVX
no yes PUNPCKLQDQ VI

no yes PUNPCKHQDQ VI

no yes MOVD scalar

no yes MOVQ scalar

yes yes MOVDQA

yes yes MOVDQU

no yes YY 0F 7X PSHUFD VI

no yes PSHUFHW VI

no yes PSHUFLW VI

no yes PCMPEQB VI

no yes PCMPEQW VI

no yes PCMPEQD VI

yes yes HADDPD

yes yes HADDPS

yes yes HSUBPD

yes yes HSUBPS

no yes MOVD VI

no yes MOVQ VI

yes yes MOVDQA

yes yes MOVDQU

no yes YY 0F AX LDMXCSR

no yes STMXCSR

yes yes YY 0F CX CMPPS

no yes CMPSS scalar

yes yes CMPPD

no yes CMPSD scalar

no yes PINSRW VI

no yes PEXTRW VI

yes yes SHUFPS

yes yes SHUFPD

yes yes YY 0F DX ADDSUBPD

yes yes ADDSUBPS

no yes PSRLW VI

no yes PSRLD VI

no yes PSRLQ VI

VEX.256
Encoding

VEX.128
Encoding Group Instruction If No, Reason?
Vol. 1 13-7

PROGRAMMING WITH AVX
no yes PADDQ VI

no yes PMULLW VI

no no MOVQ2DQ MMX

no no MOVDQ2Q MMX

no yes PMOVMSKB VI

no yes PSUBUSB VI

no yes PSUBUSW VI

no yes PMINUB VI

no yes PAND VI

no yes PADDUSB VI

no yes PADDUSW VI

no yes PMAXUB VI

no yes PANDN VI

no yes YY 0F EX PAVGB VI

no yes PSRAW VI

no yes PSRAD VI

no yes PAVGW VI

no yes PMULHUW VI

no yes PMULHW VI

yes yes CVTPD2DQ

yes yes CVTTPD2DQ

yes yes CVTDQ2PD

no yes MOVNTDQ VI

no yes PSUBSB VI

no yes PSUBSW VI

no yes PMINSW VI

no yes POR VI

no yes PADDSB VI

no yes PADDSW VI

no yes PMAXSW VI

no yes PXOR VI

yes yes YY 0F FX LDDQU VI

no yes PSLLW VI

no yes PSLLD VI

no yes PSLLQ VI

VEX.256
Encoding

VEX.128
Encoding Group Instruction If No, Reason?
13-8 Vol. 1

PROGRAMMING WITH AVX
no yes PMULUDQ VI

no yes PMADDWD VI

no yes PSADBW VI

no yes MASKMOVDQU

no yes PSUBB VI

no yes PSUBW VI

no yes PSUBD VI

no yes PSUBQ VI

no yes PADDB VI

no yes PADDW VI

no yes PADDD VI

no yes SSSE3 PHADDW VI

no yes PHADDSW VI

no yes PHADDD VI

no yes PHSUBW VI

no yes PHSUBSW VI

no yes PHSUBD VI

no yes PMADDUBSW VI

no yes PALIGNR VI

no yes PSHUFB VI

no yes PMULHRSW VI

no yes PSIGNB VI

no yes PSIGNW VI

no yes PSIGND VI

no yes PABSB VI

no yes PABSW VI

no yes PABSD VI

yes yes SSE4.1 BLENDPS

yes yes BLENDPD

yes yes BLENDVPS Note 2

yes yes BLENDVPD Note 2

no yes DPPD

yes yes DPPS

no yes EXTRACTPS Note 3

no yes INSERTPS Note 3

VEX.256
Encoding

VEX.128
Encoding Group Instruction If No, Reason?
Vol. 1 13-9

PROGRAMMING WITH AVX
no yes MOVNTDQA

no yes MPSADBW VI

no yes PACKUSDW VI

no yes PBLENDVB VI

no yes PBLENDW VI

no yes PCMPEQQ VI

no yes PEXTRD VI

no yes PEXTRQ VI

no yes PEXTRB VI

no yes PEXTRW VI

no yes PHMINPOSUW VI

no yes PINSRB VI

no yes PINSRD VI

no yes PINSRQ VI

no yes PMAXSB VI

no yes PMAXSD VI

no yes PMAXUD VI

no yes PMAXUW VI

no yes PMINSB VI

no yes PMINSD VI

no yes PMINUD VI

no yes PMINUW VI

no yes PMOVSXxx VI

no yes PMOVZXxx VI

no yes PMULDQ VI

no yes PMULLD VI

yes yes PTEST

yes yes ROUNDPD

yes yes ROUNDPS

no yes ROUNDSD scalar

no yes ROUNDSS scalar

no yes SSE4.2 PCMPGTQ VI

no no SSE4.2 CRC32c integer

no yes PCMPESTRI VI

no yes PCMPESTRM VI

VEX.256
Encoding

VEX.128
Encoding Group Instruction If No, Reason?
13-10 Vol. 1

PROGRAMMING WITH AVX
13.2.1 256-bit Floating-Point Arithmetic Processing Enhancements
Intel AVX provides 35 256-bit floating-point arithmetic instructions, see Table 13-2.
The arithmetic operations cover add, subtract, multiply, divide, square-root,
compare, max, min, round, etc., on single-precision and double-precision floating-
point data.
The enhancement in AVX on floating-point compare operation provides 32 condi-
tional predicates to improve programming flexibility in evaluating conditional expres-
sions.

13.2.2 256-bit Non-Arithmetic Instruction Enhancements
Intel AVX provides new primitives for handling data movement within 256-bit
floating-point vectors and promotes many 128-bit floating data processing instruc-
tions to handle 256-bit floating-point vectors.

no yes PCMPISTRI VI

no yes PCMPISTRM VI

no no SSE4.2 POPCNT integer

Table 13-2. Promoted 256-Bit and 128-bit Arithmetic AVX Instructions

VEX.256 Encoding VEX.128 Encoding Legacy Instruction Mnemonic

yes yes SQRTPS, SQRTPD, RSQRTPS, RCPPS

yes yes ADDPS, ADDPD, SUBPS, SUBPD

yes yes MULPS, MULPD, DIVPS, DIVPD

yes yes CVTPS2PD, CVTPD2PS

yes yes CVTDQ2PS, CVTPS2DQ

yes yes CVTTPS2DQ, CVTTPD2DQ

yes yes CVTPD2DQ, CVTDQ2PD

yes yes MINPS, MINPD, MAXPS, MAXPD

yes yes HADDPD, HADDPS, HSUBPD, HSUBPS

yes yes CMPPS, CMPPD

yes yes ADDSUBPD, ADDSUBPS, DPPS

yes yes ROUNDPD, ROUNDPS

VEX.256
Encoding

VEX.128
Encoding Group Instruction If No, Reason?
Vol. 1 13-11

PROGRAMMING WITH AVX
AVX includes 39 256-bit data movement and processing instructions that are
promoted from previous generations of SIMD instruction extensions, ranging from
logical, blend, convert, test, unpacking, shuffling, load and stores (see Table 13-3).

AVX introduces 18 new data processing instructions that operate on 256-bit vectors,
Table 13-4. These new primitives cover the following operations:
• Non-unit-strided fetching of SIMD data. AVX provides several flexible SIMD

floating-point data fetching primitives:

— broadcast of single or multiple data elements into a 256-bit destination,

— masked move primitives to load or store SIMD data elements conditionally,
• Intra-register manipulation of SIMD data elements. AVX provides several flexible

SIMD floating-point data manipulation primitives:

— insert/extract multiple SIMD floating-point data elements to/from 256-bit
SIMD registers

— permute primitives to facilitate efficient manipulation of floating-point data
elements in 256-bit SIMD registers

• Branch handling. AVX provides several primitives to enable handling of branches
in SIMD programming:

— new variable blend instructions supports four-operand syntax with non-
destructive source syntax. This is more flexible than the equivalent SSE4

Table 13-3. Promoted 256-bit and 128-bit Data Movement AVX Instructions

VEX.256 Encoding VEX.128 Encoding Legacy Instruction Mnemonic

yes yes MOVAPS, MOVAPD, MOVDQA

yes yes MOVUPS, MOVUPD, MOVDQU

yes yes MOVMSKPS, MOVMSKPD

yes yes LDDQU, MOVNTPS, MOVNTPD, MOVNTDQ,
MOVNTDQA

yes yes MOVSHDUP, MOVSLDUP, MOVDDUP

yes yes UNPCKHPD, UNPCKHPS, UNPCKLPD

yes yes BLENDPS, BLENDPD

yes yes SHUFPD, SHUFPS, UNPCKLPS

yes yes BLENDVPS, BLENDVPD

yes yes PTEST, MOVMSKPD, MOVMSKPS

yes yes XORPS, XORPD, ORPS, ORPD

yes yes ANDNPD, ANDNPS, ANDPD, ANDPS
13-12 Vol. 1

PROGRAMMING WITH AVX
instruction syntax which uses the XMM0 register as the implied mask for
blend selection.

— Packed TEST instructions for floating-point data.

Table 13-4. 256-bit AVX Instruction Enhancement

Instruction Description

VBROADCASTF128 ymm1,
m128

Broadcast 128-bit floating-point values in mem to low and high
128-bits in ymm1.

VBROADCASTSD ymm1, m64 Broadcast double-precision floating-point element in mem to four
locations in ymm1.

VBROADCASTSS ymm1, m32 Broadcast single-precision floating-point element in mem to eight
locations in ymm1.

VEXTRACTF128 xmm1/m128,
ymm2, imm8

Extracts 128-bits of packed floating-point values from ymm2 and
store results in xmm1/mem.

VINSERTF128 ymm1, ymm2,
xmm3/m128, imm8

Insert 128-bits of packed floating-point values from xmm3/mem
and the remaining values from ymm2 into ymm1

VMASKMOVPS ymm1, ymm2,
m256

Load packed single-precision values from mem using mask in
ymm2 and store in ymm1

VMASKMOVPD ymm1, ymm2,
m256

Load packed double-precision values from mem using mask in
ymm2 and store in ymm1

VMASKMOVPS m256, ymm1,
ymm2

Store packed single-precision values from ymm2 mask in ymm1

VMASKMOVPD m256, ymm1,
ymm2

Store packed double-precision values from ymm2 using mask in
ymm1

VPERMILPD ymm1, ymm2,
ymm3/m256

Permute Double-Precision Floating-Point values in ymm2 using
controls from xmm3/mem and store result in ymm1

VPERMILPD ymm1,
ymm2/m256 imm8

Permute Double-Precision Floating-Point values in ymm2/mem
using controls from imm8 and store result in ymm1

VPERMILPS ymm1, ymm2,
ymm/m256

Permute Single-Precision Floating-Point values in ymm2 using
controls from ymm3/mem and store result in ymm1

VPERMILPS ymm1,
ymm2/m256, imm8

Permute Single-Precision Floating-Point values in ymm2/mem
using controls from imm8 and store result in ymm1

VPERM2F128 ymm1, ymm2,
ymm3/m256, imm8

Permute 128-bit floating-point fields in ymm2 and ymm3/mem
using controls from imm8 and store result in ymm1

VTESTPS ymm1, ymm2/m256 Set ZF if ymm2/mem AND ymm1 result is all 0s in packed single-
precision sign bits. Set CF if ymm2/mem AND NOT ymm1 result is
all 0s in packed single-precision sign bits.
Vol. 1 13-13

PROGRAMMING WITH AVX
13.2.3 Arithmetic Primitives for 128-bit Vector and Scalar
processing

Intel AVX provides a full complement of 128-bit numeric processing instructions that
employ VEX-prefix encoding. These VEX-encoded instructions generally provide the
same functionality over instructions operating on XMM register that are encoded
using SIMD prefixes. The 128-bit numeric processing instructions in AVX cover
floating-point and integer data processing; across 128-bit vector and scalar
processing. Table 13-5 lists the state of promotion of legacy SIMD arithmetic ISA to
VEX-128 encoding. Legacy SIMD floating-point arithmetic ISA promoted to VEX-256
encoding also support VEX-128 encoding (see Table 13-2).
The enhancement in AVX on 128-bit floating-point compare operation provides 32
conditional predicates to improve programming flexibility in evaluating conditional
expressions. This contrasts with floating-point SIMD compare instructions in SSE and
SSE2 supporting only 8 conditional predicates.

VTESTPD ymm1, ymm2/m256 Set ZF if ymm2/mem AND ymm1 result is all 0s in packed double-
precision sign bits. Set CF if ymm2/mem AND NOT ymm1 result is
all 0s in packed double-precision sign bits.

VZEROALL Zero all YMM registers

VZEROUPPER Zero upper 128 bits of all YMM registers

Table 13-5. Promotion of Legacy SIMD ISA to 128-bit Arithmetic AVX instruction

VEX.256
Encoding

VEX.128
Encoding

Instruction
Reason Not
Promoted

no no CVTPI2PS, CVTPI2PD, CVTPD2PI MMX

no no CVTTPS2PI, CVTTPD2PI, CVTPS2PI MMX

no yes CVTSI2SS, CVTSI2SD, CVTSD2SI scalar

no yes CVTTSS2SI, CVTTSD2SI, CVTSS2SI scalar

no yes COMISD, RSQRTSS, RCPSS scalar

no yes UCOMISS, UCOMISD, COMISS, scalar

no yes ADDSS, ADDSD, SUBSS, SUBSD scalar

no yes MULSS, MULSD, DIVSS, DIVSD scalar

no yes SQRTSS, SQRTSD scalar

no yes CVTSS2SD, CVTSD2SS scalar

Table 13-4. 256-bit AVX Instruction Enhancement

Instruction Description
13-14 Vol. 1

PROGRAMMING WITH AVX
no yes MINSS, MINSD, MAXSS, MAXSD scalar

no yes PAND, PANDN, POR, PXOR VI

no yes PCMPGTB, PCMPGTW, PCMPGTD VI

no yes PMADDWD, PMADDUBSW VI

no yes PAVGB, PAVGW, PMULUDQ VI

no yes PCMPEQB, PCMPEQW, PCMPEQD VI

no yes PMULLW, PMULHUW, PMULHW VI

no yes PSUBSW, PADDSW, PSADBW VI

no yes PADDUSB, PADDUSW, PADDSB VI

no yes PSUBUSB, PSUBUSW, PSUBSB VI

no yes PMINUB, PMINSW VI

no yes PMAXUB, PMAXSW VI

no yes PADDB, PADDW, PADDD, PADDQ VI

no yes PSUBB, PSUBW, PSUBD, PSUBQ VI

no yes PSLLW, PSLLD, PSLLQ, PSRAW VI

no yes PSRLW, PSRLD, PSRLQ, PSRAD VI

CPUID.SSSE3

no yes PHSUBW, PHSUBD, PHSUBSW VI

no yes PHADDW, PHADDD, PHADDSW VI

no yes PMULHRSW VI

no yes PSIGNB, PSIGNW, PSIGND VI

no yes PABSB, PABSW, PABSD VI

CPUID.SSE4_1

no yes DPPD

no yes PHMINPOSUW, MPSADBW VI

no yes PMAXSB, PMAXSD, PMAXUD VI

no yes PMINSB, PMINSD, PMINUD VI

no yes PMAXUW, PMINUW VI

no yes PMOVSXxx, PMOVZXxx VI

no yes PMULDQ, PMULLD VI

Table 13-5. Promotion of Legacy SIMD ISA to 128-bit Arithmetic AVX instruction

VEX.256
Encoding

VEX.128
Encoding

Instruction Reason Not
Promoted
Vol. 1 13-15

PROGRAMMING WITH AVX
Description of Column “Reason not promoted?”
MMX: Instructions referencing MMX registers do not support VEX
Scalar: Scalar instructions are not promoted to 256-bit
integer: integer instructions are not promoted.
VI: “Vector Integer” instructions are not promoted to 256-bit

13.2.4 Non-Arithmetic Primitives for 128-bit Vector and Scalar
Processing

Intel AVX provides a full complement of data processing instructions that employ
VEX-prefix encoding. These VEX-encoded instructions generally provide the same
functionality over instructions operating on XMM register that are encoded using
SIMD prefixes.

A subset of new functionalities listed in Table 13-4 is also extended via VEX.128
encoding. These enhancements in AVX on 128-bit data processing primitives include
11 new instructions (see Table 13-6) with the following capabilities:
• Non-unit-strided fetching of SIMD data. AVX provides several flexible SIMD

floating-point data fetching primitives:

no yes ROUNDSD, ROUNDSS scalar

CPUID.POPCNT

no yes POPCNT integer

CPUID.SSE4_2

no yes PCMPGTQ VI

no no CRC32 integer

no yes PCMPESTRI, PCMPESTRM VI

no yes PCMPISTRI, PCMPISTRM VI

CPUID.CLMUL

no yes PCLMULQDQ VI

CPUID.AESNI

no yes AESDEC, AESDECLAST VI

no yes AESENC, AESENCLAST VI

no yes AESIMX, AESKEYGENASSIST VI

Table 13-5. Promotion of Legacy SIMD ISA to 128-bit Arithmetic AVX instruction

VEX.256
Encoding

VEX.128
Encoding

Instruction Reason Not
Promoted
13-16 Vol. 1

PROGRAMMING WITH AVX
— broadcast of single data element into a 128-bit destination,

— masked move primitives to load or store SIMD data elements conditionally,
• Intra-register manipulation of SIMD data elements. AVX provides several flexible

SIMD floating-point data manipulation primitives:

— permute primitives to facilitate efficient manipulation of floating-point data
elements in 128-bit SIMD registers

• Branch handling. AVX provides several primitives to enable handling of branches
in SIMD programming:

— new variable blend instructions supports four-operand syntax with non-
destructive source syntax. Branching conditions dependent on floating-point
data or integer data can benefit from Intel AVX. This is more flexible than
non-VEX encoded instruction syntax that uses the XMM0 register as implied
mask for blend selection. While variable blend with implied XMM0 syntax is
supported in SSE4 using SIMD prefix encoding, VEX-encoded 128-bit variable
blend instructions only support the more flexible four-operand syntax.

— Packed TEST instructions for floating-point data.

Table 13-6. 128-bit AVX Instruction Enhancement

Instruction Description

VBROADCASTSS xmm1, m32 Broadcast single-precision floating-point element in mem to four
locations in xmm1.

VMASKMOVPS xmm1, xmm2,
m128

Load packed single-precision values from mem using mask in
xmm2 and store in xmm1

VMASKMOVPD xmm1, xmm2,
m128

Load packed double-precision values from mem using mask in
xmm2 and store in xmm1

VMASKMOVPS m128, xmm1,
xmm2

Store packed single-precision values from xmm2 using mask in
xmm1

VMASKMOVPD m128, xmm1,
xmm2

Store packed double-precision values from xmm2 using mask in
xmm1

VPERMILPD xmm1, xmm2,
xmm3/m128

Permute Double-Precision Floating-Point values in xmm2 using
controls from xmm3/mem and store result in xmm1

VPERMILPD xmm1,
xmm2/m128, imm8

Permute Double-Precision Floating-Point values in xmm2/mem
using controls from imm8 and store result in xmm1

VPERMILPS xmm1, xmm2,
xmm3/m128

Permute Single-Precision Floating-Point values in xmm2 using
controls from xmm3/mem and store result in xmm1

VPERMILPS xmm1,
xmm2/m128, imm8

Permute Single-Precision Floating-Point values in xmm2/mem
using controls from imm8 and store result in xmm1
Vol. 1 13-17

PROGRAMMING WITH AVX
The 128-bit data processing instructions in AVX cover floating-point and integer data
movement primitives. Legacy SIMD non-arithmetic ISA promoted to VEX-256
encoding also support VEX-128 encoding (see Table 13-3). Table 13-7 lists the state
of promotion of the remaining legacy SIMD non-arithmetic ISA to VEX-128 encoding.

VTESTPS xmm1, xmm2/m128 Set ZF if xmm2/mem AND xmm1 result is all 0s in packed single-
precision sign bits. Set CF if xmm2/mem AND NOT xmm1 result is
all 0s in packed single-precision sign bits.

VTESTPD xmm1, xmm2/m128 Set ZF if xmm2/mem AND xmm1 result is all 0s in packed single
precision sign bits. Set CF if xmm2/mem AND NOT xmm1 result is
all 0s in packed double-precision sign bits.

Table 13-7. Promotion of Legacy SIMD ISA to 128-bit Non-Arithmetic AVX instruction

VEX.256
Encoding

VEX.128
Encoding

Instruction
Reason Not
Promoted

no no MOVQ2DQ, MOVDQ2Q MMX

no yes LDMXCSR, STMXCSR

no yes MOVSS, MOVSD, CMPSS, CMPSD scalar

no yes MOVHPS, MOVHPD Note 1

no yes MOVLPS, MOVLPD Note 1

no yes MOVLHPS, MOVHLPS Redundant with VPER-
MILPS

no yes MOVQ, MOVD scalar

no yes PACKUSWB, PACKSSDW, PACKSSWB VI

no yes PUNPCKHBW, PUNPCKHWD VI

no yes PUNPCKLBW, PUNPCKLWD VI

no yes PUNPCKHDQ, PUNPCKLDQ VI

no yes PUNPCKLQDQ, PUNPCKHQDQ VI

no yes PSHUFHW, PSHUFLW, PSHUFD VI

no yes PMOVMSKB, MASKMOVDQU VI

no yes PAND, PANDN, POR, PXOR VI

no yes PINSRW, PEXTRW, VI

CPUID.SSSE3

Table 13-6. 128-bit AVX Instruction Enhancement

Instruction Description
13-18 Vol. 1

PROGRAMMING WITH AVX
Description of Column “Reason not promoted?”
MMX: Instructions referencing MMX registers do not support VEX
Scalar: Scalar instructions are not promoted to 256-bit
VI: “Vector Integer” instructions are not promoted to 256-bit
Note 1: MOVLPD/PS and MOVHPD/PS are not promoted to 256-bit. The equivalent
functionality are provided by VINSERTF128 and VEXTRACTF128 instructions as the
existing instructions have no natural 256b extension
Note 3: It is expected that using 128-bit INSERTPS followed by a VINSERTF128
would be better than promoting INSERTPS to 256-bit (for example).

13.3 MEMORY ALIGNMENT
Memory alignment requirements on VEX-encoded instruction differs from non-VEX-
encoded instructions. Memory alignment applies to non-VEX-encoded SIMD instruc-
tions in three categories:
• Explicitly-aligned SIMD load and store instructions accessing 16 bytes of memory

(e.g. MOVAPD, MOVAPS, MOVDQA, etc.). These instructions always require
memory address to be aligned on 16-byte boundary.

• Explicitly-unaligned SIMD load and store instructions accessing 16 bytes or less
of data from memory (e.g. MOVUPD, MOVUPS, MOVDQU, MOVQ, MOVD, etc.).
These instructions do not require memory address to be aligned on 16-byte
boundary.

• The vast majority of arithmetic and data processing instructions in legacy SSE
instructions (non-VEX-encoded SIMD instructions) support memory access
semantics. When these instructions access 16 bytes of data from memory, the
memory address must be aligned on 16-byte boundary.

no yes PALIGNR, PSHUFB VI

CPUID.SSE4_1

no yes EXTRACTPS, INSERTPS Note 3

no yes PACKUSDW, PCMPEQQ VI

no yes PBLENDVB, PBLENDW VI

no yes PEXTRW, PEXTRB, PEXTRD, PEXTRQ VI

no yes PINSRB, PINSRD, PINSRQ VI

Table 13-7. Promotion of Legacy SIMD ISA to 128-bit Non-Arithmetic AVX instruction

VEX.256
Encoding

VEX.128
Encoding

Instruction Reason Not
Promoted
Vol. 1 13-19

PROGRAMMING WITH AVX
Most arithmetic and data processing instructions encoded using the VEX prefix and
performing memory accesses have more flexible memory alignment requirements
than instructions that are encoded without the VEX prefix. Specifically,
• With the exception of explicitly aligned 16 or 32 byte SIMD load/store instruc-

tions, most VEX-encoded, arithmetic and data processing instructions operate in
a flexible environment regarding memory address alignment, i.e. VEX-encoded
instruction with 32-byte or 16-byte load semantics will support unaligned load
operation by default. Memory arguments for most instructions with VEX prefix
operate normally without causing #GP(0) on any byte-granularity alignment
(unlike Legacy SSE instructions). The instructions that require explicit memory
alignment requirements are listed in Table 13-9.

Software may see performance penalties when unaligned accesses cross cacheline
boundaries, so reasonable attempts to align commonly used data sets should
continue to be pursued.
Atomic memory operation in Intel 64 and IA-32 architecture is guaranteed only for a
subset of memory operand sizes and alignment scenarios. The list of guaranteed
atomic operations are described in Section 8.1.1 of IA-32 Intel® Architecture Soft-
ware Developer’s Manual, Volumes 3A. AVX and FMA instructions do not introduce
any new guaranteed atomic memory operations.
AVX instructions can generate an #AC(0) fault on misaligned 4 or 8-byte memory
references in Ring-3 when CR0.AM=1. 16 and 32-byte memory references will not
generate #AC(0) fault. See Table 13-8 for details.
Certain AVX instructions always require 16- or 32-byte alignment (see the complete
list of such instructions in Table 13-9). These instructions will #GP(0) if not aligned to
16-byte boundaries (for 16-byte granularity loads and stores) or 32-byte boundaries
(for 32-byte loads and stores).
13-20 Vol. 1

PROGRAMMING WITH AVX
Table 13-8. Alignment Faulting Conditions when Memory Access is Not Aligned
EFLAGS.AC==1 && Ring-3 && CR0.AM == 1 0 1

In
st

ru
ct

io
n

Ty
pe AV

X
, F

M
A

,
16- or 32-byte “explicitly unaligned” loads
and stores (see Table 13-10)

no fault no fault

VEX op YMM, m256 no fault no fault

VEX op XMM, m128 no fault no fault

“explicitly aligned” loads and stores (see
Table 13-9)

#GP(0) #GP(0)

2, 4, or 8-byte loads and stores no fault #AC(0)

SS
E

16 byte “explicitly unaligned” loads and
stores (see Table 13-10)

no fault no fault

op XMM, m128 #GP(0) #GP(0)

“explicitly aligned” loads and stores (see
Table 13-9)

#GP(0) #GP(0)

2, 4, or 8-byte loads and stores no fault #AC(0)

Table 13-9. Instructions Requiring Explicitly Aligned Memory

Require 16-byte alignment Require 32-byte alignment

(V)MOVDQA xmm, m128 VMOVDQA ymm, m256

(V)MOVDQA m128, xmm VMOVDQA m256, ymm

(V)MOVAPS xmm, m128 VMOVAPS ymm, m256

(V)MOVAPS m128, xmm VMOVAPS m256, ymm

(V)MOVAPD xmm, m128 VMOVAPD ymm, m256

(V)MOVAPD m128, xmm VMOVAPD m256, ymm

(V)MOVNTPS m128, xmm VMOVNTPS m256, ymm

(V)MOVNTPD m128, xmm VMOVNTPD m256, ymm

(V)MOVNTDQ m128, xmm VMOVNTDQ m256, ymm

(V)MOVNTDQA xmm, m128
Vol. 1 13-21

PROGRAMMING WITH AVX
13.4 SIMD FLOATING-POINT EXCEPTIONS
AVX instructions can generate SIMD floating-point exceptions (#XM) and respond to
exception masks in the same way as Legacy SSE instructions. When CR4.OSXM-
MEXCPT=0 any unmasked FP exceptions generate an Undefined Opcode exception
(#UD).
AVX FP exceptions are created in a similar fashion (differing only in number of el-
ements) to Legacy SSE and SSE2 instructions capable of generating SIMD floating-
point exceptions.
AVX introduces no new arithmetic operations (AVX floating-point are analogues of
existing Legacy SSE instructions).
The detailed exception conditions for AVX instructions and legacy SIMD instructions
(excluding instructions that operates on MMX registers) are described in a number of
exception class types, depending on the operand syntax and memory operation char-
acteristics. The complete list of SIMD instruction exception class types are defined in
Chapter 2, “Instruction Format,” of Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2A.

13.5 DETECTION OF AVX INSTRUCTIONS
Intel AVX operates on the 256-bit YMM register state. Application detection of new
instruction extensions operating on the YMM state follows the general procedural flow
in Figure 13-1.

Table 13-10. Instructions Not Requiring Explicit Memory Alignment

(V)MOVDQU xmm, m128

(V)MOVDQU m128, m128

(V)MOVUPS xmm, m128

(V)MOVUPS m128, xmm

(V)MOVUPD xmm, m128

(V)MOVUPD m128, xmm

VMOVDQU ymm, m256

VMOVDQU m256, ymm

VMOVUPS ymm, m256

VMOVUPS m256, ymm

VMOVUPD ymm, m256

VMOVUPD m256, ymm
13-22 Vol. 1

PROGRAMMING WITH AVX
Prior to using AVX, the application must identify that the operating system supports
the XGETBV instruction, the YMM register state, in addition to processor’s support for
YMM state management using XSAVE/XRSTOR and AVX instructions. The following
simplified sequence accomplishes both and is strongly recommended.
1) Detect CPUID.1:ECX.OSXSAVE[bit 27] = 1 (XGETBV enabled for application use1)
2) Issue XGETBV and verify that XCR0[2:1] = ‘11b’ (XMM state and YMM state are
enabled by OS).
3) detect CPUID.1:ECX.AVX[bit 28] = 1 (AVX instructions supported).
(Step 3 can be done in any order relative to 1 and 2)

1. If CPUID.01H:ECX.OSXSAVE reports 1, it also indirectly implies the processor supports XSAVE,
XRSTOR, XGETBV, processor extended state bit vector XCR0. Thus an application may streamline
the checking of CPUID feature flags for XSAVE and OSXSAVE. XSETBV is a privileged instruc-
tion.

Figure 13-1. General Procedural Flow of Application Detection of AVX

Implied HW support for

Check enabled state in

XFEM via XGETBV

Check feature flag
for Instruction set

Check feature flag

CPUID.1H:ECX.OXSAVE = 1?

OS provides processor
extended state management

State ok to use

XSAVE, XRSTOR, XGETBV, XCR0

enabled Instructions

Yes
Vol. 1 13-23

PROGRAMMING WITH AVX
The following pseudocode illustrates this recommended application AVX detection
process:

Note: It is unwise for an application to rely exclusively on CPUID.1:ECX.AVX[bit 28]
or at all on CPUID.1:ECX.XSAVE[bit 26]: These indicate hardware support but not
operating system support. If YMM state management is not enabled by an operating
systems, AVX instructions will #UD regardless of CPUID.1:ECX.AVX[bit 28].
“CPUID.1:ECX.XSAVE[bit 26] = 1” does not guarantee the OS actually uses the
XSAVE process for state management.

13.5.1 Detection of VEX-Encoded AES and VPCLMULQDQ
VAESDEC/VAESDECLAST/VAESENC/VAESENCLAST/VAESIMC/VAESKEYGENASSIST
instructions operate on YMM states. The detection sequence must combine checking

Example 13-1. Detection of AVX Instruction

INT supports_AVX()
{ mov eax, 1

cpuid
and ecx, 018000000H
cmp ecx, 018000000H; check both OSXSAVE and AVX feature flags
 jne not_supported
; processor supports AVX instructions and XGETBV is enabled by OS
mov ecx, 0; specify 0 for XCR0 register
XGETBV ; result in EDX:EAX
and eax, 06H
cmp eax, 06H; check OS has enabled both XMM and YMM state support
jne not_supported
mov eax, 1
jmp done

NOT_SUPPORTED:
mov eax, 0

done:
13-24 Vol. 1

PROGRAMMING WITH AVX
for CPUID.1:ECX.AES[bit 25] = 1 and the sequence for detection application support
for AVX.

Similarly, the detection sequence for VPCLMULQDQ must combine checking for
CPUID.1:ECX.PCLMULQDQ[bit 1] = 1 and the sequence for detection application
support for AVX.
This is shown in the pseudocode:

Example 13-2. Detection of VEX-Encoded AESNI Instructions

INT supports_VAESNI()
{ mov eax, 1

cpuid
and ecx, 01A000000H
cmp ecx, 01A000000H; check OSXSAVE AVX and AESNI feature flags
 jne not_supported
; processor supports AVX and VEX-encoded AESNI and XGETBV is enabled by OS
mov ecx, 0; specify 0 for XCR0 register
XGETBV ; result in EDX:EAX
and eax, 06H
cmp eax, 06H; check OS has enabled both XMM and YMM state support
jne not_supported
mov eax, 1
jmp done

NOT_SUPPORTED:
mov eax, 0

done:

Example 13-3. Detection of VEX-Encoded AESNI Instructions

INT supports_VPCLMULQDQ)
{ mov eax, 1

cpuid
and ecx, 018000002H
cmp ecx, 018000002H; check OSXSAVE AVX and PCLMULQDQ feature flags
 jne not_supported
; processor supports AVX and VEX-encoded PCLMULQDQ and XGETBV is enabled by OS
mov ecx, 0; specify 0 for XCR0 register
XGETBV ; result in EDX:EAX
and eax, 06H
cmp eax, 06H; check OS has enabled both XMM and YMM state support
jne not_supported
Vol. 1 13-25

PROGRAMMING WITH AVX
13.6 EMULATION
Setting the CR0.EMbit to 1 provides a technique to emulate Legacy SSE floating-
point instruction sets in software. This technique is not supported with AVX instruc-
tions.
If an operating system wishes to emulate AVX instructions, set XCR0[2:1] to zero.
This will cause AVX instructions to #UD.

13.7 WRITING AVX FLOATING-POINT EXCEPTION
HANDLERS

AVX floating-point exceptions are handled in an entirely analogous way to Legacy
SSE floating-point exceptions. To handle unmasked SIMD floating-point exceptions,
the operating system or executive must provide an exception handler. The section
titled “SSE and SSE2 SIMD Floating-Point Exceptions” in Chapter 11, “Programming
with Streaming SIMD Extensions 2 (SSE2),” describes the SIMD floating-point excep-
tion classes and gives suggestions for writing an exception handler to handle them.
To indicate that the operating system provides a handler for SIMD floating-point
exceptions (#XM), the CR4.OSXMMEXCPT flag (bit 10) must be set.

13.8 HALF-PRECISION FLOATING-POINT CONVERSION
VCVTPH2PS and VCVTPS2PH are two instructions supporting half-precision floating-
point data type conversion to and from single-precision floating-point data types.
Half-precision floating-point values are not used by the processor directly for arith-
metic operations. But the conversion operation are subject to SIMD floating-point
exceptions.

Additionally, The conversion operations of VCVTPS2PH allow programmer to specify
rounding control using control fields in an immediate byte. The effects of the imme-
diate byte are listed in Table 13-11.
Rounding control can use Imm[2] to select an override RC field specified in Imm[1:0]
or use MXCSR setting.

mov eax, 1
jmp done

NOT_SUPPORTED:
mov eax, 0

done:

Example 13-3. Detection of VEX-Encoded AESNI Instructions
13-26 Vol. 1

PROGRAMMING WITH AVX
Specific SIMD floating-point exceptions that can occur in conversion operations are
shown in Table 13-12 and Table 13-13.

VCVTPS2PH can cause denormal exceptions if the value of the source operand is

Table 13-11. Immediate Byte Encoding for 16-bit Floating-Point Conversion
Instructions

Bits Field Name/value Description Comment

Imm[1:0] RC=00B Round to nearest even If Imm[2] = 0

RC=01B Round down

RC=10B Round up

RC=11B Truncate

Imm[2] MS1=0 Use imm[1:0] for round-
ing

Ignore MXCSR.RC

MS1=1 Use MXCSR.RC for round-
ing

Imm[7:3] Ignored Ignored by processor

Table 13-12. Non-Numerical Behavior for VCVTPH2PS, VCVTPS2PH

Source Operands Masked Result Unmasked Result

QNaN QNaN11

NOTES:
1. The half precision output QNaN1 is created from the single precision input QNaN as follows:

the sign bit is preserved, the 8-bit exponent FFH is replaced by the 5-bit exponent 1FH, and
the 24-bit significand is truncated to an 11-bit significand by removing its 14 least significant
bits.

QNaN11 (not an exception)

SNaN QNaN12

2. The half precision output QNaN1 is created from the single precision input SNaN as follows:
the sign bit is preserved, the 8-bit exponent FFH is replaced by the 5-bit exponent 1FH, and
the 24-bit significand is truncated to an 11-bit significand by removing its 14 least significant
bits. The second most significant bit of the significand is changed from 0 to 1 to convert the
signaling NaN into a quiet NaN.

None

Table 13-13. Invalid Operation for VCVTPH2PS, VCVTPS2PH

Instruction Condition Masked Result Unmasked Result

VCVTPH2PS SRC = NaN See Table 13-12 #I=1

VCVTPS2PH SRC = NaN SeeTable 13-12 #I=1
Vol. 1 13-27

PROGRAMMING WITH AVX
denormal relative to the numerical range represented by the source format (see
Table 13-14).

VCVTPS2PH can cause an underflow exception if the result of the conversion is less
than the underflow threshold for half-precision floating-point data type , i.e. | x | <
1.0 ∗ 2−14.

Table 13-14. Denormal Condition for VCVTPS2PH

Instruction Condition Masked Result1

NOTES:
1. Masked and unmasked result is shown in Table 13-12.

Unmasked Result

VCVTPH2PS SRC is denormal relative
to input format1

res = Result rounded to the
destination precision and using the
bounded exponent, but only if no
unmasked post-computation
exception occurs.
#DE unchanged

Same as masked
result.

VCVTPS2PH SRC is denormal relative
to input format1

res = Result rounded to the
destination precision and using the
bounded exponent, but only if no
unmasked post-computation
exception occurs.
#DE=1

#DE=1
13-28 Vol. 1

PROGRAMMING WITH AVX
VCVTPS2PH can cause an overflow exception if the result of the conversion is great-
er than the maximum representable value for half-precision floating-point data
type, i.e. | x | ≥ 1.0 ∗ 216.

VCVTPS2PH can cause an inexact exception if the result of the conversion is not
exactly representable in the destination format.

Table 13-15. Underflow Condition for VCVTPS2PH

Instruction Condition Masked Result1

NOTES:
1. Masked and unmasked result is shown in Table 13-12.

Unmasked Result

VCVTPS2PH Result < smallest
destination precision
finial normal value2

2. If FTZ is not set (MXCSR.FTZ = 1), masked and unmasked result is shown in Table 13-12. If FTZ is
set (MXCSR.FTZ = 1), inexact result = +0 or - 0, #PE and #UE are reported.

Result = +0 or -0, denormal,
normal.
#UE =1.
#PE = 1 if the result is inexact.

#UE=1,
#PE = 1 if the
result is inexact.

Table 13-16. Overflow Condition for VCVTPS2PH

Instruction Condition Masked Result Unmasked Result

VCVTPS2PH Result ≥ largest
destination precision
finial normal value1

Result = +Inf or -Inf.
#OE=1.

#OE=1.

Table 13-17. Inexact Condition for VCVTPS2PH

Instruction Condition Masked Result1 Unmasked Result

VCVTPS2PH The result is not
representable in
the destination
format

res = Result rounded to the
destination precision and
using the bounded
exponent, but only if no
unmasked underflow or
overflow conditions occur
(this exception can occur in
the presence of a masked
underflow or overflow).
#PE=1.

Only if no underflow/overflow
condition occurred, or if the
corresponding exceptions are
masked:
• Set #OE if masked overflow

and set result as described
above for masked overflow.

• Set #UE if masked underflow
and set result as described
above for masked underflow.

If neither underflow nor
overflow, result equals the result
rounded to the destination
precision and using the bounded
exponent set #PE = 1.
Vol. 1 13-29

PROGRAMMING WITH AVX
13.8.1 Detection of F16C Instructions
Application using float 16 instruction must follow a detection sequence similar to AVX
to ensure:
• The OS has enabled YMM state management support,
• The processor support AVX as indicated by the CPUID feature flag, i.e.

CPUID.01H:ECX.AVX[bit 28] = 1.
• The processor support 16-bit floating-point conversion instructions via a CPUID

feature flag (CPUID.01H:ECX.F16C[bit 29] = 1).
Application detection of Float-16 conversion instructions follow the general proce-
dural flow in Figure 13-2.

--
INT supports_f16c()
{ ; result in eax

mov eax, 1
cpuid
and ecx, 038000000H

NOTES:
1. If a source is denormal relative to input format with DM masked and at least one of PM or UM

unmasked, then an exception will be raised with DE, UE and PE set.

Figure 13-2. General Procedural Flow of Application Detection of Float-16

Implied HW support for

Check enabled YMM state in
XFEM via XGETBV

Check feature flags

for AVX and F16C

Check feature flag

CPUID.1H:ECX.OXSAVE = 1?

OS provides processor
extended state management

State ok to use

XSAVE, XRSTOR, XGETBV, XFEATURE_ENABLED_MASK

enabled Instructions

Yes
13-30 Vol. 1

PROGRAMMING WITH AVX
cmp ecx, 038000000H; check OSXSAVE, AVX, F16C feature flags
 jne not_supported
; processor supports AVX,F16C instructions and XGETBV is enabled by OS
mov ecx, 0; specify 0 for XFEATURE_ENABLED_MASK register
XGETBV; result in EDX:EAX
and eax, 06H
cmp eax, 06H; check OS has enabled both XMM and YMM state support
jne not_supported
mov eax, 1
jmp done
NOT_SUPPORTED:
mov eax, 0
done:

}

Vol. 1 13-31

CHAPTER 14
INPUT/OUTPUT

In addition to transferring data to and from external memory, IA-32 processors can
also transfer data to and from input/output ports (I/O ports). I/O ports are created in
system hardware by circuity that decodes the control, data, and address pins on the
processor. These I/O ports are then configured to communicate with peripheral
devices. An I/O port can be an input port, an output port, or a bidirectional port.
Some I/O ports are used for transmitting data, such as to and from the transmit and
receive registers, respectively, of a serial interface device. Other I/O ports are used
to control peripheral devices, such as the control registers of a disk controller.

This chapter describes the processor’s I/O architecture. The topics discussed include:
• I/O port addressing
• I/O instructions
• I/O protection mechanism

14.1 I/O PORT ADDRESSING
The processor permits applications to access I/O ports in either of two ways:
• Through a separate I/O address space
• Through memory-mapped I/O

Accessing I/O ports through the I/O address space is handled through a set of I/O
instructions and a special I/O protection mechanism. Accessing I/O ports through
memory-mapped I/O is handled with the processors general-purpose move and
string instructions, with protection provided through segmentation or paging. I/O
ports can be mapped so that they appear in the I/O address space or the physical-
memory address space (memory mapped I/O) or both.

One benefit of using the I/O address space is that writes to I/O ports are guaranteed
to be completed before the next instruction in the instruction stream is executed.
Thus, I/O writes to control system hardware cause the hardware to be set to its new
state before any other instructions are executed. See Section 14.6, “Ordering I/O,”
for more information on serializing of I/O operations.

14.2 I/O PORT HARDWARE
From a hardware point of view, I/O addressing is handled through the processor’s
address lines. For the P6 family, Pentium 4, and Intel Xeon processors, the request
command lines signal whether the address lines are being driven with a memory
address or an I/O address; for Pentium processors and earlier IA-32 processors, the
Vol. 1 14-1

INPUT/OUTPUT
M/IO# pin indicates a memory address (1) or an I/O address (0). When the separate
I/O address space is selected, it is the responsibility of the hardware to decode the
memory-I/O bus transaction to select I/O ports rather than memory. Data is trans-
mitted between the processor and an I/O device through the data lines.

14.3 I/O ADDRESS SPACE
The processor’s I/O address space is separate and distinct from the physical-memory
address space. The I/O address space consists of 216 (64K) individually addressable
8-bit I/O ports, numbered 0 through FFFFH. I/O port addresses 0F8H through 0FFH
are reserved. Do not assign I/O ports to these addresses. The result of an attempt to
address beyond the I/O address space limit of FFFFH is implementation-specific; see
the Developer’s Manuals for specific processors for more details.

Any two consecutive 8-bit ports can be treated as a 16-bit port, and any four consec-
utive ports can be a 32-bit port. In this manner, the processor can transfer 8, 16, or
32 bits to or from a device in the I/O address space. Like words in memory, 16-bit
ports should be aligned to even addresses (0, 2, 4, ...) so that all 16 bits can be
transferred in a single bus cycle. Likewise, 32-bit ports should be aligned to
addresses that are multiples of four (0, 4, 8, ...). The processor supports data trans-
fers to unaligned ports, but there is a performance penalty because one or more
extra bus cycle must be used.

The exact order of bus cycles used to access unaligned ports is undefined and is not
guaranteed to remain the same in future IA-32 processors. If hardware or software
requires that I/O ports be written to in a particular order, that order must be specified
explicitly. For example, to load a word-length I/O port at address 2H and then
another word port at 4H, two word-length writes must be used, rather than a single
doubleword write at 2H.

Note that the processor does not mask parity errors for bus cycles to the I/O address
space. Accessing I/O ports through the I/O address space is thus a possible source of
parity errors.

14.3.1 Memory-Mapped I/O
I/O devices that respond like memory components can be accessed through the
processor’s physical-memory address space (see Figure 14-1). When using memory-
mapped I/O, any of the processor’s instructions that reference memory can be used
to access an I/O port located at a physical-memory address. For example, the MOV
instruction can transfer data between any register and a memory-mapped I/O port.
The AND, OR, and TEST instructions may be used to manipulate bits in the control
and status registers of a memory-mapped peripheral devices.

When using memory-mapped I/O, caching of the address space mapped for I/O
operations must be prevented. With the Pentium 4, Intel Xeon, and P6 family proces-
sors, caching of I/O accesses can be prevented by using memory type range regis-
14-2 Vol. 1

INPUT/OUTPUT
ters (MTRRs) to map the address space used for the memory-mapped I/O as
uncacheable (UC). See Chapter 11, “Memory Cache Control” in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3A, for a complete discus-
sion of the MTRRs.

The Pentium and Intel486 processors do not support MTRRs. Instead, they provide
the KEN# pin, which when held inactive (high) prevents caching of all addresses sent
out on the system bus. To use this pin, external address decoding logic is required to
block caching in specific address spaces.

All the IA-32 processors that have on-chip caches also provide the PCD (page-level
cache disable) flag in page table and page directory entries. This flag allows caching
to be disabled on a page-by-page basis. See “Page-Directory and Page-Table Entries”
in Chapter 4 of in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A.

14.4 I/O INSTRUCTIONS
The processor’s I/O instructions provide access to I/O ports through the I/O address
space. (These instructions cannot be used to access memory-mapped I/O ports.)
There are two groups of I/O instructions:
• Those that transfer a single item (byte, word, or doubleword) between an I/O

port and a general-purpose register

Figure 14-1. Memory-Mapped I/O

FFFF

I/O Port

EPROM

RAM

Physical Memory

0

I/O Port
I/O Port
Vol. 1 14-3

INPUT/OUTPUT
• Those that transfer strings of items (strings of bytes, words, or doublewords)
between an I/O port and memory

The register I/O instructions IN (input from I/O port) and OUT (output to I/O port)
move data between I/O ports and the EAX register (32-bit I/O), the AX register
(16-bit I/O), or the AL (8-bit I/O) register. The address of the I/O port can be given
with an immediate value or a value in the DX register.

The string I/O instructions INS (input string from I/O port) and OUTS (output string
to I/O port) move data between an I/O port and a memory location. The address of
the I/O port being accessed is given in the DX register; the source or destination
memory address is given in the DS:ESI or ES:EDI register, respectively.

When used with one of the repeat prefixes (such as REP), the INS and OUTS instruc-
tions perform string (or block) input or output operations. The repeat prefix REP
modifies the INS and OUTS instructions to transfer blocks of data between an I/O
port and memory. Here, the ESI or EDI register is incremented or decremented
(according to the setting of the DF flag in the EFLAGS register) after each byte, word,
or doubleword is transferred between the selected I/O port and memory.

See the references for IN, INS, OUT, and OUTS in Chapter 3 and Chapter 4 of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A & 2B,
for more information on these instructions.

14.5 PROTECTED-MODE I/O
When the processor is running in protected mode, the following protection mecha-
nisms regulate access to I/O ports:
• When accessing I/O ports through the I/O address space, two protection devices

control access:

— The I/O privilege level (IOPL) field in the EFLAGS register

— The I/O permission bit map of a task state segment (TSS)
• When accessing memory-mapped I/O ports, the normal segmentation and

paging protection and the MTRRs (in processors that support them) also affect
access to I/O ports. See Chapter 5, “Protection” and Chapter 11, “Memory Cache
Control” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A, for a complete discussion of memory protection.

The following sections describe the protection mechanisms available when accessing
I/O ports in the I/O address space with the I/O instructions.

14.5.1 I/O Privilege Level
In systems where I/O protection is used, the IOPL field in the EFLAGS register
controls access to the I/O address space by restricting use of selected instructions.
This protection mechanism permits the operating system or executive to set the priv-
14-4 Vol. 1

INPUT/OUTPUT
ilege level needed to perform I/O. In a typical protection ring model, access to the
I/O address space is restricted to privilege levels 0 and 1. Here, kernel and the device
drivers are allowed to perform I/O, while less privileged device drivers and applica-
tion programs are denied access to the I/O address space. Application programs
must then make calls to the operating system to perform I/O.

The following instructions can be executed only if the current privilege level (CPL) of
the program or task currently executing is less than or equal to the IOPL: IN, INS,
OUT, OUTS, CLI (clear interrupt-enable flag), and STI (set interrupt-enable flag).
These instructions are called I/O sensitive instructions, because they are sensitive
to the IOPL field. Any attempt by a less privileged program or task to use an I/O
sensitive instruction results in a general-protection exception (#GP) being signaled.
Because each task has its own copy of the EFLAGS register, each task can have a
different IOPL.

The I/O permission bit map in the TSS can be used to modify the effect of the IOPL
on I/O sensitive instructions, allowing access to some I/O ports by less privileged
programs or tasks (see Section 14.5.2, “I/O Permission Bit Map”).

A program or task can change its IOPL only with the POPF and IRET instructions;
however, such changes are privileged. No procedure may change the current IOPL
unless it is running at privilege level 0. An attempt by a less privileged procedure to
change the IOPL does not result in an exception; the IOPL simply remains
unchanged.

The POPF instruction also may be used to change the state of the IF flag (as can the
CLI and STI instructions); however, the POPF instruction in this case is also I/O sensi-
tive. A procedure may use the POPF instruction to change the setting of the IF flag
only if the CPL is less than or equal to the current IOPL. An attempt by a less privi-
leged procedure to change the IF flag does not result in an exception; the IF flag
simply remains unchanged.

14.5.2 I/O Permission Bit Map
The I/O permission bit map is a device for permitting limited access to I/O ports by
less privileged programs or tasks and for tasks operating in virtual-8086 mode. The
I/O permission bit map is located in the TSS (see Figure 14-2) for the currently
running task or program. The address of the first byte of the I/O permission bit map
is given in the I/O map base address field of the TSS. The size of the I/O permission
bit map and its location in the TSS are variable.
Vol. 1 14-5

INPUT/OUTPUT
Because each task has its own TSS, each task has its own I/O permission bit map.
Access to individual I/O ports can thus be granted to individual tasks.

If in protected mode and the CPL is less than or equal to the current IOPL, the
processor allows all I/O operations to proceed. If the CPL is greater than the IOPL or
if the processor is operating in virtual-8086 mode, the processor checks the I/O
permission bit map to determine if access to a particular I/O port is allowed. Each bit
in the map corresponds to an I/O port byte address. For example, the control bit for
I/O port address 29H in the I/O address space is found at bit position 1 of the sixth
byte in the bit map. Before granting I/O access, the processor tests all the bits corre-
sponding to the I/O port being addressed. For a doubleword access, for example, the
processors tests the four bits corresponding to the four adjacent 8-bit port
addresses. If any tested bit is set, a general-protection exception (#GP) is signaled.
If all tested bits are clear, the I/O operation is allowed to proceed.

Because I/O port addresses are not necessarily aligned to word and doubleword
boundaries, the processor reads two bytes from the I/O permission bit map for every
access to an I/O port. To prevent exceptions from being generated when the ports
with the highest addresses are accessed, an extra byte needs to included in the TSS
immediately after the table. This byte must have all of its bits set, and it must be
within the segment limit.

It is not necessary for the I/O permission bit map to represent all the I/O addresses.
I/O addresses not spanned by the map are treated as if they had set bits in the map.
For example, if the TSS segment limit is 10 bytes past the bit-map base address, the
map has 11 bytes and the first 80 I/O ports are mapped. Higher addresses in the I/O
address space generate exceptions.

Figure 14-2. I/O Permission Bit Map

I/O Map Base

Task State Segment (TSS)

64H

31 24 23 0

1 1111111

I/O Permission Bit Map

0

I/O map base
must not
exceed DFFFH.

Last byte of
bitmap must be
followed by a
byte with all
bits set.
14-6 Vol. 1

INPUT/OUTPUT
If the I/O bit map base address is greater than or equal to the TSS segment limit,
there is no I/O permission map, and all I/O instructions generate exceptions when
the CPL is greater than the current IOPL.

14.6 ORDERING I/O
When controlling I/O devices it is often important that memory and I/O operations be
carried out in precisely the order programmed. For example, a program may write a
command to an I/O port, then read the status of the I/O device from another I/O
port. It is important that the status returned be the status of the device after it
receives the command, not before.

When using memory-mapped I/O, caution should be taken to avoid situations in
which the programmed order is not preserved by the processor. To optimize perfor-
mance, the processor allows cacheable memory reads to be reordered ahead of buff-
ered writes in most situations. Internally, processor reads (cache hits) can be
reordered around buffered writes. When using memory-mapped I/O, therefore, is
possible that an I/O read might be performed before the memory write of a previous
instruction. The recommended method of enforcing program ordering of memory-
mapped I/O accesses with the Pentium 4, Intel Xeon, and P6 family processors is to
use the MTRRs to make the memory mapped I/O address space uncacheable; for the
Pentium and Intel486 processors, either the #KEN pin or the PCD flags can be used
for this purpose (see Section 14.3.1, “Memory-Mapped I/O”).

When the target of a read or write is in an uncacheable region of memory, memory
reordering does not occur externally at the processor’s pins (that is, reads and writes
appear in-order). Designating a memory mapped I/O region of the address space as
uncacheable insures that reads and writes of I/O devices are carried out in program
order. See Chapter 11, “Memory Cache Control” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3A, for more information on using
MTRRs.

Another method of enforcing program order is to insert one of the serializing instruc-
tions, such as the CPUID instruction, between operations. See Chapter 8, “Multiple-
Processor Management” in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3A, for more information on serialization of instructions.

It should be noted that the chip set being used to support the processor (bus
controller, memory controller, and/or I/O controller) may post writes to uncacheable
memory which can lead to out-of-order execution of memory accesses. In situations
where out-of-order processing of memory accesses by the chip set can potentially
cause faulty memory-mapped I/O processing, code must be written to force synchro-
nization and ordering of I/O operations. Serializing instructions can often be used for
this purpose.

When the I/O address space is used instead of memory-mapped I/O, the situation is
different in two respects:
Vol. 1 14-7

INPUT/OUTPUT
• The processor never buffers I/O writes. Therefore, strict ordering of I/O
operations is enforced by the processor. (As with memory-mapped I/O, it is
possible for a chip set to post writes in certain I/O ranges.)

• The processor synchronizes I/O instruction execution with external bus activity
(see Table 14-1).

Table 14-1. I/O Instruction Serialization

Instruction Being
Executed

Processor Delays Execution of … Until Completion of …

Current
Instruction?

Next
Instruction? Pending Stores? Current Store?

IN Yes Yes

INS Yes Yes

REP INS Yes Yes

OUT Yes Yes Yes

OUTS Yes Yes Yes

REP OUTS Yes Yes Yes
14-8 Vol. 1

CHAPTER 15
PROCESSOR IDENTIFICATION AND

FEATURE DETERMINATION

When writing software intended to run on IA-32 processors, it is necessary to identify
the type of processor present in a system and the processor features that are avail-
able to an application.

15.1 USING THE CPUID INSTRUCTION
Use the CPUID instruction for processor identification in the Pentium M processor
family, Pentium 4 processor family, Intel Xeon processor family, P6 family, Pentium
processor, and later Intel486 processors. This instruction returns the family, model
and (for some processors) a brand string for the processor that executes the instruc-
tion. It also indicates the features that are present in the processor and give informa-
tion about the processors caches and TLB.

The ID flag (bit 21) in the EFLAGS register indicates support for the CPUID instruc-
tion. If a software procedure can set and clear this flag, the processor executing the
procedure supports the CPUID instruction. The CPUID instruction will cause the
invalid opcode exception (#UD) if executed on a processor that does not support it.

To obtain processor identification information, a source operand value is placed in the
EAX register to select the type of information to be returned. When the CPUID
instruction is executed, selected information is returned in the EAX, EBX, ECX, and
EDX registers. For a complete description of the CPUID instruction, tables indicating
values returned, and example code, see “CPUID—CPUID Identification” in Chapter 3
of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A.

15.1.1 Notes on Where to Start
For detailed application notes on the instruction, see AP-485, Intel Processor Identi-
fication and the CPUID Instruction (Order Number 241618). This publication provides
additional information and example source code for use in identifying IA-32 proces-
sors. It also contains guidelines for using the CPUID instruction to help maintain the
widest range of software compatibility. The following guidelines are among the most
important, and should always be followed when using the CPUID instruction to deter-
mine available features:
• Always begin by testing for the “GenuineIntel,” message in the EBX, EDX, and

ECX registers when the CPUID instruction is executed with EAX equal to 0. If the
processor is not genuine Intel, the feature identification flags may have different
meanings than are described in Intel documentation.
Vol. 1 15-1

PROCESSOR IDENTIFICATION AND FEATURE DETERMINATION
• Test feature identification flags individually and do not make assumptions about
undefined bits.

15.1.2 Identification of Earlier IA-32 Processors
The CPUID instruction is not available in earlier IA-32 processors up through the
earlier Intel486 processors. For these processors, several other architectural
features can be exploited to identify the processor.
The settings of bits 12 and 13 (IOPL), 14 (NT), and 15 (reserved) in the EFLAGS
register are different for Intel’s 32-bit processors than for the Intel 8086 and Intel
286 processors. By examining the settings of these bits (with the PUSHF/PUSHFD
and POP/POPFD instructions), an application program can determine whether the
processor is an 8086, Intel 286, or one of the Intel 32-bit processors:
• 8086 processor — Bits 12 through 15 of the EFLAGS register are always set.
• Intel 286 processor — Bits 12 through 15 are always clear in real-address mode.
• 32-bit processors — In real-address mode, bit 15 is always clear and bits 12

through 14 have the last value loaded into them. In protected mode, bit 15 is
always clear, bit 14 has the last value loaded into it, and the IOPL bits depends on
the current privilege level (CPL). The IOPL field can be changed only if the CPL
is 0.

Other EFLAG register bits that can be used to differentiate between the 32-bit
processors:
• Bit 18 (AC) — Implemented only on the Pentium 4, Intel Xeon, P6 family,

Pentium, and Intel486 processors. The inability to set or clear this bit distin-
guishes an Intel386 processor from the later IA-32 processors.

• Bit 21 (ID) — Determines if the processor is able to execute the CPUID
instruction. The ability to set and clear this bit indicates that it is a Pentium 4,
Intel Xeon, P6 family, Pentium, or later-version Intel486 processor.

To determine whether an x87 FPU or NPX is present in a system, applications can
write to the x87 FPU status and control registers using the FNINIT instruction and
then verify that the correct values are read back using the FNSTENV instruction.
After determining that an x87 FPU or NPX is present, its type can then be deter-
mined. In most cases, the processor type will determine the type of FPU or NPX;
however, an Intel386 processor is compatible with either an Intel 287 or Intel 387
math coprocessor.
The method the coprocessor uses to represent ∞ (after the execution of the FINIT,
FNINIT, or RESET instruction) indicates which coprocessor is present. The Intel 287
math coprocessor uses the same bit representation for +∞ and −∞; whereas, the
Intel 387 math coprocessor uses different representations for +∞ and −∞.
15-2 Vol. 1

APPENDIX A
EFLAGS CROSS-REFERENCE

A.1 EFLAGS AND INSTRUCTIONS
Table A-2 summarizes how the instructions affect the flags in the EFLAGS register.
The following codes describe how the flags are affected.

Table A-1. Codes Describing Flags

T Instruction tests flag.

M Instruction modifies flag (either sets or resets depending on operands).

0 Instruction resets flag.

1 Instruction sets flag.

— Instruction's effect on flag is undefined.

R Instruction restores prior value of flag.

Blank Instruction does not affect flag.

Table A-2. EFLAGS Cross-Reference

Instruction OF SF ZF AF PF CF TF IF DF NT RF

AAA — — — TM — M

AAD — M M — M —

AAM — M M — M —

AAS — — — TM — M

ADC M M M M M TM

ADD M M M M M M

AND 0 M M — M 0

ARPL M

BOUND

BSF/BSR — — M — — —

BSWAP

BT/BTS/BTR/BTC — — — — M

CALL
Vol. 1 A-1

EFLAGS CROSS-REFERENCE
CBW

CLC 0

CLD 0

CLI 0

CLTS

CMC M

CMOVcc T T T T T

CMP M M M M M M

CMPS M M M M M M T

CMPXCHG M M M M M M

CMPXCHG8B M

COMSID 0 0 M 0 M M

COMISS 0 0 M 0 M M

CPUID

CWD

DAA — M M TM M TM

DAS — M M TM M TM

DEC M M M M M

DIV — — — — — —

ENTER

ESC

FCMOVcc T T T

FCOMI, FCOMIP, FUCOMI,
FUCOMIP

0 0 M 0 M M

HLT

IDIV — — — — — —

IMUL M — — — — M

IN

INC M M M M M

INS T

INT 0 0

Table A-2. EFLAGS Cross-Reference (Contd.)

Instruction OF SF ZF AF PF CF TF IF DF NT RF
A-2 Vol. 1

EFLAGS CROSS-REFERENCE
INTO T 0 0

INVD

INVLPG

UCOMSID 0 0 M 0 M M

UCOMISS 0 0 M 0 M M

IRET R R R R R R R R R T

Jcc T T T T T

JCXZ

JMP

LAHF

LAR M

LDS/LES/LSS/LFS/LGS

LEA

LEAVE

LGDT/LIDT/LLDT/LMSW

LOCK

LODS T

LOOP

LOOPE/LOOPNE T

LSL M

LTR

MONITOR

MWAIT

MOV

MOV control, debug, test — — — — — —

MOVS T

MOVSX/MOVZX

MUL M — — — — M

NEG M M M M M M

NOP

NOT

Table A-2. EFLAGS Cross-Reference (Contd.)

Instruction OF SF ZF AF PF CF TF IF DF NT RF
Vol. 1 A-3

EFLAGS CROSS-REFERENCE
OR 0 M M — M 0

OUT

OUTS T

POP/POPA

POPF R R R R R R R R R R

PUSH/PUSHA/PUSHF

RCL/RCR 1 M TM

RCL/RCR count — TM

RDMSR

RDPMC

RDTSC

REP/REPE/REPNE

RET

ROL/ROR 1 M M

ROL/ROR count — M

RSM M M M M M M M M M M M

SAHF R R R R R

SAL/SAR/SHL/SHR 1 M M M — M M

SAL/SAR/SHL/SHR
count

— M M — M M

SBB M M M M M TM

SCAS M M M M M M T

SETcc T T T T T

SGDT/SIDT/SLDT/SMSW

SHLD/SHRD — M M — M M

STC 1

STD 1

STI 1

STOS T

STR

SUB M M M M M M

Table A-2. EFLAGS Cross-Reference (Contd.)

Instruction OF SF ZF AF PF CF TF IF DF NT RF
A-4 Vol. 1

EFLAGS CROSS-REFERENCE
TEST 0 M M — M 0

UD2

VERR/VERRW M

WAIT

WBINVD

WRMSR

XADD M M M M M M

XCHG

XLAT

XOR 0 M M — M 0

Table A-2. EFLAGS Cross-Reference (Contd.)

Instruction OF SF ZF AF PF CF TF IF DF NT RF
Vol. 1 A-5

APPENDIX B
EFLAGS CONDITION CODES

B.1 CONDITION CODES
Table B-1 lists condition codes that can be queried using CMOVcc, FCMOVcc, Jcc, and
SETcc. Condition codes refer to the setting of one or more status flags (CF, OF, SF, ZF,
and PF) in the EFLAGS register. In the table below:
• The “Mnemonic” column provides the suffix (cc) added to the instruction to

specify a test condition.
• “Condition Tested For” describes the targeted condition.
• “Instruction Subcode” provides the opcode suffix added to the main opcode to

specify the test condition.
• “Status Flags Setting” describes the flag setting.

Table B-1. EFLAGS Condition Codes

Mnemonic (cc) Condition Tested For
Instruction
Subcode Status Flags Setting

O Overflow 0000 OF = 1

NO No overflow 0001 OF = 0

B
NAE

Below
Neither above nor equal

0010 CF = 1

NB
AE

Not below
Above or equal

0011 CF = 0

E
Z

Equal
Zero

0100 ZF = 1

NE
NZ

Not equal
Not zero

0101 ZF = 0

BE
NA

Below or equal
Not above

0110 (CF OR ZF) = 1

NBE
A

Neither below nor equal
Above

0111 (CF OR ZF) = 0

S Sign 1000 SF = 1

NS No sign 1001 SF = 0

P
PE

Parity
Parity even

1010 PF = 1
Vol. 1 B-1

EFLAGS CONDITION CODES
Many of the test conditions are described in two different ways. For example, LE (less
or equal) and NG (not greater) describe the same test condition. Alternate
mnemonics are provided to make code more intelligible.

The terms “above” and “below” are associated with the CF flag and refer to the rela-
tion between two unsigned integer values. The terms “greater” and “less” are asso-
ciated with the SF and OF flags and refer to the relation between two signed integer
values.

NP
PO

No parity
Parity odd

1011 PF = 0

L
NGE

Less
Neither greater nor equal

1100 (SF XOR OF) = 1

NL
GE

Not less
Greater or equal

1101 (SF XOR OF) = 0

LE
NG

Less or equal
Not greater

1110 ((SF XOR OF) OR ZF) = 1

NLE
G

Neither less nor equal
Greater

1111 ((SF XOR OF) OR ZF) = 0

Table B-1. EFLAGS Condition Codes (Contd.)

Mnemonic (cc) Condition Tested For
Instruction
Subcode Status Flags Setting
B-2 Vol. 1

APPENDIX C
FLOATING-POINT EXCEPTIONS SUMMARY

C.1 OVERVIEW
This appendix shows which of the floating-point exceptions can be generated for:
• x87 FPU instructions — see Table C-2
• SSE instructions — see Table C-3
• SSE2 instructions — see Table C-4
• SSE3 instructions — see Table C-5
• SSE4 instructions — see Table C-6

Table C-1 lists types of floating-point exceptions that potentially can be generated by
the x87 FPU and by SSE/SSE2/SSE3 instructions.

The floating point exceptions shown in Table C-1 (except for #D and #IS) are defined
in IEEE Standard 754-1985 for Binary Floating-Point Arithmetic. See Section 4.9.1,
“Floating-Point Exception Conditions,” for a detailed discussion of floating-point
exceptions.

Table C-1. x87 FPU and SIMD Floating-Point Exceptions

Floating-
point
Exception Description

#IS Invalid-operation exception for stack underflow or stack overflow (can only be
generated for x87 FPU instructions)*

#IA or #I Invalid-operation exception for invalid arithmetic operands and unsupported
formats*

#D Denormal-operand exception

#Z Divide-by-zero exception

#O Numeric-overflow exception

#U Numeric-underflow exception

#P Inexact-result (precision) exception

NOTE:
* The x87 FPU instruction set generates two types of invalid-operation exceptions: #IS (stack

underflow or stack overflow) and #IA (invalid arithmetic operation due to invalid arithmetic
operands or unsupported formats). SSE/SSE2/SSE3 instructions potentially generate #I (invalid
operation exceptions due to invalid arithmetic operands or unsupported formats).
Vol. 1 C-1

FLOATING-POINT EXCEPTIONS SUMMARY
C.2 X87 FPU INSTRUCTIONS
Table C-2 lists the x87 FPU instructions in alphabetical order. For each instruction, it
summarizes the floating-point exceptions that the instruction can generate.

Table C-2. Exceptions Generated with x87 FPU Floating-Point Instructions

Mnemonic Instruction #IS #IA #D #Z #O #U #P

F2XM1 Exponential Y Y Y Y Y

FABS Absolute value Y

FADD(P) Add floating-point Y Y Y Y Y Y

FBLD BCD load Y

FBSTP BCD store and pop Y Y Y

FCHS Change sign Y

FCLEX Clear exceptions

FCMOVcc Floating-point conditional
move

Y

FCOM, FCOMP, FCOMPP Compare floating-point Y Y Y

FCOMI, FCOMIP, FUCOMI,
FUCOMIP

Compare floating-point and
set EFLAGS

Y Y Y

FCOS Cosine Y Y Y Y

FDECSTP Decrement stack pointer

FDIV(R)(P) Divide floating-point Y Y Y Y Y Y Y

FFREE Free register

FIADD Integer add Y Y Y Y Y Y

FICOM(P) Integer compare Y Y Y

FIDIV Integer divide Y Y Y Y Y Y

FIDIVR Integer divide reversed Y Y Y Y Y Y Y

FILD Integer load Y

FIMUL Integer multiply Y Y Y Y Y Y

FINCSTP Increment stack pointer

FINIT Initialize processor

FIST(P) Integer store Y Y Y

FISTTP Truncate to integer
(SSE3 instruction)

Y Y Y

FISUB(R) Integer subtract Y Y Y Y Y Y
C-2 Vol. 1

FLOATING-POINT EXCEPTIONS SUMMARY
FLD extended or stack Load floating-point Y

FLD single or double Load floating-point Y Y Y

FLD1 Load + 1.0 Y

FLDCW Load Control word Y Y Y Y Y Y Y

FLDENV Load environment Y Y Y Y Y Y Y

FLDL2E Load log2e Y

FLDL2T Load log210 Y

FLDLG2 Load log102 Y

FLDLN2 Load loge2 Y

FLDPI Load π Y

FLDZ Load + 0.0 Y

FMUL(P) Multiply floating-point Y Y Y Y Y Y

FNOP No operation

FPATAN Partial arctangent Y Y Y Y Y

FPREM Partial remainder Y Y Y Y

FPREM1 IEEE partial remainder Y Y Y Y

FPTAN Partial tangent Y Y Y Y Y

FRNDINT Round to integer Y Y Y Y

FRSTOR Restore state Y Y Y Y Y Y Y

FSAVE Save state

FSCALE Scale Y Y Y Y Y Y

FSIN Sine Y Y Y Y Y

FSINCOS Sine and cosine Y Y Y Y Y

FSQRT Square root Y Y Y Y

FST(P) stack or extended Store floating-point Y

FST(P) single or double Store floating-point Y Y Y Y Y

FSTCW Store control word

FSTENV Store environment

FSTSW (AX) Store status word

FSUB(R)(P) Subtract floating-point Y Y Y Y Y Y

FTST Test Y Y Y

Table C-2. Exceptions Generated with x87 FPU Floating-Point Instructions (Contd.)

Mnemonic Instruction #IS #IA #D #Z #O #U #P
Vol. 1 C-3

FLOATING-POINT EXCEPTIONS SUMMARY
C.3 SSE INSTRUCTIONS
Table C-3 lists SSE instructions with at least one of the following characteristics:
• have floating-point operands
• generate floating-point results
• read or write floating-point status and control information

The table also summarizes the floating-point exceptions that each instruction can
generate.

FUCOM(P)(P) Unordered compare floating-
point

Y Y Y

FWAIT CPU Wait

FXAM Examine

FXCH Exchange registers Y

FXTRACT Extract Y Y Y Y

FYL2X Logarithm Y Y Y Y Y Y Y

FYL2XP1 Logarithm epsilon Y Y Y Y Y Y

Table C-3. Exceptions Generated with SSE Instructions

Mnemonic Instruction #I #D #Z #O #U #P

ADDPS Packed add. Y Y Y Y Y

ADDSS Scalar add. Y Y Y Y Y

ANDNPS Packed logical INVERT and
AND.

ANDPS Packed logical AND.

CMPPS Packed compare. Y Y

CMPSS Scalar compare. Y Y

COMISS Scalar ordered compare lower
SP FP numbers and set the
status flags.

Y Y

CVTPI2PS Convert two 32-bit signed
integers from MM2/Mem to
two SP FP.

Y

Table C-2. Exceptions Generated with x87 FPU Floating-Point Instructions (Contd.)

Mnemonic Instruction #IS #IA #D #Z #O #U #P
C-4 Vol. 1

FLOATING-POINT EXCEPTIONS SUMMARY
CVTPS2PI Convert lower two SP FP from
XMM/Mem to two 32-bit
signed integers in MM using
rounding specified by MXCSR.

Y Y

CVTSI2SS Convert one 32-bit signed
integer from Integer Reg/Mem
to one SP FP.

Y

CVTSS2SI Convert one SP FP from
XMM/Mem to one 32-bit
signed integer using rounding
mode specified by MXCSR, and
move the result to an integer
register.

Y Y

CVTTPS2PI Convert two SP FP from
XMM2/Mem to two 32-bit
signed integers in MM1 using
truncate.

Y Y

CVTTSS2SI Convert lowest SP FP from
XMM/Mem to one 32-bit
signed integer using truncate,
and move the result to an
integer register.

Y Y

DIVPS Packed divide. Y Y Y Y Y Y

DIVSS Scalar divide. Y Y Y Y Y Y

LDMXCSR Load control/status word.

MAXPS Packed maximum. Y Y

MAXSS Scalar maximum. Y Y

MINPS Packed minimum. Y Y

MINSS Scalar minimum. Y Y

MOVAPS Move four packed SP values.

MOVHLPS Move packed SP high to low.

MOVHPS Move two packed SP values
between memory and the high
half of an XMM register.

MOVLHPS Move packed SP low to high.

Table C-3. Exceptions Generated with SSE Instructions (Contd.)

Mnemonic Instruction #I #D #Z #O #U #P
Vol. 1 C-5

FLOATING-POINT EXCEPTIONS SUMMARY
MOVLPS Move two packed SP values
between memory and the low
half of an XMM register.

MOVMSKPS Move sign mask to r32.

MOVSS Move scalar SP number
between an XMM register and
memory or a second XMM
register.

MOVUPS Move unaligned packed data.

MULPS Packed multiply. Y Y Y Y Y

MULSS Scalar multiply. Y Y Y Y Y

ORPS Packed OR.

RCPPS Packed reciprocal.

RCPSS Scalar reciprocal.

RSQRTPS Packed reciprocal square root.

RSQRTSS Scalar reciprocal square root.

SHUFPS Shuffle.

SQRTPS Square Root of the packed SP
FP numbers.

Y Y Y

SQRTSS Scalar square root. Y Y Y

STMXCSR Store control/status word.

SUBPS Packed subtract. Y Y Y Y Y

SUBSS Scalar subtract. Y Y Y Y Y

UCOMISS Unordered compare lower SP
FP numbers and set the status
flags.

Y Y

UNPCKHPS Interleave SP FP numbers.

UNPCKLPS Interleave SP FP numbers.

XORPS Packed XOR.

Table C-3. Exceptions Generated with SSE Instructions (Contd.)

Mnemonic Instruction #I #D #Z #O #U #P
C-6 Vol. 1

FLOATING-POINT EXCEPTIONS SUMMARY
C.4 SSE2 INSTRUCTIONS
Table C-4 lists SSE2 instructions with at least one of the following characteristics:
• floating-point operands
• floating point results

For each instruction, the table summarizes the floating-point exceptions that the
instruction can generate.

Table C-4. Exceptions Generated with SSE2 Instructions

Instruction Description #I #D #Z #O #U #P

ADDPD Add two packed DP FP
numbers from XMM2/Mem to
XMM1.

Y Y Y Y Y

ADDSD Add the lower DP FP number
from XMM2/Mem to XMM1.

Y Y Y Y Y

ANDNPD Invert the 128 bits in
XMM1and then AND the result
with 128 bits from
XMM2/Mem.

ANDPD Logical And of 128 bits from
XMM2/Mem to XMM1 register.

CMPPD Compare packed DP FP
numbers from XMM2/Mem to
packed DP FP numbers in
XMM1 register using imm8 as
predicate.

Y Y

CMPSD Compare lowest DP FP number
from XMM2/Mem to lowest DP
FP number in XMM1 register
using imm8 as predicate.

Y Y

COMISD Compare lower DP FP number
in XMM1 register with lower
DP FP number in XMM2/Mem
and set the status flags
accordingly

Y Y

CVTDQ2PS Convert four 32-bit signed
integers from XMM/Mem to
four SP FP.

Y

CVTPS2DQ Convert four SP FP from
XMM/Mem to four 32-bit
signed integers in XMM using
rounding specified by MXCSR.

Y Y
Vol. 1 C-7

FLOATING-POINT EXCEPTIONS SUMMARY
CVTTPS2DQ Convert four SP FP from
XMM/Mem to four 32-bit
signed integers in XMM using
truncate.

Y Y

CVTDQ2PD Convert two 32-bit signed
integers in XMM2/Mem to 2
DP FP in xmm1 using rounding
specified by MXCSR.

CVTPD2DQ Convert two DP FP from
XMM2/Mem to two 32-bit
signed integers in xmm1 using
rounding specified by MXCSR.

Y Y

CVTPD2PI Convert lower two DP FP from
XMM/Mem to two 32-bit
signed integers in MM using
rounding specified by MXCSR.

Y Y

CVTPD2PS Convert two DP FP to two SP
FP.

Y Y Y Y Y

CVTPI2PD Convert two 32-bit signed
integers from MM2/Mem to
two DP FP.

CVTPS2PD Convert two SP FP to two DP
FP.

Y Y

CVTSD2SI Convert one DP FP from
XMM/Mem to one 32 bit
signed integer using rounding
mode specified by MXCSR, and
move the result to an integer
register.

Y Y

CVTSD2SS Convert scalar DP FP to scalar
SP FP.

Y Y Y Y Y

CVTSI2SD Convert one 32-bit signed
integer from Integer Reg/Mem
to one DP FP.

CVTSS2SD Convert scalar SP FP to scalar
DP FP.

Y Y

Table C-4. Exceptions Generated with SSE2 Instructions (Contd.)

Instruction Description #I #D #Z #O #U #P
C-8 Vol. 1

FLOATING-POINT EXCEPTIONS SUMMARY
CVTTPD2DQ Convert two DP FP from
XMM2/Mem to two 32-bit
signed integers in XMM1 using
truncate.

Y Y

CVTTPD2PI Convert two DP FP from
XMM2/Mem to two 32-bit
signed integers in MM1 using
truncate.

Y Y

CVTTSD2SI Convert lowest DP FP from
XMM/Mem to one 32 bit
signed integer using truncate,
and move the result to an
integer register.

Y Y

DIVPD Divide packed DP FP numbers
in XMM1 by XMM2/Mem

Y Y Y Y Y Y

DIVSD Divide lower DP FP numbers in
XMM1 by XMM2/Mem

Y Y Y Y Y Y

MAXPD Return the maximum DP FP
numbers between XMM2/Mem
and XMM1.

Y Y

MAXSD Return the maximum DP FP
number between the lower DP
FP numbers from XMM2/Mem
and XMM1.

Y Y

MINPD Return the minimum DP
numbers between XMM2/Mem
and XMM1.

Y Y

MINSD Return the minimum DP FP
number between the lowest
DP FP numbers from
XMM2/Mem and XMM1.

Y Y

MOVAPD Move 128 bits representing 2
packed DP data from
XMM2/Mem to XMM1 register.

Or Move 128 bits representing
2 packed DP from XMM1
register to XMM2/Mem.

Table C-4. Exceptions Generated with SSE2 Instructions (Contd.)

Instruction Description #I #D #Z #O #U #P
Vol. 1 C-9

FLOATING-POINT EXCEPTIONS SUMMARY
MOVHPD Move 64 bits representing one
DP operand from Mem to
upper field of XMM register.

Or move 64 bits representing
one DP operand from upper
field of XMM register to Mem.

MOVLPD Move 64 bits representing one
DP operand from Mem to
lower field of XMM register.

Or move 64 bits representing
one DP operand from lower
field of XMM register to Mem.

MOVMSKPD Move the sign mask to r32.

MOVSD Move 64 bits representing one
scalar DP operand from
XMM2/Mem to XMM1 register.

Or move 64 bits representing
one scalar DP operand from
XMM1 register to XMM2/Mem.

MOVUPD Move 128 bits representing 2
DP data from XMM2/Mem to
XMM1 register.

Or move 128 bits representing
2 DP data from XMM1 register
to XMM2/Mem.

MULPD Multiply packed DP FP
numbers in XMM2/Mem to
XMM1.

Y Y Y Y Y

MULSD Multiply the lowest DP FP
number in XMM2/Mem to
XMM1.

Y Y Y Y Y

ORPD OR 128 bits from XMM2/Mem
to XMM1 register.

SHUFPD Shuffle Double.

SQRTPD Square Root Packed Double-
Precision

Y Y Y

SQRTSD Square Root Scaler Double-
Precision

Y Y Y

Table C-4. Exceptions Generated with SSE2 Instructions (Contd.)

Instruction Description #I #D #Z #O #U #P
C-10 Vol. 1

FLOATING-POINT EXCEPTIONS SUMMARY
C.5 SSE3 INSTRUCTIONS
Table C-5 lists the SSE3 instructions that have at least one of the following
characteristics:
• have floating-point operands
• generate floating-point results

For each instruction, the table summarizes the floating-point exceptions that the
instruction can generate.

SUBPD Subtract Packed Double-
Precision.

Y Y Y Y Y

SUBSD Subtract Scaler Double-
Precision.

Y Y Y Y Y

UCOMISD Compare lower DP FP number
in XMM1 register with lower
DP FP number in XMM2/Mem
and set the status flags
accordingly.

Y Y

UNPCKHPD Interleaves DP FP numbers
from the high halves of XMM1
and XMM2/Mem into XMM1
register.

UNPCKLPD Interleaves DP FP numbers
from the low halves of XMM1
and XMM2/Mem into XMM1
register.

XORPD XOR 128 bits from
XMM2/Mem to XMM1 register.

Table C-5. Exceptions Generated with SSE3 Instructions

Instruction Description #I #D #Z #O #U #P

ADDSUBPD Add /Sub packed DP FP
numbers from XMM2/Mem to
XMM1.

Y Y Y Y Y

ADDSUBPS Add /Sub packed SP FP
numbers from XMM2/Mem to
XMM1.

Y Y Y Y Y

Table C-4. Exceptions Generated with SSE2 Instructions (Contd.)

Instruction Description #I #D #Z #O #U #P
Vol. 1 C-11

FLOATING-POINT EXCEPTIONS SUMMARY
C.6 SSSE3 INSTRUCTIONS
SSSE3 instructions operate on integer data elements. They do not generate floating-
point exceptions.

C.7 SSE4 INSTRUCTIONS
Table C-6 lists the SSE4.1 instructions that generate floating-point results.

For each instruction, the table summarizes the floating-point exceptions that the
instruction can generate.

FISTTP See Table C-2. Y Y

HADDPD Add horizontally packed DP
FP numbers XMM2/Mem to
XMM1.

Y Y Y Y Y

HADDPS Add horizontally packed SP
FP numbers XMM2/Mem to
XMM1

Y Y Y Y Y

HSUBPD Sub horizontally packed DP
FP numbers XMM2/Mem to
XMM1

Y Y Y Y Y

HSUBPS Sub horizontally packed SP
FP numbers XMM2/Mem to
XMM1

Y Y Y Y Y

LDDQU Load unaligned integer 128-
bit.

MOVDDUP Move 64 bits representing
one DP data from
XMM2/Mem to XMM1 and
duplicate.

MOVSHDUP Move 128 bits representing 4
SP data from XMM2/Mem to
XMM1 and duplicate high.

MOVSLDUP Move 128 bits representing 4
SP data from XMM2/Mem to
XMM1 and duplicate low.

Table C-5. Exceptions Generated with SSE3 Instructions (Contd.)

Instruction Description #I #D #Z #O #U #P
C-12 Vol. 1

FLOATING-POINT EXCEPTIONS SUMMARY
Other SSE4.1 instructions and SSE4.2 instructions do not generate floating-point
exceptions.

Table C-6. Exceptions Generated with SSE4 Instructions

Instruction Description #I #D #Z #O #U #P

DPPD DP FP dot product. Y Y Y Y Y

DPPS SP FP dot product. Y Y Y Y Y

ROUNDPD Round packed DP FP values
to integer FP values.

Y Y1

NOTES:
1. If bit 3 of immediate operand is 0

ROUNDPS Round packed SP FP values
to integer FP values.

Y Y1

ROUNDSD Round scalar DP FP value to
integer FP value.

Y Y1

ROUNDSS Round scalar SP FP value to
integer FP value.

Y Y1
Vol. 1 C-13

APPENDIX D
GUIDELINES FOR WRITING X87 FPU

EXCEPTION HANDLERS

As described in Chapter 8, “Programming with the x87 FPU,” the IA-32 Architecture
supports two mechanisms for accessing exception handlers to handle unmasked x87
FPU exceptions: native mode and MS-DOS compatibility mode. The primary purpose
of this appendix is to provide detailed information to help software engineers design
and write x87 FPU exception-handling facilities to run on PC systems that use the
MS-DOS compatibility mode1 for handling x87 FPU exceptions. Some of the informa-
tion in this appendix will also be of interest to engineers who are writing native-mode
x87 FPU exception handlers. The information provided is as follows:
• Discussion of the origin of the MS-DOS x87 FPU exception handling mechanism

and its relationship to the x87 FPU’s native exception handling mechanism.
• Description of the IA-32 flags and processor pins that control the MS-DOS x87

FPU exception handling mechanism.
• Description of the external hardware typically required to support MS-DOS

exception handling mechanism.
• Description of the x87 FPU’s exception handling mechanism and the typical

protocol for x87 FPU exception handlers.
• Code examples that demonstrate various levels of x87 FPU exception handlers.
• Discussion of x87 FPU considerations in multitasking environments.
• Discussion of native mode x87 FPU exception handling.

The information given is oriented toward the most recent generations of IA-32
processors, starting with the Intel486. It is intended to augment the reference infor-
mation given in Chapter 8, “Programming with the x87 FPU.”

A more extensive version of this appendix is available in the application note AP-578,
Software and Hardware Considerations for x87 FPU Exception Handlers for Intel
Architecture Processors (Order Number 243291), which is available from Intel.

D.1 MS-DOS COMPATIBILITY SUB-MODE FOR HANDLING
X87 FPU EXCEPTIONS

The first generations of IA-32 processors (starting with the Intel 8086 and 8088
processors and going through the Intel 286 and Intel386 processors) did not have an

1 Microsoft Windows* 95 and Windows 3.1 (and earlier versions) operating systems use almost
the same x87 FPU exception handling interface as MS-DOS. The recommendations in this appen-
dix for a MS-DOS compatible exception handler thus apply to all three operating systems.
Vol. 1 D-1

GUIDELINES FOR WRITING X87 FPU EXCEPTION HANDLERS
on-chip floating-point unit. Instead, floating-point capability was provided on a sepa-
rate numeric coprocessor chip. The first of these numeric coprocessors was the Intel
8087, which was followed by the Intel 287 and Intel 387 numeric coprocessors.

To allow the 8087 to signal floating-point exceptions to its companion 8086 or 8088,
the 8087 has an output pin, INT, which it asserts when an unmasked floating-point
exception occurs. The designers of the 8087 recommended that the output from this
pin be routed through a programmable interrupt controller (PIC) such as the Intel
8259A to the INTR pin of the 8086 or 8088. The accompanying interrupt vector
number could then be used to access the floating-point exception handler.

However, the original IBM* PC design and MS-DOS operating system used a different
mechanism for handling the INT output from the 8087. It connected the INT pin
directly to the NMI input pin of the 8086 or 8088. The NMI interrupt handler then had
to determine if the interrupt was caused by a floating-point exception or another NMI
event. This mechanism is the origin of what is now called the “MS-DOS compatibility
mode.” The decision to use this latter floating-point exception handling mechanism
came about because when the IBM PC was first designed, the 8087 was not available.
When the 8087 did become available, other functions had already been assigned to
the eight inputs to the PIC. One of these functions was a BIOS video interrupt, which
was assigned to interrupt number 16 for the 8086 and 8088.

The Intel 286 processor created the “native mode” for handling floating-point excep-
tions by providing a dedicated input pin (ERROR#) for receiving floating-point excep-
tion signals and a dedicated interrupt number, 16. Interrupt 16 was used to signal
floating-point errors (also called math faults). It was intended that the ERROR# pin
on the Intel 286 be connected to a corresponding ERROR# pin on the Intel 287
numeric coprocessor. When the Intel 287 signals a floating-point exception using this
mechanism, the Intel 286 generates an interrupt 16, to invoke the floating-point
exception handler.

To maintain compatibility with existing PC software, the native floating-point excep-
tion handling mode of the Intel 286 and 287 was not used in the IBM PC AT system
design. Instead, the ERROR# pin on the Intel 286 was tied permanently high, and
the ERROR# pin from the Intel 287 was routed to a second (cascaded) PIC. The
resulting output of this PIC was routed through an exception handler and eventually
caused an interrupt 2 (NMI interrupt). Here the NMI interrupt was shared with IBM
PC AT’s new parity checking feature. Interrupt 16 remained assigned to the BIOS
video interrupt handler. The external hardware for the MS-DOS compatibility mode
must prevent the Intel 286 processor from executing past the next x87 FPU instruc-
tion when an unmasked exception has been generated. To do this, it asserts the
BUSY# signal into the Intel 286 when the ERROR# signal is asserted by the Intel 287.

The Intel386 processor and its companion Intel 387 numeric coprocessor provided
the same hardware mechanism for signaling and handling floating-point exceptions
as the Intel 286 and 287 processors. And again, to maintain compatibility with
existing MS-DOS software, basically the same MS-DOS compatibility floating-point
exception handling mechanism that was used in the IBM PC AT was used in PCs based
on the Intel386 processor.
D-2 Vol. 1

GUIDELINES FOR WRITING X87 FPU EXCEPTION HANDLERS
D.2 IMPLEMENTATION OF THE MS-DOS* COMPATIBILITY
SUB-MODE IN THE INTEL486™, PENTIUM®, AND P6
PROCESSOR FAMILY, AND PENTIUM® 4 PROCESSORS

Beginning with the Intel486™ processor, the IA-32 architecture provided a dedicated
mechanism for enabling the MS-DOS compatibility mode for x87 FPU exceptions and
for generating external x87 FPU-exception signals while operating in this mode. The
following sections describe the implementation of the MS-DOS compatibility mode in
the Intel486 and Pentium processors and in the P6 family and Pentium 4 processors.
Also described is the recommended external hardware to support this mode of oper-
ation.

D.2.1 MS-DOS* Compatibility Sub-mode in the Intel486™ and
Pentium® Processors

In the Intel486 processor, several things were done to enhance and speed up the
numeric coprocessor, now called the floating-point unit (x87 FPU). The most impor-
tant enhancement was that the x87 FPU was included in the same chip as the
processor, for increased speed in x87 FPU computations and reduced latency for x87
FPU exception handling. Also, for the first time, the MS-DOS compatibility mode was
built into the chip design, with the addition of the NE bit in control register CR0 and
the addition of the FERR# (Floating-point ERRor) and IGNNE# (IGNore Numeric
Error) pins.

The NE bit selects the native x87 FPU exception handling mode (NE = 1) or the
MS-DOS compatibility mode (NE = 0). When native mode is selected, all signaling of
floating-point exceptions is handled internally in the Intel486 chip, resulting in the
generation of an interrupt 16.

When MS-DOS compatibility mode is selected, the FERRR# and IGNNE# pins are
used to signal floating-point exceptions. The FERR# output pin, which replaces the
ERROR# pin from the previous generations of IA-32 numeric coprocessors, is
connected to a PIC. A new input signal, IGNNE#, is provided to allow the x87 FPU
exception handler to execute x87 FPU instructions, if desired, without first clearing
the error condition and without triggering the interrupt a second time. This IGNNE#
feature is needed to replicate the capability that was provided on MS-DOS compat-
ible Intel 286 and Intel 287 and Intel386 and Intel 387 systems by turning off the
BUSY# signal, when inside the x87 FPU exception handler, before clearing the error
condition.

Note that Intel, in order to provide Intel486 processors for market segments that had
no need for an x87 FPU, created the “SX” versions. These Intel486 SX processors did
not contain the floating-point unit. Intel also produced Intel 487 SX processors for
end users who later decided to upgrade to a system with an x87 FPU. These Intel 487
SX processors are similar to standard Intel486 processors with a working x87 FPU on
board.
Vol. 1 D-3

GUIDELINES FOR WRITING X87 FPU EXCEPTION HANDLERS
Thus, the external circuitry necessary to support the MS-DOS compatibility mode for
Intel 487 SX processors is the same as for standard Intel486 DX processors.

The Pentium, P6 family, and Pentium 4 processors offer the same mechanism (the NE
bit and the FERR# and IGNNE# pins) as the Intel486 processors for generating x87
FPU exceptions in MS-DOS compatibility mode. The actions of these mechanisms are
slightly different and more straightforward for the P6 family and Pentium 4 proces-
sors, as described in Section D.2.2, “MS-DOS* Compatibility Sub-mode in the P6
Family and Pentium® 4 Processors.”

For Pentium, P6 family, and Pentium 4 processors, it is important to note that the
special DP (Dual Processing) mode for Pentium processors and also the more general
Intel MultiProcessor Specification for systems with multiple Pentium, P6 family, or
Pentium 4 processors support x87 FPU exception handling only in the native mode.
Intel does not recommend using the MS-DOS compatibility x87 FPU mode for
systems using more than one processor.

D.2.1.1 Basic Rules: When FERR# Is Generated
When MS-DOS compatibility mode is enabled for the Intel486 or Pentium processors
(NE bit is set to 0) and the IGNNE# input pin is de-asserted, the FERR# signal is
generated as follows:

1. When an x87 FPU instruction causes an unmasked x87 FPU exception, the
processor (in most cases) uses a “deferred” method of reporting the error. This
means that the processor does not respond immediately, but rather freezes just
before executing the next WAIT or x87 FPU instruction (except for “no-wait”
instructions, which the x87 FPU executes regardless of an error condition).

2. When the processor freezes, it also asserts the FERR# output.

3. The frozen processor waits for an external interrupt, which must be supplied by
external hardware in response to the FERR# assertion.

4. In MS-DOS compatibility systems, FERR# is fed to the IRQ13 input in the
cascaded PIC. The PIC generates interrupt 75H, which then branches to interrupt
2, as described earlier in this appendix for systems using the Intel 286 and Intel
287 or Intel386 and Intel 387 processors.

The deferred method of error reporting is used for all exceptions caused by the basic
arithmetic instructions (including FADD, FSUB, FMUL, FDIV, FSQRT, FCOM and
FUCOM), for precision exceptions caused by all types of x87 FPU instructions, and for
numeric underflow and overflow exceptions caused by all types of x87 FPU instruc-
tions except stores to memory.

Some x87 FPU instructions with some x87 FPU exceptions use an “immediate”
method of reporting errors. Here, the FERR# is asserted immediately, at the time
that the exception occurs. The immediate method of error reporting is used for x87
FPU stack fault, invalid operation and denormal exceptions caused by all transcen-
dental instructions, FSCALE, FXTRACT, FPREM and others, and all exceptions (except
precision) when caused by x87 FPU store instructions. Like deferred error reporting,
D-4 Vol. 1

GUIDELINES FOR WRITING X87 FPU EXCEPTION HANDLERS
immediate error reporting will cause the processor to freeze just before executing
the next WAIT or x87 FPU instruction if the error condition has not been cleared by
that time.

Note that in general, whether deferred or immediate error reporting is used for an
x87 FPU exception depends both on which exception occurred and which instruction
caused that exception. A complete specification of these cases, which applies to both
the Pentium and the Intel486 processors, is given in Section 5.1.21 in the Pentium
Processor Family Developer’s Manual: Volume 1.

If NE = 0 but the IGNNE# input is active while an unmasked x87 FPU exception is in
effect, the processor disregards the exception, does not assert FERR#, and
continues. If IGNNE# is then de-asserted and the x87 FPU exception has not been
cleared, the processor will respond as described above. (That is, an immediate
exception case will assert FERR# immediately. A deferred exception case will assert
FERR# and freeze just before the next x87 FPU or WAIT instruction.) The assertion of
IGNNE# is intended for use only inside the x87 FPU exception handler, where it is
needed if one wants to execute non-control x87 FPU instructions for diagnosis,
before clearing the exception condition. When IGNNE# is asserted inside the excep-
tion handler, a preceding x87 FPU exception has already caused FERR# to be
asserted, and the external interrupt hardware has responded, but IGNNE# assertion
still prevents the freeze at x87 FPU instructions. Note that if IGNNE# is left active
outside of the x87 FPU exception handler, additional x87 FPU instructions may be
executed after a given instruction has caused an x87 FPU exception. In this case, if
the x87 FPU exception handler ever did get invoked, it could not determine which
instruction caused the exception.

To properly manage the interface between the processor’s FERR# output, its IGNNE#
input, and the IRQ13 input of the PIC, additional external hardware is needed. A
recommended configuration is described in the following section.

D.2.1.2 Recommended External Hardware to Support the MS-DOS*
Compatibility Sub-mode

Figure D-1 provides an external circuit that will assure proper handling of FERR# and
IGNNE# when an x87 FPU exception occurs. In particular, it assures that IGNNE# will
be active only inside the x87 FPU exception handler without depending on the order
of actions by the exception handler. Some hardware implementations have been less
robust because they have depended on the exception handler to clear the x87 FPU
exception interrupt request to the PIC (FP_IRQ signal) before the handler causes
FERR# to be de-asserted by clearing the exception from the x87 FPU itself.
Figure D-2 shows the details of how IGNNE# will behave when the circuit in
Figure D-1 is implemented. The temporal regions within the x87 FPU exception
handler activity are described as follows:

1. The FERR# signal is activated by an x87 FPU exception and sends an interrupt
request through the PIC to the processor’s INTR pin.
Vol. 1 D-5

GUIDELINES FOR WRITING X87 FPU EXCEPTION HANDLERS
2. During the x87 FPU interrupt service routine (exception handler) the processor
will need to clear the interrupt request latch (Flip Flop #1). It may also want to
execute non-control x87 FPU instructions before the exception is cleared from the
x87 FPU. For this purpose the IGNNE# must be driven low. Typically in the PC
environment an I/O access to Port 0F0H clears the external x87 FPU exception
interrupt request (FP_IRQ). In the recommended circuit, this access also is used
to activate IGNNE#. With IGNNE# active, the x87 FPU exception handler may
execute any x87 FPU instruction without being blocked by an active x87 FPU
exception.

3. Clearing the exception within the x87 FPU will cause the FERR# signal to be
deactivated and then there is no further need for IGNNE# to be active. In the
recommended circuit, the deactivation of FERR# is used to deactivate IGNNE#. If
another circuit is used, the software and circuit together must assure that
IGNNE# is deactivated no later than the exit from the x87 FPU exception handler.
D-6 Vol. 1

GUIDELINES FOR WRITING X87 FPU EXCEPTION HANDLERS
In the circuit in Figure D-1, when the x87 FPU exception handler accesses I/O port
0F0H it clears the IRQ13 interrupt request output from Flip Flop #1 and also clocks
out the IGNNE# signal (active) from Flip Flop #2. So the handler can activate
IGNNE#, if needed, by doing this 0F0H access before clearing the x87 FPU exception
condition (which de-asserts FERR#).

However, the circuit does not depend on the order of actions by the x87 FPU excep-
tion handler to guarantee the correct hardware state upon exit from the handler. Flip
Flop #2, which drives IGNNE# to the processor, has its CLEAR input attached to the
inverted FERR#. This ensures that IGNNE# can never be active when FERR# is inac-

Figure D-1. Recommended Circuit for MS-DOS Compatibility x87 FPU
Exception Handling
Vol. 1 D-7

GUIDELINES FOR WRITING X87 FPU EXCEPTION HANDLERS
tive. So if the handler clears the x87 FPU exception condition before the 0F0H
access, IGNNE# does not get activated and left on after exit from the handler.

D.2.1.3 No-Wait x87 FPU Instructions Can Get x87 FPU Interrupt in
Window

The Pentium and Intel486 processors implement the “no-wait” floating-point instruc-
tions (FNINIT, FNCLEX, FNSTENV, FNSAVE, FNSTSW, FNSTCW, FNENI, FNDISI or
FNSETPM) in the MS-DOS compatibility mode in the following manner. (See Section
8.3.11, “x87 FPU Control Instructions,” and Section 8.3.12, “Waiting vs. Non-waiting
Instructions,” for a discussion of the no-wait instructions.)

If an unmasked numeric exception is pending from a preceding x87 FPU instruction,
a member of the no-wait class of instructions will, at the beginning of its execution,
assert the FERR# pin in response to that exception just like other x87 FPU instruc-
tions, but then, unlike the other x87 FPU instructions, FERR# will be de-asserted.
This de-assertion was implemented to allow the no-wait class of instructions to
proceed without an interrupt due to any pending numeric exception. However, the
brief assertion of FERR# is sufficient to latch the x87 FPU exception request into most
hardware interface implementations (including Intel’s recommended circuit).

All the x87 FPU instructions are implemented such that during their execution, there
is a window in which the processor will sample and accept external interrupts. If
there is a pending interrupt, the processor services the interrupt first before
resuming the execution of the instruction. Consequently, it is possible that the no-
wait floating-point instruction may accept the external interrupt caused by it’s own
assertion of the FERR# pin in the event of a pending unmasked numeric exception,

Figure D-2. Behavior of Signals During x87 FPU Exception Handling

0F0H Address
 Decode
D-8 Vol. 1

GUIDELINES FOR WRITING X87 FPU EXCEPTION HANDLERS
which is not an explicitly documented behavior of a no-wait instruction. This process
is illustrated in Figure D-3.

Figure D-3 assumes that a floating-point instruction that generates a “deferred”
error (as defined in the Section D.2.1.1, “Basic Rules: When FERR# Is Generated”),
which asserts the FERR# pin only on encountering the next floating-point instruction,
causes an unmasked numeric exception. Assume that the next floating-point instruc-
tion following this instruction is one of the no-wait floating-point instructions. The
FERR# pin is asserted by the processor to indicate the pending exception on encoun-
tering the no-wait floating-point instruction. After the assertion of the FERR# pin the
no-wait floating-point instruction opens a window where the pending external inter-
rupts are sampled.

Then there are two cases possible depending on the timing of the receipt of the inter-
rupt via the INTR pin (asserted by the system in response to the FERR# pin) by the
processor.

Case 1 If the system responds to the assertion of FERR# pin by the no-wait
floating-point instruction via the INTR pin during this window then
the interrupt is serviced first, before resuming the execution of the
no-wait floating-point instruction.

Case 2 If the system responds via the INTR pin after the window has closed
then the interrupt is recognized only at the next instruction boundary.

Figure D-3. Timing of Receipt of External Interrupt

Assertion of FERR#

Exception Generating
Floating-Point

Instruction

by the Processor

System

Assertion of INTR Pin
by the System

Case 1

Case 2

Start of the “No-Wait”
Floating-Point

Instruction

External Interrupt
Sampling Window

Window Closed

Dependent
Delay
Vol. 1 D-9

GUIDELINES FOR WRITING X87 FPU EXCEPTION HANDLERS
There are two other ways, in addition to Case 1 above, in which a no-wait floating-
point instruction can service a numeric exception inside its interrupt window. First,
the first floating-point error condition could be of the “immediate” category (as
defined in Section D.2.1.1, “Basic Rules: When FERR# Is Generated”) that asserts
FERR# immediately. If the system delay before asserting INTR is long enough, rela-
tive to the time elapsed before the no-wait floating-point instruction, INTR can be
asserted inside the interrupt window for the latter. Second, consider two no-wait x87
FPU instructions in close sequence, and assume that a previous x87 FPU instruction
has caused an unmasked numeric exception. Then if the INTR timing is too long for
an FERR# signal triggered by the first no-wait instruction to hit the first instruction’s
interrupt window, it could catch the interrupt window of the second.

The possible malfunction of a no-wait x87 FPU instruction explained above cannot
happen if the instruction is being used in the manner for which Intel originally
designed it. The no-wait instructions were intended to be used inside the x87 FPU
exception handler, to allow manipulation of the x87 FPU before the error condition is
cleared, without hanging the processor because of the x87 FPU error condition, and
without the need to assert IGNNE#. They will perform this function correctly, since
before the error condition is cleared, the assertion of FERR# that caused the x87 FPU
error handler to be invoked is still active. Thus the logic that would assert FERR#
briefly at a no-wait instruction causes no change since FERR# is already asserted.
The no-wait instructions may also be used without problem in the handler after the
error condition is cleared, since now they will not cause FERR# to be asserted at all.

If a no-wait instruction is used outside of the x87 FPU exception handler, it may
malfunction as explained above, depending on the details of the hardware interface
implementation and which particular processor is involved. The actual interrupt
inside the window in the no-wait instruction may be blocked by surrounding it with
the instructions: PUSHFD, CLI, no-wait, then POPFD. (CLI blocks interrupts, and the
push and pop of flags preserves and restores the original value of the interrupt flag.)
However, if FERR# was triggered by the no-wait, its latched value and the PIC
response will still be in effect. Further code can be used to check for and correct such
a condition, if needed. Section D.3.6, “Considerations When x87 FPU Shared
Between Tasks,” discusses an important example of this type of problem and gives a
solution.

D.2.2 MS-DOS* Compatibility Sub-mode in the P6 Family
and Pentium® 4 Processors

When bit NE = 0 in CR0, the MS-DOS compatibility mode of the P6 family and
Pentium 4 processors provides FERR# and IGNNE# functionality that is almost iden-
tical to the Intel486 and Pentium processors. The same external hardware described
in Section D.2.1.2, “Recommended External Hardware to Support the MS-DOS*
Compatibility Sub-mode,” is recommended for the P6 family and Pentium 4 proces-
sors as well as the two previous generations. The only change to MS-DOS compati-
bility x87 FPU exception handling with the P6 family and Pentium 4 processors is that
all exceptions for all x87 FPU instructions cause immediate error reporting. That is,
D-10 Vol. 1

GUIDELINES FOR WRITING X87 FPU EXCEPTION HANDLERS
FERR# is asserted as soon as the x87 FPU detects an unmasked exception; there are
no cases in which error reporting is deferred to the next x87 FPU or WAIT instruction.

(As is discussed in Section D.2.1.1, “Basic Rules: When FERR# Is Generated,” most
exception cases in the Intel486 and Pentium processors are of the deferred type.)

Although FERR# is asserted immediately upon detection of an unmasked x87 FPU
error, this certainly does not mean that the requested interrupt will always be
serviced before the next instruction in the code sequence is executed. To begin with,
the P6 family and Pentium 4 processors execute several instructions simultaneously.
There also will be a delay, which depends on the external hardware implementation,
between the FERR# assertion from the processor and the responding INTR assertion
to the processor. Further, the interrupt request to the PICs (IRQ13) may be tempo-
rarily blocked by the operating system, or delayed by higher priority interrupts, and
processor response to INTR itself is blocked if the operating system has cleared the
IF bit in EFLAGS. Note that Streaming SIMD Extensions numeric exceptions will not
cause assertion of FERR# (independent of the value of CR0.NE). In addition, they
ignore the assertion/deassertion of IGNNE#).

However, just as with the Intel486 and Pentium processors, if the IGNNE# input is
inactive, a floating-point exception which occurred in the previous x87 FPU instruc-
tion and is unmasked causes the processor to freeze immediately when encountering
the next WAIT or x87 FPU instruction (except for no-wait instructions). This means
that if the x87 FPU exception handler has not already been invoked due to the earlier
exception (and therefore, the handler not has cleared that exception state from the
x87 FPU), the processor is forced to wait for the handler to be invoked and handle the
exception, before the processor can execute another WAIT or x87 FPU instruction.

As explained in Section D.2.1.3, “No-Wait x87 FPU Instructions Can Get x87 FPU
Interrupt in Window,” if a no-wait instruction is used outside of the x87 FPU exception
handler, in the Intel486 and Pentium processors, it may accept an unmasked excep-
tion from a previous x87 FPU instruction which happens to fall within the external
interrupt sampling window that is opened near the beginning of execution of all x87
FPU instructions. This will not happen in the P6 family and Pentium 4 processors,
because this sampling window has been removed from the no-wait group of x87 FPU
instructions.

D.3 RECOMMENDED PROTOCOL FOR MS-DOS*
COMPATIBILITY HANDLERS

The activities of numeric programs can be split into two major areas: program control
and arithmetic. The program control part performs activities such as deciding what
functions to perform, calculating addresses of numeric operands, and loop control.
The arithmetic part simply adds, subtracts, multiplies, and performs other operations
on the numeric operands. The processor is designed to handle these two parts sepa-
rately and efficiently. An x87 FPU exception handler, if a system chooses to imple-
ment one, is often one of the most complicated parts of the program control code.
Vol. 1 D-11

GUIDELINES FOR WRITING X87 FPU EXCEPTION HANDLERS
D.3.1 Floating-Point Exceptions and Their Defaults
The x87 FPU can recognize six classes of floating-point exception conditions while
executing floating-point instructions:

1. #I — Invalid operation
 #IS — Stack fault
 #IA — IEEE standard invalid operation

2. #Z — Divide-by-zero

3. #D — Denormalized operand

4. #O — Numeric overflow

5. #U — Numeric underflow

6. #P — Inexact result (precision)

For complete details on these exceptions and their defaults, see Section 8.4, “x87
FPU Floating-Point Exception Handling,” and Section 8.5, “x87 FPU Floating-Point
Exception Conditions.”

D.3.2 Two Options for Handling Numeric Exceptions
Depending on options determined by the software system designer, the processor
takes one of two possible courses of action when a numeric exception occurs:

1. The x87 FPU can handle selected exceptions itself, producing a default fix-up that
is reasonable in most situations. This allows the numeric program execution to
continue undisturbed. Programs can mask individual exception types to indicate
that the x87 FPU should generate this safe, reasonable result whenever the
exception occurs. The default exception fix-up activity is treated by the x87 FPU
as part of the instruction causing the exception; no external indication of the
exception is given (except that the instruction takes longer to execute when it
handles a masked exception.) When masked exceptions are detected, a flag is
set in the numeric status register, but no information is preserved regarding
where or when it was set.

2. A software exception handler can be invoked to handle the exception. When a
numeric exception is unmasked and the exception occurs, the x87 FPU stops
further execution of the numeric instruction and causes a branch to a software
exception handler. The exception handler can then implement any sort of
recovery procedures desired for any numeric exception detectable by the x87
FPU.

D.3.2.1 Automatic Exception Handling: Using Masked Exceptions
Each of the six exception conditions described above has a corresponding flag bit in
the x87 FPU status word and a mask bit in the x87 FPU control word. If an exception
D-12 Vol. 1

GUIDELINES FOR WRITING X87 FPU EXCEPTION HANDLERS
is masked (the corresponding mask bit in the control word = 1), the processor takes
an appropriate default action and continues with the computation.

The processor has a default fix-up activity for every possible exception condition it
may encounter. These masked-exception responses are designed to be safe and are
generally acceptable for most numeric applications.

For example, if the Inexact result (Precision) exception is masked, the system can
specify whether the x87 FPU should handle a result that cannot be represented
exactly by one of four modes of rounding: rounding it normally, chopping it toward
zero, always rounding it up, or always down. If the Underflow exception is masked,
the x87 FPU will store a number that is too small to be represented in normalized
form as a denormal (or zero if it’s smaller than the smallest denormal). Note that
when exceptions are masked, the x87 FPU may detect multiple exceptions in a single
instruction, because it continues executing the instruction after performing its
masked response. For example, the x87 FPU could detect a denormalized operand,
perform its masked response to this exception, and then detect an underflow.

As an example of how even severe exceptions can be handled safely and automati-
cally using the default exception responses, consider a calculation of the parallel
resistance of several values using only the standard formula (see Figure D-4). If R1
becomes zero, the circuit resistance becomes zero. With the divide-by-zero and
precision exceptions masked, the processor will produce the correct result. FDIV of
R1 into 1 gives infinity, and then FDIV of (infinity +R2 +R3) into 1 gives zero.

By masking or unmasking specific numeric exceptions in the x87 FPU control word,
programmers can delegate responsibility for most exceptions to the processor,
reserving the most severe exceptions for programmed exception handlers. Excep-
tion-handling software is often difficult to write, and the masked responses have
been tailored to deliver the most reasonable result for each condition. For the
majority of applications, masking all exceptions yields satisfactory results with the

Figure D-4. Arithmetic Example Using Infinity

Equivalent Resistance =
1

1

R1
++

R1

1

R2

1

R3

R2 R3
Vol. 1 D-13

GUIDELINES FOR WRITING X87 FPU EXCEPTION HANDLERS
least programming effort. Certain exceptions can usefully be left unmasked during
the debugging phase of software development, and then masked when the clean
software is actually run. An invalid-operation exception for example, typically indi-
cates a program error that must be corrected.

The exception flags in the x87 FPU status word provide a cumulative record of excep-
tions that have occurred since these flags were last cleared. Once set, these flags can
be cleared only by executing the FCLEX/FNCLEX (clear exceptions) instruction, by
reinitializing the x87 FPU with FINIT/FNINIT or FSAVE/FNSAVE, or by overwriting the
flags with an FRSTOR or FLDENV instruction. This allows a programmer to mask all
exceptions, run a calculation, and then inspect the status word to see if any excep-
tions were detected at any point in the calculation.

D.3.2.2 Software Exception Handling
If the x87 FPU in or with an IA-32 processor (Intel 286 and onwards) encounters an
unmasked exception condition, with the system operated in the MS-DOS compati-
bility mode and with IGNNE# not asserted, a software exception handler is invoked
through a PIC and the processor’s INTR pin. The FERR# (or ERROR#) output from
the x87 FPU that begins the process of invoking the exception handler may occur
when the error condition is first detected, or when the processor encounters the next
WAIT or x87 FPU instruction. Which of these two cases occurs depends on the
processor generation and also on which exception and which x87 FPU instruction trig-
gered it, as discussed earlier in Section D.1, “MS-DOS Compatibility Sub-mode for
Handling x87 FPU Exceptions,” and Section D.2, “Implementation of the MS-DOS*
Compatibility Sub-mode in the Intel486™, Pentium®, and P6 Processor Family, and
Pentium® 4 Processors.” The elapsed time between the initial error signal and the
invocation of the x87 FPU exception handler depends of course on the external hard-
ware interface, and also on whether the external interrupt for x87 FPU errors is
enabled. But the architecture ensures that the handler will be invoked before execu-
tion of the next WAIT or floating-point instruction since an unmasked floating-point
exception causes the processor to freeze just before executing such an instruction
(unless the IGNNE# input is active, or it is a no-wait x87 FPU instruction).

The frozen processor waits for an external interrupt, which must be supplied by
external hardware in response to the FERR# (or ERROR#) output of the processor
(or coprocessor), usually through IRQ13 on the “slave” PIC, and then through INTR.
Then the external interrupt invokes the exception handling routine. Note that if the
external interrupt for x87 FPU errors is disabled when the processor executes an x87
FPU instruction, the processor will freeze until some other (enabled) interrupt occurs
if an unmasked x87 FPU exception condition is in effect. If NE = 0 but the IGNNE#
input is active, the processor disregards the exception and continues. Error reporting
via an external interrupt is supported for MS-DOS compatibility. Chapter 22, “IA-32
Architecture Compatibility,” of the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3B, contains further discussion of compatibility issues.

The references above to the ERROR# output from the x87 FPU apply to the Intel 387
and Intel 287 math coprocessors (NPX chips). If one of these coprocessors encoun-
ters an unmasked exception condition, it signals the exception to the Intel 286 or
D-14 Vol. 1

GUIDELINES FOR WRITING X87 FPU EXCEPTION HANDLERS
Intel386 processor using the ERROR# status line between the processor and the
coprocessor. See Section D.1, “MS-DOS Compatibility Sub-mode for Handling x87
FPU Exceptions,” in this appendix, and Chapter 22, “IA-32 Architecture Compati-
bility,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B, for differences in x87 FPU exception handling.

The exception-handling routine is normally a part of the systems software. The
routine must clear (or disable) the active exception flags in the x87 FPU status word
before executing any floating-point instructions that cannot complete execution
when there is a pending floating-point exception. Otherwise, the floating-point
instruction will trigger the x87 FPU interrupt again, and the system will be caught in
an endless loop of nested floating-point exceptions, and hang. In any event, the
routine must clear (or disable) the active exception flags in the x87 FPU status word
after handling them, and before IRET(D). Typical exception responses may include:
• Incrementing an exception counter for later display or printing.
• Printing or displaying diagnostic information (e.g., the x87 FPU environment and

registers).
• Aborting further execution, or using the exception pointers to build an instruction

that will run without exception and executing it.

Applications programmers should consult their operating system's reference
manuals for the appropriate system response to numerical exceptions. For systems
programmers, some details on writing software exception handlers are provided in
Chapter 6, “Interrupt and Exception Handling,” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3A, as well as in Section D.3.4, “x87 FPU
Exception Handling Examples,” in this appendix.

As discussed in Section D.2.1.2, “Recommended External Hardware to Support the
MS-DOS* Compatibility Sub-mode,” some early FERR# to INTR hardware interface
implementations are less robust than the recommended circuit. This is because they
depended on the exception handler to clear the x87 FPU exception interrupt request
to the PIC (by accessing port 0F0H) before the handler causes FERR# to be de-
asserted by clearing the exception from the x87 FPU itself. To eliminate the chance of
a problem with this early hardware, Intel recommends that x87 FPU exception
handlers always access port 0F0H before clearing the error condition from the x87
FPU.

D.3.3 Synchronization Required for Use of x87 FPU Exception
Handlers

Concurrency or synchronization management requires a check for exceptions before
letting the processor change a value just used by the x87 FPU. It is important to
remember that almost any numeric instruction can, under the wrong circumstances,
produce a numeric exception.
Vol. 1 D-15

GUIDELINES FOR WRITING X87 FPU EXCEPTION HANDLERS
D.3.3.1 Exception Synchronization: What, Why, and When
Exception synchronization means that the exception handler inspects and deals with
the exception in the context in which it occurred. If concurrent execution is allowed,
the state of the processor when it recognizes the exception is often not in the context
in which it occurred. The processor may have changed many of its internal registers
and be executing a totally different program by the time the exception occurs. If the
exception handler cannot recapture the original context, it cannot reliably determine
the cause of the exception or recover successfully from the exception. To handle this
situation, the x87 FPU has special registers updated at the start of each numeric
instruction to describe the state of the numeric program when the failed instruction
was attempted.

This provides tools to help the exception handler recapture the original context, but
the application code must also be written with synchronization in mind. Overall,
exception synchronization must ensure that the x87 FPU and other relevant parts of
the context are in a well defined state when the handler is invoked after an unmasked
numeric exception occurs.

When the x87 FPU signals an unmasked exception condition, it is requesting help.
The fact that the exception was unmasked indicates that further numeric program
execution under the arithmetic and programming rules of the x87 FPU will probably
yield invalid results. Thus the exception must be handled, and with proper synchro-
nization, or the program will not operate reliably.

For programmers using higher-level languages, all required synchronization is auto-
matically provided by the appropriate compiler. However, for assembly language
programmers exception synchronization remains the responsibility of the
programmer. It is not uncommon for a programmer to expect that their numeric
program will not cause numeric exceptions after it has been tested and debugged,
but in a different system or numeric environment, exceptions may occur regularly
nonetheless. An obvious example would be use of the program with some numbers
beyond the range for which it was designed and tested. Example D-1 and Example
D-2 in Section D.3.3.2, “Exception Synchronization Examples,” show a subtle way in
which unexpected exceptions can occur.

As described in Section D.3.1, “Floating-Point Exceptions and Their Defaults,”
depending on options determined by the software system designer, the processor
can perform one of two possible courses of action when a numeric exception occurs.
• The x87 FPU can provide a default fix-up for selected numeric exceptions. If the

x87 FPU performs its default action for all exceptions, then the need for exception
synchronization is not manifest. However, code is often ported to contexts and
operating systems for which it was not originally designed. Example D-1 and
Example D-2, below, illustrate that it is safest to always consider exception
synchronization when designing code that uses the x87 FPU.
D-16 Vol. 1

GUIDELINES FOR WRITING X87 FPU EXCEPTION HANDLERS
• Alternatively, a software exception handler can be invoked to handle the
exception. When a numeric exception is unmasked and the exception occurs, the
x87 FPU stops further execution of the numeric instruction and causes a branch
to a software exception handler. When an x87 FPU exception handler will be
invoked, synchronization must always be considered to assure reliable perfor-
mance.

Example D-1 and Example D-2, below, illustrate the need to always consider excep-
tion synchronization when writing numeric code, even when the code is initially
intended for execution with exceptions masked.

D.3.3.2 Exception Synchronization Examples
In the following examples, three instructions are shown to load an integer, calculate
its square root, then increment the integer. The synchronous execution of the x87
FPU will allow both of these programs to execute correctly, with INC COUNT being
executed in parallel in the processor, as long as no exceptions occur on the FILD
instruction. However, if the code is later moved to an environment where exceptions
are unmasked, the code in Example D-1 will not work correctly:

Example D-1. Incorrect Error Synchronization

FILD COUNT ;x87 FPU instruction
INC COUNT ;integer instruction alters operand
FSQRT ;subsequent x87 FPU instruction -- error

;from previous x87 FPU instruction detected here

Example D-2. Proper Error Synchronization

FILD COUNT ;x87 FPU instruction
FSQRT ;subsequent x87 FPU instruction -- error from

;previous x87 FPU instruction detected here
INC COUNT ;integer instruction alters operand

In some operating systems supporting the x87 FPU, the numeric register stack is
extended to memory. To extend the x87 FPU stack to memory, the invalid exception
is unmasked. A push to a full register or pop from an empty register sets SF (Stack
Fault flag) and causes an invalid operation exception. The recovery routine for the
exception must recognize this situation, fix up the stack, then perform the original
operation. The recovery routine will not work correctly in Example D-1. The problem
is that the value of COUNT increments before the exception handler is invoked, so
that the recovery routine will load an incorrect value of COUNT, causing the program
to fail or behave unreliably.
Vol. 1 D-17

GUIDELINES FOR WRITING X87 FPU EXCEPTION HANDLERS
D.3.3.3 Proper Exception Synchronization
As explained in Section D.2.1.2, “Recommended External Hardware to Support the
MS-DOS* Compatibility Sub-mode,” if the x87 FPU encounters an unmasked excep-
tion condition a software exception handler is invoked before execution of the next
WAIT or floating-point instruction. This is because an unmasked floating-point
exception causes the processor to freeze immediately before executing such an
instruction (unless the IGNNE# input is active, or it is a no-wait x87 FPU instruction).
Exactly when the exception handler will be invoked (in the interval between when the
exception is detected and the next WAIT or x87 FPU instruction) is dependent on the
processor generation, the system, and which x87 FPU instruction and exception is
involved.

To be safe in exception synchronization, one should assume the handler will be
invoked at the end of the interval. Thus the program should not change any value
that might be needed by the handler (such as COUNT in Example D-1 and Example
D-2) until after the next x87 FPU instruction following an x87 FPU instruction that
could cause an error. If the program needs to modify such a value before the next
x87 FPU instruction (or if the next x87 FPU instruction could also cause an error),
then a WAIT instruction should be inserted before the value is modified. This will
force the handling of any exception before the value is modified. A WAIT instruction
should also be placed after the last floating-point instruction in an application so that
any unmasked exceptions will be serviced before the task completes.

D.3.4 x87 FPU Exception Handling Examples
There are many approaches to writing exception handlers. One useful technique is to
consider the exception handler procedure as consisting of “prologue,” “body,” and
“epilogue” sections of code.

In the transfer of control to the exception handler due to an INTR, NMI, or SMI,
external interrupts have been disabled by hardware. The prologue performs all func-
tions that must be protected from possible interruption by higher-priority sources.
Typically, this involves saving registers and transferring diagnostic information from
the x87 FPU to memory. When the critical processing has been completed, the
prologue may re-enable interrupts to allow higher-priority interrupt handlers to
preempt the exception handler. The standard “prologue” not only saves the registers
and transfers diagnostic information from the x87 FPU to memory but also clears the
floating-point exception flags in the status word. Alternatively, when it is not neces-
sary for the handler to be re-entrant, another technique may also be used. In this
technique, the exception flags are not cleared in the “prologue” and the body of the
handler must not contain any floating-point instructions that cannot complete execu-
tion when there is a pending floating-point exception. (The no-wait instructions are
discussed in Section 8.3.12, “Waiting vs. Non-waiting Instructions.”) Note that the
handler must still clear the exception flag(s) before executing the IRET. If the excep-
tion handler uses neither of these techniques, the system will be caught in an endless
loop of nested floating-point exceptions, and hang.
D-18 Vol. 1

GUIDELINES FOR WRITING X87 FPU EXCEPTION HANDLERS
The body of the exception handler examines the diagnostic information and makes a
response that is necessarily application-dependent. This response may range from
halting execution, to displaying a message, to attempting to repair the problem and
proceed with normal execution. The epilogue essentially reverses the actions of the
prologue, restoring the processor so that normal execution can be resumed. The
epilogue must not load an unmasked exception flag into the x87 FPU or another
exception will be requested immediately.

The following code examples show the ASM386/486 coding of three skeleton excep-
tion handlers, with the save spaces given as correct for 32-bit protected mode. They
show how prologues and epilogues can be written for various situations, but the
application-dependent exception handling body is just indicated by comments
showing where it should be placed.

The first two are very similar; their only substantial difference is their choice of
instructions to save and restore the x87 FPU. The trade-off here is between the
increased diagnostic information provided by FNSAVE and the faster execution of
FNSTENV. (Also, after saving the original contents, FNSAVE re-initializes the x87 FPU,
while FNSTENV only masks all x87 FPU exceptions.) For applications that are sensi-
tive to interrupt latency or that do not need to examine register contents, FNSTENV
reduces the duration of the “critical region,” during which the processor does not
recognize another interrupt request. (See the Section 8.1.10, “Saving the x87 FPU’s
State with FSTENV/FNSTENV and FSAVE/FNSAVE,” for a complete description of the
x87 FPU save image.) If the processor supports Streaming SIMD Extensions and the
operating system supports it, the FXSAVE instruction should be used instead of
FNSAVE. If the FXSAVE instruction is used, the save area should be increased to 512
bytes and aligned to 16 bytes to save the entire state. These steps will ensure that
the complete context is saved.

After the exception handler body, the epilogues prepare the processor to resume
execution from the point of interruption (for example, the instruction following the
one that generated the unmasked exception). Notice that the exception flags in the
memory image that is loaded into the x87 FPU are cleared to zero prior to reloading
(in fact, in these examples, the entire status word image is cleared).

Example D-3 and Example D-4 assume that the exception handler itself will not
cause an unmasked exception. Where this is a possibility, the general approach
shown in Example D-5 can be employed. The basic technique is to save the full x87
FPU state and then to load a new control word in the prologue. Note that considerable
care should be taken when designing an exception handler of this type to prevent the
handler from being reentered endlessly.

Example D-3. Full-State Exception Handler

SAVE_ALL PROC
;
;SAVE REGISTERS, ALLOCATE STACK SPACE FOR x87 FPU STATE IMAGE

PUSH EBP
.

Vol. 1 D-19

GUIDELINES FOR WRITING X87 FPU EXCEPTION HANDLERS
.
MOV EBP, ESP
SUB ESP, 108 ; ALLOCATES 108 BYTES (32-bit PROTECTED MODE SIZE)

;SAVE FULL x87 FPU STATE, RESTORE INTERRUPT ENABLE FLAG (IF)
FNSAVE [EBP-108]
PUSH [EBP + OFFSET_TO_EFLAGS] ; COPY OLD EFLAGS TO STACK TOP
POPFD ;RESTORE IF TO VALUE BEFORE x87 FPU EXCEPTION

;
;APPLICATION-DEPENDENT EXCEPTION HANDLING CODE GOES HERE
;
;CLEAR EXCEPTION FLAGS IN STATUS WORD (WHICH IS IN MEMORY)
;RESTORE MODIFIED STATE IMAGE

MOV BYTE PTR [EBP-104], 0H
FRSTOR [EBP-108]

;DE-ALLOCATE STACK SPACE, RESTORE REGISTERS
MOV ESP, EBP
.
.
POP EBP

;
;RETURN TO INTERRUPTED CALCULATION

IRETD
SAVE_ALL ENDP

Example D-4. Reduced-Latency Exception Handler

SAVE_ENVIRONMENTPROC
;
;SAVE REGISTERS, ALLOCATE STACK SPACE FOR x87 FPU ENVIRONMENT

PUSH EBP
.
.
MOV EBP, ESP
SUB ESP, 28 ;ALLOCATES 28 BYTES (32-bit PROTECTED MODE SIZE)

;SAVE ENVIRONMENT, RESTORE INTERRUPT ENABLE FLAG (IF)
FNSTENV [EBP - 28]
PUSH [EBP + OFFSET_TO_EFLAGS] ; COPY OLD EFLAGS TO STACK TOP
POPFD ;RESTORE IF TO VALUE BEFORE x87 FPU EXCEPTION

;
;APPLICATION-DEPENDENT EXCEPTION HANDLING CODE GOES HERE
;
;CLEAR EXCEPTION FLAGS IN STATUS WORD (WHICH IS IN MEMORY)
;RESTORE MODIFIED ENVIRONMENT IMAGE
D-20 Vol. 1

GUIDELINES FOR WRITING X87 FPU EXCEPTION HANDLERS
MOV BYTE PTR [EBP-24], 0H
FLDENV [EBP-28]

;DE-ALLOCATE STACK SPACE, RESTORE REGISTERS
MOV ESP, EBP
.
.
POP EBP

;
;RETURN TO INTERRUPTED CALCULATION

IRETD
SAVE_ENVIRONMENT ENDP

Example D-5. Reentrant Exception Handler

.

.
LOCAL_CONTROL DW ?; ASSUME INITIALIZED

.

.
REENTRANTPROC
;
;SAVE REGISTERS, ALLOCATE STACK SPACE FOR x87 FPU STATE IMAGE

PUSH EBP
.
.
MOV EBP, ESP
SUB ESP, 108 ;ALLOCATES 108 BYTES (32-bit PROTECTED MODE SIZE)

;SAVE STATE, LOAD NEW CONTROL WORD, RESTORE INTERRUPT ENABLE FLAG (IF)
FNSAVE [EBP-108]
FLDCW LOCAL_CONTROL
PUSH [EBP + OFFSET_TO_EFLAGS] ;COPY OLD EFLAGS TO STACK TOP
POPFD ;RESTORE IF TO VALUE BEFORE x87 FPU EXCEPTION

.

.
;
;APPLICATION-DEPENDENT EXCEPTION HANDLING CODE
;GOES HERE - AN UNMASKED EXCEPTION
;GENERATED HERE WILL CAUSE THE EXCEPTION HANDLER TO BE REENTERED
;IF LOCAL STORAGE IS NEEDED, IT MUST BE ALLOCATED ON THE STACK

.
;CLEAR EXCEPTION FLAGS IN STATUS WORD (WHICH IS IN MEMORY)
;RESTORE MODIFIED STATE IMAGE
Vol. 1 D-21

GUIDELINES FOR WRITING X87 FPU EXCEPTION HANDLERS
MOV BYTE PTR [EBP-104], 0H
FRSTOR [EBP-108]

;DE-ALLOCATE STACK SPACE, RESTORE REGISTERS
MOV ESP, EBP
.
.
POP EBP

;
;RETURN TO POINT OF INTERRUPTION

IRETD
REENTRANT ENDP

D.3.5 Need for Storing State of IGNNE# Circuit If Using x87 FPU
and SMM

The recommended circuit (see Figure D-1) for MS-DOS compatibility x87 FPU excep-
tion handling for Intel486 processors and beyond contains two flip flops. When the
x87 FPU exception handler accesses I/O port 0F0H it clears the IRQ13 interrupt
request output from Flip Flop #1 and also clocks out the IGNNE# signal (active) from
Flip Flop #2.

The assertion of IGNNE# may be used by the handler if needed to execute any x87
FPU instruction while ignoring the pending x87 FPU errors. The problem here is that
the state of Flip Flop #2 is effectively an additional (but hidden) status bit that can
affect processor behavior, and so ideally should be saved upon entering SMM, and
restored before resuming to normal operation. If this is not done, and also the SMM
code saves the x87 FPU state, AND an x87 FPU error handler is being used which
relies on IGNNE# assertion, then (very rarely) the x87 FPU handler will nest inside
itself and malfunction. The following example shows how this can happen.

Suppose that the x87 FPU exception handler includes the following sequence:

FNSTSW save_sw ; save the x87 FPU status word
; using a no-wait x87 FPU instruction

OUT 0F0H, AL ; clears IRQ13 & activates IGNNE#

FLDCW new_cw ; loads new CW ignoring x87 FPU errors,

 ; since IGNNE# is assumed active; or any
; other x87 FPU instruction that is not a no-wait
; type will cause the same problem

FCLEX ; clear the x87 FPU error conditions & thus

; turn off FERR# & reset the IGNNE# FF
D-22 Vol. 1

GUIDELINES FOR WRITING X87 FPU EXCEPTION HANDLERS
The problem will only occur if the processor enters SMM between the OUT and the
FLDCW instructions. But if that happens, AND the SMM code saves the x87 FPU state
using FNSAVE, then the IGNNE# Flip Flop will be cleared (because FNSAVE clears the
x87 FPU errors and thus de-asserts FERR#). When the processor returns from SMM it
will restore the x87 FPU state with FRSTOR, which will re-assert FERR#, but the
IGNNE# Flip Flop will not get set. Then when the x87 FPU error handler executes the
FLDCW instruction, the active error condition will cause the processor to re-enter the
x87 FPU error handler from the beginning. This may cause the handler to malfunction.

To avoid this problem, Intel recommends two measures:

1. Do not use the x87 FPU for calculations inside SMM code. (The normal power
management, and sometimes security, functions provided by SMM have no need
for x87 FPU calculations; if they are needed for some special case, use scaling or
emulation instead.) This eliminates the need to do FNSAVE/FRSTOR inside SMM
code, except when going into a 0 V suspend state (in which, in order to save
power, the CPU is turned off completely, requiring its complete state to be saved).

2. The system should not call upon SMM code to put the processor into 0 V suspend
while the processor is running x87 FPU calculations, or just after an interrupt has
occurred. Normal power management protocol avoids this by going into power
down states only after timed intervals in which no system activity occurs.

D.3.6 Considerations When x87 FPU Shared Between Tasks
The IA-32 architecture allows speculative deferral of floating-point state swaps on
task switches. This feature allows postponing an x87 FPU state swap until an x87 FPU
instruction is actually encountered in another task. Since kernel tasks rarely use
floating-point, and some applications do not use floating-point or use it infrequently,
the amount of time saved by avoiding unnecessary stores of the floating-point state
is significant. Speculative deferral of x87 FPU saves does, however, place an extra
burden on the kernel in three key ways:

1. The kernel must keep track of which thread owns the x87 FPU, which may be
different from the currently executing thread.

2. The kernel must associate any floating-point exceptions with the generating task.
This requires special handling since floating-point exceptions are delivered
asynchronous with other system activity.

3. There are conditions under which spurious floating-point exception interrupts are
generated, which the kernel must recognize and discard.

D.3.6.1 Speculatively Deferring x87 FPU Saves, General Overview
In order to support multitasking, each thread in the system needs a save area for the
general-purpose registers, and each task that is allowed to use floating-point needs
an x87 FPU save area large enough to hold the entire x87 FPU stack and associated
x87 FPU state such as the control word and status word. (See Section 8.1.10,
Vol. 1 D-23

GUIDELINES FOR WRITING X87 FPU EXCEPTION HANDLERS
“Saving the x87 FPU’s State with FSTENV/FNSTENV and FSAVE/FNSAVE,” for a
complete description of the x87 FPU save image.) If the processor and the operating
system support Streaming SIMD Extensions, the save area should be large enough
and aligned correctly to hold x87 FPU and Streaming SIMD Extensions state.

On a task switch, the general-purpose registers are swapped out to their save area
for the suspending thread, and the registers of the resuming thread are loaded. The
x87 FPU state does not need to be saved at this point. If the resuming thread does
not use the x87 FPU before it is itself suspended, then both a save and a load of the
x87 FPU state has been avoided. It is often the case that several threads may be
executed without any usage of the x87 FPU.

The processor supports speculative deferral of x87 FPU saves via interrupt 7 “Device
Not Available” (DNA), used in conjunction with CR0 bit 3, the “Task Switched” bit
(TS). (See “Control Registers” in Chapter 2 of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3A.) Every task switch via the hardware
supported task switching mechanism (see “Task Switching” in Chapter 7 of the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 3A) sets TS. Multi-
threaded kernels that use software task switching1 can set the TS bit by reading CR0,
ORing a “1” into2 bit 3, and writing back CR0. Any subsequent floating-point instruc-
tions (now being executed in a new thread context) will fault via interrupt 7 before
execution.

This allows a DNA handler to save the old floating-point context and reload the x87
FPU state for the current thread. The handler should clear the TS bit before exit using
the CLTS instruction. On return from the handler the faulting thread will proceed with
its floating-point computation.

Some operating systems save the x87 FPU context on every task switch, typically
because they also change the linear address space between tasks. The problem and
solution discussed in the following sections apply to these operating systems also.

D.3.6.2 Tracking x87 FPU Ownership
Since the contents of the x87 FPU may not belong to the currently executing thread,
the thread identifier for the last x87 FPU user needs to be tracked separately. This is
not complicated; the kernel should simply provide a variable to store the thread iden-
tifier of the x87 FPU owner, separate from the variable that stores the identifier for
the currently executing thread. This variable is updated in the DNA exception

1 In a software task switch, the operating system uses a sequence of instructions to save the sus-
pending thread’s state and restore the resuming thread’s state, instead of the single long non-
interruptible task switch operation provided by the IA-32 architecture.

2 Although CR0, bit 2, the emulation flag (EM), also causes a DNA exception, do not use the EM bit
as a surrogate for TS. EM means that no x87 FPU is available and that floating-point instructions
must be emulated. Using EM to trap on task switches is not compatible with the MMX technology.
If the EM flag is set, MMX instructions raise the invalid opcode exception.
D-24 Vol. 1

GUIDELINES FOR WRITING X87 FPU EXCEPTION HANDLERS
handler, and is used by the DNA exception handler to find the x87 FPU save areas of
the old and new threads. A simplified flow for a DNA exception handler is then:

1. Use the “x87 FPU Owner” variable to find the x87 FPU save area of the last thread
to use the x87 FPU.

2. Save the x87 FPU contents to the old thread’s save area, typically using an
FNSAVE or FXSAVE instruction.

3. Set the x87 FPU Owner variable to the identify the currently executing thread.

4. Reload the x87 FPU contents from the new thread’s save area, typically using an
FRSTOR or FXSTOR instruction.

5. Clear TS using the CLTS instruction and exit the DNA exception handler.

While this flow covers the basic requirements for speculatively deferred x87 FPU
state swaps, there are some additional subtleties that need to be handled in a robust
implementation.

D.3.6.3 Interaction of x87 FPU State Saves and Floating-Point Exception
Association

Recall these key points from earlier in this document: When considering floating-
point exceptions across all implementations of the IA-32 architecture, and across all
floating-point instructions, a floating-point exception can be initiated from any time
during the excepting floating-point instruction, up to just before the next floating-
point instruction. The “next” floating-point instruction may be the FNSAVE used to
save the x87 FPU state for a task switch. In the case of “no-wait:” instructions such
as FNSAVE, the interrupt from a previously excepting instruction (NE = 0 case) may
arrive just before the no-wait instruction, during, or shortly thereafter with a system
dependent delay.

Note that this implies that an floating-point exception might be registered during the
state swap process itself, and the kernel and floating-point exception interrupt
handler must be prepared for this case.

A simple way to handle the case of exceptions arriving during x87 FPU state swaps is
to allow the kernel to be one of the x87 FPU owning threads. A reserved thread iden-
tifier is used to indicate kernel ownership of the x87 FPU. During an floating-point
state swap, the “x87 FPU owner” variable should be set to indicate the kernel as the
current owner. At the completion of the state swap, the variable should be set to indi-
cate the new owning thread. The numeric exception handler needs to check the x87
FPU owner and discard any numeric exceptions that occur while the kernel is the x87
FPU owner. A more general flow for a DNA exception handler that handles this case is
shown in Figure D-5.

Numeric exceptions received while the kernel owns the x87 FPU for a state swap
must be discarded in the kernel without being dispatched to a handler. A flow for a
numeric exception dispatch routine is shown in Figure D-6.
Vol. 1 D-25

GUIDELINES FOR WRITING X87 FPU EXCEPTION HANDLERS
It may at first glance seem that there is a possibility of floating-point exceptions
being lost because of exceptions that are discarded during state swaps. This is not
the case, as the exception will be re-issued when the floating-point state is reloaded.
Walking through state swaps both with and without pending numeric exceptions will
clarify the operation of these two handlers.

Figure D-5. General Program Flow for DNA Exception Handler

DNA Handler Entry

Current Thread
same as

FPU Owner?

FPU Owner := Kernel

FNSAVE to Old Thread’s
FP Save Area

(may cause numeric exception)

<other handler set up code>

<other handler code>

FPU Owner := Current Thread

FRSTOR from Current Thread’s
FP Save Area

CLTS (clears CR0.TS)

Exit DNA Handler

No

Yes

<handler final clean-up>
D-26 Vol. 1

GUIDELINES FOR WRITING X87 FPU EXCEPTION HANDLERS
Case #1: x87 FPU State Swap Without Numeric Exception
Assume two threads A and B, both using the floating-point unit. Let A be the thread
to have most recently executed a floating-point instruction, with no pending numeric
exceptions. Let B be the currently executing thread. CR0.TS was set when thread A
was suspended.

When B starts to execute a floating-point instruction the instruction will fault with the
DNA exception because TS is set.

At this point the handler is entered, and eventually it finds that the current x87 FPU
Owner is not the currently executing thread. To guard the x87 FPU state swap from
extraneous numeric exceptions, the x87 FPU Owner is set to be the kernel. The old
owner’s x87 FPU state is saved with FNSAVE, and the current thread’s x87 FPU state
is restored with FRSTOR. Before exiting, the x87 FPU owner is set to thread B, and
the TS bit is cleared.

On exit, thread B resumes execution of the faulting floating-point instruction and
continues.

Case #2: x87 FPU State Swap with Discarded Numeric Exception
Again, assume two threads A and B, both using the floating-point unit. Let A be the
thread to have most recently executed a floating-point instruction, but this time let
there be a pending numeric exception. Let B be the currently executing thread. When
B starts to execute a floating-point instruction the instruction will fault with the DNA
exception and enter the DNA handler. (If both numeric and DNA exceptions are
pending, the DNA exception takes precedence, in order to support handling the
numeric exception in its own context.)

When the FNSAVE starts, it will trigger an interrupt via FERR# because of the
pending numeric exception. After some system dependent delay, the numeric excep-
tion handler is entered. It may be entered before the FNSAVE starts to execute, or it
may be entered shortly after execution of the FNSAVE. Since the x87 FPU Owner is
the kernel, the numeric exception handler simply exits, discarding the exception. The

Figure D-6. Program Flow for a Numeric Exception Dispatch Routine

Numeric Exception Entry

Is Kernel
FPU Owner?

Normal Dispatch to
Numeric Exception Handler Exit

No

Yes
Vol. 1 D-27

GUIDELINES FOR WRITING X87 FPU EXCEPTION HANDLERS
DNA handler resumes execution, completing the FNSAVE of the old floating-point
context of thread A and the FRSTOR of the floating-point context for thread B.

Thread A eventually gets an opportunity to handle the exception that was discarded
during the task switch. After some time, thread B is suspended, and thread A
resumes execution. When thread A starts to execute an floating-point instruction,
once again the DNA exception handler is entered. B’s x87 FPU state is saved with
FNSAVE, and A’s x87 FPU state is restored with FRSTOR. Note that in restoring the
x87 FPU state from A’s save area, the pending numeric exception flags are reloaded
into the floating-point status word. Now when the DNA exception handler returns,
thread A resumes execution of the faulting floating-point instruction just long enough
to immediately generate a numeric exception, which now gets handled in the normal
way. The net result is that the task switch and resulting x87 FPU state swap via the
DNA exception handler causes an extra numeric exception which can be safely
discarded.

D.3.6.4 Interrupt Routing From the Kernel
In MS-DOS, an application that wishes to handle numeric exceptions hooks interrupt
16 by placing its handler address in the interrupt vector table, and exiting via a jump
to the previous interrupt 16 handler. Protected mode systems that run MS-DOS
programs under a subsystem can emulate this exception delivery mechanism. For
example, assume a protected mode OS. that runs with CR0.NE[bit 5] = 1, and that
runs MS-DOS programs in a virtual machine subsystem. The MS-DOS program is
set up in a virtual machine that provides a virtualized interrupt table. The MS-DOS
application hooks interrupt 16 in the virtual machine in the normal way. A numeric
exception will trap to the kernel via the real INT 16 residing in the kernel at ring 0.

The INT 16 handler in the kernel then locates the correct MS-DOS virtual machine,
and reflects the interrupt to the virtual machine monitor. The virtual machine monitor
then emulates an interrupt by jumping through the address in the virtualized inter-
rupt table, eventually reaching the application’s numeric exception handler.

D.3.6.5 Special Considerations for Operating Systems that Support
Streaming SIMD Extensions

Operating systems that support Streaming SIMD Extensions instructions introduced
with the Pentium III processor should use the FXSAVE and FXRSTOR instructions to
save and restore the new SIMD floating-point instruction register state as well as the
floating-point state. Such operating systems must consider the following issues:

1. Enlarged state save area — FNSAVE/FRSTOR instructions operate on a
94-byte or 108-byte memory region, depending on whether they are executed in
16-bit or 32-bit mode. The FXSAVE/FXRSTOR instructions operate on a 512-byte
memory region.

2. Alignment requirements — FXSAVE/FXRSTOR instructions require the
memory region on which they operate to be 16-byte aligned (refer to the
individual instruction instructions descriptions in Chapter 3 of the Intel® 64 and
D-28 Vol. 1

GUIDELINES FOR WRITING X87 FPU EXCEPTION HANDLERS
IA-32 Architectures Software Developer’s Manual, Volume 2A, for information
about exceptions generated if the memory region is not aligned).

3. Maintaining compatibility with legacy applications/libraries — The
operating system changes to support Streaming SIMD Extensions must be
invisible to legacy applications or libraries that deal only with floating-point
instructions. The layout of the memory region operated on by the
FXSAVE/FXRSTOR instructions is different from the layout for the
FNSAVE/FRSTOR instructions. Specifically, the format of the x87 FPU tag word
and the length of the various fields in the memory region is different. Care must
be taken to return the x87 FPU state to a legacy application (e.g., when reporting
FP exceptions) in the format it expects.

4. Instruction semantic differences — There are some semantic differences
between the way the FXSAVE and FSAVE/FNSAVE instructions operate. The
FSAVE/FNSAVE instructions clear the x87 FPU after they save the state while the
FXSAVE instruction saves the x87 FPU/Streaming SIMD Extensions state but
does not clear it. Operating systems that use FXSAVE to save the x87 FPU state
before making it available for another thread (e.g., during thread switch time)
should take precautions not to pass a “dirty” x87 FPU to another application.

D.4 DIFFERENCES FOR HANDLERS USING NATIVE MODE
The 8087 has an INT pin which it asserts when an unmasked exception occurs. But
there is no interrupt input pin in the 8086 or 8088 dedicated to its attachment, nor an
interrupt vector number in the 8086 or 8088 specific for an x87 FPU error assertion.
Beginning with the Intel 286 and Intel 287 hardware, a connection was dedicated to
support the x87 FPU exception and interrupt vector 16 was assigned to it.

D.4.1 Origin with the Intel 286 and Intel 287, and Intel386
and Intel 387 Processors

The Intel 286 and Intel 287, and Intel386 and Intel 387 processor/coprocessor pairs
are each provided with ERROR# pins that are recommended to be connected
between the processor and x87 FPU. If this is done, when an unmasked x87 FPU
exception occurs, the x87 FPU records the exception, and asserts its ERROR# pin.
The processor recognizes this active condition of the ERROR# status line immediately
before execution of the next WAIT or x87 FPU instruction (except for the no-wait
type) in its instruction stream, and branches to the routine at interrupt vector 16.
Thus an x87 FPU exception will be handled before any other x87 FPU instruction
(after the one causing the error) is executed (except for no-wait instructions, which
will be executed without triggering the x87 FPU exception interrupt, but it will remain
pending).
Vol. 1 D-29

GUIDELINES FOR WRITING X87 FPU EXCEPTION HANDLERS
Using the dedicated INT 16 for x87 FPU exception handling is referred to as the
native mode. It is the simplest approach, and the one recommended most highly by
Intel.

D.4.2 Changes with Intel486, Pentium and Pentium Pro
Processors with CR0.NE[bit 5] = 1

With these three generations of the IA-32 architecture, more enhancements and
speedup features have been added to the corresponding x87 FPUs. Also, the x87 FPU
is now built into the same chip as the processor, which allows further increases in the
speed at which the x87 FPU can operate as part of the integrated system. This also
means that the native mode of x87 FPU exception handling, selected by setting bit
NE of register CR0 to 1, is now entirely internal.

If an unmasked exception occurs during an x87 FPU instruction, the x87 FPU records
the exception internally, and triggers the exception handler through interrupt 16
immediately before execution of the next WAIT or x87 FPU instruction (except for
no-wait instructions, which will be executed as described in Section D.4.1, “Origin
with the Intel 286 and Intel 287, and Intel386 and Intel 387 Processors”).

An unmasked numerical exception causes the FERR# output to be activated even
with NE = 1, and at exactly the same point in the program flow as it would have been
asserted if NE were zero. However, the system would not connect FERR# to a PIC to
generate INTR when operating in the native, internal mode. (If the hardware of a
system has FERR# connected to trigger IRQ13 in order to support MS-DOS, but an
operating system using the native mode is actually running the system, it is the oper-
ating system’s responsibility to make sure that IRQ13 is not enabled in the slave
PIC.) With this configuration a system is immune to the problem discussed in Section
D.2.1.3, “No-Wait x87 FPU Instructions Can Get x87 FPU Interrupt in Window,” where
for Intel486 and Pentium processors a no-wait x87 FPU instruction can get an x87
FPU exception.

D.4.3 Considerations When x87 FPU Shared Between Tasks Using
Native Mode

The protocols recommended in Section D.3.6, “Considerations When x87 FPU Shared
Between Tasks,” for MS-DOS compatibility x87 FPU exception handlers that are
shared between tasks may be used without change with the native mode. However,
the protocols for a handler written specifically for native mode can be simplified,
because the problem of a spurious floating-point exception interrupt occurring while
the kernel is executing cannot happen in native mode.

The problem as actually found in practical code in a MS-DOS compatibility system
happens when the DNA handler uses FNSAVE to switch x87 FPU contexts. If an x87
FPU exception is active, then FNSAVE triggers FERR# briefly, which usually will cause
the x87 FPU exception handler to be invoked inside the DNA handler. In native mode,
neither FNSAVE nor any other no-wait instructions can trigger interrupt 16. (As
D-30 Vol. 1

GUIDELINES FOR WRITING X87 FPU EXCEPTION HANDLERS
discussed above, FERR# gets asserted independent of the value of the NE bit, but
when NE = 1, the operating system should not enable its path through the PIC.)
Another possible (very rare) way a floating-point exception interrupt could occur
while the kernel is executing is by an x87 FPU immediate exception case having its
interrupt delayed by the external hardware until execution has switched to the
kernel. This also cannot happen in native mode because there is no delay through
external hardware.

Thus the native mode x87 FPU exception handler can omit the test to see if the kernel
is the x87 FPU owner, and the DNA handler for a native mode system can omit the
step of setting the kernel as the x87 FPU owner at the handler’s beginning. Since
however these simplifications are minor and save little code, it would be a reasonable
and conservative habit (as long as the MS-DOS compatibility mode is widely used) to
include these steps in all systems.

Note that the special DP (Dual Processing) mode for Pentium processors, and also
the more general Intel MultiProcessor Specification for systems with multiple
Pentium, P6 family, or Pentium 4 processors, support x87 FPU exception handling
only in the native mode. Intel does not recommend using the MS-DOS compatibility
mode for systems using more than one processor.
Vol. 1 D-31

APPENDIX E
GUIDELINES FOR WRITING SIMD FLOATING-POINT

EXCEPTION HANDLERS

See Section 11.5, “SSE, SSE2, and SSE3 Exceptions,” for a detailed discussion of
SIMD floating-point exceptions.

This appendix considers only SSE/SSE2/SSE3 instructions that can generate numeric
(SIMD floating-point) exceptions, and gives an overview of the necessary support for
handling such exceptions. This appendix does not address instructions that do not
generate floating-point exceptions (such as RSQRTSS, RSQRTPS, RCPSS, or RCPPS),
any x87 instructions, or any unlisted instruction.

For detailed information on which instructions generate numeric exceptions, and a
listing of those exceptions, refer to Appendix C, “Floating-Point Exceptions
Summary.” Non-numeric exceptions are handled in a way similar to that for the stan-
dard IA-32 instructions.

E.1 TWO OPTIONS FOR HANDLING FLOATING-POINT
EXCEPTIONS

Just as for x87 FPU floating-point exceptions, the processor takes one of two possible
courses of action when an SSE/SSE2/SSE3 instruction raises a floating-point excep-
tion:
• If the exception being raised is masked (by setting the corresponding mask bit in

the MXCSR to 1), then a default result is produced which is acceptable in most
situations. No external indication of the exception is given, but the corresponding
exception flags in the MXCSR are set and may be examined later. Note though
that for packed operations, an exception flag that is set in the MXCSR will not tell
which of the sub-operands caused the event to occur.

• If the exception being raised is not masked (by setting the corresponding mask
bit in the MXCSR to 0), a software exception handler previously registered by the
user with operating system support will be invoked through the SIMD floating-
point exception (#XM, vector 19). This case is discussed below in Section E.2,
“Software Exception Handling.”

E.2 SOFTWARE EXCEPTION HANDLING
The exception handling routine reached via interrupt vector 19 is usually part of the
system software (the operating system kernel). Note that an interrupt descriptor
table (IDT) entry must have been previously set up for this vector (refer to Chapter
Vol. 1 E-1

GUIDELINES FOR WRITING SIMD FLOATING-POINT EXCEPTION HANDLERS
6, “Interrupt and Exception Handling,” in the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3A). Some compilers use specific run-time
libraries to assist in floating-point exception handling. If any x87 FPU floating-point
operations are going to be performed that might raise floating-point exceptions, then
the exception handling routine must either disable all floating-point exceptions (for
example, loading a local control word with FLDCW), or it must be implemented as re-
entrant (for the case of x87 FPU exceptions, refer to Example D-1 in Appendix D,
“Guidelines for Writing x87 FPU Exception Handlers”). If this is not the case, the
routine has to clear the status flags for x87 FPU exceptions or to mask all x87 FPU
floating-point exceptions. For SIMD floating-point exceptions though, the exception
flags in MXCSR do not have to be cleared, even if they remain unmasked (but they
may still be cleared). Exceptions are in this case precise and occur immediately, and
a SIMD floating-point exception status flag that is set when the corresponding excep-
tion is unmasked will not generate an exception.

Typical actions performed by this low-level exception handling routine are:
• Incrementing an exception counter for later display or printing
• Printing or displaying diagnostic information (e.g. the MXCSR and XMM registers)
• Aborting further execution, or using the exception pointers to build an instruction

that will run without exception and executing it
• Storing information about the exception in a data structure that will be passed to

a higher level user exception handler

In most cases (and this applies also to SSE/SSE2/SSE3 instructions), there will be
three main components of a low-level floating-point exception handler: a prologue, a
body, and an epilogue.

The prologue performs functions that must be protected from possible interruption
by higher-priority sources - typically saving registers and transferring diagnostic
information from the processor to memory. When the critical processing has been
completed, the prologue may re-enable interrupts to allow higher-priority interrupt
handlers to preempt the exception handler (assuming that the interrupt handler was
called through an interrupt gate, meaning that the processor cleared the interrupt
enable (IF) flag in the EFLAGS register - refer to Section 6.4.1, “Call and Return
Operation for Interrupt or Exception Handling Procedures”).

The body of the exception handler examines the diagnostic information and makes a
response that is application-dependent. It may range from halting execution, to
displaying a message, to attempting to fix the problem and then proceeding with
normal execution, to setting up a data structure, calling a higher-level user exception
handler and continuing execution upon return from it. This latter case will be
assumed in Section E.4, “SIMD Floating-Point Exceptions and the IEEE Standard
754” below.

Finally, the epilogue essentially reverses the actions of the prologue, restoring the
processor state so that normal execution can be resumed.

The following example represents a typical exception handler. To link it with Example
E-2 that will follow in Section E.4.3, “Example SIMD Floating-Point Emulation Imple-
E-2 Vol. 1

GUIDELINES FOR WRITING SIMD FLOATING-POINT EXCEPTION HANDLERS
mentation,” assume that the body of the handler (not shown here in detail) passes
the saved state to a routine that will examine in turn all the sub-operands of the
excepting instruction, invoking a user floating-point exception handler if a particular
set of sub-operands raises an unmasked (enabled) exception, or emulating the
instruction otherwise.

Example E-1. SIMD Floating-Point Exception Handler

SIMD_FP_EXC_HANDLER PROC

;PROLOGUE
;SAVE REGISTERS THAT MIGHT BE USED BY THE EXCEPTION HANDLER
 PUSH EBP ;SAVE EBP
 PUSH EAX ;SAVE EAX
 ...
 MOV EBP, ESP ;SAVE ESP in EBP
 SUB ESP, 512 ;ALLOCATE 512 BYTES
 AND ESP, 0fffffff0h ;MAKE THE ADDRESS 16-BYTE ALIGNED
 FXSAVE [ESP] ;SAVE FP, MMX, AND SIMD FP STATE
 PUSH [EBP+EFLAGS_OFFSET] ;COPY OLD EFLAGS TO STACK TOP
 POPFD ;RESTORE THE INTERRUPT ENABLE FLAG IF

;TO VALUE BEFORE SIMD FP EXCEPTION

;BODY
;APPLICATION-DEPENDENT EXCEPTION HANDLING CODE GOES HERE
 LDMXCSR LOCAL_MXCSR ;LOAD LOCAL MXCSR VALUE IF NEEDED
 ...
 ...
;EPILOGUE
 FXRSTOR [ESP] ;RESTORE MODIFIED STATE IMAGE
 MOV ESP, EBP ;DE-ALLOCATE STACK SPACE
 ...
 POP EAX ;RESTORE EAX
 POP EBP ;RESTORE EBP
 IRET ;RETURN TO INTERRUPTED CALCULATION
SIMD_FP_EXC_HANDLER ENDP

E.3 EXCEPTION SYNCHRONIZATION
An SSE/SSE2/SSE3 instruction can execute in parallel with other similar instructions,
with integer instructions, and with floating-point or MMX instructions. Unlike for x87
instructions, special precaution for exception synchronization is not necessary in
this case. This is because floating-point exceptions for SSE/SSE2/SSE3 instructions
Vol. 1 E-3

GUIDELINES FOR WRITING SIMD FLOATING-POINT EXCEPTION HANDLERS
occur immediately and are not delayed until a subsequent floating-point instruction
is executed. However, floating-point emulation may be necessary when unmasked
floating-point exceptions are generated.

E.4 SIMD FLOATING-POINT EXCEPTIONS AND THE IEEE
STANDARD 754

SSE/SSE2/SSE3 extensions are 100% compatible with the IEEE Standard 754 for
Binary Floating-Point Arithmetic, satisfying all of its mandatory requirements (when
the flush-to-zero or denormals-are-zeros modes are not enabled). But a program-
ming environment that includes SSE/SSE2/SSE3 instructions will comply with both
the obligatory and the strongly recommended requirements of the IEEE Standard
754 regarding floating-point exception handling, only as a combination of hardware
and software (which is acceptable). The standard states that a user should be able to
request a trap on any of the five floating-point exceptions (note that the denormal
exception is an IA-32 addition), and it also specifies the values (operands or result)
to be delivered to the exception handler.

The main issue is that for SSE/SSE2/SSE3 instructions that raise post-computation
exceptions (traps: overflow, underflow, or inexact), unlike for x87 FPU instructions,
the processor does not provide the result recommended by IEEE Standard 754 to the
user handler. If a user program needs the result of an instruction that generated a
post-computation exception, it is the responsibility of the software to produce this
result by emulating the faulting SSE/SSE2/SSE3 instruction. Another issue is that the
standard does not specify explicitly how to handle multiple floating-point exceptions
that occur simultaneously. For packed operations, a logical OR of the flags that would
be set by each sub-operation is used to set the exception flags in the MXCSR. The
following subsections present one possible way to solve these problems.

E.4.1 Floating-Point Emulation
Every operating system must provide a kernel level floating-point exception handler
(a template was presented in Section E.2, “Software Exception Handling” above). In
the following discussion, assume that a user mode floating-point exception filter is
supplied for SIMD floating-point exceptions (for example as part of a library of C
functions), that a user program can invoke in order to handle unmasked exceptions.
The user mode floating-point exception filter (not shown here) has to be able to
emulate the subset of SSE/SSE2/SSE3 instructions that can generate numeric
exceptions, and has to be able to invoke a user provided floating-point exception
handler for floating-point exceptions. When a floating-point exception that is not
masked is raised by an SSE/SSE2/SSE3 instruction, the low-level floating-point
exception handler will be called. This low-level handler may in turn call the user mode
floating-point exception filter. The filter function receives the original operands of the
excepting instruction as no results are provided by the hardware, whether a pre-
computation or a post-computation exception has occurred. The filter will unpack the
E-4 Vol. 1

GUIDELINES FOR WRITING SIMD FLOATING-POINT EXCEPTION HANDLERS
operands into up to four sets of sub-operands, and will submit them one set at a time
to an emulation function (See Example E-2 in Section E.4.3, “Example SIMD
Floating-Point Emulation Implementation”). The emulation function will examine the
sub-operands, and will possibly redo the necessary calculation.

Two cases are possible:
• If an unmasked (enabled) exception would occur in this process, the emulation

function will return to its caller (the filter function) with the appropriate infor-
mation. The filter will invoke a (previously registered) user floating-point
exception handler for this set of sub-operands, and will record the result upon
return from the user handler (provided the user handler allows continuation of
the execution).

• If no unmasked (enabled) exception would occur, the emulation function will
determine and will return to its caller the result of the operation for the current
set of sub-operands (it has to be IEEE Standard 754 compliant). The filter
function will record the result (plus any new flag settings).

The user level filter function will then call the emulation function for the next set of
sub-operands (if any). When done with all the operand sets, the partial results will be
packed (if the excepting instruction has a packed floating-point result, which is true
for most SSE/SSE2/SSE3 numeric instructions) and the filter will return to the low-
level exception handler, which in turn will return from the interruption, allowing
execution to continue. Note that the instruction pointer (EIP) has to be altered to
point to the instruction following the excepting instruction, in order to continue
execution correctly.

If a user mode floating-point exception filter is not provided, then all the work for
decoding the excepting instruction, reading its operands, emulating the instruction
for the components of the result that do not correspond to unmasked floating-point
exceptions, and providing the compounded result will have to be performed by the
user-provided floating-point exception handler.

Actual emulation might have to take place for one operand or pair of operands for
scalar operations, and for all sub-operands or pairs of sub-operands for packed oper-
ations. The steps to perform are the following:
• The excepting instruction has to be decoded and the operands have to be read

from the saved context.
• The instruction has to be emulated for each (pair of) sub-operand(s); if no

floating-point exception occurs, the partial result has to be saved; if a masked
floating-point exception occurs, the masked result has to be produced through
emulation and saved, and the appropriate status flags have to be set; if an
unmasked floating-point exception occurs, the result has to be generated by the
user provided floating-point exception handler, and the appropriate status flags
have to be set.

• The partial results have to be combined and written to the context that will be
restored upon application program resumption.
Vol. 1 E-5

GUIDELINES FOR WRITING SIMD FLOATING-POINT EXCEPTION HANDLERS
A diagram of the control flow in handling an unmasked floating-point exception is
presented below.

From the user-level floating-point filter, Example E-2 in Section E.4.3, “Example
SIMD Floating-Point Emulation Implementation,” will present only the floating-point
emulation part. In order to understand the actions involved, the expected response
to exceptions has to be known for all SSE/SSE2/SSE3 numeric instructions in two
situations: with exceptions enabled (unmasked result), and with exceptions disabled
(masked result). The latter can be found in Section 6.4, “Interrupts and Exceptions.”
The response to NaN operands that do not raise an exception is specified in Section
4.8.3.4, “NaNs.” Operations on NaNs are explained in the same source. This response
is also discussed in more detail in the next subsection, along with the unmasked and
masked responses to floating-point exceptions.

E.4.2 SSE/SSE2/SSE3 Response To Floating-Point Exceptions
This subsection specifies the unmasked response expected from the SSE/SSE2/SSE3
instructions that raise floating-point exceptions. The masked response is given in
parallel, as it is necessary in the emulation process of the instructions that raise
unmasked floating-point exceptions. The response to NaN operands is also included
in more detail than in Section 4.8.3.4, “NaNs.” For floating-point exception priority,
refer to “Priority Among Simultaneous Exceptions and Interrupts” in Chapter 6,

Figure E-1. Control Flow for Handling Unmasked Floating-Point Exceptions

User Application

User Level Floating-Point Exception Filter

Low-Level Floating-Point Exception Handler

User Floating-Point Exception Handler
E-6 Vol. 1

GUIDELINES FOR WRITING SIMD FLOATING-POINT EXCEPTION HANDLERS
“Interrupt and Exception Handling,” of Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3A.

E.4.2.1 Numeric Exceptions
There are six classes of numeric (floating-point) exception conditions that can occur:
Invalid operation (#I), Divide-by-Zero (#Z), Denormal Operand (#D), Numeric
Overflow (#O), Numeric Underflow (#U), and Inexact Result (precision) (#P). #I,
#Z, #D are pre-computation exceptions (floating-point faults), detected before the
arithmetic operation. #O, #U, #P are post-computation exceptions (floating-point
traps).

Users can control how the SSE/SSE2/SSE3 floating-point exceptions are handled by
setting the mask/unmask bits in MXCSR. Masked exceptions are handled by the
processor, or by software if they are combined with unmasked exceptions occurring
in the same instruction. Unmasked exceptions are usually handled by the low-level
exception handler, in conjunction with user-level software.

E.4.2.2 Results of Operations with NaN Operands or a NaN Result for
SSE/SSE2/SSE3 Numeric Instructions

The tables below (E-1 through E-10) specify the response of SSE/SSE2/SSE3
instructions to NaN inputs, or to other inputs that lead to NaN results.

These results will be referenced by subsequent tables (e.g., E-10). Most operations
do not raise an invalid exception for quiet NaN operands, but even so, they will have
higher precedence over raising floating-point exceptions other than invalid opera-
tion.

Note that the single precision QNaN Indefinite value is 0xffc00000, the double preci-
sion QNaN Indefinite value is 0xfff8000000000000, and the Integer Indefinite value
is 0x80000000 (not a floating-point number, but it can be the result of a conversion
instruction from floating-point to integer).

For an unmasked exception, no result will be provided by the hardware to the user
handler. If a user registered floating-point exception handler is invoked, it may
provide a result for the excepting instruction, that will be used if execution of the
application code is continued after returning from the interruption.

In Tables E-1 through Table E-12, the specified operands cause an invalid exception,
unless the unmasked result is marked with “not an exception”. In this latter case, the
unmasked and masked results are the same.
Vol. 1 E-7

GUIDELINES FOR WRITING SIMD FLOATING-POINT EXCEPTION HANDLERS
Table E-1. ADDPS, ADDSS, SUBPS, SUBSS, MULPS, MULSS, DIVPS, DIVSS, ADDPD,
ADDSD, SUBPD, SUBSD, MULPD, MULSD, DIVPD, DIVSD, ADDSUBPS, ADDSUBPD,

HADDPS, HADDPD, HSUBPS, HSUBPD

Source Operands Masked Result Unmasked Result

SNaN1 op1 SNaN2 SNaN1 | 00400000H or
SNaN1 |
0008000000000000H2

None

SNaN1 op QNaN2 SNaN1 | 00400000H or
SNaN1 |
0008000000000000H2

None

QNaN1 op SNaN2 QNaN1 None

QNaN1 op QNaN2 QNaN1 QNaN1 (not an exception)

SNaN op real value SNaN | 00400000H or
SNaN1 |
0008000000000000H2

None

Real value op SNaN SNaN | 00400000H or
SNaN1 |
0008000000000000H2

None

QNaN op real value QNaN QNaN (not an exception)

Real value op QNaN QNaN QNaN (not an exception)

Neither source operand is
SNaN,
but #I is signaled (e.g. for Inf -
Inf,
Inf ∗ 0, Inf / Inf, 0/0)

Single precision or double
precision QNaN Indefinite

None

NOTES:
1. For Tables E-1 to E-12: op denotes the operation to be performed.
2. SNaN | 0x00400000 is a quiet NaN in single precision format (if SNaN is in single precision) and

SNaN | 0008000000000000H is a quiet NaN in double precision format (if SNaN is in double
precision), obtained from the signaling NaN given as input.

3. Operations involving only quiet NaNs do not raise floating-point exceptions.
E-8 Vol. 1

GUIDELINES FOR WRITING SIMD FLOATING-POINT EXCEPTION HANDLERS
Table E-2. CMPPS.EQ, CMPSS.EQ, CMPPS.ORD, CMPSS.ORD,
CMPPD.EQ, CMPSD.EQ, CMPPD.ORD, CMPSD.ORD

Source Operands Masked Result Unmasked Result

NaN op Opd2 (any Opd2) 00000000H or
0000000000000000H1

00000000H or
0000000000000000H1 (not
an exception)

Opd1 op NaN (any Opd1) 00000000H or
0000000000000000H1

00000000H or
0000000000000000H1 (not
an exception)

NOTE:
1. 32-bit results are for single, and 64-bit results for double precision operations.

Table E-3. CMPPS.NEQ, CMPSS.NEQ, CMPPS.UNORD, CMPSS.UNORD, CMPPD.NEQ,
CMPSD.NEQ, CMPPD.UNORD, CMPSD.UNORD

Source Operands Masked Result Unmasked Result

NaN op Opd2 (any Opd2) FFFFFFFFH or
FFFFFFFFFFFFFFFFH1

FFFFFFFFH or
FFFFFFFFFFFFFFFFH1 (not an
exception)

Opd1 op NaN (any Opd1) FFFFFFFFH or
FFFFFFFFFFFFFFFFH1

FFFFFFFFH or
FFFFFFFFFFFFFFFFH1 (not an
exception)

NOTE:
1. 32-bit results are for single, and 64-bit results for double precision operations.

Table E-4. CMPPS.LT, CMPSS.LT, CMPPS.LE, CMPSS.LE, CMPPD.LT, CMPSD.LT,
CMPPD.LE, CMPSD.LE

Source Operands Masked Result Unmasked Result

NaN op Opd2 (any Opd2) 00000000H or
0000000000000000H1

None

Opd1 op NaN (any Opd1) 00000000H or
0000000000000000H1

None

NOTE:
1. 32-bit results are for single, and 64-bit results for double precision operations.
Vol. 1 E-9

GUIDELINES FOR WRITING SIMD FLOATING-POINT EXCEPTION HANDLERS
Table E-5. CMPPS.NLT, CMPSS.NLT, CMPPS.NLE, CMPSS.NLE, CMPPD.NLT, CMPSD.NLT,
CMPPD.NLE, CMPSD.NLE

Source Operands Masked Result Unmasked Result

NaN op Opd2 (any Opd2) FFFFFFFFH or
FFFFFFFFFFFFFFFFH1

None

Opd1 op NaN (any Opd1) FFFFFFFFH or
FFFFFFFFFFFFFFFFH1

None

NOTE:
1. 32-bit results are for single, and 64-bit results for double precision operations.

Table E-6. COMISS, COMISD

Source Operands Masked Result Unmasked Result

SNaN op Opd2 (any Opd2) OF, SF, AF = 000
ZF, PF, CF = 111

None

Opd1 op SNaN (any Opd1) OF, SF, AF = 000
ZF, PF, CF = 111

None

QNaN op Opd2 (any Opd2) OF, SF, AF = 000
ZF, PF, CF = 111

None

Opd1 op QNaN (any Opd1) OF, SF, AF = 000
ZF, PF, CF = 111

None

Table E-7. UCOMISS, UCOMISD

Source Operands Masked Result Unmasked Result

SNaN op Opd2 (any Opd2) OF, SF, AF = 000
ZF, PF, CF = 111

None

Opd1 op SNaN (any Opd1) OF, SF, AF = 000
ZF, PF, CF = 111

None

QNaN op Opd2
(any Opd2 ≠ SNaN)

OF, SF, AF = 000
ZF, PF, CF = 111

OF, SF, AF = 000
ZF, PF, CF = 111 (not an
exception)

Opd1 op QNaN
(any Opd1 ≠ SNaN)

OF, SF, AF = 000
ZF, PF, CF = 111

OF, SF, AF = 000
ZF, PF, CF = 111 (not an
exception)
E-10 Vol. 1

GUIDELINES FOR WRITING SIMD FLOATING-POINT EXCEPTION HANDLERS
Table E-8. CVTPS2PI, CVTSS2SI, CVTTPS2PI, CVTTSS2SI, CVTPD2PI, CVTSD2SI,
CVTTPD2PI, CVTTSD2SI, CVTPS2DQ, CVTTPS2DQ, CVTPD2DQ, CVTTPD2DQ

Source Operand Masked Result Unmasked Result

SNaN 80000000H or
80000000000000001
(Integer Indefinite)

None

QNaN 80000000H or
80000000000000001
(Integer Indefinite)

None

NOTE:
1. 32-bit results are for single, and 64-bit results for double precision operations.

Table E-9. MAXPS, MAXSS, MINPS, MINSS, MAXPD, MAXSD, MINPD, MINSD

Source Operands Masked Result Unmasked Result

Opd1 op NaN2 (any Opd1) NaN2 None

NaN1 op Opd2 (any Opd2) Opd2 None

NOTE:
1. SNaN and QNaN operands raise an Invalid Operation fault.

Table E-10. SQRTPS, SQRTSS, SQRTPD, SQRTSD

Source Operand Masked Result Unmasked Result

QNaN QNaN QNaN (not an exception)

SNaN SNaN | 00400000H or
SNaN |
0008000000000000H1

None

Source operand is not SNaN;
but #I is signaled (e.g. for
sqrt (-1.0))

Single precision or
double precision QNaN
Indefinite

None

NOTE:
1. SNaN | 00400000H is a quiet NaN in single precision format (if SNaN is in single precision) and

SNaN | 0008000000000000H is a quiet NaN in double precision format (if SNaN is in double
precision), obtained from the signaling NaN given as input.
Vol. 1 E-11

GUIDELINES FOR WRITING SIMD FLOATING-POINT EXCEPTION HANDLERS
E.4.2.3 Condition Codes, Exception Flags, and Response for Masked and
Unmasked Numeric Exceptions

In the following, the masked response is what the processor provides when a masked
exception is raised by an SSE/SSE2/SSE3 numeric instruction. The same response is
provided by the floating-point emulator for SSE/SSE2/SSE3 numeric instructions,
when certain components of the quadruple input operands generate exceptions that
are masked (the emulator also generates the correct answer, as specified by IEEE
Standard 754 wherever applicable, in the case when no floating-point exception
occurs). The unmasked response is what the emulator provides to the user handler
for those components of the packed operands of SSE/SSE2/SSE3 instructions that
raise unmasked exceptions. Note that for pre-computation exceptions (floating-point

Table E-11. CVTPS2PD, CVTSS2SD

Source Operands Masked Result Unmasked Result

QNaN QNaN11 QNaN11 (not an exception)

SNaN QNaN12 None

NOTES:
1. The double precision output QNaN1 is created from the single precision input QNaN as follows:

the sign bit is preserved, the 8-bit exponent FFH is replaced by the 11-bit exponent 7FFH, and
the 24-bit significand is extended to a 53-bit significand by appending 29 bits equal to 0.

2. The double precision output QNaN1 is created from the single precision input SNaN as follows:
the sign bit is preserved, the 8-bit exponent FFH is replaced by the 11-bit exponent 7FFH, and
the 24-bit significand is extended to a 53-bit significand by pending 29 bits equal to 0. The sec-
ond most significant bit of the significand is changed from 0 to 1 to convert the signaling NaN
into a quiet NaN.

Table E-12. CVTPD2PS, CVTSD2SS

Source Operands Masked Result Unmasked Result

QNaN QNaN11 QNaN11 (not an exception)

SNaN QNaN12 None

NOTES:
1. The single precision output QNaN1 is created from the double precision input QNaN as follows:

the sign bit is preserved, the 11-bit exponent 7FFH is replaced by the 8-bit exponent FFH, and
the 53-bit significand is truncated to a 24-bit significand by removing its 29 least significant
bits.

2. The single precision output QNaN1 is created from the double precision input SNaN as follows:
the sign bit is preserved, the 11-bit exponent 7FFH is replaced by the 8-bit exponent FFH, and
the 53-bit significand is truncated to a 24-bit significand by removing its 29 least significant
bits. The second most significant bit of the significand is changed from 0 to 1 to convert the sig-
naling NaN into a quiet NaN.
E-12 Vol. 1

GUIDELINES FOR WRITING SIMD FLOATING-POINT EXCEPTION HANDLERS
faults), no result is provided to the user handler. For post-computation exceptions
(floating-point traps), a result is provided to the user handler, as specified below.

In the following tables, the result is denoted by 'res', with the understanding that for
the actual instruction, the destination coincides with the first source operand (except
for COMISS, UCOMISS, COMISD, and UCOMISD, whose destination is the EFLAGS
register).

Table E-13. #I - Invalid Operations

Instruction Condition Masked Response

Unmasked
Response and
Exception Code

ADDPS
ADDPD
ADDSS
ADDSD
HADDPS
HADDPD

src1 or src21 = SNaN Refer to Table E-1 for
NaN operands, #IA = 1

src1, src2
unchanged; #IA =
1

ADDSUBPS (the
addition
component)
ADDSUBPD (the
addition
component)

src1 = +Inf, src2 = -Inf or
src1 = -Inf, src2 = +Inf

res1 = QNaN Indefinite,
#IA = 1

SUBPS
SUBPD
SUBSS
SUBSD
HSUBPS
HSUBPD

src1 or src2 = SNaN Refer to Table E-1 for NaN
operands, #IA = 1

src1, src2
unchanged; #IA =
1

ADDSUBPS (the
subtraction
component)
ADDSUBPD (the
subtraction
component)

src1 = +Inf, src2 = +Inf or
src1 = -Inf, src2 = -Inf

res = QNaN Indefinite,
#IA = 1

MULPS
MULPD

src1 or src2 = SNaN Refer to Table E-1 for
NaN operands, #IA = 1

src1, src2
unchanged;
#IA = 1MULSS

MULSD
src1 = ±Inf, src2 = ±0 or
src1 = ±0, src2 = ±Inf

res = QNaN Indefinite,
#IA = 1

DIVPS
DIVPD

src1 or src2 = SNaN Refer to Table E-1 for
NaN operands, #IA = 1

src1, src2
unchanged;
#IA = 1DIVSS

DIVSD
src1 = ±Inf, src2 = ±Inf or
src1 = ±0, src2 = ±0

res = QNaN Indefinite,
#IA = 1
Vol. 1 E-13

GUIDELINES FOR WRITING SIMD FLOATING-POINT EXCEPTION HANDLERS
SQRTPS
SQRTPD
SQRTSS
SQRTSD

src = SNaN Refer to Table E-10 for
NaN operands, #IA = 1

src unchanged,
#IA = 1

src < 0
(note that -0 < 0 is false)

res = QNaN Indefinite,
#IA = 1

MAXPS
MAXSS
MAXPD
MAXSD

src1 = NaN or src2 = NaN res = src2, #IA = 1 src1, src2
unchanged; #IA =
1

MINPS
MINSS
MINPD
MINSD

src1 = NaN or src2 = NaN res = src2, #IA = 1 src1, src2
unchanged; #IA =
1

Table E-13. #I - Invalid Operations (Contd.)

Instruction Condition Masked Response

Unmasked
Response and
Exception Code
E-14 Vol. 1

GUIDELINES FOR WRITING SIMD FLOATING-POINT EXCEPTION HANDLERS
CMPPS.LT
CMPPS.LE
CMPPS.NLT
CMPPS.NLE
CMPSS.LT
CMPSS.LE
CMPSS.NLT
CMPSS.NLE
CMPPD.LT
CMPPD.LE
CMPPD.NLT
CMPPD.NLE
CMPSD.LT
CMPSD.LE
CMPSD.NLT
CMPSD.NLE

src1 = NaN or src2 = NaN Refer to Table E-4 and
Table E-5 for NaN
operands; #IA = 1

src1, src2
unchanged; #IA =
1

COMISS
COMISD

src1 = NaN or src2 = NaN Refer to Table E-6 for NaN
operands

src1, src2, EFLAGS
unchanged; #IA =
1

UCOMISS
UCOMISD

src1 = SNaN or src2 = SNaN Refer to Table E-7 for NaN
operands

src1, src2, EFLAGS
unchanged; #IA =
1

CVTPS2PI
CVTSS2SI
CVTPD2PI
CVTSD2SI
CVTPS2DQ
CVTPD2DQ

src = NaN, ±Inf, or
|(src)rnd | > 7FFFFFFFH and
(src)rnd ≠ 80000000H

See Note2 for information
on rnd.

res = Integer Indefinite,
#IA = 1

src unchanged,
#IA = 1

CVTTPS2PI
CVTTSS2SI
CVTTPD2PI
CVTTSD2SI
CVTTPS2DQ
CVTTPD2DQ

src = NaN, ±Inf, or
|(src)rz | > 7FFFFFFFH and
(src)rz ≠ 80000000H

See Note2 for information
on rz.

res = Integer Indefinite,
#IA = 1

src unchanged,
#IA = 1

CVTPS2PD
CVTSS2SD

src = NAN Refer to Table E-11 for
NaN operands

src unchanged,
#IA = 1

CVTPD2PS
CVTSD2SS

src = NAN Refer to Table E-12 for
NaN operands

src unchanged,
#IA = 1

Table E-13. #I - Invalid Operations (Contd.)

Instruction Condition Masked Response

Unmasked
Response and
Exception Code
Vol. 1 E-15

GUIDELINES FOR WRITING SIMD FLOATING-POINT EXCEPTION HANDLERS
NOTES:
1. For Tables E-13 to E-18:

- src denotes the single source operand of a unary operation.
- src1, src2 denote the first and second source operand of a binary operation.
- res denotes the numerical result of an operation.

2. rnd signifies the user rounding mode from MXCSR, and rz signifies the rounding mode toward
zero. (truncate), when rounding a floating-point value to an integer. For more information, refer
to Table 4-8.

3. For NAN encodings, see Table 4-3.

Table E-14. #Z - Divide-by-Zero

Instruction Condition Masked Response

Unmasked
Response and
Exception Code

DIVPS
DIVSS
DIVPD
DIVPS

src1 = finite non-zero (normal,
or denormal)
src2 = ±0

res = ±Inf,
#ZE = 1

src1, src2
unchanged;
#ZE = 1

Table E-13. #I - Invalid Operations (Contd.)

Instruction Condition Masked Response

Unmasked
Response and
Exception Code
E-16 Vol. 1

GUIDELINES FOR WRITING SIMD FLOATING-POINT EXCEPTION HANDLERS
Table E-15. #D - Denormal Operand

Instruction Condition Masked Response
Unmasked Response
and Exception Code

ADDPS
ADDPD
ADDSUBPS
ADDSUBPD
HADDPS
HADDPD
SUBPS
SUBPD
HSUBPS
HSUBPD
MULPS
MULPD
DIVPS
DIVPD
SQRTPS
SQRTPD
MAXPS
MAXPD
MINPS
MINPD
CMPPS
CMPPD
ADDSS
ADDSD
SUBSS
SUBSD
MULSS
MULSD
DIVSS
DIVSD
SQRTSS
SQRTSD
MAXSS
MAXSD
MINSS
MINSD
CMPSS
CMPSD
COMISS
COMISD
UCOMISS
UCOMISD
CVTPS2PD

src1 = denormal1 or
src2 = denormal (and
the DAZ bit in MXCSR
is 0)

res = Result rounded to
the destination precision
and using the bounded
exponent, but only if no
unmasked post-
computation exception
occurs.

src1, src2 unchanged;
#DE = 1

Note that SQRT,
CVTPS2PD, CVTSS2SD,
CVTPD2PS, CVTSD2SS
have only 1 src.
Vol. 1 E-17

GUIDELINES FOR WRITING SIMD FLOATING-POINT EXCEPTION HANDLERS
CVTSS2SD
CVTPD2PS
CVTSD2SS

NOTE:
1. For denormal encodings, see Section 4.8.3.2, “Normalized and Denormalized Finite Numbers.”

Table E-16. #O - Numeric Overflow

Instruction Condition Masked Response
Unmasked Response
and Exception Code

ADDPS
ADDSUBPS
HADDPS
SUBPS
HSUBPS
MULPS
DIVPS
ADDSS
SUBSS
MULSS
DIVSS
CVTPD2PS
CVTSD2SS

Rounded result
> largest single
precision finite
normal value

Roundi
ng

Sign Result & Status
Flags

res = (result calculated
with unbounded
exponent and rounded to
the destination precision)
/ 2192

#OE = 1
#PE = 1 if the result is
inexact

To
nearest +

-

#OE = 1, #PE = 1
res =
res =

Toward
+
-

#OE = 1, #PE = 1
res = 1.11…1 * 2127

res =

Toward
+
-

#OE = 1, #PE = 1
res =
res = -1.11…1 * 2127

Toward
0 +

-

#OE = 1, #PE = 1
res = 1.11…1 * 2127

res = -1.11…1 * 2127

Table E-15. #D - Denormal Operand (Contd.)

Instruction Condition Masked Response
Unmasked Response
and Exception Code

∞+
∞–

∞–
∞–

∞+ ∞+
E-18 Vol. 1

GUIDELINES FOR WRITING SIMD FLOATING-POINT EXCEPTION HANDLERS
ADDPD
ADDSUBPD
HADDPD
SUBPD
HSUBPD
MULPD
DIVPD
ADDSD
SUBSD
MULSD
DIVSD

Rounded result
> largest double
precision finite
normal value

Roundi
ng

Sign Result & Status
Flags

res = (result calculated
with unbounded
exponent and rounded to
the destination precision)
/ 21536

• #OE = 1
• #PE = 1 if the result is

inexact

To
nearest +

-

#OE = 1, #PE = 1
res =
res =

Toward
+
-

#OE = 1, #PE = 1
res = 1.11…1 *
21023

res =

Toward
+
-

#OE = 1, #PE = 1
res =
res = -1.11…1 *
21023

Toward
0 +

-

#OE = 1, #PE = 1
res = 1.11…1 *
21023

res = -1.11…1 *
21023

Table E-16. #O - Numeric Overflow (Contd.)

Instruction Condition Masked Response
Unmasked Response
and Exception Code

∞+
∞–

∞–

∞–

∞+ ∞+
Vol. 1 E-19

GUIDELINES FOR WRITING SIMD FLOATING-POINT EXCEPTION HANDLERS
Table E-17. #U - Numeric Underflow

Instruction Condition Masked Response
Unmasked Response
and Exception Code

ADDPS
ADDSUBPS
HADDPS
SUBPS
HSUBPS
MULPS
DIVPS
ADDSS
SUBSS
MULSS
DIVSS
CVTPD2PS
CVTSD2SS

Result calculated with
unbounded exponent and
rounded to the
destination precision <
smallest single precision
finite normal value.

res = ±0, denormal, or
normal

#UE = 1 and #PE = 1,
but only if the result is
inexact

res = (result calculated
with unbounded
exponent and rounded to
the destination precision)
* 2192

• #UE = 1
• #PE = 1 if the result is

inexact

ADDPD
ADDSUBPD
HADDPD
SUBPD
HSUBPD
MULPD
DIVPD
ADDSD
SUBSD
MULSD
DIVSD

Result calculated with
unbounded exponent and
rounded to the
destination precision <
smallest double precision
finite normal value.

res = ±0, denormal or
normal

#UE = 1 and #PE = 1,
but only if the result is
inexact

res = (result calculated
with unbounded
exponent and rounded to
the destination precision)
* 21536

• #UE = 1
• #PE = 1 if the result is

inexact
E-20 Vol. 1

GUIDELINES FOR WRITING SIMD FLOATING-POINT EXCEPTION HANDLERS
Table E-18. #P - Inexact Result (Precision)

Instruction Condition Masked Response
Unmasked Response and Exception
Code

ADDPS
ADDPD
ADDSUBPS
ADDSUBPD
HADDPS
HADDPD
SUBPS
SUBPD
HSUBPS
HSUBPD
MULPS
MULPD
DIVPS
DIVPD
SQRTPS
SQRTPD
CVTDQ2PS
CVTPI2PS
CVTPS2PI
CVTPS2DQ
CVTPD2PI
CVTPD2DQ
CVTPD2PS
CVTTPS2PI
CVTTPD2PI
CVTTPD2DQ
CVTTPS2DQ
ADDSS
ADDSD
SUBSS
SUBSD
MULSS
MULSD
DIVSS
DIVSD
SQRTSS
SQRTSD
CVTSI2SS
CVTSS2SI
CVTSD2SI
CVTSD2SS
CVTTSS2SI
CVTTSD2SI

The result is not
exactly
representable in
the destination
format.

res = Result rounded
to the destination
precision and using
the bounded
exponent, but only if
no unmasked
underflow or
overflow conditions
occur (this exception
can occur in the
presence of a
masked underflow
or overflow); #PE =
1.

Only if no underflow/overflow
condition occurred, or if the
corresponding exceptions are masked:
• Set #OE if masked overflow and set

result as described above for
masked overflow.

• Set #UE if masked underflow and
set result as described above for
masked underflow.

If neither underflow nor overflow, res
equals the result rounded to the
destination precision and using the
bounded exponent set #PE = 1.
Vol. 1 E-21

GUIDELINES FOR WRITING SIMD FLOATING-POINT EXCEPTION HANDLERS
E.4.3 Example SIMD Floating-Point Emulation Implementation
The sample code listed below may be considered as being part of a user-level
floating-point exception filter for the SSE/SSE2/SSE3 numeric instructions. It is
assumed that the filter function is invoked by a low-level exception handler (reached
via interrupt vector 19 when an unmasked floating-point exception occurs), and that
it operates as explained in Section E.4.1, “Floating-Point Emulation.” The sample
code does the emulation only for the SSE instructions for addition, subtraction, multi-
plication, and division. For this, it uses C code and x87 FPU operations. Operations
corresponding to other SSE/SSE2/SSE3 numeric instructions can be emulated simi-
larly. The example assumes that the emulation function receives a pointer to a data
structure specifying a number of input parameters: the operation that caused the
exception, a set of sub-operands (unpacked, of type float), the rounding mode (the
precision is always single), exception masks (having the same relative bit positions
as in the MXCSR but starting from bit 0 in an unsigned integer), and flush-to-zero
and denormals-are-zeros indicators.

The output parameters are a floating-point result (of type float), the cause of the
exception (identified by constants not explicitly defined below), and the exception
status flags. The corresponding C definition is:

typedef struct {
unsigned int operation; //SSE or SSE2 operation: ADDPS, ADDSS, ...

 unsigned int operand1_uint32; //first operand value
unsigned int operand2_uint32; //second operand value (if any)

 float result_fval; // result value (if any)
 unsigned int rounding_mode; //rounding mode
 unsigned int exc_masks; //exception masks, in the order P,U,O,Z,D,I
 unsigned int exception_cause; //exception cause
 unsigned int status_flag_inexact; //inexact status flag
 unsigned int status_flag_underflow; //underflow status flag
 unsigned int status_flag_overflow; //overflow status flag
 unsigned int status_flag_divide_by_zero;

//divide by zero status flag
 unsigned int status_flag_denormal_operand;

//denormal operand status flag
 unsigned int status_flag_invalid_operation;

//invalid operation status flag
 unsigned int ftz; // flush-to-zero flag
unsigned int daz; // denormals-are-zeros flag

} EXC_ENV;

The arithmetic operations exemplified are emulated as follows:
E-22 Vol. 1

GUIDELINES FOR WRITING SIMD FLOATING-POINT EXCEPTION HANDLERS
1. If the denormals-are-zeros mode is enabled (the DAZ bit in MXCSR is set to 1),
replace all the denormal inputs with zeroes of the same sign (the denormal flag is
not affected by this change).

2. Perform the operation using x87 FPU instructions, with exceptions disabled, the
original user rounding mode, and single precision. This reveals invalid, denormal,
or divide-by-zero exceptions (if there are any) and stores the result in memory as
a double precision value (whose exponent range is large enough to look like
“unbounded” to the result of the single precision computation).

3. If no unmasked exceptions were detected, determine if the result is less than the
smallest normal number (tiny) that can be represented in single precision
format, or greater than the largest normal number that can be represented in
single precision format (huge). If an unmasked overflow or underflow occurs,
calculate the scaled result that will be handed to the user exception handler, as
specified by IEEE Standard 754.

4. If no exception was raised, calculate the result with a “bounded” exponent. If the
result is tiny, it requires denormalization (shifting the significand right while
incrementing the exponent to bring it into the admissible range of [-126,+127]
for single precision floating-point numbers).

The result obtained in step 2 cannot be used because it might incur a double
rounding error (it was rounded to 24 bits in step 2, and might have to be rounded
again in the denormalization process). To overcome this is, calculate the result as
a double precision value, and store it to memory in single precision format.

Rounding first to 53 bits in the significand, and then to 24 never causes a double
rounding error (exact properties exist that state when double-rounding error
occurs, but for the elementary arithmetic operations, the rule of thumb is that if
an infinitely precise result is rounded to 2p+1 bits and then again to p bits, the
result is the same as when rounding directly to p bits, which means that no
double-rounding error occurs).

5. If the result is inexact and the inexact exceptions are unmasked, the calculated
result will be delivered to the user floating-point exception handler.

6. The flush-to-zero case is dealt with if the result is tiny.

7. The emulation function returns RAISE_EXCEPTION to the filter function if an
exception has to be raised (the exception_cause field indicates the cause).
Otherwise, the emulation function returns DO_NOT_ RAISE_EXCEPTION. In the
first case, the result is provided by the user exception handler called by the filter
function. In the second case, it is provided by the emulation function. The filter
function has to collect all the partial results, and to assemble the scalar or packed
result that is used if execution is to continue.
Vol. 1 E-23

GUIDELINES FOR WRITING SIMD FLOATING-POINT EXCEPTION HANDLERS
Example E-2. SIMD Floating-Point Emulation

// masks for individual status word bits
#define PRECISION_MASK 0x20
#define UNDERFLOW_MASK 0x10
#define OVERFLOW_MASK 0x08
#define ZERODIVIDE_MASK 0x04
#define DENORMAL_MASK 0x02
#define INVALID_MASK 0x01

// 32-bit constants
static unsigned ZEROF_ARRAY[] = {0x00000000};
#define ZEROF *(float *) ZEROF_ARRAY
 // +0.0
static unsigned NZEROF_ARRAY[] = {0x80000000};
#define NZEROF *(float *) NZEROF_ARRAY
 // -0.0
static unsigned POSINFF_ARRAY[] = {0x7f800000};
#define POSINFF *(float *)POSINFF_ARRAY
 // +Inf
static unsigned NEGINFF_ARRAY[] = {0xff800000};
#define NEGINFF *(float *)NEGINFF_ARRAY
 // -Inf

// 64-bit constants
static unsigned MIN_SINGLE_NORMAL_ARRAY [] = {0x00000000, 0x38100000};
#define MIN_SINGLE_NORMAL *(double *)MIN_SINGLE_NORMAL_ARRAY
 // +1.0 * 2^-126
static unsigned MAX_SINGLE_NORMAL_ARRAY [] = {0x70000000, 0x47efffff};
#define MAX_SINGLE_NORMAL *(double *)MAX_SINGLE_NORMAL_ARRAY
 // +1.1...1*2^127
static unsigned TWO_TO_192_ARRAY[] = {0x00000000, 0x4bf00000};
#define TWO_TO_192 *(double *)TWO_TO_192_ARRAY
 // +1.0 * 2^192
static unsigned TWO_TO_M192_ARRAY[] = {0x00000000, 0x33f00000};
#define TWO_TO_M192 *(double *)TWO_TO_M192_ARRAY
 // +1.0 * 2^-192

// auxiliary functions
static int isnanf (unsigned int); // returns 1 if f is a NaN, and 0 otherwise
static float quietf (unsigned int); // converts a signaling NaN to a quiet

// NaN, and leaves a quiet NaN unchanged
static unsigned int check_for_daz (unsigned int); // converts denormals

// to zeros of the same sign;
// does not affect any status flags

// emulation of SSE and SSE2 instructions using
// C code and x87 FPU instructions

unsigned int
simd_fp_emulate (EXC_ENV *exc_env)

{

E-24 Vol. 1

GUIDELINES FOR WRITING SIMD FLOATING-POINT EXCEPTION HANDLERS
 int uiopd1; // first operand of the add, subtract, multiply, or divide
 int uiopd2; // second operand of the add, subtract, multiply, or divide
 float res; // result of the add, subtract, multiply, or divide
 double dbl_res24; // result with 24-bit significand, but "unbounded" exponent
 // (needed to check tininess, to provide a scaled result to
 // an underflow/overflow trap handler, and in flush-to-zero mode)
 double dbl_res; // result in double precision format (needed to avoid a
 // double rounding error when denormalizing)
 unsigned int result_tiny;
 unsigned int result_huge;
 unsigned short int sw; // 16 bits
 unsigned short int cw; // 16 bits

 // have to check first for faults (V, D, Z), and then for traps (O, U, I)

 // initialize x87 FPU (floating-point exceptions are masked)
 _asm {
 fninit;
 }

 result_tiny = 0;
 result_huge = 0;

 switch (exc_env->operation) {

 case ADDPS:
 case ADDSS:
 case SUBPS:
 case SUBSS:
 case MULPS:
 case MULSS:
 case DIVPS:
 case DIVSS:

 uiopd1 = exc_env->operand1_uint32; // copy as unsigned int
// do not copy as float to avoid conversion
// of SNaN to QNaN by compiled code

 uiopd2 = exc_env->operand2_uint32;
// do not copy as float to avoid conversion of SNaN
// to QNaN by compiled code

uiopd1 = check_for_daz (uiopd1); // operand1 = +0.0 * operand1 if it is
// denormal and DAZ=1

 uiopd2 = check_for_daz (uiopd2); // operand2 = +0.0 * operand2 if it is
// denormal and DAZ=1

 // execute the operation and check whether the invalid, denormal, or
 // divide by zero flags are set and the respective exceptions enabled

 // set control word with rounding mode set to exc_env->rounding_mode,
 // single precision, and all exceptions disabled
Vol. 1 E-25

GUIDELINES FOR WRITING SIMD FLOATING-POINT EXCEPTION HANDLERS
 switch (exc_env->rounding_mode) {
 case ROUND_TO_NEAREST:
 cw = 0x003f; // round to nearest, single precision, exceptions masked
 break;
 case ROUND_DOWN:
 cw = 0x043f; // round down, single precision, exceptions masked
 break;
 case ROUND_UP:
 cw = 0x083f; // round up, single precision, exceptions masked
 break;
 case ROUND_TO_ZERO:
 cw = 0x0c3f; // round to zero, single precision, exceptions masked
 break;
 default:
 ;
 }
 __asm {
 fldcw WORD PTR cw;
 }

 // compute result and round to the destination precision, with
 // "unbounded" exponent (first IEEE rounding)
 switch (exc_env->operation) {

 case ADDPS:
 case ADDSS:
 // perform the addition
 __asm {
 fnclex;
 // load input operands
 fld DWORD PTR uiopd1; // may set denormal or invalid status flags
 fld DWORD PTR uiopd2; // may set denormal or invalid status flags
 faddp st(1), st(0); // may set inexact or invalid status flags
 // store result
 fstp QWORD PTR dbl_res24; // exact
 }
 break;

 case SUBPS:
 case SUBSS:
 // perform the subtraction
 __asm {
 fnclex;
 // load input operands
 fld DWORD PTR uiopd1; // may set denormal or invalid status flags
 fld DWORD PTR uiopd2; // may set denormal or invalid status flags
 fsubp st(1), st(0); // may set the inexact or invalid status flags

// store result
 fstp QWORD PTR dbl_res24; // exact
 }
 break;
E-26 Vol. 1

GUIDELINES FOR WRITING SIMD FLOATING-POINT EXCEPTION HANDLERS
 case MULPS:
 case MULSS:
 // perform the multiplication
 __asm {
 fnclex;
 // load input operands
 fld DWORD PTR uiopd1; // may set denormal or invalid status flags
 fld DWORD PTR uiopd2; // may set denormal or invalid status flags
 fmulp st(1), st(0); // may set inexact or invalid status flags

// store result
 fstp QWORD PTR dbl_res24; // exact
 }
 break;

 case DIVPS:
 case DIVSS:
 // perform the division
 __asm {
 fnclex;
 // load input operands
 fld DWORD PTR uiopd1; // may set denormal or invalid status flags
 fld DWORD PTR uiopd2; // may set denormal or invalid status flags
 fdivp st(1), st(0); // may set the inexact, divide by zero, or
 // invalid status flags
 // store result
 fstp QWORD PTR dbl_res24; // exact
 }
 break;

 default:
 ; // will never occur

 }

 // read status word
 __asm {
 fstsw WORD PTR sw;
}

if (sw & ZERODIVIDE_MASK)
sw = sw & ~DENORMAL_MASK; // clear D flag for (denormal / 0)

 // if invalid flag is set, and invalid exceptions are enabled, take trap
 if (!(exc_env->exc_masks & INVALID_MASK) && (sw & INVALID_MASK)) {
 exc_env->status_flag_invalid_operation = 1;
 exc_env->exception_cause = INVALID_OPERATION;
 return (RAISE_EXCEPTION);
 }

// checking for NaN operands has priority over denormal exceptions;
Vol. 1 E-27

GUIDELINES FOR WRITING SIMD FLOATING-POINT EXCEPTION HANDLERS
// also fix for the SSE and SSE2
// differences in treating two NaN inputs between the
// instructions and other IA-32 instructions
if (isnanf (uiopd1) || isnanf (uiopd2)) {

 if (isnanf (uiopd1) && isnanf (uiopd2))
 exc_env->result_fval = quietf (uiopd1);
 else
 exc_env->result_fval = (float)dbl_res24; // exact

 if (sw & INVALID_MASK) exc_env->status_flag_invalid_operation = 1;
 return (DO_NOT_RAISE_EXCEPTION);
 }

 // if denormal flag set, and denormal exceptions are enabled, take trap
 if (!(exc_env->exc_masks & DENORMAL_MASK) && (sw & DENORMAL_MASK)) {
 exc_env->status_flag_denormal_operand = 1;
 exc_env->exception_cause = DENORMAL_OPERAND;
 return (RAISE_EXCEPTION);
 }

 // if divide by zero flag set, and divide by zero exceptions are
 // enabled, take trap (for divide only)
 if (!(exc_env->exc_masks & ZERODIVIDE_MASK) && (sw & ZERODIVIDE_MASK)) {
 exc_env->status_flag_divide_by_zero = 1;
 exc_env->exception_cause = DIVIDE_BY_ZERO;
 return (RAISE_EXCEPTION);
 }

 // done if the result is a NaN (QNaN Indefinite)
 res = (float)dbl_res24;
 if (isnanf (*(unsigned int *)&res)) {
 exc_env->result_fval = res; // exact
 exc_env->status_flag_invalid_operation = 1;
 return (DO_NOT_RAISE_EXCEPTION);
 }

 // dbl_res24 is not a NaN at this point

 if (sw & DENORMAL_MASK) exc_env->status_flag_denormal_operand = 1;

 // Note: (dbl_res24 == 0.0 && sw & PRECISION_MASK) cannot occur
 if (-MIN_SINGLE_NORMAL < dbl_res24 && dbl_res24 < 0.0 ||
 0.0 < dbl_res24 && dbl_res24 < MIN_SINGLE_NORMAL) {
 result_tiny = 1;
 }

 // check if the result is huge
 if (NEGINFF < dbl_res24 && dbl_res24 < -MAX_SINGLE_NORMAL ||
 MAX_SINGLE_NORMAL < dbl_res24 && dbl_res24 < POSINFF) {
 result_huge = 1;
 }
E-28 Vol. 1

GUIDELINES FOR WRITING SIMD FLOATING-POINT EXCEPTION HANDLERS
 // at this point, there are no enabled I,D, or Z exceptions
 // to take; the instr.

 // might lead to an enabled underflow, enabled underflow and inexact,
 // enabled overflow, enabled overflow and inexact, enabled inexact, or
 // none of these; if there are no U or O enabled exceptions, re-execute
 // the instruction using IA-32 double precision format, and the
 // user's rounding mode; exceptions must have

// been disabled before calling
 // this function; an inexact exception may be reported on the 53-bit
 // fsubp, fmulp, or on both the 53-bit and 24-bit conversions, while an
 // overflow or underflow (with traps disabled) may be reported on the
 // conversion from dbl_res to res

// check whether there is an underflow, overflow,
 // or inexact trap to be taken

// if the underflow traps are enabled and the result is
// tiny, take underflow trap

 if (!(exc_env->exc_masks & UNDERFLOW_MASK) && result_tiny) {
 dbl_res24 = TWO_TO_192 * dbl_res24; // exact
 exc_env->status_flag_underflow = 1;
 exc_env->exception_cause = UNDERFLOW;
 exc_env->result_fval = (float)dbl_res24; // exact
 if (sw & PRECISION_MASK) exc_env->status_flag_inexact = 1;
 return (RAISE_EXCEPTION);
 }

 // if overflow traps are enabled and the result is huge, take
 // overflow trap
 if (!(exc_env->exc_masks & OVERFLOW_MASK) && result_huge) {
 dbl_res24 = TWO_TO_M192 * dbl_res24; // exact
 exc_env->status_flag_overflow = 1;
 exc_env->exception_cause = OVERFLOW;
 exc_env->result_fval = (float)dbl_res24; // exact
 if (sw & PRECISION_MASK) exc_env->status_flag_inexact = 1;
 return (RAISE_EXCEPTION);
 }

 // set control word with rounding mode set to exc_env->rounding_mode,
 // double precision, and all exceptions disabled
 cw = cw | 0x0200; // set precision to double
 __asm {
 fldcw WORD PTR cw;
 }

 switch (exc_env->operation) {

 case ADDPS:
 case ADDSS:
 // perform the addition
 __asm {
Vol. 1 E-29

GUIDELINES FOR WRITING SIMD FLOATING-POINT EXCEPTION HANDLERS
 // load input operands
 fld DWORD PTR uiopd1; // may set the denormal status flag
 fld DWORD PTR uiopd2; // may set the denormal status flag
 faddp st(1), st(0); // rounded to 53 bits, may set the inexact
 // status flag
 // store result
 fstp QWORD PTR dbl_res; // exact, will not set any flag
 }
 break;

 case SUBPS:
 case SUBSS:
 // perform the subtraction
 __asm {
 // load input operands
 fld DWORD PTR uiopd1; // may set the denormal status flag
 fld DWORD PTR uiopd2; // may set the denormal status flag
 fsubp st(1), st(0); // rounded to 53 bits, may set the inexact
 // status flag
 // store result
 fstp QWORD PTR dbl_res; // exact, will not set any flag
 }
 break;

 case MULPS:
 case MULSS:
 // perform the multiplication
 __asm {
 // load input operands
 fld DWORD PTR uiopd1; // may set the denormal status flag
 fld DWORD PTR uiopd2; // may set the denormal status flag
 fmulp st(1), st(0); // rounded to 53 bits, exact

// store result
 fstp QWORD PTR dbl_res; // exact, will not set any flag
 }
 break;

 case DIVPS:
 case DIVSS:
 // perform the division
 __asm {
 // load input operands
 fld DWORD PTR uiopd1; // may set the denormal status flag
 fld DWORD PTR uiopd2; // may set the denormal status flag
 fdivp st(1), st(0); // rounded to 53 bits, may set the inexact

// status flag
 // store result
 fstp QWORD PTR dbl_res; // exact, will not set any flag
 }
 break;

 default:
E-30 Vol. 1

GUIDELINES FOR WRITING SIMD FLOATING-POINT EXCEPTION HANDLERS
 ; // will never occur

 }

 // calculate result for the case an inexact trap has to be taken, or
 // when no trap occurs (second IEEE rounding)
 res = (float)dbl_res;
 // may set P, U or O; may also involve denormalizing the result

 // read status word
 __asm {
 fstsw WORD PTR sw;
 }

 // if inexact traps are enabled and result is inexact, take inexact trap
 if (!(exc_env->exc_masks & PRECISION_MASK) &&
 ((sw & PRECISION_MASK) || (exc_env->ftz && result_tiny))) {
 exc_env->status_flag_inexact = 1;
 exc_env->exception_cause = INEXACT;
 if (result_tiny) {
 exc_env->status_flag_underflow = 1;

 // if ftz = 1 and result is tiny, result = 0.0
 // (no need to check for underflow traps disabled: result tiny and
 // underflow traps enabled would have caused taking an underflow
 // trap above)
 if (exc_env->ftz) {
 if (res > 0.0)
 res = ZEROF;
 else if (res < 0.0)
 res = NZEROF;
 // else leave res unchanged
 }
 }
 if (result_huge) exc_env->status_flag_overflow = 1;
 exc_env->result_fval = res;
 return (RAISE_EXCEPTION);
 }

 // if it got here, then there is no trap to be taken; the following must
 // hold: ((the MXCSR U exceptions are disabled or
 //
 // the MXCSR underflow exceptions are enabled and the underflow flag is
 // clear and (the inexact flag is set or the inexact flag is clear and
 // the 24-bit result with unbounded exponent is not tiny)))
 // and (the MXCSR overflow traps are disabled or the overflow flag is
 // clear) and (the MXCSR inexact traps are disabled or the inexact flag
 // is clear)
 //
 // in this case, the result has to be delivered (the status flags are
 // sticky, so they are all set correctly already)
Vol. 1 E-31

GUIDELINES FOR WRITING SIMD FLOATING-POINT EXCEPTION HANDLERS
 // read status word to see if result is inexact
 __asm {
 fstsw WORD PTR sw;
 }

 if (sw & UNDERFLOW_MASK) exc_env->status_flag_underflow = 1;
 if (sw & OVERFLOW_MASK) exc_env->status_flag_overflow = 1;
 if (sw & PRECISION_MASK) exc_env->status_flag_inexact = 1;

 // if ftz = 1, and result is tiny (underflow traps must be disabled),
 // result = 0.0
 if (exc_env->ftz && result_tiny) {
 if (res > 0.0)
 res = ZEROF;
 else if (res < 0.0)
 res = NZEROF;
 // else leave res unchanged

 exc_env->status_flag_inexact = 1;
 exc_env->status_flag_underflow = 1;
 }

 exc_env->result_fval = res;
 if (sw & ZERODIVIDE_MASK) exc_env->status_flag_divide_by_zero = 1;
 if (sw & DENORMAL_MASK) exc_env->status_flag_denormal= 1;
 if (sw & INVALID_MASK) exc_env->status_flag_invalid_operation = 1;
 return (DO_NOT_RAISE_EXCEPTION);

 break;

 case CMPPS:
 case CMPSS:

 ...

 break;

 case COMISS:
 case UCOMISS:

 ...

 break;

 case CVTPI2PS:
 case CVTSI2SS:

 ...

 break;

 case CVTPS2PI:
E-32 Vol. 1

GUIDELINES FOR WRITING SIMD FLOATING-POINT EXCEPTION HANDLERS
 case CVTSS2SI:
 case CVTTPS2PI:
 case CVTTSS2SI:

 ...

 break;

 case MAXPS:
 case MAXSS:
 case MINPS:
 case MINSS:

 ...

 break;

 case SQRTPS:
 case SQRTSS:

 ...

 break;

...

case UNSPEC:

 ...

 break;

 default:
 ...

 }

}

Vol. 1 E-33

Intel® 64 and IA-32 Architectures
Software Developer’s Manual

Volume 2 (2A, 2B & 2C):
Instruction Set Reference, A-Z

NOTE: The Intel 64 and IA-32 Architectures Software Developer's Manual
consists of three volumes: Basic Architecture, Order Number 253665;
Instruction Set Reference A-Z, Order Number 325383; System
Programming Guide, Order Number 325384. Refer to all three volumes
when evaluating your design needs.

Order Number: 325383-042US
March 2012

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANT-
ED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH
PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or
indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH
MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUB-
CONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS
AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING
OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARIS-
ING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUB-
CONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR
ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers
must not rely on the absence or characteristics of any features or instructions marked "reserved" or "unde-
fined". Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or
incompatibilities arising from future changes to them. The information here is subject to change without no-
tice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Intel® AES-NI requires a computer system with an AES-NI enabled processor, as well as non-Intel software
to execute the instructions in the correct sequence. AES-NI is available on select Intel® processors. For
availability, consult your reseller or system manufacturer. For more information, see http://software.in-
tel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni/.

Intel® Hyper-Threading Technology (Intel® HT Technology) is available on select Intel® Core™ processors.
Requires an Intel® HT Technology-enabled system. Consult your PC manufacturer. Performance will vary
depending on the specific hardware and software used. For more information including details on which
processors support HT Technology, visit http://www.intel.com/info/hyperthreading.

Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, and
virtual machine monitor (VMM). Functionality, performance or other benefits will vary depending on hard-
ware and software configurations. Software applications may not be compatible with all operating systems.
Consult your PC manufacturer. For more information, visit http://www.intel.com/go/virtualization.

Intel® 64 architecture Requires a system with a 64-bit enabled processor, chipset, BIOS and software. Per-
formance will vary depending on the specific hardware and software you use. Consult your PC manufacturer
for more information. For more information, visit http://www.intel.com/info/em64t.

Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability
and a supporting operating system. Check with your PC manufacturer on whether your system delivers Ex-
ecute Disable Bit functionality.

Intel, the Intel logo, Pentium, Xeon, Intel NetBurst, Intel Core, Intel Core Solo, Intel Core Duo, Intel Core
2 Duo, Intel Core 2 Extreme, Intel Pentium D, Itanium, Intel SpeedStep, MMX, Intel Atom, and VTune are
trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing
your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel lit-
erature, may be obtained by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

Copyright © 1997-2012 Intel Corporation. All rights reserved.
ii Vol. 2A

http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni/
http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni/
http://www.intel.com/info/hyperthreading
http://www.intel.com/go/virtualization
http://www.intel.com/go/virtualization
http://www.intel.com/go/virtualization
http://www.intel.com/info/em64t
http://www.intel.com/info/em64t
http://www.intel.com/info/em64t
http://www.intel.com/design/literature.htm
http://www.intel.com/design/literature.htm

CONTENTS
PAGE
CHAPTER 1
ABOUT THIS MANUAL
1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN THIS MANUAL. 1-1
1.2 OVERVIEW OF VOLUME 2A, 2B AND 2C: INSTRUCTION SET REFERENCE. 1-3
1.3 NOTATIONAL CONVENTIONS . 1-4
1.3.1 Bit and Byte Order . 1-4
1.3.2 Reserved Bits and Software Compatibility . 1-5
1.3.3 Instruction Operands . 1-6
1.3.4 Hexadecimal and Binary Numbers. 1-6
1.3.5 Segmented Addressing. 1-6
1.3.6 Exceptions . 1-7
1.3.7 A New Syntax for CPUID, CR, and MSR Values . 1-7
1.4 RELATED LITERATURE . 1-8

CHAPTER 2
INSTRUCTION FORMAT
2.1 INSTRUCTION FORMAT FOR PROTECTED MODE, REAL-ADDRESS MODE, AND

VIRTUAL-8086 MODE 2-1
2.1.1 Instruction Prefixes . 2-1
2.1.2 Opcodes . 2-3
2.1.3 ModR/M and SIB Bytes . 2-4
2.1.4 Displacement and Immediate Bytes . 2-4
2.1.5 Addressing-Mode Encoding of ModR/M and SIB Bytes . 2-4
2.2 IA-32E MODE . 2-9
2.2.1 REX Prefixes . 2-9
2.2.1.1 Encoding . 2-10
2.2.1.2 More on REX Prefix Fields . 2-10
2.2.1.3 Displacement . 2-13
2.2.1.4 Direct Memory-Offset MOVs. 2-13
2.2.1.5 Immediates . 2-14
2.2.1.6 RIP-Relative Addressing . 2-14
2.2.1.7 Default 64-Bit Operand Size . 2-15
2.2.2 Additional Encodings for Control and Debug Registers . 2-15
2.3 INTEL® ADVANCED VECTOR EXTENSIONS (INTEL® AVX) . 2-16
2.3.1 Instruction Format . 2-16
2.3.2 VEX and the LOCK prefix . 2-17
2.3.3 VEX and the 66H, F2H, and F3H prefixes. 2-17
2.3.4 VEX and the REX prefix . 2-17
2.3.5 The VEX Prefix . 2-17
2.3.5.1 VEX Byte 0, bits[7:0] . 2-20
2.3.5.2 VEX Byte 1, bit [7] - ‘R’ . 2-20
2.3.5.3 3-byte VEX byte 1, bit[6] - ‘X’. 2-20
2.3.5.4 3-byte VEX byte 1, bit[5] - ‘B’. 2-20
Vol. 2A iii

CONTENTS

PAGE
2.3.5.5 3-byte VEX byte 2, bit[7] - ‘W’ . 2-20
2.3.5.6 2-byte VEX Byte 1, bits[6:3] and 3-byte VEX Byte 2, bits [6:3]- ‘vvvv’ the Source or

dest Register Specifier . 2-21
2.3.6 Instruction Operand Encoding and VEX.vvvv, ModR/M. 2-22
2.3.6.1 3-byte VEX byte 1, bits[4:0] - “m-mmmm” . 2-23
2.3.6.2 2-byte VEX byte 1, bit[2], and 3-byte VEX byte 2, bit [2]- “L”. 2-24
2.3.6.3 2-byte VEX byte 1, bits[1:0], and 3-byte VEX byte 2, bits [1:0]- “pp” 2-24
2.3.7 The Opcode Byte . 2-25
2.3.8 The MODRM, SIB, and Displacement Bytes . 2-25
2.3.9 The Third Source Operand (Immediate Byte). 2-25
2.3.10 AVX Instructions and the Upper 128-bits of YMM registers . 2-25
2.3.10.1 Vector Length Transition and Programming Considerations 2-25
2.3.11 AVX Instruction Length . 2-26
2.4 INSTRUCTION EXCEPTION SPECIFICATION . 2-26
2.4.1 Exceptions Type 1 (Aligned memory reference) . 2-31
2.4.2 Exceptions Type 2 (>=16 Byte Memory Reference, Unaligned) 2-32
2.4.3 Exceptions Type 3 (<16 Byte memory argument). 2-33
2.4.4 Exceptions Type 4 (>=16 Byte mem arg no alignment, no floating-point

exceptions) . 2-34
2.4.5 Exceptions Type 5 (<16 Byte mem arg and no FP exceptions) . 2-35
2.4.6 Exceptions Type 6 (VEX-Encoded Instructions Without Legacy SSE Analogues). . . . 2-36
2.4.7 Exceptions Type 7 (No FP exceptions, no memory arg). 2-37
2.4.8 Exceptions Type 8 (AVX and no memory argument) . 2-38

CHAPTER 3
INSTRUCTION SET REFERENCE, A-L
3.1 INTERPRETING THE INSTRUCTION REFERENCE PAGES . 3-1
3.1.1 Instruction Format . 3-1
3.1.1.1 Opcode Column in the Instruction Summary Table (Instructions without VEX

prefix). 3-2
3.1.1.2 Opcode Column in the Instruction Summary Table (Instructions with VEX prefix) 3-4
3.1.1.3 Instruction Column in the Opcode Summary Table . 3-6
3.1.1.4 Operand Encoding Column in the Instruction Summary Table 3-9
3.1.1.5 64/32-bit Mode Column in the Instruction Summary Table . 3-10
3.1.1.6 CPUID Support Column in the Instruction Summary Table. 3-11
3.1.1.7 Description Column in the Instruction Summary Table . 3-11
3.1.1.8 Description Section . 3-11
3.1.1.9 Operation Section. 3-11
3.1.1.10 Intel® C/C++ Compiler Intrinsics Equivalents Section . 3-15
3.1.1.11 Flags Affected Section . 3-18
3.1.1.12 FPU Flags Affected Section. 3-18
3.1.1.13 Protected Mode Exceptions Section. 3-19
3.1.1.14 Real-Address Mode Exceptions Section . 3-20
3.1.1.15 Virtual-8086 Mode Exceptions Section . 3-20
3.1.1.16 Floating-Point Exceptions Section. 3-20
3.1.1.17 SIMD Floating-Point Exceptions Section . 3-21
3.1.1.18 Compatibility Mode Exceptions Section. 3-21
iv Vol. 2A

CONTENTS

PAGE
3.1.1.19 64-Bit Mode Exceptions Section. .3-21
3.2 INSTRUCTIONS (A-L) . 3-22

AAA—ASCII Adjust After Addition .3-23
AAD—ASCII Adjust AX Before Division .3-25
AAM—ASCII Adjust AX After Multiply .3-27
AAS—ASCII Adjust AL After Subtraction .3-29
ADC—Add with Carry .3-31
ADD—Add. .3-35
ADDPD—Add Packed Double-Precision Floating-Point Values. .3-38
ADDPS—Add Packed Single-Precision Floating-Point Values. .3-40
ADDSD—Add Scalar Double-Precision Floating-Point Values .3-42
ADDSS—Add Scalar Single-Precision Floating-Point Values .3-44
ADDSUBPD—Packed Double-FP Add/Subtract .3-46
ADDSUBPS—Packed Single-FP Add/Subtract .3-49
AESDEC—Perform One Round of an AES Decryption Flow. .3-52
AESDECLAST—Perform Last Round of an AES Decryption Flow3-54
AESENC—Perform One Round of an AES Encryption Flow. .3-56
AESENCLAST—Perform Last Round of an AES Encryption Flow3-58
AESIMC—Perform the AES InvMixColumn Transformation. .3-60
AESKEYGENASSIST—AES Round Key Generation Assist. .3-62
AND—Logical AND .3-64
ANDPD—Bitwise Logical AND of Packed Double-Precision Floating-Point Values . . .3-67
ANDPS—Bitwise Logical AND of Packed Single-Precision Floating-Point Values 3-69
ANDNPD—Bitwise Logical AND NOT of Packed Double-Precision Floating-Point
Values .3-71
ANDNPS—Bitwise Logical AND NOT of Packed Single-Precision Floating-Point
Values .3-73
ARPL—Adjust RPL Field of Segment Selector .3-75
BLENDPD — Blend Packed Double Precision Floating-Point Values.3-78
BLENDPS — Blend Packed Single Precision Floating-Point Values.3-80
BLENDVPD — Variable Blend Packed Double Precision Floating-Point Values.3-83
BLENDVPS — Variable Blend Packed Single Precision Floating-Point Values3-86
BOUND—Check Array Index Against Bounds .3-89
BSF—Bit Scan Forward .3-92
BSR—Bit Scan Reverse .3-95
BSWAP—Byte Swap .3-98
BT—Bit Test . 3-100
BTC—Bit Test and Complement . 3-103
BTR—Bit Test and Reset. 3-106
BTS—Bit Test and Set . 3-109
CALL—Call Procedure . 3-112
CBW/CWDE/CDQE—Convert Byte to Word/Convert Word to Doubleword/Convert
Doubleword to Quadword. 3-131
CLC—Clear Carry Flag . 3-133
CLD—Clear Direction Flag . 3-134
CLFLUSH—Flush Cache Line . 3-135
CLI — Clear Interrupt Flag . 3-137
Vol. 2A v

CONTENTS

PAGE
CLTS—Clear Task-Switched Flag in CR0 .3-140
CMC—Complement Carry Flag .3-142
CMOVcc—Conditional Move .3-143
CMP—Compare Two Operands .3-150
CMPPD—Compare Packed Double-Precision Floating-Point Values 3-153
CMPPS—Compare Packed Single-Precision Floating-Point Values.3-163
CMPS/CMPSB/CMPSW/CMPSD/CMPSQ—Compare String Operands 3-170
CMPSD—Compare Scalar Double-Precision Floating-Point Values.3-176
CMPSS—Compare Scalar Single-Precision Floating-Point Values 3-182
CMPXCHG—Compare and Exchange .3-188
CMPXCHG8B/CMPXCHG16B—Compare and Exchange Bytes. .3-191
COMISD—Compare Scalar Ordered Double-Precision Floating-Point Values and
Set EFLAGS. .3-194
COMISS—Compare Scalar Ordered Single-Precision Floating-Point Values and
Set EFLAGS. .3-196
CPUID—CPU Identification .3-198
CRC32 — Accumulate CRC32 Value .3-236
CVTDQ2PD—Convert Packed Dword Integers to Packed Double-Precision FP
Values. .3-240
CVTDQ2PS—Convert Packed Dword Integers to Packed Single-Precision FP
Values. .3-243
CVTPD2DQ—Convert Packed Double-Precision FP Values to Packed Dword
Integers .3-245
CVTPD2PI—Convert Packed Double-Precision FP Values to Packed Dword
Integers .3-248
CVTPD2PS—Convert Packed Double-Precision FP Values to Packed Single-Precision
FP Values. .3-250
CVTPI2PD—Convert Packed Dword Integers to Packed Double-Precision FP
Values. .3-253
CVTPI2PS—Convert Packed Dword Integers to Packed Single-Precision FP
Values. .3-255
CVTPS2DQ—Convert Packed Single-Precision FP Values to Packed Dword
Integers .3-257
CVTPS2PD—Convert Packed Single-Precision FP Values to Packed Double-Precision
FP Values. .3-259
CVTPS2PI—Convert Packed Single-Precision FP Values to Packed Dword
Integers .3-262
CVTSD2SI—Convert Scalar Double-Precision FP Value to Integer 3-264
CVTSD2SS—Convert Scalar Double-Precision FP Value to Scalar Single-Precision FP
Value. .3-266
CVTSI2SD—Convert Dword Integer to Scalar Double-Precision FP Value 3-268
CVTSI2SS—Convert Dword Integer to Scalar Single-Precision FP Value.3-270
CVTSS2SD—Convert Scalar Single-Precision FP Value to Scalar Double-Precision FP
Value. .3-272
CVTSS2SI—Convert Scalar Single-Precision FP Value to Dword Integer.3-274
CVTTPD2DQ—Convert with Truncation Packed Double-Precision FP Values to
Packed Dword Integers. .3-276
vi Vol. 2A

CONTENTS

PAGE
CVTTPD2PI—Convert with Truncation Packed Double-Precision FP Values to
Packed Dword Integers . 3-279
CVTTPS2DQ—Convert with Truncation Packed Single-Precision FP Values to
Packed Dword Integers . 3-281
CVTTPS2PI—Convert with Truncation Packed Single-Precision FP Values to
Packed Dword Integers . 3-284
CVTTSD2SI—Convert with Truncation Scalar Double-Precision FP Value to Signed
Integer. 3-286
CVTTSS2SI—Convert with Truncation Scalar Single-Precision FP Value to Dword
Integer. 3-288
CWD/CDQ/CQO—Convert Word to Doubleword/Convert Doubleword to Quadword3-290
DAA—Decimal Adjust AL after Addition . 3-292
DAS—Decimal Adjust AL after Subtraction . 3-294
DEC—Decrement by 1 . 3-296
DIV—Unsigned Divide . 3-299
DIVPD—Divide Packed Double-Precision Floating-Point Values 3-303
DIVPS—Divide Packed Single-Precision Floating-Point Values 3-305
DIVSD—Divide Scalar Double-Precision Floating-Point Values 3-307
DIVSS—Divide Scalar Single-Precision Floating-Point Values. 3-309
DPPD — Dot Product of Packed Double Precision Floating-Point Values. 3-311
DPPS — Dot Product of Packed Single Precision Floating-Point Values 3-314
EMMS—Empty MMX Technology State . 3-317
ENTER—Make Stack Frame for Procedure Parameters. 3-319
EXTRACTPS — Extract Packed Single Precision Floating-Point Value 3-323
F2XM1—Compute 2x–1. 3-325
FABS—Absolute Value . 3-327
FADD/FADDP/FIADD—Add . 3-329
FBLD—Load Binary Coded Decimal. 3-333
FBSTP—Store BCD Integer and Pop. 3-335
FCHS—Change Sign . 3-338
FCLEX/FNCLEX—Clear Exceptions . 3-340
FCMOVcc—Floating-Point Conditional Move . 3-342
FCOM/FCOMP/FCOMPP—Compare Floating Point Values . 3-344
FCOMI/FCOMIP/ FUCOMI/FUCOMIP—Compare Floating Point Values and Set
EFLAGS . 3-348
FCOS—Cosine . 3-351
FDECSTP—Decrement Stack-Top Pointer . 3-353
FDIV/FDIVP/FIDIV—Divide. 3-355
FDIVR/FDIVRP/FIDIVR—Reverse Divide . 3-359
FFREE—Free Floating-Point Register . 3-363
FICOM/FICOMP—Compare Integer . 3-364
FILD—Load Integer . 3-367
FINCSTP—Increment Stack-Top Pointer. 3-369
FINIT/FNINIT—Initialize Floating-Point Unit. 3-371
FIST/FISTP—Store Integer . 3-373
FISTTP—Store Integer with Truncation . 3-377
FLD—Load Floating Point Value . 3-380
Vol. 2A vii

CONTENTS

PAGE
FLD1/FLDL2T/FLDL2E/FLDPI/FLDLG2/FLDLN2/FLDZ—Load Constant.3-383
FLDCW—Load x87 FPU Control Word. .3-385
FLDENV—Load x87 FPU Environment .3-387
FMUL/FMULP/FIMUL—Multiply .3-390
FNOP—No Operation .3-394
FPATAN—Partial Arctangent .3-395
FPREM—Partial Remainder .3-398
FPREM1—Partial Remainder .3-401
FPTAN—Partial Tangent. .3-404
FRNDINT—Round to Integer .3-407
FRSTOR—Restore x87 FPU State .3-409
FSAVE/FNSAVE—Store x87 FPU State .3-412
FSCALE—Scale .3-416
FSIN—Sine. .3-418
FSINCOS—Sine and Cosine .3-420
FSQRT—Square Root. .3-423
FST/FSTP—Store Floating Point Value .3-425
FSTCW/FNSTCW—Store x87 FPU Control Word .3-428
FSTENV/FNSTENV—Store x87 FPU Environment .3-431
FSTSW/FNSTSW—Store x87 FPU Status Word. .3-434
FSUB/FSUBP/FISUB—Subtract .3-437
FSUBR/FSUBRP/FISUBR—Reverse Subtract .3-441
FTST—TEST .3-445
FUCOM/FUCOMP/FUCOMPP—Unordered Compare Floating Point Values 3-447
FXAM—Examine ModR/M .3-450
FXCH—Exchange Register Contents .3-452
FXRSTOR—Restore x87 FPU, MMX , XMM, and MXCSR State .3-454
FXSAVE—Save x87 FPU, MMX Technology, and SSE State .3-458
FXTRACT—Extract Exponent and Significand .3-468
FYL2X—Compute y * log2x .3-470
FYL2XP1—Compute y * log2(x +1). .3-472
HADDPD—Packed Double-FP Horizontal Add. .3-474
HADDPS—Packed Single-FP Horizontal Add. .3-477
HLT—Halt .3-481
HSUBPD—Packed Double-FP Horizontal Subtract .3-483
HSUBPS—Packed Single-FP Horizontal Subtract .3-486
IDIV—Signed Divide .3-490
IMUL—Signed Multiply .3-494
IN—Input from Port .3-499
INC—Increment by 1 .3-501
INS/INSB/INSW/INSD—Input from Port to String .3-504
INSERTPS — Insert Packed Single Precision Floating-Point Value 3-509
INT n/INTO/INT 3—Call to Interrupt Procedure. .3-513
INVD—Invalidate Internal Caches. .3-529
INVLPG—Invalidate TLB Entry .3-531
INVPCID—Invalidate Process-Context Identifier .3-533
IRET/IRETD—Interrupt Return .3-537
viii Vol. 2A

CONTENTS

PAGE
Jcc—Jump if Condition Is Met . 3-548
JMP—Jump . 3-556
LAHF—Load Status Flags into AH Register . 3-567
LAR—Load Access Rights Byte . 3-569
LDDQU—Load Unaligned Integer 128 Bits. 3-573
LDMXCSR—Load MXCSR Register . 3-575
LDS/LES/LFS/LGS/LSS—Load Far Pointer . 3-577
LEA—Load Effective Address . 3-583
LEAVE—High Level Procedure Exit . 3-586
LFENCE—Load Fence . 3-588
LGDT/LIDT—Load Global/Interrupt Descriptor Table Register. 3-590
LLDT—Load Local Descriptor Table Register . 3-593
LMSW—Load Machine Status Word . 3-596
LOCK—Assert LOCK# Signal Prefix . 3-598
LODS/LODSB/LODSW/LODSD/LODSQ—Load String . 3-600
LOOP/LOOPcc—Loop According to ECX Counter . 3-604
LSL—Load Segment Limit . 3-607
LTR—Load Task Register . 3-611

CHAPTER 4
INSTRUCTION SET REFERENCE, M-Z
4.1 IMM8 CONTROL BYTE OPERATION FOR PCMPESTRI / PCMPESTRM / PCMPISTRI /

PCMPISTRM . 4-1
4.1.1 General Description. 4-1
4.1.2 Source Data Format . 4-2
4.1.3 Aggregation Operation . 4-3
4.1.4 Polarity . 4-4
4.1.5 Output Selection . 4-5
4.1.6 Valid/Invalid Override of Comparisons . 4-6
4.1.7 Summary of Im8 Control byte . 4-7
4.1.8 Diagram Comparison and Aggregation Process . 4-8
4.2 INSTRUCTIONS (M-Z) . 4-8

MASKMOVDQU—Store Selected Bytes of Double Quadword . 4-9
MASKMOVQ—Store Selected Bytes of Quadword .4-11
MAXPD—Return Maximum Packed Double-Precision Floating-Point Values.4-13
MAXPS—Return Maximum Packed Single-Precision Floating-Point Values.4-16
MAXSD—Return Maximum Scalar Double-Precision Floating-Point Value4-19
MAXSS—Return Maximum Scalar Single-Precision Floating-Point Value 4-21
MFENCE—Memory Fence. .4-23
MINPD—Return Minimum Packed Double-Precision Floating-Point Values4-25
MINPS—Return Minimum Packed Single-Precision Floating-Point Values4-28
MINSD—Return Minimum Scalar Double-Precision Floating-Point Value4-31
MINSS—Return Minimum Scalar Single-Precision Floating-Point Value4-33
MONITOR—Set Up Monitor Address .4-35
MOV—Move .4-38
MOV—Move to/from Control Registers. .4-45
MOV—Move to/from Debug Registers .4-49
Vol. 2A ix

CONTENTS

PAGE
MOVAPD—Move Aligned Packed Double-Precision Floating-Point Values 4-52
MOVAPS—Move Aligned Packed Single-Precision Floating-Point Values 4-55
MOVBE—Move Data After Swapping Bytes . 4-58
MOVD/MOVQ—Move Doubleword/Move Quadword . 4-61
MOVDDUP—Move One Double-FP and Duplicate . 4-64
MOVDQA—Move Aligned Double Quadword. 4-67
MOVDQU—Move Unaligned Double Quadword . 4-70
MOVDQ2Q—Move Quadword from XMM to MMX Technology Register 4-73
MOVHLPS— Move Packed Single-Precision Floating-Point Values High to Low 4-75
MOVHPD—Move High Packed Double-Precision Floating-Point Value 4-77
MOVHPS—Move High Packed Single-Precision Floating-Point Values 4-79
MOVLHPS—Move Packed Single-Precision Floating-Point Values Low to High. 4-81
MOVLPD—Move Low Packed Double-Precision Floating-Point Value. 4-83
MOVLPS—Move Low Packed Single-Precision Floating-Point Values. 4-85
MOVMSKPD—Extract Packed Double-Precision Floating-Point Sign Mask 4-87
MOVMSKPS—Extract Packed Single-Precision Floating-Point Sign Mask 4-89
MOVNTDQA — Load Double Quadword Non-Temporal Aligned Hint 4-92
MOVNTDQ—Store Double Quadword Using Non-Temporal Hint 4-95
MOVNTI—Store Doubleword Using Non-Temporal Hint . 4-97
MOVNTPD—Store Packed Double-Precision Floating-Point Values Using Non-
Temporal Hint . 4-99
MOVNTPS—Store Packed Single-Precision Floating-Point Values Using Non-
Temporal Hint .4-101
MOVNTQ—Store of Quadword Using Non-Temporal Hint .4-103
MOVQ—Move Quadword .4-105
MOVQ2DQ—Move Quadword from MMX Technology to XMM Register4-107
MOVS/MOVSB/MOVSW/MOVSD/MOVSQ—Move Data from String to String4-109
MOVSD—Move Scalar Double-Precision Floating-Point Value .4-114
MOVSHDUP—Move Packed Single-FP High and Duplicate .4-117
MOVSLDUP—Move Packed Single-FP Low and Duplicate. .4-120
MOVSS—Move Scalar Single-Precision Floating-Point Values. .4-123
MOVSX/MOVSXD—Move with Sign-Extension .4-126
MOVUPD—Move Unaligned Packed Double-Precision Floating-Point Values.4-129
MOVUPS—Move Unaligned Packed Single-Precision Floating-Point Values4-132
MOVZX—Move with Zero-Extend .4-135
MPSADBW — Compute Multiple Packed Sums of Absolute Difference4-137
MUL—Unsigned Multiply .4-142
MULPD—Multiply Packed Double-Precision Floating-Point Values4-145
MULPS—Multiply Packed Single-Precision Floating-Point Values 4-147
MULSD—Multiply Scalar Double-Precision Floating-Point Values 4-149
MULSS—Multiply Scalar Single-Precision Floating-Point Values.4-151
MWAIT—Monitor Wait .4-153
NEG—Two's Complement Negation. .4-157
NOP—No Operation .4-160
NOT—One's Complement Negation. .4-162
OR—Logical Inclusive OR .4-164
ORPD—Bitwise Logical OR of Double-Precision Floating-Point Values 4-167
x Vol. 2A

CONTENTS

PAGE
ORPS—Bitwise Logical OR of Single-Precision Floating-Point Values 4-169
OUT—Output to Port . 4-171
OUTS/OUTSB/OUTSW/OUTSD—Output String to Port . 4-174
PABSB/PABSW/PABSD — Packed Absolute Value . 4-180
PACKSSWB/PACKSSDW—Pack with Signed Saturation . 4-184
PACKUSDW — Pack with Unsigned Saturation . 4-189
PACKUSWB—Pack with Unsigned Saturation . 4-191
PADDB/PADDW/PADDD—Add Packed Integers . 4-194
PADDQ—Add Packed Quadword Integers . 4-198
PADDSB/PADDSW—Add Packed Signed Integers with Signed Saturation. 4-200
PADDUSB/PADDUSW—Add Packed Unsigned Integers with Unsigned Saturation . 4-203
PALIGNR — Packed Align Right . 4-206
PAND—Logical AND. 4-208
PANDN—Logical AND NOT . 4-210
PAUSE—Spin Loop Hint . 4-212
PAVGB/PAVGW—Average Packed Integers . 4-214
PBLENDVB — Variable Blend Packed Bytes . 4-217
PBLENDW — Blend Packed Words . 4-221
PCLMULQDQ - Carry-Less Multiplication Quadword . 4-223
PCMPEQB/PCMPEQW/PCMPEQD— Compare Packed Data for Equal 4-227
PCMPEQQ — Compare Packed Qword Data for Equal. 4-231
PCMPESTRI — Packed Compare Explicit Length Strings, Return Index. 4-233
PCMPESTRM — Packed Compare Explicit Length Strings, Return Mask 4-235
PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers for Greater
Than. 4-237
PCMPGTQ — Compare Packed Data for Greater Than . 4-241
PCMPISTRI — Packed Compare Implicit Length Strings, Return Index 4-243
PCMPISTRM — Packed Compare Implicit Length Strings, Return Mask. 4-245
PEXTRB/PEXTRD/PEXTRQ — Extract Byte/Dword/Qword . 4-247
PEXTRW—Extract Word. 4-250
PHADDW/PHADDD — Packed Horizontal Add. 4-253
PHADDSW — Packed Horizontal Add and Saturate. 4-256
PHMINPOSUW — Packed Horizontal Word Minimum. 4-258
PHSUBW/PHSUBD — Packed Horizontal Subtract. 4-260
PHSUBSW — Packed Horizontal Subtract and Saturate . 4-263
PINSRB/PINSRD/PINSRQ — Insert Byte/Dword/Qword . 4-265
PINSRW—Insert Word. 4-268
PMADDUBSW — Multiply and Add Packed Signed and Unsigned Bytes 4-271
PMADDWD—Multiply and Add Packed Integers . 4-273
PMAXSB — Maximum of Packed Signed Byte Integers . 4-276
PMAXSD — Maximum of Packed Signed Dword Integers . 4-279
PMAXSW—Maximum of Packed Signed Word Integers . 4-281
PMAXUB—Maximum of Packed Unsigned Byte Integers . 4-284
PMAXUD — Maximum of Packed Unsigned Dword Integers . 4-287
PMAXUW — Maximum of Packed Word Integers . 4-289
PMINSB — Minimum of Packed Signed Byte Integers . 4-291
PMINSD — Minimum of Packed Dword Integers. 4-294
Vol. 2A xi

CONTENTS

PAGE
PMINSW—Minimum of Packed Signed Word Integers .4-296
PMINUB—Minimum of Packed Unsigned Byte Integers .4-299
PMINUD — Minimum of Packed Dword Integers .4-302
PMINUW — Minimum of Packed Word Integers .4-304
PMOVMSKB—Move Byte Mask .4-306
PMOVSX — Packed Move with Sign Extend .4-308
PMOVZX — Packed Move with Zero Extend .4-312
PMULDQ — Multiply Packed Signed Dword Integers .4-316
PMULHRSW — Packed Multiply High with Round and Scale .4-318
PMULHUW—Multiply Packed Unsigned Integers and Store High Result4-321
PMULHW—Multiply Packed Signed Integers and Store High Result4-324
PMULLD — Multiply Packed Signed Dword Integers and Store Low Result4-327
PMULLW—Multiply Packed Signed Integers and Store Low Result.4-329
PMULUDQ—Multiply Packed Unsigned Doubleword Integers .4-332
POP—Pop a Value from the Stack .4-335
POPA/POPAD—Pop All General-Purpose Registers .4-342
POPCNT — Return the Count of Number of Bits Set to 1 .4-345
POPF/POPFD/POPFQ—Pop Stack into EFLAGS Register .4-348
POR—Bitwise Logical OR .4-352
PREFETCHh—Prefetch Data Into Caches .4-354
PSADBW—Compute Sum of Absolute Differences. .4-357
PSHUFB — Packed Shuffle Bytes .4-360
PSHUFD—Shuffle Packed Doublewords .4-363
PSHUFHW—Shuffle Packed High Words .4-365
PSHUFLW—Shuffle Packed Low Words .4-367
PSHUFW—Shuffle Packed Words. .4-369
PSIGNB/PSIGNW/PSIGND — Packed SIGN .4-371
PSLLDQ—Shift Double Quadword Left Logical .4-376
PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical. .4-378
PSRAW/PSRAD—Shift Packed Data Right Arithmetic .4-385
PSRLDQ—Shift Double Quadword Right Logical .4-390
PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical .4-392
PSUBB/PSUBW/PSUBD—Subtract Packed Integers. .4-398
PSUBQ—Subtract Packed Quadword Integers .4-402
PSUBSB/PSUBSW—Subtract Packed Signed Integers with Signed Saturation4-404
PSUBUSB/PSUBUSW—Subtract Packed Unsigned Integers with Unsigned
Saturation .4-407
PTEST- Logical Compare .4-410
PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ— Unpack High Data4-412
PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ—Unpack Low Data 4-418
PUSH—Push Word, Doubleword or Quadword Onto the Stack.4-423
PUSHA/PUSHAD—Push All General-Purpose Registers .4-428
PUSHF/PUSHFD—Push EFLAGS Register onto the Stack .4-431
PXOR—Logical Exclusive OR .4-434
RCL/RCR/ROL/ROR-—Rotate. .4-436
RCPPS—Compute Reciprocals of Packed Single-Precision Floating-Point Values. . .4-444
RCPSS—Compute Reciprocal of Scalar Single-Precision Floating-Point Values 4-447
xii Vol. 2A

CONTENTS

PAGE
RDFSBASE/RDGSBASE—Read FS/GS Segment Base . 4-449
RDMSR—Read from Model Specific Register. 4-451
RDPMC—Read Performance-Monitoring Counters . 4-453
RDRAND—Read Random Number. 4-459
RDTSC—Read Time-Stamp Counter . 4-461
RDTSCP—Read Time-Stamp Counter and Processor ID . 4-463
REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix 4-465
RET—Return from Procedure . 4-470
ROUNDPD — Round Packed Double Precision Floating-Point Values 4-483
ROUNDPS — Round Packed Single Precision Floating-Point Values 4-486
ROUNDSD — Round Scalar Double Precision Floating-Point Values 4-489
ROUNDSS — Round Scalar Single Precision Floating-Point Values. 4-491
RSM—Resume from System Management Mode. 4-493
RSQRTPS—Compute Reciprocals of Square Roots of Packed Single-Precision
Floating-Point Values . 4-495
RSQRTSS—Compute Reciprocal of Square Root of Scalar Single-Precision Floating-
Point Value . 4-498
SAHF—Store AH into Flags. 4-500
SAL/SAR/SHL/SHR—Shift . 4-502
SBB—Integer Subtraction with Borrow . 4-510
SCAS/SCASB/SCASW/SCASD—Scan String . 4-514
SETcc—Set Byte on Condition . 4-519
SFENCE—Store Fence. 4-524
SGDT—Store Global Descriptor Table Register. 4-525
SHLD—Double Precision Shift Left. 4-528
SHRD—Double Precision Shift Right . 4-532
SHUFPD—Shuffle Packed Double-Precision Floating-Point Values 4-536
SHUFPS—Shuffle Packed Single-Precision Floating-Point Values 4-539
SIDT—Store Interrupt Descriptor Table Register . 4-543
SLDT—Store Local Descriptor Table Register. 4-546
SMSW—Store Machine Status Word . 4-548
SQRTPD—Compute Square Roots of Packed Double-Precision Floating-Point
Values . 4-551
SQRTPS—Compute Square Roots of Packed Single-Precision Floating-Point
Values . 4-553
SQRTSD—Compute Square Root of Scalar Double-Precision Floating-Point Value. 4-556
SQRTSS—Compute Square Root of Scalar Single-Precision Floating-Point Value. . 4-558
STC—Set Carry Flag . 4-560
STD—Set Direction Flag. 4-561
STI—Set Interrupt Flag. 4-562
STMXCSR—Store MXCSR Register State . 4-565
STOS/STOSB/STOSW/STOSD/STOSQ—Store String . 4-566
STR—Store Task Register. 4-571
SUB—Subtract . 4-573
SUBPD—Subtract Packed Double-Precision Floating-Point Values 4-576
SUBPS—Subtract Packed Single-Precision Floating-Point Values 4-578
SUBSD—Subtract Scalar Double-Precision Floating-Point Values 4-581
Vol. 2A xiii

CONTENTS

PAGE
SUBSS—Subtract Scalar Single-Precision Floating-Point Values4-583
SWAPGS—Swap GS Base Register .4-585
SYSCALL—Fast System Call .4-587
SYSENTER—Fast System Call .4-589
SYSEXIT—Fast Return from Fast System Call .4-594
SYSRET—Return From Fast System Call .4-598
TEST—Logical Compare .4-600
UCOMISD—Unordered Compare Scalar Double-Precision Floating-Point Values and
Set EFLAGS. .4-603
UCOMISS—Unordered Compare Scalar Single-Precision Floating-Point Values and
Set EFLAGS. .4-605
UD2—Undefined Instruction .4-607
UNPCKHPD—Unpack and Interleave High Packed Double-Precision Floating-Point
Values. .4-608
UNPCKHPS—Unpack and Interleave High Packed Single-Precision Floating-Point
Values. .4-611
UNPCKLPD—Unpack and Interleave Low Packed Double-Precision Floating-Point
Values. .4-614
UNPCKLPS—Unpack and Interleave Low Packed Single-Precision Floating-Point
Values .4-617
VBROADCAST—Load with Broadcast .4-620
VCVTPH2PS—Convert 16-bit FP Values to Single-Precision FP Values4-624
VCVTPS2PH—Convert Single-Precision FP value to 16-bit FP value4-627
VERR/VERW—Verify a Segment for Reading or Writing .4-630
VEXTRACTF128 — Extract Packed Floating-Point Values .4-633
VINSERTF128 — Insert Packed Floating-Point Values .4-635
VMASKMOV—Conditional SIMD Packed Loads and Stores .4-637
VPERMILPD — Permute Double-Precision Floating-Point Values 4-641
VPERMILPS — Permute Single-Precision Floating-Point Values.4-645
VPERM2F128 — Permute Floating-Point Values .4-649
VTESTPD/VTESTPS—Packed Bit Test .4-652
VZEROALL—Zero All YMM Registers .4-656
VZEROUPPER—Zero Upper Bits of YMM Registers .4-658
WAIT/FWAIT—Wait. .4-660
WBINVD—Write Back and Invalidate Cache .4-662
WRFSBASE/WRGSBASE—Write FS/GS Segment Base. .4-664
WRMSR—Write to Model Specific Register .4-666
XADD—Exchange and Add. .4-668
XCHG—Exchange Register/Memory with Register .4-671
XGETBV—Get Value of Extended Control Register .4-674
XLAT/XLATB—Table Look-up Translation .4-676
XOR—Logical Exclusive OR .4-679
XORPD—Bitwise Logical XOR for Double-Precision Floating-Point Values.4-682
XORPS—Bitwise Logical XOR for Single-Precision Floating-Point Values.4-684
XRSTOR—Restore Processor Extended States. .4-686
XSAVE—Save Processor Extended States .4-693
XSAVEOPT—Save Processor Extended States Optimized. .4-697
xiv Vol. 2A

CONTENTS

PAGE
XSETBV—Set Extended Control Register . 4-702

CHAPTER 5
SAFER MODE EXTENSIONS REFERENCE
5.1 OVERVIEW . 5-1
5.2 SMX FUNCTIONALITY . 5-1
5.2.1 Detecting and Enabling SMX . 5-2
5.2.2 SMX Instruction Summary. 5-3
5.2.2.1 GETSEC[CAPABILITIES] . 5-3
5.2.2.2 GETSEC[ENTERACCS] . 5-4
5.2.2.3 GETSEC[EXITAC]. 5-4
5.2.2.4 GETSEC[SENTER] . 5-4
5.2.2.5 GETSEC[SEXIT] . 5-5
5.2.2.6 GETSEC[PARAMETERS] . 5-5
5.2.2.7 GETSEC[SMCTRL]. 5-5
5.2.2.8 GETSEC[WAKEUP] . 5-6
5.2.3 Measured Environment and SMX . 5-6
5.3 GETSEC LEAF FUNCTIONS. 5-7

GETSEC[CAPABILITIES] - Report the SMX Capabilities . 5-9
GETSEC[ENTERACCS] - Execute Authenticated Chipset Code .5-12
GETSEC[EXITAC]—Exit Authenticated Code Execution Mode .5-23
GETSEC[SENTER]—Enter a Measured Environment .5-27
GETSEC[SEXIT]—Exit Measured Environment .5-39
GETSEC[PARAMETERS]—Report the SMX Parameters .5-43
GETSEC[SMCTRL]—SMX Mode Control .5-49
GETSEC[WAKEUP]—Wake up sleeping processors in measured environment5-52

APPENDIX A
OPCODE MAP
A.1 USING OPCODE TABLES . A-1
A.2 KEY TO ABBREVIATIONS. A-2
A.2.1 Codes for Addressing Method . A-2
A.2.2 Codes for Operand Type . A-3
A.2.3 Register Codes . A-4
A.2.4 Opcode Look-up Examples for One, Two,

and Three-Byte OpcodesA-5
A.2.4.1 One-Byte Opcode Instructions. A-5
A.2.4.2 Two-Byte Opcode Instructions . A-6
A.2.4.3 Three-Byte Opcode Instructions. A-7
A.2.4.4 VEX Prefix Instructions . A-7
A.2.5 Superscripts Utilized in Opcode Tables . A-8
A.3 ONE, TWO, AND THREE-BYTE OPCODE MAPS. A-9
A.4 OPCODE EXTENSIONS FOR ONE-BYTE AND TWO-BYTE OPCODES A-20
A.4.1 Opcode Look-up Examples Using Opcode Extensions .A-20
A.4.2 Opcode Extension Tables .A-21
A.5 ESCAPE OPCODE INSTRUCTIONS . A-23
A.5.1 Opcode Look-up Examples for Escape Instruction Opcodes. .A-23
Vol. 2A xv

CONTENTS

PAGE
A.5.2 Escape Opcode Instruction Tables. A-23
A.5.2.1 Escape Opcodes with D8 as First Byte . A-24
A.5.2.2 Escape Opcodes with D9 as First Byte . A-25
A.5.2.3 Escape Opcodes with DA as First Byte . A-26
A.5.2.4 Escape Opcodes with DB as First Byte . A-27
A.5.2.5 Escape Opcodes with DC as First Byte. A-28
A.5.2.6 Escape Opcodes with DD as First Byte . A-29
A.5.2.7 Escape Opcodes with DE as First Byte. A-30
A.5.2.8 Escape Opcodes with DF As First Byte . A-31

APPENDIX B
INSTRUCTION FORMATS AND ENCODINGS
B.1 MACHINE INSTRUCTION FORMAT . B-1
B.1.1 Legacy Prefixes. B-2
B.1.2 REX Prefixes . B-2
B.1.3 Opcode Fields. B-2
B.1.4 Special Fields . B-2
B.1.4.1 Reg Field (reg) for Non-64-Bit Modes . B-3
B.1.4.2 Reg Field (reg) for 64-Bit Mode . B-4
B.1.4.3 Encoding of Operand Size (w) Bit . B-5
B.1.4.4 Sign-Extend (s) Bit . B-5
B.1.4.5 Segment Register (sreg) Field . B-6
B.1.4.6 Special-Purpose Register (eee) Field . B-6
B.1.4.7 Condition Test (tttn) Field . B-7
B.1.4.8 Direction (d) Bit . B-8
B.1.5 Other Notes . B-9
B.2 GENERAL-PURPOSE INSTRUCTION FORMATS AND ENCODINGS FOR NON-64-BIT

MODES . B-9
B.2.1 General Purpose Instruction Formats and Encodings for 64-Bit Mode B-24
B.3 PENTIUM® PROCESSOR FAMILY INSTRUCTION FORMATS AND ENCODINGS B-54
B.4 64-BIT MODE INSTRUCTION ENCODINGS FOR SIMD INSTRUCTION EXTENSIONS B-54
B.5 MMX INSTRUCTION FORMATS AND ENCODINGS . B-55
B.5.1 Granularity Field (gg) . B-55
B.5.2 MMX Technology and General-Purpose Register Fields (mmxreg and reg) B-55
B.5.3 MMX Instruction Formats and Encodings Table . B-55
B.6 PROCESSOR EXTENDED STATE INSTRUCTION FORMATS AND ENCODINGS B-59
B.7 P6 FAMILY INSTRUCTION FORMATS AND ENCODINGS. B-59
B.8 SSE INSTRUCTION FORMATS AND ENCODINGS. B-60
B.9 SSE2 INSTRUCTION FORMATS AND ENCODINGS . B-69
B.9.1 Granularity Field (gg) . B-69
B.10 SSE3 FORMATS AND ENCODINGS TABLE . B-87
B.11 SSSE3 FORMATS AND ENCODING TABLE . B-89
B.12 AESNI AND PCLMULQDQ INSTRUCTION FORMATS AND ENCODINGS. B-93
B.13 SPECIAL ENCODINGS FOR 64-BIT MODE . B-94
B.14 SSE4.1 FORMATS AND ENCODING TABLE. B-98
B.15 SSE4.2 FORMATS AND ENCODING TABLE. B-107
B.16 AVX FORMATS AND ENCODING TABLE . B-108
xvi Vol. 2A

CONTENTS

PAGE
B.17 FLOATING-POINT INSTRUCTION FORMATS AND ENCODINGS . B-167
B.18 VMX INSTRUCTIONS . B-173
B.19 SMX INSTRUCTIONS . B-175

APPENDIX C
INTEL® C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS
C.1 SIMPLE INTRINSICS . C-2
C.2 COMPOSITE INTRINSICS . C-17

FIGURES

Figure 1-1. Bit and Byte Order . 1-5
Figure 1-2. Syntax for CPUID, CR, and MSR Data Presentation. 1-8
Figure 2-1. Intel 64 and IA-32 Architectures Instruction Format. 2-1
Figure 2-2. Table Interpretation of ModR/M Byte (C8H) . 2-5
Figure 2-3. Prefix Ordering in 64-bit Mode . 2-9
Figure 2-4. Memory Addressing Without an SIB Byte; REX.X Not Used .2-11
Figure 2-5. Register-Register Addressing (No Memory Operand); REX.X Not Used2-11
Figure 2-6. Memory Addressing With a SIB Byte .2-12
Figure 2-7. Register Operand Coded in Opcode Byte; REX.X & REX.R Not Used2-12
Figure 2-8. Instruction Encoding Format with VEX Prefix .2-17
Figure 2-9. VEX bitfields .2-19
Figure 3-1. Bit Offset for BIT[RAX, 21] .3-14
Figure 3-2. Memory Bit Indexing. .3-15
Figure 3-3. ADDSUBPD—Packed Double-FP Add/Subtract .3-47
Figure 3-4. ADDSUBPS—Packed Single-FP Add/Subtract .3-50
Figure 3-5. Version Information Returned by CPUID in EAX . 3-210
Figure 3-6. Feature Information Returned in the ECX Register . 3-213
Figure 3-7. Feature Information Returned in the EDX Register . 3-216
Figure 3-8. Determination of Support for the Processor Brand String. 3-227
Figure 3-9. Algorithm for Extracting Maximum Processor Frequency . 3-229
Figure 3-10. CVTDQ2PD (VEX.256 encoded version) . 3-241
Figure 3-11. VCVTPD2DQ (VEX.256 encoded version) . 3-246
Figure 3-12. VCVTPD2PS (VEX.256 encoded version). 3-251
Figure 3-13. CVTPS2PD (VEX.256 encoded version) . 3-260
Figure 3-14. VCVTTPD2DQ (VEX.256 encoded version) . 3-277
Figure 3-15. HADDPD—Packed Double-FP Horizontal Add . 3-475
Figure 3-16. VHADDPD operation . 3-475
Figure 3-17. HADDPS—Packed Single-FP Horizontal Add . 3-478
Figure 3-18. VHADDPS operation . 3-478
Figure 3-19. HSUBPD—Packed Double-FP Horizontal Subtract. 3-484
Figure 3-20. VHSUBPD operation . 3-484
Figure 3-21. HSUBPS—Packed Single-FP Horizontal Subtract . 3-487
Figure 3-22. VHSUBPS operation . 3-487
Figure 3-23. INVPCID Descriptor . 3-534
Figure 4-1. Operation of PCMPSTRx and PCMPESTRx. 4-8
Figure 4-2. MOVDDUP—Move One Double-FP and Duplicate. .4-65
Vol. 2A xvii

CONTENTS

PAGE
Figure 4-3. MOVSHDUP—Move Packed Single-FP High and Duplicate .4-118
Figure 4-4. MOVSLDUP—Move Packed Single-FP Low and Duplicate .4-121
Figure 4-5. Operation of the PACKSSDW Instruction Using 64-bit Operands4-185
Figure 4-6. PMADDWD Execution Model Using 64-bit Operands .4-274
Figure 4-7. PMULHUW and PMULHW Instruction Operation Using 64-bit Operands.4-322
Figure 4-8. PMULLU Instruction Operation Using 64-bit Operands .4-330
Figure 4-9. PSADBW Instruction Operation Using 64-bit Operands .4-358
Figure 4-10. PSHUB with 64-Bit Operands .4-362
Figure 4-11. PSHUFD Instruction Operation .4-363
Figure 4-12. PSLLW, PSLLD, and PSLLQ Instruction Operation Using 64-bit Operand 4-380
Figure 4-13. PSRAW and PSRAD Instruction Operation Using a 64-bit Operand 4-386
Figure 4-14. PSRLW, PSRLD, and PSRLQ Instruction Operation Using 64-bit Operand.4-394
Figure 4-15. PUNPCKHBW Instruction Operation Using 64-bit Operands4-413
Figure 4-16. PUNPCKLBW Instruction Operation Using 64-bit Operands4-419
Figure 4-17. Bit Control Fields of Immediate Byte for ROUNDxx Instruction 4-484
Figure 4-18. SHUFPD Shuffle Operation .4-537
Figure 4-19. SHUFPS Shuffle Operation .4-540
Figure 4-20. UNPCKHPD Instruction High Unpack and Interleave Operation4-609
Figure 4-21. UNPCKHPS Instruction High Unpack and Interleave Operation4-612
Figure 4-22. UNPCKLPD Instruction Low Unpack and Interleave Operation 4-615
Figure 4-23. UNPCKLPS Instruction Low Unpack and Interleave Operation.4-618
Figure 4-24. VBROADCASTSS Operation (VEX.256 encoded version) .4-621
Figure 4-25. VBROADCASTSS Operation (128-bit version) .4-621
Figure 4-26. VBROADCASTSD Operation. .4-622
Figure 4-27. VBROADCASTF128 Operation .4-622
Figure 4-28. VCVTPH2PS (128-bit Version) .4-625
Figure 4-29. VCVTPS2PH (128-bit Version) .4-628
Figure 4-30. VPERMILPD operation .4-642
Figure 4-31. VPERMILPD Shuffle Control .4-642
Figure 4-32. VPERMILPS Operation. .4-646
Figure 4-33. VPERMILPS Shuffle Control. .4-646
Figure 4-34. VPERM2F128 Operation .4-649
Figure A-1. ModR/M Byte nnn Field (Bits 5, 4, and 3) . A-20
Figure B-1. General Machine Instruction Format. B-1
Figure B-2. Hybrid Notation of VEX-Encoded Key Instruction Bytes .B-109

TABLES

Table 2-1. 16-Bit Addressing Forms with the ModR/M Byte. 2-6
Table 2-2. 32-Bit Addressing Forms with the ModR/M Byte. 2-7
Table 2-3. 32-Bit Addressing Forms with the SIB Byte . 2-8
Table 2-4. REX Prefix Fields [BITS: 0100WRXB]. 2-11
Table 2-5. Special Cases of REX Encodings. 2-13
Table 2-6. Direct Memory Offset Form of MOV. 2-14
Table 2-7. RIP-Relative Addressing . 2-15
Table 2-8. VEX.vvvv to register name mapping . 2-22
Table 2-9. Instructions with a VEX.vvvv destination . 2-23
xviii Vol. 2A

CONTENTS

PAGE
Table 2-10. VEX.m-mmmm interpretation. .2-24
Table 2-11. VEX.L interpretation. .2-24
Table 2-12. VEX.pp interpretation .2-25
Table 2-13. Exception class description .2-27
Table 2-14. Instructions in each Exception Class .2-28
Table 2-15. #UD Exception and VEX.W=1 Encoding .2-29
Table 2-16. #UD Exception and VEX.L Field Encoding .2-30
Table 2-17. Type 1 Class Exception Conditions .2-31
Table 2-18. Type 2 Class Exception Conditions .2-32
Table 2-19. Type 3 Class Exception Conditions .2-33
Table 2-20. Type 4 Class Exception Conditions .2-34
Table 2-21. Type 5 Class Exception Conditions .2-35
Table 2-22. Type 6 Class Exception Conditions .2-36
Table 2-23. Type 7 Class Exception Conditions .2-37
Table 2-24. Type 8 Class Exception Conditions .2-38
Table 3-1. Register Codes Associated With +rb, +rw, +rd, +ro . 3-3
Table 3-2. Range of Bit Positions Specified by Bit Offset Operands .3-15
Table 3-3. Intel 64 and IA-32 General Exceptions .3-19
Table 3-4. x87 FPU Floating-Point Exceptions .3-21
Table 3-5. SIMD Floating-Point Exceptions .3-21
Table 3-6. Decision Table for CLI Results . 3-137
Table 3-7. Comparison Predicate for CMPPD and CMPPS Instructions 3-154
Table 3-8. Pseudo-Op and CMPPD Implementation . 3-155
Table 3-9. Comparison Predicate for VCMPPD and VCMPPS Instructions 3-156
Table 3-10. Pseudo-Op and VCMPPD Implementation . 3-158
Table 3-11. Pseudo-Ops and CMPPS. 3-164
Table 3-12. Pseudo-Op and VCMPPS Implementation. 3-165
Table 3-13. Pseudo-Ops and CMPSD. 3-177
Table 3-14. Pseudo-Op and VCMPSD Implementation . 3-178
Table 3-15. Pseudo-Ops and CMPSS. 3-183
Table 3-16. Pseudo-Op and VCMPSS Implementation. 3-184
Table 3-17. Information Returned by CPUID Instruction . 3-199
Table 3-18. Highest CPUID Source Operand for Intel 64 and IA-32 Processors 3-209
Table 3-19. Processor Type Field . 3-211
Table 3-20. Feature Information Returned in the ECX Register . 3-214
Table 3-21. More on Feature Information Returned in the EDX Register 3-217
Table 3-22. Encoding of CPUID Leaf 2 Descriptors . 3-220
Table 3-23. Processor Brand String Returned with Pentium 4 Processor 3-228
Table 3-24. Mapping of Brand Indices; and Intel 64 and IA-32 Processor Brand Strings 3-230
Table 3-25. DIV Action . 3-300
Table 3-26. Results Obtained from F2XM1 . 3-325
Table 3-27. Results Obtained from FABS . 3-327
Table 3-28. FADD/FADDP/FIADD Results . 3-330
Table 3-29. FBSTP Results . 3-335
Table 3-30. FCHS Results. 3-338
Table 3-31. FCOM/FCOMP/FCOMPP Results. 3-344
Table 3-32. FCOMI/FCOMIP/ FUCOMI/FUCOMIP Results . 3-348
Vol. 2A xix

CONTENTS

PAGE
Table 3-33. FCOS Results .3-351
Table 3-34. FDIV/FDIVP/FIDIV Results .3-356
Table 3-35. FDIVR/FDIVRP/FIDIVR Results .3-360
Table 3-36. FICOM/FICOMP Results .3-364
Table 3-37. FIST/FISTP Results. .3-373
Table 3-38. FISTTP Results .3-377
Table 3-39. FMUL/FMULP/FIMUL Results .3-391
Table 3-40. FPATAN Results .3-396
Table 3-41. FPREM Results. .3-398
Table 3-42. FPREM1 Results .3-401
Table 3-43. FPTAN Results. .3-404
Table 3-44. FSCALE Results .3-416
Table 3-45. FSIN Results .3-418
Table 3-46. FSINCOS Results .3-420
Table 3-47. FSQRT Results. .3-423
Table 3-48. FSUB/FSUBP/FISUB Results .3-438
Table 3-49. FSUBR/FSUBRP/FISUBR Results .3-442
Table 3-50. FTST Results .3-445
Table 3-51. FUCOM/FUCOMP/FUCOMPP Results .3-447
Table 3-52. FXAM Results. .3-450
Table 3-53. Non-64-bit-Mode Layout of FXSAVE and FXRSTOR Memory Region3-458
Table 3-54. Field Definitions .3-460
Table 3-55. Recreating FSAVE Format .3-462
Table 3-56. Layout of the 64-bit-mode FXSAVE64 Map (requires REX.W = 1)3-463
Table 3-57. Layout of the 64-bit-mode FXSAVE Map (REX.W = 0) .3-464
Table 3-58. FYL2X Results .3-470
Table 3-59. FYL2XP1 Results .3-472
Table 3-60. IDIV Results .3-491
Table 3-61. Decision Table .3-514
Table 3-62. Segment and Gate Types. .3-570
Table 3-63. Non-64-bit Mode LEA Operation with Address and Operand Size Attributes . . .3-583
Table 3-64. 64-bit Mode LEA Operation with Address and Operand Size Attributes.3-584
Table 3-65. Segment and Gate Descriptor Types .3-608
Table 4-1. Source Data Format. 4-2
Table 4-2. Aggregation Operation . 4-3
Table 4-3. Aggregation Operation . 4-4
Table 4-4. Polarity. 4-5
Table 4-5. Ouput Selection. 4-5
Table 4-6. Output Selection . 4-5
Table 4-7. Comparison Result for Each Element Pair BoolRes[i.j] . 4-6
Table 4-8. Summary of Imm8 Control Byte. 4-7
Table 4-9. MUL Results .4-143
Table 4-10. MWAIT Extension Register (ECX). .4-154
Table 4-11. MWAIT Hints Register (EAX) .4-155
Table 4-12. Recommended Multi-Byte Sequence of NOP Instruction. .4-161
Table 4-13. PCLMULQDQ Quadword Selection of Immediate Byte .4-223
Table 4-14. Pseudo-Op and PCLMULQDQ Implementation .4-224
xx Vol. 2A

CONTENTS

PAGE
Table 4-15. Valid General and Special Purpose Performance Counter Index Range for
RDPMC. 4-454

Table 4-16. Repeat Prefixes . 4-468
Table 4-17. Rounding Modes and Encoding of Rounding Control (RC) Field 4-484
Table 4-18. Decision Table for STI Results . 4-563
Table 4-19. SWAPGS Operation Parameters . 4-585
Table 4-20. MSRs Used By the SYSENTER and SYSEXIT Instructions . 4-589
Table 4-21. Immediate Byte Encoding for 16-bit Floating-Point Conversion Instructions . . 4-628
Table 4-22. General Layout of XSAVE/XRSTOR Save Area . 4-687
Table 4-23. XSAVE.HEADER Layout . 4-688
Table 4-24. Processor Supplied Init Values XRSTOR May Use . 4-688
Table 4-25. Reserved Bit Checking and XRSTOR . 4-689
Table 5-1. Layout of IA32_FEATURE_CONTROL . 5-2
Table 5-2. GETSEC Leaf Functions . 5-3
Table 5-3. Getsec Capability Result Encoding (EBX = 0) . 5-9
Table 5-4. Register State Initialization after GETSEC[ENTERACCS] .5-15
Table 5-5. IA32_MISC_ENALBES MSR Initialization by ENTERACCS and SENTER5-17
Table 5-6. Register State Initialization after GETSEC[SENTER] and GETSEC[WAKEUP] 5-31
Table 5-7. SMX Reporting Parameters Format. .5-43
Table 5-8. TXT Feature Extensions Flags .5-44
Table 5-9. External Memory Types Using Parameter 3 .5-46
Table 5-10. Default Parameter Values .5-46
Table 5-11. Supported Actions for GETSEC[SMCTRL(0)] .5-50
Table 5-12. RLP MVMM JOIN Data Structure .5-52
Table A-1. Superscripts Utilized in Opcode Tables. A-8
Table A-2. One-byte Opcode Map: (00H — F7H) * .A-10
Table A-3. Two-byte Opcode Map: 00H — 77H (First Byte is 0FH) *. .A-12
Table A-4. Three-byte Opcode Map: 00H — F7H (First Two Bytes are 0F 38H) *.A-16
Table A-5. Three-byte Opcode Map: 00H — F7H (First two bytes are 0F 3AH) *A-18
Table A-6. Opcode Extensions for One- and Two-byte Opcodes by Group Number * A-21
Table A-7. D8 Opcode Map When ModR/M Byte is Within 00H to BFH * A-24
Table A-8. D8 Opcode Map When ModR/M Byte is Outside 00H to BFH *A-24
Table A-9. D9 Opcode Map When ModR/M Byte is Within 00H to BFH * A-25
Table A-10. D9 Opcode Map When ModR/M Byte is Outside 00H to BFH *A-25
Table A-11. DA Opcode Map When ModR/M Byte is Within 00H to BFH *A-26
Table A-12. DA Opcode Map When ModR/M Byte is Outside 00H to BFH *A-26
Table A-13. DB Opcode Map When ModR/M Byte is Within 00H to BFH * A-27
Table A-14. DB Opcode Map When ModR/M Byte is Outside 00H to BFH *A-27
Table A-15. DC Opcode Map When ModR/M Byte is Within 00H to BFH *.A-28
Table A-16. DC Opcode Map When ModR/M Byte is Outside 00H to BFH *A-28
Table A-17. DD Opcode Map When ModR/M Byte is Within 00H to BFH * A-29
Table A-18. DD Opcode Map When ModR/M Byte is Outside 00H to BFH *A-29
Table A-19. DE Opcode Map When ModR/M Byte is Within 00H to BFH *.A-30
Table A-20. DE Opcode Map When ModR/M Byte is Outside 00H to BFH *A-30
Table A-21. DF Opcode Map When ModR/M Byte is Within 00H to BFH *.A-31
Table A-22. DF Opcode Map When ModR/M Byte is Outside 00H to BFH *A-31
Table B-1. Special Fields Within Instruction Encodings. B-3
Vol. 2A xxi

CONTENTS

PAGE
Table B-2. Encoding of reg Field When w Field is Not Present in Instruction. B-3
Table B-4. Encoding of reg Field When w Field is Not Present in Instruction. B-4
Table B-3. Encoding of reg Field When w Field is Present in Instruction. B-4
Table B-5. Encoding of reg Field When w Field is Present in Instruction. B-5
Table B-6. Encoding of Operand Size (w) Bit . B-5
Table B-7. Encoding of Sign-Extend (s) Bit . B-6
Table B-8. Encoding of the Segment Register (sreg) Field. B-6
Table B-9. Encoding of Special-Purpose Register (eee) Field . B-7
Table B-11. Encoding of Operation Direction (d) Bit . B-8
Table B-10. Encoding of Conditional Test (tttn) Field. B-8
Table B-12. Notes on Instruction Encoding . B-9
Table B-13. General Purpose Instruction Formats and Encodings for Non-64-Bit Modes. B-9
Table B-14. Special Symbols. B-24
Table B-15. General Purpose Instruction Formats and Encodings for 64-Bit Mode B-24
Table B-16. Pentium Processor Family Instruction Formats and Encodings, Non-64-Bit

Modes. B-54
Table B-17. Pentium Processor Family Instruction Formats and Encodings, 64-Bit Mode B-54
Table B-18. Encoding of Granularity of Data Field (gg) . B-55
Table B-19. MMX Instruction Formats and Encodings . B-56
Table B-20. Formats and Encodings of XSAVE/XRSTOR/XGETBV/XSETBV Instructions B-59
Table B-21. Formats and Encodings of P6 Family Instructions . B-60
Table B-22. Formats and Encodings of SSE Floating-Point Instructions. B-61
Table B-23. Formats and Encodings of SSE Integer Instructions . B-67
Table B-24. Format and Encoding of SSE Cacheability & Memory Ordering Instructions B-68
Table B-25. Encoding of Granularity of Data Field (gg) . B-69
Table B-26. Formats and Encodings of SSE2 Floating-Point Instructions B-70
Table B-27. Formats and Encodings of SSE2 Integer Instructions . B-79
Table B-28. Format and Encoding of SSE2 Cacheability Instructions . B-86
Table B-29. Formats and Encodings of SSE3 Floating-Point Instructions B-87
Table B-30. Formats and Encodings for SSE3 Event Management Instructions B-88
Table B-31. Formats and Encodings for SSE3 Integer and Move Instructions B-88
Table B-32. Formats and Encodings for SSSE3 Instructions . B-89
Table B-33. Formats and Encodings of AESNI and PCLMULQDQ Instructions. B-93
Table B-34. Special Case Instructions Promoted Using REX.W . B-95
Table B-35. Encodings of SSE4.1 instructions . B-99
Table B-36. Encodings of SSE4.2 instructions .B-107
Table B-37. Encodings of AVX instructions .B-109
Table B-38. General Floating-Point Instruction Formats .B-167
Table B-39. Floating-Point Instruction Formats and Encodings .B-167
Table B-40. Encodings for VMX Instructions. .B-173
Table B-41. Encodings for SMX Instructions .B-175
Table C-1. Simple Intrinsics .C-3
Table C-2. Composite Intrinsics. C-17
xxii Vol. 2A

CHAPTER 1
ABOUT THIS MANUAL

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A,
2B & 2C: Instruction Set Reference (order numbers 253666, 253667 and 326018)
are part of a set that describes the architecture and programming environment of all
Intel 64 and IA-32 architecture processors. Other volumes in this set are:
• The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1:

Basic Architecture (Order Number 253665).
• The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes

3A, 3B & 3C: System Programming Guide (order numbers 253668, 253669 and
326019).

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1,
describes the basic architecture and programming environment of Intel 64 and IA-32
processors. The Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volumes 2A, 2B & 2C, describe the instruction set of the processor and the opcode
structure. These volumes apply to application programmers and to programmers
who write operating systems or executives. The Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volumes 3A, 3B & 3C, describe the operating-system
support environment of Intel 64 and IA-32 processors. These volumes target oper-
ating-system and BIOS designers. In addition, the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3B, addresses the programming environment
for classes of software that host operating systems.

1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN
THIS MANUAL

This manual set includes information pertaining primarily to the most recent Intel 64
and IA-32 processors, which include:
• Pentium® processors
• P6 family processors
• Pentium® 4 processors
• Pentium® M processors
• Intel® Xeon® processors
• Pentium® D processors
• Pentium® processor Extreme Editions
• 64-bit Intel® Xeon® processors
• Intel® Core™ Duo processor
Vol. 2A 1-1

ABOUT THIS MANUAL
• Intel® Core™ Solo processor
• Dual-Core Intel® Xeon® processor LV
• Intel® Core™2 Duo processor
• Intel® Core™2 Quad processor Q6000 series
• Intel® Xeon® processor 3000, 3200 series
• Intel® Xeon® processor 5000 series
• Intel® Xeon® processor 5100, 5300 series
• Intel® Core™2 Extreme processor X7000 and X6800 series
• Intel® Core™2 Extreme QX6000 series
• Intel® Xeon® processor 7100 series
• Intel® Pentium® Dual-Core processor
• Intel® Xeon® processor 7200, 7300 series
• Intel® Xeon® processor 5200, 5400, 7400 series
• Intel® CoreTM2 Extreme processor QX9000 and X9000 series
• Intel® CoreTM2 Quad processor Q9000 series
• Intel® CoreTM2 Duo processor E8000, T9000 series
• Intel® AtomTM processor family
• Intel® CoreTM i7 processor
• Intel® CoreTM i5 processor
• Intel® Xeon® processor E7-8800/4800/2800 product families
• Intel® Xeon® processor E5 family
• Intel® Xeon® processor E3 family
• Intel® CoreTM i7-3930K processor
• 2nd generation Intel® CoreTM i7-2xxx, Intel® CoreTM i5-2xxx, Intel® CoreTM i3-

2xxx processor series

P6 family processors are IA-32 processors based on the P6 family microarchitecture.
This includes the Pentium® Pro, Pentium® II, Pentium® III, and Pentium® III Xeon®
processors.

The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based
on the Intel NetBurst® microarchitecture. Most early Intel® Xeon® processors are
based on the Intel NetBurst® microarchitecture. Intel Xeon processor 5000, 7100
series are based on the Intel NetBurst® microarchitecture.

The Intel® Core™ Duo, Intel® Core™ Solo and dual-core Intel® Xeon® processor LV
are based on an improved Pentium® M processor microarchitecture.

The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200, and 7300 series, Intel®
Pentium® dual-core, Intel® Core™2 Duo, Intel® Core™2 Quad, and Intel® Core™2
Extreme processors are based on Intel® Core™ microarchitecture.
1-2 Vol. 2A

ABOUT THIS MANUAL
The Intel® Xeon® processor 5200, 5400, 7400 series, Intel® CoreTM2 Quad processor
Q9000 series, and Intel® CoreTM2 Extreme processors QX9000, X9000 series, Intel®
CoreTM2 processor E8000 series are based on Enhanced Intel® CoreTM microarchitec-
ture.

The Intel® AtomTM processor family is based on the Intel® AtomTM microarchitecture
and supports Intel 64 architecture.

The Intel® CoreTM i7 processor and the Intel® CoreTM i5 processor are based on the
Intel® microarchitecture code name Nehalem and support Intel 64 architecture.

Processors based on Intel® microarchitecture code name Westmere support Intel 64
architecture.

P6 family, Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo processors, dual-core
Intel® Xeon® processor LV, and early generations of Pentium 4 and Intel Xeon
processors support IA-32 architecture. The Intel® AtomTM processor Z5xx series
support IA-32 architecture.

The Intel® Xeon® processor E5 family, Intel® Xeon® processor E3 family, Intel®
CoreTM i7-3930K processor, 2nd generation Intel® CoreTM i7-2xxx, Intel® CoreTM i5-
2xxx, Intel® CoreTM i3-2xxx processor series, Intel® Xeon® processor E7-
8800/4800/2800 product families, Intel® Xeon® processor 3000, 3200, 5000, 5100,
5200, 5300, 5400, 7100, 7200, 7300, 7400 series, Intel® Core™2 Duo, Intel®
Core™2 Extreme, Intel® Core™2 Quad processors, Pentium® D processors,
Pentium® Dual-Core processor, newer generations of Pentium 4 and Intel Xeon
processor family support Intel® 64 architecture.

IA-32 architecture is the instruction set architecture and programming environment
for Intel's 32-bit microprocessors.

Intel® 64 architecture is the instruction set architecture and programming environ-
ment which is the superset of Intel’s 32-bit and 64-bit architectures. It is compatible
with the IA-32 architecture.

1.2 OVERVIEW OF VOLUME 2A, 2B AND 2C:
INSTRUCTION SET REFERENCE

A description of Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volumes 2A, 2B & 2C, content follows:

Chapter 1 — About This Manual. Gives an overview of all seven volumes of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual. It also describes
the notational conventions in these manuals and lists related Intel® manuals and
documentation of interest to programmers and hardware designers.

Chapter 2 — Instruction Format. Describes the machine-level instruction format
used for all IA-32 instructions and gives the allowable encodings of prefixes, the
operand-identifier byte (ModR/M byte), the addressing-mode specifier byte (SIB
byte), and the displacement and immediate bytes.
Vol. 2A 1-3

ABOUT THIS MANUAL
Chapter 3 — Instruction Set Reference, A-L. Describes Intel 64 and IA-32
instructions in detail, including an algorithmic description of operations, the effect on
flags, the effect of operand- and address-size attributes, and the exceptions that
may be generated. The instructions are arranged in alphabetical order. General-
purpose, x87 FPU, Intel MMX™ technology, SSE/SSE2/SSE3/SSSE3/SSE4 exten-
sions, and system instructions are included.

Chapter 4 — Instruction Set Reference, M-Z. Continues the description of Intel
64 and IA-32 instructions started in Chapter 3. It provides the balance of the alpha-
betized list of instructions and starts Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2B.

Chapter 5— Safer Mode Extensions Reference. Describes the safer mode exten-
sions (SMX). SMX is intended for a system executive to support launching a
measured environment in a platform where the identity of the software controlling
the platform hardware can be measured for the purpose of making trust decisions.
This chapter starts Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2C.

Appendix A — Opcode Map. Gives an opcode map for the IA-32 instruction set.

Appendix B — Instruction Formats and Encodings. Gives the binary encoding of
each form of each IA-32 instruction.

Appendix C — Intel® C/C++ Compiler Intrinsics and Functional Equivalents.
Lists the Intel® C/C++ compiler intrinsics and their assembly code equivalents for
each of the IA-32 MMX and SSE/SSE2/SSE3 instructions.

1.3 NOTATIONAL CONVENTIONS
This manual uses specific notation for data-structure formats, for symbolic represen-
tation of instructions, and for hexadecimal and binary numbers. A review of this
notation makes the manual easier to read.

1.3.1 Bit and Byte Order
In illustrations of data structures in memory, smaller addresses appear toward the
bottom of the figure; addresses increase toward the top. Bit positions are numbered
from right to left. The numerical value of a set bit is equal to two raised to the power
of the bit position. IA-32 processors are “little endian” machines; this means the
bytes of a word are numbered starting from the least significant byte. Figure 1-1
illustrates these conventions.
1-4 Vol. 2A

ABOUT THIS MANUAL
1.3.2 Reserved Bits and Software Compatibility
In many register and memory layout descriptions, certain bits are marked as
reserved. When bits are marked as reserved, it is essential for compatibility with
future processors that software treat these bits as having a future, though unknown,
effect. The behavior of reserved bits should be regarded as not only undefined, but
unpredictable. Software should follow these guidelines in dealing with reserved bits:
• Do not depend on the states of any reserved bits when testing the values of

registers which contain such bits. Mask out the reserved bits before testing.
• Do not depend on the states of any reserved bits when storing to memory or to a

register.
• Do not depend on the ability to retain information written into any reserved bits.
• When loading a register, always load the reserved bits with the values indicated

in the documentation, if any, or reload them with values previously read from the
same register.

NOTE
Avoid any software dependence upon the state of reserved bits in
IA-32 registers. Depending upon the values of reserved register bits
will make software dependent upon the unspecified manner in which
the processor handles these bits. Programs that depend upon
reserved values risk incompatibility with future processors.

Figure 1-1. Bit and Byte Order

Byte 3

Data Structure

Byte 1Byte 2 Byte 0

31 24 23 16 15 8 7 0

Lowest

Bit offset

28
24
20
16
12
8
4
0 Address

Byte Offset

Highest
Address
Vol. 2A 1-5

ABOUT THIS MANUAL
1.3.3 Instruction Operands
When instructions are represented symbolically, a subset of the IA-32 assembly
language is used. In this subset, an instruction has the following format:

label: mnemonic argument1, argument2, argument3

where:
• A label is an identifier which is followed by a colon.
• A mnemonic is a reserved name for a class of instruction opcodes which have

the same function.
• The operands argument1, argument2, and argument3 are optional. There may

be from zero to three operands, depending on the opcode. When present, they
take the form of either literals or identifiers for data items. Operand identifiers
are either reserved names of registers or are assumed to be assigned to data
items declared in another part of the program (which may not be shown in the
example).

When two operands are present in an arithmetic or logical instruction, the right
operand is the source and the left operand is the destination.

For example:

LOADREG: MOV EAX, SUBTOTAL

In this example, LOADREG is a label, MOV is the mnemonic identifier of an opcode,
EAX is the destination operand, and SUBTOTAL is the source operand. Some
assembly languages put the source and destination in reverse order.

1.3.4 Hexadecimal and Binary Numbers
Base 16 (hexadecimal) numbers are represented by a string of hexadecimal digits
followed by the character H (for example, F82EH). A hexadecimal digit is a character
from the following set: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F.

Base 2 (binary) numbers are represented by a string of 1s and 0s, sometimes
followed by the character B (for example, 1010B). The “B” designation is only used in
situations where confusion as to the type of number might arise.

1.3.5 Segmented Addressing
The processor uses byte addressing. This means memory is organized and accessed
as a sequence of bytes. Whether one or more bytes are being accessed, a byte
address is used to locate the byte or bytes in memory. The range of memory that can
be addressed is called an address space.

The processor also supports segmented addressing. This is a form of addressing
where a program may have many independent address spaces, called segments.
1-6 Vol. 2A

ABOUT THIS MANUAL
For example, a program can keep its code (instructions) and stack in separate
segments. Code addresses would always refer to the code space, and stack
addresses would always refer to the stack space. The following notation is used to
specify a byte address within a segment:

Segment-register:Byte-address

For example, the following segment address identifies the byte at address FF79H in
the segment pointed by the DS register:

DS:FF79H

The following segment address identifies an instruction address in the code segment.
The CS register points to the code segment and the EIP register contains the address
of the instruction.

CS:EIP

1.3.6 Exceptions
An exception is an event that typically occurs when an instruction causes an error.
For example, an attempt to divide by zero generates an exception. However, some
exceptions, such as breakpoints, occur under other conditions. Some types of excep-
tions may provide error codes. An error code reports additional information about the
error. An example of the notation used to show an exception and error code is shown
below:

#PF(fault code)

This example refers to a page-fault exception under conditions where an error code
naming a type of fault is reported. Under some conditions, exceptions which produce
error codes may not be able to report an accurate code. In this case, the error code
is zero, as shown below for a general-protection exception:

#GP(0)

1.3.7 A New Syntax for CPUID, CR, and MSR Values
Obtain feature flags, status, and system information by using the CPUID instruction,
by checking control register bits, and by reading model-specific registers. We are
moving toward a new syntax to represent this information. See Figure 1-2.
Vol. 2A 1-7

ABOUT THIS MANUAL
1.4 RELATED LITERATURE
Literature related to Intel 64 and IA-32 processors is listed on-line at:
http://www.intel.com/content/www/us/en/processors/architectures-software-
developer-manuals.html.html

Figure 1-2. Syntax for CPUID, CR, and MSR Data Presentation
1-8 Vol. 2A

http://developer.intel.com/products/processor/manuals/index.htm
http://developer.intel.com/products/processor/manuals/index.htm

ABOUT THIS MANUAL
Some of the documents listed at this web site can be viewed on-line; others can be
ordered. The literature available is listed by Intel processor and then by the following
literature types: applications notes, data sheets, manuals, papers, and specification
updates.

See also:
• The data sheet for a particular Intel 64 or IA-32 processor
• The specification update for a particular Intel 64 or IA-32 processor
• Intel® C++ Compiler documentation and online help:

http://software.intel.com/en-us/articles/intel-compilers/
• Intel® Fortran Compiler documentation and online help:

http://software.intel.com/en-us/articles/intel-compilers/
• Intel® VTune™ Performance Analyzer documentation and online help:

http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
• Intel® 64 and IA-32 Architectures Software Developer’s Manual (in three or five

volumes):
http://www.intel.com/content/www/us/en/processors/architectures-software-
developer-manuals.html.html

• Intel® 64 and IA-32 Architectures Optimization Reference Manual:
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-
32-architectures-optimization-manual.html

• Intel® Processor Identification with the CPUID Instruction, AP-485:
http://www.intel.com/Assets/PDF/appnote/241618.pdf

• Intel 64 Architecture x2APIC Specification:
http://www.intel.com/content/www/us/en/architecture-and-technology/64-
architecture-x2apic-specification.html

• Intel 64 Architecture Processor Topology Enumeration:
http://softwarecommunity.intel.com/articles/eng/3887.htm

• Intel® Trusted Execution Technology Measured Launched Environment
Programming Guide:

http://www.intel.com/content/www/us/en/software-developers/intel-txt-
software-development-guide.html

• Intel® SSE4 Programming Reference:
http://edc.intel.com/Link.aspx?id=1630&wapkw=intel® sse4 programming
reference

• Developing Multi-threaded Applications: A Platform Consistent Approach:
http://cache-
www.intel.com/cd/00/00/05/15/51534_developing_multithreaded_applications.
pdf

• Using Spin-Loops on Intel® Pentium® 4 Processor and Intel® Xeon® Processor:
http://software.intel.com/en-us/articles/ap949-using-spin-loops-on-intel-
pentiumr-4-processor-and-intel-xeonr-processor/
Vol. 2A 1-9

http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://developer.intel.com/products/processor/manuals/index.htm

http://developer.intel.com/products/processor/manuals/index.htm
http://www.intel.com/support/processors/sb/cs-009861.htm
http://www3.intel.com/cd/ids/developer/asmo-na/eng/dc/threading/knowledgebase/19083.htm
http://softwarecommunity.intel.com/articles/eng/3887.htm

ABOUT THIS MANUAL
• Performance Monitoring Unit Sharing Guide
http://software.intel.com/file/30388

More relevant links are:
• Software network link:

http://softwarecommunity.intel.com/isn/home/
• Developer centers:

http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/index.htm
• Processor support general link:

http://www.intel.com/support/processors/
• Software products and packages:

http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
• Intel 64 and IA-32 processor manuals (printed or PDF downloads):

http://www.intel.com/content/www/us/en/processors/architectures-software-
developer-manuals.html.html

• Intel® Multi-Core Technology:
http://software.intel.com/partner/multicore

• Intel® Hyper-Threading Technology (Intel® HT Technology):
http://www.intel.com/technology/platform-technology/hyper-
threading/index.htm
1-10 Vol. 2A

http://softwarecommunity.intel.com/isn/home/
http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/index.htm
http://www.intel.com/support/processors/
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://developer.intel.com/technology/hyperthread/
http://developer.intel.com/technology/hyperthread/

CHAPTER 2
INSTRUCTION FORMAT

This chapter describes the instruction format for all Intel 64 and IA-32 processors.
The instruction format for protected mode, real-address mode and virtual-8086
mode is described in Section 2.1. Increments provided for IA-32e mode and its sub-
modes are described in Section 2.2.

2.1 INSTRUCTION FORMAT FOR PROTECTED MODE,
REAL-ADDRESS MODE, AND VIRTUAL-8086 MODE

The Intel 64 and IA-32 architectures instruction encodings are subsets of the format
shown in Figure 2-1. Instructions consist of optional instruction prefixes (in any
order), primary opcode bytes (up to three bytes), an addressing-form specifier (if
required) consisting of the ModR/M byte and sometimes the SIB (Scale-Index-Base)
byte, a displacement (if required), and an immediate data field (if required).

2.1.1 Instruction Prefixes
Instruction prefixes are divided into four groups, each with a set of allowable prefix
codes. For each instruction, it is only useful to include up to one prefix code from
each of the four groups (Groups 1, 2, 3, 4). Groups 1 through 4 may be placed in any
order relative to each other.
• Group 1

— Lock and repeat prefixes:

Figure 2-1. Intel 64 and IA-32 Architectures Instruction Format

Instruction
Prefixes Opcode ModR/M SIB Displacement Immediate

Mod R/MReg/
Opcode

027 6 5 3

Scale Base

027 6 5 3

Index

Immediate
data of
1, 2, or 4
bytes or none

Address
displacement
of 1, 2, or 4
bytes or none

1 byte
(if required)

1 byte
(if required)

1-, 2-, or 3-byte
opcode

Up to four
prefixes of
1 byte each
(optional)
Vol. 2A 2-1

INSTRUCTION FORMAT
• LOCK prefix is encoded using F0H

• REPNE/REPNZ prefix is encoded using F2H. Repeat-Not-Zero prefix
applies only to string and input/output instructions. (F2H is also used as a
mandatory prefix for some instructions)

• REP or REPE/REPZ is encoded using F3H. Repeat prefix applies only to
string and input/output instructions.(F3H is also used as a mandatory
prefix for some instructions)

• Group 2

— Segment override prefixes:

• 2EH—CS segment override (use with any branch instruction is reserved)

• 36H—SS segment override prefix (use with any branch instruction is
reserved)

• 3EH—DS segment override prefix (use with any branch instruction is
reserved)

• 26H—ES segment override prefix (use with any branch instruction is
reserved)

• 64H—FS segment override prefix (use with any branch instruction is
reserved)

• 65H—GS segment override prefix (use with any branch instruction is
reserved)

— Branch hints:

• 2EH—Branch not taken (used only with Jcc instructions)

• 3EH—Branch taken (used only with Jcc instructions)
• Group 3

• Operand-size override prefix is encoded using 66H (66H is also used as a
mandatory prefix for some instructions).

• Group 4

• 67H—Address-size override prefix

The LOCK prefix (F0H) forces an operation that ensures exclusive use of shared
memory in a multiprocessor environment. See “LOCK—Assert LOCK# Signal Prefix”
in Chapter 3, “Instruction Set Reference, A-L,” for a description of this prefix.

Repeat prefixes (F2H, F3H) cause an instruction to be repeated for each element of a
string. Use these prefixes only with string and I/O instructions (MOVS, CMPS, SCAS,
LODS, STOS, INS, and OUTS). Use of repeat prefixes and/or undefined opcodes with
other Intel 64 or IA-32 instructions is reserved; such use may cause unpredictable
behavior.

Some instructions may use F2H,F3H as a mandatory prefix to express distinct func-
tionality. A mandatory prefix generally should be placed after other optional prefixes
(exception to this is discussed in Section 2.2.1, “REX Prefixes”)
2-2 Vol. 2A

INSTRUCTION FORMAT
Branch hint prefixes (2EH, 3EH) allow a program to give a hint to the processor about
the most likely code path for a branch. Use these prefixes only with conditional
branch instructions (Jcc). Other use of branch hint prefixes and/or other undefined
opcodes with Intel 64 or IA-32 instructions is reserved; such use may cause unpre-
dictable behavior.

The operand-size override prefix allows a program to switch between 16- and 32-bit
operand sizes. Either size can be the default; use of the prefix selects the non-default
size.

Some SSE2/SSE3/SSSE3/SSE4 instructions and instructions using a three-byte
sequence of primary opcode bytes may use 66H as a mandatory prefix to express
distinct functionality. A mandatory prefix generally should be placed after other
optional prefixes (exception to this is discussed in Section 2.2.1, “REX Prefixes”)

Other use of the 66H prefix is reserved; such use may cause unpredictable behavior.

The address-size override prefix (67H) allows programs to switch between 16- and
32-bit addressing. Either size can be the default; the prefix selects the non-default
size. Using this prefix and/or other undefined opcodes when operands for the instruc-
tion do not reside in memory is reserved; such use may cause unpredictable
behavior.

2.1.2 Opcodes
A primary opcode can be 1, 2, or 3 bytes in length. An additional 3-bit opcode field is
sometimes encoded in the ModR/M byte. Smaller fields can be defined within the
primary opcode. Such fields define the direction of operation, size of displacements,
register encoding, condition codes, or sign extension. Encoding fields used by an
opcode vary depending on the class of operation.

Two-byte opcode formats for general-purpose and SIMD instructions consist of:
• An escape opcode byte 0FH as the primary opcode and a second opcode byte, or
• A mandatory prefix (66H, F2H, or F3H), an escape opcode byte, and a second

opcode byte (same as previous bullet)

For example, CVTDQ2PD consists of the following sequence: F3 0F E6. The first byte
is a mandatory prefix (it is not considered as a repeat prefix).

Three-byte opcode formats for general-purpose and SIMD instructions consist of:
• An escape opcode byte 0FH as the primary opcode, plus two additional opcode

bytes, or
• A mandatory prefix (66H, F2H, or F3H), an escape opcode byte, plus two

additional opcode bytes (same as previous bullet)

For example, PHADDW for XMM registers consists of the following sequence: 66 0F
38 01. The first byte is the mandatory prefix.

Valid opcode expressions are defined in Appendix A and Appendix B.
Vol. 2A 2-3

INSTRUCTION FORMAT
2.1.3 ModR/M and SIB Bytes
Many instructions that refer to an operand in memory have an addressing-form spec-
ifier byte (called the ModR/M byte) following the primary opcode. The ModR/M byte
contains three fields of information:
• The mod field combines with the r/m field to form 32 possible values: eight

registers and 24 addressing modes.
• The reg/opcode field specifies either a register number or three more bits of

opcode information. The purpose of the reg/opcode field is specified in the
primary opcode.

• The r/m field can specify a register as an operand or it can be combined with the
mod field to encode an addressing mode. Sometimes, certain combinations of
the mod field and the r/m field is used to express opcode information for some
instructions.

Certain encodings of the ModR/M byte require a second addressing byte (the SIB
byte). The base-plus-index and scale-plus-index forms of 32-bit addressing require
the SIB byte. The SIB byte includes the following fields:
• The scale field specifies the scale factor.
• The index field specifies the register number of the index register.
• The base field specifies the register number of the base register.

See Section 2.1.5 for the encodings of the ModR/M and SIB bytes.

2.1.4 Displacement and Immediate Bytes
Some addressing forms include a displacement immediately following the ModR/M
byte (or the SIB byte if one is present). If a displacement is required; it be 1, 2, or 4
bytes.

If an instruction specifies an immediate operand, the operand always follows any
displacement bytes. An immediate operand can be 1, 2 or 4 bytes.

2.1.5 Addressing-Mode Encoding of ModR/M and SIB Bytes
The values and corresponding addressing forms of the ModR/M and SIB bytes are
shown in Table 2-1 through Table 2-3: 16-bit addressing forms specified by the
ModR/M byte are in Table 2-1 and 32-bit addressing forms are in Table 2-2. Table 2-3
shows 32-bit addressing forms specified by the SIB byte. In cases where the
reg/opcode field in the ModR/M byte represents an extended opcode, valid encodings
are shown in Appendix B.

In Table 2-1 and Table 2-2, the Effective Address column lists 32 effective addresses
that can be assigned to the first operand of an instruction by using the Mod and R/M
fields of the ModR/M byte. The first 24 options provide ways of specifying a memory
2-4 Vol. 2A

INSTRUCTION FORMAT
location; the last eight (Mod = 11B) provide ways of specifying general-purpose,
MMX technology and XMM registers.

The Mod and R/M columns in Table 2-1 and Table 2-2 give the binary encodings of the
Mod and R/M fields required to obtain the effective address listed in the first column.
For example: see the row indicated by Mod = 11B, R/M = 000B. The row identifies
the general-purpose registers EAX, AX or AL; MMX technology register MM0; or XMM
register XMM0. The register used is determined by the opcode byte and the operand-
size attribute.

Now look at the seventh row in either table (labeled “REG =”). This row specifies the
use of the 3-bit Reg/Opcode field when the field is used to give the location of a
second operand. The second operand must be a general-purpose, MMX technology,
or XMM register. Rows one through five list the registers that may correspond to the
value in the table. Again, the register used is determined by the opcode byte along
with the operand-size attribute.

If the instruction does not require a second operand, then the Reg/Opcode field may
be used as an opcode extension. This use is represented by the sixth row in the
tables (labeled “/digit (Opcode)”). Note that values in row six are represented in
decimal form.

The body of Table 2-1 and Table 2-2 (under the label “Value of ModR/M Byte (in Hexa-
decimal)”) contains a 32 by 8 array that presents all of 256 values of the ModR/M
byte (in hexadecimal). Bits 3, 4 and 5 are specified by the column of the table in
which a byte resides. The row specifies bits 0, 1 and 2; and bits 6 and 7. The figure
below demonstrates interpretation of one table value.

Figure 2-2. Table Interpretation of ModR/M Byte (C8H)

Mod 11
RM 000
REG = 001
C8H 11001000

/digit (Opcode);
Vol. 2A 2-5

INSTRUCTION FORMAT
NOTES:
1. The default segment register is SS for the effective addresses containing a BP index, DS for other

effective addresses.
2. The disp16 nomenclature denotes a 16-bit displacement that follows the ModR/M byte and that is

added to the index.
3. The disp8 nomenclature denotes an 8-bit displacement that follows the ModR/M byte and that is

sign-extended and added to the index.

Table 2-1. 16-Bit Addressing Forms with the ModR/M Byte
r8(/r)
r16(/r)
r32(/r)
mm(/r)
xmm(/r)
(In decimal) /digit (Opcode)
(In binary) REG =

AL
AX
EAX
MM0
XMM0
0
000

CL
CX
ECX
MM1
XMM1
1
001

DL
DX
EDX
MM2
XMM2
2
010

BL
BX
EBX
MM3
XMM3
3
011

AH
SP
ESP
MM4
XMM4
4
100

CH
BP1
EBP
MM5
XMM5
5
101

DH
SI
ESI
MM6
XMM6
6
110

BH
DI
EDI
MM7
XMM7
7
111

Effective Address Mod R/M Value of ModR/M Byte (in Hexadecimal)

[BX+SI]
[BX+DI]
[BP+SI]
[BP+DI]
[SI]
[DI]
disp162

[BX]

00 000
001
010
011
100
101
110
111

00
01
02
03
04
05
06
07

08
09
0A
0B
0C
0D
0E
0F

10
11
12
13
14
15
16
17

18
19
1A
1B
1C
1D
1E
1F

20
21
22
23
24
25
26
27

28
29
2A
2B
2C
2D
2E
2F

30
31
32
33
34
35
36
37

38
39
3A
3B
3C
3D
3E
3F

[BX+SI]+disp83

[BX+DI]+disp8
[BP+SI]+disp8
[BP+DI]+disp8
[SI]+disp8
[DI]+disp8
[BP]+disp8
[BX]+disp8

01 000
001
010
011
100
101
110
111

40
41
42
43
44
45
46
47

48
49
4A
4B
4C
4D
4E
4F

50
51
52
53
54
55
56
57

58
59
5A
5B
5C
5D
5E
5F

60
61
62
63
64
65
66
67

68
69
6A
6B
6C
6D
6E
6F

70
71
72
73
74
75
76
77

78
79
7A
7B
7C
7D
7E
7F

[BX+SI]+disp16
[BX+DI]+disp16
[BP+SI]+disp16
[BP+DI]+disp16
[SI]+disp16
[DI]+disp16
[BP]+disp16
[BX]+disp16

10 000
001
010
011
100
101
110
111

80
81
82
83
84
85
86
87

88
89
8A
8B
8C
8D
8E
8F

90
91
92
93
94
95
96
97

98
99
9A
9B
9C
9D
9E
9F

A0
A1
A2
A3
A4
A5
A6
A7

A8
A9
AA
AB
AC
AD
AE
AF

B0
B1
B2
B3
B4
B5
B6
B7

B8
B9
BA
BB
BC
BD
BE
BF

EAX/AX/AL/MM0/XMM0
ECX/CX/CL/MM1/XMM1
EDX/DX/DL/MM2/XMM2
EBX/BX/BL/MM3/XMM3
ESP/SP/AHMM4/XMM4
EBP/BP/CH/MM5/XMM5
ESI/SI/DH/MM6/XMM6
EDI/DI/BH/MM7/XMM7

11 000
001
010
011
100
101
110
111

C0
C1
C2
C3
C4
C5
C6
C7

C8
C9
CA
CB
CC
CD
CE
CF

D0
D1
D2
D3
D4
D5
D6
D7

D8
D9
DA
DB
DC
DD
DE
DF

E0
EQ
E2
E3
E4
E5
E6
E7

E8
E9
EA
EB
EC
ED
EE
EF

F0
F1
F2
F3
F4
F5
F6
F7

F8
F9
FA
FB
FC
FD
FE
FF
2-6 Vol. 2A

INSTRUCTION FORMAT
NOTES:
1. The [--][--] nomenclature means a SIB follows the ModR/M byte.
2. The disp32 nomenclature denotes a 32-bit displacement that follows the ModR/M byte (or the SIB

byte if one is present) and that is added to the index.
3. The disp8 nomenclature denotes an 8-bit displacement that follows the ModR/M byte (or the SIB

byte if one is present) and that is sign-extended and added to the index.

Table 2-3 is organized to give 256 possible values of the SIB byte (in hexadecimal).
General purpose registers used as a base are indicated across the top of the table,
along with corresponding values for the SIB byte’s base field. Table rows in the body

Table 2-2. 32-Bit Addressing Forms with the ModR/M Byte
r8(/r)
r16(/r)
r32(/r)
mm(/r)
xmm(/r)
(In decimal) /digit (Opcode)
(In binary) REG =

AL
AX
EAX
MM0
XMM0
0
000

CL
CX
ECX
MM1
XMM1
1
001

DL
DX
EDX
MM2
XMM2
2
010

BL
BX
EBX
MM3
XMM3
3
011

AH
SP
ESP
MM4
XMM4
4
100

CH
BP
EBP
MM5
XMM5
5
101

DH
SI
ESI
MM6
XMM6
6
110

BH
DI
EDI
MM7
XMM7
7
111

Effective Address Mod R/M Value of ModR/M Byte (in Hexadecimal)

[EAX]
[ECX]
[EDX]
[EBX]
[--][--]1
disp322

[ESI]
[EDI]

00 000
001
010
011
100
101
110
111

00
01
02
03
04
05
06
07

08
09
0A
0B
0C
0D
0E
0F

10
11
12
13
14
15
16
17

18
19
1A
1B
1C
1D
1E
1F

20
21
22
23
24
25
26
27

28
29
2A
2B
2C
2D
2E
2F

30
31
32
33
34
35
36
37

38
39
3A
3B
3C
3D
3E
3F

[EAX]+disp83

[ECX]+disp8
[EDX]+disp8
[EBX]+disp8
[--][--]+disp8
[EBP]+disp8
[ESI]+disp8
[EDI]+disp8

01 000
001
010
011
100
101
110
111

40
41
42
43
44
45
46
47

48
49
4A
4B
4C
4D
4E
4F

50
51
52
53
54
55
56
57

58
59
5A
5B
5C
5D
5E
5F

60
61
62
63
64
65
66
67

68
69
6A
6B
6C
6D
6E
6F

70
71
72
73
74
75
76
77

78
79
7A
7B
7C
7D
7E
7F

[EAX]+disp32
[ECX]+disp32
[EDX]+disp32
[EBX]+disp32
[--][--]+disp32
[EBP]+disp32
[ESI]+disp32
[EDI]+disp32

10 000
001
010
011
100
101
110
111

80
81
82
83
84
85
86
87

88
89
8A
8B
8C
8D
8E
8F

90
91
92
93
94
95
96
97

98
99
9A
9B
9C
9D
9E
9F

A0
A1
A2
A3
A4
A5
A6
A7

A8
A9
AA
AB
AC
AD
AE
AF

B0
B1
B2
B3
B4
B5
B6
B7

B8
B9
BA
BB
BC
BD
BE
BF

EAX/AX/AL/MM0/XMM0
ECX/CX/CL/MM/XMM1
EDX/DX/DL/MM2/XMM2
EBX/BX/BL/MM3/XMM3
ESP/SP/AH/MM4/XMM4
EBP/BP/CH/MM5/XMM5
ESI/SI/DH/MM6/XMM6
EDI/DI/BH/MM7/XMM7

11 000
001
010
011
100
101
110
111

C0
C1
C2
C3
C4
C5
C6
C7

C8
C9
CA
CB
CC
CD
CE
CF

D0
D1
D2
D3
D4
D5
D6
D7

D8
D9
DA
DB
DC
DD
DE
DF

E0
E1
E2
E3
E4
E5
E6
E7

E8
E9
EA
EB
EC
ED
EE
EF

F0
F1
F2
F3
F4
F5
F6
F7

F8
F9
FA
FB
FC
FD
FE
FF
Vol. 2A 2-7

INSTRUCTION FORMAT
of the table indicate the register used as the index (SIB byte bits 3, 4 and 5) and the
scaling factor (determined by SIB byte bits 6 and 7).

NOTES:
1. The [*] nomenclature means a disp32 with no base if the MOD is 00B. Otherwise, [*] means disp8

or disp32 + [EBP]. This provides the following address modes:
MOD bits Effective Address
00 [scaled index] + disp32
01 [scaled index] + disp8 + [EBP]
10 [scaled index] + disp32 + [EBP]

Table 2-3. 32-Bit Addressing Forms with the SIB Byte
r32
(In decimal) Base =
(In binary) Base =

EAX
0
000

ECX
1
001

EDX
2
010

EBX
3
011

ESP
4
100

[*]
5
101

ESI
6
110

EDI
7
111

Scaled Index SS Index Value of SIB Byte (in Hexadecimal)

[EAX]
[ECX]
[EDX]
[EBX]
none
[EBP]
[ESI]
[EDI]

00 000
001
010
011
100
101
110
111

00
08
10
18
20
28
30
38

01
09
11
19
21
29
31
39

02
0A
12
1A
22
2A
32
3A

03
0B
13
1B
23
2B
33
3B

04
0C
14
1C
24
2C
34
3C

05
0D
15
1D
25
2D
35
3D

06
0E
16
1E
26
2E
36
3E

07
0F
17
1F
27
2F
37
3F

[EAX*2]
[ECX*2]
[EDX*2]
[EBX*2]
none
[EBP*2]
[ESI*2]
[EDI*2]

01 000
001
010
011
100
101
110
111

40
48
50
58
60
68
70
78

41
49
51
59
61
69
71
79

42
4A
52
5A
62
6A
72
7A

43
4B
53
5B
63
6B
73
7B

44
4C
54
5C
64
6C
74
7C

45
4D
55
5D
65
6D
75
7D

46
4E
56
5E
66
6E
76
7E

47
4F
57
5F
67
6F
77
7F

[EAX*4]
[ECX*4]
[EDX*4]
[EBX*4]
none
[EBP*4]
[ESI*4]
[EDI*4]

10 000
001
010
011
100
101
110
111

80
88
90
98
A0
A8
B0
B8

81
89
91
89
A1
A9
B1
B9

82
8A
92
9A
A2
AA
B2
BA

83
8B
93
9B
A3
AB
B3
BB

84
8C
94
9C
A4
AC
B4
BC

85
8D
95
9D
A5
AD
B5
BD

86
8E
96
9E
A6
AE
B6
BE

87
8F
97
9F
A7
AF
B7
BF

[EAX*8]
[ECX*8]
[EDX*8]
[EBX*8]
none
[EBP*8]
[ESI*8]
[EDI*8]

11 000
001
010
011
100
101
110
111

C0
C8
D0
D8
E0
E8
F0
F8

C1
C9
D1
D9
E1
E9
F1
F9

C2
CA
D2
DA
E2
EA
F2
FA

C3
CB
D3
DB
E3
EB
F3
FB

C4
CC
D4
DC
E4
EC
F4
FC

C5
CD
D5
DD
E5
ED
F5
FD

C6
CE
D6
DE
E6
EE
F6
FE

C7
CF
D7
DF
E7
EF
F7
FF
2-8 Vol. 2A

INSTRUCTION FORMAT
2.2 IA-32E MODE
IA-32e mode has two sub-modes. These are:
• Compatibility Mode. Enables a 64-bit operating system to run most legacy

protected mode software unmodified.
• 64-Bit Mode. Enables a 64-bit operating system to run applications written to

access 64-bit address space.

2.2.1 REX Prefixes
REX prefixes are instruction-prefix bytes used in 64-bit mode. They do the following:
• Specify GPRs and SSE registers.
• Specify 64-bit operand size.
• Specify extended control registers.

Not all instructions require a REX prefix in 64-bit mode. A prefix is necessary only if
an instruction references one of the extended registers or uses a 64-bit operand. If a
REX prefix is used when it has no meaning, it is ignored.

Only one REX prefix is allowed per instruction. If used, the REX prefix byte must
immediately precede the opcode byte or the escape opcode byte (0FH). When a REX
prefix is used in conjunction with an instruction containing a mandatory prefix, the
mandatory prefix must come before the REX so the REX prefix can be immediately
preceding the opcode or the escape byte. For example, CVTDQ2PD with a REX prefix
should have REX placed between F3 and 0F E6. Other placements are ignored. The
instruction-size limit of 15 bytes still applies to instructions with a REX prefix. See
Figure 2-3.

Figure 2-3. Prefix Ordering in 64-bit Mode

REX

Immediate data
of 1, 2, or 4
bytes or none

Address
displacement of
1, 2, or 4 bytes

1 byte
(if required)

1 byte
(if required)

1-, 2-, or
3-byte
opcode

(optional)Grp 1, Grp
2, Grp 3,
Grp 4
(optional)

Legacy
Prefix Opcode ModR/M SIB Displacement Immediate

Prefixes
Vol. 2A 2-9

INSTRUCTION FORMAT
2.2.1.1 Encoding
Intel 64 and IA-32 instruction formats specify up to three registers by using 3-bit
fields in the encoding, depending on the format:
• ModR/M: the reg and r/m fields of the ModR/M byte
• ModR/M with SIB: the reg field of the ModR/M byte, the base and index fields of

the SIB (scale, index, base) byte
• Instructions without ModR/M: the reg field of the opcode

In 64-bit mode, these formats do not change. Bits needed to define fields in the
64-bit context are provided by the addition of REX prefixes.

2.2.1.2 More on REX Prefix Fields
REX prefixes are a set of 16 opcodes that span one row of the opcode map and
occupy entries 40H to 4FH. These opcodes represent valid instructions (INC or DEC)
in IA-32 operating modes and in compatibility mode. In 64-bit mode, the same
opcodes represent the instruction prefix REX and are not treated as individual
instructions.

The single-byte-opcode form of INC/DEC instruction not available in 64-bit mode.
INC/DEC functionality is still available using ModR/M forms of the same instructions
(opcodes FF/0 and FF/1).

See Table 2-4 for a summary of the REX prefix format. Figure 2-4 though Figure 2-7
show examples of REX prefix fields in use. Some combinations of REX prefix fields are
invalid. In such cases, the prefix is ignored. Some additional information follows:
• Setting REX.W can be used to determine the operand size but does not solely

determine operand width. Like the 66H size prefix, 64-bit operand size override
has no effect on byte-specific operations.

• For non-byte operations: if a 66H prefix is used with prefix (REX.W = 1), 66H is
ignored.

• If a 66H override is used with REX and REX.W = 0, the operand size is 16 bits.
• REX.R modifies the ModR/M reg field when that field encodes a GPR, SSE, control

or debug register. REX.R is ignored when ModR/M specifies other registers or
defines an extended opcode.

• REX.X bit modifies the SIB index field.
• REX.B either modifies the base in the ModR/M r/m field or SIB base field; or it

modifies the opcode reg field used for accessing GPRs.
2-10 Vol. 2A

INSTRUCTION FORMAT
Table 2-4. REX Prefix Fields [BITS: 0100WRXB]
Field Name Bit Position Definition

- 7:4 0100

W 3 0 = Operand size determined by CS.D

1 = 64 Bit Operand Size

R 2 Extension of the ModR/M reg field

X 1 Extension of the SIB index field

B 0 Extension of the ModR/M r/m field, SIB base field, or
Opcode reg field

Figure 2-4. Memory Addressing Without an SIB Byte; REX.X Not Used

Figure 2-5. Register-Register Addressing (No Memory Operand); REX.X Not Used
Vol. 2A 2-11

INSTRUCTION FORMAT
In the IA-32 architecture, byte registers (AH, AL, BH, BL, CH, CL, DH, and DL) are
encoded in the ModR/M byte’s reg field, the r/m field or the opcode reg field as regis-
ters 0 through 7. REX prefixes provide an additional addressing capability for byte-
registers that makes the least-significant byte of GPRs available for byte operations.

Certain combinations of the fields of the ModR/M byte and the SIB byte have special
meaning for register encodings. For some combinations, fields expanded by the REX
prefix are not decoded. Table 2-5 describes how each case behaves.

Figure 2-6. Memory Addressing With a SIB Byte

Figure 2-7. Register Operand Coded in Opcode Byte; REX.X & REX.R Not Used
2-12 Vol. 2A

INSTRUCTION FORMAT
2.2.1.3 Displacement
Addressing in 64-bit mode uses existing 32-bit ModR/M and SIB encodings. The
ModR/M and SIB displacement sizes do not change. They remain 8 bits or 32 bits and
are sign-extended to 64 bits.

2.2.1.4 Direct Memory-Offset MOVs
In 64-bit mode, direct memory-offset forms of the MOV instruction are extended to
specify a 64-bit immediate absolute address. This address is called a moffset. No
prefix is needed to specify this 64-bit memory offset. For these MOV instructions, the

Table 2-5. Special Cases of REX Encodings
ModR/M or
SIB

Sub-field
Encodings

Compatibility
Mode Operation

Compatibility
Mode Implications Additional Implications

ModR/M Byte mod != 11 SIB byte present. SIB byte required
for ESP-based
addressing.

REX prefix adds a fourth
bit (b) which is not
decoded (don't care).

SIB byte also required for
R12-based addressing.

r/m =
b*100(ESP)

ModR/M Byte mod = 0 Base register not
used.

EBP without a
displacement must
be done using

mod = 01 with
displacement of 0.

REX prefix adds a fourth
bit (b) which is not
decoded (don't care).

Using RBP or R13 without
displacement must be
done using mod = 01 with
a displacement of 0.

r/m =
b*101(EBP)

SIB Byte index =
0100(ESP)

Index register not
used.

ESP cannot be used
as an index
register.

REX prefix adds a fourth
bit (b) which is decoded.

There are no additional
implications. The
expanded index field
allows distinguishing RSP
from R12, therefore R12
can be used as an index.

SIB Byte base =
0101(EBP)

Base register is
unused if
mod = 0.

Base register
depends on mod
encoding.

REX prefix adds a fourth
bit (b) which is not
decoded.

This requires explicit
displacement to be used
with EBP/RBP or R13.

NOTES:
* Don’t care about value of REX.B
Vol. 2A 2-13

INSTRUCTION FORMAT
size of the memory offset follows the address-size default (64 bits in 64-bit mode).
See Table 2-6.

2.2.1.5 Immediates
In 64-bit mode, the typical size of immediate operands remains 32 bits. When the
operand size is 64 bits, the processor sign-extends all immediates to 64 bits prior to
their use.

Support for 64-bit immediate operands is accomplished by expanding the semantics
of the existing move (MOV reg, imm16/32) instructions. These instructions (opcodes
B8H – BFH) move 16-bits or 32-bits of immediate data (depending on the effective
operand size) into a GPR. When the effective operand size is 64 bits, these instruc-
tions can be used to load an immediate into a GPR. A REX prefix is needed to override
the 32-bit default operand size to a 64-bit operand size.

For example:

48 B8 8877665544332211 MOV RAX,1122334455667788H

2.2.1.6 RIP-Relative Addressing
A new addressing form, RIP-relative (relative instruction-pointer) addressing, is
implemented in 64-bit mode. An effective address is formed by adding displacement
to the 64-bit RIP of the next instruction.

In IA-32 architecture and compatibility mode, addressing relative to the instruction
pointer is available only with control-transfer instructions. In 64-bit mode, instruc-
tions that use ModR/M addressing can use RIP-relative addressing. Without RIP-rela-
tive addressing, all ModR/M instruction modes address memory relative to zero.

RIP-relative addressing allows specific ModR/M modes to address memory relative to
the 64-bit RIP using a signed 32-bit displacement. This provides an offset range of
±2GB from the RIP. Table 2-7 shows the ModR/M and SIB encodings for RIP-relative
addressing. Redundant forms of 32-bit displacement-addressing exist in the current
ModR/M and SIB encodings. There is one ModR/M encoding and there are several SIB
encodings. RIP-relative addressing is encoded using a redundant form.

In 64-bit mode, the ModR/M Disp32 (32-bit displacement) encoding is re-defined to
be RIP+Disp32 rather than displacement-only. See Table 2-7.

Table 2-6. Direct Memory Offset Form of MOV
Opcode Instruction

A0 MOV AL, moffset

A1 MOV EAX, moffset

A2 MOV moffset, AL

A3 MOV moffset, EAX
2-14 Vol. 2A

INSTRUCTION FORMAT
The ModR/M encoding for RIP-relative addressing does not depend on using prefix.
Specifically, the r/m bit field encoding of 101B (used to select RIP-relative
addressing) is not affected by the REX prefix. For example, selecting R13 (REX.B = 1,
r/m = 101B) with mod = 00B still results in RIP-relative addressing. The 4-bit r/m
field of REX.B combined with ModR/M is not fully decoded. In order to address R13
with no displacement, software must encode R13 + 0 using a 1-byte displacement of
zero.

RIP-relative addressing is enabled by 64-bit mode, not by a 64-bit address-size. The
use of the address-size prefix does not disable RIP-relative addressing. The effect of
the address-size prefix is to truncate and zero-extend the computed effective
address to 32 bits.

2.2.1.7 Default 64-Bit Operand Size
In 64-bit mode, two groups of instructions have a default operand size of 64 bits (do
not need a REX prefix for this operand size). These are:
• Near branches
• All instructions, except far branches, that implicitly reference the RSP

2.2.2 Additional Encodings for Control and Debug Registers
In 64-bit mode, more encodings for control and debug registers are available. The
REX.R bit is used to modify the ModR/M reg field when that field encodes a control or
debug register (see Table 2-4). These encodings enable the processor to address
CR8-CR15 and DR8- DR15. An additional control register (CR8) is defined in 64-bit
mode. CR8 becomes the Task Priority Register (TPR).

In the first implementation of IA-32e mode, CR9-CR15 and DR8-DR15 are not imple-
mented. Any attempt to access unimplemented registers results in an invalid-opcode
exception (#UD).

Table 2-7. RIP-Relative Addressing
ModR/M and SIB Sub-field
Encodings

Compatibility
Mode Operation

64-bit Mode
Operation

Additional Implications
in 64-bit mode

ModR/M
Byte

mod = 00 Disp32 RIP + Disp32 Must use SIB form with
normal (zero-based)
displacement addressing

r/m = 101 (none)

SIB Byte base = 101 (none) if mod = 00,
Disp32

Same as
legacy

None

index = 100 (none)

scale = 0, 1, 2, 4
Vol. 2A 2-15

INSTRUCTION FORMAT
2.3 INTEL® ADVANCED VECTOR EXTENSIONS (INTEL®
AVX)

Intel AVX instructions are encoded using an encoding scheme that combines prefix
bytes, opcode extension field, operand encoding fields, and vector length encoding
capability into a new prefix, referred to as VEX. In the VEX encoding scheme, the VEX
prefix may be two or three bytes long, depending on the instruction semantics.
Despite the two-byte or three-byte length of the VEX prefix, the VEX encoding format
provides a more compact representation/packing of the components of encoding an
instruction in Intel 64 architecture. The VEX encoding scheme also allows more head-
room for future growth of Intel 64 architecture.

2.3.1 Instruction Format
Instruction encoding using VEX prefix provides several advantages:
• Instruction syntax support for three operands and up-to four operands when

necessary. For example, the third source register used by VBLENDVPD is encoded
using bits 7:4 of the immediate byte.

• Encoding support for vector length of 128 bits (using XMM registers) and 256 bits
(using YMM registers)

• Encoding support for instruction syntax of non-destructive source operands.
• Elimination of escape opcode byte (0FH), SIMD prefix byte (66H, F2H, F3H) via a

compact bit field representation within the VEX prefix.
• Elimination of the need to use REX prefix to encode the extended half of general-

purpose register sets (R8-R15) for direct register access, memory addressing, or
accessing XMM8-XMM15 (including YMM8-YMM15).

• Flexible and more compact bit fields are provided in the VEX prefix to retain the
full functionality provided by REX prefix. REX.W, REX.X, REX.B functionalities are
provided in the three-byte VEX prefix only because only a subset of SIMD instruc-
tions need them.

• Extensibility for future instruction extensions without significant instruction
length increase.

Figure 2-8 shows the Intel 64 instruction encoding format with VEX prefix support.
Legacy instruction without a VEX prefix is fully supported and unchanged. The use of
VEX prefix in an Intel 64 instruction is optional, but a VEX prefix is required for Intel
64 instructions that operate on YMM registers or support three and four operand
syntax. VEX prefix is not a constant-valued, “single-purpose” byte like 0FH, 66H,
F2H, F3H in legacy SSE instructions. VEX prefix provides substantially richer capa-
bility than the REX prefix.
2-16 Vol. 2A

INSTRUCTION FORMAT
Figure 2-8. Instruction Encoding Format with VEX Prefix

2.3.2 VEX and the LOCK prefix
Any VEX-encoded instruction with a LOCK prefix preceding VEX will #UD.

2.3.3 VEX and the 66H, F2H, and F3H prefixes
Any VEX-encoded instruction with a 66H, F2H, or F3H prefix preceding VEX will #UD.

2.3.4 VEX and the REX prefix
Any VEX-encoded instruction with a REX prefix proceeding VEX will #UD.

2.3.5 The VEX Prefix
The VEX prefix is encoded in either the two-byte form (the first byte must be C5H) or
in the three-byte form (the first byte must be C4H). The two-byte VEX is used mainly
for 128-bit, scalar, and the most common 256-bit AVX instructions; while the three-
byte VEX provides a compact replacement of REX and 3-byte opcode instructions
(including AVX and FMA instructions). Beyond the first byte of the VEX prefix, it
consists of a number of bit fields providing specific capability, they are shown in
Figure 2-9.
The bit fields of the VEX prefix can be summarized by its functional purposes:
• Non-destructive source register encoding (applicable to three and four operand

syntax): This is the first source operand in the instruction syntax. It is
represented by the notation, VEX.vvvv. This field is encoded using 1’s
complement form (inverted form), i.e. XMM0/YMM0/R0 is encoded as 1111B,
XMM15/YMM15/R15 is encoded as 0000B.

• Vector length encoding: This 1-bit field represented by the notation VEX.L. L= 0
means vector length is 128 bits wide, L=1 means 256 bit vector. The value of this
field is written as VEX.128 or VEX.256 in this document to distinguish encoded
values of other VEX bit fields.

ModR/M

1

[Prefixes] [VEX] OPCODE [SIB] [DISP] [IMM]

2,3 1 0,1 0,1,2,4 0,1# Bytes
Vol. 2A 2-17

INSTRUCTION FORMAT
• REX prefix functionality: Full REX prefix functionality is provided in the three-byte
form of VEX prefix. However the VEX bit fields providing REX functionality are
encoded using 1’s complement form, i.e. XMM0/YMM0/R0 is encoded as 1111B,
XMM15/YMM15/R15 is encoded as 0000B.

— Two-byte form of the VEX prefix only provides the equivalent functionality of
REX.R, using 1’s complement encoding. This is represented as VEX.R.

— Three-byte form of the VEX prefix provides REX.R, REX.X, REX.B functionality
using 1’s complement encoding and three dedicated bit fields represented as
VEX.R, VEX.X, VEX.B.

— Three-byte form of the VEX prefix provides the functionality of REX.W only to
specific instructions that need to override default 32-bit operand size for a
general purpose register to 64-bit size in 64-bit mode. For those applicable
instructions, VEX.W field provides the same functionality as REX.W. VEX.W
field can provide completely different functionality for other instructions.

Consequently, the use of REX prefix with VEX encoded instructions is not
allowed. However, the intent of the REX prefix for expanding register set is
reserved for future instruction set extensions using VEX prefix encoding format.

• Compaction of SIMD prefix: Legacy SSE instructions effectively use SIMD
prefixes (66H, F2H, F3H) as an opcode extension field. VEX prefix encoding
allows the functional capability of such legacy SSE instructions (operating on
XMM registers, bits 255:128 of corresponding YMM unmodified) to be encoded
using the VEX.pp field without the presence of any SIMD prefix. The VEX-encoded
128-bit instruction will zero-out bits 255:128 of the destination register. VEX-
encoded instruction may have 128 bit vector length or 256 bits length.

• Compaction of two-byte and three-byte opcode: More recently introduced legacy
SSE instructions employ two and three-byte opcode. The one or two leading
bytes are: 0FH, and 0FH 3AH/0FH 38H. The one-byte escape (0FH) and two-byte
escape (0FH 3AH, 0FH 38H) can also be interpreted as an opcode extension field.
The VEX.mmmmm field provides compaction to allow many legacy instruction to
be encoded without the constant byte sequence, 0FH, 0FH 3AH, 0FH 38H. These
VEX-encoded instruction may have 128 bit vector length or 256 bits length.

The VEX prefix is required to be the last prefix and immediately precedes the opcode
bytes. It must follow any other prefixes. If VEX prefix is present a REX prefix is not
supported.
The 3-byte VEX leaves room for future expansion with 3 reserved bits. REX and the
66h/F2h/F3h prefixes are reclaimed for future use.
VEX prefix has a two-byte form and a three byte form. If an instruction syntax can be
encoded using the two-byte form, it can also be encoded using the three byte form of
VEX. The latter increases the length of the instruction by one byte. This may be
helpful in some situations for code alignment.
The VEX prefix supports 256-bit versions of floating-point SSE, SSE2, SSE3, and
SSE4 instructions. Note, certain new instruction functionality can only be encoded
with the VEX prefix.
2-18 Vol. 2A

INSTRUCTION FORMAT
The VEX prefix will #UD on any instruction containing MMX register sources or desti-
nations.

Figure 2-9. VEX bitfields

11000100 1

670

vvvv

1 03 2

L

7

R: REX.R in 1’s complement (inverted) form

00000: Reserved for future use (will #UD)
00001: implied 0F leading opcode byte
00010: implied 0F 38 leading opcode bytes
00011: implied 0F 3A leading opcode bytes
00100-11111: Reserved for future use (will #UD)

Byte 0 Byte 2

(Bit Position)

vvvv: a register specifier (in 1’s complement form) or 1111 if unused.

67 0

R X B

Byte 1

pp: opcode extension providing equivalent functionality of a SIMD prefix

W: opcode specific (use like REX.W, or used for opcode

m-mmmm

5

m-mmmm:

W

L: Vector Length

0: Same as REX.R=1 (64-bit mode only)
1: Same as REX.R=0 (must be 1 in 32-bit mode)

4

pp 3-byte VEX

11000101 1

670

vvvv

1 03 2

L

7

R pp 2-byte VEX

B: REX.B in 1’s complement (inverted) form

0: Same as REX.B=1 (64-bit mode only)
1: Same as REX.B=0 (Ignored in 32-bit mode).

 extension, or ignored, depending on the opcode byte)

0: scalar or 128-bit vector
1: 256-bit vector

00: None
01: 66
10: F3
11: F2

0: Same as REX.X=1 (64-bit mode only)
1: Same as REX.X=0 (must be 1 in 32-bit mode)

X: REX.X in 1’s complement (inverted) form
Vol. 2A 2-19

INSTRUCTION FORMAT
The following subsections describe the various fields in two or three-byte VEX prefix:

2.3.5.1 VEX Byte 0, bits[7:0]
VEX Byte 0, bits [7:0] must contain the value 11000101b (C5h) or 11000100b
(C4h). The 3-byte VEX uses the C4h first byte, while the 2-byte VEX uses the C5h
first byte.

2.3.5.2 VEX Byte 1, bit [7] - ‘R’
VEX Byte 1, bit [7] contains a bit analogous to a bit inverted REX.R. In protected and
compatibility modes the bit must be set to ‘1’ otherwise the instruction is LES or LDS.
This bit is present in both 2- and 3-byte VEX prefixes.
The usage of WRXB bits for legacy instructions is explained in detail section 2.2.1.2
of Intel 64 and IA-32 Architectures Software developer’s manual, Volume 2A.
This bit is stored in bit inverted format.

2.3.5.3 3-byte VEX byte 1, bit[6] - ‘X’
Bit[6] of the 3-byte VEX byte 1 encodes a bit analogous to a bit inverted REX.X. It is
an extension of the SIB Index field in 64-bit modes. In 32-bit modes, this bit must be
set to ‘1’ otherwise the instruction is LES or LDS.
This bit is available only in the 3-byte VEX prefix.
This bit is stored in bit inverted format.

2.3.5.4 3-byte VEX byte 1, bit[5] - ‘B’
Bit[5] of the 3-byte VEX byte 1 encodes a bit analogous to a bit inverted REX.B. In
64-bit modes, it is an extension of the ModR/M r/m field, or the SIB base field. In 32-
bit modes, this bit is ignored.
This bit is available only in the 3-byte VEX prefix.
This bit is stored in bit inverted format.

2.3.5.5 3-byte VEX byte 2, bit[7] - ‘W’
Bit[7] of the 3-byte VEX byte 2 is represented by the notation VEX.W. It can provide
following functions, depending on the specific opcode.
• For AVX instructions that have equivalent legacy SSE instructions (typically

these SSE instructions have a general-purpose register operand with its oper-
and size attribute promotable by REX.W), if REX.W promotes the operand size
attribute of the general-purpose register operand in legacy SSE instruction,
VEX.W has same meaning in the corresponding AVX equivalent form. In 32-bit
modes, VEX.W is silently ignored.
2-20 Vol. 2A

INSTRUCTION FORMAT
• For AVX instructions that have equivalent legacy SSE instructions (typically
these SSE instructions have operands with their operand size attribute fixed and
not promotable by REX.W), if REX.W is don’t care in legacy SSE instruction,
VEX.W is ignored in the corresponding AVX equivalent form irrespective of
mode.

• For new AVX instructions where VEX.W has no defined function (typically these
meant the combination of the opcode byte and VEX.mmmmm did not have any
equivalent SSE functions), VEX.W is reserved as zero and setting to other than
zero will cause instruction to #UD.

2.3.5.6 2-byte VEX Byte 1, bits[6:3] and 3-byte VEX Byte 2, bits [6:3]-
‘vvvv’ the Source or dest Register Specifier

In 32-bit mode the VEX first byte C4 and C5 alias onto the LES and LDS instructions.
To maintain compatibility with existing programs the VEX 2nd byte, bits [7:6] must
be 11b. To achieve this, the VEX payload bits are selected to place only inverted, 64-
bit valid fields (extended register selectors) in these upper bits.
The 2-byte VEX Byte 1, bits [6:3] and the 3-byte VEX, Byte 2, bits [6:3] encode a
field (shorthand VEX.vvvv) that for instructions with 2 or more source registers and
an XMM or YMM or memory destination encodes the first source register specifier
stored in inverted (1’s complement) form.
VEX.vvvv is not used by the instructions with one source (except certain shifts, see
below) or on instructions with no XMM or YMM or memory destination. If an instruc-
tion does not use VEX.vvvv then it should be set to 1111b otherwise instruction will
#UD.
In 64-bit mode all 4 bits may be used. See Table 2-8 for the encoding of the XMM or
YMM registers. In 32-bit and 16-bit modes bit 6 must be 1 (if bit 6 is not 1, the 2-byte
VEX version will generate LDS instruction and the 3-byte VEX version will ignore this
bit).
Vol. 2A 2-21

INSTRUCTION FORMAT
Table 2-8. VEX.vvvv to register name mapping

The VEX.vvvv field is encoded in bit inverted format for accessing a register oper-
and.

2.3.6 Instruction Operand Encoding and VEX.vvvv, ModR/M
VEX-encoded instructions support three-operand and four-operand instruction
syntax. Some VEX-encoded instructions have syntax with less than three operands,
e.g. VEX-encoded pack shift instructions support one source operand and one desti-
nation operand).
The roles of VEX.vvvv, reg field of ModR/M byte (ModR/M.reg), r/m field of ModR/M
byte (ModR/M.r/m) with respect to encoding destination and source operands vary
with different type of instruction syntax.
The role of VEX.vvvv can be summarized to three situations:
• VEX.vvvv encodes the first source register operand, specified in inverted (1’s

complement) form and is valid for instructions with 2 or more source operands.
• VEX.vvvv encodes the destination register operand, specified in 1’s complement

form for certain vector shifts. The instructions where VEX.vvvv is used as a
destination are listed in Table 2-9. The notation in the “Opcode” column in
Table 2-9 is described in detail in section 3.1.1.

VEX.vvvv Dest Register
Valid in Legacy/Compatibility

32-bit modes?

1111B XMM0/YMM0 Valid

1110B XMM1/YMM1 Valid

1101B XMM2/YMM2 Valid

1100B XMM3/YMM3 Valid

1011B XMM4/YMM4 Valid

1010B XMM5/YMM5 Valid

1001B XMM6/YMM6 Valid

1000B XMM7/YMM7 Valid

0111B XMM8/YMM8 Invalid

0110B XMM9/YMM9 Invalid

0101B XMM10/YMM10 Invalid

0100B XMM11/YMM11 Invalid

0011B XMM12/YMM12 Invalid

0010B XMM13/YMM13 Invalid

0001B XMM14/YMM14 Invalid

0000B XMM15/YMM15 Invalid
2-22 Vol. 2A

INSTRUCTION FORMAT
• VEX.vvvv does not encode any operand, the field is reserved and should contain
1111b.

Table 2-9. Instructions with a VEX.vvvv destination

The role of ModR/M.r/m field can be summarized to two situations:
• ModR/M.r/m encodes the instruction operand that references a memory address.
• For some instructions that do not support memory addressing semantics,

ModR/M.r/m encodes either the destination register operand or a source register
operand.

The role of ModR/M.reg field can be summarized to two situations:
• ModR/M.reg encodes either the destination register operand or a source register

operand.
• For some instructions, ModR/M.reg is treated as an opcode extension and not

used to encode any instruction operand.
For instruction syntax that support four operands, VEX.vvvv, ModR/M.r/m,
ModR/M.reg encodes three of the four operands. The role of bits 7:4 of the imme-
diate byte serves the following situation:
• Imm8[7:4] encodes the third source register operand.

2.3.6.1 3-byte VEX byte 1, bits[4:0] - “m-mmmm”
Bits[4:0] of the 3-byte VEX byte 1 encode an implied leading opcode byte (0F, 0F 38,
or 0F 3A). Several bits are reserved for future use and will #UD unless 0.

Opcode Instruction mnemonic

VEX.NDD.128.66.0F 73 /7 ib VPSLLDQ xmm1, xmm2, imm8

VEX.NDD.128.66.0F 73 /3 ib VPSRLDQ xmm1, xmm2, imm8

VEX.NDD.128.66.0F 71 /2 ib VPSRLW xmm1, xmm2, imm8

VEX.NDD.128.66.0F 72 /2 ib VPSRLD xmm1, xmm2, imm8

VEX.NDD.128.66.0F 73 /2 ib VPSRLQ xmm1, xmm2, imm8

VEX.NDD.128.66.0F 71 /4 ib VPSRAW xmm1, xmm2, imm8

VEX.NDD.128.66.0F 72 /4 ib VPSRAD xmm1, xmm2, imm8

VEX.NDD.128.66.0F 71 /6 ib VPSLLW xmm1, xmm2, imm8

VEX.NDD.128.66.0F 72 /6 ib VPSLLD xmm1, xmm2, imm8

VEX.NDD.128.66.0F 73 /6 ib VPSLLQ xmm1, xmm2, imm8
Vol. 2A 2-23

INSTRUCTION FORMAT
Table 2-10. VEX.m-mmmm interpretation

VEX.m-mmmm is only available on the 3-byte VEX. The 2-byte VEX implies a leading
0Fh opcode byte.

2.3.6.2 2-byte VEX byte 1, bit[2], and 3-byte VEX byte 2, bit [2]- “L”
The vector length field, VEX.L, is encoded in bit[2] of either the second byte of 2-byte
VEX, or the third byte of 3-byte VEX. If “VEX.L = 1”, it indicates 256-bit vector oper-
ation. “VEX.L = 0” indicates scalar and 128-bit vector operations.
The instruction VZEROUPPER is a special case that is encoded with VEX.L = 0,
although its operation zero’s bits 255:128 of all YMM registers accessible in the
current operating mode.
See the following table.

Table 2-11. VEX.L interpretation

2.3.6.3 2-byte VEX byte 1, bits[1:0], and 3-byte VEX byte 2, bits [1:0]-
“pp”

Up to one implied prefix is encoded by bits[1:0] of either the 2-byte VEX byte 1 or the
3-byte VEX byte 2. The prefix behaves as if it was encoded prior to VEX, but after all
other encoded prefixes.
See the following table.

VEX.m-mmmm
Implied Leading
Opcode Bytes

00000B Reserved

00001B 0F

00010B 0F 38

00011B 0F 3A

00100-11111B Reserved

(2-byte VEX) 0F

VEX.L Vector Length

0 128-bit (or 32/64-bit scalar)

1 256-bit
2-24 Vol. 2A

INSTRUCTION FORMAT
Table 2-12. VEX.pp interpretation

2.3.7 The Opcode Byte
One (and only one) opcode byte follows the 2 or 3 byte VEX. Legal opcodes are spec-
ified in Appendix B, in color. Any instruction that uses illegal opcode will #UD.

2.3.8 The MODRM, SIB, and Displacement Bytes
The encodings are unchanged but the interpretation of reg_field or rm_field differs
(see above).

2.3.9 The Third Source Operand (Immediate Byte)
VEX-encoded instructions can support instruction with a four operand syntax.
VBLENDVPD, VBLENDVPS, and PBLENDVB use imm8[7:4] to encode one of the
source registers.

2.3.10 AVX Instructions and the Upper 128-bits of YMM registers

If an instruction with a destination XMM register is encoded with a VEX prefix, the
processor zeroes the upper bits (above bit 128) of the equivalent YMM register .
Legacy SSE instructions without VEX preserve the upper bits.

2.3.10.1 Vector Length Transition and Programming Considerations
An instruction encoded with a VEX.128 prefix that loads a YMM register operand
operates as follows:
• Data is loaded into bits 127:0 of the register
• Bits above bit 127 in the register are cleared.
Thus, such an instruction clears bits 255:128 of a destination YMM register on
processors with a maximum vector-register width of 256 bits. In the event that
future processors extend the vector registers to greater widths, an instruction
encoded with a VEX.128 or VEX.256 prefix will also clear any bits beyond bit 255.

pp
Implies this prefix after other

prefixes but before VEX

00B None

01B 66

10B F3

11B F2
Vol. 2A 2-25

INSTRUCTION FORMAT
(This is in contrast with legacy SSE instructions, which have no VEX prefix; these
modify only bits 127:0 of any destination register operand.)
Programmers should bear in mind that instructions encoded with VEX.128 and
VEX.256 prefixes will clear any future extensions to the vector registers. A calling
function that uses such extensions should save their state before calling legacy func-
tions. This is not possible for involuntary calls (e.g., into an interrupt-service
routine). It is recommended that software handling involuntary calls accommodate
this by not executing instructions encoded with VEX.128 and VEX.256 prefixes. In
the event that it is not possible or desirable to restrict these instructions, then soft-
ware must take special care to avoid actions that would, on future processors, zero
the upper bits of vector registers.
Processors that support further vector-register extensions (defining bits beyond bit
255) will also extend the XSAVE and XRSTOR instructions to save and restore these
extensions. To ensure forward compatibility, software that handles involuntary calls
and that uses instructions encoded with VEX.128 and VEX.256 prefixes should first
save and then restore the vector registers (with any extensions) using the XSAVE
and XRSTOR instructions with save/restore masks that set bits that correspond to all
vector-register extensions. Ideally, software should rely on a mechanism that is
cognizant of which bits to set. (E.g., an OS mechanism that sets the save/restore
mask bits for all vector-register extensions that are enabled in XCR0.) Saving and
restoring state with instructions other than XSAVE and XRSTOR will, on future
processors with wider vector registers, corrupt the extended state of the vector
registers - even if doing so functions correctly on processors supporting 256-bit
vector registers. (The same is true if XSAVE and XRSTOR are used with a
save/restore mask that does not set bits corresponding to all supported extensions to
the vector registers.)

2.3.11 AVX Instruction Length
The AVX instructions described in this document (including VEX and ignoring other
prefixes) do not exceed 11 bytes in length, but may increase in the future. The
maximum length of an Intel 64 and IA-32 instruction remains 15 bytes.

2.4 INSTRUCTION EXCEPTION SPECIFICATION
To look up the exceptions of legacy 128-bit SIMD instruction, 128-bit VEX-encoded
instructions, and 256-bit VEX-encoded instruction, Table 2-13 summarizes the
exception behavior into separate classes, with detailed exception conditions defined
in sub-sections 2.4.1 through 2.4.8. For example, ADDPS contains the entry:
“See Exceptions Type 2”
In this entry, “Type2” can be looked up in Table 2-13.
The instruction’s corresponding CPUID feature flag can be identified in the fourth
column of the Instruction summary table.
2-26 Vol. 2A

INSTRUCTION FORMAT
Note: #UD on CPUID feature flags=0 is not guaranteed in a virtualized environment
if the hardware supports the feature flag.

NOTE
Instructions that operate only with MMX, X87, or general-purpose
registers are not covered by the exception classes defined in this
section. For instructions that operate on MMX registers, see Section
22.25.3, “Exception Conditions of Legacy SIMD Instructions
Operating on MMX Registers” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3B.

Table 2-13. Exception class description

See Table 2-14 for lists of instructions in each exception class.

Exception Class Instruction set Mem arg
Floating-Point

Exceptions
(#XM)

Type 1
AVX,

Legacy SSE
16/32 byte

explicitly aligned
none

Type 2
AVX,

Legacy SSE
16/32 byte not
explicitly aligned

yes

Type 3
AVX,

Legacy SSE
< 16 byte yes

Type 4
AVX,

Legacy SSE
16/32 byte not
explicitly aligned

no

Type 5
AVX,

Legacy SSE
< 16 byte no

Type 6
AVX (no Legacy

SSE)
Varies

(At present,
none do)

Type 7
AVX,

Legacy SSE
none none

Type 8 AVX none none
Vol. 2A 2-27

INSTRUCTION FORMAT
Table 2-14. Instructions in each Exception Class
Exception Class Instruction

Type 1
(V)MOVAPD, (V)MOVAPS, (V)MOVDQA, (V)MOVNTDQ, (V)MOVNTDQA,
(V)MOVNTPD, (V)MOVNTPS

Type 2

(V)ADDPD, (V)ADDPS, (V)ADDSUBPD, (V)ADDSUBPS, (V)CMPPD, (V)CMPPS,
(V)CVTDQ2PS, (V)CVTPD2DQ, (V)CVTPD2PS, (V)CVTPS2DQ, (V)CVTTPD2DQ,
(V)CVTTPS2DQ, (V)DIVPD, (V)DIVPS, (V)DPPD*, (V)DPPS*, (V)HADDPD,
(V)HADDPS, (V)HSUBPD, (V)HSUBPS, (V)MAXPD, (V)MAXPS, (V)MINPD,
(V)MINPS, (V)MULPD, (V)MULPS, (V)ROUNDPD, (V)ROUNDPS, (V)SQRTPD,
(V)SQRTPS, (V)SUBPD, (V)SUBPS

Type 3

(V)ADDSD, (V)ADDSS, (V)CMPSD, (V)CMPSS, (V)COMISD, (V)COMISS,
(V)CVTPS2PD, (V)CVTSD2SI, (V)CVTSD2SS, (V)CVTSI2SD, (V)CVTSI2SS,
(V)CVTSS2SD, (V)CVTSS2SI, (V)CVTTSD2SI, (V)CVTTSS2SI, (V)DIVSD,
(V)DIVSS, (V)MAXSD, (V)MAXSS, (V)MINSD, (V)MINSS, (V)MULSD, (V)MULSS,
(V)ROUNDSD, (V)ROUNDSS, (V)SQRTSD, (V)SQRTSS, (V)SUBSD, (V)SUBSS,
(V)UCOMISD, (V)UCOMISS

Type 4

(V)AESDEC, (V)AESDECLAST, (V)AESENC, (V)AESENCLAST, (V)AESIMC,
(V)AESKEYGENASSIST, (V)ANDPD, (V)ANDPS, (V)ANDNPD, (V)ANDNPS,
(V)BLENDPD, (V)BLENDPS, VBLENDVPD, VBLENDVPS, (V)LDDQU,
(V)MASKMOVDQU, (V)PTEST, VTESTPS, VTESTPD, (V)MOVDQU*,
(V)MOVSHDUP, (V)MOVSLDUP, (V)MOVUPD*, (V)MOVUPS*, (V)MPSADBW,
(V)ORPD, (V)ORPS, (V)PABSB, (V)PABSW, (V)PABSD, (V)PACKSSWB,
(V)PACKSSDW, (V)PACKUSWB, (V)PACKUSDW, (V)PADDB, (V)PADDW,
(V)PADDD, (V)PADDQ, (V)PADDSB, (V)PADDSW, (V)PADDUSB, (V)PADDUSW,
(V)PALIGNR, (V)PAND, (V)PANDN, (V)PAVGB, (V)PAVGW, (V)PBLENDVB,
(V)PBLENDW, (V)PCMP(E/I)STRI/M, (V)PCMPEQB, (V)PCMPEQW, (V)PCMPEQD,
(V)PCMPEQQ, (V)PCMPGTB, (V)PCMPGTW, (V)PCMPGTD, (V)PCMPGTQ,
(V)PCLMULQDQ, (V)PHADDW, (V)PHADDD, (V)PHADDSW, (V)PHMINPOSUW,
(V)PHSUBD, (V)PHSUBW, (V)PHSUBSW, (V)PMADDWD, (V)PMADDUBSW,

(V)PMAXSB, (V)PMAXSW, (V)PMAXSD, (V)PMAXUB, (V)PMAXUW,
(V)PMAXUD, (V)PMINSB, (V)PMINSW, (V)PMINSD, (V)PMINUB, (V)PMINUW,
(V)PMINUD, (V)PMULHUW, (V)PMULHRSW, (V)PMULHW, (V)PMULLW,
(V)PMULLD, (V)PMULUDQ, (V)PMULDQ, (V)POR, (V)PSADBW, (V)PSHUFB,
(V)PSHUFD, (V)PSHUFHW, (V)PSHUFLW, (V)PSIGNB, (V)PSIGNW, (V)PSIGND,
(V)PSLLW, (V)PSLLD, (V)PSLLQ, (V)PSRAW, (V)PSRAD, (V)PSRLW, (V)PSRLD,
(V)PSRLQ, (V)PSUBB, (V)PSUBW, (V)PSUBD, (V)PSUBQ, (V)PSUBSB,
(V)PSUBSW, (V)PUNPCKHBW, (V)PUNPCKHWD, (V)PUNPCKHDQ,
(V)PUNPCKHQDQ, (V)PUNPCKLBW, (V)PUNPCKLWD, (V)PUNPCKLDQ,
(V)PUNPCKLQDQ, (V)PXOR, (V)RCPPS, (V)RSQRTPS, (V)SHUFPD, (V)SHUFPS,
(V)UNPCKHPD, (V)UNPCKHPS, (V)UNPCKLPD, (V)UNPCKLPS, (V)XORPD,
(V)XORPS
2-28 Vol. 2A

INSTRUCTION FORMAT
(*) - Additional exception restrictions are present - see the Instruction description
for details

(**) - Instruction behavior on alignment check reporting with mask bits of less than
all 1s are the same as with mask bits of all 1s, i.e. no alignment checks are per-
formed.

Table 2-14 classifies exception behaviors for AVX instructions. Within each class of
exception conditions that are listed in Table 2-17 through Table 2-24, certain subsets
of AVX instructions may be subject to #UD exception depending on the encoded
value of the VEX.L field. Table 2-16 provides supplemental information of AVX
instructions that may be subject to #UD exception if encoded with incorrect values in
the VEX.W or VEX.L field.

Table 2-15. #UD Exception and VEX.W=1 Encoding

Type 5

(V)CVTDQ2PD, (V)EXTRACTPS, (V)INSERTPS, (V)MOVD, (V)MOVQ,
(V)MOVDDUP, (V)MOVLPD, (V)MOVLPS, (V)MOVHPD, (V)MOVHPS, (V)MOVSD,
(V)MOVSS, (V)PEXTRB, (V)PEXTRD, (V)PEXTRW, (V)PEXTRQ, (V)PINSRB,
(V)PINSRD, (V)PINSRW, (V)PINSRQ, (V)RCPSS, (V)RSQRTSS, (V)PMOVSX/ZX,
VLDMXCSR*, VSTMXCSR

Type 6
VEXTRACTF128, VPERMILPD, VPERMILPS, VPERM2F128, VBROADCASTSS,
VBROADCASTSD, VBROADCASTF128, VINSERTF128, VMASKMOVPS**,
VMASKMOVPD**

Type 7
(V)MOVLHPS, (V)MOVHLPS, (V)MOVMSKPD, (V)MOVMSKPS, (V)PMOVMSKB,
(V)PSLLDQ, (V)PSRLDQ, (V)PSLLW, (V)PSLLD, (V)PSLLQ, (V)PSRAW,
(V)PSRAD, (V)PSRLW, (V)PSRLD, (V)PSRLQ

Type 8 VZEROALL, VZEROUPPER

Exception Class #UD If VEX.W = 1 in all modes
#UD If VEX.W = 1 in
non-64-bit modes

Type 1

Type 2

Type 3

Type 4
VBLENDVPD, VBLENDVPS, VPBLENDVB,
VTESTPD, VTESTPS

Type 5 VPEXTRQ, VPINSRQ,

Type 6

VEXTRACTF128, VPERMILPD, VPERMILPS,
VPERM2F128, VBROADCASTSS, VBROADCASTSD,
VBROADCASTF128, VINSERTF128,
VMASKMOVPS, VMASKMOVPD

Type 7

Type 8

Exception Class Instruction
Vol. 2A 2-29

INSTRUCTION FORMAT
Table 2-16. #UD Exception and VEX.L Field Encoding
Exception Class #UD If VEX.L = 0 #UD If VEX.L = 1

Type 1 VMOVNTDQA

Type 2
VDPPD

Type 3

Type 4

VMASKMOVDQU, VMPSADBW, VPABSB/W/D,
VPACKSSWB/DW, VPACKUSWB/DW,
VPADDB/W/D, VPADDQ, VPADDSB/W,
VPADDUSB/W, VPALIGNR, VPAND, VPANDN,
VPAVGB/W, VPBLENDVB, VPBLENDW,
VPCMP(E/I)STRI/M, VPCMPEQB/W/D/Q,
VPCMPGTB/W/D/Q, VPHADDW/D, VPHADDSW,
VPHMINPOSUW, VPHSUBD/W, VPHSUBSW,
VPMADDWD, VPMADDUBSW, VPMAXSB/W/D,
VPMAXUB/W/D, VPMINSB/W/D, VPMINUB/W/D,
VPMULHUW, VPMULHRSW, VPMULHW/LW,
VPMULLD, VPMULUDQ, VPMULDQ, VPOR,
VPSADBW, VPSHUFB/D, VPSHUFHW/LW,
VPSIGNB/W/D, VPSLLW/D/Q, VPSRAW/D,
VPSRLW/D/Q, VPSUBB/W/D/Q, VPSUBSB/W,
VPUNPCKHBW/WD/DQ, VPUNPCKHQDQ,
VPUNPCKLBW/WD/DQ, VPUNPCKLQDQ, VPXOR

Type 5

VEXTRACTPS, VINSERTPS, VMOVD, VMOVQ,
VMOVLPD, VMOVLPS, VMOVHPD, VMOVHPS,
VPEXTRB, VPEXTRD, VPEXTRW, VPEXTRQ,
VPINSRB, VPINSRD, VPINSRW, VPINSRQ,
VPMOVSX/ZX, VLDMXCSR, VSTMXCSR

Type 6

VEXTRACTF128,
VPERM2F128,
VBROADCASTSD,
VBROADCASTF128,
VINSERTF128,

Type 7
VMOVLHPS, VMOVHLPS, VPMOVMSKB,
VPSLLDQ, VPSRLDQ, VPSLLW, VPSLLD, VPSLLQ,
VPSRAW, VPSRAD, VPSRLW, VPSRLD, VPSRLQ

Type 8
2-30 Vol. 2A

INSTRUCTION FORMAT
2.4.1 Exceptions Type 1 (Aligned memory reference)

Table 2-17. Type 1 Class Exception Conditions

Exception
R

ea
l

V
ir

tu
al

 8
0

x8
6

Pr
ot

ec
te

d
an

d
Co

m
pa

ti
bi

lit
y

6
4

-b
it

Cause of Exception

Invalid Opcode,
#UD

X X VEX prefix.

X X
VEX prefix:
If XCR0[2:1] != ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X
Legacy SSE instruction:
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H).

X X
If any REX, F2, F3, or 66 prefixes precede a VEX
prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Avail-
able, #NM

X X X X If CR0.TS[bit 3]=1.

Stack, SS(0)
X For an illegal address in the SS segment.

X
If a memory address referencing the SS segment
is in a non-canonical form.

General Protec-
tion, #GP(0)

X X

VEX.256: Memory operand is not 32-byte
aligned.
VEX.128: Memory operand is not 16-byte
aligned.

X X X X
Legacy SSE: Memory operand is not 16-byte
aligned.

X
For an illegal memory operand effective address
in the CS, DS, ES, FS or GS segments.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effec-
tive address space from 0 to FFFFH.

Page Fault
#PF(fault-code)

X X X For a page fault.
Vol. 2A 2-31

INSTRUCTION FORMAT
2.4.2 Exceptions Type 2 (>=16 Byte Memory Reference,
Unaligned)

Table 2-18. Type 2 Class Exception Conditions

Exception

R
ea

l

V
ir

tu
al

 8
0

8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode,
#UD

X X VEX prefix.

X X X X
If an unmasked SIMD floating-point exception and
CR4.OSXMMEXCPT[bit 10] = 0.

X X
VEX prefix:
If XCR0[2:1] != ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X
Legacy SSE instruction:
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H).

X X
If any REX, F2, F3, or 66 prefixes precede a VEX
prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Avail-
able, #NM

X X X X If CR0.TS[bit 3]=1.

Stack, SS(0)
X For an illegal address in the SS segment.

X
If a memory address referencing the SS segment is
in a non-canonical form.

General Protec-
tion, #GP(0)

X X X X
Legacy SSE: Memory operand is not 16-byte
aligned.

X
For an illegal memory operand effective address in
the CS, DS, ES, FS or GS segments.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effective
address space from 0 to FFFFH.

Page Fault
#PF(fault-code)

X X X For a page fault.

SIMD Floating-
point Exception,
#XM

X X X X
If an unmasked SIMD floating-point exception and
CR4.OSXMMEXCPT[bit 10] = 1.
2-32 Vol. 2A

INSTRUCTION FORMAT
2.4.3 Exceptions Type 3 (<16 Byte memory argument)

Table 2-19. Type 3 Class Exception Conditions

Exception
R

ea
l

V
ir

tu
al

 8
0

x8
6

Pr
ot

ec
te

d
an

d
Co

m
pa

ti
bi

lit
y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X VEX prefix.

X X X X
If an unmasked SIMD floating-point exception
and CR4.OSXMMEXCPT[bit 10] = 0.

X X
VEX prefix:
If XCR0[2:1] != ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X
Legacy SSE instruction:
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H).

X X
If any REX, F2, F3, or 66 prefixes precede a
VEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, SS(0)
X For an illegal address in the SS segment.

X
If a memory address referencing the SS seg-
ment is in a non-canonical form.

General Protection,
#GP(0)

X
For an illegal memory operand effective
address in the CS, DS, ES, FS or GS segments.

X
If the memory address is in a non-canonical
form.

X X
If any part of the operand lies outside the
effective address space from 0 to FFFFH.

Page Fault
#PF(fault-code)

X X X For a page fault.

Alignment Check
#AC(0)

X X X
If alignment checking is enabled and an
unaligned memory reference is made while
the current privilege level is 3.

SIMD Floating-point
Exception, #XM

X X X X
If an unmasked SIMD floating-point exception
and CR4.OSXMMEXCPT[bit 10] = 1.
Vol. 2A 2-33

INSTRUCTION FORMAT
2.4.4 Exceptions Type 4 (>=16 Byte mem arg no alignment, no
floating-point exceptions)

Table 2-20. Type 4 Class Exception Conditions

Exception
R

ea
l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X VEX prefix.

X X
VEX prefix:
If XCR0[2:1] != ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X
Legacy SSE instruction:
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H).

X X
If any REX, F2, F3, or 66 prefixes precede a
VEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, SS(0)
X For an illegal address in the SS segment.

X
If a memory address referencing the SS seg-
ment is in a non-canonical form.

General Protection,
#GP(0)

X X X X
Legacy SSE: Memory operand is not 16-byte
aligned.

X
For an illegal memory operand effective
address in the CS, DS, ES, FS or GS segments.

X
If the memory address is in a non-canonical
form.

X X
If any part of the operand lies outside the
effective address space from 0 to FFFFH.

Page Fault
#PF(fault-code)

X X X For a page fault.
2-34 Vol. 2A

INSTRUCTION FORMAT
2.4.5 Exceptions Type 5 (<16 Byte mem arg and no FP exceptions)

Table 2-21. Type 5 Class Exception Conditions

Exception
R

ea
l

V
ir

tu
al

 8
0

x8
6

Pr
ot

ec
te

d
an

d
Co

m
pa

ti
bi

lit
y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X VEX prefix.

X X
VEX prefix:
If XCR0[2:1] != ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X
Legacy SSE instruction:
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H).

X X
If any REX, F2, F3, or 66 prefixes precede a
VEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, SS(0)
X For an illegal address in the SS segment.

X
If a memory address referencing the SS seg-
ment is in a non-canonical form.

General Protection,
#GP(0)

X
For an illegal memory operand effective
address in the CS, DS, ES, FS or GS segments.

X
If the memory address is in a non-canonical
form.

X X
If any part of the operand lies outside the
effective address space from 0 to FFFFH.

Page Fault
#PF(fault-code)

X X X For a page fault.

Alignment Check
#AC(0)

X X X
If alignment checking is enabled and an
unaligned memory reference is made while
the current privilege level is 3.
Vol. 2A 2-35

INSTRUCTION FORMAT
2.4.6 Exceptions Type 6 (VEX-Encoded Instructions Without
Legacy SSE Analogues)

Note: At present, the AVX instructions in this category do not generate floating-point
exceptions.

Table 2-22. Type 6 Class Exception Conditions

Exception

R
ea

l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X VEX prefix.

X X
If XCR0[2:1] != ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X If preceded by a LOCK prefix (F0H).

X X
If any REX, F2, F3, or 66 prefixes precede a
VEX prefix.

X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X If CR0.TS[bit 3]=1.

Stack, SS(0)
X For an illegal address in the SS segment.

X
If a memory address referencing the SS seg-
ment is in a non-canonical form.

General Protection,
#GP(0)

X
For an illegal memory operand effective
address in the CS, DS, ES, FS or GS segments.

X
If the memory address is in a non-canonical
form.

Page Fault
#PF(fault-code)

X X For a page fault.

Alignment Check
#AC(0)

X X

For 4 or 8 byte memory references if align-
ment checking is enabled and an unaligned
memory reference is made while the current
privilege level is 3.
2-36 Vol. 2A

INSTRUCTION FORMAT
2.4.7 Exceptions Type 7 (No FP exceptions, no memory arg)

Table 2-23. Type 7 Class Exception Conditions

Exception
R

ea
l

V
ir

tu
al

 8
0

x8
6

Pr
ot

ec
te

d
an

d
Co

m
pa

ti
bi

lit
y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X VEX prefix.

X X
VEX prefix:
If XCR0[2:1] != ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X
Legacy SSE instruction:
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H).

X X
If any REX, F2, F3, or 66 prefixes precede a
VEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X If CR0.TS[bit 3]=1.
Vol. 2A 2-37

INSTRUCTION FORMAT
2.4.8 Exceptions Type 8 (AVX and no memory argument)

Table 2-24. Type 8 Class Exception Conditions

Exception
R

ea
l

V
ir

tu
al

 8
0

x8
6

Pr
ot

ec
te

d
an

d
Co

m
pa

ti
bi

lit
y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD X X Always in Real or Virtual 80x86 mode.

X X If XCR0[2:1] != ‘11b’.
If CR4.OSXSAVE[bit 18]=0.
If CPUID.01H.ECX.AVX[bit 28]=0.
If VEX.vvvv != 1111B.

X X X X If proceeded by a LOCK prefix (F0H).

Device Not Available,
#NM

X X If CR0.TS[bit 3]=1.
2-38 Vol. 2A

CHAPTER 3
INSTRUCTION SET REFERENCE, A-L

This chapter describes the instruction set for the Intel 64 and IA-32 architectures
(A-L) in IA-32e, protected, virtual-8086, and real-address modes of operation. The
set includes general-purpose, x87 FPU, MMX, SSE/SSE2/SSE3/SSSE3/SSE4,
AESNI/PCLMULQDQ, AVX and system instructions. See also Chapter 4, “Instruction
Set Reference, M-Z,” in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2B.

For each instruction, each operand combination is described. A description of the
instruction and its operand, an operational description, a description of the effect of
the instructions on flags in the EFLAGS register, and a summary of exceptions that
can be generated are also provided.

3.1 INTERPRETING THE INSTRUCTION REFERENCE
PAGES

This section describes the format of information contained in the instruction refer-
ence pages in this chapter. It explains notational conventions and abbreviations used
in these sections.

3.1.1 Instruction Format
The following is an example of the format used for each instruction description in this
chapter. The heading below introduces the example. The table below provides an
example summary table.

CMC—Complement Carry Flag [this is an example]

Instruction Operand Encoding

Opcode Instruction Op/En 64/32-bit
Mode

CPUID
Feature Flag

Description

F5 CMC A V/V NP Complement carry flag.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
Vol. 2A 3-1

INSTRUCTION SET REFERENCE, A-L
3.1.1.1 Opcode Column in the Instruction Summary Table (Instructions
without VEX prefix)

The “Opcode” column in the table above shows the object code produced for each
form of the instruction. When possible, codes are given as hexadecimal bytes in the
same order in which they appear in memory. Definitions of entries other than hexa-
decimal bytes are as follows:
• REX.W — Indicates the use of a REX prefix that affects operand size or

instruction semantics. The ordering of the REX prefix and other
optional/mandatory instruction prefixes are discussed Chapter 2. Note that REX
prefixes that promote legacy instructions to 64-bit behavior are not listed
explicitly in the opcode column.

• /digit — A digit between 0 and 7 indicates that the ModR/M byte of the
instruction uses only the r/m (register or memory) operand. The reg field
contains the digit that provides an extension to the instruction's opcode.

• /r — Indicates that the ModR/M byte of the instruction contains a register
operand and an r/m operand.

• cb, cw, cd, cp, co, ct — A 1-byte (cb), 2-byte (cw), 4-byte (cd), 6-byte (cp),
8-byte (co) or 10-byte (ct) value following the opcode. This value is used to
specify a code offset and possibly a new value for the code segment register.

• ib, iw, id, io — A 1-byte (ib), 2-byte (iw), 4-byte (id) or 8-byte (io) immediate
operand to the instruction that follows the opcode, ModR/M bytes or scale-
indexing bytes. The opcode determines if the operand is a signed value. All
words, doublewords and quadwords are given with the low-order byte first.

• +rb, +rw, +rd, +ro — A register code, from 0 through 7, added to the
hexadecimal byte given at the left of the plus sign to form a single opcode byte.
See Table 3-1 for the codes. The +ro columns in the table are applicable only in
64-bit mode.

• +i — A number used in floating-point instructions when one of the operands is
ST(i) from the FPU register stack. The number i (which can range from 0 to 7) is
added to the hexadecimal byte given at the left of the plus sign to form a single
opcode byte.
3-2 Vol. 2A

INSTRUCTION SET REFERENCE, A-L
Table 3-1. Register Codes Associated With +rb, +rw, +rd, +ro

byte register word register dword register quadword register
(64-Bit Mode only)

R
eg

is
te

r

R
EX

.B

R
eg

Fi
el

d

R
eg

is
te

r

R
EX

.B

R
eg

Fi
el

d

R
eg

is
te

r

R
EX

.B

R
eg

Fi
el

d

R
eg

is
te

r

R
EX

.B

R
eg

Fi
el

d

AL None 0 AX None 0 EAX None 0 RAX None 0

CL None 1 CX None 1 ECX None 1 RCX None 1

DL None 2 DX None 2 EDX None 2 RDX None 2

BL None 3 BX None 3 EBX None 3 RBX None 3

AH Not
encod
able
(N.E.)

4 SP None 4 ESP None 4 N/A N/A N/A

CH N.E. 5 BP None 5 EBP None 5 N/A N/A N/A

DH N.E. 6 SI None 6 ESI None 6 N/A N/A N/A

BH N.E. 7 DI None 7 EDI None 7 N/A N/A N/A

SPL Yes 4 SP None 4 ESP None 4 RSP None 4

BPL Yes 5 BP None 5 EBP None 5 RBP None 5

SIL Yes 6 SI None 6 ESI None 6 RSI None 6

DIL Yes 7 DI None 7 EDI None 7 RDI None 7

Registers R8 - R15 (see below): Available in 64-Bit Mode Only
R8L Yes 0 R8W Yes 0 R8D Yes 0 R8 Yes 0

R9L Yes 1 R9W Yes 1 R9D Yes 1 R9 Yes 1

R10L Yes 2 R10W Yes 2 R10D Yes 2 R10 Yes 2

R11L Yes 3 R11W Yes 3 R11D Yes 3 R11 Yes 3

R12L Yes 4 R12W Yes 4 R12D Yes 4 R12 Yes 4

R13L Yes 5 R13W Yes 5 R13D Yes 5 R13 Yes 5

R14L Yes 6 R14W Yes 6 R14D Yes 6 R14 Yes 6

R15L Yes 7 R15W Yes 7 R15D Yes 7 R15 Yes 7
Vol. 2A 3-3

INSTRUCTION SET REFERENCE, A-L
3.1.1.2 Opcode Column in the Instruction Summary Table (Instructions
with VEX prefix)

In the Instruction Summary Table, the Opcode column presents each instruction
encoded using the VEX prefix in following form (including the modR/M byte if appli-
cable, the immediate byte if applicable):
VEX.[NDS].[128,256].[66,F2,F3].0F/0F3A/0F38.[W0,W1] opcode [/r]
[/ib,/is4]
• VEX: indicates the presence of the VEX prefix is required. The VEX prefix can be

encoded using the three-byte form (the first byte is C4H), or using the two-byte
form (the first byte is C5H). The two-byte form of VEX only applies to those
instructions that do not require the following fields to be encoded:
VEX.mmmmm, VEX.W, VEX.X, VEX.B. Refer to Section 2.3 for more detail on the
VEX prefix.
The encoding of various sub-fields of the VEX prefix is described using the
following notations:

— NDS, NDD, DDS: specifies that VEX.vvvv field is valid for the encoding of a
register operand:

• VEX.NDS: VEX.vvvv encodes the first source register in an instruction
syntax where the content of source registers will be preserved.

• VEX.NDD: VEX.vvvv encodes the destination register that cannot be
encoded by ModR/M:reg field.

• VEX.DDS: VEX.vvvv encodes the second source register in a three-
operand instruction syntax where the content of first source register will
be overwritten by the result.

• If none of NDS, NDD, and DDS is present, VEX.vvvv must be 1111b (i.e.
VEX.vvvv does not encode an operand). The VEX.vvvv field can be
encoded using either the 2-byte or 3-byte form of the VEX prefix.

— 128,256: VEX.L field can be 0 (denoted by VEX.128 or VEX.LZ) or 1
(denoted by VEX.256). The VEX.L field can be encoded using either the 2-
byte or 3-byte form of the VEX prefix. The presence of the notation VEX.256
or VEX.128 in the opcode column should be interpreted as follows:

• If VEX.256 is present in the opcode column: The semantics of the
instruction must be encoded with VEX.L = 1. An attempt to encode this
instruction with VEX.L= 0 can result in one of two situations: (a) if
VEX.128 version is defined, the processor will behave according to the
defined VEX.128 behavior; (b) an #UD occurs if there is no VEX.128
version defined.

• If VEX.128 is present in the opcode column but there is no VEX.256
version defined for the same opcode byte: Two situations apply: (a) For
VEX-encoded, 128-bit SIMD integer instructions, software must encode
the instruction with VEX.L = 0. The processor will treat the opcode byte
encoded with VEX.L= 1 by causing an #UD exception; (b) For VEX-
3-4 Vol. 2A

INSTRUCTION SET REFERENCE, A-L
encoded, 128-bit packed floating-point instructions, software must
encode the instruction with VEX.L = 0. The processor will treat the opcode
byte encoded with VEX.L= 1 by causing an #UD exception (e.g.
VMOVLPS).

• If VEX.LIG is present in the opcode column: The VEX.L value is ignored.
This generally applies to VEX-encoded scalar SIMD floating-point instruc-
tions. Scalar SIMD floating-point instruction can be distinguished from
the mnemonic of the instruction. Generally, the last two letters of the
instruction mnemonic would be either “SS“, “SD“, or “SI“ for SIMD
floating-point conversion instructions.

• If VEX.LZ is present in the opcode column: The VEX.L must be encoded to
be 0B, an #UD occurs if VEX.L is not zero.

— 66,F2,F3: The presence or absence of these values map to the VEX.pp field
encodings. If absent, this corresponds to VEX.pp=00B. If present, the corre-
sponding VEX.pp value affects the “opcode” byte in the same way as if a
SIMD prefix (66H, F2H or F3H) does to the ensuing opcode byte. Thus a non-
zero encoding of VEX.pp may be considered as an implied 66H/F2H/F3H
prefix. The VEX.pp field may be encoded using either the 2-byte or 3-byte
form of the VEX prefix.

— 0F,0F3A,0F38: The presence maps to a valid encoding of the VEX.mmmmm
field. Only three encoded values of VEX.mmmmm are defined as valid, corre-
sponding to the escape byte sequence of 0FH, 0F3AH and 0F38H. The effect
of a valid VEX.mmmmm encoding on the ensuing opcode byte is same as if
the corresponding escape byte sequence on the ensuing opcode byte for non-
VEX encoded instructions. Thus a valid encoding of VEX.mmmmm may be
consider as an implies escape byte sequence of either 0FH, 0F3AH or 0F38H.
The VEX.mmmmm field must be encoded using the 3-byte form of VEX
prefix.

— 0F,0F3A,0F38 and 2-byte/3-byte VEX. The presence of 0F3A and 0F38 in
the opcode column implies that opcode can only be encoded by the three-
byte form of VEX. The presence of 0F in the opcode column does not preclude
the opcode to be encoded by the two-byte of VEX if the semantics of the
opcode does not require any subfield of VEX not present in the two-byte form
of the VEX prefix.

— W0: VEX.W=0.

— W1: VEX.W=1.

— The presence of W0/W1 in the opcode column applies to two situations: (a) it
is treated as an extended opcode bit, (b) the instruction semantics support an
operand size promotion to 64-bit of a general-purpose register operand or a
32-bit memory operand. The presence of W1 in the opcode column implies
the opcode must be encoded using the 3-byte form of the VEX prefix. The
presence of W0 in the opcode column does not preclude the opcode to be
encoded using the C5H form of the VEX prefix, if the semantics of the opcode
Vol. 2A 3-5

INSTRUCTION SET REFERENCE, A-L
does not require other VEX subfields not present in the two-byte form of the
VEX prefix. Please see Section 2.3 on the subfield definitions within VEX.

— WIG: can use C5H form (if not requiring VEX.mmmmm) or VEX.W value is
ignored in the C4H form of VEX prefix.

— If WIG is present, the instruction may be encoded using either the two-byte
form or the three-byte form of VEX. When encoding the instruction using the
three-byte form of VEX, the value of VEX.W is ignored.

• opcode: Instruction opcode.
• /is4: An 8-bit immediate byte is present containing a source register specifier in

imm[7:4] and instruction-specific payload in imm[3:0].
• In general, the encoding o f VEX.R, VEX.X, VEX.B field are not shown explicitly in

the opcode column. The encoding scheme of VEX.R, VEX.X, VEX.B fields must
follow the rules defined in Section 2.3.

3.1.1.3 Instruction Column in the Opcode Summary Table
The “Instruction” column gives the syntax of the instruction statement as it would
appear in an ASM386 program. The following is a list of the symbols used to repre-
sent operands in the instruction statements:
• rel8 — A relative address in the range from 128 bytes before the end of the

instruction to 127 bytes after the end of the instruction.
• rel16, rel32 — A relative address within the same code segment as the

instruction assembled. The rel16 symbol applies to instructions with an operand-
size attribute of 16 bits; the rel32 symbol applies to instructions with an
operand-size attribute of 32 bits.

• ptr16:16, ptr16:32 — A far pointer, typically to a code segment different from
that of the instruction. The notation 16:16 indicates that the value of the pointer
has two parts. The value to the left of the colon is a 16-bit selector or value
destined for the code segment register. The value to the right corresponds to the
offset within the destination segment. The ptr16:16 symbol is used when the
instruction's operand-size attribute is 16 bits; the ptr16:32 symbol is used when
the operand-size attribute is 32 bits.

• r8 — One of the byte general-purpose registers: AL, CL, DL, BL, AH, CH, DH, BH,
BPL, SPL, DIL and SIL; or one of the byte registers (R8L - R15L) available when
using REX.R and 64-bit mode.

• r16 — One of the word general-purpose registers: AX, CX, DX, BX, SP, BP, SI, DI;
or one of the word registers (R8-R15) available when using REX.R and 64-bit
mode.

• r32 — One of the doubleword general-purpose registers: EAX, ECX, EDX, EBX,
ESP, EBP, ESI, EDI; or one of the doubleword registers (R8D - R15D) available
when using REX.R in 64-bit mode.
3-6 Vol. 2A

INSTRUCTION SET REFERENCE, A-L
• r64 — One of the quadword general-purpose registers: RAX, RBX, RCX, RDX,
RDI, RSI, RBP, RSP, R8–R15. These are available when using REX.R and 64-bit
mode.

• imm8 — An immediate byte value. The imm8 symbol is a signed number
between –128 and +127 inclusive. For instructions in which imm8 is combined
with a word or doubleword operand, the immediate value is sign-extended to
form a word or doubleword. The upper byte of the word is filled with the topmost
bit of the immediate value.

• imm16 — An immediate word value used for instructions whose operand-size
attribute is 16 bits. This is a number between –32,768 and +32,767 inclusive.

• imm32 — An immediate doubleword value used for instructions whose
operand-size attribute is 32 bits. It allows the use of a number between
+2,147,483,647 and –2,147,483,648 inclusive.

• imm64 — An immediate quadword value used for instructions whose
operand-size attribute is 64 bits. The value allows the use of a number
between +9,223,372,036,854,775,807 and –9,223,372,036,854,775,808
inclusive.

• r/m8 — A byte operand that is either the contents of a byte general-purpose
register (AL, CL, DL, BL, AH, CH, DH, BH, BPL, SPL, DIL and SIL) or a byte from
memory. Byte registers R8L - R15L are available using REX.R in 64-bit mode.

• r/m16 — A word general-purpose register or memory operand used for instruc-
tions whose operand-size attribute is 16 bits. The word general-purpose registers
are: AX, CX, DX, BX, SP, BP, SI, DI. The contents of memory are found at the
address provided by the effective address computation. Word registers R8W -
R15W are available using REX.R in 64-bit mode.

• r/m32 — A doubleword general-purpose register or memory operand used for
instructions whose operand-size attribute is 32 bits. The doubleword general-
purpose registers are: EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI. The contents of
memory are found at the address provided by the effective address computation.
Doubleword registers R8D - R15D are available when using REX.R in 64-bit
mode.

• r/m64 — A quadword general-purpose register or memory operand used for
instructions whose operand-size attribute is 64 bits when using REX.W.
Quadword general-purpose registers are: RAX, RBX, RCX, RDX, RDI, RSI, RBP,
RSP, R8–R15; these are available only in 64-bit mode. The contents of memory
are found at the address provided by the effective address computation.

• m — A 16-, 32- or 64-bit operand in memory.
• m8 — A byte operand in memory, usually expressed as a variable or array name,

but pointed to by the DS:(E)SI or ES:(E)DI registers. In 64-bit mode, it is pointed
to by the RSI or RDI registers.

• m16 — A word operand in memory, usually expressed as a variable or array
name, but pointed to by the DS:(E)SI or ES:(E)DI registers. This nomenclature is
used only with the string instructions.
Vol. 2A 3-7

INSTRUCTION SET REFERENCE, A-L
• m32 — A doubleword operand in memory, usually expressed as a variable or
array name, but pointed to by the DS:(E)SI or ES:(E)DI registers. This nomen-
clature is used only with the string instructions.

• m64 — A memory quadword operand in memory.
• m128 — A memory double quadword operand in memory.
• m16:16, m16:32 & m16:64 — A memory operand containing a far pointer

composed of two numbers. The number to the left of the colon corresponds to the
pointer's segment selector. The number to the right corresponds to its offset.

• m16&32, m16&16, m32&32, m16&64 — A memory operand consisting of
data item pairs whose sizes are indicated on the left and the right side of the
ampersand. All memory addressing modes are allowed. The m16&16 and
m32&32 operands are used by the BOUND instruction to provide an operand
containing an upper and lower bounds for array indices. The m16&32 operand is
used by LIDT and LGDT to provide a word with which to load the limit field, and a
doubleword with which to load the base field of the corresponding GDTR and
IDTR registers. The m16&64 operand is used by LIDT and LGDT in 64-bit mode to
provide a word with which to load the limit field, and a quadword with which to
load the base field of the corresponding GDTR and IDTR registers.

• moffs8, moffs16, moffs32, moffs64 — A simple memory variable (memory
offset) of type byte, word, or doubleword used by some variants of the MOV
instruction. The actual address is given by a simple offset relative to the segment
base. No ModR/M byte is used in the instruction. The number shown with moffs
indicates its size, which is determined by the address-size attribute of the
instruction.

• Sreg — A segment register. The segment register bit assignments are ES = 0,
CS = 1, SS = 2, DS = 3, FS = 4, and GS = 5.

• m32fp, m64fp, m80fp — A single-precision, double-precision, and double
extended-precision (respectively) floating-point operand in memory. These
symbols designate floating-point values that are used as operands for x87 FPU
floating-point instructions.

• m16int, m32int, m64int — A word, doubleword, and quadword integer
(respectively) operand in memory. These symbols designate integers that are
used as operands for x87 FPU integer instructions.

• ST or ST(0) — The top element of the FPU register stack.
• ST(i) — The ith element from the top of the FPU register stack (i ← 0 through 7).
• mm — An MMX register. The 64-bit MMX registers are: MM0 through MM7.
• mm/m32 — The low order 32 bits of an MMX register or a 32-bit memory

operand. The 64-bit MMX registers are: MM0 through MM7. The contents of
memory are found at the address provided by the effective address computation.

• mm/m64 — An MMX register or a 64-bit memory operand. The 64-bit MMX
registers are: MM0 through MM7. The contents of memory are found at the
address provided by the effective address computation.
3-8 Vol. 2A

INSTRUCTION SET REFERENCE, A-L
• xmm — An XMM register. The 128-bit XMM registers are: XMM0 through XMM7;
XMM8 through XMM15 are available using REX.R in 64-bit mode.

• xmm/m32— An XMM register or a 32-bit memory operand. The 128-bit XMM
registers are XMM0 through XMM7; XMM8 through XMM15 are available using
REX.R in 64-bit mode. The contents of memory are found at the address provided
by the effective address computation.

• xmm/m64 — An XMM register or a 64-bit memory operand. The 128-bit SIMD
floating-point registers are XMM0 through XMM7; XMM8 through XMM15 are
available using REX.R in 64-bit mode. The contents of memory are found at the
address provided by the effective address computation.

• xmm/m128 — An XMM register or a 128-bit memory operand. The 128-bit XMM
registers are XMM0 through XMM7; XMM8 through XMM15 are available using
REX.R in 64-bit mode. The contents of memory are found at the address provided
by the effective address computation.

• <XMM0>— indicates implied use of the XMM0 register.
When there is ambiguity, xmm1 indicates the first source operand using an XMM
register and xmm2 the second source operand using an XMM register.
Some instructions use the XMM0 register as the third source operand, indicated
by <XMM0>. The use of the third XMM register operand is implicit in the instruc-
tion encoding and does not affect the ModR/M encoding.

• ymm — a YMM register. The 256-bit YMM registers are: YMM0 through YMM7;
YMM8 through YMM15 are available in 64-bit mode.

• m256 — A 32-byte operand in memory. This nomenclature is used only with AVX
instructions.

• ymm/m256 — a YMM register or 256-bit memory operand.
• <YMM0>— indicates use of the YMM0 register as an implicit argument.
• SRC1 — Denotes the first source operand in the instruction syntax of an

instruction encoded with the VEX prefix and having two or more source operands.
• SRC2 — Denotes the second source operand in the instruction syntax of an

instruction encoded with the VEX prefix and having two or more source operands.
• SRC3 — Denotes the third source operand in the instruction syntax of an

instruction encoded with the VEX prefix and having three source operands.
• SRC — The source in a AVX single-source instruction or the source in a Legacy

SSE instruction.
• DST — the destination in a AVX instruction. In Legacy SSE instructions can be

either the destination, first source, or both. This field is encoded by reg_field.

3.1.1.4 Operand Encoding Column in the Instruction Summary Table
The “operand encoding” column is abbreviated as Op/En in the Instruction Summary
table heading. Instruction operand encoding information is provided for each
Vol. 2A 3-9

INSTRUCTION SET REFERENCE, A-L
assembly instruction syntax using a letter to cross reference to a row entry in the
operand encoding definition table that follows the instruction summary table. The
operand encoding table in each instruction reference page lists each instruction
operand (according to each instruction syntax and operand ordering shown in the
instruction column) relative to the ModRM byte, VEX.vvvv field or additional operand
encoding placement.

NOTES
• The letters in the Op/En column of an instruction apply ONLY to

the encoding definition table immediately following the
instruction summary table.

• In the encoding definition table, the letter ‘r’ within a pair of
parenthesis denotes the content of the operand will be read by
the processor. The letter ‘w’ within a pair of parenthesis denotes
the content of the operand will be updated by the processor.

3.1.1.5 64/32-bit Mode Column in the Instruction Summary Table
The “64/32-bit Mode” column indicates whether the opcode sequence is supported in
(a) 64-bit mode or (b) the Compatibility mode and other IA-32 modes that apply in
conjunction with the CPUID feature flag associated specific instruction extensions.

The 64-bit mode support is to the left of the ‘slash’ and has the following notation:
• V — Supported.
• I — Not supported.
• N.E. — Indicates an instruction syntax is not encodable in 64-bit mode (it may

represent part of a sequence of valid instructions in other modes).
• N.P. — Indicates the REX prefix does not affect the legacy instruction in 64-bit

mode.
• N.I. — Indicates the opcode is treated as a new instruction in 64-bit mode.
• N.S. — Indicates an instruction syntax that requires an address override prefix in

64-bit mode and is not supported. Using an address override prefix in 64-bit
mode may result in model-specific execution behavior.

The Compatibility/Legacy Mode support is to the right of the ‘slash’ and has the fol-
lowing notation:
• V — Supported.
• I — Not supported.
• N.E. — Indicates an Intel 64 instruction mnemonics/syntax that is not encodable;
the opcode sequence is not applicable as an individual instruction in compatibility
mode or IA-32 mode. The opcode may represent a valid sequence of legacy IA-32
instructions.
3-10 Vol. 2A

INSTRUCTION SET REFERENCE, A-L
3.1.1.6 CPUID Support Column in the Instruction Summary Table
The fourth column holds abbreviated CPUID feature flags (e.g. appropriate bit in
CPUID.1.ECX, CPUID.1.EDX for SSE/SSE2/SSE3/SSSE3/SSE4.1/SSE4.2/AES-
NI/PCLMULQDQ/AVX/RDRAND support) that indicate processor support for the in-
struction. If the corresponding flag is ‘0’, the instruction will #UD.

3.1.1.7 Description Column in the Instruction Summary Table
The “Description” column briefly explains forms of the instruction.

3.1.1.8 Description Section
Each instruction is then described by number of information sections. The “Descrip-
tion” section describes the purpose of the instructions and required operands in more
detail.

Summary of terms that may be used in the description section:
• Legacy SSE: Refers to SSE, SSE2, SSE3, SSSE3, SSE4, AESNI, PCLMULQDQ and

any future instruction sets referencing XMM registers and encoded without a VEX
prefix.

• VEX.vvvv. The VEX bitfield specifying a source or destination register (in 1’s
complement form).

• rm_field: shorthand for the ModR/M r/m field and any REX.B
• reg_field: shorthand for the ModR/M reg field and any REX.R

3.1.1.9 Operation Section
The “Operation” section contains an algorithm description (frequently written in
pseudo-code) for the instruction. Algorithms are composed of the following
elements:
• Comments are enclosed within the symbol pairs “(*” and “*)”.
• Compound statements are enclosed in keywords, such as: IF, THEN, ELSE and FI

for an if statement; DO and OD for a do statement; or CASE... OF for a case
statement.

• A register name implies the contents of the register. A register name enclosed in
brackets implies the contents of the location whose address is contained in that
register. For example, ES:[DI] indicates the contents of the location whose ES
segment relative address is in register DI. [SI] indicates the contents of the
address contained in register SI relative to the SI register’s default segment (DS)
or the overridden segment.

• Parentheses around the “E” in a general-purpose register name, such as (E)SI,
indicates that the offset is read from the SI register if the address-size attribute
is 16, from the ESI register if the address-size attribute is 32. Parentheses
Vol. 2A 3-11

INSTRUCTION SET REFERENCE, A-L
around the “R” in a general-purpose register name, (R)SI, in the presence of a
64-bit register definition such as (R)SI, indicates that the offset is read from the
64-bit RSI register if the address-size attribute is 64.

• Brackets are used for memory operands where they mean that the contents of
the memory location is a segment-relative offset. For example, [SRC] indicates
that the content of the source operand is a segment-relative offset.

• A ← B indicates that the value of B is assigned to A.
• The symbols =, ≠, >, <, ≥, and ≤ are relational operators used to compare two

values: meaning equal, not equal, greater or equal, less or equal, respectively. A
relational expression such as A ← B is TRUE if the value of A is equal to B;
otherwise it is FALSE.

• The expression “« COUNT” and “» COUNT” indicates that the destination operand
should be shifted left or right by the number of bits indicated by the count
operand.

The following identifiers are used in the algorithmic descriptions:
• OperandSize and AddressSize — The OperandSize identifier represents the

operand-size attribute of the instruction, which is 16, 32 or 64-bits. The
AddressSize identifier represents the address-size attribute, which is 16, 32 or
64-bits. For example, the following pseudo-code indicates that the operand-size
attribute depends on the form of the MOV instruction used.

IF Instruction ← MOVW
THEN OperandSize = 16;

ELSE
IF Instruction ← MOVD

THEN OperandSize = 32;
ELSE

IF Instruction ← MOVQ
THEN OperandSize = 64;

FI;
FI;

FI;

See “Operand-Size and Address-Size Attributes” in Chapter 3 of the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 1, for guidelines
on how these attributes are determined.

• StackAddrSize — Represents the stack address-size attribute associated with
the instruction, which has a value of 16, 32 or 64-bits. See “Address-Size
Attribute for Stack” in Chapter 6, “Procedure Calls, Interrupts, and Exceptions,” of
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.

• SRC — Represents the source operand.
• DEST — Represents the destination operand.
• VLMAX — The maximum vector register width pertaining to the instruction. This

is not the vector-length encoding in the instruction's prefix but is instead
3-12 Vol. 2A

INSTRUCTION SET REFERENCE, A-L
determined by the current value of XCR0. For existing processors, VLMAX is 256
whenever XCR0.YMM[bit 2] is 1. Future processors may defined new bits in XCR0
whose setting may imply other values for VLMAX.

VLMAX Definition

The following functions are used in the algorithmic descriptions:
• ZeroExtend(value) — Returns a value zero-extended to the operand-size

attribute of the instruction. For example, if the operand-size attribute is 32, zero
extending a byte value of –10 converts the byte from F6H to a doubleword value
of 000000F6H. If the value passed to the ZeroExtend function and the operand-
size attribute are the same size, ZeroExtend returns the value unaltered.

• SignExtend(value) — Returns a value sign-extended to the operand-size
attribute of the instruction. For example, if the operand-size attribute is 32, sign
extending a byte containing the value –10 converts the byte from F6H to a
doubleword value of FFFFFFF6H. If the value passed to the SignExtend function
and the operand-size attribute are the same size, SignExtend returns the value
unaltered.

• SaturateSignedWordToSignedByte — Converts a signed 16-bit value to a
signed 8-bit value. If the signed 16-bit value is less than –128, it is represented
by the saturated value -128 (80H); if it is greater than 127, it is represented by
the saturated value 127 (7FH).

• SaturateSignedDwordToSignedWord — Converts a signed 32-bit value to a
signed 16-bit value. If the signed 32-bit value is less than –32768, it is
represented by the saturated value –32768 (8000H); if it is greater than 32767,
it is represented by the saturated value 32767 (7FFFH).

• SaturateSignedWordToUnsignedByte — Converts a signed 16-bit value to an
unsigned 8-bit value. If the signed 16-bit value is less than zero, it is represented
by the saturated value zero (00H); if it is greater than 255, it is represented by
the saturated value 255 (FFH).

• SaturateToSignedByte — Represents the result of an operation as a signed
8-bit value. If the result is less than –128, it is represented by the saturated value
–128 (80H); if it is greater than 127, it is represented by the saturated value 127
(7FH).

• SaturateToSignedWord — Represents the result of an operation as a signed
16-bit value. If the result is less than –32768, it is represented by the saturated
value –32768 (8000H); if it is greater than 32767, it is represented by the
saturated value 32767 (7FFFH).

• SaturateToUnsignedByte — Represents the result of an operation as a signed
8-bit value. If the result is less than zero it is represented by the saturated value

XCR0 Component VLMAX

XCR0.YMM 256
Vol. 2A 3-13

INSTRUCTION SET REFERENCE, A-L
zero (00H); if it is greater than 255, it is represented by the saturated value 255
(FFH).

• SaturateToUnsignedWord — Represents the result of an operation as a signed
16-bit value. If the result is less than zero it is represented by the saturated value
zero (00H); if it is greater than 65535, it is represented by the saturated value
65535 (FFFFH).

• LowOrderWord(DEST * SRC) — Multiplies a word operand by a word operand
and stores the least significant word of the doubleword result in the destination
operand.

• HighOrderWord(DEST * SRC) — Multiplies a word operand by a word operand
and stores the most significant word of the doubleword result in the destination
operand.

• Push(value) — Pushes a value onto the stack. The number of bytes pushed is
determined by the operand-size attribute of the instruction. See the “Operation”
subsection of the “PUSH—Push Word, Doubleword or Quadword Onto the Stack”
section in Chapter 4 of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2B.

• Pop() removes the value from the top of the stack and returns it. The statement
EAX ← Pop(); assigns to EAX the 32-bit value from the top of the stack. Pop will
return either a word, a doubleword or a quadword depending on the operand-size
attribute. See the “Operation” subsection in the “POP—Pop a Value from the
Stack” section of Chapter 4 of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2B.

• PopRegisterStack — Marks the FPU ST(0) register as empty and increments
the FPU register stack pointer (TOP) by 1.

• Switch-Tasks — Performs a task switch.
• Bit(BitBase, BitOffset) — Returns the value of a bit within a bit string. The bit

string is a sequence of bits in memory or a register. Bits are numbered from low-
order to high-order within registers and within memory bytes. If the BitBase is a
register, the BitOffset can be in the range 0 to [15, 31, 63] depending on the
mode and register size. See Figure 3-1: the function Bit[RAX, 21] is illustrated.

Figure 3-1. Bit Offset for BIT[RAX, 21]

02131

Bit Offset ← 21

63
3-14 Vol. 2A

INSTRUCTION SET REFERENCE, A-L
If BitBase is a memory address, the BitOffset can range has different ranges
depending on the operand size (see Table 3-2).

The addressed bit is numbered (Offset MOD 8) within the byte at address
(BitBase + (BitOffset DIV 8)) where DIV is signed division with rounding towards
negative infinity and MOD returns a positive number (see Figure 3-2).

3.1.1.10 Intel® C/C++ Compiler Intrinsics Equivalents Section
The Intel C/C++ compiler intrinsics equivalents are special C/C++ coding extensions
that allow using the syntax of C function calls and C variables instead of hardware
registers. Using these intrinsics frees programmers from having to manage registers
and assembly programming. Further, the compiler optimizes the instruction sched-
uling so that executable run faster.

The following sections discuss the intrinsics API and the MMX technology and SIMD
floating-point intrinsics. Each intrinsic equivalent is listed with the instruction
description. There may be additional intrinsics that do not have an instruction equiv-

Table 3-2. Range of Bit Positions Specified by Bit Offset Operands

Operand Size Immediate BitOffset Register BitOffset

16 0 to 15 − 215 to 215 − 1

32 0 to 31 − 231 to 231 − 1

64 0 to 63 − 263 to 263 − 1

Figure 3-2. Memory Bit Indexing

BitBase +

0777 5 0 0

BitBase −

0777 50 0

BitBase BitBase −

BitOffset ← +13

BitOffset ← −

BitBase − BitBase
Vol. 2A 3-15

INSTRUCTION SET REFERENCE, A-L
alent. It is strongly recommended that the reader reference the compiler documen-
tation for the complete list of supported intrinsics.

See Appendix C, “Intel® C/C++ Compiler Intrinsics and Functional Equivalents,” in
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2C, for
more information on using intrinsics.

Intrinsics API

The benefit of coding with MMX technology intrinsics and the SSE/SSE2/SSE3 intrin-
sics is that you can use the syntax of C function calls and C variables instead of hard-
ware registers. This frees you from managing registers and programming assembly.
Further, the compiler optimizes the instruction scheduling so that your executable
runs faster. For each computational and data manipulation instruction in the new
instruction set, there is a corresponding C intrinsic that implements it directly. The
intrinsics allow you to specify the underlying implementation (instruction selection)
of an algorithm yet leave instruction scheduling and register allocation to the
compiler.

MMX™ Technology Intrinsics

The MMX technology intrinsics are based on a __m64 data type that represents the
specific contents of an MMX technology register. You can specify values in bytes,
short integers, 32-bit values, or a 64-bit object. The __m64 data type, however, is
not a basic ANSI C data type, and therefore you must observe the following usage
restrictions:
• Use __m64 data only on the left-hand side of an assignment, as a return value,

or as a parameter. You cannot use it with other arithmetic expressions (“+”, “>>”,
and so on).

• Use __m64 objects in aggregates, such as unions to access the byte elements
and structures; the address of an __m64 object may be taken.

• Use __m64 data only with the MMX technology intrinsics described in this manual
and Intel® C/C++ compiler documentation.

• See:

— http://www.intel.com/support/performancetools/

— Appendix C, “Intel® C/C++ Compiler Intrinsics and Functional Equivalents,”
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2C, for more information on using intrinsics.

— SSE/SSE2/SSE3 Intrinsics

— SSE/SSE2/SSE3 intrinsics all make use of the XMM registers of the Pentium
III, Pentium 4, and Intel Xeon processors. There are three data types
supported by these intrinsics: __m128, __m128d, and __m128i.
3-16 Vol. 2A

INSTRUCTION SET REFERENCE, A-L
• The __m128 data type is used to represent the contents of an XMM register used
by an SSE intrinsic. This is either four packed single-precision floating-point
values or a scalar single-precision floating-point value.

• The __m128d data type holds two packed double-precision floating-point values
or a scalar double-precision floating-point value.

• The __m128i data type can hold sixteen byte, eight word, or four doubleword, or
two quadword integer values.

The compiler aligns __m128, __m128d, and __m128i local and global data to
16-byte boundaries on the stack. To align integer, float, or double arrays, use the
declspec statement as described in Intel C/C++ compiler documentation. See
http://www.intel.com/support/performancetools/.

The __m128, __m128d, and __m128i data types are not basic ANSI C data types
and therefore some restrictions are placed on its usage:
• Use __m128, __m128d, and __m128i only on the left-hand side of an

assignment, as a return value, or as a parameter. Do not use it in other arithmetic
expressions such as “+” and “>>.”

• Do not initialize __m128, __m128d, and __m128i with literals; there is no way to
express 128-bit constants.

• Use __m128, __m128d, and __m128i objects in aggregates, such as unions (for
example, to access the float elements) and structures. The address of these
objects may be taken.

• Use __m128, __m128d, and __m128i data only with the intrinsics described in
this user’s guide. See Appendix C, “Intel® C/C++ Compiler Intrinsics and
Functional Equivalents,” in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2C, for more information on using intrinsics.

The compiler aligns __m128, __m128d, and __m128i local data to 16-byte bound-
aries on the stack. Global __m128 data is also aligned on 16-byte boundaries. (To
align float arrays, you can use the alignment declspec described in the following
section.) Because the new instruction set treats the SIMD floating-point registers in
the same way whether you are using packed or scalar data, there is no __m32 data
type to represent scalar data as you might expect. For scalar operations, you should
use the __m128 objects and the “scalar” forms of the intrinsics; the compiler and the
processor implement these operations with 32-bit memory references.

The suffixes ps and ss are used to denote “packed single” and “scalar single” preci-
sion operations. The packed floats are represented in right-to-left order, with the
lowest word (right-most) being used for scalar operations: [z, y, x, w]. To explain
how memory storage reflects this, consider the following example.

The operation:

float a[4] ← { 1.0, 2.0, 3.0, 4.0 };
__m128 t ← _mm_load_ps(a);

Produces the same result as follows:
Vol. 2A 3-17

INSTRUCTION SET REFERENCE, A-L
__m128 t ← _mm_set_ps(4.0, 3.0, 2.0, 1.0);

In other words:

t ← [4.0, 3.0, 2.0, 1.0]

Where the “scalar” element is 1.0.

Some intrinsics are “composites” because they require more than one instruction to
implement them. You should be familiar with the hardware features provided by the
SSE, SSE2, SSE3, and MMX technology when writing programs with the intrinsics.

Keep the following important issues in mind:
• Certain intrinsics, such as _mm_loadr_ps and _mm_cmpgt_ss, are not directly

supported by the instruction set. While these intrinsics are convenient
programming aids, be mindful of their implementation cost.

• Data loaded or stored as __m128 objects must generally be 16-byte-aligned.
• Some intrinsics require that their argument be immediates, that is, constant

integers (literals), due to the nature of the instruction.
• The result of arithmetic operations acting on two NaN (Not a Number) arguments

is undefined. Therefore, floating-point operations using NaN arguments may not
match the expected behavior of the corresponding assembly instructions.

For a more detailed description of each intrinsic and additional information related to
its usage, refer to Intel C/C++ compiler documentation. See:

— http://www.intel.com/support/performancetools/

— Appendix C, “Intel® C/C++ Compiler Intrinsics and Functional Equivalents,”
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2C, for more information on using intrinsics.

3.1.1.11 Flags Affected Section
The “Flags Affected” section lists the flags in the EFLAGS register that are affected by
the instruction. When a flag is cleared, it is equal to 0; when it is set, it is equal to 1.
The arithmetic and logical instructions usually assign values to the status flags in a
uniform manner (see Appendix A, “EFLAGS Cross-Reference,” in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 1). Non-conventional
assignments are described in the “Operation” section. The values of flags listed as
undefined may be changed by the instruction in an indeterminate manner. Flags
that are not listed are unchanged by the instruction.

3.1.1.12 FPU Flags Affected Section
The floating-point instructions have an “FPU Flags Affected” section that describes
how each instruction can affect the four condition code flags of the FPU status word.
3-18 Vol. 2A

INSTRUCTION SET REFERENCE, A-L
3.1.1.13 Protected Mode Exceptions Section
The “Protected Mode Exceptions” section lists the exceptions that can occur when the
instruction is executed in protected mode and the reasons for the exceptions. Each
exception is given a mnemonic that consists of a pound sign (#) followed by two
letters and an optional error code in parentheses. For example, #GP(0) denotes a
general protection exception with an error code of 0. Table 3-3 associates each two-
letter mnemonic with the corresponding interrupt vector number and exception
name. See Chapter 6, “Interrupt and Exception Handling,” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A, for a detailed description of
the exceptions.

Application programmers should consult the documentation provided with their oper-
ating systems to determine the actions taken when exceptions occur.

Table 3-3. Intel 64 and IA-32 General Exceptions

Vector
No.

Name Source Protected
Mode1

Real
Address
Mode

Virtual
8086
Mode

 0 #DE—Divide Error DIV and IDIV instructions. Yes Yes Yes

 1 #DB—Debug Any code or data reference. Yes Yes Yes

 3 #BP—Breakpoint INT 3 instruction. Yes Yes Yes

 4 #OF—Overflow INTO instruction. Yes Yes Yes

 5 #BR—BOUND Range
Exceeded

BOUND instruction. Yes Yes Yes

 6 #UD—Invalid
Opcode (Undefined
Opcode)

UD2 instruction or reserved
opcode.

Yes Yes Yes

 7 #NM—Device Not
Available (No Math
Coprocessor)

Floating-point or WAIT/FWAIT
instruction.

Yes Yes Yes

 8 #DF—Double Fault Any instruction that can
generate an exception, an
NMI, or an INTR.

Yes Yes Yes

10 #TS—Invalid TSS Task switch or TSS access. Yes Reserved Yes

11 #NP—Segment Not
Present

Loading segment registers or
accessing system segments.

Yes Reserved Yes

12 #SS—Stack
Segment Fault

Stack operations and SS
register loads.

Yes Yes Yes

13 #GP—General
Protection2

Any memory reference and
other protection checks.

Yes Yes Yes
Vol. 2A 3-19

INSTRUCTION SET REFERENCE, A-L
3.1.1.14 Real-Address Mode Exceptions Section
The “Real-Address Mode Exceptions” section lists the exceptions that can occur when
the instruction is executed in real-address mode (see Table 3-3).

3.1.1.15 Virtual-8086 Mode Exceptions Section
The “Virtual-8086 Mode Exceptions” section lists the exceptions that can occur when
the instruction is executed in virtual-8086 mode (see Table 3-3).

3.1.1.16 Floating-Point Exceptions Section
The “Floating-Point Exceptions” section lists exceptions that can occur when an x87
FPU floating-point instruction is executed. All of these exception conditions result in
a floating-point error exception (#MF, vector number 16) being generated. Table 3-4
associates a one- or two-letter mnemonic with the corresponding exception name.
See “Floating-Point Exception Conditions” in Chapter 8 of the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1, for a detailed description of
these exceptions.

14 #PF—Page Fault Any memory reference. Yes Reserved Yes

16 #MF—Floating-Point
Error (Math Fault)

Floating-point or WAIT/FWAIT
instruction.

Yes Yes Yes

17 #AC—Alignment
Check

Any data reference in
memory.

Yes Reserved Yes

18 #MC—Machine
Check

Model dependent machine
check errors.

Yes Yes Yes

19 #XM—SIMD
Floating-Point
Numeric Error

SSE/SSE2/SSE3 floating-point
instructions.

Yes Yes Yes

NOTES:
1. Apply to protected mode, compatibility mode, and 64-bit mode.
2. In the real-address mode, vector 13 is the segment overrun exception.

Table 3-3. Intel 64 and IA-32 General Exceptions (Contd.)

Vector
No.

Name Source Protected
Mode1

Real
Address
Mode

Virtual
8086
Mode
3-20 Vol. 2A

INSTRUCTION SET REFERENCE, A-L
3.1.1.17 SIMD Floating-Point Exceptions Section
The “SIMD Floating-Point Exceptions” section lists exceptions that can occur when an
SSE/SSE2/SSE3 floating-point instruction is executed. All of these exception condi-
tions result in a SIMD floating-point error exception (#XM, vector number 19) being
generated. Table 3-5 associates a one-letter mnemonic with the corresponding
exception name. For a detailed description of these exceptions, refer to ”SSE and
SSE2 Exceptions”, in Chapter 11 of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1.

3.1.1.18 Compatibility Mode Exceptions Section
This section lists exceptions that occur within compatibility mode.

3.1.1.19 64-Bit Mode Exceptions Section
This section lists exceptions that occur within 64-bit mode.

Table 3-4. x87 FPU Floating-Point Exceptions

Mnemonic Name Source

#IS
#IA

Floating-point invalid operation:

- Stack overflow or underflow

- Invalid arithmetic operation

- x87 FPU stack overflow or underflow

- Invalid FPU arithmetic operation

#Z Floating-point divide-by-zero Divide-by-zero

#D Floating-point denormal operand Source operand that is a denormal number

#O Floating-point numeric overflow Overflow in result

#U Floating-point numeric underflow Underflow in result

#P Floating-point inexact result
(precision)

Inexact result (precision)

Table 3-5. SIMD Floating-Point Exceptions

Mnemonic Name Source

#I Floating-point invalid operation Invalid arithmetic operation or source operand

#Z Floating-point divide-by-zero Divide-by-zero

#D Floating-point denormal operand Source operand that is a denormal number

#O Floating-point numeric overflow Overflow in result

#U Floating-point numeric underflow Underflow in result

#P Floating-point inexact result Inexact result (precision)
Vol. 2A 3-21

INSTRUCTION SET REFERENCE, A-L
3.2 INSTRUCTIONS (A-L)
The remainder of this chapter provides descriptions of Intel 64 and IA-32 instructions
(A-L). See also: Chapter 4, “Instruction Set Reference, M-Z,” in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 2B.
3-22 Vol. 2A

INSTRUCTION SET REFERENCE, A-L
AAA—ASCII Adjust After Addition

Instruction Operand Encoding

Description

Adjusts the sum of two unpacked BCD values to create an unpacked BCD result. The
AL register is the implied source and destination operand for this instruction. The AAA
instruction is only useful when it follows an ADD instruction that adds (binary addi-
tion) two unpacked BCD values and stores a byte result in the AL register. The AAA
instruction then adjusts the contents of the AL register to contain the correct 1-digit
unpacked BCD result.

If the addition produces a decimal carry, the AH register increments by 1, and the CF
and AF flags are set. If there was no decimal carry, the CF and AF flags are cleared
and the AH register is unchanged. In either case, bits 4 through 7 of the AL register
are set to 0.

This instruction executes as described in compatibility mode and legacy mode. It is
not valid in 64-bit mode.

Operation

IF 64-Bit Mode
THEN

#UD;
ELSE

IF ((AL AND 0FH) > 9) or (AF = 1)
THEN

AL ← AL + 6;
AH ← AH + 1;
AF ← 1;
CF ← 1;
AL ← AL AND 0FH;

ELSE
AF ← 0;
CF ← 0;
AL ← AL AND 0FH;

FI;

Opcode Instruction Op/
En

64-bit
Mode

Compat/
Leg Mode

Description

37 AAA NP Invalid Valid ASCII adjust AL after
addition.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
Vol. 2A 3-23AAA—ASCII Adjust After Addition

INSTRUCTION SET REFERENCE, A-L
FI;

Flags Affected

The AF and CF flags are set to 1 if the adjustment results in a decimal carry; other-
wise they are set to 0. The OF, SF, ZF, and PF flags are undefined.

Protected Mode Exceptions
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as protected mode.

Compatibility Mode Exceptions
Same exceptions as protected mode.

64-Bit Mode Exceptions
#UD If in 64-bit mode.
3-24 Vol. 2A AAA—ASCII Adjust After Addition

INSTRUCTION SET REFERENCE, A-L
AAD—ASCII Adjust AX Before Division

Instruction Operand Encoding

Description

Adjusts two unpacked BCD digits (the least-significant digit in the AL register and the
most-significant digit in the AH register) so that a division operation performed on
the result will yield a correct unpacked BCD value. The AAD instruction is only useful
when it precedes a DIV instruction that divides (binary division) the adjusted value in
the AX register by an unpacked BCD value.

The AAD instruction sets the value in the AL register to (AL + (10 * AH)), and then
clears the AH register to 00H. The value in the AX register is then equal to the binary
equivalent of the original unpacked two-digit (base 10) number in registers AH
and AL.

The generalized version of this instruction allows adjustment of two unpacked digits
of any number base (see the “Operation” section below), by setting the imm8 byte to
the selected number base (for example, 08H for octal, 0AH for decimal, or 0CH for
base 12 numbers). The AAD mnemonic is interpreted by all assemblers to mean
adjust ASCII (base 10) values. To adjust values in another number base, the instruc-
tion must be hand coded in machine code (D5 imm8).

This instruction executes as described in compatibility mode and legacy mode. It is
not valid in 64-bit mode.

Operation

IF 64-Bit Mode
THEN

#UD;
ELSE

tempAL ← AL;
tempAH ← AH;
AL ← (tempAL + (tempAH ∗ imm8)) AND FFH;
(* imm8 is set to 0AH for the AAD mnemonic.*)

Opcode Instruction Op/
En

64-bit
Mode

Compat/
Leg Mode

Description

D5 0A AAD NP Invalid Valid ASCII adjust AX before
division.

D5 ib (No mnemonic) NP Invalid Valid Adjust AX before division to
number base imm8.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
Vol. 2A 3-25AAD—ASCII Adjust AX Before Division

INSTRUCTION SET REFERENCE, A-L
AH ← 0;
FI;

The immediate value (imm8) is taken from the second byte of the instruction.

Flags Affected

The SF, ZF, and PF flags are set according to the resulting binary value in the AL
register; the OF, AF, and CF flags are undefined.

Protected Mode Exceptions
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as protected mode.

Compatibility Mode Exceptions
Same exceptions as protected mode.

64-Bit Mode Exceptions
#UD If in 64-bit mode.
3-26 Vol. 2A AAD—ASCII Adjust AX Before Division

INSTRUCTION SET REFERENCE, A-L
AAM—ASCII Adjust AX After Multiply

Instruction Operand Encoding

Description

Adjusts the result of the multiplication of two unpacked BCD values to create a pair
of unpacked (base 10) BCD values. The AX register is the implied source and desti-
nation operand for this instruction. The AAM instruction is only useful when it follows
an MUL instruction that multiplies (binary multiplication) two unpacked BCD values
and stores a word result in the AX register. The AAM instruction then adjusts the
contents of the AX register to contain the correct 2-digit unpacked (base 10) BCD
result.

The generalized version of this instruction allows adjustment of the contents of the
AX to create two unpacked digits of any number base (see the “Operation” section
below). Here, the imm8 byte is set to the selected number base (for example, 08H
for octal, 0AH for decimal, or 0CH for base 12 numbers). The AAM mnemonic is inter-
preted by all assemblers to mean adjust to ASCII (base 10) values. To adjust to
values in another number base, the instruction must be hand coded in machine code
(D4 imm8).

This instruction executes as described in compatibility mode and legacy mode. It is
not valid in 64-bit mode.

Operation

IF 64-Bit Mode
THEN

#UD;
ELSE

tempAL ← AL;
AH ← tempAL / imm8; (* imm8 is set to 0AH for the AAM mnemonic *)
AL ← tempAL MOD imm8;

FI;

The immediate value (imm8) is taken from the second byte of the instruction.

Opcode Instruction Op/
En

64-bit
Mode

Compat/
Leg Mode

Description

D4 0A AAM NP Invalid Valid ASCII adjust AX after
multiply.

D4 ib (No mnemonic) NP Invalid Valid Adjust AX after multiply to
number base imm8.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
Vol. 2A 3-27AAM—ASCII Adjust AX After Multiply

INSTRUCTION SET REFERENCE, A-L
Flags Affected

The SF, ZF, and PF flags are set according to the resulting binary value in the AL
register. The OF, AF, and CF flags are undefined.

Protected Mode Exceptions
#DE If an immediate value of 0 is used.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as protected mode.

Compatibility Mode Exceptions
Same exceptions as protected mode.

64-Bit Mode Exceptions
#UD If in 64-bit mode.
3-28 Vol. 2A AAM—ASCII Adjust AX After Multiply

INSTRUCTION SET REFERENCE, A-L
AAS—ASCII Adjust AL After Subtraction

Instruction Operand Encoding

Description

Adjusts the result of the subtraction of two unpacked BCD values to create a
unpacked BCD result. The AL register is the implied source and destination operand
for this instruction. The AAS instruction is only useful when it follows a SUB instruc-
tion that subtracts (binary subtraction) one unpacked BCD value from another and
stores a byte result in the AL register. The AAA instruction then adjusts the contents
of the AL register to contain the correct 1-digit unpacked BCD result.

If the subtraction produced a decimal carry, the AH register decrements by 1, and the
CF and AF flags are set. If no decimal carry occurred, the CF and AF flags are cleared,
and the AH register is unchanged. In either case, the AL register is left with its top
four bits set to 0.

This instruction executes as described in compatibility mode and legacy mode. It is
not valid in 64-bit mode.

Operation

IF 64-bit mode
THEN

#UD;
ELSE

IF ((AL AND 0FH) > 9) or (AF = 1)
THEN

AX ← AX – 6;
AH ← AH – 1;
AF ← 1;
CF ← 1;
AL ← AL AND 0FH;

ELSE
CF ← 0;
AF ← 0;
AL ← AL AND 0FH;

Opcode Instruction Op/
En

64-bit
Mode

Compat/
Leg Mode

Description

3F AAS NP Invalid Valid ASCII adjust AL after
subtraction.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
Vol. 2A 3-29AAS—ASCII Adjust AL After Subtraction

INSTRUCTION SET REFERENCE, A-L
FI;
FI;

Flags Affected

The AF and CF flags are set to 1 if there is a decimal borrow; otherwise, they are
cleared to 0. The OF, SF, ZF, and PF flags are undefined.

Protected Mode Exceptions
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as protected mode.

Compatibility Mode Exceptions
Same exceptions as protected mode.

64-Bit Mode Exceptions
#UD If in 64-bit mode.
3-30 Vol. 2A AAS—ASCII Adjust AL After Subtraction

INSTRUCTION SET REFERENCE, A-L
ADC—Add with Carry
Opcode Instruction Op/

En
64-bit
Mode

Compat/
Leg Mode

Description

14 ib ADC AL, imm8 I Valid Valid Add with carry imm8 to AL.

15 iw ADC AX, imm16 I Valid Valid Add with carry imm16 to
AX.

15 id ADC EAX, imm32 I Valid Valid Add with carry imm32 to
EAX.

REX.W + 15 id ADC RAX, imm32 I Valid N.E. Add with carry imm32 sign
extended to 64-bits to RAX.

80 /2 ib ADC r/m8, imm8 MI Valid Valid Add with carry imm8 to
r/m8.

REX + 80 /2 ib ADC r/m8*, imm8 MI Valid N.E. Add with carry imm8 to
r/m8.

81 /2 iw ADC r/m16,
imm16

MI Valid Valid Add with carry imm16 to
r/m16.

81 /2 id ADC r/m32,
imm32

MI Valid Valid Add with CF imm32 to
r/m32.

REX.W + 81 /2
id

ADC r/m64,
imm32

MI Valid N.E. Add with CF imm32 sign
extended to 64-bits to
r/m64.

83 /2 ib ADC r/m16, imm8 MI Valid Valid Add with CF sign-extended
imm8 to r/m16.

83 /2 ib ADC r/m32, imm8 MI Valid Valid Add with CF sign-extended
imm8 into r/m32.

REX.W + 83 /2
ib

ADC r/m64, imm8 MI Valid N.E. Add with CF sign-extended
imm8 into r/m64.

10 /r ADC r/m8, r8 MR Valid Valid Add with carry byte register
to r/m8.

REX + 10 /r ADC r/m8*, r8* MR Valid N.E. Add with carry byte register
to r/m64.

11 /r ADC r/m16, r16 MR Valid Valid Add with carry r16 to
r/m16.

11 /r ADC r/m32, r32 MR Valid Valid Add with CF r32 to r/m32.

REX.W + 11 /r ADC r/m64, r64 MR Valid N.E. Add with CF r64 to r/m64.

12 /r ADC r8, r/m8 RM Valid Valid Add with carry r/m8 to byte
register.

REX + 12 /r ADC r8*, r/m8* RM Valid N.E. Add with carry r/m64 to
byte register.
Vol. 2A 3-31ADC—Add with Carry

INSTRUCTION SET REFERENCE, A-L
Instruction Operand Encoding

Description

Adds the destination operand (first operand), the source operand (second operand),
and the carry (CF) flag and stores the result in the destination operand. The destina-
tion operand can be a register or a memory location; the source operand can be an
immediate, a register, or a memory location. (However, two memory operands
cannot be used in one instruction.) The state of the CF flag represents a carry from a
previous addition. When an immediate value is used as an operand, it is sign-
extended to the length of the destination operand format.

The ADC instruction does not distinguish between signed or unsigned operands.
Instead, the processor evaluates the result for both data types and sets the OF and
CF flags to indicate a carry in the signed or unsigned result, respectively. The SF flag
indicates the sign of the signed result.

The ADC instruction is usually executed as part of a multibyte or multiword addition
in which an ADD instruction is followed by an ADC instruction.

This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

Opcode Instruction Op/
En

64-bit
Mode

Compat/
Leg Mode

Description

13 /r ADC r16, r/m16 RM Valid Valid Add with carry r/m16 to
r16.

13 /r ADC r32, r/m32 RM Valid Valid Add with CF r/m32 to r32.

REX.W + 13 /r ADC r64, r/m64 RM Valid N.E. Add with CF r/m64 to r64.

NOTES:
*In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is
used: AH, BH, CH, DH.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

MR ModRM:r/m (r, w) ModRM:reg (r) NA NA

MI ModRM:r/m (r, w) imm8 NA NA

I AL/AX/EAX/RAX imm8 NA NA
3-32 Vol. 2A ADC—Add with Carry

INSTRUCTION SET REFERENCE, A-L
Operation

DEST ← DEST + SRC + CF;

Flags Affected

The OF, SF, ZF, AF, CF, and PF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory

operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#UD If the LOCK prefix is used but the destination is not a memory

operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used but the destination is not a memory

operand.
Vol. 2A 3-33ADC—Add with Carry

INSTRUCTION SET REFERENCE, A-L
Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory

operand.
3-34 Vol. 2A ADC—Add with Carry

INSTRUCTION SET REFERENCE, A-L
ADD—Add
Opcode Instruction Op/

En
64-bit
Mode

Compat/
Leg Mode

Description

04 ib ADD AL, imm8 I Valid Valid Add imm8 to AL.

05 iw ADD AX, imm16 I Valid Valid Add imm16 to AX.

05 id ADD EAX, imm32 I Valid Valid Add imm32 to EAX.

REX.W + 05 id ADD RAX, imm32 I Valid N.E. Add imm32 sign-extended
to 64-bits to RAX.

80 /0 ib ADD r/m8, imm8 MI Valid Valid Add imm8 to r/m8.

REX + 80 /0 ib ADD r/m8*, imm8 MI Valid N.E. Add sign-extended imm8 to
r/m64.

81 /0 iw ADD r/m16,
imm16

MI Valid Valid Add imm16 to r/m16.

81 /0 id ADD r/m32,
imm32

MI Valid Valid Add imm32 to r/m32.

REX.W + 81 /0
id

ADD r/m64,
imm32

MI Valid N.E. Add imm32 sign-extended
to 64-bits to r/m64.

83 /0 ib ADD r/m16, imm8 MI Valid Valid Add sign-extended imm8 to
r/m16.

83 /0 ib ADD r/m32, imm8 MI Valid Valid Add sign-extended imm8 to
r/m32.

REX.W + 83 /0
ib

ADD r/m64, imm8 MI Valid N.E. Add sign-extended imm8 to
r/m64.

00 /r ADD r/m8, r8 MR Valid Valid Add r8 to r/m8.

REX + 00 /r ADD r/m8*, r8* MR Valid N.E. Add r8 to r/m8.

01 /r ADD r/m16, r16 MR Valid Valid Add r16 to r/m16.

01 /r ADD r/m32, r32 MR Valid Valid Add r32 to r/m32.

REX.W + 01 /r ADD r/m64, r64 MR Valid N.E. Add r64 to r/m64.

02 /r ADD r8, r/m8 RM Valid Valid Add r/m8 to r8.

REX + 02 /r ADD r8*, r/m8* RM Valid N.E. Add r/m8 to r8.

03 /r ADD r16, r/m16 RM Valid Valid Add r/m16 to r16.

03 /r ADD r32, r/m32 RM Valid Valid Add r/m32 to r32.

REX.W + 03 /r ADD r64, r/m64 RM Valid N.E. Add r/m64 to r64.

NOTES:
*In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is
used: AH, BH, CH, DH.
Vol. 2A 3-35ADD—Add

INSTRUCTION SET REFERENCE, A-L
Instruction Operand Encoding

Description

Adds the destination operand (first operand) and the source operand (second
operand) and then stores the result in the destination operand. The destination
operand can be a register or a memory location; the source operand can be an imme-
diate, a register, or a memory location. (However, two memory operands cannot be
used in one instruction.) When an immediate value is used as an operand, it is sign-
extended to the length of the destination operand format.

The ADD instruction performs integer addition. It evaluates the result for both signed
and unsigned integer operands and sets the OF and CF flags to indicate a carry (over-
flow) in the signed or unsigned result, respectively. The SF flag indicates the sign of
the signed result.

This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX a
REX prefix in the form of REX.W promotes operation to 64 bits. See the summary
chart at the beginning of this section for encoding data and limits.

Operation

DEST ← DEST + SRC;

Flags Affected

The OF, SF, ZF, AF, CF, and PF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

MR ModRM:r/m (r, w) ModRM:reg (r) NA NA

MI ModRM:r/m (r, w) imm8 NA NA

I AL/AX/EAX/RAX imm8 NA NA
3-36 Vol. 2A ADD—Add

INSTRUCTION SET REFERENCE, A-L
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory

operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#UD If the LOCK prefix is used but the destination is not a memory

operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used but the destination is not a memory

operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory

operand.
Vol. 2A 3-37ADD—Add

INSTRUCTION SET REFERENCE, A-L
ADDPD—Add Packed Double-Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a SIMD add of the two packed double-precision floating-point values from
the source operand (second operand) and the destination operand (first operand),
and stores the packed double-precision floating-point results in the destination
operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified. See Chapter 11 in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1, for an overview of SIMD double-precision floating-
point operation.

VEX.128 encoded version: the first source operand is an XMM register or 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.

VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

66 0F 58 /r

ADDPD xmm1, xmm2/m128

RM V/V SSE2 Add packed double-precision
floating-point values from
xmm2/m128 to xmm1.

VEX.NDS.128.66.0F.WIG 58 /r

VADDPD xmm1,xmm2, xmm3/m128

RVM V/V AVX Add packed double-precision
floating-point values from
xmm3/mem to xmm2 and
stores result in xmm1.

VEX.NDS.256.66.0F.WIG 58 /r

VADDPD ymm1, ymm2,
ymm3/m256

RVM V/V AVX Add packed double-precision
floating-point values from
ymm3/mem to ymm2 and
stores result in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
3-38 Vol. 2A ADDPD—Add Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
Operation

ADDPD (128-bit Legacy SSE version)
DEST[63:0] ← DEST[63:0] + SRC[63:0];
DEST[127:64] ← DEST[127:64] + SRC[127:64];
DEST[VLMAX-1:128] (Unmodified)

VADDPD (VEX.128 encoded version)
DEST[63:0] SRC1[63:0] + SRC2[63:0]
DEST[127:64] SRC1[127:64] + SRC2[127:64]
DEST[VLMAX-1:128] 0

VADDPD (VEX.256 encoded version)
DEST[63:0] SRC1[63:0] + SRC2[63:0]
DEST[127:64] SRC1[127:64] + SRC2[127:64]
DEST[191:128] SRC1[191:128] + SRC2[191:128]
DEST[255:192] SRC1[255:192] + SRC2[255:192]

Intel C/C++ Compiler Intrinsic Equivalent

ADDPD: __m128d _mm_add_pd (__m128d a, __m128d b)

VADDPD: __m256d _mm256_add_pd (__m256d a, __m256d b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
See Exceptions Type 2.
Vol. 2A 3-39ADDPD—Add Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
ADDPS—Add Packed Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a SIMD add of the four packed single-precision floating-point values from
the source operand (second operand) and the destination operand (first operand),
and stores the packed single-precision floating-point results in the destination
operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified. See Chapter 10 in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1, for an overview of SIMD single-precision floating-
point operation.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

0F 58 /r

ADDPS xmm1, xmm2/m128

RM V/V SSE Add packed single-precision
floating-point values from
xmm2/m128 to xmm1 and
stores result in xmm1.

VEX.NDS.128.0F.WIG 58 /r

VADDPS xmm1,xmm2, xmm3/m128

RVM V/V AVX Add packed single-precision
floating-point values from
xmm3/mem to xmm2 and
stores result in xmm1.

VEX.NDS.256.0F.WIG 58 /r

VADDPS ymm1, ymm2, ymm3/m256

RVM V/V AVX Add packed single-precision
floating-point values from
ymm3/mem to ymm2 and
stores result in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r)) NA
3-40 Vol. 2A ADDPS—Add Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
Operation

ADDPS (128-bit Legacy SSE version)
DEST[31:0] ← DEST[31:0] + SRC[31:0];
DEST[63:32] ← DEST[63:32] + SRC[63:32];
DEST[95:64] ← DEST[95:64] + SRC[95:64];
DEST[127:96] ← DEST[127:96] + SRC[127:96];
DEST[VLMAX-1:128] (Unmodified)

VADDPS (VEX.128 encoded version)
DEST[31:0] SRC1[31:0] + SRC2[31:0]
DEST[63:32] SRC1[63:32] + SRC2[63:32]
DEST[95:64] SRC1[95:64] + SRC2[95:64]
DEST[127:96] SRC1[127:96] + SRC2[127:96]
DEST[VLMAX-1:128] 0

VADDPS (VEX.256 encoded version)
DEST[31:0] SRC1[31:0] + SRC2[31:0]
DEST[63:32] SRC1[63:32] + SRC2[63:32]
DEST[95:64] SRC1[95:64] + SRC2[95:64]
DEST[127:96] SRC1[127:96] + SRC2[127:96]
DEST[159:128] SRC1[159:128] + SRC2[159:128]
DEST[191:160] SRC1[191:160] + SRC2[191:160]
DEST[223:192] SRC1[223:192] + SRC2[223:192]
DEST[255:224] SRC1[255:224] + SRC2[255:224]

Intel C/C++ Compiler Intrinsic Equivalent

ADDPS: __m128 _mm_add_ps(__m128 a, __m128 b)

VADDPS: __m256 _mm256_add_ps (__m256 a, __m256 b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
See Exceptions Type 2.
Vol. 2A 3-41ADDPS—Add Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
ADDSD—Add Scalar Double-Precision Floating-Point Values

Instruction Operand Encoding

Description

Adds the low double-precision floating-point values from the source operand (second
operand) and the destination operand (first operand), and stores the double-preci-
sion floating-point result in the destination operand.

The source operand can be an XMM register or a 64-bit memory location. The desti-
nation operand is an XMM register. See Chapter 11 in the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 1, for an overview of a scalar double-
precision floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:64) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (127:64) of the XMM register destination are copied
from corresponding bits in the first source operand. Bits (VLMAX-1:128) of the desti-
nation YMM register are zeroed.

Operation

ADDSD (128-bit Legacy SSE version)
DEST[63:0] DEST[63:0] + SRC[63:0]
DEST[VLMAX-1:64] (Unmodified)

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

F2 0F 58 /r

ADDSD xmm1, xmm2/m64

RM V/V SSE2 Add the low double-
precision floating-point
value from xmm2/m64 to
xmm1.

VEX.NDS.LIG.F2.0F.WIG 58 /r

VADDSD xmm1, xmm2, xmm3/m64

RVM V/V AVX Add the low double-
precision floating-point
value from xmm3/mem to
xmm2 and store the result
in xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r)) NA
3-42 Vol. 2A ADDSD—Add Scalar Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
VADDSD (VEX.128 encoded version)
DEST[63:0] SRC1[63:0] + SRC2[63:0]
DEST[127:64] SRC1[127:64]
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

ADDSD: __m128d _mm_add_sd (m128d a, m128d b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
See Exceptions Type 3.
Vol. 2A 3-43ADDSD—Add Scalar Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
ADDSS—Add Scalar Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

Adds the low single-precision floating-point values from the source operand (second
operand) and the destination operand (first operand), and stores the single-precision
floating-point result in the destination operand.

The source operand can be an XMM register or a 32-bit memory location. The desti-
nation operand is an XMM register. See Chapter 10 in the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 1, for an overview of a scalar single-
precision floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:32) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (127:32) of the XMM register destination are copied
from corresponding bits in the first source operand. Bits (VLMAX-1:128) of the desti-
nation YMM register are zeroed.

Operation

ADDSS DEST, SRC (128-bit Legacy SSE version)
DEST[31:0] DEST[31:0] + SRC[31:0];
DEST[VLMAX-1:32] (Unmodified)

VADDSS DEST, SRC1, SRC2 (VEX.128 encoded version)

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

F3 0F 58 /r

ADDSS xmm1, xmm2/m32

RM V/V SSE Add the low single-precision
floating-point value from
xmm2/m32 to xmm1.

VEX.NDS.LIG.F3.0F.WIG 58 /r

VADDSS xmm1,xmm2, xmm3/m32

RVM V/V AVX Add the low single-precision
floating-point value from
xmm3/mem to xmm2 and
store the result in xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
3-44 Vol. 2A ADDSS—Add Scalar Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
DEST[31:0] SRC1[31:0] + SRC2[31:0]
DEST[127:32] SRC1[127:32]
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

ADDSS: __m128 _mm_add_ss(__m128 a, __m128 b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
See Exceptions Type 3.
Vol. 2A 3-45ADDSS—Add Scalar Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
ADDSUBPD—Packed Double-FP Add/Subtract

Instruction Operand Encoding

Description

Adds odd-numbered double-precision floating-point values of the first source
operand (second operand) with the corresponding double-precision floating-point
values from the second source operand (third operand); stores the result in the odd-
numbered values of the destination operand (first operand). Subtracts the even-
numbered double-precision floating-point values from the second source operand
from the corresponding double-precision floating values in the first source operand;
stores the result into the even-numbered values of the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified. See Figure 3-3.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

66 0F D0 /r

ADDSUBPD xmm1, xmm2/m128

RM V/V SSE3 Add/subtract double-
precision floating-point
values from xmm2/m128 to
xmm1.

VEX.NDS.128.66.0F.WIG D0 /r

VADDSUBPD xmm1, xmm2,
xmm3/m128

RVM V/V AVX Add/subtract packed
double-precision floating-
point values from
xmm3/mem to xmm2 and
stores result in xmm1.

VEX.NDS.256.66.0F.WIG D0 /r

VADDSUBPD ymm1, ymm2,
ymm3/m256

RVM V/V AVX Add / subtract packed
double-precision floating-
point values from
ymm3/mem to ymm2 and
stores result in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
3-46 Vol. 2A ADDSUBPD—Packed Double-FP Add/Subtract

INSTRUCTION SET REFERENCE, A-L
VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

Operation

ADDSUBPD (128-bit Legacy SSE version)
DEST[63:0] DEST[63:0] - SRC[63:0]
DEST[127:64] DEST[127:64] + SRC[127:64]
DEST[VLMAX-1:128] (Unmodified)

VADDSUBPD (VEX.128 encoded version)
DEST[63:0] SRC1[63:0] - SRC2[63:0]
DEST[127:64] SRC1[127:64] + SRC2[127:64]
DEST[VLMAX-1:128] 0

VADDSUBPD (VEX.256 encoded version)
DEST[63:0] SRC1[63:0] - SRC2[63:0]
DEST[127:64] SRC1[127:64] + SRC2[127:64]
DEST[191:128] SRC1[191:128] - SRC2[191:128]
DEST[255:192] SRC1[255:192] + SRC2[255:192]

Figure 3-3. ADDSUBPD—Packed Double-FP Add/Subtract
Vol. 2A 3-47ADDSUBPD—Packed Double-FP Add/Subtract

INSTRUCTION SET REFERENCE, A-L
Intel C/C++ Compiler Intrinsic Equivalent

ADDSUBPD: __m128d _mm_addsub_pd(__m128d a, __m128d b)

VADDSUBPD: __m256d _mm256_addsub_pd (__m256d a, __m256d b)

Exceptions

When the source operand is a memory operand, it must be aligned on a 16-byte
boundary or a general-protection exception (#GP) will be generated.

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
See Exceptions Type 2.
3-48 Vol. 2A ADDSUBPD—Packed Double-FP Add/Subtract

INSTRUCTION SET REFERENCE, A-L
ADDSUBPS—Packed Single-FP Add/Subtract

Instruction Operand Encoding

Description

Adds odd-numbered single-precision floating-point values of the first source operand
(second operand) with the corresponding single-precision floating-point values from
the second source operand (third operand); stores the result in the odd-numbered
values of the destination operand (first operand). Subtracts the even-numbered
single-precision floating-point values from the second source operand from the
corresponding single-precision floating values in the first source operand; stores the
result into the even-numbered values of the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified. See Figure 3-4.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

F2 0F D0 /r

ADDSUBPS xmm1, xmm2/m128

RM V/V SSE3 Add/subtract single-
precision floating-point
values from xmm2/m128 to
xmm1.

VEX.NDS.128.F2.0F.WIG D0 /r

VADDSUBPS xmm1, xmm2,
xmm3/m128

RVM V/V AVX Add/subtract single-
precision floating-point
values from xmm3/mem to
xmm2 and stores result in
xmm1.

VEX.NDS.256.F2.0F.WIG D0 /r

VADDSUBPS ymm1, ymm2,
ymm3/m256

RVM V/V AVX Add / subtract single-
precision floating-point
values from ymm3/mem to
ymm2 and stores result in
ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2A 3-49ADDSUBPS—Packed Single-FP Add/Subtract

INSTRUCTION SET REFERENCE, A-L
VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

Operation

ADDSUBPS (128-bit Legacy SSE version)
DEST[31:0] DEST[31:0] - SRC[31:0]
DEST[63:32] DEST[63:32] + SRC[63:32]
DEST[95:64] DEST[95:64] - SRC[95:64]
DEST[127:96] DEST[127:96] + SRC[127:96]
DEST[VLMAX-1:128] (Unmodified)

VADDSUBPS (VEX.128 encoded version)
DEST[31:0] SRC1[31:0] - SRC2[31:0]
DEST[63:32] SRC1[63:32] + SRC2[63:32]
DEST[95:64] SRC1[95:64] - SRC2[95:64]
DEST[127:96] SRC1[127:96] + SRC2[127:96]
DEST[VLMAX-1:128] 0

VADDSUBPS (VEX.256 encoded version)
DEST[31:0] SRC1[31:0] - SRC2[31:0]
DEST[63:32] SRC1[63:32] + SRC2[63:32]
DEST[95:64] SRC1[95:64] - SRC2[95:64]

Figure 3-4. ADDSUBPS—Packed Single-FP Add/Subtract
3-50 Vol. 2A ADDSUBPS—Packed Single-FP Add/Subtract

INSTRUCTION SET REFERENCE, A-L
DEST[127:96] SRC1[127:96] + SRC2[127:96]
DEST[159:128] SRC1[159:128] - SRC2[159:128]
DEST[191:160] SRC1[191:160] + SRC2[191:160]
DEST[223:192] SRC1[223:192] - SRC2[223:192]
DEST[255:224] SRC1[255:224] + SRC2[255:224].

Intel C/C++ Compiler Intrinsic Equivalent

ADDSUBPS: __m128 _mm_addsub_ps(__m128 a, __m128 b)

VADDSUBPS: __m256 _mm256_addsub_ps (__m256 a, __m256 b)

Exceptions

When the source operand is a memory operand, the operand must be aligned on a
16-byte boundary or a general-protection exception (#GP) will be generated.

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
See Exceptions Type 2.
Vol. 2A 3-51ADDSUBPS—Packed Single-FP Add/Subtract

INSTRUCTION SET REFERENCE, A-L
AESDEC—Perform One Round of an AES Decryption Flow

Instruction Operand Encoding

Description

This instruction performs a single round of the AES decryption flow using the Equiva-
lent Inverse Cipher, with the round key from the second source operand, operating
on a 128-bit data (state) from the first source operand, and store the result in the
destination operand.
Use the AESDEC instruction for all but the last decryption round. For the last decryp-
tion round, use the AESDECCLAST instruction.
128-bit Legacy SSE version: The first source operand and the destination operand
are the same and must be an XMM register. The second source operand can be an
XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the corre-
sponding YMM destination register remain unchanged.
VEX.128 encoded version: The first source operand and the destination operand are
XMM registers. The second source operand can be an XMM register or a 128-bit
memory location. Bits (VLMAX-1:128) of the destination YMM register are zeroed.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

66 0F 38 DE /r
AESDEC xmm1, xmm2/m128

RM V/V AES Perform one round of an
AES decryption flow, using
the Equivalent Inverse
Cipher, operating on a 128-
bit data (state) from xmm1
with a 128-bit round key
from xmm2/m128.

VEX.NDS.128.66.0F38.WIG DE /r
VAESDEC xmm1, xmm2,
xmm3/m128

RVM V/V Both AES
and
AVX flags

Perform one round of an
AES decryption flow, using
the Equivalent Inverse
Cipher, operating on a 128-
bit data (state) from xmm2
with a 128-bit round key
from xmm3/m128; store
the result in xmm1.

Op/En Operand 1 Operand2 Operand3 Operand4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
3-52 Vol. 2A AESDEC—Perform One Round of an AES Decryption Flow

INSTRUCTION SET REFERENCE, A-L
Operation

AESDEC
STATE ← SRC1;
RoundKey ← SRC2;
STATE ← InvShiftRows(STATE);
STATE ← InvSubBytes(STATE);
STATE ← InvMixColumns(STATE);
DEST[127:0] ← STATE XOR RoundKey;
DEST[VLMAX-1:128] (Unmodified)

VAESDEC
STATE ← SRC1;
RoundKey ← SRC2;
STATE ← InvShiftRows(STATE);
STATE ← InvSubBytes(STATE);
STATE ← InvMixColumns(STATE);
DEST[127:0] ← STATE XOR RoundKey;
DEST[VLMAX-1:128] ← 0

Intel C/C++ Compiler Intrinsic Equivalent

(V)AESDEC: __m128i _mm_aesdec (__m128i, __m128i)

SIMD Floating-Point Exceptions

None

Other Exceptions
See Exceptions Type 4.
Vol. 2A 3-53AESDEC—Perform One Round of an AES Decryption Flow

INSTRUCTION SET REFERENCE, A-L
AESDECLAST—Perform Last Round of an AES Decryption Flow

Instruction Operand Encoding

Description

This instruction performs the last round of the AES decryption flow using the Equiva-
lent Inverse Cipher, with the round key from the second source operand, operating
on a 128-bit data (state) from the first source operand, and store the result in the
destination operand.
128-bit Legacy SSE version: The first source operand and the destination operand
are the same and must be an XMM register. The second source operand can be an
XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the corre-
sponding YMM destination register remain unchanged.
VEX.128 encoded version: The first source operand and the destination operand are
XMM registers. The second source operand can be an XMM register or a 128-bit
memory location. Bits (VLMAX-1:128) of the destination YMM register are zeroed.

Operation

AESDECLAST

Opcode Instruction Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

66 0F 38 DF /r
AESDECLAST xmm1, xmm2/m128

RM V/V AES Perform the last round of an
AES decryption flow, using
the Equivalent Inverse
Cipher, operating on a 128-
bit data (state) from xmm1
with a 128-bit round key
from xmm2/m128.

VEX.NDS.128.66.0F38.WIG DF /r
VAESDECLAST xmm1, xmm2,
xmm3/m128

RVM V/V Both AES
and
AVX flags

Perform the last round of an
AES decryption flow, using
the Equivalent Inverse
Cipher, operating on a 128-
bit data (state) from xmm2
with a 128-bit round key
from xmm3/m128; store
the result in xmm1.

Op/En Operand 1 Operand2 Operand3 Operand4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
3-54 Vol. 2A AESDECLAST—Perform Last Round of an AES Decryption Flow

INSTRUCTION SET REFERENCE, A-L
STATE ← SRC1;
RoundKey ← SRC2;
STATE ← InvShiftRows(STATE);
STATE ← InvSubBytes(STATE);
DEST[127:0] ← STATE XOR RoundKey;
DEST[VLMAX-1:128] (Unmodified)

VAESDECLAST
STATE ← SRC1;
RoundKey ← SRC2;
STATE ← InvShiftRows(STATE);
STATE ← InvSubBytes(STATE);
DEST[127:0] ← STATE XOR RoundKey;
DEST[VLMAX-1:128] ← 0

Intel C/C++ Compiler Intrinsic Equivalent

(V)AESDECLAST: __m128i _mm_aesdeclast (__m128i, __m128i)

SIMD Floating-Point Exceptions

None

Other Exceptions
See Exceptions Type 4.
Vol. 2A 3-55AESDECLAST—Perform Last Round of an AES Decryption Flow

INSTRUCTION SET REFERENCE, A-L
AESENC—Perform One Round of an AES Encryption Flow

Instruction Operand Encoding

Description

This instruction performs a single round of an AES encryption flow using a round key
from the second source operand, operating on 128-bit data (state) from the first
source operand, and store the result in the destination operand.
Use the AESENC instruction for all but the last encryption rounds. For the last encryp-
tion round, use the AESENCCLAST instruction.
128-bit Legacy SSE version: The first source operand and the destination operand
are the same and must be an XMM register. The second source operand can be an
XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the corre-
sponding YMM destination register remain unchanged.
VEX.128 encoded version: The first source operand and the destination operand are
XMM registers. The second source operand can be an XMM register or a 128-bit
memory location. Bits (VLMAX-1:128) of the destination YMM register are zeroed.

Operation

AESENC

Opcode Instruction Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

66 0F 38 DC /r
AESENC xmm1, xmm2/m128

RM V/V AES Perform one round of an
AES encryption flow, operat-
ing on a 128-bit data (state)
from xmm1 with a 128-bit
round key from
xmm2/m128.

VEX.NDS.128.66.0F38.WIG DC /r
VAESENC xmm1, xmm2,
xmm3/m128

RVM V/V Both AES
and
AVX flags

Perform one round of an
AES encryption flow, operat-
ing on a 128-bit data (state)
from xmm2 with a 128-bit
round key from the
xmm3/m128; store the
result in xmm1.

Op/En Operand 1 Operand2 Operand3 Operand4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
3-56 Vol. 2A AESENC—Perform One Round of an AES Encryption Flow

INSTRUCTION SET REFERENCE, A-L
STATE ← SRC1;
RoundKey ← SRC2;
STATE ← ShiftRows(STATE);
STATE ← SubBytes(STATE);
STATE ← MixColumns(STATE);
DEST[127:0] ← STATE XOR RoundKey;
DEST[VLMAX-1:128] (Unmodified)

VAESENC
STATE SRC1;
RoundKey SRC2;
STATE ShiftRows(STATE);
STATE SubBytes(STATE);
STATE MixColumns(STATE);
DEST[127:0] STATE XOR RoundKey;
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

(V)AESENC: __m128i _mm_aesenc (__m128i, __m128i)

SIMD Floating-Point Exceptions

None

Other Exceptions
See Exceptions Type 4.
Vol. 2A 3-57AESENC—Perform One Round of an AES Encryption Flow

INSTRUCTION SET REFERENCE, A-L
AESENCLAST—Perform Last Round of an AES Encryption Flow

Instruction Operand Encoding

Description

This instruction performs the last round of an AES encryption flow using a round key
from the second source operand, operating on 128-bit data (state) from the first
source operand, and store the result in the destination operand.
128-bit Legacy SSE version: The first source operand and the destination operand
are the same and must be an XMM register. The second source operand can be an
XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the corre-
sponding YMM destination register remain unchanged.
VEX.128 encoded version: The first source operand and the destination operand are
XMM registers. The second source operand can be an XMM register or a 128-bit
memory location. Bits (VLMAX-1:128) of the destination YMM register are zeroed.

Operation

AESENCLAST
STATE ← SRC1;
RoundKey ← SRC2;

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

66 0F 38 DD /r
AESENCLAST xmm1, xmm2/m128

RM V/V AES Perform the last round of an
AES encryption flow, operat-
ing on a 128-bit data (state)
from xmm1 with a 128-bit
round key from
xmm2/m128.

VEX.NDS.128.66.0F38.WIG DD /r
VAESENCLAST xmm1, xmm2,
xmm3/m128

RVM V/V Both AES
and
AVX flags

Perform the last round of an
AES encryption flow, operat-
ing on a 128-bit data (state)
from xmm2 with a 128 bit
round key from
xmm3/m128; store the
result in xmm1.

Op/En Operand 1 Operand2 Operand3 Operand4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
3-58 Vol. 2A AESENCLAST—Perform Last Round of an AES Encryption Flow

INSTRUCTION SET REFERENCE, A-L
STATE ← ShiftRows(STATE);
STATE ← SubBytes(STATE);
DEST[127:0] ← STATE XOR RoundKey;
DEST[VLMAX-1:128] (Unmodified)

VAESENCLAST
STATE SRC1;
RoundKey SRC2;
STATE ShiftRows(STATE);
STATE SubBytes(STATE);
DEST[127:0] STATE XOR RoundKey;
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

(V)AESENCLAST: __m128i _mm_aesenclast (__m128i, __m128i)

SIMD Floating-Point Exceptions

None

Other Exceptions
See Exceptions Type 4.
Vol. 2A 3-59AESENCLAST—Perform Last Round of an AES Encryption Flow

INSTRUCTION SET REFERENCE, A-L
AESIMC—Perform the AES InvMixColumn Transformation

Instruction Operand Encoding

Description

Perform the InvMixColumns transformation on the source operand and store the
result in the destination operand. The destination operand is an XMM register. The
source operand can be an XMM register or a 128-bit memory location.
Note: the AESIMC instruction should be applied to the expanded AES round keys
(except for the first and last round key) in order to prepare them for decryption using
the “Equivalent Inverse Cipher” (defined in FIPS 197).

128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed.

Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise
instructions will #UD.

Operation

AESIMC
DEST[127:0] ← InvMixColumns(SRC);
DEST[VLMAX-1:128] (Unmodified)

VAESIMC
DEST[127:0] InvMixColumns(SRC);

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

66 0F 38 DB /r
AESIMC xmm1, xmm2/m128

RM V/V AES Perform the InvMixColumn
transformation on a 128-bit
round key from
xmm2/m128 and store the
result in xmm1.

VEX.128.66.0F38.WIG DB /r
VAESIMC xmm1, xmm2/m128

RM V/V Both AES
and
AVX flags

Perform the InvMixColumn
transformation on a 128-bit
round key from
xmm2/m128 and store the
result in xmm1.

Op/En Operand 1 Operand2 Operand3 Operand4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
3-60 Vol. 2A AESIMC—Perform the AES InvMixColumn Transformation

INSTRUCTION SET REFERENCE, A-L
DEST[VLMAX-1:128] 0;

Intel C/C++ Compiler Intrinsic Equivalent

(V)AESIMC: __m128i _mm_aesimc (__m128i)

SIMD Floating-Point Exceptions

None

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.vvvv != 1111B.
Vol. 2A 3-61AESIMC—Perform the AES InvMixColumn Transformation

INSTRUCTION SET REFERENCE, A-L
AESKEYGENASSIST—AES Round Key Generation Assist

Instruction Operand Encoding

Description

Assist in expanding the AES cipher key, by computing steps towards generating a
round key for encryption, using 128-bit data specified in the source operand and an
8-bit round constant specified as an immediate, store the result in the destination
operand.
The destination operand is an XMM register. The source operand can be an XMM
register or a 128-bit memory location.

128-bit Legacy SSE version:Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed.

Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise
instructions will #UD.

Operation

AESKEYGENASSIST

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

66 0F 3A DF /r ib
AESKEYGENASSIST xmm1,
xmm2/m128, imm8

RMI V/V AES Assist in AES round key gen-
eration using an 8 bits
Round Constant (RCON)
specified in the immediate
byte, operating on 128 bits
of data specified in
xmm2/m128 and stores the
result in xmm1.

VEX.128.66.0F3A.WIG DF /r ib
VAESKEYGENASSIST xmm1,
xmm2/m128, imm8

RMI V/V Both AES
and
AVX flags

Assist in AES round key gen-
eration using 8 bits Round
Constant (RCON) specified in
the immediate byte, operat-
ing on 128 bits of data spec-
ified in xmm2/m128 and
stores the result in xmm1.

Op/En Operand 1 Operand2 Operand3 Operand4

RMI ModRM:reg (w) ModRM:r/m (r) imm8 NA
3-62 Vol. 2A AESKEYGENASSIST—AES Round Key Generation Assist

INSTRUCTION SET REFERENCE, A-L
X3[31:0] ← SRC [127: 96];
X2[31:0] ← SRC [95: 64];
X1[31:0] ← SRC [63: 32];
X0[31:0] ← SRC [31: 0];
RCON[31:0] ← ZeroExtend(Imm8[7:0]);
DEST[31:0] ← SubWord(X1);
DEST[63:32] ← RotWord(SubWord(X1)) XOR RCON;
DEST[95:64] ← SubWord(X3);
DEST[127:96] ← RotWord(SubWord(X3)) XOR RCON;
DEST[VLMAX-1:128] (Unmodified)

VAESKEYGENASSIST
X3[31:0] SRC [127: 96];
X2[31:0] SRC [95: 64];
X1[31:0] SRC [63: 32];
X0[31:0] SRC [31: 0];
RCON[31:0] ZeroExtend(Imm8[7:0]);
DEST[31:0] SubWord(X1);
DEST[63:32] RotWord(SubWord(X1)) XOR RCON;
DEST[95:64] SubWord(X3);
DEST[127:96] RotWord(SubWord(X3)) XOR RCON;
DEST[VLMAX-1:128] 0;

Intel C/C++ Compiler Intrinsic Equivalent

(V)AESKEYGENASSIST: __m128i _mm_aesimc (__m128i, const int)

SIMD Floating-Point Exceptions

None

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.vvvv != 1111B.
Vol. 2A 3-63AESKEYGENASSIST—AES Round Key Generation Assist

INSTRUCTION SET REFERENCE, A-L
AND—Logical AND
Opcode Instruction Op/

En
64-bit
Mode

Compat/
Leg Mode

Description

24 ib AND AL, imm8 RM Valid Valid AL AND imm8.

25 iw AND AX, imm16 RM Valid Valid AX AND imm16.

25 id AND EAX, imm32 RM Valid Valid EAX AND imm32.

REX.W + 25 id AND RAX, imm32 RM Valid N.E. RAX AND imm32 sign-
extended to 64-bits.

80 /4 ib AND r/m8, imm8 MR Valid Valid r/m8 AND imm8.

REX + 80 /4 ib AND r/m8*, imm8 MR Valid N.E. r/m8 AND imm8.

81 /4 iw AND r/m16,
imm16

MR Valid Valid r/m16 AND imm16.

81 /4 id AND r/m32,
imm32

MR Valid Valid r/m32 AND imm32.

REX.W + 81 /4
id

AND r/m64,
imm32

MR Valid N.E. r/m64 AND imm32 sign
extended to 64-bits.

83 /4 ib AND r/m16, imm8 MR Valid Valid r/m16 AND imm8 (sign-
extended).

83 /4 ib AND r/m32, imm8 MR Valid Valid r/m32 AND imm8 (sign-
extended).

REX.W + 83 /4
ib

AND r/m64, imm8 MR Valid N.E. r/m64 AND imm8 (sign-
extended).

20 /r AND r/m8, r8 MI Valid Valid r/m8 AND r8.

REX + 20 /r AND r/m8*, r8* MI Valid N.E. r/m64 AND r8 (sign-
extended).

21 /r AND r/m16, r16 MI Valid Valid r/m16 AND r16.

21 /r AND r/m32, r32 MI Valid Valid r/m32 AND r32.

REX.W + 21 /r AND r/m64, r64 MI Valid N.E. r/m64 AND r32.

22 /r AND r8, r/m8 I Valid Valid r8 AND r/m8.

REX + 22 /r AND r8*, r/m8* I Valid N.E. r/m64 AND r8 (sign-
extended).

23 /r AND r16, r/m16 I Valid Valid r16 AND r/m16.

23 /r AND r32, r/m32 I Valid Valid r32 AND r/m32.

REX.W + 23 /r AND r64, r/m64 I Valid N.E. r64 AND r/m64.

NOTES:

*In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is
used: AH, BH, CH, DH.
3-64 Vol. 2A AND—Logical AND

INSTRUCTION SET REFERENCE, A-L
Instruction Operand Encoding

Description

Performs a bitwise AND operation on the destination (first) and source (second)
operands and stores the result in the destination operand location. The source
operand can be an immediate, a register, or a memory location; the destination
operand can be a register or a memory location. (However, two memory operands
cannot be used in one instruction.) Each bit of the result is set to 1 if both corre-
sponding bits of the first and second operands are 1; otherwise, it is set to 0.

This instruction can be used with a LOCK prefix to allow the it to be executed atomi-
cally.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

Operation

DEST ← DEST AND SRC;

Flags Affected

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the
result. The state of the AF flag is undefined.

Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

MR ModRM:r/m (r, w) ModRM:reg (r) NA NA

MI ModRM:r/m (r, w) imm8 NA NA

I AL/AX/EAX/RAX imm8 NA NA
Vol. 2A 3-65AND—Logical AND

INSTRUCTION SET REFERENCE, A-L
#UD If the LOCK prefix is used but the destination is not a memory
operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#UD If the LOCK prefix is used but the destination is not a memory

operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used but the destination is not a memory

operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory

operand.
3-66 Vol. 2A AND—Logical AND

INSTRUCTION SET REFERENCE, A-L
ANDPD—Bitwise Logical AND of Packed Double-Precision Floating-
Point Values

Instruction Operand Encoding

Description

Performs a bitwise logical AND of the two packed double-precision floating-point
values from the source operand (second operand) and the destination operand (first
operand), and stores the result in the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

66 0F 54 /r

ANDPD xmm1, xmm2/m128

RM V/V SSE2 Return the bitwise logical
AND of packed double-
precision floating-point
values in xmm1 and
xmm2/m128.

VEX.NDS.128.66.0F.WIG 54 /r

VANDPD xmm1, xmm2,
xmm3/m128

RVM V/V AVX Return the bitwise logical
AND of packed double-
precision floating-point
values in xmm2 and
xmm3/mem.

VEX.NDS.256.66.0F.WIG 54 /r

VANDPD ymm1, ymm2,
ymm3/m256

RVM V/V AVX Return the bitwise logical
AND of packed double-
precision floating-point
values in ymm2 and
ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2A 3-67ANDPD—Bitwise Logical AND of Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

Operation

ANDPD (128-bit Legacy SSE version)
DEST[63:0] DEST[63:0] BITWISE AND SRC[63:0]
DEST[127:64] DEST[127:64] BITWISE AND SRC[127:64]
DEST[VLMAX-1:128] (Unmodified)

VANDPD (VEX.128 encoded version)
DEST[63:0] SRC1[63:0] BITWISE AND SRC2[63:0]
DEST[127:64] SRC1[127:64] BITWISE AND SRC2[127:64]
DEST[VLMAX-1:128] 0

VANDPD (VEX.256 encoded version)
DEST[63:0] SRC1[63:0] BITWISE AND SRC2[63:0]
DEST[127:64] SRC1[127:64] BITWISE AND SRC2[127:64]
DEST[191:128] SRC1[191:128] BITWISE AND SRC2[191:128]
DEST[255:192] SRC1[255:192] BITWISE AND SRC2[255:192]

Intel C/C++ Compiler Intrinsic Equivalent

ANDPD: __m128d _mm_and_pd(__m128d a, __m128d b)

VANDPD: __m256d _mm256_and_pd (__m256d a, __m256d b)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4.
3-68 Vol. 2A ANDPD—Bitwise Logical AND of Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
ANDPS—Bitwise Logical AND of Packed Single-Precision Floating-Point
Values

Instruction Operand Encoding

Description

Performs a bitwise logical AND of the four or eight packed single-precision floating-
point values from the first source operand and the second source operand, and stores
the result in the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

0F 54 /r

ANDPS xmm1, xmm2/m128

RM V/V SSE Bitwise logical AND of
xmm2/m128 and xmm1.

VEX.NDS.128.0F.WIG 54 /r

VANDPS xmm1,xmm2, xmm3/m128

RVM V/V AVX Return the bitwise logical
AND of packed single-
precision floating-point
values in xmm2 and
xmm3/mem.

VEX.NDS.256.0F.WIG 54 /r

VANDPS ymm1, ymm2, ymm3/m256

RVM V/V AVX Return the bitwise logical
AND of packed single-
precision floating-point
values in ymm2 and
ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2A 3-69ANDPS—Bitwise Logical AND of Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
Operation

ANDPS (128-bit Legacy SSE version)
DEST[31:0] DEST[31:0] BITWISE AND SRC[31:0]
DEST[63:32] DEST[63:32] BITWISE AND SRC[63:32]
DEST[95:64] DEST[95:64] BITWISE AND SRC[95:64]
DEST[127:96] DEST[127:96] BITWISE AND SRC[127:96]
DEST[VLMAX-1:128] (Unmodified)

VANDPS (VEX.128 encoded version)
DEST[31:0] SRC1[31:0] BITWISE AND SRC2[31:0]
DEST[63:32] SRC1[63:32] BITWISE AND SRC2[63:32]
DEST[95:64] SRC1[95:64] BITWISE AND SRC2[95:64]
DEST[127:96] SRC1[127:96] BITWISE AND SRC2[127:96]
DEST[VLMAX-1:128] 0

VANDPS (VEX.256 encoded version)
DEST[31:0] SRC1[31:0] BITWISE AND SRC2[31:0]
DEST[63:32] SRC1[63:32] BITWISE AND SRC2[63:32]
DEST[95:64] SRC1[95:64] BITWISE AND SRC2[95:64]
DEST[127:96] SRC1[127:96] BITWISE AND SRC2[127:96]
DEST[159:128] SRC1[159:128] BITWISE AND SRC2[159:128]
DEST[191:160] SRC1[191:160] BITWISE AND SRC2[191:160]
DEST[223:192] SRC1[223:192] BITWISE AND SRC2[223:192]
DEST[255:224] SRC1[255:224] BITWISE AND SRC2[255:224].

Intel C/C++ Compiler Intrinsic Equivalent

ANDPS: __m128 _mm_and_ps(__m128 a, __m128 b)

VANDPS: __m256 _mm256_and_ps (__m256 a, __m256 b)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4.
3-70 Vol. 2A ANDPS—Bitwise Logical AND of Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
ANDNPD—Bitwise Logical AND NOT of Packed Double-Precision
Floating-Point Values

Instruction Operand Encoding

Description

Performs a bitwise logical AND NOT of the two or four packed double-precision
floating-point values from the first source operand and the second source operand,
and stores the result in the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

66 0F 55 /r

ANDNPD xmm1, xmm2/m128

RM V/V SSE2 Bitwise logical AND NOT of
xmm2/m128 and xmm1.

VEX.NDS.128.66.0F.WIG 55 /r

VANDNPD xmm1, xmm2,
xmm3/m128

RVM V/V AVX Return the bitwise logical
AND NOT of packed double-
precision floating-point
values in xmm2 and
xmm3/mem.

VEX.NDS.256.66.0F.WIG 55/r

VANDNPD ymm1, ymm2,
ymm3/m256

RVM V/V AVX Return the bitwise logical
AND NOT of packed double-
precision floating-point
values in ymm2 and
ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2A 3-71ANDNPD—Bitwise Logical AND NOT of Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
Operation

ANDNPD (128-bit Legacy SSE version)
DEST[63:0] (NOT(DEST[63:0])) BITWISE AND SRC[63:0]
DEST[127:64] (NOT(DEST[127:64])) BITWISE AND SRC[127:64]
DEST[VLMAX-1:128] (Unmodified)

VANDNPD (VEX.128 encoded version)
DEST[63:0] (NOT(SRC1[63:0])) BITWISE AND SRC2[63:0]
DEST[127:64] (NOT(SRC1[127:64])) BITWISE AND SRC2[127:64]
DEST[VLMAX-1:128] 0

VANDNPD (VEX.256 encoded version)
DEST[63:0] (NOT(SRC1[63:0])) BITWISE AND SRC2[63:0]
DEST[127:64] (NOT(SRC1[127:64])) BITWISE AND SRC2[127:64]
DEST[191:128] (NOT(SRC1[191:128])) BITWISE AND SRC2[191:128]
DEST[255:192] (NOT(SRC1[255:192])) BITWISE AND SRC2[255:192]

Intel C/C++ Compiler Intrinsic Equivalent

ANDNPD: __m128d _mm_andnot_pd(__m128d a, __m128d b)

VANDNPD: __m256d _mm256_andnot_pd (__m256d a, __m256d b)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4.
3-72 Vol. 2A ANDNPD—Bitwise Logical AND NOT of Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
ANDNPS—Bitwise Logical AND NOT of Packed Single-Precision
Floating-Point Values

Instruction Operand Encoding

Description

Inverts the bits of the four packed single-precision floating-point values in the desti-
nation operand (first operand), performs a bitwise logical AND of the four packed
single-precision floating-point values in the source operand (second operand) and
the temporary inverted result, and stores the result in the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

0F 55 /r

ANDNPS xmm1, xmm2/m128

RM V/V SSE Bitwise logical AND NOT of
xmm2/m128 and xmm1.

VEX.NDS.128.0F.WIG 55 /r

VANDNPS xmm1, xmm2,
xmm3/m128

RVM V/V AVX Return the bitwise logical
AND NOT of packed single-
precision floating-point
values in xmm2 and
xmm3/mem.

VEX.NDS.256.0F.WIG 55 /r

VANDNPS ymm1, ymm2,
ymm3/m256

RVM V/V AVX Return the bitwise logical
AND NOT of packed single-
precision floating-point
values in ymm2 and
ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2A 3-73ANDNPS—Bitwise Logical AND NOT of Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
Operation

ANDNPS (128-bit Legacy SSE version)
DEST[31:0] (NOT(DEST[31:0])) BITWISE AND SRC[31:0]
DEST[63:32] (NOT(DEST[63:32])) BITWISE AND SRC[63:32]
DEST[95:64] (NOT(DEST[95:64])) BITWISE AND SRC[95:64]
DEST[127:96] (NOT(DEST[127:96])) BITWISE AND SRC[127:96]
DEST[VLMAX-1:128] (Unmodified)

VANDNPS (VEX.128 encoded version)
DEST[31:0] (NOT(SRC1[31:0])) BITWISE AND SRC2[31:0]
DEST[63:32] (NOT(SRC1[63:32])) BITWISE AND SRC2[63:32]
DEST[95:64] (NOT(SRC1[95:64])) BITWISE AND SRC2[95:64]
DEST[127:96] (NOT(SRC1[127:96])) BITWISE AND SRC2[127:96]
DEST[VLMAX-1:128] 0

VANDNPS (VEX.256 encoded version)
DEST[31:0] (NOT(SRC1[31:0])) BITWISE AND SRC2[31:0]
DEST[63:32] (NOT(SRC1[63:32])) BITWISE AND SRC2[63:32]
DEST[95:64] (NOT(SRC1[95:64])) BITWISE AND SRC2[95:64]
DEST[127:96] (NOT(SRC1[127:96])) BITWISE AND SRC2[127:96]
DEST[159:128] (NOT(SRC1[159:128])) BITWISE AND SRC2[159:128]
DEST[191:160] (NOT(SRC1[191:160])) BITWISE AND SRC2[191:160]
DEST[223:192] (NOT(SRC1[223:192])) BITWISE AND SRC2[223:192]
DEST[255:224] (NOT(SRC1[255:224])) BITWISE AND SRC2[255:224].

Intel C/C++ Compiler Intrinsic Equivalent

ANDNPS: __m128 _mm_andnot_ps(__m128 a, __m128 b)

VANDNPS: __m256 _mm256_andnot_ps (__m256 a, __m256 b)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4.
3-74 Vol. 2A ANDNPS—Bitwise Logical AND NOT of Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
ARPL—Adjust RPL Field of Segment Selector

Instruction Operand Encoding

Description

Compares the RPL fields of two segment selectors. The first operand (the destination
operand) contains one segment selector and the second operand (source operand)
contains the other. (The RPL field is located in bits 0 and 1 of each operand.) If the
RPL field of the destination operand is less than the RPL field of the source operand,
the ZF flag is set and the RPL field of the destination operand is increased to match
that of the source operand. Otherwise, the ZF flag is cleared and no change is made
to the destination operand. (The destination operand can be a word register or a
memory location; the source operand must be a word register.)

The ARPL instruction is provided for use by operating-system procedures (however, it
can also be used by applications). It is generally used to adjust the RPL of a segment
selector that has been passed to the operating system by an application program to
match the privilege level of the application program. Here the segment selector
passed to the operating system is placed in the destination operand and segment
selector for the application program’s code segment is placed in the source operand.
(The RPL field in the source operand represents the privilege level of the application
program.) Execution of the ARPL instruction then ensures that the RPL of the
segment selector received by the operating system is no lower (does not have a
higher privilege) than the privilege level of the application program (the segment
selector for the application program’s code segment can be read from the stack
following a procedure call).

This instruction executes as described in compatibility mode and legacy mode. It is
not encodable in 64-bit mode.

See “Checking Caller Access Privileges” in Chapter 3, “Protected-Mode Memory
Management,” of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A, for more information about the use of this instruction.

Opcode Instruction Op/
En

64-bit
Mode

Compat/
Leg Mode

Description

63 /r ARPL r/m16, r16 NP N. E. Valid Adjust RPL of r/m16 to not
less than RPL of r16.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP ModRM:r/m (w) ModRM:reg (r) NA NA
Vol. 2A 3-75ARPL—Adjust RPL Field of Segment Selector

INSTRUCTION SET REFERENCE, A-L
Operation

IF 64-BIT MODE
THEN

See MOVSXD;
ELSE

IF DEST[RPL) < SRC[RPL)
THEN

ZF ← 1;
DEST[RPL) ← SRC[RPL);

ELSE
ZF ← 0;

FI;
FI;

Flags Affected

The ZF flag is set to 1 if the RPL field of the destination operand is less than that of
the source operand; otherwise, it is set to 0.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD The ARPL instruction is not recognized in real-address mode.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#UD The ARPL instruction is not recognized in virtual-8086 mode.

If the LOCK prefix is used.
3-76 Vol. 2A ARPL—Adjust RPL Field of Segment Selector

INSTRUCTION SET REFERENCE, A-L
Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Not applicable.
Vol. 2A 3-77ARPL—Adjust RPL Field of Segment Selector

INSTRUCTION SET REFERENCE, A-L
BLENDPD — Blend Packed Double Precision Floating-Point Values

Instruction Operand Encoding

Description

Double-precision floating-point values from the second source operand (third
operand) are conditionally merged with values from the first source operand (second
operand) and written to the destination operand (first operand). The immediate bits
[3:0] determine whether the corresponding double-precision floating-point value in
the destination is copied from the second source or first source. If a bit in the mask,
corresponding to a word, is “1", then the double-precision floating-point value in the
second source operand is copied, else the value in the first source operand is copied.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified.
VEX.128 encoded version: the first source operand is an XMM register. The second
source operand is an XMM register or 128-bit memory location. The destination

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

66 0F 3A 0D /r ib

BLENDPD xmm1, xmm2/m128,
imm8

RMI V/V SSE4_1 Select packed DP-FP values
from xmm1 and
xmm2/m128 from mask
specified in imm8 and store
the values into xmm1.

VEX.NDS.128.66.0F3A.WIG 0D /r ib

VBLENDPD xmm1, xmm2,
xmm3/m128, imm8

RVMI V/V AVX Select packed double-
precision floating-point
Values from xmm2 and
xmm3/m128 from mask in
imm8 and store the values
in xmm1.

VEX.NDS.256.66.0F3A.WIG 0D /r ib

VBLENDPD ymm1, ymm2,
ymm3/m256, imm8

RVMI V/V AVX Select packed double-
precision floating-point
Values from ymm2 and
ymm3/m256 from mask in
imm8 and store the values
in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8[3:0]
3-78 Vol. 2A BLENDPD — Blend Packed Double Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM
register destination are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

Operation

BLENDPD (128-bit Legacy SSE version)
IF (IMM8[0] = 0)THEN DEST[63:0] DEST[63:0]

ELSE DEST [63:0] SRC[63:0] FI
IF (IMM8[1] = 0) THEN DEST[127:64] DEST[127:64]

ELSE DEST [127:64] SRC[127:64] FI
DEST[VLMAX-1:128] (Unmodified)

VBLENDPD (VEX.128 encoded version)
IF (IMM8[0] = 0)THEN DEST[63:0] SRC1[63:0]

ELSE DEST [63:0] SRC2[63:0] FI
IF (IMM8[1] = 0) THEN DEST[127:64] SRC1[127:64]

ELSE DEST [127:64] SRC2[127:64] FI
DEST[VLMAX-1:128] 0

VBLENDPD (VEX.256 encoded version)
IF (IMM8[0] = 0)THEN DEST[63:0] SRC1[63:0]

ELSE DEST [63:0] SRC2[63:0] FI
IF (IMM8[1] = 0) THEN DEST[127:64] SRC1[127:64]

ELSE DEST [127:64] SRC2[127:64] FI
IF (IMM8[2] = 0) THEN DEST[191:128] SRC1[191:128]

ELSE DEST [191:128] SRC2[191:128] FI
IF (IMM8[3] = 0) THEN DEST[255:192] SRC1[255:192]

ELSE DEST [255:192] SRC2[255:192] FI

Intel C/C++ Compiler Intrinsic Equivalent

BLENDPD: __m128d _mm_blend_pd (__m128d v1, __m128d v2, const int mask);

VBLENDPD: __m256d _mm256_blend_pd (__m256d a, __m256d b, const int mask);

SIMD Floating-Point Exceptions

None

Other Exceptions
See Exceptions Type 4.
Vol. 2A 3-79BLENDPD — Blend Packed Double Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
BLENDPS — Blend Packed Single Precision Floating-Point Values

Instruction Operand Encoding

Description

Packed single-precision floating-point values from the second source operand (third
operand) are conditionally merged with values from the first source operand (second
operand) and written to the destination operand (first operand). The immediate bits
[7:0] determine whether the corresponding single precision floating-point value in
the destination is copied from the second source or first source. If a bit in the mask,
corresponding to a word, is “1", then the single-precision floating-point value in the
second source operand is copied, else the value in the first source operand is copied.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified.
VEX.128 encoded version: The first source operand an XMM register. The second
source operand is an XMM register or 128-bit memory location. The destination

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

66 0F 3A 0C /r ib

BLENDPS xmm1, xmm2/m128,
imm8

RMI V/V SSE4_1 Select packed single
precision floating-point
values from xmm1 and
xmm2/m128 from mask
specified in imm8 and store
the values into xmm1.

VEX.NDS.128.66.0F3A.WIG 0C /r ib

VBLENDPS xmm1, xmm2,
xmm3/m128, imm8

RVMI V/V AVX Select packed single-
precision floating-point
values from xmm2 and
xmm3/m128 from mask in
imm8 and store the values
in xmm1.

VEX.NDS.256.66.0F3A.WIG 0C /r ib

VBLENDPS ymm1, ymm2,
ymm3/m256, imm8

RVMI V/V AVX Select packed single-
precision floating-point
values from ymm2 and
ymm3/m256 from mask in
imm8 and store the values
in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
3-80 Vol. 2A BLENDPS — Blend Packed Single Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM
register destination are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

Operation

BLENDPS (128-bit Legacy SSE version)
IF (IMM8[0] = 0) THEN DEST[31:0] DEST[31:0]

ELSE DEST [31:0] SRC[31:0] FI
IF (IMM8[1] = 0) THEN DEST[63:32] DEST[63:32]

ELSE DEST [63:32] SRC[63:32] FI
IF (IMM8[2] = 0) THEN DEST[95:64] DEST[95:64]

ELSE DEST [95:64] SRC[95:64] FI
IF (IMM8[3] = 0) THEN DEST[127:96] DEST[127:96]

ELSE DEST [127:96] SRC[127:96] FI
DEST[VLMAX-1:128] (Unmodified)

VBLENDPS (VEX.128 encoded version)
IF (IMM8[0] = 0) THEN DEST[31:0] SRC1[31:0]

ELSE DEST [31:0] SRC2[31:0] FI
IF (IMM8[1] = 0) THEN DEST[63:32] SRC1[63:32]

ELSE DEST [63:32] SRC2[63:32] FI
IF (IMM8[2] = 0) THEN DEST[95:64] SRC1[95:64]

ELSE DEST [95:64] SRC2[95:64] FI
IF (IMM8[3] = 0) THEN DEST[127:96] SRC1[127:96]

ELSE DEST [127:96] SRC2[127:96] FI
DEST[VLMAX-1:128] 0

VBLENDPS (VEX.256 encoded version)
IF (IMM8[0] = 0) THEN DEST[31:0] SRC1[31:0]

ELSE DEST [31:0] SRC2[31:0] FI
IF (IMM8[1] = 0) THEN DEST[63:32] SRC1[63:32]

ELSE DEST [63:32] SRC2[63:32] FI
IF (IMM8[2] = 0) THEN DEST[95:64] SRC1[95:64]

ELSE DEST [95:64] SRC2[95:64] FI
IF (IMM8[3] = 0) THEN DEST[127:96] SRC1[127:96]

ELSE DEST [127:96] SRC2[127:96] FI
IF (IMM8[4] = 0) THEN DEST[159:128] SRC1[159:128]

ELSE DEST [159:128] SRC2[159:128] FI
IF (IMM8[5] = 0) THEN DEST[191:160] SRC1[191:160]

ELSE DEST [191:160] SRC2[191:160] FI
Vol. 2A 3-81BLENDPS — Blend Packed Single Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
IF (IMM8[6] = 0) THEN DEST[223:192] SRC1[223:192]
ELSE DEST [223:192] SRC2[223:192] FI

IF (IMM8[7] = 0) THEN DEST[255:224] SRC1[255:224]
ELSE DEST [255:224] SRC2[255:224] FI.

Intel C/C++ Compiler Intrinsic Equivalent

BLENDPS: __m128 _mm_blend_ps (__m128 v1, __m128 v2, const int mask);

VBLENDPS: __m256 _mm256_blend_ps (__m256 a, __m256 b, const int mask);

SIMD Floating-Point Exceptions

None

Other Exceptions
See Exceptions Type 4.
3-82 Vol. 2A BLENDPS — Blend Packed Single Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
BLENDVPD — Variable Blend Packed Double Precision Floating-Point
Values

Instruction Operand Encoding

Description

Conditionally copy each quadword data element of double-precision floating-point
value from the second source operand and the first source operand depending on
mask bits defined in the mask register operand. The mask bits are the most signifi-
cant bit in each quadword element of the mask register.
Each quadword element of the destination operand is copied from:
• the corresponding quadword element in the second source operand, If a mask bit

is “1"; or
• the corresponding quadword element in the first source operand, If a mask bit is

“0"
The register assignment of the implicit mask operand for BLENDVPD is defined to be
the architectural register XMM0.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

66 0F 38 15 /r

BLENDVPD xmm1, xmm2/m128 ,
<XMM0>

RM0 V/V SSE4_1 Select packed DP FP values
from xmm1 and xmm2 from
mask specified in XMM0 and
store the values in xmm1.

VEX.NDS.128.66.0F3A.W0 4B /r /is4

VBLENDVPD xmm1, xmm2,
xmm3/m128, xmm4

RVMR V/V AVX Conditionally copy double-
precision floating-point
values from xmm2 or
xmm3/m128 to xmm1,
based on mask bits in the
mask operand, xmm4.

VEX.NDS.256.66.0F3A.W0 4B /r /is4

VBLENDVPD ymm1, ymm2,
ymm3/m256, ymm4

RVMR V/V AVX Conditionally copy double-
precision floating-point
values from ymm2 or
ymm3/m256 to ymm1,
based on mask bits in the
mask operand, ymm4.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM0 ModRM:reg (r, w) ModRM:r/m (r) implicit XMM0 NA

RVMR ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8[7:4]
Vol. 2A 3-83BLENDVPD — Variable Blend Packed Double Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
128-bit Legacy SSE version: The first source operand and the destination operand is
the same. Bits (VLMAX-1:128) of the corresponding YMM destination register remain
unchanged. The mask register operand is implicitly defined to be the architectural
register XMM0. An attempt to execute BLENDVPD with a VEX prefix will cause #UD.
VEX.128 encoded version: The first source operand and the destination operand are
XMM registers. The second source operand is an XMM register or 128-bit memory
location. The mask operand is the third source register, and encoded in bits[7:4] of
the immediate byte(imm8). The bits[3:0] of imm8 are ignored. In 32-bit mode,
imm8[7] is ignored. The upper bits (VLMAX-1:128) of the corresponding YMM
register (destination register) are zeroed. VEX.W must be 0, otherwise, the instruc-
tion will #UD.
VEX.256 encoded version: The first source operand and destination operand are YMM
registers. The second source operand can be a YMM register or a 256-bit memory
location. The mask operand is the third source register, and encoded in bits[7:4] of
the immediate byte(imm8). The bits[3:0] of imm8 are ignored. In 32-bit mode,
imm8[7] is ignored. VEX.W must be 0, otherwise, the instruction will #UD.
VBLENDVPD permits the mask to be any XMM or YMM register. In contrast,
BLENDVPD treats XMM0 implicitly as the mask and do not support non-destructive
destination operation.

Operation

BLENDVPD (128-bit Legacy SSE version)
MASK XMM0
IF (MASK[63] = 0) THEN DEST[63:0] DEST[63:0]

ELSE DEST [63:0] SRC[63:0] FI
IF (MASK[127] = 0) THEN DEST[127:64] DEST[127:64]

ELSE DEST [127:64] SRC[127:64] FI
DEST[VLMAX-1:128] (Unmodified)

VBLENDVPD (VEX.128 encoded version)
MASK SRC3
IF (MASK[63] = 0) THEN DEST[63:0] SRC1[63:0]

ELSE DEST [63:0] SRC2[63:0] FI
IF (MASK[127] = 0) THEN DEST[127:64] SRC1[127:64]

ELSE DEST [127:64] SRC2[127:64] FI
DEST[VLMAX-1:128] 0

VBLENDVPD (VEX.256 encoded version)
MASK SRC3
IF (MASK[63] = 0) THEN DEST[63:0] SRC1[63:0]

ELSE DEST [63:0] SRC2[63:0] FI
IF (MASK[127] = 0) THEN DEST[127:64] SRC1[127:64]

ELSE DEST [127:64] SRC2[127:64] FI
3-84 Vol. 2A BLENDVPD — Variable Blend Packed Double Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
IF (MASK[191] = 0) THEN DEST[191:128] SRC1[191:128]
ELSE DEST [191:128] SRC2[191:128] FI

IF (MASK[255] = 0) THEN DEST[255:192] SRC1[255:192]
ELSE DEST [255:192] SRC2[255:192] FI

Intel C/C++ Compiler Intrinsic Equivalent

BLENDVPD: __m128d _mm_blendv_pd(__m128d v1, __m128d v2, __m128d v3);

VBLENDVPD: __m128 _mm_blendv_pd (__m128d a, __m128d b, __m128d mask);

VBLENDVPD: __m256 _mm256_blendv_pd (__m256d a, __m256d b, __m256d mask);

SIMD Floating-Point Exceptions

None

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.W = 1.
Vol. 2A 3-85BLENDVPD — Variable Blend Packed Double Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
BLENDVPS — Variable Blend Packed Single Precision Floating-Point
Values

Instruction Operand Encoding

Description

Conditionally copy each dword data element of single-precision floating-point value
from the second source operand and the first source operand depending on mask bits
defined in the mask register operand. The mask bits are the most significant bit in
each dword element of the mask register.
Each quadword element of the destination operand is copied from:
• the corresponding dword element in the second source operand, If a mask bit is

“1"; or
• the corresponding dword element in the first source operand, If a mask bit is “0"

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

66 0F 38 14 /r

BLENDVPS xmm1, xmm2/m128,
<XMM0>

RM0 V/V SSE4_1 Select packed single
precision floating-point
values from xmm1 and
xmm2/m128 from mask
specified in XMM0 and store
the values into xmm1.

VEX.NDS.128.66.0F3A.W0 4A /r /is4

VBLENDVPS xmm1, xmm2,
xmm3/m128, xmm4

RVMR V/V AVX Conditionally copy single-
precision floating-point
values from xmm2 or
xmm3/m128 to xmm1,
based on mask bits in the
specified mask operand,
xmm4.

VEX.NDS.256.66.0F3A.W0 4A /r /is4

VBLENDVPS ymm1, ymm2,
ymm3/m256, ymm4

RVMR V/V AVX Conditionally copy single-
precision floating-point
values from ymm2 or
ymm3/m256 to ymm1,
based on mask bits in the
specified mask register,
ymm4.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM0 ModRM:reg (r, w) ModRM:r/m (r) implicit XMM0 NA

RVMR ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8[7:4]
3-86 Vol. 2A BLENDVPS — Variable Blend Packed Single Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
The register assignment of the implicit mask operand for BLENDVPS is defined to be
the architectural register XMM0.
128-bit Legacy SSE version: The first source operand and the destination operand is
the same. Bits (VLMAX-1:128) of the corresponding YMM destination register remain
unchanged. The mask register operand is implicitly defined to be the architectural
register XMM0. An attempt to execute BLENDVPS with a VEX prefix will cause #UD.
VEX.128 encoded version: The first source operand and the destination operand are
XMM registers. The second source operand is an XMM register or 128-bit memory
location. The mask operand is the third source register, and encoded in bits[7:4] of
the immediate byte(imm8). The bits[3:0] of imm8 are ignored. In 32-bit mode,
imm8[7] is ignored. The upper bits (VLMAX-1:128) of the corresponding YMM
register (destination register) are zeroed. VEX.W must be 0, otherwise, the instruc-
tion will #UD.
VEX.256 encoded version: The first source operand and destination operand are YMM
registers. The second source operand can be a YMM register or a 256-bit memory
location. The mask operand is the third source register, and encoded in bits[7:4] of
the immediate byte(imm8). The bits[3:0] of imm8 are ignored. In 32-bit mode,
imm8[7] is ignored. VEX.W must be 0, otherwise, the instruction will #UD.
VBLENDVPS permits the mask to be any XMM or YMM register. In contrast,
BLENDVPS treats XMM0 implicitly as the mask and do not support non-destructive
destination operation.

Operation

BLENDVPS (128-bit Legacy SSE version)
MASK XMM0
IF (MASK[31] = 0) THEN DEST[31:0] DEST[31:0]

ELSE DEST [31:0] SRC[31:0] FI
IF (MASK[63] = 0) THEN DEST[63:32] DEST[63:32]

ELSE DEST [63:32] SRC[63:32] FI
IF (MASK[95] = 0) THEN DEST[95:64] DEST[95:64]

ELSE DEST [95:64] SRC[95:64] FI
IF (MASK[127] = 0) THEN DEST[127:96] DEST[127:96]

ELSE DEST [127:96] SRC[127:96] FI
DEST[VLMAX-1:128] (Unmodified)

VBLENDVPS (VEX.128 encoded version)
MASK SRC3
IF (MASK[31] = 0) THEN DEST[31:0] SRC1[31:0]

ELSE DEST [31:0] SRC2[31:0] FI
IF (MASK[63] = 0) THEN DEST[63:32] SRC1[63:32]

ELSE DEST [63:32] SRC2[63:32] FI
IF (MASK[95] = 0) THEN DEST[95:64] SRC1[95:64]

ELSE DEST [95:64] SRC2[95:64] FI
Vol. 2A 3-87BLENDVPS — Variable Blend Packed Single Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
IF (MASK[127] = 0) THEN DEST[127:96] SRC1[127:96]
ELSE DEST [127:96] SRC2[127:96] FI

DEST[VLMAX-1:128] 0

VBLENDVPS (VEX.256 encoded version)
MASK SRC3
IF (MASK[31] = 0) THEN DEST[31:0] SRC1[31:0]

ELSE DEST [31:0] SRC2[31:0] FI
IF (MASK[63] = 0) THEN DEST[63:32] SRC1[63:32]

ELSE DEST [63:32] SRC2[63:32] FI
IF (MASK[95] = 0) THEN DEST[95:64] SRC1[95:64]

ELSE DEST [95:64] SRC2[95:64] FI
IF (MASK[127] = 0) THEN DEST[127:96] SRC1[127:96]

ELSE DEST [127:96] SRC2[127:96] FI
IF (MASK[159] = 0) THEN DEST[159:128] SRC1[159:128]

ELSE DEST [159:128] SRC2[159:128] FI
IF (MASK[191] = 0) THEN DEST[191:160] SRC1[191:160]

ELSE DEST [191:160] SRC2[191:160] FI
IF (MASK[223] = 0) THEN DEST[223:192] SRC1[223:192]

ELSE DEST [223:192] SRC2[223:192] FI
IF (MASK[255] = 0) THEN DEST[255:224] SRC1[255:224]

ELSE DEST [255:224] SRC2[255:224] FI

Intel C/C++ Compiler Intrinsic Equivalent

BLENDVPS: __m128 _mm_blendv_ps(__m128 v1, __m128 v2, __m128 v3);

VBLENDVPS: __m128 _mm_blendv_ps (__m128 a, __m128 b, __m128 mask);

VBLENDVPS: __m256 _mm256_blendv_ps (__m256 a, __m256 b, __m256 mask);

SIMD Floating-Point Exceptions

None

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.W = 1.
3-88 Vol. 2A BLENDVPS — Variable Blend Packed Single Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
BOUND—Check Array Index Against Bounds

Instruction Operand Encoding

Description

BOUND determines if the first operand (array index) is within the bounds of an array
specified the second operand (bounds operand). The array index is a signed integer
located in a register. The bounds operand is a memory location that contains a pair of
signed doubleword-integers (when the operand-size attribute is 32) or a pair of
signed word-integers (when the operand-size attribute is 16). The first doubleword
(or word) is the lower bound of the array and the second doubleword (or word) is the
upper bound of the array. The array index must be greater than or equal to the lower
bound and less than or equal to the upper bound plus the operand size in bytes. If the
index is not within bounds, a BOUND range exceeded exception (#BR) is signaled.
When this exception is generated, the saved return instruction pointer points to the
BOUND instruction.

The bounds limit data structure (two words or doublewords containing the lower and
upper limits of the array) is usually placed just before the array itself, making the
limits addressable via a constant offset from the beginning of the array. Because the
address of the array already will be present in a register, this practice avoids extra
bus cycles to obtain the effective address of the array bounds.

This instruction executes as described in compatibility mode and legacy mode. It is
not valid in 64-bit mode.

Operation

IF 64bit Mode
THEN

#UD;
ELSE

IF (ArrayIndex < LowerBound OR ArrayIndex > UpperBound)
(* Below lower bound or above upper bound *)

Opcode Instruction Op/
En

64-bit
Mode

Compat/
Leg Mode

Description

62 /r BOUND r16,
m16&16

RM Invalid Valid Check if r16 (array index) is
within bounds specified by
m16&16.

62 /r BOUND r32,
m32&32

RM Invalid Valid Check if r32 (array index) is
within bounds specified by
m16&16.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) NA NA
Vol. 2A 3-89BOUND—Check Array Index Against Bounds

INSTRUCTION SET REFERENCE, A-L
THEN #BR; FI;
FI;

Flags Affected

None.

Protected Mode Exceptions
#BR If the bounds test fails.
#UD If second operand is not a memory location.

If the LOCK prefix is used.
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.

Real-Address Mode Exceptions
#BR If the bounds test fails.
#UD If second operand is not a memory location.

If the LOCK prefix is used.
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.

Virtual-8086 Mode Exceptions
#BR If the bounds test fails.
#UD If second operand is not a memory location.

If the LOCK prefix is used.
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
3-90 Vol. 2A BOUND—Check Array Index Against Bounds

INSTRUCTION SET REFERENCE, A-L
Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#UD If in 64-bit mode.
Vol. 2A 3-91BOUND—Check Array Index Against Bounds

INSTRUCTION SET REFERENCE, A-L
BSF—Bit Scan Forward

Instruction Operand Encoding

Description

Searches the source operand (second operand) for the least significant set bit (1 bit).
If a least significant 1 bit is found, its bit index is stored in the destination operand
(first operand). The source operand can be a register or a memory location; the
destination operand is a register. The bit index is an unsigned offset from bit 0 of the
source operand. If the content of the source operand is 0, the content of the destina-
tion operand is undefined.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

Operation

IF SRC = 0
THEN

ZF ← 1;
DEST is undefined;

ELSE
ZF ← 0;
temp ← 0;
WHILE Bit(SRC, temp) = 0
DO

temp ← temp + 1;
DEST ← temp;

OD;
FI;

Opcode Instruction Op/
En

64-bit
Mode

Compat/
Leg Mode

Description

0F BC /r BSF r16, r/m16 RM Valid Valid Bit scan forward on r/m16.

0F BC /r BSF r32, r/m32 RM Valid Valid Bit scan forward on r/m32.

REX.W + 0F BC BSF r64, r/m64 RM Valid N.E. Bit scan forward on r/m64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
3-92 Vol. 2A BSF—Bit Scan Forward

INSTRUCTION SET REFERENCE, A-L
Flags Affected

The ZF flag is set to 1 if all the source operand is 0; otherwise, the ZF flag is cleared.
The CF, OF, SF, AF, and PF, flags are undefined.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
Vol. 2A 3-93BSF—Bit Scan Forward

INSTRUCTION SET REFERENCE, A-L
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
3-94 Vol. 2A BSF—Bit Scan Forward

INSTRUCTION SET REFERENCE, A-L
BSR—Bit Scan Reverse

Instruction Operand Encoding

Description

Searches the source operand (second operand) for the most significant set bit (1 bit).
If a most significant 1 bit is found, its bit index is stored in the destination operand
(first operand). The source operand can be a register or a memory location; the
destination operand is a register. The bit index is an unsigned offset from bit 0 of the
source operand. If the content source operand is 0, the content of the destination
operand is undefined.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

Operation

IF SRC = 0
THEN

ZF ← 1;
DEST is undefined;

ELSE
ZF ← 0;
temp ← OperandSize – 1;
WHILE Bit(SRC, temp) = 0
DO

temp ← temp - 1;
DEST ← temp;

OD;
FI;

Opcode Instruction Op/
En

64-bit
Mode

Compat/
Leg Mode

Description

0F BD /r BSR r16, r/m16 RM Valid Valid Bit scan reverse on r/m16.

0F BD /r BSR r32, r/m32 RM Valid Valid Bit scan reverse on r/m32.

REX.W + 0F BD BSR r64, r/m64 RM Valid N.E. Bit scan reverse on r/m64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
Vol. 2A 3-95BSR—Bit Scan Reverse

INSTRUCTION SET REFERENCE, A-L
Flags Affected

The ZF flag is set to 1 if all the source operand is 0; otherwise, the ZF flag is cleared.
The CF, OF, SF, AF, and PF, flags are undefined.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
3-96 Vol. 2A BSR—Bit Scan Reverse

INSTRUCTION SET REFERENCE, A-L
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
Vol. 2A 3-97BSR—Bit Scan Reverse

INSTRUCTION SET REFERENCE, A-L
BSWAP—Byte Swap

Instruction Operand Encoding

Description

Reverses the byte order of a 32-bit or 64-bit (destination) register. This instruction is
provided for converting little-endian values to big-endian format and vice versa. To
swap bytes in a word value (16-bit register), use the XCHG instruction. When the
BSWAP instruction references a 16-bit register, the result is undefined.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

IA-32 Architecture Legacy Compatibility

The BSWAP instruction is not supported on IA-32 processors earlier than the
Intel486™ processor family. For compatibility with this instruction, software
should include functionally equivalent code for execution on Intel processors earlier
than the Intel486 processor family.

Operation

TEMP ← DEST
IF 64-bit mode AND OperandSize = 64

THEN
DEST[7:0] ← TEMP[63:56];
DEST[15:8] ← TEMP[55:48];
DEST[23:16] ← TEMP[47:40];
DEST[31:24] ← TEMP[39:32];
DEST[39:32] ← TEMP[31:24];

Opcode Instruction Op/
En

64-bit
Mode

Compat/
Leg Mode

Description

0F C8+rd BSWAP r32 O Valid* Valid Reverses the byte order of
a 32-bit register.

REX.W + 0F
C8+rd

BSWAP r64 O Valid N.E. Reverses the byte order of
a 64-bit register.

NOTES:
* See IA-32 Architecture Compatibility section below.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

O opcode + rd (r, w) NA NA NA
3-98 Vol. 2A BSWAP—Byte Swap

INSTRUCTION SET REFERENCE, A-L
DEST[47:40] ← TEMP[23:16];
DEST[55:48] ← TEMP[15:8];
DEST[63:56] ← TEMP[7:0];

ELSE
DEST[7:0] ← TEMP[31:24];
DEST[15:8] ← TEMP[23:16];
DEST[23:16] ← TEMP[15:8];
DEST[31:24] ← TEMP[7:0];

FI;

Flags Affected

None.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.
Vol. 2A 3-99BSWAP—Byte Swap

INSTRUCTION SET REFERENCE, A-L
BT—Bit Test

Instruction Operand Encoding

Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at
the bit-position designated by the bit offset (specified by the second operand) and
stores the value of the bit in the CF flag. The bit base operand can be a register or a
memory location; the bit offset operand can be a register or an immediate value:
• If the bit base operand specifies a register, the instruction takes the modulo 16,

32, or 64 of the bit offset operand (modulo size depends on the mode and
register size; 64-bit operands are available only in 64-bit mode).

• If the bit base operand specifies a memory location, the operand represents the
address of the byte in memory that contains the bit base (bit 0 of the specified
byte) of the bit string. The range of the bit position that can be referenced by the
offset operand depends on the operand size.

See also: Bit(BitBase, BitOffset) on page 3-14.

Some assemblers support immediate bit offsets larger than 31 by using the imme-
diate bit offset field in combination with the displacement field of the memory
operand. In this case, the low-order 3 or 5 bits (3 for 16-bit operands, 5 for 32-bit
operands) of the immediate bit offset are stored in the immediate bit offset field, and
the high-order bits are shifted and combined with the byte displacement in the
addressing mode by the assembler. The processor will ignore the high order bits if
they are not zero.

When accessing a bit in memory, the processor may access 4 bytes starting from the
memory address for a 32-bit operand size, using by the following relationship:

Opcode Instruction Op/
En

64-bit
Mode

Compat/
Leg Mode

Description

0F A3 BT r/m16, r16 MR Valid Valid Store selected bit in CF flag.

0F A3 BT r/m32, r32 MR Valid Valid Store selected bit in CF flag.

REX.W + 0F A3 BT r/m64, r64 MR Valid N.E. Store selected bit in CF flag.

0F BA /4 ib BT r/m16, imm8 MI Valid Valid Store selected bit in CF flag.

0F BA /4 ib BT r/m32, imm8 MI Valid Valid Store selected bit in CF flag.

REX.W + 0F BA
/4 ib

BT r/m64, imm8 MI Valid N.E. Store selected bit in CF flag.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (r) ModRM:reg (r) NA NA

MI ModRM:r/m (r) imm8 NA NA
3-100 Vol. 2A BT—Bit Test

INSTRUCTION SET REFERENCE, A-L
Effective Address + (4 ∗ (BitOffset DIV 32))

Or, it may access 2 bytes starting from the memory address for a 16-bit operand,
using this relationship:

Effective Address + (2 ∗ (BitOffset DIV 16))

It may do so even when only a single byte needs to be accessed to reach the given
bit. When using this bit addressing mechanism, software should avoid referencing
areas of memory close to address space holes. In particular, it should avoid refer-
ences to memory-mapped I/O registers. Instead, software should use the MOV
instructions to load from or store to these addresses, and use the register form of
these instructions to manipulate the data.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bit operands. See the summary
chart at the beginning of this section for encoding data and limits.

Operation

CF ← Bit(BitBase, BitOffset);

Flags Affected

The CF flag contains the value of the selected bit. The ZF flag is unaffected. The OF,
SF, AF, and PF flags are undefined.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#UD If the LOCK prefix is used.
Vol. 2A 3-101BT—Bit Test

INSTRUCTION SET REFERENCE, A-L
Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
3-102 Vol. 2A BT—Bit Test

INSTRUCTION SET REFERENCE, A-L
BTC—Bit Test and Complement

Instruction Operand Encoding

Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at
the bit-position designated by the bit offset operand (second operand), stores the
value of the bit in the CF flag, and complements the selected bit in the bit string. The
bit base operand can be a register or a memory location; the bit offset operand can
be a register or an immediate value:
• If the bit base operand specifies a register, the instruction takes the modulo 16,

32, or 64 of the bit offset operand (modulo size depends on the mode and
register size; 64-bit operands are available only in 64-bit mode). This allows any
bit position to be selected.

• If the bit base operand specifies a memory location, the operand represents the
address of the byte in memory that contains the bit base (bit 0 of the specified
byte) of the bit string. The range of the bit position that can be referenced by the
offset operand depends on the operand size.

See also: Bit(BitBase, BitOffset) on page 3-14.

Some assemblers support immediate bit offsets larger than 31 by using the imme-
diate bit offset field in combination with the displacement field of the memory
operand. See “BT—Bit Test” in this chapter for more information on this addressing
mechanism.

Opcode Instruction Op/
En

64-bit
Mode

Compat/
Leg Mode

Description

0F BB BTC r/m16, r16 MR Valid Valid Store selected bit in CF flag
and complement.

0F BB BTC r/m32, r32 MR Valid Valid Store selected bit in CF flag
and complement.

REX.W + 0F BB BTC r/m64, r64 MR Valid N.E. Store selected bit in CF flag
and complement.

0F BA /7 ib BTC r/m16, imm8 MI Valid Valid Store selected bit in CF flag
and complement.

0F BA /7 ib BTC r/m32, imm8 MI Valid Valid Store selected bit in CF flag
and complement.

REX.W + 0F BA
/7 ib

BTC r/m64, imm8 MI Valid N.E. Store selected bit in CF flag
and complement.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (r, w) ModRM:reg (r) NA NA

MI ModRM:r/m (r, w) imm8 NA NA
Vol. 2A 3-103BTC—Bit Test and Complement

INSTRUCTION SET REFERENCE, A-L
This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

Operation

CF ← Bit(BitBase, BitOffset);
Bit(BitBase, BitOffset) ← NOT Bit(BitBase, BitOffset);

Flags Affected

The CF flag contains the value of the selected bit before it is complemented. The ZF
flag is unaffected. The OF, SF, AF, and PF flags are undefined.

Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory

operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#UD If the LOCK prefix is used but the destination is not a memory

operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
3-104 Vol. 2A BTC—Bit Test and Complement

INSTRUCTION SET REFERENCE, A-L
#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used but the destination is not a memory

operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory

operand.
Vol. 2A 3-105BTC—Bit Test and Complement

INSTRUCTION SET REFERENCE, A-L
BTR—Bit Test and Reset

Instruction Operand Encoding

Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at
the bit-position designated by the bit offset operand (second operand), stores the
value of the bit in the CF flag, and clears the selected bit in the bit string to 0. The bit
base operand can be a register or a memory location; the bit offset operand can be a
register or an immediate value:
• If the bit base operand specifies a register, the instruction takes the modulo 16,

32, or 64 of the bit offset operand (modulo size depends on the mode and
register size; 64-bit operands are available only in 64-bit mode). This allows any
bit position to be selected.

• If the bit base operand specifies a memory location, the operand represents the
address of the byte in memory that contains the bit base (bit 0 of the specified
byte) of the bit string. The range of the bit position that can be referenced by the
offset operand depends on the operand size.

See also: Bit(BitBase, BitOffset) on page 3-14.

Some assemblers support immediate bit offsets larger than 31 by using the imme-
diate bit offset field in combination with the displacement field of the memory
operand. See “BT—Bit Test” in this chapter for more information on this addressing
mechanism.

Opcode Instruction Op/
En

64-bit
Mode

Compat/
Leg Mode

Description

0F B3 BTR r/m16, r16 MR Valid Valid Store selected bit in CF flag
and clear.

0F B3 BTR r/m32, r32 MR Valid Valid Store selected bit in CF flag
and clear.

REX.W + 0F B3 BTR r/m64, r64 MR Valid N.E. Store selected bit in CF flag
and clear.

0F BA /6 ib BTR r/m16, imm8 MI Valid Valid Store selected bit in CF flag
and clear.

0F BA /6 ib BTR r/m32, imm8 MI Valid Valid Store selected bit in CF flag
and clear.

REX.W + 0F BA
/6 ib

BTR r/m64, imm8 MI Valid N.E. Store selected bit in CF flag
and clear.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (r, w) ModRM:reg (r) NA NA

MI ModRM:r/m (r, w) imm8 NA NA
3-106 Vol. 2A BTR—Bit Test and Reset

INSTRUCTION SET REFERENCE, A-L
This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

Operation

CF ← Bit(BitBase, BitOffset);
Bit(BitBase, BitOffset) ← 0;

Flags Affected

The CF flag contains the value of the selected bit before it is cleared. The ZF flag is
unaffected. The OF, SF, AF, and PF flags are undefined.

Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory

operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#UD If the LOCK prefix is used but the destination is not a memory

operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
Vol. 2A 3-107BTR—Bit Test and Reset

INSTRUCTION SET REFERENCE, A-L
#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used but the destination is not a memory

operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory

operand.
3-108 Vol. 2A BTR—Bit Test and Reset

INSTRUCTION SET REFERENCE, A-L
BTS—Bit Test and Set

Instruction Operand Encoding

Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at
the bit-position designated by the bit offset operand (second operand), stores the
value of the bit in the CF flag, and sets the selected bit in the bit string to 1. The bit
base operand can be a register or a memory location; the bit offset operand can be a
register or an immediate value:
• If the bit base operand specifies a register, the instruction takes the modulo 16,

32, or 64 of the bit offset operand (modulo size depends on the mode and
register size; 64-bit operands are available only in 64-bit mode). This allows any
bit position to be selected.

• If the bit base operand specifies a memory location, the operand represents the
address of the byte in memory that contains the bit base (bit 0 of the specified
byte) of the bit string. The range of the bit position that can be referenced by the
offset operand depends on the operand size.

See also: Bit(BitBase, BitOffset) on page 3-14.

Some assemblers support immediate bit offsets larger than 31 by using the imme-
diate bit offset field in combination with the displacement field of the memory
operand. See “BT—Bit Test” in this chapter for more information on this addressing
mechanism.

Opcode Instruction Op/
En

64-bit
Mode

Compat/
Leg Mode

Description

0F AB BTS r/m16, r16 MR Valid Valid Store selected bit in CF flag
and set.

0F AB BTS r/m32, r32 MR Valid Valid Store selected bit in CF flag
and set.

REX.W + 0F AB BTS r/m64, r64 MR Valid N.E. Store selected bit in CF flag
and set.

0F BA /5 ib BTS r/m16, imm8 MI Valid Valid Store selected bit in CF flag
and set.

0F BA /5 ib BTS r/m32, imm8 MI Valid Valid Store selected bit in CF flag
and set.

REX.W + 0F BA
/5 ib

BTS r/m64, imm8 MI Valid N.E. Store selected bit in CF flag
and set.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (r, w) ModRM:reg (r) NA NA

MI ModRM:r/m (r, w) imm8 NA NA
Vol. 2A 3-109BTS—Bit Test and Set

INSTRUCTION SET REFERENCE, A-L
This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

Operation

CF ← Bit(BitBase, BitOffset);
Bit(BitBase, BitOffset) ← 1;

Flags Affected

The CF flag contains the value of the selected bit before it is set. The ZF flag is unaf-
fected. The OF, SF, AF, and PF flags are undefined.

Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory

operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#UD If the LOCK prefix is used but the destination is not a memory

operand.

Virtual-8086 Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
3-110 Vol. 2A BTS—Bit Test and Set

INSTRUCTION SET REFERENCE, A-L
#SS If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used but the destination is not a memory

operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory

operand.
Vol. 2A 3-111BTS—Bit Test and Set

INSTRUCTION SET REFERENCE, A-L
CALL—Call Procedure
Opcode Instruction Op/

En
64-bit
Mode

Compat/
Leg Mode

Description

E8 cw CALL rel16 M N.S. Valid Call near, relative,
displacement relative to
next instruction.

E8 cd CALL rel32 M Valid Valid Call near, relative,
displacement relative to
next instruction. 32-bit
displacement sign extended
to 64-bits in 64-bit mode.

FF /2 CALL r/m16 M N.E. Valid Call near, absolute indirect,
address given in r/m16.

FF /2 CALL r/m32 M N.E. Valid Call near, absolute indirect,
address given in r/m32.

FF /2 CALL r/m64 M Valid N.E. Call near, absolute indirect,
address given in r/m64.

9A cd CALL ptr16:16 D Invalid Valid Call far, absolute, address
given in operand.

9A cp CALL ptr16:32 D Invalid Valid Call far, absolute, address
given in operand.

FF /3 CALL m16:16 M Valid Valid Call far, absolute indirect
address given in m16:16.

In 32-bit mode: if selector
points to a gate, then RIP =
32-bit zero extended
displacement taken from
gate; else RIP = zero
extended 16-bit offset from
far pointer referenced in
the instruction.

FF /3 CALL m16:32 M Valid Valid In 64-bit mode: If selector
points to a gate, then RIP =
64-bit displacement taken
from gate; else RIP = zero
extended 32-bit offset from
far pointer referenced in
the instruction.
3-112 Vol. 2A CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-L
Instruction Operand Encoding

Description

Saves procedure linking information on the stack and branches to the called proce-
dure specified using the target operand. The target operand specifies the address of
the first instruction in the called procedure. The operand can be an immediate value,
a general-purpose register, or a memory location.

This instruction can be used to execute four types of calls:
• Near Call — A call to a procedure in the current code segment (the segment

currently pointed to by the CS register), sometimes referred to as an intra-
segment call.

• Far Call — A call to a procedure located in a different segment than the current
code segment, sometimes referred to as an inter-segment call.

• Inter-privilege-level far call — A far call to a procedure in a segment at a
different privilege level than that of the currently executing program or
procedure.

• Task switch — A call to a procedure located in a different task.

The latter two call types (inter-privilege-level call and task switch) can only be
executed in protected mode. See “Calling Procedures Using Call and RET” in Chapter
6 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1,
for additional information on near, far, and inter-privilege-level calls. See Chapter 7,
“Task Management,” in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3A, for information on performing task switches with the
CALL instruction.

Near Call. When executing a near call, the processor pushes the value of the EIP
register (which contains the offset of the instruction following the CALL instruction)
on the stack (for use later as a return-instruction pointer). The processor then

Opcode Instruction Op/
En

64-bit
Mode

Compat/
Leg Mode

Description

REX.W + FF /3 CALL m16:64 M Valid N.E. In 64-bit mode: If selector
points to a gate, then RIP =
64-bit displacement taken
from gate; else RIP = 64-bit
offset from far pointer
referenced in the
instruction.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

D Offset NA NA NA

M ModRM:r/m (r) NA NA NA
Vol. 2A 3-113CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-L
branches to the address in the current code segment specified by the target operand.
The target operand specifies either an absolute offset in the code segment (an offset
from the base of the code segment) or a relative offset (a signed displacement rela-
tive to the current value of the instruction pointer in the EIP register; this value
points to the instruction following the CALL instruction). The CS register is not
changed on near calls.

For a near call absolute, an absolute offset is specified indirectly in a general-purpose
register or a memory location (r/m16, r/m32, or r/m64). The operand-size attribute
determines the size of the target operand (16, 32 or 64 bits). When in 64-bit mode,
the operand size for near call (and all near branches) is forced to 64-bits. Absolute
offsets are loaded directly into the EIP(RIP) register. If the operand size attribute is
16, the upper two bytes of the EIP register are cleared, resulting in a maximum
instruction pointer size of 16 bits. When accessing an absolute offset indirectly using
the stack pointer [ESP] as the base register, the base value used is the value of the
ESP before the instruction executes.

A relative offset (rel16 or rel32) is generally specified as a label in assembly code. But
at the machine code level, it is encoded as a signed, 16- or 32-bit immediate value.
This value is added to the value in the EIP(RIP) register. In 64-bit mode the relative
offset is always a 32-bit immediate value which is sign extended to 64-bits before it
is added to the value in the RIP register for the target calculation. As with absolute
offsets, the operand-size attribute determines the size of the target operand (16, 32,
or 64 bits). In 64-bit mode the target operand will always be 64-bits because the
operand size is forced to 64-bits for near branches.

Far Calls in Real-Address or Virtual-8086 Mode. When executing a far call in real-
address or virtual-8086 mode, the processor pushes the current value of both the CS
and EIP registers on the stack for use as a return-instruction pointer. The processor
then performs a “far branch” to the code segment and offset specified with the target
operand for the called procedure. The target operand specifies an absolute far
address either directly with a pointer (ptr16:16 or ptr16:32) or indirectly with a
memory location (m16:16 or m16:32). With the pointer method, the segment and
offset of the called procedure is encoded in the instruction using a 4-byte (16-bit
operand size) or 6-byte (32-bit operand size) far address immediate. With the indi-
rect method, the target operand specifies a memory location that contains a 4-byte
(16-bit operand size) or 6-byte (32-bit operand size) far address. The operand-size
attribute determines the size of the offset (16 or 32 bits) in the far address. The far
address is loaded directly into the CS and EIP registers. If the operand-size attribute
is 16, the upper two bytes of the EIP register are cleared.

Far Calls in Protected Mode. When the processor is operating in protected mode, the
CALL instruction can be used to perform the following types of far calls:
• Far call to the same privilege level
• Far call to a different privilege level (inter-privilege level call)
• Task switch (far call to another task)

In protected mode, the processor always uses the segment selector part of the far
address to access the corresponding descriptor in the GDT or LDT. The descriptor
3-114 Vol. 2A CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-L
type (code segment, call gate, task gate, or TSS) and access rights determine the
type of call operation to be performed.

If the selected descriptor is for a code segment, a far call to a code segment at the
same privilege level is performed. (If the selected code segment is at a different priv-
ilege level and the code segment is non-conforming, a general-protection exception
is generated.) A far call to the same privilege level in protected mode is very similar
to one carried out in real-address or virtual-8086 mode. The target operand specifies
an absolute far address either directly with a pointer (ptr16:16 or ptr16:32) or indi-
rectly with a memory location (m16:16 or m16:32). The operand- size attribute
determines the size of the offset (16 or 32 bits) in the far address. The new code
segment selector and its descriptor are loaded into CS register; the offset from the
instruction is loaded into the EIP register.

A call gate (described in the next paragraph) can also be used to perform a far call to
a code segment at the same privilege level. Using this mechanism provides an extra
level of indirection and is the preferred method of making calls between 16-bit and
32-bit code segments.

When executing an inter-privilege-level far call, the code segment for the procedure
being called must be accessed through a call gate. The segment selector specified by
the target operand identifies the call gate. The target operand can specify the call
gate segment selector either directly with a pointer (ptr16:16 or ptr16:32) or indi-
rectly with a memory location (m16:16 or m16:32). The processor obtains the
segment selector for the new code segment and the new instruction pointer (offset)
from the call gate descriptor. (The offset from the target operand is ignored when a
call gate is used.)

On inter-privilege-level calls, the processor switches to the stack for the privilege
level of the called procedure. The segment selector for the new stack segment is
specified in the TSS for the currently running task. The branch to the new code
segment occurs after the stack switch. (Note that when using a call gate to perform
a far call to a segment at the same privilege level, no stack switch occurs.) On the
new stack, the processor pushes the segment selector and stack pointer for the
calling procedure’s stack, an optional set of parameters from the calling procedures
stack, and the segment selector and instruction pointer for the calling procedure’s
code segment. (A value in the call gate descriptor determines how many parameters
to copy to the new stack.) Finally, the processor branches to the address of the
procedure being called within the new code segment.

Executing a task switch with the CALL instruction is similar to executing a call
through a call gate. The target operand specifies the segment selector of the task
gate for the new task activated by the switch (the offset in the target operand is
ignored). The task gate in turn points to the TSS for the new task, which contains the
segment selectors for the task’s code and stack segments. Note that the TSS also
contains the EIP value for the next instruction that was to be executed before the
calling task was suspended. This instruction pointer value is loaded into the EIP
register to re-start the calling task.

The CALL instruction can also specify the segment selector of the TSS directly, which
eliminates the indirection of the task gate. See Chapter 7, “Task Management,” in the
Vol. 2A 3-115CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-L
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for
information on the mechanics of a task switch.

When you execute at task switch with a CALL instruction, the nested task flag (NT) is
set in the EFLAGS register and the new TSS’s previous task link field is loaded with
the old task’s TSS selector. Code is expected to suspend this nested task by executing
an IRET instruction which, because the NT flag is set, automatically uses the previous
task link to return to the calling task. (See “Task Linking” in Chapter 7 of the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for information
on nested tasks.) Switching tasks with the CALL instruction differs in this regard from
JMP instruction. JMP does not set the NT flag and therefore does not expect an IRET
instruction to suspend the task.

Mixing 16-Bit and 32-Bit Calls. When making far calls between 16-bit and 32-bit code
segments, use a call gate. If the far call is from a 32-bit code segment to a 16-bit
code segment, the call should be made from the first 64 KBytes of the 32-bit code
segment. This is because the operand-size attribute of the instruction is set to 16, so
only a 16-bit return address offset can be saved. Also, the call should be made using
a 16-bit call gate so that 16-bit values can be pushed on the stack. See Chapter 21,
“Mixing 16-Bit and 32-Bit Code,” in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3B, for more information.

Far Calls in Compatibility Mode. When the processor is operating in compatibility
mode, the CALL instruction can be used to perform the following types of far calls:
• Far call to the same privilege level, remaining in compatibility mode
• Far call to the same privilege level, transitioning to 64-bit mode
• Far call to a different privilege level (inter-privilege level call), transitioning to 64-

bit mode

Note that a CALL instruction can not be used to cause a task switch in compatibility
mode since task switches are not supported in IA-32e mode.

In compatibility mode, the processor always uses the segment selector part of the far
address to access the corresponding descriptor in the GDT or LDT. The descriptor
type (code segment, call gate) and access rights determine the type of call operation
to be performed.

If the selected descriptor is for a code segment, a far call to a code segment at the
same privilege level is performed. (If the selected code segment is at a different priv-
ilege level and the code segment is non-conforming, a general-protection exception
is generated.) A far call to the same privilege level in compatibility mode is very
similar to one carried out in protected mode. The target operand specifies an abso-
lute far address either directly with a pointer (ptr16:16 or ptr16:32) or indirectly with
a memory location (m16:16 or m16:32). The operand-size attribute determines the
size of the offset (16 or 32 bits) in the far address. The new code segment selector
and its descriptor are loaded into CS register and the offset from the instruction is
loaded into the EIP register. The difference is that 64-bit mode may be entered. This
specified by the L bit in the new code segment descriptor.
3-116 Vol. 2A CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-L
Note that a 64-bit call gate (described in the next paragraph) can also be used to
perform a far call to a code segment at the same privilege level. However, using this
mechanism requires that the target code segment descriptor have the L bit set,
causing an entry to 64-bit mode.

When executing an inter-privilege-level far call, the code segment for the procedure
being called must be accessed through a 64-bit call gate. The segment selector spec-
ified by the target operand identifies the call gate. The target operand can specify the
call gate segment selector either directly with a pointer (ptr16:16 or ptr16:32) or
indirectly with a memory location (m16:16 or m16:32). The processor obtains the
segment selector for the new code segment and the new instruction pointer (offset)
from the 16-byte call gate descriptor. (The offset from the target operand is ignored
when a call gate is used.)

On inter-privilege-level calls, the processor switches to the stack for the privilege
level of the called procedure. The segment selector for the new stack segment is set
to NULL. The new stack pointer is specified in the TSS for the currently running task.
The branch to the new code segment occurs after the stack switch. (Note that when
using a call gate to perform a far call to a segment at the same privilege level, an
implicit stack switch occurs as a result of entering 64-bit mode. The SS selector is
unchanged, but stack segment accesses use a segment base of 0x0, the limit is
ignored, and the default stack size is 64-bits. The full value of RSP is used for the
offset, of which the upper 32-bits are undefined.) On the new stack, the processor
pushes the segment selector and stack pointer for the calling procedure’s stack and
the segment selector and instruction pointer for the calling procedure’s code
segment. (Parameter copy is not supported in IA-32e mode.) Finally, the processor
branches to the address of the procedure being called within the new code segment.

Near/(Far) Calls in 64-bit Mode. When the processor is operating in 64-bit mode, the
CALL instruction can be used to perform the following types of far calls:
• Far call to the same privilege level, transitioning to compatibility mode
• Far call to the same privilege level, remaining in 64-bit mode
• Far call to a different privilege level (inter-privilege level call), remaining in 64-bit

mode

Note that in this mode the CALL instruction can not be used to cause a task switch in
64-bit mode since task switches are not supported in IA-32e mode.

In 64-bit mode, the processor always uses the segment selector part of the far
address to access the corresponding descriptor in the GDT or LDT. The descriptor
type (code segment, call gate) and access rights determine the type of call operation
to be performed.

If the selected descriptor is for a code segment, a far call to a code segment at the
same privilege level is performed. (If the selected code segment is at a different priv-
ilege level and the code segment is non-conforming, a general-protection exception
is generated.) A far call to the same privilege level in 64-bit mode is very similar to
one carried out in compatibility mode. The target operand specifies an absolute far
address indirectly with a memory location (m16:16, m16:32 or m16:64). The form
of CALL with a direct specification of absolute far address is not defined in 64-bit
Vol. 2A 3-117CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-L
mode. The operand-size attribute determines the size of the offset (16, 32, or 64
bits) in the far address. The new code segment selector and its descriptor are loaded
into the CS register; the offset from the instruction is loaded into the EIP register. The
new code segment may specify entry either into compatibility or 64-bit mode, based
on the L bit value.

A 64-bit call gate (described in the next paragraph) can also be used to perform a far
call to a code segment at the same privilege level. However, using this mechanism
requires that the target code segment descriptor have the L bit set.

When executing an inter-privilege-level far call, the code segment for the procedure
being called must be accessed through a 64-bit call gate. The segment selector spec-
ified by the target operand identifies the call gate. The target operand can only
specify the call gate segment selector indirectly with a memory location (m16:16,
m16:32 or m16:64). The processor obtains the segment selector for the new code
segment and the new instruction pointer (offset) from the 16-byte call gate
descriptor. (The offset from the target operand is ignored when a call gate is used.)

On inter-privilege-level calls, the processor switches to the stack for the privilege
level of the called procedure. The segment selector for the new stack segment is set
to NULL. The new stack pointer is specified in the TSS for the currently running task.
The branch to the new code segment occurs after the stack switch.

Note that when using a call gate to perform a far call to a segment at the same priv-
ilege level, an implicit stack switch occurs as a result of entering 64-bit mode. The SS
selector is unchanged, but stack segment accesses use a segment base of 0x0, the
limit is ignored, and the default stack size is 64-bits. (The full value of RSP is used for
the offset.) On the new stack, the processor pushes the segment selector and stack
pointer for the calling procedure’s stack and the segment selector and instruction
pointer for the calling procedure’s code segment. (Parameter copy is not supported in
IA-32e mode.) Finally, the processor branches to the address of the procedure being
called within the new code segment.

Operation

IF near call
THEN IF near relative call

THEN
IF OperandSize = 64

THEN
tempDEST ← SignExtend(DEST); (* DEST is rel32 *)
tempRIP ← RIP + tempDEST;
IF stack not large enough for a 8-byte return address

THEN #SS(0); FI;
Push(RIP);
RIP ← tempRIP;

FI;
IF OperandSize = 32
3-118 Vol. 2A CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-L
THEN
tempEIP ← EIP + DEST; (* DEST is rel32 *)
IF tempEIP is not within code segment limit THEN #GP(0); FI;
IF stack not large enough for a 4-byte return address

THEN #SS(0); FI;
Push(EIP);
EIP ← tempEIP;

FI;
IF OperandSize = 16

THEN
tempEIP ← (EIP + DEST) AND 0000FFFFH; (* DEST is rel16 *)
IF tempEIP is not within code segment limit THEN #GP(0); FI;
IF stack not large enough for a 2-byte return address

THEN #SS(0); FI;
Push(IP);
EIP ← tempEIP;

FI;
ELSE (* Near absolute call *)

IF OperandSize = 64
THEN

tempRIP ← DEST; (* DEST is r/m64 *)
IF stack not large enough for a 8-byte return address

THEN #SS(0); FI;
Push(RIP);
RIP ← tempRIP;

FI;
IF OperandSize = 32

THEN
tempEIP ← DEST; (* DEST is r/m32 *)
IF tempEIP is not within code segment limit THEN #GP(0); FI;
IF stack not large enough for a 4-byte return address

THEN #SS(0); FI;
Push(EIP);
EIP ← tempEIP;

FI;
IF OperandSize = 16

THEN
tempEIP ← DEST AND 0000FFFFH; (* DEST is r/m16 *)
IF tempEIP is not within code segment limit THEN #GP(0); FI;
IF stack not large enough for a 2-byte return address

THEN #SS(0); FI;
Push(IP);
EIP ← tempEIP;
Vol. 2A 3-119CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-L
FI;
FI;rel/abs

FI; near

IF far call and (PE = 0 or (PE = 1 and VM = 1)) (* Real-address or virtual-8086 mode *)
THEN

IF OperandSize = 32
THEN

IF stack not large enough for a 6-byte return address
THEN #SS(0); FI;

IF DEST[31:16] is not zero THEN #GP(0); FI;
Push(CS); (* Padded with 16 high-order bits *)
Push(EIP);
CS ← DEST[47:32]; (* DEST is ptr16:32 or [m16:32] *)
EIP ← DEST[31:0]; (* DEST is ptr16:32 or [m16:32] *)

ELSE (* OperandSize = 16 *)
IF stack not large enough for a 4-byte return address

THEN #SS(0); FI;
Push(CS);
Push(IP);
CS ← DEST[31:16]; (* DEST is ptr16:16 or [m16:16] *)
EIP ← DEST[15:0]; (* DEST is ptr16:16 or [m16:16]; clear upper 16 bits *)

FI;
FI;

IF far call and (PE = 1 and VM = 0) (* Protected mode or IA-32e Mode, not virtual-8086 mode*)
THEN

IF segment selector in target operand NULL
THEN #GP(0); FI;

IF segment selector index not within descriptor table limits
THEN #GP(new code segment selector); FI;

Read type and access rights of selected segment descriptor;
IF IA32_EFER.LMA = 0

THEN
IF segment type is not a conforming or nonconforming code segment, call
gate, task gate, or TSS

THEN #GP(segment selector); FI;
ELSE

IF segment type is not a conforming or nonconforming code segment or
64-bit call gate,

THEN #GP(segment selector); FI;
FI;
Depending on type and access rights:
3-120 Vol. 2A CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-L
GO TO CONFORMING-CODE-SEGMENT;
GO TO NONCONFORMING-CODE-SEGMENT;
GO TO CALL-GATE;
GO TO TASK-GATE;
GO TO TASK-STATE-SEGMENT;

FI;

CONFORMING-CODE-SEGMENT:
IF L bit = 1 and D bit = 1 and IA32_EFER.LMA = 1

THEN GP(new code segment selector); FI;
IF DPL > CPL

THEN #GP(new code segment selector); FI;
IF segment not present

THEN #NP(new code segment selector); FI;
IF stack not large enough for return address

THEN #SS(0); FI;
tempEIP ← DEST(Offset);
IF OperandSize = 16

THEN
tempEIP ← tempEIP AND 0000FFFFH; FI; (* Clear upper 16 bits *)

IF (EFER.LMA = 0 or target mode = Compatibility mode) and (tempEIP outside new code
segment limit)

THEN #GP(0); FI;
IF tempEIP is non-canonical

THEN #GP(0); FI;
IF OperandSize = 32

THEN
Push(CS); (* Padded with 16 high-order bits *)
Push(EIP);
CS ← DEST(CodeSegmentSelector);
(* Segment descriptor information also loaded *)
CS(RPL) ← CPL;
EIP ← tempEIP;

ELSE
IF OperandSize = 16

THEN
Push(CS);
Push(IP);
CS ← DEST(CodeSegmentSelector);
(* Segment descriptor information also loaded *)
CS(RPL) ← CPL;
EIP ← tempEIP;

ELSE (* OperandSize = 64 *)
Vol. 2A 3-121CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-L
Push(CS); (* Padded with 48 high-order bits *)
Push(RIP);
CS ← DEST(CodeSegmentSelector);
(* Segment descriptor information also loaded *)
CS(RPL) ← CPL;
RIP ← tempEIP;

FI;
FI;

END;

NONCONFORMING-CODE-SEGMENT:
IF L-Bit = 1 and D-BIT = 1 and IA32_EFER.LMA = 1

THEN GP(new code segment selector); FI;
IF (RPL > CPL) or (DPL ≠ CPL)

THEN #GP(new code segment selector); FI;
IF segment not present

THEN #NP(new code segment selector); FI;
IF stack not large enough for return address

THEN #SS(0); FI;
tempEIP ← DEST(Offset);
IF OperandSize = 16

THEN tempEIP ← tempEIP AND 0000FFFFH; FI; (* Clear upper 16 bits *)
IF (EFER.LMA = 0 or target mode = Compatibility mode) and (tempEIP outside new code
segment limit)

THEN #GP(0); FI;
IF tempEIP is non-canonical

THEN #GP(0); FI;
IF OperandSize = 32

THEN
Push(CS); (* Padded with 16 high-order bits *)
Push(EIP);
CS ← DEST(CodeSegmentSelector);
(* Segment descriptor information also loaded *)
CS(RPL) ← CPL;
EIP ← tempEIP;

ELSE
IF OperandSize = 16

THEN
Push(CS);
Push(IP);
CS ← DEST(CodeSegmentSelector);
(* Segment descriptor information also loaded *)
CS(RPL) ← CPL;
EIP ← tempEIP;
3-122 Vol. 2A CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-L
ELSE (* OperandSize = 64 *)
Push(CS); (* Padded with 48 high-order bits *)
Push(RIP);
CS ← DEST(CodeSegmentSelector);
(* Segment descriptor information also loaded *)
CS(RPL) ← CPL;
RIP ← tempEIP;

FI;
FI;

END;

CALL-GATE:
IF call gate (DPL < CPL) or (RPL > DPL)

THEN #GP(call-gate selector); FI;
IF call gate not present

THEN #NP(call-gate selector); FI;
IF call-gate code-segment selector is NULL

THEN #GP(0); FI;
IF call-gate code-segment selector index is outside descriptor table limits

THEN #GP(call-gate code-segment selector); FI;
Read call-gate code-segment descriptor;
IF call-gate code-segment descriptor does not indicate a code segment
or call-gate code-segment descriptor DPL > CPL

THEN #GP(call-gate code-segment selector); FI;
IF IA32_EFER.LMA = 1 AND (call-gate code-segment descriptor is
not a 64-bit code segment or call-gate code-segment descriptor has both L-bit and D-bit set)

THEN #GP(call-gate code-segment selector); FI;
IF call-gate code segment not present

THEN #NP(call-gate code-segment selector); FI;
IF call-gate code segment is non-conforming and DPL < CPL

THEN go to MORE-PRIVILEGE;
ELSE go to SAME-PRIVILEGE;

FI;
END;

MORE-PRIVILEGE:
IF current TSS is 32-bit

THEN
TSSstackAddress ← (new code-segment DPL ∗ 8) + 4;
IF (TSSstackAddress + 5) > current TSS limit

THEN #TS(current TSS selector); FI;
NewSS ← 2 bytes loaded from (TSS base + TSSstackAddress + 4);
NewESP ← 4 bytes loaded from (TSS base + TSSstackAddress);

ELSE
Vol. 2A 3-123CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-L
IF current TSS is 16-bit
THEN

TSSstackAddress ← (new code-segment DPL ∗ 4) + 2
IF (TSSstackAddress + 3) > current TSS limit

THEN #TS(current TSS selector); FI;
NewSS ← 2 bytes loaded from (TSS base + TSSstackAddress + 2);
NewESP ← 2 bytes loaded from (TSS base + TSSstackAddress);

ELSE (* current TSS is 64-bit *)
TSSstackAddress ← (new code-segment DPL ∗ 8) + 4;
IF (TSSstackAddress + 7) > current TSS limit

THEN #TS(current TSS selector); FI;
NewSS ← new code-segment DPL; (* NULL selector with RPL = new CPL *)
NewRSP ← 8 bytes loaded from (current TSS base + TSSstackAddress);

FI;
FI;
IF IA32_EFER.LMA = 0 and NewSS is NULL

THEN #TS(NewSS); FI;
Read new code-segment descriptor and new stack-segment descriptor;
IF IA32_EFER.LMA = 0 and (NewSS RPL ≠ new code-segment DPL
or new stack-segment DPL ≠ new code-segment DPL or new stack segment is not a
writable data segment)

THEN #TS(NewSS); FI
IF IA32_EFER.LMA = 0 and new stack segment not present

THEN #SS(NewSS); FI;
IF CallGateSize = 32

THEN
IF new stack does not have room for parameters plus 16 bytes

THEN #SS(NewSS); FI;
IF CallGate(InstructionPointer) not within new code-segment limit

THEN #GP(0); FI;
SS ← newSS; (* Segment descriptor information also loaded *)
ESP ← newESP;
CS:EIP ← CallGate(CS:InstructionPointer);
(* Segment descriptor information also loaded *)
Push(oldSS:oldESP); (* From calling procedure *)
temp ← parameter count from call gate, masked to 5 bits;
Push(parameters from calling procedure’s stack, temp)
Push(oldCS:oldEIP); (* Return address to calling procedure *)

ELSE
IF CallGateSize = 16

THEN
IF new stack does not have room for parameters plus 8 bytes

THEN #SS(NewSS); FI;
IF (CallGate(InstructionPointer) AND FFFFH) not in new code-segment limit
3-124 Vol. 2A CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-L
THEN #GP(0); FI;
SS ← newSS; (* Segment descriptor information also loaded *)
ESP ← newESP;
CS:IP ← CallGate(CS:InstructionPointer);
(* Segment descriptor information also loaded *)
Push(oldSS:oldESP); (* From calling procedure *)
temp ← parameter count from call gate, masked to 5 bits;
Push(parameters from calling procedure’s stack, temp)
Push(oldCS:oldEIP); (* Return address to calling procedure *)

ELSE (* CallGateSize = 64 *)
IF pushing 32 bytes on the stack would use a non-canonical address

THEN #SS(NewSS); FI;
IF (CallGate(InstructionPointer) is non-canonical)

THEN #GP(0); FI;
SS ← NewSS; (* NewSS is NULL)
RSP ← NewESP;
CS:IP ← CallGate(CS:InstructionPointer);
(* Segment descriptor information also loaded *)
Push(oldSS:oldESP); (* From calling procedure *)
Push(oldCS:oldEIP); (* Return address to calling procedure *)

FI;
FI;
CPL ← CodeSegment(DPL)
CS(RPL) ← CPL

END;

SAME-PRIVILEGE:
IF CallGateSize = 32

THEN
IF stack does not have room for 8 bytes

THEN #SS(0); FI;
IF CallGate(InstructionPointer) not within code segment limit

THEN #GP(0); FI;
CS:EIP ← CallGate(CS:EIP) (* Segment descriptor information also loaded *)
Push(oldCS:oldEIP); (* Return address to calling procedure *)

ELSE
If CallGateSize = 16

THEN
IF stack does not have room for 4 bytes

THEN #SS(0); FI;
IF CallGate(InstructionPointer) not within code segment limit

THEN #GP(0); FI;
CS:IP ← CallGate(CS:instruction pointer);
Vol. 2A 3-125CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-L
(* Segment descriptor information also loaded *)
Push(oldCS:oldIP); (* Return address to calling procedure *)

ELSE (* CallGateSize = 64)
IF pushing 16 bytes on the stack touches non-canonical addresses

THEN #SS(0); FI;
IF RIP non-canonical

THEN #GP(0); FI;
CS:IP ← CallGate(CS:instruction pointer);
(* Segment descriptor information also loaded *)
Push(oldCS:oldIP); (* Return address to calling procedure *)

FI;
FI;
CS(RPL) ← CPL

END;

TASK-GATE:
IF task gate DPL < CPL or RPL

THEN #GP(task gate selector); FI;
IF task gate not present

THEN #NP(task gate selector); FI;
Read the TSS segment selector in the task-gate descriptor;
IF TSS segment selector local/global bit is set to local
or index not within GDT limits

THEN #GP(TSS selector); FI;
Access TSS descriptor in GDT;
IF TSS descriptor specifies that the TSS is busy (low-order 5 bits set to 00001)

THEN #GP(TSS selector); FI;
IF TSS not present

THEN #NP(TSS selector); FI;
SWITCH-TASKS (with nesting) to TSS;
IF EIP not within code segment limit

THEN #GP(0); FI;
END;

TASK-STATE-SEGMENT:
IF TSS DPL < CPL or RPL
or TSS descriptor indicates TSS not available

THEN #GP(TSS selector); FI;
IF TSS is not present

THEN #NP(TSS selector); FI;
SWITCH-TASKS (with nesting) to TSS;
IF EIP not within code segment limit

THEN #GP(0); FI;
3-126 Vol. 2A CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-L
END;

Flags Affected

All flags are affected if a task switch occurs; no flags are affected if a task switch does
not occur.

Protected Mode Exceptions
#GP(0) If the target offset in destination operand is beyond the new

code segment limit.
If the segment selector in the destination operand is NULL.
If the code segment selector in the gate is NULL.
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#GP(selector) If a code segment or gate or TSS selector index is outside
descriptor table limits.
If the segment descriptor pointed to by the segment selector in
the destination operand is not for a conforming-code segment,
nonconforming-code segment, call gate, task gate, or task state
segment.
If the DPL for a nonconforming-code segment is not equal to the
CPL or the RPL for the segment’s segment selector is greater
than the CPL.
If the DPL for a conforming-code segment is greater than the
CPL.
If the DPL from a call-gate, task-gate, or TSS segment
descriptor is less than the CPL or than the RPL of the call-gate,
task-gate, or TSS’s segment selector.
If the segment descriptor for a segment selector from a call gate
does not indicate it is a code segment.
If the segment selector from a call gate is beyond the descriptor
table limits.
If the DPL for a code-segment obtained from a call gate is
greater than the CPL.
If the segment selector for a TSS has its local/global bit set for
local.
If a TSS segment descriptor specifies that the TSS is busy or not
available.
Vol. 2A 3-127CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-L
#SS(0) If pushing the return address, parameters, or stack segment
pointer onto the stack exceeds the bounds of the stack segment,
when no stack switch occurs.
If a memory operand effective address is outside the SS
segment limit.

#SS(selector) If pushing the return address, parameters, or stack segment
pointer onto the stack exceeds the bounds of the stack segment,
when a stack switch occurs.
If the SS register is being loaded as part of a stack switch and
the segment pointed to is marked not present.
If stack segment does not have room for the return address,
parameters, or stack segment pointer, when stack switch
occurs.

#NP(selector) If a code segment, data segment, stack segment, call gate, task
gate, or TSS is not present.

#TS(selector) If the new stack segment selector and ESP are beyond the end
of the TSS.
If the new stack segment selector is NULL.
If the RPL of the new stack segment selector in the TSS is not
equal to the DPL of the code segment being accessed.
If DPL of the stack segment descriptor for the new stack
segment is not equal to the DPL of the code segment descriptor.
If the new stack segment is not a writable data segment.
If segment-selector index for stack segment is outside
descriptor table limits.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
If the target offset is beyond the code segment limit.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
If the target offset is beyond the code segment limit.

#PF(fault-code) If a page fault occurs.
3-128 Vol. 2A CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-L
#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.
#GP(selector) If a memory address accessed by the selector is in non-canon-

ical space.
#GP(0) If the target offset in the destination operand is non-canonical.

64-Bit Mode Exceptions
#GP(0) If a memory address is non-canonical.

If target offset in destination operand is non-canonical.
If the segment selector in the destination operand is NULL.
If the code segment selector in the 64-bit gate is NULL.

#GP(selector) If code segment or 64-bit call gate is outside descriptor table
limits.
If code segment or 64-bit call gate overlaps non-canonical
space.
If the segment descriptor pointed to by the segment selector in
the destination operand is not for a conforming-code segment,
nonconforming-code segment, or 64-bit call gate.
If the segment descriptor pointed to by the segment selector in
the destination operand is a code segment and has both the D-
bit and the L- bit set.
If the DPL for a nonconforming-code segment is not equal to the
CPL, or the RPL for the segment’s segment selector is greater
than the CPL.
If the DPL for a conforming-code segment is greater than the
CPL.
If the DPL from a 64-bit call-gate is less than the CPL or than the
RPL of the 64-bit call-gate.
If the upper type field of a 64-bit call gate is not 0x0.
If the segment selector from a 64-bit call gate is beyond the
descriptor table limits.
If the DPL for a code-segment obtained from a 64-bit call gate is
greater than the CPL.
If the code segment descriptor pointed to by the selector in the
64-bit gate doesn't have the L-bit set and the D-bit clear.
If the segment descriptor for a segment selector from the 64-bit
call gate does not indicate it is a code segment.
Vol. 2A 3-129CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-L
#SS(0) If pushing the return offset or CS selector onto the stack
exceeds the bounds of the stack segment when no stack switch
occurs.
If a memory operand effective address is outside the SS
segment limit.
If the stack address is in a non-canonical form.

#SS(selector) If pushing the old values of SS selector, stack pointer, EFLAGS,
CS selector, offset, or error code onto the stack violates the
canonical boundary when a stack switch occurs.

#NP(selector) If a code segment or 64-bit call gate is not present.
#TS(selector) If the load of the new RSP exceeds the limit of the TSS.
#UD (64-bit mode only) If a far call is direct to an absolute address in

memory.
If the LOCK prefix is used.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
3-130 Vol. 2A CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-L
CBW/CWDE/CDQE—Convert Byte to Word/Convert Word to
Doubleword/Convert Doubleword to Quadword

Instruction Operand Encoding

Description

Double the size of the source operand by means of sign extension. The CBW (convert
byte to word) instruction copies the sign (bit 7) in the source operand into every bit
in the AH register. The CWDE (convert word to doubleword) instruction copies the
sign (bit 15) of the word in the AX register into the high 16 bits of the EAX register.

CBW and CWDE reference the same opcode. The CBW instruction is intended for use
when the operand-size attribute is 16; CWDE is intended for use when the operand-
size attribute is 32. Some assemblers may force the operand size. Others may treat
these two mnemonics as synonyms (CBW/CWDE) and use the setting of the
operand-size attribute to determine the size of values to be converted.

In 64-bit mode, the default operation size is the size of the destination register. Use
of the REX.W prefix promotes this instruction (CDQE when promoted) to operate on
64-bit operands. In which case, CDQE copies the sign (bit 31) of the doubleword in
the EAX register into the high 32 bits of RAX.

Operation

IF OperandSize = 16 (* Instruction = CBW *)
THEN

AX ← SignExtend(AL);
ELSE IF (OperandSize = 32, Instruction = CWDE)

EAX ← SignExtend(AX); FI;
ELSE (* 64-Bit Mode, OperandSize = 64, Instruction = CDQE*)

RAX ← SignExtend(EAX);
FI;

Flags Affected

None.

Opcode Instruction Op/
En

64-bit
Mode

Compat/
Leg Mode

Description

98 CBW NP Valid Valid AX ← sign-extend of AL.

98 CWDE NP Valid Valid EAX ← sign-extend of AX.

REX.W + 98 CDQE NP Valid N.E. RAX ← sign-extend of EAX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
Vol. 2A 3-131CBW/CWDE/CDQE—Convert Byte to Word/Convert Word to Doubleword/Convert Double-
word to Quadword

INSTRUCTION SET REFERENCE, A-L
Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.
3-132 Vol. 2A CBW/CWDE/CDQE—Convert Byte to Word/Convert Word to Doubleword/Convert Double-
word to Quadword

INSTRUCTION SET REFERENCE, A-L
CLC—Clear Carry Flag

Instruction Operand Encoding

Description

Clears the CF flag in the EFLAGS register. Operation is the same in all non-64-bit
modes and 64-bit mode.

Operation

CF ← 0;

Flags Affected

The CF flag is set to 0. The OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

Opcode Instruction Op/
En

64-bit
Mode

Compat/
Leg Mode

Description

F8 CLC NP Valid Valid Clear CF flag.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
Vol. 2A 3-133CLC—Clear Carry Flag

INSTRUCTION SET REFERENCE, A-L
CLD—Clear Direction Flag

Instruction Operand Encoding

Description

Clears the DF flag in the EFLAGS register. When the DF flag is set to 0, string opera-
tions increment the index registers (ESI and/or EDI). Operation is the same in all
non-64-bit modes and 64-bit mode.

Operation

DF ← 0;

Flags Affected

The DF flag is set to 0. The CF, OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

Opcode Instruction Op/
En

64-bit
Mode

Compat/
Leg Mode

Description

FC CLD NP Valid Valid Clear DF flag.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
3-134 Vol. 2A CLD—Clear Direction Flag

INSTRUCTION SET REFERENCE, A-L
CLFLUSH—Flush Cache Line

Instruction Operand Encoding

Description

Invalidates the cache line that contains the linear address specified with the source
operand from all levels of the processor cache hierarchy (data and instruction). The
invalidation is broadcast throughout the cache coherence domain. If, at any level of
the cache hierarchy, the line is inconsistent with memory (dirty) it is written to
memory before invalidation. The source operand is a byte memory location.

The availability of CLFLUSH is indicated by the presence of the CPUID feature flag
CLFSH (bit 19 of the EDX register, see “CPUID—CPU Identification” in this chapter).
The aligned cache line size affected is also indicated with the CPUID instruction (bits
8 through 15 of the EBX register when the initial value in the EAX register is 1).

The memory attribute of the page containing the affected line has no effect on the
behavior of this instruction. It should be noted that processors are free to specula-
tively fetch and cache data from system memory regions assigned a memory-type
allowing for speculative reads (such as, the WB, WC, and WT memory types).
PREFETCHh instructions can be used to provide the processor with hints for this spec-
ulative behavior. Because this speculative fetching can occur at any time and is not
tied to instruction execution, the CLFLUSH instruction is not ordered with respect to
PREFETCHh instructions or any of the speculative fetching mechanisms (that is, data
can be speculatively loaded into a cache line just before, during, or after the execu-
tion of a CLFLUSH instruction that references the cache line).

CLFLUSH is only ordered by the MFENCE instruction. It is not guaranteed to be
ordered by any other fencing or serializing instructions or by another CLFLUSH
instruction. For example, software can use an MFENCE instruction to ensure that
previous stores are included in the write-back.

The CLFLUSH instruction can be used at all privilege levels and is subject to all
permission checking and faults associated with a byte load (and in addition, a
CLFLUSH instruction is allowed to flush a linear address in an execute-only segment).
Like a load, the CLFLUSH instruction sets the A bit but not the D bit in the page
tables.
The CLFLUSH instruction was introduced with the SSE2 extensions; however,
because it has its own CPUID feature flag, it can be implemented in IA-32 processors

Opcode Instruction Op/
En

64-bit
Mode

Compat/
Leg Mode

Description

0F AE /7 CLFLUSH m8 M Valid Valid Flushes cache line
containing m8.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA
Vol. 2A 3-135CLFLUSH—Flush Cache Line

INSTRUCTION SET REFERENCE, A-L
that do not include the SSE2 extensions. Also, detecting the presence of the SSE2
extensions with the CPUID instruction does not guarantee that the CLFLUSH instruc-
tion is implemented in the processor.

CLFLUSH operation is the same in non-64-bit modes and 64-bit mode.

Operation

Flush_Cache_Line(SRC);

Intel C/C++ Compiler Intrinsic Equivalents

CLFLUSH: void _mm_clflush(void const *p)

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS or GS segments.
#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.
#UD If CPUID.01H:EDX.CLFSH[bit 19] = 0.

If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If any part of the operand lies outside the effective address

space from 0 to FFFFH.
#UD If CPUID.01H:EDX.CLFSH[bit 19] = 0.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) For a page fault.
#UD If CPUID.01H:EDX.CLFSH[bit 19] = 0.

If the LOCK prefix is used.
3-136 Vol. 2A CLFLUSH—Flush Cache Line

INSTRUCTION SET REFERENCE, A-L
CLI — Clear Interrupt Flag

Instruction Operand Encoding

Description

If protected-mode virtual interrupts are not enabled, CLI clears the IF flag in the
EFLAGS register. No other flags are affected. Clearing the IF flag causes the
processor to ignore maskable external interrupts. The IF flag and the CLI and STI
instruction have no affect on the generation of exceptions and NMI interrupts.

When protected-mode virtual interrupts are enabled, CPL is 3, and IOPL is less than
3; CLI clears the VIF flag in the EFLAGS register, leaving IF unaffected. Table 3-6 indi-
cates the action of the CLI instruction depending on the processor operating mode
and the CPL/IOPL of the running program or procedure.

CLI operation is the same in non-64-bit modes and 64-bit mode.

Operation

IF PE = 0

Opcode Instruction Op/
En

64-bit
Mode

Compat/
Leg Mode

Description

FA CLI NP Valid Valid Clear interrupt flag;
interrupts disabled when
interrupt flag cleared.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

Table 3-6. Decision Table for CLI Results
PE VM IOPL CPL PVI VIP VME CLI Result

0 X X X X X X IF = 0

1 0 ≥ CPL X X X X IF = 0

1 0 < CPL 3 1 X X VIF = 0

1 0 < CPL < 3 X X X GP Fault

1 0 < CPL X 0 X X GP Fault

1 1 3 X X X X IF = 0

1 1 < 3 X X X 1 VIF = 0

1 1 < 3 X X X 0 GP Fault

NOTES:
* X = This setting has no impact.
Vol. 2A 3-137CLI — Clear Interrupt Flag

INSTRUCTION SET REFERENCE, A-L
THEN
IF ← 0; (* Reset Interrupt Flag *)

ELSE
IF VM = 0;

THEN
IF IOPL ≥ CPL

THEN
IF ← 0; (* Reset Interrupt Flag *)

ELSE
IF ((IOPL < CPL) and (CPL = 3) and (PVI = 1))

THEN
VIF ← 0; (* Reset Virtual Interrupt Flag *)

ELSE
#GP(0);

FI;
FI;

ELSE (* VM = 1 *)
IF IOPL = 3

THEN
IF ← 0; (* Reset Interrupt Flag *)

ELSE
IF (IOPL < 3) AND (VME = 1)

THEN
VIF ← 0; (* Reset Virtual Interrupt Flag *)

ELSE
#GP(0);

FI;
FI;

FI;
FI;

Flags Affected

If protected-mode virtual interrupts are not enabled, IF is set to 0 if the CPL is equal
to or less than the IOPL; otherwise, it is not affected. The other flags in the EFLAGS
register are unaffected.

When protected-mode virtual interrupts are enabled, CPL is 3, and IOPL is less than
3; CLI clears the VIF flag in the EFLAGS register, leaving IF unaffected.

Protected Mode Exceptions
#GP(0) If the CPL is greater (has less privilege) than the IOPL of the

current program or procedure.
#UD If the LOCK prefix is used.
3-138 Vol. 2A CLI — Clear Interrupt Flag

INSTRUCTION SET REFERENCE, A-L
Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If the CPL is greater (has less privilege) than the IOPL of the

current program or procedure.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the CPL is greater (has less privilege) than the IOPL of the

current program or procedure.
#UD If the LOCK prefix is used.
Vol. 2A 3-139CLI — Clear Interrupt Flag

INSTRUCTION SET REFERENCE, A-L
CLTS—Clear Task-Switched Flag in CR0

Instruction Operand Encoding

Description

Clears the task-switched (TS) flag in the CR0 register. This instruction is intended for
use in operating-system procedures. It is a privileged instruction that can only be
executed at a CPL of 0. It is allowed to be executed in real-address mode to allow
initialization for protected mode.

The processor sets the TS flag every time a task switch occurs. The flag is used to
synchronize the saving of FPU context in multitasking applications. See the descrip-
tion of the TS flag in the section titled “Control Registers” in Chapter 2 of the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for more infor-
mation about this flag.

CLTS operation is the same in non-64-bit modes and 64-bit mode.

See Chapter 25, “VMX Non-Root Operation,” of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3C, for more information about the behavior
of this instruction in VMX non-root operation.

Operation

CR0.TS[bit 3] ← 0;

Flags Affected

The TS flag in CR0 register is cleared.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Opcode Instruction Op/
En

64-bit
Mode

Compat/
Leg Mode

Description

0F 06 CLTS NP Valid Valid Clears TS flag in CR0.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
3-140 Vol. 2A CLTS—Clear Task-Switched Flag in CR0

INSTRUCTION SET REFERENCE, A-L
Virtual-8086 Mode Exceptions
#GP(0) CLTS is not recognized in virtual-8086 mode.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the CPL is greater than 0.
#UD If the LOCK prefix is used.
Vol. 2A 3-141CLTS—Clear Task-Switched Flag in CR0

INSTRUCTION SET REFERENCE, A-L
CMC—Complement Carry Flag

Instruction Operand Encoding

Description

Complements the CF flag in the EFLAGS register. CMC operation is the same in non-
64-bit modes and 64-bit mode.

Operation

EFLAGS.CF[bit 0]← NOT EFLAGS.CF[bit 0];

Flags Affected

The CF flag contains the complement of its original value. The OF, ZF, SF, AF, and PF
flags are unaffected.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

Opcode Instruction Op/
En

64-bit
Mode

Compat/
Leg Mode

Description

F5 CMC NP Valid Valid Complement CF flag.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
3-142 Vol. 2A CMC—Complement Carry Flag

INSTRUCTION SET REFERENCE, A-L
CMOVcc—Conditional Move
Opcode Instruction Op/

En
64-Bit
Mode

Compat/
Leg Mode

Description

0F 47 /r CMOVA r16, r/m16 RM Valid Valid Move if above (CF=0 and
ZF=0).

0F 47 /r CMOVA r32, r/m32 RM Valid Valid Move if above (CF=0 and
ZF=0).

REX.W + 0F 47
/r

CMOVA r64, r/m64 RM Valid N.E. Move if above (CF=0 and
ZF=0).

0F 43 /r CMOVAE r16, r/m16 RM Valid Valid Move if above or equal
(CF=0).

0F 43 /r CMOVAE r32, r/m32 RM Valid Valid Move if above or equal
(CF=0).

REX.W + 0F 43
/r

CMOVAE r64, r/m64 RM Valid N.E. Move if above or equal
(CF=0).

0F 42 /r CMOVB r16, r/m16 RM Valid Valid Move if below (CF=1).

0F 42 /r CMOVB r32, r/m32 RM Valid Valid Move if below (CF=1).

REX.W + 0F 42
/r

CMOVB r64, r/m64 RM Valid N.E. Move if below (CF=1).

0F 46 /r CMOVBE r16, r/m16 RM Valid Valid Move if below or equal
(CF=1 or ZF=1).

0F 46 /r CMOVBE r32, r/m32 RM Valid Valid Move if below or equal
(CF=1 or ZF=1).

REX.W + 0F 46
/r

CMOVBE r64, r/m64 RM Valid N.E. Move if below or equal
(CF=1 or ZF=1).

0F 42 /r CMOVC r16, r/m16 RM Valid Valid Move if carry (CF=1).

0F 42 /r CMOVC r32, r/m32 RM Valid Valid Move if carry (CF=1).

REX.W + 0F 42
/r

CMOVC r64, r/m64 RM Valid N.E. Move if carry (CF=1).

0F 44 /r CMOVE r16, r/m16 RM Valid Valid Move if equal (ZF=1).

0F 44 /r CMOVE r32, r/m32 RM Valid Valid Move if equal (ZF=1).

REX.W + 0F 44
/r

CMOVE r64, r/m64 RM Valid N.E. Move if equal (ZF=1).

0F 4F /r CMOVG r16, r/m16 RM Valid Valid Move if greater (ZF=0 and
SF=OF).

0F 4F /r CMOVG r32, r/m32 RM Valid Valid Move if greater (ZF=0 and
SF=OF).

REX.W + 0F 4F
/r

CMOVG r64, r/m64 RM V/N.E. NA Move if greater (ZF=0 and
SF=OF).
Vol. 2A 3-143CMOVcc—Conditional Move

INSTRUCTION SET REFERENCE, A-L
Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 4D /r CMOVGE r16, r/m16 RM Valid Valid Move if greater or equal
(SF=OF).

0F 4D /r CMOVGE r32, r/m32 RM Valid Valid Move if greater or equal
(SF=OF).

REX.W + 0F 4D
/r

CMOVGE r64, r/m64 RM Valid N.E. Move if greater or equal
(SF=OF).

0F 4C /r CMOVL r16, r/m16 RM Valid Valid Move if less (SF≠ OF).

0F 4C /r CMOVL r32, r/m32 RM Valid Valid Move if less (SF≠ OF).

REX.W + 0F 4C
/r

CMOVL r64, r/m64 RM Valid N.E. Move if less (SF≠ OF).

0F 4E /r CMOVLE r16, r/m16 RM Valid Valid Move if less or equal (ZF=1
or SF≠ OF).

0F 4E /r CMOVLE r32, r/m32 RM Valid Valid Move if less or equal (ZF=1
or SF≠ OF).

REX.W + 0F 4E
/r

CMOVLE r64, r/m64 RM Valid N.E. Move if less or equal (ZF=1
or SF≠ OF).

0F 46 /r CMOVNA r16, r/m16 RM Valid Valid Move if not above (CF=1 or
ZF=1).

0F 46 /r CMOVNA r32, r/m32 RM Valid Valid Move if not above (CF=1 or
ZF=1).

REX.W + 0F 46
/r

CMOVNA r64, r/m64 RM Valid N.E. Move if not above (CF=1 or
ZF=1).

0F 42 /r CMOVNAE r16,
r/m16

RM Valid Valid Move if not above or equal
(CF=1).

0F 42 /r CMOVNAE r32,
r/m32

RM Valid Valid Move if not above or equal
(CF=1).

REX.W + 0F 42
/r

CMOVNAE r64,
r/m64

RM Valid N.E. Move if not above or equal
(CF=1).

0F 43 /r CMOVNB r16, r/m16 RM Valid Valid Move if not below (CF=0).

0F 43 /r CMOVNB r32, r/m32 RM Valid Valid Move if not below (CF=0).

REX.W + 0F 43
/r

CMOVNB r64, r/m64 RM Valid N.E. Move if not below (CF=0).

0F 47 /r CMOVNBE r16,
r/m16

RM Valid Valid Move if not below or equal
(CF=0 and ZF=0).

0F 47 /r CMOVNBE r32,
r/m32

RM Valid Valid Move if not below or equal
(CF=0 and ZF=0).
3-144 Vol. 2A CMOVcc—Conditional Move

INSTRUCTION SET REFERENCE, A-L
Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

REX.W + 0F 47
/r

CMOVNBE r64,
r/m64

RM Valid N.E. Move if not below or equal
(CF=0 and ZF=0).

0F 43 /r CMOVNC r16, r/m16 RM Valid Valid Move if not carry (CF=0).

0F 43 /r CMOVNC r32, r/m32 RM Valid Valid Move if not carry (CF=0).

REX.W + 0F 43
/r

CMOVNC r64, r/m64 RM Valid N.E. Move if not carry (CF=0).

0F 45 /r CMOVNE r16, r/m16 RM Valid Valid Move if not equal (ZF=0).

0F 45 /r CMOVNE r32, r/m32 RM Valid Valid Move if not equal (ZF=0).

REX.W + 0F 45
/r

CMOVNE r64, r/m64 RM Valid N.E. Move if not equal (ZF=0).

0F 4E /r CMOVNG r16, r/m16 RM Valid Valid Move if not greater (ZF=1
or SF≠ OF).

0F 4E /r CMOVNG r32, r/m32 RM Valid Valid Move if not greater (ZF=1
or SF≠ OF).

REX.W + 0F 4E
/r

CMOVNG r64, r/m64 RM Valid N.E. Move if not greater (ZF=1
or SF≠ OF).

0F 4C /r CMOVNGE r16,
r/m16

RM Valid Valid Move if not greater or equal
(SF≠ OF).

0F 4C /r CMOVNGE r32,
r/m32

RM Valid Valid Move if not greater or equal
(SF≠ OF).

REX.W + 0F 4C
/r

CMOVNGE r64,
r/m64

RM Valid N.E. Move if not greater or equal
(SF≠ OF).

0F 4D /r CMOVNL r16, r/m16 RM Valid Valid Move if not less (SF=OF).

0F 4D /r CMOVNL r32, r/m32 RM Valid Valid Move if not less (SF=OF).

REX.W + 0F 4D
/r

CMOVNL r64, r/m64 RM Valid N.E. Move if not less (SF=OF).

0F 4F /r CMOVNLE r16,
r/m16

RM Valid Valid Move if not less or equal
(ZF=0 and SF=OF).

0F 4F /r CMOVNLE r32,
r/m32

RM Valid Valid Move if not less or equal
(ZF=0 and SF=OF).

REX.W + 0F 4F
/r

CMOVNLE r64,
r/m64

RM Valid N.E. Move if not less or equal
(ZF=0 and SF=OF).

0F 41 /r CMOVNO r16, r/m16 RM Valid Valid Move if not overflow
(OF=0).

0F 41 /r CMOVNO r32, r/m32 RM Valid Valid Move if not overflow
(OF=0).
Vol. 2A 3-145CMOVcc—Conditional Move

INSTRUCTION SET REFERENCE, A-L
Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

REX.W + 0F 41
/r

CMOVNO r64, r/m64 RM Valid N.E. Move if not overflow
(OF=0).

0F 4B /r CMOVNP r16, r/m16 RM Valid Valid Move if not parity (PF=0).

0F 4B /r CMOVNP r32, r/m32 RM Valid Valid Move if not parity (PF=0).

REX.W + 0F 4B
/r

CMOVNP r64, r/m64 RM Valid N.E. Move if not parity (PF=0).

0F 49 /r CMOVNS r16, r/m16 RM Valid Valid Move if not sign (SF=0).

0F 49 /r CMOVNS r32, r/m32 RM Valid Valid Move if not sign (SF=0).

REX.W + 0F 49
/r

CMOVNS r64, r/m64 RM Valid N.E. Move if not sign (SF=0).

0F 45 /r CMOVNZ r16, r/m16 RM Valid Valid Move if not zero (ZF=0).

0F 45 /r CMOVNZ r32, r/m32 RM Valid Valid Move if not zero (ZF=0).

REX.W + 0F 45
/r

CMOVNZ r64, r/m64 RM Valid N.E. Move if not zero (ZF=0).

0F 40 /r CMOVO r16, r/m16 RM Valid Valid Move if overflow (OF=1).

0F 40 /r CMOVO r32, r/m32 RM Valid Valid Move if overflow (OF=1).

REX.W + 0F 40
/r

CMOVO r64, r/m64 RM Valid N.E. Move if overflow (OF=1).

0F 4A /r CMOVP r16, r/m16 RM Valid Valid Move if parity (PF=1).

0F 4A /r CMOVP r32, r/m32 RM Valid Valid Move if parity (PF=1).

REX.W + 0F 4A
/r

CMOVP r64, r/m64 RM Valid N.E. Move if parity (PF=1).

0F 4A /r CMOVPE r16, r/m16 RM Valid Valid Move if parity even (PF=1).

0F 4A /r CMOVPE r32, r/m32 RM Valid Valid Move if parity even (PF=1).

REX.W + 0F 4A
/r

CMOVPE r64, r/m64 RM Valid N.E. Move if parity even (PF=1).

0F 4B /r CMOVPO r16, r/m16 RM Valid Valid Move if parity odd (PF=0).

0F 4B /r CMOVPO r32, r/m32 RM Valid Valid Move if parity odd (PF=0).

REX.W + 0F 4B
/r

CMOVPO r64, r/m64 RM Valid N.E. Move if parity odd (PF=0).

0F 48 /r CMOVS r16, r/m16 RM Valid Valid Move if sign (SF=1).

0F 48 /r CMOVS r32, r/m32 RM Valid Valid Move if sign (SF=1).

REX.W + 0F 48
/r

CMOVS r64, r/m64 RM Valid N.E. Move if sign (SF=1).

0F 44 /r CMOVZ r16, r/m16 RM Valid Valid Move if zero (ZF=1).
3-146 Vol. 2A CMOVcc—Conditional Move

INSTRUCTION SET REFERENCE, A-L
Instruction Operand Encoding

Description

The CMOVcc instructions check the state of one or more of the status flags in the
EFLAGS register (CF, OF, PF, SF, and ZF) and perform a move operation if the flags are
in a specified state (or condition). A condition code (cc) is associated with each
instruction to indicate the condition being tested for. If the condition is not satisfied,
a move is not performed and execution continues with the instruction following the
CMOVcc instruction.

These instructions can move 16-bit, 32-bit or 64-bit values from memory to a
general-purpose register or from one general-purpose register to another. Condi-
tional moves of 8-bit register operands are not supported.

The condition for each CMOVcc mnemonic is given in the description column of the
above table. The terms “less” and “greater” are used for comparisons of signed inte-
gers and the terms “above” and “below” are used for unsigned integers.

Because a particular state of the status flags can sometimes be interpreted in two
ways, two mnemonics are defined for some opcodes. For example, the CMOVA
(conditional move if above) instruction and the CMOVNBE (conditional move if not
below or equal) instruction are alternate mnemonics for the opcode 0F 47H.

The CMOVcc instructions were introduced in P6 family processors; however, these
instructions may not be supported by all IA-32 processors. Software can determine if
the CMOVcc instructions are supported by checking the processor’s feature informa-
tion with the CPUID instruction (see “CPUID—CPU Identification” in this chapter).

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R
prefix permits access to additional registers (R8-R15). Use of the REX.W prefix
promotes operation to 64 bits. See the summary chart at the beginning of this
section for encoding data and limits.

Operation

temp ← SRC

IF condition TRUE

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 44 /r CMOVZ r32, r/m32 RM Valid Valid Move if zero (ZF=1).

REX.W + 0F 44
/r

CMOVZ r64, r/m64 RM Valid N.E. Move if zero (ZF=1).

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
Vol. 2A 3-147CMOVcc—Conditional Move

INSTRUCTION SET REFERENCE, A-L
THEN
DEST ← temp;

FI;
ELSE

IF (OperandSize = 32 and IA-32e mode active)
THEN

DEST[63:32] ← 0;
FI;

FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used.
3-148 Vol. 2A CMOVcc—Conditional Move

INSTRUCTION SET REFERENCE, A-L
Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
Vol. 2A 3-149CMOVcc—Conditional Move

INSTRUCTION SET REFERENCE, A-L
CMP—Compare Two Operands
Opcode Instruction Op/

En
64-Bit
Mode

Compat/
Leg Mode

Description

3C ib CMP AL, imm8 I Valid Valid Compare imm8 with AL.

3D iw CMP AX, imm16 I Valid Valid Compare imm16 with AX.

3D id CMP EAX, imm32 I Valid Valid Compare imm32 with EAX.

REX.W + 3D id CMP RAX, imm32 I Valid N.E. Compare imm32 sign-
extended to 64-bits with
RAX.

80 /7 ib CMP r/m8, imm8 MI Valid Valid Compare imm8 with r/m8.

REX + 80 /7 ib CMP r/m8*, imm8 MI Valid N.E. Compare imm8 with r/m8.

81 /7 iw CMP r/m16,
imm16

MI Valid Valid Compare imm16 with
r/m16.

81 /7 id CMP r/m32,
imm32

MI Valid Valid Compare imm32 with
r/m32.

REX.W + 81 /7
id

CMP r/m64,
imm32

MI Valid N.E. Compare imm32 sign-
extended to 64-bits with
r/m64.

83 /7 ib CMP r/m16, imm8 MI Valid Valid Compare imm8 with r/m16.

83 /7 ib CMP r/m32, imm8 MI Valid Valid Compare imm8 with r/m32.

REX.W + 83 /7
ib

CMP r/m64, imm8 MI Valid N.E. Compare imm8 with r/m64.

38 /r CMP r/m8, r8 MR Valid Valid Compare r8 with r/m8.

REX + 38 /r CMP r/m8*, r8* MR Valid N.E. Compare r8 with r/m8.

39 /r CMP r/m16, r16 MR Valid Valid Compare r16 with r/m16.

39 /r CMP r/m32, r32 MR Valid Valid Compare r32 with r/m32.

REX.W + 39 /r CMP r/m64,r64 MR Valid N.E. Compare r64 with r/m64.

3A /r CMP r8, r/m8 RM Valid Valid Compare r/m8 with r8.

REX + 3A /r CMP r8*, r/m8* RM Valid N.E. Compare r/m8 with r8.

3B /r CMP r16, r/m16 RM Valid Valid Compare r/m16 with r16.

3B /r CMP r32, r/m32 RM Valid Valid Compare r/m32 with r32.

REX.W + 3B /r CMP r64, r/m64 RM Valid N.E. Compare r/m64 with r64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is

used: AH, BH, CH, DH.
3-150 Vol. 2A CMP—Compare Two Operands

INSTRUCTION SET REFERENCE, A-L
Instruction Operand Encoding

Description

Compares the first source operand with the second source operand and sets the
status flags in the EFLAGS register according to the results. The comparison is
performed by subtracting the second operand from the first operand and then setting
the status flags in the same manner as the SUB instruction. When an immediate
value is used as an operand, it is sign-extended to the length of the first operand.

The condition codes used by the Jcc, CMOVcc, and SETcc instructions are based on
the results of a CMP instruction. Appendix B, “EFLAGS Condition Codes,” in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, shows
the relationship of the status flags and the condition codes.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R
prefix permits access to additional registers (R8-R15). Use of the REX.W prefix
promotes operation to 64 bits. See the summary chart at the beginning of this
section for encoding data and limits.

Operation

temp ← SRC1 − SignExtend(SRC2);
ModifyStatusFlags; (* Modify status flags in the same manner as the SUB instruction*)

Flags Affected

The CF, OF, SF, ZF, AF, and PF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

MR ModRM:r/m (r, w) ModRM:reg (w) NA NA

MI ModRM:r/m (r, w) imm8 NA NA

I AL/AX/EAX/RAX imm8 NA NA
Vol. 2A 3-151CMP—Compare Two Operands

INSTRUCTION SET REFERENCE, A-L
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
3-152 Vol. 2A CMP—Compare Two Operands

INSTRUCTION SET REFERENCE, A-L
CMPPD—Compare Packed Double-Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a SIMD compare of the packed double-precision floating-point values in the
source operand (second operand) and the destination operand (first operand) and
returns the results of the comparison to the destination operand. The comparison
predicate operand (third operand) specifies the type of comparison performed on
each of the pairs of packed values. The result of each comparison is a quadword
mask of all 1s (comparison true) or all 0s (comparison false).
128-bit Legacy SSE version: The first source and destination operand (first operand)
is an XMM register. The second source operand (second operand) can be an XMM
register or 128-bit memory location. The comparison predicate operand is an 8-bit
immediate, bits 2:0 of the immediate define the type of comparison to be performed
(see Table 3-7). Bits 7:3 of the immediate is reserved. Bits (VLMAX-1:128) of the
corresponding YMM destination register remain unchanged. Two comparisons are
performed with results written to bits 127:0 of the destination operand.

Opcode/
Instruction

Op/
En

64/32-
bit Mode

CPUID
Feature
Flag

Description

66 0F C2 /r ib

CMPPD xmm1, xmm2/m128, imm8

RMI V/V SSE2 Compare packed double-
precision floating-point
values in xmm2/m128 and
xmm1 using imm8 as
comparison predicate.

VEX.NDS.128.66.0F.WIG C2 /r ib

VCMPPD xmm1, xmm2, xmm3/m128,
imm8

RVMI V/V AVX Compare packed double-
precision floating-point
values in xmm3/m128 and
xmm2 using bits 4:0 of
imm8 as a comparison
predicate.

VEX.NDS.256.66.0F.WIG C2 /r ib

VCMPPD ymm1, ymm2, ymm3/m256,
imm8

RVMI V/V AVX Compare packed double-
precision floating-point
values in ymm3/m256 and
ymm2 using bits 4:0 of
imm8 as a comparison
predicate.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
Vol. 2A 3-153CMPPD—Compare Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
The unordered relationship is true when at least one of the two source operands
being compared is a NaN; the ordered relationship is true when neither source
operand is a NaN.

A subsequent computational instruction that uses the mask result in the destination
operand as an input operand will not generate an exception, because a mask of all 0s
corresponds to a floating-point value of +0.0 and a mask of all 1s corresponds to a
QNaN.

Note that the processors with “CPUID.1H:ECX.AVX =0” do not implement the
greater-than, greater-than-or-equal, not-greater-than, and not-greater-than-or-
equal relations. These comparisons can be made either by using the inverse relation-
ship (that is, use the “not-less-than-or-equal” to make a “greater-than” comparison)
or by using software emulation. When using software emulation, the program must

Table 3-7. Comparison Predicate for CMPPD and CMPPS Instructions

Predi-
cate

imm8
Encod-
ing

Description Relation where:
A Is 1st Operand
B Is 2nd
Operand

Emulation Result if
NaN
Operand

QNaN
Oper-and
Signals
Invalid

EQ 000B Equal A = B False No

LT 001B Less-than A < B False Yes

LE 010B Less-than-or-equal A ≤ B False Yes

Greater than A > B Swap
Operands,
Use LT

False Yes

Greater-than-or-
equal

A ≥ B Swap
Operands,
Use LE

False Yes

UNORD 011B Unordered A, B = Unordered True No

NEQ 100B Not-equal A ≠ B True No

NLT 101B Not-less-than NOT(A < B) True Yes

NLE 110B Not-less-than-or-
equal

NOT(A ≤ B) True Yes

Not-greater-than NOT(A > B) Swap
Operands,
Use NLT

True Yes

Not-greater-than-
or-equal

NOT(A ≥ B) Swap
Operands,
Use NLE

True Yes

ORD 111B Ordered A , B = Ordered False No
3-154 Vol. 2A CMPPD—Compare Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
swap the operands (copying registers when necessary to protect the data that will
now be in the destination), and then perform the compare using a different predi-
cate. The predicate to be used for these emulations is listed in Table 3-7 under the
heading Emulation.

Compilers and assemblers may implement the following two-operand pseudo-ops in
addition to the three-operand CMPPD instruction, for processors with
“CPUID.1H:ECX.AVX =0”. See Table 3-8. Compiler should treat reserved Imm8
values as illegal syntax.
:

The greater-than relations that the processor does not implement, require more than
one instruction to emulate in software and therefore should not be implemented as
pseudo-ops. (For these, the programmer should reverse the operands of the corre-
sponding less than relations and use move instructions to ensure that the mask is
moved to the correct destination register and that the source operand is left intact.)

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).

Enhanced Comparison Predicate for VEX-Encoded VCMPPD
VEX.128 encoded version: The first source operand (second operand) is an XMM
register. The second source operand (third operand) can be an XMM register or a
128-bit memory location. Bits (VLMAX-1:128) of the destination YMM register are
zeroed. Two comparisons are performed with results written to bits 127:0 of the
destination operand.
VEX.256 encoded version: The first source operand (second operand) is a YMM
register. The second source operand (third operand) can be a YMM register or a 256-
bit memory location. The destination operand (first operand) is a YMM register. Four
comparisons are performed with results written to the destination operand.
The comparison predicate operand is an 8-bit immediate:
• For instructions encoded using the VEX prefix, bits 4:0 define the type of

comparison to be performed (see Table 3-9). Bits 5 through 7 of the immediate
are reserved.

Table 3-8. Pseudo-Op and CMPPD Implementation

Pseudo-Op CMPPD Implementation

CMPEQPD xmm1, xmm2 CMPPD xmm1, xmm2, 0

CMPLTPD xmm1, xmm2 CMPPD xmm1, xmm2, 1

CMPLEPD xmm1, xmm2 CMPPD xmm1, xmm2, 2

CMPUNORDPD xmm1, xmm2 CMPPD xmm1, xmm2, 3

CMPNEQPD xmm1, xmm2 CMPPD xmm1, xmm2, 4

CMPNLTPD xmm1, xmm2 CMPPD xmm1, xmm2, 5

CMPNLEPD xmm1, xmm2 CMPPD xmm1, xmm2, 6

CMPORDPD xmm1, xmm2 CMPPD xmm1, xmm2, 7
Vol. 2A 3-155CMPPD—Compare Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
Table 3-9. Comparison Predicate for VCMPPD and VCMPPS Instructions

Predicate imm8
Value

Description Result: A Is 1st Operand, B Is 2nd Operand Signals
#IA on
QNANA >B A < B A = B Unordered1

EQ_OQ
(EQ)

0H Equal (ordered, non-
signaling)

False False True False No

LT_OS
(LT)

1H Less-than (ordered,
signaling)

False True False False Yes

LE_OS
(LE)

2H Less-than-or-equal
(ordered, signaling)

False True True False Yes

UNORD_
Q
(UNORD)

3H Unordered (non-
signaling)

False False False True No

NEQ_UQ
(NEQ)

4H Not-equal
(unordered, non-
signaling)

True True False True No

NLT_US
(NLT)

5H Not-less-than
(unordered,
signaling)

True False True True Yes

NLE_US
(NLE)

6H Not-less-than-or-
equal (unordered,
signaling)

True False False True Yes

ORD_Q
(ORD)

7H Ordered (non-
signaling)

True True True False No

EQ_UQ 8H Equal (unordered,
non-signaling)

False False True True No

NGE_US
(NGE)

9H Not-greater-than-or-
equal (unordered,
signaling)

False True False True Yes

NGT_US
(NGT)

AH Not-greater-than
(unordered, signal-
ing)

False True True True Yes

FALSE_O
Q(FALSE)

BH False (ordered, non-
signaling)

False False False False No

NEQ_OQ CH Not-equal (ordered,
non-signaling)

True True False False No

GE_OS
(GE)

DH Greater-than-or-
equal (ordered, sig-
naling)

True False True False Yes
3-156 Vol. 2A CMPPD—Compare Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
GT_OS
(GT)

EH Greater-than
(ordered, signaling)

True False False False Yes

TRUE_U
Q(TRUE)

FH True (unordered,
non-signaling)

True True True True No

EQ_OS 10H Equal (ordered, sig-
naling)

False False True False Yes

LT_OQ 11H Less-than (ordered,
nonsignaling)

False True False False No

LE_OQ 12H Less-than-or-equal
(ordered, nonsignal-
ing)

False True True False No

UNORD_
S

13H Unordered (signal-
ing)

False False False True Yes

NEQ_US 14H Not-equal (unor-
dered, signaling)

True True False True Yes

NLT_UQ 15H Not-less-than (unor-
dered, nonsignaling)

True False True True No

NLE_UQ 16H Not-less-than-or-
equal (unordered,
nonsignaling)

True False False True No

ORD_S 17H Ordered (signaling) True True True False Yes

EQ_US 18H Equal (unordered,
signaling)

False False True True Yes

NGE_UQ 19H Not-greater-than-or-
equal (unordered,
nonsignaling)

False True False True No

NGT_UQ 1AH Not-greater-than
(unordered, nonsig-
naling)

False True True True No

FALSE_O
S

1BH False (ordered, sig-
naling)

False False False False Yes

NEQ_OS 1CH Not-equal (ordered,
signaling)

True True False False Yes

Table 3-9. Comparison Predicate for VCMPPD and VCMPPS Instructions (Contd.)

Predicate imm8
Value

Description Result: A Is 1st Operand, B Is 2nd Operand Signals
#IA on
QNANA >B A < B A = B Unordered1
Vol. 2A 3-157CMPPD—Compare Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
Processors with “CPUID.1H:ECX.AVX =1” implement the full complement of 32 pred-
icates shown in Table 3-9, software emulation is no longer needed. Compilers and
assemblers may implement the following three-operand pseudo-ops in addition to
the four-operand VCMPPD instruction. See Table 3-10, where the notations of reg1
reg2, and reg3 represent either XMM registers or YMM registers. Compiler should
treat reserved Imm8 values as illegal syntax. Alternately, intrinsics can map the
pseudo-ops to pre-defined constants to support a simpler intrinsic interface.
:

GE_OQ 1DH Greater-than-or-
equal (ordered, non-
signaling)

True False True False No

GT_OQ 1EH Greater-than
(ordered, nonsignal-
ing)

True False False False No

TRUE_US 1FH True (unordered, sig-
naling)

True True True True Yes

NOTES:
1. If either operand A or B is a NAN.

Table 3-10. Pseudo-Op and VCMPPD Implementation

Pseudo-Op CMPPD Implementation

VCMPEQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 0

VCMPLTPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 1

VCMPLEPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 2

VCMPUNORDPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 3

VCMPNEQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 4

VCMPNLTPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 5

VCMPNLEPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 6

VCMPORDPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 7

VCMPEQ_UQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 8

VCMPNGEPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 9

VCMPNGTPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 0AH

VCMPFALSEPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 0BH

VCMPNEQ_OQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 0CH

Table 3-9. Comparison Predicate for VCMPPD and VCMPPS Instructions (Contd.)

Predicate imm8
Value

Description Result: A Is 1st Operand, B Is 2nd Operand Signals
#IA on
QNANA >B A < B A = B Unordered1
3-158 Vol. 2A CMPPD—Compare Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
Operation

CASE (COMPARISON PREDICATE) OF
0: OP3 EQ_OQ; OP5 EQ_OQ;
1: OP3 LT_OS; OP5 LT_OS;
2: OP3 LE_OS; OP5 LE_OS;
3: OP3 UNORD_Q; OP5 UNORD_Q;
4: OP3 NEQ_UQ; OP5 NEQ_UQ;
5: OP3 NLT_US; OP5 NLT_US;
6: OP3 NLE_US; OP5 NLE_US;
7: OP3 ORD_Q; OP5 ORD_Q;
8: OP5 EQ_UQ;
9: OP5 NGE_US;

VCMPGEPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 0DH

VCMPGTPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 0EH

VCMPTRUEPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 0FH

VCMPEQ_OSPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 10H

VCMPLT_OQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 11H

VCMPLE_OQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 12H

VCMPUNORD_SPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 13H

VCMPNEQ_USPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 14H

VCMPNLT_UQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 15H

VCMPNLE_UQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 16H

VCMPORD_SPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 17H

VCMPEQ_USPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 18H

VCMPNGE_UQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 19H

VCMPNGT_UQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 1AH

VCMPFALSE_OSPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 1BH

VCMPNEQ_OSPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 1CH

VCMPGE_OQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 1DH

VCMPGT_OQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 1EH

VCMPTRUE_USPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 1FH

Table 3-10. Pseudo-Op and VCMPPD Implementation

Pseudo-Op CMPPD Implementation
Vol. 2A 3-159CMPPD—Compare Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
10: OP5 NGT_US;
11: OP5 FALSE_OQ;
12: OP5 NEQ_OQ;
13: OP5 GE_OS;
14: OP5 GT_OS;
15: OP5 TRUE_UQ;
16: OP5 EQ_OS;
17: OP5 LT_OQ;
18: OP5 LE_OQ;
19: OP5 UNORD_S;
20: OP5 NEQ_US;
21: OP5 NLT_UQ;
22: OP5 NLE_UQ;
23: OP5 ORD_S;
24: OP5 EQ_US;
25: OP5 NGE_UQ;
26: OP5 NGT_UQ;
27: OP5 FALSE_OS;
28: OP5 NEQ_OS;
29: OP5 GE_OQ;
30: OP5 GT_OQ;
31: OP5 TRUE_US;
DEFAULT: Reserved;

CMPPD (128-bit Legacy SSE version)
CMP0 SRC1[63:0] OP3 SRC2[63:0];
CMP1 SRC1[127:64] OP3 SRC2[127:64];
IF CMP0 = TRUE

THEN DEST[63:0] FFFFFFFFFFFFFFFFH;
ELSE DEST[63:0] 0000000000000000H; FI;

IF CMP1 = TRUE
THEN DEST[127:64] FFFFFFFFFFFFFFFFH;
ELSE DEST[127:64] 0000000000000000H; FI;

DEST[VLMAX-1:128] (Unmodified)

VCMPPD (VEX.128 encoded version)
CMP0 SRC1[63:0] OP5 SRC2[63:0];
CMP1 SRC1[127:64] OP5 SRC2[127:64];
IF CMP0 = TRUE

THEN DEST[63:0] FFFFFFFFFFFFFFFFH;
ELSE DEST[63:0] 0000000000000000H; FI;

IF CMP1 = TRUE
THEN DEST[127:64] FFFFFFFFFFFFFFFFH;
3-160 Vol. 2A CMPPD—Compare Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
ELSE DEST[127:64] 0000000000000000H; FI;
DEST[VLMAX-1:128] 0

VCMPPD (VEX.256 encoded version)
CMP0 SRC1[63:0] OP5 SRC2[63:0];
CMP1 SRC1[127:64] OP5 SRC2[127:64];
CMP2 SRC1[191:128] OP5 SRC2[191:128];
CMP3 SRC1[255:192] OP5 SRC2[255:192];
IF CMP0 = TRUE

THEN DEST[63:0] FFFFFFFFFFFFFFFFH;
ELSE DEST[63:0] 0000000000000000H; FI;

IF CMP1 = TRUE
THEN DEST[127:64] FFFFFFFFFFFFFFFFH;
ELSE DEST[127:64] 0000000000000000H; FI;

IF CMP2 = TRUE
THEN DEST[191:128] FFFFFFFFFFFFFFFFH;
ELSE DEST[191:128] 0000000000000000H; FI;

IF CMP3 = TRUE
THEN DEST[255:192] FFFFFFFFFFFFFFFFH;
ELSE DEST[255:192] 0000000000000000H; FI;

Intel C/C++ Compiler Intrinsic Equivalents

CMPPD for equality: __m128d _mm_cmpeq_pd(__m128d a, __m128d b)

CMPPD for less-than: __m128d _mm_cmplt_pd(__m128d a, __m128d b)

CMPPD for less-than-or-equal: __m128d _mm_cmple_pd(__m128d a, __m128d b)

CMPPD for greater-than: __m128d _mm_cmpgt_pd(__m128d a, __m128d b)

CMPPD for greater-than-or-equal: __m128d _mm_cmpge_pd(__m128d a, __m128d b)

CMPPD for inequality: __m128d _mm_cmpneq_pd(__m128d a, __m128d b)

CMPPD for not-less-than: __m128d _mm_cmpnlt_pd(__m128d a, __m128d b)

CMPPD for not-greater-than: __m128d _mm_cmpngt_pd(__m128d a, __m128d b)

CMPPD for not-greater-than-or-equal: __m128d _mm_cmpnge_pd(__m128d a, __m128d b)

CMPPD for ordered: __m128d _mm_cmpord_pd(__m128d a, __m128d b)

CMPPD for unordered: __m128d _mm_cmpunord_pd(__m128d a, __m128d b)

CMPPD for not-less-than-or-equal: __m128d _mm_cmpnle_pd(__m128d a, __m128d b)

VCMPPD: __m256 _mm256_cmp_pd(__m256 a, __m256 b, const int imm)

VCMPPD: __m128 _mm_cmp_pd(__m128 a, __m128 b, const int imm)
Vol. 2A 3-161CMPPD—Compare Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
SIMD Floating-Point Exceptions

Invalid if SNaN operand and invalid if QNaN and predicate as listed in above table,
Denormal.

Other Exceptions
See Exceptions Type 2.
3-162 Vol. 2A CMPPD—Compare Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
CMPPS—Compare Packed Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a SIMD compare of the packed single-precision floating-point values in the
source operand (second operand) and the destination operand (first operand) and
returns the results of the comparison to the destination operand. The comparison
predicate operand (third operand) specifies the type of comparison performed on
each of the pairs of packed values. The result of each comparison is a doubleword
mask of all 1s (comparison true) or all 0s (comparison false).
128-bit Legacy SSE version: The first source and destination operand (first operand)
is an XMM register. The second source operand (second operand) can be an XMM
register or 128-bit memory location. The comparison predicate operand is an 8-bit
immediate, bits 2:0 of the immediate define the type of comparison to be performed
(see Table 3-7). Bits 7:3 of the immediate is reserved. Bits (VLMAX-1:128) of the
corresponding YMM destination register remain unchanged. Four comparisons are
performed with results written to bits 127:0 of the destination operand.

Opcode/
Instruction

Op/
En

64/32-
bit Mode

CPUID
Feature
Flag

Description

0F C2 /r ib

CMPPS xmm1, xmm2/m128, imm8

RMI V/V SSE Compare packed single-
precision floating-point
values in xmm2/mem and
xmm1 using imm8 as
comparison predicate.

VEX.NDS.128.0F.WIG C2 /r ib

VCMPPS xmm1, xmm2, xmm3/m128,
imm8

RVMI V/V AVX Compare packed single-
precision floating-point
values in xmm3/m128 and
xmm2 using bits 4:0 of
imm8 as a comparison
predicate.

VEX.NDS.256.0F.WIG C2 /r ib

VCMPPS ymm1, ymm2, ymm3/m256,
imm8

RVMI V/V AVX Compare packed single-
precision floating-point
values in ymm3/m256 and
ymm2 using bits 4:0 of
imm8 as a comparison
predicate.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
Vol. 2A 3-163CMPPS—Compare Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
The unordered relationship is true when at least one of the two source operands
being compared is a NaN; the ordered relationship is true when neither source
operand is a NaN.

A subsequent computational instruction that uses the mask result in the destination
operand as an input operand will not generate a fault, because a mask of all 0s corre-
sponds to a floating-point value of +0.0 and a mask of all 1s corresponds to a QNaN.

Note that processors with “CPUID.1H:ECX.AVX =0” do not implement the “greater-
than”, “greater-than-or-equal”, “not-greater than”, and “not-greater-than-or-equal
relations” predicates. These comparisons can be made either by using the inverse
relationship (that is, use the “not-less-than-or-equal” to make a “greater-than”
comparison) or by using software emulation. When using software emulation, the
program must swap the operands (copying registers when necessary to protect the
data that will now be in the destination), and then perform the compare using a
different predicate. The predicate to be used for these emulations is listed in Table
3-7 under the heading Emulation.

Compilers and assemblers may implement the following two-operand pseudo-ops in
addition to the three-operand CMPPS instruction, for processors with
“CPUID.1H:ECX.AVX =0”. See Table 3-11. Compiler should treat reserved Imm8
values as illegal syntax.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).

The greater-than relations not implemented by processor require more than one
instruction to emulate in software and therefore should not be implemented as
pseudo-ops. (For these, the programmer should reverse the operands of the corre-
sponding less than relations and use move instructions to ensure that the mask is
moved to the correct destination register and that the source operand is left intact.)

Enhanced Comparison Predicate for VEX-Encoded VCMPPS

Table 3-11. Pseudo-Ops and CMPPS

Pseudo-Op Implementation

CMPEQPS xmm1, xmm2 CMPPS xmm1, xmm2, 0

CMPLTPS xmm1, xmm2 CMPPS xmm1, xmm2, 1

CMPLEPS xmm1, xmm2 CMPPS xmm1, xmm2, 2

CMPUNORDPS xmm1, xmm2 CMPPS xmm1, xmm2, 3

CMPNEQPS xmm1, xmm2 CMPPS xmm1, xmm2, 4

CMPNLTPS xmm1, xmm2 CMPPS xmm1, xmm2, 5

CMPNLEPS xmm1, xmm2 CMPPS xmm1, xmm2, 6

CMPORDPS xmm1, xmm2 CMPPS xmm1, xmm2, 7
3-164 Vol. 2A CMPPS—Compare Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
VEX.128 encoded version: The first source operand (second operand) is an XMM
register. The second source operand (third operand) can be an XMM register or a
128-bit memory location. Bits (VLMAX-1:128) of the destination YMM register are
zeroed. Four comparisons are performed with results written to bits 127:0 of the
destination operand.
VEX.256 encoded version: The first source operand (second operand) is a YMM
register. The second source operand (third operand) can be a YMM register or a 256-
bit memory location. The destination operand (first operand) is a YMM register. Eight
comparisons are performed with results written to the destination operand.
The comparison predicate operand is an 8-bit immediate:
• For instructions encoded using the VEX prefix, bits 4:0 define the type of

comparison to be performed (see Table 3-9). Bits 5 through 7 of the immediate
are reserved.

Processors with “CPUID.1H:ECX.AVX =1” implement the full complement of 32 pred-
icates shown in Table 3-9, software emulation is no longer needed. Compilers and
assemblers may implement the following three-operand pseudo-ops in addition to
the four-operand VCMPPS instruction. See Table 3-12, where the notation of reg1
and reg2 represent either XMM registers or YMM registers. Compiler should treat
reserved Imm8 values as illegal syntax. Alternately, intrinsics can map the pseudo-
ops to pre-defined constants to support a simpler intrinsic interface.
:

Table 3-12. Pseudo-Op and VCMPPS Implementation

Pseudo-Op CMPPS Implementation

VCMPEQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 0

VCMPLTPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 1

VCMPLEPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 2

VCMPUNORDPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 3

VCMPNEQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 4

VCMPNLTPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 5

VCMPNLEPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 6

VCMPORDPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 7

VCMPEQ_UQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 8

VCMPNGEPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 9

VCMPNGTPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 0AH

VCMPFALSEPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 0BH

VCMPNEQ_OQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 0CH

VCMPGEPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 0DH

VCMPGTPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 0EH
Vol. 2A 3-165CMPPS—Compare Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
Operation

CASE (COMPARISON PREDICATE) OF
0: OP3 EQ_OQ; OP5 EQ_OQ;
1: OP3 LT_OS; OP5 LT_OS;
2: OP3 LE_OS; OP5 LE_OS;
3: OP3 UNORD_Q; OP5 UNORD_Q;
4: OP3 NEQ_UQ; OP5 NEQ_UQ;
5: OP3 NLT_US; OP5 NLT_US;
6: OP3 NLE_US; OP5 NLE_US;
7: OP3 ORD_Q; OP5 ORD_Q;
8: OP5 EQ_UQ;
9: OP5 NGE_US;
10: OP5 NGT_US;
11: OP5 FALSE_OQ;
12: OP5 NEQ_OQ;
13: OP5 GE_OS;
14: OP5 GT_OS;

VCMPTRUEPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 0FH

VCMPEQ_OSPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 10H

VCMPLT_OQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 11H

VCMPLE_OQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 12H

VCMPUNORD_SPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 13H

VCMPNEQ_USPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 14H

VCMPNLT_UQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 15H

VCMPNLE_UQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 16H

VCMPORD_SPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 17H

VCMPEQ_USPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 18H

VCMPNGE_UQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 19H

VCMPNGT_UQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 1AH

VCMPFALSE_OSPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 1BH

VCMPNEQ_OSPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 1CH

VCMPGE_OQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 1DH

VCMPGT_OQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 1EH

VCMPTRUE_USPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 1FH

Table 3-12. Pseudo-Op and VCMPPS Implementation

Pseudo-Op CMPPS Implementation
3-166 Vol. 2A CMPPS—Compare Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
15: OP5 TRUE_UQ;
16: OP5 EQ_OS;
17: OP5 LT_OQ;
18: OP5 LE_OQ;
19: OP5 UNORD_S;
20: OP5 NEQ_US;
21: OP5 NLT_UQ;
22: OP5 NLE_UQ;
23: OP5 ORD_S;
24: OP5 EQ_US;
25: OP5 NGE_UQ;
26: OP5 NGT_UQ;
27: OP5 FALSE_OS;
28: OP5 NEQ_OS;
29: OP5 GE_OQ;
30: OP5 GT_OQ;
31: OP5 TRUE_US;
DEFAULT: Reserved

EASC;

CMPPS (128-bit Legacy SSE version)
CMP0 SRC1[31:0] OP3 SRC2[31:0];
CMP1 SRC1[63:32] OP3 SRC2[63:32];
CMP2 SRC1[95:64] OP3 SRC2[95:64];
CMP3 SRC1[127:96] OP3 SRC2[127:96];
IF CMP0 = TRUE

THEN DEST[31:0] FFFFFFFFH;
ELSE DEST[31:0] 000000000H; FI;

IF CMP1 = TRUE
THEN DEST[63:32] FFFFFFFFH;
ELSE DEST[63:32] 000000000H; FI;

IF CMP2 = TRUE
THEN DEST[95:64] FFFFFFFFH;
ELSE DEST[95:64] 000000000H; FI;

IF CMP3 = TRUE
THEN DEST[127:96] FFFFFFFFH;
ELSE DEST[127:96] 000000000H; FI;

DEST[VLMAX-1:128] (Unmodified)

VCMPPS (VEX.128 encoded version)
CMP0 SRC1[31:0] OP5 SRC2[31:0];
CMP1 SRC1[63:32] OP5 SRC2[63:32];
CMP2 SRC1[95:64] OP5 SRC2[95:64];
Vol. 2A 3-167CMPPS—Compare Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
CMP3 SRC1[127:96] OP5 SRC2[127:96];
IF CMP0 = TRUE

THEN DEST[31:0] FFFFFFFFH;
ELSE DEST[31:0] 000000000H; FI;

IF CMP1 = TRUE
THEN DEST[63:32] FFFFFFFFH;
ELSE DEST[63:32] 000000000H; FI;

IF CMP2 = TRUE
THEN DEST[95:64] FFFFFFFFH;
ELSE DEST[95:64] 000000000H; FI;

IF CMP3 = TRUE
THEN DEST[127:96] FFFFFFFFH;
ELSE DEST[127:96] 000000000H; FI;

DEST[VLMAX-1:128] 0

VCMPPS (VEX.256 encoded version)
CMP0 SRC1[31:0] OP5 SRC2[31:0];
CMP1 SRC1[63:32] OP5 SRC2[63:32];
CMP2 SRC1[95:64] OP5 SRC2[95:64];
CMP3 SRC1[127:96] OP5 SRC2[127:96];
CMP4 SRC1[159:128] OP5 SRC2[159:128];
CMP5 SRC1[191:160] OP5 SRC2[191:160];
CMP6 SRC1[223:192] OP5 SRC2[223:192];
CMP7 SRC1[255:224] OP5 SRC2[255:224];
IF CMP0 = TRUE

THEN DEST[31:0] FFFFFFFFH;
ELSE DEST[31:0] 000000000H; FI;

IF CMP1 = TRUE
THEN DEST[63:32] FFFFFFFFH;
ELSE DEST[63:32] 000000000H; FI;

IF CMP2 = TRUE
THEN DEST[95:64] FFFFFFFFH;
ELSE DEST[95:64] 000000000H; FI;

IF CMP3 = TRUE
THEN DEST[127:96] FFFFFFFFH;
ELSE DEST[127:96] 000000000H; FI;

IF CMP4 = TRUE
THEN DEST[159:128] FFFFFFFFH;
ELSE DEST[159:128] 000000000H; FI;

IF CMP5 = TRUE
THEN DEST[191:160] FFFFFFFFH;
ELSE DEST[191:160] 000000000H; FI;

IF CMP6 = TRUE
3-168 Vol. 2A CMPPS—Compare Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
THEN DEST[223:192] FFFFFFFFH;
ELSE DEST[223:192] 000000000H; FI;

IF CMP7 = TRUE
THEN DEST[255:224] FFFFFFFFH;
ELSE DEST[255:224] 000000000H; FI;

Intel C/C++ Compiler Intrinsic Equivalents

CMPPS for equality: __m128 _mm_cmpeq_ps(__m128 a, __m128 b)

CMPPS for less-than: __m128 _mm_cmplt_ps(__m128 a, __m128 b)

CMPPS for less-than-or-equal: __m128 _mm_cmple_ps(__m128 a, __m128 b)

CMPPS for greater-than: __m128 _mm_cmpgt_ps(__m128 a, __m128 b)

CMPPS for greater-than-or-equal: __m128 _mm_cmpge_ps(__m128 a, __m128 b)

CMPPS for inequality: __m128 _mm_cmpneq_ps(__m128 a, __m128 b)

CMPPS for not-less-than: __m128 _mm_cmpnlt_ps(__m128 a, __m128 b)

CMPPS for not-greater-than: __m128 _mm_cmpngt_ps(__m128 a, __m128 b)

CMPPS for not-greater-than-or-equal: __m128 _mm_cmpnge_ps(__m128 a, __m128 b)

CMPPS for ordered: __m128 _mm_cmpord_ps(__m128 a, __m128 b)

CMPPS for unordered: __m128 _mm_cmpunord_ps(__m128 a, __m128 b)

CMPPS for not-less-than-or-equal: __m128 _mm_cmpnle_ps(__m128 a, __m128 b)

VCMPPS: __m256 _mm256_cmp_ps(__m256 a, __m256 b, const int imm)

VCMPPS: __m128 _mm_cmp_ps(__m128 a, __m128 b, const int imm)

SIMD Floating-Point Exceptions

Invalid if SNaN operand and invalid if QNaN and predicate as listed in above table,
Denormal.

Other Exceptions
See Exceptions Type 2.
Vol. 2A 3-169CMPPS—Compare Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
CMPS/CMPSB/CMPSW/CMPSD/CMPSQ—Compare String Operands
Opcode Instruction Op/

En
64-Bit
Mode

Compat/
Leg Mode

Description

A6 CMPS m8, m8 NP Valid Valid For legacy mode, compare
byte at address DS:(E)SI
with byte at address
ES:(E)DI; For 64-bit mode
compare byte at address
(R|E)SI to byte at address
(R|E)DI. The status flags are
set accordingly.

A7 CMPS m16, m16 NP Valid Valid For legacy mode, compare
word at address DS:(E)SI
with word at address
ES:(E)DI; For 64-bit mode
compare word at address
(R|E)SI with word at address
(R|E)DI. The status flags are
set accordingly.

A7 CMPS m32, m32 NP Valid Valid For legacy mode, compare
dword at address DS:(E)SI at
dword at address ES:(E)DI;
For 64-bit mode compare
dword at address (R|E)SI at
dword at address (R|E)DI.
The status flags are set
accordingly.

REX.W + A7 CMPS m64, m64 NP Valid N.E. Compares quadword at
address (R|E)SI with
quadword at address (R|E)DI
and sets the status flags
accordingly.

A6 CMPSB NP Valid Valid For legacy mode, compare
byte at address DS:(E)SI
with byte at address
ES:(E)DI; For 64-bit mode
compare byte at address
(R|E)SI with byte at address
(R|E)DI. The status flags are
set accordingly.
3-170 Vol. 2A CMPS/CMPSB/CMPSW/CMPSD/CMPSQ—Compare String Operands

INSTRUCTION SET REFERENCE, A-L
Instruction Operand Encoding

Description

Compares the byte, word, doubleword, or quadword specified with the first source
operand with the byte, word, doubleword, or quadword specified with the second
source operand and sets the status flags in the EFLAGS register according to the
results.

Both source operands are located in memory. The address of the first source operand
is read from DS:SI, DS:ESI or RSI (depending on the address-size attribute of the
instruction is 16, 32, or 64, respectively). The address of the second source operand
is read from ES:DI, ES:EDI or RDI (again depending on the address-size attribute of
the instruction is 16, 32, or 64). The DS segment may be overridden with a segment
override prefix, but the ES segment cannot be overridden.

At the assembly-code level, two forms of this instruction are allowed: the “explicit-
operands” form and the “no-operands” form. The explicit-operands form (specified
with the CMPS mnemonic) allows the two source operands to be specified explicitly.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

A7 CMPSW NP Valid Valid For legacy mode, compare
word at address DS:(E)SI
with word at address
ES:(E)DI; For 64-bit mode
compare word at address
(R|E)SI with word at address
(R|E)DI. The status flags are
set accordingly.

A7 CMPSD NP Valid Valid For legacy mode, compare
dword at address DS:(E)SI
with dword at address
ES:(E)DI; For 64-bit mode
compare dword at address
(R|E)SI with dword at
address (R|E)DI. The status
flags are set accordingly.

REX.W + A7 CMPSQ NP Valid N.E. Compares quadword at
address (R|E)SI with
quadword at address (R|E)DI
and sets the status flags
accordingly.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
Vol. 2A 3-171CMPS/CMPSB/CMPSW/CMPSD/CMPSQ—Compare String Operands

INSTRUCTION SET REFERENCE, A-L
Here, the source operands should be symbols that indicate the size and location of
the source values. This explicit-operand form is provided to allow documentation.
However, note that the documentation provided by this form can be misleading. That
is, the source operand symbols must specify the correct type (size) of the operands
(bytes, words, or doublewords, quadwords), but they do not have to specify the
correct location. Locations of the source operands are always specified by the
DS:(E)SI (or RSI) and ES:(E)DI (or RDI) registers, which must be loaded correctly
before the compare string instruction is executed.

The no-operands form provides “short forms” of the byte, word, and doubleword
versions of the CMPS instructions. Here also the DS:(E)SI (or RSI) and ES:(E)DI (or
RDI) registers are assumed by the processor to specify the location of the source
operands. The size of the source operands is selected with the mnemonic: CMPSB
(byte comparison), CMPSW (word comparison), CMPSD (doubleword comparison),
or CMPSQ (quadword comparison using REX.W).

After the comparison, the (E/R)SI and (E/R)DI registers increment or decrement
automatically according to the setting of the DF flag in the EFLAGS register. (If the DF
flag is 0, the (E/R)SI and (E/R)DI register increment; if the DF flag is 1, the registers
decrement.) The registers increment or decrement by 1 for byte operations, by 2 for
word operations, 4 for doubleword operations. If operand size is 64, RSI and RDI
registers increment by 8 for quadword operations.

The CMPS, CMPSB, CMPSW, CMPSD, and CMPSQ instructions can be preceded by the
REP prefix for block comparisons. More often, however, these instructions will be
used in a LOOP construct that takes some action based on the setting of the status
flags before the next comparison is made. See “REP/REPE/REPZ
/REPNE/REPNZ—Repeat String Operation Prefix” in Chapter 4 of the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 2B, for a description of the
REP prefix.

In 64-bit mode, the instruction’s default address size is 64 bits, 32 bit address size is
supported using the prefix 67H. Use of the REX.W prefix promotes doubleword oper-
ation to 64 bits (see CMPSQ). See the summary chart at the beginning of this section
for encoding data and limits.

Operation

temp ← SRC1 - SRC2;
SetStatusFlags(temp);

IF (64-Bit Mode)
THEN

IF (Byte comparison)
THEN IF DF = 0

THEN
(R|E)SI ← (R|E)SI + 1;
(R|E)DI ← (R|E)DI + 1;

ELSE
3-172 Vol. 2A CMPS/CMPSB/CMPSW/CMPSD/CMPSQ—Compare String Operands

INSTRUCTION SET REFERENCE, A-L
(R|E)SI ← (R|E)SI – 1;
(R|E)DI ← (R|E)DI – 1;

FI;
ELSE IF (Word comparison)

THEN IF DF = 0
THEN

(R|E)SI ← (R|E)SI + 2;
(R|E)DI ← (R|E)DI + 2;

ELSE
(R|E)SI ← (R|E)SI – 2;
(R|E)DI ← (R|E)DI – 2;

FI;
ELSE IF (Doubleword comparison)

THEN IF DF = 0
THEN

(R|E)SI ← (R|E)SI + 4;
(R|E)DI ← (R|E)DI + 4;

ELSE
(R|E)SI ← (R|E)SI – 4;
(R|E)DI ← (R|E)DI – 4;

FI;
ELSE (* Quadword comparison *)

THEN IF DF = 0
(R|E)SI ← (R|E)SI + 8;
(R|E)DI ← (R|E)DI + 8;

ELSE
(R|E)SI ← (R|E)SI – 8;
(R|E)DI ← (R|E)DI – 8;

FI;
FI;

ELSE (* Non-64-bit Mode *)
IF (byte comparison)
THEN IF DF = 0

THEN
(E)SI ← (E)SI + 1;
(E)DI ← (E)DI + 1;

ELSE
(E)SI ← (E)SI – 1;
(E)DI ← (E)DI – 1;

FI;
ELSE IF (Word comparison)

THEN IF DF = 0
(E)SI ← (E)SI + 2;
Vol. 2A 3-173CMPS/CMPSB/CMPSW/CMPSD/CMPSQ—Compare String Operands

INSTRUCTION SET REFERENCE, A-L
(E)DI ← (E)DI + 2;
ELSE

(E)SI ← (E)SI – 2;
(E)DI ← (E)DI – 2;

FI;
ELSE (* Doubleword comparison *)

THEN IF DF = 0
(E)SI ← (E)SI + 4;
(E)DI ← (E)DI + 4;

ELSE
(E)SI ← (E)SI – 4;
(E)DI ← (E)DI – 4;

FI;
FI;

FI;

Flags Affected

The CF, OF, SF, ZF, AF, and PF flags are set according to the temporary result of the
comparison.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#UD If the LOCK prefix is used.
3-174 Vol. 2A CMPS/CMPSB/CMPSW/CMPSD/CMPSQ—Compare String Operands

INSTRUCTION SET REFERENCE, A-L
Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
Vol. 2A 3-175CMPS/CMPSB/CMPSW/CMPSD/CMPSQ—Compare String Operands

INSTRUCTION SET REFERENCE, A-L
CMPSD—Compare Scalar Double-Precision Floating-Point Values

Instruction Operand Encoding

Description

Compares the low double-precision floating-point values in the source operand
(second operand) and the destination operand (first operand) and returns the results
of the comparison to the destination operand. The comparison predicate operand
(third operand) specifies the type of comparison performed. The comparison result is
a quadword mask of all 1s (comparison true) or all 0s (comparison false).
128-bit Legacy SSE version: The first source and destination operand (first operand)
is an XMM register. The second source operand (second operand) can be an XMM
register or 64-bit memory location. The comparison predicate operand is an 8-bit
immediate, bits 2:0 of the immediate define the type of comparison to be performed
(see Table 3-7). Bits 7:3 of the immediate is reserved. Bits (VLMAX-1:64) of the
corresponding YMM destination register remain unchanged.

The unordered relationship is true when at least one of the two source operands
being compared is a NaN; the ordered relationship is true when neither source
operand is a NaN.

A subsequent computational instruction that uses the mask result in the destination
operand as an input operand will not generate a fault, because a mask of all 0s corre-
sponds to a floating-point value of +0.0 and a mask of all 1s corresponds to a QNaN.

Note that processors with “CPUID.1H:ECX.AVX =0” do not implement the “greater-
than”, “greater-than-or-equal”, “not-greater than”, and “not-greater-than-or-equal

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

F2 0F C2 /r ib

CMPSD xmm1, xmm2/m64, imm8

RMI V/V SSE2 Compare low double-
precision floating-point
value in xmm2/m64 and
xmm1 using imm8 as
comparison predicate.

VEX.NDS.LIG.F2.0F.WIG C2 /r ib

VCMPSD xmm1, xmm2, xmm3/m64,
imm8

RVMI V/V AVX Compare low double
precision floating-point
value in xmm3/m64 and
xmm2 using bits 4:0 of
imm8 as comparison
predicate.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
3-176 Vol. 2A CMPSD—Compare Scalar Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
relations” predicates. These comparisons can be made either by using the inverse
relationship (that is, use the “not-less-than-or-equal” to make a “greater-than”
comparison) or by using software emulation. When using software emulation, the
program must swap the operands (copying registers when necessary to protect the
data that will now be in the destination operand), and then perform the compare
using a different predicate. The predicate to be used for these emulations is listed in
Table 3-7 under the heading Emulation.

Compilers and assemblers may implement the following two-operand pseudo-ops in
addition to the three-operand CMPSD instruction, for processors with
“CPUID.1H:ECX.AVX =0”. See Table 3-13. Compiler should treat reserved Imm8
values as illegal syntax.

The greater-than relations not implemented in the processor require more than one
instruction to emulate in software and therefore should not be implemented as
pseudo-ops. (For these, the programmer should reverse the operands of the corre-
sponding less than relations and use move instructions to ensure that the mask is
moved to the correct destination register and that the source operand is left intact.)

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).

Enhanced Comparison Predicate for VEX-Encoded VCMPSD
VEX.128 encoded version: The first source operand (second operand) is an XMM
register. The second source operand (third operand) can be an XMM register or a 64-
bit memory location. Bits (VLMAX-1:128) of the destination YMM register are zeroed.
The comparison predicate operand is an 8-bit immediate:
• For instructions encoded using the VEX prefix, bits 4:0 define the type of

comparison to be performed (see Table 3-9). Bits 5 through 7 of the immediate
are reserved.

Processors with “CPUID.1H:ECX.AVX =1” implement the full complement of 32 pred-
icates shown in Table 3-9, software emulation is no longer needed. Compilers and

Table 3-13. Pseudo-Ops and CMPSD

Pseudo-Op Implementation

CMPEQSD xmm1, xmm2 CMPSD xmm1,xmm2, 0

CMPLTSD xmm1, xmm2 CMPSD xmm1,xmm2, 1

CMPLESD xmm1, xmm2 CMPSD xmm1,xmm2, 2

CMPUNORDSD xmm1, xmm2 CMPSD xmm1,xmm2, 3

CMPNEQSD xmm1, xmm2 CMPSD xmm1,xmm2, 4

CMPNLTSD xmm1, xmm2 CMPSD xmm1,xmm2, 5

CMPNLESD xmm1, xmm2 CMPSD xmm1,xmm2, 6

CMPORDSD xmm1, xmm2 CMPSD xmm1,xmm2, 7
Vol. 2A 3-177CMPSD—Compare Scalar Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
assemblers may implement the following three-operand pseudo-ops in addition to
the four-operand VCMPSD instruction. See Table 3-14, where the notations of reg1
reg2, and reg3 represent either XMM registers or YMM registers. Compiler should
treat reserved Imm8 values as illegal syntax. Alternately, intrinsics can map the
pseudo-ops to pre-defined constants to support a simpler intrinsic interface.
:

Table 3-14. Pseudo-Op and VCMPSD Implementation

Pseudo-Op CMPSD Implementation

VCMPEQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 0

VCMPLTSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 1

VCMPLESD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 2

VCMPUNORDSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 3

VCMPNEQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 4

VCMPNLTSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 5

VCMPNLESD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 6

VCMPORDSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 7

VCMPEQ_UQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 8

VCMPNGESD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 9

VCMPNGTSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 0AH

VCMPFALSESD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 0BH

VCMPNEQ_OQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 0CH

VCMPGESD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 0DH

VCMPGTSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 0EH

VCMPTRUESD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 0FH

VCMPEQ_OSSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 10H

VCMPLT_OQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 11H

VCMPLE_OQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 12H

VCMPUNORD_SSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 13H

VCMPNEQ_USSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 14H

VCMPNLT_UQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 15H

VCMPNLE_UQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 16H

VCMPORD_SSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 17H

VCMPEQ_USSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 18H

VCMPNGE_UQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 19H

VCMPNGT_UQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 1AH
3-178 Vol. 2A CMPSD—Compare Scalar Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
Operation

CASE (COMPARISON PREDICATE) OF
0: OP3 EQ_OQ; OP5 EQ_OQ;
1: OP3 LT_OS; OP5 LT_OS;
2: OP3 LE_OS; OP5 LE_OS;
3: OP3 UNORD_Q; OP5 UNORD_Q;
4: OP3 NEQ_UQ; OP5 NEQ_UQ;
5: OP3 NLT_US; OP5 NLT_US;
6: OP3 NLE_US; OP5 NLE_US;
7: OP3 ORD_Q; OP5 ORD_Q;
8: OP5 EQ_UQ;
9: OP5 NGE_US;
10: OP5 NGT_US;
11: OP5 FALSE_OQ;
12: OP5 NEQ_OQ;
13: OP5 GE_OS;
14: OP5 GT_OS;
15: OP5 TRUE_UQ;
16: OP5 EQ_OS;
17: OP5 LT_OQ;
18: OP5 LE_OQ;
19: OP5 UNORD_S;
20: OP5 NEQ_US;
21: OP5 NLT_UQ;
22: OP5 NLE_UQ;
23: OP5 ORD_S;
24: OP5 EQ_US;
25: OP5 NGE_UQ;
26: OP5 NGT_UQ;
27: OP5 FALSE_OS;
28: OP5 NEQ_OS;

VCMPFALSE_OSSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 1BH

VCMPNEQ_OSSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 1CH

VCMPGE_OQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 1DH

VCMPGT_OQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 1EH

VCMPTRUE_USSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 1FH

Table 3-14. Pseudo-Op and VCMPSD Implementation

Pseudo-Op CMPSD Implementation
Vol. 2A 3-179CMPSD—Compare Scalar Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
29: OP5 GE_OQ;
30: OP5 GT_OQ;
31: OP5 TRUE_US;
DEFAULT: Reserved

ESAC;

CMPSD (128-bit Legacy SSE version)
CMP0 DEST[63:0] OP3 SRC[63:0];
IF CMP0 = TRUE
THEN DEST[63:0] FFFFFFFFFFFFFFFFH;
ELSE DEST[63:0] 0000000000000000H; FI;
DEST[VLMAX-1:64] (Unmodified)

VCMPSD (VEX.128 encoded version)
CMP0 SRC1[63:0] OP5 SRC2[63:0];
IF CMP0 = TRUE
THEN DEST[63:0] FFFFFFFFFFFFFFFFH;
ELSE DEST[63:0] 0000000000000000H; FI;
DEST[127:64] SRC1[127:64]
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalents

CMPSD for equality: __m128d _mm_cmpeq_sd(__m128d a, __m128d b)

CMPSD for less-than: __m128d _mm_cmplt_sd(__m128d a, __m128d b)

CMPSD for less-than-or-equal: __m128d _mm_cmple_sd(__m128d a, __m128d b)

CMPSD for greater-than: __m128d _mm_cmpgt_sd(__m128d a, __m128d b)

CMPSD for greater-than-or-equal: __m128d _mm_cmpge_sd(__m128d a, __m128d b)

CMPSD for inequality: __m128d _mm_cmpneq_sd(__m128d a, __m128d b)

CMPSD for not-less-than: __m128d _mm_cmpnlt_sd(__m128d a, __m128d b)

CMPSD for not-greater-than: __m128d _mm_cmpngt_sd(__m128d a, __m128d b)

CMPSD for not-greater-than-or-equal: __m128d _mm_cmpnge_sd(__m128d a, __m128d b)

CMPSD for ordered: __m128d _mm_cmpord_sd(__m128d a, __m128d b)

CMPSD for unordered: __m128d _mm_cmpunord_sd(__m128d a, __m128d b)

CMPSD for not-less-than-or-equal: __m128d _mm_cmpnle_sd(__m128d a, __m128d b)

VCMPSD: __m128 _mm_cmp_sd(__m128 a, __m128 b, const int imm)

SIMD Floating-Point Exceptions

Invalid if SNaN operand, Invalid if QNaN and predicate as listed in above table,
Denormal.
3-180 Vol. 2A CMPSD—Compare Scalar Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
Other Exceptions
See Exceptions Type 3.
Vol. 2A 3-181CMPSD—Compare Scalar Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
CMPSS—Compare Scalar Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

Compares the low single-precision floating-point values in the source operand
(second operand) and the destination operand (first operand) and returns the results
of the comparison to the destination operand. The comparison predicate operand
(third operand) specifies the type of comparison performed. The comparison result is
a doubleword mask of all 1s (comparison true) or all 0s (comparison false).
128-bit Legacy SSE version: The first source and destination operand (first operand)
is an XMM register. The second source operand (second operand) can be an XMM
register or 64-bit memory location. The comparison predicate operand is an 8-bit
immediate, bits 2:0 of the immediate define the type of comparison to be performed
(see Table 3-7). Bits 7:3 of the immediate is reserved. Bits (VLMAX-1:32) of the
corresponding YMM destination register remain unchanged.

The unordered relationship is true when at least one of the two source operands
being compared is a NaN; the ordered relationship is true when neither source
operand is a NaN

A subsequent computational instruction that uses the mask result in the destination
operand as an input operand will not generate a fault, since a mask of all 0s corre-
sponds to a floating-point value of +0.0 and a mask of all 1s corresponds to a QNaN.

Note that processors with “CPUID.1H:ECX.AVX =0” do not implement the “greater-
than”, “greater-than-or-equal”, “not-greater than”, and “not-greater-than-or-equal

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

F3 0F C2 /r ib

CMPSS xmm1, xmm2/m32, imm8

RMI V/V SSE Compare low single-
precision floating-point
value in xmm2/m32 and
xmm1 using imm8 as
comparison predicate.

VEX.NDS.LIG.F3.0F.WIG C2 /r ib

VCMPSS xmm1, xmm2, xmm3/m32,
imm8

RVMI V/V AVX Compare low single
precision floating-point
value in xmm3/m32 and
xmm2 using bits 4:0 of
imm8 as comparison
predicate.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
3-182 Vol. 2A CMPSS—Compare Scalar Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
relations” predicates. These comparisons can be made either by using the inverse
relationship (that is, use the “not-less-than-or-equal” to make a “greater-than”
comparison) or by using software emulation. When using software emulation, the
program must swap the operands (copying registers when necessary to protect the
data that will now be in the destination operand), and then perform the compare
using a different predicate. The predicate to be used for these emulations is listed in
Table 3-7 under the heading Emulation.

Compilers and assemblers may implement the following two-operand pseudo-ops in
addition to the three-operand CMPSS instruction, for processors with
“CPUID.1H:ECX.AVX =0”. See Table 3-15. Compiler should treat reserved Imm8
values as illegal syntax.

The greater-than relations not implemented in the processor require more than one
instruction to emulate in software and therefore should not be implemented as
pseudo-ops. (For these, the programmer should reverse the operands of the corre-
sponding less than relations and use move instructions to ensure that the mask is
moved to the correct destination register and that the source operand is left intact.)

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).

Enhanced Comparison Predicate for VEX-Encoded VCMPSD
VEX.128 encoded version: The first source operand (second operand) is an XMM
register. The second source operand (third operand) can be an XMM register or a 32-
bit memory location. Bits (VLMAX-1:128) of the destination YMM register are zeroed.
The comparison predicate operand is an 8-bit immediate:
• For instructions encoded using the VEX prefix, bits 4:0 define the type of

comparison to be performed (see Table 3-9). Bits 5 through 7 of the immediate
are reserved.

Processors with “CPUID.1H:ECX.AVX =1” implement the full complement of 32 pred-
icates shown in Table 3-9, software emulation is no longer needed. Compilers and

Table 3-15. Pseudo-Ops and CMPSS

Pseudo-Op CMPSS Implementation

CMPEQSS xmm1, xmm2 CMPSS xmm1, xmm2, 0

CMPLTSS xmm1, xmm2 CMPSS xmm1, xmm2, 1

CMPLESS xmm1, xmm2 CMPSS xmm1, xmm2, 2

CMPUNORDSS xmm1, xmm2 CMPSS xmm1, xmm2, 3

CMPNEQSS xmm1, xmm2 CMPSS xmm1, xmm2, 4

CMPNLTSS xmm1, xmm2 CMPSS xmm1, xmm2, 5

CMPNLESS xmm1, xmm2 CMPSS xmm1, xmm2, 6

CMPORDSS xmm1, xmm2 CMPSS xmm1, xmm2, 7
Vol. 2A 3-183CMPSS—Compare Scalar Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
assemblers may implement the following three-operand pseudo-ops in addition to
the four-operand VCMPSS instruction. See Table 3-16, where the notations of reg1
reg2, and reg3 represent either XMM registers or YMM registers. Compiler should
treat reserved Imm8 values as illegal syntax. Alternately, intrinsics can map the
pseudo-ops to pre-defined constants to support a simpler intrinsic interface.
:

Table 3-16. Pseudo-Op and VCMPSS Implementation

Pseudo-Op CMPSS Implementation

VCMPEQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 0

VCMPLTSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 1

VCMPLESS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 2

VCMPUNORDSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 3

VCMPNEQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 4

VCMPNLTSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 5

VCMPNLESS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 6

VCMPORDSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 7

VCMPEQ_UQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 8

VCMPNGESS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 9

VCMPNGTSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 0AH

VCMPFALSESS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 0BH

VCMPNEQ_OQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 0CH

VCMPGESS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 0DH

VCMPGTSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 0EH

VCMPTRUESS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 0FH

VCMPEQ_OSSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 10H

VCMPLT_OQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 11H

VCMPLE_OQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 12H

VCMPUNORD_SSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 13H

VCMPNEQ_USSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 14H

VCMPNLT_UQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 15H

VCMPNLE_UQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 16H

VCMPORD_SSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 17H

VCMPEQ_USSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 18H

VCMPNGE_UQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 19H

VCMPNGT_UQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 1AH
3-184 Vol. 2A CMPSS—Compare Scalar Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
Operation

CASE (COMPARISON PREDICATE) OF
0: OP3 EQ_OQ; OP5 EQ_OQ;
1: OP3 LT_OS; OP5 LT_OS;
2: OP3 LE_OS; OP5 LE_OS;
3: OP3 UNORD_Q; OP5 UNORD_Q;
4: OP3 NEQ_UQ; OP5 NEQ_UQ;
5: OP3 NLT_US; OP5 NLT_US;
6: OP3 NLE_US; OP5 NLE_US;
7: OP3 ORD_Q; OP5 ORD_Q;
8: OP5 EQ_UQ;
9: OP5 NGE_US;
10: OP5 NGT_US;
11: OP5 FALSE_OQ;
12: OP5 NEQ_OQ;
13: OP5 GE_OS;
14: OP5 GT_OS;
15: OP5 TRUE_UQ;
16: OP5 EQ_OS;
17: OP5 LT_OQ;
18: OP5 LE_OQ;
19: OP5 UNORD_S;
20: OP5 NEQ_US;
21: OP5 NLT_UQ;
22: OP5 NLE_UQ;
23: OP5 ORD_S;
24: OP5 EQ_US;
25: OP5 NGE_UQ;
26: OP5 NGT_UQ;
27: OP5 FALSE_OS;
28: OP5 NEQ_OS;
29: OP5 GE_OQ;
30: OP5 GT_OQ;

VCMPFALSE_OSSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 1BH

VCMPNEQ_OSSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 1CH

VCMPGE_OQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 1DH

VCMPGT_OQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 1EH

VCMPTRUE_USSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 1FH

Table 3-16. Pseudo-Op and VCMPSS Implementation

Pseudo-Op CMPSS Implementation
Vol. 2A 3-185CMPSS—Compare Scalar Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
31: OP5 TRUE_US;
DEFAULT: Reserved

ESAC;

CMPSS (128-bit Legacy SSE version)
CMP0 DEST[31:0] OP3 SRC[31:0];
IF CMP0 = TRUE
THEN DEST[31:0] FFFFFFFFH;
ELSE DEST[31:0] 00000000H; FI;
DEST[VLMAX-1:32] (Unmodified)

VCMPSS (VEX.128 encoded version)
CMP0 SRC1[31:0] OP5 SRC2[31:0];
IF CMP0 = TRUE
THEN DEST[31:0] FFFFFFFFH;
ELSE DEST[31:0] 00000000H; FI;
DEST[127:32] SRC1[127:32]
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalents

CMPSS for equality: __m128 _mm_cmpeq_ss(__m128 a, __m128 b)

CMPSS for less-than: __m128 _mm_cmplt_ss(__m128 a, __m128 b)

CMPSS for less-than-or-equal: __m128 _mm_cmple_ss(__m128 a, __m128 b)

CMPSS for greater-than: __m128 _mm_cmpgt_ss(__m128 a, __m128 b)

CMPSS for greater-than-or-equal: __m128 _mm_cmpge_ss(__m128 a, __m128 b)

CMPSS for inequality: __m128 _mm_cmpneq_ss(__m128 a, __m128 b)

CMPSS for not-less-than: __m128 _mm_cmpnlt_ss(__m128 a, __m128 b)

CMPSS for not-greater-than: __m128 _mm_cmpngt_ss(__m128 a, __m128 b)

CMPSS for not-greater-than-or-equal: __m128 _mm_cmpnge_ss(__m128 a, __m128 b)

CMPSS for ordered: __m128 _mm_cmpord_ss(__m128 a, __m128 b)

CMPSS for unordered: __m128 _mm_cmpunord_ss(__m128 a, __m128 b)

CMPSS for not-less-than-or-equal: __m128 _mm_cmpnle_ss(__m128 a, __m128 b)

VCMPSS: __m128 _mm_cmp_ss(__m128 a, __m128 b, const int imm)

SIMD Floating-Point Exceptions

Invalid if SNaN operand, Invalid if QNaN and predicate as listed in above table,
Denormal.
3-186 Vol. 2A CMPSS—Compare Scalar Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
Other Exceptions
See Exceptions Type 3.
Vol. 2A 3-187CMPSS—Compare Scalar Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
CMPXCHG—Compare and Exchange

Instruction Operand Encoding

Description

Compares the value in the AL, AX, EAX, or RAX register with the first operand (desti-
nation operand). If the two values are equal, the second operand (source operand) is
loaded into the destination operand. Otherwise, the destination operand is loaded
into the AL, AX, EAX or RAX register. RAX register is available only in 64-bit mode.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F B0/r CMPXCHG r/m8, r8 MR Valid Valid* Compare AL with r/m8. If
equal, ZF is set and r8 is
loaded into r/m8. Else, clear
ZF and load r/m8 into AL.

REX + 0F B0/r CMPXCHG
r/m8**,r8

MR Valid N.E. Compare AL with r/m8. If
equal, ZF is set and r8 is
loaded into r/m8. Else, clear
ZF and load r/m8 into AL.

0F B1/r CMPXCHG r/m16,
r16

MR Valid Valid* Compare AX with r/m16. If
equal, ZF is set and r16 is
loaded into r/m16. Else,
clear ZF and load r/m16 into
AX.

0F B1/r CMPXCHG r/m32,
r32

MR Valid Valid* Compare EAX with r/m32. If
equal, ZF is set and r32 is
loaded into r/m32. Else,
clear ZF and load r/m32 into
EAX.

REX.W + 0F
B1/r

CMPXCHG r/m64,
r64

MR Valid N.E. Compare RAX with r/m64. If
equal, ZF is set and r64 is
loaded into r/m64. Else,
clear ZF and load r/m64 into
RAX.

NOTES:
* See the IA-32 Architecture Compatibility section below.
** In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is

used: AH, BH, CH, DH.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (r, w) ModRM:reg (r) NA NA
3-188 Vol. 2A CMPXCHG—Compare and Exchange

INSTRUCTION SET REFERENCE, A-L
This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically. To simplify the interface to the processor’s bus, the destination
operand receives a write cycle without regard to the result of the comparison. The
destination operand is written back if the comparison fails; otherwise, the source
operand is written into the destination. (The processor never produces a locked read
without also producing a locked write.)

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R
prefix permits access to additional registers (R8-R15). Use of the REX.W prefix
promotes operation to 64 bits. See the summary chart at the beginning of this
section for encoding data and limits.

IA-32 Architecture Compatibility

This instruction is not supported on Intel processors earlier than the Intel486 proces-
sors.

Operation

(* Accumulator = AL, AX, EAX, or RAX depending on whether a byte, word, doubleword, or
quadword comparison is being performed *)

IF accumulator = DEST
THEN

ZF ← 1;
DEST ← SRC;

ELSE
ZF ← 0;
accumulator ← DEST;

FI;

Flags Affected

The ZF flag is set if the values in the destination operand and register AL, AX, or EAX
are equal; otherwise it is cleared. The CF, PF, AF, SF, and OF flags are set according to
the results of the comparison operation.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
Vol. 2A 3-189CMPXCHG—Compare and Exchange

INSTRUCTION SET REFERENCE, A-L
#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#UD If the LOCK prefix is used but the destination is not a memory

operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used but the destination is not a memory

operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory

operand.
3-190 Vol. 2A CMPXCHG—Compare and Exchange

INSTRUCTION SET REFERENCE, A-L
CMPXCHG8B/CMPXCHG16B—Compare and Exchange Bytes

Instruction Operand Encoding

Description

Compares the 64-bit value in EDX:EAX (or 128-bit value in RDX:RAX if operand size
is 128 bits) with the operand (destination operand). If the values are equal, the
64-bit value in ECX:EBX (or 128-bit value in RCX:RBX) is stored in the destination
operand. Otherwise, the value in the destination operand is loaded into EDX:EAX (or
RDX:RAX). The destination operand is an 8-byte memory location (or 16-byte
memory location if operand size is 128 bits). For the EDX:EAX and ECX:EBX register
pairs, EDX and ECX contain the high-order 32 bits and EAX and EBX contain the low-
order 32 bits of a 64-bit value. For the RDX:RAX and RCX:RBX register pairs, RDX
and RCX contain the high-order 64 bits and RAX and RBX contain the low-order
64bits of a 128-bit value.

This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically. To simplify the interface to the processor’s bus, the destination
operand receives a write cycle without regard to the result of the comparison. The
destination operand is written back if the comparison fails; otherwise, the source
operand is written into the destination. (The processor never produces a locked read
without also producing a locked write.)

In 64-bit mode, default operation size is 64 bits. Use of the REX.W prefix promotes
operation to 128 bits. Note that CMPXCHG16B requires that the destination
(memory) operand be 16-byte aligned. See the summary chart at the beginning of
this section for encoding data and limits. For information on the CPUID flag that indi-
cates CMPXCHG16B, see page 3-214.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F C7 /1 m64 CMPXCHG8B m64 M Valid Valid* Compare EDX:EAX with
m64. If equal, set ZF and
load ECX:EBX into m64. Else,
clear ZF and load m64 into
EDX:EAX.

REX.W + 0F C7
/1 m128

CMPXCHG16B
m128

M Valid N.E. Compare RDX:RAX with
m128. If equal, set ZF and
load RCX:RBX into m128.
Else, clear ZF and load m128
into RDX:RAX.

NOTES:
*See IA-32 Architecture Compatibility section below.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r, w) NA NA NA
Vol. 2A 3-191CMPXCHG8B/CMPXCHG16B—Compare and Exchange Bytes

INSTRUCTION SET REFERENCE, A-L
IA-32 Architecture Compatibility

This instruction encoding is not supported on Intel processors earlier than the
Pentium processors.

Operation

IF (64-Bit Mode and OperandSize = 64)
THEN

IF (RDX:RAX = DEST)
ZF ← 1;

DEST ← RCX:RBX;
ELSE

ZF ← 0;
RDX:RAX ← DEST;

FI
ELSE

IF (EDX:EAX = DEST)
ZF ← 1;
DEST ← ECX:EBX;

ELSE
ZF ← 0;
EDX:EAX ← DEST;

FI;
FI;

Flags Affected

The ZF flag is set if the destination operand and EDX:EAX are equal; otherwise it is
cleared. The CF, PF, AF, SF, and OF flags are unaffected.

Protected Mode Exceptions
#UD If the destination is not a memory operand.
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
3-192 Vol. 2A CMPXCHG8B/CMPXCHG16B—Compare and Exchange Bytes

INSTRUCTION SET REFERENCE, A-L
Real-Address Mode Exceptions
#UD If the destination operand is not a memory location.
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.

Virtual-8086 Mode Exceptions
#UD If the destination operand is not a memory location.
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.

If memory operand for CMPXCHG16B is not aligned on a 16-byte
boundary.
If CPUID.01H:ECX.CMPXCHG16B[bit 13] = 0.

#UD If the destination operand is not a memory location.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
Vol. 2A 3-193CMPXCHG8B/CMPXCHG16B—Compare and Exchange Bytes

INSTRUCTION SET REFERENCE, A-L
COMISD—Compare Scalar Ordered Double-Precision Floating-Point
Values and Set EFLAGS

Instruction Operand Encoding

Description

Compares the double-precision floating-point values in the low quadwords of
operand 1 (first operand) and operand 2 (second operand), and sets the ZF, PF, and
CF flags in the EFLAGS register according to the result (unordered, greater than, less
than, or equal). The OF, SF and AF flags in the EFLAGS register are set to 0. The unor-
dered result is returned if either source operand is a NaN (QNaN or SNaN).

Operand 1 is an XMM register; operand 2 can be an XMM register or a 64 bit memory
location.

The COMISD instruction differs from the UCOMISD instruction in that it signals a
SIMD floating-point invalid operation exception (#I) when a source operand is either
a QNaN or SNaN. The UCOMISD instruction signals an invalid numeric exception only
if a source operand is an SNaN.

The EFLAGS register is not updated if an unmasked SIMD floating-point exception is
generated.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise
instructions will #UD.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

66 0F 2F /r

COMISD xmm1, xmm2/m64

RM V/V SSE2 Compare low double-
precision floating-point
values in xmm1 and
xmm2/mem64 and set the
EFLAGS flags accordingly.

VEX.LIG.66.0F.WIG 2F /r

VCOMISD xmm1, xmm2/m64

RM V/V AVX Compare low double
precision floating-point
values in xmm1 and
xmm2/mem64 and set the
EFLAGS flags accordingly.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) NA NA
3-194 Vol. 2A COMISD—Compare Scalar Ordered Double-Precision Floating-Point Values and Set
EFLAGS

INSTRUCTION SET REFERENCE, A-L
Operation

RESULT ← OrderedCompare(DEST[63:0] <> SRC[63:0]) {
(* Set EFLAGS *) CASE (RESULT) OF

UNORDERED: ZF,PF,CF ← 111;
GREATER_THAN: ZF,PF,CF ← 000;
LESS_THAN: ZF,PF,CF ← 001;
EQUAL: ZF,PF,CF ← 100;

ESAC;
OF, AF, SF ← 0; }

Intel C/C++ Compiler Intrinsic Equivalents

int _mm_comieq_sd (__m128d a, __m128d b)

int _mm_comilt_sd (__m128d a, __m128d b)

int _mm_comile_sd (__m128d a, __m128d b)

int _mm_comigt_sd (__m128d a, __m128d b)

int _mm_comige_sd (__m128d a, __m128d b)

int _mm_comineq_sd (__m128d a, __m128d b)

SIMD Floating-Point Exceptions

Invalid (if SNaN or QNaN operands), Denormal.

Other Exceptions
See Exceptions Type 3; additionally
#UD If VEX.vvvv != 1111B.
Vol. 2A 3-195COMISD—Compare Scalar Ordered Double-Precision Floating-Point Values and Set
EFLAGS

INSTRUCTION SET REFERENCE, A-L
COMISS—Compare Scalar Ordered Single-Precision Floating-Point
Values and Set EFLAGS

Instruction Operand Encoding

Description

Compares the single-precision floating-point values in the low doublewords of
operand 1 (first operand) and operand 2 (second operand), and sets the ZF, PF, and
CF flags in the EFLAGS register according to the result (unordered, greater than, less
than, or equal). The OF, SF, and AF flags in the EFLAGS register are set to 0. The
unordered result is returned if either source operand is a NaN (QNaN or SNaN).

Operand 1 is an XMM register; Operand 2 can be an XMM register or a 32 bit memory
location.

The COMISS instruction differs from the UCOMISS instruction in that it signals a
SIMD floating-point invalid operation exception (#I) when a source operand is either
a QNaN or SNaN. The UCOMISS instruction signals an invalid numeric exception only
if a source operand is an SNaN.

The EFLAGS register is not updated if an unmasked SIMD floating-point exception is
generated.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise
instructions will #UD.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

0F 2F /r

COMISS xmm1, xmm2/m32

RM V/V SSE Compare low single-
precision floating-point
values in xmm1 and
xmm2/mem32 and set the
EFLAGS flags accordingly.

VEX.LIG.0F 2F.WIG /r

VCOMISS xmm1, xmm2/m32

RM V/V AVX Compare low single
precision floating-point
values in xmm1 and
xmm2/mem32 and set the
EFLAGS flags accordingly.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) NA NA
3-196 Vol. 2A COMISS—Compare Scalar Ordered Single-Precision Floating-Point Values and Set EFLAGS

INSTRUCTION SET REFERENCE, A-L
Operation

RESULT ← OrderedCompare(SRC1[31:0] <> SRC2[31:0]) {
(* Set EFLAGS *) CASE (RESULT) OF

UNORDERED: ZF,PF,CF ← 111;
GREATER_THAN: ZF,PF,CF ← 000;
LESS_THAN: ZF,PF,CF ← 001;
EQUAL: ZF,PF,CF ← 100;

ESAC;
OF,AF,SF ← 0; }

Intel C/C++ Compiler Intrinsic Equivalents

int _mm_comieq_ss (__m128 a, __m128 b)

int _mm_comilt_ss (__m128 a, __m128 b)

int _mm_comile_ss (__m128 a, __m128 b)

int _mm_comigt_ss (__m128 a, __m128 b)

int _mm_comige_ss (__m128 a, __m128 b)

int _mm_comineq_ss (__m128 a, __m128 b)

SIMD Floating-Point Exceptions

Invalid (if SNaN or QNaN operands), Denormal.

Other Exceptions
See Exceptions Type 3; additionally
#UD If VEX.vvvv != 1111B.
Vol. 2A 3-197COMISS—Compare Scalar Ordered Single-Precision Floating-Point Values and Set EFLAGS

INSTRUCTION SET REFERENCE, A-L
CPUID—CPU Identification

Instruction Operand Encoding

Description

The ID flag (bit 21) in the EFLAGS register indicates support for the CPUID instruc-
tion. If a software procedure can set and clear this flag, the processor executing the
procedure supports the CPUID instruction. This instruction operates the same in non-
64-bit modes and 64-bit mode.

CPUID returns processor identification and feature information in the EAX, EBX, ECX,
and EDX registers.1 The instruction’s output is dependent on the contents of the EAX
register upon execution (in some cases, ECX as well). For example, the following
pseudocode loads EAX with 00H and causes CPUID to return a Maximum Return
Value and the Vendor Identification String in the appropriate registers:

MOV EAX, 00H
CPUID

Table 3-17 shows information returned, depending on the initial value loaded into the
EAX register. Table 3-18 shows the maximum CPUID input value recognized for each
family of IA-32 processors on which CPUID is implemented.

Two types of information are returned: basic and extended function information. If a
value entered for CPUID.EAX is higher than the maximum input value for basic or
extended function for that processor then the data for the highest basic information
leaf is returned. For example, using the Intel Core i7 processor, the following is true:

CPUID.EAX = 05H (* Returns MONITOR/MWAIT leaf. *)
CPUID.EAX = 0AH (* Returns Architectural Performance Monitoring leaf. *)
CPUID.EAX = 0BH (* Returns Extended Topology Enumeration leaf. *)

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F A2 CPUID NP Valid Valid Returns processor
identification and feature
information to the EAX,
EBX, ECX, and EDX
registers, as determined by
input entered in EAX (in
some cases, ECX as well).

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

1. On Intel 64 processors, CPUID clears the high 32 bits of the RAX/RBX/RCX/RDX registers in all
modes.
3-198 Vol. 2A CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L
CPUID.EAX = 0CH (* INVALID: Returns the same information as CPUID.EAX = 0BH. *)
CPUID.EAX = 80000008H (* Returns linear/physical address size data. *)
CPUID.EAX = 8000000AH (* INVALID: Returns same information as CPUID.EAX = 0BH. *)

If a value entered for CPUID.EAX is less than or equal to the maximum input value
and the leaf is not supported on that processor then 0 is returned in all the registers.
For example, using the Intel Core i7 processor, the following is true:

CPUID.EAX = 07H (*Returns EAX=EBX=ECX=EDX=0. *)

When CPUID returns the highest basic leaf information as a result of an invalid input
EAX value, any dependence on input ECX value in the basic leaf is honored.

CPUID can be executed at any privilege level to serialize instruction execution. Seri-
alizing instruction execution guarantees that any modifications to flags, registers,
and memory for previous instructions are completed before the next instruction is
fetched and executed.

See also:

“Serializing Instructions” in Chapter 8, “Multiple-Processor Management,” in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

“Caching Translation Information” in Chapter 4, “Paging,” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Table 3-17. Information Returned by CPUID Instruction

Initial EAX
Value Information Provided about the Processor

Basic CPUID Information

0H EAX
EBX
ECX
EDX

Maximum Input Value for Basic CPUID Information (see Table 3-18)
“Genu”
“ntel”
“ineI”

01H EAX

EBX

ECX
EDX

Version Information: Type, Family, Model, and Stepping ID (see
Figure 3-5)

Bits 07-00: Brand Index
Bits 15-08: CLFLUSH line size (Value ∗ 8 = cache line size in bytes)
Bits 23-16: Maximum number of addressable IDs for logical processors
in this physical package*.
Bits 31-24: Initial APIC ID

Feature Information (see Figure 3-6 and Table 3-20)
Feature Information (see Figure 3-7 and Table 3-21)
Vol. 2A 3-199CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L
NOTES:
* The nearest power-of-2 integer that is not smaller than EBX[23:16]

is the number of unique initial APIC IDs reserved for addressing dif-
ferent logical processors in a physical package. This field is only valid
if CPUID.1.EDX.HTT[bit 28]= 1.

02H EAX
EBX
ECX
EDX

Cache and TLB Information (see Table 3-22)
Cache and TLB Information
Cache and TLB Information
Cache and TLB Information

03H EAX
EBX

ECX

EDX

Reserved.
Reserved.

Bits 00-31 of 96 bit processor serial number. (Available in Pentium III
processor only; otherwise, the value in this register is reserved.)

Bits 32-63 of 96 bit processor serial number. (Available in Pentium III
processor only; otherwise, the value in this register is reserved.)

NOTES:
Processor serial number (PSN) is not supported in the Pentium 4 pro-
cessor or later. On all models, use the PSN flag (returned using
CPUID) to check for PSN support before accessing the feature.

See AP-485, Intel Processor Identification and the CPUID Instruc-
tion (Order Number 241618) for more information on PSN.

CPUID leaves > 3 < 80000000 are visible only when
IA32_MISC_ENABLE.BOOT_NT4[bit 22] = 0 (default).

Deterministic Cache Parameters Leaf

04H NOTES:
Leaf 04H output depends on the initial value in ECX.
See also: “INPUT EAX = 4: Returns Deterministic Cache Parameters
for each level on page 3-224.

EAX Bits 04-00: Cache Type Field
0 = Null - No more caches
1 = Data Cache
2 = Instruction Cache
3 = Unified Cache
4-31 = Reserved

Table 3-17. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor
3-200 Vol. 2A CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L
Bits 07-05: Cache Level (starts at 1)
Bit 08: Self Initializing cache level (does not need SW initialization)
Bit 09: Fully Associative cache

Bits 13-10: Reserved
Bits 25-14: Maximum number of addressable IDs for logical processors
sharing this cache*, **
Bits 31-26: Maximum number of addressable IDs for processor cores in
the physical package*, ***, ****

EBX Bits 11-00: L = System Coherency Line Size*
Bits 21-12: P = Physical Line partitions*
Bits 31-22: W = Ways of associativity*

ECX Bits 31-00: S = Number of Sets*

EDX Bit 0: Write-Back Invalidate/Invalidate
0 = WBINVD/INVD from threads sharing this cache acts upon lower
level caches for threads sharing this cache.
1 = WBINVD/INVD is not guaranteed to act upon lower level caches
of non-originating threads sharing this cache.

Bit 1: Cache Inclusiveness
0 = Cache is not inclusive of lower cache levels.
1 = Cache is inclusive of lower cache levels.

Bit 2: Complex Cache Indexing
0 = Direct mapped cache.
1 = A complex function is used to index the cache, potentially using

all address bits.
Bits 31-03: Reserved = 0

NOTES:
* Add one to the return value to get the result.
** The nearest power-of-2 integer that is not smaller than (1 +

EAX[25:14]) is the number of unique initial APIC IDs reserved for
addressing different logical processors sharing this cache

*** The nearest power-of-2 integer that is not smaller than (1 +
EAX[31:26]) is the number of unique Core_IDs reserved for address-
ing different processor cores in a physical package. Core ID is a sub-
set of bits of the initial APIC ID.

****The returned value is constant for valid initial values in ECX. Valid
ECX values start from 0.

MONITOR/MWAIT Leaf

Table 3-17. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor
Vol. 2A 3-201CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L
05H EAX Bits 15-00: Smallest monitor-line size in bytes (default is processor's
monitor granularity)
Bits 31-16: Reserved = 0

EBX Bits 15-00: Largest monitor-line size in bytes (default is processor's
monitor granularity)
Bits 31-16: Reserved = 0

ECX Bit 00: Enumeration of Monitor-Mwait extensions (beyond EAX and
EBX registers) supported

Bit 01: Supports treating interrupts as break-event for MWAIT, even
when interrupts disabled

Bits 31 - 02: Reserved

EDX Bits 03 - 00: Number of C0* sub C-states supported using MWAIT
Bits 07 - 04: Number of C1* sub C-states supported using MWAIT
Bits 11 - 08: Number of C2* sub C-states supported using MWAIT
Bits 15 - 12: Number of C3* sub C-states supported using MWAIT
Bits 19 - 16: Number of C4* sub C-states supported using MWAIT
Bits 31 - 20: Reserved = 0
NOTE:
* The definition of C0 through C4 states for MWAIT extension are pro-

cessor-specific C-states, not ACPI C-states.

Thermal and Power Management Leaf

06H EAX

EBX

Bit 00: Digital temperature sensor is supported if set
Bit 01: Intel Turbo Boost Technology Available (see description of
IA32_MISC_ENABLE[38]).
Bit 02: ARAT. APIC-Timer-always-running feature is supported if set.
Bit 03: Reserved
Bit 04: PLN. Power limit notification controls are supported if set.
Bit 05: ECMD. Clock modulation duty cycle extension is supported if set.
Bit 06: PTM. Package thermal management is supported if set.
Bits 31 - 07: Reserved
Bits 03 - 00: Number of Interrupt Thresholds in Digital Thermal Sensor
Bits 31 - 04: Reserved

Table 3-17. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor
3-202 Vol. 2A CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L
ECX Bit 00: Hardware Coordination Feedback Capability (Presence of
IA32_MPERF and IA32_APERF). The capability to provide a measure of
delivered processor performance (since last reset of the counters), as
a percentage of expected processor performance at frequency speci-
fied in CPUID Brand String
Bits 02 - 01: Reserved = 0
Bit 03: The processor supports performance-energy bias preference if
CPUID.06H:ECX.SETBH[bit 3] is set and it also implies the presence of a
new architectural MSR called IA32_ENERGY_PERF_BIAS (1B0H)
Bits 31 - 04: Reserved = 0

EDX Reserved = 0

Structured Extended Feature Flags Enumeration Leaf (Output depends on ECX
input value)

07H Sub leaf 0 (Input ECX = 0).

EAX Bits 31-00: Reports the maximum number of supported leaf 7 sub-
leaves.

EBX Bit 00: FSGSBASE. Supports RDFSBASE/RDGSBASE/WRFSBASE/WRGS-
BASE if 1.
Bit 06: Reserved
Bit 07: SMEP. Supports Supervisor Mode Execution Protection if 1.
Bit 08: Reserved
Bit 09: Supports Enhanced REP MOVSB/STOSB if 1.
Bit 10: INVPCID. If 1, supports INVPCID instruction for system software
that manages process-context identifiers.
Bit 31:11: Reserved

ECX Reserved

EDX Reserved.

Direct Cache Access Information Leaf

09H EAX

EBX

ECX

EDX

Value of bits [31:0] of IA32_PLATFORM_DCA_CAP MSR (address
1F8H)

Reserved

Reserved

Reserved

Architectural Performance Monitoring Leaf

Table 3-17. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor
Vol. 2A 3-203CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L
0AH EAX Bits 07 - 00: Version ID of architectural performance monitoring
Bits 15- 08: Number of general-purpose performance monitoring
counter per logical processor
Bits 23 - 16: Bit width of general-purpose, performance monitoring
counter
Bits 31 - 24: Length of EBX bit vector to enumerate architectural per-
formance monitoring events

EBX Bit 00: Core cycle event not available if 1
Bit 01: Instruction retired event not available if 1
Bit 02: Reference cycles event not available if 1
Bit 03: Last-level cache reference event not available if 1
Bit 04: Last-level cache misses event not available if 1
Bit 05: Branch instruction retired event not available if 1
Bit 06: Branch mispredict retired event not available if 1
Bits 31- 07: Reserved = 0

ECX Reserved = 0

EDX Bits 04 - 00: Number of fixed-function performance counters (if Ver-
sion ID > 1)
Bits 12- 05: Bit width of fixed-function performance counters (if Ver-
sion ID > 1)
Reserved = 0

Extended Topology Enumeration Leaf

0BH NOTES:
Most of Leaf 0BH output depends on the initial value in ECX.
EDX output do not vary with initial value in ECX.
ECX[7:0] output always reflect initial value in ECX.
All other output value for an invalid initial value in ECX are 0.
Leaf 0BH exists if EBX[15:0] is not zero.

EAX Bits 04-00: Number of bits to shift right on x2APIC ID to get a unique
topology ID of the next level type*. All logical processors with the
same next level ID share current level.
Bits 31-05: Reserved.

EBX Bits 15 - 00: Number of logical processors at this level type. The num-
ber reflects configuration as shipped by Intel**.
Bits 31- 16: Reserved.

ECX Bits 07 - 00: Level number. Same value in ECX input
Bits 15 - 08: Level type***.
Bits 31 - 16:: Reserved.

Table 3-17. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor
3-204 Vol. 2A CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L
EDX Bits 31- 00: x2APIC ID the current logical processor.

NOTES:
* Software should use this field (EAX[4:0]) to enumerate processor
topology of the system.

** Software must not use EBX[15:0] to enumerate processor topology
of the system. This value in this field (EBX[15:0]) is only intended for
display/diagnostic purposes. The actual number of logical processors
available to BIOS/OS/Applications may be different from the value of
EBX[15:0], depending on software and platform hardware configura-
tions.

*** The value of the “level type” field is not related to level numbers in
any way, higher “level type” values do not mean higher levels. Level
type field has the following encoding:
0 : invalid
1 : SMT
2 : Core
3-255 : Reserved

Processor Extended State Enumeration Main Leaf (EAX = 0DH, ECX = 0)

0DH NOTES:
Leaf 0DH main leaf (ECX = 0).

EAX Bits 31-00: Reports the valid bit fields of the lower 32 bits of XCR0. If
a bit is 0, the corresponding bit field in XCR0 is reserved.
Bit 00: legacy x87
Bit 01: 128-bit SSE
Bit 02: 256-bit AVX
Bits 31- 03: Reserved

EBX Bits 31-00: Maximum size (bytes, from the beginning of the
XSAVE/XRSTOR save area) required by enabled features in XCR0. May
be different than ECX if some features at the end of the XSAVE save
area are not enabled.

ECX Bit 31-00: Maximum size (bytes, from the beginning of the
XSAVE/XRSTOR save area) of the XSAVE/XRSTOR save area required
by all supported features in the processor, i.e all the valid bit fields in
XCR0.

EDX Bit 31-00: Reports the valid bit fields of the upper 32 bits of XCR0. If a
bit is 0, the corresponding bit field in XCR0 is reserved.

Processor Extended State Enumeration Sub-leaf (EAX = 0DH, ECX = 1)

Table 3-17. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor
Vol. 2A 3-205CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L
EAX

EBX

ECX

EDX

Bits 31-01: Reserved

Bit 00: XSAVEOPT is available;

Reserved

Reserved

Reserved

Processor Extended State Enumeration Sub-leaves (EAX = 0DH, ECX = n, n > 1)

0DH NOTES:
Leaf 0DH output depends on the initial value in ECX.
If ECX contains an invalid sub leaf index, EAX/EBX/ECX/EDX return 0.
Each valid sub-leaf index maps to a valid bit in the XCR0 register
starting at bit position 2

EAX Bits 31-0: The size in bytes (from the offset specified in EBX) of the
save area for an extended state feature associated with a valid sub-
leaf index, n. This field reports 0 if the sub-leaf index, n, is invalid*.

EBX Bits 31-0: The offset in bytes of this extended state component’s save
area from the beginning of the XSAVE/XRSTOR area.
This field reports 0 if the sub-leaf index, n, is invalid*.

ECX This field reports 0 if the sub-leaf index, n, is invalid*; otherwise it is
reserved.

EDX This field reports 0 if the sub-leaf index, n, is invalid*; otherwise it is
reserved.

Unimplemented CPUID Leaf Functions

40000000H
-

4FFFFFFFH

Invalid. No existing or future CPU will return processor identification or
feature information if the initial EAX value is in the range 40000000H
to 4FFFFFFFH.

Extended Function CPUID Information

80000000H EAX Maximum Input Value for Extended Function CPUID Information (see
Table 3-18).

EBX
ECX
EDX

Reserved
Reserved
Reserved

Table 3-17. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor
3-206 Vol. 2A CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L
80000001H EAX

EBX

ECX

Extended Processor Signature and Feature Bits.

Reserved

Bit 00: LAHF/SAHF available in 64-bit mode
Bits 31-01 Reserved

EDX Bits 10-00: Reserved
Bit 11: SYSCALL/SYSRET available (when in 64-bit mode)
Bits 19-12: Reserved = 0
Bit 20: Execute Disable Bit available
Bits 25-21: Reserved = 0
Bit 26: 1-GByte pages are available if 1
Bit 27: RDTSCP and IA32_TSC_AUX are available if 1
Bits 28: Reserved = 0
Bit 29: Intel® 64 Architecture available if 1
Bits 31-30: Reserved = 0

80000002H EAX
EBX
ECX
EDX

Processor Brand String
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

80000003H EAX
EBX
ECX
EDX

Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

80000004H EAX
EBX
ECX
EDX

Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

80000005H EAX
EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0
Reserved = 0

80000006H EAX
EBX

Reserved = 0
Reserved = 0

ECX

EDX

Bits 07-00: Cache Line size in bytes
Bits 11-08: Reserved
Bits 15-12: L2 Associativity field *
Bits 31-16: Cache size in 1K units
Reserved = 0

Table 3-17. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor
Vol. 2A 3-207CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L
INPUT EAX = 0: Returns CPUID’s Highest Value for Basic Processor Information and
the Vendor Identification String

When CPUID executes with EAX set to 0, the processor returns the highest value the
CPUID recognizes for returning basic processor information. The value is returned in
the EAX register (see Table 3-18) and is processor specific.

A vendor identification string is also returned in EBX, EDX, and ECX. For Intel
processors, the string is “GenuineIntel” and is expressed:

EBX ← 756e6547h (* "Genu", with G in the low eight bits of BL *)
EDX ← 49656e69h (* "ineI", with i in the low eight bits of DL *)
ECX ← 6c65746eh (* "ntel", with n in the low eight bits of CL *)

NOTES:
* L2 associativity field encodings:

00H - Disabled
01H - Direct mapped
02H - 2-way
04H - 4-way
06H - 8-way
08H - 16-way
0FH - Fully associative

80000007H EAX
EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0
Bits 07-00: Reserved = 0
Bit 08: Invariant TSC available if 1
Bits 31-09: Reserved = 0

80000008H EAX Linear/Physical Address size
Bits 07-00: #Physical Address Bits*
Bits 15-8: #Linear Address Bits
Bits 31-16: Reserved = 0

EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0

NOTES:
* If CPUID.80000008H:EAX[7:0] is supported, the maximum physical

address number supported should come from this field.

Table 3-17. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor
3-208 Vol. 2A CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L
INPUT EAX = 80000000H: Returns CPUID’s Highest Value for Extended Processor
Information

When CPUID executes with EAX set to 80000000H, the processor returns the highest
value the processor recognizes for returning extended processor information. The
value is returned in the EAX register (see Table 3-18) and is processor specific.

Table 3-18. Highest CPUID Source Operand for Intel 64 and IA-32 Processors

Intel 64 or IA-32 Processors
Highest Value in EAX

Basic Information Extended Function
Information

Earlier Intel486 Processors CPUID Not Implemented CPUID Not Implemented

Later Intel486 Processors and
Pentium Processors

01H Not Implemented

Pentium Pro and Pentium II
Processors, Intel® Celeron®
Processors

02H Not Implemented

Pentium III Processors 03H Not Implemented

Pentium 4 Processors 02H 80000004H

Intel Xeon Processors 02H 80000004H

Pentium M Processor 02H 80000004H

Pentium 4 Processor
supporting Hyper-Threading
Technology

05H 80000008H

Pentium D Processor (8xx) 05H 80000008H

Pentium D Processor (9xx) 06H 80000008H

Intel Core Duo Processor 0AH 80000008H

Intel Core 2 Duo Processor 0AH 80000008H

Intel Xeon Processor 3000,
5100, 5200, 5300, 5400
Series

0AH 80000008H

Intel Core 2 Duo Processor
8000 Series

0DH 80000008H

Intel Xeon Processor 5200,
5400 Series

0AH 80000008H

Intel Atom Processor 0AH 80000008H

Intel Core i7 Processor 0BH 80000008H
Vol. 2A 3-209CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L
IA32_BIOS_SIGN_ID Returns Microcode Update Signature

For processors that support the microcode update facility, the IA32_BIOS_SIGN_ID
MSR is loaded with the update signature whenever CPUID executes. The signature is
returned in the upper DWORD. For details, see Chapter 9 in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

INPUT EAX = 1: Returns Model, Family, Stepping Information

When CPUID executes with EAX set to 1, version information is returned in EAX (see
Figure 3-5). For example: model, family, and processor type for the Intel Xeon
processor 5100 series is as follows:
• Model — 1111B
• Family — 0101B
• Processor Type — 00B

See Table 3-19 for available processor type values. Stepping IDs are provided as
needed.

Figure 3-5. Version Information Returned by CPUID in EAX

OM16525

Processor Type

034781112131415161920272831

EAX

Family (0FH for the Pentium 4 Processor Family)

Model

Extended
Family ID

Extended
Model ID

Family
ID

Model
Stepping

ID

Extended Family ID (0)

Extended Model ID (0)

Reserved
3-210 Vol. 2A CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L
NOTE
See Chapter 14 in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1, for information on identifying earlier
IA-32 processors.

The Extended Family ID needs to be examined only when the Family ID is 0FH. Inte-
grate the fields into a display using the following rule:

IF Family_ID ≠ 0FH
THEN DisplayFamily = Family_ID;
ELSE DisplayFamily = Extended_Family_ID + Family_ID;
(* Right justify and zero-extend 4-bit field. *)

FI;
(* Show DisplayFamily as HEX field. *)

The Extended Model ID needs to be examined only when the Family ID is 06H or 0FH.
Integrate the field into a display using the following rule:

IF (Family_ID = 06H or Family_ID = 0FH)
THEN DisplayModel = (Extended_Model_ID « 4) + Model_ID;
(* Right justify and zero-extend 4-bit field; display Model_ID as HEX field.*)
ELSE DisplayModel = Model_ID;

FI;
(* Show DisplayModel as HEX field. *)

INPUT EAX = 1: Returns Additional Information in EBX

When CPUID executes with EAX set to 1, additional information is returned to the
EBX register:
• Brand index (low byte of EBX) — this number provides an entry into a brand

string table that contains brand strings for IA-32 processors. More information
about this field is provided later in this section.

• CLFLUSH instruction cache line size (second byte of EBX) — this number
indicates the size of the cache line flushed with CLFLUSH instruction in 8-byte
increments. This field was introduced in the Pentium 4 processor.

Table 3-19. Processor Type Field
Type Encoding

Original OEM Processor 00B

Intel OverDrive® Processor 01B

Dual processor (not applicable to Intel486
processors)

10B

Intel reserved 11B
Vol. 2A 3-211CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L
• Local APIC ID (high byte of EBX) — this number is the 8-bit ID that is assigned to
the local APIC on the processor during power up. This field was introduced in the
Pentium 4 processor.

INPUT EAX = 1: Returns Feature Information in ECX and EDX

When CPUID executes with EAX set to 1, feature information is returned in ECX and
EDX.
• Figure 3-6 and Table 3-20 show encodings for ECX.
• Figure 3-7 and Table 3-21 show encodings for EDX.

For all feature flags, a 1 indicates that the feature is supported. Use Intel to properly
interpret feature flags.

NOTE
Software must confirm that a processor feature is present using
feature flags returned by CPUID prior to using the feature. Software
should not depend on future offerings retaining all features.
3-212 Vol. 2A CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L
Figure 3-6. Feature Information Returned in the ECX Register

OM16524b

CNXT-ID — L1 Context ID

012345678910111213141516171819202122232425262728293031

ECX

TM2 — Thermal Monitor 2
EST — Enhanced Intel SpeedStep® Technology

DS-CPL — CPL Qualified Debug Store
MONITOR — MONITOR/MWAIT

PCLMULQDQ — Carryless Multiplication

Reserved

CMPXCHG16B

SMX — Safer Mode Extensions

xTPR Update Control

SSSE3 — SSSE3 Extensions

PDCM — Perf/Debug Capability MSR

VMX — Virtual Machine Extensions

SSE4_1 — SSE4.1

OSXSAVE

SSE4_2 — SSE4.2

DCA — Direct Cache Access

x2APIC

POPCNT

XSAVE

AVX

AES

FMA — Fused Multiply Add

SSE3 — SSE3 Extensions

PCID — Process-context Identifiers

0

DTES64 — 64-bit DS Area

MOVBE

TSC-Deadline

F16C
RDRAND
Vol. 2A 3-213CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L
Table 3-20. Feature Information Returned in the ECX Register

Bit # Mnemonic Description

0 SSE3 Streaming SIMD Extensions 3 (SSE3). A value of 1 indicates the
processor supports this technology.

1 PCLMULQDQ PCLMULQDQ. A value of 1 indicates the processor supports the
PCLMULQDQ instruction

2 DTES64 64-bit DS Area. A value of 1 indicates the processor supports DS
area using 64-bit layout

3 MONITOR MONITOR/MWAIT. A value of 1 indicates the processor supports
this feature.

4 DS-CPL CPL Qualified Debug Store. A value of 1 indicates the processor
supports the extensions to the Debug Store feature to allow for
branch message storage qualified by CPL.

5 VMX Virtual Machine Extensions. A value of 1 indicates that the
processor supports this technology

6 SMX Safer Mode Extensions. A value of 1 indicates that the
processor supports this technology. See Chapter 5, “Safer Mode
Extensions Reference”.

7 EIST Enhanced Intel SpeedStep® technology. A value of 1 indicates
that the processor supports this technology.

8 TM2 Thermal Monitor 2. A value of 1 indicates whether the processor
supports this technology.

9 SSSE3 A value of 1 indicates the presence of the Supplemental
Streaming SIMD Extensions 3 (SSSE3). A value of 0 indicates the
instruction extensions are not present in the processor

10 CNXT-ID L1 Context ID. A value of 1 indicates the L1 data cache mode can
be set to either adaptive mode or shared mode. A value of 0
indicates this feature is not supported. See definition of the
IA32_MISC_ENABLE MSR Bit 24 (L1 Data Cache Context Mode)
for details.

11 Reserved Reserved

12 FMA A value of 1 indicates the processor supports FMA extensions
using YMM state.

13 CMPXCHG16B CMPXCHG16B Available. A value of 1 indicates that the feature
is available. See the “CMPXCHG8B/CMPXCHG16B—Compare and
Exchange Bytes” section in this chapter for a description.

14 xTPR Update
Control

xTPR Update Control. A value of 1 indicates that the processor
supports changing IA32_MISC_ENABLE[bit 23].

15 PDCM Perfmon and Debug Capability: A value of 1 indicates the
processor supports the performance and debug feature indication
MSR IA32_PERF_CAPABILITIES.
3-214 Vol. 2A CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L
16 Reserved Reserved

17 PCID Process-context identifiers. A value of 1 indicates that the
processor supports PCIDs and that software may set CR4.PCIDE
to 1.

18 DCA A value of 1 indicates the processor supports the ability to
prefetch data from a memory mapped device.

19 SSE4.1 A value of 1 indicates that the processor supports SSE4.1.

20 SSE4.2 A value of 1 indicates that the processor supports SSE4.2.

21 x2APIC A value of 1 indicates that the processor supports x2APIC
feature.

22 MOVBE A value of 1 indicates that the processor supports MOVBE
instruction.

23 POPCNT A value of 1 indicates that the processor supports the POPCNT
instruction.

24 TSC-Deadline A value of 1 indicates that the processor’s local APIC timer
supports one-shot operation using a TSC deadline value.

25 AESNI A value of 1 indicates that the processor supports the AESNI
instruction extensions.

26 XSAVE A value of 1 indicates that the processor supports the
XSAVE/XRSTOR processor extended states feature, the
XSETBV/XGETBV instructions, and XCR0.

27 OSXSAVE A value of 1 indicates that the OS has enabled XSETBV/XGETBV
instructions to access XCR0, and support for processor extended
state management using XSAVE/XRSTOR.

28 AVX A value of 1 indicates the processor supports the AVX instruction
extensions.

29 F16C A value of 1 indicates that processor supports 16-bit floating-
point conversion instructions.

30
RDRAND

A value of 1 indicates that processor supports RDRAND
instruction.

31 Not Used Always returns 0.

Table 3-20. Feature Information Returned in the ECX Register (Contd.)

Bit # Mnemonic Description
Vol. 2A 3-215CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

Figure 3-7. Feature Information Returned in the EDX Register
3-216 Vol. 2A CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L
Table 3-21. More on Feature Information Returned in the EDX Register

Bit # Mnemonic Description

0 FPU Floating Point Unit On-Chip. The processor contains an x87 FPU.

1 VME Virtual 8086 Mode Enhancements. Virtual 8086 mode enhancements,
including CR4.VME for controlling the feature, CR4.PVI for protected mode
virtual interrupts, software interrupt indirection, expansion of the TSS with
the software indirection bitmap, and EFLAGS.VIF and EFLAGS.VIP flags.

2 DE Debugging Extensions. Support for I/O breakpoints, including CR4.DE for
controlling the feature, and optional trapping of accesses to DR4 and DR5.

3 PSE Page Size Extension. Large pages of size 4 MByte are supported, including
CR4.PSE for controlling the feature, the defined dirty bit in PDE (Page
Directory Entries), optional reserved bit trapping in CR3, PDEs, and PTEs.

4 TSC Time Stamp Counter. The RDTSC instruction is supported, including
CR4.TSD for controlling privilege.

5 MSR Model Specific Registers RDMSR and WRMSR Instructions. The RDMSR
and WRMSR instructions are supported. Some of the MSRs are
implementation dependent.

6 PAE Physical Address Extension. Physical addresses greater than 32 bits are
supported: extended page table entry formats, an extra level in the page
translation tables is defined, 2-MByte pages are supported instead of 4
Mbyte pages if PAE bit is 1.

7 MCE Machine Check Exception. Exception 18 is defined for Machine Checks,
including CR4.MCE for controlling the feature. This feature does not define
the model-specific implementations of machine-check error logging,
reporting, and processor shutdowns. Machine Check exception handlers may
have to depend on processor version to do model specific processing of the
exception, or test for the presence of the Machine Check feature.

8 CX8 CMPXCHG8B Instruction. The compare-and-exchange 8 bytes (64 bits)
instruction is supported (implicitly locked and atomic).

9 APIC APIC On-Chip. The processor contains an Advanced Programmable Interrupt
Controller (APIC), responding to memory mapped commands in the physical
address range FFFE0000H to FFFE0FFFH (by default - some processors
permit the APIC to be relocated).

10 Reserved Reserved

11 SEP SYSENTER and SYSEXIT Instructions. The SYSENTER and SYSEXIT and
associated MSRs are supported.

12 MTRR Memory Type Range Registers. MTRRs are supported. The MTRRcap MSR
contains feature bits that describe what memory types are supported, how
many variable MTRRs are supported, and whether fixed MTRRs are
supported.
Vol. 2A 3-217CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L
13 PGE Page Global Bit. The global bit is supported in paging-structure entries that
map a page, indicating TLB entries that are common to different processes
and need not be flushed. The CR4.PGE bit controls this feature.

14 MCA Machine Check Architecture. The Machine Check Architecture, which
provides a compatible mechanism for error reporting in P6 family, Pentium
4, Intel Xeon processors, and future processors, is supported. The MCG_CAP
MSR contains feature bits describing how many banks of error reporting
MSRs are supported.

15 CMOV Conditional Move Instructions. The conditional move instruction CMOV is
supported. In addition, if x87 FPU is present as indicated by the CPUID.FPU
feature bit, then the FCOMI and FCMOV instructions are supported

16 PAT Page Attribute Table. Page Attribute Table is supported. This feature
augments the Memory Type Range Registers (MTRRs), allowing an
operating system to specify attributes of memory accessed through a linear
address on a 4KB granularity.

17 PSE-36 36-Bit Page Size Extension. 4-MByte pages addressing physical memory
beyond 4 GBytes are supported with 32-bit paging. This feature indicates
that upper bits of the physical address of a 4-MByte page are encoded in
bits 20:13 of the page-directory entry. Such physical addresses are limited
by MAXPHYADDR and may be up to 40 bits in size.

18 PSN Processor Serial Number. The processor supports the 96-bit processor
identification number feature and the feature is enabled.

19 CLFSH CLFLUSH Instruction. CLFLUSH Instruction is supported.

20 Reserved Reserved

21 DS Debug Store. The processor supports the ability to write debug information
into a memory resident buffer. This feature is used by the branch trace
store (BTS) and precise event-based sampling (PEBS) facilities (see Chapter
23, “Introduction to Virtual-Machine Extensions,” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3C).

22 ACPI Thermal Monitor and Software Controlled Clock Facilities. The processor
implements internal MSRs that allow processor temperature to be
monitored and processor performance to be modulated in predefined duty
cycles under software control.

23 MMX Intel MMX Technology. The processor supports the Intel MMX technology.

24 FXSR FXSAVE and FXRSTOR Instructions. The FXSAVE and FXRSTOR
instructions are supported for fast save and restore of the floating point
context. Presence of this bit also indicates that CR4.OSFXSR is available for
an operating system to indicate that it supports the FXSAVE and FXRSTOR
instructions.

Table 3-21. More on Feature Information Returned in the EDX Register (Contd.)

Bit # Mnemonic Description
3-218 Vol. 2A CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L
INPUT EAX = 2: TLB/Cache/Prefetch Information Returned in EAX, EBX, ECX, EDX

When CPUID executes with EAX set to 2, the processor returns information about the
processor’s internal TLBs, cache and prefetch hardware in the EAX, EBX, ECX, and
EDX registers. The information is reported in encoded form and fall into the following
categories:
• The least-significant byte in register EAX (register AL) indicates the number of

times the CPUID instruction must be executed with an input value of 2 to get a
complete description of the processor’s TLB/Cache/Prefetch hardware. The Intel
Xeon processor 7400 series will return a 1.

• The most significant bit (bit 31) of each register indicates whether the register
contains valid information (set to 0) or is reserved (set to 1).

• If a register contains valid information, the information is contained in 1 byte
descriptors. There are four types of encoding values for the byte descriptor, the
encoding type is noted in the second column of Table 3-22. Table 3-22 lists the
encoding of these descriptors. Note that the order of descriptors in the EAX, EBX,
ECX, and EDX registers is not defined; that is, specific bytes are not designated
to contain descriptors for specific cache, prefetch, or TLB types. The descriptors
may appear in any order. Note also a processor may report a general descriptor
type (FFH) and not report any byte descriptor of “cache type“ via CPUID leaf 2.

25 SSE SSE. The processor supports the SSE extensions.

26 SSE2 SSE2. The processor supports the SSE2 extensions.

27 SS Self Snoop. The processor supports the management of conflicting memory
types by performing a snoop of its own cache structure for transactions
issued to the bus.

28 HTT Max APIC IDs reserved field is Valid. A value of 0 for HTT indicates there is
only a single logical processor in the package and software should assume
only a single APIC ID is reserved. A value of 1 for HTT indicates the value in
CPUID.1.EBX[23:16] (the Maximum number of addressable IDs for logical
processors in this package) is valid for the package.

29 TM Thermal Monitor. The processor implements the thermal monitor
automatic thermal control circuitry (TCC).

30 Reserved Reserved

31 PBE Pending Break Enable. The processor supports the use of the
FERR#/PBE# pin when the processor is in the stop-clock state (STPCLK# is
asserted) to signal the processor that an interrupt is pending and that the
processor should return to normal operation to handle the interrupt. Bit 10
(PBE enable) in the IA32_MISC_ENABLE MSR enables this capability.

Table 3-21. More on Feature Information Returned in the EDX Register (Contd.)

Bit # Mnemonic Description
Vol. 2A 3-219CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L
Table 3-22. Encoding of CPUID Leaf 2 Descriptors
 Value Type Description

00H General Null descriptor, this byte contains no information

01H TLB Instruction TLB: 4 KByte pages, 4-way set associative, 32 entries

02H TLB Instruction TLB: 4 MByte pages, fully associative, 2 entries

03H TLB Data TLB: 4 KByte pages, 4-way set associative, 64 entries

04H TLB Data TLB: 4 MByte pages, 4-way set associative, 8 entries

05H TLB Data TLB1: 4 MByte pages, 4-way set associative, 32 entries

06H Cache 1st-level instruction cache: 8 KBytes, 4-way set associative, 32 byte line size

08H Cache 1st-level instruction cache: 16 KBytes, 4-way set associative, 32 byte line
size

09H Cache 1st-level instruction cache: 32KBytes, 4-way set associative, 64 byte line size

0AH Cache 1st-level data cache: 8 KBytes, 2-way set associative, 32 byte line size

0BH TLB Instruction TLB: 4 MByte pages, 4-way set associative, 4 entries

0CH Cache 1st-level data cache: 16 KBytes, 4-way set associative, 32 byte line size

0DH Cache 1st-level data cache: 16 KBytes, 4-way set associative, 64 byte line size

0EH Cache 1st-level data cache: 24 KBytes, 6-way set associative, 64 byte line size

21H Cache 2nd-level cache: 256 KBytes, 8-way set associative, 64 byte line size

22H Cache 3rd-level cache: 512 KBytes, 4-way set associative, 64 byte line size, 2 lines
per sector

23H Cache 3rd-level cache: 1 MBytes, 8-way set associative, 64 byte line size, 2 lines per
sector

25H Cache 3rd-level cache: 2 MBytes, 8-way set associative, 64 byte line size, 2 lines per
sector

29H Cache 3rd-level cache: 4 MBytes, 8-way set associative, 64 byte line size, 2 lines per
sector

2CH Cache 1st-level data cache: 32 KBytes, 8-way set associative, 64 byte line size

30H Cache 1st-level instruction cache: 32 KBytes, 8-way set associative, 64 byte line
size

40H Cache No 2nd-level cache or, if processor contains a valid 2nd-level cache, no 3rd-
level cache

41H Cache 2nd-level cache: 128 KBytes, 4-way set associative, 32 byte line size

42H Cache 2nd-level cache: 256 KBytes, 4-way set associative, 32 byte line size

43H Cache 2nd-level cache: 512 KBytes, 4-way set associative, 32 byte line size

44H Cache 2nd-level cache: 1 MByte, 4-way set associative, 32 byte line size

45H Cache 2nd-level cache: 2 MByte, 4-way set associative, 32 byte line size
3-220 Vol. 2A CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L
46H Cache 3rd-level cache: 4 MByte, 4-way set associative, 64 byte line size

47H Cache 3rd-level cache: 8 MByte, 8-way set associative, 64 byte line size

48H Cache 2nd-level cache: 3MByte, 12-way set associative, 64 byte line size

49H Cache 3rd-level cache: 4MB, 16-way set associative, 64-byte line size (Intel Xeon
processor MP, Family 0FH, Model 06H);

2nd-level cache: 4 MByte, 16-way set associative, 64 byte line size

4AH Cache 3rd-level cache: 6MByte, 12-way set associative, 64 byte line size

4BH Cache 3rd-level cache: 8MByte, 16-way set associative, 64 byte line size

4CH Cache 3rd-level cache: 12MByte, 12-way set associative, 64 byte line size

4DH Cache 3rd-level cache: 16MByte, 16-way set associative, 64 byte line size

4EH Cache 2nd-level cache: 6MByte, 24-way set associative, 64 byte line size

4FH TLB Instruction TLB: 4 KByte pages, 32 entries

50H TLB Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 64 entries

51H TLB Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 128 entries

52H TLB Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 256 entries

55H TLB Instruction TLB: 2-MByte or 4-MByte pages, fully associative, 7 entries

56H TLB Data TLB0: 4 MByte pages, 4-way set associative, 16 entries

57H TLB Data TLB0: 4 KByte pages, 4-way associative, 16 entries

59H TLB Data TLB0: 4 KByte pages, fully associative, 16 entries

5AH TLB Data TLB0: 2-MByte or 4 MByte pages, 4-way set associative, 32 entries

5BH TLB Data TLB: 4 KByte and 4 MByte pages, 64 entries

5CH TLB Data TLB: 4 KByte and 4 MByte pages,128 entries

5DH TLB Data TLB: 4 KByte and 4 MByte pages,256 entries

60H Cache 1st-level data cache: 16 KByte, 8-way set associative, 64 byte line size

66H Cache 1st-level data cache: 8 KByte, 4-way set associative, 64 byte line size

67H Cache 1st-level data cache: 16 KByte, 4-way set associative, 64 byte line size

68H Cache 1st-level data cache: 32 KByte, 4-way set associative, 64 byte line size

70H Cache Trace cache: 12 K-μop, 8-way set associative

71H Cache Trace cache: 16 K-μop, 8-way set associative

72H Cache Trace cache: 32 K-μop, 8-way set associative

76H TLB Instruction TLB: 2M/4M pages, fully associative, 8 entries

78H Cache 2nd-level cache: 1 MByte, 4-way set associative, 64byte line size

Table 3-22. Encoding of CPUID Leaf 2 Descriptors (Contd.)
 Value Type Description
Vol. 2A 3-221CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L
79H Cache 2nd-level cache: 128 KByte, 8-way set associative, 64 byte line size, 2 lines
per sector

7AH Cache 2nd-level cache: 256 KByte, 8-way set associative, 64 byte line size, 2 lines
per sector

7BH Cache 2nd-level cache: 512 KByte, 8-way set associative, 64 byte line size, 2 lines
per sector

7CH Cache 2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size, 2 lines per
sector

7DH Cache 2nd-level cache: 2 MByte, 8-way set associative, 64byte line size

7FH Cache 2nd-level cache: 512 KByte, 2-way set associative, 64-byte line size

80H Cache 2nd-level cache: 512 KByte, 8-way set associative, 64-byte line size

82H Cache 2nd-level cache: 256 KByte, 8-way set associative, 32 byte line size

83H Cache 2nd-level cache: 512 KByte, 8-way set associative, 32 byte line size

84H Cache 2nd-level cache: 1 MByte, 8-way set associative, 32 byte line size

85H Cache 2nd-level cache: 2 MByte, 8-way set associative, 32 byte line size

86H Cache 2nd-level cache: 512 KByte, 4-way set associative, 64 byte line size

87H Cache 2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size

B0H TLB Instruction TLB: 4 KByte pages, 4-way set associative, 128 entries

B1H TLB Instruction TLB: 2M pages, 4-way, 8 entries or 4M pages, 4-way, 4 entries

B2H TLB Instruction TLB: 4KByte pages, 4-way set associative, 64 entries

B3H TLB Data TLB: 4 KByte pages, 4-way set associative, 128 entries

B4H TLB Data TLB1: 4 KByte pages, 4-way associative, 256 entries

BAH TLB Data TLB1: 4 KByte pages, 4-way associative, 64 entries

C0H TLB Data TLB: 4 KByte and 4 MByte pages, 4-way associative, 8 entries

CAH STLB Shared 2nd-Level TLB: 4 KByte pages, 4-way associative, 512 entries

D0H Cache 3rd-level cache: 512 KByte, 4-way set associative, 64 byte line size

D1H Cache 3rd-level cache: 1 MByte, 4-way set associative, 64 byte line size

D2H Cache 3rd-level cache: 2 MByte, 4-way set associative, 64 byte line size

D6H Cache 3rd-level cache: 1 MByte, 8-way set associative, 64 byte line size

D7H Cache 3rd-level cache: 2 MByte, 8-way set associative, 64 byte line size

D8H Cache 3rd-level cache: 4 MByte, 8-way set associative, 64 byte line size

DCH Cache 3rd-level cache: 1.5 MByte, 12-way set associative, 64 byte line size

DDH Cache 3rd-level cache: 3 MByte, 12-way set associative, 64 byte line size

DEH Cache 3rd-level cache: 6 MByte, 12-way set associative, 64 byte line size

Table 3-22. Encoding of CPUID Leaf 2 Descriptors (Contd.)
 Value Type Description
3-222 Vol. 2A CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L
Example 3-1. Example of Cache and TLB Interpretation

The first member of the family of Pentium 4 processors returns the following informa-
tion about caches and TLBs when the CPUID executes with an input value of 2:

EAX 66 5B 50 01H
EBX 0H
ECX 0H
EDX 00 7A 70 00H

Which means:
• The least-significant byte (byte 0) of register EAX is set to 01H. This indicates

that CPUID needs to be executed once with an input value of 2 to retrieve
complete information about caches and TLBs.

• The most-significant bit of all four registers (EAX, EBX, ECX, and EDX) is set to 0,
indicating that each register contains valid 1-byte descriptors.

• Bytes 1, 2, and 3 of register EAX indicate that the processor has:

— 50H - a 64-entry instruction TLB, for mapping 4-KByte and 2-MByte or 4-
MByte pages.

— 5BH - a 64-entry data TLB, for mapping 4-KByte and 4-MByte pages.

— 66H - an 8-KByte 1st level data cache, 4-way set associative, with a 64-Byte
cache line size.

• The descriptors in registers EBX and ECX are valid, but contain NULL descriptors.
• Bytes 0, 1, 2, and 3 of register EDX indicate that the processor has:

— 00H - NULL descriptor.

— 70H - Trace cache: 12 K-μop, 8-way set associative.

E2H Cache 3rd-level cache: 2 MByte, 16-way set associative, 64 byte line size

E3H Cache 3rd-level cache: 4 MByte, 16-way set associative, 64 byte line size

E4H Cache 3rd-level cache: 8 MByte, 16-way set associative, 64 byte line size

EAH Cache 3rd-level cache: 12MByte, 24-way set associative, 64 byte line size

EBH Cache 3rd-level cache: 18MByte, 24-way set associative, 64 byte line size

ECH Cache 3rd-level cache: 24MByte, 24-way set associative, 64 byte line size

F0H Prefetch 64-Byte prefetching

F1H Prefetch 128-Byte prefetching

FFH General CPUID leaf 2 does not report cache descriptor information, use CPUID leaf 4 to
query cache parameters

Table 3-22. Encoding of CPUID Leaf 2 Descriptors (Contd.)
 Value Type Description
Vol. 2A 3-223CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L
— 7AH - a 256-KByte 2nd level cache, 8-way set associative, with a sectored,
64-byte cache line size.

— 00H - NULL descriptor.

INPUT EAX = 04H: Returns Deterministic Cache Parameters for Each Level

When CPUID executes with EAX set to 04H and ECX contains an index value, the
processor returns encoded data that describe a set of deterministic cache parame-
ters (for the cache level associated with the input in ECX). Valid index values start
from 0.

Software can enumerate the deterministic cache parameters for each level of the
cache hierarchy starting with an index value of 0, until the parameters report the
value associated with the cache type field is 0. The architecturally defined fields
reported by deterministic cache parameters are documented in Table 3-17.

This Cache Size in Bytes

= (Ways + 1) * (Partitions + 1) * (Line_Size + 1) * (Sets + 1)

= (EBX[31:22] + 1) * (EBX[21:12] + 1) * (EBX[11:0] + 1) * (ECX + 1)

The CPUID leaf 04H also reports data that can be used to derive the topology of
processor cores in a physical package. This information is constant for all valid index
values. Software can query the raw data reported by executing CPUID with EAX=04H
and ECX=0 and use it as part of the topology enumeration algorithm described in
Chapter 8, “Multiple-Processor Management,” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3A.

INPUT EAX = 05H: Returns MONITOR and MWAIT Features

When CPUID executes with EAX set to 05H, the processor returns information about
features available to MONITOR/MWAIT instructions. The MONITOR instruction is used
for address-range monitoring in conjunction with MWAIT instruction. The MWAIT
instruction optionally provides additional extensions for advanced power manage-
ment. See Table 3-17.

INPUT EAX = 06H: Returns Thermal and Power Management Features

When CPUID executes with EAX set to 06H, the processor returns information about
thermal and power management features. See Table 3-17.

INPUT EAX = 07H: Returns Structured Extended Feature Enumeration Information

When CPUID executes with EAX set to 7 and ECX = 0, the processor returns informa-
tion about the maximum number of sub-leaves that contain extended feature flags.
See Table 3-17.

When CPUID executes with EAX set to 7 and ECX = n (n > 1 and less than the num-
3-224 Vol. 2A CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L
ber of non-zero bits in CPUID.(EAX=07H, ECX= 0H).EAX, the processor returns
information about extended feature flags. See Table 3-17. In subleaf 0, only EAX
has the number of sub-leaves. In subleaf 0, EBX, ECX & EDX all contain extended
feature flags.

INPUT EAX = 09H: Returns Direct Cache Access Information

When CPUID executes with EAX set to 09H, the processor returns information about
Direct Cache Access capabilities. See Table 3-17.

INPUT EAX = 0AH: Returns Architectural Performance Monitoring Features

When CPUID executes with EAX set to 0AH, the processor returns information about
support for architectural performance monitoring capabilities. Architectural perfor-
mance monitoring is supported if the version ID (see Table 3-17) is greater than
Pn 0. See Table 3-17.

For each version of architectural performance monitoring capability, software must
enumerate this leaf to discover the programming facilities and the architectural
performance events available in the processor. The details are described in Chapter
23, “Introduction to Virtual-Machine Extensions,” in the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3C.

INPUT EAX = 0BH: Returns Extended Topology Information

When CPUID executes with EAX set to 0BH, the processor returns information about
extended topology enumeration data. Software must detect the presence of CPUID
leaf 0BH by verifying (a) the highest leaf index supported by CPUID is >= 0BH, and
(b) CPUID.0BH:EBX[15:0] reports a non-zero value. See Table 3-17.

INPUT EAX = 0DH: Returns Processor Extended States Enumeration Information

When CPUID executes with EAX set to 0DH and ECX = 0, the processor returns infor-
mation about the bit-vector representation of all processor state extensions that are
supported in the processor and storage size requirements of the XSAVE/XRSTOR
area. See Table 3-17.

When CPUID executes with EAX set to 0DH and ECX = n (n > 1, and is a valid sub-
leaf index), the processor returns information about the size and offset of each
processor extended state save area within the XSAVE/XRSTOR area. See Table 3-17.
Software can use the forward-extendable technique depicted below to query the
valid sub-leaves and obtain size and offset information for each processor extended
state save area:

For i = 2 to 62 // sub-leaf 1 is reserved
IF (CPUID.(EAX=0DH, ECX=0):VECTOR[i] = 1) // VECTOR is the 64-bit value of EDX:EAX

Execute CPUID.(EAX=0DH, ECX = i) to examine size and offset for sub-leaf i;
FI;
Vol. 2A 3-225CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L
METHODS FOR RETURNING BRANDING INFORMATION

Use the following techniques to access branding information:

1. Processor brand string method; this method also returns the processor’s
maximum operating frequency

2. Processor brand index; this method uses a software supplied brand string table.

These two methods are discussed in the following sections. For methods that are
available in early processors, see Section: “Identification of Earlier IA-32 Processors”
in Chapter 14 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1.

The Processor Brand String Method

Figure 3-8 describes the algorithm used for detection of the brand string. Processor
brand identification software should execute this algorithm on all Intel 64 and IA-32
processors.

This method (introduced with Pentium 4 processors) returns an ASCII brand identifi-
cation string and the maximum operating frequency of the processor to the EAX,
EBX, ECX, and EDX registers.
3-226 Vol. 2A CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L
How Brand Strings Work

To use the brand string method, execute CPUID with EAX input of 8000002H through
80000004H. For each input value, CPUID returns 16 ASCII characters using EAX,
EBX, ECX, and EDX. The returned string will be NULL-terminated.

Table 3-23 shows the brand string that is returned by the first processor in the
Pentium 4 processor family.

Figure 3-8. Determination of Support for the Processor Brand String

OM15194

IF (EAX & 0x80000000)

CPUID

IF (EAX Return Value
≥ 0x80000004)

CPUID
Function

Supported

True ≥
Extended

EAX Return Value =
Max. Extended CPUID

Function Index

Input: EAX=
0x80000000

Processor Brand
String Not
Supported

False

Processor Brand
String Supported

True
Vol. 2A 3-227CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L
Extracting the Maximum Processor Frequency from Brand Strings

Figure 3-9 provides an algorithm which software can use to extract the maximum
processor operating frequency from the processor brand string.

NOTE
When a frequency is given in a brand string, it is the maximum
qualified frequency of the processor, not the frequency at which the
processor is currently running.

Table 3-23. Processor Brand String Returned with Pentium 4 Processor

EAX Input Value Return Values ASCII Equivalent

80000002H EAX = 20202020H

EBX = 20202020H

ECX = 20202020H

EDX = 6E492020H

“ ”

“ ”

“ ”

“nI ”

80000003H EAX = 286C6574H

EBX = 50202952H

ECX = 69746E65H

EDX = 52286D75H

“(let”

“P)R”

“itne”

“R(mu”

80000004H EAX = 20342029H

EBX = 20555043H

ECX = 30303531H

EDX = 007A484DH

“ 4)”

“ UPC”

“0051”

“\0zHM”
3-228 Vol. 2A CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L
The Processor Brand Index Method

The brand index method (introduced with Pentium® III Xeon® processors) provides
an entry point into a brand identification table that is maintained in memory by
system software and is accessible from system- and user-level code. In this table,
each brand index is associate with an ASCII brand identification string that identifies
the official Intel family and model number of a processor.

When CPUID executes with EAX set to 1, the processor returns a brand index to the
low byte in EBX. Software can then use this index to locate the brand identification
string for the processor in the brand identification table. The first entry (brand index
0) in this table is reserved, allowing for backward compatibility with processors that

Figure 3-9. Algorithm for Extracting Maximum Processor Frequency
Vol. 2A 3-229CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L
do not support the brand identification feature. Starting with processor signature
family ID = 0FH, model = 03H, brand index method is no longer supported. Use
brand string method instead.

Table 3-24 shows brand indices that have identification strings associated with them.

Table 3-24. Mapping of Brand Indices; and
Intel 64 and IA-32 Processor Brand Strings

Brand Index Brand String

00H This processor does not support the brand identification feature

01H Intel(R) Celeron(R) processor1

02H Intel(R) Pentium(R) III processor1

03H Intel(R) Pentium(R) III Xeon(R) processor; If processor signature =
000006B1h, then Intel(R) Celeron(R) processor

04H Intel(R) Pentium(R) III processor

06H Mobile Intel(R) Pentium(R) III processor-M

07H Mobile Intel(R) Celeron(R) processor1

08H Intel(R) Pentium(R) 4 processor

09H Intel(R) Pentium(R) 4 processor

0AH Intel(R) Celeron(R) processor1

0BH Intel(R) Xeon(R) processor; If processor signature = 00000F13h, then Intel(R)
Xeon(R) processor MP

0CH Intel(R) Xeon(R) processor MP

0EH Mobile Intel(R) Pentium(R) 4 processor-M; If processor signature =
00000F13h, then Intel(R) Xeon(R) processor

0FH Mobile Intel(R) Celeron(R) processor1

11H Mobile Genuine Intel(R) processor

12H Intel(R) Celeron(R) M processor

13H Mobile Intel(R) Celeron(R) processor1

14H Intel(R) Celeron(R) processor

15H Mobile Genuine Intel(R) processor

16H Intel(R) Pentium(R) M processor

17H Mobile Intel(R) Celeron(R) processor1

18H – 0FFH RESERVED

NOTES:
1. Indicates versions of these processors that were introduced after the Pentium III
3-230 Vol. 2A CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L
IA-32 Architecture Compatibility

CPUID is not supported in early models of the Intel486 processor or in any IA-32
processor earlier than the Intel486 processor.

Operation

IA32_BIOS_SIGN_ID MSR ← Update with installed microcode revision number;

CASE (EAX) OF
EAX = 0:

EAX ← Highest basic function input value understood by CPUID;
EBX ← Vendor identification string;
EDX ← Vendor identification string;
ECX ← Vendor identification string;

BREAK;
EAX = 1H:

EAX[3:0] ← Stepping ID;
EAX[7:4] ← Model;
EAX[11:8] ← Family;
EAX[13:12] ← Processor type;
EAX[15:14] ← Reserved;
EAX[19:16] ← Extended Model;
EAX[27:20] ← Extended Family;
EAX[31:28] ← Reserved;
EBX[7:0] ← Brand Index; (* Reserved if the value is zero. *)
EBX[15:8] ← CLFLUSH Line Size;
EBX[16:23] ← Reserved; (* Number of threads enabled = 2 if MT enable fuse set. *)
EBX[24:31] ← Initial APIC ID;
ECX ← Feature flags; (* See Figure 3-6. *)
EDX ← Feature flags; (* See Figure 3-7. *)

BREAK;
EAX = 2H:

EAX ← Cache and TLB information;
 EBX ← Cache and TLB information;
 ECX ← Cache and TLB information;

EDX ← Cache and TLB information;
BREAK;
EAX = 3H:

EAX ← Reserved;
 EBX ← Reserved;
 ECX ← ProcessorSerialNumber[31:0];

(* Pentium III processors only, otherwise reserved. *)
EDX ← ProcessorSerialNumber[63:32];
(* Pentium III processors only, otherwise reserved. *
Vol. 2A 3-231CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L
BREAK
EAX = 4H:

EAX ← Deterministic Cache Parameters Leaf; (* See Table 3-17. *)
EBX ← Deterministic Cache Parameters Leaf;

 ECX ← Deterministic Cache Parameters Leaf;
EDX ← Deterministic Cache Parameters Leaf;

BREAK;
EAX = 5H:

EAX ← MONITOR/MWAIT Leaf; (* See Table 3-17. *)
 EBX ← MONITOR/MWAIT Leaf;
 ECX ← MONITOR/MWAIT Leaf;

EDX ← MONITOR/MWAIT Leaf;
BREAK;
EAX = 6H:

EAX ← Thermal and Power Management Leaf; (* See Table 3-17. *)
 EBX ← Thermal and Power Management Leaf;
 ECX ← Thermal and Power Management Leaf;

EDX ← Thermal and Power Management Leaf;
BREAK;
EAX = 7H:

EAX ← Structured Extended Feature Flags Enumeration Leaf; (* See Table 3-17. *)
EBX ← Structured Extended Feature Flags Enumeration Leaf;

 ECX ← Structured Extended Feature Flags Enumeration Leaf;
EDX ← Structured Extended Feature Flags Enumeration Leaf;

BREAK;
EAX = 8H:

EAX ← Reserved = 0;
 EBX ← Reserved = 0;
 ECX ← Reserved = 0;

EDX ← Reserved = 0;
BREAK;
EAX = 9H:

EAX ← Direct Cache Access Information Leaf; (* See Table 3-17. *)
 EBX ← Direct Cache Access Information Leaf;
 ECX ← Direct Cache Access Information Leaf;

EDX ← Direct Cache Access Information Leaf;
BREAK;
EAX = AH:

EAX ← Architectural Performance Monitoring Leaf; (* See Table 3-17. *)
 EBX ← Architectural Performance Monitoring Leaf;
 ECX ← Architectural Performance Monitoring Leaf;

EDX ← Architectural Performance Monitoring Leaf;
BREAK
3-232 Vol. 2A CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L
EAX = BH:
EAX ← Extended Topology Enumeration Leaf; (* See Table 3-17. *)
EBX ← Extended Topology Enumeration Leaf;

 ECX ← Extended Topology Enumeration Leaf;
EDX ← Extended Topology Enumeration Leaf;

BREAK;
EAX = CH:

EAX ← Reserved = 0;
 EBX ← Reserved = 0;
 ECX ← Reserved = 0;

EDX ← Reserved = 0;
BREAK;
EAX = DH:

EAX ← Processor Extended State Enumeration Leaf; (* See Table 3-17. *)
 EBX ← Processor Extended State Enumeration Leaf;
 ECX ← Processor Extended State Enumeration Leaf;

EDX ← Processor Extended State Enumeration Leaf;
BREAK;

BREAK;
EAX = 80000000H:

EAX ← Highest extended function input value understood by CPUID;
EBX ← Reserved;
ECX ← Reserved;
EDX ← Reserved;

BREAK;
EAX = 80000001H:

EAX ← Reserved;
EBX ← Reserved;
ECX ← Extended Feature Bits (* See Table 3-17.*);
EDX ← Extended Feature Bits (* See Table 3-17. *);

BREAK;
EAX = 80000002H:

EAX ← Processor Brand String;
EBX ← Processor Brand String, continued;
ECX ← Processor Brand String, continued;
EDX ← Processor Brand String, continued;

BREAK;
EAX = 80000003H:

EAX ← Processor Brand String, continued;
EBX ← Processor Brand String, continued;
ECX ← Processor Brand String, continued;
EDX ← Processor Brand String, continued;

BREAK;
Vol. 2A 3-233CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L
EAX = 80000004H:
EAX ← Processor Brand String, continued;
EBX ← Processor Brand String, continued;
ECX ← Processor Brand String, continued;
EDX ← Processor Brand String, continued;

BREAK;
EAX = 80000005H:

EAX ← Reserved = 0;
EBX ← Reserved = 0;
ECX ← Reserved = 0;
EDX ← Reserved = 0;

BREAK;
EAX = 80000006H:

EAX ← Reserved = 0;
EBX ← Reserved = 0;
ECX ← Cache information;
EDX ← Reserved = 0;

BREAK;
EAX = 80000007H:

EAX ← Reserved = 0;
EBX ← Reserved = 0;
ECX ← Reserved = 0;
EDX ← Reserved = Misc Feature Flags;

BREAK;
EAX = 80000008H:

EAX ← Reserved = Physical Address Size Information;
EBX ← Reserved = Virtual Address Size Information;
ECX ← Reserved = 0;
EDX ← Reserved = 0;

BREAK;
EAX >= 40000000H and EAX <= 4FFFFFFFH:
DEFAULT: (* EAX = Value outside of recognized range for CPUID. *)

(* If the highest basic information leaf data depend on ECX input value, ECX is honored.*)
EAX ← Reserved; (* Information returned for highest basic information leaf. *)
EBX ← Reserved; (* Information returned for highest basic information leaf. *)
ECX ← Reserved; (* Information returned for highest basic information leaf. *)
EDX ← Reserved; (* Information returned for highest basic information leaf. *)

BREAK;
ESAC;

Flags Affected

None.
3-234 Vol. 2A CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L
Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

In earlier IA-32 processors that do not support the CPUID
instruction, execution of the instruction results in an invalid
opcode (#UD) exception being generated.
Vol. 2A 3-235CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L
CRC32 — Accumulate CRC32 Value

Instruction Operand Encoding

Description

Starting with an initial value in the first operand (destination operand), accumulates
a CRC32 (polynomial 0x11EDC6F41) value for the second operand (source operand)
and stores the result in the destination operand. The source operand can be a
register or a memory location. The destination operand must be an r32 or r64
register. If the destination is an r64 register, then the 32-bit result is stored in the
least significant double word and 00000000H is stored in the most significant double
word of the r64 register.

The initial value supplied in the destination operand is a double word integer stored
in the r32 register or the least significant double word of the r64 register. To incre-
mentally accumulate a CRC32 value, software retains the result of the previous
CRC32 operation in the destination operand, then executes the CRC32 instruction
again with new input data in the source operand. Data contained in the source
operand is processed in reflected bit order. This means that the most significant bit of
the source operand is treated as the least significant bit of the quotient, and so on,
for all the bits of the source operand. Likewise, the result of the CRC operation is
stored in the destination operand in reflected bit order. This means that the most
significant bit of the resulting CRC (bit 31) is stored in the least significant bit of the
destination operand (bit 0), and so on, for all the bits of the CRC.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

F2 0F 38 F0 /r CRC32 r32, r/m8 RM Valid Valid Accumulate CRC32 on r/m8.

F2 REX 0F 38
F0 /r

CRC32 r32, r/m8* RM Valid N.E. Accumulate CRC32 on r/m8.

F2 0F 38 F1 /r CRC32 r32, r/m16 RM Valid Valid Accumulate CRC32 on
r/m16.

F2 0F 38 F1 /r CRC32 r32, r/m32 RM Valid Valid Accumulate CRC32 on
r/m32.

F2 REX.W 0F 38
F0 /r

CRC32 r64, r/m8 RM Valid N.E. Accumulate CRC32 on r/m8.

F2 REX.W 0F 38
F1 /r

CRC32 r64, r/m64 RM Valid N.E. Accumulate CRC32 on
r/m64.

NOTES:
*In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is
used: AH, BH, CH, DH.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
3-236 Vol. 2A CRC32 — Accumulate CRC32 Value

INSTRUCTION SET REFERENCE, A-L
Operation

Notes:

BIT_REFLECT64: DST[63-0] = SRC[0-63]
BIT_REFLECT32: DST[31-0] = SRC[0-31]
BIT_REFLECT16: DST[15-0] = SRC[0-15]
BIT_REFLECT8: DST[7-0] = SRC[0-7]
MOD2: Remainder from Polynomial division modulus 2

CRC32 instruction for 64-bit source operand and 64-bit destination operand:

TEMP1[63-0] BIT_REFLECT64 (SRC[63-0])
TEMP2[31-0] BIT_REFLECT32 (DEST[31-0])
TEMP3[95-0] TEMP1[63-0] « 32
TEMP4[95-0] TEMP2[31-0] « 64
TEMP5[95-0] TEMP3[95-0] XOR TEMP4[95-0]
TEMP6[31-0] TEMP5[95-0] MOD2 11EDC6F41H
DEST[31-0] BIT_REFLECT (TEMP6[31-0])
DEST[63-32] 00000000H

CRC32 instruction for 32-bit source operand and 32-bit destination operand:

TEMP1[31-0] BIT_REFLECT32 (SRC[31-0])
TEMP2[31-0] BIT_REFLECT32 (DEST[31-0])
TEMP3[63-0] TEMP1[31-0] « 32
TEMP4[63-0] TEMP2[31-0] « 32
TEMP5[63-0] TEMP3[63-0] XOR TEMP4[63-0]
TEMP6[31-0] TEMP5[63-0] MOD2 11EDC6F41H
DEST[31-0] BIT_REFLECT (TEMP6[31-0])

CRC32 instruction for 16-bit source operand and 32-bit destination operand:

TEMP1[15-0] BIT_REFLECT16 (SRC[15-0])
TEMP2[31-0] BIT_REFLECT32 (DEST[31-0])
TEMP3[47-0] TEMP1[15-0] « 32
TEMP4[47-0] TEMP2[31-0] « 16
TEMP5[47-0] TEMP3[47-0] XOR TEMP4[47-0]
TEMP6[31-0] TEMP5[47-0] MOD2 11EDC6F41H
DEST[31-0] BIT_REFLECT (TEMP6[31-0])

CRC32 instruction for 8-bit source operand and 64-bit destination operand:

TEMP1[7-0] BIT_REFLECT8(SRC[7-0])
TEMP2[31-0] BIT_REFLECT32 (DEST[31-0])
TEMP3[39-0] TEMP1[7-0] « 32
TEMP4[39-0] TEMP2[31-0] « 8
TEMP5[39-0] TEMP3[39-0] XOR TEMP4[39-0]
Vol. 2A 3-237CRC32 — Accumulate CRC32 Value

INSTRUCTION SET REFERENCE, A-L
TEMP6[31-0] TEMP5[39-0] MOD2 11EDC6F41H
DEST[31-0] BIT_REFLECT (TEMP6[31-0])
DEST[63-32] 00000000H

CRC32 instruction for 8-bit source operand and 32-bit destination operand:

TEMP1[7-0] BIT_REFLECT8(SRC[7-0])
TEMP2[31-0] BIT_REFLECT32 (DEST[31-0])
TEMP3[39-0] TEMP1[7-0] « 32
TEMP4[39-0] TEMP2[31-0] « 8
TEMP5[39-0] TEMP3[39-0] XOR TEMP4[39-0]
TEMP6[31-0] TEMP5[39-0] MOD2 11EDC6F41H
DEST[31-0] BIT_REFLECT (TEMP6[31-0])

Flags Affected

None

Intel C/C++ Compiler Intrinsic Equivalent
unsigned int _mm_crc32_u8(unsigned int crc, unsigned char data)
unsigned int _mm_crc32_u16(unsigned int crc, unsigned short data)
unsigned int _mm_crc32_u32(unsigned int crc, unsigned int data)
unsinged __int64 _mm_crc32_u64(unsinged __int64 crc, unsigned __int64 data)

SIMD Floating Point Exceptions

None

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS or GS segments.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF (fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If CPUID.01H:ECX.SSE4_2 [Bit 20] = 0.

If LOCK prefix is used.

Real Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
3-238 Vol. 2A CRC32 — Accumulate CRC32 Value

INSTRUCTION SET REFERENCE, A-L
#UD If CPUID.01H:ECX.SSE4_2 [Bit 20] = 0.
If LOCK prefix is used.

Virtual 8086 Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF (fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If CPUID.01H:ECX.SSE4_2 [Bit 20] = 0.

If LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#PF (fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If CPUID.01H:ECX.SSE4_2 [Bit 20] = 0.

If LOCK prefix is used.
Vol. 2A 3-239CRC32 — Accumulate CRC32 Value

INSTRUCTION SET REFERENCE, A-L
CVTDQ2PD—Convert Packed Dword Integers to Packed Double-
Precision FP Values

Instruction Operand Encoding

Description

Converts two packed signed doubleword integers in the source operand (second
operand) to two packed double-precision floating-point values in the destination
operand (first operand).

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
128-bit Legacy SSE version: The source operand is an XMM register or 64- bit
memory location. The destination operation is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding XMM register destination are unmodified.
VEX.128 encoded version: The source operand is an XMM register or 64- bit memory
location. The destination operation is an XMM register. The upper bits (VLMAX-1:128)
of the corresponding YMM register destination are zeroed.
VEX.256 encoded version: The source operand is a YMM register or 128- bit memory
location. The destination operation is a YMM register.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise
instructions will #UD.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

F3 0F E6

CVTDQ2PD xmm1, xmm2/m64

RM V/V SSE2 Convert two packed signed
doubleword integers from
xmm2/m128 to two packed
double-precision floating-
point values in xmm1.

VEX.128.F3.0F.WIG E6 /r

VCVTDQ2PD xmm1, xmm2/m64

RM V/V AVX Convert two packed signed
doubleword integers from
xmm2/mem to two packed
double-precision floating-
point values in xmm1.

VEX.256.F3.0F.WIG E6 /r

VCVTDQ2PD ymm1, ymm2/m128

RM V/V AVX Convert four packed signed
doubleword integers from
ymm2/mem to four packed
double-precision floating-
point values in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
3-240 Vol. 2A CVTDQ2PD—Convert Packed Dword Integers to Packed Double-Precision FP Values

INSTRUCTION SET REFERENCE, A-L
Figure 3-10. CVTDQ2PD (VEX.256 encoded version)

Operation

CVTDQ2PD (128-bit Legacy SSE version)
DEST[63:0] Convert_Integer_To_Double_Precision_Floating_Point(SRC[31:0])
DEST[127:64] Convert_Integer_To_Double_Precision_Floating_Point(SRC[63:32])
DEST[VLMAX-1:128] (unmodified)

VCVTDQ2PD (VEX.128 encoded version)
DEST[63:0] Convert_Integer_To_Double_Precision_Floating_Point(SRC[31:0])
DEST[127:64] Convert_Integer_To_Double_Precision_Floating_Point(SRC[63:32])
DEST[VLMAX-1:128] 0

VCVTDQ2PD (VEX.256 encoded version)
DEST[63:0] Convert_Integer_To_Double_Precision_Floating_Point(SRC[31:0])
DEST[127:64] Convert_Integer_To_Double_Precision_Floating_Point(SRC[63:32])
DEST[191:128] Convert_Integer_To_Double_Precision_Floating_Point(SRC[95:64])
DEST[255:192] Convert_Integer_To_Double_Precision_Floating_Point(SRC[127:96)

Intel C/C++ Compiler Intrinsic Equivalent

CVTDQ2PD: __m128d _mm_cvtepi32_pd(__m128i a)

VCVTDQ2PD: __m256d _mm256_cvtepi32_pd (__m128i src)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 5; additionally

DEST

SRC X0X1X2X3

X3 X2 X1 X0
Vol. 2A 3-241CVTDQ2PD—Convert Packed Dword Integers to Packed Double-Precision FP Values

INSTRUCTION SET REFERENCE, A-L
#UD If VEX.vvvv != 1111B.
3-242 Vol. 2A CVTDQ2PD—Convert Packed Dword Integers to Packed Double-Precision FP Values

INSTRUCTION SET REFERENCE, A-L
CVTDQ2PS—Convert Packed Dword Integers to Packed Single-
Precision FP Values

Instruction Operand Encoding

Description

Converts four packed signed doubleword integers in the source operand (second
operand) to four packed single-precision floating-point values in the destination
operand (first operand).

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
128-bit Legacy SSE version: The source operand is an XMM register or 128- bit
memory location. The destination operation is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding XMM register destination are unmodified.
VEX.128 encoded version: The source operand is an XMM register or 128- bit
memory location. The destination operation is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.
VEX.256 encoded version: The source operand is a YMM register or 256- bit memory
location. The destination operation is a YMM register.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise
instructions will #UD.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

0F 5B /r

CVTDQ2PS xmm1, xmm2/m128

RM V/V SSE2 Convert four packed signed
doubleword integers from
xmm2/m128 to four packed
single-precision floating-
point values in xmm1.

VEX.128.0F.WIG 5B /r

VCVTDQ2PS xmm1, xmm2/m128

RM V/V AVX Convert four packed signed
doubleword integers from
xmm2/mem to four packed
single-precision floating-
point values in xmm1.

VEX.256.0F.WIG 5B /r

VCVTDQ2PS ymm1, ymm2/m256

RM V/V AVX Convert eight packed signed
doubleword integers from
ymm2/mem to eight packed
single-precision floating-
point values in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
Vol. 2A 3-243CVTDQ2PS—Convert Packed Dword Integers to Packed Single-Precision FP Values

INSTRUCTION SET REFERENCE, A-L
Operation

CVTDQ2PS (128-bit Legacy SSE version)
DEST[31:0] Convert_Integer_To_Single_Precision_Floating_Point(SRC[31:0])
DEST[63:32] Convert_Integer_To_Single_Precision_Floating_Point(SRC[63:32])
DEST[95:64] Convert_Integer_To_Single_Precision_Floating_Point(SRC[95:64])
DEST[127:96] Convert_Integer_To_Single_Precision_Floating_Point(SRC[127z:96)
DEST[VLMAX-1:128] (unmodified)

VCVTDQ2PS (VEX.128 encoded version)
DEST[31:0] Convert_Integer_To_Single_Precision_Floating_Point(SRC[31:0])
DEST[63:32] Convert_Integer_To_Single_Precision_Floating_Point(SRC[63:32])
DEST[95:64] Convert_Integer_To_Single_Precision_Floating_Point(SRC[95:64])
DEST[127:96] Convert_Integer_To_Single_Precision_Floating_Point(SRC[127z:96)
DEST[VLMAX-1:128] 0

VCVTDQ2PS (VEX.256 encoded version)
DEST[31:0] Convert_Integer_To_Single_Precision_Floating_Point(SRC[31:0])
DEST[63:32] Convert_Integer_To_Single_Precision_Floating_Point(SRC[63:32])
DEST[95:64] Convert_Integer_To_Single_Precision_Floating_Point(SRC[95:64])
DEST[127:96] Convert_Integer_To_Single_Precision_Floating_Point(SRC[127z:96)
DEST[159:128] Convert_Integer_To_Single_Precision_Floating_Point(SRC[159:128])
DEST[191:160] Convert_Integer_To_Single_Precision_Floating_Point(SRC[191:160])
DEST[223:192] Convert_Integer_To_Single_Precision_Floating_Point(SRC[223:192])
DEST[255:224] Convert_Integer_To_Single_Precision_Floating_Point(SRC[255:224)

Intel C/C++ Compiler Intrinsic Equivalent

CVTDQ2PS: __m128 _mm_cvtepi32_ps(__m128i a)

VCVTDQ2PS: __m256 _mm256_cvtepi32_ps (__m256i src)

SIMD Floating-Point Exceptions

Precision.

Other Exceptions
See Exceptions Type 2; additionally
#UD If VEX.vvvv != 1111B.
3-244 Vol. 2A CVTDQ2PS—Convert Packed Dword Integers to Packed Single-Precision FP Values

INSTRUCTION SET REFERENCE, A-L
CVTPD2DQ—Convert Packed Double-Precision FP Values to Packed
Dword Integers

Instruction Operand Encoding

Description

Converts two packed double-precision floating-point values in the source operand
(second operand) to two packed signed doubleword integers in the destination
operand (first operand).

The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register. The result is stored in the low quadword of the
destination operand and the high quadword is cleared to all 0s.

When a conversion is inexact, the value returned is rounded according to the
rounding control bits in the MXCSR register. If a converted result is larger than the
maximum signed doubleword integer, the floating-point invalid exception is raised,
and if this exception is masked, the indefinite integer value (80000000H) is returned.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
128-bit Legacy SSE version: The source operand is an XMM register or 128- bit
memory location. The destination operation is an XMM register. Bits[127:64] of the

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

F2 0F E6

CVTPD2DQ xmm1, xmm2/m128

RM V/V SSE2 Convert two packed double-
precision floating-point
values from xmm2/m128 to
two packed signed
doubleword integers in
xmm1.

VEX.128.F2.0F.WIG E6 /r

VCVTPD2DQ xmm1, xmm2/m128

RM V/V AVX Convert two packed double-
precision floating-point
values in xmm2/mem to two
signed doubleword integers
in xmm1.

VEX.256.F2.0F.WIG E6 /r

VCVTPD2DQ xmm1, ymm2/m256

RM V/V AVX Convert four packed double-
precision floating-point
values in ymm2/mem to
four signed doubleword
integers in xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
Vol. 2A 3-245CVTPD2DQ—Convert Packed Double-Precision FP Values to Packed Dword Integers

INSTRUCTION SET REFERENCE, A-L
destination XMM register are zeroed. However, the upper bits (VLMAX-1:128) of the
corresponding YMM register destination are unmodified.
VEX.128 encoded version: The source operand is an XMM register or 128- bit
memory location. The destination operation is a YMM register. The upper bits
(VLMAX-1:64) of the corresponding YMM register destination are zeroed.
VEX.256 encoded version: The source operand is a YMM register or 256- bit memory
location. The destination operation is an XMM register. The upper bits (255:128) of
the corresponding YMM register destination are zeroed.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise
instructions will #UD.

Figure 3-11. VCVTPD2DQ (VEX.256 encoded version)

Operation

CVTPD2DQ (128-bit Legacy SSE version)
DEST[31:0] Convert_Double_Precision_Floating_Point_To_Integer(SRC[63:0])
DEST[63:32] Convert_Double_Precision_Floating_Point_To_Integer(SRC[127:64])
DEST[127:64] 0
DEST[VLMAX-1:128] (unmodified)

VCVTPD2DQ (VEX.128 encoded version)
DEST[31:0] Convert_Double_Precision_Floating_Point_To_Integer(SRC[63:0])
DEST[63:32] Convert_Double_Precision_Floating_Point_To_Integer(SRC[127:64])
DEST[VLMAX-1:64] 0

VCVTPD2DQ (VEX.256 encoded version)
DEST[31:0] Convert_Double_Precision_Floating_Point_To_Integer(SRC[63:0])
DEST[63:32] Convert_Double_Precision_Floating_Point_To_Integer(SRC[127:64])

DEST

SRC

X0X1X2X3

X3 X2 X1 X0

0

3-246 Vol. 2A CVTPD2DQ—Convert Packed Double-Precision FP Values to Packed Dword Integers

INSTRUCTION SET REFERENCE, A-L
DEST[95:64] Convert_Double_Precision_Floating_Point_To_Integer(SRC[191:128])
DEST[127:96] Convert_Double_Precision_Floating_Point_To_Integer(SRC[255:192)
DEST[255:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

CVTPD2DQ: __m128i _mm_cvtpd_epi32 (__m128d src)

CVTPD2DQ: __m128i _mm256_cvtpd_epi32 (__m256d src)

SIMD Floating-Point Exceptions

Invalid, Precision.

Other Exceptions
See Exceptions Type 2; additionally
#UD If VEX.vvvv != 1111B.
Vol. 2A 3-247CVTPD2DQ—Convert Packed Double-Precision FP Values to Packed Dword Integers

INSTRUCTION SET REFERENCE, A-L
CVTPD2PI—Convert Packed Double-Precision FP Values to Packed
Dword Integers

Instruction Operand Encoding

Description

Converts two packed double-precision floating-point values in the source operand
(second operand) to two packed signed doubleword integers in the destination
operand (first operand).

The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an MMX technology register.

When a conversion is inexact, the value returned is rounded according to the
rounding control bits in the MXCSR register. If a converted result is larger than the
maximum signed doubleword integer, the floating-point invalid exception is raised,
and if this exception is masked, the indefinite integer value (80000000H) is returned.

This instruction causes a transition from x87 FPU to MMX technology operation (that
is, the x87 FPU top-of-stack pointer is set to 0 and the x87 FPU tag word is set to all
0s [valid]). If this instruction is executed while an x87 FPU floating-point exception is
pending, the exception is handled before the CVTPD2PI instruction is executed.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).

Operation

DEST[31:0] ← Convert_Double_Precision_Floating_Point_To_Integer32(SRC[63:0]);
DEST[63:32] ← Convert_Double_Precision_Floating_Point_To_Integer32(SRC[127:64]);

Intel C/C++ Compiler Intrinsic Equivalent

CVTPD1PI: __m64 _mm_cvtpd_pi32(__m128d a)

Opcode/
Instruction

Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

66 0F 2D /r

CVTPD2PI mm, xmm/m128

RM Valid Valid Convert two packed double-
precision floating-point
values from xmm/m128 to
two packed signed
doubleword integers in mm.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
3-248 Vol. 2A CVTPD2PI—Convert Packed Double-Precision FP Values to Packed Dword Integers

INSTRUCTION SET REFERENCE, A-L
SIMD Floating-Point Exceptions

Invalid, Precision.

Other Exceptions
See Table 22-4, “Exception Conditions for Legacy SIMD/MMX Instructions with FP
Exception and 16-Byte Alignment,” in the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3B.
Vol. 2A 3-249CVTPD2PI—Convert Packed Double-Precision FP Values to Packed Dword Integers

INSTRUCTION SET REFERENCE, A-L
CVTPD2PS—Convert Packed Double-Precision FP Values to Packed
Single-Precision FP Values

Instruction Operand Encoding

Description

Converts two packed double-precision floating-point values in the source operand
(second operand) to two packed single-precision floating-point values in the destina-
tion operand (first operand).
When a conversion is inexact, the value returned is rounded according to the
rounding control bits in the MXCSR register.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
128-bit Legacy SSE version: The source operand is an XMM register or 128- bit
memory location. The destination operation is an XMM register. Bits[127:64] of the
destination XMM register are zeroed. However, the upper bits (VLMAX-1:128) of the
corresponding YMM register destination are unmodified.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

66 0F 5A /r

CVTPD2PS xmm1, xmm2/m128

RM V/V SSE2 Convert two packed double-
precision floating-point
values in xmm2/m128 to
two packed single-precision
floating-point values in
xmm1.

VEX.128.66.0F.WIG 5A /r

VCVTPD2PS xmm1, xmm2/m128

RM V/V AVX Convert two packed double-
precision floating-point
values in xmm2/mem to two
single-precision floating-
point values in xmm1.

VEX.256.66.0F.WIG 5A /r

VCVTPD2PS xmm1, ymm2/m256

RM V/V AVX Convert four packed double-
precision floating-point
values in ymm2/mem to
four single-precision
floating-point values in
xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
3-250 Vol. 2A CVTPD2PS—Convert Packed Double-Precision FP Values to Packed Single-Precision FP
Values

INSTRUCTION SET REFERENCE, A-L
VEX.128 encoded version: The source operand is an XMM register or 128- bit
memory location. The destination operation is a YMM register. The upper bits
(VLMAX-1:64) of the corresponding YMM register destination are zeroed.
VEX.256 encoded version: The source operand is a YMM register or 256- bit memory
location. The destination operation is an XMM register. The upper bits (255:128) of
the corresponding YMM register destination are zeroed.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise
instructions will #UD.

Figure 3-12. VCVTPD2PS (VEX.256 encoded version)

Operation

CVTPD2PS (128-bit Legacy SSE version)
DEST[31:0] Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[63:0])
DEST[63:32] Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[127:64])
DEST[127:64] 0
DEST[VLMAX-1:128] (unmodified)

VCVTPD2PS (VEX.128 encoded version)
DEST[31:0] Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[63:0])
DEST[63:32] Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[127:64])
DEST[VLMAX-1:64] 0

VCVTPD2PS (VEX.256 encoded version)
DEST[31:0] Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[63:0])
DEST[63:32] Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[127:64])
DEST[95:64] Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[191:128])
DEST[127:96] Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[255:192)

DEST

SRC

X0X1X2X3

X3 X2 X1 X0

0

Vol. 2A 3-251CVTPD2PS—Convert Packed Double-Precision FP Values to Packed Single-Precision FP
Values

INSTRUCTION SET REFERENCE, A-L
DEST[255:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

CVTPD2PS: __m128 _mm_cvtpd_ps(__m128d a)

CVTPD2PS: __m256 _mm256_cvtpd_ps (__m256d a)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
See Exceptions Type 2; additionally
#UD If VEX.vvvv != 1111B.
3-252 Vol. 2A CVTPD2PS—Convert Packed Double-Precision FP Values to Packed Single-Precision FP
Values

INSTRUCTION SET REFERENCE, A-L
CVTPI2PD—Convert Packed Dword Integers to Packed Double-
Precision FP Values

Instruction Operand Encoding

Description

Converts two packed signed doubleword integers in the source operand (second
operand) to two packed double-precision floating-point values in the destination
operand (first operand).

The source operand can be an MMX technology register or a 64-bit memory location.
The destination operand is an XMM register. In addition, depending on the operand
configuration:
• For operands xmm, mm: the instruction causes a transition from x87 FPU to

MMX technology operation (that is, the x87 FPU top-of-stack pointer is set to 0
and the x87 FPU tag word is set to all 0s [valid]). If this instruction is executed
while an x87 FPU floating-point exception is pending, the exception is handled
before the CVTPI2PD instruction is executed.

• For operands xmm, m64: the instruction does not cause a transition to MMX
technology and does not take x87 FPU exceptions.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).

Operation

DEST[63:0] ← Convert_Integer_To_Double_Precision_Floating_Point(SRC[31:0]);
DEST[127:64] ← Convert_Integer_To_Double_Precision_Floating_Point(SRC[63:32]);

Intel C/C++ Compiler Intrinsic Equivalent

CVTPI2PD: __m128d _mm_cvtpi32_pd(__m64 a)

Opcode/
Instruction

Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

66 0F 2A /r

CVTPI2PD xmm, mm/m64*

RM Valid Valid Convert two packed signed
doubleword integers from
mm/mem64 to two packed
double-precision floating-
point values in xmm.

NOTES:
*Operation is different for different operand sets; see the Description section.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
Vol. 2A 3-253CVTPI2PD—Convert Packed Dword Integers to Packed Double-Precision FP Values

INSTRUCTION SET REFERENCE, A-L
SIMD Floating-Point Exceptions

Precision.

Other Exceptions
See Table 22-6, “Exception Conditions for Legacy SIMD/MMX Instructions with XMM
and without FP Exception,” in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3B.
3-254 Vol. 2A CVTPI2PD—Convert Packed Dword Integers to Packed Double-Precision FP Values

INSTRUCTION SET REFERENCE, A-L
CVTPI2PS—Convert Packed Dword Integers to Packed Single-Precision
FP Values

Instruction Operand Encoding

Description

Converts two packed signed doubleword integers in the source operand (second
operand) to two packed single-precision floating-point values in the destination
operand (first operand).

The source operand can be an MMX technology register or a 64-bit memory location.
The destination operand is an XMM register. The results are stored in the low quad-
word of the destination operand, and the high quadword remains unchanged. When
a conversion is inexact, the value returned is rounded according to the rounding
control bits in the MXCSR register.

This instruction causes a transition from x87 FPU to MMX technology operation (that
is, the x87 FPU top-of-stack pointer is set to 0 and the x87 FPU tag word is set to all
0s [valid]). If this instruction is executed while an x87 FPU floating-point exception is
pending, the exception is handled before the CVTPI2PS instruction is executed.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).

Operation

DEST[31:0] ← Convert_Integer_To_Single_Precision_Floating_Point(SRC[31:0]);
DEST[63:32] ← Convert_Integer_To_Single_Precision_Floating_Point(SRC[63:32]);
(* High quadword of destination unchanged *)

Intel C/C++ Compiler Intrinsic Equivalent

CVTPI2PS: __m128 _mm_cvtpi32_ps(__m128 a, __m64 b)

Opcode/
Instruction

Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 2A /r

CVTPI2PS xmm, mm/m64

RM Valid Valid Convert two signed
doubleword integers from
mm/m64 to two single-
precision floating-point
values in xmm.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
Vol. 2A 3-255CVTPI2PS—Convert Packed Dword Integers to Packed Single-Precision FP Values

INSTRUCTION SET REFERENCE, A-L
SIMD Floating-Point Exceptions

Precision.

Other Exceptions
See Table 22-5, “Exception Conditions for Legacy SIMD/MMX Instructions with XMM
and FP Exception,” in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3B.
3-256 Vol. 2A CVTPI2PS—Convert Packed Dword Integers to Packed Single-Precision FP Values

INSTRUCTION SET REFERENCE, A-L
CVTPS2DQ—Convert Packed Single-Precision FP Values to Packed
Dword Integers

Instruction Operand Encoding

Description

Converts four or eight packed single-precision floating-point values in the source
operand to four or eight signed doubleword integers in the destination operand.

When a conversion is inexact, the value returned is rounded according to the
rounding control bits in the MXCSR register. If a converted result is larger than the
maximum signed doubleword integer, the floating-point invalid exception is raised,
and if this exception is masked, the indefinite integer value (80000000H) is returned.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
128-bit Legacy SSE version: The source operand is an XMM register or 128- bit
memory location. The destination operation is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are unmodified.
VEX.128 encoded version: The source operand is an XMM register or 128- bit
memory location. The destination operation is a YMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

66 0F 5B /r

CVTPS2DQ xmm1, xmm2/m128

RM V/V SSE2 Convert four packed single-
precision floating-point
values from xmm2/m128 to
four packed signed
doubleword integers in
xmm1.

VEX.128.66.0F.WIG 5B /r

VCVTPS2DQ xmm1, xmm2/m128

RM V/V AVX Convert four packed single
precision floating-point
values from xmm2/mem to
four packed signed
doubleword values in xmm1.

VEX.256.66.0F.WIG 5B /r

VCVTPS2DQ ymm1, ymm2/m256

RM V/V AVX Convert eight packed single
precision floating-point
values from ymm2/mem to
eight packed signed
doubleword values in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
Vol. 2A 3-257CVTPS2DQ—Convert Packed Single-Precision FP Values to Packed Dword Integers

INSTRUCTION SET REFERENCE, A-L
VEX.256 encoded version: The source operand is a YMM register or 256- bit memory
location. The destination operation is a YMM register.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise
instructions will #UD.

Operation

CVTPS2DQ (128-bit Legacy SSE version)
DEST[31:0] Convert_Single_Precision_Floating_Point_To_Integer(SRC[31:0])
DEST[63:32] Convert_Single_Precision_Floating_Point_To_Integer(SRC[63:32])
DEST[95:64] Convert_Single_Precision_Floating_Point_To_Integer(SRC[95:64])
DEST[127:96] Convert_Single_Precision_Floating_Point_To_Integer(SRC[127:96])
DEST[VLMAX-1:128] (unmodified)

VCVTPS2DQ (VEX.128 encoded version)
DEST[31:0] Convert_Single_Precision_Floating_Point_To_Integer(SRC[31:0])
DEST[63:32] Convert_Single_Precision_Floating_Point_To_Integer(SRC[63:32])
DEST[95:64] Convert_Single_Precision_Floating_Point_To_Integer(SRC[95:64])
DEST[127:96] Convert_Single_Precision_Floating_Point_To_Integer(SRC[127:96])
DEST[VLMAX-1:128] 0

VCVTPS2DQ (VEX.256 encoded version)
DEST[31:0] Convert_Single_Precision_Floating_Point_To_Integer(SRC[31:0])
DEST[63:32] Convert_Single_Precision_Floating_Point_To_Integer(SRC[63:32])
DEST[95:64] Convert_Single_Precision_Floating_Point_To_Integer(SRC[95:64])
DEST[127:96] Convert_Single_Precision_Floating_Point_To_Integer(SRC[127:96)
DEST[159:128] Convert_Single_Precision_Floating_Point_To_Integer(SRC[159:128])
DEST[191:160] Convert_Single_Precision_Floating_Point_To_Integer(SRC[191:160])
DEST[223:192] Convert_Single_Precision_Floating_Point_To_Integer(SRC[223:192])
DEST[255:224] Convert_Single_Precision_Floating_Point_To_Integer(SRC[255:224])

Intel C/C++ Compiler Intrinsic Equivalent

CVTPS2DQ: __m128i _mm_cvtps_epi32(__m128 a)

VCVTPS2DQ: __ m256i _mm256_cvtps_epi32 (__m256 a)

SIMD Floating-Point Exceptions

Invalid, Precision.

Other Exceptions
See Exceptions Type 2; additionally
#UD If VEX.vvvv != 1111B.
3-258 Vol. 2A CVTPS2DQ—Convert Packed Single-Precision FP Values to Packed Dword Integers

INSTRUCTION SET REFERENCE, A-L
CVTPS2PD—Convert Packed Single-Precision FP Values to Packed
Double-Precision FP Values

Instruction Operand Encoding

Description

Converts two or four packed single-precision floating-point values in the source
operand (second operand) to two or four packed double-precision floating-point
values in the destination operand (first operand).

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
128-bit Legacy SSE version: The source operand is an XMM register or 64- bit
memory location. The destination operation is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are unmodified.
VEX.128 encoded version: The source operand is an XMM register or 64- bit memory
location. The destination operation is a YMM register. The upper bits (VLMAX-1:128)
of the corresponding YMM register destination are zeroed.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

0F 5A /r

CVTPS2PD xmm1, xmm2/m64

RM V/V SSE2 Convert two packed single-
precision floating-point
values in xmm2/m64 to two
packed double-precision
floating-point values in
xmm1.

VEX.128.0F.WIG 5A /r

VCVTPS2PD xmm1, xmm2/m64

RM V/V AVX Convert two packed single-
precision floating-point
values in xmm2/mem to two
packed double-precision
floating-point values in
xmm1.

VEX.256.0F.WIG 5A /r

VCVTPS2PD ymm1, xmm2/m128

RM V/V AVX Convert four packed single-
precision floating-point
values in xmm2/mem to
four packed double-
precision floating-point
values in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
Vol. 2A 3-259CVTPS2PD—Convert Packed Single-Precision FP Values to Packed Double-Precision FP
Values

INSTRUCTION SET REFERENCE, A-L
VEX.256 encoded version: The source operand is an XMM register or 128- bit
memory location. The destination operation is a YMM register.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise
instructions will #UD.

Figure 3-13. CVTPS2PD (VEX.256 encoded version)

Operation

CVTPS2PD (128-bit Legacy SSE version)
DEST[63:0] Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[31:0])
DEST[127:64] Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[63:32])
DEST[VLMAX-1:128] (unmodified)

VCVTPS2PD (VEX.128 encoded version)
DEST[63:0] Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[31:0])
DEST[127:64] Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[63:32])
DEST[VLMAX-1:128] 0

VCVTPS2PD (VEX.256 encoded version)
DEST[63:0] Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[31:0])
DEST[127:64] Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[63:32])
DEST[191:128] Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[95:64])
DEST[255:192] Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[127:96)

Intel C/C++ Compiler Intrinsic Equivalent

CVTPS2PD: __m128d _mm_cvtps_pd(__m128 a)

VCVTPS2PD: __m256d _mm256_cvtps_pd (__m128 a)

DEST

SRC X0X1X2X3

X3 X2 X1 X0
3-260 Vol. 2A CVTPS2PD—Convert Packed Single-Precision FP Values to Packed Double-Precision FP
Values

INSTRUCTION SET REFERENCE, A-L
SIMD Floating-Point Exceptions

Invalid, Denormal.

Other Exceptions

See Exceptions Type 3; additionally

#UDIf VEX.vvvv != 1111B.
Vol. 2A 3-261CVTPS2PD—Convert Packed Single-Precision FP Values to Packed Double-Precision FP
Values

INSTRUCTION SET REFERENCE, A-L
CVTPS2PI—Convert Packed Single-Precision FP Values to Packed
Dword Integers

Instruction Operand Encoding

Description

Converts two packed single-precision floating-point values in the source operand
(second operand) to two packed signed doubleword integers in the destination
operand (first operand).

The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an MMX technology register. When the source operand is an XMM
register, the two single-precision floating-point values are contained in the low quad-
word of the register. When a conversion is inexact, the value returned is rounded
according to the rounding control bits in the MXCSR register. If a converted result is
larger than the maximum signed doubleword integer, the floating-point invalid
exception is raised, and if this exception is masked, the indefinite integer value
(80000000H) is returned.

CVTPS2PI causes a transition from x87 FPU to MMX technology operation (that is, the
x87 FPU top-of-stack pointer is set to 0 and the x87 FPU tag word is set to all 0s
[valid]). If this instruction is executed while an x87 FPU floating-point exception is
pending, the exception is handled before the CVTPS2PI instruction is executed.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).

Operation

DEST[31:0] ← Convert_Single_Precision_Floating_Point_To_Integer(SRC[31:0]);
DEST[63:32] ← Convert_Single_Precision_Floating_Point_To_Integer(SRC[63:32]);

Intel C/C++ Compiler Intrinsic Equivalent

CVTPS2PI: __m64 _mm_cvtps_pi32(__m128 a)

Opcode/
Instruction

Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 2D /r

CVTPS2PI mm, xmm/m64

RM Valid Valid Convert two packed single-
precision floating-point
values from xmm/m64 to
two packed signed
doubleword integers in mm.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
3-262 Vol. 2A CVTPS2PI—Convert Packed Single-Precision FP Values to Packed Dword Integers

INSTRUCTION SET REFERENCE, A-L
SIMD Floating-Point Exceptions

Invalid, Precision.

Other Exceptions
See Table 22-5, “Exception Conditions for Legacy SIMD/MMX Instructions with XMM
and FP Exception,” in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3B.
Vol. 2A 3-263CVTPS2PI—Convert Packed Single-Precision FP Values to Packed Dword Integers

INSTRUCTION SET REFERENCE, A-L
CVTSD2SI—Convert Scalar Double-Precision FP Value to Integer

Instruction Operand Encoding

Description

Converts a double-precision floating-point value in the source operand (second
operand) to a signed doubleword integer in the destination operand (first operand).
The source operand can be an XMM register or a 64-bit memory location. The desti-
nation operand is a general-purpose register. When the source operand is an XMM
register, the double-precision floating-point value is contained in the low quadword of
the register.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

F2 0F 2D /r

CVTSD2SI r32, xmm/m64

RM V/V SSE2 Convert one double-
precision floating-point
value from xmm/m64 to
one signed doubleword
integer r32.

 F2 REX.W 0F 2D /r

CVTSD2SI r64, xmm/m64

RM V/N.E. SSE2 Convert one double-
precision floating-point
value from xmm/m64 to
one signed quadword
integer sign-extended into
r64.

VEX.LIG.F2.0F.W0 2D /r

VCVTSD2SI r32, xmm1/m64

RM V/V AVX Convert one double
precision floating-point
value from xmm1/m64 to
one signed doubleword
integer r32.

VEX.LIG.F2.0F.W1 2D /r

VCVTSD2SI r64, xmm1/m64

RM V/N.E.1

NOTES:
1. Encoding the VEX prefix with VEX.W=1 in non-64-bit mode is ignored.

AVX Convert one double
precision floating-point
value from xmm1/m64 to
one signed quadword
integer sign-extended into
r64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
3-264 Vol. 2A CVTSD2SI—Convert Scalar Double-Precision FP Value to Integer

INSTRUCTION SET REFERENCE, A-L
When a conversion is inexact, the value returned is rounded according to the
rounding control bits in the MXCSR register. If a converted result is larger than the
maximum signed doubleword integer, the floating-point invalid exception is raised,
and if this exception is masked, the indefinite integer value (80000000H) is returned.

In 64-bit mode, the instruction can access additional registers (XMM8-XMM15,
R8-R15) when used with a REX.R prefix. Use of the REX.W prefix promotes the
instruction to 64-bit operation. See the summary chart at the beginning of this
section for encoding data and limits.
Legacy SSE instructions: Use of the REX.W prefix promotes the instruction to 64-bit
operation. See the summary chart at the beginning of this section for encoding data
and limits.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise
instructions will #UD.

Operation

IF 64-Bit Mode and OperandSize = 64
THEN

DEST[63:0] ← Convert_Double_Precision_Floating_Point_To_Integer64(SRC[63:0]);
ELSE

DEST[31:0] ← Convert_Double_Precision_Floating_Point_To_Integer32(SRC[63:0]);
FI;

Intel C/C++ Compiler Intrinsic Equivalent

int _mm_cvtsd_si32(__m128d a)

__int64 _mm_cvtsd_si64(__m128d a)

SIMD Floating-Point Exceptions

Invalid, Precision.

Other Exceptions
See Exceptions Type 3; additionally
#UD If VEX.vvvv != 1111B.
Vol. 2A 3-265CVTSD2SI—Convert Scalar Double-Precision FP Value to Integer

INSTRUCTION SET REFERENCE, A-L
CVTSD2SS—Convert Scalar Double-Precision FP Value to Scalar Single-
Precision FP Value

Instruction Operand Encoding

Description

Converts a double-precision floating-point value in the source operand (second
operand) to a single-precision floating-point value in the destination operand (first
operand).

The source operand can be an XMM register or a 64-bit memory location. The desti-
nation operand is an XMM register. When the source operand is an XMM register, the
double-precision floating-point value is contained in the low quadword of the register.
The result is stored in the low doubleword of the destination operand, and the upper
3 doublewords are left unchanged. When the conversion is inexact, the value
returned is rounded according to the rounding control bits in the MXCSR register.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
128-bit Legacy SSE version: The destination and first source operand are the same.
Bits (VLMAX-1:32) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: Bits (127:64) of the XMM register destination are copied
from corresponding bits in the first source operand. Bits (VLMAX-1:128) of the desti-
nation YMM register are zeroed.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

F2 0F 5A /r

CVTSD2SS xmm1, xmm2/m64

RM V/V SSE2 Convert one double-
precision floating-point
value in xmm2/m64 to one
single-precision floating-
point value in xmm1.

VEX.NDS.LIG.F2.0F.WIG 5A /r

VCVTSD2SS xmm1,xmm2,
xmm3/m64

RVM V/V AVX Convert one double-
precision floating-point
value in xmm3/m64 to one
single-precision floating-
point value and merge with
high bits in xmm2.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
3-266 Vol. 2A CVTSD2SS—Convert Scalar Double-Precision FP Value to Scalar Single-Precision FP Val-
ue

INSTRUCTION SET REFERENCE, A-L
Operation

CVTSD2SS (128-bit Legacy SSE version)
DEST[31:0] Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[63:0]);
(* DEST[VLMAX-1:32] Unmodified *)

VCVTSD2SS (VEX.128 encoded version)
DEST[31:0] Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC2[63:0]);
DEST[127:32] SRC1[127:32]
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

CVTSD2SS: __m128 _mm_cvtsd_ss(__m128 a, __m128d b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
See Exceptions Type 3.
Vol. 2A 3-267CVTSD2SS—Convert Scalar Double-Precision FP Value to Scalar Single-Precision FP Val-
ue

INSTRUCTION SET REFERENCE, A-L
CVTSI2SD—Convert Dword Integer to Scalar Double-Precision FP Value

Instruction Operand Encoding

Description

Converts a signed doubleword integer (or signed quadword integer if operand size is
64 bits) in the second source operand to a double-precision floating-point value in
the destination operand. The result is stored in the low quadword of the destination
operand, and the high quadword left unchanged. When conversion is inexact, the
value returned is rounded according to the rounding control bits in the MXCSR
register.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

F2 0F 2A /r

CVTSI2SD xmm, r/m32

RM V/V SSE2 Convert one signed
doubleword integer from
r/m32 to one double-
precision floating-point
value in xmm.

F2 REX.W 0F 2A /r

CVTSI2SD xmm, r/m64

RM V/N.E. SSE2 Convert one signed
quadword integer from
r/m64 to one double-
precision floating-point
value in xmm.

VEX.NDS.LIG.F2.0F.W0 2A /r

VCVTSI2SD xmm1, xmm2, r/m32

RVM V/V AVX Convert one signed
doubleword integer from
r/m32 to one double-
precision floating-point
value in xmm1.

VEX.NDS.LIG.F2.0F.W1 2A /r

VCVTSI2SD xmm1, xmm2, r/m64

RVM V/N.E.1

NOTES:
1. Encoding the VEX prefix with VEX.W=1 in non-64-bit mode is ignored.

AVX Convert one signed
quadword integer from
r/m64 to one double-
precision floating-point
value in xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
3-268 Vol. 2A CVTSI2SD—Convert Dword Integer to Scalar Double-Precision FP Value

INSTRUCTION SET REFERENCE, A-L
Legacy SSE instructions: Use of the REX.W prefix promotes the instruction to 64-bit
operands. See the summary chart at the beginning of this section for encoding data
and limits.
The second source operand can be a general-purpose register or a 32/64-bit memory
location. The first source and destination operands are XMM registers.
128-bit Legacy SSE version: The destination and first source operand are the same.
Bits (VLMAX-1:64) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: Bits (127:64) of the XMM register destination are copied
from corresponding bits in the first source operand. Bits (VLMAX-1:128) of the desti-
nation YMM register are zeroed.

Operation

CVTSI2SD
IF 64-Bit Mode And OperandSize = 64
THEN

DEST[63:0] Convert_Integer_To_Double_Precision_Floating_Point(SRC[63:0]);
ELSE

DEST[63:0] Convert_Integer_To_Double_Precision_Floating_Point(SRC[31:0]);
FI;
DEST[VLMAX-1:64] (Unmodified)

VCVTSI2SD
IF 64-Bit Mode And OperandSize = 64
THEN

DEST[63:0] Convert_Integer_To_Double_Precision_Floating_Point(SRC2[63:0]);
ELSE

DEST[63:0] Convert_Integer_To_Double_Precision_Floating_Point(SRC2[31:0]);
FI;
DEST[127:64] SRC1[127:64]
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

CVTSI2SD: __m128d _mm_cvtsi32_sd(__m128d a, int b)

CVTSI2SD: __m128d _mm_cvtsi64_sd(__m128d a, __int64 b)

SIMD Floating-Point Exceptions

Precision.

Other Exceptions
See Exceptions Type 3.
Vol. 2A 3-269CVTSI2SD—Convert Dword Integer to Scalar Double-Precision FP Value

INSTRUCTION SET REFERENCE, A-L
CVTSI2SS—Convert Dword Integer to Scalar Single-Precision FP Value

Instruction Operand Encoding

Description

Converts a signed doubleword integer (or signed quadword integer if operand size is
64 bits) in the source operand (second operand) to a single-precision floating-point
value in the destination operand (first operand). The source operand can be a
general-purpose register or a memory location. The destination operand is an XMM
register. The result is stored in the low doubleword of the destination operand, and
the upper three doublewords are left unchanged. When a conversion is inexact, the
value returned is rounded according to the rounding control bits in the MXCSR
register.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

F3 0F 2A /r

CVTSI2SS xmm, r/m32

RM V/V SSE Convert one signed
doubleword integer from
r/m32 to one single-
precision floating-point
value in xmm.

F3 REX.W 0F 2A /r

CVTSI2SS xmm, r/m64

RM V/N.E. SSE Convert one signed
quadword integer from
r/m64 to one single-
precision floating-point
value in xmm.

VEX.NDS.LIG.F3.0F.W0 2A /r

VCVTSI2SS xmm1, xmm2, r/m32

RVM V/V AVX Convert one signed
doubleword integer from
r/m32 to one single-
precision floating-point
value in xmm1.

VEX.NDS.LIG.F3.0F.W1 2A /r

VCVTSI2SS xmm1, xmm2, r/m64

RVM V/N.E.1

NOTES:
1. Encoding the VEX prefix with VEX.W=1 in non-64-bit mode is ignored.

AVX Convert one signed
quadword integer from
r/m64 to one single-
precision floating-point
value in xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
3-270 Vol. 2A CVTSI2SS—Convert Dword Integer to Scalar Single-Precision FP Value

INSTRUCTION SET REFERENCE, A-L
Legacy SSE instructions: In 64-bit mode, the instruction can access additional regis-
ters (XMM8-XMM15, R8-R15) when used with a REX.R prefix. Use of the REX.W
prefix promotes the instruction to 64-bit operands. See the summary chart at the
beginning of this section for encoding data and limits.

128-bit Legacy SSE version: The destination and first source operand are the same.
Bits (VLMAX-1:32) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: Bits (127:32) of the XMM register destination are copied
from corresponding bits in the first source operand. Bits (VLMAX-1:128) of the desti-
nation YMM register are zeroed.

Operation

CVTSI2SS (128-bit Legacy SSE version)
IF 64-Bit Mode And OperandSize = 64
THEN

DEST[31:0] Convert_Integer_To_Single_Precision_Floating_Point(SRC[63:0]);
ELSE

DEST[31:0] Convert_Integer_To_Single_Precision_Floating_Point(SRC[31:0]);
FI;
DEST[VLMAX-1:32] (Unmodified)

VCVTSI2SS (VEX.128 encoded version)
IF 64-Bit Mode And OperandSize = 64
THEN

DEST[31:0] Convert_Integer_To_Single_Precision_Floating_Point(SRC[63:0]);
ELSE

DEST[31:0] Convert_Integer_To_Single_Precision_Floating_Point(SRC[31:0]);
FI;
DEST[127:32] SRC1[127:32]
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

CVTSI2SS: __m128 _mm_cvtsi32_ss(__m128 a, int b)

CVTSI2SS: __m128 _mm_cvtsi64_ss(__m128 a, __int64 b)

SIMD Floating-Point Exceptions

Precision.

Other Exceptions
See Exceptions Type 3.
Vol. 2A 3-271CVTSI2SS—Convert Dword Integer to Scalar Single-Precision FP Value

INSTRUCTION SET REFERENCE, A-L
CVTSS2SD—Convert Scalar Single-Precision FP Value to Scalar Double-
Precision FP Value

Instruction Operand Encoding

Description

Converts a single-precision floating-point value in the source operand (second
operand) to a double-precision floating-point value in the destination operand (first
operand). The source operand can be an XMM register or a 32-bit memory location.
The destination operand is an XMM register. When the source operand is an XMM
register, the single-precision floating-point value is contained in the low doubleword
of the register. The result is stored in the low quadword of the destination operand,
and the high quadword is left unchanged.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
128-bit Legacy SSE version: The destination and first source operand are the same.
Bits (VLMAX-1:64) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: Bits (127:64) of the XMM register destination are copied
from corresponding bits in the first source operand. Bits (VLMAX-1:128) of the desti-
nation YMM register are zeroed.

Operation

CVTSS2SD (128-bit Legacy SSE version)

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

F3 0F 5A /r

CVTSS2SD xmm1, xmm2/m32

RM V/V SSE2 Convert one single-precision
floating-point value in
xmm2/m32 to one double-
precision floating-point
value in xmm1.

VEX.NDS.LIG.F3.0F.WIG 5A /r

VCVTSS2SD xmm1, xmm2,
xmm3/m32

RVM V/V AVX Convert one single-precision
floating-point value in
xmm3/m32 to one double-
precision floating-point
value and merge with high
bits of xmm2.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
3-272 Vol. 2A CVTSS2SD—Convert Scalar Single-Precision FP Value to Scalar Double-Precision FP Val-
ue

INSTRUCTION SET REFERENCE, A-L
DEST[63:0] Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[31:0]);
DEST[VLMAX-1:64] (Unmodified)

VCVTSS2SD (VEX.128 encoded version)
DEST[63:0] Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC2[31:0])
DEST[127:64] SRC1[127:64]
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

CVTSS2SD: __m128d _mm_cvtss_sd(__m128d a, __m128 b)

SIMD Floating-Point Exceptions

Invalid, Denormal.

Other Exceptions
See Exceptions Type 3.
Vol. 2A 3-273CVTSS2SD—Convert Scalar Single-Precision FP Value to Scalar Double-Precision FP Val-
ue

INSTRUCTION SET REFERENCE, A-L
CVTSS2SI—Convert Scalar Single-Precision FP Value to Dword Integer

Instruction Operand Encoding

Description

Converts a single-precision floating-point value in the source operand (second
operand) to a signed doubleword integer (or signed quadword integer if operand size
is 64 bits) in the destination operand (first operand). The source operand can be an
XMM register or a memory location. The destination operand is a general-purpose
register. When the source operand is an XMM register, the single-precision floating-
point value is contained in the low doubleword of the register.

When a conversion is inexact, the value returned is rounded according to the
rounding control bits in the MXCSR register. If a converted result is larger than the
maximum signed doubleword integer, the floating-point invalid exception is raised,
and if this exception is masked, the indefinite integer value (80000000H) is returned.

In 64-bit mode, the instruction can access additional registers (XMM8-XMM15,
R8-R15) when used with a REX.R prefix. Use of the REX.W prefix promotes the

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

F3 0F 2D /r

CVTSS2SI r32, xmm/m32

RM V/V SSE Convert one single-precision
floating-point value from
xmm/m32 to one signed
doubleword integer in r32.

F3 REX.W 0F 2D /r

CVTSS2SI r64, xmm/m32

RM V/N.E. SSE Convert one single-precision
floating-point value from
xmm/m32 to one signed
quadword integer in r64.

VEX.LIG.F3.0F.W0 2D /r

VCVTSS2SI r32, xmm1/m32

RM V/V AVX Convert one single-precision
floating-point value from
xmm1/m32 to one signed
doubleword integer in r32.

VEX.LIG.F3.0F.W1 2D /r

VCVTSS2SI r64, xmm1/m32

RM V/N.E.1

NOTES:
1. Encoding the VEX prefix with VEX.W=1 in non-64-bit mode is ignored.

AVX Convert one single-precision
floating-point value from
xmm1/m32 to one signed
quadword integer in r64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
3-274 Vol. 2A CVTSS2SI—Convert Scalar Single-Precision FP Value to Dword Integer

INSTRUCTION SET REFERENCE, A-L
instruction to 64-bit operands. See the summary chart at the beginning of this
section for encoding data and limits.
Legacy SSE instructions: In 64-bit mode, Use of the REX.W prefix promotes the
instruction to 64-bit operands. See the summary chart at the beginning of this
section for encoding data and limits.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise
instructions will #UD.

Operation

IF 64-bit Mode and OperandSize = 64
THEN

DEST[64:0] ← Convert_Single_Precision_Floating_Point_To_Integer(SRC[31:0]);
ELSE

DEST[31:0] ← Convert_Single_Precision_Floating_Point_To_Integer(SRC[31:0]);
FI;

Intel C/C++ Compiler Intrinsic Equivalent

int _mm_cvtss_si32(__m128d a)

__int64 _mm_cvtss_si64(__m128d a)

SIMD Floating-Point Exceptions

Invalid, Precision.

Other Exceptions
See Exceptions Type 3; additionally
#UD If VEX.vvvv != 1111B.
Vol. 2A 3-275CVTSS2SI—Convert Scalar Single-Precision FP Value to Dword Integer

INSTRUCTION SET REFERENCE, A-L
CVTTPD2DQ—Convert with Truncation Packed Double-Precision FP
Values to Packed Dword Integers

Instruction Operand Encoding

Description

Converts two or four packed double-precision floating-point values in the source
operand (second operand) to two or four packed signed doubleword integers in the
destination operand (first operand).
When a conversion is inexact, a truncated (round toward zero) value is returned.If a
converted result is larger than the maximum signed doubleword integer, the floating-
point invalid exception is raised, and if this exception is masked, the indefinite
integer value (80000000H) is returned.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
128-bit Legacy SSE version: The source operand is an XMM register or 128- bit
memory location. The destination operation is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are unmodified.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

66 0F E6

CVTTPD2DQ xmm1, xmm2/m128

RM V/V SSE2 Convert two packed double-
precision floating-point
values from xmm2/m128 to
two packed signed
doubleword integers in
xmm1 using truncation.

VEX.128.66.0F.WIG E6 /r

VCVTTPD2DQ xmm1, xmm2/m128

RM V/V AVX Convert two packed double-
precision floating-point
values in xmm2/mem to two
signed doubleword integers
in xmm1 using truncation.

VEX.256.66.0F.WIG E6 /r

VCVTTPD2DQ xmm1, ymm2/m256

RM V/V AVX Convert four packed double-
precision floating-point
values in ymm2/mem to
four signed doubleword
integers in xmm1 using
truncation.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
3-276 Vol. 2A CVTTPD2DQ—Convert with Truncation Packed Double-Precision FP Values to Packed
Dword Integers

INSTRUCTION SET REFERENCE, A-L
VEX.128 encoded version: The source operand is an XMM register or 128- bit
memory location. The destination operation is a YMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.
VEX.256 encoded version: The source operand is a YMM register or 256- bit memory
location. The destination operation is an XMM register. The upper bits (255:128) of
the corresponding YMM register destination are zeroed.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise
instructions will #UD.

Figure 3-14. VCVTTPD2DQ (VEX.256 encoded version)

Operation

CVTTPD2DQ (128-bit Legacy SSE version)
DEST[31:0] Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[63:0])
DEST[63:32] Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[127:64])
DEST[127:64] 0
DEST[VLMAX-1:128] (unmodified)

VCVTTPD2DQ (VEX.128 encoded version)
DEST[31:0] Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[63:0])
DEST[63:32] Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[127:64])
DEST[VLMAX-1:64] 0

VCVTTPD2DQ (VEX.256 encoded version)
DEST[31:0] Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[63:0])
DEST[63:32] Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[127:64])
DEST[95:64] Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[191:128])
DEST[127:96] Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[255:192)

DEST

SRC

X0X1X2X3

X3 X2 X1 X0

0

Vol. 2A 3-277CVTTPD2DQ—Convert with Truncation Packed Double-Precision FP Values to Packed
Dword Integers

INSTRUCTION SET REFERENCE, A-L
DEST[255:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

CVTTPD2DQ: __m128i _mm_cvttpd_epi32(__m128d a)

VCVTTPD2DQ: __m128i _mm256_cvttpd_epi32 (__m256d src)

SIMD Floating-Point Exceptions

Invalid, Precision.

Other Exceptions
See Exceptions Type 2; additionally
#UD If VEX.vvvv != 1111B.
3-278 Vol. 2A CVTTPD2DQ—Convert with Truncation Packed Double-Precision FP Values to Packed
Dword Integers

INSTRUCTION SET REFERENCE, A-L
CVTTPD2PI—Convert with Truncation Packed Double-Precision FP
Values to Packed Dword Integers

Instruction Operand Encoding

Description

Converts two packed double-precision floating-point values in the source operand
(second operand) to two packed signed doubleword integers in the destination
operand (first operand). The source operand can be an XMM register or a 128-bit
memory location. The destination operand is an MMX technology register.

When a conversion is inexact, a truncated (round toward zero) result is returned. If a
converted result is larger than the maximum signed doubleword integer, the floating-
point invalid exception is raised, and if this exception is masked, the indefinite
integer value (80000000H) is returned.

This instruction causes a transition from x87 FPU to MMX technology operation (that
is, the x87 FPU top-of-stack pointer is set to 0 and the x87 FPU tag word is set to all
0s [valid]). If this instruction is executed while an x87 FPU floating-point exception is
pending, the exception is handled before the CVTTPD2PI instruction is executed.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).

Operation

DEST[31:0] ← Convert_Double_Precision_Floating_Point_To_Integer32_Truncate(SRC[63:0]);
DEST[63:32] ← Convert_Double_Precision_Floating_Point_To_Integer32_

Truncate(SRC[127:64]);

Intel C/C++ Compiler Intrinsic Equivalent

CVTTPD1PI: __m64 _mm_cvttpd_pi32(__m128d a)

Opcode/
Instruction

Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

66 0F 2C /r

CVTTPD2PI mm, xmm/m128

RM Valid Valid Convert two packer double-
precision floating-point
values from xmm/m128 to
two packed signed
doubleword integers in mm
using truncation.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
Vol. 2A 3-279CVTTPD2PI—Convert with Truncation Packed Double-Precision FP Values to Packed
Dword Integers

INSTRUCTION SET REFERENCE, A-L
SIMD Floating-Point Exceptions

Invalid, Precision.

Other Mode Exceptions
See Table 22-4, “Exception Conditions for Legacy SIMD/MMX Instructions with FP
Exception and 16-Byte Alignment,” in the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3B.
3-280 Vol. 2A CVTTPD2PI—Convert with Truncation Packed Double-Precision FP Values to Packed
Dword Integers

INSTRUCTION SET REFERENCE, A-L
CVTTPS2DQ—Convert with Truncation Packed Single-Precision FP
Values to Packed Dword Integers

Instruction Operand Encoding

Description

Converts four or eight packed single-precision floating-point values in the source
operand to four or eight signed doubleword integers in the destination operand.
When a conversion is inexact, a truncated (round toward zero) value is returned.If a
converted result is larger than the maximum signed doubleword integer, the floating-
point invalid exception is raised, and if this exception is masked, the indefinite
integer value (80000000H) is returned.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
128-bit Legacy SSE version: The source operand is an XMM register or 128- bit
memory location. The destination operation is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are unmodified.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

F3 0F 5B /r

CVTTPS2DQ xmm1, xmm2/m128

RM V/V SSE2 Convert four single-
precision floating-point
values from xmm2/m128 to
four signed doubleword
integers in xmm1 using
truncation.

VEX.128.F3.0F.WIG 5B /r

VCVTTPS2DQ xmm1, xmm2/m128

RM V/V AVX Convert four packed single
precision floating-point
values from xmm2/mem to
four packed signed
doubleword values in xmm1
using truncation.

VEX.256.F3.0F.WIG 5B /r

VCVTTPS2DQ ymm1, ymm2/m256

RM V/V AVX Convert eight packed single
precision floating-point
values from ymm2/mem to
eight packed signed
doubleword values in ymm1
using truncation.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
Vol. 2A 3-281CVTTPS2DQ—Convert with Truncation Packed Single-Precision FP Values to Packed
Dword Integers

INSTRUCTION SET REFERENCE, A-L
VEX.128 encoded version: The source operand is an XMM register or 128- bit
memory location. The destination operation is a YMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.
VEX.256 encoded version: The source operand is a YMM register or 256- bit memory
location. The destination operation is a YMM register.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise
instructions will #UD.

Operation

CVTTPS2DQ (128-bit Legacy SSE version)
DEST[31:0] Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[31:0])
DEST[63:32] Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[63:32])
DEST[95:64] Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[95:64])
DEST[127:96] Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[127:96])
DEST[VLMAX-1:128] (unmodified)

VCVTTPS2DQ (VEX.128 encoded version)
DEST[31:0] Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[31:0])
DEST[63:32] Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[63:32])
DEST[95:64] Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[95:64])
DEST[127:96] Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[127:96])
DEST[VLMAX-1:128] 0

VCVTTPS2DQ (VEX.256 encoded version)
DEST[31:0] Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[31:0])
DEST[63:32] Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[63:32])
DEST[95:64] Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[95:64])
DEST[127:96] Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[127:96)
DEST[159:128] Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[159:128])
DEST[191:160] Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[191:160])
DEST[223:192] Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[223:192])
DEST[255:224] Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[255:224])

Intel C/C++ Compiler Intrinsic Equivalent

CVTTPS2DQ: __m128i _mm_cvttps_epi32(__m128 a)

VCVTTPS2DQ: __m256i _mm256_cvttps_epi32 (__m256 a)

SIMD Floating-Point Exceptions

Invalid, Precision.
3-282 Vol. 2A CVTTPS2DQ—Convert with Truncation Packed Single-Precision FP Values to Packed
Dword Integers

INSTRUCTION SET REFERENCE, A-L
Other Exceptions
See Exceptions Type 2; additionally
#UD If VEX.vvvv != 1111B.
Vol. 2A 3-283CVTTPS2DQ—Convert with Truncation Packed Single-Precision FP Values to Packed
Dword Integers

INSTRUCTION SET REFERENCE, A-L
CVTTPS2PI—Convert with Truncation Packed Single-Precision FP
Values to Packed Dword Integers

Instruction Operand Encoding

Description

Converts two packed single-precision floating-point values in the source operand
(second operand) to two packed signed doubleword integers in the destination
operand (first operand). The source operand can be an XMM register or a 64-bit
memory location. The destination operand is an MMX technology register. When the
source operand is an XMM register, the two single-precision floating-point values are
contained in the low quadword of the register.

When a conversion is inexact, a truncated (round toward zero) result is returned. If a
converted result is larger than the maximum signed doubleword integer, the floating-
point invalid exception is raised, and if this exception is masked, the indefinite
integer value (80000000H) is returned.

This instruction causes a transition from x87 FPU to MMX technology operation (that
is, the x87 FPU top-of-stack pointer is set to 0 and the x87 FPU tag word is set to all
0s [valid]). If this instruction is executed while an x87 FPU floating-point exception is
pending, the exception is handled before the CVTTPS2PI instruction is executed.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).

Operation

DEST[31:0] ← Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[31:0]);
DEST[63:32] ← Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[63:32]);

Intel C/C++ Compiler Intrinsic Equivalent

CVTTPS2PI: __m64 _mm_cvttps_pi32(__m128 a)

Opcode/
Instruction

Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 2C /r

CVTTPS2PI mm, xmm/m64

RM Valid Valid Convert two single-
precision floating-point
values from xmm/m64 to
two signed doubleword
signed integers in mm using
truncation.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
3-284 Vol. 2A CVTTPS2PI—Convert with Truncation Packed Single-Precision FP Values to Packed
Dword Integers

INSTRUCTION SET REFERENCE, A-L
SIMD Floating-Point Exceptions

Invalid, Precision.

Other Exceptions
See Table 22-5, “Exception Conditions for Legacy SIMD/MMX Instructions with XMM
and FP Exception,” in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3B.
Vol. 2A 3-285CVTTPS2PI—Convert with Truncation Packed Single-Precision FP Values to Packed
Dword Integers

INSTRUCTION SET REFERENCE, A-L
CVTTSD2SI—Convert with Truncation Scalar Double-Precision FP Value
to Signed Integer

Instruction Operand Encoding

Description

Converts a double-precision floating-point value in the source operand (second
operand) to a signed doubleword integer (or signed quadword integer if operand size
is 64 bits) in the destination operand (first operand). The source operand can be an
XMM register or a 64-bit memory location. The destination operand is a general

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

F2 0F 2C /r

CVTTSD2SI r32, xmm/m64

RM V/V SSE2 Convert one double-
precision floating-point
value from xmm/m64 to
one signed doubleword
integer in r32 using
truncation.

F2 REX.W 0F 2C /r

CVTTSD2SI r64, xmm/m64

RM V/N.E. SSE2 Convert one double
precision floating-point
value from xmm/m64 to
one signedquadword
integer in r64 using
truncation.

VEX.LIG.F2.0F.W0 2C /r

VCVTTSD2SI r32, xmm1/m64

RM V/V AVX Convert one double-
precision floating-point
value from xmm1/m64 to
one signed doubleword
integer in r32 using
truncation.

VEX.LIG.F2.0F.W1 2C /r

VCVTTSD2SI r64, xmm1/m64

RM V/N.E.1

NOTES:
1. Encoding the VEX prefix with VEX.W=1 in non-64-bit mode is ignored.

AVX Convert one double
precision floating-point
value from xmm1/m64 to
one signed quadword
integer in r64 using
truncation.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
3-286 Vol. 2A CVTTSD2SI—Convert with Truncation Scalar Double-Precision FP Value to Signed Inte-
ger

INSTRUCTION SET REFERENCE, A-L
purpose register. When the source operand is an XMM register, the double-precision
floating-point value is contained in the low quadword of the register.
When a conversion is inexact, a truncated (round toward zero) result is returned. If a
converted result is larger than the maximum signed doubleword integer, the floating
point invalid exception is raised. If this exception is masked, the indefinite integer
value (80000000H) is returned.
Legacy SSE instructions: In 64-bit mode, Use of the REX.W prefix promotes the
instruction to 64-bit operation. See the summary chart at the beginning of this
section for encoding data and limits.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise
instructions will #UD.

Operation

IF 64-Bit Mode and OperandSize = 64
THEN

DEST[63:0] ← Convert_Double_Precision_Floating_Point_To_
Integer64_Truncate(SRC[63:0]);

ELSE
DEST[31:0] ← Convert_Double_Precision_Floating_Point_To_

Integer32_Truncate(SRC[63:0]);
FI;

Intel C/C++ Compiler Intrinsic Equivalent

int _mm_cvttsd_si32(__m128d a)

__int64 _mm_cvttsd_si64(__m128d a)

SIMD Floating-Point Exceptions

Invalid, Precision.

Other Exceptions
See Exceptions Type 3; additionally
#UD If VEX.vvvv != 1111B.
Vol. 2A 3-287CVTTSD2SI—Convert with Truncation Scalar Double-Precision FP Value to Signed Inte-
ger

INSTRUCTION SET REFERENCE, A-L
CVTTSS2SI—Convert with Truncation Scalar Single-Precision FP Value
to Dword Integer

Instruction Operand Encoding

Description

Converts a single-precision floating-point value in the source operand (second
operand) to a signed doubleword integer (or signed quadword integer if operand size
is 64 bits) in the destination operand (first operand). The source operand can be an
XMM register or a 32-bit memory location. The destination operand is a general-
purpose register. When the source operand is an XMM register, the single-precision
floating-point value is contained in the low doubleword of the register.

When a conversion is inexact, a truncated (round toward zero) result is returned. If a
converted result is larger than the maximum signed doubleword integer, the floating-

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

F3 0F 2C /r

CVTTSS2SI r32, xmm/m32

RM V/V SSE Convert one single-precision
floating-point value from
xmm/m32 to one signed
doubleword integer in r32
using truncation.

F3 REX.W 0F 2C /r

CVTTSS2SI r64, xmm/m32

RM V/N.E. SSE Convert one single-precision
floating-point value from
xmm/m32 to one signed
quadword integer in r64
using truncation.

VEX.LIG.F3.0F.W0 2C /r

VCVTTSS2SI r32, xmm1/m32

RM V/V AVX Convert one single-precision
floating-point value from
xmm1/m32 to one signed
doubleword integer in r32
using truncation.

VEX.LIG.F3.0F.W1 2C /r

VCVTTSS2SI r64, xmm1/m32

RM V/N.E.1

NOTES:
1. Encoding the VEX prefix with VEX.W=1 in non-64-bit mode is ignored.

AVX Convert one single-precision
floating-point value from
xmm1/m32 to one signed
quadword integer in r64
using truncation.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
3-288 Vol. 2A CVTTSS2SI—Convert with Truncation Scalar Single-Precision FP Value to Dword Integer

INSTRUCTION SET REFERENCE, A-L
point invalid exception is raised. If this exception is masked, the indefinite integer
value (80000000H) is returned.

Legacy SSE instructions: In 64-bit mode, the instruction can access additional regis-
ters (XMM8-XMM15, R8-R15) when used with a REX.R prefix. Use of the REX.W
prefix promotes the instruction to 64-bit operation. See the summary chart at the
beginning of this section for encoding data and limits.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise
instructions will #UD.

Operation

IF 64-Bit Mode and OperandSize = 64
THEN

DEST[63:0] ← Convert_Single_Precision_Floating_Point_To_
 Integer_Truncate(SRC[31:0]);

ELSE
DEST[31:0] ← Convert_Single_Precision_Floating_Point_To_

Integer_Truncate(SRC[31:0]);
FI;

Intel C/C++ Compiler Intrinsic Equivalent

int _mm_cvttss_si32(__m128d a)

__int64 _mm_cvttss_si64(__m128d a)

SIMD Floating-Point Exceptions

Invalid, Precision.

Other Exceptions
See Exceptions Type 3; additionally
#UD If VEX.vvvv != 1111B.
Vol. 2A 3-289CVTTSS2SI—Convert with Truncation Scalar Single-Precision FP Value to Dword Integer

INSTRUCTION SET REFERENCE, A-L
CWD/CDQ/CQO—Convert Word to Doubleword/Convert Doubleword to
Quadword

Instruction Operand Encoding

Description

Doubles the size of the operand in register AX, EAX, or RAX (depending on the
operand size) by means of sign extension and stores the result in registers DX:AX,
EDX:EAX, or RDX:RAX, respectively. The CWD instruction copies the sign (bit 15) of
the value in the AX register into every bit position in the DX register. The CDQ
instruction copies the sign (bit 31) of the value in the EAX register into every bit posi-
tion in the EDX register. The CQO instruction (available in 64-bit mode only) copies
the sign (bit 63) of the value in the RAX register into every bit position in the RDX
register.

The CWD instruction can be used to produce a doubleword dividend from a word
before word division. The CDQ instruction can be used to produce a quadword divi-
dend from a doubleword before doubleword division. The CQO instruction can be
used to produce a double quadword dividend from a quadword before a quadword
division.

The CWD and CDQ mnemonics reference the same opcode. The CWD instruction is
intended for use when the operand-size attribute is 16 and the CDQ instruction for
when the operand-size attribute is 32. Some assemblers may force the operand size
to 16 when CWD is used and to 32 when CDQ is used. Others may treat these
mnemonics as synonyms (CWD/CDQ) and use the current setting of the operand-
size attribute to determine the size of values to be converted, regardless of the
mnemonic used.

In 64-bit mode, use of the REX.W prefix promotes operation to 64 bits. The CQO
mnemonics reference the same opcode as CWD/CDQ. See the summary chart at the
beginning of this section for encoding data and limits.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

99 CWD NP Valid Valid DX:AX ← sign-extend of AX.

99 CDQ NP Valid Valid EDX:EAX ← sign-extend of
EAX.

REX.W + 99 CQO NP Valid N.E. RDX:RAX← sign-extend of
RAX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
3-290 Vol. 2A CWD/CDQ/CQO—Convert Word to Doubleword/Convert Doubleword to Quadword

INSTRUCTION SET REFERENCE, A-L
Operation

IF OperandSize = 16 (* CWD instruction *)
THEN

DX ← SignExtend(AX);
ELSE IF OperandSize = 32 (* CDQ instruction *)

EDX ← SignExtend(EAX); FI;
ELSE IF 64-Bit Mode and OperandSize = 64 (* CQO instruction*)

RDX ← SignExtend(RAX); FI;
FI;

Flags Affected

None.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.
Vol. 2A 3-291CWD/CDQ/CQO—Convert Word to Doubleword/Convert Doubleword to Quadword

INSTRUCTION SET REFERENCE, A-L
DAA—Decimal Adjust AL after Addition

Instruction Operand Encoding

Description

Adjusts the sum of two packed BCD values to create a packed BCD result. The AL
register is the implied source and destination operand. The DAA instruction is only
useful when it follows an ADD instruction that adds (binary addition) two 2-digit,
packed BCD values and stores a byte result in the AL register. The DAA instruction
then adjusts the contents of the AL register to contain the correct 2-digit, packed
BCD result. If a decimal carry is detected, the CF and AF flags are set accordingly.

This instruction executes as described above in compatibility mode and legacy mode.
It is not valid in 64-bit mode.

Operation

IF 64-Bit Mode
THEN

#UD;
ELSE

old_AL ← AL;
old_CF ← CF;
CF ← 0;
IF (((AL AND 0FH) > 9) or AF = 1)

 THEN
 AL ← AL + 6;
 CF ← old_CF or (Carry from AL ← AL + 6);
 AF ← 1;

 ELSE
 AF ← 0;

FI;
IF ((old_AL > 99H) or (old_CF = 1))

 THEN
 AL ← AL + 60H;

 CF ← 1;

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

27 DAA NP Invalid Valid Decimal adjust AL after
addition.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
3-292 Vol. 2A DAA—Decimal Adjust AL after Addition

INSTRUCTION SET REFERENCE, A-L
ELSE
 CF ← 0;

FI;
FI;

Example

ADD AL, BL Before: AL=79H BL=35H EFLAGS(OSZAPC)=XXXXXX
After: AL=AEH BL=35H EFLAGS(0SZAPC)=110000

DAA Before: AL=AEH BL=35H EFLAGS(OSZAPC)=110000
After: AL=14H BL=35H EFLAGS(0SZAPC)=X00111

DAA Before: AL=2EH BL=35H EFLAGS(OSZAPC)=110000
After: AL=34H BL=35H EFLAGS(0SZAPC)=X00101

Flags Affected

The CF and AF flags are set if the adjustment of the value results in a decimal carry
in either digit of the result (see the “Operation” section above). The SF, ZF, and PF
flags are set according to the result. The OF flag is undefined.

Protected Mode Exceptions
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
#UD If the LOCK prefix is used.

64-Bit Mode Exceptions
#UD If in 64-bit mode.
Vol. 2A 3-293DAA—Decimal Adjust AL after Addition

INSTRUCTION SET REFERENCE, A-L
DAS—Decimal Adjust AL after Subtraction

Instruction Operand Encoding

Description

Adjusts the result of the subtraction of two packed BCD values to create a packed
BCD result. The AL register is the implied source and destination operand. The DAS
instruction is only useful when it follows a SUB instruction that subtracts (binary
subtraction) one 2-digit, packed BCD value from another and stores a byte result in
the AL register. The DAS instruction then adjusts the contents of the AL register to
contain the correct 2-digit, packed BCD result. If a decimal borrow is detected, the CF
and AF flags are set accordingly.

This instruction executes as described above in compatibility mode and legacy mode.
It is not valid in 64-bit mode.

Operation

IF 64-Bit Mode
THEN

#UD;
ELSE

old_AL ← AL;
old_CF ← CF;
CF ← 0;
IF (((AL AND 0FH) > 9) or AF = 1)
 THEN
 AL ← AL - 6;

CF ← old_CF or (Borrow from AL ← AL − 6);
AF ← 1;

ELSE
AF ← 0;

FI;
IF ((old_AL > 99H) or (old_CF = 1))

 THEN
AL ← AL − 60H;

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

2F DAS NP Invalid Valid Decimal adjust AL after
subtraction.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
3-294 Vol. 2A DAS—Decimal Adjust AL after Subtraction

INSTRUCTION SET REFERENCE, A-L
CF ← 1;
FI;

FI;

Example

SUB AL, BL Before: AL = 35H, BL = 47H, EFLAGS(OSZAPC) = XXXXXX
After: AL = EEH, BL = 47H, EFLAGS(0SZAPC) = 010111

DAA Before: AL = EEH, BL = 47H, EFLAGS(OSZAPC) = 010111
After: AL = 88H, BL = 47H, EFLAGS(0SZAPC) = X10111

Flags Affected

The CF and AF flags are set if the adjustment of the value results in a decimal borrow
in either digit of the result (see the “Operation” section above). The SF, ZF, and PF
flags are set according to the result. The OF flag is undefined.

Protected Mode Exceptions
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
#UD If the LOCK prefix is used.

64-Bit Mode Exceptions
#UD If in 64-bit mode.
Vol. 2A 3-295DAS—Decimal Adjust AL after Subtraction

INSTRUCTION SET REFERENCE, A-L
DEC—Decrement by 1

Instruction Operand Encoding

Description

Subtracts 1 from the destination operand, while preserving the state of the CF flag.
The destination operand can be a register or a memory location. This instruction
allows a loop counter to be updated without disturbing the CF flag. (To perform a
decrement operation that updates the CF flag, use a SUB instruction with an imme-
diate operand of 1.)

This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.

In 64-bit mode, DEC r16 and DEC r32 are not encodable (because opcodes 48H
through 4FH are REX prefixes). Otherwise, the instruction’s 64-bit mode default
operation size is 32 bits. Use of the REX.R prefix permits access to additional regis-
ters (R8-R15). Use of the REX.W prefix promotes operation to 64 bits.

See the summary chart at the beginning of this section for encoding data and limits.

Operation

DEST ← DEST – 1;

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

FE /1 DEC r/m8 M Valid Valid Decrement r/m8 by 1.

REX + FE /1 DEC r/m8* M Valid N.E. Decrement r/m8 by 1.

FF /1 DEC r/m16 M Valid Valid Decrement r/m16 by 1.

FF /1 DEC r/m32 M Valid Valid Decrement r/m32 by 1.

REX.W + FF /1 DEC r/m64 M Valid N.E. Decrement r/m64 by 1.

48+rw DEC r16 O N.E. Valid Decrement r16 by 1.

48+rd DEC r32 O N.E. Valid Decrement r32 by 1.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is

used: AH, BH, CH, DH.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r, w) NA NA NA

O opcode + rd (r, w) NA NA NA
3-296 Vol. 2A DEC—Decrement by 1

INSTRUCTION SET REFERENCE, A-L
Flags Affected

The CF flag is not affected. The OF, SF, ZF, AF, and PF flags are set according to the
result.

Protected Mode Exceptions
#GP(0) If the destination operand is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory

operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#UD If the LOCK prefix is used but the destination is not a memory

operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used but the destination is not a memory

operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.
Vol. 2A 3-297DEC—Decrement by 1

INSTRUCTION SET REFERENCE, A-L
64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory

operand.
3-298 Vol. 2A DEC—Decrement by 1

INSTRUCTION SET REFERENCE, A-L
DIV—Unsigned Divide

Instruction Operand Encoding

Description

Divides unsigned the value in the AX, DX:AX, EDX:EAX, or RDX:RAX registers (divi-
dend) by the source operand (divisor) and stores the result in the AX (AH:AL),
DX:AX, EDX:EAX, or RDX:RAX registers. The source operand can be a general-
purpose register or a memory location. The action of this instruction depends on the
operand size (dividend/divisor). Division using 64-bit operand is available only in
64-bit mode.

Non-integral results are truncated (chopped) towards 0. The remainder is always less
than the divisor in magnitude. Overflow is indicated with the #DE (divide error)
exception rather than with the CF flag.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

F6 /6 DIV r/m8 M Valid Valid Unsigned divide AX by r/m8,
with result stored in AL ←
Quotient, AH ← Remainder.

REX + F6 /6 DIV r/m8* M Valid N.E. Unsigned divide AX by r/m8,
with result stored in AL ←
Quotient, AH ← Remainder.

F7 /6 DIV r/m16 M Valid Valid Unsigned divide DX:AX by
r/m16, with result stored in
AX ← Quotient, DX ←
Remainder.

F7 /6 DIV r/m32 M Valid Valid Unsigned divide EDX:EAX by
r/m32, with result stored in
EAX ← Quotient, EDX ←
Remainder.

REX.W + F7 /6 DIV r/m64 M Valid N.E. Unsigned divide RDX:RAX
by r/m64, with result stored
in RAX ← Quotient, RDX ←
Remainder.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is

used: AH, BH, CH, DH.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA
Vol. 2A 3-299DIV—Unsigned Divide

INSTRUCTION SET REFERENCE, A-L
In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R
prefix permits access to additional registers (R8-R15). Use of the REX.W prefix
promotes operation to 64 bits. In 64-bit mode when REX.W is applied, the instruction
divides the unsigned value in RDX:RAX by the source operand and stores the
quotient in RAX, the remainder in RDX.

See the summary chart at the beginning of this section for encoding data and limits.
See Table 3-25.

Operation

IF SRC = 0
THEN #DE; FI; (* Divide Error *)

IF OperandSize = 8 (* Word/Byte Operation *)
THEN

temp ← AX / SRC;
IF temp > FFH

THEN #DE; (* Divide error *)
ELSE

AL ← temp;
AH ← AX MOD SRC;

FI;
ELSE IF OperandSize = 16 (* Doubleword/word operation *)

THEN
temp ← DX:AX / SRC;
IF temp > FFFFH

THEN #DE; (* Divide error *)
ELSE

AX ← temp;
DX ← DX:AX MOD SRC;

FI;
FI;

ELSE IF Operandsize = 32 (* Quadword/doubleword operation *)
THEN

temp ← EDX:EAX / SRC;

Table 3-25. DIV Action

Operand Size Dividend Divisor Quotient Remainder
Maximum
Quotient

Word/byte AX r/m8 AL AH 255

Doubleword/word DX:AX r/m16 AX DX 65,535

Quadword/doubleword EDX:EAX r/m32 EAX EDX 232 − 1

Doublequadword/

quadword

RDX:RAX r/m64 RAX RDX 264 − 1
3-300 Vol. 2A DIV—Unsigned Divide

INSTRUCTION SET REFERENCE, A-L
IF temp > FFFFFFFFH
THEN #DE; (* Divide error *)

ELSE
EAX ← temp;
EDX ← EDX:EAX MOD SRC;

FI;
FI;

ELSE IF 64-Bit Mode and Operandsize = 64 (* Doublequadword/quadword operation *)
THEN

temp ← RDX:RAX / SRC;
IF temp > FFFFFFFFFFFFFFFFH

THEN #DE; (* Divide error *)
ELSE

RAX ← temp;
RDX ← RDX:RAX MOD SRC;

FI;
FI;

FI;

Flags Affected

The CF, OF, SF, ZF, AF, and PF flags are undefined.

Protected Mode Exceptions
#DE If the source operand (divisor) is 0

If the quotient is too large for the designated register.
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#DE If the source operand (divisor) is 0.

If the quotient is too large for the designated register.
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
Vol. 2A 3-301DIV—Unsigned Divide

INSTRUCTION SET REFERENCE, A-L
If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#DE If the source operand (divisor) is 0.

If the quotient is too large for the designated register.
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#DE If the source operand (divisor) is 0

If the quotient is too large for the designated register.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
3-302 Vol. 2A DIV—Unsigned Divide

INSTRUCTION SET REFERENCE, A-L
DIVPD—Divide Packed Double-Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs an SIMD divide of the two or four packed double-precision floating-point
values in the first source operand by the two or four packed double-precision
floating-point values in the second source operand. See Chapter 11 in the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 1, for an overview of
a SIMD double-precision floating-point operation.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

66 0F 5E /r

DIVPD xmm1, xmm2/m128

RM V/V SSE2 Divide packed double-
precision floating-point
values in xmm1 by packed
double-precision floating-
point values xmm2/m128.

VEX.NDS.128.66.0F.WIG 5E /r

VDIVPD xmm1, xmm2, xmm3/m128

RVM V/V AVX Divide packed double-
precision floating-point
values in xmm2 by packed
double-precision floating-
point values in xmm3/mem.

VEX.NDS.256.66.0F.WIG 5E /r

VDIVPD ymm1, ymm2, ymm3/m256

RVM V/V AVX Divide packed double-
precision floating-point
values in ymm2 by packed
double-precision floating-
point values in ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2A 3-303DIVPD—Divide Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

Operation

DIVPD (128-bit Legacy SSE version)
DEST[63:0] SRC1[63:0] / SRC2[63:0]
DEST[127:64] SRC1[127:64] / SRC2[127:64]
DEST[VLMAX-1:128] (Unmodified)

VDIVPD (VEX.128 encoded version)
DEST[63:0] SRC1[63:0] / SRC2[63:0]
DEST[127:64] SRC1[127:64] / SRC2[127:64]
DEST[VLMAX-1:128] 0

VDIVPD (VEX.256 encoded version)
DEST[63:0] SRC1[63:0] / SRC2[63:0]
DEST[127:64] SRC1[127:64] / SRC2[127:64]
DEST[191:128] SRC1[191:128] / SRC2[191:128]
DEST[255:192] SRC1[255:192] / SRC2[255:192]

Intel C/C++ Compiler Intrinsic Equivalent

DIVPD: __m128d _mm_div_pd(__m128d a, __m128d b)

VDIVPD: __m256d _mm256_div_pd (__m256d a, __m256d b);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Divide-by-Zero, Precision, Denormal.

Other Exceptions
See Exceptions Type 2.
3-304 Vol. 2A DIVPD—Divide Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
DIVPS—Divide Packed Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs an SIMD divide of the four or eight packed single-precision floating-point
values in the first source operand by the four or eight packed single-precision
floating-point values in the second source operand. See Chapter 10 in the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 1, for an overview of
a SIMD single-precision floating-point operation.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

0F 5E /r

DIVPS xmm1, xmm2/m128

RM V/V SSE Divide packed single-
precision floating-point
values in xmm1 by packed
single-precision floating-
point values xmm2/m128.

VEX.NDS.128.0F.WIG 5E /r

VDIVPS xmm1, xmm2, xmm3/m128

RVM V/V AVX Divide packed single-
precision floating-point
values in xmm2 by packed
double-precision floating-
point values in xmm3/mem.

VEX.NDS.256.0F.WIG 5E /r

VDIVPS ymm1, ymm2, ymm3/m256

RVM V/V AVX Divide packed single-
precision floating-point
values in ymm2 by packed
double-precision floating-
point values in ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2A 3-305DIVPS—Divide Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

Operation

DIVPS (128-bit Legacy SSE version)
DEST[31:0] SRC1[31:0] / SRC2[31:0]
DEST[63:32] SRC1[63:32] / SRC2[63:32]
DEST[95:64] SRC1[95:64] / SRC2[95:64]
DEST[127:96] SRC1[127:96] / SRC2[127:96]
DEST[VLMAX-1:128] (Unmodified)

VDIVPS (VEX.128 encoded version)
DEST[31:0] SRC1[31:0] / SRC2[31:0]
DEST[63:32] SRC1[63:32] / SRC2[63:32]
DEST[95:64] SRC1[95:64] / SRC2[95:64]
DEST[127:96] SRC1[127:96] / SRC2[127:96]
DEST[VLMAX-1:128] 0

VDIVPS (VEX.256 encoded version)
DEST[31:0] SRC1[31:0] / SRC2[31:0]
DEST[63:32] SRC1[63:32] / SRC2[63:32]
DEST[95:64] SRC1[95:64] / SRC2[95:64]
DEST[127:96] SRC1[127:96] / SRC2[127:96]
DEST[159:128] SRC1[159:128] / SRC2[159:128]
DEST[191:160] SRC1[191:160] / SRC2[191:160]
DEST[223:192] SRC1[223:192] / SRC2[223:192]
DEST[255:224] SRC1[255:224] / SRC2[255:224].

Intel C/C++ Compiler Intrinsic Equivalent

DIVPS: __m128 _mm_div_ps(__m128 a, __m128 b)

VDIVPS: __m256 _mm256_div_ps (__m256 a, __m256 b);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Divide-by-Zero, Precision, Denormal.

Other Exceptions
See Exceptions Type 2.
3-306 Vol. 2A DIVPS—Divide Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
DIVSD—Divide Scalar Double-Precision Floating-Point Values

Instruction Operand Encoding

Description

Divides the low double-precision floating-point value in the first source operand by
the low double-precision floating-point value in the second source operand, and
stores the double-precision floating-point result in the destination operand. The
second source operand can be an XMM register or a 64-bit memory location. The first
source and destination hyperons are XMM registers. The high quadword of the desti-
nation operand is copied from the high quadword of the first source operand. See
Chapter 11 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1, for an overview of a scalar double-precision floating-point operation.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
128-bit Legacy SSE version: The first source operand and the destination operand
are the same. Bits (VLMAX-1:64) of the corresponding YMM destination register
remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed.

Operation

DIVSD (128-bit Legacy SSE version)
DEST[63:0] DEST[63:0] / SRC[63:0]

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

F2 0F 5E /r

DIVSD xmm1, xmm2/m64

RM V/V SSE2 Divide low double-precision
floating-point value in
xmm1 by low double-
precision floating-point
value in xmm2/mem64.

VEX.NDS.LIG.F2.0F.WIG 5E /r

VDIVSD xmm1, xmm2, xmm3/m64

RVM V/V AVX Divide low double-precision
floating point values in
xmm2 by low double
precision floating-point
value in xmm3/mem64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2A 3-307DIVSD—Divide Scalar Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
DEST[VLMAX-1:64] (Unmodified)

VDIVSD (VEX.128 encoded version)
DEST[63:0] SRC1[63:0] / SRC2[63:0]
DEST[127:64] SRC1[127:64]
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

DIVSD: __m128d _mm_div_sd (m128d a, m128d b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Divide-by-Zero, Precision, Denormal.

Other Exceptions
See Exceptions Type 3.
3-308 Vol. 2A DIVSD—Divide Scalar Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
DIVSS—Divide Scalar Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

Divides the low single-precision floating-point value in the first source operand by the
low single-precision floating-point value in the second source operand, and stores
the single-precision floating-point result in the destination operand. The second
source operand can be an XMM register or a 32-bit memory location. The first source
and destination operands are XMM registers. The three high-order doublewords of
the destination are copied from the same dwords of the first source operand. See
Chapter 10 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1, for an overview of a scalar single-precision floating-point operation.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
128-bit Legacy SSE version: The first source operand and the destination operand
are the same. Bits (VLMAX-1:32) of the corresponding YMM destination register
remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed.

Operation

DIVSS (128-bit Legacy SSE version)
DEST[31:0] DEST[31:0] / SRC[31:0]

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

F3 0F 5E /r

DIVSS xmm1, xmm2/m32

RM V/V SSE Divide low single-precision
floating-point value in
xmm1 by low single-
precision floating-point
value in xmm2/m32.

VEX.NDS.LIG.F3.0F.WIG 5E /r

VDIVSS xmm1, xmm2, xmm3/m32

RVM V/V AVX Divide low single-precision
floating point value in xmm2
by low single precision
floating-point value in
xmm3/m32.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2A 3-309DIVSS—Divide Scalar Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
DEST[VLMAX-1:32] (Unmodified)

VDIVSS (VEX.128 encoded version)
DEST[31:0] SRC1[31:0] / SRC2[31:0]
DEST[127:32] SRC1[127:32]
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

DIVSS: __m128 _mm_div_ss(__m128 a, __m128 b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Divide-by-Zero, Precision, Denormal.

Other Exceptions
See Exceptions Type 3.
3-310 Vol. 2A DIVSS—Divide Scalar Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
DPPD — Dot Product of Packed Double Precision Floating-Point Values

Instruction Operand Encoding

Description

Conditionally multiplies the packed double-precision floating-point values in the
destination operand (first operand) with the packed double-precision floating-point
values in the source (second operand) depending on a mask extracted from bits
[5:4] of the immediate operand (third operand). If a condition mask bit is zero, the
corresponding multiplication is replaced by a value of 0.0.

The two resulting double-precision values are summed into an intermediate result.
The intermediate result is conditionally broadcasted to the destination using a broad-
cast mask specified by bits [1:0] of the immediate byte.

If a broadcast mask bit is "1", the intermediate result is copied to the corresponding
qword element in the destination operand. If a broadcast mask bit is zero, the corre-
sponding element in the destination is set to zero.
DPPS follows the NaN forwarding rules stated in the Software Developer’s Manual,
vol. 1, table 4.7. These rules do not cover horizontal prioritization of NaNs. Horizontal
propagation of NaNs to the destination and the positioning of those NaNs in the desti-

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

66 0F 3A 41 /r ib

DPPD xmm1, xmm2/m128, imm8

RMI V/V SSE4_1 Selectively multiply packed
DP floating-point values
from xmm1 with packed DP
floating-point values from
xmm2, add and selectively
store the packed DP
floating-point values to
xmm1.

VEX.NDS.128.66.0F3A.WIG 41 /r ib

VDPPD xmm1,xmm2, xmm3/m128,
imm8

RVMI V/V AVX Selectively multiply packed
DP floating-point values
from xmm2 with packed DP
floating-point values from
xmm3, add and selectively
store the packed DP
floating-point values to
xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
Vol. 2A 3-311DPPD — Dot Product of Packed Double Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
nation is implementation dependent. NaNs on the input sources or computationally
generated NaNs will have at least one NaN propagated to the destination.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.
If VDPPD is encoded with VEX.L= 1, an attempt to execute the instruction encoded
with VEX.L= 1 will cause an #UD exception.

Operation

DP_primitive (SRC1, SRC2)
IF (imm8[4] = 1)

THEN Temp1[63:0] DEST[63:0] * SRC[63:0];
ELSE Temp1[63:0] +0.0; FI;

IF (imm8[5] = 1)
THEN Temp1[127:64] DEST[127:64] * SRC[127:64];
ELSE Temp1[127:64] +0.0; FI;

Temp2[63:0] Temp1[63:0] + Temp1[127:64];

IF (imm8[0] = 1)
THEN DEST[63:0] Temp2[63:0];
ELSE DEST[63:0] +0.0; FI;

IF (imm8[1] = 1)
THEN DEST[127:64] Temp2[63:0];
ELSE DEST[127:64] +0.0; FI;

DPPD (128-bit Legacy SSE version)
DEST[127:0]DP_Primitive(SRC1[127:0], SRC2[127:0]);
DEST[VLMAX-1:128] (Unmodified)

VDPPD (VEX.128 encoded version)
DEST[127:0]DP_Primitive(SRC1[127:0], SRC2[127:0]);
DEST[VLMAX-1:128] 0

Flags Affected

None
3-312 Vol. 2A DPPD — Dot Product of Packed Double Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
Intel C/C++ Compiler Intrinsic Equivalent

DPPD: __m128d _mm_dp_pd (__m128d a, __m128d b, const int mask);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal
Exceptions are determined separately for each add and multiply operation.
Unmasked exceptions will leave the destination untouched.

Other Exceptions
See Exceptions Type 2; additionally
#UD If VEX.L= 1.
Vol. 2A 3-313DPPD — Dot Product of Packed Double Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
DPPS — Dot Product of Packed Single Precision Floating-Point Values

Instruction Operand Encoding

Description

Conditionally multiplies the packed single precision floating-point values in the desti-
nation operand (first operand) with the packed single-precision floats in the source
(second operand) depending on a mask extracted from the high 4 bits of the imme-
diate byte (third operand). If a condition mask bit in Imm8[7:4] is zero, the corre-
sponding multiplication is replaced by a value of 0.0.

The four resulting single-precision values are summed into an intermediate result.
The intermediate result is conditionally broadcasted to the destination using a broad-
cast mask specified by bits [3:0] of the immediate byte.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

66 0F 3A 40 /r ib

DPPS xmm1, xmm2/m128, imm8

RMI V/V SSE4_1 Selectively multiply packed
SP floating-point values
from xmm1 with packed SP
floating-point values from
xmm2, add and selectively
store the packed SP
floating-point values or zero
values to xmm1.

VEX.NDS.128.66.0F3A.WIG 40 /r ib

VDPPS xmm1,xmm2, xmm3/m128,
imm8

RVMI V/V AVX Multiply packed SP floating
point values from xmm1
with packed SP floating
point values from
xmm2/mem selectively add
and store to xmm1.

VEX.NDS.256.66.0F3A.WIG 40 /r ib

VDPPS ymm1, ymm2, ymm3/m256,
imm8

RVMI V/V AVX Multiply packed single-
precision floating-point
values from ymm2 with
packed SP floating point
values from ymm3/mem,
selectively add pairs of
elements and store to
ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
3-314 Vol. 2A DPPS — Dot Product of Packed Single Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
If a broadcast mask bit is "1", the intermediate result is copied to the corresponding
dword element in the destination operand. If a broadcast mask bit is zero, the corre-
sponding element in the destination is set to zero.
DPPS follows the NaN forwarding rules stated in the Software Developer’s Manual,
vol. 1, table 4.7. These rules do not cover horizontal prioritization of NaNs. Horizontal
propagation of NaNs to the destination and the positioning of those NaNs in the desti-
nation is implementation dependent. NaNs on the input sources or computationally
generated NaNs will have at least one NaN propagated to the destination.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.

VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

Operation

DP_primitive (SRC1, SRC2)
IF (imm8[4] = 1)

THEN Temp1[31:0] DEST[31:0] * SRC[31:0];
ELSE Temp1[31:0] +0.0; FI;

IF (imm8[5] = 1)
THEN Temp1[63:32] DEST[63:32] * SRC[63:32];
ELSE Temp1[63:32] +0.0; FI;

IF (imm8[6] = 1)
THEN Temp1[95:64] DEST[95:64] * SRC[95:64];
ELSE Temp1[95:64] +0.0; FI;

IF (imm8[7] = 1)
THEN Temp1[127:96] DEST[127:96] * SRC[127:96];
ELSE Temp1[127:96] +0.0; FI;

Temp2[31:0] Temp1[31:0] + Temp1[63:32];
Temp3[31:0] Temp1[95:64] + Temp1[127:96];
Temp4[31:0] Temp2[31:0] + Temp3[31:0];

IF (imm8[0] = 1)
THEN DEST[31:0] Temp4[31:0];
ELSE DEST[31:0] +0.0; FI;

IF (imm8[1] = 1)
Vol. 2A 3-315DPPS — Dot Product of Packed Single Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
THEN DEST[63:32] Temp4[31:0];
ELSE DEST[63:32] +0.0; FI;

IF (imm8[2] = 1)
THEN DEST[95:64] Temp4[31:0];
ELSE DEST[95:64] +0.0; FI;

IF (imm8[3] = 1)
THEN DEST[127:96] Temp4[31:0];
ELSE DEST[127:96] +0.0; FI;

DPPS (128-bit Legacy SSE version)
DEST[127:0]DP_Primitive(SRC1[127:0], SRC2[127:0]);
DEST[VLMAX-1:128] (Unmodified)

VDPPS (VEX.128 encoded version)
DEST[127:0]DP_Primitive(SRC1[127:0], SRC2[127:0]);
DEST[VLMAX-1:128] 0

VDPPS (VEX.256 encoded version)
DEST[127:0]DP_Primitive(SRC1[127:0], SRC2[127:0]);
DEST[255:128]DP_Primitive(SRC1[255:128], SRC2[255:128]);

Intel C/C++ Compiler Intrinsic Equivalent

(V)DPPS: __m128 _mm_dp_ps (__m128 a, __m128 b, const int mask);

VDPPS: __m256 _mm256_dp_ps (__m256 a, __m256 b, const int mask);

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal
Exceptions are determined separately for each add and multiply operation, in the
order of their execution. Unmasked exceptions will leave the destination operands
unchanged.

Other Exceptions
See Exceptions Type 2.
3-316 Vol. 2A DPPS — Dot Product of Packed Single Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L
EMMS—Empty MMX Technology State

Instruction Operand Encoding

Description

Sets the values of all the tags in the x87 FPU tag word to empty (all 1s). This opera-
tion marks the x87 FPU data registers (which are aliased to the MMX technology
registers) as available for use by x87 FPU floating-point instructions. (See Figure 8-7
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for
the format of the x87 FPU tag word.) All other MMX instructions (other than the
EMMS instruction) set all the tags in x87 FPU tag word to valid (all 0s).

The EMMS instruction must be used to clear the MMX technology state at the end of
all MMX technology procedures or subroutines and before calling other procedures or
subroutines that may execute x87 floating-point instructions. If a floating-point
instruction loads one of the registers in the x87 FPU data register stack before the
x87 FPU tag word has been reset by the EMMS instruction, an x87 floating-point
register stack overflow can occur that will result in an x87 floating-point exception or
incorrect result.

EMMS operation is the same in non-64-bit modes and 64-bit mode.

Operation

x87FPUTagWord ← FFFFH;

Intel C/C++ Compiler Intrinsic Equivalent

void _mm_empty()

Flags Affected

None.

Protected Mode Exceptions
#UD If CR0.EM[bit 2] = 1.
#NM If CR0.TS[bit 3] = 1.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 77 EMMS NP Valid Valid Set the x87 FPU tag word
to empty.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
Vol. 2A 3-317EMMS—Empty MMX Technology State

INSTRUCTION SET REFERENCE, A-L
#MF If there is a pending FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions

Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
3-318 Vol. 2A EMMS—Empty MMX Technology State

INSTRUCTION SET REFERENCE, A-L
ENTER—Make Stack Frame for Procedure Parameters

Instruction Operand Encoding

Description

Creates a stack frame for a procedure. The first operand (size operand) specifies the
size of the stack frame (that is, the number of bytes of dynamic storage allocated on
the stack for the procedure). The second operand (nesting level operand) gives the
lexical nesting level (0 to 31) of the procedure. The nesting level determines the
number of stack frame pointers that are copied into the “display area” of the new
stack frame from the preceding frame. Both of these operands are immediate values.

The stack-size attribute determines whether the BP (16 bits), EBP (32 bits), or RBP
(64 bits) register specifies the current frame pointer and whether SP (16 bits), ESP
(32 bits), or RSP (64 bits) specifies the stack pointer. In 64-bit mode, stack-size
attribute is always 64-bits.

The ENTER and companion LEAVE instructions are provided to support block struc-
tured languages. The ENTER instruction (when used) is typically the first instruction
in a procedure and is used to set up a new stack frame for a procedure. The LEAVE
instruction is then used at the end of the procedure (just before the RET instruction)
to release the stack frame.

If the nesting level is 0, the processor pushes the frame pointer from the BP/EBP/RBP
register onto the stack, copies the current stack pointer from the SP/ESP/RSP
register into the BP/EBP/RBP register, and loads the SP/ESP/RSP register with the
current stack-pointer value minus the value in the size operand. For nesting levels of
1 or greater, the processor pushes additional frame pointers on the stack before
adjusting the stack pointer. These additional frame pointers provide the called proce-
dure with access points to other nested frames on the stack. See “Procedure Calls for
Block-Structured Languages” in Chapter 6 of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 1, for more information about the actions of
the ENTER instruction.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

C8 iw 00 ENTER imm16, 0 II Valid Valid Create a stack frame for a
procedure.

C8 iw 01 ENTER imm16,1 II Valid Valid Create a nested stack frame
for a procedure.

C8 iw ib ENTER imm16,
imm8

II Valid Valid Create a nested stack frame
for a procedure.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

II iw imm8 NA NA
Vol. 2A 3-319ENTER—Make Stack Frame for Procedure Parameters

INSTRUCTION SET REFERENCE, A-L
The ENTER instruction causes a page fault whenever a write using the final value of
the stack pointer (within the current stack segment) would do so.

In 64-bit mode, default operation size is 64 bits; 32-bit operation size cannot be
encoded.

Operation

NestingLevel ← NestingLevel MOD 32
IF 64-Bit Mode (StackSize = 64)

THEN
Push(RBP);
FrameTemp ← RSP;

ELSE IF StackSize = 32
THEN

Push(EBP);
FrameTemp ← ESP; FI;

ELSE (* StackSize = 16 *)
Push(BP);
FrameTemp ← SP;

FI;
IF NestingLevel = 0

THEN GOTO CONTINUE;
FI;

IF (NestingLevel > 1)
THEN FOR i ← 1 to (NestingLevel - 1)

DO
IF 64-Bit Mode (StackSize = 64)

THEN
RBP ← RBP - 8;
Push([RBP]); (* Quadword push *)

ELSE IF OperandSize = 32
THEN

IF StackSize = 32
EBP ← EBP - 4;
Push([EBP]); (* Doubleword push *)

ELSE (* StackSize = 16 *)
BP ← BP - 4;
Push([BP]); (* Doubleword push *)

FI;
FI;

ELSE (* OperandSize = 16 *)
IF StackSize = 32

THEN
3-320 Vol. 2A ENTER—Make Stack Frame for Procedure Parameters

INSTRUCTION SET REFERENCE, A-L
EBP ← EBP - 2;
Push([EBP]); (* Word push *)

ELSE (* StackSize = 16 *)
BP ← BP - 2;
Push([BP]); (* Word push *)

FI;
FI;

OD;
FI;

IF 64-Bit Mode (StackSize = 64)
THEN

Push(FrameTemp); (* Quadword push *)
ELSE IF OperandSize = 32

THEN
Push(FrameTemp); FI; (* Doubleword push *)

ELSE (* OperandSize = 16 *)
Push(FrameTemp); (* Word push *)

FI;

CONTINUE:
IF 64-Bit Mode (StackSize = 64)

THEN
RBP ← FrameTemp;
RSP ← RSP − Size;

ELSE IF StackSize = 32
THEN

EBP ← FrameTemp;
ESP ← ESP − Size; FI;

ELSE (* StackSize = 16 *)
BP ← FrameTemp;
SP ← SP − Size;

FI;

END;

Flags Affected

None.

Protected Mode Exceptions
#SS(0) If the new value of the SP or ESP register is outside the stack

segment limit.
Vol. 2A 3-321ENTER—Make Stack Frame for Procedure Parameters

INSTRUCTION SET REFERENCE, A-L
#PF(fault-code) If a page fault occurs or if a write using the final value of the
stack pointer (within the current stack segment) would cause a
page fault.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#SS If the new value of the SP or ESP register is outside the stack

segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#SS(0) If the new value of the SP or ESP register is outside the stack

segment limit.
#PF(fault-code) If a page fault occurs or if a write using the final value of the

stack pointer (within the current stack segment) would cause a
page fault.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If the stack address is in a non-canonical form.
#PF(fault-code) If a page fault occurs or if a write using the final value of the

stack pointer (within the current stack segment) would cause a
page fault.

#UD If the LOCK prefix is used.
3-322 Vol. 2A ENTER—Make Stack Frame for Procedure Parameters

INSTRUCTION SET REFERENCE, A-L
EXTRACTPS — Extract Packed Single Precision Floating-Point Value

Instruction Operand Encoding

Description

Extracts a single-precision floating-point value from the source operand (second
operand) at the 32-bit offset specified from imm8. Immediate bits higher than the
most significant offset for the vector length are ignored.
The extracted single-precision floating-point value is stored in the low 32-bits of the
destination operand
In 64-bit mode, destination register operand has default operand size of 64 bits. The
upper 32-bits of the register are filled with zero. REX.W is ignored.
128-bit Legacy SSE version: When a REX.W prefix is used in 64-bit mode with a
general purpose register (GPR) as a destination operand, the packed single quantity
is zero extended to 64 bits.
VEX.128 encoded version: When VEX.128.66.0F3A.W1 17 form is used in 64-bit
mode with a general purpose register (GPR) as a destination operand, the packed
single quantity is zero extended to 64 bits. VEX.vvvv is reserved and must be 1111b
otherwise instructions will #UD.
The source register is an XMM register. Imm8[1:0] determine the starting DWORD
offset from which to extract the 32-bit floating-point value.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

66 0F 3A 17

/r ib

EXTRACTPS reg/m32, xmm2, imm8

MRI V/V SSE4_1 Extract a single-precision
floating-point value from
xmm2 at the source offset
specified by imm8 and store
the result to reg or m32.
The upper 32 bits of r64 is
zeroed if reg is r64.

VEX.128.66.0F3A.WIG 17 /r ib

VEXTRACTPS r/m32, xmm1, imm8

MRI V/V AVX Extract one single-precision
floating-point value from
xmm1 at the offset
specified by imm8 and store
the result in reg or m32.
Zero extend the results in
64-bit register if applicable.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MRI ModRM:r/m (w) ModRM:reg (r) imm8 NA
Vol. 2A 3-323EXTRACTPS — Extract Packed Single Precision Floating-Point Value

INSTRUCTION SET REFERENCE, A-L
If VEXTRACTPS is encoded with VEX.L= 1, an attempt to execute the instruction
encoded with VEX.L= 1 will cause an #UD exception.

Operation

EXTRACTPS (128-bit Legacy SSE version)
SRC_OFFSET IMM8[1:0]
IF (64-Bit Mode and DEST is register)

DEST[31:0] (SRC[127:0] » (SRC_OFFET*32)) AND 0FFFFFFFFh
DEST[63:32] 0

ELSE
DEST[31:0] (SRC[127:0] » (SRC_OFFET*32)) AND 0FFFFFFFFh

FI

VEXTRACTPS (VEX.128 encoded version)
SRC_OFFSET IMM8[1:0]
IF (64-Bit Mode and DEST is register)

DEST[31:0] (SRC[127:0] » (SRC_OFFET*32)) AND 0FFFFFFFFh
DEST[63:32] 0

ELSE
DEST[31:0] (SRC[127:0] » (SRC_OFFET*32)) AND 0FFFFFFFFh

FI

Intel C/C++ Compiler Intrinsic Equivalent

EXTRACTPS: _mm_extractmem_ps (float *dest, __m128 a, const int nidx);

EXTRACTPS: __m128 _mm_extract_ps (__m128 a, const int nidx);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 5; additionally
#UD If VEX.L= 1.
3-324 Vol. 2A EXTRACTPS — Extract Packed Single Precision Floating-Point Value

INSTRUCTION SET REFERENCE, A-L
F2XM1—Compute 2x–1

Description

Computes the exponential value of 2 to the power of the source operand minus 1.
The source operand is located in register ST(0) and the result is also stored in ST(0).
The value of the source operand must lie in the range –1.0 to +1.0. If the source
value is outside this range, the result is undefined.

The following table shows the results obtained when computing the exponential
value of various classes of numbers, assuming that neither overflow nor underflow
occurs.

Values other than 2 can be exponentiated using the following formula:

xy ← 2(y ∗ log
2
x)

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

ST(0) ← (2ST(0) − 1);

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.
C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA Source operand is an SNaN value or unsupported format.
#D Source is a denormal value.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

D9 F0 F2XM1 Valid Valid Replace ST(0) with (2ST(0) – 1).

Table 3-26. Results Obtained from F2XM1
ST(0) SRC ST(0) DEST

− 1.0 to −0 − 0.5 to − 0

− 0 − 0

+ 0 + 0

+ 0 to +1.0 + 0 to 1.0
Vol. 2A 3-325F2XM1—Compute 2x–1

INSTRUCTION SET REFERENCE, A-L
#U Result is too small for destination format.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
3-326 Vol. 2A F2XM1—Compute 2x–1

INSTRUCTION SET REFERENCE, A-L
FABS—Absolute Value

Description

Clears the sign bit of ST(0) to create the absolute value of the operand. The following
table shows the results obtained when creating the absolute value of various classes
of numbers.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

ST(0) ← |ST(0)|;

FPU Flags Affected
C1 Set to 0.
C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

D9 E1 FABS Valid Valid Replace ST with its absolute value.

Table 3-27. Results Obtained from FABS
ST(0) SRC ST(0) DEST

− ∞ + ∞
− F + F

− 0 + 0

+ 0 + 0

+ F + F

+ ∞ + ∞
NaN NaN

NOTES:
F Means finite floating-point value.
Vol. 2A 3-327FABS—Absolute Value

INSTRUCTION SET REFERENCE, A-L
Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
3-328 Vol. 2A FABS—Absolute Value

INSTRUCTION SET REFERENCE, A-L
FADD/FADDP/FIADD—Add

Description

Adds the destination and source operands and stores the sum in the destination loca-
tion. The destination operand is always an FPU register; the source operand can be a
register or a memory location. Source operands in memory can be in single-precision
or double-precision floating-point format or in word or doubleword integer format.

The no-operand version of the instruction adds the contents of the ST(0) register to
the ST(1) register. The one-operand version adds the contents of a memory location
(either a floating-point or an integer value) to the contents of the ST(0) register. The
two-operand version, adds the contents of the ST(0) register to the ST(i) register or
vice versa. The value in ST(0) can be doubled by coding:

FADD ST(0), ST(0);

The FADDP instructions perform the additional operation of popping the FPU register
stack after storing the result. To pop the register stack, the processor marks the
ST(0) register as empty and increments the stack pointer (TOP) by 1. (The no-
operand version of the floating-point add instructions always results in the register
stack being popped. In some assemblers, the mnemonic for this instruction is FADD
rather than FADDP.)

The FIADD instructions convert an integer source operand to double extended-preci-
sion floating-point format before performing the addition.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

D8 /0 FADD m32fp Valid Valid Add m32fp to ST(0) and store result
in ST(0).

DC /0 FADD m64fp Valid Valid Add m64fp to ST(0) and store result
in ST(0).

D8 C0+i FADD ST(0), ST(i) Valid Valid Add ST(0) to ST(i) and store result in
ST(0).

DC C0+i FADD ST(i), ST(0) Valid Valid Add ST(i) to ST(0) and store result in
ST(i).

DE C0+i FADDP ST(i), ST(0) Valid Valid Add ST(0) to ST(i), store result in
ST(i), and pop the register stack.

DE C1 FADDP Valid Valid Add ST(0) to ST(1), store result in
ST(1), and pop the register stack.

DA /0 FIADD m32int Valid Valid Add m32int to ST(0) and store
result in ST(0).

DE /0 FIADD m16int Valid Valid Add m16int to ST(0) and store
result in ST(0).
Vol. 2A 3-329FADD/FADDP/FIADD—Add

INSTRUCTION SET REFERENCE, A-L
The table on the following page shows the results obtained when adding various
classes of numbers, assuming that neither overflow nor underflow occurs.

When the sum of two operands with opposite signs is 0, the result is +0, except for
the round toward −∞ mode, in which case the result is −0. When the source operand
is an integer 0, it is treated as a +0.

When both operand are infinities of the same sign, the result is ∞ of the expected
sign. If both operands are infinities of opposite signs, an invalid-operation exception
is generated. See Table 3-28.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

IF Instruction = FIADD
THEN

DEST ← DEST + ConvertToDoubleExtendedPrecisionFP(SRC);
ELSE (* Source operand is floating-point value *)

DEST ← DEST + SRC;
FI;

IF Instruction = FADDP
THEN

PopRegisterStack;
FI;

Table 3-28. FADD/FADDP/FIADD Results

DEST

− ∞ − F − 0 + 0 + F + ∞ NaN

− ∞ − ∞ − ∞ − ∞ − ∞ − ∞ * NaN

− F or − I − ∞ − F SRC SRC ± F or ± 0 + ∞ NaN

SRC −0 − ∞ DEST − 0 ± 0 DEST + ∞ NaN

+ 0 − ∞ DEST ± 0 + 0 DEST + ∞ NaN

+ F or + I − ∞ ± F or ± 0 SRC SRC + F + ∞ NaN

+ ∞ * + ∞ + ∞ + ∞ + ∞ + ∞ NaN

NaN NaN NaN NaN NaN NaN NaN NaN

NOTES:
F Means finite floating-point value.
I Means integer.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
3-330 Vol. 2A FADD/FADDP/FIADD—Add

INSTRUCTION SET REFERENCE, A-L
FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.
C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA Operand is an SNaN value or unsupported format.

Operands are infinities of unlike sign.
#D Source operand is a denormal value.
#U Result is too small for destination format.
#O Result is too large for destination format.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
Vol. 2A 3-331FADD/FADDP/FIADD—Add

INSTRUCTION SET REFERENCE, A-L
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
3-332 Vol. 2A FADD/FADDP/FIADD—Add

INSTRUCTION SET REFERENCE, A-L
FBLD—Load Binary Coded Decimal

Description

Converts the BCD source operand into double extended-precision floating-point
format and pushes the value onto the FPU stack. The source operand is loaded
without rounding errors. The sign of the source operand is preserved, including that
of −0.

The packed BCD digits are assumed to be in the range 0 through 9; the instruction
does not check for invalid digits (AH through FH). Attempting to load an invalid
encoding produces an undefined result.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

TOP ← TOP − 1;
ST(0) ← ConvertToDoubleExtendedPrecisionFP(SRC);

FPU Flags Affected
C1 Set to 1 if stack overflow occurred; otherwise, set to 0.
C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack overflow occurred.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

DF /4 FBLD m80 dec Valid Valid Convert BCD value to floating-point and
push onto the FPU stack.
Vol. 2A 3-333FBLD—Load Binary Coded Decimal

INSTRUCTION SET REFERENCE, A-L
Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
3-334 Vol. 2A FBLD—Load Binary Coded Decimal

INSTRUCTION SET REFERENCE, A-L
FBSTP—Store BCD Integer and Pop

Description

Converts the value in the ST(0) register to an 18-digit packed BCD integer, stores the
result in the destination operand, and pops the register stack. If the source value is a
non-integral value, it is rounded to an integer value, according to rounding mode
specified by the RC field of the FPU control word. To pop the register stack, the
processor marks the ST(0) register as empty and increments the stack pointer (TOP)
by 1.

The destination operand specifies the address where the first byte destination value
is to be stored. The BCD value (including its sign bit) requires 10 bytes of space in
memory.

The following table shows the results obtained when storing various classes of
numbers in packed BCD format.

If the converted value is too large for the destination format, or if the source operand
is an ∞, SNaN, QNAN, or is in an unsupported format, an invalid-arithmetic-operand
condition is signaled. If the invalid-operation exception is not masked, an invalid-
arithmetic-operand exception (#IA) is generated and no value is stored in the desti-

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

DF /6 FBSTP m80bcd Valid Valid Store ST(0) in m80bcd and pop ST(0).

Table 3-29. FBSTP Results
ST(0) DEST

− ∞ or Value Too Large for DEST Format *

F ≤ − 1 − D

−1 < F < -0 **

− 0 − 0

+ 0 + 0

+ 0 < F < +1 **

F ≥ +1 + D

+ ∞ or Value Too Large for DEST Format *

NaN *

NOTES:
F Means finite floating-point value.
D Means packed-BCD number.
* Indicates floating-point invalid-operation (#IA) exception.
** ±0 or ±1, depending on the rounding mode.
Vol. 2A 3-335FBSTP—Store BCD Integer and Pop

INSTRUCTION SET REFERENCE, A-L
nation operand. If the invalid-operation exception is masked, the packed BCD indef-
inite value is stored in memory.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

DEST ← BCD(ST(0));
PopRegisterStack;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.
C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA Converted value that exceeds 18 BCD digits in length.

Source operand is an SNaN, QNaN, ±∞, or in an unsupported
format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#GP(0) If a segment register is being loaded with a segment selector

that points to a non-writable segment.
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
3-336 Vol. 2A FBSTP—Store BCD Integer and Pop

INSTRUCTION SET REFERENCE, A-L
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
Vol. 2A 3-337FBSTP—Store BCD Integer and Pop

INSTRUCTION SET REFERENCE, A-L
FCHS—Change Sign

Description

Complements the sign bit of ST(0). This operation changes a positive value into a
negative value of equal magnitude or vice versa. The following table shows the
results obtained when changing the sign of various classes of numbers.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

SignBit(ST(0)) ← NOT (SignBit(ST(0)));

FPU Flags Affected
C1 Set to 0.
C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

D9 E0 FCHS Valid Valid Complements sign of ST(0).

Table 3-30. FCHS Results
ST(0) SRC ST(0) DEST

− ∞ + ∞
− F + F

− 0 + 0

+ 0 − 0

+ F − F

+ ∞ − ∞
NaN NaN

NOTES:
* F means finite floating-point value.
3-338 Vol. 2A FCHS—Change Sign

INSTRUCTION SET REFERENCE, A-L
Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
Vol. 2A 3-339FCHS—Change Sign

INSTRUCTION SET REFERENCE, A-L
FCLEX/FNCLEX—Clear Exceptions

Description

Clears the floating-point exception flags (PE, UE, OE, ZE, DE, and IE), the exception
summary status flag (ES), the stack fault flag (SF), and the busy flag (B) in the FPU
status word. The FCLEX instruction checks for and handles any pending unmasked
floating-point exceptions before clearing the exception flags; the FNCLEX instruction
does not.

The assembler issues two instructions for the FCLEX instruction (an FWAIT instruc-
tion followed by an FNCLEX instruction), and the processor executes each of these
instructions separately. If an exception is generated for either of these instructions,
the save EIP points to the instruction that caused the exception.

IA-32 Architecture Compatibility

When operating a Pentium or Intel486 processor in MS-DOS* compatibility mode, it
is possible (under unusual circumstances) for an FNCLEX instruction to be inter-
rupted prior to being executed to handle a pending FPU exception. See the section
titled “No-Wait FPU Instructions Can Get FPU Interrupt in Window” in Appendix D of
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for a
description of these circumstances. An FNCLEX instruction cannot be interrupted in
this way on a Pentium 4, Intel Xeon, or P6 family processor.

This instruction affects only the x87 FPU floating-point exception flags. It does not
affect the SIMD floating-point exception flags in the MXCRS register.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

FPUStatusWord[0:7] ← 0;
FPUStatusWord[15] ← 0;

Opcode* Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

9B DB E2 FCLEX Valid Valid Clear floating-point exception flags after
checking for pending unmasked floating-
point exceptions.

DB E2 FNCLEX* Valid Valid Clear floating-point exception flags
without checking for pending unmasked
floating-point exceptions.

NOTES:
* See IA-32 Architecture Compatibility section below.
3-340 Vol. 2A FCLEX/FNCLEX—Clear Exceptions

INSTRUCTION SET REFERENCE, A-L
FPU Flags Affected

The PE, UE, OE, ZE, DE, IE, ES, SF, and B flags in the FPU status word are cleared.
The C0, C1, C2, and C3 flags are undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
Vol. 2A 3-341FCLEX/FNCLEX—Clear Exceptions

INSTRUCTION SET REFERENCE, A-L
FCMOVcc—Floating-Point Conditional Move

Description

Tests the status flags in the EFLAGS register and moves the source operand (second
operand) to the destination operand (first operand) if the given test condition is true.
The condition for each mnemonic os given in the Description column above and in
Chapter 8 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1. The source operand is always in the ST(i) register and the destination
operand is always ST(0).

The FCMOVcc instructions are useful for optimizing small IF constructions. They also
help eliminate branching overhead for IF operations and the possibility of branch
mispredictions by the processor.

A processor may not support the FCMOVcc instructions. Software can check if the
FCMOVcc instructions are supported by checking the processor’s feature information
with the CPUID instruction (see “COMISS—Compare Scalar Ordered Single-Precision
Floating-Point Values and Set EFLAGS” in this chapter). If both the CMOV and FPU
feature bits are set, the FCMOVcc instructions are supported.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

The FCMOVcc instructions were introduced to the IA-32 Architecture in the P6 family
processors and are not available in earlier IA-32 processors.

Opcode* Instruction 64-Bit
Mode

Compat/
Leg Mode*

Description

DA C0+i FCMOVB ST(0), ST(i) Valid Valid Move if below (CF=1).

DA C8+i FCMOVE ST(0), ST(i) Valid Valid Move if equal (ZF=1).

DA D0+i FCMOVBE ST(0), ST(i) Valid Valid Move if below or equal (CF=1 or
ZF=1).

DA D8+i FCMOVU ST(0), ST(i) Valid Valid Move if unordered (PF=1).

DB C0+i FCMOVNB ST(0), ST(i) Valid Valid Move if not below (CF=0).

DB C8+i FCMOVNE ST(0), ST(i) Valid Valid Move if not equal (ZF=0).

DB D0+i FCMOVNBE ST(0), ST(i) Valid Valid Move if not below or equal (CF=0
and ZF=0).

DB D8+i FCMOVNU ST(0), ST(i) Valid Valid Move if not unordered (PF=0).

NOTES:
* See IA-32 Architecture Compatibility section below.
3-342 Vol. 2A FCMOVcc—Floating-Point Conditional Move

INSTRUCTION SET REFERENCE, A-L
Operation

IF condition TRUE
THEN ST(0) ← ST(i);

FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.
C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

Integer Flags Affected

None.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
Vol. 2A 3-343FCMOVcc—Floating-Point Conditional Move

INSTRUCTION SET REFERENCE, A-L
FCOM/FCOMP/FCOMPP—Compare Floating Point Values

Description

Compares the contents of register ST(0) and source value and sets condition code
flags C0, C2, and C3 in the FPU status word according to the results (see the table
below). The source operand can be a data register or a memory location. If no source
operand is given, the value in ST(0) is compared with the value in ST(1). The sign of
zero is ignored, so that –0.0 is equal to +0.0.

This instruction checks the class of the numbers being compared (see
“FXAM—Examine ModR/M” in this chapter). If either operand is a NaN or is in an
unsupported format, an invalid-arithmetic-operand exception (#IA) is raised and, if
the exception is masked, the condition flags are set to “unordered.” If the invalid-
arithmetic-operand exception is unmasked, the condition code flags are not set.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

D8 /2 FCOM m32fp Valid Valid Compare ST(0) with m32fp.

DC /2 FCOM m64fp Valid Valid Compare ST(0) with m64fp.

D8 D0+i FCOM ST(i) Valid Valid Compare ST(0) with ST(i).

D8 D1 FCOM Valid Valid Compare ST(0) with ST(1).

D8 /3 FCOMP m32fp Valid Valid Compare ST(0) with m32fp and
pop register stack.

DC /3 FCOMP m64fp Valid Valid Compare ST(0) with m64fp and
pop register stack.

D8 D8+i FCOMP ST(i) Valid Valid Compare ST(0) with ST(i) and pop
register stack.

D8 D9 FCOMP Valid Valid Compare ST(0) with ST(1) and pop
register stack.

DE D9 FCOMPP Valid Valid Compare ST(0) with ST(1) and pop
register stack twice.

Table 3-31. FCOM/FCOMP/FCOMPP Results
Condition C3 C2 C0

ST(0) > SRC 0 0 0

ST(0) < SRC 0 0 1

ST(0) = SRC 1 0 0

Unordered* 1 1 1

NOTES:
* Flags not set if unmasked invalid-arithmetic-operand (#IA) exception is generated.
3-344 Vol. 2A FCOM/FCOMP/FCOMPP—Compare Floating Point Values

INSTRUCTION SET REFERENCE, A-L
The FCOMP instruction pops the register stack following the comparison operation
and the FCOMPP instruction pops the register stack twice following the comparison
operation. To pop the register stack, the processor marks the ST(0) register as
empty and increments the stack pointer (TOP) by 1.

The FCOM instructions perform the same operation as the FUCOM instructions. The
only difference is how they handle QNaN operands. The FCOM instructions raise an
invalid-arithmetic-operand exception (#IA) when either or both of the operands is a
NaN value or is in an unsupported format. The FUCOM instructions perform the same
operation as the FCOM instructions, except that they do not generate an invalid-
arithmetic-operand exception for QNaNs.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

CASE (relation of operands) OF
ST > SRC: C3, C2, C0 ← 000;
ST < SRC: C3, C2, C0 ← 001;
ST = SRC: C3, C2, C0 ← 100;

ESAC;

IF ST(0) or SRC = NaN or unsupported format
THEN

#IA
IF FPUControlWord.IM = 1

THEN
C3, C2, C0 ← 111;

FI;
FI;

IF Instruction = FCOMP
THEN

PopRegisterStack;
FI;

IF Instruction = FCOMPP
THEN

PopRegisterStack;
PopRegisterStack;

FI;

FPU Flags Affected
C1 Set to 0.
C0, C2, C3 See table on previous page.
Vol. 2A 3-345FCOM/FCOMP/FCOMPP—Compare Floating Point Values

INSTRUCTION SET REFERENCE, A-L
Floating-Point Exceptions
#IS Stack underflow occurred.
#IA One or both operands are NaN values or have unsupported

formats.
Register is marked empty.

#D One or both operands are denormal values.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used.
3-346 Vol. 2A FCOM/FCOMP/FCOMPP—Compare Floating Point Values

INSTRUCTION SET REFERENCE, A-L
Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
Vol. 2A 3-347FCOM/FCOMP/FCOMPP—Compare Floating Point Values

INSTRUCTION SET REFERENCE, A-L
FCOMI/FCOMIP/ FUCOMI/FUCOMIP—Compare Floating Point Values and
Set EFLAGS

Description

Performs an unordered comparison of the contents of registers ST(0) and ST(i) and
sets the status flags ZF, PF, and CF in the EFLAGS register according to the results
(see the table below). The sign of zero is ignored for comparisons, so that –0.0 is
equal to +0.0.

An unordered comparison checks the class of the numbers being compared (see
“FXAM—Examine ModR/M” in this chapter). The FUCOMI/FUCOMIP instructions
perform the same operations as the FCOMI/FCOMIP instructions. The only difference
is that the FUCOMI/FUCOMIP instructions raise the invalid-arithmetic-operand
exception (#IA) only when either or both operands are an SNaN or are in an unsup-
ported format; QNaNs cause the condition code flags to be set to unordered, but do
not cause an exception to be generated. The FCOMI/FCOMIP instructions raise an
invalid-operation exception when either or both of the operands are a NaN value of
any kind or are in an unsupported format.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

DB F0+i FCOMI ST, ST(i) Valid Valid Compare ST(0) with ST(i) and set status
flags accordingly.

DF F0+i FCOMIP ST, ST(i) Valid Valid Compare ST(0) with ST(i), set status flags
accordingly, and pop register stack.

DB E8+i FUCOMI ST, ST(i) Valid Valid Compare ST(0) with ST(i), check for
ordered values, and set status flags
accordingly.

DF E8+i FUCOMIP ST, ST(i) Valid Valid Compare ST(0) with ST(i), check for
ordered values, set status flags
accordingly, and pop register stack.

Table 3-32. FCOMI/FCOMIP/ FUCOMI/FUCOMIP Results
Comparison Results* ZF PF CF

ST0 > ST(i) 0 0 0

ST0 < ST(i) 0 0 1

ST0 = ST(i) 1 0 0

Unordered** 1 1 1

NOTES:
* See the IA-32 Architecture Compatibility section below.
** Flags not set if unmasked invalid-arithmetic-operand (#IA) exception is generated.
3-348 Vol. 2A FCOMI/FCOMIP/ FUCOMI/FUCOMIP—Compare Floating Point Values and Set EFLAGS

INSTRUCTION SET REFERENCE, A-L
If the operation results in an invalid-arithmetic-operand exception being raised, the
status flags in the EFLAGS register are set only if the exception is masked.

The FCOMI/FCOMIP and FUCOMI/FUCOMIP instructions set the OF, SF and AF flags to
zero in the EFLAGS register (regardless of whether an invalid-operation exception is
detected).

The FCOMIP and FUCOMIP instructions also pop the register stack following the
comparison operation. To pop the register stack, the processor marks the ST(0)
register as empty and increments the stack pointer (TOP) by 1.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

The FCOMI/FCOMIP/FUCOMI/FUCOMIP instructions were introduced to the IA-32
Architecture in the P6 family processors and are not available in earlier IA-32 proces-
sors.

Operation

CASE (relation of operands) OF
ST(0) > ST(i): ZF, PF, CF ← 000;
ST(0) < ST(i): ZF, PF, CF ← 001;
ST(0) = ST(i): ZF, PF, CF ← 100;

ESAC;

IF Instruction is FCOMI or FCOMIP
THEN

IF ST(0) or ST(i) = NaN or unsupported format
THEN

#IA
IF FPUControlWord.IM = 1

THEN
ZF, PF, CF ← 111;

FI;
FI;

FI;

IF Instruction is FUCOMI or FUCOMIP
THEN

IF ST(0) or ST(i) = QNaN, but not SNaN or unsupported format
THEN

ZF, PF, CF ← 111;
ELSE (* ST(0) or ST(i) is SNaN or unsupported format *)

 #IA;
IF FPUControlWord.IM = 1
Vol. 2A 3-349FCOMI/FCOMIP/ FUCOMI/FUCOMIP—Compare Floating Point Values and Set EFLAGS

INSTRUCTION SET REFERENCE, A-L
THEN
ZF, PF, CF ← 111;

FI;
FI;

FI;

IF Instruction is FCOMIP or FUCOMIP
THEN

PopRegisterStack;
FI;

FPU Flags Affected
C1 Set to 0.
C0, C2, C3 Not affected.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA (FCOMI or FCOMIP instruction) One or both operands are NaN

values or have unsupported formats.
(FUCOMI or FUCOMIP instruction) One or both operands are
SNaN values (but not QNaNs) or have undefined formats.
Detection of a QNaN value does not raise an invalid-operand
exception.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
3-350 Vol. 2A FCOMI/FCOMIP/ FUCOMI/FUCOMIP—Compare Floating Point Values and Set EFLAGS

INSTRUCTION SET REFERENCE, A-L
FCOS—Cosine

Description

Computes the cosine of the source operand in register ST(0) and stores the result in
ST(0). The source operand must be given in radians and must be within the range −
263 to +263. The following table shows the results obtained when taking the cosine of
various classes of numbers.

If the source operand is outside the acceptable range, the C2 flag in the FPU status
word is set, and the value in register ST(0) remains unchanged. The instruction does
not raise an exception when the source operand is out of range. It is up to the
program to check the C2 flag for out-of-range conditions. Source values outside the
range −263 to +263 can be reduced to the range of the instruction by subtracting an
appropriate integer multiple of 2π or by using the FPREM instruction with a divisor of
2π. See the section titled “Pi” in Chapter 8 of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 1, for a discussion of the proper value to use
for π in performing such reductions.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

IF |ST(0)| < 263

THEN
C2 ← 0;

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

D9 FF FCOS Valid Valid Replace ST(0) with its cosine.

Table 3-33. FCOS Results
ST(0) SRC ST(0) DEST

− ∞ *

− F −1 to +1

− 0 + 1

+ 0 + 1

+ F − 1 to + 1

+ ∞ *

NaN NaN

NOTES:
F Means finite floating-point value.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
Vol. 2A 3-351FCOS—Cosine

INSTRUCTION SET REFERENCE, A-L
ST(0) ← cosine(ST(0));
ELSE (* Source operand is out-of-range *)

C2 ← 1;
FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.
Undefined if C2 is 1.

C2 Set to 1 if outside range (−263 < source operand < +263); other-
wise, set to 0.

C0, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA Source operand is an SNaN value, ∞, or unsupported format.
#D Source is a denormal value.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
3-352 Vol. 2A FCOS—Cosine

INSTRUCTION SET REFERENCE, A-L
FDECSTP—Decrement Stack-Top Pointer

Description

Subtracts one from the TOP field of the FPU status word (decrements the top-of-
stack pointer). If the TOP field contains a 0, it is set to 7. The effect of this instruction
is to rotate the stack by one position. The contents of the FPU data registers and tag
register are not affected.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

IF TOP = 0
THEN TOP ← 7;
ELSE TOP ← TOP – 1;

FI;

FPU Flags Affected

The C1 flag is set to 0. The C0, C2, and C3 flags are undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

D9 F6 FDECSTP Valid Valid Decrement TOP field in FPU status
word.
Vol. 2A 3-353FDECSTP—Decrement Stack-Top Pointer

INSTRUCTION SET REFERENCE, A-L
Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
3-354 Vol. 2A FDECSTP—Decrement Stack-Top Pointer

INSTRUCTION SET REFERENCE, A-L
FDIV/FDIVP/FIDIV—Divide

Description

Divides the destination operand by the source operand and stores the result in the
destination location. The destination operand (dividend) is always in an FPU register;
the source operand (divisor) can be a register or a memory location. Source oper-
ands in memory can be in single-precision or double-precision floating-point format,
word or doubleword integer format.

The no-operand version of the instruction divides the contents of the ST(1) register
by the contents of the ST(0) register. The one-operand version divides the contents
of the ST(0) register by the contents of a memory location (either a floating-point or
an integer value). The two-operand version, divides the contents of the ST(0)
register by the contents of the ST(i) register or vice versa.

The FDIVP instructions perform the additional operation of popping the FPU register
stack after storing the result. To pop the register stack, the processor marks the
ST(0) register as empty and increments the stack pointer (TOP) by 1. The no-
operand version of the floating-point divide instructions always results in the register
stack being popped. In some assemblers, the mnemonic for this instruction is FDIV
rather than FDIVP.

The FIDIV instructions convert an integer source operand to double extended-preci-
sion floating-point format before performing the division. When the source operand
is an integer 0, it is treated as a +0.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

D8 /6 FDIV m32fp Valid Valid Divide ST(0) by m32fp and store
result in ST(0).

DC /6 FDIV m64fp Valid Valid Divide ST(0) by m64fp and store
result in ST(0).

D8 F0+i FDIV ST(0), ST(i) Valid Valid Divide ST(0) by ST(i) and store result
in ST(0).

DC F8+i FDIV ST(i), ST(0) Valid Valid Divide ST(i) by ST(0) and store result
in ST(i).

DE F8+i FDIVP ST(i), ST(0) Valid Valid Divide ST(i) by ST(0), store result in
ST(i), and pop the register stack.

DE F9 FDIVP Valid Valid Divide ST(1) by ST(0), store result in
ST(1), and pop the register stack.

DA /6 FIDIV m32int Valid Valid Divide ST(0) by m32int and store
result in ST(0).

DE /6 FIDIV m16int Valid Valid Divide ST(0) by m64int and store
result in ST(0).
Vol. 2A 3-355FDIV/FDIVP/FIDIV—Divide

INSTRUCTION SET REFERENCE, A-L
If an unmasked divide-by-zero exception (#Z) is generated, no result is stored; if the
exception is masked, an ∞ of the appropriate sign is stored in the destination
operand.

The following table shows the results obtained when dividing various classes of
numbers, assuming that neither overflow nor underflow occurs.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

IF SRC = 0
THEN

#Z;
ELSE

IF Instruction is FIDIV
THEN

DEST ← DEST / ConvertToDoubleExtendedPrecisionFP(SRC);
ELSE (* Source operand is floating-point value *)

DEST ← DEST / SRC;
FI;

FI;

Table 3-34. FDIV/FDIVP/FIDIV Results

DEST

− ∞ − F − 0 + 0 + F + ∞ NaN

− ∞ * + 0 + 0 − 0 − 0 * NaN

− F + ∞ + F + 0 − 0 − F − ∞ NaN

− I + ∞ + F + 0 − 0 − F − ∞ NaN

SRC − 0 + ∞ ** * * ** − ∞ NaN

+ 0 − ∞ ** * * ** + ∞ NaN

+ I − ∞ − F − 0 + 0 + F + ∞ NaN

+ F − ∞ − F − 0 + 0 + F + ∞ NaN

+ ∞ * − 0 − 0 + 0 + 0 * NaN

NaN NaN NaN NaN NaN NaN NaN NaN

NOTES:
F Means finite floating-point value.
I Means integer.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
** Indicates floating-point zero-divide (#Z) exception.
3-356 Vol. 2A FDIV/FDIVP/FIDIV—Divide

INSTRUCTION SET REFERENCE, A-L
IF Instruction = FDIVP
THEN

PopRegisterStack;
FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.
C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA Operand is an SNaN value or unsupported format.

±∞ / ±∞; ±0 / ±0
#D Source is a denormal value.
#Z DEST / ±0, where DEST is not equal to ±0.
#U Result is too small for destination format.
#O Result is too large for destination format.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.
Vol. 2A 3-357FDIV/FDIVP/FIDIV—Divide

INSTRUCTION SET REFERENCE, A-L
Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
3-358 Vol. 2A FDIV/FDIVP/FIDIV—Divide

INSTRUCTION SET REFERENCE, A-L
FDIVR/FDIVRP/FIDIVR—Reverse Divide

Description

Divides the source operand by the destination operand and stores the result in the
destination location. The destination operand (divisor) is always in an FPU register;
the source operand (dividend) can be a register or a memory location. Source oper-
ands in memory can be in single-precision or double-precision floating-point format,
word or doubleword integer format.

These instructions perform the reverse operations of the FDIV, FDIVP, and FIDIV
instructions. They are provided to support more efficient coding.

The no-operand version of the instruction divides the contents of the ST(0) register
by the contents of the ST(1) register. The one-operand version divides the contents
of a memory location (either a floating-point or an integer value) by the contents of
the ST(0) register. The two-operand version, divides the contents of the ST(i)
register by the contents of the ST(0) register or vice versa.

The FDIVRP instructions perform the additional operation of popping the FPU register
stack after storing the result. To pop the register stack, the processor marks the
ST(0) register as empty and increments the stack pointer (TOP) by 1. The no-
operand version of the floating-point divide instructions always results in the register
stack being popped. In some assemblers, the mnemonic for this instruction is FDIVR
rather than FDIVRP.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

D8 /7 FDIVR m32fp Valid Valid Divide m32fp by ST(0) and store result
in ST(0).

DC /7 FDIVR m64fp Valid Valid Divide m64fp by ST(0) and store result
in ST(0).

D8 F8+i FDIVR ST(0), ST(i) Valid Valid Divide ST(i) by ST(0) and store result in
ST(0).

DC F0+i FDIVR ST(i), ST(0) Valid Valid Divide ST(0) by ST(i) and store result in
ST(i).

DE F0+i FDIVRP ST(i), ST(0) Valid Valid Divide ST(0) by ST(i), store result in
ST(i), and pop the register stack.

DE F1 FDIVRP Valid Valid Divide ST(0) by ST(1), store result in
ST(1), and pop the register stack.

DA /7 FIDIVR m32int Valid Valid Divide m32int by ST(0) and store result
in ST(0).

DE /7 FIDIVR m16int Valid Valid Divide m16int by ST(0) and store result
in ST(0).
Vol. 2A 3-359FDIVR/FDIVRP/FIDIVR—Reverse Divide

INSTRUCTION SET REFERENCE, A-L
The FIDIVR instructions convert an integer source operand to double extended-preci-
sion floating-point format before performing the division.

If an unmasked divide-by-zero exception (#Z) is generated, no result is stored; if the
exception is masked, an ∞ of the appropriate sign is stored in the destination
operand.

The following table shows the results obtained when dividing various classes of
numbers, assuming that neither overflow nor underflow occurs.

When the source operand is an integer 0, it is treated as a +0. This instruction’s oper-
ation is the same in non-64-bit modes and 64-bit mode.

Operation

IF DEST = 0
THEN

#Z;
ELSE

IF Instruction = FIDIVR
THEN

DEST ← ConvertToDoubleExtendedPrecisionFP(SRC) / DEST;
ELSE (* Source operand is floating-point value *)

Table 3-35. FDIVR/FDIVRP/FIDIVR Results

DEST

− ∞ − F − 0 + 0 + F + ∞ NaN

− ∞ * + ∞ + ∞ − ∞ − ∞ * NaN

SRC − F + 0 + F ** ** − F − 0 NaN

− I + 0 + F ** ** − F − 0 NaN

− 0 + 0 + 0 * * − 0 − 0 NaN

+ 0 − 0 − 0 * * + 0 + 0 NaN

+ I − 0 − F ** ** + F + 0 NaN

+ F − 0 − F ** ** + F + 0 NaN

+ ∞ * − ∞ − ∞ + ∞ + ∞ * NaN

NaN NaN NaN NaN NaN NaN NaN NaN

NOTES:
F Means finite floating-point value.
I Means integer.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
** Indicates floating-point zero-divide (#Z) exception.
3-360 Vol. 2A FDIVR/FDIVRP/FIDIVR—Reverse Divide

INSTRUCTION SET REFERENCE, A-L
DEST ← SRC / DEST;
FI;

FI;

IF Instruction = FDIVRP
THEN

PopRegisterStack;
FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.
C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA Operand is an SNaN value or unsupported format.

±∞ / ±∞; ±0 / ±0
#D Source is a denormal value.
#Z SRC / ±0, where SRC is not equal to ±0.
#U Result is too small for destination format.
#O Result is too large for destination format.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
Vol. 2A 3-361FDIVR/FDIVRP/FIDIVR—Reverse Divide

INSTRUCTION SET REFERENCE, A-L
#SS If a memory operand effective address is outside the SS
segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
3-362 Vol. 2A FDIVR/FDIVRP/FIDIVR—Reverse Divide

INSTRUCTION SET REFERENCE, A-L
FFREE—Free Floating-Point Register

Description

Sets the tag in the FPU tag register associated with register ST(i) to empty (11B).
The contents of ST(i) and the FPU stack-top pointer (TOP) are not affected.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

TAG(i) ← 11B;

FPU Flags Affected

C0, C1, C2, C3 undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

DD C0+i FFREE ST(i) Valid Valid Sets tag for ST(i) to empty.
Vol. 2A 3-363FFREE—Free Floating-Point Register

INSTRUCTION SET REFERENCE, A-L
FICOM/FICOMP—Compare Integer

Description

Compares the value in ST(0) with an integer source operand and sets the condition
code flags C0, C2, and C3 in the FPU status word according to the results (see table
below). The integer value is converted to double extended-precision floating-point
format before the comparison is made.

These instructions perform an “unordered comparison.” An unordered comparison
also checks the class of the numbers being compared (see “FXAM—Examine
ModR/M” in this chapter). If either operand is a NaN or is in an undefined format, the
condition flags are set to “unordered.”

The sign of zero is ignored, so that –0.0 ← +0.0.

The FICOMP instructions pop the register stack following the comparison. To pop the
register stack, the processor marks the ST(0) register empty and increments the
stack pointer (TOP) by 1.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

CASE (relation of operands) OF
ST(0) > SRC: C3, C2, C0 ← 000;
ST(0) < SRC: C3, C2, C0 ← 001;
ST(0) = SRC: C3, C2, C0 ← 100;
Unordered: C3, C2, C0 ← 111;

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

DE /2 FICOM m16int Valid Valid Compare ST(0) with m16int.

DA /2 FICOM m32int Valid Valid Compare ST(0) with m32int.

DE /3 FICOMP m16int Valid Valid Compare ST(0) with m16int and pop
stack register.

DA /3 FICOMP m32int Valid Valid Compare ST(0) with m32int and pop
stack register.

Table 3-36. FICOM/FICOMP Results
Condition C3 C2 C0

ST(0) > SRC 0 0 0

ST(0) < SRC 0 0 1

ST(0) = SRC 1 0 0

Unordered 1 1 1
3-364 Vol. 2A FICOM/FICOMP—Compare Integer

INSTRUCTION SET REFERENCE, A-L
ESAC;

IF Instruction = FICOMP
THEN

PopRegisterStack;
FI;

FPU Flags Affected
C1 Set to 0.
C0, C2, C3 See table on previous page.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA One or both operands are NaN values or have unsupported

formats.
#D One or both operands are denormal values.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
Vol. 2A 3-365FICOM/FICOMP—Compare Integer

INSTRUCTION SET REFERENCE, A-L
#SS(0) If a memory operand effective address is outside the SS
segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
3-366 Vol. 2A FICOM/FICOMP—Compare Integer

INSTRUCTION SET REFERENCE, A-L
FILD—Load Integer

Description

Converts the signed-integer source operand into double extended-precision floating-
point format and pushes the value onto the FPU register stack. The source operand
can be a word, doubleword, or quadword integer. It is loaded without rounding
errors. The sign of the source operand is preserved.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

TOP ← TOP − 1;
ST(0) ← ConvertToDoubleExtendedPrecisionFP(SRC);

FPU Flags Affected
C1 Set to 1 if stack overflow occurred; set to 0 otherwise.
C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack overflow occurred.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

DF /0 FILD m16int Valid Valid Push m16int onto the FPU register
stack.

DB /0 FILD m32int Valid Valid Push m32int onto the FPU register
stack.

DF /5 FILD m64int Valid Valid Push m64int onto the FPU register
stack.
Vol. 2A 3-367FILD—Load Integer

INSTRUCTION SET REFERENCE, A-L
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
3-368 Vol. 2A FILD—Load Integer

INSTRUCTION SET REFERENCE, A-L
FINCSTP—Increment Stack-Top Pointer

Description

Adds one to the TOP field of the FPU status word (increments the top-of-stack
pointer). If the TOP field contains a 7, it is set to 0. The effect of this instruction is to
rotate the stack by one position. The contents of the FPU data registers and tag
register are not affected. This operation is not equivalent to popping the stack,
because the tag for the previous top-of-stack register is not marked empty.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

IF TOP = 7
THEN TOP ← 0;
ELSE TOP ← TOP + 1;

FI;

FPU Flags Affected

The C1 flag is set to 0. The C0, C2, and C3 flags are undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

D9 F7 FINCSTP Valid Valid Increment the TOP field in the FPU
status register.
Vol. 2A 3-369FINCSTP—Increment Stack-Top Pointer

INSTRUCTION SET REFERENCE, A-L
Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
3-370 Vol. 2A FINCSTP—Increment Stack-Top Pointer

INSTRUCTION SET REFERENCE, A-L
FINIT/FNINIT—Initialize Floating-Point Unit

Description

Sets the FPU control, status, tag, instruction pointer, and data pointer registers to
their default states. The FPU control word is set to 037FH (round to nearest, all
exceptions masked, 64-bit precision). The status word is cleared (no exception flags
set, TOP is set to 0). The data registers in the register stack are left unchanged, but
they are all tagged as empty (11B). Both the instruction and data pointers are
cleared.

The FINIT instruction checks for and handles any pending unmasked floating-point
exceptions before performing the initialization; the FNINIT instruction does not.

The assembler issues two instructions for the FINIT instruction (an FWAIT instruction
followed by an FNINIT instruction), and the processor executes each of these instruc-
tions in separately. If an exception is generated for either of these instructions, the
save EIP points to the instruction that caused the exception.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

When operating a Pentium or Intel486 processor in MS-DOS compatibility mode, it is
possible (under unusual circumstances) for an FNINIT instruction to be interrupted
prior to being executed to handle a pending FPU exception. See the section titled
“No-Wait FPU Instructions Can Get FPU Interrupt in Window” in Appendix D of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for a
description of these circumstances. An FNINIT instruction cannot be interrupted in
this way on a Pentium 4, Intel Xeon, or P6 family processor.

In the Intel387 math coprocessor, the FINIT/FNINIT instruction does not clear the
instruction and data pointers.

This instruction affects only the x87 FPU. It does not affect the XMM and MXCSR
registers.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

9B DB E3 FINIT Valid Valid Initialize FPU after checking for pending
unmasked floating-point exceptions.

DB E3 FNINIT* Valid Valid Initialize FPU without checking for
pending unmasked floating-point
exceptions.

NOTES:
* See IA-32 Architecture Compatibility section below.
Vol. 2A 3-371FINIT/FNINIT—Initialize Floating-Point Unit

INSTRUCTION SET REFERENCE, A-L
Operation

FPUControlWord ← 037FH;
FPUStatusWord ← 0;
FPUTagWord ← FFFFH;
FPUDataPointer ← 0;
FPUInstructionPointer ← 0;
FPULastInstructionOpcode ← 0;

FPU Flags Affected

C0, C1, C2, C3 set to 0.

Floating-Point Exceptions

None.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
3-372 Vol. 2A FINIT/FNINIT—Initialize Floating-Point Unit

INSTRUCTION SET REFERENCE, A-L
FIST/FISTP—Store Integer

Description

The FIST instruction converts the value in the ST(0) register to a signed integer and
stores the result in the destination operand. Values can be stored in word or double-
word integer format. The destination operand specifies the address where the first
byte of the destination value is to be stored.

The FISTP instruction performs the same operation as the FIST instruction and then
pops the register stack. To pop the register stack, the processor marks the ST(0)
register as empty and increments the stack pointer (TOP) by 1. The FISTP instruction
also stores values in quadword integer format.

The following table shows the results obtained when storing various classes of
numbers in integer format.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

DF /2 FIST m16int Valid Valid Store ST(0) in m16int.

DB /2 FIST m32int Valid Valid Store ST(0) in m32int.

DF /3 FISTP m16int Valid Valid Store ST(0) in m16int and pop
register stack.

DB /3 FISTP m32int Valid Valid Store ST(0) in m32int and pop
register stack.

DF /7 FISTP m64int Valid Valid Store ST(0) in m64int and pop
register stack.

Table 3-37. FIST/FISTP Results
ST(0) DEST

− ∞ or Value Too Large for DEST Format *

F ≤ −1 − I

−1 < F < −0 **

− 0 0

+ 0 0

+ 0 < F < + 1 **

F ≥ + 1 + I

+ ∞ or Value Too Large for DEST Format *
Vol. 2A 3-373FIST/FISTP—Store Integer

INSTRUCTION SET REFERENCE, A-L
If the source value is a non-integral value, it is rounded to an integer value, according
to the rounding mode specified by the RC field of the FPU control word.

If the converted value is too large for the destination format, or if the source operand
is an ∞, SNaN, QNAN, or is in an unsupported format, an invalid-arithmetic-operand
condition is signaled. If the invalid-operation exception is not masked, an invalid-
arithmetic-operand exception (#IA) is generated and no value is stored in the desti-
nation operand. If the invalid-operation exception is masked, the integer indefinite
value is stored in memory.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

DEST ← Integer(ST(0));

IF Instruction = FISTP
THEN

PopRegisterStack;
FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Indicates rounding direction of if the inexact exception (#P) is
generated: 0 ← not roundup; 1 ← roundup.
Set to 0 otherwise.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA Converted value is too large for the destination format.

Source operand is an SNaN, QNaN, ±∞, or unsupported format.
#P Value cannot be represented exactly in destination format.

NaN *

NOTES:
F Means finite floating-point value.
I Means integer.
* Indicates floating-point invalid-operation (#IA) exception.
** 0 or ±1, depending on the rounding mode.

Table 3-37. FIST/FISTP Results (Contd.)
ST(0) DEST
3-374 Vol. 2A FIST/FISTP—Store Integer

INSTRUCTION SET REFERENCE, A-L
Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
Vol. 2A 3-375FIST/FISTP—Store Integer

INSTRUCTION SET REFERENCE, A-L
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
3-376 Vol. 2A FIST/FISTP—Store Integer

INSTRUCTION SET REFERENCE, A-L
FISTTP—Store Integer with Truncation

Description

FISTTP converts the value in ST into a signed integer using truncation (chop) as
rounding mode, transfers the result to the destination, and pop ST. FISTTP accepts
word, short integer, and long integer destinations.

The following table shows the results obtained when storing various classes of
numbers in integer format.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

DEST ← ST;
pop ST;

Flags Affected

C1 is cleared; C0, C2, C3 undefined.

Opcode Instruction 64-Bit Mode Compat/
Leg Mode

Description

DF /1 FISTTP m16int Valid Valid Store ST(0) in m16int with
truncation.

DB /1 FISTTP m32int Valid Valid Store ST(0) in m32int with
truncation.

DD /1 FISTTP m64int Valid Valid Store ST(0) in m64int with
truncation.

Table 3-38. FISTTP Results
ST(0) DEST

− ∞ or Value Too Large for DEST Format *

F ≤ − 1 − I

− 1 < F < + 1 0

F Š + 1 + I

+ ∞ or Value Too Large for DEST Format *

NaN *

NOTES:
F Means finite floating-point value.
Ι Means integer.
∗ Indicates floating-point invalid-operation (#IA) exception.
Vol. 2A 3-377FISTTP—Store Integer with Truncation

INSTRUCTION SET REFERENCE, A-L
Numeric Exceptions

Invalid, Stack Invalid (stack underflow), Precision.

Protected Mode Exceptions
#GP(0) If the destination is in a nonwritable segment.

For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#NM If CR0.EM[bit 2] = 1.

If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.SSE3[bit 0] = 0.

If the LOCK prefix is used.

Real Address Mode Exceptions
GP(0) If any part of the operand would lie outside of the effective

address space from 0 to 0FFFFH.
#NM If CR0.EM[bit 2] = 1.

If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.SSE3[bit 0] = 0.

If the LOCK prefix is used.

Virtual 8086 Mode Exceptions
GP(0) If any part of the operand would lie outside of the effective

address space from 0 to 0FFFFH.
#NM If CR0.EM[bit 2] = 1.

If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.SSE3[bit 0] = 0.

If the LOCK prefix is used.
#PF(fault-code) For a page fault.
#AC(0) For unaligned memory reference if the current privilege is 3.

Compatibility Mode Exceptions
Same exceptions as in protected mode.
3-378 Vol. 2A FISTTP—Store Integer with Truncation

INSTRUCTION SET REFERENCE, A-L
64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
If the LOCK prefix is used.
Vol. 2A 3-379FISTTP—Store Integer with Truncation

INSTRUCTION SET REFERENCE, A-L
FLD—Load Floating Point Value

Description

Pushes the source operand onto the FPU register stack. The source operand can be in
single-precision, double-precision, or double extended-precision floating-point
format. If the source operand is in single-precision or double-precision floating-point
format, it is automatically converted to the double extended-precision floating-point
format before being pushed on the stack.

The FLD instruction can also push the value in a selected FPU register [ST(i)] onto the
stack. Here, pushing register ST(0) duplicates the stack top.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

IF SRC is ST(i)
THEN

temp ← ST(i);
FI;

TOP ← TOP − 1;

IF SRC is memory-operand
THEN

ST(0) ← ConvertToDoubleExtendedPrecisionFP(SRC);
ELSE (* SRC is ST(i) *)

ST(0) ← temp;
FI;

FPU Flags Affected
C1 Set to 1 if stack overflow occurred; otherwise, set to 0.
C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow or overflow occurred.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

D9 /0 FLD m32fp Valid Valid Push m32fp onto the FPU register stack.

DD /0 FLD m64fp Valid Valid Push m64fp onto the FPU register stack.

DB /5 FLD m80fp Valid Valid Push m80fp onto the FPU register stack.

D9 C0+i FLD ST(i) Valid Valid Push ST(i) onto the FPU register stack.
3-380 Vol. 2A FLD—Load Floating Point Value

INSTRUCTION SET REFERENCE, A-L
#IA Source operand is an SNaN. Does not occur if the source
operand is in double extended-precision floating-point format
(FLD m80fp or FLD ST(i)).

#D Source operand is a denormal value. Does not occur if the
source operand is in double extended-precision floating-point
format.

Protected Mode Exceptions
#GP(0) If destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used.
Vol. 2A 3-381FLD—Load Floating Point Value

INSTRUCTION SET REFERENCE, A-L
Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
3-382 Vol. 2A FLD—Load Floating Point Value

INSTRUCTION SET REFERENCE, A-L
FLD1/FLDL2T/FLDL2E/FLDPI/FLDLG2/FLDLN2/FLDZ—Load Constant

Description

Push one of seven commonly used constants (in double extended-precision floating-
point format) onto the FPU register stack. The constants that can be loaded with
these instructions include +1.0, +0.0, log210, log2e, π, log102, and loge2. For each
constant, an internal 66-bit constant is rounded (as specified by the RC field in the
FPU control word) to double extended-precision floating-point format. The inexact-
result exception (#P) is not generated as a result of the rounding, nor is the C1 flag
set in the x87 FPU status word if the value is rounded up.

See the section titled “Pi” in Chapter 8 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1, for a description of the π constant.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

When the RC field is set to round-to-nearest, the FPU produces the same constants
that is produced by the Intel 8087 and Intel 287 math coprocessors.

Operation

TOP ← TOP − 1;
ST(0) ← CONSTANT;

FPU Flags Affected
C1 Set to 1 if stack overflow occurred; otherwise, set to 0.
C0, C2, C3 Undefined.

Opcode* Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

D9 E8 FLD1 Valid Valid Push +1.0 onto the FPU register stack.

D9 E9 FLDL2T Valid Valid Push log210 onto the FPU register stack.

D9 EA FLDL2E Valid Valid Push log2e onto the FPU register stack.

D9 EB FLDPI Valid Valid Push π onto the FPU register stack.

D9 EC FLDLG2 Valid Valid Push log102 onto the FPU register stack.

D9 ED FLDLN2 Valid Valid Push loge2 onto the FPU register stack.

D9 EE FLDZ Valid Valid Push +0.0 onto the FPU register stack.

NOTES:
* See IA-32 Architecture Compatibility section below.
Vol. 2A 3-383FLD1/FLDL2T/FLDL2E/FLDPI/FLDLG2/FLDLN2/FLDZ—Load Constant

INSTRUCTION SET REFERENCE, A-L
Floating-Point Exceptions
#IS Stack overflow occurred.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
3-384 Vol. 2A FLD1/FLDL2T/FLDL2E/FLDPI/FLDLG2/FLDLN2/FLDZ—Load Constant

INSTRUCTION SET REFERENCE, A-L
FLDCW—Load x87 FPU Control Word

Description

Loads the 16-bit source operand into the FPU control word. The source operand is a
memory location. This instruction is typically used to establish or change the FPU’s
mode of operation.

If one or more exception flags are set in the FPU status word prior to loading a new
FPU control word and the new control word unmasks one or more of those excep-
tions, a floating-point exception will be generated upon execution of the next
floating-point instruction (except for the no-wait floating-point instructions, see the
section titled “Software Exception Handling” in Chapter 8 of the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1). To avoid raising exceptions
when changing FPU operating modes, clear any pending exceptions (using the FCLEX
or FNCLEX instruction) before loading the new control word.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

FPUControlWord ← SRC;

FPU Flags Affected

C0, C1, C2, C3 undefined.

Floating-Point Exceptions

None; however, this operation might unmask a pending exception in the FPU status
word. That exception is then generated upon execution of the next “waiting” floating-
point instruction.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

D9 /5 FLDCW m2byte Valid Valid Load FPU control word from m2byte.
Vol. 2A 3-385FLDCW—Load x87 FPU Control Word

INSTRUCTION SET REFERENCE, A-L
#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
3-386 Vol. 2A FLDCW—Load x87 FPU Control Word

INSTRUCTION SET REFERENCE, A-L
FLDENV—Load x87 FPU Environment

Description

Loads the complete x87 FPU operating environment from memory into the FPU regis-
ters. The source operand specifies the first byte of the operating-environment data in
memory. This data is typically written to the specified memory location by a FSTENV
or FNSTENV instruction.

The FPU operating environment consists of the FPU control word, status word, tag
word, instruction pointer, data pointer, and last opcode. Figures 8-9 through 8-12 in
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, show
the layout in memory of the loaded environment, depending on the operating mode
of the processor (protected or real) and the current operand-size attribute (16-bit or
32-bit). In virtual-8086 mode, the real mode layouts are used.

The FLDENV instruction should be executed in the same operating mode as the corre-
sponding FSTENV/FNSTENV instruction.

If one or more unmasked exception flags are set in the new FPU status word, a
floating-point exception will be generated upon execution of the next floating-point
instruction (except for the no-wait floating-point instructions, see the section titled
“Software Exception Handling” in Chapter 8 of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 1). To avoid generating exceptions when
loading a new environment, clear all the exception flags in the FPU status word that
is being loaded.

If a page or limit fault occurs during the execution of this instruction, the state of the
x87 FPU registers as seen by the fault handler may be different than the state being
loaded from memory. In such situations, the fault handler should ignore the status of
the x87 FPU registers, handle the fault, and return. The FLDENV instruction will then
complete the loading of the x87 FPU registers with no resulting context inconsis-
tency.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

FPUControlWord ← SRC[FPUControlWord];
FPUStatusWord ← SRC[FPUStatusWord];
FPUTagWord ← SRC[FPUTagWord];
FPUDataPointer ← SRC[FPUDataPointer];
FPUInstructionPointer ← SRC[FPUInstructionPointer];
FPULastInstructionOpcode ← SRC[FPULastInstructionOpcode];

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

D9 /4 FLDENV m14/28byte Valid Valid Load FPU environment from
m14byte or m28byte.
Vol. 2A 3-387FLDENV—Load x87 FPU Environment

INSTRUCTION SET REFERENCE, A-L
FPU Flags Affected

The C0, C1, C2, C3 flags are loaded.

Floating-Point Exceptions

None; however, if an unmasked exception is loaded in the status word, it is generated
upon execution of the next “waiting” floating-point instruction.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used.
3-388 Vol. 2A FLDENV—Load x87 FPU Environment

INSTRUCTION SET REFERENCE, A-L
Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
Vol. 2A 3-389FLDENV—Load x87 FPU Environment

INSTRUCTION SET REFERENCE, A-L
FMUL/FMULP/FIMUL—Multiply

Description

Multiplies the destination and source operands and stores the product in the destina-
tion location. The destination operand is always an FPU data register; the source
operand can be an FPU data register or a memory location. Source operands in
memory can be in single-precision or double-precision floating-point format or in
word or doubleword integer format.

The no-operand version of the instruction multiplies the contents of the ST(1)
register by the contents of the ST(0) register and stores the product in the ST(1)
register. The one-operand version multiplies the contents of the ST(0) register by the
contents of a memory location (either a floating point or an integer value) and stores
the product in the ST(0) register. The two-operand version, multiplies the contents of
the ST(0) register by the contents of the ST(i) register, or vice versa, with the result
being stored in the register specified with the first operand (the destination
operand).

The FMULP instructions perform the additional operation of popping the FPU register
stack after storing the product. To pop the register stack, the processor marks the
ST(0) register as empty and increments the stack pointer (TOP) by 1. The no-
operand version of the floating-point multiply instructions always results in the
register stack being popped. In some assemblers, the mnemonic for this instruction
is FMUL rather than FMULP.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

D8 /1 FMUL m32fp Valid Valid Multiply ST(0) by m32fp and store
result in ST(0).

DC /1 FMUL m64fp Valid Valid Multiply ST(0) by m64fp and store
result in ST(0).

D8 C8+i FMUL ST(0), ST(i) Valid Valid Multiply ST(0) by ST(i) and store result
in ST(0).

DC C8+i FMUL ST(i), ST(0) Valid Valid Multiply ST(i) by ST(0) and store result
in ST(i).

DE C8+i FMULP ST(i), ST(0) Valid Valid Multiply ST(i) by ST(0), store result in
ST(i), and pop the register stack.

DE C9 FMULP Valid Valid Multiply ST(1) by ST(0), store result in
ST(1), and pop the register stack.

DA /1 FIMUL m32int Valid Valid Multiply ST(0) by m32int and store
result in ST(0).

DE /1 FIMUL m16int Valid Valid Multiply ST(0) by m16int and store
result in ST(0).
3-390 Vol. 2A FMUL/FMULP/FIMUL—Multiply

INSTRUCTION SET REFERENCE, A-L
The FIMUL instructions convert an integer source operand to double extended-
precision floating-point format before performing the multiplication.

The sign of the result is always the exclusive-OR of the source signs, even if one or
more of the values being multiplied is 0 or ∞. When the source operand is an integer
0, it is treated as a +0.

The following table shows the results obtained when multiplying various classes of
numbers, assuming that neither overflow nor underflow occurs.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

IF Instruction = FIMUL
THEN

DEST ← DEST ∗ ConvertToDoubleExtendedPrecisionFP(SRC);
ELSE (* Source operand is floating-point value *)

DEST ← DEST ∗ SRC;
FI;

IF Instruction = FMULP
THEN

PopRegisterStack;
FI;

Table 3-39. FMUL/FMULP/FIMUL Results

DEST

− ∞ − F − 0 + 0 + F + ∞ NaN

− ∞ + ∞ + ∞ * * − ∞ − ∞ NaN

− F + ∞ + F + 0 − 0 − F − ∞ NaN

− I + ∞ + F + 0 − 0 − F − ∞ NaN

SRC − 0 * + 0 + 0 − 0 − 0 * NaN

+ 0 * − 0 − 0 + 0 + 0 * NaN

+ I − ∞ − F − 0 + 0 + F + ∞ NaN

+ F − ∞ − F − 0 + 0 + F + ∞ NaN

+ ∞ − ∞ − ∞ * * + ∞ + ∞ NaN

NaN NaN NaN NaN NaN NaN NaN NaN

NOTES:
F Means finite floating-point value.
I Means Integer.
* Indicates invalid-arithmetic-operand (#IA) exception.
Vol. 2A 3-391FMUL/FMULP/FIMUL—Multiply

INSTRUCTION SET REFERENCE, A-L
FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.
C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA Operand is an SNaN value or unsupported format.

One operand is ±0 and the other is ±∞.
#D Source operand is a denormal value.
#U Result is too small for destination format.
#O Result is too large for destination format.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
3-392 Vol. 2A FMUL/FMULP/FIMUL—Multiply

INSTRUCTION SET REFERENCE, A-L
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
Vol. 2A 3-393FMUL/FMULP/FIMUL—Multiply

INSTRUCTION SET REFERENCE, A-L
FNOP—No Operation

Description

Performs no FPU operation. This instruction takes up space in the instruction stream
but does not affect the FPU or machine context, except the EIP register.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

FPU Flags Affected

C0, C1, C2, C3 undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

D9 D0 FNOP Valid Valid No operation is performed.
3-394 Vol. 2A FNOP—No Operation

INSTRUCTION SET REFERENCE, A-L
FPATAN—Partial Arctangent

Description

Computes the arctangent of the source operand in register ST(1) divided by the
source operand in register ST(0), stores the result in ST(1), and pops the FPU
register stack. The result in register ST(0) has the same sign as the source operand
ST(1) and a magnitude less than +π.

The FPATAN instruction returns the angle between the X axis and the line from the
origin to the point (X,Y), where Y (the ordinate) is ST(1) and X (the abscissa) is
ST(0). The angle depends on the sign of X and Y independently, not just on the sign
of the ratio Y/X. This is because a point (−X,Y) is in the second quadrant, resulting in
an angle between π/2 and π, while a point (X,−Y) is in the fourth quadrant, resulting
in an angle between 0 and −π/2. A point (−X,−Y) is in the third quadrant, giving an
angle between −π/2 and −π.

The following table shows the results obtained when computing the arctangent of
various classes of numbers, assuming that underflow does not occur.

Opcode* Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

D9 F3 FPATAN Valid Valid Replace ST(1) with arctan(ST(1)/ST(0)) and pop
the register stack.

NOTES:
* See IA-32 Architecture Compatibility section below.
Vol. 2A 3-395FPATAN—Partial Arctangent

INSTRUCTION SET REFERENCE, A-L
There is no restriction on the range of source operands that FPATAN can accept.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

The source operands for this instruction are restricted for the 80287 math copro-
cessor to the following range:

0 ≤ |ST(1)| < |ST(0)| < +∞

Operation

ST(1) ← arctan(ST(1) / ST(0));
PopRegisterStack;

Table 3-40. FPATAN Results

ST(0)

− ∞ − F − 0 + 0 + F + ∞ NaN

− ∞ − 3π/4* − π/2 − π/2 − π/2 − π/2 − π/4* NaN

ST(1) − F -p −π to −π/2 −π/2 −π/2 −π/2 to −
0

- 0 NaN

− 0 -p -p -p* − 0* − 0 − 0 NaN

+ 0 +p + p + π* + 0* + 0 + 0 NaN

+ F +p +π to +π/2 + π/2 +π/2 +π/2 to
+0

+ 0 NaN

+ ∞ +3π/4* +π/2 +π/2 +π/2 + π/2 + π/4* NaN

NaN NaN NaN NaN NaN NaN NaN NaN

NOTES:
F Means finite floating-point value.
* Table 8-10 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1,

specifies that the ratios 0/0 and ∞/∞ generate the floating-point invalid arithmetic-operation
exception and, if this exception is masked, the floating-point QNaN indefinite value is returned.
With the FPATAN instruction, the 0/0 or ∞/∞ value is actually not calculated using division.
Instead, the arctangent of the two variables is derived from a standard mathematical formula-
tion that is generalized to allow complex numbers as arguments. In this complex variable formu-
lation, arctangent(0,0) etc. has well defined values. These values are needed to develop a library
to compute transcendental functions with complex arguments, based on the FPU functions that
only allow floating-point values as arguments.
3-396 Vol. 2A FPATAN—Partial Arctangent

INSTRUCTION SET REFERENCE, A-L
FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.
C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA Source operand is an SNaN value or unsupported format.
#D Source operand is a denormal value.
#U Result is too small for destination format.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
Vol. 2A 3-397FPATAN—Partial Arctangent

INSTRUCTION SET REFERENCE, A-L
FPREM—Partial Remainder

Description

Computes the remainder obtained from dividing the value in the ST(0) register (the
dividend) by the value in the ST(1) register (the divisor or modulus), and stores the
result in ST(0). The remainder represents the following value:

Remainder ← ST(0) − (Q ∗ ST(1))

Here, Q is an integer value that is obtained by truncating the floating-point number
quotient of [ST(0) / ST(1)] toward zero. The sign of the remainder is the same as the
sign of the dividend. The magnitude of the remainder is less than that of the
modulus, unless a partial remainder was computed (as described below).

This instruction produces an exact result; the inexact-result exception does not occur
and the rounding control has no effect. The following table shows the results
obtained when computing the remainder of various classes of numbers, assuming
that underflow does not occur.

When the result is 0, its sign is the same as that of the dividend. When the modulus
is ∞, the result is equal to the value in ST(0).

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

D9 F8 FPREM Valid Valid Replace ST(0) with the remainder obtained
from dividing ST(0) by ST(1).

Table 3-41. FPREM Results

ST(1)

-∞ -F -0 +0 +F +∞ NaN

-∞ * * * * * * NaN

ST(0) -F ST(0) -F or -0 ** ** -F or -0 ST(0) NaN

-0 -0 -0 * * -0 -0 NaN

+0 +0 +0 * * +0 +0 NaN

+F ST(0) +F or +0 ** ** +F or +0 ST(0) NaN

+∞ * * * * * * NaN

NaN NaN NaN NaN NaN NaN NaN NaN

NOTES:
F Means finite floating-point value.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
** Indicates floating-point zero-divide (#Z) exception.
3-398 Vol. 2A FPREM—Partial Remainder

INSTRUCTION SET REFERENCE, A-L
The FPREM instruction does not compute the remainder specified in IEEE Std 754.
The IEEE specified remainder can be computed with the FPREM1 instruction. The
FPREM instruction is provided for compatibility with the Intel 8087 and Intel287 math
coprocessors.

The FPREM instruction gets its name “partial remainder” because of the way it
computes the remainder. This instruction arrives at a remainder through iterative
subtraction. It can, however, reduce the exponent of ST(0) by no more than 63 in one
execution of the instruction. If the instruction succeeds in producing a remainder that
is less than the modulus, the operation is complete and the C2 flag in the FPU status
word is cleared. Otherwise, C2 is set, and the result in ST(0) is called the partial
remainder. The exponent of the partial remainder will be less than the exponent of
the original dividend by at least 32. Software can re-execute the instruction (using
the partial remainder in ST(0) as the dividend) until C2 is cleared. (Note that while
executing such a remainder-computation loop, a higher-priority interrupting routine
that needs the FPU can force a context switch in-between the instructions in the
loop.)

An important use of the FPREM instruction is to reduce the arguments of periodic
functions. When reduction is complete, the instruction stores the three least-signifi-
cant bits of the quotient in the C3, C1, and C0 flags of the FPU status word. This infor-
mation is important in argument reduction for the tangent function (using a modulus
of π/4), because it locates the original angle in the correct one of eight sectors of the
unit circle.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

D ← exponent(ST(0)) – exponent(ST(1));

IF D < 64
THEN

Q ← Integer(TruncateTowardZero(ST(0) / ST(1)));
ST(0) ← ST(0) – (ST(1) ∗ Q);
C2 ← 0;
C0, C3, C1 ← LeastSignificantBits(Q); (* Q2, Q1, Q0 *)

ELSE
C2 ← 1;
N ← An implementation-dependent number between 32 and 63;
QQ ← Integer(TruncateTowardZero((ST(0) / ST(1)) / 2(D − N)));
ST(0) ← ST(0) – (ST(1) ∗ QQ ∗ 2(D − N));

FI;
Vol. 2A 3-399FPREM—Partial Remainder

INSTRUCTION SET REFERENCE, A-L
FPU Flags Affected
C0 Set to bit 2 (Q2) of the quotient.
C1 Set to 0 if stack underflow occurred; otherwise, set to least

significant bit of quotient (Q0).
C2 Set to 0 if reduction complete; set to 1 if incomplete.
C3 Set to bit 1 (Q1) of the quotient.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA Source operand is an SNaN value, modulus is 0, dividend is ∞, or

unsupported format.
#D Source operand is a denormal value.
#U Result is too small for destination format.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
3-400 Vol. 2A FPREM—Partial Remainder

INSTRUCTION SET REFERENCE, A-L
FPREM1—Partial Remainder

Description

Computes the IEEE remainder obtained from dividing the value in the ST(0) register
(the dividend) by the value in the ST(1) register (the divisor or modulus), and stores
the result in ST(0). The remainder represents the following value:

Remainder ← ST(0) − (Q ∗ ST(1))

Here, Q is an integer value that is obtained by rounding the floating-point number
quotient of [ST(0) / ST(1)] toward the nearest integer value. The magnitude of the
remainder is less than or equal to half the magnitude of the modulus, unless a partial
remainder was computed (as described below).

This instruction produces an exact result; the precision (inexact) exception does not
occur and the rounding control has no effect. The following table shows the results
obtained when computing the remainder of various classes of numbers, assuming
that underflow does not occur.

When the result is 0, its sign is the same as that of the dividend. When the modulus
is ∞, the result is equal to the value in ST(0).

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

D9 F5 FPREM1 Valid Valid Replace ST(0) with the IEEE remainder
obtained from dividing ST(0) by ST(1).

Table 3-42. FPREM1 Results

ST(1)

− ∞ − F − 0 + 0 + F + ∞ NaN

− ∞ * * * * * * NaN

ST(0) − F ST(0) ±F or −0 ** ** ± F or −
0

ST(0) NaN

− 0 − 0 − 0 * * − 0 -0 NaN

+ 0 + 0 + 0 * * + 0 +0 NaN

+ F ST(0) ± F or + 0 ** ** ± F or +
0

ST(0) NaN

+ ∞ * * * * * * NaN

NaN NaN NaN NaN NaN NaN NaN NaN

NOTES:
F Means finite floating-point value.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
** Indicates floating-point zero-divide (#Z) exception.
Vol. 2A 3-401FPREM1—Partial Remainder

INSTRUCTION SET REFERENCE, A-L
The FPREM1 instruction computes the remainder specified in IEEE Standard 754.
This instruction operates differently from the FPREM instruction in the way that it
rounds the quotient of ST(0) divided by ST(1) to an integer (see the “Operation”
section below).

Like the FPREM instruction, FPREM1 computes the remainder through iterative
subtraction, but can reduce the exponent of ST(0) by no more than 63 in one execu-
tion of the instruction. If the instruction succeeds in producing a remainder that is
less than one half the modulus, the operation is complete and the C2 flag in the FPU
status word is cleared. Otherwise, C2 is set, and the result in ST(0) is called the
partial remainder. The exponent of the partial remainder will be less than the expo-
nent of the original dividend by at least 32. Software can re-execute the instruction
(using the partial remainder in ST(0) as the dividend) until C2 is cleared. (Note that
while executing such a remainder-computation loop, a higher-priority interrupting
routine that needs the FPU can force a context switch in-between the instructions in
the loop.)

An important use of the FPREM1 instruction is to reduce the arguments of periodic
functions. When reduction is complete, the instruction stores the three least-signifi-
cant bits of the quotient in the C3, C1, and C0 flags of the FPU status word. This infor-
mation is important in argument reduction for the tangent function (using a modulus
of π/4), because it locates the original angle in the correct one of eight sectors of the
unit circle.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

D ← exponent(ST(0)) – exponent(ST(1));

IF D < 64
THEN

Q ← Integer(RoundTowardNearestInteger(ST(0) / ST(1)));
ST(0) ← ST(0) – (ST(1) ∗ Q);
C2 ← 0;
C0, C3, C1 ← LeastSignificantBits(Q); (* Q2, Q1, Q0 *)

ELSE
C2 ← 1;
N ← An implementation-dependent number between 32 and 63;
QQ ← Integer(TruncateTowardZero((ST(0) / ST(1)) / 2(D − N)));
ST(0) ← ST(0) – (ST(1) ∗ QQ ∗ 2(D − N));

FI;

FPU Flags Affected
C0 Set to bit 2 (Q2) of the quotient.
C1 Set to 0 if stack underflow occurred; otherwise, set to least

significant bit of quotient (Q0).
3-402 Vol. 2A FPREM1—Partial Remainder

INSTRUCTION SET REFERENCE, A-L
C2 Set to 0 if reduction complete; set to 1 if incomplete.
C3 Set to bit 1 (Q1) of the quotient.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA Source operand is an SNaN value, modulus (divisor) is 0, divi-

dend is ∞, or unsupported format.
#D Source operand is a denormal value.
#U Result is too small for destination format.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
Vol. 2A 3-403FPREM1—Partial Remainder

INSTRUCTION SET REFERENCE, A-L
FPTAN—Partial Tangent

Description

Computes the tangent of the source operand in register ST(0), stores the result in
ST(0), and pushes a 1.0 onto the FPU register stack. The source operand must be
given in radians and must be less than ±263. The following table shows the
unmasked results obtained when computing the partial tangent of various classes of
numbers, assuming that underflow does not occur.

If the source operand is outside the acceptable range, the C2 flag in the FPU status
word is set, and the value in register ST(0) remains unchanged. The instruction does
not raise an exception when the source operand is out of range. It is up to the
program to check the C2 flag for out-of-range conditions. Source values outside the
range −263 to +263 can be reduced to the range of the instruction by subtracting an
appropriate integer multiple of 2π or by using the FPREM instruction with a divisor of
2π. See the section titled “Pi” in Chapter 8 of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 1, for a discussion of the proper value to use
for π in performing such reductions.

The value 1.0 is pushed onto the register stack after the tangent has been computed
to maintain compatibility with the Intel 8087 and Intel287 math coprocessors. This
operation also simplifies the calculation of other trigonometric functions. For
instance, the cotangent (which is the reciprocal of the tangent) can be computed by
executing a FDIVR instruction after the FPTAN instruction.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

D9 F2 FPTAN Valid Valid Replace ST(0) with its tangent and
push 1 onto the FPU stack.

Table 3-43. FPTAN Results
ST(0) SRC ST(0) DEST

− ∞ *

− F − F to + F

− 0 - 0

+ 0 + 0

+ F − F to + F

+ ∞ *

NaN NaN

NOTES:
F Means finite floating-point value.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
3-404 Vol. 2A FPTAN—Partial Tangent

INSTRUCTION SET REFERENCE, A-L
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

IF ST(0) < 263

THEN
C2 ← 0;
ST(0) ← tan(ST(0));
TOP ← TOP − 1;
ST(0) ← 1.0;

ELSE (* Source operand is out-of-range *)
C2 ← 1;

FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred; set to 1 if stack overflow

occurred.
Set if result was rounded up; cleared otherwise.

C2 Set to 1 if outside range (−263 < source operand < +263); other-
wise, set to 0.

C0, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow or overflow occurred.
#IA Source operand is an SNaN value, ∞, or unsupported format.
#D Source operand is a denormal value.
#U Result is too small for destination format.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.
Vol. 2A 3-405FPTAN—Partial Tangent

INSTRUCTION SET REFERENCE, A-L
Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
3-406 Vol. 2A FPTAN—Partial Tangent

INSTRUCTION SET REFERENCE, A-L
FRNDINT—Round to Integer

Description

Rounds the source value in the ST(0) register to the nearest integral value,
depending on the current rounding mode (setting of the RC field of the FPU control
word), and stores the result in ST(0).

If the source value is ∞, the value is not changed. If the source value is not an integral
value, the floating-point inexact-result exception (#P) is generated.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

ST(0) ← RoundToIntegralValue(ST(0));

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.
C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA Source operand is an SNaN value or unsupported format.
#D Source operand is a denormal value.
#P Source operand is not an integral value.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

D9 FC FRNDINT Valid Valid Round ST(0) to an integer.
Vol. 2A 3-407FRNDINT—Round to Integer

INSTRUCTION SET REFERENCE, A-L
Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
3-408 Vol. 2A FRNDINT—Round to Integer

INSTRUCTION SET REFERENCE, A-L
FRSTOR—Restore x87 FPU State

Description

Loads the FPU state (operating environment and register stack) from the memory
area specified with the source operand. This state data is typically written to the
specified memory location by a previous FSAVE/FNSAVE instruction.

The FPU operating environment consists of the FPU control word, status word, tag
word, instruction pointer, data pointer, and last opcode. Figures 8-9 through 8-12 in
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, show
the layout in memory of the stored environment, depending on the operating mode
of the processor (protected or real) and the current operand-size attribute (16-bit or
32-bit). In virtual-8086 mode, the real mode layouts are used. The contents of the
FPU register stack are stored in the 80 bytes immediately following the operating
environment image.

The FRSTOR instruction should be executed in the same operating mode as the
corresponding FSAVE/FNSAVE instruction.

If one or more unmasked exception bits are set in the new FPU status word, a
floating-point exception will be generated. To avoid raising exceptions when loading
a new operating environment, clear all the exception flags in the FPU status word
that is being loaded.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

FPUControlWord ← SRC[FPUControlWord];
FPUStatusWord ← SRC[FPUStatusWord];
FPUTagWord ← SRC[FPUTagWord];
FPUDataPointer ← SRC[FPUDataPointer];
FPUInstructionPointer ← SRC[FPUInstructionPointer];
FPULastInstructionOpcode ← SRC[FPULastInstructionOpcode];

ST(0) ← SRC[ST(0)];
ST(1) ← SRC[ST(1)];
ST(2) ← SRC[ST(2)];
ST(3) ← SRC[ST(3)];
ST(4) ← SRC[ST(4)];
ST(5) ← SRC[ST(5)];
ST(6) ← SRC[ST(6)];

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

DD /4 FRSTOR m94/108byte Valid Valid Load FPU state from
m94byte or m108byte.
Vol. 2A 3-409FRSTOR—Restore x87 FPU State

INSTRUCTION SET REFERENCE, A-L
ST(7) ← SRC[ST(7)];

FPU Flags Affected

The C0, C1, C2, C3 flags are loaded.

Floating-Point Exceptions

None; however, this operation might unmask an existing exception that has been
detected but not generated, because it was masked. Here, the exception is gener-
ated at the completion of the instruction.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
3-410 Vol. 2A FRSTOR—Restore x87 FPU State

INSTRUCTION SET REFERENCE, A-L
#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
Vol. 2A 3-411FRSTOR—Restore x87 FPU State

INSTRUCTION SET REFERENCE, A-L
FSAVE/FNSAVE—Store x87 FPU State

Description

Stores the current FPU state (operating environment and register stack) at the spec-
ified destination in memory, and then re-initializes the FPU. The FSAVE instruction
checks for and handles pending unmasked floating-point exceptions before storing
the FPU state; the FNSAVE instruction does not.

The FPU operating environment consists of the FPU control word, status word, tag
word, instruction pointer, data pointer, and last opcode. Figures 8-9 through 8-12 in
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, show
the layout in memory of the stored environment, depending on the operating mode
of the processor (protected or real) and the current operand-size attribute (16-bit or
32-bit). In virtual-8086 mode, the real mode layouts are used. The contents of the
FPU register stack are stored in the 80 bytes immediately follow the operating envi-
ronment image.

The saved image reflects the state of the FPU after all floating-point instructions
preceding the FSAVE/FNSAVE instruction in the instruction stream have been
executed.

After the FPU state has been saved, the FPU is reset to the same default values it is
set to with the FINIT/FNINIT instructions (see “FINIT/FNINIT—Initialize Floating-
Point Unit” in this chapter).

The FSAVE/FNSAVE instructions are typically used when the operating system needs
to perform a context switch, an exception handler needs to use the FPU, or an appli-
cation program needs to pass a “clean” FPU to a procedure.

The assembler issues two instructions for the FSAVE instruction (an FWAIT instruc-
tion followed by an FNSAVE instruction), and the processor executes each of these

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

9B DD /6 FSAVE m94/108byte Valid Valid Store FPU state to m94byte or
m108byte after checking for
pending unmasked floating-
point exceptions. Then re-
initialize the FPU.

DD /6 FNSAVE* m94/108byte Valid Valid Store FPU environment to
m94byte or m108byte without
checking for pending unmasked
floating-point exceptions. Then
re-initialize the FPU.

NOTES:
* See IA-32 Architecture Compatibility section below.
3-412 Vol. 2A FSAVE/FNSAVE—Store x87 FPU State

INSTRUCTION SET REFERENCE, A-L
instructions separately. If an exception is generated for either of these instructions,
the save EIP points to the instruction that caused the exception.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

For Intel math coprocessors and FPUs prior to the Intel Pentium processor, an FWAIT
instruction should be executed before attempting to read from the memory image
stored with a prior FSAVE/FNSAVE instruction. This FWAIT instruction helps ensure
that the storage operation has been completed.

When operating a Pentium or Intel486 processor in MS-DOS compatibility mode, it is
possible (under unusual circumstances) for an FNSAVE instruction to be interrupted
prior to being executed to handle a pending FPU exception. See the section titled
“No-Wait FPU Instructions Can Get FPU Interrupt in Window” in Appendix D of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for a
description of these circumstances. An FNSAVE instruction cannot be interrupted in
this way on a Pentium 4, Intel Xeon, or P6 family processor.

Operation

(* Save FPU State and Registers *)

DEST[FPUControlWord] ← FPUControlWord;
DEST[FPUStatusWord] ← FPUStatusWord;
DEST[FPUTagWord] ← FPUTagWord;
DEST[FPUDataPointer] ← FPUDataPointer;
DEST[FPUInstructionPointer] ← FPUInstructionPointer;
DEST[FPULastInstructionOpcode] ← FPULastInstructionOpcode;

DEST[ST(0)] ← ST(0);
DEST[ST(1)] ← ST(1);
DEST[ST(2)] ← ST(2);
DEST[ST(3)] ← ST(3);
DEST[ST(4)]← ST(4);
DEST[ST(5)] ← ST(5);
DEST[ST(6)] ← ST(6);
DEST[ST(7)] ← ST(7);

(* Initialize FPU *)

FPUControlWord ← 037FH;
FPUStatusWord ← 0;
FPUTagWord ← FFFFH;
FPUDataPointer ← 0;
FPUInstructionPointer ← 0;
FPULastInstructionOpcode ← 0;
Vol. 2A 3-413FSAVE/FNSAVE—Store x87 FPU State

INSTRUCTION SET REFERENCE, A-L
FPU Flags Affected

The C0, C1, C2, and C3 flags are saved and then cleared.

Floating-Point Exceptions

None.

Protected Mode Exceptions
#GP(0) If destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used.
3-414 Vol. 2A FSAVE/FNSAVE—Store x87 FPU State

INSTRUCTION SET REFERENCE, A-L
Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
Vol. 2A 3-415FSAVE/FNSAVE—Store x87 FPU State

INSTRUCTION SET REFERENCE, A-L
FSCALE—Scale

Description

Truncates the value in the source operand (toward 0) to an integral value and adds
that value to the exponent of the destination operand. The destination and source
operands are floating-point values located in registers ST(0) and ST(1), respectively.
This instruction provides rapid multiplication or division by integral powers of 2. The
following table shows the results obtained when scaling various classes of numbers,
assuming that neither overflow nor underflow occurs.

In most cases, only the exponent is changed and the mantissa (significand) remains
unchanged. However, when the value being scaled in ST(0) is a denormal value, the
mantissa is also changed and the result may turn out to be a normalized number.
Similarly, if overflow or underflow results from a scale operation, the resulting
mantissa will differ from the source’s mantissa.

The FSCALE instruction can also be used to reverse the action of the FXTRACT
instruction, as shown in the following example:

FXTRACT;
FSCALE;
FSTP ST(1);

In this example, the FXTRACT instruction extracts the significand and exponent from
the value in ST(0) and stores them in ST(0) and ST(1) respectively. The FSCALE then
scales the significand in ST(0) by the exponent in ST(1), recreating the original value

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

D9 FD FSCALE Valid Valid Scale ST(0) by ST(1).

Table 3-44. FSCALE Results
ST(1)

− ∞ − F − 0 + 0 + F + ∞ NaN

− ∞ NaN − ∞ − ∞ − ∞ − ∞ − ∞ NaN

ST(0) − F − 0 − F − F − F − F − ∞ NaN

− 0 − 0 − 0 − 0 − 0 − 0 NaN NaN

+ 0 + 0 + 0 + 0 + 0 + 0 NaN NaN

+ F + 0 + F + F + F + F + ∞ NaN

+ ∞ NaN + ∞ + ∞ + ∞ + ∞ + ∞ NaN

NaN NaN NaN NaN NaN NaN NaN NaN

NOTES:
F Means finite floating-point value.
3-416 Vol. 2A FSCALE—Scale

INSTRUCTION SET REFERENCE, A-L
before the FXTRACT operation was performed. The FSTP ST(1) instruction overwrites
the exponent (extracted by the FXTRACT instruction) with the recreated value, which
returns the stack to its original state with only one register [ST(0)] occupied.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

ST(0) ← ST(0) ∗ 2RoundTowardZero(ST(1));

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.
C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA Source operand is an SNaN value or unsupported format.
#D Source operand is a denormal value.
#U Result is too small for destination format.
#O Result is too large for destination format.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
Vol. 2A 3-417FSCALE—Scale

INSTRUCTION SET REFERENCE, A-L
FSIN—Sine

Description

Computes the sine of the source operand in register ST(0) and stores the result in
ST(0). The source operand must be given in radians and must be within the range −
263 to +263. The following table shows the results obtained when taking the sine of
various classes of numbers, assuming that underflow does not occur.

If the source operand is outside the acceptable range, the C2 flag in the FPU status
word is set, and the value in register ST(0) remains unchanged. The instruction does
not raise an exception when the source operand is out of range. It is up to the
program to check the C2 flag for out-of-range conditions. Source values outside the
range −263 to +263 can be reduced to the range of the instruction by subtracting an
appropriate integer multiple of 2π or by using the FPREM instruction with a divisor of
2π. See the section titled “Pi” in Chapter 8 of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 1, for a discussion of the proper value to use
for π in performing such reductions.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

IF ST(0) < 263

THEN
C2 ← 0;

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

D9 FE FSIN Valid Valid Replace ST(0) with its sine.

Table 3-45. FSIN Results
SRC (ST(0)) DEST (ST(0))

− ∞ *

− F − 1 to + 1

− 0 −0

+ 0 + 0

+ F − 1 to +1

+ ∞ *

NaN NaN

NOTES:
F Means finite floating-point value.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
3-418 Vol. 2A FSIN—Sine

INSTRUCTION SET REFERENCE, A-L
ST(0) ← sin(ST(0));
ELSE (* Source operand out of range *)

C2 ← 1;
FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.
C2 Set to 1 if outside range (−263 < source operand < +263); other-

wise, set to 0.
C0, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA Source operand is an SNaN value, ∞, or unsupported format.
#D Source operand is a denormal value.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
Vol. 2A 3-419FSIN—Sine

INSTRUCTION SET REFERENCE, A-L
FSINCOS—Sine and Cosine

Description

Computes both the sine and the cosine of the source operand in register ST(0),
stores the sine in ST(0), and pushes the cosine onto the top of the FPU register stack.
(This instruction is faster than executing the FSIN and FCOS instructions in succes-
sion.)

The source operand must be given in radians and must be within the range −263 to
+263. The following table shows the results obtained when taking the sine and cosine
of various classes of numbers, assuming that underflow does not occur.

If the source operand is outside the acceptable range, the C2 flag in the FPU status
word is set, and the value in register ST(0) remains unchanged. The instruction does
not raise an exception when the source operand is out of range. It is up to the
program to check the C2 flag for out-of-range conditions. Source values outside the
range −263 to +263 can be reduced to the range of the instruction by subtracting an
appropriate integer multiple of 2π or by using the FPREM instruction with a divisor of
2π. See the section titled “Pi” in Chapter 8 of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 1, for a discussion of the proper value to use
for π in performing such reductions.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

D9 FB FSINCOS Valid Valid Compute the sine and cosine of ST(0);
replace ST(0) with the sine, and push the
cosine onto the register stack.

Table 3-46. FSINCOS Results
SRC DEST

ST(0) ST(1) Cosine ST(0) Sine

− ∞ * *

− F − 1 to + 1 − 1 to + 1

− 0 + 1 − 0

+ 0 + 1 + 0

+ F − 1 to + 1 − 1 to + 1

+ ∞ * *

NaN NaN NaN

NOTES:
F Means finite floating-point value.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
3-420 Vol. 2A FSINCOS—Sine and Cosine

INSTRUCTION SET REFERENCE, A-L
Operation

IF ST(0) < 263

THEN
C2 ← 0;
TEMP ← cosine(ST(0));
ST(0) ← sine(ST(0));
TOP ← TOP − 1;
ST(0) ← TEMP;

ELSE (* Source operand out of range *)
C2 ← 1;

FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred; set to 1 of stack overflow

occurs.
Set if result was rounded up; cleared otherwise.

C2 Set to 1 if outside range (−263 < source operand < +263); other-
wise, set to 0.

C0, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow or overflow occurred.
#IA Source operand is an SNaN value, ∞, or unsupported format.
#D Source operand is a denormal value.
#U Result is too small for destination format.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.
Vol. 2A 3-421FSINCOS—Sine and Cosine

INSTRUCTION SET REFERENCE, A-L
Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
3-422 Vol. 2A FSINCOS—Sine and Cosine

INSTRUCTION SET REFERENCE, A-L
FSQRT—Square Root

Description

Computes the square root of the source value in the ST(0) register and stores the
result in ST(0).

The following table shows the results obtained when taking the square root of various
classes of numbers, assuming that neither overflow nor underflow occurs.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

ST(0) ← SquareRoot(ST(0));

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.
C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA Source operand is an SNaN value or unsupported format.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

D9 FA FSQRT Valid Valid Computes square root of ST(0) and stores
the result in ST(0).

Table 3-47. FSQRT Results
SRC (ST(0)) DEST (ST(0))

− ∞ *

− F *

− 0 − 0

+ 0 + 0

+ F + F

+ ∞ + ∞
NaN NaN

NOTES:
F Means finite floating-point value.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
Vol. 2A 3-423FSQRT—Square Root

INSTRUCTION SET REFERENCE, A-L
Source operand is a negative value (except for −0).
#D Source operand is a denormal value.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
3-424 Vol. 2A FSQRT—Square Root

INSTRUCTION SET REFERENCE, A-L
FST/FSTP—Store Floating Point Value

Description

The FST instruction copies the value in the ST(0) register to the destination operand,
which can be a memory location or another register in the FPU register stack. When
storing the value in memory, the value is converted to single-precision or double-
precision floating-point format.

The FSTP instruction performs the same operation as the FST instruction and then
pops the register stack. To pop the register stack, the processor marks the ST(0)
register as empty and increments the stack pointer (TOP) by 1. The FSTP instruction
can also store values in memory in double extended-precision floating-point format.

If the destination operand is a memory location, the operand specifies the address
where the first byte of the destination value is to be stored. If the destination
operand is a register, the operand specifies a register in the register stack relative to
the top of the stack.

If the destination size is single-precision or double-precision, the significand of the
value being stored is rounded to the width of the destination (according to the
rounding mode specified by the RC field of the FPU control word), and the exponent
is converted to the width and bias of the destination format. If the value being stored
is too large for the destination format, a numeric overflow exception (#O) is gener-
ated and, if the exception is unmasked, no value is stored in the destination operand.
If the value being stored is a denormal value, the denormal exception (#D) is not
generated. This condition is simply signaled as a numeric underflow exception (#U)
condition.

If the value being stored is ±0, ±∞, or a NaN, the least-significant bits of the signifi-
cand and the exponent are truncated to fit the destination format. This operation
preserves the value’s identity as a 0, ∞, or NaN.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

D9 /2 FST m32fp Valid Valid Copy ST(0) to m32fp.

DD /2 FST m64fp Valid Valid Copy ST(0) to m64fp.

DD D0+i FST ST(i) Valid Valid Copy ST(0) to ST(i).

D9 /3 FSTP m32fp Valid Valid Copy ST(0) to m32fp and pop register
stack.

DD /3 FSTP m64fp Valid Valid Copy ST(0) to m64fp and pop register
stack.

DB /7 FSTP m80fp Valid Valid Copy ST(0) to m80fp and pop register
stack.

DD D8+i FSTP ST(i) Valid Valid Copy ST(0) to ST(i) and pop register
stack.
Vol. 2A 3-425FST/FSTP—Store Floating Point Value

INSTRUCTION SET REFERENCE, A-L
If the destination operand is a non-empty register, the invalid-operation exception is
not generated.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

DEST ← ST(0);

IF Instruction = FSTP
THEN

PopRegisterStack;
FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Indicates rounding direction of if the floating-point inexact
exception (#P) is generated: 0 ← not roundup; 1 ← roundup.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA Source operand is an SNaN value or unsupported format. Does

not occur if the source operand is in double extended-precision
floating-point format.

#U Result is too small for the destination format.
#O Result is too large for the destination format.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
3-426 Vol. 2A FST/FSTP—Store Floating Point Value

INSTRUCTION SET REFERENCE, A-L
Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
Vol. 2A 3-427FST/FSTP—Store Floating Point Value

INSTRUCTION SET REFERENCE, A-L
FSTCW/FNSTCW—Store x87 FPU Control Word

Description

Stores the current value of the FPU control word at the specified destination in
memory. The FSTCW instruction checks for and handles pending unmasked floating-
point exceptions before storing the control word; the FNSTCW instruction does not.

The assembler issues two instructions for the FSTCW instruction (an FWAIT instruc-
tion followed by an FNSTCW instruction), and the processor executes each of these
instructions in separately. If an exception is generated for either of these instruc-
tions, the save EIP points to the instruction that caused the exception.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

When operating a Pentium or Intel486 processor in MS-DOS compatibility mode, it is
possible (under unusual circumstances) for an FNSTCW instruction to be interrupted
prior to being executed to handle a pending FPU exception. See the section titled
“No-Wait FPU Instructions Can Get FPU Interrupt in Window” in Appendix D of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for a
description of these circumstances. An FNSTCW instruction cannot be interrupted in
this way on a Pentium 4, Intel Xeon, or P6 family processor.

Operation

DEST ← FPUControlWord;

FPU Flags Affected

The C0, C1, C2, and C3 flags are undefined.

Floating-Point Exceptions

None.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

9B D9 /7 FSTCW m2byte Valid Valid Store FPU control word to m2byte
after checking for pending unmasked
floating-point exceptions.

D9 /7 FNSTCW* m2byte Valid Valid Store FPU control word to m2byte
without checking for pending
unmasked floating-point exceptions.

NOTES:
* See IA-32 Architecture Compatibility section below.
3-428 Vol. 2A FSTCW/FNSTCW—Store x87 FPU Control Word

INSTRUCTION SET REFERENCE, A-L
Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
Vol. 2A 3-429FSTCW/FNSTCW—Store x87 FPU Control Word

INSTRUCTION SET REFERENCE, A-L
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
3-430 Vol. 2A FSTCW/FNSTCW—Store x87 FPU Control Word

INSTRUCTION SET REFERENCE, A-L
FSTENV/FNSTENV—Store x87 FPU Environment

Description

Saves the current FPU operating environment at the memory location specified with
the destination operand, and then masks all floating-point exceptions. The FPU oper-
ating environment consists of the FPU control word, status word, tag word, instruc-
tion pointer, data pointer, and last opcode. Figures 8-9 through 8-12 in the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 1, show the layout in
memory of the stored environment, depending on the operating mode of the
processor (protected or real) and the current operand-size attribute (16-bit or
32-bit). In virtual-8086 mode, the real mode layouts are used.

The FSTENV instruction checks for and handles any pending unmasked floating-point
exceptions before storing the FPU environment; the FNSTENV instruction does
not. The saved image reflects the state of the FPU after all floating-point instructions
preceding the FSTENV/FNSTENV instruction in the instruction stream have been
executed.

These instructions are often used by exception handlers because they provide access
to the FPU instruction and data pointers. The environment is typically saved in the
stack. Masking all exceptions after saving the environment prevents floating-point
exceptions from interrupting the exception handler.

The assembler issues two instructions for the FSTENV instruction (an FWAIT instruc-
tion followed by an FNSTENV instruction), and the processor executes each of these
instructions separately. If an exception is generated for either of these instructions,
the save EIP points to the instruction that caused the exception.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

9B D9 /6 FSTENV m14/28byte Valid Valid Store FPU environment to m14byte
or m28byte after checking for
pending unmasked floating-point
exceptions. Then mask all floating-
point exceptions.

D9 /6 FNSTENV*
m14/28byte

Valid Valid Store FPU environment to m14byte
or m28byte without checking for
pending unmasked floating-point
exceptions. Then mask all floating-
point exceptions.

NOTES:
* See IA-32 Architecture Compatibility section below.
Vol. 2A 3-431FSTENV/FNSTENV—Store x87 FPU Environment

INSTRUCTION SET REFERENCE, A-L
IA-32 Architecture Compatibility

When operating a Pentium or Intel486 processor in MS-DOS compatibility mode, it is
possible (under unusual circumstances) for an FNSTENV instruction to be interrupted
prior to being executed to handle a pending FPU exception. See the section titled
“No-Wait FPU Instructions Can Get FPU Interrupt in Window” in Appendix D of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for a
description of these circumstances. An FNSTENV instruction cannot be interrupted in
this way on a Pentium 4, Intel Xeon, or P6 family processor.

Operation

DEST[FPUControlWord] ← FPUControlWord;
DEST[FPUStatusWord] ← FPUStatusWord;
DEST[FPUTagWord] ← FPUTagWord;
DEST[FPUDataPointer] ← FPUDataPointer;
DEST[FPUInstructionPointer] ← FPUInstructionPointer;
DEST[FPULastInstructionOpcode] ← FPULastInstructionOpcode;

FPU Flags Affected

The C0, C1, C2, and C3 are undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
3-432 Vol. 2A FSTENV/FNSTENV—Store x87 FPU Environment

INSTRUCTION SET REFERENCE, A-L
#SS If a memory operand effective address is outside the SS
segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
Vol. 2A 3-433FSTENV/FNSTENV—Store x87 FPU Environment

INSTRUCTION SET REFERENCE, A-L
FSTSW/FNSTSW—Store x87 FPU Status Word

Description

Stores the current value of the x87 FPU status word in the destination location. The
destination operand can be either a two-byte memory location or the AX register. The
FSTSW instruction checks for and handles pending unmasked floating-point excep-
tions before storing the status word; the FNSTSW instruction does not.

The FNSTSW AX form of the instruction is used primarily in conditional branching (for
instance, after an FPU comparison instruction or an FPREM, FPREM1, or FXAM
instruction), where the direction of the branch depends on the state of the FPU condi-
tion code flags. (See the section titled “Branching and Conditional Moves on FPU
Condition Codes” in Chapter 8 of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1.) This instruction can also be used to invoke exception
handlers (by examining the exception flags) in environments that do not use inter-
rupts. When the FNSTSW AX instruction is executed, the AX register is updated
before the processor executes any further instructions. The status stored in the AX
register is thus guaranteed to be from the completion of the prior FPU instruction.

The assembler issues two instructions for the FSTSW instruction (an FWAIT instruc-
tion followed by an FNSTSW instruction), and the processor executes each of these
instructions separately. If an exception is generated for either of these instructions,
the save EIP points to the instruction that caused the exception.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

9B DD /7 FSTSW m2byte Valid Valid Store FPU status word at
m2byte after checking for
pending unmasked floating-
point exceptions.

9B DF E0 FSTSW AX Valid Valid Store FPU status word in AX
register after checking for
pending unmasked floating-
point exceptions.

DD /7 FNSTSW* m2byte Valid Valid Store FPU status word at
m2byte without checking for
pending unmasked floating-
point exceptions.

DF E0 FNSTSW* AX Valid Valid Store FPU status word in AX
register without checking for
pending unmasked floating-
point exceptions.

NOTES:
* See IA-32 Architecture Compatibility section below.
3-434 Vol. 2A FSTSW/FNSTSW—Store x87 FPU Status Word

INSTRUCTION SET REFERENCE, A-L
IA-32 Architecture Compatibility

When operating a Pentium or Intel486 processor in MS-DOS compatibility mode, it is
possible (under unusual circumstances) for an FNSTSW instruction to be interrupted
prior to being executed to handle a pending FPU exception. See the section titled
“No-Wait FPU Instructions Can Get FPU Interrupt in Window” in Appendix D of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for a
description of these circumstances. An FNSTSW instruction cannot be interrupted in
this way on a Pentium 4, Intel Xeon, or P6 family processor.

Operation

DEST ← FPUStatusWord;

FPU Flags Affected

The C0, C1, C2, and C3 are undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
Vol. 2A 3-435FSTSW/FNSTSW—Store x87 FPU Status Word

INSTRUCTION SET REFERENCE, A-L
Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
3-436 Vol. 2A FSTSW/FNSTSW—Store x87 FPU Status Word

INSTRUCTION SET REFERENCE, A-L
FSUB/FSUBP/FISUB—Subtract

Description

Subtracts the source operand from the destination operand and stores the difference
in the destination location. The destination operand is always an FPU data register;
the source operand can be a register or a memory location. Source operands in
memory can be in single-precision or double-precision floating-point format or in
word or doubleword integer format.

The no-operand version of the instruction subtracts the contents of the ST(0) register
from the ST(1) register and stores the result in ST(1). The one-operand version
subtracts the contents of a memory location (either a floating-point or an integer
value) from the contents of the ST(0) register and stores the result in ST(0). The
two-operand version, subtracts the contents of the ST(0) register from the ST(i)
register or vice versa.

The FSUBP instructions perform the additional operation of popping the FPU register
stack following the subtraction. To pop the register stack, the processor marks the
ST(0) register as empty and increments the stack pointer (TOP) by 1. The no-
operand version of the floating-point subtract instructions always results in the
register stack being popped. In some assemblers, the mnemonic for this instruction
is FSUB rather than FSUBP.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

D8 /4 FSUB m32fp Valid Valid Subtract m32fp from ST(0)
and store result in ST(0).

DC /4 FSUB m64fp Valid Valid Subtract m64fp from ST(0)
and store result in ST(0).

D8 E0+i FSUB ST(0), ST(i) Valid Valid Subtract ST(i) from ST(0) and
store result in ST(0).

DC E8+i FSUB ST(i), ST(0) Valid Valid Subtract ST(0) from ST(i) and
store result in ST(i).

DE E8+i FSUBP ST(i), ST(0) Valid Valid Subtract ST(0) from ST(i),
store result in ST(i), and pop
register stack.

DE E9 FSUBP Valid Valid Subtract ST(0) from ST(1),
store result in ST(1), and pop
register stack.

DA /4 FISUB m32int Valid Valid Subtract m32int from ST(0)
and store result in ST(0).

DE /4 FISUB m16int Valid Valid Subtract m16int from ST(0)
and store result in ST(0).
Vol. 2A 3-437FSUB/FSUBP/FISUB—Subtract

INSTRUCTION SET REFERENCE, A-L
The FISUB instructions convert an integer source operand to double extended-preci-
sion floating-point format before performing the subtraction.

Table 3-48 shows the results obtained when subtracting various classes of numbers
from one another, assuming that neither overflow nor underflow occurs. Here, the
SRC value is subtracted from the DEST value (DEST − SRC = result).

When the difference between two operands of like sign is 0, the result is +0, except
for the round toward −∞ mode, in which case the result is −0. This instruction also
guarantees that +0 − (−0) = +0, and that −0 − (+0) = −0. When the source operand is
an integer 0, it is treated as a +0.

When one operand is ∞, the result is ∞ of the expected sign. If both operands are ∞ of
the same sign, an invalid-operation exception is generated.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

IF Instruction = FISUB
THEN

DEST ← DEST − ConvertToDoubleExtendedPrecisionFP(SRC);
ELSE (* Source operand is floating-point value *)

DEST ← DEST − SRC;
FI;

Table 3-48. FSUB/FSUBP/FISUB Results

SRC

− ∞ − F or − I − 0 + 0 + F or + I + ∞ NaN

− ∞ * − ∞ − ∞ − ∞ − ∞ − ∞ NaN

− F + ∞ ±F or ±0 DEST DEST − F − ∞ NaN

DEST − 0 + ∞ −SRC ±0 − 0 − SRC − ∞ NaN

+ 0 + ∞ −SRC + 0 ±0 − SRC − ∞ NaN

+ F + ∞ + F DEST DEST ±F or ±0 − ∞ NaN

+ ∞ + ∞ + ∞ + ∞ + ∞ + ∞ * NaN

NaN NaN NaN NaN NaN NaN NaN NaN

NOTES:
F Means finite floating-point value.
I Means integer.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
3-438 Vol. 2A FSUB/FSUBP/FISUB—Subtract

INSTRUCTION SET REFERENCE, A-L
IF Instruction = FSUBP
THEN

PopRegisterStack;
FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.
C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA Operand is an SNaN value or unsupported format.

Operands are infinities of like sign.
#D Source operand is a denormal value.
#U Result is too small for destination format.
#O Result is too large for destination format.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.
Vol. 2A 3-439FSUB/FSUBP/FISUB—Subtract

INSTRUCTION SET REFERENCE, A-L
Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
3-440 Vol. 2A FSUB/FSUBP/FISUB—Subtract

INSTRUCTION SET REFERENCE, A-L
FSUBR/FSUBRP/FISUBR—Reverse Subtract

Description

Subtracts the destination operand from the source operand and stores the difference
in the destination location. The destination operand is always an FPU register; the
source operand can be a register or a memory location. Source operands in memory
can be in single-precision or double-precision floating-point format or in word or
doubleword integer format.

These instructions perform the reverse operations of the FSUB, FSUBP, and FISUB
instructions. They are provided to support more efficient coding.

The no-operand version of the instruction subtracts the contents of the ST(1) register
from the ST(0) register and stores the result in ST(1). The one-operand version
subtracts the contents of the ST(0) register from the contents of a memory location
(either a floating-point or an integer value) and stores the result in ST(0). The two-
operand version, subtracts the contents of the ST(i) register from the ST(0) register
or vice versa.

The FSUBRP instructions perform the additional operation of popping the FPU register
stack following the subtraction. To pop the register stack, the processor marks the
ST(0) register as empty and increments the stack pointer (TOP) by 1. The no-
operand version of the floating-point reverse subtract instructions always results in

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

D8 /5 FSUBR m32fp Valid Valid Subtract ST(0) from m32fp and
store result in ST(0).

DC /5 FSUBR m64fp Valid Valid Subtract ST(0) from m64fp and
store result in ST(0).

D8 E8+i FSUBR ST(0), ST(i) Valid Valid Subtract ST(0) from ST(i) and
store result in ST(0).

DC E0+i FSUBR ST(i), ST(0) Valid Valid Subtract ST(i) from ST(0) and
store result in ST(i).

DE E0+i FSUBRP ST(i), ST(0) Valid Valid Subtract ST(i) from ST(0), store
result in ST(i), and pop register
stack.

DE E1 FSUBRP Valid Valid Subtract ST(1) from ST(0),
store result in ST(1), and pop
register stack.

DA /5 FISUBR m32int Valid Valid Subtract ST(0) from m32int and
store result in ST(0).

DE /5 FISUBR m16int Valid Valid Subtract ST(0) from m16int and
store result in ST(0).
Vol. 2A 3-441FSUBR/FSUBRP/FISUBR—Reverse Subtract

INSTRUCTION SET REFERENCE, A-L
the register stack being popped. In some assemblers, the mnemonic for this instruc-
tion is FSUBR rather than FSUBRP.

The FISUBR instructions convert an integer source operand to double extended-
precision floating-point format before performing the subtraction.

The following table shows the results obtained when subtracting various classes of
numbers from one another, assuming that neither overflow nor underflow occurs.
Here, the DEST value is subtracted from the SRC value (SRC − DEST = result).

When the difference between two operands of like sign is 0, the result is +0, except
for the round toward −∞ mode, in which case the result is −0. This instruction also
guarantees that +0 − (−0) = +0, and that −0 − (+0) = −0. When the source operand is
an integer 0, it is treated as a +0.

When one operand is ∞, the result is ∞ of the expected sign. If both operands are ∞ of
the same sign, an invalid-operation exception is generated.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

IF Instruction = FISUBR
THEN

DEST ← ConvertToDoubleExtendedPrecisionFP(SRC) − DEST;
ELSE (* Source operand is floating-point value *)

DEST ← SRC − DEST; FI;

Table 3-49. FSUBR/FSUBRP/FISUBR Results

SRC

− ∞ −F or −I −0 +0 +F or +I + ∞ NaN

− ∞ * + ∞ + ∞ + ∞ + ∞ + ∞ NaN

− F − ∞ ±F or ±0 −DEST −DEST + F + ∞ NaN

DEST − 0 − ∞ SRC ±0 + 0 SRC + ∞ NaN

+ 0 − ∞ SRC − 0 ±0 SRC + ∞ NaN

+ F − ∞ − F −DEST −DEST ±F or ±0 + ∞ NaN

+ ∞ − ∞ − ∞ − ∞ − ∞ − ∞ * NaN

NaN NaN NaN NaN NaN NaN NaN NaN

NOTES:
F Means finite floating-point value.
I Means integer.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
3-442 Vol. 2A FSUBR/FSUBRP/FISUBR—Reverse Subtract

INSTRUCTION SET REFERENCE, A-L
IF Instruction = FSUBRP
THEN

PopRegisterStack; FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.
C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA Operand is an SNaN value or unsupported format.

Operands are infinities of like sign.
#D Source operand is a denormal value.
#U Result is too small for destination format.
#O Result is too large for destination format.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.
Vol. 2A 3-443FSUBR/FSUBRP/FISUBR—Reverse Subtract

INSTRUCTION SET REFERENCE, A-L
Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
3-444 Vol. 2A FSUBR/FSUBRP/FISUBR—Reverse Subtract

INSTRUCTION SET REFERENCE, A-L
FTST—TEST

Description

Compares the value in the ST(0) register with 0.0 and sets the condition code flags
C0, C2, and C3 in the FPU status word according to the results (see table below).

This instruction performs an “unordered comparison.” An unordered comparison also
checks the class of the numbers being compared (see “FXAM—Examine ModR/M” in
this chapter). If the value in register ST(0) is a NaN or is in an undefined format, the
condition flags are set to “unordered” and the invalid operation exception is gener-
ated.

The sign of zero is ignored, so that (– 0.0 ← +0.0).

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

CASE (relation of operands) OF
Not comparable: C3, C2, C0 ← 111;
ST(0) > 0.0: C3, C2, C0 ← 000;
ST(0) < 0.0: C3, C2, C0 ← 001;
ST(0) = 0.0: C3, C2, C0 ← 100;

ESAC;

FPU Flags Affected
C1 Set to 0.
C0, C2, C3 See Table 3-50.

Floating-Point Exceptions
#IS Stack underflow occurred.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

D9 E4 FTST Valid Valid Compare ST(0) with 0.0.

Table 3-50. FTST Results
Condition C3 C2 C0

ST(0) > 0.0 0 0 0

ST(0) < 0.0 0 0 1

ST(0) = 0.0 1 0 0

Unordered 1 1 1
Vol. 2A 3-445FTST—TEST

INSTRUCTION SET REFERENCE, A-L
#IA The source operand is a NaN value or is in an unsupported
format.

#D The source operand is a denormal value.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
3-446 Vol. 2A FTST—TEST

INSTRUCTION SET REFERENCE, A-L
FUCOM/FUCOMP/FUCOMPP—Unordered Compare Floating Point Values

Description

Performs an unordered comparison of the contents of register ST(0) and ST(i) and
sets condition code flags C0, C2, and C3 in the FPU status word according to the
results (see the table below). If no operand is specified, the contents of registers
ST(0) and ST(1) are compared. The sign of zero is ignored, so that –0.0 is equal to
+0.0.

An unordered comparison checks the class of the numbers being compared (see
“FXAM—Examine ModR/M” in this chapter). The FUCOM/FUCOMP/FUCOMPP instruc-
tions perform the same operations as the FCOM/FCOMP/FCOMPP instructions. The
only difference is that the FUCOM/FUCOMP/FUCOMPP instructions raise the invalid-
arithmetic-operand exception (#IA) only when either or both operands are an SNaN
or are in an unsupported format; QNaNs cause the condition code flags to be set to
unordered, but do not cause an exception to be generated. The
FCOM/FCOMP/FCOMPP instructions raise an invalid-operation exception when either
or both of the operands are a NaN value of any kind or are in an unsupported format.

As with the FCOM/FCOMP/FCOMPP instructions, if the operation results in an invalid-
arithmetic-operand exception being raised, the condition code flags are set only if the
exception is masked.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

DD E0+i FUCOM ST(i) Valid Valid Compare ST(0) with ST(i).

DD E1 FUCOM Valid Valid Compare ST(0) with ST(1).

DD E8+i FUCOMP ST(i) Valid Valid Compare ST(0) with ST(i) and pop
register stack.

DD E9 FUCOMP Valid Valid Compare ST(0) with ST(1) and pop
register stack.

DA E9 FUCOMPP Valid Valid Compare ST(0) with ST(1) and pop
register stack twice.

Table 3-51. FUCOM/FUCOMP/FUCOMPP Results
Comparison Results* C3 C2 C0

ST0 > ST(i) 0 0 0

ST0 < ST(i) 0 0 1

ST0 = ST(i) 1 0 0

Unordered 1 1 1

NOTES:
* Flags not set if unmasked invalid-arithmetic-operand (#IA) exception is generated.
Vol. 2A 3-447FUCOM/FUCOMP/FUCOMPP—Unordered Compare Floating Point Values

INSTRUCTION SET REFERENCE, A-L
The FUCOMP instruction pops the register stack following the comparison operation
and the FUCOMPP instruction pops the register stack twice following the comparison
operation. To pop the register stack, the processor marks the ST(0) register as
empty and increments the stack pointer (TOP) by 1.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

CASE (relation of operands) OF
ST > SRC: C3, C2, C0 ← 000;
ST < SRC: C3, C2, C0 ← 001;
ST = SRC: C3, C2, C0 ← 100;

ESAC;

IF ST(0) or SRC = QNaN, but not SNaN or unsupported format
THEN

C3, C2, C0 ← 111;
ELSE (* ST(0) or SRC is SNaN or unsupported format *)

 #IA;
IF FPUControlWord.IM = 1

THEN
C3, C2, C0 ← 111;

FI;
FI;

IF Instruction = FUCOMP
THEN

PopRegisterStack;
FI;

IF Instruction = FUCOMPP
THEN

PopRegisterStack;
FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.
C0, C2, C3 See Table 3-51.

Floating-Point Exceptions
#IS Stack underflow occurred.
3-448 Vol. 2A FUCOM/FUCOMP/FUCOMPP—Unordered Compare Floating Point Values

INSTRUCTION SET REFERENCE, A-L
#IA One or both operands are SNaN values or have unsupported
formats. Detection of a QNaN value in and of itself does not raise
an invalid-operand exception.

#D One or both operands are denormal values.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
Vol. 2A 3-449FUCOM/FUCOMP/FUCOMPP—Unordered Compare Floating Point Values

INSTRUCTION SET REFERENCE, A-L
FXAM—Examine ModR/M

Description

Examines the contents of the ST(0) register and sets the condition code flags C0, C2,
and C3 in the FPU status word to indicate the class of value or number in the register
(see the table below).
.

The C1 flag is set to the sign of the value in ST(0), regardless of whether the register
is empty or full.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

C1 ← sign bit of ST; (* 0 for positive, 1 for negative *)

CASE (class of value or number in ST(0)) OF
Unsupported:C3, C2, C0 ← 000;
NaN: C3, C2, C0 ← 001;
Normal: C3, C2, C0 ← 010;
Infinity: C3, C2, C0 ← 011;
Zero: C3, C2, C0 ← 100;
Empty: C3, C2, C0 ← 101;
Denormal: C3, C2, C0 ← 110;

ESAC;

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

D9 E5 FXAM Valid Valid Classify value or number in ST(0).

Table 3-52. FXAM Results
Class C3 C2 C0

Unsupported 0 0 0

NaN 0 0 1

Normal finite number 0 1 0

Infinity 0 1 1

Zero 1 0 0

Empty 1 0 1

Denormal number 1 1 0
3-450 Vol. 2A FXAM—Examine ModR/M

INSTRUCTION SET REFERENCE, A-L
FPU Flags Affected
C1 Sign of value in ST(0).
C0, C2, C3 See Table 3-52.

Floating-Point Exceptions

None.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
Vol. 2A 3-451FXAM—Examine ModR/M

INSTRUCTION SET REFERENCE, A-L
FXCH—Exchange Register Contents

Description

Exchanges the contents of registers ST(0) and ST(i). If no source operand is speci-
fied, the contents of ST(0) and ST(1) are exchanged.

This instruction provides a simple means of moving values in the FPU register stack
to the top of the stack [ST(0)], so that they can be operated on by those floating-
point instructions that can only operate on values in ST(0). For example, the
following instruction sequence takes the square root of the third register from the top
of the register stack:

FXCH ST(3);
FSQRT;
FXCH ST(3);

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

IF (Number-of-operands) is 1
THEN

temp ← ST(0);
ST(0) ← SRC;
SRC ← temp;

ELSE
temp ← ST(0);
ST(0) ← ST(1);
ST(1) ← temp;

FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred; otherwise, set to 1.
C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

D9 C8+i FXCH ST(i) Valid Valid Exchange the contents of ST(0) and
ST(i).

D9 C9 FXCH Valid Valid Exchange the contents of ST(0) and
ST(1).
3-452 Vol. 2A FXCH—Exchange Register Contents

INSTRUCTION SET REFERENCE, A-L
Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
Vol. 2A 3-453FXCH—Exchange Register Contents

INSTRUCTION SET REFERENCE, A-L
FXRSTOR—Restore x87 FPU, MMX , XMM, and MXCSR State

Instruction Operand Encoding

Description

Reloads the x87 FPU, MMX technology, XMM, and MXCSR registers from the 512-byte
memory image specified in the source operand. This data should have been written
to memory previously using the FXSAVE instruction, and in the same format as
required by the operating modes. The first byte of the data should be located on a
16-byte boundary. There are three distinct layouts of the FXSAVE state map: one for
legacy and compatibility mode, a second format for 64-bit mode FXSAVE/FXRSTOR
with REX.W=0, and the third format is for 64-bit mode with FXSAVE64/FXRSTOR64.
Table 3-53 shows the layout of the legacy/compatibility mode state information in
memory and describes the fields in the memory image for the FXRSTOR and FXSAVE
instructions. Table 3-56 shows the layout of the 64-bit mode state information when
REX.W is set (FXSAVE64/FXRSTOR64). Table 3-57 shows the layout of the 64-bit
mode state information when REX.W is clear (FXSAVE/FXRSTOR).

The state image referenced with an FXRSTOR instruction must have been saved
using an FXSAVE instruction or be in the same format as required by Table 3-53,
Table 3-56, or Table 3-57. Referencing a state image saved with an FSAVE, FNSAVE
instruction or incompatible field layout will result in an incorrect state restoration.

The FXRSTOR instruction does not flush pending x87 FPU exceptions. To check and
raise exceptions when loading x87 FPU state information with the FXRSTOR instruc-
tion, use an FWAIT instruction after the FXRSTOR instruction.

If the OSFXSR bit in control register CR4 is not set, the FXRSTOR instruction may not
restore the states of the XMM and MXCSR registers. This behavior is implementation
dependent.

If the MXCSR state contains an unmasked exception with a corresponding status flag
also set, loading the register with the FXRSTOR instruction will not result in a SIMD
floating-point error condition being generated. Only the next occurrence of this
unmasked exception will result in the exception being generated.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F AE /1 FXRSTOR
m512byte

M Valid Valid Restore the x87 FPU, MMX,
XMM, and MXCSR register
state from m512byte.

REX.W+ 0F AE
/1

FXRSTOR64
m512byte

M Valid N.E. Restore the x87 FPU, MMX,
XMM, and MXCSR register
state from m512byte.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA
3-454 Vol. 2A FXRSTOR—Restore x87 FPU, MMX , XMM, and MXCSR State

INSTRUCTION SET REFERENCE, A-L
Bits 16 through 32 of the MXCSR register are defined as reserved and should be set
to 0. Attempting to write a 1 in any of these bits from the saved state image will
result in a general protection exception (#GP) being generated.

Bytes 464:511 of an FXSAVE image are available for software use. FXRSTOR ignores
the content of bytes 464:511 in an FXSAVE state image.

Operation

(x87 FPU, MMX, XMM7-XMM0, MXCSR) ← Load(SRC);

x87 FPU and SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS or GS segments.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment. (See alignment check exception [#AC]
below.)
For an attempt to set reserved bits in MXCSR.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3] = 1.

If CR0.EM[bit 2] = 1.
#UD If CPUID.01H:EDX.FXSR[bit 24] = 0.

If instruction is preceded by a LOCK prefix.
#AC If this exception is disabled a general protection exception

(#GP) is signaled if the memory operand is not aligned on a 16-
byte boundary, as described above. If the alignment check
exception (#AC) is enabled (and the CPL is 3), signaling of #AC
is not guaranteed and may vary with implementation, as
follows. In all implementations where #AC is not signaled, a
general protection exception is signaled in its place. In addition,
the width of the alignment check may also vary with implemen-
tation. For instance, for a given implementation, an alignment
check exception might be signaled for a 2-byte misalignment,
whereas a general protection exception might be signaled for all
other misalignments (4-, 8-, or 16-byte misalignments).

#UD If the LOCK prefix is used.
Vol. 2A 3-455FXRSTOR—Restore x87 FPU, MMX , XMM, and MXCSR State

INSTRUCTION SET REFERENCE, A-L
Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 16-byte boundary,

regardless of segment.
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
For an attempt to set reserved bits in MXCSR.

#NM If CR0.TS[bit 3] = 1.
If CR0.EM[bit 2] = 1.

#UD If CPUID.01H:EDX.FXSR[bit 24] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.
#AC For unaligned memory reference.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.
For an attempt to set reserved bits in MXCSR.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3] = 1.

If CR0.EM[bit 2] = 1.
#UD If CPUID.01H:EDX.FXSR[bit 24] = 0.

If instruction is preceded by a LOCK prefix.
#AC If this exception is disabled a general protection exception

(#GP) is signaled if the memory operand is not aligned on a
16-byte boundary, as described above. If the alignment check
exception (#AC) is enabled (and the CPL is 3), signaling of #AC
is not guaranteed and may vary with implementation, as
follows. In all implementations where #AC is not signaled, a
general protection exception is signaled in its place. In addition,
the width of the alignment check may also vary with implemen-
3-456 Vol. 2A FXRSTOR—Restore x87 FPU, MMX , XMM, and MXCSR State

INSTRUCTION SET REFERENCE, A-L
tation. For instance, for a given implementation, an alignment
check exception might be signaled for a 2-byte misalignment,
whereas a general protection exception might be signaled for all
other misalignments (4-, 8-, or 16-byte misalignments).
Vol. 2A 3-457FXRSTOR—Restore x87 FPU, MMX , XMM, and MXCSR State

INSTRUCTION SET REFERENCE, A-L
FXSAVE—Save x87 FPU, MMX Technology, and SSE State

Instruction Operand Encoding

Description

Saves the current state of the x87 FPU, MMX technology, XMM, and MXCSR registers
to a 512-byte memory location specified in the destination operand. The content
layout of the 512 byte region depends on whether the processor is operating in non-
64-bit operating modes or 64-bit sub-mode of IA-32e mode.

Bytes 464:511 are available to software use. The processor does not write to bytes
464:511 of an FXSAVE area.

The operation of FXSAVE in non-64-bit modes is described first.

Non-64-Bit Mode Operation

Table 3-53 shows the layout of the state information in memory when the processor
is operating in legacy modes.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F AE /0 FXSAVE
m512byte

M Valid Valid Save the x87 FPU, MMX,
XMM, and MXCSR register
state to m512byte.

REX.W+ 0F AE
/0

FXSAVE64
m512byte

M Valid N.E. Save the x87 FPU, MMX,
XMM, and MXCSR register
state to m512byte.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA

Table 3-53. Non-64-bit-Mode Layout of FXSAVE and FXRSTOR
Memory Region

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Rsrvd CS FPU IP FOP Rs
rvd

FTW FSW FCW 0

MXCSR_MASK MXCSR Rsrvd DS FPU DP 16

Reserved ST0/MM0 32

Reserved ST1/MM1 48

Reserved ST2/MM2 64

Reserved ST3/MM3 80

Reserved ST4/MM4 96
3-458 Vol. 2A FXSAVE—Save x87 FPU, MMX Technology, and SSE State

INSTRUCTION SET REFERENCE, A-L
The destination operand contains the first byte of the memory image, and it must be
aligned on a 16-byte boundary. A misaligned destination operand will result in a
general-protection (#GP) exception being generated (or in some cases, an alignment
check exception [#AC]).

Reserved ST5/MM5 112

Reserved ST6/MM6 128

Reserved ST7/MM7 144

XMM0 160

XMM1 176

XMM2 192

XMM3 208

XMM4 224

XMM5 240

XMM6 256

XMM7 272

Reserved 288

Reserved 304

Reserved 320

Reserved 336

Reserved 352

Reserved 368

Reserved 384

Reserved 400

Reserved 416

Reserved 432

Reserved 448

Available 464

Available 480

Available 496

Table 3-53. Non-64-bit-Mode Layout of FXSAVE and FXRSTOR
Memory Region (Contd.)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Vol. 2A 3-459FXSAVE—Save x87 FPU, MMX Technology, and SSE State

INSTRUCTION SET REFERENCE, A-L
The FXSAVE instruction is used when an operating system needs to perform a
context switch or when an exception handler needs to save and examine the current
state of the x87 FPU, MMX technology, and/or XMM and MXCSR registers.

The fields in Table 3-53 are defined in Table 3-54.

Table 3-54. Field Definitions

Field Definition

FCW x87 FPU Control Word (16 bits). See Figure 8-6 in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1, for the layout of
the x87 FPU control word.

FSW x87 FPU Status Word (16 bits). See Figure 8-4 in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1, for the layout of
the x87 FPU status word.

Abridged FTW x87 FPU Tag Word (8 bits). The tag information saved here is abridged, as
described in the following paragraphs.

FOP x87 FPU Opcode (16 bits). The lower 11 bits of this field contain the
opcode, upper 5 bits are reserved. See Figure 8-8 in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1, for the layout of
the x87 FPU opcode field.

FPU IP x87 FPU Instruction Pointer Offset (32 bits). The contents of this field
differ depending on the current addressing mode (32-bit or 16-bit) of the
processor when the FXSAVE instruction was executed:

32-bit mode — 32-bit IP offset.

16-bit mode — low 16 bits are IP offset; high 16 bits are reserved.

See “x87 FPU Instruction and Operand (Data) Pointers” in Chapter 8 of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1,
for a description of the x87 FPU instruction pointer.

CS x87 FPU Instruction Pointer Selector (16 bits).

FPU DP x87 FPU Instruction Operand (Data) Pointer Offset (32 bits). The contents
of this field differ depending on the current addressing mode (32-bit or 16-
bit) of the processor when the FXSAVE instruction was executed:

32-bit mode — 32-bit DP offset.

16-bit mode — low 16 bits are DP offset; high 16 bits are reserved.

See “x87 FPU Instruction and Operand (Data) Pointers” in Chapter 8 of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1,
for a description of the x87 FPU operand pointer.

DS x87 FPU Instruction Operand (Data) Pointer Selector (16 bits).
3-460 Vol. 2A FXSAVE—Save x87 FPU, MMX Technology, and SSE State

INSTRUCTION SET REFERENCE, A-L
The FXSAVE instruction saves an abridged version of the x87 FPU tag word in the
FTW field (unlike the FSAVE instruction, which saves the complete tag word). The tag
information is saved in physical register order (R0 through R7), rather than in top-of-
stack (TOS) order. With the FXSAVE instruction, however, only a single bit (1 for valid
or 0 for empty) is saved for each tag. For example, assume that the tag word is
currently set as follows:

R7 R6 R5 R4 R3 R2 R1 R0
11 xx xx xx 11 11 11 11

Here, 11B indicates empty stack elements and “xx” indicates valid (00B), zero (01B),
or special (10B).

For this example, the FXSAVE instruction saves only the following 8 bits of informa-
tion:

R7 R6 R5 R4 R3 R2 R1 R0
0 1 1 1 0 0 0 0

MXCSR MXCSR Register State (32 bits). See Figure 10-3 in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1, for the layout of
the MXCSR register. If the OSFXSR bit in control register CR4 is not set, the
FXSAVE instruction may not save this register. This behavior is
implementation dependent.

MXCSR_
MASK

MXCSR_MASK (32 bits). This mask can be used to adjust values written to
the MXCSR register, ensuring that reserved bits are set to 0. Set the mask
bits and flags in MXCSR to the mode of operation desired for SSE and SSE2
SIMD floating-point instructions. See “Guidelines for Writing to the MXCSR
Register” in Chapter 11 of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1, for instructions for how to determine and
use the MXCSR_MASK value.

ST0/MM0 through
ST7/MM7

x87 FPU or MMX technology registers. These 80-bit fields contain the x87
FPU data registers or the MMX technology registers, depending on the
state of the processor prior to the execution of the FXSAVE instruction. If
the processor had been executing x87 FPU instruction prior to the FXSAVE
instruction, the x87 FPU data registers are saved; if it had been executing
MMX instructions (or SSE or SSE2 instructions that operated on the MMX
technology registers), the MMX technology registers are saved. When the
MMX technology registers are saved, the high 16 bits of the field are
reserved.

XMM0 through
XMM7

XMM registers (128 bits per field). If the OSFXSR bit in control register CR4
is not set, the FXSAVE instruction may not save these registers. This
behavior is implementation dependent.

Table 3-54. Field Definitions (Contd.)

Field Definition
Vol. 2A 3-461FXSAVE—Save x87 FPU, MMX Technology, and SSE State

INSTRUCTION SET REFERENCE, A-L
Here, a 1 is saved for any valid, zero, or special tag, and a 0 is saved for any empty
tag.

The operation of the FXSAVE instruction differs from that of the FSAVE instruction,
the as follows:
• FXSAVE instruction does not check for pending unmasked floating-point

exceptions. (The FXSAVE operation in this regard is similar to the operation of the
FNSAVE instruction).

• After the FXSAVE instruction has saved the state of the x87 FPU, MMX
technology, XMM, and MXCSR registers, the processor retains the contents of the
registers. Because of this behavior, the FXSAVE instruction cannot be used by an
application program to pass a “clean” x87 FPU state to a procedure, since it
retains the current state. To clean the x87 FPU state, an application must
explicitly execute an FINIT instruction after an FXSAVE instruction to reinitialize
the x87 FPU state.

• The format of the memory image saved with the FXSAVE instruction is the same
regardless of the current addressing mode (32-bit or 16-bit) and operating mode
(protected, real address, or system management). This behavior differs from the
FSAVE instructions, where the memory image format is different depending on
the addressing mode and operating mode. Because of the different image
formats, the memory image saved with the FXSAVE instruction cannot be
restored correctly with the FRSTOR instruction, and likewise the state saved with
the FSAVE instruction cannot be restored correctly with the FXRSTOR instruction.

The FSAVE format for FTW can be recreated from the FTW valid bits and the stored
80-bit FP data (assuming the stored data was not the contents of MMX technology
registers) using Table 3-55.

Table 3-55. Recreating FSAVE Format

Exponent
all 1’s

Exponent
all 0’s

Fraction
all 0’s

J and M
bits

FTW valid
bit x87 FTW

0 0 0 0x 1 Special 10

0 0 0 1x 1 Valid 00

0 0 1 00 1 Special 10

0 0 1 10 1 Valid 00

0 1 0 0x 1 Special 10

0 1 0 1x 1 Special 10

0 1 1 00 1 Zero 01

0 1 1 10 1 Special 10

1 0 0 1x 1 Special 10

1 0 0 1x 1 Special 10
3-462 Vol. 2A FXSAVE—Save x87 FPU, MMX Technology, and SSE State

INSTRUCTION SET REFERENCE, A-L
The J-bit is defined to be the 1-bit binary integer to the left of the decimal place in the
significand. The M-bit is defined to be the most significant bit of the fractional portion
of the significand (i.e., the bit immediately to the right of the decimal place).

When the M-bit is the most significant bit of the fractional portion of the significand,
it must be 0 if the fraction is all 0’s.

IA-32e Mode Operation

In compatibility sub-mode of IA-32e mode, legacy SSE registers, XMM0 through
XMM7, are saved according to the legacy FXSAVE map. In 64-bit mode, all of the SSE
registers, XMM0 through XMM15, are saved. Additionally, there are two different
layouts of the FXSAVE map in 64-bit mode, corresponding to FXSAVE64 (which
requires REX.W=1) and FXSAVE (REX.W=0). In the FXSAVE64 map (Table 3-56), the
FPU IP and FPU DP pointers are 64-bit wide. In the FXSAVE map for 64-bit mode
(Table 3-57), the FPU IP and FPU DP pointers are 32-bits.

1 0 1 00 1 Special 10

1 0 1 10 1 Special 10

For all legal combinations above. 0 Empty 11

Table 3-56. Layout of the 64-bit-mode FXSAVE64 Map
(requires REX.W = 1)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FPU IP FOP Re-
served

FTW FSW FCW 0

MXCSR_MASK MXCSR FPU DP 16

Reserved ST0/MM0 32

Reserved ST1/MM1 48

Reserved ST2/MM2 64

Reserved ST3/MM3 80

Reserved ST4/MM4 96

Reserved ST5/MM5 112

Reserved ST6/MM6 128

Reserved ST7/MM7 144

XMM0 160

XMM1 176

Table 3-55. Recreating FSAVE Format (Contd.)

Exponent
all 1’s

Exponent
all 0’s

Fraction
all 0’s

J and M
bits

FTW valid
bit x87 FTW
Vol. 2A 3-463FXSAVE—Save x87 FPU, MMX Technology, and SSE State

INSTRUCTION SET REFERENCE, A-L
XMM2 192

XMM3 208

XMM4 224

XMM5 240

XMM6 256

XMM7 272

XMM8 288

XMM9 304

XMM10 320

XMM11 336

XMM12 352

XMM13 368

XMM14 384

XMM15 400

Reserved 416

Reserved 432

Reserved 448

Available 464

Available 480

Available 496

Table 3-57. Layout of the 64-bit-mode FXSAVE Map (REX.W = 0)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved CS FPU IP FOP Re-
served

FTW FSW FCW 0

MXCSR_MASK MXCSR Re-
served

DS FPU DP 16

Reserved ST0/MM0 32

Reserved ST1/MM1 48

Reserved ST2/MM2 64

Reserved ST3/MM3 80

Table 3-56. Layout of the 64-bit-mode FXSAVE64 Map
(requires REX.W = 1) (Contd.)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
3-464 Vol. 2A FXSAVE—Save x87 FPU, MMX Technology, and SSE State

INSTRUCTION SET REFERENCE, A-L
Operation

IF 64-Bit Mode
THEN

IF REX.W = 1
THEN

Reserved ST4/MM4 96

Reserved ST5/MM5 112

Reserved ST6/MM6 128

Reserved ST7/MM7 144

XMM0 160

XMM1 176

XMM2 192

XMM3 208

XMM4 224

XMM5 240

XMM6 256

XMM7 272

XMM8 288

XMM9 304

XMM10 320

XMM11 336

XMM12 352

XMM13 368

XMM14 384

XMM15 400

Reserved 416

Reserved 432

Reserved 448

Available 464

Available 480

Available 496

Table 3-57. Layout of the 64-bit-mode FXSAVE Map (REX.W = 0) (Contd.) (Contd.)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Vol. 2A 3-465FXSAVE—Save x87 FPU, MMX Technology, and SSE State

INSTRUCTION SET REFERENCE, A-L
DEST ← Save64BitPromotedFxsave(x87 FPU, MMX, XMM7-XMM0,
MXCSR);

ELSE
DEST ← Save64BitDefaultFxsave(x87 FPU, MMX, XMM7-XMM0, MXCSR);

FI;
ELSE

DEST ← SaveLegacyFxsave(x87 FPU, MMX, XMM7-XMM0, MXCSR);
FI;

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS or GS segments.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment. (See the description of the alignment
check exception [#AC] below.)

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3] = 1.

If CR0.EM[bit 2] = 1.
#UD If CPUID.01H:EDX.FXSR[bit 24] = 0.
#UD If the LOCK prefix is used.
#AC If this exception is disabled a general protection exception

(#GP) is signaled if the memory operand is not aligned on a
16-byte boundary, as described above. If the alignment check
exception (#AC) is enabled (and the CPL is 3), signaling of #AC
is not guaranteed and may vary with implementation, as
follows. In all implementations where #AC is not signaled, a
general protection exception is signaled in its place. In addition,
the width of the alignment check may also vary with implemen-
tation. For instance, for a given implementation, an alignment
check exception might be signaled for a 2-byte misalignment,
whereas a general protection exception might be signaled for all
other misalignments (4-, 8-, or 16-byte misalignments).

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 16-byte boundary,

regardless of segment.
If any part of the operand lies outside the effective address
space from 0 to FFFFH.

#NM If CR0.TS[bit 3] = 1.
If CR0.EM[bit 2] = 1.
3-466 Vol. 2A FXSAVE—Save x87 FPU, MMX Technology, and SSE State

INSTRUCTION SET REFERENCE, A-L
#UD If CPUID.01H:EDX.FXSR[bit 24] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.
#AC For unaligned memory reference.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3] = 1.

If CR0.EM[bit 2] = 1.
#UD If CPUID.01H:EDX.FXSR[bit 24] = 0.

If the LOCK prefix is used.
#AC If this exception is disabled a general protection exception

(#GP) is signaled if the memory operand is not aligned on a
16-byte boundary, as described above. If the alignment check
exception (#AC) is enabled (and the CPL is 3), signaling of #AC
is not guaranteed and may vary with implementation, as
follows. In all implementations where #AC is not signaled, a
general protection exception is signaled in its place. In addition,
the width of the alignment check may also vary with implemen-
tation. For instance, for a given implementation, an alignment
check exception might be signaled for a 2-byte misalignment,
whereas a general protection exception might be signaled for all
other misalignments (4-, 8-, or 16-byte misalignments).

Implementation Note

The order in which the processor signals general-protection (#GP) and page-fault
(#PF) exceptions when they both occur on an instruction boundary is given in Table
5-2 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
3B. This order vary for FXSAVE for different processor implementations.
Vol. 2A 3-467FXSAVE—Save x87 FPU, MMX Technology, and SSE State

INSTRUCTION SET REFERENCE, A-L
FXTRACT—Extract Exponent and Significand

Description

Separates the source value in the ST(0) register into its exponent and significand,
stores the exponent in ST(0), and pushes the significand onto the register stack.
Following this operation, the new top-of-stack register ST(0) contains the value of
the original significand expressed as a floating-point value. The sign and significand
of this value are the same as those found in the source operand, and the exponent is
3FFFH (biased value for a true exponent of zero). The ST(1) register contains the
value of the original operand’s true (unbiased) exponent expressed as a floating-
point value. (The operation performed by this instruction is a superset of the IEEE-
recommended logb(x) function.)

This instruction and the F2XM1 instruction are useful for performing power and range
scaling operations. The FXTRACT instruction is also useful for converting numbers in
double extended-precision floating-point format to decimal representations (e.g., for
printing or displaying).

If the floating-point zero-divide exception (#Z) is masked and the source operand is
zero, an exponent value of –∞ is stored in register ST(1) and 0 with the sign of the
source operand is stored in register ST(0).

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

TEMP ← Significand(ST(0));
ST(0) ← Exponent(ST(0));
TOP← TOP − 1;
ST(0) ← TEMP;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred; set to 1 if stack overflow

occurred.
C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow or overflow occurred.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

D9 F4 FXTRACT Valid Valid Separate value in ST(0) into exponent and
significand, store exponent in ST(0), and
push the significand onto the register
stack.
3-468 Vol. 2A FXTRACT—Extract Exponent and Significand

INSTRUCTION SET REFERENCE, A-L
#IA Source operand is an SNaN value or unsupported format.
#Z ST(0) operand is ±0.
#D Source operand is a denormal value.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
Vol. 2A 3-469FXTRACT—Extract Exponent and Significand

INSTRUCTION SET REFERENCE, A-L
FYL2X—Compute y ∗ log2x

Description

Computes (ST(1) ∗ log2 (ST(0))), stores the result in resister ST(1), and pops the
FPU register stack. The source operand in ST(0) must be a non-zero positive number.

The following table shows the results obtained when taking the log of various classes
of numbers, assuming that neither overflow nor underflow occurs.

If the divide-by-zero exception is masked and register ST(0) contains ±0, the instruc-
tion returns ∞ with a sign that is the opposite of the sign of the source operand in
register ST(1).

The FYL2X instruction is designed with a built-in multiplication to optimize the calcu-
lation of logarithms with an arbitrary positive base (b):

logbx ← (log2b)–1 ∗ log2x

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

D9 F1 FYL2X Valid Valid Replace ST(1) with (ST(1) ∗ log2ST(0))
and pop the register stack.

Table 3-58. FYL2X Results

ST(0)

− ∞ − F ±0 +0<+F<+1 + 1 + F > +
1

+ ∞ NaN

− ∞ * * + ∞ + ∞ * − ∞ − ∞ NaN

ST(1) − F * * ** + F − 0 − F − ∞ NaN

− 0 * * * + 0 − 0 − 0 * NaN

+ 0 * * * − 0 + 0 + 0 * NaN

+ F * * ** − F + 0 + F + ∞ NaN

+ ∞ * * − ∞ − ∞ * + ∞ + ∞ NaN

NaN NaN NaN NaN NaN NaN NaN NaN NaN

NOTES:
F Means finite floating-point value.
* Indicates floating-point invalid-operation (#IA) exception.
** Indicates floating-point zero-divide (#Z) exception.
3-470 Vol. 2A FYL2X—Compute y * log2x

INSTRUCTION SET REFERENCE, A-L
Operation

ST(1) ← ST(1) ∗ log2ST(0);
PopRegisterStack;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.
C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA Either operand is an SNaN or unsupported format.

Source operand in register ST(0) is a negative finite value
(not -0).

#Z Source operand in register ST(0) is ±0.
#D Source operand is a denormal value.
#U Result is too small for destination format.
#O Result is too large for destination format.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
Vol. 2A 3-471FYL2X—Compute y * log2x

INSTRUCTION SET REFERENCE, A-L
FYL2XP1—Compute y ∗ log2(x +1)

Description

Computes (ST(1) ∗ log2(ST(0) + 1.0)), stores the result in register ST(1), and pops
the FPU register stack. The source operand in ST(0) must be in the range:

The source operand in ST(1) can range from −∞ to +∞. If the ST(0) operand is outside
of its acceptable range, the result is undefined and software should not rely on an
exception being generated. Under some circumstances exceptions may be generated
when ST(0) is out of range, but this behavior is implementation specific and not
guaranteed.

The following table shows the results obtained when taking the log epsilon of various
classes of numbers, assuming that underflow does not occur.

This instruction provides optimal accuracy for values of epsilon [the value in register
ST(0)] that are close to 0. For small epsilon (ε) values, more significant digits can be
retained by using the FYL2XP1 instruction than by using (ε+1) as an argument to the
FYL2X instruction. The (ε+1) expression is commonly found in compound interest and
annuity calculations. The result can be simply converted into a value in another loga-
rithm base by including a scale factor in the ST(1) source operand. The following

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

D9 F9 FYL2XP1 Valid Valid Replace ST(1) with ST(1) ∗ log2(ST(0) +
1.0) and pop the register stack.

Table 3-59. FYL2XP1 Results

ST(0)

−(1 − ()) to −0 -0 +0 +0 to +(1 - ()) NaN

− ∞ +∞ * * − ∞ NaN

ST(1) − F +F +0 -0 − F NaN

− 0 +0 +0 -0 − 0 NaN

+0 − 0 − 0 +0 +0 NaN

+F − F − 0 +0 +F NaN

+∞ − ∞ * * +∞ NaN

NaN NaN NaN NaN NaN NaN

NOTES:
F Means finite floating-point value.
* Indicates floating-point invalid-operation (#IA) exception.

1 2 2⁄–())to 1 2 2⁄–()–

2 2⁄ 2 2⁄
3-472 Vol. 2A FYL2XP1—Compute y * log2(x +1)

INSTRUCTION SET REFERENCE, A-L
equation is used to calculate the scale factor for a particular logarithm base, where n
is the logarithm base desired for the result of the FYL2XP1 instruction:

scale factor ← logn 2

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

ST(1) ← ST(1) ∗ log2(ST(0) + 1.0);
PopRegisterStack;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.
C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA Either operand is an SNaN value or unsupported format.
#D Source operand is a denormal value.
#U Result is too small for destination format.
#O Result is too large for destination format.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
Vol. 2A 3-473FYL2XP1—Compute y * log2(x +1)

INSTRUCTION SET REFERENCE, A-L
HADDPD—Packed Double-FP Horizontal Add

Instruction Operand Encoding

Description

Adds the double-precision floating-point values in the high and low quadwords of the
destination operand and stores the result in the low quadword of the destination
operand.

Adds the double-precision floating-point values in the high and low quadwords of the
source operand and stores the result in the high quadword of the destination operand.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).

See Figure 3-15 for HADDPD; see Figure 3-16 for VHADDPD.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

66 0F 7C /r

HADDPD xmm1, xmm2/m128

RM V/V SSE3 Horizontal add packed
double-precision floating-
point values from
xmm2/m128 to xmm1.

VEX.NDS.128.66.0F.WIG 7C /r

VHADDPD xmm1,xmm2,
xmm3/m128

RVM V/V AVX Horizontal add packed
double-precision floating-
point values from xmm2 and
xmm3/mem.

VEX.NDS.256.66.0F.WIG 7C /r

VHADDPD ymm1, ymm2,
ymm3/m256

RVM V/V AVX Horizontal add packed
double-precision floating-
point values from ymm2 and
ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
3-474 Vol. 2A HADDPD—Packed Double-FP Horizontal Add

INSTRUCTION SET REFERENCE, A-L
Figure 3-16. VHADDPD operation

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified.

Figure 3-15. HADDPD—Packed Double-FP Horizontal Add

Y2 + Y3 X2 + X3 Y0 + Y1 X0 + X1DEST

X3 X2SRC1 X1 X0

Y3 Y2 Y1 Y0SRC2
Vol. 2A 3-475HADDPD—Packed Double-FP Horizontal Add

INSTRUCTION SET REFERENCE, A-L
VEX.128 encoded version: the first source operand is an XMM register or 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

Operation

HADDPD (128-bit Legacy SSE version)
DEST[63:0] SRC1[127:64] + SRC1[63:0]
DEST[127:64] SRC2[127:64] + SRC2[63:0]
DEST[VLMAX-1:128] (Unmodified)

VHADDPD (VEX.128 encoded version)
DEST[63:0] SRC1[127:64] + SRC1[63:0]
DEST[127:64] SRC2[127:64] + SRC2[63:0]
DEST[VLMAX-1:128] 0

VHADDPD (VEX.256 encoded version)
DEST[63:0] SRC1[127:64] + SRC1[63:0]
DEST[127:64] SRC2[127:64] + SRC2[63:0]
DEST[191:128] SRC1[255:192] + SRC1[191:128]
DEST[255:192] SRC2[255:192] + SRC2[191:128]

Intel C/C++ Compiler Intrinsic Equivalent

VHADDPD: __m256d _mm256_hadd_pd (__m256d a, __m256d b);

HADDPD: __m128d _mm_hadd_pd (__m128d a, __m128d b);

Exceptions

When the source operand is a memory operand, the operand must be aligned on a
16-byte boundary or a general-protection exception (#GP) will be generated.

Numeric Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
See Exceptions Type 2.
3-476 Vol. 2A HADDPD—Packed Double-FP Horizontal Add

INSTRUCTION SET REFERENCE, A-L
HADDPS—Packed Single-FP Horizontal Add

Instruction Operand Encoding

Description

Adds the single-precision floating-point values in the first and second dwords of the
destination operand and stores the result in the first dword of the destination
operand.

Adds single-precision floating-point values in the third and fourth dword of the desti-
nation operand and stores the result in the second dword of the destination operand.

Adds single-precision floating-point values in the first and second dword of the
source operand and stores the result in the third dword of the destination operand.

Adds single-precision floating-point values in the third and fourth dword of the source
operand and stores the result in the fourth dword of the destination operand.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

F2 0F 7C /r

HADDPS xmm1, xmm2/m128

RM V/V SSE3 Horizontal add packed
single-precision floating-
point values from
xmm2/m128 to xmm1.

VEX.NDS.128.F2.0F.WIG 7C /r

VHADDPS xmm1, xmm2,
xmm3/m128

RVM V/V AVX Horizontal add packed
single-precision floating-
point values from xmm2 and
xmm3/mem.

VEX.NDS.256.F2.0F.WIG 7C /r

VHADDPS ymm1, ymm2,
ymm3/m256

RVM V/V AVX Horizontal add packed
single-precision floating-
point values from ymm2 and
ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2A 3-477HADDPS—Packed Single-FP Horizontal Add

INSTRUCTION SET REFERENCE, A-L
See Figure 3-17 for HADDPS; see Figure 3-18 for VHADDPS.

Figure 3-18. VHADDPS operation

Figure 3-17. HADDPS—Packed Single-FP Horizontal Add

Y6+Y7 X6+X7 Y2+Y3 X2+X3DEST

SRC1 X0

SRC2

X1X2X3X4X5X6X7

Y0Y1Y2Y3Y4Y5Y6Y7

X0+X1Y4+Y5 X4+X5 Y0+Y1
3-478 Vol. 2A HADDPS—Packed Single-FP Horizontal Add

INSTRUCTION SET REFERENCE, A-L
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.

VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

Operation

HADDPS (128-bit Legacy SSE version)
DEST[31:0] SRC1[63:32] + SRC1[31:0]
DEST[63:32] SRC1[127:96] + SRC1[95:64]
DEST[95:64] SRC2[63:32] + SRC2[31:0]
DEST[127:96] SRC2[127:96] + SRC2[95:64]
DEST[VLMAX-1:128] (Unmodified)

VHADDPS (VEX.128 encoded version)
DEST[31:0] SRC1[63:32] + SRC1[31:0]
DEST[63:32] SRC1[127:96] + SRC1[95:64]
DEST[95:64] SRC2[63:32] + SRC2[31:0]
DEST[127:96] SRC2[127:96] + SRC2[95:64]
DEST[VLMAX-1:128] 0

VHADDPS (VEX.256 encoded version)
DEST[31:0] SRC1[63:32] + SRC1[31:0]
DEST[63:32] SRC1[127:96] + SRC1[95:64]
DEST[95:64] SRC2[63:32] + SRC2[31:0]
DEST[127:96] SRC2[127:96] + SRC2[95:64]
DEST[159:128] SRC1[191:160] + SRC1[159:128]
DEST[191:160] SRC1[255:224] + SRC1[223:192]
DEST[223:192] SRC2[191:160] + SRC2[159:128]
DEST[255:224] SRC2[255:224] + SRC2[223:192]

Intel C/C++ Compiler Intrinsic Equivalent

HADDPS: __m128 _mm_hadd_ps (__m128 a, __m128 b);

VHADDPS: __m256 _mm256_hadd_ps (__m256 a, __m256 b);
Vol. 2A 3-479HADDPS—Packed Single-FP Horizontal Add

INSTRUCTION SET REFERENCE, A-L
Exceptions

When the source operand is a memory operand, the operand must be aligned on a
16-byte boundary or a general-protection exception (#GP) will be generated.

Numeric Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
See Exceptions Type 2.
3-480 Vol. 2A HADDPS—Packed Single-FP Horizontal Add

INSTRUCTION SET REFERENCE, A-L
HLT—Halt

Instruction Operand Encoding

Description

Stops instruction execution and places the processor in a HALT state. An enabled
interrupt (including NMI and SMI), a debug exception, the BINIT# signal, the INIT#
signal, or the RESET# signal will resume execution. If an interrupt (including NMI) is
used to resume execution after a HLT instruction, the saved instruction pointer
(CS:EIP) points to the instruction following the HLT instruction.

When a HLT instruction is executed on an Intel 64 or IA-32 processor supporting Intel
Hyper-Threading Technology, only the logical processor that executes the instruction
is halted. The other logical processors in the physical processor remain active, unless
they are each individually halted by executing a HLT instruction.

The HLT instruction is a privileged instruction. When the processor is running in
protected or virtual-8086 mode, the privilege level of a program or procedure must
be 0 to execute the HLT instruction.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

Enter Halt state;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

None.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

F4 HLT NP Valid Valid Halt

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
Vol. 2A 3-481HLT—Halt

INSTRUCTION SET REFERENCE, A-L
Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
3-482 Vol. 2A HLT—Halt

INSTRUCTION SET REFERENCE, A-L
HSUBPD—Packed Double-FP Horizontal Subtract

Instruction Operand Encoding

Description

The HSUBPD instruction subtracts horizontally the packed DP FP numbers of both
operands.

Subtracts the double-precision floating-point value in the high quadword of the desti-
nation operand from the low quadword of the destination operand and stores the
result in the low quadword of the destination operand.

Subtracts the double-precision floating-point value in the high quadword of the
source operand from the low quadword of the source operand and stores the result in
the high quadword of the destination operand.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

66 0F 7D /r

HSUBPD xmm1, xmm2/m128

RM V/V SSE3 Horizontal subtract packed
double-precision floating-
point values from
xmm2/m128 to xmm1.

VEX.NDS.128.66.0F.WIG 7D /r
VHSUBPD xmm1,xmm2,
xmm3/m128

RVM V/V AVX Horizontal subtract packed
double-precision floating-
point values from xmm2 and
xmm3/mem.

VEX.NDS.256.66.0F.WIG 7D /r
VHSUBPD ymm1, ymm2,
ymm3/m256

RVM V/V AVX Horizontal subtract packed
double-precision floating-
point values from ymm2 and
ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2A 3-483HSUBPD—Packed Double-FP Horizontal Subtract

INSTRUCTION SET REFERENCE, A-L
See Figure 3-19 for HSUBPD; see Figure 3-20 for VHSUBPD.

Figure 3-20. VHSUBPD operation

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified.

Figure 3-19. HSUBPD—Packed Double-FP Horizontal Subtract

Y2 - Y3 X2 - X3 Y0 - Y1 X0 - X1DEST

X3 X2SRC1 X1 X0

Y3 Y2 Y1 Y0SRC2
3-484 Vol. 2A HSUBPD—Packed Double-FP Horizontal Subtract

INSTRUCTION SET REFERENCE, A-L
VEX.128 encoded version: the first source operand is an XMM register or 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

Operation

HSUBPD (128-bit Legacy SSE version)
DEST[63:0] SRC1[63:0] - SRC1[127:64]
DEST[127:64] SRC2[63:0] - SRC2[127:64]
DEST[VLMAX-1:128] (Unmodified)

VHSUBPD (VEX.128 encoded version)
DEST[63:0] SRC1[63:0] - SRC1[127:64]
DEST[127:64] SRC2[63:0] - SRC2[127:64]
DEST[VLMAX-1:128] 0

VHSUBPD (VEX.256 encoded version)
DEST[63:0] SRC1[63:0] - SRC1[127:64]
DEST[127:64] SRC2[63:0] - SRC2[127:64]
DEST[191:128] SRC1[191:128] - SRC1[255:192]
DEST[255:192] SRC2[191:128] - SRC2[255:192]

Intel C/C++ Compiler Intrinsic Equivalent

HSUBPD: __m128d _mm_hsub_pd(__m128d a, __m128d b)

VHSUBPD: __m256d _mm256_hsub_pd (__m256d a, __m256d b);

Exceptions

When the source operand is a memory operand, the operand must be aligned on a
16-byte boundary or a general-protection exception (#GP) will be generated.

Numeric Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
See Exceptions Type 2.
Vol. 2A 3-485HSUBPD—Packed Double-FP Horizontal Subtract

INSTRUCTION SET REFERENCE, A-L
HSUBPS—Packed Single-FP Horizontal Subtract

Instruction Operand Encoding

Description

Subtracts the single-precision floating-point value in the second dword of the desti-
nation operand from the first dword of the destination operand and stores the result
in the first dword of the destination operand.

Subtracts the single-precision floating-point value in the fourth dword of the destina-
tion operand from the third dword of the destination operand and stores the result in
the second dword of the destination operand.

Subtracts the single-precision floating-point value in the second dword of the source
operand from the first dword of the source operand and stores the result in the third
dword of the destination operand.

Subtracts the single-precision floating-point value in the fourth dword of the source
operand from the third dword of the source operand and stores the result in the
fourth dword of the destination operand.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).

See Figure 3-21 for HSUBPS; see Figure 3-22 for VHSUBPS.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

F2 0F 7D /r

HSUBPS xmm1, xmm2/m128

RM V/V SSE3 Horizontal subtract packed
single-precision floating-
point values from
xmm2/m128 to xmm1.

VEX.NDS.128.F2.0F.WIG 7D /r

VHSUBPS xmm1, xmm2,
xmm3/m128

RVM V/V AVX Horizontal subtract packed
single-precision floating-
point values from xmm2 and
xmm3/mem.

VEX.NDS.256.F2.0F.WIG 7D /r
VHSUBPS ymm1, ymm2,
ymm3/m256

RVM V/V AVX Horizontal subtract packed
single-precision floating-
point values from ymm2 and
ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
3-486 Vol. 2A HSUBPS—Packed Single-FP Horizontal Subtract

INSTRUCTION SET REFERENCE, A-L
Figure 3-22. VHSUBPS operation

Figure 3-21. HSUBPS—Packed Single-FP Horizontal Subtract

Y6-Y7 X6-X7 Y2-Y3 X2-X3DEST

SRC1 X0

SRC2

X1X2X3X4X5X6X7

Y0Y1Y2Y3Y4Y5Y6Y7

X0-X1Y4-Y5 X4-X5 Y0-Y1
Vol. 2A 3-487HSUBPS—Packed Single-FP Horizontal Subtract

INSTRUCTION SET REFERENCE, A-L
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

Operation

HSUBPS (128-bit Legacy SSE version)
DEST[31:0] SRC1[31:0] - SRC1[63:32]
DEST[63:32] SRC1[95:64] - SRC1[127:96]
DEST[95:64] SRC2[31:0] - SRC2[63:32]
DEST[127:96] SRC2[95:64] - SRC2[127:96]
DEST[VLMAX-1:128] (Unmodified)

VHSUBPS (VEX.128 encoded version)
DEST[31:0] SRC1[31:0] - SRC1[63:32]
DEST[63:32] SRC1[95:64] - SRC1[127:96]
DEST[95:64] SRC2[31:0] - SRC2[63:32]
DEST[127:96] SRC2[95:64] - SRC2[127:96]
DEST[VLMAX-1:128] 0

VHSUBPS (VEX.256 encoded version)
DEST[31:0] SRC1[31:0] - SRC1[63:32]
DEST[63:32] SRC1[95:64] - SRC1[127:96]
DEST[95:64] SRC2[31:0] - SRC2[63:32]
DEST[127:96] SRC2[95:64] - SRC2[127:96]
DEST[159:128] SRC1[159:128] - SRC1[191:160]
DEST[191:160] SRC1[223:192] - SRC1[255:224]
DEST[223:192] SRC2[159:128] - SRC2[191:160]
DEST[255:224] SRC2[223:192] - SRC2[255:224]

Intel C/C++ Compiler Intrinsic Equivalent

HSUBPS: __m128 _mm_hsub_ps(__m128 a, __m128 b);

VHSUBPS: __m256 _mm256_hsub_ps (__m256 a, __m256 b);
3-488 Vol. 2A HSUBPS—Packed Single-FP Horizontal Subtract

INSTRUCTION SET REFERENCE, A-L
Exceptions

When the source operand is a memory operand, the operand must be aligned on a
16-byte boundary or a general-protection exception (#GP) will be generated.

Numeric Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
See Exceptions Type 2.
Vol. 2A 3-489HSUBPS—Packed Single-FP Horizontal Subtract

INSTRUCTION SET REFERENCE, A-L
IDIV—Signed Divide

Instruction Operand Encoding

Description

Divides the (signed) value in the AX, DX:AX, or EDX:EAX (dividend) by the source
operand (divisor) and stores the result in the AX (AH:AL), DX:AX, or EDX:EAX regis-
ters. The source operand can be a general-purpose register or a memory location.
The action of this instruction depends on the operand size (dividend/divisor).

Non-integral results are truncated (chopped) towards 0. The remainder is always less
than the divisor in magnitude. Overflow is indicated with the #DE (divide error)
exception rather than with the CF flag.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R
prefix permits access to additional registers (R8-R15). Use of the REX.W prefix
promotes operation to 64 bits. In 64-bit mode when REX.W is applied, the instruction

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

F6 /7 IDIV r/m8 M Valid Valid Signed divide AX by r/m8,
with result stored in: AL ←
Quotient, AH ← Remainder.

REX + F6 /7 IDIV r/m8* M Valid N.E. Signed divide AX by r/m8,
with result stored in AL ←
Quotient, AH ← Remainder.

F7 /7 IDIV r/m16 M Valid Valid Signed divide DX:AX by
r/m16, with result stored in
AX ← Quotient, DX ←
Remainder.

F7 /7 IDIV r/m32 M Valid Valid Signed divide EDX:EAX by
r/m32, with result stored in
EAX ← Quotient, EDX ←
Remainder.

REX.W + F7 /7 IDIV r/m64 M Valid N.E. Signed divide RDX:RAX by
r/m64, with result stored in
RAX ← Quotient, RDX ←
Remainder.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is

used: AH, BH, CH, DH.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA
3-490 Vol. 2A IDIV—Signed Divide

INSTRUCTION SET REFERENCE, A-L
divides the signed value in RDX:RAX by the source operand. RAX contains a 64-bit
quotient; RDX contains a 64-bit remainder.

See the summary chart at the beginning of this section for encoding data and limits.
See Table 3-60.

Operation

IF SRC = 0
THEN #DE; (* Divide error *)

FI;

IF OperandSize = 8 (* Word/byte operation *)
THEN

temp ← AX / SRC; (* Signed division *)
IF (temp > 7FH) or (temp < 80H)
(* If a positive result is greater than 7FH or a negative result is less than 80H *)

THEN #DE; (* Divide error *)
ELSE

AL ← temp;
AH ← AX SignedModulus SRC;

FI;
ELSE IF OperandSize = 16 (* Doubleword/word operation *)

THEN
temp ← DX:AX / SRC; (* Signed division *)
IF (temp > 7FFFH) or (temp < 8000H)
(* If a positive result is greater than 7FFFH
or a negative result is less than 8000H *)

THEN
#DE; (* Divide error *)

ELSE
AX ← temp;
DX ← DX:AX SignedModulus SRC;

FI;
FI;

Table 3-60. IDIV Results

Operand Size Dividend Divisor Quotient Remainder Quotient Range

Word/byte AX r/m8 AL AH −128 to +127

Doubleword/word DX:AX r/m16 AX DX −32,768 to
+32,767

Quadword/doubleword EDX:EAX r/m32 EAX EDX −231 to 232 − 1

Doublequadword/
quadword

RDX:RAX r/m64 RAX RDX −263 to 264 − 1
Vol. 2A 3-491IDIV—Signed Divide

INSTRUCTION SET REFERENCE, A-L
ELSE IF OperandSize = 32 (* Quadword/doubleword operation *)
temp ← EDX:EAX / SRC; (* Signed division *)
IF (temp > 7FFFFFFFH) or (temp < 80000000H)
(* If a positive result is greater than 7FFFFFFFH
or a negative result is less than 80000000H *)

THEN
#DE; (* Divide error *)

ELSE
EAX ← temp;
EDX ← EDXE:AX SignedModulus SRC;

FI;
FI;

ELSE IF OperandSize = 64 (* Doublequadword/quadword operation *)
temp ← RDX:RAX / SRC; (* Signed division *)
IF (temp > 7FFFFFFFFFFFFFFFH) or (temp < 8000000000000000H)
(* If a positive result is greater than 7FFFFFFFFFFFFFFFH
or a negative result is less than 8000000000000000H *)

THEN
#DE; (* Divide error *)

ELSE
RAX ← temp;
RDX ← RDE:RAX SignedModulus SRC;

FI;
FI;

FI;

Flags Affected

The CF, OF, SF, ZF, AF, and PF flags are undefined.

Protected Mode Exceptions
#DE If the source operand (divisor) is 0.

The signed result (quotient) is too large for the destination.
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
3-492 Vol. 2A IDIV—Signed Divide

INSTRUCTION SET REFERENCE, A-L
Real-Address Mode Exceptions
#DE If the source operand (divisor) is 0.

The signed result (quotient) is too large for the destination.
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#DE If the source operand (divisor) is 0.

The signed result (quotient) is too large for the destination.
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#DE If the source operand (divisor) is 0

If the quotient is too large for the designated register.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
Vol. 2A 3-493IDIV—Signed Divide

INSTRUCTION SET REFERENCE, A-L
IMUL—Signed Multiply

Instruction Operand Encoding

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

F6 /5 IMUL r/m8* M Valid Valid AX← AL ∗ r/m byte.

F7 /5 IMUL r/m16 M Valid Valid DX:AX ← AX ∗ r/m word.

F7 /5 IMUL r/m32 M Valid Valid EDX:EAX ← EAX ∗ r/m32.

REX.W + F7 /5 IMUL r/m64 M Valid N.E. RDX:RAX ← RAX ∗ r/m64.

0F AF /r IMUL r16, r/m16 RM Valid Valid word register ← word
register ∗ r/m16.

0F AF /r IMUL r32, r/m32 RM Valid Valid doubleword register ←
doubleword register ∗
r/m32.

REX.W + 0F AF
/r

IMUL r64, r/m64 RM Valid N.E. Quadword register ←
Quadword register ∗ r/m64.

6B /r ib IMUL r16, r/m16,
imm8

RMI Valid Valid word register ← r/m16 ∗
sign-extended immediate
byte.

6B /r ib IMUL r32, r/m32,
imm8

RMI Valid Valid doubleword register ←
r/m32 ∗ sign-extended
immediate byte.

REX.W + 6B /r ib IMUL r64, r/m64,
imm8

RMI Valid N.E. Quadword register ← r/m64
∗ sign-extended immediate
byte.

69 /r iw IMUL r16, r/m16,
imm16

RMI Valid Valid word register ← r/m16 ∗
immediate word.

69 /r id IMUL r32, r/m32,
imm32

RMI Valid Valid doubleword register ←
r/m32 ∗ immediate
doubleword.

REX.W + 69 /r id IMUL r64, r/m64,
imm32

RMI Valid N.E. Quadword register ← r/m64
∗ immediate doubleword.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is

used: AH, BH, CH, DH.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r, w) NA NA NA

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
3-494 Vol. 2A IMUL—Signed Multiply

INSTRUCTION SET REFERENCE, A-L
Description

Performs a signed multiplication of two operands. This instruction has three forms,
depending on the number of operands.
• One-operand form — This form is identical to that used by the MUL instruction.

Here, the source operand (in a general-purpose register or memory location) is
multiplied by the value in the AL, AX, EAX, or RAX register (depending on the
operand size) and the product is stored in the AX, DX:AX, EDX:EAX, or RDX:RAX
registers, respectively.

• Two-operand form — With this form the destination operand (the first
operand) is multiplied by the source operand (second operand). The destination
operand is a general-purpose register and the source operand is an immediate
value, a general-purpose register, or a memory location. The product is then
stored in the destination operand location.

• Three-operand form — This form requires a destination operand (the first
operand) and two source operands (the second and the third operands). Here,
the first source operand (which can be a general-purpose register or a memory
location) is multiplied by the second source operand (an immediate value). The
product is then stored in the destination operand (a general-purpose register).

When an immediate value is used as an operand, it is sign-extended to the length of
the destination operand format.

The CF and OF flags are set when significant bit (including the sign bit) are carried
into the upper half of the result. The CF and OF flags are cleared when the result
(including the sign bit) fits exactly in the lower half of the result.

The three forms of the IMUL instruction are similar in that the length of the product
is calculated to twice the length of the operands. With the one-operand form, the
product is stored exactly in the destination. With the two- and three- operand forms,
however, the result is truncated to the length of the destination before it is stored in
the destination register. Because of this truncation, the CF or OF flag should be tested
to ensure that no significant bits are lost.

The two- and three-operand forms may also be used with unsigned operands
because the lower half of the product is the same regardless if the operands are
signed or unsigned. The CF and OF flags, however, cannot be used to determine if the
upper half of the result is non-zero.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R
prefix permits access to additional registers (R8-R15). Use of the REX.W prefix
promotes operation to 64 bits. Use of REX.W modifies the three forms of the instruc-
tion as follows.

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8/16/32 NA

Op/En Operand 1 Operand 2 Operand 3 Operand 4
Vol. 2A 3-495IMUL—Signed Multiply

INSTRUCTION SET REFERENCE, A-L
• One-operand form —The source operand (in a 64-bit general-purpose register or
memory location) is multiplied by the value in the RAX register and the product is
stored in the RDX:RAX registers.

• Two-operand form — The source operand is promoted to 64 bits if it is a
register or a memory location. If the source operand is an immediate, it is sign
extended to 64 bits. The destination operand is promoted to 64 bits.

• Three-operand form — The first source operand (either a register or a memory
location) and destination operand are promoted to 64 bits.

Operation

IF (NumberOfOperands = 1)
THEN IF (OperandSize = 8)

THEN
AX ← AL ∗ SRC (* Signed multiplication *)
IF AL = AX

THEN CF ← 0; OF ← 0;
ELSE CF ← 1; OF ← 1; FI;

ELSE IF OperandSize = 16
THEN

DX:AX ← AX ∗ SRC (* Signed multiplication *)
IF sign_extend_to_32 (AX) = DX:AX

THEN CF ← 0; OF ← 0;
ELSE CF ← 1; OF ← 1; FI;

ELSE IF OperandSize = 32
THEN

EDX:EAX ← EAX ∗ SRC (* Signed multiplication *)
IF EAX = EDX:EAX

THEN CF ← 0; OF ← 0;
ELSE CF ← 1; OF ← 1; FI;

ELSE (* OperandSize = 64 *)
RDX:RAX ← RAX ∗ SRC (* Signed multiplication *)
IF RAX = RDX:RAX

THEN CF ← 0; OF ← 0;
ELSE CF ← 1; OF ← 1; FI;

FI;
FI;

ELSE IF (NumberOfOperands = 2)
THEN

temp ← DEST ∗ SRC (* Signed multiplication; temp is double DEST size *)
DEST ← DEST ∗ SRC (* Signed multiplication *)
IF temp ≠ DEST

THEN CF ← 1; OF ← 1;
ELSE CF ← 0; OF ← 0; FI;
3-496 Vol. 2A IMUL—Signed Multiply

INSTRUCTION SET REFERENCE, A-L
ELSE (* NumberOfOperands = 3 *)
DEST ← SRC1 ∗ SRC2 (* Signed multiplication *)
temp ← SRC1 ∗ SRC2 (* Signed multiplication; temp is double SRC1 size *)
IF temp ≠ DEST

THEN CF ← 1; OF ← 1;
ELSE CF ← 0; OF ← 0; FI;

FI;
FI;

Flags Affected

For the one operand form of the instruction, the CF and OF flags are set when signif-
icant bits are carried into the upper half of the result and cleared when the result fits
exactly in the lower half of the result. For the two- and three-operand forms of the
instruction, the CF and OF flags are set when the result must be truncated to fit in the
destination operand size and cleared when the result fits exactly in the destination
operand size. The SF, ZF, AF, and PF flags are undefined.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
Vol. 2A 3-497IMUL—Signed Multiply

INSTRUCTION SET REFERENCE, A-L
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
3-498 Vol. 2A IMUL—Signed Multiply

INSTRUCTION SET REFERENCE, A-L
IN—Input from Port

Instruction Operand Encoding

Description

Copies the value from the I/O port specified with the second operand (source
operand) to the destination operand (first operand). The source operand can be a
byte-immediate or the DX register; the destination operand can be register AL, AX,
or EAX, depending on the size of the port being accessed (8, 16, or 32 bits, respec-
tively). Using the DX register as a source operand allows I/O port addresses from 0
to 65,535 to be accessed; using a byte immediate allows I/O port addresses 0 to 255
to be accessed.

When accessing an 8-bit I/O port, the opcode determines the port size; when
accessing a 16- and 32-bit I/O port, the operand-size attribute determines the port
size. At the machine code level, I/O instructions are shorter when accessing 8-bit I/O
ports. Here, the upper eight bits of the port address will be 0.

This instruction is only useful for accessing I/O ports located in the processor’s I/O
address space. See Chapter 13, “Input/Output,” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 1, for more information on accessing I/O
ports in the I/O address space.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

E4 ib IN AL, imm8 I Valid Valid Input byte from imm8 I/O
port address into AL.

E5 ib IN AX, imm8 I Valid Valid Input word from imm8 I/O
port address into AX.

E5 ib IN EAX, imm8 I Valid Valid Input dword from imm8 I/O
port address into EAX.

EC IN AL,DX NP Valid Valid Input byte from I/O port in
DX into AL.

ED IN AX,DX NP Valid Valid Input word from I/O port in
DX into AX.

ED IN EAX,DX NP Valid Valid Input doubleword from I/O
port in DX into EAX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

I imm8 NA NA NA

NP NA NA NA NA
Vol. 2A 3-499IN—Input from Port

INSTRUCTION SET REFERENCE, A-L
Operation

IF ((PE = 1) and ((CPL > IOPL) or (VM = 1)))
THEN (* Protected mode with CPL > IOPL or virtual-8086 mode *)

IF (Any I/O Permission Bit for I/O port being accessed = 1)
THEN (* I/O operation is not allowed *)

#GP(0);
ELSE (* I/O operation is allowed *)

DEST ← SRC; (* Read from selected I/O port *)
FI;

ELSE (Real Mode or Protected Mode with CPL ≤ IOPL *)
DEST ← SRC; (* Read from selected I/O port *)

FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the CPL is greater than (has less privilege) the I/O privilege

level (IOPL) and any of the corresponding I/O permission bits in
TSS for the I/O port being accessed is 1.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If any of the I/O permission bits in the TSS for the I/O port being

accessed is 1.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the CPL is greater than (has less privilege) the I/O privilege

level (IOPL) and any of the corresponding I/O permission bits in
TSS for the I/O port being accessed is 1.

#UD If the LOCK prefix is used.
3-500 Vol. 2A IN—Input from Port

INSTRUCTION SET REFERENCE, A-L
INC—Increment by 1

Instruction Operand Encoding

Description

Adds 1 to the destination operand, while preserving the state of the CF flag. The
destination operand can be a register or a memory location. This instruction allows a
loop counter to be updated without disturbing the CF flag. (Use a ADD instruction
with an immediate operand of 1 to perform an increment operation that does updates
the CF flag.)

This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.

In 64-bit mode, INC r16 and INC r32 are not encodable (because opcodes 40H
through 47H are REX prefixes). Otherwise, the instruction’s 64-bit mode default
operation size is 32 bits. Use of the REX.R prefix permits access to additional regis-
ters (R8-R15). Use of the REX.W prefix promotes operation to 64 bits.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

FE /0 INC r/m8 M Valid Valid Increment r/m byte by 1.

REX + FE /0 INC r/m8* M Valid N.E. Increment r/m byte by 1.

FF /0 INC r/m16 M Valid Valid Increment r/m word by 1.

FF /0 INC r/m32 M Valid Valid Increment r/m doubleword
by 1.

REX.W + FF /0 INC r/m64 M Valid N.E. Increment r/m quadword by
1.

40+ rw** INC r16 O N.E. Valid Increment word register by
1.

40+ rd INC r32 O N.E. Valid Increment doubleword
register by 1.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is

used: AH, BH, CH, DH.
** 40H through 47H are REX prefixes in 64-bit mode.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r, w) NA NA NA

O opcode + rd (r, w) NA NA NA
Vol. 2A 3-501INC—Increment by 1

INSTRUCTION SET REFERENCE, A-L
Operation

DEST ← DEST + 1;

AFlags Affected

The CF flag is not affected. The OF, SF, ZF, AF, and PF flags are set according to the
result.

Protected Mode Exceptions
#GP(0) If the destination operand is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULLsegment selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory

operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#UD If the LOCK prefix is used but the destination is not a memory

operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used but the destination is not a memory

operand.
3-502 Vol. 2A INC—Increment by 1

INSTRUCTION SET REFERENCE, A-L
Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory

operand.
Vol. 2A 3-503INC—Increment by 1

INSTRUCTION SET REFERENCE, A-L
INS/INSB/INSW/INSD—Input from Port to String

Instruction Operand Encoding

Description

Copies the data from the I/O port specified with the source operand (second
operand) to the destination operand (first operand). The source operand is an I/O
port address (from 0 to 65,535) that is read from the DX register. The destination
operand is a memory location, the address of which is read from either the ES:DI,
ES:EDI or the RDI registers (depending on the address-size attribute of the instruc-

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

6C INS m8, DX NP Valid Valid Input byte from I/O port
specified in DX into memory
location specified in ES:(E)DI
or RDI.*

6D INS m16, DX NP Valid Valid Input word from I/O port
specified in DX into memory
location specified in ES:(E)DI
or RDI.1

6D INS m32, DX NP Valid Valid Input doubleword from I/O
port specified in DX into
memory location specified in
ES:(E)DI or RDI.1

6C INSB NP Valid Valid Input byte from I/O port
specified in DX into memory
location specified with
ES:(E)DI or RDI.1

6D INSW NP Valid Valid Input word from I/O port
specified in DX into memory
location specified in ES:(E)DI
or RDI.1

6D INSD NP Valid Valid Input doubleword from I/O
port specified in DX into
memory location specified in
ES:(E)DI or RDI.1

NOTES:
* In 64-bit mode, only 64-bit (RDI) and 32-bit (EDI) address sizes are supported. In non-64-bit

mode, only 32-bit (EDI) and 16-bit (DI) address sizes are supported.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
3-504 Vol. 2A INS/INSB/INSW/INSD—Input from Port to String

INSTRUCTION SET REFERENCE, A-L
tion, 16, 32 or 64, respectively). (The ES segment cannot be overridden with a
segment override prefix.) The size of the I/O port being accessed (that is, the size of
the source and destination operands) is determined by the opcode for an 8-bit I/O
port or by the operand-size attribute of the instruction for a 16- or 32-bit I/O port.

At the assembly-code level, two forms of this instruction are allowed: the “explicit-
operands” form and the “no-operands” form. The explicit-operands form (specified
with the INS mnemonic) allows the source and destination operands to be specified
explicitly. Here, the source operand must be “DX,” and the destination operand
should be a symbol that indicates the size of the I/O port and the destination
address. This explicit-operands form is provided to allow documentation; however,
note that the documentation provided by this form can be misleading. That is, the
destination operand symbol must specify the correct type (size) of the operand
(byte, word, or doubleword), but it does not have to specify the correct location.
The location is always specified by the ES:(E)DI registers, which must be loaded
correctly before the INS instruction is executed.

The no-operands form provides “short forms” of the byte, word, and doubleword
versions of the INS instructions. Here also DX is assumed by the processor to be the
source operand and ES:(E)DI is assumed to be the destination operand. The size of
the I/O port is specified with the choice of mnemonic: INSB (byte), INSW (word), or
INSD (doubleword).

After the byte, word, or doubleword is transfer from the I/O port to the memory loca-
tion, the DI/EDI/RDI register is incremented or decremented automatically according
to the setting of the DF flag in the EFLAGS register. (If the DF flag is 0, the (E)DI
register is incremented; if the DF flag is 1, the (E)DI register is decremented.) The
(E)DI register is incremented or decremented by 1 for byte operations, by 2 for word
operations, or by 4 for doubleword operations.

The INS, INSB, INSW, and INSD instructions can be preceded by the REP prefix for
block input of ECX bytes, words, or doublewords. See “REP/REPE/REPZ
/REPNE/REPNZ—Repeat String Operation Prefix” in Chapter 4 of the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 2B, for a description of the
REP prefix.

These instructions are only useful for accessing I/O ports located in the processor’s
I/O address space. See Chapter 13, “Input/Output,” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1, for more information on
accessing I/O ports in the I/O address space.

In 64-bit mode, default address size is 64 bits, 32 bit address size is supported using
the prefix 67H. The address of the memory destination is specified by RDI or EDI.
16-bit address size is not supported in 64-bit mode. The operand size is not
promoted.

Operation

IF ((PE = 1) and ((CPL > IOPL) or (VM = 1)))
THEN (* Protected mode with CPL > IOPL or virtual-8086 mode *)
Vol. 2A 3-505INS/INSB/INSW/INSD—Input from Port to String

INSTRUCTION SET REFERENCE, A-L
IF (Any I/O Permission Bit for I/O port being accessed = 1)
THEN (* I/O operation is not allowed *)

#GP(0);
ELSE (* I/O operation is allowed *)

DEST ← SRC; (* Read from I/O port *)
FI;

ELSE (Real Mode or Protected Mode with CPL IOPL *)
DEST ← SRC; (* Read from I/O port *)

FI;

Non-64-bit Mode:

IF (Byte transfer)
THEN IF DF = 0

THEN (E)DI ← (E)DI + 1;
ELSE (E)DI ← (E)DI – 1; FI;

ELSE IF (Word transfer)
THEN IF DF = 0

THEN (E)DI ← (E)DI + 2;
ELSE (E)DI ← (E)DI – 2; FI;

ELSE (* Doubleword transfer *)
THEN IF DF = 0

THEN (E)DI ← (E)DI + 4;
ELSE (E)DI ← (E)DI – 4; FI;

FI;
FI;

FI64-bit Mode:

IF (Byte transfer)
THEN IF DF = 0

THEN (E|R)DI ← (E|R)DI + 1;
ELSE (E|R)DI ← (E|R)DI – 1; FI;

ELSE IF (Word transfer)
THEN IF DF = 0

THEN (E)DI ← (E)DI + 2;
ELSE (E)DI ← (E)DI – 2; FI;

ELSE (* Doubleword transfer *)
THEN IF DF = 0

THEN (E|R)DI ← (E|R)DI + 4;
ELSE (E|R)DI ← (E|R)DI – 4; FI;

FI;
FI;
3-506 Vol. 2A INS/INSB/INSW/INSD—Input from Port to String

INSTRUCTION SET REFERENCE, A-L
Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the CPL is greater than (has less privilege) the I/O privilege

level (IOPL) and any of the corresponding I/O permission bits in
TSS for the I/O port being accessed is 1.
If the destination is located in a non-writable segment.
If an illegal memory operand effective address in the ES
segments is given.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If any of the I/O permission bits in the TSS for the I/O port being

accessed is 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the CPL is greater than (has less privilege) the I/O privilege

level (IOPL) and any of the corresponding I/O permission bits in
TSS for the I/O port being accessed is 1.
If the memory address is in a non-canonical form.
Vol. 2A 3-507INS/INSB/INSW/INSD—Input from Port to String

INSTRUCTION SET REFERENCE, A-L
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
3-508 Vol. 2A INS/INSB/INSW/INSD—Input from Port to String

INSTRUCTION SET REFERENCE, A-L
INSERTPS — Insert Packed Single Precision Floating-Point Value

Instruction Operand Encoding

Description

(register source form)
Select a single precision floating-point element from second source as indicated by
Count_S bits of the immediate operand and insert it into the first source at the loca-
tion indicated by the Count_D bits of the immediate operand. Store in the destination
and zero out destination elements based on the ZMask bits of the immediate
operand.

(memory source form)
Load a floating-point element from a 32-bit memory location and insert it into the
first source at the location indicated by the Count_D bits of the immediate operand.
Store in the destination and zero out destination elements based on the ZMask bits
of the immediate operand.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

66 0F 3A 21 /r ib

INSERTPS xmm1, xmm2/m32, imm8

RMI V/V SSE4_1 Insert a single precision
floating-point value
selected by imm8 from
xmm2/m32 into xmm1 at
the specified destination
element specified by imm8
and zero out destination
elements in xmm1 as
indicated in imm8.

VEX.NDS.128.66.0F3A.WIG 21 /r ib

VINSERTPS xmm1, xmm2,
xmm3/m32, imm8

RVMI V/V AVX Insert a single precision
floating point value selected
by imm8 from xmm3/m32
and merge into xmm2 at the
specified destination
element specified by imm8
and zero out destination
elements in xmm1 as
indicated in imm8.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
Vol. 2A 3-509INSERTPS — Insert Packed Single Precision Floating-Point Value

INSTRUCTION SET REFERENCE, A-L
128-bit Legacy SSE version: The first source register is an XMM register. The second
source operand is either an XMM register or a 32-bit memory location. The destina-
tion is not distinct from the first source XMM register and the upper bits (VLMAX-
1:128) of the corresponding YMM register destination are unmodified.
VEX.128 encoded version. The destination and first source register is an XMM
register. The second source operand is either an XMM register or a 32-bit memory
location. The upper bits (VLMAX-1:128) of the corresponding YMM register destina-
tion are zeroed.
If VINSERTPS is encoded with VEX.L= 1, an attempt to execute the instruction
encoded with VEX.L= 1 will cause an #UD exception.

Operation

INSERTPS (128-bit Legacy SSE version)
IF (SRC = REG) THEN COUNT_S imm8[7:6]

ELSE COUNT_S 0
COUNT_D imm8[5:4]
ZMASK imm8[3:0]
CASE (COUNT_S) OF

0: TMP SRC[31:0]
1: TMP SRC[63:32]
2: TMP SRC[95:64]
3: TMP SRC[127:96]

ESAC;

CASE (COUNT_D) OF
0: TMP2[31:0] TMP

TMP2[127:32] DEST[127:32]
1: TMP2[63:32] TMP

TMP2[31:0] DEST[31:0]
TMP2[127:64] DEST[127:64]

2: TMP2[95:64] TMP
TMP2[63:0] DEST[63:0]
TMP2[127:96] DEST[127:96]

3: TMP2[127:96] TMP
TMP2[95:0] DEST[95:0]

ESAC;

IF (ZMASK[0] = 1) THEN DEST[31:0] 00000000H
ELSE DEST[31:0] TMP2[31:0]

IF (ZMASK[1] = 1) THEN DEST[63:32] 00000000H
ELSE DEST[63:32] TMP2[63:32]
3-510 Vol. 2A INSERTPS — Insert Packed Single Precision Floating-Point Value

INSTRUCTION SET REFERENCE, A-L
IF (ZMASK[2] = 1) THEN DEST[95:64] 00000000H
ELSE DEST[95:64] TMP2[95:64]

IF (ZMASK[3] = 1) THEN DEST[127:96] 00000000H
ELSE DEST[127:96] TMP2[127:96]

DEST[VLMAX-1:128] (Unmodified)

VINSERTPS (VEX.128 encoded version)
IF (SRC = REG) THEN COUNT_S imm8[7:6]

ELSE COUNT_S 0
COUNT_D imm8[5:4]
ZMASK imm8[3:0]
CASE (COUNT_S) OF

0: TMP SRC2[31:0]
1: TMP SRC2[63:32]
2: TMP SRC2[95:64]
3: TMP SRC2[127:96]

ESAC;
CASE (COUNT_D) OF

0: TMP2[31:0] TMP
TMP2[127:32] SRC1[127:32]

1: TMP2[63:32] TMP
TMP2[31:0] SRC1[31:0]
TMP2[127:64] SRC1[127:64]

2: TMP2[95:64] TMP
TMP2[63:0] SRC1[63:0]
TMP2[127:96] SRC1[127:96]

3: TMP2[127:96] TMP
TMP2[95:0] SRC1[95:0]

ESAC;

IF (ZMASK[0] = 1) THEN DEST[31:0] 00000000H
ELSE DEST[31:0] TMP2[31:0]

IF (ZMASK[1] = 1) THEN DEST[63:32] 00000000H
ELSE DEST[63:32] TMP2[63:32]

IF (ZMASK[2] = 1) THEN DEST[95:64] 00000000H
ELSE DEST[95:64] TMP2[95:64]

IF (ZMASK[3] = 1) THEN DEST[127:96] 00000000H
ELSE DEST[127:96] TMP2[127:96]

DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

INSERTPS: __m128 _mm_insert_ps(__m128 dst, __m128 src, const int ndx);
Vol. 2A 3-511INSERTPS — Insert Packed Single Precision Floating-Point Value

INSTRUCTION SET REFERENCE, A-L
SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 5.
3-512 Vol. 2A INSERTPS — Insert Packed Single Precision Floating-Point Value

INSTRUCTION SET REFERENCE, A-L
INT n/INTO/INT 3—Call to Interrupt Procedure

Instruction Operand Encoding

Description

The INT n instruction generates a call to the interrupt or exception handler specified
with the destination operand (see the section titled “Interrupts and Exceptions” in
Chapter 6 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1). The destination operand specifies an interrupt vector number from 0 to
255, encoded as an 8-bit unsigned intermediate value. Each interrupt vector number
provides an index to a gate descriptor in the IDT. The first 32 interrupt vector
numbers are reserved by Intel for system use. Some of these interrupts are used for
internally generated exceptions.

The INT n instruction is the general mnemonic for executing a software-generated
call to an interrupt handler. The INTO instruction is a special mnemonic for calling
overflow exception (#OF), interrupt vector number 4. The overflow interrupt checks
the OF flag in the EFLAGS register and calls the overflow interrupt handler if the OF
flag is set to 1. (The INTO instruction cannot be used in 64-bit mode.)

The INT 3 instruction generates a special one byte opcode (CC) that is intended for
calling the debug exception handler. (This one byte form is valuable because it can be
used to replace the first byte of any instruction with a breakpoint, including other one
byte instructions, without over-writing other code). To further support its function as
a debug breakpoint, the interrupt generated with the CC opcode also differs from the
regular software interrupts as follows:
• Interrupt redirection does not happen when in VME mode; the interrupt is

handled by a protected-mode handler.
• The virtual-8086 mode IOPL checks do not occur. The interrupt is taken without

faulting at any IOPL level.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

CC INT 3 NP Valid Valid Interrupt 3—trap to
debugger.

CD ib INT imm8 I Valid Valid Interrupt vector number
specified by immediate
byte.

CE INTO NP Invalid Valid Interrupt 4—if overflow flag
is 1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

I imm8 NA NA NA
Vol. 2A 3-513INT n/INTO/INT 3—Call to Interrupt Procedure

INSTRUCTION SET REFERENCE, A-L
Note that the “normal” 2-byte opcode for INT 3 (CD03) does not have these special
features. Intel and Microsoft assemblers will not generate the CD03 opcode from any
mnemonic, but this opcode can be created by direct numeric code definition or by
self-modifying code.

The action of the INT n instruction (including the INTO and INT 3 instructions) is
similar to that of a far call made with the CALL instruction. The primary difference is
that with the INT n instruction, the EFLAGS register is pushed onto the stack before
the return address. (The return address is a far address consisting of the current
values of the CS and EIP registers.) Returns from interrupt procedures are handled
with the IRET instruction, which pops the EFLAGS information and return address
from the stack.

The interrupt vector number specifies an interrupt descriptor in the interrupt
descriptor table (IDT); that is, it provides index into the IDT. The selected interrupt
descriptor in turn contains a pointer to an interrupt or exception handler procedure.
In protected mode, the IDT contains an array of 8-byte descriptors, each of which
is an interrupt gate, trap gate, or task gate. In real-address mode, the IDT is an
array of 4-byte far pointers (2-byte code segment selector and a 2-byte instruction
pointer), each of which point directly to a procedure in the selected segment. (Note
that in real-address mode, the IDT is called the interrupt vector table, and its
pointers are called interrupt vectors.)

The following decision table indicates which action in the lower portion of the table is
taken given the conditions in the upper portion of the table. Each Y in the lower
section of the decision table represents a procedure defined in the “Operation”
section for this instruction (except #GP).

Table 3-61. Decision Table
PE 0 1 1 1 1 1 1 1

VM – – – – – 0 1 1

IOPL – – – – – – <3 =3

DPL/CPL
RELATIONSHIP

– DPL<
CPL

– DPL>
CPL

DPL=
CPL or C

DPL<
CPL & NC

– –

INTERRUPT TYPE – S/W – – – – – –

GATE TYPE – – Task Trap or
Interrupt

Trap or
Interrupt

Trap or
Interrupt

Trap or
Interrupt

Trap or
Interrupt

REAL-ADDRESS-
MODE

Y

PROTECTED-MODE Y Y Y Y Y Y Y

TRAP-OR-
INTERRUPT-GATE

Y Y Y Y Y

INTER-PRIVILEGE-
LEVEL-INTERRUPT

Y

INTRA-PRIVILEGE-
LEVEL-INTERRUPT

Y

3-514 Vol. 2A INT n/INTO/INT 3—Call to Interrupt Procedure

INSTRUCTION SET REFERENCE, A-L
When the processor is executing in virtual-8086 mode, the IOPL determines the
action of the INT n instruction. If the IOPL is less than 3, the processor generates a
#GP(selector) exception; if the IOPL is 3, the processor executes a protected mode
interrupt to privilege level 0. The interrupt gate's DPL must be set to 3 and the target
CPL of the interrupt handler procedure must be 0 to execute the protected mode
interrupt to privilege level 0.

The interrupt descriptor table register (IDTR) specifies the base linear address and
limit of the IDT. The initial base address value of the IDTR after the processor is
powered up or reset is 0.

Operation

The following operational description applies not only to the INT n and INTO instruc-
tions, but also to external interrupts, nonmaskable interrupts (NMIs), and excep-
tions. Some of these events push onto the stack an error code.

The operational description specifies numerous checks whose failure may result in
delivery of a nested exception. In these cases, the original event is not delivered.

The operational description specifies the error code delivered by any nested excep-
tion. In some cases, the error code is specified with a pseudofunction
error_code(num,idt,ext), where idt and ext are bit values. The pseudofunction
produces an error code as follows: (1) if idt is 0, the error code is (num & FCH) | ext;
(2) if idt is 1, the error code is (num « 3) | 2 | ext.

In many cases, the pseudofunction error_code is invoked with a pseudovariable EXT.
The value of EXT depends on the nature of the event whose delivery encountered a
nested exception: if that event is a software interrupt, EXT is 0; otherwise, EXT is 1.

IF PE = 0
THEN

GOTO REAL-ADDRESS-MODE;
ELSE (* PE = 1 *)

IF (VM = 1 and IOPL < 3 AND INT n)
THEN

 #GP(0); (* Bit 0 of error code is 0 because INT n *)

INTERRUPT-FROM-
VIRTUAL-8086-MODE

Y

TASK-GATE Y

#GP Y Y Y

NOTES:
− Don't Care.
Y Yes, action taken.

Blank Action not taken.

Table 3-61. Decision Table (Contd.)
Vol. 2A 3-515INT n/INTO/INT 3—Call to Interrupt Procedure

INSTRUCTION SET REFERENCE, A-L
ELSE (* Protected mode, IA-32e mode, or virtual-8086 mode interrupt *)
IF (IA32_EFER.LMA = 0)

THEN (* Protected mode, or virtual-8086 mode interrupt *)
GOTO PROTECTED-MODE;

ELSE (* IA-32e mode interrupt *)
GOTO IA-32e-MODE;

FI;
FI;

FI;
REAL-ADDRESS-MODE:

IF ((vector_number « 2) + 3) is not within IDT limit
THEN #GP; FI;

IF stack not large enough for a 6-byte return information
THEN #SS; FI;

Push (EFLAGS[15:0]);
IF ← 0; (* Clear interrupt flag *)
TF ← 0; (* Clear trap flag *)
AC ← 0; (* Clear AC flag *)
Push(CS);
Push(IP);
(* No error codes are pushed in real-address mode*)
CS ← IDT(Descriptor (vector_number « 2), selector));
EIP ← IDT(Descriptor (vector_number « 2), offset)); (* 16 bit offset AND 0000FFFFH *)

END;
PROTECTED-MODE:

IF ((vector_number « 3) + 7) is not within IDT limits
or selected IDT descriptor is not an interrupt-, trap-, or task-gate type

THEN #GP(error_code(vector_number,1,EXT)); FI;
(* idt operand to error_code set because vector is used *)

IF software interrupt (* Generated by INT n, INT3, or INTO *)
THEN

IF gate DPL < CPL (* PE = 1, DPL < CPL, software interrupt *)
THEN #GP(error_code(vector_number,1,0)); FI;
(* idt operand to error_code set because vector is used *)
(* ext operand to error_code is 0 because INT n, INT3, or INTO*)

FI;
IF gate not present

THEN #NP(error_code(vector_number,1,EXT)); FI;
(* idt operand to error_code set because vector is used *)

IF task gate (* Specified in the selected interrupt table descriptor *)
THEN GOTO TASK-GATE;
ELSE GOTO TRAP-OR-INTERRUPT-GATE; (* PE = 1, trap/interrupt gate *)

FI;
3-516 Vol. 2A INT n/INTO/INT 3—Call to Interrupt Procedure

INSTRUCTION SET REFERENCE, A-L
END;
IA-32e-MODE:

IF INTO and CS.L = 1 (64-bit mode)
THEN #UD;

FI;
IF ((vector_number « 4) + 15) is not in IDT limits
or selected IDT descriptor is not an interrupt-, or trap-gate type

THEN #GP(error_code(vector_number,1,EXT));
(* idt operand to error_code set because vector is used *)

FI;
IF software interrupt (* Generated by INT n, INT 3, or INTO *)

THEN
IF gate DPL < CPL (* PE = 1, DPL < CPL, software interrupt *)

THEN #GP(error_code(vector_number,1,0));
(* idt operand to error_code set because vector is used *)
(* ext operand to error_code is 0 because INT n, INT3, or INTO*)

FI;
FI;
IF gate not present

THEN #NP(error_code(vector_number,1,EXT));
(* idt operand to error_code set because vector is used *)

FI;
GOTO TRAP-OR-INTERRUPT-GATE; (* Trap/interrupt gate *)

END;
TASK-GATE: (* PE = 1, task gate *)

Read TSS selector in task gate (IDT descriptor);
IF local/global bit is set to local or index not within GDT limits

THEN #GP(error_code(TSS selector,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

Access TSS descriptor in GDT;
IF TSS descriptor specifies that the TSS is busy (low-order 5 bits set to 00001)

THEN #GP(TSS selector,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

IF TSS not present
THEN #NP(TSS selector,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

SWITCH-TASKS (with nesting) to TSS;
IF interrupt caused by fault with error code

THEN
IF stack limit does not allow push of error code

THEN #SS(EXT); FI;
Push(error code);

FI;
Vol. 2A 3-517INT n/INTO/INT 3—Call to Interrupt Procedure

INSTRUCTION SET REFERENCE, A-L
IF EIP not within code segment limit
THEN #GP(EXT); FI;

END;
TRAP-OR-INTERRUPT-GATE:

Read new code-segment selector for trap or interrupt gate (IDT descriptor);
IF new code-segment selector is NULL

THEN #GP(EXT); FI; (* Error code contains NULL selector *)
IF new code-segment selector is not within its descriptor table limits

THEN #GP(error_code(new code-segment selector,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

Read descriptor referenced by new code-segment selector;
IF descriptor does not indicate a code segment or new code-segment DPL > CPL

THEN #GP(error_code(new code-segment selector,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

IF new code-segment descriptor is not present,
THEN #NP(error_code(new code-segment selector,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

IF new code segment is non-conforming with DPL < CPL
THEN

IF VM = 0
THEN

GOTO INTER-PRIVILEGE-LEVEL-INTERRUPT;
(* PE = 1, VM = 0, interrupt or trap gate, nonconforming code segment,
DPL < CPL *)

ELSE (* VM = 1 *)
IF new code-segment DPL ≠ 0

THEN #GP(error_code(new code-segment selector,0,EXT));
(* idt operand to error_code is 0 because selector is used *)

GOTO INTERRUPT-FROM-VIRTUAL-8086-MODE; FI;
(* PE = 1, interrupt or trap gate, DPL < CPL, VM = 1 *)

FI;
ELSE (* PE = 1, interrupt or trap gate, DPL ≥ CPL *)

IF VM = 1
THEN #GP(error_code(new code-segment selector,0,EXT));
(* idt operand to error_code is 0 because selector is used *)

IF new code segment is conforming or new code-segment DPL = CPL
THEN

GOTO INTRA-PRIVILEGE-LEVEL-INTERRUPT;
ELSE (* PE = 1, interrupt or trap gate, nonconforming code segment, DPL > CPL *)

#GP(error_code(new code-segment selector,0,EXT));
(* idt operand to error_code is 0 because selector is used *)

FI;
FI;
3-518 Vol. 2A INT n/INTO/INT 3—Call to Interrupt Procedure

INSTRUCTION SET REFERENCE, A-L
END;
INTER-PRIVILEGE-LEVEL-INTERRUPT:

(* PE = 1, interrupt or trap gate, non-conforming code segment, DPL < CPL *)
IF (IA32_EFER.LMA = 0) (* Not IA-32e mode *)

THEN
(* Identify stack-segment selector for new privilege level in current TSS *)

IF current TSS is 32-bit
THEN

TSSstackAddress ← (new code-segment DPL « 3) + 4;
IF (TSSstackAddress + 5) > current TSS limit

THEN #TS(error_code(current TSS selector,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

NewSS ← 2 bytes loaded from (TSS base + TSSstackAddress + 4);
NewESP ← 4 bytes loaded from (TSS base + TSSstackAddress);

ELSE (* current TSS is 16-bit *)
TSSstackAddress ← (new code-segment DPL « 2) + 2
IF (TSSstackAddress + 3) > current TSS limit

THEN #TS(error_code(current TSS selector,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

NewSS ← 2 bytes loaded from (TSS base + TSSstackAddress + 2);
NewESP ← 2 bytes loaded from (TSS base + TSSstackAddress);

FI;
IF NewSS is NULL

THEN #TS(EXT); FI;
IF NewSS index is not within its descriptor-table limits
or NewSS RPL ≠ new code-segment DPL

THEN #TS(error_code(NewSS,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

Read new stack-segment descriptor for NewSS in GDT or LDT;
IF new stack-segment DPL ≠ new code-segment DPL
or new stack-segment Type does not indicate writable data segment

THEN #TS(error_code(NewSS,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

IF NewSS is not present
THEN #SS(error_code(NewSS,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

ELSE (* IA-32e mode *)
IF IDT-gate IST = 0

THEN TSSstackAddress ← (new code-segment DPL « 3) + 4;
ELSE TSSstackAddress ← (IDT gate IST « 3) + 28;

FI;
IF (TSSstackAddress + 7) > current TSS limit

THEN #TS(error_code(current TSS selector,0,EXT); FI;
Vol. 2A 3-519INT n/INTO/INT 3—Call to Interrupt Procedure

INSTRUCTION SET REFERENCE, A-L
(* idt operand to error_code is 0 because selector is used *)
NewRSP ← 8 bytes loaded from (current TSS base + TSSstackAddress);
NewSS ← new code-segment DPL; (* NULL selector with RPL = new CPL *)

FI;
IF IDT gate is 32-bit

THEN
IF new stack does not have room for 24 bytes (error code pushed)
or 20 bytes (no error code pushed)

THEN #SS(error_code(NewSS,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

FI
ELSE

IF IDT gate is 16-bit
THEN

IF new stack does not have room for 12 bytes (error code pushed)
or 10 bytes (no error code pushed);

THEN #SS(error_code(NewSS,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

ELSE (* 64-bit IDT gate*)
IF StackAddress is non-canonical

THEN #SS(EXT); FI; (* Error code contains NULL selector *)
FI;

FI;
IF (IA32_EFER.LMA = 0) (* Not IA-32e mode *)

THEN
IF instruction pointer from IDT gate is not within new code-segment limits

THEN #GP(EXT); FI; (* Error code contains NULL selector *)
ESP ← NewESP;
SS ← NewSS; (* Segment descriptor information also loaded *)

ELSE (* IA-32e mode *)
IF instruction pointer from IDT gate contains a non-canonical address

THEN #GP(EXT); FI; (* Error code contains NULL selector *)
RSP ← NewRSP & FFFFFFFFFFFFFFF0H;
SS ← NewSS;

FI;
IF IDT gate is 32-bit

THEN
CS:EIP ← Gate(CS:EIP); (* Segment descriptor information also loaded *)

ELSE
IF IDT gate 16-bit

THEN
CS:IP ← Gate(CS:IP);
(* Segment descriptor information also loaded *)
3-520 Vol. 2A INT n/INTO/INT 3—Call to Interrupt Procedure

INSTRUCTION SET REFERENCE, A-L
ELSE (* 64-bit IDT gate *)
CS:RIP ← Gate(CS:RIP);
(* Segment descriptor information also loaded *)

FI;
FI;
IF IDT gate is 32-bit

THEN
Push(far pointer to old stack);
(* Old SS and ESP, 3 words padded to 4 *)
Push(EFLAGS);
Push(far pointer to return instruction);
(* Old CS and EIP, 3 words padded to 4 *)
Push(ErrorCode); (* If needed, 4 bytes *)

ELSE
IF IDT gate 16-bit

THEN
Push(far pointer to old stack);
(* Old SS and SP, 2 words *)
Push(EFLAGS(15-0]);
Push(far pointer to return instruction);
(* Old CS and IP, 2 words *)
Push(ErrorCode); (* If needed, 2 bytes *)

ELSE (* 64-bit IDT gate *)
Push(far pointer to old stack);
(* Old SS and SP, each an 8-byte push *)
Push(RFLAGS); (* 8-byte push *)
Push(far pointer to return instruction);
(* Old CS and RIP, each an 8-byte push *)
Push(ErrorCode); (* If needed, 8-bytes *)

FI;
FI;
CPL ← new code-segment DPL;
CS(RPL) ← CPL;
IF IDT gate is interrupt gate

THEN IF ← 0 (* Interrupt flag set to 0, interrupts disabled *); FI;
TF ← 0;
VM ← 0;
RF ← 0;
NT ← 0;

END;
INTERRUPT-FROM-VIRTUAL-8086-MODE:

(* Identify stack-segment selector for privilege level 0 in current TSS *)
IF current TSS is 32-bit
Vol. 2A 3-521INT n/INTO/INT 3—Call to Interrupt Procedure

INSTRUCTION SET REFERENCE, A-L
THEN
IF TSS limit < 9

THEN #TS(error_code(current TSS selector,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

NewSS ← 2 bytes loaded from (current TSS base + 8);
NewESP ← 4 bytes loaded from (current TSS base + 4);

ELSE (* current TSS is 16-bit *)
IF TSS limit < 5

THEN #TS(error_code(current TSS selector,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

NewSS ← 2 bytes loaded from (current TSS base + 4);
NewESP ← 2 bytes loaded from (current TSS base + 2);

FI;
IF NewSS is NULL

THEN #TS(EXT); FI; (* Error code contains NULL selector *)
IF NewSS index is not within its descriptor table limits
or NewSS RPL ≠ 0

THEN #TS(error_code(NewSS,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

Read new stack-segment descriptor for NewSS in GDT or LDT;
IF new stack-segment DPL ≠ 0 or stack segment does not indicate writable data segment

THEN #TS(error_code(NewSS,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

IF new stack segment not present
THEN #SS(error_code(NewSS,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

IF IDT gate is 32-bit
THEN

IF new stack does not have room for 40 bytes (error code pushed)
or 36 bytes (no error code pushed)

THEN #SS(error_code(NewSS,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

ELSE (* IDT gate is 16-bit)
IF new stack does not have room for 20 bytes (error code pushed)
or 18 bytes (no error code pushed)

THEN #SS(error_code(NewSS,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

FI;
IF instruction pointer from IDT gate is not within new code-segment limits

THEN #GP(EXT); FI; (* Error code contains NULL selector *)
tempEFLAGS ← EFLAGS;
VM ← 0;
TF ← 0;
3-522 Vol. 2A INT n/INTO/INT 3—Call to Interrupt Procedure

INSTRUCTION SET REFERENCE, A-L
RF ← 0;
NT ← 0;
IF service through interrupt gate

THEN IF = 0; FI;
TempSS ← SS;
TempESP ← ESP;
SS ← NewSS;
ESP ← NewESP;
(* Following pushes are 16 bits for 16-bit IDT gates and 32 bits for 32-bit IDT gates;
Segment selector pushes in 32-bit mode are padded to two words *)
Push(GS);
Push(FS);
Push(DS);
Push(ES);
Push(TempSS);
Push(TempESP);
Push(TempEFlags);
Push(CS);
Push(EIP);
GS ← 0; (* Segment registers made NULL, invalid for use in protected mode *)
FS ← 0;
DS ← 0;
ES ← 0;
CS:IP ← Gate(CS); (* Segment descriptor information also loaded *)
IF OperandSize = 32

THEN
EIP ← Gate(instruction pointer);

ELSE (* OperandSize is 16 *)
EIP ← Gate(instruction pointer) AND 0000FFFFH;

FI;
(* Start execution of new routine in Protected Mode *)

END;
INTRA-PRIVILEGE-LEVEL-INTERRUPT:

(* PE = 1, DPL = CPL or conforming segment *)
IF IA32_EFER.LMA = 1 (* IA-32e mode *)

IF IDT-descriptor IST ≠ 0
THEN

TSSstackAddress ← (IDT-descriptor IST « 3) + 28;
IF (TSSstackAddress + 7) > TSS limit

THEN #TS(error_code(current TSS selector,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

NewRSP ← 8 bytes loaded from (current TSS base + TSSstackAddress);
FI;
Vol. 2A 3-523INT n/INTO/INT 3—Call to Interrupt Procedure

INSTRUCTION SET REFERENCE, A-L
IF 32-bit gate (* implies IA32_EFER.LMA = 0 *)
THEN

IF current stack does not have room for 16 bytes (error code pushed)
or 12 bytes (no error code pushed)

THEN #SS(EXT); FI; (* Error code contains NULL selector *)
ELSE IF 16-bit gate (* implies IA32_EFER.LMA = 0 *)

IF current stack does not have room for 8 bytes (error code pushed)
or 6 bytes (no error code pushed)

THEN #SS(EXT); FI; (* Error code contains NULL selector *)
ELSE (* IA32_EFER.LMA = 1, 64-bit gate*)

IF NewRSP contains a non-canonical address
THEN #SS(EXT); (* Error code contains NULL selector *)

FI;
FI;
IF (IA32_EFER.LMA = 0) (* Not IA-32e mode *)

THEN
IF instruction pointer from IDT gate is not within new code-segment limit

THEN #GP(EXT); FI; (* Error code contains NULL selector *)
ELSE

IF instruction pointer from IDT gate contains a non-canonical address
THEN #GP(EXT); FI; (* Error code contains NULL selector *)

RSP ← NewRSP & FFFFFFFFFFFFFFF0H;
FI;
IF IDT gate is 32-bit (* implies IA32_EFER.LMA = 0 *)

THEN
Push (EFLAGS);
Push (far pointer to return instruction); (* 3 words padded to 4 *)
CS:EIP ← Gate(CS:EIP); (* Segment descriptor information also loaded *)
Push (ErrorCode); (* If any *)

ELSE
IF IDT gate is 16-bit (* implies IA32_EFER.LMA = 0 *)

THEN
Push (FLAGS);
Push (far pointer to return location); (* 2 words *)
CS:IP ← Gate(CS:IP);
(* Segment descriptor information also loaded *)
Push (ErrorCode); (* If any *)

ELSE (* IA32_EFER.LMA = 1, 64-bit gate*)
Push(far pointer to old stack);
(* Old SS and SP, each an 8-byte push *)
Push(RFLAGS); (* 8-byte push *)
Push(far pointer to return instruction);
(* Old CS and RIP, each an 8-byte push *)
3-524 Vol. 2A INT n/INTO/INT 3—Call to Interrupt Procedure

INSTRUCTION SET REFERENCE, A-L
Push(ErrorCode); (* If needed, 8 bytes *)
CS:RIP ← GATE(CS:RIP);
(* Segment descriptor information also loaded *)

FI;
FI;
CS(RPL) ← CPL;
IF IDT gate is interrupt gate

THEN IF ← 0; FI; (* Interrupt flag set to 0; interrupts disabled *)
TF ← 0;
NT ← 0;
VM ← 0;
RF ← 0;

END;

Flags Affected

The EFLAGS register is pushed onto the stack. The IF, TF, NT, AC, RF, and VM flags
may be cleared, depending on the mode of operation of the processor when the INT
instruction is executed (see the “Operation” section). If the interrupt uses a task
gate, any flags may be set or cleared, controlled by the EFLAGS image in the new
task’s TSS.

Protected Mode Exceptions
#GP(error_code) If the instruction pointer in the IDT or in the interrupt-, trap-, or

task gate is beyond the code segment limits.
If the segment selector in the interrupt-, trap-, or task gate is
NULL.
If an interrupt-, trap-, or task gate, code segment, or TSS
segment selector index is outside its descriptor table limits.
If the interrupt vector number is outside the IDT limits.
If an IDT descriptor is not an interrupt-, trap-, or task-descriptor.
If an interrupt is generated by the INT n, INT 3, or INTO instruc-
tion and the DPL of an interrupt-, trap-, or task-descriptor is less
than the CPL.
If the segment selector in an interrupt- or trap-gate does not
point to a segment descriptor for a code segment.
If the segment selector for a TSS has its local/global bit set for
local.
If a TSS segment descriptor specifies that the TSS is busy or not
available.

#SS(error_code) If pushing the return address, flags, or error code onto the stack
exceeds the bounds of the stack segment and no stack switch
occurs.
Vol. 2A 3-525INT n/INTO/INT 3—Call to Interrupt Procedure

INSTRUCTION SET REFERENCE, A-L
If the SS register is being loaded and the segment pointed to is
marked not present.
If pushing the return address, flags, error code, or stack
segment pointer exceeds the bounds of the new stack segment
when a stack switch occurs.

#NP(error_code) If code segment, interrupt-, trap-, or task gate, or TSS is not
present.

#TS(error_code) If the RPL of the stack segment selector in the TSS is not equal
to the DPL of the code segment being accessed by the interrupt
or trap gate.
If DPL of the stack segment descriptor pointed to by the stack
segment selector in the TSS is not equal to the DPL of the code
segment descriptor for the interrupt or trap gate.
If the stack segment selector in the TSS is NULL.
If the stack segment for the TSS is not a writable data segment.
If segment-selector index for stack segment is outside
descriptor table limits.

#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.
#AC(EXT) If alignment checking is enabled, the gate DPL is 3, and a stack

push is unaligned.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
If the interrupt vector number is outside the IDT limits.

#SS If stack limit violation on push.
If pushing the return address, flags, or error code onto the stack
exceeds the bounds of the stack segment.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(error_code) (For INT n, INTO, or BOUND instruction) If the IOPL is less than

3 or the DPL of the interrupt-, trap-, or task-gate descriptor is
not equal to 3.
If the instruction pointer in the IDT or in the interrupt-, trap-, or
task gate is beyond the code segment limits.
If the segment selector in the interrupt-, trap-, or task gate is
NULL.
If a interrupt-, trap-, or task gate, code segment, or TSS
segment selector index is outside its descriptor table limits.
3-526 Vol. 2A INT n/INTO/INT 3—Call to Interrupt Procedure

INSTRUCTION SET REFERENCE, A-L
If the interrupt vector number is outside the IDT limits.
If an IDT descriptor is not an interrupt-, trap-, or task-descriptor.
If an interrupt is generated by the INT n instruction and the DPL
of an interrupt-, trap-, or task-descriptor is less than the CPL.
If the segment selector in an interrupt- or trap-gate does not
point to a segment descriptor for a code segment.
If the segment selector for a TSS has its local/global bit set for
local.

#SS(error_code) If the SS register is being loaded and the segment pointed to is
marked not present.
If pushing the return address, flags, error code, stack segment
pointer, or data segments exceeds the bounds of the stack
segment.

#NP(error_code) If code segment, interrupt-, trap-, or task gate, or TSS is not
present.

#TS(error_code) If the RPL of the stack segment selector in the TSS is not equal
to the DPL of the code segment being accessed by the interrupt
or trap gate.
If DPL of the stack segment descriptor for the TSS’s stack
segment is not equal to the DPL of the code segment descriptor
for the interrupt or trap gate.
If the stack segment selector in the TSS is NULL.
If the stack segment for the TSS is not a writable data segment.
If segment-selector index for stack segment is outside
descriptor table limits.

#PF(fault-code) If a page fault occurs.
#BP If the INT 3 instruction is executed.
#OF If the INTO instruction is executed and the OF flag is set.
#UD If the LOCK prefix is used.
#AC(EXT) If alignment checking is enabled, the gate DPL is 3, and a stack

push is unaligned.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(error_code) If the instruction pointer in the 64-bit interrupt gate or 64-bit

trap gate is non-canonical.
If the segment selector in the 64-bit interrupt or trap gate is
NULL.
If the interrupt vector number is outside the IDT limits.
Vol. 2A 3-527INT n/INTO/INT 3—Call to Interrupt Procedure

INSTRUCTION SET REFERENCE, A-L
If the interrupt vector number points to a gate which is in non-
canonical space.
If the interrupt vector number points to a descriptor which is not
a 64-bit interrupt gate or 64-bit trap gate.
If the descriptor pointed to by the gate selector is outside the
descriptor table limit.
If the descriptor pointed to by the gate selector is in non-canon-
ical space.
If the descriptor pointed to by the gate selector is not a code
segment.
If the descriptor pointed to by the gate selector doesn’t have the
L-bit set, or has both the L-bit and D-bit set.
If the descriptor pointed to by the gate selector has DPL > CPL.

#SS(error_code) If a push of the old EFLAGS, CS selector, EIP, or error code is in
non-canonical space with no stack switch.
If a push of the old SS selector, ESP, EFLAGS, CS selector, EIP, or
error code is in non-canonical space on a stack switch (either
CPL change or no-CPL with IST).

#NP(error_code) If the 64-bit interrupt-gate, 64-bit trap-gate, or code segment is
not present.

#TS(error_code) If an attempt to load RSP from the TSS causes an access to non-
canonical space.
If the RSP from the TSS is outside descriptor table limits.

#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.
#AC(EXT) If alignment checking is enabled, the gate DPL is 3, and a stack

push is unaligned.
3-528 Vol. 2A INT n/INTO/INT 3—Call to Interrupt Procedure

INSTRUCTION SET REFERENCE, A-L
INVD—Invalidate Internal Caches

Instruction Operand Encoding

Description

Invalidates (flushes) the processor’s internal caches and issues a special-function
bus cycle that directs external caches to also flush themselves. Data held in internal
caches is not written back to main memory.

After executing this instruction, the processor does not wait for the external caches
to complete their flushing operation before proceeding with instruction execution. It
is the responsibility of hardware to respond to the cache flush signal.

The INVD instruction is a privileged instruction. When the processor is running in
protected mode, the CPL of a program or procedure must be 0 to execute this
instruction.

Use this instruction with care. Data cached internally and not written back to main
memory will be lost. Unless there is a specific requirement or benefit to flushing
caches without writing back modified cache lines (for example, testing or fault
recovery where cache coherency with main memory is not a concern), software
should use the WBINVD instruction.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

The INVD instruction is implementation dependent; it may be implemented differ-
ently on different families of Intel 64 or IA-32 processors. This instruction is not
supported on IA-32 processors earlier than the Intel486 processor.

Operation

Flush(InternalCaches);
SignalFlush(ExternalCaches);
Continue (* Continue execution *)

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 08 INVD NP Valid Valid Flush internal caches;
initiate flushing of external
caches.

NOTES:
* See the IA-32 Architecture Compatibility section below.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
Vol. 2A 3-529INVD—Invalidate Internal Caches

INSTRUCTION SET REFERENCE, A-L
Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) The INVD instruction cannot be executed in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
3-530 Vol. 2A INVD—Invalidate Internal Caches

INSTRUCTION SET REFERENCE, A-L
INVLPG—Invalidate TLB Entry

Instruction Operand Encoding

Description

Invalidates (flushes) the translation lookaside buffer (TLB) entry specified with the
source operand. The source operand is a memory address. The processor determines
the page that contains that address and flushes the TLB entry for that page.

The INVLPG instruction is a privileged instruction. When the processor is running in
protected mode, the CPL of a program or procedure must be 0 to execute this
instruction.

The INVLPG instruction normally flushes the TLB entry only for the specified page;
however, in some cases, it flushes the entire TLB. See “MOV—Move to/from Control
Registers” in this chapter for further information on operations that flush the TLB.

This instruction’s operation is the same in all non-64-bit modes. It also operates the
same in 64-bit mode, except if the memory address is in non-canonical form. In this
case, INVLPG is the same as a NOP.

IA-32 Architecture Compatibility

The INVLPG instruction is implementation dependent, and its function may be imple-
mented differently on different families of Intel 64 or IA-32 processors. This instruc-
tion is not supported on IA-32 processors earlier than the Intel486 processor.

Operation

Flush(RelevantTLBEntries);
Continue; (* Continue execution *)

Flags Affected

None.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 01/7 INVLPG m M Valid Valid Invalidate TLB Entry for
page that contains m.

NOTES:
* See the IA-32 Architecture Compatibility section below.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA
Vol. 2A 3-531INVLPG—Invalidate TLB Entry

INSTRUCTION SET REFERENCE, A-L
Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.
#UD Operand is a register.

If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD Operand is a register.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) The INVLPG instruction cannot be executed at the virtual-8086

mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.
#UD Operand is a register.

If the LOCK prefix is used.
3-532 Vol. 2A INVLPG—Invalidate TLB Entry

INSTRUCTION SET REFERENCE, A-L
INVPCID—Invalidate Process-Context Identifier

Instruction Operand Encoding

Description

Invalidates mappings in the translation lookaside buffers (TLBs) and paging-struc-
ture caches based on process-context identifier (PCID). (See Section 4.10, “Caching
Translation Information,” in Intel 64 and IA-32 Architecture Software Developer’s
Manual, Volume 3A.) Invalidation is based on the INVPCID type specified in the
register operand and the INVPCID descriptor specified in the memory operand.

Outside 64-bit mode, the register operand is always 32 bits, regardless of the value
of CS.D. In 64-bit mode the register operand has 64 bits.

There are four INVPCID types currently defined:
• Individual-address invalidation: If the INVPCID type is 0, the logical processor

invalidates mappings—except global translations—for the linear address and
PCID specified in the INVPCID descriptor. In some cases, the instruction may
invalidate global translations or mappings for other linear addresses (or other
PCIDs) as well.

• Single-context invalidation: If the INVPCID type is 1, the logical processor
invalidates all mappings—except global translations—associated with the PCID
specified in the INVPCID descriptor. In some cases, the instruction may invalidate
global translations or mappings for other PCIDs as well.

• All-context invalidation, including global translations: If the INVPCID type is 2,
the logical processor invalidates all mappings—including global transla-
tions—associated with any PCID.

Opcode/
Instruction

Op/
En

64/32
-bit
Mode

CPUID
Feature
Flag

Description

66 0F 38 82 /r RM NE/V INVPCID Invalidates entries in the TLBs and
paging-structure caches based on
invalidation type in r32 and
descriptor in m128.

INVPCID r32, m128

66 0F 38 82 /r RM V/NE INVPCID Invalidates entries in the TLBs and
paging-structure caches based on
invalidation type in r64 and
descriptor in m128.

INVPCID r64, m128

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (R) ModRM:r/m (R) NA NA
Vol. 2A 3-533INVPCID—Invalidate Process-Context Identifier

INSTRUCTION SET REFERENCE, A-L
• All-context invalidation: If the INVPCID type is 3, the logical processor invalidates
all mappings—except global translations—associated with any PCID. In some
case, the instruction may invalidate global translations as well.

The INVPCID descriptor comprises 128 bits and consists of a PCID and a linear
address as shown in Figure 3-23. For INVPCID type 0, the processor uses the full 64
bits of the linear address even outside 64-bit mode; the linear address is not used for
other INVPCID types.

If CR4.PCIDE = 0, a logical processor does not cache information for any PCID other
than 000H. In this case, executions with INVPCID types 0 and 1 are allowed only if
the PCID specified in the INVPCID descriptor is 000H; executions with INVPCID types
2 and 3 invalidate mappings only for PCID 000H. Note that CR4.PCIDE must be 0
outside 64-bit mode (see Chapter 4.10.1, “Process-Context Identifiers (PCIDs)‚” of
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A).

Operation

INVPCID_TYPE ← value of register operand; // must be in the range of 0–3
INVPCID_DESC ← value of memory operand;
CASE INVPCID_TYPE OF

0: // individual-address invalidation
PCID ← INVPCID_DESC[11:0];
L_ADDR ← INVPCID_DESC[127:64];
Invalidate mappings for L_ADDR associated with PCID except global translations;
BREAK;

1: // single PCID invalidation
PCID ← INVPCID_DESC[11:0];
Invalidate all mappings associated with PCID except global translations;
BREAK;

2: // all PCID invalidation including global translations
Invalidate all mappings for all PCIDs, including global translations;
BREAK;

3: // all PCID invalidation retaining global translations
Invalidate all mappings for all PCIDs except global translations;

Figure 3-23. INVPCID Descriptor

127 64 63 01112

Reserved (must be zero)Linear Address PCID
3-534 Vol. 2A INVPCID—Invalidate Process-Context Identifier

INSTRUCTION SET REFERENCE, A-L
BREAK;
ESAC;

Intel C/C++ Compiler Intrinsic Equivalent

INVPCID: void _invpcid(unsigned __int32 type, void * descriptor);

SIMD Floating-Point Exceptions

None

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains an unusable segment.
If the source operand is located in an execute-only code
segment.
If an invalid type is specified in the register operand, i.e.,
INVPCID_TYPE > 3.
If bits 63:12 of INVPCID_DESC are not all zero.
If INVPCID_TYPE is either 0 or 1 and INVPCID_DESC[11:0] is
not zero.
If INVPCID_TYPE is 0 and the linear address in
INVPCID_DESC[127:64] is not canonical.

#PF(fault-code) If a page fault occurs in accessing the memory operand.
#SS(0) If the memory operand effective address is outside the SS

segment limit.
If the SS register contains an unusable segment.

#UD If if CPUID.(EAX=07H, ECX=0H):EBX.INVPCID (bit 10) = 0.
If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If an invalid type is specified in the register operand, i.e.,

INVPCID_TYPE > 3.
If bits 63:12 of INVPCID_DESC are not all zero.
If INVPCID_TYPE is either 0 or 1 and INVPCID_DESC[11:0] is
not zero.
If INVPCID_TYPE is 0 and the linear address in
INVPCID_DESC[127:64] is not canonical.

#UD If CPUID.(EAX=07H, ECX=0H):EBX.INVPCID (bit 10) = 0.
Vol. 2A 3-535INVPCID—Invalidate Process-Context Identifier

INSTRUCTION SET REFERENCE, A-L
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) The INVPCID instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory operand is in the CS, DS, ES, FS, or GS segments
and the memory address is in a non-canonical form.
If an invalid type is specified in the register operand, i.e.,
INVPCID_TYPE > 3.
If bits 63:12 of INVPCID_DESC are not all zero.
If CR4.PCIDE=0, INVPCID_TYPE is either 0 or 1, and
INVPCID_DESC[11:0] is not zero.
If INVPCID_TYPE is 0 and the linear address in
INVPCID_DESC[127:64] is not canonical.

#PF(fault-code) If a page fault occurs in accessing the memory operand.
#SS(0) If the memory destination operand is in the SS segment and the

memory address is in a non-canonical form.
#UD If the LOCK prefix is used.

If CPUID.(EAX=07H, ECX=0H):EBX.INVPCID (bit 10) = 0.
3-536 Vol. 2A INVPCID—Invalidate Process-Context Identifier

INSTRUCTION SET REFERENCE, A-L
IRET/IRETD—Interrupt Return

Instruction Operand Encoding

Description

Returns program control from an exception or interrupt handler to a program or
procedure that was interrupted by an exception, an external interrupt, or a software-
generated interrupt. These instructions are also used to perform a return from a
nested task. (A nested task is created when a CALL instruction is used to initiate a
task switch or when an interrupt or exception causes a task switch to an interrupt or
exception handler.) See the section titled “Task Linking” in Chapter 7 of the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 3A.

IRET and IRETD are mnemonics for the same opcode. The IRETD mnemonic (inter-
rupt return double) is intended for use when returning from an interrupt when using
the 32-bit operand size; however, most assemblers use the IRET mnemonic inter-
changeably for both operand sizes.

In Real-Address Mode, the IRET instruction preforms a far return to the interrupted
program or procedure. During this operation, the processor pops the return instruc-
tion pointer, return code segment selector, and EFLAGS image from the stack to the
EIP, CS, and EFLAGS registers, respectively, and then resumes execution of the inter-
rupted program or procedure.

In Protected Mode, the action of the IRET instruction depends on the settings of the
NT (nested task) and VM flags in the EFLAGS register and the VM flag in the EFLAGS
image stored on the current stack. Depending on the setting of these flags, the
processor performs the following types of interrupt returns:
• Return from virtual-8086 mode.
• Return to virtual-8086 mode.
• Intra-privilege level return.
• Inter-privilege level return.
• Return from nested task (task switch).

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

CF IRET NP Valid Valid Interrupt return (16-bit
operand size).

CF IRETD NP Valid Valid Interrupt return (32-bit
operand size).

REX.W + CF IRETQ NP Valid N.E. Interrupt return (64-bit
operand size).

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
Vol. 2A 3-537IRET/IRETD—Interrupt Return

INSTRUCTION SET REFERENCE, A-L
If the NT flag (EFLAGS register) is cleared, the IRET instruction performs a far return
from the interrupt procedure, without a task switch. The code segment being
returned to must be equally or less privileged than the interrupt handler routine (as
indicated by the RPL field of the code segment selector popped from the stack).

As with a real-address mode interrupt return, the IRET instruction pops the return
instruction pointer, return code segment selector, and EFLAGS image from the stack
to the EIP, CS, and EFLAGS registers, respectively, and then resumes execution of
the interrupted program or procedure. If the return is to another privilege level, the
IRET instruction also pops the stack pointer and SS from the stack, before resuming
program execution. If the return is to virtual-8086 mode, the processor also pops the
data segment registers from the stack.

If the NT flag is set, the IRET instruction performs a task switch (return) from a
nested task (a task called with a CALL instruction, an interrupt, or an exception) back
to the calling or interrupted task. The updated state of the task executing the IRET
instruction is saved in its TSS. If the task is re-entered later, the code that follows the
IRET instruction is executed.

If the NT flag is set and the processor is in IA-32e mode, the IRET instruction causes
a general protection exception.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.W
prefix promotes operation to 64 bits (IRETQ). See the summary chart at the begin-
ning of this section for encoding data and limits.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 25 of
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C, for
more information about the behavior of this instruction in VMX non-root operation.

Operation

IF PE = 0
THEN

GOTO REAL-ADDRESS-MODE;
ELSE

IF (IA32_EFER.LMA = 0)
THEN (* Protected mode *)

GOTO PROTECTED-MODE;
ELSE (* IA-32e mode *)

GOTO IA-32e-MODE;
FI;

FI;
REAL-ADDRESS-MODE;

IF OperandSize = 32
THEN

IF top 12 bytes of stack not within stack limits
THEN #SS; FI;
3-538 Vol. 2A IRET/IRETD—Interrupt Return

INSTRUCTION SET REFERENCE, A-L
tempEIP ← 4 bytes at end of stack
IF tempEIP[31:16] is not zero THEN #GP(0); FI;
EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded *)
tempEFLAGS ← Pop();
EFLAGS ← (tempEFLAGS AND 257FD5H) OR (EFLAGS AND 1A0000H);

ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack are not within stack limits

THEN #SS; FI;
EIP ← Pop(); (* 16-bit pop; clear upper 16 bits *)
CS ← Pop(); (* 16-bit pop *)
EFLAGS[15:0] ← Pop();

FI;
END;

PROTECTED-MODE:
IF VM = 1 (* Virtual-8086 mode: PE = 1, VM = 1 *)

THEN
GOTO RETURN-FROM-VIRTUAL-8086-MODE; (* PE = 1, VM = 1 *)

FI;
IF NT = 1

THEN
GOTO TASK-RETURN; (* PE = 1, VM = 0, NT = 1 *)

FI;
IF OperandSize = 32

THEN
IF top 12 bytes of stack not within stack limits

THEN #SS(0); FI;
tempEIP ← Pop();
tempCS ← Pop();
tempEFLAGS ← Pop();

ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack are not within stack limits

THEN #SS(0); FI;
tempEIP ← Pop();
tempCS ← Pop();
tempEFLAGS ← Pop();
tempEIP ← tempEIP AND FFFFH;
tempEFLAGS ← tempEFLAGS AND FFFFH;

FI;
IF tempEFLAGS(VM) = 1 and CPL = 0

THEN
GOTO RETURN-TO-VIRTUAL-8086-MODE;

ELSE
Vol. 2A 3-539IRET/IRETD—Interrupt Return

INSTRUCTION SET REFERENCE, A-L
GOTO PROTECTED-MODE-RETURN;
FI;

IA-32e-MODE:
IF NT = 1

THEN #GP(0);
ELSE IF OperandSize = 32

THEN
IF top 12 bytes of stack not within stack limits

THEN #SS(0); FI;
tempEIP ← Pop();
tempCS ← Pop();
tempEFLAGS ← Pop();

ELSE IF OperandSize = 16
THEN

IF top 6 bytes of stack are not within stack limits
THEN #SS(0); FI;

tempEIP ← Pop();
tempCS ← Pop();
tempEFLAGS ← Pop();
tempEIP ← tempEIP AND FFFFH;
tempEFLAGS ← tempEFLAGS AND FFFFH;

FI;
ELSE (* OperandSize = 64 *)

THEN
tempRIP ← Pop();
tempCS ← Pop();
tempEFLAGS ← Pop();
tempRSP ← Pop();
tempSS ← Pop();

FI;
GOTO IA-32e-MODE-RETURN;

RETURN-FROM-VIRTUAL-8086-MODE:
(* Processor is in virtual-8086 mode when IRET is executed and stays in virtual-8086 mode *)

IF IOPL = 3 (* Virtual mode: PE = 1, VM = 1, IOPL = 3 *)
THEN IF OperandSize = 32

THEN
IF top 12 bytes of stack not within stack limits

THEN #SS(0); FI;
IF instruction pointer not within code segment limits

THEN #GP(0); FI;
EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded *)
EFLAGS ← Pop();
3-540 Vol. 2A IRET/IRETD—Interrupt Return

INSTRUCTION SET REFERENCE, A-L
(* VM, IOPL,VIP and VIF EFLAG bits not modified by pop *)
ELSE (* OperandSize = 16 *)

IF top 6 bytes of stack are not within stack limits
THEN #SS(0); FI;

IF instruction pointer not within code segment limits
THEN #GP(0); FI;

EIP ← Pop();
EIP ← EIP AND 0000FFFFH;
CS ← Pop(); (* 16-bit pop *)
EFLAGS[15:0] ← Pop(); (* IOPL in EFLAGS not modified by pop *)

FI;
ELSE

#GP(0); (* Trap to virtual-8086 monitor: PE = 1, VM = 1, IOPL < 3 *)
FI;

END;

RETURN-TO-VIRTUAL-8086-MODE:
(* Interrupted procedure was in virtual-8086 mode: PE = 1, CPL=0, VM = 1 in flag image *)
IF top 24 bytes of stack are not within stack segment limits

THEN #SS(0); FI;
IF instruction pointer not within code segment limits

THEN #GP(0); FI;
CS ← tempCS;
EIP ← tempEIP & FFFFH;
EFLAGS ← tempEFLAGS;
TempESP ← Pop();
TempSS ← Pop();
ES ← Pop(); (* Pop 2 words; throw away high-order word *)
DS ← Pop(); (* Pop 2 words; throw away high-order word *)
FS ← Pop(); (* Pop 2 words; throw away high-order word *)
GS ← Pop(); (* Pop 2 words; throw away high-order word *)
SS:ESP ← TempSS:TempESP;
CPL ← 3;
(* Resume execution in Virtual-8086 mode *)

END;

TASK-RETURN: (* PE = 1, VM = 0, NT = 1 *)
Read segment selector in link field of current TSS;
IF local/global bit is set to local
or index not within GDT limits

THEN #TS (TSS selector); FI;
Access TSS for task specified in link field of current TSS;
IF TSS descriptor type is not TSS or if the TSS is marked not busy
Vol. 2A 3-541IRET/IRETD—Interrupt Return

INSTRUCTION SET REFERENCE, A-L
THEN #TS (TSS selector); FI;
IF TSS not present

THEN #NP(TSS selector); FI;
SWITCH-TASKS (without nesting) to TSS specified in link field of current TSS;
Mark the task just abandoned as NOT BUSY;
IF EIP is not within code segment limit

THEN #GP(0); FI;
END;

PROTECTED-MODE-RETURN: (* PE = 1 *)
IF return code segment selector is NULL

THEN GP(0); FI;
IF return code segment selector addresses descriptor beyond descriptor table limit

THEN GP(selector); FI;
Read segment descriptor pointed to by the return code segment selector;
IF return code segment descriptor is not a code segment

THEN #GP(selector); FI;
IF return code segment selector RPL < CPL

THEN #GP(selector); FI;
IF return code segment descriptor is conforming
and return code segment DPL > return code segment selector RPL

THEN #GP(selector); FI;
IF return code segment descriptor is not present

THEN #NP(selector); FI;
IF return code segment selector RPL > CPL

THEN GOTO RETURN-OUTER-PRIVILEGE-LEVEL;
ELSE GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL; FI;

END;

RETURN-TO-SAME-PRIVILEGE-LEVEL: (* PE = 1, RPL = CPL *)
IF new mode ≠ 64-Bit Mode

THEN
IF tempEIP is not within code segment limits

THEN #GP(0); FI;
EIP ← tempEIP;

ELSE (* new mode = 64-bit mode *)
IF tempRIP is non-canonical

THEN #GP(0); FI;
RIP ← tempRIP;

FI;
CS ← tempCS; (* Segment descriptor information also loaded *)
EFLAGS (CF, PF, AF, ZF, SF, TF, DF, OF, NT) ← tempEFLAGS;
IF OperandSize = 32 or OperandSize = 64
3-542 Vol. 2A IRET/IRETD—Interrupt Return

INSTRUCTION SET REFERENCE, A-L
THEN EFLAGS(RF, AC, ID) ← tempEFLAGS; FI;
IF CPL ≤ IOPL

THEN EFLAGS(IF) ← tempEFLAGS; FI;
IF CPL = 0

 THEN (* VM = 0 in flags image *)
 EFLAGS(IOPL) ← tempEFLAGS;
 IF OperandSize = 32 or OperandSize = 64

THEN EFLAGS(VIF, VIP) ← tempEFLAGS; FI;
 FI;
END;

RETURN-TO-OUTER-PRIVILEGE-LEVEL:
IF OperandSize = 32

THEN
IF top 8 bytes on stack are not within limits

THEN #SS(0); FI;
ELSE (* OperandSize = 16 *)

IF top 4 bytes on stack are not within limits
THEN #SS(0); FI;

FI;
Read return segment selector;
IF stack segment selector is NULL

THEN #GP(0); FI;
IF return stack segment selector index is not within its descriptor table limits

THEN #GP(SSselector); FI;
Read segment descriptor pointed to by return segment selector;
IF stack segment selector RPL ≠ RPL of the return code segment selector
or the stack segment descriptor does not indicate a a writable data segment;
or the stack segment DPL ≠ RPL of the return code segment selector

THEN #GP(SS selector); FI;
IF stack segment is not present

THEN #SS(SS selector); FI;
IF new mode ≠ 64-Bit Mode

THEN
IF tempEIP is not within code segment limits

THEN #GP(0); FI;
EIP ← tempEIP;

ELSE (* new mode = 64-bit mode *)
IF tempRIP is non-canonical

THEN #GP(0); FI;
RIP ← tempRIP;

FI;
CS ← tempCS;
Vol. 2A 3-543IRET/IRETD—Interrupt Return

INSTRUCTION SET REFERENCE, A-L
EFLAGS (CF, PF, AF, ZF, SF, TF, DF, OF, NT) ← tempEFLAGS;
IF OperandSize = 32

THEN EFLAGS(RF, AC, ID) ← tempEFLAGS; FI;
IF CPL ≤ IOPL

THEN EFLAGS(IF) ← tempEFLAGS; FI;
IF CPL = 0

THEN
EFLAGS(IOPL) ← tempEFLAGS;
IF OperandSize = 32

THEN EFLAGS(VM, VIF, VIP) ← tempEFLAGS; FI;
IF OperandSize = 64

THEN EFLAGS(VIF, VIP) ← tempEFLAGS; FI;
FI;
CPL ← RPL of the return code segment selector;
FOR each of segment register (ES, FS, GS, and DS)

DO
IF segment register points to data or non-conforming code segment
and CPL > segment descriptor DPL (* Stored in hidden part of segment register *)

THEN (* Segment register invalid *)
SegmentSelector ← 0; (* NULL segment selector *)

FI;
OD;

END;

IA-32e-MODE-RETURN: (* IA32_EFER.LMA = 1, PE = 1 *)
IF ((return code segment selector is NULL) or (return RIP is non-canonical) or

(SS selector is NULL going back to compatibility mode) or
(SS selector is NULL going back to CPL3 64-bit mode) or
(RPL <> CPL going back to non-CPL3 64-bit mode for a NULL SS selector))

THEN GP(0); FI;
IF return code segment selector addresses descriptor beyond descriptor table limit

THEN GP(selector); FI;
Read segment descriptor pointed to by the return code segment selector;
IF return code segment descriptor is not a code segment

THEN #GP(selector); FI;
IF return code segment selector RPL < CPL

THEN #GP(selector); FI;
IF return code segment descriptor is conforming
and return code segment DPL > return code segment selector RPL

THEN #GP(selector); FI;
IF return code segment descriptor is not present

THEN #NP(selector); FI;
IF return code segment selector RPL > CPL
3-544 Vol. 2A IRET/IRETD—Interrupt Return

INSTRUCTION SET REFERENCE, A-L
THEN GOTO RETURN-OUTER-PRIVILEGE-LEVEL;
ELSE GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL; FI;

END;

Flags Affected

All the flags and fields in the EFLAGS register are potentially modified, depending on
the mode of operation of the processor. If performing a return from a nested task to
a previous task, the EFLAGS register will be modified according to the EFLAGS image
stored in the previous task’s TSS.

Protected Mode Exceptions
#GP(0) If the return code or stack segment selector is NULL.

If the return instruction pointer is not within the return code
segment limit.

#GP(selector) If a segment selector index is outside its descriptor table limits.
If the return code segment selector RPL is greater than the CPL.
If the DPL of a conforming-code segment is greater than the
return code segment selector RPL.
If the DPL for a nonconforming-code segment is not equal to the
RPL of the code segment selector.
If the stack segment descriptor DPL is not equal to the RPL of
the return code segment selector.
If the stack segment is not a writable data segment.
If the stack segment selector RPL is not equal to the RPL of the
return code segment selector.
If the segment descriptor for a code segment does not indicate
it is a code segment.
If the segment selector for a TSS has its local/global bit set for
local.
If a TSS segment descriptor specifies that the TSS is not busy.
If a TSS segment descriptor specifies that the TSS is not avail-
able.

#SS(0) If the top bytes of stack are not within stack limits.
#NP(selector) If the return code or stack segment is not present.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference occurs when the CPL is 3 and

alignment checking is enabled.
#UD If the LOCK prefix is used.
Vol. 2A 3-545IRET/IRETD—Interrupt Return

INSTRUCTION SET REFERENCE, A-L
Real-Address Mode Exceptions
#GP If the return instruction pointer is not within the return code

segment limit.
#SS If the top bytes of stack are not within stack limits.

Virtual-8086 Mode Exceptions
#GP(0) If the return instruction pointer is not within the return code

segment limit.
IF IOPL not equal to 3.

#PF(fault-code) If a page fault occurs.
#SS(0) If the top bytes of stack are not within stack limits.
#AC(0) If an unaligned memory reference occurs and alignment

checking is enabled.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
#GP(0) If EFLAGS.NT[bit 14] = 1.
Other exceptions same as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If EFLAGS.NT[bit 14] = 1.

If the return code segment selector is NULL.
If the stack segment selector is NULL going back to compatibility
mode.
If the stack segment selector is NULL going back to CPL3 64-bit
mode.
If a NULL stack segment selector RPL is not equal to CPL going
back to non-CPL3 64-bit mode.
If the return instruction pointer is not within the return code
segment limit.
If the return instruction pointer is non-canonical.

#GP(Selector) If a segment selector index is outside its descriptor table limits.
If a segment descriptor memory address is non-canonical.
If the segment descriptor for a code segment does not indicate
it is a code segment.
If the proposed new code segment descriptor has both the D-bit
and L-bit set.
If the DPL for a nonconforming-code segment is not equal to the
RPL of the code segment selector.
If CPL is greater than the RPL of the code segment selector.
3-546 Vol. 2A IRET/IRETD—Interrupt Return

INSTRUCTION SET REFERENCE, A-L
If the DPL of a conforming-code segment is greater than the
return code segment selector RPL.
If the stack segment is not a writable data segment.
If the stack segment descriptor DPL is not equal to the RPL of
the return code segment selector.
If the stack segment selector RPL is not equal to the RPL of the
return code segment selector.

#SS(0) If an attempt to pop a value off the stack violates the SS limit.
If an attempt to pop a value off the stack causes a non-canonical
address to be referenced.

#NP(selector) If the return code or stack segment is not present.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference occurs when the CPL is 3 and

alignment checking is enabled.
#UD If the LOCK prefix is used.
Vol. 2A 3-547IRET/IRETD—Interrupt Return

INSTRUCTION SET REFERENCE, A-L
Jcc—Jump if Condition Is Met

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

77 cb JA rel8 D Valid Valid Jump short if above (CF=0
and ZF=0).

73 cb JAE rel8 D Valid Valid Jump short if above or equal
(CF=0).

72 cb JB rel8 D Valid Valid Jump short if below (CF=1).

76 cb JBE rel8 D Valid Valid Jump short if below or equal
(CF=1 or ZF=1).

72 cb JC rel8 D Valid Valid Jump short if carry (CF=1).

E3 cb JCXZ rel8 D N.E. Valid Jump short if CX register is
0.

E3 cb JECXZ rel8 D Valid Valid Jump short if ECX register is
0.

E3 cb JRCXZ rel8 D Valid N.E. Jump short if RCX register is
0.

74 cb JE rel8 D Valid Valid Jump short if equal (ZF=1).

7F cb JG rel8 D Valid Valid Jump short if greater (ZF=0
and SF=OF).

7D cb JGE rel8 D Valid Valid Jump short if greater or
equal (SF=OF).

7C cb JL rel8 D Valid Valid Jump short if less (SF≠ OF).

7E cb JLE rel8 D Valid Valid Jump short if less or equal
(ZF=1 or SF≠ OF).

76 cb JNA rel8 D Valid Valid Jump short if not above
(CF=1 or ZF=1).

72 cb JNAE rel8 D Valid Valid Jump short if not above or
equal (CF=1).

73 cb JNB rel8 D Valid Valid Jump short if not below
(CF=0).

77 cb JNBE rel8 D Valid Valid Jump short if not below or
equal (CF=0 and ZF=0).

73 cb JNC rel8 D Valid Valid Jump short if not carry
(CF=0).

75 cb JNE rel8 D Valid Valid Jump short if not equal
(ZF=0).

7E cb JNG rel8 D Valid Valid Jump short if not greater
(ZF=1 or SF≠ OF).
3-548 Vol. 2A Jcc—Jump if Condition Is Met

INSTRUCTION SET REFERENCE, A-L
7C cb JNGE rel8 D Valid Valid Jump short if not greater or
equal (SF≠ OF).

7D cb JNL rel8 D Valid Valid Jump short if not less
(SF=OF).

7F cb JNLE rel8 D Valid Valid Jump short if not less or
equal (ZF=0 and SF=OF).

71 cb JNO rel8 D Valid Valid Jump short if not overflow
(OF=0).

7B cb JNP rel8 D Valid Valid Jump short if not parity
(PF=0).

79 cb JNS rel8 D Valid Valid Jump short if not sign
(SF=0).

75 cb JNZ rel8 D Valid Valid Jump short if not zero
(ZF=0).

70 cb JO rel8 D Valid Valid Jump short if overflow
(OF=1).

7A cb JP rel8 D Valid Valid Jump short if parity (PF=1).

7A cb JPE rel8 D Valid Valid Jump short if parity even
(PF=1).

7B cb JPO rel8 D Valid Valid Jump short if parity odd
(PF=0).

78 cb JS rel8 D Valid Valid Jump short if sign (SF=1).

74 cb JZ rel8 D Valid Valid Jump short if zero (ZF ← 1).

0F 87 cw JA rel16 D N.S. Valid Jump near if above (CF=0
and ZF=0). Not supported in
64-bit mode.

0F 87 cd JA rel32 D Valid Valid Jump near if above (CF=0
and ZF=0).

0F 83 cw JAE rel16 D N.S. Valid Jump near if above or equal
(CF=0). Not supported in 64-
bit mode.

0F 83 cd JAE rel32 D Valid Valid Jump near if above or equal
(CF=0).

0F 82 cw JB rel16 D N.S. Valid Jump near if below (CF=1).
Not supported in 64-bit
mode.

0F 82 cd JB rel32 D Valid Valid Jump near if below (CF=1).

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description
Vol. 2A 3-549Jcc—Jump if Condition Is Met

INSTRUCTION SET REFERENCE, A-L
0F 86 cw JBE rel16 D N.S. Valid Jump near if below or equal
(CF=1 or ZF=1). Not
supported in 64-bit mode.

0F 86 cd JBE rel32 D Valid Valid Jump near if below or equal
(CF=1 or ZF=1).

0F 82 cw JC rel16 D N.S. Valid Jump near if carry (CF=1).
Not supported in 64-bit
mode.

0F 82 cd JC rel32 D Valid Valid Jump near if carry (CF=1).

0F 84 cw JE rel16 D N.S. Valid Jump near if equal (ZF=1).
Not supported in 64-bit
mode.

0F 84 cd JE rel32 D Valid Valid Jump near if equal (ZF=1).

0F 84 cw JZ rel16 D N.S. Valid Jump near if 0 (ZF=1). Not
supported in 64-bit mode.

0F 84 cd JZ rel32 D Valid Valid Jump near if 0 (ZF=1).

0F 8F cw JG rel16 D N.S. Valid Jump near if greater (ZF=0
and SF=OF). Not supported
in 64-bit mode.

0F 8F cd JG rel32 D Valid Valid Jump near if greater (ZF=0
and SF=OF).

0F 8D cw JGE rel16 D N.S. Valid Jump near if greater or
equal (SF=OF). Not
supported in 64-bit mode.

0F 8D cd JGE rel32 D Valid Valid Jump near if greater or
equal (SF=OF).

0F 8C cw JL rel16 D N.S. Valid Jump near if less (SF≠ OF).
Not supported in 64-bit
mode.

0F 8C cd JL rel32 D Valid Valid Jump near if less (SF≠ OF).

0F 8E cw JLE rel16 D N.S. Valid Jump near if less or equal
(ZF=1 or SF≠ OF). Not
supported in 64-bit mode.

0F 8E cd JLE rel32 D Valid Valid Jump near if less or equal
(ZF=1 or SF≠ OF).

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description
3-550 Vol. 2A Jcc—Jump if Condition Is Met

INSTRUCTION SET REFERENCE, A-L
0F 86 cw JNA rel16 D N.S. Valid Jump near if not above
(CF=1 or ZF=1). Not
supported in 64-bit mode.

0F 86 cd JNA rel32 D Valid Valid Jump near if not above
(CF=1 or ZF=1).

0F 82 cw JNAE rel16 D N.S. Valid Jump near if not above or
equal (CF=1). Not supported
in 64-bit mode.

0F 82 cd JNAE rel32 D Valid Valid Jump near if not above or
equal (CF=1).

0F 83 cw JNB rel16 D N.S. Valid Jump near if not below
(CF=0). Not supported in 64-
bit mode.

0F 83 cd JNB rel32 D Valid Valid Jump near if not below
(CF=0).

0F 87 cw JNBE rel16 D N.S. Valid Jump near if not below or
equal (CF=0 and ZF=0). Not
supported in 64-bit mode.

0F 87 cd JNBE rel32 D Valid Valid Jump near if not below or
equal (CF=0 and ZF=0).

0F 83 cw JNC rel16 D N.S. Valid Jump near if not carry
(CF=0). Not supported in 64-
bit mode.

0F 83 cd JNC rel32 D Valid Valid Jump near if not carry
(CF=0).

0F 85 cw JNE rel16 D N.S. Valid Jump near if not equal
(ZF=0). Not supported in
64-bit mode.

0F 85 cd JNE rel32 D Valid Valid Jump near if not equal
(ZF=0).

0F 8E cw JNG rel16 D N.S. Valid Jump near if not greater
(ZF=1 or SF≠ OF). Not
supported in 64-bit mode.

0F 8E cd JNG rel32 D Valid Valid Jump near if not greater
(ZF=1 or SF≠ OF).

0F 8C cw JNGE rel16 D N.S. Valid Jump near if not greater or
equal (SF≠ OF). Not
supported in 64-bit mode.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description
Vol. 2A 3-551Jcc—Jump if Condition Is Met

INSTRUCTION SET REFERENCE, A-L
0F 8C cd JNGE rel32 D Valid Valid Jump near if not greater or
equal (SF≠ OF).

0F 8D cw JNL rel16 D N.S. Valid Jump near if not less
(SF=OF). Not supported in
64-bit mode.

0F 8D cd JNL rel32 D Valid Valid Jump near if not less
(SF=OF).

0F 8F cw JNLE rel16 D N.S. Valid Jump near if not less or
equal (ZF=0 and SF=OF).
Not supported in 64-bit
mode.

0F 8F cd JNLE rel32 D Valid Valid Jump near if not less or
equal (ZF=0 and SF=OF).

0F 81 cw JNO rel16 D N.S. Valid Jump near if not overflow
(OF=0). Not supported in
64-bit mode.

0F 81 cd JNO rel32 D Valid Valid Jump near if not overflow
(OF=0).

0F 8B cw JNP rel16 D N.S. Valid Jump near if not parity
(PF=0). Not supported in 64-
bit mode.

0F 8B cd JNP rel32 D Valid Valid Jump near if not parity
(PF=0).

0F 89 cw JNS rel16 D N.S. Valid Jump near if not sign (SF=0).
Not supported in 64-bit
mode.

0F 89 cd JNS rel32 D Valid Valid Jump near if not sign (SF=0).

0F 85 cw JNZ rel16 D N.S. Valid Jump near if not zero
(ZF=0). Not supported in
64-bit mode.

0F 85 cd JNZ rel32 D Valid Valid Jump near if not zero
(ZF=0).

0F 80 cw JO rel16 D N.S. Valid Jump near if overflow
(OF=1). Not supported in
64-bit mode.

0F 80 cd JO rel32 D Valid Valid Jump near if overflow
(OF=1).

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description
3-552 Vol. 2A Jcc—Jump if Condition Is Met

INSTRUCTION SET REFERENCE, A-L
Instruction Operand Encoding

Description

Checks the state of one or more of the status flags in the EFLAGS register (CF, OF, PF,
SF, and ZF) and, if the flags are in the specified state (condition), performs a jump to
the target instruction specified by the destination operand. A condition code (cc) is
associated with each instruction to indicate the condition being tested for. If the
condition is not satisfied, the jump is not performed and execution continues with the
instruction following the Jcc instruction.

The target instruction is specified with a relative offset (a signed offset relative to the
current value of the instruction pointer in the EIP register). A relative offset (rel8,
rel16, or rel32) is generally specified as a label in assembly code, but at the machine
code level, it is encoded as a signed, 8-bit or 32-bit immediate value, which is added
to the instruction pointer. Instruction coding is most efficient for offsets of –128 to

0F 8A cw JP rel16 D N.S. Valid Jump near if parity (PF=1).
Not supported in 64-bit
mode.

0F 8A cd JP rel32 D Valid Valid Jump near if parity (PF=1).

0F 8A cw JPE rel16 D N.S. Valid Jump near if parity even
(PF=1). Not supported in 64-
bit mode.

0F 8A cd JPE rel32 D Valid Valid Jump near if parity even
(PF=1).

0F 8B cw JPO rel16 D N.S. Valid Jump near if parity odd
(PF=0). Not supported in 64-
bit mode.

0F 8B cd JPO rel32 D Valid Valid Jump near if parity odd
(PF=0).

0F 88 cw JS rel16 D N.S. Valid Jump near if sign (SF=1). Not
supported in 64-bit mode.

0F 88 cd JS rel32 D Valid Valid Jump near if sign (SF=1).

0F 84 cw JZ rel16 D N.S. Valid Jump near if 0 (ZF=1). Not
supported in 64-bit mode.

0F 84 cd JZ rel32 D Valid Valid Jump near if 0 (ZF=1).

Op/En Operand 1 Operand 2 Operand 3 Operand 4

D Offset NA NA NA

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description
Vol. 2A 3-553Jcc—Jump if Condition Is Met

INSTRUCTION SET REFERENCE, A-L
+127. If the operand-size attribute is 16, the upper two bytes of the EIP register are
cleared, resulting in a maximum instruction pointer size of 16 bits.

The conditions for each Jcc mnemonic are given in the “Description” column of the
table on the preceding page. The terms “less” and “greater” are used for compari-
sons of signed integers and the terms “above” and “below” are used for unsigned
integers.

Because a particular state of the status flags can sometimes be interpreted in two
ways, two mnemonics are defined for some opcodes. For example, the JA (jump if
above) instruction and the JNBE (jump if not below or equal) instruction are alternate
mnemonics for the opcode 77H.

The Jcc instruction does not support far jumps (jumps to other code segments).
When the target for the conditional jump is in a different segment, use the opposite
condition from the condition being tested for the Jcc instruction, and then access the
target with an unconditional far jump (JMP instruction) to the other segment. For
example, the following conditional far jump is illegal:

JZ FARLABEL;

To accomplish this far jump, use the following two instructions:
JNZ BEYOND;
JMP FARLABEL;
BEYOND:

The JRCXZ, JECXZ and JCXZ instructions differ from other Jcc instructions because
they do not check status flags. Instead, they check RCX, ECX or CX for 0. The register
checked is determined by the address-size attribute. These instructions are useful
when used at the beginning of a loop that terminates with a conditional loop instruc-
tion (such as LOOPNE). They can be used to prevent an instruction sequence from
entering a loop when RCX, ECX or CX is 0. This would cause the loop to execute 264,
232 or 64K times (not zero times).

All conditional jumps are converted to code fetches of one or two cache lines, regard-
less of jump address or cacheability.

In 64-bit mode, operand size is fixed at 64 bits. JMP Short is RIP = RIP + 8-bit offset
sign extended to 64 bits. JMP Near is RIP = RIP + 32-bit offset sign extended to
64-bits.

Operation

IF condition
THEN

 tempEIP ← EIP + SignExtend(DEST);
 IF OperandSize = 16

THEN tempEIP ← tempEIP AND 0000FFFFH;
 FI;

IF tempEIP is not within code segment limit
THEN #GP(0);
3-554 Vol. 2A Jcc—Jump if Condition Is Met

INSTRUCTION SET REFERENCE, A-L
 ELSE EIP ← tempEIP
 FI;
FI;

Protected Mode Exceptions
#GP(0) If the offset being jumped to is beyond the limits of the CS

segment.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If the offset being jumped to is beyond the limits of the CS

segment or is outside of the effective address space from 0 to
FFFFH. This condition can occur if a 32-bit address size override
prefix is used.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
#UD If the LOCK prefix is used.
Vol. 2A 3-555Jcc—Jump if Condition Is Met

INSTRUCTION SET REFERENCE, A-L
JMP—Jump

Instruction Operand Encoding

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

EB cb JMP rel8 D Valid Valid Jump short, RIP = RIP + 8-bit
displacement sign extended
to 64-bits

E9 cw JMP rel16 D N.S. Valid Jump near, relative,
displacement relative to
next instruction. Not
supported in 64-bit mode.

E9 cd JMP rel32 D Valid Valid Jump near, relative, RIP =
RIP + 32-bit displacement
sign extended to 64-bits

FF /4 JMP r/m16 M N.S. Valid Jump near, absolute indirect,
address = zero-extended
r/m16. Not supported in 64-
bit mode.

FF /4 JMP r/m32 M N.S. Valid Jump near, absolute indirect,
address given in r/m32. Not
supported in 64-bit mode.

FF /4 JMP r/m64 M Valid N.E. Jump near, absolute indirect,
RIP = 64-Bit offset from
register or memory

EA cd JMP ptr16:16 D Inv. Valid Jump far, absolute, address
given in operand

EA cp JMP ptr16:32 D Inv. Valid Jump far, absolute, address
given in operand

FF /5 JMP m16:16 D Valid Valid Jump far, absolute indirect,
address given in m16:16

FF /5 JMP m16:32 D Valid Valid Jump far, absolute indirect,
address given in m16:32.

REX.W + FF /5 JMP m16:64 D Valid N.E. Jump far, absolute indirect,
address given in m16:64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

D Offset NA NA NA

M ModRM:r/m (r) NA NA NA
3-556 Vol. 2A JMP—Jump

INSTRUCTION SET REFERENCE, A-L
Description

Transfers program control to a different point in the instruction stream without
recording return information. The destination (target) operand specifies the address
of the instruction being jumped to. This operand can be an immediate value, a
general-purpose register, or a memory location.

This instruction can be used to execute four different types of jumps:
• Near jump—A jump to an instruction within the current code segment (the

segment currently pointed to by the CS register), sometimes referred to as an
intrasegment jump.

• Short jump—A near jump where the jump range is limited to –128 to +127 from
the current EIP value.

• Far jump—A jump to an instruction located in a different segment than the
current code segment but at the same privilege level, sometimes referred to as
an intersegment jump.

• Task switch—A jump to an instruction located in a different task.

A task switch can only be executed in protected mode (see Chapter 7, in the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for information
on performing task switches with the JMP instruction).

Near and Short Jumps. When executing a near jump, the processor jumps to the
address (within the current code segment) that is specified with the target operand.
The target operand specifies either an absolute offset (that is an offset from the base
of the code segment) or a relative offset (a signed displacement relative to the
current value of the instruction pointer in the EIP register). A near jump to a relative
offset of 8-bits (rel8) is referred to as a short jump. The CS register is not changed on
near and short jumps.

An absolute offset is specified indirectly in a general-purpose register or a memory
location (r/m16 or r/m32). The operand-size attribute determines the size of the
target operand (16 or 32 bits). Absolute offsets are loaded directly into the EIP
register. If the operand-size attribute is 16, the upper two bytes of the EIP register
are cleared, resulting in a maximum instruction pointer size of 16 bits.

A relative offset (rel8, rel16, or rel32) is generally specified as a label in assembly
code, but at the machine code level, it is encoded as a signed 8-, 16-, or 32-bit
immediate value. This value is added to the value in the EIP register. (Here, the EIP
register contains the address of the instruction following the JMP instruction). When
using relative offsets, the opcode (for short vs. near jumps) and the operand-size
attribute (for near relative jumps) determines the size of the target operand (8, 16,
or 32 bits).

Far Jumps in Real-Address or Virtual-8086 Mode. When executing a far jump in real-
address or virtual-8086 mode, the processor jumps to the code segment and offset
specified with the target operand. Here the target operand specifies an absolute far
address either directly with a pointer (ptr16:16 or ptr16:32) or indirectly with a
memory location (m16:16 or m16:32). With the pointer method, the segment and
address of the called procedure is encoded in the instruction, using a 4-byte (16-bit
Vol. 2A 3-557JMP—Jump

INSTRUCTION SET REFERENCE, A-L
operand size) or 6-byte (32-bit operand size) far address immediate. With the indi-
rect method, the target operand specifies a memory location that contains a 4-byte
(16-bit operand size) or 6-byte (32-bit operand size) far address. The far address is
loaded directly into the CS and EIP registers. If the operand-size attribute is 16, the
upper two bytes of the EIP register are cleared.

Far Jumps in Protected Mode. When the processor is operating in protected mode, the
JMP instruction can be used to perform the following three types of far jumps:
• A far jump to a conforming or non-conforming code segment.
• A far jump through a call gate.
• A task switch.

(The JMP instruction cannot be used to perform inter-privilege-level far jumps.)

In protected mode, the processor always uses the segment selector part of the far
address to access the corresponding descriptor in the GDT or LDT. The descriptor
type (code segment, call gate, task gate, or TSS) and access rights determine the
type of jump to be performed.

If the selected descriptor is for a code segment, a far jump to a code segment at the
same privilege level is performed. (If the selected code segment is at a different priv-
ilege level and the code segment is non-conforming, a general-protection exception
is generated.) A far jump to the same privilege level in protected mode is very similar
to one carried out in real-address or virtual-8086 mode. The target operand specifies
an absolute far address either directly with a pointer (ptr16:16 or ptr16:32) or indi-
rectly with a memory location (m16:16 or m16:32). The operand-size attribute
determines the size of the offset (16 or 32 bits) in the far address. The new code
segment selector and its descriptor are loaded into CS register, and the offset from
the instruction is loaded into the EIP register. Note that a call gate (described in the
next paragraph) can also be used to perform far call to a code segment at the same
privilege level. Using this mechanism provides an extra level of indirection and is the
preferred method of making jumps between 16-bit and 32-bit code segments.

When executing a far jump through a call gate, the segment selector specified by the
target operand identifies the call gate. (The offset part of the target operand is
ignored.) The processor then jumps to the code segment specified in the call gate
descriptor and begins executing the instruction at the offset specified in the call gate.
No stack switch occurs. Here again, the target operand can specify the far address of
the call gate either directly with a pointer (ptr16:16 or ptr16:32) or indirectly with a
memory location (m16:16 or m16:32).

Executing a task switch with the JMP instruction is somewhat similar to executing a
jump through a call gate. Here the target operand specifies the segment selector of
the task gate for the task being switched to (and the offset part of the target operand
is ignored). The task gate in turn points to the TSS for the task, which contains the
segment selectors for the task’s code and stack segments. The TSS also contains the
EIP value for the next instruction that was to be executed before the task was
suspended. This instruction pointer value is loaded into the EIP register so that the
task begins executing again at this next instruction.
3-558 Vol. 2A JMP—Jump

INSTRUCTION SET REFERENCE, A-L
The JMP instruction can also specify the segment selector of the TSS directly, which
eliminates the indirection of the task gate. See Chapter 7 in Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A, for detailed information on
the mechanics of a task switch.

Note that when you execute at task switch with a JMP instruction, the nested task
flag (NT) is not set in the EFLAGS register and the new TSS’s previous task link field
is not loaded with the old task’s TSS selector. A return to the previous task can thus
not be carried out by executing the IRET instruction. Switching tasks with the JMP
instruction differs in this regard from the CALL instruction which does set the NT flag
and save the previous task link information, allowing a return to the calling task with
an IRET instruction.

In 64-Bit Mode — The instruction’s operation size is fixed at 64 bits. If a selector
points to a gate, then RIP equals the 64-bit displacement taken from gate; else RIP
equals the zero-extended offset from the far pointer referenced in the instruction.

See the summary chart at the beginning of this section for encoding data and limits.

Operation

IF near jump
IF 64-bit Mode
 THEN

IF near relative jump
 THEN

tempRIP ← RIP + DEST; (* RIP is instruction following JMP instruction*)
 ELSE (* Near absolute jump *)

tempRIP ← DEST;
FI;

ELSE
IF near relative jump
 THEN

tempEIP ← EIP + DEST; (* EIP is instruction following JMP instruction*)
 ELSE (* Near absolute jump *)

tempEIP ← DEST;
FI;

FI;
IF (IA32_EFER.LMA = 0 or target mode = Compatibility mode)
and tempEIP outside code segment limit

THEN #GP(0); FI
IF 64-bit mode and tempRIP is not canonical

THEN #GP(0);
FI;
IF OperandSize = 32

 THEN
EIP ← tempEIP;
Vol. 2A 3-559JMP—Jump

INSTRUCTION SET REFERENCE, A-L
 ELSE
IF OperandSize = 16

THEN (* OperandSize = 16 *)
EIP ← tempEIP AND 0000FFFFH;

 ELSE (* OperandSize = 64)
 RIP ← tempRIP;

FI;
 FI;

FI;
IF far jump and (PE = 0 or (PE = 1 AND VM = 1)) (* Real-address or virtual-8086 mode *)

 THEN
 tempEIP ← DEST(Offset); (* DEST is ptr16:32 or [m16:32] *)
 IF tempEIP is beyond code segment limit

THEN #GP(0); FI;
 CS ← DEST(segment selector); (* DEST is ptr16:32 or [m16:32] *)
 IF OperandSize = 32

 THEN
EIP ← tempEIP; (* DEST is ptr16:32 or [m16:32] *)

 ELSE (* OperandSize = 16 *)
EIP ← tempEIP AND 0000FFFFH; (* Clear upper 16 bits *)

 FI;
FI;
IF far jump and (PE = 1 and VM = 0)
(* IA-32e mode or protected mode, not virtual-8086 mode *)

 THEN
 IF effective address in the CS, DS, ES, FS, GS, or SS segment is illegal
or segment selector in target operand NULL

THEN #GP(0); FI;
 IF segment selector index not within descriptor table limits

THEN #GP(new selector); FI;
Read type and access rights of segment descriptor;
IF (EFER.LMA = 0)

THEN
IF segment type is not a conforming or nonconforming code
segment, call gate, task gate, or TSS

THEN #GP(segment selector); FI;
ELSE

IF segment type is not a conforming or nonconforming code segment
call gate

THEN #GP(segment selector); FI;
FI;
Depending on type and access rights:

GO TO CONFORMING-CODE-SEGMENT;
GO TO NONCONFORMING-CODE-SEGMENT;
3-560 Vol. 2A JMP—Jump

INSTRUCTION SET REFERENCE, A-L
GO TO CALL-GATE;
GO TO TASK-GATE;
GO TO TASK-STATE-SEGMENT;

 ELSE
 #GP(segment selector);

FI;
CONFORMING-CODE-SEGMENT:

IF L-Bit = 1 and D-BIT = 1 and IA32_EFER.LMA = 1
THEN GP(new code segment selector); FI;

 IF DPL > CPL
THEN #GP(segment selector); FI;

 IF segment not present
THEN #NP(segment selector); FI;

tempEIP ← DEST(Offset);
IF OperandSize = 16

 THEN tempEIP ← tempEIP AND 0000FFFFH;
FI;
IF (IA32_EFER.LMA = 0 or target mode = Compatibility mode) and
tempEIP outside code segment limit

THEN #GP(0); FI
IF tempEIP is non-canonical

THEN #GP(0); FI;
CS ← DEST[segment selector]; (* Segment descriptor information also loaded *)
CS(RPL) ← CPL
EIP ← tempEIP;

END;
NONCONFORMING-CODE-SEGMENT:

IF L-Bit = 1 and D-BIT = 1 and IA32_EFER.LMA = 1
THEN GP(new code segment selector); FI;

IF (RPL > CPL) OR (DPL ≠ CPL)
THEN #GP(code segment selector); FI;

IF segment not present
THEN #NP(segment selector); FI;

tempEIP ← DEST(Offset);
IF OperandSize = 16

 THEN tempEIP ← tempEIP AND 0000FFFFH; FI;
IF (IA32_EFER.LMA = 0 OR target mode = Compatibility mode)
and tempEIP outside code segment limit

THEN #GP(0); FI
IF tempEIP is non-canonical THEN #GP(0); FI;
CS ← DEST[segment selector]; (* Segment descriptor information also loaded *)
CS(RPL) ← CPL;
EIP ← tempEIP;

END;
Vol. 2A 3-561JMP—Jump

INSTRUCTION SET REFERENCE, A-L
CALL-GATE:
IF call gate DPL < CPL
or call gate DPL < call gate segment-selector RPL

THEN #GP(call gate selector); FI;
IF call gate not present

THEN #NP(call gate selector); FI;
IF call gate code-segment selector is NULL

THEN #GP(0); FI;
IF call gate code-segment selector index outside descriptor table limits

THEN #GP(code segment selector); FI;
Read code segment descriptor;
IF code-segment segment descriptor does not indicate a code segment
or code-segment segment descriptor is conforming and DPL > CPL
or code-segment segment descriptor is non-conforming and DPL ≠ CPL

THEN #GP(code segment selector); FI;
IF IA32_EFER.LMA = 1 and (code-segment descriptor is not a 64-bit code segment
or code-segment segment descriptor has both L-Bit and D-bit set)

THEN #GP(code segment selector); FI;
IF code segment is not present

THEN #NP(code-segment selector); FI;
 IF instruction pointer is not within code-segment limit

THEN #GP(0); FI;
 tempEIP ← DEST(Offset);
 IF GateSize = 16

 THEN tempEIP ← tempEIP AND 0000FFFFH; FI;
IF (IA32_EFER.LMA = 0 OR target mode = Compatibility mode) AND tempEIP
outside code segment limit

THEN #GP(0); FI
CS ← DEST[SegmentSelector); (* Segment descriptor information also loaded *)
CS(RPL) ← CPL;
EIP ← tempEIP;

END;
TASK-GATE:

IF task gate DPL < CPL
or task gate DPL < task gate segment-selector RPL

THEN #GP(task gate selector); FI;
IF task gate not present

THEN #NP(gate selector); FI;
Read the TSS segment selector in the task-gate descriptor;
IF TSS segment selector local/global bit is set to local
or index not within GDT limits
or TSS descriptor specifies that the TSS is busy

THEN #GP(TSS selector); FI;
3-562 Vol. 2A JMP—Jump

INSTRUCTION SET REFERENCE, A-L
 IF TSS not present
THEN #NP(TSS selector); FI;

 SWITCH-TASKS to TSS;
 IF EIP not within code segment limit

THEN #GP(0); FI;
END;
TASK-STATE-SEGMENT:

IF TSS DPL < CPL
or TSS DPL < TSS segment-selector RPL
or TSS descriptor indicates TSS not available

THEN #GP(TSS selector); FI;
IF TSS is not present

THEN #NP(TSS selector); FI;
SWITCH-TASKS to TSS;
IF EIP not within code segment limit

THEN #GP(0); FI;
END;

Flags Affected

All flags are affected if a task switch occurs; no flags are affected if a task switch does
not occur.

Protected Mode Exceptions
#GP(0) If offset in target operand, call gate, or TSS is beyond the code

segment limits.
If the segment selector in the destination operand, call gate,
task gate, or TSS is NULL.
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#GP(selector) If the segment selector index is outside descriptor table limits.
If the segment descriptor pointed to by the segment selector in
the destination operand is not for a conforming-code segment,
nonconforming-code segment, call gate, task gate, or task state
segment.
If the DPL for a nonconforming-code segment is not equal to the
CPL
(When not using a call gate.) If the RPL for the segment’s
segment selector is greater than the CPL.
If the DPL for a conforming-code segment is greater than the
CPL.
Vol. 2A 3-563JMP—Jump

INSTRUCTION SET REFERENCE, A-L
If the DPL from a call-gate, task-gate, or TSS segment
descriptor is less than the CPL or than the RPL of the call-gate,
task-gate, or TSS’s segment selector.
If the segment descriptor for selector in a call gate does not indi-
cate it is a code segment.
If the segment descriptor for the segment selector in a task gate
does not indicate an available TSS.
If the segment selector for a TSS has its local/global bit set for
local.
If a TSS segment descriptor specifies that the TSS is busy or not
available.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#NP (selector) If the code segment being accessed is not present.
If call gate, task gate, or TSS not present.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3. (Only
occurs when fetching target from memory.)

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If the target operand is beyond the code segment limits.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made. (Only occurs when fetching target from
memory.)

#UD If the LOCK prefix is used.
3-564 Vol. 2A JMP—Jump

INSTRUCTION SET REFERENCE, A-L
Compatibility Mode Exceptions
Same as 64-bit mode exceptions.

64-Bit Mode Exceptions
#GP(0) If a memory address is non-canonical.

If target offset in destination operand is non-canonical.
If target offset in destination operand is beyond the new code
segment limit.
If the segment selector in the destination operand is NULL.
If the code segment selector in the 64-bit gate is NULL.

#GP(selector) If the code segment or 64-bit call gate is outside descriptor table
limits.
If the code segment or 64-bit call gate overlaps non-canonical
space.
If the segment descriptor from a 64-bit call gate is in non-
canonical space.
If the segment descriptor pointed to by the segment selector in
the destination operand is not for a conforming-code segment,
nonconforming-code segment, 64-bit call gate.
If the segment descriptor pointed to by the segment selector in
the destination operand is a code segment, and has both the
D-bit and the L-bit set.
If the DPL for a nonconforming-code segment is not equal to the
CPL, or the RPL for the segment’s segment selector is greater
than the CPL.
If the DPL for a conforming-code segment is greater than the
CPL.
If the DPL from a 64-bit call-gate is less than the CPL or than the
RPL of the 64-bit call-gate.
If the upper type field of a 64-bit call gate is not 0x0.
If the segment selector from a 64-bit call gate is beyond the
descriptor table limits.
If the code segment descriptor pointed to by the selector in the
64-bit gate doesn't have the L-bit set and the D-bit clear.
If the segment descriptor for a segment selector from the 64-bit
call gate does not indicate it is a code segment.
If the code segment is non-confirming and CPL ≠ DPL.
If the code segment is confirming and CPL < DPL.

#NP(selector) If a code segment or 64-bit call gate is not present.
#UD (64-bit mode only) If a far jump is direct to an absolute address

in memory.
Vol. 2A 3-565JMP—Jump

INSTRUCTION SET REFERENCE, A-L
If the LOCK prefix is used.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
3-566 Vol. 2A JMP—Jump

INSTRUCTION SET REFERENCE, A-L
LAHF—Load Status Flags into AH Register

Instruction Operand Encoding

Description

This instruction executes as described above in compatibility mode and legacy mode.
It is valid in 64-bit mode only if CPUID.80000001H:ECX.LAHF-SAHF[bit 0] = 1.

Operation

IF 64-Bit Mode
THEN

IF CPUID.80000001H:ECX.LAHF-SAHF[bit 0] = 1;
THEN AH ← RFLAGS(SF:ZF:0:AF:0:PF:1:CF);
ELSE #UD;

FI;
ELSE

AH ← EFLAGS(SF:ZF:0:AF:0:PF:1:CF);
FI;

Flags Affected

None. The state of the flags in the EFLAGS register is not affected.

Protected Mode Exceptions
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

9F LAHF NP Invalid* Valid Load: AH ←
EFLAGS(SF:ZF:0:AF:0:PF:1:CF).

NOTES:
*Valid in specific steppings. See Description section.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
Vol. 2A 3-567LAHF—Load Status Flags into AH Register

INSTRUCTION SET REFERENCE, A-L
Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#UD If CPUID.80000001H:ECX.LAHF-SAHF[bit 0] = 0.

If the LOCK prefix is used.
3-568 Vol. 2A LAHF—Load Status Flags into AH Register

INSTRUCTION SET REFERENCE, A-L
LAR—Load Access Rights Byte

Instruction Operand Encoding

Description

Loads the access rights from the segment descriptor specified by the second operand
(source operand) into the first operand (destination operand) and sets the ZF flag in
the flag register. The source operand (which can be a register or a memory location)
contains the segment selector for the segment descriptor being accessed. If the
source operand is a memory address, only 16 bits of data are accessed. The destina-
tion operand is a general-purpose register.

The processor performs access checks as part of the loading process. Once loaded in
the destination register, software can perform additional checks on the access rights
information.

The access rights for a segment descriptor include fields located in the second
doubleword (bytes 4–7) of the segment descriptor. The following fields are loaded by
the LAR instruction:
• Bits 7:0 are returned as 0
• Bits 11:8 return the segment type.
• Bit 12 returns the S flag.
• Bits 14:13 return the DPL.
• Bit 15 returns the P flag.
• The following fields are returned only if the operand size is greater than 16 bits:

— Bits 19:16 are undefined.

— Bit 20 returns the software-available bit in the descriptor.

— Bit 21 returns the L flag.

— Bit 22 returns the D/B flag.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 02 /r LAR r16, r16/m16 RM Valid Valid r16 ← access rights
referenced by r16/m16

0F 02 /r LAR reg,
r32/m161

RM Valid Valid reg ← access rights
referenced by r32/m16

NOTES:
1. For all loads (regardless of source or destination sizing) only bits 16-0 are used. Other bits are
ignored.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
Vol. 2A 3-569LAR—Load Access Rights Byte

INSTRUCTION SET REFERENCE, A-L
— Bit 23 returns the G flag.

— Bits 31:24 are returned as 0.

This instruction performs the following checks before it loads the access rights in the
destination register:
• Checks that the segment selector is not NULL.
• Checks that the segment selector points to a descriptor that is within the limits of

the GDT or LDT being accessed
• Checks that the descriptor type is valid for this instruction. All code and data

segment descriptors are valid for (can be accessed with) the LAR instruction. The
valid system segment and gate descriptor types are given in Table 3-62.

• If the segment is not a conforming code segment, it checks that the specified
segment descriptor is visible at the CPL (that is, if the CPL and the RPL of the
segment selector are less than or equal to the DPL of the segment selector).

If the segment descriptor cannot be accessed or is an invalid type for the instruction,
the ZF flag is cleared and no access rights are loaded in the destination operand.

The LAR instruction can only be executed in protected mode and IA-32e mode.

Table 3-62. Segment and Gate Types

Type Protected Mode IA-32e Mode

Name Valid Name Valid

0 Reserved No Reserved No

1 Available 16-bit TSS Yes Reserved No

2 LDT Yes LDT No

3 Busy 16-bit TSS Yes Reserved No

4 16-bit call gate Yes Reserved No

5 16-bit/32-bit task gate Yes Reserved No

6 16-bit interrupt gate No Reserved No

7 16-bit trap gate No Reserved No

8 Reserved No Reserved No

9 Available 32-bit TSS Yes Available 64-bit TSS Yes

A Reserved No Reserved No

B Busy 32-bit TSS Yes Busy 64-bit TSS Yes

C 32-bit call gate Yes 64-bit call gate Yes

D Reserved No Reserved No

E 32-bit interrupt gate No 64-bit interrupt gate No

F 32-bit trap gate No 64-bit trap gate No
3-570 Vol. 2A LAR—Load Access Rights Byte

INSTRUCTION SET REFERENCE, A-L
Operation

IF Offset(SRC) > descriptor table limit
THEN

ZF ← 0;
ELSE

SegmentDescriptor ← descriptor referenced by SRC;
IF SegmentDescriptor(Type) ≠ conforming code segment
and (CPL > DPL) or (RPL > DPL)
or SegmentDescriptor(Type) is not valid for instruction

THEN
ZF ← 0;

ELSE
DEST ← access rights from SegmentDescriptor as given in Description section;
ZF ← 1;

FI;
FI;

Flags Affected

The ZF flag is set to 1 if the access rights are loaded successfully; otherwise, it is
cleared to 0.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and the memory operand effec-

tive address is unaligned while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD The LAR instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The LAR instruction cannot be executed in virtual-8086 mode.
Vol. 2A 3-571LAR—Load Access Rights Byte

INSTRUCTION SET REFERENCE, A-L
Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If the memory operand effective address referencing the SS

segment is in a non-canonical form.
#GP(0) If the memory operand effective address is in a non-canonical

form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and the memory operand effec-

tive address is unaligned while the current privilege level is 3.
#UD If the LOCK prefix is used.
3-572 Vol. 2A LAR—Load Access Rights Byte

INSTRUCTION SET REFERENCE, A-L
LDDQU—Load Unaligned Integer 128 Bits

Instruction Operand Encoding

Description

The instruction is functionally similar to (V)MOVDQU ymm/xmm, m256/m128 for
loading from memory. That is: 32/16 bytes of data starting at an address specified by
the source memory operand (second operand) are fetched from memory and placed
in a destination register (first operand). The source operand need not be aligned on
a 32/16-byte boundary. Up to 64/32 bytes may be loaded from memory; this is
implementation dependent.

This instruction may improve performance relative to (V)MOVDQU if the source
operand crosses a cache line boundary. In situations that require the data loaded by
(V)LDDQU be modified and stored to the same location, use (V)MOVDQU or
(V)MOVDQA instead of (V)LDDQU. To move a double quadword to or from memory
locations that are known to be aligned on 16-byte boundaries, use the (V)MOVDQA
instruction.

Implementation Notes

• If the source is aligned to a 32/16-byte boundary, based on the implementation,
the 32/16 bytes may be loaded more than once. For that reason, the usage of
(V)LDDQU should be avoided when using uncached or write-combining (WC)
memory regions. For uncached or WC memory regions, keep using (V)MOVDQU.

• This instruction is a replacement for (V)MOVDQU (load) in situations where cache
line splits significantly affect performance. It should not be used in situations
where store-load forwarding is performance critical. If performance of store-load
forwarding is critical to the application, use (V)MOVDQA store-load pairs when

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

F2 0F F0 /r

LDDQU xmm1, mem

RM V/V SSE3 Load unaligned data from
mem and return double
quadword in xmm1.

VEX.128.F2.0F.WIG F0 /r

VLDDQU xmm1, m128

RM V/V AVX Load unaligned packed
integer values from mem to
xmm1.

VEX.256.F2.0F.WIG F0 /r

VLDDQU ymm1, m256

RM V/V AVX Load unaligned packed
integer values from mem to
ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
Vol. 2A 3-573LDDQU—Load Unaligned Integer 128 Bits

INSTRUCTION SET REFERENCE, A-L
data is 256/128-bit aligned or (V)MOVDQU store-load pairs when data is
256/128-bit unaligned.

• If the memory address is not aligned on 32/16-byte boundary, some implemen-
tations may load up to 64/32 bytes and return 32/16 bytes in the destination.
Some processor implementations may issue multiple loads to access the
appropriate 32/16 bytes. Developers of multi-threaded or multi-processor
software should be aware that on these processors the loads will be performed in
a non-atomic way.

• If alignment checking is enabled (CR0.AM = 1, RFLAGS.AC = 1, and CPL = 3), an
alignment-check exception (#AC) may or may not be generated (depending on
processor implementation) when the memory address is not aligned on an 8-byte
boundary.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise
instructions will #UD.

Operation

LDDQU (128-bit Legacy SSE version)
DEST[127:0] SRC[127:0]
DEST[VLMAX-1:128] (Unmodified)

VLDDQU (VEX.128 encoded version)
DEST[127:0] SRC[127:0]
DEST[VLMAX-1:128] 0

VLDDQU (VEX.256 encoded version)
DEST[255:0] SRC[255:0]

Intel C/C++ Compiler Intrinsic Equivalent

LDDQU: __m128i _mm_lddqu_si128 (__m128i * p);

LDDQU: __m256i _mm256_lddqu_si256 (__m256i * p);

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4;
Note treatment of #AC varies.
3-574 Vol. 2A LDDQU—Load Unaligned Integer 128 Bits

INSTRUCTION SET REFERENCE, A-L
LDMXCSR—Load MXCSR Register

Instruction Operand Encoding

Description

Loads the source operand into the MXCSR control/status register. The source
operand is a 32-bit memory location. See “MXCSR Control and Status Register” in
Chapter 10, of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1, for a description of the MXCSR register and its contents.

The LDMXCSR instruction is typically used in conjunction with the (V)STMXCSR
instruction, which stores the contents of the MXCSR register in memory.

The default MXCSR value at reset is 1F80H.

If a (V)LDMXCSR instruction clears a SIMD floating-point exception mask bit and sets
the corresponding exception flag bit, a SIMD floating-point exception will not be
immediately generated. The exception will be generated only upon the execution of
the next instruction that meets both conditions below:
• the instruction must operate on an XMM or YMM register operand,
• the instruction causes that particular SIMD floating-point exception to be

reported.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
If VLDMXCSR is encoded with VEX.L= 1, an attempt to execute the instruction
encoded with VEX.L= 1 will cause an #UD exception.

Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise
instructions will #UD.

Operation

MXCSR ← m32;

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

0F,AE,/2

LDMXCSR m32

M V/V SSE Load MXCSR register from
m32.

VEX.LZ.0F.WIG AE /2

VLDMXCSR m32

M V/V AVX Load MXCSR register from
m32.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA
Vol. 2A 3-575LDMXCSR—Load MXCSR Register

INSTRUCTION SET REFERENCE, A-L
C/C++ Compiler Intrinsic Equivalent

_mm_setcsr(unsigned int i)

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 5; additionally
#GP For an attempt to set reserved bits in MXCSR.
#UD If VEX.vvvv != 1111B.
3-576 Vol. 2A LDMXCSR—Load MXCSR Register

INSTRUCTION SET REFERENCE, A-L
LDS/LES/LFS/LGS/LSS—Load Far Pointer

Instruction Operand Encoding

Description

Loads a far pointer (segment selector and offset) from the second operand (source
operand) into a segment register and the first operand (destination operand). The
source operand specifies a 48-bit or a 32-bit pointer in memory depending on the
current setting of the operand-size attribute (32 bits or 16 bits, respectively). The

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

C5 /r LDS r16,m16:16 RM Invalid Valid Load DS:r16 with far pointer
from memory.

C5 /r LDS r32,m16:32 RM Invalid Valid Load DS:r32 with far pointer
from memory.

0F B2 /r LSS r16,m16:16 RM Valid Valid Load SS:r16 with far pointer
from memory.

0F B2 /r LSS r32,m16:32 RM Valid Valid Load SS:r32 with far pointer
from memory.

REX + 0F B2 /r LSS r64,m16:64 RM Valid N.E. Load SS:r64 with far pointer
from memory.

C4 /r LES r16,m16:16 RM Invalid Valid Load ES:r16 with far pointer
from memory.

C4 /r LES r32,m16:32 RM Invalid Valid Load ES:r32 with far pointer
from memory.

0F B4 /r LFS r16,m16:16 RM Valid Valid Load FS:r16 with far pointer
from memory.

0F B4 /r LFS r32,m16:32 RM Valid Valid Load FS:r32 with far pointer
from memory.

REX + 0F B4 /r LFS r64,m16:64 RM Valid N.E. Load FS:r64 with far pointer
from memory.

0F B5 /r LGS r16,m16:16 RM Valid Valid Load GS:r16 with far pointer
from memory.

0F B5 /r LGS r32,m16:32 RM Valid Valid Load GS:r32 with far pointer
from memory.

REX + 0F B5 /r LGS r64,m16:64 RM Valid N.E. Load GS:r64 with far pointer
from memory.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
Vol. 2A 3-577LDS/LES/LFS/LGS/LSS—Load Far Pointer

INSTRUCTION SET REFERENCE, A-L
instruction opcode and the destination operand specify a segment register/general-
purpose register pair. The 16-bit segment selector from the source operand is loaded
into the segment register specified with the opcode (DS, SS, ES, FS, or GS). The
32-bit or 16-bit offset is loaded into the register specified with the destination
operand.

If one of these instructions is executed in protected mode, additional information
from the segment descriptor pointed to by the segment selector in the source
operand is loaded in the hidden part of the selected segment register.

Also in protected mode, a NULL selector (values 0000 through 0003) can be loaded
into DS, ES, FS, or GS registers without causing a protection exception. (Any subse-
quent reference to a segment whose corresponding segment register is loaded with
a NULL selector, causes a general-protection exception (#GP) and no memory refer-
ence to the segment occurs.)

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.W promotes operation to specify a source operand referencing an
80-bit pointer (16-bit selector, 64-bit offset) in memory. Using a REX prefix in the
form of REX.R permits access to additional registers (R8-R15). See the summary
chart at the beginning of this section for encoding data and limits.

Operation

64-BIT_MODE
IF SS is loaded

THEN
IF SegmentSelector = NULL and ((RPL = 3) or

(RPL ≠ 3 and RPL ≠ CPL))
THEN #GP(0);

ELSE IF descriptor is in non-canonical space
THEN #GP(0); FI;

ELSE IF Segment selector index is not within descriptor table limits
or segment selector RPL ≠ CPL
or access rights indicate nonwritable data segment
or DPL ≠ CPL

THEN #GP(selector); FI;
ELSE IF Segment marked not present

THEN #SS(selector); FI;
FI;
SS ← SegmentSelector(SRC);
SS ← SegmentDescriptor([SRC]);

ELSE IF attempt to load DS, or ES
THEN #UD;

ELSE IF FS, or GS is loaded with non-NULL segment selector
THEN IF Segment selector index is not within descriptor table limits

or access rights indicate segment neither data nor readable code segment
3-578 Vol. 2A LDS/LES/LFS/LGS/LSS—Load Far Pointer

INSTRUCTION SET REFERENCE, A-L
or segment is data or nonconforming-code segment
and (RPL > DPL or CPL > DPL)

THEN #GP(selector); FI;
ELSE IF Segment marked not present

THEN #NP(selector); FI;
FI;
SegmentRegister ← SegmentSelector(SRC) ;
SegmentRegister ← SegmentDescriptor([SRC]);

FI;
ELSE IF FS, or GS is loaded with a NULL selector:

THEN
SegmentRegister ← NULLSelector;
SegmentRegister(DescriptorValidBit) ← 0; FI; (* Hidden flag;

not accessible by software *)
FI;
DEST ← Offset(SRC);

PREOTECTED MODE OR COMPATIBILITY MODE;
IF SS is loaded

THEN
IF SegementSelector = NULL

THEN #GP(0);
ELSE IF Segment selector index is not within descriptor table limits

or segment selector RPL ≠ CPL
or access rights indicate nonwritable data segment
or DPL ≠ CPL

THEN #GP(selector); FI;
ELSE IF Segment marked not present

THEN #SS(selector); FI;
FI;
SS ← SegmentSelector(SRC);
SS ← SegmentDescriptor([SRC]);

ELSE IF DS, ES, FS, or GS is loaded with non-NULL segment selector
THEN IF Segment selector index is not within descriptor table limits

or access rights indicate segment neither data nor readable code segment
or segment is data or nonconforming-code segment
and (RPL > DPL or CPL > DPL)

THEN #GP(selector); FI;
ELSE IF Segment marked not present

THEN #NP(selector); FI;
FI;
SegmentRegister ← SegmentSelector(SRC) AND RPL;
SegmentRegister ← SegmentDescriptor([SRC]);

FI;
Vol. 2A 3-579LDS/LES/LFS/LGS/LSS—Load Far Pointer

INSTRUCTION SET REFERENCE, A-L
ELSE IF DS, ES, FS, or GS is loaded with a NULL selector:
THEN

SegmentRegister ← NULLSelector;
SegmentRegister(DescriptorValidBit) ← 0; FI; (* Hidden flag;

not accessible by software *)
FI;
DEST ← Offset(SRC);

Real-Address or Virtual-8086 Mode
SegmentRegister ← SegmentSelector(SRC); FI;
DEST ← Offset(SRC);

Flags Affected

None.

Protected Mode Exceptions
#UD If source operand is not a memory location.

If the LOCK prefix is used.
#GP(0) If a NULL selector is loaded into the SS register.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#GP(selector) If the SS register is being loaded and any of the following is true:
the segment selector index is not within the descriptor table
limits, the segment selector RPL is not equal to CPL, the
segment is a non-writable data segment, or DPL is not equal to
CPL.
If the DS, ES, FS, or GS register is being loaded with a non-NULL
segment selector and any of the following is true: the segment
selector index is not within descriptor table limits, the segment
is neither a data nor a readable code segment, or the segment is
a data or nonconforming-code segment and both RPL and CPL
are greater than DPL.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#SS(selector) If the SS register is being loaded and the segment is marked not
present.

#NP(selector) If DS, ES, FS, or GS register is being loaded with a non-NULL
segment selector and the segment is marked not present.

#PF(fault-code) If a page fault occurs.
3-580 Vol. 2A LDS/LES/LFS/LGS/LSS—Load Far Pointer

INSTRUCTION SET REFERENCE, A-L
#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#UD If source operand is not a memory location.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#UD If source operand is not a memory location.

If the LOCK prefix is used.
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a NULL selector is attempted to be loaded into the SS register
in compatibility mode.
If a NULL selector is attempted to be loaded into the SS register
in CPL3 and 64-bit mode.
If a NULL selector is attempted to be loaded into the SS register
in non-CPL3 and 64-bit mode where its RPL is not equal to CPL.

#GP(Selector) If the FS, or GS register is being loaded with a non-NULL
segment selector and any of the following is true: the segment
selector index is not within descriptor table limits, the memory
address of the descriptor is non-canonical, the segment is
neither a data nor a readable code segment, or the segment is a
data or nonconforming-code segment and both RPL and CPL are
greater than DPL.
Vol. 2A 3-581LDS/LES/LFS/LGS/LSS—Load Far Pointer

INSTRUCTION SET REFERENCE, A-L
If the SS register is being loaded and any of the following is true:
the segment selector index is not within the descriptor table
limits, the memory address of the descriptor is non-canonical,
the segment selector RPL is not equal to CPL, the segment is a
nonwritable data segment, or DPL is not equal to CPL.

#SS(0) If a memory operand effective address is non-canonical
#SS(Selector) If the SS register is being loaded and the segment is marked not

present.
#NP(selector) If FS, or GS register is being loaded with a non-NULL segment

selector and the segment is marked not present.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If source operand is not a memory location.

If the LOCK prefix is used.
3-582 Vol. 2A LDS/LES/LFS/LGS/LSS—Load Far Pointer

INSTRUCTION SET REFERENCE, A-L
LEA—Load Effective Address

Instruction Operand Encoding

Description

Computes the effective address of the second operand (the source operand) and
stores it in the first operand (destination operand). The source operand is a memory
address (offset part) specified with one of the processors addressing modes; the
destination operand is a general-purpose register. The address-size and operand-size
attributes affect the action performed by this instruction, as shown in the following
table. The operand-size attribute of the instruction is determined by the chosen
register; the address-size attribute is determined by the attribute of the code
segment.

Different assemblers may use different algorithms based on the size attribute and
symbolic reference of the source operand.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

8D /r LEA r16,m RM Valid Valid Store effective address for
m in register r16.

8D /r LEA r32,m RM Valid Valid Store effective address for
m in register r32.

REX.W + 8D /r LEA r64,m RM Valid N.E. Store effective address for
m in register r64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

Table 3-63. Non-64-bit Mode LEA Operation with Address and Operand Size
Attributes

Operand Size Address Size Action Performed

16 16 16-bit effective address is calculated and stored in
requested 16-bit register destination.

16 32 32-bit effective address is calculated. The lower 16 bits of
the address are stored in the requested 16-bit register
destination.

32 16 16-bit effective address is calculated. The 16-bit address is
zero-extended and stored in the requested 32-bit register
destination.

32 32 32-bit effective address is calculated and stored in the
requested 32-bit register destination.
Vol. 2A 3-583LEA—Load Effective Address

INSTRUCTION SET REFERENCE, A-L
In 64-bit mode, the instruction’s destination operand is governed by operand size
attribute, the default operand size is 32 bits. Address calculation is governed by
address size attribute, the default address size is 64-bits. In 64-bit mode, address
size of 16 bits is not encodable. See Table 3-64.

Operation

IF OperandSize = 16 and AddressSize = 16
THEN

DEST ← EffectiveAddress(SRC); (* 16-bit address *)
ELSE IF OperandSize = 16 and AddressSize = 32

THEN
temp ← EffectiveAddress(SRC); (* 32-bit address *)
DEST ← temp[0:15]; (* 16-bit address *)

FI;
ELSE IF OperandSize = 32 and AddressSize = 16

THEN
temp ← EffectiveAddress(SRC); (* 16-bit address *)
DEST ← ZeroExtend(temp); (* 32-bit address *)

FI;
ELSE IF OperandSize = 32 and AddressSize = 32

THEN
DEST ← EffectiveAddress(SRC); (* 32-bit address *)

Table 3-64. 64-bit Mode LEA Operation with Address and Operand Size Attributes

Operand Size Address Size Action Performed

16 32 32-bit effective address is calculated (using 67H prefix). The
lower 16 bits of the address are stored in the requested
16-bit register destination (using 66H prefix).

16 64 64-bit effective address is calculated (default address size).
The lower 16 bits of the address are stored in the requested
16-bit register destination (using 66H prefix).

32 32 32-bit effective address is calculated (using 67H prefix) and
stored in the requested 32-bit register destination.

32 64 64-bit effective address is calculated (default address size)
and the lower 32 bits of the address are stored in the
requested 32-bit register destination.

64 32 32-bit effective address is calculated (using 67H prefix),
zero-extended to 64-bits, and stored in the requested 64-
bit register destination (using REX.W).

64 64 64-bit effective address is calculated (default address size)
and all 64-bits of the address are stored in the requested
64-bit register destination (using REX.W).
3-584 Vol. 2A LEA—Load Effective Address

INSTRUCTION SET REFERENCE, A-L
FI;
ELSE IF OperandSize = 16 and AddressSize = 64

THEN
temp ← EffectiveAddress(SRC); (* 64-bit address *)
DEST ← temp[0:15]; (* 16-bit address *)

FI;
ELSE IF OperandSize = 32 and AddressSize = 64

THEN
temp ← EffectiveAddress(SRC); (* 64-bit address *)
DEST ← temp[0:31]; (* 16-bit address *)

FI;
ELSE IF OperandSize = 64 and AddressSize = 64

THEN
DEST ← EffectiveAddress(SRC); (* 64-bit address *)

FI;
FI;

Flags Affected

None.

Protected Mode Exceptions
#UD If source operand is not a memory location.

If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
Vol. 2A 3-585LEA—Load Effective Address

INSTRUCTION SET REFERENCE, A-L
LEAVE—High Level Procedure Exit

Instruction Operand Encoding

Description

Releases the stack frame set up by an earlier ENTER instruction. The LEAVE instruc-
tion copies the frame pointer (in the EBP register) into the stack pointer register
(ESP), which releases the stack space allocated to the stack frame. The old frame
pointer (the frame pointer for the calling procedure that was saved by the ENTER
instruction) is then popped from the stack into the EBP register, restoring the calling
procedure’s stack frame.

A RET instruction is commonly executed following a LEAVE instruction to return
program control to the calling procedure.

See “Procedure Calls for Block-Structured Languages” in Chapter 7 of the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 1, for detailed infor-
mation on the use of the ENTER and LEAVE instructions.

In 64-bit mode, the instruction’s default operation size is 64 bits; 32-bit operation
cannot be encoded. See the summary chart at the beginning of this section for
encoding data and limits.

Operation

IF StackAddressSize = 32
THEN

ESP ← EBP;
ELSE IF StackAddressSize = 64

THEN RSP ← RBP; FI;
ELSE IF StackAddressSize = 16

THEN SP ← BP; FI;
FI;

IF OperandSize = 32

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

C9 LEAVE NP Valid Valid Set SP to BP, then pop BP.

C9 LEAVE NP N.E. Valid Set ESP to EBP, then pop
EBP.

C9 LEAVE NP Valid N.E. Set RSP to RBP, then pop
RBP.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
3-586 Vol. 2A LEAVE—High Level Procedure Exit

INSTRUCTION SET REFERENCE, A-L
THEN EBP ← Pop();
ELSE IF OperandSize = 64

THEN RBP ← Pop(); FI;
ELSE IF OperandSize = 16

THEN BP ← Pop(); FI;
FI;

Flags Affected

None.

Protected Mode Exceptions
#SS(0) If the EBP register points to a location that is not within the

limits of the current stack segment.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If the EBP register points to a location outside of the effective

address space from 0 to FFFFH.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If the EBP register points to a location outside of the effective

address space from 0 to FFFFH.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If the stack address is in a non-canonical form.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
Vol. 2A 3-587LEAVE—High Level Procedure Exit

INSTRUCTION SET REFERENCE, A-L
LFENCE—Load Fence

Instruction Operand Encoding

Description

Performs a serializing operation on all load-from-memory instructions that were
issued prior the LFENCE instruction. Specifically, LFENCE does not execute until all
prior instructions have completed locally, and no later instruction begins execution
until LFENCE completes. In particular, an instruction that loads from memory and
that precedes an LFENCE receives data from memory prior to completion of the
LFENCE. (An LFENCE that follows an instruction that stores to memory might
complete before the data being stored have become globally visible.) Instructions
following an LFENCE may be fetched from memory before the LFENCE, but they will
not execute until the LFENCE completes.

Weakly ordered memory types can be used to achieve higher processor performance
through such techniques as out-of-order issue and speculative reads. The degree to
which a consumer of data recognizes or knows that the data is weakly ordered varies
among applications and may be unknown to the producer of this data. The LFENCE
instruction provides a performance-efficient way of ensuring load ordering between
routines that produce weakly-ordered results and routines that consume that data.

Processors are free to fetch and cache data speculatively from regions of system
memory that use the WB, WC, and WT memory types. This speculative fetching can
occur at any time and is not tied to instruction execution. Thus, it is not ordered with
respect to executions of the LFENCE instruction; data can be brought into the caches
speculatively just before, during, or after the execution of an LFENCE instruction.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

Wait_On_Following_Instructions_Until(preceding_instructions_complete);

Intel C/C++ Compiler Intrinsic Equivalent

void _mm_lfence(void)

Exceptions (All Modes of Operation)
#UD If CPUID.01H:EDX.SSE2[bit 26] = 0.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F AE /5 LFENCE NP Valid Valid Serializes load operations.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
3-588 Vol. 2A LFENCE—Load Fence

INSTRUCTION SET REFERENCE, A-L
If the LOCK prefix is used.
Vol. 2A 3-589LFENCE—Load Fence

INSTRUCTION SET REFERENCE, A-L
LGDT/LIDT—Load Global/Interrupt Descriptor Table Register

Instruction Operand Encoding

Description

Loads the values in the source operand into the global descriptor table register
(GDTR) or the interrupt descriptor table register (IDTR). The source operand speci-
fies a 6-byte memory location that contains the base address (a linear address) and
the limit (size of table in bytes) of the global descriptor table (GDT) or the interrupt
descriptor table (IDT). If operand-size attribute is 32 bits, a 16-bit limit (lower 2
bytes of the 6-byte data operand) and a 32-bit base address (upper 4 bytes of the
data operand) are loaded into the register. If the operand-size attribute is 16 bits,
a 16-bit limit (lower 2 bytes) and a 24-bit base address (third, fourth, and fifth byte)
are loaded. Here, the high-order byte of the operand is not used and the high-order
byte of the base address in the GDTR or IDTR is filled with zeros.

The LGDT and LIDT instructions are used only in operating-system software; they are
not used in application programs. They are the only instructions that directly load a
linear address (that is, not a segment-relative address) and a limit in protected
mode. They are commonly executed in real-address mode to allow processor initial-
ization prior to switching to protected mode.

In 64-bit mode, the instruction’s operand size is fixed at 8+2 bytes (an 8-byte base
and a 2-byte limit). See the summary chart at the beginning of this section for
encoding data and limits.

See “SGDT—Store Global Descriptor Table Register” in Chapter 4, Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 2B, for information on
storing the contents of the GDTR and IDTR.

Operation

IF Instruction is LIDT
THEN

IF OperandSize = 16
THEN

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 01 /2 LGDT m16&32 M N.E. Valid Load m into GDTR.

0F 01 /3 LIDT m16&32 M N.E. Valid Load m into IDTR.

0F 01 /2 LGDT m16&64 M Valid N.E. Load m into GDTR.

0F 01 /3 LIDT m16&64 M Valid N.E. Load m into IDTR.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA
3-590 Vol. 2A LGDT/LIDT—Load Global/Interrupt Descriptor Table Register

INSTRUCTION SET REFERENCE, A-L
IDTR(Limit) ← SRC[0:15];
IDTR(Base) ← SRC[16:47] AND 00FFFFFFH;

ELSE IF 32-bit Operand Size
THEN

IDTR(Limit) ← SRC[0:15];
IDTR(Base) ← SRC[16:47];

FI;
ELSE IF 64-bit Operand Size (* In 64-Bit Mode *)

THEN
IDTR(Limit) ← SRC[0:15];
IDTR(Base) ← SRC[16:79];

FI;
FI;

ELSE (* Instruction is LGDT *)
IF OperandSize = 16

THEN
GDTR(Limit) ← SRC[0:15];
GDTR(Base) ← SRC[16:47] AND 00FFFFFFH;

ELSE IF 32-bit Operand Size
THEN

GDTR(Limit) ← SRC[0:15];
GDTR(Base) ← SRC[16:47];

FI;
ELSE IF 64-bit Operand Size (* In 64-Bit Mode *)

THEN
GDTR(Limit) ← SRC[0:15];
GDTR(Base) ← SRC[16:79];

FI;
FI;

FI;

Flags Affected

None.

Protected Mode Exceptions
#UD If source operand is not a memory location.

If the LOCK prefix is used.
#GP(0) If the current privilege level is not 0.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.
Vol. 2A 3-591LGDT/LIDT—Load Global/Interrupt Descriptor Table Register

INSTRUCTION SET REFERENCE, A-L
#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

Real-Address Mode Exceptions
#UD If source operand is not a memory location.

If the LOCK prefix is used.
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.

Virtual-8086 Mode Exceptions
#UD If source operand is not a memory location.

If the LOCK prefix is used.
#GP(0) The LGDT and LIDT instructions are not recognized in virtual-

8086 mode.
#GP If the current privilege level is not 0.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the current privilege level is not 0.

If the memory address is in a non-canonical form.
#UD If source operand is not a memory location.

If the LOCK prefix is used.
#PF(fault-code) If a page fault occurs.
3-592 Vol. 2A LGDT/LIDT—Load Global/Interrupt Descriptor Table Register

INSTRUCTION SET REFERENCE, A-L
LLDT—Load Local Descriptor Table Register

Instruction Operand Encoding

Description

Loads the source operand into the segment selector field of the local descriptor table
register (LDTR). The source operand (a general-purpose register or a memory loca-
tion) contains a segment selector that points to a local descriptor table (LDT). After
the segment selector is loaded in the LDTR, the processor uses the segment selector
to locate the segment descriptor for the LDT in the global descriptor table (GDT). It
then loads the segment limit and base address for the LDT from the segment
descriptor into the LDTR. The segment registers DS, ES, SS, FS, GS, and CS are not
affected by this instruction, nor is the LDTR field in the task state segment (TSS) for
the current task.

If bits 2-15 of the source operand are 0, LDTR is marked invalid and the LLDT instruc-
tion completes silently. However, all subsequent references to descriptors in the LDT
(except by the LAR, VERR, VERW or LSL instructions) cause a general protection
exception (#GP).

The operand-size attribute has no effect on this instruction.

The LLDT instruction is provided for use in operating-system software; it should not
be used in application programs. This instruction can only be executed in protected
mode or 64-bit mode.

In 64-bit mode, the operand size is fixed at 16 bits.

Operation

IF SRC(Offset) > descriptor table limit
THEN #GP(segment selector); FI;

IF segment selector is valid

Read segment descriptor;

IF SegmentDescriptor(Type) ≠ LDT
THEN #GP(segment selector); FI;

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 00 /2 LLDT r/m16 M Valid Valid Load segment selector
r/m16 into LDTR.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA
Vol. 2A 3-593LLDT—Load Local Descriptor Table Register

INSTRUCTION SET REFERENCE, A-L
IF segment descriptor is not present
THEN #NP(segment selector); FI;

LDTR(SegmentSelector) ← SRC;
LDTR(SegmentDescriptor) ← GDTSegmentDescriptor;

ELSE LDTR ← INVALID
FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.

#GP(selector) If the selector operand does not point into the Global Descriptor
Table or if the entry in the GDT is not a Local Descriptor Table.
Segment selector is beyond GDT limit.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#NP(selector) If the LDT descriptor is not present.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD The LLDT instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The LLDT instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the current privilege level is not 0.

If the memory address is in a non-canonical form.
3-594 Vol. 2A LLDT—Load Local Descriptor Table Register

INSTRUCTION SET REFERENCE, A-L
#GP(selector) If the selector operand does not point into the Global Descriptor
Table or if the entry in the GDT is not a Local Descriptor Table.
Segment selector is beyond GDT limit.

#NP(selector) If the LDT descriptor is not present.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.
Vol. 2A 3-595LLDT—Load Local Descriptor Table Register

INSTRUCTION SET REFERENCE, A-L
LMSW—Load Machine Status Word

Instruction Operand Encoding

Description

Loads the source operand into the machine status word, bits 0 through 15 of register
CR0. The source operand can be a 16-bit general-purpose register or a memory loca-
tion. Only the low-order 4 bits of the source operand (which contains the PE, MP, EM,
and TS flags) are loaded into CR0. The PG, CD, NW, AM, WP, NE, and ET flags of CR0
are not affected. The operand-size attribute has no effect on this instruction.

If the PE flag of the source operand (bit 0) is set to 1, the instruction causes the
processor to switch to protected mode. While in protected mode, the LMSW instruc-
tion cannot be used to clear the PE flag and force a switch back to real-address mode.

The LMSW instruction is provided for use in operating-system software; it should not
be used in application programs. In protected or virtual-8086 mode, it can only be
executed at CPL 0.

This instruction is provided for compatibility with the Intel 286 processor; programs
and procedures intended to run on the Pentium 4, Intel Xeon, P6 family, Pentium,
Intel486, and Intel386 processors should use the MOV (control registers) instruction
to load the whole CR0 register. The MOV CR0 instruction can be used to set and clear
the PE flag in CR0, allowing a procedure or program to switch between protected and
real-address modes.

This instruction is a serializing instruction.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode. Note
that the operand size is fixed at 16 bits.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 25 of
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C, for
more information about the behavior of this instruction in VMX non-root operation.

Operation

CR0[0:3] ← SRC[0:3];

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 01 /6 LMSW r/m16 M Valid Valid Loads r/m16 in machine
status word of CR0.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA
3-596 Vol. 2A LMSW—Load Machine Status Word

INSTRUCTION SET REFERENCE, A-L
Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the current privilege level is not 0.

If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.
Vol. 2A 3-597LMSW—Load Machine Status Word

INSTRUCTION SET REFERENCE, A-L
LOCK—Assert LOCK# Signal Prefix

Instruction Operand Encoding

Description

Causes the processor’s LOCK# signal to be asserted during execution of the accom-
panying instruction (turns the instruction into an atomic instruction). In a multipro-
cessor environment, the LOCK# signal ensures that the processor has exclusive use
of any shared memory while the signal is asserted.

Note that, in later Intel 64 and IA-32 processors (including the Pentium 4, Intel Xeon,
and P6 family processors), locking may occur without the LOCK# signal being
asserted. See the “IA-32 Architecture Compatibility” section below.

The LOCK prefix can be prepended only to the following instructions and only to those
forms of the instructions where the destination operand is a memory operand: ADD,
ADC, AND, BTC, BTR, BTS, CMPXCHG, CMPXCH8B, CMPXCHG16B, DEC, INC, NEG,
NOT, OR, SBB, SUB, XOR, XADD, and XCHG. If the LOCK prefix is used with one of
these instructions and the source operand is a memory operand, an undefined
opcode exception (#UD) may be generated. An undefined opcode exception will also
be generated if the LOCK prefix is used with any instruction not in the above list. The
XCHG instruction always asserts the LOCK# signal regardless of the presence or
absence of the LOCK prefix.

The LOCK prefix is typically used with the BTS instruction to perform a read-modify-
write operation on a memory location in shared memory environment.

The integrity of the LOCK prefix is not affected by the alignment of the memory field.
Memory locking is observed for arbitrarily misaligned fields.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

Beginning with the P6 family processors, when the LOCK prefix is prefixed to an
instruction and the memory area being accessed is cached internally in the
processor, the LOCK# signal is generally not asserted. Instead, only the processor’s

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

F0 LOCK NP Valid Valid Asserts LOCK# signal for
duration of the
accompanying instruction.

NOTES:
* See IA-32 Architecture Compatibility section below.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
3-598 Vol. 2A LOCK—Assert LOCK# Signal Prefix

INSTRUCTION SET REFERENCE, A-L
cache is locked. Here, the processor’s cache coherency mechanism ensures that the
operation is carried out atomically with regards to memory. See “Effects of a Locked
Operation on Internal Processor Caches” in Chapter 8 of Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3A, the for more information on
locking of caches.

Operation

AssertLOCK#(DurationOfAccompaningInstruction);

Flags Affected

None.

Protected Mode Exceptions
#UD If the LOCK prefix is used with an instruction not listed: ADD,

ADC, AND, BTC, BTR, BTS, CMPXCHG, CMPXCH8B,
CMPXCHG16B, DEC, INC, NEG, NOT, OR, SBB, SUB, XOR, XADD,
XCHG.
Other exceptions can be generated by the instruction when the
LOCK prefix is applied.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
Vol. 2A 3-599LOCK—Assert LOCK# Signal Prefix

INSTRUCTION SET REFERENCE, A-L
LODS/LODSB/LODSW/LODSD/LODSQ—Load String

Instruction Operand Encoding

Description

Loads a byte, word, or doubleword from the source operand into the AL, AX, or EAX
register, respectively. The source operand is a memory location, the address of which

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

AC LODS m8 NP Valid Valid For legacy mode, Load byte
at address DS:(E)SI into AL.
For 64-bit mode load byte
at address (R)SI into AL.

AD LODS m16 NP Valid Valid For legacy mode, Load word
at address DS:(E)SI into AX.
For 64-bit mode load word
at address (R)SI into AX.

AD LODS m32 NP Valid Valid For legacy mode, Load
dword at address DS:(E)SI
into EAX. For 64-bit mode
load dword at address (R)SI
into EAX.

REX.W + AD LODS m64 NP Valid N.E. Load qword at address (R)SI
into RAX.

AC LODSB NP Valid Valid For legacy mode, Load byte
at address DS:(E)SI into AL.
For 64-bit mode load byte
at address (R)SI into AL.

AD LODSW NP Valid Valid For legacy mode, Load word
at address DS:(E)SI into AX.
For 64-bit mode load word
at address (R)SI into AX.

AD LODSD NP Valid Valid For legacy mode, Load
dword at address DS:(E)SI
into EAX. For 64-bit mode
load dword at address (R)SI
into EAX.

REX.W + AD LODSQ NP Valid N.E. Load qword at address (R)SI
into RAX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
3-600 Vol. 2A LODS/LODSB/LODSW/LODSD/LODSQ—Load String

INSTRUCTION SET REFERENCE, A-L
is read from the DS:ESI or the DS:SI registers (depending on the address-size
attribute of the instruction, 32 or 16, respectively). The DS segment may be over-
ridden with a segment override prefix.

At the assembly-code level, two forms of this instruction are allowed: the “explicit-
operands” form and the “no-operands” form. The explicit-operands form (specified
with the LODS mnemonic) allows the source operand to be specified explicitly. Here,
the source operand should be a symbol that indicates the size and location of the
source value. The destination operand is then automatically selected to match the
size of the source operand (the AL register for byte operands, AX for word operands,
and EAX for doubleword operands). This explicit-operands form is provided to allow
documentation; however, note that the documentation provided by this form can be
misleading. That is, the source operand symbol must specify the correct type (size)
of the operand (byte, word, or doubleword), but it does not have to specify the
correct location. The location is always specified by the DS:(E)SI registers, which
must be loaded correctly before the load string instruction is executed.

The no-operands form provides “short forms” of the byte, word, and doubleword
versions of the LODS instructions. Here also DS:(E)SI is assumed to be the source
operand and the AL, AX, or EAX register is assumed to be the destination operand.
The size of the source and destination operands is selected with the mnemonic:
LODSB (byte loaded into register AL), LODSW (word loaded into AX), or LODSD
(doubleword loaded into EAX).

After the byte, word, or doubleword is transferred from the memory location into the
AL, AX, or EAX register, the (E)SI register is incremented or decremented automati-
cally according to the setting of the DF flag in the EFLAGS register. (If the DF flag is
0, the (E)SI register is incremented; if the DF flag is 1, the ESI register is decre-
mented.) The (E)SI register is incremented or decremented by 1 for byte operations,
by 2 for word operations, or by 4 for doubleword operations.

In 64-bit mode, use of the REX.W prefix promotes operation to 64 bits. LODS/LODSQ
load the quadword at address (R)SI into RAX. The (R)SI register is then incremented
or decremented automatically according to the setting of the DF flag in the EFLAGS
register.

The LODS, LODSB, LODSW, and LODSD instructions can be preceded by the REP
prefix for block loads of ECX bytes, words, or doublewords. More often, however,
these instructions are used within a LOOP construct because further processing of
the data moved into the register is usually necessary before the next transfer can be
made. See “REP/REPE/REPZ /REPNE/REPNZ—Repeat String Operation Prefix” in
Chapter 4 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2B, for a description of the REP prefix.

Operation

IF AL ← SRC; (* Byte load *)
THEN AL ← SRC; (* Byte load *)

IF DF = 0
THEN (E)SI ← (E)SI + 1;
Vol. 2A 3-601LODS/LODSB/LODSW/LODSD/LODSQ—Load String

INSTRUCTION SET REFERENCE, A-L
ELSE (E)SI ← (E)SI – 1;
FI;

ELSE IF AX ← SRC; (* Word load *)
THEN IF DF = 0

THEN (E)SI ← (E)SI + 2;
ELSE (E)SI ← (E)SI – 2;

IF;
FI;

ELSE IF EAX ← SRC; (* Doubleword load *)
THEN IF DF = 0

THEN (E)SI ← (E)SI + 4;
ELSE (E)SI ← (E)SI – 4;

FI;
FI;

ELSE IF RAX ← SRC; (* Quadword load *)
THEN IF DF = 0

THEN (R)SI ← (R)SI + 8;
ELSE (R)SI ← (R)SI – 8;

FI;
FI;

FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
3-602 Vol. 2A LODS/LODSB/LODSW/LODSD/LODSQ—Load String

INSTRUCTION SET REFERENCE, A-L
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
Vol. 2A 3-603LODS/LODSB/LODSW/LODSD/LODSQ—Load String

INSTRUCTION SET REFERENCE, A-L
LOOP/LOOPcc—Loop According to ECX Counter

Instruction Operand Encoding

Description

Performs a loop operation using the RCX, ECX or CX register as a counter (depending
on whether address size is 64 bits, 32 bits, or 16 bits). Note that the LOOP instruction
ignores REX.W; but 64-bit address size can be over-ridden using a 67H prefix.

Each time the LOOP instruction is executed, the count register is decremented, then
checked for 0. If the count is 0, the loop is terminated and program execution
continues with the instruction following the LOOP instruction. If the count is not zero,
a near jump is performed to the destination (target) operand, which is presumably
the instruction at the beginning of the loop.

The target instruction is specified with a relative offset (a signed offset relative to the
current value of the instruction pointer in the IP/EIP/RIP register). This offset is
generally specified as a label in assembly code, but at the machine code level, it is
encoded as a signed, 8-bit immediate value, which is added to the instruction pointer.
Offsets of –128 to +127 are allowed with this instruction.

Some forms of the loop instruction (LOOPcc) also accept the ZF flag as a condition for
terminating the loop before the count reaches zero. With these forms of the instruc-
tion, a condition code (cc) is associated with each instruction to indicate the condition
being tested for. Here, the LOOPcc instruction itself does not affect the state of the ZF
flag; the ZF flag is changed by other instructions in the loop.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

E2 cb LOOP rel8 D Valid Valid Decrement count; jump
short if count ≠ 0.

E1 cb LOOPE rel8 D Valid Valid Decrement count; jump
short if count ≠ 0 and ZF =
1.

E0 cb LOOPNE rel8 D Valid Valid Decrement count; jump
short if count ≠ 0 and ZF =
0.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

D Offset NA NA NA
3-604 Vol. 2A LOOP/LOOPcc—Loop According to ECX Counter

INSTRUCTION SET REFERENCE, A-L
Operation

IF (AddressSize = 32)
THEN Count is ECX;

ELSE IF (AddressSize = 64)
Count is RCX;

ELSE Count is CX;
FI;

Count ← Count – 1;

IF Instruction is not LOOP
THEN

IF (Instruction ← LOOPE) or (Instruction ← LOOPZ)
THEN IF (ZF = 1) and (Count ≠ 0)

THEN BranchCond ← 1;
ELSE BranchCond ← 0;

FI;
ELSE (Instruction = LOOPNE) or (Instruction = LOOPNZ)

IF (ZF = 0) and (Count ≠ 0)
THEN BranchCond ← 1;
ELSE BranchCond ← 0;

FI;
FI;

ELSE (* Instruction = LOOP *)
IF (Count ≠ 0)

THEN BranchCond ← 1;
ELSE BranchCond ← 0;

FI;
FI;

IF BranchCond = 1
THEN

IF OperandSize = 32
THEN EIP ← EIP + SignExtend(DEST);
ELSE IF OperandSize = 64

THEN RIP ← RIP + SignExtend(DEST);
FI;

ELSE IF OperandSize = 16
THEN EIP ← EIP AND 0000FFFFH;
FI;

ELSE IF OperandSize = (32 or 64)
THEN IF (R/E)IP < CS.Base or (R/E)IP > CS.Limit

#GP; FI;
FI;
Vol. 2A 3-605LOOP/LOOPcc—Loop According to ECX Counter

INSTRUCTION SET REFERENCE, A-L
FI;
ELSE

Terminate loop and continue program execution at (R/E)IP;
FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the offset being jumped to is beyond the limits of the CS

segment.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If the offset being jumped to is beyond the limits of the CS

segment or is outside of the effective address space from 0 to
FFFFH. This condition can occur if a 32-bit address size override
prefix is used.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the offset being jumped to is in a non-canonical form.
#UD If the LOCK prefix is used.
3-606 Vol. 2A LOOP/LOOPcc—Loop According to ECX Counter

INSTRUCTION SET REFERENCE, A-L
LSL—Load Segment Limit

Instruction Operand Encoding

Description

Loads the unscrambled segment limit from the segment descriptor specified with the
second operand (source operand) into the first operand (destination operand) and
sets the ZF flag in the EFLAGS register. The source operand (which can be a register
or a memory location) contains the segment selector for the segment descriptor
being accessed. The destination operand is a general-purpose register.

The processor performs access checks as part of the loading process. Once loaded in
the destination register, software can compare the segment limit with the offset of a
pointer.

The segment limit is a 20-bit value contained in bytes 0 and 1 and in the first 4 bits
of byte 6 of the segment descriptor. If the descriptor has a byte granular segment
limit (the granularity flag is set to 0), the destination operand is loaded with a byte
granular value (byte limit). If the descriptor has a page granular segment limit (the
granularity flag is set to 1), the LSL instruction will translate the page granular limit
(page limit) into a byte limit before loading it into the destination operand. The trans-
lation is performed by shifting the 20-bit “raw” limit left 12 bits and filling the low-
order 12 bits with 1s.

When the operand size is 32 bits, the 32-bit byte limit is stored in the destination
operand. When the operand size is 16 bits, a valid 32-bit limit is computed; however,
the upper 16 bits are truncated and only the low-order 16 bits are loaded into the
destination operand.

This instruction performs the following checks before it loads the segment limit into
the destination register:
• Checks that the segment selector is not NULL.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 03 /r LSL r16, r16/m16 RM Valid Valid Load: r16 ← segment limit,
selector r16/m16.

0F 03 /r LSL r32, r32/m16* RM Valid Valid Load: r32 ← segment limit,
selector r32/m16.

REX.W + 0F 03
/r

LSL r64, r32/m16* RM Valid Valid Load: r64 ← segment limit,
selector r32/m16

NOTES:
* For all loads (regardless of destination sizing), only bits 16-0 are used. Other bits are ignored.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
Vol. 2A 3-607LSL—Load Segment Limit

INSTRUCTION SET REFERENCE, A-L
• Checks that the segment selector points to a descriptor that is within the limits of
the GDT or LDT being accessed

• Checks that the descriptor type is valid for this instruction. All code and data
segment descriptors are valid for (can be accessed with) the LSL instruction. The
valid special segment and gate descriptor types are given in the following table.

• If the segment is not a conforming code segment, the instruction checks that the
specified segment descriptor is visible at the CPL (that is, if the CPL and the RPL
of the segment selector are less than or equal to the DPL of the segment
selector).

If the segment descriptor cannot be accessed or is an invalid type for the instruction,
the ZF flag is cleared and no value is loaded in the destination operand.

Table 3-65. Segment and Gate Descriptor Types

Type Protected Mode IA-32e Mode

Name Valid Name Valid

0 Reserved No Upper 8 byte of a 16-
Byte descriptor

Yes

1 Available 16-bit TSS Yes Reserved No

2 LDT Yes LDT Yes

3 Busy 16-bit TSS Yes Reserved No

4 16-bit call gate No Reserved No

5 16-bit/32-bit task
gate

No Reserved No

6 16-bit interrupt gate No Reserved No

7 16-bit trap gate No Reserved No

8 Reserved No Reserved No

9 Available 32-bit TSS Yes 64-bit TSS Yes

A Reserved No Reserved No

B Busy 32-bit TSS Yes Busy 64-bit TSS Yes

C 32-bit call gate No 64-bit call gate No

D Reserved No Reserved No

E 32-bit interrupt gate No 64-bit interrupt gate No

F 32-bit trap gate No 64-bit trap gate No
3-608 Vol. 2A LSL—Load Segment Limit

INSTRUCTION SET REFERENCE, A-L
Operation

IF SRC(Offset) > descriptor table limit
THEN ZF ← 0; FI;

Read segment descriptor;

IF SegmentDescriptor(Type) ≠ conforming code segment
and (CPL > DPL) OR (RPL > DPL)
or Segment type is not valid for instruction

THEN
ZF ← 0;

ELSE
temp ← SegmentLimit([SRC]);
IF (G ← 1)

THEN temp ← ShiftLeft(12, temp) OR 00000FFFH;
ELSE IF OperandSize = 32

THEN DEST ← temp; FI;
ELSE IF OperandSize = 64 (* REX.W used *)

THEN DEST (* Zero-extended *) ← temp; FI;
ELSE (* OperandSize = 16 *)

DEST ← temp AND FFFFH;
FI;

FI;

Flags Affected

The ZF flag is set to 1 if the segment limit is loaded successfully; otherwise, it is set
to 0.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and the memory operand effec-

tive address is unaligned while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD The LSL instruction cannot be executed in real-address mode.
Vol. 2A 3-609LSL—Load Segment Limit

INSTRUCTION SET REFERENCE, A-L
Virtual-8086 Mode Exceptions
#UD The LSL instruction cannot be executed in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If the memory operand effective address referencing the SS

segment is in a non-canonical form.
#GP(0) If the memory operand effective address is in a non-canonical

form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and the memory operand effec-

tive address is unaligned while the current privilege level is 3.
#UD If the LOCK prefix is used.
3-610 Vol. 2A LSL—Load Segment Limit

INSTRUCTION SET REFERENCE, A-L
LTR—Load Task Register

Instruction Operand Encoding

Description

Loads the source operand into the segment selector field of the task register. The
source operand (a general-purpose register or a memory location) contains a
segment selector that points to a task state segment (TSS). After the segment
selector is loaded in the task register, the processor uses the segment selector to
locate the segment descriptor for the TSS in the global descriptor table (GDT). It then
loads the segment limit and base address for the TSS from the segment descriptor
into the task register. The task pointed to by the task register is marked busy, but a
switch to the task does not occur.

The LTR instruction is provided for use in operating-system software; it should not be
used in application programs. It can only be executed in protected mode when the
CPL is 0. It is commonly used in initialization code to establish the first task to be
executed.

The operand-size attribute has no effect on this instruction.

In 64-bit mode, the operand size is still fixed at 16 bits. The instruction references a
16-byte descriptor to load the 64-bit base.

Operation

IF SRC is a NULL selector
THEN #GP(0);

IF SRC(Offset) > descriptor table limit OR IF SRC(type) ≠ global
THEN #GP(segment selector); FI;

Read segment descriptor;

IF segment descriptor is not for an available TSS
THEN #GP(segment selector); FI;

IF segment descriptor is not present
THEN #NP(segment selector); FI;

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 00 /3 LTR r/m16 M Valid Valid Load r/m16 into task
register.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA
Vol. 2A 3-611LTR—Load Task Register

INSTRUCTION SET REFERENCE, A-L
TSSsegmentDescriptor(busy) ← 1;
(* Locked read-modify-write operation on the entire descriptor when setting busy flag *)

TaskRegister(SegmentSelector) ← SRC;
TaskRegister(SegmentDescriptor) ← TSSSegmentDescriptor;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the source operand contains a NULL segment selector.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#GP(selector) If the source selector points to a segment that is not a TSS or to
one for a task that is already busy.
If the selector points to LDT or is beyond the GDT limit.

#NP(selector) If the TSS is marked not present.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD The LTR instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The LTR instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the current privilege level is not 0.

If the memory address is in a non-canonical form.
If the source operand contains a NULL segment selector.
3-612 Vol. 2A LTR—Load Task Register

INSTRUCTION SET REFERENCE, A-L
#GP(selector) If the source selector points to a segment that is not a TSS or to
one for a task that is already busy.
If the selector points to LDT or is beyond the GDT limit.
If the descriptor type of the upper 8-byte of the 16-byte
descriptor is non-zero.

#NP(selector) If the TSS is marked not present.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.
Vol. 2A 3-613LTR—Load Task Register

CHAPTER 4
INSTRUCTION SET REFERENCE, M-Z

4.1 IMM8 CONTROL BYTE OPERATION FOR PCMPESTRI /
PCMPESTRM / PCMPISTRI / PCMPISTRM

The notations introduced in this section are referenced in the reference pages of
PCMPESTRI, PCMPESTRM, PCMPISTRI, PCMPISTRM. The operation of the immediate
control byte is common to these four string text processing instructions of SSE4.2.
This section describes the common operations.

4.1.1 General Description
The operation of PCMPESTRI, PCMPESTRM, PCMPISTRI, PCMPISTRM is defined by
the combination of the respective opcode and the interpretation of an immediate
control byte that is part of the instruction encoding.

The opcode controls the relationship of input bytes/words to each other (determines
whether the inputs terminated strings or whether lengths are expressed explicitly) as
well as the desired output (index or mask).

The Imm8 Control Byte for PCMPESTRM/PCMPESTRI/PCMPISTRM/PCMPISTRI
encodes a significant amount of programmable control over the functionality of those
instructions. Some functionality is unique to each instruction while some is common
across some or all of the four instructions. This section describes functionality which
is common across the four instructions.

The arithmetic flags (ZF, CF, SF, OF, AF, PF) are set as a result of these instructions.
However, the meanings of the flags have been overloaded from their typical mean-
ings in order to provide additional information regarding the relationships of the two
inputs.

PCMPxSTRx instructions perform arithmetic comparisons between all possible pairs
of bytes or words, one from each packed input source operand. The boolean results
of those comparisons are then aggregated in order to produce meaningful results.
The Imm8 Control Byte is used to affect the interpretation of individual input
elements as well as control the arithmetic comparisons used and the specific aggre-
gation scheme.

Specifically, the Imm8 Control Byte consists of bit fields that control the following
attributes:
• Source data format — Byte/word data element granularity, signed or unsigned

elements
Vol. 2B 4-1

INSTRUCTION SET REFERENCE, M-Z
• Aggregation operation — Encodes the mode of per-element comparison
operation and the aggregation of per-element comparisons into an intermediate
result

• Polarity — Specifies intermediate processing to be performed on the interme-
diate result

• Output selection — Specifies final operation to produce the output (depending
on index or mask) from the intermediate result

4.1.2 Source Data Format

If the Imm8 Control Byte has bit[0] cleared, each source contains 16 packed bytes.
If the bit is set each source contains 8 packed words. If the Imm8 Control Byte has
bit[1] cleared, each input contains unsigned data. If the bit is set each source
contains signed data.

Table 4-1. Source Data Format

Imm8[1:0] Meaning Description

00b Unsigned bytes Both 128-bit sources are treated as packed, unsigned
bytes.

01b Unsigned words Both 128-bit sources are treated as packed, unsigned
words.

10b Signed bytes Both 128-bit sources are treated as packed, signed bytes.

11b Signed words Both 128-bit sources are treated as packed, signed words.
4-2 Vol. 2B

INSTRUCTION SET REFERENCE, M-Z
4.1.3 Aggregation Operation

All 256 (64) possible comparisons are always performed. The individual Boolean
results of those comparisons are referred by “BoolRes[Reg/Mem element index, Reg
element index].” Comparisons evaluating to “True” are represented with a 1, False
with a 0 (positive logic). The initial results are then aggregated into a 16-bit (8-bit)
intermediate result (IntRes1) using one of the modes described in the table below, as
determined by Imm8 Control Byte bit[3:2].

Table 4-2. Aggregation Operation

Imm8[3:2] Mode Comparison

00b Equal any The arithmetic comparison is “equal.”

01b Ranges Arithmetic comparison is “greater than or equal” between
even indexed bytes/words of reg and each byte/word of
reg/mem.

Arithmetic comparison is “less than or equal” between odd
indexed bytes/words of reg and each byte/word of reg/mem.

(reg/mem[m] >= reg[n] for n = even, reg/mem[m] <= reg[n]
for n = odd)

10b Equal each The arithmetic comparison is “equal.”

11b Equal ordered The arithmetic comparison is “equal.”
Vol. 2B 4-3

INSTRUCTION SET REFERENCE, M-Z
See Section 4.1.6 for a description of the overrideIfDataInvalid() function used in
Table 4-3.

4.1.4 Polarity
IntRes1 may then be further modified by performing a 1’s complement, according to
the value of the Imm8 Control Byte bit[4]. Optionally, a mask may be used such that
only those IntRes1 bits which correspond to “valid” reg/mem input elements are
complemented (note that the definition of a valid input element is dependant on the
specific opcode and is defined in each opcode’s description). The result of the
possible negation is referred to as IntRes2.

Table 4-3. Aggregation Operation

Mode Pseudocode

Equal any

(find characters from a set)

UpperBound = imm8[0] ? 7 : 15;

IntRes1 = 0;

For j = 0 to UpperBound, j++

For i = 0 to UpperBound, i++

IntRes1[j] OR= overrideIfDataInvalid(BoolRes[j,i])

Ranges

(find characters from ranges)

UpperBound = imm8[0] ? 7 : 15;

IntRes1 = 0;

For j = 0 to UpperBound, j++

For i = 0 to UpperBound, i+=2

IntRes1[j] OR= (overrideIfDataInvalid(BoolRes[j,i]) AND
overrideIfDataInvalid(BoolRes[j,i+1]))

Equal each

(string compare)

UpperBound = imm8[0] ? 7 : 15;

IntRes1 = 0;

For i = 0 to UpperBound, i++

IntRes1[i] = overrideIfDataInvalid(BoolRes[i,i])

Equal ordered

(substring search)

UpperBound = imm8[0] ? 7 :15;

IntRes1 = imm8[0] ? 0xFF : 0xFFFF

For j = 0 to UpperBound, j++

For i = 0 to UpperBound-j, k=j to UpperBound, k++, i++

IntRes1[j] AND= overrideIfDataInvalid(BoolRes[k,i])
4-4 Vol. 2B

INSTRUCTION SET REFERENCE, M-Z
4.1.5 Output Selection

For PCMPESTRI/PCMPISTRI, the Imm8 Control Byte bit[6] is used to determine if the
index is of the least significant or most significant bit of IntRes2.

Specifically for PCMPESTRM/PCMPISTRM, the Imm8 Control Byte bit[6] is used to
determine if the mask is a 16 (8) bit mask or a 128 bit byte/word mask.

Table 4-4. Polarity

Imm8[5:4] Operation Description

00b Positive Polarity (+) IntRes2 = IntRes1

01b Negative Polarity (-) IntRes2 = -1 XOR IntRes1

10b Masked (+) IntRes2 = IntRes1

11b Masked (-) IntRes2[i] = IntRes1[i] if reg/mem[i] invalid, else =
~IntRes1[i]

Table 4-5. Ouput Selection

Imm8[6] Operation Description

0b Least significant index The index returned to ECX is of the least significant set bit in
IntRes2.

1b Most significant index The index returned to ECX is of the most significant set bit in
IntRes2.

Table 4-6. Output Selection

Imm8[6] Operation Description

0b Bit mask IntRes2 is returned as the mask to the least significant bits of
XMM0 with zero extension to 128 bits.

1b Byte/word mask IntRes2 is expanded into a byte/word mask (based on imm8[1])
and placed in XMM0. The expansion is performed by replicating
each bit into all of the bits of the byte/word of the same index.
Vol. 2B 4-5

INSTRUCTION SET REFERENCE, M-Z
4.1.6 Valid/Invalid Override of Comparisons
PCMPxSTRx instructions allow for the possibility that an end-of-string (EOS) situation
may occur within the 128-bit packed data value (see the instruction descriptions
below for details). Any data elements on either source that are determined to be past
the EOS are considered to be invalid, and the treatment of invalid data within a
comparison pair varies depending on the aggregation function being performed.

In general, the individual comparison result for each element pair BoolRes[i.j] can be
forced true or false if one or more elements in the pair are invalid. See Table 4-7.

Table 4-7. Comparison Result for Each Element Pair BoolRes[i.j]

xmm1
byte/ word

xmm2/
m128
byte/word

Imm8[3:2] =
00b
(equal any)

Imm8[3:2] =
01b
(ranges)

Imm8[3:2] =
10b
(equal each)

Imm8[3:2] = 11b
(equal ordered)

Invalid Invalid Force false Force false Force true Force true

Invalid Valid Force false Force false Force false Force true

Valid Invalid Force false Force false Force false Force false

Valid Valid Do not force Do not force Do not force Do not force
4-6 Vol. 2B

INSTRUCTION SET REFERENCE, M-Z
4.1.7 Summary of Im8 Control byte

Table 4-8. Summary of Imm8 Control Byte

Imm8 Description

-------0b 128-bit sources treated as 16 packed bytes.

-------1b 128-bit sources treated as 8 packed words.

------0-b Packed bytes/words are unsigned.

------1-b Packed bytes/words are signed.

----00--b Mode is equal any.

----01--b Mode is ranges.

----10--b Mode is equal each.

----11--b Mode is equal ordered.

---0----b IntRes1 is unmodified.

---1----b IntRes1 is negated (1’s complement).

--0-----b Negation of IntRes1 is for all 16 (8) bits.

--1-----b Negation of IntRes1 is masked by reg/mem validity.

-0------b Index of the least significant, set, bit is used (regardless of corresponding
input element validity).

IntRes2 is returned in least significant bits of XMM0.

-1------b Index of the most significant, set, bit is used (regardless of corresponding
input element validity).

Each bit of IntRes2 is expanded to byte/word.

0-------b This bit currently has no defined effect, should be 0.

1-------b This bit currently has no defined effect, should be 0.
Vol. 2B 4-7

INSTRUCTION SET REFERENCE, M-Z
4.1.8 Diagram Comparison and Aggregation Process

4.2 INSTRUCTIONS (M-Z)
Chapter 4 continues an alphabetical discussion of Intel® 64 and IA-32 instructions
(M-Z). See also: Chapter 3, “Instruction Set Reference, A-L,” in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 2A.

Figure 4-1. Operation of PCMPSTRx and PCMPESTRx
4-8 Vol. 2B

INSTRUCTION SET REFERENCE, M-Z
MASKMOVDQU—Store Selected Bytes of Double Quadword

Instruction Operand Encoding1

Description

Stores selected bytes from the source operand (first operand) into an 128-bit
memory location. The mask operand (second operand) selects which bytes from the
source operand are written to memory. The source and mask operands are XMM
registers. The memory location specified by the effective address in the DI/EDI/RDI
register (the default segment register is DS, but this may be overridden with a
segment-override prefix). The memory location does not need to be aligned on a
natural boundary. (The size of the store address depends on the address-size
attribute.)

The most significant bit in each byte of the mask operand determines whether the
corresponding byte in the source operand is written to the corresponding byte loca-
tion in memory: 0 indicates no write and 1 indicates write.

The MASKMOVDQU instruction generates a non-temporal hint to the processor to
minimize cache pollution. The non-temporal hint is implemented by using a write
combining (WC) memory type protocol (see “Caching of Temporal vs. Non-Temporal
Data” in Chapter 10, of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1). Because the WC protocol uses a weakly-ordered memory consis-
tency model, a fencing operation implemented with the SFENCE or MFENCE instruc-
tion should be used in conjunction with MASKMOVDQU instructions if multiple

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

66 0F F7 /r

MASKMOVDQU xmm1, xmm2

RM V/V SSE2 Selectively write bytes from
xmm1 to memory location
using the byte mask in
xmm2. The default memory
location is specified by
DS:DI/EDI/RDI.

VEX.128.66.0F.WIG F7 /r

VMASKMOVDQU xmm1, xmm2

RM V/V AVX Selectively write bytes from
xmm1 to memory location
using the byte mask in
xmm2. The default memory
location is specified by
DS:DI/EDI/RDI.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) NA NA

1.ModRM.MOD = 011B required
Vol. 2B 4-9MASKMOVDQU—Store Selected Bytes of Double Quadword

INSTRUCTION SET REFERENCE, M-Z
processors might use different memory types to read/write the destination memory
locations.

Behavior with a mask of all 0s is as follows:
• No data will be written to memory.
• Signaling of breakpoints (code or data) is not guaranteed; different processor

implementations may signal or not signal these breakpoints.
• Exceptions associated with addressing memory and page faults may still be

signaled (implementation dependent).
• If the destination memory region is mapped as UC or WP, enforcement of

associated semantics for these memory types is not guaranteed (that is, is
reserved) and is implementation-specific.

The MASKMOVDQU instruction can be used to improve performance of algorithms
that need to merge data on a byte-by-byte basis. MASKMOVDQU should not cause a
read for ownership; doing so generates unnecessary bandwidth since data is to be
written directly using the byte-mask without allocating old data prior to the store.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise
instructions will #UD.
If VMASKMOVDQU is encoded with VEX.L= 1, an attempt to execute the instruction
encoded with VEX.L= 1 will cause an #UD exception.

Operation

IF (MASK[7] = 1)
THEN DEST[DI/EDI] ← SRC[7:0] ELSE (* Memory location unchanged *); FI;

IF (MASK[15] = 1)
THEN DEST[DI/EDI +1] ← SRC[15:8] ELSE (* Memory location unchanged *); FI;
(* Repeat operation for 3rd through 14th bytes in source operand *)

IF (MASK[127] = 1)
THEN DEST[DI/EDI +15] ← SRC[127:120] ELSE (* Memory location unchanged *); FI;

Intel C/C++ Compiler Intrinsic Equivalent

void _mm_maskmoveu_si128(__m128i d, __m128i n, char * p)

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L= 1

If VEX.vvvv != 1111B.
4-10 Vol. 2B MASKMOVDQU—Store Selected Bytes of Double Quadword

INSTRUCTION SET REFERENCE, M-Z
MASKMOVQ—Store Selected Bytes of Quadword

Instruction Operand Encoding

Description

Stores selected bytes from the source operand (first operand) into a 64-bit memory
location. The mask operand (second operand) selects which bytes from the source
operand are written to memory. The source and mask operands are MMX technology
registers. The memory location specified by the effective address in the DI/EDI/RDI
register (the default segment register is DS, but this may be overridden with a
segment-override prefix). The memory location does not need to be aligned on a
natural boundary. (The size of the store address depends on the address-size
attribute.)

The most significant bit in each byte of the mask operand determines whether the
corresponding byte in the source operand is written to the corresponding byte loca-
tion in memory: 0 indicates no write and 1 indicates write.

The MASKMOVQ instruction generates a non-temporal hint to the processor to mini-
mize cache pollution. The non-temporal hint is implemented by using a write
combining (WC) memory type protocol (see “Caching of Temporal vs. Non-Temporal
Data” in Chapter 10, of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1). Because the WC protocol uses a weakly-ordered memory consis-
tency model, a fencing operation implemented with the SFENCE or MFENCE instruc-
tion should be used in conjunction with MASKMOVQ instructions if multiple
processors might use different memory types to read/write the destination memory
locations.

This instruction causes a transition from x87 FPU to MMX technology state (that is,
the x87 FPU top-of-stack pointer is set to 0 and the x87 FPU tag word is set to all 0s
[valid]).

The behavior of the MASKMOVQ instruction with a mask of all 0s is as follows:
• No data will be written to memory.
• Transition from x87 FPU to MMX technology state will occur.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F F7 /r MASKMOVQ mm1,
mm2

RM Valid Valid Selectively write bytes from
mm1 to memory location
using the byte mask in mm2.
The default memory
location is specified by
DS:DI/EDI/RDI.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) NA NA
Vol. 2B 4-11MASKMOVQ—Store Selected Bytes of Quadword

INSTRUCTION SET REFERENCE, M-Z
• Exceptions associated with addressing memory and page faults may still be
signaled (implementation dependent).

• Signaling of breakpoints (code or data) is not guaranteed (implementation
dependent).

• If the destination memory region is mapped as UC or WP, enforcement of
associated semantics for these memory types is not guaranteed (that is, is
reserved) and is implementation-specific.

The MASKMOVQ instruction can be used to improve performance for algorithms that
need to merge data on a byte-by-byte basis. It should not cause a read for owner-
ship; doing so generates unnecessary bandwidth since data is to be written directly
using the byte-mask without allocating old data prior to the store.
In 64-bit mode, the memory address is specified by DS:RDI.

Operation

IF (MASK[7] = 1)
THEN DEST[DI/EDI] ← SRC[7:0] ELSE (* Memory location unchanged *); FI;

IF (MASK[15] = 1)
THEN DEST[DI/EDI +1] ← SRC[15:8] ELSE (* Memory location unchanged *); FI;
(* Repeat operation for 3rd through 6th bytes in source operand *)

IF (MASK[63] = 1)
THEN DEST[DI/EDI +15] ← SRC[63:56] ELSE (* Memory location unchanged *); FI;

Intel C/C++ Compiler Intrinsic Equivalent

void _mm_maskmove_si64(__m64d, __m64n, char * p)

Other Exceptions
See Table 22-8, “Exception Conditions for Legacy SIMD/MMX Instructions without FP
Exception,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A.
4-12 Vol. 2B MASKMOVQ—Store Selected Bytes of Quadword

INSTRUCTION SET REFERENCE, M-Z
MAXPD—Return Maximum Packed Double-Precision Floating-Point
Values

Instruction Operand Encoding

Description

Performs an SIMD compare of the packed double-precision floating-point values in
the first source operand and the second source operand and returns the maximum
value for each pair of values to the destination operand.
If the values being compared are both 0.0s (of either sign), the value in the second
operand (source operand) is returned. If a value in the second operand is an SNaN,
that SNaN is forwarded unchanged to the destination (that is, a QNaN version of the
SNaN is not returned).
If only one value is a NaN (SNaN or QNaN) for this instruction, the second operand
(source operand), either a NaN or a valid floating-point value, is written to the result.
If instead of this behavior, it is required that the NaN source operand (from either the
first or second operand) be returned, the action of MAXPD can be emulated using a
sequence of instructions, such as, a comparison followed by AND, ANDN and OR.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

66 0F 5F /r

MAXPD xmm1, xmm2/m128

RM V/V SSE2 Return the maximum
double-precision floating-
point values between
xmm2/m128 and xmm1.

VEX.NDS.128.66.0F.WIG 5F /r

VMAXPD xmm1,xmm2,
xmm3/m128

RVM V/V AVX Return the maximum
double-precision floating-
point values between xmm2
and xmm3/mem.

VEX.NDS.256.66.0F.WIG 5F /r

VMAXPD ymm1, ymm2,
ymm3/m256

RVM V/V AVX Return the maximum
packed double-precision
floating-point values
between ymm2 and
ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-13MAXPD—Return Maximum Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

Operation

MAX(SRC1, SRC2)
{

IF ((SRC1 = 0.0) and (SRC2 = 0.0)) THEN DEST SRC2;
ELSE IF (SRC1 = SNaN) THEN DEST SRC2; FI;
ELSE IF (SRC2 = SNaN) THEN DEST SRC2; FI;
ELSE IF (SRC1 > SRC2) THEN DEST SRC1;
ELSE DEST SRC2;

FI;
}

MAXPD (128-bit Legacy SSE version)
DEST[63:0] MAX(DEST[63:0], SRC[63:0])
DEST[127:64] MAX(DEST[127:64], SRC[127:64])
DEST[VLMAX-1:128] (Unmodified)

VMAXPD (VEX.128 encoded version)
DEST[63:0] MAX(SRC1[63:0], SRC2[63:0])
DEST[127:64] MAX(SRC1[127:64], SRC2[127:64])
DEST[VLMAX-1:128] 0

VMAXPD (VEX.256 encoded version)
DEST[63:0] MAX(SRC1[63:0], SRC2[63:0])
DEST[127:64] MAX(SRC1[127:64], SRC2[127:64])
DEST[191:128] MAX(SRC1[191:128], SRC2[191:128])
DEST[255:192] MAX(SRC1[255:192], SRC2[255:192])

Intel C/C++ Compiler Intrinsic Equivalent

MAXPD: __m128d _mm_max_pd(__m128d a, __m128d b);

VMAXPD: __m256d _mm256_max_pd (__m256d a, __m256d b);
4-14 Vol. 2B MAXPD—Return Maximum Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
SIMD Floating-Point Exceptions

Invalid (including QNaN source operand), Denormal.

Other Exceptions
See Exceptions Type 2.
Vol. 2B 4-15MAXPD—Return Maximum Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
MAXPS—Return Maximum Packed Single-Precision Floating-Point
Values

Instruction Operand Encoding

Description

Performs an SIMD compare of the packed single-precision floating-point values in the
first source operand and the second source operand and returns the maximum value
for each pair of values to the destination operand.
If the values being compared are both 0.0s (of either sign), the value in the second
operand (source operand) is returned. If a value in the second operand is an SNaN,
that SNaN is forwarded unchanged to the destination (that is, a QNaN version of the
SNaN is not returned).
If only one value is a NaN (SNaN or QNaN) for this instruction, the second operand
(source operand), either a NaN or a valid floating-point value, is written to the result.
If instead of this behavior, it is required that the NaN source operand (from either the
first or second operand) be returned, the action of MAXPS can be emulated using a
sequence of instructions, such as, a comparison followed by AND, ANDN and OR.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

0F 5F /r

MAXPS xmm1, xmm2/m128

RM V/V SSE Return the maximum single-
precision floating-point
values between
xmm2/m128 and xmm1.

VEX.NDS.128.0F.WIG 5F /r

VMAXPS xmm1,xmm2, xmm3/m128

RVM V/V AVX Return the maximum single-
precision floating-point
values between xmm2 and
xmm3/mem.

VEX.NDS.256.0F.WIG 5F /r

VMAXPS ymm1, ymm2,
ymm3/m256

RVM V/V AVX Return the maximum single
double-precision floating-
point values between ymm2
and ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
4-16 Vol. 2B MAXPS—Return Maximum Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

Operation

MAX(SRC1, SRC2)
{

IF ((SRC1 = 0.0) and (SRC2 = 0.0)) THEN DEST SRC2;
ELSE IF (SRC1 = SNaN) THEN DEST SRC2; FI;
ELSE IF SRC2 = SNaN) THEN DEST SRC2; FI;
ELSE IF (SRC1 > SRC2) THEN DEST SRC1;
ELSE DEST SRC2;

FI;
}

MAXPS (128-bit Legacy SSE version)
DEST[31:0] MAX(DEST[31:0], SRC[31:0])
DEST[63:32] MAX(DEST[63:32], SRC[63:32])
DEST[95:64] MAX(DEST[95:64], SRC[95:64])
DEST[127:96] MAX(DEST[127:96], SRC[127:96])
DEST[VLMAX-1:128] (Unmodified)

VMAXPS (VEX.128 encoded version)
DEST[31:0] MAX(SRC1[31:0], SRC2[31:0])
DEST[63:32] MAX(SRC1[63:32], SRC2[63:32])
DEST[95:64] MAX(SRC1[95:64], SRC2[95:64])
DEST[127:96] MAX(SRC1[127:96], SRC2[127:96])
DEST[VLMAX-1:128] 0

VMAXPS (VEX.256 encoded version)
DEST[31:0] MAX(SRC1[31:0], SRC2[31:0])
DEST[63:32] MAX(SRC1[63:32], SRC2[63:32])
DEST[95:64] MAX(SRC1[95:64], SRC2[95:64])
DEST[127:96] MAX(SRC1[127:96], SRC2[127:96])
DEST[159:128] MAX(SRC1[159:128], SRC2[159:128])
DEST[191:160] MAX(SRC1[191:160], SRC2[191:160])
DEST[223:192] MAX(SRC1[223:192], SRC2[223:192])
Vol. 2B 4-17MAXPS—Return Maximum Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
DEST[255:224] MAX(SRC1[255:224], SRC2[255:224])

Intel C/C++ Compiler Intrinsic Equivalent

MAXPS: __m128 _mm_max_ps (__m128 a, __m128 b);

VMAXPS: __m256 _mm256_max_ps (__m256 a, __m256 b);

SIMD Floating-Point Exceptions

Invalid (including QNaN source operand), Denormal.

Other Exceptions
See Exceptions Type 2.
4-18 Vol. 2B MAXPS—Return Maximum Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
MAXSD—Return Maximum Scalar Double-Precision Floating-Point
Value

Instruction Operand Encoding

Description

Compares the low double-precision floating-point values in the first source operand
and second the source operand, and returns the maximum value to the low quad-
word of the destination operand. The second source operand can be an XMM register
or a 64-bit memory location. The first source and destination operands are XMM
registers. When the second source operand is a memory operand, only 64 bits are
accessed. The high quadword of the destination operand is copied from the same bits
of first source operand.
If the values being compared are both 0.0s (of either sign), the value in the second
source operand is returned. If a value in the second source operand is an SNaN, that
SNaN is returned unchanged to the destination (that is, a QNaN version of the SNaN
is not returned).
If only one value is a NaN (SNaN or QNaN) for this instruction, the second source
operand, either a NaN or a valid floating-point value, is written to the result. If
instead of this behavior, it is required that the NaN of either source operand be
returned, the action of MAXSD can be emulated using a sequence of instructions,
such as, a comparison followed by AND, ANDN and OR.
The second source operand can be an XMM register or a 64-bit memory location. The
first source and destination operands are XMM registers.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

F2 0F 5F /r

MAXSD xmm1, xmm2/m64

RM V/V SSE2 Return the maximum scalar
double-precision floating-
point value between
xmm2/mem64 and xmm1.

VEX.NDS.LIG.F2.0F.WIG 5F /r

VMAXSD xmm1, xmm2, xmm3/m64

RVM V/V AVX Return the maximum scalar
double-precision floating-
point value between
xmm3/mem64 and xmm2.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-19MAXSD—Return Maximum Scalar Double-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, M-Z
128-bit Legacy SSE version: The destination and first source operand are the same.
Bits (VLMAX-1:64) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: Bits (127:64) of the XMM register destination are copied
from corresponding bits in the first source operand. Bits (VLMAX-1:128) of the desti-
nation YMM register are zeroed.

Operation

MAX(SRC1, SRC2)
{

IF ((SRC1 = 0.0) and (SRC2 = 0.0)) THEN DEST SRC2;
ELSE IF (SRC1 = SNaN) THEN DEST SRC2; FI;
ELSE IF SRC2 = SNaN) THEN DEST SRC2; FI;
ELSE IF (SRC1 > SRC2) THEN DEST SRC1;
ELSE DEST SRC2;

FI;
}

MAXSD (128-bit Legacy SSE version)
DEST[63:0] MAX(DEST[63:0], SRC[63:0])
DEST[VLMAX-1:64] (Unmodified)

VMAXSD (VEX.128 encoded version)
DEST[63:0] MAX(SRC1[63:0], SRC2[63:0])
DEST[127:64] SRC1[127:64]
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

MAXSD: __m128d _mm_max_sd(__m128d a, __m128d b)

SIMD Floating-Point Exceptions

Invalid (including QNaN source operand), Denormal.

Other Exceptions
See Exceptions Type 3.
4-20 Vol. 2B MAXSD—Return Maximum Scalar Double-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, M-Z
MAXSS—Return Maximum Scalar Single-Precision Floating-Point Value

Instruction Operand Encoding

Description

Compares the low single-precision floating-point values in the first source operand
and the second source operand, and returns the maximum value to the low double-
word of the destination operand.
If the values being compared are both 0.0s (of either sign), the value in the second
source operand is returned. If a value in the second source operand is an SNaN, that
SNaN is returned unchanged to the destination (that is, a QNaN version of the SNaN
is not returned).
If only one value is a NaN (SNaN or QNaN) for this instruction, the second source
operand, either a NaN or a valid floating-point value, is written to the result. If
instead of this behavior, it is required that the NaN from either source operand be
returned, the action of MAXSS can be emulated using a sequence of instructions,
such as, a comparison followed by AND, ANDN and OR.
The second source operand can be an XMM register or a 32-bit memory location. The
first source and destination operands are XMM registers.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
128-bit Legacy SSE version: The destination and first source operand are the same.
Bits (VLMAX-1:32) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: Bits (127:32) of the XMM register destination are copied
from corresponding bits in the first source operand. Bits (VLMAX-1:128) of the desti-
nation YMM register are zeroed.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

F3 0F 5F /r

MAXSS xmm1, xmm2/m32

RM V/V SSE Return the maximum scalar
single-precision floating-
point value between
xmm2/mem32 and xmm1.

VEX.NDS.LIG.F3.0F.WIG 5F /r

VMAXSS xmm1, xmm2, xmm3/m32

RVM V/V AVX Return the maximum scalar
single-precision floating-
point value between
xmm3/mem32 and xmm2.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-21MAXSS—Return Maximum Scalar Single-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, M-Z
Operation

MAX(SRC1, SRC2)
{

IF ((SRC1 = 0.0) and (SRC2 = 0.0)) THEN DEST SRC2;
ELSE IF (SRC1 = SNaN) THEN DEST SRC2; FI;
ELSE IF SRC2 = SNaN) THEN DEST SRC2; FI;
ELSE IF (SRC1 > SRC2) THEN DEST SRC1;
ELSE DEST SRC2;

FI;
}

MAXSS (128-bit Legacy SSE version)
DEST[31:0] MAX(DEST[31:0], SRC[31:0])
DEST[VLMAX-1:32] (Unmodified)

VMAXSS (VEX.128 encoded version)
DEST[31:0] MAX(SRC1[31:0], SRC2[31:0])
DEST[127:32] SRC1[127:32]
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

__m128d _mm_max_ss(__m128d a, __m128d b)

SIMD Floating-Point Exceptions

Invalid (including QNaN source operand), Denormal.

Other Exceptions
See Exceptions Type 3.
4-22 Vol. 2B MAXSS—Return Maximum Scalar Single-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, M-Z
MFENCE—Memory Fence

Instruction Operand Encoding

Description

Performs a serializing operation on all load-from-memory and store-to-memory
instructions that were issued prior the MFENCE instruction. This serializing operation
guarantees that every load and store instruction that precedes the MFENCE instruc-
tion in program order becomes globally visible before any load or store instruction
that follows the MFENCE instruction.1 The MFENCE instruction is ordered with respect
to all load and store instructions, other MFENCE instructions, any LFENCE and
SFENCE instructions, and any serializing instructions (such as the CPUID instruc-
tion). MFENCE does not serialize the instruction stream.

Weakly ordered memory types can be used to achieve higher processor performance
through such techniques as out-of-order issue, speculative reads, write-combining,
and write-collapsing. The degree to which a consumer of data recognizes or knows
that the data is weakly ordered varies among applications and may be unknown to
the producer of this data. The MFENCE instruction provides a performance-efficient
way of ensuring load and store ordering between routines that produce weakly-
ordered results and routines that consume that data.

Processors are free to fetch and cache data speculatively from regions of system
memory that use the WB, WC, and WT memory types. This speculative fetching can
occur at any time and is not tied to instruction execution. Thus, it is not ordered with
respect to executions of the MFENCE instruction; data can be brought into the caches
speculatively just before, during, or after the execution of an MFENCE instruction.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

Wait_On_Following_Loads_And_Stores_Until(preceding_loads_and_stores_globally_visible);

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F AE /6 MFENCE NP Valid Valid Serializes load and store
operations.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

1. A load instruction is considered to become globally visible when the value to be loaded into its
destination register is determined.
Vol. 2B 4-23MFENCE—Memory Fence

INSTRUCTION SET REFERENCE, M-Z
Intel C/C++ Compiler Intrinsic Equivalent

void _mm_mfence(void)

Exceptions (All Modes of Operation)
#UD If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.
4-24 Vol. 2B MFENCE—Memory Fence

INSTRUCTION SET REFERENCE, M-Z
MINPD—Return Minimum Packed Double-Precision Floating-Point
Values

Instruction Operand Encoding

Description

Performs an SIMD compare of the packed double-precision floating-point values in
the first source operand and the second source operand and returns the minimum
value for each pair of values to the destination operand.
If the values being compared are both 0.0s (of either sign), the value in the second
operand (source operand) is returned. If a value in the second operand is an SNaN,
that SNaN is forwarded unchanged to the destination (that is, a QNaN version of the
SNaN is not returned).
If only one value is a NaN (SNaN or QNaN) for this instruction, the second operand
(source operand), either a NaN or a valid floating-point value, is written to the result.
If instead of this behavior, it is required that the NaN source operand (from either the
first or second operand) be returned, the action of MINPD can be emulated using a
sequence of instructions, such as, a comparison followed by AND, ANDN and OR.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

66 0F 5D /r

MINPD xmm1, xmm2/m128

RM V/V SSE2 Return the minimum double-
precision floating-point
values between
xmm2/m128 and xmm1.

VEX.NDS.128.66.0F.WIG 5D /r

VMINPD xmm1,xmm2, xmm3/m128

RVM V/V AVX Return the minimum double-
precision floating-point
values between xmm2 and
xmm3/mem.

VEX.NDS.256.66.0F.WIG 5D /r

VMINPD ymm1, ymm2, ymm3/m256

RVM V/V AVX Return the minimum packed
double-precision floating-
point values between ymm2
and ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-25MINPD—Return Minimum Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.

Operation

MIN(SRC1, SRC2)
{

IF ((SRC1 = 0.0) and (SRC2 = 0.0)) THEN DEST SRC2;
ELSE IF (SRC1 = SNaN) THEN DEST SRC2; FI;
ELSE IF (SRC2 = SNaN) THEN DEST SRC2; FI;
ELSE IF (SRC1 < SRC2) THEN DEST SRC1;
ELSE DEST SRC2;

FI;
}

MINPD (128-bit Legacy SSE version)
DEST[63:0] MIN(SRC1[63:0], SRC2[63:0])
DEST[127:64] MIN(SRC1[127:64], SRC2[127:64])
DEST[VLMAX-1:128] (Unmodified)

VMINPD (VEX.128 encoded version)
DEST[63:0] MIN(SRC1[63:0], SRC2[63:0])
DEST[127:64] MIN(SRC1[127:64], SRC2[127:64])
DEST[VLMAX-1:128] 0

VMINPD (VEX.256 encoded version)
DEST[63:0] MIN(SRC1[63:0], SRC2[63:0])
DEST[127:64] MIN(SRC1[127:64], SRC2[127:64])
DEST[191:128] MIN(SRC1[191:128], SRC2[191:128])
DEST[255:192] MIN(SRC1[255:192], SRC2[255:192])

Intel C/C++ Compiler Intrinsic Equivalent

MINPD: __m128d _mm_min_pd(__m128d a, __m128d b);

VMINPD: __m256d _mm256_min_pd (__m256d a, __m256d b);

SIMD Floating-Point Exceptions

Invalid (including QNaN source operand), Denormal.
4-26 Vol. 2B MINPD—Return Minimum Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
Other Exceptions
See Exceptions Type 2.
Vol. 2B 4-27MINPD—Return Minimum Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
MINPS—Return Minimum Packed Single-Precision Floating-Point
Values

Instruction Operand Encoding

Description

Performs an SIMD compare of the packed single-precision floating-point values in the
first source operand and the second source operand and returns the minimum value
for each pair of values to the destination operand.
If the values being compared are both 0.0s (of either sign), the value in the second
operand (source operand) is returned. If a value in the second operand is an SNaN,
that SNaN is forwarded unchanged to the destination (that is, a QNaN version of the
SNaN is not returned).
If only one value is a NaN (SNaN or QNaN) for this instruction, the second operand
(source operand), either a NaN or a valid floating-point value, is written to the result.
If instead of this behavior, it is required that the NaN source operand (from either the
first or second operand) be returned, the action of MINPS can be emulated using a
sequence of instructions, such as, a comparison followed by AND, ANDN and OR.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

0F 5D /r

MINPS xmm1, xmm2/m128

RM V/V SSE Return the minimum single-
precision floating-point
values between
xmm2/m128 and xmm1.

VEX.NDS.128.0F.WIG 5D /r

VMINPS xmm1,xmm2, xmm3/m128

RVM V/V AVX Return the minimum single-
precision floating-point
values between xmm2 and
xmm3/mem.

VEX.NDS.256.0F.WIG 5D /r

VMINPS ymm1, ymm2, ymm3/m256

RVM V/V AVX Return the minimum single
double-precision floating-
point values between ymm2
and ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
4-28 Vol. 2B MINPS—Return Minimum Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

Operation

MIN(SRC1, SRC2)
{

IF ((SRC1 = 0.0) and (SRC2 = 0.0)) THEN DEST SRC2;
ELSE IF (SRC1 = SNaN) THEN DEST SRC2; FI;
ELSE IF (SRC2 = SNaN) THEN DEST SRC2; FI;
ELSE IF (SRC1 < SRC2) THEN DEST SRC1;
ELSE DEST SRC2;

FI;
}

MINPS (128-bit Legacy SSE version)
DEST[31:0] MIN(SRC1[31:0], SRC2[31:0])
DEST[63:32] MIN(SRC1[63:32], SRC2[63:32])
DEST[95:64] MIN(SRC1[95:64], SRC2[95:64])
DEST[127:96] MIN(SRC1[127:96], SRC2[127:96])
DEST[VLMAX-1:128] (Unmodified)

VMINPS (VEX.128 encoded version)
DEST[31:0] MIN(SRC1[31:0], SRC2[31:0])
DEST[63:32] MIN(SRC1[63:32], SRC2[63:32])
DEST[95:64] MIN(SRC1[95:64], SRC2[95:64])
DEST[127:96] MIN(SRC1[127:96], SRC2[127:96])
DEST[VLMAX-1:128] 0

VMINPS (VEX.256 encoded version)
DEST[31:0] MIN(SRC1[31:0], SRC2[31:0])
DEST[63:32] MIN(SRC1[63:32], SRC2[63:32])
DEST[95:64] MIN(SRC1[95:64], SRC2[95:64])
DEST[127:96] MIN(SRC1[127:96], SRC2[127:96])
DEST[159:128] MIN(SRC1[159:128], SRC2[159:128])
DEST[191:160] MIN(SRC1[191:160], SRC2[191:160])
DEST[223:192] MIN(SRC1[223:192], SRC2[223:192])
Vol. 2B 4-29MINPS—Return Minimum Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
DEST[255:224] MIN(SRC1[255:224], SRC2[255:224])

Intel C/C++ Compiler Intrinsic Equivalent

MINPS: __m128d _mm_min_ps(__m128d a, __m128d b);

VMINPS: __m256 _mm256_min_ps (__m256 a, __m256 b);

SIMD Floating-Point Exceptions

Invalid (including QNaN source operand), Denormal.

Other Exceptions
See Exceptions Type 2.
4-30 Vol. 2B MINPS—Return Minimum Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
MINSD—Return Minimum Scalar Double-Precision Floating-Point Value

Instruction Operand Encoding

Description

Compares the low double-precision floating-point values in the first source operand
and the second source operand, and returns the minimum value to the low quadword
of the destination operand. When the source operand is a memory operand, only the
64 bits are accessed. The high quadword of the destination operand is copied from
the same bits in the first source operand.
If the values being compared are both 0.0s (of either sign), the value in the second
source operand is returned. If a value in the second source operand is an SNaN, that
SNaN is returned unchanged to the destination (that is, a QNaN version of the SNaN
is not returned).
If only one value is a NaN (SNaN or QNaN) for this instruction, the second source
operand, either a NaN or a valid floating-point value, is written to the result. If
instead of this behavior, it is required that the NaN source operand (from either the
first or second source) be returned, the action of MINSD can be emulated using a
sequence of instructions, such as, a comparison followed by AND, ANDN and OR.
The second source operand can be an XMM register or a 64-bit memory location. The
first source and destination operands are XMM registers.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
128-bit Legacy SSE version: The destination and first source operand are the same.
Bits (VLMAX-1:64) of the corresponding YMM destination register remain unchanged.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

F2 0F 5D /r

MINSD xmm1, xmm2/m64

RM V/V SSE2 Return the minimum scalar
double-precision floating-
point value between
xmm2/mem64 and xmm1.

VEX.NDS.LIG.F2.0F.WIG 5D /r

VMINSD xmm1, xmm2, xmm3/m64

RVM V/V AVX Return the minimum scalar
double precision floating-
point value between
xmm3/mem64 and xmm2.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-31MINSD—Return Minimum Scalar Double-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, M-Z
VEX.128 encoded version: Bits (127:64) of the XMM register destination are copied
from corresponding bits in the first source operand. Bits (VLMAX-1:128) of the desti-
nation YMM register are zeroed.

Operation

MIN(SRC1, SRC2)
{

IF ((SRC1 = 0.0) and (SRC2 = 0.0)) THEN DEST SRC2;
ELSE IF (SRC1 = SNaN) THEN DEST SRC2; FI;
ELSE IF SRC2 = SNaN) THEN DEST SRC2; FI;
ELSE IF (SRC1 < SRC2) THEN DEST SRC1;
ELSE DEST SRC2;

FI;
}

MINSD (128-bit Legacy SSE version)
DEST[63:0] MIN(SRC1[63:0], SRC2[63:0])
DEST[VLMAX-1:64] (Unmodified)

MINSD (VEX.128 encoded version)
DEST[63:0] MIN(SRC1[63:0], SRC2[63:0])
DEST[127:64] SRC1[127:64]
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

MINSD: __m128d _mm_min_sd(__m128d a, __m128d b)

SIMD Floating-Point Exceptions

Invalid (including QNaN source operand), Denormal.

Other Exceptions
See Exceptions Type 3.
4-32 Vol. 2B MINSD—Return Minimum Scalar Double-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, M-Z
MINSS—Return Minimum Scalar Single-Precision Floating-Point Value

Instruction Operand Encoding

Description

Compares the low single-precision floating-point values in the first source operand
and the second source operand and returns the minimum value to the low double-
word of the destination operand.
If the values being compared are both 0.0s (of either sign), the value in the second
source operand is returned. If a value in the second operand is an SNaN, that SNaN
is returned unchanged to the destination (that is, a QNaN version of the SNaN is not
returned).
If only one value is a NaN (SNaN or QNaN) for this instruction, the second source
operand, either a NaN or a valid floating-point value, is written to the result. If
instead of this behavior, it is required that the NaN in either source operand be
returned, the action of MINSD can be emulated using a sequence of instructions,
such as, a comparison followed by AND, ANDN and OR.
The second source operand can be an XMM register or a 32-bit memory location. The
first source and destination operands are XMM registers.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
128-bit Legacy SSE version: The destination and first source operand are the same.
Bits (VLMAX-1:32) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: Bits (127:32) of the XMM register destination are copied
from corresponding bits in the first source operand. Bits (VLMAX-1:128) of the desti-
nation YMM register are zeroed.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

F3 0F 5D /r

MINSS xmm1, xmm2/m32

RM V/V SSE Return the minimum scalar
single-precision floating-
point value between
xmm2/mem32 and xmm1.

VEX.NDS.LIG.F3.0F.WIG 5D /r

VMINSS xmm1,xmm2, xmm3/m32

RVM V/V AVX Return the minimum scalar
single precision floating-
point value between
xmm3/mem32 and xmm2.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-33MINSS—Return Minimum Scalar Single-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, M-Z
Operation

MIN(SRC1, SRC2)
{

IF ((SRC1 = 0.0) and (SRC2 = 0.0)) THEN DEST SRC2;
ELSE IF (SRC1 = SNaN) THEN DEST SRC2; FI;
ELSE IF SRC2 = SNaN) THEN DEST SRC2; FI;
ELSE IF (SRC1 < SRC2) THEN DEST SRC1;
ELSE DEST SRC2;

FI;
}

MINSS (128-bit Legacy SSE version)
DEST[31:0] MIN(SRC1[31:0], SRC2[31:0])
DEST[VLMAX-1:32] (Unmodified)

VMINSS (VEX.128 encoded version)
DEST[31:0] MIN(SRC1[31:0], SRC2[31:0])
DEST[127:32] SRC1[127:32]
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

MINSS: __m128d _mm_min_ss(__m128d a, __m128d b)

SIMD Floating-Point Exceptions

Invalid (including QNaN source operand), Denormal.

Other Exceptions
See Exceptions Type 3.
4-34 Vol. 2B MINSS—Return Minimum Scalar Single-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, M-Z
MONITOR—Set Up Monitor Address

Instruction Operand Encoding

Description

The MONITOR instruction arms address monitoring hardware using an address spec-
ified in EAX (the address range that the monitoring hardware checks for store opera-
tions can be determined by using CPUID). A store to an address within the specified
address range triggers the monitoring hardware. The state of monitor hardware is
used by MWAIT.

The content of EAX is an effective address (in 64-bit mode, RAX is used). By default,
the DS segment is used to create a linear address that is monitored. Segment over-
rides can be used.

ECX and EDX are also used. They communicate other information to MONITOR. ECX
specifies optional extensions. EDX specifies optional hints; it does not change the
architectural behavior of the instruction. For the Pentium 4 processor (family 15,
model 3), no extensions or hints are defined. Undefined hints in EDX are ignored by
the processor; undefined extensions in ECX raises a general protection fault.

The address range must use memory of the write-back type. Only write-back
memory will correctly trigger the monitoring hardware. Additional information on
determining what address range to use in order to prevent false wake-ups is
described in Chapter 8, “Multiple-Processor Management” of the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

The MONITOR instruction is ordered as a load operation with respect to other
memory transactions. The instruction is subject to the permission checking and faults
associated with a byte load. Like a load, MONITOR sets the A-bit but not the D-bit in
page tables.

CPUID.01H:ECX.MONITOR[bit 3] indicates the availability of MONITOR and MWAIT in
the processor. When set, MONITOR may be executed only at privilege level 0 (use at

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 01 C8 MONITOR NP Valid Valid Sets up a linear address
range to be monitored by
hardware and activates the
monitor. The address range
should be a write-back
memory caching type. The
address is DS:EAX (DS:RAX
in 64-bit mode).

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
Vol. 2B 4-35MONITOR—Set Up Monitor Address

INSTRUCTION SET REFERENCE, M-Z
any other privilege level results in an invalid-opcode exception). The operating
system or system BIOS may disable this instruction by using the
IA32_MISC_ENABLE MSR; disabling MONITOR clears the CPUID feature flag and
causes execution to generate an invalid-opcode exception.

The instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

MONITOR sets up an address range for the monitor hardware using the content of
EAX (RAX in 64-bit mode) as an effective address and puts the monitor hardware in
armed state. Always use memory of the write-back caching type. A store to the spec-
ified address range will trigger the monitor hardware. The content of ECX and EDX
are used to communicate other information to the monitor hardware.

Intel C/C++ Compiler Intrinsic Equivalent

MONITOR: void _mm_monitor(void const *p, unsigned extensions,unsigned hints)

Numeric Exceptions

None

Protected Mode Exceptions
#GP(0) If the value in EAX is outside the CS, DS, ES, FS, or GS segment

limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.
If ECX ≠ 0.

#SS(0) If the value in EAX is outside the SS segment limit.
#PF(fault-code) For a page fault.
#UD If CPUID.01H:ECX.MONITOR[bit 3] = 0.

If current privilege level is not 0.

Real Address Mode Exceptions
#GP If the CS, DS, ES, FS, or GS register is used to access memory

and the value in EAX is outside of the effective address space
from 0 to FFFFH.
If ECX ≠ 0.

#SS If the SS register is used to access memory and the value in EAX
is outside of the effective address space from 0 to FFFFH.

#UD If CPUID.01H:ECX.MONITOR[bit 3] = 0.
4-36 Vol. 2B MONITOR—Set Up Monitor Address

INSTRUCTION SET REFERENCE, M-Z
Virtual 8086 Mode Exceptions
#UD The MONITOR instruction is not recognized in virtual-8086 mode

(even if CPUID.01H:ECX.MONITOR[bit 3] = 1).

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the linear address of the operand in the CS, DS, ES, FS, or GS

segment is in a non-canonical form.
If RCX ≠ 0.

#SS(0) If the SS register is used to access memory and the value in EAX
is in a non-canonical form.

#PF(fault-code) For a page fault.
#UD If the current privilege level is not 0.

If CPUID.01H:ECX.MONITOR[bit 3] = 0.
Vol. 2B 4-37MONITOR—Set Up Monitor Address

INSTRUCTION SET REFERENCE, M-Z
MOV—Move
Opcode Instruction Op/

En
64-Bit
Mode

Compat/
Leg Mode

Description

88 /r MOV r/m8,r8 MR Valid Valid Move r8 to r/m8.

REX + 88 /r MOV r/m8***,r8*** MR Valid N.E. Move r8 to r/m8.

89 /r MOV r/m16,r16 MR Valid Valid Move r16 to r/m16.

89 /r MOV r/m32,r32 MR Valid Valid Move r32 to r/m32.

REX.W + 89 /r MOV r/m64,r64 MR Valid N.E. Move r64 to r/m64.

8A /r MOV r8,r/m8 RM Valid Valid Move r/m8 to r8.

REX + 8A /r MOV
r8***,r/m8***

RM Valid N.E. Move r/m8 to r8.

8B /r MOV r16,r/m16 RM Valid Valid Move r/m16 to r16.

8B /r MOV r32,r/m32 RM Valid Valid Move r/m32 to r32.

REX.W + 8B /r MOV r64,r/m64 RM Valid N.E. Move r/m64 to r64.

8C /r MOV r/m16,Sreg** MR Valid Valid Move segment register to
r/m16.

REX.W + 8C /r MOV r/m64,Sreg** MR Valid Valid Move zero extended 16-bit
segment register to r/m64.

8E /r MOV Sreg,r/m16** RM Valid Valid Move r/m16 to segment
register.

REX.W + 8E /r MOV Sreg,r/m64** RM Valid Valid Move lower 16 bits of
r/m64 to segment register.

A0 MOV AL,moffs8* FD Valid Valid Move byte at (seg:offset) to
AL.

REX.W + A0 MOV AL,moffs8* FD Valid N.E. Move byte at (offset) to AL.

A1 MOV AX,moffs16* FD Valid Valid Move word at (seg:offset) to
AX.

A1 MOV
EAX,moffs32*

FD Valid Valid Move doubleword at
(seg:offset) to EAX.

REX.W + A1 MOV
RAX,moffs64*

FD Valid N.E. Move quadword at (offset)
to RAX.

A2 MOV moffs8,AL TD Valid Valid Move AL to (seg:offset).

REX.W + A2 MOV moffs8***,AL TD Valid N.E. Move AL to (offset).

A3 MOV moffs16*,AX TD Valid Valid Move AX to (seg:offset).

A3 MOV
moffs32*,EAX

TD Valid Valid Move EAX to (seg:offset).
4-38 Vol. 2B MOV—Move

INSTRUCTION SET REFERENCE, M-Z
Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

REX.W + A3 MOV
moffs64*,RAX

TD Valid N.E. Move RAX to (offset).

B0+ rb MOV r8, imm8 OI Valid Valid Move imm8 to r8.

REX + B0+ rb MOV r8***, imm8 OI Valid N.E. Move imm8 to r8.

B8+ rw MOV r16, imm16 OI Valid Valid Move imm16 to r16.

B8+ rd MOV r32, imm32 OI Valid Valid Move imm32 to r32.

REX.W + B8+ rd MOV r64, imm64 OI Valid N.E. Move imm64 to r64.

C6 /0 MOV r/m8, imm8 MI Valid Valid Move imm8 to r/m8.

REX + C6 /0 MOV r/m8***,
imm8

MI Valid N.E. Move imm8 to r/m8.

C7 /0 MOV r/m16,
imm16

MI Valid Valid Move imm16 to r/m16.

C7 /0 MOV r/m32,
imm32

MI Valid Valid Move imm32 to r/m32.

REX.W + C7 /0 MOV r/m64,
imm32

MI Valid N.E. Move imm32 sign extended
to 64-bits to r/m64.

NOTES:
* The moffs8, moffs16, moffs32 and moffs64 operands specify a simple offset relative to the

segment base, where 8, 16, 32 and 64 refer to the size of the data. The address-size attribute
of the instruction determines the size of the offset, either 16, 32 or 64 bits.

** In 32-bit mode, the assembler may insert the 16-bit operand-size prefix with this instruction
(see the following “Description” section for further information).

***In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix
is used: AH, BH, CH, DH.
Vol. 2B 4-39MOV—Move

INSTRUCTION SET REFERENCE, M-Z
Instruction Operand Encoding

Description

Copies the second operand (source operand) to the first operand (destination
operand). The source operand can be an immediate value, general-purpose register,
segment register, or memory location; the destination register can be a general-
purpose register, segment register, or memory location. Both operands must be the
same size, which can be a byte, a word, a doubleword, or a quadword.

The MOV instruction cannot be used to load the CS register. Attempting to do so
results in an invalid opcode exception (#UD). To load the CS register, use the far JMP,
CALL, or RET instruction.

If the destination operand is a segment register (DS, ES, FS, GS, or SS), the source
operand must be a valid segment selector. In protected mode, moving a segment
selector into a segment register automatically causes the segment descriptor infor-
mation associated with that segment selector to be loaded into the hidden (shadow)
part of the segment register. While loading this information, the segment selector
and segment descriptor information is validated (see the “Operation” algorithm
below). The segment descriptor data is obtained from the GDT or LDT entry for the
specified segment selector.

A NULL segment selector (values 0000-0003) can be loaded into the DS, ES, FS, and
GS registers without causing a protection exception. However, any subsequent
attempt to reference a segment whose corresponding segment register is loaded
with a NULL value causes a general protection exception (#GP) and no memory
reference occurs.

Loading the SS register with a MOV instruction inhibits all interrupts until after the
execution of the next instruction. This operation allows a stack pointer to be loaded
into the ESP register with the next instruction (MOV ESP, stack-pointer value)
before an interrupt occurs1. Be aware that the LSS instruction offers a more efficient
method of loading the SS and ESP registers.

When operating in 32-bit mode and moving data between a segment register and a
general-purpose register, the 32-bit IA-32 processors do not require the use of the
16-bit operand-size prefix (a byte with the value 66H) with this instruction, but most
assemblers will insert it if the standard form of the instruction is used (for example,
MOV DS, AX). The processor will execute this instruction correctly, but it will usually

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (w) ModRM:reg (r) NA NA

RM ModRM:reg (w) ModRM:r/m (r) NA NA

FD AL/AX/EAX/RAX Moffs NA NA

TD Moffs (w) AL/AX/EAX/RAX NA NA

OI opcode + rd (w) imm8/16/32/64 NA NA

MI ModRM:r/m (w) imm8/16/32/64 NA NA
4-40 Vol. 2B MOV—Move

INSTRUCTION SET REFERENCE, M-Z
require an extra clock. With most assemblers, using the instruction form MOV DS,
EAX will avoid this unneeded 66H prefix. When the processor executes the instruc-
tion with a 32-bit general-purpose register, it assumes that the 16 least-significant
bits of the general-purpose register are the destination or source operand. If the
register is a destination operand, the resulting value in the two high-order bytes of
the register is implementation dependent. For the Pentium 4, Intel Xeon, and P6
family processors, the two high-order bytes are filled with zeros; for earlier 32-bit
IA-32 processors, the two high order bytes are undefined.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R
prefix permits access to additional registers (R8-R15). Use of the REX.W prefix
promotes operation to 64 bits. See the summary chart at the beginning of this
section for encoding data and limits.

Operation

DEST ← SRC;

Loading a segment register while in protected mode results in special checks and
actions, as described in the following listing. These checks are performed on the
segment selector and the segment descriptor to which it points.

IF SS is loaded
THEN

IF segment selector is NULL
THEN #GP(0); FI;

IF segment selector index is outside descriptor table limits
or segment selector's RPL ≠ CPL
or segment is not a writable data segment
or DPL ≠ CPL

THEN #GP(selector); FI;
IF segment not marked present

THEN #SS(selector);
ELSE

SS ← segment selector;
SS ← segment descriptor; FI;

1. If a code instruction breakpoint (for debug) is placed on an instruction located immediately after
a MOV SS instruction, the breakpoint may not be triggered. However, in a sequence of instruc-
tions that load the SS register, only the first instruction in the sequence is guaranteed to delay
an interrupt.

In the following sequence, interrupts may be recognized before MOV ESP, EBP executes:

MOV SS, EDX
MOV SS, EAX
MOV ESP, EBP
Vol. 2B 4-41MOV—Move

INSTRUCTION SET REFERENCE, M-Z
FI;

IF DS, ES, FS, or GS is loaded with non-NULL selector
THEN

IF segment selector index is outside descriptor table limits
or segment is not a data or readable code segment
or ((segment is a data or nonconforming code segment)
and (both RPL and CPL > DPL))

THEN #GP(selector); FI;
IF segment not marked present

THEN #NP(selector);
ELSE

SegmentRegister ← segment selector;
SegmentRegister ← segment descriptor; FI;

FI;

IF DS, ES, FS, or GS is loaded with NULL selector
THEN

SegmentRegister ← segment selector;
SegmentRegister ← segment descriptor;

FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If attempt is made to load SS register with NULL segment

selector.
If the destination operand is in a non-writable segment.
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.

#GP(selector) If segment selector index is outside descriptor table limits.
If the SS register is being loaded and the segment selector's RPL
and the segment descriptor’s DPL are not equal to the CPL.
If the SS register is being loaded and the segment pointed to is a
non-writable data segment.
If the DS, ES, FS, or GS register is being loaded and the
segment pointed to is not a data or readable code segment.
If the DS, ES, FS, or GS register is being loaded and the
segment pointed to is a data or nonconforming code segment,
but both the RPL and the CPL are greater than the DPL.
4-42 Vol. 2B MOV—Move

INSTRUCTION SET REFERENCE, M-Z
#SS(0) If a memory operand effective address is outside the SS
segment limit.

#SS(selector) If the SS register is being loaded and the segment pointed to is
marked not present.

#NP If the DS, ES, FS, or GS register is being loaded and the
segment pointed to is marked not present.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If attempt is made to load the CS register.

If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#UD If attempt is made to load the CS register.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If attempt is made to load the CS register.

If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If an attempt is made to load SS register with NULL segment
selector when CPL = 3.
If an attempt is made to load SS register with NULL segment
selector when CPL < 3 and CPL ≠ RPL.
Vol. 2B 4-43MOV—Move

INSTRUCTION SET REFERENCE, M-Z
#GP(selector) If segment selector index is outside descriptor table limits.
If the memory access to the descriptor table is non-canonical.
If the SS register is being loaded and the segment selector's RPL
and the segment descriptor’s DPL are not equal to the CPL.
If the SS register is being loaded and the segment pointed to is
a nonwritable data segment.
If the DS, ES, FS, or GS register is being loaded and the
segment pointed to is not a data or readable code segment.
If the DS, ES, FS, or GS register is being loaded and the
segment pointed to is a data or nonconforming code segment,
but both the RPL and the CPL are greater than the DPL.

#SS(0) If the stack address is in a non-canonical form.
#SS(selector) If the SS register is being loaded and the segment pointed to is

marked not present.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If attempt is made to load the CS register.

If the LOCK prefix is used.
4-44 Vol. 2B MOV—Move

INSTRUCTION SET REFERENCE, M-Z
MOV—Move to/from Control Registers

Instruction Operand Encoding

Description

Moves the contents of a control register (CR0, CR2, CR3, CR4, or CR8) to a general-
purpose register or the contents of a general purpose register to a control register.
The operand size for these instructions is always 32 bits in non-64-bit modes,
regardless of the operand-size attribute. (See “Control Registers” in Chapter 2 of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for a
detailed description of the flags and fields in the control registers.) This instruction
can be executed only when the current privilege level is 0.

At the opcode level, the reg field within the ModR/M byte specifies which of the
control registers is loaded or read. The 2 bits in the mod field are ignored. The r/m
field specifies the general-purpose register loaded or read. Attempts to reference
CR1, CR5, CR6, CR7, and CR9–CR15 result in undefined opcode (#UD) exceptions.

Opcode/
Instruction

Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 20/r

MOV r32, CR0–CR7

MR N.E. Valid Move control register to
r32.

0F 20/r

MOV r64, CR0–CR7

MR Valid N.E. Move extended control
register to r64.

REX.R + 0F 20 /0

MOV r64, CR8

MR Valid N.E. Move extended CR8 to
r64.1

0F 22 /r

MOV CR0–CR7, r32

RM N.E. Valid Move r32 to control
register.

0F 22 /r

MOV CR0–CR7, r64

RM Valid N.E. Move r64 to extended
control register.

REX.R + 0F 22 /0

MOV CR8, r64

RM Valid N.E. Move r64 to extended
CR8.1

NOTE:

1. MOV CR* instructions, except for MOV CR8, are serializing instructions. MOV CR8 is not
architecturally defined as a serializing instruction. For more information, see Chapter 8 in Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (w) ModRM:reg (r) NA NA

RM ModRM:reg (w) ModRM:r/m (r) NA NA
Vol. 2B 4-45MOV—Move to/from Control Registers

INSTRUCTION SET REFERENCE, M-Z
When loading control registers, programs should not attempt to change the reserved
bits; that is, always set reserved bits to the value previously read. An attempt to
change CR4's reserved bits will cause a general protection fault. Reserved bits in CR0
and CR3 remain clear after any load of those registers; attempts to set them have no
impact. On Pentium 4, Intel Xeon and P6 family processors, CR0.ET remains set after
any load of CR0; attempts to clear this bit have no impact.

In certain cases, these instructions have the side effect of invalidating entries in the
TLBs and the paging-structure caches. See Section 4.10.4.1, “Operations that Inval-
idate TLBs and Paging-Structure Caches,” in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3A for details.

The following side effects are implementation-specific for the Pentium 4, Intel Xeon,
and P6 processor family: when modifying PE or PG in register CR0, or PSE or PAE in
register CR4, all TLB entries are flushed, including global entries. Software should not
depend on this functionality in all Intel 64 or IA-32 processors.

In 64-bit mode, the instruction’s default operation size is 64 bits. The REX.R prefix
must be used to access CR8. Use of REX.B permits access to additional registers (R8-
R15). Use of the REX.W prefix or 66H prefix is ignored. Use of the REX.R prefix to
specify a register other than CR8 causes an invalid-opcode exception. See the
summary chart at the beginning of this section for encoding data and limits.

If CR4.PCIDE = 1, bit 63 of the source operand to MOV to CR3 determines whether
the instruction invalidates entries in the TLBs and the paging-structure caches (see
Section 4.10.4.1, “Operations that Invalidate TLBs and Paging-Structure Caches,” in
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A).
The instruction does not modify bit 63 of CR3, which is reserved and always 0.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 25 of
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C, for
more information about the behavior of this instruction in VMX non-root operation.

Operation

DEST ← SRC;

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are undefined.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If an attempt is made to write invalid bit combinations in CR0
(such as setting the PG flag to 1 when the PE flag is set to 0, or
setting the CD flag to 0 when the NW flag is set to 1).
If an attempt is made to write a 1 to any reserved bit in CR4.
If an attempt is made to write 1 to CR4.PCIDE.
4-46 Vol. 2B MOV—Move to/from Control Registers

INSTRUCTION SET REFERENCE, M-Z
If any of the reserved bits are set in the page-directory pointers
table (PDPT) and the loading of a control register causes the
PDPT to be loaded into the processor.

#UD If the LOCK prefix is used.
If an attempt is made to access CR1, CR5, CR6, or CR7.

Real-Address Mode Exceptions
#GP If an attempt is made to write a 1 to any reserved bit in CR4.

If an attempt is made to write 1 to CR4.PCIDE.
If an attempt is made to write invalid bit combinations in CR0
(such as setting the PG flag to 1 when the PE flag is set to 0).

#UD If the LOCK prefix is used.
If an attempt is made to access CR1, CR5, CR6, or CR7.

Virtual-8086 Mode Exceptions
#GP(0) These instructions cannot be executed in virtual-8086 mode.

Compatibility Mode Exceptions
#GP(0) If the current privilege level is not 0.

If an attempt is made to write invalid bit combinations in CR0
(such as setting the PG flag to 1 when the PE flag is set to 0, or
setting the CD flag to 0 when the NW flag is set to 1).
If an attempt is made to change CR4.PCIDE from 0 to 1 while
CR3[11:0] ≠ 000H.
If an attempt is made to clear CR0.PG[bit 31] while
CR4.PCIDE = 1.
If an attempt is made to write a 1 to any reserved bit in CR3.
If an attempt is made to leave IA-32e mode by clearing
CR4.PAE[bit 5].

#UD If the LOCK prefix is used.
If an attempt is made to access CR1, CR5, CR6, or CR7.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If an attempt is made to write invalid bit combinations in CR0
(such as setting the PG flag to 1 when the PE flag is set to 0, or
setting the CD flag to 0 when the NW flag is set to 1).
If an attempt is made to change CR4.PCIDE from 0 to 1 while
CR3[11:0] ≠ 000H.
If an attempt is made to clear CR0.PG[bit 31].
Vol. 2B 4-47MOV—Move to/from Control Registers

INSTRUCTION SET REFERENCE, M-Z
If an attempt is made to write a 1 to any reserved bit in CR4.
If an attempt is made to write a 1 to any reserved bit in CR8.
If an attempt is made to write a 1 to any reserved bit in CR3.
If an attempt is made to leave IA-32e mode by clearing
CR4.PAE[bit 5].

#UD If the LOCK prefix is used.
If an attempt is made to access CR1, CR5, CR6, or CR7.
If the REX.R prefix is used to specify a register other than CR8.
4-48 Vol. 2B MOV—Move to/from Control Registers

INSTRUCTION SET REFERENCE, M-Z
MOV—Move to/from Debug Registers

Instruction Operand Encoding

Description

Moves the contents of a debug register (DR0, DR1, DR2, DR3, DR4, DR5, DR6, or
DR7) to a general-purpose register or vice versa. The operand size for these instruc-
tions is always 32 bits in non-64-bit modes, regardless of the operand-size attribute.
(See Section 17.2, “Debug Registers”, of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3A, for a detailed description of the flags and fields
in the debug registers.)

The instructions must be executed at privilege level 0 or in real-address mode.

When the debug extension (DE) flag in register CR4 is clear, these instructions
operate on debug registers in a manner that is compatible with Intel386 and Intel486
processors. In this mode, references to DR4 and DR5 refer to DR6 and DR7, respec-
tively. When the DE flag in CR4 is set, attempts to reference DR4 and DR5 result in
an undefined opcode (#UD) exception. (The CR4 register was added to the IA-32
Architecture beginning with the Pentium processor.)

At the opcode level, the reg field within the ModR/M byte specifies which of the debug
registers is loaded or read. The two bits in the mod field are ignored. The r/m field
specifies the general-purpose register loaded or read.

In 64-bit mode, the instruction’s default operation size is 64 bits. Use of the REX.B
prefix permits access to additional registers (R8–R15). Use of the REX.W or 66H
prefix is ignored. Use of the REX.R prefix causes an invalid-opcode exception. See
the summary chart at the beginning of this section for encoding data and limits.

Opcode/
Instruction

Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 21/r

MOV r32, DR0–DR7

MR N.E. Valid Move debug register to r32.

0F 21/r

MOV r64, DR0–DR7

MR Valid N.E. Move extended debug
register to r64.

0F 23 /r

MOV DR0–DR7, r32

RM N.E. Valid Move r32 to debug register.

0F 23 /r

MOV DR0–DR7, r64

RM Valid N.E. Move r64 to extended
debug register.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (w) ModRM:reg (r) NA NA

RM ModRM:reg (w) ModRM:r/m (r) NA NA
Vol. 2B 4-49MOV—Move to/from Debug Registers

INSTRUCTION SET REFERENCE, M-Z
Operation

IF ((DE = 1) and (SRC or DEST = DR4 or DR5))
THEN

#UD;
ELSE

DEST ← SRC;

FI;

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are undefined.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.
#UD If CR4.DE[bit 3] = 1 (debug extensions) and a MOV instruction

is executed involving DR4 or DR5.
If the LOCK prefix is used.

#DB If any debug register is accessed while the DR7.GD[bit 13] = 1.

Real-Address Mode Exceptions
#UD If CR4.DE[bit 3] = 1 (debug extensions) and a MOV instruction

is executed involving DR4 or DR5.
If the LOCK prefix is used.

#DB If any debug register is accessed while the DR7.GD[bit 13] = 1.

Virtual-8086 Mode Exceptions
#GP(0) The debug registers cannot be loaded or read when in virtual-

8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If an attempt is made to write a 1 to any of bits 63:32 in DR6.
If an attempt is made to write a 1 to any of bits 63:32 in DR7.

#UD If CR4.DE[bit 3] = 1 (debug extensions) and a MOV instruction
is executed involving DR4 or DR5.
If the LOCK prefix is used.
If the REX.R prefix is used.
4-50 Vol. 2B MOV—Move to/from Debug Registers

INSTRUCTION SET REFERENCE, M-Z
#DB If any debug register is accessed while the DR7.GD[bit 13] = 1.
Vol. 2B 4-51MOV—Move to/from Debug Registers

INSTRUCTION SET REFERENCE, M-Z
MOVAPD—Move Aligned Packed Double-Precision Floating-Point
Values

Instruction Operand Encoding

Description

Moves 2 or 4 double-precision floating-point values from the source operand (second
operand) to the destination operand (first operand). This instruction can be used to
load an XMM or YMM register from an 128-bit or 256-bit memory location, to store
the contents of an XMM or YMM register into a 128-bit or 256-bit memory location, or
to move data between two XMM or two YMM registers. When the source or destina-

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

66 0F 28 /r

MOVAPD xmm1, xmm2/m128

RM V/V SSE2 Move packed double-
precision floating-point
values from xmm2/m128 to
xmm1.

66 0F 29 /r

MOVAPD xmm2/m128, xmm1

MR V/V SSE2 Move packed double-
precision floating-point
values from xmm1 to
xmm2/m128.

VEX.128.66.0F.WIG 28 /r

VMOVAPD xmm1, xmm2/m128

RM V/V AVX Move aligned packed
double-precision floating-
point values from
xmm2/mem to xmm1.

VEX.128.66.0F.WIG 29 /r

VMOVAPD xmm2/m128, xmm1

MR V/V AVX Move aligned packed
double-precision floating-
point values from xmm1 to
xmm2/mem.

VEX.256.66.0F.WIG 28 /r

VMOVAPD ymm1, ymm2/m256

RM V/V AVX Move aligned packed
double-precision floating-
point values from
ymm2/mem to ymm1.

VEX.256.66.0F.WIG 29 /r

VMOVAPD ymm2/m256, ymm1

MR V/V AVX Move aligned packed
double-precision floating-
point values from ymm1 to
ymm2/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA
4-52 Vol. 2B MOVAPD—Move Aligned Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
tion operand is a memory operand, the operand must be aligned on a 16-byte (128-
bit version) or 32-byte (VEX.256 encoded version) boundary or a general-protection
exception (#GP) will be generated.

To move double-precision floating-point values to and from unaligned memory loca-
tions, use the (V)MOVUPD instruction.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise
instructions will #UD.
128-bit versions:
Moves 128 bits of packed double-precision floating-point values from the source
operand (second operand) to the destination operand (first operand). This instruction
can be used to load an XMM register from a 128-bit memory location, to store the
contents of an XMM register into a 128-bit memory location, or to move data
between two XMM registers. When the source or destination operand is a memory
operand, the operand must be aligned on a 16-byte boundary or a general-protection
exception (#GP) will be generated. To move single-precision floating-point values to
and from unaligned memory locations, use the VMOVUPD instruction.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register desti-
nation are zeroed.
VEX.256 encoded version:
Moves 256 bits of packed double-precision floating-point values from the source
operand (second operand) to the destination operand (first operand). This instruction
can be used to load a YMM register from a 256-bit memory location, to store the
contents of a YMM register into a 256-bit memory location, or to move data between
two YMM registers. When the source or destination operand is a memory operand,
the operand must be aligned on a 32-byte boundary or a general-protection excep-
tion (#GP) will be generated. To move single-precision floating-point values to and
from unaligned memory locations, use the VMOVUPD instruction.

Operation

MOVAPD (128-bit load- and register-copy- form Legacy SSE version)
DEST[127:0] SRC[127:0]
DEST[VLMAX-1:128] (Unmodified)

(V)MOVAPD (128-bit store-form version)
DEST[127:0] SRC[127:0]

VMOVAPD (VEX.128 encoded version)
DEST[127:0] SRC[127:0]
Vol. 2B 4-53MOVAPD—Move Aligned Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
DEST[VLMAX-1:128] 0

VMOVAPD (VEX.256 encoded version)
DEST[255:0] SRC[255:0]

Intel C/C++ Compiler Intrinsic Equivalent

MOVAPD: __m128d _mm_load_pd (double const * p);

MOVAPD: _mm_store_pd(double * p, __m128d a);

VMOVAPD: __m256d _mm256_load_pd (double const * p);

VMOVAPD: _mm256_store_pd(double * p, __m256d a);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 1.SSE2; additionally
#UD If VEX.vvvv != 1111B.
4-54 Vol. 2B MOVAPD—Move Aligned Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
MOVAPS—Move Aligned Packed Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

Moves 4 or8 single-precision floating-point values from the source operand (second
operand) to the destination operand (first operand). This instruction can be used to
load an XMM or YMM register from an 128-bit or 256-bit memory location, to store
the contents of an XMM or YMM register into a 128-bit or 256-bit memory location, or
to move data between two XMM or two YMM registers. When the source or destina-
tion operand is a memory operand, the operand must be aligned on a 16-byte (128-

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

0F 28 /r

MOVAPS xmm1, xmm2/m128

RM V/V SSE Move packed single-
precision floating-point
values from xmm2/m128 to
xmm1.

0F 29 /r

MOVAPS xmm2/m128, xmm1

MR V/V SSE Move packed single-
precision floating-point
values from xmm1 to
xmm2/m128.

VEX.128.0F.WIG 28 /r

VMOVAPS xmm1, xmm2/m128

RM V/V AVX Move aligned packed single-
precision floating-point
values from xmm2/mem to
xmm1.

VEX.128.0F.WIG 29 /r

VMOVAPS xmm2/m128, xmm1

MR V/V AVX Move aligned packed single-
precision floating-point
values from xmm1 to
xmm2/mem.

VEX.256.0F.WIG 28 /r

VMOVAPS ymm1, ymm2/m256

RM V/V AVX Move aligned packed single-
precision floating-point
values from ymm2/mem to
ymm1.

VEX.256.0F.WIG 29 /r

VMOVAPS ymm2/m256, ymm1

MR V/V AVX Move aligned packed single-
precision floating-point
values from ymm1 to
ymm2/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA
Vol. 2B 4-55MOVAPS—Move Aligned Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
bit version) or 32-byte (VEX.256 encoded version) boundary or a general-protection
exception (#GP) will be generated.

To move single-precision floating-point values to and from unaligned memory loca-
tions, use the (V)MOVUPS instruction.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise
instructions will #UD.
128-bit versions:
Moves 128 bits of packed single-precision floating-point values from the source
operand (second operand) to the destination operand (first operand). This instruction
can be used to load an XMM register from a 128-bit memory location, to store the
contents of an XMM register into a 128-bit memory location, or to move data
between two XMM registers. When the source or destination operand is a memory
operand, the operand must be aligned on a 16-byte boundary or a general-protection
exception (#GP) will be generated. To move single-precision floating-point values to
and from unaligned memory locations, use the VMOVUPS instruction.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed.
VEX.256 encoded version:
Moves 256 bits of packed single-precision floating-point values from the source
operand (second operand) to the destination operand (first operand). This instruction
can be used to load a YMM register from a 256-bit memory location, to store the
contents of a YMM register into a 256-bit memory location, or to move data between
two YMM registers.

Operation

MOVAPS (128-bit load- and register-copy- form Legacy SSE version)
DEST[127:0] SRC[127:0]
DEST[VLMAX-1:128] (Unmodified)

(V)MOVAPS (128-bit store form)
DEST[127:0] SRC[127:0]

VMOVAPS (VEX.128 encoded version)
DEST[127:0] SRC[127:0]
DEST[VLMAX-1:128] 0

VMOVAPS (VEX.256 encoded version)
4-56 Vol. 2B MOVAPS—Move Aligned Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
DEST[255:0] SRC[255:0]

Intel C/C++ Compiler Intrinsic Equivalent

MOVAPS: __m128 _mm_load_ps (float const * p);

MOVAPS: _mm_store_ps(float * p, __m128 a);

VMOVAPS: __m256 _mm256_load_ps (float const * p);

VMOVAPS: _mm256_store_ps(float * p, __m256 a);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 1.SSE; additionally
#UD If VEX.vvvv != 1111B.
Vol. 2B 4-57MOVAPS—Move Aligned Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
MOVBE—Move Data After Swapping Bytes

Instruction Operand Encoding

Description

Performs a byte swap operation on the data copied from the second operand (source
operand) and store the result in the first operand (destination operand). The source
operand can be a general-purpose register, or memory location; the destination
register can be a general-purpose register, or a memory location; however, both
operands can not be registers, and only one operand can be a memory location. Both
operands must be the same size, which can be a word, a doubleword or quadword.

The MOVBE instruction is provided for swapping the bytes on a read from memory or
on a write to memory; thus providing support for converting little-endian values to
big-endian format and vice versa.

In 64-bit mode, the instruction's default operation size is 32 bits. Use of the REX.R
prefix permits access to additional registers (R8-R15). Use of the REX.W prefix
promotes operation to 64 bits. See the summary chart at the beginning of this
section for encoding data and limits.

Operation

TEMP ← SRC

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 38 F0 /r MOVBE r16, m16 RM Valid Valid Reverse byte order in m16
and move to r16

0F 38 F0 /r MOVBE r32, m32 RM Valid Valid Reverse byte order in m32
and move to r32

REX.W + 0F 38
F0 /r

MOVBE r64, m64 RM Valid N.E. Reverse byte order in m64
and move to r64.

0F 38 F1 /r MOVBE m16, r16 MR Valid Valid Reverse byte order in r16
and move to m16

0F 38 F1 /r MOVBE m32, r32 MR Valid Valid Reverse byte order in r32
and move to m32

REX.W + 0F 38
F1 /r

MOVBE m64, r64 MR Valid N.E. Reverse byte order in r64
and move to m64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA
4-58 Vol. 2B MOVBE—Move Data After Swapping Bytes

INSTRUCTION SET REFERENCE, M-Z
IF (OperandSize = 16)
THEN

DEST[7:0] ← TEMP[15:8];
DEST[15:8] ← TEMP[7:0];

ELES IF (OperandSize = 32)
DEST[7:0] ← TEMP[31:24];
DEST[15:8] ← TEMP[23:16];
DEST[23:16] ← TEMP[15:8];
DEST[31:23] ← TEMP[7:0];

ELSE IF (OperandSize = 64)
DEST[7:0] ← TEMP[63:56];
DEST[15:8] ← TEMP[55:48];
DEST[23:16] ← TEMP[47:40];
DEST[31:24] ← TEMP[39:32];
DEST[39:32] ← TEMP[31:24];
DEST[47:40] ← TEMP[23:16];
DEST[55:48] ← TEMP[15:8];
DEST[63:56] ← TEMP[7:0];

FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the destination operand is in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If CPUID.01H:ECX.MOVBE[bit 22] = 0 .

If the LOCK prefix is used.
If REP (F3H) prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
Vol. 2B 4-59MOVBE—Move Data After Swapping Bytes

INSTRUCTION SET REFERENCE, M-Z
#SS If a memory operand effective address is outside the SS
segment limit.

#UD If CPUID.01H:ECX.MOVBE[bit 22] = 0 .
If the LOCK prefix is used.
If REP (F3H) prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.
#UD If CPUID.01H:ECX.MOVBE[bit 22] = 0 .

If the LOCK prefix is used.
If REP (F3H) prefix is used.
If REPNE (F2H) prefix is used and CPUID.01H:ECX.SSE4_2[bit
20] = 0.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
#SS(0) If the stack address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If CPUID.01H:ECX.MOVBE[bit 22] = 0 .

If the LOCK prefix is used.
If REP (F3H) prefix is used.
4-60 Vol. 2B MOVBE—Move Data After Swapping Bytes

INSTRUCTION SET REFERENCE, M-Z
MOVD/MOVQ—Move Doubleword/Move Quadword

Instruction Operand Encoding

Description

Copies a doubleword from the source operand (second operand) to the destination

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

0F 6E /r

MOVD mm, r/m32

RM V/V MMX Move doubleword from
r/m32 to mm.

REX.W + 0F 6E /r

MOVQ mm, r/m64

RM V/N.E. MMX Move quadword from r/m64
to mm.

0F 7E /r

MOVD r/m32, mm

MR V/V MMX Move doubleword from mm
to r/m32.

REX.W + 0F 7E /r

MOVQ r/m64, mm

MR V/N.E. MMX Move quadword from mm to
r/m64.

VEX.128.66.0F.W0 6E /

VMOVD xmm1, r32/m32

RM V/V AVX Move doubleword from
r/m32 to xmm1.

VEX.128.66.0F.W1 6E /r

VMOVQ xmm1, r64/m64

RM V/N.E. AVX Move quadword from r/m64
to xmm1.

66 0F 6E /r

MOVD xmm, r/m32

RM V/V SSE2 Move doubleword from
r/m32 to xmm.

66 REX.W 0F 6E /r

MOVQ xmm, r/m64

RM V/N.E. SSE2 Move quadword from r/m64
to xmm.

66 0F 7E /r

MOVD r/m32, xmm

MR V/V SSE2 Move doubleword from
xmm register to r/m32.

 66 REX.W 0F 7E /r

MOVQ r/m64, xmm

MR V/N.E. SSE2 Move quadword from xmm
register to r/m64.

VEX.128.66.0F.W0 7E /r

VMOVD r32/m32, xmm1

MR V/V AVX Move doubleword from
xmm1 register to r/m32.

VEX.128.66.0F.W1 7E /r

VMOVQ r64/m64, xmm1

MR V/N.E. AVX Move quadword from xmm1
register to r/m64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA
Vol. 2B 4-61MOVD/MOVQ—Move Doubleword/Move Quadword

INSTRUCTION SET REFERENCE, M-Z
operand (first operand). The source and destination operands can be general-
purpose registers, MMX technology registers, XMM registers, or 32-bit memory loca-
tions. This instruction can be used to move a doubleword to and from the low double-
word of an MMX technology register and a general-purpose register or a 32-bit
memory location, or to and from the low doubleword of an XMM register and a
general-purpose register or a 32-bit memory location. The instruction cannot be
used to transfer data between MMX technology registers, between XMM registers,
between general-purpose registers, or between memory locations.

When the destination operand is an MMX technology register, the source operand is
written to the low doubleword of the register, and the register is zero-extended to 64
bits. When the destination operand is an XMM register, the source operand is written
to the low doubleword of the register, and the register is zero-extended to 128 bits.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R
prefix permits access to additional registers (R8-R15). Use of the REX.W prefix
promotes operation to 64 bits. See the summary chart at the beginning of this
section for encoding data and limits.

Operation

MOVD (when destination operand is MMX technology register)
DEST[31:0] ← SRC;
DEST[63:32] ← 00000000H;

MOVD (when destination operand is XMM register)
DEST[31:0] ← SRC;
DEST[127:32] ← 000000000000000000000000H;
DEST[VLMAX-1:128] (Unmodified)

MOVD (when source operand is MMX technology or XMM register)
DEST ← SRC[31:0];

VMOVD (VEX-encoded version when destination is an XMM register)
DEST[31:0] SRC[31:0]
DEST[VLMAX-1:32] 0

MOVQ (when destination operand is XMM register)
DEST[63:0] ← SRC[63:0];
DEST[127:64] ← 0000000000000000H;
DEST[VLMAX-1:128] (Unmodified)

MOVQ (when destination operand is r/m64)
DEST[63:0] ← SRC[63:0];

MOVQ (when source operand is XMM register or r/m64)
DEST ← SRC[63:0];
4-62 Vol. 2B MOVD/MOVQ—Move Doubleword/Move Quadword

INSTRUCTION SET REFERENCE, M-Z
VMOVQ (VEX-encoded version when destination is an XMM register)
DEST[63:0] SRC[63:0]
DEST[VLMAX-1:64] 0

Intel C/C++ Compiler Intrinsic Equivalent

MOVD: __m64 _mm_cvtsi32_si64 (int i)

MOVD: int _mm_cvtsi64_si32 (__m64m)

MOVD: __m128i _mm_cvtsi32_si128 (int a)

MOVD: int _mm_cvtsi128_si32 (__m128i a)

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 5; additionally
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
Vol. 2B 4-63MOVD/MOVQ—Move Doubleword/Move Quadword

INSTRUCTION SET REFERENCE, M-Z
MOVDDUP—Move One Double-FP and Duplicate

Instruction Operand Encoding

Description

The linear address corresponds to the address of the least-significant byte of the
referenced memory data. When a memory address is indicated, the 8 bytes of data
at memory location m64 are loaded. When the register-register form of this opera-
tion is used, the lower half of the 128-bit source register is duplicated and copied into
the 128-bit destination register. See Figure 4-2.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

F2 0F 12 /r

MOVDDUP xmm1, xmm2/m64

RM V/V SSE3 Move one double-precision
floating-point value from
the lower 64-bit operand in
xmm2/m64 to xmm1 and
duplicate.

VEX.128.F2.0F.WIG 12 /r

VMOVDDUP xmm1, xmm2/m64

RM V/V AVX Move double-precision
floating-point values from
xmm2/mem and duplicate
into xmm1.

VEX.256.F2.0F.WIG 12 /r

VMOVDDUP ymm1, ymm2/m256

RM V/V AVX Move even index double-
precision floating-point
values from ymm2/mem and
duplicate each element into
ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
4-64 Vol. 2B MOVDDUP—Move One Double-FP and Duplicate

INSTRUCTION SET REFERENCE, M-Z
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).

Operation

IF (Source = m64)
THEN

(* Load instruction *)
xmm1[63:0] = m64;
xmm1[127:64] = m64;

ELSE
(* Move instruction *)
xmm1[63:0] = xmm2[63:0];
xmm1[127:64] = xmm2[63:0];

FI;

MOVDDUP (128-bit Legacy SSE version)
DEST[63:0] SRC[63:0]
DEST[127:64] SRC[63:0]
DEST[VLMAX-1:128] (Unmodified)

VMOVDDUP (VEX.128 encoded version)
DEST[63:0] SRC[63:0]
DEST[127:64] SRC[63:0]

Figure 4-2. MOVDDUP—Move One Double-FP and Duplicate
Vol. 2B 4-65MOVDDUP—Move One Double-FP and Duplicate

INSTRUCTION SET REFERENCE, M-Z
DEST[VLMAX-1:128] 0

VMOVDDUP (VEX.256 encoded version)
DEST[63:0] SRC[63:0]
DEST[127:64] SRC[63:0]
DEST[191:128] SRC[191:128]
DEST[255:192] SRC[191:128]

Intel C/C++ Compiler Intrinsic Equivalent

MOVDDUP: __m128d _mm_movedup_pd(__m128d a)

MOVDDUP: __m128d _mm_loaddup_pd(double const * dp)

SIMD Floating-Point Exceptions

None

Other Exceptions
See Exceptions Type 5; additionally
#UD If VEX.vvvv != 1111B.
4-66 Vol. 2B MOVDDUP—Move One Double-FP and Duplicate

INSTRUCTION SET REFERENCE, M-Z
MOVDQA—Move Aligned Double Quadword

Instruction Operand Encoding

Description

128-bit versions:
Moves 128 bits of packed integer values from the source operand (second operand)
to the destination operand (first operand). This instruction can be used to load an
XMM register from a 128-bit memory location, to store the contents of an XMM
register into a 128-bit memory location, or to move data between two XMM registers.
When the source or destination operand is a memory operand, the operand must be
aligned on a 16-byte boundary or a general-protection exception (#GP) will be
generated. To move integer data to and from unaligned memory locations, use the
VMOVDQU instruction.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

66 0F 6F /r

MOVDQA xmm1, xmm2/m128

RM V/V SSE2 Move aligned double
quadword from
xmm2/m128 to xmm1.

66 0F 7F /r

MOVDQA xmm2/m128, xmm1

MR V/V SSE2 Move aligned double
quadword from xmm1 to
xmm2/m128.

VEX.128.66.0F.WIG 6F /r

VMOVDQA xmm1, xmm2/m128

RM V/V AVX Move aligned packed integer
values from xmm2/mem to
xmm1.

VEX.128.66.0F.WIG 7F /r

VMOVDQA xmm2/m128, xmm1

MR V/V AVX Move aligned packed integer
values from xmm1 to
xmm2/mem.

VEX.256.66.0F.WIG 6F /r

VMOVDQA ymm1, ymm2/m256

RM V/V AVX Move aligned packed integer
values from ymm2/mem to
ymm1.

VEX.256.66.0F.WIG 7F /r

VMOVDQA ymm2/m256, ymm1

MR V/V AVX Move aligned packed integer
values from ymm1 to
ymm2/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA
Vol. 2B 4-67MOVDQA—Move Aligned Double Quadword

INSTRUCTION SET REFERENCE, M-Z
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed.
VEX.256 encoded version:
Moves 256 bits of packed integer values from the source operand (second operand)
to the destination operand (first operand). This instruction can be used to load a YMM
register from a 256-bit memory location, to store the contents of a YMM register into
a 256-bit memory location, or to move data between two YMM registers.
When the source or destination operand is a memory operand, the operand must be
aligned on a 32-byte boundary or a general-protection exception (#GP) will be
generated. To move integer data to and from unaligned memory locations, use the
VMOVDQU instruction.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise
instructions will #UD.

Operation

MOVDQA (128-bit load- and register- form Legacy SSE version)
DEST[127:0] SRC[127:0]
DEST[VLMAX-1:128] (Unmodified)
(* #GP if SRC or DEST unaligned memory operand *)

(V)MOVDQA (128-bit store forms)
DEST[127:0] SRC[127:0]

VMOVDQA (VEX.128 encoded version)
DEST[127:0] SRC[127:0]
DEST[VLMAX-1:128] 0

VMOVDQA (VEX.256 encoded version)
DEST[255:0] SRC[255:0]

Intel C/C++ Compiler Intrinsic Equivalent

MOVDQA: __m128i _mm_load_si128 (__m128i *p)

MOVDQA: void _mm_store_si128 (__m128i *p, __m128i a)

VMOVDQA: __m256i _mm256_load_si256 (__m256i * p);

VMOVDQA: _mm256_store_si256(_m256i *p, __m256i a);
4-68 Vol. 2B MOVDQA—Move Aligned Double Quadword

INSTRUCTION SET REFERENCE, M-Z
SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 1.SSE2; additionally
#UD If VEX.vvvv != 1111B.
Vol. 2B 4-69MOVDQA—Move Aligned Double Quadword

INSTRUCTION SET REFERENCE, M-Z
MOVDQU—Move Unaligned Double Quadword

Instruction Operand Encoding

Description

128-bit versions:

Moves 128 bits of packed integer values from the source operand (second operand)
to the destination operand (first operand). This instruction can be used to load an
XMM register from a 128-bit memory location, to store the contents of an XMM
register into a 128-bit memory location, or to move data between two XMM registers.
When the source or destination operand is a memory operand, the operand may be
unaligned on a 16-byte boundary without causing a general-protection exception
(#GP) to be generated.1

To move a double quadword to or from memory locations that are known to be
aligned on 16-byte boundaries, use the MOVDQA instruction.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

F3 0F 6F /r

MOVDQU xmm1, xmm2/m128

RM V/V SSE2 Move unaligned double
quadword from
xmm2/m128 to xmm1.

F3 0F 7F /r

MOVDQU xmm2/m128, xmm1

MR V/V SSE2 Move unaligned double
quadword from xmm1 to
xmm2/m128.

VEX.128.F3.0F.WIG 6F /r

VMOVDQU xmm1, xmm2/m128

RM V/V AVX Move unaligned packed
integer values from
xmm2/mem to xmm1.

VEX.128.F3.0F.WIG 7F /r

VMOVDQU xmm2/m128, xmm1

MR V/V AVX Move unaligned packed
integer values from xmm1
to xmm2/mem.

VEX.256.F3.0F.WIG 6F /r

VMOVDQU ymm1, ymm2/m256

RM V/V AVX Move unaligned packed
integer values from
ymm2/mem to ymm1.

VEX.256.F3.0F.WIG 7F /r

VMOVDQU ymm2/m256, ymm1

MR V/V AVX Move unaligned packed
integer values from ymm1
to ymm2/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA
4-70 Vol. 2B MOVDQU—Move Unaligned Double Quadword

INSTRUCTION SET REFERENCE, M-Z
While executing in 16-bit addressing mode, a linear address for a 128-bit data access
that overlaps the end of a 16-bit segment is not allowed and is defined as reserved
behavior. A specific processor implementation may or may not generate a general-
protection exception (#GP) in this situation, and the address that spans the end of
the segment may or may not wrap around to the beginning of the segment.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM desti-
nation register remain unchanged.
When the source or destination operand is a memory operand, the operand may be
unaligned to any alignment without causing a general-protection exception (#GP) to
be generated
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register
are zeroed.
VEX.256 encoded version:
Moves 256 bits of packed integer values from the source operand (second operand)
to the destination operand (first operand). This instruction can be used to load a YMM
register from a 256-bit memory location, to store the contents of a YMM register into
a 256-bit memory location, or to move data between two YMM registers.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise
instructions will #UD.

Operation

MOVDQU load and register copy (128-bit Legacy SSE version)
DEST[127:0] SRC[127:0]
DEST[VLMAX-1:128] (Unmodified)

(V)MOVDQU 128-bit store-form versions
DEST[127:0] SRC[127:0]

VMOVDQU (VEX.128 encoded version)
DEST[127:0] SRC[127:0]
DEST[VLMAX-1:128] 0

VMOVDQU (VEX.256 encoded version)
DEST[255:0] SRC[255:0]

1. If alignment checking is enabled (CR0.AM = 1, RFLAGS.AC = 1, and CPL = 3), an alignment-check
exception (#AC) may or may not be generated (depending on processor implementation) when
the operand is not aligned on an 8-byte boundary.
Vol. 2B 4-71MOVDQU—Move Unaligned Double Quadword

INSTRUCTION SET REFERENCE, M-Z
Intel C/C++ Compiler Intrinsic Equivalent

MOVDQU: void _mm_storeu_si128 (__m128i *p, __m128i a)

MOVDQU: __m128i _mm_loadu_si128 (__m128i *p)

VMOVDQU: __m256i _mm256_loadu_si256 (__m256i * p);

VMOVDQU: _mm256_storeu_si256(_m256i *p, __m256i a);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.vvvv != 1111B.
4-72 Vol. 2B MOVDQU—Move Unaligned Double Quadword

INSTRUCTION SET REFERENCE, M-Z
MOVDQ2Q—Move Quadword from XMM to MMX Technology Register

Instruction Operand Encoding

Description

Moves the low quadword from the source operand (second operand) to the destina-
tion operand (first operand). The source operand is an XMM register and the destina-
tion operand is an MMX technology register.

This instruction causes a transition from x87 FPU to MMX technology operation (that
is, the x87 FPU top-of-stack pointer is set to 0 and the x87 FPU tag word is set to all
0s [valid]). If this instruction is executed while an x87 FPU floating-point exception is
pending, the exception is handled before the MOVDQ2Q instruction is executed.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).

Operation

DEST ← SRC[63:0];

Intel C/C++ Compiler Intrinsic Equivalent

MOVDQ2Q: __m64 _mm_movepi64_pi64 (__m128i a)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions
#NM If CR0.TS[bit 3] = 1.
#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

#MF If there is a pending x87 FPU exception.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

F2 0F D6 MOVDQ2Q mm,
xmm

RM Valid Valid Move low quadword from
xmm to mmx register.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
Vol. 2B 4-73MOVDQ2Q—Move Quadword from XMM to MMX Technology Register

INSTRUCTION SET REFERENCE, M-Z
Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
4-74 Vol. 2B MOVDQ2Q—Move Quadword from XMM to MMX Technology Register

INSTRUCTION SET REFERENCE, M-Z
MOVHLPS— Move Packed Single-Precision Floating-Point Values High
to Low

Instruction Operand Encoding

Description

This instruction cannot be used for memory to register moves.
128-bit two-argument form:
Moves two packed single-precision floating-point values from the high quadword of
the second XMM argument (second operand) to the low quadword of the first XMM
register (first argument). The high quadword of the destination operand is left
unchanged. Bits (VLMAX-1:64) of the corresponding YMM destination register are
unmodified.
128-bit three-argument form
Moves two packed single-precision floating-point values from the high quadword of
the third XMM argument (third operand) to the low quadword of the destination (first
operand). Copies the high quadword from the second XMM argument (second
operand) to the high quadword of the destination (first operand). Bits (VLMAX-
1:128) of the destination YMM register are zeroed.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
If VMOVHLPS is encoded with VEX.L= 1, an attempt to execute the instruction
encoded with VEX.L= 1 will cause an #UD exception.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

0F 12 /r

MOVHLPS xmm1, xmm2

RM V/V SSE Move two packed single-
precision floating-point
values from high quadword
of xmm2 to low quadword
of xmm1.

VEX.NDS.128.0F.WIG 12 /r

VMOVHLPS xmm1, xmm2, xmm3

RVM V/V AVX Merge two packed single-
precision floating-point
values from high quadword
of xmm3 and low quadword
of xmm2.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-75MOVHLPS— Move Packed Single-Precision Floating-Point Values High to Low

INSTRUCTION SET REFERENCE, M-Z
Operation

MOVHLPS (128-bit two-argument form)
DEST[63:0] SRC[127:64]
DEST[VLMAX-1:64] (Unmodified)

VMOVHLPS (128-bit three-argument form)
DEST[63:0] SRC2[127:64]
DEST[127:64] SRC1[127:64]
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

MOVHLPS: __m128 _mm_movehl_ps(__m128 a, __m128 b)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 7; additionally
#UD If VEX.L= 1.
4-76 Vol. 2B MOVHLPS— Move Packed Single-Precision Floating-Point Values High to Low

INSTRUCTION SET REFERENCE, M-Z
MOVHPD—Move High Packed Double-Precision Floating-Point Value

Instruction Operand Encoding

Description

This instruction cannot be used for register to register or memory to memory moves.
128-bit Legacy SSE load:
Moves a double-precision floating-point value from the source 64-bit memory
operand and stores it in the high 64-bits of the destination XMM register. The lower
64bits of the XMM register are preserved. The upper 128-bits of the corresponding
YMM destination register are preserved.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
VEX.128 encoded load:
Loads a double-precision floating-point value from the source 64-bit memory
operand (third operand) and stores it in the upper 64-bits of the destination XMM
register (first operand). The low 64-bits from second XMM register (second operand)

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

66 0F 16 /r

MOVHPD xmm, m64

RM V/V SSE2 Move double-precision
floating-point value from
m64 to high quadword of
xmm.

66 0F 17 /r

MOVHPD m64, xmm

MR V/V SSE2 Move double-precision
floating-point value from
high quadword of xmm to
m64.

VEX.NDS.128.66.0F.WIG 16 /r

VMOVHPD xmm2, xmm1, m64

RVM V/V AVX Merge double-precision
floating-point value from
m64 and the low quadword
of xmm1.

VEX128.66.0F.WIG 17/r

VMOVHPD m64, xmm1

MR V/V AVX Move double-precision
floating-point values from
high quadword of xmm1 to
m64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-77MOVHPD—Move High Packed Double-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, M-Z
are stored in the lower 64-bits of the destination. The upper 128-bits of the destina-
tion YMM register are zeroed.
128-bit store:
Stores a double-precision floating-point value from the high 64-bits of the XMM
register source (second operand) to the 64-bit memory location (first operand).
Note: VMOVHPD (store) (VEX.128.66.0F 17 /r) is legal and has the same behavior as
the existing 66 0F 17 store. For VMOVHPD (store) (VEX.128.66.0F 17 /r) instruction
version, VEX.vvvv is reserved and must be 1111b otherwise instruction will #UD.
If VMOVHPD is encoded with VEX.L= 1, an attempt to execute the instruction
encoded with VEX.L= 1 will cause an #UD exception.

Operation

MOVHPD (128-bit Legacy SSE load)
DEST[63:0] (Unmodified)
DEST[127:64] SRC[63:0]
DEST[VLMAX-1:128] (Unmodified)

VMOVHPD (VEX.128 encoded load)
DEST[63:0] SRC1[63:0]
DEST[127:64] SRC2[63:0]
DEST[VLMAX-1:128] 0

VMOVHPD (store)
DEST[63:0] SRC[127:64]

Intel C/C++ Compiler Intrinsic Equivalent

MOVHPD: __m128d _mm_loadh_pd (__m128d a, double *p)

MOVHPD: void _mm_storeh_pd (double *p, __m128d a)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 5; additionally
#UD If VEX.L= 1.
4-78 Vol. 2B MOVHPD—Move High Packed Double-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, M-Z
MOVHPS—Move High Packed Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

This instruction cannot be used for register to register or memory to memory moves.
128-bit Legacy SSE load:
Moves two packed single-precision floating-point values from the source 64-bit
memory operand and stores them in the high 64-bits of the destination XMM register.
The lower 64bits of the XMM register are preserved. The upper 128-bits of the corre-
sponding YMM destination register are preserved.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
VEX.128 encoded load:
Loads two single-precision floating-point values from the source 64-bit memory
operand (third operand) and stores it in the upper 64-bits of the destination XMM
register (first operand). The low 64-bits from second XMM register (second operand)

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

0F 16 /r

MOVHPS xmm, m64

RM V/V SSE Move two packed single-
precision floating-point
values from m64 to high
quadword of xmm.

0F 17 /r

MOVHPS m64, xmm

MR V/V SSE Move two packed single-
precision floating-point
values from high quadword
of xmm to m64.

VEX.NDS.128.0F.WIG 16 /r

VMOVHPS xmm2, xmm1, m64

RVM V/V AVX Merge two packed single-
precision floating-point
values from m64 and the
low quadword of xmm1.

VEX.128.0F.WIG 17/r

VMOVHPS m64, xmm1

MR V/V AVX Move two packed single-
precision floating-point
values from high quadword
of xmm1to m64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-79MOVHPS—Move High Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
are stored in the lower 64-bits of the destination. The upper 128-bits of the destina-
tion YMM register are zeroed.
128-bit store:
Stores two packed single-precision floating-point values from the high 64-bits of the
XMM register source (second operand) to the 64-bit memory location (first operand).
Note: VMOVHPS (store) (VEX.NDS.128.0F 17 /r) is legal and has the same behavior
as the existing 0F 17 store. For VMOVHPS (store) (VEX.NDS.128.0F 17 /r) instruc-
tion version, VEX.vvvv is reserved and must be 1111b otherwise instruction will
#UD.
If VMOVHPS is encoded with VEX.L= 1, an attempt to execute the instruction
encoded with VEX.L= 1 will cause an #UD exception.

Operation

MOVHPS (128-bit Legacy SSE load)
DEST[63:0] (Unmodified)
DEST[127:64] SRC[63:0]
DEST[VLMAX-1:128] (Unmodified)

VMOVHPS (VEX.128 encoded load)
DEST[63:0] SRC1[63:0]
DEST[127:64] SRC2[63:0]
DEST[VLMAX-1:128] 0

VMOVHPS (store)
DEST[63:0] SRC[127:64]

Intel C/C++ Compiler Intrinsic Equivalent

MOVHPS: __m128d _mm_loadh_pi (__m128d a, __m64 *p)

MOVHPS: void _mm_storeh_pi (__m64 *p, __m128d a)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 5; additionally
#UD If VEX.L= 1.
4-80 Vol. 2B MOVHPS—Move High Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
MOVLHPS—Move Packed Single-Precision Floating-Point Values Low to
High

Instruction Operand Encoding

Description

This instruction cannot be used for memory to register moves.
128-bit two-argument form:
Moves two packed single-precision floating-point values from the low quadword of
the second XMM argument (second operand) to the high quadword of the first XMM
register (first argument). The low quadword of the destination operand is left
unchanged. The upper 128 bits of the corresponding YMM destination register are
unmodified.
128-bit three-argument form
Moves two packed single-precision floating-point values from the low quadword of
the third XMM argument (third operand) to the high quadword of the destination
(first operand). Copies the low quadword from the second XMM argument (second
operand) to the low quadword of the destination (first operand). The upper 128-bits
of the destination YMM register are zeroed.
If VMOVLHPS is encoded with VEX.L= 1, an attempt to execute the instruction
encoded with VEX.L= 1 will cause an #UD exception.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

0F 16 /r

MOVLHPS xmm1, xmm2

RM V/V SSE Move two packed single-
precision floating-point
values from low quadword
of xmm2 to high quadword
of xmm1.

VEX.NDS.128.0F.WIG 16 /r

VMOVLHPS xmm1, xmm2, xmm3

RVM V/V AVX Merge two packed single-
precision floating-point
values from low quadword
of xmm3 and low quadword
of xmm2.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-81MOVLHPS—Move Packed Single-Precision Floating-Point Values Low to High

INSTRUCTION SET REFERENCE, M-Z
Operation

MOVLHPS (128-bit two-argument form)
DEST[63:0] (Unmodified)
DEST[127:64] SRC[63:0]
DEST[VLMAX-1:128] (Unmodified)

VMOVLHPS (128-bit three-argument form)
DEST[63:0] SRC1[63:0]
DEST[127:64] SRC2[63:0]
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

MOVHLPS: __m128 _mm_movelh_ps(__m128 a, __m128 b)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 7; additionally
#UD If VEX.L= 1.
4-82 Vol. 2B MOVLHPS—Move Packed Single-Precision Floating-Point Values Low to High

INSTRUCTION SET REFERENCE, M-Z
MOVLPD—Move Low Packed Double-Precision Floating-Point Value

Instruction Operand Encoding

Description

This instruction cannot be used for register to register or memory to memory moves.
128-bit Legacy SSE load:
Moves a double-precision floating-point value from the source 64-bit memory
operand and stores it in the low 64-bits of the destination XMM register. The upper
64bits of the XMM register are preserved. The upper 128-bits of the corresponding
YMM destination register are preserved.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
VEX.128 encoded load:
Loads a double-precision floating-point value from the source 64-bit memory
operand (third operand), merges it with the upper 64-bits of the first source XMM
register (second operand), and stores it in the low 128-bits of the destination XMM

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

66 0F 12 /r

MOVLPD xmm, m64

RM V/V SSE2 Move double-precision
floating-point value from
m64 to low quadword of
xmm register.

66 0F 13 /r

MOVLPD m64, xmm

MR V/V SSE2 Move double-precision
floating-point nvalue from
low quadword of xmm
register to m64.

VEX.NDS.128.66.0F.WIG 12 /r

VMOVLPD xmm2, xmm1, m64

RVM V/V AVX Merge double-precision
floating-point value from
m64 and the high quadword
of xmm1.

VEX.128.66.0F.WIG 13/r

VMOVLPD m64, xmm1

MR V/V AVX Move double-precision
floating-point values from
low quadword of xmm1 to
m64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-83MOVLPD—Move Low Packed Double-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, M-Z
register (first operand). The upper 128-bits of the destination YMM register are
zeroed.
128-bit store:
Stores a double-precision floating-point value from the low 64-bits of the XMM
register source (second operand) to the 64-bit memory location (first operand).
Note: VMOVLPD (store) (VEX.128.66.0F 13 /r) is legal and has the same behavior as
the existing 66 0F 13 store. For VMOVLPD (store) (VEX.128.66.0F 13 /r) instruction
version, VEX.vvvv is reserved and must be 1111b otherwise instruction will #UD.
If VMOVLPD is encoded with VEX.L= 1, an attempt to execute the instruction
encoded with VEX.L= 1 will cause an #UD exception.

Operation

MOVLPD (128-bit Legacy SSE load)
DEST[63:0] SRC[63:0]
DEST[VLMAX-1:64] (Unmodified)

VMOVLPD (VEX.128 encoded load)
DEST[63:0] SRC2[63:0]
DEST[127:64] SRC1[127:64]
DEST[VLMAX-1:128] 0

VMOVLPD (store)
DEST[63:0] SRC[63:0]

Intel C/C++ Compiler Intrinsic Equivalent

MOVLPD: __m128d _mm_loadl_pd (__m128d a, double *p)

MOVLPD: void _mm_storel_pd (double *p, __m128d a)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 5; additionally
#UD If VEX.L= 1.

If VEX.vvvv != 1111B.
4-84 Vol. 2B MOVLPD—Move Low Packed Double-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, M-Z
MOVLPS—Move Low Packed Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

This instruction cannot be used for register to register or memory to memory moves.
128-bit Legacy SSE load:
Moves two packed single-precision floating-point values from the source 64-bit
memory operand and stores them in the low 64-bits of the destination XMM register.
The upper 64bits of the XMM register are preserved. The upper 128-bits of the corre-
sponding YMM destination register are preserved.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
VEX.128 encoded load:
Loads two packed single-precision floating-point values from the source 64-bit
memory operand (third operand), merges them with the upper 64-bits of the first
source XMM register (second operand), and stores them in the low 128-bits of the

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

0F 12 /r

MOVLPS xmm, m64

RM V/V SSE Move two packed single-
precision floating-point
values from m64 to low
quadword of xmm.

0F 13 /r

MOVLPS m64, xmm

MR V/V SSE Move two packed single-
precision floating-point
values from low quadword
of xmm to m64.

VEX.NDS.128.0F.WIG 12 /r

VMOVLPS xmm2, xmm1, m64

RVM V/V AVX Merge two packed single-
precision floating-point
values from m64 and the
high quadword of xmm1.

VEX.128.0F.WIG 13/r

VMOVLPS m64, xmm1

MR V/V AVX Move two packed single-
precision floating-point
values from low quadword
of xmm1 to m64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-85MOVLPS—Move Low Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
destination XMM register (first operand). The upper 128-bits of the destination YMM
register are zeroed.
128-bit store:
Loads two packed single-precision floating-point values from the low 64-bits of the
XMM register source (second operand) to the 64-bit memory location (first operand).
Note: VMOVLPS (store) (VEX.128.0F 13 /r) is legal and has the same behavior as the
existing 0F 13 store. For VMOVLPS (store) (VEX.128.0F 13 /r) instruction version,
VEX.vvvv is reserved and must be 1111b otherwise instruction will #UD.

If VMOVLPS is encoded with VEX.L= 1, an attempt to execute the instruction encoded
with VEX.L= 1 will cause an #UD exception.

Operation

MOVLPS (128-bit Legacy SSE load)
DEST[63:0] SRC[63:0]
DEST[VLMAX-1:64] (Unmodified)

VMOVLPS (VEX.128 encoded load)
DEST[63:0] SRC2[63:0]
DEST[127:64] SRC1[127:64]
DEST[VLMAX-1:128] 0

VMOVLPS (store)
DEST[63:0] SRC[63:0]

Intel C/C++ Compiler Intrinsic Equivalent

MOVLPS: __m128 _mm_loadl_pi (__m128 a, __m64 *p)

MOVLPS: void _mm_storel_pi (__m64 *p, __m128 a)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 5; additionally
#UD If VEX.L= 1.

If VEX.vvvv != 1111B.
4-86 Vol. 2B MOVLPS—Move Low Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
MOVMSKPD—Extract Packed Double-Precision Floating-Point Sign
Mask

Instruction Operand Encoding

Description

Extracts the sign bits from the packed double-precision floating-point values in the
source operand (second operand), formats them into a 2-bit mask, and stores the
mask in the destination operand (first operand). The source operand is an XMM
register, and the destination operand is a general-purpose register. The mask is
stored in the 2 low-order bits of the destination operand. Zero-extend the upper bits
of the destination.

In 64-bit mode, the instruction can access additional registers (XMM8-XMM15,
R8-R15) when used with a REX.R prefix. The default operand size is 64-bit in 64-bit
mode.
128-bit versions: The source operand is a YMM register. The destination operand is a
general purpose register.
VEX.256 encoded version: The source operand is a YMM register. The destination
operand is a general purpose register.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise
instructions will #UD.

Operation

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

66 0F 50 /r

MOVMSKPD reg, xmm

RM V/V SSE2 Extract 2-bit sign mask from
xmm and store in reg. The
upper bits of r32 or r64 are
filled with zeros.

VEX.128.66.0F.WIG 50 /r

VMOVMSKPD reg, xmm2

RM V/V AVX Extract 2-bit sign mask from
xmm2 and store in reg. The
upper bits of r32 or r64 are
zeroed.

VEX.256.66.0F.WIG 50 /r

VMOVMSKPD reg, ymm2

RM V/V AVX Extract 4-bit sign mask from
ymm2 and store in reg. The
upper bits of r32 or r64 are
zeroed.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
Vol. 2B 4-87MOVMSKPD—Extract Packed Double-Precision Floating-Point Sign Mask

INSTRUCTION SET REFERENCE, M-Z
(V)MOVMSKPD (128-bit versions)
DEST[0] SRC[63]
DEST[1] SRC[127]
IF DEST = r32

THEN DEST[31:2] 0;
ELSE DEST[63:2] 0;

FI

VMOVMSKPD (VEX.256 encoded version)
DEST[0] SRC[63]
DEST[1] SRC[127]
DEST[2] SRC[191]
DEST[3] SRC[255]
IF DEST = r32

THEN DEST[31:4] 0;
ELSE DEST[63:4] 0;

FI

Intel C/C++ Compiler Intrinsic Equivalent

MOVMSKPD: int _mm_movemask_pd (__m128d a)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 7; additionally
#UD If VEX.vvvv != 1111B.
4-88 Vol. 2B MOVMSKPD—Extract Packed Double-Precision Floating-Point Sign Mask

INSTRUCTION SET REFERENCE, M-Z
MOVMSKPS—Extract Packed Single-Precision Floating-Point Sign Mask

Instruction Operand Encoding1

Description

Extracts the sign bits from the packed single-precision floating-point values in the
source operand (second operand), formats them into a 4- or 8-bit mask, and stores
the mask in the destination operand (first operand). The source operand is an XMM
or YMM register, and the destination operand is a general-purpose register. The mask
is stored in the 4 or 8 low-order bits of the destination operand. The upper bits of the
destination operand beyond the mask are filled with zeros.

In 64-bit mode, the instruction can access additional registers (XMM8-XMM15,
R8-R15) when used with a REX.R prefix. The default operand size is 64-bit in 64-bit
mode.

128-bit versions: The source operand is a YMM register. The destination operand is a
general purpose register.
VEX.256 encoded version: The source operand is a YMM register. The destination
operand is a general purpose register.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise
instructions will #UD.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

0F 50 /r

MOVMSKPS reg, xmm

RM V/V SSE Extract 4-bit sign mask from
xmm and store in reg. The
upper bits of r32 or r64 are
filled with zeros.

VEX.128.0F.WIG 50 /r

VMOVMSKPS reg, xmm2

RM V/V AVX Extract 4-bit sign mask from
xmm2 and store in reg. The
upper bits of r32 or r64 are
zeroed.

VEX.256.0F.WIG 50 /r

VMOVMSKPS reg, ymm2

RM V/V AVX Extract 8-bit sign mask from
ymm2 and store in reg. The
upper bits of r32 or r64 are
zeroed.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

1. ModRM.MOD = 011B required
Vol. 2B 4-89MOVMSKPS—Extract Packed Single-Precision Floating-Point Sign Mask

INSTRUCTION SET REFERENCE, M-Z
Operation

DEST[0] ← SRC[31];
DEST[1] ← SRC[63];
DEST[2] ← SRC[95];
DEST[3] ← SRC[127];

IF DEST = r32
THEN DEST[31:4] ← ZeroExtend;
ELSE DEST[63:4] ← ZeroExtend;

FI;

(V)MOVMSKPS (128-bit version)
DEST[0] SRC[31]
DEST[1] SRC[63]
DEST[2] SRC[95]
DEST[3] SRC[127]
IF DEST = r32

THEN DEST[31:4] 0;
ELSE DEST[63:4] 0;

FI

VMOVMSKPS (VEX.256 encoded version)
DEST[0] SRC[31]
DEST[1] SRC[63]
DEST[2] SRC[95]
DEST[3] SRC[127]
DEST[4] SRC[159]
DEST[5] SRC[191]
DEST[6] SRC[223]
DEST[7] SRC[255]
IF DEST = r32

THEN DEST[31:8] 0;
ELSE DEST[63:8] 0;

FI

Intel C/C++ Compiler Intrinsic Equivalent

int _mm_movemask_ps(__m128 a)

int _mm256_movemask_ps(__m256 a)

SIMD Floating-Point Exceptions

None.
4-90 Vol. 2B MOVMSKPS—Extract Packed Single-Precision Floating-Point Sign Mask

INSTRUCTION SET REFERENCE, M-Z
Other Exceptions
See Exceptions Type 7; additionally
#UD If VEX.vvvv != 1111B.
Vol. 2B 4-91MOVMSKPS—Extract Packed Single-Precision Floating-Point Sign Mask

INSTRUCTION SET REFERENCE, M-Z
MOVNTDQA — Load Double Quadword Non-Temporal Aligned Hint

Instruction Operand Encoding

Description

MOVNTDQA loads a double quadword from the source operand (second operand) to
the destination operand (first operand) using a non-temporal hint. A processor
implementation may make use of the non-temporal hint associated with this instruc-
tion if the memory source is WC (write combining) memory type. An implementation
may also make use of the non-temporal hint associated with this instruction if the
memory source is WB (write back) memory type.
A processor’s implementation of the non-temporal hint does not override the effec-
tive memory type semantics, but the implementation of the hint is processor depen-
dent. For example, a processor implementation may choose to ignore the hint and
process the instruction as a normal MOVDQA for any memory type. Another imple-
mentation of the hint for WC memory type may optimize data transfer throughput of
WC reads. A third implementation may optimize cache reads generated by
MOVNTDQA on WB memory type to reduce cache evictions.

WC Streaming Load Hint

For WC memory type in particular, the processor never appears to read the data into
the cache hierarchy. Instead, the non-temporal hint may be implemented by loading
a temporary internal buffer with the equivalent of an aligned cache line without filling
this data to the cache. Any memory-type aliased lines in the cache will be snooped
and flushed. Subsequent MOVNTDQA reads to unread portions of the WC cache line
will receive data from the temporary internal buffer if data is available. The tempo-
rary internal buffer may be flushed by the processor at any time for any reason, for
example:
• A load operation other than a MOVNTDQA which references memory already

resident in a temporary internal buffer.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

66 0F 38 2A /r

MOVNTDQA xmm1, m128

RM V/V SSE4_1 Move double quadword
from m128 to xmm using
non-temporal hint if WC
memory type.

VEX.128.66.0F38.WIG 2A /r

VMOVNTDQA xmm1, m128

RM V/V AVX Move double quadword from
m128 to xmm using non-
temporal hint if WC memory
type.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
4-92 Vol. 2B MOVNTDQA — Load Double Quadword Non-Temporal Aligned Hint

INSTRUCTION SET REFERENCE, M-Z
• A non-WC reference to memory already resident in a temporary internal buffer.
• Interleaving of reads and writes to memory currently residing in a single

temporary internal buffer.
• Repeated (V)MOVNTDQA loads of a particular 16-byte item in a streaming line.
• Certain micro-architectural conditions including resource shortages, detection of

a mis-speculation condition, and various fault conditions
The memory type of the region being read can override the non-temporal hint, if the
memory address specified for the non-temporal read is not a WC memory region.
Information on non-temporal reads and writes can be found in Chapter 11, “Memory
Cache Control” of Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A.
Because the WC protocol uses a weakly-ordered memory consistency model, an
MFENCE or locked instruction should be used in conjunction with MOVNTDQA instruc-
tions if multiple processors might reference the same WC memory locations or in
order to synchronize reads of a processor with writes by other agents in the system.
Because of the speculative nature of fetching due to MOVNTDQA, Streaming loads
must not be used to reference memory addresses that are mapped to I/O devices
having side effects or when reads to these devices are destructive. For additional
information on MOVNTDQA usages, see Section 12.10.3 in Chapter 12, “Program-
ming with SSE3, SSSE3 and SSE4” of Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1.
The 128-bit (V)MOVNTDQA addresses must be 16-byte aligned or the instruction will
cause a #GP.
Note: In VEX-128 encoded versions, VEX.vvvv is reserved and must be 1111b, VEX.L
must be 0; otherwise instructions will #UD.

Operation

MOVNTDQA (128bit- Legacy SSE form)
DEST SRC
DEST[VLMAX-1:128] (Unmodified)

VMOVNTDQA (VEX.128 encoded form)
DEST SRC
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

MOVNTDQA: __m128i _mm_stream_load_si128 (__m128i *p);

Flags Affected

None
Vol. 2B 4-93MOVNTDQA — Load Double Quadword Non-Temporal Aligned Hint

INSTRUCTION SET REFERENCE, M-Z
Other Exceptions
See Exceptions Type 1.SSE4.1; additionally
#UD If VEX.L= 1.

If VEX.vvvv != 1111B.
4-94 Vol. 2B MOVNTDQA — Load Double Quadword Non-Temporal Aligned Hint

INSTRUCTION SET REFERENCE, M-Z
MOVNTDQ—Store Double Quadword Using Non-Temporal Hint

Instruction Operand Encoding1

Description

Moves the packed integers in the source operand (second operand) to the destination
operand (first operand) using a non-temporal hint to prevent caching of the data
during the write to memory. The source operand is an XMM register or YMM register,
which is assumed to contain integer data (packed bytes, words, doublewords, or
quadwords). The destination operand is a 128-bit or 256-bit memory location. The
memory operand must be aligned on a 16-byte (128-bit version) or 32-byte
(VEX.256 encoded version) boundary otherwise a general-protection exception
(#GP) will be generated.

The non-temporal hint is implemented by using a write combining (WC) memory
type protocol when writing the data to memory. Using this protocol, the processor
does not write the data into the cache hierarchy, nor does it fetch the corresponding
cache line from memory into the cache hierarchy. The memory type of the region
being written to can override the non-temporal hint, if the memory address specified
for the non-temporal store is in an uncacheable (UC) or write protected (WP)
memory region. For more information on non-temporal stores, see “Caching of
Temporal vs. Non-Temporal Data” in Chapter 10 in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 1.

Because the WC protocol uses a weakly-ordered memory consistency model, a
fencing operation implemented with the SFENCE or MFENCE instruction should be
used in conjunction with MOVNTDQ instructions if multiple processors might use
different memory types to read/write the destination memory locations.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

66 0F E7 /r

MOVNTDQ m128, xmm

MR V/V SSE2 Move double quadword
from xmm to m128 using
non-temporal hint.

VEX.128.66.0F.WIG E7 /r

VMOVNTDQ m128, xmm1

MR V/V AVX Move packed integer values
in xmm1 to m128 using
non-temporal hint.

VEX.256.66.0F.WIG E7 /r

VMOVNTDQ m256, ymm1

MR V/V AVX Move packed integer values
in ymm1 to m256 using
non-temporal hint.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (w) ModRM:reg (r) NA NA

1. ModRM.MOD = 011B is not permitted
Vol. 2B 4-95MOVNTDQ—Store Double Quadword Using Non-Temporal Hint

INSTRUCTION SET REFERENCE, M-Z
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Note: In VEX-128 encoded versions, VEX.vvvv is reserved and must be 1111b, VEX.L
must be 0; otherwise instructions will #UD.

Operation

DEST ← SRC;

Intel C/C++ Compiler Intrinsic Equivalent

MOVNTDQ: void _mm_stream_si128(__m128i *p, __m128i a);

VMOVNTDQ: void _mm256_stream_si256 (__m256i * p, __m256i a);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 1.SSE2; additionally
#UD If VEX.vvvv != 1111B.
4-96 Vol. 2B MOVNTDQ—Store Double Quadword Using Non-Temporal Hint

INSTRUCTION SET REFERENCE, M-Z
MOVNTI—Store Doubleword Using Non-Temporal Hint

Instruction Operand Encoding

Description

Moves the doubleword integer in the source operand (second operand) to the desti-
nation operand (first operand) using a non-temporal hint to minimize cache pollution
during the write to memory. The source operand is a general-purpose register. The
destination operand is a 32-bit memory location.

The non-temporal hint is implemented by using a write combining (WC) memory
type protocol when writing the data to memory. Using this protocol, the processor
does not write the data into the cache hierarchy, nor does it fetch the corresponding
cache line from memory into the cache hierarchy. The memory type of the region
being written to can override the non-temporal hint, if the memory address specified
for the non-temporal store is in an uncacheable (UC) or write protected (WP)
memory region. For more information on non-temporal stores, see “Caching of
Temporal vs. Non-Temporal Data” in Chapter 10 in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 1.

Because the WC protocol uses a weakly-ordered memory consistency model, a
fencing operation implemented with the SFENCE or MFENCE instruction should be
used in conjunction with MOVNTI instructions if multiple processors might use
different memory types to read/write the destination memory locations.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R
prefix permits access to additional registers (R8-R15). Use of the REX.W prefix
promotes operation to 64 bits. See the summary chart at the beginning of this
section for encoding data and limits.

Operation

DEST ← SRC;

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F C3 /r MOVNTI m32, r32 MR Valid Valid Move doubleword from r32
to m32 using non-temporal
hint.

REX.W + 0F C3
/r

MOVNTI m64, r64 MR Valid N.E. Move quadword from r64 to
m64 using non-temporal
hint.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (w) ModRM:reg (r) NA NA
Vol. 2B 4-97MOVNTI—Store Doubleword Using Non-Temporal Hint

INSTRUCTION SET REFERENCE, M-Z
Intel C/C++ Compiler Intrinsic Equivalent

MOVNTI: void _mm_stream_si32 (int *p, int a)

MOVNTI: void _mm_stream_si64(__int64 *p, __int64 a)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS or GS segments.
#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.
#UD If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 16-byte boundary,

regardless of segment.
If any part of the operand lies outside the effective address
space from 0 to FFFFH.

#UD If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) For a page fault.
#UD If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
4-98 Vol. 2B MOVNTI—Store Doubleword Using Non-Temporal Hint

INSTRUCTION SET REFERENCE, M-Z
MOVNTPD—Store Packed Double-Precision Floating-Point Values Using
Non-Temporal Hint

Instruction Operand Encoding1

Description

Moves the packed double-precision floating-point values in the source operand
(second operand) to the destination operand (first operand) using a non-temporal
hint to prevent caching of the data during the write to memory. The source operand
is an XMM register or YMM register, which is assumed to contain packed double-preci-
sion, floating-pointing data. The destination operand is a 128-bit or 256-bit memory
location. The memory operand must be aligned on a 16-byte (128-bit version) or 32-
byte (VEX.256 encoded version) boundary otherwise a general-protection exception
(#GP) will be generated.

The non-temporal hint is implemented by using a write combining (WC) memory
type protocol when writing the data to memory. Using this protocol, the processor
does not write the data into the cache hierarchy, nor does it fetch the corresponding
cache line from memory into the cache hierarchy. The memory type of the region
being written to can override the non-temporal hint, if the memory address specified
for the non-temporal store is in an uncacheable (UC) or write protected (WP)
memory region. For more information on non-temporal stores, see “Caching of
Temporal vs. Non-Temporal Data” in Chapter 10 in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 1.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

66 0F 2B /r

MOVNTPD m128, xmm

MR V/V SSE2 Move packed double-
precision floating-point
values from xmm to m128
using non-temporal hint.

VEX.128.66.0F.WIG 2B /r

VMOVNTPD m128, xmm1

MR V/V AVX Move packed double-
precision values in xmm1 to
m128 using non-temporal
hint.

VEX.256.66.0F.WIG 2B /r

VMOVNTPD m256, ymm1

MR V/V AVX Move packed double-
precision values in ymm1 to
m256 using non-temporal
hint.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (w) ModRM:reg (r) NA NA

1. ModRM.MOD = 011B is not permitted
Vol. 2B 4-99MOVNTPD—Store Packed Double-Precision Floating-Point Values Using Non-Temporal
Hint

INSTRUCTION SET REFERENCE, M-Z
Because the WC protocol uses a weakly-ordered memory consistency model, a
fencing operation implemented with the SFENCE or MFENCE instruction should be
used in conjunction with MOVNTPD instructions if multiple processors might use
different memory types to read/write the destination memory locations.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Note: In VEX-128 encoded versions, VEX.vvvv is reserved and must be 1111b, VEX.L
must be 0; otherwise instructions will #UD.

Operation

DEST ← SRC;

Intel C/C++ Compiler Intrinsic Equivalent

MOVNTPD: void _mm_stream_pd(double *p, __m128d a)

VMOVNTPD: void _mm256_stream_pd (double * p, __m256d a);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 1.SSE2; additionally
#UD If VEX.vvvv != 1111B.
4-100 Vol. 2B MOVNTPD—Store Packed Double-Precision Floating-Point Values Using Non-Temporal
Hint

INSTRUCTION SET REFERENCE, M-Z
MOVNTPS—Store Packed Single-Precision Floating-Point Values Using
Non-Temporal Hint

Instruction Operand Encoding1

Description

Moves the packed single-precision floating-point values in the source operand
(second operand) to the destination operand (first operand) using a non-temporal
hint to prevent caching of the data during the write to memory. The source operand
is an XMM register or YMM register, which is assumed to contain packed single-preci-
sion, floating-pointing. The destination operand is a 128-bit or 256-bitmemory loca-
tion. The memory operand must be aligned on a 16-byte (128-bit version) or 32-byte
(VEX.256 encoded version) boundary otherwise a general-protection exception
(#GP) will be generated.

The non-temporal hint is implemented by using a write combining (WC) memory
type protocol when writing the data to memory. Using this protocol, the processor
does not write the data into the cache hierarchy, nor does it fetch the corresponding
cache line from memory into the cache hierarchy. The memory type of the region
being written to can override the non-temporal hint, if the memory address specified
for the non-temporal store is in an uncacheable (UC) or write protected (WP)
memory region. For more information on non-temporal stores, see “Caching of
Temporal vs. Non-Temporal Data” in Chapter 10 in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 1.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

0F 2B /r

MOVNTPS m128, xmm

MR V/V SSE Move packed single-
precision floating-point
values from xmm to m128
using non-temporal hint.

VEX.128.0F.WIG 2B /r

VMOVNTPS m128, xmm1

MR V/V AVX Move packed single-
precision values xmm1 to
mem using non-temporal
hint.

VEX.256.0F.WIG 2B /r

VMOVNTPS m256, ymm1

MR V/V AVX Move packed single-
precision values ymm1 to
mem using non-temporal
hint.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (w) ModRM:reg (r) NA NA

1. ModRM.MOD = 011B is not permitted
Vol. 2B 4-101MOVNTPS—Store Packed Single-Precision Floating-Point Values Using Non-Temporal
Hint

INSTRUCTION SET REFERENCE, M-Z
Because the WC protocol uses a weakly-ordered memory consistency model, a
fencing operation implemented with the SFENCE or MFENCE instruction should be
used in conjunction with MOVNTPS instructions if multiple processors might use
different memory types to read/write the destination memory locations.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise
instructions will #UD.

Operation

DEST ← SRC;

Intel C/C++ Compiler Intrinsic Equivalent

MOVNTDQ: void _mm_stream_ps(float * p, __m128 a)

VMOVNTPS: void _mm256_stream_ps (float * p, __m256 a);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 1.SSE; additionally
#UD If VEX.vvvv != 1111B.
4-102 Vol. 2B MOVNTPS—Store Packed Single-Precision Floating-Point Values Using Non-Temporal
Hint

INSTRUCTION SET REFERENCE, M-Z
MOVNTQ—Store of Quadword Using Non-Temporal Hint

Instruction Operand Encoding

Description

Moves the quadword in the source operand (second operand) to the destination
operand (first operand) using a non-temporal hint to minimize cache pollution during
the write to memory. The source operand is an MMX technology register, which is
assumed to contain packed integer data (packed bytes, words, or doublewords). The
destination operand is a 64-bit memory location.

The non-temporal hint is implemented by using a write combining (WC) memory
type protocol when writing the data to memory. Using this protocol, the processor
does not write the data into the cache hierarchy, nor does it fetch the corresponding
cache line from memory into the cache hierarchy. The memory type of the region
being written to can override the non-temporal hint, if the memory address specified
for the non-temporal store is in an uncacheable (UC) or write protected (WP)
memory region. For more information on non-temporal stores, see “Caching of
Temporal vs. Non-Temporal Data” in Chapter 10 in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 1.

Because the WC protocol uses a weakly-ordered memory consistency model, a
fencing operation implemented with the SFENCE or MFENCE instruction should be
used in conjunction with MOVNTQ instructions if multiple processors might use
different memory types to read/write the destination memory locations.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

DEST ← SRC;

Intel C/C++ Compiler Intrinsic Equivalent

MOVNTQ: void _mm_stream_pi(__m64 * p, __m64 a)

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F E7 /r MOVNTQ m64,
mm

MR Valid Valid Move quadword from mm to
m64 using non-temporal
hint.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (w) ModRM:reg (r) NA NA
Vol. 2B 4-103MOVNTQ—Store of Quadword Using Non-Temporal Hint

INSTRUCTION SET REFERENCE, M-Z
SIMD Floating-Point Exceptions

None.

Other Exceptions
See Table 22-8, “Exception Conditions for Legacy SIMD/MMX Instructions without FP
Exception,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A.
4-104 Vol. 2B MOVNTQ—Store of Quadword Using Non-Temporal Hint

INSTRUCTION SET REFERENCE, M-Z
MOVQ—Move Quadword

Instruction Operand Encoding

Description

Copies a quadword from the source operand (second operand) to the destination
operand (first operand). The source and destination operands can be MMX tech-
nology registers, XMM registers, or 64-bit memory locations. This instruction can be
used to move a quadword between two MMX technology registers or between an
MMX technology register and a 64-bit memory location, or to move data between two
XMM registers or between an XMM register and a 64-bit memory location. The
instruction cannot be used to transfer data between memory locations.

When the source operand is an XMM register, the low quadword is moved; when the
destination operand is an XMM register, the quadword is stored to the low quadword
of the register, and the high quadword is cleared to all 0s.

In 64-bit mode, use of the REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

MOVQ instruction when operating on MMX technology registers and memory locations:
DEST ← SRC;

MOVQ instruction when source and destination operands are XMM registers:
DEST[63:0] ← SRC[63:0];
DEST[127:64] ← 0000000000000000H;

Opcode Instruction Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

0F 6F /r MOVQ mm,
mm/m64

RM V/V MMX Move quadword from
mm/m64 to mm.

0F 7F /r MOVQ mm/m64,
mm

MR V/V MMX Move quadword from mm to
mm/m64.

F3 0F 7E MOVQ xmm1,
xmm2/m64

RM V/V SSE2 Move quadword from
xmm2/mem64 to xmm1.

66 0F D6 MOVQ
xmm2/m64,
xmm1

MR V/V SSE2 Move quadword from xmm1
to xmm2/mem64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA
Vol. 2B 4-105MOVQ—Move Quadword

INSTRUCTION SET REFERENCE, M-Z
MOVQ instruction when source operand is XMM register and destination
operand is memory location:

DEST ← SRC[63:0];

MOVQ instruction when source operand is memory location and destination
operand is XMM register:

DEST[63:0] ← SRC;
DEST[127:64] ← 0000000000000000H;

Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

MOVQ: m128i _mm_mov_epi64(__m128i a)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Table 22-8, “Exception Conditions for Legacy SIMD/MMX Instructions without FP
Exception,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A.
4-106 Vol. 2B MOVQ—Move Quadword

INSTRUCTION SET REFERENCE, M-Z
MOVQ2DQ—Move Quadword from MMX Technology to XMM Register

Instruction Operand Encoding

Description

Moves the quadword from the source operand (second operand) to the low quadword
of the destination operand (first operand). The source operand is an MMX technology
register and the destination operand is an XMM register.

This instruction causes a transition from x87 FPU to MMX technology operation (that
is, the x87 FPU top-of-stack pointer is set to 0 and the x87 FPU tag word is set to all
0s [valid]). If this instruction is executed while an x87 FPU floating-point exception is
pending, the exception is handled before the MOVQ2DQ instruction is executed.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).

Operation

DEST[63:0] ← SRC[63:0];
DEST[127:64] ← 00000000000000000H;

Intel C/C++ Compiler Intrinsic Equivalent

MOVQ2DQ: __128i _mm_movpi64_pi64 (__m64 a)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions
#NM If CR0.TS[bit 3] = 1.
#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

#MF If there is a pending x87 FPU exception.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

F3 0F D6 MOVQ2DQ xmm,
mm

RM Valid Valid Move quadword from mmx
to low quadword of xmm.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
Vol. 2B 4-107MOVQ2DQ—Move Quadword from MMX Technology to XMM Register

INSTRUCTION SET REFERENCE, M-Z
Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
4-108 Vol. 2B MOVQ2DQ—Move Quadword from MMX Technology to XMM Register

INSTRUCTION SET REFERENCE, M-Z
MOVS/MOVSB/MOVSW/MOVSD/MOVSQ—Move Data from
String to String
\

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

A4 MOVS m8, m8 NP Valid Valid For legacy mode, Move byte
from address DS:(E)SI to
ES:(E)DI. For 64-bit mode
move byte from address
(R|E)SI to (R|E)DI.

A5 MOVS m16, m16 NP Valid Valid For legacy mode, move
word from address DS:(E)SI
to ES:(E)DI. For 64-bit mode
move word at address
(R|E)SI to (R|E)DI.

A5 MOVS m32, m32 NP Valid Valid For legacy mode, move
dword from address DS:(E)SI
to ES:(E)DI. For 64-bit mode
move dword from address
(R|E)SI to (R|E)DI.

REX.W + A5 MOVS m64, m64 NP Valid N.E. Move qword from address
(R|E)SI to (R|E)DI.

A4 MOVSB NP Valid Valid For legacy mode, Move byte
from address DS:(E)SI to
ES:(E)DI. For 64-bit mode
move byte from address
(R|E)SI to (R|E)DI.

A5 MOVSW NP Valid Valid For legacy mode, move
word from address DS:(E)SI
to ES:(E)DI. For 64-bit mode
move word at address
(R|E)SI to (R|E)DI.

A5 MOVSD NP Valid Valid For legacy mode, move
dword from address DS:(E)SI
to ES:(E)DI. For 64-bit mode
move dword from address
(R|E)SI to (R|E)DI.

REX.W + A5 MOVSQ NP Valid N.E. Move qword from address
(R|E)SI to (R|E)DI.
Vol. 2B 4-109MOVS/MOVSB/MOVSW/MOVSD/MOVSQ—Move Data from String to String

INSTRUCTION SET REFERENCE, M-Z
Instruction Operand Encoding

Description

Moves the byte, word, or doubleword specified with the second operand (source
operand) to the location specified with the first operand (destination operand). Both
the source and destination operands are located in memory. The address of the
source operand is read from the DS:ESI or the DS:SI registers (depending on the
address-size attribute of the instruction, 32 or 16, respectively). The address of the
destination operand is read from the ES:EDI or the ES:DI registers (again depending
on the address-size attribute of the instruction). The DS segment may be overridden
with a segment override prefix, but the ES segment cannot be overridden.

At the assembly-code level, two forms of this instruction are allowed: the “explicit-
operands” form and the “no-operands” form. The explicit-operands form (specified
with the MOVS mnemonic) allows the source and destination operands to be speci-
fied explicitly. Here, the source and destination operands should be symbols that
indicate the size and location of the source value and the destination, respectively.
This explicit-operands form is provided to allow documentation; however, note that
the documentation provided by this form can be misleading. That is, the source and
destination operand symbols must specify the correct type (size) of the operands
(bytes, words, or doublewords), but they do not have to specify the correct location.
The locations of the source and destination operands are always specified by the
DS:(E)SI and ES:(E)DI registers, which must be loaded correctly before the move
string instruction is executed.

The no-operands form provides “short forms” of the byte, word, and doubleword
versions of the MOVS instructions. Here also DS:(E)SI and ES:(E)DI are assumed to
be the source and destination operands, respectively. The size of the source and
destination operands is selected with the mnemonic: MOVSB (byte move), MOVSW
(word move), or MOVSD (doubleword move).

After the move operation, the (E)SI and (E)DI registers are incremented or decre-
mented automatically according to the setting of the DF flag in the EFLAGS register.
(If the DF flag is 0, the (E)SI and (E)DI register are incremented; if the DF flag is 1,
the (E)SI and (E)DI registers are decremented.) The registers are incremented or
decremented by 1 for byte operations, by 2 for word operations, or by 4 for double-
word operations.

The MOVS, MOVSB, MOVSW, and MOVSD instructions can be preceded by the REP
prefix (see “REP/REPE/REPZ /REPNE/REPNZ—Repeat String Operation Prefix” in
Chapter 4 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2B, for a description of the REP prefix) for block moves of ECX bytes, words,
or doublewords.

In 64-bit mode, the instruction’s default address size is 64 bits, 32-bit address size is
supported using the prefix 67H. The 64-bit addresses are specified by RSI and RDI;

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
4-110 Vol. 2B MOVS/MOVSB/MOVSW/MOVSD/MOVSQ—Move Data from String to String

INSTRUCTION SET REFERENCE, M-Z
32-bit address are specified by ESI and EDI. Use of the REX.W prefix promotes
doubleword operation to 64 bits. See the summary chart at the beginning of this
section for encoding data and limits.

Operation

DEST ← SRC;

Non-64-bit Mode:

IF (Byte move)
THEN IF DF = 0

THEN
(E)SI ← (E)SI + 1;
(E)DI ← (E)DI + 1;

ELSE
(E)SI ← (E)SI – 1;
(E)DI ← (E)DI – 1;

FI;
ELSE IF (Word move)

THEN IF DF = 0
(E)SI ← (E)SI + 2;
(E)DI ← (E)DI + 2;
FI;

ELSE
(E)SI ← (E)SI – 2;
(E)DI ← (E)DI – 2;

FI;
ELSE IF (Doubleword move)

THEN IF DF = 0
(E)SI ← (E)SI + 4;
(E)DI ← (E)DI + 4;
FI;

ELSE
(E)SI ← (E)SI – 4;
(E)DI ← (E)DI – 4;

FI;
FI;
64-bit Mode:

IF (Byte move)
THEN IF DF = 0

THEN
(R|E)SI ← (R|E)SI + 1;
(R|E)DI ← (R|E)DI + 1;
Vol. 2B 4-111MOVS/MOVSB/MOVSW/MOVSD/MOVSQ—Move Data from String to String

INSTRUCTION SET REFERENCE, M-Z
ELSE
(R|E)SI ← (R|E)SI – 1;
(R|E)DI ← (R|E)DI – 1;

FI;
ELSE IF (Word move)

THEN IF DF = 0
(R|E)SI ← (R|E)SI + 2;
(R|E)DI ← (R|E)DI + 2;
FI;

ELSE
(R|E)SI ← (R|E)SI – 2;
(R|E)DI ← (R|E)DI – 2;

FI;
ELSE IF (Doubleword move)

THEN IF DF = 0
(R|E)SI ← (R|E)SI + 4;
(R|E)DI ← (R|E)DI + 4;
FI;

ELSE
(R|E)SI ← (R|E)SI – 4;
(R|E)DI ← (R|E)DI – 4;

FI;
ELSE IF (Quadword move)

THEN IF DF = 0
(R|E)SI ← (R|E)SI + 8;
(R|E)DI ← (R|E)DI + 8;
FI;

ELSE
(R|E)SI ← (R|E)SI – 8;
(R|E)DI ← (R|E)DI – 8;

FI;
FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.
4-112 Vol. 2B MOVS/MOVSB/MOVSW/MOVSD/MOVSQ—Move Data from String to String

INSTRUCTION SET REFERENCE, M-Z
#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
Vol. 2B 4-113MOVS/MOVSB/MOVSW/MOVSD/MOVSQ—Move Data from String to String

INSTRUCTION SET REFERENCE, M-Z
MOVSD—Move Scalar Double-Precision Floating-Point Value

Instruction Operand Encoding

Description

MOVSD moves a scalar double-precision floating-point value from the source
operand (second operand) to the destination operand (first operand). The source and
destination operands can be XMM registers or 64-bit memory locations. This instruc-

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

F2 0F 10 /r

MOVSD xmm1, xmm2/m64

RM V/V SSE2 Move scalar double-
precision floating-point
value from xmm2/m64 to
xmm1 register.

VEX.NDS.LIG.F2.0F.WIG 10 /r

VMOVSD xmm1, xmm2, xmm3

RVM V/V AVX Merge scalar double-
precision floating-point
value from xmm2 and
xmm3 to xmm1 register.

VEX.LIG.F2.0F.WIG 10 /r

VMOVSD xmm1, m64

XM V/V AVX Load scalar double-precision
floating-point value from
m64 to xmm1 register.

F2 0F 11 /r

MOVSD xmm2/m64, xmm1

MR V/V SSE2 Move scalar double-
precision floating-point
value from xmm1 register
to xmm2/m64.

VEX.NDS.LIG.F2.0F.WIG 11 /r

VMOVSD xmm1, xmm2, xmm3

MVR V/V AVX Merge scalar double-
precision floating-point
value from xmm2 and
xmm3 registers to xmm1.

VEX.LIG.F2.0F.WIG 11 /r

VMOVSD m64, xmm1

MR V/V AVX Move scalar double-
precision floating-point
value from xmm1 register
to m64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA

XM ModRM:reg (w) ModRM:r/m (r) NA NA

MVR ModRM:r/m (w) VEX.vvvv (r) ModRM:reg (r) NA
4-114 Vol. 2B MOVSD—Move Scalar Double-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, M-Z
tion can be used to move a double-precision floating-point value to and from the low
quadword of an XMM register and a 64-bit memory location, or to move a double-
precision floating-point value between the low quadwords of two XMM registers. The
instruction cannot be used to transfer data between memory locations.
For non-VEX encoded instruction syntax and when the source and destination oper-
ands are XMM registers, the high quadword of the destination operand remains
unchanged. When the source operand is a memory location and destination operand
is an XMM registers, the high quadword of the destination operand is cleared to all 0s.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Note: For the “VMOVSD m64, xmm1” (memory store form) instruction version,
VEX.vvvv is reserved and must be 1111b, otherwise instruction will #UD.
Note: For the “VMOVSD xmm1, m64” (memory load form) instruction version,
VEX.vvvv is reserved and must be 1111b otherwise instruction will #UD.
VEX encoded instruction syntax supports two source operands and a destination
operand if ModR/M.mod field is 11B. VEX.vvvv is used to encode the first source
operand (the second operand). The low 128 bits of the destination operand stores the
result of merging the low quadword of the second source operand with the quad word
in bits 127:64 of the first source operand. The upper bits of the destination operand
are cleared.

Operation

MOVSD (128-bit Legacy SSE version: MOVSD XMM1, XMM2)
DEST[63:0] SRC[63:0]
DEST[VLMAX-1:64] (Unmodified)

MOVSD/VMOVSD (128-bit versions: MOVSD m64, xmm1 or VMOVSD m64, xmm1)
DEST[63:0] SRC[63:0]

MOVSD (128-bit Legacy SSE version: MOVSD XMM1, m64)
DEST[63:0] SRC[63:0]
DEST[127:64] 0
DEST[VLMAX-1:128] (Unmodified)

VMOVSD (VEX.NDS.128.F2.0F 11 /r: VMOVSD xmm1, xmm2, xmm3)
DEST[63:0] SRC2[63:0]
DEST[127:64] SRC1[127:64]
DEST[VLMAX-1:128] 0

VMOVSD (VEX.NDS.128.F2.0F 10 /r: VMOVSD xmm1, xmm2, xmm3)
DEST[63:0] SRC2[63:0]
DEST[127:64] SRC1[127:64]
Vol. 2B 4-115MOVSD—Move Scalar Double-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, M-Z
DEST[VLMAX-1:128] 0

VMOVSD (VEX.NDS.128.F2.0F 10 /r: VMOVSD xmm1, m64)
DEST[63:0] SRC[63:0]
DEST[VLMAX-1:64] 0

Intel C/C++ Compiler Intrinsic Equivalent

MOVSD: __m128d _mm_load_sd (double *p)

MOVSD: void _mm_store_sd (double *p, __m128d a)

MOVSD: __m128d _mm_store_sd (__m128d a, __m128d b)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 5; additionally
#UD If VEX.vvvv != 1111B.
4-116 Vol. 2B MOVSD—Move Scalar Double-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, M-Z
MOVSHDUP—Move Packed Single-FP High and Duplicate

Instruction Operand Encoding

Description

The linear address corresponds to the address of the least-significant byte of the
referenced memory data. When a memory address is indicated, the 16 bytes of data
at memory location m128 are loaded and the single-precision elements in positions 1
and 3 are duplicated. When the register-register form of this operation is used, the
same operation is performed but with data coming from the 128-bit source register.
See Figure 4-3.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

F3 0F 16 /r

MOVSHDUP xmm1, xmm2/m128

RM V/V SSE3 Move two single-precision
floating-point values from
the higher 32-bit operand of
each qword in xmm2/m128
to xmm1 and duplicate each
32-bit operand to the lower
32-bits of each qword.

VEX.128.F3.0F.WIG 16 /r

VMOVSHDUP xmm1, xmm2/m128

RM V/V AVX Move odd index single-
precision floating-point
values from xmm2/mem
and duplicate each element
into xmm1.

VEX.256.F3.0F.WIG 16 /r

VMOVSHDUP ymm1, ymm2/m256

RM V/V AVX Move odd index single-
precision floating-point
values from ymm2/mem and
duplicate each element into
ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
Vol. 2B 4-117MOVSHDUP—Move Packed Single-FP High and Duplicate

INSTRUCTION SET REFERENCE, M-Z
In 64-bit mode, use of the REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise
instructions will #UD.

Operation

MOVSHDUP (128-bit Legacy SSE version)
DEST[31:0] SRC[63:32]
DEST[63:32] SRC[63:32]
DEST[95:64] SRC[127:96]
DEST[127:96] SRC[127:96]
DEST[VLMAX-1:128] (Unmodified)

VMOVSHDUP (VEX.128 encoded version)
DEST[31:0] SRC[63:32]
DEST[63:32] SRC[63:32]
DEST[95:64] SRC[127:96]
DEST[127:96] SRC[127:96]

Figure 4-3. MOVSHDUP—Move Packed Single-FP High and Duplicate
4-118 Vol. 2B MOVSHDUP—Move Packed Single-FP High and Duplicate

INSTRUCTION SET REFERENCE, M-Z
DEST[VLMAX-1:128] 0

VMOVSHDUP (VEX.256 encoded version)
DEST[31:0] SRC[63:32]
DEST[63:32] SRC[63:32]
DEST[95:64] SRC[127:96]
DEST[127:96] SRC[127:96]
DEST[159:128] SRC[191:160]
DEST[191:160] SRC[191:160]
DEST[223:192] SRC[255:224]
DEST[255:224] SRC[255:224]

Intel C/C++ Compiler Intrinsic Equivalent

(V)MOVSHDUP: __m128 _mm_movehdup_ps(__m128 a)

VMOVSHDUP: __m256 _mm256_movehdup_ps (__m256 a);

Exceptions

General protection exception if not aligned on 16-byte boundary, regardless of
segment.

Numeric Exceptions

None

Other Exceptions
See Exceptions Type 2.
Vol. 2B 4-119MOVSHDUP—Move Packed Single-FP High and Duplicate

INSTRUCTION SET REFERENCE, M-Z
MOVSLDUP—Move Packed Single-FP Low and Duplicate

Instruction Operand Encoding

Description

The linear address corresponds to the address of the least-significant byte of the
referenced memory data. When a memory address is indicated, the 16 bytes of data
at memory location m128 are loaded and the single-precision elements in positions 0
and 2 are duplicated. When the register-register form of this operation is used, the
same operation is performed but with data coming from the 128-bit source register.

See Figure 4-4.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

F3 0F 12 /r

MOVSLDUP xmm1, xmm2/m128

RM V/V SSE3 Move two single-precision
floating-point values from
the lower 32-bit operand of
each qword in xmm2/m128
to xmm1 and duplicate each
32-bit operand to the higher
32-bits of each qword.

VEX.128.F3.0F.WIG 12 /r

VMOVSLDUP xmm1, xmm2/m128

RM V/V AVX Move even index single-
precision floating-point
values from xmm2/mem
and duplicate each element
into xmm1.

VEX.256.F3.0F.WIG 12 /r
VMOVSLDUP ymm1, ymm2/m256

RM V/V AVX Move even index single-
precision floating-point
values from ymm2/mem and
duplicate each element into
ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
4-120 Vol. 2B MOVSLDUP—Move Packed Single-FP Low and Duplicate

INSTRUCTION SET REFERENCE, M-Z
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise
instructions will #UD.

Operation

MOVSLDUP (128-bit Legacy SSE version)
DEST[31:0] SRC[31:0]
DEST[63:32] SRC[31:0]
DEST[95:64] SRC[95:64]
DEST[127:96] SRC[95:64]
DEST[VLMAX-1:128] (Unmodified)

VMOVSLDUP (VEX.128 encoded version)
DEST[31:0] SRC[31:0]
DEST[63:32] SRC[31:0]
DEST[95:64] SRC[95:64]
DEST[127:96] SRC[95:64]

Figure 4-4. MOVSLDUP—Move Packed Single-FP Low and Duplicate
Vol. 2B 4-121MOVSLDUP—Move Packed Single-FP Low and Duplicate

INSTRUCTION SET REFERENCE, M-Z
DEST[VLMAX-1:128] 0

VMOVSLDUP (VEX.256 encoded version)
DEST[31:0] SRC[31:0]
DEST[63:32] SRC[31:0]
DEST[95:64] SRC[95:64]
DEST[127:96] SRC[95:64]
DEST[159:128] SRC[159:128]
DEST[191:160] SRC[159:128]
DEST[223:192] SRC[223:192]
DEST[255:224] SRC[223:192]

Intel C/C++ Compiler Intrinsic Equivalent

(V)MOVSLDUP: __m128 _mm_moveldup_ps(__m128 a)

VMOVSLDUP: __m256 _mm256_moveldup_ps (__m256 a);

Exceptions

General protection exception if not aligned on 16-byte boundary, regardless of
segment.

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.vvvv != 1111B.
4-122 Vol. 2B MOVSLDUP—Move Packed Single-FP Low and Duplicate

INSTRUCTION SET REFERENCE, M-Z
MOVSS—Move Scalar Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

Moves a scalar single-precision floating-point value from the source operand (second
operand) to the destination operand (first operand). The source and destination
operands can be XMM registers or 32-bit memory locations. This instruction can be
used to move a single-precision floating-point value to and from the low doubleword

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

F3 0F 10 /r

MOVSS xmm1, xmm2/m32

RM V/V SSE Move scalar single-precision
floating-point value from
xmm2/m32 to xmm1
register.

VEX.NDS.LIG.F3.0F.WIG 10 /r

VMOVSS xmm1, xmm2, xmm3

RVM V/V AVX Merge scalar single-
precision floating-point
value from xmm2 and
xmm3 to xmm1 register.

VEX.LIG.F3.0F.WIG 10 /r

VMOVSS xmm1, m32

XM V/V AVX Load scalar single-precision
floating-point value from
m32 to xmm1 register.

F3 0F 11 /r

MOVSS xmm2/m32, xmm

MR V/V SSE Move scalar single-precision
floating-point value from
xmm1 register to
xmm2/m32.

VEX.NDS.LIG.F3.0F.WIG 11 /r

VMOVSS xmm1, xmm2, xmm3

MVR V/V AVX Move scalar single-precision
floating-point value from
xmm2 and xmm3 to xmm1
register.

VEX.LIG.F3.0F.WIG 11 /r

VMOVSS m32, xmm1

MR V/V AVX Move scalar single-precision
floating-point value from
xmm1 register to m32.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA

XM ModRM:reg (w) ModRM:r/m (r) NA NA

MVR ModRM:r/m (w) VEX.vvvv (r) ModRM:reg (r) NA
Vol. 2B 4-123MOVSS—Move Scalar Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
of an XMM register and a 32-bit memory location, or to move a single-precision
floating-point value between the low doublewords of two XMM registers. The instruc-
tion cannot be used to transfer data between memory locations.
For non-VEX encoded syntax and when the source and destination operands are XMM
registers, the high doublewords of the destination operand remains unchanged.
When the source operand is a memory location and destination operand is an XMM
registers, the high doublewords of the destination operand is cleared to all 0s.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
VEX encoded instruction syntax supports two source operands and a destination
operand if ModR/M.mod field is 11B. VEX.vvvv is used to encode the first source
operand (the second operand). The low 128 bits of the destination operand stores the
result of merging the low dword of the second source operand with three dwords in
bits 127:32 of the first source operand. The upper bits of the destination operand are
cleared.
Note: For the “VMOVSS m32, xmm1” (memory store form) instruction version,
VEX.vvvv is reserved and must be 1111b otherwise instruction will #UD.
Note: For the “VMOVSS xmm1, m32” (memory load form) instruction version,
VEX.vvvv is reserved and must be 1111b otherwise instruction will #UD.

Operation

MOVSS (Legacy SSE version when the source and destination operands are both XMM
registers)
DEST[31:0] SRC[31:0]
DEST[VLMAX-1:32] (Unmodified)

MOVSS/VMOVSS (when the source operand is an XMM register and the destination is
memory)
DEST[31:0] SRC[31:0]

MOVSS (Legacy SSE version when the source operand is memory and the destination is an
XMM register)
DEST[31:0] SRC[31:0]
DEST[127:32] 0
DEST[VLMAX-1:128] (Unmodified)

VMOVSS (VEX.NDS.128.F3.0F 11 /r where the destination is an XMM register)
DEST[31:0] SRC2[31:0]
DEST[127:32] SRC1[127:32]
DEST[VLMAX-1:128] 0

VMOVSS (VEX.NDS.128.F3.0F 10 /r where the source and destination are XMM registers)
4-124 Vol. 2B MOVSS—Move Scalar Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
DEST[31:0] SRC2[31:0]
DEST[127:32] SRC1[127:32]
DEST[VLMAX-1:128] 0

VMOVSS (VEX.NDS.128.F3.0F 10 /r when the source operand is memory and the destination
is an XMM register)
DEST[31:0] SRC[31:0]
DEST[VLMAX-1:32] 0

Intel C/C++ Compiler Intrinsic Equivalent

MOVSS: __m128 _mm_load_ss(float * p)

MOVSS: void _mm_store_ss(float * p, __m128 a)

MOVSS: __m128 _mm_move_ss(__m128 a, __m128 b)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 5; additionally
#UD If VEX.vvvv != 1111B.
Vol. 2B 4-125MOVSS—Move Scalar Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
MOVSX/MOVSXD—Move with Sign-Extension

Instruction Operand Encoding

Description

Copies the contents of the source operand (register or memory location) to the desti-
nation operand (register) and sign extends the value to 16 or 32 bits (see Figure 7-6
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1).
The size of the converted value depends on the operand-size attribute.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R
prefix permits access to additional registers (R8-R15). Use of the REX.W prefix
promotes operation to 64 bits. See the summary chart at the beginning of this
section for encoding data and limits.

Operation

DEST ← SignExtend(SRC);

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F BE /r MOVSX r16, r/m8 RM Valid Valid Move byte to word with
sign-extension.

0F BE /r MOVSX r32, r/m8 RM Valid Valid Move byte to doubleword
with sign-extension.

REX + 0F BE /r MOVSX r64, r/m8* RM Valid N.E. Move byte to quadword
with sign-extension.

0F BF /r MOVSX r32,
r/m16

RM Valid Valid Move word to doubleword,
with sign-extension.

REX.W + 0F BF
/r

MOVSX r64,
r/m16

RM Valid N.E. Move word to quadword
with sign-extension.

REX.W** + 63 /r MOVSXD r64,
r/m32

RM Valid N.E. Move doubleword to
quadword with sign-
extension.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is

used: AH, BH, CH, DH.
** The use of MOVSXD without REX.W in 64-bit mode is discouraged, Regular MOV should be used

instead of using MOVSXD without REX.W.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
4-126 Vol. 2B MOVSX/MOVSXD—Move with Sign-Extension

INSTRUCTION SET REFERENCE, M-Z
Flags Affected

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
Vol. 2B 4-127MOVSX/MOVSXD—Move with Sign-Extension

INSTRUCTION SET REFERENCE, M-Z
#UD If the LOCK prefix is used.
4-128 Vol. 2B MOVSX/MOVSXD—Move with Sign-Extension

INSTRUCTION SET REFERENCE, M-Z
MOVUPD—Move Unaligned Packed Double-Precision Floating-Point
Values

Instruction Operand Encoding

Description

128-bit versions:

Moves a double quadword containing two packed double-precision floating-point
values from the source operand (second operand) to the destination operand (first
operand). This instruction can be used to load an XMM register from a 128-bit

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

66 0F 10 /r

MOVUPD xmm1, xmm2/m128

RM V/V SSE2 Move packed double-
precision floating-point
values from xmm2/m128 to
xmm1.

VEX.128.66.0F.WIG 10 /r

VMOVUPD xmm1, xmm2/m128

RM V/V AVX Move unaligned packed
double-precision floating-
point from xmm2/mem to
xmm1.

VEX.256.66.0F.WIG 10 /r

VMOVUPD ymm1, ymm2/m256

RM V/V AVX Move unaligned packed
double-precision floating-
point from ymm2/mem to
ymm1.

66 0F 11 /r

MOVUPD xmm2/m128, xmm

MR V/V SSE2 Move packed double-
precision floating-point
values from xmm1 to
xmm2/m128.

VEX.128.66.0F.WIG 11 /r

VMOVUPD xmm2/m128, xmm1

MR V/V AVX Move unaligned packed
double-precision floating-
point from xmm1 to
xmm2/mem.

VEX.256.66.0F.WIG 11 /r

VMOVUPD ymm2/m256, ymm1

MR V/V AVX Move unaligned packed
double-precision floating-
point from ymm1 to
ymm2/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA
Vol. 2B 4-129MOVUPD—Move Unaligned Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
memory location, store the contents of an XMM register into a 128-bit memory loca-
tion, or move data between two XMM registers.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destination
register remain unchanged.

When the source or destination operand is a memory operand, the operand may be
unaligned on a 16-byte boundary without causing a general-protection exception
(#GP) to be generated.1

To move double-precision floating-point values to and from memory locations that
are known to be aligned on 16-byte boundaries, use the MOVAPD instruction.

While executing in 16-bit addressing mode, a linear address for a 128-bit data access
that overlaps the end of a 16-bit segment is not allowed and is defined as reserved
behavior. A specific processor implementation may or may not generate a general-
protection exception (#GP) in this situation, and the address that spans the end of
the segment may or may not wrap around to the beginning of the segment.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed.

VEX.256 encoded version:

Moves 256 bits of packed double-precision floating-point values from the source
operand (second operand) to the destination operand (first operand). This instruction
can be used to load a YMM register from a 256-bit memory location, to store the
contents of a YMM register into a 256-bit memory location, or to move data between
two YMM registers.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise
instructions will #UD.

Operation

MOVUPD (128-bit load and register-copy form Legacy SSE version)
DEST[127:0] SRC[127:0]
DEST[VLMAX-1:128] (Unmodified)

(V)MOVUPD (128-bit store form)
DEST[127:0] SRC[127:0]

1. If alignment checking is enabled (CR0.AM = 1, RFLAGS.AC = 1, and CPL = 3), an alignment-check
exception (#AC) may or may not be generated (depending on processor implementation) when
the operand is not aligned on an 8-byte boundary.
4-130 Vol. 2B MOVUPD—Move Unaligned Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
VMOVUPD (VEX.128 encoded version)
DEST[127:0] SRC[127:0]
DEST[VLMAX-1:128] 0

VMOVUPD (VEX.256 encoded version)
DEST[255:0] SRC[255:0]

Intel C/C++ Compiler Intrinsic Equivalent

MOVUPD: __m128 _mm_loadu_pd(double * p)

MOVUPD: void _mm_storeu_pd(double *p, __m128 a)

VMOVUPD: __m256d _mm256_loadu_pd (__m256d * p);

VMOVUPD: _mm256_storeu_pd(_m256d *p, __m256d a);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4
Note treatment of #AC varies; additionally
#UD If VEX.vvvv != 1111B.
Vol. 2B 4-131MOVUPD—Move Unaligned Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
MOVUPS—Move Unaligned Packed Single-Precision Floating-Point
Values

Instruction Operand Encoding

Description

128-bit versions: Moves a double quadword containing four packed single-precision
floating-point values from the source operand (second operand) to the destination
operand (first operand). This instruction can be used to load an XMM register from a
128-bit memory location, store the contents of an XMM register into a 128-bit
memory location, or move data between two XMM registers.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

0F 10 /r

MOVUPS xmm1, xmm2/m128

RM V/V SSE Move packed single-
precision floating-point
values from xmm2/m128 to
xmm1.

VEX.128.0F.WIG 10 /r

VMOVUPS xmm1, xmm2/m128

RM V/V AVX Move unaligned packed
single-precision floating-
point from xmm2/mem to
xmm1.

VEX.256.0F.WIG 10 /r

VMOVUPS ymm1, ymm2/m256

RM V/V AVX Move unaligned packed
single-precision floating-
point from ymm2/mem to
ymm1.

0F 11 /r

MOVUPS xmm2/m128, xmm1

MR V/V SSE Move packed single-
precision floating-point
values from xmm1 to
xmm2/m128.

VEX.128.0F.WIG 11 /r

VMOVUPS xmm2/m128, xmm1

MR V/V AVX Move unaligned packed
single-precision floating-
point from xmm1 to
xmm2/mem.

VEX.256.0F.WIG 11 /r

VMOVUPS ymm2/m256, ymm1

MR V/V AVX Move unaligned packed
single-precision floating-
point from ymm1 to
ymm2/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA
4-132 Vol. 2B MOVUPS—Move Unaligned Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destination
register remain unchanged.

When the source or destination operand is a memory operand, the operand may be
unaligned on a 16-byte boundary without causing a general-protection exception
(#GP) to be generated.1

To move packed single-precision floating-point values to and from memory locations
that are known to be aligned on 16-byte boundaries, use the MOVAPS instruction.

While executing in 16-bit addressing mode, a linear address for a 128-bit data access
that overlaps the end of a 16-bit segment is not allowed and is defined as reserved
behavior. A specific processor implementation may or may not generate a general-
protection exception (#GP) in this situation, and the address that spans the end of
the segment may or may not wrap around to the beginning of the segment.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed.

VEX.256 encoded version: Moves 256 bits of packed single-precision floating-point
values from the source operand (second operand) to the destination operand (first
operand). This instruction can be used to load a YMM register from a 256-bit memory
location, to store the contents of a YMM register into a 256-bit memory location, or
to move data between two YMM registers.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise
instructions will #UD.

Operation

MOVUPS (128-bit load and register-copy form Legacy SSE version)
DEST[127:0] SRC[127:0]
DEST[VLMAX-1:128] (Unmodified)

(V)MOVUPS (128-bit store form)
DEST[127:0] SRC[127:0]

VMOVUPS (VEX.128 encoded load-form)
DEST[127:0] SRC[127:0]
DEST[VLMAX-1:128] 0

VMOVUPS (VEX.256 encoded version)

1. If alignment checking is enabled (CR0.AM = 1, RFLAGS.AC = 1, and CPL = 3), an alignment-check
exception (#AC) may or may not be generated (depending on processor implementation) when
the operand is not aligned on an 8-byte boundary.
Vol. 2B 4-133MOVUPS—Move Unaligned Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
DEST[255:0] SRC[255:0]

Intel C/C++ Compiler Intrinsic Equivalent

MOVUPS: __m128 _mm_loadu_ps(double * p)

MOVUPS: void _mm_storeu_ps(double *p, __m128 a)

VMOVUPS: __m256 _mm256_loadu_ps (__m256 * p);

VMOVUPS: _mm256_storeu_ps(_m256 *p, __m256 a);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4
Note treatment of #AC varies; additionally
#UD If VEX.vvvv != 1111B.
4-134 Vol. 2B MOVUPS—Move Unaligned Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
MOVZX—Move with Zero-Extend

Instruction Operand Encoding

Description

Copies the contents of the source operand (register or memory location) to the desti-
nation operand (register) and zero extends the value. The size of the converted value
depends on the operand-size attribute.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R
prefix permits access to additional registers (R8-R15). Use of the REX.W prefix
promotes operation to 64 bit operands. See the summary chart at the beginning of
this section for encoding data and limits.

Operation

DEST ← ZeroExtend(SRC);

Flags Affected

None.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F B6 /r MOVZX r16, r/m8 RM Valid Valid Move byte to word with
zero-extension.

0F B6 /r MOVZX r32, r/m8 RM Valid Valid Move byte to doubleword,
zero-extension.

REX.W + 0F B6
/r

MOVZX r64, r/m8* RM Valid N.E. Move byte to quadword,
zero-extension.

0F B7 /r MOVZX r32,
r/m16

RM Valid Valid Move word to doubleword,
zero-extension.

REX.W + 0F B7
/r

MOVZX r64,
r/m16

RM Valid N.E. Move word to quadword,
zero-extension.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if the REX prefix

is used: AH, BH, CH, DH.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
Vol. 2B 4-135MOVZX—Move with Zero-Extend

INSTRUCTION SET REFERENCE, M-Z
Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
4-136 Vol. 2B MOVZX—Move with Zero-Extend

INSTRUCTION SET REFERENCE, M-Z
MPSADBW — Compute Multiple Packed Sums of Absolute Difference

Instruction Operand Encoding

Description

MPSADBW sums the absolute difference (SAD) of a pair of unsigned bytes for a group
of 4 byte pairs, and produces 8 SAD results (one for each 4 byte-pairs) stored as 8
word integers in the destination operand (first operand). Each 4 byte pairs are
selected from the source operand (first operand) and the destination according to the
bit fields specified in the immediate byte (third operand).

The immediate byte provides two bit fields:

SRC_OFFSET: the value of Imm8[1:0]*32 specifies the offset of the 4 sequential
source bytes in the source operand.

DEST_OFFSET: the value of Imm8[2]*32 specifies the offset of the first of 8 groups
of 4 sequential destination bytes in the destination operand. The next four destina-
tion bytes starts at DEST_OFFSET + 8, etc.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

66 0F 3A 42 /r ib

MPSADBW xmm1, xmm2/m128,
imm8

RMI V/V SSE4_1 Sums absolute 8-bit integer
difference of adjacent
groups of 4 byte integers in
xmm1 and xmm2/m128
and writes the results in
xmm1. Starting offsets
within xmm1 and
xmm2/m128 are
determined by imm8.

VEX.NDS.128.66.0F3A.WIG 42 /r ib

VMPSADBW xmm1, xmm2,
xmm3/m128, imm8

RVMI V/V AVX Sums absolute 8-bit integer
difference of adjacent
groups of 4 byte integers in
xmm2 and xmm3/m128 and
writes the results in xmm1.
Starting offsets within
xmm2 and xmm3/m128 are
determined by imm8.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
Vol. 2B 4-137MPSADBW — Compute Multiple Packed Sums of Absolute Difference

INSTRUCTION SET REFERENCE, M-Z
The SAD operation is repeated 8 times, each time using the same 4 source bytes but
selecting the next group of 4 destination bytes starting at the next higher byte in the
destination. Each 16-bit sum is written to destination.
128-bit Legacy SSE version: The first source and destination are the same. Bits
(VLMAX-1:128) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed.
If VMPSADBW is encoded with VEX.L= 1, an attempt to execute the instruction
encoded with VEX.L= 1 will cause an #UD exception.

Operation

MPSADBW (128-bit Legacy SSE version)
SRC_OFFSET imm8[1:0]*32
DEST_OFFSET imm8[2]*32
DEST_BYTE0 DEST[DEST_OFFSET+7:DEST_OFFSET]
DEST_BYTE1 DEST[DEST_OFFSET+15:DEST_OFFSET+8]
DEST_BYTE2 DEST[DEST_OFFSET+23:DEST_OFFSET+16]
DEST_BYTE3 DEST[DEST_OFFSET+31:DEST_OFFSET+24]
DEST_BYTE4 DEST[DEST_OFFSET+39:DEST_OFFSET+32]
DEST_BYTE5 DEST[DEST_OFFSET+47:DEST_OFFSET+40]
DEST_BYTE6 DEST[DEST_OFFSET+55:DEST_OFFSET+48]
DEST_BYTE7 DEST[DEST_OFFSET+63:DEST_OFFSET+56]
DEST_BYTE8 DEST[DEST_OFFSET+71:DEST_OFFSET+64]
DEST_BYTE9 DEST[DEST_OFFSET+79:DEST_OFFSET+72]
DEST_BYTE10 DEST[DEST_OFFSET+87:DEST_OFFSET+80]

SRC_BYTE0 SRC[SRC_OFFSET+7:SRC_OFFSET]
SRC_BYTE1 SRC[SRC_OFFSET+15:SRC_OFFSET+8]
SRC_BYTE2 SRC[SRC_OFFSET+23:SRC_OFFSET+16]
SRC_BYTE3 SRC[SRC_OFFSET+31:SRC_OFFSET+24]

TEMP0 ABS(DEST_BYTE0 - SRC_BYTE0)
TEMP1 ABS(DEST_BYTE1 - SRC_BYTE1)
TEMP2 ABS(DEST_BYTE2 - SRC_BYTE2)
TEMP3 ABS(DEST_BYTE3 - SRC_BYTE3)
DEST[15:0] TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 ABS(DEST_BYTE1 - SRC_BYTE0)
TEMP1 ABS(DEST_BYTE2 - SRC_BYTE1)
TEMP2 ABS(DEST_BYTE3 - SRC_BYTE2)
TEMP3 ABS(DEST_BYTE4 - SRC_BYTE3)
DEST[31:16] TEMP0 + TEMP1 + TEMP2 + TEMP3
4-138 Vol. 2B MPSADBW — Compute Multiple Packed Sums of Absolute Difference

INSTRUCTION SET REFERENCE, M-Z
TEMP0 ABS(DEST_BYTE2 - SRC_BYTE0)
TEMP1 ABS(DEST_BYTE3 - SRC_BYTE1)
TEMP2 ABS(DEST_BYTE4 - SRC_BYTE2)
TEMP3 ABS(DEST_BYTE5 - SRC_BYTE3)
DEST[47:32] TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 ABS(DEST_BYTE3 - SRC_BYTE0)
TEMP1 ABS(DEST_BYTE4 - SRC_BYTE1)
TEMP2 ABS(DEST_BYTE5 - SRC_BYTE2)
TEMP3 ABS(DEST_BYTE6 - SRC_BYTE3)
DEST[63:48] TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 ABS(DEST_BYTE4 - SRC_BYTE0)
TEMP1 ABS(DEST_BYTE5 - SRC_BYTE1)
TEMP2 ABS(DEST_BYTE6 - SRC_BYTE2)
TEMP3 ABS(DEST_BYTE7 - SRC_BYTE3)
DEST[79:64] TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 ABS(DEST_BYTE5 - SRC_BYTE0)
TEMP1 ABS(DEST_BYTE6 - SRC_BYTE1)
TEMP2 ABS(DEST_BYTE7 - SRC_BYTE2)
TEMP3 ABS(DEST_BYTE8 - SRC_BYTE3)
DEST[95:80] TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 ABS(DEST_BYTE6 - SRC_BYTE0)
TEMP1 ABS(DEST_BYTE7 - SRC_BYTE1)
TEMP2 ABS(DEST_BYTE8 - SRC_BYTE2)
TEMP3 ABS(DEST_BYTE9 - SRC_BYTE3)
DEST[111:96] TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 ABS(DEST_BYTE7 - SRC_BYTE0)
TEMP1 ABS(DEST_BYTE8 - SRC_BYTE1)
TEMP2 ABS(DEST_BYTE9 - SRC_BYTE2)
TEMP3 ABS(DEST_BYTE10 - SRC_BYTE3)
DEST[127:112] TEMP0 + TEMP1 + TEMP2 + TEMP3
DEST[VLMAX-1:128] (Unmodified)

VMPSADBW (VEX.128 encoded version)
SRC2_OFFSET imm8[1:0]*32
SRC1_OFFSET imm8[2]*32
SRC1_BYTE0 SRC1[SRC1_OFFSET+7:SRC1_OFFSET]
SRC1_BYTE1 SRC1[SRC1_OFFSET+15:SRC1_OFFSET+8]
Vol. 2B 4-139MPSADBW — Compute Multiple Packed Sums of Absolute Difference

INSTRUCTION SET REFERENCE, M-Z
SRC1_BYTE2 SRC1[SRC1_OFFSET+23:SRC1_OFFSET+16]
SRC1_BYTE3 SRC1[SRC1_OFFSET+31:SRC1_OFFSET+24]
SRC1_BYTE4 SRC1[SRC1_OFFSET+39:SRC1_OFFSET+32]
SRC1_BYTE5 SRC1[SRC1_OFFSET+47:SRC1_OFFSET+40]
SRC1_BYTE6 SRC1[SRC1_OFFSET+55:SRC1_OFFSET+48]
SRC1_BYTE7 SRC1[SRC1_OFFSET+63:SRC1_OFFSET+56]
SRC1_BYTE8 SRC1[SRC1_OFFSET+71:SRC1_OFFSET+64]
SRC1_BYTE9 SRC1[SRC1_OFFSET+79:SRC1_OFFSET+72]
SRC1_BYTE10 SRC1[SRC1_OFFSET+87:SRC1_OFFSET+80]

SRC2_BYTE0 SRC2[SRC2_OFFSET+7:SRC2_OFFSET]
SRC2_BYTE1 SRC2[SRC2_OFFSET+15:SRC2_OFFSET+8]
SRC2_BYTE2 SRC2[SRC2_OFFSET+23:SRC2_OFFSET+16]
SRC2_BYTE3 SRC2[SRC2_OFFSET+31:SRC2_OFFSET+24]

TEMP0 ABS(SRC1_BYTE0 - SRC2_BYTE0)
TEMP1 ABS(SRC1_BYTE1 - SRC2_BYTE1)
TEMP2 ABS(SRC1_BYTE2 - SRC2_BYTE2)
TEMP3 ABS(SRC1_BYTE3 - SRC2_BYTE3)
DEST[15:0] TEMP0 + TEMP1 + TEMP2 + TEMP3
TEMP0 ABS(SRC1_BYTE1 - SRC2_BYTE0)
TEMP1 ABS(SRC1_BYTE2 - SRC2_BYTE1)
TEMP2 ABS(SRC1_BYTE3 - SRC2_BYTE2)
TEMP3 ABS(SRC1_BYTE4 - SRC2_BYTE3)
DEST[31:16] TEMP0 + TEMP1 + TEMP2 + TEMP3
TEMP0 ABS(SRC1_BYTE2 - SRC2_BYTE0)
TEMP1 ABS(SRC1_BYTE3 - SRC2_BYTE1)
TEMP2 ABS(SRC1_BYTE4 - SRC2_BYTE2)
TEMP3 ABS(SRC1_BYTE5 - SRC2_BYTE3)
DEST[47:32] TEMP0 + TEMP1 + TEMP2 + TEMP3
TEMP0 ABS(SRC1_BYTE3 - SRC2_BYTE0)
TEMP1 ABS(SRC1_BYTE4 - SRC2_BYTE1)
TEMP2 ABS(SRC1_BYTE5 - SRC2_BYTE2)
TEMP3 ABS(SRC1_BYTE6 - SRC2_BYTE3)
DEST[63:48] TEMP0 + TEMP1 + TEMP2 + TEMP3
TEMP0 ABS(SRC1_BYTE4 - SRC2_BYTE0)
TEMP1 ABS(SRC1_BYTE5 - SRC2_BYTE1)
TEMP2 ABS(SRC1_BYTE6 - SRC2_BYTE2)
TEMP3 ABS(SRC1_BYTE7 - SRC2_BYTE3)
DEST[79:64] TEMP0 + TEMP1 + TEMP2 + TEMP3
TEMP0 ABS(SRC1_BYTE5 - SRC2_BYTE0)
TEMP1 ABS(SRC1_BYTE6 - SRC2_BYTE1)
TEMP2 ABS(SRC1_BYTE7 - SRC2_BYTE2)
4-140 Vol. 2B MPSADBW — Compute Multiple Packed Sums of Absolute Difference

INSTRUCTION SET REFERENCE, M-Z
TEMP3 ABS(SRC1_BYTE8 - SRC2_BYTE3)
DEST[95:80] TEMP0 + TEMP1 + TEMP2 + TEMP3
TEMP0 ABS(SRC1_BYTE6 - SRC2_BYTE0)
TEMP1 ABS(SRC1_BYTE7 - SRC2_BYTE1)
TEMP2 ABS(SRC1_BYTE8 - SRC2_BYTE2)
TEMP3 ABS(SRC1_BYTE9 - SRC2_BYTE3)
DEST[111:96] TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 ABS(SRC1_BYTE7 - SRC2_BYTE0)
TEMP1 ABS(SRC1_BYTE8 - SRC2_BYTE1)
TEMP2 ABS(SRC1_BYTE9 - SRC2_BYTE2)
TEMP3 ABS(SRC1_BYTE10 - SRC2_BYTE3)
DEST[127:112] TEMP0 + TEMP1 + TEMP2 + TEMP3
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

MPSADBW: __m128i _mm_mpsadbw_epu8 (__m128i s1, __m128i s2, const int mask);

Flags Affected

None

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
Vol. 2B 4-141MPSADBW — Compute Multiple Packed Sums of Absolute Difference

INSTRUCTION SET REFERENCE, M-Z
MUL—Unsigned Multiply

Instruction Operand Encoding

Description

Performs an unsigned multiplication of the first operand (destination operand) and
the second operand (source operand) and stores the result in the destination
operand. The destination operand is an implied operand located in register AL, AX or
EAX (depending on the size of the operand); the source operand is located in a
general-purpose register or a memory location. The action of this instruction and the
location of the result depends on the opcode and the operand size as shown in Table
4-9.

The result is stored in register AX, register pair DX:AX, or register pair EDX:EAX
(depending on the operand size), with the high-order bits of the product contained in
register AH, DX, or EDX, respectively. If the high-order bits of the product are 0, the
CF and OF flags are cleared; otherwise, the flags are set.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R
prefix permits access to additional registers (R8-R15). Use of the REX.W prefix
promotes operation to 64 bits.

See the summary chart at the beginning of this section for encoding data and limits.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

F6 /4 MUL r/m8 M Valid Valid Unsigned multiply (AX ← AL
∗ r/m8).

REX + F6 /4 MUL r/m8* M Valid N.E. Unsigned multiply (AX ← AL
∗ r/m8).

F7 /4 MUL r/m16 M Valid Valid Unsigned multiply (DX:AX ←
AX ∗ r/m16).

F7 /4 MUL r/m32 M Valid Valid Unsigned multiply (EDX:EAX
← EAX ∗ r/m32).

REX.W + F7 /4 MUL r/m64 M Valid N.E. Unsigned multiply (RDX:RAX
← RAX ∗ r/m64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is

used: AH, BH, CH, DH.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA
4-142 Vol. 2B MUL—Unsigned Multiply

INSTRUCTION SET REFERENCE, M-Z
Operation

IF (Byte operation)
THEN

AX ← AL ∗ SRC;
ELSE (* Word or doubleword operation *)

IF OperandSize = 16
THEN

DX:AX ← AX ∗ SRC;
ELSE IF OperandSize = 32

THEN EDX:EAX ← EAX ∗ SRC; FI;
ELSE (* OperandSize = 64 *)

RDX:RAX ← RAX ∗ SRC;
FI;

FI;

Flags Affected

The OF and CF flags are set to 0 if the upper half of the result is 0; otherwise, they
are set to 1. The SF, ZF, AF, and PF flags are undefined.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Table 4-9. MUL Results
Operand Size Source 1 Source 2 Destination

Byte AL r/m8 AX

Word AX r/m16 DX:AX

Doubleword EAX r/m32 EDX:EAX

Quadword RAX r/m64 RDX:RAX
Vol. 2B 4-143MUL—Unsigned Multiply

INSTRUCTION SET REFERENCE, M-Z
Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
4-144 Vol. 2B MUL—Unsigned Multiply

INSTRUCTION SET REFERENCE, M-Z
MULPD—Multiply Packed Double-Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a SIMD multiply of the two or four packed double-precision floating-point
values from the source operand (second operand) and the destination operand (first
operand), and stores the packed double-precision floating-point results in the desti-
nation operand. The source operand can be an XMM register or a 128-bit memory
location. The destination operand is an XMM register. See Figure 11-3 in the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for an illustra-
tion of a SIMD double-precision floating-point operation.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the destination YMM register destination are zeroed.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

66 0F 59 /r

MULPD xmm1, xmm2/m128

RM V/V SSE2 Multiply packed double-
precision floating-point
values in xmm2/m128 by
xmm1.

VEX.NDS.128.66.0F.WIG 59 /r

VMULPD xmm1,xmm2, xmm3/m128

RVM V/V AVX Multiply packed double-
precision floating-point
values from xmm3/mem to
xmm2 and stores result in
xmm1.

VEX.NDS.256.66.0F.WIG 59 /r
VMULPD ymm1, ymm2,
ymm3/m256

RVM V/V AVX Multiply packed double-
precision floating-point
values from ymm3/mem to
ymm2 and stores result in
ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-145MULPD—Multiply Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

Operation

MULPD (128-bit Legacy SSE version)
DEST[63:0] DEST[63:0] * SRC[63:0]
DEST[127:64] DEST[127:64] * SRC[127:64]
DEST[VLMAX-1:128] (Unmodified)

VMULPD (VEX.128 encoded version)
DEST[63:0] SRC1[63:0] * SRC2[63:0]
DEST[127:64] SRC1[127:64] * SRC2[127:64]
DEST[VLMAX-1:128] 0

VMULPD (VEX.256 encoded version)
DEST[63:0] SRC1[63:0] * SRC2[63:0]
DEST[127:64] SRC1[127:64] * SRC2[127:64]
DEST[191:128] SRC1[191:128] * SRC2[191:128]
DEST[255:192] SRC1[255:192] * SRC2[255:192]

Intel C/C++ Compiler Intrinsic Equivalent

MULPD: __m128d _mm_mul_pd (m128d a, m128d b)

VMULPD: __m256d _mm256_mul_pd (__m256d a, __m256d b);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
See Exceptions Type 2
4-146 Vol. 2B MULPD—Multiply Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
MULPS—Multiply Packed Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a SIMD multiply of the four packed single-precision floating-point values
from the source operand (second operand) and the destination operand (first
operand), and stores the packed single-precision floating-point results in the desti-
nation operand. See Figure 10-5 in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1, for an illustration of a SIMD single-precision floating-
point operation.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the destination YMM register destination are zeroed.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

0F 59 /r

MULPS xmm1, xmm2/m128

RM V/V SSE Multiply packed single-
precision floating-point
values in xmm2/mem by
xmm1.

VEX.NDS.128.0F.WIG 59 /r

VMULPS xmm1,xmm2, xmm3/m128

RVM V/V AVX Multiply packed single-
precision floating-point
values from xmm3/mem to
xmm2 and stores result in
xmm1.

VEX.NDS.256.0F.WIG 59 /r

VMULPS ymm1, ymm2, ymm3/m256

RVM V/V AVX Multiply packed single-
precision floating-point
values from ymm3/mem to
ymm2 and stores result in
ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-147MULPS—Multiply Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

Operation

MULPS (128-bit Legacy SSE version)
DEST[31:0] SRC1[31:0] * SRC2[31:0]
DEST[63:32] SRC1[63:32] * SRC2[63:32]
DEST[95:64] SRC1[95:64] * SRC2[95:64]
DEST[127:96] SRC1[127:96] * SRC2[127:96]
DEST[VLMAX-1:128] (Unmodified)

VMULPS (VEX.128 encoded version)
DEST[31:0] SRC1[31:0] * SRC2[31:0]
DEST[63:32] SRC1[63:32] * SRC2[63:32]
DEST[95:64] SRC1[95:64] * SRC2[95:64]
DEST[127:96] SRC1[127:96] * SRC2[127:96]
DEST[VLMAX-1:128] 0

VMULPS (VEX.256 encoded version)
DEST[31:0] SRC1[31:0] * SRC2[31:0]
DEST[63:32] SRC1[63:32] * SRC2[63:32]
DEST[95:64] SRC1[95:64] * SRC2[95:64]
DEST[127:96] SRC1[127:96] * SRC2[127:96]
DEST[159:128] SRC1[159:128] * SRC2[159:128]
DEST[191:160] SRC1[191:160] * SRC2[191:160]
DEST[223:192] SRC1[223:192] * SRC2[223:192]
DEST[255:224] SRC1[255:224] * SRC2[255:224].

Intel C/C++ Compiler Intrinsic Equivalent

MULPS: __m128 _mm_mul_ps(__m128 a, __m128 b)

VMULPS: __m256 _mm256_mul_ps (__m256 a, __m256 b);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
See Exceptions Type 2
4-148 Vol. 2B MULPS—Multiply Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
MULSD—Multiply Scalar Double-Precision Floating-Point Values

Instruction Operand Encoding

Description

Multiplies the low double-precision floating-point value in the source operand
(second operand) by the low double-precision floating-point value in the destination
operand (first operand), and stores the double-precision floating-point result in the
destination operand. The source operand can be an XMM register or a 64-bit memory
location. The destination operand is an XMM register. The high quadword of the desti-
nation operand remains unchanged. See Figure 11-4 in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1, for an illustration of a scalar
double-precision floating-point operation.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
128-bit Legacy SSE version: The first source operand and the destination operand
are the same. Bits (VLMAX-1:64) of the corresponding YMM destination register
remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed.

Operation

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

F2 0F 59 /r

MULSD xmm1, xmm2/m64

RM V/V SSE2 Multiply the low double-
precision floating-point
value in xmm2/mem64 by
low double-precision
floating-point value in
xmm1.

VEX.NDS.LIG.F2.0F.WIG 59/r

VMULSD xmm1,xmm2, xmm3/m64

RVM V/V AVX Multiply the low double-
precision floating-point
value in xmm3/mem64 by
low double precision
floating-point value in
xmm2.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-149MULSD—Multiply Scalar Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
MULSD (128-bit Legacy SSE version)
DEST[63:0] DEST[63:0] * SRC[63:0]
DEST[VLMAX-1:64] (Unmodified)

VMULSD (VEX.128 encoded version)
DEST[63:0] SRC1[63:0] * SRC2[63:0]
DEST[127:64] SRC1[127:64]
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

MULSD: __m128d _mm_mul_sd (m128d a, m128d b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
See Exceptions Type 3
4-150 Vol. 2B MULSD—Multiply Scalar Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
MULSS—Multiply Scalar Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

Multiplies the low single-precision floating-point value from the source operand
(second operand) by the low single-precision floating-point value in the destination
operand (first operand), and stores the single-precision floating-point result in the
destination operand. The source operand can be an XMM register or a 32-bit memory
location. The destination operand is an XMM register. The three high-order double-
words of the destination operand remain unchanged. See Figure 10-6 in the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for an illustra-
tion of a scalar single-precision floating-point operation.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
128-bit Legacy SSE version: The first source operand and the destination operand
are the same. Bits (VLMAX-1:32) of the corresponding YMM destination register
remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed.

Operation

MULSS (128-bit Legacy SSE version)

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

F3 0F 59 /r

MULSS xmm1, xmm2/m32

RM V/V SSE Multiply the low single-
precision floating-point
value in xmm2/mem by the
low single-precision
floating-point value in
xmm1.

VEX.NDS.LIG.F3.0F.WIG 59 /r

VMULSS xmm1,xmm2, xmm3/m32

RVM V/V AVX Multiply the low single-
precision floating-point
value in xmm3/mem by the
low single-precision floating-
point value in xmm2.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-151MULSS—Multiply Scalar Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
DEST[31:0] DEST[31:0] * SRC[31:0]
DEST[VLMAX-1:32] (Unmodified)

VMULSS (VEX.128 encoded version)
DEST[31:0] SRC1[31:0] * SRC2[31:0]
DEST[127:32] SRC1[127:32]
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

MULSS: __m128 _mm_mul_ss(__m128 a, __m128 b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
See Exceptions Type 3
4-152 Vol. 2B MULSS—Multiply Scalar Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
MWAIT—Monitor Wait

Instruction Operand Encoding

Description

MWAIT instruction provides hints to allow the processor to enter an implementation-
dependent optimized state. There are two principal targeted usages: address-range
monitor and advanced power management. Both usages of MWAIT require the use of
the MONITOR instruction.

CPUID.01H:ECX.MONITOR[bit 3] indicates the availability of MONITOR and MWAIT in
the processor. When set, MWAIT may be executed only at privilege level 0 (use at any
other privilege level results in an invalid-opcode exception). The operating system or
system BIOS may disable this instruction by using the IA32_MISC_ENABLE MSR;
disabling MWAIT clears the CPUID feature flag and causes execution to generate an
invalid-opcode exception.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

ECX specifies optional extensions for the MWAIT instruction. EAX may contain hints
such as the preferred optimized state the processor should enter. The first processors
to implement MWAIT supported only the zero value for EAX and ECX. Later proces-
sors allowed setting ECX[0] to enable masked interrupts as break events for MWAIT
(see below). Software can use the CPUID instruction to determine the extensions and
hints supported by the processor.

MWAIT for Address Range Monitoring

For address-range monitoring, the MWAIT instruction operates with the MONITOR
instruction. The two instructions allow the definition of an address at which to wait
(MONITOR) and a implementation-dependent-optimized operation to commence at
the wait address (MWAIT). The execution of MWAIT is a hint to the processor that it
can enter an implementation-dependent-optimized state while waiting for an event
or a store operation to the address range armed by MONITOR.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 01 C9 MWAIT NP Valid Valid A hint that allow the
processor to stop
instruction execution and
enter an implementation-
dependent optimized state
until occurrence of a class of
events.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
Vol. 2B 4-153MWAIT—Monitor Wait

INSTRUCTION SET REFERENCE, M-Z
The following cause the processor to exit the implementation-dependent-optimized
state: a store to the address range armed by the MONITOR instruction, an NMI or
SMI, a debug exception, a machine check exception, the BINIT# signal, the INIT#
signal, and the RESET# signal. Other implementation-dependent events may also
cause the processor to exit the implementation-dependent-optimized state.

In addition, an external interrupt causes the processor to exit the implementation-
dependent-optimized state either (1) if the interrupt would be delivered to software
(e.g., as it would be if HLT had been executed instead of MWAIT); or (2) if ECX[0] =
1. Software can execute MWAIT with ECX[0] = 1 only if CPUID.05H:ECX[bit 1] = 1.
(Implementation-specific conditions may result in an interrupt causing the processor
to exit the implementation-dependent-optimized state even if interrupts are masked
and ECX[0] = 0.)

Following exit from the implementation-dependent-optimized state, control passes
to the instruction following the MWAIT instruction. A pending interrupt that is not
masked (including an NMI or an SMI) may be delivered before execution of that
instruction. Unlike the HLT instruction, the MWAIT instruction does not support a
restart at the MWAIT instruction following the handling of an SMI.

If the preceding MONITOR instruction did not successfully arm an address range or if
the MONITOR instruction has not been executed prior to executing MWAIT, then the
processor will not enter the implementation-dependent-optimized state. Execution
will resume at the instruction following the MWAIT.

MWAIT for Power Management

MWAIT accepts a hint and optional extension to the processor that it can enter a
specified target C state while waiting for an event or a store operation to the address
range armed by MONITOR. Support for MWAIT extensions for power management is
indicated by CPUID.05H:ECX[bit 0] reporting 1.

EAX and ECX are used to communicate the additional information to the MWAIT
instruction, such as the kind of optimized state the processor should enter. ECX spec-
ifies optional extensions for the MWAIT instruction. EAX may contain hints such as
the preferred optimized state the processor should enter. Implementation-specific
conditions may cause a processor to ignore the hint and enter a different optimized
state. Future processor implementations may implement several optimized “waiting”
states and will select among those states based on the hint argument.

Table 4-10 describes the meaning of ECX and EAX registers for MWAIT extensions.

Table 4-10. MWAIT Extension Register (ECX)
Bits Description

0 Treat interrupts as break events even if masked (e.g., even if EFLAGS.IF=0).
May be set only if CPUID.05H:ECX[bit 1] = 1.

31: 1 Reserved
4-154 Vol. 2B MWAIT—Monitor Wait

INSTRUCTION SET REFERENCE, M-Z
Note that if MWAIT is used to enter any of the C-states that are numerically higher
than C1, a store to the address range armed by the MONITOR instruction will cause
the processor to exit MWAIT only if the store was originated by other processor
agents. A store from non-processor agent might not cause the processor to exit
MWAIT in such cases.

For additional details of MWAIT extensions, see Chapter 14, “Power and Thermal
Management,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A.

Operation

(* MWAIT takes the argument in EAX as a hint extension and is architected to take the argument in
ECX as an instruction extension MWAIT EAX, ECX *)
{
WHILE (("Monitor Hardware is in armed state")) {

implementation_dependent_optimized_state(EAX, ECX); }
Set the state of Monitor Hardware as triggered;
}

Intel C/C++ Compiler Intrinsic Equivalent

MWAIT: void _mm_mwait(unsigned extensions, unsigned hints)

Example

MONITOR/MWAIT instruction pair must be coded in the same loop because execution
of the MWAIT instruction will trigger the monitor hardware. It is not a proper usage
to execute MONITOR once and then execute MWAIT in a loop. Setting up MONITOR
without executing MWAIT has no adverse effects.

Typically the MONITOR/MWAIT pair is used in a sequence, such as:

EAX = Logical Address(Trigger)

Table 4-11. MWAIT Hints Register (EAX)
Bits Description

3 : 0 Sub C-state within a C-state, indicated by bits [7:4]

7 : 4 Target C-state*

Value of 0 means C1; 1 means C2 and so on

Value of 01111B means C0

Note: Target C states for MWAIT extensions are processor-specific C-
states, not ACPI C-states

31: 8 Reserved
Vol. 2B 4-155MWAIT—Monitor Wait

INSTRUCTION SET REFERENCE, M-Z
ECX = 0 (*Hints *)
EDX = 0 (* Hints *)

IF (!trigger_store_happened) {
MONITOR EAX, ECX, EDX
IF (!trigger_store_happened) {

MWAIT EAX, ECX
}

}

The above code sequence makes sure that a triggering store does not happen
between the first check of the trigger and the execution of the monitor instruction.
Without the second check that triggering store would go un-noticed. Typical usage of
MONITOR and MWAIT would have the above code sequence within a loop.

Numeric Exceptions
None

Protected Mode Exceptions
#GP(0) If ECX[31:1] ≠ 0.

If ECX[0] = 1 and CPUID.05H:ECX[bit 1] = 0.
#UD If CPUID.01H:ECX.MONITOR[bit 3] = 0.

If current privilege level is not 0.

Real Address Mode Exceptions
#GP If ECX[31:1] ≠ 0.

If ECX[0] = 1 and CPUID.05H:ECX[bit 1] = 0.
#UD If CPUID.01H:ECX.MONITOR[bit 3] = 0.

Virtual 8086 Mode Exceptions
#UD The MWAIT instruction is not recognized in virtual-8086 mode

(even if CPUID.01H:ECX.MONITOR[bit 3] = 1).

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If RCX[63:1] ≠ 0.

If RCX[0] = 1 and CPUID.05H:ECX[bit 1] = 0.
#UD If the current privilege level is not 0.

If CPUID.01H:ECX.MONITOR[bit 3] = 0.
4-156 Vol. 2B MWAIT—Monitor Wait

INSTRUCTION SET REFERENCE, M-Z
NEG—Two's Complement Negation

Instruction Operand Encoding

Description

Replaces the value of operand (the destination operand) with its two's complement.
(This operation is equivalent to subtracting the operand from 0.) The destination
operand is located in a general-purpose register or a memory location.

This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

Operation

IF DEST = 0
THEN CF ← 0;
ELSE CF ← 1;

FI;
DEST ← [– (DEST)]

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

F6 /3 NEG r/m8 M Valid Valid Two's complement negate
r/m8.

REX + F6 /3 NEG r/m8* M Valid N.E. Two's complement negate
r/m8.

F7 /3 NEG r/m16 M Valid Valid Two's complement negate
r/m16.

F7 /3 NEG r/m32 M Valid Valid Two's complement negate
r/m32.

REX.W + F7 /3 NEG r/m64 M Valid N.E. Two's complement negate
r/m64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is

used: AH, BH, CH, DH.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r, w) NA NA NA
Vol. 2B 4-157NEG—Two's Complement Negation

INSTRUCTION SET REFERENCE, M-Z
Flags Affected

The CF flag set to 0 if the source operand is 0; otherwise it is set to 1. The OF, SF, ZF,
AF, and PF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory

operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#UD If the LOCK prefix is used but the destination is not a memory

operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used but the destination is not a memory

operand.

Compatibility Mode Exceptions
Same as for protected mode exceptions.
4-158 Vol. 2B NEG—Two's Complement Negation

INSTRUCTION SET REFERENCE, M-Z
64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory

operand.
Vol. 2B 4-159NEG—Two's Complement Negation

INSTRUCTION SET REFERENCE, M-Z
NOP—No Operation

Instruction Operand Encoding

Description

This instruction performs no operation. It is a one-byte or multi-byte NOP that takes
up space in the instruction stream but does not impact machine context, except for
the EIP register.

The multi-byte form of NOP is available on processors with model encoding:
• CPUID.01H.EAX[Bytes 11:8] = 0110B or 1111B

The multi-byte NOP instruction does not alter the content of a register and will not
issue a memory operation. The instruction’s operation is the same in non-64-bit
modes and 64-bit mode.

Operation

The one-byte NOP instruction is an alias mnemonic for the XCHG (E)AX, (E)AX
instruction.

The multi-byte NOP instruction performs no operation on supported processors and
generates undefined opcode exception on processors that do not support the multi-
byte NOP instruction.

The memory operand form of the instruction allows software to create a byte
sequence of “no operation” as one instruction. For situations where multiple-byte
NOPs are needed, the recommended operations (32-bit mode and 64-bit mode) are:

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

90 NOP NP Valid Valid One byte no-operation
instruction.

0F 1F /0 NOP r/m16 M Valid Valid Multi-byte no-operation
instruction.

0F 1F /0 NOP r/m32 M Valid Valid Multi-byte no-operation
instruction.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

M ModRM:r/m (r) NA NA NA
4-160 Vol. 2B NOP—No Operation

INSTRUCTION SET REFERENCE, M-Z
Flags Affected

None.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

Table 4-12. Recommended Multi-Byte Sequence of NOP Instruction

Length Assembly Byte Sequence

2 bytes 66 NOP 66 90H

3 bytes NOP DWORD ptr [EAX] 0F 1F 00H

4 bytes NOP DWORD ptr [EAX + 00H] 0F 1F 40 00H

5 bytes NOP DWORD ptr [EAX + EAX*1 + 00H] 0F 1F 44 00 00H

6 bytes 66 NOP DWORD ptr [EAX + EAX*1 + 00H] 66 0F 1F 44 00 00H

7 bytes NOP DWORD ptr [EAX + 00000000H] 0F 1F 80 00 00 00 00H

8 bytes NOP DWORD ptr [EAX + EAX*1 + 00000000H] 0F 1F 84 00 00 00 00 00H

9 bytes 66 NOP DWORD ptr [EAX + EAX*1 +
00000000H]

66 0F 1F 84 00 00 00 00
00H
Vol. 2B 4-161NOP—No Operation

INSTRUCTION SET REFERENCE, M-Z
NOT—One's Complement Negation

Instruction Operand Encoding

Description

Performs a bitwise NOT operation (each 1 is set to 0, and each 0 is set to 1) on the
destination operand and stores the result in the destination operand location. The
destination operand can be a register or a memory location.

This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

Operation

DEST ← NOT DEST;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

F6 /2 NOT r/m8 M Valid Valid Reverse each bit of r/m8.

REX + F6 /2 NOT r/m8* M Valid N.E. Reverse each bit of r/m8.

F7 /2 NOT r/m16 M Valid Valid Reverse each bit of r/m16.

F7 /2 NOT r/m32 M Valid Valid Reverse each bit of r/m32.

REX.W + F7 /2 NOT r/m64 M Valid N.E. Reverse each bit of r/m64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is

used: AH, BH, CH, DH.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r, w) NA NA NA
4-162 Vol. 2B NOT—One's Complement Negation

INSTRUCTION SET REFERENCE, M-Z
If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory

operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#UD If the LOCK prefix is used but the destination is not a memory

operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used but the destination is not a memory

operand.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory

operand.
Vol. 2B 4-163NOT—One's Complement Negation

INSTRUCTION SET REFERENCE, M-Z
OR—Logical Inclusive OR
Opcode Instruction Op/

En
64-Bit
Mode

Compat/
Leg Mode

Description

0C ib OR AL, imm8 I Valid Valid AL OR imm8.

0D iw OR AX, imm16 I Valid Valid AX OR imm16.

0D id OR EAX, imm32 I Valid Valid EAX OR imm32.

REX.W + 0D id OR RAX, imm32 I Valid N.E. RAX OR imm32 (sign-
extended).

80 /1 ib OR r/m8, imm8 MI Valid Valid r/m8 OR imm8.

REX + 80 /1 ib OR r/m8*, imm8 MI Valid N.E. r/m8 OR imm8.

81 /1 iw OR r/m16, imm16 MI Valid Valid r/m16 OR imm16.

81 /1 id OR r/m32, imm32 MI Valid Valid r/m32 OR imm32.

REX.W + 81 /1
id

OR r/m64, imm32 MI Valid N.E. r/m64 OR imm32 (sign-
extended).

83 /1 ib OR r/m16, imm8 MI Valid Valid r/m16 OR imm8 (sign-
extended).

83 /1 ib OR r/m32, imm8 MI Valid Valid r/m32 OR imm8 (sign-
extended).

REX.W + 83 /1
ib

OR r/m64, imm8 MI Valid N.E. r/m64 OR imm8 (sign-
extended).

08 /r OR r/m8, r8 MR Valid Valid r/m8 OR r8.

REX + 08 /r OR r/m8*, r8* MR Valid N.E. r/m8 OR r8.

09 /r OR r/m16, r16 MR Valid Valid r/m16 OR r16.

09 /r OR r/m32, r32 MR Valid Valid r/m32 OR r32.

REX.W + 09 /r OR r/m64, r64 MR Valid N.E. r/m64 OR r64.

0A /r OR r8, r/m8 RM Valid Valid r8 OR r/m8.

REX + 0A /r OR r8*, r/m8* RM Valid N.E. r8 OR r/m8.

0B /r OR r16, r/m16 RM Valid Valid r16 OR r/m16.

0B /r OR r32, r/m32 RM Valid Valid r32 OR r/m32.

REX.W + 0B /r OR r64, r/m64 RM Valid N.E. r64 OR r/m64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is

used: AH, BH, CH, DH.
4-164 Vol. 2B OR—Logical Inclusive OR

INSTRUCTION SET REFERENCE, M-Z
Instruction Operand Encoding

Description

Performs a bitwise inclusive OR operation between the destination (first) and source
(second) operands and stores the result in the destination operand location. The
source operand can be an immediate, a register, or a memory location; the destina-
tion operand can be a register or a memory location. (However, two memory oper-
ands cannot be used in one instruction.) Each bit of the result of the OR instruction is
set to 0 if both corresponding bits of the first and second operands are 0; otherwise,
each bit is set to 1.

This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

Operation

DEST ← DEST OR SRC;

Flags Affected

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the
result. The state of the AF flag is undefined.

Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

I AL/AX/EAX/RAX imm8/16/32 NA NA

MI ModRM:r/m (r, w) imm8/16/32 NA NA

MR ModRM:r/m (r, w) ModRM:reg (r) NA NA

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
Vol. 2B 4-165OR—Logical Inclusive OR

INSTRUCTION SET REFERENCE, M-Z
#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#UD If the LOCK prefix is used but the destination is not a memory

operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used but the destination is not a memory

operand.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory

operand.
4-166 Vol. 2B OR—Logical Inclusive OR

INSTRUCTION SET REFERENCE, M-Z
ORPD—Bitwise Logical OR of Double-Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a bitwise logical OR of the two or four packed double-precision floating-
point values from the first source operand and the second source operand, and stores
the result in the destination operand

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the destination YMM register destination are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.
If VORPD is encoded with VEX.L= 1, an attempt to execute the instruction encoded
with VEX.L= 1 will cause an #UD exception.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 56 /r

ORPD xmm1, xmm2/m128

RM V/V SSE2 Bitwise OR of xmm2/m128
and xmm1.

VEX.NDS.128.66.0F.WIG 56 /r
VORPD xmm1,xmm2, xmm3/m128

RVM V/V AVX Return the bitwise logical
OR of packed double-
precision floating-point
values in xmm2 and
xmm3/mem.

VEX.NDS.256.66.0F.WIG 56 /r

VORPD ymm1, ymm2, ymm3/m256

RVM V/V AVX Return the bitwise logical
OR of packed double-
precision floating-point
values in ymm2 and
ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-167ORPD—Bitwise Logical OR of Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
Operation

ORPD (128-bit Legacy SSE version)
DEST[63:0] DEST[63:0] BITWISE OR SRC[63:0]
DEST[127:64] DEST[127:64] BITWISE OR SRC[127:64]
DEST[VLMAX-1:128] (Unmodified)

VORPD (VEX.128 encoded version)
DEST[63:0] SRC1[63:0] BITWISE OR SRC2[63:0]
DEST[127:64] SRC1[127:64] BITWISE OR SRC2[127:64]
DEST[VLMAX-1:128] 0

VORPD (VEX.256 encoded version)
DEST[63:0] SRC1[63:0] BITWISE OR SRC2[63:0]
DEST[127:64] SRC1[127:64] BITWISE OR SRC2[127:64]
DEST[191:128] SRC1[191:128] BITWISE OR SRC2[191:128]
DEST[255:192] SRC1[255:192] BITWISE OR SRC2[255:192]

Intel® C/C++ Compiler Intrinsic Equivalent

ORPD: __m128d _mm_or_pd(__m128d a, __m128d b);

VORPD: __m256d _mm256_or_pd (__m256d a, __m256d b);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
4-168 Vol. 2B ORPD—Bitwise Logical OR of Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
ORPS—Bitwise Logical OR of Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a bitwise logical OR of the four or eight packed single-precision floating-
point values from the first source operand and the second source operand, and stores
the result in the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the destination YMM register destination are zeroed.
VEX.256 Encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.
If VORPS is encoded with VEX.L= 1, an attempt to execute the instruction encoded
with VEX.L= 1 will cause an #UD exception.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 56 /r

ORPS xmm1, xmm2/m128

RM V/V SSE Bitwise OR of xmm1 and
xmm2/m128.

VEX.NDS.128.0F.WIG 56 /r

VORPS xmm1, xmm2, xmm3/m128

RVM V/V AVX Return the bitwise logical
OR of packed single-
precision floating-point
values in xmm2 and
xmm3/mem.

VEX.NDS.256.0F.WIG 56 /r

VORPS ymm1, ymm2, ymm3/m256

RVM V/V AVX Return the bitwise logical
OR of packed single-
precision floating-point
values in ymm2 and
ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-169ORPS—Bitwise Logical OR of Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
Operation

ORPS (128-bit Legacy SSE version)
DEST[31:0] SRC1[31:0] BITWISE OR SRC2[31:0]
DEST[63:32] SRC1[63:32] BITWISE OR SRC2[63:32]
DEST[95:64] SRC1[95:64] BITWISE OR SRC2[95:64]
DEST[127:96] SRC1[127:96] BITWISE OR SRC2[127:96]
DEST[VLMAX-1:128] (Unmodified)

VORPS (VEX.128 encoded version)
DEST[31:0] SRC1[31:0] BITWISE OR SRC2[31:0]
DEST[63:32] SRC1[63:32] BITWISE OR SRC2[63:32]
DEST[95:64] SRC1[95:64] BITWISE OR SRC2[95:64]
DEST[127:96] SRC1[127:96] BITWISE OR SRC2[127:96]
DEST[VLMAX-1:128] 0

VORPS (VEX.256 encoded version)
DEST[31:0] SRC1[31:0] BITWISE OR SRC2[31:0]
DEST[63:32] SRC1[63:32] BITWISE OR SRC2[63:32]
DEST[95:64] SRC1[95:64] BITWISE OR SRC2[95:64]
DEST[127:96] SRC1[127:96] BITWISE OR SRC2[127:96]
DEST[159:128] SRC1[159:128] BITWISE OR SRC2[159:128]
DEST[191:160] SRC1[191:160] BITWISE OR SRC2[191:160]
DEST[223:192] SRC1[223:192] BITWISE OR SRC2[223:192]
DEST[255:224] SRC1[255:224] BITWISE OR SRC2[255:224].

Intel C/C++ Compiler Intrinsic Equivalent

ORPS: __m128 _mm_or_ps (__m128 a, __m128 b);

VORPS: __m256 _mm256_or_ps (__m256 a, __m256 b);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4.
4-170 Vol. 2B ORPS—Bitwise Logical OR of Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
OUT—Output to Port

Instruction Operand Encoding

Description

Copies the value from the second operand (source operand) to the I/O port specified
with the destination operand (first operand). The source operand can be register AL,
AX, or EAX, depending on the size of the port being accessed (8, 16, or 32 bits,
respectively); the destination operand can be a byte-immediate or the DX register.
Using a byte immediate allows I/O port addresses 0 to 255 to be accessed; using the
DX register as a source operand allows I/O ports from 0 to 65,535 to be accessed.

The size of the I/O port being accessed is determined by the opcode for an 8-bit I/O
port or by the operand-size attribute of the instruction for a 16- or 32-bit I/O port.

At the machine code level, I/O instructions are shorter when accessing 8-bit I/O
ports. Here, the upper eight bits of the port address will be 0.

This instruction is only useful for accessing I/O ports located in the processor’s I/O
address space. See Chapter 13, “Input/Output,” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 1, for more information on accessing I/O
ports in the I/O address space.

Opcode* Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

E6 ib OUT imm8, AL I Valid Valid Output byte in AL to I/O port
address imm8.

E7 ib OUT imm8, AX I Valid Valid Output word in AX to I/O
port address imm8.

E7 ib OUT imm8, EAX I Valid Valid Output doubleword in EAX
to I/O port address imm8.

EE OUT DX, AL NP Valid Valid Output byte in AL to I/O port
address in DX.

EF OUT DX, AX NP Valid Valid Output word in AX to I/O
port address in DX.

EF OUT DX, EAX NP Valid Valid Output doubleword in EAX
to I/O port address in DX.

NOTES:
* See IA-32 Architecture Compatibility section below.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

I imm8 NA NA NA

NP NA NA NA NA
Vol. 2B 4-171OUT—Output to Port

INSTRUCTION SET REFERENCE, M-Z
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

After executing an OUT instruction, the Pentium® processor ensures that the EWBE#
pin has been sampled active before it begins to execute the next instruction. (Note
that the instruction can be prefetched if EWBE# is not active, but it will not be
executed until the EWBE# pin is sampled active.) Only the Pentium processor family
has the EWBE# pin.

Operation

IF ((PE = 1) and ((CPL > IOPL) or (VM = 1)))
THEN (* Protected mode with CPL > IOPL or virtual-8086 mode *)

IF (Any I/O Permission Bit for I/O port being accessed = 1)
THEN (* I/O operation is not allowed *)

#GP(0);
ELSE (* I/O operation is allowed *)

DEST ← SRC; (* Writes to selected I/O port *)
FI;

ELSE (Real Mode or Protected Mode with CPL ≤ IOPL *)
DEST ← SRC; (* Writes to selected I/O port *)

FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the CPL is greater than (has less privilege) the I/O privilege

level (IOPL) and any of the corresponding I/O permission bits in
TSS for the I/O port being accessed is 1.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If any of the I/O permission bits in the TSS for the I/O port being

accessed is 1.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.
4-172 Vol. 2B OUT—Output to Port

INSTRUCTION SET REFERENCE, M-Z
Compatibility Mode Exceptions
Same as protected mode exceptions.

64-Bit Mode Exceptions
Same as protected mode exceptions.
Vol. 2B 4-173OUT—Output to Port

INSTRUCTION SET REFERENCE, M-Z
OUTS/OUTSB/OUTSW/OUTSD—Output String to Port

Instruction Operand Encoding

Description

Copies data from the source operand (second operand) to the I/O port specified with
the destination operand (first operand). The source operand is a memory location,
the address of which is read from either the DS:SI, DS:ESI or the RSI registers
(depending on the address-size attribute of the instruction, 16, 32 or 64, respec-

Opcode* Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

6E OUTS DX, m8 NP Valid Valid Output byte from memory
location specified in DS:(E)SI
or RSI to I/O port specified in
DX**.

6F OUTS DX, m16 NP Valid Valid Output word from memory
location specified in DS:(E)SI
or RSI to I/O port specified in
DX**.

6F OUTS DX, m32 NP Valid Valid Output doubleword from
memory location specified in
DS:(E)SI or RSI to I/O port
specified in DX**.

6E OUTSB NP Valid Valid Output byte from memory
location specified in DS:(E)SI
or RSI to I/O port specified in
DX**.

6F OUTSW NP Valid Valid Output word from memory
location specified in DS:(E)SI
or RSI to I/O port specified in
DX**.

6F OUTSD NP Valid Valid Output doubleword from
memory location specified in
DS:(E)SI or RSI to I/O port
specified in DX**.

NOTES:
* See IA-32 Architecture Compatibility section below.
** In 64-bit mode, only 64-bit (RSI) and 32-bit (ESI) address sizes are supported. In non-64-bit

mode, only 32-bit (ESI) and 16-bit (SI) address sizes are supported.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
4-174 Vol. 2B OUTS/OUTSB/OUTSW/OUTSD—Output String to Port

INSTRUCTION SET REFERENCE, M-Z
tively). (The DS segment may be overridden with a segment override prefix.) The
destination operand is an I/O port address (from 0 to 65,535) that is read from the
DX register. The size of the I/O port being accessed (that is, the size of the source
and destination operands) is determined by the opcode for an 8-bit I/O port or by the
operand-size attribute of the instruction for a 16- or 32-bit I/O port.

At the assembly-code level, two forms of this instruction are allowed: the “explicit-
operands” form and the “no-operands” form. The explicit-operands form (specified
with the OUTS mnemonic) allows the source and destination operands to be specified
explicitly. Here, the source operand should be a symbol that indicates the size of the
I/O port and the source address, and the destination operand must be DX. This
explicit-operands form is provided to allow documentation; however, note that the
documentation provided by this form can be misleading. That is, the source operand
symbol must specify the correct type (size) of the operand (byte, word, or double-
word), but it does not have to specify the correct location. The location is always
specified by the DS:(E)SI or RSI registers, which must be loaded correctly before the
OUTS instruction is executed.

The no-operands form provides “short forms” of the byte, word, and doubleword
versions of the OUTS instructions. Here also DS:(E)SI is assumed to be the source
operand and DX is assumed to be the destination operand. The size of the I/O port is
specified with the choice of mnemonic: OUTSB (byte), OUTSW (word), or OUTSD
(doubleword).

After the byte, word, or doubleword is transferred from the memory location to the
I/O port, the SI/ESI/RSI register is incremented or decremented automatically
according to the setting of the DF flag in the EFLAGS register. (If the DF flag is 0, the
(E)SI register is incremented; if the DF flag is 1, the SI/ESI/RSI register is decre-
mented.) The SI/ESI/RSI register is incremented or decremented by 1 for byte oper-
ations, by 2 for word operations, and by 4 for doubleword operations.

The OUTS, OUTSB, OUTSW, and OUTSD instructions can be preceded by the REP
prefix for block input of ECX bytes, words, or doublewords. See “REP/REPE/REPZ
/REPNE/REPNZ—Repeat String Operation Prefix” in this chapter for a description of
the REP prefix. This instruction is only useful for accessing I/O ports located in the
processor’s I/O address space. See Chapter 13, “Input/Output,” in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 1, for more information on
accessing I/O ports in the I/O address space.

In 64-bit mode, the default operand size is 32 bits; operand size is not promoted by
the use of REX.W. In 64-bit mode, the default address size is 64 bits, and 64-bit
address is specified using RSI by default. 32-bit address using ESI is support using
the prefix 67H, but 16-bit address is not supported in 64-bit mode.

IA-32 Architecture Compatibility

After executing an OUTS, OUTSB, OUTSW, or OUTSD instruction, the Pentium
processor ensures that the EWBE# pin has been sampled active before it begins to
execute the next instruction. (Note that the instruction can be prefetched if EWBE#
Vol. 2B 4-175OUTS/OUTSB/OUTSW/OUTSD—Output String to Port

INSTRUCTION SET REFERENCE, M-Z
is not active, but it will not be executed until the EWBE# pin is sampled active.) Only
the Pentium processor family has the EWBE# pin.

For the Pentium 4, Intel® Xeon®, and P6 processor family, upon execution of an
OUTS, OUTSB, OUTSW, or OUTSD instruction, the processor will not execute the next
instruction until the data phase of the transaction is complete.

Operation

IF ((PE = 1) and ((CPL > IOPL) or (VM = 1)))
THEN (* Protected mode with CPL > IOPL or virtual-8086 mode *)

IF (Any I/O Permission Bit for I/O port being accessed = 1)
THEN (* I/O operation is not allowed *)

#GP(0);
ELSE (* I/O operation is allowed *)

DEST ← SRC; (* Writes to I/O port *)
FI;

ELSE (Real Mode or Protected Mode or 64-Bit Mode with CPL ≤ IOPL *)
DEST ← SRC; (* Writes to I/O port *)

FI;

Byte transfer:
IF 64-bit mode

Then
IF 64-Bit Address Size

THEN
IF DF = 0

THEN RSI ← RSI RSI + 1;
ELSE RSI ← RSI or – 1;

FI;
ELSE (* 32-Bit Address Size *)

IF DF = 0
THEN ESI ← ESI + 1;
ELSE ESI ← ESI – 1;

FI;
FI;

ELSE
IF DF = 0

THEN (E)SI ← (E)SI + 1;
ELSE (E)SI ← (E)SI – 1;

FI;
FI;

Word transfer:
IF 64-bit mode

Then
4-176 Vol. 2B OUTS/OUTSB/OUTSW/OUTSD—Output String to Port

INSTRUCTION SET REFERENCE, M-Z
IF 64-Bit Address Size
THEN

IF DF = 0
THEN RSI ← RSI RSI + 2;
ELSE RSI ← RSI or – 2;

FI;
ELSE (* 32-Bit Address Size *)

IF DF = 0
THEN ESI ← ESI + 2;
ELSE ESI ← ESI – 2;

FI;
FI;

ELSE
IF DF = 0

THEN (E)SI ← (E)SI + 2;
ELSE (E)SI ← (E)SI – 2;

FI;
FI;

Doubleword transfer:
IF 64-bit mode

Then
IF 64-Bit Address Size

THEN
IF DF = 0

THEN RSI ← RSI RSI + 4;
ELSE RSI ← RSI or – 4;

FI;
ELSE (* 32-Bit Address Size *)

IF DF = 0
THEN ESI ← ESI + 4;
ELSE ESI ← ESI – 4;

FI;
FI;

ELSE
IF DF = 0

THEN (E)SI ← (E)SI + 4;
ELSE (E)SI ← (E)SI – 4;

FI;
FI;

Flags Affected

None.
Vol. 2B 4-177OUTS/OUTSB/OUTSW/OUTSD—Output String to Port

INSTRUCTION SET REFERENCE, M-Z
Protected Mode Exceptions
#GP(0) If the CPL is greater than (has less privilege) the I/O privilege

level (IOPL) and any of the corresponding I/O permission bits in
TSS for the I/O port being accessed is 1.
If a memory operand effective address is outside the limit of the
CS, DS, ES, FS, or GS segment.
If the segment register contains a NULL segment selector.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If any of the I/O permission bits in the TSS for the I/O port being

accessed is 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the CPL is greater than (has less privilege) the I/O privilege

level (IOPL) and any of the corresponding I/O permission bits in
TSS for the I/O port being accessed is 1.
If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
4-178 Vol. 2B OUTS/OUTSB/OUTSW/OUTSD—Output String to Port

INSTRUCTION SET REFERENCE, M-Z
#UD If the LOCK prefix is used.
Vol. 2B 4-179OUTS/OUTSB/OUTSW/OUTSD—Output String to Port

INSTRUCTION SET REFERENCE, M-Z
PABSB/PABSW/PABSD — Packed Absolute Value
Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 38 1C /r1

PABSB mm1, mm2/m64

RM V/V SSSE3 Compute the absolute value
of bytes in mm2/m64 and
store UNSIGNED result in
mm1.

66 0F 38 1C /r

PABSB xmm1, xmm2/m128

RM V/V SSSE3 Compute the absolute value
of bytes in xmm2/m128 and
store UNSIGNED result in
xmm1.

0F 38 1D /r1

PABSW mm1, mm2/m64

RM V/V SSSE3 Compute the absolute value
of 16-bit integers in
mm2/m64 and store
UNSIGNED result in mm1.

66 0F 38 1D /r

PABSW xmm1, xmm2/m128

RM V/V SSSE3 Compute the absolute value
of 16-bit integers in
xmm2/m128 and store
UNSIGNED result in xmm1.

0F 38 1E /r1

PABSD mm1, mm2/m64

RM V/V SSSE3 Compute the absolute value
of 32-bit integers in
mm2/m64 and store
UNSIGNED result in mm1.

66 0F 38 1E /r

PABSD xmm1, xmm2/m128

RM V/V SSSE3 Compute the absolute value
of 32-bit integers in
xmm2/m128 and store
UNSIGNED result in xmm1.

VEX.128.66.0F38.WIG 1C /r

VPABSB xmm1, xmm2/m128

RM V/V AVX Compute the absolute value
of bytes in xmm2/m128 and
store UNSIGNED result in
xmm1.

VEX.128.66.0F38.WIG 1D /r

VPABSW xmm1, xmm2/m128

RM V/V AVX Compute the absolute value
of 16- bit integers in
xmm2/m128 and store
UNSIGNED result in xmm1.
4-180 Vol. 2B PABSB/PABSW/PABSD — Packed Absolute Value

INSTRUCTION SET REFERENCE, M-Z
Instruction Operand Encoding

Description

PABSB/W/D computes the absolute value of each data element of the source operand
(the second operand) and stores the UNSIGNED results in the destination operand
(the first operand). PABSB operates on signed bytes, PABSW operates on 16-bit
words, and PABSD operates on signed 32-bit integers. The source operand can be an
MMX register or a 64-bit memory location, or it can be an XMM register or a 128-bit
memory location. The destination operand can be an MMX or an XMM register. Both
operands can be MMX register or XMM registers. When the source operand is a
128-bit memory operand, the operand must be aligned on a 16byte boundary or a
general-protection exception (#GP) will be generated.

In 64-bit mode, use the REX prefix to access additional registers.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.vvvv is reserved and must be 1111b, VEX.L must be 0; otherwise
instructions will #UD.

Operation

PABSB (with 64 bit operands)
Unsigned DEST[7:0] ← ABS(SRC[7:0])
Repeat operation for 2nd through 7th bytes
Unsigned DEST[63:56] ← ABS(SRC[63:56])

PABSB (with 128 bit operands)
Unsigned DEST[7:0] ← ABS(SRC[7:.0])
Repeat operation for 2nd through 15th bytes

VEX.128.66.0F38.WIG 1E /r

VPABSD xmm1, xmm2/m128

RM V/V AVX Compute the absolute value
of 32- bit integers in
xmm2/m128 and store
UNSIGNED result in xmm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
Vol. 2B 4-181PABSB/PABSW/PABSD — Packed Absolute Value

INSTRUCTION SET REFERENCE, M-Z
Unsigned DEST[127:120] ← ABS(SRC[127:120])

PABSW (with 64 bit operands)
Unsigned DEST[15:0] ← ABS(SRC[15:0])
Repeat operation for 2nd through 3rd 16-bit words
Unsigned DEST[63:48] ← ABS(SRC[63:48])

PABSW (with 128 bit operands)
Unsigned DEST[15:0] ← ABS(SRC[15:0])
Repeat operation for 2nd through 7th 16-bit words
Unsigned DEST[127:112] ← ABS(SRC[127:112])

PABSD (with 64 bit operands)
Unsigned DEST[31:0] ← ABS(SRC[31:0])
Unsigned DEST[63:32] ← ABS(SRC[63:32])

PABSD (with 128 bit operands)
Unsigned DEST[31:0] ← ABS(SRC[31:0])
Repeat operation for 2nd through 3rd 32-bit double words
Unsigned DEST[127:96] ← ABS(SRC[127:96])

PABSB (128-bit Legacy SSE version)
DEST[127:0] BYTE_ABS(SRC)
DEST[VLMAX-1:128] (Unmodified)

VPABSB (VEX.128 encoded version)
DEST[127:0] BYTE_ABS(SRC)
DEST[VLMAX-1:128] 0

PABSW (128-bit Legacy SSE version)
DEST[127:0] WORD_ABS(SRC)
DEST[VLMAX-1:128] (Unmodified)

VPABSW (VEX.128 encoded version)
DEST[127:0] WORD_ABS(SRC)
DEST[VLMAX-1:128] 0

PABSD (128-bit Legacy SSE version)
DEST[127:0] DWORD_ABS(SRC)
DEST[VLMAX-1:128] (Unmodified)

VPABSD (VEX.128 encoded version)
DEST[127:0] DWORD_ABS(SRC)
DEST[VLMAX-1:128] 0
4-182 Vol. 2B PABSB/PABSW/PABSD — Packed Absolute Value

INSTRUCTION SET REFERENCE, M-Z
Intel C/C++ Compiler Intrinsic Equivalents

PABSB: __m64 _mm_abs_pi8 (__m64 a)

PABSB: __m128i _mm_abs_epi8 (__m128i a)

PABSW: __m64 _mm_abs_pi16 (__m64 a)

PABSW: __m128i _mm_abs_epi16 (__m128i a)

PABSD: __m64 _mm_abs_pi32 (__m64 a)

PABSD: __m128i _mm_abs_epi32 (__m128i a)

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
Vol. 2B 4-183PABSB/PABSW/PABSD — Packed Absolute Value

INSTRUCTION SET REFERENCE, M-Z
PACKSSWB/PACKSSDW—Pack with Signed Saturation
Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 63 /r1

PACKSSWB mm1, mm2/m64

RM V/V MMX Converts 4 packed signed
word integers from mm1
and from mm2/m64 into 8
packed signed byte integers
in mm1 using signed
saturation.

66 0F 63 /r

PACKSSWB xmm1, xmm2/m128

RM V/V SSE2 Converts 8 packed signed
word integers from xmm1
and from xxm2/m128 into
16 packed signed byte
integers in xxm1 using
signed saturation.

0F 6B /r1

PACKSSDW mm1, mm2/m64

RM V/V MMX Converts 2 packed signed
doubleword integers from
mm1 and from mm2/m64
into 4 packed signed word
integers in mm1 using
signed saturation.

66 0F 6B /r

PACKSSDW xmm1, xmm2/m128

RM V/V SSE2 Converts 4 packed signed
doubleword integers from
xmm1 and from
xxm2/m128 into 8 packed
signed word integers in
xxm1 using signed
saturation.

VEX.NDS.128.66.0F.WIG 63 /r

VPACKSSWB xmm1,xmm2,
xmm3/m128

RVM V/V AVX Converts 8 packed signed
word integers from xmm2
and from xmm3/m128 into
16 packed signed byte
integers in xmm1 using
signed saturation.
4-184 Vol. 2B PACKSSWB/PACKSSDW—Pack with Signed Saturation

INSTRUCTION SET REFERENCE, M-Z
Instruction Operand Encoding

Description

Converts packed signed word integers into packed signed byte integers (PACKSSWB)
or converts packed signed doubleword integers into packed signed word integers
(PACKSSDW), using saturation to handle overflow conditions. See Figure 4-5 for an
example of the packing operation.

The PACKSSWB instruction converts 4 or 8 signed word integers from the destination
operand (first operand) and 4 or 8 signed word integers from the source operand
(second operand) into 8 or 16 signed byte integers and stores the result in the desti-
nation operand. If a signed word integer value is beyond the range of a signed byte
integer (that is, greater than 7FH for a positive integer or greater than 80H for a
negative integer), the saturated signed byte integer value of 7FH or 80H, respec-
tively, is stored in the destination.

VEX.NDS.128.66.0F.WIG 6B /r

VPACKSSDW xmm1,xmm2,
xmm3/m128

RVM V/V AVX Converts 4 packed signed
doubleword integers from
xmm2 and from
xmm3/m128 into 8 packed
signed word integers in
xmm1 using signed
saturation.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

Figure 4-5. Operation of the PACKSSDW Instruction Using 64-bit Operands

D C

64-Bit SRC

64-Bit DEST

D’ C’ B’ A’

64-Bit DEST

B A
Vol. 2B 4-185PACKSSWB/PACKSSDW—Pack with Signed Saturation

INSTRUCTION SET REFERENCE, M-Z
The PACKSSDW instruction packs 2 or 4 signed doublewords from the destination
operand (first operand) and 2 or 4 signed doublewords from the source operand
(second operand) into 4 or 8 signed words in the destination operand (see
Figure 4-5). If a signed doubleword integer value is beyond the range of a signed
word (that is, greater than 7FFFH for a positive integer or greater than 8000H for a
negative integer), the saturated signed word integer value of 7FFFH or 8000H,
respectively, is stored into the destination.

The PACKSSWB and PACKSSDW instructions operate on either 64-bit or 128-bit
operands. When operating on 64-bit operands, the destination operand must be an
MMX technology register and the source operand can be either an MMX technology
register or a 64-bit memory location. When operating on 128-bit operands, the desti-
nation operand must be an XMM register and the source operand can be either an
XMM register or a 128-bit memory location.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PACKSSWB (with 64-bit operands)
DEST[7:0] ← SaturateSignedWordToSignedByte DEST[15:0];
DEST[15:8] ← SaturateSignedWordToSignedByte DEST[31:16];
DEST[23:16] ← SaturateSignedWordToSignedByte DEST[47:32];
DEST[31:24] ← SaturateSignedWordToSignedByte DEST[63:48];
DEST[39:32] ← SaturateSignedWordToSignedByte SRC[15:0];
DEST[47:40] ← SaturateSignedWordToSignedByte SRC[31:16];
DEST[55:48] ← SaturateSignedWordToSignedByte SRC[47:32];
DEST[63:56] ← SaturateSignedWordToSignedByte SRC[63:48];

PACKSSDW (with 64-bit operands)
DEST[15:0] ← SaturateSignedDoublewordToSignedWord DEST[31:0];
DEST[31:16] ← SaturateSignedDoublewordToSignedWord DEST[63:32];
DEST[47:32] ← SaturateSignedDoublewordToSignedWord SRC[31:0];
DEST[63:48] ← SaturateSignedDoublewordToSignedWord SRC[63:32];

PACKSSWB (with 128-bit operands)
DEST[7:0]← SaturateSignedWordToSignedByte (DEST[15:0]);
DEST[15:8] ← SaturateSignedWordToSignedByte (DEST[31:16]);
DEST[23:16] ← SaturateSignedWordToSignedByte (DEST[47:32]);
DEST[31:24] ← SaturateSignedWordToSignedByte (DEST[63:48]);
DEST[39:32] ← SaturateSignedWordToSignedByte (DEST[79:64]);
4-186 Vol. 2B PACKSSWB/PACKSSDW—Pack with Signed Saturation

INSTRUCTION SET REFERENCE, M-Z
DEST[47:40] ← SaturateSignedWordToSignedByte (DEST[95:80]);
DEST[55:48] ← SaturateSignedWordToSignedByte (DEST[111:96]);
DEST[63:56] ← SaturateSignedWordToSignedByte (DEST[127:112]);
DEST[71:64] ← SaturateSignedWordToSignedByte (SRC[15:0]);
DEST[79:72] ← SaturateSignedWordToSignedByte (SRC[31:16]);
DEST[87:80] ← SaturateSignedWordToSignedByte (SRC[47:32]);
DEST[95:88] ← SaturateSignedWordToSignedByte (SRC[63:48]);
DEST[103:96] ← SaturateSignedWordToSignedByte (SRC[79:64]);
DEST[111:104] ← SaturateSignedWordToSignedByte (SRC[95:80]);
DEST[119:112] ← SaturateSignedWordToSignedByte (SRC[111:96]);
DEST[127:120] ← SaturateSignedWordToSignedByte (SRC[127:112]);

PACKSSDW (with 128-bit operands)
DEST[15:0] ← SaturateSignedDwordToSignedWord (DEST[31:0]);
DEST[31:16] ← SaturateSignedDwordToSignedWord (DEST[63:32]);
DEST[47:32] ← SaturateSignedDwordToSignedWord (DEST[95:64]);
DEST[63:48] ← SaturateSignedDwordToSignedWord (DEST[127:96]);
DEST[79:64] ← SaturateSignedDwordToSignedWord (SRC[31:0]);
DEST[95:80] ← SaturateSignedDwordToSignedWord (SRC[63:32]);
DEST[111:96] ← SaturateSignedDwordToSignedWord (SRC[95:64]);
DEST[127:112] ← SaturateSignedDwordToSignedWord (SRC[127:96]);

PACKSSDW
DEST[127:0] SATURATING_PACK_DW(DEST, SRC)
DEST[VLMAX-1:128] (Unmodified)

VPACKSSDW
DEST[127:0] SATURATING_PACK_DW(DEST, SRC)
DEST[VLMAX-1:128] 0

PACKSSWB
DEST[127:0] SATURATING_PACK_WB(DEST, SRC)
DEST[VLMAX-1:128] (Unmodified)

VPACKSSWB
DEST[127:0] SATURATING_PACK_WB(DEST, SRC)
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalents

PACKSSWB: __m64 _mm_packs_pi16(__m64 m1, __m64 m2)

PACKSSWB: __m128i _mm_packs_epi16(__m128i m1, __m128i m2)

PACKSSDW: __m64 _mm_packs_pi32 (__m64 m1, __m64 m2)
Vol. 2B 4-187PACKSSWB/PACKSSDW—Pack with Signed Saturation

INSTRUCTION SET REFERENCE, M-Z
PACKSSDW: __m128i _mm_packs_epi32(__m128i m1, __m128i m2)

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
4-188 Vol. 2B PACKSSWB/PACKSSDW—Pack with Signed Saturation

INSTRUCTION SET REFERENCE, M-Z
PACKUSDW — Pack with Unsigned Saturation

Instruction Operand Encoding

Description

Converts packed signed doubleword integers into packed unsigned word integers
using unsigned saturation to handle overflow conditions. If the signed doubleword
value is beyond the range of an unsigned word (that is, greater than FFFFH or less
than 0000H), the saturated unsigned word integer value of FFFFH or 0000H, respec-
tively, is stored in the destination.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

TMP[15:0] (DEST[31:0] < 0) ? 0 : DEST[15:0];
DEST[15:0] (DEST[31:0] > FFFFH) ? FFFFH : TMP[15:0] ;

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 38 2B /r
PACKUSDW xmm1, xmm2/m128

RM V/V SSE4_1 Convert 4 packed signed
doubleword integers from
xmm1 and 4 packed signed
doubleword integers from
xmm2/m128 into 8 packed
unsigned word integers in
xmm1 using unsigned
saturation.

VEX.NDS.128.66.0F38.WIG 2B /r
VPACKUSDW xmm1, xmm2,
xmm3/m128

RVM V/V AVX Convert 4 packed signed
doubleword integers from
xmm2 and 4 packed signed
doubleword integers from
xmm3/m128 into 8 packed
unsigned word integers in
xmm1 using unsigned
saturation.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-189PACKUSDW — Pack with Unsigned Saturation

INSTRUCTION SET REFERENCE, M-Z
TMP[31:16] (DEST[63:32] < 0) ? 0 : DEST[47:32];
DEST[31:16] (DEST[63:32] > FFFFH) ? FFFFH : TMP[31:16] ;
TMP[47:32] (DEST[95:64] < 0) ? 0 : DEST[79:64];
DEST[47:32] (DEST[95:64] > FFFFH) ? FFFFH : TMP[47:32] ;
TMP[63:48] (DEST[127:96] < 0) ? 0 : DEST[111:96];
DEST[63:48] (DEST[127:96] > FFFFH) ? FFFFH : TMP[63:48] ;
TMP[63:48] (DEST[127:96] < 0) ? 0 : DEST[111:96];
DEST[63:48] (DEST[127:96] > FFFFH) ? FFFFH : TMP[63:48] ;
TMP[79:64] (SRC[31:0] < 0) ? 0 : SRC[15:0];
DEST[63:48] (SRC[31:0] > FFFFH) ? FFFFH : TMP[79:64] ;
TMP[95:80] (SRC[63:32] < 0) ? 0 : SRC[47:32];
DEST[95:80] (SRC[63:32] > FFFFH) ? FFFFH : TMP[95:80] ;
TMP[111:96] (SRC[95:64] < 0) ? 0 : SRC[79:64];
DEST[111:96] (SRC[95:64] > FFFFH) ? FFFFH : TMP[111:96] ;
TMP[127:112] (SRC[127:96] < 0) ? 0 : SRC[111:96];
DEST[128:112] (SRC[127:96] > FFFFH) ? FFFFH : TMP[127:112] ;

PACKUSDW (128-bit Legacy SSE version)
DEST[127:0] UNSIGNED_SATURATING_PACK_DW(DEST, SRC)
DEST[VLMAX-1:128] (Unmodified)

VPACKUSDW (VEX.128 encoded version)
DEST[127:0] UNSIGNED_SATURATING_PACK_DW(SRC1, SRC2)
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

PACKUSDW: __m128i _mm_packus_epi32(__m128i m1, __m128i m2);

Flags Affected

None.

SIMD Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
4-190 Vol. 2B PACKUSDW — Pack with Unsigned Saturation

INSTRUCTION SET REFERENCE, M-Z
PACKUSWB—Pack with Unsigned Saturation

Instruction Operand Encoding

Description

Converts 4 or 8 signed word integers from the destination operand (first operand)
and 4 or 8 signed word integers from the source operand (second operand) into 8 or
16 unsigned byte integers and stores the result in the destination operand. (See
Figure 4-5 for an example of the packing operation.) If a signed word integer value is
beyond the range of an unsigned byte integer (that is, greater than FFH or less than

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 67 /r1

PACKUSWB mm, mm/m64

RM V/V MMX Converts 4 signed word
integers from mm and 4
signed word integers from
mm/m64 into 8 unsigned
byte integers in mm using
unsigned saturation.

66 0F 67 /r

PACKUSWB xmm1, xmm2/m128

RM V/V SSE2 Converts 8 signed word
integers from xmm1 and 8
signed word integers from
xmm2/m128 into 16
unsigned byte integers in
xmm1 using unsigned
saturation.

VEX.NDS.128.66.0F.WIG 67 /r

VPACKUSWB xmm1, xmm2,
xmm3/m128

RVM V/V AVX Converts 8 signed word
integers from xmm2 and 8
signed word integers from
xmm3/m128 into 16
unsigned byte integers in
xmm1 using unsigned
saturation.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-191PACKUSWB—Pack with Unsigned Saturation

INSTRUCTION SET REFERENCE, M-Z
00H), the saturated unsigned byte integer value of FFH or 00H, respectively, is stored
in the destination.

The PACKUSWB instruction operates on either 64-bit or 128-bit operands. When
operating on 64-bit operands, the destination operand must be an MMX technology
register and the source operand can be either an MMX technology register or a 64-bit
memory location. When operating on 128-bit operands, the destination operand
must be an XMM register and the source operand can be either an XMM register or a
128-bit memory location.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PACKUSWB (with 64-bit operands)
DEST[7:0] ← SaturateSignedWordToUnsignedByte DEST[15:0];
DEST[15:8] ← SaturateSignedWordToUnsignedByte DEST[31:16];
DEST[23:16] ← SaturateSignedWordToUnsignedByte DEST[47:32];
DEST[31:24] ← SaturateSignedWordToUnsignedByte DEST[63:48];
DEST[39:32] ← SaturateSignedWordToUnsignedByte SRC[15:0];
DEST[47:40] ← SaturateSignedWordToUnsignedByte SRC[31:16];
DEST[55:48] ← SaturateSignedWordToUnsignedByte SRC[47:32];
DEST[63:56] ← SaturateSignedWordToUnsignedByte SRC[63:48];

PACKUSWB (with 128-bit operands)
DEST[7:0]← SaturateSignedWordToUnsignedByte (DEST[15:0]);
DEST[15:8] ← SaturateSignedWordToUnsignedByte (DEST[31:16]);
DEST[23:16] ← SaturateSignedWordToUnsignedByte (DEST[47:32]);
DEST[31:24] ← SaturateSignedWordToUnsignedByte (DEST[63:48]);
DEST[39:32] ← SaturateSignedWordToUnsignedByte (DEST[79:64]);
DEST[47:40] ← SaturateSignedWordToUnsignedByte (DEST[95:80]);
DEST[55:48] ← SaturateSignedWordToUnsignedByte (DEST[111:96]);
DEST[63:56] ← SaturateSignedWordToUnsignedByte (DEST[127:112]);
DEST[71:64] ← SaturateSignedWordToUnsignedByte (SRC[15:0]);
DEST[79:72] ← SaturateSignedWordToUnsignedByte (SRC[31:16]);
DEST[87:80] ← SaturateSignedWordToUnsignedByte (SRC[47:32]);
DEST[95:88] ← SaturateSignedWordToUnsignedByte (SRC[63:48]);
DEST[103:96] ← SaturateSignedWordToUnsignedByte (SRC[79:64]);
DEST[111:104] ← SaturateSignedWordToUnsignedByte (SRC[95:80]);
DEST[119:112] ← SaturateSignedWordToUnsignedByte (SRC[111:96]);
DEST[127:120] ← SaturateSignedWordToUnsignedByte (SRC[127:112]);

PACKUSWB (128-bit Legacy SSE version)
DEST[127:0] UNSIGNED_SATURATING_PACK_WB(DEST, SRC)
DEST[VLMAX-1:128] (Unmodified)
4-192 Vol. 2B PACKUSWB—Pack with Unsigned Saturation

INSTRUCTION SET REFERENCE, M-Z
VPACKUSWB (VEX.128 encoded version)
DEST[127:0] UNSIGNED_SATURATING_PACK_WB(SRC1, SRC2)
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

PACKUSWB: __m64 _mm_packs_pu16(__m64 m1, __m64 m2)

PACKUSWB: __m128i _mm_packus_epi16(__m128i m1, __m128i m2)

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
Vol. 2B 4-193PACKUSWB—Pack with Unsigned Saturation

INSTRUCTION SET REFERENCE, M-Z
PADDB/PADDW/PADDD—Add Packed Integers

Instruction Operand Encoding

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F FC /r1

PADDB mm, mm/m64

RM V/V MMX Add packed byte integers
from mm/m64 and mm.

66 0F FC /r

PADDB xmm1, xmm2/m128

RM V/V SSE2 Add packed byte integers
from xmm2/m128 and
xmm1.

0F FD /r1

PADDW mm, mm/m64

RM V/V MMX Add packed word integers
from mm/m64 and mm.

66 0F FD /r

PADDW xmm1, xmm2/m128

RM V/V SSE2 Add packed word integers
from xmm2/m128 and
xmm1.

0F FE /r1

PADDD mm, mm/m64

RM V/V MMX Add packed doubleword
integers from mm/m64 and
mm.

66 0F FE /r

PADDD xmm1, xmm2/m128

RM V/V SSE2 Add packed doubleword
integers from xmm2/m128
and xmm1.

VEX.NDS.128.66.0F.WIG FC /r

VPADDB xmm1, xmm2,
xmm3/m128

RVM V/V AVX Add packed byte integers
from xmm3/m128 and
xmm2.

VEX.NDS.128.66.0F.WIG FD /r

VPADDW xmm1, xmm2,
xmm3/m128

RVM V/V AVX Add packed word integers
from xmm3/m128 and
xmm2.

VEX.NDS.128.66.0F.WIG FE /r

VPADDD xmm1, xmm2,
xmm3/m128

RVM V/V AVX Add packed doubleword
integers from xmm3/m128
and xmm2.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
4-194 Vol. 2B PADDB/PADDW/PADDD—Add Packed Integers

INSTRUCTION SET REFERENCE, M-Z
Description

Performs a SIMD add of the packed integers from the source operand (second
operand) and the destination operand (first operand), and stores the packed integer
results in the destination operand. See Figure 9-4 in the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 1, for an illustration of a SIMD opera-
tion. Overflow is handled with wraparound, as described in the following paragraphs.

These instructions can operate on either 64-bit or 128-bit operands. When operating
on 64-bit operands, the destination operand must be an MMX technology register
and the source operand can be either an MMX technology register or a 64-bit
memory location. When operating on 128-bit operands, the destination operand
must be an XMM register and the source operand can be either an XMM register or a
128-bit memory location.
Adds the packed byte, word, doubleword, or quadword integers in the first source
operand to the second source operand and stores the result in the destination
operand. When a result is too large to be represented in the 8/16/32 integer (over-
flow), the result is wrapped around and the low bits are written to the destination
element (that is, the carry is ignored).

Note that these instructions can operate on either unsigned or signed (two’s comple-
ment notation) integers; however, it does not set bits in the EFLAGS register to indi-
cate overflow and/or a carry. To prevent undetected overflow conditions, software
must control the ranges of the values operated on.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PADDB (with 64-bit operands)
DEST[7:0] ← DEST[7:0] + SRC[7:0];
(* Repeat add operation for 2nd through 7th byte *)
DEST[63:56] ← DEST[63:56] + SRC[63:56];

PADDB (with 128-bit operands)
DEST[7:0] ← DEST[7:0] + SRC[7:0];
(* Repeat add operation for 2nd through 14th byte *)
DEST[127:120] ← DEST[111:120] + SRC[127:120];

PADDW (with 64-bit operands)
DEST[15:0] ← DEST[15:0] + SRC[15:0];
(* Repeat add operation for 2nd and 3th word *)
DEST[63:48] ← DEST[63:48] + SRC[63:48];
Vol. 2B 4-195PADDB/PADDW/PADDD—Add Packed Integers

INSTRUCTION SET REFERENCE, M-Z
PADDW (with 128-bit operands)
DEST[15:0] ← DEST[15:0] + SRC[15:0];
(* Repeat add operation for 2nd through 7th word *)
DEST[127:112] ← DEST[127:112] + SRC[127:112];

PADDD (with 64-bit operands)
DEST[31:0] ← DEST[31:0] + SRC[31:0];
DEST[63:32] ← DEST[63:32] + SRC[63:32];

PADDD (with 128-bit operands)
DEST[31:0] ← DEST[31:0] + SRC[31:0];
(* Repeat add operation for 2nd and 3th doubleword *)
DEST[127:96] ← DEST[127:96] + SRC[127:96];

VPADDB (VEX.128 encoded version)
DEST[7:0] SRC1[7:0]+SRC2[7:0]
DEST[15:8] SRC1[15:8]+SRC2[15:8]
DEST[23:16] SRC1[23:16]+SRC2[23:16]
DEST[31:24] SRC1[31:24]+SRC2[31:24]
DEST[39:32] SRC1[39:32]+SRC2[39:32]
DEST[47:40] SRC1[47:40]+SRC2[47:40]
DEST[55:48] SRC1[55:48]+SRC2[55:48]
DEST[63:56] SRC1[63:56]+SRC2[63:56]
DEST[71:64] SRC1[71:64]+SRC2[71:64]
DEST[79:72] SRC1[79:72]+SRC2[79:72]
DEST[87:80] SRC1[87:80]+SRC2[87:80]
DEST[95:88] SRC1[95:88]+SRC2[95:88]
DEST[103:96] SRC1[103:96]+SRC2[103:96]
DEST[111:104] SRC1[111:104]+SRC2[111:104]
DEST[119:112] SRC1[119:112]+SRC2[119:112]
DEST[127:120] SRC1[127:120]+SRC2[127:120]
DEST[VLMAX-1:128] 0

VPADDW (VEX.128 encoded version)
DEST[15:0] SRC1[15:0]+SRC2[15:0]
DEST[31:16] SRC1[31:16]+SRC2[31:16]
DEST[47:32] SRC1[47:32]+SRC2[47:32]
DEST[63:48] SRC1[63:48]+SRC2[63:48]
DEST[79:64] SRC1[79:64]+SRC2[79:64]
DEST[95:80] SRC1[95:80]+SRC2[95:80]
DEST[111:96] SRC1[111:96]+SRC2[111:96]
DEST[127:112] SRC1[127:112]+SRC2[127:112]
DEST[VLMAX-1:128] 0
4-196 Vol. 2B PADDB/PADDW/PADDD—Add Packed Integers

INSTRUCTION SET REFERENCE, M-Z
VPADDD (VEX.128 encoded version)
DEST[31:0] SRC1[31:0]+SRC2[31:0]
DEST[63:32] SRC1[63:32]+SRC2[63:32]
DEST[95:64] SRC1[95:64]+SRC2[95:64]
DEST[127:96] SRC1[127:96]+SRC2[127:96]
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalents

PADDB: __m64 _mm_add_pi8(__m64 m1, __m64 m2)

PADDB: __m128i _mm_add_epi8 (__m128ia,__m128ib)

PADDW: __m64 _mm_add_pi16(__m64 m1, __m64 m2)

PADDW: __m128i _mm_add_epi16 (__m128i a, __m128i b)

PADDD: __m64 _mm_add_pi32(__m64 m1, __m64 m2)

PADDD: __m128i _mm_add_epi32 (__m128i a, __m128i b)

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
Vol. 2B 4-197PADDB/PADDW/PADDD—Add Packed Integers

INSTRUCTION SET REFERENCE, M-Z
PADDQ—Add Packed Quadword Integers

Instruction Operand Encoding

Description

Adds the first operand (destination operand) to the second operand (source operand)
and stores the result in the destination operand. The source operand can be a quad-
word integer stored in an MMX technology register or a 64-bit memory location, or it
can be two packed quadword integers stored in an XMM register or an 128-bit
memory location. The destination operand can be a quadword integer stored in an
MMX technology register or two packed quadword integers stored in an XMM register.
When packed quadword operands are used, a SIMD add is performed. When a quad-
word result is too large to be represented in 64 bits (overflow), the result is wrapped
around and the low 64 bits are written to the destination element (that is, the carry
is ignored).

Note that the PADDQ instruction can operate on either unsigned or signed (two’s
complement notation) integers; however, it does not set bits in the EFLAGS register
to indicate overflow and/or a carry. To prevent undetected overflow conditions, soft-
ware must control the ranges of the values operated on.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F D4 /r1

PADDQ mm1, mm2/m64

RM V/V SSE2 Add quadword integer
mm2/m64 to mm1.

66 0F D4 /r

PADDQ xmm1, xmm2/m128

RM V/V SSE2 Add packed quadword
integers xmm2/m128 to
xmm1.

VEX.NDS.128.66.0F.WIG D4 /r

VPADDQ xmm1, xmm2,
xmm3/m128

RVM V/V AVX Add packed quadword
integers xmm3/m128 and
xmm2.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
4-198 Vol. 2B PADDQ—Add Packed Quadword Integers

INSTRUCTION SET REFERENCE, M-Z
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PADDQ (with 64-Bit operands)
DEST[63:0] ← DEST[63:0] + SRC[63:0];

PADDQ (with 128-Bit operands)
DEST[63:0] ← DEST[63:0] + SRC[63:0];
DEST[127:64] ← DEST[127:64] + SRC[127:64];

VPADDQ (VEX.128 encoded version)
DEST[63:0] SRC1[63:0]+SRC2[63:0]
DEST[127:64] SRC1[127:64]+SRC2[127:64]
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalents

PADDQ: __m64 _mm_add_si64 (__m64 a, __m64 b)

PADDQ: __m128i _mm_add_epi64 (__m128i a, __m128i b)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
Vol. 2B 4-199PADDQ—Add Packed Quadword Integers

INSTRUCTION SET REFERENCE, M-Z
PADDSB/PADDSW—Add Packed Signed Integers with Signed
Saturation
Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F EC /r1

PADDSB mm, mm/m64

RM V/V MMX Add packed signed byte
integers from mm/m64 and
mm and saturate the
results.

66 0F EC /r

PADDSB xmm1, xmm2/m128

RM V/V SSE2 Add packed signed byte
integers from xmm2/m128
and xmm1 saturate the
results.

0F ED /r1

PADDSW mm, mm/m64

RM V/V MMX Add packed signed word
integers from mm/m64 and
mm and saturate the
results.

66 0F ED /r

PADDSW xmm1, xmm2/m128

RM V/V SSE2 Add packed signed word
integers from xmm2/m128
and xmm1 and saturate the
results.

VEX.NDS.128.66.0F.WIG EC /r
VPADDSB xmm1, xmm2,
xmm3/m128

RVM V/V AVX Add packed signed byte
integers from xmm3/m128
and xmm2 saturate the
results.

VEX.NDS.128.66.0F.WIG ED /r

VPADDSW xmm1, xmm2,
xmm3/m128

RVM V/V AVX Add packed signed word
integers from xmm3/m128
and xmm2 and saturate the
results.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.
4-200 Vol. 2B PADDSB/PADDSW—Add Packed Signed Integers with Signed Saturation

INSTRUCTION SET REFERENCE, M-Z
Instruction Operand Encoding

Description

Performs a SIMD add of the packed signed integers from the source operand (second
operand) and the destination operand (first operand), and stores the packed integer
results in the destination operand. See Figure 9-4 in the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 1, for an illustration of a SIMD opera-
tion. Overflow is handled with signed saturation, as described in the following
paragraphs.

These instructions can operate on either 64-bit or 128-bit operands. When operating
on 64-bit operands, the destination operand must be an MMX technology register
and the source operand can be either an MMX technology register or a 64-bit
memory location. When operating on 128-bit operands, the destination operand
must be an XMM register and the source operand can be either an XMM register or a
128-bit memory location.

The PADDSB instruction adds packed signed byte integers. When an individual byte
result is beyond the range of a signed byte integer (that is, greater than 7FH or less
than 80H), the saturated value of 7FH or 80H, respectively, is written to the destina-
tion operand.

The PADDSW instruction adds packed signed word integers. When an individual word
result is beyond the range of a signed word integer (that is, greater than 7FFFH or
less than 8000H), the saturated value of 7FFFH or 8000H, respectively, is written to
the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PADDSB (with 64-bit operands)
DEST[7:0] ← SaturateToSignedByte(DEST[7:0] + SRC (7:0]);
(* Repeat add operation for 2nd through 7th bytes *)
DEST[63:56] ← SaturateToSignedByte(DEST[63:56] + SRC[63:56]);

PADDSB (with 128-bit operands)
DEST[7:0] ←SaturateToSignedByte (DEST[7:0] + SRC[7:0]);

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-201PADDSB/PADDSW—Add Packed Signed Integers with Signed Saturation

INSTRUCTION SET REFERENCE, M-Z
(* Repeat add operation for 2nd through 14th bytes *)
DEST[127:120] ← SaturateToSignedByte (DEST[111:120] + SRC[127:120]);

VPADDSB
DEST[7:0] SaturateToSignedByte (SRC1[7:0] + SRC2[7:0]);
(* Repeat subtract operation for 2nd through 14th bytes *)
DEST[127:120] SaturateToSignedByte (SRC1[111:120] + SRC2[127:120]);
DEST[VLMAX-1:128] 0

PADDSW (with 64-bit operands)
DEST[15:0] ← SaturateToSignedWord(DEST[15:0] + SRC[15:0]);
(* Repeat add operation for 2nd and 7th words *)
DEST[63:48] ← SaturateToSignedWord(DEST[63:48] + SRC[63:48]);

PADDSW (with 128-bit operands)
DEST[15:0] ← SaturateToSignedWord (DEST[15:0] + SRC[15:0]);
(* Repeat add operation for 2nd through 7th words *)
DEST[127:112] ← SaturateToSignedWord (DEST[127:112] + SRC[127:112]);

VPADDSW
DEST[15:0] SaturateToSignedWord (SRC1[15:0] + SRC2[15:0]);
(* Repeat subtract operation for 2nd through 7th words *)
DEST[127:112] SaturateToSignedWord (SRC1[127:112] + SRC2[127:112]);
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalents

PADDSB: __m64 _mm_adds_pi8(__m64 m1, __m64 m2)

PADDSB: __m128i _mm_adds_epi8 (__m128i a, __m128i b)

PADDSW: __m64 _mm_adds_pi16(__m64 m1, __m64 m2)

PADDSW: __m128i _mm_adds_epi16 (__m128i a, __m128i b)

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
4-202 Vol. 2B PADDSB/PADDSW—Add Packed Signed Integers with Signed Saturation

INSTRUCTION SET REFERENCE, M-Z
PADDUSB/PADDUSW—Add Packed Unsigned Integers with Unsigned
Saturation

Instruction Operand Encoding

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F DC /r1

PADDUSB mm, mm/m64

RM V/V MMX Add packed unsigned byte
integers from mm/m64 and
mm and saturate the
results.

66 0F DC /r

PADDUSB xmm1, xmm2/m128

RM V/V SSE2 Add packed unsigned byte
integers from xmm2/m128
and xmm1 saturate the
results.

0F DD /r1

PADDUSW mm, mm/m64

RM V/V MMX Add packed unsigned word
integers from mm/m64 and
mm and saturate the
results.

66 0F DD /r

PADDUSW xmm1, xmm2/m128

RM V/V SSE2 Add packed unsigned word
integers from xmm2/m128
to xmm1 and saturate the
results.

VEX.NDS.128.660F.WIG DC /r

VPADDUSB xmm1, xmm2,
xmm3/m128

RVM V/V AVX Add packed unsigned byte
integers from xmm3/m128
to xmm2 and saturate the
results.

VEX.NDS.128.66.0F.WIG DD /r

VPADDUSW xmm1, xmm2,
xmm3/m128

RVM V/V AVX Add packed unsigned word
integers from xmm3/m128
to xmm2 and saturate the
results.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-203PADDUSB/PADDUSW—Add Packed Unsigned Integers with Unsigned Saturation

INSTRUCTION SET REFERENCE, M-Z
Description

Performs a SIMD add of the packed unsigned integers from the source operand
(second operand) and the destination operand (first operand), and stores the packed
integer results in the destination operand. See Figure 9-4 in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1, for an illustration of a SIMD
operation. Overflow is handled with unsigned saturation, as described in the
following paragraphs.

These instructions can operate on either 64-bit or 128-bit operands. When operating
on 64-bit operands, the destination operand must be an MMX technology register
and the source operand can be either an MMX technology register or a 64-bit
memory location. When operating on 128-bit operands, the destination operand
must be an XMM register and the source operand can be either an XMM register or a
128-bit memory location.

The PADDUSB instruction adds packed unsigned byte integers. When an individual
byte result is beyond the range of an unsigned byte integer (that is, greater than
FFH), the saturated value of FFH is written to the destination operand.

The PADDUSW instruction adds packed unsigned word integers. When an individual
word result is beyond the range of an unsigned word integer (that is, greater than
FFFFH), the saturated value of FFFFH is written to the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PADDUSB (with 64-bit operands)
DEST[7:0] ← SaturateToUnsignedByte(DEST[7:0] + SRC (7:0]);
(* Repeat add operation for 2nd through 7th bytes *)
DEST[63:56] ← SaturateToUnsignedByte(DEST[63:56] + SRC[63:56]

PADDUSB (with 128-bit operands)
DEST[7:0] ← SaturateToUnsignedByte (DEST[7:0] + SRC[7:0]);
(* Repeat add operation for 2nd through 14th bytes *)
DEST[127:120] ← SaturateToUnSignedByte (DEST[127:120] + SRC[127:120]);

VPADDUSB
DEST[7:0] SaturateToUnsignedByte (SRC1[7:0] + SRC2[7:0]);
(* Repeat subtract operation for 2nd through 14th bytes *)
DEST[127:120] SaturateToUnsignedByte (SRC1[111:120] + SRC2[127:120]);
DEST[VLMAX-1:128] 0
4-204 Vol. 2B PADDUSB/PADDUSW—Add Packed Unsigned Integers with Unsigned Saturation

INSTRUCTION SET REFERENCE, M-Z
PADDUSW (with 64-bit operands)
DEST[15:0] ← SaturateToUnsignedWord(DEST[15:0] + SRC[15:0]);
(* Repeat add operation for 2nd and 3rd words *)
DEST[63:48] ← SaturateToUnsignedWord(DEST[63:48] + SRC[63:48]);

PADDUSW (with 128-bit operands)
DEST[15:0] ← SaturateToUnsignedWord (DEST[15:0] + SRC[15:0]);
(* Repeat add operation for 2nd through 7th words *)
DEST[127:112] ← SaturateToUnSignedWord (DEST[127:112] + SRC[127:112]);

VPADDUSW
DEST[15:0] SaturateToUnsignedWord (SRC1[15:0] + SRC2[15:0]);
(* Repeat subtract operation for 2nd through 7th words *)
DEST[127:112] SaturateToUnsignedWord (SRC1[127:112] + SRC2[127:112]);
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalents

PADDUSB: __m64 _mm_adds_pu8(__m64 m1, __m64 m2)

PADDUSW: __m64 _mm_adds_pu16(__m64 m1, __m64 m2)

PADDUSB: __m128i _mm_adds_epu8 (__m128i a, __m128i b)

PADDUSW: __m128i _mm_adds_epu16 (__m128i a, __m128i b)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
Vol. 2B 4-205PADDUSB/PADDUSW—Add Packed Unsigned Integers with Unsigned Saturation

INSTRUCTION SET REFERENCE, M-Z
PALIGNR — Packed Align Right

Instruction Operand Encoding

Description

PALIGNR concatenates the destination operand (the first operand) and the source
operand (the second operand) into an intermediate composite, shifts the composite
at byte granularity to the right by a constant immediate, and extracts the right-
aligned result into the destination. The first and the second operands can be an MMX
or an XMM register. The immediate value is considered unsigned. Immediate shift
counts larger than the 2L (i.e. 32 for 128-bit operands, or 16 for 64-bit operands)
produce a zero result. Both operands can be MMX register or XMM registers. When
the source operand is a 128-bit memory operand, the operand must be aligned on a
16-byte boundary or a general-protection exception (#GP) will be generated.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 3A 0F1

PALIGNR mm1, mm2/m64, imm8

RMI V/V SSSE3 Concatenate destination and
source operands, extract
byte-aligned result shifted
to the right by constant
value in imm8 into mm1.

66 0F 3A 0F

PALIGNR xmm1, xmm2/m128, imm8

RMI V/V SSSE3 Concatenate destination and
source operands, extract
byte-aligned result shifted
to the right by constant
value in imm8 into xmm1

VEX.NDS.128.66.0F3A.WIG 0F /r ib

VPALIGNR xmm1, xmm2,
xmm3/m128, imm8

RVMI V/V AVX Concatenate xmm2 and
xmm3/m128, extract byte
aligned result shifted to the
right by constant value in
imm8 and result is stored in
xmm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception Conditions
of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) imm8 NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
4-206 Vol. 2B PALIGNR — Packed Align Right

INSTRUCTION SET REFERENCE, M-Z
In 64-bit mode, use the REX prefix to access additional registers.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PALIGNR (with 64-bit operands)
temp1[127:0] = CONCATENATE(DEST,SRC)>>(imm8*8)
DEST[63:0] = temp1[63:0]

PALIGNR (with 128-bit operands)
temp1[255:0] = CONCATENATE(DEST,SRC)>>(imm8*8)
DEST[127:0] = temp1[127:0]

VPALIGNR
temp1[255:0] CONCATENATE(SRC1,SRC2)>>(imm8*8)
DEST[127:0] temp1[127:0]
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalents

PALIGNR: __m64 _mm_alignr_pi8 (__m64 a, __m64 b, int n)

PALIGNR: __m128i _mm_alignr_epi8 (__m128i a, __m128i b, int n)

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
Vol. 2B 4-207PALIGNR — Packed Align Right

INSTRUCTION SET REFERENCE, M-Z
PAND—Logical AND

Instruction Operand Encoding

Description

Performs a bitwise logical AND operation on the source operand (second operand)
and the destination operand (first operand) and stores the result in the destination
operand. The source operand can be an MMX technology register or a 64-bit memory
location or it can be an XMM register or a 128-bit memory location. The destination
operand can be an MMX technology register or an XMM register. Each bit of the result
is set to 1 if the corresponding bits of the first and second operands are 1; otherwise,
it is set to 0.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PAND (128-bit Legacy SSE version)

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F DB /r1

PAND mm, mm/m64

RM V/V MMX Bitwise AND mm/m64 and
mm.

66 0F DB /r

PAND xmm1, xmm2/m128

RM V/V SSE2 Bitwise AND of
xmm2/m128 and xmm1.

VEX.NDS.128.66.0F.WIG DB /r

VPAND xmm1, xmm2, xmm3/m128

RVM V/V AVX Bitwise AND of
xmm3/m128 and xmm.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
4-208 Vol. 2B PAND—Logical AND

INSTRUCTION SET REFERENCE, M-Z
DEST DEST AND SRC
DEST[VLMAX-1:1288] (Unmodified)

VPAND (VEX.128 encoded version)
DEST SRC1 AND SRC2
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

PAND: __m64 _mm_and_si64 (__m64 m1, __m64 m2)

PAND: __m128i _mm_and_si128 (__m128i a, __m128i b)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
Vol. 2B 4-209PAND—Logical AND

INSTRUCTION SET REFERENCE, M-Z
PANDN—Logical AND NOT

Instruction Operand Encoding

Description

Performs a bitwise logical NOT of the destination operand (first operand), then
performs a bitwise logical AND of the source operand (second operand) and the
inverted destination operand. The result is stored in the destination operand. The
source operand can be an MMX technology register or a 64-bit memory location or it
can be an XMM register or a 128-bit memory location. The destination operand can
be an MMX technology register or an XMM register. Each bit of the result is set to 1 if
the corresponding bit in the first operand is 0 and the corresponding bit in the second
operand is 1; otherwise, it is set to 0.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:1288) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F DF /r1

PANDN mm, mm/m64

RM V/V MMX Bitwise AND NOT of
mm/m64 and mm.

66 0F DF /r

PANDN xmm1, xmm2/m128

RM V/V SSE2 Bitwise AND NOT of
xmm2/m128 and xmm1.

VEX.NDS.128.66.0F.WIG DF /r

VPANDN xmm1, xmm2,
xmm3/m128

RVM V/V AVX Bitwise AND NOT of
xmm3/m128 and xmm2.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
4-210 Vol. 2B PANDN—Logical AND NOT

INSTRUCTION SET REFERENCE, M-Z
Operation

PANDN(128-bit Legacy SSE version)
DEST NOT(DEST) AND SRC
DEST[VLMAX-1:128] (Unmodified)

VPANDN (VEX.128 encoded version)
DEST NOT(SRC1) AND SRC2
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

PANDN: __m64 _mm_andnot_si64 (__m64 m1, __m64 m2)

PANDN: _m128i _mm_andnot_si128 (__m128i a, __m128i b)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
Vol. 2B 4-211PANDN—Logical AND NOT

INSTRUCTION SET REFERENCE, M-Z
PAUSE—Spin Loop Hint

Instruction Operand Encoding

Description

Improves the performance of spin-wait loops. When executing a “spin-wait loop,”
processors will suffer a severe performance penalty when exiting the loop because it
detects a possible memory order violation. The PAUSE instruction provides a hint to
the processor that the code sequence is a spin-wait loop. The processor uses this hint
to avoid the memory order violation in most situations, which greatly improves
processor performance. For this reason, it is recommended that a PAUSE instruction
be placed in all spin-wait loops.

An additional function of the PAUSE instruction is to reduce the power consumed by
a processor while executing a spin loop. A processor can execute a spin-wait loop
extremely quickly, causing the processor to consume a lot of power while it waits for
the resource it is spinning on to become available. Inserting a pause instruction in a
spin-wait loop greatly reduces the processor’s power consumption.

This instruction was introduced in the Pentium 4 processors, but is backward compat-
ible with all IA-32 processors. In earlier IA-32 processors, the PAUSE instruction
operates like a NOP instruction. The Pentium 4 and Intel Xeon processors implement
the PAUSE instruction as a delay. The delay is finite and can be zero for some proces-
sors. This instruction does not change the architectural state of the processor (that
is, it performs essentially a delaying no-op operation).

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

Execute_Next_Instruction(DELAY);

Numeric Exceptions

None.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

F3 90 PAUSE NP Valid Valid Gives hint to processor that
improves performance of
spin-wait loops.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
4-212 Vol. 2B PAUSE—Spin Loop Hint

INSTRUCTION SET REFERENCE, M-Z
Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.
Vol. 2B 4-213PAUSE—Spin Loop Hint

INSTRUCTION SET REFERENCE, M-Z
PAVGB/PAVGW—Average Packed Integers

Instruction Operand Encoding

Description

Performs a SIMD average of the packed unsigned integers from the source operand

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F E0 /r1

PAVGB mm1, mm2/m64

RM V/V SSE Average packed unsigned
byte integers from
mm2/m64 and mm1 with
rounding.

66 0F E0, /r

PAVGB xmm1, xmm2/m128

RM V/V SSE2 Average packed unsigned
byte integers from
xmm2/m128 and xmm1
with rounding.

0F E3 /r1

PAVGW mm1, mm2/m64

RM V/V SSE Average packed unsigned
word integers from
mm2/m64 and mm1 with
rounding.

66 0F E3 /r

PAVGW xmm1, xmm2/m128

RM V/V SSE2 Average packed unsigned
word integers from
xmm2/m128 and xmm1
with rounding.

VEX.NDS.128.66.0F.WIG E0 /r

VPAVGB xmm1, xmm2, xmm3/m128

RVM V/V AVX Average packed unsigned
byte integers from
xmm3/m128 and xmm2
with rounding.

VEX.NDS.128.66.0F.WIG E3 /r

VPAVGW xmm1, xmm2,
xmm3/m128

RVM V/V AVX Average packed unsigned
word integers from
xmm3/m128 and xmm2
with rounding.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
4-214 Vol. 2B PAVGB/PAVGW—Average Packed Integers

INSTRUCTION SET REFERENCE, M-Z
(second operand) and the destination operand (first operand), and stores the results
in the destination operand. For each corresponding pair of data elements in the first
and second operands, the elements are added together, a 1 is added to the tempo-
rary sum, and that result is shifted right one bit position. The source operand can be
an MMX technology register or a 64-bit memory location or it can be an XMM register
or a 128-bit memory location. The destination operand can be an MMX technology
register or an XMM register.

The PAVGB instruction operates on packed unsigned bytes and the PAVGW instruc-
tion operates on packed unsigned words.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PAVGB (with 64-bit operands)
DEST[7:0] ← (SRC[7:0] + DEST[7:0] + 1) >> 1; (* Temp sum before shifting is 9 bits *)
(* Repeat operation performed for bytes 2 through 6 *)
DEST[63:56] ← (SRC[63:56] + DEST[63:56] + 1) >> 1;

PAVGW (with 64-bit operands)
DEST[15:0] ← (SRC[15:0] + DEST[15:0] + 1) >> 1; (* Temp sum before shifting is 17 bits *)
(* Repeat operation performed for words 2 and 3 *)
DEST[63:48] ← (SRC[63:48] + DEST[63:48] + 1) >> 1;

PAVGB (with 128-bit operands)
DEST[7:0] ← (SRC[7:0] + DEST[7:0] + 1) >> 1; (* Temp sum before shifting is 9 bits *)
(* Repeat operation performed for bytes 2 through 14 *)
DEST[127:120] ← (SRC[127:120] + DEST[127:120] + 1) >> 1;

PAVGW (with 128-bit operands)
DEST[15:0] ← (SRC[15:0] + DEST[15:0] + 1) >> 1; (* Temp sum before shifting is 17 bits *)
(* Repeat operation performed for words 2 through 6 *)
DEST[127:112] ← (SRC[127:112] + DEST[127:112] + 1) >> 1;

VPAVGB (VEX.128 encoded version)
DEST[7:0] (SRC1[7:0] + SRC2[7:0] + 1) >> 1;
(* Repeat operation performed for bytes 2 through 15 *)
DEST[127:120] (SRC1[127:120] + SRC2[127:120] + 1) >> 1
DEST[VLMAX-1:128] 0
Vol. 2B 4-215PAVGB/PAVGW—Average Packed Integers

INSTRUCTION SET REFERENCE, M-Z
VPAVGW (VEX.128 encoded version)
DEST[15:0] (SRC1[15:0] + SRC2[15:0] + 1) >> 1;
(* Repeat operation performed for 16-bit words 2 through 7 *)
DEST[127:112] (SRC1[127:112] + SRC2[127:112] + 1) >> 1
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

PAVGB: __m64 _mm_avg_pu8 (__m64 a, __m64 b)

PAVGW: __m64 _mm_avg_pu16 (__m64 a, __m64 b)

PAVGB: __m128i _mm_avg_epu8 (__m128i a, __m128i b)

PAVGW: __m128i _mm_avg_epu16 (__m128i a, __m128i b)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
4-216 Vol. 2B PAVGB/PAVGW—Average Packed Integers

INSTRUCTION SET REFERENCE, M-Z
PBLENDVB — Variable Blend Packed Bytes

Instruction Operand Encoding

Description

Conditionally copies byte elements from the source operand (second operand) to the
destination operand (first operand) depending on mask bits defined in the implicit
third register argument, XMM0. The mask bits are the most significant bit in each
byte element of the XMM0 register.
If a mask bit is “1", then the corresponding byte element in the source operand is
copied to the destination, else the byte element in the destination operand is left
unchanged.
The register assignment of the implicit third operand is defined to be the architectural
register XMM0.
128-bit Legacy SSE version: The first source operand and the destination operand is
the same. Bits (VLMAX-1:128) of the corresponding YMM destination register remain
unchanged. The mask register operand is implicitly defined to be the architectural
register XMM0. An attempt to execute PBLENDVB with a VEX prefix will cause #UD.
VEX.128 encoded version: The first source operand and the destination operand are
XMM registers. The second source operand is an XMM register or 128-bit memory
location. The mask operand is the third source register, and encoded in bits[7:4] of
the immediate byte(imm8). The bits[3:0] of imm8 are ignored. In 32-bit mode,
imm8[7] is ignored. The upper bits (VLMAX-1:128) of the corresponding YMM

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 38 10 /r
PBLENDVB xmm1, xmm2/m128,
<XMM0>

RM V/V SSE4_1 Select byte values from
xmm1 and xmm2/m128
from mask specified in the
high bit of each byte in
XMM0 and store the values
into xmm1.

VEX.NDS.128.66.0F3A.W0 4C /r /is4
VPBLENDVB xmm1, xmm2,
xmm3/m128, xmm4

RVMR V/V AVX Select byte values from
xmm2 and xmm3/m128
using mask bits in the
specified mask register,
xmm4, and store the
values into xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) <XMM0> NA

RVMR ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) ModRM:reg (r)
Vol. 2B 4-217PBLENDVB — Variable Blend Packed Bytes

INSTRUCTION SET REFERENCE, M-Z
register (destination register) are zeroed. VEX.L must be 0, otherwise the instruction
will #UD. VEX.W must be 0, otherwise, the instruction will #UD.
VPBLENDVB permits the mask to be any XMM or YMM register. In contrast,
PBLENDVB treats XMM0 implicitly as the mask and do not support non-destructive
destination operation. An attempt to execute PBLENDVB encoded with a VEX prefix
will cause a #UD exception.

Operation

PBLENDVB (128-bit Legacy SSE version)
MASK XMM0
IF (MASK[7] = 1) THEN DEST[7:0] SRC[7:0];
ELSE DEST[7:0] DEST[7:0];
IF (MASK[15] = 1) THEN DEST[15:8] SRC[15:8];
ELSE DEST[15:8] DEST[15:8];
IF (MASK[23] = 1) THEN DEST[23:16] SRC[23:16]
ELSE DEST[23:16] DEST[23:16];
IF (MASK[31] = 1) THEN DEST[31:24] SRC[31:24]
ELSE DEST[31:24] DEST[31:24];
IF (MASK[39] = 1) THEN DEST[39:32] SRC[39:32]
ELSE DEST[39:32] DEST[39:32];
IF (MASK[47] = 1) THEN DEST[47:40] SRC[47:40]
ELSE DEST[47:40] DEST[47:40];
IF (MASK[55] = 1) THEN DEST[55:48] SRC[55:48]
ELSE DEST[55:48] DEST[55:48];
IF (MASK[63] = 1) THEN DEST[63:56] SRC[63:56]
ELSE DEST[63:56] DEST[63:56];
IF (MASK[71] = 1) THEN DEST[71:64] SRC[71:64]
ELSE DEST[71:64] DEST[71:64];
IF (MASK[79] = 1) THEN DEST[79:72] SRC[79:72]
ELSE DEST[79:72] DEST[79:72];
IF (MASK[87] = 1) THEN DEST[87:80] SRC[87:80]
ELSE DEST[87:80] DEST[87:80];
IF (MASK[95] = 1) THEN DEST[95:88] SRC[95:88]
ELSE DEST[95:88] DEST[95:88];
IF (MASK[103] = 1) THEN DEST[103:96] SRC[103:96]
ELSE DEST[103:96] DEST[103:96];
IF (MASK[111] = 1) THEN DEST[111:104] SRC[111:104]
ELSE DEST[111:104] DEST[111:104];
IF (MASK[119] = 1) THEN DEST[119:112] SRC[119:112]
ELSE DEST[119:112] DEST[119:112];
IF (MASK[127] = 1) THEN DEST[127:120] SRC[127:120]
ELSE DEST[127:120] DEST[127:120])
4-218 Vol. 2B PBLENDVB — Variable Blend Packed Bytes

INSTRUCTION SET REFERENCE, M-Z
DEST[VLMAX-1:128] (Unmodified)

VPBLENDVB (VEX.128 encoded version)
MASK SRC3
IF (MASK[7] = 1) THEN DEST[7:0] SRC2[7:0];
ELSE DEST[7:0] SRC1[7:0];
IF (MASK[15] = 1) THEN DEST[15:8] SRC2[15:8];
ELSE DEST[15:8] SRC1[15:8];
IF (MASK[23] = 1) THEN DEST[23:16] SRC2[23:16]
ELSE DEST[23:16] SRC1[23:16];
IF (MASK[31] = 1) THEN DEST[31:24] SRC2[31:24]
ELSE DEST[31:24] SRC1[31:24];
IF (MASK[39] = 1) THEN DEST[39:32] SRC2[39:32]
ELSE DEST[39:32] SRC1[39:32];
IF (MASK[47] = 1) THEN DEST[47:40] SRC2[47:40]
ELSE DEST[47:40] SRC1[47:40];
IF (MASK[55] = 1) THEN DEST[55:48] SRC2[55:48]
ELSE DEST[55:48] SRC1[55:48];
IF (MASK[63] = 1) THEN DEST[63:56] SRC2[63:56]
ELSE DEST[63:56] SRC1[63:56];
IF (MASK[71] = 1) THEN DEST[71:64] SRC2[71:64]
ELSE DEST[71:64] SRC1[71:64];
IF (MASK[79] = 1) THEN DEST[79:72] SRC2[79:72]
ELSE DEST[79:72] SRC1[79:72];
IF (MASK[87] = 1) THEN DEST[87:80] SRC2[87:80]
ELSE DEST[87:80] SRC1[87:80];
IF (MASK[95] = 1) THEN DEST[95:88] SRC2[95:88]
ELSE DEST[95:88] SRC1[95:88];
IF (MASK[103] = 1) THEN DEST[103:96] SRC2[103:96]
ELSE DEST[103:96] SRC1[103:96];
IF (MASK[111] = 1) THEN DEST[111:104] SRC2[111:104]
ELSE DEST[111:104] SRC1[111:104];
IF (MASK[119] = 1) THEN DEST[119:112] SRC2[119:112]
ELSE DEST[119:112] SRC1[119:112];
IF (MASK[127] = 1) THEN DEST[127:120] SRC2[127:120]
ELSE DEST[127:120] SRC1[127:120])
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

PBLENDVB: __m128i _mm_blendv_epi8 (__m128i v1, __m128i v2, __m128i mask);
Vol. 2B 4-219PBLENDVB — Variable Blend Packed Bytes

INSTRUCTION SET REFERENCE, M-Z
Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.

If VEX.W = 1.
4-220 Vol. 2B PBLENDVB — Variable Blend Packed Bytes

INSTRUCTION SET REFERENCE, M-Z
PBLENDW — Blend Packed Words

Instruction Operand Encoding

Description

Conditionally copies word elements from the source operand (second operand) to the
destination operand (first operand) depending on the immediate byte (third
operand). Each bit of Imm8 correspond to a word element.
If a bit is “1", then the corresponding word element in the source operand is copied
to the destination, else the word element in the destination operand is left
unchanged.
128-bit Legacy SSE version: Bits (VLMAX-1:1288) of the corresponding YMM desti-
nation register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PBLENDW (128-bit Legacy SSE version)
IF (imm8[0] = 1) THEN DEST[15:0] SRC[15:0]
ELSE DEST[15:0] DEST[15:0]
IF (imm8[1] = 1) THEN DEST[31:16] SRC[31:16]
ELSE DEST[31:16] DEST[31:16]
IF (imm8[2] = 1) THEN DEST[47:32] SRC[47:32]
ELSE DEST[47:32] DEST[47:32]
IF (imm8[3] = 1) THEN DEST[63:48] SRC[63:48]

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 3A 0E /r ib
PBLENDW xmm1, xmm2/m128,
imm8

RMI V/V SSE4_1 Select words from xmm1
and xmm2/m128 from mask
specified in imm8 and store
the values into xmm1.

VEX.NDS.128.6
6.0F3A.WIG 0E
/r ib

VPBLENDW
xmm1, xmm2,
xmm3/m128,
imm8

RVMI V/V AVX Select words from xmm2
and xmm3/m128 from mask
specified in imm8 and store
the values into xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
Vol. 2B 4-221PBLENDW — Blend Packed Words

INSTRUCTION SET REFERENCE, M-Z
ELSE DEST[63:48] DEST[63:48]
IF (imm8[4] = 1) THEN DEST[79:64] SRC[79:64]
ELSE DEST[79:64] DEST[79:64]
IF (imm8[5] = 1) THEN DEST[95:80] SRC[95:80]
ELSE DEST[95:80] DEST[95:80]
IF (imm8[6] = 1) THEN DEST[111:96] SRC[111:96]
ELSE DEST[111:96] DEST[111:96]
IF (imm8[7] = 1) THEN DEST[127:112] SRC[127:112]
ELSE DEST[127:112] DEST[127:112]

VPBLENDW (VEX.128 encoded version)
IF (imm8[0] = 1) THEN DEST[15:0] SRC2[15:0]
ELSE DEST[15:0] SRC1[15:0]
IF (imm8[1] = 1) THEN DEST[31:16] SRC2[31:16]
ELSE DEST[31:16] SRC1[31:16]
IF (imm8[2] = 1) THEN DEST[47:32] SRC2[47:32]
ELSE DEST[47:32] SRC1[47:32]
IF (imm8[3] = 1) THEN DEST[63:48] SRC2[63:48]
ELSE DEST[63:48] SRC1[63:48]
IF (imm8[4] = 1) THEN DEST[79:64] SRC2[79:64]
ELSE DEST[79:64] SRC1[79:64]
IF (imm8[5] = 1) THEN DEST[95:80] SRC2[95:80]
ELSE DEST[95:80] SRC1[95:80]
IF (imm8[6] = 1) THEN DEST[111:96] SRC2[111:96]
ELSE DEST[111:96] SRC1[111:96]
IF (imm8[7] = 1) THEN DEST[127:112] SRC2[127:112]
ELSE DEST[127:112] SRC1[127:112]
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

PBLENDW: __m128i _mm_blend_epi16 (__m128i v1, __m128i v2, const int mask);

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
4-222 Vol. 2B PBLENDW — Blend Packed Words

INSTRUCTION SET REFERENCE, M-Z
PCLMULQDQ - Carry-Less Multiplication Quadword

Instruction Operand Encoding

Description

Performs a carry-less multiplication of two quadwords, selected from the first source
and second source operand according to the value of the immediate byte. Bits 4 and
0 are used to select which 64-bit half of each operand to use according to Table 4-13,
other bits of the immediate byte are ignored.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 3A 44 /r ib
PCLMULQDQ xmm1, xmm2/m128,
imm8

RMI V/V CLMUL Carry-less multiplication of
one quadword of xmm1 by
one quadword of
xmm2/m128, stores the
128-bit result in xmm1. The
immediate is used to deter-
mine which quadwords of
xmm1 and xmm2/m128
should be used.

VEX.NDS.128.66.0F3A.WIG 44 /r ib
VPCLMULQDQ xmm1, xmm2,
xmm3/m128, imm8

RVMI V/V Both
CLMUL
and AVX
flags

Carry-less multiplication of
one quadword of xmm2 by
one quadword of
xmm3/m128, stores the
128-bit result in xmm1. The
immediate is used to deter-
mine which quadwords of
xmm2 and xmm3/m128
should be used.

Op/En Operand 1 Operand2 Operand3 Operand4

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8

Table 4-13. PCLMULQDQ Quadword Selection of Immediate Byte

Imm[4] Imm[0] PCLMULQDQ Operation

0 0 CL_MUL(SRC21[63:0], SRC1[63:0])

0 1 CL_MUL(SRC2[63:0], SRC1[127:64])

1 0 CL_MUL(SRC2[127:64], SRC1[63:0])

1 1 CL_MUL(SRC2[127:64], SRC1[127:64])
Vol. 2B 4-223PCLMULQDQ - Carry-Less Multiplication Quadword

INSTRUCTION SET REFERENCE, M-Z
 The first source operand and the destination operand are the same and must be an
XMM register. The second source operand can be an XMM register or a 128-bit
memory location. Bits (VLMAX-1:128) of the corresponding YMM destination register
remain unchanged.

Compilers and assemblers may implement the following pseudo-op syntax to simply
programming and emit the required encoding for Imm8.

Operation

PCLMULQDQ
IF (Imm8[0] = 0)

THEN
TEMP1 SRC1 [63:0];

ELSE
TEMP1 SRC1 [127:64];

FI
IF (Imm8[4] = 0)

THEN
TEMP2 SRC2 [63:0];

ELSE
TEMP2 SRC2 [127:64];

FI
For i = 0 to 63 {

TmpB [i] (TEMP1[0] and TEMP2[i]);
For j = 1 to i {

TmpB [i] TmpB [i] xor (TEMP1[j] and TEMP2[i - j])
}
DEST[i] TmpB[i];

}
For i = 64 to 126 {

NOTES:
1. SRC2 denotes the second source operand, which can be a register or memory; SRC1

denotes the first source and destination operand.

Table 4-14. Pseudo-Op and PCLMULQDQ Implementation

Pseudo-Op Imm8 Encoding

PCLMULLQLQDQ xmm1, xmm2 0000_0000B

PCLMULHQLQDQ xmm1, xmm2 0000_0001B

PCLMULLQHDQ xmm1, xmm2 0001_0000B

PCLMULHQHDQ xmm1, xmm2 0001_0001B
4-224 Vol. 2B PCLMULQDQ - Carry-Less Multiplication Quadword

INSTRUCTION SET REFERENCE, M-Z
TmpB [i] 0;
For j = i - 63 to 63 {

TmpB [i] TmpB [i] xor (TEMP1[j] and TEMP2[i - j])
}
DEST[i] TmpB[i];

}
DEST[127] 0;
DEST[VLMAX-1:128] (Unmodified)

VPCLMULQDQ
IF (Imm8[0] = 0)

THEN
TEMP1 SRC1 [63:0];

ELSE
TEMP1 SRC1 [127:64];

FI
IF (Imm8[4] = 0)

THEN
TEMP2 SRC2 [63:0];

ELSE
TEMP2 SRC2 [127:64];

FI
For i = 0 to 63 {

TmpB [i] (TEMP1[0] and TEMP2[i]);
For j = 1 to i {

TmpB [i] TmpB [i] xor (TEMP1[j] and TEMP2[i - j])
}
DEST[i] TmpB[i];

}
For i = 64 to 126 {

TmpB [i] 0;
For j = i - 63 to 63 {

TmpB [i] TmpB [i] xor (TEMP1[j] and TEMP2[i - j])
}
DEST[i] TmpB[i];

}
DEST[VLMAX-1:127] 0;

Intel C/C++ Compiler Intrinsic Equivalent

(V)PCLMULQDQ: __m128i _mm_clmulepi64_si128 (__m128i, __m128i, const int)
Vol. 2B 4-225PCLMULQDQ - Carry-Less Multiplication Quadword

INSTRUCTION SET REFERENCE, M-Z
SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4.
4-226 Vol. 2B PCLMULQDQ - Carry-Less Multiplication Quadword

INSTRUCTION SET REFERENCE, M-Z
PCMPEQB/PCMPEQW/PCMPEQD— Compare Packed Data for Equal
Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 74 /r1

PCMPEQB mm, mm/m64

RM V/V MMX Compare packed bytes in
mm/m64 and mm for
equality.

66 0F 74 /r

PCMPEQB xmm1, xmm2/m128

RM V/V SSE2 Compare packed bytes in
xmm2/m128 and xmm1 for
equality.

0F 75 /r1

PCMPEQW mm, mm/m64

RM V/V MMX Compare packed words in
mm/m64 and mm for
equality.

66 0F 75 /r

PCMPEQW xmm1, xmm2/m128

RM V/V SSE2 Compare packed words in
xmm2/m128 and xmm1 for
equality.

0F 76 /r1

PCMPEQD mm, mm/m64

RM V/V MMX Compare packed
doublewords in mm/m64
and mm for equality.

66 0F 76 /r

PCMPEQD xmm1, xmm2/m128

RM V/V SSE2 Compare packed
doublewords in
xmm2/m128 and xmm1 for
equality.

VEX.NDS.128.66.0F.WIG 74 /r

VPCMPEQB xmm1, xmm2, xmm3
/m128

RVM V/V AVX Compare packed bytes in
xmm3/m128 and xmm2 for
equality.

VEX.NDS.128.66.0F.WIG 75 /r

VPCMPEQW xmm1, xmm2,
xmm3/m128

RVM V/V AVX Compare packed words in
xmm3/m128 and xmm2 for
equality.

VEX.NDS.128.66.0F.WIG 76 /r

VPCMPEQD xmm1, xmm2,
xmm3/m128

RVM V/V AVX Compare packed
doublewords in
xmm3/m128 and xmm2 for
equality.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.
Vol. 2B 4-227PCMPEQB/PCMPEQW/PCMPEQD— Compare Packed Data for Equal

INSTRUCTION SET REFERENCE, M-Z
Instruction Operand Encoding

Description

Performs a SIMD compare for equality of the packed bytes, words, or doublewords in
the destination operand (first operand) and the source operand (second operand). If
a pair of data elements is equal, the corresponding data element in the destination
operand is set to all 1s; otherwise, it is set to all 0s. The source operand can be an
MMX technology register or a 64-bit memory location, or it can be an XMM register or
a 128-bit memory location. The destination operand can be an MMX technology
register or an XMM register.

The PCMPEQB instruction compares the corresponding bytes in the destination and
source operands; the PCMPEQW instruction compares the corresponding words in
the destination and source operands; and the PCMPEQD instruction compares the
corresponding doublewords in the destination and source operands.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PCMPEQB (with 64-bit operands)
IF DEST[7:0] = SRC[7:0]

THEN DEST[7:0) ← FFH;
ELSE DEST[7:0] ← 0; FI;

(* Continue comparison of 2nd through 7th bytes in DEST and SRC *)
IF DEST[63:56] = SRC[63:56]

THEN DEST[63:56] ← FFH;
ELSE DEST[63:56] ← 0; FI;

PCMPEQB (with 128-bit operands)
IF DEST[7:0] = SRC[7:0]

THEN DEST[7:0) ← FFH;
ELSE DEST[7:0] ← 0; FI;

(* Continue comparison of 2nd through 15th bytes in DEST and SRC *)
IF DEST[127:120] = SRC[127:120]

THEN DEST[127:120] ← FFH;

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
4-228 Vol. 2B PCMPEQB/PCMPEQW/PCMPEQD— Compare Packed Data for Equal

INSTRUCTION SET REFERENCE, M-Z
ELSE DEST[127:120] ← 0; FI;

PCMPEQW (with 64-bit operands)
IF DEST[15:0] = SRC[15:0]

THEN DEST[15:0] ← FFFFH;
ELSE DEST[15:0] ← 0; FI;

(* Continue comparison of 2nd and 3rd words in DEST and SRC *)
IF DEST[63:48] = SRC[63:48]

THEN DEST[63:48] ← FFFFH;
ELSE DEST[63:48] ← 0; FI;

PCMPEQW (with 128-bit operands)
IF DEST[15:0] = SRC[15:0]

THEN DEST[15:0] ← FFFFH;
ELSE DEST[15:0] ← 0; FI;

(* Continue comparison of 2nd through 7th words in DEST and SRC *)
IF DEST[127:112] = SRC[127:112]

THEN DEST[127:112] ← FFFFH;
ELSE DEST[127:112] ← 0; FI;

PCMPEQD (with 64-bit operands)
IF DEST[31:0] = SRC[31:0]

THEN DEST[31:0] ← FFFFFFFFH;
ELSE DEST[31:0] ← 0; FI;

IF DEST[63:32] = SRC[63:32]
THEN DEST[63:32] ← FFFFFFFFH;
ELSE DEST[63:32] ← 0; FI;

PCMPEQD (with 128-bit operands)
IF DEST[31:0] = SRC[31:0]

THEN DEST[31:0] ← FFFFFFFFH;
ELSE DEST[31:0] ← 0; FI;

(* Continue comparison of 2nd and 3rd doublewords in DEST and SRC *)
IF DEST[127:96] = SRC[127:96]

THEN DEST[127:96] ← FFFFFFFFH;
ELSE DEST[127:96] ← 0; FI;

VPCMPEQB (VEX.128 encoded version)
DEST[127:0] COMPARE_BYTES_EQUAL(SRC1,SRC2)
DEST[VLMAX-1:128] 0

VPCMPEQW (VEX.128 encoded version)
DEST[127:0] COMPARE_WORDS_EQUAL(SRC1,SRC2)
DEST[VLMAX-1:128] 0
Vol. 2B 4-229PCMPEQB/PCMPEQW/PCMPEQD— Compare Packed Data for Equal

INSTRUCTION SET REFERENCE, M-Z
VPCMPEQD (VEX.128 encoded version)
DEST[127:0] COMPARE_DWORDS_EQUAL(SRC1,SRC2)
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalents

PCMPEQB: __m64 _mm_cmpeq_pi8 (__m64 m1, __m64 m2)

PCMPEQW: __m64 _mm_cmpeq_pi16 (__m64 m1, __m64 m2)

PCMPEQD: __m64 _mm_cmpeq_pi32 (__m64 m1, __m64 m2)

PCMPEQB: __m128i _mm_cmpeq_epi8 (__m128i a, __m128i b)

PCMPEQW: __m128i _mm_cmpeq_epi16 (__m128i a, __m128i b)

PCMPEQD: __m128i _mm_cmpeq_epi32 (__m128i a, __m128i b)

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
4-230 Vol. 2B PCMPEQB/PCMPEQW/PCMPEQD— Compare Packed Data for Equal

INSTRUCTION SET REFERENCE, M-Z
PCMPEQQ — Compare Packed Qword Data for Equal

Instruction Operand Encoding

Description

Performs an SIMD compare for equality of the packed quadwords in the destination
operand (first operand) and the source operand (second operand). If a pair of data
elements is equal, the corresponding data element in the destination is set to all 1s;
otherwise, it is set to 0s.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

IF (DEST[63:0] = SRC[63:0])
THEN DEST[63:0] FFFFFFFFFFFFFFFFH;
ELSE DEST[63:0] 0; FI;

IF (DEST[127:64] = SRC[127:64])
THEN DEST[127:64] FFFFFFFFFFFFFFFFH;
ELSE DEST[127:64] 0; FI;

VPCMPEQQ (VEX.128 encoded version)
DEST[127:0] COMPARE_QWORDS_EQUAL(SRC1,SRC2)
DEST[VLMAX-1:128] 0

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 38 29 /r
PCMPEQQ xmm1, xmm2/m128

RM V/V SSE4_1 Compare packed qwords in
xmm2/m128 and xmm1 for
equality.

VEX.NDS.128.66.0F38.WIG 29 /r
VPCMPEQQ xmm1, xmm2,
xmm3/m128

RVM V/V AVX Compare packed quadwords
in xmm3/m128 and xmm2
for equality.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-231PCMPEQQ — Compare Packed Qword Data for Equal

INSTRUCTION SET REFERENCE, M-Z
Intel C/C++ Compiler Intrinsic Equivalent

PCMPEQQ: __m128i _mm_cmpeq_epi64(__m128i a, __m128i b);

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
4-232 Vol. 2B PCMPEQQ — Compare Packed Qword Data for Equal

INSTRUCTION SET REFERENCE, M-Z
PCMPESTRI — Packed Compare Explicit Length Strings, Return Index

Instruction Operand Encoding

Description

The instruction compares and processes data from two string fragments based on the
encoded value in the Imm8 Control Byte (see Section 4.1, “Imm8 Control Byte Oper-
ation for PCMPESTRI / PCMPESTRM / PCMPISTRI / PCMPISTRM”), and generates an
index stored to the count register (ECX/RCX).

Each string fragment is represented by two values. The first value is an xmm (or
possibly m128 for the second operand) which contains the data elements of the
string (byte or word data). The second value is stored in an input length register. The
input length register is EAX/RAX (for xmm1) or EDX/RDX (for xmm2/m128). The
length represents the number of bytes/words which are valid for the respective
xmm/m128 data.

The length of each input is interpreted as being the absolute-value of the value in the
length register. The absolute-value computation saturates to 16 (for bytes) and 8 (for
words), based on the value of imm8[bit3] when the value in the length register is
greater than 16 (8) or less than -16 (-8).

The comparison and aggregation operations are performed according to the encoded
value of Imm8 bit fields (see Section 4.1). The index of the first (or last, according to
imm8[6]) set bit of IntRes2 (see Section 4.1.4) is returned in ECX. If no bits are set
in IntRes2, ECX is set to 16 (8).

Note that the Arithmetic Flags are written in a non-standard manner in order to
supply the most relevant information:

CFlag – Reset if IntRes2 is equal to zero, set otherwise

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 3A 61 /r imm8
PCMPESTRI xmm1, xmm2/m128,
imm8

RMI V/V SSE4_2 Perform a packed
comparison of string data
with explicit lengths,
generating an index, and
storing the result in ECX.

VEX.128.66.0F3A.WIG 61 /r ib
VPCMPESTRI xmm1, xmm2/m128,
imm8

RMI V/V AVX Perform a packed
comparison of string data
with explicit lengths,
generating an index, and
storing the result in ECX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r) ModRM:r/m (r) imm8 NA
Vol. 2B 4-233PCMPESTRI — Packed Compare Explicit Length Strings, Return Index

INSTRUCTION SET REFERENCE, M-Z
ZFlag – Set if absolute-value of EDX is < 16 (8), reset otherwise
SFlag – Set if absolute-value of EAX is < 16 (8), reset otherwise
OFlag – IntRes2[0]
AFlag – Reset
PFlag – Reset

Effective Operand Size

Intel C/C++ Compiler Intrinsic Equivalent For Returning Index

int _mm_cmpestri (__m128i a, int la, __m128i b, int lb, const int mode);

Intel C/C++ Compiler Intrinsics For Reading EFlag Results

int _mm_cmpestra (__m128i a, int la, __m128i b, int lb, const int mode);
int _mm_cmpestrc (__m128i a, int la, __m128i b, int lb, const int mode);
int _mm_cmpestro (__m128i a, int la, __m128i b, int lb, const int mode);
int _mm_cmpestrs (__m128i a, int la, __m128i b, int lb, const int mode);
int _mm_cmpestrz (__m128i a, int la, __m128i b, int lb, const int mode);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.

Operating
mode/size

Operand 1 Operand 2 Length 1 Length 2 Result

16 bit xmm xmm/m128 EAX EDX ECX

32 bit xmm xmm/m128 EAX EDX ECX

64 bit xmm xmm/m128 EAX EDX ECX

64 bit + REX.W xmm xmm/m128 RAX RDX RCX
4-234 Vol. 2B PCMPESTRI — Packed Compare Explicit Length Strings, Return Index

INSTRUCTION SET REFERENCE, M-Z
PCMPESTRM — Packed Compare Explicit Length Strings, Return Mask

Instruction Operand Encoding

Description

The instruction compares data from two string fragments based on the encoded
value in the imm8 contol byte (see Section 4.1, “Imm8 Control Byte Operation for
PCMPESTRI / PCMPESTRM / PCMPISTRI / PCMPISTRM”), and generates a mask
stored to XMM0.

Each string fragment is represented by two values. The first value is an xmm (or
possibly m128 for the second operand) which contains the data elements of the
string (byte or word data). The second value is stored in an input length register. The
input length register is EAX/RAX (for xmm1) or EDX/RDX (for xmm2/m128). The
length represents the number of bytes/words which are valid for the respective
xmm/m128 data.

The length of each input is interpreted as being the absolute-value of the value in the
length register. The absolute-value computation saturates to 16 (for bytes) and 8 (for
words), based on the value of imm8[bit3] when the value in the length register is
greater than 16 (8) or less than -16 (-8).

The comparison and aggregation operations are performed according to the encoded
value of Imm8 bit fields (see Section 4.1). As defined by imm8[6], IntRes2 is then
either stored to the least significant bits of XMM0 (zero extended to 128 bits) or
expanded into a byte/word-mask and then stored to XMM0.

Note that the Arithmetic Flags are written in a non-standard manner in order to
supply the most relevant information:

CFlag – Reset if IntRes2 is equal to zero, set otherwise

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 3A 60 /r imm8
PCMPESTRM xmm1, xmm2/m128,
imm8

RMI V/V SSE4_2 Perform a packed
comparison of string data
with explicit lengths,
generating a mask, and
storing the result in XMM0

VEX.128.66.0F3A.WIG 60 /r ib
VPCMPESTRM xmm1, xmm2/m128,
imm8

RMI V/V AVX Perform a packed
comparison of string data
with explicit lengths,
generating a mask, and
storing the result in XMM0.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r) ModRM:r/m (r) imm8 NA
Vol. 2B 4-235PCMPESTRM — Packed Compare Explicit Length Strings, Return Mask

INSTRUCTION SET REFERENCE, M-Z
ZFlag – Set if absolute-value of EDX is < 16 (8), reset otherwise
SFlag – Set if absolute-value of EAX is < 16 (8), reset otherwise
OFlag –IntRes2[0]
AFlag – Reset
PFlag – Reset

Note: In VEX.128 encoded versions, bits (VLMAX-1:128) of XMM0 are zeroed.
VEX.vvvv is reserved and must be 1111b, VEX.L must be 0, otherwise the instruction
will #UD.

Effective Operand Size

Intel C/C++ Compiler Intrinsic Equivalent For Returning Mask

__m128i _mm_cmpestrm (__m128i a, int la, __m128i b, int lb, const int mode);

Intel C/C++ Compiler Intrinsics For Reading EFlag Results

int _mm_cmpestra (__m128i a, int la, __m128i b, int lb, const int mode);
int _mm_cmpestrc (__m128i a, int la, __m128i b, int lb, const int mode);
int _mm_cmpestro (__m128i a, int la, __m128i b, int lb, const int mode);
int _mm_cmpestrs (__m128i a, int la, __m128i b, int lb, const int mode);
int _mm_cmpestrz (__m128i a, int la, __m128i b, int lb, const int mode);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.

Operating
mode/size

Operand1 Operand 2 Length1 Length2 Result

16 bit xmm xmm/m128 EAX EDX XMM0

32 bit xmm xmm/m128 EAX EDX XMM0

64 bit xmm xmm/m128 EAX EDX XMM0

64 bit + REX.W xmm xmm/m128 RAX RDX XMM0
4-236 Vol. 2B PCMPESTRM — Packed Compare Explicit Length Strings, Return Mask

INSTRUCTION SET REFERENCE, M-Z
PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers for
Greater Than
Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 64 /r1

PCMPGTB mm, mm/m64

RM V/V MMX Compare packed signed byte
integers in mm and
mm/m64 for greater than.

66 0F 64 /r

PCMPGTB xmm1, xmm2/m128

RM V/V SSE2 Compare packed signed byte
integers in xmm1 and
xmm2/m128 for greater
than.

0F 65 /r1

PCMPGTW mm, mm/m64

RM V/V MMX Compare packed signed
word integers in mm and
mm/m64 for greater than.

66 0F 65 /r

PCMPGTW xmm1, xmm2/m128

RM V/V SSE2 Compare packed signed
word integers in xmm1 and
xmm2/m128 for greater
than.

0F 66 /r1

PCMPGTD mm, mm/m64

RM V/V MMX Compare packed signed
doubleword integers in mm
and mm/m64 for greater
than.

66 0F 66 /r

PCMPGTD xmm1, xmm2/m128

RM V/V SSE2 Compare packed signed
doubleword integers in
xmm1 and xmm2/m128 for
greater than.

VEX.NDS.128.66.0F.WIG 64 /r

VPCMPGTB xmm1, xmm2,
xmm3/m128

RVM V/V AVX Compare packed signed byte
integers in xmm2 and
xmm3/m128 for greater
than.

VEX.NDS.128.66.0F.WIG 65 /r

VPCMPGTW xmm1, xmm2,
xmm3/m128

RVM V/V AVX Compare packed signed
word integers in xmm2 and
xmm3/m128 for greater
than.
Vol. 2B 4-237PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers for Greater Than

INSTRUCTION SET REFERENCE, M-Z
Instruction Operand Encoding

Description

Performs an SIMD signed compare for the greater value of the packed byte, word, or
doubleword integers in the destination operand (first operand) and the source
operand (second operand). If a data element in the destination operand is greater
than the corresponding date element in the source operand, the corresponding data
element in the destination operand is set to all 1s; otherwise, it is set to all 0s. The
source operand can be an MMX technology register or a 64-bit memory location, or it
can be an XMM register or a 128-bit memory location. The destination operand can
be an MMX technology register or an XMM register.

The PCMPGTB instruction compares the corresponding signed byte integers in the
destination and source operands; the PCMPGTW instruction compares the corre-
sponding signed word integers in the destination and source operands; and the
PCMPGTD instruction compares the corresponding signed doubleword integers in the
destination and source operands.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PCMPGTB (with 64-bit operands)
IF DEST[7:0] > SRC[7:0]

THEN DEST[7:0) ← FFH;

VEX.NDS.128.66.0F.WIG 66 /r

VPCMPGTD xmm1, xmm2,
xmm3/m128

RVM V/V AVX Compare packed signed
doubleword integers in
xmm2 and xmm3/m128 for
greater than.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
4-238 Vol. 2B PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers for Greater Than

INSTRUCTION SET REFERENCE, M-Z
ELSE DEST[7:0] ← 0; FI;
(* Continue comparison of 2nd through 7th bytes in DEST and SRC *)
IF DEST[63:56] > SRC[63:56]

THEN DEST[63:56] ← FFH;
ELSE DEST[63:56] ← 0; FI;

PCMPGTB (with 128-bit operands)
IF DEST[7:0] > SRC[7:0]

THEN DEST[7:0) ← FFH;
ELSE DEST[7:0] ← 0; FI;

(* Continue comparison of 2nd through 15th bytes in DEST and SRC *)
IF DEST[127:120] > SRC[127:120]

THEN DEST[127:120] ← FFH;
ELSE DEST[127:120] ← 0; FI;

PCMPGTW (with 64-bit operands)
IF DEST[15:0] > SRC[15:0]

THEN DEST[15:0] ← FFFFH;
ELSE DEST[15:0] ← 0; FI;

(* Continue comparison of 2nd and 3rd words in DEST and SRC *)
IF DEST[63:48] > SRC[63:48]

THEN DEST[63:48] ← FFFFH;
ELSE DEST[63:48] ← 0; FI;

PCMPGTW (with 128-bit operands)
IF DEST[15:0] > SRC[15:0]

THEN DEST[15:0] ← FFFFH;
ELSE DEST[15:0] ← 0; FI;

(* Continue comparison of 2nd through 7th words in DEST and SRC *)
IF DEST[63:48] > SRC[127:112]

THEN DEST[127:112] ← FFFFH;
ELSE DEST[127:112] ← 0; FI;

PCMPGTD (with 64-bit operands)
IF DEST[31:0] > SRC[31:0]

THEN DEST[31:0] ← FFFFFFFFH;
ELSE DEST[31:0] ← 0; FI;

IF DEST[63:32] > SRC[63:32]
THEN DEST[63:32] ← FFFFFFFFH;
ELSE DEST[63:32] ← 0; FI;

PCMPGTD (with 128-bit operands)
IF DEST[31:0] > SRC[31:0]

THEN DEST[31:0] ← FFFFFFFFH;
ELSE DEST[31:0] ← 0; FI;
Vol. 2B 4-239PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers for Greater Than

INSTRUCTION SET REFERENCE, M-Z
(* Continue comparison of 2nd and 3rd doublewords in DEST and SRC *)
IF DEST[127:96] > SRC[127:96]

THEN DEST[127:96] ← FFFFFFFFH;
ELSE DEST[127:96] ← 0; FI;

VPCMPGTB (VEX.128 encoded version)
DEST[127:0] COMPARE_BYTES_GREATER(SRC1,SRC2)
DEST[VLMAX-1:128] 0

VPCMPGTW (VEX.128 encoded version)
DEST[127:0] COMPARE_WORDS_GREATER(SRC1,SRC2)
DEST[VLMAX-1:128] 0

VPCMPGTD (VEX.128 encoded version)
DEST[127:0] COMPARE_DWORDS_GREATER(SRC1,SRC2)
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalents

PCMPGTB: __m64 _mm_cmpgt_pi8 (__m64 m1, __m64 m2)

PCMPGTW: __m64 _mm_pcmpgt_pi16 (__m64 m1, __m64 m2)

DCMPGTD: __m64 _mm_pcmpgt_pi32 (__m64 m1, __m64 m2)

PCMPGTB: __m128i _mm_cmpgt_epi8 (__m128i a, __m128i b)

PCMPGTW: __m128i _mm_cmpgt_epi16 (__m128i a, __m128i b)

DCMPGTD: __m128i _mm_cmpgt_epi32 (__m128i a, __m128i b)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
4-240 Vol. 2B PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers for Greater Than

INSTRUCTION SET REFERENCE, M-Z
PCMPGTQ — Compare Packed Data for Greater Than

Instruction Operand Encoding

Description

Performs an SIMD signed compare for the packed quadwords in the destination
operand (first operand) and the source operand (second operand). If the data
element in the first (destination) operand is greater than the corresponding element
in the second (source) operand, the corresponding data element in the destination
is set to all 1s; otherwise, it is set to 0s.

128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

IF (DEST[63-0] > SRC[63-0])
THEN DEST[63-0] FFFFFFFFFFFFFFFFH;
ELSE DEST[63-0] 0; FI

IF (DEST[127-64] > SRC[127-64])
THEN DEST[127-64] FFFFFFFFFFFFFFFFH;
ELSE DEST[127-64] 0; FI

VPCMPGTQ (VEX.128 encoded version)
DEST[127:0] COMPARE_QWORDS_GREATER(SRC1,SRC2)
DEST[VLMAX-1:128] 0

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 38 37 /r
PCMPGTQ xmm1,xmm2/m128

RM V/V SSE4_2 Compare packed signed
qwords in xmm2/m128 and
xmm1 for greater than.

VEX.NDS.128.66.0F38.WIG 37 /r
VPCMPGTQ xmm1, xmm2,
xmm3/m128

RVM V/V AVX Compare packed signed
qwords in xmm2 and
xmm3/m128 for greater
than.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-241PCMPGTQ — Compare Packed Data for Greater Than

INSTRUCTION SET REFERENCE, M-Z
Intel C/C++ Compiler Intrinsic Equivalent

PCMPGTQ: __m128i _mm_cmpgt_epi64(__m128i a, __m128i b)

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
4-242 Vol. 2B PCMPGTQ — Compare Packed Data for Greater Than

INSTRUCTION SET REFERENCE, M-Z
PCMPISTRI — Packed Compare Implicit Length Strings, Return Index

Instruction Operand Encoding

Description

The instruction compares data from two strings based on the encoded value in the
Imm8 Control Byte (see Section 4.1, “Imm8 Control Byte Operation for PCMPESTRI /
PCMPESTRM / PCMPISTRI / PCMPISTRM”), and generates an index stored to ECX.

Each string is represented by a single value. The value is an xmm (or possibly m128
for the second operand) which contains the data elements of the string (byte or word
data). Each input byte/word is augmented with a valid/invalid tag. A byte/word is
considered valid only if it has a lower index than the least significant null byte/word.
(The least significant null byte/word is also considered invalid.)

The comparison and aggregation operations are performed according to the encoded
value of Imm8 bit fields (see Section 4.1). The index of the first (or last, according to
imm8[6]) set bit of IntRes2 is returned in ECX. If no bits are set in IntRes2, ECX is set
to 16 (8).

Note that the Arithmetic Flags are written in a non-standard manner in order to
supply the most relevant information:

CFlag – Reset if IntRes2 is equal to zero, set otherwise
ZFlag – Set if any byte/word of xmm2/mem128 is null, reset otherwise
SFlag – Set if any byte/word of xmm1 is null, reset otherwise
OFlag –IntRes2[0]
AFlag – Reset
PFlag – Reset

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 3A 63 /r imm8
PCMPISTRI xmm1, xmm2/m128,
imm8

RM V/V SSE4_2 Perform a packed
comparison of string data
with implicit lengths,
generating an index, and
storing the result in ECX.

VEX.128.66.0F3A.WIG 63 /r ib
VPCMPISTRI xmm1, xmm2/m128,
imm8

RM V/V AVX Perform a packed
comparison of string data
with implicit lengths,
generating an index, and
storing the result in ECX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) imm8 NA
Vol. 2B 4-243PCMPISTRI — Packed Compare Implicit Length Strings, Return Index

INSTRUCTION SET REFERENCE, M-Z
Note: In VEX.128 encoded version, VEX.vvvv is reserved and must be 1111b, VEX.L
must be 0, otherwise the instruction will #UD.

Effective Operand Size

Intel C/C++ Compiler Intrinsic Equivalent For Returning Index

int _mm_cmpistri (__m128i a, __m128i b, const int mode);

Intel C/C++ Compiler Intrinsics For Reading EFlag Results

int _mm_cmpistra (__m128i a, __m128i b, const int mode);
int _mm_cmpistrc (__m128i a, __m128i b, const int mode);
int _mm_cmpistro (__m128i a, __m128i b, const int mode);
int _mm_cmpistrs (__m128i a, __m128i b, const int mode);
int _mm_cmpistrz (__m128i a, __m128i b, const int mode);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.

Operating mode/size Operand1 Operand 2 Result

16 bit xmm xmm/m128 ECX

32 bit xmm xmm/m128 ECX

64 bit xmm xmm/m128 ECX

64 bit + REX.W xmm xmm/m128 RCX
4-244 Vol. 2B PCMPISTRI — Packed Compare Implicit Length Strings, Return Index

INSTRUCTION SET REFERENCE, M-Z
PCMPISTRM — Packed Compare Implicit Length Strings, Return Mask

Instruction Operand Encoding

Description

The instruction compares data from two strings based on the encoded value in the
imm8 byte (see Section 4.1, “Imm8 Control Byte Operation for PCMPESTRI /
PCMPESTRM / PCMPISTRI / PCMPISTRM”) generating a mask stored to XMM0.

Each string is represented by a single value. The value is an xmm (or possibly m128
for the second operand) which contains the data elements of the string (byte or word
data). Each input byte/word is augmented with a valid/invalid tag. A byte/word is
considered valid only if it has a lower index than the least significant null byte/word.
(The least significant null byte/word is also considered invalid.)

The comparison and aggregation operation are performed according to the encoded
value of Imm8 bit fields (see Section 4.1). As defined by imm8[6], IntRes2 is then
either stored to the least significant bits of XMM0 (zero extended to 128 bits) or
expanded into a byte/word-mask and then stored to XMM0.

Note that the Arithmetic Flags are written in a non-standard manner in order to
supply the most relevant information:

CFlag – Reset if IntRes2 is equal to zero, set otherwise
ZFlag – Set if any byte/word of xmm2/mem128 is null, reset otherwise
SFlag – Set if any byte/word of xmm1 is null, reset otherwise
OFlag – IntRes2[0]
AFlag – Reset
PFlag – Reset

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 3A 62 /r imm8
PCMPISTRM xmm1, xmm2/m128,
imm8

RM V/V SSE4_2 Perform a packed
comparison of string data
with implicit lengths,
generating a mask, and
storing the result in XMM0.

VEX.128.66.0F3A.WIG 62 /r ib
VPCMPISTRM xmm1, xmm2/m128,
imm8

RM V/V AVX Perform a packed
comparison of string data
with implicit lengths,
generating a Mask, and
storing the result in XMM0.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) imm8 NA
Vol. 2B 4-245PCMPISTRM — Packed Compare Implicit Length Strings, Return Mask

INSTRUCTION SET REFERENCE, M-Z
Note: In VEX.128 encoded versions, bits (VLMAX-1:128) of XMM0 are zeroed.
VEX.vvvv is reserved and must be 1111b, VEX.L must be 0, otherwise the instruction
will #UD.

Effective Operand Size

Intel C/C++ Compiler Intrinsic Equivalent For Returning Mask

__m128i _mm_cmpistrm (__m128i a, __m128i b, const int mode);

Intel C/C++ Compiler Intrinsics For Reading EFlag Results

int _mm_cmpistra (__m128i a, __m128i b, const int mode);
int _mm_cmpistrc (__m128i a, __m128i b, const int mode);
int _mm_cmpistro (__m128i a, __m128i b, const int mode);
int _mm_cmpistrs (__m128i a, __m128i b, const int mode);
int _mm_cmpistrz (__m128i a, __m128i b, const int mode);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.

Operating mode/size Operand1 Operand 2 Result

16 bit xmm xmm/m128 XMM0

32 bit xmm xmm/m128 XMM0

64 bit xmm xmm/m128 XMM0

64 bit + REX.W xmm xmm/m128 XMM0
4-246 Vol. 2B PCMPISTRM — Packed Compare Implicit Length Strings, Return Mask

INSTRUCTION SET REFERENCE, M-Z
PEXTRB/PEXTRD/PEXTRQ — Extract Byte/Dword/Qword

Instruction Operand Encoding

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 3A 14
/r ib
PEXTRB reg/m8, xmm2, imm8

MRI V/V SSE4_1 Extract a byte integer value
from xmm2 at the source
byte offset specified by
imm8 into rreg or m8. The
upper bits of r32 or r64 are
zeroed.

66 0F 3A 16
/r ib
PEXTRD r/m32, xmm2, imm8

MRI V/V SSE4_1 Extract a dword integer
value from xmm2 at the
source dword offset
specified by imm8 into
r/m32.

66 REX.W 0F 3A 16
/r ib
PEXTRQ r/m64, xmm2, imm8

MRI V/N.E. SSE4_1 Extract a qword integer
value from xmm2 at the
source qword offset
specified by imm8 into
r/m64.

VEX.128.66.0F3A.W0 14 /r ib
VPEXTRB reg/m8, xmm2, imm8

MRI V1/V AVX Extract a byte integer value
from xmm2 at the source
byte offset specified by
imm8 into reg or m8. The
upper bits of r64/r32 is
filled with zeros.

VEX.128.66.0F3A.W0 16 /r ib
VPEXTRD r32/m32, xmm2, imm8

MRI V/V AVX Extract a dword integer
value from xmm2 at the
source dword offset
specified by imm8 into
r32/m32.

VEX.128.66.0F3A.W1 16 /r ib
VPEXTRQ r64/m64, xmm2, imm8

MRI V/i AVX Extract a qword integer
value from xmm2 at the
source dword offset
specified by imm8 into
r64/m64.

NOTES:

1. In 64-bit mode, VEX.W1 is ignored for VPEXTRB (similar to legacy REX.W=1 prefix in PEXTRB).

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MRI ModRM:r/m (w) ModRM:reg (r) imm8 NA
Vol. 2B 4-247PEXTRB/PEXTRD/PEXTRQ — Extract Byte/Dword/Qword

INSTRUCTION SET REFERENCE, M-Z
Description

Extract a byte/dword/qword integer value from the source XMM register at a
byte/dword/qword offset determined from imm8[3:0]. The destination can be a
register or byte/dword/qword memory location. If the destination is a register, the
upper bits of the register are zero extended.
In legacy non-VEX encoded version and if the destination operand is a register, the
default operand size in 64-bit mode for PEXTRB/PEXTRD is 64 bits, the bits above the
least significant byte/dword data are filled with zeros. PEXTRQ is not encodable in
non-64-bit modes and requires REX.W in 64-bit mode.
Note: In VEX.128 encoded versions, VEX.vvvv is reserved and must be 1111b, VEX.L
must be 0, otherwise the instruction will #UD. If the destination operand is a register,
the default operand size in 64-bit mode for VPEXTRB/VPEXTRD is 64 bits, the bits
above the least significant byte/word/dword data are filled with zeros. Attempt to
execute VPEXTRQ in non-64-bit mode will cause #UD.

Operation

CASE of
PEXTRB: SEL COUNT[3:0];

TEMP (Src >> SEL*8) AND FFH;
IF (DEST = Mem8)

THEN
Mem8 TEMP[7:0];

ELSE IF (64-Bit Mode and 64-bit register selected)
THEN

R64[7:0] TEMP[7:0];
r64[63:8] ← ZERO_FILL; };

ELSE
R32[7:0] TEMP[7:0];
r32[31:8] ← ZERO_FILL; };

FI;
PEXTRD:SEL COUNT[1:0];

TEMP (Src >> SEL*32) AND FFFF_FFFFH;
DEST TEMP;

PEXTRQ: SEL COUNT[0];
TEMP (Src >> SEL*64);
DEST TEMP;

EASC:

(V)PEXTRTD/(V)PEXTRQ
IF (64-Bit Mode and 64-bit dest operand)
THEN

Src_Offset Imm8[0]
4-248 Vol. 2B PEXTRB/PEXTRD/PEXTRQ — Extract Byte/Dword/Qword

INSTRUCTION SET REFERENCE, M-Z
r64/m64 (Src >> Src_Offset * 64)
ELSE

Src_Offset Imm8[1:0]
r32/m32 ((Src >> Src_Offset *32) AND 0FFFFFFFFh);

FI

(V)PEXTRB (dest=m8)
SRC_Offset Imm8[3:0]
Mem8 (Src >> Src_Offset*8)

(V)PEXTRB (dest=reg)
IF (64-Bit Mode)
THEN

SRC_Offset Imm8[3:0]
DEST[7:0] ((Src >> Src_Offset*8) AND 0FFh)
DEST[63:8] ZERO_FILL;

ELSE
SRC_Offset . Imm8[3:0];
DEST[7:0] ((Src >> Src_Offset*8) AND 0FFh);
DEST[31:8] ZERO_FILL;

FI

Intel C/C++ Compiler Intrinsic Equivalent

PEXTRB: int _mm_extract_epi8 (__m128i src, const int ndx);

PEXTRD: int _mm_extract_epi32 (__m128i src, const int ndx);
PEXTRQ: __int64 _mm_extract_epi64 (__m128i src, const int ndx);

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 5; additionally
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
If VPEXTRQ in non-64-bit mode, VEX.W=1.
Vol. 2B 4-249PEXTRB/PEXTRD/PEXTRQ — Extract Byte/Dword/Qword

INSTRUCTION SET REFERENCE, M-Z
PEXTRW—Extract Word

Instruction Operand Encoding

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F C5 /r ib1

PEXTRW reg, mm, imm8

RMI V/V SSE Extract the word specified
by imm8 from mm and move
it to reg, bits 15-0. The
upper bits of r32 or r64 is
zeroed.

66 0F C5 /r ib

PEXTRW reg, xmm, imm8

RMI V/V SSE2 Extract the word specified
by imm8 from xmm and
move it to reg, bits 15-0.
The upper bits of r32 or r64
is zeroed.

66 0F 3A 15
/r ib
PEXTRW reg/m16, xmm, imm8

MRI V/V SSE4_1 Extract the word specified
by imm8 from xmm and
copy it to lowest 16 bits of
reg or m16. Zero-extend
the result in the destination,
r32 or r64.

VEX.128.66.0F.W0 C5 /r ib
VPEXTRW reg, xmm1, imm8

RMI V2/V AVX Extract the word specified
by imm8 from xmm1 and
move it to reg, bits 15:0.
Zero-extend the result. The
upper bits of r64/r32 is
filled with zeros.

VEX.128.66.0F3A.W0 15 /r ib
VPEXTRW reg/m16, xmm2, imm8

MRI V/V AVX Extract a word integer value
from xmm2 at the source
word offset specified by
imm8 into reg or m16. The
upper bits of r64/r32 is
filled with zeros.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

2. In 64-bit mode, VEX.W1 is ignored for VPEXTRW (similar to legacy REX.W=1 prefix in PEXTRW).

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (w) ModRM:r/m (r) imm8 NA
4-250 Vol. 2B PEXTRW—Extract Word

INSTRUCTION SET REFERENCE, M-Z
Description

Copies the word in the source operand (second operand) specified by the count
operand (third operand) to the destination operand (first operand). The source
operand can be an MMX technology register or an XMM register. The destination
operand can be the low word of a general-purpose register or a 16-bit memory
address. The count operand is an 8-bit immediate. When specifying a word location
in an MMX technology register, the 2 least-significant bits of the count operand
specify the location; for an XMM register, the 3 least-significant bits specify the loca-
tion. The content of the destination register above bit 16 is cleared (set to all 0s).

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15, R8-15). If the destination operand is a
general-purpose register, the default operand size is 64-bits in 64-bit mode.
Note: In VEX.128 encoded versions, VEX.vvvv is reserved and must be 1111b, VEX.L
must be 0, otherwise the instruction will #UD. If the destination operand is a register,
the default operand size in 64-bit mode for VPEXTRW is 64 bits, the bits above the
least significant byte/word/dword data are filled with zeros.

Operation

IF (DEST = Mem16)
THEN

SEL COUNT[2:0];
TEMP (Src >> SEL*16) AND FFFFH;
Mem16 TEMP[15:0];

ELSE IF (64-Bit Mode and destination is a general-purpose register)
THEN

FOR (PEXTRW instruction with 64-bit source operand)
{ SEL ← COUNT[1:0];

TEMP ← (SRC >> (SEL ∗ 16)) AND FFFFH;
r64[15:0] ← TEMP[15:0];
r64[63:16] ← ZERO_FILL; };

FOR (PEXTRW instruction with 128-bit source operand)
 { SEL ← COUNT[2:0];

TEMP ← (SRC >> (SEL ∗ 16)) AND FFFFH;
r64[15:0] ← TEMP[15:0];
r64[63:16] ← ZERO_FILL; }

ELSE
FOR (PEXTRW instruction with 64-bit source operand)

{ SEL ← COUNT[1:0];
TEMP ← (SRC >> (SEL ∗ 16)) AND FFFFH;

MRI ModRM:r/m (w) ModRM:reg (r) imm8 NA

Op/En Operand 1 Operand 2 Operand 3 Operand 4
Vol. 2B 4-251PEXTRW—Extract Word

INSTRUCTION SET REFERENCE, M-Z
r32[15:0] ← TEMP[15:0];
r32[31:16] ← ZERO_FILL; };

FOR (PEXTRW instruction with 128-bit source operand)
{ SEL ← COUNT[2:0];

TEMP ← (SRC >> (SEL ∗ 16)) AND FFFFH;
r32[15:0] ← TEMP[15:0];
r32[31:16] ← ZERO_FILL; };

FI;
FI;

(V)PEXTRW (dest=m16)
SRC_Offset Imm8[2:0]
Mem16 (Src >> Src_Offset*16)

(V)PEXTRW (dest=reg)
IF (64-Bit Mode)
THEN

SRC_Offset Imm8[2:0]
DEST[15:0] ((Src >> Src_Offset*16) AND 0FFFFh)
DEST[63:16] ZERO_FILL;

ELSE
SRC_Offset Imm8[2:0]
DEST[15:0] ((Src >> Src_Offset*16) AND 0FFFFh)
DEST[31:16] ZERO_FILL;

FI

Intel C/C++ Compiler Intrinsic Equivalent

PEXTRW: int _mm_extract_pi16 (__m64 a, int n)

PEXTRW: int _mm_extract_epi16 (__m128i a, int imm)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 5; additionally
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
4-252 Vol. 2B PEXTRW—Extract Word

INSTRUCTION SET REFERENCE, M-Z
PHADDW/PHADDD — Packed Horizontal Add

Instruction Operand Encoding

Description

PHADDW adds two adjacent 16-bit signed integers horizontally from the source and
destination operands and packs the 16-bit signed results to the destination operand
(first operand). PHADDD adds two adjacent 32-bit signed integers horizontally from
the source and destination operands and packs the 32-bit signed results to the desti-
nation operand (first operand). Both operands can be MMX or XMM registers. When
the source operand is a 128-bit memory operand, the operand must be aligned on a
16-byte boundary or a general-protection exception (#GP) will be generated.

Note that these instructions can operate on either unsigned or signed (two’s comple-
ment notation) integers; however, it does not set bits in the EFLAGS register to indi-

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 38 01 /r1

PHADDW mm1, mm2/m64

RM V/V SSSE3 Add 16-bit integers
horizontally, pack to MM1.

66 0F 38 01 /r

PHADDW xmm1, xmm2/m128

RM V/V SSSE3 Add 16-bit integers
horizontally, pack to XMM1.

0F 38 02 /r

PHADDD mm1, mm2/m64

RM V/V SSSE3 Add 32-bit integers
horizontally, pack to MM1.

66 0F 38 02 /r

PHADDD xmm1, xmm2/m128

RM V/V SSSE3 Add 32-bit integers
horizontally, pack to XMM1.

VEX.NDS.128.66.0F38.WIG 01 /r

VPHADDW xmm1, xmm2,
xmm3/m128

RVM V/V AVX Add 16-bit integers
horizontally, pack to xmm1.

VEX.NDS.128.66.0F38.WIG 02 /r

VPHADDD xmm1, xmm2,
xmm3/m128

RVM V/V AVX Add 32-bit integers
horizontally, pack to xmm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-253PHADDW/PHADDD — Packed Horizontal Add

INSTRUCTION SET REFERENCE, M-Z
cate overflow and/or a carry. To prevent undetected overflow conditions, software
must control the ranges of the values operated on.

In 64-bit mode, use the REX prefix to access additional registers.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PHADDW (with 64-bit operands)
mm1[15-0] = mm1[31-16] + mm1[15-0];
mm1[31-16] = mm1[63-48] + mm1[47-32];
mm1[47-32] = mm2/m64[31-16] + mm2/m64[15-0];
mm1[63-48] = mm2/m64[63-48] + mm2/m64[47-32];

PHADDW (with 128-bit operands)
xmm1[15-0] = xmm1[31-16] + xmm1[15-0];
xmm1[31-16] = xmm1[63-48] + xmm1[47-32];
xmm1[47-32] = xmm1[95-80] + xmm1[79-64];
xmm1[63-48] = xmm1[127-112] + xmm1[111-96];
xmm1[79-64] = xmm2/m128[31-16] + xmm2/m128[15-0];
xmm1[95-80] = xmm2/m128[63-48] + xmm2/m128[47-32];
xmm1[111-96] = xmm2/m128[95-80] + xmm2/m128[79-64];
xmm1[127-112] = xmm2/m128[127-112] + xmm2/m128[111-96];

PHADDD (with 64-bit operands)
mm1[31-0] = mm1[63-32] + mm1[31-0];
mm1[63-32] = mm2/m64[63-32] + mm2/m64[31-0];

PHADDD (with 128-bit operands)
xmm1[31-0] = xmm1[63-32] + xmm1[31-0];
xmm1[63-32] = xmm1[127-96] + xmm1[95-64];
xmm1[95-64] = xmm2/m128[63-32] + xmm2/m128[31-0];
xmm1[127-96] = xmm2/m128[127-96] + xmm2/m128[95-64];

VPHADDW (VEX.128 encoded version)
DEST[15:0] SRC1[31:16] + SRC1[15:0]
DEST[31:16] SRC1[63:48] + SRC1[47:32]
DEST[47:32] SRC1[95:80] + SRC1[79:64]
DEST[63:48] SRC1[127:112] + SRC1[111:96]
DEST[79:64] SRC2[31:16] + SRC2[15:0]
DEST[95:80] SRC2[63:48] + SRC2[47:32]
4-254 Vol. 2B PHADDW/PHADDD — Packed Horizontal Add

INSTRUCTION SET REFERENCE, M-Z
DEST[111:96] SRC2[95:80] + SRC2[79:64]
DEST[127:112] SRC2[127:112] + SRC2[111:96]
DEST[VLMAX-1:128] 0

VPHADDD (VEX.128 encoded version)
DEST[31-0] SRC1[63-32] + SRC1[31-0]
DEST[63-32] SRC1[127-96] + SRC1[95-64]
DEST[95-64] SRC2[63-32] + SRC2[31-0]
DEST[127-96] SRC2[127-96] + SRC2[95-64]
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalents

PHADDW: __m64 _mm_hadd_pi16 (__m64 a, __m64 b)

PHADDW: __m128i _mm_hadd_epi16 (__m128i a, __m128i b)

PHADDD: __m64 _mm_hadd_pi32 (__m64 a, __m64 b)

PHADDD: __m128i _mm_hadd_epi32 (__m128i a, __m128i b)

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
Vol. 2B 4-255PHADDW/PHADDD — Packed Horizontal Add

INSTRUCTION SET REFERENCE, M-Z
PHADDSW — Packed Horizontal Add and Saturate

Instruction Operand Encoding

Description

PHADDSW adds two adjacent signed 16-bit integers horizontally from the source and
destination operands and saturates the signed results; packs the signed, saturated
16-bit results to the destination operand (first operand) Both operands can be MMX
or XMM registers. When the source operand is a 128-bit memory operand, the
operand must be aligned on a 16-byte boundary or a general-protection exception
(#GP) will be generated.

In 64-bit mode, use the REX prefix to access additional registers.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PHADDSW (with 64-bit operands)

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 38 03 /r1

PHADDSW mm1, mm2/m64

RM V/V SSSE3 Add 16-bit signed integers
horizontally, pack saturated
integers to MM1.

66 0F 38 03 /r

PHADDSW xmm1, xmm2/m128

RM V/V SSSE3 Add 16-bit signed integers
horizontally, pack saturated
integers to XMM1.

VEX.NDS.128.66.0F38.WIG 03 /r

VPHADDSW xmm1, xmm2,
xmm3/m128

RVM V/V AVX Add 16-bit signed integers
horizontally, pack saturated
integers to xmm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
4-256 Vol. 2B PHADDSW — Packed Horizontal Add and Saturate

INSTRUCTION SET REFERENCE, M-Z
mm1[15-0] = SaturateToSignedWord((mm1[31-16] + mm1[15-0]);
mm1[31-16] = SaturateToSignedWord(mm1[63-48] + mm1[47-32]);
mm1[47-32] = SaturateToSignedWord(mm2/m64[31-16] + mm2/m64[15-0]);
mm1[63-48] = SaturateToSignedWord(mm2/m64[63-48] + mm2/m64[47-32]);

PHADDSW (with 128-bit operands)
xmm1[15-0]= SaturateToSignedWord(xmm1[31-16] + xmm1[15-0]);
xmm1[31-16] = SaturateToSignedWord(xmm1[63-48] + xmm1[47-32]);
xmm1[47-32] = SaturateToSignedWord(xmm1[95-80] + xmm1[79-64]);
xmm1[63-48] = SaturateToSignedWord(xmm1[127-112] + xmm1[111-96]);
xmm1[79-64] = SaturateToSignedWord(xmm2/m128[31-16] + xmm2/m128[15-0]);
xmm1[95-80] = SaturateToSignedWord(xmm2/m128[63-48] + xmm2/m128[47-32]);
xmm1[111-96] = SaturateToSignedWord(xmm2/m128[95-80] + xmm2/m128[79-64]);
xmm1[127-112] = SaturateToSignedWord(xmm2/m128[127-112] + xmm2/m128[111-96]);

VPHADDSW (VEX.128 encoded version)
DEST[15:0]= SaturateToSignedWord(SRC1[31:16] + SRC1[15:0])
DEST[31:16] = SaturateToSignedWord(SRC1[63:48] + SRC1[47:32])
DEST[47:32] = SaturateToSignedWord(SRC1[95:80] + SRC1[79:64])
DEST[63:48] = SaturateToSignedWord(SRC1[127:112] + SRC1[111:96])
DEST[79:64] = SaturateToSignedWord(SRC2[31:16] + SRC2[15:0])
DEST[95:80] = SaturateToSignedWord(SRC2[63:48] + SRC2[47:32])
DEST[111:96] = SaturateToSignedWord(SRC2[95:80] + SRC2[79:64])
DEST[127:112] = SaturateToSignedWord(SRC2[127:112] + SRC2[111:96])
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

PHADDSW: __m64 _mm_hadds_pi16 (__m64 a, __m64 b)

PHADDSW: __m128i _mm_hadds_epi16 (__m128i a, __m128i b)

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
Vol. 2B 4-257PHADDSW — Packed Horizontal Add and Saturate

INSTRUCTION SET REFERENCE, M-Z
PHMINPOSUW — Packed Horizontal Word Minimum

Instruction Operand Encoding

Description

Determine the minimum unsigned word value in the source operand (second
operand) and place the unsigned word in the low word (bits 0-15) of the destination
operand (first operand). The word index of the minimum value is stored in bits 16-
18 of the destination operand. The remaining upper bits of the destination are set to
zero.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.vvvv is reserved and must be 1111b, VEX.L must be 0, otherwise the
instruction will #UD.

Operation

PHMINPOSUW (128-bit Legacy SSE version)
INDEX 0;
MIN SRC[15:0]
IF (SRC[31:16] < MIN)

THEN INDEX 1; MIN SRC[31:16]; FI;
IF (SRC[47:32] < MIN)

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 38 41 /r
PHMINPOSUW xmm1, xmm2/m128

RM V/V SSE4_1 Find the minimum unsigned
word in xmm2/m128 and
place its value in the low
word of xmm1 and its index
in the second-lowest word
of xmm1.

VEX.128.66.0F38.WIG 41 /r
VPHMINPOSUW xmm1, xmm2/m128

RM V/V AVX Find the minimum unsigned
word in xmm2/m128 and
place its value in the low
word of xmm1 and its index
in the second-lowest word
of xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
4-258 Vol. 2B PHMINPOSUW — Packed Horizontal Word Minimum

INSTRUCTION SET REFERENCE, M-Z
THEN INDEX 2; MIN SRC[47:32]; FI;
* Repeat operation for words 3 through 6
IF (SRC[127:112] < MIN)

THEN INDEX 7; MIN SRC[127:112]; FI;
DEST[15:0] MIN;
DEST[18:16] INDEX;
DEST[127:19] 0000000000000000000000000000H;

VPHMINPOSUW (VEX.128 encoded version)
INDEX 0
MIN SRC[15:0]
IF (SRC[31:16] < MIN) THEN INDEX 1; MIN SRC[31:16]
IF (SRC[47:32] < MIN) THEN INDEX 2; MIN SRC[47:32]
* Repeat operation for words 3 through 6
IF (SRC[127:112] < MIN) THEN INDEX 7; MIN SRC[127:112]
DEST[15:0] MIN
DEST[18:16] INDEX
DEST[127:19] 0000000000000000000000000000H
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

PHMINPOSUW: __m128i _mm_minpos_epu16(__m128i packed_words);

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
Vol. 2B 4-259PHMINPOSUW — Packed Horizontal Word Minimum

INSTRUCTION SET REFERENCE, M-Z
PHSUBW/PHSUBD — Packed Horizontal Subtract

Instruction Operand Encoding

Description

PHSUBW performs horizontal subtraction on each adjacent pair of 16-bit signed inte-
gers by subtracting the most significant word from the least significant word of each
pair in the source and destination operands, and packs the signed 16-bit results to
the destination operand (first operand). PHSUBD performs horizontal subtraction on
each adjacent pair of 32-bit signed integers by subtracting the most significant
doubleword from the least significant doubleword of each pair, and packs the signed

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 38 05 /r1

PHSUBW mm1, mm2/m64

RM V/V SSSE3 Subtract 16-bit signed
integers horizontally, pack
to MM1.

66 0F 38 05 /r

PHSUBW xmm1, xmm2/m128

RM V/V SSSE3 Subtract 16-bit signed
integers horizontally, pack
to XMM1.

0F 38 06 /r

PHSUBD mm1, mm2/m64

RM V/V SSSE3 Subtract 32-bit signed
integers horizontally, pack
to MM1.

66 0F 38 06 /r

PHSUBD xmm1, xmm2/m128

RM V/V SSSE3 Subtract 32-bit signed
integers horizontally, pack
to XMM1.

VEX.NDS.128.66.0F38.WIG 05 /r

VPHSUBW xmm1, xmm2,
xmm3/m128

RVM V/V AVX Subtract 16-bit signed
integers horizontally, pack
to xmm1.

VEX.NDS.128.66.0F38.WIG 06 /r

VPHSUBD xmm1, xmm2,
xmm3/m128

RVM V/V AVX Subtract 32-bit signed
integers horizontally, pack
to xmm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) NA
4-260 Vol. 2B PHSUBW/PHSUBD — Packed Horizontal Subtract

INSTRUCTION SET REFERENCE, M-Z
32-bit result to the destination operand. Both operands can be MMX or XMM regis-
ters. When the source operand is a 128-bit memory operand, the operand must be
aligned on a 16-byte boundary or a general-protection exception (#GP) will be
generated.

In 64-bit mode, use the REX prefix to access additional registers.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PHSUBW (with 64-bit operands)
mm1[15-0] = mm1[15-0] - mm1[31-16];
mm1[31-16] = mm1[47-32] - mm1[63-48];
mm1[47-32] = mm2/m64[15-0] - mm2/m64[31-16];
mm1[63-48] = mm2/m64[47-32] - mm2/m64[63-48];

PHSUBW (with 128-bit operands)
xmm1[15-0] = xmm1[15-0] - xmm1[31-16];
xmm1[31-16] = xmm1[47-32] - xmm1[63-48];
xmm1[47-32] = xmm1[79-64] - xmm1[95-80];
xmm1[63-48] = xmm1[111-96] - xmm1[127-112];
xmm1[79-64] = xmm2/m128[15-0] - xmm2/m128[31-16];
xmm1[95-80] = xmm2/m128[47-32] - xmm2/m128[63-48];
xmm1[111-96] = xmm2/m128[79-64] - xmm2/m128[95-80];
xmm1[127-112] = xmm2/m128[111-96] - xmm2/m128[127-112];

PHSUBD (with 64-bit operands)
mm1[31-0] = mm1[31-0] - mm1[63-32];
mm1[63-32] = mm2/m64[31-0] - mm2/m64[63-32];

PHSUBD (with 128-bit operands)
xmm1[31-0] = xmm1[31-0] - xmm1[63-32];
xmm1[63-32] = xmm1[95-64] - xmm1[127-96];
xmm1[95-64] = xmm2/m128[31-0] - xmm2/m128[63-32];
xmm1[127-96] = xmm2/m128[95-64] - xmm2/m128[127-96];

VPHSUBW (VEX.128 encoded version)
DEST[15:0] SRC1[15:0] - SRC1[31:16]
DEST[31:16] SRC1[47:32] - SRC1[63:48]
DEST[47:32] SRC1[79:64] - SRC1[95:80]
DEST[63:48] SRC1[111:96] - SRC1[127:112]
Vol. 2B 4-261PHSUBW/PHSUBD — Packed Horizontal Subtract

INSTRUCTION SET REFERENCE, M-Z
DEST[79:64] SRC2[15:0] - SRC2[31:16]
DEST[95:80] SRC2[47:32] - SRC2[63:48]
DEST[111:96] SRC2[79:64] - SRC2[95:80]
DEST[127:112] SRC2[111:96] - SRC2[127:112]
DEST[VLMAX-1:128] 0
VPHSUBD (VEX.128 encoded version)
DEST[31-0] SRC1[31-0] - SRC1[63-32]
DEST[63-32] SRC1[95-64] - SRC1[127-96]
DEST[95-64] SRC2[31-0] - SRC2[63-32]
DEST[127-96] SRC2[95-64] - SRC2[127-96]
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalents

PHSUBW: __m64 _mm_hsub_pi16 (__m64 a, __m64 b)

PHSUBW: __m128i _mm_hsub_epi16 (__m128i a, __m128i b)

PHSUBD: __m64 _mm_hsub_pi32 (__m64 a, __m64 b)

PHSUBD: __m128i _mm_hsub_epi32 (__m128i a, __m128i b)

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
4-262 Vol. 2B PHSUBW/PHSUBD — Packed Horizontal Subtract

INSTRUCTION SET REFERENCE, M-Z
PHSUBSW — Packed Horizontal Subtract and Saturate

Instruction Operand Encoding

Description

PHSUBSW performs horizontal subtraction on each adjacent pair of 16-bit signed
integers by subtracting the most significant word from the least significant word of
each pair in the source and destination operands. The signed, saturated 16-bit
results are packed to the destination operand (first operand). Both operands can be
MMX or XMM register. When the source operand is a 128-bit memory operand, the
operand must be aligned on a 16-byte boundary or a general-protection exception
(#GP) will be generated.

In 64-bit mode, use the REX prefix to access additional registers.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 38 07 /r1

PHSUBSW mm1, mm2/m64

RM V/V SSSE3 Subtract 16-bit signed
integer horizontally, pack
saturated integers to MM1.

66 0F 38 07 /r

PHSUBSW xmm1, xmm2/m128

RM V/V SSSE3 Subtract 16-bit signed
integer horizontally, pack
saturated integers to XMM1

VEX.NDS.128.66.0F38.WIG 07 /r

VPHSUBSW xmm1, xmm2,
xmm3/m128

RVM V/V AVX Subtract 16-bit signed
integer horizontally, pack
saturated integers to xmm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-263PHSUBSW — Packed Horizontal Subtract and Saturate

INSTRUCTION SET REFERENCE, M-Z
Operation

PHSUBSW (with 64-bit operands)
mm1[15-0] = SaturateToSignedWord(mm1[15-0] - mm1[31-16]);
mm1[31-16] = SaturateToSignedWord(mm1[47-32] - mm1[63-48]);
mm1[47-32] = SaturateToSignedWord(mm2/m64[15-0] - mm2/m64[31-16]);
mm1[63-48] = SaturateToSignedWord(mm2/m64[47-32] - mm2/m64[63-48]);

PHSUBSW (with 128-bit operands)
xmm1[15-0] = SaturateToSignedWord(xmm1[15-0] - xmm1[31-16]);
xmm1[31-16] = SaturateToSignedWord(xmm1[47-32] - xmm1[63-48]);
xmm1[47-32] = SaturateToSignedWord(xmm1[79-64] - xmm1[95-80]);
xmm1[63-48] = SaturateToSignedWord(xmm1[111-96] - xmm1[127-112]);
xmm1[79-64] = SaturateToSignedWord(xmm2/m128[15-0] - xmm2/m128[31-16]);
xmm1[95-80] =SaturateToSignedWord(xmm2/m128[47-32] - xmm2/m128[63-48]);
xmm1[111-96] =SaturateToSignedWord(xmm2/m128[79-64] - xmm2/m128[95-80]);
xmm1[127-112]= SaturateToSignedWord(xmm2/m128[111-96] - xmm2/m128[127-112]);

VPHSUBSW (VEX.128 encoded version)
DEST[15:0]= SaturateToSignedWord(SRC1[15:0] - SRC1[31:16])
DEST[31:16] = SaturateToSignedWord(SRC1[47:32] - SRC1[63:48])
DEST[47:32] = SaturateToSignedWord(SRC1[79:64] - SRC1[95:80])
DEST[63:48] = SaturateToSignedWord(SRC1[111:96] - SRC1[127:112])
DEST[79:64] = SaturateToSignedWord(SRC2[15:0] - SRC2[31:16])
DEST[95:80] = SaturateToSignedWord(SRC2[47:32] - SRC2[63:48])
DEST[111:96] = SaturateToSignedWord(SRC2[79:64] - SRC2[95:80])
DEST[127:112] = SaturateToSignedWord(SRC2[111:96] - SRC2[127:112])
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

PHSUBSW: __m64 _mm_hsubs_pi16 (__m64 a, __m64 b)

PHSUBSW: __m128i _mm_hsubs_epi16 (__m128i a, __m128i b)

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
4-264 Vol. 2B PHSUBSW — Packed Horizontal Subtract and Saturate

INSTRUCTION SET REFERENCE, M-Z
PINSRB/PINSRD/PINSRQ — Insert Byte/Dword/Qword

Instruction Operand Encoding

Description

Copies a byte/dword/qword from the source operand (second operand) and inserts it
in the destination operand (first operand) at the location specified with the count
operand (third operand). (The other elements in the destination register are left
untouched.) The source operand can be a general-purpose register or a memory

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 3A 20 /r ib
PINSRB xmm1, r32/m8, imm8

RMI V/V SSE4_1 Insert a byte integer value
from r32/m8 into xmm1 at
the destination element in
xmm1 specified by imm8.

66 0F 3A 22 /r ib
PINSRD xmm1, r/m32, imm8

RMI V/V SSE4_1 Insert a dword integer value
from r/m32 into the xmm1
at the destination element
specified by imm8.

66 REX.W 0F 3A 22 /r ib
PINSRQ xmm1, r/m64, imm8

RMI N. E./V SSE4_1 Insert a qword integer value
from r/m32 into the xmm1
at the destination element
specified by imm8.

VEX.NDS.128.66.0F3A.W0 20 /r ib
VPINSRB xmm1, xmm2, r32/m8,
imm8

RVMI V1/V AVX Merge a byte integer value
from r32/m8 and rest from
xmm2 into xmm1 at the
byte offset in imm8.

VEX.NDS.128.66.0F3A.W0 22 /r ib
VPINSRD xmm1, xmm2, r32/m32,
imm8

RVMI V/V AVX Insert a dword integer value
from r32/m32 and rest from
xmm2 into xmm1 at the
dword offset in imm8.

VEX.NDS.128.66.0F3A.W1 22 /r ib
VPINSRQ xmm1, xmm2, r64/m64,
imm8

RVMI V/I AVX Insert a qword integer value
from r64/m64 and rest from
xmm2 into xmm1 at the
qword offset in imm8.

NOTES:

1. In 64-bit mode, VEX.W1 is ignored for VPINSRB (similar to legacy REX.W=1 prefix with PINSRB).

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
Vol. 2B 4-265PINSRB/PINSRD/PINSRQ — Insert Byte/Dword/Qword

INSTRUCTION SET REFERENCE, M-Z
location. (When the source operand is a general-purpose register, PINSRB copies the
low byte of the register.) The destination operand is an XMM register. The count
operand is an 8-bit immediate. When specifying a qword[dword, byte] location in an
an XMM register, the [2, 4] least-significant bit(s) of the count operand specify the
location.
In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15, R8-15). Use of REX.W permits the use of
64 bit general purpose registers.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD. Attempt to execute
VPINSRQ in non-64-bit mode will cause #UD.

Operation
CASE OF

PINSRB: SEL COUNT[3:0];
MASK (0FFH << (SEL * 8));
TEMP (((SRC[7:0] << (SEL *8)) AND MASK);

PINSRD: SEL COUNT[1:0];
MASK (0FFFFFFFFH << (SEL * 32));
TEMP (((SRC << (SEL *32)) AND MASK) ;

PINSRQ: SEL COUNT[0]
MASK (0FFFFFFFFFFFFFFFFH << (SEL * 64));
TEMP (((SRC << (SEL *32)) AND MASK) ;

ESAC;
DEST ((DEST AND NOT MASK) OR TEMP);

VPINSRB (VEX.128 encoded version)
SEL imm8[3:0]
DEST[127:0] write_b_element(SEL, SRC2, SRC1)
DEST[VLMAX-1:128] 0

VPINSRD (VEX.128 encoded version)
SEL imm8[1:0]
DEST[127:0] write_d_element(SEL, SRC2, SRC1)
DEST[VLMAX-1:128] 0

VPINSRQ (VEX.128 encoded version)
SEL imm8[0]
DEST[127:0] write_q_element(SEL, SRC2, SRC1)
DEST[VLMAX-1:128] 0
4-266 Vol. 2B PINSRB/PINSRD/PINSRQ — Insert Byte/Dword/Qword

INSTRUCTION SET REFERENCE, M-Z
Intel C/C++ Compiler Intrinsic Equivalent

PINSRB: __m128i _mm_insert_epi8 (__m128i s1, int s2, const int ndx);

PINSRD: __m128i _mm_insert_epi32 (__m128i s2, int s, const int ndx);
PINSRQ: __m128i _mm_insert_epi64(__m128i s2, __int64 s, const int ndx);

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 5; additionally
#UD If VEX.L = 1.

If VPINSRQ in non-64-bit mode with VEX.W=1.
Vol. 2B 4-267PINSRB/PINSRD/PINSRQ — Insert Byte/Dword/Qword

INSTRUCTION SET REFERENCE, M-Z
PINSRW—Insert Word

Instruction Operand Encoding

Description

Copies a word from the source operand (second operand) and inserts it in the desti-
nation operand (first operand) at the location specified with the count operand (third
operand). (The other words in the destination register are left untouched.) The
source operand can be a general-purpose register or a 16-bit memory location.
(When the source operand is a general-purpose register, the low word of the register
is copied.) The destination operand can be an MMX technology register or an XMM
register. The count operand is an 8-bit immediate. When specifying a word location in
an MMX technology register, the 2 least-significant bits of the count operand specify
the location; for an XMM register, the 3 least-significant bits specify the location.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15, R8-15).

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F C4 /r ib1

PINSRW mm, r32/m16, imm8

RMI V/V SSE Insert the low word from
r32 or from m16 into mm at
the word position specified
by imm8

66 0F C4 /r ib

PINSRW xmm, r32/m16, imm8

RMI V/V SSE2 Move the low word of r32 or
from m16 into xmm at the
word position specified by
imm8.

VEX.NDS.128.66.0F.W0 C4 /r ib

VPINSRW xmm1, xmm2, r32/m16,
imm8

RVMI V2/V AVX Insert a word integer value
from r32/m16 and rest from
xmm2 into xmm1 at the
word offset in imm8.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception Conditions
of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3A.

2. In 64-bit mode, VEX.W1 is ignored for VPINSRW (similar to legacy REX.W=1 prefix in PINSRW).

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
4-268 Vol. 2B PINSRW—Insert Word

INSTRUCTION SET REFERENCE, M-Z
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PINSRW (with 64-bit source operand)
SEL ← COUNT AND 3H;

CASE (Determine word position) OF
SEL ← 0: MASK ← 000000000000FFFFH;
SEL ← 1: MASK ← 00000000FFFF0000H;
SEL ← 2: MASK ← 0000FFFF00000000H;
SEL ← 3: MASK ← FFFF000000000000H;

DEST ← (DEST AND NOT MASK) OR (((SRC << (SEL ∗ 16)) AND MASK);

PINSRW (with 128-bit source operand)
SEL ← COUNT AND 7H;

CASE (Determine word position) OF
SEL ← 0: MASK ← 0000000000000000000000000000FFFFH;
SEL ← 1: MASK ← 000000000000000000000000FFFF0000H;
SEL ← 2: MASK ← 00000000000000000000FFFF00000000H;
SEL ← 3: MASK ← 0000000000000000FFFF000000000000H;
SEL ← 4: MASK ← 000000000000FFFF0000000000000000H;
SEL ← 5: MASK ← 00000000FFFF00000000000000000000H;
SEL ← 6: MASK ← 0000FFFF000000000000000000000000H;
SEL ← 7: MASK ← FFFF0000000000000000000000000000H;

DEST ← (DEST AND NOT MASK) OR (((SRC << (SEL ∗ 16)) AND MASK);

VPINSRW (VEX.128 encoded version)
SEL imm8[2:0]
DEST[127:0] write_w_element(SEL, SRC2, SRC1)
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

PINSRW: __m64 _mm_insert_pi16 (__m64 a, int d, int n)

PINSRW: __m128i _mm_insert_epi16 (__m128i a, int b, int imm)

Flags Affected

None.
Vol. 2B 4-269PINSRW—Insert Word

INSTRUCTION SET REFERENCE, M-Z
Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 5; additionally
#UD If VEX.L = 1.

If VPINSRW in non-64-bit mode with VEX.W=1.
4-270 Vol. 2B PINSRW—Insert Word

INSTRUCTION SET REFERENCE, M-Z
PMADDUBSW — Multiply and Add Packed Signed and Unsigned Bytes

Instruction Operand Encoding

Description

PMADDUBSW multiplies vertically each unsigned byte of the destination operand
(first operand) with the corresponding signed byte of the source operand (second
operand), producing intermediate signed 16-bit integers. Each adjacent pair of
signed words is added and the saturated result is packed to the destination operand.
For example, the lowest-order bytes (bits 7-0) in the source and destination oper-
ands are multiplied and the intermediate signed word result is added with the corre-
sponding intermediate result from the 2nd lowest-order bytes (bits 15-8) of the
operands; the sign-saturated result is stored in the lowest word of the destination
register (15-0). The same operation is performed on the other pairs of adjacent
bytes. Both operands can be MMX register or XMM registers. When the source

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 38 04 /r1

PMADDUBSW mm1, mm2/m64

RM V/V MMX Multiply signed and
unsigned bytes, add
horizontal pair of signed
words, pack saturated
signed-words to MM1.

66 0F 38 04 /r

PMADDUBSW xmm1, xmm2/m128

RM V/V SSSE3 Multiply signed and
unsigned bytes, add
horizontal pair of signed
words, pack saturated
signed-words to XMM1.

VEX.NDS.128.66.0F38.WIG 04 /r

VPMADDUBSW xmm1, xmm2,
xmm3/m128

RVM V/V AVX Multiply signed and
unsigned bytes, add
horizontal pair of signed
words, pack saturated
signed-words to xmm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-271PMADDUBSW — Multiply and Add Packed Signed and Unsigned Bytes

INSTRUCTION SET REFERENCE, M-Z
operand is a 128-bit memory operand, the operand must be aligned on a 16-byte
boundary or a general-protection exception (#GP) will be generated.

In 64-bit mode, use the REX prefix to access additional registers.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PMADDUBSW (with 64 bit operands)
DEST[15-0] = SaturateToSignedWord(SRC[15-8]*DEST[15-8]+SRC[7-0]*DEST[7-0]);
DEST[31-16] = SaturateToSignedWord(SRC[31-24]*DEST[31-24]+SRC[23-16]*DEST[23-16]);
DEST[47-32] = SaturateToSignedWord(SRC[47-40]*DEST[47-40]+SRC[39-32]*DEST[39-32]);
DEST[63-48] = SaturateToSignedWord(SRC[63-56]*DEST[63-56]+SRC[55-48]*DEST[55-48]);

PMADDUBSW (with 128 bit operands)
DEST[15-0] = SaturateToSignedWord(SRC[15-8]* DEST[15-8]+SRC[7-0]*DEST[7-0]);
// Repeat operation for 2nd through 7th word
SRC1/DEST[127-112] = SaturateToSignedWord(SRC[127-120]*DEST[127-120]+ SRC[119-

112]* DEST[119-112]);

VPMADDUBSW (VEX.128 encoded version)
DEST[15:0] SaturateToSignedWord(SRC2[15:8]* SRC1[15:8]+SRC2[7:0]*SRC1[7:0])
// Repeat operation for 2nd through 7th word
DEST[127:112] SaturateToSignedWord(SRC2[127:120]*SRC1[127:120]+ SRC2[119:112]*
SRC1[119:112])
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalents

PMADDUBSW: __m64 _mm_maddubs_pi16 (__m64 a, __m64 b)

PMADDUBSW: __m128i _mm_maddubs_epi16 (__m128i a, __m128i b)

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
4-272 Vol. 2B PMADDUBSW — Multiply and Add Packed Signed and Unsigned Bytes

INSTRUCTION SET REFERENCE, M-Z
PMADDWD—Multiply and Add Packed Integers

Instruction Operand Encoding

Description

Multiplies the individual signed words of the destination operand (first operand) by
the corresponding signed words of the source operand (second operand), producing
temporary signed, doubleword results. The adjacent doubleword results are then
summed and stored in the destination operand. For example, the corresponding low-
order words (15-0) and (31-16) in the source and destination operands are multi-
plied by one another and the doubleword results are added together and stored in
the low doubleword of the destination register (31-0). The same operation is
performed on the other pairs of adjacent words. (Figure 4-6 shows this operation
when using 64-bit operands.) The source operand can be an MMX technology register

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F F5 /r1

PMADDWD mm, mm/m64

RM V/V MMX Multiply the packed words in
mm by the packed words in
mm/m64, add adjacent
doubleword results, and
store in mm.

66 0F F5 /r

PMADDWD xmm1, xmm2/m128

RM V/V SSE2 Multiply the packed word
integers in xmm1 by the
packed word integers in
xmm2/m128, add adjacent
doubleword results, and
store in xmm1.

VEX.NDS.128.66.0F.WIG F5 /r

VPMADDWD xmm1, xmm2,
xmm3/m128

RVM V/V AVX Multiply the packed word
integers in xmm2 by the
packed word integers in
xmm3/m128, add adjacent
doubleword results, and
store in xmm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-273PMADDWD—Multiply and Add Packed Integers

INSTRUCTION SET REFERENCE, M-Z
or a 64-bit memory location, or it can be an XMM register or a 128-bit memory loca-
tion. The destination operand can be an MMX technology register or an XMM register.

The PMADDWD instruction wraps around only in one situation: when the 2 pairs of
words being operated on in a group are all 8000H. In this case, the result wraps
around to 80000000H.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PMADDWD (with 64-bit operands)
DEST[31:0] ← (DEST[15:0] ∗ SRC[15:0]) + (DEST[31:16] ∗ SRC[31:16]);
DEST[63:32] ← (DEST[47:32] ∗ SRC[47:32]) + (DEST[63:48] ∗ SRC[63:48]);

PMADDWD (with 128-bit operands)
DEST[31:0] ← (DEST[15:0] ∗ SRC[15:0]) + (DEST[31:16] ∗ SRC[31:16]);
DEST[63:32] ← (DEST[47:32] ∗ SRC[47:32]) + (DEST[63:48] ∗ SRC[63:48]);
DEST[95:64] ← (DEST[79:64] ∗ SRC[79:64]) + (DEST[95:80] ∗ SRC[95:80]);
DEST[127:96] ← (DEST[111:96] ∗ SRC[111:96]) + (DEST[127:112] ∗ SRC[127:112]);

VPMADDWD (VEX.128 encoded version)
DEST[31:0] (SRC1[15:0] * SRC2[15:0]) + (SRC1[31:16] * SRC2[31:16])
DEST[63:32] (SRC1[47:32] * SRC2[47:32]) + (SRC1[63:48] * SRC2[63:48])
DEST[95:64] (SRC1[79:64] * SRC2[79:64]) + (SRC1[95:80] * SRC2[95:80])
DEST[127:96] (SRC1[111:96] * SRC2[111:96]) + (SRC1[127:112] * SRC2[127:112])
DEST[VLMAX-1:128] 0

Figure 4-6. PMADDWD Execution Model Using 64-bit Operands

X3 X2 X1 X0

X3 ∗ Y3 X2 ∗ Y2 X1 ∗ Y1 X0 ∗ Y0

SRC

DEST

DEST

Y3 Y2 Y1 Y0

(X1∗Y1) + (X0∗Y0)(X3∗Y3) + (X2∗Y2)

TEMP
4-274 Vol. 2B PMADDWD—Multiply and Add Packed Integers

INSTRUCTION SET REFERENCE, M-Z
Intel C/C++ Compiler Intrinsic Equivalent

PMADDWD: __m64 _mm_madd_pi16(__m64 m1, __m64 m2)

PMADDWD: __m128i _mm_madd_epi16 (__m128i a, __m128i b)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
Vol. 2B 4-275PMADDWD—Multiply and Add Packed Integers

INSTRUCTION SET REFERENCE, M-Z
PMAXSB — Maximum of Packed Signed Byte Integers

Instruction Operand Encoding

Description

Compares packed signed byte integers in the destination operand (first operand) and
the source operand (second operand), and returns the maximum for each packed
value in the destination operand.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:1288) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

IF (DEST[7:0] > SRC[7:0])
THEN DEST[7:0] DEST[7:0];
ELSE DEST[7:0] SRC[7:0]; FI;

IF (DEST[15:8] > SRC[15:8])
THEN DEST[15:8] DEST[15:8];
ELSE DEST[15:8] SRC[15:8]; FI;

IF (DEST[23:16] > SRC[23:16])
THEN DEST[23:16] DEST[23:16];
ELSE DEST[23:16] SRC[23:16]; FI;

IF (DEST[31:24] > SRC[31:24])

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 38 3C /r
PMAXSB xmm1, xmm2/m128

RM V/V SSE4_1 Compare packed signed byte
integers in xmm1 and
xmm2/m128 and store
packed maximum values in
xmm1.

VEX.NDS.128.66.0F38.WIG 3C /r
VPMAXSB xmm1, xmm2,
xmm3/m128

RVM V/V AVX Compare packed signed byte
integers in xmm2 and
xmm3/m128 and store
packed maximum values in
xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
4-276 Vol. 2B PMAXSB — Maximum of Packed Signed Byte Integers

INSTRUCTION SET REFERENCE, M-Z
THEN DEST[31:24] DEST[31:24];
ELSE DEST[31:24] SRC[31:24]; FI;

IF (DEST[39:32] > SRC[39:32])
THEN DEST[39:32] DEST[39:32];
ELSE DEST[39:32] SRC[39:32]; FI;

IF (DEST[47:40] > SRC[47:40])
THEN DEST[47:40] DEST[47:40];
ELSE DEST[47:40] SRC[47:40]; FI;

IF (DEST[55:48] > SRC[55:48])
THEN DEST[55:48] DEST[55:48];
ELSE DEST[55:48] SRC[55:48]; FI;

IF (DEST[63:56] > SRC[63:56])
THEN DEST[63:56] DEST[63:56];
ELSE DEST[63:56] SRC[63:56]; FI;

IF (DEST[71:64] > SRC[71:64])
THEN DEST[71:64] DEST[71:64];
ELSE DEST[71:64] SRC[71:64]; FI;

IF (DEST[79:72] > SRC[79:72])
THEN DEST[79:72] DEST[79:72];
ELSE DEST[79:72] SRC[79:72]; FI;

IF (DEST[87:80] > SRC[87:80])
THEN DEST[87:80] DEST[87:80];
ELSE DEST[87:80] SRC[87:80]; FI;

IF (DEST[95:88] > SRC[95:88])
THEN DEST[95:88] DEST[95:88];
ELSE DEST[95:88] SRC[95:88]; FI;

IF (DEST[103:96] > SRC[103:96])
THEN DEST[103:96] DEST[103:96];
ELSE DEST[103:96] SRC[103:96]; FI;

IF (DEST[111:104] > SRC[111:104])
THEN DEST[111:104] DEST[111:104];
ELSE DEST[111:104] SRC[111:104]; FI;

IF (DEST[119:112] > SRC[119:112])
THEN DEST[119:112] DEST[119:112];
ELSE DEST[119:112] SRC[119:112]; FI;

IF (DEST[127:120] > SRC[127:120])
THEN DEST[127:120] DEST[127:120];
ELSE DEST[127:120] SRC[127:120]; FI;

VPMAXSB (VEX.128 encoded version)
IF SRC1[7:0] >SRC2[7:0] THEN

DEST[7:0] SRC1[7:0];
ELSE
Vol. 2B 4-277PMAXSB — Maximum of Packed Signed Byte Integers

INSTRUCTION SET REFERENCE, M-Z
DEST[7:0] SRC2[7:0]; FI;
(* Repeat operation for 2nd through 15th bytes in source and destination operands *)
IF SRC1[127:120] >SRC2[127:120] THEN

DEST[127:120] SRC1[127:120];
ELSE

DEST[127:120] SRC2[127:120]; FI;
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

PMAXSB: __m128i _mm_max_epi8 (__m128i a, __m128i b);

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
4-278 Vol. 2B PMAXSB — Maximum of Packed Signed Byte Integers

INSTRUCTION SET REFERENCE, M-Z
PMAXSD — Maximum of Packed Signed Dword Integers

Instruction Operand Encoding

Description

Compares packed signed dword integers in the destination operand (first operand)
and the source operand (second operand), and returns the maximum for each
packed value in the destination operand.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:1288) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

IF (DEST[31:0] > SRC[31:0])
THEN DEST[31:0] DEST[31:0];
ELSE DEST[31:0] SRC[31:0]; FI;

IF (DEST[63:32] > SRC[63:32])
THEN DEST[63:32] DEST[63:32];
ELSE DEST[63:32] SRC[63:32]; FI;

IF (DEST[95:64] > SRC[95:64])
THEN DEST[95:64] DEST[95:64];
ELSE DEST[95:64] SRC[95:64]; FI;

IF (DEST[127:96] > SRC[127:96])

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 38 3D /r
PMAXSD xmm1, xmm2/m128

RM V/V SSE4_1 Compare packed signed
dword integers in xmm1 and
xmm2/m128 and store
packed maximum values in
xmm1.

VEX.NDS.128.66.0F38.WIG 3D /r
VPMAXSD xmm1, xmm2,
xmm3/m128

RVM V/V AVX Compare packed signed
dword integers in xmm2 and
xmm3/m128 and store
packed maximum values in
xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-279PMAXSD — Maximum of Packed Signed Dword Integers

INSTRUCTION SET REFERENCE, M-Z
THEN DEST[127:96] DEST[127:96];
ELSE DEST[127:96] SRC[127:96]; FI;

VPMAXSD (VEX.128 encoded version)
IF SRC1[31:0] > SRC2[31:0] THEN

DEST[31:0] SRC1[31:0];
ELSE

DEST[31:0] SRC2[31:0]; FI;
(* Repeat operation for 2nd through 3rd dwords in source and destination operands *)
IF SRC1[127:95] > SRC2[127:95] THEN

DEST[127:95] SRC1[127:95];
ELSE

DEST[127:95] SRC2[127:95]; FI;
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

PMAXSD: __m128i _mm_max_epi32 (__m128i a, __m128i b);

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
4-280 Vol. 2B PMAXSD — Maximum of Packed Signed Dword Integers

INSTRUCTION SET REFERENCE, M-Z
PMAXSW—Maximum of Packed Signed Word Integers

Instruction Operand Encoding

Description

Performs a SIMD compare of the packed signed word integers in the destination
operand (first operand) and the source operand (second operand), and returns the
maximum value for each pair of word integers to the destination operand. The source
operand can be an MMX technology register or a 64-bit memory location, or it can be
an XMM register or a 128-bit memory location. The destination operand can be an
MMX technology register or an XMM register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F EE /r1

PMAXSW mm1, mm2/m64

RM V/V SSE Compare signed word
integers in mm2/m64 and
mm1 and return maximum
values.

66 0F EE /r

PMAXSW xmm1, xmm2/m128

RM V/V SSE2 Compare signed word
integers in xmm2/m128 and
xmm1 and return maximum
values.

VEX.NDS.128.66.0F.WIG EE /r

VPMAXSW xmm1, xmm2,
xmm3/m128

RVM V/V AVX Compare packed signed
word integers in
xmm3/m128 and xmm2 and
store packed maximum
values in xmm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-281PMAXSW—Maximum of Packed Signed Word Integers

INSTRUCTION SET REFERENCE, M-Z
Operation

PMAXSW (64-bit operands)
IF DEST[15:0] > SRC[15:0]) THEN

DEST[15:0] ← DEST[15:0];
ELSE

DEST[15:0] ← SRC[15:0]; FI;
(* Repeat operation for 2nd and 3rd words in source and destination operands *)
IF DEST[63:48] > SRC[63:48]) THEN

DEST[63:48] ← DEST[63:48];
ELSE

DEST[63:48] ← SRC[63:48]; FI;

PMAXSW (128-bit operands)
IF DEST[15:0] > SRC[15:0]) THEN

DEST[15:0] ← DEST[15:0];
ELSE

DEST[15:0] ← SRC[15:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF DEST[127:112] > SRC[127:112]) THEN

DEST[127:112] ← DEST[127:112];
ELSE

DEST[127:112] ← SRC[127:112]; FI;

VPMAXSW (VEX.128 encoded version)
IF SRC1[15:0] > SRC2[15:0] THEN

DEST[15:0] SRC1[15:0];
ELSE

DEST[15:0] SRC2[15:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF SRC1[127:112] >SRC2[127:112] THEN

DEST[127:112] SRC1[127:112];
ELSE

DEST[127:112] SRC2[127:112]; FI;
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

PMAXSW: __m64 _mm_max_pi16(__m64 a, __m64 b)

PMAXSW: __m128i _mm_max_epi16 (__m128i a, __m128i b)

Flags Affected

None.
4-282 Vol. 2B PMAXSW—Maximum of Packed Signed Word Integers

INSTRUCTION SET REFERENCE, M-Z
Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
Vol. 2B 4-283PMAXSW—Maximum of Packed Signed Word Integers

INSTRUCTION SET REFERENCE, M-Z
PMAXUB—Maximum of Packed Unsigned Byte Integers

Instruction Operand Encoding

Description

Performs a SIMD compare of the packed unsigned byte integers in the destination
operand (first operand) and the source operand (second operand), and returns the
maximum value for each pair of byte integers to the destination operand. The source
operand can be an MMX technology register or a 64-bit memory location, or it can be
an XMM register or a 128-bit memory location. The destination operand can be an
MMX technology register or an XMM register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F DE /r1

PMAXUB mm1, mm2/m64

RM V/V SSE Compare unsigned byte
integers in mm2/m64 and
mm1 and returns maximum
values.

66 0F DE /r

PMAXUB xmm1, xmm2/m128

RM V/V SSE2 Compare unsigned byte
integers in xmm2/m128 and
xmm1 and returns
maximum values.

VEX.NDS.128.66.0F.WIG DE /r

VPMAXUB xmm1, xmm2,
xmm3/m128

RVM V/V AVX Compare packed unsigned
byte integers in xmm2 and
xmm3/m128 and store
packed maximum values in
xmm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
4-284 Vol. 2B PMAXUB—Maximum of Packed Unsigned Byte Integers

INSTRUCTION SET REFERENCE, M-Z
Operation

PMAXUB (64-bit operands)
IF DEST[7:0] > SRC[17:0]) THEN

DEST[7:0] ← DEST[7:0];
ELSE

DEST[7:0] ← SRC[7:0]; FI;
(* Repeat operation for 2nd through 7th bytes in source and destination operands *)
IF DEST[63:56] > SRC[63:56]) THEN

DEST[63:56] ← DEST[63:56];
ELSE

DEST[63:56] ← SRC[63:56]; FI;

PMAXUB (128-bit operands)
IF DEST[7:0] > SRC[17:0]) THEN

DEST[7:0] ← DEST[7:0];
ELSE

DEST[7:0] ← SRC[7:0]; FI;
(* Repeat operation for 2nd through 15th bytes in source and destination operands *)
IF DEST[127:120] > SRC[127:120]) THEN

DEST[127:120] ← DEST[127:120];
ELSE

DEST[127:120] ← SRC[127:120]; FI;

VPMAXUB (VEX.128 encoded version)
IF SRC1[7:0] >SRC2[7:0] THEN

DEST[7:0] SRC1[7:0];
ELSE

DEST[7:0] SRC2[7:0]; FI;
(* Repeat operation for 2nd through 15th bytes in source and destination operands *)
IF SRC1[127:120] >SRC2[127:120] THEN

DEST[127:120] SRC1[127:120];
ELSE

DEST[127:120] SRC2[127:120]; FI;
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

PMAXUB: __m64 _mm_max_pu8(__m64 a, __m64 b)

PMAXUB: __m128i _mm_max_epu8 (__m128i a, __m128i b)

Flags Affected

None.
Vol. 2B 4-285PMAXUB—Maximum of Packed Unsigned Byte Integers

INSTRUCTION SET REFERENCE, M-Z
Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
4-286 Vol. 2B PMAXUB—Maximum of Packed Unsigned Byte Integers

INSTRUCTION SET REFERENCE, M-Z
PMAXUD — Maximum of Packed Unsigned Dword Integers

Instruction Operand Encoding

Description

Compares packed unsigned dword integers in the destination operand (first operand)
and the source operand (second operand), and returns the maximum for each
packed value in the destination operand.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

IF (DEST[31:0] > SRC[31:0])
THEN DEST[31:0] DEST[31:0];
ELSE DEST[31:0] SRC[31:0]; FI;

IF (DEST[63:32] > SRC[63:32])
THEN DEST[63:32] DEST[63:32];
ELSE DEST[63:32] SRC[63:32]; FI;

IF (DEST[95:64] > SRC[95:64])
THEN DEST[95:64] DEST[95:64];
ELSE DEST[95:64] SRC[95:64]; FI;

IF (DEST[127:96] > SRC[127:96])

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 38 3F /r
PMAXUD xmm1, xmm2/m128

RM V/V SSE4_1 Compare packed unsigned
dword integers in xmm1 and
xmm2/m128 and store
packed maximum values in
xmm1.

VEX.NDS.128.66.0F38.WIG 3F /r
VPMAXUD xmm1, xmm2,
xmm3/m128

RVM V/V AVX Compare packed unsigned
dword integers in xmm2 and
xmm3/m128 and store
packed maximum values in
xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-287PMAXUD — Maximum of Packed Unsigned Dword Integers

INSTRUCTION SET REFERENCE, M-Z
THEN DEST[127:96] DEST[127:96];
ELSE DEST[127:96] SRC[127:96]; FI;

VPMAXUD (VEX.128 encoded version)
IF SRC1[31:0] > SRC2[31:0] THEN

DEST[31:0] SRC1[31:0];
ELSE

DEST[31:0] SRC2[31:0]; FI;
(* Repeat operation for 2nd through 3rd dwords in source and destination operands *)
IF SRC1[127:95] > SRC2[127:95] THEN

DEST[127:95] SRC1[127:95];
ELSE

DEST[127:95] SRC2[127:95]; FI;
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

PMAXUD: __m128i _mm_max_epu32 (__m128i a, __m128i b);

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
4-288 Vol. 2B PMAXUD — Maximum of Packed Unsigned Dword Integers

INSTRUCTION SET REFERENCE, M-Z
PMAXUW — Maximum of Packed Word Integers

Instruction Operand Encoding

Description

Compares packed unsigned word integers in the destination operand (first operand)
and the source operand (second operand), and returns the maximum for each
packed value in the destination operand.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

IF (DEST[15:0] > SRC[15:0])
THEN DEST[15:0] DEST[15:0];
ELSE DEST[15:0] SRC[15:0]; FI;

IF (DEST[31:16] > SRC[31:16])
THEN DEST[31:16] DEST[31:16];
ELSE DEST[31:16] SRC[31:16]; FI;

IF (DEST[47:32] > SRC[47:32])
THEN DEST[47:32] DEST[47:32];
ELSE DEST[47:32] SRC[47:32]; FI;

IF (DEST[63:48] > SRC[63:48])

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 38 3E /r
PMAXUW xmm1, xmm2/m128

RM V/V SSE4_1 Compare packed unsigned
word integers in xmm1 and
xmm2/m128 and store
packed maximum values in
xmm1.

VEX.NDS.128.66.0F38.WIG 3E/r
VPMAXUW xmm1, xmm2,
xmm3/m128

RVM V/V AVX Compare packed unsigned
word integers in
xmm3/m128 and xmm2 and
store maximum packed
values in xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-289PMAXUW — Maximum of Packed Word Integers

INSTRUCTION SET REFERENCE, M-Z
THEN DEST[63:48] DEST[63:48];
ELSE DEST[63:48] SRC[63:48]; FI;

IF (DEST[79:64] > SRC[79:64])
THEN DEST[79:64] DEST[79:64];
ELSE DEST[79:64] SRC[79:64]; FI;

IF (DEST[95:80] > SRC[95:80])
THEN DEST[95:80] DEST[95:80];
ELSE DEST[95:80] SRC[95:80]; FI;

IF (DEST[111:96] > SRC[111:96])
THEN DEST[111:96] DEST[111:96];
ELSE DEST[111:96] SRC[111:96]; FI;

IF (DEST[127:112] > SRC[127:112])
THEN DEST[127:112] DEST[127:112];
ELSE DEST[127:112] SRC[127:112]; FI;

VPMAXUW (VEX.128 encoded version)
IF SRC1[15:0] > SRC2[15:0] THEN

DEST[15:0] SRC1[15:0];
ELSE

DEST[15:0] SRC2[15:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF SRC1[127:112] >SRC2[127:112] THEN

DEST[127:112] SRC1[127:112];
ELSE

DEST[127:112] SRC2[127:112]; FI;
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

PMAXUW: __m128i _mm_max_epu16 (__m128i a, __m128i b);

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
4-290 Vol. 2B PMAXUW — Maximum of Packed Word Integers

INSTRUCTION SET REFERENCE, M-Z
PMINSB — Minimum of Packed Signed Byte Integers

Instruction Operand Encoding

Description

Compares packed signed byte integers in the destination operand (first operand) and
the source operand (second operand), and returns the minimum for each packed
value in the destination operand.
128-bit Legacy SSE version: Bits (VLMAX-1:1288) of the corresponding YMM desti-
nation register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

IF (DEST[7:0] < SRC[7:0])
THEN DEST[7:0] DEST[7:0];
ELSE DEST[7:0] SRC[7:0]; FI;

IF (DEST[15:8] < SRC[15:8])
THEN DEST[15:8] DEST[15:8];
ELSE DEST[15:8] SRC[15:8]; FI;

IF (DEST[23:16] < SRC[23:16])
THEN DEST[23:16] DEST[23:16];
ELSE DEST[23:16] SRC[23:16]; FI;

IF (DEST[31:24] < SRC[31:24])

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 38 38 /r
PMINSB xmm1, xmm2/m128

RM V/V SSE4_1 Compare packed signed byte
integers in xmm1 and
xmm2/m128 and store
packed minimum values in
xmm1.

VEX.NDS.128.66.0F38.WIG 38 /r
VPMINSB xmm1, xmm2,
xmm3/m128

RVM V/V AVX Compare packed signed byte
integers in xmm2 and
xmm3/m128 and store
packed minimum values in
xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-291PMINSB — Minimum of Packed Signed Byte Integers

INSTRUCTION SET REFERENCE, M-Z
THEN DEST[31:24] DEST[31:24];
ELSE DEST[31:24] SRC[31:24]; FI;

IF (DEST[39:32] < SRC[39:32])
THEN DEST[39:32] DEST[39:32];
ELSE DEST[39:32] SRC[39:32]; FI;

IF (DEST[47:40] < SRC[47:40])
THEN DEST[47:40] DEST[47:40];
ELSE DEST[47:40] SRC[47:40]; FI;

IF (DEST[55:48] < SRC[55:48])
THEN DEST[55:48] DEST[55:48];
ELSE DEST[55:48] SRC[55:48]; FI;

IF (DEST[63:56] < SRC[63:56])
THEN DEST[63:56] DEST[63:56];
ELSE DEST[63:56] SRC[63:56]; FI;

IF (DEST[71:64] < SRC[71:64])
THEN DEST[71:64] DEST[71:64];
ELSE DEST[71:64] SRC[71:64]; FI;

IF (DEST[79:72] < SRC[79:72])
THEN DEST[79:72] DEST[79:72];
ELSE DEST[79:72] SRC[79:72]; FI;

IF (DEST[87:80] < SRC[87:80])
THEN DEST[87:80] DEST[87:80];
ELSE DEST[87:80] SRC[87:80]; FI;

IF (DEST[95:88] < SRC[95:88])
THEN DEST[95:88] DEST[95:88];
ELSE DEST[95:88] SRC[95:88]; FI;

IF (DEST[103:96] < SRC[103:96])
THEN DEST[103:96] DEST[103:96];
ELSE DEST[103:96] SRC[103:96]; FI;

IF (DEST[111:104] < SRC[111:104])
THEN DEST[111:104] DEST[111:104];
ELSE DEST[111:104] SRC[111:104]; FI;

IF (DEST[119:112] < SRC[119:112])
THEN DEST[119:112] DEST[119:112];
ELSE DEST[119:112] SRC[119:112]; FI;

IF (DEST[127:120] < SRC[127:120])
THEN DEST[127:120] DEST[127:120];
ELSE DEST[127:120] SRC[127:120]; FI;

VPMINSB (VEX.128 encoded version)
IF SRC1[7:0] < SRC2[7:0] THEN

DEST[7:0] SRC1[7:0];
ELSE
4-292 Vol. 2B PMINSB — Minimum of Packed Signed Byte Integers

INSTRUCTION SET REFERENCE, M-Z
DEST[7:0] SRC2[7:0]; FI;
(* Repeat operation for 2nd through 15th bytes in source and destination operands *)
IF SRC1[127:120] < SRC2[127:120] THEN

DEST[127:120] SRC1[127:120];
ELSE

DEST[127:120] SRC2[127:120]; FI;
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

PMINSB: __m128i _mm_min_epi8 (__m128i a, __m128i b);

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
Vol. 2B 4-293PMINSB — Minimum of Packed Signed Byte Integers

INSTRUCTION SET REFERENCE, M-Z
PMINSD — Minimum of Packed Dword Integers

Instruction Operand Encoding

Description

Compares packed signed dword integers in the destination operand (first operand)
and the source operand (second operand), and returns the minimum for each packed
value in the destination operand.
128-bit Legacy SSE version: Bits (VLMAX-1:1288) of the corresponding YMM desti-
nation register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

IF (DEST[31:0] < SRC[31:0])
THEN DEST[31:0] DEST[31:0];
ELSE DEST[31:0] SRC[31:0]; FI;

IF (DEST[63:32] < SRC[63:32])
THEN DEST[63:32] DEST[63:32];
ELSE DEST[63:32] SRC[63:32]; FI;

IF (DEST[95:64] < SRC[95:64])
THEN DEST[95:64] DEST[95:64];
ELSE DEST[95:64] SRC[95:64]; FI;

IF (DEST[127:96] < SRC[127:96])

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 38 39 /r
PMINSD xmm1, xmm2/m128

RM V/V SSE4_1 Compare packed signed
dword integers in xmm1 and
xmm2/m128 and store
packed minimum values in
xmm1.

VEX.NDS.128.66.0F38.WIG 39 /r
VPMINSD xmm1, xmm2,
xmm3/m128

RVM V/V AVX Compare packed signed
dword integers in xmm2 and
xmm3/m128 and store
packed minimum values in
xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
4-294 Vol. 2B PMINSD — Minimum of Packed Dword Integers

INSTRUCTION SET REFERENCE, M-Z
THEN DEST[127:96] DEST[127:96];
ELSE DEST[127:96] SRC[127:96]; FI;

VPMINSD (VEX.128 encoded version)
IF SRC1[31:0] < SRC2[31:0] THEN

DEST[31:0] SRC1[31:0];
ELSE

DEST[31:0] SRC2[31:0]; FI;
(* Repeat operation for 2nd through 3rd dwords in source and destination operands *)
IF SRC1[127:95] < SRC2[127:95] THEN

DEST[127:95] SRC1[127:95];
ELSE

DEST[127:95] SRC2[127:95]; FI;
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

PMINSD: __m128i _mm_min_epi32 (__m128i a, __m128i b);

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
Vol. 2B 4-295PMINSD — Minimum of Packed Dword Integers

INSTRUCTION SET REFERENCE, M-Z
PMINSW—Minimum of Packed Signed Word Integers

Instruction Operand Encoding

Description

Performs a SIMD compare of the packed signed word integers in the destination
operand (first operand) and the source operand (second operand), and returns the
minimum value for each pair of word integers to the destination operand. The source
operand can be an MMX technology register or a 64-bit memory location, or it can be
an XMM register or a 128-bit memory location. The destination operand can be an
MMX technology register or an XMM register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:1288) of the corresponding YMM desti-
nation register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F EA /r1

PMINSW mm1, mm2/m64

RM V/V SSE Compare signed word
integers in mm2/m64 and
mm1 and return minimum
values.

66 0F EA /r

PMINSW xmm1, xmm2/m128

RM V/V SSE2 Compare signed word
integers in xmm2/m128 and
xmm1 and return minimum
values.

VEX.NDS.128.66.0F.WIG EA /r

VPMINSW xmm1, xmm2,
xmm3/m128

RVM V/V AVX Compare packed signed
word integers in
xmm3/m128 and xmm2 and
return packed minimum
values in xmm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
4-296 Vol. 2B PMINSW—Minimum of Packed Signed Word Integers

INSTRUCTION SET REFERENCE, M-Z
Operation

PMINSW (64-bit operands)
IF DEST[15:0] < SRC[15:0] THEN

DEST[15:0] ← DEST[15:0];
ELSE

DEST[15:0] ← SRC[15:0]; FI;
(* Repeat operation for 2nd and 3rd words in source and destination operands *)
IF DEST[63:48] < SRC[63:48] THEN

DEST[63:48] ← DEST[63:48];
ELSE

DEST[63:48] ← SRC[63:48]; FI;

PMINSW (128-bit operands)
IF DEST[15:0] < SRC[15:0] THEN

DEST[15:0] ← DEST[15:0];
ELSE

DEST[15:0] ← SRC[15:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF DEST[127:112] < SRC/m64[127:112] THEN

DEST[127:112] ← DEST[127:112];
ELSE

DEST[127:112] ← SRC[127:112]; FI;

VPMINSW (VEX.128 encoded version)
IF SRC1[15:0] < SRC2[15:0] THEN

DEST[15:0] SRC1[15:0];
ELSE

DEST[15:0] SRC2[15:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF SRC1[127:112] < SRC2[127:112] THEN

DEST[127:112] SRC1[127:112];
ELSE

DEST[127:112] SRC2[127:112]; FI;
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

PMINSW: __m64 _mm_min_pi16 (__m64 a, __m64 b)

PMINSW: __m128i _mm_min_epi16 (__m128i a, __m128i b)

Flags Affected

None.
Vol. 2B 4-297PMINSW—Minimum of Packed Signed Word Integers

INSTRUCTION SET REFERENCE, M-Z
Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.
4-298 Vol. 2B PMINSW—Minimum of Packed Signed Word Integers

INSTRUCTION SET REFERENCE, M-Z
PMINUB—Minimum of Packed Unsigned Byte Integers

Instruction Operand Encoding

Description

Performs a SIMD compare of the packed unsigned byte integers in the destination
operand (first operand) and the source operand (second operand), and returns the
minimum value for each pair of byte integers to the destination operand. The source
operand can be an MMX technology register or a 64-bit memory location, or it can be
an XMM register or a 128-bit memory location. The destination operand can be an
MMX technology register or an XMM register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F DA /r1

PMINUB mm1, mm2/m64

RM V/V SSE Compare unsigned byte
integers in mm2/m64 and
mm1 and returns minimum
values.

66 0F DA /r

PMINUB xmm1, xmm2/m128

RM V/V SSE2 Compare unsigned byte
integers in xmm2/m128 and
xmm1 and returns minimum
values.

VEX.NDS.128.66.0F.WIG DA /r

VPMINUB xmm1, xmm2,
xmm3/m128

RVM V/V AVX Compare packed unsigned
byte integers in xmm2 and
xmm3/m128 and store
packed minimum values in
xmm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-299PMINUB—Minimum of Packed Unsigned Byte Integers

INSTRUCTION SET REFERENCE, M-Z
Operation

PMINUB (for 64-bit operands)
IF DEST[7:0] < SRC[17:0] THEN

DEST[7:0] ← DEST[7:0];
ELSE

DEST[7:0] ← SRC[7:0]; FI;
(* Repeat operation for 2nd through 7th bytes in source and destination operands *)
IF DEST[63:56] < SRC[63:56] THEN

DEST[63:56] ← DEST[63:56];
ELSE

DEST[63:56] ← SRC[63:56]; FI;

PMINUB (for 128-bit operands)
IF DEST[7:0] < SRC[17:0] THEN

DEST[7:0] ← DEST[7:0];
ELSE

DEST[7:0] ← SRC[7:0]; FI;
(* Repeat operation for 2nd through 15th bytes in source and destination operands *)
IF DEST[127:120] < SRC[127:120] THEN

DEST[127:120] ← DEST[127:120];
ELSE

DEST[127:120] ← SRC[127:120]; FI;

VPMINUB (VEX.128 encoded version)
VPMINUB instruction for 128-bit operands:

IF SRC1[7:0] < SRC2[7:0] THEN
DEST[7:0] SRC1[7:0];

ELSE
DEST[7:0] SRC2[7:0]; FI;

(* Repeat operation for 2nd through 15th bytes in source and destination operands *)
IF SRC1[127:120] < SRC2[127:120] THEN

DEST[127:120] SRC1[127:120];
ELSE

DEST[127:120] SRC2[127:120]; FI;
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

PMINUB: __m64 _m_min_pu8 (__m64 a, __m64 b)

PMINUB: __m128i _mm_min_epu8 (__m128i a, __m128i b)

Flags Affected

None.
4-300 Vol. 2B PMINUB—Minimum of Packed Unsigned Byte Integers

INSTRUCTION SET REFERENCE, M-Z
Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
Vol. 2B 4-301PMINUB—Minimum of Packed Unsigned Byte Integers

INSTRUCTION SET REFERENCE, M-Z
PMINUD — Minimum of Packed Dword Integers

Instruction Operand Encoding

Description

Compares packed unsigned dword integers in the destination operand (first operand)
and the source operand (second operand), and returns the minimum for each packed
value in the destination operand.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

IF (DEST[31:0] < SRC[31:0])
THEN DEST[31:0] DEST[31:0];
ELSE DEST[31:0] SRC[31:0]; FI;

IF (DEST[63:32] < SRC[63:32])
THEN DEST[63:32] DEST[63:32];
ELSE DEST[63:32] SRC[63:32]; FI;

IF (DEST[95:64] < SRC[95:64])
THEN DEST[95:64] DEST[95:64];
ELSE DEST[95:64] SRC[95:64]; FI;

IF (DEST[127:96] < SRC[127:96])

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 38 3B /r
PMINUD xmm1, xmm2/m128

RM V/V SSE4_1 Compare packed unsigned
dword integers in xmm1
and xmm2/m128 and store
packed minimum values in
xmm1.

VEX.NDS.128.66.0F38.WIG 3B /r
VPMINUD xmm1, xmm2,
xmm3/m128

RVM V/V AVX Compare packed unsigned
dword integers in xmm2 and
xmm3/m128 and store
packed minimum values in
xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
4-302 Vol. 2B PMINUD — Minimum of Packed Dword Integers

INSTRUCTION SET REFERENCE, M-Z
THEN DEST[127:96] DEST[127:96];
ELSE DEST[127:96] SRC[127:96]; FI;

VPMINUD (VEX.128 encoded version)
VPMINUD instruction for 128-bit operands:

IF SRC1[31:0] < SRC2[31:0] THEN
DEST[31:0] SRC1[31:0];

ELSE
DEST[31:0] SRC2[31:0]; FI;

(* Repeat operation for 2nd through 3rd dwords in source and destination operands *)
IF SRC1[127:95] < SRC2[127:95] THEN

DEST[127:95] SRC1[127:95];
ELSE

DEST[127:95] SRC2[127:95]; FI;
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

PMINUD: __m128i _mm_min_epu32 (__m128i a, __m128i b);

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
Vol. 2B 4-303PMINUD — Minimum of Packed Dword Integers

INSTRUCTION SET REFERENCE, M-Z
PMINUW — Minimum of Packed Word Integers

Instruction Operand Encoding

Description

Compares packed unsigned word integers in the destination operand (first operand)
and the source operand (second operand), and returns the minimum for each packed
value in the destination operand.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

IF (DEST[15:0] < SRC[15:0])
THEN DEST[15:0] DEST[15:0];
ELSE DEST[15:0] SRC[15:0]; FI;

IF (DEST[31:16] < SRC[31:16])
THEN DEST[31:16] DEST[31:16];
ELSE DEST[31:16] SRC[31:16]; FI;

IF (DEST[47:32] < SRC[47:32])
THEN DEST[47:32] DEST[47:32];
ELSE DEST[47:32] SRC[47:32]; FI;

IF (DEST[63:48] < SRC[63:48])

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 38 3A /r
PMINUW xmm1, xmm2/m128

RM V/V SSE4_1 Compare packed unsigned
word integers in xmm1 and
xmm2/m128 and store
packed minimum values in
xmm1.

VEX.NDS.128.66.0F38.WIG 3A/r
VPMINUW xmm1, xmm2,
xmm3/m128

RVM V/V AVX Compare packed unsigned
word integers in
xmm3/m128 and xmm2 and
return packed minimum
values in xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
4-304 Vol. 2B PMINUW — Minimum of Packed Word Integers

INSTRUCTION SET REFERENCE, M-Z
THEN DEST[63:48] DEST[63:48];
ELSE DEST[63:48] SRC[63:48]; FI;

IF (DEST[79:64] < SRC[79:64])
THEN DEST[79:64] DEST[79:64];
ELSE DEST[79:64] SRC[79:64]; FI;

IF (DEST[95:80] < SRC[95:80])
THEN DEST[95:80] DEST[95:80];
ELSE DEST[95:80] SRC[95:80]; FI;

IF (DEST[111:96] < SRC[111:96])
THEN DEST[111:96] DEST[111:96];
ELSE DEST[111:96] SRC[111:96]; FI;

IF (DEST[127:112] < SRC[127:112])
THEN DEST[127:112] DEST[127:112];
ELSE DEST[127:112] SRC[127:112]; FI;

VPMINUW (VEX.128 encoded version)
VPMINUW instruction for 128-bit operands:

IF SRC1[15:0] < SRC2[15:0] THEN
DEST[15:0] SRC1[15:0];

ELSE
DEST[15:0] SRC2[15:0]; FI;

(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF SRC1[127:112] < SRC2[127:112] THEN

DEST[127:112] SRC1[127:112];
ELSE

DEST[127:112] SRC2[127:112]; FI;
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

PMINUW: __m128i _mm_min_epu16 (__m128i a, __m128i b);

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
Vol. 2B 4-305PMINUW — Minimum of Packed Word Integers

INSTRUCTION SET REFERENCE, M-Z
PMOVMSKB—Move Byte Mask

Instruction Operand Encoding

Description

Creates a mask made up of the most significant bit of each byte of the source
operand (second operand) and stores the result in the low byte or word of the desti-
nation operand (first operand). The source operand is an MMX technology register or
an XMM register; the destination operand is a general-purpose register. When oper-
ating on 64-bit operands, the byte mask is 8 bits; when operating on 128-bit oper-
ands, the byte mask is 16-bits.

In 64-bit mode, the instruction can access additional registers (XMM8-XMM15,
R8-R15) when used with a REX.R prefix. The default operand size is 64-bit in 64-bit
mode.
VEX.128 encodings are valid but identical in function. VEX.vvvv is reserved and must
be 1111b, VEX.L must be 0, otherwise the instruction will #UD.

Operation

PMOVMSKB (with 64-bit source operand and r32)
r32[0] ← SRC[7];
r32[1] ← SRC[15];

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F D7 /r1

PMOVMSKB reg, mm

RM V/V SSE Move a byte mask of mm to
reg. The upper bits of r32 or
r64 are zeroed

66 0F D7 /r

PMOVMSKB reg, xmm

RM V/V SSE2 Move a byte mask of xmm
to reg. The upper bits of r32
or r64 are zeroed

VEX.128.66.0F.WIG D7 /r

VPMOVMSKB reg, xmm1

RM V/V AVX Move a byte mask of xmm1
to reg. The upper bits of r32
or r64 are filled with zeros.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
4-306 Vol. 2B PMOVMSKB—Move Byte Mask

INSTRUCTION SET REFERENCE, M-Z
(* Repeat operation for bytes 2 through 6 *)
r32[7] ← SRC[63];
r32[31:8] ← ZERO_FILL;

(V)PMOVMSKB (with 128-bit source operand and r32)
r32[0] ← SRC[7];
r32[1] ← SRC[15];
(* Repeat operation for bytes 2 through 14 *)
r32[15] ← SRC[127];
r32[31:16] ← ZERO_FILL;

PMOVMSKB (with 64-bit source operand and r64)
r64[0] ← SRC[7];
r64[1] ← SRC[15];
(* Repeat operation for bytes 2 through 6 *)
r64[7] ← SRC[63];
r64[63:8] ← ZERO_FILL;

(V)PMOVMSKB (with 128-bit source operand and r64)
r64[0] ← SRC[7];
r64[1] ← SRC[15];
(* Repeat operation for bytes 2 through 14 *)
r64[15] ← SRC[127];
r64[63:16] ← ZERO_FILL;

Intel C/C++ Compiler Intrinsic Equivalent

PMOVMSKB: int _mm_movemask_pi8(__m64 a)

PMOVMSKB: int _mm_movemask_epi8 (__m128i a)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 7; additionally
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
Vol. 2B 4-307PMOVMSKB—Move Byte Mask

INSTRUCTION SET REFERENCE, M-Z
PMOVSX — Packed Move with Sign Extend
Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0f 38 20 /r
PMOVSXBW xmm1, xmm2/m64

RM V/V SSE4_1 Sign extend 8 packed signed
8-bit integers in the low 8
bytes of xmm2/m64 to 8
packed signed 16-bit
integers in xmm1.

66 0f 38 21 /r
PMOVSXBD xmm1, xmm2/m32

RM V/V SSE4_1 Sign extend 4 packed signed
8-bit integers in the low 4
bytes of xmm2/m32 to 4
packed signed 32-bit
integers in xmm1.

66 0f 38 22 /r

PMOVSXBQ xmm1, xmm2/m16

RM V/V SSE4_1 Sign extend 2 packed signed
8-bit integers in the low 2
bytes of xmm2/m16 to 2
packed signed 64-bit
integers in xmm1.

66 0f 38 23 /r
PMOVSXWD xmm1, xmm2/m64

RM V/V SSE4_1 Sign extend 4 packed signed
16-bit integers in the low 8
bytes of xmm2/m64 to 4
packed signed 32-bit
integers in xmm1.

66 0f 38 24 /r
PMOVSXWQ xmm1, xmm2/m32

RM V/V SSE4_1 Sign extend 2 packed signed
16-bit integers in the low 4
bytes of xmm2/m32 to 2
packed signed 64-bit
integers in xmm1.

66 0f 38 25 /r
PMOVSXDQ xmm1, xmm2/m64

RM V/V SSE4_1 Sign extend 2 packed signed
32-bit integers in the low 8
bytes of xmm2/m64 to 2
packed signed 64-bit
integers in xmm1.

VEX.128.66.0F38.WIG 20 /r
VPMOVSXBW xmm1, xmm2/m64

RM V/V AVX Sign extend 8 packed 8-bit
integers in the low 8 bytes
of xmm2/m64 to 8 packed
16-bit integers in xmm1.

VEX.128.66.0F38.WIG 21 /r
VPMOVSXBD xmm1, xmm2/m32

RM V/V AVX Sign extend 4 packed 8-bit
integers in the low 4 bytes
of xmm2/m32 to 4 packed
32-bit integers in xmm1.
4-308 Vol. 2B PMOVSX — Packed Move with Sign Extend

INSTRUCTION SET REFERENCE, M-Z
Instruction Operand Encoding

Description

Sign-extend the low byte/word/dword values in each word/dword/qword element of
the source operand (second operand) to word/dword/qword integers and stored as
packed data in the destination operand (first operand).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.

VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.vvvv is reserved and must be 1111b, VEX.L must be 0, otherwise the
instruction will #UD.

Operation

PMOVSXBW
DEST[15:0] SignExtend(SRC[7:0]);
DEST[31:16] SignExtend(SRC[15:8]);
DEST[47:32] SignExtend(SRC[23:16]);
DEST[63:48] SignExtend(SRC[31:24]);

VEX.128.66.0F38.WIG 22 /r
VPMOVSXBQ xmm1, xmm2/m16

RM V/V AVX Sign extend 2 packed 8-bit
integers in the low 2 bytes
of xmm2/m16 to 2 packed
64-bit integers in xmm1.

VEX.128.66.0F38.WIG 23 /r
VPMOVSXWD xmm1, xmm2/m64

RM V/V AVX Sign extend 4 packed 16-bit
integers in the low 8 bytes
of xmm2/m64 to 4 packed
32-bit integers in xmm1.

VEX.128.66.0F38.WIG 24 /r
VPMOVSXWQ xmm1, xmm2/m32

RM V/V AVX Sign extend 2 packed 16-bit
integers in the low 4 bytes
of xmm2/m32 to 2 packed
64-bit integers in xmm1.

VEX.128.66.0F38.WIG 25 /r
VPMOVSXDQ xmm1, xmm2/m64

RM V/V AVX Sign extend 2 packed 32-bit
integers in the low 8 bytes
of xmm2/m64 to 2 packed
64-bit integers in xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description
Vol. 2B 4-309PMOVSX — Packed Move with Sign Extend

INSTRUCTION SET REFERENCE, M-Z
DEST[79:64] SignExtend(SRC[39:32]);
DEST[95:80] SignExtend(SRC[47:40]);
DEST[111:96] SignExtend(SRC[55:48]);
DEST[127:112] SignExtend(SRC[63:56]);

PMOVSXBD
DEST[31:0] SignExtend(SRC[7:0]);
DEST[63:32] SignExtend(SRC[15:8]);
DEST[95:64] SignExtend(SRC[23:16]);
DEST[127:96] SignExtend(SRC[31:24]);

PMOVSXBQ
DEST[63:0] SignExtend(SRC[7:0]);
DEST[127:64] SignExtend(SRC[15:8]);

PMOVSXWD
DEST[31:0] SignExtend(SRC[15:0]);
DEST[63:32] SignExtend(SRC[31:16]);
DEST[95:64] SignExtend(SRC[47:32]);
DEST[127:96] SignExtend(SRC[63:48]);

PMOVSXWQ
DEST[63:0] SignExtend(SRC[15:0]);
DEST[127:64] SignExtend(SRC[31:16]);

PMOVSXDQ
DEST[63:0] SignExtend(SRC[31:0]);
DEST[127:64] SignExtend(SRC[63:32]);

VPMOVSXBW
Packed_Sign_Extend_BYTE_to_WORD()
DEST[VLMAX-1:128] 0

VPMOVSXBD
Packed_Sign_Extend_BYTE_to_DWORD()
DEST[VLMAX-1:128] 0

VPMOVSXBQ
Packed_Sign_Extend_BYTE_to_QWORD()
DEST[VLMAX-1:128] 0

VPMOVSXWD
Packed_Sign_Extend_WORD_to_DWORD()
DEST[VLMAX-1:128] 0
4-310 Vol. 2B PMOVSX — Packed Move with Sign Extend

INSTRUCTION SET REFERENCE, M-Z
VPMOVSXWQ
Packed_Sign_Extend_WORD_to_QWORD()
DEST[VLMAX-1:128] 0

VPMOVSXDQ
Packed_Sign_Extend_DWORD_to_QWORD()
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

PMOVSXBW: __m128i _mm_ cvtepi8_epi16 (__m128i a);
PMOVSXBD: __m128i _mm_ cvtepi8_epi32 (__m128i a);
PMOVSXBQ: __m128i _mm_ cvtepi8_epi64 (__m128i a);
PMOVSXWD: __m128i _mm_ cvtepi16_epi32 (__m128i a);
PMOVSXWQ: __m128i _mm_ cvtepi16_epi64 (__m128i a);
PMOVSXDQ: __m128i _mm_ cvtepi32_epi64 (__m128i a);

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 5; additionally
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
Vol. 2B 4-311PMOVSX — Packed Move with Sign Extend

INSTRUCTION SET REFERENCE, M-Z
PMOVZX — Packed Move with Zero Extend
Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0f 38 30 /r
PMOVZXBW xmm1, xmm2/m64

RM V/V SSE4_1 Zero extend 8 packed 8-bit
integers in the low 8 bytes
of xmm2/m64 to 8 packed
16-bit integers in xmm1.

66 0f 38 31 /r
PMOVZXBD xmm1, xmm2/m32

RM V/V SSE4_1 Zero extend 4 packed 8-bit
integers in the low 4 bytes
of xmm2/m32 to 4 packed
32-bit integers in xmm1.

66 0f 38 32 /r
PMOVZXBQ xmm1, xmm2/m16

RM V/V SSE4_1 Zero extend 2 packed 8-bit
integers in the low 2 bytes
of xmm2/m16 to 2 packed
64-bit integers in xmm1.

66 0f 38 33 /r
PMOVZXWD xmm1, xmm2/m64

RM V/V SSE4_1 Zero extend 4 packed 16-bit
integers in the low 8 bytes
of xmm2/m64 to 4 packed
32-bit integers in xmm1.

66 0f 38 34 /r
PMOVZXWQ xmm1, xmm2/m32

RM V/V SSE4_1 Zero extend 2 packed 16-bit
integers in the low 4 bytes
of xmm2/m32 to 2 packed
64-bit integers in xmm1.

66 0f 38 35 /r
PMOVZXDQ xmm1, xmm2/m64

RM V/V SSE4_1 Zero extend 2 packed 32-bit
integers in the low 8 bytes
of xmm2/m64 to 2 packed
64-bit integers in xmm1.

VEX.128.66.0F38.WIG 30 /r
VPMOVZXBW xmm1, xmm2/m64

RM V/V AVX Zero extend 8 packed 8-bit
integers in the low 8 bytes
of xmm2/m64 to 8 packed
16-bit integers in xmm1.

VEX.128.66.0F38.WIG 31 /r
VPMOVZXBD xmm1, xmm2/m32

RM V/V AVX Zero extend 4 packed 8-bit
integers in the low 4 bytes
of xmm2/m32 to 4 packed
32-bit integers in xmm1.

VEX.128.66.0F38.WIG 32 /r
VPMOVZXBQ xmm1, xmm2/m16

RM V/V AVX Zero extend 2 packed 8-bit
integers in the low 2 bytes
of xmm2/m16 to 2 packed
64-bit integers in xmm1.
4-312 Vol. 2B PMOVZX — Packed Move with Zero Extend

INSTRUCTION SET REFERENCE, M-Z
Instruction Operand Encoding

Description

Zero-extend the low byte/word/dword values in each word/dword/qword element of
the source operand (second operand) to word/dword/qword integers and stored as
packed data in the destination operand (first operand).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.vvvv is reserved and must be 1111b, VEX.L must be 0, otherwise the
instruction will #UD.

Operation

PMOVZXBW
DEST[15:0] ZeroExtend(SRC[7:0]);
DEST[31:16] ZeroExtend(SRC[15:8]);
DEST[47:32] ZeroExtend(SRC[23:16]);
DEST[63:48] ZeroExtend(SRC[31:24]);
DEST[79:64] ZeroExtend(SRC[39:32]);
DEST[95:80] ZeroExtend(SRC[47:40]);
DEST[111:96] ZeroExtend(SRC[55:48]);
DEST[127:112] ZeroExtend(SRC[63:56]);

VEX.128.66.0F38.WIG 33 /r
VPMOVZXWD xmm1, xmm2/m64

RM V/V AVX Zero extend 4 packed 16-bit
integers in the low 8 bytes
of xmm2/m64 to 4 packed
32-bit integers in xmm1.

VEX.128.66.0F38.WIG 34 /r
VPMOVZXWQ xmm1, xmm2/m32

RM V/V AVX Zero extend 2 packed 16-bit
integers in the low 4 bytes
of xmm2/m32 to 2 packed
64-bit integers in xmm1.

VEX.128.66.0F38.WIG 35 /r
VPMOVZXDQ xmm1, xmm2/m64

RM V/V AVX Zero extend 2 packed 32-bit
integers in the low 8 bytes
of xmm2/m64 to 2 packed
64-bit integers in xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description
Vol. 2B 4-313PMOVZX — Packed Move with Zero Extend

INSTRUCTION SET REFERENCE, M-Z
PMOVZXBD
DEST[31:0] ZeroExtend(SRC[7:0]);
DEST[63:32] ZeroExtend(SRC[15:8]);
DEST[95:64] ZeroExtend(SRC[23:16]);
DEST[127:96] ZeroExtend(SRC[31:24]);

PMOVZXQB
DEST[63:0] ZeroExtend(SRC[7:0]);
DEST[127:64] ZeroExtend(SRC[15:8]);

PMOVZXWD
DEST[31:0] ZeroExtend(SRC[15:0]);
DEST[63:32] ZeroExtend(SRC[31:16]);
DEST[95:64] ZeroExtend(SRC[47:32]);
DEST[127:96] ZeroExtend(SRC[63:48]);

PMOVZXWQ
DEST[63:0] ZeroExtend(SRC[15:0]);
DEST[127:64] ZeroExtend(SRC[31:16]);

PMOVZXDQ
DEST[63:0] ZeroExtend(SRC[31:0]);
DEST[127:64] ZeroExtend(SRC[63:32]);

VPMOVZXBW
Packed_Zero_Extend_BYTE_to_WORD()
DEST[VLMAX-1:128] 0

VPMOVZXBD
Packed_Zero_Extend_BYTE_to_DWORD()
DEST[VLMAX-1:128] 0

VPMOVZXBQ
Packed_Zero_Extend_BYTE_to_QWORD()
DEST[VLMAX-1:128] 0

VPMOVZXWD
Packed_Zero_Extend_WORD_to_DWORD()
DEST[VLMAX-1:128] 0

VPMOVZXWQ
Packed_Zero_Extend_WORD_to_QWORD()
DEST[VLMAX-1:128] 0

VPMOVZXDQ
4-314 Vol. 2B PMOVZX — Packed Move with Zero Extend

INSTRUCTION SET REFERENCE, M-Z
Packed_Zero_Extend_DWORD_to_QWORD()
DEST[VLMAX-1:128] 0

Flags Affected

None

Intel C/C++ Compiler Intrinsic Equivalent

PMOVZXBW: __m128i _mm_ cvtepu8_epi16 (__m128i a);
PMOVZXBD: __m128i _mm_ cvtepu8_epi32 (__m128i a);
PMOVZXBQ: __m128i _mm_ cvtepu8_epi64 (__m128i a);
PMOVZXWD: __m128i _mm_ cvtepu16_epi32 (__m128i a);
PMOVZXWQ: __m128i _mm_ cvtepu16_epi64 (__m128i a);
PMOVZXDQ: __m128i _mm_ cvtepu32_epi64 (__m128i a);

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 5; additionally
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
Vol. 2B 4-315PMOVZX — Packed Move with Zero Extend

INSTRUCTION SET REFERENCE, M-Z
PMULDQ — Multiply Packed Signed Dword Integers

Instruction Operand Encoding

Description

Performs two signed multiplications from two pairs of signed dword integers and
stores two 64-bit products in the destination operand (first operand). The 64-bit
product from the first/third dword element in the destination operand and the
first/third dword element of the source operand (second operand) is stored to the
low/high qword element of the destination.
If the source is a memory operand then all 128 bits will be fetched from memory but
the second and fourth dwords will not be used in the computation.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PMULDQ (128-bit Legacy SSE version)
DEST[63:0] DEST[31:0] * SRC[31:0]
DEST[127:64] DEST[95:64] * SRC[95:64]
DEST[VLMAX-1:128] (Unmodified)

VPMULDQ (VEX.128 encoded version)

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 38 28 /r
PMULDQ xmm1, xmm2/m128

RM V/V SSE4_1 Multiply the packed signed
dword integers in xmm1 and
xmm2/m128 and store the
quadword product in xmm1.

VEX.NDS.128.66.0F38.WIG 28 /r
VPMULDQ xmm1, xmm2,
xmm3/m128

RVM V/V AVX Multiply packed signed
doubleword integers in
xmm2 by packed signed
doubleword integers in
xmm3/m128, and store the
quadword results in xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
4-316 Vol. 2B PMULDQ — Multiply Packed Signed Dword Integers

INSTRUCTION SET REFERENCE, M-Z
DEST[63:0] SRC1[31:0] * SRC2[31:0]
DEST[127:64] SRC1[95:64] * SRC2[95:64]
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

PMULDQ: __m128i _mm_mul_epi32(__m128i a, __m128i b);

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 5; additionally
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
Vol. 2B 4-317PMULDQ — Multiply Packed Signed Dword Integers

INSTRUCTION SET REFERENCE, M-Z
PMULHRSW — Packed Multiply High with Round and Scale

Instruction Operand Encoding

Description

PMULHRSW multiplies vertically each signed 16-bit integer from the destination
operand (first operand) with the corresponding signed 16-bit integer of the source
operand (second operand), producing intermediate, signed 32-bit integers. Each
intermediate 32-bit integer is truncated to the 18 most significant bits. Rounding is
always performed by adding 1 to the least significant bit of the 18-bit intermediate
result. The final result is obtained by selecting the 16 bits immediately to the right of
the most significant bit of each 18-bit intermediate result and packed to the destina-
tion operand. Both operands can be MMX register or XMM registers.

When the source operand is a 128-bit memory operand, the operand must be aligned
on a 16-byte boundary or a general-protection exception (#GP) will be generated.

In 64-bit mode, use the REX prefix to access additional registers.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 38 0B /r1

PMULHRSW mm1, mm2/m64

RM V/V SSSE3 Multiply 16-bit signed
words, scale and round
signed doublewords, pack
high 16 bits to MM1.

66 0F 38 0B /r

PMULHRSW xmm1, xmm2/m128

RM V/V SSSE3 Multiply 16-bit signed
words, scale and round
signed doublewords, pack
high 16 bits to XMM1.

VEX.NDS.128.66.0F38.WIG 0B /r

VPMULHRSW xmm1, xmm2,
xmm3/m128

RVM V/V AVX Multiply 16-bit signed
words, scale and round
signed doublewords, pack
high 16 bits to xmm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
4-318 Vol. 2B PMULHRSW — Packed Multiply High with Round and Scale

INSTRUCTION SET REFERENCE, M-Z
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PMULHRSW (with 64-bit operands)
temp0[31:0] = INT32 ((DEST[15:0] * SRC[15:0]) >>14) + 1;
temp1[31:0] = INT32 ((DEST[31:16] * SRC[31:16]) >>14) + 1;
temp2[31:0] = INT32 ((DEST[47:32] * SRC[47:32]) >> 14) + 1;
temp3[31:0] = INT32 ((DEST[63:48] * SRc[63:48]) >> 14) + 1;
DEST[15:0] = temp0[16:1];
DEST[31:16] = temp1[16:1];
DEST[47:32] = temp2[16:1];
DEST[63:48] = temp3[16:1];

PMULHRSW (with 128-bit operand)
temp0[31:0] = INT32 ((DEST[15:0] * SRC[15:0]) >>14) + 1;
temp1[31:0] = INT32 ((DEST[31:16] * SRC[31:16]) >>14) + 1;
temp2[31:0] = INT32 ((DEST[47:32] * SRC[47:32]) >>14) + 1;
temp3[31:0] = INT32 ((DEST[63:48] * SRC[63:48]) >>14) + 1;
temp4[31:0] = INT32 ((DEST[79:64] * SRC[79:64]) >>14) + 1;
temp5[31:0] = INT32 ((DEST[95:80] * SRC[95:80]) >>14) + 1;
temp6[31:0] = INT32 ((DEST[111:96] * SRC[111:96]) >>14) + 1;
temp7[31:0] = INT32 ((DEST[127:112] * SRC[127:112) >>14) + 1;
DEST[15:0] = temp0[16:1];
DEST[31:16] = temp1[16:1];
DEST[47:32] = temp2[16:1];
DEST[63:48] = temp3[16:1];
DEST[79:64] = temp4[16:1];
DEST[95:80] = temp5[16:1];
DEST[111:96] = temp6[16:1];
DEST[127:112] = temp7[16:1];

VPMULHRSW (VEX.128 encoded version)
temp0[31:0] INT32 ((SRC1[15:0] * SRC2[15:0]) >>14) + 1
temp1[31:0] INT32 ((SRC1[31:16] * SRC2[31:16]) >>14) + 1
temp2[31:0] INT32 ((SRC1[47:32] * SRC2[47:32]) >>14) + 1
temp3[31:0] INT32 ((SRC1[63:48] * SRC2[63:48]) >>14) + 1
temp4[31:0] INT32 ((SRC1[79:64] * SRC2[79:64]) >>14) + 1
temp5[31:0] INT32 ((SRC1[95:80] * SRC2[95:80]) >>14) + 1
temp6[31:0] INT32 ((SRC1[111:96] * SRC2[111:96]) >>14) + 1
Vol. 2B 4-319PMULHRSW — Packed Multiply High with Round and Scale

INSTRUCTION SET REFERENCE, M-Z
temp7[31:0] INT32 ((SRC1[127:112] * SRC2[127:112) >>14) + 1
DEST[15:0] temp0[16:1]
DEST[31:16] temp1[16:1]
DEST[47:32] temp2[16:1]
DEST[63:48] temp3[16:1]
DEST[79:64] temp4[16:1]
DEST[95:80] temp5[16:1]
DEST[111:96] temp6[16:1]
DEST[127:112] temp7[16:1]
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalents

PMULHRSW: __m64 _mm_mulhrs_pi16 (__m64 a, __m64 b)

PMULHRSW: __m128i _mm_mulhrs_epi16 (__m128i a, __m128i b)

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
4-320 Vol. 2B PMULHRSW — Packed Multiply High with Round and Scale

INSTRUCTION SET REFERENCE, M-Z
PMULHUW—Multiply Packed Unsigned Integers and Store High Result

Instruction Operand Encoding

Description

Performs a SIMD unsigned multiply of the packed unsigned word integers in the
destination operand (first operand) and the source operand (second operand), and
stores the high 16 bits of each 32-bit intermediate results in the destination operand.
(Figure 4-7 shows this operation when using 64-bit operands.) The source operand
can be an MMX technology register or a 64-bit memory location, or it can be an XMM
register or a 128-bit memory location. The destination operand can be an MMX tech-
nology register or an XMM register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F E4 /r1

PMULHUW mm1, mm2/m64

RM V/V SSE Multiply the packed
unsigned word integers in
mm1 register and
mm2/m64, and store the
high 16 bits of the results in
mm1.

66 0F E4 /r

PMULHUW xmm1, xmm2/m128

RM V/V SSE2 Multiply the packed
unsigned word integers in
xmm1 and xmm2/m128,
and store the high 16 bits of
the results in xmm1.

VEX.NDS.128.66.0F.WIG E4 /r

VPMULHUW xmm1, xmm2,
xmm3/m128

RVM V/V AVX Multiply the packed
unsigned word integers in
xmm2 and xmm3/m128,
and store the high 16 bits of
the results in xmm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-321PMULHUW—Multiply Packed Unsigned Integers and Store High Result

INSTRUCTION SET REFERENCE, M-Z
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PMULHUW (with 64-bit operands)
TEMP0[31:0] ← DEST[15:0] ∗ SRC[15:0]; (* Unsigned multiplication *)
TEMP1[31:0] ← DEST[31:16] ∗ SRC[31:16];
TEMP2[31:0] ← DEST[47:32] ∗ SRC[47:32];
TEMP3[31:0] ← DEST[63:48] ∗ SRC[63:48];
DEST[15:0] ← TEMP0[31:16];
DEST[31:16] ← TEMP1[31:16];
DEST[47:32] ← TEMP2[31:16];
DEST[63:48] ← TEMP3[31:16];

PMULHUW (with 128-bit operands)
TEMP0[31:0] ← DEST[15:0] ∗ SRC[15:0]; (* Unsigned multiplication *)
TEMP1[31:0] ← DEST[31:16] ∗ SRC[31:16];
TEMP2[31:0] ← DEST[47:32] ∗ SRC[47:32];
TEMP3[31:0] ← DEST[63:48] ∗ SRC[63:48];
TEMP4[31:0] ← DEST[79:64] ∗ SRC[79:64];
TEMP5[31:0] ← DEST[95:80] ∗ SRC[95:80];
TEMP6[31:0] ← DEST[111:96] ∗ SRC[111:96];
TEMP7[31:0] ← DEST[127:112] ∗ SRC[127:112];
DEST[15:0] ← TEMP0[31:16];
DEST[31:16] ← TEMP1[31:16];
DEST[47:32] ← TEMP2[31:16];
DEST[63:48] ← TEMP3[31:16];
DEST[79:64] ← TEMP4[31:16];

Figure 4-7. PMULHUW and PMULHW Instruction Operation Using 64-bit Operands

X3 X2 X1 X0

Z3 = X3 ∗ Y3 Z2 = X2 ∗ Y2 Z1 = X1 ∗ Y1 Z0 = X0 ∗ Y0

SRC

DEST

DEST

Y3 Y2 Y1 Y0

TEMP

Z3[31:16] Z2[31:16] Z1[31:16] Z0[31:16]
4-322 Vol. 2B PMULHUW—Multiply Packed Unsigned Integers and Store High Result

INSTRUCTION SET REFERENCE, M-Z
DEST[95:80] ← TEMP5[31:16];
DEST[111:96] ← TEMP6[31:16];
DEST[127:112] ← TEMP7[31:16];

VPMULHUW (VEX.128 encoded version)
TEMP0[31:0] SRC1[15:0] * SRC2[15:0]
TEMP1[31:0] SRC1[31:16] * SRC2[31:16]
TEMP2[31:0] SRC1[47:32] * SRC2[47:32]
TEMP3[31:0] SRC1[63:48] * SRC2[63:48]
TEMP4[31:0] SRC1[79:64] * SRC2[79:64]
TEMP5[31:0] SRC1[95:80] * SRC2[95:80]
TEMP6[31:0] SRC1[111:96] * SRC2[111:96]
TEMP7[31:0] SRC1[127:112] * SRC2[127:112]
DEST[15:0] TEMP0[31:16]
DEST[31:16] TEMP1[31:16]
DEST[47:32] TEMP2[31:16]
DEST[63:48] TEMP3[31:16]
DEST[79:64] TEMP4[31:16]
DEST[95:80] TEMP5[31:16]
DEST[111:96] TEMP6[31:16]
DEST[127:112] TEMP7[31:16]
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

PMULHUW: __m64 _mm_mulhi_pu16(__m64 a, __m64 b)

PMULHUW: __m128i _mm_mulhi_epu16 (__m128i a, __m128i b)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
Vol. 2B 4-323PMULHUW—Multiply Packed Unsigned Integers and Store High Result

INSTRUCTION SET REFERENCE, M-Z
PMULHW—Multiply Packed Signed Integers and Store High Result

Instruction Operand Encoding

Description

Performs a SIMD signed multiply of the packed signed word integers in the destina-
tion operand (first operand) and the source operand (second operand), and stores
the high 16 bits of each intermediate 32-bit result in the destination operand.
(Figure 4-7 shows this operation when using 64-bit operands.) The source operand
can be an MMX technology register or a 64-bit memory location, or it can be an XMM
register or a 128-bit memory location. The destination operand can be an MMX tech-
nology register or an XMM register.

n 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F E5 /r1

PMULHW mm, mm/m64

RM V/V MMX Multiply the packed signed
word integers in mm1
register and mm2/m64, and
store the high 16 bits of the
results in mm1.

66 0F E5 /r

PMULHW xmm1, xmm2/m128

RM V/V SSE2 Multiply the packed signed
word integers in xmm1 and
xmm2/m128, and store the
high 16 bits of the results in
xmm1.

VEX.NDS.128.66.0F.WIG E5 /r

VPMULHW xmm1, xmm2,
xmm3/m128

RVM V/V AVX Multiply the packed signed
word integers in xmm2 and
xmm3/m128, and store the
high 16 bits of the results in
xmm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
4-324 Vol. 2B PMULHW—Multiply Packed Signed Integers and Store High Result

INSTRUCTION SET REFERENCE, M-Z
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PMULHW (with 64-bit operands)
TEMP0[31:0] ← DEST[15:0] ∗ SRC[15:0]; (* Signed multiplication *)
TEMP1[31:0] ← DEST[31:16] ∗ SRC[31:16];
TEMP2[31:0] ← DEST[47:32] ∗ SRC[47:32];
TEMP3[31:0] ← DEST[63:48] ∗ SRC[63:48];
DEST[15:0] ← TEMP0[31:16];
DEST[31:16] ← TEMP1[31:16];
DEST[47:32] ← TEMP2[31:16];
DEST[63:48] ← TEMP3[31:16];

PMULHW (with 128-bit operands)
TEMP0[31:0] ← DEST[15:0] ∗ SRC[15:0]; (* Signed multiplication *)
TEMP1[31:0] ← DEST[31:16] ∗ SRC[31:16];
TEMP2[31:0] ← DEST[47:32] ∗ SRC[47:32];
TEMP3[31:0] ← DEST[63:48] ∗ SRC[63:48];
TEMP4[31:0] ← DEST[79:64] ∗ SRC[79:64];
TEMP5[31:0] ← DEST[95:80] ∗ SRC[95:80];
TEMP6[31:0] ← DEST[111:96] ∗ SRC[111:96];
TEMP7[31:0] ← DEST[127:112] ∗ SRC[127:112];
DEST[15:0] ← TEMP0[31:16];
DEST[31:16] ← TEMP1[31:16];
DEST[47:32] ← TEMP2[31:16];
DEST[63:48] ← TEMP3[31:16];
DEST[79:64] ← TEMP4[31:16];
DEST[95:80] ← TEMP5[31:16];
DEST[111:96] ← TEMP6[31:16];
DEST[127:112] ← TEMP7[31:16];

VPMULHW (VEX.128 encoded version)
TEMP0[31:0] SRC1[15:0] * SRC2[15:0] (*Signed Multiplication*)
TEMP1[31:0] SRC1[31:16] * SRC2[31:16]
TEMP2[31:0] SRC1[47:32] * SRC2[47:32]
TEMP3[31:0] SRC1[63:48] * SRC2[63:48]
TEMP4[31:0] SRC1[79:64] * SRC2[79:64]
TEMP5[31:0] SRC1[95:80] * SRC2[95:80]
TEMP6[31:0] SRC1[111:96] * SRC2[111:96]
TEMP7[31:0] SRC1[127:112] * SRC2[127:112]
Vol. 2B 4-325PMULHW—Multiply Packed Signed Integers and Store High Result

INSTRUCTION SET REFERENCE, M-Z
DEST[15:0] TEMP0[31:16]
DEST[31:16] TEMP1[31:16]
DEST[47:32] TEMP2[31:16]
DEST[63:48] TEMP3[31:16]
DEST[79:64] TEMP4[31:16]
DEST[95:80] TEMP5[31:16]
DEST[111:96] TEMP6[31:16]
DEST[127:112] TEMP7[31:16]
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

PMULHW: __m64 _mm_mulhi_pi16 (__m64 m1, __m64 m2)

PMULHW: __m128i _mm_mulhi_epi16 (__m128i a, __m128i b)

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
4-326 Vol. 2B PMULHW—Multiply Packed Signed Integers and Store High Result

INSTRUCTION SET REFERENCE, M-Z
PMULLD — Multiply Packed Signed Dword Integers and Store Low
Result

Instruction Operand Encoding

Description

Performs four signed multiplications from four pairs of signed dword integers and
stores the lower 32 bits of the four 64-bit products in the destination operand (first
operand). Each dword element in the destination operand is multiplied with the
corresponding dword element of the source operand (second operand) to obtain a
64-bit intermediate product.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

Temp0[63:0] DEST[31:0] * SRC[31:0];
Temp1[63:0] DEST[63:32] * SRC[63:32];
Temp2[63:0] DEST[95:64] * SRC[95:64];
Temp3[63:0] DEST[127:96] * SRC[127:96];
DEST[31:0] Temp0[31:0];
DEST[63:32] Temp1[31:0];
DEST[95:64] Temp2[31:0];

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 38 40 /r
PMULLD xmm1, xmm2/m128

RM V/V SSE4_1 Multiply the packed dword
signed integers in xmm1
and xmm2/m128 and store
the low 32 bits of each
product in xmm1.

VEX.NDS.128.66.0F38.WIG 40 /r
VPMULLD xmm1, xmm2,
xmm3/m128

RVM V/V AVX Multiply the packed dword
signed integers in xmm2
and xmm3/m128 and store
the low 32 bits of each
product in xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-327PMULLD — Multiply Packed Signed Dword Integers and Store Low Result

INSTRUCTION SET REFERENCE, M-Z
DEST[127:96] Temp3[31:0];

VPMULLD (VEX.128 encoded version)
Temp0[63:0] SRC1[31:0] * SRC2[31:0]
Temp1[63:0] SRC1[63:32] * SRC2[63:32]
Temp2[63:0] SRC1[95:64] * SRC2[95:64]
Temp3[63:0] SRC1[127:96] * SRC2[127:96]
DEST[31:0] Temp0[31:0]
DEST[63:32] Temp1[31:0]
DEST[95:64] Temp2[31:0]
DEST[127:96] Temp3[31:0]
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

PMULLUD: __m128i _mm_mullo_epi32(__m128i a, __m128i b);

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
4-328 Vol. 2B PMULLD — Multiply Packed Signed Dword Integers and Store Low Result

INSTRUCTION SET REFERENCE, M-Z
PMULLW—Multiply Packed Signed Integers and Store Low Result

Instruction Operand Encoding

Description

Performs a SIMD signed multiply of the packed signed word integers in the destina-
tion operand (first operand) and the source operand (second operand), and stores
the low 16 bits of each intermediate 32-bit result in the destination operand.
(Figure 4-7 shows this operation when using 64-bit operands.) The source operand
can be an MMX technology register or a 64-bit memory location, or it can be an XMM
register or a 128-bit memory location. The destination operand can be an MMX tech-
nology register or an XMM register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F D5 /r1

PMULLW mm, mm/m64

RM V/V MMX Multiply the packed signed
word integers in mm1
register and mm2/m64, and
store the low 16 bits of the
results in mm1.

66 0F D5 /r

PMULLW xmm1, xmm2/m128

RM V/V SSE2 Multiply the packed signed
word integers in xmm1 and
xmm2/m128, and store the
low 16 bits of the results in
xmm1.

VEX.NDS.128.66.0F.WIG D5 /r

VPMULLW xmm1, xmm2,
xmm3/m128

RVM V/V AVX Multiply the packed dword
signed integers in xmm2
and xmm3/m128 and store
the low 32 bits of each
product in xmm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-329PMULLW—Multiply Packed Signed Integers and Store Low Result

INSTRUCTION SET REFERENCE, M-Z
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PMULLW (with 64-bit operands)
TEMP0[31:0] ← DEST[15:0] ∗ SRC[15:0]; (* Signed multiplication *)
TEMP1[31:0] ← DEST[31:16] ∗ SRC[31:16];
TEMP2[31:0] ← DEST[47:32] ∗ SRC[47:32];
TEMP3[31:0] ← DEST[63:48] ∗ SRC[63:48];
DEST[15:0] ← TEMP0[15:0];
DEST[31:16] ← TEMP1[15:0];
DEST[47:32] ← TEMP2[15:0];
DEST[63:48] ← TEMP3[15:0];

PMULLW (with 128-bit operands)
TEMP0[31:0] ← DEST[15:0] ∗ SRC[15:0]; (* Signed multiplication *)
TEMP1[31:0] ← DEST[31:16] ∗ SRC[31:16];
TEMP2[31:0] ← DEST[47:32] ∗ SRC[47:32];
TEMP3[31:0] ← DEST[63:48] ∗ SRC[63:48];
TEMP4[31:0] ← DEST[79:64] ∗ SRC[79:64];
TEMP5[31:0] ← DEST[95:80] ∗ SRC[95:80];
TEMP6[31:0] ← DEST[111:96] ∗ SRC[111:96];
TEMP7[31:0] ← DEST[127:112] ∗ SRC[127:112];
DEST[15:0] ← TEMP0[15:0];
DEST[31:16] ← TEMP1[15:0];
DEST[47:32] ← TEMP2[15:0];
DEST[63:48] ← TEMP3[15:0];
DEST[79:64] ← TEMP4[15:0];

Figure 4-8. PMULLU Instruction Operation Using 64-bit Operands

X3 X2 X1 X0

Z3 = X3 ∗ Y3 Z2 = X2 ∗ Y2 Z1 = X1 ∗ Y1 Z0 = X0 ∗ Y0

SRC

DEST

DEST

Y3 Y2 Y1 Y0

TEMP

Z3[15:0] Z2[15:0] Z1[15:0] Z0[15:0]
4-330 Vol. 2B PMULLW—Multiply Packed Signed Integers and Store Low Result

INSTRUCTION SET REFERENCE, M-Z
DEST[95:80] ← TEMP5[15:0];
DEST[111:96] ← TEMP6[15:0];
DEST[127:112] ← TEMP7[15:0];

VPMULLW (VEX.128 encoded version)
Temp0[31:0] SRC1[15:0] * SRC2[15:0]
Temp1[31:0] SRC1[31:16] * SRC2[31:16]
Temp2[31:0] SRC1[47:32] * SRC2[47:32]
Temp3[31:0] SRC1[63:48] * SRC2[63:48]
Temp4[31:0] SRC1[79:64] * SRC2[79:64]
Temp5[31:0] SRC1[95:80] * SRC2[95:80]
Temp6[31:0] SRC1[111:96] * SRC2[111:96]
Temp7[31:0] SRC1[127:112] * SRC2[127:112]
DEST[15:0] Temp0[15:0]
DEST[31:16] Temp1[15:0]
DEST[47:32] Temp2[15:0]
DEST[63:48] Temp3[15:0]
DEST[79:64] Temp4[15:0]
DEST[95:80] Temp5[15:0]
DEST[111:96] Temp6[15:0]
DEST[127:112] Temp7[15:0]
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

PMULLW: __m64 _mm_mullo_pi16(__m64 m1, __m64 m2)

PMULLW: __m128i _mm_mullo_epi16 (__m128i a, __m128i b)

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
Vol. 2B 4-331PMULLW—Multiply Packed Signed Integers and Store Low Result

INSTRUCTION SET REFERENCE, M-Z
PMULUDQ—Multiply Packed Unsigned Doubleword Integers

Instruction Operand Encoding

Description

Multiplies the first operand (destination operand) by the second operand (source
operand) and stores the result in the destination operand. The source operand can be
an unsigned doubleword integer stored in the low doubleword of an MMX technology
register or a 64-bit memory location, or it can be two packed unsigned doubleword
integers stored in the first (low) and third doublewords of an XMM register or an
128-bit memory location. The destination operand can be an unsigned doubleword
integer stored in the low doubleword an MMX technology register or two packed
doubleword integers stored in the first and third doublewords of an XMM register. The

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F F4 /r1

PMULUDQ mm1, mm2/m64

RM V/V SSE2 Multiply unsigned
doubleword integer in mm1
by unsigned doubleword
integer in mm2/m64, and
store the quadword result in
mm1.

66 0F F4 /r

PMULUDQ xmm1, xmm2/m128

RM V/V SSE2 Multiply packed unsigned
doubleword integers in
xmm1 by packed unsigned
doubleword integers in
xmm2/m128, and store the
quadword results in xmm1.

VEX.NDS.128.66.0F.WIG F4 /r

VPMULUDQ xmm1, xmm2,
xmm3/m128

RVM V/V AVX Multiply packed unsigned
doubleword integers in
xmm2 by packed unsigned
doubleword integers in
xmm3/m128, and store the
quadword results in xmm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
4-332 Vol. 2B PMULUDQ—Multiply Packed Unsigned Doubleword Integers

INSTRUCTION SET REFERENCE, M-Z
result is an unsigned quadword integer stored in the destination an MMX technology
register or two packed unsigned quadword integers stored in an XMM register. When
a quadword result is too large to be represented in 64 bits (overflow), the result is
wrapped around and the low 64 bits are written to the destination element (that is,
the carry is ignored).

For 64-bit memory operands, 64 bits are fetched from memory, but only the low
doubleword is used in the computation; for 128-bit memory operands, 128 bits are
fetched from memory, but only the first and third doublewords are used in the
computation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PMULUDQ (with 64-Bit operands)
DEST[63:0] ← DEST[31:0] ∗ SRC[31:0];

PMULUDQ (with 128-Bit operands)
DEST[63:0] ← DEST[31:0] ∗ SRC[31:0];
DEST[127:64] ← DEST[95:64] ∗ SRC[95:64];

VPMULUDQ (VEX.128 encoded version)
DEST[63:0] SRC1[31:0] * SRC2[31:0]
DEST[127:64] SRC1[95:64] * SRC2[95:64]
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

PMULUDQ: __m64 _mm_mul_su32 (__m64 a, __m64 b)

PMULUDQ: __m128i _mm_mul_epu32 (__m128i a, __m128i b)

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
Vol. 2B 4-333PMULUDQ—Multiply Packed Unsigned Doubleword Integers

INSTRUCTION SET REFERENCE, M-Z
#UD If VEX.L = 1.
4-334 Vol. 2B PMULUDQ—Multiply Packed Unsigned Doubleword Integers

INSTRUCTION SET REFERENCE, M-Z
POP—Pop a Value from the Stack
Opcode Instruction Op/

En
64-Bit
Mode

Compat/
Leg Mode

Description

8F /0 POP r/m16 M Valid Valid Pop top of stack into m16;
increment stack pointer.

8F /0 POP r/m32 M N.E. Valid Pop top of stack into m32;
increment stack pointer.

8F /0 POP r/m64 M Valid N.E. Pop top of stack into m64;
increment stack pointer.
Cannot encode 32-bit
operand size.

58+ rw POP r16 O Valid Valid Pop top of stack into r16;
increment stack pointer.

58+ rd POP r32 O N.E. Valid Pop top of stack into r32;
increment stack pointer.

58+ rd POP r64 O Valid N.E. Pop top of stack into r64;
increment stack pointer.
Cannot encode 32-bit
operand size.

1F POP DS NP Invalid Valid Pop top of stack into DS;
increment stack pointer.

07 POP ES NP Invalid Valid Pop top of stack into ES;
increment stack pointer.

17 POP SS NP Invalid Valid Pop top of stack into SS;
increment stack pointer.

0F A1 POP FS NP Valid Valid Pop top of stack into FS;
increment stack pointer by
16 bits.

0F A1 POP FS NP N.E. Valid Pop top of stack into FS;
increment stack pointer by
32 bits.

0F A1 POP FS NP Valid N.E. Pop top of stack into FS;
increment stack pointer by
64 bits.

0F A9 POP GS NP Valid Valid Pop top of stack into GS;
increment stack pointer by
16 bits.

0F A9 POP GS NP N.E. Valid Pop top of stack into GS;
increment stack pointer by
32 bits.
Vol. 2B 4-335POP—Pop a Value from the Stack

INSTRUCTION SET REFERENCE, M-Z
Instruction Operand Encoding

Description

Loads the value from the top of the stack to the location specified with the destina-
tion operand (or explicit opcode) and then increments the stack pointer. The destina-
tion operand can be a general-purpose register, memory location, or segment
register.

Address and operand sizes are determined and used as follows:
• Address size. The D flag in the current code-segment descriptor determines the

default address size; it may be overridden by an instruction prefix (67H).
The address size is used only when writing to a destination operand in memory.

• Operand size. The D flag in the current code-segment descriptor determines the
default operand size; it may be overridden by instruction prefixes (66H or
REX.W).
The operand size (16, 32, or 64 bits) determines the amount by which the stack
pointer is incremented (2, 4 or 8).

• Stack-address size. Outside of 64-bit mode, the B flag in the current stack-
segment descriptor determines the size of the stack pointer (16 or 32 bits); in
64-bit mode, the size of the stack pointer is always 64 bits.
The stack-address size determines the width of the stack pointer when reading
from the stack in memory and when incrementing the stack pointer. (As stated
above, the amount by which the stack pointer is incremented is determined by
the operand size.)

If the destination operand is one of the segment registers DS, ES, FS, GS, or SS, the
value loaded into the register must be a valid segment selector. In protected mode,
popping a segment selector into a segment register automatically causes the
descriptor information associated with that segment selector to be loaded into the
hidden (shadow) part of the segment register and causes the selector and the
descriptor information to be validated (see the “Operation” section below).

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F A9 POP GS NP Valid N.E. Pop top of stack into GS;
increment stack pointer by
64 bits.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA

O opcode + rd (w) NA NA NA

NP NA NA NA NA
4-336 Vol. 2B POP—Pop a Value from the Stack

INSTRUCTION SET REFERENCE, M-Z
A NULL value (0000-0003) may be popped into the DS, ES, FS, or GS register without
causing a general protection fault. However, any subsequent attempt to reference a
segment whose corresponding segment register is loaded with a NULL value causes
a general protection exception (#GP). In this situation, no memory reference occurs
and the saved value of the segment register is NULL.

The POP instruction cannot pop a value into the CS register. To load the CS register
from the stack, use the RET instruction.

If the ESP register is used as a base register for addressing a destination operand in
memory, the POP instruction computes the effective address of the operand after it
increments the ESP register. For the case of a 16-bit stack where ESP wraps to 0H as
a result of the POP instruction, the resulting location of the memory write is
processor-family-specific.

The POP ESP instruction increments the stack pointer (ESP) before data at the old top
of stack is written into the destination.

A POP SS instruction inhibits all interrupts, including the NMI interrupt, until after
execution of the next instruction. This action allows sequential execution of POP SS
and MOV ESP, EBP instructions without the danger of having an invalid stack during
an interrupt1. However, use of the LSS instruction is the preferred method of loading
the SS and ESP registers.

In 64-bit mode, using a REX prefix in the form of REX.R permits access to additional
registers (R8-R15). When in 64-bit mode, POPs using 32-bit operands are not encod-
able and POPs to DS, ES, SS are not valid. See the summary chart at the beginning
of this section for encoding data and limits.

Operation

IF StackAddrSize = 32
THEN

IF OperandSize = 32
THEN

DEST ← SS:ESP; (* Copy a doubleword *)
ESP ← ESP + 4;

ELSE (* OperandSize = 16*)
DEST ← SS:ESP; (* Copy a word *)

1. If a code instruction breakpoint (for debug) is placed on an instruction located immediately after
a POP SS instruction, the breakpoint may not be triggered. However, in a sequence of instruc-
tions that POP the SS register, only the first instruction in the sequence is guaranteed to delay
an interrupt.

In the following sequence, interrupts may be recognized before POP ESP executes:

POP SS
POP SS
POP ESP
Vol. 2B 4-337POP—Pop a Value from the Stack

INSTRUCTION SET REFERENCE, M-Z
ESP ← ESP + 2;
FI;

ELSE IF StackAddrSize = 64
THEN

IF OperandSize = 64
THEN

DEST ← SS:RSP; (* Copy quadword *)
RSP ← RSP + 8;

ELSE (* OperandSize = 16*)
DEST ← SS:RSP; (* Copy a word *)
RSP ← RSP + 2;

FI;
FI;

ELSE StackAddrSize = 16
THEN

IF OperandSize = 16
THEN

DEST ← SS:SP; (* Copy a word *)
SP ← SP + 2;

ELSE (* OperandSize = 32 *)
DEST ← SS:SP; (* Copy a doubleword *)
SP ← SP + 4;

FI;

FI;

Loading a segment register while in protected mode results in special actions, as
described in the following listing. These checks are performed on the segment
selector and the segment descriptor it points to.

64-BIT_MODE
IF FS, or GS is loaded with non-NULL selector;

THEN
IF segment selector index is outside descriptor table limits

OR segment is not a data or readable code segment
OR ((segment is a data or nonconforming code segment)

AND (both RPL and CPL > DPL))
THEN #GP(selector);

IF segment not marked present
THEN #NP(selector);

ELSE
SegmentRegister ← segment selector;
SegmentRegister ← segment descriptor;

FI;
4-338 Vol. 2B POP—Pop a Value from the Stack

INSTRUCTION SET REFERENCE, M-Z
FI;
IF FS, or GS is loaded with a NULL selector;

THEN
SegmentRegister ← segment selector;
SegmentRegister ← segment descriptor;

FI;

PREOTECTED MODE OR COMPATIBILITY MODE;

IF SS is loaded;
THEN

IF segment selector is NULL
THEN #GP(0);

FI;
IF segment selector index is outside descriptor table limits

or segment selector's RPL ≠ CPL
or segment is not a writable data segment
or DPL ≠ CPL

THEN #GP(selector);
FI;
IF segment not marked present

THEN #SS(selector);
ELSE

SS ← segment selector;
SS ← segment descriptor;

FI;
FI;

IF DS, ES, FS, or GS is loaded with non-NULL selector;
THEN

IF segment selector index is outside descriptor table limits
or segment is not a data or readable code segment
or ((segment is a data or nonconforming code segment)
and (both RPL and CPL > DPL))

THEN #GP(selector);
FI;
IF segment not marked present

THEN #NP(selector);
ELSE

SegmentRegister ← segment selector;
SegmentRegister ← segment descriptor;

 FI;
Vol. 2B 4-339POP—Pop a Value from the Stack

INSTRUCTION SET REFERENCE, M-Z
FI;

IF DS, ES, FS, or GS is loaded with a NULL selector
THEN

SegmentRegister ← segment selector;
SegmentRegister ← segment descriptor;

FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If attempt is made to load SS register with NULL segment

selector.
If the destination operand is in a non-writable segment.
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#GP(selector) If segment selector index is outside descriptor table limits.
If the SS register is being loaded and the segment selector's RPL
and the segment descriptor’s DPL are not equal to the CPL.
If the SS register is being loaded and the segment pointed to is a
non-writable data segment.
If the DS, ES, FS, or GS register is being loaded and the
segment pointed to is not a data or readable code segment.
If the DS, ES, FS, or GS register is being loaded and the
segment pointed to is a data or nonconforming code segment,
but both the RPL and the CPL are greater than the DPL.

#SS(0) If the current top of stack is not within the stack segment.
If a memory operand effective address is outside the SS
segment limit.

#SS(selector) If the SS register is being loaded and the segment pointed to is
marked not present.

#NP If the DS, ES, FS, or GS register is being loaded and the
segment pointed to is marked not present.

#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference is made while the current

privilege level is 3 and alignment checking is enabled.
#UD If the LOCK prefix is used.
4-340 Vol. 2B POP—Pop a Value from the Stack

INSTRUCTION SET REFERENCE, M-Z
Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference is made while alignment

checking is enabled.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
#SS(U) If the stack address is in a non-canonical form.
#GP(selector) If the descriptor is outside the descriptor table limit.

If the FS or GS register is being loaded and the segment pointed
to is not a data or readable code segment.
If the FS or GS register is being loaded and the segment pointed
to is a data or nonconforming code segment, but both the RPL
and the CPL are greater than the DPL.

#AC(0) If an unaligned memory reference is made while alignment
checking is enabled.

#PF(fault-code) If a page fault occurs.
#NP If the FS or GS register is being loaded and the segment pointed

to is marked not present.
#UD If the LOCK prefix is used.
Vol. 2B 4-341POP—Pop a Value from the Stack

INSTRUCTION SET REFERENCE, M-Z
POPA/POPAD—Pop All General-Purpose Registers

Instruction Operand Encoding

Description

Pops doublewords (POPAD) or words (POPA) from the stack into the general-purpose
registers. The registers are loaded in the following order: EDI, ESI, EBP, EBX, EDX,
ECX, and EAX (if the operand-size attribute is 32) and DI, SI, BP, BX, DX, CX, and AX
(if the operand-size attribute is 16). (These instructions reverse the operation of the
PUSHA/PUSHAD instructions.) The value on the stack for the ESP or SP register is
ignored. Instead, the ESP or SP register is incremented after each register is loaded.

The POPA (pop all) and POPAD (pop all double) mnemonics reference the same
opcode. The POPA instruction is intended for use when the operand-size attribute is
16 and the POPAD instruction for when the operand-size attribute is 32. Some
assemblers may force the operand size to 16 when POPA is used and to 32 when
POPAD is used (using the operand-size override prefix [66H] if necessary). Others
may treat these mnemonics as synonyms (POPA/POPAD) and use the current setting
of the operand-size attribute to determine the size of values to be popped from the
stack, regardless of the mnemonic used. (The D flag in the current code segment’s
segment descriptor determines the operand-size attribute.)

This instruction executes as described in non-64-bit modes. It is not valid in 64-bit
mode.

Operation

IF 64-Bit Mode
THEN

#UD;
ELSE

IF OperandSize = 32 (* Instruction = POPAD *)
THEN

EDI ← Pop();
ESI ← Pop();
EBP ← Pop();

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

61 POPA NP Invalid Valid Pop DI, SI, BP, BX, DX, CX,
and AX.

61 POPAD NP Invalid Valid Pop EDI, ESI, EBP, EBX, EDX,
ECX, and EAX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
4-342 Vol. 2B POPA/POPAD—Pop All General-Purpose Registers

INSTRUCTION SET REFERENCE, M-Z
Increment ESP by 4; (* Skip next 4 bytes of stack *)
EBX ← Pop();
EDX ← Pop();
ECX ← Pop();
EAX ← Pop();

ELSE (* OperandSize = 16, instruction = POPA *)
DI ← Pop();
SI ← Pop();
BP ← Pop();
Increment ESP by 2; (* Skip next 2 bytes of stack *)
BX ← Pop();
DX ← Pop();
CX ← Pop();
AX ← Pop();

FI;
FI;

Flags Affected

None.

Protected Mode Exceptions
#SS(0) If the starting or ending stack address is not within the stack

segment.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference is made while the current

privilege level is 3 and alignment checking is enabled.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#SS If the starting or ending stack address is not within the stack

segment.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#SS(0) If the starting or ending stack address is not within the stack

segment.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference is made while alignment

checking is enabled.
#UD If the LOCK prefix is used.
Vol. 2B 4-343POPA/POPAD—Pop All General-Purpose Registers

INSTRUCTION SET REFERENCE, M-Z
Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#UD If in 64-bit mode.
4-344 Vol. 2B POPA/POPAD—Pop All General-Purpose Registers

INSTRUCTION SET REFERENCE, M-Z
POPCNT — Return the Count of Number of Bits Set to 1

Instruction Operand Encoding

Description

This instruction calculates of number of bits set to 1 in the second operand (source)
and returns the count in the first operand (a destination register).

Operation

Count = 0;
For (i=0; i < OperandSize; i++)
{ IF (SRC[i] = 1) // i’th bit

THEN Count++; FI;
}
DEST Count;

Flags Affected

OF, SF, ZF, AF, CF, PF are all cleared. ZF is set if SRC = 0, otherwise ZF is cleared

Intel C/C++ Compiler Intrinsic Equivalent

POPCNT: int _mm_popcnt_u32(unsigned int a);

POPCNT: int64_t _mm_popcnt_u64(unsigned __int64 a);

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS or GS segments.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

F3 0F B8 /r POPCNT r16,
r/m16

RM Valid Valid POPCNT on r/m16

F3 0F B8 /r POPCNT r32,
r/m32

RM Valid Valid POPCNT on r/m32

F3 REX.W 0F B8
/r

POPCNT r64,
r/m64

RM Valid N.E. POPCNT on r/m64

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
Vol. 2B 4-345POPCNT — Return the Count of Number of Bits Set to 1

INSTRUCTION SET REFERENCE, M-Z
#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF (fault-code) For a page fault.
#AC(0) If an unaligned memory reference is made while the current

privilege level is 3 and alignment checking is enabled.
#UD If CPUID.01H:ECX.POPCNT [Bit 23] = 0.

If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#UD If CPUID.01H:ECX.POPCNT [Bit 23] = 0.

If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF (fault-code) For a page fault.
#AC(0) If an unaligned memory reference is made while alignment

checking is enabled.
#UD If CPUID.01H:ECX.POPCNT [Bit 23] = 0.

If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#PF (fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
4-346 Vol. 2B POPCNT — Return the Count of Number of Bits Set to 1

INSTRUCTION SET REFERENCE, M-Z
#UD If CPUID.01H:ECX.POPCNT [Bit 23] = 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.
Vol. 2B 4-347POPCNT — Return the Count of Number of Bits Set to 1

INSTRUCTION SET REFERENCE, M-Z
POPF/POPFD/POPFQ—Pop Stack into EFLAGS Register

Instruction Operand Encoding

Description

Pops a doubleword (POPFD) from the top of the stack (if the current operand-size
attribute is 32) and stores the value in the EFLAGS register, or pops a word from the
top of the stack (if the operand-size attribute is 16) and stores it in the lower 16 bits
of the EFLAGS register (that is, the FLAGS register). These instructions reverse the
operation of the PUSHF/PUSHFD instructions.

The POPF (pop flags) and POPFD (pop flags double) mnemonics reference the same
opcode. The POPF instruction is intended for use when the operand-size attribute is
16; the POPFD instruction is intended for use when the operand-size attribute is 32.
Some assemblers may force the operand size to 16 for POPF and to 32 for POPFD.
Others may treat the mnemonics as synonyms (POPF/POPFD) and use the setting of
the operand-size attribute to determine the size of values to pop from the stack.

The effect of POPF/POPFD on the EFLAGS register changes, depending on the mode
of operation. When the processor is operating in protected mode at privilege level 0
(or in real-address mode, the equivalent to privilege level 0), all non-reserved flags
in the EFLAGS register except RF1, VIP, VIF, and VM may be modified. VIP, VIF and
VM remain unaffected.

When operating in protected mode with a privilege level greater than 0, but less than
or equal to IOPL, all flags can be modified except the IOPL field and VIP, VIF, and VM.
Here, the IOPL flags are unaffected, the VIP and VIF flags are cleared, and the VM
flag is unaffected. The interrupt flag (IF) is altered only when executing at a level at
least as privileged as the IOPL. If a POPF/POPFD instruction is executed with insuffi-
cient privilege, an exception does not occur but privileged bits do not change.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

9D POPF NP Valid Valid Pop top of stack into lower
16 bits of EFLAGS.

9D POPFD NP N.E. Valid Pop top of stack into
EFLAGS.

REX.W + 9D POPFQ NP Valid N.E. Pop top of stack and zero-
extend into RFLAGS.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

1. RF is always zero after the execution of POPF. This is because POPF, like all instructions, clears
RF as it begins to execute.
4-348 Vol. 2B POPF/POPFD/POPFQ—Pop Stack into EFLAGS Register

INSTRUCTION SET REFERENCE, M-Z
When operating in virtual-8086 mode, the IOPL must be equal to 3 to use
POPF/POPFD instructions; VM, RF, IOPL, VIP, and VIF are unaffected. If the IOPL is
less than 3, POPF/POPFD causes a general-protection exception (#GP).

In 64-bit mode, use REX.W to pop the top of stack to RFLAGS. The mnemonic
assigned is POPFQ (note that the 32-bit operand is not encodable). POPFQ pops 64
bits from the stack, loads the lower 32 bits into RFLAGS, and zero extends the upper
bits of RFLAGS.

See Chapter 3 of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1, for more information about the EFLAGS registers.

Operation

IF VM = 0 (* Not in Virtual-8086 Mode *)
THEN IF CPL = 0

THEN
IF OperandSize = 32;

THEN
EFLAGS ← Pop(); (* 32-bit pop *)
(* All non-reserved flags except RF, VIP, VIF, and VM can be modified;
VIP and VIF are cleared; RF, VM, and all reserved bits are unaffected. *)

ELSE IF (Operandsize = 64)
RFLAGS = Pop(); (* 64-bit pop *)
(* All non-reserved flags except RF, VIP, VIF, and VM can be modified; VIP
and VIF are cleared; RF, VM, and all reserved bits are unaffected.*)

ELSE (* OperandSize = 16 *)
EFLAGS[15:0] ← Pop(); (* 16-bit pop *)
(* All non-reserved flags can be modified. *)

FI;
ELSE (* CPL > 0 *)

IF OperandSize = 32
THEN

IF CPL > IOPL
THEN

EFLAGS ← Pop(); (* 32-bit pop *)
(* All non-reserved bits except IF, IOPL, RF, VIP, and
VIF can be modified; IF, IOPL, RF, VM, and all reserved
bits are unaffected; VIP and VIF are cleared. *)

ELSE
EFLAGS ← Pop(); (* 32-bit pop *)
(* All non-reserved bits except IOPL, RF, VIP, and VIF can be

 modified; IOPL, RF, VM, and all reserved bits are
 unaffected; VIP and VIF are cleared. *)

FI;
Vol. 2B 4-349POPF/POPFD/POPFQ—Pop Stack into EFLAGS Register

INSTRUCTION SET REFERENCE, M-Z
ELSE IF (Operandsize = 64)
IF CPL > IOPL

THEN
RFLAGS ← Pop(); (* 64-bit pop *)
(* All non-reserved bits except IF, IOPL, RF, VIP, and
VIF can be modified; IF, IOPL, RF, VM, and all reserved

 bits are unaffected; VIP and VIF are cleared. *)
ELSE

RFLAGS ← Pop(); (* 64-bit pop *)
(* All non-reserved bits except IOPL, RF, VIP, and VIF can be
modified; IOPL, RF, VM, and all reserved bits are

 unaffected; VIP and VIF are cleared. *)
FI;

ELSE (* OperandSize = 16 *)
EFLAGS[15:0] ← Pop(); (* 16-bit pop *)
(* All non-reserved bits except IOPL can be modified; IOPL and all
reserved bits are unaffected. *)

FI;
FI;

ELSE (* In Virtual-8086 Mode *)
IF IOPL = 3

THEN IF OperandSize = 32
THEN

EFLAGS ← Pop();
(* All non-reserved bits except VM, RF, IOPL, VIP, and VIF can be
modified; VM, RF, IOPL, VIP, VIF, and all reserved bits are unaffected. *)

ELSE
EFLAGS[15:0] ← Pop(); FI;
(* All non-reserved bits except IOPL can be modified;
IOPL and all reserved bits are unaffected. *)

ELSE (* IOPL < 3 *)
#GP(0); (* Trap to virtual-8086 monitor. *)

FI;
FI;

FI;

Flags Affected

All flags may be affected; see the Operation section for details.

Protected Mode Exceptions
#SS(0) If the top of stack is not within the stack segment.
#PF(fault-code) If a page fault occurs.
4-350 Vol. 2B POPF/POPFD/POPFQ—Pop Stack into EFLAGS Register

INSTRUCTION SET REFERENCE, M-Z
#AC(0) If an unaligned memory reference is made while the current
privilege level is 3 and alignment checking is enabled.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#SS If the top of stack is not within the stack segment.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If the I/O privilege level is less than 3.

If an attempt is made to execute the POPF/POPFD instruction
with an operand-size override prefix.

#SS(0) If the top of stack is not within the stack segment.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference is made while alignment

checking is enabled.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
#SS(0) If the stack address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
Vol. 2B 4-351POPF/POPFD/POPFQ—Pop Stack into EFLAGS Register

INSTRUCTION SET REFERENCE, M-Z
POR—Bitwise Logical OR

Instruction Operand Encoding

Description

Performs a bitwise logical OR operation on the source operand (second operand) and
the destination operand (first operand) and stores the result in the destination
operand. The source operand can be an MMX technology register or a 64-bit memory
location or it can be an XMM register or a 128-bit memory location. The destination
operand can be an MMX technology register or an XMM register. Each bit of the result
is set to 1 if either or both of the corresponding bits of the first and second operands
are 1; otherwise, it is set to 0.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

POR (128-bit Legacy SSE version)

Opcode Instruction Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F EB /r1

POR mm, mm/m64

RM V/V MMX Bitwise OR of mm/m64 and
mm.

66 0F EB /r

POR xmm1, xmm2/m128

RM V/V SSE2 Bitwise OR of xmm2/m128
and xmm1.

VEX.NDS.128.66.0F.WIG EB /r

VPOR xmm1, xmm2, xmm3/m128

RVM V/V AVX Bitwise OR of xmm2/m128
and xmm3.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
4-352 Vol. 2B POR—Bitwise Logical OR

INSTRUCTION SET REFERENCE, M-Z
DEST DEST OR SRC
DEST[VLMAX-1:128] (Unmodified)

VPOR (VEX.128 encoded version)
DEST SRC1 OR SRC2
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

POR: __m64 _mm_or_si64(__m64 m1, __m64 m2)

POR: __m128i _mm_or_si128(__m128i m1, __m128i m2)

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
Vol. 2B 4-353POR—Bitwise Logical OR

INSTRUCTION SET REFERENCE, M-Z
PREFETCHh—Prefetch Data Into Caches

Instruction Operand Encoding

Description

Fetches the line of data from memory that contains the byte specified with the source
operand to a location in the cache hierarchy specified by a locality hint:
• T0 (temporal data)—prefetch data into all levels of the cache hierarchy.

— Pentium III processor—1st- or 2nd-level cache.

— Pentium 4 and Intel Xeon processors—2nd-level cache.
• T1 (temporal data with respect to first level cache)—prefetch data into level 2

cache and higher.

— Pentium III processor—2nd-level cache.

— Pentium 4 and Intel Xeon processors—2nd-level cache.
• T2 (temporal data with respect to second level cache)—prefetch data into level 2

cache and higher.

— Pentium III processor—2nd-level cache.

— Pentium 4 and Intel Xeon processors—2nd-level cache.
• NTA (non-temporal data with respect to all cache levels)—prefetch data into non-

temporal cache structure and into a location close to the processor, minimizing
cache pollution.

— Pentium III processor—1st-level cache

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 18 /1 PREFETCHT0 m8 M Valid Valid Move data from m8 closer
to the processor using T0
hint.

0F 18 /2 PREFETCHT1 m8 M Valid Valid Move data from m8 closer
to the processor using T1
hint.

0F 18 /3 PREFETCHT2 m8 M Valid Valid Move data from m8 closer
to the processor using T2
hint.

0F 18 /0 PREFETCHNTA m8 M Valid Valid Move data from m8 closer
to the processor using NTA
hint.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA
4-354 Vol. 2B PREFETCHh—Prefetch Data Into Caches

INSTRUCTION SET REFERENCE, M-Z
— Pentium 4 and Intel Xeon processors—2nd-level cache

The source operand is a byte memory location. (The locality hints are encoded into
the machine level instruction using bits 3 through 5 of the ModR/M byte. Use of any
ModR/M value other than the specified ones will lead to unpredictable behavior.)

If the line selected is already present in the cache hierarchy at a level closer to the
processor, no data movement occurs. Prefetches from uncacheable or WC memory
are ignored.

The PREFETCHh instruction is merely a hint and does not affect program behavior. If
executed, this instruction moves data closer to the processor in anticipation of future
use.

The implementation of prefetch locality hints is implementation-dependent, and can
be overloaded or ignored by a processor implementation. The amount of data
prefetched is also processor implementation-dependent. It will, however, be a
minimum of 32 bytes.

It should be noted that processors are free to speculatively fetch and cache data from
system memory regions that are assigned a memory-type that permits speculative
reads (that is, the WB, WC, and WT memory types). A PREFETCHh instruction is
considered a hint to this speculative behavior. Because this speculative fetching can
occur at any time and is not tied to instruction execution, a PREFETCHh instruction is
not ordered with respect to the fence instructions (MFENCE, SFENCE, and LFENCE) or
locked memory references. A PREFETCHh instruction is also unordered with respect
to CLFLUSH instructions, other PREFETCHh instructions, or any other general instruc-
tion. It is ordered with respect to serializing instructions such as CPUID, WRMSR,
OUT, and MOV CR.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

FETCH (m8);

Intel C/C++ Compiler Intrinsic Equivalent

void _mm_prefetch(char *p, int i)

The argument “*p” gives the address of the byte (and corresponding cache line) to
be prefetched. The value “i” gives a constant (_MM_HINT_T0, _MM_HINT_T1,
_MM_HINT_T2, or _MM_HINT_NTA) that specifies the type of prefetch operation to
be performed.

Numeric Exceptions

None.
Vol. 2B 4-355PREFETCHh—Prefetch Data Into Caches

INSTRUCTION SET REFERENCE, M-Z
Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.
4-356 Vol. 2B PREFETCHh—Prefetch Data Into Caches

INSTRUCTION SET REFERENCE, M-Z
PSADBW—Compute Sum of Absolute Differences

Instruction Operand Encoding

Description

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F F6 /r1

PSADBW mm1, mm2/m64

RM V/V SSE Computes the absolute
differences of the packed
unsigned byte integers from
mm2 /m64 and mm1;
differences are then
summed to produce an
unsigned word integer
result.

66 0F F6 /r

PSADBW xmm1, xmm2/m128

RM V/V SSE2 Computes the absolute
differences of the packed
unsigned byte integers from
xmm2 /m128 and xmm1;
the 8 low differences and 8
high differences are then
summed separately to
produce two unsigned word
integer results.

VEX.NDS.128.66.0F.WIG F6 /r

VPSADBW xmm1, xmm2,
xmm3/m128

RVM V/V AVX Computes the absolute
differences of the packed
unsigned byte integers from
xmm3 /m128 and xmm2;
the 8 low differences and 8
high differences are then
summed separately to
produce two unsigned word
integer results.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-357PSADBW—Compute Sum of Absolute Differences

INSTRUCTION SET REFERENCE, M-Z
Computes the absolute value of the difference of 8 unsigned byte integers from the
source operand (second operand) and from the destination operand (first operand).
These 8 differences are then summed to produce an unsigned word integer result
that is stored in the destination operand. The source operand can be an MMX tech-
nology register or a 64-bit memory location or it can be an XMM register or a 128-bit
memory location. The destination operand can be an MMX technology register or an
XMM register. Figure 4-9 shows the operation of the PSADBW instruction when using
64-bit operands.

When operating on 64-bit operands, the word integer result is stored in the low word
of the destination operand, and the remaining bytes in the destination operand are
cleared to all 0s.

When operating on 128-bit operands, two packed results are computed. Here, the 8
low-order bytes of the source and destination operands are operated on to produce a
word result that is stored in the low word of the destination operand, and the 8 high-
order bytes are operated on to produce a word result that is stored in bits 64 through
79 of the destination operand. The remaining bytes of the destination operand are
cleared.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PSADBW (when using 64-bit operands)
TEMP0 ← ABS(DEST[7:0] − SRC[7:0]);
(* Repeat operation for bytes 2 through 6 *)
TEMP7 ← ABS(DEST[63:56] − SRC[63:56]);

Figure 4-9. PSADBW Instruction Operation Using 64-bit Operands

X3 X2 X1 X0SRC

DEST

TEMP

X4X5X6X7

Y3 Y2 Y1 Y0Y4Y5Y6Y7

ABS(X0:Y0)ABS(X7:Y7) ABS(X6:Y6) ABS(X5:Y5) ABS(X4:Y4) ABS(X3:Y3) ABS(X2:Y2) ABS(X1:Y1)

DEST 00H 00H00H00H00H00H SUM(TEMP7...TEMP0)
4-358 Vol. 2B PSADBW—Compute Sum of Absolute Differences

INSTRUCTION SET REFERENCE, M-Z
DEST[15:0] ← SUM(TEMP0:TEMP7);
DEST[63:16] ← 000000000000H;

PSADBW (when using 128-bit operands)
TEMP0 ← ABS(DEST[7:0] − SRC[7:0]);
(* Repeat operation for bytes 2 through 14 *)
TEMP15 ← ABS(DEST[127:120] − SRC[127:120]);
DEST[15:0] ← SUM(TEMP0:TEMP7);
DEST[63:16] ← 000000000000H;
DEST[79:64] ← SUM(TEMP8:TEMP15);
DEST[127:80] ← 000000000000H;

DEST[VLMAX-1:128] (Unmodified)

VPSADBW (VEX.128 encoded version)
TEMP0 ABS(SRC1[7:0] - SRC2[7:0])
(* Repeat operation for bytes 2 through 14 *)
TEMP15 ABS(SRC1[127:120] - SRC2[127:120])
DEST[15:0] SUM(TEMP0:TEMP7)
DEST[63:16] 000000000000H
DEST[79:64] SUM(TEMP8:TEMP15)
DEST[127:80] 00000000000
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

PSADBW: __m64 _mm_sad_pu8(__m64 a,__m64 b)

PSADBW: __m128i _mm_sad_epu8(__m128i a, __m128i b)

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
Vol. 2B 4-359PSADBW—Compute Sum of Absolute Differences

INSTRUCTION SET REFERENCE, M-Z
PSHUFB — Packed Shuffle Bytes

Instruction Operand Encoding

Description

PSHUFB performs in-place shuffles of bytes in the destination operand (the first
operand) according to the shuffle control mask in the source operand (the second
operand). The instruction permutes the data in the destination operand, leaving the
shuffle mask unaffected. If the most significant bit (bit[7]) of each byte of the shuffle
control mask is set, then constant zero is written in the result byte. Each byte in the
shuffle control mask forms an index to permute the corresponding byte in the desti-
nation operand. The value of each index is the least significant 4 bits (128-bit opera-
tion) or 3 bits (64-bit operation) of the shuffle control byte. Both operands can be
MMX register or XMM registers. When the source operand is a 128-bit memory
operand, the operand must be aligned on a 16-byte boundary or a general-protection
exception (#GP) will be generated.

In 64-bit mode, use the REX prefix to access additional registers.
128-bit Legacy SSE version: The first source operand and the destination operand
are the same. Bits (VLMAX-1:128) of the corresponding YMM destination register
remain unchanged.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 38 00 /r1

PSHUFB mm1, mm2/m64

RM V/V SSSE3 Shuffle bytes in mm1
according to contents of
mm2/m64.

66 0F 38 00 /r

PSHUFB xmm1, xmm2/m128

RM V/V SSSE3 Shuffle bytes in xmm1
according to contents of
xmm2/m128.

VEX.NDS.128.66.0F38.WIG 00 /r

VPSHUFB xmm1, xmm2,
xmm3/m128

RVM V/V AVX Shuffle bytes in xmm2
according to contents of
xmm3/m128.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
4-360 Vol. 2B PSHUFB — Packed Shuffle Bytes

INSTRUCTION SET REFERENCE, M-Z
VEX.128 encoded version: The destination operand is the first operand, the first
source operand is the second operand, the second source operand is the third
operand. Bits (VLMAX-1:128) of the destination YMM register are zeroed. VEX.L must
be 0, otherwise the instruction will #UD.

Operation

PSHUFB (with 64 bit operands)

for i = 0 to 7 {
if (SRC[(i * 8)+7] = 1) then

DEST[(i*8)+7...(i*8)+0] ← 0;
else

index[2..0] ← SRC[(i*8)+2 .. (i*8)+0];
DEST[(i*8)+7...(i*8)+0] ← DEST[(index*8+7)..(index*8+0)];

endif;
}

PSHUFB (with 128 bit operands)

for i = 0 to 15 {
if (SRC[(i * 8)+7] = 1) then

DEST[(i*8)+7..(i*8)+0] ← 0;
 else

index[3..0] ← SRC[(i*8)+3 .. (i*8)+0];
DEST[(i*8)+7..(i*8)+0] ← DEST[(index*8+7)..(index*8+0)];

endif
}

DEST[VLMAX-1:128] 0

VPSHUFB (VEX.128 encoded version)
for i = 0 to 15 {

if (SRC2[(i * 8)+7] = 1) then
DEST[(i*8)+7..(i*8)+0] 0;
else
index[3..0] SRC2[(i*8)+3 .. (i*8)+0];
DEST[(i*8)+7..(i*8)+0] SRC1[(index*8+7)..(index*8+0)];

endif
}
DEST[VLMAX-1:128] 0
Vol. 2B 4-361PSHUFB — Packed Shuffle Bytes

INSTRUCTION SET REFERENCE, M-Z
Intel C/C++ Compiler Intrinsic Equivalent

PSHUFB: __m64 _mm_shuffle_pi8 (__m64 a, __m64 b)

PSHUFB: __m128i _mm_shuffle_epi8 (__m128i a, __m128i b)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.

Figure 4-10. PSHUB with 64-Bit Operands
4-362 Vol. 2B PSHUFB — Packed Shuffle Bytes

INSTRUCTION SET REFERENCE, M-Z
PSHUFD—Shuffle Packed Doublewords

Instruction Operand Encoding

Description

Copies doublewords from source operand (second operand) and inserts them in the
destination operand (first operand) at the locations selected with the order operand
(third operand). Figure 4-11 shows the operation of the PSHUFD instruction and the
encoding of the order operand. Each 2-bit field in the order operand selects the
contents of one doubleword location in the destination operand. For example, bits 0
and 1 of the order operand select the contents of doubleword 0 of the destination
operand. The encoding of bits 0 and 1 of the order operand (see the field encoding in
Figure 4-11) determines which doubleword from the source operand will be copied to
doubleword 0 of the destination operand.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 70 /r ib

PSHUFD xmm1, xmm2/m128, imm8

RMI V/V SSE2 Shuffle the doublewords in
xmm2/m128 based on the
encoding in imm8 and store
the result in xmm1.

VEX.128.66.0F.WIG 70 /r ib

VPSHUFD xmm1, xmm2/m128,
imm8

RMI V/V AVX Shuffle the doublewords in
xmm2/m128 based on the
encoding in imm8 and store
the result in xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (w) ModRM:r/m (r) imm8 NA

Figure 4-11. PSHUFD Instruction Operation

X3 X2 X1 X0SRC

DEST Y3 Y2 Y1 Y0

ORDER
00B - X0
01B - X1
10B - X2
11B - X3

Encoding
of Fields in

ORDER01234567
Operand
Vol. 2B 4-363PSHUFD—Shuffle Packed Doublewords

INSTRUCTION SET REFERENCE, M-Z
The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register. The order operand is an 8-bit immediate. Note
that this instruction permits a doubleword in the source operand to be copied to more
than one doubleword location in the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:1288) of the destination YMM register are
zeroed. VEX.vvvv is reserved and must be 1111b, VEX.L must be 0, otherwise the
instruction will #UD.

Operation

PSHUFD (128-bit Legacy SSE version)
DEST[31:0] (SRC >> (ORDER[1:0] * 32))[31:0];
DEST[63:32] (SRC >> (ORDER[3:2] * 32))[31:0];
DEST[95:64] (SRC >> (ORDER[5:4] * 32))[31:0];
DEST[127:96] (SRC >> (ORDER[7:6] * 32))[31:0];
DEST[VLMAX-1:128] (Unmodified)

VPSHUFD (VEX.128 encoded version)
DEST[31:0] (SRC >> (ORDER[1:0] * 32))[31:0];
DEST[63:32] (SRC >> (ORDER[3:2] * 32))[31:0];
DEST[95:64] (SRC >> (ORDER[5:4] * 32))[31:0];
DEST[127:96] (SRC >> (ORDER[7:6] * 32))[31:0];
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

PSHUFD: __m128i _mm_shuffle_epi32(__m128i a, int n)

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
4-364 Vol. 2B PSHUFD—Shuffle Packed Doublewords

INSTRUCTION SET REFERENCE, M-Z
PSHUFHW—Shuffle Packed High Words

Instruction Operand Encoding

Description

Copies words from the high quadword of the source operand (second operand) and
inserts them in the high quadword of the destination operand (first operand) at word
locations selected with the order operand (third operand). This operation is similar to
the operation used by the PSHUFD instruction, which is illustrated in Figure 4-11. For
the PSHUFHW instruction, each 2-bit field in the order operand selects the contents
of one word location in the high quadword of the destination operand. The binary
encodings of the order operand fields select words (0, 1, 2 or 3, 4) from the high
quadword of the source operand to be copied to the destination operand. The low
quadword of the source operand is copied to the low quadword of the destination
operand.

The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register. The order operand is an 8-bit immediate. Note
that this instruction permits a word in the high quadword of the source operand to be
copied to more than one word location in the high quadword of the destination
operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.vvvv is reserved and must be 1111b, VEX.L must be 0, otherwise the
instruction will #UD.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

F3 0F 70 /r ib

PSHUFHW xmm1, xmm2/ m128,
imm8

RMI V/V SSE2 Shuffle the high words in
xmm2/m128 based on the
encoding in imm8 and store
the result in xmm1.

VEX.128.F3.0F.WIG 70 /r ib

VPSHUFHW xmm1, xmm2/m128,
imm8

RMI V/V AVX Shuffle the high words in
xmm2/m128 based on the
encoding in imm8 and store
the result in xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (w) ModRM:r/m (r) imm8 NA
Vol. 2B 4-365PSHUFHW—Shuffle Packed High Words

INSTRUCTION SET REFERENCE, M-Z
Operation

PSHUFHW (128-bit Legacy SSE version)
DEST[63:0] SRC[63:0]
DEST[79:64] (SRC >> (imm[1:0] *16))[79:64]
DEST[95:80] (SRC >> (imm[3:2] * 16))[79:64]
DEST[111:96] (SRC >> (imm[5:4] * 16))[79:64]
DEST[127:112] (SRC >> (imm[7:6] * 16))[79:64]
DEST[VLMAX-1:128] (Unmodified)

VPSHUFHW (VEX.128 encoded version)
DEST[63:0] SRC1[63:0]
DEST[79:64] (SRC1 >> (imm[1:0] *16))[79:64]
DEST[95:80] (SRC1 >> (imm[3:2] * 16))[79:64]
DEST[111:96] (SRC1 >> (imm[5:4] * 16))[79:64]
DEST[127:112] (SRC1 >> (imm[7:6] * 16))[79:64]
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

PSHUFHW: __m128i _mm_shufflehi_epi16(__m128i a, int n)

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
4-366 Vol. 2B PSHUFHW—Shuffle Packed High Words

INSTRUCTION SET REFERENCE, M-Z
PSHUFLW—Shuffle Packed Low Words

Instruction Operand Encoding

Description

Copies words from the low quadword of the source operand (second operand) and
inserts them in the low quadword of the destination operand (first operand) at word
locations selected with the order operand (third operand). This operation is similar to
the operation used by the PSHUFD instruction, which is illustrated in Figure 4-11. For
the PSHUFLW instruction, each 2-bit field in the order operand selects the contents of
one word location in the low quadword of the destination operand. The binary encod-
ings of the order operand fields select words (0, 1, 2, or 3) from the low quadword of
the source operand to be copied to the destination operand. The high quadword of
the source operand is copied to the high quadword of the destination operand.

The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register. The order operand is an 8-bit immediate. Note
that this instruction permits a word in the low quadword of the source operand to be
copied to more than one word location in the low quadword of the destination
operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.vvvv is reserved and must be 1111b, VEX.L must be 0, otherwise
instructions will #UD.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

F2 0F 70 /r ib

PSHUFLW xmm1, xmm2/m128,
imm8

RMI V/V SSE2 Shuffle the low words in
xmm2/m128 based on the
encoding in imm8 and store
the result in xmm1.

VEX.128.F2.0F.WIG 70 /r ib

VPSHUFLW xmm1, xmm2/m128,
imm8

RMI V/V AVX Shuffle the low words in
xmm2/m128 based on the
encoding in imm8 and store
the result in xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (w) ModRM:r/m (r) imm8 NA
Vol. 2B 4-367PSHUFLW—Shuffle Packed Low Words

INSTRUCTION SET REFERENCE, M-Z
Operation

PSHUFLW (128-bit Legacy SSE version)
DEST[15:0] (SRC >> (imm[1:0] *16))[15:0]
DEST[31:16] (SRC >> (imm[3:2] * 16))[15:0]
DEST[47:32] (SRC >> (imm[5:4] * 16))[15:0]
DEST[63:48] (SRC >> (imm[7:6] * 16))[15:0]
DEST[127:64] SRC[127:64]
DEST[VLMAX-1:128] (Unmodified)

VPSHUFLW (VEX.128 encoded version)
DEST[15:0] (SRC1 >> (imm[1:0] *16))[15:0]
DEST[31:16] (SRC1 >> (imm[3:2] * 16))[15:0]
DEST[47:32] (SRC1 >> (imm[5:4] * 16))[15:0]
DEST[63:48] (SRC1 >> (imm[7:6] * 16))[15:0]
DEST[127:64] SRC[127:64]
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

PSHUFLW: __m128i _mm_shufflelo_epi16(__m128i a, int n)

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
4-368 Vol. 2B PSHUFLW—Shuffle Packed Low Words

INSTRUCTION SET REFERENCE, M-Z
PSHUFW—Shuffle Packed Words

Instruction Operand Encoding

Description

Copies words from the source operand (second operand) and inserts them in the
destination operand (first operand) at word locations selected with the order operand
(third operand). This operation is similar to the operation used by the PSHUFD
instruction, which is illustrated in Figure 4-11. For the PSHUFW instruction, each 2-
bit field in the order operand selects the contents of one word location in the destina-
tion operand. The encodings of the order operand fields select words from the source
operand to be copied to the destination operand.

The source operand can be an MMX technology register or a 64-bit memory location.
The destination operand is an MMX technology register. The order operand is an 8-bit
immediate. Note that this instruction permits a word in the source operand to be
copied to more than one word location in the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[15:0] ← (SRC >> (ORDER[1:0] * 16))[15:0];
DEST[31:16] ← (SRC >> (ORDER[3:2] * 16))[15:0];
DEST[47:32] ← (SRC >> (ORDER[5:4] * 16))[15:0];
DEST[63:48] ← (SRC >> (ORDER[7:6] * 16))[15:0];

Intel C/C++ Compiler Intrinsic Equivalent

PSHUFW: __m64 _mm_shuffle_pi16(__m64 a, int n)

Flags Affected

None.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 70 /r ib PSHUFW mm1,
mm2/m64, imm8

RMI Valid Valid Shuffle the words in
mm2/m64 based on the
encoding in imm8 and store
the result in mm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (w) ModRM:r/m (r) imm8 NA
Vol. 2B 4-369PSHUFW—Shuffle Packed Words

INSTRUCTION SET REFERENCE, M-Z
Numeric Exceptions

None.

Other Exceptions
See Table 22-7, “Exception Conditions for SIMD/MMX Instructions with Memory
Reference,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A.
4-370 Vol. 2B PSHUFW—Shuffle Packed Words

INSTRUCTION SET REFERENCE, M-Z
PSIGNB/PSIGNW/PSIGND — Packed SIGN
Opcode Instruction Op/

En
64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 38 08 /r1

PSIGNB mm1, mm2/m64

RM V/V SSSE3 Negate/zero/preserve
packed byte integers in
mm1 depending on the
corresponding sign in
mm2/m64

66 0F 38 08 /r

PSIGNB xmm1, xmm2/m128

RM V/V SSSE3 Negate/zero/preserve
packed byte integers in
xmm1 depending on the
corresponding sign in
xmm2/m128.

0F 38 09 /r1

PSIGNW mm1, mm2/m64

RM V/V SSSE3 Negate/zero/preserve
packed word integers in
mm1 depending on the
corresponding sign in
mm2/m128.

66 0F 38 09 /r

PSIGNW xmm1, xmm2/m128

RM V/V SSSE3 Negate/zero/preserve
packed word integers in
xmm1 depending on the
corresponding sign in
xmm2/m128.

0F 38 0A /r1

PSIGND mm1, mm2/m64

RM V/V SSSE3 Negate/zero/preserve
packed doubleword integers
in mm1 depending on the
corresponding sign in
mm2/m128.

66 0F 38 0A /r

PSIGND xmm1, xmm2/m128

RM V/V SSSE3 Negate/zero/preserve
packed doubleword integers
in xmm1 depending on the
corresponding sign in
xmm2/m128.

VEX.NDS.128.66.0F38.WIG 08 /r

VPSIGNB xmm1, xmm2,
xmm3/m128

RVM V/V AVX Negate/zero/preserve
packed byte integers in
xmm2 depending on the
corresponding sign in
xmm3/m128.
Vol. 2B 4-371PSIGNB/PSIGNW/PSIGND — Packed SIGN

INSTRUCTION SET REFERENCE, M-Z
Instruction Operand Encoding

Description

PSIGNB/PSIGNW/PSIGND negates each data element of the destination operand
(the first operand) if the signed integer value of the corresponding data element in
the source operand (the second operand) is less than zero. If the signed integer
value of a data element in the source operand is positive, the corresponding data
element in the destination operand is unchanged. If a data element in the source
operand is zero, the corresponding data element in the destination operand is set to
zero.

PSIGNB operates on signed bytes. PSIGNW operates on 16-bit signed words.
PSIGND operates on signed 32-bit integers. Both operands can be MMX register or
XMM registers. When the source operand is a 128bit memory operand, the operand
must be aligned on a 16-byte boundary or a general-protection exception (#GP) will
be generated.

In 64-bit mode, use the REX prefix to access additional registers.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.

VEX.NDS.128.66.0F38.WIG 09 /r

VPSIGNW xmm1, xmm2,
xmm3/m128

RVM V/V AVX Negate/zero/preserve
packed word integers in
xmm2 depending on the
corresponding sign in
xmm3/m128.

VEX.NDS.128.66.0F38.WIG 0A /r

VPSIGND xmm1, xmm2,
xmm3/m128

RVM V/V AVX Negate/zero/preserve
packed doubleword integers
in xmm2 depending on the
corresponding sign in
xmm3/m128.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

Opcode Instruction Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description
4-372 Vol. 2B PSIGNB/PSIGNW/PSIGND — Packed SIGN

INSTRUCTION SET REFERENCE, M-Z
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise instructions will #UD.

Operation

PSIGNB (with 64 bit operands)

IF (SRC[7:0] < 0)
DEST[7:0] ← Neg(DEST[7:0])

ELSEIF (SRC[7:0] = 0)
DEST[7:0] ← 0

ELSEIF (SRC[7:0] > 0)
DEST[7:0] ← DEST[7:0]

Repeat operation for 2nd through 7th bytes

IF (SRC[63:56] < 0)
DEST[63:56] ← Neg(DEST[63:56])

ELSEIF (SRC[63:56] = 0)
DEST[63:56] ← 0

ELSEIF (SRC[63:56] > 0)
DEST[63:56] ← DEST[63:56]

PSIGNB (with 128 bit operands)

IF (SRC[7:0] < 0)
DEST[7:0] ← Neg(DEST[7:0])

ELSEIF (SRC[7:0] = 0)
DEST[7:0] ← 0

ELSEIF (SRC[7:0] > 0)
DEST[7:0] ← DEST[7:0]

Repeat operation for 2nd through 15th bytes
IF (SRC[127:120] < 0)

DEST[127:120] ← Neg(DEST[127:120])
ELSEIF (SRC[127:120] = 0)

DEST[127:120] ← 0
ELSEIF (SRC[127:120] > 0)

DEST[127:120] ← DEST[127:120]

PSIGNW (with 64 bit operands)

IF (SRC[15:0] < 0)
DEST[15:0] ← Neg(DEST[15:0])

ELSEIF (SRC[15:0] = 0)
DEST[15:0] ← 0

ELSEIF (SRC[15:0] > 0)
Vol. 2B 4-373PSIGNB/PSIGNW/PSIGND — Packed SIGN

INSTRUCTION SET REFERENCE, M-Z
DEST[15:0] ← DEST[15:0]
Repeat operation for 2nd through 3rd words

IF (SRC[63:48] < 0)
DEST[63:48] ← Neg(DEST[63:48])

ELSEIF (SRC[63:48] = 0)
DEST[63:48] ← 0

ELSEIF (SRC[63:48] > 0)
DEST[63:48] ← DEST[63:48]

PSIGNW (with 128 bit operands)

IF (SRC[15:0] < 0)
DEST[15:0] ← Neg(DEST[15:0])

ELSEIF (SRC[15:0] = 0)
DEST[15:0] ← 0

ELSEIF (SRC[15:0] > 0)
DEST[15:0] ← DEST[15:0]

Repeat operation for 2nd through 7th words
IF (SRC[127:112] < 0)

DEST[127:112] ← Neg(DEST[127:112])
ELSEIF (SRC[127:112] = 0)

DEST[127:112] ← 0
ELSEIF (SRC[127:112] > 0)

DEST[127:112] ← DEST[127:112]

PSIGND (with 64 bit operands)

IF (SRC[31:0] < 0)
DEST[31:0] ← Neg(DEST[31:0])

ELSEIF (SRC[31:0] = 0)
DEST[31:0] ← 0

ELSEIF (SRC[31:0] > 0)
DEST[31:0] ← DEST[31:0]

IF (SRC[63:32] < 0)
DEST[63:32] ← Neg(DEST[63:32])

ELSEIF (SRC[63:32] = 0)
DEST[63:32] ← 0

ELSEIF (SRC[63:32] > 0)
DEST[63:32] ← DEST[63:32]

PSIGND (with 128 bit operands)

IF (SRC[31:0] < 0)
DEST[31:0] ← Neg(DEST[31:0])

ELSEIF (SRC[31:0] = 0)
4-374 Vol. 2B PSIGNB/PSIGNW/PSIGND — Packed SIGN

INSTRUCTION SET REFERENCE, M-Z
DEST[31:0] ← 0
ELSEIF (SRC[31:0] > 0)

DEST[31:0] ← DEST[31:0]
Repeat operation for 2nd through 3rd double words
IF (SRC[127:96] < 0)

DEST[127:96] ← Neg(DEST[127:96])
ELSEIF (SRC[127:96] = 0)

DEST[127:96] ← 0
ELSEIF (SRC[127:96] > 0)

DEST[127:96] ← DEST[127:96]

VPSIGNB (VEX.128 encoded version)
DEST[127:0] BYTE_SIGN(SRC1, SRC2)
DEST[VLMAX-1:128] 0

VPSIGNW (VEX.128 encoded version)
DEST[127:0] WORD_SIGN(SRC1, SRC2)
DEST[VLMAX-1:128] 0

VPSIGND (VEX.128 encoded version)
DEST[127:0] DWORD_SIGN(SRC1, SRC2)
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

PSIGNB: __m64 _mm_sign_pi8 (__m64 a, __m64 b)

PSIGNB: __m128i _mm_sign_epi8 (__m128i a, __m128i b)

PSIGNW: __m64 _mm_sign_pi16 (__m64 a, __m64 b)

PSIGNW: __m128i _mm_sign_epi16 (__m128i a, __m128i b)

PSIGND: __m64 _mm_sign_pi32 (__m64 a, __m64 b)

PSIGND: __m128i _mm_sign_epi32 (__m128i a, __m128i b)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
Vol. 2B 4-375PSIGNB/PSIGNW/PSIGND — Packed SIGN

INSTRUCTION SET REFERENCE, M-Z
PSLLDQ—Shift Double Quadword Left Logical

Instruction Operand Encoding

Description

Shifts the destination operand (first operand) to the left by the number of bytes spec-
ified in the count operand (second operand). The empty low-order bytes are cleared
(set to all 0s). If the value specified by the count operand is greater than 15, the
destination operand is set to all 0s. The destination operand is an XMM register. The
count operand is an 8-bit immediate.
128-bit Legacy SSE version: The source and destination operands are the same. Bits
(VLMAX-1:128) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.vvvv encodes the destination register, and VEX.B + ModRM.r/m encodes
the source register. VEX.L must be 0, otherwise instructions will #UD.

Operation

PSLLDQ(128-bit Legacy SSE version)
TEMP COUNT
IF (TEMP > 15) THEN TEMP 16; FI
DEST DEST << (TEMP * 8)
DEST[VLMAX-1:128] (Unmodified)

VPSLLDQ (VEX.128 encoded version)
TEMP COUNT
IF (TEMP > 15) THEN TEMP 16; FI
DEST SRC << (TEMP * 8)
DEST[VLMAX-1:128] 0

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 73 /7 ib

PSLLDQ xmm1, imm8

MI V/V SSE2 Shift xmm1 left by imm8
bytes while shifting in 0s.

VEX.NDD.128.66.0F.WIG 73 /7 ib

VPSLLDQ xmm1, xmm2, imm8

VMI V/V AVX Shift xmm2 left by imm8
bytes while shifting in 0s
and store result in xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MI ModRM:r/m (r, w) imm8 NA NA

VMI VEX.vvvv (w) ModRM:r/m (r) imm8 NA
4-376 Vol. 2B PSLLDQ—Shift Double Quadword Left Logical

INSTRUCTION SET REFERENCE, M-Z
Intel C/C++ Compiler Intrinsic Equivalent

PSLLDQ: __m128i _mm_slli_si128 (__m128i a, int imm)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 7; additionally
#UD If VEX.L = 1.
Vol. 2B 4-377PSLLDQ—Shift Double Quadword Left Logical

INSTRUCTION SET REFERENCE, M-Z
PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F F1 /r1

PSLLW mm, mm/m64

RM V/V MMX Shift words in mm left
mm/m64 while shifting in
0s.

66 0F F1 /r

PSLLW xmm1, xmm2/m128

RM V/V SSE2 Shift words in xmm1 left by
xmm2/m128 while shifting
in 0s.

0F 71 /6 ib

PSLLW xmm1, imm8

MI V/V MMX Shift words in mm left by
imm8 while shifting in 0s.

66 0F 71 /6 ib

PSLLW xmm1, imm8

MI V/V SSE2 Shift words in xmm1 left by
imm8 while shifting in 0s.

0F F2 /r1

PSLLD mm, mm/m64

RM V/V MMX Shift doublewords in mm
left by mm/m64 while
shifting in 0s.

66 0F F2 /r

PSLLD xmm1, xmm2/m128

RM V/V SSE2 Shift doublewords in xmm1
left by xmm2/m128 while
shifting in 0s.

0F 72 /6 ib1

PSLLD mm, imm8

MI V/V MMX Shift doublewords in mm
left by imm8 while shifting
in 0s.

66 0F 72 /6 ib

PSLLD xmm1, imm8

MI V/V SSE2 Shift doublewords in xmm1
left by imm8 while shifting
in 0s.

0F F3 /r1

PSLLQ mm, mm/m64

RM V/V MMX Shift quadword in mm left
by mm/m64 while shifting
in 0s.

66 0F F3 /r

PSLLQ xmm1, xmm2/m128

RM V/V SSE2 Shift quadwords in xmm1
left by xmm2/m128 while
shifting in 0s.

0F 73 /6 ib1

PSLLQ mm, imm8

MI V/V MMX Shift quadword in mm left
by imm8 while shifting in 0s.

66 0F 73 /6 ib

PSLLQ xmm1, imm8

MI V/V SSE2 Shift quadwords in xmm1
left by imm8 while shifting
in 0s.
4-378 Vol. 2B PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical

INSTRUCTION SET REFERENCE, M-Z
Instruction Operand Encoding

Description

Shifts the bits in the individual data elements (words, doublewords, or quadword) in
the destination operand (first operand) to the left by the number of bits specified in
the count operand (second operand). As the bits in the data elements are shifted left,

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

VEX.NDS.128.66.0F.WIG F1 /r

VPSLLW xmm1, xmm2, xmm3/m128

RVM V/V AVX Shift words in xmm2 left by
amount specified in
xmm3/m128 while shifting
in 0s.

VEX.NDD.128.66.0F.WIG 71 /6 ib

VPSLLW xmm1, xmm2, imm8

VMI V/V AVX Shift words in xmm2 left by
imm8 while shifting in 0s.

VEX.NDS.128.66.0F.WIG F2 /r

VPSLLD xmm1, xmm2, xmm3/m128

RVM V/V AVX Shift doublewords in xmm2
left by amount specified in
xmm3/m128 while shifting
in 0s.

VEX.NDD.128.66.0F.WIG 72 /6 ib

VPSLLD xmm1, xmm2, imm8

VMI V/V AVX Shift doublewords in xmm2
left by imm8 while shifting
in 0s.

VEX.NDS.128.66.0F.WIG F3 /r

VPSLLQ xmm1, xmm2, xmm3/m128

RVM V/V AVX Shift quadwords in xmm2
left by amount specified in
xmm3/m128 while shifting
in 0s.

VEX.NDD.128.66.0F.WIG 73 /6 ib

VPSLLQ xmm1, xmm2, imm8

VMI V/V AVX Shift quadwords in xmm2
left by imm8 while shifting
in 0s.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

MI ModRM:r/m (r, w) imm8 NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

VMI VEX.vvvv (w) ModRM:r/m (r) imm8 NA
Vol. 2B 4-379PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical

INSTRUCTION SET REFERENCE, M-Z
the empty low-order bits are cleared (set to 0). If the value specified by the count
operand is greater than 15 (for words), 31 (for doublewords), or 63 (for a quad-
word), then the destination operand is set to all 0s. Figure 4-12 gives an example of
shifting words in a 64-bit operand.

The destination operand may be an MMX technology register or an XMM register; the
count operand can be either an MMX technology register or an 64-bit memory loca-
tion, an XMM register or a 128-bit memory location, or an 8-bit immediate. Note that
only the first 64-bits of a 128-bit count operand are checked to compute the count.

The PSLLW instruction shifts each of the words in the destination operand to the left
by the number of bits specified in the count operand; the PSLLD instruction shifts
each of the doublewords in the destination operand; and the PSLLQ instruction shifts
the quadword (or quadwords) in the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged. If the count operand is a memory address, 128 bits
are loaded but the upper 64 bits are ignored.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. For shifts with an immediate count (VEX.128.66.0F 71-73 /6), VEX.vvvv
encodes the destination register, and VEX.B + ModRM.r/m encodes the source
register. VEX.L must be 0, otherwise instructions will #UD. If the count operand is a
memory address, 128 bits are loaded but the upper 64 bits are ignored.

Operation

PSLLW (with 64-bit operand)
IF (COUNT > 15)
THEN

DEST[64:0] ← 0000000000000000H;
ELSE

DEST[15:0] ← ZeroExtend(DEST[15:0] << COUNT);
(* Repeat shift operation for 2nd and 3rd words *)
DEST[63:48] ← ZeroExtend(DEST[63:48] << COUNT);

Figure 4-12. PSLLW, PSLLD, and PSLLQ Instruction Operation Using 64-bit Operand

DEST

DEST
Pre-Shift

Post-Shift

Shift Left

X0

X0 << COUNT

X3 X2 X1

X1 << COUNTX2 << COUNTX3 << COUNT

with Zero
Extension
4-380 Vol. 2B PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical

INSTRUCTION SET REFERENCE, M-Z
FI;

PSLLD (with 64-bit operand)
IF (COUNT > 31)
THEN

DEST[64:0] ← 0000000000000000H;
ELSE

DEST[31:0] ← ZeroExtend(DEST[31:0] << COUNT);
DEST[63:32] ← ZeroExtend(DEST[63:32] << COUNT);

FI;

PSLLQ (with 64-bit operand)
IF (COUNT > 63)
THEN

DEST[64:0] ← 0000000000000000H;
ELSE

DEST ← ZeroExtend(DEST << COUNT);
FI;

PSLLW (with 128-bit operand)
COUNT ← COUNT_SOURCE[63:0];
IF (COUNT > 15)
THEN

DEST[128:0] ← 00000000000000000000000000000000H;
ELSE

DEST[15:0] ← ZeroExtend(DEST[15:0] << COUNT);
(* Repeat shift operation for 2nd through 7th words *)
DEST[127:112] ← ZeroExtend(DEST[127:112] << COUNT);

FI;

PSLLD (with 128-bit operand)
COUNT ← COUNT_SOURCE[63:0];
IF (COUNT > 31)
THEN

DEST[128:0] ← 00000000000000000000000000000000H;
ELSE

DEST[31:0] ← ZeroExtend(DEST[31:0] << COUNT);
(* Repeat shift operation for 2nd and 3rd doublewords *)
DEST[127:96] ← ZeroExtend(DEST[127:96] << COUNT);

FI;

PSLLQ (with 128-bit operand)
COUNT ← COUNT_SOURCE[63:0];
IF (COUNT > 63)
THEN
Vol. 2B 4-381PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical

INSTRUCTION SET REFERENCE, M-Z
DEST[128:0] ← 00000000000000000000000000000000H;
ELSE

DEST[63:0] ← ZeroExtend(DEST[63:0] << COUNT);
DEST[127:64] ← ZeroExtend(DEST[127:64] << COUNT);

FI;

PSLLW (xmm, xmm, xmm/m128)
DEST[127:0] LOGICAL_LEFT_SHIFT_WORDS(DEST, SRC)
DEST[VLMAX-1:128] (Unmodified)

PSLLW (xmm, imm8)
DEST[127:0] LOGICAL_LEFT_SHIFT_WORDS(DEST, imm8)
DEST[VLMAX-1:128] (Unmodified)

VPSLLD (xmm, xmm, xmm/m128)
DEST[127:0] LOGICAL_LEFT_SHIFT_DWORDS(SRC1, SRC2)
DEST[VLMAX-1:128] 0

VPSLLD (xmm, imm8)
DEST[127:0] LOGICAL_LEFT_SHIFT_DWORDS(SRC1, imm8)
DEST[VLMAX-1:128] 0

PSLLD (xmm, xmm, xmm/m128)
DEST[127:0] LOGICAL_LEFT_SHIFT_DWORDS(DEST, SRC)
DEST[VLMAX-1:128] (Unmodified)

PSLLD (xmm, imm8)
DEST[127:0] LOGICAL_LEFT_SHIFT_DWORDS(DEST, imm8)
DEST[VLMAX-1:128] (Unmodified)

VPSLLQ (xmm, xmm, xmm/m128)
DEST[127:0] LOGICAL_LEFT_SHIFT_QWORDS(SRC1, SRC2)
DEST[VLMAX-1:128] 0

VPSLLQ (xmm, imm8)
DEST[127:0] LOGICAL_LEFT_SHIFT_QWORDS(SRC1, imm8)
DEST[VLMAX-1:128] 0

PSLLQ (xmm, xmm, xmm/m128)
DEST[127:0] LOGICAL_LEFT_SHIFT_QWORDS(DEST, SRC)
DEST[VLMAX-1:128] (Unmodified)

PSLLQ (xmm, imm8)
4-382 Vol. 2B PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical

INSTRUCTION SET REFERENCE, M-Z
DEST[127:0] LOGICAL_LEFT_SHIFT_QWORDS(DEST, imm8)
DEST[VLMAX-1:128] (Unmodified)

VPSLLW (xmm, xmm, xmm/m128)
DEST[127:0] LOGICAL_LEFT_SHIFT_WORDS(SRC1, SRC2)
DEST[VLMAX-1:128] 0

VPSLLW (xmm, imm8)
DEST[127:0] LOGICAL_LEFT_SHIFT_WORDS(SRC1, imm8)
DEST[VLMAX-1:128] 0

PSLLW (xmm, xmm, xmm/m128)
DEST[127:0] LOGICAL_LEFT_SHIFT_WORDS(DEST, SRC)
DEST[VLMAX-1:128] (Unmodified)

PSLLW (xmm, imm8)
DEST[127:0] LOGICAL_LEFT_SHIFT_WORDS(DEST, imm8)
DEST[VLMAX-1:128] (Unmodified)

VPSLLD (xmm, xmm, xmm/m128)
DEST[127:0] LOGICAL_LEFT_SHIFT_DWORDS(SRC1, SRC2)
DEST[VLMAX-1:128] 0

VPSLLD (xmm, imm8)
DEST[127:0] LOGICAL_LEFT_SHIFT_DWORDS(SRC1, imm8)
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalents

PSLLW: __m64 _mm_slli_pi16 (__m64 m, int count)

PSLLW: __m64 _mm_sll_pi16(__m64 m, __m64 count)

PSLLW: __m128i _mm_slli_pi16(__m64 m, int count)

PSLLW: __m128i _mm_slli_pi16(__m128i m, __m128i count)

PSLLD: __m64 _mm_slli_pi32(__m64 m, int count)

PSLLD: __m64 _mm_sll_pi32(__m64 m, __m64 count)

PSLLD: __m128i _mm_slli_epi32(__m128i m, int count)

PSLLD: __m128i _mm_sll_epi32(__m128i m, __m128i count)

PSLLQ: __m64 _mm_slli_si64(__m64 m, int count)

PSLLQ: __m64 _mm_sll_si64(__m64 m, __m64 count)

PSLLQ: __m128i _mm_slli_epi64(__m128i m, int count)

PSLLQ: __m128i _mm_sll_epi64(__m128i m, __m128i count)
Vol. 2B 4-383PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical

INSTRUCTION SET REFERENCE, M-Z
Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4 and 7 for non-VEX-encoded instructions.
#UD If VEX.L = 1.
4-384 Vol. 2B PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical

INSTRUCTION SET REFERENCE, M-Z
PSRAW/PSRAD—Shift Packed Data Right Arithmetic
Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F E1 /r1

PSRAW mm, mm/m64

RM V/V MMX Shift words in mm right by
mm/m64 while shifting in
sign bits.

66 0F E1 /r

PSRAW xmm1, xmm2/m128

RM V/V SSE2 Shift words in xmm1 right
by xmm2/m128 while
shifting in sign bits.

0F 71 /4 ib1

PSRAW mm, imm8

MI V/V MMX Shift words in mm right by
imm8 while shifting in sign
bits

66 0F 71 /4 ib

PSRAW xmm1, imm8

MI V/V SSE2 Shift words in xmm1 right
by imm8 while shifting in
sign bits

0F E2 /r1

PSRAD mm, mm/m64

RM V/V MMX Shift doublewords in mm
right by mm/m64 while
shifting in sign bits.

66 0F E2 /r

PSRAD xmm1, xmm2/m128

RM V/V SSE2 Shift doubleword in xmm1
right by xmm2 /m128 while
shifting in sign bits.

0F 72 /4 ib1

PSRAD mm, imm8

MI V/V MMX Shift doublewords in mm
right by imm8 while shifting
in sign bits.

66 0F 72 /4 ib

PSRAD xmm1, imm8

MI V/V SSE2 Shift doublewords in xmm1
right by imm8 while shifting
in sign bits.

VEX.NDS.128.66.0F.WIG E1 /r

VPSRAW xmm1, xmm2,
xmm3/m128

RVM V/V AVX Shift words in xmm2 right
by amount specified in
xmm3/m128 while shifting
in sign bits.

VEX.NDD.128.66.0F.WIG 71 /4 ib

VPSRAW xmm1, xmm2, imm8

VMI V/V AVX Shift words in xmm2 right
by imm8 while shifting in
sign bits.

VEX.NDS.128.66.0F.WIG E2 /r

VPSRAD xmm1, xmm2,
xmm3/m128

RVM V/V AVX Shift doublewords in xmm2
right by amount specified in
xmm3/m128 while shifting
in sign bits.
Vol. 2B 4-385PSRAW/PSRAD—Shift Packed Data Right Arithmetic

INSTRUCTION SET REFERENCE, M-Z
Instruction Operand Encoding

Description

Shifts the bits in the individual data elements (words or doublewords) in the destina-
tion operand (first operand) to the right by the number of bits specified in the count
operand (second operand). As the bits in the data elements are shifted right, the
empty high-order bits are filled with the initial value of the sign bit of the data
element. If the value specified by the count operand is greater than 15 (for words) or
31 (for doublewords), each destination data element is filled with the initial value of
the sign bit of the element. (Figure 4-13 gives an example of shifting words in a 64-
bit operand.)

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

VEX.NDD.128.66.0F.WIG 72 /4 ib

VPSRAD xmm1, xmm2, imm8

VMI V/V AVX Shift doublewords in xmm2
right by imm8 while shifting
in sign bits.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

MI ModRM:r/m (r, w) imm8 NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

VMI VEX.vvvv (w) ModRM:r/m (r) imm8 NA

Figure 4-13. PSRAW and PSRAD Instruction Operation Using a 64-bit Operand

DEST

DEST
Pre-Shift

Post-Shift

Shift Right

X0

X0 >> COUNT

X3 X2 X1

X1 >> COUNTX2 >> COUNTX3 >> COUNT

with Sign
Extension
4-386 Vol. 2B PSRAW/PSRAD—Shift Packed Data Right Arithmetic

INSTRUCTION SET REFERENCE, M-Z
The destination operand may be an MMX technology register or an XMM register; the
count operand can be either an MMX technology register or an 64-bit memory loca-
tion, an XMM register or a 128-bit memory location, or an 8-bit immediate. Note that
only the first 64-bits of a 128-bit count operand are checked to compute the count.

The PSRAW instruction shifts each of the words in the destination operand to the
right by the number of bits specified in the count operand, and the PSRAD instruction
shifts each of the doublewords in the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged. If the count operand is a memory address, 128 bits
are loaded but the upper 64 bits are ignored.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. For shifts with an immediate count (VEX.128.66.0F 71-73 /4), VEX.vvvv
encodes the destination register, and VEX.B + ModRM.r/m encodes the source
register. VEX.L must be 0, otherwise instructions will #UD. : Bits (255:128) of the
corresponding YMM destination register remain unchanged. If the count operand is a
memory address, 128 bits are loaded but the upper 64 bits are ignored.

Operation

PSRAW (with 64-bit operand)
IF (COUNT > 15)

THEN COUNT ← 16;
FI;
DEST[15:0] ← SignExtend(DEST[15:0] >> COUNT);
(* Repeat shift operation for 2nd and 3rd words *)
DEST[63:48] ← SignExtend(DEST[63:48] >> COUNT);

PSRAD (with 64-bit operand)
IF (COUNT > 31)

THEN COUNT ← 32;
FI;
DEST[31:0] ← SignExtend(DEST[31:0] >> COUNT);
DEST[63:32] ← SignExtend(DEST[63:32] >> COUNT);

PSRAW (with 128-bit operand)
COUNT ← COUNT_SOURCE[63:0];
IF (COUNT > 15)

THEN COUNT ← 16;
FI;
DEST[15:0] ← SignExtend(DEST[15:0] >> COUNT);
Vol. 2B 4-387PSRAW/PSRAD—Shift Packed Data Right Arithmetic

INSTRUCTION SET REFERENCE, M-Z
(* Repeat shift operation for 2nd through 7th words *)
DEST[127:112] ← SignExtend(DEST[127:112] >> COUNT);

PSRAD (with 128-bit operand)
COUNT ← COUNT_SOURCE[63:0];
IF (COUNT > 31)

THEN COUNT ← 32;
FI;
DEST[31:0] ← SignExtend(DEST[31:0] >> COUNT);
(* Repeat shift operation for 2nd and 3rd doublewords *)
DEST[127:96] ← SignExtend(DEST[127:96] >>COUNT);

PSRAW (xmm, xmm, xmm/m128)
DEST[127:0] ARITHMETIC_RIGHT_SHIFT_WORDS(DEST, SRC)
DEST[VLMAX-1:128] (Unmodified)

PSRAW (xmm, imm8)
DEST[127:0] ARITHMETIC_RIGHT_SHIFT_WORDS(DEST, imm8)
DEST[VLMAX-1:128] (Unmodified)

VPSRAW (xmm, xmm, xmm/m128)
DEST[127:0] ARITHMETIC_RIGHT_SHIFT_WORDS(SRC1, SRC2)
DEST[VLMAX-1:128] 0

VPSRAW (xmm, imm8)
DEST[127:0] ARITHMETIC_RIGHT_SHIFT_WORDS(SRC1, imm8)
DEST[VLMAX-1:128] 0

PSRAD (xmm, xmm, xmm/m128)
DEST[127:0] ARITHMETIC_RIGHT_SHIFT_DWORDS(DEST, SRC)
DEST[VLMAX-1:128] (Unmodified)

PSRAD (xmm, imm8)
DEST[127:0] ARITHMETIC_RIGHT_SHIFT_DWORDS(DEST, imm8)
DEST[VLMAX-1:128] (Unmodified)

VPSRAD (xmm, xmm, xmm/m128)
DEST[127:0] ARITHMETIC_RIGHT_SHIFT_DWORDS(SRC1, SRC2)
DEST[VLMAX-1:128] 0

VPSRAD (xmm, imm8)
DEST[127:0] ARITHMETIC_RIGHT_SHIFT_DWORDS(SRC1, imm8)
DEST[VLMAX-1:128] 0
4-388 Vol. 2B PSRAW/PSRAD—Shift Packed Data Right Arithmetic

INSTRUCTION SET REFERENCE, M-Z
Intel C/C++ Compiler Intrinsic Equivalents

PSRAW: __m64 _mm_srai_pi16 (__m64 m, int count)

PSRAW: __m64 _mm_sra_pi16 (__m64 m, __m64 count)

PSRAD: __m64 _mm_srai_pi32 (__m64 m, int count)

PSRAD: __m64 _mm_sra_pi32 (__m64 m, __m64 count)

PSRAW: __m128i _mm_srai_epi16(__m128i m, int count)

PSRAW: __m128i _mm_sra_epi16(__m128i m, __m128i count))

PSRAD: __m128i _mm_srai_epi32 (__m128i m, int count)

PSRAD: __m128i _mm_sra_epi32 (__m128i m, __m128i count)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4 and 7 for non-VEX-encoded instructions.
#UD If VEX.L = 1.
Vol. 2B 4-389PSRAW/PSRAD—Shift Packed Data Right Arithmetic

INSTRUCTION SET REFERENCE, M-Z
PSRLDQ—Shift Double Quadword Right Logical

Instruction Operand Encoding

Description

Shifts the destination operand (first operand) to the right by the number of bytes
specified in the count operand (second operand). The empty high-order bytes are
cleared (set to all 0s). If the value specified by the count operand is greater than 15,
the destination operand is set to all 0s. The destination operand is an XMM register.
The count operand is an 8-bit immediate.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The source and destination operands are the same. Bits
(VLMAX-1:128) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.vvvv encodes the destination register, and VEX.B + ModRM.r/m encodes
the source register. VEX.L must be 0, otherwise instructions will #UD.

Operation

PSRLDQ(128-bit Legacy SSE version)
TEMP COUNT
IF (TEMP > 15) THEN TEMP 16; FI
DEST DEST >> (TEMP * 8)
DEST[VLMAX-1:128] (Unmodified)

VPSRLDQ (VEX.128 encoded version)
TEMP COUNT
IF (TEMP > 15) THEN TEMP 16; FI
DEST SRC >> (TEMP * 8)

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 73 /3 ib

PSRLDQ xmm1, imm8

MI V/V SSE2 Shift xmm1 right by imm8
while shifting in 0s.

VEX.NDD.128.66.0F.WIG 73 /3 ib

VPSRLDQ xmm1, xmm2, imm8

VMI V/V AVX Shift xmm2 right by imm8
bytes while shifting in 0s.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MI ModRM:r/m (r, w) imm8 NA NA

VMI VEX.vvvv (w) ModRM:r/m (r) imm8 NA
4-390 Vol. 2B PSRLDQ—Shift Double Quadword Right Logical

INSTRUCTION SET REFERENCE, M-Z
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalents

PSRLDQ: __m128i _mm_srli_si128 (__m128i a, int imm)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 7; additionally
#UD If VEX.L = 1.
Vol. 2B 4-391PSRLDQ—Shift Double Quadword Right Logical

INSTRUCTION SET REFERENCE, M-Z
PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical
Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F D1 /r1

PSRLW mm, mm/m64

RM V/V MMX Shift words in mm right by
amount specified in
mm/m64 while shifting in
0s.

66 0F D1 /r

PSRLW xmm1, xmm2/m128

RM V/V SSE2 Shift words in xmm1 right
by amount specified in
xmm2/m128 while shifting
in 0s.

0F 71 /2 ib1

PSRLW mm, imm8

MI V/V MMX Shift words in mm right by
imm8 while shifting in 0s.

66 0F 71 /2 ib

PSRLW xmm1, imm8

MI V/V SSE2 Shift words in xmm1 right
by imm8 while shifting in 0s.

0F D2 /r1

PSRLD mm, mm/m64

RM V/V MMX Shift doublewords in mm
right by amount specified in
mm/m64 while shifting in
0s.

66 0F D2 /r

PSRLD xmm1, xmm2/m128

RM V/V SSE2 Shift doublewords in xmm1
right by amount specified in
xmm2 /m128 while shifting
in 0s.

0F 72 /2 ib1

PSRLD mm, imm8

MI V/V MMX Shift doublewords in mm
right by imm8 while shifting
in 0s.

66 0F 72 /2 ib

PSRLD xmm1, imm8

MI V/V SSE2 Shift doublewords in xmm1
right by imm8 while shifting
in 0s.

0F D3 /r1

PSRLQ mm, mm/m64

RM V/V MMX Shift mm right by amount
specified in mm/m64 while
shifting in 0s.

66 0F D3 /r

PSRLQ xmm1, xmm2/m128

RM V/V SSE2 Shift quadwords in xmm1
right by amount specified in
xmm2/m128 while shifting
in 0s.

0F 73 /2 ib1

PSRLQ mm, imm8

MI V/V MMX Shift mm right by imm8
while shifting in 0s.
4-392 Vol. 2B PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical

INSTRUCTION SET REFERENCE, M-Z
Instruction Operand Encoding

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 73 /2 ib

PSRLQ xmm1, imm8

MI V/V SSE2 Shift quadwords in xmm1
right by imm8 while shifting
in 0s.

VEX.NDS.128.66.0F.WIG D1 /r

VPSRLW xmm1, xmm2,
xmm3/m128

RVM V/V AVX Shift words in xmm2 right
by amount specified in
xmm3/m128 while shifting
in 0s.

VEX.NDD.128.66.0F.WIG 71 /2 ib

VPSRLW xmm1, xmm2, imm8

VMI V/V AVX Shift words in xmm2 right
by imm8 while shifting in 0s.

VEX.NDS.128.66.0F.WIG D2 /r

VPSRLD xmm1, xmm2, xmm3/m128

RVM V/V AVX Shift doublewords in xmm2
right by amount specified in
xmm3/m128 while shifting
in 0s.

VEX.NDD.128.66.0F.WIG 72 /2 ib

VPSRLD xmm1, xmm2, imm8

VMI V/V AVX Shift doublewords in xmm2
right by imm8 while shifting
in 0s.

VEX.NDS.128.66.0F.WIG D3 /r

VPSRLQ xmm1, xmm2, xmm3/m128

RVM V/V AVX Shift quadwords in xmm2
right by amount specified in
xmm3/m128 while shifting
in 0s.

VEX.NDD.128.66.0F.WIG 73 /2 ib

VPSRLQ xmm1, xmm2, imm8

VMI V/V AVX Shift quadwords in xmm2
right by imm8 while shifting
in 0s.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

MI ModRM:r/m (r, w) imm8 NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

VMI VEX.vvvv (w) ModRM:r/m (r) imm8 NA
Vol. 2B 4-393PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical

INSTRUCTION SET REFERENCE, M-Z
Description

Shifts the bits in the individual data elements (words, doublewords, or quadword) in
the destination operand (first operand) to the right by the number of bits specified in
the count operand (second operand). As the bits in the data elements are shifted
right, the empty high-order bits are cleared (set to 0). If the value specified by the
count operand is greater than 15 (for words), 31 (for doublewords), or 63 (for a
quadword), then the destination operand is set to all 0s. Figure 4-14 gives an
example of shifting words in a 64-bit operand.

The destination operand may be an MMX technology register or an XMM register; the
count operand can be either an MMX technology register or an 64-bit memory loca-
tion, an XMM register or a 128-bit memory location, or an 8-bit immediate. Note that
only the first 64-bits of a 128-bit count operand are checked to compute the count.

The PSRLW instruction shifts each of the words in the destination operand to the right
by the number of bits specified in the count operand; the PSRLD instruction shifts
each of the doublewords in the destination operand; and the PSRLQ instruction shifts
the quadword (or quadwords) in the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged. If the count operand is a memory address, 128 bits
are loaded but the upper 64 bits are ignored.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. For shifts with an immediate count (VEX.128.66.0F 71-73 /2), VEX.vvvv
encodes the destination register, and VEX.B + ModRM.r/m encodes the source
register. VEX.L must be 0, otherwise instructions will #UD. If the count operand is a
memory address, 128 bits are loaded but the upper 64 bits are ignored.

Operation

PSRLW (with 64-bit operand)
IF (COUNT > 15)
THEN

Figure 4-14. PSRLW, PSRLD, and PSRLQ Instruction Operation Using 64-bit Operand

DEST

DEST
Pre-Shift

Post-Shift

Shift Right

X0

X0 >> COUNT

X3 X2 X1

X1 >> COUNTX2 >> COUNTX3 >> COUNT

with Zero
Extension
4-394 Vol. 2B PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical

INSTRUCTION SET REFERENCE, M-Z
DEST[64:0] ← 0000000000000000H
ELSE

DEST[15:0] ← ZeroExtend(DEST[15:0] >> COUNT);
(* Repeat shift operation for 2nd and 3rd words *)
DEST[63:48] ← ZeroExtend(DEST[63:48] >> COUNT);

FI;

PSRLD (with 64-bit operand)
IF (COUNT > 31)
THEN

DEST[64:0] ← 0000000000000000H
ELSE

DEST[31:0] ← ZeroExtend(DEST[31:0] >> COUNT);
DEST[63:32] ← ZeroExtend(DEST[63:32] >> COUNT);

FI;

PSRLQ (with 64-bit operand)
IF (COUNT > 63)
THEN

DEST[64:0] ← 0000000000000000H
ELSE

DEST ← ZeroExtend(DEST >> COUNT);
FI;

PSRLW (with 128-bit operand)
COUNT ← COUNT_SOURCE[63:0];
IF (COUNT > 15)
THEN

DEST[128:0] ← 00000000000000000000000000000000H
ELSE

DEST[15:0] ← ZeroExtend(DEST[15:0] >> COUNT);
(* Repeat shift operation for 2nd through 7th words *)
DEST[127:112] ← ZeroExtend(DEST[127:112] >> COUNT);

FI;

PSRLD (with 128-bit operand)
COUNT ← COUNT_SOURCE[63:0];
IF (COUNT > 31)
THEN

DEST[128:0] ← 00000000000000000000000000000000H
ELSE

DEST[31:0] ← ZeroExtend(DEST[31:0] >> COUNT);
(* Repeat shift operation for 2nd and 3rd doublewords *)
DEST[127:96] ← ZeroExtend(DEST[127:96] >> COUNT);

FI;
Vol. 2B 4-395PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical

INSTRUCTION SET REFERENCE, M-Z
PSRLQ (with 128-bit operand)
COUNT ← COUNT_SOURCE[63:0];
IF (COUNT > 15)
THEN

DEST[128:0] ← 00000000000000000000000000000000H
ELSE

DEST[63:0] ← ZeroExtend(DEST[63:0] >> COUNT);
DEST[127:64] ← ZeroExtend(DEST[127:64] >> COUNT);

FI;

PSRLW (xmm, xmm, xmm/m128)
DEST[127:0] LOGICAL_RIGHT_SHIFT_WORDS(DEST, SRC)
DEST[VLMAX-1:128] (Unmodified)

PSRLW (xmm, imm8)
DEST[127:0] LOGICAL_RIGHT_SHIFT_WORDS(DEST, imm8)
DEST[VLMAX-1:128] (Unmodified)

VPSRLW (xmm, xmm, xmm/m128)
DEST[127:0] LOGICAL_RIGHT_SHIFT_WORDS(SRC1, SRC2)
DEST[VLMAX-1:128] 0

VPSRLW (xmm, imm8)
DEST[127:0] LOGICAL_RIGHT_SHIFT_WORDS(SRC1, imm8)
DEST[VLMAX-1:128] 0

PSRLD (xmm, xmm, xmm/m128)
DEST[127:0] LOGICAL_RIGHT_SHIFT_DWORDS(DEST, SRC)
DEST[VLMAX-1:128] (Unmodified)

PSRLD (xmm, imm8)
DEST[127:0] LOGICAL_RIGHT_SHIFT_DWORDS(DEST, imm8)
DEST[VLMAX-1:128] (Unmodified)

VPSRLD (xmm, xmm, xmm/m128)
DEST[127:0] LOGICAL_RIGHT_SHIFT_DWORDS(SRC1, SRC2)
DEST[VLMAX-1:128] 0

VPSRLD (xmm, imm8)
DEST[127:0] LOGICAL_RIGHT_SHIFT_DWORDS(SRC1, imm8)
DEST[VLMAX-1:128] 0

PSRLQ (xmm, xmm, xmm/m128)
4-396 Vol. 2B PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical

INSTRUCTION SET REFERENCE, M-Z
DEST[127:0] LOGICAL_RIGHT_SHIFT_QWORDS(DEST, SRC)
DEST[VLMAX-1:128] (Unmodified)

PSRLQ (xmm, imm8)
DEST[127:0] LOGICAL_RIGHT_SHIFT_QWORDS(DEST, imm8)
DEST[VLMAX-1:128] (Unmodified)

VPSRLQ (xmm, xmm, xmm/m128)
DEST[127:0] LOGICAL_RIGHT_SHIFT_QWORDS(SRC1, SRC2)
DEST[VLMAX-1:128] 0

VPSRLQ (xmm, imm8)
DEST[127:0] LOGICAL_RIGHT_SHIFT_QWORDS(SRC1, imm8)
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalents

PSRLW: __m64 _mm_srli_pi16(__m64 m, int count)

PSRLW: __m64 _mm_srl_pi16 (__m64 m, __m64 count)

PSRLW: __m128i _mm_srli_epi16 (__m128i m, int count)

PSRLW: __m128i _mm_srl_epi16 (__m128i m, __m128i count)

PSRLD: __m64 _mm_srli_pi32 (__m64 m, int count)

PSRLD: __m64 _mm_srl_pi32 (__m64 m, __m64 count)

PSRLD: __m128i _mm_srli_epi32 (__m128i m, int count)

PSRLD: __m128i _mm_srl_epi32 (__m128i m, __m128i count)

PSRLQ: __m64 _mm_srli_si64 (__m64 m, int count)

PSRLQ: __m64 _mm_srl_si64 (__m64 m, __m64 count)

PSRLQ: __m128i _mm_srli_epi64 (__m128i m, int count)

PSRLQ: __m128i _mm_srl_epi64 (__m128i m, __m128i count)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4 and 7 for non-VEX-encoded instructions.
#UD If VEX.L = 1.
Vol. 2B 4-397PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical

INSTRUCTION SET REFERENCE, M-Z
PSUBB/PSUBW/PSUBD—Subtract Packed Integers
Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F F8 /r1

PSUBB mm, mm/m64

RM V/V MMX Subtract packed byte
integers in mm/m64 from
packed byte integers in mm.

66 0F F8 /r

PSUBB xmm1, xmm2/m128

RM V/V SSE2 Subtract packed byte
integers in xmm2/m128
from packed byte integers
in xmm1.

0F F9 /r1

PSUBW mm, mm/m64

RM V/V MMX Subtract packed word
integers in mm/m64 from
packed word integers in mm.

66 0F F9 /r

PSUBW xmm1, xmm2/m128

RM V/V SSE2 Subtract packed word
integers in xmm2/m128
from packed word integers
in xmm1.

0F FA /r1

PSUBD mm, mm/m64

RM V/V MMX Subtract packed doubleword
integers in mm/m64 from
packed doubleword integers
in mm.

66 0F FA /r

PSUBD xmm1, xmm2/m128

RM V/V SSE2 Subtract packed doubleword
integers in xmm2/mem128
from packed doubleword
integers in xmm1.

VEX.NDS.128.66.0F.WIG F8 /r
VPSUBB xmm1, xmm2, xmm3/m128

RVM V/V AVX Subtract packed byte
integers in xmm3/m128
from xmm2.

VEX.NDS.128.66.0F.WIG F9 /r

VPSUBW xmm1, xmm2,
xmm3/m128

RVM V/V AVX Subtract packed word
integers in xmm3/m128
from xmm2.

VEX.NDS.128.66.0F.WIG FA /r
VPSUBD xmm1, xmm2,
xmm3/m128

RVM V/V AVX Subtract packed doubleword
integers in xmm3/m128
from xmm2.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.
4-398 Vol. 2B PSUBB/PSUBW/PSUBD—Subtract Packed Integers

INSTRUCTION SET REFERENCE, M-Z
Instruction Operand Encoding

Description

Performs a SIMD subtract of the packed integers of the source operand (second
operand) from the packed integers of the destination operand (first operand), and
stores the packed integer results in the destination operand. See Figure 9-4 in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for an
illustration of a SIMD operation. Overflow is handled with wraparound, as described
in the following paragraphs.

These instructions can operate on either 64-bit or 128-bit operands. When operating
on 64-bit operands, the destination operand must be an MMX technology register
and the source operand can be either an MMX technology register or a 64-bit
memory location. When operating on 128-bit operands, the destination operand
must be an XMM register and the source operand can be either an XMM register or a
128-bit memory location.

The PSUBB instruction subtracts packed byte integers. When an individual result is
too large or too small to be represented in a byte, the result is wrapped around and
the low 8 bits are written to the destination element.

The PSUBW instruction subtracts packed word integers. When an individual result is
too large or too small to be represented in a word, the result is wrapped around and
the low 16 bits are written to the destination element.

The PSUBD instruction subtracts packed doubleword integers. When an individual
result is too large or too small to be represented in a doubleword, the result is
wrapped around and the low 32 bits are written to the destination element.

Note that the PSUBB, PSUBW, and PSUBD instructions can operate on either
unsigned or signed (two's complement notation) packed integers; however, it does
not set bits in the EFLAGS register to indicate overflow and/or a carry. To prevent
undetected overflow conditions, software must control the ranges of values upon
which it operates.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise instructions will #UD.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-399PSUBB/PSUBW/PSUBD—Subtract Packed Integers

INSTRUCTION SET REFERENCE, M-Z
Operation

PSUBB (with 64-bit operands)
DEST[7:0] ← DEST[7:0] − SRC[7:0];
(* Repeat subtract operation for 2nd through 7th byte *)
DEST[63:56] ← DEST[63:56] − SRC[63:56];

PSUBB (with 128-bit operands)
DEST[7:0] ← DEST[7:0] − SRC[7:0];
(* Repeat subtract operation for 2nd through 14th byte *)
DEST[127:120] ← DEST[111:120] − SRC[127:120];

PSUBW (with 64-bit operands)
DEST[15:0] ← DEST[15:0] − SRC[15:0];
(* Repeat subtract operation for 2nd and 3rd word *)
DEST[63:48] ← DEST[63:48] − SRC[63:48];

PSUBW (with 128-bit operands)
DEST[15:0] ← DEST[15:0] − SRC[15:0];
(* Repeat subtract operation for 2nd through 7th word *)
DEST[127:112] ← DEST[127:112] − SRC[127:112];

PSUBD (with 64-bit operands)
DEST[31:0] ← DEST[31:0] − SRC[31:0];
DEST[63:32] ← DEST[63:32] − SRC[63:32];

PSUBD (with 128-bit operands)
DEST[31:0] ← DEST[31:0] − SRC[31:0];
(* Repeat subtract operation for 2nd and 3rd doubleword *)
DEST[127:96] ← DEST[127:96] − SRC[127:96];

VPSUBB (VEX.128 encoded version)
DEST[7:0] SRC1[7:0]-SRC2[7:0]
DEST[15:8] SRC1[15:8]-SRC2[15:8]
DEST[23:16] SRC1[23:16]-SRC2[23:16]
DEST[31:24] SRC1[31:24]-SRC2[31:24]
DEST[39:32] SRC1[39:32]-SRC2[39:32]
DEST[47:40] SRC1[47:40]-SRC2[47:40]
DEST[55:48] SRC1[55:48]-SRC2[55:48]
DEST[63:56] SRC1[63:56]-SRC2[63:56]
DEST[71:64] SRC1[71:64]-SRC2[71:64]
DEST[79:72] SRC1[79:72]-SRC2[79:72]
DEST[87:80] SRC1[87:80]-SRC2[87:80]
DEST[95:88] SRC1[95:88]-SRC2[95:88]
DEST[103:96] SRC1[103:96]-SRC2[103:96]
4-400 Vol. 2B PSUBB/PSUBW/PSUBD—Subtract Packed Integers

INSTRUCTION SET REFERENCE, M-Z
DEST[111:104] SRC1[111:104]-SRC2[111:104]
DEST[119:112] SRC1[119:112]-SRC2[119:112]
DEST[127:120] SRC1[127:120]-SRC2[127:120]
DEST[VLMAX-1:128] 00

VPSUBW (VEX.128 encoded version)
DEST[15:0] SRC1[15:0]-SRC2[15:0]
DEST[31:16] SRC1[31:16]-SRC2[31:16]
DEST[47:32] SRC1[47:32]-SRC2[47:32]
DEST[63:48] SRC1[63:48]-SRC2[63:48]
DEST[79:64] SRC1[79:64]-SRC2[79:64]
DEST[95:80] SRC1[95:80]-SRC2[95:80]
DEST[111:96] SRC1[111:96]-SRC2[111:96]
DEST[127:112] SRC1[127:112]-SRC2[127:112]
DEST[VLMAX-1:128] 0

VPSUBD (VEX.128 encoded version)
DEST[31:0] SRC1[31:0]-SRC2[31:0]
DEST[63:32] SRC1[63:32]-SRC2[63:32]
DEST[95:64] SRC1[95:64]-SRC2[95:64]
DEST[127:96] SRC1[127:96]-SRC2[127:96]
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalents

PSUBB: __m64 _mm_sub_pi8(__m64 m1, __m64 m2)

PSUBW: __m64 _mm_sub_pi16(__m64 m1, __m64 m2)

PSUBD: __m64 _mm_sub_pi32(__m64 m1, __m64 m2)

PSUBB: __m128i _mm_sub_epi8 (__m128i a, __m128i b)

PSUBW: __m128i _mm_sub_epi16 (__m128i a, __m128i b)

PSUBD: __m128i _mm_sub_epi32 (__m128i a, __m128i b)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
Vol. 2B 4-401PSUBB/PSUBW/PSUBD—Subtract Packed Integers

INSTRUCTION SET REFERENCE, M-Z
PSUBQ—Subtract Packed Quadword Integers

Instruction Operand Encoding

Description

Subtracts the second operand (source operand) from the first operand (destination
operand) and stores the result in the destination operand. The source operand can be
a quadword integer stored in an MMX technology register or a 64-bit memory loca-
tion, or it can be two packed quadword integers stored in an XMM register or an
128-bit memory location. The destination operand can be a quadword integer stored
in an MMX technology register or two packed quadword integers stored in an XMM
register. When packed quadword operands are used, a SIMD subtract is performed.
When a quadword result is too large to be represented in 64 bits (overflow), the
result is wrapped around and the low 64 bits are written to the destination element
(that is, the carry is ignored).

Note that the PSUBQ instruction can operate on either unsigned or signed (two’s
complement notation) integers; however, it does not set bits in the EFLAGS register
to indicate overflow and/or a carry. To prevent undetected overflow conditions, soft-
ware must control the ranges of the values upon which it operates.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F FB /r1

PSUBQ mm1, mm2/m64

RM V/V SSE2 Subtract quadword integer
in mm1 from mm2 /m64.

66 0F FB /r

PSUBQ xmm1, xmm2/m128

RM V/V SSE2 Subtract packed quadword
integers in xmm1 from
xmm2 /m128.

VEX.NDS.128.66.0F.WIG FB/r

VPSUBQ xmm1, xmm2,
xmm3/m128

RVM V/V AVX Subtract packed quadword
integers in xmm3/m128
from xmm2.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
4-402 Vol. 2B PSUBQ—Subtract Packed Quadword Integers

INSTRUCTION SET REFERENCE, M-Z
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise instructions will #UD.

Operation

PSUBQ (with 64-Bit operands)
DEST[63:0] ← DEST[63:0] − SRC[63:0];

PSUBQ (with 128-Bit operands)
DEST[63:0] ← DEST[63:0] − SRC[63:0];
DEST[127:64] ← DEST[127:64] − SRC[127:64];

VPSUBQ (VEX.128 encoded version)
DEST[63:0] SRC1[63:0]-SRC2[63:0]
DEST[127:64] SRC1[127:64]-SRC2[127:64]
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalents

PSUBQ: __m64 _mm_sub_si64(__m64 m1, __m64 m2)

PSUBQ: __m128i _mm_sub_epi64(__m128i m1, __m128i m2)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
Vol. 2B 4-403PSUBQ—Subtract Packed Quadword Integers

INSTRUCTION SET REFERENCE, M-Z
PSUBSB/PSUBSW—Subtract Packed Signed Integers with Signed
Saturation
Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F E8 /r1

PSUBSB mm, mm/m64

RM V/V MMX Subtract signed packed
bytes in mm/m64 from
signed packed bytes in mm
and saturate results.

66 0F E8 /r

PSUBSB xmm1, xmm2/m128

RM V/V SSE2 Subtract packed signed byte
integers in xmm2/m128
from packed signed byte
integers in xmm1 and
saturate results.

0F E9 /r1

PSUBSW mm, mm/m64

RM V/V MMX Subtract signed packed
words in mm/m64 from
signed packed words in mm
and saturate results.

66 0F E9 /r

PSUBSW xmm1, xmm2/m128

RM V/V SSE2 Subtract packed signed
word integers in
xmm2/m128 from packed
signed word integers in
xmm1 and saturate results.

VEX.NDS.128.66.0F.WIG E8 /r

VPSUBSB xmm1, xmm2,
xmm3/m128

RVM V/V AVX Subtract packed signed byte
integers in xmm3/m128
from packed signed byte
integers in xmm2 and
saturate results.

VEX.NDS.128.66.0F.WIG E9 /r

VPSUBSW xmm1, xmm2,
xmm3/m128

RVM V/V AVX Subtract packed signed
word integers in
xmm3/m128 from packed
signed word integers in
xmm2 and saturate results.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.
4-404 Vol. 2B PSUBSB/PSUBSW—Subtract Packed Signed Integers with Signed Saturation

INSTRUCTION SET REFERENCE, M-Z
Instruction Operand Encoding

Description

Performs a SIMD subtract of the packed signed integers of the source operand
(second operand) from the packed signed integers of the destination operand (first
operand), and stores the packed integer results in the destination operand. See
Figure 9-4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1, for an illustration of a SIMD operation. Overflow is handled with signed
saturation, as described in the following paragraphs.

These instructions can operate on either 64-bit or 128-bit operands. When operating
on 64-bit operands, the destination operand must be an MMX technology register
and the source operand can be either an MMX technology register or a 64-bit
memory location. When operating on 128-bit operands, the destination operand
must be an XMM register and the source operand can be either an XMM register or a
128-bit memory location.

The PSUBSB instruction subtracts packed signed byte integers. When an individual
byte result is beyond the range of a signed byte integer (that is, greater than 7FH or
less than 80H), the saturated value of 7FH or 80H, respectively, is written to the
destination operand.

The PSUBSW instruction subtracts packed signed word integers. When an individual
word result is beyond the range of a signed word integer (that is, greater than 7FFFH
or less than 8000H), the saturated value of 7FFFH or 8000H, respectively, is written
to the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise instructions will #UD.

Operation

PSUBSB (with 64-bit operands)
DEST[7:0] ← SaturateToSignedByte (DEST[7:0] − SRC (7:0]);
(* Repeat subtract operation for 2nd through 7th bytes *)
DEST[63:56] ← SaturateToSignedByte (DEST[63:56] − SRC[63:56]);

PSUBSB (with 128-bit operands)
DEST[7:0] ← SaturateToSignedByte (DEST[7:0] − SRC[7:0]);

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-405PSUBSB/PSUBSW—Subtract Packed Signed Integers with Signed Saturation

INSTRUCTION SET REFERENCE, M-Z
(* Repeat subtract operation for 2nd through 14th bytes *)
DEST[127:120] ← SaturateToSignedByte (DEST[127:120] − SRC[127:120]);

PSUBSW (with 64-bit operands)
DEST[15:0] ← SaturateToSignedWord (DEST[15:0] − SRC[15:0]);
(* Repeat subtract operation for 2nd and 7th words *)
DEST[63:48] ← SaturateToSignedWord (DEST[63:48] − SRC[63:48]);

PSUBSW (with 128-bit operands)
DEST[15:0] ← SaturateToSignedWord (DEST[15:0] − SRC[15:0]);
(* Repeat subtract operation for 2nd through 7th words *)
DEST[127:112] ← SaturateToSignedWord (DEST[127:112] − SRC[127:112]);

VPSUBSB
DEST[7:0] SaturateToSignedByte (SRC1[7:0] - SRC2[7:0]);
(* Repeat subtract operation for 2nd through 14th bytes *)
DEST[127:120] SaturateToSignedByte (SRC1[127:120] - SRC2[127:120]);
DEST[VLMAX-1:128] 0

VPSUBSW
DEST[15:0] SaturateToSignedWord (SRC1[15:0] - SRC2[15:0]);
(* Repeat subtract operation for 2nd through 7th words *)
DEST[127:112] SaturateToSignedWord (SRC1[127:112] - SRC2[127:112]);
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalents

PSUBSB: __m64 _mm_subs_pi8(__m64 m1, __m64 m2)

PSUBSB: __m128i _mm_subs_epi8(__m128i m1, __m128i m2)

PSUBSW: __m64 _mm_subs_pi16(__m64 m1, __m64 m2)

PSUBSW: __m128i _mm_subs_epi16(__m128i m1, __m128i m2)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
4-406 Vol. 2B PSUBSB/PSUBSW—Subtract Packed Signed Integers with Signed Saturation

INSTRUCTION SET REFERENCE, M-Z
PSUBUSB/PSUBUSW—Subtract Packed Unsigned Integers with
Unsigned Saturation
Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F D8 /r1

PSUBUSB mm, mm/m64

RM V/V MMX Subtract unsigned packed
bytes in mm/m64 from
unsigned packed bytes in
mm and saturate result.

66 0F D8 /r

PSUBUSB xmm1, xmm2/m128

RM V/V SSE2 Subtract packed unsigned
byte integers in
xmm2/m128 from packed
unsigned byte integers in
xmm1 and saturate result.

0F D9 /r1

PSUBUSW mm, mm/m64

RM V/V MMX Subtract unsigned packed
words in mm/m64 from
unsigned packed words in
mm and saturate result.

66 0F D9 /r

PSUBUSW xmm1, xmm2/m128

RM V/V SSE2 Subtract packed unsigned
word integers in
xmm2/m128 from packed
unsigned word integers in
xmm1 and saturate result.

VEX.NDS.128.66.0F.WIG D8 /r

VPSUBUSB xmm1, xmm2,
xmm3/m128

RVM V/V AVX Subtract packed unsigned
byte integers in
xmm3/m128 from packed
unsigned byte integers in
xmm2 and saturate result.

VEX.NDS.128.66.0F.WIG D9 /r

VPSUBUSW xmm1, xmm2,
xmm3/m128

RVM V/V AVX Subtract packed unsigned
word integers in
xmm3/m128 from packed
unsigned word integers in
xmm2 and saturate result.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.
Vol. 2B 4-407PSUBUSB/PSUBUSW—Subtract Packed Unsigned Integers with Unsigned Saturation

INSTRUCTION SET REFERENCE, M-Z
Instruction Operand Encoding

Description

Performs a SIMD subtract of the packed unsigned integers of the source operand
(second operand) from the packed unsigned integers of the destination operand (first
operand), and stores the packed unsigned integer results in the destination operand.
See Figure 9-4 in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1, for an illustration of a SIMD operation. Overflow is handled with
unsigned saturation, as described in the following paragraphs.

These instructions can operate on either 64-bit or 128-bit operands. When operating
on 64-bit operands, the destination operand must be an MMX technology register
and the source operand can be either an MMX technology register or a 64-bit
memory location. When operating on 128-bit operands, the destination operand
must be an XMM register and the source operand can be either an XMM register or a
128-bit memory location.

The PSUBUSB instruction subtracts packed unsigned byte integers. When an indi-
vidual byte result is less than zero, the saturated value of 00H is written to the desti-
nation operand.

The PSUBUSW instruction subtracts packed unsigned word integers. When an indi-
vidual word result is less than zero, the saturated value of 0000H is written to the
destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise instructions will #UD.

Operation

PSUBUSB (with 64-bit operands)
DEST[7:0] ← SaturateToUnsignedByte (DEST[7:0] − SRC (7:0]);
(* Repeat add operation for 2nd through 7th bytes *)
DEST[63:56] ← SaturateToUnsignedByte (DEST[63:56] − SRC[63:56];

PSUBUSB (with 128-bit operands)
DEST[7:0] ← SaturateToUnsignedByte (DEST[7:0] − SRC[7:0]);
(* Repeat add operation for 2nd through 14th bytes *)
DEST[127:120] ← SaturateToUnSignedByte (DEST[127:120] − SRC[127:120]);

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
4-408 Vol. 2B PSUBUSB/PSUBUSW—Subtract Packed Unsigned Integers with Unsigned Saturation

INSTRUCTION SET REFERENCE, M-Z
PSUBUSW (with 64-bit operands)
DEST[15:0] ← SaturateToUnsignedWord (DEST[15:0] − SRC[15:0]);
(* Repeat add operation for 2nd and 3rd words *)
DEST[63:48] ← SaturateToUnsignedWord (DEST[63:48] − SRC[63:48]);

PSUBUSW (with 128-bit operands)
DEST[15:0] ← SaturateToUnsignedWord (DEST[15:0] − SRC[15:0]);
(* Repeat add operation for 2nd through 7th words *)
DEST[127:112] ← SaturateToUnSignedWord (DEST[127:112] − SRC[127:112]);

VPSUBUSB
DEST[7:0] SaturateToUnsignedByte (SRC1[7:0] - SRC2[7:0]);
(* Repeat subtract operation for 2nd through 14th bytes *)
DEST[127:120] SaturateToUnsignedByte (SRC1[127:120] - SRC2[127:120]);
DEST[VLMAX-1:128] 0

VPSUBUSW
DEST[15:0] SaturateToUnsignedWord (SRC1[15:0] - SRC2[15:0]);
(* Repeat subtract operation for 2nd through 7th words *)
DEST[127:112] SaturateToUnsignedWord (SRC1[127:112] - SRC2[127:112]);
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalents

PSUBUSB: __m64 _mm_subs_pu8(__m64 m1, __m64 m2)

PSUBUSB: __m128i _mm_subs_epu8(__m128i m1, __m128i m2)

PSUBUSW: __m64 _mm_subs_pu16(__m64 m1, __m64 m2)

PSUBUSW: __m128i _mm_subs_epu16(__m128i m1, __m128i m2)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
Vol. 2B 4-409PSUBUSB/PSUBUSW—Subtract Packed Unsigned Integers with Unsigned Saturation

INSTRUCTION SET REFERENCE, M-Z
PTEST- Logical Compare

Instruction Operand Encoding

Description

PTEST and VPTEST set the ZF flag if all bits in the result are 0 of the bitwise AND of
the first source operand (first operand) and the second source operand (second
operand). VPTEST sets the CF flag if all bits in the result are 0 of the bitwise AND of
the second source operand (second operand) and the logical NOT of the destination
operand.
The first source register is specified by the ModR/M reg field.
128-bit versions: The first source register is an XMM register. The second source
register can be an XMM register or a 128-bit memory location. The destination
register is not modified.
VEX.256 encoded version: The first source register is a YMM register. The second
source register can be a YMM register or a 256-bit memory location. The destination
register is not modified.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise
instructions will #UD.

Operation

(V)PTEST (128-bit version)
IF (SRC[127:0] BITWISE AND DEST[127:0] = 0)

THEN ZF 1;
ELSE ZF 0;

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 38 17 /r
PTEST xmm1, xmm2/m128

RM V/V SSE4_1 Set ZF if xmm2/m128 AND
xmm1 result is all 0s. Set CF
if xmm2/m128 AND NOT
xmm1 result is all 0s.

VEX.128.66.0F38.WIG 17 /r
VPTEST xmm1, xmm2/m128

RM V/V AVX Set ZF and CF depending on
bitwise AND and ANDN of
sources.

VEX.256.66.0F38.WIG 17 /r
VPTEST ymm1, ymm2/m256

RM V/V AVX Set ZF and CF depending on
bitwise AND and ANDN of
sources.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) NA NA
4-410 Vol. 2B PTEST- Logical Compare

INSTRUCTION SET REFERENCE, M-Z
IF (SRC[127:0] BITWISE AND NOT DEST[127:0] = 0)
THEN CF 1;
ELSE CF 0;

DEST (unmodified)
AF OF PF SF 0;

VPTEST (VEX.256 encoded version)
IF (SRC[255:0] BITWISE AND DEST[255:0] = 0) THEN ZF 1;

ELSE ZF 0;
IF (SRC[255:0] BITWISE AND NOT DEST[255:0] = 0) THEN CF 1;

ELSE CF 0;
DEST (unmodified)
AF OF PF SF 0;

Intel C/C++ Compiler Intrinsic Equivalent

PTEST int _mm_testz_si128 (__m128i s1, __m128i s2);
int _mm_testc_si128 (__m128i s1, __m128i s2);
int _mm_testnzc_si128 (__m128i s1, __m128i s2);

VPTEST

int _mm256_testz_si256 (__m256i s1, __m256i s2);

int _mm256_testc_si256 (__m256i s1, __m256i s2);

int _mm256_testnzc_si256 (__m256i s1, __m256i s2);

int _mm_testz_si128 (__m128i s1, __m128i s2);

int _mm_testc_si128 (__m128i s1, __m128i s2);

int _mm_testnzc_si128 (__m128i s1, __m128i s2);

Flags Affected

The 0F, AF, PF, SF flags are cleared and the ZF, CF flags are set according to the oper-
ation.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.vvvv != 1111B.
Vol. 2B 4-411PTEST- Logical Compare

INSTRUCTION SET REFERENCE, M-Z
PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ— Unpack
High Data
Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 68 /r1

PUNPCKHBW mm, mm/m64

RM V/V MMX Unpack and interleave high-
order bytes from mm and
mm/m64 into mm.

66 0F 68 /r

PUNPCKHBW xmm1, xmm2/m128

RM V/V SSE2 Unpack and interleave high-
order bytes from xmm1 and
xmm2/m128 into xmm1.

0F 69 /r1

PUNPCKHWD mm, mm/m64

RM V/V MMX Unpack and interleave high-
order words from mm and
mm/m64 into mm.

66 0F 69 /r

PUNPCKHWD xmm1, xmm2/m128

RM V/V SSE2 Unpack and interleave high-
order words from xmm1 and
xmm2/m128 into xmm1.

0F 6A /r1

PUNPCKHDQ mm, mm/m64

RM V/V MMX Unpack and interleave high-
order doublewords from mm
and mm/m64 into mm.

66 0F 6A /r

PUNPCKHDQ xmm1, xmm2/m128

RM V/V SSE2 Unpack and interleave high-
order doublewords from
xmm1 and xmm2/m128
into xmm1.

66 0F 6D /r

PUNPCKHQDQ xmm1, xmm2/m128

RM V/V SSE2 Unpack and interleave high-
order quadwords from
xmm1 and xmm2/m128
into xmm1.

VEX.NDS.128.66.0F.WIG 68/r

VPUNPCKHBW xmm1,xmm2,
xmm3/m128

RVM V/V AVX Interleave high-order bytes
from xmm2 and
xmm3/m128 into xmm1.

VEX.NDS.128.66.0F.WIG 69/r

VPUNPCKHWD xmm1,xmm2,
xmm3/m128

RVM V/V AVX Interleave high-order words
from xmm2 and
xmm3/m128 into xmm1.

VEX.NDS.128.66.0F.WIG 6A/r

VPUNPCKHDQ xmm1, xmm2,
xmm3/m128

RVM V/V AVX Interleave high-order
doublewords from xmm2
and xmm3/m128 into
xmm1.
4-412 Vol. 2B PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ— Unpack High Data

INSTRUCTION SET REFERENCE, M-Z
Instruction Operand Encoding

Description

Unpacks and interleaves the high-order data elements (bytes, words, doublewords,
or quadwords) of the destination operand (first operand) and source operand
(second operand) into the destination operand. Figure 4-15 shows the unpack oper-
ation for bytes in 64-bit operands. The low-order data elements are ignored.

The source operand can be an MMX technology register or a 64-bit memory location,
or it can be an XMM register or a 128-bit memory location. The destination operand
can be an MMX technology register or an XMM register. When the source data comes
from a 64-bit memory operand, the full 64-bit operand is accessed from memory, but
the instruction uses only the high-order 32 bits. When the source data comes from a

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

VEX.NDS.128.66.0F.WIG 6D/r
VPUNPCKHQDQ xmm1, xmm2,
xmm3/m128

RVM V/V AVX Interleave high-order
quadword from xmm2 and
xmm3/m128 into xmm1
register.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

Figure 4-15. PUNPCKHBW Instruction Operation Using 64-bit Operands

X4X7 X6 X5 Y4Y7 Y6 Y5

X0X3 X2 X1Y0Y3 Y2 Y1 X4X7 X6 X5Y4Y7 Y6 Y5SRC DEST

DEST
Vol. 2B 4-413PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ— Unpack High Data

INSTRUCTION SET REFERENCE, M-Z
128-bit memory operand, an implementation may fetch only the appropriate 64 bits;
however, alignment to a 16-byte boundary and normal segment checking will still be
enforced.

The PUNPCKHBW instruction interleaves the high-order bytes of the source and
destination operands, the PUNPCKHWD instruction interleaves the high-order words
of the source and destination operands, the PUNPCKHDQ instruction interleaves the
high-order doubleword (or doublewords) of the source and destination operands,
and the PUNPCKHQDQ instruction interleaves the high-order quadwords of the
source and destination operands.

These instructions can be used to convert bytes to words, words to doublewords,
doublewords to quadwords, and quadwords to double quadwords, respectively, by
placing all 0s in the source operand. Here, if the source operand contains all 0s, the
result (stored in the destination operand) contains zero extensions of the high-order
data elements from the original value in the destination operand. For example, with
the PUNPCKHBW instruction the high-order bytes are zero extended (that is,
unpacked into unsigned word integers), and with the PUNPCKHWD instruction, the
high-order words are zero extended (unpacked into unsigned doubleword integers).

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE versions: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded versions: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise instructions will #UD.

Operation

PUNPCKHBW instruction with 64-bit operands:
DEST[7:0] ← DEST[39:32];
DEST[15:8] ← SRC[39:32];
DEST[23:16] ← DEST[47:40];
DEST[31:24] ← SRC[47:40];
DEST[39:32] ← DEST[55:48];
DEST[47:40] ← SRC[55:48];
DEST[55:48] ← DEST[63:56];
DEST[63:56] ← SRC[63:56];

PUNPCKHW instruction with 64-bit operands:
DEST[15:0] ← DEST[47:32];
DEST[31:16] ← SRC[47:32];
DEST[47:32] ← DEST[63:48];
DEST[63:48] ← SRC[63:48];

PUNPCKHDQ instruction with 64-bit operands:
DEST[31:0] ← DEST[63:32];
4-414 Vol. 2B PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ— Unpack High Data

INSTRUCTION SET REFERENCE, M-Z
DEST[63:32] ← SRC[63:32];
PUNPCKHBW instruction with 128-bit operands:

DEST[7:0]← DEST[71:64];
DEST[15:8] ← SRC[71:64];
DEST[23:16] ← DEST[79:72];
DEST[31:24] ← SRC[79:72];
DEST[39:32] ← DEST[87:80];
DEST[47:40] ← SRC[87:80];
DEST[55:48] ← DEST[95:88];
DEST[63:56] ← SRC[95:88];
DEST[71:64] ← DEST[103:96];
DEST[79:72] ← SRC[103:96];
DEST[87:80] ← DEST[111:104];
DEST[95:88] ← SRC[111:104];
DEST[103:96] ← DEST[119:112];
DEST[111:104] ← SRC[119:112];
DEST[119:112] ← DEST[127:120];
DEST[127:120] ← SRC[127:120];

PUNPCKHWD instruction with 128-bit operands:
DEST[15:0] ← DEST[79:64];
DEST[31:16] ← SRC[79:64];
DEST[47:32] ← DEST[95:80];
DEST[63:48] ← SRC[95:80];
DEST[79:64] ← DEST[111:96];
DEST[95:80] ← SRC[111:96];
DEST[111:96] ← DEST[127:112];
DEST[127:112] ← SRC[127:112];

PUNPCKHDQ instruction with 128-bit operands:
DEST[31:0] ← DEST[95:64];
DEST[63:32] ← SRC[95:64];
DEST[95:64] ← DEST[127:96];
DEST[127:96] ← SRC[127:96];

PUNPCKHQDQ instruction:
DEST[63:0] ← DEST[127:64];
DEST[127:64] ← SRC[127:64];

PUNPCKHBW
DEST[127:0] INTERLEAVE_HIGH_BYTES(DEST, SRC)
DEST[VLMAX-1:128] (Unmodified)

VPUNPCKHBW
Vol. 2B 4-415PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ— Unpack High Data

INSTRUCTION SET REFERENCE, M-Z
DEST[127:0] INTERLEAVE_HIGH_BYTES(SRC1, SRC2)
DEST[VLMAX-1:128] 0

PUNPCKHWD
DEST[127:0] INTERLEAVE_HIGH_WORDS(DEST, SRC)
DEST[VLMAX-1:128] (Unmodified)

VPUNPCKHWD
DEST[127:0] INTERLEAVE_HIGH_WORDS(SRC1, SRC2)
DEST[VLMAX-1:128] 0

PUNPCKHDQ
DEST[127:0] INTERLEAVE_HIGH_DWORDS(DEST, SRC)
DEST[VLMAX-1:128] (Unmodified)

VPUNPCKHDQ
DEST[127:0] INTERLEAVE_HIGH_DWORDS(SRC1, SRC2)
DEST[VLMAX-1:128] 0

PUNPCKHQDQ
DEST[127:0] INTERLEAVE_HIGH_QWORDS(DEST, SRC)
DEST[VLMAX-1:128] (Unmodified)

VPUNPCKHQDQ
DEST[127:0] INTERLEAVE_HIGH_QWORDS(SRC1, SRC2)

DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalents

PUNPCKHBW: __m64 _mm_unpackhi_pi8(__m64 m1, __m64 m2)

PUNPCKHBW: __m128i _mm_unpackhi_epi8(__m128i m1, __m128i m2)

PUNPCKHWD: __m64 _mm_unpackhi_pi16(__m64 m1,__m64 m2)

PUNPCKHWD: __m128i _mm_unpackhi_epi16(__m128i m1,__m128i m2)

PUNPCKHDQ: __m64 _mm_unpackhi_pi32(__m64 m1, __m64 m2)

PUNPCKHDQ: __m128i _mm_unpackhi_epi32(__m128i m1, __m128i m2)

PUNPCKHQDQ: __m128i _mm_unpackhi_epi64 (__m128i a, __m128i b)

Flags Affected

None.
4-416 Vol. 2B PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ— Unpack High Data

INSTRUCTION SET REFERENCE, M-Z
Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
Vol. 2B 4-417PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ— Unpack High Data

INSTRUCTION SET REFERENCE, M-Z
PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ—
Unpack Low Data
Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 60 /r1

PUNPCKLBW mm, mm/m32

RM V/V MMX Interleave low-order bytes
from mm and mm/m32 into
mm.

66 0F 60 /r

PUNPCKLBW xmm1, xmm2/m128

RM V/V SSE2 Interleave low-order bytes
from xmm1 and
xmm2/m128 into xmm1.

0F 61 /r1

PUNPCKLWD mm, mm/m32

RM V/V MMX Interleave low-order words
from mm and mm/m32 into
mm.

66 0F 61 /r

PUNPCKLWD xmm1, xmm2/m128

RM V/V SSE2 Interleave low-order words
from xmm1 and
xmm2/m128 into xmm1.

0F 62 /r1

PUNPCKLDQ mm, mm/m32

RM V/V MMX Interleave low-order
doublewords from mm and
mm/m32 into mm.

66 0F 62 /r

PUNPCKLDQ xmm1, xmm2/m128

RM V/V SSE2 Interleave low-order
doublewords from xmm1
and xmm2/m128 into
xmm1.

66 0F 6C /r

PUNPCKLQDQ xmm1, xmm2/m128

RM V/V SSE2 Interleave low-order
quadword from xmm1 and
xmm2/m128 into xmm1
register.

VEX.NDS.128.66.0F.WIG 60/r

VPUNPCKLBW xmm1,xmm2,
xmm3/m128

RVM V/V AVX Interleave low-order bytes
from xmm2 and
xmm3/m128 into xmm1.

VEX.NDS.128.66.0F.WIG 61/r

VPUNPCKLWD xmm1,xmm2,
xmm3/m128

RVM V/V AVX Interleave low-order words
from xmm2 and
xmm3/m128 into xmm1.

VEX.NDS.128.66.0F.WIG 62/r

VPUNPCKLDQ xmm1, xmm2,
xmm3/m128

RVM V/V AVX Interleave low-order
doublewords from xmm2
and xmm3/m128 into
xmm1.
4-418 Vol. 2B PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ— Unpack Low Data

INSTRUCTION SET REFERENCE, M-Z
Instruction Operand Encoding

Description

Unpacks and interleaves the low-order data elements (bytes, words, doublewords,
and quadwords) of the destination operand (first operand) and source operand
(second operand) into the destination operand. (Figure 4-16 shows the unpack oper-
ation for bytes in 64-bit operands.). The high-order data elements are ignored.

The source operand can be an MMX technology register or a 32-bit memory location,
or it can be an XMM register or a 128-bit memory location. The destination operand
can be an MMX technology register or an XMM register. When the source data comes
from a 128-bit memory operand, an implementation may fetch only the appropriate
64 bits; however, alignment to a 16-byte boundary and normal segment checking
will still be enforced.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

VEX.NDS.128.66.0F.WIG 6C/r

VPUNPCKLQDQ xmm1, xmm2,
xmm3/m128

RVM V/V AVX Interleave low-order
quadword from xmm2 and
xmm3/m128 into xmm1
register.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

Figure 4-16. PUNPCKLBW Instruction Operation Using 64-bit Operands

X0X3 X2 X1 Y0Y3 Y2 Y1

X0X3 X2 X1Y0Y3 Y2 Y1 X4X7 X6 X5Y4Y7 Y6 Y5SRC DEST

DEST
Vol. 2B 4-419PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ— Unpack Low Data

INSTRUCTION SET REFERENCE, M-Z
The PUNPCKLBW instruction interleaves the low-order bytes of the source and desti-
nation operands, the PUNPCKLWD instruction interleaves the low-order words of the
source and destination operands, the PUNPCKLDQ instruction interleaves the low-
order doubleword (or doublewords) of the source and destination operands, and the
PUNPCKLQDQ instruction interleaves the low-order quadwords of the source and
destination operands.

These instructions can be used to convert bytes to words, words to doublewords,
doublewords to quadwords, and quadwords to double quadwords, respectively, by
placing all 0s in the source operand. Here, if the source operand contains all 0s, the
result (stored in the destination operand) contains zero extensions of the high-order
data elements from the original value in the destination operand. For example, with
the PUNPCKLBW instruction the high-order bytes are zero extended (that is,
unpacked into unsigned word integers), and with the PUNPCKLWD instruction, the
high-order words are zero extended (unpacked into unsigned doubleword integers).

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE versions: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded versions: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise instructions will #UD.

Operation

PUNPCKLBW instruction with 64-bit operands:
DEST[63:56] ← SRC[31:24];
DEST[55:48] ← DEST[31:24];
DEST[47:40] ← SRC[23:16];
DEST[39:32] ← DEST[23:16];
DEST[31:24] ← SRC[15:8];
DEST[23:16] ← DEST[15:8];
DEST[15:8] ← SRC[7:0];
DEST[7:0] ← DEST[7:0];

PUNPCKLWD instruction with 64-bit operands:
DEST[63:48] ← SRC[31:16];
DEST[47:32] ← DEST[31:16];
DEST[31:16] ← SRC[15:0];
DEST[15:0] ← DEST[15:0];

PUNPCKLDQ instruction with 64-bit operands:
DEST[63:32] ← SRC[31:0];
DEST[31:0] ← DEST[31:0];

PUNPCKLBW instruction with 128-bit operands:
DEST[7:0]← DEST[7:0];
4-420 Vol. 2B PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ— Unpack Low Data

INSTRUCTION SET REFERENCE, M-Z
DEST[15:8] ← SRC[7:0];
DEST[23:16] ← DEST[15:8];
DEST[31:24] ← SRC[15:8];
DEST[39:32] ← DEST[23:16];
DEST[47:40] ← SRC[23:16];
DEST[55:48] ← DEST[31:24];
DEST[63:56] ← SRC[31:24];
DEST[71:64] ← DEST[39:32];
DEST[79:72] ← SRC[39:32];
DEST[87:80] ← DEST[47:40];
DEST[95:88] ← SRC[47:40];
DEST[103:96] ← DEST[55:48];
DEST[111:104] ← SRC[55:48];
DEST[119:112] ← DEST[63:56];
DEST[127:120] ← SRC[63:56];

PUNPCKLWD instruction with 128-bit operands:
DEST[15:0] ← DEST[15:0];
DEST[31:16] ← SRC[15:0];
DEST[47:32] ← DEST[31:16];
DEST[63:48] ← SRC[31:16];
DEST[79:64] ← DEST[47:32];
DEST[95:80] ← SRC[47:32];
DEST[111:96] ← DEST[63:48];
DEST[127:112] ← SRC[63:48];

PUNPCKLDQ instruction with 128-bit operands:
DEST[31:0] ← DEST[31:0];
DEST[63:32] ← SRC[31:0];
DEST[95:64] ← DEST[63:32];
DEST[127:96] ← SRC[63:32];

PUNPCKLQDQ
DEST[63:0] ← DEST[63:0];
DEST[127:64] ← SRC[63:0];

VPUNPCKLBW
DEST[127:0] INTERLEAVE_BYTES(SRC1, SRC2)
DEST[VLMAX-1:128] 0

VPUNPCKLWD
DEST[127:0] INTERLEAVE_WORDS(SRC1, SRC2)
DEST[VLMAX-1:128] 0
Vol. 2B 4-421PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ— Unpack Low Data

INSTRUCTION SET REFERENCE, M-Z
VPUNPCKLDQ
DEST[127:0] INTERLEAVE_DWORDS(SRC1, SRC2)
DEST[VLMAX-1:128] 0

VPUNPCKLQDQ
DEST[127:0] INTERLEAVE_QWORDS(SRC1, SRC2)
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalents

PUNPCKLBW: __m64 _mm_unpacklo_pi8 (__m64 m1, __m64 m2)

PUNPCKLBW: __m128i _mm_unpacklo_epi8 (__m128i m1, __m128i m2)

PUNPCKLWD: __m64 _mm_unpacklo_pi16 (__m64 m1, __m64 m2)

PUNPCKLWD: __m128i _mm_unpacklo_epi16 (__m128i m1, __m128i m2)

PUNPCKLDQ: __m64 _mm_unpacklo_pi32 (__m64 m1, __m64 m2)

PUNPCKLDQ: __m128i _mm_unpacklo_epi32 (__m128i m1, __m128i m2)

PUNPCKLQDQ: __m128i _mm_unpacklo_epi64 (__m128i m1, __m128i m2)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
4-422 Vol. 2B PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ— Unpack Low Data

INSTRUCTION SET REFERENCE, M-Z
PUSH—Push Word, Doubleword or Quadword Onto the Stack

Instruction Operand Encoding

Description

Decrements the stack pointer and then stores the source operand on the top of the
stack. Address and operand sizes are determined and used as follows:
• Address size. The D flag in the current code-segment descriptor determines the

default address size; it may be overridden by an instruction prefix (67H).
The address size is used only when referencing a source operand in memory.

Opcode* Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

FF /6 PUSH r/m16 M Valid Valid Push r/m16.

FF /6 PUSH r/m32 M N.E. Valid Push r/m32.

FF /6 PUSH r/m64 M Valid N.E. Push r/m64.

50+rw PUSH r16 O Valid Valid Push r16.

50+rd PUSH r32 O N.E. Valid Push r32.

50+rd PUSH r64 O Valid N.E. Push r64.

6A PUSH imm8 I Valid Valid Push imm8.

68 PUSH imm16 I Valid Valid Push imm16.

68 PUSH imm32 I Valid Valid Push imm32.

0E PUSH CS NP Invalid Valid Push CS.

16 PUSH SS NP Invalid Valid Push SS.

1E PUSH DS NP Invalid Valid Push DS.

06 PUSH ES NP Invalid Valid Push ES.

0F A0 PUSH FS NP Valid Valid Push FS.

0F A8 PUSH GS NP Valid Valid Push GS.

NOTES:
* See IA-32 Architecture Compatibility section below.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA

O opcode + rd (w) NA NA NA

I imm8/16/32 NA NA NA

NP NA NA NA NA
Vol. 2B 4-423PUSH—Push Word, Doubleword or Quadword Onto the Stack

INSTRUCTION SET REFERENCE, M-Z
• Operand size. The D flag in the current code-segment descriptor determines the
default operand size; it may be overridden by instruction prefixes (66H or
REX.W).
The operand size (16, 32, or 64 bits) determines the amount by which the stack
pointer is decremented (2, 4 or 8).
If the source operand is an immediate and its size is less than the operand size,
a sign-extended value is pushed on the stack. If the source operand is a
segment register (16 bits) and the operand size is greater than 16 bits, a zero-
extended value is pushed on the stack.

• Stack-address size. Outside of 64-bit mode, the B flag in the current stack-
segment descriptor determines the size of the stack pointer (16 or 32 bits); in
64-bit mode, the size of the stack pointer is always 64 bits.
The stack-address size determines the width of the stack pointer when writing
to the stack in memory and when decrementing the stack pointer. (As stated
above, the amount by which the stack pointer is decremented is determined by
the operand size.)
If the operand size is less than the stack-address size, the PUSH instruction may
result in a misaligned stack pointer (a stack pointer that is not aligned on a
doubleword or quadword boundary).

The PUSH ESP instruction pushes the value of the ESP register as it existed before
the instruction was executed. If a PUSH instruction uses a memory operand in which
the ESP register is used for computing the operand address, the address of the
operand is computed before the ESP register is decremented.

If the ESP or SP register is 1 when the PUSH instruction is executed in real-address
mode, a stack-fault exception (#SS) is generated (because the limit of the stack
segment is violated). Its delivery encounters a second stack-fault exception (for the
same reason), causing generation of a double-fault exception (#DF). Delivery of the
double-fault exception encounters a third stack-fault exception, and the logical
processor enters shutdown mode. See the discussion of the double-fault exception in
Chapter 6 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A.

IA-32 Architecture Compatibility

For IA-32 processors from the Intel 286 on, the PUSH ESP instruction pushes the
value of the ESP register as it existed before the instruction was executed. (This is
also true for Intel 64 architecture, real-address and virtual-8086 modes of IA-32
architecture.) For the Intel® 8086 processor, the PUSH SP instruction pushes the new
value of the SP register (that is the value after it has been decremented by 2).

Operation

IF SRC is a segment register
THEN
4-424 Vol. 2B PUSH—Push Word, Doubleword or Quadword Onto the Stack

INSTRUCTION SET REFERENCE, M-Z
IF operand size = 16
THEN TEMP ← SRC;
ELSE TEMP ← ZeroExtend(SRC); (* extend to operand size *)

FI;
ELSE IF SRC is immediate byte

THEN TEMP ← SignExtend(SRC); (* extend to operand size *)
ELSE IF SRC is immediate word (* operand size is 16 *)

THEN TEMP ← SRC;
ELSE IF SRC is immediate doubleword (* operand size is 32 or 64 *)

THEN
IF operand size = 32

THEN TEMP ← SRC;
ELSE TEMP ← SignExtend(SRC); (* extend to operand size of 64 *)

FI;
ELSE IF SRC is in memory

THEN TEMP ← SRC; (* use address and operand sizes *)
ELSE TEMP ← SRC; (* SRC is register; use operand size *)

FI;
IF in 64-bit mode (* stack-address size = 64 *)

THEN
IF operand size = 64

THEN
RSP ← RSP − 8;
Memory[RSP] ← TEMP; (* Push quadword *)

ELSE (* operand size = 16 *)
RSP ← RSP − 2;
Memory[RSP] ← TEMP; (* Push word *)

FI;
ELSE IF stack-address size = 32

THEN
IF operand size = 32

THEN
ESP ← ESP − 4;
Memory[SS:ESP] ← TEMP; (* Push doubleword *)

ELSE (* operand size = 16 *)
ESP ← ESP − 2;
Memory[SS:ESP] ← TEMP; (* Push word *)

FI;
ELSE (* stack-address size = 16 *)

IF operand size = 32
THEN

SP ← SP − 4;
Memory[SS:SP] ← TEMP; (* Push doubleword *)
Vol. 2B 4-425PUSH—Push Word, Doubleword or Quadword Onto the Stack

INSTRUCTION SET REFERENCE, M-Z
ELSE (* operand size = 16 *)
SP ← SP − 2;
Memory[SS:SP] ← TEMP; (* Push word *)

FI;
FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
If the new value of the SP or ESP register is outside the stack
segment limit.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used.
4-426 Vol. 2B PUSH—Push Word, Doubleword or Quadword Onto the Stack

INSTRUCTION SET REFERENCE, M-Z
Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
#SS(0) If the stack address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
Vol. 2B 4-427PUSH—Push Word, Doubleword or Quadword Onto the Stack

INSTRUCTION SET REFERENCE, M-Z
PUSHA/PUSHAD—Push All General-Purpose Registers

Instruction Operand Encoding

Description

Pushes the contents of the general-purpose registers onto the stack. The registers
are stored on the stack in the following order: EAX, ECX, EDX, EBX, ESP (original
value), EBP, ESI, and EDI (if the current operand-size attribute is 32) and AX, CX, DX,
BX, SP (original value), BP, SI, and DI (if the operand-size attribute is 16). These
instructions perform the reverse operation of the POPA/POPAD instructions. The
value pushed for the ESP or SP register is its value before prior to pushing the first
register (see the “Operation” section below).

The PUSHA (push all) and PUSHAD (push all double) mnemonics reference the same
opcode. The PUSHA instruction is intended for use when the operand-size attribute is
16 and the PUSHAD instruction for when the operand-size attribute is 32. Some
assemblers may force the operand size to 16 when PUSHA is used and to 32 when
PUSHAD is used. Others may treat these mnemonics as synonyms (PUSHA/PUSHAD)
and use the current setting of the operand-size attribute to determine the size of
values to be pushed from the stack, regardless of the mnemonic used.

In the real-address mode, if the ESP or SP register is 1, 3, or 5 when PUSHA/PUSHAD
executes: an #SS exception is generated but not delivered (the stack error reported
prevents #SS delivery). Next, the processor generates a #DF exception and enters a
shutdown state as described in the #DF discussion in Chapter 6 of the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3A.

This instruction executes as described in compatibility mode and legacy mode. It is
not valid in 64-bit mode.

Operation

IF 64-bit Mode

THEN #UD

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

60 PUSHA NP Invalid Valid Push AX, CX, DX, BX, original
SP, BP, SI, and DI.

60 PUSHAD NP Invalid Valid Push EAX, ECX, EDX, EBX,
original ESP, EBP, ESI, and
EDI.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
4-428 Vol. 2B PUSHA/PUSHAD—Push All General-Purpose Registers

INSTRUCTION SET REFERENCE, M-Z
FI;

IF OperandSize = 32 (* PUSHAD instruction *)
THEN

Temp ← (ESP);
Push(EAX);
Push(ECX);
Push(EDX);
Push(EBX);
Push(Temp);
Push(EBP);
Push(ESI);
Push(EDI);

ELSE (* OperandSize = 16, PUSHA instruction *)
Temp ← (SP);
Push(AX);
Push(CX);
Push(DX);
Push(BX);
Push(Temp);
Push(BP);
Push(SI);
Push(DI);

FI;

Flags Affected

None.

Protected Mode Exceptions
#SS(0) If the starting or ending stack address is outside the stack

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference is made while the current

privilege level is 3 and alignment checking is enabled.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If the ESP or SP register contains 7, 9, 11, 13, or 15.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If the ESP or SP register contains 7, 9, 11, 13, or 15.
Vol. 2B 4-429PUSHA/PUSHAD—Push All General-Purpose Registers

INSTRUCTION SET REFERENCE, M-Z
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference is made while alignment

checking is enabled.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#UD If in 64-bit mode.
4-430 Vol. 2B PUSHA/PUSHAD—Push All General-Purpose Registers

INSTRUCTION SET REFERENCE, M-Z
PUSHF/PUSHFD—Push EFLAGS Register onto the Stack

Instruction Operand Encoding

Description

Decrements the stack pointer by 4 (if the current operand-size attribute is 32) and
pushes the entire contents of the EFLAGS register onto the stack, or decrements the
stack pointer by 2 (if the operand-size attribute is 16) and pushes the lower 16 bits
of the EFLAGS register (that is, the FLAGS register) onto the stack. These instruc-
tions reverse the operation of the POPF/POPFD instructions.

When copying the entire EFLAGS register to the stack, the VM and RF flags (bits 16
and 17) are not copied; instead, the values for these flags are cleared in the EFLAGS
image stored on the stack. See Chapter 3 of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 1, for more information about the EFLAGS
register.

The PUSHF (push flags) and PUSHFD (push flags double) mnemonics reference the
same opcode. The PUSHF instruction is intended for use when the operand-size
attribute is 16 and the PUSHFD instruction for when the operand-size attribute is 32.
Some assemblers may force the operand size to 16 when PUSHF is used and to 32
when PUSHFD is used. Others may treat these mnemonics as synonyms
(PUSHF/PUSHFD) and use the current setting of the operand-size attribute to deter-
mine the size of values to be pushed from the stack, regardless of the mnemonic
used.

In 64-bit mode, the instruction’s default operation is to decrement the stack pointer
(RSP) by 8 and pushes RFLAGS on the stack. 16-bit operation is supported using the
operand size override prefix 66H. 32-bit operand size cannot be encoded in this
mode. When copying RFLAGS to the stack, the VM and RF flags (bits 16 and 17) are
not copied; instead, values for these flags are cleared in the RFLAGS image stored on
the stack.

When in virtual-8086 mode and the I/O privilege level (IOPL) is less than 3, the
PUSHF/PUSHFD instruction causes a general protection exception (#GP).

Opcode* Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

9C PUSHF NP Valid Valid Push lower 16 bits of
EFLAGS.

9C PUSHFD NP N.E. Valid Push EFLAGS.

9C PUSHFQ NP Valid N.E. Push RFLAGS.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
Vol. 2B 4-431PUSHF/PUSHFD—Push EFLAGS Register onto the Stack

INSTRUCTION SET REFERENCE, M-Z
In the real-address mode, if the ESP or SP register is 1 when PUSHF/PUSHFD instruc-
tion executes: an #SS exception is generated but not delivered (the stack error
reported prevents #SS delivery). Next, the processor generates a #DF exception and
enters a shutdown state as described in the #DF discussion in Chapter 6 of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

Operation

IF (PE = 0) or (PE = 1 and ((VM = 0) or (VM = 1 and IOPL = 3)))
(* Real-Address Mode, Protected mode, or Virtual-8086 mode with IOPL equal to 3 *)

THEN
IF OperandSize = 32

THEN
push (EFLAGS AND 00FCFFFFH);
(* VM and RF EFLAG bits are cleared in image stored on the stack *)

ELSE
push (EFLAGS); (* Lower 16 bits only *)

FI;

ELSE IF 64-bit MODE (* In 64-bit Mode *)
IF OperandSize = 64

THEN
push (RFLAGS AND 00000000_00FCFFFFH);
(* VM and RF RFLAG bits are cleared in image stored on the stack; *)

ELSE
push (EFLAGS); (* Lower 16 bits only *)

FI;

ELSE (* In Virtual-8086 Mode with IOPL less than 3 *)
#GP(0); (* Trap to virtual-8086 monitor *)

FI;

Flags Affected

None.

Protected Mode Exceptions
#SS(0) If the new value of the ESP register is outside the stack segment

boundary.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference is made while the current

privilege level is 3 and alignment checking is enabled.
#UD If the LOCK prefix is used.
4-432 Vol. 2B PUSHF/PUSHFD—Push EFLAGS Register onto the Stack

INSTRUCTION SET REFERENCE, M-Z
Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If the I/O privilege level is less than 3.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference is made while alignment

checking is enabled.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
#SS(0) If the stack address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference is made while the current

privilege level is 3 and alignment checking is enabled.
#UD If the LOCK prefix is used.
Vol. 2B 4-433PUSHF/PUSHFD—Push EFLAGS Register onto the Stack

INSTRUCTION SET REFERENCE, M-Z
PXOR—Logical Exclusive OR

Instruction Operand Encoding

Description

Performs a bitwise logical exclusive-OR (XOR) operation on the source operand
(second operand) and the destination operand (first operand) and stores the result in
the destination operand. The source operand can be an MMX technology register or a
64-bit memory location or it can be an XMM register or a 128-bit memory location.
The destination operand can be an MMX technology register or an XMM register. Each
bit of the result is 1 if the corresponding bits of the two operands are different; each
bit is 0 if the corresponding bits of the operands are the same.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise instructions will #UD.

Operation

PXOR (128-bit Legacy SSE version)

Opcode*/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F EF /r1

PXOR mm, mm/m64

RM V/V MMX Bitwise XOR of mm/m64
and mm.

66 0F EF /r

PXOR xmm1, xmm2/m128

RM V/V SSE2 Bitwise XOR of
xmm2/m128 and xmm1.

VEX.NDS.128.66.0F.WIG EF /r
VPXOR xmm1, xmm2, xmm3/m128

RVM V/V AVX Bitwise XOR of
xmm3/m128 and xmm2.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
4-434 Vol. 2B PXOR—Logical Exclusive OR

INSTRUCTION SET REFERENCE, M-Z
DEST DEST XOR SRC
DEST[VLMAX-1:128] (Unmodified)

VPXOR (VEX.128 encoded version)
DEST SRC1 XOR SRC2
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

PXOR: __m64 _mm_xor_si64 (__m64 m1, __m64 m2)

PXOR: __m128i _mm_xor_si128 (__m128i a, __m128i b)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
Vol. 2B 4-435PXOR—Logical Exclusive OR

INSTRUCTION SET REFERENCE, M-Z
RCL/RCR/ROL/ROR-—Rotate

Opcode** Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

D0 /2 RCL r/m8, 1 M1 Valid Valid Rotate 9 bits (CF, r/m8) left
once.

REX + D0 /2 RCL r/m8*, 1 M1 Valid N.E. Rotate 9 bits (CF, r/m8) left
once.

D2 /2 RCL r/m8, CL MC Valid Valid Rotate 9 bits (CF, r/m8) left
CL times.

REX + D2 /2 RCL r/m8*, CL MC Valid N.E. Rotate 9 bits (CF, r/m8) left
CL times.

C0 /2 ib RCL r/m8, imm8 MI Valid Valid Rotate 9 bits (CF, r/m8) left
imm8 times.

REX + C0 /2 ib RCL r/m8*, imm8 MI Valid N.E. Rotate 9 bits (CF, r/m8) left
imm8 times.

D1 /2 RCL r/m16, 1 M1 Valid Valid Rotate 17 bits (CF, r/m16)
left once.

D3 /2 RCL r/m16, CL MC Valid Valid Rotate 17 bits (CF, r/m16)
left CL times.

C1 /2 ib RCL r/m16, imm8 MI Valid Valid Rotate 17 bits (CF, r/m16)
left imm8 times.

D1 /2 RCL r/m32, 1 M1 Valid Valid Rotate 33 bits (CF, r/m32)
left once.

REX.W + D1 /2 RCL r/m64, 1 M1 Valid N.E. Rotate 65 bits (CF, r/m64)
left once. Uses a 6 bit count.

D3 /2 RCL r/m32, CL MC Valid Valid Rotate 33 bits (CF, r/m32)
left CL times.

REX.W + D3 /2 RCL r/m64, CL MC Valid N.E. Rotate 65 bits (CF, r/m64)
left CL times. Uses a 6 bit
count.

C1 /2 ib RCL r/m32, imm8 MI Valid Valid Rotate 33 bits (CF, r/m32)
left imm8 times.

REX.W + C1 /2
ib

RCL r/m64, imm8 MI Valid N.E. Rotate 65 bits (CF, r/m64)
left imm8 times. Uses a 6 bit
count.

D0 /3 RCR r/m8, 1 M1 Valid Valid Rotate 9 bits (CF, r/m8) right
once.

REX + D0 /3 RCR r/m8*, 1 M1 Valid N.E. Rotate 9 bits (CF, r/m8) right
once.
4-436 Vol. 2B RCL/RCR/ROL/ROR-—Rotate

INSTRUCTION SET REFERENCE, M-Z
Opcode** Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

D2 /3 RCR r/m8, CL MC Valid Valid Rotate 9 bits (CF, r/m8) right
CL times.

REX + D2 /3 RCR r/m8*, CL MC Valid N.E. Rotate 9 bits (CF, r/m8) right
CL times.

C0 /3 ib RCR r/m8, imm8 MI Valid Valid Rotate 9 bits (CF, r/m8) right
imm8 times.

REX + C0 /3 ib RCR r/m8*, imm8 MI Valid N.E. Rotate 9 bits (CF, r/m8) right
imm8 times.

D1 /3 RCR r/m16, 1 M1 Valid Valid Rotate 17 bits (CF, r/m16)
right once.

D3 /3 RCR r/m16, CL MC Valid Valid Rotate 17 bits (CF, r/m16)
right CL times.

C1 /3 ib RCR r/m16, imm8 MI Valid Valid Rotate 17 bits (CF, r/m16)
right imm8 times.

D1 /3 RCR r/m32, 1 M1 Valid Valid Rotate 33 bits (CF, r/m32)
right once. Uses a 6 bit
count.

REX.W + D1 /3 RCR r/m64, 1 M1 Valid N.E. Rotate 65 bits (CF, r/m64)
right once. Uses a 6 bit
count.

D3 /3 RCR r/m32, CL MC Valid Valid Rotate 33 bits (CF, r/m32)
right CL times.

REX.W + D3 /3 RCR r/m64, CL MC Valid N.E. Rotate 65 bits (CF, r/m64)
right CL times. Uses a 6 bit
count.

C1 /3 ib RCR r/m32, imm8 MI Valid Valid Rotate 33 bits (CF, r/m32)
right imm8 times.

REX.W + C1 /3
ib

RCR r/m64, imm8 MI Valid N.E. Rotate 65 bits (CF, r/m64)
right imm8 times. Uses a 6
bit count.

D0 /0 ROL r/m8, 1 M1 Valid Valid Rotate 8 bits r/m8 left once.

REX + D0 /0 ROL r/m8*, 1 M1 Valid N.E. Rotate 8 bits r/m8 left once

D2 /0 ROL r/m8, CL MC Valid Valid Rotate 8 bits r/m8 left CL
times.

REX + D2 /0 ROL r/m8*, CL MC Valid N.E. Rotate 8 bits r/m8 left CL
times.

C0 /0 ib ROL r/m8, imm8 MI Valid Valid Rotate 8 bits r/m8 left imm8
times.
Vol. 2B 4-437RCL/RCR/ROL/ROR-—Rotate

INSTRUCTION SET REFERENCE, M-Z
Opcode** Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

REX + C0 /0 ib ROL r/m8*, imm8 MI Valid N.E. Rotate 8 bits r/m8 left imm8
times.

D1 /0 ROL r/m16, 1 M1 Valid Valid Rotate 16 bits r/m16 left
once.

D3 /0 ROL r/m16, CL MC Valid Valid Rotate 16 bits r/m16 left CL
times.

C1 /0 ib ROL r/m16, imm8 MI Valid Valid Rotate 16 bits r/m16 left
imm8 times.

D1 /0 ROL r/m32, 1 M1 Valid Valid Rotate 32 bits r/m32 left
once.

REX.W + D1 /0 ROL r/m64, 1 M1 Valid N.E. Rotate 64 bits r/m64 left
once. Uses a 6 bit count.

D3 /0 ROL r/m32, CL MC Valid Valid Rotate 32 bits r/m32 left CL
times.

REX.W + D3 /0 ROL r/m64, CL MC Valid N.E. Rotate 64 bits r/m64 left CL
times. Uses a 6 bit count.

C1 /0 ib ROL r/m32, imm8 MI Valid Valid Rotate 32 bits r/m32 left
imm8 times.

C1 /0 ib ROL r/m64, imm8 MI Valid N.E. Rotate 64 bits r/m64 left
imm8 times. Uses a 6 bit
count.

D0 /1 ROR r/m8, 1 M1 Valid Valid Rotate 8 bits r/m8 right
once.

REX + D0 /1 ROR r/m8*, 1 M1 Valid N.E. Rotate 8 bits r/m8 right
once.

D2 /1 ROR r/m8, CL MC Valid Valid Rotate 8 bits r/m8 right CL
times.

REX + D2 /1 ROR r/m8*, CL MC Valid N.E. Rotate 8 bits r/m8 right CL
times.

C0 /1 ib ROR r/m8, imm8 MI Valid Valid Rotate 8 bits r/m16 right
imm8 times.

REX + C0 /1 ib ROR r/m8*, imm8 MI Valid N.E. Rotate 8 bits r/m16 right
imm8 times.

D1 /1 ROR r/m16, 1 M1 Valid Valid Rotate 16 bits r/m16 right
once.

D3 /1 ROR r/m16, CL MC Valid Valid Rotate 16 bits r/m16 right
CL times.
4-438 Vol. 2B RCL/RCR/ROL/ROR-—Rotate

INSTRUCTION SET REFERENCE, M-Z
Instruction Operand Encoding

Description

Shifts (rotates) the bits of the first operand (destination operand) the number of bit
positions specified in the second operand (count operand) and stores the result in the
destination operand. The destination operand can be a register or a memory loca-
tion; the count operand is an unsigned integer that can be an immediate or a value in
the CL register. In legacy and compatibility mode, the processor restricts the count to
a number between 0 and 31 by masking all the bits in the count operand except the
5 least-significant bits.

The rotate left (ROL) and rotate through carry left (RCL) instructions shift all the bits
toward more-significant bit positions, except for the most-significant bit, which is
rotated to the least-significant bit location. The rotate right (ROR) and rotate through

Opcode** Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

C1 /1 ib ROR r/m16, imm8 MI Valid Valid Rotate 16 bits r/m16 right
imm8 times.

D1 /1 ROR r/m32, 1 M1 Valid Valid Rotate 32 bits r/m32 right
once.

REX.W + D1 /1 ROR r/m64, 1 M1 Valid N.E. Rotate 64 bits r/m64 right
once. Uses a 6 bit count.

D3 /1 ROR r/m32, CL MC Valid Valid Rotate 32 bits r/m32 right
CL times.

REX.W + D3 /1 ROR r/m64, CL MC Valid N.E. Rotate 64 bits r/m64 right
CL times. Uses a 6 bit count.

C1 /1 ib ROR r/m32, imm8 MI Valid Valid Rotate 32 bits r/m32 right
imm8 times.

REX.W + C1 /1
ib

ROR r/m64, imm8 MI Valid N.E. Rotate 64 bits r/m64 right
imm8 times. Uses a 6 bit
count.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is

used: AH, BH, CH, DH.
** See IA-32 Architecture Compatibility section below.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M1 ModRM:r/m (w) 1 NA NA

MC ModRM:r/m (w) CL NA NA

MI ModRM:r/m (w) imm8 NA NA
Vol. 2B 4-439RCL/RCR/ROL/ROR-—Rotate

INSTRUCTION SET REFERENCE, M-Z
carry right (RCR) instructions shift all the bits toward less significant bit positions,
except for the least-significant bit, which is rotated to the most-significant bit loca-
tion.

The RCL and RCR instructions include the CF flag in the rotation. The RCL instruction
shifts the CF flag into the least-significant bit and shifts the most-significant bit into
the CF flag. The RCR instruction shifts the CF flag into the most-significant bit and
shifts the least-significant bit into the CF flag. For the ROL and ROR instructions, the
original value of the CF flag is not a part of the result, but the CF flag receives a copy
of the bit that was shifted from one end to the other.

The OF flag is defined only for the 1-bit rotates; it is undefined in all other cases
(except RCL and RCR instructions only: a zero-bit rotate does nothing, that is affects
no flags). For left rotates, the OF flag is set to the exclusive OR of the CF bit (after the
rotate) and the most-significant bit of the result. For right rotates, the OF flag is set
to the exclusive OR of the two most-significant bits of the result.

In 64-bit mode, using a REX prefix in the form of REX.R permits access to additional
registers (R8-R15). Use of REX.W promotes the first operand to 64 bits and causes
the count operand to become a 6-bit counter.

IA-32 Architecture Compatibility

The 8086 does not mask the rotation count. However, all other IA-32 processors
(starting with the Intel 286 processor) do mask the rotation count to 5 bits, resulting
in a maximum count of 31. This masking is done in all operating modes (including the
virtual-8086 mode) to reduce the maximum execution time of the instructions.

Operation

(* RCL and RCR instructions *)
SIZE ← OperandSize;
CASE (determine count) OF

SIZE ← 8: tempCOUNT ← (COUNT AND 1FH) MOD 9;
SIZE ← 16: tempCOUNT ← (COUNT AND 1FH) MOD 17;
SIZE ← 32: tempCOUNT ← COUNT AND 1FH;
SIZE ← 64: tempCOUNT ← COUNT AND 3FH;

ESAC;

(* RCL instruction operation *)
WHILE (tempCOUNT ≠ 0)

DO
tempCF ← MSB(DEST);
DEST ← (DEST ∗ 2) + CF;
CF ← tempCF;
tempCOUNT ← tempCOUNT – 1;

OD;
4-440 Vol. 2B RCL/RCR/ROL/ROR-—Rotate

INSTRUCTION SET REFERENCE, M-Z
ELIHW;
IF COUNT = 1

THEN OF ← MSB(DEST) XOR CF;
ELSE OF is undefined;

FI;

(* RCR instruction operation *)
IF COUNT = 1

THEN OF ← MSB(DEST) XOR CF;
ELSE OF is undefined;

FI;
WHILE (tempCOUNT ≠ 0)

DO
tempCF ← LSB(SRC);
DEST ← (DEST / 2) + (CF * 2SIZE);
CF ← tempCF;
tempCOUNT ← tempCOUNT – 1;

OD;

(* ROL and ROR instructions *)
IF OperandSize = 64

THEN COUNTMASK = 3FH;
ELSE COUNTMASK = 1FH;

FI;

(* ROL instruction operation *)
tempCOUNT ← (COUNT & COUNTMASK) MOD SIZE

WHILE (tempCOUNT ≠ 0)
DO

tempCF ← MSB(DEST);
DEST ← (DEST ∗ 2) + tempCF;
tempCOUNT ← tempCOUNT – 1;

OD;
ELIHW;
CF ← LSB(DEST);
IF (COUNT & COUNTMASK) = 1

THEN OF ← MSB(DEST) XOR CF;
ELSE OF is undefined;

FI;

(* ROR instruction operation *)
tempCOUNT ← (COUNT & COUNTMASK) MOD SIZE
Vol. 2B 4-441RCL/RCR/ROL/ROR-—Rotate

INSTRUCTION SET REFERENCE, M-Z
WHILE (tempCOUNT ≠ 0)
DO

tempCF ← LSB(SRC);
DEST ← (DEST / 2) + (tempCF ∗ 2SIZE);
tempCOUNT ← tempCOUNT – 1;

OD;
ELIHW;
CF ← MSB(DEST);
IF (COUNT & COUNTMASK) = 1

THEN OF ← MSB(DEST) XOR MSB − 1(DEST);
ELSE OF is undefined;

FI;

Flags Affected

The CF flag contains the value of the bit shifted into it. The OF flag is affected only for
single-bit rotates (see “Description” above); it is undefined for multi-bit rotates. The
SF, ZF, AF, and PF flags are not affected.

Protected Mode Exceptions
#GP(0) If the source operand is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
4-442 Vol. 2B RCL/RCR/ROL/ROR-—Rotate

INSTRUCTION SET REFERENCE, M-Z
#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the source operand is located in a nonwritable segment.

If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
Vol. 2B 4-443RCL/RCR/ROL/ROR-—Rotate

INSTRUCTION SET REFERENCE, M-Z
RCPPS—Compute Reciprocals of Packed Single-Precision Floating-
Point Values

Instruction Operand Encoding

Description

Performs a SIMD computation of the approximate reciprocals of the four packed
single-precision floating-point values in the source operand (second operand) stores
the packed single-precision floating-point results in the destination operand. The
source operand can be an XMM register or a 128-bit memory location. The destina-
tion operand is an XMM register. See Figure 10-5 in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 1, for an illustration of a SIMD single-
precision floating-point operation.

The relative error for this approximation is:

|Relative Error| ≤ 1.5 ∗ 2−12

The RCPPS instruction is not affected by the rounding control bits in the MXCSR
register. When a source value is a 0.0, an ∞ of the sign of the source value is
returned. A denormal source value is treated as a 0.0 (of the same sign). Tiny results
are always flushed to 0.0, with the sign of the operand. (Input values greater than or
equal to |1.11111111110100000000000B∗2125| are guaranteed to not produce tiny

Opcode*/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 53 /r

RCPPS xmm1, xmm2/m128

RM V/V SSE Computes the approximate
reciprocals of the packed
single-precision floating-
point values in xmm2/m128
and stores the results in
xmm1.

VEX.128.0F.WIG 53 /r

VRCPPS xmm1, xmm2/m128

RM V/V AVX Computes the approximate
reciprocals of packed single-
precision values in
xmm2/mem and stores the
results in xmm1.

VEX.256.0F.WIG 53 /r

VRCPPS ymm1, ymm2/m256

RM V/V AVX Computes the approximate
reciprocals of packed single-
precision values in
ymm2/mem and stores the
results in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
4-444 Vol. 2B RCPPS—Compute Reciprocals of Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
results; input values less than or equal to |1.00000000000110000000001B*2126|
are guaranteed to produce tiny results, which are in turn flushed to 0.0; and input
values in between this range may or may not produce tiny results, depending on the
implementation.) When a source value is an SNaN or QNaN, the SNaN is converted to
a QNaN or the source QNaN is returned.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise
instructions will #UD.

Operation

RCPPS (128-bit Legacy SSE version)
DEST[31:0] APPROXIMATE(1/SRC[31:0])
DEST[63:32] APPROXIMATE(1/SRC[63:32])
DEST[95:64] APPROXIMATE(1/SRC[95:64])
DEST[127:96] APPROXIMATE(1/SRC[127:96])
DEST[VLMAX-1:128] (Unmodified)

VRCPPS (VEX.128 encoded version)
DEST[31:0] APPROXIMATE(1/SRC[31:0])
DEST[63:32] APPROXIMATE(1/SRC[63:32])
DEST[95:64] APPROXIMATE(1/SRC[95:64])
DEST[127:96] APPROXIMATE(1/SRC[127:96])
DEST[VLMAX-1:128] 0

VRCPPS (VEX.256 encoded version)
DEST[31:0] APPROXIMATE(1/SRC[31:0])
DEST[63:32] APPROXIMATE(1/SRC[63:32])
DEST[95:64] APPROXIMATE(1/SRC[95:64])
DEST[127:96] APPROXIMATE(1/SRC[127:96])
DEST[159:128] APPROXIMATE(1/SRC[159:128])
DEST[191:160] APPROXIMATE(1/SRC[191:160])
Vol. 2B 4-445RCPPS—Compute Reciprocals of Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
DEST[223:192] APPROXIMATE(1/SRC[223:192])
DEST[255:224] APPROXIMATE(1/SRC[255:224])

Intel C/C++ Compiler Intrinsic Equivalent

RCCPS: __m128 _mm_rcp_ps(__m128 a)

RCPPS: __m256 _mm256_rcp_ps (__m256 a);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.vvvv != 1111B.
4-446 Vol. 2B RCPPS—Compute Reciprocals of Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
RCPSS—Compute Reciprocal of Scalar Single-Precision Floating-Point
Values

Instruction Operand Encoding

Description

Computes of an approximate reciprocal of the low single-precision floating-point
value in the source operand (second operand) and stores the single-precision
floating-point result in the destination operand. The source operand can be an XMM
register or a 32-bit memory location. The destination operand is an XMM register.
The three high-order doublewords of the destination operand remain unchanged.
See Figure 10-6 in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1, for an illustration of a scalar single-precision floating-point oper-
ation.

The relative error for this approximation is:

|Relative Error| ≤ 1.5 ∗ 2−12

The RCPSS instruction is not affected by the rounding control bits in the MXCSR
register. When a source value is a 0.0, an ∞ of the sign of the source value is
returned. A denormal source value is treated as a 0.0 (of the same sign). Tiny results

Opcode*/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

F3 0F 53 /r

RCPSS xmm1, xmm2/m32

RM V/V SSE Computes the approximate
reciprocal of the scalar
single-precision floating-
point value in xmm2/m32
and stores the result in
xmm1.

VEX.NDS.LIG.F3.0F.WIG 53 /r

VRCPSS xmm1, xmm2, xmm3/m32

RVM V/V AVX Computes the approximate
reciprocal of the scalar
single-precision floating-
point value in xmm3/m32
and stores the result in
xmm1. Also, upper single
precision floating-point
values (bits[127:32]) from
xmm2 are copied to
xmm1[127:32].

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-447RCPSS—Compute Reciprocal of Scalar Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
are always flushed to 0.0, with the sign of the operand. (Input values greater than or
equal to |1.11111111110100000000000B∗2125| are guaranteed to not produce tiny
results; input values less than or equal to |1.00000000000110000000001B*2126|
are guaranteed to produce tiny results, which are in turn flushed to 0.0; and input
values in between this range may or may not produce tiny results, depending on the
implementation.) When a source value is an SNaN or QNaN, the SNaN is converted to
a QNaN or the source QNaN is returned.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The first source operand and the destination operand
are the same. Bits (VLMAX-1:32) of the corresponding YMM destination register
remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed.

Operation

RCPSS (128-bit Legacy SSE version)
DEST[31:0] APPROXIMATE(1/SRC[31:0])
DEST[VLMAX-1:32] (Unmodified)

VRCPSS (VEX.128 encoded version)
DEST[31:0] APPROXIMATE(1/SRC2[31:0])
DEST[127:32] SRC1[127:32]
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

RCPSS: __m128 _mm_rcp_ss(__m128 a)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 5.
4-448 Vol. 2B RCPSS—Compute Reciprocal of Scalar Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
RDFSBASE/RDGSBASE—Read FS/GS Segment Base

Instruction Operand Encoding

Description

Loads the general-purpose register indicated by the modR/M:r/m field with the FS or
GS segment base address.

The destination operand may be either a 32-bit or a 64-bit general-purpose register.
The REX.W prefix indicates the operand size is 64 bits. If no REX.W prefix is used, the
operand size is 32 bits; the upper 32 bits of the source base address (for FS or GS)
are ignored and upper 32 bits of the destination register are cleared.
This instruction is supported only in 64-bit mode.

Operation

DEST ← FS/GS segment base address;

Flags Affected

None

C/C++ Compiler Intrinsic Equivalent

RDFSBASE: unsigned int _readfsbase_u32(void);

RDFSBASE: unsigned __int64 _readfsbase_u64(void);

RDGSBASE: unsigned int _readgsbase_u32(void);

RDGSBASE: unsigned __int64 _readgsbase_u64(void);

Opcode/
Instruction

Op/
En

64/32
-bit
Mode

CPUID
Feature
Flag

Description

F3 0F AE /0
RDFSBASE r32

M V/I FSGSBASE Load the 32-bit destination reg-
ister with the FS base address.

REX.W + F3 0F AE /0
RDFSBASE r64

M V/I FSGSBASE Load the 64-bit destination reg-
ister with the FS base address.

F3 0F AE /1
RDGSBASE r32

M V/I FSGSBASE Load the 32-bit destination reg-
ister with the GS base address.

REX.W + F3 0F AE /1
RDGSBASE r64

M V/I FSGSBASE Load the 64-bit destination reg-
ister with the GS base address.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA
Vol. 2B 4-449RDFSBASE/RDGSBASE—Read FS/GS Segment Base

INSTRUCTION SET REFERENCE, M-Z
Protected Mode Exceptions
#UD The RDFSBASE and RDGSBASE instructions are not recognized

in protected mode.

Real-Address Mode Exceptions
#UD The RDFSBASE and RDGSBASE instructions are not recognized

in real-address mode.

Virtual-8086 Mode Exceptions
#UD The RDFSBASE and RDGSBASE instructions are not recognized

in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The RDFSBASE and RDGSBASE instructions are not recognized

in compatibility mode.

64-Bit Mode Exceptions
#UD If the LOCK prefix is used.

If CR4.FSGSBASE[bit 16] = 0.
If CPUID.07H.0H:EBX.FSGSBASE[bit 0] = 0.
4-450 Vol. 2B RDFSBASE/RDGSBASE—Read FS/GS Segment Base

INSTRUCTION SET REFERENCE, M-Z
RDMSR—Read from Model Specific Register

Instruction Operand Encoding

Description

Reads the contents of a 64-bit model specific register (MSR) specified in the ECX
register into registers EDX:EAX. (On processors that support the Intel 64 architec-
ture, the high-order 32 bits of RCX are ignored.) The EDX register is loaded with the
high-order 32 bits of the MSR and the EAX register is loaded with the low-order 32
bits. (On processors that support the Intel 64 architecture, the high-order 32 bits of
each of RAX and RDX are cleared.) If fewer than 64 bits are implemented in the MSR
being read, the values returned to EDX:EAX in unimplemented bit locations are
undefined.

This instruction must be executed at privilege level 0 or in real-address mode; other-
wise, a general protection exception #GP(0) will be generated. Specifying a reserved
or unimplemented MSR address in ECX will also cause a general protection excep-
tion.

The MSRs control functions for testability, execution tracing, performance-moni-
toring, and machine check errors. Chapter 34, “Model-Specific Registers (MSRs),” in
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C, lists
all the MSRs that can be read with this instruction and their addresses. Note that
each processor family has its own set of MSRs.

The CPUID instruction should be used to determine whether MSRs are supported
(CPUID.01H:EDX[5] = 1) before using this instruction.

IA-32 Architecture Compatibility

The MSRs and the ability to read them with the RDMSR instruction were introduced
into the IA-32 Architecture with the Pentium processor. Execution of this instruction
by an IA-32 processor earlier than the Pentium processor results in an invalid opcode
exception #UD.

Opcode* Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 32 RDMSR NP Valid Valid Read MSR specified by ECX
into EDX:EAX.

NOTES:
* See IA-32 Architecture Compatibility section below.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
Vol. 2B 4-451RDMSR—Read from Model Specific Register

INSTRUCTION SET REFERENCE, M-Z
See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 25 of
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C, for
more information about the behavior of this instruction in VMX non-root operation.

Operation

EDX:EAX ← MSR[ECX];

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the value in ECX specifies a reserved or unimplemented MSR
address.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If the value in ECX specifies a reserved or unimplemented MSR

address.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) The RDMSR instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the value in ECX or RCX specifies a reserved or unimple-
mented MSR address.

#UD If the LOCK prefix is used.
4-452 Vol. 2B RDMSR—Read from Model Specific Register

INSTRUCTION SET REFERENCE, M-Z
RDPMC—Read Performance-Monitoring Counters

Instruction Operand Encoding

Description

The EAX register is loaded with the low-order 32 bits. The EDX register is loaded with
the supported high-order bits of the counter. The number of high-order bits loaded
into EDX is implementation specific on processors that do no support architectural
performance monitoring. The width of fixed-function and general-purpose perfor-
mance counters on processors supporting architectural performance monitoring are
reported by CPUID 0AH leaf. See below for the treatment of the EDX register for
“fast” reads.

The ECX register selects one of two type of performance counters, specifies the index
relative to the base of each counter type, and selects “fast” read mode if supported.
The two counter types are :
• General-purpose or special-purpose performance counters: The number of

general-purpose counters is model specific if the processor does not support
architectural performance monitoring, see Chapter 30 of Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3B. Special-purpose
counters are available only in selected processor members, see Section 30.13,
30.14 of Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B. This counter type is selected if ECX[30] is clear.

• Fixed-function performance counter. The number fixed-function performance
counters is enumerated by CPUID 0AH leaf. See Chapter 30 of Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3B. This counter type
is selected if ECX[30] is set.

ECX[29:0] specifies the index. The width of general-purpose performance counters
are 40-bits for processors that do not support architectural performance monitoring
counters.The width of special-purpose performance counters are implementation
specific. The width of fixed-function performance counters and general-purpose
performance counters on processor supporting architectural performance monitoring
are reported by CPUID 0AH leaf.

Opcode* Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 33 RDPMC NP Valid Valid Read performance-
monitoring counter
specified by ECX into
EDX:EAX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
Vol. 2B 4-453RDPMC—Read Performance-Monitoring Counters

INSTRUCTION SET REFERENCE, M-Z
Table 4-15 lists valid indices of the general-purpose and special-purpose perfor-
mance counters according to the derived DisplayFamily_DisplayModel values of
CPUID encoding for each processor family (see CPUID instruction in Chapter 3,
“Instruction Set Reference, A-L” in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2A).

The Pentium 4 and Intel Xeon processors also support “fast” (32-bit) and “slow”
(40-bit) reads on the first 18 performance counters. Selected this option using

Table 4-15. Valid General and Special Purpose Performance Counter Index Range for
RDPMC

Processor Family DisplayFamily_Display
Model/ Other
Signatures

Valid PMC
Index Range

General-
purpose
Counters

P6 06H_01H, 06H_03H,
06H_05H, 06H_06H,
06H_07H, 06H_08H,
06H_0AH, 06H_0BH

0, 1 0, 1

Pentium® 4, Intel® Xeon
processors

0FH_00H, 0FH_01H,
0FH_02H

≥ 0 and ≤ 17 ≥ 0 and ≤ 17

Pentium 4, Intel Xeon processors (0FH_03H, 0FH_04H,
0FH_06H) and (L3 is
absent)

≥ 0 and ≤ 17 ≥ 0 and ≤ 17

Pentium M processors 06H_09H, 06H_0DH 0, 1 0, 1

64-bit Intel Xeon processors
with L3

0FH_03H, 0FH_04H)
and (L3 is present)

≥ 0 and ≤ 25 ≥ 0 and ≤ 17

Intel® Core™ Solo and Intel®
Core™ Duo processors, Dual-core
Intel® Xeon® processor LV

06H_0EH 0, 1 0, 1

Intel® Core™2 Duo processor,
Intel Xeon processor 3000,
5100, 5300, 7300 Series -
general-purpose PMC

06H_0FH 0, 1 0, 1

Intel Xeon processors 7100
series with L3

(0FH_06H) and (L3 is
present)

≥ 0 and ≤ 25 ≥ 0 and ≤ 17

Intel® Core™2 Duo processor
family, Intel Xeon processor
family - general-purpose PMC

06H_17H 0, 1 0, 1

Intel Xeon processors 7400
series

(06H_1DH) ≥ 0 and ≤ 9 0, 1

Intel® Atom™ processor family 06H_1CH 0, 1 0, 1

Intel® Core™i7 processor, Intel
Xeon processors 5500 series

06H_1AH, 06H_1EH,
06H_1FH, 06H_2EH

0-3 0, 1, 2, 3
4-454 Vol. 2B RDPMC—Read Performance-Monitoring Counters

INSTRUCTION SET REFERENCE, M-Z
ECX[31]. If bit 31 is set, RDPMC reads only the low 32 bits of the selected perfor-
mance counter. If bit 31 is clear, all 40 bits are read. A 32-bit result is returned in EAX
and EDX is set to 0. A 32-bit read executes faster on Pentium 4 processors and Intel
Xeon processors than a full 40-bit read.

On 64-bit Intel Xeon processors with L3, performance counters with indices 18-25
are 32-bit counters. EDX is cleared after executing RDPMC for these counters. On
Intel Xeon processor 7100 series with L3, performance counters with indices 18-25
are also 32-bit counters.

In Intel Core 2 processor family, Intel Xeon processor 3000, 5100, 5300 and 7400
series, the fixed-function performance counters are 40-bits wide; they can be
accessed by RDMPC with ECX between from 4000_0000H and 4000_0002H.

On Intel Xeon processor 7400 series, there are eight 32-bit special-purpose counters
addressable with indices 2-9, ECX[30]=0.

When in protected or virtual 8086 mode, the performance-monitoring counters
enabled (PCE) flag in register CR4 restricts the use of the RDPMC instruction as
follows. When the PCE flag is set, the RDPMC instruction can be executed at any priv-
ilege level; when the flag is clear, the instruction can only be executed at privilege
level 0. (When in real-address mode, the RDPMC instruction is always enabled.)

The performance-monitoring counters can also be read with the RDMSR instruction,
when executing at privilege level 0.

The performance-monitoring counters are event counters that can be programmed
to count events such as the number of instructions decoded, number of interrupts
received, or number of cache loads. Chapter 19, “Performance Monitoring Events,” in
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B, lists
the events that can be counted for various processors in the Intel 64 and IA-32
architecture families.

The RDPMC instruction is not a serializing instruction; that is, it does not imply that
all the events caused by the preceding instructions have been completed or that
events caused by subsequent instructions have not begun. If an exact event count is
desired, software must insert a serializing instruction (such as the CPUID instruction)
before and/or after the RDPMC instruction.

In the Pentium 4 and Intel Xeon processors, performing back-to-back fast reads are
not guaranteed to be monotonic. To guarantee monotonicity on back-to-back reads,
a serializing instruction must be placed between the two RDPMC instructions.

The RDPMC instruction can execute in 16-bit addressing mode or virtual-8086 mode;
however, the full contents of the ECX register are used to select the counter, and the
event count is stored in the full EAX and EDX registers. The RDPMC instruction was
introduced into the IA-32 Architecture in the Pentium Pro processor and the Pentium
processor with MMX technology. The earlier Pentium processors have performance-
monitoring counters, but they must be read with the RDMSR instruction.
Vol. 2B 4-455RDPMC—Read Performance-Monitoring Counters

INSTRUCTION SET REFERENCE, M-Z
Operation

(* Intel Core i7 processor family and Intel Xeon processor 3400, 5500 series*)

Most significant counter bit (MSCB) = 47

IF ((CR4.PCE = 1) or (CPL = 0) or (CR0.PE = 0))
THEN IF (ECX[30] = 1 and ECX[29:0] in valid fixed-counter range)

EAX ← IA32_FIXED_CTR(ECX)[30:0];
EDX ← IA32_FIXED_CTR(ECX)[MSCB:32];

ELSE IF (ECX[30] = 0 and ECX[29:0] in valid general-purpose counter range)
EAX ← PMC(ECX[30:0])[31:0];
EDX ← PMC(ECX[30:0])[MSCB:32];

ELSE (* ECX is not valid or CR4.PCE is 0 and CPL is 1, 2, or 3 and CR0.PE is 1 *)
#GP(0);

FI;

(* Intel Core 2 Duo processor family and Intel Xeon processor 3000, 5100, 5300, 7400 series*)

Most significant counter bit (MSCB) = 39

IF ((CR4.PCE = 1) or (CPL = 0) or (CR0.PE = 0))
THEN IF (ECX[30] = 1 and ECX[29:0] in valid fixed-counter range)

EAX ← IA32_FIXED_CTR(ECX)[30:0];
EDX ← IA32_FIXED_CTR(ECX)[MSCB:32];

ELSE IF (ECX[30] = 0 and ECX[29:0] in valid general-purpose counter range)
EAX ← PMC(ECX[30:0])[31:0];
EDX ← PMC(ECX[30:0])[MSCB:32];

ELSE IF (ECX[30] = 0 and ECX[29:0] in valid special-purpose counter range)
EAX ← PMC(ECX[30:0])[31:0]; (* 32-bit read *)

ELSE (* ECX is not valid or CR4.PCE is 0 and CPL is 1, 2, or 3 and CR0.PE is 1 *)
#GP(0);

FI;

(* P6 family processors and Pentium processor with MMX technology *)

IF (ECX = 0 or 1) and ((CR4.PCE = 1) or (CPL = 0) or (CR0.PE = 0))
THEN

EAX ← PMC(ECX)[31:0];
EDX ← PMC(ECX)[39:32];

ELSE (* ECX is not 0 or 1 or CR4.PCE is 0 and CPL is 1, 2, or 3 and CR0.PE is 1 *)
#GP(0);

FI;
(* Processors with CPUID family 15 *)
4-456 Vol. 2B RDPMC—Read Performance-Monitoring Counters

INSTRUCTION SET REFERENCE, M-Z
IF ((CR4.PCE = 1) or (CPL = 0) or (CR0.PE = 0))
THEN IF (ECX[30:0] = 0:17)

THEN IF ECX[31] = 0
THEN

EAX ← PMC(ECX[30:0])[31:0]; (* 40-bit read *)
EDX ← PMC(ECX[30:0])[39:32];

ELSE (* ECX[31] = 1*)
THEN

EAX ← PMC(ECX[30:0])[31:0]; (* 32-bit read *)
EDX ← 0;

FI;
ELSE IF (*64-bit Intel Xeon processor with L3 *)

THEN IF (ECX[30:0] = 18:25)
EAX ← PMC(ECX[30:0])[31:0]; (* 32-bit read *)
EDX ← 0;

FI;
ELSE IF (*Intel Xeon processor 7100 series with L3 *)

THEN IF (ECX[30:0] = 18:25)
EAX ← PMC(ECX[30:0])[31:0]; (* 32-bit read *)
EDX ← 0;

FI;
ELSE (* Invalid PMC index in ECX[30:0], see Table 4-18. *)

GP(0);
FI;

ELSE (* CR4.PCE = 0 and (CPL = 1, 2, or 3) and CR0.PE = 1 *)
#GP(0);

FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0 and the PCE flag in the CR4

register is clear.
If an invalid performance counter index is specified (see
Table 4-15).
(Pentium 4 and Intel Xeon processors) If the value in ECX[30:0]
is not within the valid range.

#UD If the LOCK prefix is used.
Vol. 2B 4-457RDPMC—Read Performance-Monitoring Counters

INSTRUCTION SET REFERENCE, M-Z
Real-Address Mode Exceptions
#GP If an invalid performance counter index is specified (see

Table 4-15).
(Pentium 4 and Intel Xeon processors) If the value in ECX[30:0]
is not within the valid range.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If the PCE flag in the CR4 register is clear.

If an invalid performance counter index is specified (see
Table 4-15).
(Pentium 4 and Intel Xeon processors) If the value in ECX[30:0]
is not within the valid range.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0 and the PCE flag in the CR4

register is clear.
If an invalid performance counter index is specified in ECX[30:0]
(see Table 4-15).

#UD If the LOCK prefix is used.
4-458 Vol. 2B RDPMC—Read Performance-Monitoring Counters

INSTRUCTION SET REFERENCE, M-Z
RDRAND—Read Random Number

Instruction Operand Encoding

Description

Loads a hardware generated random value and store it in the destination register.
The size of the random value is determined by the destination register size and oper-
ating mode. The Carry Flag indicates whether a random value is available at the
time the instruction is executed. CF=1 indicates that the data in the destination is
valid. Otherwise CF=0 and the data in the destination operand will be returned as
zeros for the specified width. All other flags are forced to 0 in either situation. Soft-
ware must check the state of CF=1 for determining if a valid random value has been
returned, otherwise it is expected to loop and retry execution of RDRAND (see Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 1, Section 7.3.17,
“Random Number Generator Instruction”).
This instruction is available at all privilege levels.
In 64-bit mode, the instruction's default operation size is 32 bits. Using a REX prefix
in the form of REX.B permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bit operands. See the summary
chart at the beginning of this section for encoding data and limits.

Operation

IF HW_RND_GEN.ready = 1
THEN

CASE of
osize is 64: DEST[63:0] ← HW_RND_GEN.data;
osize is 32: DEST[31:0] ← HW_RND_GEN.data;

Opcode*/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F C7 /6

RDRAND r16

M V/V RDRAND Read a 16-bit random
number and store in the
destination register.

0F C7 /6

RDRAND r32

M V/V RDRAND Read a 32-bit random
number and store in the
destination register.

REX.W + 0F C7 /6

RDRAND r64

M V/I RDRAND Read a 64-bit random
number and store in the
destination register.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA
Vol. 2B 4-459RDRAND—Read Random Number

INSTRUCTION SET REFERENCE, M-Z
osize is 16: DEST[15:0] ← HW_RND_GEN.data;
ESAC
CF ← 1;

ELSE
CASE of

osize is 64: DEST[63:0] ← 0;
osize is 32: DEST[31:0] ← 0;
osize is 16: DEST[15:0] ← 0;

ESAC
CF ← 0;

FI
OF, SF, ZF, AF, PF ← 0;

Flags Affected

All flags are affected.

Intel C/C++ Compiler Intrinsic Equivalent

RDRAND: int _rdrand16_step(unsigned short *);

RDRAND: int _rdrand32_step(unsigned int *);

RDRAND: int _rdrand64_step(unsigned __int64 *);

Protected Mode Exceptions
#UD If the LOCK prefix is used.

If the F2H or F3H prefix is used.
If CPUID.01H:ECX.RDRAND[bit 30] = 0.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
4-460 Vol. 2B RDRAND—Read Random Number

INSTRUCTION SET REFERENCE, M-Z
RDTSC—Read Time-Stamp Counter

Instruction Operand Encoding

Description

Loads the current value of the processor’s time-stamp counter (a 64-bit MSR) into
the EDX:EAX registers. The EDX register is loaded with the high-order 32 bits of the
MSR and the EAX register is loaded with the low-order 32 bits. (On processors that
support the Intel 64 architecture, the high-order 32 bits of each of RAX and RDX are
cleared.)

The processor monotonically increments the time-stamp counter MSR every clock
cycle and resets it to 0 whenever the processor is reset. See “Time Stamp Counter”
in Chapter 17 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B, for specific details of the time stamp counter behavior.

When in protected or virtual 8086 mode, the time stamp disable (TSD) flag in
register CR4 restricts the use of the RDTSC instruction as follows. When the TSD flag
is clear, the RDTSC instruction can be executed at any privilege level; when the flag
is set, the instruction can only be executed at privilege level 0. (When in real-address
mode, the RDTSC instruction is always enabled.)

The time-stamp counter can also be read with the RDMSR instruction, when
executing at privilege level 0.

The RDTSC instruction is not a serializing instruction. It does not necessarily wait
until all previous instructions have been executed before reading the counter. Simi-
larly, subsequent instructions may begin execution before the read operation is
performed. If software requires RDTSC to be executed only after all previous instruc-
tions have completed locally, it can either use RDTSCP (if the processor supports that
instruction) or execute the sequence LFENCE;RDTSC.

This instruction was introduced by the Pentium processor.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 25 of
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C, for
more information about the behavior of this instruction in VMX non-root operation.

Operation

IF (CR4.TSD = 0) or (CPL = 0) or (CR0.PE = 0)

Opcode* Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 31 RDTSC NP Valid Valid Read time-stamp counter
into EDX:EAX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
Vol. 2B 4-461RDTSC—Read Time-Stamp Counter

INSTRUCTION SET REFERENCE, M-Z
THEN EDX:EAX ← TimeStampCounter;
ELSE (* CR4.TSD = 1 and (CPL = 1, 2, or 3) and CR0.PE = 1 *)

#GP(0);
FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the TSD flag in register CR4 is set and the CPL is greater than

0.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If the TSD flag in register CR4 is set.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
4-462 Vol. 2B RDTSC—Read Time-Stamp Counter

INSTRUCTION SET REFERENCE, M-Z
RDTSCP—Read Time-Stamp Counter and Processor ID

Instruction Operand Encoding

Description

Loads the current value of the processor’s time-stamp counter (a 64-bit MSR) into
the EDX:EAX registers and also loads the IA32_TSC_AUX MSR (address
C000_0103H) into the ECX register. The EDX register is loaded with the high-order
32 bits of the IA32_TSC MSR; the EAX register is loaded with the low-order 32 bits of
the IA32_TSC MSR; and the ECX register is loaded with the low-order 32-bits of
IA32_TSC_AUX MSR. On processors that support the Intel 64 architecture, the high-
order 32 bits of each of RAX, RDX, and RCX are cleared.

The processor monotonically increments the time-stamp counter MSR every clock
cycle and resets it to 0 whenever the processor is reset. See “Time Stamp Counter”
in Chapter 17 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B, for specific details of the time stamp counter behavior.

When in protected or virtual 8086 mode, the time stamp disable (TSD) flag in
register CR4 restricts the use of the RDTSCP instruction as follows. When the TSD
flag is clear, the RDTSCP instruction can be executed at any privilege level; when the
flag is set, the instruction can only be executed at privilege level 0. (When in real-
address mode, the RDTSCP instruction is always enabled.)

The RDTSCP instruction waits until all previous instructions have been executed
before reading the counter. However, subsequent instructions may begin execution
before the read operation is performed.

The presence of the RDTSCP instruction is indicated by CPUID leaf 80000001H, EDX
bit 27. If the bit is set to 1 then RDTSCP is present on the processor.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 25 of
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C, for
more information about the behavior of this instruction in VMX non-root operation.

Operation

IF (CR4.TSD = 0) or (CPL = 0) or (CR0.PE = 0)

Opcode* Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 01 F9 RDTSCP NP Valid Valid Read 64-bit time-stamp
counter and 32-bit
IA32_TSC_AUX value into
EDX:EAX and ECX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
Vol. 2B 4-463RDTSCP—Read Time-Stamp Counter and Processor ID

INSTRUCTION SET REFERENCE, M-Z
THEN
EDX:EAX ← TimeStampCounter;
ECX ← IA32_TSC_AUX[31:0];

ELSE (* CR4.TSD = 1 and (CPL = 1, 2, or 3) and CR0.PE = 1 *)
#GP(0);

FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the TSD flag in register CR4 is set and the CPL is greater than

0.
#UD If the LOCK prefix is used.

If CPUID.80000001H:EDX.RDTSCP[bit 27] = 0.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

If CPUID.80000001H:EDX.RDTSCP[bit 27] = 0.

Virtual-8086 Mode Exceptions
#GP(0) If the TSD flag in register CR4 is set.
#UD If the LOCK prefix is used.

If CPUID.80000001H:EDX.RDTSCP[bit 27] = 0.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
4-464 Vol. 2B RDTSCP—Read Time-Stamp Counter and Processor ID

INSTRUCTION SET REFERENCE, M-Z
REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix
Opcode Instruction Op/

En
64-Bit
Mode

Compat/
Leg Mode

Description

F3 6C REP INS m8, DX NP Valid Valid Input (E)CX bytes from port
DX into ES:[(E)DI].

F3 6C REP INS m8, DX NP Valid N.E. Input RCX bytes from port
DX into [RDI].

F3 6D REP INS m16, DX NP Valid Valid Input (E)CX words from port
DX into ES:[(E)DI.]

F3 6D REP INS m32, DX NP Valid Valid Input (E)CX doublewords
from port DX into ES:[(E)DI].

F3 6D REP INS r/m32, DX NP Valid N.E. Input RCX default size from
port DX into [RDI].

F3 A4 REP MOVS m8, m8 NP Valid Valid Move (E)CX bytes from
DS:[(E)SI] to ES:[(E)DI].

F3 REX.W A4 REP MOVS m8, m8 NP Valid N.E. Move RCX bytes from [RSI]
to [RDI].

F3 A5 REP MOVS m16,
m16

NP Valid Valid Move (E)CX words from
DS:[(E)SI] to ES:[(E)DI].

F3 A5 REP MOVS m32,
m32

NP Valid Valid Move (E)CX doublewords
from DS:[(E)SI] to ES:[(E)DI].

F3 REX.W A5 REP MOVS m64,
m64

NP Valid N.E. Move RCX quadwords from
[RSI] to [RDI].

F3 6E REP OUTS DX,
r/m8

NP Valid Valid Output (E)CX bytes from
DS:[(E)SI] to port DX.

F3 REX.W 6E REP OUTS DX,
r/m8*

NP Valid N.E. Output RCX bytes from [RSI]
to port DX.

F3 6F REP OUTS DX,
r/m16

NP Valid Valid Output (E)CX words from
DS:[(E)SI] to port DX.

F3 6F REP OUTS DX,
r/m32

NP Valid Valid Output (E)CX doublewords
from DS:[(E)SI] to port DX.

F3 REX.W 6F REP OUTS DX,
r/m32

NP Valid N.E. Output RCX default size
from [RSI] to port DX.

F3 AC REP LODS AL NP Valid Valid Load (E)CX bytes from
DS:[(E)SI] to AL.

F3 REX.W AC REP LODS AL NP Valid N.E. Load RCX bytes from [RSI]
to AL.

F3 AD REP LODS AX NP Valid Valid Load (E)CX words from
DS:[(E)SI] to AX.
Vol. 2B 4-465REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix

INSTRUCTION SET REFERENCE, M-Z
F3 AD REP LODS EAX NP Valid Valid Load (E)CX doublewords
from DS:[(E)SI] to EAX.

F3 REX.W AD REP LODS RAX NP Valid N.E. Load RCX quadwords from
[RSI] to RAX.

F3 AA REP STOS m8 NP Valid Valid Fill (E)CX bytes at ES:[(E)DI]
with AL.

F3 REX.W AA REP STOS m8 NP Valid N.E. Fill RCX bytes at [RDI] with
AL.

F3 AB REP STOS m16 NP Valid Valid Fill (E)CX words at ES:[(E)DI]
with AX.

F3 AB REP STOS m32 NP Valid Valid Fill (E)CX doublewords at
ES:[(E)DI] with EAX.

F3 REX.W AB REP STOS m64 NP Valid N.E. Fill RCX quadwords at [RDI]
with RAX.

F3 A6 REPE CMPS m8,
m8

NP Valid Valid Find nonmatching bytes in
ES:[(E)DI] and DS:[(E)SI].

F3 REX.W A6 REPE CMPS m8,
m8

NP Valid N.E. Find non-matching bytes in
[RDI] and [RSI].

F3 A7 REPE CMPS m16,
m16

NP Valid Valid Find nonmatching words in
ES:[(E)DI] and DS:[(E)SI].

F3 A7 REPE CMPS m32,
m32

NP Valid Valid Find nonmatching
doublewords in ES:[(E)DI]
and DS:[(E)SI].

F3 REX.W A7 REPE CMPS m64,
m64

NP Valid N.E. Find non-matching
quadwords in [RDI] and
[RSI].

F3 AE REPE SCAS m8 NP Valid Valid Find non-AL byte starting at
ES:[(E)DI].

F3 REX.W AE REPE SCAS m8 NP Valid N.E. Find non-AL byte starting at
[RDI].

F3 AF REPE SCAS m16 NP Valid Valid Find non-AX word starting
at ES:[(E)DI].

F3 AF REPE SCAS m32 NP Valid Valid Find non-EAX doubleword
starting at ES:[(E)DI].

F3 REX.W AF REPE SCAS m64 NP Valid N.E. Find non-RAX quadword
starting at [RDI].

F2 A6 REPNE CMPS m8,
m8

NP Valid Valid Find matching bytes in
ES:[(E)DI] and DS:[(E)SI].

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description
4-466 Vol. 2B REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix

INSTRUCTION SET REFERENCE, M-Z
Instruction Operand Encoding

Description

Repeats a string instruction the number of times specified in the count register or
until the indicated condition of the ZF flag is no longer met. The REP (repeat), REPE
(repeat while equal), REPNE (repeat while not equal), REPZ (repeat while zero), and
REPNZ (repeat while not zero) mnemonics are prefixes that can be added to one of
the string instructions. The REP prefix can be added to the INS, OUTS, MOVS, LODS,
and STOS instructions, and the REPE, REPNE, REPZ, and REPNZ prefixes can be
added to the CMPS and SCAS instructions. (The REPZ and REPNZ prefixes are synon-
ymous forms of the REPE and REPNE prefixes, respectively.) The behavior of the REP
prefix is undefined when used with non-string instructions.

The REP prefixes apply only to one string instruction at a time. To repeat a block of
instructions, use the LOOP instruction or another looping construct. All of these
repeat prefixes cause the associated instruction to be repeated until the count in
register is decremented to 0. See Table 4-16.

F2 REX.W A6 REPNE CMPS m8,
m8

NP Valid N.E. Find matching bytes in [RDI]
and [RSI].

F2 A7 REPNE CMPS m16,
m16

NP Valid Valid Find matching words in
ES:[(E)DI] and DS:[(E)SI].

F2 A7 REPNE CMPS m32,
m32

NP Valid Valid Find matching doublewords
in ES:[(E)DI] and DS:[(E)SI].

F2 REX.W A7 REPNE CMPS m64,
m64

NP Valid N.E. Find matching doublewords
in [RDI] and [RSI].

F2 AE REPNE SCAS m8 NP Valid Valid Find AL, starting at
ES:[(E)DI].

F2 REX.W AE REPNE SCAS m8 NP Valid N.E. Find AL, starting at [RDI].

F2 AF REPNE SCAS m16 NP Valid Valid Find AX, starting at
ES:[(E)DI].

F2 AF REPNE SCAS m32 NP Valid Valid Find EAX, starting at
ES:[(E)DI].

F2 REX.W AF REPNE SCAS m64 NP Valid N.E. Find RAX, starting at [RDI].

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is

used: AH, BH, CH, DH.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description
Vol. 2B 4-467REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix

INSTRUCTION SET REFERENCE, M-Z
The REPE, REPNE, REPZ, and REPNZ prefixes also check the state of the ZF flag after
each iteration and terminate the repeat loop if the ZF flag is not in the specified state.
When both termination conditions are tested, the cause of a repeat termination can
be determined either by testing the count register with a JECXZ instruction or by
testing the ZF flag (with a JZ, JNZ, or JNE instruction).

When the REPE/REPZ and REPNE/REPNZ prefixes are used, the ZF flag does not
require initialization because both the CMPS and SCAS instructions affect the ZF flag
according to the results of the comparisons they make.

A repeating string operation can be suspended by an exception or interrupt. When
this happens, the state of the registers is preserved to allow the string operation to
be resumed upon a return from the exception or interrupt handler. The source and
destination registers point to the next string elements to be operated on, the EIP
register points to the string instruction, and the ECX register has the value it held
following the last successful iteration of the instruction. This mechanism allows long
string operations to proceed without affecting the interrupt response time of the
system.

When a fault occurs during the execution of a CMPS or SCAS instruction that is
prefixed with REPE or REPNE, the EFLAGS value is restored to the state prior to the
execution of the instruction. Since the SCAS and CMPS instructions do not use
EFLAGS as an input, the processor can resume the instruction after the page fault
handler.

Use the REP INS and REP OUTS instructions with caution. Not all I/O ports can handle
the rate at which these instructions execute. Note that a REP STOS instruction is the
fastest way to initialize a large block of memory.

In 64-bit mode, the operand size of the count register is associated with the address
size attribute. Thus the default count register is RCX; REX.W has no effect on the
address size and the count register. In 64-bit mode, if 67H is used to override
address size attribute, the count register is ECX and any implicit source/destination
operand will use the corresponding 32-bit index register. See the summary chart at
the beginning of this section for encoding data and limits.

Table 4-16. Repeat Prefixes

Repeat Prefix Termination Condition 1* Termination Condition 2

REP RCX or (E)CX = 0 None

REPE/REPZ RCX or (E)CX = 0 ZF = 0

REPNE/REPNZ RCX or (E)CX = 0 ZF = 1

NOTES:
* Count register is CX, ECX or RCX by default, depending on attributes of the operating modes.
4-468 Vol. 2B REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix

INSTRUCTION SET REFERENCE, M-Z
Operation
IF AddressSize = 16
 THEN
 Use CX for CountReg;
 Implicit Source/Dest operand for memory use of SI/DI;
 ELSE IF AddressSize = 64
 THEN Use RCX for CountReg;
 Implicit Source/Dest operand for memory use of RSI/RDI;
 ELSE
 Use ECX for CountReg;
 Implicit Source/Dest operand for memory use of ESI/EDI;
FI;
WHILE CountReg ≠ 0

DO
Service pending interrupts (if any);
Execute associated string instruction;
CountReg ← (CountReg – 1);
IF CountReg = 0

THEN exit WHILE loop; FI;
IF (Repeat prefix is REPZ or REPE) and (ZF = 0)
or (Repeat prefix is REPNZ or REPNE) and (ZF = 1)

THEN exit WHILE loop; FI;
OD;

Flags Affected

None; however, the CMPS and SCAS instructions do set the status flags in the
EFLAGS register.

Exceptions (All Operating Modes)

Exceptions may be generated by an instruction associated with the prefix.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
Vol. 2B 4-469REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix

INSTRUCTION SET REFERENCE, M-Z
RET—Return from Procedure

Instruction Operand Encoding

Description

Transfers program control to a return address located on the top of the stack. The
address is usually placed on the stack by a CALL instruction, and the return is made
to the instruction that follows the CALL instruction.

The optional source operand specifies the number of stack bytes to be released after
the return address is popped; the default is none. This operand can be used to
release parameters from the stack that were passed to the called procedure and are
no longer needed. It must be used when the CALL instruction used to switch to a new
procedure uses a call gate with a non-zero word count to access the new procedure.
Here, the source operand for the RET instruction must specify the same number of
bytes as is specified in the word count field of the call gate.

The RET instruction can be used to execute three different types of returns:
• Near return — A return to a calling procedure within the current code segment

(the segment currently pointed to by the CS register), sometimes referred to as
an intrasegment return.

• Far return — A return to a calling procedure located in a different segment than
the current code segment, sometimes referred to as an intersegment return.

• Inter-privilege-level far return — A far return to a different privilege level
than that of the currently executing program or procedure.

Opcode* Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

C3 RET NP Valid Valid Near return to calling
procedure.

CB RET NP Valid Valid Far return to calling
procedure.

C2 iw RET imm16 I Valid Valid Near return to calling
procedure and pop imm16
bytes from stack.

CA iw RET imm16 I Valid Valid Far return to calling
procedure and pop imm16
bytes from stack.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

I imm16 NA NA NA
4-470 Vol. 2B RET—Return from Procedure

INSTRUCTION SET REFERENCE, M-Z
The inter-privilege-level return type can only be executed in protected mode. See the
section titled “Calling Procedures Using Call and RET” in Chapter 6 of the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 1, for detailed infor-
mation on near, far, and inter-privilege-level returns.

When executing a near return, the processor pops the return instruction pointer
(offset) from the top of the stack into the EIP register and begins program execution
at the new instruction pointer. The CS register is unchanged.

When executing a far return, the processor pops the return instruction pointer from
the top of the stack into the EIP register, then pops the segment selector from the top
of the stack into the CS register. The processor then begins program execution in the
new code segment at the new instruction pointer.

The mechanics of an inter-privilege-level far return are similar to an intersegment
return, except that the processor examines the privilege levels and access rights of
the code and stack segments being returned to determine if the control transfer is
allowed to be made. The DS, ES, FS, and GS segment registers are cleared by the
RET instruction during an inter-privilege-level return if they refer to segments that
are not allowed to be accessed at the new privilege level. Since a stack switch also
occurs on an inter-privilege level return, the ESP and SS registers are loaded from
the stack.

If parameters are passed to the called procedure during an inter-privilege level call,
the optional source operand must be used with the RET instruction to release the
parameters on the return. Here, the parameters are released both from the called
procedure’s stack and the calling procedure’s stack (that is, the stack being returned
to).

In 64-bit mode, the default operation size of this instruction is the stack-address size,
i.e. 64 bits.

Operation

(* Near return *)
IF instruction = near return

THEN;
IF OperandSize = 32

THEN
IF top 4 bytes of stack not within stack limits

THEN #SS(0); FI;
EIP ← Pop();

ELSE
IF OperandSize = 64

THEN
IF top 8 bytes of stack not within stack limits

THEN #SS(0); FI;
RIP ← Pop();

ELSE (* OperandSize = 16 *)
Vol. 2B 4-471RET—Return from Procedure

INSTRUCTION SET REFERENCE, M-Z
IF top 2 bytes of stack not within stack limits
THEN #SS(0); FI;

tempEIP ← Pop();
tempEIP ← tempEIP AND 0000FFFFH;
IF tempEIP not within code segment limits

THEN #GP(0); FI;
EIP ← tempEIP;

FI;
FI;

IF instruction has immediate operand
THEN (* Release parameters from stack *)

IF StackAddressSize = 32
THEN

ESP ← ESP + SRC;
ELSE

IF StackAddressSize = 64
THEN

RSP ← RSP + SRC;
ELSE (* StackAddressSize = 16 *)

SP ← SP + SRC;
FI;

FI;
FI;

FI;

(* Real-address mode or virtual-8086 mode *)
IF ((PE = 0) or (PE = 1 AND VM = 1)) and instruction = far return

THEN
IF OperandSize = 32

THEN
IF top 8 bytes of stack not within stack limits

THEN #SS(0); FI;
EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded *)

ELSE (* OperandSize = 16 *)
IF top 4 bytes of stack not within stack limits

THEN #SS(0); FI;
tempEIP ← Pop();
tempEIP ← tempEIP AND 0000FFFFH;
IF tempEIP not within code segment limits

THEN #GP(0); FI;
EIP ← tempEIP;
CS ← Pop(); (* 16-bit pop *)
4-472 Vol. 2B RET—Return from Procedure

INSTRUCTION SET REFERENCE, M-Z
FI;
IF instruction has immediate operand

THEN (* Release parameters from stack *)
SP ← SP + (SRC AND FFFFH);

FI;
FI;

(* Protected mode, not virtual-8086 mode *)
IF (PE = 1 and VM = 0 and IA32_EFER.LMA = 0) and instruction = far return

THEN
IF OperandSize = 32

THEN
IF second doubleword on stack is not within stack limits

THEN #SS(0); FI;
ELSE (* OperandSize = 16 *)

IF second word on stack is not within stack limits
THEN #SS(0); FI;

FI;
IF return code segment selector is NULL

THEN #GP(0); FI;
IF return code segment selector addresses descriptor beyond descriptor table limit

THEN #GP(selector); FI;
Obtain descriptor to which return code segment selector points from descriptor table;
IF return code segment descriptor is not a code segment

THEN #GP(selector); FI;
IF return code segment selector RPL < CPL

THEN #GP(selector); FI;
IF return code segment descriptor is conforming
and return code segment DPL > return code segment selector RPL

THEN #GP(selector); FI;
IF return code segment descriptor is non-conforming and return code
segment DPL ≠ return code segment selector RPL

THEN #GP(selector); FI;
IF return code segment descriptor is not present

THEN #NP(selector); FI:
IF return code segment selector RPL > CPL

THEN GOTO RETURN-OUTER-PRIVILEGE-LEVEL;
ELSE GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL;

FI;
FI;

RETURN-SAME-PRIVILEGE-LEVEL:
IF the return instruction pointer is not within the return code segment limit

THEN #GP(0); FI;
Vol. 2B 4-473RET—Return from Procedure

INSTRUCTION SET REFERENCE, M-Z
IF OperandSize = 32
THEN

EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded *)

ELSE (* OperandSize = 16 *)
EIP ← Pop();
EIP ← EIP AND 0000FFFFH;
CS ← Pop(); (* 16-bit pop *)

FI;
IF instruction has immediate operand

THEN (* Release parameters from stack *)
IF StackAddressSize = 32

THEN
ESP ← ESP + SRC;

ELSE (* StackAddressSize = 16 *)
SP ← SP + SRC;

FI;
FI;

RETURN-OUTER-PRIVILEGE-LEVEL:
IF top (16 + SRC) bytes of stack are not within stack limits (OperandSize = 32)
or top (8 + SRC) bytes of stack are not within stack limits (OperandSize = 16)

THEN #SS(0); FI;
Read return segment selector;
IF stack segment selector is NULL

THEN #GP(0); FI;
IF return stack segment selector index is not within its descriptor table limits

THEN #GP(selector); FI;
Read segment descriptor pointed to by return segment selector;
IF stack segment selector RPL ≠ RPL of the return code segment selector
or stack segment is not a writable data segment
or stack segment descriptor DPL ≠ RPL of the return code segment selector

THEN #GP(selector); FI;
IF stack segment not present

THEN #SS(StackSegmentSelector); FI;
IF the return instruction pointer is not within the return code segment limit

THEN #GP(0); FI;
CPL ← ReturnCodeSegmentSelector(RPL);
IF OperandSize = 32

THEN
EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded; segment descriptor loaded *)
CS(RPL) ← CPL;
4-474 Vol. 2B RET—Return from Procedure

INSTRUCTION SET REFERENCE, M-Z
IF instruction has immediate operand
THEN (* Release parameters from called procedure’s stack *)

IF StackAddressSize = 32
THEN

ESP ← ESP + SRC;
ELSE (* StackAddressSize = 16 *)

SP ← SP + SRC;
FI;

FI;
tempESP ← Pop();
tempSS ← Pop(); (* 32-bit pop, high-order 16 bits discarded; seg. descriptor loaded *)
ESP ← tempESP;
SS ← tempSS;

ELSE (* OperandSize = 16 *)
EIP ← Pop();
EIP ← EIP AND 0000FFFFH;
CS ← Pop(); (* 16-bit pop; segment descriptor loaded *)
CS(RPL) ← CPL;
IF instruction has immediate operand

THEN (* Release parameters from called procedure’s stack *)
IF StackAddressSize = 32

THEN
ESP ← ESP + SRC;

ELSE (* StackAddressSize = 16 *)
SP ← SP + SRC;

FI;
FI;
tempESP ← Pop();
tempSS ← Pop(); (* 16-bit pop; segment descriptor loaded *)
ESP ← tempESP;
SS ← tempSS;

FI;

FOR each of segment register (ES, FS, GS, and DS)
DO

IF segment register points to data or non-conforming code segment
and CPL > segment descriptor DPL (* DPL in hidden part of segment register *)

THEN SegmentSelector ← 0; (* Segment selector invalid *)
FI;

OD;

IF instruction has immediate operand
THEN (* Release parameters from calling procedure’s stack *)
Vol. 2B 4-475RET—Return from Procedure

INSTRUCTION SET REFERENCE, M-Z
IF StackAddressSize = 32
THEN

ESP ← ESP + SRC;
ELSE (* StackAddressSize = 16 *)

SP ← SP + SRC;
FI;

FI;

(* IA-32e Mode *)
IF (PE = 1 and VM = 0 and IA32_EFER.LMA = 1) and instruction = far return

THEN
IF OperandSize = 32

THEN
IF second doubleword on stack is not within stack limits

THEN #SS(0); FI;
IF first or second doubleword on stack is not in canonical space

THEN #SS(0); FI;
ELSE

IF OperandSize = 16
THEN

IF second word on stack is not within stack limits
THEN #SS(0); FI;

IF first or second word on stack is not in canonical space
THEN #SS(0); FI;

ELSE (* OperandSize = 64 *)
IF first or second quadword on stack is not in canonical space

THEN #SS(0); FI;
FI

FI;
IF return code segment selector is NULL

THEN GP(0); FI;
IF return code segment selector addresses descriptor beyond descriptor table limit

THEN GP(selector); FI;
IF return code segment selector addresses descriptor in non-canonical space

THEN GP(selector); FI;
Obtain descriptor to which return code segment selector points from descriptor table;
IF return code segment descriptor is not a code segment

THEN #GP(selector); FI;
IF return code segment descriptor has L-bit = 1 and D-bit = 1

THEN #GP(selector); FI;
IF return code segment selector RPL < CPL

THEN #GP(selector); FI;
IF return code segment descriptor is conforming
4-476 Vol. 2B RET—Return from Procedure

INSTRUCTION SET REFERENCE, M-Z
and return code segment DPL > return code segment selector RPL
THEN #GP(selector); FI;

IF return code segment descriptor is non-conforming
and return code segment DPL ≠ return code segment selector RPL

THEN #GP(selector); FI;
IF return code segment descriptor is not present

THEN #NP(selector); FI:
IF return code segment selector RPL > CPL

THEN GOTO IA-32E-MODE-RETURN-OUTER-PRIVILEGE-LEVEL;
ELSE GOTO IA-32E-MODE-RETURN-SAME-PRIVILEGE-LEVEL;

FI;
FI;

IA-32E-MODE-RETURN-SAME-PRIVILEGE-LEVEL:
IF the return instruction pointer is not within the return code segment limit

THEN #GP(0); FI;
IF the return instruction pointer is not within canonical address space

THEN #GP(0); FI;
IF OperandSize = 32

THEN
EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded *)

ELSE
IF OperandSize = 16

THEN
EIP ← Pop();
EIP ← EIP AND 0000FFFFH;
CS ← Pop(); (* 16-bit pop *)

ELSE (* OperandSize = 64 *)
RIP ← Pop();
CS ← Pop(); (* 64-bit pop, high-order 48 bits discarded *)

FI;
FI;
IF instruction has immediate operand

THEN (* Release parameters from stack *)
IF StackAddressSize = 32

THEN
ESP ← ESP + SRC;

ELSE
IF StackAddressSize = 16

THEN
SP ← SP + SRC;

ELSE (* StackAddressSize = 64 *)
Vol. 2B 4-477RET—Return from Procedure

INSTRUCTION SET REFERENCE, M-Z
RSP ← RSP + SRC;
FI;

FI;
FI;

IA-32E-MODE-RETURN-OUTER-PRIVILEGE-LEVEL:
IF top (16 + SRC) bytes of stack are not within stack limits (OperandSize = 32)
or top (8 + SRC) bytes of stack are not within stack limits (OperandSize = 16)

THEN #SS(0); FI;
IF top (16 + SRC) bytes of stack are not in canonical address space (OperandSize = 32)
or top (8 + SRC) bytes of stack are not in canonical address space (OperandSize = 16)
or top (32 + SRC) bytes of stack are not in canonical address space (OperandSize = 64)

THEN #SS(0); FI;
Read return stack segment selector;
IF stack segment selector is NULL

THEN
IF new CS descriptor L-bit = 0

THEN #GP(selector);
IF stack segment selector RPL = 3

THEN #GP(selector);
FI;
IF return stack segment descriptor is not within descriptor table limits

THEN #GP(selector); FI;
IF return stack segment descriptor is in non-canonical address space

THEN #GP(selector); FI;
Read segment descriptor pointed to by return segment selector;
IF stack segment selector RPL ≠ RPL of the return code segment selector
or stack segment is not a writable data segment
or stack segment descriptor DPL ≠ RPL of the return code segment selector

THEN #GP(selector); FI;
IF stack segment not present

THEN #SS(StackSegmentSelector); FI;
IF the return instruction pointer is not within the return code segment limit

THEN #GP(0); FI:
IF the return instruction pointer is not within canonical address space

THEN #GP(0); FI;
CPL ← ReturnCodeSegmentSelector(RPL);
IF OperandSize = 32

THEN
EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded, segment descriptor loaded *)
CS(RPL) ← CPL;
IF instruction has immediate operand
4-478 Vol. 2B RET—Return from Procedure

INSTRUCTION SET REFERENCE, M-Z
THEN (* Release parameters from called procedure’s stack *)
IF StackAddressSize = 32

THEN
ESP ← ESP + SRC;

ELSE
IF StackAddressSize = 16

THEN
SP ← SP + SRC;

ELSE (* StackAddressSize = 64 *)
RSP ← RSP + SRC;

FI;
FI;

FI;
tempESP ← Pop();
tempSS ← Pop(); (* 32-bit pop, high-order 16 bits discarded, segment descriptor loaded *)
ESP ← tempESP;
SS ← tempSS;

ELSE
IF OperandSize = 16

THEN
EIP ← Pop();
EIP ← EIP AND 0000FFFFH;
CS ← Pop(); (* 16-bit pop; segment descriptor loaded *)
CS(RPL) ← CPL;
IF instruction has immediate operand

THEN (* Release parameters from called procedure’s stack *)
IF StackAddressSize = 32

THEN
ESP ← ESP + SRC;

ELSE
IF StackAddressSize = 16

THEN
SP ← SP + SRC;

ELSE (* StackAddressSize = 64 *)
RSP ← RSP + SRC;

FI;
FI;

FI;
tempESP ← Pop();
tempSS ← Pop(); (* 16-bit pop; segment descriptor loaded *)
ESP ← tempESP;
SS ← tempSS;

ELSE (* OperandSize = 64 *)
Vol. 2B 4-479RET—Return from Procedure

INSTRUCTION SET REFERENCE, M-Z
RIP ← Pop();
CS ← Pop(); (* 64-bit pop; high-order 48 bits discarded; seg. descriptor loaded *)
CS(RPL) ← CPL;
IF instruction has immediate operand

THEN (* Release parameters from called procedure’s stack *)
RSP ← RSP + SRC;

FI;
tempESP ← Pop();
tempSS ← Pop(); (* 64-bit pop; high-order 48 bits discarded; seg. desc. loaded *)
ESP ← tempESP;
SS ← tempSS;

FI;
FI;

FOR each of segment register (ES, FS, GS, and DS)
DO

IF segment register points to data or non-conforming code segment
and CPL > segment descriptor DPL; (* DPL in hidden part of segment register *)

THEN SegmentSelector ← 0; (* SegmentSelector invalid *)
FI;

OD;

IF instruction has immediate operand
THEN (* Release parameters from calling procedure’s stack *)

IF StackAddressSize = 32
THEN

ESP ← ESP + SRC;
ELSE

IF StackAddressSize = 16
THEN

SP ← SP + SRC;
ELSE (* StackAddressSize = 64 *)

RSP ← RSP + SRC;
FI;

FI;
FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the return code or stack segment selector NULL.
4-480 Vol. 2B RET—Return from Procedure

INSTRUCTION SET REFERENCE, M-Z
If the return instruction pointer is not within the return code
segment limit

#GP(selector) If the RPL of the return code segment selector is less then the
CPL.
If the return code or stack segment selector index is not within
its descriptor table limits.
If the return code segment descriptor does not indicate a code
segment.
If the return code segment is non-conforming and the segment
selector’s DPL is not equal to the RPL of the code segment’s
segment selector
If the return code segment is conforming and the segment
selector’s DPL greater than the RPL of the code segment’s
segment selector
If the stack segment is not a writable data segment.
If the stack segment selector RPL is not equal to the RPL of the
return code segment selector.
If the stack segment descriptor DPL is not equal to the RPL of
the return code segment selector.

#SS(0) If the top bytes of stack are not within stack limits.
If the return stack segment is not present.

#NP(selector) If the return code segment is not present.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory access occurs when the CPL is 3 and

alignment checking is enabled.

Real-Address Mode Exceptions
#GP If the return instruction pointer is not within the return code

segment limit
#SS If the top bytes of stack are not within stack limits.

Virtual-8086 Mode Exceptions
#GP(0) If the return instruction pointer is not within the return code

segment limit
#SS(0) If the top bytes of stack are not within stack limits.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory access occurs when alignment checking

is enabled.

Compatibility Mode Exceptions
Same as 64-bit mode exceptions.
Vol. 2B 4-481RET—Return from Procedure

INSTRUCTION SET REFERENCE, M-Z
64-Bit Mode Exceptions
#GP(0) If the return instruction pointer is non-canonical.

If the return instruction pointer is not within the return code
segment limit.
If the stack segment selector is NULL going back to compatibility
mode.
If the stack segment selector is NULL going back to CPL3 64-bit
mode.
If a NULL stack segment selector RPL is not equal to CPL going
back to non-CPL3 64-bit mode.
If the return code segment selector is NULL.

#GP(selector) If the proposed segment descriptor for a code segment does not
indicate it is a code segment.
If the proposed new code segment descriptor has both the D-bit
and L-bit set.
If the DPL for a nonconforming-code segment is not equal to the
RPL of the code segment selector.
If CPL is greater than the RPL of the code segment selector.
If the DPL of a conforming-code segment is greater than the
return code segment selector RPL.
If a segment selector index is outside its descriptor table limits.
If a segment descriptor memory address is non-canonical.
If the stack segment is not a writable data segment.
If the stack segment descriptor DPL is not equal to the RPL of
the return code segment selector.
If the stack segment selector RPL is not equal to the RPL of the
return code segment selector.

#SS(0) If an attempt to pop a value off the stack violates the SS limit.
If an attempt to pop a value off the stack causes a non-canonical
address to be referenced.

#NP(selector) If the return code or stack segment is not present.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
4-482 Vol. 2B RET—Return from Procedure

INSTRUCTION SET REFERENCE, M-Z
ROUNDPD — Round Packed Double Precision Floating-Point Values

Instruction Operand Encoding

Description

Round the 2 double-precision floating-point values in the source operand (second
operand) using the rounding mode specified in the immediate operand (third
operand) and place the results in the destination operand (first operand). The
rounding process rounds each input floating-point value to an integer value and
returns the integer result as a single-precision floating-point value.

The immediate operand specifies control fields for the rounding operation, three bit
fields are defined and shown in Figure 4-17. Bit 3 of the immediate byte controls
processor behavior for a precision exception, bit 2 selects the source of rounding
mode control. Bits 1:0 specify a non-sticky rounding-mode value (Table 4-17 lists the
encoded values for rounding-mode field).

The Precision Floating-Point Exception is signaled according to the immediate
operand. If any source operand is an SNaN then it will be converted to a QNaN. If
DAZ is set to ‘1 then denormals will be converted to zero before rounding.

Opcode*/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 3A 09 /r ib
ROUNDPD xmm1, xmm2/m128,
imm8

RMI V/V SSE4_1 Round packed double
precision floating-point
values in xmm2/m128 and
place the result in xmm1.
The rounding mode is
determined by imm8.

VEX.128.66.0F3A.WIG 09 /r ib
VROUNDPD xmm1, xmm2/m128,
imm8

RMI V/V AVX Round packed double-
precision floating-point
values in xmm2/m128 and
place the result in xmm1.
The rounding mode is
determined by imm8.

VEX.256.66.0F3A.WIG 09 /r ib
VROUNDPD ymm1, ymm2/m256,
imm8

RMI V/V AVX Round packed double-
precision floating-point
values in ymm2/m256 and
place the result in ymm1.
The rounding mode is
determined by imm8.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (w) ModRM:r/m (r) imm8 NA
Vol. 2B 4-483ROUNDPD — Round Packed Double Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
128-bit Legacy SSE version: The second source can be an XMM register or 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified.
VEX.128 encoded version: the source operand second source operand or a 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.
VEX.256 encoded version: The source operand is a YMM register or a 256-bit
memory location. The destination operand is a YMM register.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise
instructions will #UD.

Operation

IF (imm[2] = ‘1)
THEN // rounding mode is determined by MXCSR.RC

DEST[63:0] ConvertDPFPToInteger_M(SRC[63:0]);
DEST[127:64] ConvertDPFPToInteger_M(SRC[127:64]);

Figure 4-17. Bit Control Fields of Immediate Byte for ROUNDxx Instruction

Table 4-17. Rounding Modes and Encoding of Rounding Control (RC) Field

Rounding
Mode

RC Field
Setting

Description

Round to
nearest (even)

00B Rounded result is the closest to the infinitely precise result. If two
values are equally close, the result is the even value (i.e., the integer
value with the least-significant bit of zero).

Round down
(toward −∞)

01B Rounded result is closest to but no greater than the infinitely precise
result.

Round up
(toward +∞)

10B Rounded result is closest to but no less than the infinitely precise
result.

Round toward
zero (Truncate)

11B Rounded result is closest to but no greater in absolute value than the
infinitely precise result.

8

RS — Rounding select; 1: MXCSR.RC, 0: Imm8.RC
RC — Rounding mode

3 2 1 0

P — Precision Mask; 0: normal, 1: inexact

Reserved
4-484 Vol. 2B ROUNDPD — Round Packed Double Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
ELSE // rounding mode is determined by IMM8.RC
DEST[63:0] ConvertDPFPToInteger_Imm(SRC[63:0]);
DEST[127:64] ConvertDPFPToInteger_Imm(SRC[127:64]);

FI

ROUNDPD (128-bit Legacy SSE version)
DEST[63:0] RoundToInteger(SRC[63:0]], ROUND_CONTROL)
DEST[127:64] RoundToInteger(SRC[127:64]], ROUND_CONTROL)
DEST[VLMAX-1:128] (Unmodified)

VROUNDPD (VEX.128 encoded version)
DEST[63:0] RoundToInteger(SRC[63:0]], ROUND_CONTROL)
DEST[127:64] RoundToInteger(SRC[127:64]], ROUND_CONTROL)
DEST[VLMAX-1:128] 0

VROUNDPD (VEX.256 encoded version)
DEST[63:0] RoundToInteger(SRC[63:0], ROUND_CONTROL)
DEST[127:64] RoundToInteger(SRC[127:64]], ROUND_CONTROL)
DEST[191:128] RoundToInteger(SRC[191:128]], ROUND_CONTROL)
DEST[255:192] RoundToInteger(SRC[255:192]], ROUND_CONTROL)

Intel C/C++ Compiler Intrinsic Equivalent

__m128 _mm_round_pd(__m128d s1, int iRoundMode);

__m128 _mm_floor_pd(__m128d s1);

__m128 _mm_ceil_pd(__m128d s1)

__m256 _mm256_round_pd(__m256d s1, int iRoundMode);

__m256 _mm256_floor_pd(__m256d s1);

__m256 _mm256_ceil_pd(__m256d s1)

SIMD Floating-Point Exceptions

Invalid (signaled only if SRC = SNaN)
Precision (signaled only if imm[3] = ‘0; if imm[3] = ‘1, then the Precision Mask in the
MXSCSR is ignored and precision exception is not signaled.)
Note that Denormal is not signaled by ROUNDPD.

Other Exceptions
See Exceptions Type 2; additionally
#UD If VEX.vvvv != 1111B.
Vol. 2B 4-485ROUNDPD — Round Packed Double Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
ROUNDPS — Round Packed Single Precision Floating-Point Values

Instruction Operand Encoding

Description

Round the 4 single-precision floating-point values in the source operand (second
operand) using the rounding mode specified in the immediate operand (third
operand) and place the results in the destination operand (first operand). The
rounding process rounds each input floating-point value to an integer value and
returns the integer result as a single-precision floating-point value.

The immediate operand specifies control fields for the rounding operation, three bit
fields are defined and shown in Figure 4-17. Bit 3 of the immediate byte controls
processor behavior for a precision exception, bit 2 selects the source of rounding
mode control. Bits 1:0 specify a non-sticky rounding-mode value (Table 4-17 lists the
encoded values for rounding-mode field).

The Precision Floating-Point Exception is signaled according to the immediate
operand. If any source operand is an SNaN then it will be converted to a QNaN. If
DAZ is set to ‘1 then denormals will be converted to zero before rounding.

Opcode*/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 3A 08
/r ib
ROUNDPS xmm1, xmm2/m128,
imm8

RMI V/V SSE4_1 Round packed single
precision floating-point
values in xmm2/m128 and
place the result in xmm1.
The rounding mode is
determined by imm8.

VEX.128.66.0F3A.WIG 08 /r ib
VROUNDPS xmm1, xmm2/m128,
imm8

RMI V/V AVX Round packed single-
precision floating-point
values in xmm2/m128 and
place the result in xmm1.
The rounding mode is
determined by imm8.

VEX.256.66.0F3A.WIG 08 /r ib
VROUNDPS ymm1, ymm2/m256,
imm8

RMI V/V AVX Round packed single-
precision floating-point
values in ymm2/m256 and
place the result in ymm1.
The rounding mode is
determined by imm8.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (w) ModRM:r/m (r) imm8 NA
4-486 Vol. 2B ROUNDPS — Round Packed Single Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
128-bit Legacy SSE version: The second source can be an XMM register or 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified.
VEX.128 encoded version: the source operand second source operand or a 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.
VEX.256 encoded version: The source operand is a YMM register or a 256-bit
memory location. The destination operand is a YMM register.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise
instructions will #UD.

Operation

IF (imm[2] = ‘1)
THEN // rounding mode is determined by MXCSR.RC

DEST[31:0] ConvertSPFPToInteger_M(SRC[31:0]);
DEST[63:32] ConvertSPFPToInteger_M(SRC[63:32]);
DEST[95:64] ConvertSPFPToInteger_M(SRC[95:64]);
DEST[127:96] ConvertSPFPToInteger_M(SRC[127:96]);

ELSE // rounding mode is determined by IMM8.RC
DEST[31:0] ConvertSPFPToInteger_Imm(SRC[31:0]);
DEST[63:32] ConvertSPFPToInteger_Imm(SRC[63:32]);
DEST[95:64] ConvertSPFPToInteger_Imm(SRC[95:64]);
DEST[127:96] ConvertSPFPToInteger_Imm(SRC[127:96]);

FI;

ROUNDPS(128-bit Legacy SSE version)
DEST[31:0] RoundToInteger(SRC[31:0], ROUND_CONTROL)
DEST[63:32] RoundToInteger(SRC[63:32], ROUND_CONTROL)
DEST[95:64] RoundToInteger(SRC[95:64]], ROUND_CONTROL)
DEST[127:96] RoundToInteger(SRC[127:96]], ROUND_CONTROL)
DEST[VLMAX-1:128] (Unmodified)

VROUNDPS (VEX.128 encoded version)
DEST[31:0] RoundToInteger(SRC[31:0], ROUND_CONTROL)
DEST[63:32] RoundToInteger(SRC[63:32], ROUND_CONTROL)
DEST[95:64] RoundToInteger(SRC[95:64]], ROUND_CONTROL)
DEST[127:96] RoundToInteger(SRC[127:96]], ROUND_CONTROL)
DEST[VLMAX-1:128] 0

VROUNDPS (VEX.256 encoded version)
DEST[31:0] RoundToInteger(SRC[31:0], ROUND_CONTROL)
Vol. 2B 4-487ROUNDPS — Round Packed Single Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
DEST[63:32] RoundToInteger(SRC[63:32], ROUND_CONTROL)
DEST[95:64] RoundToInteger(SRC[95:64]], ROUND_CONTROL)
DEST[127:96] RoundToInteger(SRC[127:96]], ROUND_CONTROL)
DEST[159:128] RoundToInteger(SRC[159:128]], ROUND_CONTROL)
DEST[191:160] RoundToInteger(SRC[191:160]], ROUND_CONTROL)
DEST[223:192] RoundToInteger(SRC[223:192]], ROUND_CONTROL)
DEST[255:224] RoundToInteger(SRC[255:224]], ROUND_CONTROL)

Intel C/C++ Compiler Intrinsic Equivalent

__m128 _mm_round_ps(__m128 s1, int iRoundMode);

__m128 _mm_floor_ps(__m128 s1);

__m128 _mm_ceil_ps(__m128 s1)

__m256 _mm256_round_ps(__m256 s1, int iRoundMode);

__m256 _mm256_floor_ps(__m256 s1);

__m256 _mm256_ceil_ps(__m256 s1)

SIMD Floating-Point Exceptions

Invalid (signaled only if SRC = SNaN)
Precision (signaled only if imm[3] = ‘0; if imm[3] = ‘1, then the Precision Mask in the
MXSCSR is ignored and precision exception is not signaled.)
Note that Denormal is not signaled by ROUNDPS.

Other Exceptions
See Exceptions Type 2; additionally
#UD If VEX.vvvv != 1111B.
4-488 Vol. 2B ROUNDPS — Round Packed Single Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
ROUNDSD — Round Scalar Double Precision Floating-Point Values

Instruction Operand Encoding

Description

Round the DP FP value in the lower qword of the source operand (second operand)
using the rounding mode specified in the immediate operand (third operand) and
place the result in the destination operand (first operand). The rounding process
rounds a double-precision floating-point input to an integer value and returns the
integer result as a double precision floating-point value in the lowest position. The
upper double precision floating-point value in the destination is retained.

The immediate operand specifies control fields for the rounding operation, three bit
fields are defined and shown in Figure 4-17. Bit 3 of the immediate byte controls
processor behavior for a precision exception, bit 2 selects the source of rounding
mode control. Bits 1:0 specify a non-sticky rounding-mode value (Table 4-17 lists the
encoded values for rounding-mode field).

The Precision Floating-Point Exception is signaled according to the immediate
operand. If any source operand is an SNaN then it will be converted to a QNaN. If
DAZ is set to ‘1 then denormals will be converted to zero before rounding.

Opcode*/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 3A 0B /r ib
ROUNDSD xmm1, xmm2/m64, imm8

RMI V/V SSE4_1 Round the low packed
double precision floating-
point value in xmm2/m64
and place the result in
xmm1. The rounding mode
is determined by imm8.

VEX.NDS.LIG.66.0F3A.WIG 0B /r ib
VROUNDSD xmm1, xmm2,
xmm3/m64, imm8

RVMI V/V AVX Round the low packed
double precision floating-
point value in xmm3/m64
and place the result in
xmm1. The rounding mode
is determined by imm8.
Upper packed double
precision floating-point
value (bits[127:64]) from
xmm2 is copied to
xmm1[127:64].

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
Vol. 2B 4-489ROUNDSD — Round Scalar Double Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
128-bit Legacy SSE version: The first source operand and the destination operand
are the same. Bits (VLMAX-1:64) of the corresponding YMM destination register
remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed.

Operation

IF (imm[2] = ‘1)
THEN // rounding mode is determined by MXCSR.RC

DEST[63:0] ConvertDPFPToInteger_M(SRC[63:0]);
ELSE // rounding mode is determined by IMM8.RC

DEST[63:0] ConvertDPFPToInteger_Imm(SRC[63:0]);
FI;
DEST[127:63] remains unchanged ;

ROUNDSD (128-bit Legacy SSE version)
DEST[63:0] RoundToInteger(SRC[63:0], ROUND_CONTROL)
DEST[VLMAX-1:64] (Unmodified)

VROUNDSD (VEX.128 encoded version)
DEST[63:0] RoundToInteger(SRC2[63:0], ROUND_CONTROL)
DEST[127:64] SRC1[127:64]
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

ROUNDSD: __m128d mm_round_sd(__m128d dst, __m128d s1, int iRoundMode);
__m128d mm_floor_sd(__m128d dst, __m128d s1);
__m128d mm_ceil_sd(__m128d dst, __m128d s1);

SIMD Floating-Point Exceptions

Invalid (signaled only if SRC = SNaN)
Precision (signaled only if imm[3] = ‘0; if imm[3] = ‘1, then the Precision Mask in the
MXSCSR is ignored and precision exception is not signaled.)
Note that Denormal is not signaled by ROUNDSD.

Other Exceptions
See Exceptions Type 3.
4-490 Vol. 2B ROUNDSD — Round Scalar Double Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
ROUNDSS — Round Scalar Single Precision Floating-Point Values

Instruction Operand Encoding

Description

Round the single-precision floating-point value in the lowest dword of the source
operand (second operand) using the rounding mode specified in the immediate
operand (third operand) and place the result in the destination operand (first
operand). The rounding process rounds a single-precision floating-point input to an
integer value and returns the result as a single-precision floating-point value in the
lowest position. The upper three single-precision floating-point values in the destina-
tion are retained.

The immediate operand specifies control fields for the rounding operation, three bit
fields are defined and shown in Figure 4-17. Bit 3 of the immediate byte controls
processor behavior for a precision exception, bit 2 selects the source of rounding
mode control. Bits 1:0 specify a non-sticky rounding-mode value (Table 4-17 lists the
encoded values for rounding-mode field).

Opcode*/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 3A 0A /r ib
ROUNDSS xmm1, xmm2/m32, imm8

RMI V/V SSE4_1 Round the low packed single
precision floating-point
value in xmm2/m32 and
place the result in xmm1.
The rounding mode is
determined by imm8.

VEX.NDS.LIG.66.0F3A.WIG 0A ib
VROUNDSS xmm1, xmm2,
xmm3/m32, imm8

RVMI V/V AVX Round the low packed single
precision floating-point
value in xmm3/m32 and
place the result in xmm1.
The rounding mode is
determined by imm8. Also,
upper packed single
precision floating-point
values (bits[127:32]) from
xmm2 are copied to
xmm1[127:32].

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
Vol. 2B 4-491ROUNDSS — Round Scalar Single Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
The Precision Floating-Point Exception is signaled according to the immediate
operand. If any source operand is an SNaN then it will be converted to a QNaN. If
DAZ is set to ‘1 then denormals will be converted to zero before rounding.
128-bit Legacy SSE version: The first source operand and the destination operand
are the same. Bits (VLMAX-1:32) of the corresponding YMM destination register
remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed.

Operation

IF (imm[2] = ‘1)
THEN // rounding mode is determined by MXCSR.RC

DEST[31:0] ConvertSPFPToInteger_M(SRC[31:0]);
ELSE // rounding mode is determined by IMM8.RC

DEST[31:0] ConvertSPFPToInteger_Imm(SRC[31:0]);
FI;
DEST[127:32] remains unchanged ;

ROUNDSS (128-bit Legacy SSE version)
DEST[31:0] RoundToInteger(SRC[31:0], ROUND_CONTROL)
DEST[VLMAX-1:32] (Unmodified)

VROUNDSS (VEX.128 encoded version)
DEST[31:0] RoundToInteger(SRC2[31:0], ROUND_CONTROL)
DEST[127:32] SRC1[127:32]
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

ROUNDSS: __m128 mm_round_ss(__m128 dst, __m128 s1, int iRoundMode);
__m128 mm_floor_ss(__m128 dst, __m128 s1);
__m128 mm_ceil_ss(__m128 dst, __m128 s1);

SIMD Floating-Point Exceptions

Invalid (signaled only if SRC = SNaN)
Precision (signaled only if imm[3] = ‘0; if imm[3] = ‘1, then the Precision Mask in the
MXSCSR is ignored and precision exception is not signaled.)
Note that Denormal is not signaled by ROUNDSS.

Other Exceptions
See Exceptions Type 3.
4-492 Vol. 2B ROUNDSS — Round Scalar Single Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
RSM—Resume from System Management Mode

Instruction Operand Encoding

Description

Returns program control from system management mode (SMM) to the application
program or operating-system procedure that was interrupted when the processor
received an SMM interrupt. The processor’s state is restored from the dump created
upon entering SMM. If the processor detects invalid state information during state
restoration, it enters the shutdown state. The following invalid information can cause
a shutdown:
• Any reserved bit of CR4 is set to 1.
• Any illegal combination of bits in CR0, such as (PG=1 and PE=0) or (NW=1 and

CD=0).
• (Intel Pentium and Intel486™ processors only.) The value stored in the state

dump base field is not a 32-KByte aligned address.

The contents of the model-specific registers are not affected by a return from SMM.

The SMM state map used by RSM supports resuming processor context for non-
64-bit modes and 64-bit mode.

See Chapter 33, “System Management Mode,” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3C, for more information about SMM and
the behavior of the RSM instruction.

Operation

ReturnFromSMM;
IF (IA-32e mode supported) or (CPUID DisplayFamily_DisplayModel = 06H_0CH)

THEN
ProcessorState ← Restore(SMMDump(IA-32e SMM STATE MAP));

Else
ProcessorState ← Restore(SMMDump(Non-32-Bit-Mode SMM STATE MAP));

FI

Opcode* Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F AA RSM NP Invalid Valid Resume operation of
interrupted program.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
Vol. 2B 4-493RSM—Resume from System Management Mode

INSTRUCTION SET REFERENCE, M-Z
Flags Affected

All.

Protected Mode Exceptions
#UD If an attempt is made to execute this instruction when the

processor is not in SMM.
If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
4-494 Vol. 2B RSM—Resume from System Management Mode

INSTRUCTION SET REFERENCE, M-Z
RSQRTPS—Compute Reciprocals of Square Roots of Packed Single-
Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a SIMD computation of the approximate reciprocals of the square roots of
the four packed single-precision floating-point values in the source operand (second
operand) and stores the packed single-precision floating-point results in the destina-
tion operand. The source operand can be an XMM register or a 128-bit memory loca-
tion. The destination operand is an XMM register. See Figure 10-5 in the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 1, for an illustration of
a SIMD single-precision floating-point operation.

The relative error for this approximation is:

|Relative Error| ≤ 1.5 ∗ 2−12

The RSQRTPS instruction is not affected by the rounding control bits in the MXCSR
register. When a source value is a 0.0, an ∞ of the sign of the source value is
returned. A denormal source value is treated as a 0.0 (of the same sign). When a

Opcode*/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 52 /r

RSQRTPS xmm1, xmm2/m128

RM V/V SSE Computes the approximate
reciprocals of the square
roots of the packed single-
precision floating-point
values in xmm2/m128 and
stores the results in xmm1.

VEX.128.0F.WIG 52 /r

VRSQRTPS xmm1, xmm2/m128

RM V/V AVX Computes the approximate
reciprocals of the square
roots of packed single-
precision values in
xmm2/mem and stores the
results in xmm1.

VEX.256.0F.WIG 52 /r

VRSQRTPS ymm1, ymm2/m256

RM V/V AVX Computes the approximate
reciprocals of the square
roots of packed single-
precision values in
ymm2/mem and stores the
results in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
Vol. 2B 4-495RSQRTPS—Compute Reciprocals of Square Roots of Packed Single-Precision Floating-
Point Values

INSTRUCTION SET REFERENCE, M-Z
source value is a negative value (other than −0.0), a floating-point indefinite is
returned. When a source value is an SNaN or QNaN, the SNaN is converted to a QNaN
or the source QNaN is returned.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise
instructions will #UD.

Operation

RSQRTPS (128-bit Legacy SSE version)
DEST[31:0] APPROXIMATE(1/SQRT(SRC[31:0]))
DEST[63:32] APPROXIMATE(1/SQRT(SRC1[63:32]))
DEST[95:64] APPROXIMATE(1/SQRT(SRC1[95:64]))
DEST[127:96] APPROXIMATE(1/SQRT(SRC2[127:96]))
DEST[VLMAX-1:128] (Unmodified)

VRSQRTPS (VEX.128 encoded version)
DEST[31:0] APPROXIMATE(1/SQRT(SRC[31:0]))
DEST[63:32] APPROXIMATE(1/SQRT(SRC1[63:32]))
DEST[95:64] APPROXIMATE(1/SQRT(SRC1[95:64]))
DEST[127:96] APPROXIMATE(1/SQRT(SRC2[127:96]))
DEST[VLMAX-1:128] 0

VRSQRTPS (VEX.256 encoded version)
DEST[31:0] APPROXIMATE(1/SQRT(SRC[31:0]))
DEST[63:32] APPROXIMATE(1/SQRT(SRC1[63:32]))
DEST[95:64] APPROXIMATE(1/SQRT(SRC1[95:64]))
DEST[127:96] APPROXIMATE(1/SQRT(SRC2[127:96]))
DEST[159:128] APPROXIMATE(1/SQRT(SRC2[159:128]))
DEST[191:160] APPROXIMATE(1/SQRT(SRC2[191:160]))
DEST[223:192] APPROXIMATE(1/SQRT(SRC2[223:192]))
DEST[255:224] APPROXIMATE(1/SQRT(SRC2[255:224]))
4-496 Vol. 2B RSQRTPS—Compute Reciprocals of Square Roots of Packed Single-Precision Floating-
Point Values

INSTRUCTION SET REFERENCE, M-Z
Intel C/C++ Compiler Intrinsic Equivalent

RSQRTPS: __m128 _mm_rsqrt_ps(__m128 a)
RSQRTPS: __m256 _mm256_rsqrt_ps (__m256 a);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.vvvv != 1111B.
Vol. 2B 4-497RSQRTPS—Compute Reciprocals of Square Roots of Packed Single-Precision Floating-
Point Values

INSTRUCTION SET REFERENCE, M-Z
RSQRTSS—Compute Reciprocal of Square Root of Scalar Single-
Precision Floating-Point Value

Instruction Operand Encoding

Description

Computes an approximate reciprocal of the square root of the low single-precision
floating-point value in the source operand (second operand) stores the single-preci-
sion floating-point result in the destination operand. The source operand can be an
XMM register or a 32-bit memory location. The destination operand is an XMM
register. The three high-order doublewords of the destination operand remain
unchanged. See Figure 10-6 in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1, for an illustration of a scalar single-precision floating-
point operation.

The relative error for this approximation is:

|Relative Error| ≤ 1.5 ∗ 2−12

The RSQRTSS instruction is not affected by the rounding control bits in the MXCSR
register. When a source value is a 0.0, an ∞ of the sign of the source value is
returned. A denormal source value is treated as a 0.0 (of the same sign). When a

Opcode*/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

F3 0F 52 /r

RSQRTSS xmm1, xmm2/m32

RM V/V SSE Computes the approximate
reciprocal of the square root
of the low single-precision
floating-point value in
xmm2/m32 and stores the
results in xmm1.

VEX.NDS.LIG.F3.0F.WIG 52 /r
VRSQRTSS xmm1, xmm2,
xmm3/m32

RVM V/V AVX Computes the approximate
reciprocal of the square root
of the low single precision
floating-point value in
xmm3/m32 and stores the
results in xmm1. Also, upper
single precision floating-
point values (bits[127:32])
from xmm2 are copied to
xmm1[127:32].

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
4-498 Vol. 2B RSQRTSS—Compute Reciprocal of Square Root of Scalar Single-Precision Floating-Point
Value

INSTRUCTION SET REFERENCE, M-Z
source value is a negative value (other than −0.0), a floating-point indefinite is
returned. When a source value is an SNaN or QNaN, the SNaN is converted to a QNaN
or the source QNaN is returned.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The first source operand and the destination operand
are the same. Bits (VLMAX-1:32) of the corresponding YMM destination register
remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed.

Operation

RSQRTSS (128-bit Legacy SSE version)
DEST[31:0] APPROXIMATE(1/SQRT(SRC2[31:0]))
DEST[VLMAX-1:32] (Unmodified)

VRSQRTSS (VEX.128 encoded version)
DEST[31:0] APPROXIMATE(1/SQRT(SRC2[31:0]))
DEST[127:32] SRC1[31:0]
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

RSQRTSS: __m128 _mm_rsqrt_ss(__m128 a)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 5.
Vol. 2B 4-499RSQRTSS—Compute Reciprocal of Square Root of Scalar Single-Precision Floating-Point
Value

INSTRUCTION SET REFERENCE, M-Z
SAHF—Store AH into Flags

Instruction Operand Encoding

Description

Loads the SF, ZF, AF, PF, and CF flags of the EFLAGS register with values from the
corresponding bits in the AH register (bits 7, 6, 4, 2, and 0, respectively). Bits 1, 3,
and 5 of register AH are ignored; the corresponding reserved bits (1, 3, and 5) in the
EFLAGS register remain as shown in the “Operation” section below.

This instruction executes as described above in compatibility mode and legacy mode.
It is valid in 64-bit mode only if CPUID.80000001H:ECX.LAHF-SAHF[bit 0] = 1.

Operation

IF IA-64 Mode
THEN

IF CPUID.80000001H.ECX[0] = 1;
THEN

RFLAGS(SF:ZF:0:AF:0:PF:1:CF) ← AH;
ELSE

#UD;
FI

ELSE
EFLAGS(SF:ZF:0:AF:0:PF:1:CF) ← AH;

FI;

Flags Affected

The SF, ZF, AF, PF, and CF flags are loaded with values from the AH register. Bits 1, 3,
and 5 of the EFLAGS register are unaffected, with the values remaining 1, 0, and 0,
respectively.

Opcode* Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

9E SAHF NP Invalid* Valid Loads SF, ZF, AF, PF, and CF
from AH into EFLAGS
register.

NOTES:
* Valid in specific steppings. See Description section.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
4-500 Vol. 2B SAHF—Store AH into Flags

INSTRUCTION SET REFERENCE, M-Z
Protected Mode Exceptions
None.

Real-Address Mode Exceptions
None.

Virtual-8086 Mode Exceptions
None.

Compatibility Mode Exceptions
None.

64-Bit Mode Exceptions
#UD If CPUID.80000001H.ECX[0] = 0.

If the LOCK prefix is used.
Vol. 2B 4-501SAHF—Store AH into Flags

INSTRUCTION SET REFERENCE, M-Z
SAL/SAR/SHL/SHR—Shift
Opcode*** Instruction Op/

En
64-Bit
Mode

Compat/
Leg Mode

Description

D0 /4 SAL r/m8, 1 M1 Valid Valid Multiply r/m8 by 2, once.

REX + D0 /4 SAL r/m8**, 1 M1 Valid N.E. Multiply r/m8 by 2, once.

D2 /4 SAL r/m8, CL MC Valid Valid Multiply r/m8 by 2, CL times.

REX + D2 /4 SAL r/m8**, CL MC Valid N.E. Multiply r/m8 by 2, CL times.

C0 /4 ib SAL r/m8, imm8 MI Valid Valid Multiply r/m8 by 2, imm8
times.

REX + C0 /4 ib SAL r/m8**, imm8 MI Valid N.E. Multiply r/m8 by 2, imm8
times.

D1 /4 SAL r/m16, 1 M1 Valid Valid Multiply r/m16 by 2, once.

D3 /4 SAL r/m16, CL MC Valid Valid Multiply r/m16 by 2, CL
times.

C1 /4 ib SAL r/m16, imm8 MI Valid Valid Multiply r/m16 by 2, imm8
times.

D1 /4 SAL r/m32, 1 M1 Valid Valid Multiply r/m32 by 2, once.

REX.W + D1 /4 SAL r/m64, 1 M1 Valid N.E. Multiply r/m64 by 2, once.

D3 /4 SAL r/m32, CL MC Valid Valid Multiply r/m32 by 2, CL
times.

REX.W + D3 /4 SAL r/m64, CL MC Valid N.E. Multiply r/m64 by 2, CL
times.

C1 /4 ib SAL r/m32, imm8 MI Valid Valid Multiply r/m32 by 2, imm8
times.

REX.W + C1 /4
ib

SAL r/m64, imm8 MI Valid N.E. Multiply r/m64 by 2, imm8
times.

D0 /7 SAR r/m8, 1 M1 Valid Valid Signed divide* r/m8 by 2,
once.

REX + D0 /7 SAR r/m8**, 1 M1 Valid N.E. Signed divide* r/m8 by 2,
once.

D2 /7 SAR r/m8, CL MC Valid Valid Signed divide* r/m8 by 2, CL
times.

REX + D2 /7 SAR r/m8**, CL MC Valid N.E. Signed divide* r/m8 by 2, CL
times.

C0 /7 ib SAR r/m8, imm8 MI Valid Valid Signed divide* r/m8 by 2,
imm8 time.

REX + C0 /7 ib SAR r/m8**, imm8 MI Valid N.E. Signed divide* r/m8 by 2,
imm8 times.
4-502 Vol. 2B SAL/SAR/SHL/SHR—Shift

INSTRUCTION SET REFERENCE, M-Z
Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

D1 /7 SAR r/m16,1 M1 Valid Valid Signed divide* r/m16 by 2,
once.

D3 /7 SAR r/m16, CL MC Valid Valid Signed divide* r/m16 by 2,
CL times.

C1 /7 ib SAR r/m16, imm8 MI Valid Valid Signed divide* r/m16 by 2,
imm8 times.

D1 /7 SAR r/m32, 1 M1 Valid Valid Signed divide* r/m32 by 2,
once.

REX.W + D1 /7 SAR r/m64, 1 M1 Valid N.E. Signed divide* r/m64 by 2,
once.

D3 /7 SAR r/m32, CL MC Valid Valid Signed divide* r/m32 by 2,
CL times.

REX.W + D3 /7 SAR r/m64, CL MC Valid N.E. Signed divide* r/m64 by 2,
CL times.

C1 /7 ib SAR r/m32, imm8 MI Valid Valid Signed divide* r/m32 by 2,
imm8 times.

REX.W + C1 /7
ib

SAR r/m64, imm8 MI Valid N.E. Signed divide* r/m64 by 2,
imm8 times

D0 /4 SHL r/m8, 1 M1 Valid Valid Multiply r/m8 by 2, once.

REX + D0 /4 SHL r/m8**, 1 M1 Valid N.E. Multiply r/m8 by 2, once.

D2 /4 SHL r/m8, CL MC Valid Valid Multiply r/m8 by 2, CL times.

REX + D2 /4 SHL r/m8**, CL MC Valid N.E. Multiply r/m8 by 2, CL times.

C0 /4 ib SHL r/m8, imm8 MI Valid Valid Multiply r/m8 by 2, imm8
times.

REX + C0 /4 ib SHL r/m8**, imm8 MI Valid N.E. Multiply r/m8 by 2, imm8
times.

D1 /4 SHL r/m16,1 M1 Valid Valid Multiply r/m16 by 2, once.

D3 /4 SHL r/m16, CL MC Valid Valid Multiply r/m16 by 2, CL
times.

C1 /4 ib SHL r/m16, imm8 MI Valid Valid Multiply r/m16 by 2, imm8
times.

D1 /4 SHL r/m32,1 M1 Valid Valid Multiply r/m32 by 2, once.

REX.W + D1 /4 SHL r/m64,1 M1 Valid N.E. Multiply r/m64 by 2, once.

D3 /4 SHL r/m32, CL MC Valid Valid Multiply r/m32 by 2, CL
times.

REX.W + D3 /4 SHL r/m64, CL MC Valid N.E. Multiply r/m64 by 2, CL
times.
Vol. 2B 4-503SAL/SAR/SHL/SHR—Shift

INSTRUCTION SET REFERENCE, M-Z
Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

C1 /4 ib SHL r/m32, imm8 MI Valid Valid Multiply r/m32 by 2, imm8
times.

REX.W + C1 /4
ib

SHL r/m64, imm8 MI Valid N.E. Multiply r/m64 by 2, imm8
times.

D0 /5 SHR r/m8,1 M1 Valid Valid Unsigned divide r/m8 by 2,
once.

REX + D0 /5 SHR r/m8**, 1 M1 Valid N.E. Unsigned divide r/m8 by 2,
once.

D2 /5 SHR r/m8, CL MC Valid Valid Unsigned divide r/m8 by 2,
CL times.

REX + D2 /5 SHR r/m8**, CL MC Valid N.E. Unsigned divide r/m8 by 2,
CL times.

C0 /5 ib SHR r/m8, imm8 MI Valid Valid Unsigned divide r/m8 by 2,
imm8 times.

REX + C0 /5 ib SHR r/m8**, imm8 MI Valid N.E. Unsigned divide r/m8 by 2,
imm8 times.

D1 /5 SHR r/m16, 1 M1 Valid Valid Unsigned divide r/m16 by 2,
once.

D3 /5 SHR r/m16, CL MC Valid Valid Unsigned divide r/m16 by 2,
CL times

C1 /5 ib SHR r/m16, imm8 MI Valid Valid Unsigned divide r/m16 by 2,
imm8 times.

D1 /5 SHR r/m32, 1 M1 Valid Valid Unsigned divide r/m32 by 2,
once.

REX.W + D1 /5 SHR r/m64, 1 M1 Valid N.E. Unsigned divide r/m64 by 2,
once.

D3 /5 SHR r/m32, CL MC Valid Valid Unsigned divide r/m32 by 2,
CL times.

REX.W + D3 /5 SHR r/m64, CL MC Valid N.E. Unsigned divide r/m64 by 2,
CL times.

C1 /5 ib SHR r/m32, imm8 MI Valid Valid Unsigned divide r/m32 by 2,
imm8 times.

REX.W + C1 /5
ib

SHR r/m64, imm8 MI Valid N.E. Unsigned divide r/m64 by 2,
imm8 times.
4-504 Vol. 2B SAL/SAR/SHL/SHR—Shift

INSTRUCTION SET REFERENCE, M-Z
Instruction Operand Encoding

Description

Shifts the bits in the first operand (destination operand) to the left or right by the
number of bits specified in the second operand (count operand). Bits shifted beyond
the destination operand boundary are first shifted into the CF flag, then discarded. At
the end of the shift operation, the CF flag contains the last bit shifted out of the desti-
nation operand.

The destination operand can be a register or a memory location. The count operand
can be an immediate value or the CL register. The count is masked to 5 bits (or 6 bits
if in 64-bit mode and REX.W is used). The count range is limited to 0 to 31 (or 63 if
64-bit mode and REX.W is used). A special opcode encoding is provided for a count
of 1.

The shift arithmetic left (SAL) and shift logical left (SHL) instructions perform the
same operation; they shift the bits in the destination operand to the left (toward
more significant bit locations). For each shift count, the most significant bit of the
destination operand is shifted into the CF flag, and the least significant bit is cleared
(see Figure 7-7 in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1).

The shift arithmetic right (SAR) and shift logical right (SHR) instructions shift the bits
of the destination operand to the right (toward less significant bit locations). For each
shift count, the least significant bit of the destination operand is shifted into the CF
flag, and the most significant bit is either set or cleared depending on the instruction
type. The SHR instruction clears the most significant bit (see Figure 7-8 in the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 1); the SAR
instruction sets or clears the most significant bit to correspond to the sign (most
significant bit) of the original value in the destination operand. In effect, the SAR
instruction fills the empty bit position’s shifted value with the sign of the unshifted
value (see Figure 7-9 in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1).

NOTES:
* Not the same form of division as IDIV; rounding is toward negative infinity.
** In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is

used: AH, BH, CH, DH.
***See IA-32 Architecture Compatibility section below.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M1 ModRM:r/m (r, w) 1 NA NA

MC ModRM:r/m (r, w) CL NA NA

MI ModRM:r/m (r, w) imm8 NA NA
Vol. 2B 4-505SAL/SAR/SHL/SHR—Shift

INSTRUCTION SET REFERENCE, M-Z
The SAR and SHR instructions can be used to perform signed or unsigned division,
respectively, of the destination operand by powers of 2. For example, using the SAR
instruction to shift a signed integer 1 bit to the right divides the value by 2.

Using the SAR instruction to perform a division operation does not produce the same
result as the IDIV instruction. The quotient from the IDIV instruction is rounded
toward zero, whereas the “quotient” of the SAR instruction is rounded toward nega-
tive infinity. This difference is apparent only for negative numbers. For example,
when the IDIV instruction is used to divide -9 by 4, the result is -2 with a remainder
of -1. If the SAR instruction is used to shift -9 right by two bits, the result is -3 and
the “remainder” is +3; however, the SAR instruction stores only the most significant
bit of the remainder (in the CF flag).

The OF flag is affected only on 1-bit shifts. For left shifts, the OF flag is set to 0 if the
most-significant bit of the result is the same as the CF flag (that is, the top two bits
of the original operand were the same); otherwise, it is set to 1. For the SAR instruc-
tion, the OF flag is cleared for all 1-bit shifts. For the SHR instruction, the OF flag is
set to the most-significant bit of the original operand.

In 64-bit mode, the instruction’s default operation size is 32 bits and the mask width
for CL is 5 bits. Using a REX prefix in the form of REX.R permits access to additional
registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to
64-bits and sets the mask width for CL to 6 bits. See the summary chart at the begin-
ning of this section for encoding data and limits.

IA-32 Architecture Compatibility

The 8086 does not mask the shift count. However, all other IA-32 processors
(starting with the Intel 286 processor) do mask the shift count to 5 bits, resulting in
a maximum count of 31. This masking is done in all operating modes (including the
virtual-8086 mode) to reduce the maximum execution time of the instructions.

Operation

IF 64-Bit Mode and using REX.W
THEN

countMASK ← 3FH;
ELSE

countMASK ← 1FH;
FI

tempCOUNT ← (COUNT AND countMASK);
tempDEST ← DEST;
WHILE (tempCOUNT ≠ 0)
DO

IF instruction is SAL or SHL
THEN

CF ← MSB(DEST);
4-506 Vol. 2B SAL/SAR/SHL/SHR—Shift

INSTRUCTION SET REFERENCE, M-Z
ELSE (* Instruction is SAR or SHR *)
CF ← LSB(DEST);

FI;
IF instruction is SAL or SHL

THEN
DEST ← DEST ∗ 2;

ELSE
IF instruction is SAR

THEN
DEST ← DEST / 2; (* Signed divide, rounding toward negative infinity *)

ELSE (* Instruction is SHR *)
DEST ← DEST / 2 ; (* Unsigned divide *)

FI;
FI;
tempCOUNT ← tempCOUNT – 1;

OD;

(* Determine overflow for the various instructions *)
IF (COUNT and countMASK) = 1

THEN
IF instruction is SAL or SHL

THEN
OF ← MSB(DEST) XOR CF;

ELSE
IF instruction is SAR

THEN
OF ← 0;

ELSE (* Instruction is SHR *)
OF ← MSB(tempDEST);

FI;
FI;

ELSE IF (COUNT AND countMASK) = 0
THEN

All flags unchanged;
ELSE (* COUNT not 1 or 0 *)

OF ← undefined;
FI;

FI;

Flags Affected

The CF flag contains the value of the last bit shifted out of the destination operand; it
is undefined for SHL and SHR instructions where the count is greater than or equal to
the size (in bits) of the destination operand. The OF flag is affected only for 1-bit
Vol. 2B 4-507SAL/SAR/SHL/SHR—Shift

INSTRUCTION SET REFERENCE, M-Z
shifts (see “Description” above); otherwise, it is undefined. The SF, ZF, and PF flags
are set according to the result. If the count is 0, the flags are not affected. For a non-
zero count, the AF flag is undefined.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
4-508 Vol. 2B SAL/SAR/SHL/SHR—Shift

INSTRUCTION SET REFERENCE, M-Z
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
Vol. 2B 4-509SAL/SAR/SHL/SHR—Shift

INSTRUCTION SET REFERENCE, M-Z
SBB—Integer Subtraction with Borrow

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

1C ib SBB AL, imm8 I Valid Valid Subtract with borrow imm8
from AL.

1D iw SBB AX, imm16 I Valid Valid Subtract with borrow
imm16 from AX.

1D id SBB EAX, imm32 I Valid Valid Subtract with borrow
imm32 from EAX.

REX.W + 1D id SBB RAX, imm32 I Valid N.E. Subtract with borrow sign-
extended imm.32 to 64-bits
from RAX.

80 /3 ib SBB r/m8, imm8 MI Valid Valid Subtract with borrow imm8
from r/m8.

REX + 80 /3 ib SBB r/m8*, imm8 MI Valid N.E. Subtract with borrow imm8
from r/m8.

81 /3 iw SBB r/m16,
imm16

MI Valid Valid Subtract with borrow
imm16 from r/m16.

81 /3 id SBB r/m32,
imm32

MI Valid Valid Subtract with borrow
imm32 from r/m32.

REX.W + 81 /3
id

SBB r/m64,
imm32

MI Valid N.E. Subtract with borrow sign-
extended imm32 to 64-bits
from r/m64.

83 /3 ib SBB r/m16, imm8 MI Valid Valid Subtract with borrow sign-
extended imm8 from r/m16.

83 /3 ib SBB r/m32, imm8 MI Valid Valid Subtract with borrow sign-
extended imm8 from r/m32.

REX.W + 83 /3
ib

SBB r/m64, imm8 MI Valid N.E. Subtract with borrow sign-
extended imm8 from r/m64.

18 /r SBB r/m8, r8 MR Valid Valid Subtract with borrow r8
from r/m8.

REX + 18 /r SBB r/m8*, r8 MR Valid N.E. Subtract with borrow r8
from r/m8.

19 /r SBB r/m16, r16 MR Valid Valid Subtract with borrow r16
from r/m16.

19 /r SBB r/m32, r32 MR Valid Valid Subtract with borrow r32
from r/m32.

REX.W + 19 /r SBB r/m64, r64 MR Valid N.E. Subtract with borrow r64
from r/m64.
4-510 Vol. 2B SBB—Integer Subtraction with Borrow

INSTRUCTION SET REFERENCE, M-Z
Instruction Operand Encoding

Description

Adds the source operand (second operand) and the carry (CF) flag, and subtracts the
result from the destination operand (first operand). The result of the subtraction is
stored in the destination operand. The destination operand can be a register or a
memory location; the source operand can be an immediate, a register, or a memory
location. (However, two memory operands cannot be used in one instruction.) The
state of the CF flag represents a borrow from a previous subtraction.

When an immediate value is used as an operand, it is sign-extended to the length of
the destination operand format.

The SBB instruction does not distinguish between signed or unsigned operands.
Instead, the processor evaluates the result for both data types and sets the OF and
CF flags to indicate a borrow in the signed or unsigned result, respectively. The SF
flag indicates the sign of the signed result.

The SBB instruction is usually executed as part of a multibyte or multiword subtrac-
tion in which a SUB instruction is followed by a SBB instruction.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

1A /r SBB r8, r/m8 RM Valid Valid Subtract with borrow r/m8
from r8.

REX + 1A /r SBB r8*, r/m8* RM Valid N.E. Subtract with borrow r/m8
from r8.

1B /r SBB r16, r/m16 RM Valid Valid Subtract with borrow r/m16
from r16.

1B /r SBB r32, r/m32 RM Valid Valid Subtract with borrow r/m32
from r32.

REX.W + 1B /r SBB r64, r/m64 RM Valid N.E. Subtract with borrow r/m64
from r64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is

used: AH, BH, CH, DH.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

I AL/AX/EAX/RAX imm8/16/32 NA NA

MI ModRM:r/m (w) imm8/16/32 NA NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA

RM ModRM:reg (w) ModRM:r/m (r) NA NA
Vol. 2B 4-511SBB—Integer Subtraction with Borrow

INSTRUCTION SET REFERENCE, M-Z
This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

Operation

DEST ← (DEST – (SRC + CF));

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory

operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#UD If the LOCK prefix is used but the destination is not a memory

operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
4-512 Vol. 2B SBB—Integer Subtraction with Borrow

INSTRUCTION SET REFERENCE, M-Z
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used but the destination is not a memory

operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory

operand.
Vol. 2B 4-513SBB—Integer Subtraction with Borrow

INSTRUCTION SET REFERENCE, M-Z
SCAS/SCASB/SCASW/SCASD—Scan String

Instruction Operand Encoding

Description

In non-64-bit modes and in default 64-bit mode: this instruction compares a byte,
word, doubleword or quadword specified using a memory operand with the value in
AL, AX, or EAX. It then sets status flags in EFLAGS recording the results. The memory
operand address is read from ES:(E)DI register (depending on the address-size

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

AE SCAS m8 NP Valid Valid Compare AL with byte at
ES:(E)DI or RDI, then set
status flags.*

AF SCAS m16 NP Valid Valid Compare AX with word at
ES:(E)DI or RDI, then set
status flags.*

AF SCAS m32 NP Valid Valid Compare EAX with
doubleword at ES(E)DI or
RDI then set status flags.*

REX.W + AF SCAS m64 NP Valid N.E. Compare RAX with
quadword at RDI or EDI then
set status flags.

AE SCASB NP Valid Valid Compare AL with byte at
ES:(E)DI or RDI then set
status flags.*

AF SCASW NP Valid Valid Compare AX with word at
ES:(E)DI or RDI then set
status flags.*

AF SCASD NP Valid Valid Compare EAX with
doubleword at ES:(E)DI or
RDI then set status flags.*

REX.W + AF SCASQ NP Valid N.E. Compare RAX with
quadword at RDI or EDI then
set status flags.

NOTES:
* In 64-bit mode, only 64-bit (RDI) and 32-bit (EDI) address sizes are supported. In non-64-bit

mode, only 32-bit (EDI) and 16-bit (DI) address sizes are supported.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
4-514 Vol. 2B SCAS/SCASB/SCASW/SCASD—Scan String

INSTRUCTION SET REFERENCE, M-Z
attribute of the instruction and the current operational mode). Note that ES cannot
be overridden with a segment override prefix.

At the assembly-code level, two forms of this instruction are allowed. The explicit-
operand form and the no-operands form. The explicit-operand form (specified using
the SCAS mnemonic) allows a memory operand to be specified explicitly. The
memory operand must be a symbol that indicates the size and location of the
operand value. The register operand is then automatically selected to match the size
of the memory operand (AL register for byte comparisons, AX for word comparisons,
EAX for doubleword comparisons). The explicit-operand form is provided to allow
documentation. Note that the documentation provided by this form can be
misleading. That is, the memory operand symbol must specify the correct type (size)
of the operand (byte, word, or doubleword) but it does not have to specify the correct
location. The location is always specified by ES:(E)DI.

The no-operands form of the instruction uses a short form of SCAS. Again, ES:(E)DI
is assumed to be the memory operand and AL, AX, or EAX is assumed to be the
register operand. The size of operands is selected by the mnemonic: SCASB (byte
comparison), SCASW (word comparison), or SCASD (doubleword comparison).

After the comparison, the (E)DI register is incremented or decremented automati-
cally according to the setting of the DF flag in the EFLAGS register. If the DF flag is 0,
the (E)DI register is incremented; if the DF flag is 1, the (E)DI register is decre-
mented. The register is incremented or decremented by 1 for byte operations, by 2
for word operations, and by 4 for doubleword operations.

SCAS, SCASB, SCASW, SCASD, and SCASQ can be preceded by the REP prefix for
block comparisons of ECX bytes, words, doublewords, or quadwords. Often, however,
these instructions will be used in a LOOP construct that takes some action based on
the setting of status flags. See “REP/REPE/REPZ /REPNE/REPNZ—Repeat String
Operation Prefix” in this chapter for a description of the REP prefix.

In 64-bit mode, the instruction’s default address size is 64-bits, 32-bit address size is
supported using the prefix 67H. Using a REX prefix in the form of REX.W promotes
operation on doubleword operand to 64 bits. The 64-bit no-operand mnemonic is
SCASQ. Address of the memory operand is specified in either RDI or EDI, and
AL/AX/EAX/RAX may be used as the register operand. After a comparison, the desti-
nation register is incremented or decremented by the current operand size
(depending on the value of the DF flag). See the summary chart at the beginning of
this section for encoding data and limits.

Operation

Non-64-bit Mode:

IF (Byte cmparison)
THEN

temp ← AL − SRC;
SetStatusFlags(temp);

THEN IF DF = 0
Vol. 2B 4-515SCAS/SCASB/SCASW/SCASD—Scan String

INSTRUCTION SET REFERENCE, M-Z
THEN (E)DI ← (E)DI + 1;
ELSE (E)DI ← (E)DI – 1; FI;

ELSE IF (Word comparison)
THEN

temp ← AX − SRC;
SetStatusFlags(temp);
IF DF = 0

THEN (E)DI ← (E)DI + 2;
ELSE (E)DI ← (E)DI – 2; FI;

FI;
ELSE IF (Doubleword comparison)

THEN
temp ← EAX – SRC;
SetStatusFlags(temp);
IF DF = 0

THEN (E)DI ← (E)DI + 4;
ELSE (E)DI ← (E)DI – 4; FI;

FI;
FI;

64-bit Mode:

IF (Byte cmparison)
THEN

temp ← AL − SRC;
SetStatusFlags(temp);

THEN IF DF = 0
THEN (R|E)DI ← (R|E)DI + 1;
ELSE (R|E)DI ← (R|E)DI – 1; FI;

ELSE IF (Word comparison)
THEN

temp ← AX − SRC;
SetStatusFlags(temp);
IF DF = 0

THEN (R|E)DI ← (R|E)DI + 2;
ELSE (R|E)DI ← (R|E)DI – 2; FI;

FI;
ELSE IF (Doubleword comparison)

THEN
temp ← EAX – SRC;
SetStatusFlags(temp);
IF DF = 0

THEN (R|E)DI ← (R|E)DI + 4;
ELSE (R|E)DI ← (R|E)DI – 4; FI;
4-516 Vol. 2B SCAS/SCASB/SCASW/SCASD—Scan String

INSTRUCTION SET REFERENCE, M-Z
FI;
ELSE IF (Quadword comparison using REX.W)

THEN
temp ← RAX − SRC;
SetStatusFlags(temp);
IF DF = 0

THEN (R|E)DI ← (R|E)DI + 8;
ELSE (R|E)DI ← (R|E)DI – 8;

FI;
FI;

F

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are set according to the temporary result of the
comparison.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the limit of the

ES segment.
If the ES register contains a NULL segment selector.
If an illegal memory operand effective address in the ES
segment is given.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.
Vol. 2B 4-517SCAS/SCASB/SCASW/SCASD—Scan String

INSTRUCTION SET REFERENCE, M-Z
#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
4-518 Vol. 2B SCAS/SCASB/SCASW/SCASD—Scan String

INSTRUCTION SET REFERENCE, M-Z
SETcc—Set Byte on Condition
Opcode Instruction Op/

En
64-Bit
Mode

Compat/
Leg Mode

Description

0F 97 SETA r/m8 M Valid Valid Set byte if above (CF=0 and
ZF=0).

REX + 0F 97 SETA r/m8* M Valid N.E. Set byte if above (CF=0 and
ZF=0).

0F 93 SETAE r/m8 M Valid Valid Set byte if above or equal
(CF=0).

REX + 0F 93 SETAE r/m8* M Valid N.E. Set byte if above or equal
(CF=0).

0F 92 SETB r/m8 M Valid Valid Set byte if below (CF=1).

REX + 0F 92 SETB r/m8* M Valid N.E. Set byte if below (CF=1).

0F 96 SETBE r/m8 M Valid Valid Set byte if below or equal
(CF=1 or ZF=1).

REX + 0F 96 SETBE r/m8* M Valid N.E. Set byte if below or equal
(CF=1 or ZF=1).

0F 92 SETC r/m8 M Valid Valid Set byte if carry (CF=1).

REX + 0F 92 SETC r/m8* M Valid N.E. Set byte if carry (CF=1).

0F 94 SETE r/m8 M Valid Valid Set byte if equal (ZF=1).

REX + 0F 94 SETE r/m8* M Valid N.E. Set byte if equal (ZF=1).

0F 9F SETG r/m8 M Valid Valid Set byte if greater (ZF=0
and SF=OF).

REX + 0F 9F SETG r/m8* M Valid N.E. Set byte if greater (ZF=0
and SF=OF).

0F 9D SETGE r/m8 M Valid Valid Set byte if greater or equal
(SF=OF).

REX + 0F 9D SETGE r/m8* M Valid N.E. Set byte if greater or equal
(SF=OF).

0F 9C SETL r/m8 M Valid Valid Set byte if less (SF≠ OF).

REX + 0F 9C SETL r/m8* M Valid N.E. Set byte if less (SF≠ OF).

0F 9E SETLE r/m8 M Valid Valid Set byte if less or equal
(ZF=1 or SF≠ OF).

REX + 0F 9E SETLE r/m8* M Valid N.E. Set byte if less or equal
(ZF=1 or SF≠ OF).

0F 96 SETNA r/m8 M Valid Valid Set byte if not above (CF=1
or ZF=1).
Vol. 2B 4-519SETcc—Set Byte on Condition

INSTRUCTION SET REFERENCE, M-Z
REX + 0F 96 SETNA r/m8* M Valid N.E. Set byte if not above (CF=1
or ZF=1).

0F 92 SETNAE r/m8 M Valid Valid Set byte if not above or
equal (CF=1).

REX + 0F 92 SETNAE r/m8* M Valid N.E. Set byte if not above or
equal (CF=1).

0F 93 SETNB r/m8 M Valid Valid Set byte if not below (CF=0).

REX + 0F 93 SETNB r/m8* M Valid N.E. Set byte if not below (CF=0).

0F 97 SETNBE r/m8 M Valid Valid Set byte if not below or
equal (CF=0 and ZF=0).

REX + 0F 97 SETNBE r/m8* M Valid N.E. Set byte if not below or
equal (CF=0 and ZF=0).

0F 93 SETNC r/m8 M Valid Valid Set byte if not carry (CF=0).

REX + 0F 93 SETNC r/m8* M Valid N.E. Set byte if not carry (CF=0).

0F 95 SETNE r/m8 M Valid Valid Set byte if not equal (ZF=0).

REX + 0F 95 SETNE r/m8* M Valid N.E. Set byte if not equal (ZF=0).

0F 9E SETNG r/m8 M Valid Valid Set byte if not greater
(ZF=1 or SF≠ OF)

REX + 0F 9E SETNG r/m8* M Valid N.E. Set byte if not greater
(ZF=1 or SF≠ OF).

0F 9C SETNGE r/m8 M Valid Valid Set byte if not greater or
equal (SF≠ OF).

REX + 0F 9C SETNGE r/m8* M Valid N.E. Set byte if not greater or
equal (SF≠ OF).

0F 9D SETNL r/m8 M Valid Valid Set byte if not less (SF=OF).

REX + 0F 9D SETNL r/m8* M Valid N.E. Set byte if not less (SF=OF).

0F 9F SETNLE r/m8 M Valid Valid Set byte if not less or equal
(ZF=0 and SF=OF).

REX + 0F 9F SETNLE r/m8* M Valid N.E. Set byte if not less or equal
(ZF=0 and SF=OF).

0F 91 SETNO r/m8 M Valid Valid Set byte if not overflow
(OF=0).

REX + 0F 91 SETNO r/m8* M Valid N.E. Set byte if not overflow
(OF=0).

0F 9B SETNP r/m8 M Valid Valid Set byte if not parity (PF=0).

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description
4-520 Vol. 2B SETcc—Set Byte on Condition

INSTRUCTION SET REFERENCE, M-Z
Instruction Operand Encoding

Description

Sets the destination operand to 0 or 1 depending on the settings of the status flags
(CF, SF, OF, ZF, and PF) in the EFLAGS register. The destination operand points to a
byte register or a byte in memory. The condition code suffix (cc) indicates the condi-
tion being tested for.

REX + 0F 9B SETNP r/m8* M Valid N.E. Set byte if not parity (PF=0).

0F 99 SETNS r/m8 M Valid Valid Set byte if not sign (SF=0).

REX + 0F 99 SETNS r/m8* M Valid N.E. Set byte if not sign (SF=0).

0F 95 SETNZ r/m8 M Valid Valid Set byte if not zero (ZF=0).

REX + 0F 95 SETNZ r/m8* M Valid N.E. Set byte if not zero (ZF=0).

0F 90 SETO r/m8 M Valid Valid Set byte if overflow (OF=1)

REX + 0F 90 SETO r/m8* M Valid N.E. Set byte if overflow (OF=1).

0F 9A SETP r/m8 M Valid Valid Set byte if parity (PF=1).

REX + 0F 9A SETP r/m8* M Valid N.E. Set byte if parity (PF=1).

0F 9A SETPE r/m8 M Valid Valid Set byte if parity even
(PF=1).

REX + 0F 9A SETPE r/m8* M Valid N.E. Set byte if parity even
(PF=1).

0F 9B SETPO r/m8 M Valid Valid Set byte if parity odd
(PF=0).

REX + 0F 9B SETPO r/m8* M Valid N.E. Set byte if parity odd
(PF=0).

0F 98 SETS r/m8 M Valid Valid Set byte if sign (SF=1).

REX + 0F 98 SETS r/m8* M Valid N.E. Set byte if sign (SF=1).

0F 94 SETZ r/m8 M Valid Valid Set byte if zero (ZF=1).

REX + 0F 94 SETZ r/m8* M Valid N.E. Set byte if zero (ZF=1).

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is

used: AH, BH, CH, DH.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description
Vol. 2B 4-521SETcc—Set Byte on Condition

INSTRUCTION SET REFERENCE, M-Z
The terms “above” and “below” are associated with the CF flag and refer to the rela-
tionship between two unsigned integer values. The terms “greater” and “less” are
associated with the SF and OF flags and refer to the relationship between two signed
integer values.

Many of the SETcc instruction opcodes have alternate mnemonics. For example,
SETG (set byte if greater) and SETNLE (set if not less or equal) have the same
opcode and test for the same condition: ZF equals 0 and SF equals OF. These alter-
nate mnemonics are provided to make code more intelligible. Appendix B, “EFLAGS
Condition Codes,” in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1, shows the alternate mnemonics for various test conditions.

Some languages represent a logical one as an integer with all bits set. This represen-
tation can be obtained by choosing the logically opposite condition for the SETcc
instruction, then decrementing the result. For example, to test for overflow, use the
SETNO instruction, then decrement the result.

In IA-64 mode, the operand size is fixed at 8 bits. Use of REX prefix enable uniform
addressing to additional byte registers. Otherwise, this instruction’s operation is the
same as in legacy mode and compatibility mode.

Operation

IF condition
THEN DEST ← 1;
ELSE DEST ← 0;

FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
4-522 Vol. 2B SETcc—Set Byte on Condition

INSTRUCTION SET REFERENCE, M-Z
#SS If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.
Vol. 2B 4-523SETcc—Set Byte on Condition

INSTRUCTION SET REFERENCE, M-Z
SFENCE—Store Fence

Instruction Operand Encoding

Description

Performs a serializing operation on all store-to-memory instructions that were issued
prior the SFENCE instruction. This serializing operation guarantees that every store
instruction that precedes the SFENCE instruction in program order becomes globally
visible before any store instruction that follows the SFENCE instruction. The SFENCE
instruction is ordered with respect to store instructions, other SFENCE instructions,
any LFENCE and MFENCE instructions, and any serializing instructions (such as the
CPUID instruction). It is not ordered with respect to load instructions.

Weakly ordered memory types can be used to achieve higher processor performance
through such techniques as out-of-order issue, write-combining, and write-
collapsing. The degree to which a consumer of data recognizes or knows that the
data is weakly ordered varies among applications and may be unknown to the
producer of this data. The SFENCE instruction provides a performance-efficient way
of ensuring store ordering between routines that produce weakly-ordered results and
routines that consume this data.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

Wait_On_Following_Stores_Until(preceding_stores_globally_visible);

Intel C/C++ Compiler Intrinsic Equivalent

void _mm_sfence(void)

Exceptions (All Operating Modes)
#UD If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

Opcode* Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F AE /7 SFENCE NP Valid Valid Serializes store operations.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
4-524 Vol. 2B SFENCE—Store Fence

INSTRUCTION SET REFERENCE, M-Z
SGDT—Store Global Descriptor Table Register

Instruction Operand Encoding

Description

Stores the content of the global descriptor table register (GDTR) in the destination
operand. The destination operand specifies a memory location.

In legacy or compatibility mode, the destination operand is a 6-byte memory loca-
tion. If the operand-size attribute is 16 bits, the limit is stored in the low 2 bytes and
the 24-bit base address is stored in bytes 3-5, and byte 6 is zero-filled. If the
operand-size attribute is 32 bits, the 16-bit limit field of the register is stored in the
low 2 bytes of the memory location and the 32-bit base address is stored in the high
4 bytes.

In IA-32e mode, the operand size is fixed at 8+2 bytes. The instruction stores an 8-
byte base and a 2-byte limit.

SGDT is useful only by operating-system software. However, it can be used in appli-
cation programs without causing an exception to be generated. See
“LGDT/LIDT—Load Global/Interrupt Descriptor Table Register” in Chapter 3, Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 2A, for information
on loading the GDTR and IDTR.

IA-32 Architecture Compatibility

The 16-bit form of the SGDT is compatible with the Intel 286 processor if the upper 8
bits are not referenced. The Intel 286 processor fills these bits with 1s; the Pentium
4, Intel Xeon, P6 processor family, Pentium, Intel486, and Intel386™ processors fill
these bits with 0s.

Operation

IF instruction is SGDT
IF OperandSize = 16

THEN
DEST[0:15] ← GDTR(Limit);

Opcode* Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 01 /0 SGDT m M Valid Valid Store GDTR to m.

NOTES:
* See IA-32 Architecture Compatibility section below.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA
Vol. 2B 4-525SGDT—Store Global Descriptor Table Register

INSTRUCTION SET REFERENCE, M-Z
DEST[16:39] ← GDTR(Base); (* 24 bits of base address stored *)
DEST[40:47] ← 0;

ELSE IF (32-bit Operand Size)
DEST[0:15] ← GDTR(Limit);
DEST[16:47] ← GDTR(Base); (* Full 32-bit base address stored *)
FI;

ELSE (* 64-bit Operand Size *)
DEST[0:15] ← GDTR(Limit);
DEST[16:79] ← GDTR(Base); (* Full 64-bit base address stored *)

FI;
FI;

Flags Affected

None.

Protected Mode Exceptions
#UD If the destination operand is a register.

If the LOCK prefix is used.
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.

Real-Address Mode Exceptions
#UD If the destination operand is a register.

If the LOCK prefix is used.
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.

Virtual-8086 Mode Exceptions
#UD If the destination operand is a register.

If the LOCK prefix is used.
4-526 Vol. 2B SGDT—Store Global Descriptor Table Register

INSTRUCTION SET REFERENCE, M-Z
#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#UD If the destination operand is a register.

If the LOCK prefix is used.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
Vol. 2B 4-527SGDT—Store Global Descriptor Table Register

INSTRUCTION SET REFERENCE, M-Z
SHLD—Double Precision Shift Left

Instruction Operand Encoding

Description

The SHLD instruction is used for multi-precision shifts of 64 bits or more.

The instruction shifts the first operand (destination operand) to the left the number
of bits specified by the third operand (count operand). The second operand (source
operand) provides bits to shift in from the right (starting with bit 0 of the destination
operand).

The destination operand can be a register or a memory location; the source operand
is a register. The count operand is an unsigned integer that can be stored in an imme-
diate byte or in the CL register. If the count operand is CL, the shift count is the
logical AND of CL and a count mask. In non-64-bit modes and default 64-bit mode;
only bits 0 through 4 of the count are used. This masks the count to a value between
0 and 31. If a count is greater than the operand size, the result is undefined.

Opcode* Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F A4 SHLD r/m16, r16,
imm8

MRI Valid Valid Shift r/m16 to left imm8
places while shifting bits
from r16 in from the right.

0F A5 SHLD r/m16, r16,
CL

MRC Valid Valid Shift r/m16 to left CL places
while shifting bits from r16
in from the right.

0F A4 SHLD r/m32, r32,
imm8

MRI Valid Valid Shift r/m32 to left imm8
places while shifting bits
from r32 in from the right.

REX.W + 0F A4 SHLD r/m64, r64,
imm8

MRI Valid N.E. Shift r/m64 to left imm8
places while shifting bits
from r64 in from the right.

0F A5 SHLD r/m32, r32,
CL

MRC Valid Valid Shift r/m32 to left CL places
while shifting bits from r32
in from the right.

REX.W + 0F A5 SHLD r/m64, r64,
CL

MRC Valid N.E. Shift r/m64 to left CL places
while shifting bits from r64
in from the right.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MRI ModRM:r/m (w) ModRM:reg (r) imm8 NA

MRC ModRM:r/m (w) ModRM:reg (r) CL NA
4-528 Vol. 2B SHLD—Double Precision Shift Left

INSTRUCTION SET REFERENCE, M-Z
If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the desti-
nation operand. For a 1-bit shift, the OF flag is set if a sign change occurred; other-
wise, it is cleared. If the count operand is 0, flags are not affected.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits (upgrading the count mask
to 6 bits). See the summary chart at the beginning of this section for encoding data
and limits.

Operation

IF (In 64-Bit Mode and REX.W = 1)
THEN COUNT ← COUNT MOD 64;
ELSE COUNT ← COUNT MOD 32;

FI
SIZE ← OperandSize;
IF COUNT = 0

THEN
No operation;

ELSE
IF COUNT > SIZE

THEN (* Bad parameters *)
DEST is undefined;
CF, OF, SF, ZF, AF, PF are undefined;

ELSE (* Perform the shift *)
CF ← BIT[DEST, SIZE – COUNT];
(* Last bit shifted out on exit *)
FOR i ← SIZE – 1 DOWN TO COUNT

DO
Bit(DEST, i) ← Bit(DEST, i – COUNT);

OD;
FOR i ← COUNT – 1 DOWN TO 0

DO
BIT[DEST, i] ← BIT[SRC, i – COUNT + SIZE];

OD;
FI;

FI;

Flags Affected

If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the desti-
nation operand and the SF, ZF, and PF flags are set according to the value of the
result. For a 1-bit shift, the OF flag is set if a sign change occurred; otherwise, it is
cleared. For shifts greater than 1 bit, the OF flag is undefined. If a shift occurs, the AF
Vol. 2B 4-529SHLD—Double Precision Shift Left

INSTRUCTION SET REFERENCE, M-Z
flag is undefined. If the count operand is 0, the flags are not affected. If the count is
greater than the operand size, the flags are undefined.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
4-530 Vol. 2B SHLD—Double Precision Shift Left

INSTRUCTION SET REFERENCE, M-Z
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
Vol. 2B 4-531SHLD—Double Precision Shift Left

INSTRUCTION SET REFERENCE, M-Z
SHRD—Double Precision Shift Right

Instruction Operand Encoding

Description

The SHRD instruction is useful for multi-precision shifts of 64 bits or more.

The instruction shifts the first operand (destination operand) to the right the number
of bits specified by the third operand (count operand). The second operand (source
operand) provides bits to shift in from the left (starting with the most significant bit
of the destination operand).

The destination operand can be a register or a memory location; the source operand
is a register. The count operand is an unsigned integer that can be stored in an imme-
diate byte or the CL register. If the count operand is CL, the shift count is the logical
AND of CL and a count mask. In non-64-bit modes and default 64-bit mode, the
width of the count mask is 5 bits. Only bits 0 through 4 of the count register are used
(masking the count to a value between 0 and 31). If the count is greater than the
operand size, the result is undefined.

Opcode* Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F AC SHRD r/m16, r16,
imm8

MRI Valid Valid Shift r/m16 to right imm8
places while shifting bits
from r16 in from the left.

0F AD SHRD r/m16, r16,
CL

MRC Valid Valid Shift r/m16 to right CL
places while shifting bits
from r16 in from the left.

0F AC SHRD r/m32, r32,
imm8

MRI Valid Valid Shift r/m32 to right imm8
places while shifting bits
from r32 in from the left.

REX.W + 0F AC SHRD r/m64, r64,
imm8

MRI Valid N.E. Shift r/m64 to right imm8
places while shifting bits
from r64 in from the left.

0F AD SHRD r/m32, r32,
CL

MRC Valid Valid Shift r/m32 to right CL
places while shifting bits
from r32 in from the left.

REX.W + 0F AD SHRD r/m64, r64,
CL

MRC Valid N.E. Shift r/m64 to right CL
places while shifting bits
from r64 in from the left.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MRI ModRM:r/m (w) ModRM:reg (r) imm8 NA

MRC ModRM:r/m (w) ModRM:reg (r) CL NA
4-532 Vol. 2B SHRD—Double Precision Shift Right

INSTRUCTION SET REFERENCE, M-Z
If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the desti-
nation operand. For a 1-bit shift, the OF flag is set if a sign change occurred; other-
wise, it is cleared. If the count operand is 0, flags are not affected.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits (upgrading the count mask
to 6 bits). See the summary chart at the beginning of this section for encoding data
and limits.

Operation

IF (In 64-Bit Mode and REX.W = 1)
THEN COUNT ← COUNT MOD 64;
ELSE COUNT ← COUNT MOD 32;

FI
SIZE ← OperandSize;
IF COUNT = 0

THEN
No operation;

ELSE
IF COUNT > SIZE

THEN (* Bad parameters *)
DEST is undefined;
CF, OF, SF, ZF, AF, PF are undefined;

ELSE (* Perform the shift *)
CF ← BIT[DEST, COUNT – 1]; (* Last bit shifted out on exit *)
FOR i ← 0 TO SIZE – 1 – COUNT

DO
BIT[DEST, i] ← BIT[DEST, i + COUNT];

OD;
FOR i ← SIZE – COUNT TO SIZE – 1

DO
BIT[DEST,i] ← BIT[SRC, i + COUNT – SIZE];

OD;
FI;

FI;

Flags Affected

If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the desti-
nation operand and the SF, ZF, and PF flags are set according to the value of the
result. For a 1-bit shift, the OF flag is set if a sign change occurred; otherwise, it is
cleared. For shifts greater than 1 bit, the OF flag is undefined. If a shift occurs, the AF
flag is undefined. If the count operand is 0, the flags are not affected. If the count is
greater than the operand size, the flags are undefined.
Vol. 2B 4-533SHRD—Double Precision Shift Right

INSTRUCTION SET REFERENCE, M-Z
Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
4-534 Vol. 2B SHRD—Double Precision Shift Right

INSTRUCTION SET REFERENCE, M-Z
#UD If the LOCK prefix is used.
Vol. 2B 4-535SHRD—Double Precision Shift Right

INSTRUCTION SET REFERENCE, M-Z
SHUFPD—Shuffle Packed Double-Precision Floating-Point Values

Instruction Operand Encoding

Description

Moves either of the two packed double-precision floating-point values from destina-
tion operand (first operand) into the low quadword of the destination operand;
moves either of the two packed double-precision floating-point values from the
source operand into to the high quadword of the destination operand (see
Figure 4-18). The select operand (third operand) determines which values are
moved to the destination operand.
128-bit Legacy SSE version: The source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.

Opcode*/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F C6 /r ib

SHUFPD xmm1, xmm2/m128, imm8

RMI V/V SSE2 Shuffle packed double-
precision floating-point
values selected by imm8
from xmm1 and
xmm2/m128 to xmm1.

VEX.NDS.128.66.0F.WIG C6 /r ib

VSHUFPD xmm1, xmm2,
xmm3/m128, imm8

RVMI V/V AVX Shuffle Packed double-
precision floating-point
values selected by imm8
from xmm2 and
xmm3/mem.

VEX.NDS.256.66.0F.WIG C6 /r ib

VSHUFPD ymm1, ymm2,
ymm3/m256, imm8

RVMI V/V AVX Shuffle Packed double-
precision floating-point
values selected by imm8
from ymm2 and
ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
4-536 Vol. 2B SHUFPD—Shuffle Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register. The select operand is an 8-bit immediate: bit 0
selects which value is moved from the destination operand to the result (where 0
selects the low quadword and 1 selects the high quadword) and bit 1 selects which
value is moved from the source operand to the result. Bits 2 through 7 of the select
operand are reserved and must be set to 0.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

IF SELECT[0] = 0
THEN DEST[63:0] ← DEST[63:0];
ELSE DEST[63:0] ← DEST[127:64]; FI;

IF SELECT[1] = 0
THEN DEST[127:64] ← SRC[63:0];
ELSE DEST[127:64] ← SRC[127:64]; FI;

SHUFPD (128-bit Legacy SSE version)
IF IMM0[0] = 0

THEN DEST[63:0] SRC1[63:0]
ELSE DEST[63:0] SRC1[127:64] FI;

IF IMM0[1] = 0
THEN DEST[127:64] SRC2[63:0]

Figure 4-18. SHUFPD Shuffle Operation

X1 X0

Y1 Y0

Y1 or Y0 X1 or X0

SRC

DEST

DEST
Vol. 2B 4-537SHUFPD—Shuffle Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
ELSE DEST[127:64] SRC2[127:64] FI;
DEST[VLMAX-1:128] (Unmodified)

VSHUFPD (VEX.128 encoded version)
IF IMM0[0] = 0

THEN DEST[63:0] SRC1[63:0]
ELSE DEST[63:0] SRC1[127:64] FI;

IF IMM0[1] = 0
THEN DEST[127:64] SRC2[63:0]
ELSE DEST[127:64] SRC2[127:64] FI;

DEST[VLMAX-1:128] 0

VSHUFPD (VEX.256 encoded version)
IF IMM0[0] = 0

THEN DEST[63:0] SRC1[63:0]
ELSE DEST[63:0] SRC1[127:64] FI;

IF IMM0[1] = 0
THEN DEST[127:64] SRC2[63:0]
ELSE DEST[127:64] SRC2[127:64] FI;

IF IMM0[2] = 0
THEN DEST[191:128] SRC1[191:128]
ELSE DEST[191:128] SRC1[255:192] FI;

IF IMM0[3] = 0
THEN DEST[255:192] SRC2[191:128]
ELSE DEST[255:192] SRC2[255:192] FI;

Intel C/C++ Compiler Intrinsic Equivalent

SHUFPD: __m128d _mm_shuffle_pd(__m128d a, __m128d b, unsigned int imm8)
VSHUFPD: __m256d _mm256_shuffle_pd (__m256d a, __m256d b, const int select);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4.
4-538 Vol. 2B SHUFPD—Shuffle Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
SHUFPS—Shuffle Packed Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

Moves two of the four packed single-precision floating-point values from the destina-
tion operand (first operand) into the low quadword of the destination operand;
moves two of the four packed single-precision floating-point values from the source
operand (second operand) into to the high quadword of the destination operand (see
Figure 4-19). The select operand (third operand) determines which values are
moved to the destination operand.
128-bit Legacy SSE version: The source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.
determines which values are moved to the destination operand.

Opcode*/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F C6 /r ib

SHUFPS xmm1, xmm2/m128, imm8

RMI V/V SSE Shuffle packed single-
precision floating-point
values selected by imm8
from xmm1 and
xmm1/m128 to xmm1.

VEX.NDS.128.0F.WIG C6 /r ib

VSHUFPS xmm1, xmm2,
xmm3/m128, imm8

RVMI V/V AVX Shuffle Packed single-
precision floating-point
values selected by imm8
from xmm2 and
xmm3/mem.

VEX.NDS.256.0F.WIG C6 /r ib

VSHUFPS ymm1, ymm2,
ymm3/m256, imm8

RVMI V/V AVX Shuffle Packed single-
precision floating-point
values selected by imm8
from ymm2 and
ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
Vol. 2B 4-539SHUFPS—Shuffle Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register. The select operand is an 8-bit immediate: bits 0
and 1 select the value to be moved from the destination operand to the low double-
word of the result, bits 2 and 3 select the value to be moved from the destination
operand to the second doubleword of the result, bits 4 and 5 select the value to be
moved from the source operand to the third doubleword of the result, and bits 6 and
7 select the value to be moved from the source operand to the high doubleword of
the result.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

CASE (SELECT[1:0]) OF
0: DEST[31:0] ← DEST[31:0];
1: DEST[31:0] ← DEST[63:32];
2: DEST[31:0] ← DEST[95:64];
3: DEST[31:0] ← DEST[127:96];

ESAC;

CASE (SELECT[3:2]) OF
0: DEST[63:32] ← DEST[31:0];
1: DEST[63:32] ← DEST[63:32];
2: DEST[63:32] ← DEST[95:64];
3: DEST[63:32] ← DEST[127:96];

Figure 4-19. SHUFPS Shuffle Operation

X3 X2 X1 X0

Y3 Y2 Y1 Y0

Y3 ... Y0 Y3 ... Y0 X3 ... X0 X3 ... X0

DEST

SRC

DEST
4-540 Vol. 2B SHUFPS—Shuffle Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
ESAC;

CASE (SELECT[5:4]) OF
0: DEST[95:64] ← SRC[31:0];
1: DEST[95:64] ← SRC[63:32];
2: DEST[95:64] ← SRC[95:64];
3: DEST[95:64] ← SRC[127:96];

ESAC;

CASE (SELECT[7:6]) OF
0: DEST[127:96] ← SRC[31:0];
1: DEST[127:96] ← SRC[63:32];
2: DEST[127:96] ← SRC[95:64];
3: DEST[127:96] ← SRC[127:96];

ESAC;

SHUFPS (128-bit Legacy SSE version)
DEST[31:0] Select4(SRC1[127:0], imm8[1:0]);
DEST[63:32] Select4(SRC1[127:0], imm8[3:2]);
DEST[95:64] Select4(SRC2[127:0], imm8[5:4]);
DEST[127:96] Select4(SRC2[127:0], imm8[7:6]);
DEST[VLMAX-1:128] (Unmodified)

VSHUFPS (VEX.128 encoded version)
DEST[31:0] Select4(SRC1[127:0], imm8[1:0]);
DEST[63:32] Select4(SRC1[127:0], imm8[3:2]);
DEST[95:64] Select4(SRC2[127:0], imm8[5:4]);
DEST[127:96] Select4(SRC2[127:0], imm8[7:6]);
DEST[VLMAX-1:128] 0

VSHUFPS (VEX.256 encoded version)
DEST[31:0] Select4(SRC1[127:0], imm8[1:0]);
DEST[63:32] Select4(SRC1[127:0], imm8[3:2]);
DEST[95:64] Select4(SRC2[127:0], imm8[5:4]);
DEST[127:96] Select4(SRC2[127:0], imm8[7:6]);
DEST[159:128] Select4(SRC1[255:128], imm8[1:0]);
DEST[191:160] Select4(SRC1[255:128], imm8[3:2]);
DEST[223:192] Select4(SRC2[255:128], imm8[5:4]);
DEST[255:224] Select4(SRC2[255:128], imm8[7:6]);

Intel C/C++ Compiler Intrinsic Equivalent

SHUFPS: __m128 _mm_shuffle_ps(__m128 a, __m128 b, unsigned int imm8)
VSHUFPS: __m256 _mm256_shuffle_ps (__m256 a, __m256 b, const int select);
Vol. 2B 4-541SHUFPS—Shuffle Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4.
4-542 Vol. 2B SHUFPS—Shuffle Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
SIDT—Store Interrupt Descriptor Table Register

Instruction Operand Encoding

Description

Stores the content the interrupt descriptor table register (IDTR) in the destination
operand. The destination operand specifies a 6-byte memory location.

In non-64-bit modes, if the operand-size attribute is 32 bits, the 16-bit limit field of
the register is stored in the low 2 bytes of the memory location and the 32-bit base
address is stored in the high 4 bytes. If the operand-size attribute is 16 bits, the limit
is stored in the low 2 bytes and the 24-bit base address is stored in the third, fourth,
and fifth byte, with the sixth byte filled with 0s.

In 64-bit mode, the operand size fixed at 8+2 bytes. The instruction stores 8-byte
base and 2-byte limit values.

SIDT is only useful in operating-system software; however, it can be used in applica-
tion programs without causing an exception to be generated. See “LGDT/LIDT—Load
Global/Interrupt Descriptor Table Register” in Chapter 3, Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2A, for information on loading the
GDTR and IDTR.

IA-32 Architecture Compatibility

The 16-bit form of SIDT is compatible with the Intel 286 processor if the upper 8 bits
are not referenced. The Intel 286 processor fills these bits with 1s; the Pentium 4,
Intel Xeon, P6 processor family, Pentium, Intel486, and Intel386 processors fill these
bits with 0s.

Operation

IF instruction is SIDT
THEN

IF OperandSize = 16
THEN

DEST[0:15] ← IDTR(Limit);
DEST[16:39] ← IDTR(Base); (* 24 bits of base address stored; *)
DEST[40:47] ← 0;

Opcode* Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 01 /1 SIDT m M Valid Valid Store IDTR to m.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA
Vol. 2B 4-543SIDT—Store Interrupt Descriptor Table Register

INSTRUCTION SET REFERENCE, M-Z
ELSE IF (32-bit Operand Size)
DEST[0:15] ← IDTR(Limit);
DEST[16:47] ← IDTR(Base); FI; (* Full 32-bit base address stored *)

ELSE (* 64-bit Operand Size *)
DEST[0:15] ← IDTR(Limit);
DEST[16:79] ← IDTR(Base); (* Full 64-bit base address stored *)

FI;
FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used.
4-544 Vol. 2B SIDT—Store Interrupt Descriptor Table Register

INSTRUCTION SET REFERENCE, M-Z
Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#UD If the destination operand is a register.

If the LOCK prefix is used.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
Vol. 2B 4-545SIDT—Store Interrupt Descriptor Table Register

INSTRUCTION SET REFERENCE, M-Z
SLDT—Store Local Descriptor Table Register

Instruction Operand Encoding

Description

Stores the segment selector from the local descriptor table register (LDTR) in the
destination operand. The destination operand can be a general-purpose register or a
memory location. The segment selector stored with this instruction points to the
segment descriptor (located in the GDT) for the current LDT. This instruction can only
be executed in protected mode.

Outside IA-32e mode, when the destination operand is a 32-bit register, the 16-bit
segment selector is copied into the low-order 16 bits of the register. The high-order
16 bits of the register are cleared for the Pentium 4, Intel Xeon, and P6 family proces-
sors. They are undefined for Pentium, Intel486, and Intel386 processors. When the
destination operand is a memory location, the segment selector is written to memory
as a 16-bit quantity, regardless of the operand size.

In compatibility mode, when the destination operand is a 32-bit register, the 16-bit
segment selector is copied into the low-order 16 bits of the register. The high-order
16 bits of the register are cleared. When the destination operand is a memory loca-
tion, the segment selector is written to memory as a 16-bit quantity, regardless of
the operand size.

In 64-bit mode, using a REX prefix in the form of REX.R permits access to additional
registers (R8-R15). The behavior of SLDT with a 64-bit register is to zero-extend the
16-bit selector and store it in the register. If the destination is memory and operand
size is 64, SLDT will write the 16-bit selector to memory as a 16-bit quantity, regard-
less of the operand size

Operation

DEST ← LDTR(SegmentSelector);

Flags Affected

None.

Opcode* Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 00 /0 SLDT r/m16 M Valid Valid Stores segment selector
from LDTR in r/m16.

REX.W + 0F 00
/0

SLDT r64/m16 M Valid Valid Stores segment selector
from LDTR in r64/m16.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) LDTR NA NA
4-546 Vol. 2B SLDT—Store Local Descriptor Table Register

INSTRUCTION SET REFERENCE, M-Z
Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD The SLDT instruction is not recognized in real-address mode.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#UD The SLDT instruction is not recognized in virtual-8086 mode.

If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
Vol. 2B 4-547SLDT—Store Local Descriptor Table Register

INSTRUCTION SET REFERENCE, M-Z
SMSW—Store Machine Status Word

Instruction Operand Encoding

Description

Stores the machine status word (bits 0 through 15 of control register CR0) into the
destination operand. The destination operand can be a general-purpose register or a
memory location.

In non-64-bit modes, when the destination operand is a 32-bit register, the low-order
16 bits of register CR0 are copied into the low-order 16 bits of the register and the
high-order 16 bits are undefined. When the destination operand is a memory loca-
tion, the low-order 16 bits of register CR0 are written to memory as a 16-bit quantity,
regardless of the operand size.

In 64-bit mode, the behavior of the SMSW instruction is defined by the following
examples:
• SMSW r16 operand size 16, store CR0[15:0] in r16
• SMSW r32 operand size 32, zero-extend CR0[31:0], and store in r32
• SMSW r64 operand size 64, zero-extend CR0[63:0], and store in r64
• SMSW m16 operand size 16, store CR0[15:0] in m16
• SMSW m16 operand size 32, store CR0[15:0] in m16 (not m32)
• SMSW m16 operands size 64, store CR0[15:0] in m16 (not m64)

SMSW is only useful in operating-system software. However, it is not a privileged
instruction and can be used in application programs. The is provided for compatibility
with the Intel 286 processor. Programs and procedures intended to run on the

Opcode* Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 01 /4 SMSW r/m16 M Valid Valid Store machine status word
to r/m16.

0F 01 /4 SMSW r32/m16 M Valid Valid Store machine status word
in low-order 16 bits of
r32/m16; high-order 16 bits
of r32 are undefined.

REX.W + 0F 01
/4

SMSW r64/m16 M Valid Valid Store machine status word
in low-order 16 bits of
r64/m16; high-order 16 bits
of r32 are undefined.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA
4-548 Vol. 2B SMSW—Store Machine Status Word

INSTRUCTION SET REFERENCE, M-Z
Pentium 4, Intel Xeon, P6 family, Pentium, Intel486, and Intel386 processors should
use the MOV (control registers) instruction to load the machine status word.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 25 of
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C, for
more information about the behavior of this instruction in VMX non-root operation.

Operation

DEST ← CR0[15:0];
(* Machine status word *)

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.
Vol. 2B 4-549SMSW—Store Machine Status Word

INSTRUCTION SET REFERENCE, M-Z
#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
4-550 Vol. 2B SMSW—Store Machine Status Word

INSTRUCTION SET REFERENCE, M-Z
SQRTPD—Compute Square Roots of Packed Double-Precision Floating-
Point Values

Instruction Operand Encoding

Description

Performs a SIMD computation of the square roots of the two packed double-precision
floating-point values in the source operand (second operand) stores the packed
double-precision floating-point results in the destination operand. The source
operand can be an XMM register or a 128-bit memory location. The destination
operand is an XMM register. See Figure 11-3 in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 1, for an illustration of a SIMD double-preci-
sion floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified.

Opcode*/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 51 /r

SQRTPD xmm1, xmm2/m128

RM V/V SSE2 Computes square roots of
the packed double-precision
floating-point values in
xmm2/m128 and stores the
results in xmm1.

VEX.128.66.0F.WIG 51 /r

VSQRTPD xmm1, xmm2/m128

RM V/V AVX Computes Square Roots of
the packed double-precision
floating-point values in
xmm2/m128 and stores the
result in xmm1.

VEX.256.66.0F.WIG 51/r

VSQRTPD ymm1, ymm2/m256

RM V/V AVX Computes Square Roots of
the packed double-precision
floating-point values in
ymm2/m256 and stores the
result in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
Vol. 2B 4-551SQRTPD—Compute Square Roots of Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
VEX.128 encoded version: the source operand second source operand or a 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.
VEX.256 encoded version: The source operand is a YMM register or a 256-bit
memory location. The destination operand is a YMM register.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise
instructions will #UD.

Operation

SQRTPD (128-bit Legacy SSE version)
DEST[63:0] SQRT(SRC[63:0])
DEST[127:64] SQRT(SRC[127:64])
DEST[VLMAX-1:128] (Unmodified)

VSQRTPD (VEX.128 encoded version)
DEST[63:0] SQRT(SRC[63:0])
DEST[127:64] SQRT(SRC[127:64])
DEST[VLMAX-1:128] 0

VSQRTPD (VEX.256 encoded version)
DEST[63:0] SQRT(SRC[63:0])
DEST[127:64] SQRT(SRC[127:64])
DEST[191:128] SQRT(SRC[191:128])
DEST[255:192] SQRT(SRC[255:192])

Intel C/C++ Compiler Intrinsic Equivalent

SQRTPD: __m128d _mm_sqrt_pd (m128d a)

SQRTPD: __m256d _mm256_sqrt_pd (__m256d a);

SIMD Floating-Point Exceptions

Invalid, Precision, Denormal.

Other Exceptions
See Exceptions Type 2; additionally
#UD If VEX.vvvv != 1111B.
4-552 Vol. 2B SQRTPD—Compute Square Roots of Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
SQRTPS—Compute Square Roots of Packed Single-Precision Floating-
Point Values

Instruction Operand Encoding

Description

Performs a SIMD computation of the square roots of the four packed single-precision
floating-point values in the source operand (second operand) stores the packed
single-precision floating-point results in the destination operand. The source operand
can be an XMM register or a 128-bit memory location. The destination operand is an
XMM register. See Figure 10-5 in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1, for an illustration of a SIMD single-precision floating-
point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified.

Opcode*/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 51 /r

SQRTPS xmm1, xmm2/m128

RM V/V SSE Computes square roots of
the packed single-precision
floating-point values in
xmm2/m128 and stores the
results in xmm1.

VEX.128.0F.WIG 51 /r

VSQRTPS xmm1, xmm2/m128

RM V/V AVX Computes Square Roots of
the packed single-precision
floating-point values in
xmm2/m128 and stores the
result in xmm1.

VEX.256.0F.WIG 51/r

VSQRTPS ymm1, ymm2/m256

RM V/V AVX Computes Square Roots of
the packed single-precision
floating-point values in
ymm2/m256 and stores the
result in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
Vol. 2B 4-553SQRTPS—Compute Square Roots of Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
VEX.128 encoded version: the source operand second source operand or a 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.
VEX.256 encoded version: The source operand is a YMM register or a 256-bit
memory location. The destination operand is a YMM register.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise
instructions will #UD.

Operation

SQRTPS (128-bit Legacy SSE version)
DEST[31:0] SQRT(SRC[31:0])
DEST[63:32] SQRT(SRC[63:32])
DEST[95:64] SQRT(SRC[95:64])
DEST[127:96] SQRT(SRC[127:96])
DEST[VLMAX-1:128] (Unmodified)

VSQRTPS (VEX.128 encoded version)
DEST[31:0] SQRT(SRC[31:0])
DEST[63:32] SQRT(SRC[63:32])
DEST[95:64] SQRT(SRC[95:64])
DEST[127:96] SQRT(SRC[127:96])
DEST[VLMAX-1:128] 0

VSQRTPS (VEX.256 encoded version)
DEST[31:0] SQRT(SRC[31:0])
DEST[63:32] SQRT(SRC[63:32])
DEST[95:64] SQRT(SRC[95:64])
DEST[127:96] SQRT(SRC[127:96])
DEST[159:128] SQRT(SRC[159:128])
DEST[191:160] SQRT(SRC[191:160])
DEST[223:192] SQRT(SRC[223:192])
DEST[255:224] SQRT(SRC[255:224])

Intel C/C++ Compiler Intrinsic Equivalent

SQRTPS: __m128 _mm_sqrt_ps(__m128 a)

SQRTPS: __m256 _mm256_sqrt_ps (__m256 a);

SIMD Floating-Point Exceptions

Invalid, Precision, Denormal.
4-554 Vol. 2B SQRTPS—Compute Square Roots of Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
Other Exceptions
See Exceptions Type 2; additionally
#UD If VEX.vvvv != 1111B.
Vol. 2B 4-555SQRTPS—Compute Square Roots of Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
SQRTSD—Compute Square Root of Scalar Double-Precision Floating-
Point Value

Instruction Operand Encoding

Description

Computes the square root of the low double-precision floating-point value in the
source operand (second operand) and stores the double-precision floating-point
result in the destination operand. The source operand can be an XMM register or a
64-bit memory location. The destination operand is an XMM register. The high quad-
word of the destination operand remains unchanged. See Figure 11-4 in the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for an illustra-
tion of a scalar double-precision floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The first source operand and the destination operand
are the same. Bits (VLMAX-1:64) of the corresponding YMM destination register
remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed.

Opcode*/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

F2 0F 51 /r

SQRTSD xmm1, xmm2/m64

RM V/V SSE2 Computes square root of
the low double-precision
floating-point value in
xmm2/m64 and stores the
results in xmm1.

VEX.NDS.LIG.F2.0F.WIG 51/

VSQRTSD xmm1,xmm2, xmm3/m64

RVM V/V AVX Computes square root of
the low double-precision
floating point value in
xmm3/m64 and stores the
results in xmm2. Also, upper
double precision floating-
point value (bits[127:64])
from xmm2 is copied to
xmm1[127:64].

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
4-556 Vol. 2B SQRTSD—Compute Square Root of Scalar Double-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, M-Z
Operation

SQRTSD (128-bit Legacy SSE version)
DEST[63:0] SQRT(SRC[63:0])
DEST[VLMAX-1:64] (Unmodified)

VSQRTSD (VEX.128 encoded version)
DEST[63:0] SQRT(SRC2[63:0])
DEST[127:64] SRC1[127:64]
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

SQRTSD: __m128d _mm_sqrt_sd (m128d a, m128d b)

SIMD Floating-Point Exceptions

Invalid, Precision, Denormal.

Other Exceptions
See Exceptions Type 3.
Vol. 2B 4-557SQRTSD—Compute Square Root of Scalar Double-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, M-Z
SQRTSS—Compute Square Root of Scalar Single-Precision Floating-
Point Value

Instruction Operand Encoding

Description

Computes the square root of the low single-precision floating-point value in the
source operand (second operand) and stores the single-precision floating-point
result in the destination operand. The source operand can be an XMM register or a
32-bit memory location. The destination operand is an XMM register. The three high-
order doublewords of the destination operand remain unchanged. See Figure 10-6 in
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for
an illustration of a scalar single-precision floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The first source operand and the destination operand
are the same. Bits (VLMAX-1:32) of the corresponding YMM destination register
remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed.

Opcode*/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

F3 0F 51 /r

SQRTSS xmm1, xmm2/m32

RM V/V SSE Computes square root of
the low single-precision
floating-point value in
xmm2/m32 and stores the
results in xmm1.

VEX.NDS.LIG.F3.0F.WIG 51

VSQRTSS xmm1, xmm2, xmm3/m32

RVM V/V AVX Computes square root of
the low single-precision
floating-point value in
xmm3/m32 and stores the
results in xmm1. Also, upper
single precision floating-
point values (bits[127:32])
from xmm2 are copied to
xmm1[127:32].

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
4-558 Vol. 2B SQRTSS—Compute Square Root of Scalar Single-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, M-Z
Operation

SQRTSS (128-bit Legacy SSE version)
DEST[31:0] SQRT(SRC2[31:0])
DEST[VLMAX-1:32] (Unmodified)

VSQRTSS (VEX.128 encoded version)
DEST[31:0] SQRT(SRC2[31:0])
DEST[127:32] SRC1[127:32]
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

SQRTSS: __m128 _mm_sqrt_ss(__m128 a)

SIMD Floating-Point Exceptions

Invalid, Precision, Denormal.

Other Exceptions
See Exceptions Type 3.
Vol. 2B 4-559SQRTSS—Compute Square Root of Scalar Single-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, M-Z
STC—Set Carry Flag

Instruction Operand Encoding

Description

Sets the CF flag in the EFLAGS register.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

CF ← 1;

Flags Affected

The CF flag is set. The OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

Opcode* Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

F9 STC NP Valid Valid Set CF flag.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
4-560 Vol. 2B STC—Set Carry Flag

INSTRUCTION SET REFERENCE, M-Z
STD—Set Direction Flag

Instruction Operand Encoding

Description

Sets the DF flag in the EFLAGS register. When the DF flag is set to 1, string operations
decrement the index registers (ESI and/or EDI).

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

DF ← 1;

Flags Affected

The DF flag is set. The CF, OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

Opcode* Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

FD STD NP Valid Valid Set DF flag.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
Vol. 2B 4-561STD—Set Direction Flag

INSTRUCTION SET REFERENCE, M-Z
STI—Set Interrupt Flag

Instruction Operand Encoding

Description

If protected-mode virtual interrupts are not enabled, STI sets the interrupt flag (IF)
in the EFLAGS register. After the IF flag is set, the processor begins responding to
external, maskable interrupts after the next instruction is executed. The delayed
effect of this instruction is provided to allow interrupts to be enabled just before
returning from a procedure (or subroutine). For instance, if an STI instruction is
followed by an RET instruction, the RET instruction is allowed to execute before
external interrupts are recognized1. If the STI instruction is followed by a CLI instruc-
tion (which clears the IF flag), the effect of the STI instruction is negated.

The IF flag and the STI and CLI instructions do not prohibit the generation of excep-
tions and NMI interrupts. NMI interrupts (and SMIs) may be blocked for one macro-
instruction following an STI.

When protected-mode virtual interrupts are enabled, CPL is 3, and IOPL is less than
3; STI sets the VIF flag in the EFLAGS register, leaving IF unaffected.

Table 4-18 indicates the action of the STI instruction depending on the processor’s
mode of operation and the CPL/IOPL settings of the running program or procedure.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Opcode* Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

FB STI NP Valid Valid Set interrupt flag; external,
maskable interrupts enabled
at the end of the next
instruction.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

1. The STI instruction delays recognition of interrupts only if it is executed with EFLAGS.IF = 0. In a
sequence of STI instructions, only the first instruction in the sequence is guaranteed to delay
interrupts.

In the following instruction sequence, interrupts may be recognized before RET executes:
STI
STI
RET
4-562 Vol. 2B STI—Set Interrupt Flag

INSTRUCTION SET REFERENCE, M-Z
Operation

IF PE = 0 (* Executing in real-address mode *)
THEN

IF ← 1; (* Set Interrupt Flag *)
ELSE (* Executing in protected mode or virtual-8086 mode *)

IF VM = 0 (* Executing in protected mode*)
THEN

IF IOPL ≥ CPL
THEN

IF ← 1; (* Set Interrupt Flag *)
ELSE

IF (IOPL < CPL) and (CPL = 3) and (VIP = 0)
THEN

VIF ← 1; (* Set Virtual Interrupt Flag *)
ELSE

#GP(0);
FI;

FI;
ELSE (* Executing in Virtual-8086 mode *)

IF IOPL = 3
THEN

IF ← 1; (* Set Interrupt Flag *)
ELSE

IF ((IOPL < 3) and (VIP = 0) and (VME = 1))
THEN

Table 4-18. Decision Table for STI Results
PE VM IOPL CPL PVI VIP VME STI Result

0 X X X X X X IF = 1
1 0 ≥ CPL X X X X IF = 1

1 0 < CPL 3 1 0 X VIF = 1

1 0 < CPL < 3 X X X GP Fault

1 0 < CPL X 0 X X GP Fault

1 0 < CPL X X 1 X GP Fault

1 1 3 X X X X IF = 1
1 1 < 3 X X 0 1 VIF = 1

1 1 < 3 X X 1 X GP Fault

1 1 < 3 X X X 0 GP Fault

NOTES:
X = This setting has no impact.
Vol. 2B 4-563STI—Set Interrupt Flag

INSTRUCTION SET REFERENCE, M-Z
VIF ← 1; (* Set Virtual Interrupt Flag *)
ELSE

#GP(0); (* Trap to virtual-8086 monitor *)
FI;)

FI;
FI;

FI;

Flags Affected

The IF flag is set to 1; or the VIF flag is set to 1.

Protected Mode Exceptions
#GP(0) If the CPL is greater (has less privilege) than the IOPL of the

current program or procedure.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
4-564 Vol. 2B STI—Set Interrupt Flag

INSTRUCTION SET REFERENCE, M-Z
STMXCSR—Store MXCSR Register State

Instruction Operand Encoding

Description

Stores the contents of the MXCSR control and status register to the destination
operand. The destination operand is a 32-bit memory location. The reserved bits in
the MXCSR register are stored as 0s.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
VEX.L must be 0, otherwise instructions will #UD.

Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise
instructions will #UD.

Operation

m32 ← MXCSR;

Intel C/C++ Compiler Intrinsic Equivalent

_mm_getcsr(void)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 5; additionally
#UD If VEX.L= 1,

If VEX.vvvv != 1111B.

Opcode*/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F AE /3

STMXCSR m32

M V/V SSE Store contents of MXCSR
register to m32.

VEX.LZ.0F.WIG AE /3

VSTMXCSR m32

M V/V AVX Store contents of MXCSR
register to m32.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA
Vol. 2B 4-565STMXCSR—Store MXCSR Register State

INSTRUCTION SET REFERENCE, M-Z
STOS/STOSB/STOSW/STOSD/STOSQ—Store String

Instruction Operand Encoding

Description

In non-64-bit and default 64-bit mode; stores a byte, word, or doubleword from the
AL, AX, or EAX register (respectively) into the destination operand. The destination
operand is a memory location, the address of which is read from either the ES:EDI or
ES:DI register (depending on the address-size attribute of the instruction and the

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

AA STOS m8 NA Valid Valid For legacy mode, store AL at
address ES:(E)DI; For 64-bit
mode store AL at address
RDI or EDI.

AB STOS m16 NA Valid Valid For legacy mode, store AX
at address ES:(E)DI; For 64-
bit mode store AX at
address RDI or EDI.

AB STOS m32 NA Valid Valid For legacy mode, store EAX
at address ES:(E)DI; For 64-
bit mode store EAX at
address RDI or EDI.

REX.W + AB STOS m64 NA Valid N.E. Store RAX at address RDI or
EDI.

AA STOSB NA Valid Valid For legacy mode, store AL at
address ES:(E)DI; For 64-bit
mode store AL at address
RDI or EDI.

AB STOSW NA Valid Valid For legacy mode, store AX
at address ES:(E)DI; For 64-
bit mode store AX at
address RDI or EDI.

AB STOSD NA Valid Valid For legacy mode, store EAX
at address ES:(E)DI; For 64-
bit mode store EAX at
address RDI or EDI.

REX.W + AB STOSQ NA Valid N.E. Store RAX at address RDI or
EDI.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NA NA NA NA NA
4-566 Vol. 2B STOS/STOSB/STOSW/STOSD/STOSQ—Store String

INSTRUCTION SET REFERENCE, M-Z
mode of operation). The ES segment cannot be overridden with a segment override
prefix.

At the assembly-code level, two forms of the instruction are allowed: the “explicit-
operands” form and the “no-operands” form. The explicit-operands form (specified
with the STOS mnemonic) allows the destination operand to be specified explicitly.
Here, the destination operand should be a symbol that indicates the size and location
of the destination value. The source operand is then automatically selected to match
the size of the destination operand (the AL register for byte operands, AX for word
operands, EAX for doubleword operands). The explicit-operands form is provided to
allow documentation; however, note that the documentation provided by this form
can be misleading. That is, the destination operand symbol must specify the correct
type (size) of the operand (byte, word, or doubleword), but it does not have to
specify the correct location. The location is always specified by the ES:(E)DI
register. These must be loaded correctly before the store string instruction is
executed.

The no-operands form provides “short forms” of the byte, word, doubleword, and
quadword versions of the STOS instructions. Here also ES:(E)DI is assumed to be the
destination operand and AL, AX, or EAX is assumed to be the source operand. The
size of the destination and source operands is selected by the mnemonic: STOSB
(byte read from register AL), STOSW (word from AX), STOSD (doubleword from
EAX).

After the byte, word, or doubleword is transferred from the register to the memory
location, the (E)DI register is incremented or decremented according to the setting of
the DF flag in the EFLAGS register. If the DF flag is 0, the register is incremented; if
the DF flag is 1, the register is decremented (the register is incremented or decre-
mented by 1 for byte operations, by 2 for word operations, by 4 for doubleword oper-
ations).

In 64-bit mode, the default address size is 64 bits, 32-bit address size is supported
using the prefix 67H. Using a REX prefix in the form of REX.W promotes operation on
doubleword operand to 64 bits. The promoted no-operand mnemonic is STOSQ.
STOSQ (and its explicit operands variant) store a quadword from the RAX register
into the destination addressed by RDI or EDI. See the summary chart at the begin-
ning of this section for encoding data and limits.

The STOS, STOSB, STOSW, STOSD, STOSQ instructions can be preceded by the REP
prefix for block loads of ECX bytes, words, or doublewords. More often, however,
these instructions are used within a LOOP construct because data needs to be moved
into the AL, AX, or EAX register before it can be stored. See “REP/REPE/REPZ
/REPNE/REPNZ—Repeat String Operation Prefix” in this chapter for a description of
the REP prefix.

Operation

Non-64-bit Mode:

IF (Byte store)
Vol. 2B 4-567STOS/STOSB/STOSW/STOSD/STOSQ—Store String

INSTRUCTION SET REFERENCE, M-Z
THEN
DEST ← AL;

THEN IF DF = 0
THEN (E)DI ← (E)DI + 1;
ELSE (E)DI ← (E)DI – 1;

FI;
ELSE IF (Word store)

THEN
DEST ← AX;

THEN IF DF = 0
THEN (E)DI ← (E)DI + 2;
ELSE (E)DI ← (E)DI – 2;

FI;
FI;

ELSE IF (Doubleword store)
THEN

DEST ← EAX;
THEN IF DF = 0

THEN (E)DI ← (E)DI + 4;
ELSE (E)DI ← (E)DI – 4;

FI;
FI;

FI;

64-bit Mode:

IF (Byte store)
THEN

DEST ← AL;
THEN IF DF = 0

THEN (R|E)DI ← (R|E)DI + 1;
ELSE (R|E)DI ← (R|E)DI – 1;

FI;
ELSE IF (Word store)

THEN
DEST ← AX;

THEN IF DF = 0
THEN (R|E)DI ← (R|E)DI + 2;
ELSE (R|E)DI ← (R|E)DI – 2;

FI;
FI;

ELSE IF (Doubleword store)
THEN

DEST ← EAX;
4-568 Vol. 2B STOS/STOSB/STOSW/STOSD/STOSQ—Store String

INSTRUCTION SET REFERENCE, M-Z
THEN IF DF = 0
THEN (R|E)DI ← (R|E)DI + 4;
ELSE (R|E)DI ← (R|E)DI – 4;

FI;
FI;

ELSE IF (Quadword store using REX.W)
THEN

DEST ← RAX;
THEN IF DF = 0

THEN (R|E)DI ← (R|E)DI + 8;
ELSE (R|E)DI ← (R|E)DI – 8;

FI;
FI;

FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the limit of the
ES segment.
If the ES register contains a NULL segment selector.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the ES

segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the ES

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used.
Vol. 2B 4-569STOS/STOSB/STOSW/STOSD/STOSQ—Store String

INSTRUCTION SET REFERENCE, M-Z
Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
4-570 Vol. 2B STOS/STOSB/STOSW/STOSD/STOSQ—Store String

INSTRUCTION SET REFERENCE, M-Z
STR—Store Task Register

Instruction Operand Encoding

Description

Stores the segment selector from the task register (TR) in the destination operand.
The destination operand can be a general-purpose register or a memory location.
The segment selector stored with this instruction points to the task state segment
(TSS) for the currently running task.

When the destination operand is a 32-bit register, the 16-bit segment selector is
copied into the lower 16 bits of the register and the upper 16 bits of the register are
cleared. When the destination operand is a memory location, the segment selector is
written to memory as a 16-bit quantity, regardless of operand size.

In 64-bit mode, operation is the same. The size of the memory operand is fixed at 16
bits. In register stores, the 2-byte TR is zero extended if stored to a 64-bit register.

The STR instruction is useful only in operating-system software. It can only be
executed in protected mode.

Operation

DEST ← TR(SegmentSelector);

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the destination is a memory operand that is located in a non-

writable segment or if the effective address is outside the CS,
DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 00 /1 STR r/m16 M Valid Valid Stores segment selector
from TR in r/m16.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA
Vol. 2B 4-571STR—Store Task Register

INSTRUCTION SET REFERENCE, M-Z
#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD The STR instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The STR instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
#SS(U) If the stack address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
4-572 Vol. 2B STR—Store Task Register

INSTRUCTION SET REFERENCE, M-Z
SUB—Subtract
Opcode Instruction Op/

En
64-Bit
Mode

Compat/
Leg Mode

Description

2C ib SUB AL, imm8 I Valid Valid Subtract imm8 from AL.

2D iw SUB AX, imm16 I Valid Valid Subtract imm16 from AX.

2D id SUB EAX, imm32 I Valid Valid Subtract imm32 from EAX.

REX.W + 2D id SUB RAX, imm32 I Valid N.E. Subtract imm32 sign-
extended to 64-bits from
RAX.

80 /5 ib SUB r/m8, imm8 MI Valid Valid Subtract imm8 from r/m8.

REX + 80 /5 ib SUB r/m8*, imm8 MI Valid N.E. Subtract imm8 from r/m8.

81 /5 iw SUB r/m16,
imm16

MI Valid Valid Subtract imm16 from
r/m16.

81 /5 id SUB r/m32,
imm32

MI Valid Valid Subtract imm32 from
r/m32.

REX.W + 81 /5
id

SUB r/m64,
imm32

MI Valid N.E. Subtract imm32 sign-
extended to 64-bits from
r/m64.

83 /5 ib SUB r/m16, imm8 MI Valid Valid Subtract sign-extended
imm8 from r/m16.

83 /5 ib SUB r/m32, imm8 MI Valid Valid Subtract sign-extended
imm8 from r/m32.

REX.W + 83 /5
ib

SUB r/m64, imm8 MI Valid N.E. Subtract sign-extended
imm8 from r/m64.

28 /r SUB r/m8, r8 MR Valid Valid Subtract r8 from r/m8.

REX + 28 /r SUB r/m8*, r8* MR Valid N.E. Subtract r8 from r/m8.

29 /r SUB r/m16, r16 MR Valid Valid Subtract r16 from r/m16.

29 /r SUB r/m32, r32 MR Valid Valid Subtract r32 from r/m32.

REX.W + 29 /r SUB r/m64, r32 MR Valid N.E. Subtract r64 from r/m64.

2A /r SUB r8, r/m8 RM Valid Valid Subtract r/m8 from r8.

REX + 2A /r SUB r8*, r/m8* RM Valid N.E. Subtract r/m8 from r8.

2B /r SUB r16, r/m16 RM Valid Valid Subtract r/m16 from r16.

2B /r SUB r32, r/m32 RM Valid Valid Subtract r/m32 from r32.

REX.W + 2B /r SUB r64, r/m64 RM Valid N.E. Subtract r/m64 from r64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is

used: AH, BH, CH, DH.
Vol. 2B 4-573SUB—Subtract

INSTRUCTION SET REFERENCE, M-Z
Instruction Operand Encoding

Description

Subtracts the second operand (source operand) from the first operand (destination
operand) and stores the result in the destination operand. The destination operand
can be a register or a memory location; the source operand can be an immediate,
register, or memory location. (However, two memory operands cannot be used in one
instruction.) When an immediate value is used as an operand, it is sign-extended to
the length of the destination operand format.

The SUB instruction performs integer subtraction. It evaluates the result for both
signed and unsigned integer operands and sets the OF and CF flags to indicate an
overflow in the signed or unsigned result, respectively. The SF flag indicates the sign
of the signed result.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.

Operation

DEST ← (DEST – SRC);

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

I AL/AX/EAX/RAX imm8/26/32 NA NA

MI ModRM:r/m (r, w) imm8/26/32 NA NA

MR ModRM:r/m (r, w) ModRM:reg (r) NA NA

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
4-574 Vol. 2B SUB—Subtract

INSTRUCTION SET REFERENCE, M-Z
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory

operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#UD If the LOCK prefix is used but the destination is not a memory

operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used but the destination is not a memory

operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory

operand.
Vol. 2B 4-575SUB—Subtract

INSTRUCTION SET REFERENCE, M-Z
SUBPD—Subtract Packed Double-Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a SIMD subtract of the two packed double-precision floating-point values in
the source operand (second operand) from the two packed double-precision floating-
point values in the destination operand (first operand), and stores the packed
double-precision floating-point results in the destination operand. The source
operand can be an XMM register or a 128-bit memory location. The destination
operand is an XMM register. See Figure 11-3 in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 1, for an illustration of a SIMD double-preci-
sion floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: T second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 5C /r

SUBPD xmm1, xmm2/m128

RM V/V SSE2 Subtract packed double-
precision floating-point
values in xmm2/m128 from
xmm1.

VEX.NDS.128.66.0F.WIG 5C /r

VSUBPD xmm1,xmm2, xmm3/m128

RVM V/V AVX Subtract packed double-
precision floating-point
values in xmm3/mem from
xmm2 and stores result in
xmm1.

VEX.NDS.256.66.0F.WIG 5C /r

VSUBPD ymm1, ymm2, ymm3/m256

RVM V/V AVX Subtract packed double-
precision floating-point
values in ymm3/mem from
ymm2 and stores result in
ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
4-576 Vol. 2B SUBPD—Subtract Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
VEX.128 encoded version: the first source operand is an XMM register or 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.

VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

Operation

SUBPD (128-bit Legacy SSE version)
DEST[63:0] DEST[63:0] - SRC[63:0]
DEST[127:64] DEST[127:64] - SRC[127:64]
DEST[VLMAX-1:128] (Unmodified)

VSUBPD (VEX.128 encoded version)
DEST[63:0] SRC1[63:0] - SRC2[63:0]
DEST[127:64] SRC1[127:64] - SRC2[127:64]
DEST[VLMAX-1:128] 0

VSUBPD (VEX.256 encoded version)
DEST[63:0] SRC1[63:0] - SRC2[63:0]
DEST[127:64] SRC1[127:64] - SRC2[127:64]
DEST[191:128] SRC1[191:128] - SRC2[191:128]
DEST[255:192] SRC1[255:192] - SRC2[255:192]

Intel C/C++ Compiler Intrinsic Equivalent

SUBPD: __m128d _mm_sub_pd (m128d a, m128d b)

VSUBPD: __m256d _mm256_sub_pd (__m256d a, __m256d b);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
See Exceptions Type 2.
Vol. 2B 4-577SUBPD—Subtract Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
SUBPS—Subtract Packed Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a SIMD subtract of the four packed single-precision floating-point values in
the source operand (second operand) from the four packed single-precision floating-
point values in the destination operand (first operand), and stores the packed single-
precision floating-point results in the destination operand. The source operand can
be an XMM register or a 128-bit memory location. The destination operand is an XMM
register. See Figure 10-5 in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 1, for an illustration of a SIMD double-precision floating-point
operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 5C /r

SUBPS xmm1 xmm2/m128

RM V/V SSE Subtract packed single-
precision floating-point
values in xmm2/mem from
xmm1.

VEX.NDS.128.0F.WIG 5C /r

VSUBPS xmm1,xmm2, xmm3/m128

RVM V/V AVX Subtract packed single-
precision floating-point
values in xmm3/mem from
xmm2 and stores result in
xmm1.

VEX.NDS.256.0F.WIG 5C /r

VSUBPS ymm1, ymm2, ymm3/m256

RVM V/V AVX Subtract packed single-
precision floating-point
values in ymm3/mem from
ymm2 and stores result in
ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
4-578 Vol. 2B SUBPS—Subtract Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
VEX.128 encoded version: the first source operand is an XMM register or 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.

VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

Operation

SUBPS (128-bit Legacy SSE version)
DEST[31:0] SRC1[31:0] - SRC2[31:0]
DEST[63:32] SRC1[63:32] - SRC2[63:32]
DEST[95:64] SRC1[95:64] - SRC2[95:64]
DEST[127:96] SRC1[127:96] - SRC2[127:96]
DEST[VLMAX-1:128] (Unmodified)

VSUBPS (VEX.128 encoded version)
DEST[31:0] SRC1[31:0] - SRC2[31:0]
DEST[63:32] SRC1[63:32] - SRC2[63:32]
DEST[95:64] SRC1[95:64] - SRC2[95:64]
DEST[127:96] SRC1[127:96] - SRC2[127:96]
DEST[VLMAX-1:128] 0

VSUBPS (VEX.256 encoded version)
DEST[31:0] SRC1[31:0] - SRC2[31:0]
DEST[63:32] SRC1[63:32] - SRC2[63:32]
DEST[95:64] SRC1[95:64] - SRC2[95:64]
DEST[127:96] SRC1[127:96] - SRC2[127:96]
DEST[159:128] SRC1[159:128] - SRC2[159:128]
DEST[191:160] SRC1[191:160] - SRC2[191:160]
DEST[223:192] SRC1[223:192] - SRC2[223:192]
DEST[255:224] SRC1[255:224] - SRC2[255:224].

Intel C/C++ Compiler Intrinsic Equivalent

SUBPS: __m128 _mm_sub_ps(__m128 a, __m128 b)

VSUBPS: __m256 _mm256_sub_ps (__m256 a, __m256 b);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.
Vol. 2B 4-579SUBPS—Subtract Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
Other Exceptions
See Exceptions Type 2.
4-580 Vol. 2B SUBPS—Subtract Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
SUBSD—Subtract Scalar Double-Precision Floating-Point Values

Instruction Operand Encoding

Description

Subtracts the low double-precision floating-point value in the source operand
(second operand) from the low double-precision floating-point value in the destina-
tion operand (first operand), and stores the double-precision floating-point result in
the destination operand. The source operand can be an XMM register or a 64-bit
memory location. The destination operand is an XMM register. The high quadword of
the destination operand remains unchanged. See Figure 11-4 in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 1, for an illustration of a
scalar double-precision floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The destination and first source operand are the same.
Bits (VLMAX-1:64) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: Bits (127:64) of the XMM register destination are copied
from corresponding bits in the first source operand. Bits (VLMAX-1:128) of the desti-
nation YMM register are zeroed.

Operation

SUBSD (128-bit Legacy SSE version)
DEST[63:0] DEST[63:0] - SRC[63:0]
DEST[VLMAX-1:64] (Unmodified)

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

F2 0F 5C /r

SUBSD xmm1, xmm2/m64

RM V/V SSE2 Subtracts the low double-
precision floating-point
values in xmm2/mem64
from xmm1.

VEX.NDS.LIG.F2.0F.WIG 5C /r
VSUBSD xmm1,xmm2, xmm3/m64

RVM V/V AVX Subtract the low double-
precision floating-point
value in xmm3/mem from
xmm2 and store the result
in xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-581SUBSD—Subtract Scalar Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
VSUBSD (VEX.128 encoded version)
DEST[63:0] SRC1[63:0] - SRC2[63:0]
DEST[127:64] SRC1[127:64]
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

SUBSD: __m128d _mm_sub_sd (m128d a, m128d b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
See Exceptions Type 3.
4-582 Vol. 2B SUBSD—Subtract Scalar Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
SUBSS—Subtract Scalar Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

Subtracts the low single-precision floating-point value in the source operand (second
operand) from the low single-precision floating-point value in the destination
operand (first operand), and stores the single-precision floating-point result in the
destination operand. The source operand can be an XMM register or a 32-bit memory
location. The destination operand is an XMM register. The three high-order double-
words of the destination operand remain unchanged. See Figure 10-6 in the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for an illustra-
tion of a scalar single-precision floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The destination and first source operand are the same.
Bits (VLMAX-1:32) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: Bits (127:32) of the XMM register destination are copied
from corresponding bits in the first source operand. Bits (VLMAX-1:128) of the desti-
nation YMM register are zeroed.

Operation

SUBSS (128-bit Legacy SSE version)
DEST[31:0] DEST[31:0] - SRC[31:0]
DEST[VLMAX-1:32] (Unmodified)

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

F3 0F 5C /r

SUBSS xmm1, xmm2/m32

RM V/V SSE Subtract the lower single-
precision floating-point
values in xmm2/m32 from
xmm1.

VEX.NDS.LIG.F3.0F.WIG 5C /r

VSUBSS xmm1,xmm2, xmm3/m32

RVM V/V AVX Subtract the low single-
precision floating-point
value in xmm3/mem from
xmm2 and store the result
in xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-583SUBSS—Subtract Scalar Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
VSUBSS (VEX.128 encoded version)
DEST[31:0] SRC1[31:0] - SRC2[31:0]
DEST[127:32] SRC1[127:32]
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

SUBSS: __m128 _mm_sub_ss(__m128 a, __m128 b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
See Exceptions Type 3.
4-584 Vol. 2B SUBSS—Subtract Scalar Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
SWAPGS—Swap GS Base Register

Instruction Operand Encoding

Description

SWAPGS exchanges the current GS base register value with the value contained in
MSR address C0000102H (MSR_KERNELGSbase). KernelGSbase is guaranteed to be
canonical; so SWAPGS does not perform a canonical check. The SWAPGS instruction
is a privileged instruction intended for use by system software.

When using SYSCALL to implement system calls, there is no kernel stack at the OS
entry point. Neither is there a straightforward method to obtain a pointer to kernel
structures from which the kernel stack pointer could be read. Thus, the kernel can't
save general purpose registers or reference memory.

By design, SWAPGS does not require any general purpose registers or memory oper-
ands. No registers need to be saved before using the instruction. SWAPGS exchanges
the CPL 0 data pointer from the KernelGSbase MSR with the GS base register. The
kernel can then use the GS prefix on normal memory references to access kernel
data structures. Similarly, when the OS kernel is entered using an interrupt or excep-
tion (where the kernel stack is already set up), SWAPGS can be used to quickly get a
pointer to the kernel data structures.

The KernelGSbase MSR itself is only accessible using RDMSR/WRMSR instructions.
Those instructions are only accessible at privilege level 0. WRMSR will cause a
#GP(0) if the value to be written to KernelGSbase MSR is non-canonical.

See Table 4-19.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 01 /7 SWAPGS NP Valid Invalid Exchanges the current GS
base register value with the
value contained in MSR
address C0000102H.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

Table 4-19. SWAPGS Operation Parameters

Opcode ModR/M Byte Instruction

MOD REG R/M Not 64-bit
Mode

64-bit Mode

OF 01 MOD ≠ 11 111 xxx INVLPG INVLPG

11 111 000 #UD SWAPGS

11 111 ≠ 000 #UD #UD
Vol. 2B 4-585SWAPGS—Swap GS Base Register

INSTRUCTION SET REFERENCE, M-Z
Operation

IF CS.L ≠ 1 (* Not in 64-Bit Mode *)
THEN

#UD; FI;

IF CPL ≠ 0
THEN #GP(0); FI;

tmp ← GS(BASE);
GS(BASE) ← KERNELGSbase;
KERNELGSbase ← tmp;

Flags Affected

None

Protected Mode Exceptions
#UD If Mode ≠ 64-Bit.

Real-Address Mode Exceptions
#UD If Mode ≠ 64-Bit.

Virtual-8086 Mode Exceptions
#UD If Mode ≠ 64-Bit.

Compatibility Mode Exceptions
#UD If Mode ≠ 64-Bit.

64-Bit Mode Exceptions
#GP(0) If CPL ≠ 0.

If the LOCK prefix is used.
4-586 Vol. 2B SWAPGS—Swap GS Base Register

INSTRUCTION SET REFERENCE, M-Z
SYSCALL—Fast System Call

Instruction Operand Encoding

Description

SYSCALL saves the RIP of the instruction following SYSCALL to RCX and loads a new
RIP from the IA32_LSTAR (64-bit mode). Upon return, SYSRET copies the value
saved in RCX to the RIP.

SYSCALL saves RFLAGS (lower 32 bit only) in R11. It then masks RFLAGS with an
OS-defined value using the IA32_FMASK (MSR C000_0084). The actual mask value
used by the OS is the complement of the value written to the IA32_FMASK MSR.
None of the bits in RFLAGS are automatically cleared (except for RF). SYSRET
restores RFLAGS from R11 (the lower 32 bits only).

Software should not alter the CS or SS descriptors in a manner that violates the
following assumptions made by SYSCALL/SYSRET:
• The CS and SS base and limit remain the same for all processes, including the

operating system (the base is 0H and the limit is 0FFFFFFFFH).
• The CS of the SYSCALL target has a privilege level of 0.
• The CS of the SYSRET target has a privilege level of 3.

SYSCALL/SYSRET do not check for violations of these assumptions.

Operation

IF (CS.L ≠ 1) or (IA32_EFER.LMA ≠ 1) or (IA32_EFER.SCE ≠ 1)
(* Not in 64-Bit Mode or SYSCALL/SYSRET not enabled in IA32_EFER *)

THEN #UD; FI;
RCX ← RIP;
RIP ← LSTAR_MSR;
R11 ← EFLAGS;
EFLAGS ← (EFLAGS MASKED BY IA32_FMASK);
CPL ← 0;
CS(SEL) ← IA32_STAR_MSR[47:32];
CS(DPL) ← 0;
CS(BASE) ← 0;

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 05 SYSCALL NP Valid Invalid Fast call to privilege level 0
system procedures.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
Vol. 2B 4-587SYSCALL—Fast System Call

INSTRUCTION SET REFERENCE, M-Z
CS(LIMIT) ← 0xFFFFF;
CS(GRANULAR) ← 1;
SS(SEL) ← IA32_STAR_MSR[47:32] + 8;
SS(DPL) ← 0;
SS(BASE) ← 0;
SS(LIMIT) ← 0xFFFFF;
SS(GRANULAR) ← 1;

Flags Affected

All.

Protected Mode Exceptions
#UD If Mode ≠ 64-bit.

Real-Address Mode Exceptions
#UD If Mode ≠ 64-bit.

Virtual-8086 Mode Exceptions
#UD If Mode ≠ 64-bit.

Compatibility Mode Exceptions
#UD If Mode ≠ 64-bit.

64-Bit Mode Exceptions
#UD If IA32_EFER.SCE = 0.

If the LOCK prefix is used.
4-588 Vol. 2B SYSCALL—Fast System Call

INSTRUCTION SET REFERENCE, M-Z
SYSENTER—Fast System Call

Instruction Operand Encoding

Description

Executes a fast call to a level 0 system procedure or routine. SYSENTER is a
companion instruction to SYSEXIT. The instruction is optimized to provide the
maximum performance for system calls from user code running at privilege level 3 to
operating system or executive procedures running at privilege level 0.

Prior to executing the SYSENTER instruction, software must specify the privilege
level 0 code segment and code entry point, and the privilege level 0 stack segment
and stack pointer by writing values to the following MSRs:
• IA32_SYSENTER_CS — Contains a 32-bit value, of which the lower 16 bits are

the segment selector for the privilege level 0 code segment. This value is also
used to compute the segment selector of the privilege level 0 stack segment.

• IA32_SYSENTER_EIP — Contains the 32-bit offset into the privilege level 0 code
segment to the first instruction of the selected operating procedure or routine.

• IA32_SYSENTER_ESP — Contains the 32-bit stack pointer for the privilege level
0 stack.

These MSRs can be read from and written to using RDMSR/WRMSR. Register
addresses are listed in Table 4-20. The addresses are defined to remain fixed for
future Intel 64 and IA-32 processors.

When SYSENTER is executed, the processor:

1. Loads the segment selector from the IA32_SYSENTER_CS into the CS register.

2. Loads the instruction pointer from the IA32_SYSENTER_EIP into the EIP register.

3. Adds 8 to the value in IA32_SYSENTER_CS and loads it into the SS register.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 34 SYSENTER NP Valid Valid Fast call to privilege level 0
system procedures.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

Table 4-20. MSRs Used By the SYSENTER and SYSEXIT Instructions

MSR Address

IA32_SYSENTER_CS 174H

IA32_SYSENTER_ESP 175H

IA32_SYSENTER_EIP 176H
Vol. 2B 4-589SYSENTER—Fast System Call

INSTRUCTION SET REFERENCE, M-Z
4. Loads the stack pointer from the IA32_SYSENTER_ESP into the ESP register.

5. Switches to privilege level 0.

6. Clears the VM flag in the EFLAGS register, if the flag is set.

7. Begins executing the selected system procedure.

The processor does not save a return IP or other state information for the calling
procedure.

The SYSENTER instruction always transfers program control to a protected-mode
code segment with a DPL of 0. The instruction requires that the following conditions
are met by the operating system:
• The segment descriptor for the selected system code segment selects a flat,

32-bit code segment of up to 4 GBytes, with execute, read, accessed, and non-
conforming permissions.

• The segment descriptor for selected system stack segment selects a flat 32-bit
stack segment of up to 4 GBytes, with read, write, accessed, and expand-up
permissions.

The SYSENTER instruction can be invoked from all operating modes except real-
address mode.

The SYSENTER and SYSEXIT instructions are companion instructions, but they do not
constitute a call/return pair. When executing a SYSENTER instruction, the processor
does not save state information for the user code, and neither the SYSENTER nor the
SYSEXIT instruction supports passing parameters on the stack.

To use the SYSENTER and SYSEXIT instructions as companion instructions for transi-
tions between privilege level 3 code and privilege level 0 operating system proce-
dures, the following conventions must be followed:
• The segment descriptors for the privilege level 0 code and stack segments and

for the privilege level 3 code and stack segments must be contiguous in the
global descriptor table. This convention allows the processor to compute the
segment selectors from the value entered in the SYSENTER_CS_MSR MSR.

• The fast system call “stub” routines executed by user code (typically in shared
libraries or DLLs) must save the required return IP and processor state
information if a return to the calling procedure is required. Likewise, the
operating system or executive procedures called with SYSENTER instructions
must have access to and use this saved return and state information when
returning to the user code.

The SYSENTER and SYSEXIT instructions were introduced into the IA-32 architecture
in the Pentium II processor. The availability of these instructions on a processor is
indicated with the SYSENTER/SYSEXIT present (SEP) feature flag returned to the
EDX register by the CPUID instruction. An operating system that qualifies the SEP
flag must also qualify the processor family and model to ensure that the
SYSENTER/SYSEXIT instructions are actually present. For example:

IF CPUID SEP bit is set
4-590 Vol. 2B SYSENTER—Fast System Call

INSTRUCTION SET REFERENCE, M-Z
THEN IF (Family = 6) and (Model < 3) and (Stepping < 3)
THEN

SYSENTER/SYSEXIT_Not_Supported; FI;
ELSE

SYSENTER/SYSEXIT_Supported; FI;
FI;

When the CPUID instruction is executed on the Pentium Pro processor (model 1), the
processor returns a the SEP flag as set, but does not support the SYSENTER/SYSEXIT
instructions.

Operation

IF CR0.PE = 0 THEN #GP(0); FI;
IF SYSENTER_CS_MSR[15:2] = 0 THEN #GP(0); FI;
EFLAGS.VM ← 0; (* ensures protected mode execution *)
EFLAGS.IF ← 0; (* Mask interrupts *)
EFLAGS.RF ← 0;

CS.SEL ← SYSENTER_CS_MSR (* Operating system provides CS *)
(* Set rest of CS to a fixed value *)
CS.SEL.RPL ← 0;
CS.BASE ← 0; (* Flat segment *)
CS.ARbyte.G ← 1; (* 4-KByte granularity *)
CS.ARbyte.S ← 1;
CS.ARbyte.TYPE ← 1011B; (* Execute + Read, Accessed *)
CS.ARbyte.D ← 1; (* 32-bit code segment*)
CS.ARbyte.DPL ← 0;
CS.ARbyte.P ← 1;
CS.LIMIT ← FFFFFH; (* with 4-KByte granularity, implies a 4-GByte limit *)
CPL ← 0;

SS.SEL ← CS.SEL + 8;
(* Set rest of SS to a fixed value *)
SS.SEL.RPL ← 0;
SS.BASE ← 0; (* Flat segment *)
SS.ARbyte.G ← 1; (* 4-KByte granularity *)
SS.ARbyte.S ← 1;
SS.ARbyte.TYPE ← 0011B; (* Read/Write, Accessed *)
SS.ARbyte.D ← 1; (* 32-bit stack segment*)
SS.ARbyte.DPL ← 0;
SS.ARbyte.P ← 1;
SS.LIMIT ← FFFFFH; (* with 4-KByte granularity, implies a 4-GByte limit *)

ESP ← SYSENTER_ESP_MSR;
Vol. 2B 4-591SYSENTER—Fast System Call

INSTRUCTION SET REFERENCE, M-Z
EIP ← SYSENTER_EIP_MSR;

IA-32e Mode Operation

In IA-32e mode, SYSENTER executes a fast system calls from user code running at
privilege level 3 (in compatibility mode or 64-bit mode) to 64-bit executive proce-
dures running at privilege level 0. This instruction is a companion instruction to the
SYSEXIT instruction.

In IA-32e mode, the IA32_SYSENTER_EIP and IA32_SYSENTER_ESP MSRs hold
64-bit addresses and must be in canonical form; IA32_SYSENTER_CS must not
contain a NULL selector.

When SYSENTER transfers control, the following fields are generated and bits set:
• Target code segment — Reads non-NULL selector from IA32_SYSENTER_CS.
• New CS attributes — L-bit = 1 (go to 64-bit mode); CS base = 0, CS limit =

FFFFFFFFH.
• Target instruction — Reads 64-bit canonical address from

IA32_SYSENTER_EIP.
• Stack segment — Computed by adding 8 to the value from

IA32_SYSENTER_CS.
• Stack pointer — Reads 64-bit canonical address from IA32_SYSENTER_ESP.
• New SS attributes — SS base = 0, SS limit = FFFFFFFFH.

Flags Affected

VM, IF, RF (see Operation above)

Protected Mode Exceptions
#GP(0) If IA32_SYSENTER_CS[15:2] = 0.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If protected mode is not enabled.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.
4-592 Vol. 2B SYSENTER—Fast System Call

INSTRUCTION SET REFERENCE, M-Z
64-Bit Mode Exceptions
Same exceptions as in protected mode.
Vol. 2B 4-593SYSENTER—Fast System Call

INSTRUCTION SET REFERENCE, M-Z
SYSEXIT—Fast Return from Fast System Call

Instruction Operand Encoding

Description

Executes a fast return to privilege level 3 user code. SYSEXIT is a companion instruc-
tion to the SYSENTER instruction. The instruction is optimized to provide the
maximum performance for returns from system procedures executing at protections
levels 0 to user procedures executing at protection level 3. It must be executed from
code executing at privilege level 0.

Prior to executing SYSEXIT, software must specify the privilege level 3 code segment
and code entry point, and the privilege level 3 stack segment and stack pointer by
writing values into the following MSR and general-purpose registers:
• IA32_SYSENTER_CS — Contains a 32-bit value, of which the lower 16 bits are

the segment selector for the privilege level 0 code segment in which the
processor is currently executing. This value is used to compute the segment
selectors for the privilege level 3 code and stack segments.

• EDX — Contains the 32-bit offset into the privilege level 3 code segment to the
first instruction to be executed in the user code.

• ECX — Contains the 32-bit stack pointer for the privilege level 3 stack.

The IA32_SYSENTER_CS MSR can be read from and written to using
RDMSR/WRMSR. The register address is listed in Table 4-20. This address is defined
to remain fixed for future Intel 64 and IA-32 processors.

When SYSEXIT is executed, the processor:

1. Adds 16 to the value in IA32_SYSENTER_CS and loads the sum into the CS
selector register.

2. Loads the instruction pointer from the EDX register into the EIP register.

3. Adds 24 to the value in IA32_SYSENTER_CS and loads the sum into the SS
selector register.

4. Loads the stack pointer from the ECX register into the ESP register.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 35 SYSEXIT NP Valid Valid Fast return to privilege level
3 user code.

REX.W + 0F 35 SYSEXIT NP Valid Valid Fast return to 64-bit mode
privilege level 3 user code.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
4-594 Vol. 2B SYSEXIT—Fast Return from Fast System Call

INSTRUCTION SET REFERENCE, M-Z
5. Switches to privilege level 3.

6. Begins executing the user code at the EIP address.

See “SWAPGS—Swap GS Base Register” in this chapter for information about using
the SYSENTER and SYSEXIT instructions as companion call and return instructions.

The SYSEXIT instruction always transfers program control to a protected-mode code
segment with a DPL of 3. The instruction requires that the following conditions are
met by the operating system:
• The segment descriptor for the selected user code segment selects a flat, 32-bit

code segment of up to 4 GBytes, with execute, read, accessed, and non-
conforming permissions.

• The segment descriptor for selected user stack segment selects a flat, 32-bit
stack segment of up to 4 GBytes, with expand-up, read, write, and accessed
permissions.

The SYSEXIT instruction can be invoked from all operating modes except real-
address mode and virtual 8086 mode.

The SYSENTER and SYSEXIT instructions were introduced into the IA-32 architecture
in the Pentium II processor. The availability of these instructions on a processor is
indicated with the SYSENTER/SYSEXIT present (SEP) feature flag returned to the
EDX register by the CPUID instruction. An operating system that qualifies the SEP
flag must also qualify the processor family and model to ensure that the
SYSENTER/SYSEXIT instructions are actually present. For example:

IF CPUID SEP bit is set
THEN IF (Family = 6) and (Model < 3) and (Stepping < 3)

THEN
SYSENTER/SYSEXIT_Not_Supported; FI;

ELSE
SYSENTER/SYSEXIT_Supported; FI;

FI;

When the CPUID instruction is executed on the Pentium Pro processor (model 1), the
processor returns a the SEP flag as set, but does not support the SYSENTER/SYSEXIT
instructions.

Operation

IF SYSENTER_CS_MSR[15:2] = 0 THEN #GP(0); FI;
IF CR0.PE = 0 THEN #GP(0); FI;
IF CPL ≠ 0 THEN #GP(0); FI;

CS.SEL ← (SYSENTER_CS_MSR + 16); (* Segment selector for return CS *)
(* Set rest of CS to a fixed value *)
CS.SEL.RPL ← 3;
CS.BASE ← 0; (* Flat segment *)
Vol. 2B 4-595SYSEXIT—Fast Return from Fast System Call

INSTRUCTION SET REFERENCE, M-Z
CS.ARbyte.G ← 1; (* 4-KByte granularity *)
CS.ARbyte.S ← 1;
CS.ARbyte.TYPE ← 1011B; (* Execute, Read, Non-Conforming Code *)
CS.ARbyte.D ← 1; (* 32-bit code segment*)
CS.ARbyte.DPL ← 3;
CS.ARbyte.P ← 1;
CS.LIMIT ← FFFFFH; (* with 4-KByte granularity, implies a 4-GByte limit *)
CPL ← 3;

SS.SEL ← (SYSENTER_CS_MSR + 24); (* Segment selector for return SS *)
(* Set rest of SS to a fixed value *);
SS.SEL.RPL ← 3;
SS.BASE ← 0; (* Flat segment *)
SS.ARbyte.G ←1; (* 4-KByte granularity *)
SS.ARbyte.S ← 1;
SS.ARbyte.TYPE ← 0011B; (* Expand Up, Read/Write, Data *)
SS.ARbyte.D ← 1; (* 32-bit stack segment*)
SS.ARbyte.DPL ← 3;
SS.ARbyte.P ← 1;
SS.LIMIT ← FFFFFH; (* with 4-KByte granularity, implies a 4-GByte limit *)

ESP ← ECX;
EIP ← EDX;

IA-32e Mode Operation

In IA-32e mode, SYSEXIT executes a fast system calls from a 64-bit executive proce-
dures running at privilege level 0 to user code running at privilege level 3 (in compat-
ibility mode or 64-bit mode). This instruction is a companion instruction to the
SYSENTER instruction.

In IA-32e mode, the IA32_SYSENTER_EIP and IA32_SYSENTER_ESP MSRs hold
64-bit addresses and must be in canonical form; IA32_SYSENTER_CS must not
contain a NULL selector.

When the SYSEXIT instruction transfers control to 64-bit mode user code using
REX.W, the following fields are generated and bits set:
• Target code segment — Computed by adding 32 to the value in the

IA32_SYSENTER_CS.
• New CS attributes — L-bit = 1 (go to 64-bit mode).
• Target instruction — Reads 64-bit canonical address in RDX.
• Stack segment — Computed by adding 8 to the value of CS selector.
• Stack pointer — Update RSP using 64-bit canonical address in RCX.

When SYSEXIT transfers control to compatibility mode user code when the operand
size attribute is 32 bits, the following fields are generated and bits set:
4-596 Vol. 2B SYSEXIT—Fast Return from Fast System Call

INSTRUCTION SET REFERENCE, M-Z
• Target code segment — Computed by adding 16 to the value in
IA32_SYSENTER_CS.

• New CS attributes — L-bit = 0 (go to compatibility mode).
• Target instruction — Fetch the target instruction from 32-bit address in EDX.
• Stack segment — Computed by adding 24 to the value in IA32_SYSENTER_CS.
• Stack pointer — Update ESP from 32-bit address in ECX.

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If IA32_SYSENTER_CS[15:2] = 0.

If CPL ≠ 0.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If protected mode is not enabled.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) Always.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If IA32_SYSENTER_CS = 0.

If CPL ≠ 0.
If ECX or EDX contains a non-canonical address.

#UD If the LOCK prefix is used.
Vol. 2B 4-597SYSEXIT—Fast Return from Fast System Call

INSTRUCTION SET REFERENCE, M-Z
SYSRET—Return From Fast System Call

Instruction Operand Encoding

Description

SYSCALL saves the RIP of the instruction following the SYSCALL into RCX and loads
the new RIP from the LSTAR (64-bit mode only). Upon return, SYSRET copies the
value saved in RCX to the RIP.

In a return to 64-bit mode using Osize 64, SYSRET sets the CS selector value to MSR
IA32_STAR[63:48] +16. The SS is set to IA32_STAR[63:48] + 8.

SYSRET transfer control to compatibility mode using Osize 32. The CS selector value
is set to MSR IA32_STAR[63:48]. The SS is set to IA32_STAR[63:48] + 8.

It is the responsibility of the OS to keep descriptors in the GDT/LDT that correspond
to selectors loaded by SYSCALL/SYSRET consistent with the base, limit and attribute
values forced by the these instructions.

Software should not alter the CS or SS descriptors in a manner that violates the
following assumptions made by SYSCALL/SYSRET:
• CS and SS base and limit remain the same for all processes, including the

operating system.
• CS of the SYSCALL target has a privilege level of 0.
• CS of the SYSRET target has a privilege level of 3.

SYSCALL/SYSRET do not check for violations of these assumptions.

Operation

IF (CS.L ≠ 1) or (IA32_EFER.LMA ≠ 1) or (IA32_EFER.SCE ≠ 1)
(* Not in 64-Bit Mode or SYSCALL/SYSRET not enabled in IA32_EFER *)

THEN #UD; FI;
IF (CPL ≠ 0)

THEN #GP(0); FI;
IF (RCX ≠ CANONICAL_ADDRESS)

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 07 SYSRET NP Valid Invalid Return to compatibility
mode from fast system call

REX.W + 0F 07 SYSRET NP Valid Invalid Return to 64-bit mode from
fast system call

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
4-598 Vol. 2B SYSRET—Return From Fast System Call

INSTRUCTION SET REFERENCE, M-Z
THEN #GP(0); FI;
IF (OPERAND_SIZE = 64)

THEN (* Return to 64-Bit Mode *)
EFLAGS ← R11;
CPL ← 0x3;
CS(SEL) ← IA32_STAR[63:48] + 16;
CS(PL) ← 0x3;
SS(SEL) ← IA32_STAR[63:48] + 8;
SS(PL) ← 0x3;
RIP ← RCX;

ELSE (* Return to Compatibility Mode *)
EFLAGS ← R11;
CPL ← 0x3;
CS(SEL) ← IA32_STAR[63:48] ;
CS(PL) ← 0x3;
SS(SEL) ← IA32_STAR[63:48] + 8;
SS(PL) ← 0x3;
EIP ← ECX;

FI;

Flags Affected

VM, IF, RF.

Protected Mode Exceptions
#UD If Mode ≠ 64-Bit.

Real-Address Mode Exceptions
#UD If Mode ≠ 64-Bit.

Virtual-8086 Mode Exceptions
#UD If Mode ≠ 64-Bit.

Compatibility Mode Exceptions
#UD If Mode ≠ 64-Bit.

64-Bit Mode Exceptions
#UD If IA32_EFER.SCE bit = 0.

If the LOCK prefix is used.
#GP(0) If CPL ≠ 0.

If ECX contains a non-canonical address.
Vol. 2B 4-599SYSRET—Return From Fast System Call

INSTRUCTION SET REFERENCE, M-Z
TEST—Logical Compare
Opcode Instruction Op/

En
64-Bit
Mode

Compat/
Leg Mode

Description

A8 ib TEST AL, imm8 I Valid Valid AND imm8 with AL; set SF,
ZF, PF according to result.

A9 iw TEST AX, imm16 I Valid Valid AND imm16 with AX; set SF,
ZF, PF according to result.

A9 id TEST EAX, imm32 I Valid Valid AND imm32 with EAX; set
SF, ZF, PF according to
result.

REX.W + A9 id TEST RAX, imm32 I Valid N.E. AND imm32 sign-extended
to 64-bits with RAX; set SF,
ZF, PF according to result.

F6 /0 ib TEST r/m8, imm8 MI Valid Valid AND imm8 with r/m8; set
SF, ZF, PF according to
result.

REX + F6 /0 ib TEST r/m8*, imm8 MI Valid N.E. AND imm8 with r/m8; set
SF, ZF, PF according to
result.

F7 /0 iw TEST r/m16,
imm16

MI Valid Valid AND imm16 with r/m16; set
SF, ZF, PF according to
result.

F7 /0 id TEST r/m32,
imm32

MI Valid Valid AND imm32 with r/m32; set
SF, ZF, PF according to
result.

REX.W + F7 /0
id

TEST r/m64,
imm32

MI Valid N.E. AND imm32 sign-extended
to 64-bits with r/m64; set
SF, ZF, PF according to
result.

84 /r TEST r/m8, r8 MR Valid Valid AND r8 with r/m8; set SF,
ZF, PF according to result.

REX + 84 /r TEST r/m8*, r8* MR Valid N.E. AND r8 with r/m8; set SF,
ZF, PF according to result.

85 /r TEST r/m16, r16 MR Valid Valid AND r16 with r/m16; set SF,
ZF, PF according to result.

85 /r TEST r/m32, r32 MR Valid Valid AND r32 with r/m32; set SF,
ZF, PF according to result.

REX.W + 85 /r TEST r/m64, r64 MR Valid N.E. AND r64 with r/m64; set SF,
ZF, PF according to result.
4-600 Vol. 2B TEST—Logical Compare

INSTRUCTION SET REFERENCE, M-Z
Instruction Operand Encoding

Description

Computes the bit-wise logical AND of first operand (source 1 operand) and the
second operand (source 2 operand) and sets the SF, ZF, and PF status flags according
to the result. The result is then discarded.

In 64-bit mode, using a REX prefix in the form of REX.R permits access to additional
registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to
64 bits. See the summary chart at the beginning of this section for encoding data and
limits.

Operation

TEMP ← SRC1 AND SRC2;
SF ← MSB(TEMP);

IF TEMP = 0
THEN ZF ← 1;
ELSE ZF ← 0;

FI:

PF ← BitwiseXNOR(TEMP[0:7]);
CF ← 0;
OF ← 0;
(* AF is undefined *)

Flags Affected

The OF and CF flags are set to 0. The SF, ZF, and PF flags are set according to the
result (see the “Operation” section above). The state of the AF flag is undefined.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is

used: AH, BH, CH, DH.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

I AL/AX/EAX/RAX imm8/16/32 NA NA

MI ModRM:r/m (r) imm8/16/32 NA NA

MR ModRM:r/m (r) ModRM:reg (r) NA NA
Vol. 2B 4-601TEST—Logical Compare

INSTRUCTION SET REFERENCE, M-Z
If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
4-602 Vol. 2B TEST—Logical Compare

INSTRUCTION SET REFERENCE, M-Z
UCOMISD—Unordered Compare Scalar Double-Precision Floating-Point
Values and Set EFLAGS

Instruction Operand Encoding

Description

Performs and unordered compare of the double-precision floating-point values in the
low quadwords of source operand 1 (first operand) and source operand 2 (second
operand), and sets the ZF, PF, and CF flags in the EFLAGS register according to the
result (unordered, greater than, less than, or equal). The OF, SF and AF flags in the
EFLAGS register are set to 0. The unordered result is returned if either source
operand is a NaN (QNaN or SNaN).

Source operand 1 is an XMM register; source operand 2 can be an XMM register or a
64 bit memory location.

The UCOMISD instruction differs from the COMISD instruction in that it signals a
SIMD floating-point invalid operation exception (#I) only when a source operand is
an SNaN. The COMISD instruction signals an invalid operation exception if a source
operand is either a QNaN or an SNaN.

The EFLAGS register is not updated if an unmasked SIMD floating-point exception is
generated.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise
instructions will #UD.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 2E /r

UCOMISD xmm1, xmm2/m64

RM V/V SSE2 Compares (unordered) the
low double-precision
floating-point values in
xmm1 and xmm2/m64 and
set the EFLAGS accordingly.

VEX.LIG.66.0F.WIG 2E /r

VUCOMISD xmm1, xmm2/m64

RM V/V AVX Compare low double
precision floating-point
values in xmm1 and
xmm2/mem64 and set the
EFLAGS flags accordingly.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) NA NA
Vol. 2B 4-603UCOMISD—Unordered Compare Scalar Double-Precision Floating-Point Values and Set
EFLAGS

INSTRUCTION SET REFERENCE, M-Z
Operation

RESULT ← UnorderedCompare(SRC1[63:0] < > SRC2[63:0]) {
(* Set EFLAGS *)
CASE (RESULT) OF

UNORDERED: ZF, PF, CF ← 111;
GREATER_THAN: ZF, PF, CF ← 000;
LESS_THAN: ZF, PF, CF ← 001;
EQUAL: ZF, PF, CF ← 100;

ESAC;
OF, AF, SF ← 0;

Intel C/C++ Compiler Intrinsic Equivalent

int _mm_ucomieq_sd(__m128d a, __m128d b)

int _mm_ucomilt_sd(__m128d a, __m128d b)

int _mm_ucomile_sd(__m128d a, __m128d b)

int _mm_ucomigt_sd(__m128d a, __m128d b)

int _mm_ucomige_sd(__m128d a, __m128d b)

int _mm_ucomineq_sd(__m128d a, __m128d b)

SIMD Floating-Point Exceptions

Invalid (if SNaN operands), Denormal.

Other Exceptions
See Exceptions Type 3; additionally
#UD If VEX.vvvv != 1111B.
4-604 Vol. 2B UCOMISD—Unordered Compare Scalar Double-Precision Floating-Point Values and Set
EFLAGS

INSTRUCTION SET REFERENCE, M-Z
UCOMISS—Unordered Compare Scalar Single-Precision Floating-Point
Values and Set EFLAGS

Instruction Operand Encoding

Description

Performs and unordered compare of the single-precision floating-point values in the
low doublewords of the source operand 1 (first operand) and the source operand 2
(second operand), and sets the ZF, PF, and CF flags in the EFLAGS register according
to the result (unordered, greater than, less than, or equal). In The OF, SF and AF
flags in the EFLAGS register are set to 0. The unordered result is returned if either
source operand is a NaN (QNaN or SNaN).

Source operand 1 is an XMM register; source operand 2 can be an XMM register or a
32 bit memory location.

The UCOMISS instruction differs from the COMISS instruction in that it signals a
SIMD floating-point invalid operation exception (#I) only when a source operand is
an SNaN. The COMISS instruction signals an invalid operation exception if a source
operand is either a QNaN or an SNaN.

The EFLAGS register is not updated if an unmasked SIMD floating-point exception is
generated.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise
instructions will #UD.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 2E /r

UCOMISS xmm1, xmm2/m32

RM V/V SSE Compare lower single-
precision floating-point
value in xmm1 register with
lower single-precision
floating-point value in
xmm2/mem and set the
status flags accordingly.

VEX.LIG.0F.WIG 2E /r

VUCOMISS xmm1, xmm2/m32

RM V/V AVX Compare low single
precision floating-point
values in xmm1 and
xmm2/mem32 and set the
EFLAGS flags accordingly.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) NA NA
Vol. 2B 4-605UCOMISS—Unordered Compare Scalar Single-Precision Floating-Point Values and Set
EFLAGS

INSTRUCTION SET REFERENCE, M-Z
Operation

RESULT ← UnorderedCompare(SRC1[31:0] <> SRC2[31:0]) {
(* Set EFLAGS *)
CASE (RESULT) OF

UNORDERED: ZF,PF,CF ← 111;
GREATER_THAN: ZF,PF,CF ← 000;
LESS_THAN: ZF,PF,CF ← 001;
EQUAL: ZF,PF,CF ← 100;

ESAC;
OF,AF,SF ← 0;

Intel C/C++ Compiler Intrinsic Equivalent

int _mm_ucomieq_ss(__m128 a, __m128 b)

int _mm_ucomilt_ss(__m128 a, __m128 b)

int _mm_ucomile_ss(__m128 a, __m128 b)

int _mm_ucomigt_ss(__m128 a, __m128 b)

int _mm_ucomige_ss(__m128 a, __m128 b)

int _mm_ucomineq_ss(__m128 a, __m128 b)

SIMD Floating-Point Exceptions

Invalid (if SNaN operands), Denormal.

Other Exceptions
See Exceptions Type 3; additionally
#UD If VEX.vvvv != 1111B.
4-606 Vol. 2B UCOMISS—Unordered Compare Scalar Single-Precision Floating-Point Values and Set
EFLAGS

INSTRUCTION SET REFERENCE, M-Z
UD2—Undefined Instruction

Instruction Operand Encoding

Description

Generates an invalid opcode exception. This instruction is provided for software
testing to explicitly generate an invalid opcode exception. The opcode for this
instruction is reserved for this purpose.

Other than raising the invalid opcode exception, this instruction has no effect on
processor state or memory.

Even though it is the execution of the UD2 instruction that causes the invalid opcode
exception, the instruction pointer saved by delivery of the exception references the
UD2 instruction (and not the following instruction).

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

#UD (* Generates invalid opcode exception *);

Flags Affected

None.

Exceptions (All Operating Modes)
#UD Raises an invalid opcode exception in all operating modes.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 0B UD2 NP Valid Valid Raise invalid opcode
exception.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
Vol. 2B 4-607UD2—Undefined Instruction

INSTRUCTION SET REFERENCE, M-Z
UNPCKHPD—Unpack and Interleave High Packed Double-Precision
Floating-Point Values

Instruction Operand Encoding

Description

Performs an interleaved unpack of the high double-precision floating-point values
from the source operand (second operand) and the destination operand (first
operand). See Figure 4-20.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 15 /r

UNPCKHPD xmm1, xmm2/m128

RM V/V SSE2 Unpacks and Interleaves
double-precision floating-
point values from high
quadwords of xmm1 and
xmm2/m128.

VEX.NDS.128.66.0F.WIG 15 /r

VUNPCKHPD xmm1,xmm2,
xmm3/m128

RVM V/V AVX Unpacks and Interleaves
double precision floating-
point values from high
quadwords of xmm2 and
xmm3/m128.

VEX.NDS.256.66.0F.WIG 15 /r

VUNPCKHPD ymm1,ymm2,
ymm3/m256

RVM V/V AVX Unpacks and Interleaves
double precision floating-
point values from high
quadwords of ymm2 and
ymm3/m256.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
4-608 Vol. 2B UNPCKHPD—Unpack and Interleave High Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
When unpacking from a memory operand, an implementation may fetch only the
appropriate 64 bits; however, alignment to 16-byte boundary and normal segment
checking will still be enforced.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.

Operation

UNPCKHPD (128-bit Legacy SSE version)
DEST[63:0] SRC1[127:64]
DEST[127:64] SRC2[127:64]
DEST[VLMAX-1:128] (Unmodified)

VUNPCKHPD (VEX.128 encoded version)
DEST[63:0] SRC1[127:64]
DEST[127:64] SRC2[127:64]
DEST[VLMAX-1:128] 0

VUNPCKHPD (VEX.256 encoded version)
DEST[63:0] SRC1[127:64]

Figure 4-20. UNPCKHPD Instruction High Unpack and Interleave Operation

X1 X0

Y1 Y0

Y1 X1

DEST

SRC

DEST
Vol. 2B 4-609UNPCKHPD—Unpack and Interleave High Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
DEST[127:64] SRC2[127:64]
DEST[191:128]SRC1[255:192]
DEST[255:192]SRC2[255:192]

Intel C/C++ Compiler Intrinsic Equivalent

UNPCKHPD: __m128d _mm_unpackhi_pd(__m128d a, __m128d b)

UNPCKHPD: __m256d _mm256_unpackhi_pd(__m256d a, __m256d b)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4.
4-610 Vol. 2B UNPCKHPD—Unpack and Interleave High Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
UNPCKHPS—Unpack and Interleave High Packed Single-Precision
Floating-Point Values

Instruction Operand Encoding

Description

Performs an interleaved unpack of the high-order single-precision floating-point
values from the source operand (second operand) and the destination operand (first
operand). See Figure 4-21. The source operand can be an XMM register or a 128-bit
memory location; the destination operand is an XMM register.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 15 /r

UNPCKHPS xmm1, xmm2/m128

RM V/V SSE Unpacks and Interleaves
single-precision floating-
point values from high
quadwords of xmm1 and
xmm2/mem into xmm1.

VEX.NDS.128.0F.WIG 15 /r

VUNPCKHPS xmm1,xmm2,
xmm3/m128

RVM V/V AVX Unpacks and Interleaves
single-precision floating-
point values from high
quadwords of xmm2 and
xmm3/m128.

VEX.NDS.256.0F.WIG 15 /r

VUNPCKHPS
ymm1,ymm2,ymm3/m256

RVM V/V AVX Unpacks and Interleaves
single-precision floating-
point values from high
quadwords of ymm2 and
ymm3/m256.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-611UNPCKHPS—Unpack and Interleave High Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
When unpacking from a memory operand, an implementation may fetch only the
appropriate 64 bits; however, alignment to 16-byte boundary and normal segment
checking will still be enforced.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: T second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.

Operation

UNPCKHPS (128-bit Legacy SSE version)
DEST[31:0] SRC1[95:64]
DEST[63:32] SRC2[95:64]
DEST[95:64] SRC1[127:96]
DEST[127:96] SRC2[127:96]
DEST[VLMAX-1:128] (Unmodified)

VUNPCKHPS (VEX.128 encoded version)
DEST[31:0] SRC1[95:64]
DEST[63:32] SRC2[95:64]
DEST[95:64] SRC1[127:96]
DEST[127:96] SRC2[127:96]
DEST[VLMAX-1:128] 0

Figure 4-21. UNPCKHPS Instruction High Unpack and Interleave Operation

X3 X2 X1 X0

Y3 Y2 Y1 Y0

Y3 X3 Y2 X2

DEST

SRC

DEST
4-612 Vol. 2B UNPCKHPS—Unpack and Interleave High Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
VUNPCKHPS (VEX.256 encoded version)
DEST[31:0] SRC1[95:64]
DEST[63:32] SRC2[95:64]
DEST[95:64] SRC1[127:96]
DEST[127:96] SRC2[127:96]
DEST[159:128] SRC1[223:192]
DEST[191:160] SRC2[223:192]
DEST[223:192] SRC1[255:224]
DEST[255:224] SRC2[255:224]

Intel C/C++ Compiler Intrinsic Equivalent

UNPCKHPS: __m128 _mm_unpackhi_ps(__m128 a, __m128 b)

UNPCKHPS: __m256 _mm256_unpackhi_ps (__m256 a, __m256 b);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4.
Vol. 2B 4-613UNPCKHPS—Unpack and Interleave High Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
UNPCKLPD—Unpack and Interleave Low Packed Double-Precision
Floating-Point Values

Instruction Operand Encoding

Description

Performs an interleaved unpack of the low double-precision floating-point values
from the source operand (second operand) and the destination operand (first
operand). See Figure 4-22. The source operand can be an XMM register or a 128-bit
memory location; the destination operand is an XMM register.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 14 /r

UNPCKLPD xmm1, xmm2/m128

RM V/V SSE2 Unpacks and Interleaves
double-precision floating-
point values from low
quadwords of xmm1 and
xmm2/m128.

VEX.NDS.128.66.0F.WIG 14 /r

VUNPCKLPD xmm1,xmm2,
xmm3/m128

RVM V/V AVX Unpacks and Interleaves
double precision floating-
point values low high
quadwords of xmm2 and
xmm3/m128.

VEX.NDS.256.66.0F.WIG 14 /r

VUNPCKLPD ymm1,ymm2,
ymm3/m256

RVM V/V AVX Unpacks and Interleaves
double precision floating-
point values low high
quadwords of ymm2 and
ymm3/m256.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
4-614 Vol. 2B UNPCKLPD—Unpack and Interleave Low Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
When unpacking from a memory operand, an implementation may fetch only the
appropriate 64 bits; however, alignment to 16-byte boundary and normal segment
checking will still be enforced.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: T second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.

Operation

UNPCKLPD (128-bit Legacy SSE version)
DEST[63:0] SRC1[63:0]
DEST[127:64] SRC2[63:0]
DEST[VLMAX-1:128] (Unmodified)

VUNPCKLPD (VEX.128 encoded version)
DEST[63:0] SRC1[63:0]
DEST[127:64] SRC2[63:0]
DEST[VLMAX-1:128] 0

VUNPCKLPD (VEX.256 encoded version)
DEST[63:0] SRC1[63:0]

Figure 4-22. UNPCKLPD Instruction Low Unpack and Interleave Operation

X1 X0

Y1 Y0

Y0 X0

DEST

SRC

DEST
Vol. 2B 4-615UNPCKLPD—Unpack and Interleave Low Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
DEST[127:64] SRC2[63:0]
DEST[191:128] SRC1[191:128]
DEST[255:192] SRC2[191:128]

Intel C/C++ Compiler Intrinsic Equivalent

UNPCKHPD: __m128d _mm_unpacklo_pd(__m128d a, __m128d b)

UNPCKLPD: __m256d _mm256_unpacklo_pd(__m256d a, __m256d b)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4.
4-616 Vol. 2B UNPCKLPD—Unpack and Interleave Low Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
UNPCKLPS—Unpack and Interleave Low Packed Single-Precision
Floating-Point Values

Instruction Operand Encoding

Description

Performs an interleaved unpack of the low-order single-precision floating-point
values from the source operand (second operand) and the destination operand (first
operand). See Figure 4-23. The source operand can be an XMM register or a 128-bit
memory location; the destination operand is an XMM register.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 14 /r

UNPCKLPS xmm1, xmm2/m128

RM V/V SSE Unpacks and Interleaves
single-precision floating-
point values from low
quadwords of xmm1 and
xmm2/mem into xmm1.

VEX.NDS.128.0F.WIG 14 /r

VUNPCKLPS xmm1,xmm2,
xmm3/m128

RVM V/V AVX Unpacks and Interleaves
single-precision floating-
point values from low
quadwords of xmm2 and
xmm3/m128.

VEX.NDS.256.0F.WIG 14 /r

VUNPCKLPS
ymm1,ymm2,ymm3/m256

RVM V/V AVX Unpacks and Interleaves
single-precision floating-
point values from low
quadwords of ymm2 and
ymm3/m256.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-617UNPCKLPS—Unpack and Interleave Low Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
When unpacking from a memory operand, an implementation may fetch only the
appropriate 64 bits; however, alignment to 16-byte boundary and normal segment
checking will still be enforced.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: T second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (255:128) of the corresponding YMM register destination are
unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit
memory location. The destination operand is an XMM register. The upper bits
(255:128) of the corresponding YMM register destination are zeroed.

Operation

UNPCKLPS (128-bit Legacy SSE version)
DEST[31:0] SRC1[31:0]
DEST[63:32] SRC2[31:0]
DEST[95:64] SRC1[63:32]
DEST[127:96] SRC2[63:32]
DEST[VLMAX-1:128] (Unmodified)

VUNPCKLPS (VEX.128 encoded version)
DEST[31:0] SRC1[31:0]
DEST[63:32] SRC2[31:0]
DEST[95:64] SRC1[63:32]
DEST[127:96] SRC2[63:32]

Figure 4-23. UNPCKLPS Instruction Low Unpack and Interleave Operation

X3 X2 X1 X0

Y3 Y2 Y1 Y0

Y1 X1 Y0 X0

DEST

SRC

DEST
4-618 Vol. 2B UNPCKLPS—Unpack and Interleave Low Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
DEST[VLMAX-1:128] 0
UNPCKLPS (VEX.256 encoded version)
DEST[31:0] SRC1[31:0]
DEST[63:32] SRC2[31:0]
DEST[95:64] SRC1[63:32]
DEST[127:96] SRC2[63:32]
DEST[159:128] SRC1[159:128]
DEST[191:160] SRC2[159:128]
DEST[223:192] SRC1[191:160]
DEST[255:224] SRC2[191:160]

Intel C/C++ Compiler Intrinsic Equivalent

UNPCKLPS: __m128 _mm_unpacklo_ps(__m128 a, __m128 b)

UNPCKLPS: __m256 _mm256_unpacklo_ps (__m256 a, __m256 b);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4.
Vol. 2B 4-619UNPCKLPS—Unpack and Interleave Low Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
VBROADCAST—Load with Broadcast

Instruction Operand Encoding

Description

Load floating point values from the source operand (second operand) and broadcast
to all elements of the destination operand (first operand).
The destination operand is a YMM register. The source operand is either a 32-bit, 64-
bit, or 128-bit memory location. Register source encodings are reserved and will
#UD.
VBROADCASTSD and VBROADCASTF128 are only supported as 256-bit wide
versions. VBROADCASTSS is supported in both 128-bit and 256-bit wide versions.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise
instructions will #UD.
If VBROADCASTSD or VBROADCASTF128 is encoded with VEX.L= 0, an attempt to
execute the instruction encoded with VEX.L= 0 will cause an #UD exception.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

VEX.128.66.0F38.W0 18 /r

VBROADCASTSS xmm1, m32

RM I/V AVX Broadcast single-precision
floating-point element in
mem to four locations in
xmm1.

VEX.256.66.0F38.W0 18 /r

VBROADCASTSS ymm1, m32

RM V/V AVX Broadcast single-precision
floating-point element in
mem to eight locations in
ymm1.

VEX.256.66.0F38.W0 19 /r

VBROADCASTSD ymm1, m64

RM V/V AVX Broadcast double-precision
floating-point element in
mem to four locations in
ymm1.

VEX.256.66.0F38.W0 1A /r

VBROADCASTF128 ymm1, m128

RM V/V AVX Broadcast 128 bits of
floating-point data in mem
to low and high 128-bits in
ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
4-620 Vol. 2B VBROADCAST—Load with Broadcast

INSTRUCTION SET REFERENCE, M-Z
Figure 4-24. VBROADCASTSS Operation (VEX.256 encoded version)

Figure 4-25. VBROADCASTSS Operation (128-bit version)

DEST

m32 X0

X0X0 X0X0 X0X0 X0X0

DEST

m32 X0

X0X0 X00 X00 00
Vol. 2B 4-621VBROADCAST—Load with Broadcast

INSTRUCTION SET REFERENCE, M-Z
Operation

VBROADCASTSS (128 bit version)
temp SRC[31:0]
DEST[31:0] temp
DEST[63:32] temp
DEST[95:64] temp
DEST[127:96] temp
DEST[VLMAX-1:128] 0

VBROADCASTSS (VEX.256 encoded version)

Figure 4-26. VBROADCASTSD Operation

Figure 4-27. VBROADCASTF128 Operation

DEST

m64 X0

X0X0X0X0

DEST

m128 X0

X0X0
4-622 Vol. 2B VBROADCAST—Load with Broadcast

INSTRUCTION SET REFERENCE, M-Z
temp SRC[31:0]
DEST[31:0] temp
DEST[63:32] temp
DEST[95:64] temp
DEST[127:96] temp
DEST[159:128] temp
DEST[191:160] temp
DEST[223:192] temp
DEST[255:224] temp

VBROADCASTSD (VEX.256 encoded version)
temp SRC[63:0]
DEST[63:0] temp
DEST[127:64] temp
DEST[191:128] temp
DEST[255:192] temp

VBROADCASTF128
temp SRC[127:0]
DEST[127:0] temp
DEST[VLMAX-1:128] temp

Intel C/C++ Compiler Intrinsic Equivalent

VBROADCASTSS: __m128 _mm_broadcast_ss(float *a);

VBROADCASTSS: __m256 _mm256_broadcast_ss(float *a);

VBROADCASTSD: __m256d _mm256_broadcast_sd(double *a);

VBROADCASTF128: __m256 _mm256_broadcast_ps(__m128 * a);

VBROADCASTF128: __m256d _mm256_broadcast_pd(__m128d * a);

Flags Affected

None.

Other Exceptions
See Exceptions Type 6; additionally
#UD If VEX.L = 0 for VBROADCASTSD

If VEX.L = 0 for VBROADCASTF128
If VEX.W = 1.
Vol. 2B 4-623VBROADCAST—Load with Broadcast

INSTRUCTION SET REFERENCE, M-Z
VCVTPH2PS—Convert 16-bit FP Values to Single-Precision FP Values

Instruction Operand Encoding

Description

Converts four/eight packed half precision (16-bits) floating-point values in the low-
order 64/128 bits of an XMM/YMM register or 64/128-bit memory location to
four/eight packed single-precision floating-point values and writes the converted
values into the destination XMM/YMM register.
If case of a denormal operand, the correct normal result is returned. MXCSR.DAZ is
ignored and is treated as if it 0. No denormal exception is reported on MXCSR.
128-bit version: The source operand is a XMM register or 64-bit memory location.
The destination operand is a XMM register. The upper bits (255:128) of the corre-
sponding destination YMM register are zeroed.
256-bit version: The source operand is a XMM register or 128-bit memory location.
The destination operand is a YMM register.
 The diagram below illustrates how data is converted from four packed half precision
(in 64 bits) to four single precision (in 128 bits) FP values.
Note: VEX.vvvv is reserved (must be 1111b).

Opcode/
Instruction

Op/
En

64/32
-bit
Mode

CPUID
Feature
Flag

Description

VEX.256.66.0F38.W0 13 /r RM V/V F16C Convert eight packed half
precision (16-bit) floating-
point values in xmm2/m128
to packed single-precision
floating-point value in
ymm1.

VCVTPH2PS ymm1, xmm2/m128

VEX.128.66.0F38.W0 13 /r RM V/V F16C Convert four packed half
precision (16-bit) floating-
point values in xmm2/m64
to packed single-precision
floating-point value in
xmm1.

VCVTPH2PS xmm1, xmm2/m64

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
4-624 Vol. 2B VCVTPH2PS—Convert 16-bit FP Values to Single-Precision FP Values

INSTRUCTION SET REFERENCE, M-Z
Figure 4-28. VCVTPH2PS (128-bit Version)

Operation
vCvt_h2s(SRC1[15:0])
{
RETURN Cvt_Half_Precision_To_Single_Precision(SRC1[15:0]);
}

VCVTPH2PS (VEX.256 encoded version)
DEST[31:0] vCvt_h2s(SRC1[15:0]);
DEST[63:32] vCvt_h2s(SRC1[31:16]);
DEST[95:64] vCvt_h2s(SRC1[47:32]);
DEST[127:96] vCvt_h2s(SRC1[63:48]);
DEST[159:128] vCvt_h2s(SRC1[79:64]);
DEST[191:160] vCvt_h2s(SRC1[95:80]);
DEST[223:192] vCvt_h2s(SRC1[111:96]);

DEST[255:224] vCvt_h2s(SRC1[127:112]);

VCVTPH2PS (VEX.128 encoded version)
DEST[31:0] vCvt_h2s(SRC1[15:0]);
DEST[63:32] vCvt_h2s(SRC1[31:16]);
DEST[95:64] vCvt_h2s(SRC1[47:32]);
DEST[127:96] vCvt_h2s(SRC1[63:48]);
DEST[VLMAX-1:128] 0

Flags Affected

None

VH0VH1VH2VH3

15 031 1647 3263 4895 64127 96

VS0VS1VS2VS3

31 063 3295 64127 96

convert convert

convertconvert

xmm2/mem64

xmm1

VCVTPH2PS xmm1, xmm2/mem64, imm8
Vol. 2B 4-625VCVTPH2PS—Convert 16-bit FP Values to Single-Precision FP Values

INSTRUCTION SET REFERENCE, M-Z
Intel C/C++ Compiler Intrinsic Equivalent

__m128 _mm_cvtph_ps (__m128i m1);

__m256 _mm256_cvtph_ps (__m128i m1)

SIMD Floating-Point Exceptions
Invalid

Other Exceptions
Exceptions Type 11 (do not report #AC); additionally
#UD If VEX.W=1.
4-626 Vol. 2B VCVTPH2PS—Convert 16-bit FP Values to Single-Precision FP Values

INSTRUCTION SET REFERENCE, M-Z
VCVTPS2PH—Convert Single-Precision FP value to 16-bit FP value

Instruction Operand Encoding

Description

Convert four or eight packed single-precision floating values in first source operand
to four or eight packed half-precision (16-bit) floating-point values. The rounding
mode is specified using the immediate field (imm8).
Underflow results (i.e. tiny results) are converted to denormals. MXCSR.FTZ is
ignored. If a source element is denormal relative to input format with DM masked
and at least one of PM or UM unmasked; a SIMD exception will be raised with DE, UE
and PE set.
128-bit version: The source operand is a XMM register. The destination operand is a
XMM register or 64-bit memory location. If destination operand is a register then the
upper bits (255:64) of corresponding YMM register are zeroed.
256-bit version: The source operand is a YMM register. The destination operand is a
XMM register or 128-bit memory location. If the destination operand is a register, the
upper bits (255:128) of the corresponding YMM register are zeroed.
Note: VEX.vvvv is reserved (must be 1111b).

Opcode/
Instruction

Op/
En

64/32
-bit
Mode

CPUID
Feature
Flag

Description

VEX.256.66.0F3A.W0 1D /r ib MR V/V F16C Convert eight packed
single-precision float-
ing-point value in ymm2
to packed half-preci-
sion (16-bit) floating-
point value in
xmm1/mem. Imm8 pro-
vides rounding controls.

VCVTPS2PH xmm1/m128, ymm2, imm8

VEX.128.66.0F3A.W0.1D /r ib MR V/V F16C Convert four packed
single-precision float-
ing-point value in xmm2
to packed half-preci-
sion (16-bit) floating-
point value in
xmm1/mem. Imm8 pro-
vides rounding controls.

VCVTPS2PH xmm1/m64, xmm2, imm8

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (w) ModRM:reg (r) NA NA
Vol. 2B 4-627VCVTPS2PH—Convert Single-Precision FP value to 16-bit FP value

INSTRUCTION SET REFERENCE, M-Z
The diagram below illustrates how data is converted from four packed single preci-
sion (in 128 bits) to four half precision (in 64 bits) FP values.

Figure 4-29. VCVTPS2PH (128-bit Version)

The immediate byte defines several bit fields that controls rounding operation. The
effect and encoding of RC field are listed in Table 4-21.

Operation
vCvt_s2h(SRC1[31:0])
{
IF Imm[2] = 0
THEN // using Imm[1:0] for rounding control, see Table 4-21

RETURN Cvt_Single_Precision_To_Half_Precision_FP_Imm(SRC1[31:0]);
ELSE // using MXCSR.RC for rounding control

RETURN Cvt_Single_Precision_To_Half_Precision_FP_Mxcsr(SRC1[31:0]);
FI;

Table 4-21. Immediate Byte Encoding for 16-bit Floating-Point Conversion
Instructions

Bits Field Name/value Description Comment

Imm[1:0] RC=00B Round to nearest even If Imm[2] = 0

RC=01B Round down

RC=10B Round up

RC=11B Truncate

Imm[2] MS1=0 Use imm[1:0] for round-
ing

Ignore MXCSR.RC

MS1=1 Use MXCSR.RC for round-
ing

Imm[7:3] Ignored Ignored by processor

VH0VH1VH2VH3

15 031 1647 3263 4895 64127 96

VS0VS1VS2VS3

31 063 3295 64127 96

xmm1/mem64

xmm2

VCVTPS2PH xmm1/mem64, xmm2, imm8

convertconvert convertconvert
4-628 Vol. 2B VCVTPS2PH—Convert Single-Precision FP value to 16-bit FP value

INSTRUCTION SET REFERENCE, M-Z
}

VCVTPS2PH (VEX.256 encoded version)
DEST[15:0] vCvt_s2h(SRC1[31:0]);
DEST[31:16] vCvt_s2h(SRC1[63:32]);
DEST[47:32] vCvt_s2h(SRC1[95:64]);
DEST[63:48] vCvt_s2h(SRC1[127:96]);
DEST[79:64] vCvt_s2h(SRC1[159:128]);
DEST[95:80] vCvt_s2h(SRC1[191:160]);
DEST[111:96] vCvt_s2h(SRC1[223:192]);
DEST[127:112] vCvt_s2h(SRC1[255:224]);
DEST[255:128] 0

VCVTPS2PH (VEX.128 encoded version)
DEST[15:0] vCvt_s2h(SRC1[31:0]);
DEST[31:16] vCvt_s2h(SRC1[63:32]);
DEST[47:32] vCvt_s2h(SRC1[95:64]);
DEST[63:48] vCvt_s2h(SRC1[127:96]);
DEST[VLMAX-1:64] 0

Flags Affected

None

Intel C/C++ Compiler Intrinsic Equivalent

__m128i _mm_cvtps_ph (__m128 m1, const int imm);

__m128i _mm256_cvtps_ph(__m256 m1, const int imm);

SIMD Floating-Point Exceptions
Invalid, Underflow, Overflow, Precision, Denormal (if MXCSR.DAZ=0);

Other Exceptions
Exceptions Type 11 (do not report #AC); additionally
#UD If VEX.W=1.
Vol. 2B 4-629VCVTPS2PH—Convert Single-Precision FP value to 16-bit FP value

INSTRUCTION SET REFERENCE, M-Z
VERR/VERW—Verify a Segment for Reading or Writing

Instruction Operand Encoding

Description

Verifies whether the code or data segment specified with the source operand is read-
able (VERR) or writable (VERW) from the current privilege level (CPL). The source
operand is a 16-bit register or a memory location that contains the segment selector
for the segment to be verified. If the segment is accessible and readable (VERR) or
writable (VERW), the ZF flag is set; otherwise, the ZF flag is cleared. Code segments
are never verified as writable. This check cannot be performed on system segments.

To set the ZF flag, the following conditions must be met:
• The segment selector is not NULL.
• The selector must denote a descriptor within the bounds of the descriptor table

(GDT or LDT).
• The selector must denote the descriptor of a code or data segment (not that of a

system segment or gate).
• For the VERR instruction, the segment must be readable.
• For the VERW instruction, the segment must be a writable data segment.
• If the segment is not a conforming code segment, the segment’s DPL must be

greater than or equal to (have less or the same privilege as) both the CPL and the
segment selector's RPL.

The validation performed is the same as is performed when a segment selector is
loaded into the DS, ES, FS, or GS register, and the indicated access (read or write) is
performed. The segment selector's value cannot result in a protection exception,
enabling the software to anticipate possible segment access problems.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode. The
operand size is fixed at 16 bits.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 00 /4 VERR r/m16 M Valid Valid Set ZF=1 if segment
specified with r/m16 can be
read.

0F 00 /5 VERW r/m16 M Valid Valid Set ZF=1 if segment
specified with r/m16 can be
written.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA
4-630 Vol. 2B VERR/VERW—Verify a Segment for Reading or Writing

INSTRUCTION SET REFERENCE, M-Z
Operation

IF SRC(Offset) > (GDTR(Limit) or (LDTR(Limit))
THEN ZF ← 0; FI;

Read segment descriptor;

IF SegmentDescriptor(DescriptorType) = 0 (* System segment *)
or (SegmentDescriptor(Type) ≠ conforming code segment)
and (CPL > DPL) or (RPL > DPL)

THEN
ZF ← 0;

ELSE
IF ((Instruction = VERR) and (Segment readable))
or ((Instruction = VERW) and (Segment writable))

THEN
ZF ← 1;

FI;
FI;

Flags Affected

The ZF flag is set to 1 if the segment is accessible and readable (VERR) or writable
(VERW); otherwise, it is set to 0.

Protected Mode Exceptions

The only exceptions generated for these instructions are those related to illegal
addressing of the source operand.
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD The VERR and VERW instructions are not recognized in real-

address mode.
If the LOCK prefix is used.
Vol. 2B 4-631VERR/VERW—Verify a Segment for Reading or Writing

INSTRUCTION SET REFERENCE, M-Z
Virtual-8086 Mode Exceptions
#UD The VERR and VERW instructions are not recognized in virtual-

8086 mode.
If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
4-632 Vol. 2B VERR/VERW—Verify a Segment for Reading or Writing

INSTRUCTION SET REFERENCE, M-Z
VEXTRACTF128 — Extract Packed Floating-Point Values

Instruction Operand Encoding

Description

Extracts 128-bits of packed floating-point values from the source operand (second
operand) at an 128-bit offset from imm8[0] into the destination operand (first
operand). The destination may be either an XMM register or an 128-bit memory loca-
tion.
VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
The high 7 bits of the immediate are ignored.
If VEXTRACTF128 is encoded with VEX.L= 0, an attempt to execute the instruction
encoded with VEX.L= 0 will cause an #UD exception.

Operation

VEXTRACTF128 (memory destination form)
CASE (imm8[0]) OF

0: DEST[127:0] SRC1[127:0]
1: DEST[127:0] SRC1[255:128]

ESAC.

VEXTRACTF128 (register destination form)
CASE (imm8[0]) OF

0: DEST[127:0] SRC1[127:0]
1: DEST[127:0] SRC1[255:128]

ESAC.
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

VEXTRACTF128: __m128 _mm256_extractf128_ps (__m256 a, int offset);

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

VEX.256.66.0F3A.W0 19 /r ib

VEXTRACTF128 xmm1/m128,
ymm2, imm8

MR V/V AVX Extract 128 bits of packed
floating-point values from
ymm2 and store results in
xmm1/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (w) ModRM:reg (r) NA NA
Vol. 2B 4-633VEXTRACTF128 — Extract Packed Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
VEXTRACTF128: __m128d _mm256_extractf128_pd (__m256d a, int offset);

VEXTRACTF128: __m128i_mm256_extractf128_si256(__m256i a, int offset);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 6; additionally
#UD If VEX.L= 0

If VEX.W=1.
4-634 Vol. 2B VEXTRACTF128 — Extract Packed Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
VINSERTF128 — Insert Packed Floating-Point Values

Instruction Operand Encoding

Description

Performs an insertion of 128-bits of packed floating-point values from the second
source operand (third operand) into an the destination operand (first operand) at an
128-bit offset from imm8[0]. The remaining portions of the destination are written
by the corresponding fields of the first source operand (second operand). The second
source operand can be either an XMM register or a 128-bit memory location.
The high 7 bits of the immediate are ignored.

Operation

TEMP[255:0] SRC1[255:0]
CASE (imm8[0]) OF

0: TEMP[127:0] SRC2[127:0]
1: TEMP[255:128] SRC2[127:0]

ESAC
DEST TEMP

Intel C/C++ Compiler Intrinsic Equivalent

INSERTF128: __m256 _mm256_insertf128_ps (__m256 a, __m128 b, int offset);

INSERTF128: __m256d _mm256_insertf128_pd (__m256d a, __m128d b, int offset);

INSERTF128: __m256i _mm256_insertf128_si256 (__m256i a, __m128i b, int offset);

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

VEX.NDS.256.66.0F3A.W0 18 /r ib

VINSERTF128 ymm1, ymm2,
xmm3/m128, imm8

RVM V/V AVX Insert a single precision
floating-point value
selected by imm8 from
xmm2/m32 into xmm1 at
the specified destination
element specified by imm8
and zero out destination
elements in xmm1 as
indicated in imm8.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-635VINSERTF128 — Insert Packed Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 6; additionally
#UD If VEX.W = 1.
4-636 Vol. 2B VINSERTF128 — Insert Packed Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
VMASKMOV—Conditional SIMD Packed Loads and Stores

Instruction Operand Encoding

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

VEX.NDS.128.66.0F38.W0 2C /r

VMASKMOVPS xmm1, xmm2, m128

RVM V/V AVX Conditionally load packed
single-precision values from
m128 using mask in xmm2
and store in xmm1.

VEX.NDS.256.66.0F38.W0 2C /r

VMASKMOVPS ymm1, ymm2, m256

RVM V/V AVX Conditionally load packed
single-precision values from
m256 using mask in ymm2
and store in ymm1.

VEX.NDS.128.66.0F38.W0 2D /r

VMASKMOVPD xmm1, xmm2, m128

RVM V/V AVX Conditionally load packed
double-precision values
from m128 using mask in
xmm2 and store in xmm1.

VEX.NDS.256.66.0F38.W0 2D /r

VMASKMOVPD ymm1, ymm2, m256

RVM V/V AVX Conditionally load packed
double-precision values
from m256 using mask in
ymm2 and store in ymm1.

VEX.NDS.128.66.0F38.W0 2E /r

VMASKMOVPS m128, xmm1, xmm2

MVR V/V AVX Conditionally store packed
single-precision values from
xmm2 using mask in xmm1.

VEX.NDS.256.66.0F38.W0 2E /r

VMASKMOVPS m256, ymm1, ymm2

MVR V/V AVX Conditionally store packed
single-precision values from
ymm2 using mask in ymm1.

VEX.NDS.128.66.0F38.W0 2F /r

VMASKMOVPD m128, xmm1, xmm2

MVR V/V AVX Conditionally store packed
double-precision values
from xmm2 using mask in
xmm1.

VEX.NDS.256.66.0F38.W0 2F /r

VMASKMOVPD m256, ymm1, ymm2

MVR V/V AVX Conditionally store packed
double-precision values
from ymm2 using mask in
ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

MVR ModRM:r/m (w) VEX.vvvv (r) ModRM:reg (r) NA
Vol. 2B 4-637VMASKMOV—Conditional SIMD Packed Loads and Stores

INSTRUCTION SET REFERENCE, M-Z
Description

Conditionally moves packed data elements from the second source operand into the
corresponding data element of the destination operand, depending on the mask bits
associated with each data element. The mask bits are specified in the first source
operand.
The mask bit for each data element is the most significant bit of that element in the
first source operand. If a mask is 1, the corresponding data element is copied from
the second source operand to the destination operand. If the mask is 0, the corre-
sponding data element is set to zero in the load form of these instructions, and
unmodified in the store form.
The second source operand is a memory address for the load form of these instruc-
tion. The destination operand is a memory address for the store form of these
instructions. The other operands are both XMM registers (for VEX.128 version) or
YMM registers (for VEX.256 version).
Faults occur only due to mask-bit required memory accesses that caused the faults.
Faults will not occur due to referencing any memory location if the corresponding
mask bit for that memory location is 0. For example, no faults will be detected if the
mask bits are all zero.
Unlike previous MASKMOV instructions (MASKMOVQ and MASKMOVDQU), a nontem-
poral hint is not applied to these instructions.
Instruction behavior on alignment check reporting with mask bits of less than all 1s
are the same as with mask bits of all 1s.
VMASKMOV should not be used to access memory mapped I/O and un-cached
memory as the access and the ordering of the individual loads or stores it does is
implementation specific.
In cases where mask bits indicate data should not be loaded or stored paging A and
D bits will be set in an implementation dependent way. However, A and D bits are
always set for pages where data is actually loaded/stored.
Note: for load forms, the first source (the mask) is encoded in VEX.vvvv; the second
source is encoded in rm_field, and the destination register is encoded in reg_field.
Note: for store forms, the first source (the mask) is encoded in VEX.vvvv; the second
source register is encoded in reg_field, and the destination memory location is
encoded in rm_field.

Operation

VMASKMOVPS -128-bit load
DEST[31:0] IF (SRC1[31]) Load_32(mem) ELSE 0
DEST[63:32] IF (SRC1[63]) Load_32(mem + 4) ELSE 0
DEST[95:64] IF (SRC1[95]) Load_32(mem + 8) ELSE 0
DEST[127:97] IF (SRC1[127]) Load_32(mem + 12) ELSE 0
DEST[VLMAX-1:128] 0
DEST[31:0] IF (SRC1[31]) Load_32(mem) ELSE 0
4-638 Vol. 2B VMASKMOV—Conditional SIMD Packed Loads and Stores

INSTRUCTION SET REFERENCE, M-Z
DEST[63:32] IF (SRC1[63]) Load_32(mem + 4) ELSE 0
DEST[95:64] IF (SRC1[95]) Load_32(mem + 8) ELSE 0
DEST[127:96] IF (SRC1[127]) Load_32(mem + 12) ELSE 0
DEST[159:128] IF (SRC1[159]) Load_32(mem + 16) ELSE 0
DEST[191:160] IF (SRC1[191]) Load_32(mem + 20) ELSE 0
DEST[223:192] IF (SRC1[223]) Load_32(mem + 24) ELSE 0
DEST[255:224] IF (SRC1[255]) Load_32(mem + 28) ELSE 0

VMASKMOVPD - 128-bit load
DEST[63:0] IF (SRC1[63]) Load_64(mem) ELSE 0
DEST[127:64] IF (SRC1[127]) Load_64(mem + 16) ELSE 0
DEST[VLMAX-1:128] 0

VMASKMOVPD - 256-bit load
DEST[63:0] IF (SRC1[63]) Load_64(mem) ELSE 0
DEST[127:64] IF (SRC1[127]) Load_64(mem + 8) ELSE 0
DEST[195:128] IF (SRC1[191]) Load_64(mem + 16) ELSE 0
DEST[255:196] IF (SRC1[255]) Load_64(mem + 24) ELSE 0

VMASKMOVPS - 128-bit store
IF (SRC1[31]) DEST[31:0] SRC2[31:0]
IF (SRC1[63]) DEST[63:32] SRC2[63:32]
IF (SRC1[95]) DEST[95:64] SRC2[95:64]
IF (SRC1[127]) DEST[127:96] SRC2[127:96]

VMASKMOVPS - 256-bit store
IF (SRC1[31]) DEST[31:0] SRC2[31:0]
IF (SRC1[63]) DEST[63:32] SRC2[63:32]
IF (SRC1[95]) DEST[95:64] SRC2[95:64]
IF (SRC1[127]) DEST[127:96] SRC2[127:96]
IF (SRC1[159]) DEST[159:128] SRC2[159:128]
IF (SRC1[191]) DEST[191:160] SRC2[191:160]
IF (SRC1[223]) DEST[223:192] SRC2[223:192]
IF (SRC1[255]) DEST[255:224] SRC2[255:224]

VMASKMOVPD - 128-bit store
IF (SRC1[63]) DEST[63:0] SRC2[63:0]
IF (SRC1[127]) DEST[127:64] SRC2[127:64]

VMASKMOVPD - 256-bit store
IF (SRC1[63]) DEST[63:0] SRC2[63:0]
IF (SRC1[127]) DEST[127:64] SRC2[127:64]
Vol. 2B 4-639VMASKMOV—Conditional SIMD Packed Loads and Stores

INSTRUCTION SET REFERENCE, M-Z
VMASKMOVPS - 256-bit load
IF (SRC1[191]) DEST[191:128] SRC2[191:128]
IF (SRC1[255]) DEST[255:192] SRC2[255:192]

Intel C/C++ Compiler Intrinsic Equivalent

__m256 _mm256_maskload_ps(float const *a, __m256i mask)

void _mm256_maskstore_ps(float *a, __m256i mask, __m256 b)

__m256d _mm256_maskload_pd(double *a, __m256i mask);

void _mm256_maskstore_pd(double *a, __m256i mask, __m256d b);

__m128 _mm128_maskload_ps(float const *a, __m128i mask)

void _mm128_maskstore_ps(float *a, __m128i mask, __m128 b)

__m128d _mm128_maskload_pd(double *a, __m128i mask);

void _mm128_maskstore_pd(double *a, __m128i mask, __m128d b);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 6 (No AC# reported for any mask bit combinations);
additionally
#UD If VEX.W = 1.
4-640 Vol. 2B VMASKMOV—Conditional SIMD Packed Loads and Stores

INSTRUCTION SET REFERENCE, M-Z
VPERMILPD — Permute Double-Precision Floating-Point Values

Instruction Operand Encoding

Description

Permute double-precision floating-point values in the first source operand (second
operand) using 8-bit control fields in the low bytes of the second source operand
(third operand) and store results in the destination operand (first operand). The first
source operand is a YMM register, the second source operand is a YMM register or a
256-bit memory location, and the destination operand is a YMM register.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

VEX.NDS.128.66.0F38.W0 0D /r
VPERMILPD xmm1, xmm2,
xmm3/m128

RVM V/V AVX Permute double-precision
floating-point values in
xmm2 using controls from
xmm3/mem and store result
in xmm1.

VEX.NDS.256.66.0F38.W0 0D /r
VPERMILPD ymm1, ymm2,
ymm3/m256

RVM V/V AVX Permute double-precision
floating-point values in
ymm2 using controls from
ymm3/mem and store result
in ymm1.

VEX.128.66.0F3A.W0 05 /r ib
VPERMILPD xmm1, xmm2/m128,
imm8

RMI V/V AVX Permute double-precision
floating-point values in
xmm2/mem using controls
from imm8.

VEX.256.66.0F3A.W0 05 /r ib
VPERMILPD ymm1, ymm2/m256,
imm8

RMI V/V AVX Permute double-precision
floating-point values in
ymm2/mem using controls
from imm8.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

RMI ModRM:reg (w) ModRM:r/m (r) imm8 NA
Vol. 2B 4-641VPERMILPD — Permute Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
Figure 4-30. VPERMILPD operation

There is one control byte per destination double-precision element. Each control byte
is aligned with the low 8 bits of the corresponding double-precision destination
element. Each control byte contains a 1-bit select field (see Figure 4-31) that deter-
mines which of the source elements are selected. Source elements are restricted to
lie in the same source 128-bit region as the destination.

Figure 4-31. VPERMILPD Shuffle Control

(immediate control version)
Permute double-precision floating-point values in the first source operand (second
operand) using two, 1-bit control fields in the low 2 bits of the 8-bit immediate and
store results in the destination operand (first operand). The source operand is a YMM
register or 256-bit memory location and the destination operand is a YMM register.
Note: For the VEX.128.66.0F3A 05 instruction version, VEX.vvvv is reserved and
must be 1111b otherwise instruction will #UD.

X2..X3 X2..X3 X0..X1 X0..X1DEST

X3 X2SRC1 X1 X0

1

sel

Bit

. . .ignored

Control Field1Control Field 2Control Field 4
ig

no
re

d

65

sel

ig
no

re
d

194 193

sel

ig
no

re
d

255

ignored

66127

ignored

263
4-642 Vol. 2B VPERMILPD — Permute Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
Note: For the VEX.256.66.0F3A 05 instruction version, VEX.vvvv is reserved and
must be 1111b otherwise instruction will #UD.

Operation

VPERMILPD (256-bit immediate version)
IF (imm8[0] = 0) THEN DEST[63:0]SRC1[63:0]
IF (imm8[0] = 1) THEN DEST[63:0]SRC1[127:64]
IF (imm8[1] = 0) THEN DEST[127:64]SRC1[63:0]
IF (imm8[1] = 1) THEN DEST[127:64]SRC1[127:64]
IF (imm8[2] = 0) THEN DEST[191:128]SRC1[191:128]
IF (imm8[2] = 1) THEN DEST[191:128]SRC1[255:192]
IF (imm8[3] = 0) THEN DEST[255:192]SRC1[191:128]
IF (imm8[3] = 1) THEN DEST[255:192]SRC1[255:192]

VPERMILPD (128-bit immediate version)
IF (imm8[0] = 0) THEN DEST[63:0]SRC1[63:0]
IF (imm8[0] = 1) THEN DEST[63:0]SRC1[127:64]
IF (imm8[1] = 0) THEN DEST[127:64]SRC1[63:0]
IF (imm8[1] = 1) THEN DEST[127:64]SRC1[127:64]
DEST[VLMAX-1:128] 0

VPERMILPD (256-bit variable version)
IF (SRC2[1] = 0) THEN DEST[63:0]SRC1[63:0]
IF (SRC2[1] = 1) THEN DEST[63:0]SRC1[127:64]
IF (SRC2[65] = 0) THEN DEST[127:64]SRC1[63:0]
IF (SRC2[65] = 1) THEN DEST[127:64]SRC1[127:64]
IF (SRC2[129] = 0) THEN DEST[191:128]SRC1[191:128]
IF (SRC2[129] = 1) THEN DEST[191:128]SRC1[255:192]
IF (SRC2[193] = 0) THEN DEST[255:192]SRC1[191:128]
IF (SRC2[193] = 1) THEN DEST[255:192]SRC1[255:192]

VPERMILPD (128-bit variable version)
IF (SRC2[1] = 0) THEN DEST[63:0]SRC1[63:0]
IF (SRC2[1] = 1) THEN DEST[63:0]SRC1[127:64]
IF (SRC2[65] = 0) THEN DEST[127:64]SRC1[63:0]
IF (SRC2[65] = 1) THEN DEST[127:64]SRC1[127:64]
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

VPERMILPD: __m128d _mm_permute_pd (__m128d a, int control)

VPERMILPD: __m256d _mm256_permute_pd (__m256d a, int control)
Vol. 2B 4-643VPERMILPD — Permute Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
VPERMILPD: __m128d _mm_permutevar_pd (__m128d a, __m128i control);

VPERMILPD: __m256d _mm256_permutevar_pd (__m256d a, __m256i control);

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 6; additionally
#UD If VEX.W = 1
4-644 Vol. 2B VPERMILPD — Permute Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
VPERMILPS — Permute Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

(variable control version)
Permute single-precision floating-point values in the first source operand (second
operand) using 8-bit control fields in the low bytes of corresponding elements the
shuffle control (third operand) and store results in the destination operand (first
operand). The first source operand is a YMM register, the second source operand is a
YMM register or a 256-bit memory location, and the destination operand is a YMM
register.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

VEX.NDS.128.66.0F38.W0 0C /r
VPERMILPS xmm1, xmm2,
xmm3/m128

RVM V/V AVX Permute single-precision
floating-point values in
xmm2 using controls from
xmm3/mem and store result
in xmm1.

VEX.128.66.0F3A.W0 04 /r ib
VPERMILPS xmm1, xmm2/m128,
imm8

RMI V/V AVX Permute single-precision
floating-point values in
xmm2/mem using controls
from imm8 and store result
in xmm1.

VEX.NDS.256.66.0F38.W0 0C /r
VPERMILPS ymm1, ymm2,
ymm3/m256

RVM V/V AVX Permute single-precision
floating-point values in
ymm2 using controls from
ymm3/mem and store result
in ymm1.

VEX.256.66.0F3A.W0 04 /r ib
VPERMILPS ymm1, ymm2/m256,
imm8

RMI V/V AVX Permute single-precision
floating-point values in
ymm2/mem using controls
from imm8 and store result
in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

RMI ModRM:reg (w) ModRM:r/m (r) imm8 NA
Vol. 2B 4-645VPERMILPS — Permute Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
Figure 4-32. VPERMILPS Operation

There is one control byte per destination single-precision element. Each control byte
is aligned with the low 8 bits of the corresponding single-precision destination
element. Each control byte contains a 2-bit select field (see Figure 4-33) that deter-
mines which of the source elements are selected. Source elements are restricted to
lie in the same source 128-bit region as the destination.

Figure 4-33. VPERMILPS Shuffle Control

(immediate control version)
Permute single-precision floating-point values in the first source operand (second
operand) using four 2-bit control fields in the 8-bit immediate and store results in the
destination operand (first operand). The source operand is a YMM register or 256-bit
memory location and the destination operand is a YMM register. This is similar to a
wider version of PSHUFD, just operating on single-precision floating-point values.
Note: For the VEX.128.66.0F3A 04 instruction version, VEX.vvvv is reserved and
must be 1111b otherwise instruction will #UD.

X7 .. X4 X7 .. X4 X3 ..X0 X3 .. X0DEST

SRC1 X0X1X2X3X4X5X6X7

X3 .. X0X7 .. X4 X7 .. X4 X3 ..X0

sel

Bit
34 33 32

sel . . .

226 225 224

sel ignored

Control Field 1Control Field 2Control Field 7

1 0255

ignored ignored

63 31
4-646 Vol. 2B VPERMILPS — Permute Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
Note: For the VEX.256.66.0F3A 04 instruction version, VEX.vvvv is reserved and
must be 1111b otherwise instruction will #UD.

Operation

Select4(SRC, control) {
CASE (control[1:0]) OF

0: TMP SRC[31:0];
1: TMP SRC[63:32];
2: TMP SRC[95:64];
3: TMP SRC[127:96];

ESAC;
RETURN TMP
}

VPERMILPS (256-bit immediate version)
DEST[31:0] Select4(SRC1[127:0], imm8[1:0]);
DEST[63:32] Select4(SRC1[127:0], imm8[3:2]);
DEST[95:64] Select4(SRC1[127:0], imm8[5:4]);
DEST[127:96] Select4(SRC1[127:0], imm8[7:6]);
DEST[159:128] Select4(SRC1[255:128], imm8[1:0]);
DEST[191:160] Select4(SRC1[255:128], imm8[3:2]);
DEST[223:192] Select4(SRC1[255:128], imm8[5:4]);
DEST[255:224] Select4(SRC1[255:128], imm8[7:6]);

VPERMILPS (128-bit immediate version)
DEST[31:0] Select4(SRC1[127:0], imm8[1:0]);
DEST[63:32] Select4(SRC1[127:0], imm8[3:2]);
DEST[95:64] Select4(SRC1[127:0], imm8[5:4]);
DEST[127:96] Select4(SRC1[127:0], imm8[7:6]);
DEST[VLMAX-1:128] 0

VPERMILPS (256-bit variable version)
DEST[31:0] Select4(SRC1[127:0], SRC2[1:0]);
DEST[63:32] Select4(SRC1[127:0], SRC2[33:32]);
DEST[95:64] Select4(SRC1[127:0], SRC2[65:64]);
DEST[127:96] Select4(SRC1[127:0], SRC2[97:96]);
DEST[159:128] Select4(SRC1[255:128], SRC2[129:128]);
DEST[191:160] Select4(SRC1[255:128], SRC2[161:160]);
DEST[223:192] Select4(SRC1[255:128], SRC2[193:192]);
DEST[255:224] Select4(SRC1[255:128], SRC2[225:224]);

VPERMILPS (128-bit variable version)
Vol. 2B 4-647VPERMILPS — Permute Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
DEST[31:0] Select4(SRC1[127:0], SRC2[1:0]);
DEST[63:32] Select4(SRC1[127:0], SRC2[33:32]);
DEST[95:64] Select4(SRC1[127:0], SRC2[65:64]);
DEST[127:96] Select4(SRC1[127:0], SRC2[97:96]);
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

VPERM1LPS: __m128 _mm_permute_ps (__m128 a, int control);

VPERM1LPS: __m256 _mm256_permute_ps (__m256 a, int control);

VPERM1LPS: __m128 _mm_permutevar_ps (__m128 a, __m128i control);

VPERM1LPS: __m256 _mm256_permutevar_ps (__m256 a, __m256i control);

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 6; additionally
#UD If VEX.W = 1.
4-648 Vol. 2B VPERMILPS — Permute Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
VPERM2F128 — Permute Floating-Point Values

Instruction Operand Encoding

Description

Permute 128 bit floating-point-containing fields from the first source operand
(second operand) and second source operand (third operand) using bits in the 8-bit
immediate and store results in the destination operand (first operand). The first
source operand is a YMM register, the second source operand is a YMM register or a
256-bit memory location, and the destination operand is a YMM register.

Figure 4-34. VPERM2F128 Operation

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

VEX.NDS.256.66.0F3A.W0 06 /r ib
VPERM2F128 ymm1, ymm2,
ymm3/m256, imm8

RVMI V/V AVX Permute 128-bit floating-
point fields in ymm2 and
ymm3/mem using controls
from imm8 and store result
in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8

DEST

SRC1 X0X1

X0, X1, Y0, or Y1

Y0Y1

X0, X1, Y0, or Y1

SRC2
Vol. 2B 4-649VPERM2F128 — Permute Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
Imm8[1:0] select the source for the first destination 128-bit field, imm8[5:4] select
the source for the second destination field. If imm8[3] is set, the low 128-bit field is
zeroed. If imm8[7] is set, the high 128-bit field is zeroed.
VEX.L must be 1, otherwise the instruction will #UD.

Operation

VPERM2F128
CASE IMM8[1:0] of
0: DEST[127:0] SRC1[127:0]
1: DEST[127:0] SRC1[255:128]
2: DEST[127:0] SRC2[127:0]
3: DEST[127:0] SRC2[255:128]
ESAC

CASE IMM8[5:4] of
0: DEST[255:128] SRC1[127:0]
1: DEST[255:128] SRC1[255:128]
2: DEST[255:128] SRC2[127:0]
3: DEST[255:128] SRC2[255:128]
ESAC
IF (imm8[3])
DEST[127:0] 0
FI

IF (imm8[7])
DEST[VLMAX-1:128] 0
FI

Intel C/C++ Compiler Intrinsic Equivalent

VPERM2F128: __m256 _mm256_permute2f128_ps (__m256 a, __m256 b, int control)

VPERM2F128: __m256d _mm256_permute2f128_pd (__m256d a, __m256d b, int control)

VPERM2F128: __m256i _mm256_permute2f128_si256 (__m256i a, __m256i b, int control)

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 6; additionally
#UD If VEX.L = 0
4-650 Vol. 2B VPERM2F128 — Permute Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
If VEX.W = 1.
Vol. 2B 4-651VPERM2F128 — Permute Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
VTESTPD/VTESTPS—Packed Bit Test

Instruction Operand Encoding

Description

VTESTPS performs a bitwise comparison of all the sign bits of the packed single-
precision elements in the first source operation and corresponding sign bits in the
second source operand. If the AND of the source sign bits with the dest sign bits
produces all zeros, the ZF is set else the ZF is clear. If the AND of the source sign bits
with the inverted dest sign bits produces all zeros the CF is set else the CF is clear. An
attempt to execute VTESTPS with VEX.W=1 will cause #UD.
VTESTPD performs a bitwise comparison of all the sign bits of the double-precision
elements in the first source operation and corresponding sign bits in the second
source operand. If the AND of the source sign bits with the dest sign bits produces all
zeros, the ZF is set else the ZF is clear. If the AND the source sign bits with the
inverted dest sign bits produces all zeros the CF is set else the CF is clear. An attempt
to execute VTESTPS with VEX.W=1 will cause #UD.
The first source register is specified by the ModR/M reg field.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

VEX.128.66.0F38.W0 0E /r
VTESTPS xmm1, xmm2/m128

RM V/V AVX Set ZF and CF depending on
sign bit AND and ANDN of
packed single-precision
floating-point sources.

VEX.256.66.0F38.W0 0E /r
VTESTPS ymm1, ymm2/m256

RM V/V AVX Set ZF and CF depending on
sign bit AND and ANDN of
packed single-precision
floating-point sources.

VEX.128.66.0F38.W0 0F /r
VTESTPD xmm1, xmm2/m128

RM V/V AVX Set ZF and CF depending on
sign bit AND and ANDN of
packed double-precision
floating-point sources.

VEX.256.66.0F38.W0 0F /r
VTESTPD ymm1, ymm2/m256

RM V/V AVX Set ZF and CF depending on
sign bit AND and ANDN of
packed double-precision
floating-point sources.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) NA NA
4-652 Vol. 2B VTESTPD/VTESTPS—Packed Bit Test

INSTRUCTION SET REFERENCE, M-Z
128-bit version: The first source register is an XMM register. The second source
register can be an XMM register or a 128-bit memory location. The destination
register is not modified.
VEX.256 encoded version: The first source register is a YMM register. The second
source register can be a YMM register or a 256-bit memory location. The destination
register is not modified.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise
instructions will #UD.

Operation

VTESTPS (128-bit version)
TEMP[127:0] SRC[127:0] AND DEST[127:0]
IF (TEMP[31] = TEMP[63] = TEMP[95] = TEMP[127] = 0)

THEN ZF 1;
ELSE ZF 0;

TEMP[127:0] SRC[127:0] AND NOT DEST[127:0]
IF (TEMP[31] = TEMP[63] = TEMP[95] = TEMP[127] = 0)

THEN CF 1;
ELSE CF 0;

DEST (unmodified)
AF OF PF SF 0;

VTESTPS (VEX.256 encoded version)
TEMP[255:0] SRC[255:0] AND DEST[255:0]
IF (TEMP[31] = TEMP[63] = TEMP[95] = TEMP[127]= TEMP[160] =TEMP[191] = TEMP[224] =
TEMP[255] = 0)

THEN ZF 1;
ELSE ZF 0;

TEMP[255:0] SRC[255:0] AND NOT DEST[255:0]
IF (TEMP[31] = TEMP[63] = TEMP[95] = TEMP[127]= TEMP[160] =TEMP[191] = TEMP[224] =
TEMP[255] = 0)

THEN CF 1;
ELSE CF 0;

DEST (unmodified)
AF OF PF SF 0;

VTESTPD (128-bit version)
TEMP[127:0] SRC[127:0] AND DEST[127:0]
IF (TEMP[63] = TEMP[127] = 0)

THEN ZF 1;
Vol. 2B 4-653VTESTPD/VTESTPS—Packed Bit Test

INSTRUCTION SET REFERENCE, M-Z
ELSE ZF 0;

TEMP[127:0] SRC[127:0] AND NOT DEST[127:0]
IF (TEMP[63] = TEMP[127] = 0)

THEN CF 1;
ELSE CF 0;

DEST (unmodified)
AF OF PF SF 0;

VTESTPD (VEX.256 encoded version)
TEMP[255:0] SRC[255:0] AND DEST[255:0]
IF (TEMP[63] = TEMP[127] = TEMP[191] = TEMP[255] = 0)

THEN ZF 1;
ELSE ZF 0;

TEMP[255:0] SRC[255:0] AND NOT DEST[255:0]
IF (TEMP[63] = TEMP[127] = TEMP[191] = TEMP[255] = 0)

THEN CF 1;
ELSE CF 0;

DEST (unmodified)
AF OF PF SF 0;

Intel C/C++ Compiler Intrinsic Equivalent

VTESTPS

int _mm256_testz_ps (__m256 s1, __m256 s2);

int _mm256_testc_ps (__m256 s1, __m256 s2);

int _mm256_testnzc_ps (__m256 s1, __m128 s2);

int _mm_testz_ps (__m128 s1, __m128 s2);

int _mm_testc_ps (__m128 s1, __m128 s2);

int _mm_testnzc_ps (__m128 s1, __m128 s2);

VTESTPD

int _mm256_testz_pd (__m256d s1, __m256d s2);

int _mm256_testc_pd (__m256d s1, __m256d s2);

int _mm256_testnzc_pd (__m256d s1, __m256d s2);
4-654 Vol. 2B VTESTPD/VTESTPS—Packed Bit Test

INSTRUCTION SET REFERENCE, M-Z
int _mm_testz_pd (__m128d s1, __m128d s2);

int _mm_testc_pd (__m128d s1, __m128d s2);

int _mm_testnzc_pd (__m128d s1, __m128d s2);

Flags Affected

The 0F, AF, PF, SF flags are cleared and the ZF, CF flags are set according to the oper-
ation.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.vvvv != 1111B.

If VEX.W = 1 for VTESTPS or VTESTPD.
Vol. 2B 4-655VTESTPD/VTESTPS—Packed Bit Test

INSTRUCTION SET REFERENCE, M-Z
VZEROALL—Zero All YMM Registers

Instruction Operand Encoding

Description

The instruction zeros contents of all XMM or YMM registers.
Note: VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD. In
Compatibility and legacy 32-bit mode only the lower 8 registers are modified.

Operation

VZEROALL (VEX.256 encoded version)
IF (64-bit mode)

YMM0[VLMAX-1:0] 0
YMM1[VLMAX-1:0] 0
YMM2[VLMAX-1:0] 0
YMM3[VLMAX-1:0] 0
YMM4[VLMAX-1:0] 0
YMM5[VLMAX-1:0] 0
YMM6[VLMAX-1:0] 0
YMM7[VLMAX-1:0] 0
YMM8[VLMAX-1:0] 0
YMM9[VLMAX-1:0] 0
YMM10[VLMAX-1:0] 0
YMM11[VLMAX-1:0] 0
YMM12[VLMAX-1:0] 0
YMM13[VLMAX-1:0] 0
YMM14[VLMAX-1:0] 0
YMM15[VLMAX-1:0] 0

ELSE
YMM0[VLMAX-1:0] 0
YMM1[VLMAX-1:0] 0
YMM2[VLMAX-1:0] 0

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

VEX.256.0F.WIG 77

VZEROALL

NP V/V AVX Zero all YMM registers.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
4-656 Vol. 2B VZEROALL—Zero All YMM Registers

INSTRUCTION SET REFERENCE, M-Z
YMM3[VLMAX-1:0] 0
YMM4[VLMAX-1:0] 0
YMM5[VLMAX-1:0] 0
YMM6[VLMAX-1:0] 0
YMM7[VLMAX-1:0] 0
YMM8-15: Unmodified

FI

Intel C/C++ Compiler Intrinsic Equivalent

VZEROALL: _mm256_zeroall()

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 8.
Vol. 2B 4-657VZEROALL—Zero All YMM Registers

INSTRUCTION SET REFERENCE, M-Z
VZEROUPPER—Zero Upper Bits of YMM Registers

Instruction Operand Encoding

Description

The instruction zeros the bits in position 128 and higher of all YMM registers. The
lower 128-bits of the registers (the corresponding XMM registers) are unmodified.
This instruction is recommended when transitioning between AVX and legacy SSE
code - it will eliminate performance penalties caused by false dependencies.
Note: VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD. In
Compatibility and legacy 32-bit mode only the lower 8 registers are modified.

Operation

VZEROUPPER
IF (64-bit mode)

YMM0[VLMAX-1:128] 0
YMM1[VLMAX-1:128] 0
YMM2[VLMAX-1:128] 0
YMM3[VLMAX-1:128] 0
YMM4[VLMAX-1:128] 0
YMM5[VLMAX-1:128] 0
YMM6[VLMAX-1:128] 0
YMM7[VLMAX-1:128] 0
YMM8[VLMAX-1:128] 0
YMM9[VLMAX-1:128] 0
YMM10[VLMAX-1:128] 0
YMM11[VLMAX-1:128] 0
YMM12[VLMAX-1:128] 0
YMM13[VLMAX-1:128] 0
YMM14[VLMAX-1:128] 0
YMM15[VLMAX-1:128] 0

ELSE

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

VEX.128.0F.WIG 77

VZEROUPPER

NP V/V AVX Zero upper 128 bits of all
YMM registers.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
4-658 Vol. 2B VZEROUPPER—Zero Upper Bits of YMM Registers

INSTRUCTION SET REFERENCE, M-Z
YMM0[VLMAX-1:128] 0
YMM1[VLMAX-1:128] 0
YMM2[VLMAX-1:128] 0
YMM3[VLMAX-1:128] 0
YMM4[VLMAX-1:128] 0
YMM5[VLMAX-1:128] 0
YMM6[VLMAX-1:128] 0
YMM7[VLMAX-1:128] 0
YMM8-15: unmodified

FI

Intel C/C++ Compiler Intrinsic Equivalent

VZEROUPPER: _mm256_zeroupper()

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 8.
Vol. 2B 4-659VZEROUPPER—Zero Upper Bits of YMM Registers

INSTRUCTION SET REFERENCE, M-Z
WAIT/FWAIT—Wait

Instruction Operand Encoding

Description

Causes the processor to check for and handle pending, unmasked, floating-point
exceptions before proceeding. (FWAIT is an alternate mnemonic for WAIT.)

This instruction is useful for synchronizing exceptions in critical sections of code.
Coding a WAIT instruction after a floating-point instruction ensures that any
unmasked floating-point exceptions the instruction may raise are handled before the
processor can modify the instruction’s results. See the section titled “Floating-Point
Exception Synchronization” in Chapter 8 of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 1, for more information on using the
WAIT/FWAIT instruction.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

CheckForPendingUnmaskedFloatingPointExceptions;

FPU Flags Affected

The C0, C1, C2, and C3 flags are undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions
#NM If CR0.MP[bit 1] = 1 and CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

9B WAIT NP Valid Valid Check pending unmasked
floating-point exceptions.

9B FWAIT NP Valid Valid Check pending unmasked
floating-point exceptions.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
4-660 Vol. 2B WAIT/FWAIT—Wait

INSTRUCTION SET REFERENCE, M-Z
Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
Vol. 2B 4-661WAIT/FWAIT—Wait

INSTRUCTION SET REFERENCE, M-Z
WBINVD—Write Back and Invalidate Cache

Instruction Operand Encoding

Description

Writes back all modified cache lines in the processor’s internal cache to main memory
and invalidates (flushes) the internal caches. The instruction then issues a special-
function bus cycle that directs external caches to also write back modified data and
another bus cycle to indicate that the external caches should be invalidated.

After executing this instruction, the processor does not wait for the external caches
to complete their write-back and flushing operations before proceeding with instruc-
tion execution. It is the responsibility of hardware to respond to the cache write-back
and flush signals. The amount of time or cycles for WBINVD to complete will vary due
to size and other factors of different cache hierarchies. As a consequence, the use of
the WBINVD instruction can have an impact on logical processor interrupt/event
response time.

The WBINVD instruction is a privileged instruction. When the processor is running in
protected mode, the CPL of a program or procedure must be 0 to execute this
instruction. This instruction is also a serializing instruction (see “Serializing Instruc-
tions” in Chapter 8 of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A).

In situations where cache coherency with main memory is not a concern, software
can use the INVD instruction.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

The WBINVD instruction is implementation dependent, and its function may be
implemented differently on future Intel 64 and IA-32 processors. The instruction is
not supported on IA-32 processors earlier than the Intel486 processor.

Operation

WriteBack(InternalCaches);

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 09 WBINVD NP Valid Valid Write back and flush Internal
caches; initiate writing-back
and flushing of external
caches.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
4-662 Vol. 2B WBINVD—Write Back and Invalidate Cache

INSTRUCTION SET REFERENCE, M-Z
Flush(InternalCaches);
SignalWriteBack(ExternalCaches);
SignalFlush(ExternalCaches);
Continue; (* Continue execution *)

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) WBINVD cannot be executed at the virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
Vol. 2B 4-663WBINVD—Write Back and Invalidate Cache

INSTRUCTION SET REFERENCE, M-Z
WRFSBASE/WRGSBASE—Write FS/GS Segment Base

Instruction Operand Encoding

Description

Loads the FS or GS segment base address with the general-purpose register indi-
cated by the modR/M:r/m field.

The source operand may be either a 32-bit or a 64-bit general-purpose register. The
REX.W prefix indicates the operand size is 64 bits. If no REX.W prefix is used, the
operand size is 32 bits; the upper 32 bits of the source register are ignored and upper
32 bits of the base address (for FS or GS) are cleared.
This instruction is supported only in 64-bit mode.

Operation

FS/GS segment base address ← SRC;

Flags Affected

None

C/C++ Compiler Intrinsic Equivalent

WRFSBASE: void _writefsbase_u32(unsigned int);

Opcode/
Instruction

Op/
En

64/32
-bit
Mode

CPUID
Feature
Flag

Description

F3 0F AE /2
WRFSBASE r32

M V/I FSGSBASE Load the FS base address with
the 32-bit value in the source
register.

REX.W + F3 0F AE /2
WRFSBASE r64

M V/I FSGSBASE Load the FS base address with
the 64-bit value in the source
register.

F3 0F AE /3
WRGSBASE
r32

M V/I FSGSBASE Load the GS base address with
the 32-bit value in the source
register.

REX.W + F3 0F AE /3
WRGSBASE r64

M V/I FSGSBASE Load the GS base address with
the 64-bit value in the source
register.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA
4-664 Vol. 2B WRFSBASE/WRGSBASE—Write FS/GS Segment Base

INSTRUCTION SET REFERENCE, M-Z
WRFSBASE: _writefsbase_u64(unsigned __int64);

WRGSBASE: void _writegsbase_u32(unsigned int);

WRGSBASE: _writegsbase_u64(unsigned __int64);

Protected Mode Exceptions
#UD The WRFSBASE and WRGSBASE instructions are not recognized

in protected mode.

Real-Address Mode Exceptions
#UD The WRFSBASE and WRGSBASE instructions are not recognized

in real-address mode.

Virtual-8086 Mode Exceptions
#UD The WRFSBASE and WRGSBASE instructions are not recognized

in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The WRFSBASE and WRGSBASE instructions are not recognized

in compatibility mode.

64-Bit Mode Exceptions
#UD If the LOCK prefix is used.

If CR4.FSGSBASE[bit 16] = 0.
If CPUID.07H.0H:EBX.FSGSBASE[bit 0] = 0

#GP(0) If the source register contains a non-canonical address.
Vol. 2B 4-665WRFSBASE/WRGSBASE—Write FS/GS Segment Base

INSTRUCTION SET REFERENCE, M-Z
WRMSR—Write to Model Specific Register

Instruction Operand Encoding

Description

Writes the contents of registers EDX:EAX into the 64-bit model specific register
(MSR) specified in the ECX register. (On processors that support the Intel 64 archi-
tecture, the high-order 32 bits of RCX are ignored.) The contents of the EDX register
are copied to high-order 32 bits of the selected MSR and the contents of the EAX
register are copied to low-order 32 bits of the MSR. (On processors that support the
Intel 64 architecture, the high-order 32 bits of each of RAX and RDX are ignored.)
Undefined or reserved bits in an MSR should be set to values previously read.

This instruction must be executed at privilege level 0 or in real-address mode; other-
wise, a general protection exception #GP(0) is generated. Specifying a reserved or
unimplemented MSR address in ECX will also cause a general protection exception.
The processor will also generate a general protection exception if software attempts
to write to bits in a reserved MSR.

When the WRMSR instruction is used to write to an MTRR, the TLBs are invalidated.
This includes global entries (see “Translation Lookaside Buffers (TLBs)” in Chapter 3
of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A).

MSRs control functions for testability, execution tracing, performance-monitoring
and machine check errors. Chapter 34, “Model-Specific Registers (MSRs)”, in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C, lists all
MSRs that can be written with this instruction and their addresses. Note that each
processor family has its own set of MSRs.

The WRMSR instruction is a serializing instruction (see “Serializing Instructions” in
Chapter 8 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A). Note that WRMSR to the IA32_TSC_DEADLINE MSR (MSR index 6E0H)
and the X2APIC MSRs (MSR indices 802H to 83FH) are not serializing.

The CPUID instruction should be used to determine whether MSRs are supported
(CPUID.01H:EDX[5] = 1) before using this instruction.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 30 WRMSR NP Valid Valid Write the value in EDX:EAX
to MSR specified by ECX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
4-666 Vol. 2B WRMSR—Write to Model Specific Register

INSTRUCTION SET REFERENCE, M-Z
IA-32 Architecture Compatibility

The MSRs and the ability to read them with the WRMSR instruction were introduced
into the IA-32 architecture with the Pentium processor. Execution of this instruction
by an IA-32 processor earlier than the Pentium processor results in an invalid opcode
exception #UD.

Operation

MSR[ECX] ← EDX:EAX;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the value in ECX specifies a reserved or unimplemented MSR
address.
If the value in EDX:EAX sets bits that are reserved in the MSR
specified by ECX.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If the value in ECX specifies a reserved or unimplemented MSR

address.
If the value in EDX:EAX sets bits that are reserved in the MSR
specified by ECX.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) The WRMSR instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
Vol. 2B 4-667WRMSR—Write to Model Specific Register

INSTRUCTION SET REFERENCE, M-Z
XADD—Exchange and Add

Instruction Operand Encoding

Description

Exchanges the first operand (destination operand) with the second operand (source
operand), then loads the sum of the two values into the destination operand. The
destination operand can be a register or a memory location; the source operand is a
register.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.

IA-32 Architecture Compatibility

IA-32 processors earlier than the Intel486 processor do not recognize this instruc-
tion. If this instruction is used, you should provide an equivalent code sequence that
runs on earlier processors.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F C0 /r XADD r/m8, r8 MR Valid Valid Exchange r8 and r/m8; load
sum into r/m8.

REX + 0F C0 /r XADD r/m8*, r8* MR Valid N.E. Exchange r8 and r/m8; load
sum into r/m8.

0F C1 /r XADD r/m16, r16 MR Valid Valid Exchange r16 and r/m16;
load sum into r/m16.

0F C1 /r XADD r/m32, r32 MR Valid Valid Exchange r32 and r/m32;
load sum into r/m32.

REX.W + 0F C1
/r

XADD r/m64, r64 MR Valid N.E. Exchange r64 and r/m64;
load sum into r/m64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is

used: AH, BH, CH, DH.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (r, w) ModRM:reg (W) NA NA
4-668 Vol. 2B XADD—Exchange and Add

INSTRUCTION SET REFERENCE, M-Z
Operation

TEMP ← SRC + DEST;
SRC ← DEST;
DEST ← TEMP;

Flags Affected

The CF, PF, AF, SF, ZF, and OF flags are set according to the result of the addition,
which is stored in the destination operand.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory

operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#UD If the LOCK prefix is used but the destination is not a memory

operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
Vol. 2B 4-669XADD—Exchange and Add

INSTRUCTION SET REFERENCE, M-Z
#UD If the LOCK prefix is used but the destination is not a memory
operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory

operand.
4-670 Vol. 2B XADD—Exchange and Add

INSTRUCTION SET REFERENCE, M-Z
XCHG—Exchange Register/Memory with Register
Opcode Instruction Op/

En
64-Bit
Mode

Compat/
Leg Mode

Description

90+rw XCHG AX, r16 O Valid Valid Exchange r16 with AX.

90+rw XCHG r16, AX O Valid Valid Exchange AX with r16.

90+rd XCHG EAX, r32 O Valid Valid Exchange r32 with EAX.

REX.W + 90+rd XCHG RAX, r64 O Valid N.E. Exchange r64 with RAX.

90+rd XCHG r32, EAX O Valid Valid Exchange EAX with r32.

REX.W + 90+rd XCHG r64, RAX O Valid N.E. Exchange RAX with r64.

86 /r XCHG r/m8, r8 MR Valid Valid Exchange r8 (byte register)
with byte from r/m8.

REX + 86 /r XCHG r/m8*, r8* MR Valid N.E. Exchange r8 (byte register)
with byte from r/m8.

86 /r XCHG r8, r/m8 RM Valid Valid Exchange byte from r/m8
with r8 (byte register).

REX + 86 /r XCHG r8*, r/m8* RM Valid N.E. Exchange byte from r/m8
with r8 (byte register).

87 /r XCHG r/m16, r16 MR Valid Valid Exchange r16 with word
from r/m16.

87 /r XCHG r16, r/m16 RM Valid Valid Exchange word from r/m16
with r16.

87 /r XCHG r/m32, r32 MR Valid Valid Exchange r32 with
doubleword from r/m32.

REX.W + 87 /r XCHG r/m64, r64 MR Valid N.E. Exchange r64 with
quadword from r/m64.

87 /r XCHG r32, r/m32 RM Valid Valid Exchange doubleword from
r/m32 with r32.

REX.W + 87 /r XCHG r64, r/m64 RM Valid N.E. Exchange quadword from
r/m64 with r64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is

used: AH, BH, CH, DH.
Vol. 2B 4-671XCHG—Exchange Register/Memory with Register

INSTRUCTION SET REFERENCE, M-Z
Instruction Operand Encoding

Description

Exchanges the contents of the destination (first) and source (second) operands. The
operands can be two general-purpose registers or a register and a memory location.
If a memory operand is referenced, the processor’s locking protocol is automatically
implemented for the duration of the exchange operation, regardless of the presence
or absence of the LOCK prefix or of the value of the IOPL. (See the LOCK prefix
description in this chapter for more information on the locking protocol.)

This instruction is useful for implementing semaphores or similar data structures for
process synchronization. (See “Bus Locking” in Chapter 8 of the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A, for more information on bus
locking.)

The XCHG instruction can also be used instead of the BSWAP instruction for 16-bit
operands.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

Operation

TEMP ← DEST;
DEST ← SRC;
SRC ← TEMP;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If either operand is in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

O AX/EAX/RAX (r, w) opcode + rd (r, w) NA NA

O opcode + rd (r, w) AX/EAX/RAX (r, w) NA NA

MR ModRM:r/m (r, w) ModRM:reg (r) NA NA

RM ModRM:reg (w) ModRM:r/m (r) NA NA
4-672 Vol. 2B XCHG—Exchange Register/Memory with Register

INSTRUCTION SET REFERENCE, M-Z
#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory

operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#UD If the LOCK prefix is used but the destination is not a memory

operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used but the destination is not a memory

operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory

operand.
Vol. 2B 4-673XCHG—Exchange Register/Memory with Register

INSTRUCTION SET REFERENCE, M-Z
XGETBV—Get Value of Extended Control Register

Instruction Operand Encoding

Description

Reads the contents of the extended control register (XCR) specified in the ECX
register into registers EDX:EAX. (On processors that support the Intel 64 architec-
ture, the high-order 32 bits of RCX are ignored.) The EDX register is loaded with the
high-order 32 bits of the XCR and the EAX register is loaded with the low-order 32
bits. (On processors that support the Intel 64 architecture, the high-order 32 bits of
each of RAX and RDX are cleared.) If fewer than 64 bits are implemented in the XCR
being read, the values returned to EDX:EAX in unimplemented bit locations are
undefined.

Specifying a reserved or unimplemented XCR in ECX causes a general protection
exception.

Currently, only XCR0 (the XFEATURE_ENABLED_MASK register) is supported. Thus,
all other values of ECX are reserved and will cause a #GP(0).

Operation

EDX:EAX ← XCR[ECX];

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If an invalid XCR is specified in ECX.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 01 D0 XGETBV NP Valid Valid Reads an XCR specified by
ECX into EDX:EAX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
4-674 Vol. 2B XGETBV—Get Value of Extended Control Register

INSTRUCTION SET REFERENCE, M-Z
Real-Address Mode Exceptions
#GP If an invalid XCR is specified in ECX.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
Vol. 2B 4-675XGETBV—Get Value of Extended Control Register

INSTRUCTION SET REFERENCE, M-Z
XLAT/XLATB—Table Look-up Translation

Instruction Operand Encoding

Description

Locates a byte entry in a table in memory, using the contents of the AL register as a
table index, then copies the contents of the table entry back into the AL register. The
index in the AL register is treated as an unsigned integer. The XLAT and XLATB
instructions get the base address of the table in memory from either the DS:EBX or
the DS:BX registers (depending on the address-size attribute of the instruction, 32 or
16, respectively). (The DS segment may be overridden with a segment override
prefix.)

At the assembly-code level, two forms of this instruction are allowed: the “explicit-
operand” form and the “no-operand” form. The explicit-operand form (specified with
the XLAT mnemonic) allows the base address of the table to be specified explicitly
with a symbol. This explicit-operands form is provided to allow documentation;
however, note that the documentation provided by this form can be misleading. That
is, the symbol does not have to specify the correct base address. The base address is
always specified by the DS:(E)BX registers, which must be loaded correctly before
the XLAT instruction is executed.

The no-operands form (XLATB) provides a “short form” of the XLAT instructions. Here
also the processor assumes that the DS:(E)BX registers contain the base address of
the table.

In 64-bit mode, operation is similar to that in legacy or compatibility mode. AL is
used to specify the table index (the operand size is fixed at 8 bits). RBX, however, is
used to specify the table’s base address. See the summary chart at the beginning of
this section for encoding data and limits.

Operation

IF AddressSize = 16

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

D7 XLAT m8 NP Valid Valid Set AL to memory byte
DS:[(E)BX + unsigned AL].

D7 XLATB NP Valid Valid Set AL to memory byte
DS:[(E)BX + unsigned AL].

REX.W + D7 XLATB NP Valid N.E. Set AL to memory byte
[RBX + unsigned AL].

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
4-676 Vol. 2B XLAT/XLATB—Table Look-up Translation

INSTRUCTION SET REFERENCE, M-Z
THEN
AL ← (DS:BX + ZeroExtend(AL));

ELSE IF (AddressSize = 32)
AL ← (DS:EBX + ZeroExtend(AL)); FI;

ELSE (AddressSize = 64)
AL ← (RBX + ZeroExtend(AL));

FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.
Vol. 2B 4-677XLAT/XLATB—Table Look-up Translation

INSTRUCTION SET REFERENCE, M-Z
64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.
4-678 Vol. 2B XLAT/XLATB—Table Look-up Translation

INSTRUCTION SET REFERENCE, M-Z
XOR—Logical Exclusive OR
Opcode Instruction Op/

En
64-Bit
Mode

Compat/
Leg Mode

Description

34 ib XOR AL, imm8 I Valid Valid AL XOR imm8.

35 iw XOR AX, imm16 I Valid Valid AX XOR imm16.

35 id XOR EAX, imm32 I Valid Valid EAX XOR imm32.

REX.W + 35 id XOR RAX, imm32 I Valid N.E. RAX XOR imm32 (sign-
extended).

80 /6 ib XOR r/m8, imm8 MI Valid Valid r/m8 XOR imm8.

REX + 80 /6 ib XOR r/m8*, imm8 MI Valid N.E. r/m8 XOR imm8.

81 /6 iw XOR r/m16,
imm16

MI Valid Valid r/m16 XOR imm16.

81 /6 id XOR r/m32,
imm32

MI Valid Valid r/m32 XOR imm32.

REX.W + 81 /6
id

XOR r/m64,
imm32

MI Valid N.E. r/m64 XOR imm32 (sign-
extended).

83 /6 ib XOR r/m16, imm8 MI Valid Valid r/m16 XOR imm8 (sign-
extended).

83 /6 ib XOR r/m32, imm8 MI Valid Valid r/m32 XOR imm8 (sign-
extended).

REX.W + 83 /6
ib

XOR r/m64, imm8 MI Valid N.E. r/m64 XOR imm8 (sign-
extended).

30 /r XOR r/m8, r8 MR Valid Valid r/m8 XOR r8.

REX + 30 /r XOR r/m8*, r8* MR Valid N.E. r/m8 XOR r8.

31 /r XOR r/m16, r16 MR Valid Valid r/m16 XOR r16.

31 /r XOR r/m32, r32 MR Valid Valid r/m32 XOR r32.

REX.W + 31 /r XOR r/m64, r64 MR Valid N.E. r/m64 XOR r64.

32 /r XOR r8, r/m8 RM Valid Valid r8 XOR r/m8.

REX + 32 /r XOR r8*, r/m8* RM Valid N.E. r8 XOR r/m8.

33 /r XOR r16, r/m16 RM Valid Valid r16 XOR r/m16.

33 /r XOR r32, r/m32 RM Valid Valid r32 XOR r/m32.

REX.W + 33 /r XOR r64, r/m64 RM Valid N.E. r64 XOR r/m64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is

used: AH, BH, CH, DH.
Vol. 2B 4-679XOR—Logical Exclusive OR

INSTRUCTION SET REFERENCE, M-Z
Instruction Operand Encoding

Description

Performs a bitwise exclusive OR (XOR) operation on the destination (first) and source
(second) operands and stores the result in the destination operand location. The
source operand can be an immediate, a register, or a memory location; the destina-
tion operand can be a register or a memory location. (However, two memory oper-
ands cannot be used in one instruction.) Each bit of the result is 1 if the
corresponding bits of the operands are different; each bit is 0 if the corresponding
bits are the same.

This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.

In 64-bit mode, using a REX prefix in the form of REX.R permits access to additional
registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to
64 bits. See the summary chart at the beginning of this section for encoding data and
limits.

Operation

DEST ← DEST XOR SRC;

Flags Affected

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the
result. The state of the AF flag is undefined.

Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

I AL/AX/EAX/RAX imm8/16/32 NA NA

MI ModRM:r/m (r, w) imm8/16/32 NA NA

MR ModRM:r/m (r, w) ModRM:reg (r) NA NA

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
4-680 Vol. 2B XOR—Logical Exclusive OR

INSTRUCTION SET REFERENCE, M-Z
#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#UD If the LOCK prefix is used but the destination is not a memory

operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used but the destination is not a memory

operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory

operand.
Vol. 2B 4-681XOR—Logical Exclusive OR

INSTRUCTION SET REFERENCE, M-Z
XORPD—Bitwise Logical XOR for Double-Precision Floating-Point
Values

Instruction Operand Encoding

Description

Performs a bitwise logical exclusive-OR of the two packed double-precision floating-
point values from the source operand (second operand) and the destination operand
(first operand), and stores the result in the destination operand. The source operand
can be an XMM register or a 128-bit memory location. The destination operand is an
XMM register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 57 /r

XORPD xmm1, xmm2/m128

RM V/V SSE2 Bitwise exclusive-OR of
xmm2/m128 and xmm1.

VEX.NDS.128.66.0F.WIG 57 /r

VXORPD xmm1,xmm2, xmm3/m128

RVM V/V AVX Return the bitwise logical
XOR of packed double-
precision floating-point
values in xmm2 and
xmm3/mem.

VEX.NDS.256.66.0F.WIG 57 /r

VXORPD ymm1, ymm2,
ymm3/m256

RVM V/V AVX Return the bitwise logical
XOR of packed double-
precision floating-point
values in ymm2 and
ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
4-682 Vol. 2B XORPD—Bitwise Logical XOR for Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

Operation

XORPD (128-bit Legacy SSE version)
DEST[63:0] DEST[63:0] BITWISE XOR SRC[63:0]
DEST[127:64] DEST[127:64] BITWISE XOR SRC[127:64]
DEST[VLMAX-1:128] (Unmodified)

VXORPD (VEX.128 encoded version)
DEST[63:0] SRC1[63:0] BITWISE XOR SRC2[63:0]
DEST[127:64] SRC1[127:64] BITWISE XOR SRC2[127:64]
DEST[VLMAX-1:128] 0

VXORPD (VEX.256 encoded version)
DEST[63:0] SRC1[63:0] BITWISE XOR SRC2[63:0]
DEST[127:64] SRC1[127:64] BITWISE XOR SRC2[127:64]
DEST[191:128] SRC1[191:128] BITWISE XOR SRC2[191:128]
DEST[255:192] SRC1[255:192] BITWISE XOR SRC2[255:192]

Intel C/C++ Compiler Intrinsic Equivalent

XORPD: __m128d _mm_xor_pd(__m128d a, __m128d b)

VXORPD: __m256d _mm256_xor_pd (__m256d a, __m256d b);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4.
Vol. 2B 4-683XORPD—Bitwise Logical XOR for Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
XORPS—Bitwise Logical XOR for Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a bitwise logical exclusive-OR of the four packed single-precision floating-
point values from the source operand (second operand) and the destination operand
(first operand), and stores the result in the destination operand. The source operand
can be an XMM register or a 128-bit memory location. The destination operand is an
XMM register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 57 /r

XORPS xmm1, xmm2/m128

RM V/V SSE Bitwise exclusive-OR of
xmm2/m128 and xmm1.

VEX.NDS.128.0F.WIG 57 /r

VXORPS xmm1,xmm2, xmm3/m128

RVM V/V AVX Return the bitwise logical
XOR of packed single-
precision floating-point
values in xmm2 and
xmm3/mem.

VEX.NDS.256.0F.WIG 57 /r

VXORPS ymm1, ymm2, ymm3/m256

RVM V/V AVX Return the bitwise logical
XOR of packed single-
precision floating-point
values in ymm2 and
ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
4-684 Vol. 2B XORPS—Bitwise Logical XOR for Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
Operation

XORPS (128-bit Legacy SSE version)
DEST[31:0] SRC1[31:0] BITWISE XOR SRC2[31:0]
DEST[63:32] SRC1[63:32] BITWISE XOR SRC2[63:32]
DEST[95:64] SRC1[95:64] BITWISE XOR SRC2[95:64]
DEST[127:96] SRC1[127:96] BITWISE XOR SRC2[127:96]
DEST[VLMAX-1:128] (Unmodified)

VXORPS (VEX.128 encoded version)
DEST[31:0] SRC1[31:0] BITWISE XOR SRC2[31:0]
DEST[63:32] SRC1[63:32] BITWISE XOR SRC2[63:32]
DEST[95:64] SRC1[95:64] BITWISE XOR SRC2[95:64]
DEST[127:96] SRC1[127:96] BITWISE XOR SRC2[127:96]
DEST[VLMAX-1:128] 0

VXORPS (VEX.256 encoded version)
DEST[31:0] SRC1[31:0] BITWISE XOR SRC2[31:0]
DEST[63:32] SRC1[63:32] BITWISE XOR SRC2[63:32]
DEST[95:64] SRC1[95:64] BITWISE XOR SRC2[95:64]
DEST[127:96] SRC1[127:96] BITWISE XOR SRC2[127:96]
DEST[159:128] SRC1[159:128] BITWISE XOR SRC2[159:128]
DEST[191:160] SRC1[191:160] BITWISE XOR SRC2[191:160]
DEST[223:192] SRC1[223:192] BITWISE XOR SRC2[223:192]
DEST[255:224] SRC1[255:224] BITWISE XOR SRC2[255:224].

Intel C/C++ Compiler Intrinsic Equivalent

XORPS: __m128 _mm_xor_ps(__m128 a, __m128 b)

VXORPS: __m256 _mm256_xor_ps (__m256 a, __m256 b);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4.
Vol. 2B 4-685XORPS—Bitwise Logical XOR for Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
XRSTOR—Restore Processor Extended States

Instruction Operand Encoding

Description

Performs a full or partial restore of the enabled processor states using the state infor-
mation stored in the memory address specified by the source operand. The implicit
EDX:EAX register pair specifies a 64-bit restore mask.

The format of the XSAVE/XRSTOR area is shown in Table 4-22. The memory layout of
the XSAVE/XRSTOR area may have holes between save areas written by the
processor as a result of the processor not supporting certain processor extended
states or system software not supporting certain processor extended states. There is
no relationship between the order of XCR0 bits and the order of the state layout.
States corresponding to higher and lower XCR0 bits may be intermingled in the
layout.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F AE /5 XRSTOR mem M Valid Valid Restore processor extended
states from memory. The
states are specified by
EDX:EAX

REX.W+ 0F AE
/5

XRSTOR64 mem M Valid N.E. Restore processor extended
states from memory. The
states are specified by
EDX:EAX

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA
4-686 Vol. 2B XRSTOR—Restore Processor Extended States

INSTRUCTION SET REFERENCE, M-Z
XRSTOR operates on each subset of the processor state or a processor extended
state in one of three ways (depending on the corresponding bit in XCR0
(XFEATURE_ENABLED_MASK register), the restore mask EDX:EAX, and the save
mask XSAVE.HEADER.XSTATE_BV in memory):
• Updates the processor state component using the state information stored in the

respective save area (see Table 4-22) of the source operand, if the corresponding
bit in XCR0, EDX:EAX, and XSAVE.HEADER.XSTATE_BV are all 1.

• Writes certain registers in the processor state component using processor-
supplied values (see Table 4-24) without using state information stored in
respective save area of the memory region, if the corresponding bit in XCR0 and
EDX:EAX are both 1, but the corresponding bit in XSAVE.HEADER.XSTATE_BV is
0.

• The processor state component is unchanged, if the corresponding bit in XCR0 or
EDX:EAX is 0.

The format of the header section (XSAVE.HEADER) of the XSAVE/XRSTOR area is
shown in Table 4-23.

Table 4-22. General Layout of XSAVE/XRSTOR Save Area

Save Areas Offset (Byte) Size (Bytes)

FPU/SSE SaveArea1

NOTES:
1. Bytes 464:511 are available for software use. XRSTOR ignores the value contained in bytes

464:511 of an XSAVE SAVE image.

0 512

Header 512 64

Reserved
(Ext_Save_Area_2)

CPUID.(EAX=0DH, ECX=2):EBX CPUID.(EAX=0DH, ECX=2):EAX

Reserved(Ext_Save_A
rea_4)2

2. State corresponding to higher and lower XCR0 bits may be intermingled in layout.

CPUID.(EAX=0DH, ECX=4):EBX CPUID.(EAX=0DH, ECX=4):EAX

Reserved(Ext_Save_A
rea_3)

CPUID.(EAX=0DH, ECX=3):EBX CPUID.(EAX=0DH, ECX=3):EAX

Reserved(...)
Vol. 2B 4-687XRSTOR—Restore Processor Extended States

INSTRUCTION SET REFERENCE, M-Z
If a processor state component is not enabled in XCR0 but the corresponding save
mask bit in XSAVE.HEADER.XSTATE_BV is 1, an attempt to execute XRSTOR will
cause a #GP(0) exception. Software may specify all 1’s in the implicit restore mask
EDX:EAX, so that all the enabled processors states in XCR0 are restored from state
information stored in memory or from processor supplied values. When using all 1's
as the restore mask, software is required to determine the total size of the
XSAVE/XRSTOR save area (specified as source operand) to fit all enabled processor
states by using the value enumerated in CPUID.(EAX=0D, ECX=0):EBX. While it's
legal to set any bit in the EDX:EAX mask to 1, it is strongly recommended to set only
the bits that are required to save/restore specific states.

An attempt to restore processor states with writing 1s to reserved bits in certain
registers (see Table 4-25) will cause a #GP(0) exception.

Because bit 63 of XCR0 is reserved for future bit vector expansion, it will not be used
for any future processor state feature, and XRSTOR will ignore bit 63 of EDX:EAX
(EDX[31]).

Table 4-23. XSAVE.HEADER Layout

15 8 7 0 Byte Offset
from Header

Byte Offset from
XSAVE/XRSTOR Area

Rsrvd (Must be 0) XSTATE_BV 0 512

Reserved Rsrvd (Must be 0) 16 528

Reserved Reserved 32 544

Reserved Reserved 48 560

Table 4-24. Processor Supplied Init Values XRSTOR May Use

Processor State Component Processor Supplied Register Values

x87 FPU State FCW ← 037FH; FTW ← 0FFFFH; FSW ← 0H; FPU CS ← 0H;
FPU DS ← 0H; FPU IP ← 0H; FPU DP ← 0; ST0-ST7 ← 0;

SSE State1

NOTES:
1. MXCSR state is not updated by processor supplied values. MXCSR state can only be updated by

XRSTOR from state information stored in XSAVE/XRSTOR area.

If 64-bit Mode: XMM0-XMM15 ← 0H;

Else XMM0-XMM7 ← 0H
4-688 Vol. 2B XRSTOR—Restore Processor Extended States

INSTRUCTION SET REFERENCE, M-Z
A source operand not aligned to 64-byte boundary (for 64-bit and 32-bit modes) will
result in a general-protection (#GP) exception. In 64-bit mode, the upper 32 bits of
RDX and RAX are ignored.

Operation

/* The alignment of the x87 and SSE fields in the XSAVE area is the same as in FXSAVE area*/

RS_TMP_MASK[62:0] ← (EDX[30:0] << 32) OR EAX[31:0];
ST_TMP_MASK[62:0] ← SRCMEM.HEADER.XSTATE_BV[62:0];
IF (((XCR0[62:0] XOR 7FFFFFFF_FFFFFFFFH) AND ST_TMP_MASK[62:0]))

THEN
#GP(0)

ELSE
FOR i = 0, 62 STEP 1

IF (RS_TMP_MASK[i] and XCR0[i])
THEN

IF (ST_TMP_MASK[i])
CASE (i) OF
0: Processor state[x87 FPU] ← SRCMEM. FPUSSESave_Area[FPU];
1: Processor state[SSE] ← SRCMEM. FPUSSESave_Area[SSE];

// MXCSR is loaded as part of the SSE state
DEFAULT: // i corresponds to a valid sub-leaf index of CPUID leaf 0DH

Processor state[i] ← SRCMEM. Ext_Save_Area[i];
ESAC;

ELSE
Processor extended state[i] ← Processor supplied values; (see Table 4-24)
CASE (i) OF
1: MXCSR ← SRCMEM. FPUSSESave_Area[SSE];
ESAC;

FI;
FI;

NEXT;
FI;

Table 4-25. Reserved Bit Checking and XRSTOR

Processor State Component Reserved Bit Checking

X87 FPU State None

SSE State Reserved bits of MXCSR
Vol. 2B 4-689XRSTOR—Restore Processor Extended States

INSTRUCTION SET REFERENCE, M-Z
Flags Affected

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
If a memory operand is not aligned on a 64-byte boundary,
regardless of segment.
If a bit in XCR0 is 0 and the corresponding bit in
HEADER.XSTATE_BV field of the source operand is 1.
If bytes 23:8 of HEADER is not zero.
If attempting to write any reserved bits of the MXCSR register
with 1.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

#AC If this exception is disabled a general protection exception
(#GP) is signaled if the memory operand is not aligned on a 16-
byte boundary, as described above. If the alignment check
exception (#AC) is enabled (and the CPL is 3), signaling of #AC
is not guaranteed and may vary with implementation, as
follows. In all implementations where #AC is not signaled, a
general protection exception is signaled in its place. In addition,
the width of the alignment check may also vary with implemen-
tation. For instance, for a given implementation, an alignment
check exception might be signaled for a 2-byte misalignment,
whereas a general protection exception might be signaled for all
other misalignments (4-, 8-, or 16-byte misalignments).

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 64-byte boundary,

regardless of segment.
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
If a bit in XCR0 is 0 and the corresponding bit in
HEADER.XSTATE_BV field of the source operand is 1.
4-690 Vol. 2B XRSTOR—Restore Processor Extended States

INSTRUCTION SET REFERENCE, M-Z
If bytes 23:8 of HEADER is not zero.
If attempting to write any reserved bits of the MXCSR register
with 1.

#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in Protected Mode

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 64-byte boundary,
regardless of segment.
If a bit in XCR0 is 0 and the corresponding bit in
XSAVE.HEADER.XSTATE_BV is 1.
If bytes 23:8 of HEADER is not zero.
If attempting to write any reserved bits of the MXCSR register
with 1.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

#AC If this exception is disabled a general protection exception
(#GP) is signaled if the memory operand is not aligned on a
16-byte boundary, as described above. If the alignment check
exception (#AC) is enabled (and the CPL is 3), signaling of #AC
is not guaranteed and may vary with implementation, as
follows. In all implementations where #AC is not signaled, a
general protection exception is signaled in its place. In addition,
the width of the alignment check may also vary with implemen-
tation. For instance, for a given implementation, an alignment
Vol. 2B 4-691XRSTOR—Restore Processor Extended States

INSTRUCTION SET REFERENCE, M-Z
check exception might be signaled for a 2-byte misalignment,
whereas a general protection exception might be signaled for all
other misalignments (4-, 8-, or 16-byte misalignments).
4-692 Vol. 2B XRSTOR—Restore Processor Extended States

INSTRUCTION SET REFERENCE, M-Z
XSAVE—Save Processor Extended States

Instruction Operand Encoding

Description

Performs a full or partial save of the enabled processor state components to a
memory address specified in the destination operand. A full or partial save of the
processor states is specified by an implicit mask operand via the register pair,
EDX:EAX. The destination operand is a memory location that must be 64-byte
aligned.

The implicit 64-bit mask operand in EDX:EAX specifies the subset of enabled
processor state components to save into the XSAVE/XRSTOR save area. The
XSAVE/XRSTOR save area comprises of individual save area for each processor state
components and a header section, see Table 4-22. Each component save area is
written if both the corresponding bits in the save mask operand and in XCR0 (the
XFEATURE_ENABLED_MASK register) are 1. A processor state component save area
is not updated if either one of the corresponding bits in the mask operand or in XCR0
is 0. If the mask operand (EDX:EAX) contains all 1's, all enabled processor state
components in XCR0 are written to the respective component save area.

The bit assignment used for the EDX:EAX register pair matches XCR0 (see chapter 2
of Vol. 3B). For the XSAVE instruction, software can specify "1" in any bit position of
EDX:EAX, irrespective of whether the corresponding bit position in XCR0 is valid for
the processor. The bit vector in EDX:EAX is "anded" with XCR0 to determine which
save area will be written. While it's legal to set any bit in the EDX:EAX mask to 1, it is
strongly recommended to set only the bits that are required to save/restore specific
states. When specifying 1 in any bit position of EDX:EAX mask, software is required
to determine the total size of the XSAVE/XRSTOR save area (specified as destination
operand) to fit all enabled processor states by using the value enumerated in
CPUID.(EAX=0D, ECX=0):EBX.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F AE /4 XSAVE mem M Valid Valid Save processor extended
states to memory. The
states are specified by
EDX:EAX

REX.W+ 0F AE
/4

XSAVE64 mem M Valid N.E. Save processor extended
states to memory. The
states are specified by
EDX:EAX

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA
Vol. 2B 4-693XSAVE—Save Processor Extended States

INSTRUCTION SET REFERENCE, M-Z
The content layout of the XSAVE/XRSTOR save area is architecturally defined to be
extendable and enumerated via the sub-leaves of CPUID.0DH leaf. The extendable
framework of the XSAVE/XRSTOR layout is depicted by Table 4-22. The layout of the
XSAVE/XRSTOR save area is fixed and may contain non-contiguous individual save
areas. The XSAVE/XRSTOR save area is not compacted if some features are not
saved or are not supported by the processor and/or by system software.

The layout of the register fields of first 512 bytes of the XSAVE/XRSTOR is the same
as the FXSAVE/FXRSTOR area (refer to “FXSAVE—Save x87 FPU, MMX Technology,
and SSE State” on page 458). But XSAVE/XRSTOR organizes the 512 byte area as
x87 FPU states (including FPU operation states, x87/MMX data registers), MXCSR
(including MXCSR_MASK), and XMM registers.

Bytes 464:511 are available for software use. The processor does not write to bytes
464:511 when executing XSAVE.

The processor writes 1 or 0 to each HEADER.XSTATE_BV[i] bit field of an enabled
processor state component in a manner that is consistent to XRSTOR's interaction
with HEADER.XSTATE_BV (see the operation section of XRSTOR instruction). If a
processor implementation discern that a processor state component is in its initial-
ized state (according to Table 4-24) it may modify the corresponding bit in the
HEADER.XSTATE_BV as ‘0’.

A destination operand not aligned to 64-byte boundary (in either 64-bit or 32-bit
modes) will result in a general-protection (#GP) exception being generated. In 64-bit
mode, the upper 32 bits of RDX and RAX are ignored.

Operation

TMP_MASK[62:0] ← ((EDX[30:0] << 32) OR EAX[31:0]) AND XCR0[62:0];
FOR i = 0, 62 STEP 1

IF (TMP_MASK[i] = 1) THEN
THEN

CASE (i) of
0: DEST.FPUSSESAVE_Area[x87 FPU] ← processor state[x87 FPU];
1: DEST.FPUSSESAVE_Area[SSE] ← processor state[SSE];

// SSE state include MXCSR
DEFAULT: // i corresponds to a valid sub-leaf index of CPUID leaf 0DH

DEST.Ext_Save_Area[i] ← processor state[i] ;
ESAC:
DEST.HEADER.XSTATE_BV[i] ← INIT_FUNCTION[i];

FI;
NEXT;

Flags Affected

None.
4-694 Vol. 2B XSAVE—Save Processor Extended States

INSTRUCTION SET REFERENCE, M-Z
Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
If a memory operand is not aligned on a 64-byte boundary,
regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

#AC If this exception is disabled a general protection exception
(#GP) is signaled if the memory operand is not aligned on a
16-byte boundary, as described above. If the alignment check
exception (#AC) is enabled (and the CPL is 3), signaling of #AC
is not guaranteed and may vary with implementation, as
follows. In all implementations where #AC is not signaled, a
general protection exception is signaled in its place. In addition,
the width of the alignment check may also vary with implemen-
tation. For instance, for a given implementation, an alignment
check exception might be signaled for a 2-byte misalignment,
whereas a general protection exception might be signaled for all
other misalignments (4-, 8-, or 16-byte misalignments).

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 64-byte boundary,

regardless of segment.
If any part of the operand lies outside the effective address
space from 0 to FFFFH.

#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.
Vol. 2B 4-695XSAVE—Save Processor Extended States

INSTRUCTION SET REFERENCE, M-Z
Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 64-byte boundary,
regardless of segment.

#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

#AC If this exception is disabled a general protection exception
(#GP) is signaled if the memory operand is not aligned on a
16-byte boundary, as described above. If the alignment check
exception (#AC) is enabled (and the CPL is 3), signaling of #AC
is not guaranteed and may vary with implementation, as
follows. In all implementations where #AC is not signaled, a
general protection exception is signaled in its place. In addition,
the width of the alignment check may also vary with implemen-
tation. For instance, for a given implementation, an alignment
check exception might be signaled for a 2-byte misalignment,
whereas a general protection exception might be signaled for all
other misalignments (4-, 8-, or 16-byte misalignments).
4-696 Vol. 2B XSAVE—Save Processor Extended States

INSTRUCTION SET REFERENCE, M-Z
XSAVEOPT—Save Processor Extended States Optimized

Instruction Operand Encoding

Description

XSAVEOPT performs a full or partial save of the enabled processor state components
to a memory address specified in the destination operand. A full or partial save of the
processor states is specified by an implicit mask operand via the register pair,
EDX:EAX. The destination operand is a memory location that must be 64-byte
aligned. The hardware may optimize the manner in which data is saved. The perfor-
mance of this instruction will be equal or better than using the XSAVE instruction.

The implicit 64-bit mask operand in EDX:EAX specifies the subset of enabled
processor state components to save into the XSAVE/XRSTOR save area. The
XSAVE/XRSTOR save area comprises of individual save area for each processor state
components and a header section, see Table 4-22.

The bit assignment used for the EDX:EAX register pair matches XCR0 (the
XFEATURE_ENABLED_MASK register). For the XSAVEOPT instruction, software can
specify "1" in any bit position of EDX:EAX, irrespective of whether the corresponding
bit position in XCR0 is valid for the processor. The bit vector in EDX:EAX is "anded"
with XCR0 to determine which save area will be written. While it's legal to set any bit
in the EDX:EAX mask to 1, it is strongly recommended to set only the bits that are
required to save/restore specific states. When specifying 1 in any bit position of
EDX:EAX mask, software is required to determine the total size of the
XSAVE/XRSTOR save area (specified as destination operand) to fit all enabled
processor states by using the value enumerated in CPUID.(EAX=0D, ECX=0):EBX.

The content layout of the XSAVE/XRSTOR save area is architecturally defined to be
extendable and enumerated via the sub-leaves of CPUID.0DH leaf. The extendable

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F AE /6

XSAVEOPT mem

M V/V XSAVEOPT Save processor extended
states specified in EDX:EAX
to memory, optimizing the
state save operation if
possible.

REX.W + 0F AE /6

XSAVEOPT64 mem

M V/V XSAVEOPT Save processor extended
states specified in EDX:EAX
to memory, optimizing the
state save operation if
possible.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA
Vol. 2B 4-697XSAVEOPT—Save Processor Extended States Optimized

INSTRUCTION SET REFERENCE, M-Z
framework of the XSAVE/XRSTOR layout is depicted by Table 4-22. The layout of the
XSAVE/XRSTOR save area is fixed and may contain non-contiguous individual save
areas. The XSAVE/XRSTOR save area is not compacted if some features are not
saved or are not supported by the processor and/or by system software.

The layout of the register fields of first 512 bytes of the XSAVE/XRSTOR is the same
as the FXSAVE/FXRSTOR area. But XSAVE/XRSTOR organizes the 512 byte area as
x87 FPU states (including FPU operation states, x87/MMX data registers), MXCSR
(including MXCSR_MASK), and XMM registers.
The processor writes 1 or 0 to each.HEADER.XSTATE_BV[i] bit field of an enabled
processor state component in a manner that is consistent to XRSTOR's interaction
with HEADER.XSTATE_BV.
The state updated to the XSAVE/XRSTOR area may be optimized as follows:
• If the state is in its initialized form, the corresponding XSTATE_BV bit may be set

to 0, and the corresponding processor state component that is indicated as
initialized will not be saved to memory.

A processor state component save area is not updated if either one of the corre-
sponding bits in the mask operand or in XCR0 is 0. The processor state component
that is updated to the save area is computed by bit-wise AND of the mask operand
(EDX:EAX) with XCR0.
HEADER.XSTATE_BV is updated to reflect the data that is actually written to the save
area. A "1" bit in the header indicates the contents of the save area corresponding to
that bit are valid. A "0" bit in the header indicates that the state corresponding to
that bit is in its initialized form. The memory image corresponding to a "0" bit may
or may not contain the correct (initialized) value since only the header bit (and not
the save area contents) is updated when the header bit value is 0. XRSTOR will
ensure the correct value is placed in the register state regardless of the value of the
save area when the header bit is zero.

XSAVEOPT Usage Guidelines

When using the XSAVEOPT facility, software must be aware of the following guide-
lines:

1. The processor uses a tracking mechanism to determine which state components
will be written to memory by the XSAVEOPT instruction. The mechanism includes
three sub-conditions that are recorded internally each time XRSTOR is executed
and evaluated on the invocation of the next XSAVEOPT. If a change is detected in
any one of these sub-conditions, XSAVEOPT will behave exactly as XSAVE. The
three sub-conditions are:

— current CPL of the logical processor

— indication whether or not the logical processor is in VMX non-root operation

— linear address of the XSAVE/XRSTOR area
4-698 Vol. 2B XSAVEOPT—Save Processor Extended States Optimized

INSTRUCTION SET REFERENCE, M-Z
2. Upon allocation of a new XSAVE/XRSTOR area and before an XSAVE or XSAVEOPT
instruction is used, the save area header (HEADER.XSTATE) must be initialized to
zeroes for proper operation.

3. XSAVEOPT is designed primarily for use in context switch operations. The values
stored by the XSAVEOPT instruction depend on the values previously stored in a
given XSAVE area.

4. Manual modifications to the XSAVE area between an XRSTOR instruction and the
matching XSAVEOPT may result in data corruption.

5. For optimization to be performed properly, the XRSTOR XSAVEOPT pair must use
the same segment when referencing the XSAVE area and the base of that
segment must be unchanged between the two operations.

6. Software should avoid executing XSAVEOPT into a buffer from which it hadn’t
previously executed a XRSTOR. For newly allocated buffers, software can execute
XRSTOR with the linear address of the buffer and a restore mask of EDX:EAX = 0.
Executing XRSTOR(0:0) doesn’t restore any state, but ensures expected
operation of the XSAVEOPT instruction.

7. The XSAVE area can be moved or even paged, but the contents at the linear
address of the save area at an XSAVEOPT must be the same as that when the
previous XRSTOR was performed.

A destination operand not aligned to 64-byte boundary (in either 64-bit or 32-bit
modes) will result in a general-protection (#GP) exception being generated. In 64-bit
mode, the upper 32 bits of RDX and RAX are ignored.

Operation
TMP_MASK[62:0] (EDX[30:0] << 32) OR EAX[31:0]) AND XCR0[62:0];
FOR i = 0, 62 STEP 1
 IF (TMP_MASK[i] = 1)
 THEN
 If not HW_CAN_OPTIMIZE_SAVE
 THEN
 CASE (i) of
 0: DEST.FPUSSESAVE_Area[x87 FPU] processor state[x87 FPU];
 1: DEST.FPUSSESAVE_Area[SSE] processor state[SSE];
 // SSE state include MXCSR
 2: DEST.EXT_SAVE_Area2[YMM] processor state[YMM];
 DEFAULT: // i corresponds to a valid sub-leaf index of CPUID leaf 0DH
 DEST.Ext_Save_Area[i] processor state[i] ;
 ESAC:
 FI;
 DEST.HEADER.XSTATE_BV[i] INIT_FUNCTION[i];
 FI;
NEXT;
Vol. 2B 4-699XSAVEOPT—Save Processor Extended States Optimized

INSTRUCTION SET REFERENCE, M-Z
Flags Affected

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
If a memory operand is not aligned on a 64-byte boundary,
regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CPUID.(EAX=0DH, ECX=01H):EAX.XSAVEOPT[bit 0] = 0.
If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 64-byte boundary,

regardless of segment.
If any part of the operand lies outside the effective address
space from 0 to FFFFH.

#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CPUID.(EAX=0DH, ECX=01H):EAX.XSAVEOPT[bit 0] = 0.
If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
4-700 Vol. 2B XSAVEOPT—Save Processor Extended States Optimized

INSTRUCTION SET REFERENCE, M-Z
#GP(0) If the memory address is in a non-canonical form.
If a memory operand is not aligned on a 64-byte boundary,
regardless of segment.

#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CPUID.(EAX=0DH, ECX=01H):EAX.XSAVEOPT[bit 0] = 0.
If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.
Vol. 2B 4-701XSAVEOPT—Save Processor Extended States Optimized

INSTRUCTION SET REFERENCE, M-Z
XSETBV—Set Extended Control Register

Instruction Operand Encoding

Description

Writes the contents of registers EDX:EAX into the 64-bit extended control register
(XCR) specified in the ECX register. (On processors that support the Intel 64 archi-
tecture, the high-order 32 bits of RCX are ignored.) The contents of the EDX register
are copied to high-order 32 bits of the selected XCR and the contents of the EAX
register are copied to low-order 32 bits of the XCR. (On processors that support the
Intel 64 architecture, the high-order 32 bits of each of RAX and RDX are ignored.)
Undefined or reserved bits in an XCR should be set to values previously read.

This instruction must be executed at privilege level 0 or in real-address mode; other-
wise, a general protection exception #GP(0) is generated. Specifying a reserved or
unimplemented XCR in ECX will also cause a general protection exception. The
processor will also generate a general protection exception if software attempts to
write to reserved bits in an XCR.

Currently, only XCR0 (the XFEATURE_ENABLED_MASK register) is supported. Thus,
all other values of ECX are reserved and will cause a #GP(0). Note that bit 0 of XCR0
(corresponding to x87 state) must be set to 1; the instruction will cause a #GP(0) if
an attempt is made to clear this bit. Additionally, bit 1 of XCR0 (corresponding to AVX
state) and bit 2 of XCR0 (corresponding to SSE state) must be set to 1 when using
AVX registers; the instruction will cause a #GP(0) if an attempt is made to set
XCR0[2:1] = 10.

Operation

XCR[ECX] ← EDX:EAX;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If an invalid XCR is specified in ECX.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 01 D1 XSETBV NP Valid Valid Write the value in EDX:EAX
to the XCR specified by ECX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
4-702 Vol. 2B XSETBV—Set Extended Control Register

INSTRUCTION SET REFERENCE, M-Z
If the value in EDX:EAX sets bits that are reserved in the XCR
specified by ECX.
If an attempt is made to clear bit 0 of XCR0.
If an attempt is made to set XCR0[2:1] = 10.

#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.
If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

Real-Address Mode Exceptions
#GP If an invalid XCR is specified in ECX.

If the value in EDX:EAX sets bits that are reserved in the XCR
specified by ECX.
If an attempt is made to clear bit 0 of XCR0.
If an attempt is made to set XCR0[2:1] = 10.

#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.
If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) The XSETBV instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
Vol. 2B 4-703XSETBV—Set Extended Control Register

CHAPTER 5
SAFER MODE EXTENSIONS REFERENCE

5.1 OVERVIEW
This chapter describes the Safer Mode Extensions (SMX) for the Intel 64 and IA-32
architectures. Safer Mode Extensions (SMX) provide a programming interface for
system software to establish a measured environment within the platform to support
trust decisions by end users. The measured environment includes:
• Measured launch of a system executive, referred to as a Measured Launched

Environment (MLE)1. The system executive may be based on a Virtual Machine
Monitor (VMM), a measured VMM is referred to as MVMM2.

• Mechanisms to ensure the above measurement is protected and stored in a
secure location in the platform.

• Protection mechanisms that allow the VMM to control attempts to modify the
VMM

The measurement and protection mechanisms used by a measured environment are
supported by the capabilities of an Intel® Trusted Execution Technology (Intel®
TXT) platform:
• The SMX are the processor’s programming interface in an Intel TXT platform;
• The chipset in an Intel TXT platform provides enforcement of the protection

mechanisms;
• Trusted Platform Module (TPM) 1.2 in the platform provides platform configu-

ration registers (PCRs) to store software measurement values.

5.2 SMX FUNCTIONALITY
SMX functionality is provided in an Intel 64 processor through the GETSEC instruc-
tion via leaf functions. The GETSEC instruction supports multiple leaf functions. Leaf
functions are selected by the value in EAX at the time GETSEC is executed. Each
GETSEC leaf function is documented separately in the reference pages with a unique
mnemonic (even though these mnemonics share the same opcode, 0F 37).

1. See Intel® Trusted Execution Technology Measured Launched Environment Programming Guide.

2. An MVMM is sometimes referred to as a measured launched environment (MLE). See Intel®
Trusted Execution Technology Measured Launched Environment Programming Guide
Vol. 2C 5-1

SAFER MODE EXTENSIONS REFERENCE
5.2.1 Detecting and Enabling SMX
Software can detect support for SMX operation using the CPUID instruction. If soft-
ware executes CPUID with 1 in EAX, a value of 1 in bit 6 of ECX indicates support for
SMX operation (GETSEC is available), see CPUID instruction for the layout of feature
flags of reported by CPUID.01H:ECX.

System software enables SMX operation by setting CR4.SMXE[Bit 14] = 1 before
attempting to execute GETSEC. Otherwise, execution of GETSEC results in the
processor signaling an invalid opcode exception (#UD).

If the CPUID SMX feature flag is clear (CPUID.01H.ECX[Bit 6] = 0), attempting to set
CR4.SMXE[Bit 14] results in a general protection exception.

The IA32_FEATURE_CONTROL MSR (at address 03AH) provides feature control bits
that configure operation of VMX and SMX. These bits are documented in Table 5-1.

• Bit 0 is a lock bit. If the lock bit is clear, an attempt to execute VMXON will cause
a general-protection exception. Attempting to execute GETSEC[SENTER] when
the lock bit is clear will also cause a general-protection exception. If the lock bit
is set, WRMSR to the IA32_FEATURE_CONTROL MSR will cause a general-
protection exception. Once the lock bit is set, the MSR cannot be modified until a
power-on reset. System BIOS can use this bit to provide a setup option for BIOS
to disable support for VMX, SMX or both VMX and SMX.

• Bit 1 enables VMX in SMX operation (between executing the SENTER and SEXIT
leaves of GETSEC). If this bit is clear, an attempt to execute VMXON in SMX will
cause a general-protection exception if executed in SMX operation. Attempts to
set this bit on logical processors that do not support both VMX operation (Chapter
5, “Safer Mode Extensions Reference”) and SMX operation cause general-
protection exceptions.

Table 5-1. Layout of IA32_FEATURE_CONTROL

Bit Position Description

0 Lock bit (0 = unlocked, 1 = locked). When set to '1' further writes to this MSR
are blocked.

1 Enable VMX in SMX operation

2 Enable VMX outside SMX operation

7:3 Reserved

14:8 SENTER Local Function Enables: When set, each bit in the field represents an
enable control for a corresponding SENTER function.

15 SENTER Global Enable: Must be set to ‘1’ to enable operation of
GETSEC[SENTER]

63:16 Reserved
5-2 Vol. 2C

SAFER MODE EXTENSIONS REFERENCE
• Bit 2 enables VMX outside SMX operation. If this bit is clear, an attempt to
execute VMXON will cause a general-protection exception if executed outside
SMX operation. Attempts to set this bit on logical processors that do not support
VMX operation cause general-protection exceptions.

• Bits 8 through 14 specify enabled functionality of the SENTER leaf function. Each
bit in the field represents an enable control for a corresponding SENTER function.
Only enabled SENTER leaf functionality can be used when executing SENTER.

• Bits 15 specify global enable of all SENTER functionalities.

5.2.2 SMX Instruction Summary
System software must first query for available GETSEC leaf functions by executing
GETSEC[CAPABILITIES]. The CAPABILITIES leaf function returns a bit map of avail-
able GETSEC leaves. An attempt to execute an unsupported leaf index results in an
undefined opcode (#UD) exception.

5.2.2.1 GETSEC[CAPABILITIES]
The SMX functionality provides an architectural interface for newer processor gener-
ations to extend SMX capabilities. Specifically, the GETSEC instruction provides a
capability leaf function for system software to discover the available GETSEC leaf
functions that are supported in a processor. Table 5-2 lists the currently available
GETSEC leaf functions.
.

Table 5-2. GETSEC Leaf Functions

Index (EAX) Leaf function Description

0 CAPABILITIES Returns the available leaf functions of the GETSEC
instruction

1 Undefined Reserved

2 ENTERACCS Enter

3 EXITAC Exit

4 SENTER Launch an MLE

5 SEXIT Exit the MLE

6 PARAMETERS Return SMX related parameter information

7 SMCTRL SMX mode control

8 WAKEUP Wake up sleeping processors in safer mode

9 - (4G-1) Undefined Reserved
Vol. 2C 5-3

SAFER MODE EXTENSIONS REFERENCE
5.2.2.2 GETSEC[ENTERACCS]
The GETSEC[ENTERACCS] leaf enables authenticated code execution mode. The
ENTERACCS leaf function performs an authenticated code module load using the
chipset public key as the signature verification. ENTERACCS requires the existence of
an Intel® Trusted Execution Technology capable chipset since it unlocks the chipset
private configuration register space after successful authentication of the loaded
module. The physical base address and size of the authenticated code module are
specified as input register values in EBX and ECX, respectively.

While in the authenticated code execution mode, certain processor state properties
change. For this reason, the time in which the processor operates in authenticated
code execution mode should be limited to minimize impact on external system
events.

Upon entry into , the previous paging context is disabled (since the authenticated
code module image is specified with physical addresses and can no longer rely upon
external memory-based page-table structures).

Prior to executing the GETSEC[ENTERACCS] leaf, system software must ensure the
logical processor issuing GETSEC[ENTERACCS] is the boot-strap processor (BSP), as
indicated by IA32_APIC_BASE.BSP = 1. System software must ensure other logical
processors are in a suitable idle state and not marked as BSP.

The GETSEC[ENTERACCS] leaf may be used by different agents to load different
authenticated code modules to perform functions related to different aspects of a
measured environment, for example system software and Intel® TXT enabled BIOS
may use more than one authenticated code modules.

5.2.2.3 GETSEC[EXITAC]
GETSEC[EXITAC] takes the processor out of . When this instruction leaf is executed,
the contents of the authenticated code execution area are scrubbed and control is
transferred to the non-authenticated context defined by a near pointer passed with
the GETSEC[EXITAC] instruction.

The authenticated code execution area is no longer accessible after completion of
GETSEC[EXITAC]. RBX (or EBX) holds the address of the near absolute indirect
target to be taken.

5.2.2.4 GETSEC[SENTER]
The GETSEC[SENTER] leaf function is used by the initiating logical processor (ILP) to
launch an MLE. GETSEC[SENTER] can be considered a superset of the ENTERACCS
leaf, because it enters as part of the measured environment launch.

Measured environment startup consists of the following steps:
• the ILP rendezvous the responding logical processors (RLPs) in the platform into

a controlled state (At the completion of this handshake, all the RLPs except for
5-4 Vol. 2C

SAFER MODE EXTENSIONS REFERENCE
the ILP initiating the measured environment launch are placed in a newly defined
SENTER sleep state).

• Load and authenticate the authenticated code module required by the measured
environment, and enter authenticated code execution mode.

• Verify and lock certain system configuration parameters.
• Measure the dynamic root of trust and store into the PCRs in TPM.
• Transfer control to the MLE with interrupts disabled.

Prior to executing the GETSEC[SENTER] leaf, system software must ensure the plat-
form’s TPM is ready for access and the ILP is the boot-strap processor (BSP), as indi-
cated by IA32_APIC_BASE.BSP. System software must ensure other logical
processors (RLPs) are in a suitable idle state and not marked as BSP.

System software launching a measurement environment is responsible for providing
a proper authenticate code module address when executing GETSEC[SENTER]. The
AC module responsible for the launch of a measured environment and loaded by
GETSEC[SENTER] is referred to as SINIT. See Intel® Trusted Execution Technology
Measured Launched Environment Programming Guide for additional information on
system software requirements prior to executing GETSEC[SENTER].

5.2.2.5 GETSEC[SEXIT]
System software exits the measured environment by executing the instruction
GETSEC[SEXIT] on the ILP. This instruction rendezvous the responding logical
processors in the platform for exiting from the measured environment. External
events (if left masked) are unmasked and Intel® TXT-capable chipset’s private
configuration space is re-locked.

5.2.2.6 GETSEC[PARAMETERS]
The GETSEC[PARAMETERS] leaf function is used to report attributes, options and
limitations of SMX operation. Software uses this leaf to identify operating limits or
additional options.

The information reported by GETSEC[PARAMETERS] may require executing the leaf
multiple times using EBX as an index. If the GETSEC[PARAMETERS] instruction leaf
or if a specific parameter field is not available, then SMX operation should be inter-
preted to use the default limits of respective GETSEC leaves or parameter fields
defined in the GETSEC[PARAMETERS] leaf.

5.2.2.7 GETSEC[SMCTRL]
The GETSEC[SMCTRL] leaf function is used for providing additional control over
specific conditions associated with the SMX architecture. An input register is
supported for selecting the control operation to be performed. See the specific leaf
description for details on the type of control provided.
Vol. 2C 5-5

SAFER MODE EXTENSIONS REFERENCE
5.2.2.8 GETSEC[WAKEUP]
Responding logical processors (RLPs) are placed in the SENTER sleep state after the
initiating logical processor executes GETSEC[SENTER]. The ILP can wake up RLPs to
join the measured environment by using GETSEC[WAKEUP].When the RLPs in
SENTER sleep state wake up, these logical processors begin execution at the entry
point defined in a data structure held in system memory (pointed to by an chipset
register LT.MLE.JOIN) in TXT configuration space.

5.2.3 Measured Environment and SMX
This section gives a simplified view of a representative life cycle of a measured envi-
ronment that is launched by a system executive using SMX leaf functions. Intel®
Trusted Execution Technology Measured Launched Environment Programming Guide
provides more detailed examples of using SMX and chipset resources (including
chipset registers, Trusted Platform Module) to launch an MVMM.

The life cycle starts with the system executive (an OS, an OS loader, and so forth)
loading the MLE and SINIT AC module into available system memory. The system
executive must validate and parpare the platform for the measured launch. When the
platform is properly configured, the system executive executes GETSEC[SENTER] on
the initiating logical processor (ILP) to rendezvous the responding logical processors
into an SENTER sleep state, the ILP then enters into using the SINIT AC module. In
a multi-threaded or multi-processing environment, the system executive must
ensure that other logical processors are already in an idle loop, or asleep (such as
after executing HLT) before executing GETSEC[SENTER].

After the GETSEC[SENTER] rendezvous handshake is performed between all logical
processors in the platform, the ILP loads the chipset authenticated code module
(SINIT) and performs an authentication check. If the check passes, the processor
hashes the SINIT AC module and stores the result into TPM PCR 17. It then switches
execution context to the SINIT AC module. The SINIT AC module will perform a
number of platfom operations, including: verifying the system configuration,
protecting the system memory used by the MLE from I/O devices capable of DMA,
producing a hash of the MLE, storing the hash value in TPM PCR 18, and various other
operations. When SINIT completes execution, it executes the GETSEC[EXITAC]
instruction and transfers control the MLE at the designated entry point.

Upon receiving control from the SINIT AC module, the MLE must establish its protec-
tion and isolation controls before enabling DMA and interrupts and transferring
control to other software modules. It must also wakeup the RLPs from their SENTER
sleep state using the GETSEC[WAKEUP] instruction and bring them into its protection
and isolation environment.

While executing in a measured environment, the MVMM can access the Trusted Plat-
form Module (TPM) in locality 2. The MVMM has complete access to all TPM
commands and may use the TPM to report current measurement values or use the
measurement values to protect information such that only when the platform config-
5-6 Vol. 2C

SAFER MODE EXTENSIONS REFERENCE
uration registers (PCRs) contain the same value is the information released from the
TPM. This protection mechanism is known as sealing.

A measured environment shutdown is ultimately completed by executing
GETSEC[SEXIT]. Prior to this step system software is responsible for scrubbing
sensitive information left in the processor caches, system memory.

5.3 GETSEC LEAF FUNCTIONS
This section provides detailed descriptions of each leaf function of the GETSEC
instruction. GETSEC is available only if CPUID.01H:ECX[Bit 6] = 1. This indicates the
availability of SMX and the GETSEC instruction. Before GETSEC can be executed,
SMX must be enabled by setting CR4.SMXE[Bit 14] = 1.

A GETSEC leaf can only be used if it is shown to be available as reported by the
GETSEC[CAPABILITIES] function. Attempts to access a GETSEC leaf index not
supported by the processor, or if CR4.SMXE is 0, results in the signaling of an unde-
fined opcode exception.

All GETSEC leaf functions are available in protected mode, including the compatibility
sub-mode of IA-32e mode and the 64-bit sub-mode of IA-32e mode. Unless other-
wise noted, the behavior of all GETSEC functions and interactions related to the
measured environment are independent of IA-32e mode. This also applies to the
interpretation of register widths1 passed as input parameters to GETSEC functions
and to register results returned as output parameters.

The GETSEC functions ENTERACCS, SENTER, SEXIT, and WAKEUP require a Intel®
TXT capable-chipset to be present in the platform. The GETSEC[CAPABILITIES]
returned bit vector in position 0 indicates an Intel® TXT-capable chipset has been
sampled present2 by the processor.

The processor's operating mode also affects the execution of the following GETSEC
leaf functions: SMCTRL, ENTERACCS, EXITAC, SENTER, SEXIT, and WAKEUP. These
functions are only allowed in protected mode at CPL = 0. They are not allowed while
in SMM in order to prevent potential intra-mode conflicts. Further execution qualifica-
tions exist to prevent potential architectural conflicts (for example: nesting of the
measured environment or authenticated code execution mode). See the definitions
of the GETSEC leaf functions for specific requirements.

1. This chapter uses the 64-bit notation RAX, RIP, RSP, RFLAGS, etc. for processor registers
because processors that support SMX also support Intel 64 Architecture. The MVMM can be
launched in IA-32e mode or outside IA-32e mode. The 64-bit notation of processor registers also
refer to its 32-bit forms if SMX is used in 32-bit environment. In some places, notation such as
EAX is used to refer specifically to lower 32 bits of the indicated register

2. Sampled present means that the processor sent a message to the chipset and the chipset
responded that it (a) knows about the message and (b) is capable of executing SENTER. This
means that the chipset CAN support Intel® TXT, and is configured and WILLING to support it.
Vol. 2C 5-7

SAFER MODE EXTENSIONS REFERENCE
For the purpose of performance monitor counting, the execution of GETSEC functions
is counted as a single instruction with respect to retired instructions. The response by
a responding logical processor (RLP) to messages associated with GETSEC[SENTER]
or GTSEC[SEXIT] is transparent to the retired instruction count on the ILP.
5-8 Vol. 2C

SAFER MODE EXTENSIONS REFERENCE
GETSEC[CAPABILITIES] - Report the SMX Capabilities

Description

The GETSEC[CAPABILITIES] function returns a bit vector of supported GETSEC leaf
functions. The CAPABILITIES leaf of GETSEC is selected with EAX set to 0 at entry.
EBX is used as the selector for returning the bit vector field in EAX. GETSEC[CAPABIL-
ITIES] may be executed at all privilege levels, but the CR4.SMXE bit must be set or an
undefined opcode exception (#UD) is returned.

With EBX = 0 upon execution of GETSEC[CAPABILITIES], EAX returns the a bit vector
representing status on the presence of a Intel® TXT-capable chipset and the first 30
available GETSEC leaf functions. The format of the returned bit vector is provided in
Table 5-3.

If bit 0 is set to 1, then an Intel® TXT-capable chipset has been sampled present by
the processor. If bits in the range of 1-30 are set, then the corresponding GETSEC leaf
function is available. If the bit value at a given bit index is 0, then the GETSEC leaf
function corresponding to that index is unsupported and attempted execution results
in a #UD.

Bit 31 of EAX indicates if further leaf indexes are supported. If the Extended Leafs bit
31 is set, then additional leaf functions are accessed by repeating GETSEC[CAPABILI-
TIES] with EBX incremented by one. When the most significant bit of EAX is not set,
then additional GETSEC leaf functions are not supported; indexing EBX to a higher
value results in EAX returning zero.

Opcode Instruction Description

0F 37

(EAX = 0)

GETSEC[CAPA
BILITIES]

Report the SMX capabilities.

The capabilities index is input in EBX with the result returned in
EAX.

Table 5-3. Getsec Capability Result Encoding (EBX = 0)

Field Bit position Description

Chipset Present 0 Intel® TXT-capable chipset is present

Undefined 1 Reserved

ENTERACCS 2 GETSEC[ENTERACCS] is available

EXITAC 3 GETSEC[EXITAC] is available

SENTER 4 GETSEC[SENTER] is available

SEXIT 5 GETSEC[SEXIT] is available
Vol. 2C 5-9GETSEC[CAPABILITIES] - Report the SMX Capabilities

SAFER MODE EXTENSIONS REFERENCE
Operation
IF (CR4.SMXE=0)

THEN #UD;
ELSIF (in VMX non-root operation)

THEN VM Exit (reason=”GETSEC instruction”);
IF (EBX=0) THEN

BitVector← 0;
IF (TXT chipset present)

BitVector[Chipset present]← 1;
IF (ENTERACCS Available)

THEN BitVector[ENTERACCS]← 1;
IF (EXITAC Available)

THEN BitVector[EXITAC]← 1;
IF (SENTER Available)

THEN BitVector[SENTER]← 1;
IF (SEXIT Available)

THEN BitVector[SEXIT]← 1;
IF (PARAMETERS Available)

THEN BitVector[PARAMETERS]← 1;
IF (SMCTRL Available)

THEN BitVector[SMCTRL]← 1;
IF (WAKEUP Available)

THEN BitVector[WAKEUP]← 1;
EAX← BitVector;

ELSE
EAX← 0;

END;;

Flags Affected
None

PARAMETERS 6 GETSEC[PARAMETERS] is available

SMCTRL 7 GETSEC[SMCTRL] is available

WAKEUP 8 GETSEC[WAKEUP] is available

Undefined 30:9 Reserved

Extended Leafs 31 Reserved for extended information reporting of
GETSEC capabilities

Table 5-3. Getsec Capability Result Encoding (EBX = 0) (Contd.)

Field Bit position Description
5-10 Vol. 2C GETSEC[CAPABILITIES] - Report the SMX Capabilities

SAFER MODE EXTENSIONS REFERENCE
Use of Prefixes
LOCK Causes #UD
REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ)
Operand size Causes #UD
Segment overrides Ignored
Address size Ignored
REX Ignored

Protected Mode Exceptions
#UD IF CR4.SMXE = 0.

Real-Address Mode Exceptions
#UD IF CR4.SMXE = 0.

Virtual-8086 Mode Exceptions
#UD IF CR4.SMXE = 0.

Compatibility Mode Exceptions
#UD IF CR4.SMXE = 0.

64-Bit Mode Exceptions
#UD IF CR4.SMXE = 0.

VM-exit Condition
Reason (GETSEC) IF in VMX non-root operation.
Vol. 2C 5-11GETSEC[CAPABILITIES] - Report the SMX Capabilities

SAFER MODE EXTENSIONS REFERENCE
GETSEC[ENTERACCS] - Execute Authenticated Chipset Code

Description

The GETSEC[ENTERACCS] function loads, authenticates and executes an authenti-
cated code module using an Intel® TXT platform chipset's public key. The ENTER-
ACCS leaf of GETSEC is selected with EAX set to 2 at entry.

There are certain restrictions enforced by the processor for the execution of the
GETSEC[ENTERACCS] instruction:
• Execution is not allowed unless the processor is in protected mode or IA-32e

mode with CPL = 0 and EFLAGS.VM = 0.
• Processor cache must be available and not disabled, that is, CR0.CD and CR0.NW

bits must be 0.
• For processor packages containing more than one logical processor, CR0.CD is

checked to ensure consistency between enabled logical processors.
• For enforcing consistency of operation with numeric exception reporting using

Interrupt 16, CR0.NE must be set.
• An Intel TXT-capable chipset must be present as communicated to the processor

by sampling of the power-on configuration capability field after reset.
• The processor can not already be in authenticated code execution mode as

launched by a previous GETSEC[ENTERACCS] or GETSEC[SENTER] instruction
without a subsequent exiting using GETSEC[EXITAC]).

• To avoid potential operability conflicts between modes, the processor is not
allowed to execute this instruction if it currently is in SMM or VMX operation.

• To insure consistent handling of SIPI messages, the processor executing the
GETSEC[ENTERACCS] instruction must also be designated the BSP (boot-strap
processor) as defined by A32_APIC_BASE.BSP (Bit 8).

Failure to conform to the above conditions results in the processor signaling a general
protection exception.

Prior to execution of the ENTERACCS leaf, other logical processors, i.e. RLPs, in the
platform must be:
• idle in a wait-for-SIPI state (as initiated by an INIT assertion or through reset for

non-BSP designated processors), or
• in the SENTER sleep state as initiated by a GETSEC[SENTER] from the initiating

logical processor (ILP).

Opcode Instruction Description

0F 37

(EAX = 2)

GETSEC[ENTERACCS] Enter authenticated code execution mode.

EBX holds the authenticated code module physical base
address. ECX holds the authenticated code module size
(bytes).
5-12 Vol. 2C GETSEC[ENTERACCS] - Execute Authenticated Chipset Code

SAFER MODE EXTENSIONS REFERENCE
If other logical processor(s) in the same package are not idle in one of these states,
execution of ENTERACCS signals a general protection exception. The same require-
ment and action applies if the other logical processor(s) of the same package do not
have CR0.CD = 0.

A successful execution of ENTERACCS results in the ILP entering an authenticated
code execution mode. Prior to reaching this point, the processor performs several
checks. These include:
• Establish and check the location and size of the specified authenticated code

module to be executed by the processor.
• Inhibit the ILP’s response to the external events: INIT, A20M, NMI and SMI.
• Broadcast a message to enable protection of memory and I/O from other

processor agents.
• Load the designated code module into an authenticated code execution area.
• Isolate the contents of the authenticated code execution area from further state

modification by external agents.
• Authenticate the authenticated code module.
• Initialize the initiating logical processor state based on information contained in

the authenticated code module header.
• Unlock the Intel® TXT-capable chipset private configuration space and TPM

locality 3 space.
• Begin execution in the authenticated code module at the defined entry point.

The GETSEC[ENTERACCS] function requires two additional input parameters in the
general purpose registers EBX and ECX. EBX holds the authenticated code (AC)
module physical base address (the AC module must reside below 4 GBytes in phys-
ical address space) and ECX holds the AC module size (in bytes). The physical base
address and size are used to retrieve the code module from system memory and load
it into the internal authenticated code execution area. The base physical address is
checked to verify it is on a modulo-4096 byte boundary. The size is verified to be a
multiple of 64, that it does not exceed the internal authenticated code execution area
capacity (as reported by GETSEC[CAPABILITIES]), and that the top address of the AC
module does not exceed 32 bits. An error condition results in an abort of the authen-
ticated code execution launch and the signaling of a general protection exception.

As an integrity check for proper processor hardware operation, execution of
GETSEC[ENTERACCS] will also check the contents of all the machine check status
registers (as reported by the MSRs IA32_MCi_STATUS) for any valid uncorrectable
error condition. In addition, the global machine check status register
IA32_MCG_STATUS MCIP bit must be cleared and the IERR processor package pin
(or its equivalent) must not be asserted, indicating that no machine check exception
processing is currently in progress. These checks are performed prior to initiating the
load of the authenticated code module. Any outstanding valid uncorrectable machine
check error condition present in these status registers at this point will result in the
processor signaling a general protection violation.
Vol. 2C 5-13GETSEC[ENTERACCS] - Execute Authenticated Chipset Code

SAFER MODE EXTENSIONS REFERENCE
The ILP masks the response to the assertion of the external signals INIT#, A20M,
NMI#,and SMI#. This masking remains active until optionally unmasked by
GETSEC[EXITAC] (this defined unmasking behavior assumes GETSEC[ENTERACCS]
was not executed by a prior GETSEC[SENTER]). The purpose of this masking control
is to prevent exposure to existing external event handlers that may not be under the
control of the authenticated code module..

The ILP sets an internal flag to indicate it has entered authenticated code execution
mode. The state of the A20M pin is likewise masked and forced internally to a de-
asserted state so that any external assertion is not recognized during authenticated
code execution mode.

To prevent other (logical) processors from interfering with the ILP operating in
authenticated code execution mode, memory (excluding implicit write-back transac-
tions) access and I/O originating from other processor agents are blocked. This
protection starts when the ILP enters into authenticated code execution mode. Only
memory and I/O transactions initiated from the ILP are allowed to proceed. Exiting
authenticated code execution mode is done by executing GETSEC[EXITAC]. The
protection of memory and I/O activities remains in effect until the ILP executes
GETSEC[EXITAC].

Prior to launching the authenticated execution module using GETSEC[ENTERACCS]
or GETSEC[SENTER], the processor’s MTRRs (Memory Type Range Registers) must
first be initialized to map out the authenticated RAM addresses as WB (writeback).
Failure to do so may affect the ability for the processor to maintain isolation of the
loaded authenticated code module. If the processor detected this requirement is not
met, it will signal an Intel® TXT reset condition with an error code during the loading
of the authenticated code module.

While physical addresses within the load module must be mapped as WB, the
memory type for locations outside of the module boundaries must be mapped to one
of the supported memory types as returned by GETSEC[PARAMETERS] (or UC as
default).

To conform to the minimum granularity of MTRR MSRs for specifying the memory
type, authenticated code RAM (ACRAM) is allocated to the processor in 4096 byte
granular blocks. If an AC module size as specified in ECX is not a multiple of 4096
then the processor will allocate up to the next 4096 byte boundary for mapping as
ACRAM with indeterminate data. This pad area will not be visible to the authenticated
code module as external memory nor can it depend on the value of the data used to
fill the pad area.

At the successful completion of GETSEC[ENTERACCS], the architectural state of the
processor is partially initialized from contents held in the header of the authenticated
code module. The processor GDTR, CS, and DS selectors are initialized from fields
within the authenticated code module. Since the authenticated code module must be
relocatable, all address references must be relative to the authenticated code module
base address in EBX. The processor GDTR base value is initialized to the AC module
header field GDTBasePtr + module base address held in EBX and the GDTR limit is set
to the value in the GDTLimit field. The CS selector is initialized to the AC module
header SegSel field, while the DS selector is initialized to CS + 8. The segment
5-14 Vol. 2C GETSEC[ENTERACCS] - Execute Authenticated Chipset Code

SAFER MODE EXTENSIONS REFERENCE
descriptor fields are implicitly initialized to BASE=0, LIMIT=FFFFFh, G=1, D=1, P=1,
S=1, read/write access for DS, and execute/read access for CS. The processor
begins the authenticated code module execution with the EIP set to the AC module
header EntryPoint field + module base address (EBX). The AC module based fields
used for initializing the processor state are checked for consistency and any failure
results in a shutdown condition.

A summary of the register state initialization after successful completion of
GETSEC[ENTERACCS] is given for the processor in Table 5-4. The paging is disabled
upon entry into authenticated code execution mode. The authenticated code module
is loaded and initially executed using physical addresses. It is up to the system soft-
ware after execution of GETSEC[ENTERACCS] to establish a new (or restore its
previous) paging environment with an appropriate mapping to meet new protection
requirements. EBP is initialized to the authenticated code module base physical
address for initial execution in the authenticated environment. As a result, the
authenticated code can reference EBP for relative address based references, given
that the authenticated code module must be position independent.

Table 5-4. Register State Initialization after GETSEC[ENTERACCS]

Register State Initialization Status Comment

CR0 PG←0, AM←0, WP←0: Others
unchanged

Paging, Alignment Check, Write-
protection are disabled

CR4 MCE←0: Others unchanged Machine Check Exceptions Disabled

EFLAGS 00000002H

IA32_EFER 0H IA-32e mode disabled

EIP AC.base + EntryPoint AC.base is in EBX as input to
GETSEC[ENTERACCS]

[E|R]BX Pre-ENTERACCS state: Next [E|R]IP
prior to GETSEC[ENTERACCS]

Carry forward 64-bit processor
state across GETSEC[ENTERACCS]

ECX Pre-ENTERACCS state:
[31:16]=GDTR.limit; [15:0]=CS.sel

Carry forward processor state
across GETSEC[ENTERACCS]

[E|R]DX Pre-ENTERACCS state:
GDTR base

Carry forward 64-bit processor
state across GETSEC[ENTERACCS]

EBP AC.base

CS Sel=[SegSel], base=0, limit=FFFFFh,
G=1, D=1, AR=9BH

DS Sel=[SegSel] +8, base=0,
limit=FFFFFh, G=1, D=1, AR=93H
Vol. 2C 5-15GETSEC[ENTERACCS] - Execute Authenticated Chipset Code

SAFER MODE EXTENSIONS REFERENCE
The segmentation related processor state that has not been initialized by
GETSEC[ENTERACCS] requires appropriate initialization before use. Since a new GDT
context has been established, the previous state of the segment selector values held
in ES, SS, FS, GS, TR, and LDTR might not be valid.

The MSR IA32_EFER is also unconditionally cleared as part of the processor state
initialized by ENTERACCS. Since paging is disabled upon entering authenticated code
execution mode, a new paging environment will have to be reestablished in order to
establish IA-32e mode while operating in authenticated code execution mode.

Debug exception and trap related signaling is also disabled as part of
GETSEC[ENTERACCS]. This is achieved by resetting DR7, TF in EFLAGs, and the MSR
IA32_DEBUGCTL. These debug functions are free to be re-enabled once supporting
exception handler(s), descriptor tables, and debug registers have been properly
initialized following entry into authenticated code execution mode. Also, any pending
single-step trap condition will have been cleared upon entry into this mode.

The IA32_MISC_ENABLE MSR is initialized upon entry into authenticated execution
mode. Certain bits of this MSR are preserved because preserving these bits may be
important to maintain previously established platform settings (See the footnote for
Table 5-5.). The remaining bits are cleared for the purpose of establishing a more
consistent environment for the execution of authenticated code modules. One of the
impacts of initializing this MSR is any previous condition established by the MONITOR
instruction will be cleared.

To support the possible return to the processor architectural state prior to execution
of GETSEC[ENTERACCS], certain critical processor state is captured and stored in the
general- purpose registers at instruction completion. [E|R]BX holds effective address
([E|R]IP) of the instruction that would execute next after GETSEC[ENTERACCS],
ECX[15:0] holds the CS selector value, ECX[31:16] holds the GDTR limit field, and
[E|R]DX holds the GDTR base field. The subsequent authenticated code can preserve
the contents of these registers so that this state can be manually restored if needed,
prior to exiting authenticated code execution mode with GETSEC[EXITAC]. For the
processor state after exiting authenticated code execution mode, see the description
of GETSEC[SEXIT].

GDTR Base= AC.base (EBX) + [GDTBasePtr],
Limit=[GDTLimit]

DR7 00000400H

IA32_DEBUGCTL 0H

IA32_MISC_ENA
BLE

see Table 5-5 for example The number of initialized fields may
change due.to processor
implementation

Table 5-4. Register State Initialization after GETSEC[ENTERACCS] (Contd.)

Register State Initialization Status Comment
5-16 Vol. 2C GETSEC[ENTERACCS] - Execute Authenticated Chipset Code

SAFER MODE EXTENSIONS REFERENCE
The IDTR will also require reloading with a new IDT context after entering authenti-
cated code execution mode, before any exceptions or the external interrupts INTR
and NMI can be handled. Since external interrupts are re-enabled at the completion
of authenticated code execution mode (as terminated with EXITAC), it is recom-
mended that a new IDT context be established before this point. Until such a new IDT
context is established, the programmer must take care in not executing an INT n
instruction or any other operation that would result in an exception or trap signaling.

Prior to completion of the GETSEC[ENTERACCS] instruction and after successful
authentication of the AC module, the private configuration space of the Intel TXT
chipset is unlocked. The authenticated code module alone can gain access to this
normally restricted chipset state for the purpose of securing the platform.

Table 5-5. IA32_MISC_ENALBES MSR Initialization1 by ENTERACCS and SENTER

NOTES:
1. The number of IA32_MISC_ENABLE fields that are initialized may vary due to processor imple-

mentations.

Field Bit position Description

Fast strings enable 0 Clear to 0

FOPCODE compatibility
mode enable

2 Clear to 0

Thermal monitor
enable

3 Set to 1 if other thermal monitor capability is not
enabled.2

2. ENTERACCS (and SENTER) initialize the state of processor thermal throttling such that at least a
minimum level is enabled. If thermal throttling is already enabled when executing one of these
GETSEC leaves, then no change in the thermal throttling control settings will occur. If thermal
throttling is disabled, then it will be enabled via setting of the thermal throttle control bit 3 as a
result of executing these GETSEC leaves.

Split-lock disable 4 Clear to 0

Bus lock on cache line
splits disable

8 Clear to 0

Hardware prefetch
disable

9 Clear to 0

GV1/2 legacy enable 15 Clear to 0

MONITOR/MWAIT s/m
enable

18 Clear to 0

Adjacent sector
prefetch disable

19 Clear to 0
Vol. 2C 5-17GETSEC[ENTERACCS] - Execute Authenticated Chipset Code

SAFER MODE EXTENSIONS REFERENCE
Once the authenticated code module is launched at the completion of
GETSEC[ENTERACCS], it is free to enable interrupts by setting EFLAGS.IF and enable
NMI by execution of IRET. This presumes that it has re-established interrupt handling
support through initialization of the IDT, GDT, and corresponding interrupt handling
code.

Operation in a Uni-Processor Platform
(* The state of the internal flag ACMODEFLAG persists across instruction boundary *)
IF (CR4.SMXE=0)

THEN #UD;
ELSIF (in VMX non-root operation)

THEN VM Exit (reason=”GETSEC instruction”);
ELSIF (GETSEC leaf unsupported)

THEN #UD;
ELSIF ((in VMX operation) or

(CR0.PE=0) or (CR0.CD=1) or (CR0.NW=1) or (CR0.NE=0) or
(CPL>0) or (EFLAGS.VM=1) or
(IA32_APIC_BASE.BSP=0) or
(TXT chipset not present) or
(ACMODEFLAG=1) or (IN_SMM=1))

THEN #GP(0);
IF (GETSEC[PARAMETERS].Parameter_Type = 5, MCA_Handling (bit 6) = 0)

FOR I = 0 to IA32_MCG_CAP.COUNT-1 DO
IF (IA32_MC[I]_STATUS = uncorrectable error)

THEN #GP(0);
OD;

FI;
IF (IA32_MCG_STATUS.MCIP=1) or (IERR pin is asserted)

THEN #GP(0);
ACBASE← EBX;
ACSIZE← ECX;
IF (((ACBASE MOD 4096) != 0) or ((ACSIZE MOD 64)!= 0) or (ACSIZE < minimum module size) OR
(ACSIZE > authenticated RAM capacity)) or ((ACBASE+ACSIZE) > (2^32 -1)))

THEN #GP(0);
IF (secondary thread(s) CR0.CD = 1) or ((secondary thread(s) NOT(wait-for-SIPI)) and

(secondary thread(s) not in SENTER sleep state)
THEN #GP(0);

Mask SMI, INIT, A20M, and NMI external pin events;
IA32_MISC_ENABLE← (IA32_MISC_ENABLE & MASK_CONST*)
(* The hexadecimal value of MASK_CONST may vary due to processor implementations *)
A20M← 0;
IA32_DEBUGCTL← 0;
Invalidate processor TLB(s);
Drain Outgoing Transactions;
5-18 Vol. 2C GETSEC[ENTERACCS] - Execute Authenticated Chipset Code

SAFER MODE EXTENSIONS REFERENCE
ACMODEFLAG← 1;
SignalTXTMessage(ProcessorHold);
Load the internal ACRAM based on the AC module size;
(* Ensure that all ACRAM loads hit Write Back memory space *)
IF (ACRAM memory type != WB)

THEN TXT-SHUTDOWN(#BadACMMType);
IF (AC module header version isnot supported) OR (ACRAM[ModuleType] <> 2)

THEN TXT-SHUTDOWN(#UnsupportedACM);
 (* Authenticate the AC Module and shutdown with an error if it fails *)
KEY← GETKEY(ACRAM, ACBASE);
KEYHASH← HASH(KEY);
CSKEYHASH← READ(TXT.PUBLIC.KEY);
IF (KEYHASH <> CSKEYHASH)

THEN TXT-SHUTDOWN(#AuthenticateFail);
SIGNATURE← DECRYPT(ACRAM, ACBASE, KEY);
(* The value of SIGNATURE_LEN_CONST is implementation-specific*)
FOR I=0 to SIGNATURE_LEN_CONST - 1 DO

ACRAM[SCRATCH.I]← SIGNATURE[I];
COMPUTEDSIGNATURE← HASH(ACRAM, ACBASE, ACSIZE);
FOR I=0 to SIGNATURE_LEN_CONST - 1 DO

ACRAM[SCRATCH.SIGNATURE_LEN_CONST+I]← COMPUTEDSIGNATURE[I];
IF (SIGNATURE<>COMPUTEDSIGNATURE)

THEN TXT-SHUTDOWN(#AuthenticateFail);
ACMCONTROL← ACRAM[CodeControl];
IF ((ACMCONTROL.0 = 0) and (ACMCONTROL.1 = 1) and (snoop hit to modified line detected on
ACRAM load))

THEN TXT-SHUTDOWN(#UnexpectedHITM);
IF (ACMCONTROL reserved bits are set)

THEN TXT-SHUTDOWN(#BadACMFormat);
IF ((ACRAM[GDTBasePtr] < (ACRAM[HeaderLen] * 4 + Scratch_size)) OR

((ACRAM[GDTBasePtr] + ACRAM[GDTLimit]) >= ACSIZE))
THEN TXT-SHUTDOWN(#BadACMFormat);

IF ((ACMCONTROL.0 = 1) and (ACMCONTROL.1 = 1) and (snoop hit to modified line detected on
ACRAM load))

THEN ACEntryPoint← ACBASE+ACRAM[ErrorEntryPoint];
ELSE

ACEntryPoint← ACBASE+ACRAM[EntryPoint];
IF ((ACEntryPoint >= ACSIZE) OR (ACEntryPoint < (ACRAM[HeaderLen] * 4 + Scratch_size)))THEN
TXT-SHUTDOWN(#BadACMFormat);
IF (ACRAM[GDTLimit] & FFFF0000h)

THEN TXT-SHUTDOWN(#BadACMFormat);
IF ((ACRAM[SegSel] > (ACRAM[GDTLimit] - 15)) OR (ACRAM[SegSel] < 8))

THEN TXT-SHUTDOWN(#BadACMFormat);
IF ((ACRAM[SegSel].TI=1) OR (ACRAM[SegSel].RPL!=0))
Vol. 2C 5-19GETSEC[ENTERACCS] - Execute Authenticated Chipset Code

SAFER MODE EXTENSIONS REFERENCE
THEN TXT-SHUTDOWN(#BadACMFormat);
CR0.[PG.AM.WP]← 0;
CR4.MCE← 0;
EFLAGS← 00000002h;
IA32_EFER← 0h;
[E|R]BX← [E|R]IP of the instruction after GETSEC[ENTERACCS];
ECX← Pre-GETSEC[ENTERACCS] GDT.limit:CS.sel;
[E|R]DX← Pre-GETSEC[ENTERACCS] GDT.base;
EBP← ACBASE;
GDTR.BASE← ACBASE+ACRAM[GDTBasePtr];
GDTR.LIMIT← ACRAM[GDTLimit];
CS.SEL← ACRAM[SegSel];
CS.BASE← 0;
CS.LIMIT← FFFFFh;
CS.G← 1;
CS.D← 1;
CS.AR← 9Bh;
DS.SEL← ACRAM[SegSel]+8;
DS.BASE← 0;
DS.LIMIT← FFFFFh;
DS.G← 1;
DS.D← 1;
DS.AR← 93h;
DR7← 00000400h;
IA32_DEBUGCTL← 0;
SignalTXTMsg(OpenPrivate);
SignalTXTMsg(OpenLocality3);
EIP← ACEntryPoint;
END;

Flags Affected
All flags are cleared.

Use of Prefixes
LOCK Causes #UD
REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ)
Operand size Causes #UD
Segment overrides Ignored
Address size Ignored
REX Ignored
5-20 Vol. 2C GETSEC[ENTERACCS] - Execute Authenticated Chipset Code

SAFER MODE EXTENSIONS REFERENCE
Protected Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[ENTERACCS] is not reported as supported by
GETSEC[CAPABILITIES].

#GP(0) If CR0.CD = 1 or CR0.NW = 1 or CR0.NE = 0 or CR0.PE = 0 or
CPL > 0 or EFLAGS.VM = 1.
If a Intel® TXT-capable chipset is not present.
If in VMX root operation.
If the initiating processor is not designated as the bootstrap
processor via the MSR bit IA32_APIC_BASE.BSP.
If the processor is already in authenticated code execution
mode.
If the processor is in SMM.
If a valid uncorrectable machine check error is logged in
IA32_MC[I]_STATUS.
If the authenticated code base is not on a 4096 byte boundary.
If the authenticated code size > processor internal authenti-
cated code area capacity.
If the authenticated code size is not modulo 64.
If other enabled logical processor(s) of the same package
CR0.CD = 1.
If other enabled logical processor(s) of the same package are
not in the wait-for-SIPI or SENTER sleep state.

Real-Address Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[ENTERACCS] is not reported as supported by
GETSEC[CAPABILITIES].

#GP(0) GETSEC[ENTERACCS] is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[ENTERACCS] is not reported as supported by
GETSEC[CAPABILITIES].

#GP(0) GETSEC[ENTERACCS] is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
All protected mode exceptions apply.
#GP IF AC code module does not reside in physical address below

2^32 -1.
Vol. 2C 5-21GETSEC[ENTERACCS] - Execute Authenticated Chipset Code

SAFER MODE EXTENSIONS REFERENCE
64-Bit Mode Exceptions
All protected mode exceptions apply.
#GP IF AC code module does not reside in physical address below

2^32 -1.

VM-exit Condition
Reason (GETSEC) IF in VMX non-root operation.
5-22 Vol. 2C GETSEC[ENTERACCS] - Execute Authenticated Chipset Code

SAFER MODE EXTENSIONS REFERENCE
GETSEC[EXITAC]—Exit Authenticated Code Execution Mode

Description

The GETSEC[EXITAC] leaf function exits the ILP out of authenticated code execution
mode established by GETSEC[ENTERACCS] or GETSEC[SENTER]. The EXITAC leaf of
GETSEC is selected with EAX set to 3 at entry. EBX (or RBX, if in 64-bit mode) holds
the near jump target offset for where the processor execution resumes upon exiting
authenticated code execution mode. EDX contains additional parameter control
information. Currently only an input value of 0 in EDX is supported. All other EDX
settings are considered reserved and result in a general protection violation.

GETSEC[EXITAC] can only be executed if the processor is in protected mode with CPL
= 0 and EFLAGS.VM = 0. The processor must also be in authenticated code execution
mode. To avoid potential operability conflicts between modes, the processor is not
allowed to execute this instruction if it is in SMM or in VMX operation. A violation of
these conditions results in a general protection violation.

Upon completion of the GETSEC[EXITAC] operation, the processor unmasks
responses to external event signals INIT#, NMI#, and SMI#. This unmasking is
performed conditionally, based on whether the authenticated code execution mode
was entered via execution of GETSEC[SENTER] or GETSEC[ENTERACCS]. If the
processor is in authenticated code execution mode due to the execution of
GETSEC[SENTER], then these external event signals will remain masked. In this
case, A20M is kept disabled in the measured environment until the measured envi-
ronment executes GETSEC[SEXIT]. INIT# is unconditionally unmasked by EXITAC.
Note that any events that are pending, but have been blocked while in authenticated
code execution mode, will be recognized at the completion of the GETSEC[EXITAC]
instruction if the pin event is unmasked.

The intent of providing the ability to optionally leave the pin events SMI#, and NMI#
masked is to support the completion of a measured environment bring-up that
makes use of VMX. In this envisioned security usage scenario, these events will
remain masked until an appropriate virtual machine has been established in order to
field servicing of these events in a safer manner. Details on when and how events are
masked and unmasked in VMX operation are described in Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3C. It should be cautioned that if no
VMX environment is to be activated following GETSEC[EXITAC], that these events
will remain masked until the measured environment is exited with GETSEC[SEXIT].
If this is not desired then the GETSEC function SMCTRL(0) can be used for
unmasking SMI# in this context. NMI# can be correspondingly unmasked by execu-
tion of IRET.

Opcode Instruction Description

0F 37

(EAX=3)

GETSEC[EXITA
C]

Exit authenticated code execution mode.

RBX holds the Near Absolute Indirect jump target and EDX hold
the exit parameter flags
Vol. 2C 5-23GETSEC[EXITAC]—Exit Authenticated Code Execution Mode

SAFER MODE EXTENSIONS REFERENCE
A successful exit of the authenticated code execution mode requires the ILP to
perform additional steps as outlined below:
• Invalidate the contents of the internal authenticated code execution area.
• Invalidate processor TLBs.
• Clear the internal processor AC Mode indicator flag.
• Re-lock the TPM locality 3 space.
• Unlock the Intel® TXT-capable chipset memory and I/O protections to allow

memory and I/O activity by other processor agents.
• Perform a near absolute indirect jump to the designated instruction location.

The content of the authenticated code execution area is invalidated by hardware in
order to protect it from further use or visibility. This internal processor storage area
can no longer be used or relied upon after GETSEC[EXITAC]. Data structures need to
be re-established outside of the authenticated code execution area if they are to be
referenced after EXITAC. Since addressed memory content formerly mapped to the
authenticated code execution area may no longer be coherent with external system
memory after EXITAC, processor TLBs in support of linear to physical address trans-
lation are also invalidated.

Upon completion of GETSEC[EXITAC] a near absolute indirect transfer is performed
with EIP loaded with the contents of EBX (based on the current operating mode size).
In 64-bit mode, all 64 bits of RBX are loaded into RIP if REX.W precedes
GETSEC[EXITAC]. Otherwise RBX is treated as 32 bits even while in 64-bit mode.
Conventional CS limit checking is performed as part of this control transfer. Any
exception conditions generated as part of this control transfer will be directed to the
existing IDT; thus it is recommended that an IDTR should also be established prior to
execution of the EXITAC function if there is a need for fault handling. In addition, any
segmentation related (and paging) data structures to be used after EXITAC should be
re-established or validated by the authenticated code prior to EXITAC.

In addition, any segmentation related (and paging) data structures to be used after
EXITAC need to be re-established and mapped outside of the authenticated RAM
designated area by the authenticated code prior to EXITAC. Any data structure held
within the authenticated RAM allocated area will no longer be accessible after
completion by EXITAC.

Operation
(* The state of the internal flag ACMODEFLAG and SENTERFLAG persist across instruction
boundary *)
IF (CR4.SMXE=0)

THEN #UD;
ELSIF (in VMX non-root operation)

THEN VM Exit (reason=”GETSEC instruction”);
ELSIF (GETSEC leaf unsupported)

THEN #UD;
ELSIF ((in VMX operation) or ((in 64-bit mode) and (RBX is non-canonical))
5-24 Vol. 2C GETSEC[EXITAC]—Exit Authenticated Code Execution Mode

SAFER MODE EXTENSIONS REFERENCE
(CR0.PE=0) or (CPL>0) or (EFLAGS.VM=1) or
(ACMODEFLAG=0) or (IN_SMM=1)) or (EDX != 0))
THEN #GP(0);

IF (OperandSize = 32)
THEN tempEIP← EBX;

ELSIF (OperandSize = 64)
THEN tempEIP← RBX;

ELSE
tempEIP← EBX AND 0000FFFFH;

IF (tempEIP > code segment limit)
THEN #GP(0);

Invalidate ACRAM contents;
Invalidate processor TLB(s);
Drain outgoing messages;
SignalTXTMsg(CloseLocality3);
SignalTXTMsg(LockSMRAM);
SignalTXTMsg(ProcessorRelease);
Unmask INIT;
IF (SENTERFLAG=0)

THEN Unmask SMI, INIT, NMI, and A20M pin event;
ELSEIF (IA32_SMM_MONITOR_CTL[0] = 0)

THEN Unmask SMI pin event;
ACMODEFLAG← 0;
EIP← tempEIP;
END;

Flags Affected

None.

Use of Prefixes
LOCK Causes #UD
REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ)
Operand size Causes #UD
Segment overrides Ignored
Address size Ignored
REX.W Sets 64-bit mode Operand size attribute

Protected Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[EXITAC] is not reported as supported by
GETSEC[CAPABILITIES].
Vol. 2C 5-25GETSEC[EXITAC]—Exit Authenticated Code Execution Mode

SAFER MODE EXTENSIONS REFERENCE
#GP(0) If CR0.PE = 0 or CPL>0 or EFLAGS.VM =1.
If in VMX root operation.
If the processor is not currently in authenticated code execution
mode.
If the processor is in SMM.
If any reserved bit position is set in the EDX parameter register.

Real-Address Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[EXITAC] is not reported as supported by
GETSEC[CAPABILITIES].

#GP(0) GETSEC[EXITAC] is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[EXITAC] is not reported as supported by
GETSEC[CAPABILITIES].

#GP(0) GETSEC[EXITAC] is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
All protected mode exceptions apply.

64-Bit Mode Exceptions
All protected mode exceptions apply.
#GP(0) If the target address in RBX is not in a canonical form.

VM-Exit Condition
Reason (GETSEC) IF in VMX non-root operation.
5-26 Vol. 2C GETSEC[EXITAC]—Exit Authenticated Code Execution Mode

SAFER MODE EXTENSIONS REFERENCE
GETSEC[SENTER]—Enter a Measured Environment

Description

The GETSEC[SENTER] instruction initiates the launch of a measured environment
and places the initiating logical processor (ILP) into the authenticated code execution
mode. The SENTER leaf of GETSEC is selected with EAX set to 4 at execution. The
physical base address of the AC module to be loaded and authenticated is specified in
EBX. The size of the module in bytes is specified in ECX. EDX controls the level of
functionality supported by the measured environment launch. To enable the full func-
tionality of the protected environment launch, EDX must be initialized to zero.

The authenticated code base address and size parameters (in bytes) are passed to
the GETSEC[SENTER] instruction using EBX and ECX respectively. The ILP evaluates
the contents of these registers according to the rules for the AC module address in
GETSEC[ENTERACCS]. AC module execution follows the same rules, as set by
GETSEC[ENTERACCS].

The launching software must ensure that the TPM.ACCESS_0.activeLocality bit is
clear before executing the GETSEC[SENTER] instruction.

There are restrictions enforced by the processor for execution of the
GETSEC[SENTER] instruction:
• Execution is not allowed unless the processor is in protected mode or IA-32e

mode with CPL = 0 and EFLAGS.VM = 0.
• Processor cache must be available and not disabled using the CR0.CD and NW

bits.
• For enforcing consistency of operation with numeric exception reporting using

Interrupt 16, CR0.NE must be set.
• An Intel TXT-capable chipset must be present as communicated to the processor

by sampling of the power-on configuration capability field after reset.
• The processor can not be in authenticated code execution mode or already in a

measured environment (as launched by a previous GETSEC[ENTERACCS] or
GETSEC[SENTER] instruction).

• To avoid potential operability conflicts between modes, the processor is not
allowed to execute this instruction if it currently is in SMM or VMX operation.

Opcode Instruction Description

0F 37

(EAX=4)

GETSEC[SENTER] Launch a measured environment

EBX holds the SINIT authenticated code module physical
base address.

ECX holds the SINIT authenticated code module size
(bytes).

EDX controls the level of functionality supported by the
measured environment launch.
Vol. 2C 5-27GETSEC[SENTER]—Enter a Measured Environment

SAFER MODE EXTENSIONS REFERENCE
• To insure consistent handling of SIPI messages, the processor executing the
GETSEC[SENTER] instruction must also be designated the BSP (boot-strap
processor) as defined by A32_APIC_BASE.BSP (Bit 8).

• EDX must be initialized to a setting supportable by the processor. Unless
enumeration by the GETSEC[PARAMETERS] leaf reports otherwise, only a value
of zero is supported.

Failure to abide by the above conditions results in the processor signaling a general
protection violation.

This instruction leaf starts the launch of a measured environment by initiating a
rendezvous sequence for all logical processors in the platform. The rendezvous
sequence involves the initiating logical processor sending a message (by executing
GETSEC[SENTER]) and other responding logical processors (RLPs) acknowledging
the message, thus synchronizing the RLP(s) with the ILP.

In response to a message signaling the completion of rendezvous, RLPs clear the
bootstrap processor indicator flag (IA32_APIC_BASE.BSP) and enter an SENTER
sleep state. In this sleep state, RLPs enter an idle processor condition while waiting
to be activated after a measured environment has been established by the system
executive. RLPs in the SENTER sleep state can only be activated by the GETSEC leaf
function WAKEUP in a measured environment.

A successful launch of the measured environment results in the initiating logical
processor entering the authenticated code execution mode. Prior to reaching this
point, the ILP performs the following steps internally:
• Inhibit processor response to the external events: INIT, A20M, NMI, and SMI.
• Establish and check the location and size of the authenticated code module to be

executed by the ILP.
• Check for the existence of an Intel® TXT-capable chipset.
• Verify the current power management configuration is acceptable.
• Broadcast a message to enable protection of memory and I/O from activities

from other processor agents.
• Load the designated AC module into authenticated code execution area.
• Isolate the content of authenticated code execution area from further state

modification by external agents.
• Authenticate the AC module.
• Updated the Trusted Platform Module (TPM) with the authenticated code

module's hash.
• Initialize processor state based on the authenticated code module header infor-

mation.
• Unlock the Intel® TXT-capable chipset private configuration register space and

TPM locality 3 space.
• Begin execution in the authenticated code module at the defined entry point.
5-28 Vol. 2C GETSEC[SENTER]—Enter a Measured Environment

SAFER MODE EXTENSIONS REFERENCE
As an integrity check for proper processor hardware operation, execution of
GETSEC[SENTER] will also check the contents of all the machine check status regis-
ters (as reported by the MSRs IA32_MCi_STATUS) for any valid uncorrectable error
condition. In addition, the global machine check status register IA32_MCG_STATUS
MCIP bit must be cleared and the IERR processor package pin (or its equivalent)
must be not asserted, indicating that no machine check exception processing is
currently in-progress. These checks are performed twice: once by the ILP prior to the
broadcast of the rendezvous message to RLPs, and later in response to RLPs
acknowledging the rendezvous message. Any outstanding valid uncorrectable
machine check error condition present in the machine check status registers at the
first check point will result in the ILP signaling a general protection violation. If an
outstanding valid uncorrectable machine check error condition is present at the
second check point, then this will result in the corresponding logical processor
signaling the more severe TXT-shutdown condition with an error code of 12.

Before loading and authentication of the target code module is performed, the
processor also checks that the current voltage and bus ratio encodings correspond to
known good values supportable by the processor. The MSR IA32_PERF_STATUS
values are compared against either the processor supported maximum operating
target setting, system reset setting, or the thermal monitor operating target. If the
current settings do not meet any of these criteria then the SENTER function will
attempt to change the voltage and bus ratio select controls in a processor-specific
manner. This adjustment may be to the thermal monitor, minimum (if different), or
maximum operating target depending on the processor.

This implies that some thermal operating target parameters configured by BIOS may
be overridden by SENTER. The measured environment software may need to take
responsibility for restoring such settings that are deemed to be safe, but not neces-
sarily recognized by SENTER. If an adjustment is not possible when an out of range
setting is discovered, then the processor will abort the measured launch. This may be
the case for chipset controlled settings of these values or if the controllability is not
enabled on the processor. In this case it is the responsibility of the external software
to program the chipset voltage ID and/or bus ratio select settings to known good
values recognized by the processor, prior to executing SENTER.

NOTE
For a mobile processor, an adjustment can be made according to the
thermal monitor operating target. For a quad-core processor the
SENTER adjustment mechanism may result in a more conservative
but non-uniform voltage setting, depending on the pre-SENTER
settings per core.

The ILP and RLPs mask the response to the assertion of the external signals INIT#,
A20M, NMI#, and SMI#. The purpose of this masking control is to prevent exposure
to existing external event handlers until a protected handler has been put in place to
directly handle these events. Masked external pin events may be unmasked condi-
tionally or unconditionally via the GETSEC[EXITAC], GETSEC[SEXIT],
GETSEC[SMCTRL] or for specific VMX related operations such as a VM entry or the
Vol. 2C 5-29GETSEC[SENTER]—Enter a Measured Environment

SAFER MODE EXTENSIONS REFERENCE
VMXOFF instruction (see respective GETSEC leaves and Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3C for more details).The state of the
A20M pin is masked and forced internally to a de-asserted state so that external
assertion is not recognized. A20M masking as set by GETSEC[SENTER] is undone
only after taking down the measured environment with the GETSEC[SEXIT] instruc-
tion or processor reset. INTR is masked by simply clearing the EFLAGS.IF bit. It is the
responsibility of system software to control the processor response to INTR through
appropriate management of EFLAGS.

To prevent other (logical) processors from interfering with the ILP operating in
authenticated code execution mode, memory (excluding implicit write-back transac-
tions) and I/O activities originating from other processor agents are blocked. This
protection starts when the ILP enters into authenticated code execution mode. Only
memory and I/O transactions initiated from the ILP are allowed to proceed. Exiting
authenticated code execution mode is done by executing GETSEC[EXITAC]. The
protection of memory and I/O activities remains in effect until the ILP executes
GETSEC[EXITAC].

Once the authenticated code module has been loaded into the authenticated code
execution area, it is protected against further modification from external bus snoops.
There is also a requirement that the memory type for the authenticated code module
address range be WB (via initialization of the MTRRs prior to execution of this instruc-
tion). If this condition is not satisfied, it is a violation of security and the processor
will force a TXT system reset (after writing an error code to the chipset LT.ERROR-
CODE register). This action is referred to as a Intel® TXT reset condition. It is
performed when it is considered unreliable to signal an error through the conven-
tional exception reporting mechanism.

To conform to the minimum granularity of MTRR MSRs for specifying the memory
type, authenticated code RAM (ACRAM) is allocated to the processor in 4096 byte
granular blocks. If an AC module size as specified in ECX is not a multiple of 4096
then the processor will allocate up to the next 4096 byte boundary for mapping as
ACRAM with indeterminate data. This pad area will not be visible to the authenticated
code module as external memory nor can it depend on the value of the data used to
fill the pad area.

Once successful authentication has been completed by the ILP, the computed hash is
stored in the TPM at PCR17 after this register is implicitly reset. PCR17 is a dedicated
register for holding the computed hash of the authenticated code module loaded and
subsequently executed by the GETSEC[SENTER]. As part of this process, the
dynamic PCRs 18-22 are reset so they can be utilized by subsequently software for
registration of code and data modules. After successful execution of SENTER, PCR17
contains the measurement of AC code and the SENTER launching parameters.

After authentication is completed successfully, the private configuration space of the
Intel® TXT-capable chipset is unlocked so that the authenticated code module and
measured environment software can gain access to this normally restricted chipset
state. The Intel® TXT-capable chipset private configuration space can be locked later
by software writing to the chipset LT.CMD.CLOSE-PRIVATE register or unconditionally
using the GETSEC[SEXIT] instruction.
5-30 Vol. 2C GETSEC[SENTER]—Enter a Measured Environment

SAFER MODE EXTENSIONS REFERENCE
The SENTER leaf function also initializes some processor architecture state for the ILP
from contents held in the header of the authenticated code module. Since the
authenticated code module is relocatable, all address references are relative to the
base address passed in via EBX. The ILP GDTR base value is initialized to EBX +
[GDTBasePtr] and GDTR limit set to [GDTLimit]. The CS selector is initialized to the
value held in the AC module header field SegSel, while the DS, SS, and ES selectors
are initialized to CS+8. The segment descriptor fields are initialized implicitly with
BASE=0, LIMIT=FFFFFh, G=1, D=1, P=1, S=1, read/write/accessed for DS, SS, and
ES, while execute/read/accessed for CS. Execution in the authenticated code module
for the ILP begins with the EIP set to EBX + [EntryPoint]. AC module defined fields
used for initializing processor state are consistency checked with a failure resulting in
an TXT-shutdown condition.

Table 5-6 provides a summary of processor state initialization for the ILP and RLP(s)
after successful completion of GETSEC[SENTER]. For both ILP and RLP(s), paging is
disabled upon entry to the measured environment. It is up to the ILP to establish a
trusted paging environment, with appropriate mappings, to meet protection require-
ments established during the launch of the measured environment. RLP state initial-
ization is not completed until a subsequent wake-up has been signaled by execution
of the GETSEC[WAKEUP] function by the ILP.

Table 5-6. Register State Initialization after GETSEC[SENTER] and GETSEC[WAKEUP]

Register State ILP after GETSEC[SENTER] RLP after GETSEC[WAKEUP]

CR0 PG←0, AM←0, WP←0; Others
unchanged

PG←0, CD←0, NW←0, AM←0, WP←0;
PE←1, NE←1

CR4 00004000H 00004000H

EFLAGS 00000002H 00000002H

IA32_EFER 0H 0

EIP [EntryPoint from MLE header1] [LT.MLE.JOIN + 12]

EBX Unchanged [SINIT.BASE] Unchanged

EDX SENTER control flags Unchanged

EBP SINIT.BASE Unchanged

CS Sel=[SINIT SegSel], base=0,
limit=FFFFFh, G=1, D=1, AR=9BH

Sel = [LT.MLE.JOIN + 8], base = 0, limit
= FFFFFH, G = 1, D = 1, AR = 9BH

DS, ES, SS Sel=[SINIT SegSel] +8, base=0,
limit=FFFFFh, G=1, D=1, AR=93H

Sel = [LT.MLE.JOIN + 8] +8, base = 0,
limit = FFFFFH, G = 1, D = 1, AR = 93H
Vol. 2C 5-31GETSEC[SENTER]—Enter a Measured Environment

SAFER MODE EXTENSIONS REFERENCE
Segmentation related processor state that has not been initialized by
GETSEC[SENTER] requires appropriate initialization before use. Since a new GDT
context has been established, the previous state of the segment selector values held
in FS, GS, TR, and LDTR may no longer be valid. The IDTR will also require reloading
with a new IDT context after launching the measured environment before exceptions
or the external interrupts INTR and NMI can be handled. In the meantime, the
programmer must take care in not executing an INT n instruction or any other condi-
tion that would result in an exception or trap signaling.

Debug exception and trap related signaling is also disabled as part of execution of
GETSEC[SENTER]. This is achieved by clearing DR7, TF in EFLAGs, and the MSR
IA32_DEBUGCTL as defined in Table 5-6. These can be re-enabled once supporting
exception handler(s), descriptor tables, and debug registers have been properly re-
initialized following SENTER. Also, any pending single-step trap condition will be
cleared at the completion of SENTER for both the ILP and RLP(s).

Performance related counters and counter control registers are cleared as part of
execution of SENTER on both the ILP and RLP. This implies any active performance
counters at the time of SENTER execution will be disabled. To reactive the processor
performance counters, this state must be re-initialized and re-enabled.

Since MCE along with all other state bits (with the exception of SMXE) are cleared in
CR4 upon execution of SENTER processing, any enabled machine check error condi-
tion that occurs will result in the processor performing the TXT-shutdown action. This
also applies to an RLP while in the SENTER sleep state. For each logical processor

GDTR Base= SINIT.base (EBX) +
[SINIT.GDTBasePtr],
Limit=[SINIT.GDTLimit]

Base = [LT.MLE.JOIN + 4], Limit =
[LT.MLE.JOIN]

DR7 00000400H 00000400H

IA32_DEBUGC
TL

0H 0H

Performance
counters and
counter control
registers

0H 0H

IA32_MISC_EN
ABLE

See Table 5-5 See Table 5-5

IA32_SMM_MO
NITOR_CTL

Bit 2←0 Bit 2←0

NOTES:
1. See Intel® Trusted Execution Technology Measured Launched Environment Pro-

gramming Guide for MLE header format.

Table 5-6. Register State Initialization after GETSEC[SENTER] and GETSEC[WAKEUP]
5-32 Vol. 2C GETSEC[SENTER]—Enter a Measured Environment

SAFER MODE EXTENSIONS REFERENCE
CR4.MCE must be reestablished with a valid machine check exception handler to
otherwise avoid an TXT-shutdown under such conditions.

The MSR IA32_EFER is also unconditionally cleared as part of the processor state
initialized by SENTER for both the ILP and RLP. Since paging is disabled upon entering
authenticated code execution mode, a new paging environment will have to be re-
established if it is desired to enable IA-32e mode while operating in authenticated
code execution mode.

The miscellaneous feature control MSR, IA32_MISC_ENABLE, is initialized as part of
the measured environment launch. Certain bits of this MSR are preserved because
preserving these bits may be important to maintain previously established platform
settings. See the footnote for Table 5-5 The remaining bits are cleared for the
purpose of establishing a more consistent environment for the execution of authenti-
cated code modules. Among the impact of initializing this MSR, any previous condi-
tion established by the MONITOR instruction will be cleared.

Effect of MSR IA32_FEATURE_CONTROL MSR

Bits 15:8 of the IA32_FEATURE_CONTROL MSR affect the execution of
GETSEC[SENTER]. These bits consist of two fields:
• Bit 15: a global enable control for execution of SENTER.
• Bits 14:8: a parameter control field providing the ability to qualify SENTER

execution based on the level of functionality specified with corresponding EDX
parameter bits 6:0.

The layout of these fields in the IA32_FEATURE_CONTROL MSR is shown in Table 5-1.

Prior to the execution of GETSEC[SENTER], the lock bit of IA32_FEATURE_CONTROL
MSR must be bit set to affirm the settings to be used. Once the lock bit is set, only a
power-up reset condition will clear this MSR. The IA32_FEATURE_CONTROL MSR
must be configured in accordance to the intended usage at platform initialization.
Note that this MSR is only available on SMX or VMX enabled processors. Otherwise,
IA32_FEATURE_CONTROL is treated as reserved.

The Intel® Trusted Execution Technology Measured Launched Environment Programming Guide
provides additional details and requirements for programming measured environ-
ment software to launch in an Intel TXT platform.

Operation in a Uni-Processor Platform
(* The state of the internal flag ACMODEFLAG and SENTERFLAG persist across instruction
boundary *)
GETSEC[SENTER] (ILP only):
IF (CR4.SMXE=0)

THEN #UD;
ELSE IF (in VMX non-root operation)

THEN VM Exit (reason=”GETSEC instruction”);
ELSE IF (GETSEC leaf unsupported)

THEN #UD;
Vol. 2C 5-33GETSEC[SENTER]—Enter a Measured Environment

SAFER MODE EXTENSIONS REFERENCE
ELSE IF ((in VMX root operation) or
(CR0.PE=0) or (CR0.CD=1) or (CR0.NW=1) or (CR0.NE=0) or
(CPL>0) or (EFLAGS.VM=1) or
(IA32_APIC_BASE.BSP=0) or (TXT chipset not present) or
(SENTERFLAG=1) or (ACMODEFLAG=1) or (IN_SMM=1) or
(TPM interface is not present) or
(EDX != (SENTER_EDX_support_mask & EDX)) or
(IA32_CR_FEATURE_CONTROL[0]=0) or (IA32_CR_FEATURE_CONTROL[15]=0) or
((IA32_CR_FEATURE_CONTROL[14:8] & EDX[6:0]) != EDX[6:0]))

THEN #GP(0);
IF (GETSEC[PARAMETERS].Parameter_Type = 5, MCA_Handling (bit 6) = 0)

FOR I = 0 to IA32_MCG_CAP.COUNT-1 DO
IF IA32_MC[I]_STATUS = uncorrectable error

THEN #GP(0);
FI;

OD;
FI;
IF (IA32_MCG_STATUS.MCIP=1) or (IERR pin is asserted)

THEN #GP(0);
ACBASE← EBX;
ACSIZE← ECX;
IF (((ACBASE MOD 4096) != 0) or ((ACSIZE MOD 64) != 0) or (ACSIZE < minimum

module size) or (ACSIZE > AC RAM capacity) or ((ACBASE+ACSIZE) > (2^32 -1)))
THEN #GP(0);

Mask SMI, INIT, A20M, and NMI external pin events;
SignalTXTMsg(SENTER);
DO
WHILE (no SignalSENTER message);

TXT_SENTER__MSG_EVENT (ILP & RLP):
Mask and clear SignalSENTER event;
Unmask SignalSEXIT event;
IF (in VMX operation)

THEN TXT-SHUTDOWN(#IllegalEvent);
FOR I = 0 to IA32_MCG_CAP.COUNT-1 DO

IF IA32_MC[I]_STATUS = uncorrectable error
THEN TXT-SHUTDOWN(#UnrecovMCError);

FI;
OD;
IF (IA32_MCG_STATUS.MCIP=1) or (IERR pin is asserted)

THEN TXT-SHUTDOWN(#UnrecovMCError);
IF (Voltage or bus ratio status are NOT at a known good state)

THEN IF (Voltage select and bus ratio are internally adjustable)
5-34 Vol. 2C GETSEC[SENTER]—Enter a Measured Environment

SAFER MODE EXTENSIONS REFERENCE
THEN
Make product-specific adjustment on operating parameters;

ELSE
TXT-SHUTDOWN(#IIlegalVIDBRatio);

FI;

IA32_MISC_ENABLE← (IA32_MISC_ENABLE & MASK_CONST*)
(* The hexadecimal value of MASK_CONST may vary due to processor implementations *)
A20M← 0;
IA32_DEBUGCTL← 0;
Invalidate processor TLB(s);
Drain outgoing transactions;
Clear performance monitor counters and control;
SENTERFLAG← 1;
SignalTXTMsg(SENTERAck);
IF (logical processor is not ILP)

THEN GOTO RLP_SENTER_ROUTINE;
(* ILP waits for all logical processors to ACK *)
DO

DONE← TXT.READ(LT.STS);
WHILE (not DONE);
SignalTXTMsg(SENTERContinue);
SignalTXTMsg(ProcessorHold);
FOR I=ACBASE to ACBASE+ACSIZE-1 DO

ACRAM[I-ACBASE].ADDR← I;
ACRAM[I-ACBASE].DATA← LOAD(I);

OD;
IF (ACRAM memory type != WB)

THEN TXT-SHUTDOWN(#BadACMMType);
IF (AC module header version is not supported) OR (ACRAM[ModuleType] <> 2)

THEN TXT-SHUTDOWN(#UnsupportedACM);
KEY← GETKEY(ACRAM, ACBASE);
KEYHASH← HASH(KEY);
CSKEYHASH← LT.READ(LT.PUBLIC.KEY);
IF (KEYHASH <> CSKEYHASH)

THEN TXT-SHUTDOWN(#AuthenticateFail);
SIGNATURE← DECRYPT(ACRAM, ACBASE, KEY);
(* The value of SIGNATURE_LEN_CONST is implementation-specific*)
FOR I=0 to SIGNATURE_LEN_CONST - 1 DO

ACRAM[SCRATCH.I]← SIGNATURE[I];
COMPUTEDSIGNATURE← HASH(ACRAM, ACBASE, ACSIZE);
FOR I=0 to SIGNATURE_LEN_CONST - 1 DO

ACRAM[SCRATCH.SIGNATURE_LEN_CONST+I]← COMPUTEDSIGNATURE[I];
Vol. 2C 5-35GETSEC[SENTER]—Enter a Measured Environment

SAFER MODE EXTENSIONS REFERENCE
IF (SIGNATURE != COMPUTEDSIGNATURE)
THEN TXT-SHUTDOWN(#AuthenticateFail);

ACMCONTROL← ACRAM[CodeControl];
IF ((ACMCONTROL.0 = 0) and (ACMCONTROL.1 = 1) and (snoop hit to modified line detected on
ACRAM load))

THEN TXT-SHUTDOWN(#UnexpectedHITM);
IF (ACMCONTROL reserved bits are set)

THEN TXT-SHUTDOWN(#BadACMFormat);
IF ((ACRAM[GDTBasePtr] < (ACRAM[HeaderLen] * 4 + Scratch_size)) OR

((ACRAM[GDTBasePtr] + ACRAM[GDTLimit]) >= ACSIZE))
THEN TXT-SHUTDOWN(#BadACMFormat);

IF ((ACMCONTROL.0 = 1) and (ACMCONTROL.1 = 1) and (snoop hit to modified
line detected on ACRAM load))
THEN ACEntryPoint← ACBASE+ACRAM[ErrorEntryPoint];

ELSE
ACEntryPoint← ACBASE+ACRAM[EntryPoint];

IF ((ACEntryPoint >= ACSIZE) or (ACEntryPoint < (ACRAM[HeaderLen] * 4 + Scratch_size)))
THEN TXT-SHUTDOWN(#BadACMFormat);

IF ((ACRAM[SegSel] > (ACRAM[GDTLimit] - 15)) or (ACRAM[SegSel] < 8))
THEN TXT-SHUTDOWN(#BadACMFormat);

IF ((ACRAM[SegSel].TI=1) or (ACRAM[SegSel].RPL!=0))
THEN TXT-SHUTDOWN(#BadACMFormat);

ACRAM[SCRATCH.SIGNATURE_LEN_CONST]← EDX;
WRITE(TPM.HASH.START)← 0;
FOR I=0 to SIGNATURE_LEN_CONST + 3 DO

WRITE(TPM.HASH.DATA)← ACRAM[SCRATCH.I];
WRITE(TPM.HASH.END)← 0;
ACMODEFLAG← 1;
CR0.[PG.AM.WP]← 0;
CR4← 00004000h;
EFLAGS← 00000002h;
IA32_EFER← 0;
EBP← ACBASE;
GDTR.BASE← ACBASE+ACRAM[GDTBasePtr];
GDTR.LIMIT← ACRAM[GDTLimit];
CS.SEL← ACRAM[SegSel];
CS.BASE← 0;
CS.LIMIT← FFFFFh;
CS.G← 1;
CS.D← 1;
CS.AR← 9Bh;
DS.SEL← ACRAM[SegSel]+8;
DS.BASE← 0;
DS.LIMIT← FFFFFh;
5-36 Vol. 2C GETSEC[SENTER]—Enter a Measured Environment

SAFER MODE EXTENSIONS REFERENCE
DS.G← 1;
DS.D← 1;
DS.AR← 93h;
SS← DS;
ES← DS;
DR7← 00000400h;
IA32_DEBUGCTL← 0;
SignalTXTMsg(UnlockSMRAM);
SignalTXTMsg(OpenPrivate);
SignalTXTMsg(OpenLocality3);
EIP← ACEntryPoint;
END;

RLP_SENTER_ROUTINE: (RLP only)
Mask SMI, INIT, A20M, and NMI external pin events
Unmask SignalWAKEUP event;
Wait for SignalSENTERContinue message;
IA32_APIC_BASE.BSP← 0;
GOTO SENTER sleep state;
END;

Flags Affected

All flags are cleared.

Use of Prefixes
LOCK Causes #UD
REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ)
Operand size Causes #UD
Segment overrides Ignored
Address size Ignored
REX Ignored

Protected Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[SENTER] is not reported as supported by
GETSEC[CAPABILITIES].

#GP(0) If CR0.CD = 1 or CR0.NW = 1 or CR0.NE = 0 or CR0.PE = 0 or
CPL > 0 or EFLAGS.VM = 1.
If in VMX root operation.
If the initiating processor is not designated as the bootstrap
processor via the MSR bit IA32_APIC_BASE.BSP.
Vol. 2C 5-37GETSEC[SENTER]—Enter a Measured Environment

SAFER MODE EXTENSIONS REFERENCE
If an Intel® TXT-capable chipset is not present.
If an Intel® TXT-capable chipset interface to TPM is not detected
as present.
If a protected partition is already active or the processor is
already in authenticated code mode.
If the processor is in SMM.
If a valid uncorrectable machine check error is logged in
IA32_MC[I]_STATUS.
If the authenticated code base is not on a 4096 byte boundary.
If the authenticated code size > processor's authenticated code
execution area storage capacity.
If the authenticated code size is not modulo 64.

Real-Address Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[SENTER] is not reported as supported by
GETSEC[CAPABILITIES].

#GP(0) GETSEC[SENTER] is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[SENTER] is not reported as supported by
GETSEC[CAPABILITIES].

#GP(0) GETSEC[SENTER] is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
All protected mode exceptions apply.
#GP IF AC code module does not reside in physical address below

2^32 -1.

64-Bit Mode Exceptions
All protected mode exceptions apply.
#GP IF AC code module does not reside in physical address below

2^32 -1.

VM-Exit Condition
Reason (GETSEC) IF in VMX non-root operation.
5-38 Vol. 2C GETSEC[SENTER]—Enter a Measured Environment

SAFER MODE EXTENSIONS REFERENCE
GETSEC[SEXIT]—Exit Measured Environment

Description

The GETSEC[SEXIT] instruction initiates an exit of a measured environment estab-
lished by GETSEC[SENTER]. The SEXIT leaf of GETSEC is selected with EAX set to 5
at execution. This instruction leaf sends a message to all logical processors in the
platform to signal the measured environment exit.

There are restrictions enforced by the processor for the execution of the
GETSEC[SEXIT] instruction:
• Execution is not allowed unless the processor is in protected mode (CR0.PE = 1)

with CPL = 0 and EFLAGS.VM = 0.
• The processor must be in a measured environment as launched by a previous

GETSEC[SENTER] instruction, but not still in authenticated code execution mode.
• To avoid potential inter-operability conflicts between modes, the processor is not

allowed to execute this instruction if it currently is in SMM or in VMX operation.
• To insure consistent handling of SIPI messages, the processor executing the

GETSEC[SEXIT] instruction must also be designated the BSP (bootstrap
processor) as defined by the register bit IA32_APIC_BASE.BSP (bit 8).

Failure to abide by the above conditions results in the processor signaling a general
protection violation.

This instruction initiates a sequence to rendezvous the RLPs with the ILP. It then
clears the internal processor flag indicating the processor is operating in a measured
environment.

In response to a message signaling the completion of rendezvous, all RLPs restart
execution with the instruction that was to be executed at the time GETSEC[SEXIT]
was recognized. This applies to all processor conditions, with the following excep-
tions:
• If an RLP executed HLT and was in this halt state at the time of the message

initiated by GETSEC[SEXIT], then execution resumes in the halt state.
• If an RLP was executing MWAIT, then a message initiated by GETSEC[SEXIT]

causes an exit of the MWAIT state, falling through to the next instruction.
• If an RLP was executing an intermediate iteration of a string instruction, then the

processor resumes execution of the string instruction at the point which the
message initiated by GETSEC[SEXIT] was recognized.

• If an RLP is still in the SENTER sleep state (never awakened with
GETSEC[WAKEUP]), it will be sent to the wait-for-SIPI state after first clearing

Opcode Instruction Description

0F 37

(EAX=5)

GETSEC[SEXIT] Exit measured environment
Vol. 2C 5-39GETSEC[SEXIT]—Exit Measured Environment

SAFER MODE EXTENSIONS REFERENCE
the bootstrap processor indicator flag (IA32_APIC_BASE.BSP) and any pending
SIPI state. In this case, such RLPs are initialized to an architectural state
consistent with having taken a soft reset using the INIT# pin.

Prior to completion of the GETSEC[SEXIT] operation, both the ILP and any active
RLPs unmask the response of the external event signals INIT#, A20M, NMI#, and
SMI#. This unmasking is performed unconditionally to recognize pin events which
are masked after a GETSEC[SENTER]. The state of A20M is unmasked, as the A20M
pin is not recognized while the measured environment is active.

On a successful exit of the measured environment, the ILP re-locks the Intel® TXT-
capable chipset private configuration space. GETSEC[SEXIT] does not affect the
content of any PCR.

At completion of GETSEC[SEXIT] by the ILP, execution proceeds to the next instruc-
tion. Since EFLAGS and the debug register state are not modified by this instruction,
a pending trap condition is free to be signaled if previously enabled.

Operation in a Uni-Processor Platform
(* The state of the internal flag ACMODEFLAG and SENTERFLAG persist across instruction
boundary *)
GETSEC[SEXIT] (ILP only):
IF (CR4.SMXE=0)

THEN #UD;
ELSE IF (in VMX non-root operation)

THEN VM Exit (reason=”GETSEC instruction”);
ELSE IF (GETSEC leaf unsupported)

THEN #UD;
ELSE IF ((in VMX root operation) or

(CR0.PE=0) or (CPL>0) or (EFLAGS.VM=1) or
(IA32_APIC_BASE.BSP=0) or
(TXT chipset not present) or
(SENTERFLAG=0) or (ACMODEFLAG=1) or (IN_SMM=1))

THEN #GP(0);
SignalTXTMsg(SEXIT);
DO
WHILE (no SignalSEXIT message);

TXT_SEXIT_MSG_EVENT (ILP & RLP):
Mask and clear SignalSEXIT event;
Clear MONITOR FSM;
Unmask SignalSENTER event;
IF (in VMX operation)

THEN TXT-SHUTDOWN(#IllegalEvent);
SignalTXTMsg(SEXITAck);
IF (logical processor is not ILP)
5-40 Vol. 2C GETSEC[SEXIT]—Exit Measured Environment

SAFER MODE EXTENSIONS REFERENCE
THEN GOTO RLP_SEXIT_ROUTINE;
(* ILP waits for all logical processors to ACK *)
DO

DONE← READ(LT.STS);
WHILE (NOT DONE);
SignalTXTMsg(SEXITContinue);
SignalTXTMsg(ClosePrivate);
SENTERFLAG← 0;
Unmask SMI, INIT, A20M, and NMI external pin events;
END;

RLP_SEXIT_ROUTINE (RLPs only):
Wait for SignalSEXITContinue message;
Unmask SMI, INIT, A20M, and NMI external pin events;
IF (prior execution state = HLT)

THEN reenter HLT state;
IF (prior execution state = SENTER sleep)

THEN
IA32_APIC_BASE.BSP← 0;
Clear pending SIPI state;
Call INIT_PROCESSOR_STATE;
Unmask SIPI event;
GOTO WAIT-FOR-SIPI;

FI;
END;

Flags Affected
ILP: None.
RLPs: all flags are modified for an RLP. returning to wait-for-SIPI state, none other-

wise

Use of Prefixes
LOCK Causes #UD
REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ)
Operand size Causes #UD
Segment overrides Ignored
Address size Ignored
REX Ignored

Protected Mode Exceptions
#UD If CR4.SMXE = 0.
Vol. 2C 5-41GETSEC[SEXIT]—Exit Measured Environment

SAFER MODE EXTENSIONS REFERENCE
If GETSEC[SEXIT] is not reported as supported by
GETSEC[CAPABILITIES].

#GP(0) If CR0.PE = 0 or CPL > 0 or EFLAGS.VM = 1.
If in VMX root operation.
If the initiating processor is not designated as the via the MSR
bit IA32_APIC_BASE.BSP.
If an Intel® TXT-capable chipset is not present.
If a protected partition is not already active or the processor is
already in authenticated code mode.
If the processor is in SMM.

Real-Address Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[SEXIT] is not reported as supported by
GETSEC[CAPABILITIES].

#GP(0) GETSEC[SEXIT] is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[SEXIT] is not reported as supported by
GETSEC[CAPABILITIES].

#GP(0) GETSEC[SEXIT] is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
All protected mode exceptions apply.

64-Bit Mode Exceptions
All protected mode exceptions apply.

VM-Exit Condition
Reason (GETSEC) IF in VMX non-root operation.
5-42 Vol. 2C GETSEC[SEXIT]—Exit Measured Environment

SAFER MODE EXTENSIONS REFERENCE
GETSEC[PARAMETERS]—Report the SMX Parameters

Description

The GETSEC[PARAMETERS] instruction returns specific parameter information for
SMX features supported by the processor. Parameter information is returned in EAX,
EBX, and ECX, with the input parameter selected using EBX.

Software retrieves parameter information by searching with an input index for EBX
starting at 0, and then reading the returned results in EAX, EBX, and ECX. EAX[4:0]
is designated to return a parameter type field indicating if a parameter is available
and what type it is. If EAX[4:0] is returned with 0, this designates a null parameter
and indicates no more parameters are available.

Table 5-7 defines the parameter types supported in current and future implementa-
tions.

Opcode Instruction Description

0F 37

(EAX=6)

GETSEC[PARAMETERS] Report the SMX Parameters

The parameters index is input in EBX with the result
returned in EAX, EBX, and ECX.

Table 5-7. SMX Reporting Parameters Format

Parameter
Type EAX[4:0]

Parameter
Description EAX[31:5] EBX[31:0] ECX[31:0]

0 NULL Reserved (0
returned)

Reserved
(unmodified)

Reserved
(unmodified)

1 Supported AC
module versions

Reserved (0
returned)

version
comparison
mask

version
numbers
supported

2 Max size of
authenticated
code execution
area

Multiply by 32 for
size in bytes

Reserved
(unmodified)

Reserved
(unmodified)

3 External memory
types supported
during AC mode

Memory type bit
mask

Reserved
(unmodified)

Reserved
(unmodified)
Vol. 2C 5-43GETSEC[PARAMETERS]—Report the SMX Parameters

SAFER MODE EXTENSIONS REFERENCE
Table 5-8. TXT Feature Extensions Flags

Supported AC module versions (as defined by the AC module HeaderVersion field)
can be determined for a particular SMX capable processor by the type 1 parameter.
Using EBX to index through the available parameters reported by GETSEC[PARAME-
TERS] for each unique parameter set returned for type 1, software can determine the
complete list of AC module version(s) supported.

4 Selective SENTER
functionality
control

EAX[14:8]
correspond to
available SENTER
function disable
controls

Reserved
(unmodified)

Reserved
(unmodified)

5 TXT extensions
support

TXT Feature
Extensions Flags
(see Table 5-8)

Reserved Reserved

6-31 Undefined Reserved
(unmodified)

Reserved
(unmodified)

Reserved
(unmodified)

Bit Definition Description

5 Processor based
S-CRTM support

Returns 1 if this processor implements a processor-
rooted S-CRTM capability and 0 if not (S-CRTM is rooted in
BIOS).
This flag cannot be used to infer whether the chipset
supports TXT or whether the processor support SMX.

6 Machine Check
Handling

Returns 1 if it machine check status registers can be
preserved through ENTERACCS and SENTER. If this bit is
1, the caller of ENTERACCS and SENTER is not required to
clear machine check error status bits before invoking
these GETSEC leaves.

If this bit returns 0, the caller of ENTERACCS and SENTER
must clear all machine check error status bits before
invoking these GETSEC leaves.

31:7 Reserved Reserved for future use. Will return 0.

Table 5-7. SMX Reporting Parameters Format (Contd.)

Parameter
Type EAX[4:0]

Parameter
Description EAX[31:5] EBX[31:0] ECX[31:0]
5-44 Vol. 2C GETSEC[PARAMETERS]—Report the SMX Parameters

SAFER MODE EXTENSIONS REFERENCE
For each parameter set, EBX returns the comparison mask and ECX returns the avail-
able HeaderVersion field values supported, after AND'ing the target HeaderVersion
with the comparison mask. Software can then determine if a particular AC module
version is supported by following the pseudo-code search routine given below:

parameter_search_index= 0
do {

EBX= parameter_search_index++
EAX= 6
GETSEC
if (EAX[4:0] = 1) {

if ((version_query & EBX) = ECX) {
version_is_supported= 1
break

}
}

} while (EAX[4:0]!= 0)

If only AC modules with a HeaderVersion of 0 are supported by the processor, then
only one parameter set of type 1 will be returned, as follows: EAX = 00000001H,

EBX = FFFFFFFFH and ECX = 00000000H.

The maximum capacity for an authenticated code execution area supported by the
processor is reported with the parameter type of 2. The maximum supported size in
bytes is determined by multiplying the returned size in EAX[31:5] by 32. Thus, for a
maximum supported authenticated RAM size of 32KBytes, EAX returns with
00008002H.

Supportable memory types for memory mapped outside of the authenticated code
execution area are reported with the parameter type of 3. While is active, as initiated
by the GETSEC functions SENTER and ENTERACCS and terminated by EXITAC, there
are restrictions on what memory types are allowed for the rest of system memory. It
is the responsibility of the system software to initialize the memory type range
register (MTRR) MSRs and/or the page attribute table (PAT) to only map memory
types consistent with the reporting of this parameter. The reporting of supportable
memory types of external memory is indicated using a bit map returned in
EAX[31:8]. These bit positions correspond to the memory type encodings defined for
the MTRR MSR and PAT programming. See Table 5-9.

The parameter type of 4 is used for enumerating the availability of selective
GETSEC[SENTER] function disable controls. If a 1 is reported in bits 14:8 of the
returned parameter EAX, then this indicates a disable control capability exists with
SENTER for a particular function. The enumerated field in bits 14:8 corresponds to
use of the EDX input parameter bits 6:0 for SENTER. If an enumerated field bit is set
to 1, then the corresponding EDX input parameter bit of EDX may be set to 1 to
disable that designated function. If the enumerated field bit is 0 or this parameter is
not reported, then no disable capability exists with the corresponding EDX input
parameter for SENTER, and EDX bit(s) must be cleared to 0 to enable execution of
Vol. 2C 5-45GETSEC[PARAMETERS]—Report the SMX Parameters

SAFER MODE EXTENSIONS REFERENCE
SENTER. If no selective disable capability for SENTER exists as enumerated, then the
corresponding bits in the IA32_FEATURE_CONTROL MSR bits 14:8 must also be
programmed to 1 if the SENTER global enable bit 15 of the MSR is set. This is
required to enable future extensibility of SENTER selective disable capability with
respect to potentially separate software initialization of the MSR.

If the GETSEC[PARAMETERS] leaf or specific parameter is not present for a given
SMX capable processor, then default parameter values should be assumed. These are
defined in Table 5-10.

Operation
(* example of a processor supporting only a 0.0 HeaderVersion, 32K ACRAM size, memory types UC
and WC *)
IF (CR4.SMXE=0)

THEN #UD;
ELSE IF (in VMX non-root operation)

Table 5-9. External Memory Types Using Parameter 3

EAX Bit Position Parameter Description

8 Uncacheable (UC)

9 Write Combining (WC)

11:10 Reserved

12 Write-through (WT)

13 Write-protected (WP)

14 Write-back (WB)

31:15 Reserved

Table 5-10. Default Parameter Values

Parameter Type
EAX[4:0]

Default
Setting Parameter Description

1 0.0 only Supported AC module versions

2 32 KBytes Authenticated code execution area size

3 UC only External memory types supported during AC
execution mode

4 None Available SENTER selective disable controls
5-46 Vol. 2C GETSEC[PARAMETERS]—Report the SMX Parameters

SAFER MODE EXTENSIONS REFERENCE
THEN VM Exit (reason=”GETSEC instruction”);
ELSE IF (GETSEC leaf unsupported)

THEN #UD;
(* example of a processor supporting a 0.0 HeaderVersion *)

IF (EBX=0) THEN
EAX← 00000001h;
EBX← FFFFFFFFh;
ECX← 00000000h;

ELSE IF (EBX=1)
(* example of a processor supporting a 32K ACRAM size *)
THEN EAX← 00008002h;

ESE IF (EBX= 2)
(* example of a processor supporting external memory types of UC and WC *)
THEN EAX← 00000303h;

ESE IF (EBX= other value(s) less than unsupported index value)
(* EAX value varies. Consult Table 5-7 and Table 5-8*)

ELSE (* unsupported index*)
EAX¨ 00000000h;

END;

Flags Affected

None.

Use of Prefixes
LOCK Causes #UD
REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ)
Operand size Causes #UD
Segment overrides Ignored
Address size Ignored
REX Ignored

Protected Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[PARAMETERS] is not reported as supported by
GETSEC[CAPABILITIES].

Real-Address Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[PARAMETERS] is not reported as supported by
GETSEC[CAPABILITIES].
Vol. 2C 5-47GETSEC[PARAMETERS]—Report the SMX Parameters

SAFER MODE EXTENSIONS REFERENCE
Virtual-8086 Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[PARAMETERS] is not reported as supported by
GETSEC[CAPABILITIES].

Compatibility Mode Exceptions
All protected mode exceptions apply.

64-Bit Mode Exceptions
All protected mode exceptions apply.

VM-Exit Condition
Reason (GETSEC) IF in VMX non-root operation.
5-48 Vol. 2C GETSEC[PARAMETERS]—Report the SMX Parameters

SAFER MODE EXTENSIONS REFERENCE
GETSEC[SMCTRL]—SMX Mode Control

Description

The GETSEC[SMCTRL] instruction is available for performing certain SMX specific
mode control operations. The operation to be performed is selected through the input
register EBX. Currently only an input value in EBX of 0 is supported. All other EBX
settings will result in the signaling of a general protection violation.

If EBX is set to 0, then the SMCTRL leaf is used to re-enable SMI events. SMI is
masked by the ILP executing the GETSEC[SENTER] instruction (SMI is also masked
in the responding logical processors in response to SENTER rendezvous messages.).
The determination of when this instruction is allowed and the events that are
unmasked is dependent on the processor context (See Table 5-11). For brevity, the
usage of SMCTRL where EBX=0 will be referred to as GETSEC[SMCTRL(0)].

As part of support for launching a measured environment, the SMI, NMI and INIT
events are masked after GETSEC[SENTER], and remain masked after exiting authen-
ticated execution mode. Unmasking these events should be accompanied by securely
enabling these event handlers. These security concerns can be addressed in VMX
operation by a MVMM.

The VM monitor can choose two approaches:
• In a dual monitor approach, the executive software will set up an SMM monitor in

parallel to the executive VMM (i.e. the MVMM), see Chapter 33, “System
Management Mode” of Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3C. The SMM monitor is dedicated to handling SMI events
without compromising the security of the MVMM. This usage model of handling
SMI while a measured environment is active does not require the use of
GETSEC[SMCTRL(0)] as event re-enabling after the VMX environment launch is
handled implicitly and through separate VMX based controls.

• If a dedicated SMM monitor will not be established and SMIs are to be handled
within the measured environment, then GETSEC[SMCTRL(0)] can be used by the
executive software to re-enable SMI that has been masked as a result of SENTER.

Table 5-11 defines the processor context in which GETSEC[SMCTRL(0)] can be used
and which events will be unmasked. Note that the events that are unmasked are
dependent upon the currently operating processor context.

Opcode Instruction Description

0F 37 (EAX = 7) GETSEC[SMCTRL] Perform specified SMX mode control as selected
with the input EBX.
Vol. 2C 5-49GETSEC[SMCTRL]—SMX Mode Control

SAFER MODE EXTENSIONS REFERENCE
Operation
(* The state of the internal flag ACMODEFLAG and SENTERFLAG persist across instruction
boundary *)
IF (CR4.SMXE=0)

THEN #UD;
ELSE IF (in VMX non-root operation)

THEN VM Exit (reason=”GETSEC instruction”);
ELSE IF (GETSEC leaf unsupported)

THEN #UD;
ELSE IF ((CR0.PE=0) or (CPL>0) OR (EFLAGS.VM=1))

THEN #GP(0);
ELSE IF((EBX=0) and (SENTERFLAG=1) and (ACMODEFLAG=0) and (IN_SMM=0) and

 (((in VMX root operation) and (SMM monitor not configured)) or (not in VMX operation)))
THEN unmask SMI;

ELSE
#GP(0);

END

Flags Affected
None.

Use of Prefixes
LOCK Causes #UD

Table 5-11. Supported Actions for GETSEC[SMCTRL(0)]

ILP Mode of Operation SMCTRL execution action

In VMX non-root operation VM exit

SENTERFLAG = 0 #GP(0), illegal context

In authenticated code execution
mode (ACMODEFLAG = 1)

#GP(0), illegal context

SENTERFLAG = 1, not in VMX
operation, not in SMM

Unmask SMI

SENTERFLAG = 1, in VMX root
operation, not in SMM

Unmask SMI if SMM monitor is not configured,
otherwise #GP(0)

SENTERFLAG = 1, In VMX root
operation, in SMM

#GP(0), illegal context
5-50 Vol. 2C GETSEC[SMCTRL]—SMX Mode Control

SAFER MODE EXTENSIONS REFERENCE
REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ)
Operand size Causes #UD
Segment overrides Ignored
Address size Ignored
REX Ignored

Protected Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[SMCTRL] is not reported as supported by
GETSEC[CAPABILITIES].

#GP(0) If CR0.PE = 0 or CPL > 0 or EFLAGS.VM = 1.
If in VMX root operation.
If a protected partition is not already active or the processor is
currently in authenticated code mode.
If the processor is in SMM.
If the SMM monitor is not configured

Real-Address Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[SMCTRL] is not reported as supported by
GETSEC[CAPABILITIES].

#GP(0) GETSEC[SMCTRL] is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[SMCTRL] is not reported as supported by
GETSEC[CAPABILITIES].

#GP(0) GETSEC[SMCTRL] is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
All protected mode exceptions apply.

64-Bit Mode Exceptions
All protected mode exceptions apply.

VM-exit Condition
Reason (GETSEC) IF in VMX non-root operation.
Vol. 2C 5-51GETSEC[SMCTRL]—SMX Mode Control

SAFER MODE EXTENSIONS REFERENCE
GETSEC[WAKEUP]—Wake up sleeping processors in measured
environment

Description

The GETSEC[WAKEUP] leaf function broadcasts a wake-up message to all logical
processors currently in the SENTER sleep state. This GETSEC leaf must be executed
only by the ILP, in order to wake-up the RLPs. Responding logical processors (RLPs)
enter the SENTER sleep state after completion of the SENTER rendezvous sequence.

The GETSEC[WAKEUP] instruction may only be executed:
• In a measured environment as initiated by execution of GETSEC[SENTER].
• Outside of authenticated code execution mode.
• Execution is not allowed unless the processor is in protected mode with CPL = 0

and EFLAGS.VM = 0.
• In addition, the logical processor must be designated as the boot-strap processor

as configured by setting IA32_APIC_BASE.BSP = 1.

If these conditions are not met, attempts to execute GETSEC[WAKEUP] result in a
general protection violation.

An RLP exits the SENTER sleep state and start execution in response to a WAKEUP
signal initiated by ILP’s execution of GETSEC[WAKEUP]. The RLP retrieves a pointer
to a data structure that contains information to enable execution from a defined
entry point. This data structure is located using a physical address held in the Intel®
TXT-capable chipset configuration register LT.MLE.JOIN. The register is publicly writ-
able in the chipset by all processors and is not restricted by the Intel® TXT-capable
chipset configuration register lock status. The format of this data structure is defined
in Table 5-12.

Opcode Instruction Description

0F 37

(EAX=8)

GETSEC[WAKE
UP]

Wake up the responding logical processors from the SENTER
sleep state.

Table 5-12. RLP MVMM JOIN Data Structure

Offset Field

0 GDT limit

4 GDT base pointer

8 Segment selector initializer

12 EIP
5-52 Vol. 2C GETSEC[WAKEUP]—Wake up sleeping processors in measured environment

SAFER MODE EXTENSIONS REFERENCE
The MLE JOIN data structure contains the information necessary to initialize RLP
processor state and permit the processor to join the measured environment. The
GDTR, LIP, and CS, DS, SS, and ES selector values are initialized using this data
structure. The CS selector index is derived directly from the segment selector initial-
izer field; DS, SS, and ES selectors are initialized to CS+8. The segment descriptor
fields are initialized implicitly with BASE = 0, LIMIT = FFFFFH, G = 1, D = 1, P = 1, S
= 1; read/write/access for DS, SS, and ES; and execute/read/access for CS. It is the
responsibility of external software to establish a GDT pointed to by the MLE JOIN data
structure that contains descriptor entries consistent with the implicit settings initial-
ized by the processor (see Table 5-6). Certain states from the content of Table 5-12
are checked for consistency by the processor prior to execution. A failure of any
consistency check results in the RLP aborting entry into the protected environment
and signaling an Intel® TXT shutdown condition. The specific checks performed are
documented later in this section. After successful completion of processor consis-
tency checks and subsequent initialization, RLP execution in the measured environ-
ment begins from the entry point at offset 12 (as indicated in Table 5-12).

Operation
(* The state of the internal flag ACMODEFLAG and SENTERFLAG persist across instruction
boundary *)
IF (CR4.SMXE=0)

THEN #UD;
ELSE IF (in VMX non-root operation)

THEN VM Exit (reason=”GETSEC instruction”);
ELSE IF (GETSEC leaf unsupported)

THEN #UD;
ELSE IF ((CR0.PE=0) or (CPL>0) or (EFLAGS.VM=1) or (SENTERFLAG=0) or (ACMODEFLAG=1) or
(IN_SMM=0) or (in VMX operation) or (IA32_APIC_BASE.BSP=0) or (TXT chipset not present))

THEN #GP(0);
ELSE

SignalTXTMsg(WAKEUP);
END;

RLP_SIPI_WAKEUP_FROM_SENTER_ROUTINE: (RLP only)
WHILE (no SignalWAKEUP event);
IF (IA32_SMM_MONITOR_CTL[0] != ILP.IA32_SMM_MONITOR_CTL[0])

THEN TXT-SHUTDOWN(#IllegalEvent)
IF (IA32_SMM_MONITOR_CTL[0] = 0)

THEN Unmask SMI pin event;
ELSE

Mask SMI pin event;
Mask A20M, and NMI external pin events (unmask INIT);
Mask SignalWAKEUP event;
Vol. 2C 5-53GETSEC[WAKEUP]—Wake up sleeping processors in measured environment

SAFER MODE EXTENSIONS REFERENCE
Invalidate processor TLB(s);
Drain outgoing transactions;
TempGDTRLIMIT← LOAD(LT.MLE.JOIN);
TempGDTRBASE← LOAD(LT.MLE.JOIN+4);
TempSegSel← LOAD(LT.MLE.JOIN+8);
TempEIP← LOAD(LT.MLE.JOIN+12);
IF (TempGDTLimit & FFFF0000h)

THEN TXT-SHUTDOWN(#BadJOINFormat);
IF ((TempSegSel > TempGDTRLIMIT-15) or (TempSegSel < 8))

THEN TXT-SHUTDOWN(#BadJOINFormat);
IF ((TempSegSel.TI=1) or (TempSegSel.RPL!=0))

THEN TXT-SHUTDOWN(#BadJOINFormat);
CR0.[PG,CD,NW,AM,WP]← 0;
CR0.[NE,PE]← 1;
CR4← 00004000h;
EFLAGS← 00000002h;
IA32_EFER← 0;
GDTR.BASE← TempGDTRBASE;
GDTR.LIMIT← TempGDTRLIMIT;
CS.SEL← TempSegSel;
CS.BASE← 0;
CS.LIMIT← FFFFFh;
CS.G← 1;
CS.D← 1;
CS.AR← 9Bh;
DS.SEL← TempSegSel+8;
DS.BASE← 0;
DS.LIMIT← FFFFFh;
DS.G← 1;
DS.D← 1;
DS.AR← 93h;
SS← DS;
ES← DS;
DR7← 00000400h;
IA32_DEBUGCTL← 0;
EIP← TempEIP;
END;

Flags Affected

None.

Use of Prefixes
LOCK Causes #UD
5-54 Vol. 2C GETSEC[WAKEUP]—Wake up sleeping processors in measured environment

SAFER MODE EXTENSIONS REFERENCE
REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ)
Operand size Causes #UD
Segment overrides Ignored
Address size Ignored
REX Ignored

Protected Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[WAKEUP] is not reported as supported by
GETSEC[CAPABILITIES].

#GP(0) If CR0.PE = 0 or CPL > 0 or EFLAGS.VM = 1.
If in VMX operation.
If a protected partition is not already active or the processor is
currently in authenticated code mode.
If the processor is in SMM.

#UD If CR4.SMXE = 0.
If GETSEC[WAKEUP] is not reported as supported by
GETSEC[CAPABILITIES].

#GP(0) GETSEC[WAKEUP] is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[WAKEUP] is not reported as supported by
GETSEC[CAPABILITIES].

#GP(0) GETSEC[WAKEUP] is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
All protected mode exceptions apply.

64-Bit Mode Exceptions
All protected mode exceptions apply.

VM-exit Condition
Reason (GETSEC) IF in VMX non-root operation.
Vol. 2C 5-55GETSEC[WAKEUP]—Wake up sleeping processors in measured environment

APPENDIX A
OPCODE MAP

Use the opcode tables in this chapter to interpret IA-32 and Intel 64 architecture
object code. Instructions are divided into encoding groups:
• 1-byte, 2-byte and 3-byte opcode encodings are used to encode integer, system,

MMX technology, SSE/SSE2/SSE3/SSSE3/SSE4, and VMX instructions. Maps for
these instructions are given in Table A-2 through Table A-6.

• Escape opcodes (in the format: ESC character, opcode, ModR/M byte) are used
for floating-point instructions. The maps for these instructions are provided in
Table A-7 through Table A-22.

NOTE

All blanks in opcode maps are reserved and must not be used. Do not
depend on the operation of undefined or blank opcodes.

A.1 USING OPCODE TABLES
Tables in this appendix list opcodes of instructions (including required instruction
prefixes, opcode extensions in associated ModR/M byte). Blank cells in the tables
indicate opcodes that are reserved or undefined.

The opcode map tables are organized by hex values of the upper and lower 4 bits of
an opcode byte. For 1-byte encodings (Table A-2), use the four high-order bits of an
opcode to index a row of the opcode table; use the four low-order bits to index a
column of the table. For 2-byte opcodes beginning with 0FH (Table A-3), skip any
instruction prefixes, the 0FH byte (0FH may be preceded by 66H, F2H, or F3H) and
use the upper and lower 4-bit values of the next opcode byte to index table rows and
columns. Similarly, for 3-byte opcodes beginning with 0F38H or 0F3AH (Table A-4),
skip any instruction prefixes, 0F38H or 0F3AH and use the upper and lower 4-bit
values of the third opcode byte to index table rows and columns. See Section A.2.4,
“Opcode Look-up Examples for One, Two, and Three-Byte Opcodes.”

When a ModR/M byte provides opcode extensions, this information qualifies opcode
execution. For information on how an opcode extension in the ModR/M byte modifies
the opcode map in Table A-2 and Table A-3, see Section A.4.

The escape (ESC) opcode tables for floating point instructions identify the eight high
order bits of opcodes at the top of each page. See Section A.5. If the accompanying
ModR/M byte is in the range of 00H-BFH, bits 3-5 (the top row of the third table on
each page) along with the reg bits of ModR/M determine the opcode. ModR/M bytes
Vol. 2C A-1

OPCODE MAP
outside the range of 00H-BFH are mapped by the bottom two tables on each page of
the section.

A.2 KEY TO ABBREVIATIONS
Operands are identified by a two-character code of the form Zz. The first character,
an uppercase letter, specifies the addressing method; the second character, a lower-
case letter, specifies the type of operand.

A.2.1 Codes for Addressing Method
The following abbreviations are used to document addressing methods:

A Direct address: the instruction has no ModR/M byte; the address of the
operand is encoded in the instruction. No base register, index register, or
scaling factor can be applied (for example, far JMP (EA)).

B The VEX.vvvv field of the VEX prefix selects a general purpose register.

C The reg field of the ModR/M byte selects a control register (for example, MOV
(0F20, 0F22)).

D The reg field of the ModR/M byte selects a debug register (for example,
MOV (0F21,0F23)).

E A ModR/M byte follows the opcode and specifies the operand. The operand is
either a general-purpose register or a memory address. If it is a memory
address, the address is computed from a segment register and any of the
following values: a base register, an index register, a scaling factor, a
displacement.

F EFLAGS/RFLAGS Register.

G The reg field of the ModR/M byte selects a general register (for example, AX
(000)).

H The VEX.vvvv field of the VEX prefix selects a 128-bit XMM register or a 256-
bit YMM register, determined by operand type. For legacy SSE encodings this
operand does not exist, changing the instruction to destructive form.

I Immediate data: the operand value is encoded in subsequent bytes of the
instruction.

J The instruction contains a relative offset to be added to the instruction
pointer register (for example, JMP (0E9), LOOP).

L The upper 4 bits of the 8-bit immediate selects a 128-bit XMM register or a
256-bit YMM register, determined by operand type. (the MSB is ignored in
32-bit mode)
A-2 Vol. 2C

OPCODE MAP
M The ModR/M byte may refer only to memory (for example, BOUND, LES,
LDS, LSS, LFS, LGS, CMPXCHG8B).

N The R/M field of the ModR/M byte selects a packed-quadword, MMX tech-
nology register.

O The instruction has no ModR/M byte. The offset of the operand is coded as a
word or double word (depending on address size attribute) in the instruction.
No base register, index register, or scaling factor can be applied (for example,
MOV (A0–A3)).

P The reg field of the ModR/M byte selects a packed quadword MMX technology
register.

Q A ModR/M byte follows the opcode and specifies the operand. The operand is
either an MMX technology register or a memory address. If it is a memory
address, the address is computed from a segment register and any of the
following values: a base register, an index register, a scaling factor, and a
displacement.

R The R/M field of the ModR/M byte may refer only to a general register (for
example, MOV (0F20-0F23)).

S The reg field of the ModR/M byte selects a segment register (for example,
MOV (8C,8E)).

U The R/M field of the ModR/M byte selects a 128-bit XMM register or a 256-bit
YMM register, determined by operand type.

V The reg field of the ModR/M byte selects a 128-bit XMM register or a 256-bit
YMM register, determined by operand type.

W A ModR/M byte follows the opcode and specifies the operand. The operand is
either a 128-bit XMM register, a 256-bit YMM register (determined by
operand type), or a memory address. If it is a memory address, the address
is computed from a segment register and any of the following values: a base
register, an index register, a scaling factor, and a displacement.

X Memory addressed by the DS:rSI register pair (for example, MOVS, CMPS,
OUTS, or LODS).

Y Memory addressed by the ES:rDI register pair (for example, MOVS, CMPS,
INS, STOS, or SCAS).

A.2.2 Codes for Operand Type
The following abbreviations are used to document operand types:

a Two one-word operands in memory or two double-word operands in memory,
depending on operand-size attribute (used only by the BOUND instruction).

b Byte, regardless of operand-size attribute.

c Byte or word, depending on operand-size attribute.

d Doubleword, regardless of operand-size attribute.
Vol. 2C A-3

OPCODE MAP
dq Double-quadword, regardless of operand-size attribute.

p 32-bit, 48-bit, or 80-bit pointer, depending on operand-size attribute.

pd 128-bit or 256-bit packed double-precision floating-point data.

pi Quadword MMX technology register (for example: mm0).

ps 128-bit or 256-bit packed single-precision floating-point data.

q Quadword, regardless of operand-size attribute.

qq Quad-Quadword (256-bits), regardless of operand-size attribute.

s 6-byte or 10-byte pseudo-descriptor.

sd Scalar element of a 128-bit double-precision floating data.

ss Scalar element of a 128-bit single-precision floating data.

si Doubleword integer register (for example: eax).

v Word, doubleword or quadword (in 64-bit mode), depending on operand-size
attribute.

w Word, regardless of operand-size attribute.

x dq or qq based on the operand-size attribute.

y Doubleword or quadword (in 64-bit mode), depending on operand-size
attribute.

z Word for 16-bit operand-size or doubleword for 32 or 64-bit operand-size.

A.2.3 Register Codes
When an opcode requires a specific register as an operand, the register is identified
by name (for example, AX, CL, or ESI). The name indicates whether the register is
64, 32, 16, or 8 bits wide.

A register identifier of the form eXX or rXX is used when register width depends on
the operand-size attribute. eXX is used when 16 or 32-bit sizes are possible; rXX is
used when 16, 32, or 64-bit sizes are possible. For example: eAX indicates that the
AX register is used when the operand-size attribute is 16 and the EAX register is used
when the operand-size attribute is 32. rAX can indicate AX, EAX or RAX.

When the REX.B bit is used to modify the register specified in the reg field of the
opcode, this fact is indicated by adding “/x” to the register name to indicate the addi-
tional possibility. For example, rCX/r9 is used to indicate that the register could either
be rCX or r9. Note that the size of r9 in this case is determined by the operand size
attribute (just as for rCX).
A-4 Vol. 2C

OPCODE MAP
A.2.4 Opcode Look-up Examples for One, Two,
and Three-Byte Opcodes

This section provides examples that demonstrate how opcode maps are used.

A.2.4.1 One-Byte Opcode Instructions
The opcode map for 1-byte opcodes is shown in Table A-2. The opcode map for 1-
byte opcodes is arranged by row (the least-significant 4 bits of the hexadecimal
value) and column (the most-significant 4 bits of the hexadecimal value). Each entry
in the table lists one of the following types of opcodes:
• Instruction mnemonics and operand types using the notations listed in Section

A.2
• Opcodes used as an instruction prefix

For each entry in the opcode map that corresponds to an instruction, the rules for
interpreting the byte following the primary opcode fall into one of the following
cases:
• A ModR/M byte is required and is interpreted according to the abbreviations listed

in Section A.1 and Chapter 2, “Instruction Format,” of the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A. Operand types are listed
according to notations listed in Section A.2.

• A ModR/M byte is required and includes an opcode extension in the reg field in
the ModR/M byte. Use Table A-6 when interpreting the ModR/M byte.

• Use of the ModR/M byte is reserved or undefined. This applies to entries that
represent an instruction prefix or entries for instructions without operands that
use ModR/M (for example: 60H, PUSHA; 06H, PUSH ES).

Example A-1. Look-up Example for 1-Byte Opcodes

Opcode 030500000000H for an ADD instruction is interpreted using the 1-byte
opcode map (Table A-2) as follows:
• The first digit (0) of the opcode indicates the table row and the second digit (3)

indicates the table column. This locates an opcode for ADD with two operands.
• The first operand (type Gv) indicates a general register that is a word or

doubleword depending on the operand-size attribute. The second operand (type
Ev) indicates a ModR/M byte follows that specifies whether the operand is a word
or doubleword general-purpose register or a memory address.

• The ModR/M byte for this instruction is 05H, indicating that a 32-bit displacement
follows (00000000H). The reg/opcode portion of the ModR/M byte (bits 3-5) is
000, indicating the EAX register.

The instruction for this opcode is ADD EAX, mem_op, and the offset of mem_op is
00000000H.
Vol. 2C A-5

OPCODE MAP
Some 1- and 2-byte opcodes point to group numbers (shaded entries in the opcode
map table). Group numbers indicate that the instruction uses the reg/opcode bits in
the ModR/M byte as an opcode extension (refer to Section A.4).

A.2.4.2 Two-Byte Opcode Instructions
The two-byte opcode map shown in Table A-3 includes primary opcodes that are
either two bytes or three bytes in length. Primary opcodes that are 2 bytes in length
begin with an escape opcode 0FH. The upper and lower four bits of the second
opcode byte are used to index a particular row and column in Table A-3.

Two-byte opcodes that are 3 bytes in length begin with a mandatory prefix (66H,
F2H, or F3H) and the escape opcode (0FH). The upper and lower four bits of the third
byte are used to index a particular row and column in Table A-3 (except when the
second opcode byte is the 3-byte escape opcodes 38H or 3AH; in this situation refer
to Section A.2.4.3).

For each entry in the opcode map, the rules for interpreting the byte following the
primary opcode fall into one of the following cases:
• A ModR/M byte is required and is interpreted according to the abbreviations listed

in Section A.1 and Chapter 2, “Instruction Format,” of the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A. The operand types are
listed according to notations listed in Section A.2.

• A ModR/M byte is required and includes an opcode extension in the reg field in
the ModR/M byte. Use Table A-6 when interpreting the ModR/M byte.

• Use of the ModR/M byte is reserved or undefined. This applies to entries that
represent an instruction without operands that are encoded using ModR/M (for
example: 0F77H, EMMS).

Example A-2. Look-up Example for 2-Byte Opcodes

Look-up opcode 0FA4050000000003H for a SHLD instruction using Table A-3.
• The opcode is located in row A, column 4. The location indicates a SHLD

instruction with operands Ev, Gv, and Ib. Interpret the operands as follows:

— Ev: The ModR/M byte follows the opcode to specify a word or doubleword
operand.

— Gv: The reg field of the ModR/M byte selects a general-purpose register.

— Ib: Immediate data is encoded in the subsequent byte of the instruction.
• The third byte is the ModR/M byte (05H). The mod and opcode/reg fields of

ModR/M indicate that a 32-bit displacement is used to locate the first operand in
memory and eAX as the second operand.

• The next part of the opcode is the 32-bit displacement for the destination
memory operand (00000000H). The last byte stores immediate byte that
provides the count of the shift (03H).
A-6 Vol. 2C

OPCODE MAP
Vol. 2C A-7

• By this breakdown, it has been shown that this opcode represents the
instruction: SHLD DS:00000000H, EAX, 3.

A.2.4.3 Three-Byte Opcode Instructions
The three-byte opcode maps shown in Table A-4 and Table A-5 includes primary
opcodes that are either 3 or 4 bytes in length. Primary opcodes that are 3 bytes in
length begin with two escape bytes 0F38H or 0F3A. The upper and lower four bits of
the third opcode byte are used to index a particular row and column in Table A-4 or
Table A-5.

Three-byte opcodes that are 4 bytes in length begin with a mandatory prefix (66H,
F2H, or F3H) and two escape bytes (0F38H or 0F3AH). The upper and lower four bits
of the fourth byte are used to index a particular row and column in Table A-4 or Table
A-5.

For each entry in the opcode map, the rules for interpreting the byte following the
primary opcode fall into the following case:
• A ModR/M byte is required and is interpreted according to the abbreviations listed

in A.1 and Chapter 2, “Instruction Format,” of the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 2A. The operand types are listed
according to notations listed in Section A.2.

Example A-3. Look-up Example for 3-Byte Opcodes

Look-up opcode 660F3A0FC108H for a PALIGNR instruction using Table A-5.
• 66H is a prefix and 0F3AH indicate to use Table A-5. The opcode is located in row

0, column F indicating a PALIGNR instruction with operands Vdq, Wdq, and Ib.
Interpret the operands as follows:

— Vdq: The reg field of the ModR/M byte selects a 128-bit XMM register.

— Wdq: The R/M field of the ModR/M byte selects either a 128-bit XMM register
or memory location.

— Ib: Immediate data is encoded in the subsequent byte of the instruction.
• The next byte is the ModR/M byte (C1H). The reg field indicates that the first

operand is XMM0. The mod shows that the R/M field specifies a register and the
R/M indicates that the second operand is XMM1.

• The last byte is the immediate byte (08H).
• By this breakdown, it has been shown that this opcode represents the

instruction: PALIGNR XMM0, XMM1, 8.

A.2.4.4 VEX Prefix Instructions
Instructions that include a VEX prefix are organized relative to the 2-byte and 3-byte
opcode maps, based on the VEX.mmmmm field encoding of implied 0F, 0F38H,
0F3AH, respectively. Each entry in the opcode map of a VEX-encoded instruction is
based on the value of the opcode byte, similar to non-VEX-encoded instructions.

OPCODE MAP
A VEX prefix includes several bit fields that encode implied 66H, F2H, F3H prefix
functionality (VEX.pp) and operand size/opcode information (VEX.L). See chapter 4
for details.

Opcode tables A2-A6 include both instructions with a VEX prefix and instructions
without a VEX prefix. Many entries are only made once, but represent both the VEX
and non-VEX forms of the instruction. If the VEX prefix is present all the operands are
valid and the mnemonic is usually prefixed with a “v”. If the VEX prefix is not present
the VEX.vvvv operand is not available and the prefix “v” is dropped from the
mnemonic.

A few instructions exist only in VEX form and these are marked with a superscript “v”.

Operand size of VEX prefix instructions can be determined by the operand type code.
128-bit vectors are indicated by 'dq', 256-bit vectors are indicated by 'qq', and
instructions with operands supporting either 128 or 256-bit, determined by VEX.L,
are indicated by 'x'. For example, the entry "VMOVUPD Vx,Wx" indicates both
VEX.L=0 and VEX.L=1 are supported.

A.2.5 Superscripts Utilized in Opcode Tables
Table A-1 contains notes on particular encodings. These notes are indicated in the
following opcode maps by superscripts. Gray cells indicate instruction groupings.

Table A-1. Superscripts Utilized in Opcode Tables
Superscript
Symbol

Meaning of Symbol

1A Bits 5, 4, and 3 of ModR/M byte used as an opcode extension (refer to Section
A.4, “Opcode Extensions For One-Byte And Two-byte Opcodes”).

1B Use the 0F0B opcode (UD2 instruction) or the 0FB9H opcode when deliberately
trying to generate an invalid opcode exception (#UD).

1C Some instructions use the same two-byte opcode. If the instruction has
variations, or the opcode represents different instructions, the ModR/M byte
will be used to differentiate the instruction. For the value of the ModR/M byte
needed to decode the instruction, see Table A-6.

i64 The instruction is invalid or not encodable in 64-bit mode. 40 through 4F (single-
byte INC and DEC) are REX prefix combinations when in 64-bit mode (use FE/FF
Grp 4 and 5 for INC and DEC).

o64 Instruction is only available when in 64-bit mode.

d64 When in 64-bit mode, instruction defaults to 64-bit operand size and cannot
encode 32-bit operand size.

f64 The operand size is forced to a 64-bit operand size when in 64-bit mode
(prefixes that change operand size are ignored for this instruction in 64-bit
mode).
A-8 Vol. 2C

OPCODE MAP
A.3 ONE, TWO, AND THREE-BYTE OPCODE MAPS
See Table A-2 through Table A-5 below. The tables are multiple page presentations.
Rows and columns with sequential relationships are placed on facing pages to make
look-up tasks easier. Note that table footnotes are not presented on each page. Table
footnotes for each table are presented on the last page of the table.

v VEX form only exists. There is no legacy SSE form of the instruction. For Integer
GPR instructions it means VEX prefix required.

v1 VEX128 & SSE forms only exist (no VEX256), when can’t be inferred from the
data size.

Table A-1. Superscripts Utilized in Opcode Tables
Superscript
Symbol

Meaning of Symbol
Vol. 2C A-9

OPCODE MAP
Table A-2. One-byte Opcode Map: (00H — F7H) *

0 1 2 3 4 5 6 7

0 ADD PUSH
ESi64

POP
ESi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

1 ADC PUSH
SSi64

POP
SSi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

2 AND SEG=ES
(Prefix)

DAAi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

3 XOR SEG=SS
(Prefix)

AAAi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

4 INCi64 general register / REXo64 Prefixes

eAX
REX

eCX
REX.B

eDX
REX.X

eBX
REX.XB

eSP
REX.R

eBP
REX.RB

eSI
REX.RX

eDI
REX.RXB

5 PUSHd64 general register

rAX/r8 rCX/r9 rDX/r10 rBX/r11 rSP/r12 rBP/r13 rSI/r14 rDI/r15

6 PUSHAi64/
PUSHADi64

POPAi64/
POPADi64

BOUNDi64

Gv, Ma
ARPLi64

Ew, Gw
MOVSXDo64

Gv, Ev

SEG=FS
(Prefix)

SEG=GS
(Prefix)

Operand
Size

(Prefix)

Address
Size

(Prefix)

7 Jccf64, Jb - Short-displacement jump on condition

O NO B/NAE/C NB/AE/NC Z/E NZ/NE BE/NA NBE/A

8 Immediate Grp 11A TEST XCHG

Eb, Ib Ev, Iz Eb, Ibi64 Ev, Ib Eb, Gb Ev, Gv Eb, Gb Ev, Gv

9 NOP
PAUSE(F3)

XCHG r8, rAX

XCHG word, double-word or quad-word register with rAX

rCX/r9 rDX/r10 rBX/r11 rSP/r12 rBP/r13 rSI/r14 rDI/r15

A MOV MOVS/B
Yb, Xb

MOVS/W/D/Q
Yv, Xv

CMPS/B
Xb, Yb

CMPS/W/D
Xv, Yv

AL, Ob rAX, Ov Ob, AL Ov, rAX

B MOV immediate byte into byte register

AL/R8L, Ib CL/R9L, Ib DL/R10L, Ib BL/R11L, Ib AH/R12L, Ib CH/R13L, Ib DH/R14L, Ib BH/R15L, Ib

C Shift Grp 21A RETNf64

Iw
RETNf64 LESi64

Gz, Mp
VEX+2byte

LDSi64

Gz, Mp
VEX+1byte

Grp 111A - MOV

Eb, Ib Ev, Ib Eb, Ib Ev, Iz

D Shift Grp 21A AAMi64

Ib
AADi64

Ib
XLAT/
XLATB

Eb, 1 Ev, 1 Eb, CL Ev, CL

E LOOPNEf64/
LOOPNZf64

Jb

LOOPEf64/
LOOPZf64

Jb

LOOPf64

Jb
JrCXZf64/

Jb
IN OUT

AL, Ib eAX, Ib Ib, AL Ib, eAX

F LOCK
(Prefix)

REPNE
XACQUIRE

(Prefix)

REP/REPE
XRELEASE

(Prefix)

HLT CMC Unary Grp 31A

Eb Ev
A-10 Vol. 2C

OPCODE MAP
Table A-2. One-byte Opcode Map: (08H — FFH) *

8 9 A B C D E F

0 OR PUSH
CSi64

2-byte
escape

(Table A-3) Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

1 SBB PUSH
DSi64

POP
DSi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

2 SUB SEG=CS
(Prefix)

DASi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

3 CMP SEG=DS
(Prefix)

AASi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

4 DECi64 general register / REXo64 Prefixes

eAX
REX.W

eCX
REX.WB

eDX
REX.WX

eBX
REX.WXB

eSP
REX.WR

eBP
REX.WRB

eSI
REX.WRX

eDI
REX.WRXB

5 POPd64 into general register

rAX/r8 rCX/r9 rDX/r10 rBX/r11 rSP/r12 rBP/r13 rSI/r14 rDI/r15

6 PUSHd64

Iz
IMUL

Gv, Ev, Iz
PUSHd64

Ib
IMUL

Gv, Ev, Ib
INS/
INSB

Yb, DX

INS/
INSW/
INSD

Yz, DX

OUTS/
OUTSB
DX, Xb

OUTS/
OUTSW/
OUTSD
DX, Xz

7 Jccf64, Jb- Short displacement jump on condition

S NS P/PE NP/PO L/NGE NL/GE LE/NG NLE/G

8 MOV MOV
Ev, Sw

LEA
Gv, M

MOV
Sw, Ew

Grp 1A1A
POPd64 Ev

Eb, Gb Ev, Gv Gb, Eb Gv, Ev

9 CBW/
CWDE/
CDQE

CWD/
CDQ/
CQO

CALLFi64

Ap
FWAIT/
WAIT

PUSHF/D/Q
d64/
Fv

POPF/D/Q
d64/
Fv

SAHF LAHF

A TEST STOS/B
Yb, AL

STOS/W/D/Q
Yv, rAX

LODS/B
AL, Xb

LODS/W/D/Q
rAX, Xv

SCAS/B
AL, Yb

SCAS/W/D/Q
rAX, Xv

AL, Ib rAX, Iz

B MOV immediate word or double into word, double, or quad register

rAX/r8, Iv rCX/r9, Iv rDX/r10, Iv rBX/r11, Iv rSP/r12, Iv rBP/r13, Iv rSI/r14, Iv rDI/r15 , Iv

C ENTER LEAVEd64 RETF RETF INT 3 INT INTOi64 IRET/D/Q

Iw, Ib Iw Ib

D ESC (Escape to coprocessor instruction set)

E CALLf64 JMP IN OUT

Jz nearf64

Jz
fari64

Ap
shortf64

Jb
AL, DX eAX, DX DX, AL DX, eAX

F CLC STC CLI STI CLD STD INC/DEC INC/DEC

Grp 41A Grp 51A

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of
undefined or reserved locations.
Vol. 2C A-11

OPCODE MAP
Table A-3. Two-byte Opcode Map: 00H — 77H (First Byte is 0FH) *

pfx 0 1 2 3 4 5 6 7

0
Grp 61A Grp 71A LAR

Gv, Ew
LSL

Gv, Ew
 SYSCALLo64 CLTS SYSRETo64

1

vmovups vmovups vmovlps
Vq, Hq, Mq
vmovhlps

Vq, Hq, Uq

vmovlps
Mq, Vq

vunpcklps
Vx, Hx, Wx

vunpckhps
Vx, Hx, Wx

vmovhpsv1

Vdq, Hq, Mq
vmovlhps

Vdq, Hq, Uq

vmovhpsv1

Mq, Vq

66
vmovupd vmovupd

Wpd,Vpd
vmovlpd

Vq, Hq, Mq
vmovlpd
Mq, Vq

vunpcklpd
Vx,Hx,Wx

vunpckhpd
Vx,Hx,Wx

vmovhpdv1

Vdq, Hq, Mq
vmovhpdv1

Mq, Vq

F3
vmovss

Vx, Hx, Wss
vmovss

Wss, Hx, Vss
vmovsldup

Vx, Wx
vmovshdup

Vx, Wx

F2
vmovsd

Vx, Hx, Wsd
vmovsd

Wsd, Hx, Vsd
vmovddup

Vx, Wx

2

MOV
Rd, Cd

MOV
Rd, Dd

MOV
Cd, Rd

MOV
Dd, Rd

3
WRMSR RDTSC RDMSR RDPMC SYSENTER SYSEXIT GETSEC

4

CMOVcc, (Gv, Ev) - Conditional Move

O NO B/C/NAE AE/NB/NC E/Z NE/NZ BE/NA A/NBE

5

vmovmskps
Gy, Ups

vsqrtps
Vps, Wps

vrsqrtps
Vps, Wps

vrcpps
Vps, Wps

vandps
Vps, Hps, Wps

vandnps
Vps, Hps, Wps

vorps
Vps, Hps, Wps

vxorps
Vps, Hps, Wps

66
vmovmskpd

Gy,Upd
vsqrtpd

Vpd, Wpd
vandpd

Vpd, Hpd, Wpd
vandnpd

Vpd, Hpd, Wpd
vorpd

Vpd, Hpd, Wpd
vxorpd

Vpd, Hpd, Wpd

F3
vsqrtss

Vss, Hss, Wss
vrsqrtss

Vss, Hss, Wss
vrcpss

Vss, Hss, Wss

F2
vsqrtsd

Vsd, Hsd, Wsd

6

punpcklbw
Pq, Qd

punpcklwd
Pq, Qd

punpckldq
Pq, Qd

packsswb
Pq, Qq

pcmpgtb
Pq, Qq

pcmpgtw
Pq, Qq

pcmpgtd
Pq, Qq

packuswb
Pq, Qq

66
vpunpcklbw
Vx, Hx, Wx

vpunpcklwd
Vx, Hx, Wx

vpunpckldq
Vx, Hx, Wx

vpacksswb
Vx, Hx, Wx

vpcmpgtb
Vx, Hx, Wx

vpcmpgtw
Vx, Hx, Wx

vpcmpgtd
Vx, Hx, Wx

vpackuswb
Vx, Hx, Wx

F3

7

pshufw
Pq, Qq, Ib

(Grp 121A) (Grp 131A) (Grp 141A) pcmpeqb
Pq, Qq

pcmpeqw
Pq, Qq

pcmpeqd
Pq, Qq

emms
vzeroupperv

vzeroallv

66
vpshufd

Vx, Wx, Ib
vpcmpeqb
Vx, Hx, Wx

vpcmpeqw
Vx, Hx, Wx

vpcmpeqd
Vx, Hx, Wx

F3
vpshufhw
Vx, Wx, Ib

F2
vpshuflw

Vx, Wx, Ib
A-12 Vol. 2C

OPCODE MAP
Table A-3. Two-byte Opcode Map: 08H — 7FH (First Byte is 0FH) *

pfx 8 9 A B C D E F

0
INVD WBINVD 2-byte Illegal

Opcodes
UD21B

 NOP Ev

1

Prefetch1C

(Grp 161A)
NOP Ev

2

vmovaps
Vps, Wps

vmovaps
Wps, Vps

cvtpi2ps
Vps, Qpi

vmovntps
Mps, Vps

cvttps2pi
Ppi, Wps

cvtps2pi
Ppi, Wps

vucomiss
Vss, Wss

vcomiss
Vss, Wss

66
vmovapd
Vpd, Wpd

vmovapd
Wpd,Vpd

cvtpi2pd
Vpd, Qpi

vmovntpd
Mpd, Vpd

cvttpd2pi
Ppi, Wpd

cvtpd2pi
Qpi, Wpd

vucomisd
Vsd, Wsd

vcomisd
Vsd, Wsd

F3
vcvtsi2ss

Vss, Hss, Ey
vcvttss2si
Gy, Wss

vcvtss2si
Gy, Wss

F2
vcvtsi2sd

Vsd, Hsd, Ey
vcvttsd2si
Gy, Wsd

vcvtsd2si
Gy, Wsd

3
3-byte escape

(Table A-4)
3-byte escape

(Table A-5)

4

CMOVcc(Gv, Ev) - Conditional Move

S NS P/PE NP/PO L/NGE NL/GE LE/NG NLE/G

5

vaddps
Vps, Hps, Wps

vmulps
Vps, Hps, Wps

vcvtps2pd
Vpd, Wps

vcvtdq2ps
Vps, Wdq

vsubps
Vps, Hps, Wps

vminps
Vps, Hps, Wps

vdivps
Vps, Hps, Wps

vmaxps
Vps, Hps, Wps

66
vaddpd

Vpd, Hpd, Wpd
vmulpd

Vpd, Hpd, Wpd
vcvtpd2ps
Vps, Wpd

vcvtps2dq
Vdq, Wps

vsubpd
Vpd, Hpd, Wpd

vminpd
Vpd, Hpd, Wpd

vdivpd
Vpd, Hpd, Wpd

vmaxpd
Vpd, Hpd, Wpd

F3
vaddss

Vss, Hss, Wss
vmulss

Vss, Hss, Wss
vcvtss2sd

Vsd, Hx, Wss
vcvttps2dq
Vdq, Wps

vsubss
Vss, Hss, Wss

vminss
Vss, Hss, Wss

vdivss
Vss, Hss, Wss

vmaxss
Vss, Hss, Wss

F2
vaddsd

Vsd, Hsd, Wsd
vmulsd

Vsd, Hsd, Wsd
vcvtsd2ss

Vss, Hx, Wsd
vsubsd

Vsd, Hsd, Wsd
vminsd

Vsd, Hsd, Wsd
vdivsd

Vsd, Hsd, Wsd
vmaxsd

Vsd, Hsd, Wsd

6

punpckhbw
Pq, Qd

punpckhwd
Pq, Qd

punpckhdq
Pq, Qd

packssdw
Pq, Qd

movd/q
Pd, Ey

movq
Pq, Qq

66
vpunpckhbw
Vx, Hx, Wx

vpunpckhwd
Vx, Hx, Wx

vpunpckhdq
Vx, Hx, Wx

vpackssdw
Vx, Hx, Wx

vpunpcklqdq
Vx, Hx, Wx

vpunpckhqdq
Vx, Hx, Wx

vmovd/q
Vy, Ey

vmovdqa
Vx, Wx

F3 vmovdqu
Vx, Wx

7

VMREAD
Ey, Gy

VMWRITE
Gy, Ey

movd/q
Ey, Pd

movq
Qq, Pq

66
vhaddpd

Vpd, Hpd, Wpd
vhsubpd

Vpd, Hpd, Wpd
vmovd/q
Ey, Vy

vmovdqa
Wx,Vx

F3
vmovq
Vq, Wq

vmovdqu
Wx,Vx

F2
vhaddps

Vps, Hps, Wps
vhsubps

Vps, Hps, Wps
Vol. 2C A-13

OPCODE MAP
Table A-3. Two-byte Opcode Map: 80H — F7H (First Byte is 0FH) *

pfx 0 1 2 3 4 5 6 7

8

Jccf64, Jz - Long-displacement jump on condition

O NO B/CNAE AE/NB/NC E/Z NE/NZ BE/NA A/NBE

9

SETcc, Eb - Byte Set on condition

O NO B/C/NAE AE/NB/NC E/Z NE/NZ BE/NA A/NBE

A
PUSHd64

FS
POPd64

FS
CPUID BT

Ev, Gv
SHLD

Ev, Gv, Ib
SHLD

Ev, Gv, CL

B
CMPXCHG LSS

Gv, Mp
BTR

Ev, Gv
LFS

Gv, Mp
LGS

Gv, Mp
MOVZX

Eb, Gb Ev, Gv Gv, Eb Gv, Ew

C

XADD
Eb, Gb

XADD
Ev, Gv

vcmpps
Vps,Hps,Wps,Ib

movnti
My, Gy

pinsrw
Pq,Ry/Mw,Ib

pextrw
Gd, Nq, Ib

vshufps
Vps,Hps,Wps,Ib

Grp 91A

66
vcmppd

Vpd,Hpd,Wpd,Ib
vpinsrw

Vdq,Hdq,Ry/Mw,Ib
vpextrw

Gd, Udq, Ib
vshufpd

Vpd,Hpd,Wpd,Ib

F3
vcmpss

Vss,Hss,Wss,Ib

F2
vcmpsd

Vsd,Hsd,Wsd,Ib

D

psrlw
Pq, Qq

psrld
Pq, Qq

psrlq
Pq, Qq

paddq
Pq, Qq

pmullw
Pq, Qq

pmovmskb
Gd, Nq

66
vaddsubpd

Vpd, Hpd, Wpd
vpsrlw

Vx, Hx, Wx
vpsrld

Vx, Hx, Wx
vpsrlq

Vx, Hx, Wx
vpaddq

Vx, Hx, Wx
vpmullw

Vx, Hx, Wx
vmovq
Wq, Vq

vpmovmskb
Gd, Ux

F3
movq2dq
Vdq, Nq

F2
vaddsubps

Vps, Hps, Wps
movdq2q
Pq, Uq

E

pavgb
Pq, Qq

psraw
Pq, Qq

psrad
Pq, Qq

pavgw
Pq, Qq

pmulhuw
Pq, Qq

pmulhw
Pq, Qq

movntq
Mq, Pq

66
vpavgb

Vx, Hx, Wx
vpsraw

Vx, Hx, Wx
vpsrad

Vx, Hx, Wx
vpavgw

Vx, Hx, Wx
vpmulhuw
Vx, Hx, Wx

vpmulhw
Vx, Hx, Wx

vcvttpd2dq
Vx, Wpd

vmovntdq
Mx, Vx

F3
vcvtdq2pd
Vx, Wpd

F2
vcvtpd2dq
Vx, Wpd

F

psllw
Pq, Qq

pslld
Pq, Qq

psllq
Pq, Qq

pmuludq
Pq, Qq

pmaddwd
Pq, Qq

psadbw
Pq, Qq

maskmovq
Pq, Nq

66
vpsllw

Vx, Hx, Wx
vpslld

Vx, Hx, Wx
vpsllq

Vx, Hx, Wx
vpmuludq

Vx, Hx, Wx
vpmaddwd
Vx, Hx, Wx

vpsadbw
Vx, Hx, Wx

vmaskmovdqu
Vdq, Udq

F2
vlddqu
Vx, Mx
A-14 Vol. 2C

OPCODE MAP
Table A-3. Two-byte Opcode Map: 88H — FFH (First Byte is 0FH) *

pfx 8 9 A B C D E F

8
Jccf64, Jz - Long-displacement jump on condition

S NS P/PE NP/PO L/NGE NL/GE LE/NG NLE/G

9

SETcc, Eb - Byte Set on condition

S NS P/PE NP/PO L/NGE NL/GE LE/NG NLE/G

A
PUSHd64

GS
POPd64

GS
RSM BTS

Ev, Gv
SHRD

Ev, Gv, Ib
SHRD

Ev, Gv, CL
(Grp 151A)1C IMUL

Gv, Ev

B

JMPE

(reserved for
emulator on IPF)

Grp 101A

Invalid
Opcode1B

Grp 81A

Ev, Ib
BTC

Ev, Gv
BSF

Gv, Ev
BSR

Gv, Ev
MOVSX

Gv, Eb Gv, Ew

F3
POPCNT Gv,

Ev
TZCNT
Gv, Ev

LZCNT
Gv, Ev

C

BSWAP

RAX/EAX/
R8/R8D

RCX/ECX/
R9/R9D

RDX/EDX/
R10/R10D

RBX/EBX/
R11/R11D

RSP/ESP/
R12/R12D

RBP/EBP/
R13/R13D

RSI/ESI/
R14/R14D

RDI/EDI/
R15/R15D

D

psubusb
Pq, Qq

psubusw
Pq, Qq

pminub
Pq, Qq

pand
Pq, Qq

paddusb
Pq, Qq

paddusw
Pq, Qq

pmaxub
Pq, Qq

pandn
Pq, Qq

66
vpsubusb

Vx, Hx, Wx
vpsubusw
Vx, Hx, Wx

vpminub
Vx, Hx, Wx

vpand
Vx, Hx, Wx

vpaddusb
Vx, Hx, Wx

vpaddusw
Vx, Hx, Wx

vpmaxub
Vx, Hx, Wx

vpandn
Vx, Hx, Wx

F3

F2

E

psubsb
Pq, Qq

psubsw
Pq, Qq

pminsw
Pq, Qq

por
Pq, Qq

paddsb
Pq, Qq

paddsw
Pq, Qq

pmaxsw
Pq, Qq

pxor
Pq, Qq

66
vpsubsb

Vx, Hx, Wx
vpsubsw

Vx, Hx, Wx
vpminsw

Vx, Hx, Wx
vpor

Vx, Hx, Wx
vpaddsb

Vx, Hx, Wx
vpaddsw

Vx, Hx, Wx
vpmaxsw

Vx, Hx, Wx
vpxor

Vx, Hx, Wx

F3

F2

F

psubb
Pq, Qq

psubw
Pq, Qq

psubd
Pq, Qq

psubq
Pq, Qq

paddb
Pq, Qq

paddw
Pq, Qq

paddd
Pq, Qq

66
vpsubb

Vx, Hx, Wx
vpsubw

Vx, Hx, Wx
vpsubd

Vx, Hx, Wx
vpsubq

Vx, Hx, Wx
vpaddb

Vx, Hx, Wx
vpaddw

Vx, Hx, Wx
vpaddd

Vx, Hx, Wx

F2

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of unde-
fined or reserved locations.
Vol. 2C A-15

OPCODE MAP
Table A-4. Three-byte Opcode Map: 00H — F7H (First Two Bytes are 0F 38H) *

pfx 0 1 2 3 4 5 6 7

0

pshufb
Pq, Qq

phaddw
Pq, Qq

phaddd
Pq, Qq

phaddsw
Pq, Qq

pmaddubsw
Pq, Qq

phsubw
Pq, Qq

phsubd
Pq, Qq

phsubsw
Pq, Qq

66
vpshufb

Vx, Hx, Wx
vphaddw

Vx, Hx, Wx
vphaddd

Vx, Hx, Wx
vphaddsw
Vx, Hx, Wx

vpmaddubsw
Vx, Hx, Wx

vphsubw
Vx, Hx, Wx

vphsubd
Vx, Hx, Wx

vphsubsw
Vx, Hx, Wx

1 66
pblendvb
Vdq, Wdq

vcvtph2psv

Vx, Wx, Ib
blendvps
Vdq, Wdq

blendvpd
Vdq, Wdq

vpermpsv

Vqq, Hqq, Wqq
vptest
Vx, Wx

2 66
vpmovsxbw
Vx, Ux/Mq

vpmovsxbd
Vx, Ux/Md

vpmovsxbq
Vx, Ux/Mw

vpmovsxwd
Vx, Ux/Mq

vpmovsxwq
Vx, Ux/Md

vpmovsxdq
Vx, Ux/Mq

3 66
vpmovzxbw
Vx, Ux/Mq

vpmovzxbd
Vx, Ux/Md

vpmovzxbq
Vx, Ux/Mw

vpmovzxwd
Vx, Ux/Mq

vpmovzxwq
Vx, Ux/Md

vpmovzxdq
Vx, Ux/Mq

vpermdv

Vqq, Hqq, Wqq
vpcmpgtq

Vx, Hx, Wx

4 66
vpmulld

Vx, Hx, Wx
vphminposuw

Vdq, Wdq
vpsrlvd/qv

Vx, Hx, Wx
vpsravdv

Vx, Hx, Wx
vpsllvd/qv

Vx, Hx, Wx

5

6

7

8 66
INVEPT
Gy, Mdq

INVVPID
Gy, Mdq

INVPCID
Gy, Mdq

9 66
vgatherdd/qv

Vx,Hx,Wx
vgatherqd/qv

Vx,Hx,Wx
vgatherdps/dv

Vx,Hx,Wx
vgatherqps/dv

Vx,Hx,Wx
vfmaddsub132ps/d

v Vx,Hx,Wx
vfmsubadd132ps/d

v Vx,Hx,Wx

A 66
vfmaddsub213ps/d

v Vx,Hx,Wx
vfmsubadd213ps/d

v Vx,Hx,Wx

B 66
vfmaddsub231ps/d

v Vx,Hx,Wx
vfmsubadd231ps/d

v Vx,Hx,Wx

C

D

E

F

MOVBE
Gy, My

MOVBE
My, Gy

ANDNv

Gy, By, Ey

Grp 171A

BZHIv

Gy, Ey, By
BEXTRv

Gy, Ey, By

66
MOVBE
Gw, Mw

MOVBE
Mw, Gw

SHLXv

Gy, Ey, By

F3
PEXTv

Gy, By, Ey
SARXv

Gy, Ey, By

F2
CRC32
Gd, Eb

CRC32
Gd, Ey

PDEPv

Gy, By, Ey
MULXv

By,Gy,rDX,Ey
SHRXv

Gy, Ey, By

66 &
F2

CRC32
Gd, Eb

CRC32
Gd, Ew
A-16 Vol. 2C

OPCODE MAP

N

Table A-4. Three-byte Opcode Map: 08H — FFH (First Two Bytes are 0F 38H) *

pfx 8 9 A B C D E F

0

psignb
Pq, Qq

psignw
Pq, Qq

psignd
Pq, Qq

pmulhrsw
Pq, Qq

66
vpsignb

Vx, Hx, Wx
vpsignw

Vx, Hx, Wx
vpsignd

Vx, Hx, Wx
vpmulhrsw
Vx, Hx, Wx

vpermilpsv
Vx,Hx,Wx

vpermilpdv
Vx,Hx,Wx

vtestpsv
Vx, Wx

vtestpdv
Vx, Wx

1

pabsb
Pq, Qq

pabsw
Pq, Qq

pabsd
Pq, Qq

66
vbroadcastssv

Vx, Wd
vbroadcastsdv

Vqq, Wq
vbroadcastf128v

Vqq, Mdq
vpabsb
Vx, Wx

vpabsw
Vx, Wx

vpabsd
Vx, Wx

2 66
vpmuldq

Vx, Hx, Wx
vpcmpeqq
Vx, Hx, Wx

vmovntdqa
Vx, Mx

vpackusdw
Vx, Hx, Wx

vmaskmovpsv
Vx,Hx,Mx

vmaskmovpdv
Vx,Hx,Mx

vmaskmovpsv
Mx,Hx,Vx

vmaskmovpdv
Mx,Hx,Vx

3 66
vpminsb

Vx, Hx, Wx
vpminsd

Vx, Hx, Wx
vpminuw

Vx, Hx, Wx
vpminud

Vx, Hx, Wx
vpmaxsb

Vx, Hx, Wx
vpmaxsd

Vx, Hx, Wx
vpmaxuw

Vx, Hx, Wx
vpmaxud

Vx, Hx, Wx

4

5 66
vpbroadcastdv

Vx, Wx
vpbroadcastqv

Vx, Wx
vbroadcasti128v

Vqq, Mdq

6

7 66
vpbroadcastbv

Vx, Wx
vpbroadcastwv

Vx, Wx

8 66
vpmaskmovd/qv

Vx,Hx,Mx
vpmaskmovd/qv

Mx,Vx,Hx

9 66
vfmadd132ps/dv

Vx, Hx, Wx
vfmadd132ss/dv

Vx, Hx, Wx
vfmsub132ps/dv

Vx, Hx, Wx
vfmsub132ss/dv

Vx, Hx, Wx
vfnmadd132ps/dv

Vx, Hx, Wx
vfnmadd132ss/dv

Vx, Hx, Wx
vfnmsub132ps/dv

Vx, Hx, Wx
vfnmsub132ss/dv

Vx, Hx, Wx

A 66
vfmadd213ps/dv

Vx, Hx, Wx
vfmadd213ss/dv

Vx, Hx, Wx
vfmsub213ps/dv

Vx, Hx, Wx
vfmsub213ss/dv

Vx, Hx, Wx
vfnmadd213ps/dv

Vx, Hx, Wx
vfnmadd213ss/dv

Vx, Hx, W
vfnmsub213ps/dv

Vx, Hx, Wx
vfnmsub213ss/dv

Vx, Hx, Wx

B 66
vfmadd231ps/dv

Vx, Hx, Wx
vfmadd231ss/dv

Vx, Hx, Wx
vfmsub231ps/dv

Vx, Hx, Wx
vfmsub231ss/dv

Vx, Hx, Wx
vfnmadd231ps/dv

Vx, Hx, Wx
vfnmadd231ss/dv

Vx, Hx, Wx
vfnmsub231ps/dv

Vx, Hx, Wx
vfnmsub231ss/dv

Vx, Hx, Wx

C

D 66
VAESIMC
Vdq, Wdq

VAESENC
Vdq,Hdq,Wdq

VAESENCLAST
Vdq,Hdq,Wdq

VAESDEC
Vdq,Hdq,Wdq

VAESDECLAST
Vdq,Hdq,Wdq

E

F

66

F3

F2

66 &
F2

OTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of unde-
fined or reserved locations.
Vol. 2C A-17

OPCODE MAP
Table A-5. Three-byte Opcode Map: 00H — F7H (First two bytes are 0F 3AH) *

pfx 0 1 2 3 4 5 6 7

0 66

vpermqv

Vqq, Wqq, Ib
vpermpdv

Vqq, Wqq, Ib
vpblenddv

Vx,Hx,Wx,Ib
vpermilpsv
Vx, Wx, Ib

vpermilpdv
Vx, Wx, Ib

vperm2f128v
Vqq,Hqq,Wqq,Ib

1 66
vpextrb

Rd/Mb, Vdq, Ib
vpextrw

Rd/Mw, Vdq, Ib
vpextrd/q

Ey, Vdq, Ib
vextractps
Ed, Vdq, Ib

2 66
vpinsrb

Vdq,Hdq,
Ry/Mb,Ib

vinsertps
Vdq,Hdq,
Udq/Md,Ib

vpinsrd/q
Vdq,Hdq,Ey,Ib

3

4 66
vdpps

Vx,Hx,Wx,Ib
vdppd

Vdq,Hdq,Wdq,Ib
vmpsadbw

Vx,Hx,Wx,Ib
vpclmulqdq

Vdq,Hdq,Wdq,Ib
vperm2i128v

Vqq,Hqq,Wqq,Ib

5

6 66
vpcmpestrm
Vdq, Wdq, Ib

vpcmpestri
Vdq, Wdq, Ib

vpcmpistrm
Vdq, Wdq, Ib

vpcmpistri
Vdq, Wdq, Ib

7

8

9

A

B

C

D

E

F
F2

RORXv

Gy, Ey, Ib
A-18 Vol. 2C

OPCODE MAP
Table A-5. Three-byte Opcode Map: 08H — FFH (First Two Bytes are 0F 3AH) *

pfx 8 9 A B C D E F

0

palignr
Pq, Qq, Ib

66
vroundps
Vx,Wx,Ib

vroundpd
Vx,Wx,Ib

vroundss
Vss,Wss,Ib

vroundsd
Vsd,Wsd,Ib

vblendps
Vx,Hx,Wx,Ib

vblendpd
Vx,Hx,Wx,Ib

vpblendw
Vx,Hx,Wx,Ib

vpalignr
Vx,Hx,Wx,Ib

1 66
vinsertf128v

Vqq,Hqq,Wqq,Ib
vextractf128v
Wdq,Vqq,Ib

vcvtps2phv

Wx, Vx, Ib

2

3 66
vinserti128v

Vqq,Hqq,Wqq,Ib
vextracti128v
Wdq,Vqq,Ib

4 66
vblendvpsv

 Vx,Hx,Wx,Lx
vblendvpdv

Vx,Hx,Wx,Lx
vpblendvbv

Vx,Hx,Wx,Lx

5

6

7

8

9

A

B

C

D 66
VAESKEYGEN
Vdq, Wdq, Ib

E

F

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of
undefined or reserved locations.
Vol. 2C A-19

OPCODE MAP
A.4 OPCODE EXTENSIONS FOR ONE-BYTE AND TWO-
BYTE OPCODES

Some 1-byte and 2-byte opcodes use bits 3-5 of the ModR/M byte (the nnn field in
Figure A-1) as an extension of the opcode.

Opcodes that have opcode extensions are indicated in Table A-6 and organized by
group number. Group numbers (from 1 to 16, second column) provide a table entry
point. The encoding for the r/m field for each instruction can be established using the
third column of the table.

A.4.1 Opcode Look-up Examples Using Opcode Extensions
An Example is provided below.

Example A-4. Interpreting an ADD Instruction

An ADD instruction with a 1-byte opcode of 80H is a Group 1 instruction:
• Table A-6 indicates that the opcode extension field encoded in the ModR/M byte

for this instruction is 000B.
• The r/m field can be encoded to access a register (11B) or a memory address

using a specified addressing mode (for example: mem = 00B, 01B, 10B).

Example A-5. Looking Up 0F01C3H

Look up opcode 0F01C3 for a VMRESUME instruction by using Table A-2, Table A-3
and Table A-6:
• 0F tells us that this instruction is in the 2-byte opcode map.
• 01 (row 0, column 1 in Table A-3) reveals that this opcode is in Group 7 of Table

A-6.
• C3 is the ModR/M byte. The first two bits of C3 are 11B. This tells us to look at the

second of the Group 7 rows in Table A-6.
• The Op/Reg bits [5,4,3] are 000B. This tells us to look in the 000 column for

Group 7.
• Finally, the R/M bits [2,1,0] are 011B. This identifies the opcode as the

VMRESUME instruction.

mod nnn R/M

Figure A-1. ModR/M Byte nnn Field (Bits 5, 4, and 3)
A-20 Vol. 2C

OPCODE MAP

is)

1
P

R

V
AX

PG
b

GS
00)
 (001)

C

RST
q

RST
q

RT
) Ib

 (000)
A.4.2 Opcode Extension Tables
See Table A-6 below.

Table A-6. Opcode Extensions for One- and Two-byte Opcodes by Group Number *

Opcode Group Mod 7,6 pfx

Encoding of Bits 5,4,3 of the ModR/M Byte (bits 2,1,0 in parenthes
000 001 010 011 100 101 110 11

80-83 1
mem,
11B

ADD OR ADC SBB AND SUB XOR CM

8F 1A
mem,
11B

POP

C0,C1 reg, imm
D0, D1 reg, 1

D2, D3 reg, CL
2

mem,
11B

ROL ROR RCL RCR SHL/SAL SHR SA

F6, F7 3
mem,
11B

TEST
Ib/Iz

NOT NEG MUL
AL/rAX

IMUL
AL/rAX

DIV
AL/rAX

IDI
AL/r

FE 4
mem,
11B

INC
Eb

DEC
Eb

FF 5
mem,
11B

INC
Ev

DEC
Ev

CALLNf64

Ev
CALLF

Ep
JMPNf64

Ev
JMPF

Mp
PUSHd64

Ev

0F 00 6
mem,
11B

SLDT
Rv/Mw

STR
Rv/Mw

LLDT
Ew

LTR
Ew

VERR
Ew

VERW
Ew

0F 01 7

mem SGDT
Ms

SIDT
Ms

LGDT
Ms

LIDT
Ms

SMSW
Mw/Rv

LMSW
Ew

INVL
M

11B VMCALL (001)
VMLAUNCH

(010)
VMRESUME

(011)
VMXOFF

(100)

MONITOR
(000)

MWAIT (001)

XGETBV
(000)

XSETBV
(001)

VMFUNC
(100)

XEND (101)
XTEST (110)

SWAP
o64(0

RDTSCP

0F BA 8
mem,
11B

BT BTS BTR BT

0F C7 9

mem

CMPXCH8B
Mq

CMPXCHG16B
 Mdq

VMPTRLD
Mq

VMPT
M

66 VMCLEAR
Mq

F3 VMXON
Mq

VMPT
M

11B
RDRAND

Rv

0F B9 10
mem

11B

C6

11

mem MOV
Eb, Ib

11B
XABO
(000

C7

mem MOV
Ev, Iz

11B
XBEGIN

Jz
Vol. 2C A-21

OPCODE MAP

is)

1

ldq
x,Ib

sh

ce

fined
Opcode Group Mod 7,6 pfx

Encoding of Bits 5,4,3 of the ModR/M Byte (bits 2,1,0 in parenthes
000 001 010 011 100 101 110 11

0F 71 12

mem

11B

psrlw
Nq, Ib

psraw
Nq, Ib

psllw
Nq, Ib

66 vpsrlw
Hx,Ux,Ib

vpsraw
Hx,Ux,Ib

vpsllw
Hx,Ux,Ib

0F 72 13

mem

11B

psrld
Nq, Ib

psrad
Nq, Ib

pslld
Nq, Ib

66 vpsrld
Hx,Ux,Ib

vpsrad
Hx,Ux,Ib

vpslld
Hx,Ux,Ib

0F 73 14

mem

11B

psrlq
Nq, Ib

psllq
Nq, Ib

66 vpsrlq
Hx,Ux,Ib

vpsrldq
Hx,Ux,Ib

vpsllq
Hx,Ux,Ib

vpsl
Hx,U

0F AE 15

mem fxsave fxrstor ldmxcsr stmxcsr XSAVE XRSTOR XSAVEOPT clflu

11B

lfence mfence sfen

F3 RDFSBASE
Ry

RDGSBASE
Ry

WRFSBASE
Ry

WRGSBASE
Ry

0F 18 16
mem

prefetch
NTA

prefetch
T0

prefetch
T1

prefetch
T2

11B

VEX.0F38 F3 17
mem BLSRv

By, Ey
BLSMSKv

By, Ey
BLSIv

By, Ey
11B

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of unde
or reserved locations.

Table A-6. Opcode Extensions for One- and Two-byte Opcodes by Group Number *
A-22 Vol. 2C

OPCODE MAP
A.5 ESCAPE OPCODE INSTRUCTIONS
Opcode maps for coprocessor escape instruction opcodes (x87 floating-point
instruction opcodes) are in Table A-7 through Table A-22. These maps are grouped
by the first byte of the opcode, from D8-DF. Each of these opcodes has a ModR/M
byte. If the ModR/M byte is within the range of 00H-BFH, bits 3-5 of the ModR/M byte
are used as an opcode extension, similar to the technique used for 1-and 2-byte
opcodes (see A.4). If the ModR/M byte is outside the range of 00H through BFH, the
entire ModR/M byte is used as an opcode extension.

A.5.1 Opcode Look-up Examples for Escape Instruction Opcodes
Examples are provided below.

Example A-6. Opcode with ModR/M Byte in the 00H through BFH Range

DD0504000000H can be interpreted as follows:
• The instruction encoded with this opcode can be located in Section . Since the

ModR/M byte (05H) is within the 00H through BFH range, bits 3 through 5 (000)
of this byte indicate the opcode for an FLD double-real instruction (see Table
A-9).

• The double-real value to be loaded is at 00000004H (the 32-bit displacement
that follows and belongs to this opcode).

Example A-7. Opcode with ModR/M Byte outside the 00H through BFH Range

D8C1H can be interpreted as follows:
• This example illustrates an opcode with a ModR/M byte outside the range of 00H

through BFH. The instruction can be located in Section A.4.
• In Table A-8, the ModR/M byte C1H indicates row C, column 1 (the FADD

instruction using ST(0), ST(1) as operands).

A.5.2 Escape Opcode Instruction Tables
Tables are listed below.
Vol. 2C A-23

OPCODE MAP
A.5.2.1 Escape Opcodes with D8 as First Byte
Table A-7 and A-8 contain maps for the escape instruction opcodes that begin with D8H. Table
A-7 shows the map if the ModR/M byte is in the range of 00H-BFH. Here, the value of bits 3-5
(the nnn field in Figure A-1) selects the instruction.

Table A-8 shows the map if the ModR/M byte is outside the range of 00H-BFH. Here, the first
digit of the ModR/M byte selects the table row and the second digit selects the column.

Table A-7. D8 Opcode Map When ModR/M Byte is Within 00H to BFH *

nnn Field of ModR/M Byte (refer to Figure A.4)

000B 001B 010B 011B 100B 101B 110B 111B

FADD single-
real

FMUL single-
real

FCOM single-
real

FCOMP single-
real

FSUB single-
real

FSUBR single-
real

FDIV single-real FDIVR single-
real

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of
undefined or reserved locations.

Table A-8. D8 Opcode Map When ModR/M Byte is Outside 00H to BFH *
0 1 2 3 4 5 6 7

C FADD

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D FCOM

ST(0),ST(0) ST(0),ST(1) ST(0),T(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

E FSUB

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

F FDIV

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

8 9 A B C D E F

C FMUL

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D FCOMP

ST(0),ST(0) ST(0),ST(1) ST(0),T(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

E FSUBR

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

F FDIVR

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of
undefined or reserved locations.
A-24 Vol. 2C

OPCODE MAP
A.5.2.2 Escape Opcodes with D9 as First Byte
Table A-9 and A-10 contain maps for escape instruction opcodes that begin with D9H. Table A-9
shows the map if the ModR/M byte is in the range of 00H-BFH. Here, the value of bits 3-5 (the
nnn field in Figure A-1) selects the instruction.
.

Table A-10 shows the map if the ModR/M byte is outside the range of 00H-BFH. Here, the first
digit of the ModR/M byte selects the table row and the second digit selects the column.

Table A-9. D9 Opcode Map When ModR/M Byte is Within 00H to BFH *
nnn Field of ModR/M Byte

000B 001B 010B 011B 100B 101B 110B 111B

FLD
single-real

FST
single-real

FSTP
single-real

FLDENV
14/28 bytes

FLDCW
2 bytes

FSTENV
14/28 bytes

FSTCW
2 bytes

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of
undefined or reserved locations.

Table A-10. D9 Opcode Map When ModR/M Byte is Outside 00H to BFH *
0 1 2 3 4 5 6 7

C FLD

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D FNOP

E FCHS FABS FTST FXAM

F F2XM1 FYL2X FPTAN FPATAN FXTRACT FPREM1 FDECSTP FINCSTP

8 9 A B C D E F

C FXCH

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D

E FLD1 FLDL2T FLDL2E FLDPI FLDLG2 FLDLN2 FLDZ

F FPREM FYL2XP1 FSQRT FSINCOS FRNDINT FSCALE FSIN FCOS

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of
undefined or reserved locations.
Vol. 2C A-25

OPCODE MAP
A.5.2.3 Escape Opcodes with DA as First Byte
Table A-11 and A-12 contain maps for escape instruction opcodes that begin with DAH. Table
A-11 shows the map if the ModR/M byte is in the range of 00H-BFH. Here, the value of bits 3-5
(the nnn field in Figure A-1) selects the instruction.

Table A-11 shows the map if the ModR/M byte is outside the range of 00H-BFH. Here, the first
digit of the ModR/M byte selects the table row and the second digit selects the column.

Table A-11. DA Opcode Map When ModR/M Byte is Within 00H to BFH *
nnn Field of ModR/M Byte

000B 001B 010B 011B 100B 101B 110B 111B

FIADD
dword-integer

FIMUL
dword-integer

FICOM
dword-integer

FICOMP
dword-integer

FISUB
dword-integer

FISUBR
dword-integer

FIDIV
dword-integer

FIDIVR
dword-integer

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of
undefined or reserved locations.

Table A-12. DA Opcode Map When ModR/M Byte is Outside 00H to BFH *
0 1 2 3 4 5 6 7

C FCMOVB

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D FCMOVBE

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

E

F

8 9 A B C D E F

C FCMOVE

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D FCMOVU

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

E FUCOMPP

F

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of
undefined or reserved locations.
A-26 Vol. 2C

OPCODE MAP
A.5.2.4 Escape Opcodes with DB as First Byte
Table A-13 and A-14 contain maps for escape instruction opcodes that begin with DBH. Table
A-13 shows the map if the ModR/M byte is in the range of 00H-BFH. Here, the value of bits 3-5
(the nnn field in Figure A-1) selects the instruction.

Table A-14 shows the map if the ModR/M byte is outside the range of 00H-BFH. Here, the first
digit of the ModR/M byte selects the table row and the second digit selects the column.

Table A-13. DB Opcode Map When ModR/M Byte is Within 00H to BFH *
nnn Field of ModR/M Byte

000B 001B 010B 011B 100B 101B 110B 111B

FILD
dword-integer

FISTTP
dword-integer

FIST
dword-integer

FISTP
dword-integer

FLD
extended-real

FSTP
extended-real

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of
undefined or reserved locations.

Table A-14. DB Opcode Map When ModR/M Byte is Outside 00H to BFH *
0 1 2 3 4 5 6 7

C FCMOVNB

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D FCMOVNBE

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

E FCLEX FINIT

F FCOMI

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

8 9 A B C D E F

C FCMOVNE

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D FCMOVNU

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

E FUCOMI

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

F

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of
undefined or reserved locations.
Vol. 2C A-27

OPCODE MAP
A.5.2.5 Escape Opcodes with DC as First Byte
Table A-15 and A-16 contain maps for escape instruction opcodes that begin with DCH. Table
A-15 shows the map if the ModR/M byte is in the range of 00H-BFH. Here, the value of bits 3-5
(the nnn field in Figure A-1) selects the instruction.

Table A-16 shows the map if the ModR/M byte is outside the range of 00H-BFH. In this case the
first digit of the ModR/M byte selects the table row and the second digit selects the column.

Table A-15. DC Opcode Map When ModR/M Byte is Within 00H to BFH *
nnn Field of ModR/M Byte (refer to Figure A-1)

000B 001B 010B 011B 100B 101B 110B 111B

FADD
double-real

FMUL
double-real

FCOM
double-real

FCOMP
double-real

FSUB
double-real

FSUBR
double-real

FDIV
double-real

FDIVR
double-real

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of
undefined or reserved locations.

Table A-16. DC Opcode Map When ModR/M Byte is Outside 00H to BFH *
0 1 2 3 4 5 6 7

C FADD

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

D

E FSUBR

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

F FDIVR

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

8 9 A B C D E F

C FMUL

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

D

E FSUB

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

F FDIV

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of
undefined or reserved locations.
A-28 Vol. 2C

OPCODE MAP
A.5.2.6 Escape Opcodes with DD as First Byte
Table A-17 and A-18 contain maps for escape instruction opcodes that begin with DDH. Table
A-17 shows the map if the ModR/M byte is in the range of 00H-BFH. Here, the value of bits 3-5
(the nnn field in Figure A-1) selects the instruction.

Table A-18 shows the map if the ModR/M byte is outside the range of 00H-BFH. The first digit of
the ModR/M byte selects the table row and the second digit selects the column.

Table A-17. DD Opcode Map When ModR/M Byte is Within 00H to BFH *

nnn Field of ModR/M Byte

000B 001B 010B 011B 100B 101B 110B 111B

FLD
double-real

FISTTP
integer64

FST
double-real

FSTP
double-real

FRSTOR
98/108bytes

FSAVE
98/108bytes

FSTSW
2 bytes

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of
undefined or reserved locations.

Table A-18. DD Opcode Map When ModR/M Byte is Outside 00H to BFH *
0 1 2 3 4 5 6 7

C FFREE

ST(0) ST(1) ST(2) ST(3) ST(4) ST(5) ST(6) ST(7)

D FST

ST(0) ST(1) ST(2) ST(3) ST(4) ST(5) ST(6) ST(7)

E FUCOM

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

F

8 9 A B C D E F

C

D FSTP

ST(0) ST(1) ST(2) ST(3) ST(4) ST(5) ST(6) ST(7)

E FUCOMP

ST(0) ST(1) ST(2) ST(3) ST(4) ST(5) ST(6) ST(7)

F

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of
undefined or reserved locations.
Vol. 2C A-29

OPCODE MAP
A.5.2.7 Escape Opcodes with DE as First Byte
Table A-19 and A-20 contain opcode maps for escape instruction opcodes that begin with DEH.
Table A-19 shows the opcode map if the ModR/M byte is in the range of 00H-BFH. In this case,
the value of bits 3-5 (the nnn field in Figure A-1) selects the instruction.

Table A-20 shows the opcode map if the ModR/M byte is outside the range of 00H-BFH. The first
digit of the ModR/M byte selects the table row and the second digit selects the column.

Table A-19. DE Opcode Map When ModR/M Byte is Within 00H to BFH *
nnn Field of ModR/M Byte

000B 001B 010B 011B 100B 101B 110B 111B

FIADD
word-integer

FIMUL
word-integer

FICOM
word-integer

FICOMP
word-integer

FISUB
word-integer

FISUBR
word-integer

FIDIV
word-integer

FIDIVR
word-integer

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of
undefined or reserved locations.

Table A-20. DE Opcode Map When ModR/M Byte is Outside 00H to BFH *
0 1 2 3 4 5 6 7

C FADDP

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

D

E FSUBRP

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

F FDIVRP

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

8 9 A B C D E F

C FMULP

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

D FCOMPP

E FSUBP

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

F FDIVP

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0). ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of
undefined or reserved locations.
A-30 Vol. 2C

OPCODE MAP
A.5.2.8 Escape Opcodes with DF As First Byte
Table A-21 and A-22 contain the opcode maps for escape instruction opcodes that begin with
DFH. Table A-21 shows the opcode map if the ModR/M byte is in the range of 00H-BFH. Here,
the value of bits 3-5 (the nnn field in Figure A-1) selects the instruction.

Table A-22 shows the opcode map if the ModR/M byte is outside the range of 00H-BFH. The first
digit of the ModR/M byte selects the table row and the second digit selects the column.

Table A-21. DF Opcode Map When ModR/M Byte is Within 00H to BFH *
nnn Field of ModR/M Byte

000B 001B 010B 011B 100B 101B 110B 111B

FILD
word-integer

FISTTP
word-integer

FIST
word-integer

FISTP
word-integer

FBLD
packed-BCD

FILD
qword-integer

FBSTP
packed-BCD

FISTP
qword-integer

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of
undefined or reserved locations.

Table A-22. DF Opcode Map When ModR/M Byte is Outside 00H to BFH *

0 1 2 3 4 5 6 7

C

D

E FSTSW
AX

F FCOMIP

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

8 9 A B C D E F

C

D

E FUCOMIP

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

F

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of
undefined or reserved locations.
Vol. 2C A-31

APPENDIX B
INSTRUCTION FORMATS AND ENCODINGS

This appendix provides machine instruction formats and encodings of IA-32 instruc-
tions. The first section describes the IA-32 architecture’s machine instruction format.
The remaining sections show the formats and encoding of general-purpose, MMX, P6
family, SSE/SSE2/SSE3, x87 FPU instructions, and VMX instructions. Those instruc-
tion formats also apply to Intel 64 architecture. Instruction formats used in 64-bit
mode are provided as supersets of the above.

B.1 MACHINE INSTRUCTION FORMAT
All Intel Architecture instructions are encoded using subsets of the general machine
instruction format shown in Figure B-1. Each instruction consists of:
• an opcode
• a register and/or address mode specifier consisting of the ModR/M byte and

sometimes the scale-index-base (SIB) byte (if required)
• a displacement and an immediate data field (if required)

The following sections discuss this format.

Figure B-1. General Machine Instruction Format

ModR/M Byte

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

7-6 5-3 2-07-6 5-3 2-0

T T T T T T T T T T T T T T T T

Mod Reg* R/M Scale Index Base d32 | 16 | 8 | Noned32 | 16 | 8 | None

SIB Byte Address Displacement
(4, 2, 1 Bytes or None)

Immediate Data
(4,2,1 Bytes or None)

Register and/or Address
Mode Specifier

Legacy Prefixes REX Prefixes

7 6 5 4 3 2 1 0

T T T T T T T T

(optional)Grp 1, Grp 2,
Grp 3, Grp 4

NOTE:

* The Reg Field may be used as an

1, 2, or 3 Byte Opcodes (T = Opcode
Vol. 2C B-1

INSTRUCTION FORMATS AND ENCODINGS
B.1.1 Legacy Prefixes
The legacy prefixes noted in Figure B-1 include 66H, 67H, F2H and F3H. They are
optional, except when F2H, F3H and 66H are used in new instruction extensions.
Legacy prefixes must be placed before REX prefixes.

Refer to Chapter 2, “Instruction Format,” in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 2A, for more information on legacy prefixes.

B.1.2 REX Prefixes
REX prefixes are a set of 16 opcodes that span one row of the opcode map and
occupy entries 40H to 4FH. These opcodes represent valid instructions (INC or DEC)
in IA-32 operating modes and in compatibility mode. In 64-bit mode, the same
opcodes represent the instruction prefix REX and are not treated as individual
instructions.

Refer to Chapter 2, “Instruction Format,” in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 2A, for more information on REX prefixes.

B.1.3 Opcode Fields
The primary opcode for an instruction is encoded in one to three bytes of the instruc-
tion. Within the primary opcode, smaller encoding fields may be defined. These fields
vary according to the class of operation being performed.

Almost all instructions that refer to a register and/or memory operand have a
register and/or address mode byte following the opcode. This byte, the ModR/M byte,
consists of the mod field (2 bits), the reg field (3 bits; this field is sometimes an
opcode extension), and the R/M field (3 bits). Certain encodings of the ModR/M byte
indicate that a second address mode byte, the SIB byte, must be used.

If the addressing mode specifies a displacement, the displacement value is placed
immediately following the ModR/M byte or SIB byte. Possible sizes are 8, 16, or 32
bits. If the instruction specifies an immediate value, the immediate value follows any
displacement bytes. The immediate, if specified, is always the last field of the instruc-
tion.

Refer to Chapter 2, “Instruction Format,” in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 2A, for more information on opcodes.

B.1.4 Special Fields
Table B-1 lists bit fields that appear in certain instructions, sometimes within the
opcode bytes. All of these fields (except the d bit) occur in the general-purpose
instruction formats in Table B-13.
B-2 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
B.1.4.1 Reg Field (reg) for Non-64-Bit Modes
The reg field in the ModR/M byte specifies a general-purpose register operand. The
group of registers specified is modified by the presence and state of the w bit in an
encoding (refer to Section B.1.4.3). Table B-2 shows the encoding of the reg field
when the w bit is not present in an encoding; Table B-3 shows the encoding of the reg
field when the w bit is present.

Table B-1. Special Fields Within Instruction Encodings

Field Name Description
Number of

Bits

reg General-register specifier (see Table B-4 or B-5) 3

w Specifies if data is byte or full-sized, where full-sized is 16 or 32
bits (see Table B-6)

1

s Specifies sign extension of an immediate field (see Table B-7) 1

sreg2 Segment register specifier for CS, SS, DS, ES (see Table B-8) 2

sreg3 Segment register specifier for CS, SS, DS, ES, FS, GS (see Table B-8) 3

eee Specifies a special-purpose (control or debug) register (see
Table B-9)

3

tttn For conditional instructions, specifies a condition asserted or
negated (see Table B-12)

4

d Specifies direction of data operation (see Table B-11) 1

Table B-2. Encoding of reg Field When w Field is Not Present in Instruction

reg Field
Register Selected during
16-Bit Data Operations

Register Selected during
32-Bit Data Operations

000 AX EAX

001 CX ECX

010 DX EDX

011 BX EBX

100 SP ESP

101 BP EBP

110 SI ESI

111 DI EDI
Vol. 2C B-3

INSTRUCTION FORMATS AND ENCODINGS
B.1.4.2 Reg Field (reg) for 64-Bit Mode
Just like in non-64-bit modes, the reg field in the ModR/M byte specifies a general-
purpose register operand. The group of registers specified is modified by the pres-
ence of and state of the w bit in an encoding (refer to Section B.1.4.3). Table B-4
shows the encoding of the reg field when the w bit is not present in an encoding;
Table B-5 shows the encoding of the reg field when the w bit is present.

Table B-3. Encoding of reg Field When w Field is Present in Instruction

Register Specified by reg Field
During 16-Bit Data Operations

Register Specified by reg Field
During 32-Bit Data Operations

Function of w Field Function of w Field

reg When w = 0 When w = 1 reg When w = 0 When w = 1

000 AL AX 000 AL EAX

001 CL CX 001 CL ECX

010 DL DX 010 DL EDX

011 BL BX 011 BL EBX

100 AH SP 100 AH ESP

101 CH BP 101 CH EBP

110 DH SI 110 DH ESI

111 BH DI 111 BH EDI

Table B-4. Encoding of reg Field When w Field is Not Present in Instruction

reg Field
Register Selected

during
16-Bit Data Operations

Register Selected
during

32-Bit Data Operations

Register Selected
during

64-Bit Data Operations

000 AX EAX RAX

001 CX ECX RCX

010 DX EDX RDX

011 BX EBX RBX

100 SP ESP RSP

101 BP EBP RBP

110 SI ESI RSI

111 DI EDI RDI
B-4 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
B.1.4.3 Encoding of Operand Size (w) Bit
The current operand-size attribute determines whether the processor is performing
16-bit, 32-bit or 64-bit operations. Within the constraints of the current operand-size
attribute, the operand-size bit (w) can be used to indicate operations on 8-bit oper-
ands or the full operand size specified with the operand-size attribute. Table B-6
shows the encoding of the w bit depending on the current operand-size attribute.

B.1.4.4 Sign-Extend (s) Bit
The sign-extend (s) bit occurs in instructions with immediate data fields that are
being extended from 8 bits to 16 or 32 bits. See Table B-7.

Table B-5. Encoding of reg Field When w Field is Present in Instruction

Register Specified by reg Field
During 16-Bit Data Operations

Register Specified by reg Field
During 32-Bit Data Operations

Function of w Field Function of w Field

reg When w = 0 When w = 1 reg When w = 0 When w = 1

000 AL AX 000 AL EAX

001 CL CX 001 CL ECX

010 DL DX 010 DL EDX

011 BL BX 011 BL EBX

100 AH1 SP 100 AH* ESP

101 CH1 BP 101 CH* EBP

110 DH1 SI 110 DH* ESI

111 BH1 DI 111 BH* EDI

NOTES:
1. AH, CH, DH, BH can not be encoded when REX prefix is used. Such an expression defaults to the

low byte.

Table B-6. Encoding of Operand Size (w) Bit

w Bit
Operand Size When

Operand-Size Attribute is 16 Bits
Operand Size When

Operand-Size Attribute is 32 Bits

0 8 Bits 8 Bits

1 16 Bits 32 Bits
Vol. 2C B-5

INSTRUCTION FORMATS AND ENCODINGS
B.1.4.5 Segment Register (sreg) Field
When an instruction operates on a segment register, the reg field in the ModR/M byte
is called the sreg field and is used to specify the segment register. Table B-8 shows
the encoding of the sreg field. This field is sometimes a 2-bit field (sreg2) and other
times a 3-bit field (sreg3).

B.1.4.6 Special-Purpose Register (eee) Field
When control or debug registers are referenced in an instruction they are encoded in
the eee field, located in bits 5 though 3 of the ModR/M byte (an alternate encoding of
the sreg field). See Table B-9.

Table B-7. Encoding of Sign-Extend (s) Bit

s
Effect on 8-Bit

Immediate Data
Effect on 16- or 32-Bit

Immediate Data

0 None None

1 Sign-extend to fill 16-bit or 32-bit destination None

Table B-8. Encoding of the Segment Register (sreg) Field

2-Bit sreg2 Field
Segment Register

Selected 3-Bit sreg3 Field
Segment Register

Selected

00 ES 000 ES

01 CS 001 CS

10 SS 010 SS

11 DS 011 DS

100 FS

101 GS

110 Reserved1

111 Reserved

NOTES:
1. Do not use reserved encodings.
B-6 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
B.1.4.7 Condition Test (tttn) Field
For conditional instructions (such as conditional jumps and set on condition), the
condition test field (tttn) is encoded for the condition being tested. The ttt part of the
field gives the condition to test and the n part indicates whether to use the condition
(n = 0) or its negation (n = 1).
• For 1-byte primary opcodes, the tttn field is located in bits 3, 2, 1, and 0 of the

opcode byte.
• For 2-byte primary opcodes, the tttn field is located in bits 3, 2, 1, and 0 of the

second opcode byte.

Table B-10 shows the encoding of the tttn field.

Table B-9. Encoding of Special-Purpose Register (eee) Field

eee Control Register Debug Register

000 CR0 DR0

001 Reserved1 DR1

010 CR2 DR2

011 CR3 DR3

100 CR4 Reserved

101 Reserved Reserved

110 Reserved DR6

111 Reserved DR7

NOTES:
1. Do not use reserved encodings.
Vol. 2C B-7

INSTRUCTION FORMATS AND ENCODINGS
B.1.4.8 Direction (d) Bit
In many two-operand instructions, a direction bit (d) indicates which operand is
considered the source and which is the destination. See Table B-11.
• When used for integer instructions, the d bit is located at bit 1 of a 1-byte primary

opcode. Note that this bit does not appear as the symbol “d” in Table B-13; the
actual encoding of the bit as 1 or 0 is given.

• When used for floating-point instructions (in Table B-16), the d bit is shown as bit
2 of the first byte of the primary opcode.

Table B-10. Encoding of Conditional Test (tttn) Field
t t t n Mnemonic Condition

0000 O Overflow

0001 NO No overflow

0010 B, NAE Below, Not above or equal

0011 NB, AE Not below, Above or equal

0100 E, Z Equal, Zero

0101 NE, NZ Not equal, Not zero

0110 BE, NA Below or equal, Not above

0111 NBE, A Not below or equal, Above

1000 S Sign

1001 NS Not sign

1010 P, PE Parity, Parity Even

1011 NP, PO Not parity, Parity Odd

1100 L, NGE Less than, Not greater than or equal to

1101 NL, GE Not less than, Greater than or equal to

1110 LE, NG Less than or equal to, Not greater than

1111 NLE, G Not less than or equal to, Greater than

Table B-11. Encoding of Operation Direction (d) Bit

d Source Destination

0 reg Field ModR/M or SIB Byte

1 ModR/M or SIB Byte reg Field
B-8 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
B.1.5 Other Notes
Table B-12 contains notes on particular encodings. These notes are indicated in the
tables shown in the following sections by superscripts.

B.2 GENERAL-PURPOSE INSTRUCTION FORMATS AND
ENCODINGS FOR NON-64-BIT MODES

Table B-13 shows machine instruction formats and encodings for general purpose
instructions in non-64-bit modes.

Table B-12. Notes on Instruction Encoding
Symbol Note

A A value of 11B in bits 7 and 6 of the ModR/M byte is reserved.

B A value of 01B (or 10B) in bits 7 and 6 of the ModR/M byte is reserved.

Table B-13. General Purpose Instruction Formats and Encodings
for Non-64-Bit Modes

Instruction and Format Encoding

AAA – ASCII Adjust after Addition 0011 0111

AAD – ASCII Adjust AX before Division 1101 0101 : 0000 1010

AAM – ASCII Adjust AX after Multiply 1101 0100 : 0000 1010

AAS – ASCII Adjust AL after Subtraction 0011 1111

ADC – ADD with Carry

register1 to register2 0001 000w : 11 reg1 reg2

register2 to register1 0001 001w : 11 reg1 reg2

memory to register 0001 001w : mod reg r/m

register to memory 0001 000w : mod reg r/m

immediate to register 1000 00sw : 11 010 reg : immediate data

immediate to AL, AX, or EAX 0001 010w : immediate data

immediate to memory 1000 00sw : mod 010 r/m : immediate data

ADD – Add

register1 to register2 0000 000w : 11 reg1 reg2

register2 to register1 0000 001w : 11 reg1 reg2

memory to register 0000 001w : mod reg r/m

register to memory 0000 000w : mod reg r/m
Vol. 2C B-9

INSTRUCTION FORMATS AND ENCODINGS
immediate to register 1000 00sw : 11 000 reg : immediate data

immediate to AL, AX, or EAX 0000 010w : immediate data

immediate to memory 1000 00sw : mod 000 r/m : immediate data

AND – Logical AND

register1 to register2 0010 000w : 11 reg1 reg2

register2 to register1 0010 001w : 11 reg1 reg2

memory to register 0010 001w : mod reg r/m

register to memory 0010 000w : mod reg r/m

immediate to register 1000 00sw : 11 100 reg : immediate data

immediate to AL, AX, or EAX 0010 010w : immediate data

immediate to memory 1000 00sw : mod 100 r/m : immediate data

ARPL – Adjust RPL Field of Selector

from register 0110 0011 : 11 reg1 reg2

from memory 0110 0011 : mod reg r/m

BOUND – Check Array Against Bounds 0110 0010 : modA reg r/m

BSF – Bit Scan Forward

register1, register2 0000 1111 : 1011 1100 : 11 reg1 reg2

memory, register 0000 1111 : 1011 1100 : mod reg r/m

BSR – Bit Scan Reverse

register1, register2 0000 1111 : 1011 1101 : 11 reg1 reg2

memory, register 0000 1111 : 1011 1101 : mod reg r/m

BSWAP – Byte Swap 0000 1111 : 1100 1 reg

BT – Bit Test

register, immediate 0000 1111 : 1011 1010 : 11 100 reg: imm8
data

memory, immediate 0000 1111 : 1011 1010 : mod 100 r/m : imm8
data

register1, register2 0000 1111 : 1010 0011 : 11 reg2 reg1

memory, reg 0000 1111 : 1010 0011 : mod reg r/m

BTC – Bit Test and Complement

Table B-13. General Purpose Instruction Formats and Encodings
for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding
B-10 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
register, immediate 0000 1111 : 1011 1010 : 11 111 reg: imm8
data

memory, immediate 0000 1111 : 1011 1010 : mod 111 r/m : imm8
data

register1, register2 0000 1111 : 1011 1011 : 11 reg2 reg1

memory, reg 0000 1111 : 1011 1011 : mod reg r/m

BTR – Bit Test and Reset

register, immediate 0000 1111 : 1011 1010 : 11 110 reg: imm8
data

memory, immediate 0000 1111 : 1011 1010 : mod 110 r/m : imm8
data

register1, register2 0000 1111 : 1011 0011 : 11 reg2 reg1

memory, reg 0000 1111 : 1011 0011 : mod reg r/m

BTS – Bit Test and Set

register, immediate 0000 1111 : 1011 1010 : 11 101 reg: imm8
data

memory, immediate 0000 1111 : 1011 1010 : mod 101 r/m : imm8
data

register1, register2 0000 1111 : 1010 1011 : 11 reg2 reg1

memory, reg 0000 1111 : 1010 1011 : mod reg r/m

CALL – Call Procedure (in same segment)

direct 1110 1000 : full displacement

register indirect 1111 1111 : 11 010 reg

memory indirect 1111 1111 : mod 010 r/m

CALL – Call Procedure (in other segment)

direct 1001 1010 : unsigned full offset, selector

indirect 1111 1111 : mod 011 r/m

CBW – Convert Byte to Word 1001 1000

CDQ – Convert Doubleword to Qword 1001 1001

CLC – Clear Carry Flag 1111 1000

CLD – Clear Direction Flag 1111 1100

Table B-13. General Purpose Instruction Formats and Encodings
for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding
Vol. 2C B-11

INSTRUCTION FORMATS AND ENCODINGS
CLI – Clear Interrupt Flag 1111 1010

CLTS – Clear Task-Switched Flag in CR0 0000 1111 : 0000 0110

CMC – Complement Carry Flag 1111 0101

CMP – Compare Two Operands

register1 with register2 0011 100w : 11 reg1 reg2

register2 with register1 0011 101w : 11 reg1 reg2

memory with register 0011 100w : mod reg r/m

register with memory 0011 101w : mod reg r/m

immediate with register 1000 00sw : 11 111 reg : immediate data

immediate with AL, AX, or EAX 0011 110w : immediate data

immediate with memory 1000 00sw : mod 111 r/m : immediate data

CMPS/CMPSB/CMPSW/CMPSD – Compare
String Operands

1010 011w

CMPXCHG – Compare and Exchange

register1, register2 0000 1111 : 1011 000w : 11 reg2 reg1

memory, register 0000 1111 : 1011 000w : mod reg r/m

CPUID – CPU Identification 0000 1111 : 1010 0010

CWD – Convert Word to Doubleword 1001 1001

CWDE – Convert Word to Doubleword 1001 1000

DAA – Decimal Adjust AL after Addition 0010 0111

DAS – Decimal Adjust AL after Subtraction 0010 1111

DEC – Decrement by 1

register 1111 111w : 11 001 reg

register (alternate encoding) 0100 1 reg

memory 1111 111w : mod 001 r/m

DIV – Unsigned Divide

AL, AX, or EAX by register 1111 011w : 11 110 reg

AL, AX, or EAX by memory 1111 011w : mod 110 r/m

HLT – Halt 1111 0100

Table B-13. General Purpose Instruction Formats and Encodings
for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding
B-12 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
IDIV – Signed Divide

AL, AX, or EAX by register 1111 011w : 11 111 reg

AL, AX, or EAX by memory 1111 011w : mod 111 r/m

IMUL – Signed Multiply

AL, AX, or EAX with register 1111 011w : 11 101 reg

AL, AX, or EAX with memory 1111 011w : mod 101 reg

register1 with register2 0000 1111 : 1010 1111 : 11 : reg1 reg2

register with memory 0000 1111 : 1010 1111 : mod reg r/m

register1 with immediate to register2 0110 10s1 : 11 reg1 reg2 : immediate data

memory with immediate to register 0110 10s1 : mod reg r/m : immediate data

IN – Input From Port

fixed port 1110 010w : port number

variable port 1110 110w

INC – Increment by 1

reg 1111 111w : 11 000 reg

reg (alternate encoding) 0100 0 reg

memory 1111 111w : mod 000 r/m

INS – Input from DX Port 0110 110w

INT n – Interrupt Type n 1100 1101 : type

INT – Single-Step Interrupt 3 1100 1100

INTO – Interrupt 4 on Overflow 1100 1110

INVD – Invalidate Cache 0000 1111 : 0000 1000

INVLPG – Invalidate TLB Entry 0000 1111 : 0000 0001 : mod 111 r/m

INVPCID – Invalidate Process-Context
Identifier

0110 0110:0000 1111:0011 1000:1000
0010: mod reg r/m

IRET/IRETD – Interrupt Return 1100 1111

Jcc – Jump if Condition is Met

8-bit displacement 0111 tttn : 8-bit displacement

full displacement 0000 1111 : 1000 tttn : full displacement

Table B-13. General Purpose Instruction Formats and Encodings
for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding
Vol. 2C B-13

INSTRUCTION FORMATS AND ENCODINGS
JCXZ/JECXZ – Jump on CX/ECX Zero
 Address-size prefix differentiates JCXZ

 and JECXZ
1110 0011 : 8-bit displacement

JMP – Unconditional Jump (to same segment)

short 1110 1011 : 8-bit displacement

direct 1110 1001 : full displacement

register indirect 1111 1111 : 11 100 reg

memory indirect 1111 1111 : mod 100 r/m

JMP – Unconditional Jump (to other segment)

direct intersegment 1110 1010 : unsigned full offset, selector

indirect intersegment 1111 1111 : mod 101 r/m

LAHF – Load Flags into AHRegister 1001 1111

LAR – Load Access Rights Byte

from register 0000 1111 : 0000 0010 : 11 reg1 reg2

from memory 0000 1111 : 0000 0010 : mod reg r/m

LDS – Load Pointer to DS 1100 0101 : modA,B reg r/m

LEA – Load Effective Address 1000 1101 : modA reg r/m

LEAVE – High Level Procedure Exit 1100 1001

LES – Load Pointer to ES 1100 0100 : modA,B reg r/m

LFS – Load Pointer to FS 0000 1111 : 1011 0100 : modA reg r/m

LGDT – Load Global Descriptor Table Register 0000 1111 : 0000 0001 : modA 010 r/m

LGS – Load Pointer to GS 0000 1111 : 1011 0101 : modA reg r/m

LIDT – Load Interrupt Descriptor Table
Register

0000 1111 : 0000 0001 : modA 011 r/m

LLDT – Load Local Descriptor Table Register

LDTR from register 0000 1111 : 0000 0000 : 11 010 reg

LDTR from memory 0000 1111 : 0000 0000 : mod 010 r/m

LMSW – Load Machine Status Word

from register 0000 1111 : 0000 0001 : 11 110 reg

from memory 0000 1111 : 0000 0001 : mod 110 r/m

LOCK – Assert LOCK# Signal Prefix 1111 0000

Table B-13. General Purpose Instruction Formats and Encodings
for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding
B-14 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
LODS/LODSB/LODSW/LODSD – Load String
Operand

1010 110w

LOOP – Loop Count 1110 0010 : 8-bit displacement

LOOPZ/LOOPE – Loop Count while Zero/Equal 1110 0001 : 8-bit displacement

LOOPNZ/LOOPNE – Loop Count while not
Zero/Equal

1110 0000 : 8-bit displacement

LSL – Load Segment Limit

from register 0000 1111 : 0000 0011 : 11 reg1 reg2

from memory 0000 1111 : 0000 0011 : mod reg r/m

LSS – Load Pointer to SS 0000 1111 : 1011 0010 : modA reg r/m

LTR – Load Task Register

from register 0000 1111 : 0000 0000 : 11 011 reg

from memory 0000 1111 : 0000 0000 : mod 011 r/m

MOV – Move Data

register1 to register2 1000 100w : 11 reg1 reg2

register2 to register1 1000 101w : 11 reg1 reg2

memory to reg 1000 101w : mod reg r/m

reg to memory 1000 100w : mod reg r/m

immediate to register 1100 011w : 11 000 reg : immediate data

immediate to register (alternate encoding) 1011 w reg : immediate data

immediate to memory 1100 011w : mod 000 r/m : immediate data

memory to AL, AX, or EAX 1010 000w : full displacement

AL, AX, or EAX to memory 1010 001w : full displacement

MOV – Move to/from Control Registers

CR0 from register 0000 1111 : 0010 0010 : -- 000 reg

CR2 from register 0000 1111 : 0010 0010 : -- 010reg

CR3 from register 0000 1111 : 0010 0010 : -- 011 reg

CR4 from register 0000 1111 : 0010 0010 : -- 100 reg

register from CR0-CR4 0000 1111 : 0010 0000 : -- eee reg

MOV – Move to/from Debug Registers

Table B-13. General Purpose Instruction Formats and Encodings
for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding
Vol. 2C B-15

INSTRUCTION FORMATS AND ENCODINGS
DR0-DR3 from register 0000 1111 : 0010 0011 : -- eee reg

DR4-DR5 from register 0000 1111 : 0010 0011 : -- eee reg

DR6-DR7 from register 0000 1111 : 0010 0011 : -- eee reg

register from DR6-DR7 0000 1111 : 0010 0001 : -- eee reg

register from DR4-DR5 0000 1111 : 0010 0001 : -- eee reg

register from DR0-DR3 0000 1111 : 0010 0001 : -- eee reg

MOV – Move to/from Segment Registers

register to segment register 1000 1110 : 11 sreg3 reg

register to SS 1000 1110 : 11 sreg3 reg

memory to segment reg 1000 1110 : mod sreg3 r/m

memory to SS 1000 1110 : mod sreg3 r/m

segment register to register 1000 1100 : 11 sreg3 reg

segment register to memory 1000 1100 : mod sreg3 r/m

MOVBE – Move data after swapping bytes

memory to register 0000 1111 : 0011 1000:1111 0000 : mod reg
r/m

register to memory 0000 1111 : 0011 1000:1111 0001 : mod reg
r/m

MOVS/MOVSB/MOVSW/MOVSD – Move Data
from String to String

1010 010w

MOVSX – Move with Sign-Extend

memory to reg 0000 1111 : 1011 111w : mod reg r/m

MOVZX – Move with Zero-Extend

register2 to register1 0000 1111 : 1011 011w : 11 reg1 reg2

memory to register 0000 1111 : 1011 011w : mod reg r/m

MUL – Unsigned Multiply

AL, AX, or EAX with register 1111 011w : 11 100 reg

AL, AX, or EAX with memory 1111 011w : mod 100 r/m

NEG – Two's Complement Negation

register 1111 011w : 11 011 reg

memory 1111 011w : mod 011 r/m

Table B-13. General Purpose Instruction Formats and Encodings
for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding
B-16 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
NOP – No Operation 1001 0000

NOP – Multi-byte No Operation1

register 0000 1111 0001 1111 : 11 000 reg

memory 0000 1111 0001 1111 : mod 000 r/m

NOT – One's Complement Negation

register 1111 011w : 11 010 reg

memory 1111 011w : mod 010 r/m

OR – Logical Inclusive OR

register1 to register2 0000 100w : 11 reg1 reg2

register2 to register1 0000 101w : 11 reg1 reg2

memory to register 0000 101w : mod reg r/m

register to memory 0000 100w : mod reg r/m

immediate to register 1000 00sw : 11 001 reg : immediate data

immediate to AL, AX, or EAX 0000 110w : immediate data

immediate to memory 1000 00sw : mod 001 r/m : immediate data

OUT – Output to Port

fixed port 1110 011w : port number

variable port 1110 111w

OUTS – Output to DX Port 0110 111w

POP – Pop a Word from the Stack

register 1000 1111 : 11 000 reg

register (alternate encoding) 0101 1 reg

memory 1000 1111 : mod 000 r/m

POP – Pop a Segment Register from the Stack
(Note: CS cannot be sreg2 in this usage.)

segment register DS, ES 000 sreg2 111

segment register SS 000 sreg2 111

segment register FS, GS 0000 1111: 10 sreg3 001

POPA/POPAD – Pop All General Registers 0110 0001

Table B-13. General Purpose Instruction Formats and Encodings
for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding
Vol. 2C B-17

INSTRUCTION FORMATS AND ENCODINGS
POPF/POPFD – Pop Stack into FLAGS or
EFLAGS Register

1001 1101

PUSH – Push Operand onto the Stack

register 1111 1111 : 11 110 reg

register (alternate encoding) 0101 0 reg

memory 1111 1111 : mod 110 r/m

immediate 0110 10s0 : immediate data

PUSH – Push Segment Register onto the
Stack

segment register CS,DS,ES,SS 000 sreg2 110

segment register FS,GS 0000 1111: 10 sreg3 000

PUSHA/PUSHAD – Push All General Registers 0110 0000

PUSHF/PUSHFD – Push Flags Register onto
the Stack

1001 1100

RCL – Rotate thru Carry Left

register by 1 1101 000w : 11 010 reg

memory by 1 1101 000w : mod 010 r/m

register by CL 1101 001w : 11 010 reg

memory by CL 1101 001w : mod 010 r/m

register by immediate count 1100 000w : 11 010 reg : imm8 data

memory by immediate count 1100 000w : mod 010 r/m : imm8 data

RCR – Rotate thru Carry Right

register by 1 1101 000w : 11 011 reg

memory by 1 1101 000w : mod 011 r/m

register by CL 1101 001w : 11 011 reg

memory by CL 1101 001w : mod 011 r/m

register by immediate count 1100 000w : 11 011 reg : imm8 data

memory by immediate count 1100 000w : mod 011 r/m : imm8 data

RDMSR – Read from Model-Specific Register 0000 1111 : 0011 0010

Table B-13. General Purpose Instruction Formats and Encodings
for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding
B-18 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
RDPMC – Read Performance Monitoring
Counters

0000 1111 : 0011 0011

RDTSC – Read Time-Stamp Counter 0000 1111 : 0011 0001

RDTSCP – Read Time-Stamp Counter and
Processor ID

0000 1111 : 0000 0001: 1111 1001

REP INS – Input String 1111 0011 : 0110 110w

REP LODS – Load String 1111 0011 : 1010 110w

REP MOVS – Move String 1111 0011 : 1010 010w

REP OUTS – Output String 1111 0011 : 0110 111w

REP STOS – Store String 1111 0011 : 1010 101w

REPE CMPS – Compare String 1111 0011 : 1010 011w

REPE SCAS – Scan String 1111 0011 : 1010 111w

REPNE CMPS – Compare String 1111 0010 : 1010 011w

REPNE SCAS – Scan String 1111 0010 : 1010 111w

RET – Return from Procedure (to same
segment)

no argument 1100 0011

adding immediate to SP 1100 0010 : 16-bit displacement

RET – Return from Procedure (to other
segment)

intersegment 1100 1011

adding immediate to SP 1100 1010 : 16-bit displacement

ROL – Rotate Left

register by 1 1101 000w : 11 000 reg

memory by 1 1101 000w : mod 000 r/m

register by CL 1101 001w : 11 000 reg

memory by CL 1101 001w : mod 000 r/m

register by immediate count 1100 000w : 11 000 reg : imm8 data

memory by immediate count 1100 000w : mod 000 r/m : imm8 data

ROR – Rotate Right

register by 1 1101 000w : 11 001 reg

Table B-13. General Purpose Instruction Formats and Encodings
for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding
Vol. 2C B-19

INSTRUCTION FORMATS AND ENCODINGS
memory by 1 1101 000w : mod 001 r/m

register by CL 1101 001w : 11 001 reg

memory by CL 1101 001w : mod 001 r/m

register by immediate count 1100 000w : 11 001 reg : imm8 data

memory by immediate count 1100 000w : mod 001 r/m : imm8 data

RSM – Resume from System Management
Mode

0000 1111 : 1010 1010

SAHF – Store AH into Flags 1001 1110

SAL – Shift Arithmetic Left same instruction as SHL

SAR – Shift Arithmetic Right

register by 1 1101 000w : 11 111 reg

memory by 1 1101 000w : mod 111 r/m

register by CL 1101 001w : 11 111 reg

memory by CL 1101 001w : mod 111 r/m

register by immediate count 1100 000w : 11 111 reg : imm8 data

memory by immediate count 1100 000w : mod 111 r/m : imm8 data

SBB – Integer Subtraction with Borrow

register1 to register2 0001 100w : 11 reg1 reg2

register2 to register1 0001 101w : 11 reg1 reg2

memory to register 0001 101w : mod reg r/m

register to memory 0001 100w : mod reg r/m

immediate to register 1000 00sw : 11 011 reg : immediate data

immediate to AL, AX, or EAX 0001 110w : immediate data

immediate to memory 1000 00sw : mod 011 r/m : immediate data

SCAS/SCASB/SCASW/SCASD – Scan String 1010 111w

SETcc – Byte Set on Condition

register 0000 1111 : 1001 tttn : 11 000 reg

memory 0000 1111 : 1001 tttn : mod 000 r/m

SGDT – Store Global Descriptor Table Register 0000 1111 : 0000 0001 : modA 000 r/m

Table B-13. General Purpose Instruction Formats and Encodings
for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding
B-20 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
SHL – Shift Left

register by 1 1101 000w : 11 100 reg

memory by 1 1101 000w : mod 100 r/m

register by CL 1101 001w : 11 100 reg

memory by CL 1101 001w : mod 100 r/m

register by immediate count 1100 000w : 11 100 reg : imm8 data

memory by immediate count 1100 000w : mod 100 r/m : imm8 data

SHLD – Double Precision Shift Left

register by immediate count 0000 1111 : 1010 0100 : 11 reg2 reg1 : imm8

memory by immediate count 0000 1111 : 1010 0100 : mod reg r/m : imm8

register by CL 0000 1111 : 1010 0101 : 11 reg2 reg1

memory by CL 0000 1111 : 1010 0101 : mod reg r/m

SHR – Shift Right

register by 1 1101 000w : 11 101 reg

memory by 1 1101 000w : mod 101 r/m

register by CL 1101 001w : 11 101 reg

memory by CL 1101 001w : mod 101 r/m

register by immediate count 1100 000w : 11 101 reg : imm8 data

memory by immediate count 1100 000w : mod 101 r/m : imm8 data

SHRD – Double Precision Shift Right

register by immediate count 0000 1111 : 1010 1100 : 11 reg2 reg1 : imm8

memory by immediate count 0000 1111 : 1010 1100 : mod reg r/m : imm8

register by CL 0000 1111 : 1010 1101 : 11 reg2 reg1

memory by CL 0000 1111 : 1010 1101 : mod reg r/m

SIDT – Store Interrupt Descriptor Table
Register

0000 1111 : 0000 0001 : modA 001 r/m

SLDT – Store Local Descriptor Table Register

to register 0000 1111 : 0000 0000 : 11 000 reg

to memory 0000 1111 : 0000 0000 : mod 000 r/m

SMSW – Store Machine Status Word

Table B-13. General Purpose Instruction Formats and Encodings
for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding
Vol. 2C B-21

INSTRUCTION FORMATS AND ENCODINGS
to register 0000 1111 : 0000 0001 : 11 100 reg

to memory 0000 1111 : 0000 0001 : mod 100 r/m

STC – Set Carry Flag 1111 1001

STD – Set Direction Flag 1111 1101

STI – Set Interrupt Flag 1111 1011

STOS/STOSB/STOSW/STOSD – Store String
Data

1010 101w

STR – Store Task Register

to register 0000 1111 : 0000 0000 : 11 001 reg

to memory 0000 1111 : 0000 0000 : mod 001 r/m

SUB – Integer Subtraction

register1 to register2 0010 100w : 11 reg1 reg2

register2 to register1 0010 101w : 11 reg1 reg2

memory to register 0010 101w : mod reg r/m

register to memory 0010 100w : mod reg r/m

immediate to register 1000 00sw : 11 101 reg : immediate data

immediate to AL, AX, or EAX 0010 110w : immediate data

immediate to memory 1000 00sw : mod 101 r/m : immediate data

TEST – Logical Compare

register1 and register2 1000 010w : 11 reg1 reg2

memory and register 1000 010w : mod reg r/m

immediate and register 1111 011w : 11 000 reg : immediate data

immediate and AL, AX, or EAX 1010 100w : immediate data

immediate and memory 1111 011w : mod 000 r/m : immediate data

UD2 – Undefined instruction 0000 FFFF : 0000 1011

VERR – Verify a Segment for Reading

register 0000 1111 : 0000 0000 : 11 100 reg

memory 0000 1111 : 0000 0000 : mod 100 r/m

VERW – Verify a Segment for Writing

register 0000 1111 : 0000 0000 : 11 101 reg

Table B-13. General Purpose Instruction Formats and Encodings
for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding
B-22 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
memory 0000 1111 : 0000 0000 : mod 101 r/m

WAIT – Wait 1001 1011

WBINVD – Writeback and Invalidate Data
Cache

0000 1111 : 0000 1001

WRMSR – Write to Model-Specific Register 0000 1111 : 0011 0000

XADD – Exchange and Add

register1, register2 0000 1111 : 1100 000w : 11 reg2 reg1

memory, reg 0000 1111 : 1100 000w : mod reg r/m

XCHG – Exchange Register/Memory with
Register

register1 with register2 1000 011w : 11 reg1 reg2

AX or EAX with reg 1001 0 reg

memory with reg 1000 011w : mod reg r/m

XLAT/XLATB – Table Look-up Translation 1101 0111

XOR – Logical Exclusive OR

register1 to register2 0011 000w : 11 reg1 reg2

register2 to register1 0011 001w : 11 reg1 reg2

memory to register 0011 001w : mod reg r/m

register to memory 0011 000w : mod reg r/m

immediate to register 1000 00sw : 11 110 reg : immediate data

immediate to AL, AX, or EAX 0011 010w : immediate data

immediate to memory 1000 00sw : mod 110 r/m : immediate data

Prefix Bytes

address size 0110 0111

LOCK 1111 0000

operand size 0110 0110

CS segment override 0010 1110

DS segment override 0011 1110

ES segment override 0010 0110

FS segment override 0110 0100

Table B-13. General Purpose Instruction Formats and Encodings
for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding
Vol. 2C B-23

INSTRUCTION FORMATS AND ENCODINGS
B.2.1 General Purpose Instruction Formats and Encodings for
64-Bit Mode

Table B-15 shows machine instruction formats and encodings for general purpose
instructions in 64-bit mode.

GS segment override 0110 0101

SS segment override 0011 0110

NOTES:
1. The multi-byte NOP instruction does not alter the content of the register and will not issue a

memory operation.

Table B-14. Special Symbols
Symbol Application

S If the value of REX.W. is 1, it overrides the presence of 66H.

w The value of bit W. in REX is has no effect.

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode

Instruction and Format Encoding

ADC – ADD with Carry

register1 to register2 0100 0R0B : 0001 000w : 11 reg1 reg2

qwordregister1 to qwordregister2 0100 1R0B : 0001 0001 : 11 qwordreg1
qwordreg2

register2 to register1 0100 0R0B : 0001 001w : 11 reg1 reg2

qwordregister1 to qwordregister2 0100 1R0B : 0001 0011 : 11 qwordreg1
qwordreg2

memory to register 0100 0RXB : 0001 001w : mod reg r/m

memory to qwordregister 0100 1RXB : 0001 0011 : mod qwordreg r/m

register to memory 0100 0RXB : 0001 000w : mod reg r/m

qwordregister to memory 0100 1RXB : 0001 0001 : mod qwordreg r/m

immediate to register 0100 000B : 1000 00sw : 11 010 reg :
immediate

Table B-13. General Purpose Instruction Formats and Encodings
for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding
B-24 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
immediate to qwordregister 0100 100B : 1000 0001 : 11 010 qwordreg :
imm32

immediate to qwordregister 0100 1R0B : 1000 0011 : 11 010 qwordreg :
imm8

immediate to AL, AX, or EAX 0001 010w : immediate data

immediate to RAX 0100 1000 : 0000 0101 : imm32

immediate to memory 0100 00XB : 1000 00sw : mod 010 r/m :
immediate

immediate32 to memory64 0100 10XB : 1000 0001 : mod 010 r/m :
imm32

immediate8 to memory64 0100 10XB : 1000 0031 : mod 010 r/m : imm8

ADD – Add

register1 to register2 0100 0R0B : 0000 000w : 11 reg1 reg2

qwordregister1 to qwordregister2 0100 1R0B 0000 0000 : 11 qwordreg1
qwordreg2

register2 to register1 0100 0R0B : 0000 001w : 11 reg1 reg2

qwordregister1 to qwordregister2 0100 1R0B 0000 0010 : 11 qwordreg1
qwordreg2

memory to register 0100 0RXB : 0000 001w : mod reg r/m

memory64 to qwordregister 0100 1RXB : 0000 0000 : mod qwordreg r/m

register to memory 0100 0RXB : 0000 000w : mod reg r/m

qwordregister to memory64 0100 1RXB : 0000 0011 : mod qwordreg r/m

immediate to register 0100 0000B : 1000 00sw : 11 000 reg :
immediate data

immediate32 to qwordregister 0100 100B : 1000 0001 : 11 010 qwordreg :
imm

immediate to AL, AX, or EAX 0000 010w : immediate8

immediate to RAX 0100 1000 : 0000 0101 : imm32

immediate to memory 0100 00XB : 1000 00sw : mod 000 r/m :
immediate

immediate32 to memory64 0100 10XB : 1000 0001 : mod 010 r/m :
imm32

immediate8 to memory64 0100 10XB : 1000 0011 : mod 010 r/m : imm8

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding
Vol. 2C B-25

INSTRUCTION FORMATS AND ENCODINGS
AND – Logical AND

register1 to register2 0100 0R0B 0010 000w : 11 reg1 reg2

qwordregister1 to qwordregister2 0100 1R0B 0010 0001 : 11 qwordreg1
qwordreg2

register2 to register1 0100 0R0B 0010 001w : 11 reg1 reg2

register1 to register2 0100 1R0B 0010 0011 : 11 qwordreg1
qwordreg2

memory to register 0100 0RXB 0010 001w : mod reg r/m

memory64 to qwordregister 0100 1RXB : 0010 0011 : mod qwordreg r/m

register to memory 0100 0RXB : 0010 000w : mod reg r/m

qwordregister to memory64 0100 1RXB : 0010 0001 : mod qwordreg r/m

immediate to register 0100 000B : 1000 00sw : 11 100 reg :
immediate

immediate32 to qwordregister 0100 100B 1000 0001 : 11 100 qwordreg :
imm32

immediate to AL, AX, or EAX 0010 010w : immediate

immediate32 to RAX 0100 1000 0010 1001 : imm32

immediate to memory 0100 00XB : 1000 00sw : mod 100 r/m :
immediate

immediate32 to memory64 0100 10XB : 1000 0001 : mod 100 r/m :
immediate32

immediate8 to memory64 0100 10XB : 1000 0011 : mod 100 r/m :
imm8

BSF – Bit Scan Forward

register1, register2 0100 0R0B 0000 1111 : 1011 1100 : 11 reg1
reg2

qwordregister1, qwordregister2 0100 1R0B 0000 1111 : 1011 1100 : 11
qwordreg1 qwordreg2

memory, register 0100 0RXB 0000 1111 : 1011 1100 : mod reg
r/m

memory64, qwordregister 0100 1RXB 0000 1111 : 1011 1100 : mod
qwordreg r/m

BSR – Bit Scan Reverse

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding
B-26 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
register1, register2 0100 0R0B 0000 1111 : 1011 1101 : 11 reg1
reg2

qwordregister1, qwordregister2 0100 1R0B 0000 1111 : 1011 1101 : 11
qwordreg1 qwordreg2

memory, register 0100 0RXB 0000 1111 : 1011 1101 : mod reg
r/m

memory64, qwordregister 0100 1RXB 0000 1111 : 1011 1101 : mod
qwordreg r/m

BSWAP – Byte Swap 0000 1111 : 1100 1 reg

BSWAP – Byte Swap 0100 100B 0000 1111 : 1100 1 qwordreg

BT – Bit Test

register, immediate 0100 000B 0000 1111 : 1011 1010 : 11 100
reg: imm8

qwordregister, immediate8 0100 100B 1111 : 1011 1010 : 11 100
qwordreg: imm8 data

memory, immediate 0100 00XB 0000 1111 : 1011 1010 : mod
100 r/m : imm8

memory64, immediate8 0100 10XB 0000 1111 : 1011 1010 : mod
100 r/m : imm8 data

register1, register2 0100 0R0B 0000 1111 : 1010 0011 : 11 reg2
reg1

qwordregister1, qwordregister2 0100 1R0B 0000 1111 : 1010 0011 : 11
qwordreg2 qwordreg1

memory, reg 0100 0RXB 0000 1111 : 1010 0011 : mod reg
r/m

memory, qwordreg 0100 1RXB 0000 1111 : 1010 0011 : mod
qwordreg r/m

BTC – Bit Test and Complement

register, immediate 0100 000B 0000 1111 : 1011 1010 : 11 111
reg: imm8

qwordregister, immediate8 0100 100B 0000 1111 : 1011 1010 : 11 111
qwordreg: imm8

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding
Vol. 2C B-27

INSTRUCTION FORMATS AND ENCODINGS
memory, immediate 0100 00XB 0000 1111 : 1011 1010 : mod
111 r/m : imm8

memory64, immediate8 0100 10XB 0000 1111 : 1011 1010 : mod
111 r/m : imm8

register1, register2 0100 0R0B 0000 1111 : 1011 1011 : 11 reg2
reg1

qwordregister1, qwordregister2 0100 1R0B 0000 1111 : 1011 1011 : 11
qwordreg2 qwordreg1

memory, register 0100 0RXB 0000 1111 : 1011 1011 : mod reg
r/m

memory, qwordreg 0100 1RXB 0000 1111 : 1011 1011 : mod
qwordreg r/m

BTR – Bit Test and Reset

register, immediate 0100 000B 0000 1111 : 1011 1010 : 11 110
reg: imm8

qwordregister, immediate8 0100 100B 0000 1111 : 1011 1010 : 11 110
qwordreg: imm8

memory, immediate 0100 00XB 0000 1111 : 1011 1010 : mod
110 r/m : imm8

memory64, immediate8 0100 10XB 0000 1111 : 1011 1010 : mod
110 r/m : imm8

register1, register2 0100 0R0B 0000 1111 : 1011 0011 : 11 reg2
reg1

qwordregister1, qwordregister2 0100 1R0B 0000 1111 : 1011 0011 : 11
qwordreg2 qwordreg1

memory, register 0100 0RXB 0000 1111 : 1011 0011 : mod reg
r/m

memory64, qwordreg 0100 1RXB 0000 1111 : 1011 0011 : mod
qwordreg r/m

BTS – Bit Test and Set

register, immediate 0100 000B 0000 1111 : 1011 1010 : 11 101
reg: imm8

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding
B-28 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
qwordregister, immediate8 0100 100B 0000 1111 : 1011 1010 : 11 101
qwordreg: imm8

memory, immediate 0100 00XB 0000 1111 : 1011 1010 : mod
101 r/m : imm8

memory64, immediate8 0100 10XB 0000 1111 : 1011 1010 : mod
101 r/m : imm8

register1, register2 0100 0R0B 0000 1111 : 1010 1011 : 11 reg2
reg1

qwordregister1, qwordregister2 0100 1R0B 0000 1111 : 1010 1011 : 11
qwordreg2 qwordreg1

memory, register 0100 0RXB 0000 1111 : 1010 1011 : mod reg
r/m

memory64, qwordreg 0100 1RXB 0000 1111 : 1010 1011 : mod
qwordreg r/m

CALL – Call Procedure (in same segment)

direct 1110 1000 : displacement32

 register indirect 0100 WR00w 1111 1111 : 11 010 reg

memory indirect 0100 W0XBw 1111 1111 : mod 010 r/m

CALL – Call Procedure (in other segment)

indirect 1111 1111 : mod 011 r/m

indirect 0100 10XB 0100 1000 1111 1111 : mod 011
r/m

CBW – Convert Byte to Word 1001 1000

CDQ – Convert Doubleword to Qword+ 1001 1001

CDQE – RAX, Sign-Extend of EAX 0100 1000 1001 1001

CLC – Clear Carry Flag 1111 1000

CLD – Clear Direction Flag 1111 1100

CLI – Clear Interrupt Flag 1111 1010

CLTS – Clear Task-Switched Flag in CR0 0000 1111 : 0000 0110

CMC – Complement Carry Flag 1111 0101

CMP – Compare Two Operands

register1 with register2 0100 0R0B 0011 100w : 11 reg1 reg2

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding
Vol. 2C B-29

INSTRUCTION FORMATS AND ENCODINGS
qwordregister1 with qwordregister2 0100 1R0B 0011 1001 : 11 qwordreg1
qwordreg2

register2 with register1 0100 0R0B 0011 101w : 11 reg1 reg2

qwordregister2 with qwordregister1 0100 1R0B 0011 101w : 11 qwordreg1
qwordreg2

memory with register 0100 0RXB 0011 100w : mod reg r/m

memory64 with qwordregister 0100 1RXB 0011 1001 : mod qwordreg r/m

register with memory 0100 0RXB 0011 101w : mod reg r/m

qwordregister with memory64 0100 1RXB 0011 101w1 : mod qwordreg r/m

immediate with register 0100 000B 1000 00sw : 11 111 reg : imm

immediate32 with qwordregister 0100 100B 1000 0001 : 11 111 qwordreg :
imm64

immediate with AL, AX, or EAX 0011 110w : imm

immediate32 with RAX 0100 1000 0011 1101 : imm32

immediate with memory 0100 00XB 1000 00sw : mod 111 r/m : imm

immediate32 with memory64 0100 1RXB 1000 0001 : mod 111 r/m : imm64

immediate8 with memory64 0100 1RXB 1000 0011 : mod 111 r/m : imm8

CMPS/CMPSB/CMPSW/CMPSD/CMPSQ –
Compare String Operands

compare string operands [X at DS:(E)SI with Y
at ES:(E)DI]

1010 011w

qword at address RSI with qword at address
RDI

0100 1000 1010 0111

CMPXCHG – Compare and Exchange

register1, register2 0000 1111 : 1011 000w : 11 reg2 reg1

byteregister1, byteregister2 0100 000B 0000 1111 : 1011 0000 : 11
bytereg2 reg1

qwordregister1, qwordregister2 0100 100B 0000 1111 : 1011 0001 : 11
qwordreg2 reg1

memory, register 0000 1111 : 1011 000w : mod reg r/m

memory8, byteregister 0100 00XB 0000 1111 : 1011 0000 : mod
bytereg r/m

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding
B-30 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
memory64, qwordregister 0100 10XB 0000 1111 : 1011 0001 : mod
qwordreg r/m

CPUID – CPU Identification 0000 1111 : 1010 0010

CQO – Sign-Extend RAX 0100 1000 1001 1001

CWD – Convert Word to Doubleword 1001 1001

CWDE – Convert Word to Doubleword 1001 1000

DEC – Decrement by 1

register 0100 000B 1111 111w : 11 001 reg

qwordregister 0100 100B 1111 1111 : 11 001 qwordreg

memory 0100 00XB 1111 111w : mod 001 r/m

memory64 0100 10XB 1111 1111 : mod 001 r/m

DIV – Unsigned Divide

AL, AX, or EAX by register 0100 000B 1111 011w : 11 110 reg

Divide RDX:RAX by qwordregister 0100 100B 1111 0111 : 11 110 qwordreg

AL, AX, or EAX by memory 0100 00XB 1111 011w : mod 110 r/m

Divide RDX:RAX by memory64 0100 10XB 1111 0111 : mod 110 r/m

ENTER – Make Stack Frame for High Level
Procedure

1100 1000 : 16-bit displacement : 8-bit level
(L)

HLT – Halt 1111 0100

IDIV – Signed Divide

AL, AX, or EAX by register 0100 000B 1111 011w : 11 111 reg

RDX:RAX by qwordregister 0100 100B 1111 0111 : 11 111 qwordreg

AL, AX, or EAX by memory 0100 00XB 1111 011w : mod 111 r/m

RDX:RAX by memory64 0100 10XB 1111 0111 : mod 111 r/m

IMUL – Signed Multiply

AL, AX, or EAX with register 0100 000B 1111 011w : 11 101 reg

RDX:RAX <- RAX with qwordregister 0100 100B 1111 0111 : 11 101 qwordreg

AL, AX, or EAX with memory 0100 00XB 1111 011w : mod 101 r/m

RDX:RAX <- RAX with memory64 0100 10XB 1111 0111 : mod 101 r/m

register1 with register2 0000 1111 : 1010 1111 : 11 : reg1 reg2

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding
Vol. 2C B-31

INSTRUCTION FORMATS AND ENCODINGS
qwordregister1 <- qwordregister1 with
qwordregister2

0100 1R0B 0000 1111 : 1010 1111 : 11 :
qwordreg1 qwordreg2

register with memory 0100 0RXB 0000 1111 : 1010 1111 : mod reg
r/m

qwordregister <- qwordregister
withmemory64

0100 1RXB 0000 1111 : 1010 1111 : mod
qwordreg r/m

register1 with immediate to register2 0100 0R0B 0110 10s1 : 11 reg1 reg2 : imm

qwordregister1 <- qwordregister2 with sign-
extended immediate8

0100 1R0B 0110 1011 : 11 qwordreg1
qwordreg2 : imm8

qwordregister1 <- qwordregister2 with
immediate32

0100 1R0B 0110 1001 : 11 qwordreg1
qwordreg2 : imm32

memory with immediate to register 0100 0RXB 0110 10s1 : mod reg r/m : imm

qwordregister <- memory64 with sign-
extended immediate8

0100 1RXB 0110 1011 : mod qwordreg r/m :
imm8

qwordregister <- memory64 with
immediate32

0100 1RXB 0110 1001 : mod qwordreg r/m :
imm32

IN – Input From Port

fixed port 1110 010w : port number

variable port 1110 110w

INC – Increment by 1

reg 0100 000B 1111 111w : 11 000 reg

qwordreg 0100 100B 1111 1111 : 11 000 qwordreg

memory 0100 00XB 1111 111w : mod 000 r/m

memory64 0100 10XB 1111 1111 : mod 000 r/m

INS – Input from DX Port 0110 110w

INT n – Interrupt Type n 1100 1101 : type

INT – Single-Step Interrupt 3 1100 1100

INTO – Interrupt 4 on Overflow 1100 1110

INVD – Invalidate Cache 0000 1111 : 0000 1000

INVLPG – Invalidate TLB Entry 0000 1111 : 0000 0001 : mod 111 r/m

INVPCID – Invalidate Process-Context
Identifier

0110 0110:0000 1111:0011 1000:1000
0010: mod reg r/m

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding
B-32 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
IRETO – Interrupt Return 1100 1111

Jcc – Jump if Condition is Met

8-bit displacement 0111 tttn : 8-bit displacement

displacements (excluding 16-bit relative
offsets)

0000 1111 : 1000 tttn : displacement32

JCXZ/JECXZ – Jump on CX/ECX Zero

Address-size prefix differentiates JCXZ and
JECXZ

1110 0011 : 8-bit displacement

JMP – Unconditional Jump (to same segment)

short 1110 1011 : 8-bit displacement

direct 1110 1001 : displacement32

register indirect 0100 W00Bw : 1111 1111 : 11 100 reg

memory indirect 0100 W0XBw : 1111 1111 : mod 100 r/m

JMP – Unconditional Jump (to other segment)

indirect intersegment 0100 00XB : 1111 1111 : mod 101 r/m

64-bit indirect intersegment 0100 10XB : 1111 1111 : mod 101 r/m

LAR – Load Access Rights Byte

from register 0100 0R0B : 0000 1111 : 0000 0010 : 11
reg1 reg2

from dwordregister to qwordregister, masked
by 00FxFF00H

0100 WR0B : 0000 1111 : 0000 0010 : 11
qwordreg1 dwordreg2

from memory 0100 0RXB : 0000 1111 : 0000 0010 : mod
reg r/m

from memory32 to qwordregister, masked by
00FxFF00H

0100 WRXB 0000 1111 : 0000 0010 : mod
r/m

LEA – Load Effective Address

in wordregister/dwordregister 0100 0RXB : 1000 1101 : modA reg r/m

in qwordregister 0100 1RXB : 1000 1101 : modA qwordreg r/m

LEAVE – High Level Procedure Exit 1100 1001

LFS – Load Pointer to FS

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding
Vol. 2C B-33

INSTRUCTION FORMATS AND ENCODINGS
FS:r16/r32 with far pointer from memory 0100 0RXB : 0000 1111 : 1011 0100 : modA
reg r/m

FS:r64 with far pointer from memory 0100 1RXB : 0000 1111 : 1011 0100 : modA
qwordreg r/m

LGDT – Load Global Descriptor Table Register 0100 10XB : 0000 1111 : 0000 0001 : modA
010 r/m

LGS – Load Pointer to GS

GS:r16/r32 with far pointer from memory 0100 0RXB : 0000 1111 : 1011 0101 : modA
reg r/m

GS:r64 with far pointer from memory 0100 1RXB : 0000 1111 : 1011 0101 : modA
qwordreg r/m

LIDT – Load Interrupt Descriptor Table
Register

0100 10XB : 0000 1111 : 0000 0001 : modA
011 r/m

LLDT – Load Local Descriptor Table Register

LDTR from register 0100 000B : 0000 1111 : 0000 0000 : 11 010
reg

LDTR from memory 0100 00XB :0000 1111 : 0000 0000 : mod
010 r/m

LMSW – Load Machine Status Word

from register 0100 000B : 0000 1111 : 0000 0001 : 11 110
reg

from memory 0100 00XB :0000 1111 : 0000 0001 : mod
110 r/m

LOCK – Assert LOCK# Signal Prefix 1111 0000

LODS/LODSB/LODSW/LODSD/LODSQ – Load
String Operand

at DS:(E)SI to AL/EAX/EAX 1010 110w

at (R)SI to RAX 0100 1000 1010 1101

LOOP – Loop Count

if count != 0, 8-bit displacement 1110 0010

if count !=0, RIP + 8-bit displacement sign-
extended to 64-bits

0100 1000 1110 0010

LOOPE – Loop Count while Zero/Equal

if count != 0 & ZF =1, 8-bit displacement 1110 0001

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding
B-34 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
if count !=0 & ZF = 1, RIP + 8-bit displacement
sign-extended to 64-bits

0100 1000 1110 0001

LOOPNE/LOOPNZ – Loop Count while not
Zero/Equal

if count != 0 & ZF = 0, 8-bit displacement 1110 0000

if count !=0 & ZF = 0, RIP + 8-bit displacement
sign-extended to 64-bits

0100 1000 1110 0000

LSL – Load Segment Limit

from register 0000 1111 : 0000 0011 : 11 reg1 reg2

from qwordregister 0100 1R00 0000 1111 : 0000 0011 : 11
qwordreg1 reg2

from memory16 0000 1111 : 0000 0011 : mod reg r/m

from memory64 0100 1RXB 0000 1111 : 0000 0011 : mod
qwordreg r/m

LSS – Load Pointer to SS

SS:r16/r32 with far pointer from memory 0100 0RXB : 0000 1111 : 1011 0010 : modA
reg r/m

SS:r64 with far pointer from memory 0100 1WXB : 0000 1111 : 1011 0010 : modA
qwordreg r/m

LTR – Load Task Register

from register 0100 0R00 : 0000 1111 : 0000 0000 : 11 011
reg

from memory 0100 00XB : 0000 1111 : 0000 0000 : mod
011 r/m

MOV – Move Data

register1 to register2 0100 0R0B : 1000 100w : 11 reg1 reg2

qwordregister1 to qwordregister2 0100 1R0B 1000 1001 : 11 qwordeg1
qwordreg2

register2 to register1 0100 0R0B : 1000 101w : 11 reg1 reg2

qwordregister2 to qwordregister1 0100 1R0B 1000 1011 : 11 qwordreg1
qwordreg2

memory to reg 0100 0RXB : 1000 101w : mod reg r/m

memory64 to qwordregister 0100 1RXB 1000 1011 : mod qwordreg r/m

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding
Vol. 2C B-35

INSTRUCTION FORMATS AND ENCODINGS
reg to memory 0100 0RXB : 1000 100w : mod reg r/m

qwordregister to memory64 0100 1RXB 1000 1001 : mod qwordreg r/m

immediate to register 0100 000B : 1100 011w : 11 000 reg : imm

immediate32 to qwordregister (zero extend) 0100 100B 1100 0111 : 11 000 qwordreg :
imm32

immediate to register (alternate encoding) 0100 000B : 1011 w reg : imm

immediate64 to qwordregister (alternate
encoding)

0100 100B 1011 1000 reg : imm64

immediate to memory 0100 00XB : 1100 011w : mod 000 r/m : imm

immediate32 to memory64 (zero extend) 0100 10XB 1100 0111 : mod 000 r/m : imm32

memory to AL, AX, or EAX 0100 0000 : 1010 000w : displacement

memory64 to RAX 0100 1000 1010 0001 : displacement64

AL, AX, or EAX to memory 0100 0000 : 1010 001w : displacement

RAX to memory64 0100 1000 1010 0011 : displacement64

MOV – Move to/from Control Registers

CR0-CR4 from register 0100 0R0B : 0000 1111 : 0010 0010 : 11 eee
reg (eee = CR#)

CRx from qwordregister 0100 1R0B : 0000 1111 : 0010 0010 : 11 eee
qwordreg (Reee = CR#)

register from CR0-CR4 0100 0R0B : 0000 1111 : 0010 0000 : 11 eee
reg (eee = CR#)

qwordregister from CRx 0100 1R0B 0000 1111 : 0010 0000 : 11 eee
qwordreg (Reee = CR#)

MOV – Move to/from Debug Registers

DR0-DR7 from register 0000 1111 : 0010 0011 : 11 eee reg (eee =
DR#)

DR0-DR7 from quadregister 0100 10OB 0000 1111 : 0010 0011 : 11 eee
reg (eee = DR#)

register from DR0-DR7 0000 1111 : 0010 0001 : 11 eee reg (eee =
DR#)

quadregister from DR0-DR7 0100 10OB 0000 1111 : 0010 0001 : 11 eee
quadreg (eee = DR#)

MOV – Move to/from Segment Registers

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding
B-36 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
register to segment register 0100 W00Bw : 1000 1110 : 11 sreg reg

register to SS 0100 000B : 1000 1110 : 11 sreg reg

memory to segment register 0100 00XB : 1000 1110 : mod sreg r/m

memory64 to segment register (lower 16 bits) 0100 10XB 1000 1110 : mod sreg r/m

memory to SS 0100 00XB : 1000 1110 : mod sreg r/m

segment register to register 0100 000B : 1000 1100 : 11 sreg reg

segment register to qwordregister (zero
extended)

0100 100B 1000 1100 : 11 sreg qwordreg

segment register to memory 0100 00XB : 1000 1100 : mod sreg r/m

segment register to memory64 (zero
extended)

0100 10XB 1000 1100 : mod sreg3 r/m

MOVBE – Move data after swapping bytes

memory to register 0100 0RXB : 0000 1111 : 0011 1000:1111
0000 : mod reg r/m

memory64 to qwordregister 0100 1RXB : 0000 1111 : 0011 1000:1111
0000 : mod reg r/m

register to memory 0100 0RXB :0000 1111 : 0011 1000:1111
0001 : mod reg r/m

qwordregister to memory64 0100 1RXB :0000 1111 : 0011 1000:1111
0001 : mod reg r/m

MOVS/MOVSB/MOVSW/MOVSD/MOVSQ –
Move Data from String to String

Move data from string to string 1010 010w

Move data from string to string (qword) 0100 1000 1010 0101

MOVSX/MOVSXD – Move with Sign-Extend

register2 to register1 0100 0R0B : 0000 1111 : 1011 111w : 11
reg1 reg2

byteregister2 to qwordregister1 (sign-
extend)

0100 1R0B 0000 1111 : 1011 1110 : 11
quadreg1 bytereg2

wordregister2 to qwordregister1 0100 1R0B 0000 1111 : 1011 1111 : 11
quadreg1 wordreg2

dwordregister2 to qwordregister1 0100 1R0B 0110 0011 : 11 quadreg1
dwordreg2

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding
Vol. 2C B-37

INSTRUCTION FORMATS AND ENCODINGS
memory to register 0100 0RXB : 0000 1111 : 1011 111w : mod
reg r/m

memory8 to qwordregister (sign-extend) 0100 1RXB 0000 1111 : 1011 1110 : mod
qwordreg r/m

memory16 to qwordregister 0100 1RXB 0000 1111 : 1011 1111 : mod
qwordreg r/m

memory32 to qwordregister 0100 1RXB 0110 0011 : mod qwordreg r/m

MOVZX – Move with Zero-Extend

register2 to register1 0100 0R0B : 0000 1111 : 1011 011w : 11
reg1 reg2

dwordregister2 to qwordregister1 0100 1R0B 0000 1111 : 1011 0111 : 11
qwordreg1 dwordreg2

memory to register 0100 0RXB : 0000 1111 : 1011 011w : mod
reg r/m

memory32 to qwordregister 0100 1RXB 0000 1111 : 1011 0111 : mod
qwordreg r/m

MUL – Unsigned Multiply

AL, AX, or EAX with register 0100 000B : 1111 011w : 11 100 reg

RAX with qwordregister (to RDX:RAX) 0100 100B 1111 0111 : 11 100 qwordreg

AL, AX, or EAX with memory 0100 00XB 1111 011w : mod 100 r/m

RAX with memory64 (to RDX:RAX) 0100 10XB 1111 0111 : mod 100 r/m

NEG – Two's Complement Negation

register 0100 000B : 1111 011w : 11 011 reg

qwordregister 0100 100B 1111 0111 : 11 011 qwordreg

memory 0100 00XB : 1111 011w : mod 011 r/m

memory64 0100 10XB 1111 0111 : mod 011 r/m

NOP – No Operation 1001 0000

NOT – One's Complement Negation

register 0100 000B : 1111 011w : 11 010 reg

qwordregister 0100 000B 1111 0111 : 11 010 qwordreg

memory 0100 00XB : 1111 011w : mod 010 r/m

memory64 0100 1RXB 1111 0111 : mod 010 r/m

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding
B-38 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
OR – Logical Inclusive OR

register1 to register2 0000 100w : 11 reg1 reg2

byteregister1 to byteregister2 0100 0R0B 0000 1000 : 11 bytereg1
bytereg2

qwordregister1 to qwordregister2 0100 1R0B 0000 1001 : 11 qwordreg1
qwordreg2

register2 to register1 0000 101w : 11 reg1 reg2

byteregister2 to byteregister1 0100 0R0B 0000 1010 : 11 bytereg1
bytereg2

qwordregister2 to qwordregister1 0100 0R0B 0000 1011 : 11 qwordreg1
qwordreg2

memory to register 0000 101w : mod reg r/m

memory8 to byteregister 0100 0RXB 0000 1010 : mod bytereg r/m

memory8 to qwordregister 0100 0RXB 0000 1011 : mod qwordreg r/m

register to memory 0000 100w : mod reg r/m

byteregister to memory8 0100 0RXB 0000 1000 : mod bytereg r/m

qwordregister to memory64 0100 1RXB 0000 1001 : mod qwordreg r/m

immediate to register 1000 00sw : 11 001 reg : imm

immediate8 to byteregister 0100 000B 1000 0000 : 11 001 bytereg :
imm8

immediate32 to qwordregister 0100 000B 1000 0001 : 11 001 qwordreg :
imm32

immediate8 to qwordregister 0100 000B 1000 0011 : 11 001 qwordreg :
imm8

immediate to AL, AX, or EAX 0000 110w : imm

immediate64 to RAX 0100 1000 0000 1101 : imm64

immediate to memory 1000 00sw : mod 001 r/m : imm

immediate8 to memory8 0100 00XB 1000 0000 : mod 001 r/m : imm8

immediate32 to memory64 0100 00XB 1000 0001 : mod 001 r/m : imm32

immediate8 to memory64 0100 00XB 1000 0011 : mod 001 r/m : imm8

OUT – Output to Port

fixed port 1110 011w : port number

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding
Vol. 2C B-39

INSTRUCTION FORMATS AND ENCODINGS
variable port 1110 111w

OUTS – Output to DX Port

output to DX Port 0110 111w

POP – Pop a Value from the Stack

wordregister 0101 0101 : 0100 000B : 1000 1111 : 11 000
reg16

qwordregister 0100 W00BS : 1000 1111 : 11 000 reg64

wordregister (alternate encoding) 0101 0101 : 0100 000B : 0101 1 reg16

qwordregister (alternate encoding) 0100 W00B : 0101 1 reg64

memory64 0100 W0XBS : 1000 1111 : mod 000 r/m

memory16 0101 0101 : 0100 00XB 1000 1111 : mod
000 r/m

POP – Pop a Segment Register from the Stack
(Note: CS cannot be sreg2 in this usage.)

segment register FS, GS 0000 1111: 10 sreg3 001

POPF/POPFQ – Pop Stack into FLAGS/RFLAGS
Register

pop stack to FLAGS register 0101 0101 : 1001 1101

pop Stack to RFLAGS register 0100 1000 1001 1101

PUSH – Push Operand onto the Stack

wordregister 0101 0101 : 0100 000B : 1111 1111 : 11 110
reg16

qwordregister 0100 W00BS : 1111 1111 : 11 110 reg64

wordregister (alternate encoding) 0101 0101 : 0100 000B : 0101 0 reg16

qwordregister (alternate encoding) 0100 W00BS : 0101 0 reg64

memory16 0101 0101 : 0100 000B : 1111 1111 : mod
110 r/m

memory64 0100 W00BS : 1111 1111 : mod 110 r/m

immediate8 0110 1010 : imm8

immediate16 0101 0101 : 0110 1000 : imm16

immediate64 0110 1000 : imm64

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding
B-40 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
PUSH – Push Segment Register onto the
Stack

segment register FS,GS 0000 1111: 10 sreg3 000

PUSHF/PUSHFD – Push Flags Register onto
the Stack

1001 1100

RCL – Rotate thru Carry Left

register by 1 0100 000B : 1101 000w : 11 010 reg

qwordregister by 1 0100 100B 1101 0001 : 11 010 qwordreg

memory by 1 0100 00XB : 1101 000w : mod 010 r/m

memory64 by 1 0100 10XB 1101 0001 : mod 010 r/m

register by CL 0100 000B : 1101 001w : 11 010 reg

qwordregister by CL 0100 100B 1101 0011 : 11 010 qwordreg

memory by CL 0100 00XB : 1101 001w : mod 010 r/m

memory64 by CL 0100 10XB 1101 0011 : mod 010 r/m

register by immediate count 0100 000B : 1100 000w : 11 010 reg : imm

qwordregister by immediate count 0100 100B 1100 0001 : 11 010 qwordreg :
imm8

memory by immediate count 0100 00XB : 1100 000w : mod 010 r/m : imm

memory64 by immediate count 0100 10XB 1100 0001 : mod 010 r/m : imm8

RCR – Rotate thru Carry Right

register by 1 0100 000B : 1101 000w : 11 011 reg

qwordregister by 1 0100 100B 1101 0001 : 11 011 qwordreg

memory by 1 0100 00XB : 1101 000w : mod 011 r/m

memory64 by 1 0100 10XB 1101 0001 : mod 011 r/m

register by CL 0100 000B : 1101 001w : 11 011 reg

qwordregister by CL 0100 000B 1101 0010 : 11 011 qwordreg

memory by CL 0100 00XB : 1101 001w : mod 011 r/m

memory64 by CL 0100 10XB 1101 0011 : mod 011 r/m

register by immediate count 0100 000B : 1100 000w : 11 011 reg : imm8

qwordregister by immediate count 0100 100B 1100 0001 : 11 011 qwordreg :
imm8

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding
Vol. 2C B-41

INSTRUCTION FORMATS AND ENCODINGS
memory by immediate count 0100 00XB : 1100 000w : mod 011 r/m : imm8

memory64 by immediate count 0100 10XB 1100 0001 : mod 011 r/m : imm8

RDMSR – Read from Model-Specific Register

load ECX-specified register into EDX:EAX 0000 1111 : 0011 0010

RDPMC – Read Performance Monitoring
Counters

load ECX-specified performance counter into
EDX:EAX

0000 1111 : 0011 0011

RDTSC – Read Time-Stamp Counter

read time-stamp counter into EDX:EAX 0000 1111 : 0011 0001

RDTSCP – Read Time-Stamp Counter and
Processor ID

0000 1111 : 0000 0001: 1111 1001

REP INS – Input String

REP LODS – Load String

REP MOVS – Move String

REP OUTS – Output String

REP STOS – Store String

REPE CMPS – Compare String

REPE SCAS – Scan String

REPNE CMPS – Compare String

REPNE SCAS – Scan String

RET – Return from Procedure (to same
segment)

no argument 1100 0011

adding immediate to SP 1100 0010 : 16-bit displacement

RET – Return from Procedure (to other
segment)

intersegment 1100 1011

adding immediate to SP 1100 1010 : 16-bit displacement

ROL – Rotate Left

register by 1 0100 000B 1101 000w : 11 000 reg

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding
B-42 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
byteregister by 1 0100 000B 1101 0000 : 11 000 bytereg

qwordregister by 1 0100 100B 1101 0001 : 11 000 qwordreg

memory by 1 0100 00XB 1101 000w : mod 000 r/m

memory8 by 1 0100 00XB 1101 0000 : mod 000 r/m

memory64 by 1 0100 10XB 1101 0001 : mod 000 r/m

register by CL 0100 000B 1101 001w : 11 000 reg

byteregister by CL 0100 000B 1101 0010 : 11 000 bytereg

qwordregister by CL 0100 100B 1101 0011 : 11 000 qwordreg

memory by CL 0100 00XB 1101 001w : mod 000 r/m

memory8 by CL 0100 00XB 1101 0010 : mod 000 r/m

memory64 by CL 0100 10XB 1101 0011 : mod 000 r/m

register by immediate count 1100 000w : 11 000 reg : imm8

byteregister by immediate count 0100 000B 1100 0000 : 11 000 bytereg :
imm8

qwordregister by immediate count 0100 100B 1100 0001 : 11 000 bytereg :
imm8

memory by immediate count 1100 000w : mod 000 r/m : imm8

memory8 by immediate count 0100 00XB 1100 0000 : mod 000 r/m : imm8

memory64 by immediate count 0100 10XB 1100 0001 : mod 000 r/m : imm8

ROR – Rotate Right

register by 1 0100 000B 1101 000w : 11 001 reg

byteregister by 1 0100 000B 1101 0000 : 11 001 bytereg

qwordregister by 1 0100 100B 1101 0001 : 11 001 qwordreg

memory by 1 0100 00XB 1101 000w : mod 001 r/m

memory8 by 1 0100 00XB 1101 0000 : mod 001 r/m

memory64 by 1 0100 10XB 1101 0001 : mod 001 r/m

register by CL 0100 000B 1101 001w : 11 001 reg

byteregister by CL 0100 000B 1101 0010 : 11 001 bytereg

qwordregister by CL 0100 100B 1101 0011 : 11 001 qwordreg

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding
Vol. 2C B-43

INSTRUCTION FORMATS AND ENCODINGS
memory by CL 0100 00XB 1101 001w : mod 001 r/m

memory8 by CL 0100 00XB 1101 0010 : mod 001 r/m

memory64 by CL 0100 10XB 1101 0011 : mod 001 r/m

register by immediate count 0100 000B 1100 000w : 11 001 reg : imm8

byteregister by immediate count 0100 000B 1100 0000 : 11 001 reg : imm8

qwordregister by immediate count 0100 100B 1100 0001 : 11 001 qwordreg :
imm8

memory by immediate count 0100 00XB 1100 000w : mod 001 r/m : imm8

memory8 by immediate count 0100 00XB 1100 0000 : mod 001 r/m : imm8

memory64 by immediate count 0100 10XB 1100 0001 : mod 001 r/m : imm8

RSM – Resume from System Management
Mode

0000 1111 : 1010 1010

SAL – Shift Arithmetic Left same instruction as SHL

SAR – Shift Arithmetic Right

register by 1 0100 000B 1101 000w : 11 111 reg

byteregister by 1 0100 000B 1101 0000 : 11 111 bytereg

qwordregister by 1 0100 100B 1101 0001 : 11 111 qwordreg

memory by 1 0100 00XB 1101 000w : mod 111 r/m

memory8 by 1 0100 00XB 1101 0000 : mod 111 r/m

memory64 by 1 0100 10XB 1101 0001 : mod 111 r/m

register by CL 0100 000B 1101 001w : 11 111 reg

byteregister by CL 0100 000B 1101 0010 : 11 111 bytereg

qwordregister by CL 0100 100B 1101 0011 : 11 111 qwordreg

memory by CL 0100 00XB 1101 001w : mod 111 r/m

memory8 by CL 0100 00XB 1101 0010 : mod 111 r/m

memory64 by CL 0100 10XB 1101 0011 : mod 111 r/m

register by immediate count 0100 000B 1100 000w : 11 111 reg : imm8

byteregister by immediate count 0100 000B 1100 0000 : 11 111 bytereg :
imm8

qwordregister by immediate count 0100 100B 1100 0001 : 11 111 qwordreg :
imm8

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding
B-44 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
memory by immediate count 0100 00XB 1100 000w : mod 111 r/m : imm8

memory8 by immediate count 0100 00XB 1100 0000 : mod 111 r/m : imm8

memory64 by immediate count 0100 10XB 1100 0001 : mod 111 r/m : imm8

SBB – Integer Subtraction with Borrow

register1 to register2 0100 0R0B 0001 100w : 11 reg1 reg2

byteregister1 to byteregister2 0100 0R0B 0001 1000 : 11 bytereg1
bytereg2

quadregister1 to quadregister2 0100 1R0B 0001 1001 : 11 quadreg1
quadreg2

register2 to register1 0100 0R0B 0001 101w : 11 reg1 reg2

byteregister2 to byteregister1 0100 0R0B 0001 1010 : 11 reg1 bytereg2

byteregister2 to byteregister1 0100 1R0B 0001 1011 : 11 reg1 bytereg2

memory to register 0100 0RXB 0001 101w : mod reg r/m

memory8 to byteregister 0100 0RXB 0001 1010 : mod bytereg r/m

memory64 to byteregister 0100 1RXB 0001 1011 : mod quadreg r/m

register to memory 0100 0RXB 0001 100w : mod reg r/m

byteregister to memory8 0100 0RXB 0001 1000 : mod reg r/m

quadregister to memory64 0100 1RXB 0001 1001 : mod reg r/m

immediate to register 0100 000B 1000 00sw : 11 011 reg : imm

immediate8 to byteregister 0100 000B 1000 0000 : 11 011 bytereg :
imm8

immediate32 to qwordregister 0100 100B 1000 0001 : 11 011 qwordreg :
imm32

immediate8 to qwordregister 0100 100B 1000 0011 : 11 011 qwordreg :
imm8

immediate to AL, AX, or EAX 0100 000B 0001 110w : imm

immediate32 to RAL 0100 1000 0001 1101 : imm32

immediate to memory 0100 00XB 1000 00sw : mod 011 r/m : imm

immediate8 to memory8 0100 00XB 1000 0000 : mod 011 r/m : imm8

immediate32 to memory64 0100 10XB 1000 0001 : mod 011 r/m : imm32

immediate8 to memory64 0100 10XB 1000 0011 : mod 011 r/m : imm8

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding
Vol. 2C B-45

INSTRUCTION FORMATS AND ENCODINGS
SCAS/SCASB/SCASW/SCASD – Scan String

scan string 1010 111w

scan string (compare AL with byte at RDI) 0100 1000 1010 1110

scan string (compare RAX with qword at RDI) 0100 1000 1010 1111

SETcc – Byte Set on Condition

register 0100 000B 0000 1111 : 1001 tttn : 11 000
reg

register 0100 0000 0000 1111 : 1001 tttn : 11 000
reg

memory 0100 00XB 0000 1111 : 1001 tttn : mod 000
r/m

memory 0100 0000 0000 1111 : 1001 tttn : mod 000
r/m

SGDT – Store Global Descriptor Table Register 0000 1111 : 0000 0001 : modA 000 r/m

SHL – Shift Left

register by 1 0100 000B 1101 000w : 11 100 reg

byteregister by 1 0100 000B 1101 0000 : 11 100 bytereg

qwordregister by 1 0100 100B 1101 0001 : 11 100 qwordreg

memory by 1 0100 00XB 1101 000w : mod 100 r/m

memory8 by 1 0100 00XB 1101 0000 : mod 100 r/m

memory64 by 1 0100 10XB 1101 0001 : mod 100 r/m

register by CL 0100 000B 1101 001w : 11 100 reg

byteregister by CL 0100 000B 1101 0010 : 11 100 bytereg

qwordregister by CL 0100 100B 1101 0011 : 11 100 qwordreg

memory by CL 0100 00XB 1101 001w : mod 100 r/m

memory8 by CL 0100 00XB 1101 0010 : mod 100 r/m

memory64 by CL 0100 10XB 1101 0011 : mod 100 r/m

register by immediate count 0100 000B 1100 000w : 11 100 reg : imm8

byteregister by immediate count 0100 000B 1100 0000 : 11 100 bytereg :
imm8

quadregister by immediate count 0100 100B 1100 0001 : 11 100 quadreg :
imm8

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding
B-46 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
memory by immediate count 0100 00XB 1100 000w : mod 100 r/m : imm8

memory8 by immediate count 0100 00XB 1100 0000 : mod 100 r/m : imm8

memory64 by immediate count 0100 10XB 1100 0001 : mod 100 r/m : imm8

SHLD – Double Precision Shift Left

register by immediate count 0100 0R0B 0000 1111 : 1010 0100 : 11 reg2
reg1 : imm8

qwordregister by immediate8 0100 1R0B 0000 1111 : 1010 0100 : 11
qworddreg2 qwordreg1 : imm8

memory by immediate count 0100 0RXB 0000 1111 : 1010 0100 : mod reg
r/m : imm8

memory64 by immediate8 0100 1RXB 0000 1111 : 1010 0100 : mod
qwordreg r/m : imm8

register by CL 0100 0R0B 0000 1111 : 1010 0101 : 11 reg2
reg1

quadregister by CL 0100 1R0B 0000 1111 : 1010 0101 : 11
quadreg2 quadreg1

memory by CL 0100 00XB 0000 1111 : 1010 0101 : mod reg
r/m

memory64 by CL 0100 1RXB 0000 1111 : 1010 0101 : mod
quadreg r/m

SHR – Shift Right

register by 1 0100 000B 1101 000w : 11 101 reg

byteregister by 1 0100 000B 1101 0000 : 11 101 bytereg

qwordregister by 1 0100 100B 1101 0001 : 11 101 qwordreg

memory by 1 0100 00XB 1101 000w : mod 101 r/m

memory8 by 1 0100 00XB 1101 0000 : mod 101 r/m

memory64 by 1 0100 10XB 1101 0001 : mod 101 r/m

register by CL 0100 000B 1101 001w : 11 101 reg

byteregister by CL 0100 000B 1101 0010 : 11 101 bytereg

qwordregister by CL 0100 100B 1101 0011 : 11 101 qwordreg

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding
Vol. 2C B-47

INSTRUCTION FORMATS AND ENCODINGS
memory by CL 0100 00XB 1101 001w : mod 101 r/m

memory8 by CL 0100 00XB 1101 0010 : mod 101 r/m

memory64 by CL 0100 10XB 1101 0011 : mod 101 r/m

register by immediate count 0100 000B 1100 000w : 11 101 reg : imm8

byteregister by immediate count 0100 000B 1100 0000 : 11 101 reg : imm8

qwordregister by immediate count 0100 100B 1100 0001 : 11 101 reg : imm8

memory by immediate count 0100 00XB 1100 000w : mod 101 r/m : imm8

memory8 by immediate count 0100 00XB 1100 0000 : mod 101 r/m : imm8

memory64 by immediate count 0100 10XB 1100 0001 : mod 101 r/m : imm8

SHRD – Double Precision Shift Right

register by immediate count 0100 0R0B 0000 1111 : 1010 1100 : 11 reg2
reg1 : imm8

qwordregister by immediate8 0100 1R0B 0000 1111 : 1010 1100 : 11
qwordreg2 qwordreg1 : imm8

memory by immediate count 0100 00XB 0000 1111 : 1010 1100 : mod reg
r/m : imm8

memory64 by immediate8 0100 1RXB 0000 1111 : 1010 1100 : mod
qwordreg r/m : imm8

register by CL 0100 000B 0000 1111 : 1010 1101 : 11 reg2
reg1

qwordregister by CL 0100 1R0B 0000 1111 : 1010 1101 : 11
qwordreg2 qwordreg1

memory by CL 0000 1111 : 1010 1101 : mod reg r/m

memory64 by CL 0100 1RXB 0000 1111 : 1010 1101 : mod
qwordreg r/m

SIDT – Store Interrupt Descriptor Table
Register

0000 1111 : 0000 0001 : modA 001 r/m

SLDT – Store Local Descriptor Table Register

to register 0100 000B 0000 1111 : 0000 0000 : 11 000
reg

to memory 0100 00XB 0000 1111 : 0000 0000 : mod
000 r/m

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding
B-48 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
SMSW – Store Machine Status Word

to register 0100 000B 0000 1111 : 0000 0001 : 11 100
reg

to memory 0100 00XB 0000 1111 : 0000 0001 : mod
100 r/m

STC – Set Carry Flag 1111 1001

STD – Set Direction Flag 1111 1101

STI – Set Interrupt Flag 1111 1011

STOS/STOSB/STOSW/STOSD/STOSQ – Store
String Data

store string data 1010 101w

store string data (RAX at address RDI) 0100 1000 1010 1011

STR – Store Task Register

to register 0100 000B 0000 1111 : 0000 0000 : 11 001
reg

to memory 0100 00XB 0000 1111 : 0000 0000 : mod
001 r/m

SUB – Integer Subtraction

register1 from register2 0100 0R0B 0010 100w : 11 reg1 reg2

byteregister1 from byteregister2 0100 0R0B 0010 1000 : 11 bytereg1
bytereg2

qwordregister1 from qwordregister2 0100 1R0B 0010 1000 : 11 qwordreg1
qwordreg2

register2 from register1 0100 0R0B 0010 101w : 11 reg1 reg2

byteregister2 from byteregister1 0100 0R0B 0010 1010 : 11 bytereg1
bytereg2

qwordregister2 from qwordregister1 0100 1R0B 0010 1011 : 11 qwordreg1
qwordreg2

memory from register 0100 00XB 0010 101w : mod reg r/m

memory8 from byteregister 0100 0RXB 0010 1010 : mod bytereg r/m

memory64 from qwordregister 0100 1RXB 0010 1011 : mod qwordreg r/m

register from memory 0100 0RXB 0010 100w : mod reg r/m

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding
Vol. 2C B-49

INSTRUCTION FORMATS AND ENCODINGS
byteregister from memory8 0100 0RXB 0010 1000 : mod bytereg r/m

qwordregister from memory8 0100 1RXB 0010 1000 : mod qwordreg r/m

immediate from register 0100 000B 1000 00sw : 11 101 reg : imm

immediate8 from byteregister 0100 000B 1000 0000 : 11 101 bytereg :
imm8

immediate32 from qwordregister 0100 100B 1000 0001 : 11 101 qwordreg :
imm32

immediate8 from qwordregister 0100 100B 1000 0011 : 11 101 qwordreg :
imm8

immediate from AL, AX, or EAX 0100 000B 0010 110w : imm

immediate32 from RAX 0100 1000 0010 1101 : imm32

immediate from memory 0100 00XB 1000 00sw : mod 101 r/m : imm

immediate8 from memory8 0100 00XB 1000 0000 : mod 101 r/m : imm8

immediate32 from memory64 0100 10XB 1000 0001 : mod 101 r/m : imm32

immediate8 from memory64 0100 10XB 1000 0011 : mod 101 r/m : imm8

SWAPGS – Swap GS Base Register

GS base register value for value in MSR
C0000102H

0000 1111 0000 0001 [this one
incomplete]

SYSCALL – Fast System Call

fast call to privilege level 0 system
procedures

0000 1111 0000 0101

SYSRET – Return From Fast System Call

return from fast system call 0000 1111 0000 0111

TEST – Logical Compare

register1 and register2 0100 0R0B 1000 010w : 11 reg1 reg2

byteregister1 and byteregister2 0100 0R0B 1000 0100 : 11 bytereg1
bytereg2

qwordregister1 and qwordregister2 0100 1R0B 1000 0101 : 11 qwordreg1
qwordreg2

memory and register 0100 0R0B 1000 010w : mod reg r/m

memory8 and byteregister 0100 0RXB 1000 0100 : mod bytereg r/m

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding
B-50 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
memory64 and qwordregister 0100 1RXB 1000 0101 : mod qwordreg r/m

immediate and register 0100 000B 1111 011w : 11 000 reg : imm

immediate8 and byteregister 0100 000B 1111 0110 : 11 000 bytereg :
imm8

immediate32 and qwordregister 0100 100B 1111 0111 : 11 000 bytereg :
imm8

immediate and AL, AX, or EAX 0100 000B 1010 100w : imm

immediate32 and RAX 0100 1000 1010 1001 : imm32

immediate and memory 0100 00XB 1111 011w : mod 000 r/m : imm

immediate8 and memory8 0100 1000 1111 0110 : mod 000 r/m : imm8

immediate32 and memory64 0100 1000 1111 0111 : mod 000 r/m : imm32

UD2 – Undefined instruction 0000 FFFF : 0000 1011

VERR – Verify a Segment for Reading

register 0100 000B 0000 1111 : 0000 0000 : 11 100
reg

memory 0100 00XB 0000 1111 : 0000 0000 : mod
100 r/m

VERW – Verify a Segment for Writing

register 0100 000B 0000 1111 : 0000 0000 : 11 101
reg

memory 0100 00XB 0000 1111 : 0000 0000 : mod
101 r/m

WAIT – Wait 1001 1011

WBINVD – Writeback and Invalidate Data
Cache

0000 1111 : 0000 1001

WRMSR – Write to Model-Specific Register

write EDX:EAX to ECX specified MSR 0000 1111 : 0011 0000

write RDX[31:0]:RAX[31:0] to RCX specified
MSR

0100 1000 0000 1111 : 0011 0000

XADD – Exchange and Add

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding
Vol. 2C B-51

INSTRUCTION FORMATS AND ENCODINGS
register1, register2 0100 0R0B 0000 1111 : 1100 000w : 11 reg2
reg1

byteregister1, byteregister2 0100 0R0B 0000 1111 : 1100 0000 : 11
bytereg2 bytereg1

qwordregister1, qwordregister2 0100 0R0B 0000 1111 : 1100 0001 : 11
qwordreg2 qwordreg1

memory, register 0100 0RXB 0000 1111 : 1100 000w : mod
reg r/m

memory8, bytereg 0100 1RXB 0000 1111 : 1100 0000 : mod
bytereg r/m

memory64, qwordreg 0100 1RXB 0000 1111 : 1100 0001 : mod
qwordreg r/m

XCHG – Exchange Register/Memory with
Register

register1 with register2 1000 011w : 11 reg1 reg2

AX or EAX with register 1001 0 reg

memory with register 1000 011w : mod reg r/m

XLAT/XLATB – Table Look-up Translation

AL to byte DS:[(E)BX + unsigned AL] 1101 0111

AL to byte DS:[RBX + unsigned AL] 0100 1000 1101 0111

XOR – Logical Exclusive OR

register1 to register2 0100 0RXB 0011 000w : 11 reg1 reg2

byteregister1 to byteregister2 0100 0R0B 0011 0000 : 11 bytereg1
bytereg2

qwordregister1 to qwordregister2 0100 1R0B 0011 0001 : 11 qwordreg1
qwordreg2

register2 to register1 0100 0R0B 0011 001w : 11 reg1 reg2

byteregister2 to byteregister1 0100 0R0B 0011 0010 : 11 bytereg1
bytereg2

qwordregister2 to qwordregister1 0100 1R0B 0011 0011 : 11 qwordreg1
qwordreg2

memory to register 0100 0RXB 0011 001w : mod reg r/m

memory8 to byteregister 0100 0RXB 0011 0010 : mod bytereg r/m

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding
B-52 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
memory64 to qwordregister 0100 1RXB 0011 0011 : mod qwordreg r/m

register to memory 0100 0RXB 0011 000w : mod reg r/m

byteregister to memory8 0100 0RXB 0011 0000 : mod bytereg r/m

qwordregister to memory8 0100 1RXB 0011 0001 : mod qwordreg r/m

immediate to register 0100 000B 1000 00sw : 11 110 reg : imm

immediate8 to byteregister 0100 000B 1000 0000 : 11 110 bytereg :
imm8

immediate32 to qwordregister 0100 100B 1000 0001 : 11 110 qwordreg :
imm32

immediate8 to qwordregister 0100 100B 1000 0011 : 11 110 qwordreg :
imm8

immediate to AL, AX, or EAX 0100 000B 0011 010w : imm

immediate to RAX 0100 1000 0011 0101 : immediate data

immediate to memory 0100 00XB 1000 00sw : mod 110 r/m : imm

immediate8 to memory8 0100 00XB 1000 0000 : mod 110 r/m : imm8

immediate32 to memory64 0100 10XB 1000 0001 : mod 110 r/m : imm32

immediate8 to memory64 0100 10XB 1000 0011 : mod 110 r/m : imm8

Prefix Bytes

address size 0110 0111

LOCK 1111 0000

operand size 0110 0110

CS segment override 0010 1110

DS segment override 0011 1110

ES segment override 0010 0110

FS segment override 0110 0100

GS segment override 0110 0101

SS segment override 0011 0110

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding
Vol. 2C B-53

INSTRUCTION FORMATS AND ENCODINGS
B.3 PENTIUM® PROCESSOR FAMILY INSTRUCTION
FORMATS AND ENCODINGS

The following table shows formats and encodings introduced by the Pentium
processor family.

B.4 64-BIT MODE INSTRUCTION ENCODINGS FOR SIMD
INSTRUCTION EXTENSIONS

Non-64-bit mode instruction encodings for MMX Technology, SSE, SSE2, and SSE3
are covered by applying these rules to Table B-19 through Table B-31. Table B-34
lists special encodings (instructions that do not follow the rules below).

1. The REX instruction has no effect:

• On immediates

• If both operands are MMX registers

• On MMX registers and XMM registers

• If an MMX register is encoded in the reg field of the ModR/M byte

2. If a memory operand is encoded in the r/m field of the ModR/M byte, REX.X and
REX.B may be used for encoding the memory operand.

Table B-16. Pentium Processor Family Instruction Formats and Encodings,
Non-64-Bit Modes

Instruction and Format Encoding

CMPXCHG8B – Compare and Exchange 8
Bytes

EDX:EAX with memory64 0000 1111 : 1100 0111 : mod 001 r/m

Table B-17. Pentium Processor Family Instruction Formats and Encodings, 64-Bit
Mode

Instruction and Format Encoding

CMPXCHG8B/CMPXCHG16B – Compare and
Exchange Bytes

EDX:EAX with memory64 0000 1111 : 1100 0111 : mod 001 r/m

RDX:RAX with memory128 0100 10XB 0000 1111 : 1100 0111 : mod
001 r/m
B-54 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
3. If a general-purpose register is encoded in the r/m field of the ModR/M byte,
REX.B may be used for register encoding and REX.W may be used to encode the
64-bit operand size.

4. If an XMM register operand is encoded in the reg field of the ModR/M byte, REX.R
may be used for register encoding. If an XMM register operand is encoded in the
r/m field of the ModR/M byte, REX.B may be used for register encoding.

B.5 MMX INSTRUCTION FORMATS AND ENCODINGS
MMX instructions, except the EMMS instruction, use a format similar to the 2-byte
Intel Architecture integer format. Details of subfield encodings within these formats
are presented below.

B.5.1 Granularity Field (gg)
The granularity field (gg) indicates the size of the packed operands that the instruc-
tion is operating on. When this field is used, it is located in bits 1 and 0 of the second
opcode byte. Table B-18 shows the encoding of the gg field.

B.5.2 MMX Technology and General-Purpose Register Fields
(mmxreg and reg)

When MMX technology registers (mmxreg) are used as operands, they are encoded
in the ModR/M byte in the reg field (bits 5, 4, and 3) and/or the R/M field (bits 2, 1,
and 0).

If an MMX instruction operates on a general-purpose register (reg), the register is
encoded in the R/M field of the ModR/M byte.

B.5.3 MMX Instruction Formats and Encodings Table
Table B-19 shows the formats and encodings of the integer instructions.

Table B-18. Encoding of Granularity of Data Field (gg)

gg Granularity of Data

00 Packed Bytes

01 Packed Words

10 Packed Doublewords

11 Quadword
Vol. 2C B-55

INSTRUCTION FORMATS AND ENCODINGS
Table B-19. MMX Instruction Formats and Encodings

Instruction and Format Encoding

EMMS – Empty MMX technology state 0000 1111:01110111

MOVD – Move doubleword

reg to mmxreg 0000 1111:0110 1110: 11 mmxreg reg

reg from mmxreg 0000 1111:0111 1110: 11 mmxreg reg

mem to mmxreg 0000 1111:0110 1110: mod mmxreg r/m

mem from mmxreg 0000 1111:0111 1110: mod mmxreg r/m

MOVQ – Move quadword

mmxreg2 to mmxreg1 0000 1111:0110 1111: 11 mmxreg1 mmxreg2

mmxreg2 from mmxreg1 0000 1111:0111 1111: 11 mmxreg1 mmxreg2

mem to mmxreg 0000 1111:0110 1111: mod mmxreg r/m

mem from mmxreg 0000 1111:0111 1111: mod mmxreg r/m

PACKSSDW1 – Pack dword to word data
(signed with saturation)

mmxreg2 to mmxreg1 0000 1111:0110 1011: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:0110 1011: mod mmxreg r/m

PACKSSWB1 – Pack word to byte data
(signed with saturation)

mmxreg2 to mmxreg1 0000 1111:0110 0011: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:0110 0011: mod mmxreg r/m

PACKUSWB1 – Pack word to byte data
(unsigned with saturation)

mmxreg2 to mmxreg1 0000 1111:0110 0111: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:0110 0111: mod mmxreg r/m

PADD – Add with wrap-around

mmxreg2 to mmxreg1 0000 1111: 1111 11gg: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111: 1111 11gg: mod mmxreg r/m

PADDS – Add signed with saturation

mmxreg2 to mmxreg1 0000 1111: 1110 11gg: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111: 1110 11gg: mod mmxreg r/m

PADDUS – Add unsigned with saturation

mmxreg2 to mmxreg1 0000 1111: 1101 11gg: 11 mmxreg1 mmxreg2
B-56 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
memory to mmxreg 0000 1111: 1101 11gg: mod mmxreg r/m

PAND – Bitwise And

mmxreg2 to mmxreg1 0000 1111:1101 1011: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:1101 1011: mod mmxreg r/m

PANDN – Bitwise AndNot

mmxreg2 to mmxreg1 0000 1111:1101 1111: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:1101 1111: mod mmxreg r/m

PCMPEQ – Packed compare for equality

 mmxreg1 with mmxreg2 0000 1111:0111 01gg: 11 mmxreg1 mmxreg2

 mmxreg with memory 0000 1111:0111 01gg: mod mmxreg r/m

PCMPGT – Packed compare greater
(signed)

mmxreg1 with mmxreg2 0000 1111:0110 01gg: 11 mmxreg1 mmxreg2

mmxreg with memory 0000 1111:0110 01gg: mod mmxreg r/m

PMADDWD – Packed multiply add

mmxreg2 to mmxreg1 0000 1111:1111 0101: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:1111 0101: mod mmxreg r/m

PMULHUW – Packed multiplication, store
high word (unsigned)

 mmxreg2 to mmxreg1 0000 1111: 1110 0100: 11 mmxreg1 mmxreg2

 memory to mmxreg 0000 1111: 1110 0100: mod mmxreg r/m

PMULHW – Packed multiplication, store
high word

mmxreg2 to mmxreg1 0000 1111:1110 0101: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:1110 0101: mod mmxreg r/m

PMULLW – Packed multiplication, store low
word

mmxreg2 to mmxreg1 0000 1111:1101 0101: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:1101 0101: mod mmxreg r/m

POR – Bitwise Or

mmxreg2 to mmxreg1 0000 1111:1110 1011: 11 mmxreg1 mmxreg2

Table B-19. MMX Instruction Formats and Encodings (Contd.)

Instruction and Format Encoding
Vol. 2C B-57

INSTRUCTION FORMATS AND ENCODINGS
memory to mmxreg 0000 1111:1110 1011: mod mmxreg r/m

PSLL2 – Packed shift left logical

mmxreg1 by mmxreg2 0000 1111:1111 00gg: 11 mmxreg1 mmxreg2

mmxreg by memory 0000 1111:1111 00gg: mod mmxreg r/m

mmxreg by immediate 0000 1111:0111 00gg: 11 110 mmxreg: imm8
data

PSRA2 – Packed shift right arithmetic

mmxreg1 by mmxreg2 0000 1111:1110 00gg: 11 mmxreg1 mmxreg2

mmxreg by memory 0000 1111:1110 00gg: mod mmxreg r/m

mmxreg by immediate 0000 1111:0111 00gg: 11 100 mmxreg: imm8
data

PSRL2 – Packed shift right logical

mmxreg1 by mmxreg2 0000 1111:1101 00gg: 11 mmxreg1 mmxreg2

 mmxreg by memory 0000 1111:1101 00gg: mod mmxreg r/m

mmxreg by immediate 0000 1111:0111 00gg: 11 010 mmxreg: imm8
data

PSUB – Subtract with wrap-around

mmxreg2 from mmxreg1 0000 1111:1111 10gg: 11 mmxreg1 mmxreg2

memory from mmxreg 0000 1111:1111 10gg: mod mmxreg r/m

PSUBS – Subtract signed with saturation

mmxreg2 from mmxreg1 0000 1111:1110 10gg: 11 mmxreg1 mmxreg2

memory from mmxreg 0000 1111:1110 10gg: mod mmxreg r/m

PSUBUS – Subtract unsigned with
saturation

mmxreg2 from mmxreg1 0000 1111:1101 10gg: 11 mmxreg1 mmxreg2

memory from mmxreg 0000 1111:1101 10gg: mod mmxreg r/m

PUNPCKH – Unpack high data to next larger
type

mmxreg2 to mmxreg1 0000 1111:0110 10gg: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:0110 10gg: mod mmxreg r/m

PUNPCKL – Unpack low data to next larger
type

mmxreg2 to mmxreg1 0000 1111:0110 00gg: 11 mmxreg1 mmxreg2

Table B-19. MMX Instruction Formats and Encodings (Contd.)

Instruction and Format Encoding
B-58 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
B.6 PROCESSOR EXTENDED STATE INSTRUCTION
FORMATS AND ENCODINGS

Table B-20 shows the formats and encodings for several instructions that relate to
processor extended state management.

B.7 P6 FAMILY INSTRUCTION FORMATS AND
ENCODINGS

Table B-20 shows the formats and encodings for several instructions that were intro-
duced into the IA-32 architecture in the P6 family processors.

memory to mmxreg 0000 1111:0110 00gg: mod mmxreg r/m

PXOR – Bitwise Xor

mmxreg2 to mmxreg1 0000 1111:1110 1111: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:1110 1111: mod mmxreg r/m

NOTES:
1. The pack instructions perform saturation from signed packed data of one type to signed or

unsigned data of the next smaller type.
2. The format of the shift instructions has one additional format to support shifting by immediate

shift-counts. The shift operations are not supported equally for all data types.

Table B-20. Formats and Encodings of XSAVE/XRSTOR/XGETBV/XSETBV Instructions

Instruction and Format Encoding

XGETBV – Get Value of Extended Control
Register

0000 1111:0000 0001: 1101 0000

XRSTOR – Restore Processor Extended
States1

0000 1111:1010 1110: modA 101 r/m

XSAVE – Save Processor Extended States1 0000 1111:1010 1110: modA 100 r/m

XSETBV – Set Extended Control Register 0000 1111:0000 0001: 1101 0001

NOTES:
1. For XSAVE and XRSTOR, “mod = 11” is reserved.

Table B-19. MMX Instruction Formats and Encodings (Contd.)

Instruction and Format Encoding
Vol. 2C B-59

INSTRUCTION FORMATS AND ENCODINGS

B.8 SSE INSTRUCTION FORMATS AND ENCODINGS
The SSE instructions use the ModR/M format and are preceded by the 0FH prefix
byte. In general, operations are not duplicated to provide two directions (that is,
separate load and store variants).

The following three tables (Tables B-22, B-23, and B-24) show the formats and
encodings for the SSE SIMD floating-point, SIMD integer, and cacheability and
memory ordering instructions, respectively. Some SSE instructions require a manda-
tory prefix (66H, F2H, F3H) as part of the two-byte opcode. Mandatory prefixes are
included in the tables.

Table B-21. Formats and Encodings of P6 Family Instructions

Instruction and Format Encoding

CMOVcc – Conditional Move

register2 to register1 0000 1111: 0100 tttn : 11 reg1 reg2

memory to register 0000 1111 : 0100 tttn : mod reg r/m

FCMOVcc – Conditional Move on EFLAG
Register Condition Codes

move if below (B) 11011 010 : 11 000 ST(i)

move if equal (E) 11011 010 : 11 001 ST(i)

move if below or equal (BE) 11011 010 : 11 010 ST(i)

move if unordered (U) 11011 010 : 11 011 ST(i)

move if not below (NB) 11011 011 : 11 000 ST(i)

move if not equal (NE) 11011 011 : 11 001 ST(i)

move if not below or equal (NBE) 11011 011 : 11 010 ST(i)

move if not unordered (NU) 11011 011 : 11 011 ST(i)

FCOMI – Compare Real and Set EFLAGS 11011 011 : 11 110 ST(i)

FXRSTOR – Restore x87 FPU, MMX, SSE,
and SSE2 State1

0000 1111:1010 1110: modA 001 r/m

FXSAVE – Save x87 FPU, MMX, SSE, and
SSE2 State1

0000 1111:1010 1110: modA 000 r/m

SYSENTER – Fast System Call 0000 1111:0011 0100

SYSEXIT – Fast Return from Fast System
Call

0000 1111:0011 0101

NOTES:
1. For FXSAVE and FXRSTOR, “mod = 11” is reserved.
B-60 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
Table B-22. Formats and Encodings of SSE Floating-Point Instructions

Instruction and Format Encoding

ADDPS—Add Packed Single-Precision
Floating-Point Values

 xmmreg2 to xmmreg1 0000 1111:0101 1000:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0101 1000: mod xmmreg r/m

ADDSS—Add Scalar Single-Precision
Floating-Point Values

 xmmreg2 to xmmreg1 1111 0011:0000 1111:01011000:11 xmmreg1
xmmreg2

 mem to xmmreg 1111 0011:0000 1111:01011000: mod xmmreg r/m

ANDNPS—Bitwise Logical AND NOT of
Packed Single-Precision Floating-Point
Values

 xmmreg2 to xmmreg1 0000 1111:0101 0101:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0101 0101: mod xmmreg r/m

ANDPS—Bitwise Logical AND of Packed
Single-Precision Floating-Point Values

 xmmreg2 to xmmreg1 0000 1111:0101 0100:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0101 0100: mod xmmreg r/m

CMPPS—Compare Packed Single-
Precision Floating-Point Values

 xmmreg2 to xmmreg1, imm8 0000 1111:1100 0010:11 xmmreg1 xmmreg2:
imm8

 mem to xmmreg, imm8 0000 1111:1100 0010: mod xmmreg r/m: imm8

CMPSS—Compare Scalar Single-
Precision Floating-Point Values

 xmmreg2 to xmmreg1, imm8 1111 0011:0000 1111:1100 0010:11 xmmreg1
xmmreg2: imm8

 mem to xmmreg, imm8 1111 0011:0000 1111:1100 0010: mod xmmreg
r/m: imm8

COMISS—Compare Scalar Ordered
Single-Precision Floating-Point Values
and Set EFLAGS

 xmmreg2 to xmmreg1 0000 1111:0010 1111:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0010 1111: mod xmmreg r/m
Vol. 2C B-61

INSTRUCTION FORMATS AND ENCODINGS
CVTPI2PS—Convert Packed
Doubleword Integers to Packed Single-
Precision Floating-Point Values

 mmreg to xmmreg 0000 1111:0010 1010:11 xmmreg1 mmreg1

 mem to xmmreg 0000 1111:0010 1010: mod xmmreg r/m

CVTPS2PI—Convert Packed Single-
Precision Floating-Point Values to
Packed Doubleword Integers

 xmmreg to mmreg 0000 1111:0010 1101:11 mmreg1 xmmreg1

 mem to mmreg 0000 1111:0010 1101: mod mmreg r/m

CVTSI2SS—Convert Doubleword
Integer to Scalar Single-Precision
Floating-Point Value

 r32 to xmmreg1 1111 0011:0000 1111:00101010:11 xmmreg1 r32

 mem to xmmreg 1111 0011:0000 1111:00101010: mod xmmreg r/m

CVTSS2SI—Convert Scalar Single-
Precision Floating-Point Value to
Doubleword Integer

 xmmreg to r32 1111 0011:0000 1111:0010 1101:11 r32 xmmreg

 mem to r32 1111 0011:0000 1111:0010 1101: mod r32 r/m

CVTTPS2PI—Convert with Truncation
Packed Single-Precision Floating-Point
Values to Packed Doubleword Integers

 xmmreg to mmreg 0000 1111:0010 1100:11 mmreg1 xmmreg1

 mem to mmreg 0000 1111:0010 1100: mod mmreg r/m

CVTTSS2SI—Convert with Truncation
Scalar Single-Precision Floating-Point
Value to Doubleword Integer

 xmmreg to r32 1111 0011:0000 1111:0010 1100:11 r32 xmmreg1

 mem to r32 1111 0011:0000 1111:0010 1100: mod r32 r/m

DIVPS—Divide Packed Single-Precision
Floating-Point Values

 xmmreg2 to xmmreg1 0000 1111:0101 1110:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0101 1110: mod xmmreg r/m

DIVSS—Divide Scalar Single-Precision
Floating-Point Values

Table B-22. Formats and Encodings of SSE Floating-Point Instructions (Contd.)

Instruction and Format Encoding
B-62 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
 xmmreg2 to xmmreg1 1111 0011:0000 1111:0101 1110:11 xmmreg1
xmmreg2

 mem to xmmreg 1111 0011:0000 1111:0101 1110: mod xmmreg
r/m

LDMXCSR—Load MXCSR Register State

 m32 to MXCSR 0000 1111:1010 1110:modA 010 mem

MAXPS—Return Maximum Packed
Single-Precision Floating-Point Values

 xmmreg2 to xmmreg1 0000 1111:0101 1111:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0101 1111: mod xmmreg r/m

MAXSS—Return Maximum Scalar
Double-Precision Floating-Point Value

 xmmreg2 to xmmreg1 1111 0011:0000 1111:0101 1111:11 xmmreg1
xmmreg2

 mem to xmmreg 1111 0011:0000 1111:0101 1111: mod xmmreg
r/m

MINPS—Return Minimum Packed
Double-Precision Floating-Point
Values

 xmmreg2 to xmmreg1 0000 1111:0101 1101:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0101 1101: mod xmmreg r/m

MINSS—Return Minimum Scalar Double-
Precision Floating-Point Value

 xmmreg2 to xmmreg1 1111 0011:0000 1111:0101 1101:11 xmmreg1
xmmreg2

 mem to xmmreg 1111 0011:0000 1111:0101 1101: mod xmmreg
r/m

MOVAPS—Move Aligned Packed
Single-Precision Floating-Point Values

 xmmreg2 to xmmreg1 0000 1111:0010 1000:11 xmmreg2 xmmreg1

 mem to xmmreg1 0000 1111:0010 1000: mod xmmreg r/m

 xmmreg1 to xmmreg2 0000 1111:0010 1001:11 xmmreg1 xmmreg2

 xmmreg1 to mem 0000 1111:0010 1001: mod xmmreg r/m

Table B-22. Formats and Encodings of SSE Floating-Point Instructions (Contd.)

Instruction and Format Encoding
Vol. 2C B-63

INSTRUCTION FORMATS AND ENCODINGS
MOVHLPS—Move Packed Single-
Precision Floating-Point Values High to
Low

 xmmreg2 to xmmreg1 0000 1111:0001 0010:11 xmmreg1 xmmreg2

MOVHPS—Move High Packed Single-
Precision Floating-Point Values

 mem to xmmreg 0000 1111:0001 0110: mod xmmreg r/m

 xmmreg to mem 0000 1111:0001 0111: mod xmmreg r/m

MOVLHPS—Move Packed Single-
Precision Floating-Point Values Low to
High

 xmmreg2 to xmmreg1 0000 1111:00010110:11 xmmreg1 xmmreg2

MOVLPS—Move Low Packed Single-
Precision Floating-Point Values

 mem to xmmreg 0000 1111:0001 0010: mod xmmreg r/m

 xmmreg to mem 0000 1111:0001 0011: mod xmmreg r/m

MOVMSKPS—Extract Packed Single-
Precision Floating-Point Sign Mask

 xmmreg to r32 0000 1111:0101 0000:11 r32 xmmreg

MOVSS—Move Scalar Single-Precision
Floating-Point Values

 xmmreg2 to xmmreg1 1111 0011:0000 1111:0001 0000:11 xmmreg2
xmmreg1

 mem to xmmreg1 1111 0011:0000 1111:0001 0000: mod xmmreg
r/m

 xmmreg1 to xmmreg2 1111 0011:0000 1111:0001 0001:11 xmmreg1
xmmreg2

 xmmreg1 to mem 1111 0011:0000 1111:0001 0001: mod xmmreg
r/m

MOVUPS—Move Unaligned Packed
Single-Precision Floating-Point Values

 xmmreg2 to xmmreg1 0000 1111:0001 0000:11 xmmreg2 xmmreg1

 mem to xmmreg1 0000 1111:0001 0000: mod xmmreg r/m

 xmmreg1 to xmmreg2 0000 1111:0001 0001:11 xmmreg1 xmmreg2

 xmmreg1 to mem 0000 1111:0001 0001: mod xmmreg r/m

Table B-22. Formats and Encodings of SSE Floating-Point Instructions (Contd.)

Instruction and Format Encoding
B-64 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
MULPS—Multiply Packed Single-
Precision Floating-Point Values

 xmmreg2 to xmmreg1 0000 1111:0101 1001:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0101 1001: mod xmmreg r/m

MULSS—Multiply Scalar Single-Precision
Floating-Point Values

 xmmreg2 to xmmreg1 1111 0011:0000 1111:0101 1001:11 xmmreg1
xmmreg2

 mem to xmmreg 1111 0011:0000 1111:0101 1001: mod xmmreg
r/m

ORPS—Bitwise Logical OR of Single-
Precision Floating-Point Values

 xmmreg2 to xmmreg1 0000 1111:0101 0110:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0101 0110: mod xmmreg r/m

RCPPS—Compute Reciprocals of Packed
Single-Precision Floating-Point Values

 xmmreg2 to xmmreg1 0000 1111:0101 0011:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0101 0011: mod xmmreg r/m

RCPSS—Compute Reciprocals of Scalar
Single-Precision Floating-Point Value

 xmmreg2 to xmmreg1 1111 0011:0000 1111:01010011:11 xmmreg1
xmmreg2

 mem to xmmreg 1111 0011:0000 1111:01010011: mod xmmreg r/m

RSQRTPS—Compute Reciprocals of
Square Roots of Packed Single-
Precision Floating-Point Values

 xmmreg2 to xmmreg1 0000 1111:0101 0010:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0101 0010: mode xmmreg r/m

RSQRTSS—Compute Reciprocals of
Square Roots of Scalar Single-Precision
Floating-Point Value

 xmmreg2 to xmmreg1 1111 0011:0000 1111:0101 0010:11 xmmreg1
xmmreg2

 mem to xmmreg 1111 0011:0000 1111:0101 0010: mod xmmreg
r/m

Table B-22. Formats and Encodings of SSE Floating-Point Instructions (Contd.)

Instruction and Format Encoding
Vol. 2C B-65

INSTRUCTION FORMATS AND ENCODINGS
SHUFPS—Shuffle Packed Single-
Precision Floating-Point Values

 xmmreg2 to xmmreg1, imm8 0000 1111:1100 0110:11 xmmreg1 xmmreg2:
imm8

 mem to xmmreg, imm8 0000 1111:1100 0110: mod xmmreg r/m: imm8

SQRTPS—Compute Square Roots of
Packed Single-Precision Floating-Point
Values

 xmmreg2 to xmmreg1 0000 1111:0101 0001:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0101 0001: mod xmmreg r/m

SQRTSS—Compute Square Root of
Scalar Single-Precision Floating-Point
Value

 xmmreg2 to xmmreg1 1111 0011:0000 1111:0101 0001:11 xmmreg1
xmmreg2

 mem to xmmreg 1111 0011:0000 1111:0101 0001:mod xmmreg r/m

STMXCSR—Store MXCSR Register State

 MXCSR to mem 0000 1111:1010 1110:modA 011 mem

SUBPS—Subtract Packed Single-
Precision Floating-Point Values

 xmmreg2 to xmmreg1 0000 1111:0101 1100:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0101 1100:mod xmmreg r/m

SUBSS—Subtract Scalar Single-
Precision Floating-Point Values

 xmmreg2 to xmmreg1 1111 0011:0000 1111:0101 1100:11 xmmreg1
xmmreg2

 mem to xmmreg 1111 0011:0000 1111:0101 1100:mod xmmreg r/m

UCOMISS—Unordered Compare Scalar
Ordered Single-Precision Floating-Point
Values and Set EFLAGS

 xmmreg2 to xmmreg1 0000 1111:0010 1110:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0010 1110: mod xmmreg r/m

UNPCKHPS—Unpack and Interleave
High Packed Single-Precision Floating-
Point Values

Table B-22. Formats and Encodings of SSE Floating-Point Instructions (Contd.)

Instruction and Format Encoding
B-66 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
 xmmreg2 to xmmreg1 0000 1111:0001 0101:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0001 0101: mod xmmreg r/m

UNPCKLPS—Unpack and Interleave Low
Packed Single-Precision Floating-Point
Values

 xmmreg2 to xmmreg1 0000 1111:0001 0100:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0001 0100: mod xmmreg r/m

XORPS—Bitwise Logical XOR of Single-
Precision Floating-Point Values

 xmmreg2 to xmmreg1 0000 1111:0101 0111:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0101 0111: mod xmmreg r/m

Table B-23. Formats and Encodings of SSE Integer Instructions

Instruction and Format Encoding

PAVGB/PAVGW—Average Packed Integers

 mmreg2 to mmreg1 0000 1111:1110 0000:11 mmreg1 mmreg2

0000 1111:1110 0011:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:1110 0000: mod mmreg r/m

0000 1111:1110 0011: mod mmreg r/m

PEXTRW—Extract Word

 mmreg to reg32, imm8 0000 1111:1100 0101:11 r32 mmreg: imm8

PINSRW—Insert Word

 reg32 to mmreg, imm8 0000 1111:1100 0100:11 mmreg r32: imm8

 m16 to mmreg, imm8 0000 1111:1100 0100: mod mmreg r/m:
imm8

PMAXSW—Maximum of Packed Signed Word
Integers

 mmreg2 to mmreg1 0000 1111:1110 1110:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:1110 1110: mod mmreg r/m

PMAXUB—Maximum of Packed Unsigned Byte
Integers

 mmreg2 to mmreg1 0000 1111:1101 1110:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:1101 1110: mod mmreg r/m

Table B-22. Formats and Encodings of SSE Floating-Point Instructions (Contd.)

Instruction and Format Encoding
Vol. 2C B-67

INSTRUCTION FORMATS AND ENCODINGS
PMINSW—Minimum of Packed Signed Word
Integers

 mmreg2 to mmreg1 0000 1111:1110 1010:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:1110 1010: mod mmreg r/m

PMINUB—Minimum of Packed Unsigned Byte
Integers

 mmreg2 to mmreg1 0000 1111:1101 1010:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:1101 1010: mod mmreg r/m

PMOVMSKB—Move Byte Mask To Integer

 mmreg to reg32 0000 1111:1101 0111:11 r32 mmreg

PMULHUW—Multiply Packed Unsigned Integers
and Store High Result

 mmreg2 to mmreg1 0000 1111:1110 0100:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:1110 0100: mod mmreg r/m

PSADBW—Compute Sum of Absolute
Differences

 mmreg2 to mmreg1 0000 1111:1111 0110:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:1111 0110: mod mmreg r/m

PSHUFW—Shuffle Packed Words

 mmreg2 to mmreg1, imm8 0000 1111:0111 0000:11 mmreg1 mmreg2:
imm8

 mem to mmreg, imm8 0000 1111:0111 0000: mod mmreg r/m:
imm8

Table B-24. Format and Encoding of SSE Cacheability & Memory Ordering
Instructions

Instruction and Format Encoding

MASKMOVQ—Store Selected Bytes of Quadword

 mmreg2 to mmreg1 0000 1111:1111 0111:11 mmreg1
mmreg2

MOVNTPS—Store Packed Single-Precision Floating-
Point Values Using Non-Temporal Hint

 xmmreg to mem 0000 1111:0010 1011: mod xmmreg
r/m

Table B-23. Formats and Encodings of SSE Integer Instructions (Contd.)

Instruction and Format Encoding
B-68 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
B.9 SSE2 INSTRUCTION FORMATS AND ENCODINGS
The SSE2 instructions use the ModR/M format and are preceded by the 0FH prefix
byte. In general, operations are not duplicated to provide two directions (that is,
separate load and store variants).

The following three tables show the formats and encodings for the SSE2 SIMD
floating-point, SIMD integer, and cacheability instructions, respectively. Some SSE2
instructions require a mandatory prefix (66H, F2H, F3H) as part of the two-byte
opcode. These prefixes are included in the tables.

B.9.1 Granularity Field (gg)
The granularity field (gg) indicates the size of the packed operands that the instruc-
tion is operating on. When this field is used, it is located in bits 1 and 0 of the second
opcode byte. Table B-25 shows the encoding of this gg field.

MOVNTQ—Store Quadword Using Non-Temporal
Hint

 mmreg to mem 0000 1111:1110 0111: mod mmreg r/m

PREFETCHT0—Prefetch Temporal to All Cache
Levels

0000 1111:0001 1000:modA 001 mem

PREFETCHT1—Prefetch Temporal to First Level
Cache

0000 1111:0001 1000:modA 010 mem

PREFETCHT2—Prefetch Temporal to Second Level
Cache

0000 1111:0001 1000:modA 011 mem

PREFETCHNTA—Prefetch Non-Temporal to All
Cache Levels

0000 1111:0001 1000:modA 000 mem

SFENCE—Store Fence 0000 1111:1010 1110:11 111 000

Table B-25. Encoding of Granularity of Data Field (gg)

gg Granularity of Data

00 Packed Bytes

01 Packed Words

10 Packed Doublewords

11 Quadword

Table B-24. Format and Encoding of SSE Cacheability & Memory Ordering
Instructions (Contd.)

Instruction and Format Encoding
Vol. 2C B-69

INSTRUCTION FORMATS AND ENCODINGS
Table B-26. Formats and Encodings of SSE2 Floating-Point Instructions

Instruction and Format Encoding

ADDPD—Add Packed Double-
Precision Floating-Point Values

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0101 1000:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0101 1000: mod xmmreg r/m

ADDSD—Add Scalar Double-Precision
Floating-Point Values

 xmmreg2 to xmmreg1 1111 0010:0000 1111:0101 1000:11 xmmreg1
xmmreg2

 mem to xmmreg 1111 0010:0000 1111:0101 1000: mod xmmreg r/m

ANDNPD—Bitwise Logical AND NOT
of Packed Double-Precision Floating-
Point Values

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0101 0101:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0101 0101: mod xmmreg r/m

ANDPD—Bitwise Logical AND of
Packed Double-Precision Floating-
Point Values

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0101 0100:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0101 0100: mod xmmreg r/m

CMPPD—Compare Packed Double-
Precision Floating-Point Values

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:1100 0010:11 xmmreg1
xmmreg2: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:1100 0010: mod xmmreg r/m:
imm8

CMPSD—Compare Scalar Double-
Precision Floating-Point Values

 xmmreg2 to xmmreg1, imm8 1111 0010:0000 1111:1100 0010:11 xmmreg1
xmmreg2: imm8

 mem to xmmreg, imm8 11110 010:0000 1111:1100 0010: mod xmmreg r/m:
imm8
B-70 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
COMISD—Compare Scalar Ordered
Double-Precision Floating-Point
Values and Set EFLAGS

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0010 1111:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0010 1111: mod xmmreg r/m

CVTPI2PD—Convert Packed
Doubleword Integers to Packed
Double-Precision Floating-Point
Values

 mmreg to xmmreg 0110 0110:0000 1111:0010 1010:11 xmmreg1
mmreg1

 mem to xmmreg 0110 0110:0000 1111:0010 1010: mod xmmreg r/m

CVTPD2PI—Convert Packed Double-
Precision Floating-Point Values to
Packed Doubleword Integers

 xmmreg to mmreg 0110 0110:0000 1111:0010 1101:11 mmreg1
xmmreg1

 mem to mmreg 0110 0110:0000 1111:0010 1101: mod mmreg r/m

CVTSI2SD—Convert Doubleword
Integer to Scalar Double-Precision
Floating-Point Value

 r32 to xmmreg1 1111 0010:0000 1111:0010 1010:11 xmmreg r32

 mem to xmmreg 1111 0010:0000 1111:0010 1010: mod xmmreg r/m

CVTSD2SI—Convert Scalar Double-
Precision Floating-Point Value to
Doubleword Integer

 xmmreg to r32 1111 0010:0000 1111:0010 1101:11 r32 xmmreg

 mem to r32 1111 0010:0000 1111:0010 1101: mod r32 r/m

CVTTPD2PI—Convert with Truncation
Packed Double-Precision Floating-
Point Values to Packed Doubleword
Integers

 xmmreg to mmreg 0110 0110:0000 1111:0010 1100:11 mmreg xmmreg

 mem to mmreg 0110 0110:0000 1111:0010 1100: mod mmreg r/m

Table B-26. Formats and Encodings of SSE2 Floating-Point Instructions (Contd.)

Instruction and Format Encoding
Vol. 2C B-71

INSTRUCTION FORMATS AND ENCODINGS
CVTTSD2SI—Convert with
Truncation Scalar Double-Precision
Floating-Point Value to Doubleword
Integer

 xmmreg to r32 1111 0010:0000 1111:0010 1100:11 r32 xmmreg

 mem to r32 1111 0010:0000 1111:0010 1100: mod r32 r/m

CVTPD2PS—Covert Packed Double-
Precision Floating-Point Values to
Packed Single-Precision Floating-
Point Values

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0101 1010:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0101 1010: mod xmmreg r/m

CVTPS2PD—Covert Packed Single-
Precision Floating-Point Values to
Packed Double-Precision Floating-
Point Values

 xmmreg2 to xmmreg1 0000 1111:0101 1010:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0101 1010: mod xmmreg r/m

CVTSD2SS—Covert Scalar Double-
Precision Floating-Point Value to
Scalar Single-Precision Floating-Point
Value

 xmmreg2 to xmmreg1 1111 0010:0000 1111:0101 1010:11 xmmreg1
xmmreg2

 mem to xmmreg 1111 0010:0000 1111:0101 1010: mod xmmreg r/m

CVTSS2SD—Covert Scalar Single-
Precision Floating-Point Value to
Scalar Double-Precision Floating-
Point Value

 xmmreg2 to xmmreg1 1111 0011:0000 1111:0101 1010:11 xmmreg1
xmmreg2

 mem to xmmreg 1111 0011:00001 111:0101 1010: mod xmmreg r/m

Table B-26. Formats and Encodings of SSE2 Floating-Point Instructions (Contd.)

Instruction and Format Encoding
B-72 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
CVTPD2DQ—Convert Packed Double-
Precision Floating-Point Values to
Packed Doubleword Integers

 xmmreg2 to xmmreg1 1111 0010:0000 1111:1110 0110:11 xmmreg1
xmmreg2

 mem to xmmreg 1111 0010:0000 1111:1110 0110: mod xmmreg r/m

CVTTPD2DQ—Convert With
Truncation Packed Double-Precision
Floating-Point Values to Packed
Doubleword Integers

 xmmreg2 to xmmreg1 0110 0110:0000 1111:1110 0110:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:1110 0110: mod xmmreg r/m

CVTDQ2PD—Convert Packed
Doubleword Integers to Packed
Single-Precision Floating-Point
Values

 xmmreg2 to xmmreg1 1111 0011:0000 1111:1110 0110:11 xmmreg1
xmmreg2

 mem to xmmreg 1111 0011:0000 1111:1110 0110: mod xmmreg r/m

CVTPS2DQ—Convert Packed Single-
Precision Floating-Point Values to
Packed Doubleword Integers

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0101 1011:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0101 1011: mod xmmreg r/m

CVTTPS2DQ—Convert With
Truncation Packed Single-Precision
Floating-Point Values to Packed
Doubleword Integers

 xmmreg2 to xmmreg1 1111 0011:0000 1111:0101 1011:11 xmmreg1
xmmreg2

 mem to xmmreg 1111 0011:0000 1111:0101 1011: mod xmmreg r/m

CVTDQ2PS—Convert Packed
Doubleword Integers to Packed
Double-Precision Floating-Point
Values

 xmmreg2 to xmmreg1 0000 1111:0101 1011:11 xmmreg1 xmmreg2

Table B-26. Formats and Encodings of SSE2 Floating-Point Instructions (Contd.)

Instruction and Format Encoding
Vol. 2C B-73

INSTRUCTION FORMATS AND ENCODINGS
 mem to xmmreg 0000 1111:0101 1011: mod xmmreg r/m

DIVPD—Divide Packed Double-
Precision Floating-Point Values

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0101 1110:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0101 1110: mod xmmreg r/m

DIVSD—Divide Scalar Double-
Precision Floating-Point Values

 xmmreg2 to xmmreg1 1111 0010:0000 1111:0101 1110:11 xmmreg1
xmmreg2

 mem to xmmreg 1111 0010:0000 1111:0101 1110: mod xmmreg r/m

MAXPD—Return Maximum Packed
Double-Precision Floating-Point
Values

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0101 1111:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0101 1111: mod xmmreg r/m

MAXSD—Return Maximum Scalar
Double-Precision Floating-Point
Value

 xmmreg2 to xmmreg1 1111 0010:0000 1111:0101 1111:11 xmmreg1
xmmreg2

 mem to xmmreg 1111 0010:0000 1111:0101 1111: mod xmmreg r/m

MINPD—Return Minimum Packed
Double-Precision Floating-Point
Values

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0101 1101:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0101 1101: mod xmmreg r/m

MINSD—Return Minimum Scalar
Double-Precision Floating-Point
Value

 xmmreg2 to xmmreg1 1111 0010:0000 1111:0101 1101:11 xmmreg1
xmmreg2

 mem to xmmreg 1111 0010:0000 1111:0101 1101: mod xmmreg r/m

Table B-26. Formats and Encodings of SSE2 Floating-Point Instructions (Contd.)

Instruction and Format Encoding
B-74 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
MOVAPD—Move Aligned Packed
Double-Precision Floating-Point
Values

 xmmreg1 to xmmreg2 0110 0110:0000 1111:0010 1001:11 xmmreg2
xmmreg1

 xmmreg1 to mem 0110 0110:0000 1111:0010 1001: mod xmmreg r/m

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0010 1000:11 xmmreg1
xmmreg2

 mem to xmmreg1 0110 0110:0000 1111:0010 1000: mod xmmreg r/m

MOVHPD—Move High Packed Double-
Precision Floating-Point Values

 xmmreg to mem 0110 0110:0000 1111:0001 0111: mod xmmreg r/m

 mem to xmmreg 0110 0110:0000 1111:0001 0110: mod xmmreg r/m

MOVLPD—Move Low Packed Double-
Precision Floating-Point Values

 xmmreg to mem 0110 0110:0000 1111:0001 0011: mod xmmreg r/m

 mem to xmmreg 0110 0110:0000 1111:0001 0010: mod xmmreg r/m

MOVMSKPD—Extract Packed Double-
Precision Floating-Point Sign Mask

 xmmreg to r32 0110 0110:0000 1111:0101 0000:11 r32 xmmreg

MOVSD—Move Scalar Double-
Precision Floating-Point Values

 xmmreg1 to xmmreg2 1111 0010:0000 1111:0001 0001:11 xmmreg2
xmmreg1

 xmmreg1 to mem 1111 0010:0000 1111:0001 0001: mod xmmreg r/m

 xmmreg2 to xmmreg1 1111 0010:0000 1111:0001 0000:11 xmmreg1
xmmreg2

 mem to xmmreg1 1111 0010:0000 1111:0001 0000: mod xmmreg r/m

MOVUPD—Move Unaligned Packed
Double-Precision Floating-Point
Values

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0001 0001:11 xmmreg2
xmmreg1

 mem to xmmreg1 0110 0110:0000 1111:0001 0001: mod xmmreg r/m

Table B-26. Formats and Encodings of SSE2 Floating-Point Instructions (Contd.)

Instruction and Format Encoding
Vol. 2C B-75

INSTRUCTION FORMATS AND ENCODINGS
 xmmreg1 to xmmreg2 0110 0110:0000 1111:0001 0000:11 xmmreg1
xmmreg2

 xmmreg1 to mem 0110 0110:0000 1111:0001 0000: mod xmmreg r/m

MULPD—Multiply Packed Double-
Precision Floating-Point Values

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0101 1001:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0101 1001: mod xmmreg r/m

MULSD—Multiply Scalar Double-
Precision Floating-Point Values

 xmmreg2 to xmmreg1 1111 0010:00001111:01011001:11 xmmreg1
xmmreg2

 mem to xmmreg 1111 0010:00001111:01011001: mod xmmreg r/m

ORPD—Bitwise Logical OR of
Double-Precision Floating-Point
Values

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0101 0110:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0101 0110: mod xmmreg r/m

SHUFPD—Shuffle Packed Double-
Precision Floating-Point Values

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:1100 0110:11 xmmreg1
xmmreg2: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:1100 0110: mod xmmreg r/m:
imm8

SQRTPD—Compute Square Roots of
Packed Double-Precision Floating-
Point Values

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0101 0001:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0101 0001: mod xmmreg r/m

SQRTSD—Compute Square Root of
Scalar Double-Precision Floating-
Point Value

 xmmreg2 to xmmreg1 1111 0010:0000 1111:0101 0001:11 xmmreg1
xmmreg2

Table B-26. Formats and Encodings of SSE2 Floating-Point Instructions (Contd.)

Instruction and Format Encoding
B-76 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
 mem to xmmreg 1111 0010:0000 1111:0101 0001: mod xmmreg r/m

SUBPD—Subtract Packed Double-
Precision Floating-Point Values

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0101 1100:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0101 1100: mod xmmreg r/m

SUBSD—Subtract Scalar Double-
Precision Floating-Point Values

 xmmreg2 to xmmreg1 1111 0010:0000 1111:0101 1100:11 xmmreg1
xmmreg2

 mem to xmmreg 1111 0010:0000 1111:0101 1100: mod xmmreg r/m

UCOMISD—Unordered Compare
Scalar Ordered Double-Precision
Floating-Point Values and Set
EFLAGS

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0010 1110:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0010 1110: mod xmmreg r/m

UNPCKHPD—Unpack and Interleave
High Packed Double-Precision
Floating-Point Values

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0001 0101:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0001 0101: mod xmmreg r/m

UNPCKLPD—Unpack and Interleave
Low Packed Double-Precision
Floating-Point Values

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0001 0100:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0001 0100: mod xmmreg r/m

XORPD—Bitwise Logical OR of
Double-Precision Floating-Point
Values

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0101 0111:11 xmmreg1
xmmreg2

Table B-26. Formats and Encodings of SSE2 Floating-Point Instructions (Contd.)

Instruction and Format Encoding
Vol. 2C B-77

INSTRUCTION FORMATS AND ENCODINGS
 mem to xmmreg 0110 0110:0000 1111:0101 0111: mod xmmreg r/m

Table B-26. Formats and Encodings of SSE2 Floating-Point Instructions (Contd.)

Instruction and Format Encoding
B-78 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
Table B-27. Formats and Encodings of SSE2 Integer Instructions

Instruction and Format Encoding

MOVD—Move Doubleword

 reg to xmmreg 0110 0110:0000 1111:0110 1110: 11 xmmreg reg

reg from xmmreg 0110 0110:0000 1111:0111 1110: 11 xmmreg reg

mem to xmmreg 0110 0110:0000 1111:0110 1110: mod xmmreg r/m

mem from xmmreg 0110 0110:0000 1111:0111 1110: mod xmmreg r/m

MOVDQA—Move Aligned Double
Quadword

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0110 1111:11 xmmreg1
xmmreg2

 xmmreg2 from xmmreg1 0110 0110:0000 1111:0111 1111:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0110 1111: mod xmmreg r/m

 mem from xmmreg 0110 0110:0000 1111:0111 1111: mod xmmreg r/m

MOVDQU—Move Unaligned Double
Quadword

 xmmreg2 to xmmreg1 1111 0011:0000 1111:0110 1111:11 xmmreg1
xmmreg2

xmmreg2 from xmmreg1 1111 0011:0000 1111:0111 1111:11 xmmreg1
xmmreg2

 mem to xmmreg 1111 0011:0000 1111:0110 1111: mod xmmreg r/m

 mem from xmmreg 1111 0011:0000 1111:0111 1111: mod xmmreg r/m

MOVQ2DQ—Move Quadword from
MMX to XMM Register

 mmreg to xmmreg 1111 0011:0000 1111:1101 0110:11 mmreg1
mmreg2

MOVDQ2Q—Move Quadword from
XMM to MMX Register

 xmmreg to mmreg 1111 0010:0000 1111:1101 0110:11 mmreg1
mmreg2

MOVQ—Move Quadword

xmmreg2 to xmmreg1 1111 0011:0000 1111:0111 1110: 11 xmmreg1
xmmreg2

xmmreg2 from xmmreg1 0110 0110:0000 1111:1101 0110: 11 xmmreg1
xmmreg2

mem to xmmreg 1111 0011:0000 1111:0111 1110: mod xmmreg r/m
Vol. 2C B-79

INSTRUCTION FORMATS AND ENCODINGS
mem from xmmreg 0110 0110:0000 1111:1101 0110: mod xmmreg r/m

PACKSSDW1—Pack Dword To Word
Data (signed with saturation)

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0110 1011: 11 xmmreg1
xmmreg2

 memory to xmmreg 0110 0110:0000 1111:0110 1011: mod xmmreg r/m

PACKSSWB—Pack Word To Byte Data
(signed with saturation)

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0110 0011: 11 xmmreg1
xmmreg2

 memory to xmmreg 0110 0110:0000 1111:0110 0011: mod xmmreg r/m

PACKUSWB—Pack Word To Byte Data
(unsigned with saturation)

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0110 0111: 11 xmmreg1
xmmreg2

 memory to xmmreg 0110 0110:0000 1111:0110 0111: mod xmmreg r/m

PADDQ—Add Packed Quadword
Integers

 mmreg2 to mmreg1 0000 1111:1101 0100:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:1101 0100: mod mmreg r/m

 xmmreg2 to xmmreg1 0110 0110:0000 1111:1101 0100:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:1101 0100: mod xmmreg r/m

PADD—Add With Wrap-around

 xmmreg2 to xmmreg1 0110 0110:0000 1111: 1111 11gg: 11 xmmreg1
xmmreg2

 memory to xmmreg 0110 0110:0000 1111: 1111 11gg: mod xmmreg r/m

PADDS—Add Signed With Saturation

 xmmreg2 to xmmreg1 0110 0110:0000 1111: 1110 11gg: 11 xmmreg1
xmmreg2

 memory to xmmreg 0110 0110:0000 1111: 1110 11gg: mod xmmreg r/m

PADDUS—Add Unsigned With
Saturation

 xmmreg2 to xmmreg1 0110 0110:0000 1111: 1101 11gg: 11 xmmreg1
xmmreg2

Table B-27. Formats and Encodings of SSE2 Integer Instructions (Contd.)

Instruction and Format Encoding
B-80 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
 memory to xmmreg 0110 0110:0000 1111: 1101 11gg: mod xmmreg r/m

PAND—Bitwise And

 xmmreg2 to xmmreg1 0110 0110:0000 1111:1101 1011: 11 xmmreg1
xmmreg2

 memory to xmmreg 0110 0110:0000 1111:1101 1011: mod xmmreg r/m

PANDN—Bitwise AndNot

 xmmreg2 to xmmreg1 0110 0110:0000 1111:1101 1111: 11 xmmreg1
xmmreg2

 memory to xmmreg 0110 0110:0000 1111:1101 1111: mod xmmreg r/m

PAVGB—Average Packed Integers

 xmmreg2 to xmmreg1 0110 0110:0000 1111:11100 000:11 xmmreg1
xmmreg2

 mem to xmmreg 01100110:00001111:11100000 mod xmmreg r/m

PAVGW—Average Packed Integers

 xmmreg2 to xmmreg1 0110 0110:0000 1111:1110 0011:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:1110 0011 mod xmmreg r/m

PCMPEQ—Packed Compare For
Equality

 xmmreg1 with xmmreg2 0110 0110:0000 1111:0111 01gg: 11 xmmreg1
xmmreg2

 xmmreg with memory 0110 0110:0000 1111:0111 01gg: mod xmmreg r/m

PCMPGT—Packed Compare Greater
(signed)

 xmmreg1 with xmmreg2 0110 0110:0000 1111:0110 01gg: 11 xmmreg1
xmmreg2

 xmmreg with memory 0110 0110:0000 1111:0110 01gg: mod xmmreg r/m

PEXTRW—Extract Word

 xmmreg to reg32, imm8 0110 0110:0000 1111:1100 0101:11 r32 xmmreg:
imm8

PINSRW—Insert Word

 reg32 to xmmreg, imm8 0110 0110:0000 1111:1100 0100:11 xmmreg r32:
imm8

Table B-27. Formats and Encodings of SSE2 Integer Instructions (Contd.)

Instruction and Format Encoding
Vol. 2C B-81

INSTRUCTION FORMATS AND ENCODINGS
 m16 to xmmreg, imm8 0110 0110:0000 1111:1100 0100: mod xmmreg r/m:
imm8

PMADDWD—Packed Multiply Add

 xmmreg2 to xmmreg1 0110 0110:0000 1111:1111 0101: 11 xmmreg1
xmmreg2

 memory to xmmreg 0110 0110:0000 1111:1111 0101: mod xmmreg r/m

PMAXSW—Maximum of Packed
Signed Word Integers

 xmmreg2 to xmmreg1 0110 0110:0000 1111:1110 1110:11 xmmreg1
xmmreg2

 mem to xmmreg 01100110:00001111:11101110: mod xmmreg r/m

PMAXUB—Maximum of Packed
Unsigned Byte Integers

 xmmreg2 to xmmreg1 0110 0110:0000 1111:1101 1110:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:1101 1110: mod xmmreg r/m

PMINSW—Minimum of Packed Signed
Word Integers

 xmmreg2 to xmmreg1 0110 0110:0000 1111:1110 1010:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:1110 1010: mod xmmreg r/m

PMINUB—Minimum of Packed
Unsigned Byte Integers

 xmmreg2 to xmmreg1 0110 0110:0000 1111:1101 1010:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:1101 1010 mod xmmreg r/m

PMOVMSKB—Move Byte Mask To
Integer

 xmmreg to reg32 0110 0110:0000 1111:1101 0111:11 r32 xmmreg

PMULHUW—Packed multiplication,
store high word (unsigned)

 xmmreg2 to xmmreg1 0110 0110:0000 1111:1110 0100: 11 xmmreg1
xmmreg2

 memory to xmmreg 0110 0110:0000 1111:1110 0100: mod xmmreg r/m

Table B-27. Formats and Encodings of SSE2 Integer Instructions (Contd.)

Instruction and Format Encoding
B-82 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
PMULHW—Packed Multiplication,
store high word

 xmmreg2 to xmmreg1 0110 0110:0000 1111:1110 0101: 11 xmmreg1
xmmreg2

 memory to xmmreg 0110 0110:0000 1111:1110 0101: mod xmmreg r/m

PMULLW—Packed Multiplication,
store low word

 xmmreg2 to xmmreg1 0110 0110:0000 1111:1101 0101: 11 xmmreg1
xmmreg2

 memory to xmmreg 0110 0110:0000 1111:1101 0101: mod xmmreg r/m

PMULUDQ—Multiply Packed
Unsigned Doubleword Integers

 mmreg2 to mmreg1 0000 1111:1111 0100:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:1111 0100: mod mmreg r/m

 xmmreg2 to xmmreg1 0110 0110:00001111:1111 0100:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:00001111:1111 0100: mod xmmreg r/m

POR—Bitwise Or

 xmmreg2 to xmmreg1 0110 0110:0000 1111:1110 1011: 11 xmmreg1
xmmreg2

 memory to xmmreg 0110 0110:0000 1111:1110 1011: mod xmmreg r/m

PSADBW—Compute Sum of Absolute
Differences

 xmmreg2 to xmmreg1 0110 0110:0000 1111:1111 0110:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:1111 0110: mod xmmreg r/m

PSHUFLW—Shuffle Packed Low
Words

 xmmreg2 to xmmreg1, imm8 1111 0010:0000 1111:0111 0000:11 xmmreg1
xmmreg2: imm8

 mem to xmmreg, imm8 1111 0010:0000 1111:0111 0000:11 mod xmmreg
r/m: imm8

Table B-27. Formats and Encodings of SSE2 Integer Instructions (Contd.)

Instruction and Format Encoding
Vol. 2C B-83

INSTRUCTION FORMATS AND ENCODINGS
PSHUFHW—Shuffle Packed High
Words

 xmmreg2 to xmmreg1, imm8 1111 0011:0000 1111:0111 0000:11 xmmreg1
xmmreg2: imm8

 mem to xmmreg, imm8 1111 0011:0000 1111:0111 0000: mod xmmreg r/m:
imm8

PSHUFD—Shuffle Packed
Doublewords

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0111 0000:11 xmmreg1
xmmreg2: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0111 0000: mod xmmreg r/m:
imm8

PSLLDQ—Shift Double Quadword Left
Logical

 xmmreg, imm8 0110 0110:0000 1111:0111 0011:11 111 xmmreg:
imm8

PSLL—Packed Shift Left Logical

 xmmreg1 by xmmreg2 0110 0110:0000 1111:1111 00gg: 11 xmmreg1
xmmreg2

 xmmreg by memory 0110 0110:0000 1111:1111 00gg: mod xmmreg r/m

 xmmreg by immediate 0110 0110:0000 1111:0111 00gg: 11 110 xmmreg:
imm8

PSRA—Packed Shift Right Arithmetic

 xmmreg1 by xmmreg2 0110 0110:0000 1111:1110 00gg: 11 xmmreg1
xmmreg2

 xmmreg by memory 0110 0110:0000 1111:1110 00gg: mod xmmreg r/m

 xmmreg by immediate 0110 0110:0000 1111:0111 00gg: 11 100 xmmreg:
imm8

PSRLDQ—Shift Double Quadword
Right Logical

 xmmreg, imm8 0110 0110:00001111:01110011:11 011 xmmreg:
imm8

PSRL—Packed Shift Right Logical

 xmmreg1 by xmmreg2 0110 0110:0000 1111:1101 00gg: 11 xmmreg1
xmmreg2

 xmmreg by memory 0110 0110:0000 1111:1101 00gg: mod xmmreg r/m

Table B-27. Formats and Encodings of SSE2 Integer Instructions (Contd.)

Instruction and Format Encoding
B-84 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
 xmmreg by immediate 0110 0110:0000 1111:0111 00gg: 11 010 xmmreg:
imm8

PSUBQ—Subtract Packed Quadword
Integers

 mmreg2 to mmreg1 0000 1111:11111 011:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:1111 1011: mod mmreg r/m

 xmmreg2 to xmmreg1 0110 0110:0000 1111:1111 1011:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:1111 1011: mod xmmreg r/m

PSUB—Subtract With Wrap-around

 xmmreg2 from xmmreg1 0110 0110:0000 1111:1111 10gg: 11 xmmreg1
xmmreg2

 memory from xmmreg 0110 0110:0000 1111:1111 10gg: mod xmmreg r/m

PSUBS—Subtract Signed With
Saturation

 xmmreg2 from xmmreg1 0110 0110:0000 1111:1110 10gg: 11 xmmreg1
xmmreg2

 memory from xmmreg 0110 0110:0000 1111:1110 10gg: mod xmmreg r/m

PSUBUS—Subtract Unsigned With
Saturation

 xmmreg2 from xmmreg1 0000 1111:1101 10gg: 11 xmmreg1 xmmreg2

 memory from xmmreg 0000 1111:1101 10gg: mod xmmreg r/m

PUNPCKH—Unpack High Data To
Next Larger Type

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0110 10gg:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0110 10gg: mod xmmreg r/m

PUNPCKHQDQ—Unpack High Data

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0110 1101:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0110 1101: mod xmmreg r/m

PUNPCKL—Unpack Low Data To Next
Larger Type

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0110 00gg:11 xmmreg1
xmmreg2

Table B-27. Formats and Encodings of SSE2 Integer Instructions (Contd.)

Instruction and Format Encoding
Vol. 2C B-85

INSTRUCTION FORMATS AND ENCODINGS
 mem to xmmreg 0110 0110:0000 1111:0110 00gg: mod xmmreg r/m

PUNPCKLQDQ—Unpack Low Data

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0110 1100:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0110 1100: mod xmmreg r/m

PXOR—Bitwise Xor

xmmreg2 to xmmreg1 0110 0110:0000 1111:1110 1111: 11 xmmreg1
xmmreg2

memory to xmmreg 0110 0110:0000 1111:1110 1111: mod xmmreg r/m

Table B-28. Format and Encoding of SSE2 Cacheability Instructions

Instruction and Format Encoding

MASKMOVDQU—Store Selected
Bytes of Double Quadword

 xmmreg2 to xmmreg1 0110 0110:0000 1111:1111 0111:11 xmmreg1
xmmreg2

CLFLUSH—Flush Cache Line

 mem 0000 1111:1010 1110: mod 111 r/m

MOVNTPD—Store Packed Double-
Precision Floating-Point Values Using
Non-Temporal Hint

 xmmreg to mem 0110 0110:0000 1111:0010 1011: mod xmmreg r/m

MOVNTDQ—Store Double Quadword
Using Non-Temporal Hint

 xmmreg to mem 0110 0110:0000 1111:1110 0111: mod xmmreg r/m

MOVNTI—Store Doubleword Using
Non-Temporal Hint

 reg to mem 0000 1111:1100 0011: mod reg r/m

PAUSE—Spin Loop Hint 1111 0011:1001 0000

LFENCE—Load Fence 0000 1111:1010 1110: 11 101 000

MFENCE—Memory Fence 0000 1111:1010 1110: 11 110 000

Table B-27. Formats and Encodings of SSE2 Integer Instructions (Contd.)

Instruction and Format Encoding
B-86 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
B.10 SSE3 FORMATS AND ENCODINGS TABLE
The tables in this section provide SSE3 formats and encodings. Some SSE3 instruc-
tions require a mandatory prefix (66H, F2H, F3H) as part of the two-byte opcode.
These prefixes are included in the tables.

When in IA-32e mode, use of the REX.R prefix permits instructions that use general
purpose and XMM registers to access additional registers. Some instructions require
the REX.W prefix to promote the instruction to 64-bit operation. Instructions that
require the REX.W prefix are listed (with their opcodes) in Section B.13.

Table B-29. Formats and Encodings of SSE3 Floating-Point Instructions

Instruction and Format Encoding

ADDSUBPD—Add /Sub packed DP FP
numbers from XMM2/Mem to XMM1

xmmreg2 to xmmreg1 01100110:00001111:11010000:11 xmmreg1
xmmreg2

mem to xmmreg 01100110:00001111:11010000: mod xmmreg
r/m

ADDSUBPS—Add /Sub packed SP FP
numbers from XMM2/Mem to XMM1

xmmreg2 to xmmreg1 11110010:00001111:11010000:11 xmmreg1
xmmreg2

mem to xmmreg 11110010:00001111:11010000: mod xmmreg
r/m

HADDPD—Add horizontally packed DP FP
numbers XMM2/Mem to XMM1

xmmreg2 to xmmreg1 01100110:00001111:01111100:11 xmmreg1
xmmreg2

mem to xmmreg 01100110:00001111:01111100: mod xmmreg
r/m

HADDPS—Add horizontally packed SP FP
numbers XMM2/Mem to XMM1

xmmreg2 to xmmreg1 11110010:00001111:01111100:11 xmmreg1
xmmreg2

mem to xmmreg 11110010:00001111:01111100: mod xmmreg
r/m

HSUBPD—Sub horizontally packed DP FP
numbers XMM2/Mem to XMM1

xmmreg2 to xmmreg1 01100110:00001111:01111101:11 xmmreg1
xmmreg2
Vol. 2C B-87

INSTRUCTION FORMATS AND ENCODINGS
mem to xmmreg 01100110:00001111:01111101: mod xmmreg
r/m

HSUBPS—Sub horizontally packed SP FP
numbers XMM2/Mem to XMM1

xmmreg2 to xmmreg1 11110010:00001111:01111101:11 xmmreg1
xmmreg2

mem to xmmreg 11110010:00001111:01111101: mod xmmreg
r/m

Table B-30. Formats and Encodings for SSE3 Event Management Instructions

Instruction and Format Encoding

MONITOR—Set up a linear address range to
be monitored by hardware

eax, ecx, edx 0000 1111 : 0000 0001:11 001 000

MWAIT—Wait until write-back store
performed within the range specified by
the instruction MONITOR

eax, ecx 0000 1111 : 0000 0001:11 001 001

Table B-31. Formats and Encodings for SSE3 Integer and Move Instructions

Instruction and Format Encoding

FISTTP—Store ST in int16 (chop) and pop

m16int 11011 111 : modA 001 r/m

FISTTP—Store ST in int32 (chop) and pop

m32int 11011 011 : modA 001 r/m

FISTTP—Store ST in int64 (chop) and pop

m64int 11011 101 : modA 001 r/m

LDDQU—Load unaligned integer 128-bit

xmm, m128 11110010:00001111:11110000: modA xmmreg
r/m

MOVDDUP—Move 64 bits representing one
DP data from XMM2/Mem to XMM1 and
duplicate

xmmreg2 to xmmreg1 11110010:00001111:00010010:11 xmmreg1
xmmreg2

Table B-29. Formats and Encodings of SSE3 Floating-Point Instructions (Contd.)

Instruction and Format Encoding
B-88 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
B.11 SSSE3 FORMATS AND ENCODING TABLE
The tables in this section provide SSSE3 formats and encodings. Some SSSE3
instructions require a mandatory prefix (66H) as part of the three-byte opcode.
These prefixes are included in the table below.

mem to xmmreg 11110010:00001111:00010010: mod xmmreg
r/m

MOVSHDUP—Move 128 bits representing 4
SP data from XMM2/Mem to XMM1 and
duplicate high

xmmreg2 to xmmreg1 11110011:00001111:00010110:11 xmmreg1
xmmreg2

mem to xmmreg 11110011:00001111:00010110: mod xmmreg
r/m

MOVSLDUP—Move 128 bits representing 4
SP data from XMM2/Mem to XMM1 and
duplicate low

xmmreg2 to xmmreg1 11110011:00001111:00010010:11 xmmreg1
xmmreg2

mem to xmmreg 11110011:00001111:00010010: mod xmmreg
r/m

Table B-32. Formats and Encodings for SSSE3 Instructions

Instruction and Format Encoding

PABSB—Packed Absolute
Value Bytes

 mmreg2 to mmreg1 0000 1111:0011 1000: 0001 1100:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:0011 1000: 0001 1100: mod mmreg r/m

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0001 1100:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0001 1100: mod xmmreg r/m

PABSD—Packed
Absolute Value Double
Words

 mmreg2 to mmreg1 0000 1111:0011 1000: 0001 1110:11 mmreg1 mmreg2

Table B-31. Formats and Encodings for SSE3 Integer and Move Instructions (Contd.)

Instruction and Format Encoding
Vol. 2C B-89

INSTRUCTION FORMATS AND ENCODINGS
 mem to mmreg 0000 1111:0011 1000: 0001 1110: mod mmreg r/m

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0001 1110:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0001 1110: mod xmmreg r/m

PABSW—Packed
Absolute Value Words

 mmreg2 to mmreg1 0000 1111:0011 1000: 0001 1101:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:0011 1000: 0001 1101: mod mmreg r/m

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0001 1101:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0001 1101: mod xmmreg r/m

PALIGNR—Packed Align
Right

 mmreg2 to mmreg1,
imm8

0000 1111:0011 1010: 0000 1111:11 mmreg1 mmreg2: imm8

 mem to mmreg, imm8 0000 1111:0011 1010: 0000 1111: mod mmreg r/m: imm8

 xmmreg2 to xmmreg1,
imm8

0110 0110:0000 1111:0011 1010: 0000 1111:11 xmmreg1
xmmreg2: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0000 1111: mod xmmreg r/m:
imm8

PHADDD—Packed
Horizontal Add Double
Words

 mmreg2 to mmreg1 0000 1111:0011 1000: 0000 0010:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:0011 1000: 0000 0010: mod mmreg r/m

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0000 0010:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 0010: mod xmmreg r/m

PHADDSW—Packed
Horizontal Add and
Saturate

 mmreg2 to mmreg1 0000 1111:0011 1000: 0000 0011:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:0011 1000: 0000 0011: mod mmreg r/m

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0000 0011:11 xmmreg1
xmmreg2

Table B-32. Formats and Encodings for SSSE3 Instructions (Contd.)

Instruction and Format Encoding
B-90 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 0011: mod xmmreg r/m

PHADDW—Packed
Horizontal Add Words

 mmreg2 to mmreg1 0000 1111:0011 1000: 0000 0001:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:0011 1000: 0000 0001: mod mmreg r/m

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0000 0001:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 0001: mod xmmreg r/m

PHSUBD—Packed
Horizontal Subtract
Double Words

 mmreg2 to mmreg1 0000 1111:0011 1000: 0000 0110:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:0011 1000: 0000 0110: mod mmreg r/m

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0000 0110:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 0110: mod xmmreg r/m

PHSUBSW—Packed
Horizontal Subtract and
Saturate

 mmreg2 to mmreg1 0000 1111:0011 1000: 0000 0111:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:0011 1000: 0000 0111: mod mmreg r/m

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0000 0111:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 0111: mod xmmreg r/m

PHSUBW—Packed
Horizontal Subtract
Words

 mmreg2 to mmreg1 0000 1111:0011 1000: 0000 0101:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:0011 1000: 0000 0101: mod mmreg r/m

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0000 0101:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 0101: mod xmmreg r/m

Table B-32. Formats and Encodings for SSSE3 Instructions (Contd.)

Instruction and Format Encoding
Vol. 2C B-91

INSTRUCTION FORMATS AND ENCODINGS
PMADDUBSW—Multiply
and Add Packed Signed
and Unsigned Bytes

 mmreg2 to mmreg1 0000 1111:0011 1000: 0000 0100:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:0011 1000: 0000 0100: mod mmreg r/m

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0000 0100:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 0100: mod xmmreg r/m

PMULHRSW—Packed
Multiply HIgn with Round
and Scale

 mmreg2 to mmreg1 0000 1111:0011 1000: 0000 1011:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:0011 1000: 0000 1011: mod mmreg r/m

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0000 1011:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 1011: mod xmmreg r/m

PSHUFB—Packed Shuffle
Bytes

 mmreg2 to mmreg1 0000 1111:0011 1000: 0000 0000:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:0011 1000: 0000 0000: mod mmreg r/m

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0000 0000:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 0000: mod xmmreg r/m

PSIGNB—Packed Sign
Bytes

 mmreg2 to mmreg1 0000 1111:0011 1000: 0000 1000:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:0011 1000: 0000 1000: mod mmreg r/m

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0000 1000:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 1000: mod xmmreg r/m

PSIGND—Packed Sign
Double Words

 mmreg2 to mmreg1 0000 1111:0011 1000: 0000 1010:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:0011 1000: 0000 1010: mod mmreg r/m

Table B-32. Formats and Encodings for SSSE3 Instructions (Contd.)

Instruction and Format Encoding
B-92 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
B.12 AESNI AND PCLMULQDQ INSTRUCTION FORMATS
AND ENCODINGS

Table B-33 shows the formats and encodings for AESNI and PCLMULQDQ instruc-
tions.

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0000 1010:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 1010: mod xmmreg r/m

PSIGNW—Packed Sign
Words

 mmreg2 to mmreg1 0000 1111:0011 1000: 0000 1001:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:0011 1000: 0000 1001: mod mmreg r/m

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0000 1001:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 1001: mod xmmreg r/m

Table B-33. Formats and Encodings of AESNI and PCLMULQDQ Instructions

Instruction and Format Encoding

AESDEC—Perform One Round of an AES
Decryption Flow

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000:1101
1110:11 xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000:1101 1110:
mod xmmreg r/m

AESDECLAST—Perform Last Round of an
AES Decryption Flow

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000:1101
1111:11 xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000:1101 1111:
mod xmmreg r/m

AESENC—Perform One Round of an AES
Encryption Flow

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000:1101
1100:11 xmmreg1 xmmreg2

Table B-32. Formats and Encodings for SSSE3 Instructions (Contd.)

Instruction and Format Encoding
Vol. 2C B-93

INSTRUCTION FORMATS AND ENCODINGS
B.13 SPECIAL ENCODINGS FOR 64-BIT MODE
The following Pentium, P6, MMX, SSE, SSE2, SSE3 instructions are promoted to
64-bit operation in IA-32e mode by using REX.W. However, these entries are special
cases that do not follow the general rules (specified in Section B.4).

 mem to xmmreg 0110 0110:0000 1111:0011 1000:1101 1100:
mod xmmreg r/m

AESENCLAST—Perform Last Round of an
AES Encryption Flow

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000:1101
1101:11 xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000:1101 1101:
mod xmmreg r/m

AESIMC—Perform the AES InvMixColumn
Transformation

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000:1101
1011:11 xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000:1101 1011:
mod xmmreg r/m

AESKEYGENASSIST—AES Round Key
Generation Assist

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010:1101
1111:11 xmmreg1 xmmreg2: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010:1101 1111:
mod xmmreg r/m: imm8

PCLMULQDQ—Carry-Less Multiplication
Quadword

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010:0100
0100:11 xmmreg1 xmmreg2: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010:0100 0100:
mod xmmreg r/m: imm8

Table B-33. Formats and Encodings of AESNI and PCLMULQDQ Instructions

Instruction and Format Encoding
B-94 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
Table B-34. Special Case Instructions Promoted Using REX.W

Instruction and Format Encoding

CMOVcc—Conditional Move

register2 to register1 0100 0R0B 0000 1111: 0100 tttn : 11 reg1
reg2

qwordregister2 to qwordregister1 0100 1R0B 0000 1111: 0100 tttn : 11
qwordreg1 qwordreg2

memory to register 0100 0RXB 0000 1111 : 0100 tttn : mod reg
r/m

memory64 to qwordregister 0100 1RXB 0000 1111 : 0100 tttn : mod
qwordreg r/m

CVTSD2SI—Convert Scalar Double-Precision
Floating-Point Value to Doubleword Integer

 xmmreg to r32 0100 0R0B 1111 0010:0000 1111:0010
1101:11 r32 xmmreg

 xmmreg to r64 0100 1R0B 1111 0010:0000 1111:0010
1101:11 r64 xmmreg

 mem64 to r32 0100 0R0XB 1111 0010:0000 1111:0010
1101: mod r32 r/m

 mem64 to r64 0100 1RXB 1111 0010:0000 1111:0010
1101: mod r64 r/m

CVTSI2SS—Convert Doubleword Integer to
Scalar Single-Precision Floating-Point Value

 r32 to xmmreg1 0100 0R0B 1111 0011:0000 1111:0010
1010:11 xmmreg r32

 r64 to xmmreg1 0100 1R0B 1111 0011:0000 1111:0010
1010:11 xmmreg r64

 mem to xmmreg 0100 0RXB 1111 0011:0000 1111:0010
1010: mod xmmreg r/m

 mem64 to xmmreg 0100 1RXB 1111 0011:0000 1111:0010
1010: mod xmmreg r/m

CVTSI2SD—Convert Doubleword Integer to
Scalar Double-Precision Floating-Point Value

 r32 to xmmreg1 0100 0R0B 1111 0010:0000 1111:0010
1010:11 xmmreg r32

 r64 to xmmreg1 0100 1R0B 1111 0010:0000 1111:0010
1010:11 xmmreg r64
Vol. 2C B-95

INSTRUCTION FORMATS AND ENCODINGS
 mem to xmmreg 0100 0RXB 1111 0010:0000 1111:00101
010: mod xmmreg r/m

 mem64 to xmmreg 0100 1RXB 1111 0010:0000 1111:0010
1010: mod xmmreg r/m

CVTSS2SI—Convert Scalar Single-Precision
Floating-Point Value to Doubleword Integer

 xmmreg to r32 0100 0R0B 1111 0011:0000 1111:0010
1101:11 r32 xmmreg

 xmmreg to r64 0100 1R0B 1111 0011:0000 1111:0010
1101:11 r64 xmmreg

 mem to r32 0100 0RXB 11110011:00001111:00101101:
mod r32 r/m

 mem32 to r64 0100 1RXB 1111 0011:0000 1111:0010
1101: mod r64 r/m

CVTTSD2SI—Convert with Truncation Scalar
Double-Precision Floating-Point Value to
Doubleword Integer

 xmmreg to r32 0100 0R0B
11110010:00001111:00101100:11 r32
xmmreg

 xmmreg to r64 0100 1R0B 1111 0010:0000 1111:0010
1100:11 r64 xmmreg

 mem64 to r32 0100 0RXB 1111 0010:0000 1111:0010
1100: mod r32 r/m

 mem64 to r64 0100 1RXB 1111 0010:0000 1111:0010
1100: mod r64 r/m

CVTTSS2SI—Convert with Truncation Scalar
Single-Precision Floating-Point Value to
Doubleword Integer

 xmmreg to r32 0100 0R0B 1111 0011:0000 1111:0010
1100:11 r32 xmmreg1

 xmmreg to r64 0100 1R0B 1111 0011:0000 1111:0010
1100:11 r64 xmmreg1

 mem to r32 0100 0RXB 1111 0011:0000 1111:0010
1100: mod r32 r/m

Table B-34. Special Case Instructions Promoted Using REX.W (Contd.)

Instruction and Format Encoding
B-96 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
 mem32 to r64 0100 1RXB 1111 0011:0000 1111:0010
1100: mod r64 r/m

MOVD/MOVQ—Move doubleword

reg to mmxreg 0100 0R0B 0000 1111:0110 1110: 11
mmxreg reg

qwordreg to mmxreg 0100 1R0B 0000 1111:0110 1110: 11
mmxreg qwordreg

reg from mmxreg 0100 0R0B 0000 1111:0111 1110: 11
mmxreg reg

qwordreg from mmxreg 0100 1R0B 0000 1111:0111 1110: 11
mmxreg qwordreg

mem to mmxreg 0100 0RXB 0000 1111:0110 1110: mod
mmxreg r/m

mem64 to mmxreg 0100 1RXB 0000 1111:0110 1110: mod
mmxreg r/m

mem from mmxreg 0100 0RXB 0000 1111:0111 1110: mod
mmxreg r/m

mem64 from mmxreg 0100 1RXB 0000 1111:0111 1110: mod
mmxreg r/m

mmxreg with memory 0100 0RXB 0000 1111:0110 01gg: mod
mmxreg r/m

MOVMSKPS—Extract Packed Single-Precision
Floating-Point Sign Mask

 xmmreg to r32 0100 0R0B 0000 1111:0101 0000:11 r32
xmmreg

 xmmreg to r64 0100 1R0B 00001111:01010000:11 r64
xmmreg

PEXTRW—Extract Word

 mmreg to reg32, imm8 0100 0R0B 0000 1111:1100 0101:11 r32
mmreg: imm8

 mmreg to reg64, imm8 0100 1R0B 0000 1111:1100 0101:11 r64
mmreg: imm8

 xmmreg to reg32, imm8 0100 0R0B 0110 0110 0000 1111:1100
0101:11 r32 xmmreg: imm8

 xmmreg to reg64, imm8 0100 1R0B 0110 0110 0000 1111:1100
0101:11 r64 xmmreg: imm8

Table B-34. Special Case Instructions Promoted Using REX.W (Contd.)

Instruction and Format Encoding
Vol. 2C B-97

INSTRUCTION FORMATS AND ENCODINGS
B.14 SSE4.1 FORMATS AND ENCODING TABLE
The tables in this section provide SSE4.1 formats and encodings. Some SSE4.1
instructions require a mandatory prefix (66H, F2H, F3H) as part of the three-byte
opcode. These prefixes are included in the tables.
In 64-bit mode, some instructions requires REX.W, the byte sequence of REX.W
prefix in the opcode sequence is shown.

PINSRW—Insert Word

 reg32 to mmreg, imm8 0100 0R0B 0000 1111:1100 0100:11 mmreg
r32: imm8

 reg64 to mmreg, imm8 0100 1R0B 0000 1111:1100 0100:11 mmreg
r64: imm8

 m16 to mmreg, imm8 0100 0R0B 0000 1111:1100 0100 mod
mmreg r/m: imm8

 m16 to mmreg, imm8 0100 1RXB 0000 1111:11000100 mod
mmreg r/m: imm8

 reg32 to xmmreg, imm8 0100 0RXB 0110 0110 0000 1111:1100
0100:11 xmmreg r32: imm8

 reg64 to xmmreg, imm8 0100 0RXB 0110 0110 0000 1111:1100
0100:11 xmmreg r64: imm8

 m16 to xmmreg, imm8 0100 0RXB 0110 0110 0000 1111:1100
0100 mod xmmreg r/m: imm8

 m16 to xmmreg, imm8 0100 1RXB 0110 0110 0000 1111:1100
0100 mod xmmreg r/m: imm8

PMOVMSKB—Move Byte Mask To Integer

 mmreg to reg32 0100 0RXB 0000 1111:1101 0111:11 r32
mmreg

 mmreg to reg64 0100 1R0B 0000 1111:1101 0111:11 r64
mmreg

 xmmreg to reg32 0100 0RXB 0110 0110 0000 1111:1101
0111:11 r32 mmreg

 xmmreg to reg64 0110 0110 0000 1111:1101 0111:11 r64
xmmreg

Table B-34. Special Case Instructions Promoted Using REX.W (Contd.)

Instruction and Format Encoding
B-98 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
Table B-35. Encodings of SSE4.1 instructions

Instruction and Format Encoding

BLENDPD — Blend Packed Double-
Precision Floats

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1010: 0000 1101:11
xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1010: 0000 1101: mod
xmmreg r/m

BLENDPS — Blend Packed Single-
Precision Floats

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1010: 0000 1100:11
xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1010: 0000 1100: mod
xmmreg r/m

BLENDVPD — Variable Blend Packed
Double-Precision Floats

 xmmreg2 to xmmreg1 <xmm0> 0110 0110:0000 1111:0011 1000: 0001 0101:11
xmmreg1 xmmreg2

 mem to xmmreg <xmm0> 0110 0110:0000 1111:0011 1000: 0001 0101: mod
xmmreg r/m

BLENDVPS — Variable Blend Packed
Single-Precision Floats

 xmmreg2 to xmmreg1 <xmm0> 0110 0110:0000 1111:0011 1000: 0001 0100:11
xmmreg1 xmmreg2

 mem to xmmreg <xmm0> 0110 0110:0000 1111:0011 1000: 0001 0100: mod
xmmreg r/m

DPPD — Packed Double-Precision Dot
Products

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0100 0001:11
xmmreg1 xmmreg2: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0100 0001: mod
xmmreg r/m: imm8

DPPS — Packed Single-Precision Dot
Products

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0100 0000:11
xmmreg1 xmmreg2: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0100 0000: mod
xmmreg r/m: imm8
Vol. 2C B-99

INSTRUCTION FORMATS AND ENCODINGS
EXTRACTPS — Extract From Packed
Single-Precision Floats

 reg from xmmreg , imm8 0110 0110:0000 1111:0011 1010: 0001 0111:11
xmmreg reg: imm8

 mem from xmmreg , imm8 0110 0110:0000 1111:0011 1010: 0001 0111: mod
xmmreg r/m: imm8

INSERTPS — Insert Into Packed
Single-
Precision Floats

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0010 0001:11
xmmreg1 xmmreg2: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0010 0001: mod
xmmreg r/m: imm8

MOVNTDQA — Load Double
Quadword Non-temporal Aligned

 m128 to xmmreg 0110 0110:0000 1111:0011 1000: 0010 1010:11 r/m
xmmreg2

MPSADBW — Multiple Packed Sums
of
Absolute Difference

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0100 0010:11
xmmreg1 xmmreg2: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0100 0010: mod
xmmreg r/m: imm8

PACKUSDW — Pack with Unsigned
Saturation

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0010 1011:11
xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0010 1011: mod
xmmreg r/m

PBLENDVB — Variable Blend Packed
Bytes

 xmmreg2 to xmmreg1 <xmm0> 0110 0110:0000 1111:0011 1000: 0001 0000:11
xmmreg1 xmmreg2

 mem to xmmreg <xmm0> 0110 0110:0000 1111:0011 1000: 0001 0000: mod
xmmreg r/m

PBLENDW — Blend Packed Words

Table B-35. Encodings of SSE4.1 instructions

Instruction and Format Encoding
B-100 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0001 1110:11
xmmreg1 xmmreg2: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0000 1110: mod
xmmreg r/m: imm8

PCMPEQQ — Compare Packed Qword
Data of Equal

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0010 1001:11
xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0010 1001: mod
xmmreg r/m

PEXTRB — Extract Byte

 reg from xmmreg , imm8 0110 0110:0000 1111:0011 1010: 0001 0100:11
xmmreg reg: imm8

 xmmreg to mem, imm8 0110 0110:0000 1111:0011 1010: 0001 0100: mod
xmmreg r/m: imm8

PEXTRD — Extract DWord

 reg from xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0001 0110:11
xmmreg reg: imm8

 xmmreg to mem, imm8 0110 0110:0000 1111:0011 1010: 0001 0110: mod
xmmreg r/m: imm8

PEXTRQ — Extract QWord

 r64 from xmmreg, imm8 0110 0110:REX.W:0000 1111:0011 1010: 0001
0110:11 xmmreg reg: imm8

 m64 from xmmreg, imm8 0110 0110:REX.W:0000 1111:0011 1010: 0001
0110: mod xmmreg r/m: imm8

PEXTRW — Extract Word

 reg from xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0001 0101:11 reg
xmmreg: imm8

 mem from xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0001 0101: mod
xmmreg r/m: imm8

PHMINPOSUW — Packed Horizontal
Word Minimum

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0100 0001:11
xmmreg1 xmmreg2

Table B-35. Encodings of SSE4.1 instructions

Instruction and Format Encoding
Vol. 2C B-101

INSTRUCTION FORMATS AND ENCODINGS
 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0100 0001: mod
xmmreg r/m

PINSRB — Extract Byte

 reg to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0010 0000:11
xmmreg reg: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0010 0000: mod
xmmreg r/m: imm8

PINSRD — Extract DWord

 reg to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0010 0010:11
xmmreg reg: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0010 0010: mod
xmmreg r/m: imm8

PINSRQ — Extract QWord

 r64 to xmmreg, imm8 0110 0110:REX.W:0000 1111:0011 1010: 0010
0010:11 xmmreg reg: imm8

 m64 to xmmreg, imm8 0110 0110:REX.W:0000 1111:0011 1010: 0010
0010: mod xmmreg r/m: imm8

PMAXSB — Maximum of Packed
Signed Byte Integers

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 1100:11
xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1100: mod
xmmreg r/m

PMAXSD — Maximum of Packed
Signed Dword Integers

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 1101:11
xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1101: mod
xmmreg r/m

PMAXUD — Maximum of Packed
Unsigned Dword Integers

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 1111:11
xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1111: mod
xmmreg r/m

Table B-35. Encodings of SSE4.1 instructions

Instruction and Format Encoding
B-102 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
PMAXUW — Maximum of Packed
Unsigned Word Integers

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 1110:11
xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1110: mod
xmmreg r/m

PMINSB — Minimum of Packed Signed
Byte Integers

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 1000:11
xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1000: mod
xmmreg r/m

PMINSD — Minimum of Packed Signed
Dword Integers

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 1001:11
xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1001: mod
xmmreg r/m

PMINUD — Minimum of Packed
Unsigned Dword Integers

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 1011:11
xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1011: mod
xmmreg r/m

PMINUW — Minimum of Packed
Unsigned Word Integers

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 1010:11
xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1010: mod
xmmreg r/m

PMOVSXBD — Packed Move Sign
Extend - Byte to Dword

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0010 0001:11
xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0010 0001: mod
xmmreg r/m

Table B-35. Encodings of SSE4.1 instructions

Instruction and Format Encoding
Vol. 2C B-103

INSTRUCTION FORMATS AND ENCODINGS
PMOVSXBQ — Packed Move Sign
Extend - Byte to Qword

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0010 0010:11
xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0010 0010: mod
xmmreg r/m

PMOVSXBW — Packed Move Sign
Extend - Byte to Word

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0010 0000:11
xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0010 0000: mod
xmmreg r/m

PMOVSXWD — Packed Move Sign
Extend - Word to Dword

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0010 0011:11
xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0010 0011: mod
xmmreg r/m

PMOVSXWQ — Packed Move Sign
Extend - Word to Qword

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0010 0100:11
xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0010 0100: mod
xmmreg r/m

PMOVSXDQ — Packed Move Sign
Extend - Dword to Qword

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0010 0101:11
xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0010 0101: mod
xmmreg r/m

PMOVZXBD — Packed Move Zero
Extend - Byte to Dword

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 0001:11
xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0001: mod
xmmreg r/m

Table B-35. Encodings of SSE4.1 instructions

Instruction and Format Encoding
B-104 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
PMOVZXBQ — Packed Move Zero
Extend - Byte to Qword

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 0010:11
xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0010: mod
xmmreg r/m

PMOVZXBW — Packed Move Zero
Extend - Byte to Word

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 0000:11
xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0000: mod
xmmreg r/m

PMOVZXWD — Packed Move Zero
Extend - Word to Dword

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 0011:11
xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0011: mod
xmmreg r/m

PMOVZXWQ — Packed Move Zero
Extend - Word to Qword

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 0100:11
xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0100: mod
xmmreg r/m

PMOVZXDQ — Packed Move Zero
Extend - Dword to Qword

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 0101:11
xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0101: mod
xmmreg r/m

PMULDQ — Multiply Packed Signed
Dword Integers

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0010 1000:11
xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0010 1000: mod
xmmreg r/m

Table B-35. Encodings of SSE4.1 instructions

Instruction and Format Encoding
Vol. 2C B-105

INSTRUCTION FORMATS AND ENCODINGS
PMULLD — Multiply Packed Signed
Dword Integers, Store low Result

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0100 0000:11
xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0100 0000: mod
xmmreg r/m

PTEST — Logical Compare

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0001 0111:11
xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0001 0111: mod
xmmreg r/m

ROUNDPD — Round Packed Double-
Precision Values

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0000 1001:11
xmmreg1 xmmreg2: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0000 1001: mod
xmmreg r/m: imm8

ROUNDPS — Round Packed Single-
Precision Values

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0000 1000:11
xmmreg1 xmmreg2: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0000 1000: mod
xmmreg r/m: imm8

ROUNDSD — Round Scalar Double-
Precision Value

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0000 1011:11
xmmreg1 xmmreg2: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0000 1011: mod
xmmreg r/m: imm8

ROUNDSS — Round Scalar Single-
Precision Value

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0000 1010:11
xmmreg1 xmmreg2: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0000 1010: mod
xmmreg r/m: imm8

Table B-35. Encodings of SSE4.1 instructions

Instruction and Format Encoding
B-106 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
B.15 SSE4.2 FORMATS AND ENCODING TABLE

The tables in this section provide SSE4.2 formats and encodings. Some SSE4.2
instructions require a mandatory prefix (66H, F2H, F3H) as part of the three-byte
opcode. These prefixes are included in the tables. In 64-bit mode, some instructions
requires REX.W, the byte sequence of REX.W prefix in the opcode sequence is shown.

Table B-36. Encodings of SSE4.2 instructions

Instruction and Format Encoding

CRC32 — Accumulate CRC32

 reg2 to reg1 1111 0010:0000 1111:0011 1000: 1111 000w :11
reg1 reg2

 mem to reg 1111 0010:0000 1111:0011 1000: 1111 000w : mod
reg r/m

 bytereg2 to reg1 1111 0010:0100 WR0B:0000 1111:0011 1000: 1111
0000 :11 reg1 bytereg2

 m8 to reg 1111 0010:0100 WR0B:0000 1111:0011 1000: 1111
0000 : mod reg r/m

 qwreg2 to qwreg1 1111 0010:0100 1R0B:0000 1111:0011 1000: 1111
0000 :11 qwreg1 qwreg2

 mem64 to qwreg 1111 0010:0100 1R0B:0000 1111:0011 1000: 1111
0000 : mod qwreg r/m

PCMPESTRI— Packed Compare
Explicit-Length Strings To Index

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0110 0001:11
xmmreg1 xmmreg2: imm8

 mem to xmmreg 0110 0110:0000 1111:0011 1010: 0110 0001: mod
xmmreg r/m

PCMPESTRM— Packed Compare
Explicit-Length Strings To Mask

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0110 0000:11
xmmreg1 xmmreg2: imm8

 mem to xmmreg 0110 0110:0000 1111:0011 1010: 0110 0000: mod
xmmreg r/m

PCMPISTRI— Packed Compare
Implicit-Length String To Index

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0110 0011:11
xmmreg1 xmmreg2: imm8
Vol. 2C B-107

INSTRUCTION FORMATS AND ENCODINGS
B.16 AVX FORMATS AND ENCODING TABLE
The tables in this section provide AVX formats and encodings. A mixed form of
bit/hex/symbolic forms are used to express the various bytes:

The C4/C5 and opcode bytes are expressed in hex notation; the first and second
payload byte of VEX, the modR/M byte is expressed in combination of bit/symbolic
form. The first payload byte of C4 is expressed as combination of bits and hex form,
with the hex value preceded by an underscore. The VEX bit field to encode upper
register 8-15 uses 1’s complement form, each of those bit field is expressed as lower
case notation rxb, instead of RXB.

The hybrid bit-nibble-byte form is depicted below:

 mem to xmmreg 0110 0110:0000 1111:0011 1010: 0110 0011: mod
xmmreg r/m

PCMPISTRM— Packed Compare
Implicit-Length Strings To Mask

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0110 0010:11
xmmreg1 xmmreg2: imm8

 mem to xmmreg 0110 0110:0000 1111:0011 1010: 0110 0010: mod
xmmreg r/m

PCMPGTQ— Packed Compare Greater
Than

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0111:11
xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0111: mod
xmmreg r/m

POPCNT— Return Number of Bits Set
to
1

 reg2 to reg1 1111 0011:0000 1111:1011 1000:11 reg1 reg2

 mem to reg1 1111 0011:0000 1111:1011 1000:mod reg1 r/m

 qwreg2 to qwreg1 1111 0011:0100 1R0B:0000 1111:1011 1000:11
reg1 reg2

 mem64 to qwreg1 1111 0011:0100 1R0B:0000 1111:1011 1000:mod
reg1 r/m

Table B-36. Encodings of SSE4.2 instructions

Instruction and Format Encoding
B-108 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
Table B-37. Encodings of AVX instructions

Figure B-2. Hybrid Notation of VEX-Encoded Key Instruction Bytes

Instruction and Format Encoding

VBLENDPD — Blend Packed Double-
Precision Floats

 xmmreg2 with xmmreg3 into
xmmreg1

C4: rxb0_3: w xmmreg2 001:0D:11 xmmreg1 xmmreg3:
imm

 xmmreg2 with mem to xmmreg1 C4: rxb0_3: w xmmreg2 001:0D:mod xmmreg1 r/m:
imm

 ymmreg2 with ymmreg3 into
ymmreg1

C4: rxb0_3: w ymmreg2 101:0D:11 ymmreg1 ymmreg3:
imm

 ymmreg2 with mem to ymmreg1 C4: rxb0_3: w ymmreg2 101:0D:mod ymmreg1 r/m:
imm

VBLENDPS — Blend Packed Single-
Precision Floats

 xmmreg2 with xmmreg3 into
xmmreg1

C4: rxb0_3: w xmmreg2 001:0C:11 xmmreg1 xmmreg3:
imm

 xmmreg2 with mem to xmmreg1 C4: rxb0_3: w xmmreg2 001:0C:mod xmmreg1 r/m: imm

 ymmreg2 with ymmreg3 into
ymmreg1

C4: rxb0_3: w ymmreg2 101:0C:11 ymmreg1 ymmreg3:
imm

 ymmreg2 with mem to ymmreg1 C4: rxb0_3: w ymmreg2 101:0C:mod ymmreg1 r/m: imm

VBLENDVPD — Variable Blend Packed
Double-Precision Floats

7 6 ----3 2 1 0 hex notation 7-6 5-3 2-0
R srcreg Lp p Opcode byte Mod Reg* R/MC5

7 6 ----3 2 1 0

W srcreg L pp

Two-Byte VEX

hex notation

7 6 5 hex notation 7-6 5-3 2-0

R X B Opcode byte Mod Reg R/MC4

4 ----- 0

0_hex

mmmmm

Three-Byte VEX
Vol. 2C B-109

INSTRUCTION FORMATS AND ENCODINGS
 xmmreg2 with xmmreg3 into
xmmreg1 using xmmreg4 as mask

C4: rxb0_3: 0 xmmreg2 001:4B:11 xmmreg1 xmmreg3:
xmmreg4

 xmmreg2 with mem to xmmreg1
using xmmreg4 as mask

C4: rxb0_3: 0 xmmreg2 001:4B:mod xmmreg1 r/m:
xmmreg4

 ymmreg2 with ymmreg3 into
ymmreg1 using ymmreg4 as mask

C4: rxb0_3: 0 ymmreg2 101:4B:11 ymmreg1 ymmreg3:
ymmreg4

 ymmreg2 with mem to ymmreg1
using ymmreg4 as mask

C4: rxb0_3: 0 ymmreg2 101:4B:mod ymmreg1 r/m:
ymmreg4

VBLENDVPS — Variable Blend Packed
Single-Precision Floats

 xmmreg2 with xmmreg3 into
xmmreg1 using xmmreg4 as mask

C4: rxb0_3: 0 xmmreg2 001:4A:11 xmmreg1 xmmreg3:
xmmreg4

 xmmreg2 with mem to xmmreg1
using xmmreg4 as mask

C4: rxb0_3: 0 xmmreg2 001:4A:mod xmmreg1 r/m:
xmmreg4

 ymmreg2 with ymmreg3 into
ymmreg1 using ymmreg4 as mask

C4: rxb0_3: 0 ymmreg2 101:4A:11 ymmreg1 ymmreg3:
ymmreg4

 ymmreg2 with mem to ymmreg1
using ymmreg4 as mask

C4: rxb0_3: 0 ymmreg2 101:4A:mod ymmreg1 r/m:
ymmreg4

VDPPD — Packed Double-Precision
Dot Products

 xmmreg2 with xmmreg3 into
xmmreg1

C4: rxb0_3: w xmmreg2 001:41:11 xmmreg1 xmmreg3:
imm

 xmmreg2 with mem to xmmreg1 C4: rxb0_3: w xmmreg2 001:41:mod xmmreg1 r/m:
imm

VDPPS — Packed Single-Precision Dot
Products

 xmmreg2 with xmmreg3 into
xmmreg1

C4: rxb0_3: w xmmreg2 001:40:11 xmmreg1 xmmreg3:
imm

 xmmreg2 with mem to xmmreg1 C4: rxb0_3: w xmmreg2 001:40:mod xmmreg1 r/m:
imm

 ymmreg2 with ymmreg3 into
ymmreg1

C4: rxb0_3: w ymmreg2 101:40:11 ymmreg1 ymmreg3:
imm

 ymmreg2 with mem to ymmreg1 C4: rxb0_3: w ymmreg2 101:40:mod ymmreg1 r/m:
imm

VEXTRACTPS — Extract From Packed
Single-Precision Floats

 reg from xmmreg1 using imm C4: rxb0_3: w_F 001:17:11 xmmreg1 reg: imm

Instruction and Format Encoding
B-110 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
 mem from xmmreg1 using imm C4: rxb0_3: w_F 001:17:mod xmmreg1 r/m: imm

VINSERTPS — Insert Into Packed
Single-
Precision Floats

 use imm to merge xmmreg3 with
xmmreg2 into xmmreg1

C4: rxb0_3: w xmmreg2 001:21:11 xmmreg1 xmmreg3:
imm

 use imm to merge mem with
xmmreg2 into xmmreg1

C4: rxb0_3: w xmmreg2 001:21:mod xmmreg1 r/m:
imm

VMOVNTDQA — Load Double
Quadword Non-temporal Aligned

 m128 to xmmreg1 C4: rxb0_2: w_F 001:2A:11 xmmreg1 r/m

VMPSADBW — Multiple Packed Sums
of
Absolute Difference

 xmmreg3 with xmmreg2 into
xmmreg1

C4: rxb0_3: w xmmreg2 001:42:11 xmmreg1 xmmreg3:
imm

 m128 with xmmreg2 into xmmreg1 C4: rxb0_3: w xmmreg2 001:42:mod xmmreg1 r/m:
imm

VPACKUSDW — Pack with Unsigned
Saturation

 xmmreg3 and xmmreg2 to xmmreg1 C4: rxb0_2: w xmmreg2 001:2B:11 xmmreg1 xmmreg3:
imm

 m128 and xmmreg2 to xmmreg1 C4: rxb0_2: w xmmreg2 001:2B:mod xmmreg1 r/m:
imm

VPBLENDVB — Variable Blend Packed
Bytes

 xmmreg2 with xmmreg3 into
xmmreg1 using xmmreg4 as mask

C4: rxb0_3: w xmmreg2 001:4C:11 xmmreg1 xmmreg3:
xmmreg4

 xmmreg2 with mem to xmmreg1
using xmmreg4 as mask

C4: rxb0_3: w xmmreg2 001:4C:mod xmmreg1 r/m:
xmmreg4

VPBLENDW — Blend Packed Words

 xmmreg2 with xmmreg3 into
xmmreg1

C4: rxb0_3: w xmmreg2 001:0E:11 xmmreg1 xmmreg3:
imm

 xmmreg2 with mem to xmmreg1 C4: rxb0_3: w xmmreg2 001:0E:mod xmmreg1 r/m: imm

VPCMPEQQ — Compare Packed
Qword
Data of Equal

Instruction and Format Encoding
Vol. 2C B-111

INSTRUCTION FORMATS AND ENCODINGS
 xmmreg2 with xmmreg3 into
xmmreg1

C4: rxb0_2: w xmmreg2 001:29:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:29:mod xmmreg1 r/m:

VPEXTRB — Extract Byte

 reg from xmmreg1 using imm C4: rxb0_3: 0_F 001:14:11 xmmreg1 reg: imm

 mem from xmmreg1 using imm C4: rxb0_3: 0_F 001:14:mod xmmreg1 r/m: imm

VPEXTRD — Extract DWord

 reg from xmmreg1 using imm C4: rxb0_3: 0_F 001:16:11 xmmreg1 reg: imm

 mem from xmmreg1 using imm C4: rxb0_3: 0_F 001:16:mod xmmreg1 r/m: imm

VPEXTRQ — Extract QWord

 reg from xmmreg1 using imm C4: rxb0_3: 1_F 001:16:11 xmmreg1 reg: imm

 mem from xmmreg1 using imm C4: rxb0_3: 1_F 001:16:mod xmmreg1 r/m: imm

VPEXTRW — Extract Word

 reg from xmmreg1 using imm C4: rxb0_3: 0_F 001:15:11 xmmreg1 reg: imm

 mem from xmmreg1 using imm C4: rxb0_3: 0_F 001:15:mod xmmreg1 r/m: imm

VPHMINPOSUW — Packed Horizontal
Word Minimum

 xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:41:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_2: w_F 001:41:mod xmmreg1 r/m

VPINSRB — Insert Byte

 reg with xmmreg2 to xmmreg1, imm8 C4: rxb0_3: 0 xmmreg2 001:20:11 xmmreg1 reg: imm

 mem with xmmreg2 to xmmreg1,
imm8

C4: rxb0_3: 0 xmmreg2 001:20:mod xmmreg1 r/m: imm

VPINSRD — Insert DWord

 reg with xmmreg2 to xmmreg1, imm8 C4: rxb0_3: 0 xmmreg2 001:22:11 xmmreg1 reg: imm

 mem with xmmreg2 to xmmreg1,
imm8

C4: rxb0_3: 0 xmmreg2 001:22:mod xmmreg1 r/m: imm

VPINSRQ — Insert QWord

 r64 with xmmreg2 to xmmreg1, imm8 C4: rxb0_3: 1 xmmreg2 001:22:11 xmmreg1 reg: imm

 m64 with xmmreg2 to xmmreg1,
imm8

C4: rxb0_3: 1 xmmreg2 001:22:mod xmmreg1 r/m: imm

VPMAXSB — Maximum of Packed
Signed Byte Integers

Instruction and Format Encoding
B-112 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
 xmmreg2 with xmmreg3 into
xmmreg1

C4: rxb0_2: w xmmreg2 001:3C:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:3C:mod xmmreg1 r/m

VPMAXSD — Maximum of Packed
Signed Dword Integers

 xmmreg2 with xmmreg3 into
xmmreg1

C4: rxb0_2: w xmmreg2 001:3D:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:3D:mod xmmreg1 r/m

VPMAXUD — Maximum of Packed
Unsigned Dword Integers

 xmmreg2 with xmmreg3 into
xmmreg1

C4: rxb0_2: w xmmreg2 001:3F:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:3F:mod xmmreg1 r/m

VPMAXUW — Maximum of Packed
Unsigned Word Integers

 xmmreg2 with xmmreg3 into
xmmreg1

C4: rxb0_2: w xmmreg2 001:3E:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:3E:mod xmmreg1 r/m

VPMINSB — Minimum of Packed
Signed Byte Integers

 xmmreg2 with xmmreg3 into
xmmreg1

C4: rxb0_2: w xmmreg2 001:38:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:38:mod xmmreg1 r/m

VPMINSD — Minimum of Packed
Signed Dword Integers

 xmmreg2 with xmmreg3 into
xmmreg1

C4: rxb0_2: w xmmreg2 001:39:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:39:mod xmmreg1 r/m

VPMINUD — Minimum of Packed
Unsigned Dword Integers

 xmmreg2 with xmmreg3 into
xmmreg1

C4: rxb0_2: w xmmreg2 001:3B:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:3B:mod xmmreg1 r/m

VPMINUW — Minimum of Packed
Unsigned Word Integers

Instruction and Format Encoding
Vol. 2C B-113

INSTRUCTION FORMATS AND ENCODINGS
 xmmreg2 with xmmreg3 into
xmmreg1

C4: rxb0_2: w xmmreg2 001:3A:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:3A:mod xmmreg1 r/m

VPMOVSXBD — Packed Move Sign
Extend - Byte to Dword

 xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:21:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_2: w_F 001:21:mod xmmreg1 r/m

VPMOVSXBQ — Packed Move Sign
Extend - Byte to Qword

 xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:22:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_2: w_F 001:22:mod xmmreg1 r/m

VPMOVSXBW — Packed Move Sign
Extend - Byte to Word

 xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:20:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_2: w_F 001:20:mod xmmreg1 r/m

VPMOVSXWD — Packed Move Sign
Extend - Word to Dword

 xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:23:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_2: w_F 001:23:mod xmmreg1 r/m

VPMOVSXWQ — Packed Move Sign
Extend - Word to Qword

 xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:24:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_2: w_F 001:24:mod xmmreg1 r/m

VPMOVSXDQ — Packed Move Sign
Extend - Dword to Qword

 xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:25:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_2: w_F 001:25:mod xmmreg1 r/m

VPMOVZXBD — Packed Move Zero
Extend - Byte to Dword

 xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:31:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_2: w_F 001:31:mod xmmreg1 r/m

VPMOVZXBQ — Packed Move Zero
Extend - Byte to Qword

 xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:32:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_2: w_F 001:32:mod xmmreg1 r/m

Instruction and Format Encoding
B-114 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
VPMOVZXBW — Packed Move Zero
Extend - Byte to Word

 xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:30:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_2: w_F 001:30:mod xmmreg1 r/m

VPMOVZXWD — Packed Move Zero
Extend - Word to Dword

 xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:33:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_2: w_F 001:33:mod xmmreg1 r/m

VPMOVZXWQ — Packed Move Zero
Extend - Word to Qword

 xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:34:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_2: w_F 001:34:mod xmmreg1 r/m

VPMOVZXDQ — Packed Move Zero
Extend - Dword to Qword

 xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:35:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_2: w_F 001:35:mod xmmreg1 r/m

VPMULDQ — Multiply Packed Signed
Dword Integers

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:28:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:28:mod xmmreg1 r/m

VPMULLD — Multiply Packed Signed
Dword Integers, Store low Result

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:40:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:40:mod xmmreg1 r/m

VPTEST — Logical Compare

 xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:17:11 xmmreg1 xmmreg2

 mem to xmmreg C4: rxb0_2: w_F 001:17:mod xmmreg1 r/m

 ymmreg2 to ymmreg1 C4: rxb0_2: w_F 101:17:11 ymmreg1 ymmreg2

 mem to ymmreg C4: rxb0_2: w_F 101:17:mod ymmreg1 r/m

VROUNDPD — Round Packed Double-
Precision Values

 xmmreg2 to xmmreg1, imm8 C4: rxb0_3: w_F 001:09:11 xmmreg1 xmmreg2: imm

 mem to xmmreg1, imm8 C4: rxb0_3: w_F 001:09:mod xmmreg1 r/m: imm

 ymmreg2 to ymmreg1, imm8 C4: rxb0_3: w_F 101:09:11 ymmreg1 ymmreg2: imm

Instruction and Format Encoding
Vol. 2C B-115

INSTRUCTION FORMATS AND ENCODINGS
 mem to ymmreg1, imm8 C4: rxb0_3: w_F 101:09:mod ymmreg1 r/m: imm

VROUNDPS — Round Packed Single-
Precision Values

 xmmreg2 to xmmreg1, imm8 C4: rxb0_3: w_F 001:08:11 xmmreg1 xmmreg2: imm

 mem to xmmreg1, imm8 C4: rxb0_3: w_F 001:08:mod xmmreg1 r/m: imm

 ymmreg2 to ymmreg1, imm8 C4: rxb0_3: w_F 101:08:11 ymmreg1 ymmreg2: imm

 mem to ymmreg1, imm8 C4: rxb0_3: w_F 101:08:mod ymmreg1 r/m: imm

VROUNDSD — Round Scalar Double-
Precision Value

 xmmreg2 and xmmreg3 to xmmreg1,
imm8

C4: rxb0_3: w xmmreg2 001:0B:11 xmmreg1 xmmreg3:
imm

 xmmreg2 and mem to xmmreg1,
imm8

C4: rxb0_3: w xmmreg2 001:0B:mod xmmreg1 r/m:
imm

VROUNDSS — Round Scalar Single-
Precision Value

 xmmreg2 and xmmreg3 to xmmreg1,
imm8

C4: rxb0_3: w xmmreg2 001:0A:11 xmmreg1 xmmreg3:
imm

 xmmreg2 and mem to xmmreg1,
imm8

C4: rxb0_3: w xmmreg2 001:0A:mod xmmreg1 r/m:
imm

VPCMPESTRI — Packed Compare
Explicit Length Strings, Return Index

 xmmreg2 with xmmreg1, imm8 C4: rxb0_3: w_F 001:61:11 xmmreg1 xmmreg2: imm

 mem with xmmreg1, imm8 C4: rxb0_3: w_F 001:61:mod xmmreg1 r/m: imm

VPCMPESTRM — Packed Compare
Explicit Length Strings, Return Mask

 xmmreg2 with xmmreg1, imm8 C4: rxb0_3: w_F 001:60:11 xmmreg1 xmmreg2: imm

 mem with xmmreg1, imm8 C4: rxb0_3: w_F 001:60:mod xmmreg1 r/m: imm

VPCMPGTQ — Compare Packed Data
for Greater Than

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:28:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:28:mod xmmreg1 r/m

VPCMPISTRI — Packed Compare
Implicit Length Strings, Return Index

 xmmreg2 with xmmreg1, imm8 C4: rxb0_3: w_F 001:63:11 xmmreg1 xmmreg2: imm

 mem with xmmreg1, imm8 C4: rxb0_3: w_F 001:63:mod xmmreg1 r/m: imm

Instruction and Format Encoding
B-116 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
VPCMPISTRM — Packed Compare
Implicit Length Strings, Return Mask

 xmmreg2 with xmmreg1, imm8 C4: rxb0_3: w_F 001:62:11 xmmreg1 xmmreg2: imm

 mem with xmmreg, imm8 C4: rxb0_3: w_F 001:62:mod xmmreg1 r/m: imm

VAESDEC — Perform One Round of an
AES Decryption Flow

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:DE:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:DE:mod xmmreg1 r/m

VAESDECLAST — Perform Last Round
of an AES Decryption Flow

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:DF:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:DF:mod xmmreg1 r/m

VAESENC — Perform One Round of an
AES Encryption Flow

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:DC:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:DC:mod xmmreg1 r/m

VAESENCLAST — Perform Last Round
of an AES Encryption Flow

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:DD:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:DD:mod xmmreg1 r/m

VAESIMC — Perform the AES
InvMixColumn Transformation

 xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:DB:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_2: w_F 001:DB:mod xmmreg1 r/m

VAESKEYGENASSIST — AES Round
Key Generation Assist

 xmmreg2 to xmmreg1, imm8 C4: rxb0_3: w_F 001:DF:11 xmmreg1 xmmreg2: imm

 mem to xmmreg, imm8 C4: rxb0_3: w_F 001:DF:mod xmmreg1 r/m: imm

VPABSB — Packed Absolute Value

 xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:1C:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_2: w_F 001:1C:mod xmmreg1 r/m

VPABSD — Packed Absolute Value

 xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:1E:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_2: w_F 001:1E:mod xmmreg1 r/m

Instruction and Format Encoding
Vol. 2C B-117

INSTRUCTION FORMATS AND ENCODINGS
VPABSW — Packed Absolute Value

 xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:1D:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_2: w_F 001:1D:mod xmmreg1 r/m

VPALIGNR — Packed Align Right

 xmmreg2 with xmmreg3 to
xmmreg1, imm8

C4: rxb0_3: w xmmreg2 001:DD:11 xmmreg1
xmmreg3: imm

 xmmreg2 with mem to xmmreg1,
imm8

C4: rxb0_3: w xmmreg2 001:DD:mod xmmreg1 r/m:
imm

VPHADDD — Packed Horizontal Add

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:02:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:02:mod xmmreg1 r/m

VPHADDW — Packed Horizontal Add

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:01:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:01:mod xmmreg1 r/m

VPHADDSW — Packed Horizontal Add
and Saturate

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:03:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:03:mod xmmreg1 r/m

VPHSUBD — Packed Horizontal
Subtract

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:06:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:06:mod xmmreg1 r/m

VPHSUBW — Packed Horizontal
Subtract

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:05:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:05:mod xmmreg1 r/m

VPHSUBSW — Packed Horizontal
Subtract and Saturate

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:07:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:07:mod xmmreg1 r/m

VPMADDUBSW — Multiply and Add
Packed Signed and Unsigned Bytes

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:04:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:04:mod xmmreg1 r/m

Instruction and Format Encoding
B-118 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
VPMULHRSW — Packed Multiply High
with Round and Scale

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:0B:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:0B:mod xmmreg1 r/m

VPSHUFB — Packed Shuffle Bytes

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:00:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:00:mod xmmreg1 r/m

VPSIGNB — Packed SIGN

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:08:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:08:mod xmmreg1 r/m

VPSIGND — Packed SIGN

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:0A:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:0A:mod xmmreg1 r/m

VPSIGNW — Packed SIGN

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:09:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:09:mod xmmreg1 r/m

VADDSUBPD — Packed Double-FP
Add/Subtract

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:D0:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:D0:mod xmmreg1 r/m

 xmmreglo21 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:D0:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:D0:mod xmmreg1 r/m

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:D0:11 ymmreg1 ymmreg3

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:D0:mod ymmreg1 r/m

 ymmreglo2 with ymmreglo3 to
ymmreg1

C5: r_ymmreglo2 101:D0:11 ymmreg1 ymmreglo3

 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:D0:mod ymmreg1 r/m

VADDSUBPS — Packed Single-FP
Add/Subtract

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:D0:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:D0:mod xmmreg1 r/m

Instruction and Format Encoding
Vol. 2C B-119

INSTRUCTION FORMATS AND ENCODINGS
 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 011:D0:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 011:D0:mod xmmreg1 r/m

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 111:D0:11 ymmreg1 ymmreg3

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 111:D0:mod ymmreg1 r/m

 ymmreglo2 with ymmreglo3 to
ymmreg1

C5: r_ymmreglo2 111:D0:11 ymmreg1 ymmreglo3

 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 111:D0:mod ymmreg1 r/m

VHADDPD — Packed Double-FP
Horizontal Add

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:7C:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:7C:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:7C:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:7C:mod xmmreg1 r/m

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:7C:11 ymmreg1 ymmreg3

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:7C:mod ymmreg1 r/m

 ymmreglo2 with ymmreglo3 to
ymmreg1

C5: r_ymmreglo2 101:7C:11 ymmreg1 ymmreglo3

 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:7C:mod ymmreg1 r/m

VHADDPS — Packed Single-FP
Horizontal Add

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:7C:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:7C:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 011:7C:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 011:7C:mod xmmreg1 r/m

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 111:7C:11 ymmreg1 ymmreg3

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 111:7C:mod ymmreg1 r/m

 ymmreglo2 with ymmreglo3 to
ymmreg1

C5: r_ymmreglo2 111:7C:11 ymmreg1 ymmreglo3

 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 111:7C:mod ymmreg1 r/m

VHSUBPD — Packed Double-FP
Horizontal Subtract

Instruction and Format Encoding
B-120 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:7D:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:7D:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:7D:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:7D:mod xmmreg1 r/m

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:7D:11 ymmreg1 ymmreg3

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:7D:mod ymmreg1 r/m

 ymmreglo2 with ymmreglo3 to
ymmreg1

C5: r_ymmreglo2 101:7D:11 ymmreg1 ymmreglo3

 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:7D:mod ymmreg1 r/m

VHSUBPS — Packed Single-FP
Horizontal Subtract

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:7D:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:7D:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 011:7D:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 011:7D:mod xmmreg1 r/m

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 111:7D:11 ymmreg1 ymmreg3

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 111:7D:mod ymmreg1 r/m

 ymmreglo2 with ymmreglo3 to
ymmreg1

C5: r_ymmreglo2 111:7D:11 ymmreg1 ymmreglo3

 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 111:7D:mod ymmreg1 r/m

VLDDQU — Load Unaligned Integer
128 Bits

 mem to xmmreg1 C4: rxb0_1: w_F 011:F0:mod xmmreg1 r/m

 mem to xmmreg1 C5: r_F 011:F0:mod xmmreg1 r/m

 mem to ymmreg1 C4: rxb0_1: w_F 111:F0:mod ymmreg1 r/m

 mem to ymmreg1 C5: r_F 111:F0:mod ymmreg1 r/m

VMOVDDUP — Move One Double-FP
and Duplicate

 xmmreg2 to xmmreg1 C4: rxb0_1: w_F 011:12:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_1: w_F 011:12:mod xmmreg1 r/m

 xmmreglo to xmmreg1 C5: r_F 011:12:11 xmmreg1 xmmreglo

Instruction and Format Encoding
Vol. 2C B-121

INSTRUCTION FORMATS AND ENCODINGS
 mem to xmmreg1 C5: r_F 011:12:mod xmmreg1 r/m

 ymmreg2 to ymmreg1 C4: rxb0_1: w_F 111:12:11 ymmreg1 ymmreg2

 mem to ymmreg1 C4: rxb0_1: w_F 111:12:mod ymmreg1 r/m

 ymmreglo to ymmreg1 C5: r_ F 111:12:11 ymmreg1 ymmreglo

 mem to ymmreg1 C5: r_F 111:12:mod ymmreg1 r/m

VMOVHLPS — Move Packed Single-
Precision Floating-Point Values High
to Low

 xmmreg2 and xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:12:11 xmmreg1 xmmreg3

 xmmreglo2 and xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 000:12:11 xmmreg1 xmmreglo3

VMOVSHDUP — Move Packed Single-
FP High and Duplicate

 xmmreg2 to xmmreg1 C4: rxb0_1: w_F 010:16:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_1: w_F 010:16:mod xmmreg1 r/m

 xmmreglo to xmmreg1 C5: r_F 010:16:11 xmmreg1 xmmreglo

 mem to xmmreg1 C5: r_F 010:16:mod xmmreg1 r/m

 ymmreg2 to ymmreg1 C4: rxb0_1: w_F 110:16:11 ymmreg1 ymmreg2

 mem to ymmreg1 C4: rxb0_1: w_F 110:16:mod ymmreg1 r/m

 ymmreglo to ymmreg1 C5: r_F 110:16:11 ymmreg1 ymmreglo

 mem to ymmreg1 C5: r_F 110:16:mod ymmreg1 r/m

VMOVSLDUP — Move Packed Single-
FP Low and Duplicate

 xmmreg2 to xmmreg1 C4: rxb0_1: w_F 010:12:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_1: w_F 010:12:mod xmmreg1 r/m

 xmmreglo to xmmreg1 C5: r_F 010:12:11 xmmreg1 xmmreglo

 mem to xmmreg1 C5: r_F 010:12:mod xmmreg1 r/m

 ymmreg2 to ymmreg1 C4: rxb0_1: w_F 110:12:11 ymmreg1 ymmreg2

 mem to ymmreg1 C4: rxb0_1: w_F 110:12:mod ymmreg1 r/m

 ymmreglo to ymmreg1 C5: r_F 110:12:11 ymmreg1 ymmreglo

 mem to ymmreg1 C5: r_F 110:12:mod ymmreg1 r/m

VADDPD — Add Packed Double-
Precision Floating-Point Values

Instruction and Format Encoding
B-122 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:58:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:58:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:58:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:58:mod xmmreg1 r/m

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:58:11 ymmreg1 ymmreg3

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:58:mod ymmreg1 r/m

 ymmreglo2 with ymmreglo3 to
ymmreg1

C5: r_ymmreglo2 101:58:11 ymmreg1 ymmreglo3

 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:58:mod ymmreg1 r/m

VADDSD — Add Scalar Double-
Precision Floating-Point Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:58:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:58:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 011:58:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5 r_xmmreglo2 011:58:mod xmmreg1 r/m

VANDPD — Bitwise Logical AND of
Packed Double-Precision Floating-
Point Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:54:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:54:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:54:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:54:mod xmmreg1 r/m

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:54:11 ymmreg1 ymmreg3

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:54:mod ymmreg1 r/m

 ymmreglo2 with ymmreglo3 to
ymmreg1

C5: r_ymmreglo2 101:54:11 ymmreg1 ymmreglo3

 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:54:mod ymmreg1 r/m

VANDNPD — Bitwise Logical AND NOT
of Packed Double-Precision Floating-
Point Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:55:11 xmmreg1 xmmreg3

Instruction and Format Encoding
Vol. 2C B-123

INSTRUCTION FORMATS AND ENCODINGS
 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:55:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:55:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:55:mod xmmreg1 r/m

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:55:11 ymmreg1 ymmreg3

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:55:mod ymmreg1 r/m

 ymmreglo2 with ymmreglo3 to
ymmreg1

C5: r_ymmreglo2 101:55:11 ymmreg1 ymmreglo3

 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:55:mod ymmreg1 r/m

VCMPPD — Compare Packed Double-
Precision Floating-Point Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:C2:11 xmmreg1 xmmreg3:
imm

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:C2:mod xmmreg1 r/m: imm

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:C2:11 xmmreg1 xmmreglo3: imm

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:C2:mod xmmreg1 r/m: imm

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:C2:11 ymmreg1 ymmreg3:
imm

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:C2:mod ymmreg1 r/m: imm

 ymmreglo2 with ymmreglo3 to
ymmreg1

C5: r_ymmreglo2 101:C2:11 ymmreg1 ymmreglo3: imm

 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:C2:mod ymmreg1 r/m: imm

VCMPSD — Compare Scalar Double-
Precision Floating-Point Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:C2:11 xmmreg1 xmmreg3:
imm

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:C2:mod xmmreg1 r/m: imm

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 011:C2:11 xmmreg1 xmmreglo3: imm

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 011:C2:mod xmmreg1 r/m: imm

VCOMISD — Compare Scalar Ordered
Double-Precision Floating-Point
Values and Set EFLAGS

 xmmreg2 to xmmreg1 C4: rxb0_1: w_F 001:2F:11 xmmreg1 xmmreg2

Instruction and Format Encoding
B-124 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
 mem to xmmreg1 C4: rxb0_1: w_F 001:2F:mod xmmreg1 r/m

 xmmreglo to xmmreg1 C5: r_F 001:2F:11 xmmreg1 xmmreglo

 mem to xmmreg1 C5: r_F 001:2F:mod xmmreg1 r/m

VCVTDQ2PD— Convert Packed Dword
Integers to Packed Double-Precision
FP Values

 xmmreg2 to xmmreg1 C4: rxb0_1: w_F 010:E6:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_1: w_F 010:E6:mod xmmreg1 r/m

 xmmreglo to xmmreg1 C5: r_F 010:E6:11 xmmreg1 xmmreglo

 mem to xmmreg1 C5: r_F 010:E6:mod xmmreg1 r/m

 ymmreg2 to ymmreg1 C4: rxb0_1: w_F 110:E6:11 ymmreg1 ymmreg2

 mem to ymmreg1 C4: rxb0_1: w_F 110:E6:mod ymmreg1 r/m

 ymmreglo to ymmreg1 C5: r_F 110:E6:11 ymmreg1 ymmreglo

 mem to ymmreg1 C5: r_F 110:E6:mod ymmreg1 r/m

VCVTDQ2PS— Convert Packed Dword
Integers to Packed Single-Precision
FP Values

 xmmreg2 to xmmreg1 C4: rxb0_1: w_F 000:5B:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_1: w_F 000:5B:mod xmmreg1 r/m

 xmmreglo to xmmreg1 C5: r_F 000:5B:11 xmmreg1 xmmreglo

 mem to xmmreg1 C5: r_F 000:5B:mod xmmreg1 r/m

 ymmreg2 to ymmreg1 C4: rxb0_1: w_F 100:5B:11 ymmreg1 ymmreg2

 mem to ymmreg1 C4: rxb0_1: w_F 100:5B:mod ymmreg1 r/m

 ymmreglo to ymmreg1 C5: r_F 100:5B:11 ymmreg1 ymmreglo

 mem to ymmreg1 C5: r_F 100:5B:mod ymmreg1 r/m

VCVTPD2DQ— Convert Packed
Double-Precision FP Values to Packed
Dword Integers

 xmmreg2 to xmmreg1 C4: rxb0_1: w_F 011:E6:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_1: w_F 011:E6:mod xmmreg1 r/m

 xmmreglo to xmmreg1 C5: r_F 011:E6:11 xmmreg1 xmmreglo

 mem to xmmreg1 C5: r_F 011:E6:mod xmmreg1 r/m

 ymmreg2 to ymmreg1 C4: rxb0_1: w_F 111:E6:11 ymmreg1 ymmreg2

Instruction and Format Encoding
Vol. 2C B-125

INSTRUCTION FORMATS AND ENCODINGS
 mem to ymmreg1 C4: rxb0_1: w_F 111:E6:mod ymmreg1 r/m

 ymmreglo to ymmreg1 C5: r_F 111:E6:11 ymmreg1 ymmreglo

 mem to ymmreg1 C5: r_F 111:E6:mod ymmreg1 r/m

VCVTPD2PS— Convert Packed
Double-Precision FP Values to Packed
Single-Precision FP Values

 xmmreg2 to xmmreg1 C4: rxb0_1: w_F 001:5A:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_1: w_F 001:5A:mod xmmreg1 r/m

 xmmreglo to xmmreg1 C5: r_F 001:5A:11 xmmreg1 xmmreglo

 mem to xmmreg1 C5: r_F 001:5A:mod xmmreg1 r/m

 ymmreg2 to ymmreg1 C4: rxb0_1: w_F 101:5A:11 ymmreg1 ymmreg2

 mem to ymmreg1 C4: rxb0_1: w_F 101:5A:mod ymmreg1 r/m

 ymmreglo to ymmreg1 C5: r_F 101:5A:11 ymmreg1 ymmreglo

 mem to ymmreg1 C5: r_F 101:5A:mod ymmreg1 r/m

VCVTPS2DQ— Convert Packed Single-
Precision FP Values to Packed Dword
Integers

 xmmreg2 to xmmreg1 C4: rxb0_1: w_F 001:5B:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_1: w_F 001:5B:mod xmmreg1 r/m

 xmmreglo to xmmreg1 C5: r_F 001:5B:11 xmmreg1 xmmreglo

 mem to xmmreg1 C5: r_F 001:5B:mod xmmreg1 r/m

 ymmreg2 to ymmreg1 C4: rxb0_1: w_F 101:5B:11 ymmreg1 ymmreg2

 mem to ymmreg1 C4: rxb0_1: w_F 101:5B:mod ymmreg1 r/m

 ymmreglo to ymmreg1 C5: r_F 101:5B:11 ymmreg1 ymmreglo

 mem to ymmreg1 C5: r_F 101:5B:mod ymmreg1 r/m

VCVTPS2PD— Convert Packed Single-
Precision FP Values to Packed
Double-Precision FP Values

 xmmreg2 to xmmreg1 C4: rxb0_1: w_F 000:5A:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_1: w_F 000:5A:mod xmmreg1 r/m

 xmmreglo to xmmreg1 C5: r_F 000:5A:11 xmmreg1 xmmreglo

 mem to xmmreg1 C5: r_F 000:5A:mod xmmreg1 r/m

 ymmreg2 to ymmreg1 C4: rxb0_1: w_F 100:5A:11 ymmreg1 ymmreg2

Instruction and Format Encoding
B-126 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
 mem to ymmreg1 C4: rxb0_1: w_F 100:5A:mod ymmreg1 r/m

 ymmreglo to ymmreg1 C5: r_F 100:5A:11 ymmreg1 ymmreglo

 mem to ymmreg1 C5: r_F 100:5A:mod ymmreg1 r/m

VCVTSD2SI— Convert Scalar Double-
Precision FP Value to Integer

 xmmreg1 to reg32 C4: rxb0_1: 0_F 011:2D:11 reg xmmreg1

 mem to reg32 C4: rxb0_1: 0_F 011:2D:mod reg r/m

 xmmreglo to reg32 C5: r_F 011:2D:11 reg xmmreglo

 mem to reg32 C5: r_F 011:2D:mod reg r/m

 ymmreg1 to reg64 C4: rxb0_1: 1_F 111:2D:11 reg ymmreg1

 mem to reg64 C4: rxb0_1: 1_F 111:2D:mod reg r/m

VCVTSD2SS — Convert Scalar Double-
Precision FP Value to Scalar Single-
Precision FP Value

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:5A:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:5A:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 011:5A:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 011:5A:mod xmmreg1 r/m

VCVTSI2SD— Convert Dword Integer
to Scalar Double-Precision FP Value

 xmmreg2 with reg to xmmreg1 C4: rxb0_1: 0 xmmreg2 011:2A:11 xmmreg1 reg

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: 0 xmmreg2 011:2A:mod xmmreg1 r/m

 xmmreglo2 with reglo to xmmreg1 C5: r_xmmreglo2 011:2A:11 xmmreg1 reglo

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 011:2A:mod xmmreg1 r/m

 ymmreg2 with reg to ymmreg1 C4: rxb0_1: 1 ymmreg2 111:2A:11 ymmreg1 reg

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: 1 ymmreg2 111:2A:mod ymmreg1 r/m

VCVTSS2SD — Convert Scalar Single-
Precision FP Value to Scalar Double-
Precision FP Value

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:5A:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 010:5A:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 010:5A:11 xmmreg1 xmmreglo3

Instruction and Format Encoding
Vol. 2C B-127

INSTRUCTION FORMATS AND ENCODINGS
 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 010:5A:mod xmmreg1 r/m

VCVTTPD2DQ— Convert with
Truncation Packed Double-Precision
FP Values to Packed Dword Integers

 xmmreg2 to xmmreg1 C4: rxb0_1: w_F 001:E6:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_1: w_F 001:E6:mod xmmreg1 r/m

 xmmreglo to xmmreg1 C5: r_F 001:E6:11 xmmreg1 xmmreglo

 mem to xmmreg1 C5: r_F 001:E6:mod xmmreg1 r/m

 ymmreg2 to ymmreg1 C4: rxb0_1: w_F 101:E6:11 ymmreg1 ymmreg2

 mem to ymmreg1 C4: rxb0_1: w_F 101:E6:mod ymmreg1 r/m

 ymmreglo to ymmreg1 C5: r_F 101:E6:11 ymmreg1 ymmreglo

 mem to ymmreg1 C5: r_F 101:E6:mod ymmreg1 r/m

VCVTTPS2DQ— Convert with
Truncation Packed Single-Precision
FP Values to Packed Dword Integers

 xmmreg2 to xmmreg1 C4: rxb0_1: w_F 010:5B:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_1: w_F 010:5B:mod xmmreg1 r/m

 xmmreglo to xmmreg1 C5: r_F 010:5B:11 xmmreg1 xmmreglo

 mem to xmmreg1 C5: r_F 010:5B:mod xmmreg1 r/m

 ymmreg2 to ymmreg1 C4: rxb0_1: w_F 110:5B:11 ymmreg1 ymmreg2

 mem to ymmreg1 C4: rxb0_1: w_F 110:5B:mod ymmreg1 r/m

 ymmreglo to ymmreg1 C5: r_F 110:5B:11 ymmreg1 ymmreglo

 mem to ymmreg1 C5: r_F 110:5B:mod ymmreg1 r/m

VCVTTSD2SI— Convert with
Truncation Scalar Double-Precision
FP Value to Signed Integer

 xmmreg1 to reg32 C4: rxb0_1: 0_F 011:2C:11 reg xmmreg1

 mem to reg32 C4: rxb0_1: 0_F 011:2C:mod reg r/m

 xmmreglo to reg32 C5: r_F 011:2C:11 reg xmmreglo

 mem to reg32 C5: r_F 011:2C:mod reg r/m

 xmmreg1 to reg64 C4: rxb0_1: 1_F 011:2C:11 reg xmmreg1

 mem to reg64 C4: rxb0_1: 1_F 011:2C:mod reg r/m

Instruction and Format Encoding
B-128 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
VDIVPD — Divide Packed Double-
Precision Floating-Point Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:5E:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:5E:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:5E:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:5E:mod xmmreg1 r/m

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:5E:11 ymmreg1 ymmreg3

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:5E:mod ymmreg1 r/m

 ymmreglo2 with ymmreglo3 to
ymmreg1

C5: r_ymmreglo2 101:5E:11 ymmreg1 ymmreglo3

 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:5E:mod ymmreg1 r/m

VDIVSD — Divide Scalar Double-
Precision Floating-Point Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:5E:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:5E:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 011:5E:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 011:5E:mod xmmreg1 r/m

VMASKMOVDQU— Store Selected
Bytes of Double Quadword

 xmmreg1 to mem; xmmreg2 as mask C4: rxb0_1: w_F 001:F7:11 r/m xmmreg1: xmmreg2

 xmmreg1 to mem; xmmreg2 as mask C5: r_F 001:F7:11 r/m xmmreg1: xmmreg2

VMAXPD — Return Maximum Packed
Double-Precision Floating-Point
Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:5F:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:5F:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:5F:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:5F:mod xmmreg1 r/m

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:5F:11 ymmreg1 ymmreg3

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:5F:mod ymmreg1 r/m

Instruction and Format Encoding
Vol. 2C B-129

INSTRUCTION FORMATS AND ENCODINGS
 ymmreglo2 with ymmreglo3 to
ymmreg1

C5: r_ymmreglo2 101:5F:11 ymmreg1 ymmreglo3

 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:5F:mod ymmreg1 r/m

VMAXSD — Return Maximum Scalar
Double-Precision Floating-Point Value

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:5F:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:5F:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 011:5F:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 011:5F:mod xmmreg1 r/m

VMINPD — Return Minimum Packed
Double-Precision Floating-Point
Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:5D:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:5D:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:5D:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:5D:mod xmmreg1 r/m

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:5D:11 ymmreg1 ymmreg3

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:5D:mod ymmreg1 r/m

 ymmreglo2 with ymmreglo3 to
ymmreg1

C5: r_ymmreglo2 101:5D:11 ymmreg1 ymmreglo3

 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:5D:mod ymmreg1 r/m

VMINSD — Return Minimum Scalar
Double-Precision Floating-Point Value

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:5D:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:5D:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 011:5D:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 011:5D:mod xmmreg1 r/m

VMOVAPD — Move Aligned Packed
Double-Precision Floating-Point
Values

 xmmreg2 to xmmreg1 C4: rxb0_1: w_F 001:28:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_1: w_F 001:28:mod xmmreg1 r/m

Instruction and Format Encoding
B-130 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
 xmmreglo to xmmreg1 C5: r_F 001:28:11 xmmreg1 xmmreglo

 mem to xmmreg1 C5: r_F 001:28:mod xmmreg1 r/m

 xmmreg1 to xmmreg2 C4: rxb0_1: w_F 001:29:11 xmmreg2 xmmreg1

 xmmreg1 to mem C4: rxb0_1: w_F 001:29:mod r/m xmmreg1

 xmmreg1 to xmmreglo C5: r_F 001:29:11 xmmreglo xmmreg1

 xmmreg1 to mem C5: r_F 001:29:mod r/m xmmreg1

 ymmreg2 to ymmreg1 C4: rxb0_1: w_F 101:28:11 ymmreg1 ymmreg2

 mem to ymmreg1 C4: rxb0_1: w_F 101:28:mod ymmreg1 r/m

 ymmreglo to ymmreg1 C5: r_F 101:28:11 ymmreg1 ymmreglo

 mem to ymmreg1 C5: r_F 101:28:mod ymmreg1 r/m

 ymmreg1 to ymmreg2 C4: rxb0_1: w_F 101:29:11 ymmreg2 ymmreg1

 ymmreg1 to mem C4: rxb0_1: w_F 101:29:mod r/m ymmreg1

 ymmreg1 to ymmreglo C5: r_F 101:29:11 ymmreglo ymmreg1

 ymmreg1 to mem C5: r_F 101:29:mod r/m ymmreg1

VMOVD — Move Doubleword

 reg32 to xmmreg1 C4: rxb0_1: 0_F 001:6E:11 xmmreg1 reg32

 mem32 to xmmreg1 C4: rxb0_1: 0_F 001:6E:mod xmmreg1 r/m

 reg32 to xmmreg1 C5: r_F 001:6E:11 xmmreg1 reg32

 mem32 to xmmreg1 C5: r_F 001:6E:mod xmmreg1 r/m

 xmmreg1 to reg32 C4: rxb0_1: 0_F 001:7E:11 reg32 xmmreg1

 xmmreg1 to mem32 C4: rxb0_1: 0_F 001:7E:mod mem32 xmmreg1

 xmmreglo to reg32 C5: r_F 001:7E:11 reg32 xmmreglo

 xmmreglo to mem32 C5: r_F 001:7E:mod mem32 xmmreglo

VMOVQ — Move Quadword

 reg64 to xmmreg1 C4: rxb0_1: 1_F 001:6E:11 xmmreg1 reg64

 mem64 to xmmreg1 C4: rxb0_1: 1_F 001:6E:mod xmmreg1 r/m

 xmmreg1 to reg64 C4: rxb0_1: 1_F 001:7E:11 reg64 xmmreg1

 xmmreg1 to mem64 C4: rxb0_1: 1_F 001:7E:mod r/m xmmreg1

VMOVDQA — Move Aligned Double
Quadword

 xmmreg2 to xmmreg1 C4: rxb0_1: w_F 001:6F:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_1: w_F 001:6F:mod xmmreg1 r/m

Instruction and Format Encoding
Vol. 2C B-131

INSTRUCTION FORMATS AND ENCODINGS
 xmmreglo to xmmreg1 C5: r_F 001:6F:11 xmmreg1 xmmreglo

 mem to xmmreg1 C5: r_F 001:6F:mod xmmreg1 r/m

 xmmreg1 to xmmreg2 C4: rxb0_1: w_F 001:7F:11 xmmreg2 xmmreg1

 xmmreg1 to mem C4: rxb0_1: w_F 001:7F:mod r/m xmmreg1

 xmmreg1 to xmmreglo C5: r_F 001:7F:11 xmmreglo xmmreg1

 xmmreg1 to mem C5: r_F 001:7F:mod r/m xmmreg1

 ymmreg2 to ymmreg1 C4: rxb0_1: w_F 101:6F:11 ymmreg1 ymmreg2

 mem to ymmreg1 C4: rxb0_1: w_F 101:6F:mod ymmreg1 r/m

 ymmreglo to ymmreg1 C5: r_F 101:6F:11 ymmreg1 ymmreglo

 mem to ymmreg1 C5: r_F 101:6F:mod ymmreg1 r/m

 ymmreg1 to ymmreg2 C4: rxb0_1: w_F 101:7F:11 ymmreg2 ymmreg1

 ymmreg1 to mem C4: rxb0_1: w_F 101:7F:mod r/m ymmreg1

 ymmreg1 to ymmreglo C5: r_F 101:7F:11 ymmreglo ymmreg1

 ymmreg1 to mem C5: r_F 101:7F:mod r/m ymmreg1

VMOVDQU — Move Unaligned Double
Quadword

 xmmreg2 to xmmreg1 C4: rxb0_1: w_F 010:6F:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_1: w_F 010:6F:mod xmmreg1 r/m

 xmmreglo to xmmreg1 C5: r_F 010:6F:11 xmmreg1 xmmreglo

 mem to xmmreg1 C5: r_F 010:6F:mod xmmreg1 r/m

 xmmreg1 to xmmreg2 C4: rxb0_1: w_F 010:7F:11 xmmreg2 xmmreg1

 xmmreg1 to mem C4: rxb0_1: w_F 010:7F:mod r/m xmmreg1

 xmmreg1 to xmmreglo C5: r_F 010:7F:11 xmmreglo xmmreg1

 xmmreg1 to mem C5: r_F 010:7F:mod r/m xmmreg1

 ymmreg2 to ymmreg1 C4: rxb0_1: w_F 110:6F:11 ymmreg1 ymmreg2

 mem to ymmreg1 C4: rxb0_1: w_F 110:6F:mod ymmreg1 r/m

 ymmreglo to ymmreg1 C5: r_F 110:6F:11 ymmreg1 ymmreglo

 mem to ymmreg1 C5: r_F 110:6F:mod ymmreg1 r/m

 ymmreg1 to ymmreg2 C4: rxb0_1: w_F 110:7F:11 ymmreg2 ymmreg1

 ymmreg1 to mem C4: rxb0_1: w_F 110:7F:mod r/m ymmreg1

 ymmreg1 to ymmreglo C5: r_F 110:7F:11 ymmreglo ymmreg1

 ymmreg1 to mem C5: r_F 110:7F:mod r/m ymmreg1

Instruction and Format Encoding
B-132 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
VMOVHPD — Move High Packed
Double-Precision Floating-Point Value

 xmmreg1 and mem to xmmreg2 C4: rxb0_1: w xmmreg1 001:16:11 xmmreg2 r/m

 xmmreg1 and mem to xmmreglo2 C5: r_xmmreg1 001:16:11 xmmreglo2 r/m

 xmmreg1 to mem C4: rxb0_1: w_F 001:17:mod r/m xmmreg1

 xmmreglo to mem C5: r_F 001:17:mod r/m xmmreglo

VMOVLPD — Move Low Packed
Double-Precision Floating-Point Value

 xmmreg1 and mem to xmmreg2 C4: rxb0_1: w xmmreg1 001:12:11 xmmreg2 r/m

 xmmreg1 and mem to xmmreglo2 C5: r_xmmreg1 001:12:11 xmmreglo2 r/m

 xmmreg1 to mem C4: rxb0_1: w_F 001:13:mod r/m xmmreg1

 xmmreglo to mem C5: r_F 001:13:mod r/m xmmreglo

VMOVMSKPD — Extract Packed
Double-Precision Floating-Point Sign
Mask

 xmmreg2 to reg C4: rxb0_1: w_F 001:50:11 reg xmmreg1

 xmmreglo to reg C5: r_F 001:50:11 reg xmmreglo

 ymmreg2 to reg C4: rxb0_1: w_F 101:50:11 reg ymmreg1

 ymmreglo to reg C5: r_F 101:50:11 reg ymmreglo

VMOVNTDQ — Store Double
Quadword Using Non-Temporal Hint

 xmmreg1 to mem C4: rxb0_1: w_F 001:E7:11 r/m xmmreg1

 xmmreglo to mem C5: r_F 001:E7:11 r/m xmmreglo

 ymmreg1 to mem C4: rxb0_1: w_F 101:E7:11 r/m ymmreg1

 ymmreglo to mem C5: r_F 101:E7:11 r/m ymmreglo

VMOVNTPD — Store Packed Double-
Precision Floating-Point Values Using
Non-Temporal Hint

 xmmreg1 to mem C4: rxb0_1: w_F 001:2B:11 r/m xmmreg1

 xmmreglo to mem C5: r_F 001:2B:11 r/m xmmreglo

 ymmreg1 to mem C4: rxb0_1: w_F 101:2B:11r/m ymmreg1

 ymmreglo to mem C5: r_F 101:2B:11r/m ymmreglo

VMOVSD — Move Scalar Double-
Precision Floating-Point Value

Instruction and Format Encoding
Vol. 2C B-133

INSTRUCTION FORMATS AND ENCODINGS
 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:10:11 xmmreg1 xmmreg3

 mem to xmmreg1 C4: rxb0_1: w_F 011:10:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 011:10:11 xmmreg1 xmmreglo3

 mem to xmmreg1 C5: r_F 011:10:mod xmmreg1 r/m

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:11:11 xmmreg1 xmmreg3

 xmmreg1 to mem C4: rxb0_1: w_F 011:11:mod r/m xmmreg1

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 011:11:11 xmmreg1 xmmreglo3

 xmmreglo to mem C5: r_F 011:11:mod r/m xmmreglo

VMOVUPD — Move Unaligned Packed
Double-Precision Floating-Point
Values

 xmmreg2 to xmmreg1 C4: rxb0_1: w_F 001:10:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_1: w_F 001:10:mod xmmreg1 r/m

 xmmreglo to xmmreg1 C5: r_F 001:10:11 xmmreg1 xmmreglo

 mem to xmmreg1 C5: r_F 001:10:mod xmmreg1 r/m

 ymmreg2 to ymmreg1 C4: rxb0_1: w_F 101:10:11 ymmreg1 ymmreg2

 mem to ymmreg1 C4: rxb0_1: w_F 101:10:mod ymmreg1 r/m

 ymmreglo to ymmreg1 C5: r_F 101:10:11 ymmreg1 ymmreglo

 mem to ymmreg1 C5: r_F 101:10:mod ymmreg1 r/m

 xmmreg1 to xmmreg2 C4: rxb0_1: w_F 001:11:11 xmmreg2 xmmreg1

 xmmreg1 to mem C4: rxb0_1: w_F 001:11:mod r/m xmmreg1

 xmmreg1 to xmmreglo C5: r_F 001:11:11 xmmreglo xmmreg1

 xmmreg1 to mem C5: r_F 001:11:mod r/m xmmreg1

 ymmreg1 to ymmreg2 C4: rxb0_1: w_F 101:11:11 ymmreg2 ymmreg1

 ymmreg1 to mem C4: rxb0_1: w_F 101:11:mod r/m ymmreg1

 ymmreg1 to ymmreglo C5: r_F 101:11:11 ymmreglo ymmreg1

 ymmreg1 to mem C5: r_F 101:11:mod r/m ymmreg1

VMULPD — Multiply Packed Double-
Precision Floating-Point Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:59:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:59:mod xmmreg1 r/m

Instruction and Format Encoding
B-134 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:59:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:59:mod xmmreg1 r/m

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:59:11 ymmreg1 ymmreg3

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:59:mod ymmreg1 r/m

 ymmreglo2 with ymmreglo3 to
ymmreg1

C5: r_ymmreglo2 101:59:11 ymmreg1 ymmreglo3

 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:59:mod ymmreg1 r/m

VMULSD — Multiply Scalar Double-
Precision Floating-Point Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:59:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:59:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 011:59:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 011:59:mod xmmreg1 r/m

VORPD — Bitwise Logical OR of
Double-Precision Floating-Point
Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:56:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:56:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:56:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:56:mod xmmreg1 r/m

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:56:11 ymmreg1 ymmreg3

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:56:mod ymmreg1 r/m

 ymmreglo2 with ymmreglo3 to
ymmreg1

C5: r_ymmreglo2 101:56:11 ymmreg1 ymmreglo3

 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:56:mod ymmreg1 r/m

VPACKSSWB— Pack with Signed
Saturation

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:63:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:63:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:63:11 xmmreg1 xmmreglo3

Instruction and Format Encoding
Vol. 2C B-135

INSTRUCTION FORMATS AND ENCODINGS
 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:63:mod xmmreg1 r/m

VPACKSSDW— Pack with Signed
Saturation

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:6B:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:6B:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:6B:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:6B:mod xmmreg1 r/m

VPACKUSWB— Pack with Unsigned
Saturation

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:67:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:67:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:67:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:67:mod xmmreg1 r/m

VPADDB — Add Packed Integers

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:FC:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:FC:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:FC:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:FC:mod xmmreg1 r/m

VPADDW — Add Packed Integers

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:FD:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:FD:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:FD:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:FD:mod xmmreg1 r/m

VPADDD — Add Packed Integers

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:FE:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:FE:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:FE:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:FE:mod xmmreg1 r/m

Instruction and Format Encoding
B-136 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
VPADDQ — Add Packed Quadword
Integers

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:D4:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:D4:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:D4:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:D4:mod xmmreg1 r/m

VPADDSB — Add Packed Signed
Integers with Signed Saturation

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:EC:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:EC:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:EC:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:EC:mod xmmreg1 r/m

VPADDSW — Add Packed Signed
Integers with Signed Saturation

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:ED:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:ED:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:ED:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:ED:mod xmmreg1 r/m

VPADDUSB — Add Packed Unsigned
Integers with Unsigned Saturation

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:DC:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:DC:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:DC:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:DC:mod xmmreg1 r/m

VPADDUSW — Add Packed Unsigned
Integers with Unsigned Saturation

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:DD:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:DD:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:DD:11 xmmreg1 xmmreglo3

Instruction and Format Encoding
Vol. 2C B-137

INSTRUCTION FORMATS AND ENCODINGS
 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:DD:mod xmmreg1 r/m

VPAND — Logical AND

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:DB:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:DB:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:DB:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:DB:mod xmmreg1 r/m

VPANDN — Logical AND NOT

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:DF:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:DF:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:DF:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:DF:mod xmmreg1 r/m

VPAVGB — Average Packed Integers

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:E0:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:E0:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:E0:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:E0:mod xmmreg1 r/m

VPAVGW — Average Packed Integers

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:E3:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:E3:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:E3:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:E3:mod xmmreg1 r/m

VPCMPEQB — Compare Packed Data
for Equal

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:74:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:74:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:74:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:74:mod xmmreg1 r/m

Instruction and Format Encoding
B-138 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
VPCMPEQW — Compare Packed Data
for Equal

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:75:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:75:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:75:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:75:mod xmmreg1 r/m

VPCMPEQD — Compare Packed Data
for Equal

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:76:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:76:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:76:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:76:mod xmmreg1 r/m

VPCMPGTB — Compare Packed
Signed Integers for Greater Than

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:64:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:64:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:64:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:64:mod xmmreg1 r/m

VPCMPGTW — Compare Packed
Signed Integers for Greater Than

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:65:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:65:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:65:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:65:mod xmmreg1 r/m

VPCMPGTD — Compare Packed
Signed Integers for Greater Than

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:66:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:66:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:66:11 xmmreg1 xmmreglo3

Instruction and Format Encoding
Vol. 2C B-139

INSTRUCTION FORMATS AND ENCODINGS
 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:66:mod xmmreg1 r/m

VPEXTRW — Extract Word

 xmmreg1 to reg using imm C4: rxb0_1: 0_F 001:C5:11 reg xmmreg1: imm

 xmmreg1 to reg using imm C5: r_F 001:C5:11 reg xmmreg1: imm

VPINSRW — Insert Word

 xmmreg2 with reg to xmmreg1 C4: rxb0_1: 0 xmmreg2 001:C4:11 xmmreg1 reg: imm

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: 0 xmmreg2 001:C4:mod xmmreg1 r/m: imm

 xmmreglo2 with reglo to xmmreg1 C5: r_xmmreglo2 001:C4:11 xmmreg1 reglo: imm

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:C4:mod xmmreg1 r/m: imm

VPMADDWD — Multiply and Add
Packed Integers

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:F5:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:F5:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:F5:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:F5:mod xmmreg1 r/m

VPMAXSW — Maximum of Packed
Signed Word Integers

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:EE:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:EE:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:EE:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:EE:mod xmmreg1 r/m

VPMAXUB — Maximum of Packed
Unsigned Byte Integers

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:DE:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:DE:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:DE:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:DE:mod xmmreg1 r/m

VPMINSW — Minimum of Packed
Signed Word Integers

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:EA:11 xmmreg1 xmmreg3

Instruction and Format Encoding
B-140 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:EA:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:EA:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:EA:mod xmmreg1 r/m

VPMINUB — Minimum of Packed
Unsigned Byte Integers

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:DA:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:DA:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:DA:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:DA:mod xmmreg1 r/m

VPMOVMSKB — Move Byte Mask

 xmmreg1 to reg C4: rxb0_1: w_F 001:D7:11 reg xmmreg1

 xmmreg1 to reg C5: r_F 001:D7:11 reg xmmreg1

VPMULHUW — Multiply Packed
Unsigned Integers and Store High
Result

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:E4:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:E4:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:E4:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:E4:mod xmmreg1 r/m

VPMULHW — Multiply Packed Signed
Integers and Store High Result

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:E5:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:E5:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:E5:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:E5:mod xmmreg1 r/m

VPMULLW — Multiply Packed Signed
Integers and Store Low Result

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:D5:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:D5:mod xmmreg1 r/m

Instruction and Format Encoding
Vol. 2C B-141

INSTRUCTION FORMATS AND ENCODINGS
 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:D5:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:D5:mod xmmreg1 r/m

VPMULUDQ — Multiply Packed
Unsigned Doubleword Integers

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:F4:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:F4:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:F4:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:F4:mod xmmreg1 r/m

VPOR — Bitwise Logical OR

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:EB:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:EB:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:EB:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:EB:mod xmmreg1 r/m

VPSADBW — Compute Sum of
Absolute Differences

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:F6:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:F6:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:F6:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:F6:mod xmmreg1 r/m

VPSHUFD — Shuffle Packed
Doublewords

 xmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 001:70:11 xmmreg1 xmmreg2: imm

 mem to xmmreg1 using imm C4: rxb0_1: w_F 001:70:mod xmmreg1 r/m: imm

 xmmreglo to xmmreg1 using imm C5: r_F 001:70:11 xmmreg1 xmmreglo: imm

 mem to xmmreg1 using imm C5: r_F 001:70:mod xmmreg1 r/m: imm

VPSHUFHW — Shuffle Packed High
Words

 xmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 010:70:11 xmmreg1 xmmreg2: imm

 mem to xmmreg1 using imm C4: rxb0_1: w_F 010:70:mod xmmreg1 r/m: imm

 xmmreglo to xmmreg1 using imm C5: r_F 010:70:11 xmmreg1 xmmreglo: imm

Instruction and Format Encoding
B-142 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
 mem to xmmreg1 using imm C5: r_F 010:70:mod xmmreg1 r/m: imm

VPSHUFLW — Shuffle Packed Low
Words

 xmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 011:70:11 xmmreg1 xmmreg2: imm

 mem to xmmreg1 using imm C4: rxb0_1: w_F 011:70:mod xmmreg1 r/m: imm

 xmmreglo to xmmreg1 using imm C5: r_F 011:70:11 xmmreg1 xmmreglo: imm

 mem to xmmreg1 using imm C5: r_F 011:70:mod xmmreg1 r/m: imm

VPSLLDQ — Shift Double Quadword
Left Logical

 xmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 001:73:11 xmmreg1 xmmreg2: imm

 xmmreglo to xmmreg1 using imm C5: r_F 001:73:11 xmmreg1 xmmreglo: imm

VPSLLW — Shift Packed Data Left
Logical

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:F1:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:F1:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:F1:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:F1:mod xmmreg1 r/m

 xmmreg2 to xmmreg1 using imm8 C4: rxb0_1: w_F 001:71:11 xmmreg1 xmmreg2: imm

 xmmreglo to xmmreg1 using imm8 C5: r_F 001:71:11 xmmreg1 xmmreglo: imm

VPSLLD — Shift Packed Data Left
Logical

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:F2:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:F2:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:F2:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:F2:mod xmmreg1 r/m

 xmmreg2 to xmmreg1 using imm8 C4: rxb0_1: w_F 001:72:11 xmmreg1 xmmreg2: imm

 xmmreglo to xmmreg1 using imm8 C5: r_F 001:72:11 xmmreg1 xmmreglo: imm

VPSLLQ — Shift Packed Data Left
Logical

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:F3:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:F3:mod xmmreg1 r/m

Instruction and Format Encoding
Vol. 2C B-143

INSTRUCTION FORMATS AND ENCODINGS
 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:F3:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:F3:mod xmmreg1 r/m

 xmmreg2 to xmmreg1 using imm8 C4: rxb0_1: w_F 001:73:11 xmmreg1 xmmreg2: imm

 xmmreglo to xmmreg1 using imm8 C5: r_F 001:73:11 xmmreg1 xmmreglo: imm

VPSRAW — Shift Packed Data Right
Arithmetic

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:E1:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:E1:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:E1:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:E1:mod xmmreg1 r/m

 xmmreg2 to xmmreg1 using imm8 C4: rxb0_1: w_F 001:71:11 xmmreg1 xmmreg2: imm

 xmmreglo to xmmreg1 using imm8 C5: r_F 001:71:11 xmmreg1 xmmreglo: imm

VPSRAD — Shift Packed Data Right
Arithmetic

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:E2:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:E2:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:E2:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:E2:mod xmmreg1 r/m

 xmmreg2 to xmmreg1 using imm8 C4: rxb0_1: w_F 001:72:11 xmmreg1 xmmreg2: imm

 xmmreglo to xmmreg1 using imm8 C5: r_F 001:72:11 xmmreg1 xmmreglo: imm

VPSRLDQ — Shift Double Quadword
Right Logical

 xmmreg2 to xmmreg1 using imm8 C4: rxb0_1: w_F 001:73:11 xmmreg1 xmmreg2: imm

 xmmreglo to xmmreg1 using imm8 C5: r_F 001:73:11 xmmreg1 xmmreglo: imm

VPSRLW — Shift Packed Data Right
Logical

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:D1:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:D1:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:D1:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:D1:mod xmmreg1 r/m

Instruction and Format Encoding
B-144 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
 xmmreg2 to xmmreg1 using imm8 C4: rxb0_1: w_F 001:71:11 xmmreg1 xmmreg2: imm

 xmmreglo to xmmreg1 using imm8 C5: r_F 001:71:11 xmmreg1 xmmreglo: imm

VPSRLD — Shift Packed Data Right
Logical

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:D2:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:D2:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:D2:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:D2:mod xmmreg1 r/m

 xmmreg2 to xmmreg1 using imm8 C4: rxb0_1: w_F 001:72:11 xmmreg1 xmmreg2: imm

 xmmreglo to xmmreg1 using imm8 C5: r_F 001:72:11 xmmreg1 xmmreglo: imm

VPSRLQ — Shift Packed Data Right
Logical

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:D3:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:D3:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:D3:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:D3:mod xmmreg1 r/m

 xmmreg2 to xmmreg1 using imm8 C4: rxb0_1: w_F 001:73:11 xmmreg1 xmmreg2: imm

 xmmreglo to xmmreg1 using imm8 C5: r_F 001:73:11 xmmreg1 xmmreglo: imm

VPSUBB — Subtract Packed Integers

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:F8:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:F8:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:F8:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:F8:mod xmmreg1 r/m

VPSUBW — Subtract Packed Integers

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:F9:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:F9:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:F9:11 xmmreg1 xmmreglo3

 xmmrelog2 with mem to xmmreg1 C5: r_xmmreglo2 001:F9:mod xmmreg1 r/m

VPSUBD — Subtract Packed Integers

Instruction and Format Encoding
Vol. 2C B-145

INSTRUCTION FORMATS AND ENCODINGS
 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:FA:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:FA:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:FA:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:FA:mod xmmreg1 r/m

VPSUBQ — Subtract Packed
Quadword Integers

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:FB:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:FB:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:FB:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:FB:mod xmmreg1 r/m

VPSUBSB — Subtract Packed Signed
Integers with Signed Saturation

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:E8:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:E8:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:E8:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:E8:mod xmmreg1 r/m

VPSUBSW — Subtract Packed Signed
Integers with Signed Saturation

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:E9:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:E9:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:E9:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:E9:mod xmmreg1 r/m

VPSUBUSB — Subtract Packed
Unsigned Integers with Unsigned
Saturation

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:D8:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:D8:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:D8:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:D8:mod xmmreg1 r/m

Instruction and Format Encoding
B-146 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
VPSUBUSW — Subtract Packed
Unsigned Integers with Unsigned
Saturation

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:D9:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:D9:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:D9:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:D9:mod xmmreg1 r/m

VPUNPCKHBW — Unpack High Data

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:68:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:68:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:68:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:68:mod xmmreg1 r/m

VPUNPCKHWD — Unpack High Data

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:69:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:69:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:69:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:69:mod xmmreg1 r/m

VPUNPCKHDQ — Unpack High Data

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:6A:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:6A:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:6A:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:6A:mod xmmreg1 r/m

VPUNPCKHQDQ — Unpack High Data

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:6D:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:6D:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:6D:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:6D:mod xmmreg1 r/m

VPUNPCKLBW — Unpack Low Data

Instruction and Format Encoding
Vol. 2C B-147

INSTRUCTION FORMATS AND ENCODINGS
 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:60:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:60:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:60:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:60:mod xmmreg1 r/m

VPUNPCKLWD — Unpack Low Data

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:61:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:61:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:61:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:61:mod xmmreg1 r/m

VPUNPCKLDQ — Unpack Low Data

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:62:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:62:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:62:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:62:mod xmmreg1 r/m

VPUNPCKLQDQ — Unpack Low Data

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:6C:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:6C:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:6C:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:6C:mod xmmreg1 r/m

VPXOR — Logical Exclusive OR

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:EF:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:EF:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:EF:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:EF:mod xmmreg1 r/m

VSHUFPD — Shuffle Packed Double-
Precision Floating-Point Values

 xmmreg2 with xmmreg3 to xmmreg1
using imm8

C4: rxb0_1: w xmmreg2 001:C6:11 xmmreg1 xmmreg3:
imm

Instruction and Format Encoding
B-148 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
 xmmreg2 with mem to xmmreg1
using imm8

C4: rxb0_1: w xmmreg2 001:C6:mod xmmreg1 r/m: imm

 xmmreglo2 with xmmreglo3 to
xmmreg1 using imm8

C5: r_xmmreglo2 001:C6:11 xmmreg1 xmmreglo3: imm

 xmmreglo2 with mem to xmmreg1
using imm8

C5: r_xmmreglo2 001:C6:mod xmmreg1 r/m: imm

 ymmreg2 with ymmreg3 to ymmreg1
using imm8

C4: rxb0_1: w ymmreg2 101:C6:11 ymmreg1 ymmreg3:
imm

 ymmreg2 with mem to ymmreg1
using imm8

C4: rxb0_1: w ymmreg2 101:C6:mod ymmreg1 r/m: imm

 ymmreglo2 with ymmreglo3 to
ymmreg1 using imm8

C5: r_ymmreglo2 101:C6:11 ymmreg1 ymmreglo3: imm

 ymmreglo2 with mem to ymmreg1
using imm8

C5: r_ymmreglo2 101:C6:mod ymmreg1 r/m: imm

VSQRTPD — Compute Square Roots
of Packed Double-Precision Floating-
Point Values

 xmmreg2 to xmmreg1 C4: rxb0_1: w_F 001:51:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_1: w_F 001:51:mod xmmreg1 r/m

 xmmreglo to xmmreg1 C5: r_F 001:51:11 xmmreg1 xmmreglo

 mem to xmmreg1 C5: r_F 001:51:mod xmmreg1 r/m

 ymmreg2 to ymmreg1 C4: rxb0_1: w_F 101:51:11 ymmreg1 ymmreg2

 mem to ymmreg1 C4: rxb0_1: w_F 101:51:mod ymmreg1 r/m

 ymmreglo to ymmreg1 C5: r_F 101:51:11 ymmreg1 ymmreglo

 mem to ymmreg1 C5: r_F 101:51:mod ymmreg1 r/m

VSQRTSD — Compute Square Root of
Scalar Double-Precision Floating-
Point Value

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:51:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:51:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 011:51:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 011:51:mod xmmreg1 r/m

VSUBPD — Subtract Packed Double-
Precision Floating-Point Values

Instruction and Format Encoding
Vol. 2C B-149

INSTRUCTION FORMATS AND ENCODINGS
 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:5C:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:5C:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:5C:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:5C:mod xmmreg1 r/m

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:5C:11 ymmreg1 ymmreg3

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:5C:mod ymmreg1 r/m

 ymmreglo2 with ymmreglo3 to
ymmreg1

C5: r_ymmreglo2 101:5C:11 ymmreg1 ymmreglo3

 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:5C:mod ymmreg1 r/m

VSUBSD — Subtract Scalar Double-
Precision Floating-Point Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:5C:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:5C:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 011:5C:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 011:5C:mod xmmreg1 r/m

VUCOMISD — Unordered Compare
Scalar Double-Precision Floating-
Point Values and Set EFLAGS

 xmmreg2 with xmmreg1, set EFLAGS C4: rxb0_1: w_F xmmreg1 001:2E:11 xmmreg2

 mem with xmmreg1, set EFLAGS C4: rxb0_1: w_F xmmreg1 001:2E:mod r/m

 xmmreglo with xmmreg1, set EFLAGS C5: r_F xmmreg1 001:2E:11 xmmreglo

 mem with xmmreg1, set EFLAGS C5: r_F xmmreg1 001:2E:mod r/m

VUNPCKHPD — Unpack and
Interleave High Packed Double-
Precision Floating-Point Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:15:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:15:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:15:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:15:mod xmmreg1 r/m

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:15:11 ymmreg1 ymmreg3

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:15:mod ymmreg1 r/m

Instruction and Format Encoding
B-150 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
 ymmreglo2 with ymmreglo3 to
ymmreg1

C5: r_ymmreglo2 101:15:11 ymmreg1 ymmreglo3

 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:15:mod ymmreg1 r/m

VUNPCKHPS — Unpack and
Interleave High Packed Single-
Precision Floating-Point Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:15:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:15:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 000:15:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 000:15:mod xmmreg1 r/m

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:15:11 ymmreg1 ymmreg3

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:15:mod ymmreg1 r/m

 ymmreglo2 with ymmreglo3 to
ymmreg1

C5: r_ymmreglo2 100:15:11 ymmreg1 ymmreglo3

 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 100:15:mod ymmreg1 r/m

VUNPCKLPD — Unpack and Interleave
Low Packed Double-Precision
Floating-Point Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:14:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:14:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:14:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:14:mod xmmreg1 r/m

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:14:11 ymmreg1 ymmreg3

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:14:mod ymmreg1 r/m

 ymmreglo2 with ymmreglo3 to
ymmreg1

C5: r_ymmreglo2 101:14:11 ymmreg1 ymmreglo3

 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:14:mod ymmreg1 r/m

VUNPCKLPS — Unpack and Interleave
Low Packed Single-Precision Floating-
Point Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:14:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:14:mod xmmreg1 r/m

Instruction and Format Encoding
Vol. 2C B-151

INSTRUCTION FORMATS AND ENCODINGS
 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 000:14:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 000:14:mod xmmreg1 r/m

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:14:11 ymmreg1 ymmreg3

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:14:mod ymmreg1 r/m

 ymmreglo2 with ymmreglo3 to
ymmreg1

C5: r_ymmreglo2 100:14:11 ymmreg1 ymmreglo3

 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 100:14:mod ymmreg1 r/m

VXORPD — Bitwise Logical XOR for
Double-Precision Floating-Point
Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:57:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:57:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 001:57:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:57:mod xmmreg1 r/m

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:57:11 ymmreg1 ymmreg3

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:57:mod ymmreg1 r/m

 ymmreglo2 with ymmreglo3 to
ymmreg1

C5: r_ymmreglo2 101:57:11 ymmreg1 ymmreglo3

 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:57:mod ymmreg1 r/m

VADDPS — Add Packed Single-
Precision Floating-Point Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:58:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:58:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 000:58:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 000:58:mod xmmreg1 r/m

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:58:11 ymmreg1 ymmreg3

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:58:mod ymmreg1 r/m

 ymmreglo2 with ymmreglo3 to
ymmreg1

C5: r_ymmreglo2 100:58:11 ymmreg1 ymmreglo3

 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 100:58:mod ymmreg1 r/m

Instruction and Format Encoding
B-152 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
VADDSS — Add Scalar Single-
Precision Floating-Point Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:58:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 010:58:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 010:58:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 010:58:mod xmmreg1 r/m

VANDPS — Bitwise Logical AND of
Packed Single-Precision Floating-
Point Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:54:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:54:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 000:54:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 000:54:mod xmmreg1 r/m

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:54:11 ymmreg1 ymmreg3

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:54:mod ymmreg1 r/m

 ymmreglo2 with ymmreglo3 to
ymmreg1

C5: r_ymmreglo2 100:54:11 ymmreg1 ymmreglo3

 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 100:54:mod ymmreg1 r/m

VANDNPS — Bitwise Logical AND NOT
of Packed Single-Precision Floating-
Point Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:55:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:55:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 000:55:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 000:55:mod xmmreg1 r/m

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:55:11 ymmreg1 ymmreg3

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:55:mod ymmreg1 r/m

 ymmreglo2 with ymmreglo3 to
ymmreg1

C5: r_ymmreglo2 100:55:11 ymmreg1 ymmreglo3

 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 100:55:mod ymmreg1 r/m

VCMPPS — Compare Packed Single-
Precision Floating-Point Values

Instruction and Format Encoding
Vol. 2C B-153

INSTRUCTION FORMATS AND ENCODINGS
 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:C2:11 xmmreg1 xmmreg3:
imm

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:C2:mod xmmreg1 r/m: imm

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 000:C2:11 xmmreg1 xmmreglo3: imm

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 000:C2:mod xmmreg1 r/m: imm

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:C2:11 ymmreg1 ymmreg3:
imm

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:C2:mod ymmreg1 r/m: imm

 ymmreglo2 with ymmreglo3 to
ymmreg1

C5: r_ymmreglo2 100:C2:11 ymmreg1 ymmreglo3: imm

 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 100:C2:mod ymmreg1 r/m: imm

VCMPSS — Compare Scalar Single-
Precision Floating-Point Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:C2:11 xmmreg1 xmmreg3:
imm

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 010:C2:mod xmmreg1 r/m: imm

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 010:C2:11 xmmreg1 xmmreglo3: imm

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 010:C2:mod xmmreg1 r/m: imm

VCOMISS — Compare Scalar Ordered
Single-Precision Floating-Point
Values and Set EFLAGS

 xmmreg2 with xmmreg1 C4: rxb0_1: w_F 000:2F:11 xmmreg1 xmmreg2

 mem with xmmreg1 C4: rxb0_1: w_F 000:2F:mod xmmreg1 r/m

 xmmreglo with xmmreg1 C5: r_F 000:2F:11 xmmreg1 xmmreglo

 mem with xmmreg1 C5: r_F 000:2F:mod xmmreg1 r/m

VCVTSI2SS — Convert Dword Integer
to Scalar Single-Precision FP Value

 xmmreg2 with reg to xmmreg1 C4: rxb0_1: 0 xmmreg2 010:2A:11 xmmreg1 reg

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: 0 xmmreg2 010:2A:mod xmmreg1 r/m

 xmmreglo2 with reglo to xmmreg1 C5: r_xmmreglo2 010:2A:11 xmmreg1 reglo

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 010:2A:mod xmmreg1 r/m

 xmmreg2 with reg to xmmreg1 C4: rxb0_1: 1 xmmreg2 010:2A:11 xmmreg1 reg

Instruction and Format Encoding
B-154 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
 xmmreg2 with mem to xmmreg1 C4: rxb0_1: 1 xmmreg2 010:2A:mod xmmreg1 r/m

VCVTSS2SI — Convert Scalar Single-
Precision FP Value to Dword Integer

 xmmreg1 to reg C4: rxb0_1: 0_F 010:2D:11 reg xmmreg1

 mem to reg C4: rxb0_1: 0_F 010:2D:mod reg r/m

 xmmreglo to reg C5: r_F 010:2D:11 reg xmmreglo

 mem to reg C5: r_F 010:2D:mod reg r/m

 xmmreg1 to reg C4: rxb0_1: 1_F 010:2D:11 reg xmmreg1

 mem to reg C4: rxb0_1: 1_F 010:2D:mod reg r/m

VCVTTSS2SI — Convert with
Truncation Scalar Single-Precision FP
Value to Dword Integer

 xmmreg1 to reg C4: rxb0_1: 0_F 010:2C:11 reg xmmreg1

 mem to reg C4: rxb0_1: 0_F 010:2C:mod reg r/m

 xmmreglo to reg C5: r_F 010:2C:11 reg xmmreglo

 mem to reg C5: r_F 010:2C:mod reg r/m

 xmmreg1 to reg C4: rxb0_1: 1_F 010:2C:11 reg xmmreg1

 mem to reg C4: rxb0_1: 1_F 010:2C:mod reg r/m

VDIVPS — Divide Packed Single-
Precision Floating-Point Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:5E:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:5E:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 000:5E:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 000:5E:mod xmmreg1 r/m

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:5E:11 ymmreg1 ymmreg3

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:5E:mod ymmreg1 r/m

 ymmreglo2 with ymmreglo3 to
ymmreg1

C5: r_ymmreglo2 100:5E:11 ymmreg1 ymmreglo3

 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 100:5E:mod ymmreg1 r/m

VDIVSS — Divide Scalar Single-
Precision Floating-Point Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:5E:11 xmmreg1 xmmreg3

Instruction and Format Encoding
Vol. 2C B-155

INSTRUCTION FORMATS AND ENCODINGS
 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 010:5E:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 010:5E:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 010:5E:mod xmmreg1 r/m

VLDMXCSR — Load MXCSR Register

 mem to MXCSR reg C4: rxb0_1: w_F 000:AEmod 011 r/m

 mem to MXCSR reg C5: r_F 000:AEmod 011 r/m

VMAXPS — Return Maximum Packed
Single-Precision Floating-Point
Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:5F:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:5F:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 000:5F:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 000:5F:mod xmmreg1 r/m

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:5F:11 ymmreg1 ymmreg3

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:5F:mod ymmreg1 r/m

 ymmreglo2 with ymmreglo3 to
ymmreg1

C5: r_ymmreglo2 100:5F:11 ymmreg1 ymmreglo3

 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 100:5F:mod ymmreg1 r/m

VMAXSS — Return Maximum Scalar
Single-Precision Floating-Point Value

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:5F:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 010:5F:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 010:5F:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 010:5F:mod xmmreg1 r/m

VMINPS — Return Minimum Packed
Single-Precision Floating-Point
Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:5D:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:5D:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 000:5D:11 xmmreg1 xmmreglo3

Instruction and Format Encoding
B-156 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 000:5D:mod xmmreg1 r/m

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:5D:11 ymmreg1 ymmreg3

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:5D:mod ymmreg1 r/m

 ymmreglo2 with ymmreglo3 to
ymmreg1

C5: r_ymmreglo2 100:5D:11 ymmreg1 ymmreglo3

 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 100:5D:mod ymmreg1 r/m

VMINSS — Return Minimum Scalar
Single-Precision Floating-Point Value

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:5D:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 010:5D:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 010:5D:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 010:5D:mod xmmreg1 r/m

VMOVAPS— Move Aligned Packed
Single-Precision Floating-Point
Values

 xmmreg2 to xmmreg1 C4: rxb0_1: w_F 000:28:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_1: w_F 000:28:mod xmmreg1 r/m

 xmmreglo to xmmreg1 C5: r_F 000:28:11 xmmreg1 xmmreglo

 mem to xmmreg1 C5: r_F 000:28:mod xmmreg1 r/m

 xmmreg1 to xmmreg2 C4: rxb0_1: w_F 000:29:11 xmmreg2 xmmreg1

 xmmreg1 to mem C4: rxb0_1: w_F 000:29:mod r/m xmmreg1

 xmmreg1 to xmmreglo C5: r_F 000:29:11 xmmreglo xmmreg1

 xmmreg1 to mem C5: r_F 000:29:mod r/m xmmreg1

 ymmreg2 to ymmreg1 C4: rxb0_1: w_F 100:28:11 ymmreg1 ymmreg2

 mem to ymmreg1 C4: rxb0_1: w_F 100:28:mod ymmreg1 r/m

 ymmreglo to ymmreg1 C5: r_F 100:28:11 ymmreg1 ymmreglo

 mem to ymmreg1 C5: r_F 100:28:mod ymmreg1 r/m

 ymmreg1 to ymmreg2 C4: rxb0_1: w_F 100:29:11 ymmreg2 ymmreg1

 ymmreg1 to mem C4: rxb0_1: w_F 100:29:mod r/m ymmreg1

 ymmreg1 to ymmreglo C5: r_F 100:29:11 ymmreglo ymmreg1

 ymmreg1 to mem C5: r_F 100:29:mod r/m ymmreg1

Instruction and Format Encoding
Vol. 2C B-157

INSTRUCTION FORMATS AND ENCODINGS
VMOVHPS — Move High Packed
Single-Precision Floating-Point
Values

 xmmreg1 with mem to xmmreg2 C4: rxb0_1: w xmmreg1 000:16:mod xmmreg2 r/m

 xmmreg1 with mem to xmmreglo2 C5: r_xmmreg1 000:16:mod xmmreglo2 r/m

 xmmreg1 to mem C4: rxb0_1: w_F 000:17:mod r/m xmmreg1

 xmmreglo to mem C5: r_F 000:17:mod r/m xmmreglo

VMOVLHPS — Move Packed Single-
Precision Floating-Point Values Low
to High

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:16:11 xmmreg1 xmmreg3

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 000:16:11 xmmreg1 xmmreglo3

VMOVLPS — Move Low Packed Single-
Precision Floating-Point Values

 xmmreg1 with mem to xmmreg2 C4: rxb0_1: w xmmreg1 000:12:mod xmmreg2 r/m

 xmmreg1 with mem to xmmreglo2 C5: r_xmmreg1 000:12:mod xmmreglo2 r/m

 xmmreg1 to mem C4: rxb0_1: w_F 000:13:mod r/m xmmreg1

 xmmreglo to mem C5: r_F 000:13:mod r/m xmmreglo

VMOVMSKPS — Extract Packed
Single-Precision Floating-Point Sign
Mask

 xmmreg2 to reg C4: rxb0_1: w_F 000:50:11 reg xmmreg2

 xmmreglo to reg C5: r_F 000:50:11 reg xmmreglo

 ymmreg2 to reg C4: rxb0_1: w_F 100:50:11 reg ymmreg2

 ymmreglo to reg C5: r_F 100:50:11 reg ymmreglo

VMOVNTPS — Store Packed Single-
Precision Floating-Point Values Using
Non-Temporal Hint

 xmmreg1 to mem C4: rxb0_1: w_F 000:2B:mod r/m xmmreg1

 xmmreglo to mem C5: r_F 000:2B:mod r/m xmmreglo

 ymmreg1 to mem C4: rxb0_1: w_F 100:2B:mod r/m ymmreg1

 ymmreglo to mem C5: r_F 100:2B:mod r/m ymmreglo

VMOVSS — Move Scalar Single-
Precision Floating-Point Values

Instruction and Format Encoding
B-158 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:10:11 xmmreg1 xmmreg3

 mem to xmmreg1 C4: rxb0_1: w_F 010:10:mod xmmreg1 r/m

 xmmreg2 with xmmreg3 to xmmreg1 C5: r_xmmreg2 010:10:11 xmmreg1 xmmreg3

 mem to xmmreg1 C5: r_F 010:10:mod xmmreg1 r/m

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:11:11 xmmreg1 xmmreg3

 xmmreg1 to mem C4: rxb0_1: w_F 010:11:mod r/m xmmreg1

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 010:11:11 xmmreg1 xmmreglo3

 xmmreglo to mem C5: r_F 010:11:mod r/m xmmreglo

VMOVUPS— Move Unaligned Packed
Single-Precision Floating-Point
Values

 xmmreg2 to xmmreg1 C4: rxb0_1: w_F 000:10:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_1: w_F 000:10:mod xmmreg1 r/m

 xmmreglo to xmmreg1 C5: r_F 000:10:11 xmmreg1 xmmreglo

 mem to xmmreg1 C5: r_F 000:10:mod xmmreg1 r/m

 ymmreg2 to ymmreg1 C4: rxb0_1: w_F 100:10:11 ymmreg1 ymmreg2

 mem to ymmreg1 C4: rxb0_1: w_F 100:10:mod ymmreg1 r/m

 ymmreglo to ymmreg1 C5: r_F 100:10:11 ymmreg1 ymmreglo

 mem to ymmreg1 C5: r_F 100:10:mod ymmreg1 r/m

 xmmreg1 to xmmreg2 C4: rxb0_1: w_F 000:11:11 xmmreg2 xmmreg1

 xmmreg1 to mem C4: rxb0_1: w_F 000:11:mod r/m xmmreg1

 xmmreg1 to xmmreglo C5: r_F 000:11:11 xmmreglo xmmreg1

 xmmreg1 to mem C5: r_F 000:11:mod r/m xmmreg1

 ymmreg1 to ymmreg2 C4: rxb0_1: w_F 100:11:11 ymmreg2 ymmreg1

 ymmreg1 to mem C4: rxb0_1: w_F 100:11:mod r/m ymmreg1

 ymmreg1 to ymmreglo C5: r_F 100:11:11 ymmreglo ymmreg1

 ymmreg1 to mem C5: r_F 100:11:mod r/m ymmreg1

VMULPS — Multiply Packed Single-
Precision Floating-Point Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:59:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:59:mod xmmreg1 r/m

Instruction and Format Encoding
Vol. 2C B-159

INSTRUCTION FORMATS AND ENCODINGS
 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 000:59:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 000:59:mod xmmreg1 r/m

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:59:11 ymmreg1 ymmreg3

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:59:mod ymmreg1 r/m

 ymmreglo2 with ymmreglo3 to
ymmreg1

C5: r_ymmreglo2 100:59:11 ymmreg1 ymmreglo3

 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 100:59:mod ymmreg1 r/m

VMULSS — Multiply Scalar Single-
Precision Floating-Point Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:59:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 010:59:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 010:59:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 010:59:mod xmmreg1 r/m

VORPS — Bitwise Logical OR of
Single-Precision Floating-Point
Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:56:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:56:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 000:56:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 000:56:mod xmmreg1 r/m

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:56:11 ymmreg1 ymmreg3

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:56:mod ymmreg1 r/m

 ymmreglo2 with ymmreglo3 to
ymmreg1

C5: r_ymmreglo2 100:56:11 ymmreg1 ymmreglo3

 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 100:56:mod ymmreg1 r/m

VRCPPS — Compute Reciprocals of
Packed Single-Precision Floating-
Point Values

 xmmreg2 to xmmreg1 C4: rxb0_1: w_F 000:53:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_1: w_F 000:53:mod xmmreg1 r/m

 xmmreglo to xmmreg1 C5: r_F 000:53:11 xmmreg1 xmmreglo

Instruction and Format Encoding
B-160 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
 mem to xmmreg1 C5: r_F 000:53:mod xmmreg1 r/m

 ymmreg2 to ymmreg1 C4: rxb0_1: w_F 100:53:11 ymmreg1 ymmreg2

 mem to ymmreg1 C4: rxb0_1: w_F 100:53:mod ymmreg1 r/m

 ymmreglo to ymmreg1 C5: r_F 100:53:11 ymmreg1 ymmreglo

 mem to ymmreg1 C5: r_F 100:53:mod ymmreg1 r/m

VRCPSS — Compute Reciprocal of
Scalar Single-Precision Floating-Point
Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:53:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 010:53:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 010:53:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 010:53:mod xmmreg1 r/m

VRSQRTPS — Compute Reciprocals of
Square Roots of Packed Single-
Precision Floating-Point Values

 xmmreg2 to xmmreg1 C4: rxb0_1: w_F 000:52:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_1: w_F 000:52:mod xmmreg1 r/m

 xmmreglo to xmmreg1 C5: r_F 000:52:11 xmmreg1 xmmreglo

 mem to xmmreg1 C5: r_F 000:52:mod xmmreg1 r/m

 ymmreg2 to ymmreg1 C4: rxb0_1: w_F 100:52:11 ymmreg1 ymmreg2

 mem to ymmreg1 C4: rxb0_1: w_F 100:52:mod ymmreg1 r/m

 ymmreglo to ymmreg1 C5: r_F 100:52:11 ymmreg1 ymmreglo

 mem to ymmreg1 C5: r_F 100:52:mod ymmreg1 r/m

VRSQRTSS — Compute Reciprocal of
Square Root of Scalar Single-
Precision Floating-Point Value

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:52:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 010:52:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 010:52:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 010:52:mod xmmreg1 r/m

VSHUFPS — Shuffle Packed Single-
Precision Floating-Point Values

Instruction and Format Encoding
Vol. 2C B-161

INSTRUCTION FORMATS AND ENCODINGS
 xmmreg2 with xmmreg3 to
xmmreg1, imm8

C4: rxb0_1: w xmmreg2 000:C6:11 xmmreg1 xmmreg3:
imm

 xmmreg2 with mem to xmmreg1,
imm8

C4: rxb0_1: w xmmreg2 000:C6:mod xmmreg1 r/m: imm

 xmmreglo2 with xmmreglo3 to
xmmreg1, imm8

C5: r_xmmreglo2 000:C6:11 xmmreg1 xmmreglo3: imm

 xmmreglo2 with mem to xmmreg1,
imm8

C5: r_xmmreglo2 000:C6:mod xmmreg1 r/m: imm

 ymmreg2 with ymmreg3 to
ymmreg1, imm8

C4: rxb0_1: w ymmreg2 100:C6:11 ymmreg1 ymmreg3:
imm

 ymmreg2 with mem to ymmreg1,
imm8

C4: rxb0_1: w ymmreg2 100:C6:mod ymmreg1 r/m: imm

 ymmreglo2 with ymmreglo3 to
ymmreg1, imm8

C5: r_ymmreglo2 100:C6:11 ymmreg1 ymmreglo3: imm

 ymmreglo2 with mem to ymmreg1,
imm8

C5: r_ymmreglo2 100:C6:mod ymmreg1 r/m: imm

VSQRTPS — Compute Square Roots of
Packed Single-Precision Floating-
Point Values

 xmmreg2 to xmmreg1 C4: rxb0_1: w_F 000:51:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_1: w_F 000:51:mod xmmreg1 r/m

 xmmreglo to xmmreg1 C5: r_F 000:51:11 xmmreg1 xmmreglo

 mem to xmmreg1 C5: r_F 000:51:mod xmmreg1 r/m

 ymmreg2 to ymmreg1 C4: rxb0_1: w_F 100:51:11 ymmreg1 ymmreg2

 mem to ymmreg1 C4: rxb0_1: w_F 100:51:mod ymmreg1 r/m

 ymmreglo to ymmreg1 C5: r_F 100:51:11 ymmreg1 ymmreglo

 mem to ymmreg1 C5: r_F 100:51:mod ymmreg1 r/m

VSQRTSS — Compute Square Root of
Scalar Single-Precision Floating-Point
Value

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:51:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 010:51:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 010:51:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 010:51:mod xmmreg1 r/m

Instruction and Format Encoding
B-162 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
VSTMXCSR — Store MXCSR Register
State

 MXCSR to mem C4: rxb0_1: w_F 000:AE:mod 011 r/m

 MXCSR to mem C5: r_F 000:AE:mod 011 r/m

VSUBPS — Subtract Packed Single-
Precision Floating-Point Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:5C:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:5C:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 000:5C:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 000:5C:mod xmmreg1 r/m

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:5C:11 ymmreg1 ymmreg3

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:5C:mod ymmreg1 r/m

 ymmreglo2 with ymmreglo3 to
ymmreg1

C5: r_ymmreglo2 100:5C:11 ymmreg1 ymmreglo3

 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 100:5C:mod ymmreg1 r/m

VSUBSS — Subtract Scalar Single-
Precision Floating-Point Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:5C:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 010:5C:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 010:5C:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 010:5C:mod xmmreg1 r/m

VUCOMISS — Unordered Compare
Scalar Single-Precision Floating-Point
Values and Set EFLAGS

 xmmreg2 with xmmreg1 C4: rxb0_1: w_F 000:2E:11 xmmreg1 xmmreg2

 mem with xmmreg1 C4: rxb0_1: w_F 000:2E:mod xmmreg1 r/m

 xmmreglo with xmmreg1 C5: r_F 000:2E:11 xmmreg1 xmmreglo

 mem with xmmreg1 C5: r_F 000:2E:mod xmmreg1 r/m

UNPCKHPS — Unpack and Interleave
High Packed Single-Precision
Floating-Point Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:15:11 xmmreg1 xmmreg3

Instruction and Format Encoding
Vol. 2C B-163

INSTRUCTION FORMATS AND ENCODINGS
 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:15mod xmmreg1 r/m

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:15:11 ymmreg1 ymmreg3

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:15mod ymmreg1 r/m

UNPCKLPS — Unpack and Interleave
Low Packed Single-Precision Floating-
Point Value

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:14:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:14mod xmmreg1 r/m

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:14:11 ymmreg1 ymmreg3

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:14mod ymmreg1 r/m

VXORPS — Bitwise Logical XOR for
Single-Precision Floating-Point
Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:57:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:57:mod xmmreg1 r/m

 xmmreglo2 with xmmreglo3 to
xmmreg1

C5: r_xmmreglo2 000:57:11 xmmreg1 xmmreglo3

 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 000:57:mod xmmreg1 r/m

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:57:11 ymmreg1 ymmreg3

 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:57:mod ymmreg1 r/m

 ymmreglo2 with ymmreglo3 to
ymmreg1

C5: r_ymmreglo2 100:57:11 ymmreg1 ymmreglo3

 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 100:57:mod ymmreg1 r/m

VBROADCAST —Load with Broadcast

 mem to xmmreg1 C4: rxb0_2: 0_F 001:18:mod xmmreg1 r/m

 mem to ymmreg1 C4: rxb0_2: 0_F 101:18:mod ymmreg1 r/m

 mem to ymmreg1 C4: rxb0_2: 0_F 101:19:mod ymmreg1 r/m

 mem to ymmreg1 C4: rxb0_2: 0_F 101:1A:mod ymmreg1 r/m

VEXTRACTF128 — Extract Packed
Floating-Point Values

 ymmreg2 to xmmreg1, imm8 C4: rxb0_3: 0_F 001:19:11 xmmreg1 ymmreg2: imm

 ymmreg2 to mem, imm8 C4: rxb0_3: 0_F 001:19:mod r/m ymmreg2: imm

VINSERTF128 — Insert Packed
Floating-Point Values

Instruction and Format Encoding
B-164 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
 xmmreg3 and merge with ymmreg2
to ymmreg1, imm8

C4: rxb0_3: 0 ymmreg2101:18:11 ymmreg1 xmmreg3:
imm

 mem and merge with ymmreg2 to
ymmreg1, imm8

C4: rxb0_3: 0 ymmreg2 101:18:mod ymmreg1 r/m: imm

VPERMILPD — Permute Double-
Precision Floating-Point Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: 0 xmmreg2 001:0D:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: 0 xmmreg2 001:0D:mod xmmreg1 r/m

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_2: 0 ymmreg2 101:0D:11 ymmreg1 ymmreg3

 ymmreg2 with mem to ymmreg1 C4: rxb0_2: 0 ymmreg2 101:0D:mod ymmreg1 r/m

 xmmreg2 to xmmreg1, imm C4: rxb0_3: 0_F 001:05:11 xmmreg1 xmmreg2: imm

 mem to xmmreg1, imm C4: rxb0_3: 0_F 001:05:mod xmmreg1 r/m: imm

 ymmreg2 to ymmreg1, imm C4: rxb0_3: 0_F 101:05:11 ymmreg1 ymmreg2: imm

 mem to ymmreg1, imm C4: rxb0_3: 0_F 101:05:mod ymmreg1 r/m: imm

VPERMILPS — Permute Single-
Precision Floating-Point Values

 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: 0 xmmreg2 001:0C:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: 0 xmmreg2 001:0C:mod xmmreg1 r/m

 xmmreg2 to xmmreg1, imm C4: rxb0_3: 0_F 001:04:11 xmmreg1 xmmreg2: imm

 mem to xmmreg1, imm C4: rxb0_3: 0_F 001:04:mod xmmreg1 r/m: imm

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_2: 0 ymmreg2 101:0C:11 ymmreg1 ymmreg3

 ymmreg2 with mem to ymmreg1 C4: rxb0_2: 0 ymmreg2 101:0C:mod ymmreg1 r/m

 ymmreg2 to ymmreg1, imm C4: rxb0_3: 0_F 101:04:11 ymmreg1 ymmreg2: imm

 mem to ymmreg1, imm C4: rxb0_3: 0_F 101:04:mod ymmreg1 r/m: imm

VPERM2F128 — Permute Floating-
Point Values

 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_3: 0 ymmreg2 101:06:11 ymmreg1 ymmreg3:
imm

 ymmreg2 with mem to ymmreg1 C4: rxb0_3: 0 ymmreg2 101:06:mod ymmreg1 r/m: imm

VTESTPD/VTESTPS — Packed Bit Test

 xmmreg2 to xmmreg1 C4: rxb0_2: 0_F 001:0E:11 xmmreg2 xmmreg1

 mem to xmmreg1 C4: rxb0_2: 0_F 001:0E:mod xmmreg2 r/m

 ymmreg2 to ymmreg1 C4: rxb0_2: 0_F 101:0E:11 ymmreg2 ymmreg1

Instruction and Format Encoding
Vol. 2C B-165

INSTRUCTION FORMATS AND ENCODINGS
 mem to ymmreg1 C4: rxb0_2: 0_F 101:0E:mod ymmreg2 r/m

 xmmreg2 to xmmreg1 C4: rxb0_2: 0_F 001:0F:11 xmmreg1 xmmreg2: imm

 mem to xmmreg1 C4: rxb0_2: 0_F 001:0F:mod xmmreg1 r/m: imm

 ymmreg2 to ymmreg1 C4: rxb0_2: 0_F 101:0F:11 ymmreg1 ymmreg2: imm

 mem to ymmreg1 C4: rxb0_2: 0_F 101:0F:mod ymmreg1 r/m: imm

NOTES:
1. The term “lo” refers to the lower eight registers, 0-7

Instruction and Format Encoding
B-166 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
B.17 FLOATING-POINT INSTRUCTION FORMATS AND
ENCODINGS

Table B-35 shows the five different formats used for floating-point instructions. In all
cases, instructions are at least two bytes long and begin with the bit pattern 11011.

The Mod and R/M fields of the ModR/M byte have the same interpretation as the
corresponding fields of the integer instructions. The SIB byte and disp (displace-
ment) are optionally present in instructions that have Mod and R/M fields. Their pres-
ence depends on the values of Mod and R/M, as for integer instructions.

Table B-36 shows the formats and encodings of the floating-point instructions.

Table B-38. General Floating-Point Instruction Formats

Instruction

First Byte Second Byte Optional Fields

1 11011 OPA 1 mod 1 OPB r/m s-i-b disp

2 11011 MF OPA mod OPB r/m s-i-b disp

3 11011 d P OPA 1 1 OPB R ST(i)

4 11011 0 0 1 1 1 1 OP

5 11011 0 1 1 1 1 1 OP

15–11 10 9 8 7 6 5 4 3 2 1 0

MF = Memory Format
00 — 32-bit real
01 — 32-bit integer
10 — 64-bit real
11 — 16-bit integer

P = Pop
0 — Do not pop stack
1 — Pop stack after operation

d = Destination
0 — Destination is ST(0)
1 — Destination is ST(i)

R XOR d = 0 — Destination OP Source
R XOR d = 1 — Source OP Destination

ST(i) = Register stack element i
000 = Stack Top
001 = Second stack element
 ⋅
 ⋅
 ⋅
111 = Eighth stack element

Table B-39. Floating-Point Instruction Formats and Encodings

Instruction and Format Encoding

F2XM1 – Compute 2ST(0) – 1 11011 001 : 1111 0000

FABS – Absolute Value 11011 001 : 1110 0001

FADD – Add
Vol. 2C B-167

INSTRUCTION FORMATS AND ENCODINGS
 ST(0) ← ST(0) + 32-bit memory 11011 000 : mod 000 r/m

ST(0) ← ST(0) + 64-bit memory 11011 100 : mod 000 r/m

ST(d) ← ST(0) + ST(i) 11011 d00 : 11 000 ST(i)

FADDP – Add and Pop

ST(0) ← ST(0) + ST(i) 11011 110 : 11 000 ST(i)

FBLD – Load Binary Coded Decimal 11011 111 : mod 100 r/m

FBSTP – Store Binary Coded Decimal and Pop 11011 111 : mod 110 r/m

FCHS – Change Sign 11011 001 : 1110 0000

FCLEX – Clear Exceptions 11011 011 : 1110 0010

FCOM – Compare Real

32-bit memory 11011 000 : mod 010 r/m

64-bit memory 11011 100 : mod 010 r/m

ST(i) 11011 000 : 11 010 ST(i)

FCOMP – Compare Real and Pop

32-bit memory 11011 000 : mod 011 r/m

64-bit memory 11011 100 : mod 011 r/m

ST(i) 11011 000 : 11 011 ST(i)

FCOMPP – Compare Real and Pop Twice 11011 110 : 11 011 001

FCOMIP – Compare Real, Set EFLAGS, and Pop 11011 111 : 11 110 ST(i)

FCOS – Cosine of ST(0) 11011 001 : 1111 1111

FDECSTP – Decrement Stack-Top Pointer 11011 001 : 1111 0110

FDIV – Divide

ST(0) ← ST(0) ÷ 32-bit memory 11011 000 : mod 110 r/m

ST(0) ← ST(0) ÷ 64-bit memory 11011 100 : mod 110 r/m

ST(d) ← ST(0) ÷ ST(i) 11011 d00 : 1111 R ST(i)

FDIVP – Divide and Pop

ST(0) ← ST(0) ÷ ST(i) 11011 110 : 1111 1 ST(i)

FDIVR – Reverse Divide

ST(0) ← 32-bit memory ÷ ST(0) 11011 000 : mod 111 r/m

ST(0) ← 64-bit memory ÷ ST(0) 11011 100 : mod 111 r/m

Table B-39. Floating-Point Instruction Formats and Encodings (Contd.)

Instruction and Format Encoding
B-168 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
ST(d) ← ST(i) ÷ ST(0) 11011 d00 : 1111 R ST(i)

FDIVRP – Reverse Divide and Pop

ST(0) ¨ ST(i) ÷ ST(0) 11011 110 : 1111 0 ST(i)

FFREE – Free ST(i) Register 11011 101 : 1100 0 ST(i)

FIADD – Add Integer

ST(0) ← ST(0) + 16-bit memory 11011 110 : mod 000 r/m

ST(0) ← ST(0) + 32-bit memory 11011 010 : mod 000 r/m

FICOM – Compare Integer

16-bit memory 11011 110 : mod 010 r/m

32-bit memory 11011 010 : mod 010 r/m

FICOMP – Compare Integer and Pop

16-bit memory 11011 110 : mod 011 r/m

32-bit memory 11011 010 : mod 011 r/m

FIDIV

ST(0) ← ST(0) ÷ 16-bit memory 11011 110 : mod 110 r/m

ST(0) ← ST(0) ÷ 32-bit memory 11011 010 : mod 110 r/m

FIDIVR

ST(0) ← 16-bit memory ÷ ST(0) 11011 110 : mod 111 r/m

ST(0) ← 32-bit memory ÷ ST(0) 11011 010 : mod 111 r/m

FILD – Load Integer

16-bit memory 11011 111 : mod 000 r/m

32-bit memory 11011 011 : mod 000 r/m

64-bit memory 11011 111 : mod 101 r/m

FIMUL

ST(0) ← ST(0) × 16-bit memory 11011 110 : mod 001 r/m

ST(0) ← ST(0) × 32-bit memory 11011 010 : mod 001 r/m

FINCSTP – Increment Stack Pointer 11011 001 : 1111 0111

FINIT – Initialize Floating-Point Unit

FIST – Store Integer

16-bit memory 11011 111 : mod 010 r/m

Table B-39. Floating-Point Instruction Formats and Encodings (Contd.)

Instruction and Format Encoding
Vol. 2C B-169

INSTRUCTION FORMATS AND ENCODINGS
32-bit memory 11011 011 : mod 010 r/m

FISTP – Store Integer and Pop

16-bit memory 11011 111 : mod 011 r/m

32-bit memory 11011 011 : mod 011 r/m

64-bit memory 11011 111 : mod 111 r/m

FISUB

ST(0) ← ST(0) - 16-bit memory 11011 110 : mod 100 r/m

ST(0) ← ST(0) - 32-bit memory 11011 010 : mod 100 r/m

FISUBR

ST(0) ← 16-bit memory − ST(0) 11011 110 : mod 101 r/m

ST(0) ← 32-bit memory − ST(0) 11011 010 : mod 101 r/m

FLD – Load Real

32-bit memory 11011 001 : mod 000 r/m

64-bit memory 11011 101 : mod 000 r/m

80-bit memory 11011 011 : mod 101 r/m

ST(i) 11011 001 : 11 000 ST(i)

FLD1 – Load +1.0 into ST(0) 11011 001 : 1110 1000

FLDCW – Load Control Word 11011 001 : mod 101 r/m

FLDENV – Load FPU Environment 11011 001 : mod 100 r/m

FLDL2E – Load log2(ε) into ST(0) 11011 001 : 1110 1010

FLDL2T – Load log2(10) into ST(0) 11011 001 : 1110 1001

FLDLG2 – Load log10(2) into ST(0) 11011 001 : 1110 1100

FLDLN2 – Load logε(2) into ST(0) 11011 001 : 1110 1101

FLDPI – Load π into ST(0) 11011 001 : 1110 1011

FLDZ – Load +0.0 into ST(0) 11011 001 : 1110 1110

FMUL – Multiply

ST(0) ← ST(0) × 32-bit memory 11011 000 : mod 001 r/m

ST(0) ← ST(0) × 64-bit memory 11011 100 : mod 001 r/m

ST(d) ← ST(0) × ST(i) 11011 d00 : 1100 1 ST(i)

FMULP – Multiply

ST(i) ← ST(0) × ST(i) 11011 110 : 1100 1 ST(i)

Table B-39. Floating-Point Instruction Formats and Encodings (Contd.)

Instruction and Format Encoding
B-170 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
FNOP – No Operation 11011 001 : 1101 0000

FPATAN – Partial Arctangent 11011 001 : 1111 0011

FPREM – Partial Remainder 11011 001 : 1111 1000

FPREM1 – Partial Remainder (IEEE) 11011 001 : 1111 0101

FPTAN – Partial Tangent 11011 001 : 1111 0010

FRNDINT – Round to Integer 11011 001 : 1111 1100

FRSTOR – Restore FPU State 11011 101 : mod 100 r/m

FSAVE – Store FPU State 11011 101 : mod 110 r/m

FSCALE – Scale 11011 001 : 1111 1101

FSIN – Sine 11011 001 : 1111 1110

FSINCOS – Sine and Cosine 11011 001 : 1111 1011

FSQRT – Square Root 11011 001 : 1111 1010

FST – Store Real

32-bit memory 11011 001 : mod 010 r/m

64-bit memory 11011 101 : mod 010 r/m

ST(i) 11011 101 : 11 010 ST(i)

FSTCW – Store Control Word 11011 001 : mod 111 r/m

FSTENV – Store FPU Environment 11011 001 : mod 110 r/m

FSTP – Store Real and Pop

32-bit memory 11011 001 : mod 011 r/m

64-bit memory 11011 101 : mod 011 r/m

80-bit memory 11011 011 : mod 111 r/m

ST(i) 11011 101 : 11 011 ST(i)

FSTSW – Store Status Word into AX 11011 111 : 1110 0000

FSTSW – Store Status Word into Memory 11011 101 : mod 111 r/m

FSUB – Subtract

ST(0) ← ST(0) – 32-bit memory 11011 000 : mod 100 r/m

ST(0) ← ST(0) – 64-bit memory 11011 100 : mod 100 r/m

ST(d) ← ST(0) – ST(i) 11011 d00 : 1110 R ST(i)

FSUBP – Subtract and Pop

ST(0) ← ST(0) – ST(i) 11011 110 : 1110 1 ST(i)

Table B-39. Floating-Point Instruction Formats and Encodings (Contd.)

Instruction and Format Encoding
Vol. 2C B-171

INSTRUCTION FORMATS AND ENCODINGS
FSUBR – Reverse Subtract

ST(0) ← 32-bit memory – ST(0) 11011 000 : mod 101 r/m

ST(0) ← 64-bit memory – ST(0) 11011 100 : mod 101 r/m

ST(d) ← ST(i) – ST(0) 11011 d00 : 1110 R ST(i)

FSUBRP – Reverse Subtract and Pop

ST(i) ← ST(i) – ST(0) 11011 110 : 1110 0 ST(i)

FTST – Test 11011 001 : 1110 0100

FUCOM – Unordered Compare Real 11011 101 : 1110 0 ST(i)

FUCOMP – Unordered Compare Real and Pop 11011 101 : 1110 1 ST(i)

FUCOMPP – Unordered Compare Real and Pop
Twice

11011 010 : 1110 1001

FUCOMI – Unorderd Compare Real and Set
EFLAGS

11011 011 : 11 101 ST(i)

FUCOMIP – Unorderd Compare Real, Set
EFLAGS, and Pop

11011 111 : 11 101 ST(i)

FXAM – Examine 11011 001 : 1110 0101

FXCH – Exchange ST(0) and ST(i) 11011 001 : 1100 1 ST(i)

FXTRACT – Extract Exponent and Significand 11011 001 : 1111 0100

FYL2X – ST(1) × log2(ST(0)) 11011 001 : 1111 0001

FYL2XP1 – ST(1) × log2(ST(0) + 1.0) 11011 001 : 1111 1001

FWAIT – Wait until FPU Ready 1001 1011

Table B-39. Floating-Point Instruction Formats and Encodings (Contd.)

Instruction and Format Encoding
B-172 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
B.18 VMX INSTRUCTIONS
Table B-40 describes virtual-machine extensions (VMX).

Table B-40. Encodings for VMX Instructions
Instruction and Format Encoding

INVEPT—Invalidate Cached EPT Mappings

Descriptor m128 according to reg 01100110 00001111 00111000 10000000: mod
reg r/m

INVVPID—Invalidate Cached VPID
Mappings

Descriptor m128 according to reg 01100110 00001111 00111000 10000001: mod
reg r/m

VMCALL—Call to VM Monitor

Call VMM: causes VM exit. 00001111 00000001 11000001

VMCLEAR—Clear Virtual-Machine Control
Structure

mem32:VMCS_data_ptr 01100110 00001111 11000111: mod 110 r/m

mem64:VMCS_data_ptr 01100110 00001111 11000111: mod 110 r/m

VMFUNC—Invoke VM Function

Invoke VM function specified in EAX 00001111 00000001 11010100

VMLAUNCH—Launch Virtual Machine

Launch VM managed by Current_VMCS 00001111 00000001 11000010

VMRESUME—Resume Virtual Machine

Resume VM managed by Current_VMCS 00001111 00000001 11000011

VMPTRLD—Load Pointer to Virtual-
Machine Control Structure

mem32 to Current_VMCS_ptr 00001111 11000111: mod 110 r/m

mem64 to Current_VMCS_ptr 00001111 11000111: mod 110 r/m

VMPTRST—Store Pointer to Virtual-
Machine Control Structure

Current_VMCS_ptr to mem32 00001111 11000111: mod 111 r/m

Current_VMCS_ptr to mem64 00001111 11000111: mod 111 r/m

VMREAD—Read Field from Virtual-
Machine Control Structure
Vol. 2C B-173

INSTRUCTION FORMATS AND ENCODINGS
r32 (VMCS_fieldn) to r32

r32 (VMCS_fieldn) to mem32

r64 (VMCS_fieldn) to r64

r64 (VMCS_fieldn) to mem64

00001111 01111000: 11 reg2 reg1

00001111 01111000: mod r32 r/m

00001111 01111000: 11 reg2 reg1

00001111 01111000: mod r64 r/m

VMWRITE—Write Field to Virtual-Machine
Control Structure

r32 to r32 (VMCS_fieldn)

mem32 to r32 (VMCS_fieldn)

r64 to r64 (VMCS_fieldn)

mem64 to r64 (VMCS_fieldn)

00001111 01111001: 11 reg1 reg2

00001111 01111001: mod r32 r/m

00001111 01111001: 11 reg1 reg2

00001111 01111001: mod r64 r/m

VMXOFF—Leave VMX Operation

Leave VMX. 00001111 00000001 11000100

VMXON—Enter VMX Operation

Enter VMX. 11110011 000011111 11000111: mod 110 r/m

Table B-40. Encodings for VMX Instructions
Instruction and Format Encoding
B-174 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS
B.19 SMX INSTRUCTIONS
Table B-38 describes Safer Mode extensions (VMX). GETSEC leaf functions are selected
by a valid value in EAX on input.

Table B-41. Encodings for SMX Instructions
Instruction and Format Encoding

GETSEC—GETSEC leaf functions are
selected by the value in EAX on input

GETSEC[CAPABILITIES]. 00001111 00110111 (EAX= 0)

GETSEC[ENTERACCS]. 00001111 00110111 (EAX= 2)

GETSEC[EXITAC]. 00001111 00110111 (EAX= 3)

GETSEC[SENTER]. 00001111 00110111 (EAX= 4)

GETSEC[SEXIT]. 00001111 00110111 (EAX= 5)

GETSEC[PARAMETERS]. 00001111 00110111 (EAX= 6)

GETSEC[SMCTRL]. 00001111 00110111 (EAX= 7)

GETSEC[WAKEUP]. 00001111 00110111 (EAX= 8)
Vol. 2C B-175

APPENDIX C
INTEL® C/C++ COMPILER INTRINSICS AND

FUNCTIONAL EQUIVALENTS

The two tables in this appendix itemize the Intel C/C++ compiler intrinsics and
functional equivalents for the Intel MMX technology, SSE, SSE2, SSE3, and SSSE3
instructions.

There may be additional intrinsics that do not have an instruction equivalent. It is
strongly recommended that the reader reference the compiler documentation for the
complete list of supported intrinsics. Please refer to
http://www.intel.com/support/performancetools/.

Table C-1 presents simple intrinsics and Table C-2 presents composite intrinsics.
Some intrinsics are “composites” because they require more than one instruction to
implement them.

Intel C/C++ Compiler intrinsic names reflect the following naming conventions:
mm<intrin_op>_<suffix>

where:
<intrin_op> Indicates the intrinsics basic operation; for example, add for

addition and sub for subtraction
<suffix> Denotes the type of data operated on by the instruction. The

first one or two letters of each suffix denotes whether the
data is packed (p), extended packed (ep), or scalar (s).

The remaining letters denote the type:
s single-precision floating point
d double-precision floating point
i128 signed 128-bit integer
i64 signed 64-bit integer
u64 unsigned 64-bit integer
i32 signed 32-bit integer
u32 unsigned 32-bit integer
i16 signed 16-bit integer
u16 unsigned 16-bit integer
i8 signed 8-bit integer
u8 unsigned 8-bit integer

The variable r is generally used for the intrinsic's return value. A number appended to
a variable name indicates the element of a packed object. For example, r0 is the
lowest word of r.
Vol. 2C C-1

INTEL® C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS
The packed values are represented in right-to-left order, with the lowest value being
used for scalar operations. Consider the following example operation:

double a[2] = {1.0, 2.0};
__m128d t = _mm_load_pd(a);

The result is the same as either of the following:

__m128d t = _mm_set_pd(2.0, 1.0);
__m128d t = _mm_setr_pd(1.0, 2.0);

In other words, the XMM register that holds the value t will look as follows:

The “scalar” element is 1.0. Due to the nature of the instruction, some intrinsics
require their arguments to be immediates (constant integer literals).

To use an intrinsic in your code, insert a line with the following syntax:

data_type intrinsic_name (parameters)

Where:
data_type Is the return data type, which can be either void, int,

__m64, __m128, __m128d, or __m128i. Only the
_mm_empty intrinsic returns void.

intrinsic_name Is the name of the intrinsic, which behaves like a function
that you can use in your C/C++ code instead of in-lining the
actual instruction.

parameters Represents the parameters required by each intrinsic.

C.1 SIMPLE INTRINSICS

NOTE
For detailed descriptions of the intrinsics in Table C-1, see the corre-
sponding mnemonic in Chapter 3 in the “Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2A”, or Chapter 4,
“Instruction Set Reference, M-Z” in the “Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2B”.

0127 64 63

2.0 1.0
C-2 Vol. 2C

INTEL® C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS
Table C-1. Simple Intrinsics
Mnemonic Intrinsic

ADDPD __m128d _mm_add_pd(__m128d a, __m128d b)

ADDPS __m128 _mm_add_ps(__m128 a, __m128 b)

ADDSD __m128d _mm_add_sd(__m128d a, __m128d b)

ADDSS __m128 _mm_add_ss(__m128 a, __m128 b)

ADDSUBPD __m128d _mm_addsub_pd(__m128d a, __m128d b)

ADDSUBPS __m128 _mm_addsub_ps(__m128 a, __m128 b)

AESDEC __m128i _mm_aesdec (__m128i, __m128i)

AESDECLAST __m128i _mm_aesdeclast (__m128i, __m128i)

AESENC __m128i _mm_aesenc (__m128i, __m128i)

AESENCLAST __m128i _mm_aesenclast (__m128i, __m128i)

AESIMC __m128i _mm_aesimc (__m128i)

AESKEYGENASSIST __m128i _mm_aesimc (__m128i, const int)

ANDNPD __m128d _mm_andnot_pd(__m128d a, __m128d b)

ANDNPS __m128 _mm_andnot_ps(__m128 a, __m128 b)

ANDPD __m128d _mm_and_pd(__m128d a, __m128d b)

ANDPS __m128 _mm_and_ps(__m128 a, __m128 b)

BLENDPD __m128d _mm_blend_pd(__m128d v1, __m128d v2, const int mask)

BLENDPS __m128 _mm_blend_ps(__m128 v1, __m128 v2, const int mask)

BLENDVPD __m128d _mm_blendv_pd(__m128d v1, __m128d v2, __m128d v3)

BLENDVPS __m128 _mm_blendv_ps(__m128 v1, __m128 v2, __m128 v3)

CLFLUSH void _mm_clflush(void const *p)

CMPPD __m128d _mm_cmpeq_pd(__m128d a, __m128d b)

__m128d _mm_cmplt_pd(__m128d a, __m128d b)

__m128d _mm_cmple_pd(__m128d a, __m128d b)

__m128d _mm_cmpgt_pd(__m128d a, __m128d b)

__m128d _mm_cmpge_pd(__m128d a, __m128d b)

__m128d _mm_cmpneq_pd(__m128d a, __m128d b)

__m128d _mm_cmpnlt_pd(__m128d a, __m128d b)

__m128d _mm_cmpngt_pd(__m128d a, __m128d b)

__m128d _mm_cmpnge_pd(__m128d a, __m128d b)

__m128d _mm_cmpord_pd(__m128d a, __m128d b)

__m128d _mm_cmpunord_pd(__m128d a, __m128d b)

__m128d _mm_cmpnle_pd(__m128d a, __m128d b)

CMPPS __m128 _mm_cmpeq_ps(__m128 a, __m128 b)

__m128 _mm_cmplt_ps(__m128 a, __m128 b)
Vol. 2C C-3

INTEL® C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS
__m128 _mm_cmple_ps(__m128 a, __m128 b)

__m128 _mm_cmpgt_ps(__m128 a, __m128 b)

__m128 _mm_cmpge_ps(__m128 a, __m128 b)

__m128 _mm_cmpneq_ps(__m128 a, __m128 b)

__m128 _mm_cmpnlt_ps(__m128 a, __m128 b)

__m128 _mm_cmpngt_ps(__m128 a, __m128 b)

__m128 _mm_cmpnge_ps(__m128 a, __m128 b)

__m128 _mm_cmpord_ps(__m128 a, __m128 b)

__m128 _mm_cmpunord_ps(__m128 a, __m128 b)

__m128 _mm_cmpnle_ps(__m128 a, __m128 b)

CMPSD __m128d _mm_cmpeq_sd(__m128d a, __m128d b)

__m128d _mm_cmplt_sd(__m128d a, __m128d b)

__m128d _mm_cmple_sd(__m128d a, __m128d b)

__m128d _mm_cmpgt_sd(__m128d a, __m128d b)

__m128d _mm_cmpge_sd(__m128d a, __m128d b)

__m128 _mm_cmpneq_sd(__m128d a, __m128d b)

__m128 _mm_cmpnlt_sd(__m128d a, __m128d b)

__m128d _mm_cmpnle_sd(__m128d a, __m128d b)

__m128d _mm_cmpngt_sd(__m128d a, __m128d b)

__m128d _mm_cmpnge_sd(__m128d a, __m128d b)

__m128d _mm_cmpord_sd(__m128d a, __m128d b)

__m128d _mm_cmpunord_sd(__m128d a, __m128d b)

CMPSS __m128 _mm_cmpeq_ss(__m128 a, __m128 b)

__m128 _mm_cmplt_ss(__m128 a, __m128 b)

__m128 _mm_cmple_ss(__m128 a, __m128 b)

__m128 _mm_cmpgt_ss(__m128 a, __m128 b)

__m128 _mm_cmpge_ss(__m128 a, __m128 b)

__m128 _mm_cmpneq_ss(__m128 a, __m128 b)

__m128 _mm_cmpnlt_ss(__m128 a, __m128 b)

__m128 _mm_cmpnle_ss(__m128 a, __m128 b)

__m128 _mm_cmpngt_ss(__m128 a, __m128 b)

__m128 _mm_cmpnge_ss(__m128 a, __m128 b)

__m128 _mm_cmpord_ss(__m128 a, __m128 b)

__m128 _mm_cmpunord_ss(__m128 a, __m128 b)

COMISD int _mm_comieq_sd(__m128d a, __m128d b)

Table C-1. Simple Intrinsics (Contd.)
Mnemonic Intrinsic
C-4 Vol. 2C

INTEL® C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS
int _mm_comilt_sd(__m128d a, __m128d b)

int _mm_comile_sd(__m128d a, __m128d b)

int _mm_comigt_sd(__m128d a, __m128d b)

int _mm_comige_sd(__m128d a, __m128d b)

int _mm_comineq_sd(__m128d a, __m128d b)

COMISS int _mm_comieq_ss(__m128 a, __m128 b)

int _mm_comilt_ss(__m128 a, __m128 b)

int _mm_comile_ss(__m128 a, __m128 b)

int _mm_comigt_ss(__m128 a, __m128 b)

int _mm_comige_ss(__m128 a, __m128 b)

int _mm_comineq_ss(__m128 a, __m128 b)

CRC32 unsigned int _mm_crc32_u8(unsigned int crc, unsigned char data)

unsigned int _mm_crc32_u16(unsigned int crc, unsigned short data)

unsigned int _mm_crc32_u32(unsigned int crc, unsigned int data)

unsigned __int64 _mm_crc32_u64(unsinged __int64 crc, unsigned __int64 data)

CVTDQ2PD __m128d _mm_cvtepi32_pd(__m128i a)

CVTDQ2PS __m128 _mm_cvtepi32_ps(__m128i a)

CVTPD2DQ __m128i _mm_cvtpd_epi32(__m128d a)

CVTPD2PI __m64 _mm_cvtpd_pi32(__m128d a)

CVTPD2PS __m128 _mm_cvtpd_ps(__m128d a)

CVTPI2PD __m128d _mm_cvtpi32_pd(__m64 a)

CVTPI2PS __m128 _mm_cvt_pi2ps(__m128 a, __m64 b)
__m128 _mm_cvtpi32_ps(__m128 a, __m64 b)

CVTPS2DQ __m128i _mm_cvtps_epi32(__m128 a)

CVTPS2PD __m128d _mm_cvtps_pd(__m128 a)

CVTPS2PI __m64 _mm_cvt_ps2pi(__m128 a)
__m64 _mm_cvtps_pi32(__m128 a)

CVTSD2SI int _mm_cvtsd_si32(__m128d a)

CVTSD2SS __m128 _mm_cvtsd_ss(__m128 a, __m128d b)

CVTSI2SD __m128d _mm_cvtsi32_sd(__m128d a, int b)

CVTSI2SS __m128 _mm_cvt_si2ss(__m128 a, int b)
__m128 _mm_cvtsi32_ss(__m128 a, int b)
__m128 _mm_cvtsi64_ss(__m128 a, __int64 b)

CVTSS2SD __m128d _mm_cvtss_sd(__m128d a, __m128 b)

CVTSS2SI int _mm_cvt_ss2si(__m128 a)
int _mm_cvtss_si32(__m128 a)

CVTTPD2DQ __m128i _mm_cvttpd_epi32(__m128d a)

Table C-1. Simple Intrinsics (Contd.)
Mnemonic Intrinsic
Vol. 2C C-5

INTEL® C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS
CVTTPD2PI __m64 _mm_cvttpd_pi32(__m128d a)

CVTTPS2DQ __m128i _mm_cvttps_epi32(__m128 a)

CVTTPS2PI __m64 _mm_cvtt_ps2pi(__m128 a)
__m64 _mm_cvttps_pi32(__m128 a)

CVTTSD2SI int _mm_cvttsd_si32(__m128d a)

CVTTSS2SI int _mm_cvtt_ss2si(__m128 a)
int _mm_cvttss_si32(__m128 a)

__m64 _mm_cvtsi32_si64(int i)

int _mm_cvtsi64_si32(__m64 m)

DIVPD __m128d _mm_div_pd(__m128d a, __m128d b)

DIVPS __m128 _mm_div_ps(__m128 a, __m128 b)

DIVSD __m128d _mm_div_sd(__m128d a, __m128d b)

DIVSS __m128 _mm_div_ss(__m128 a, __m128 b)

DPPD __m128d _mm_dp_pd(__m128d a, __m128d b, const int mask)

DPPS __m128 _mm_dp_ps(__m128 a, __m128 b, const int mask)

EMMS void _mm_empty()

EXTRACTPS int _mm_extract_ps(__m128 src, const int ndx)

HADDPD __m128d _mm_hadd_pd(__m128d a, __m128d b)

HADDPS __m128 _mm_hadd_ps(__m128 a, __m128 b)

HSUBPD __m128d _mm_hsub_pd(__m128d a, __m128d b)

HSUBPS __m128 _mm_hsub_ps(__m128 a, __m128 b)

INSERTPS __m128 _mm_insert_ps(__m128 dst, __m128 src, const int ndx)

LDDQU __m128i _mm_lddqu_si128(__m128i const *p)

LDMXCSR __mm_setcsr(unsigned int i)

LFENCE void _mm_lfence(void)

MASKMOVDQU void _mm_maskmoveu_si128(__m128i d, __m128i n, char *p)

MASKMOVQ void _mm_maskmove_si64(__m64 d, __m64 n, char *p)

MAXPD __m128d _mm_max_pd(__m128d a, __m128d b)

MAXPS __m128 _mm_max_ps(__m128 a, __m128 b)

MAXSD __m128d _mm_max_sd(__m128d a, __m128d b)

MAXSS __m128 _mm_max_ss(__m128 a, __m128 b)

MFENCE void _mm_mfence(void)

MINPD __m128d _mm_min_pd(__m128d a, __m128d b)

MINPS __m128 _mm_min_ps(__m128 a, __m128 b)

MINSD __m128d _mm_min_sd(__m128d a, __m128d b)

MINSS __m128 _mm_min_ss(__m128 a, __m128 b)

Table C-1. Simple Intrinsics (Contd.)
Mnemonic Intrinsic
C-6 Vol. 2C

INTEL® C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS
MONITOR void _mm_monitor(void const *p, unsigned extensions, unsigned hints)

MOVAPD __m128d _mm_load_pd(double * p)

void_mm_store_pd(double *p, __m128d a)

MOVAPS __m128 _mm_load_ps(float * p)

void_mm_store_ps(float *p, __m128 a)

MOVD __m128i _mm_cvtsi32_si128(int a)

int _mm_cvtsi128_si32(__m128i a)

__m64 _mm_cvtsi32_si64(int a)

int _mm_cvtsi64_si32(__m64 a)

MOVDDUP __m128d _mm_movedup_pd(__m128d a)

__m128d _mm_loaddup_pd(double const * dp)

MOVDQA __m128i _mm_load_si128(__m128i * p)

void_mm_store_si128(__m128i *p, __m128i a)

MOVDQU __m128i _mm_loadu_si128(__m128i * p)

void_mm_storeu_si128(__m128i *p, __m128i a)

MOVDQ2Q __m64 _mm_movepi64_pi64(__m128i a)

MOVHLPS __m128 _mm_movehl_ps(__m128 a, __m128 b)

MOVHPD __m128d _mm_loadh_pd(__m128d a, double * p)

void _mm_storeh_pd(double * p, __m128d a)

MOVHPS __m128 _mm_loadh_pi(__m128 a, __m64 * p)

void _mm_storeh_pi(__m64 * p, __m128 a)

MOVLPD __m128d _mm_loadl_pd(__m128d a, double * p)

void _mm_storel_pd(double * p, __m128d a)

MOVLPS __m128 _mm_loadl_pi(__m128 a, __m64 *p)

void_mm_storel_pi(__m64 * p, __m128 a)

MOVLHPS __m128 _mm_movelh_ps(__m128 a, __m128 b)

MOVMSKPD int _mm_movemask_pd(__m128d a)

MOVMSKPS int _mm_movemask_ps(__m128 a)

MOVNTDQA __m128i _mm_stream_load_si128(__m128i *p)

MOVNTDQ void_mm_stream_si128(__m128i * p, __m128i a)

MOVNTPD void_mm_stream_pd(double * p, __m128d a)

MOVNTPS void_mm_stream_ps(float * p, __m128 a)

MOVNTI void_mm_stream_si32(int * p, int a)

MOVNTQ void_mm_stream_pi(__m64 * p, __m64 a)

MOVQ __m128i _mm_loadl_epi64(__m128i * p)

Table C-1. Simple Intrinsics (Contd.)
Mnemonic Intrinsic
Vol. 2C C-7

INTEL® C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS
void_mm_storel_epi64(_m128i * p, __m128i a)

__m128i _mm_move_epi64(__m128i a)

MOVQ2DQ __m128i _mm_movpi64_epi64(__m64 a)

MOVSD __m128d _mm_load_sd(double * p)

void_mm_store_sd(double * p, __m128d a)

__m128d _mm_move_sd(__m128d a, __m128d b)

MOVSHDUP __m128 _mm_movehdup_ps(__m128 a)

MOVSLDUP __m128 _mm_moveldup_ps(__m128 a)

MOVSS __m128 _mm_load_ss(float * p)

void_mm_store_ss(float * p, __m128 a)

__m128 _mm_move_ss(__m128 a, __m128 b)

MOVUPD __m128d _mm_loadu_pd(double * p)

void_mm_storeu_pd(double *p, __m128d a)

MOVUPS __m128 _mm_loadu_ps(float * p)

void_mm_storeu_ps(float *p, __m128 a)

MPSADBW __m128i _mm_mpsadbw_epu8(__m128i s1, __m128i s2, const int mask)

MULPD __m128d _mm_mul_pd(__m128d a, __m128d b)

MULPS __m128 _mm_mul_ss(__m128 a, __m128 b)

MULSD __m128d _mm_mul_sd(__m128d a, __m128d b)

MULSS __m128 _mm_mul_ss(__m128 a, __m128 b)

MWAIT void _mm_mwait(unsigned extensions, unsigned hints)

ORPD __m128d _mm_or_pd(__m128d a, __m128d b)

ORPS __m128 _mm_or_ps(__m128 a, __m128 b)

PABSB __m64 _mm_abs_pi8 (__m64 a)

 __m128i _mm_abs_epi8 (__m128i a)

PABSD __m64 _mm_abs_pi32 (__m64 a)

 __m128i _mm_abs_epi32 (__m128i a)

PABSW __m64 _mm_abs_pi16 (__m64 a)

 __m128i _mm_abs_epi16 (__m128i a)

PACKSSWB __m128i _mm_packs_epi16(__m128i m1, __m128i m2)

PACKSSWB __m64 _mm_packs_pi16(__m64 m1, __m64 m2)

PACKSSDW __m128i _mm_packs_epi32 (__m128i m1, __m128i m2)

PACKSSDW __m64 _mm_packs_pi32 (__m64 m1, __m64 m2)

PACKUSDW __m128i _mm_packus_epi32(__m128i m1, __m128i m2)

PACKUSWB __m128i _mm_packus_epi16(__m128i m1, __m128i m2)

Table C-1. Simple Intrinsics (Contd.)
Mnemonic Intrinsic
C-8 Vol. 2C

INTEL® C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS
PACKUSWB __m64 _mm_packs_pu16(__m64 m1, __m64 m2)

PADDB __m128i _mm_add_epi8(__m128i m1, __m128i m2)

PADDB __m64 _mm_add_pi8(__m64 m1, __m64 m2)

PADDW __m128i _mm_add_epi16(__m128i m1, __m128i m2)

PADDW __m64 _mm_add_pi16(__m64 m1, __m64 m2)

PADDD __m128i _mm_add_epi32(__m128i m1, __m128i m2)

PADDD __m64 _mm_add_pi32(__m64 m1, __m64 m2)

PADDQ __m128i _mm_add_epi64(__m128i m1, __m128i m2)

PADDQ __m64 _mm_add_si64(__m64 m1, __m64 m2)

PADDSB __m128i _mm_adds_epi8(__m128i m1, __m128i m2)

PADDSB __m64 _mm_adds_pi8(__m64 m1, __m64 m2)

PADDSW __m128i _mm_adds_epi16(__m128i m1, __m128i m2)

PADDSW __m64 _mm_adds_pi16(__m64 m1, __m64 m2)

PADDUSB __m128i _mm_adds_epu8(__m128i m1, __m128i m2)

PADDUSB __m64 _mm_adds_pu8(__m64 m1, __m64 m2)

PADDUSW __m128i _mm_adds_epu16(__m128i m1, __m128i m2)

PADDUSW __m64 _mm_adds_pu16(__m64 m1, __m64 m2)

PALIGNR __m64 _mm_alignr_pi8 (__m64 a, __m64 b, int n)

 __m128i _mm_alignr_epi8 (__m128i a, __m128i b, int n)

PAND __m128i _mm_and_si128(__m128i m1, __m128i m2)

PAND __m64 _mm_and_si64(__m64 m1, __m64 m2)

PANDN __m128i _mm_andnot_si128(__m128i m1, __m128i m2)

PANDN __m64 _mm_andnot_si64(__m64 m1, __m64 m2)

PAUSE void _mm_pause(void)

PAVGB __m128i _mm_avg_epu8(__m128i a, __m128i b)

PAVGB __m64 _mm_avg_pu8(__m64 a, __m64 b)

PAVGW __m128i _mm_avg_epu16(__m128i a, __m128i b)

PAVGW __m64 _mm_avg_pu16(__m64 a, __m64 b)

PBLENDVB __m128i _mm_blendv_epi (__m128i v1, __m128i v2, __m128i mask)

PBLENDW __m128i _mm_blend_epi16(__m128i v1, __m128i v2, const int mask)

PCLMULQDQ __m128i _mm_clmulepi64_si128 (__m128i, __m128i, const int)

PCMPEQB __m128i _mm_cmpeq_epi8(__m128i m1, __m128i m2)

PCMPEQB __m64 _mm_cmpeq_pi8(__m64 m1, __m64 m2)

PCMPEQQ __m128i _mm_cmpeq_epi64(__m128i a, __m128i b)

PCMPEQW __m128i _mm_cmpeq_epi16 (__m128i m1, __m128i m2)

Table C-1. Simple Intrinsics (Contd.)
Mnemonic Intrinsic
Vol. 2C C-9

INTEL® C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS
PCMPEQW __m64 _mm_cmpeq_pi16 (__m64 m1, __m64 m2)

PCMPEQD __m128i _mm_cmpeq_epi32(__m128i m1, __m128i m2)

PCMPEQD __m64 _mm_cmpeq_pi32(__m64 m1, __m64 m2)

PCMPESTRI int _mm_cmpestri (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestra (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestrc (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestro (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestrs (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestrz (__m128i a, int la, __m128i b, int lb, const int mode)

PCMPESTRM __m128i _mm_cmpestrm (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestra (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestrc (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestro (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestrs (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestrz (__m128i a, int la, __m128i b, int lb, const int mode)

PCMPGTB __m128i _mm_cmpgt_epi8 (__m128i m1, __m128i m2)

PCMPGTB __m64 _mm_cmpgt_pi8 (__m64 m1, __m64 m2)

PCMPGTW __m128i _mm_cmpgt_epi16(__m128i m1, __m128i m2)

PCMPGTW __m64 _mm_cmpgt_pi16 (__m64 m1, __m64 m2)

PCMPGTD __m128i _mm_cmpgt_epi32(__m128i m1, __m128i m2)

PCMPGTD __m64 _mm_cmpgt_pi32(__m64 m1, __m64 m2)

PCMPISTRI __m128i _mm_cmpestrm (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestra (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestrc (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestro (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestrs (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpistrz (__m128i a, __m128i b, const int mode)

PCMPISTRM __m128i _mm_cmpistrm (__m128i a, __m128i b, const int mode)

int _mm_cmpistra (__m128i a, __m128i b, const int mode)

int _mm_cmpistrc (__m128i a, __m128i b, const int mode)

int _mm_cmpistro (__m128i a, __m128i b, const int mode)

int _mm_cmpistrs (__m128i a, __m128i b, const int mode)

int _mm_cmpistrz (__m128i a, __m128i b, const int mode)

PCMPGTQ __m128i _mm_cmpgt_epi64(__m128i a, __m128i b)

PEXTRB int _mm_extract_epi8 (__m128i src, const int ndx)

Table C-1. Simple Intrinsics (Contd.)
Mnemonic Intrinsic
C-10 Vol. 2C

INTEL® C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS
PEXTRD int _mm_extract_epi32 (__m128i src, const int ndx)

PEXTRQ __int64 _mm_extract_epi64 (__m128i src, const int ndx)

PEXTRW int _mm_extract_epi16(__m128i a, int n)

PEXTRW int _mm_extract_pi16(__m64 a, int n)

int _mm_extract_epi16 (__m128i src, int ndx)

PHADDD __m64 _mm_hadd_pi32 (__m64 a, __m64 b)

 __m128i _mm_hadd_epi32 (__m128i a, __m128i b)

PHADDSW __m64 _mm_hadds_pi16 (__m64 a, __m64 b)

 __m128i _mm_hadds_epi16 (__m128i a, __m128i b)

PHADDW __m64 _mm_hadd_pi16 (__m64 a, __m64 b)

__m128i _mm_hadd_epi16 (__m128i a, __m128i b)

PHMINPOSUW __m128i _mm_minpos_epu16(__m128i packed_words)

PHSUBD __m64 _mm_hsub_pi32 (__m64 a, __m64 b)

 __m128i _mm_hsub_epi32 (__m128i a, __m128i b)

PHSUBSW __m64 _mm_hsubs_pi16 (__m64 a, __m64 b)

 __m128i _mm_hsubs_epi16 (__m128i a, __m128i b)

PHSUBW __m64 _mm_hsub_pi16 (__m64 a, __m64 b)

 __m128i _mm_hsub_epi16 (__m128i a, __m128i b)

PINSRB __m128i _mm_insert_epi8(__m128i s1, int s2, const int ndx)

PINSRD __m128i _mm_insert_epi32(__m128i s2, int s, const int ndx)

PINSRQ __m128i _mm_insert_epi64(__m128i s2, __int64 s, const int ndx)

PINSRW __m128i _mm_insert_epi16(__m128i a, int d, int n)

PINSRW __m64 _mm_insert_pi16(__m64 a, int d, int n)

PMADDUBSW __m64 _mm_maddubs_pi16 (__m64 a, __m64 b)

 __m128i _mm_maddubs_epi16 (__m128i a, __m128i b)

PMADDWD __m128i _mm_madd_epi16(__m128i m1 __m128i m2)

PMADDWD __m64 _mm_madd_pi16(__m64 m1, __m64 m2)

PMAXSB __m128i _mm_max_epi8(__m128i a, __m128i b)

PMAXSD __m128i _mm_max_epi32(__m128i a, __m128i b)

PMAXSW __m128i _mm_max_epi16(__m128i a, __m128i b)

PMAXSW __m64 _mm_max_pi16(__m64 a, __m64 b)

PMAXUB __m128i _mm_max_epu8(__m128i a, __m128i b)

PMAXUB __m64 _mm_max_pu8(__m64 a, __m64 b)

PMAXUD __m128i _mm_max_epu32(__m128i a, __m128i b)

PMAXUW __m128i _mm_max_epu16(__m128i a, __m128i b)

Table C-1. Simple Intrinsics (Contd.)
Mnemonic Intrinsic
Vol. 2C C-11

INTEL® C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS
PMINSB _m128i _mm_min_epi8(__m128i a, __m128i b)

PMINSD __m128i _mm_min_epi32(__m128i a, __m128i b)

PMINSW __m128i _mm_min_epi16(__m128i a, __m128i b)

PMINSW __m64 _mm_min_pi16(__m64 a, __m64 b)

PMINUB __m128i _mm_min_epu8(__m128i a, __m128i b)

PMINUB __m64 _mm_min_pu8(__m64 a, __m64 b)

PMINUD __m128i _mm_min_epu32 (__m128i a, __m128i b)

PMINUW __m128i _mm_min_epu16 (__m128i a, __m128i b)

PMOVMSKB int _mm_movemask_epi8(__m128i a)

PMOVMSKB int _mm_movemask_pi8(__m64 a)

PMOVSXBW __m128i _mm_ cvtepi8_epi16(__m128i a)

PMOVSXBD __m128i _mm_ cvtepi8_epi32(__m128i a)

PMOVSXBQ __m128i _mm_ cvtepi8_epi64(__m128i a)

PMOVSXWD __m128i _mm_ cvtepi16_epi32(__m128i a)

PMOVSXWQ __m128i _mm_ cvtepi16_epi64(__m128i a)

PMOVSXDQ __m128i _mm_ cvtepi32_epi64(__m128i a)

PMOVZXBW __m128i _mm_ cvtepu8_epi16(__m128i a)

PMOVZXBD __m128i _mm_ cvtepu8_epi32(__m128i a)

PMOVZXBQ __m128i _mm_ cvtepu8_epi64(__m128i a)

PMOVZXWD __m128i _mm_ cvtepu16_epi32(__m128i a)

PMOVZXWQ __m128i _mm_ cvtepu16_epi64(__m128i a)

PMOVZXDQ __m128i _mm_ cvtepu32_epi64(__m128i a)

PMULDQ __m128i _mm_mul_epi32(__m128i a, __m128i b)

PMULHRSW __m64 _mm_mulhrs_pi16 (__m64 a, __m64 b)

__m128i _mm_mulhrs_epi16 (__m128i a, __m128i b)

PMULHUW __m128i _mm_mulhi_epu16(__m128i a, __m128i b)

PMULHUW __m64 _mm_mulhi_pu16(__m64 a, __m64 b)

PMULHW __m128i _mm_mulhi_epi16(__m128i m1, __m128i m2)

PMULHW __m64 _mm_mulhi_pi16(__m64 m1, __m64 m2)

PMULLUD __m128i _mm_mullo_epi32(__m128i a, __m128i b)

PMULLW __m128i _mm_mullo_epi16(__m128i m1, __m128i m2)

PMULLW __m64 _mm_mullo_pi16(__m64 m1, __m64 m2)

PMULUDQ __m64 _mm_mul_su32(__m64 m1, __m64 m2)

__m128i _mm_mul_epu32(__m128i m1, __m128i m2)

Table C-1. Simple Intrinsics (Contd.)
Mnemonic Intrinsic
C-12 Vol. 2C

INTEL® C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS
POPCNT int _mm_popcnt_u32(unsigned int a)

int64_t _mm_popcnt_u64(unsigned __int64 a)

POR __m64 _mm_or_si64(__m64 m1, __m64 m2)

POR __m128i _mm_or_si128(__m128i m1, __m128i m2)

PREFETCHh void _mm_prefetch(char *a, int sel)

PSADBW __m128i _mm_sad_epu8(__m128i a, __m128i b)

PSADBW __m64 _mm_sad_pu8(__m64 a, __m64 b)

PSHUFB __m64 _mm_shuffle_pi8 (__m64 a, __m64 b)

 __m128i _mm_shuffle_epi8 (__m128i a, __m128i b)

PSHUFD __m128i _mm_shuffle_epi32(__m128i a, int n)

PSHUFHW __m128i _mm_shufflehi_epi16(__m128i a, int n)

PSHUFLW __m128i _mm_shufflelo_epi16(__m128i a, int n)

PSHUFW __m64 _mm_shuffle_pi16(__m64 a, int n)

PSIGNB __m64 _mm_sign_pi8 (__m64 a, __m64 b)

 __m128i _mm_sign_epi8 (__m128i a, __m128i b)

PSIGND __m64 _mm_sign_pi32 (__m64 a, __m64 b)

 __m128i _mm_sign_epi32 (__m128i a, __m128i b)

PSIGNW __m64 _mm_sign_pi16 (__m64 a, __m64 b)

 __m128i _mm_sign_epi16 (__m128i a, __m128i b)

PSLLW __m128i _mm_sll_epi16(__m128i m, __m128i count)

PSLLW __m128i _mm_slli_epi16(__m128i m, int count)

PSLLW __m64 _mm_sll_pi16(__m64 m, __m64 count)

__m64 _mm_slli_pi16(__m64 m, int count)

PSLLD __m128i _mm_slli_epi32(__m128i m, int count)

__m128i _mm_sll_epi32(__m128i m, __m128i count)

PSLLD __m64 _mm_slli_pi32(__m64 m, int count)

__m64 _mm_sll_pi32(__m64 m, __m64 count)

PSLLQ __m64 _mm_sll_si64(__m64 m, __m64 count)

__m64 _mm_slli_si64(__m64 m, int count)

PSLLQ __m128i _mm_sll_epi64(__m128i m, __m128i count)

__m128i _mm_slli_epi64(__m128i m, int count)

PSLLDQ __m128i _mm_slli_si128(__m128i m, int imm)

PSRAW __m128i _mm_sra_epi16(__m128i m, __m128i count)

__m128i _mm_srai_epi16(__m128i m, int count)

Table C-1. Simple Intrinsics (Contd.)
Mnemonic Intrinsic
Vol. 2C C-13

INTEL® C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS
PSRAW __m64 _mm_sra_pi16(__m64 m, __m64 count)

__m64 _mm_srai_pi16(__m64 m, int count)

PSRAD __m128i _mm_sra_epi32 (__m128i m, __m128i count)

__m128i _mm_srai_epi32 (__m128i m, int count)

PSRAD __m64 _mm_sra_pi32 (__m64 m, __m64 count)

__m64 _mm_srai_pi32 (__m64 m, int count)

PSRLW _m128i _mm_srl_epi16 (__m128i m, __m128i count)

__m128i _mm_srli_epi16 (__m128i m, int count)

__m64 _mm_srl_pi16 (__m64 m, __m64 count)

__m64 _mm_srli_pi16(__m64 m, int count)

PSRLD __m128i _mm_srl_epi32 (__m128i m, __m128i count)

__m128i _mm_srli_epi32 (__m128i m, int count)

PSRLD __m64 _mm_srl_pi32 (__m64 m, __m64 count)

__m64 _mm_srli_pi32 (__m64 m, int count)

PSRLQ __m128i _mm_srl_epi64 (__m128i m, __m128i count)

__m128i _mm_srli_epi64 (__m128i m, int count)

PSRLQ __m64 _mm_srl_si64 (__m64 m, __m64 count)

__m64 _mm_srli_si64 (__m64 m, int count)

PSRLDQ __m128i _mm_srli_si128(__m128i m, int imm)

PSUBB __m128i _mm_sub_epi8(__m128i m1, __m128i m2)

PSUBB __m64 _mm_sub_pi8(__m64 m1, __m64 m2)

PSUBW __m128i _mm_sub_epi16(__m128i m1, __m128i m2)

PSUBW __m64 _mm_sub_pi16(__m64 m1, __m64 m2)

PSUBD __m128i _mm_sub_epi32(__m128i m1, __m128i m2)

PSUBD __m64 _mm_sub_pi32(__m64 m1, __m64 m2)

PSUBQ __m128i _mm_sub_epi64(__m128i m1, __m128i m2)

PSUBQ __m64 _mm_sub_si64(__m64 m1, __m64 m2)

PSUBSB __m128i _mm_subs_epi8(__m128i m1, __m128i m2)

PSUBSB __m64 _mm_subs_pi8(__m64 m1, __m64 m2)

PSUBSW __m128i _mm_subs_epi16(__m128i m1, __m128i m2)

PSUBSW __m64 _mm_subs_pi16(__m64 m1, __m64 m2)

PSUBUSB __m128i _mm_subs_epu8(__m128i m1, __m128i m2)

PSUBUSB __m64 _mm_subs_pu8(__m64 m1, __m64 m2)

PSUBUSW __m128i _mm_subs_epu16(__m128i m1, __m128i m2)

PSUBUSW __m64 _mm_subs_pu16(__m64 m1, __m64 m2)

Table C-1. Simple Intrinsics (Contd.)
Mnemonic Intrinsic
C-14 Vol. 2C

INTEL® C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS
PTEST int _mm_testz_si128(__m128i s1, __m128i s2)

int _mm_testc_si128(__m128i s1, __m128i s2)

int _mm_testnzc_si128(__m128i s1, __m128i s2)

PUNPCKHBW __m64 _mm_unpackhi_pi8(__m64 m1, __m64 m2)

PUNPCKHBW __m128i _mm_unpackhi_epi8(__m128i m1, __m128i m2)

PUNPCKHWD __m64 _mm_unpackhi_pi16(__m64 m1,__m64 m2)

PUNPCKHWD __m128i _mm_unpackhi_epi16(__m128i m1, __m128i m2)

PUNPCKHDQ ___m64 _mm_unpackhi_pi32(__m64 m1, __m64 m2)

PUNPCKHDQ __m128i _mm_unpackhi_epi32(__m128i m1, __m128i m2)

PUNPCKHQDQ __m128i _mm_unpackhi_epi64(__m128i m1, __m128i m2)

PUNPCKLBW __m64 _mm_unpacklo_pi8 (__m64 m1, __m64 m2)

PUNPCKLBW __m128i _mm_unpacklo_epi8 (__m128i m1, __m128i m2)

PUNPCKLWD __m64 _mm_unpacklo_pi16(__m64 m1, __m64 m2)

PUNPCKLWD __m128i _mm_unpacklo_epi16(__m128i m1, __m128i m2)

PUNPCKLDQ __m64 _mm_unpacklo_pi32(__m64 m1, __m64 m2)

PUNPCKLDQ __m128i _mm_unpacklo_epi32(__m128i m1, __m128i m2)

PUNPCKLQDQ __m128i _mm_unpacklo_epi64(__m128i m1, __m128i m2)

PXOR __m64 _mm_xor_si64(__m64 m1, __m64 m2)

PXOR __m128i _mm_xor_si128(__m128i m1, __m128i m2)

RCPPS __m128 _mm_rcp_ps(__m128 a)

RCPSS __m128 _mm_rcp_ss(__m128 a)

ROUNDPD __m128 mm_round_pd(__m128d s1, int iRoundMode)

__m128 mm_floor_pd(__m128d s1)

__m128 mm_ceil_pd(__m128d s1)

ROUNDPS __m128 mm_round_ps(__m128 s1, int iRoundMode)

__m128 mm_floor_ps(__m128 s1)

__m128 mm_ceil_ps(__m128 s1)

ROUNDSD __m128d mm_round_sd(__m128d dst, __m128d s1, int iRoundMode)

__m128d mm_floor_sd(__m128d dst, __m128d s1)

__m128d mm_ceil_sd(__m128d dst, __m128d s1)

ROUNDSS __m128 mm_round_ss(__m128 dst, __m128 s1, int iRoundMode)

__m128 mm_floor_ss(__m128 dst, __m128 s1)

__m128 mm_ceil_ss(__m128 dst, __m128 s1)

RSQRTPS __m128 _mm_rsqrt_ps(__m128 a)

RSQRTSS __m128 _mm_rsqrt_ss(__m128 a)

Table C-1. Simple Intrinsics (Contd.)
Mnemonic Intrinsic
Vol. 2C C-15

INTEL® C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS
SFENCE void_mm_sfence(void)

SHUFPD __m128d _mm_shuffle_pd(__m128d a, __m128d b, unsigned int imm8)

SHUFPS __m128 _mm_shuffle_ps(__m128 a, __m128 b, unsigned int imm8)

SQRTPD __m128d _mm_sqrt_pd(__m128d a)

SQRTPS __m128 _mm_sqrt_ps(__m128 a)

SQRTSD __m128d _mm_sqrt_sd(__m128d a)

SQRTSS __m128 _mm_sqrt_ss(__m128 a)

STMXCSR _mm_getcsr(void)

SUBPD __m128d _mm_sub_pd(__m128d a, __m128d b)

SUBPS __m128 _mm_sub_ps(__m128 a, __m128 b)

SUBSD __m128d _mm_sub_sd(__m128d a, __m128d b)

SUBSS __m128 _mm_sub_ss(__m128 a, __m128 b)

UCOMISD int _mm_ucomieq_sd(__m128d a, __m128d b)

int _mm_ucomilt_sd(__m128d a, __m128d b)

int _mm_ucomile_sd(__m128d a, __m128d b)

int _mm_ucomigt_sd(__m128d a, __m128d b)

int _mm_ucomige_sd(__m128d a, __m128d b)

int _mm_ucomineq_sd(__m128d a, __m128d b)

UCOMISS int _mm_ucomieq_ss(__m128 a, __m128 b)

int _mm_ucomilt_ss(__m128 a, __m128 b)

int _mm_ucomile_ss(__m128 a, __m128 b)

int _mm_ucomigt_ss(__m128 a, __m128 b)

int _mm_ucomige_ss(__m128 a, __m128 b)

int _mm_ucomineq_ss(__m128 a, __m128 b)

UNPCKHPD __m128d _mm_unpackhi_pd(__m128d a, __m128d b)

UNPCKHPS __m128 _mm_unpackhi_ps(__m128 a, __m128 b)

UNPCKLPD __m128d _mm_unpacklo_pd(__m128d a, __m128d b)

UNPCKLPS __m128 _mm_unpacklo_ps(__m128 a, __m128 b)

XORPD __m128d _mm_xor_pd(__m128d a, __m128d b)

XORPS __m128 _mm_xor_ps(__m128 a, __m128 b)

Table C-1. Simple Intrinsics (Contd.)
Mnemonic Intrinsic
C-16 Vol. 2C

INTEL® C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS
C.2 COMPOSITE INTRINSICS

Table C-2. Composite Intrinsics
Mnemonic Intrinsic

(composite) __m128i _mm_set_epi64(__m64 q1, __m64 q0)

(composite) __m128i _mm_set_epi32(int i3, int i2, int i1, int i0)

(composite) __m128i _mm_set_epi16(short w7,short w6, short w5, short w4, short w3, short w2,
 short w1,short w0)

(composite) __m128i _mm_set_epi8(char w15,char w14, char w13, char w12, char w11, char w10,
 char w9, char w8, char w7,char w6, char w5, char w4, char w3, char w2,char w1, char w0)

(composite) __m128i _mm_set1_epi64(__m64 q)

(composite) __m128i _mm_set1_epi32(int a)

(composite) __m128i _mm_set1_epi16(short a)

(composite) __m128i _mm_set1_epi8(char a)

(composite) __m128i _mm_setr_epi64(__m64 q1, __m64 q0)

(composite) __m128i _mm_setr_epi32(int i3, int i2, int i1, int i0)

(composite) __m128i _mm_setr_epi16(short w7,short w6, short w5, short w4, short w3, short w2, short w,
short w0)

(composite) __m128i _mm_setr_epi8(char w15,char w14, char w13, char w12, char w11, char w10,
char w9, char w8,char w7, char w6,char w5, char w4, char w3, char w2,char w1,char w0)

(composite) __m128i _mm_setzero_si128()

(composite) __m128 _mm_set_ps1(float w)
__m128 _mm_set1_ps(float w)

(composite) __m128cmm_set1_pd(double w)

(composite) __m128d _mm_set_sd(double w)

(composite) __m128d _mm_set_pd(double z, double y)

(composite) __m128 _mm_set_ps(float z, float y, float x, float w)

(composite) __m128d _mm_setr_pd(double z, double y)

(composite) __m128 _mm_setr_ps(float z, float y, float x, float w)

(composite) __m128d _mm_setzero_pd(void)

(composite) __m128 _mm_setzero_ps(void)

MOVSD +
shuffle

__m128d _mm_load_pd(double * p)
__m128d _mm_load1_pd(double *p)

MOVSS +
shuffle

__m128 _mm_load_ps1(float * p)
__m128 _mm_load1_ps(float *p)

MOVAPD +
shuffle

__m128d _mm_loadr_pd(double * p)

MOVAPS +
shuffle

__m128 _mm_loadr_ps(float * p)

MOVSD +
shuffle

void _mm_store1_pd(double *p, __m128d a)
Vol. 2C C-17

INTEL® C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS
MOVSS +
shuffle

void _mm_store_ps1(float * p, __m128 a)
void _mm_store1_ps(float *p, __m128 a)

MOVAPD +
shuffle

_mm_storer_pd(double * p, __m128d a)

MOVAPS +
shuffle

_mm_storer_ps(float * p, __m128 a)

Table C-2. Composite Intrinsics (Contd.)
Mnemonic Intrinsic
C-18 Vol. 2C

Intel® 64 and IA-32 Architectures
Software Developer’s Manual

Volume 3 (3A, 3B & 3C):
System Programming Guide

NOTE: The Intel 64 and IA-32 Architectures Software Developer's Manual
consists of three volumes: Basic Architecture, Order Number 253665;
Instruction Set Reference A-Z, Order Number 325383; System
Programming Guide, Order Number 325384. Refer to all three volumes
when evaluating your design needs.

Order Number: 325384-042US
March 2012

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANT-
ED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH
PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or
indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH
MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUB-
CONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS
AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING
OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARIS-
ING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUB-
CONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR
ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers
must not rely on the absence or characteristics of any features or instructions marked "reserved" or "unde-
fined". Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or
incompatibilities arising from future changes to them. The information here is subject to change without no-
tice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Intel® AES-NI requires a computer system with an AES-NI enabled processor, as well as non-Intel software
to execute the instructions in the correct sequence. AES-NI is available on select Intel® processors. For
availability, consult your reseller or system manufacturer. For more information, see http://software.in-
tel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni/.

Intel® Hyper-Threading Technology (Intel® HT Technology) is available on select Intel® Core™ processors.
Requires an Intel® HT Technology-enabled system. Consult your PC manufacturer. Performance will vary
depending on the specific hardware and software used. For more information including details on which
processors support HT Technology, visit http://www.intel.com/info/hyperthreading.

Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, and
virtual machine monitor (VMM). Functionality, performance or other benefits will vary depending on hard-
ware and software configurations. Software applications may not be compatible with all operating systems.
Consult your PC manufacturer. For more information, visit http://www.intel.com/go/virtualization.

Intel® 64 architecture Requires a system with a 64-bit enabled processor, chipset, BIOS and software. Per-
formance will vary depending on the specific hardware and software you use. Consult your PC manufacturer
for more information. For more information, visit http://www.intel.com/info/em64t.

Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability
and a supporting operating system. Check with your PC manufacturer on whether your system delivers Ex-
ecute Disable Bit functionality.

Intel, the Intel logo, Pentium, Xeon, Intel NetBurst, Intel Core, Intel Core Solo, Intel Core Duo, Intel Core
2 Duo, Intel Core 2 Extreme, Intel Pentium D, Itanium, Intel SpeedStep, MMX, Intel Atom, and VTune are
trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing
your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel lit-
erature, may be obtained by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

Copyright © 1997-2012 Intel Corporation. All rights reserved.
ii Vol. 3A

http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni/
http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni/
http://www.intel.com/info/hyperthreading
http://www.intel.com/go/virtualization
http://www.intel.com/go/virtualization
http://www.intel.com/go/virtualization
http://www.intel.com/info/em64t
http://www.intel.com/info/em64t
http://www.intel.com/info/em64t
http://www.intel.com/design/literature.htm
http://www.intel.com/design/literature.htm

CONTENTS
PAGE
CHAPTER 1
ABOUT THIS MANUAL
1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN THIS MANUAL. 1-1
1.2 OVERVIEW OF THE SYSTEM PROGRAMMING GUIDE . 1-3
1.3 NOTATIONAL CONVENTIONS . 1-7
1.3.1 Bit and Byte Order . 1-7
1.3.2 Reserved Bits and Software Compatibility . 1-7
1.3.3 Instruction Operands . 1-8
1.3.4 Hexadecimal and Binary Numbers. 1-9
1.3.5 Segmented Addressing. 1-9
1.3.6 Syntax for CPUID, CR, and MSR Values . 1-9
1.3.7 Exceptions . 1-10
1.4 RELATED LITERATURE . 1-11

CHAPTER 2
SYSTEM ARCHITECTURE OVERVIEW
2.1 OVERVIEW OF THE SYSTEM-LEVEL ARCHITECTURE . 2-2
2.1.1 Global and Local Descriptor Tables . 2-5
2.1.1.1 Global and Local Descriptor Tables in IA-32e Mode . 2-5
2.1.2 System Segments, Segment Descriptors, and Gates. 2-5
2.1.2.1 Gates in IA-32e Mode . 2-6
2.1.3 Task-State Segments and Task Gates . 2-6
2.1.3.1 Task-State Segments in IA-32e Mode . 2-7
2.1.4 Interrupt and Exception Handling . 2-7
2.1.4.1 Interrupt and Exception Handling IA-32e Mode . 2-7
2.1.5 Memory Management . 2-8
2.1.5.1 Memory Management in IA-32e Mode . 2-8
2.1.6 System Registers . 2-9
2.1.6.1 System Registers in IA-32e Mode . 2-9
2.1.7 Other System Resources . 2-10
2.2 MODES OF OPERATION . 2-10
2.3 SYSTEM FLAGS AND FIELDS IN THE EFLAGS REGISTER . 2-12
2.3.1 System Flags and Fields in IA-32e Mode. 2-15
2.4 MEMORY-MANAGEMENT REGISTERS . 2-15
2.4.1 Global Descriptor Table Register (GDTR). 2-16
2.4.2 Local Descriptor Table Register (LDTR) . 2-16
2.4.3 IDTR Interrupt Descriptor Table Register . 2-17
2.4.4 Task Register (TR) . 2-17
2.5 CONTROL REGISTERS . 2-17
2.5.1 CPUID Qualification of Control Register Flags . 2-26
2.6 EXTENDED CONTROL REGISTERS (INCLUDING XCR0) . 2-26
2.7 SYSTEM INSTRUCTION SUMMARY. 2-27
2.7.1 Loading and Storing System Registers . 2-29
2.7.2 Verifying of Access Privileges . 2-30
2.7.3 Loading and Storing Debug Registers . 2-30
2.7.4 Invalidating Caches and TLBs . 2-31
2.7.5 Controlling the Processor. 2-31
Vol. 3A iii

CONTENTS
PAGE
2.7.6 Reading Performance-Monitoring and Time-Stamp Counters . 2-32
2.7.6.1 Reading Counters in 64-Bit Mode . 2-33
2.7.7 Reading and Writing Model-Specific Registers . 2-33
2.7.7.1 Reading and Writing Model-Specific Registers in 64-Bit Mode. 2-33
2.7.8 Enabling Processor Extended States . 2-34

CHAPTER 3
PROTECTED-MODE MEMORY MANAGEMENT
3.1 MEMORY MANAGEMENT OVERVIEW. 3-1
3.2 USING SEGMENTS . 3-3
3.2.1 Basic Flat Model. 3-3
3.2.2 Protected Flat Model . 3-4
3.2.3 Multi-Segment Model. 3-5
3.2.4 Segmentation in IA-32e Mode . 3-6
3.2.5 Paging and Segmentation . 3-7
3.3 PHYSICAL ADDRESS SPACE . 3-7
3.3.1 Intel® 64 Processors and Physical Address Space . 3-8
3.4 LOGICAL AND LINEAR ADDRESSES . 3-8
3.4.1 Logical Address Translation in IA-32e Mode . 3-9
3.4.2 Segment Selectors . 3-9
3.4.3 Segment Registers. 3-10
3.4.4 Segment Loading Instructions in IA-32e Mode . 3-12
3.4.5 Segment Descriptors . 3-13
3.4.5.1 Code- and Data-Segment Descriptor Types . 3-16
3.5 SYSTEM DESCRIPTOR TYPES . 3-18
3.5.1 Segment Descriptor Tables . 3-20
3.5.2 Segment Descriptor Tables in IA-32e Mode. 3-22

CHAPTER 4
PAGING
4.1 PAGING MODES AND CONTROL BITS . 4-1
4.1.1 Three Paging Modes . 4-2
4.1.2 Paging-Mode Enabling . 4-4
4.1.3 Paging-Mode Modifiers . 4-5
4.1.4 Enumeration of Paging Features by CPUID . 4-6
4.2 HIERARCHICAL PAGING STRUCTURES: AN OVERVIEW . 4-7
4.3 32-BIT PAGING. 4-10
4.4 PAE PAGING . 4-17
4.4.1 PDPTE Registers . 4-17
4.4.2 Linear-Address Translation with PAE Paging. 4-19
4.5 IA-32E PAGING. 4-26
4.6 ACCESS RIGHTS . 4-40
4.7 PAGE-FAULT EXCEPTIONS. 4-41
4.8 ACCESSED AND DIRTY FLAGS . 4-43
4.9 PAGING AND MEMORY TYPING. 4-43
4.9.1 Paging and Memory Typing When the PAT is Not Supported (Pentium Pro and

Pentium II Processors). 4-44
4.9.2 Paging and Memory Typing When the PAT is Supported (Pentium III and More

Recent Processor Families) . 4-44
4.9.3 Caching Paging-Related Information about Memory Typing . 4-45
iv Vol. 3A

CONTENTS
PAGE
4.10 CACHING TRANSLATION INFORMATION. 4-45
4.10.1 Process-Context Identifiers (PCIDs) .4-46
4.10.2 Translation Lookaside Buffers (TLBs) .4-47
4.10.2.1 Page Numbers, Page Frames, and Page Offsets .4-47
4.10.2.2 Caching Translations in TLBs .4-48
4.10.2.3 Details of TLB Use. .4-48
4.10.2.4 Global Pages .4-49
4.10.3 Paging-Structure Caches .4-50
4.10.3.1 Caches for Paging Structures .4-50
4.10.3.2 Using the Paging-Structure Caches to Translate Linear Addresses 4-52
4.10.3.3 Multiple Cached Entries for a Single Paging-Structure Entry.4-53
4.10.4 Invalidation of TLBs and Paging-Structure Caches .4-54
4.10.4.1 Operations that Invalidate TLBs and Paging-Structure Caches 4-54
4.10.4.2 Recommended Invalidation. .4-57
4.10.4.3 Optional Invalidation .4-58
4.10.4.4 Delayed Invalidation .4-60
4.10.5 Propagation of Paging-Structure Changes to Multiple Processors 4-61
4.11 INTERACTIONS WITH VIRTUAL-MACHINE EXTENSIONS (VMX) . 4-62
4.11.1 VMX Transitions. .4-62
4.11.2 VMX Support for Address Translation .4-63
4.12 USING PAGING FOR VIRTUAL MEMORY . 4-64
4.13 MAPPING SEGMENTS TO PAGES . 4-64

CHAPTER 5
PROTECTION
5.1 ENABLING AND DISABLING SEGMENT AND PAGE PROTECTION . 5-1
5.2 FIELDS AND FLAGS USED FOR SEGMENT-LEVEL AND PAGE-LEVEL PROTECTION 5-2
5.2.1 Code Segment Descriptor in 64-bit Mode . 5-5
5.3 LIMIT CHECKING . 5-6
5.3.1 Limit Checking in 64-bit Mode . 5-7
5.4 TYPE CHECKING . 5-7
5.4.1 Null Segment Selector Checking . 5-9
5.4.1.1 NULL Segment Checking in 64-bit Mode . 5-9
5.5 PRIVILEGE LEVELS. 5-9
5.6 PRIVILEGE LEVEL CHECKING WHEN ACCESSING DATA SEGMENTS 5-12
5.6.1 Accessing Data in Code Segments .5-14
5.7 PRIVILEGE LEVEL CHECKING WHEN LOADING THE SS REGISTER . 5-14
5.8 PRIVILEGE LEVEL CHECKING WHEN TRANSFERRING PROGRAM CONTROL BETWEEN

CODE SEGMENTS . 5-14
5.8.1 Direct Calls or Jumps to Code Segments .5-15
5.8.1.1 Accessing Nonconforming Code Segments .5-16
5.8.1.2 Accessing Conforming Code Segments. .5-17
5.8.2 Gate Descriptors .5-18
5.8.3 Call Gates .5-19
5.8.3.1 IA-32e Mode Call Gates .5-20
5.8.4 Accessing a Code Segment Through a Call Gate .5-22
5.8.5 Stack Switching .5-25
5.8.5.1 Stack Switching in 64-bit Mode. .5-28
5.8.6 Returning from a Called Procedure .5-28
5.8.7 Performing Fast Calls to System Procedures with the SYSENTER and SYSEXIT

Instructions .5-30
Vol. 3A v

CONTENTS
PAGE
5.8.7.1 SYSENTER and SYSEXIT Instructions in IA-32e Mode. 5-31
5.8.8 Fast System Calls in 64-bit Mode. 5-32
5.9 PRIVILEGED INSTRUCTIONS . 5-33
5.10 POINTER VALIDATION. 5-34
5.10.1 Checking Access Rights (LAR Instruction). 5-35
5.10.2 Checking Read/Write Rights (VERR and VERW Instructions) . 5-36
5.10.3 Checking That the Pointer Offset Is Within Limits (LSL Instruction). 5-36
5.10.4 Checking Caller Access Privileges (ARPL Instruction) . 5-37
5.10.5 Checking Alignment . 5-39
5.11 PAGE-LEVEL PROTECTION . 5-39
5.11.1 Page-Protection Flags . 5-40
5.11.2 Restricting Addressable Domain . 5-40
5.11.3 Page Type . 5-40
5.11.4 Combining Protection of Both Levels of Page Tables . 5-41
5.11.5 Overrides to Page Protection . 5-41
5.12 COMBINING PAGE AND SEGMENT PROTECTION . 5-41
5.13 PAGE-LEVEL PROTECTION AND EXECUTE-DISABLE BIT. 5-43
5.13.1 Detecting and Enabling the Execute-Disable Capability . 5-43
5.13.2 Execute-Disable Page Protection . 5-44
5.13.3 Reserved Bit Checking . 5-45
5.13.4 Exception Handling. 5-47

CHAPTER 6
INTERRUPT AND EXCEPTION HANDLING
6.1 INTERRUPT AND EXCEPTION OVERVIEW . 6-1
6.2 EXCEPTION AND INTERRUPT VECTORS . 6-2
6.3 SOURCES OF INTERRUPTS. 6-2
6.3.1 External Interrupts. 6-2
6.3.2 Maskable Hardware Interrupts. 6-5
6.3.3 Software-Generated Interrupts . 6-5
6.4 SOURCES OF EXCEPTIONS . 6-5
6.4.1 Program-Error Exceptions . 6-5
6.4.2 Software-Generated Exceptions . 6-6
6.4.3 Machine-Check Exceptions. 6-6
6.5 EXCEPTION CLASSIFICATIONS . 6-6
6.6 PROGRAM OR TASK RESTART . 6-7
6.7 NONMASKABLE INTERRUPT (NMI) . 6-8
6.7.1 Handling Multiple NMIs . 6-9
6.8 ENABLING AND DISABLING INTERRUPTS . 6-9
6.8.1 Masking Maskable Hardware Interrupts . 6-9
6.8.2 Masking Instruction Breakpoints . 6-10
6.8.3 Masking Exceptions and Interrupts When Switching Stacks . 6-11
6.9 PRIORITY AMONG SIMULTANEOUS EXCEPTIONS AND INTERRUPTS 6-11
6.10 INTERRUPT DESCRIPTOR TABLE (IDT). 6-12
6.11 IDT DESCRIPTORS. 6-14
6.12 EXCEPTION AND INTERRUPT HANDLING . 6-15
6.12.1 Exception- or Interrupt-Handler Procedures . 6-16
6.12.1.1 Protection of Exception- and Interrupt-Handler Procedures 6-18
6.12.1.2 Flag Usage By Exception- or Interrupt-Handler Procedure . 6-19
6.12.2 Interrupt Tasks . 6-20
6.13 ERROR CODE . 6-21
vi Vol. 3A

CONTENTS
PAGE
6.14 EXCEPTION AND INTERRUPT HANDLING IN 64-BIT MODE. 6-22
6.14.1 64-Bit Mode IDT .6-23
6.14.2 64-Bit Mode Stack Frame .6-24
6.14.3 IRET in IA-32e Mode .6-25
6.14.4 Stack Switching in IA-32e Mode .6-25
6.14.5 Interrupt Stack Table .6-26
6.15 EXCEPTION AND INTERRUPT REFERENCE. 6-27

Interrupt 0—Divide Error Exception (#DE). .6-28
Interrupt 1—Debug Exception (#DB). .6-29
Interrupt 2—NMI Interrupt .6-30
Interrupt 3—Breakpoint Exception (#BP) .6-31
Interrupt 4—Overflow Exception (#OF) .6-32
Interrupt 5—BOUND Range Exceeded Exception (#BR) .6-33
Interrupt 6—Invalid Opcode Exception (#UD) .6-34
Interrupt 7—Device Not Available Exception (#NM). .6-36
Interrupt 8—Double Fault Exception (#DF) .6-38
Interrupt 9—Coprocessor Segment Overrun. .6-41
Interrupt 10—Invalid TSS Exception (#TS) .6-42
Interrupt 11—Segment Not Present (#NP). .6-46
Interrupt 12—Stack Fault Exception (#SS) .6-48
Interrupt 13—General Protection Exception (#GP). .6-50
Interrupt 14—Page-Fault Exception (#PF) .6-54
Interrupt 16—x87 FPU Floating-Point Error (#MF). .6-58
Interrupt 17—Alignment Check Exception (#AC). .6-60
Interrupt 18—Machine-Check Exception (#MC) .6-63
Interrupt 19—SIMD Floating-Point Exception (#XM) .6-65
Interrupts 32 to 255—User Defined Interrupts. .6-68

CHAPTER 7
TASK MANAGEMENT
7.1 TASK MANAGEMENT OVERVIEW . 7-1
7.1.1 Task Structure . 7-1
7.1.2 Task State . 7-2
7.1.3 Executing a Task . 7-3
7.2 TASK MANAGEMENT DATA STRUCTURES. 7-4
7.2.1 Task-State Segment (TSS) . 7-4
7.2.2 TSS Descriptor . 7-7
7.2.3 TSS Descriptor in 64-bit mode. 7-8
7.2.4 Task Register . 7-9
7.2.5 Task-Gate Descriptor .7-11
7.3 TASK SWITCHING . 7-12
7.4 TASK LINKING . 7-16
7.4.1 Use of Busy Flag To Prevent Recursive Task Switching. .7-18
7.4.2 Modifying Task Linkages .7-18
7.5 TASK ADDRESS SPACE. 7-19
7.5.1 Mapping Tasks to the Linear and Physical Address Spaces .7-19
7.5.2 Task Logical Address Space .7-20
7.6 16-BIT TASK-STATE SEGMENT (TSS) . 7-21
7.7 TASK MANAGEMENT IN 64-BIT MODE . 7-22
Vol. 3A vii

CONTENTS
PAGE
CHAPTER 8
MULTIPLE-PROCESSOR MANAGEMENT
8.1 LOCKED ATOMIC OPERATIONS . 8-2
8.1.1 Guaranteed Atomic Operations . 8-3
8.1.2 Bus Locking. 8-4
8.1.2.1 Automatic Locking . 8-4
8.1.2.2 Software Controlled Bus Locking . 8-5
8.1.3 Handling Self- and Cross-Modifying Code . 8-6
8.1.4 Effects of a LOCK Operation on Internal Processor Caches . 8-7
8.2 MEMORY ORDERING. 8-8
8.2.1 Memory Ordering in the Intel® Pentium® and Intel486™ Processors 8-8
8.2.2 Memory Ordering in P6 and More Recent Processor Families . 8-9
8.2.3 Examples Illustrating the Memory-Ordering Principles . 8-11
8.2.3.1 Assumptions, Terminology, and Notation . 8-12
8.2.3.2 Neither Loads Nor Stores Are Reordered with Like Operations 8-13
8.2.3.3 Stores Are Not Reordered With Earlier Loads . 8-13
8.2.3.4 Loads May Be Reordered with Earlier Stores to Different Locations 8-14
8.2.3.5 Intra-Processor Forwarding Is Allowed . 8-15
8.2.3.6 Stores Are Transitively Visible . 8-15
8.2.3.7 Stores Are Seen in a Consistent Order by Other Processors 8-16
8.2.3.8 Locked Instructions Have a Total Order . 8-17
8.2.3.9 Loads and Stores Are Not Reordered with Locked Instructions 8-17
8.2.4 Fast-String Operation and Out-of-Order Stores . 8-18
8.2.4.1 Memory-Ordering Model for String Operations on Write-Back (WB) Memory 8-19
8.2.4.2 Examples Illustrating Memory-Ordering Principles for String Operations. 8-19
8.2.5 Strengthening or Weakening the Memory-Ordering Model . 8-22
8.3 SERIALIZING INSTRUCTIONS . 8-24
8.4 MULTIPLE-PROCESSOR (MP) INITIALIZATION . 8-26
8.4.1 BSP and AP Processors. 8-27
8.4.2 MP Initialization Protocol Requirements and Restrictions . 8-27
8.4.3 MP Initialization Protocol Algorithm for Intel Xeon Processors . 8-28
8.4.4 MP Initialization Example . 8-30
8.4.4.1 Typical BSP Initialization Sequence. 8-30
8.4.4.2 Typical AP Initialization Sequence. 8-32
8.4.5 Identifying Logical Processors in an MP System. 8-33
8.5 INTEL® HYPER-THREADING TECHNOLOGY AND INTEL® MULTI-CORE TECHNOLOGY . 8-35
8.6 DETECTING HARDWARE MULTI-THREADING SUPPORT AND TOPOLOGY 8-36
8.6.1 Initializing Processors Supporting Hyper-Threading Technology 8-37
8.6.2 Initializing Multi-Core Processors . 8-37
8.6.3 Executing Multiple Threads on an Intel® 64 or IA-32 Processor Supporting Hardware

Multi-Threading . 8-38
8.6.4 Handling Interrupts on an IA-32 Processor Supporting Hardware Multi-Threading . 8-38
8.7 INTEL® HYPER-THREADING TECHNOLOGY ARCHITECTURE . 8-39
8.7.1 State of the Logical Processors . 8-40
8.7.2 APIC Functionality . 8-41
8.7.3 Memory Type Range Registers (MTRR). 8-41
8.7.4 Page Attribute Table (PAT) . 8-42
8.7.5 Machine Check Architecture . 8-42
8.7.6 Debug Registers and Extensions . 8-42
8.7.7 Performance Monitoring Counters . 8-43
8.7.8 IA32_MISC_ENABLE MSR . 8-43
viii Vol. 3A

CONTENTS
PAGE
8.7.9 Memory Ordering .8-43
8.7.10 Serializing Instructions. .8-43
8.7.11 Microcode Update Resources. .8-44
8.7.12 Self Modifying Code .8-44
8.7.13 Implementation-Specific Intel HT Technology Facilities .8-44
8.7.13.1 Processor Caches. .8-44
8.7.13.2 Processor Translation Lookaside Buffers (TLBs). .8-45
8.7.13.3 Thermal Monitor. .8-45
8.7.13.4 External Signal Compatibility .8-46
8.8 MULTI-CORE ARCHITECTURE . 8-47
8.8.1 Logical Processor Support. .8-47
8.8.2 Memory Type Range Registers (MTRR) .8-47
8.8.3 Performance Monitoring Counters .8-48
8.8.4 IA32_MISC_ENABLE MSR .8-48
8.8.5 Microcode Update Resources. .8-48
8.9 PROGRAMMING CONSIDERATIONS FOR HARDWARE MULTI-THREADING CAPABLE

PROCESSORS. 8-49
8.9.1 Hierarchical Mapping of Shared Resources .8-49
8.9.2 Hierarchical Mapping of CPUID Extended Topology Leaf .8-51
8.9.3 Hierarchical ID of Logical Processors in an MP System .8-52
8.9.3.1 Hierarchical ID of Logical Processors with x2APIC ID. .8-54
8.9.4 Algorithm for Three-Level Mappings of APIC_ID .8-55
8.9.5 Identifying Topological Relationships in a MP System .8-61
8.10 MANAGEMENT OF IDLE AND BLOCKED CONDITIONS . 8-65
8.10.1 HLT Instruction. .8-65
8.10.2 PAUSE Instruction .8-66
8.10.3 Detecting Support MONITOR/MWAIT Instruction .8-66
8.10.4 MONITOR/MWAIT Instruction. .8-67
8.10.5 Monitor/Mwait Address Range Determination .8-68
8.10.6 Required Operating System Support. .8-69
8.10.6.1 Use the PAUSE Instruction in Spin-Wait Loops. .8-69
8.10.6.2 Potential Usage of MONITOR/MWAIT in C0 Idle Loops .8-70
8.10.6.3 Halt Idle Logical Processors .8-72
8.10.6.4 Potential Usage of MONITOR/MWAIT in C1 Idle Loops .8-72
8.10.6.5 Guidelines for Scheduling Threads on Logical Processors Sharing Execution

Resources .8-73
8.10.6.6 Eliminate Execution-Based Timing Loops. .8-73
8.10.6.7 Place Locks and Semaphores in Aligned, 128-Byte Blocks of Memory.8-74
8.11 MP INITIALIZATION FOR P6 FAMILY PROCESSORS . 8-74
8.11.1 Overview of the MP Initialization Process For P6 Family Processors8-74
8.11.2 MP Initialization Protocol Algorithm. .8-75
8.11.2.1 Error Detection and Handling During the MP Initialization Protocol 8-77

CHAPTER 9
PROCESSOR MANAGEMENT AND INITIALIZATION
9.1 INITIALIZATION OVERVIEW . 9-1
9.1.1 Processor State After Reset . 9-2
9.1.2 Processor Built-In Self-Test (BIST) . 9-2
9.1.3 Model and Stepping Information . 9-5
9.1.4 First Instruction Executed. 9-6
9.2 X87 FPU INITIALIZATION . 9-6
Vol. 3A ix

CONTENTS
PAGE
9.2.1 Configuring the x87 FPU Environment . 9-6
9.2.2 Setting the Processor for x87 FPU Software Emulation . 9-7
9.3 CACHE ENABLING . 9-8
9.4 MODEL-SPECIFIC REGISTERS (MSRS) . 9-9
9.5 MEMORY TYPE RANGE REGISTERS (MTRRS) . 9-9
9.6 INITIALIZING SSE/SSE2/SSE3/SSSE3 EXTENSIONS . 9-10
9.7 SOFTWARE INITIALIZATION FOR REAL-ADDRESS MODE OPERATION. 9-10
9.7.1 Real-Address Mode IDT. 9-11
9.7.2 NMI Interrupt Handling . 9-11
9.8 SOFTWARE INITIALIZATION FOR PROTECTED-MODE OPERATION . 9-11
9.8.1 Protected-Mode System Data Structures . 9-12
9.8.2 Initializing Protected-Mode Exceptions and Interrupts. 9-13
9.8.3 Initializing Paging . 9-13
9.8.4 Initializing Multitasking . 9-14
9.8.5 Initializing IA-32e Mode . 9-14
9.8.5.1 IA-32e Mode System Data Structures . 9-15
9.8.5.2 IA-32e Mode Interrupts and Exceptions . 9-15
9.8.5.3 64-bit Mode and Compatibility Mode Operation . 9-16
9.8.5.4 Switching Out of IA-32e Mode Operation . 9-16
9.9 MODE SWITCHING . 9-17
9.9.1 Switching to Protected Mode . 9-17
9.9.2 Switching Back to Real-Address Mode. 9-18
9.10 INITIALIZATION AND MODE SWITCHING EXAMPLE . 9-19
9.10.1 Assembler Usage . 9-22
9.10.2 STARTUP.ASM Listing . 9-23
9.10.3 MAIN.ASM Source Code. 9-33
9.10.4 Supporting Files. 9-34
9.11 MICROCODE UPDATE FACILITIES . 9-36
9.11.1 Microcode Update. 9-37
9.11.2 Optional Extended Signature Table . 9-41
9.11.3 Processor Identification . 9-41
9.11.4 Platform Identification . 9-42
9.11.5 Microcode Update Checksum . 9-44
9.11.6 Microcode Update Loader . 9-45
9.11.6.1 Hard Resets in Update Loading . 9-46
9.11.6.2 Update in a Multiprocessor System . 9-46
9.11.6.3 Update in a System Supporting Intel Hyper-Threading Technology 9-46
9.11.6.4 Update in a System Supporting Dual-Core Technology . 9-46
9.11.6.5 Update Loader Enhancements . 9-47
9.11.7 Update Signature and Verification . 9-47
9.11.7.1 Determining the Signature . 9-48
9.11.7.2 Authenticating the Update . 9-48
9.11.8 Pentium 4, Intel Xeon, and P6 Family Processor Microcode Update Specifications. . 9-49
9.11.8.1 Responsibilities of the BIOS . 9-49
9.11.8.2 Responsibilities of the Calling Program . 9-52
9.11.8.3 Microcode Update Functions. 9-55
9.11.8.4 INT 15H-based Interface . 9-55
9.11.8.5 Function 00H—Presence Test . 9-56
9.11.8.6 Function 01H—Write Microcode Update Data . 9-57
9.11.8.7 Function 02H—Microcode Update Control . 9-62
9.11.8.8 Function 03H—Read Microcode Update Data . 9-63
9.11.8.9 Return Codes . 9-64
x Vol. 3A

CONTENTS
PAGE
CHAPTER 10
ADVANCED PROGRAMMABLE
INTERRUPT CONTROLLER (APIC)
10.1 LOCAL AND I/O APIC OVERVIEW . 10-1
10.2 SYSTEM BUS VS. APIC BUS . 10-5
10.3 THE INTEL® 82489DX EXTERNAL APIC, THE APIC, THE XAPIC, AND THE X2APIC. . . . 10-5
10.4 LOCAL APIC . 10-6
10.4.1 The Local APIC Block Diagram .10-6
10.4.2 Presence of the Local APIC. 10-10
10.4.3 Enabling or Disabling the Local APIC . 10-10
10.4.4 Local APIC Status and Location . 10-11
10.4.5 Relocating the Local APIC Registers . 10-12
10.4.6 Local APIC ID . 10-12
10.4.7 Local APIC State . 10-13
10.4.7.1 Local APIC State After Power-Up or Reset . 10-14
10.4.7.2 Local APIC State After It Has Been Software Disabled . 10-14
10.4.7.3 Local APIC State After an INIT Reset (“Wait-for-SIPI” State) 10-15
10.4.7.4 Local APIC State After It Receives an INIT-Deassert IPI . 10-15
10.4.8 Local APIC Version Register . 10-15
10.5 HANDLING LOCAL INTERRUPTS . 10-16
10.5.1 Local Vector Table. 10-16
10.5.2 Valid Interrupt Vectors . 10-20
10.5.3 Error Handling. 10-20
10.5.4 APIC Timer . 10-22
10.5.4.1 TSC-Deadline Mode . 10-24
10.5.5 Local Interrupt Acceptance. 10-26
10.6 ISSUING INTERPROCESSOR INTERRUPTS . 10-26
10.6.1 Interrupt Command Register (ICR) . 10-26
10.6.2 Determining IPI Destination . 10-32
10.6.2.1 Physical Destination Mode . 10-33
10.6.2.2 Logical Destination Mode . 10-33
10.6.2.3 Broadcast/Self Delivery Mode . 10-35
10.6.2.4 Lowest Priority Delivery Mode . 10-36
10.6.3 IPI Delivery and Acceptance . 10-37
10.7 SYSTEM AND APIC BUS ARBITRATION . 10-37
10.8 HANDLING INTERRUPTS . 10-38
10.8.1 Interrupt Handling with the Pentium 4 and Intel Xeon Processors 10-38
10.8.2 Interrupt Handling with the P6 Family and Pentium Processors 10-39
10.8.3 Interrupt, Task, and Processor Priority . 10-40
10.8.3.1 Task and Processor Priorities . 10-41
10.8.4 Interrupt Acceptance for Fixed Interrupts . 10-43
10.8.5 Signaling Interrupt Servicing Completion . 10-44
10.8.6 Task Priority in IA-32e Mode . 10-45
10.8.6.1 Interaction of Task Priorities between CR8 and APIC . 10-46
10.9 SPURIOUS INTERRUPT. 10-46
10.10 APIC BUS MESSAGE PASSING MECHANISM AND PROTOCOL (P6 FAMILY, PENTIUM

PROCESSORS) . 10-47
10.10.1 Bus Message Formats . 10-49
10.11 MESSAGE SIGNALLED INTERRUPTS. 10-49
10.11.1 Message Address Register Format . 10-49
10.11.2 Message Data Register Format . 10-51
Vol. 3A xi

CONTENTS
PAGE
10.12 EXTENDED XAPIC (X2APIC) . 10-52
10.12.1 Detecting and Enabling x2APIC Mode .10-53
10.12.1.1 Instructions to Access APIC Registers .10-54
10.12.1.2 x2APIC Register Address Space. .10-54
10.12.1.3 Reserved Bit Checking .10-57
10.12.2 x2APIC Register Availability .10-58
10.12.3 MSR Access in x2APIC Mode .10-58
10.12.4 VM-Exit Controls for MSRs and x2APIC Registers .10-59
10.12.5 x2APIC State Transitions .10-59
10.12.5.1 x2APIC States .10-59

x2APIC After Reset .10-60
x2APIC Transitions From x2APIC Mode. .10-61
x2APIC Transitions From Disabled Mode. .10-61
State Changes From xAPIC Mode to x2APIC Mode .10-62

10.12.6 Routing of Device Interrupts in x2APIC Mode .10-62
10.12.7 Initialization by System Software .10-62
10.12.8 CPUID Extensions And Topology Enumeration .10-63
10.12.8.1 Consistency of APIC IDs and CPUID. .10-63
10.12.9 ICR Operation in x2APIC Mode .10-64
10.12.10 Determining IPI Destination in x2APIC Mode .10-64
10.12.10.1 Logical Destination Mode in x2APIC Mode .10-64
10.12.10.2 Deriving Logical x2APIC ID from the Local x2APIC ID .10-66
10.12.11 SELF IPI Register. .10-67
10.13 APIC BUS MESSAGE FORMATS . 10-68
10.13.1 Bus Message Formats .10-68
10.13.2 EOI Message .10-68
10.13.2.1 Short Message. .10-69
10.13.2.2 Non-focused Lowest Priority Message .10-70
10.13.2.3 APIC Bus Status Cycles .10-72

CHAPTER 11
MEMORY CACHE CONTROL
11.1 INTERNAL CACHES, TLBS, AND BUFFERS . 11-1
11.2 CACHING TERMINOLOGY. 11-7
11.3 METHODS OF CACHING AVAILABLE . 11-8
11.3.1 Buffering of Write Combining Memory Locations. .11-11
11.3.2 Choosing a Memory Type. .11-12
11.3.3 Code Fetches in Uncacheable Memory. .11-13
11.4 CACHE CONTROL PROTOCOL . 11-13
11.5 CACHE CONTROL. 11-14
11.5.1 Cache Control Registers and Bits. .11-15
11.5.2 Precedence of Cache Controls .11-19
11.5.2.1 Selecting Memory Types for Pentium Pro and Pentium II Processors11-20
11.5.2.2 Selecting Memory Types for Pentium III and More Recent Processor Families. .11-21
11.5.2.3 Writing Values Across Pages with Different Memory Types11-23
11.5.3 Preventing Caching .11-24
11.5.4 Disabling and Enabling the L3 Cache .11-25
11.5.5 Cache Management Instructions .11-25
11.5.6 L1 Data Cache Context Mode .11-26
11.5.6.1 Adaptive Mode. .11-26
11.5.6.2 Shared Mode .11-26
xii Vol. 3A

CONTENTS
PAGE
11.6 SELF-MODIFYING CODE . 11-27
11.7 IMPLICIT CACHING (PENTIUM 4, INTEL XEON,

AND P6 FAMILY PROCESSORS) . 11-27
11.8 EXPLICIT CACHING. 11-28
11.9 INVALIDATING THE TRANSLATION LOOKASIDE BUFFERS (TLBS) 11-29
11.10 STORE BUFFER. 11-29
11.11 MEMORY TYPE RANGE REGISTERS (MTRRS). 11-30
11.11.1 MTRR Feature Identification . 11-32
11.11.2 Setting Memory Ranges with MTRRs . 11-33
11.11.2.1 IA32_MTRR_DEF_TYPE MSR . 11-33
11.11.2.2 Fixed Range MTRRs . 11-34
11.11.2.3 Variable Range MTRRs. 11-34
11.11.2.4 System-Management Range Register Interface . 11-37
11.11.3 Example Base and Mask Calculations . 11-38
11.11.3.1 Base and Mask Calculations for Greater-Than 36-bit Physical Address Support11-40
11.11.4 Range Size and Alignment Requirement . 11-41
11.11.4.1 MTRR Precedences . 11-41
11.11.5 MTRR Initialization. 11-41
11.11.6 Remapping Memory Types . 11-42
11.11.7 MTRR Maintenance Programming Interface . 11-42
11.11.7.1 MemTypeGet() Function . 11-42
11.11.7.2 MemTypeSet() Function . 11-44
11.11.8 MTRR Considerations in MP Systems . 11-46
11.11.9 Large Page Size Considerations . 11-47
11.12 PAGE ATTRIBUTE TABLE (PAT). 11-48
11.12.1 Detecting Support for the PAT Feature . 11-48
11.12.2 IA32_PAT MSR . 11-49
11.12.3 Selecting a Memory Type from the PAT . 11-50
11.12.4 Programming the PAT . 11-50
11.12.5 PAT Compatibility with Earlier IA-32 Processors. 11-52

CHAPTER 12
INTEL® MMX™ TECHNOLOGY SYSTEM PROGRAMMING
12.1 EMULATION OF THE MMX INSTRUCTION SET. 12-1
12.2 THE MMX STATE AND MMX REGISTER ALIASING . 12-1
12.2.1 Effect of MMX, x87 FPU, FXSAVE, and FXRSTOR Instructions on the x87 FPU Tag

Word .12-3
12.3 SAVING AND RESTORING THE MMX STATE AND REGISTERS . 12-4
12.4 SAVING MMX STATE ON TASK OR CONTEXT SWITCHES . 12-5
12.5 EXCEPTIONS THAT CAN OCCUR WHEN EXECUTING MMX INSTRUCTIONS 12-5
12.5.1 Effect of MMX Instructions on Pending x87 Floating-Point Exceptions.12-6
12.6 DEBUGGING MMX CODE . 12-6

CHAPTER 13
SYSTEM PROGRAMMING FOR INSTRUCTION SET EXTENSIONS AND
PROCESSOR EXTENDED STATES
13.1 PROVIDING OPERATING SYSTEM SUPPORT FOR SSE/SSE2/SSE3/SSSE3/SSE4

EXTENSIONS . 13-1
13.1.1 Adding Support to an Operating System for SSE/SSE2/SSE3/SSSE3/SSE4

Extensions .13-2
Vol. 3A xiii

CONTENTS
PAGE
13.1.2 Checking for SSE/SSE2/SSE3/SSSE3/SSE4 Extension Support . 13-2
13.1.3 Checking for Support for the FXSAVE and FXRSTOR Instructions 13-3
13.1.4 Initialization of the SSE/SSE2/SSE3/SSSE3/SSE4 Extensions . 13-3
13.1.5 Providing Non-Numeric Exception Handlers for Exceptions Generated by the

SSE/SSE2/SSE3/SSSE3/SSE4 Instructions . 13-5
13.1.6 Providing an Handler for the SIMD Floating-Point Exception (#XM). 13-7
13.1.6.1 Numeric Error flag and IGNNE# . 13-7
13.2 EMULATION OF SSE/SSE2/SSE3/SSSE3/SSE4 EXTENSIONS. 13-8
13.3 SAVING AND RESTORING THE SSE/SSE2/SSE3/SSSE3/SSE4 STATE 13-8
13.4 SAVING THE SSE/SSE2/SSE3/SSSE3/SSE4 STATE ON TASK OR CONTEXT SWITCHES . 13-9
13.5 DESIGNING OS FACILITIES FOR AUTOMATICALLY SAVING X87 FPU, MMX, AND

SSE/SSE2/SSE3/SSSE3/SSE4 STATE ON TASK OR CONTEXT SWITCHES 13-9
13.5.1 Using the TS Flag to Control the Saving of the

x87 FPU, MMX, SSE, SSE2, SSE3 SSSE3 and SSE4 State .13-10
13.6 XSAVE/XRSTOR AND PROCESSOR EXTENDED STATE MANAGEMENT 13-12
13.6.1 XSAVE Header .13-13
13.7 INTEROPERABILITY OF XSAVE/XRSTOR AND FXSAVE/FXRSTOR 13-15
13.8 DETECTION, ENUMERATION, ENABLING PROCESSOR EXTENDED STATE SUPPORT. . 13-17
13.8.1 Application Programming Model and Processor Extended States.13-18
13.9 INTEL ADVANCED VECTOR EXTENSIONS (INTEL AVX) AND YMM STATE. 13-19
13.10 YMM STATE MANAGEMENT. 13-20
13.10.1 Detection of YMM State Support .13-20
13.10.2 Enabling of YMM State .13-20
13.10.3 Enabling of SIMD Floating-Exception Support .13-21
13.10.4 The Layout of XSAVE Area .13-21
13.10.5 XSAVE/XRSTOR Interaction with YMM State and MXCSR. .13-23
13.10.6 Processor Extended State Save Optimization and XSAVEOPT13-24
13.10.6.1 XSAVEOPT Usage Guidelines .13-25

CHAPTER 14
POWER AND THERMAL MANAGEMENT
14.1 ENHANCED INTEL SPEEDSTEP® TECHNOLOGY . 14-1
14.1.1 Software Interface For Initiating Performance State Transitions 14-1
14.2 P-STATE HARDWARE COORDINATION . 14-2
14.3 SYSTEM SOFTWARE CONSIDERATIONS AND OPPORTUNISTIC PROCESSOR

PERFORMANCE OPERATION . 14-4
14.3.1 Intel Dynamic Acceleration . 14-4
14.3.2 System Software Interfaces for Opportunistic Processor Performance Operation . 14-4
14.3.2.1 Discover Hardware Support and Enabling of Opportunistic Processor Operation 14-5
14.3.2.2 OS Control of Opportunistic Processor Performance Operation 14-5
14.3.2.3 Required Changes to OS Power Management P-state Policy 14-6
14.3.2.4 Application Awareness of Opportunistic Processor Operation (Optional). 14-7
14.3.3 Intel Turbo Boost Technology . 14-8
14.3.4 Performance and Energy Bias Hint support . 14-8
14.4 MWAIT EXTENSIONS FOR ADVANCED POWER MANAGEMENT . 14-9
14.5 THERMAL MONITORING AND PROTECTION . 14-10
14.5.1 Catastrophic Shutdown Detector .14-12
14.5.2 Thermal Monitor .14-12
14.5.2.1 Thermal Monitor 1 .14-12
14.5.2.2 Thermal Monitor 2 .14-12
14.5.2.3 Two Methods for Enabling TM2. .14-13
xiv Vol. 3A

CONTENTS
PAGE
14.5.2.4 Performance State Transitions and Thermal Monitoring . 14-14
14.5.2.5 Thermal Status Information . 14-14
14.5.2.6 Adaptive Thermal Monitor . 14-16
14.5.3 Software Controlled Clock Modulation . 14-16
14.5.3.1 Extension of Software Controlled Clock Modulation . 14-18
14.5.4 Detection of Thermal Monitor and Software Controlled Clock Modulation

Facilities . 14-18
14.5.4.1 Detection of Software Controlled Clock Modulation Extension 14-19
14.5.5 On Die Digital Thermal Sensors . 14-19
14.5.5.1 Digital Thermal Sensor Enumeration . 14-19
14.5.5.2 Reading the Digital Sensor . 14-19
14.5.6 Power Limit Notification . 14-23
14.6 PACKAGE LEVEL THERMAL MANAGEMENT. 14-23
14.6.1 Support for Passive and Active cooling . 14-27
14.7 PLATFORM SPECIFIC POWER MANAGEMENT SUPPORT . 14-27
14.7.1 RAPL Interfaces . 14-28
14.7.2 RAPL Domains and Platform Specificity . 14-29
14.7.3 Package RAPL Domain . 14-30
14.7.4 PP0/PP1 RAPL Domains . 14-33
14.7.5 DRAM RAPL Domain . 14-36

CHAPTER 15
MACHINE-CHECK ARCHITECTURE
15.1 MACHINE-CHECK ARCHITECTURE . 15-1
15.2 COMPATIBILITY WITH PENTIUM PROCESSOR . 15-1
15.3 MACHINE-CHECK MSRS . 15-2
15.3.1 Machine-Check Global Control MSRs .15-3
15.3.1.1 IA32_MCG_CAP MSR. .15-3
15.3.1.2 IA32_MCG_STATUS MSR. .15-4
15.3.1.3 IA32_MCG_CTL MSR .15-5
15.3.2 Error-Reporting Register Banks .15-5
15.3.2.1 IA32_MCi_CTL MSRs .15-5
15.3.2.2 IA32_MCi_STATUS MSRS .15-6
15.3.2.3 IA32_MCi_ADDR MSRs. 15-10
15.3.2.4 IA32_MCi_MISC MSRs . 15-11
15.3.2.5 IA32_MCi_CTL2 MSRs . 15-12
15.3.2.6 IA32_MCG Extended Machine Check State MSRs . 15-13
15.3.3 Mapping of the Pentium Processor Machine-Check Errors to the Machine-Check

Architecture . 15-15
15.4 ENHANCED CACHE ERROR REPORTING . 15-16
15.5 CORRECTED MACHINE CHECK ERROR INTERRUPT . 15-16
15.5.1 CMCI Local APIC Interface . 15-17
15.5.2 System Software Recommendation for Managing CMCI and Machine Check

Resources. 15-18
15.5.2.1 CMCI Initialization. 15-18
15.5.2.2 CMCI Threshold Management. 15-19
15.5.2.3 CMCI Interrupt Handler . 15-19
15.6 RECOVERY OF UNCORRECTED RECOVERABLE (UCR) ERRORS . 15-20
15.6.1 Detection of Software Error Recovery Support . 15-20
15.6.2 UCR Error Reporting and Logging. 15-21
15.6.3 UCR Error Classification . 15-22
Vol. 3A xv

CONTENTS
PAGE
15.6.4 UCR Error Overwrite Rules .15-23
15.7 MACHINE-CHECK AVAILABILITY . 15-24
15.8 MACHINE-CHECK INITIALIZATION . 15-24
15.9 INTERPRETING THE MCA ERROR CODES . 15-26
15.9.1 Simple Error Codes .15-26
15.9.2 Compound Error Codes .15-27
15.9.2.1 Correction Report Filtering (F) Bit .15-28
15.9.2.2 Transaction Type (TT) Sub-Field .15-28
15.9.2.3 Level (LL) Sub-Field .15-28
15.9.2.4 Request (RRRR) Sub-Field .15-29
15.9.2.5 Bus and Interconnect Errors .15-29
15.9.2.6 Memory Controller Errors. .15-30
15.9.3 Architecturally Defined UCR Errors. .15-30
15.9.3.1 Architecturally Defined SRAO Errors .15-31
15.9.3.2 Architecturally Defined SRAR Errors .15-32
15.9.4 Multiple MCA Errors .15-34
15.9.5 Machine-Check Error Codes Interpretation. .15-35
15.10 GUIDELINES FOR WRITING MACHINE-CHECK SOFTWARE. 15-35
15.10.1 Machine-Check Exception Handler .15-35
15.10.2 Pentium Processor Machine-Check Exception Handling .15-37
15.10.3 Logging Correctable Machine-Check Errors .15-37
15.10.4 Machine-Check Software Handler Guidelines for Error Recovery15-39
15.10.4.1 Machine-Check Exception Handler for Error Recovery .15-39
15.10.4.2 Corrected Machine-Check Handler for Error Recovery .15-45

CHAPTER 16
INTERPRETING MACHINE-CHECK ERROR CODES
16.1 INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY 06H MACHINE ERROR

CODES FOR MACHINE CHECK . 16-1
16.2 INCREMENTAL DECODING INFORMATION: INTEL CORE 2 PROCESSOR FAMILY MACHINE

ERROR CODES FOR MACHINE CHECK . 16-5
16.2.1 Model-Specific Machine Check Error Codes for Intel Xeon Processor 7400 Series . . 16-9
16.2.1.1 Processor Machine Check Status Register Incremental MCA Error Code

Definition. 16-9
16.2.2 Intel Xeon Processor 7400 Model Specific Error Code Field .16-10
16.2.2.1 Processor Model Specific Error Code Field Type B: Bus and Interconnect Error 16-10
16.2.2.2 Processor Model Specific Error Code Field Type C: Cache Bus Controller Error .16-10
16.3 INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY WITH CPUID

DISPLAYFAMILY_DISPLAYMODEL SIGNATURE 06_1AH, MACHINE ERROR CODES FOR
MACHINE CHECK . 16-11

16.3.1 Intel QPI Machine Check Errors. .16-12
16.3.2 Internal Machine Check Errors .16-13
16.3.3 Memory Controller Errors. .16-14
16.4 INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY WITH CPUID

DISPLAYFAMILY_DISPLAYMODEL SIGNATURE 06_2DH, MACHINE ERROR CODES FOR
MACHINE CHECK . 16-15

16.4.1 Internal Machine Check Errors .16-16
16.4.2 Intel QPI Machine Check Errors. .16-18
16.4.3 Integrated Memory Controller Machine Check Errors .16-18
16.5 INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY 0FH MACHINE ERROR

CODES FOR MACHINE CHECK . 16-18
xvi Vol. 3A

CONTENTS
PAGE
16.5.1 Model-Specific Machine Check Error Codes for Intel Xeon Processor MP 7100
Series. 16-20

16.5.1.1 Processor Machine Check Status Register MCA Error Code Definition 16-21
16.5.2 Other_Info Field (all MCA Error Types) . 16-22
16.5.3 Processor Model Specific Error Code Field. 16-24
16.5.3.1 MCA Error Type A: L3 Error . 16-24
16.5.3.2 Processor Model Specific Error Code Field Type B: Bus and Interconnect Error 16-24
16.5.3.3 Processor Model Specific Error Code Field Type C: Cache Bus Controller Error 16-26

CHAPTER 17
DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
17.1 OVERVIEW OF DEBUG SUPPORT FACILITIES. 17-1
17.2 DEBUG REGISTERS. 17-2
17.2.1 Debug Address Registers (DR0-DR3) .17-4
17.2.2 Debug Registers DR4 and DR5 .17-4
17.2.3 Debug Status Register (DR6) .17-4
17.2.4 Debug Control Register (DR7) .17-5
17.2.5 Breakpoint Field Recognition .17-6
17.2.6 Debug Registers and Intel® 64 Processors .17-8
17.3 DEBUG EXCEPTIONS . 17-9
17.3.1 Debug Exception (#DB)—Interrupt Vector 1. .17-9
17.3.1.1 Instruction-Breakpoint Exception Condition . 17-10
17.3.1.2 Data Memory and I/O Breakpoint Exception Conditions . 17-12
17.3.1.3 General-Detect Exception Condition . 17-12
17.3.1.4 Single-Step Exception Condition . 17-12
17.3.1.5 Task-Switch Exception Condition . 17-13
17.3.2 Breakpoint Exception (#BP)—Interrupt Vector 3 . 17-13
17.4 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING OVERVIEW 17-14
17.4.1 IA32_DEBUGCTL MSR. 17-14
17.4.2 Monitoring Branches, Exceptions, and Interrupts . 17-16
17.4.3 Single-Stepping on Branches . 17-17
17.4.4 Branch Trace Messages . 17-17
17.4.4.1 Branch Trace Message Visibility . 17-17
17.4.5 Branch Trace Store (BTS) . 17-18
17.4.6 CPL-Qualified Branch Trace Mechanism . 17-18
17.4.7 Freezing LBR and Performance Counters on PMI . 17-18
17.4.8 LBR Stack . 17-19
17.4.8.1 LBR Stack and Intel® 64 Processors. 17-20
17.4.8.2 LBR Stack and IA-32 Processors. 17-21
17.4.8.3 Last Exception Records and Intel 64 Architecture . 17-21
17.4.9 BTS and DS Save Area . 17-21
17.4.9.1 DS Save Area and IA-32e Mode Operation . 17-25
17.4.9.2 Setting Up the DS Save Area . 17-28
17.4.9.3 Setting Up the BTS Buffer . 17-29
17.4.9.4 Setting Up CPL-Qualified BTS . 17-30
17.4.9.5 Writing the DS Interrupt Service Routine . 17-31
17.5 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING (INTEL® CORE™2 DUO

AND INTEL® ATOM™ PROCESSOR FAMILY) . 17-32
17.5.1 LBR Stack . 17-33
17.6 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING FOR PROCESSORS BASED

ON INTEL® MICROARCHITECTURE CODE NAME NEHALEM . 17-33
Vol. 3A xvii

CONTENTS
PAGE
17.6.1 LBR Stack .17-35
17.6.2 Filtering of Last Branch Records .17-36
17.7 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING FOR PROCESSORS BASED

ON INTEL® MICROARCHITECTURE CODE NAME SANDY BRIDGE 17-37
17.8 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING (PROCESSORS BASED ON

INTEL NETBURST® MICROARCHITECTURE) . 17-37
17.8.1 MSR_DEBUGCTLA MSR .17-38
17.8.2 LBR Stack for Processors Based on Intel NetBurst® Microarchitecture17-40
17.8.3 Last Exception Records .17-42
17.9 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING (INTEL® CORE™ SOLO

AND INTEL® CORE™ DUO PROCESSORS) . 17-42
17.10 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING (PENTIUM M

PROCESSORS) . 17-44
17.11 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING (P6 FAMILY

PROCESSORS) . 17-46
17.11.1 DEBUGCTLMSR Register. .17-46
17.11.2 Last Branch and Last Exception MSRs .17-47
17.11.3 Monitoring Branches, Exceptions, and Interrupts. .17-48
17.12 TIME-STAMP COUNTER. 17-49
17.12.1 Invariant TSC .17-50
17.12.2 IA32_TSC_AUX Register and RDTSCP Support. .17-51

CHAPTER 18
PERFORMANCE MONITORING
18.1 PERFORMANCE MONITORING OVERVIEW . 18-1
18.2 ARCHITECTURAL PERFORMANCE MONITORING . 18-2
18.2.1 Architectural Performance Monitoring Version 1. 18-3
18.2.1.1 Architectural Performance Monitoring Version 1 Facilities. 18-4
18.2.2 Additional Architectural Performance Monitoring Extensions . 18-6
18.2.2.1 Architectural Performance Monitoring Version 2 Facilities. 18-7
18.2.2.2 Architectural Performance Monitoring Version 3 Facilities.18-10
18.2.2.3 Full-Width Writes to Performance Counter Registers. .18-13
18.2.3 Pre-defined Architectural Performance Events .18-14
18.3 PERFORMANCE MONITORING (INTEL® CORE™ SOLO AND INTEL® CORE™ DUO

PROCESSORS) . 18-16
18.4 PERFORMANCE MONITORING (PROCESSORS BASED ON INTEL® CORE™

MICROARCHITECTURE) . 18-18
18.4.1 Fixed-function Performance Counters. .18-19
18.4.2 Global Counter Control Facilities .18-20
18.4.3 At-Retirement Events .18-23
18.4.4 Precise Event Based Sampling (PEBS) .18-23
18.4.4.1 Setting up the PEBS Buffer. .18-24
18.4.4.2 PEBS Record Format .18-24
18.4.4.3 Writing a PEBS Interrupt Service Routine. .18-25
18.4.4.4 Re-configuring PEBS Facilities .18-26
18.5 PERFORMANCE MONITORING (PROCESSORS BASED ON INTEL® ATOM™

MICROARCHITECTURE) . 18-27
18.6 PERFORMANCE MONITORING FOR PROCESSORS BASED ON INTEL®

MICROARCHITECTURE CODE NAME NEHALEM . 18-27
18.6.1 Enhancements of Performance Monitoring in the Processor Core18-29
18.6.1.1 Precise Event Based Sampling (PEBS) .18-29
xviii Vol. 3A

CONTENTS
PAGE
18.6.1.2 Load Latency Performance Monitoring Facility . 18-34
18.6.1.3 Off-core Response Performance Monitoring in the Processor Core 18-36
18.6.2 Performance Monitoring Facility in the Uncore . 18-39
18.6.2.1 Uncore Performance Monitoring Management Facility . 18-39
18.6.2.2 Uncore Performance Event Configuration Facility . 18-42
18.6.2.3 Uncore Address/Opcode Match MSR . 18-44
18.6.3 Intel® Xeon® Processor 7500 Series Performance Monitoring Facility 18-45
18.7 PERFORMANCE MONITORING FOR PROCESSORS BASED ON INTEL®

MICROARCHITECTURE CODE NAME WESTMERE . 18-48
18.7.1 Intel® Xeon® Processor E7 Family Performance Monitoring Facility. 18-48
18.8 PERFORMANCE MONITORING FOR PROCESSORS BASED ON INTEL®

MICROARCHITECTURE CODE NAME SANDY BRIDGE . 18-49
18.8.1 Global Counter Control Facilities In Intel® Microarchitecture Code Name Sandy

Bridge . 18-50
18.8.2 Counter Coalescence . 18-52
18.8.3 Full Width Writes to Performance Counters . 18-53
18.8.4 PEBS Support in Intel® Microarchitecture Code Name Sandy Bridge 18-53
18.8.4.1 PEBS Record Format. 18-54
18.8.4.2 Load Latency Performance Monitoring Facility . 18-56
18.8.4.3 Precise Store Facility . 18-58
18.8.4.4 Precise Distribution of Instructions Retired (PDIR) . 18-59
18.8.5 Off-core Response Performance Monitoring . 18-59
18.8.6 Uncore Performance Monitoring Facilities In Intel® Core™ i7-2xxx, Intel® Core™

i5-2xxx, Intel® Core™ i3-2xxx Processor Series . 18-63
18.8.6.1 Uncore Performance Monitoring Events . 18-65
18.8.7 Intel® Xeon® Processor E5 Family Performance Monitoring Facility. 18-65
18.8.8 Intel® Xeon® Processor E5 Family Uncore Performance Monitoring Facility 18-66
18.9 NEXT GENERATION INTEL CORE PROCESSOR PERFORMANCE MONITORING

FACILITY . 18-67
18.10 PERFORMANCE MONITORING (PROCESSORS BASED ON INTEL NETBURST®

MICROARCHITECTURE). 18-67
18.10.1 ESCR MSRs. 18-71
18.10.2 Performance Counters . 18-73
18.10.3 CCCR MSRs. 18-74
18.10.4 Debug Store (DS) Mechanism. 18-76
18.10.5 Programming the Performance Counters for Non-Retirement Events. 18-77
18.10.5.1 Selecting Events to Count. 18-77
18.10.5.2 Filtering Events . 18-79
18.10.5.3 Starting Event Counting . 18-81
18.10.5.4 Reading a Performance Counter’s Count . 18-81
18.10.5.5 Halting Event Counting . 18-82
18.10.5.6 Cascading Counters. 18-82
18.10.5.7 EXTENDED CASCADING . 18-83
18.10.5.8 Generating an Interrupt on Overflow . 18-85
18.10.5.9 Counter Usage Guideline . 18-85
18.10.6 At-Retirement Counting . 18-86
18.10.6.1 Using At-Retirement Counting . 18-87
18.10.6.2 Tagging Mechanism for Front_end_event. 18-88
18.10.6.3 Tagging Mechanism For Execution_event . 18-88
18.10.6.4 Tagging Mechanism for Replay_event . 18-89
18.10.7 Precise Event-Based Sampling (PEBS) . 18-89
18.10.7.1 Detection of the Availability of the PEBS Facilities . 18-90
Vol. 3A xix

CONTENTS
PAGE
18.10.7.2 Setting Up the DS Save Area .18-90
18.10.7.3 Setting Up the PEBS Buffer .18-90
18.10.7.4 Writing a PEBS Interrupt Service Routine. .18-90
18.10.7.5 Other DS Mechanism Implications .18-91
18.10.8 Operating System Implications. .18-91
18.11 PERFORMANCE MONITORING AND INTEL HYPER-THREADING TECHNOLOGY IN

PROCESSORS BASED ON INTEL NETBURST® MICROARCHITECTURE. 18-91
18.11.1 ESCR MSRs .18-92
18.11.2 CCCR MSRs .18-93
18.11.3 IA32_PEBS_ENABLE MSR .18-95
18.11.4 Performance Monitoring Events .18-95
18.12 COUNTING CLOCKS. 18-97
18.12.1 Non-Halted Clockticks .18-98
18.12.2 Non-Sleep Clockticks .18-99
18.12.3 Incrementing the Time-Stamp Counter . 18-100
18.12.4 Non-Halted Reference Clockticks . 18-100
18.12.5 Cycle Counting and Opportunistic Processor Operation . 18-100
18.13 PERFORMANCE MONITORING, BRANCH PROFILING AND SYSTEM EVENTS 18-101
18.14 PERFORMANCE MONITORING AND DUAL-CORE TECHNOLOGY . 18-102
18.15 PERFORMANCE MONITORING ON 64-BIT INTEL XEON PROCESSOR MP WITH UP TO

8-MBYTE L3 CACHE . 18-102
18.16 PERFORMANCE MONITORING ON L3 AND CACHING BUS CONTROLLER SUB-

SYSTEMS . 18-107
18.16.1 Overview of Performance Monitoring with L3/Caching Bus Controller. 18-109
18.16.2 GBSQ Event Interface . 18-110
18.16.3 GSNPQ Event Interface. 18-112
18.16.4 FSB Event Interface. 18-114
18.16.4.1 FSB Sub-Event Mask Interface . 18-115
18.16.5 Common Event Control Interface. 18-116
18.17 PERFORMANCE MONITORING (P6 FAMILY PROCESSOR) . 18-116
18.17.1 PerfEvtSel0 and PerfEvtSel1 MSRs . 18-117
18.17.2 PerfCtr0 and PerfCtr1 MSRs. 18-119
18.17.3 Starting and Stopping the Performance-Monitoring Counters 18-119
18.17.4 Event and Time-Stamp Monitoring Software. 18-120
18.17.5 Monitoring Counter Overflow . 18-120
18.18 PERFORMANCE MONITORING (PENTIUM PROCESSORS). 18-121
18.18.1 Control and Event Select Register (CESR). 18-121
18.18.2 Use of the Performance-Monitoring Pins . 18-123
18.18.3 Events Counted . 18-123

CHAPTER 19
PERFORMANCE-MONITORING EVENTS
19.1 ARCHITECTURAL PERFORMANCE-MONITORING EVENTS . 19-1
19.2 PERFORMANCE MONITORING EVENTS FOR NEXT GENERATION INTEL® CORE™

PROCESSORS . 19-2
19.3 PERFORMANCE MONITORING EVENTS FOR 2ND GENERATION INTEL® CORE™

I7-2XXX, INTEL® CORE™ I5-2XXX, INTEL® CORE™ I3-2XXX PROCESSOR SERIES. 19-13
19.4 PERFORMANCE MONITORING EVENTS FOR INTEL® CORE™ I7 PROCESSOR FAMILY

AND INTEL® XEON® PROCESSOR FAMILY. 19-35
19.5 PERFORMANCE MONITORING EVENTS FOR PROCESSORS BASED ON

INTEL® MICROARCHITECTURE CODE NAME WESTMERE. 19-86
xx Vol. 3A

CONTENTS
PAGE
19.6 PERFORMANCE MONITORING EVENTS FOR INTEL® XEON® PROCESSOR 5200,
5400 SERIES AND INTEL® CORE™2 EXTREME PROCESSORS QX 9000 SERIES . . . 19-142

19.7 PERFORMANCE MONITORING EVENTS FOR INTEL® XEON® PROCESSOR 3000,
3200, 5100, 5300 SERIES AND INTEL® CORE™2 DUO PROCESSORS 19-142

19.8 PERFORMANCE MONITORING EVENTS FOR INTEL® ATOM™ PROCESSORS. 19-186
19.9 PERFORMANCE MONITORING EVENTS FOR INTEL® CORE™ SOLO AND INTEL®

CORE™ DUO PROCESSORS. 19-209
19.10 PENTIUM 4 AND INTEL XEON PROCESSOR PERFORMANCE-MONITORING EVENTS . 19-218
19.11 PERFORMANCE MONITORING EVENTS FOR INTEL® PENTIUM® M PROCESSORS . 19-267
19.12 P6 FAMILY PROCESSOR PERFORMANCE-MONITORING EVENTS 19-270
19.13 PENTIUM PROCESSOR PERFORMANCE-MONITORING EVENTS . 19-288

CHAPTER 20
8086 EMULATION
20.1 REAL-ADDRESS MODE . 20-1
20.1.1 Address Translation in Real-Address Mode .20-3
20.1.2 Registers Supported in Real-Address Mode .20-4
20.1.3 Instructions Supported in Real-Address Mode .20-4
20.1.4 Interrupt and Exception Handling. .20-6
20.2 VIRTUAL-8086 MODE. 20-8
20.2.1 Enabling Virtual-8086 Mode .20-9
20.2.2 Structure of a Virtual-8086 Task .20-9
20.2.3 Paging of Virtual-8086 Tasks . 20-10
20.2.4 Protection within a Virtual-8086 Task . 20-11
20.2.5 Entering Virtual-8086 Mode . 20-11
20.2.6 Leaving Virtual-8086 Mode . 20-14
20.2.7 Sensitive Instructions. 20-15
20.2.8 Virtual-8086 Mode I/O . 20-15
20.2.8.1 I/O-Port-Mapped I/O . 20-15
20.2.8.2 Memory-Mapped I/O . 20-16
20.2.8.3 Special I/O Buffers. 20-16
20.3 INTERRUPT AND EXCEPTION HANDLING IN VIRTUAL-8086 MODE. 20-16
20.3.1 Class 1—Hardware Interrupt and Exception Handling in Virtual-8086 Mode. 20-18
20.3.1.1 Handling an Interrupt or Exception Through a Protected-Mode Trap or Interrupt

Gate . 20-18
20.3.1.2 Handling an Interrupt or Exception With an 8086 Program Interrupt or

Exception Handler . 20-20
20.3.1.3 Handling an Interrupt or Exception Through a Task Gate . 20-21
20.3.2 Class 2—Maskable Hardware Interrupt Handling in Virtual-8086 Mode Using the

Virtual Interrupt Mechanism. 20-22
20.3.3 Class 3—Software Interrupt Handling in Virtual-8086 Mode . 20-24
20.3.3.1 Method 1: Software Interrupt Handling . 20-27
20.3.3.2 Methods 2 and 3: Software Interrupt Handling . 20-28
20.3.3.3 Method 4: Software Interrupt Handling . 20-28
20.3.3.4 Method 5: Software Interrupt Handling . 20-28
20.3.3.5 Method 6: Software Interrupt Handling . 20-29
20.4 PROTECTED-MODE VIRTUAL INTERRUPTS . 20-30
Vol. 3A xxi

CONTENTS
PAGE
CHAPTER 21
MIXING 16-BIT AND 32-BIT CODE
21.1 DEFINING 16-BIT AND 32-BIT PROGRAM MODULES . 21-2
21.2 MIXING 16-BIT AND 32-BIT OPERATIONS WITHIN A CODE SEGMENT 21-2
21.3 SHARING DATA AMONG MIXED-SIZE CODE SEGMENTS . 21-4
21.4 TRANSFERRING CONTROL AMONG MIXED-SIZE CODE SEGMENTS . 21-4
21.4.1 Code-Segment Pointer Size. 21-5
21.4.2 Stack Management for Control Transfer. 21-5
21.4.2.1 Controlling the Operand-Size Attribute For a Call . 21-7
21.4.2.2 Passing Parameters With a Gate . 21-8
21.4.3 Interrupt Control Transfers . 21-8
21.4.4 Parameter Translation . 21-8
21.4.5 Writing Interface Procedures . 21-9

CHAPTER 22
ARCHITECTURE COMPATIBILITY
22.1 PROCESSOR FAMILIES AND CATEGORIES . 22-1
22.2 RESERVED BITS. 22-2
22.3 ENABLING NEW FUNCTIONS AND MODES. 22-2
22.4 DETECTING THE PRESENCE OF NEW FEATURES THROUGH SOFTWARE 22-3
22.5 INTEL MMX TECHNOLOGY . 22-3
22.6 STREAMING SIMD EXTENSIONS (SSE). 22-3
22.7 STREAMING SIMD EXTENSIONS 2 (SSE2) . 22-4
22.8 STREAMING SIMD EXTENSIONS 3 (SSE3) . 22-4
22.9 ADDITIONAL STREAMING SIMD EXTENSIONS . 22-4
22.10 INTEL HYPER-THREADING TECHNOLOGY . 22-5
22.11 MULTI-CORE TECHNOLOGY . 22-5
22.12 SPECIFIC FEATURES OF DUAL-CORE PROCESSOR . 22-5
22.13 NEW INSTRUCTIONS IN THE PENTIUM AND LATER IA-32 PROCESSORS 22-5
22.13.1 Instructions Added Prior to the Pentium Processor . 22-6
22.14 OBSOLETE INSTRUCTIONS. 22-7
22.15 UNDEFINED OPCODES . 22-7
22.16 NEW FLAGS IN THE EFLAGS REGISTER . 22-7
22.16.1 Using EFLAGS Flags to Distinguish Between 32-Bit IA-32 Processors 22-8
22.17 STACK OPERATIONS . 22-8
22.17.1 PUSH SP. 22-8
22.17.2 EFLAGS Pushed on the Stack . 22-9
22.18 X87 FPU . 22-9
22.18.1 Control Register CR0 Flags . 22-9
22.18.2 x87 FPU Status Word .22-10
22.18.2.1 Condition Code Flags (C0 through C3) .22-10
22.18.2.2 Stack Fault Flag. .22-11
22.18.3 x87 FPU Control Word .22-11
22.18.4 x87 FPU Tag Word .22-11
22.18.5 Data Types .22-12
22.18.5.1 NaNs .22-12
22.18.5.2 Pseudo-zero, Pseudo-NaN, Pseudo-infinity, and Unnormal Formats22-12
22.18.6 Floating-Point Exceptions .22-13
22.18.6.1 Denormal Operand Exception (#D) .22-13
22.18.6.2 Numeric Overflow Exception (#O). .22-13
xxii Vol. 3A

CONTENTS
PAGE
22.18.6.3 Numeric Underflow Exception (#U) . 22-14
22.18.6.4 Exception Precedence . 22-14
22.18.6.5 CS and EIP For FPU Exceptions . 22-14
22.18.6.6 FPU Error Signals . 22-14
22.18.6.7 Assertion of the FERR# Pin . 22-15
22.18.6.8 Invalid Operation Exception On Denormals . 22-15
22.18.6.9 Alignment Check Exceptions (#AC) . 22-16
22.18.6.10 Segment Not Present Exception During FLDENV . 22-16
22.18.6.11 Device Not Available Exception (#NM) . 22-16
22.18.6.12 Coprocessor Segment Overrun Exception . 22-16
22.18.6.13 General Protection Exception (#GP) . 22-16
22.18.6.14 Floating-Point Error Exception (#MF) . 22-16
22.18.7 Changes to Floating-Point Instructions. 22-17
22.18.7.1 FDIV, FPREM, and FSQRT Instructions . 22-17
22.18.7.2 FSCALE Instruction . 22-17
22.18.7.3 FPREM1 Instruction . 22-17
22.18.7.4 FPREM Instruction . 22-17
22.18.7.5 FUCOM, FUCOMP, and FUCOMPP Instructions . 22-17
22.18.7.6 FPTAN Instruction . 22-18
22.18.7.7 Stack Overflow. 22-18
22.18.7.8 FSIN, FCOS, and FSINCOS Instructions . 22-18
22.18.7.9 FPATAN Instruction . 22-18
22.18.7.10 F2XM1 Instruction. 22-18
22.18.7.11 FLD Instruction . 22-18
22.18.7.12 FXTRACT Instruction . 22-19
22.18.7.13 Load Constant Instructions. 22-19
22.18.7.14 FSETPM Instruction. 22-19
22.18.7.15 FXAM Instruction . 22-20
22.18.7.16 FSAVE and FSTENV Instructions . 22-20
22.18.8 Transcendental Instructions. 22-20
22.18.9 Obsolete Instructions . 22-20
22.18.10 WAIT/FWAIT Prefix Differences . 22-21
22.18.11 Operands Split Across Segments and/or Pages . 22-21
22.18.12 FPU Instruction Synchronization. 22-21
22.19 SERIALIZING INSTRUCTIONS . 22-21
22.20 FPU AND MATH COPROCESSOR INITIALIZATION. 22-22
22.20.1 Intel® 387 and Intel® 287 Math Coprocessor Initialization. 22-22
22.20.2 Intel486 SX Processor and Intel 487 SX Math Coprocessor Initialization 22-22
22.21 CONTROL REGISTERS . 22-24
22.22 MEMORY MANAGEMENT FACILITIES . 22-25
22.22.1 New Memory Management Control Flags . 22-25
22.22.1.1 Physical Memory Addressing Extension. 22-25
22.22.1.2 Global Pages . 22-26
22.22.1.3 Larger Page Sizes . 22-26
22.22.2 CD and NW Cache Control Flags . 22-26
22.22.3 Descriptor Types and Contents. 22-26
22.22.4 Changes in Segment Descriptor Loads . 22-27
22.23 DEBUG FACILITIES . 22-27
22.23.1 Differences in Debug Register DR6 . 22-27
22.23.2 Differences in Debug Register DR7 . 22-27
22.23.3 Debug Registers DR4 and DR5 . 22-27
22.24 RECOGNITION OF BREAKPOINTS . 22-28
Vol. 3A xxiii

CONTENTS
PAGE
22.25 EXCEPTIONS AND/OR EXCEPTION CONDITIONS . 22-28
22.25.1 Machine-Check Architecture .22-30
22.25.2 Priority of Exceptions .22-30
22.25.3 Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers . .22-30
22.26 INTERRUPTS. 22-36
22.26.1 Interrupt Propagation Delay .22-36
22.26.2 NMI Interrupts .22-36
22.26.3 IDT Limit .22-37
22.27 ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC) . 22-37
22.27.1 Software Visible Differences Between the Local APIC and the 82489DX.22-37
22.27.2 New Features Incorporated in the Local APIC for the P6 Family and Pentium

Processors .22-38
22.27.3 New Features Incorporated in the Local APIC of the Pentium 4 and Intel Xeon

Processors .22-38
22.28 TASK SWITCHING AND TSS . 22-38
22.28.1 P6 Family and Pentium Processor TSS .22-39
22.28.2 TSS Selector Writes .22-39
22.28.3 Order of Reads/Writes to the TSS. .22-39
22.28.4 Using A 16-Bit TSS with 32-Bit Constructs .22-39
22.28.5 Differences in I/O Map Base Addresses. .22-39
22.29 CACHE MANAGEMENT . 22-40
22.29.1 Self-Modifying Code with Cache Enabled .22-41
22.29.2 Disabling the L3 Cache .22-42
22.30 PAGING. 22-42
22.30.1 Large Pages .22-42
22.30.2 PCD and PWT Flags .22-42
22.30.3 Enabling and Disabling Paging. .22-43
22.31 STACK OPERATIONS . 22-43
22.31.1 Selector Pushes and Pops .22-43
22.31.2 Error Code Pushes .22-44
22.31.3 Fault Handling Effects on the Stack .22-44
22.31.4 Interlevel RET/IRET From a 16-Bit Interrupt or Call Gate .22-44
22.32 MIXING 16- AND 32-BIT SEGMENTS . 22-45
22.33 SEGMENT AND ADDRESS WRAPAROUND . 22-45
22.33.1 Segment Wraparound .22-46
22.34 STORE BUFFERS AND MEMORY ORDERING. 22-46
22.35 BUS LOCKING . 22-48
22.36 BUS HOLD . 22-48
22.37 MODEL-SPECIFIC EXTENSIONS TO THE IA-32. 22-48
22.37.1 Model-Specific Registers .22-49
22.37.2 RDMSR and WRMSR Instructions .22-49
22.37.3 Memory Type Range Registers .22-49
22.37.4 Machine-Check Exception and Architecture .22-50
22.37.5 Performance-Monitoring Counters .22-50
22.38 TWO WAYS TO RUN INTEL 286 PROCESSOR TASKS. 22-51

CHAPTER 23
INTRODUCTION TO VIRTUAL-MACHINE EXTENSIONS
23.1 OVERVIEW. 23-1
23.2 VIRTUAL MACHINE ARCHITECTURE . 23-1
23.3 INTRODUCTION TO VMX OPERATION. 23-1
xxiv Vol. 3A

CONTENTS
PAGE
23.4 LIFE CYCLE OF VMM SOFTWARE. 23-2
23.5 VIRTUAL-MACHINE CONTROL STRUCTURE. 23-3
23.6 DISCOVERING SUPPORT FOR VMX. 23-3
23.7 ENABLING AND ENTERING VMX OPERATION . 23-4
23.8 RESTRICTIONS ON VMX OPERATION. 23-5

CHAPTER 24
VIRTUAL-MACHINE CONTROL STRUCTURES
24.1 OVERVIEW . 24-1
24.2 FORMAT OF THE VMCS REGION . 24-3
24.3 ORGANIZATION OF VMCS DATA . 24-4
24.4 GUEST-STATE AREA . 24-5
24.4.1 Guest Register State .24-5
24.4.2 Guest Non-Register State .24-7
24.5 HOST-STATE AREA . 24-10
24.6 VM-EXECUTION CONTROL FIELDS . 24-11
24.6.1 Pin-Based VM-Execution Controls . 24-11
24.6.2 Processor-Based VM-Execution Controls . 24-12
24.6.3 Exception Bitmap. 24-16
24.6.4 I/O-Bitmap Addresses. 24-16
24.6.5 Time-Stamp Counter Offset . 24-17
24.6.6 Guest/Host Masks and Read Shadows for CR0 and CR4. 24-17
24.6.7 CR3-Target Controls . 24-17
24.6.8 Controls for APIC Accesses. 24-18
24.6.9 MSR-Bitmap Address . 24-19
24.6.10 Executive-VMCS Pointer . 24-20
24.6.11 Extended-Page-Table Pointer (EPTP) . 24-20
24.6.12 Virtual-Processor Identifier (VPID) . 24-20
24.6.13 Controls for PAUSE-Loop Exiting . 24-21
24.6.14 VM-Function Controls . 24-21
24.7 VM-EXIT CONTROL FIELDS . 24-21
24.7.1 VM-Exit Controls . 24-22
24.7.2 VM-Exit Controls for MSRs . 24-23
24.8 VM-ENTRY CONTROL FIELDS . 24-24
24.8.1 VM-Entry Controls . 24-24
24.8.2 VM-Entry Controls for MSRs. 24-25
24.8.3 VM-Entry Controls for Event Injection . 24-26
24.9 VM-EXIT INFORMATION FIELDS. 24-27
24.9.1 Basic VM-Exit Information. 24-27
24.9.2 Information for VM Exits Due to Vectored Events . 24-28
24.9.3 Information for VM Exits That Occur During Event Delivery . 24-29
24.9.4 Information for VM Exits Due to Instruction Execution. 24-30
24.9.5 VM-Instruction Error Field. 24-31
24.10 SOFTWARE USE OF THE VMCS AND RELATED STRUCTURES . 24-31
24.10.1 Software Use of Virtual-Machine Control Structures. 24-31
24.10.2 VMREAD, VMWRITE, and Encodings of VMCS Fields . 24-32
24.10.3 Initializing a VMCS . 24-35
24.10.4 Software Access to Related Structures . 24-35
24.10.5 VMXON Region . 24-36
Vol. 3A xxv

CONTENTS
PAGE
CHAPTER 25
VMX NON-ROOT OPERATION
25.1 INSTRUCTIONS THAT CAUSE VM EXITS . 25-1
25.1.1 Relative Priority of Faults and VM Exits . 25-2
25.1.2 Instructions That Cause VM Exits Unconditionally . 25-2
25.1.3 Instructions That Cause VM Exits Conditionally . 25-3
25.2 APIC-ACCESS VM EXITS. 25-7
25.2.1 Linear Accesses to the APIC-Access Page . 25-8
25.2.1.1 Linear Accesses That Cause APIC-Access VM Exits. 25-8
25.2.1.2 Priority of APIC-Access VM Exits Caused by Linear Accesses 25-9
25.2.1.3 Instructions That May Cause Page Faults or EPT Violations Without Accessing

Memory .25-10
25.2.2 Guest-Physical Accesses to the APIC-Access Page .25-11
25.2.2.1 Guest-Physical Accesses That Might Not Cause APIC-Access VM Exits 25-12
25.2.2.2 Priority of APIC-Access VM Exits Caused by Guest-Physical Accesses25-12
25.2.3 Physical Accesses to the APIC-Access Page. .25-13
25.2.4 VTPR Accesses .25-14
25.3 OTHER CAUSES OF VM EXITS . 25-14
25.4 CHANGES TO INSTRUCTION BEHAVIOR IN VMX NON-ROOT OPERATION 25-17
25.5 APIC ACCESSES THAT DO NOT CAUSE VM EXITS . 25-23
25.5.1 Linear Accesses to the APIC-Access Page Using Large-Page Translations 25-23
25.5.2 Physical Accesses to the APIC-Access Page. .25-23
25.5.3 VTPR Accesses .25-23
25.5.3.1 Treatment of Individual VTPR Accesses .25-24
25.5.3.2 Operations with Multiple Accesses .25-25
25.5.3.3 TPR-Shadow Updates .25-26
25.6 OTHER CHANGES IN VMX NON-ROOT OPERATION . 25-27
25.6.1 Event Blocking .25-27
25.6.2 Treatment of Task Switches. .25-27
25.7 FEATURES SPECIFIC TO VMX NON-ROOT OPERATION . 25-28
25.7.1 VMX-Preemption Timer .25-29
25.7.2 Monitor Trap Flag .25-29
25.7.3 Translation of Guest-Physical Addresses Using EPT .25-31
25.7.4 VM Functions .25-31
25.7.4.1 Enabling VM Functions .25-31
25.7.4.2 General Operation of the VMFUNC Instruction .25-31
25.7.4.3 EPTP Switching .25-32
25.8 UNRESTRICTED GUESTS. 25-34

CHAPTER 26
VM ENTRIES
26.1 BASIC VM-ENTRY CHECKS . 26-2
26.2 CHECKS ON VMX CONTROLS AND HOST-STATE AREA. 26-3
26.2.1 Checks on VMX Controls. 26-3
26.2.1.1 VM-Execution Control Fields . 26-3
26.2.1.2 VM-Exit Control Fields. 26-6
26.2.1.3 VM-Entry Control Fields . 26-7
26.2.2 Checks on Host Control Registers and MSRs . 26-8
26.2.3 Checks on Host Segment and Descriptor-Table Registers. 26-9
26.2.4 Checks Related to Address-Space Size . 26-9
xxvi Vol. 3A

CONTENTS
PAGE
26.3 CHECKING AND LOADING GUEST STATE . 26-10
26.3.1 Checks on the Guest State Area . 26-10
26.3.1.1 Checks on Guest Control Registers, Debug Registers, and MSRs 26-11
26.3.1.2 Checks on Guest Segment Registers. 26-12
26.3.1.3 Checks on Guest Descriptor-Table Registers . 26-16
26.3.1.4 Checks on Guest RIP and RFLAGS . 26-16
26.3.1.5 Checks on Guest Non-Register State . 26-16
26.3.1.6 Checks on Guest Page-Directory-Pointer-Table Entries . 26-19
26.3.2 Loading Guest State . 26-20
26.3.2.1 Loading Guest Control Registers, Debug Registers, and MSRs 26-20
26.3.2.2 Loading Guest Segment Registers and Descriptor-Table Registers 26-22
26.3.2.3 Loading Guest RIP, RSP, and RFLAGS . 26-23
26.3.2.4 Loading Page-Directory-Pointer-Table Entries. 26-23
26.3.2.5 Updating Non-Register State. 26-23
26.3.3 Clearing Address-Range Monitoring. 26-24
26.4 LOADING MSRS . 26-24
26.5 EVENT INJECTION. 26-25
26.5.1 Vectored-Event Injection. 26-25
26.5.1.1 Details of Vectored-Event Injection. 26-26
26.5.1.2 VM Exits During Event Injection . 26-28
26.5.1.3 Event Injection for VM Entries to Real-Address Mode . 26-29
26.5.2 Injection of Pending MTF VM Exits. 26-29
26.6 SPECIAL FEATURES OF VM ENTRY . 26-29
26.6.1 Interruptibility State . 26-29
26.6.2 Activity State . 26-30
26.6.3 Delivery of Pending Debug Exceptions after VM Entry. 26-31
26.6.4 VMX-Preemption Timer . 26-33
26.6.5 Interrupt-Window Exiting . 26-33
26.6.6 NMI-Window Exiting . 26-33
26.6.7 VM Exits Induced by the TPR Shadow . 26-34
26.6.8 Pending MTF VM Exits . 26-34
26.6.9 VM Entries and Advanced Debugging Features . 26-35
26.7 VM-ENTRY FAILURES DURING OR AFTER LOADING GUEST STATE 26-35
26.8 MACHINE-CHECK EVENTS DURING VM ENTRY . 26-36

CHAPTER 27
VM EXITS
27.1 ARCHITECTURAL STATE BEFORE A VM EXIT . 27-1
27.2 RECORDING VM-EXIT INFORMATION AND UPDATING VM-ENTRY CONTROL FIELDS . . . 27-5
27.2.1 Basic VM-Exit Information. .27-5
27.2.2 Information for VM Exits Due to Vectored Events . 27-13
27.2.3 Information for VM Exits During Event Delivery . 27-15
27.2.4 Information for VM Exits Due to Instruction Execution. 27-17
27.3 SAVING GUEST STATE . 27-27
27.3.1 Saving Control Registers, Debug Registers, and MSRs . 27-27
27.3.2 Saving Segment Registers and Descriptor-Table Registers. 27-28
27.3.3 Saving RIP, RSP, and RFLAGS. 27-29
27.3.4 Saving Non-Register State . 27-31
27.4 SAVING MSRS . 27-33
27.5 LOADING HOST STATE. 27-34
27.5.1 Loading Host Control Registers, Debug Registers, MSRs . 27-34
Vol. 3A xxvii

CONTENTS
PAGE
27.5.2 Loading Host Segment and Descriptor-Table Registers. .27-36
27.5.3 Loading Host RIP, RSP, and RFLAGS .27-38
27.5.4 Checking and Loading Host Page-Directory-Pointer-Table Entries27-38
27.5.5 Updating Non-Register State .27-38
27.5.6 Clearing Address-Range Monitoring .27-39
27.6 LOADING MSRS . 27-39
27.7 VMX ABORTS . 27-40
27.8 MACHINE-CHECK EVENTS DURING VM EXIT. 27-41

CHAPTER 28
VMX SUPPORT FOR ADDRESS TRANSLATION
28.1 VIRTUAL PROCESSOR IDENTIFIERS (VPIDS). 28-1
28.2 THE EXTENDED PAGE TABLE MECHANISM (EPT) . 28-2
28.2.1 EPT Overview . 28-2
28.2.2 EPT Translation Mechanism . 28-4
28.2.3 EPT-Induced VM Exits . 28-9
28.2.3.1 EPT Misconfigurations. .28-10
28.2.3.2 EPT Violations .28-12
28.2.3.3 Prioritization of EPT-Induced VM Exits .28-12
28.2.4 EPT and Memory Typing. .28-14
28.2.4.1 Memory Type Used for Accessing EPT Paging Structures .28-14
28.2.4.2 Memory Type Used for Translated Guest-Physical Addresses 28-15
28.3 CACHING TRANSLATION INFORMATION . 28-16
28.3.1 Information That May Be Cached .28-16
28.3.2 Creating and Using Cached Translation Information .28-17
28.3.3 Invalidating Cached Translation Information .28-19
28.3.3.1 Operations that Invalidate Cached Mappings. .28-19
28.3.3.2 Operations that Need Not Invalidate Cached Mappings .28-21
28.3.3.3 Guidelines for Use of the INVVPID Instruction .28-21
28.3.3.4 Guidelines for Use of the INVEPT Instruction .28-23

CHAPTER 29
VMX INSTRUCTION REFERENCE
29.1 OVERVIEW. 29-1
29.2 CONVENTIONS . 29-2
29.3 VMX INSTRUCTIONS . 29-3

INVEPT— Invalidate Translations Derived from EPT . 29-4
INVVPID— Invalidate Translations Based on VPID . 29-7
VMCALL—Call to VM Monitor. .29-11
VMCLEAR—Clear Virtual-Machine Control Structure .29-13
VMFUNC—Invoke VM function .29-16
VMLAUNCH/VMRESUME—Launch/Resume Virtual Machine .29-17
VMPTRLD—Load Pointer to Virtual-Machine Control Structure.29-20
VMPTRST—Store Pointer to Virtual-Machine Control Structure29-23
VMREAD—Read Field from Virtual-Machine Control Structure 29-25
VMRESUME—Resume Virtual Machine. .29-27
VMWRITE—Write Field to Virtual-Machine Control Structure .29-28
VMXOFF—Leave VMX Operation. .29-30
VMXON—Enter VMX Operation .29-32
xxviii Vol. 3A

CONTENTS
PAGE
29.4 VM INSTRUCTION ERROR NUMBERS . 29-35

CHAPTER 30
VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
30.1 VMX SYSTEM PROGRAMMING OVERVIEW . 30-1
30.2 SUPPORTING PROCESSOR OPERATING MODES IN GUEST ENVIRONMENTS 30-1
30.2.1 Using Unrestricted Guest Mode .30-2
30.3 MANAGING VMCS REGIONS AND POINTERS . 30-2
30.4 USING VMX INSTRUCTIONS . 30-4
30.5 VMM SETUP & TEAR DOWN . 30-6
30.5.1 Algorithms for Determining VMX Capabilities. .30-7
30.6 PREPARATION AND LAUNCHING A VIRTUAL MACHINE. 30-10
30.7 HANDLING OF VM EXITS . 30-11
30.7.1 Handling VM Exits Due to Exceptions . 30-12
30.7.1.1 Reflecting Exceptions to Guest Software . 30-12
30.7.1.2 Resuming Guest Software after Handling an Exception . 30-14
30.8 MULTI-PROCESSOR CONSIDERATIONS . 30-15
30.8.1 Initialization . 30-16
30.8.2 Moving a VMCS Between Processors . 30-16
30.8.3 Paired Index-Data Registers . 30-17
30.8.4 External Data Structures. 30-17
30.8.5 CPUID Emulation. 30-18
30.9 32-BIT AND 64-BIT GUEST ENVIRONMENTS . 30-18
30.9.1 Operating Modes of Guest Environments . 30-18
30.9.2 Handling Widths of VMCS Fields . 30-19
30.9.2.1 Natural-Width VMCS Fields . 30-19
30.9.2.2 64-Bit VMCS Fields . 30-19
30.9.3 IA-32e Mode Hosts . 30-19
30.9.4 IA-32e Mode Guests . 30-20
30.9.5 32-Bit Guests . 30-21
30.10 HANDLING MODEL SPECIFIC REGISTERS. 30-22
30.10.1 Using VM-Execution Controls. 30-22
30.10.2 Using VM-Exit Controls for MSRs . 30-23
30.10.3 Using VM-Entry Controls for MSRs. 30-23
30.10.4 Handling Special-Case MSRs and Instructions. 30-23
30.10.4.1 Handling IA32_EFER MSR . 30-23
30.10.4.2 Handling the SYSENTER and SYSEXIT Instructions . 30-24
30.10.4.3 Handling the SYSCALL and SYSRET Instructions . 30-24
30.10.4.4 Handling the SWAPGS Instruction . 30-24
30.10.4.5 Implementation Specific Behavior on Writing to Certain MSRs. 30-25
30.10.5 Handling Accesses to Reserved MSR Addresses . 30-25
30.11 HANDLING ACCESSES TO CONTROL REGISTERS . 30-25
30.12 PERFORMANCE CONSIDERATIONS . 30-25
30.13 USE OF THE VMX-PREEMPTION TIMER. 30-26

CHAPTER 31
VIRTUALIZATION OF SYSTEM RESOURCES
31.1 OVERVIEW . 31-1
31.2 VIRTUALIZATION SUPPORT FOR DEBUGGING FACILITIES . 31-1
31.2.1 Debug Exceptions .31-2
Vol. 3A xxix

CONTENTS
PAGE
31.3 MEMORY VIRTUALIZATION . 31-3
31.3.1 Processor Operating Modes & Memory Virtualization . 31-3
31.3.2 Guest & Host Physical Address Spaces . 31-3
31.3.3 Virtualizing Virtual Memory by Brute Force. 31-4
31.3.4 Alternate Approach to Memory Virtualization. 31-4
31.3.5 Details of Virtual TLB Operation . 31-6
31.3.5.1 Initialization of Virtual TLB . 31-7
31.3.5.2 Response to Page Faults . 31-8
31.3.5.3 Response to Uses of INVLPG .31-11
31.3.5.4 Response to CR3 Writes. .31-11
31.4 MICROCODE UPDATE FACILITY. 31-11
31.4.1 Early Load of Microcode Updates .31-12
31.4.2 Late Load of Microcode Updates .31-12

CHAPTER 32
HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR
32.1 OVERVIEW. 32-1
32.2 INTERRUPT HANDLING IN VMX OPERATION . 32-1
32.3 EXTERNAL INTERRUPT VIRTUALIZATION . 32-3
32.3.1 Virtualization of Interrupt Vector Space . 32-4
32.3.2 Control of Platform Interrupts . 32-5
32.3.2.1 PIC Virtualization . 32-6
32.3.2.2 xAPIC Virtualization . 32-6
32.3.2.3 Local APIC Virtualization. 32-6
32.3.2.4 I/O APIC Virtualization. 32-7
32.3.2.5 Virtualization of Message Signaled Interrupts . 32-8
32.3.3 Examples of Handling of External Interrupts. 32-8
32.3.3.1 Guest Setup . 32-9
32.3.3.2 Processor Treatment of External Interrupt . 32-9
32.3.3.3 Processing of External Interrupts by VMM. 32-9
32.3.3.4 Generation of Virtual Interrupt Events by VMM .32-10
32.4 ERROR HANDLING BY VMM . 32-11
32.4.1 VM-Exit Failures .32-11
32.4.2 Machine-Check Considerations .32-12
32.4.3 MCA Error Handling Guidelines for VMM .32-13
32.4.3.1 VMM Error Handling Strategies .32-14
32.4.3.2 Basic VMM MCA error recovery handling .32-14
32.4.3.3 Implementation Considerations for the Basic Model .32-14
32.4.3.4 MCA Virtualization .32-15
32.4.3.5 Implementation Considerations for the MCA Virtualization Model32-15
32.5 HANDLING ACTIVITY STATES BY VMM . 32-16

CHAPTER 33
SYSTEM MANAGEMENT MODE
33.1 SYSTEM MANAGEMENT MODE OVERVIEW . 33-1
33.1.1 System Management Mode and VMX Operation . 33-2
33.2 SYSTEM MANAGEMENT INTERRUPT (SMI) . 33-3
33.3 SWITCHING BETWEEN SMM AND THE OTHER PROCESSOR OPERATING MODES 33-3
33.3.1 Entering SMM. 33-3
33.3.2 Exiting From SMM. 33-4
xxx Vol. 3A

CONTENTS
PAGE
33.4 SMRAM . 33-5
33.4.1 SMRAM State Save Map. .33-6
33.4.1.1 SMRAM State Save Map and Intel 64 Architecture. .33-8
33.4.2 SMRAM Caching . 33-11
33.4.2.1 System Management Range Registers (SMRR) . 33-12
33.5 SMI HANDLER EXECUTION ENVIRONMENT . 33-12
33.6 EXCEPTIONS AND INTERRUPTS WITHIN SMM . 33-14
33.7 MANAGING SYNCHRONOUS AND ASYNCHRONOUS SYSTEM MANAGEMENT

INTERRUPTS . 33-15
33.7.1 I/O State Implementation . 33-15
33.8 NMI HANDLING WHILE IN SMM. 33-17
33.9 SMM REVISION IDENTIFIER . 33-17
33.10 AUTO HALT RESTART . 33-18
33.10.1 Executing the HLT Instruction in SMM . 33-19
33.11 SMBASE RELOCATION . 33-19
33.11.1 Relocating SMRAM to an Address Above 1 MByte . 33-20
33.12 I/O INSTRUCTION RESTART . 33-20
33.12.1 Back-to-Back SMI Interrupts When I/O Instruction Restart Is Being Used 33-22
33.13 SMM MULTIPLE-PROCESSOR CONSIDERATIONS . 33-22
33.14 DEFAULT TREATMENT OF SMIS AND SMM WITH VMX OPERATION AND SMX

OPERATION . 33-23
33.14.1 Default Treatment of SMI Delivery . 33-23
33.14.2 Default Treatment of RSM . 33-24
33.14.3 Protection of CR4.VMXE in SMM. 33-26
33.14.4 VMXOFF and SMI Unblocking . 33-26
33.15 DUAL-MONITOR TREATMENT OF SMIs AND SMM . 33-26
33.15.1 Dual-Monitor Treatment Overview . 33-27
33.15.2 SMM VM Exits . 33-27
33.15.2.1 Architectural State Before a VM Exit . 33-28
33.15.2.2 Updating the Current-VMCS and Executive-VMCS Pointers. 33-28
33.15.2.3 Recording VM-Exit Information . 33-28
33.15.2.4 Saving Guest State . 33-29
33.15.2.5 Updating Non-Register State. 33-30
33.15.3 Operation of the SMM-Transfer Monitor . 33-30
33.15.4 VM Entries that Return from SMM . 33-30
33.15.4.1 Checks on the Executive-VMCS Pointer Field . 33-31
33.15.4.2 Checks on VM-Execution Control Fields . 33-31
33.15.4.3 Checks on VM-Entry Control Fields . 33-32
33.15.4.4 Checks on the Guest State Area . 33-32
33.15.4.5 Loading Guest State . 33-32
33.15.4.6 VMX-Preemption Timer . 33-33
33.15.4.7 Updating the Current-VMCS and SMM-Transfer VMCS Pointers. 33-33
33.15.4.8 VM Exits Induced by VM Entry . 33-33
33.15.4.9 SMI Blocking . 33-34
33.15.4.10 Failures of VM Entries That Return from SMM. 33-34
33.15.5 Enabling the Dual-Monitor Treatment. 33-34
33.15.6 Activating the Dual-Monitor Treatment . 33-36
33.15.6.1 Initial Checks . 33-37
33.15.6.2 MSEG Checking . 33-38
33.15.6.3 Updating the Current-VMCS and Executive-VMCS Pointers. 33-38
33.15.6.4 Loading Host State . 33-38
33.15.6.5 Loading MSRs . 33-41
Vol. 3A xxxi

CONTENTS
PAGE
33.15.7 Deactivating the Dual-Monitor Treatment .33-41
33.16 SMI AND PROCESSOR EXTENDED STATE MANAGEMENT . 33-41

CHAPTER 34
MODEL-SPECIFIC REGISTERS (MSRS)
34.1 ARCHITECTURAL MSRS. 34-2
34.2 MSRS IN THE INTEL® CORE™ 2 PROCESSOR FAMILY. 34-46
34.3 MSRS IN THE INTEL® ATOM™ PROCESSOR FAMILY . 34-67
34.4 MSRS IN THE INTEL® MICROARCHITECTURE CODE NAME NEHALEM. 34-83
34.4.1 Additional MSRs in the Intel® Xeon® Processor 5500 and 3400 Series 34-109
34.4.2 Additional MSRs in the Intel® Xeon® Processor 7500 Series 34-112
34.5 MSRS IN THE INTEL XEON PROCESSOR 5600 SERIES (INTEL® MICROARCHITECTURE

CODE NAME WESTMERE) . 34-134
34.6 MSRS IN THE INTEL XEON PROCESSOR E7 FAMILY (INTEL® MICROARCHITECTURE

CODE NAME WESTMERE) . 34-135
34.7 MSRS IN INTEL® PROCESSOR FAMILY (INTEL® MICROARCHITECTURE CODE NAME

SANDY BRIDGE) . 34-137
34.7.1 MSRs In Second Generation Intel® Core Processor Family (Intel®

Microarchitecture Code Name Sandy Bridge). 34-164
34.7.2 MSRs In Next Generation Intel® Xeon Processor Family (Intel® Microarchitecture

Code Name Sandy Bridge) . 34-165
34.8 MSRS IN THE NEXT GENERATION INTEL CORE PROCESSOR (INTEL®

MICROARCHITECTURE CODE NAME IVY BRIDGE) . 34-169
34.9 MSRS IN THE PENTIUM® 4 AND INTEL® XEON® PROCESSORS 34-169
34.9.1 MSRs Unique to Intel Xeon Processor MP with L3 Cache . 34-209
34.10 MSRS IN INTEL® CORE™ SOLO AND INTEL® CORE™ DUO PROCESSORS 34-212
34.11 MSRS IN THE PENTIUM M PROCESSOR . 34-225
34.12 MSRS IN THE P6 FAMILY PROCESSORS . 34-235
34.13 MSRS IN PENTIUM PROCESSORS . 34-247

APPENDIX A
VMX CAPABILITY REPORTING FACILITY
A.1 BASIC VMX INFORMATION. A-1
A.2 RESERVED CONTROLS AND DEFAULT SETTINGS. A-2
A.3 VM-EXECUTION CONTROLS . A-3
A.3.1 Pin-Based VM-Execution Controls . A-3
A.3.2 Primary Processor-Based VM-Execution Controls . A-4
A.3.3 Secondary Processor-Based VM-Execution Controls. A-5
A.4 VM-EXIT CONTROLS. A-6
A.5 VM-ENTRY CONTROLS . A-7
A.6 MISCELLANEOUS DATA. A-8
A.7 VMX-FIXED BITS IN CR0 . A-9
A.8 VMX-FIXED BITS IN CR4 . A-9
A.9 VMCS ENUMERATION . A-9
A.10 VPID AND EPT CAPABILITIES . A-10
A.11 VM FUNCTIONS . A-11
xxxii Vol. 3A

CONTENTS
PAGE
APPENDIX B
FIELD ENCODING IN VMCS
B.1 16-BIT FIELDS . B-1
B.1.1 16-Bit Control Field . B-1
B.1.2 16-Bit Guest-State Fields . B-1
B.1.3 16-Bit Host-State Fields . B-2
B.2 64-BIT FIELDS . B-2
B.2.1 64-Bit Control Fields . B-3
B.2.2 64-Bit Read-Only Data Field. B-4
B.2.3 64-Bit Guest-State Fields . B-4
B.2.4 64-Bit Host-State Fields . B-5
B.3 32-BIT FIELDS . B-6
B.3.1 32-Bit Control Fields . B-6
B.3.2 32-Bit Read-Only Data Fields. B-7
B.3.3 32-Bit Guest-State Fields . B-8
B.3.4 32-Bit Host-State Field . B-9
B.4 NATURAL-WIDTH FIELDS . B-9
B.4.1 Natural-Width Control Fields . B-9
B.4.2 Natural-Width Read-Only Data Fields .B-10
B.4.3 Natural-Width Guest-State Fields .B-10
B.4.4 Natural-Width Host-State Fields .B-11

APPENDIX C
VMX BASIC EXIT REASONS
Vol. 3A xxxiii

CONTENTS
PAGE
FIGURES

Figure 1-1. Bit and Byte Order . 1-8
Figure 1-2. Syntax for CPUID, CR, and MSR Data Presentation . 1-10
Figure 2-1. IA-32 System-Level Registers and Data Structures . 2-3
Figure 2-2. System-Level Registers and Data Structures in IA-32e Mode 2-4
Figure 2-3. Transitions Among the Processor’s Operating Modes . 2-11
Figure 2-4. System Flags in the EFLAGS Register . 2-13
Figure 2-5. Memory Management Registers . 2-16
Figure 2-6. Control Registers . 2-19
Figure 2-7. XCR0. 2-26
Figure 3-1. Segmentation and Paging . 3-2
Figure 3-2. Flat Model . 3-4
Figure 3-3. Protected Flat Model . 3-4
Figure 3-4. Multi-Segment Model. 3-6
Figure 3-5. Logical Address to Linear Address Translation . 3-9
Figure 3-6. Segment Selector . 3-10
Figure 3-7. Segment Registers. 3-11
Figure 3-8. Segment Descriptor . 3-13
Figure 3-9. Segment Descriptor When Segment-Present Flag Is Clear . 3-15
Figure 3-10. Global and Local Descriptor Tables . 3-20
Figure 3-11. Pseudo-Descriptor Formats. 3-22
Figure 4-1. Enabling and Changing Paging Modes . 4-4
Figure 4-2. Linear-Address Translation to a 4-KByte Page using 32-Bit Paging 4-12
Figure 4-3. Linear-Address Translation to a 4-MByte Page using 32-Bit Paging 4-12
Figure 4-4. Formats of CR3 and Paging-Structure Entries with 32-Bit Paging. 4-13
Figure 4-5. Linear-Address Translation to a 4-KByte Page using PAE Paging 4-20
Figure 4-6. Linear-Address Translation to a 2-MByte Page using PAE Paging 4-21
Figure 4-7. Formats of CR3 and Paging-Structure Entries with PAE Paging 4-24
Figure 4-8. Linear-Address Translation to a 4-KByte Page using IA-32e Paging 4-28
Figure 4-9. Linear-Address Translation to a 2-MByte Page using IA-32e Paging 4-29
Figure 4-10. Linear-Address Translation to a 1-GByte Page using IA-32e Paging 4-30
Figure 4-11. Formats of CR3 and Paging-Structure Entries with IA-32e Paging 4-39
Figure 4-12. Page-Fault Error Code. 4-42
Figure 4-13. Memory Management Convention That Assigns a Page Table to Each Segment 4-65
Figure 5-1. Descriptor Fields Used for Protection . 5-4
Figure 5-2. Descriptor Fields with Flags used in IA-32e Mode . 5-6
Figure 5-3. Protection Rings . 5-10
Figure 5-4. Privilege Check for Data Access. 5-12
Figure 5-5. Examples of Accessing Data Segments From Various Privilege Levels. 5-13
Figure 5-6. Privilege Check for Control Transfer Without Using a Gate . 5-16
Figure 5-7. Examples of Accessing Conforming and Nonconforming Code Segments From

Various Privilege Levels . 5-17
Figure 5-8. Call-Gate Descriptor . 5-19
Figure 5-9. Call-Gate Descriptor in IA-32e Mode. 5-21
Figure 5-10. Call-Gate Mechanism . 5-22
Figure 5-11. Privilege Check for Control Transfer with Call Gate. 5-23
Figure 5-12. Example of Accessing Call Gates At Various Privilege Levels. 5-25
Figure 5-13. Stack Switching During an Interprivilege-Level Call. 5-27
Figure 5-14. MSRs Used by SYSCALL and SYSRET . 5-33
Figure 5-15. Use of RPL to Weaken Privilege Level of Called Procedure . 5-38
Figure 6-1. Relationship of the IDTR and IDT. 6-14
xxxiv Vol. 3A

CONTENTS
PAGE
Figure 6-2. IDT Gate Descriptors. .6-15
Figure 6-3. Interrupt Procedure Call .6-16
Figure 6-4. Stack Usage on Transfers to Interrupt and Exception-Handling Routines6-18
Figure 6-5. Interrupt Task Switch. .6-21
Figure 6-6. Error Code .6-22
Figure 6-7. 64-Bit IDT Gate Descriptors .6-23
Figure 6-8. IA-32e Mode Stack Usage After Privilege Level Change. .6-26
Figure 6-9. Page-Fault Error Code .6-55
Figure 7-1. Structure of a Task . 7-2
Figure 7-2. 32-Bit Task-State Segment (TSS) . 7-5
Figure 7-3. TSS Descriptor . 7-7
Figure 7-4. Format of TSS and LDT Descriptors in 64-bit Mode . 7-9
Figure 7-5. Task Register .7-10
Figure 7-6. Task-Gate Descriptor .7-11
Figure 7-7. Task Gates Referencing the Same Task. .7-12
Figure 7-8. Nested Tasks .7-17
Figure 7-9. Overlapping Linear-to-Physical Mappings .7-20
Figure 7-10. 16-Bit TSS Format. .7-22
Figure 7-11. 64-Bit TSS Format. .7-24
Figure 8-1. Example of Write Ordering in Multiple-Processor Systems .8-11
Figure 8-2. Interpretation of APIC ID in Early MP Systems. .8-35
Figure 8-3. Local APICs and I/O APIC in MP System Supporting Intel HT Technology8-39
Figure 8-4. IA-32 Processor with Two Logical Processors Supporting Intel HT Technology. .8-40
Figure 8-5. Generalized Four level Interpretation of the APIC ID .8-50
Figure 8-6. Conceptual Five-level Topology and 32-bit APIC ID Composition8-51
Figure 8-7. Topological Relationships between Hierarchical IDs in a Hypothetical MP

Platform .8-53
Figure 8-1. MP System With Multiple Pentium III Processors. .8-76
Figure 9-1. Contents of CR0 Register after Reset . 9-5
Figure 9-2. Version Information in the EDX Register after Reset . 9-5
Figure 9-3. Processor State After Reset .9-21
Figure 9-4. Constructing Temporary GDT and Switching to Protected Mode (Lines 162-172 of

List File) .9-31
Figure 9-5. Moving the GDT, IDT, and TSS from ROM to RAM (Lines 196-261 of List File) . . .9-32
Figure 9-6. Task Switching (Lines 282-296 of List File) .9-33
Figure 9-7. Applying Microcode Updates .9-37
Figure 9-8. Microcode Update Write Operation Flow [1]. .9-60
Figure 9-9. Microcode Update Write Operation Flow [2]. .9-61
Figure 10-1. Relationship of Local APIC and I/O APIC In Single-Processor Systems10-3
Figure 10-2. Local APICs and I/O APIC When Intel Xeon Processors Are Used in Multiple-

Processor Systems .10-4
Figure 10-3. Local APICs and I/O APIC When P6 Family Processors Are Used in Multiple-

Processor Systems .10-4
Figure 10-4. Local APIC Structure .10-7
Figure 10-5. IA32_APIC_BASE MSR (APIC_BASE_MSR in P6 Family). 10-12
Figure 10-6. Local APIC ID Register . 10-13
Figure 10-7. Local APIC Version Register . 10-16
Figure 10-8. Local Vector Table (LVT) . 10-18
Figure 10-9. Error Status Register (ESR) . 10-21
Figure 10-10. Divide Configuration Register . 10-23
Figure 10-11. Initial Count and Current Count Registers . 10-23
Figure 10-12. Interrupt Command Register (ICR) . 10-27
Vol. 3A xxxv

CONTENTS
PAGE
Figure 10-13. Logical Destination Register (LDR) .10-34
Figure 10-14. Destination Format Register (DFR) .10-34
Figure 10-15. Arbitration Priority Register (APR) .10-36
Figure 10-16. Interrupt Acceptance Flow Chart for the Local APIC (Pentium 4 and Intel Xeon

Processors) .10-38
Figure 10-17. Interrupt Acceptance Flow Chart for the Local APIC (P6 Family and Pentium

Processors) .10-40
Figure 10-18. Task-Priority Register (TPR) .10-41
Figure 10-19. Processor-Priority Register (PPR) .10-42
Figure 10-20. IRR, ISR and TMR Registers .10-43
Figure 10-21. EOI Register .10-44
Figure 10-22. CR8 Register .10-46
Figure 10-23. Spurious-Interrupt Vector Register (SVR) .10-48
Figure 10-24. Layout of the MSI Message Address Register. .10-50
Figure 10-25. Layout of the MSI Message Data Register .10-51
Figure 10-26. IA32_APIC_BASE MSR Supporting x2APIC .10-53
Figure 10-27. Local x2APIC State Transitions with IA32_APIC_BASE, INIT, and Reset 10-60
Figure 10-29. Logical Destination Register in x2APIC Mode .10-65
Figure 10-28. Interrupt Command Register (ICR) in x2APIC Mode .10-65
Figure 10-30. SELF IPI register .10-67
Figure 11-1. Cache Structure of the Pentium 4 and Intel Xeon Processors 11-1
Figure 11-2. Cache Structure of the Intel Core i7 Processors. 11-2
Figure 11-3. Cache-Control Registers and Bits Available in Intel 64 and IA-32 Processors. . .11-16
Figure 11-4. Mapping Physical Memory With MTRRs .11-31
Figure 11-5. IA32_MTRRCAP Register .11-32
Figure 11-6. IA32_MTRR_DEF_TYPE MSR .11-33
Figure 11-7. IA32_MTRR_PHYSBASEn and IA32_MTRR_PHYSMASKn Variable-Range

Register Pair. .11-36
Figure 11-8. IA32_SMRR_PHYSBASE and IA32_SMRR_PHYSMASK SMRR Pair11-38
Figure 11-9. IA32_PAT MSR .11-49
Figure 12-1. Mapping of MMX Registers to Floating-Point Registers. 12-2
Figure 12-2. Mapping of MMX Registers to x87 FPU Data Register Stack 12-7
Figure 13-1. Example of Saving the x87 FPU, MMX, SSE, SSE2, SSE3, and SSSE3 State During

an Operating-System Controlled Task Switch .13-11
Figure 13-2. Future Layout of XSAVE/XRSTOR Area and XSTATE_BV with Five Sets of

Processor State Extensions .13-14
Figure 13-3. OS Enabling of Processor Extended State Support .13-17
Figure 13-4. Application Detection of New Instruction Extensions and Processor Extended

State .13-19
Figure 14-1. IA32_MPERF MSR and IA32_APERF MSR for P-state Coordination 14-2
Figure 14-2. IA32_PERF_CTL Register. 14-6
Figure 14-3. Periodic Query of Activity Ratio of Opportunistic Processor Operation 14-7
Figure 14-4. IA32_ENERGY_PERF_BIAS Register. 14-9
Figure 14-5. Processor Modulation Through Stop-Clock Mechanism .14-11
Figure 14-6. MSR_THERM2_CTL Register On Processors with CPUID Family/Model/Stepping

Signature Encoded as 0x69n or 0x6Dn .14-13
Figure 14-7. MSR_THERM2_CTL Register for Supporting TM2 .14-14
Figure 14-8. IA32_THERM_STATUS MSR .14-15
Figure 14-9. IA32_THERM_INTERRUPT MSR .14-15
Figure 14-10. IA32_CLOCK_MODULATION MSR. .14-17
Figure 14-11. IA32_CLOCK_MODULATION MSR with Clock Modulation Extension.14-18
Figure 14-12. IA32_THERM_STATUS Register .14-20
xxxvi Vol. 3A

CONTENTS
PAGE
Figure 14-13. IA32_THERM_INTERRUPT Register . 14-22
Figure 14-14. IA32_PACKAGE_THERM_STATUS Register . 14-24
Figure 14-15. IA32_PACKAGE_THERM_INTERRUPT Register . 14-26
Figure 14-16. MSR_RAPL_POWER_UNIT Register . 14-29
Figure 14-17. MSR_PKG_POWER_LIMIT Register. 14-31
Figure 14-18. MSR_PKG_ENERGY_STATUS MSR . 14-32
Figure 14-19. MSR_PKG_POWER_INFO Register . 14-32
Figure 14-20. MSR_PKG_PERF_STATUS MSR . 14-33
Figure 14-21. MSR_PP0_POWER_LIMIT/MSR_PP1_POWER_LIMIT Register 14-34
Figure 14-22. MSR_PP0_ENERGY_STATUS/MSR_PP1_ENERGY_STATUS MSR 14-35
Figure 14-23. MSR_PP0_POLICY/MSR_PP1_POLICY Register . 14-35
Figure 14-24. MSR_PP0_PERF_STATUS MSR . 14-36
Figure 14-25. MSR_DRAM_POWER_LIMIT Register . 14-36
Figure 14-26. MSR_DRAM_ENERGY_STATUS MSR . 14-37
Figure 14-27. MSR_DRAM_POWER_INFO Register . 14-38
Figure 14-28. MSR_DRAM_PERF_STATUS MSR . 14-38
Figure 15-1. Machine-Check MSRs .15-2
Figure 15-2. IA32_MCG_CAP Register. .15-3
Figure 15-3. IA32_MCG_STATUS Register. .15-4
Figure 15-4. IA32_MCi_CTL Register .15-6
Figure 15-5. IA32_MCi_STATUS Register. .15-7
Figure 15-6. IA32_MCi_ADDR MSR. 15-10
Figure 15-7. UCR Support in IA32_MCi_MISC Register. 15-11
Figure 15-8. IA32_MCi_CTL2 Register . 15-12
Figure 15-9. CMCI Behavior . 15-17
Figure 17-1. Debug Registers. .17-3
Figure 17-2. DR6/DR7 Layout on Processors Supporting Intel 64 Technology17-9
Figure 17-3. IA32_DEBUGCTL MSR for Processors based

on Intel Core microarchitecture. 17-15
Figure 17-4. 64-bit Address Layout of LBR MSR . 17-20
Figure 17-5. DS Save Area . 17-23
Figure 17-6. 32-bit Branch Trace Record Format . 17-24
Figure 17-7. PEBS Record Format. 17-25
Figure 17-8. IA-32e Mode DS Save Area . 17-26
Figure 17-9. 64-bit Branch Trace Record Format . 17-27
Figure 17-10. 64-bit PEBS Record Format . 17-27
Figure 17-11. IA32_DEBUGCTL MSR for Processors based

on Intel microarchitecture code name Nehalem . 17-35
Figure 17-12. MSR_DEBUGCTLA MSR for Pentium 4 and Intel Xeon Processors. 17-39
Figure 17-13. LBR MSR Branch Record Layout for the Pentium 4 and Intel Xeon Processor

Family . 17-41
Figure 17-14. IA32_DEBUGCTL MSR for Intel Core Solo

and Intel Core Duo Processors . 17-43
Figure 17-15. LBR Branch Record Layout for the Intel Core Solo

and Intel Core Duo Processor. 17-44
Figure 17-16. MSR_DEBUGCTLB MSR for Pentium M Processors . 17-45
Figure 17-17. LBR Branch Record Layout for the Pentium M Processor . 17-46
Figure 17-18. DEBUGCTLMSR Register (P6 Family Processors). 17-47
Figure 18-1. Layout of IA32_PERFEVTSELx MSRs .18-5
Figure 18-2. Layout of IA32_FIXED_CTR_CTRL MSR .18-7
Figure 18-3. Layout of IA32_PERF_GLOBAL_CTRL MSR. .18-8
Figure 18-4. Layout of IA32_PERF_GLOBAL_STATUS MSR .18-9
Vol. 3A xxxvii

CONTENTS
PAGE
Figure 18-5. Layout of IA32_PERF_GLOBAL_OVF_CTRL MSR .18-10
Figure 18-6. Layout of IA32_PERFEVTSELx MSRs Supporting Architectural Performance

Monitoring Version 3 .18-11
Figure 18-7. Layout of IA32_FIXED_CTR_CTRL MSR Supporting Architectural Performance

Monitoring Version 3 .18-12
Figure 18-8. Layout of Global Performance Monitoring Control MSR .18-13
Figure 18-9. Layout of MSR_PERF_FIXED_CTR_CTRL MSR. .18-20
Figure 18-10. Layout of MSR_PERF_GLOBAL_CTRL MSR. .18-21
Figure 18-11. Layout of MSR_PERF_GLOBAL_STATUS MSR. .18-22
Figure 18-12. Layout of MSR_PERF_GLOBAL_OVF_CTRL MSR .18-22
Figure 18-13. IA32_PERF_GLOBAL_STATUS MSR .18-28
Figure 18-14. Layout of IA32_PEBS_ENABLE MSR .18-30
Figure 18-15. PEBS Programming Environment. .18-32
Figure 18-16. Layout of MSR_PEBS_LD_LAT MSR .18-36
Figure 18-17. Layout of MSR_OFFCORE_RSP_0 and MSR_OFFCORE_RSP_1 to Configure

Off-core Response Events. .18-37
Figure 18-18. Layout of MSR_UNCORE_PERF_GLOBAL_CTRL MSR .18-40
Figure 18-19. Layout of MSR_UNCORE_PERF_GLOBAL_STATUS MSR .18-41
Figure 18-20. Layout of MSR_UNCORE_PERF_GLOBAL_OVF_CTRL MSR .18-41
Figure 18-21. Layout of MSR_UNCORE_PERFEVTSELx MSRs. .18-42
Figure 18-22. Layout of MSR_UNCORE_FIXED_CTR_CTRL MSR .18-43
Figure 18-23. Layout of MSR_UNCORE_ADDR_OPCODE_MATCH MSR .18-44
Figure 18-24. Distributed Units of the Uncore of Intel® Xeon® Processor 7500 Series 18-46
Figure 18-25. IA32_PERF_GLOBAL_CTRL MSR in Intel® Microarchitecture Code Name Sandy

Bridge .18-50
Figure 18-26. IA32_PERF_GLOBAL_STATUS MSR in Intel® Microarchitecture Code Name Sandy

Bridge .18-51
Figure 18-27. IA32_PERF_GLOBAL_OVF_CTRL MSR in Intel microarchitecture code name Sandy

Bridge .18-52
Figure 18-28. Layout of IA32_PEBS_ENABLE MSR .18-54
Figure 18-29. Request_Type Fields for MSR_OFFCORE_RSP_x .18-60
Figure 18-30. Response_Supplier and Snoop Info Fields for MSR_OFFCORE_RSP_x 18-61
Figure 18-31. Layout of MSR_UNC_CBO_N_PERFEVTSELx MSR for C-Box N18-64
Figure 18-32. Layout of MSR_UNC_PERF_GLOBAL_CTRL MSR for Uncore 18-64
Figure 18-33. Event Selection Control Register (ESCR) for Pentium 4

and Intel Xeon Processors without Intel HT Technology Support 18-72
Figure 18-34. Performance Counter (Pentium 4 and Intel Xeon Processors).18-74
Figure 18-35. Counter Configuration Control Register (CCCR) .18-75
Figure 18-36. Effects of Edge Filtering. .18-81
Figure 18-37. Event Selection Control Register (ESCR) for the Pentium 4 Processor, Intel Xeon

Processor and Intel Xeon Processor MP Supporting Hyper-Threading
Technology .18-92

Figure 18-38. Counter Configuration Control Register (CCCR) .18-94
Figure 18-39. Layout of IA32_PERF_CAPABILITIES MSR . 18-102
Figure 18-40. Block Diagram of 64-bit Intel Xeon Processor MP with 8-MByte L3 18-103
Figure 18-41. MSR_IFSB_IBUSQx, Addresses: 107CCH and 107CDH . 18-104
Figure 18-42. MSR_IFSB_ISNPQx, Addresses: 107CEH and 107CFH . 18-105
Figure 18-43. MSR_EFSB_DRDYx, Addresses: 107D0H and 107D1H . 18-106
Figure 18-44. MSR_IFSB_CTL6, Address: 107D2H; MSR_IFSB_CNTR7, Address: 107D3H . . 18-107
Figure 18-45. Block Diagram of Intel Xeon Processor 7400 Series. 18-108
Figure 18-46. Block Diagram of Intel Xeon Processor 7100 Series. 18-109
Figure 18-47. MSR_EMON_L3_CTR_CTL0/1, Addresses: 107CCH/107CDH 18-111
xxxviii Vol. 3A

CONTENTS
PAGE
Figure 18-48. MSR_EMON_L3_CTR_CTL2/3, Addresses: 107CEH/107CFH. 18-114
Figure 18-49. MSR_EMON_L3_CTR_CTL4/5/6/7, Addresses: 107D0H-107D3H. 18-115
Figure 18-50. PerfEvtSel0 and PerfEvtSel1 MSRs. 18-118
Figure 18-51. CESR MSR (Pentium Processor Only). 18-122
Figure 20-1. Real-Address Mode Address Translation .20-4
Figure 20-2. Interrupt Vector Table in Real-Address Mode .20-7
Figure 20-3. Entering and Leaving Virtual-8086 Mode . 20-13
Figure 20-4. Privilege Level 0 Stack After Interrupt or Exception in Virtual-8086 Mode. . . . 20-19
Figure 20-5. Software Interrupt Redirection Bit Map in TSS . 20-27
Figure 21-1. Stack after Far 16- and 32-Bit Calls .21-6
Figure 22-1. I/O Map Base Address Differences. 22-40
Figure 23-1. Interaction of a Virtual-Machine Monitor and Guests. .23-3
Figure 24-1. States of VMCS X .24-3
Figure 28-1. Formats of EPTP and EPT Paging-Structure Entries . 28-11
Figure 29-1. INVEPT Descriptor. .29-4
Figure 29-2. INVVPID Descriptor .29-8
Figure 30-1. VMX Transitions and States of VMCS in a Logical Processor.30-4
Figure 31-1. Virtual TLB Scheme. .31-7
Figure 32-1. Host External Interrupts and Guest Virtual Interrupts .32-5
Figure 33-1. SMRAM Usage. .33-6
Figure 33-2. SMM Revision Identifier . 33-18
Figure 33-3. Auto HALT Restart Field . 33-19
Figure 33-4. SMBASE Relocation Field. 33-20
Figure 33-5. I/O Instruction Restart Field . 33-21
Vol. 3A xxxix

CONTENTS
PAGE
TABLES

Table 2-1. Action Taken By x87 FPU Instructions for Different Combinations of EM, MP,
and TS . 2-21

Table 2-2. Summary of System Instructions . 2-27
Table 3-1. Code- and Data-Segment Types . 3-17
Table 3-2. System-Segment and Gate-Descriptor Types . 3-19
Table 4-1. Properties of Different Paging Modes . 4-3
Table 4-2. Paging Structures in the Different Paging Modes. 4-9
Table 4-3. Use of CR3 with 32-Bit Paging. 4-14
Table 4-4. Format of a 32-Bit Page-Directory Entry that Maps a 4-MByte Page 4-14
Table 4-5. Format of a 32-Bit Page-Directory Entry that References a Page Table 4-15
Table 4-6. Format of a 32-Bit Page-Table Entry that Maps a 4-KByte Page 4-16
Table 4-7. Use of CR3 with PAE Paging . 4-17
Table 4-8. Format of a PAE Page-Directory-Pointer-Table Entry (PDPTE) 4-18
Table 4-9. Format of a PAE Page-Directory Entry that Maps a 2-MByte Page 4-21
Table 4-10. Format of a PAE Page-Directory Entry that References a Page Table 4-22
Table 4-11. Format of a PAE Page-Table Entry that Maps a 4-KByte Page 4-23
Table 4-12. Use of CR3 with IA-32e Paging and CR4.PCIDE = 0. 4-26
Table 4-13. Use of CR3 with IA-32e Paging and CR4.PCIDE = 1. 4-27
Table 4-14. Format of an IA-32e PML4 Entry (PML4E) that References a Page-Directory-

Pointer Table . 4-33
Table 4-15. Format of an IA-32e Page-Directory-Pointer-Table Entry (PDPTE) that Maps a

1-GByte Page. 4-34
Table 4-16. Format of an IA-32e Page-Directory-Pointer-Table Entry (PDPTE) that References

a Page Directory . 4-35
Table 4-17. Format of an IA-32e Page-Directory Entry that Maps a 2-MByte Page 4-36
Table 4-18. Format of an IA-32e Page-Directory Entry that References a Page Table 4-37
Table 4-19. Format of an IA-32e Page-Table Entry that Maps a 4-KByte Page 4-38
Table 5-1. Privilege Check Rules for Call Gates . 5-23
Table 5-2. 64-Bit-Mode Stack Layout After CALLF with CPL Change. 5-28
Table 5-3. Combined Page-Directory and Page-Table Protection . 5-42
Table 5-4. Extended Feature Enable MSR (IA32_EFER) . 5-43
Table 5-5. IA-32e Mode Page Level Protection Matrix with Execute-Disable Bit Capability . 5-44
Table 5-6. Legacy PAE-Enabled 4-KByte Page Level Protection Matrix with Execute-Disable

Bit Capability . 5-45
Table 5-7. Legacy PAE-Enabled 2-MByte Page Level Protection with Execute-Disable Bit

Capability. 5-45
Table 5-8. IA-32e Mode Page Level Protection Matrix with Execute-Disable Bit Capability

Enabled . 5-46
Table 5-9. Reserved Bit Checking WIth Execute-Disable Bit Capability Not Enabled 5-47
Table 6-1. Protected-Mode Exceptions and Interrupts . 6-3
Table 6-2. Priority Among Simultaneous Exceptions and Interrupts . 6-11
Table 6-3. Debug Exception Conditions and Corresponding Exception Classes. 6-29
Table 6-4. Interrupt and Exception Classes . 6-38
Table 6-5. Conditions for Generating a Double Fault . 6-39
Table 6-6. Invalid TSS Conditions . 6-42
Table 6-7. Alignment Requirements by Data Type. 6-60
Table 6-8. SIMD Floating-Point Exceptions Priority . 6-66
Table 7-1. Exception Conditions Checked During a Task Switch . 7-15
Table 7-2. Effect of a Task Switch on Busy Flag, NT Flag, Previous Task Link Field, and TS

Flag . 7-17
xl Vol. 3A

CONTENTS
PAGE
Table 8-1. Initial APIC IDs for the Logical Processors in a System that has Four Intel Xeon MP
Processors Supporting Intel Hyper-Threading Technology1 .8-53

Table 8-2. Initial APIC IDs for the Logical Processors in a System that has Two Physical
Processors Supporting Dual-Core and Intel Hyper-Threading Technology8-54

Table 8-3. Example of Possible x2APIC ID Assignment in a System that has Two Physical
Processors Supporting x2APIC and Intel Hyper-Threading Technology 8-54

Table 8-4. Boot Phase IPI Message Format .8-75
Table 9-1. IA-32 Processor States Following Power-up, Reset, or INIT . 9-2
Table 9-2. Recommended Settings of EM and MP Flags on IA-32 Processors 9-7
Table 9-3. Software Emulation Settings of EM, MP, and NE Flags . 9-8
Table 9-4. Main Initialization Steps in STARTUP.ASM Source Listing .9-21
Table 9-5. Relationship Between BLD Item and ASM Source File .9-35
Table 9-6. Microcode Update Field Definitions .9-38
Table 9-7. Microcode Update Format. .9-40
Table 9-8. Extended Processor Signature Table Header Structure .9-41
Table 9-9. Processor Signature Structure .9-41
Table 9-10. Processor Flags .9-43
Table 9-11. Microcode Update Signature .9-48
Table 9-12. Microcode Update Functions .9-55
Table 9-13. Parameters for the Presence Test .9-56
Table 9-14. Parameters for the Write Update Data Function .9-57
Table 9-15. Parameters for the Control Update Sub-function .9-62
Table 9-17. Parameters for the Read Microcode Update Data Function .9-63
Table 9-16. Mnemonic Values. .9-63
Table 9-18. Return Code Definitions .9-65
Table 10-1 Local APIC Register Address Map .10-8
Table 10-2. Local APIC Timer Modes. 10-24
Table 10-3 Valid Combinations for the Pentium 4 and Intel Xeon Processors’ Local xAPIC

Interrupt Command Register . 10-30
Table 10-4 Valid Combinations for the P6 Family Processors’ Local APIC Interrupt Command

Register . 10-31
Table 10-5. x2APIC Operating Mode Configurations . 10-53
Table 10-6. Local APIC Register Address Map Supported by x2APIC. 10-55
Table 10-7. MSR/MMIO Interface of a Local x2APIC in Different Modes of Operation 10-58
Table 10-1. EOI Message (14 Cycles) . 10-68
Table 10-2. Short Message (21 Cycles) . 10-69
Table 10-3. Non-Focused Lowest Priority Message (34 Cycles) . 10-70
Table 10-4. APIC Bus Status Cycles Interpretation . 10-72
Table 11-1. Characteristics of the Caches, TLBs, Store Buffer, and Write Combining Buffer in

Intel 64 and IA-32 Processors .11-2
Table 11-2. Memory Types and Their Properties .11-9
Table 11-3. Methods of Caching Available in Intel Core 2 Duo, Intel Atom, Intel Core Duo,

Pentium M, Pentium 4, Intel Xeon, P6 Family, and Pentium Processors 11-10
Table 11-4. MESI Cache Line States . 11-14
Table 11-5. Cache Operating Modes . 11-17
Table 11-6. Effective Page-Level Memory Type for Pentium Pro and Pentium II

Processors . 11-20
Table 11-7. Effective Page-Level Memory Types for Pentium III and More Recent Processor

Families. 11-22
Table 11-8. Memory Types That Can Be Encoded in MTRRs . 11-30
Table 11-9. Address Mapping for Fixed-Range MTRRs. 11-35
Table 11-10. Memory Types That Can Be Encoded With PAT . 11-49
Vol. 3A xli

CONTENTS
PAGE
Table 11-11. Selection of PAT Entries with PAT, PCD, and PWT Flags .11-50
Table 11-12. Memory Type Setting of PAT Entries Following a Power-up or Reset11-50
Table 12-1. Action Taken By MMX Instructions for Different Combinations of EM, MP and

TS . 12-1
Table 12-2. Effects of MMX Instructions on x87 FPU State . 12-3
Table 12-3. Effect of the MMX, x87 FPU, and FXSAVE/FXRSTOR Instructions on the

x87 FPU Tag Word . 12-4
Table 13-1. Action Taken for Combinations of OSFXSR, OSXMMEXCPT, SSE, SSE2, SSE3, EM,

MP, and TS1 . 13-4
Table 13-2. Action Taken for Combinations of OSFXSR, SSSE3, SSE4, EM, and TS 13-5
Table 13-3. XSAVE Header Format .13-14
Table 13-4. XRSTOR Action on MXCSR, x87 FPU, XMM Register. .13-16
Table 13-5. XSAVE Action on MXCSR, x87 FPU, XMM Register .13-16
Table 13-6. XCR0 and Processor State Components .13-21
Table 13-7. CR4 bits for AVX New Instructions technology support. .13-21
Table 13-8. Layout of XSAVE Area For Processor Supporting YMM State 13-22
Table 13-9. XSAVE Header Format .13-22
Table 13-10. XSAVE Save Area Layout for YMM State (Ext_Save_Area_2)13-23
Table 13-11. XRSTOR Action on MXCSR, XMM Registers, YMM Registers.13-23
Table 13-12. Processor Supplied Init Values XRSTOR May Use .13-24
Table 13-13. XSAVE Action on MXCSR, XMM, YMM Register .13-24
Table 14-1. On-Demand Clock Modulation Duty Cycle Field Encoding. .14-17
Table 14-2. RAPL MSR Interfaces and RAPL Domains .14-30
Table 15-1. Bits 54:53 in IA32_MCi_STATUS MSRs when IA32_MCG_CAP[11] = 1 and

UC = 0. 15-8
Table 15-2. Overwrite Rules for Enabled Errors . 15-9
Table 15-3. Address Mode in IA32_MCi_MISC[8:6] .15-11
Table 15-4. Extended Machine Check State MSRs in Processors Without Support for Intel 64

Architecture .15-13
Table 15-5. Extended Machine Check State MSRs In Processors With Support For Intel 64

Architecture .15-14
Table 15-6. MC Error Classifications .15-23
Table 15-7. Overwrite Rules for UC, CE, and UCR Errors. .15-24
Table 15-8. IA32_MCi_Status [15:0] Simple Error Code Encoding .15-26
Table 15-9. IA32_MCi_Status [15:0] Compound Error Code Encoding .15-27
Table 15-10. Encoding for TT (Transaction Type) Sub-Field .15-28
Table 15-11. Level Encoding for LL (Memory Hierarchy Level) Sub-Field 15-28
Table 15-12. Encoding of Request (RRRR) Sub-Field .15-29
Table 15-13. Encodings of PP, T, and II Sub-Fields .15-29
Table 15-14. Encodings of MMM and CCCC Sub-Fields .15-30
Table 15-15. MCA Compound Error Code Encoding for SRAO Errors .15-31
Table 15-16. IA32_MCi_STATUS Values for SRAO Errors .15-31
Table 15-17. IA32_MCG_STATUS Flag Indication for SRAO Errors .15-32
Table 15-18. MCA Compound Error Code Encoding for SRAR Errors .15-32
Table 15-19. IA32_MCi_STATUS Values for SRAR Errors .15-33
Table 15-20. IA32_MCG_STATUS Flag Indication for SRAR Errors. .15-33
Table 16-1. CPUID DisplayFamily_DisplayModel Signatures for Processor Family 06H 16-1
Table 16-2. Incremental Decoding Information: Processor Family 06H Machine Error Codes For

Machine Check . 16-2
Table 16-3. CPUID DisplayFamily_DisplayModel Signatures for Processors Based on Intel Core

Microarchitecture . 16-5
Table 16-4. Incremental Bus Error Codes of Machine Check for Processors Based on Intel Core
xlii Vol. 3A

CONTENTS
PAGE
Microarchitecture .16-6
Table 16-5. Incremental MCA Error Code Types for Intel Xeon Processor 740016-9
Table 16-6. Type B Bus and Interconnect Error Codes . 16-10
Table 16-7. Type C Cache Bus Controller Error Codes . 16-10
Table 16-8. Intel QPI Machine Check Error Codes for IA32_MC0_STATUS and

IA32_MC1_STATUS . 16-12
Table 16-9. Intel QPI Machine Check Error Codes for IA32_MC0_MISC and IA32_MC1_MISC16-13
Table 16-10. Machine Check Error Codes for IA32_MC7_STATUS . 16-13
Table 16-11. Incremental Memory Controller Error Codes of Machine Check for

IA32_MC8_STATUS . 16-14
Table 16-12. Incremental Memory Controller Error Codes of Machine Check for

IA32_MC8_MISC. 16-15
Table 16-13. Machine Check Error Codes for IA32_MC4_STATUS . 16-16
Table 16-14. Intel QPI MC Error Codes for IA32_MC6_STATUS and IA32_MC7_STATUS 16-18
Table 16-15. Incremental Decoding Information: Processor Family 0FH Machine Error Codes

For Machine Check. 16-19
Table 16-16. MCi_STATUS Register Bit Definition . 16-20
Table 16-17. Incremental MCA Error Code for Intel Xeon Processor MP 7100 16-22
Table 16-18. Other Information Field Bit Definition. 16-23
Table 16-19. Type A: L3 Error Codes . 16-24
Table 16-20. Type B Bus and Interconnect Error Codes . 16-25
Table 16-21. Type C Cache Bus Controller Error Codes . 16-26
Table 16-22. Decoding Family 0FH Machine Check Codes for Cache Hierarchy Errors 16-27
Table 17-1. Breakpoint Examples .17-7
Table 17-2. Debug Exception Conditions. 17-10
Table 17-3. LBR Stack Size and TOS Pointer Range. 17-19
Table 17-4. IA32_DEBUGCTL Flag Encodings . 17-29
Table 17-5. CPL-Qualified Branch Trace Store Encodings . 17-30
Table 17-6. IA32_LASTBRANCH_x_FROM_IP . 17-35
Table 17-7. IA32_LASTBRANCH_x_TO_IP . 17-35
Table 17-8. LBR Stack Size and TOS Pointer Range . 17-36
Table 17-9. MSR_LBR_SELECT for Intel microarchitecture code name Nehalem. 17-36
Table 17-10. MSR_LBR_SELECT for Intel microarchitecture code name Sandy Bridge 17-37
Table 17-11. LBR MSR Stack Size and TOS Pointer Range for the Pentium® 4 and the

Intel® Xeon® Processor Family . 17-40
Table 18-1. UMask and Event Select Encodings for Pre-Defined Architectural Performance

Events . 18-14
Table 18-2. Core Specificity Encoding within a Non-Architectural Umask 18-16
Table 18-3. Agent Specificity Encoding within a Non-Architectural Umask 18-17
Table 18-4. HW Prefetch Qualification Encoding within a Non-Architectural Umask 18-17
Table 18-5. MESI Qualification Definitions within a Non-Architectural Umask 18-17
Table 18-6. Bus Snoop Qualification Definitions within a Non-Architectural Umask. 18-18
Table 18-7. Snoop Type Qualification Definitions within a Non-Architectural Umask 18-19
Table 18-8. Association of Fixed-Function Performance Counters with Architectural

Performance Events . 18-19
Table 18-9. At-Retirement Performance Events for Intel Core Microarchitecture 18-23
Table 18-10. PEBS Performance Events for Intel Core Microarchitecture 18-23
Table 18-11. Requirements to Program PEBS . 18-25
Table 18-12. PEBS Record Format for Intel Core i7 Processor Family . 18-30
Table 18-13. Data Source Encoding for Load Latency Record . 18-35
Table 18-14. Off-Core Response Event Encoding . 18-37
Table 18-15. MSR_OFFCORE_RSP_0 and MSR_OFFCORE_RSP_1 Bit Field Definition 18-37
Vol. 3A xliii

CONTENTS
PAGE
Table 18-16. Opcode Field Encoding for MSR_UNCORE_ADDR_OPCODE_MATCH.18-44
Table 18-17. Uncore PMU MSR Summary. .18-46
Table 18-18. Uncore PMU MSR Summary for Intel® Xeon® Processor E7 Family18-48
Table 18-19. Core PMU Comparison .18-49
Table 18-20. PEBS Facility Comparison. .18-53
Table 18-21. PEBS Performance Events for Intel® Microarchitecture Code Name Sandy

Bridge .18-55
Table 18-22. Layout of Data Source Field of Load Latency Record. .18-57
Table 18-23. Layout of Precise Store Information In PEBS Record .18-58
Table 18-24. Off-Core Response Event Encoding .18-59
Table 18-25. MSR_OFFCORE_RSP_x Request_Type Field Definition .18-60
Table 18-26. MSR_OFFCORE_RSP_x Response Supplier Info Field Definition18-62
Table 18-27. MSR_OFFCORE_RSP_x Snoop Info Field Definition .18-62
Table 18-28. Uncore PMU MSR Summary. .18-65
Table 18-29. MSR_OFFCORE_RSP_x Supplier Info Field Definition for Next Generation Intel

Xeon Processor .18-66
Table 18-30. Uncore PMU MSR Summary for Intel® Xeon® Processor E5 Family18-66
Table 18-31. Performance Counter MSRs and Associated CCCR and ESCR MSRs (Pentium 4 and

Intel Xeon Processors) .18-68
Table 18-32. Event Example. .18-77
Table 18-33. CCR Names and Bit Positions .18-83
Table 18-34. Effect of Logical Processor and CPL Qualification for Logical-Processor-Specific

(TS) Events .18-96
Table 18-35. Effect of Logical Processor and CPL Qualification for Non-logical-Processor-

specific (TI) Events .18-97
Table 19-1. Architectural Performance Events . 19-2
Table 19-2. Non-Architectural Performance Events In the Processor Core of Next Generation

Intel Core i7, i5, i3 Processors . 19-2
Table 19-3. Non-Architectural Performance Events In the Processor Core Common to 2nd

Generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx
Processor Series and Intel® Xeon® Processors E5 Family. .19-14

Table 19-4. Non-Architectural Performance Events applicable only to the Processor core for
2nd Generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx
Processor Series .19-28

Table 19-5. Non-Architectural Performance Events Applicable only to the Processor Core of
Intel® Xeon® Processor E5 Family .19-32

Table 19-6. Non-Architectural Performance Events In the Processor Uncore for 2nd
Generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx
Processor Series .19-33

Table 19-7. Non-Architectural Performance Events In the Processor Core for Intel® Core™ i7
Processor and Intel® Xeon® Processor 5500 Series. .19-36

Table 19-8. Non-Architectural Performance Events In the Processor Uncore for Intel® Core™ i7
Processor and Intel® Xeon® Processor 5500 Series. .19-65

Table 19-9. Non-Architectural Performance Events In the Processor Core for Processors Based
on Intel® Microarchitecture Code Name Westmere .19-87

Table 19-10. Non-Architectural Performance Events In the Processor Uncore for Processors Based
on Intel® Microarchitecture Code Name Westmere . 19-115

Table 19-11. Non-Architectural Performance Events for Processors Based on Enhanced Intel Core
Microarchitecture . 19-142

Table 19-12. Fixed-Function Performance Counter and Pre-defined Performance Events . 19-143
Table 19-13. Non-Architectural Performance Events in Processors Based on Intel Core

Microarchitecture . 19-144
xliv Vol. 3A

CONTENTS
PAGE
Table 19-14. Non-Architectural Performance Events for Intel Atom Processors. 19-187
Table 19-15. Non-Architectural Performance Events in Intel Core Solo and Intel Core Duo

Processors . 19-209
Table 19-16. Performance Monitoring Events Supported by Intel NetBurst Microarchitecture for

Non-Retirement Counting . 19-219
Table 19-17. Performance Monitoring Events For Intel NetBurst Microarchitecture for At-

Retirement Counting . 19-250
Table 19-18. Intel NetBurst Microarchitecture Model-Specific Performance Monitoring Events

(For Model Encoding 3, 4 or 6). 19-257
Table 19-20. List of Metrics Available for Execution Tagging (For Execution Event Only) . . 19-258
Table 19-19. List of Metrics Available for Front_end Tagging (For Front_end Event Only) . 19-258
Table 19-21. List of Metrics Available for Replay Tagging (For Replay Event Only) 19-259
Table 19-22. Event Mask Qualification for Logical Processors . 19-261
Table 19-23. Performance Monitoring Events on Intel® Pentium® M Processors 19-267
Table 19-24. Performance Monitoring Events Modified on Intel® Pentium® M Processors . 19-269
Table 19-25. Events That Can Be Counted with the P6 Family Performance-Monitoring

Counters . 19-271
Table 19-26. Events That Can Be Counted with Pentium Processor Performance-Monitoring

Counters . 19-288
Table 20-1. Real-Address Mode Exceptions and Interrupts .20-8
Table 20-2. Software Interrupt Handling Methods While in Virtual-8086 Mode 20-26
Table 21-1. Characteristics of 16-Bit and 32-Bit Program Modules .21-1
Table 22-1. New Instruction in the Pentium Processor and Later IA-32 Processors22-6
Table 22-2. Recommended Values of the EM, MP, and NE Flags for Intel486 SX

Microprocessor/Intel 487 SX Math Coprocessor System . 22-22
Table 22-3. EM and MP Flag Interpretation . 22-23
Table 22-4. Exception Conditions for Legacy SIMD/MMX Instructions with FP Exception and

16-Byte Alignment . 22-31
Table 22-5. Exception Conditions for Legacy SIMD/MMX Instructions with XMM and FP

Exception . 22-32
Table 22-6. Exception Conditions for Legacy SIMD/MMX Instructions with XMM and without

FP Exception . 22-33
Table 22-7. Exception Conditions for SIMD/MMX Instructions with Memory Reference 22-34
Table 22-8. Exception Conditions for Legacy SIMD/MMX Instructions without FP

Exception . 22-35
Table 22-9. Exception Conditions for Legacy SIMD/MMX Instructions without Memory

Reference . 22-36
Table 24-1. Format of the VMCS Region. .24-3
Table 24-2. Format of Access Rights .24-6
Table 24-3. Format of Interruptibility State. .24-8
Table 24-4. Format of Pending-Debug-Exceptions .24-9
Table 24-5. Definitions of Pin-Based VM-Execution Controls. 24-12
Table 24-6. Definitions of Primary Processor-Based VM-Execution Controls 24-13
Table 24-7. Definitions of Secondary Processor-Based VM-Execution Controls 24-15
Table 24-8. Format of Extended-Page-Table Pointer . 24-20
Table 24-9. Definitions of VM-Function Controls . 24-21
Table 24-10. Definitions of VM-Exit Controls. 24-22
Table 24-11. Format of an MSR Entry . 24-23
Table 24-12. Definitions of VM-Entry Controls . 24-24
Table 24-13. Format of the VM-Entry Interruption-Information Field . 24-26
Table 24-14. Format of Exit Reason . 24-27
Table 24-15. Format of the VM-Exit Interruption-Information Field. 24-29
Vol. 3A xlv

CONTENTS
PAGE
Table 24-16. Format of the IDT-Vectoring Information Field. .24-29
Table 24-17. Structure of VMCS Component Encoding .24-32
Table 27-1. Exit Qualification for Debug Exceptions . 27-6
Table 27-2. Exit Qualification for Task Switch . 27-7
Table 27-3. Exit Qualification for Control-Register Accesses . 27-8
Table 27-4. Exit Qualification for MOV DR. 27-9
Table 27-5. Exit Qualification for I/O Instructions . 27-9
Table 27-6. Exit Qualification for APIC-Access VM Exits from Linear Accesses and Guest-

Physical Accesses. .27-10
Table 27-7. Exit Qualification for EPT Violations. .27-11
Table 27-8. Format of the VM-Exit Instruction-Information Field as Used for INS and

OUTS. .27-18
Table 27-9. Format of the VM-Exit Instruction-Information Field as Used for INVEPT, INVPCID,

and INVVPID .27-19
Table 27-10. Format of the VM-Exit Instruction-Information Field as Used for LIDT, LGDT, SIDT,

or SGDT .27-20
Table 27-11. Format of the VM-Exit Instruction-Information Field as Used for LLDT, LTR, SLDT,

and STR .27-22
Table 27-12. Format of the VM-Exit Instruction-Information Field as Used for RDRAND.27-23
Table 27-13. Format of the VM-Exit Instruction-Information Field as Used for VMCLEAR,

VMPTRLD, VMPTRST, and VMXON .27-24
Table 27-14. Format of the VM-Exit Instruction-Information Field as Used for VMREAD and

VMWRITE. .27-26
Table 28-1. Format of an EPT PML4 Entry (PML4E). 28-5
Table 28-2. Format of an EPT Page-Directory-Pointer-Table Entry (PDPTE) that Maps a

1-GByte Page. 28-6
Table 28-3. Format of an EPT Page-Directory-Pointer-Table Entry (PDPTE) that References an

EPT Page Directory . 28-7
Table 28-4. Format of an EPT Page-Directory Entry (PDE) that Maps a 2-MByte Page 28-8
Table 28-5. Format of an EPT Page-Directory Entry (PDE) that References an EPT Page

Table. 28-9
Table 28-6. Format of an EPT Page-Table Entry .28-10
Table 29-1. VM-Instruction Error Numbers .29-35
Table 30-1. Operating Modes for Host and Guest Environments .30-18
Table 33-1. SMRAM State Save Map . 33-6
Table 33-2. Processor Signatures and 64-bit SMRAM State Save Map Format 33-9
Table 33-3. SMRAM State Save Map for Intel 64 Architecture . 33-9
Table 33-4. Processor Register Initialization in SMM .33-13
Table 33-5. I/O Instruction Information in the SMM State Save Map .33-16
Table 33-6. I/O Instruction Type Encodings .33-16
Table 33-7. Auto HALT Restart Flag Values .33-19
Table 33-8. I/O Instruction Restart Field Values .33-21
Table 33-9. Exit Qualification for SMIs That Arrive Immediately After the Retirement of an

I/O Instruction .33-29
Table 33-10. Format of MSEG Header .33-35
Table 34-1. CPUID Signature Values of DisplayFamily_DisplayModel . 34-1
Table 34-2. IA-32 Architectural MSRs. 34-3
Table 34-3. MSRs in Processors Based on Intel Core Microarchitecture 34-46
Table 34-4. MSRs in Intel Atom Processor Family .34-68
Table 34-5. MSRs in Processors Based on Intel Microarchitecture Code Name Nehalem34-83
Table 34-6. Additional MSRs in Intel Xeon Processor 5500 and 3400 Series 34-110
Table 34-7. Additional MSRs in Intel Xeon Processor 7500 Series . 34-112
xlvi Vol. 3A

CONTENTS
PAGE
Table 34-8. Additional MSRs Supported by Intel Processors (Intel Microarchitecture Code Name
Westmere) . 34-134

Table 34-9. Additional MSRs Supported by Intel Xeon Processor E7 Family 34-135
Table 34-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture Code Name

Sandy Bridge . 34-138
Table 34-11. MSRs Supported by Second Generation Intel Core Processors (Intel

Microarchitecture Code Name Sandy Bridge) . 34-164
Table 34-12. Selected MSRs Supported by Next Generation Intel Xeon Processors (Intel

Microarchitecture Code Name Sandy Bridge) . 34-165
Table 34-13. MSRs in the Pentium 4 and Intel Xeon Processors . 34-169
Table 34-14. MSRs Unique to 64-bit Intel Xeon Processor MP with Up to an 8 MB L3

Cache . 34-209
Table 34-15. MSRs Unique to Intel Xeon Processor 7100 Series . 34-211
Table 34-16. MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel Xeon

Processor LV . 34-212
Table 34-17. MSRs in Pentium M Processors . 34-226
Table 34-18. MSRs in the P6 Family Processors . 34-235
Table 34-19. MSRs in the Pentium Processor . 34-247
Table A-1. Memory Types Used For VMCS Access. A-2
Table B-1. Encoding for 16-Bit Control Fields (0000_00xx_xxxx_xxx0B) B-1
Table B-2. Encodings for 16-Bit Guest-State Fields (0000_10xx_xxxx_xxx0B) B-1
Table B-3. Encodings for 16-Bit Host-State Fields (0000_11xx_xxxx_xxx0B) B-2
Table B-4. Encodings for 64-Bit Control Fields (0010_00xx_xxxx_xxxAb) B-3
Table B-5. Encodings for 64-Bit Read-Only Data Field (0010_01xx_xxxx_xxxAb) B-4
Table B-6. Encodings for 64-Bit Guest-State Fields (0010_10xx_xxxx_xxxAb) B-4
Table B-7. Encodings for 64-Bit Host-State Fields (0010_11xx_xxxx_xxxAb) B-5
Table B-8. Encodings for 32-Bit Control Fields (0100_00xx_xxxx_xxx0B) B-6
Table B-9. Encodings for 32-Bit Read-Only Data Fields (0100_01xx_xxxx_xxx0B) B-7
Table B-10. Encodings for 32-Bit Guest-State Fields (0100_10xx_xxxx_xxx0B) B-8
Table B-11. Encoding for 32-Bit Host-State Field (0100_11xx_xxxx_xxx0B) B-9
Table B-12. Encodings for Natural-Width Control Fields (0110_00xx_xxxx_xxx0B). B-9
Table B-13. Encodings for Natural-Width Read-Only Data Fields (0110_01xx_xxxx_xxx0B) B-10
Table B-14. Encodings for Natural-Width Guest-State Fields (0110_10xx_xxxx_xxx0B)B-10
Table B-15. Encodings for Natural-Width Host-State Fields (0110_11xx_xxxx_xxx0B)B-11
Table C-1. Basic Exit Reasons . C-1
Vol. 3A xlvii

CHAPTER 1
ABOUT THIS MANUAL

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A:
System Programming Guide, Part 1 (order number 253668), the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3B: System Programming
Guide, Part 2 (order number 253669) and the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3C: System Programming Guide, Part 3 (order
number 326019) are part of a set that describes the architecture and programming
environment of Intel 64 and IA-32 Architecture processors. The other volumes in this
set are:
• Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: Basic

Architecture (order number 253665).
• Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B

& 2C: Instruction Set Reference (order numbers 253666, 253667 and 326018).

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1,
describes the basic architecture and programming environment of Intel 64 and IA-32
processors. The Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volumes 2A, 2B & 2C, describe the instruction set of the processor and the opcode
structure. These volumes apply to application programmers and to programmers
who write operating systems or executives. The Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volumes 3A, 3B & 3C, describe the operating-system
support environment of Intel 64 and IA-32 processors. These volumes target oper-
ating-system and BIOS designers. In addition, Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3B, and Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3C address the programming environment for
classes of software that host operating systems.

1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN
THIS MANUAL

This manual set includes information pertaining primarily to the most recent Intel 64
and IA-32 processors, which include:
• Pentium® processors
• P6 family processors
• Pentium® 4 processors
• Pentium® M processors
• Intel® Xeon® processors
• Pentium® D processors
Vol. 3A 1-1

ABOUT THIS MANUAL
• Pentium® processor Extreme Editions
• 64-bit Intel® Xeon® processors
• Intel® Core™ Duo processor
• Intel® Core™ Solo processor
• Dual-Core Intel® Xeon® processor LV
• Intel® Core™2 Duo processor
• Intel® Core™2 Quad processor Q6000 series
• Intel® Xeon® processor 3000, 3200 series
• Intel® Xeon® processor 5000 series
• Intel® Xeon® processor 5100, 5300 series
• Intel® Core™2 Extreme processor X7000 and X6800 series
• Intel® Core™2 Extreme QX6000 series
• Intel® Xeon® processor 7100 series
• Intel® Pentium® Dual-Core processor
• Intel® Xeon® processor 7200, 7300 series
• Intel® Core™2 Extreme QX9000 series
• Intel® Xeon® processor 5200, 5400, 7400 series
• Intel® CoreTM2 Extreme processor QX9000 and X9000 series
• Intel® CoreTM2 Quad processor Q9000 series
• Intel® CoreTM2 Duo processor E8000, T9000 series
• Intel® AtomTM processor family
• Intel® CoreTM i7 processor
• Intel® CoreTM i5 processor
• Intel® Xeon® processor E7-8800/4800/2800 product families
• Intel® Xeon® processor E5 family
• Intel® Xeon® processor E3 family
• Intel® CoreTM i7-3930K processor
• 2nd generation Intel® CoreTM i7-2xxx, Intel® CoreTM i5-2xxx, Intel® CoreTM i3-

2xxx processor series

P6 family processors are IA-32 processors based on the P6 family microarchitecture.
This includes the Pentium® Pro, Pentium® II, Pentium® III, and Pentium® III Xeon®
processors.

The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based
on the Intel NetBurst® microarchitecture. Most early Intel® Xeon® processors are
based on the Intel NetBurst® microarchitecture. Intel Xeon processor 5000, 7100
series are based on the Intel NetBurst® microarchitecture.
1-2 Vol. 3A

ABOUT THIS MANUAL
The Intel® Core™ Duo, Intel® Core™ Solo and dual-core Intel® Xeon® processor LV
are based on an improved Pentium® M processor microarchitecture.

The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200, and 7300 series, Intel®
Pentium® dual-core, Intel® Core™2 Duo, Intel® Core™2 Quad and Intel® Core™2
Extreme processors are based on Intel® Core™ microarchitecture.

The Intel® Xeon® processor 5200, 5400, 7400 series, Intel® CoreTM2 Quad processor
Q9000 series, and Intel® CoreTM2 Extreme processors QX9000, X9000 series, Intel®
CoreTM2 processor E8000 series are based on Enhanced Intel® CoreTM microarchitec-
ture.

The Intel® AtomTM processor family is based on the Intel® AtomTM microarchitecture
and supports Intel 64 architecture.

The Intel® CoreTM i7 processor and the Intel® CoreTM i5 processor are based on the
Intel® microarchitecture code name Nehalem and support Intel 64 architecture.

Processors based on Intel® microarchitecture code name Westmere support Intel 64
architecture.

P6 family, Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo processors, dual-core
Intel® Xeon® processor LV, and early generations of Pentium 4 and Intel Xeon
processors support IA-32 architecture. The Intel® Atom™ processor Z5xx series
support IA-32 architecture.

The Intel® Xeon® processor E5 family, Intel® Xeon® processor E3 family, Intel®
CoreTM i7-3930K processor, 2nd generation Intel® CoreTM i7-2xxx, Intel® CoreTM i5-
2xxx, Intel® CoreTM i3-2xxx processor series, Intel® Xeon® processor E7-
8800/4800/2800 product families, Intel® Xeon® processor 3000, 3200, 5000, 5100,
5200, 5300, 5400, 7100, 7200, 7300, 7400 series, Intel® Core™2 Duo, Intel®
Core™2 Extreme processors, Intel Core 2 Quad processors, Pentium® D processors,
Pentium® Dual-Core processor, newer generations of Pentium 4 and Intel Xeon
processor family support Intel® 64 architecture.

IA-32 architecture is the instruction set architecture and programming environment
for Intel's 32-bit microprocessors. Intel® 64 architecture is the instruction set archi-
tecture and programming environment which is a superset of and compatible with
IA-32 architecture.

1.2 OVERVIEW OF THE SYSTEM PROGRAMMING GUIDE
A description of this manual’s content follows:

Chapter 1 — About This Manual. Gives an overview of all seven volumes of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual. It also describes
the notational conventions in these manuals and lists related Intel manuals and
documentation of interest to programmers and hardware designers.

Chapter 2 — System Architecture Overview. Describes the modes of operation
used by Intel 64 and IA-32 processors and the mechanisms provided by the architec-
Vol. 3A 1-3

ABOUT THIS MANUAL
tures to support operating systems and executives, including the system-oriented
registers and data structures and the system-oriented instructions. The steps neces-
sary for switching between real-address and protected modes are also identified.

Chapter 3 — Protected-Mode Memory Management. Describes the data struc-
tures, registers, and instructions that support segmentation and paging. The chapter
explains how they can be used to implement a “flat” (unsegmented) memory model
or a segmented memory model.

Chapter 4 — Paging. Describes the paging modes supported by Intel 64 and IA-32
processors.

Chapter 5 — Protection. Describes the support for page and segment protection
provided in the Intel 64 and IA-32 architectures. This chapter also explains the
implementation of privilege rules, stack switching, pointer validation, user and
supervisor modes.

Chapter 6 — Interrupt and Exception Handling. Describes the basic interrupt
mechanisms defined in the Intel 64 and IA-32 architectures, shows how interrupts
and exceptions relate to protection, and describes how the architecture handles each
exception type. Reference information for each exception is given in this chapter.
Includes programming the LINT0 and LINT1 inputs and gives an example of how to
program the LINT0 and LINT1 pins for specific interrupt vectors.

Chapter 7 — Task Management. Describes mechanisms the Intel 64 and IA-32
architectures provide to support multitasking and inter-task protection.

Chapter 8 — Multiple-Processor Management. Describes the instructions and
flags that support multiple processors with shared memory, memory ordering, and
Intel® Hyper-Threading Technology. Includes MP initialization for P6 family proces-
sors and gives an example of how to use of the MP protocol to boot P6 family proces-
sors in an MP system.

Chapter 9 — Processor Management and Initialization. Defines the state of an
Intel 64 or IA-32 processor after reset initialization. This chapter also explains how to
set up an Intel 64 or IA-32 processor for real-address mode operation and protected-
mode operation, and how to switch between modes.

Chapter 10 — Advanced Programmable Interrupt Controller (APIC).
Describes the programming interface to the local APIC and gives an overview of the
interface between the local APIC and the I/O APIC. Includes APIC bus message
formats and describes the message formats for messages transmitted on the APIC
bus for P6 family and Pentium processors.

Chapter 11 — Memory Cache Control. Describes the general concept of caching
and the caching mechanisms supported by the Intel 64 or IA-32 architectures. This
chapter also describes the memory type range registers (MTRRs) and how they can
be used to map memory types of physical memory. Information on using the new
cache control and memory streaming instructions introduced with the Pentium III,
Pentium 4, and Intel Xeon processors is also given.

Chapter 12 — Intel® MMX™ Technology System Programming. Describes
those aspects of the Intel® MMX™ technology that must be handled and considered
1-4 Vol. 3A

ABOUT THIS MANUAL
at the system programming level, including: task switching, exception handling, and
compatibility with existing system environments.

Chapter 13 — System Programming For Instruction Set Extensions And
Processor Extended States. Describes the operating system requirements to
support SSE/SSE2/SSE3/SSSE3/SSE4 extensions, including task switching, excep-
tion handling, and compatibility with existing system environments. The latter part of
this chapter describes the extensible framework of operating system requirements to
support processor extended states. Processor extended state may be required by
instruction set extensions beyond those of SSE/SSE2/SSE3/SSSE3/SSE4 extensions.

Chapter 14 — Power and Thermal Management. Describes facilities of Intel 64
and IA-32 architecture used for power management and thermal monitoring.

Chapter 15 — Machine-Check Architecture. Describes the machine-check
architecture and machine-check exception mechanism found in the Pentium
4, Intel Xeon, and P6 family processors. Additionally, a signaling mechanism
for software to respond to hardware corrected machine check error is
covered.
Chapter 16 — Interpreting Machine-Check Error Codes. Gives an example of
how to interpret the error codes for a machine-check error that occurred on a P6
family processor.

Chapter 17 — Debugging, Branch Profiles and Time-Stamp Counter.
Describes the debugging registers and other debug mechanism provided in Intel 64
or IA-32 processors. This chapter also describes the time-stamp counter.

Chapter 18 — Performance Monitoring. Describes the Intel 64 and IA-32 archi-
tectures’ facilities for monitoring performance.

Chapter 19 — Performance-Monitoring Events. Lists architectural performance
events. Non-architectural performance events (i.e. model-specific events) are listed
for each generation of microarchitecture.

Chapter 20 — 8086 Emulation. Describes the real-address and virtual-8086
modes of the IA-32 architecture.

Chapter 21 — Mixing 16-Bit and 32-Bit Code. Describes how to mix 16-bit and
32-bit code modules within the same program or task.

Chapter 22 — IA-32 Architecture Compatibility. Describes architectural
compatibility among IA-32 processors.

Chapter 23 — Introduction to Virtual-Machine Extensions. Describes the basic
elements of virtual machine architecture and the virtual-machine extensions for
Intel 64 and IA-32 Architectures.

Chapter 24 — Virtual-Machine Control Structures. Describes components that
manage VMX operation. These include the working-VMCS pointer and the control-
ling-VMCS pointer.

Chapter 25 — VMX Non-Root Operation. Describes the operation of a VMX non-
root operation. Processor operation in VMX non-root mode can be restricted
Vol. 3A 1-5

ABOUT THIS MANUAL
programmatically such that certain operations, events or conditions can cause the
processor to transfer control from the guest (running in VMX non-root mode) to the
monitor software (running in VMX root mode).

Chapter 26 — VM Entries. Describes VM entries. VM entry transitions the processor
from the VMM running in VMX root-mode to a VM running in VMX non-root mode.
VM-Entry is performed by the execution of VMLAUNCH or VMRESUME instructions.

Chapter 27 — VM Exits. Describes VM exits. Certain events, operations or situa-
tions while the processor is in VMX non-root operation may cause VM-exit transitions.
In addition, VM exits can also occur on failed VM entries.

Chapter 28 — VMX Support for Address Translation. Describes virtual-machine
extensions that support address translation and the virtualization of physical
memory.

Chapter 29 — VMX Instruction Reference. Describes the virtual-machine exten-
sions (VMX). VMX is intended for a system executive to support virtualization of
processor hardware and a system software layer acting as a host to multiple guest
software environments.

Chapter 30 — Virtual-Machine Monitoring Programming Considerations.
Describes programming considerations for VMMs. VMMs manage virtual machines
(VMs).

Chapter 31 — Virtualization of System Resources. Describes the virtualization
of the system resources. These include: debugging facilities, address translation,
physical memory, and microcode update facilities.

Chapter 32 — Handling Boundary Conditions in a Virtual Machine Monitor.
Describes what a VMM must consider when handling exceptions, interrupts, error
conditions, and transitions between activity states.

Chapter 33 — System Management Mode. Describes Intel 64 and IA-32 architec-
tures’ system management mode (SMM) facilities.

Chapter 34 — Model-Specific Registers (MSRs). Lists the MSRs available in the
Pentium processors, the P6 family processors, the Pentium 4, Intel Xeon, Intel Core
Solo, Intel Core Duo processors, and Intel Core 2 processor family and describes
their functions.

Appendix A — VMX Capability Reporting Facility. Describes the VMX capability
MSRs. Support for specific VMX features is determined by reading capability MSRs.

Appendix B — Field Encoding in VMCS. Enumerates all fields in the VMCS and
their encodings. Fields are grouped by width (16-bit, 32-bit, etc.) and type (guest-
state, host-state, etc.).

Appendix C — VM Basic Exit Reasons. Describes the 32-bit fields that encode
reasons for a VM exit. Examples of exit reasons include, but are not limited to: soft-
ware interrupts, processor exceptions, software traps, NMIs, external interrupts, and
triple faults.
1-6 Vol. 3A

ABOUT THIS MANUAL
1.3 NOTATIONAL CONVENTIONS
This manual uses specific notation for data-structure formats, for symbolic represen-
tation of instructions, and for hexadecimal and binary numbers. A review of this
notation makes the manual easier to read.

1.3.1 Bit and Byte Order
In illustrations of data structures in memory, smaller addresses appear toward the
bottom of the figure; addresses increase toward the top. Bit positions are numbered
from right to left. The numerical value of a set bit is equal to two raised to the power
of the bit position. Intel 64 and IA-32 processors are “little endian” machines; this
means the bytes of a word are numbered starting from the least significant byte.
Figure 1-1 illustrates these conventions.

1.3.2 Reserved Bits and Software Compatibility
In many register and memory layout descriptions, certain bits are marked as
reserved. When bits are marked as reserved, it is essential for compatibility with
future processors that software treat these bits as having a future, though unknown,
effect. The behavior of reserved bits should be regarded as not only undefined, but
unpredictable. Software should follow these guidelines in dealing with reserved bits:
• Do not depend on the states of any reserved bits when testing the values of

registers which contain such bits. Mask out the reserved bits before testing.
• Do not depend on the states of any reserved bits when storing to memory or to a

register.
• Do not depend on the ability to retain information written into any reserved bits.
• When loading a register, always load the reserved bits with the values indicated

in the documentation, if any, or reload them with values previously read from the
same register.

NOTE
Avoid any software dependence upon the state of reserved bits in
Intel 64 and IA-32 registers. Depending upon the values of reserved
register bits will make software dependent upon the unspecified
manner in which the processor handles these bits. Programs that
depend upon reserved values risk incompatibility with future
processors.
Vol. 3A 1-7

ABOUT THIS MANUAL
1.3.3 Instruction Operands
When instructions are represented symbolically, a subset of assembly language is
used. In this subset, an instruction has the following format:

label: mnemonic argument1, argument2, argument3

where:
• A label is an identifier which is followed by a colon.
• A mnemonic is a reserved name for a class of instruction opcodes which have

the same function.
• The operands argument1, argument2, and argument3 are optional. There

may be from zero to three operands, depending on the opcode. When present,
they take the form of either literals or identifiers for data items. Operand
identifiers are either reserved names of registers or are assumed to be assigned
to data items declared in another part of the program (which may not be shown
in the example).

When two operands are present in an arithmetic or logical instruction, the right
operand is the source and the left operand is the destination.

For example:

LOADREG: MOV EAX, SUBTOTAL

In this example LOADREG is a label, MOV is the mnemonic identifier of an opcode,
EAX is the destination operand, and SUBTOTAL is the source operand. Some
assembly languages put the source and destination in reverse order.

Figure 1-1. Bit and Byte Order

Byte 3

Highest
Data Structure

Byte 1Byte 2 Byte 0

31 24 23 16 15 8 7 0
Address

Lowest

Bit offset

28

24
20
16
12
8

4

0 Address

Byte Offset
1-8 Vol. 3A

ABOUT THIS MANUAL
1.3.4 Hexadecimal and Binary Numbers
Base 16 (hexadecimal) numbers are represented by a string of hexadecimal digits
followed by the character H (for example, F82EH). A hexadecimal digit is a character
from the following set: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F.

Base 2 (binary) numbers are represented by a string of 1s and 0s, sometimes
followed by the character B (for example, 1010B). The “B” designation is only used in
situations where confusion as to the type of number might arise.

1.3.5 Segmented Addressing
The processor uses byte addressing. This means memory is organized and accessed
as a sequence of bytes. Whether one or more bytes are being accessed, a byte
address is used to locate the byte or bytes memory. The range of memory that can
be addressed is called an address space.

The processor also supports segmented addressing. This is a form of addressing
where a program may have many independent address spaces, called segments.
For example, a program can keep its code (instructions) and stack in separate
segments. Code addresses would always refer to the code space, and stack
addresses would always refer to the stack space. The following notation is used to
specify a byte address within a segment:

Segment-register:Byte-address

For example, the following segment address identifies the byte at address FF79H in
the segment pointed by the DS register:

DS:FF79H

The following segment address identifies an instruction address in the code segment.
The CS register points to the code segment and the EIP register contains the address
of the instruction.

CS:EIP

1.3.6 Syntax for CPUID, CR, and MSR Values
Obtain feature flags, status, and system information by using the CPUID instruction,
by checking control register bits, and by reading model-specific registers. We are
moving toward a single syntax to represent this type of information. See Figure 1-2.
Vol. 3A 1-9

ABOUT THIS MANUAL
1.3.7 Exceptions
An exception is an event that typically occurs when an instruction causes an error.
For example, an attempt to divide by zero generates an exception. However, some
exceptions, such as breakpoints, occur under other conditions. Some types of excep-
tions may provide error codes. An error code reports additional information about the
error. An example of the notation used to show an exception and error code is shown
below:

#PF(fault code)

Figure 1-2. Syntax for CPUID, CR, and MSR Data Presentation
1-10 Vol. 3A

ABOUT THIS MANUAL
This example refers to a page-fault exception under conditions where an error code
naming a type of fault is reported. Under some conditions, exceptions which produce
error codes may not be able to report an accurate code. In this case, the error code
is zero, as shown below for a general-protection exception:

#GP(0)

1.4 RELATED LITERATURE
Literature related to Intel 64 and IA-32 processors is listed on-line at:
http://www.intel.com/content/www/us/en/processors/architectures-software-
developer-manuals.html.html

Some of the documents listed at this web site can be viewed on-line; others can be
ordered. The literature available is listed by Intel processor and then by the following
literature types: applications notes, data sheets, manuals, papers, and specification
updates.

See also:
• The data sheet for a particular Intel 64 or IA-32 processor
• The specification update for a particular Intel 64 or IA-32 processor
• Intel® C++ Compiler documentation and online help:

http://software.intel.com/en-us/articles/intel-compilers/
• Intel® Fortran Compiler documentation and online help:

http://software.intel.com/en-us/articles/intel-compilers/
• Intel® VTune™ Performance Analyzer documentation and online help:

http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
• Intel® 64 and IA-32 Architectures Software Developer’s Manual (in three or five

volumes):
http://www.intel.com/content/www/us/en/processors/architectures-software-
developer-manuals.html.html

• Intel® 64 and IA-32 Architectures Optimization Reference Manual:
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-
32-architectures-optimization-manual.html

• Intel® Processor Identification with the CPUID Instruction, AP-485:
http://www.intel.com/Assets/PDF/appnote/241618.pdf

• Intel 64 Architecture x2APIC Specification:
http://www.intel.com/content/www/us/en/architecture-and-technology/64-
architecture-x2apic-specification.html

• Intel 64 Architecture Processor Topology Enumeration:
http://softwarecommunity.intel.com/articles/eng/3887.htm

• Intel® Trusted Execution Technology Measured Launched Environment
Programming Guide:
Vol. 3A 1-11

http://developer.intel.com/products/processor/manuals/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://developer.intel.com/products/processor/manuals/index.htm

http://developer.intel.com/products/processor/manuals/index.htm
http://www.intel.com/support/processors/sb/cs-009861.htm
http://softwarecommunity.intel.com/articles/eng/3887.htm

ABOUT THIS MANUAL
http://www.intel.com/content/www/us/en/software-developers/intel-txt-
software-development-guide.html

• Intel® SSE4 Programming Reference:
http://edc.intel.com/Link.aspx?id=1630&wapkw=intel® sse4 programming
reference

• Developing Multi-threaded Applications: A Platform Consistent Approach:
http://cache-
www.intel.com/cd/00/00/05/15/51534_developing_multithreaded_applications.
pdf

• Using Spin-Loops on Intel® Pentium® 4 Processor and Intel® Xeon® Processor:
http://software.intel.com/en-us/articles/ap949-using-spin-loops-on-intel-
pentiumr-4-processor-and-intel-xeonr-processor/

• Performance Monitoring Unit Sharing Guide
http://software.intel.com/file/30388

More relevant links are:
• Software network link:

http://softwarecommunity.intel.com/isn/home/
• Developer centers:

http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/index.htm
• Processor support general link:

http://www.intel.com/support/processors/
• Software products and packages:

http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
• Intel 64 and IA-32 processor manuals (printed or PDF downloads):

http://www.intel.com/content/www/us/en/processors/architectures-software-
developer-manuals.html.html

• Intel® Multi-Core Technology:
http://software.intel.com/partner/multicore

• Intel® Hyper-Threading Technology (Intel® HT Technology):
http://www.intel.com/technology/platform-technology/hyper-
threading/index.htm
1-12 Vol. 3A

http://www3.intel.com/cd/ids/developer/asmo-na/eng/dc/threading/knowledgebase/19083.htm
http://softwarecommunity.intel.com/isn/home/
http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/index.htm
http://www.intel.com/support/processors/
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://developer.intel.com/technology/hyperthread/

CHAPTER 2
SYSTEM ARCHITECTURE OVERVIEW

IA-32 architecture (beginning with the Intel386 processor family) provides extensive
support for operating-system and system-development software. This support offers
multiple modes of operation, which include:
• Real mode, protected mode, virtual 8086 mode, and system management mode.

These are sometimes referred to as legacy modes.

Intel 64 architecture supports almost all the system programming facilities available
in IA-32 architecture and extends them to a new operating mode (IA-32e mode) that
supports a 64-bit programming environment. IA-32e mode allows software to
operate in one of two sub-modes:
• 64-bit mode supports 64-bit OS and 64-bit applications
• Compatibility mode allows most legacy software to run; it co-exists with 64-bit

applications under a 64-bit OS.

The IA-32 system-level architecture and includes features to assist in the following
operations:
• Memory management
• Protection of software modules
• Multitasking
• Exception and interrupt handling
• Multiprocessing
• Cache management
• Hardware resource and power management
• Debugging and performance monitoring

This chapter provides a description of each part of this architecture. It also describes
the system registers that are used to set up and control the processor at the system
level and gives a brief overview of the processor’s system-level (operating system)
instructions.

Many features of the system-level architectural are used only by system program-
mers. However, application programmers may need to read this chapter and the
following chapters in order to create a reliable and secure environment for applica-
tion programs.

This overview and most subsequent chapters of this book focus on protected-mode
operation of the IA-32 architecture. IA-32e mode operation of the Intel 64 architec-
ture, as it differs from protected mode operation, is also described.

All Intel 64 and IA-32 processors enter real-address mode following a power-up or
reset (see Chapter 9, “Processor Management and Initialization”). Software then
Vol. 3A 2-1

SYSTEM ARCHITECTURE OVERVIEW
initiates the switch from real-address mode to protected mode. If IA-32e mode oper-
ation is desired, software also initiates a switch from protected mode to IA-32e
mode.

2.1 OVERVIEW OF THE SYSTEM-LEVEL ARCHITECTURE
System-level architecture consists of a set of registers, data structures, and instruc-
tions designed to support basic system-level operations such as memory manage-
ment, interrupt and exception handling, task management, and control of multiple
processors.

Figure 2-1 provides a summary of system registers and data structures that applies
to 32-bit modes. System registers and data structures that apply to IA-32e mode are
shown in Figure 2-2.
2-2 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW
Figure 2-1. IA-32 System-Level Registers and Data Structures

Local Descriptor
Table (LDT)

EFLAGS Register

Control Registers

CR1
CR2
CR3
CR4

CR0 Global Descriptor
Table (GDT)

Interrupt Descriptor
Table (IDT)

IDTR

GDTR

Interrupt Gate

Trap Gate

LDT Desc.

TSS Desc.

Code

Stack

Code
Stack

Code
Stack

Task-State
Segment (TSS)

Code
Data

Stack

Task

Interrupt Handler

Exception Handler

Protected Procedure

TSS Seg. Sel.

Call-Gate
Segment Selector

Dir Table Offset
Linear Address

Page Directory

Pg. Dir. Entry

Linear Address Space

Linear Addr.

0

Seg. Desc.Segment Sel.

Code, Data or
Stack Segment

Interrupt
Vector

TSS Desc.

Seg. Desc.

Task Gate

Current
TSS

Call Gate

Task-State
Segment (TSS)

Code
Data

Stack

Task

Seg. Desc.

Current
TSS

Current
TSS

Segment Selector

Linear Address

Task Register

CR3*

Page Table

Pg. Tbl. Entry

Page

Physical Addr.

LDTR

This page mapping example is for 4-KByte pages
and the normal 32-bit physical address size.

Register

*Physical Address

Physical Address

XCR0 (XFEM)
Vol. 3A 2-3

SYSTEM ARCHITECTURE OVERVIEW
Figure 2-2. System-Level Registers and Data Structures in IA-32e Mode

Local Descriptor
Table (LDT)

CR1
CR2
CR3
CR4

CR0 Global Descriptor
Table (GDT)

Interrupt Descriptor
Table (IDT)

IDTR

GDTR

Interrupt Gate

Trap Gate

LDT Desc.

TSS Desc.

Code

Stack

Code
Stack

Code
Stack

Current TSS
Code

Stack

Interr. Handler

Interrupt Handler

Exception Handler

Protected Procedure

TR

Call-Gate
Segment Selector

Linear Address

PML4

PML4.

Linear Address Space

Linear Addr.

0

Seg. Desc.Segment Sel.

Code, Data or Stack
Segment (Base =0)

Interrupt
Vector

Seg. Desc.

Seg. Desc.

NULL

Call Gate

Task-State
Segment (TSS)

Seg. Desc.

NULL

NULL

Segment Selector

Linear Address

Task Register

CR3*

Page

LDTR

This page mapping example is for 4-KByte pages
and 40-bit physical address size.

Register

*Physical Address

Physical Address

CR8
Control Register

RFLAGS

OffsetTableDirectory

Page Table

Entry

Physical
Addr.Page Tbl

Entry

Page Dir.Pg. Dir. Ptr.

PML4 Dir. Pointer

Pg. Dir.
Entry

Interrupt Gate

IST

XCR0 (XFEM)
2-4 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW
2.1.1 Global and Local Descriptor Tables
When operating in protected mode, all memory accesses pass through either the
global descriptor table (GDT) or an optional local descriptor table (LDT) as shown in
Figure 2-1. These tables contain entries called segment descriptors. Segment
descriptors provide the base address of segments well as access rights, type, and
usage information.

Each segment descriptor has an associated segment selector. A segment selector
provides the software that uses it with an index into the GDT or LDT (the offset of its
associated segment descriptor), a global/local flag (determines whether the selector
points to the GDT or the LDT), and access rights information.

To access a byte in a segment, a segment selector and an offset must be supplied.
The segment selector provides access to the segment descriptor for the segment (in
the GDT or LDT). From the segment descriptor, the processor obtains the base
address of the segment in the linear address space. The offset then provides the
location of the byte relative to the base address. This mechanism can be used to
access any valid code, data, or stack segment, provided the segment is accessible
from the current privilege level (CPL) at which the processor is operating. The CPL is
defined as the protection level of the currently executing code segment.

See Figure 2-1. The solid arrows in the figure indicate a linear address, dashed lines
indicate a segment selector, and the dotted arrows indicate a physical address. For
simplicity, many of the segment selectors are shown as direct pointers to a segment.
However, the actual path from a segment selector to its associated segment is always
through a GDT or LDT.

The linear address of the base of the GDT is contained in the GDT register (GDTR);
the linear address of the LDT is contained in the LDT register (LDTR).

2.1.1.1 Global and Local Descriptor Tables in IA-32e Mode
GDTR and LDTR registers are expanded to 64-bits wide in both IA-32e sub-modes
(64-bit mode and compatibility mode). For more information: see Section 3.5.2,
“Segment Descriptor Tables in IA-32e Mode.”

Global and local descriptor tables are expanded in 64-bit mode to support 64-bit base
addresses, (16-byte LDT descriptors hold a 64-bit base address and various
attributes). In compatibility mode, descriptors are not expanded.

2.1.2 System Segments, Segment Descriptors, and Gates
Besides code, data, and stack segments that make up the execution environment of
a program or procedure, the architecture defines two system segments: the task-
state segment (TSS) and the LDT. The GDT is not considered a segment because it is
not accessed by means of a segment selector and segment descriptor. TSSs and LDTs
have segment descriptors defined for them.
Vol. 3A 2-5

SYSTEM ARCHITECTURE OVERVIEW
The architecture also defines a set of special descriptors called gates (call gates,
interrupt gates, trap gates, and task gates). These provide protected gateways to
system procedures and handlers that may operate at a different privilege level than
application programs and most procedures. For example, a CALL to a call gate can
provide access to a procedure in a code segment that is at the same or a numerically
lower privilege level (more privileged) than the current code segment. To access a
procedure through a call gate, the calling procedure1 supplies the selector for the call
gate. The processor then performs an access rights check on the call gate, comparing
the CPL with the privilege level of the call gate and the destination code segment
pointed to by the call gate.

If access to the destination code segment is allowed, the processor gets the segment
selector for the destination code segment and an offset into that code segment from
the call gate. If the call requires a change in privilege level, the processor also
switches to the stack for the targeted privilege level. The segment selector for the
new stack is obtained from the TSS for the currently running task. Gates also facili-
tate transitions between 16-bit and 32-bit code segments, and vice versa.

2.1.2.1 Gates in IA-32e Mode
In IA-32e mode, the following descriptors are 16-byte descriptors (expanded to allow
a 64-bit base): LDT descriptors, 64-bit TSSs, call gates, interrupt gates, and trap
gates.

Call gates facilitate transitions between 64-bit mode and compatibility mode. Task
gates are not supported in IA-32e mode. On privilege level changes, stack segment
selectors are not read from the TSS. Instead, they are set to NULL.

2.1.3 Task-State Segments and Task Gates
The TSS (see Figure 2-1) defines the state of the execution environment for a task.
It includes the state of general-purpose registers, segment registers, the EFLAGS
register, the EIP register, and segment selectors with stack pointers for three stack
segments (one stack for each privilege level). The TSS also includes the segment
selector for the LDT associated with the task and the base address of the paging-
structure hierarchy.

All program execution in protected mode happens within the context of a task (called
the current task). The segment selector for the TSS for the current task is stored in
the task register. The simplest method for switching to a task is to make a call or
jump to the new task. Here, the segment selector for the TSS of the new task is given
in the CALL or JMP instruction. In switching tasks, the processor performs the
following actions:

1. Stores the state of the current task in the current TSS.

1. The word “procedure” is commonly used in this document as a general term for a logical unit or
block of code (such as a program, procedure, function, or routine).
2-6 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW
2. Loads the task register with the segment selector for the new task.

3. Accesses the new TSS through a segment descriptor in the GDT.

4. Loads the state of the new task from the new TSS into the general-purpose
registers, the segment registers, the LDTR, control register CR3 (base address of
the paging-structure hierarchy), the EFLAGS register, and the EIP register.

5. Begins execution of the new task.

A task can also be accessed through a task gate. A task gate is similar to a call gate,
except that it provides access (through a segment selector) to a TSS rather than a
code segment.

2.1.3.1 Task-State Segments in IA-32e Mode
Hardware task switches are not supported in IA-32e mode. However, TSSs continue
to exist. The base address of a TSS is specified by its descriptor.

A 64-bit TSS holds the following information that is important to 64-bit operation:
• Stack pointer addresses for each privilege level
• Pointer addresses for the interrupt stack table
• Offset address of the IO-permission bitmap (from the TSS base)

The task register is expanded to hold 64-bit base addresses in IA-32e mode. See
also: Section 7.7, “Task Management in 64-bit Mode.”

2.1.4 Interrupt and Exception Handling
External interrupts, software interrupts and exceptions are handled through the
interrupt descriptor table (IDT). The IDT stores a collection of gate descriptors that
provide access to interrupt and exception handlers. Like the GDT, the IDT is not a
segment. The linear address for the base of the IDT is contained in the IDT register
(IDTR).

Gate descriptors in the IDT can be interrupt, trap, or task gate descriptors. To access
an interrupt or exception handler, the processor first receives an interrupt vector
(interrupt number) from internal hardware, an external interrupt controller, or from
software by means of an INT, INTO, INT 3, or BOUND instruction. The interrupt
vector provides an index into the IDT. If the selected gate descriptor is an interrupt
gate or a trap gate, the associated handler procedure is accessed in a manner similar
to calling a procedure through a call gate. If the descriptor is a task gate, the handler
is accessed through a task switch.

2.1.4.1 Interrupt and Exception Handling IA-32e Mode
In IA-32e mode, interrupt descriptors are expanded to 16 bytes to support 64-bit
base addresses. This is true for 64-bit mode and compatibility mode.
Vol. 3A 2-7

SYSTEM ARCHITECTURE OVERVIEW
The IDTR register is expanded to hold a 64-bit base address. Task gates are not
supported.

2.1.5 Memory Management
System architecture supports either direct physical addressing of memory or virtual
memory (through paging). When physical addressing is used, a linear address is
treated as a physical address. When paging is used: all code, data, stack, and system
segments (including the GDT and IDT) can be paged with only the most recently
accessed pages being held in physical memory.

The location of pages (sometimes called page frames) in physical memory is
contained in the paging structures. These structures reside in physical memory (see
Figure 2-1 for the case of 32-bit paging).

The base physical address of the paging-structure hierarchy is contained in control
register CR3. The entries in the paging structures determine the physical address of
the base of a page frame, access rights and memory management information.

To use this paging mechanism, a linear address is broken into parts. The parts
provide separate offsets into the paging structures and the page frame. A system can
have a single hierarchy of paging structures or several. For example, each task can
have its own hierarchy.

2.1.5.1 Memory Management in IA-32e Mode
In IA-32e mode, physical memory pages are managed by a set of system data struc-
tures. In compatibility mode and 64-bit mode, four levels of system data structures
are used. These include:
• The page map level 4 (PML4) — An entry in a PML4 table contains the physical

address of the base of a page directory pointer table, access rights, and memory
management information. The base physical address of the PML4 is stored in
CR3.

• A set of page directory pointer tables — An entry in a page directory pointer
table contains the physical address of the base of a page directory table, access
rights, and memory management information.

• Sets of page directories — An entry in a page directory table contains the
physical address of the base of a page table, access rights, and memory
management information.

• Sets of page tables — An entry in a page table contains the physical address of
a page frame, access rights, and memory management information.
2-8 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW
2.1.6 System Registers
To assist in initializing the processor and controlling system operations, the system
architecture provides system flags in the EFLAGS register and several system
registers:
• The system flags and IOPL field in the EFLAGS register control task and mode

switching, interrupt handling, instruction tracing, and access rights. See also:
Section 2.3, “System Flags and Fields in the EFLAGS Register.”

• The control registers (CR0, CR2, CR3, and CR4) contain a variety of flags and
data fields for controlling system-level operations. Other flags in these registers
are used to indicate support for specific processor capabilities within the
operating system or executive. See also: Section 2.5, “Control Registers.”

• The debug registers (not shown in Figure 2-1) allow the setting of breakpoints for
use in debugging programs and systems software. See also: Chapter 17,
“Debugging, Branch Profiling, and Time-Stamp Counter.”

• The GDTR, LDTR, and IDTR registers contain the linear addresses and sizes
(limits) of their respective tables. See also: Section 2.4, “Memory-Management
Registers.”

• The task register contains the linear address and size of the TSS for the current
task. See also: Section 2.4, “Memory-Management Registers.”

• Model-specific registers (not shown in Figure 2-1).

The model-specific registers (MSRs) are a group of registers available primarily to
operating-system or executive procedures (that is, code running at privilege level 0).
These registers control items such as the debug extensions, the performance-moni-
toring counters, the machine- check architecture, and the memory type ranges
(MTRRs).

The number and function of these registers varies among different members of the
Intel 64 and IA-32 processor families. See also: Section 9.4, “Model-Specific Regis-
ters (MSRs),” and Chapter 34, “Model-Specific Registers (MSRs).”

Most systems restrict access to system registers (other than the EFLAGS register) by
application programs. Systems can be designed, however, where all programs and
procedures run at the most privileged level (privilege level 0). In such a case, appli-
cation programs would be allowed to modify the system registers.

2.1.6.1 System Registers in IA-32e Mode
In IA-32e mode, the four system-descriptor-table registers (GDTR, IDTR, LDTR, and
TR) are expanded in hardware to hold 64-bit base addresses. EFLAGS becomes the
64-bit RFLAGS register. CR0–CR4 are expanded to 64 bits. CR8 becomes available.
CR8 provides read-write access to the task priority register (TPR) so that the oper-
ating system can control the priority classes of external interrupts.

In 64-bit mode, debug registers DR0–DR7 are 64 bits. In compatibility mode,
address-matching in DR0–DR3 is also done at 64-bit granularity.
Vol. 3A 2-9

SYSTEM ARCHITECTURE OVERVIEW
On systems that support IA-32e mode, the extended feature enable register
(IA32_EFER) is available. This model-specific register controls activation of IA-32e
mode and other IA-32e mode operations. In addition, there are several model-
specific registers that govern IA-32e mode instructions:
• IA32_KernelGSbase — Used by SWAPGS instruction.
• IA32_LSTAR — Used by SYSCALL instruction.
• IA32_SYSCALL_FLAG_MASK — Used by SYSCALL instruction.
• IA32_STAR_CS — Used by SYSCALL and SYSRET instruction.

2.1.7 Other System Resources
Besides the system registers and data structures described in the previous sections,
system architecture provides the following additional resources:
• Operating system instructions (see also: Section 2.7, “System Instruction

Summary”).
• Performance-monitoring counters (not shown in Figure 2-1).
• Internal caches and buffers (not shown in Figure 2-1).

Performance-monitoring counters are event counters that can be programmed to
count processor events such as the number of instructions decoded, the number of
interrupts received, or the number of cache loads. See also: Chapter 23, “Introduc-
tion to Virtual-Machine Extensions.”

The processor provides several internal caches and buffers. The caches are used to
store both data and instructions. The buffers are used to store things like decoded
addresses to system and application segments and write operations waiting to be
performed. See also: Chapter 11, “Memory Cache Control.”

2.2 MODES OF OPERATION
The IA-32 supports three operating modes and one quasi-operating mode:
• Protected mode — This is the native operating mode of the processor. It

provides a rich set of architectural features, flexibility, high performance and
backward compatibility to existing software base.

• Real-address mode — This operating mode provides the programming
environment of the Intel 8086 processor, with a few extensions (such as the
ability to switch to protected or system management mode).

• System management mode (SMM) — SMM is a standard architectural feature
in all IA-32 processors, beginning with the Intel386 SL processor. This mode
provides an operating system or executive with a transparent mechanism for
implementing power management and OEM differentiation features. SMM is
entered through activation of an external system interrupt pin (SMI#), which
generates a system management interrupt (SMI). In SMM, the processor
switches to a separate address space while saving the context of the currently
2-10 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW
running program or task. SMM-specific code may then be executed transparently.
Upon returning from SMM, the processor is placed back into its state prior to the
SMI.

• Virtual-8086 mode — In protected mode, the processor supports a quasi-
operating mode known as virtual-8086 mode. This mode allows the processor
execute 8086 software in a protected, multitasking environment.

Intel 64 architecture supports all operating modes of IA-32 architecture and IA-32e
modes:
• IA-32e mode — In IA-32e mode, the processor supports two sub-modes:

compatibility mode and 64-bit mode. 64-bit mode provides 64-bit linear
addressing and support for physical address space larger than 64 GBytes.
Compatibility mode allows most legacy protected-mode applications to run
unchanged.

Figure 2-3 shows how the processor moves between operating modes.

The processor is placed in real-address mode following power-up or a reset. The PE
flag in control register CR0 then controls whether the processor is operating in real-
address or protected mode. See also: Section 9.9, “Mode Switching.” and Section
4.1.2, “Paging-Mode Enabling.”

Figure 2-3. Transitions Among the Processor’s Operating Modes

Real-Address

Protected Mode

Virtual-8086
Mode

System
Management

Mode

PE=1
Reset or

VM=1VM=0

PE=0

Reset
or

RSM

SMI#

RSM

SMI#

RSM

SMI#

Reset

 Mode

IA-32e
Mode

RSM

SMI#LME=1, CR0.PG=1*

See**

* See Section 9.8.5

** See Section 9.8.5.4
Vol. 3A 2-11

SYSTEM ARCHITECTURE OVERVIEW
The VM flag in the EFLAGS register determines whether the processor is operating in
protected mode or virtual-8086 mode. Transitions between protected mode and
virtual-8086 mode are generally carried out as part of a task switch or a return from
an interrupt or exception handler. See also: Section 20.2.5, “Entering Virtual-8086
Mode.”

The LMA bit (IA32_EFER.LMA[bit 10]) determines whether the processor is operating
in IA-32e mode. When running in IA-32e mode, 64-bit or compatibility sub-mode
operation is determined by CS.L bit of the code segment. The processor enters into
IA-32e mode from protected mode by enabling paging and setting the LME bit
(IA32_EFER.LME[bit 8]). See also: Chapter 9, “Processor Management and Initializa-
tion.”

The processor switches to SMM whenever it receives an SMI while the processor is in
real-address, protected, virtual-8086, or IA-32e modes. Upon execution of the RSM
instruction, the processor always returns to the mode it was in when the SMI
occurred.

2.3 SYSTEM FLAGS AND FIELDS IN THE EFLAGS
REGISTER

The system flags and IOPL field of the EFLAGS register control I/O, maskable hard-
ware interrupts, debugging, task switching, and the virtual-8086 mode (see
Figure 2-4). Only privileged code (typically operating system or executive code)
should be allowed to modify these bits.

The system flags and IOPL are:

TF Trap (bit 8) — Set to enable single-step mode for debugging; clear to
disable single-step mode. In single-step mode, the processor generates a
debug exception after each instruction. This allows the execution state of a
program to be inspected after each instruction. If an application program
sets the TF flag using a POPF, POPFD, or IRET instruction, a debug exception
is generated after the instruction that follows the POPF, POPFD, or IRET.
2-12 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW
IF Interrupt enable (bit 9) — Controls the response of the processor to
maskable hardware interrupt requests (see also: Section 6.3.2, “Maskable
Hardware Interrupts”). The flag is set to respond to maskable hardware
interrupts; cleared to inhibit maskable hardware interrupts. The IF flag does
not affect the generation of exceptions or nonmaskable interrupts (NMI
interrupts). The CPL, IOPL, and the state of the VME flag in control register
CR4 determine whether the IF flag can be modified by the CLI, STI, POPF,
POPFD, and IRET.

IOPL I/O privilege level field (bits 12 and 13) — Indicates the I/O privilege
level (IOPL) of the currently running program or task. The CPL of the
currently running program or task must be less than or equal to the IOPL to
access the I/O address space. This field can only be modified by the POPF
and IRET instructions when operating at a CPL of 0.

The IOPL is also one of the mechanisms that controls the modification of the
IF flag and the handling of interrupts in virtual-8086 mode when virtual
mode extensions are in effect (when CR4.VME = 1). See also: Chapter 13,
“Input/Output,” in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 1.

NT Nested task (bit 14) — Controls the chaining of interrupted and called
tasks. The processor sets this flag on calls to a task initiated with a CALL
instruction, an interrupt, or an exception. It examines and modifies this flag
on returns from a task initiated with the IRET instruction. The flag can be
explicitly set or cleared with the POPF/POPFD instructions; however,

Figure 2-4. System Flags in the EFLAGS Register

31 22 21 20 19 18 17 16

R
F

I
D

A
C

V
M

VM — Virtual-8086 Mode
RF — Resume Flag
NT — Nested Task Flag
IOPL— I/O Privilege Level
IF — Interrupt Enable Flag

AC — Alignment Check

ID — Identification Flag
VIP — Virtual Interrupt Pending

15 1314 12 11 10 9 8 7 6 5 4 3 2 1 0

0 C
F

A
F

P
F 1D

F
I
F

T
F

S
F

Z
F

N
T 00

V
I
P

V
I
F

O
F

I
O
P
L

VIF — Virtual Interrupt Flag

TF — Trap Flag

Reserved

Reserved (set to 0)
Vol. 3A 2-13

SYSTEM ARCHITECTURE OVERVIEW
changing to the state of this flag can generate unexpected exceptions in
application programs.

See also: Section 7.4, “Task Linking.”

RF Resume (bit 16) — Controls the processor’s response to instruction-break-
point conditions. When set, this flag temporarily disables debug exceptions
(#DB) from being generated for instruction breakpoints (although other
exception conditions can cause an exception to be generated). When clear,
instruction breakpoints will generate debug exceptions.

The primary function of the RF flag is to allow the restarting of an instruction
following a debug exception that was caused by an instruction breakpoint
condition. Here, debug software must set this flag in the EFLAGS image on
the stack just prior to returning to the interrupted program with IRETD (to
prevent the instruction breakpoint from causing another debug exception).
The processor then automatically clears this flag after the instruction
returned to has been successfully executed, enabling instruction breakpoint
faults again.

See also: Section 17.3.1.1, “Instruction-Breakpoint Exception Condition.”

VM Virtual-8086 mode (bit 17) — Set to enable virtual-8086 mode; clear to
return to protected mode.

See also: Section 20.2.1, “Enabling Virtual-8086 Mode.”

AC Alignment check (bit 18) — Set this flag and the AM flag in control register
CR0 to enable alignment checking of memory references; clear the AC flag
and/or the AM flag to disable alignment checking. An alignment-check
exception is generated when reference is made to an unaligned operand,
such as a word at an odd byte address or a doubleword at an address which
is not an integral multiple of four. Alignment-check exceptions are generated
only in user mode (privilege level 3). Memory references that default to priv-
ilege level 0, such as segment descriptor loads, do not generate this excep-
tion even when caused by instructions executed in user-mode.

The alignment-check exception can be used to check alignment of data. This
is useful when exchanging data with processors which require all data to be
aligned. The alignment-check exception can also be used by interpreters to
flag some pointers as special by misaligning the pointer. This eliminates
overhead of checking each pointer and only handles the special pointer when
used.

VIF Virtual Interrupt (bit 19) — Contains a virtual image of the IF flag. This
flag is used in conjunction with the VIP flag. The processor only recognizes
the VIF flag when either the VME flag or the PVI flag in control register CR4 is
set and the IOPL is less than 3. (The VME flag enables the virtual-8086 mode
extensions; the PVI flag enables the protected-mode virtual interrupts.)

See also: Section 20.3.3.5, “Method 6: Software Interrupt Handling,” and
Section 20.4, “Protected-Mode Virtual Interrupts.”
2-14 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW
VIP Virtual interrupt pending (bit 20) — Set by software to indicate that an
interrupt is pending; cleared to indicate that no interrupt is pending. This flag
is used in conjunction with the VIF flag. The processor reads this flag but
never modifies it. The processor only recognizes the VIP flag when either the
VME flag or the PVI flag in control register CR4 is set and the IOPL is less than
3. The VME flag enables the virtual-8086 mode extensions; the PVI flag
enables the protected-mode virtual interrupts.

See Section 20.3.3.5, “Method 6: Software Interrupt Handling,” and Section
20.4, “Protected-Mode Virtual Interrupts.”

ID Identification (bit 21). — The ability of a program or procedure to set or
clear this flag indicates support for the CPUID instruction.

2.3.1 System Flags and Fields in IA-32e Mode
In 64-bit mode, the RFLAGS register expands to 64 bits with the upper 32 bits
reserved. System flags in RFLAGS (64-bit mode) or EFLAGS (compatibility mode)
are shown in Figure 2-4.

In IA-32e mode, the processor does not allow the VM bit to be set because virtual-
8086 mode is not supported (attempts to set the bit are ignored). Also, the processor
will not set the NT bit. The processor does, however, allow software to set the NT bit
(note that an IRET causes a general protection fault in IA-32e mode if the NT bit is
set).

In IA-32e mode, the SYSCALL/SYSRET instructions have a programmable method of
specifying which bits are cleared in RFLAGS/EFLAGS. These instructions save/restore
EFLAGS/RFLAGS.

2.4 MEMORY-MANAGEMENT REGISTERS
The processor provides four memory-management registers (GDTR, LDTR, IDTR,
and TR) that specify the locations of the data structures which control segmented
memory management (see Figure 2-5). Special instructions are provided for loading
and storing these registers.
Vol. 3A 2-15

SYSTEM ARCHITECTURE OVERVIEW
2.4.1 Global Descriptor Table Register (GDTR)
The GDTR register holds the base address (32 bits in protected mode; 64 bits in
IA-32e mode) and the 16-bit table limit for the GDT. The base address specifies the
linear address of byte 0 of the GDT; the table limit specifies the number of bytes in
the table.

The LGDT and SGDT instructions load and store the GDTR register, respectively. On
power up or reset of the processor, the base address is set to the default value of 0
and the limit is set to 0FFFFH. A new base address must be loaded into the GDTR as
part of the processor initialization process for protected-mode operation.

See also: Section 3.5.1, “Segment Descriptor Tables.”

2.4.2 Local Descriptor Table Register (LDTR)
The LDTR register holds the 16-bit segment selector, base address (32 bits in
protected mode; 64 bits in IA-32e mode), segment limit, and descriptor attributes
for the LDT. The base address specifies the linear address of byte 0 of the LDT
segment; the segment limit specifies the number of bytes in the segment. See also:
Section 3.5.1, “Segment Descriptor Tables.”

The LLDT and SLDT instructions load and store the segment selector part of the LDTR
register, respectively. The segment that contains the LDT must have a segment
descriptor in the GDT. When the LLDT instruction loads a segment selector in the
LDTR: the base address, limit, and descriptor attributes from the LDT descriptor are
automatically loaded in the LDTR.

When a task switch occurs, the LDTR is automatically loaded with the segment
selector and descriptor for the LDT for the new task. The contents of the LDTR are not
automatically saved prior to writing the new LDT information into the register.

On power up or reset of the processor, the segment selector and base address are set
to the default value of 0 and the limit is set to 0FFFFH.

Figure 2-5. Memory Management Registers

047(79)

GDTR

IDTR

System Table Registers

32(64)-bit Linear Base Address 16-Bit Table Limit

1516

32(64)-bit Linear Base Address

0
Task

LDTR

System Segment

Seg. Sel.

15

Seg. Sel.

Segment Descriptor Registers (Automatically Loaded)

32(64)-bit Linear Base Address Segment Limit

Attributes
Registers

32(64)-bit Linear Base Address Segment Limit
Register

16-Bit Table Limit
2-16 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW
2.4.3 IDTR Interrupt Descriptor Table Register
The IDTR register holds the base address (32 bits in protected mode; 64 bits in
IA-32e mode) and 16-bit table limit for the IDT. The base address specifies the linear
address of byte 0 of the IDT; the table limit specifies the number of bytes in the table.
The LIDT and SIDT instructions load and store the IDTR register, respectively. On
power up or reset of the processor, the base address is set to the default value of 0
and the limit is set to 0FFFFH. The base address and limit in the register can then be
changed as part of the processor initialization process.

See also: Section 6.10, “Interrupt Descriptor Table (IDT).”

2.4.4 Task Register (TR)
The task register holds the 16-bit segment selector, base address (32 bits in
protected mode; 64 bits in IA-32e mode), segment limit, and descriptor attributes
for the TSS of the current task. The selector references the TSS descriptor in the GDT.
The base address specifies the linear address of byte 0 of the TSS; the segment limit
specifies the number of bytes in the TSS. See also: Section 7.2.4, “Task Register.”

The LTR and STR instructions load and store the segment selector part of the task
register, respectively. When the LTR instruction loads a segment selector in the task
register, the base address, limit, and descriptor attributes from the TSS descriptor
are automatically loaded into the task register. On power up or reset of the processor,
the base address is set to the default value of 0 and the limit is set to 0FFFFH.

When a task switch occurs, the task register is automatically loaded with the
segment selector and descriptor for the TSS for the new task. The contents of the
task register are not automatically saved prior to writing the new TSS information
into the register.

2.5 CONTROL REGISTERS
Control registers (CR0, CR1, CR2, CR3, and CR4; see Figure 2-6) determine oper-
ating mode of the processor and the characteristics of the currently executing task.
These registers are 32 bits in all 32-bit modes and compatibility mode.

In 64-bit mode, control registers are expanded to 64 bits. The MOV CRn instructions
are used to manipulate the register bits. Operand-size prefixes for these instructions
are ignored. The following is also true:
• Bits 63:32 of CR0 and CR4 are reserved and must be written with zeros. Writing

a nonzero value to any of the upper 32 bits results in a general-protection
exception, #GP(0).

• All 64 bits of CR2 are writable by software.
• Bits 51:40 of CR3 are reserved and must be 0.
Vol. 3A 2-17

SYSTEM ARCHITECTURE OVERVIEW
• The MOV CRn instructions do not check that addresses written to CR2 and CR3
are within the linear-address or physical-address limitations of the implemen-
tation.

• Register CR8 is available in 64-bit mode only.

The control registers are summarized below, and each architecturally defined control
field in these control registers are described individually. In Figure 2-6, the width of
the register in 64-bit mode is indicated in parenthesis (except for CR0).
• CR0 — Contains system control flags that control operating mode and states of

the processor.
• CR1 — Reserved.
• CR2 — Contains the page-fault linear address (the linear address that caused a

page fault).
• CR3 — Contains the physical address of the base of the paging-structure

hierarchy and two flags (PCD and PWT). Only the most-significant bits (less the
lower 12 bits) of the base address are specified; the lower 12 bits of the address
are assumed to be 0. The first paging structure must thus be aligned to a page
(4-KByte) boundary. The PCD and PWT flags control caching of that paging
structure in the processor’s internal data caches (they do not control TLB caching
of page-directory information).

When using the physical address extension, the CR3 register contains the base
address of the page-directory-pointer table In IA-32e mode, the CR3 register
contains the base address of the PML4 table.

See also: Chapter 4, “Paging.”
• CR4 — Contains a group of flags that enable several architectural extensions,

and indicate operating system or executive support for specific processor capabil-
ities. The control registers can be read and loaded (or modified) using the move-
to-or-from-control-registers forms of the MOV instruction. In protected mode,
the MOV instructions allow the control registers to be read or loaded (at privilege
level 0 only). This restriction means that application programs or operating-
system procedures (running at privilege levels 1, 2, or 3) are prevented from
reading or loading the control registers.

• CR8 — Provides read and write access to the Task Priority Register (TPR). It
specifies the priority threshold value that operating systems use to control the
priority class of external interrupts allowed to interrupt the processor. This
register is available only in 64-bit mode. However, interrupt filtering continues to
apply in compatibility mode.
2-18 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW
When loading a control register, reserved bits should always be set to the values
previously read. The flags in control registers are:

PG Paging (bit 31 of CR0) — Enables paging when set; disables paging when
clear. When paging is disabled, all linear addresses are treated as physical
addresses. The PG flag has no effect if the PE flag (bit 0 of register CR0) is
not also set; setting the PG flag when the PE flag is clear causes a general-
protection exception (#GP). See also: Chapter 4, “Paging.”

On Intel 64 processors, enabling and disabling IA-32e mode operation also
requires modifying CR0.PG.

CD Cache Disable (bit 30 of CR0) — When the CD and NW flags are clear,
caching of memory locations for the whole of physical memory in the
processor’s internal (and external) caches is enabled. When the CD flag is
set, caching is restricted as described in Table 11-5. To prevent the processor
from accessing and updating its caches, the CD flag must be set and the
caches must be invalidated so that no cache hits can occur.

Figure 2-6. Control Registers

CR1

W
P

A
M

Page-Directory Base

V
M
E

P
S
E

T
S
D

D
E

P
V
I

P
G
E

M
C
E

P
A
E

P
C
E

N
W

P
G

C
D

P
W
T

P
C
D

Page-Fault Linear Address

P
E

E
M

M
P

T
S

N
E

E
T

CR2

CR0

CR4

Reserved

CR3

Reserved

31 2930 28 19 18 17 16 15 6 5 4 3 2 1 0

31(63) 0

31(63) 0

31(63) 12 11 5 4 3 2

31(63) 9 8 7 6 5 4 3 2 1 0

(PDBR)

13 12 11 10

OSFXSR
OSXMMEXCPT

V
M
X
EE

X
M
S

1418

OSXSAVE PCIDE

17

S
M
E
P

20

FSGSBASE

16 15
Vol. 3A 2-19

SYSTEM ARCHITECTURE OVERVIEW
See also: Section 11.5.3, “Preventing Caching,” and Section 11.5, “Cache
Control.”

NW Not Write-through (bit 29 of CR0) — When the NW and CD flags are
clear, write-back (for Pentium 4, Intel Xeon, P6 family, and Pentium proces-
sors) or write-through (for Intel486 processors) is enabled for writes that hit
the cache and invalidation cycles are enabled. See Table 11-5 for detailed
information about the affect of the NW flag on caching for other settings of
the CD and NW flags.

AM Alignment Mask (bit 18 of CR0) — Enables automatic alignment checking
when set; disables alignment checking when clear. Alignment checking is
performed only when the AM flag is set, the AC flag in the EFLAGS register is
set, CPL is 3, and the processor is operating in either protected or virtual-
8086 mode.

WP Write Protect (bit 16 of CR0) — When set, inhibits supervisor-level proce-
dures from writing into read-only pages; when clear, allows supervisor-level
procedures to write into read-only pages (regardless of the U/S bit setting;
see Section 4.1.3 and Section 4.6). This flag facilitates implementation of the
copy-on-write method of creating a new process (forking) used by operating
systems such as UNIX.

NE Numeric Error (bit 5 of CR0) — Enables the native (internal) mechanism
for reporting x87 FPU errors when set; enables the PC-style x87 FPU error
reporting mechanism when clear. When the NE flag is clear and the IGNNE#
input is asserted, x87 FPU errors are ignored. When the NE flag is clear and
the IGNNE# input is deasserted, an unmasked x87 FPU error causes the
processor to assert the FERR# pin to generate an external interrupt and to
stop instruction execution immediately before executing the next waiting
floating-point instruction or WAIT/FWAIT instruction.

The FERR# pin is intended to drive an input to an external interrupt
controller (the FERR# pin emulates the ERROR# pin of the Intel 287 and
Intel 387 DX math coprocessors). The NE flag, IGNNE# pin, and FERR# pin
are used with external logic to implement PC-style error reporting. Using
FERR# and IGNNE# to handle floating-point exceptions is deprecated by
modern operating systems; this non-native approach also limits newer
processors to operate with one logical processor active.

See also: “Software Exception Handling” in Chapter 8, “Programming with
the x87 FPU,” and Appendix A, “EFLAGS Cross-Reference,” in the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 1.

ET Extension Type (bit 4 of CR0) — Reserved in the Pentium 4, Intel Xeon, P6
family, and Pentium processors. In the Pentium 4, Intel Xeon, and P6 family
processors, this flag is hardcoded to 1. In the Intel386 and Intel486 proces-
sors, this flag indicates support of Intel 387 DX math coprocessor instruc-
tions when set.

TS Task Switched (bit 3 of CR0) — Allows the saving of the x87
FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 context on a task switch to be
2-20 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW
delayed until an x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction is
actually executed by the new task. The processor sets this flag on every task
switch and tests it when executing x87
FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instructions.

• If the TS flag is set and the EM flag (bit 2 of CR0) is clear, a device-not-
available exception (#NM) is raised prior to the execution of any x87
FPU/MMX/SSE/ SSE2/SSE3/SSSE3/SSE4 instruction; with the exception
of PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE, MOVNTI, CLFLUSH,
CRC32, and POPCNT. See the paragraph below for the special case of the
WAIT/FWAIT instructions.

• If the TS flag is set and the MP flag (bit 1 of CR0) and EM flag are clear, an
#NM exception is not raised prior to the execution of an x87 FPU
WAIT/FWAIT instruction.

• If the EM flag is set, the setting of the TS flag has no affect on the
execution of x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instructions.

Table 2-1 shows the actions taken when the processor encounters an x87
FPU instruction based on the settings of the TS, EM, and MP flags. Table 12-1
and 13-1 show the actions taken when the processor encounters an
MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction.

The processor does not automatically save the context of the x87 FPU, XMM,
and MXCSR registers on a task switch. Instead, it sets the TS flag, which
causes the processor to raise an #NM exception whenever it encounters an
x87 FPU/MMX/SSE /SSE2/SSE3/SSSE3/SSE4 instruction in the instruction
stream for the new task (with the exception of the instructions listed above).

The fault handler for the #NM exception can then be used to clear the TS flag (with
the CLTS instruction) and save the context of the x87 FPU, XMM, and MXCSR regis-
ters. If the task never encounters an x87 FPU/MMX/SSE/SSE2/SSE3//SSSE3/SSE4
instruction; the x87 FPU/MMX/SSE/SSE2/ SSE3/SSSE3/SSE4 context is never saved.

Table 2-1. Action Taken By x87 FPU Instructions for Different
Combinations of EM, MP, and TS

CR0 Flags x87 FPU Instruction Type

EM MP TS Floating-Point WAIT/FWAIT

0 0 0 Execute Execute.

0 0 1 #NM Exception Execute.

0 1 0 Execute Execute.

0 1 1 #NM Exception #NM exception.

1 0 0 #NM Exception Execute.

1 0 1 #NM Exception Execute.

1 1 0 #NM Exception Execute.
Vol. 3A 2-21

SYSTEM ARCHITECTURE OVERVIEW
EM Emulation (bit 2 of CR0) — Indicates that the processor does not have an
internal or external x87 FPU when set; indicates an x87 FPU is present when
clear. This flag also affects the execution of
MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instructions.

When the EM flag is set, execution of an x87 FPU instruction generates a
device-not-available exception (#NM). This flag must be set when the
processor does not have an internal x87 FPU or is not connected to an
external math coprocessor. Setting this flag forces all floating-point instruc-
tions to be handled by software emulation. Table 9-2 shows the recom-
mended setting of this flag, depending on the IA-32 processor and x87 FPU
or math coprocessor present in the system. Table 2-1 shows the interaction
of the EM, MP, and TS flags.

Also, when the EM flag is set, execution of an MMX instruction causes an
invalid-opcode exception (#UD) to be generated (see Table 12-1). Thus, if an
IA-32 or Intel 64 processor incorporates MMX technology, the EM flag must
be set to 0 to enable execution of MMX instructions.

Similarly for SSE/SSE2/SSE3/SSSE3/SSE4 extensions, when the EM flag is
set, execution of most SSE/SSE2/SSE3/SSSE3/SSE4 instructions causes an
invalid opcode exception (#UD) to be generated (see Table 13-1). If an IA-32
or Intel 64 processor incorporates the SSE/SSE2/SSE3/SSSE3/SSE4 exten-
sions, the EM flag must be set to 0 to enable execution of these extensions.
SSE/SSE2/SSE3/SSSE3/SSE4 instructions not affected by the EM flag
include: PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE, MOVNTI, CLFLUSH,
CRC32, and POPCNT.

MP Monitor Coprocessor (bit 1 of CR0). — Controls the interaction of the
WAIT (or FWAIT) instruction with the TS flag (bit 3 of CR0). If the MP flag is
set, a WAIT instruction generates a device-not-available exception (#NM) if
the TS flag is also set. If the MP flag is clear, the WAIT instruction ignores the
setting of the TS flag. Table 9-2 shows the recommended setting of this flag,
depending on the IA-32 processor and x87 FPU or math coprocessor present
in the system. Table 2-1 shows the interaction of the MP, EM, and TS flags.

PE Protection Enable (bit 0 of CR0) — Enables protected mode when set;
enables real-address mode when clear. This flag does not enable paging
directly. It only enables segment-level protection. To enable paging, both the
PE and PG flags must be set.

See also: Section 9.9, “Mode Switching.”

PCD Page-level Cache Disable (bit 4 of CR3) — Controls the memory type
used to access the first paging structure of the current paging-structure hier-

1 1 1 #NM Exception #NM exception.

Table 2-1. Action Taken By x87 FPU Instructions for Different
Combinations of EM, MP, and TS

CR0 Flags x87 FPU Instruction Type
2-22 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW
archy. See Section 4.9, “Paging and Memory Typing”. This bit is not used if
paging is disabled, with PAE paging, or with IA-32e paging if CR4.PCIDE=1.

PWT Page-level Write-Through (bit 3 of CR3) — Controls the memory type
used to access the first paging structure of the current paging-structure hier-
archy. See Section 4.9, “Paging and Memory Typing”. This bit is not used if
paging is disabled, with PAE paging, or with IA-32e paging if CR4.PCIDE=1.

VME Virtual-8086 Mode Extensions (bit 0 of CR4) — Enables interrupt- and
exception-handling extensions in virtual-8086 mode when set; disables the
extensions when clear. Use of the virtual mode extensions can improve the
performance of virtual-8086 applications by eliminating the overhead of
calling the virtual-8086 monitor to handle interrupts and exceptions that
occur while executing an 8086 program and, instead, redirecting the inter-
rupts and exceptions back to the 8086 program’s handlers. It also provides
hardware support for a virtual interrupt flag (VIF) to improve reliability of
running 8086 programs in multitasking and multiple-processor environ-
ments.

See also: Section 20.3, “Interrupt and Exception Handling in Virtual-8086
Mode.”

PVI Protected-Mode Virtual Interrupts (bit 1 of CR4) — Enables hardware
support for a virtual interrupt flag (VIF) in protected mode when set; disables
the VIF flag in protected mode when clear.

See also: Section 20.4, “Protected-Mode Virtual Interrupts.”

TSD Time Stamp Disable (bit 2 of CR4) — Restricts the execution of the
RDTSC instruction to procedures running at privilege level 0 when set; allows
RDTSC instruction to be executed at any privilege level when clear. This bit
also applies to the RDTSCP instruction if supported (if
CPUID.80000001H:EDX[27] = 1).

DE Debugging Extensions (bit 3 of CR4) — References to debug registers
DR4 and DR5 cause an undefined opcode (#UD) exception to be generated
when set; when clear, processor aliases references to registers DR4 and DR5
for compatibility with software written to run on earlier IA-32 processors.

See also: Section 17.2.2, “Debug Registers DR4 and DR5.”

PSE Page Size Extensions (bit 4 of CR4) — Enables 4-MByte pages with 32-bit
paging when set; restricts 32-bit paging to pages to 4 KBytes when clear.

See also: Section 4.3, “32-Bit Paging.”

PAE Physical Address Extension (bit 5 of CR4) — When set, enables paging
to produce physical addresses with more than 32 bits. When clear, restricts
physical addresses to 32 bits. PAE must be set before entering IA-32e mode.

See also: Chapter 4, “Paging.”

MCE Machine-Check Enable (bit 6 of CR4) — Enables the machine-check
exception when set; disables the machine-check exception when clear.
Vol. 3A 2-23

SYSTEM ARCHITECTURE OVERVIEW
See also: Chapter 15, “Machine-Check Architecture.”

PGE Page Global Enable (bit 7 of CR4) — (Introduced in the P6 family proces-
sors.) Enables the global page feature when set; disables the global page
feature when clear. The global page feature allows frequently used or shared
pages to be marked as global to all users (done with the global flag, bit 8, in
a page-directory or page-table entry). Global pages are not flushed from the
translation-lookaside buffer (TLB) on a task switch or a write to register CR3.

When enabling the global page feature, paging must be enabled (by setting
the PG flag in control register CR0) before the PGE flag is set. Reversing this
sequence may affect program correctness, and processor performance will
be impacted.

See also: Section 4.10, “Caching Translation Information.”

PCE Performance-Monitoring Counter Enable (bit 8 of CR4) — Enables
execution of the RDPMC instruction for programs or procedures running at
any protection level when set; RDPMC instruction can be executed only at
protection level 0 when clear.

OSFXSR
Operating System Support for FXSAVE and FXRSTOR instructions
(bit 9 of CR4) — When set, this flag: (1) indicates to software that the oper-
ating system supports the use of the FXSAVE and FXRSTOR instructions, (2)
enables the FXSAVE and FXRSTOR instructions to save and restore the
contents of the XMM and MXCSR registers along with the contents of the x87
FPU and MMX registers, and (3) enables the processor to execute
SSE/SSE2/SSE3/SSSE3/SSE4 instructions, with the exception of the PAUSE,
PREFETCHh, SFENCE, LFENCE, MFENCE, MOVNTI, CLFLUSH, CRC32, and
POPCNT.

If this flag is clear, the FXSAVE and FXRSTOR instructions will save and
restore the contents of the x87 FPU and MMX instructions, but they may not
save and restore the contents of the XMM and MXCSR registers. Also, the
processor will generate an invalid opcode exception (#UD) if it attempts to
execute any SSE/SSE2/SSE3 instruction, with the exception of PAUSE,
PREFETCHh, SFENCE, LFENCE, MFENCE, MOVNTI, CLFLUSH, CRC32, and
POPCNT. The operating system or executive must explicitly set this flag.

NOTE
CPUID feature flags FXSR indicates availability of the
FXSAVE/FXRSTOR instructions. The OSFXSR bit provides operating
system software with a means of enabling FXSAVE/FXRSTOR to
save/restore the contents of the X87 FPU, XMM and MXCSR registers.
Consequently OSFXSR bit indicates that the operating system
provides context switch support for SSE/SSE2/SSE3/SSSE3/SSE4.
2-24 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW
OSXMMEXCPT
Operating System Support for Unmasked SIMD Floating-Point Excep-
tions (bit 10 of CR4) — When set, indicates that the operating system
supports the handling of unmasked SIMD floating-point exceptions through
an exception handler that is invoked when a SIMD floating-point exception
(#XF) is generated. SIMD floating-point exceptions are only generated by
SSE/SSE2/SSE3/SSE4.1 SIMD floating-point instructions.

The operating system or executive must explicitly set this flag. If this flag is
not set, the processor will generate an invalid opcode exception (#UD)
whenever it detects an unmasked SIMD floating-point exception.

VMXE
VMX-Enable Bit (bit 13 of CR4) — Enables VMX operation when set. See
Chapter 23, “Introduction to Virtual-Machine Extensions.”

SMXE
SMX-Enable Bit (bit 14 of CR4) — Enables SMX operation when set. See
Chapter 29, “VMX Instruction Reference” of Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3C.

FSGSBASE
FSGSBASE-Enable Bit (bit 16 of CR4) — Enables the instructions
RDFSBASE, RDGSBASE, WRFSBASE, and WRGSBASE.

PCIDE
PCID-Enable Bit (bit 17 of CR4) — Enables process-context identifiers
(PCIDs) when set. See Section 4.10.1, “Process-Context Identifiers
(PCIDs)”. Can be set only in IA-32e mode (if IA32_EFER.LMA = 1).

OSXSAVE
XSAVE and Processor Extended States-Enable Bit (bit 18 of CR4) —
When set, this flag: (1) indicates (via CPUID.01H:ECX.OSXSAVE[bit 27])
that the operating system supports the use of the XGETBV, XSAVE and
XRSTOR instructions by general software; (2) enables the XSAVE and
XRSTOR instructions to save and restore the x87 FPU state (including MMX
registers), the SSE state (XMM registers and MXCSR), along with other
processor extended states enabled in XCR0; (3) enables the processor to
execute XGETBV and XSETBV instructions in order to read and write XCR0.
See Section 2.6 and Chapter 13, “System Programming for Instruction Set
Extensions and Processor Extended States”.

SMEP
SMEP-Enable Bit (bit 20 of CR4) — Enables supervisor-mode execution
prevention (SMEP) when set. See Section 4.6, “Access Rights”.

TPL
Task Priority Level (bit 3:0 of CR8) — This sets the threshold value corre-
sponding to the highest-priority interrupt to be blocked. A value of 0 means
all interrupts are enabled. This field is available in 64-bit mode. A value of 15
means all interrupts will be disabled.
Vol. 3A 2-25

SYSTEM ARCHITECTURE OVERVIEW
2.5.1 CPUID Qualification of Control Register Flags
Not all flags in control register CR4 are implemented on all processors. With the
exception of the PCE flag, they can be qualified with the CPUID instruction to deter-
mine if they are implemented on the processor before they are used.

The CR8 register is available on processors that support Intel 64 architecture.

2.6 EXTENDED CONTROL REGISTERS (INCLUDING XCR0)
If CPUID.01H:ECX.XSAVE[bit 26] is 1, the processor supports one or more
extended control registers (XCRs). Currently, the only such register defined is
XCR0. This register specifies the set of processor states that the operating system
enables on that processor, e.g. x87 FPU state, SSE state, AVX state, and other
processor extended states that Intel 64 architecture may introduce in the future. The
OS programs XCR0 to reflect the features it supports.

Software can access XCR0 only if CR4.OSXSAVE[bit 18] = 1. (This bit is also readable
as CPUID.01H:ECX.OSXSAVE[bit 27].) The layout of XCR0 is architected to allow
software to use CPUID leaf function 0DH to enumerate the set of bits that the
processor supports in XCR0 (see CPUID instruction in Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 2A). Each processor state (X87 FPU
state, SSE state, AVX state, or a future processor extended state) is represented by
a bit in XCR0. The OS can enable future processor extended states in a forward
manner by specifying the appropriate bit mask value using the XSETBV instruction
according to the results of the CPUID leaf 0DH.
With the exception of bit 63, each bit in XCR0 corresponds to a subset of the
processor states. XCR0 thus provides space for up to 63 sets of processor state
extensions. Bit 63 of XCR0 is reserved for future expansion and will not represent a
processor extended state.

Figure 2-7. XCR0

63

Reserved for XCR0 bit vector expansion
Reserved / Future processor extended states

2 1 0

AVX state

1

Reserved (must be 0)

x87 FPU/MMX state (must be 1)
SSE state
2-26 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW
Currently, XCR0 has three processor states defined, with up to 61 bits reserved for
future processor extended states:
• XCR0.X87 (bit 0): This bit 0 must be 1. An attempt to write 0 to this bit causes a

#GP exception.
• XCR0.SSE (bit 1): If 1, XSAVE, XSAVEOPT, and XRSTOR can be used to manage

MXCSR and XMM registers (XMM0-XMM15 in 64-bit mode; otherwise XMM0-
XMM7).

• XCR0.AVX (bit 2): If 1, AVX instructions can be executed and XSAVE, XSAVEOPT,
and XRSTOR can be used to manage the upper halves of the YMM registers
(YMM0-YMM15 in 64-bit mode; otherwise YMM0-YMM7).

Any attempt to set a reserved bit (as determined by the contents of EAX and EDX
after executing CPUID with EAX=0DH, ECX= 0H) in XCR0 for a given processor will
result in a #GP exception. An attempt to write 0 to XCR0.x87 (bit 0) will result in a
#GP exception. An attempt to write 0 to XCR0.SSE (bit 1) and 1 to XCR0.AVX (bit 2)
also results in a #GP exception.

If a bit in XCR0 is 1, software can use the XSAVE instruction to save the corre-
sponding processor state to memory (see XSAVE instruction in Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2B).
After reset, all bits (except bit 0) in XCR0 are cleared to zero, XCR0[0] is set to 1.

2.7 SYSTEM INSTRUCTION SUMMARY
System instructions handle system-level functions such as loading system registers,
managing the cache, managing interrupts, or setting up the debug registers. Many of
these instructions can be executed only by operating-system or executive proce-
dures (that is, procedures running at privilege level 0). Others can be executed at
any privilege level and are thus available to application programs.

Table 2-2 lists the system instructions and indicates whether they are available and
useful for application programs. These instructions are described in the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B & 2C.

Table 2-2. Summary of System Instructions

Instruction Description
Useful to
Application?

Protected from
Application?

LLDT Load LDT Register No Yes

SLDT Store LDT Register No No

LGDT Load GDT Register No Yes

SGDT Store GDT Register No No

LTR Load Task Register No Yes

STR Store Task Register No No
Vol. 3A 2-27

SYSTEM ARCHITECTURE OVERVIEW
LIDT Load IDT Register No Yes

SIDT Store IDT Register No No

MOV CRn Load and store control registers No Yes

SMSW Store MSW Yes No

LMSW Load MSW No Yes

CLTS Clear TS flag in CR0 No Yes

ARPL Adjust RPL Yes1, 5 No

LAR Load Access Rights Yes No

LSL Load Segment Limit Yes No

VERR Verify for Reading Yes No

VERW Verify for Writing Yes No

MOV DRn Load and store debug registers No Yes

INVD Invalidate cache, no writeback No Yes

WBINVD Invalidate cache, with writeback No Yes

INVLPG Invalidate TLB entry No Yes

HLT Halt Processor No Yes

LOCK (Prefix) Bus Lock Yes No

RSM Return from system management
mode

No Yes

RDMSR3 Read Model-Specific Registers No Yes

WRMSR3 Write Model-Specific Registers No Yes

RDPMC4 Read Performance-Monitoring
Counter

Yes Yes2

RDTSC3 Read Time-Stamp Counter Yes Yes2

RDTSCP7 Read Serialized Time-Stamp Counter Yes Yes2

XGETBV Return the state of XCR0 Yes No

XSETBV Enable one or more processor
extended states

No6 Yes

Table 2-2. Summary of System Instructions (Contd.)

Instruction Description
Useful to
Application?

Protected from
Application?
2-28 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW
2.7.1 Loading and Storing System Registers
The GDTR, LDTR, IDTR, and TR registers each have a load and store instruction for
loading data into and storing data from the register:
• LGDT (Load GDTR Register) — Loads the GDT base address and limit from

memory into the GDTR register.
• SGDT (Store GDTR Register) — Stores the GDT base address and limit from

the GDTR register into memory.
• LIDT (Load IDTR Register) — Loads the IDT base address and limit from

memory into the IDTR register.
• SIDT (Load IDTR Register — Stores the IDT base address and limit from the

IDTR register into memory.
• LLDT (Load LDT Register) — Loads the LDT segment selector and segment

descriptor from memory into the LDTR. (The segment selector operand can also
be located in a general-purpose register.)

• SLDT (Store LDT Register) — Stores the LDT segment selector from the LDTR
register into memory or a general-purpose register.

• LTR (Load Task Register) — Loads segment selector and segment descriptor
for a TSS from memory into the task register. (The segment selector operand can
also be located in a general-purpose register.)

• STR (Store Task Register) — Stores the segment selector for the current task
TSS from the task register into memory or a general-purpose register.

The LMSW (load machine status word) and SMSW (store machine status word)
instructions operate on bits 0 through 15 of control register CR0. These instructions
are provided for compatibility with the 16-bit Intel 286 processor. Programs written
to run on 32-bit IA-32 processors should not use these instructions. Instead, they
should access the control register CR0 using the MOV instruction.

NOTES:
1. Useful to application programs running at a CPL of 1 or 2.
2. The TSD and PCE flags in control register CR4 control access to these instructions by application

programs running at a CPL of 3.
3. These instructions were introduced into the IA-32 Architecture with the Pentium processor.
4. This instruction was introduced into the IA-32 Architecture with the Pentium Pro processor and

the Pentium processor with MMX technology.
5. This instruction is not supported in 64-bit mode.
6. Application uses XGETBV to query which set of processor extended states are enabled.
7. RDTSCP is introduced in Intel Core i7 processor.

Table 2-2. Summary of System Instructions (Contd.)

Instruction Description
Useful to
Application?

Protected from
Application?
Vol. 3A 2-29

SYSTEM ARCHITECTURE OVERVIEW
The CLTS (clear TS flag in CR0) instruction is provided for use in handling a device-
not-available exception (#NM) that occurs when the processor attempts to execute a
floating-point instruction when the TS flag is set. This instruction allows the TS flag to
be cleared after the x87 FPU context has been saved, preventing further #NM excep-
tions. See Section 2.5, “Control Registers,” for more information on the TS flag.

The control registers (CR0, CR1, CR2, CR3, CR4, and CR8) are loaded using the MOV
instruction. The instruction loads a control register from a general-purpose register
or stores the content of a control register in a general-purpose register.

2.7.2 Verifying of Access Privileges
The processor provides several instructions for examining segment selectors and
segment descriptors to determine if access to their associated segments is allowed.
These instructions duplicate some of the automatic access rights and type checking
done by the processor, thus allowing operating-system or executive software to
prevent exceptions from being generated.

The ARPL (adjust RPL) instruction adjusts the RPL (requestor privilege level) of a
segment selector to match that of the program or procedure that supplied the
segment selector. See Section 5.10.4, “Checking Caller Access Privileges (ARPL
Instruction),” for a detailed explanation of the function and use of this instruction.
Note that ARPL is not supported in 64-bit mode.

The LAR (load access rights) instruction verifies the accessibility of a specified
segment and loads access rights information from the segment’s segment descriptor
into a general-purpose register. Software can then examine the access rights to
determine if the segment type is compatible with its intended use. See Section
5.10.1, “Checking Access Rights (LAR Instruction),” for a detailed explanation of the
function and use of this instruction.

The LSL (load segment limit) instruction verifies the accessibility of a specified
segment and loads the segment limit from the segment’s segment descriptor into a
general-purpose register. Software can then compare the segment limit with an
offset into the segment to determine whether the offset lies within the segment. See
Section 5.10.3, “Checking That the Pointer Offset Is Within Limits (LSL Instruction),”
for a detailed explanation of the function and use of this instruction.

The VERR (verify for reading) and VERW (verify for writing) instructions verify if a
selected segment is readable or writable, respectively, at a given CPL. See Section
5.10.2, “Checking Read/Write Rights (VERR and VERW Instructions),” for a detailed
explanation of the function and use of this instruction.

2.7.3 Loading and Storing Debug Registers
Internal debugging facilities in the processor are controlled by a set of 8 debug regis-
ters (DR0-DR7). The MOV instruction allows setup data to be loaded to and stored
from these registers.
2-30 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW
On processors that support Intel 64 architecture, debug registers DR0-DR7 are 64
bits. In 32-bit modes and compatibility mode, writes to a debug register fill the upper
32 bits with zeros. Reads return the lower 32 bits. In 64-bit mode, the upper 32 bits
of DR6-DR7 are reserved and must be written with zeros. Writing one to any of the
upper 32 bits causes an exception, #GP(0).

In 64-bit mode, MOV DRn instructions read or write all 64 bits of a debug register
(operand-size prefixes are ignored). All 64 bits of DR0-DR3 are writable by software.
However, MOV DRn instructions do not check that addresses written to DR0-DR3 are
in the limits of the implementation. Address matching is supported only on valid
addresses generated by the processor implementation.

2.7.4 Invalidating Caches and TLBs
The processor provides several instructions for use in explicitly invalidating its caches
and TLB entries. The INVD (invalidate cache with no writeback) instruction invali-
dates all data and instruction entries in the internal caches and sends a signal to the
external caches indicating that they should be also be invalidated.

The WBINVD (invalidate cache with writeback) instruction performs the same func-
tion as the INVD instruction, except that it writes back modified lines in its internal
caches to memory before it invalidates the caches. After invalidating the internal
caches, WBINVD signals external caches to write back modified data and invalidate
their contents.

The INVLPG (invalidate TLB entry) instruction invalidates (flushes) the TLB entry for
a specified page.

2.7.5 Controlling the Processor

The HLT (halt processor) instruction stops the processor until an enabled interrupt
(such as NMI or SMI, which are normally enabled), a debug exception, the BINIT#
signal, the INIT# signal, or the RESET# signal is received. The processor generates a
special bus cycle to indicate that the halt mode has been entered.

Hardware may respond to this signal in a number of ways. An indicator light on the
front panel may be turned on. An NMI interrupt for recording diagnostic information
may be generated. Reset initialization may be invoked (note that the BINIT# pin was
introduced with the Pentium Pro processor). If any non-wake events are pending
during shutdown, they will be handled after the wake event from shutdown is
processed (for example, A20M# interrupts).

The LOCK prefix invokes a locked (atomic) read-modify-write operation when modi-
fying a memory operand. This mechanism is used to allow reliable communications
between processors in multiprocessor systems, as described below:
Vol. 3A 2-31

SYSTEM ARCHITECTURE OVERVIEW
• In the Pentium processor and earlier IA-32 processors, the LOCK prefix causes
the processor to assert the LOCK# signal during the instruction. This always
causes an explicit bus lock to occur.

• In the Pentium 4, Intel Xeon, and P6 family processors, the locking operation is
handled with either a cache lock or bus lock. If a memory access is cacheable and
affects only a single cache line, a cache lock is invoked and the system bus and
the actual memory location in system memory are not locked during the
operation. Here, other Pentium 4, Intel Xeon, or P6 family processors on the bus
write-back any modified data and invalidate their caches as necessary to
maintain system memory coherency. If the memory access is not cacheable
and/or it crosses a cache line boundary, the processor’s LOCK# signal is asserted
and the processor does not respond to requests for bus control during the locked
operation.

The RSM (return from SMM) instruction restores the processor (from a context
dump) to the state it was in prior to an system management mode (SMM) interrupt.

2.7.6 Reading Performance-Monitoring and Time-Stamp Counters
The RDPMC (read performance-monitoring counter) and RDTSC (read time-stamp
counter) instructions allow application programs to read the processor’s perfor-
mance-monitoring and time-stamp counters, respectively. Processors based on Intel
NetBurst® microarchitecture have eighteen 40-bit performance-monitoring
counters; P6 family processors have two 40-bit counters. Intel® Atom™ processors
and most of the processors based on the Intel Core microarchitecture support two
types of performance monitoring counters: two programmable performance
counters similar to those available in the P6 family, and three fixed-function perfor-
mance monitoring counters.

The programmable performance counters can support counting either the occurrence
or duration of events. Events that can be monitored on programmable counters
generally are model specific (except for architectural performance events enumer-
ated by CPUID leaf 0AH); they may include the number of instructions decoded,
interrupts received, or the number of cache loads. Individual counters can be set up
to monitor different events. Use the system instruction WRMSR to set up values in
IA32_PERFEVTSEL0/1 (for Intel Atom, Intel Core 2, Intel Core Duo, and Intel
Pentium M processors), in one of the 45 ESCRs and one of the 18 CCCR MSRs (for
Pentium 4 and Intel Xeon processors); or in the PerfEvtSel0 or the PerfEvtSel1 MSR
(for the P6 family processors). The RDPMC instruction loads the current count from
the selected counter into the EDX:EAX registers.

Fixed-function performance counters record only specific events that are defined in
Chapter 23, “Introduction to Virtual-Machine Extensions”, and the width/number of
fixed-function counters are enumerated by CPUID leaf 0AH.

The time-stamp counter is a model-specific 64-bit counter that is reset to zero each
time the processor is reset. If not reset, the counter will increment ~9.5 x 1016

times per year when the processor is operating at a clock rate of 3GHz. At this
2-32 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW
clock frequency, it would take over 190 years for the counter to wrap around. The
RDTSC instruction loads the current count of the time-stamp counter into the
EDX:EAX registers.

See Section 18.1, “Performance Monitoring Overview,” and Section 17.12, “Time-
Stamp Counter,” for more information about the performance monitoring and time-
stamp counters.

The RDTSC instruction was introduced into the IA-32 architecture with the Pentium
processor. The RDPMC instruction was introduced into the IA-32 architecture with the
Pentium Pro processor and the Pentium processor with MMX technology. Earlier
Pentium processors have two performance-monitoring counters, but they can be
read only with the RDMSR instruction, and only at privilege level 0.

2.7.6.1 Reading Counters in 64-Bit Mode
In 64-bit mode, RDTSC operates the same as in protected mode. The count in the
time-stamp counter is stored in EDX:EAX (or RDX[31:0]:RAX[31:0] with
RDX[63:32]:RAX[63:32] cleared).

RDPMC requires an index to specify the offset of the performance-monitoring
counter. In 64-bit mode for Pentium 4 or Intel Xeon processor families, the index is
specified in ECX[30:0]. The current count of the performance-monitoring counter is
stored in EDX:EAX (or RDX[31:0]:RAX[31:0] with RDX[63:32]:RAX[63:32]
cleared).

2.7.7 Reading and Writing Model-Specific Registers
The RDMSR (read model-specific register) and WRMSR (write model-specific
register) instructions allow a processor’s 64-bit model-specific registers (MSRs) to be
read and written, respectively. The MSR to be read or written is specified by the value
in the ECX register.

RDMSR reads the value from the specified MSR to the EDX:EAX registers; WRMSR
writes the value in the EDX:EAX registers to the specified MSR. RDMSR and WRMSR
were introduced into the IA-32 architecture with the Pentium processor.

See Section 9.4, “Model-Specific Registers (MSRs),” for more information.

2.7.7.1 Reading and Writing Model-Specific Registers in 64-Bit Mode
RDMSR and WRMSR require an index to specify the address of an MSR. In 64-bit
mode, the index is 32 bits; it is specified using ECX.
Vol. 3A 2-33

SYSTEM ARCHITECTURE OVERVIEW
2.7.8 Enabling Processor Extended States
The XSETBV instruction is required to enable OS support of individual processor
extended states in XCR0 (see Section 2.6).
2-34 Vol. 3A

CHAPTER 3
PROTECTED-MODE MEMORY MANAGEMENT

This chapter describes the Intel 64 and IA-32 architecture’s protected-mode memory
management facilities, including the physical memory requirements, segmentation
mechanism, and paging mechanism.

See also: Chapter 5, “Protection” (for a description of the processor’s protection
mechanism) and Chapter 20, “8086 Emulation” (for a description of memory
addressing protection in real-address and virtual-8086 modes).

3.1 MEMORY MANAGEMENT OVERVIEW
The memory management facilities of the IA-32 architecture are divided into two
parts: segmentation and paging. Segmentation provides a mechanism of isolating
individual code, data, and stack modules so that multiple programs (or tasks) can
run on the same processor without interfering with one another. Paging provides a
mechanism for implementing a conventional demand-paged, virtual-memory system
where sections of a program’s execution environment are mapped into physical
memory as needed. Paging can also be used to provide isolation between multiple
tasks. When operating in protected mode, some form of segmentation must be used.
There is no mode bit to disable segmentation. The use of paging, however, is
optional.

These two mechanisms (segmentation and paging) can be configured to support
simple single-program (or single-task) systems, multitasking systems, or multiple-
processor systems that used shared memory.

As shown in Figure 3-1, segmentation provides a mechanism for dividing the
processor’s addressable memory space (called the linear address space) into
smaller protected address spaces called segments. Segments can be used to hold
the code, data, and stack for a program or to hold system data structures (such as a
TSS or LDT). If more than one program (or task) is running on a processor, each
program can be assigned its own set of segments. The processor then enforces the
boundaries between these segments and insures that one program does not interfere
with the execution of another program by writing into the other program’s segments.
The segmentation mechanism also allows typing of segments so that the operations
that may be performed on a particular type of segment can be restricted.

All the segments in a system are contained in the processor’s linear address space.
To locate a byte in a particular segment, a logical address (also called a far pointer)
must be provided. A logical address consists of a segment selector and an offset. The
segment selector is a unique identifier for a segment. Among other things it provides
an offset into a descriptor table (such as the global descriptor table, GDT) to a data
structure called a segment descriptor. Each segment has a segment descriptor, which
specifies the size of the segment, the access rights and privilege level for the
Vol. 3A 3-1

PROTECTED-MODE MEMORY MANAGEMENT
segment, the segment type, and the location of the first byte of the segment in the
linear address space (called the base address of the segment). The offset part of the
logical address is added to the base address for the segment to locate a byte within
the segment. The base address plus the offset thus forms a linear address in the
processor’s linear address space.

If paging is not used, the linear address space of the processor is mapped directly
into the physical address space of processor. The physical address space is defined as
the range of addresses that the processor can generate on its address bus.

Because multitasking computing systems commonly define a linear address space
much larger than it is economically feasible to contain all at once in physical memory,
some method of “virtualizing” the linear address space is needed. This virtualization
of the linear address space is handled through the processor’s paging mechanism.

Paging supports a “virtual memory” environment where a large linear address space
is simulated with a small amount of physical memory (RAM and ROM) and some disk

Figure 3-1. Segmentation and Paging

Global Descriptor
Table (GDT)

Linear Address
Space

Segment
Segment
Descriptor

Offset

Logical Address

Segment
Base Address

Page

Phy. Addr.
Lin. Addr.

Segment
Selector

Dir Table Offset
Linear Address

Page Table

Page Directory

 Entry

Physical

Space

Entry

(or Far Pointer)

PagingSegmentation

Address

Page
3-2 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT
storage. When using paging, each segment is divided into pages (typically 4 KBytes
each in size), which are stored either in physical memory or on the disk. The oper-
ating system or executive maintains a page directory and a set of page tables to keep
track of the pages. When a program (or task) attempts to access an address location
in the linear address space, the processor uses the page directory and page tables to
translate the linear address into a physical address and then performs the requested
operation (read or write) on the memory location.

If the page being accessed is not currently in physical memory, the processor inter-
rupts execution of the program (by generating a page-fault exception). The oper-
ating system or executive then reads the page into physical memory from the disk
and continues executing the program.

When paging is implemented properly in the operating-system or executive, the
swapping of pages between physical memory and the disk is transparent to the
correct execution of a program. Even programs written for 16-bit IA-32 processors
can be paged (transparently) when they are run in virtual-8086 mode.

3.2 USING SEGMENTS
The segmentation mechanism supported by the IA-32 architecture can be used to
implement a wide variety of system designs. These designs range from flat models
that make only minimal use of segmentation to protect programs to multi-
segmented models that employ segmentation to create a robust operating environ-
ment in which multiple programs and tasks can be executed reliably.

The following sections give several examples of how segmentation can be employed
in a system to improve memory management performance and reliability.

3.2.1 Basic Flat Model
The simplest memory model for a system is the basic “flat model,” in which the oper-
ating system and application programs have access to a continuous, unsegmented
address space. To the greatest extent possible, this basic flat model hides the
segmentation mechanism of the architecture from both the system designer and the
application programmer.

To implement a basic flat memory model with the IA-32 architecture, at least two
segment descriptors must be created, one for referencing a code segment and one
for referencing a data segment (see Figure 3-2). Both of these segments, however,
are mapped to the entire linear address space: that is, both segment descriptors
have the same base address value of 0 and the same segment limit of 4 GBytes. By
setting the segment limit to 4 GBytes, the segmentation mechanism is kept from
generating exceptions for out of limit memory references, even if no physical
memory resides at a particular address. ROM (EPROM) is generally located at the top
of the physical address space, because the processor begins execution at
Vol. 3A 3-3

PROTECTED-MODE MEMORY MANAGEMENT
FFFF_FFF0H. RAM (DRAM) is placed at the bottom of the address space because the
initial base address for the DS data segment after reset initialization is 0.

3.2.2 Protected Flat Model
The protected flat model is similar to the basic flat model, except the segment limits
are set to include only the range of addresses for which physical memory actually
exists (see Figure 3-3). A general-protection exception (#GP) is then generated on
any attempt to access nonexistent memory. This model provides a minimum level of
hardware protection against some kinds of program bugs.

Figure 3-2. Flat Model

Figure 3-3. Protected Flat Model

Linear Address Space
(or Physical Memory)

Data and

FFFFFFFFHSegment

LimitAccess

Base Address

Registers

CS

SS

DS

ES

FS

GS

Code

0

Code- and Data-Segment
Descriptors

Stack

Not Present

Linear Address Space
(or Physical Memory)

Data and

FFFFFFFFH
Segment

LimitAccess

Base Address

Registers

CS

ES

SS

DS

FS

GS

Code

0

Segment
Descriptors

LimitAccess

Base Address

Memory I/O

Stack

Not Present
3-4 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT
More complexity can be added to this protected flat model to provide more protec-
tion. For example, for the paging mechanism to provide isolation between user and
supervisor code and data, four segments need to be defined: code and data
segments at privilege level 3 for the user, and code and data segments at privilege
level 0 for the supervisor. Usually these segments all overlay each other and start at
address 0 in the linear address space. This flat segmentation model along with a
simple paging structure can protect the operating system from applications, and by
adding a separate paging structure for each task or process, it can also protect appli-
cations from each other. Similar designs are used by several popular multitasking
operating systems.

3.2.3 Multi-Segment Model
A multi-segment model (such as the one shown in Figure 3-4) uses the full capabili-
ties of the segmentation mechanism to provided hardware enforced protection of
code, data structures, and programs and tasks. Here, each program (or task) is given
its own table of segment descriptors and its own segments. The segments can be
completely private to their assigned programs or shared among programs. Access to
all segments and to the execution environments of individual programs running on
the system is controlled by hardware.
Vol. 3A 3-5

PROTECTED-MODE MEMORY MANAGEMENT
Access checks can be used to protect not only against referencing an address outside
the limit of a segment, but also against performing disallowed operations in certain
segments. For example, since code segments are designated as read-only segments,
hardware can be used to prevent writes into code segments. The access rights infor-
mation created for segments can also be used to set up protection rings or levels.
Protection levels can be used to protect operating-system procedures from unautho-
rized access by application programs.

3.2.4 Segmentation in IA-32e Mode
In IA-32e mode of Intel 64 architecture, the effects of segmentation depend on
whether the processor is running in compatibility mode or 64-bit mode. In compati-
bility mode, segmentation functions just as it does using legacy 16-bit or 32-bit
protected mode semantics.

Figure 3-4. Multi-Segment Model

Linear Address Space
(or Physical Memory)

Segment
Registers

CS

Segment
Descriptors

LimitAccess
Base Address

SS
LimitAccess

Base Address

DS
LimitAccess

Base Address

ES
LimitAccess

Base Address

FS
LimitAccess

Base Address

GS
LimitAccess

Base Address

LimitAccess
Base Address

LimitAccess
Base Address

LimitAccess
Base Address

LimitAccess
Base Address

Stack

Code

Data

Data

Data

Data
3-6 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT
In 64-bit mode, segmentation is generally (but not completely) disabled, creating a
flat 64-bit linear-address space. The processor treats the segment base of CS, DS,
ES, SS as zero, creating a linear address that is equal to the effective address. The FS
and GS segments are exceptions. These segment registers (which hold the segment
base) can be used as an additional base registers in linear address calculations. They
facilitate addressing local data and certain operating system data structures.

Note that the processor does not perform segment limit checks at runtime in 64-bit
mode.

3.2.5 Paging and Segmentation
Paging can be used with any of the segmentation models described in Figures 3-2,
3-3, and 3-4. The processor’s paging mechanism divides the linear address space
(into which segments are mapped) into pages (as shown in Figure 3-1). These linear-
address-space pages are then mapped to pages in the physical address space. The
paging mechanism offers several page-level protection facilities that can be used
with or instead of the segment-protection facilities. For example, it lets read-write
protection be enforced on a page-by-page basis. The paging mechanism also
provides two-level user-supervisor protection that can also be specified on a page-
by-page basis.

3.3 PHYSICAL ADDRESS SPACE
In protected mode, the IA-32 architecture provides a normal physical address space
of 4 GBytes (232

 bytes). This is the address space that the processor can address on
its address bus. This address space is flat (unsegmented), with addresses ranging
continuously from 0 to FFFFFFFFH. This physical address space can be mapped to
read-write memory, read-only memory, and memory mapped I/O. The memory
mapping facilities described in this chapter can be used to divide this physical
memory up into segments and/or pages.

Starting with the Pentium Pro processor, the IA-32 architecture also supports an
extension of the physical address space to 236 bytes (64 GBytes); with a maximum
physical address of FFFFFFFFFH. This extension is invoked in either of two ways:
• Using the physical address extension (PAE) flag, located in bit 5 of control

register CR4.
• Using the 36-bit page size extension (PSE-36) feature (introduced in the Pentium

III processors).

Physical address support has since been extended beyond 36 bits. See Chapter 4,
“Paging” for more information about 36-bit physical addressing.
Vol. 3A 3-7

PROTECTED-MODE MEMORY MANAGEMENT
3.3.1 Intel® 64 Processors and Physical Address Space
On processors that support Intel 64 architecture (CPUID.80000001:EDX[29] = 1),
the size of the physical address range is implementation-specific and indicated by
CPUID.80000008H:EAX[bits 7-0].

For the format of information returned in EAX, see “CPUID—CPU Identification” in
Chapter 3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A. See also: Chapter 4, “Paging.”

3.4 LOGICAL AND LINEAR ADDRESSES
At the system-architecture level in protected mode, the processor uses two stages of
address translation to arrive at a physical address: logical-address translation and
linear address space paging.

Even with the minimum use of segments, every byte in the processor’s address
space is accessed with a logical address. A logical address consists of a 16-bit
segment selector and a 32-bit offset (see Figure 3-5). The segment selector identi-
fies the segment the byte is located in and the offset specifies the location of the byte
in the segment relative to the base address of the segment.

The processor translates every logical address into a linear address. A linear address
is a 32-bit address in the processor’s linear address space. Like the physical address
space, the linear address space is a flat (unsegmented), 232-byte address space,
with addresses ranging from 0 to FFFFFFFFH. The linear address space contains all
the segments and system tables defined for a system.

To translate a logical address into a linear address, the processor does the following:

1. Uses the offset in the segment selector to locate the segment descriptor for the
segment in the GDT or LDT and reads it into the processor. (This step is needed
only when a new segment selector is loaded into a segment register.)

2. Examines the segment descriptor to check the access rights and range of the
segment to insure that the segment is accessible and that the offset is within the
limits of the segment.

3. Adds the base address of the segment from the segment descriptor to the offset
to form a linear address.
3-8 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT
If paging is not used, the processor maps the linear address directly to a physical
address (that is, the linear address goes out on the processor’s address bus). If the
linear address space is paged, a second level of address translation is used to trans-
late the linear address into a physical address.

See also: Chapter 4, “Paging.”

3.4.1 Logical Address Translation in IA-32e Mode
In IA-32e mode, an Intel 64 processor uses the steps described above to translate a
logical address to a linear address. In 64-bit mode, the offset and base address of the
segment are 64-bits instead of 32 bits. The linear address format is also 64 bits wide
and is subject to the canonical form requirement.

Each code segment descriptor provides an L bit. This bit allows a code segment to
execute 64-bit code or legacy 32-bit code by code segment.

3.4.2 Segment Selectors
A segment selector is a 16-bit identifier for a segment (see Figure 3-6). It does not
point directly to the segment, but instead points to the segment descriptor that
defines the segment. A segment selector contains the following items:

Index (Bits 3 through 15) — Selects one of 8192 descriptors in the GDT or
LDT. The processor multiplies the index value by 8 (the number of
bytes in a segment descriptor) and adds the result to the base address
of the GDT or LDT (from the GDTR or LDTR register, respectively).

Figure 3-5. Logical Address to Linear Address Translation

Offset (Effective Address)
0

Base Address

Descriptor Table

 Segment
Descriptor

31(63)
Seg. Selector

015
Logical

Address

+

Linear Address
031(63)
Vol. 3A 3-9

PROTECTED-MODE MEMORY MANAGEMENT
TI (table indicator) flag
(Bit 2) — Specifies the descriptor table to use: clearing this flag
selects the GDT; setting this flag selects the current LDT.

Requested Privilege Level (RPL)
(Bits 0 and 1) — Specifies the privilege level of the selector. The priv-
ilege level can range from 0 to 3, with 0 being the most privileged
level. See Section 5.5, “Privilege Levels”, for a description of the rela-
tionship of the RPL to the CPL of the executing program (or task) and
the descriptor privilege level (DPL) of the descriptor the segment
selector points to.

The first entry of the GDT is not used by the processor. A segment selector that points
to this entry of the GDT (that is, a segment selector with an index of 0 and the TI flag
set to 0) is used as a “null segment selector.” The processor does not generate an
exception when a segment register (other than the CS or SS registers) is loaded with
a null selector. It does, however, generate an exception when a segment register
holding a null selector is used to access memory. A null selector can be used to
initialize unused segment registers. Loading the CS or SS register with a null
segment selector causes a general-protection exception (#GP) to be generated.

Segment selectors are visible to application programs as part of a pointer variable,
but the values of selectors are usually assigned or modified by link editors or linking
loaders, not application programs.

3.4.3 Segment Registers
To reduce address translation time and coding complexity, the processor provides
registers for holding up to 6 segment selectors (see Figure 3-7). Each of these
segment registers support a specific kind of memory reference (code, stack, or
data). For virtually any kind of program execution to take place, at least the code-
segment (CS), data-segment (DS), and stack-segment (SS) registers must be
loaded with valid segment selectors. The processor also provides three additional
data-segment registers (ES, FS, and GS), which can be used to make additional data
segments available to the currently executing program (or task).

Figure 3-6. Segment Selector

15 3 2 1 0

T
IIndex

Table Indicator
 0 = GDT
 1 = LDT
Requested Privilege Level (RPL)

RPL
3-10 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT
For a program to access a segment, the segment selector for the segment must have
been loaded in one of the segment registers. So, although a system can define thou-
sands of segments, only 6 can be available for immediate use. Other segments can
be made available by loading their segment selectors into these registers during
program execution.

Every segment register has a “visible” part and a “hidden” part. (The hidden part is
sometimes referred to as a “descriptor cache” or a “shadow register.”) When a
segment selector is loaded into the visible part of a segment register, the processor
also loads the hidden part of the segment register with the base address, segment
limit, and access control information from the segment descriptor pointed to by the
segment selector. The information cached in the segment register (visible and
hidden) allows the processor to translate addresses without taking extra bus cycles
to read the base address and limit from the segment descriptor. In systems in which
multiple processors have access to the same descriptor tables, it is the responsibility
of software to reload the segment registers when the descriptor tables are modified.
If this is not done, an old segment descriptor cached in a segment register might be
used after its memory-resident version has been modified.

Two kinds of load instructions are provided for loading the segment registers:

1. Direct load instructions such as the MOV, POP, LDS, LES, LSS, LGS, and LFS
instructions. These instructions explicitly reference the segment registers.

2. Implied load instructions such as the far pointer versions of the CALL, JMP, and
RET instructions, the SYSENTER and SYSEXIT instructions, and the IRET, INTn,
INTO and INT3 instructions. These instructions change the contents of the CS
register (and sometimes other segment registers) as an incidental part of their
operation.

The MOV instruction can also be used to store visible part of a segment register in a
general-purpose register.

Figure 3-7. Segment Registers

CS

SS

DS

ES

FS

GS

Segment Selector Base Address, Limit, Access Information

Visible Part Hidden Part
Vol. 3A 3-11

PROTECTED-MODE MEMORY MANAGEMENT
3.4.4 Segment Loading Instructions in IA-32e Mode
Because ES, DS, and SS segment registers are not used in 64-bit mode, their fields
(base, limit, and attribute) in segment descriptor registers are ignored. Some forms
of segment load instructions are also invalid (for example, LDS, POP ES). Address
calculations that reference the ES, DS, or SS segments are treated as if the segment
base is zero.

The processor checks that all linear-address references are in canonical form instead
of performing limit checks. Mode switching does not change the contents of the
segment registers or the associated descriptor registers. These registers are also not
changed during 64-bit mode execution, unless explicit segment loads are performed.

In order to set up compatibility mode for an application, segment-load instructions
(MOV to Sreg, POP Sreg) work normally in 64-bit mode. An entry is read from the
system descriptor table (GDT or LDT) and is loaded in the hidden portion of the
segment descriptor register. The descriptor-register base, limit, and attribute fields
are all loaded. However, the contents of the data and stack segment selector and the
descriptor registers are ignored.

When FS and GS segment overrides are used in 64-bit mode, their respective base
addresses are used in the linear address calculation: (FS or GS).base + index +
displacement. FS.base and GS.base are then expanded to the full linear-address size
supported by the implementation. The resulting effective address calculation can
wrap across positive and negative addresses; the resulting linear address must be
canonical.

In 64-bit mode, memory accesses using FS-segment and GS-segment overrides are
not checked for a runtime limit nor subjected to attribute-checking. Normal segment
loads (MOV to Sreg and POP Sreg) into FS and GS load a standard 32-bit base value
in the hidden portion of the segment descriptor register. The base address bits above
the standard 32 bits are cleared to 0 to allow consistency for implementations that
use less than 64 bits.

The hidden descriptor register fields for FS.base and GS.base are physically mapped
to MSRs in order to load all address bits supported by a 64-bit implementation. Soft-
ware with CPL = 0 (privileged software) can load all supported linear-address bits
into FS.base or GS.base using WRMSR. Addresses written into the 64-bit FS.base and
GS.base registers must be in canonical form. A WRMSR instruction that attempts to
write a non-canonical address to those registers causes a #GP fault.

When in compatibility mode, FS and GS overrides operate as defined by 32-bit mode
behavior regardless of the value loaded into the upper 32 linear-address bits of the
hidden descriptor register base field. Compatibility mode ignores the upper 32 bits
when calculating an effective address.

A new 64-bit mode instruction, SWAPGS, can be used to load GS base. SWAPGS
exchanges the kernel data structure pointer from the IA32_KernelGSbase MSR with
the GS base register. The kernel can then use the GS prefix on normal memory refer-
ences to access the kernel data structures. An attempt to write a non-canonical value
(using WRMSR) to the IA32_KernelGSBase MSR causes a #GP fault.
3-12 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT
3.4.5 Segment Descriptors
A segment descriptor is a data structure in a GDT or LDT that provides the processor
with the size and location of a segment, as well as access control and status informa-
tion. Segment descriptors are typically created by compilers, linkers, loaders, or the
operating system or executive, but not application programs. Figure 3-8 illustrates
the general descriptor format for all types of segment descriptors.

The flags and fields in a segment descriptor are as follows:

Segment limit field
Specifies the size of the segment. The processor puts together the
two segment limit fields to form a 20-bit value. The processor inter-
prets the segment limit in one of two ways, depending on the setting
of the G (granularity) flag:

• If the granularity flag is clear, the segment size can range from
1 byte to 1 MByte, in byte increments.

• If the granularity flag is set, the segment size can range from
4 KBytes to 4 GBytes, in 4-KByte increments.

The processor uses the segment limit in two different ways,
depending on whether the segment is an expand-up or an expand-
down segment. See Section 3.4.5.1, “Code- and Data-Segment
Descriptor Types”, for more information about segment types. For
expand-up segments, the offset in a logical address can range from 0

Figure 3-8. Segment Descriptor

31 24 23 22 21 20 19 16 15 1314 12 11 8 7 0

PBase 31:24 G
D
P
L

TypeSL 4

31 16 15 0

Base Address 15:00 Segment Limit 15:00 0

Base 23:16
D
/
B

A
V
L

Seg.
Limit
19:16

G — Granularity
LIMIT — Segment Limit
P — Segment present
S — Descriptor type (0 = system; 1 = code or data)
TYPE — Segment type

DPL — Descriptor privilege level

AVL — Available for use by system software
BASE — Segment base address
D/B — Default operation size (0 = 16-bit segment; 1 = 32-bit segment)

L — 64-bit code segment (IA-32e mode only)
Vol. 3A 3-13

PROTECTED-MODE MEMORY MANAGEMENT
to the segment limit. Offsets greater than the segment limit generate
general-protection exceptions (#GP, for all segment other than SS) or
stack-fault exceptions (#SS for the SS segment). For expand-down
segments, the segment limit has the reverse function; the offset can
range from the segment limit plus 1 to FFFFFFFFH or FFFFH,
depending on the setting of the B flag. Offsets less than or equal to
the segment limit generate general-protection exceptions or stack-
fault exceptions. Decreasing the value in the segment limit field for an
expand-down segment allocates new memory at the bottom of the
segment's address space, rather than at the top. IA-32 architecture
stacks always grow downwards, making this mechanism convenient
for expandable stacks.

Base address fields
Defines the location of byte 0 of the segment within the 4-GByte
linear address space. The processor puts together the three base
address fields to form a single 32-bit value. Segment base addresses
should be aligned to 16-byte boundaries. Although 16-byte alignment
is not required, this alignment allows programs to maximize perfor-
mance by aligning code and data on 16-byte boundaries.

Type field Indicates the segment or gate type and specifies the kinds of access
that can be made to the segment and the direction of growth. The
interpretation of this field depends on whether the descriptor type flag
specifies an application (code or data) descriptor or a system
descriptor. The encoding of the type field is different for code, data,
and system descriptors (see Figure 5-1). See Section 3.4.5.1, “Code-
and Data-Segment Descriptor Types”, for a description of how this
field is used to specify code and data-segment types.

S (descriptor type) flag
Specifies whether the segment descriptor is for a system segment
(S flag is clear) or a code or data segment (S flag is set).

DPL (descriptor privilege level) field
Specifies the privilege level of the segment. The privilege level can
range from 0 to 3, with 0 being the most privileged level. The DPL is
used to control access to the segment. See Section 5.5, “Privilege
Levels”, for a description of the relationship of the DPL to the CPL of
the executing code segment and the RPL of a segment selector.

P (segment-present) flag
Indicates whether the segment is present in memory (set) or not
present (clear). If this flag is clear, the processor generates a
segment-not-present exception (#NP) when a segment selector that
points to the segment descriptor is loaded into a segment register.
Memory management software can use this flag to control which
segments are actually loaded into physical memory at a given time. It
offers a control in addition to paging for managing virtual memory.
3-14 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT
Figure 3-9 shows the format of a segment descriptor when the
segment-present flag is clear. When this flag is clear, the operating
system or executive is free to use the locations marked “Available” to
store its own data, such as information regarding the whereabouts of
the missing segment.

D/B (default operation size/default stack pointer size and/or upper bound)
flag
Performs different functions depending on whether the segment
descriptor is an executable code segment, an expand-down data
segment, or a stack segment. (This flag should always be set to 1 for
32-bit code and data segments and to 0 for 16-bit code and data
segments.)

• Executable code segment. The flag is called the D flag and it
indicates the default length for effective addresses and operands
referenced by instructions in the segment. If the flag is set, 32-bit
addresses and 32-bit or 8-bit operands are assumed; if it is clear,
16-bit addresses and 16-bit or 8-bit operands are assumed.
The instruction prefix 66H can be used to select an operand size
other than the default, and the prefix 67H can be used select an
address size other than the default.

• Stack segment (data segment pointed to by the SS
register). The flag is called the B (big) flag and it specifies the
size of the stack pointer used for implicit stack operations (such as
pushes, pops, and calls). If the flag is set, a 32-bit stack pointer is
used, which is stored in the 32-bit ESP register; if the flag is clear,
a 16-bit stack pointer is used, which is stored in the 16-bit SP
register. If the stack segment is set up to be an expand-down data
segment (described in the next paragraph), the B flag also
specifies the upper bound of the stack segment.

• Expand-down data segment. The flag is called the B flag and it
specifies the upper bound of the segment. If the flag is set, the
upper bound is FFFFFFFFH (4 GBytes); if the flag is clear, the
upper bound is FFFFH (64 KBytes).

Figure 3-9. Segment Descriptor When Segment-Present Flag Is Clear

31 16 15 1314 12 11 8 7 0

0Available
D
P
L

TypeS 4

31 0

Available 0

Available
Vol. 3A 3-15

PROTECTED-MODE MEMORY MANAGEMENT
G (granularity) flag
Determines the scaling of the segment limit field. When the granu-
larity flag is clear, the segment limit is interpreted in byte units; when
flag is set, the segment limit is interpreted in 4-KByte units. (This flag
does not affect the granularity of the base address; it is always byte
granular.) When the granularity flag is set, the twelve least significant
bits of an offset are not tested when checking the offset against the
segment limit. For example, when the granularity flag is set, a limit of
0 results in valid offsets from 0 to 4095.

L (64-bit code segment) flag
In IA-32e mode, bit 21 of the second doubleword of the segment
descriptor indicates whether a code segment contains native 64-bit
code. A value of 1 indicates instructions in this code segment are
executed in 64-bit mode. A value of 0 indicates the instructions in this
code segment are executed in compatibility mode. If L-bit is set, then
D-bit must be cleared. When not in IA-32e mode or for non-code
segments, bit 21 is reserved and should always be set to 0.

Available and reserved bits
Bit 20 of the second doubleword of the segment descriptor is available
for use by system software.

3.4.5.1 Code- and Data-Segment Descriptor Types
When the S (descriptor type) flag in a segment descriptor is set, the descriptor is for
either a code or a data segment. The highest order bit of the type field (bit 11 of the
second double word of the segment descriptor) then determines whether the
descriptor is for a data segment (clear) or a code segment (set).

For data segments, the three low-order bits of the type field (bits 8, 9, and 10) are
interpreted as accessed (A), write-enable (W), and expansion-direction (E). See
Table 3-1 for a description of the encoding of the bits in the type field for code and
data segments. Data segments can be read-only or read/write segments, depending
on the setting of the write-enable bit.
3-16 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT
Stack segments are data segments which must be read/write segments. Loading the
SS register with a segment selector for a nonwritable data segment generates a
general-protection exception (#GP). If the size of a stack segment needs to be
changed dynamically, the stack segment can be an expand-down data segment
(expansion-direction flag set). Here, dynamically changing the segment limit causes
stack space to be added to the bottom of the stack. If the size of a stack segment is
intended to remain static, the stack segment may be either an expand-up or expand-
down type.

The accessed bit indicates whether the segment has been accessed since the last
time the operating-system or executive cleared the bit. The processor sets this bit
whenever it loads a segment selector for the segment into a segment register,
assuming that the type of memory that contains the segment descriptor supports
processor writes. The bit remains set until explicitly cleared. This bit can be used both
for virtual memory management and for debugging.

Table 3-1. Code- and Data-Segment Types

Type Field Descriptor
Type

Description

Decimal 11 10
E

9
W

8
A

0 0 0 0 0 Data Read-Only

1 0 0 0 1 Data Read-Only, accessed

2 0 0 1 0 Data Read/Write

3 0 0 1 1 Data Read/Write, accessed

4 0 1 0 0 Data Read-Only, expand-down

5 0 1 0 1 Data Read-Only, expand-down, accessed

6 0 1 1 0 Data Read/Write, expand-down

7 0 1 1 1 Data Read/Write, expand-down, accessed

C R A

8 1 0 0 0 Code Execute-Only

9 1 0 0 1 Code Execute-Only, accessed

10 1 0 1 0 Code Execute/Read

11 1 0 1 1 Code Execute/Read, accessed

12 1 1 0 0 Code Execute-Only, conforming

13 1 1 0 1 Code Execute-Only, conforming, accessed

14 1 1 1 0 Code Execute/Read, conforming

15 1 1 1 1 Code Execute/Read, conforming, accessed
Vol. 3A 3-17

PROTECTED-MODE MEMORY MANAGEMENT
For code segments, the three low-order bits of the type field are interpreted as
accessed (A), read enable (R), and conforming (C). Code segments can be execute-
only or execute/read, depending on the setting of the read-enable bit. An
execute/read segment might be used when constants or other static data have been
placed with instruction code in a ROM. Here, data can be read from the code segment
either by using an instruction with a CS override prefix or by loading a segment
selector for the code segment in a data-segment register (the DS, ES, FS, or GS
registers). In protected mode, code segments are not writable.

Code segments can be either conforming or nonconforming. A transfer of execution
into a more-privileged conforming segment allows execution to continue at the
current privilege level. A transfer into a nonconforming segment at a different privi-
lege level results in a general-protection exception (#GP), unless a call gate or task
gate is used (see Section 5.8.1, “Direct Calls or Jumps to Code Segments”, for more
information on conforming and nonconforming code segments). System utilities that
do not access protected facilities and handlers for some types of exceptions (such as,
divide error or overflow) may be loaded in conforming code segments. Utilities that
need to be protected from less privileged programs and procedures should be placed
in nonconforming code segments.

NOTE
Execution cannot be transferred by a call or a jump to a less-
privileged (numerically higher privilege level) code segment,
regardless of whether the target segment is a conforming or noncon-
forming code segment. Attempting such an execution transfer will
result in a general-protection exception.

All data segments are nonconforming, meaning that they cannot be accessed by less
privileged programs or procedures (code executing at numerically high privilege
levels). Unlike code segments, however, data segments can be accessed by more
privileged programs or procedures (code executing at numerically lower privilege
levels) without using a special access gate.

If the segment descriptors in the GDT or an LDT are placed in ROM, the processor can
enter an indefinite loop if software or the processor attempts to update (write to) the
ROM-based segment descriptors. To prevent this problem, set the accessed bits for
all segment descriptors placed in a ROM. Also, remove operating-system or executive
code that attempts to modify segment descriptors located in ROM.

3.5 SYSTEM DESCRIPTOR TYPES
When the S (descriptor type) flag in a segment descriptor is clear, the descriptor type
is a system descriptor. The processor recognizes the following types of system
descriptors:
• Local descriptor-table (LDT) segment descriptor.
3-18 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT
• Task-state segment (TSS) descriptor.
• Call-gate descriptor.
• Interrupt-gate descriptor.
• Trap-gate descriptor.
• Task-gate descriptor.

These descriptor types fall into two categories: system-segment descriptors and gate
descriptors. System-segment descriptors point to system segments (LDT and TSS
segments). Gate descriptors are in themselves “gates,” which hold pointers to proce-
dure entry points in code segments (call, interrupt, and trap gates) or which hold
segment selectors for TSS’s (task gates).

Table 3-2 shows the encoding of the type field for system-segment descriptors and
gate descriptors. Note that system descriptors in IA-32e mode are 16 bytes instead
of 8 bytes.

Table 3-2. System-Segment and Gate-Descriptor Types

Type Field Description

Decimal 11 10 9 8 32-Bit Mode IA-32e Mode

0 0 0 0 0 Reserved Upper 8 byte of an 16-
byte descriptor

1 0 0 0 1 16-bit TSS (Available) Reserved

2 0 0 1 0 LDT LDT

3 0 0 1 1 16-bit TSS (Busy) Reserved

4 0 1 0 0 16-bit Call Gate Reserved

5 0 1 0 1 Task Gate Reserved

6 0 1 1 0 16-bit Interrupt Gate Reserved

7 0 1 1 1 16-bit Trap Gate Reserved

8 1 0 0 0 Reserved Reserved

9 1 0 0 1 32-bit TSS (Available) 64-bit TSS (Available)

10 1 0 1 0 Reserved Reserved

11 1 0 1 1 32-bit TSS (Busy) 64-bit TSS (Busy)

12 1 1 0 0 32-bit Call Gate 64-bit Call Gate

13 1 1 0 1 Reserved Reserved

14 1 1 1 0 32-bit Interrupt Gate 64-bit Interrupt Gate

15 1 1 1 1 32-bit Trap Gate 64-bit Trap Gate
Vol. 3A 3-19

PROTECTED-MODE MEMORY MANAGEMENT
See also: Section 3.5.1, “Segment Descriptor Tables”, and Section 7.2.2, “TSS
Descriptor” (for more information on the system-segment descriptors); see Section
5.8.3, “Call Gates”, Section 6.11, “IDT Descriptors”, and Section 7.2.5, “Task-Gate
Descriptor” (for more information on the gate descriptors).

3.5.1 Segment Descriptor Tables
A segment descriptor table is an array of segment descriptors (see Figure 3-10). A
descriptor table is variable in length and can contain up to 8192 (213) 8-byte descrip-
tors. There are two kinds of descriptor tables:
• The global descriptor table (GDT)
• The local descriptor tables (LDT)

Figure 3-10. Global and Local Descriptor Tables

Segment
Selector

Global
Descriptor

T

First Descriptor in
GDT is Not Used

TI = 0I

56

40

48

32

24

16

8

0

TI = 1

56

40

48

32

24

16

8

0

Table (GDT)

Local
Descriptor

Table (LDT)

Base Address
Limit

GDTR Register LDTR Register

Base Address
Seg. Sel.

Limit
3-20 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT
Each system must have one GDT defined, which may be used for all programs and
tasks in the system. Optionally, one or more LDTs can be defined. For example, an
LDT can be defined for each separate task being run, or some or all tasks can share
the same LDT.

The GDT is not a segment itself; instead, it is a data structure in linear address space.
The base linear address and limit of the GDT must be loaded into the GDTR register
(see Section 2.4, “Memory-Management Registers”). The base addresses of the GDT
should be aligned on an eight-byte boundary to yield the best processor perfor-
mance. The limit value for the GDT is expressed in bytes. As with segments, the limit
value is added to the base address to get the address of the last valid byte. A limit
value of 0 results in exactly one valid byte. Because segment descriptors are always
8 bytes long, the GDT limit should always be one less than an integral multiple of
eight (that is, 8N – 1).

The first descriptor in the GDT is not used by the processor. A segment selector to
this “null descriptor” does not generate an exception when loaded into a data-
segment register (DS, ES, FS, or GS), but it always generates a general-protection
exception (#GP) when an attempt is made to access memory using the descriptor. By
initializing the segment registers with this segment selector, accidental reference to
unused segment registers can be guaranteed to generate an exception.

The LDT is located in a system segment of the LDT type. The GDT must contain a
segment descriptor for the LDT segment. If the system supports multiple LDTs, each
must have a separate segment selector and segment descriptor in the GDT. The
segment descriptor for an LDT can be located anywhere in the GDT. See Section 3.5,
“System Descriptor Types”, information on the LDT segment-descriptor type.

An LDT is accessed with its segment selector. To eliminate address translations when
accessing the LDT, the segment selector, base linear address, limit, and access rights
of the LDT are stored in the LDTR register (see Section 2.4, “Memory-Management
Registers”).

When the GDTR register is stored (using the SGDT instruction), a 48-bit “pseudo-
descriptor” is stored in memory (see top diagram in Figure 3-11). To avoid alignment
check faults in user mode (privilege level 3), the pseudo-descriptor should be located
at an odd word address (that is, address MOD 4 is equal to 2). This causes the
processor to store an aligned word, followed by an aligned doubleword. User-mode
programs normally do not store pseudo-descriptors, but the possibility of generating
an alignment check fault can be avoided by aligning pseudo-descriptors in this way.
The same alignment should be used when storing the IDTR register using the SIDT
instruction. When storing the LDTR or task register (using the SLDT or STR instruc-
tion, respectively), the pseudo-descriptor should be located at a doubleword address
(that is, address MOD 4 is equal to 0).
Vol. 3A 3-21

PROTECTED-MODE MEMORY MANAGEMENT
3.5.2 Segment Descriptor Tables in IA-32e Mode
In IA-32e mode, a segment descriptor table can contain up to 8192 (213) 8-byte
descriptors. An entry in the segment descriptor table can be 8 bytes. System descrip-
tors are expanded to 16 bytes (occupying the space of two entries).

GDTR and LDTR registers are expanded to hold 64-bit base address. The corre-
sponding pseudo-descriptor is 80 bits. (see the bottom diagram in Figure 3-11).

The following system descriptors expand to 16 bytes:

— Call gate descriptors (see Section 5.8.3.1, “IA-32e Mode Call Gates”)

— IDT gate descriptors (see Section 6.14.1, “64-Bit Mode IDT”)

— LDT and TSS descriptors (see Section 7.2.3, “TSS Descriptor in 64-bit
mode”).

Figure 3-11. Pseudo-Descriptor Formats

0

32-bit Base Address Limit

47 1516

0

64-bit Base Address Limit

79 1516
3-22 Vol. 3A

CHAPTER 4
PAGING

Chapter 3 explains how segmentation converts logical addresses to linear addresses.
Paging (or linear-address translation) is the process of translating linear addresses
so that they can be used to access memory or I/O devices. Paging translates each
linear address to a physical address and determines, for each translation, what
accesses to the linear address are allowed (the address’s access rights) and the
type of caching used for such accesses (the address’s memory type).

Intel-64 processors support three different paging modes. These modes are identi-
fied and defined in Section 4.1. Section 4.2 gives an overview of the translation
mechanism that is used in all modes. Section 4.3, Section 4.4, and Section 4.5
discuss the three paging modes in detail.

Section 4.6 details how paging determines and uses access rights. Section 4.7
discusses exceptions that may be generated by paging (page-fault exceptions).
Section 4.8 considers data which the processor writes in response to linear-address
accesses (accessed and dirty flags).

Section 4.9 describes how paging determines the memory types used for accesses to
linear addresses. Section 4.10 provides details of how a processor may cache infor-
mation about linear-address translation. Section 4.11 outlines interactions between
paging and certain VMX features. Section 4.12 gives an overview of how paging can
be used to implement virtual memory.

4.1 PAGING MODES AND CONTROL BITS
Paging behavior is controlled by the following control bits:
• The WP and PG flags in control register CR0 (bit 16 and bit 31, respectively).
• The PSE, PAE, PGE, PCIDE, and SMEP flags in control register CR4 (bit 4, bit 5,

bit 7, bit 17, and bit 20 respectively).
• The LME and NXE flags in the IA32_EFER MSR (bit 8 and bit 11, respectively).

Software enables paging by using the MOV to CR0 instruction to set CR0.PG. Before
doing so, software should ensure that control register CR3 contains the physical
address of the first paging structure that the processor will use for linear-address
translation (see Section 4.2) and that structure is initialized as desired. See
Table 4-3, Table 4-7, and Table 4-12 for the use of CR3 in the different paging
modes.

Section 4.1.1 describes how the values of CR0.PG, CR4.PAE, and IA32_EFER.LME
determine whether paging is in use and, if so, which of three paging modes is in use.
Section 4.1.2 explains how to manage these bits to establish or make changes in
Vol. 3A 4-1

PAGING
paging modes. Section 4.1.3 discusses how CR0.WP, CR4.PSE, CR4.PGE, CR4.PCIDE,
CR4.SMEP, and IA32_EFER.NXE modify the operation of the different paging modes.

4.1.1 Three Paging Modes
If CR0.PG = 0, paging is not used. The logical processor treats all linear addresses as
if they were physical addresses. CR4.PAE and IA32_EFER.LME are ignored by the
processor, as are CR0.WP, CR4.PSE, CR4.PGE, CR4.SMEP, and IA32_EFER.NXE.

Paging is enabled if CR0.PG = 1. Paging can be enabled only if protection is enabled
(CR0.PE = 1). If paging is enabled, one of three paging modes is used. The values of
CR4.PAE and IA32_EFER.LME determine which paging mode is used:
• If CR0.PG = 1 and CR4.PAE = 0, 32-bit paging is used. 32-bit paging is detailed

in Section 4.3. 32-bit paging uses CR0.WP, CR4.PSE, CR4.PGE, and CR4.SMEP as
described in Section 4.1.3.

• If CR0.PG = 1, CR4.PAE = 1, and IA32_EFER.LME = 0, PAE paging is used. PAE
paging is detailed in Section 4.4. PAE paging uses CR0.WP, CR4.PGE, CR4.SMEP,
and IA32_EFER.NXE as described in Section 4.1.3.

• If CR0.PG = 1, CR4.PAE = 1, and IA32_EFER.LME = 1, IA-32e paging is used.1
IA-32e paging is detailed in Section 4.5. IA-32e paging uses CR0.WP, CR4.PGE,
CR4.PCIDE, CR4.SMEP, and IA32_EFER.NXE as described in Section 4.1.3.
IA-32e paging is available only on processors that support the Intel 64 archi-
tecture.

The three paging modes differ with regard to the following details:
• Linear-address width. The size of the linear addresses that can be translated.
• Physical-address width. The size of the physical addresses produced by paging.
• Page size. The granularity at which linear addresses are translated. Linear

addresses on the same page are translated to corresponding physical addresses
on the same page.

• Support for execute-disable access rights. In some paging modes, software can
be prevented from fetching instructions from pages that are otherwise readable.

• Support for PCIDs. In some paging modes, software can enable a facility by
which a logical processor caches information for multiple linear-address spaces.

1. The LMA flag in the IA32_EFER MSR (bit 10) is a status bit that indicates whether the logical pro-
cessor is in IA-32e mode (and thus using IA-32e paging). The processor always sets
IA32_EFER.LMA to CR0.PG & IA32_EFER.LME. Software cannot directly modify IA32_EFER.LMA;
an execution of WRMSR to the IA32_EFER MSR ignores bit 10 of its source operand.
4-2 Vol. 3A

PAGING
The processor may retain cached information when software switches between
different linear-address spaces.

Table 4-1 illustrates the key differences between the three paging modes.

Because they are used only if IA32_EFER.LME = 0, 32-bit paging and PAE paging is
used only in legacy protected mode. Because legacy protected mode cannot produce
linear addresses larger than 32 bits, 32-bit paging and PAE paging translate 32-bit
linear addresses.

Because it is used only if IA32_EFER.LME = 1, IA-32e paging is used only in IA-32e
mode. (In fact, it is the use of IA-32e paging that defines IA-32e mode.) IA-32e
mode has two sub-modes:
• Compatibility mode. This mode uses only 32-bit linear addresses. IA-32e paging

treats bits 47:32 of such an address as all 0.
• 64-bit mode. While this mode produces 64-bit linear addresses, the processor

ensures that bits 63:47 of such an address are identical.1 IA-32e paging does not
use bits 63:48 of such addresses.

Table 4-1. Properties of Different Paging Modes

Paging
Mode

PG in
CR0

PAE in
CR4

LME in
IA32_EFER

Lin.-
Addr.
Width

Phys.-
Addr.
Width1

NOTES:
1. The physical-address width is always bounded by MAXPHYADDR; see Section 4.1.4.

Page
Sizes

Supports
Execute-
Disable?

Supports
PCIDs?

None 0 N/A N/A 32 32 N/A No No

32-bit 1 0 02

2. The processor ensures that IA32_EFER.LME must be 0 if CR0.PG = 1 and CR4.PAE = 0.

32
Up to
403

3. 32-bit paging supports physical-address widths of more than 32 bits only for 4-MByte pages and
only if the PSE-36 mechanism is supported; see Section 4.1.4 and Section 4.3.

4 KB
4 MB4

4. 4-MByte pages are used with 32-bit paging only if CR4.PSE = 1; see Section 4.3.

No No

PAE 1 1 0 32
Up to
52

4 KB
2 MB

Yes5

5. Execute-disable access rights are applied only if IA32_EFER.NXE = 1; see Section 4.6.

No

IA-32e 1 1 2 48
Up to
52

4 KB
2 MB
1 GB6

6. Not all processors that support IA-32e paging support 1-GByte pages; see Section 4.1.4.

Yes5 Yes7

7. PCIDs are used only if CR4.PCIDE = 1; see Section 4.10.1.
Vol. 3A 4-3

PAGING
4.1.2 Paging-Mode Enabling
If CR0.PG = 1, a logical processor is in one of three paging modes, depending on the
values of CR4.PAE and IA32_EFER.LME. Figure 4-1 illustrates how software can
enable these modes and make transitions between them. The following items identify
certain limitations and other details:

1. Such an address is called canonical. Use of a non-canonical linear address in 64-bit mode pro-
duces a general-protection exception (#GP(0)); the processor does not attempt to translate non-
canonical linear addresses using IA-32e paging.

Figure 4-1. Enabling and Changing Paging Modes

PG = 1

No Paging
PAE Paging

PAE = 1
LME = 0

PG = 0
PAE = 0
LME = 0

32-bit Paging

PG = 1
PAE = 0
LME = 0

PG = 0
PAE = 0
LME = 1

Set PG Set PAE

Clear PAEClear PG

No Paging

PG = 0
PAE = 1
LME = 0

No Paging

PG = 1

IA-32e Paging

PAE = 1
LME = 1

Clear LME

Setr LME

PG = 0
PAE = 1
LME = 1

No Paging

Clear PAE
Set PAE Clear PG

Set PG

Set PAE
Clear PAE

Setr LME

Clear LME

Clear PG

Set PG

#GP

Set LME

#GP

Set LME

#GP

Set PG

Clear PAE

#GP

Clear LME

#GP
4-4 Vol. 3A

PAGING
• IA32_EFER.LME cannot be modified while paging is enabled (CR0.PG = 1).
Attempts to do so using WRMSR cause a general-protection exception (#GP(0)).

• Paging cannot be enabled (by setting CR0.PG to 1) while CR4.PAE = 0 and
IA32_EFER.LME = 1. Attempts to do so using MOV to CR0 cause a general-
protection exception (#GP(0)).

• CR4.PAE cannot be cleared while IA-32e paging is active (CR0.PG = 1 and
IA32_EFER.LME = 1). Attempts to do so using MOV to CR4 cause a general-
protection exception (#GP(0)).

• Regardless of the current paging mode, software can disable paging by clearing
CR0.PG with MOV to CR0.1

• Software can make transitions between 32-bit paging and PAE paging by
changing the value of CR4.PAE with MOV to CR4.

• Software cannot make transitions directly between IA-32e paging and either of
the other two paging modes. It must first disable paging (by clearing CR0.PG with
MOV to CR0), then set CR4.PAE and IA32_EFER.LME to the desired values (with
MOV to CR4 and WRMSR), and then re-enable paging (by setting CR0.PG with
MOV to CR0). As noted earlier, an attempt to clear either CR4.PAE or
IA32_EFER.LME cause a general-protection exception (#GP(0)).

• VMX transitions allow transitions between paging modes that are not possible
using MOV to CR or WRMSR. This is because VMX transitions can load CR0, CR4,
and IA32_EFER in one operation. See Section 4.11.1.

4.1.3 Paging-Mode Modifiers
Details of how each paging mode operates are determined by the following control
bits:
• The WP flag in CR0 (bit 16).
• The PSE, PGE, PCIDE, and SMEP flags in CR4 (bit 4, bit 7, bit 17, and bit 20,

respectively).
• The NXE flag in the IA32_EFER MSR (bit 11).

CR0.WP allows pages to be protected from supervisor-mode writes. If CR0.WP = 0,
software operating with CPL < 3 (supervisor mode) can write to linear addresses
with read-only access rights; if CR0.WP = 1, it cannot. (Software operating with
CPL = 3 — user mode — cannot write to linear addresses with read-only access
rights, regardless of the value of CR0.WP.) Section 4.6 explains how access rights are
determined.

CR4.PSE enables 4-MByte pages for 32-bit paging. If CR4.PSE = 0, 32-bit paging can
use only 4-KByte pages; if CR4.PSE = 1, 32-bit paging can use both 4-KByte pages

1. If CR4.PCIDE = 1, an attempt to clear CR0.PG causes a general-protection exception (#GP); soft-
ware should clear CR4.PCIDE before attempting to disable paging.
Vol. 3A 4-5

PAGING
and 4-MByte pages. See Section 4.3 for more information. (PAE paging and IA-32e
paging can use multiple page sizes regardless of the value of CR4.PSE.)

CR4.PGE enables global pages. If CR4.PGE = 0, no translations are shared across
address spaces; if CR4.PGE = 1, specified translations may be shared across address
spaces. See Section 4.10.2.4 for more information.

CR4.PCIDE enables process-context identifiers (PCIDs) for IA-32e paging
(CR4.PCIDE can be 1 only when IA-32e paging is in use). PCIDs allow a logical
processor to cache information for multiple linear-address spaces. See Section
4.10.1 for more information.

CR4.SMEP allows pages to be protected from supervisor-mode instruction fetches. If
CR4.SMEP = 1, software operating with CPL < 3 (supervisor mode) cannot fetch
instructions from linear addresses that are accessible in user mode (CPL = 3).
Section 4.6 explains how access rights are determined.

IA32_EFER.NXE enables execute-disable access rights for PAE paging and IA-32e
paging. If IA32_EFER.NXE = 1, instructions fetches can be prevented from specified
linear addresses (even if data reads from the addresses are allowed). Section 4.6
explains how access rights are determined. (IA32_EFER.NXE has no effect with 32-
bit paging. Software that wants to use this feature to limit instruction fetches from
readable pages must use either PAE paging or IA-32e paging.)

4.1.4 Enumeration of Paging Features by CPUID
Software can discover support for different paging features using the CPUID instruc-
tion:
• PSE: page-size extensions for 32-bit paging.

If CPUID.01H:EDX.PSE [bit 3] = 1, CR4.PSE may be set to 1, enabling support
for 4-MByte pages with 32-bit paging (see Section 4.3).

• PAE: physical-address extension.
If CPUID.01H:EDX.PAE [bit 6] = 1, CR4.PAE may be set to 1, enabling PAE
paging (this setting is also required for IA-32e paging).

• PGE: global-page support.
If CPUID.01H:EDX.PGE [bit 13] = 1, CR4.PGE may be set to 1, enabling the
global-page feature (see Section 4.10.2.4).

• PAT: page-attribute table.
If CPUID.01H:EDX.PAT [bit 16] = 1, the 8-entry page-attribute table (PAT) is
supported. When the PAT is supported, three bits in certain paging-structure
entries select a memory type (used to determine type of caching used) from the
PAT (see Section 4.9.2).

• PSE-36: page-size extensions with 40-bit physical-address extension.
If CPUID.01H:EDX.PSE-36 [bit 17] = 1, the PSE-36 mechanism is supported,
indicating that translations using 4-MByte pages with 32-bit paging may produce
physical addresses with up to 40 bits (see Section 4.3).
4-6 Vol. 3A

PAGING
• PCID: process-context identifiers.
If CPUID.01H:ECX.PCID [bit 17] = 1, CR4.PCIDE may be set to 1, enabling
process-context identifiers (see Section 4.10.1).

• SMEP: supervisor-mode execution prevention.
If CPUID.(EAX=07H,ECX=0H):EBX.SMEP [bit 7] = 1, CR4.SMEP may be set to 1,
enabling supervisor-mode execution prevention (see Section 4.6).

• NX: execute disable.
If CPUID.80000001H:EDX.NX [bit 20] = 1, IA32_EFER.NXE may be set to 1,
allowing PAE paging and IA-32e paging to disable execute access to selected
pages (see Section 4.6). (Processors that do not support CPUID function
80000001H do not allow IA32_EFER.NXE to be set to 1.)

• Page1GB: 1-GByte pages.
If CPUID.80000001H:EDX.Page1GB [bit 26] = 1, 1-GByte pages are supported
with IA-32e paging (see Section 4.5).

• LM: IA-32e mode support.
If CPUID.80000001H:EDX.LM [bit 29] = 1, IA32_EFER.LME may be set to 1,
enabling IA-32e paging. (Processors that do not support CPUID function
80000001H do not allow IA32_EFER.LME to be set to 1.)

• CPUID.80000008H:EAX[7:0] reports the physical-address width supported by
the processor. (For processors that do not support CPUID function 80000008H,
the width is generally 36 if CPUID.01H:EDX.PAE [bit 6] = 1 and 32 otherwise.)
This width is referred to as MAXPHYADDR. MAXPHYADDR is at most 52.

• CPUID.80000008H:EAX[15:8] reports the linear-address width supported by the
processor. Generally, this value is 48 if CPUID.80000001H:EDX.LM [bit 29] = 1
and 32 otherwise. (Processors that do not support CPUID function 80000008H,
support a linear-address width of 32.)

4.2 HIERARCHICAL PAGING STRUCTURES: AN OVERVIEW
All three paging modes translate linear addresses use hierarchical paging struc-
tures. This section provides an overview of their operation. Section 4.3, Section 4.4,
and Section 4.5 provide details for the three paging modes.

Every paging structure is 4096 Bytes in size and comprises a number of individual
entries. With 32-bit paging, each entry is 32 bits (4 bytes); there are thus 1024
entries in each structure. With PAE paging and IA-32e paging, each entry is 64 bits
(8 bytes); there are thus 512 entries in each structure. (PAE paging includes one
exception, a paging structure that is 32 bytes in size, containing 4 64-bit entries.)

The processor uses the upper portion of a linear address to identify a series of
paging-structure entries. The last of these entries identifies the physical address of
the region to which the linear address translates (called the page frame). The lower
portion of the linear address (called the page offset) identifies the specific address
within that region to which the linear address translates.
Vol. 3A 4-7

PAGING
Each paging-structure entry contains a physical address, which is either the address
of another paging structure or the address of a page frame. In the first case, the
entry is said to reference the other paging structure; in the latter, the entry is said
to map a page.

The first paging structure used for any translation is located at the physical address
in CR3. A linear address is translated using the following iterative procedure. A
portion of the linear address (initially the uppermost bits) select an entry in a paging
structure (initially the one located using CR3). If that entry references another
paging structure, the process continues with that paging structure and with the
portion of the linear address immediately below that just used. If instead the entry
maps a page, the process completes: the physical address in the entry is that of the
page frame and the remaining lower portion of the linear address is the page offset.

The following items give an example for each of the three paging modes (each
example locates a 4-KByte page frame):
• With 32-bit paging, each paging structure comprises 1024 = 210 entries. For this

reason, the translation process uses 10 bits at a time from a 32-bit linear
address. Bits 31:22 identify the first paging-structure entry and bits 21:12
identify a second. The latter identifies the page frame. Bits 11:0 of the linear
address are the page offset within the 4-KByte page frame. (See Figure 4-2 for
an illustration.)

• With PAE paging, the first paging structure comprises only 4 = 22 entries.
Translation thus begins by using bits 31:30 from a 32-bit linear address to
identify the first paging-structure entry. Other paging structures comprise
512 =29 entries, so the process continues by using 9 bits at a time. Bits 29:21
identify a second paging-structure entry and bits 20:12 identify a third. This last
identifies the page frame. (See Figure 4-5 for an illustration.)

• With IA-32e paging, each paging structure comprises 512 = 29 entries and
translation uses 9 bits at a time from a 48-bit linear address. Bits 47:39 identify
the first paging-structure entry, bits 38:30 identify a second, bits 29:21 a third,
and bits 20:12 identify a fourth. Again, the last identifies the page frame. (See
Figure 4-8 for an illustration.)

The translation process in each of the examples above completes by identifying a
page frame. However, the paging structures may be configured so that translation
terminates before doing so. This occurs if process encounters a paging-structure
entry that is marked “not present” (because its P flag — bit 0 — is clear) or in which
a reserved bit is set. In this case, there is no translation for the linear address; an
access to that address causes a page-fault exception (see Section 4.7).

In the examples above, a paging-structure entry maps a page with 4-KByte page
frame when only 12 bits remain in the linear address; entries identified earlier always
reference other paging structures. That may not apply in other cases. The following
items identify when an entry maps a page and when it references another paging
structure:
4-8 Vol. 3A

PAGING
• If more than 12 bits remain in the linear address, bit 7 (PS — page size) of the
current paging-structure entry is consulted. If the bit is 0, the entry references
another paging structure; if the bit is 1, the entry maps a page.

• If only 12 bits remain in the linear address, the current paging-structure entry
always maps a page (bit 7 is used for other purposes).

If a paging-structure entry maps a page when more than 12 bits remain in the linear
address, the entry identifies a page frame larger than 4 KBytes. For example, 32-bit
paging uses the upper 10 bits of a linear address to locate the first paging-structure
entry; 22 bits remain. If that entry maps a page, the page frame is 222 Bytes = 4
MBytes. 32-bit paging supports 4-MByte pages if CR4.PSE = 1. PAE paging and
IA-32e paging support 2-MByte pages (regardless of the value of CR4.PSE). IA-32e
paging may support 1-GByte pages (see Section 4.1.4).

Paging structures are given different names based their uses in the translation
process. Table 4-2 gives the names of the different paging structures. It also
provides, for each structure, the source of the physical address used to locate it (CR3
or a different paging-structure entry); the bits in the linear address used to select an
entry from the structure; and details of about whether and how such an entry can
map a page.

Table 4-2. Paging Structures in the Different Paging Modes

Paging
Structure

Entry
Name Paging Mode

Physical
Address of
Structure

Bits
Selecting
Entry

Page Mapping

PML4 table PML4E
32-bit, PAE N/A

IA-32e CR3 47:39 N/A (PS must be 0)

Page-directory-
pointer table

PDPTE

32-bit N/A

PAE CR3 31:30 N/A (PS must be 0)

IA-32e PML4E 38:30 1-GByte page if PS=11

NOTES:
1. Not all processors allow the PS flag to be 1 in PDPTEs; see Section 4.1.4 for how to determine

whether 1-GByte pages are supported.

Page directory PDE
32-bit CR3 31:22 4-MByte page if PS=12

PAE, IA-32e PDPTE 29:21 2-MByte page if PS=1

Page table PTE
32-bit

PDE
21:12 4-KByte page

PAE, IA-32e 20:12 4-KByte page
Vol. 3A 4-9

PAGING
4.3 32-BIT PAGING
A logical processor uses 32-bit paging if CR0.PG = 1 and CR4.PAE = 0. 32-bit paging
translates 32-bit linear addresses to 40-bit physical addresses.1 Although 40 bits
corresponds to 1 TByte, linear addresses are limited to 32 bits; at most 4 GBytes of
linear-address space may be accessed at any given time.

32-bit paging uses a hierarchy of paging structures to produce a translation for a
linear address. CR3 is used to locate the first paging-structure, the page directory.
Table 4-3 illustrates how CR3 is used with 32-bit paging.

32-bit paging may map linear addresses to either 4-KByte pages or 4-MByte pages.
Figure 4-2 illustrates the translation process when it uses a 4-KByte page; Figure 4-3
covers the case of a 4-MByte page. The following items describe the 32-bit paging
process in more detail as well has how the page size is determined:
• A 4-KByte naturally aligned page directory is located at the physical address

specified in bits 31:12 of CR3 (see Table 4-3). A page directory comprises 1024
32-bit entries (PDEs). A PDE is selected using the physical address defined as
follows:

— Bits 39:32 are all 0.

— Bits 31:12 are from CR3.

— Bits 11:2 are bits 31:22 of the linear address.

— Bits 1:0 are 0.

Because a PDE is identified using bits 31:22 of the linear address, it controls access
to a 4-Mbyte region of the linear-address space. Use of the PDE depends on CR.PSE
and the PDE’s PS flag (bit 7):
• If CR4.PSE = 1 and the PDE’s PS flag is 1, the PDE maps a 4-MByte page (see

Table 4-4). The final physical address is computed as follows:

— Bits 39:32 are bits 20:13 of the PDE.

2. 32-bit paging ignores the PS flag in a PDE (and uses the entry to reference a page table) unless
CR4.PSE = 1. Not all processors allow CR4.PSE to be 1; see Section 4.1.4 for how to determine
whether 4-MByte pages are supported with 32-bit paging.

1. Bits in the range 39:32 are 0 in any physical address used by 32-bit paging except those used to
map 4-MByte pages. If the processor does not support the PSE-36 mechanism, this is true also
for physical addresses used to map 4-MByte pages. If the processor does support the PSE-36
mechanism and MAXPHYADDR < 40, bits in the range 39:MAXPHYADDR are 0 in any physical
address used to map a 4-MByte page. (The corresponding bits are reserved in PDEs.) See Section
4.1.4 for how to determine MAXPHYADDR and whether the PSE-36 mechanism is supported.
4-10 Vol. 3A

PAGING
— Bits 31:22 are bits 31:22 of the PDE.1

— Bits 21:0 are from the original linear address.
• If CR4.PSE = 0 or the PDE’s PS flag is 0, a 4-KByte naturally aligned page table is

located at the physical address specified in bits 31:12 of the PDE (see Table 4-5).
A page table comprises 1024 32-bit entries (PTEs). A PTE is selected using the
physical address defined as follows:

— Bits 39:32 are all 0.

— Bits 31:12 are from the PDE.

— Bits 11:2 are bits 21:12 of the linear address.

— Bits 1:0 are 0.
• Because a PTE is identified using bits 31:12 of the linear address, every PTE

maps a 4-KByte page (see Table 4-6). The final physical address is computed as
follows:

— Bits 39:32 are all 0.

— Bits 31:12 are from the PTE.

— Bits 11:0 are from the original linear address.

If a paging-structure entry’s P flag (bit 0) is 0 or if the entry sets any reserved bit, the
entry is used neither to reference another paging-structure entry nor to map a page.
A reference using a linear address whose translation would use such a paging-struc-
ture entry causes a page-fault exception (see Section 4.7).

With 32-bit paging, there are reserved bits only if CR4.PSE = 1:
• If the P flag and the PS flag (bit 7) of a PDE are both 1, the bits reserved depend

on MAXPHYADDR whether the PSE-36 mechanism is supported:2

— If the PSE-36 mechanism is not supported, bits 21:13 are reserved.

— If the PSE-36 mechanism is supported, bits 21:(M–19) are reserved, where
M is the minimum of 40 and MAXPHYADDR.

• If the PAT is not supported:3

— If the P flag of a PTE is 1, bit 7 is reserved.

— If the P flag and the PS flag of a PDE are both 1, bit 12 is reserved.

(If CR4.PSE = 0, no bits are reserved with 32-bit paging.)

1. The upper bits in the final physical address do not all come from corresponding positions in the
PDE; the physical-address bits in the PDE are not all contiguous.

2. See Section 4.1.4 for how to determine MAXPHYADDR and whether the PSE-36 mechanism is
supported.

3. See Section 4.1.4 for how to determine whether the PAT is supported.
Vol. 3A 4-11

PAGING
A reference using a linear address that is successfully translated to a physical
address is performed only if allowed by the access rights of the translation; see
Section 4.6.

Figure 4-2. Linear-Address Translation to a 4-KByte Page using 32-Bit Paging

Figure 4-3. Linear-Address Translation to a 4-MByte Page using 32-Bit Paging

0

Directory Table Offset

Page Directory

PDE with PS=0

CR3

Page Table

PTE

4-KByte Page

Physical Address

31 21 111222
Linear Address

32

10

12

10

20

20

0

Directory Offset

Page Directory

PDE with PS=1

CR3

4-MByte Page

Physical Address

31 2122
Linear Address

10

22

32

18
4-12 Vol. 3A

PAGING
Figure 4-4 gives a summary of the formats of CR3 and the paging-structure entries
with 32-bit paging. For the paging structure entries, it identifies separately the
format of entries that map pages, those that reference other paging structures, and
those that do neither because they are “not present”; bit 0 (P) and bit 7 (PS) are
highlighted because they determine how such an entry is used.

31302928272625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0

Address of page directory1

NOTES:
1. CR3 has 64 bits on processors supporting the Intel-64 architecture. These bits are ignored with

32-bit paging.

Ignored
P
C
D

P
W
T

Ignored CR3

Bits 31:22 of address
of 2MB page frame

Reserved
(must be 0)

Bits 39:32
of

address2

2. This example illustrates a processor in which MAXPHYADDR is 36. If this value is larger or smaller,
the number of bits reserved in positions 20:13 of a PDE mapping a 4-MByte will change.

P
A
T

Ignored G 1 D A
P
C
D

P
W
T

U
/
S

R
/
W

1
PDE:
4MB
page

Address of page table Ignored 0
I
g
n

A
P
C
D

P
W
T

U
/
S

R
/
W

1
PDE:
page
table

Ignored 0
PDE:
not

present

Address of 4KB page frame Ignored G
P
A
T

D A
P
C
D

P
W
T

U
/
S

R
/
W

1
PTE:
4KB
page

Ignored 0
PTE:
not

present

Figure 4-4. Formats of CR3 and Paging-Structure Entries with 32-Bit Paging
Vol. 3A 4-13

PAGING
Table 4-3. Use of CR3 with 32-Bit Paging

Bit
Position(s)

Contents

2:0 Ignored

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the page directory during linear-address translation (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the page directory during linear-address translation (see Section 4.9)

11:5 Ignored

31:12 Physical address of the 4-KByte aligned page directory used for linear-address
translation

63:32 Ignored (these bits exist only on processors supporting the Intel-64 architecture)

Table 4-4. Format of a 32-Bit Page-Directory Entry that Maps a 4-MByte Page

Bit
Position(s)

Contents

0 (P) Present; must be 1 to map a 4-MByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 4-MByte page referenced by
this entry (depends on CPL and CR0.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 4-MByte page
referenced by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the 4-MByte page referenced by this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the 4-MByte page referenced by this entry (see Section 4.9)

5 (A) Accessed; indicates whether software has accessed the 4-MByte page referenced
by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 4-MByte page referenced by
this entry (see Section 4.8)

7 (PS) Page size; must be 1 (otherwise, this entry references a page table; see Table 4-5)
4-14 Vol. 3A

PAGING
8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section
4.10); ignored otherwise

11:9 Ignored

12 (PAT) If the PAT is supported, indirectly determines the memory type used to access the
4-MByte page referenced by this entry (see Section 4.9.2); otherwise, reserved
(must be 0)1

(M–20):13 Bits (M–1):32 of physical address of the 4-MByte page referenced by this entry2

21:(M–19) Reserved (must be 0)

31:22 Bits 31:22 of physical address of the 4-MByte page referenced by this entry

NOTES:
1. See Section 4.1.4 for how to determine whether the PAT is supported.
2. If the PSE-36 mechanism is not supported, M is 32, and this row does not apply. If the PSE-36

mechanism is supported, M is the minimum of 40 and MAXPHYADDR (this row does not apply if
MAXPHYADDR = 32). See Section 4.1.4 for how to determine MAXPHYADDR and whether the
PSE-36 mechanism is supported.

Table 4-5. Format of a 32-Bit Page-Directory Entry that References a Page Table

Bit
Position(s)

Contents

0 (P) Present; must be 1 to reference a page table

1 (R/W) Read/write; if 0, writes may not be allowed to the 4-MByte region controlled by
this entry (depends on CPL and CR0.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 4-MByte region
controlled by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the page table referenced by this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the page table referenced by this entry (see Section 4.9)

5 (A) Accessed; indicates whether this entry has been used for linear-address
translation (see Section 4.8)

Table 4-4. Format of a 32-Bit Page-Directory Entry that Maps a 4-MByte Page

Bit
Position(s)

Contents
Vol. 3A 4-15

PAGING
6 Ignored

7 (PS) If CR4.PSE = 1, must be 0 (otherwise, this entry maps a 4-MByte page; see
Table 4-4); otherwise, ignored

11:8 Ignored

31:12 Physical address of 4-KByte aligned page table referenced by this entry

Table 4-6. Format of a 32-Bit Page-Table Entry that Maps a 4-KByte Page

Bit
Position(s)

Contents

0 (P) Present; must be 1 to map a 4-KByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 4-KByte page referenced by
this entry (depends on CPL and CR0.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 4-KByte page
referenced by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the 4-KByte page referenced by this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the 4-KByte page referenced by this entry (see Section 4.9)

5 (A) Accessed; indicates whether software has accessed the 4-KByte page referenced
by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 4-KByte page referenced by
this entry (see Section 4.8)

7 (PAT) If the PAT is supported, indirectly determines the memory type used to access the
4-KByte page referenced by this entry (see Section 4.9.2); otherwise, reserved
(must be 0)1

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section
4.10); ignored otherwise

11:9 Ignored

31:12 Physical address of the 4-KByte page referenced by this entry

Table 4-5. Format of a 32-Bit Page-Directory Entry that References a Page Table

Bit
Position(s)

Contents
4-16 Vol. 3A

PAGING
4.4 PAE PAGING
A logical processor uses PAE paging if CR0.PG = 1, CR4.PAE = 1, and
IA32_EFER.LME = 0. PAE paging translates 32-bit linear addresses to 52-bit physical
addresses.1 Although 52 bits corresponds to 4 PBytes, linear addresses are limited to
32 bits; at most 4 GBytes of linear-address space may be accessed at any given
time.

With PAE paging, a logical processor maintains a set of four (4) PDPTE registers,
which are loaded from an address in CR3. Linear address are translated using 4 hier-
archies of in-memory paging structures, each located using one of the PDPTE regis-
ters. (This is different from the other paging modes, in which there is one hierarchy
referenced by CR3.)

Section 4.4.1 discusses the PDPTE registers. Section 4.4.2 describes linear-address
translation with PAE paging.

4.4.1 PDPTE Registers
When PAE paging is used, CR3 references the base of a 32-Byte page-directory-
pointer table. Table 4-7 illustrates how CR3 is used with PAE paging.

The page-directory-pointer-table comprises four (4) 64-bit entries called PDPTEs.
Each PDPTE controls access to a 1-GByte region of the linear-address space. Corre-
sponding to the PDPTEs, the logical processor maintains a set of four (4) internal,
non-architectural PDPTE registers, called PDPTE0, PDPTE1, PDPTE2, and PDPTE3.

NOTES:
1. See Section 4.1.4 for how to determine whether the PAT is supported.

1. If MAXPHYADDR < 52, bits in the range 51:MAXPHYADDR will be 0 in any physical address used
by PAE paging. (The corresponding bits are reserved in the paging-structure entries.) See Section
4.1.4 for how to determine MAXPHYADDR.

Table 4-7. Use of CR3 with PAE Paging

Bit
Position(s)

Contents

4:0 Ignored

31:5 Physical address of the 32-Byte aligned page-directory-pointer table used for
linear-address translation

63:32 Ignored (these bits exist only on processors supporting the Intel-64 architecture)
Vol. 3A 4-17

PAGING
The logical processor loads these registers from the PDPTEs in memory as part of
certain operations:
• If PAE paging would be in use following an execution of MOV to CR0 or MOV to

CR4 (see Section 4.1.1) and the instruction is modifying any of CR0.CD, CR0.NW,
CR0.PG, CR4.PAE, CR4.PGE, CR4.PSE, or CR4.SMEP; then the PDPTEs are loaded
from the address in CR3.

• If MOV to CR3 is executed while the logical processor is using PAE paging, the
PDPTEs are loaded from the address being loaded into CR3.

• If PAE paging is in use and a task switch changes the value of CR3, the PDPTEs
are loaded from the address in the new CR3 value.

• Certain VMX transitions load the PDPTE registers. See Section 4.11.1.

Table 4-8 gives the format of a PDPTE. If any of the PDPTEs sets both the P flag
(bit 0) and any reserved bit, the MOV to CR instruction causes a general-protection
exception (#GP(0)) and the PDPTEs are not loaded.1 As shown in Table 4-8, bits 2:1,
8:5, and 63:MAXPHYADDR are reserved in the PDPTEs.

1. On some processors, reserved bits are checked even in PDPTEs in which the P flag (bit 0) is 0.

Table 4-8. Format of a PAE Page-Directory-Pointer-Table Entry (PDPTE)

Bit
Position(s)

Contents

0 (P) Present; must be 1 to reference a page directory

2:1 Reserved (must be 0)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the page directory referenced by this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the page directory referenced by this entry (see Section 4.9)

8:5 Reserved (must be 0)

11:9 Ignored

(M–1):12 Physical address of 4-KByte aligned page directory referenced by this entry1

NOTES:
1. M is an abbreviation for MAXPHYADDR, which is at most 52; see Section 4.1.4.

63:M Reserved (must be 0)
4-18 Vol. 3A

PAGING
4.4.2 Linear-Address Translation with PAE Paging
PAE paging may map linear addresses to either 4-KByte pages or 2-MByte pages.
Figure 4-5 illustrates the translation process when it produces a 4-KByte page;
Figure 4-6 covers the case of a 2-MByte page. The following items describe the PAE
paging process in more detail as well has how the page size is determined:
• Bits 31:30 of the linear address select a PDPTE register (see Section 4.4.1); this

is PDPTEi, where i is the value of bits 31:30.1 Because a PDPTE register is
identified using bits 31:30 of the linear address, it controls access to a 1-GByte
region of the linear-address space. If the P flag (bit 0) of PDPTEi is 0, the
processor ignores bits 63:1, and there is no mapping for the 1-GByte region
controlled by PDPTEi. A reference using a linear address in this region causes a
page-fault exception (see Section 4.7).

• If the P flag of PDPTEi is 1, 4-KByte naturally aligned page directory is located at
the physical address specified in bits 51:12 of PDPTEi (see Table 4-8 in Section
4.4.1) A page directory comprises 512 64-bit entries (PDEs). A PDE is selected
using the physical address defined as follows:

— Bits 51:12 are from PDPTEi.

— Bits 11:3 are bits 29:21 of the linear address.

— Bits 2:0 are 0.

Because a PDE is identified using bits 31:21 of the linear address, it controls access
to a 2-Mbyte region of the linear-address space. Use of the PDE depends on its PS
flag (bit 7):
• If the PDE’s PS flag is 1, the PDE maps a 2-MByte page (see Table 4-9). The final

physical address is computed as follows:

— Bits 51:21 are from the PDE.

— Bits 20:0 are from the original linear address.
• If the PDE’s PS flag is 0, a 4-KByte naturally aligned page table is located at the

physical address specified in bits 51:12 of the PDE (see Table 4-10). A page
directory comprises 512 64-bit entries (PTEs). A PTE is selected using the
physical address defined as follows:

— Bits 51:12 are from the PDE.

— Bits 11:3 are bits 20:12 of the linear address.

— Bits 2:0 are 0.
• Because a PTE is identified using bits 31:12 of the linear address, every PTE maps

a 4-KByte page (see Table 4-11). The final physical address is computed as
follows:

1. With PAE paging, the processor does not use CR3 when translating a linear address (as it does
the other paging modes). It does not access the PDPTEs in the page-directory-pointer table dur-
ing linear-address translation.
Vol. 3A 4-19

PAGING
— Bits 51:12 are from the PTE.

— Bits 11:0 are from the original linear address.

If the P flag (bit 0) of a PDE or a PTE is 0 or if a PDE or a PTE sets any reserved bit,
the entry is used neither to reference another paging-structure entry nor to map a
page. A reference using a linear address whose translation would use such a paging-
structure entry causes a page-fault exception (see Section 4.7).

The following bits are reserved with PAE paging:
• If the P flag (bit 0) of a PDE or a PTE is 1, bits 62:MAXPHYADDR are reserved.
• If the P flag and the PS flag (bit 7) of a PDE are both 1, bits 20:13 are reserved.
• If IA32_EFER.NXE = 0 and the P flag of a PDE or a PTE is 1, the XD flag (bit 63)

is reserved.
• If the PAT is not supported:1

— If the P flag of a PTE is 1, bit 7 is reserved.

— If the P flag and the PS flag of a PDE are both 1, bit 12 is reserved.

A reference using a linear address that is successfully translated to a physical
address is performed only if allowed by the access rights of the translation; see
Section 4.6.

1. See Section 4.1.4 for how to determine whether the PAT is supported.

Figure 4-5. Linear-Address Translation to a 4-KByte Page using PAE Paging

0

Directory Table Offset

Page Directory

PDE with PS=0

Page Table

PTE

4-KByte Page

Physical Address

31 20 111221
Linear Address

PDPTE value

30 29

PDPTE Registers

Directory Pointer

2

9

12

9

40

40

40
4-20 Vol. 3A

PAGING
Figure 4-6. Linear-Address Translation to a 2-MByte Page using PAE Paging

Table 4-9. Format of a PAE Page-Directory Entry that Maps a 2-MByte Page

Bit
Position(s)

Contents

0 (P) Present; must be 1 to map a 2-MByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 2-MByte page referenced by
this entry (depends on CPL and CR0.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 2-MByte page
referenced by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the 2-MByte page referenced by this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the 2-MByte page referenced by this entry (see Section 4.9)

5 (A) Accessed; indicates whether software has accessed the 2-MByte page referenced
by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 2-MByte page referenced by
this entry (see Section 4.8)

7 (PS) Page size; must be 1 (otherwise, this entry references a page table; see
Table 4-10)

0

Directory Offset

Page Directory

PDE with PS=1

2-MByte Page

Physical Address

31 2021
Linear Address

PDPTE value

30 29

PDPTE Registers

Directory
Pointer

2

9

21

31

40
Vol. 3A 4-21

PAGING
8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section
4.10); ignored otherwise

11:9 Ignored

12 (PAT) If the PAT is supported, indirectly determines the memory type used to access the
2-MByte page referenced by this entry (see Section 4.9.2); otherwise, reserved
(must be 0)1

20:13 Reserved (must be 0)

(M–1):21 Physical address of the 2-MByte page referenced by this entry

62:M Reserved (must be 0)

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed
from the 2-MByte page controlled by this entry; see Section 4.6); otherwise,
reserved (must be 0)

NOTES:
1. See Section 4.1.4 for how to determine whether the PAT is supported.

Table 4-10. Format of a PAE Page-Directory Entry that References a Page Table

Bit
Position(s)

Contents

0 (P) Present; must be 1 to reference a page table

1 (R/W) Read/write; if 0, writes may not be allowed to the 2-MByte region controlled by
this entry (depends on CPL and CR0.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 2-MByte region
controlled by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the page table referenced by this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the page table referenced by this entry (see Section 4.9)

5 (A) Accessed; indicates whether this entry has been used for linear-address
translation (see Section 4.8)

Table 4-9. Format of a PAE Page-Directory Entry that Maps a 2-MByte Page (Contd.)

Bit
Position(s)

Contents
4-22 Vol. 3A

PAGING
6 Ignored

7 (PS) Page size; must be 0 (otherwise, this entry maps a 2-MByte page; see Table 4-9)

11:8 Ignored

(M–1):12 Physical address of 4-KByte aligned page table referenced by this entry

62:M Reserved (must be 0)

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed
from the 2-MByte region controlled by this entry; see Section 4.6); otherwise,
reserved (must be 0)

Table 4-11. Format of a PAE Page-Table Entry that Maps a 4-KByte Page

Bit
Position(s)

Contents

0 (P) Present; must be 1 to map a 4-KByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 4-KByte page referenced by
this entry (depends on CPL and CR0.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 4-KByte page
referenced by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the 4-KByte page referenced by this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the 4-KByte page referenced by this entry (see Section 4.9)

5 (A) Accessed; indicates whether software has accessed the 4-KByte page referenced
by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 4-KByte page referenced by
this entry (see Section 4.8)

7 (PAT) If the PAT is supported, indirectly determines the memory type used to access the
4-KByte page referenced by this entry (see Section 4.9.2); otherwise, reserved
(must be 0)1

Table 4-10. Format of a PAE Page-Directory Entry that References a Page Table

Bit
Position(s)

Contents
Vol. 3A 4-23

PAGING
Figure 4-7 gives a summary of the formats of CR3 and the paging-structure entries
with PAE paging. For the paging structure entries, it identifies separately the format
of entries that map pages, those that reference other paging structures, and those
that do neither because they are “not present”; bit 0 (P) and bit 7 (PS) are high-
lighted because they determine how a paging-structure entry is used.

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section
4.10); ignored otherwise

11:9 Ignored

(M–1):12 Physical address of the 4-KByte page referenced by this entry

62:M Reserved (must be 0)

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed
from the 4-KByte page controlled by this entry; see Section 4.6); otherwise,
reserved (must be 0)

NOTES:
1. See Section 4.1.4 for how to determine whether the PAT is supported.

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

M1 M-1 3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Ignored2 Address of page-directory-pointer table Ignored CR3

Reserved3 Address of page directory Ign. Rsvd.
P
C
D

P
W
T

Rs
vd 1 PDPTE:

present

Ignored 0
PDTPE:

not
present

X
D
4

Reserved Address of
2MB page frame Reserved

P
A
T

Ign. G 1 D A
P
C
D

P
W
T

U
/
S

R
/
W

1
PDE:
2MB
page

X
D

Reserved Address of page table Ign. 0
I
g
n

A
P
C
D

P
W
T

U
/
S

R
/
W

1
PDE:
page
table

Figure 4-7. Formats of CR3 and Paging-Structure Entries with PAE Paging

Table 4-11. Format of a PAE Page-Table Entry that Maps a 4-KByte Page (Contd.)

Bit
Position(s)

Contents
4-24 Vol. 3A

PAGING
Ignored 0
PDE:
not

present

X
D

Reserved Address of 4KB page frame Ign. G
P
A
T

D A
P
C
D

P
W
T

U
/
S

R
/
W

1
PTE:
4KB
page

Ignored 0
PTE:
not

present

NOTES:
1. M is an abbreviation for MAXPHYADDR.
2. CR3 has 64 bits only on processors supporting the Intel-64 architecture. These bits are ignored with

PAE paging.
3. Reserved fields must be 0.
4. If IA32_EFER.NXE = 0 and the P flag of a PDE or a PTE is 1, the XD flag (bit 63) is reserved.

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

M1 M-1 3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Figure 4-7. Formats of CR3 and Paging-Structure Entries with PAE Paging (Contd.)
Vol. 3A 4-25

PAGING
4.5 IA-32E PAGING
A logical processor uses IA-32e paging if CR0.PG = 1, CR4.PAE = 1, and
IA32_EFER.LME = 1. With IA-32e paging, linear address are translated using a hier-
archy of in-memory paging structures located using the contents of CR3. IA-32e
paging translates 48-bit linear addresses to 52-bit physical addresses.1 Although 52
bits corresponds to 4 PBytes, linear addresses are limited to 48 bits; at most 256
TBytes of linear-address space may be accessed at any given time.

IA-32e paging uses a hierarchy of paging structures to produce a translation for a
linear address. CR3 is used to locate the first paging-structure, the PML4 table. Use
of CR3 with IA-32e paging depends on whether process-context identifiers (PCIDs)
have been enabled by setting CR4.PCIDE:
• Table 4-12 illustrates how CR3 is used with IA-32e paging if CR4.PCIDE = 0.

1. If MAXPHYADDR < 52, bits in the range 51:MAXPHYADDR will be 0 in any physical address used
by IA-32e paging. (The corresponding bits are reserved in the paging-structure entries.) See Sec-
tion 4.1.4 for how to determine MAXPHYADDR.

Table 4-12. Use of CR3 with IA-32e Paging and CR4.PCIDE = 0

Bit
Position(s)

Contents

2:0 Ignored

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the PML4 table during linear-address translation (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the PML4 table during linear-address translation (see Section 4.9.2)

11:5 Ignored

M–1:12 Physical address of the 4-KByte aligned PML4 table used for linear-address
translation1

NOTES:
1. M is an abbreviation for MAXPHYADDR, which is at most 52; see Section 4.1.4.

63:M Reserved (must be 0)
4-26 Vol. 3A

PAGING
• Table 4-13 illustrates how CR3 is used with IA-32e paging if CR4.PCIDE = 1.

After software modifies the value of CR4.PCIDE, the logical processor immediately
begins using CR3 as specified for the new value. For example, if software changes
CR4.PCIDE from 1 to 0, the current PCID immediately changes from CR3[11:0] to
000H (see also Section 4.10.4.1). In addition, the logical processor subsequently
determines the memory type used to access the PML4 table using CR3.PWT and
CR3.PCD, which had been bits 4:3 of the PCID.

IA-32e paging may map linear addresses to 4-KByte pages, 2-MByte pages, or 1-
GByte pages.1 Figure 4-8 illustrates the translation process when it produces a 4-
KByte page; Figure 4-9 covers the case of a 2-MByte page, and Figure 4-10 the case
of a 1-GByte page.

Table 4-13. Use of CR3 with IA-32e Paging and CR4.PCIDE = 1

Bit
Position(s)

Contents

11:0 PCID (see Section 4.10.1)1

NOTES:
1. Section 4.9.2 explains how the processor determines the memory type used to access the PML4

table during linear-address translation with CR4.PCIDE = 1.

M–1:12 Physical address of the 4-KByte aligned PML4 table used for linear-address
translation2

2. M is an abbreviation for MAXPHYADDR, which is at most 52; see Section 4.1.4.

63:M Reserved (must be 0)3

3. See Section 4.10.4.1 for use of bit 63 of the source operand of the MOV to CR3 instruction.

1. Not all processors support 1-GByte pages; see Section 4.1.4.
Vol. 3A 4-27

PAGING
Figure 4-8. Linear-Address Translation to a 4-KByte Page using IA-32e Paging

Directory Ptr

PTE

Linear Address

Page Table

PDPTE

CR3

39 38

Pointer Table

9
9

40

12
9

40

4-KByte Page

Offset

Physical Addr

PDE with PS=0

Table

011122021

Directory

30 29

Page-Directory-

Page-Directory

PML4

47

9

PML4E

40

40

40
4-28 Vol. 3A

PAGING
Figure 4-9. Linear-Address Translation to a 2-MByte Page using IA-32e Paging

Directory Ptr

Linear Address

PDPTE

CR3

39 38

Pointer Table

9
9

40

21

31

2-MByte Page

Offset

Physical Addr

PDE with PS=1

02021

Directory

30 29

Page-Directory-

Page-Directory

PML4

47

9

PML4E

40

40
Vol. 3A 4-29

PAGING
The following items describe the IA-32e paging process in more detail as well has
how the page size is determined.
• A 4-KByte naturally aligned PML4 table is located at the physical address

specified in bits 51:12 of CR3 (see Table 4-12). A PML4 table comprises 512 64-
bit entries (PML4Es). A PML4E is selected using the physical address defined as
follows:

— Bits 51:12 are from CR3.

— Bits 11:3 are bits 47:39 of the linear address.

— Bits 2:0 are all 0.
Because a PML4E is identified using bits 47:39 of the linear address, it controls
access to a 512-GByte region of the linear-address space.

• A 4-KByte naturally aligned page-directory-pointer table is located at the
physical address specified in bits 51:12 of the PML4E (see Table 4-14). A page-
directory-pointer table comprises 512 64-bit entries (PDPTEs). A PDPTE is
selected using the physical address defined as follows:

— Bits 51:12 are from the PML4E.

Figure 4-10. Linear-Address Translation to a 1-GByte Page using IA-32e Paging

Directory Ptr

Linear Address

PDPTE with PS=1

CR3

39 38

Pointer Table

9

40

30

22

1-GByte Page

Offset

Physical Addr

030 29

Page-Directory-

PML4

47

9

PML4E

40
4-30 Vol. 3A

PAGING
— Bits 11:3 are bits 38:30 of the linear address.

— Bits 2:0 are all 0.

Because a PDPTE is identified using bits 47:30 of the linear address, it controls
access to a 1-GByte region of the linear-address space. Use of the PDPTE depends on
its PS flag (bit 7):1

• If the PDPTE’s PS flag is 1, the PDPTE maps a 1-GByte page (see Table 4-15). The
final physical address is computed as follows:

— Bits 51:30 are from the PDPTE.

— Bits 29:0 are from the original linear address.
• If the PDE’s PS flag is 0, a 4-KByte naturally aligned page directory is located at

the physical address specified in bits 51:12 of the PDPTE (see Table 4-16). A
page directory comprises 512 64-bit entries (PDEs). A PDE is selected using the
physical address defined as follows:

— Bits 51:12 are from the PDPTE.

— Bits 11:3 are bits 29:21 of the linear address.

— Bits 2:0 are all 0.

Because a PDE is identified using bits 47:21 of the linear address, it controls access
to a 2-MByte region of the linear-address space. Use of the PDE depends on its PS
flag:
• If the PDE’s PS flag is 1, the PDE maps a 2-MByte page. The final physical address

is computed as shown in Table 4-17.

— Bits 51:21 are from the PDE.

— Bits 20:0 are from the original linear address.
• If the PDE’s PS flag is 0, a 4-KByte naturally aligned page table is located at the

physical address specified in bits 51:12 of the PDE (see Table 4-18). A page table
comprises 512 64-bit entries (PTEs). A PTE is selected using the physical address
defined as follows:

— Bits 51:12 are from the PDE.

— Bits 11:3 are bits 20:12 of the linear address.

— Bits 2:0 are all 0.
• Because a PTE is identified using bits 47:12 of the linear address, every PTE

maps a 4-KByte page (see Table 4-19). The final physical address is computed as
follows:

— Bits 51:12 are from the PTE.

— Bits 11:0 are from the original linear address.

1. The PS flag of a PDPTE is reserved and must be 0 (if the P flag is 1) if 1-GByte pages are not sup-
ported. See Section 4.1.4 for how to determine whether 1-GByte pages are supported.
Vol. 3A 4-31

PAGING
If a paging-structure entry’s P flag (bit 0) is 0 or if the entry sets any reserved bit, the
entry is used neither to reference another paging-structure entry nor to map a page.
A reference using a linear address whose translation would use such a paging-struc-
ture entry causes a page-fault exception (see Section 4.7).

The following bits are reserved with IA-32e paging:
• If the P flag of a paging-structure entry is 1, bits 51:MAXPHYADDR are reserved.
• If the P flag of a PML4E is 1, the PS flag is reserved.
• If 1-GByte pages are not supported and the P flag of a PDPTE is 1, the PS flag is

reserved.1

• If the P flag and the PS flag of a PDPTE are both 1, bits 29:13 are reserved.
• If the P flag and the PS flag of a PDE are both 1, bits 20:13 are reserved.
• If IA32_EFER.NXE = 0 and the P flag of a paging-structure entry is 1, the XD flag

(bit 63) is reserved.

A reference using a linear address that is successfully translated to a physical
address is performed only if allowed by the access rights of the translation; see
Section 4.6.

Figure 4-11 gives a summary of the formats of CR3 and the IA-32e paging-structure
entries. For the paging structure entries, it identifies separately the format of entries
that map pages, those that reference other paging structures, and those that do
neither because they are “not present”; bit 0 (P) and bit 7 (PS) are highlighted
because they determine how a paging-structure entry is used.

1. See Section 4.1.4 for how to determine whether 1-GByte pages are supported.
4-32 Vol. 3A

PAGING
Table 4-14. Format of an IA-32e PML4 Entry (PML4E) that References a Page-
Directory-Pointer Table

Bit
Position(s)

Contents

0 (P) Present; must be 1 to reference a page-directory-pointer table

1 (R/W) Read/write; if 0, writes may not be allowed to the 512-GByte region controlled by
this entry (depends on CPL and CR0.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 512-GByte
region controlled by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the page-directory-pointer table referenced by this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the page-directory-pointer table referenced by this entry (see Section 4.9.2)

5 (A) Accessed; indicates whether this entry has been used for linear-address
translation (see Section 4.8)

6 Ignored

7 (PS) Reserved (must be 0)

11:8 Ignored

M–1:12 Physical address of 4-KByte aligned page-directory-pointer table referenced by
this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed
from the 512-GByte region controlled by this entry; see Section 4.6); otherwise,
reserved (must be 0)
Vol. 3A 4-33

PAGING
Table 4-15. Format of an IA-32e Page-Directory-Pointer-Table Entry (PDPTE) that
Maps a 1-GByte Page

Bit
Position(s)

Contents

0 (P) Present; must be 1 to map a 1-GByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 1-GByte page referenced by
this entry (depends on CPL and CR0.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 1-GByte page
referenced by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the 1-GByte page referenced by this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the 1-GByte page referenced by this entry (see Section 4.9.2)

5 (A) Accessed; indicates whether software has accessed the 1-GByte page referenced
by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 1-GByte page referenced by
this entry (see Section 4.8)

7 (PS) Page size; must be 1 (otherwise, this entry references a page directory; see
Table 4-16)

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section
4.10); ignored otherwise

11:9 Ignored

12 (PAT) Indirectly determines the memory type used to access the 1-GByte page
referenced by this entry (see Section 4.9.2)1

29:13 Reserved (must be 0)

(M–1):30 Physical address of the 1-GByte page referenced by this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed
from the 1-GByte page controlled by this entry; see Section 4.6); otherwise,
reserved (must be 0)
4-34 Vol. 3A

PAGING
NOTES:
1. The PAT is supported on all processors that support IA-32e paging.

Table 4-16. Format of an IA-32e Page-Directory-Pointer-Table Entry (PDPTE) that
References a Page Directory

Bit
Position(s)

Contents

0 (P) Present; must be 1 to reference a page directory

1 (R/W) Read/write; if 0, writes may not be allowed to the 1-GByte region controlled by
this entry (depends on CPL and CR0.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 1-GByte region
controlled by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the page directory referenced by this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the page directory referenced by this entry (see Section 4.9.2)

5 (A) Accessed; indicates whether this entry has been used for linear-address
translation (see Section 4.8)

6 Ignored

7 (PS) Page size; must be 0 (otherwise, this entry maps a 1-GByte page; see Table 4-15)

11:8 Ignored

(M–1):12 Physical address of 4-KByte aligned page directory referenced by this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed
from the 1-GByte region controlled by this entry; see Section 4.6); otherwise,
reserved (must be 0)
Vol. 3A 4-35

PAGING
Table 4-17. Format of an IA-32e Page-Directory Entry that Maps a 2-MByte Page

Bit
Position(s)

Contents

0 (P) Present; must be 1 to map a 2-MByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 2-MByte page referenced by
this entry (depends on CPL and CR0.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 2-MByte page
referenced by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the 2-MByte page referenced by this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the 2-MByte page referenced by this entry (see Section 4.9.2)

5 (A) Accessed; indicates whether software has accessed the 2-MByte page referenced
by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 2-MByte page referenced by
this entry (see Section 4.8)

7 (PS) Page size; must be 1 (otherwise, this entry references a page table; see
Table 4-18)

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section
4.10); ignored otherwise

11:9 Ignored

12 (PAT) Indirectly determines the memory type used to access the 2-MByte page
referenced by this entry (see Section 4.9.2)

20:13 Reserved (must be 0)

(M–1):21 Physical address of the 2-MByte page referenced by this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed
from the 2-MByte page controlled by this entry; see Section 4.6); otherwise,
reserved (must be 0)
4-36 Vol. 3A

PAGING
Table 4-18. Format of an IA-32e Page-Directory Entry that References a Page Table

Bit
Position(s)

Contents

0 (P) Present; must be 1 to reference a page table

1 (R/W) Read/write; if 0, writes may not be allowed to the 2-MByte region controlled by
this entry (depends on CPL and CR0.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 2-MByte region
controlled by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the page table referenced by this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the page table referenced by this entry (see Section 4.9.2)

5 (A) Accessed; indicates whether this entry has been used for linear-address
translation (see Section 4.8)

6 Ignored

7 (PS) Page size; must be 0 (otherwise, this entry maps a 2-MByte page; see Table 4-17)

11:8 Ignored

(M–1):12 Physical address of 4-KByte aligned page table referenced by this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed
from the 2-MByte region controlled by this entry; see Section 4.6); otherwise,
reserved (must be 0)
Vol. 3A 4-37

PAGING
Table 4-19. Format of an IA-32e Page-Table Entry that Maps a 4-KByte Page

Bit
Position(s)

Contents

0 (P) Present; must be 1 to map a 4-KByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 4-KByte page referenced by
this entry (depends on CPL and CR0.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 4-KByte page
referenced by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the 4-KByte page referenced by this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the 4-KByte page referenced by this entry (see Section 4.9.2)

5 (A) Accessed; indicates whether software has accessed the 4-KByte page referenced
by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 4-KByte page referenced by
this entry (see Section 4.8)

7 (PAT) Indirectly determines the memory type used to access the 4-KByte page
referenced by this entry (see Section 4.9.2)

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section
4.10); ignored otherwise

11:9 Ignored

(M–1):12 Physical address of the 4-KByte page referenced by this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed
from the 4-KByte page controlled by this entry; see Section 4.6); otherwise,
reserved (must be 0)
4-38 Vol. 3A

PAGING
.

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

M1

NOTES:
1. M is an abbreviation for MAXPHYADDR.

M-1 3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Reserved2

2. Reserved fields must be 0.

Address of PML4 table Ignored
P
C
D

P
W
T

Ign. CR3

X
D
3

3. If IA32_EFER.NXE = 0 and the P flag of a paging-structure entry is 1, the XD flag (bit 63) is reserved.

Ignored Rsvd. Address of page-directory-pointer table Ign.

R
s
v
d

I
g
n

A
P
C
D

P
W
T

U
/
S

R
/
W

1 PML4E:
present

Ignored 0
PML4E:

not
present

X
D

Ignored Rsvd.
Address of
1GB page

frame
Reserved

P
A
T

Ign. G 1 D A
P
C
D

P
W
T

U
/
S

R
/
W

1
PDPTE:

1GB
page

X
D

Ignored Rsvd. Address of page directory Ign. 0
I
g
n

A
P
C
D

P
W
T

U
/
S

R
/
W

1
PDPTE:
page

directory

Ignored 0
PDTPE:

not
present

X
D

Ignored Rsvd. Address of
2MB page frame Reserved

P
A
T

Ign. G 1 D A
P
C
D

P
W
T

U
/
S

R
/
W

1
PDE:
2MB
page

X
D

Ignored Rsvd. Address of page table Ign. 0
I
g
n

A
P
C
D

P
W
T

U
/
S

R
/
W

1
PDE:
page
table

Ignored 0
PDE:
not

present

X
D

Ignored Rsvd. Address of 4KB page frame Ign. G
P
A
T

D A
P
C
D

P
W
T

U
/
S

R
/
W

1
PTE:
4KB
page

Ignored 0
PTE:
not

present

Figure 4-11. Formats of CR3 and Paging-Structure Entries with IA-32e Paging
Vol. 3A 4-39

PAGING
4.6 ACCESS RIGHTS
There is a translation for a linear address if the processes described in Section 4.3,
Section 4.4.2, and Section 4.5 (depending upon the paging mode) completes and
produces a physical address. The accesses permitted by a translation is determined
by the access rights specified by the paging-structure entries controlling the transla-
tion.1 The following items detail how paging determines access rights:
• For accesses in supervisor mode (CPL < 3):

— Data reads.
Data may be read from any linear address with a valid translation.

— Data writes.

• If CR0.WP = 0, data may be written to any linear address with a valid
translation.

• If CR0.WP = 1, data may be written to any linear address with a valid
translation for which the R/W flag (bit 1) is 1 in every paging-structure
entry controlling the translation.

— Instruction fetches.

• For 32-bit paging or if IA32_EFER.NXE = 0, access rights depend on the
value of CR4.SMEP:

— If CR4.SMEP = 0, instructions may be fetched from any linear
address with a valid translation.

— If CR4.SMEP = 1, instructions may be fetched from any linear
address with a valid translation for which the U/S flag (bit 2) is 0 in at
least one of the paging-structure entries controlling the translation.

• For PAE paging or IA-32e paging with IA32_EFER.NXE = 1, access rights
depend on the value of CR4.SMEP:

— If CR4.SMEP = 0, instructions may be fetched from any linear
address with a valid translation for which the XD flag (bit 63) is 0 in
every paging-structure entry controlling the translation.

— If CR4.SMEP = 1, instructions may be fetched from any linear
address with a valid translation for which (1) the U/S flag is 0 in at
least one of the paging-structure entries controlling the translation;
and (2) the XD flag is 0 in every paging-structure entry controlling
the translation.

• For accesses in user mode (CPL = 3):

— Data reads.
Data may be read from any linear address with a valid translation for which
the U/S flag (bit 2) is 1 in every paging-structure entry controlling the trans-
lation.

1. With PAE paging, the PDPTEs do not determine access rights.
4-40 Vol. 3A

PAGING
— Data writes.
Data may be written to any linear address with a valid translation for which
both the R/W flag and the U/S flag are 1 in every paging-structure entry
controlling the translation.

— Instruction fetches.

• For 32-bit paging or if IA32_EFER.NXE = 0, instructions may be fetched
from any linear address with a valid translation for which the U/S flag is 1
in every paging-structure entry controlling the translation.

• For PAE paging or IA-32e paging with IA32_EFER.NXE = 1, instructions
may be fetched from any linear address with a valid translation for which
the U/S flag is 1 and the XD flag is 0 in every paging-structure entry
controlling the translation.

A processor may cache information from the paging-structure entries in TLBs and
paging-structure caches (see Section 4.10). These structures may include informa-
tion about access rights. The processor may enforce access rights based on the TLBs
and paging-structure caches instead of on the paging structures in memory.

This fact implies that, if software modifies a paging-structure entry to change access
rights, the processor might not use that change for a subsequent access to an
affected linear address (see Section 4.10.4.3). See Section 4.10.4.2 for how soft-
ware can ensure that the processor uses the modified access rights.

4.7 PAGE-FAULT EXCEPTIONS
Accesses using linear addresses may cause page-fault exceptions (#PF; exception
14). An access to a linear address may cause page-fault exception for either of two
reasons: (1) there is no valid translation for the linear address; or (2) there is a valid
translation for the linear address, but its access rights do not permit the access.

As noted in Section 4.3, Section 4.4.2, and Section 4.5, there is no valid translation
for a linear address if the translation process for that address would use a paging-
structure entry in which the P flag (bit 0) is 0 or one that sets a reserved bit. If there
is a valid translation for a linear address, its access rights are determined as specified
in Section 4.6.

Figure 4-12 illustrates the error code that the processor provides on delivery of a
page-fault exception. The following items explain how the bits in the error code
describe the nature of the page-fault exception:
• P flag (bit 0).

This flag is 0 if there is no valid translation for the linear address because the P
flag was 0 in one of the paging-structure entries used to translate that address.

• W/R (bit 1).
If the access causing the page-fault exception was a write, this flag is 1;
otherwise, it is 0. This flag describes the access causing the page-fault exception,
not the access rights specified by paging.
Vol. 3A 4-41

PAGING
• U/S (bit 2).
If a user-mode (CPL= 3) access caused the page-fault exception, this flag is 1; it
is 0 if a supervisor-mode (CPL < 3) access did so. This flag describes the access
causing the page-fault exception, not the access rights specified by paging.

• RSVD flag (bit 3).
This flag is 1 if there is no valid translation for the linear address because a
reserved bit was set in one of the paging-structure entries used to translate that
address. (Because reserved bits are not checked in a paging-structure entry
whose P flag is 0, bit 3 of the error code can be set only if bit 0 is also set.)
Bits reserved in the paging-structure entries are reserved for future functionality.
Software developers should be aware that such bits may be used in the future
and that a paging-structure entry that causes a page-fault exception on one
processor might not do so in the future.

• I/D flag (bit 4).
This flag is 1 if (1) the access causing the page-fault exception was an instruction
fetch; and (2) either (a) CR4.SMEP = 1; or (b) both (i) CR4.PAE = 1 (either PAE
paging or IA-32e paging is in use); and (ii) IA32_EFER.NXE = 1. Otherwise, the
flag is 0. This flag describes the access causing the page-fault exception, not the
access rights specified by paging.

Page-fault exceptions occur only due to an attempt to use a linear address. Failures
to load the PDPTE registers with PAE paging (see Section 4.4.1) cause general-
protection exceptions (#GP(0)) and not page-fault exceptions.

Figure 4-12. Page-Fault Error Code

The fault was caused by a non-present page.
The fault was caused by a page-level protection violation.

The access causing the fault was a read.
The access causing the fault was a write.

The access causing the fault originated when the processor
was executing in supervisor mode (CPL < 3).
The access causing the fault originated when the processor
was executing in user mode (CPL = 3).

31 0

Reserved

1234

The fault was not caused by reserved bit violation.
The fault was caused by a reserved bit set to 1 in some

P 0
1

W/R 0
1

U/S 0

RSVD 0
1

1

I/D

I/D 0 The fault was not caused by an instruction fetch.
1 The fault was caused by an instruction fetch.

PW
/R

U
/S

R
SVD

paging-structure entry.
4-42 Vol. 3A

PAGING
4.8 ACCESSED AND DIRTY FLAGS
For any paging-structure entry that is used during linear-address translation, bit 5 is
the accessed flag.1 For paging-structure entries that map a page (as opposed to
referencing another paging structure), bit 6 is the dirty flag. These flags are
provided for use by memory-management software to manage the transfer of pages
and paging structures into and out of physical memory.

Whenever the processor uses a paging-structure entry as part of linear-address
translation, it sets the accessed flag in that entry (if it is not already set).

Whenever there is a write to a linear address, the processor sets the dirty flag (if it is
not already set) in the paging-structure entry that identifies the final physical
address for the linear address (either a PTE or a paging-structure entry in which the
PS flag is 1).

Memory-management software may clear these flags when a page or a paging struc-
ture is initially loaded into physical memory. These flags are “sticky,” meaning that,
once set, the processor does not clear them; only software can clear them.

A processor may cache information from the paging-structure entries in TLBs and
paging-structure caches (see Section 4.10). This fact implies that, if software
changes an accessed flag or a dirty flag from 1 to 0, the processor might not set the
corresponding bit in memory on a subsequent access using an affected linear
address (see Section 4.10.4.3). See Section 4.10.4.2 for how software can ensure
that these bits are updated as desired.

NOTE
The accesses used by the processor to set these flags may or may not
be exposed to the processor’s self-modifying code detection logic. If
the processor is executing code from the same memory area that is
being used for the paging structures, the setting of these flags may
or may not result in an immediate change to the executing code
stream.

4.9 PAGING AND MEMORY TYPING
The memory type of a memory access refers to the type of caching used for that
access. Chapter 11, “Memory Cache Control” provides many details regarding
memory typing in the Intel-64 and IA-32 architectures. This section describes how
paging contributes to the determination of memory typing.

The way in which paging contributes to memory typing depends on whether the
processor supports the Page Attribute Table (PAT; see Section 11.12).2 Section

1. With PAE paging, the PDPTEs are not used during linear-address translation but only to load the
PDPTE registers for some executions of the MOV CR instruction (see Section 4.4.1). For this rea-
son, the PDPTEs do not contain accessed flags with PAE paging.
Vol. 3A 4-43

PAGING
4.9.1 and Section 4.9.2 explain how paging contributes to memory typing depending
on whether the PAT is supported.

4.9.1 Paging and Memory Typing When the PAT is Not Supported
(Pentium Pro and Pentium II Processors)

NOTE
The PAT is supported on all processors that support IA-32e paging.
Thus, this section applies only to 32-bit paging and PAE paging.

If the PAT is not supported, paging contributes to memory typing in conjunction with
the memory-type range registers (MTRRs) as specified in Table 11-6 in Section
11.5.2.1.

For any access to a physical address, the table combines the memory type specified
for that physical address by the MTRRs with a PCD value and a PWT value. The latter
two values are determined as follows:
• For an access to a PDE with 32-bit paging, the PCD and PWT values come from

CR3.
• For an access to a PDE with PAE paging, the PCD and PWT values come from the

relevant PDPTE register.
• For an access to a PTE, the PCD and PWT values come from the relevant PDE.
• For an access to the physical address that is the translation of a linear address,

the PCD and PWT values come from the relevant PTE (if the translation uses a 4-
KByte page) or the relevant PDE (otherwise).

• With PAE paging, the UC memory type is used when loading the PDPTEs (see
Section 4.4.1).

4.9.2 Paging and Memory Typing When the PAT is Supported
(Pentium III and More Recent Processor Families)

If the PAT is supported, paging contributes to memory typing in conjunction with the
PAT and the memory-type range registers (MTRRs) as specified in Table 11-7 in
Section 11.5.2.2.

The PAT is a 64-bit MSR (IA32_PAT; MSR index 277H) comprising eight (8) 8-bit
entries (entry i comprises bits 8i+7:8i of the MSR).

For any access to a physical address, the table combines the memory type specified
for that physical address by the MTRRs with a memory type selected from the PAT.

2. The PAT is supported on Pentium III and more recent processor families. See Section 4.1.4 for
how to determine whether the PAT is supported.
4-44 Vol. 3A

PAGING
Table 11-11 in Section 11.12.3 specifies how a memory type is selected from the PAT.
Specifically, it comes from entry i of the PAT, where i is defined as follows:
• For an access to an entry in a paging structure whose address is in CR3 (e.g., the

PML4 table with IA-32e paging):

— For IA-32e paging with CR4.PCIDE = 1, i = 0.

— Otherwise, i = 2*PCD+PWT, where the PCD and PWT values come from CR3.
• For an access to a PDE with PAE paging, i = 2*PCD+PWT, where the PCD and

PWT values come from the relevant PDPTE register.
• For an access to a paging-structure entry X whose address is in another paging-

structure entry Y, i = 2*PCD+PWT, where the PCD and PWT values come from Y.
• For an access to the physical address that is the translation of a linear address,

i = 4*PAT+2*PCD+PWT, where the PAT, PCD, and PWT values come from the
relevant PTE (if the translation uses a 4-KByte page), the relevant PDE (if the
translation uses a 2-MByte page or a 4-MByte page), or the relevant PDPTE (if
the translation uses a 1-GByte page).

• With PAE paging, the WB memory type is used when loading the PDPTEs (see
Section 4.4.1).1

4.9.3 Caching Paging-Related Information about Memory Typing
A processor may cache information from the paging-structure entries in TLBs and
paging-structure caches (see Section 4.10). These structures may include informa-
tion about memory typing. The processor may use memory-typing information from
the TLBs and paging-structure caches instead of from the paging structures in
memory.

This fact implies that, if software modifies a paging-structure entry to change the
memory-typing bits, the processor might not use that change for a subsequent
translation using that entry or for access to an affected linear address. See Section
4.10.4.2 for how software can ensure that the processor uses the modified memory
typing.

4.10 CACHING TRANSLATION INFORMATION
The Intel-64 and IA-32 architectures may accelerate the address-translation process
by caching data from the paging structures on the processor. Because the processor
does not ensure that the data that it caches are always consistent with the structures
in memory, it is important for software developers to understand how and when the

1. Some older IA-32 processors used the UC memory type when loading the PDPTEs. Some proces-
sors may use the UC memory type if CR0.CD = 1 or if the MTRRs are disabled. These behaviors
are model-specific and not architectural.
Vol. 3A 4-45

PAGING
processor may cache such data. They should also understand what actions software
can take to remove cached data that may be inconsistent and when it should do so.
This section provides software developers information about the relevant processor
operation.

Section 4.10.1 introduces process-context identifiers (PCIDs), which a logical
processor may use to distinguish information cached for different linear-address
spaces. Section 4.10.2 and Section 4.10.3 describe how the processor may cache
information in translation lookaside buffers (TLBs) and paging-structure caches,
respectively. Section 4.10.4 explains how software can remove inconsistent cached
information by invalidating portions of the TLBs and paging-structure caches. Section
4.10.5 describes special considerations for multiprocessor systems.

4.10.1 Process-Context Identifiers (PCIDs)
Process-context identifiers (PCIDs) are a facility by which a logical processor may
cache information for multiple linear-address spaces. The processor may retain
cached information when software switches to a different linear-address space with a
different PCID (e.g., by loading CR3; see Section 4.10.4.1 for details).

A PCID is a 12-bit identifier. Non-zero PCIDs are enabled by setting the PCIDE flag
(bit 17) of CR4. If CR4.PCIDE = 0, the current PCID is always 000H; otherwise, the
current PCID is the value of bits 11:0 of CR3. Not all processors allow CR4.PCIDE to
be set to 1; see Section 4.1.4 for how to determine whether this is allowed.

The processor ensures that CR4.PCIDE can be 1 only in IA-32e mode (thus, 32-bit
paging and PAE paging use only PCID 000H). In addition, software can change
CR4.PCIDE from 0 to 1 only if CR3[11:0] = 000H. These requirements are enforced
by the following limitations on the MOV CR instruction:
• MOV to CR4 causes a general-protection exception (#GP) if it would change

CR4.PCIDE from 0 to 1 and either IA32_EFER.LMA = 0 or CR3[11:0] ≠ 000H.
• MOV to CR0 causes a general-protection exception if it would clear CR0.PG to 0

while CR4.PCIDE = 1.

When a logical processor creates entries in the TLBs (Section 4.10.2) and paging-
structure caches (Section 4.10.3), it associates those entries with the current PCID.
When using entries in the TLBs and paging-structure caches to translate a linear
address, a logical processor uses only those entries associated with the current PCID
(see Section 4.10.2.4 for an exception).

If CR4.PCIDE = 0, a logical processor does not cache information for any PCID other
than 000H. This is because (1) if CR4.PCIDE = 0, the logical processor will associate
any newly cached information with the current PCID, 000H; and (2) if MOV to CR4
clears CR4.PCIDE, all cached information is invalidated (see Section 4.10.4.1).

NOTE
In revisions of this manual that were produced when no processors
allowed CR4.PCIDE to be set to 1, Section 4.10 discussed the caching
4-46 Vol. 3A

PAGING
of translation information without any reference to PCIDs. While the
section now refers to PCIDs in its specification of this caching, this
documentation change is not intended to imply any change to the
behavior of processors that do not allow CR4.PCIDE to be set to 1.

4.10.2 Translation Lookaside Buffers (TLBs)
A processor may cache information about the translation of linear addresses in trans-
lation lookaside buffers (TLBs). In general, TLBs contain entries that map page
numbers to page frames; these terms are defined in Section 4.10.2.1. Section
4.10.2.2 describes how information may be cached in TLBs, and Section 4.10.2.3
gives details of TLB usage. Section 4.10.2.4 explains the global-page feature, which
allows software to indicate that certain translations should receive special treatment
when cached in the TLBs.

4.10.2.1 Page Numbers, Page Frames, and Page Offsets
Section 4.3, Section 4.4.2, and Section 4.5 give details of how the different paging
modes translate linear addresses to physical addresses. Specifically, the upper bits of
a linear address (called the page number) determine the upper bits of the physical
address (called the page frame); the lower bits of the linear address (called the
page offset) determine the lower bits of the physical address. The boundary
between the page number and the page offset is determined by the page size.
Specifically:
• 32-bit paging:

— If the translation does not use a PTE (because CR4.PSE = 1 and the PS flag is
1 in the PDE used), the page size is 4 MBytes and the page number comprises
bits 31:22 of the linear address.

— If the translation does use a PTE, the page size is 4 KBytes and the page
number comprises bits 31:12 of the linear address.

• PAE paging:

— If the translation does not use a PTE (because the PS flag is 1 in the PDE
used), the page size is 2 MBytes and the page number comprises bits 31:21
of the linear address.

— If the translation does uses a PTE, the page size is 4 KBytes and the page
number comprises bits 31:12 of the linear address.

• IA-32e paging:

— If the translation does not use a PDE (because the PS flag is 1 in the PDPTE
used), the page size is 1 GBytes and the page number comprises bits 47:30
of the linear address.
Vol. 3A 4-47

PAGING
— If the translation does use a PDE but does not uses a PTE (because the PS flag
is 1 in the PDE used), the page size is 2 MBytes and the page number
comprises bits 47:21 of the linear address.

— If the translation does use a PTE, the page size is 4 KBytes and the page
number comprises bits 47:12 of the linear address.

4.10.2.2 Caching Translations in TLBs
The processor may accelerate the paging process by caching individual translations
in translation lookaside buffers (TLBs). Each entry in a TLB is an individual trans-
lation. Each translation is referenced by a page number. It contains the following
information from the paging-structure entries used to translate linear addresses with
the page number:
• The physical address corresponding to the page number (the page frame).
• The access rights from the paging-structure entries used to translate linear

addresses with the page number (see Section 4.6):

— The logical-AND of the R/W flags.

— The logical-AND of the U/S flags.

— The logical-OR of the XD flags (necessary only if IA32_EFER.NXE = 1).
• Attributes from a paging-structure entry that identifies the final page frame for

the page number (either a PTE or a paging-structure entry in which the PS flag is
1):

— The dirty flag (see Section 4.8).

— The memory type (see Section 4.9).

(TLB entries may contain other information as well. A processor may implement
multiple TLBs, and some of these may be for special purposes, e.g., only for instruc-
tion fetches. Such special-purpose TLBs may not contain some of this information if
it is not necessary. For example, a TLB used only for instruction fetches need not
contain information about the R/W and dirty flags.)

As noted in Section 4.10.1, any TLB entries created by a logical processor are associ-
ated with the current PCID.

Processors need not implement any TLBs. Processors that do implement TLBs may
invalidate any TLB entry at any time. Software should not rely on the existence of
TLBs or on the retention of TLB entries.

4.10.2.3 Details of TLB Use
Because the TLBs cache only valid translations, there can be a TLB entry for a page
number only if the P flag is 1 and the reserved bits are 0 in each of the paging-struc-
ture entries used to translate that page number. In addition, the processor does not
cache a translation for a page number unless the accessed flag is 1 in each of the
4-48 Vol. 3A

PAGING
paging-structure entries used during translation; before caching a translation, the
processor sets any of these accessed flags that is not already 1.

The processor may cache translations required for prefetches and for accesses that
are a result of speculative execution that would never actually occur in the executed
code path.

If the page number of a linear address corresponds to a TLB entry associated with the
current PCID, the processor may use that TLB entry to determine the page frame,
access rights, and other attributes for accesses to that linear address. In this case,
the processor may not actually consult the paging structures in memory. The
processor may retain a TLB entry unmodified even if software subsequently modifies
the relevant paging-structure entries in memory. See Section 4.10.4.2 for how soft-
ware can ensure that the processor uses the modified paging-structure entries.

If the paging structures specify a translation using a page larger than 4 KBytes, some
processors may choose to cache multiple smaller-page TLB entries for that transla-
tion. Each such TLB entry would be associated with a page number corresponding to
the smaller page size (e.g., bits 47:12 of a linear address with IA-32e paging), even
though part of that page number (e.g., bits 20:12) are part of the offset with respect
to the page specified by the paging structures. The upper bits of the physical address
in such a TLB entry are derived from the physical address in the PDE used to create
the translation, while the lower bits come from the linear address of the access for
which the translation is created. There is no way for software to be aware that
multiple translations for smaller pages have been used for a large page.

If software modifies the paging structures so that the page size used for a 4-KByte
range of linear addresses changes, the TLBs may subsequently contain multiple
translations for the address range (one for each page size). A reference to a linear
address in the address range may use any of these translations. Which translation is
used may vary from one execution to another, and the choice may be implementa-
tion-specific.

4.10.2.4 Global Pages
The Intel-64 and IA-32 architectures also allow for global pages when the PGE flag
(bit 7) is 1 in CR4. If the G flag (bit 8) is 1 in a paging-structure entry that maps a
page (either a PTE or a paging-structure entry in which the PS flag is 1), any TLB
entry cached for a linear address using that paging-structure entry is considered to
be global. Because the G flag is used only in paging-structure entries that map a
page, and because information from such entries are not cached in the paging-struc-
ture caches, the global-page feature does not affect the behavior of the paging-
structure caches.

A logical processor may use a global TLB entry to translate a linear address, even if
the TLB entry is associated with a PCID different from the current PCID.
Vol. 3A 4-49

PAGING
4.10.3 Paging-Structure Caches
In addition to the TLBs, a processor may cache other information about the paging
structures in memory.

4.10.3.1 Caches for Paging Structures
A processor may support any or of all the following paging-structure caches:
• PML4 cache (IA-32e paging only). Each PML4-cache entry is referenced by a 9-

bit value and is used for linear addresses for which bits 47:39 have that value.
The entry contains information from the PML4E used to translate such linear
addresses:

— The physical address from the PML4E (the address of the page-directory-
pointer table).

— The value of the R/W flag of the PML4E.

— The value of the U/S flag of the PML4E.

— The value of the XD flag of the PML4E.

— The values of the PCD and PWT flags of the PML4E.
The following items detail how a processor may use the PML4 cache:

— If the processor has a PML4-cache entry for a linear address, it may use that
entry when translating the linear address (instead of the PML4E in memory).

— The processor does not create a PML4-cache entry unless the P flag is 1 and
all reserved bits are 0 in the PML4E in memory.

— The processor does not create a PML4-cache entry unless the accessed flag is
1 in the PML4E in memory; before caching a translation, the processor sets
the accessed flag if it is not already 1.

— The processor may create a PML4-cache entry even if there are no transla-
tions for any linear address that might use that entry (e.g., because the P
flags are 0 in all entries in the referenced page-directory-pointer table).

— If the processor creates a PML4-cache entry, the processor may retain it
unmodified even if software subsequently modifies the corresponding PML4E
in memory.

• PDPTE cache (IA-32e paging only).1 Each PDPTE-cache entry is referenced by
an 18-bit value and is used for linear addresses for which bits 47:30 have that
value. The entry contains information from the PML4E and PDPTE used to
translate such linear addresses:

— The physical address from the PDPTE (the address of the page directory). (No
PDPTE-cache entry is created for a PDPTE that maps a 1-GByte page.)

1. With PAE paging, the PDPTEs are stored in internal, non-architectural registers. The operation of
these registers is described in Section 4.4.1 and differs from that described here.
4-50 Vol. 3A

PAGING
— The logical-AND of the R/W flags in the PML4E and the PDPTE.

— The logical-AND of the U/S flags in the PML4E and the PDPTE.

— The logical-OR of the XD flags in the PML4E and the PDPTE.

— The values of the PCD and PWT flags of the PDPTE.
The following items detail how a processor may use the PDPTE cache:

— If the processor has a PDPTE-cache entry for a linear address, it may use that
entry when translating the linear address (instead of the PML4E and the
PDPTE in memory).

— The processor does not create a PDPTE-cache entry unless the P flag is 1, the
PS flag is 0, and the reserved bits are 0 in the PML4E and the PDPTE in
memory.

— The processor does not create a PDPTE-cache entry unless the accessed flags
are 1 in the PML4E and the PDPTE in memory; before caching a translation,
the processor sets any accessed flags that are not already 1.

— The processor may create a PDPTE-cache entry even if there are no transla-
tions for any linear address that might use that entry.

— If the processor creates a PDPTE-cache entry, the processor may retain it
unmodified even if software subsequently modifies the corresponding PML4E
or PDPTE in memory.

• PDE cache. The use of the PDE cache depends on the paging mode:

— For 32-bit paging, each PDE-cache entry is referenced by a 10-bit value and
is used for linear addresses for which bits 31:22 have that value.

— For PAE paging, each PDE-cache entry is referenced by an 11-bit value and is
used for linear addresses for which bits 31:21 have that value.

— For IA-32e paging, each PDE-cache entry is referenced by a 27-bit value and
is used for linear addresses for which bits 47:21 have that value.

A PDE-cache entry contains information from the PML4E, PDPTE, and PDE used to
translate the relevant linear addresses (for 32-bit paging and PAE paging, only
the PDE applies):

— The physical address from the PDE (the address of the page table). (No PDE-
cache entry is created for a PDE that maps a page.)

— The logical-AND of the R/W flags in the PML4E, PDPTE, and PDE.

— The logical-AND of the U/S flags in the PML4E, PDPTE, and PDE.

— The logical-OR of the XD flags in the PML4E, PDPTE, and PDE.

— The values of the PCD and PWT flags of the PDE.
The following items detail how a processor may use the PDE cache (references
below to PML4Es and PDPTEs apply on to IA-32e paging):
Vol. 3A 4-51

PAGING
— If the processor has a PDE-cache entry for a linear address, it may use that
entry when translating the linear address (instead of the PML4E, the PDPTE,
and the PDE in memory).

— The processor does not create a PDE-cache entry unless the P flag is 1, the PS
flag is 0, and the reserved bits are 0 in the PML4E, the PDPTE, and the PDE in
memory.

— The processor does not create a PDE-cache entry unless the accessed flag is
1 in the PML4E, the PDPTE, and the PDE in memory; before caching a trans-
lation, the processor sets any accessed flags that are not already 1.

— The processor may create a PDE-cache entry even if there are no translations
for any linear address that might use that entry.

— If the processor creates a PDE-cache entry, the processor may retain it
unmodified even if software subsequently modifies the corresponding PML4E,
the PDPTE, or the PDE in memory.

Information from a paging-structure entry can be included in entries in the paging-
structure caches for other paging-structure entries referenced by the original entry.
For example, if the R/W flag is 0 in a PML4E, then the R/W flag will be 0 in any PDPTE-
cache entry for a PDPTE from the page-directory-pointer table referenced by that
PML4E. This is because the R/W flag of each such PDPTE-cache entry is the logical-
AND of the R/W flags in the appropriate PML4E and PDPTE.

The paging-structure caches contain information only from paging-structure entries
that reference other paging structures (and not those that map pages). Because the
G flag is not used in such paging-structure entries, the global-page feature does not
affect the behavior of the paging-structure caches.

The processor may create entries in paging-structure caches for translations
required for prefetches and for accesses that are a result of speculative execution
that would never actually occur in the executed code path.

As noted in Section 4.10.1, any entries created in paging-structure caches by a
logical processor are associated with the current PCID.

A processor may or may not implement any of the paging-structure caches. Software
should rely on neither their presence nor their absence. The processor may invalidate
entries in these caches at any time. Because the processor may create the cache
entries at the time of translation and not update them following subsequent modifi-
cations to the paging structures in memory, software should take care to invalidate
the cache entries appropriately when causing such modifications. The invalidation of
TLBs and the paging-structure caches is described in Section 4.10.4.

4.10.3.2 Using the Paging-Structure Caches to Translate Linear Addresses
When a linear address is accessed, the processor uses a procedure such as the
following to determine the physical address to which it translates and whether the
access should be allowed:
4-52 Vol. 3A

PAGING
• If the processor finds a TLB entry that is for the page number of the linear
address and that is associated with the current PCID (or which is global), it may
use the physical address, access rights, and other attributes from that entry.

• If the processor does not find a relevant TLB entry, it may use the upper bits of
the linear address to select an entry from the PDE cache that is associated with
the current PCID (Section 4.10.3.1 indicates which bits are used in each paging
mode). It can then use that entry to complete the translation process (locating a
PTE, etc.) as if it had traversed the PDE (and, for IA-32e paging, the PDPTE and
PML4) corresponding to the PDE-cache entry.

• The following items apply when IA-32e paging is used:

— If the processor does not find a relevant TLB entry or a relevant PDE-cache
entry, it may use bits 47:30 of the linear address to select an entry from the
PDPTE cache that is associated with the current PCID. It can then use that
entry to complete the translation process (locating a PDE, etc.) as if it had
traversed the PDPTE and the PML4 corresponding to the PDPTE-cache entry.

— If the processor does not find a relevant TLB entry, a relevant PDE-cache
entry, or a relevant PDPTE-cache entry, it may use bits 47:39 of the linear
address to select an entry from the PML4 cache that is associated with the
current PCID. It can then use that entry to complete the translation process
(locating a PDPTE, etc.) as if it had traversed the corresponding PML4.

(Any of the above steps would be skipped if the processor does not support the cache
in question.)

If the processor does not find a TLB or paging-structure-cache entry for the linear
address, it uses the linear address to traverse the entire paging-structure hierarchy,
as described in Section 4.3, Section 4.4.2, and Section 4.5.

4.10.3.3 Multiple Cached Entries for a Single Paging-Structure Entry
The paging-structure caches and TLBs and paging-structure caches may contain
multiple entries associated with a single PCID and with information derived from a
single paging-structure entry. The following items give some examples for IA-32e
paging:
• Suppose that two PML4Es contain the same physical address and thus reference

the same page-directory-pointer table. Any PDPTE in that table may result in two
PDPTE-cache entries, each associated with a different set of linear addresses.
Specifically, suppose that the n1

th and n2
th entries in the PML4 table contain the

same physical address. This implies that the physical address in the mth PDPTE in
the page-directory-pointer table would appear in the PDPTE-cache entries
associated with both p1 and p2, where (p1 » 9) = n1, (p2 » 9) = n2, and (p1 &
1FFH) = (p2 & 1FFH) = m. This is because both PDPTE-cache entries use the
same PDPTE, one resulting from a reference from the n1

th PML4E and one from
the n2

th PML4E.
Vol. 3A 4-53

PAGING
• Suppose that the first PML4E (i.e., the one in position 0) contains the physical
address X in CR3 (the physical address of the PML4 table). This implies the
following:

— Any PML4-cache entry associated with linear addresses with 0 in bits 47:39
contains address X.

— Any PDPTE-cache entry associated with linear addresses with 0 in bits 47:30
contains address X. This is because the translation for a linear address for
which the value of bits 47:30 is 0 uses the value of bits 47:39 (0) to locate a
page-directory-pointer table at address X (the address of the PML4 table). It
then uses the value of bits 38:30 (also 0) to find address X again and to store
that address in the PDPTE-cache entry.

— Any PDE-cache entry associated with linear addresses with 0 in bits 47:21
contains address X for similar reasons.

— Any TLB entry for page number 0 (associated with linear addresses with 0 in
bits 47:12) translates to page frame X » 12 for similar reasons.

The same PML4E contributes its address X to all these cache entries because the
self-referencing nature of the entry causes it to be used as a PML4E, a PDPTE, a
PDE, and a PTE.

4.10.4 Invalidation of TLBs and Paging-Structure Caches
As noted in Section 4.10.2 and Section 4.10.3, the processor may create entries in
the TLBs and the paging-structure caches when linear addresses are translated, and
it may retain these entries even after the paging structures used to create them have
been modified. To ensure that linear-address translation uses the modified paging
structures, software should take action to invalidate any cached entries that may
contain information that has since been modified.

4.10.4.1 Operations that Invalidate TLBs and Paging-Structure Caches
The following instructions invalidate entries in the TLBs and the paging-structure
caches:
• INVLPG. This instruction takes a single operand, which is a linear address. The

instruction invalidates any TLB entries that are for a page number corresponding
to the linear address and that are associated with the current PCID. It also
invalidates any global TLB entries with that page number, regardless of PCID
(see Section 4.10.2.4).1 INVLPG also invalidates all entries in all paging-structure
caches associated with the current PCID, regardless of the linear addresses to
which they correspond.

1. If the paging structures map the linear address using a page larger than 4 KBytes and there are
multiple TLB entries for that page (see Section 4.10.2.3), the instruction invalidates all of them.
4-54 Vol. 3A

PAGING
• INVPCID. The operation of this instruction is based on instruction operands,
called the INVPCID type and the INVPCID descriptor. Four INVPCID types are
currently defined:

— Individual-address. If the INVPCID type is 0, the logical processor invalidates
mappings—except global translations—associated with the PCID specified in
the INVPCID descriptor and that would be used to translate the linear address
specified in the INVPCID descriptor. (The instruction may also invalidate
global translations, as well as mappings associated with other PCIDs and for
other linear addresses.)

— Single-context. If the INVPCID type is 1, the logical processor invalidates all
mappings—except global translations—associated with the PCID specified in
the INVPCID descriptor. (The instruction may also invalidate global transla-
tions, as well as mappings associated with other PCIDs.)

— All-context, including globals. If the INVPCID type is 2, the logical processor
invalidates mappings—including global translations—associated with all
PCIDs.

— All-context. If the INVPCID type is 3, the logical processor invalidates
mappings—except global translations—associated with all PCIDs. (The
instruction may also invalidate global translations.)

See Chapter 3 of the Intel 64 and IA-32 Architecture Software Developer’s
Manual, Volume 2A for details of the INVPCID instruction.

• MOV to CR0. The instruction invalidates all TLB entries (including global entries)
and all entries in all paging-structure caches (for all PCIDs) if it changes the
value of CR0.PG from 1 to 0.

• MOV to CR3. The behavior of the instruction depends on the value of CR4.PCIDE:

— If CR4.PCIDE = 0, the instruction invalidates all TLB entries associated with
PCID 000H except those for global pages. It also invalidates all entries in all
paging-structure caches associated with PCID 000H.

— If CR4.PCIDE = 1 and bit 63 of the instruction’s source operand is 0, the
instruction invalidates all TLB entries associated with the PCID specified in
bits 11:0 of the instruction’s source operand except those for global pages. It
also invalidates all entries in all paging-structure caches associated with that
PCID. It is not required to invalidate entries in the TLBs and paging-structure
caches that are associated with other PCIDs.

— If CR4.PCIDE = 1 and bit 63 of the instruction’s source operand is 1, the
instruction is not required to invalidate any TLB entries or entries in paging-
structure caches.

• MOV to CR4. The behavior of the instruction depends on the bits being modified:

— The instruction invalidates all TLB entries (including global entries) and all
entries in all paging-structure caches (for all PCIDs) if (1) it changes the
value of CR4.PGE;1 or (2) it changes the value of the CR4.PCIDE from 1 to 0.
Vol. 3A 4-55

PAGING
— The instruction invalidates all TLB entries and all entries in all paging-
structure caches for the current PCID if (1) it changes the value of CR4.PAE;
or (2) it changes the value of CR4.SMEP from 0 to 1.

• Task switch. If a task switch changes the value of CR3, it invalidates all TLB
entries associated with PCID 000H except those for global pages. It also
invalidates all entries in all paging-structure caches for associated with PCID
000H.1

• VMX transitions. See Section 4.11.1.

The processor is always free to invalidate additional entries in the TLBs and paging-
structure caches. The following are some examples:
• INVLPG may invalidate TLB entries for pages other than the one corresponding to

its linear-address operand. It may invalidate TLB entries and paging-structure-
cache entries associated with PCIDs other than the current PCID.

• INVPCID may invalidate TLB entries for pages other than the one corresponding
to the specified linear address. It may invalidate TLB entries and paging-
structure-cache entries associated with PCIDs other than the specified PCID.

• MOV to CR0 may invalidate TLB entries even if CR0.PG is not changing. For
example, this may occur if either CR0.CD or CR0.NW is modified.

• MOV to CR3 may invalidate TLB entries for global pages. If CR4.PCIDE = 1 and
bit 63 of the instruction’s source operand is 0, it may invalidate TLB entries and
entries in the paging-structure caches associated with PCIDs other than the
current PCID. It may invalidate entries if CR4.PCIDE = 1 and bit 63 of the
instruction’s source operand is 1.

• MOV to CR4 may invalidate TLB entries when changing CR4.PSE or when
changing CR4.SMEP from 1 to 0.

• On a processor supporting Hyper-Threading Technology, invalidations performed
on one logical processor may invalidate entries in the TLBs and paging-structure
caches used by other logical processors.

(Other instructions and operations may invalidate entries in the TLBs and the paging-
structure caches, but the instructions identified above are recommended.)

In addition to the instructions identified above, page faults invalidate entries in the
TLBs and paging-structure caches. In particular, a page-fault exception resulting
from an attempt to use a linear address will invalidate any TLB entries that are for a
page number corresponding to that linear address and that are associated with the
current PCID. it also invalidates all entries in the paging-structure caches that would
be used for that linear address and that are associated with the current PCID.2 These
invalidations ensure that the page-fault exception will not recur (if the faulting

1. If CR4.PGE is changing from 0 to 1, there were no global TLB entries before the execution; if
CR4.PGE is changing from 1 to 0, there will be no global TLB entries after the execution.

1. Task switches do not occur in IA-32e mode and thus cannot occur with IA-32e paging. Since
CR4.PCIDE can be set only with IA-32e paging, task switches occur only with CR4.PCIDE = 0.
4-56 Vol. 3A

PAGING
instruction is re-executed) if it would not be caused by the contents of the paging
structures in memory (and if, therefore, it resulted from cached entries that were not
invalidated after the paging structures were modified in memory).

As noted in Section 4.10.2, some processors may choose to cache multiple smaller-
page TLB entries for a translation specified by the paging structures to use a page
larger than 4 KBytes. There is no way for software to be aware that multiple transla-
tions for smaller pages have been used for a large page. The INVLPG instruction and
page faults provide the same assurances that they provide when a single TLB entry
is used: they invalidate all TLB entries corresponding to the translation specified by
the paging structures.

4.10.4.2 Recommended Invalidation
The following items provide some recommendations regarding when software should
perform invalidations:
• If software modifies a paging-structure entry that identifies the final page frame

for a page number (either a PTE or a paging-structure entry in which the PS flag
is 1), it should execute INVLPG for any linear address with a page number whose
translation uses that PTE.1

(If the paging-structure entry may be used in the translation of different page
numbers — see Section 4.10.3.3 — software should execute INVLPG for linear
addresses with each of those page numbers; alternatively, it could use MOV to
CR3 or MOV to CR4.)

• If software modifies a paging-structure entry that references another paging
structure, it may use one of the following approaches depending upon the types
and number of translations controlled by the modified entry:

— Execute INVLPG for linear addresses with each of the page numbers with
translations that would use the entry. However, if no page numbers that
would use the entry have translations (e.g., because the P flags are 0 in all
entries in the paging structure referenced by the modified entry), it remains
necessary to execute INVLPG at least once.

— Execute MOV to CR3 if the modified entry controls no global pages.

— Execute MOV to CR4 to modify CR4.PGE.
• If CR4.PCIDE = 1 and software modifies a paging-structure entry that does not

map a page or in which the G flag (bit 8) is 0, additional steps are required if the
entry may be used for PCIDs other than the current one. Any one of the following
suffices:

2. Unlike INVLPG, page faults need not invalidate all entries in the paging-structure caches, only
those that would be used to translate the faulting linear address.

1. One execution of INVLPG is sufficient even for a page with size greater than 4 KBytes.
Vol. 3A 4-57

PAGING
— Execute MOV to CR4 to modify CR4.PGE, either immediately or before again
using any of the affected PCIDs. For example, software could use different
(previously unused) PCIDs for the processes that used the affected PCIDs.

— For each affected PCID, execute MOV to CR3 to make that PCID current (and
to load the address of the appropriate PML4 table). If the modified entry
controls no global pages and bit 63 of the source operand to MOV to CR3 was
0, no further steps are required. Otherwise, execute INVLPG for linear
addresses with each of the page numbers with translations that would use
the entry; if no page numbers that would use the entry have translations,
execute INVLPG at least once.

• If software using PAE paging modifies a PDPTE, it should reload CR3 with the
register’s current value to ensure that the modified PDPTE is loaded into the
corresponding PDPTE register (see Section 4.4.1).

• If the nature of the paging structures is such that a single entry may be used for
multiple purposes (see Section 4.10.3.3), software should perform invalidations
for all of these purposes. For example, if a single entry might serve as both a PDE
and PTE, it may be necessary to execute INVLPG with two (or more) linear
addresses, one that uses the entry as a PDE and one that uses it as a PTE. (Alter-
natively, software could use MOV to CR3 or MOV to CR4.)

• As noted in Section 4.10.2, the TLBs may subsequently contain multiple transla-
tions for the address range if software modifies the paging structures so that the
page size used for a 4-KByte range of linear addresses changes. A reference to a
linear address in the address range may use any of these translations.
Software wishing to prevent this uncertainty should not write to a paging-
structure entry in a way that would change, for any linear address, both the page
size and either the page frame, access rights, or other attributes. It can instead
use the following algorithm: first clear the P flag in the relevant paging-structure
entry (e.g., PDE); then invalidate any translations for the affected linear
addresses (see above); and then modify the relevant paging-structure entry to
set the P flag and establish modified translation(s) for the new page size.

• Software should clear bit 63 of the source operand to a MOV to CR3 instruction
that establishes a PCID that had been used earlier for a different linear-address
space (e.g., with a different value in bits 51:12 of CR3). This ensures invalidation
of any information that may have been cached for the previous linear-address
space.
This assumes that both linear-address spaces use the same global pages and
that it is thus not necessary to invalidate any global TLB entries. If that is not the
case, software should invalidate those entries by executing MOV to CR4 to modify
CR4.PGE.

4.10.4.3 Optional Invalidation
The following items describe cases in which software may choose not to invalidate
and the potential consequences of that choice:
4-58 Vol. 3A

PAGING
• If a paging-structure entry is modified to change the P flag from 0 to 1, no inval-
idation is necessary. This is because no TLB entry or paging-structure cache
entry is created with information from a paging-structure entry in which the P
flag is 0.1

• If a paging-structure entry is modified to change the accessed flag from 0 to 1,
no invalidation is necessary (assuming that an invalidation was performed the
last time the accessed flag was changed from 1 to 0). This is because no TLB
entry or paging-structure cache entry is created with information from a paging-
structure entry in which the accessed flag is 0.

• If a paging-structure entry is modified to change the R/W flag from 0 to 1, failure
to perform an invalidation may result in a “spurious” page-fault exception (e.g.,
in response to an attempted write access) but no other adverse behavior. Such
an exception will occur at most once for each affected linear address (see Section
4.10.4.1).

• If CR4.SMEP = 0 and a paging-structure entry is modified to change the U/S flag
from 0 to 1, failure to perform an invalidation may result in a “spurious” page-
fault exception (e.g., in response to an attempted user-mode access) but no
other adverse behavior. Such an exception will occur at most once for each
affected linear address (see Section 4.10.4.1).

• If a paging-structure entry is modified to change the XD flag from 1 to 0, failure
to perform an invalidation may result in a “spurious” page-fault exception (e.g.,
in response to an attempted instruction fetch) but no other adverse behavior.
Such an exception will occur at most once for each affected linear address (see
Section 4.10.4.1).

• If a paging-structure entry is modified to change the accessed flag from 1 to 0,
failure to perform an invalidation may result in the processor not setting that bit
in response to a subsequent access to a linear address whose translation uses the
entry. Software cannot interpret the bit being clear as an indication that such an
access has not occurred.

• If software modifies a paging-structure entry that identifies the final physical
address for a linear address (either a PTE or a paging-structure entry in which the
PS flag is 1) to change the dirty flag from 1 to 0, failure to perform an invalidation
may result in the processor not setting that bit in response to a subsequent write
to a linear address whose translation uses the entry. Software cannot interpret
the bit being clear as an indication that such a write has not occurred.

• The read of a paging-structure entry in translating an address being used to fetch
an instruction may appear to execute before an earlier write to that paging-
structure entry if there is no serializing instruction between the write and the
instruction fetch. Note that the invalidating instructions identified in Section
4.10.4.1 are all serializing instructions.

1. If it is also the case that no invalidation was performed the last time the P flag was changed
from 1 to 0, the processor may use a TLB entry or paging-structure cache entry that was cre-
ated when the P flag had earlier been 1.
Vol. 3A 4-59

PAGING
• Section 4.10.3.3 describes situations in which a single paging-structure entry
may contain information cached in multiple entries in the paging-structure
caches. Because all entries in these caches are invalidated by any execution of
INVLPG, it is not necessary to follow the modification of such a paging-structure
entry by executing INVLPG multiple times solely for the purpose of invalidating
these multiple cached entries. (It may be necessary to do so to invalidate
multiple TLB entries.)

4.10.4.4 Delayed Invalidation
Required invalidations may be delayed under some circumstances. Software devel-
opers should understand that, between the modification of a paging-structure entry
and execution of the invalidation instruction recommended in Section 4.10.4.2, the
processor may use translations based on either the old value or the new value of the
paging-structure entry. The following items describe some of the potential conse-
quences of delayed invalidation:
• If a paging-structure entry is modified to change from 1 to 0 the P flag from 1 to

0, an access to a linear address whose translation is controlled by this entry may
or may not cause a page-fault exception.

• If a paging-structure entry is modified to change the R/W flag from 0 to 1, write
accesses to linear addresses whose translation is controlled by this entry may or
may not cause a page-fault exception.

• If a paging-structure entry is modified to change the U/S flag from 0 to 1, user-
mode accesses to linear addresses whose translation is controlled by this entry
may or may not cause a page-fault exception.

• If a paging-structure entry is modified to change the XD flag from 1 to 0,
instruction fetches from linear addresses whose translation is controlled by this
entry may or may not cause a page-fault exception.

As noted in Section 8.1.1, an x87 instruction or an SSE instruction that accesses data
larger than a quadword may be implemented using multiple memory accesses. If
such an instruction stores to memory and invalidation has been delayed, some of the
accesses may complete (writing to memory) while another causes a page-fault
exception.1 In this case, the effects of the completed accesses may be visible to soft-
ware even though the overall instruction caused a fault.

In some cases, the consequences of delayed invalidation may not affect software
adversely. For example, when freeing a portion of the linear-address space (by
marking paging-structure entries “not present”), invalidation using INVLPG may be
delayed if software does not re-allocate that portion of the linear-address space or
the memory that had been associated with it. However, because of speculative
execution (or errant software), there may be accesses to the freed portion of the
linear-address space before the invalidations occur. In this case, the following can
happen:

1. If the accesses are to different pages, this may occur even if invalidation has not been delayed.
4-60 Vol. 3A

PAGING
• Reads can occur to the freed portion of the linear-address space. Therefore,
invalidation should not be delayed for an address range that has read side
effects.

• The processor may retain entries in the TLBs and paging-structure caches for an
extended period of time. Software should not assume that the processor will not
use entries associated with a linear address simply because time has passed.

• As noted in Section 4.10.3.1, the processor may create an entry in a paging-
structure cache even if there are no translations for any linear address that might
use that entry. Thus, if software has marked “not present” all entries in page
table, the processor may subsequently create a PDE-cache entry for the PDE that
references that page table (assuming that the PDE itself is marked “present”).

• If software attempts to write to the freed portion of the linear-address space, the
processor might not generate a page fault. (Such an attempt would likely be the
result of a software error.) For that reason, the page frames previously
associated with the freed portion of the linear-address space should not be
reallocated for another purpose until the appropriate invalidations have been
performed.

4.10.5 Propagation of Paging-Structure Changes to Multiple
Processors

As noted in Section 4.10.4, software that modifies a paging-structure entry may
need to invalidate entries in the TLBs and paging-structure caches that were derived
from the modified entry before it was modified. In a system containing more than
one logical processor, software must account for the fact that there may be entries in
the TLBs and paging-structure caches of logical processors other than the one used
to modify the paging-structure entry. The process of propagating the changes to a
paging-structure entry is commonly referred to as “TLB shootdown.”

TLB shootdown can be done using memory-based semaphores and/or interprocessor
interrupts (IPI). The following items describe a simple but inefficient example of a
TLB shootdown algorithm for processors supporting the Intel-64 and IA-32 architec-
tures:

1. Begin barrier: Stop all but one logical processor; that is, cause all but one to
execute the HLT instruction or to enter a spin loop.

2. Allow the active logical processor to change the necessary paging-structure
entries.

3. Allow all logical processors to perform invalidations appropriate to the modifica-
tions to the paging-structure entries.

4. Allow all logical processors to resume normal operation.

Alternative, performance-optimized, TLB shootdown algorithms may be developed;
however, software developers must take care to ensure that the following conditions
are met:
Vol. 3A 4-61

PAGING
• All logical processors that are using the paging structures that are being modified
must participate and perform appropriate invalidations after the modifications
are made.

• If the modifications to the paging-structure entries are made before the barrier
or if there is no barrier, the operating system must ensure one of the following:
(1) that the affected linear-address range is not used between the time of modifi-
cation and the time of invalidation; or (2) that it is prepared to deal with the
consequences of the affected linear-address range being used during that period.
For example, if the operating system does not allow pages being freed to be
reallocated for another purpose until after the required invalidations, writes to
those pages by errant software will not unexpectedly modify memory that is in
use.

• Software must be prepared to deal with reads, instruction fetches, and prefetch
requests to the affected linear-address range that are a result of speculative
execution that would never actually occur in the executed code path.

When multiple logical processors are using the same linear-address space at the
same time, they must coordinate before any request to modify the paging-structure
entries that control that linear-address space. In these cases, the barrier in the TLB
shootdown routine may not be required. For example, when freeing a range of linear
addresses, some other mechanism can assure no logical processor is using that
range before the request to free it is made. In this case, a logical processor freeing
the range can clear the P flags in the PTEs associated with the range, free the phys-
ical page frames associated with the range, and then signal the other logical proces-
sors using that linear-address space to perform the necessary invalidations. All the
affected logical processors must complete their invalidations before the linear-
address range and the physical page frames previously associated with that range
can be reallocated.

4.11 INTERACTIONS WITH VIRTUAL-MACHINE
EXTENSIONS (VMX)

The architecture for virtual-machine extensions (VMX) includes features that interact
with paging. Section 4.11.1 discusses ways in which VMX-specific control transfers,
called VMX transitions specially affect paging. Section 4.11.2 gives an overview of
VMX features specifically designed to support address translation.

4.11.1 VMX Transitions
The VMX architecture defines two control transfers called VM entries and VM exits;
collectively, these are called VMX transitions. VM entries and VM exits are
described in detail in Chapter 26 and Chapter 27, respectively, in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3C. The following items
identify paging-related details:
4-62 Vol. 3A

PAGING
• VMX transitions modify the CR0 and CR4 registers and the IA32_EFER MSR
concurrently. For this reason, they allow transitions between paging modes that
would not otherwise be possible:

— VM entries allow transitions from IA-32e paging directly to either 32-bit
paging or PAE paging.

— VM exits allow transitions from either 32-bit paging or PAE paging directly to
IA-32e paging.

• VMX transitions that result in PAE paging load the PDPTE registers (see Section
4.4.1) as follows:

— VM entries load the PDPTE registers either from the physical address being
loaded into CR3 or from the virtual-machine control structure (VMCS); see
Section 26.3.2.4.

— VM exits load the PDPTE registers from the physical address being loaded into
CR3; see Section 27.5.4.

• VMX transitions invalidate the TLBs and paging-structure caches based on certain
control settings. See Section 26.3.2.5 and Section 27.5.5 in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3C.

4.11.2 VMX Support for Address Translation
Chapter 28, “VMX Support for Address Translation,” in the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3C describe two features of the
virtual-machine extensions (VMX) that interact directly with paging. These are
virtual-processor identifiers (VPIDs) and the extended page table mechanism
(EPT).

VPIDs provide a way for software to identify to the processor the address spaces for
different “virtual processors.” The processor may use this identification to maintain
concurrently information for multiple address spaces in its TLBs and paging-structure
caches, even when non-zero PCIDs are not being used. See Section 28.1 for details.

When EPT is in use, the addresses in the paging-structures are not used as physical
addresses to access memory and memory-mapped I/O. Instead, they are treated as
guest-physical addresses and are translated through a set of EPT paging structures
to produce physical addresses. EPT can also specify its own access rights and
memory typing; these are used on conjunction with those specified in this chapter.
See Section 28.2 for more information.

Both VPIDs and EPT may change the way that a processor maintains information in
TLBs and paging structure caches and the ways in which software can manage that
information. Some of the behaviors documented in Section 4.10 may change. See
Section 28.3 for details.
Vol. 3A 4-63

PAGING
4.12 USING PAGING FOR VIRTUAL MEMORY
With paging, portions of the linear-address space need not be mapped to the phys-
ical-address space; data for the unmapped addresses can be stored externally (e.g.,
on disk). This method of mapping the linear-address space is referred to as virtual
memory or demand-paged virtual memory.

Paging divides the linear address space into fixed-size pages that can be mapped into
the physical-address space and/or external storage. When a program (or task) refer-
ences a linear address, the processor uses paging to translate the linear address into
a corresponding physical address if such an address is defined.

If the page containing the linear address is not currently mapped into the physical-
address space, the processor generates a page-fault exception as described in
Section 4.7. The handler for page-fault exceptions typically directs the operating
system or executive to load data for the unmapped page from external storage into
physical memory (perhaps writing a different page from physical memory out to
external storage in the process) and to map it using paging (by updating the paging
structures). When the page has been loaded into physical memory, a return from the
exception handler causes the instruction that generated the exception to be
restarted.

Paging differs from segmentation through its use of fixed-size pages. Unlike
segments, which usually are the same size as the code or data structures they hold,
pages have a fixed size. If segmentation is the only form of address translation used,
a data structure present in physical memory will have all of its parts in memory. If
paging is used, a data structure can be partly in memory and partly in disk storage.

4.13 MAPPING SEGMENTS TO PAGES
The segmentation and paging mechanisms provide in the support a wide variety of
approaches to memory management. When segmentation and paging are combined,
segments can be mapped to pages in several ways. To implement a flat (unseg-
mented) addressing environment, for example, all the code, data, and stack modules
can be mapped to one or more large segments (up to 4-GBytes) that share same
range of linear addresses (see Figure 3-2 in Section 3.2.2). Here, segments are
essentially invisible to applications and the operating-system or executive. If paging
is used, the paging mechanism can map a single linear-address space (contained in
a single segment) into virtual memory. Alternatively, each program (or task) can
have its own large linear-address space (contained in its own segment), which is
mapped into virtual memory through its own paging structures.

Segments can be smaller than the size of a page. If one of these segments is placed
in a page which is not shared with another segment, the extra memory is wasted. For
example, a small data structure, such as a 1-Byte semaphore, occupies 4 KBytes if it
is placed in a page by itself. If many semaphores are used, it is more efficient to pack
them into a single page.
4-64 Vol. 3A

PAGING
The Intel-64 and IA-32 architectures do not enforce correspondence between the
boundaries of pages and segments. A page can contain the end of one segment and
the beginning of another. Similarly, a segment can contain the end of one page and
the beginning of another.

Memory-management software may be simpler and more efficient if it enforces some
alignment between page and segment boundaries. For example, if a segment which
can fit in one page is placed in two pages, there may be twice as much paging over-
head to support access to that segment.

One approach to combining paging and segmentation that simplifies memory-
management software is to give each segment its own page table, as shown in
Figure 4-13. This convention gives the segment a single entry in the page directory,
and this entry provides the access control information for paging the entire segment.

Figure 4-13. Memory Management Convention That Assigns a Page Table
to Each Segment

Seg. Descript.

LDT

Seg. Descript.
PDE

Page Directory

PDE

PTE
PTE
PTE

PTE
PTE

Page Tables

Page Frames
Vol. 3A 4-65

CHAPTER 5
PROTECTION

In protected mode, the Intel 64 and IA-32 architectures provide a protection mecha-
nism that operates at both the segment level and the page level. This protection
mechanism provides the ability to limit access to certain segments or pages based on
privilege levels (four privilege levels for segments and two privilege levels for pages).
For example, critical operating-system code and data can be protected by placing
them in more privileged segments than those that contain applications code. The
processor’s protection mechanism will then prevent application code from accessing
the operating-system code and data in any but a controlled, defined manner.

Segment and page protection can be used at all stages of software development to
assist in localizing and detecting design problems and bugs. It can also be incorpo-
rated into end-products to offer added robustness to operating systems, utilities soft-
ware, and applications software.

When the protection mechanism is used, each memory reference is checked to verify
that it satisfies various protection checks. All checks are made before the memory
cycle is started; any violation results in an exception. Because checks are performed
in parallel with address translation, there is no performance penalty. The protection
checks that are performed fall into the following categories:
• Limit checks.
• Type checks.
• Privilege level checks.
• Restriction of addressable domain.
• Restriction of procedure entry-points.
• Restriction of instruction set.

All protection violation results in an exception being generated. See Chapter 6,
“Interrupt and Exception Handling,” for an explanation of the exception mechanism.
This chapter describes the protection mechanism and the violations which lead to
exceptions.

The following sections describe the protection mechanism available in protected
mode. See Chapter 20, “8086 Emulation,” for information on protection in real-
address and virtual-8086 mode.

5.1 ENABLING AND DISABLING SEGMENT AND PAGE
PROTECTION

Setting the PE flag in register CR0 causes the processor to switch to protected mode,
which in turn enables the segment-protection mechanism. Once in protected mode,
Vol. 3A 5-1

PROTECTION
there is no control bit for turning the protection mechanism on or off. The part of the
segment-protection mechanism that is based on privilege levels can essentially be
disabled while still in protected mode by assigning a privilege level of 0 (most privi-
leged) to all segment selectors and segment descriptors. This action disables the
privilege level protection barriers between segments, but other protection checks
such as limit checking and type checking are still carried out.

Page-level protection is automatically enabled when paging is enabled (by setting the
PG flag in register CR0). Here again there is no mode bit for turning off page-level
protection once paging is enabled. However, page-level protection can be disabled by
performing the following operations:
• Clear the WP flag in control register CR0.
• Set the read/write (R/W) and user/supervisor (U/S) flags for each page-directory

and page-table entry.

This action makes each page a writable, user page, which in effect disables page-
level protection.

5.2 FIELDS AND FLAGS USED FOR SEGMENT-LEVEL AND
PAGE-LEVEL PROTECTION

The processor’s protection mechanism uses the following fields and flags in the
system data structures to control access to segments and pages:
• Descriptor type (S) flag — (Bit 12 in the second doubleword of a segment

descriptor.) Determines if the segment descriptor is for a system segment or a
code or data segment.

• Type field — (Bits 8 through 11 in the second doubleword of a segment
descriptor.) Determines the type of code, data, or system segment.

• Limit field — (Bits 0 through 15 of the first doubleword and bits 16 through 19
of the second doubleword of a segment descriptor.) Determines the size of the
segment, along with the G flag and E flag (for data segments).

• G flag — (Bit 23 in the second doubleword of a segment descriptor.) Determines
the size of the segment, along with the limit field and E flag (for data segments).

• E flag — (Bit 10 in the second doubleword of a data-segment descriptor.)
Determines the size of the segment, along with the limit field and G flag.

• Descriptor privilege level (DPL) field — (Bits 13 and 14 in the second
doubleword of a segment descriptor.) Determines the privilege level of the
segment.

• Requested privilege level (RPL) field — (Bits 0 and 1 of any segment
selector.) Specifies the requested privilege level of a segment selector.

• Current privilege level (CPL) field — (Bits 0 and 1 of the CS segment
register.) Indicates the privilege level of the currently executing program or
5-2 Vol. 3A

PROTECTION
procedure. The term current privilege level (CPL) refers to the setting of this
field.

• User/supervisor (U/S) flag — (Bit 2 of paging-structure entries.) Determines
the type of page: user or supervisor.

• Read/write (R/W) flag — (Bit 1 of paging-structure entries.) Determines the
type of access allowed to a page: read-only or read/write.

• Execute-disable (XD) flag — (Bit 63 of certain paging-structure entries.)
Determines the type of access allowed to a page: executable or not-executable.

Figure 5-1 shows the location of the various fields and flags in the data, code, and
system- segment descriptors; Figure 3-6 shows the location of the RPL (or CPL) field
in a segment selector (or the CS register); and Chapter 4 identifies the locations of
the U/S, R/W, and XD flags in the paging-structure entries.
Vol. 3A 5-3

PROTECTION
Many different styles of protection schemes can be implemented with these fields
and flags. When the operating system creates a descriptor, it places values in these
fields and flags in keeping with the particular protection style chosen for an operating
system or executive. Application program do not generally access or modify these
fields and flags.

Figure 5-1. Descriptor Fields Used for Protection

Base 23:16

31 24 23 22 21 20 19 16 15 1314 12 11 8 7 0

PBase 31:24 G
D
P
L

Type

1
0 4

31 16 15 0

Base Address 15:00 Segment Limit 15:00 0

Base 23:16
A
V
L

Limit
19:16

B
AWE0

Data-Segment Descriptor

31 24 23 22 21 20 19 16 15 1314 12 11 8 7 0

PBase 31:24 G
D
P
L

Type

1
0 4

31 16 15 0

Base Address 15:00 Segment Limit 15:00 0

Base 23:16
A
V
L

Limit
19:16

D
ARC1

Code-Segment Descriptor

31 24 23 22 21 20 19 16 15 1314 12 11 8 7 0

PBase 31:24 G
D
P
L

Type0 4

31 16 15 0

Base Address 15:00 Segment Limit 15:00 0

Limit
19:16

System-Segment Descriptor

A

B
C
D
DPL

Accessed

Big
Conforming
Default
Descriptor Privilege Level

Reserved

E
G
R
LIMIT
W
P

Expansion Direction
Granularity
Readable
Segment Limit
Writable
Present

0

AVL Available to Sys. Programmer’s
5-4 Vol. 3A

PROTECTION
The following sections describe how the processor uses these fields and flags to
perform the various categories of checks described in the introduction to this chapter.

5.2.1 Code Segment Descriptor in 64-bit Mode
Code segments continue to exist in 64-bit mode even though, for address calcula-
tions, the segment base is treated as zero. Some code-segment (CS) descriptor
content (the base address and limit fields) is ignored; the remaining fields function
normally (except for the readable bit in the type field).

Code segment descriptors and selectors are needed in IA-32e mode to establish the
processor’s operating mode and execution privilege-level. The usage is as follows:
• IA-32e mode uses a previously unused bit in the CS descriptor. Bit 53 is defined

as the 64-bit (L) flag and is used to select between 64-bit mode and compatibility
mode when IA-32e mode is active (IA32_EFER.LMA = 1). See Figure 5-2.

— If CS.L = 0 and IA-32e mode is active, the processor is running in compati-
bility mode. In this case, CS.D selects the default size for data and addresses.
If CS.D = 0, the default data and address size is 16 bits. If CS.D = 1, the
default data and address size is 32 bits.

— If CS.L = 1 and IA-32e mode is active, the only valid setting is CS.D = 0. This
setting indicates a default operand size of 32 bits and a default address size
of 64 bits. The CS.L = 1 and CS.D = 1 bit combination is reserved for future
use and a #GP fault will be generated on an attempt to use a code segment
with these bits set in IA-32e mode.

• In IA-32e mode, the CS descriptor’s DPL is used for execution privilege checks
(as in legacy 32-bit mode).
Vol. 3A 5-5

PROTECTION
5.3 LIMIT CHECKING
The limit field of a segment descriptor prevents programs or procedures from
addressing memory locations outside the segment. The effective value of the limit
depends on the setting of the G (granularity) flag (see Figure 5-1). For data
segments, the limit also depends on the E (expansion direction) flag and the B
(default stack pointer size and/or upper bound) flag. The E flag is one of the bits in
the type field when the segment descriptor is for a data-segment type.

When the G flag is clear (byte granularity), the effective limit is the value of the
20-bit limit field in the segment descriptor. Here, the limit ranges from 0 to FFFFFH
(1 MByte). When the G flag is set (4-KByte page granularity), the processor scales
the value in the limit field by a factor of 212 (4 KBytes). In this case, the effective
limit ranges from FFFH (4 KBytes) to FFFFFFFFH (4 GBytes). Note that when scaling
is used (G flag is set), the lower 12 bits of a segment offset (address) are not checked
against the limit; for example, note that if the segment limit is 0, offsets 0 through
FFFH are still valid.

For all types of segments except expand-down data segments, the effective limit is
the last address that is allowed to be accessed in the segment, which is one less than
the size, in bytes, of the segment. The processor causes a general-protection excep-
tion (or, if the segment is SS, a stack-fault exception) any time an attempt is made to
access the following addresses in a segment:
• A byte at an offset greater than the effective limit
• A word at an offset greater than the (effective-limit – 1)

Figure 5-2. Descriptor Fields with Flags used in IA-32e Mode

31 24 23 22 21 20 19 16 15 1314 12 11 8 7 0

PG
D
P
L

Type

1
L 4

0

0

A
V
L

D
ARC1

Code-Segment Descriptor

31

A

C
D
DPL

Accessed

Conforming
Default
Descriptor Privilege Level

G
R

Granularity
Readable

AVL Available to Sys. Programmer’s

L 64-Bit Flag

P Present
5-6 Vol. 3A

PROTECTION
• A doubleword at an offset greater than the (effective-limit – 3)
• A quadword at an offset greater than the (effective-limit – 7)
• A double quadword at an offset greater than the (effective limit – 15)

When the effective limit is FFFFFFFFH (4 GBytes), these accesses may or may not
cause the indicated exceptions. Behavior is implementation-specific and may vary
from one execution to another.

For expand-down data segments, the segment limit has the same function but is
interpreted differently. Here, the effective limit specifies the last address that is not
allowed to be accessed within the segment; the range of valid offsets is from (effec-
tive-limit + 1) to FFFFFFFFH if the B flag is set and from (effective-limit + 1) to FFFFH
if the B flag is clear. An expand-down segment has maximum size when the segment
limit is 0.

Limit checking catches programming errors such as runaway code, runaway
subscripts, and invalid pointer calculations. These errors are detected when they
occur, so identification of the cause is easier. Without limit checking, these errors
could overwrite code or data in another segment.

In addition to checking segment limits, the processor also checks descriptor table
limits. The GDTR and IDTR registers contain 16-bit limit values that the processor
uses to prevent programs from selecting a segment descriptors outside the respec-
tive descriptor tables. The LDTR and task registers contain 32-bit segment limit value
(read from the segment descriptors for the current LDT and TSS, respectively). The
processor uses these segment limits to prevent accesses beyond the bounds of the
current LDT and TSS. See Section 3.5.1, “Segment Descriptor Tables,” for more infor-
mation on the GDT and LDT limit fields; see Section 6.10, “Interrupt Descriptor Table
(IDT),” for more information on the IDT limit field; and see Section 7.2.4, “Task
Register,” for more information on the TSS segment limit field.

5.3.1 Limit Checking in 64-bit Mode
In 64-bit mode, the processor does not perform runtime limit checking on code or
data segments. However, the processor does check descriptor-table limits.

5.4 TYPE CHECKING
Segment descriptors contain type information in two places:
• The S (descriptor type) flag.
• The type field.

The processor uses this information to detect programming errors that result in an
attempt to use a segment or gate in an incorrect or unintended manner.

The S flag indicates whether a descriptor is a system type or a code or data type. The
type field provides 4 additional bits for use in defining various types of code, data,
Vol. 3A 5-7

PROTECTION
and system descriptors. Table 3-1 shows the encoding of the type field for code and
data descriptors; Table 3-2 shows the encoding of the field for system descriptors.

The processor examines type information at various times while operating on
segment selectors and segment descriptors. The following list gives examples of
typical operations where type checking is performed (this list is not exhaustive):
• When a segment selector is loaded into a segment register — Certain

segment registers can contain only certain descriptor types, for example:

— The CS register only can be loaded with a selector for a code segment.

— Segment selectors for code segments that are not readable or for system
segments cannot be loaded into data-segment registers (DS, ES, FS, and
GS).

— Only segment selectors of writable data segments can be loaded into the SS
register.

• When a segment selector is loaded into the LDTR or task register — For example:

— The LDTR can only be loaded with a selector for an LDT.

— The task register can only be loaded with a segment selector for a TSS.
• When instructions access segments whose descriptors are already

loaded into segment registers — Certain segments can be used by instruc-
tions only in certain predefined ways, for example:

— No instruction may write into an executable segment.

— No instruction may write into a data segment if it is not writable.

— No instruction may read an executable segment unless the readable flag is
set.

• When an instruction operand contains a segment selector — Certain
instructions can access segments or gates of only a particular type, for example:

— A far CALL or far JMP instruction can only access a segment descriptor for a
conforming code segment, nonconforming code segment, call gate, task
gate, or TSS.

— The LLDT instruction must reference a segment descriptor for an LDT.

— The LTR instruction must reference a segment descriptor for a TSS.

— The LAR instruction must reference a segment or gate descriptor for an LDT,
TSS, call gate, task gate, code segment, or data segment.

— The LSL instruction must reference a segment descriptor for a LDT, TSS, code
segment, or data segment.

— IDT entries must be interrupt, trap, or task gates.
• During certain internal operations — For example:

— On a far call or far jump (executed with a far CALL or far JMP instruction), the
processor determines the type of control transfer to be carried out (call or
5-8 Vol. 3A

PROTECTION
jump to another code segment, a call or jump through a gate, or a task
switch) by checking the type field in the segment (or gate) descriptor pointed
to by the segment (or gate) selector given as an operand in the CALL or JMP
instruction. If the descriptor type is for a code segment or call gate, a call or
jump to another code segment is indicated; if the descriptor type is for a TSS
or task gate, a task switch is indicated.

— On a call or jump through a call gate (or on an interrupt- or exception-handler
call through a trap or interrupt gate), the processor automatically checks that
the segment descriptor being pointed to by the gate is for a code segment.

— On a call or jump to a new task through a task gate (or on an interrupt- or
exception-handler call to a new task through a task gate), the processor
automatically checks that the segment descriptor being pointed to by the
task gate is for a TSS.

— On a call or jump to a new task by a direct reference to a TSS, the processor
automatically checks that the segment descriptor being pointed to by the
CALL or JMP instruction is for a TSS.

— On return from a nested task (initiated by an IRET instruction), the processor
checks that the previous task link field in the current TSS points to a TSS.

5.4.1 Null Segment Selector Checking
Attempting to load a null segment selector (see Section 3.4.2, “Segment Selectors”)
into the CS or SS segment register generates a general-protection exception (#GP).
A null segment selector can be loaded into the DS, ES, FS, or GS register, but any
attempt to access a segment through one of these registers when it is loaded with a
null segment selector results in a #GP exception being generated. Loading unused
data-segment registers with a null segment selector is a useful method of detecting
accesses to unused segment registers and/or preventing unwanted accesses to data
segments.

5.4.1.1 NULL Segment Checking in 64-bit Mode
In 64-bit mode, the processor does not perform runtime checking on NULL segment
selectors. The processor does not cause a #GP fault when an attempt is made to
access memory where the referenced segment register has a NULL segment selector.

5.5 PRIVILEGE LEVELS
The processor’s segment-protection mechanism recognizes 4 privilege levels,
numbered from 0 to 3. The greater numbers mean lesser privileges. Figure 5-3
shows how these levels of privilege can be interpreted as rings of protection.
Vol. 3A 5-9

PROTECTION
The center (reserved for the most privileged code, data, and stacks) is used for the
segments containing the critical software, usually the kernel of an operating system.
Outer rings are used for less critical software. (Systems that use only 2 of the 4
possible privilege levels should use levels 0 and 3.)

The processor uses privilege levels to prevent a program or task operating at a lesser
privilege level from accessing a segment with a greater privilege, except under
controlled situations. When the processor detects a privilege level violation, it gener-
ates a general-protection exception (#GP).

To carry out privilege-level checks between code segments and data segments, the
processor recognizes the following three types of privilege levels:
• Current privilege level (CPL) — The CPL is the privilege level of the currently

executing program or task. It is stored in bits 0 and 1 of the CS and SS segment
registers. Normally, the CPL is equal to the privilege level of the code segment
from which instructions are being fetched. The processor changes the CPL when
program control is transferred to a code segment with a different privilege level.
The CPL is treated slightly differently when accessing conforming code segments.
Conforming code segments can be accessed from any privilege level that is equal
to or numerically greater (less privileged) than the DPL of the conforming code
segment. Also, the CPL is not changed when the processor accesses a conforming
code segment that has a different privilege level than the CPL.

• Descriptor privilege level (DPL) — The DPL is the privilege level of a segment
or gate. It is stored in the DPL field of the segment or gate descriptor for the
segment or gate. When the currently executing code segment attempts to access
a segment or gate, the DPL of the segment or gate is compared to the CPL and
RPL of the segment or gate selector (as described later in this section). The DPL

Figure 5-3. Protection Rings

Level 0

Level 1

Level 2

Level 3

Protection Rings

Operating

Operating System
Services

System
Kernel

Applications
5-10 Vol. 3A

PROTECTION
is interpreted differently, depending on the type of segment or gate being
accessed:

— Data segment — The DPL indicates the numerically highest privilege level
that a program or task can have to be allowed to access the segment. For
example, if the DPL of a data segment is 1, only programs running at a CPL of
0 or 1 can access the segment.

— Nonconforming code segment (without using a call gate) — The DPL
indicates the privilege level that a program or task must be at to access the
segment. For example, if the DPL of a nonconforming code segment is 0, only
programs running at a CPL of 0 can access the segment.

— Call gate — The DPL indicates the numerically highest privilege level that the
currently executing program or task can be at and still be able to access the
call gate. (This is the same access rule as for a data segment.)

— Conforming code segment and nonconforming code segment
accessed through a call gate — The DPL indicates the numerically lowest
privilege level that a program or task can have to be allowed to access the
segment. For example, if the DPL of a conforming code segment is 2,
programs running at a CPL of 0 or 1 cannot access the segment.

— TSS — The DPL indicates the numerically highest privilege level that the
currently executing program or task can be at and still be able to access the
TSS. (This is the same access rule as for a data segment.)

• Requested privilege level (RPL) — The RPL is an override privilege level that
is assigned to segment selectors. It is stored in bits 0 and 1 of the segment
selector. The processor checks the RPL along with the CPL to determine if access
to a segment is allowed. Even if the program or task requesting access to a
segment has sufficient privilege to access the segment, access is denied if the
RPL is not of sufficient privilege level. That is, if the RPL of a segment selector is
numerically greater than the CPL, the RPL overrides the CPL, and vice versa. The
RPL can be used to insure that privileged code does not access a segment on
behalf of an application program unless the program itself has access privileges
for that segment. See Section 5.10.4, “Checking Caller Access Privileges (ARPL
Instruction),” for a detailed description of the purpose and typical use of the RPL.

Privilege levels are checked when the segment selector of a segment descriptor is
loaded into a segment register. The checks used for data access differ from those
used for transfers of program control among code segments; therefore, the two
kinds of accesses are considered separately in the following sections.

5.6 PRIVILEGE LEVEL CHECKING WHEN ACCESSING DATA
SEGMENTS

To access operands in a data segment, the segment selector for the data segment
must be loaded into the data-segment registers (DS, ES, FS, or GS) or into the stack-
Vol. 3A 5-11

PROTECTION
segment register (SS). (Segment registers can be loaded with the MOV, POP, LDS,
LES, LFS, LGS, and LSS instructions.) Before the processor loads a segment selector
into a segment register, it performs a privilege check (see Figure 5-4) by comparing
the privilege levels of the currently running program or task (the CPL), the RPL of the
segment selector, and the DPL of the segment’s segment descriptor. The processor
loads the segment selector into the segment register if the DPL is numerically greater
than or equal to both the CPL and the RPL. Otherwise, a general-protection fault is
generated and the segment register is not loaded.

Figure 5-5 shows four procedures (located in codes segments A, B, C, and D), each
running at different privilege levels and each attempting to access the same data
segment.

1. The procedure in code segment A is able to access data segment E using segment
selector E1, because the CPL of code segment A and the RPL of segment selector
E1 are equal to the DPL of data segment E.

2. The procedure in code segment B is able to access data segment E using segment
selector E2, because the CPL of code segment B and the RPL of segment selector
E2 are both numerically lower than (more privileged) than the DPL of data
segment E. A code segment B procedure can also access data segment E using
segment selector E1.

3. The procedure in code segment C is not able to access data segment E using
segment selector E3 (dotted line), because the CPL of code segment C and the
RPL of segment selector E3 are both numerically greater than (less privileged)
than the DPL of data segment E. Even if a code segment C procedure were to use
segment selector E1 or E2, such that the RPL would be acceptable, it still could
not access data segment E because its CPL is not privileged enough.

4. The procedure in code segment D should be able to access data segment E
because code segment D’s CPL is numerically less than the DPL of data segment

Figure 5-4. Privilege Check for Data Access

CPL

RPL

DPL

Privilege
Check

Data-Segment Descriptor

CS Register

Segment Selector
For Data Segment
5-12 Vol. 3A

PROTECTION
E. However, the RPL of segment selector E3 (which the code segment D
procedure is using to access data segment E) is numerically greater than the DPL
of data segment E, so access is not allowed. If the code segment D procedure
were to use segment selector E1 or E2 to access the data segment, access would
be allowed.

As demonstrated in the previous examples, the addressable domain of a program or
task varies as its CPL changes. When the CPL is 0, data segments at all privilege
levels are accessible; when the CPL is 1, only data segments at privilege levels 1
through 3 are accessible; when the CPL is 3, only data segments at privilege level 3
are accessible.

The RPL of a segment selector can always override the addressable domain of a
program or task. When properly used, RPLs can prevent problems caused by acci-
dental (or intensional) use of segment selectors for privileged data segments by less
privileged programs or procedures.

It is important to note that the RPL of a segment selector for a data segment is under
software control. For example, an application program running at a CPL of 3 can set
the RPL for a data- segment selector to 0. With the RPL set to 0, only the CPL checks,
not the RPL checks, will provide protection against deliberate, direct attempts to
violate privilege-level security for the data segment. To prevent these types of privi-
lege-level-check violations, a program or procedure can check access privileges
whenever it receives a data-segment selector from another procedure (see Section
5.10.4, “Checking Caller Access Privileges (ARPL Instruction)”).

Figure 5-5. Examples of Accessing Data Segments From Various Privilege Levels

Data

Lowest Privilege

Highest Privilege

Segment E

3

2

1

0

CPL=1

CPL=3

CPL=0

DPL=2
CPL=2

Segment Sel. E3
RPL=3

Segment Sel. E1
RPL=2

Segment Sel. E2
RPL=1

Code
Segment C

Code
Segment A

Code
Segment B

Code
Segment D
Vol. 3A 5-13

PROTECTION
5.6.1 Accessing Data in Code Segments
In some instances it may be desirable to access data structures that are contained in
a code segment. The following methods of accessing data in code segments are
possible:
• Load a data-segment register with a segment selector for a nonconforming,

readable, code segment.
• Load a data-segment register with a segment selector for a conforming,

readable, code segment.
• Use a code-segment override prefix (CS) to read a readable, code segment

whose selector is already loaded in the CS register.

The same rules for accessing data segments apply to method 1. Method 2 is always
valid because the privilege level of a conforming code segment is effectively the
same as the CPL, regardless of its DPL. Method 3 is always valid because the DPL of
the code segment selected by the CS register is the same as the CPL.

5.7 PRIVILEGE LEVEL CHECKING WHEN LOADING THE SS
REGISTER

Privilege level checking also occurs when the SS register is loaded with the segment
selector for a stack segment. Here all privilege levels related to the stack segment
must match the CPL; that is, the CPL, the RPL of the stack-segment selector, and the
DPL of the stack-segment descriptor must be the same. If the RPL and DPL are not
equal to the CPL, a general-protection exception (#GP) is generated.

5.8 PRIVILEGE LEVEL CHECKING WHEN TRANSFERRING
PROGRAM CONTROL BETWEEN CODE SEGMENTS

To transfer program control from one code segment to another, the segment selector
for the destination code segment must be loaded into the code-segment register
(CS). As part of this loading process, the processor examines the segment descriptor
for the destination code segment and performs various limit, type, and privilege
checks. If these checks are successful, the CS register is loaded, program control is
transferred to the new code segment, and program execution begins at the instruc-
tion pointed to by the EIP register.

Program control transfers are carried out with the JMP, CALL, RET, SYSENTER,
SYSEXIT, INT n, and IRET instructions, as well as by the exception and interrupt
mechanisms. Exceptions, interrupts, and the IRET instruction are special cases
discussed in Chapter 6, “Interrupt and Exception Handling.” This chapter discusses
only the JMP, CALL, RET, SYSENTER, and SYSEXIT instructions.

A JMP or CALL instruction can reference another code segment in any of four ways:
5-14 Vol. 3A

PROTECTION
• The target operand contains the segment selector for the target code segment.
• The target operand points to a call-gate descriptor, which contains the segment

selector for the target code segment.
• The target operand points to a TSS, which contains the segment selector for the

target code segment.
• The target operand points to a task gate, which points to a TSS, which in turn

contains the segment selector for the target code segment.

The following sections describe first two types of references. See Section 7.3, “Task
Switching,” for information on transferring program control through a task gate
and/or TSS.

The SYSENTER and SYSEXIT instructions are special instructions for making fast calls
to and returns from operating system or executive procedures. These instructions
are discussed briefly in Section 5.8.7, “Performing Fast Calls to System Procedures
with the SYSENTER and SYSEXIT Instructions.”

5.8.1 Direct Calls or Jumps to Code Segments
The near forms of the JMP, CALL, and RET instructions transfer program control
within the current code segment, so privilege-level checks are not performed. The far
forms of the JMP, CALL, and RET instructions transfer control to other code segments,
so the processor does perform privilege-level checks.

When transferring program control to another code segment without going through a
call gate, the processor examines four kinds of privilege level and type information
(see Figure 5-6):
• The CPL. (Here, the CPL is the privilege level of the calling code segment; that is,

the code segment that contains the procedure that is making the call or jump.)

Figure 5-6. Privilege Check for Control Transfer Without Using a Gate

CPL

RPL

DPL

Privilege
Check

CS Register

Segment Selector
For Code Segment

Destination Code
Segment Descriptor

C

Vol. 3A 5-15

PROTECTION
• The DPL of the segment descriptor for the destination code segment that
contains the called procedure.

• The RPL of the segment selector of the destination code segment.
• The conforming (C) flag in the segment descriptor for the destination code

segment, which determines whether the segment is a conforming (C flag is set)
or nonconforming (C flag is clear) code segment. See Section 3.4.5.1, “Code-
and Data-Segment Descriptor Types,” for more information about this flag.

The rules that the processor uses to check the CPL, RPL, and DPL depends on the
setting of the C flag, as described in the following sections.

5.8.1.1 Accessing Nonconforming Code Segments
When accessing nonconforming code segments, the CPL of the calling procedure
must be equal to the DPL of the destination code segment; otherwise, the processor
generates a general-protection exception (#GP). For example in Figure 5-7:
• Code segment C is a nonconforming code segment. A procedure in code segment

A can call a procedure in code segment C (using segment selector C1) because
they are at the same privilege level (CPL of code segment A is equal to the DPL of
code segment C).

• A procedure in code segment B cannot call a procedure in code segment C (using
segment selector C2 or C1) because the two code segments are at different
privilege levels.
5-16 Vol. 3A

PROTECTION
The RPL of the segment selector that points to a nonconforming code segment has a
limited effect on the privilege check. The RPL must be numerically less than or equal
to the CPL of the calling procedure for a successful control transfer to occur. So, in the
example in Figure 5-7, the RPLs of segment selectors C1 and C2 could legally be set
to 0, 1, or 2, but not to 3.

When the segment selector of a nonconforming code segment is loaded into the CS
register, the privilege level field is not changed; that is, it remains at the CPL (which
is the privilege level of the calling procedure). This is true, even if the RPL of the
segment selector is different from the CPL.

5.8.1.2 Accessing Conforming Code Segments
When accessing conforming code segments, the CPL of the calling procedure may be
numerically equal to or greater than (less privileged) the DPL of the destination code
segment; the processor generates a general-protection exception (#GP) only if the
CPL is less than the DPL. (The segment selector RPL for the destination code segment
is not checked if the segment is a conforming code segment.)

Figure 5-7. Examples of Accessing Conforming and Nonconforming Code Segments
From Various Privilege Levels

Code
Segment D

Code
Segment CCode

Segment A

Lowest Privilege

Highest Privilege

CPL=3

Code
Segment B

Nonconforming
Code Segment

Conforming
Code Segment

3

2

1

0

CPL=2
DPL=2

DPL=1

Segment Sel. D1
RPL=2

Segment Sel. D2
RPL=3

Segment Sel. C2
RPL=3

Segment Sel. C1
RPL=2
Vol. 3A 5-17

PROTECTION
In the example in Figure 5-7, code segment D is a conforming code segment. There-
fore, calling procedures in both code segment A and B can access code segment D
(using either segment selector D1 or D2, respectively), because they both have CPLs
that are greater than or equal to the DPL of the conforming code segment. For
conforming code segments, the DPL represents the numerically lowest priv-
ilege level that a calling procedure may be at to successfully make a call to
the code segment.

(Note that segments selectors D1 and D2 are identical except for their respective
RPLs. But since RPLs are not checked when accessing conforming code segments,
the two segment selectors are essentially interchangeable.)

When program control is transferred to a conforming code segment, the CPL does not
change, even if the DPL of the destination code segment is less than the CPL. This
situation is the only one where the CPL may be different from the DPL of the current
code segment. Also, since the CPL does not change, no stack switch occurs.

Conforming segments are used for code modules such as math libraries and excep-
tion handlers, which support applications but do not require access to protected
system facilities. These modules are part of the operating system or executive soft-
ware, but they can be executed at numerically higher privilege levels (less privileged
levels). Keeping the CPL at the level of a calling code segment when switching to a
conforming code segment prevents an application program from accessing noncon-
forming code segments while at the privilege level (DPL) of a conforming code
segment and thus prevents it from accessing more privileged data.

Most code segments are nonconforming. For these segments, program control can
be transferred only to code segments at the same level of privilege, unless the
transfer is carried out through a call gate, as described in the following sections.

5.8.2 Gate Descriptors
To provide controlled access to code segments with different privilege levels, the
processor provides special set of descriptors called gate descriptors. There are four
kinds of gate descriptors:
• Call gates
• Trap gates
• Interrupt gates
• Task gates

Task gates are used for task switching and are discussed in Chapter 7, “Task Manage-
ment”. Trap and interrupt gates are special kinds of call gates used for calling excep-
tion and interrupt handlers. The are described in Chapter 6, “Interrupt and Exception
Handling.” This chapter is concerned only with call gates.
5-18 Vol. 3A

PROTECTION
5.8.3 Call Gates
Call gates facilitate controlled transfers of program control between different privi-
lege levels. They are typically used only in operating systems or executives that use
the privilege-level protection mechanism. Call gates are also useful for transferring
program control between 16-bit and 32-bit code segments, as described in Section
21.4, “Transferring Control Among Mixed-Size Code Segments.”

Figure 5-8 shows the format of a call-gate descriptor. A call-gate descriptor may
reside in the GDT or in an LDT, but not in the interrupt descriptor table (IDT). It
performs six functions:
• It specifies the code segment to be accessed.
• It defines an entry point for a procedure in the specified code segment.
• It specifies the privilege level required for a caller trying to access the procedure.

• If a stack switch occurs, it specifies the number of optional parameters to be
copied between stacks.

• It defines the size of values to be pushed onto the target stack: 16-bit gates force
16-bit pushes and 32-bit gates force 32-bit pushes.

• It specifies whether the call-gate descriptor is valid.

The segment selector field in a call gate specifies the code segment to be accessed.
The offset field specifies the entry point in the code segment. This entry point is
generally to the first instruction of a specific procedure. The DPL field indicates the
privilege level of the call gate, which in turn is the privilege level required to access
the selected procedure through the gate. The P flag indicates whether the call-gate
descriptor is valid. (The presence of the code segment to which the gate points is
indicated by the P flag in the code segment’s descriptor.) The parameter count field
indicates the number of parameters to copy from the calling procedures stack to the
new stack if a stack switch occurs (see Section 5.8.5, “Stack Switching”). The param-
eter count specifies the number of words for 16-bit call gates and doublewords for
32-bit call gates.

Figure 5-8. Call-Gate Descriptor

31 16 15 1314 12 11 8 7 0

POffset in Segment 31:16
D
P
L

Type

0
4

31 16 15 0

Segment Selector Offset in Segment 15:00 0

Param.

0011

P
DPL

Gate Valid
Descriptor Privilege Level

Count

456

0 0 0
Vol. 3A 5-19

PROTECTION
Note that the P flag in a gate descriptor is normally always set to 1. If it is set to 0, a
not present (#NP) exception is generated when a program attempts to access the
descriptor. The operating system can use the P flag for special purposes. For
example, it could be used to track the number of times the gate is used. Here, the P
flag is initially set to 0 causing a trap to the not-present exception handler. The
exception handler then increments a counter and sets the P flag to 1, so that on
returning from the handler, the gate descriptor will be valid.

5.8.3.1 IA-32e Mode Call Gates
Call-gate descriptors in 32-bit mode provide a 32-bit offset for the instruction pointer
(EIP); 64-bit extensions double the size of 32-bit mode call gates in order to store
64-bit instruction pointers (RIP). See Figure 5-9:
• The first eight bytes (bytes 7:0) of a 64-bit mode call gate are similar but not

identical to legacy 32-bit mode call gates. The parameter-copy-count field has
been removed.

• Bytes 11:8 hold the upper 32 bits of the target-segment offset in canonical form.
A general-protection exception (#GP) is generated if software attempts to use a
call gate with a target offset that is not in canonical form.

• 16-byte descriptors may reside in the same descriptor table with 16-bit and
32-bit descriptors. A type field, used for consistency checking, is defined in bits
12:8 of the 64-bit descriptor’s highest dword (cleared to zero). A general-
protection exception (#GP) results if an attempt is made to access the upper half
of a 64-bit mode descriptor as a 32-bit mode descriptor.
5-20 Vol. 3A

PROTECTION
• Target code segments referenced by a 64-bit call gate must be 64-bit code
segments (CS.L = 1, CS.D = 0). If not, the reference generates a general-
protection exception, #GP (CS selector).

• Only 64-bit mode call gates can be referenced in IA-32e mode (64-bit mode and
compatibility mode). The legacy 32-bit mode call gate type (0CH) is redefined in
IA-32e mode as a 64-bit call-gate type; no 32-bit call-gate type exists in IA-32e
mode.

• If a far call references a 16-bit call gate type (04H) in IA-32e mode, a general-
protection exception (#GP) is generated.

When a call references a 64-bit mode call gate, actions taken are identical to those
taken in 32-bit mode, with the following exceptions:
• Stack pushes are made in eight-byte increments.
• A 64-bit RIP is pushed onto the stack.
• Parameter copying is not performed.

Use a matching far-return instruction size for correct operation (returns from 64-bit
calls must be performed with a 64-bit operand-size return to process the stack
correctly).

Figure 5-9. Call-Gate Descriptor in IA-32e Mode

31 8 7 0

POffset in Segment 31:16
D
P
L

Type

0
4

31 16 15 0

Segment Selector Offset in Segment 15:00 0

.

0011

P
DPL

Gate Valid
Descriptor Privilege Level

31 0

0
16

31 0

Offset in Segment 63:31 8

0000

0

13 12 11 10 9 8 7

16 15 14 13 12 11

Reserved Reserved
Type
Vol. 3A 5-21

PROTECTION
5.8.4 Accessing a Code Segment Through a Call Gate
To access a call gate, a far pointer to the gate is provided as a target operand in a
CALL or JMP instruction. The segment selector from this pointer identifies the call
gate (see Figure 5-10); the offset from the pointer is required, but not used or
checked by the processor. (The offset can be set to any value.)

When the processor has accessed the call gate, it uses the segment selector from the
call gate to locate the segment descriptor for the destination code segment. (This
segment descriptor can be in the GDT or the LDT.) It then combines the base address
from the code-segment descriptor with the offset from the call gate to form the linear
address of the procedure entry point in the code segment.

As shown in Figure 5-11, four different privilege levels are used to check the validity
of a program control transfer through a call gate:
• The CPL (current privilege level).
• The RPL (requestor's privilege level) of the call gate’s selector.
• The DPL (descriptor privilege level) of the call gate descriptor.
• The DPL of the segment descriptor of the destination code segment.

The C flag (conforming) in the segment descriptor for the destination code segment
is also checked.

Figure 5-10. Call-Gate Mechanism

OffsetSegment Selector

Far Pointer to Call Gate

Required but not used by processor

Call-Gate
Descriptor

Code-Segment
Descriptor

Descriptor Table

Offset

Base

Base

Offset

Base

Segment Selector

+

Procedure
Entry Point
5-22 Vol. 3A

PROTECTION
The privilege checking rules are different depending on whether the control transfer
was initiated with a CALL or a JMP instruction, as shown in Table 5-1.

The DPL field of the call-gate descriptor specifies the numerically highest privilege
level from which a calling procedure can access the call gate; that is, to access a call
gate, the CPL of a calling procedure must be equal to or less than the DPL of the call
gate. For example, in Figure 5-15, call gate A has a DPL of 3. So calling procedures at
all CPLs (0 through 3) can access this call gate, which includes calling procedures in
code segments A, B, and C. Call gate B has a DPL of 2, so only calling procedures at
a CPL or 0, 1, or 2 can access call gate B, which includes calling procedures in code

Figure 5-11. Privilege Check for Control Transfer with Call Gate

Table 5-1. Privilege Check Rules for Call Gates

Instruction Privilege Check Rules

CALL CPL ≤ call gate DPL; RPL ≤ call gate DPL

Destination conforming code segment DPL ≤ CPL

Destination nonconforming code segment DPL ≤ CPL

JMP CPL ≤ call gate DPL; RPL ≤ call gate DPL

Destination conforming code segment DPL ≤ CPL

Destination nonconforming code segment DPL = CPL

CPL

RPL

DPL

DPL

Privilege
Check

Call Gate (Descriptor)

Destination Code-

CS Register

Call-Gate Selector

Segment Descriptor
Vol. 3A 5-23

PROTECTION
segments B and C. The dotted line shows that a calling procedure in code segment A
cannot access call gate B.

The RPL of the segment selector to a call gate must satisfy the same test as the CPL
of the calling procedure; that is, the RPL must be less than or equal to the DPL of the
call gate. In the example in Figure 5-15, a calling procedure in code segment C can
access call gate B using gate selector B2 or B1, but it could not use gate selector B3
to access call gate B.

If the privilege checks between the calling procedure and call gate are successful, the
processor then checks the DPL of the code-segment descriptor against the CPL of the
calling procedure. Here, the privilege check rules vary between CALL and JMP
instructions. Only CALL instructions can use call gates to transfer program control to
more privileged (numerically lower privilege level) nonconforming code segments;
that is, to nonconforming code segments with a DPL less than the CPL. A JMP instruc-
tion can use a call gate only to transfer program control to a nonconforming code
segment with a DPL equal to the CPL. CALL and JMP instruction can both transfer
program control to a more privileged conforming code segment; that is, to a
conforming code segment with a DPL less than or equal to the CPL.

If a call is made to a more privileged (numerically lower privilege level) noncon-
forming destination code segment, the CPL is lowered to the DPL of the destination
code segment and a stack switch occurs (see Section 5.8.5, “Stack Switching”). If a
call or jump is made to a more privileged conforming destination code segment, the
CPL is not changed and no stack switch occurs.
5-24 Vol. 3A

PROTECTION
Call gates allow a single code segment to have procedures that can be accessed at
different privilege levels. For example, an operating system located in a code
segment may have some services which are intended to be used by both the oper-
ating system and application software (such as procedures for handling character
I/O). Call gates for these procedures can be set up that allow access at all privilege
levels (0 through 3). More privileged call gates (with DPLs of 0 or 1) can then be set
up for other operating system services that are intended to be used only by the oper-
ating system (such as procedures that initialize device drivers).

5.8.5 Stack Switching
Whenever a call gate is used to transfer program control to a more privileged
nonconforming code segment (that is, when the DPL of the nonconforming destina-
tion code segment is less than the CPL), the processor automatically switches to the
stack for the destination code segment’s privilege level. This stack switching is
carried out to prevent more privileged procedures from crashing due to insufficient
stack space. It also prevents less privileged procedures from interfering (by accident
or intent) with more privileged procedures through a shared stack.

Figure 5-12. Example of Accessing Call Gates At Various Privilege Levels

Code
Segment A

Stack SwitchNo Stack
Switch Occurs Occurs

Lowest Privilege

Highest Privilege

3

2

1

0

Call
Gate A

Code
Segment B

Call
Gate B

Code
Segment C

Code
Segment D

Code
Segment E

Nonconforming
Code Segment

Conforming
Code Segment

Gate Selector A
RPL=3

Gate Selector B1
RPL=2

Gate Selector B2
RPL=1

CPL=3

CPL=2

CPL=1

DPL=3

DPL=2

DPL=0 DPL=0

Gate Selector B3
RPL=3
Vol. 3A 5-25

PROTECTION
Each task must define up to 4 stacks: one for applications code (running at privilege
level 3) and one for each of the privilege levels 2, 1, and 0 that are used. (If only two
privilege levels are used [3 and 0], then only two stacks must be defined.) Each of
these stacks is located in a separate segment and is identified with a segment
selector and an offset into the stack segment (a stack pointer).

The segment selector and stack pointer for the privilege level 3 stack is located in the
SS and ESP registers, respectively, when privilege-level-3 code is being executed and
is automatically stored on the called procedure’s stack when a stack switch occurs.

Pointers to the privilege level 0, 1, and 2 stacks are stored in the TSS for the currently
running task (see Figure 7-2). Each of these pointers consists of a segment selector
and a stack pointer (loaded into the ESP register). These initial pointers are strictly
read-only values. The processor does not change them while the task is running.
They are used only to create new stacks when calls are made to more privileged
levels (numerically lower privilege levels). These stacks are disposed of when a
return is made from the called procedure. The next time the procedure is called, a
new stack is created using the initial stack pointer. (The TSS does not specify a stack
for privilege level 3 because the processor does not allow a transfer of program
control from a procedure running at a CPL of 0, 1, or 2 to a procedure running at a
CPL of 3, except on a return.)

The operating system is responsible for creating stacks and stack-segment descrip-
tors for all the privilege levels to be used and for loading initial pointers for these
stacks into the TSS. Each stack must be read/write accessible (as specified in the
type field of its segment descriptor) and must contain enough space (as specified in
the limit field) to hold the following items:
• The contents of the SS, ESP, CS, and EIP registers for the calling procedure.
• The parameters and temporary variables required by the called procedure.
• The EFLAGS register and error code, when implicit calls are made to an exception

or interrupt handler.

The stack will need to require enough space to contain many frames of these items,
because procedures often call other procedures, and an operating system may
support nesting of multiple interrupts. Each stack should be large enough to allow for
the worst case nesting scenario at its privilege level.

(If the operating system does not use the processor’s multitasking mechanism, it still
must create at least one TSS for this stack-related purpose.)

When a procedure call through a call gate results in a change in privilege level, the
processor performs the following steps to switch stacks and begin execution of the
called procedure at a new privilege level:

1. Uses the DPL of the destination code segment (the new CPL) to select a pointer
to the new stack (segment selector and stack pointer) from the TSS.

2. Reads the segment selector and stack pointer for the stack to be switched to from
the current TSS. Any limit violations detected while reading the stack-segment
selector, stack pointer, or stack-segment descriptor cause an invalid TSS (#TS)
exception to be generated.
5-26 Vol. 3A

PROTECTION
3. Checks the stack-segment descriptor for the proper privileges and type and
generates an invalid TSS (#TS) exception if violations are detected.

4. Temporarily saves the current values of the SS and ESP registers.

5. Loads the segment selector and stack pointer for the new stack in the SS and ESP
registers.

6. Pushes the temporarily saved values for the SS and ESP registers (for the calling
procedure) onto the new stack (see Figure 5-13).

7. Copies the number of parameter specified in the parameter count field of the call
gate from the calling procedure’s stack to the new stack. If the count is 0, no
parameters are copied.

8. Pushes the return instruction pointer (the current contents of the CS and EIP
registers) onto the new stack.

9. Loads the segment selector for the new code segment and the new instruction
pointer from the call gate into the CS and EIP registers, respectively, and begins
execution of the called procedure.

See the description of the CALL instruction in Chapter 3, Instruction Set Reference, in
the IA-32 Intel Architecture Software Developer’s Manual, Volume 2, for a detailed
description of the privilege level checks and other protection checks that the
processor performs on a far call through a call gate.

The parameter count field in a call gate specifies the number of data items (up to 31)
that the processor should copy from the calling procedure’s stack to the stack of the
called procedure. If more than 31 data items need to be passed to the called proce-

Figure 5-13. Stack Switching During an Interprivilege-Level Call

Parameter 1

Parameter 2

Parameter 3

Calling SS

Calling ESP

Parameter 1

Parameter 2

Parameter 3

Calling CS

Calling EIP

Called Procedure’s Stack

ESP

ESP

Calling Procedure’s Stack
Vol. 3A 5-27

PROTECTION
dure, one of the parameters can be a pointer to a data structure, or the saved
contents of the SS and ESP registers may be used to access parameters in the old
stack space. The size of the data items passed to the called procedure depends on
the call gate size, as described in Section 5.8.3, “Call Gates.”

5.8.5.1 Stack Switching in 64-bit Mode
Although protection-check rules for call gates are unchanged from 32-bit mode,
stack-switch changes in 64-bit mode are different.

When stacks are switched as part of a 64-bit mode privilege-level change through a
call gate, a new SS (stack segment) descriptor is not loaded; 64-bit mode only loads
an inner-level RSP from the TSS. The new SS is forced to NULL and the SS selector’s
RPL field is forced to the new CPL. The new SS is set to NULL in order to handle
nested far transfers (CALLF, INTn, interrupts and exceptions). The old SS and RSP
are saved on the new stack.

On a subsequent RETF, the old SS is popped from the stack and loaded into the SS
register. See Table 5-2.

In 64-bit mode, stack operations resulting from a privilege-level-changing far call or
far return are eight-bytes wide and change the RSP by eight. The mode does not
support the automatic parameter-copy feature found in 32-bit mode. The call-gate
count field is ignored. Software can access the old stack, if necessary, by referencing
the old stack-segment selector and stack pointer saved on the new process stack.

In 64-bit mode, RETF is allowed to load a NULL SS under certain conditions. If the
target mode is 64-bit mode and the target CPL< >3, IRET allows SS to be loaded with
a NULL selector. If the called procedure itself is interrupted, the NULL SS is pushed on
the stack frame. On the subsequent RETF, the NULL SS on the stack acts as a flag to
tell the processor not to load a new SS descriptor.

5.8.6 Returning from a Called Procedure
The RET instruction can be used to perform a near return, a far return at the same
privilege level, and a far return to a different privilege level. This instruction is

Table 5-2. 64-Bit-Mode Stack Layout After CALLF with CPL Change
32-bit Mode IA-32e mode

Old SS Selector +12 +24 Old SS Selector

Old ESP +8 +16 Old RSP

CS Selector +4 +8 Old CS Selector

EIP 0 ESP RSP 0 RIP

< 4 Bytes > < 8 Bytes >
5-28 Vol. 3A

PROTECTION
intended to execute returns from procedures that were called with a CALL instruc-
tion. It does not support returns from a JMP instruction, because the JMP instruction
does not save a return instruction pointer on the stack.

A near return only transfers program control within the current code segment; there-
fore, the processor performs only a limit check. When the processor pops the return
instruction pointer from the stack into the EIP register, it checks that the pointer does
not exceed the limit of the current code segment.

On a far return at the same privilege level, the processor pops both a segment
selector for the code segment being returned to and a return instruction pointer from
the stack. Under normal conditions, these pointers should be valid, because they
were pushed on the stack by the CALL instruction. However, the processor performs
privilege checks to detect situations where the current procedure might have altered
the pointer or failed to maintain the stack properly.

A far return that requires a privilege-level change is only allowed when returning to a
less privileged level (that is, the DPL of the return code segment is numerically
greater than the CPL). The processor uses the RPL field from the CS register value
saved for the calling procedure (see Figure 5-13) to determine if a return to a numer-
ically higher privilege level is required. If the RPL is numerically greater (less privi-
leged) than the CPL, a return across privilege levels occurs.

The processor performs the following steps when performing a far return to a calling
procedure (see Figures 6-2 and 6-4 in the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1, for an illustration of the stack contents prior to
and after a return):

1. Checks the RPL field of the saved CS register value to determine if a privilege
level change is required on the return.

2. Loads the CS and EIP registers with the values on the called procedure’s stack.
(Type and privilege level checks are performed on the code-segment descriptor
and RPL of the code- segment selector.)

3. (If the RET instruction includes a parameter count operand and the return
requires a privilege level change.) Adds the parameter count (in bytes obtained
from the RET instruction) to the current ESP register value (after popping the CS
and EIP values), to step past the parameters on the called procedure’s stack. The
resulting value in the ESP register points to the saved SS and ESP values for the
calling procedure’s stack. (Note that the byte count in the RET instruction must
be chosen to match the parameter count in the call gate that the calling
procedure referenced when it made the original call multiplied by the size of the
parameters.)

4. (If the return requires a privilege level change.) Loads the SS and ESP registers
with the saved SS and ESP values and switches back to the calling procedure’s
stack. The SS and ESP values for the called procedure’s stack are discarded. Any
limit violations detected while loading the stack-segment selector or stack
pointer cause a general-protection exception (#GP) to be generated. The new
stack-segment descriptor is also checked for type and privilege violations.
Vol. 3A 5-29

PROTECTION
5. (If the RET instruction includes a parameter count operand.) Adds the parameter
count (in bytes obtained from the RET instruction) to the current ESP register
value, to step past the parameters on the calling procedure’s stack. The resulting
ESP value is not checked against the limit of the stack segment. If the ESP value
is beyond the limit, that fact is not recognized until the next stack operation.

6. (If the return requires a privilege level change.) Checks the contents of the DS,
ES, FS, and GS segment registers. If any of these registers refer to segments
whose DPL is less than the new CPL (excluding conforming code segments), the
segment register is loaded with a null segment selector.

See the description of the RET instruction in Chapter 4 of the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2B, for a detailed description of
the privilege level checks and other protection checks that the processor performs on
a far return.

5.8.7 Performing Fast Calls to System Procedures with the
SYSENTER and SYSEXIT Instructions

The SYSENTER and SYSEXIT instructions were introduced into the IA-32 architecture
in the Pentium II processors for the purpose of providing a fast (low overhead) mech-
anism for calling operating system or executive procedures. SYSENTER is intended
for use by user code running at privilege level 3 to access operating system or exec-
utive procedures running at privilege level 0. SYSEXIT is intended for use by privilege
level 0 operating system or executive procedures for fast returns to privilege level 3
user code. SYSENTER can be executed from privilege levels 3, 2, 1, or 0; SYSEXIT
can only be executed from privilege level 0.

The SYSENTER and SYSEXIT instructions are companion instructions, but they do not
constitute a call/return pair. This is because SYSENTER does not save any state infor-
mation for use by SYSEXIT on a return.

The target instruction and stack pointer for these instructions are not specified
through instruction operands. Instead, they are specified through parameters
entered in MSRs and general-purpose registers.

For SYSENTER, target fields are generated using the following sources:
• Target code segment — Reads this from IA32_SYSENTER_CS.
• Target instruction — Reads this from IA32_SYSENTER_EIP.
• Stack segment — Computed by adding 8 to the value in IA32_SYSENTER_CS.
• Stack pointer — Reads this from the IA32_SYSENTER_ESP.

For SYSEXIT, target fields are generated using the following sources:
• Target code segment — Computed by adding 16 to the value in the

IA32_SYSENTER_CS.
• Target instruction — Reads this from EDX.
5-30 Vol. 3A

PROTECTION
• Stack segment — Computed by adding 24 to the value in IA32_SYSENTER_CS.
• Stack pointer — Reads this from ECX.

The SYSENTER and SYSEXIT instructions preform “fast” calls and returns because
they force the processor into a predefined privilege level 0 state when SYSENTER is
executed and into a predefined privilege level 3 state when SYSEXIT is executed. By
forcing predefined and consistent processor states, the number of privilege checks
ordinarily required to perform a far call to another privilege levels are greatly
reduced. Also, by predefining the target context state in MSRs and general-purpose
registers eliminates all memory accesses except when fetching the target code.

Any additional state that needs to be saved to allow a return to the calling procedure
must be saved explicitly by the calling procedure or be predefined through program-
ming conventions.

5.8.7.1 SYSENTER and SYSEXIT Instructions in IA-32e Mode
For Intel 64 processors, the SYSENTER and SYSEXIT instructions are enhanced to
allow fast system calls from user code running at privilege level 3 (in compatibility
mode or 64-bit mode) to 64-bit executive procedures running at privilege level 0.
IA32_SYSENTER_EIP MSR and IA32_SYSENTER_ESP MSR are expanded to hold
64-bit addresses. If IA-32e mode is inactive, only the lower 32-bit addresses stored
in these MSRs are used. If 64-bit mode is active, addresses stored in
IA32_SYSENTER_EIP and IA32_SYSENTER_ESP must be canonical. Note that, in
64-bit mode, IA32_SYSENTER_CS must not contain a NULL selector.

When SYSENTER transfers control, the following fields are generated and bits set:
• Target code segment — Reads non-NULL selector from IA32_SYSENTER_CS.
• New CS attributes — CS base = 0, CS limit = FFFFFFFFH.
• Target instruction — Reads 64-bit canonical address from

IA32_SYSENTER_EIP.
• Stack segment — Computed by adding 8 to the value from

IA32_SYSENTER_CS.
• Stack pointer — Reads 64-bit canonical address from IA32_SYSENTER_ESP.
• New SS attributes — SS base = 0, SS limit = FFFFFFFFH.

When the SYSEXIT instruction transfers control to 64-bit mode user code using
REX.W, the following fields are generated and bits set:
• Target code segment — Computed by adding 32 to the value in

IA32_SYSENTER_CS.
• New CS attributes — L-bit = 1 (go to 64-bit mode).
• Target instruction — Reads 64-bit canonical address in RDX.
• Stack segment — Computed by adding 40 to the value of IA32_SYSENTER_CS.
• Stack pointer — Update RSP using 64-bit canonical address in RCX.
Vol. 3A 5-31

PROTECTION
When SYSEXIT transfers control to compatibility mode user code when the operand
size attribute is 32 bits, the following fields are generated and bits set:
• Target code segment — Computed by adding 16 to the value in

IA32_SYSENTER_CS.
• New CS attributes — L-bit = 0 (go to compatibility mode).
• Target instruction — Fetch the target instruction from 32-bit address in EDX.
• Stack segment — Computed by adding 24 to the value in IA32_SYSENTER_CS.
• Stack pointer — Update ESP from 32-bit address in ECX.

5.8.8 Fast System Calls in 64-bit Mode
The SYSCALL and SYSRET instructions are designed for operating systems that use a
flat memory model (segmentation is not used). The instructions, along with
SYSENTER and SYSEXIT, are suited for IA-32e mode operation. SYSCALL and
SYSRET, however, are not supported in compatibility mode. Use CPUID to check if
SYSCALL and SYSRET are available (CPUID.80000001H.EDX[bit 11] = 1).

SYSCALL is intended for use by user code running at privilege level 3 to access oper-
ating system or executive procedures running at privilege level 0. SYSRET is
intended for use by privilege level 0 operating system or executive procedures for
fast returns to privilege level 3 user code.

Stack pointers for SYSCALL/SYSRET are not specified through model specific regis-
ters. The clearing of bits in RFLAGS is programmable rather than fixed.
SYSCALL/SYSRET save and restore the RFLAGS register.

For SYSCALL, the processor saves RFLAGS into R11 and the RIP of the next instruc-
tion into RCX; it then gets the privilege-level 0 target instruction and stack pointer
from:
• Target code segment — Reads a non-NULL selector from IA32_STAR[47:32].
• Target instruction — Reads a 64-bit canonical address from IA32_LSTAR.
• Stack segment — Computed by adding 8 to the value in IA32_STAR[47:32].
• System flags — The processor sets RFLAGS to the logical-AND of its current

value with the complement of the value in the IA32_FMASK MSR.

When SYSRET transfers control to 64-bit mode user code using REX.W, the processor
gets the privilege level 3 target instruction and stack pointer from:
• Target code segment — Reads a non-NULL selector from IA32_STAR[63:48] +

16.
• Target instruction — Copies the value in RCX into RIP.
• Stack segment — IA32_STAR[63:48] + 8.
• EFLAGS — Loaded from R11.
5-32 Vol. 3A

PROTECTION
When SYSRET transfers control to 32-bit mode user code using a 32-bit operand size,
the processor gets the privilege level 3 target instruction and stack pointer from:
• Target code segment — Reads a non-NULL selector from IA32_STAR[63:48].
• Target instruction — Copies the value in ECX into EIP.
• Stack segment — IA32_STAR[63:48] + 8.
• EFLAGS — Loaded from R11.

It is the responsibility of the OS to ensure the descriptors in the GDT/LDT correspond
to the selectors loaded by SYSCALL/SYSRET (consistent with the base, limit, and
attribute values forced by the instructions).

Any address written to IA32_LSTAR is first checked by WRMSR to ensure canonical
form. If an address is not canonical, an exception is generated (#GP).

See Figure 5-14 for the layout of IA32_STAR, IA32_LSTAR and IA32_FMASK.

5.9 PRIVILEGED INSTRUCTIONS
Some of the system instructions (called “privileged instructions”) are protected from
use by application programs. The privileged instructions control system functions
(such as the loading of system registers). They can be executed only when the CPL is
0 (most privileged). If one of these instructions is executed when the CPL is not 0, a

Figure 5-14. MSRs Used by SYSCALL and SYSRET

63 32 31 0

63 0

63 0

Target RIP for 64-bit Mode Calling Program

SYSRET CS and SS SYSCALL CS and SS

48 47

IA32_STAR

IA32_LSTAR

IA32_FMASK

32 31

SYSCALL EFLAGS MaskReserved

Reserved
Vol. 3A 5-33

PROTECTION
general-protection exception (#GP) is generated. The following system instructions
are privileged instructions:
• LGDT — Load GDT register.
• LLDT — Load LDT register.
• LTR — Load task register.
• LIDT — Load IDT register.
• MOV (control registers) — Load and store control registers.
• LMSW — Load machine status word.
• CLTS — Clear task-switched flag in register CR0.
• MOV (debug registers) — Load and store debug registers.
• INVD — Invalidate cache, without writeback.
• WBINVD — Invalidate cache, with writeback.
• INVLPG —Invalidate TLB entry.
• HLT— Halt processor.
• RDMSR — Read Model-Specific Registers.
• WRMSR —Write Model-Specific Registers.
• RDPMC — Read Performance-Monitoring Counter.
• RDTSC — Read Time-Stamp Counter.

Some of the privileged instructions are available only in the more recent families of
Intel 64 and IA-32 processors (see Section 22.13, “New Instructions In the Pentium
and Later IA-32 Processors”).

The PCE and TSD flags in register CR4 (bits 4 and 2, respectively) enable the RDPMC
and RDTSC instructions, respectively, to be executed at any CPL.

5.10 POINTER VALIDATION
When operating in protected mode, the processor validates all pointers to enforce
protection between segments and maintain isolation between privilege levels.
Pointer validation consists of the following checks:

1. Checking access rights to determine if the segment type is compatible with its
use.

2. Checking read/write rights.

3. Checking if the pointer offset exceeds the segment limit.

4. Checking if the supplier of the pointer is allowed to access the segment.

5. Checking the offset alignment.
5-34 Vol. 3A

PROTECTION
The processor automatically performs first, second, and third checks during instruc-
tion execution. Software must explicitly request the fourth check by issuing an ARPL
instruction. The fifth check (offset alignment) is performed automatically at privilege
level 3 if alignment checking is turned on. Offset alignment does not affect isolation
of privilege levels.

5.10.1 Checking Access Rights (LAR Instruction)
When the processor accesses a segment using a far pointer, it performs an access
rights check on the segment descriptor pointed to by the far pointer. This check is
performed to determine if type and privilege level (DPL) of the segment descriptor
are compatible with the operation to be performed. For example, when making a far
call in protected mode, the segment-descriptor type must be for a conforming or
nonconforming code segment, a call gate, a task gate, or a TSS. Then, if the call is to
a nonconforming code segment, the DPL of the code segment must be equal to the
CPL, and the RPL of the code segment’s segment selector must be less than or equal
to the DPL. If type or privilege level are found to be incompatible, the appropriate
exception is generated.

To prevent type incompatibility exceptions from being generated, software can check
the access rights of a segment descriptor using the LAR (load access rights) instruc-
tion. The LAR instruction specifies the segment selector for the segment descriptor
whose access rights are to be checked and a destination register. The instruction then
performs the following operations:

1. Check that the segment selector is not null.

2. Checks that the segment selector points to a segment descriptor that is within
the descriptor table limit (GDT or LDT).

3. Checks that the segment descriptor is a code, data, LDT, call gate, task gate, or
TSS segment-descriptor type.

4. If the segment is not a conforming code segment, checks if the segment
descriptor is visible at the CPL (that is, if the CPL and the RPL of the segment
selector are less than or equal to the DPL).

5. If the privilege level and type checks pass, loads the second doubleword of the
segment descriptor into the destination register (masked by the value
00FXFF00H, where X indicates that the corresponding 4 bits are undefined) and
sets the ZF flag in the EFLAGS register. If the segment selector is not visible at
the current privilege level or is an invalid type for the LAR instruction, the
instruction does not modify the destination register and clears the ZF flag.

Once loaded in the destination register, software can preform additional checks on
the access rights information.
Vol. 3A 5-35

PROTECTION
5.10.2 Checking Read/Write Rights (VERR and VERW Instructions)
When the processor accesses any code or data segment it checks the read/write priv-
ileges assigned to the segment to verify that the intended read or write operation is
allowed. Software can check read/write rights using the VERR (verify for reading)
and VERW (verify for writing) instructions. Both these instructions specify the
segment selector for the segment being checked. The instructions then perform the
following operations:

1. Check that the segment selector is not null.

2. Checks that the segment selector points to a segment descriptor that is within
the descriptor table limit (GDT or LDT).

3. Checks that the segment descriptor is a code or data-segment descriptor type.

4. If the segment is not a conforming code segment, checks if the segment
descriptor is visible at the CPL (that is, if the CPL and the RPL of the segment
selector are less than or equal to the DPL).

5. Checks that the segment is readable (for the VERR instruction) or writable (for
the VERW) instruction.

The VERR instruction sets the ZF flag in the EFLAGS register if the segment is visible
at the CPL and readable; the VERW sets the ZF flag if the segment is visible and writ-
able. (Code segments are never writable.) The ZF flag is cleared if any of these
checks fail.

5.10.3 Checking That the Pointer Offset Is Within Limits (LSL
Instruction)

When the processor accesses any segment it performs a limit check to insure that the
offset is within the limit of the segment. Software can perform this limit check using
the LSL (load segment limit) instruction. Like the LAR instruction, the LSL instruction
specifies the segment selector for the segment descriptor whose limit is to be
checked and a destination register. The instruction then performs the following oper-
ations:

1. Check that the segment selector is not null.

2. Checks that the segment selector points to a segment descriptor that is within
the descriptor table limit (GDT or LDT).

3. Checks that the segment descriptor is a code, data, LDT, or TSS segment-
descriptor type.

4. If the segment is not a conforming code segment, checks if the segment
descriptor is visible at the CPL (that is, if the CPL and the RPL of the segment
selector less than or equal to the DPL).

5. If the privilege level and type checks pass, loads the unscrambled limit (the limit
scaled according to the setting of the G flag in the segment descriptor) into the
5-36 Vol. 3A

PROTECTION
destination register and sets the ZF flag in the EFLAGS register. If the segment
selector is not visible at the current privilege level or is an invalid type for the LSL
instruction, the instruction does not modify the destination register and clears
the ZF flag.

Once loaded in the destination register, software can compare the segment limit with
the offset of a pointer.

5.10.4 Checking Caller Access Privileges (ARPL Instruction)
The requestor’s privilege level (RPL) field of a segment selector is intended to carry
the privilege level of a calling procedure (the calling procedure’s CPL) to a called
procedure. The called procedure then uses the RPL to determine if access to a
segment is allowed. The RPL is said to “weaken” the privilege level of the called
procedure to that of the RPL.

Operating-system procedures typically use the RPL to prevent less privileged appli-
cation programs from accessing data located in more privileged segments. When an
operating-system procedure (the called procedure) receives a segment selector from
an application program (the calling procedure), it sets the segment selector’s RPL to
the privilege level of the calling procedure. Then, when the operating system uses
the segment selector to access its associated segment, the processor performs priv-
ilege checks using the calling procedure’s privilege level (stored in the RPL) rather
than the numerically lower privilege level (the CPL) of the operating-system proce-
dure. The RPL thus insures that the operating system does not access a segment on
behalf of an application program unless that program itself has access to the
segment.

Figure 5-15 shows an example of how the processor uses the RPL field. In this
example, an application program (located in code segment A) possesses a segment
selector (segment selector D1) that points to a privileged data structure (that is, a
data structure located in a data segment D at privilege level 0).

The application program cannot access data segment D, because it does not have
sufficient privilege, but the operating system (located in code segment C) can. So, in
an attempt to access data segment D, the application program executes a call to the
operating system and passes segment selector D1 to the operating system as a
parameter on the stack. Before passing the segment selector, the (well behaved)
application program sets the RPL of the segment selector to its current privilege level
(which in this example is 3). If the operating system attempts to access data
segment D using segment selector D1, the processor compares the CPL (which is
now 0 following the call), the RPL of segment selector D1, and the DPL of data
segment D (which is 0). Since the RPL is greater than the DPL, access to data
segment D is denied. The processor’s protection mechanism thus protects data
segment D from access by the operating system, because application program’s priv-
ilege level (represented by the RPL of segment selector B) is greater than the DPL of
data segment D.
Vol. 3A 5-37

PROTECTION
Now assume that instead of setting the RPL of the segment selector to 3, the appli-
cation program sets the RPL to 0 (segment selector D2). The operating system can
now access data segment D, because its CPL and the RPL of segment selector D2 are
both equal to the DPL of data segment D.

Because the application program is able to change the RPL of a segment selector to
any value, it can potentially use a procedure operating at a numerically lower privi-
lege level to access a protected data structure. This ability to lower the RPL of a
segment selector breaches the processor’s protection mechanism.

Because a called procedure cannot rely on the calling procedure to set the RPL
correctly, operating-system procedures (executing at numerically lower privilege-
levels) that receive segment selectors from numerically higher privilege-level proce-
dures need to test the RPL of the segment selector to determine if it is at the appro-
priate level. The ARPL (adjust requested privilege level) instruction is provided for
this purpose. This instruction adjusts the RPL of one segment selector to match that
of another segment selector.

Figure 5-15. Use of RPL to Weaken Privilege Level of Called Procedure

Passed as a
parameter on

the stack.

Access

allowed

Access
allowed

Application Program

Operating
System

Lowest Privilege

Highest Privilege

3

2

1

0

Data
Segment D

not

Segment Sel. D1
RPL=3

Segment Sel. D2
RPL=0

Gate Selector B
RPL=3

Code
Segment A

CPL=3

Code
Segment C

DPL=0

Call
Gate B

DPL=3

DPL=0
5-38 Vol. 3A

PROTECTION
The example in Figure 5-15 demonstrates how the ARPL instruction is intended to be
used. When the operating-system receives segment selector D2 from the application
program, it uses the ARPL instruction to compare the RPL of the segment selector
with the privilege level of the application program (represented by the code-segment
selector pushed onto the stack). If the RPL is less than application program’s privi-
lege level, the ARPL instruction changes the RPL of the segment selector to match the
privilege level of the application program (segment selector D1). Using this instruc-
tion thus prevents a procedure running at a numerically higher privilege level from
accessing numerically lower privilege-level (more privileged) segments by lowering
the RPL of a segment selector.

Note that the privilege level of the application program can be determined by reading
the RPL field of the segment selector for the application-program’s code segment.
This segment selector is stored on the stack as part of the call to the operating
system. The operating system can copy the segment selector from the stack into a
register for use as an operand for the ARPL instruction.

5.10.5 Checking Alignment
When the CPL is 3, alignment of memory references can be checked by setting the
AM flag in the CR0 register and the AC flag in the EFLAGS register. Unaligned memory
references generate alignment exceptions (#AC). The processor does not generate
alignment exceptions when operating at privilege level 0, 1, or 2. See Table 6-7 for a
description of the alignment requirements when alignment checking is enabled.

5.11 PAGE-LEVEL PROTECTION
Page-level protection can be used alone or applied to segments. When page-level
protection is used with the flat memory model, it allows supervisor code and data
(the operating system or executive) to be protected from user code and data (appli-
cation programs). It also allows pages containing code to be write protected. When
the segment- and page-level protection are combined, page-level read/write protec-
tion allows more protection granularity within segments.

With page-level protection (as with segment-level protection) each memory refer-
ence is checked to verify that protection checks are satisfied. All checks are made
before the memory cycle is started, and any violation prevents the cycle from
starting and results in a page-fault exception being generated. Because checks are
performed in parallel with address translation, there is no performance penalty.

The processor performs two page-level protection checks:
• Restriction of addressable domain (supervisor and user modes).
• Page type (read only or read/write).

Violations of either of these checks results in a page-fault exception being generated.
See Chapter 6, “Interrupt 14—Page-Fault Exception (#PF),” for an explanation of the
Vol. 3A 5-39

PROTECTION
page-fault exception mechanism. This chapter describes the protection violations
which lead to page-fault exceptions.

5.11.1 Page-Protection Flags
Protection information for pages is contained in two flags in a paging-structure entry
(see Chapter 4): the read/write flag (bit 1) and the user/supervisor flag (bit 2). The
protection checks use the flags in all paging structures.

5.11.2 Restricting Addressable Domain
The page-level protection mechanism allows restricting access to pages based on
two privilege levels:
• Supervisor mode (U/S flag is 0)—(Most privileged) For the operating system or

executive, other system software (such as device drivers), and protected system
data (such as page tables).

• User mode (U/S flag is 1)—(Least privileged) For application code and data.

The segment privilege levels map to the page privilege levels as follows. If the
processor is currently operating at a CPL of 0, 1, or 2, it is in supervisor mode; if it is
operating at a CPL of 3, it is in user mode. When the processor is in supervisor mode,
it can access all pages; when in user mode, it can access only user-level pages. (Note
that the WP flag in control register CR0 modifies the supervisor permissions, as
described in Section 5.11.3, “Page Type.”)

Note that to use the page-level protection mechanism, code and data segments must
be set up for at least two segment-based privilege levels: level 0 for supervisor code
and data segments and level 3 for user code and data segments. (In this model, the
stacks are placed in the data segments.) To minimize the use of segments, a flat
memory model can be used (see Section 3.2.1, “Basic Flat Model”).

Here, the user and supervisor code and data segments all begin at address zero in
the linear address space and overlay each other. With this arrangement, operating-
system code (running at the supervisor level) and application code (running at the
user level) can execute as if there are no segments. Protection between operating-
system and application code and data is provided by the processor’s page-level
protection mechanism.

5.11.3 Page Type
The page-level protection mechanism recognizes two page types:
• Read-only access (R/W flag is 0).
• Read/write access (R/W flag is 1).
5-40 Vol. 3A

PROTECTION
When the processor is in supervisor mode and the WP flag in register CR0 is clear (its
state following reset initialization), all pages are both readable and writable (write-
protection is ignored). When the processor is in user mode, it can write only to user-
mode pages that are read/write accessible. User-mode pages which are read/write or
read-only are readable; supervisor-mode pages are neither readable nor writable
from user mode. A page-fault exception is generated on any attempt to violate the
protection rules.

Starting with the P6 family, Intel processors allow user-mode pages to be write-
protected against supervisor-mode access. Setting CR0.WP = 1 enables supervisor-
mode sensitivity to write protected pages. If CR0.WP = 1, read-only pages are not
writable from any privilege level. This supervisor write-protect feature is useful for
implementing a “copy-on-write” strategy used by some operating systems, such as
UNIX*, for task creation (also called forking or spawning). When a new task is
created, it is possible to copy the entire address space of the parent task. This gives
the child task a complete, duplicate set of the parent's segments and pages. An alter-
native copy-on-write strategy saves memory space and time by mapping the child's
segments and pages to the same segments and pages used by the parent task. A
private copy of a page gets created only when one of the tasks writes to the page. By
using the WP flag and marking the shared pages as read-only, the supervisor can
detect an attempt to write to a page, and can copy the page at that time.

5.11.4 Combining Protection of Both Levels of Page Tables
For any one page, the protection attributes of its page-directory entry (first-level
page table) may differ from those of its page-table entry (second-level page table).
The processor checks the protection for a page in both its page-directory and the
page-table entries. Table 5-3 shows the protection provided by the possible combina-
tions of protection attributes when the WP flag is clear.

5.11.5 Overrides to Page Protection
The following types of memory accesses are checked as if they are privilege-level 0
accesses, regardless of the CPL at which the processor is currently operating:
• Access to segment descriptors in the GDT, LDT, or IDT.
• Access to an inner-privilege-level stack during an inter-privilege-level call or a

call to in exception or interrupt handler, when a change of privilege level occurs.

5.12 COMBINING PAGE AND SEGMENT PROTECTION
When paging is enabled, the processor evaluates segment protection first, then
evaluates page protection. If the processor detects a protection violation at either
the segment level or the page level, the memory access is not carried out and an
Vol. 3A 5-41

PROTECTION
exception is generated. If an exception is generated by segmentation, no paging
exception is generated.

Page-level protections cannot be used to override segment-level protection. For
example, a code segment is by definition not writable. If a code segment is paged,
setting the R/W flag for the pages to read-write does not make the pages writable.
Attempts to write into the pages will be blocked by segment-level protection checks.

Page-level protection can be used to enhance segment-level protection. For
example, if a large read-write data segment is paged, the page-protection mecha-
nism can be used to write-protect individual pages.

Table 5-3. Combined Page-Directory and Page-Table Protection

Page-Directory Entry Page-Table Entry Combined Effect

Privilege Access Type Privilege Access Type Privilege Access Type

User Read-Only User Read-Only User Read-Only

User Read-Only User Read-Write User Read-Only

User Read-Write User Read-Only User Read-Only

User Read-Write User Read-Write User Read/Write

User Read-Only Supervisor Read-Only Supervisor Read/Write*

User Read-Only Supervisor Read-Write Supervisor Read/Write*

User Read-Write Supervisor Read-Only Supervisor Read/Write*

User Read-Write Supervisor Read-Write Supervisor Read/Write

Supervisor Read-Only User Read-Only Supervisor Read/Write*

Supervisor Read-Only User Read-Write Supervisor Read/Write*

Supervisor Read-Write User Read-Only Supervisor Read/Write*

Supervisor Read-Write User Read-Write Supervisor Read/Write

Supervisor Read-Only Supervisor Read-Only Supervisor Read/Write*

Supervisor Read-Only Supervisor Read-Write Supervisor Read/Write*

Supervisor Read-Write Supervisor Read-Only Supervisor Read/Write*

Supervisor Read-Write Supervisor Read-Write Supervisor Read/Write

NOTE:
* If CR0.WP = 1, access type is determined by the R/W flags of the page-directory and page-table

entries. IF CR0.WP = 0, supervisor privilege permits read-write access.
5-42 Vol. 3A

PROTECTION
5.13 PAGE-LEVEL PROTECTION AND EXECUTE-DISABLE
BIT

In addition to page-level protection offered by the U/S and R/W flags, paging struc-
tures used with PAE paging and IA-32e paging (see Chapter 4) provide the execute-
disable bit. This bit offers additional protection for data pages.

An Intel 64 or IA-32 processor with the execute-disable bit capability can prevent
data pages from being used by malicious software to execute code. This capability is
provided in:
• 32-bit protected mode with PAE enabled.
• IA-32e mode.

While the execute-disable bit capability does not introduce new instructions, it does
require operating systems to use a PAE-enabled environment and establish a page-
granular protection policy for memory pages.

If the execute-disable bit of a memory page is set, that page can be used only as
data. An attempt to execute code from a memory page with the execute-disable bit
set causes a page-fault exception.

The execute-disable capability is supported only with PAE paging and IA-32e paging.
It is not supported with 32-bit paging. Existing page-level protection mechanisms
(see Section 5.11, “Page-Level Protection”) continue to apply to memory pages inde-
pendent of the execute-disable setting.

5.13.1 Detecting and Enabling the Execute-Disable Capability
Software can detect the presence of the execute-disable capability using the CPUID
instruction. CPUID.80000001H:EDX.NX [bit 20] = 1 indicates the capability is avail-
able.

If the capability is available, software can enable it by setting IA32_EFER.NXE[bit 11]
to 1. IA32_EFER is available if CPUID.80000001H.EDX[bit 20 or 29] = 1.

If the execute-disable capability is not available, a write to set IA32_EFER.NXE
produces a #GP exception. See Table 5-4.

Table 5-4. Extended Feature Enable MSR (IA32_EFER)
63:12 11 10 9 8 7:1 0

Reserved Execute-
disable bit
enable (NXE)

IA-32e mode
active (LMA)

Reserve
d

IA-32e mode
enable (LME)

Reserve
d

SysCall enable
(SCE)
Vol. 3A 5-43

PROTECTION
5.13.2 Execute-Disable Page Protection
The execute-disable bit in the paging structures enhances page protection for data
pages. Instructions cannot be fetched from a memory page if IA32_EFER.NXE =1
and the execute-disable bit is set in any of the paging-structure entries used to map
the page. Table 5-5 lists the valid usage of a page in relation to the value of execute-
disable bit (bit 63) of the corresponding entry in each level of the paging structures.
Execute-disable protection can be activated using the execute-disable bit at any level
of the paging structure, irrespective of the corresponding entry in other levels. When
execute-disable protection is not activated, the page can be used as code or data.

In legacy PAE-enabled mode, Table 5-6 and Table 5-7 show the effect of setting the
execute-disable bit for code and data pages.

Table 5-5. IA-32e Mode Page Level Protection Matrix
with Execute-Disable Bit Capability

Execute Disable Bit Value (Bit 63) Valid Usage

PML4 PDP PDE PTE

Bit 63 = 1 * * * Data

* Bit 63 = 1 * * Data

* * Bit 63 = 1 * Data

* * * Bit 63 = 1 Data

Bit 63 = 0 Bit 63 = 0 Bit 63 = 0 Bit 63 = 0 Data/Code

NOTES:
* Value not checked.
5-44 Vol. 3A

PROTECTION
5.13.3 Reserved Bit Checking
The processor enforces reserved bit checking in paging data structure entries. The
bits being checked varies with paging mode and may vary with the size of physical
address space.

Table 5-8 shows the reserved bits that are checked when the execute disable bit
capability is enabled (CR4.PAE = 1 and IA32_EFER.NXE = 1). Table 5-8 and Table
show the following paging modes:
• Non-PAE 4-KByte paging: 4-KByte-page only paging (CR4.PAE = 0,

CR4.PSE = 0).
• PSE36: 4-KByte and 4-MByte pages (CR4.PAE = 0, CR4.PSE = 1).
• PAE: 4-KByte and 2-MByte pages (CR4.PAE = 1, CR4.PSE = X).

The reserved bit checking depends on the physical address size supported by the
implementation, which is reported in CPUID.80000008H. See the table note.

Table 5-6. Legacy PAE-Enabled 4-KByte Page Level Protection Matrix
with Execute-Disable Bit Capability

Execute Disable Bit Value (Bit 63) Valid Usage

PDE PTE

Bit 63 = 1 * Data

* Bit 63 = 1 Data

Bit 63 = 0 Bit 63 = 0 Data/Code

NOTE:
* Value not checked.

Table 5-7. Legacy PAE-Enabled 2-MByte Page Level Protection
with Execute-Disable Bit Capability

Execute Disable Bit Value (Bit 63) Valid Usage

PDE

Bit 63 = 1 Data

Bit 63 = 0 Data/Code
Vol. 3A 5-45

PROTECTION
If execute disable bit capability is not enabled or not available, reserved bit checking
in 64-bit mode includes bit 63 and additional bits. This and reserved bit checking for
legacy 32-bit paging modes are shown in Table 5-10.

Table 5-8. IA-32e Mode Page Level Protection Matrix with Execute-Disable Bit
Capability Enabled

Mode Paging Mode Check Bits

32-bit 4-KByte paging (non-PAE) No reserved bits checked

PSE36 - PDE, 4-MByte page Bit [21]

PSE36 - PDE, 4-KByte page No reserved bits checked

PSE36 - PTE No reserved bits checked

PAE - PDP table entry Bits [63:MAXPHYADDR] & [8:5] & [2:1] *

PAE - PDE, 2-MByte page Bits [62:MAXPHYADDR] & [20:13] *

PAE - PDE, 4-KByte page Bits [62:MAXPHYADDR] *

PAE - PTE Bits [62:MAXPHYADDR] *

64-bit PML4E Bits [51:MAXPHYADDR] *

PDPTE Bits [51:MAXPHYADDR] *

PDE, 2-MByte page Bits [51:MAXPHYADDR] & [20:13] *

PDE, 4-KByte page Bits [51:MAXPHYADDR] *

PTE Bits [51:MAXPHYADDR] *

NOTES:
* MAXPHYADDR is the maximum physical address size and is indicated by

CPUID.80000008H:EAX[bits 7-0].
5-46 Vol. 3A

PROTECTION
5.13.4 Exception Handling
When execute disable bit capability is enabled (IA32_EFER.NXE = 1), conditions for
a page fault to occur include the same conditions that apply to an Intel 64 or IA-32
processor without execute disable bit capability plus the following new condition: an
instruction fetch to a linear address that translates to physical address in a memory
page that has the execute-disable bit set.

An Execute Disable Bit page fault can occur at all privilege levels. It can occur on any
instruction fetch, including (but not limited to): near branches, far branches,
CALL/RET/INT/IRET execution, sequential instruction fetches, and task switches. The
execute-disable bit in the page translation mechanism is checked only when:
• IA32_EFER.NXE = 1.
• The instruction translation look-aside buffer (ITLB) is loaded with a page that is

not already present in the ITLB.

Table 5-9. Reserved Bit Checking WIth Execute-Disable Bit Capability Not Enabled
Mode Paging Mode Check Bits

32-bit KByte paging (non-PAE) No reserved bits checked

PSE36 - PDE, 4-MByte page Bit [21]

PSE36 - PDE, 4-KByte page No reserved bits checked

PSE36 - PTE No reserved bits checked

PAE - PDP table entry Bits [63:MAXPHYADDR] & [8:5] & [2:1]*

PAE - PDE, 2-MByte page Bits [63:MAXPHYADDR] & [20:13]*

PAE - PDE, 4-KByte page Bits [63:MAXPHYADDR]*

PAE - PTE Bits [63:MAXPHYADDR]*

64-bit PML4E Bit [63], bits [51:MAXPHYADDR]*

PDPTE Bit [63], bits [51:MAXPHYADDR]*

PDE, 2-MByte page Bit [63], bits [51:MAXPHYADDR] & [20:13]*

PDE, 4-KByte page Bit [63], bits [51:MAXPHYADDR]*

PTE Bit [63], bits [51:MAXPHYADDR]*

NOTES:
* MAXPHYADDR is the maximum physical address size and is indicated by

CPUID.80000008H:EAX[bits 7-0].
Vol. 3A 5-47

CHAPTER 6
INTERRUPT AND EXCEPTION HANDLING

This chapter describes the interrupt and exception-handling mechanism when oper-
ating in protected mode on an Intel 64 or IA-32 processor. Most of the information
provided here also applies to interrupt and exception mechanisms used in real-
address, virtual-8086 mode, and 64-bit mode.

Chapter 20, “8086 Emulation,” describes information specific to interrupt and excep-
tion mechanisms in real-address and virtual-8086 mode. Section 6.14, “Exception
and Interrupt Handling in 64-bit Mode,” describes information specific to interrupt
and exception mechanisms in IA-32e mode and 64-bit sub-mode.

6.1 INTERRUPT AND EXCEPTION OVERVIEW
Interrupts and exceptions are events that indicate that a condition exists somewhere
in the system, the processor, or within the currently executing program or task that
requires the attention of a processor. They typically result in a forced transfer of
execution from the currently running program or task to a special software routine or
task called an interrupt handler or an exception handler. The action taken by a
processor in response to an interrupt or exception is referred to as servicing or
handling the interrupt or exception.

Interrupts occur at random times during the execution of a program, in response to
signals from hardware. System hardware uses interrupts to handle events external
to the processor, such as requests to service peripheral devices. Software can also
generate interrupts by executing the INT n instruction.

Exceptions occur when the processor detects an error condition while executing an
instruction, such as division by zero. The processor detects a variety of error condi-
tions including protection violations, page faults, and internal machine faults. The
machine-check architecture of the Pentium 4, Intel Xeon, P6 family, and Pentium
processors also permits a machine-check exception to be generated when internal
hardware errors and bus errors are detected.

When an interrupt is received or an exception is detected, the currently running
procedure or task is suspended while the processor executes an interrupt or excep-
tion handler. When execution of the handler is complete, the processor resumes
execution of the interrupted procedure or task. The resumption of the interrupted
procedure or task happens without loss of program continuity, unless recovery from
an exception was not possible or an interrupt caused the currently running program
to be terminated.

This chapter describes the processor’s interrupt and exception-handling mechanism,
when operating in protected mode. A description of the exceptions and the conditions
that cause them to be generated is given at the end of this chapter.
Vol. 3A 6-1

INTERRUPT AND EXCEPTION HANDLING
6.2 EXCEPTION AND INTERRUPT VECTORS
To aid in handling exceptions and interrupts, each architecturally defined exception
and each interrupt condition requiring special handling by the processor is assigned
a unique identification number, called a vector number. The processor uses the vector
number assigned to an exception or interrupt as an index into the interrupt
descriptor table (IDT). The table provides the entry point to an exception or interrupt
handler (see Section 6.10, “Interrupt Descriptor Table (IDT)”).

The allowable range for vector numbers is 0 to 255. Vector numbers in the range 0
through 31 are reserved by the Intel 64 and IA-32 architectures for architecture-
defined exceptions and interrupts. Not all of the vector numbers in this range have a
currently defined function. The unassigned vector numbers in this range are
reserved. Do not use the reserved vector numbers.

Vector numbers in the range 32 to 255 are designated as user-defined interrupts and
are not reserved by the Intel 64 and IA-32 architecture. These interrupts are gener-
ally assigned to external I/O devices to enable those devices to send interrupts to the
processor through one of the external hardware interrupt mechanisms (see Section
6.3, “Sources of Interrupts”).

Table 6-1 shows vector number assignments for architecturally defined exceptions
and for the NMI interrupt. This table gives the exception type (see Section 6.5,
“Exception Classifications”) and indicates whether an error code is saved on the stack
for the exception. The source of each predefined exception and the NMI interrupt is
also given.

6.3 SOURCES OF INTERRUPTS
The processor receives interrupts from two sources:
• External (hardware generated) interrupts.
• Software-generated interrupts.

6.3.1 External Interrupts
External interrupts are received through pins on the processor or through the local
APIC. The primary interrupt pins on Pentium 4, Intel Xeon, P6 family, and Pentium
processors are the LINT[1:0] pins, which are connected to the local APIC (see
Chapter 10, “Advanced Programmable Interrupt Controller (APIC)”). When the local
APIC is enabled, the LINT[1:0] pins can be programmed through the APIC’s local
vector table (LVT) to be associated with any of the processor’s exception or interrupt
vectors.

When the local APIC is global/hardware disabled, these pins are configured as INTR
and NMI pins, respectively. Asserting the INTR pin signals the processor that an
external interrupt has occurred. The processor reads from the system bus the inter-
6-2 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING
rupt vector number provided by an external interrupt controller, such as an 8259A
(see Section 6.2, “Exception and Interrupt Vectors”). Asserting the NMI pin signals a
non-maskable interrupt (NMI), which is assigned to interrupt vector 2.

Table 6-1. Protected-Mode Exceptions and Interrupts

Vector
No.

Mne-
monic

Description Type Error
Code

Source

 0 #DE Divide Error Fault No DIV and IDIV instructions.

 1 #DB RESERVED Fault/
Trap

No For Intel use only.

 2 — NMI Interrupt Interrupt No Nonmaskable external
interrupt.

 3 #BP Breakpoint Trap No INT 3 instruction.

 4 #OF Overflow Trap No INTO instruction.

 5 #BR BOUND Range Exceeded Fault No BOUND instruction.

 6 #UD Invalid Opcode (Undefined
Opcode)

Fault No UD2 instruction or reserved
opcode.1

 7 #NM Device Not Available (No
Math Coprocessor)

Fault No Floating-point or WAIT/FWAIT
instruction.

 8 #DF Double Fault Abort Yes
(zero)

Any instruction that can
generate an exception, an NMI,
or an INTR.

 9 Coprocessor Segment
Overrun (reserved)

Fault No Floating-point instruction.2

10 #TS Invalid TSS Fault Yes Task switch or TSS access.

11 #NP Segment Not Present Fault Yes Loading segment registers or
accessing system segments.

12 #SS Stack-Segment Fault Fault Yes Stack operations and SS
register loads.

13 #GP General Protection Fault Yes Any memory reference and
other protection checks.

14 #PF Page Fault Fault Yes Any memory reference.

15 — (Intel reserved. Do not
use.)

No

16 #MF x87 FPU Floating-Point
Error (Math Fault)

Fault No x87 FPU floating-point or
WAIT/FWAIT instruction.
Vol. 3A 6-3

INTERRUPT AND EXCEPTION HANDLING
The processor’s local APIC is normally connected to a system-based I/O APIC. Here,
external interrupts received at the I/O APIC’s pins can be directed to the local APIC
through the system bus (Pentium 4, Intel Core Duo, Intel Core 2, Intel® Atom™, and
Intel Xeon processors) or the APIC serial bus (P6 family and Pentium processors).
The I/O APIC determines the vector number of the interrupt and sends this number
to the local APIC. When a system contains multiple processors, processors can also
send interrupts to one another by means of the system bus (Pentium 4, Intel Core
Duo, Intel Core 2, Intel Atom, and Intel Xeon processors) or the APIC serial bus (P6
family and Pentium processors).

The LINT[1:0] pins are not available on the Intel486 processor and earlier Pentium
processors that do not contain an on-chip local APIC. These processors have dedi-
cated NMI and INTR pins. With these processors, external interrupts are typically
generated by a system-based interrupt controller (8259A), with the interrupts being
signaled through the INTR pin.

Note that several other pins on the processor can cause a processor interrupt to
occur. However, these interrupts are not handled by the interrupt and exception
mechanism described in this chapter. These pins include the RESET#, FLUSH#,
STPCLK#, SMI#, R/S#, and INIT# pins. Whether they are included on a particular
processor is implementation dependent. Pin functions are described in the data
books for the individual processors. The SMI# pin is described in Chapter 33,
“System Management Mode.”

17 #AC Alignment Check Fault Yes
(Zero
)

Any data reference in
memory.3

18 #MC Machine Check Abort No Error codes (if any) and source
are model dependent.4

19 #XM SIMD Floating-Point
Exception

Fault No SSE/SSE2/SSE3 floating-point
instructions5

20-31 — Intel reserved. Do not use.

32-
255

— User Defined (Non-
reserved) Interrupts

Interrupt External interrupt or INT n
instruction.

NOTES:
1. The UD2 instruction was introduced in the Pentium Pro processor.
2. Processors after the Intel386 processor do not generate this exception.
3. This exception was introduced in the Intel486 processor.
4. This exception was introduced in the Pentium processor and enhanced in the P6 family proces-

sors.
5. This exception was introduced in the Pentium III processor.

Table 6-1. Protected-Mode Exceptions and Interrupts (Contd.)
6-4 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING
6.3.2 Maskable Hardware Interrupts
Any external interrupt that is delivered to the processor by means of the INTR pin or
through the local APIC is called a maskable hardware interrupt. Maskable hardware
interrupts that can be delivered through the INTR pin include all IA-32 architecture
defined interrupt vectors from 0 through 255; those that can be delivered through
the local APIC include interrupt vectors 16 through 255.

The IF flag in the EFLAGS register permits all maskable hardware interrupts to be
masked as a group (see Section 6.8.1, “Masking Maskable Hardware Interrupts”).
Note that when interrupts 0 through 15 are delivered through the local APIC, the
APIC indicates the receipt of an illegal vector.

6.3.3 Software-Generated Interrupts
The INT n instruction permits interrupts to be generated from within software by
supplying an interrupt vector number as an operand. For example, the INT 35
instruction forces an implicit call to the interrupt handler for interrupt 35.

Any of the interrupt vectors from 0 to 255 can be used as a parameter in this instruc-
tion. If the processor’s predefined NMI vector is used, however, the response of the
processor will not be the same as it would be from an NMI interrupt generated in the
normal manner. If vector number 2 (the NMI vector) is used in this instruction, the
NMI interrupt handler is called, but the processor’s NMI-handling hardware is not
activated.

Interrupts generated in software with the INT n instruction cannot be masked by the
IF flag in the EFLAGS register.

6.4 SOURCES OF EXCEPTIONS
The processor receives exceptions from three sources:
• Processor-detected program-error exceptions.
• Software-generated exceptions.
• Machine-check exceptions.

6.4.1 Program-Error Exceptions
The processor generates one or more exceptions when it detects program errors
during the execution in an application program or the operating system or executive.
Intel 64 and IA-32 architectures define a vector number for each processor-detect-
able exception. Exceptions are classified as faults, traps, and aborts (see Section
6.5, “Exception Classifications”).
Vol. 3A 6-5

INTERRUPT AND EXCEPTION HANDLING
6.4.2 Software-Generated Exceptions
The INTO, INT 3, and BOUND instructions permit exceptions to be generated in soft-
ware. These instructions allow checks for exception conditions to be performed at
points in the instruction stream. For example, INT 3 causes a breakpoint exception to
be generated.

The INT n instruction can be used to emulate exceptions in software; but there is a
limitation. If INT n provides a vector for one of the architecturally-defined excep-
tions, the processor generates an interrupt to the correct vector (to access the
exception handler) but does not push an error code on the stack. This is true even if
the associated hardware-generated exception normally produces an error code. The
exception handler will still attempt to pop an error code from the stack while handling
the exception. Because no error code was pushed, the handler will pop off and
discard the EIP instead (in place of the missing error code). This sends the return to
the wrong location.

6.4.3 Machine-Check Exceptions
The P6 family and Pentium processors provide both internal and external machine-
check mechanisms for checking the operation of the internal chip hardware and bus
transactions. These mechanisms are implementation dependent. When a machine-
check error is detected, the processor signals a machine-check exception (vector 18)
and returns an error code.

See Chapter 6, “Interrupt 18—Machine-Check Exception (#MC)” and Chapter 15,
“Machine-Check Architecture,” for more information about the machine-check
mechanism.

6.5 EXCEPTION CLASSIFICATIONS
Exceptions are classified as faults, traps, or aborts depending on the way they are
reported and whether the instruction that caused the exception can be restarted
without loss of program or task continuity.
• Faults — A fault is an exception that can generally be corrected and that, once

corrected, allows the program to be restarted with no loss of continuity. When a
fault is reported, the processor restores the machine state to the state prior to
the beginning of execution of the faulting instruction. The return address (saved
contents of the CS and EIP registers) for the fault handler points to the faulting
instruction, rather than to the instruction following the faulting instruction.

• Traps — A trap is an exception that is reported immediately following the
execution of the trapping instruction. Traps allow execution of a program or task
to be continued without loss of program continuity. The return address for the
trap handler points to the instruction to be executed after the trapping
instruction.
6-6 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING
• Aborts — An abort is an exception that does not always report the precise
location of the instruction causing the exception and does not allow a restart of
the program or task that caused the exception. Aborts are used to report severe
errors, such as hardware errors and inconsistent or illegal values in system
tables.

NOTE
One exception subset normally reported as a fault is not restartable.
Such exceptions result in loss of some processor state. For example,
executing a POPAD instruction where the stack frame crosses over
the end of the stack segment causes a fault to be reported. In this
situation, the exception handler sees that the instruction pointer
(CS:EIP) has been restored as if the POPAD instruction had not been
executed. However, internal processor state (the general-purpose
registers) will have been modified. Such cases are considered
programming errors. An application causing this class of exceptions
should be terminated by the operating system.

6.6 PROGRAM OR TASK RESTART
To allow the restarting of program or task following the handling of an exception or
an interrupt, all exceptions (except aborts) are guaranteed to report exceptions on
an instruction boundary. All interrupts are guaranteed to be taken on an instruction
boundary.

For fault-class exceptions, the return instruction pointer (saved when the processor
generates an exception) points to the faulting instruction. So, when a program or task
is restarted following the handling of a fault, the faulting instruction is restarted (re-
executed). Restarting the faulting instruction is commonly used to handle exceptions
that are generated when access to an operand is blocked. The most common example
of this type of fault is a page-fault exception (#PF) that occurs when a program or
task references an operand located on a page that is not in memory. When a page-
fault exception occurs, the exception handler can load the page into memory and
resume execution of the program or task by restarting the faulting instruction. To
insure that the restart is handled transparently to the currently executing program or
task, the processor saves the necessary registers and stack pointers to allow a restart
to the state prior to the execution of the faulting instruction.

For trap-class exceptions, the return instruction pointer points to the instruction
following the trapping instruction. If a trap is detected during an instruction which
transfers execution, the return instruction pointer reflects the transfer. For example,
if a trap is detected while executing a JMP instruction, the return instruction pointer
points to the destination of the JMP instruction, not to the next address past the JMP
instruction. All trap exceptions allow program or task restart with no loss of conti-
nuity. For example, the overflow exception is a trap exception. Here, the return
instruction pointer points to the instruction following the INTO instruction that tested
Vol. 3A 6-7

INTERRUPT AND EXCEPTION HANDLING
EFLAGS.OF (overflow) flag. The trap handler for this exception resolves the overflow
condition. Upon return from the trap handler, program or task execution continues at
the instruction following the INTO instruction.

The abort-class exceptions do not support reliable restarting of the program or task.
Abort handlers are designed to collect diagnostic information about the state of the
processor when the abort exception occurred and then shut down the application and
system as gracefully as possible.

Interrupts rigorously support restarting of interrupted programs and tasks without
loss of continuity. The return instruction pointer saved for an interrupt points to the
next instruction to be executed at the instruction boundary where the processor took
the interrupt. If the instruction just executed has a repeat prefix, the interrupt is
taken at the end of the current iteration with the registers set to execute the next
iteration.

The ability of a P6 family processor to speculatively execute instructions does not
affect the taking of interrupts by the processor. Interrupts are taken at instruction
boundaries located during the retirement phase of instruction execution; so they are
always taken in the “in-order” instruction stream. See Chapter 2, “Intel® 64 and IA-
32 Architectures,” in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1, for more information about the P6 family processors’ microarchi-
tecture and its support for out-of-order instruction execution.

Note that the Pentium processor and earlier IA-32 processors also perform varying
amounts of prefetching and preliminary decoding. With these processors as well,
exceptions and interrupts are not signaled until actual “in-order” execution of the
instructions. For a given code sample, the signaling of exceptions occurs uniformly
when the code is executed on any family of IA-32 processors (except where new
exceptions or new opcodes have been defined).

6.7 NONMASKABLE INTERRUPT (NMI)
The nonmaskable interrupt (NMI) can be generated in either of two ways:
• External hardware asserts the NMI pin.
• The processor receives a message on the system bus (Pentium 4, Intel Core Duo,

Intel Core 2, Intel Atom, and Intel Xeon processors) or the APIC serial bus (P6
family and Pentium processors) with a delivery mode NMI.

When the processor receives a NMI from either of these sources, the processor
handles it immediately by calling the NMI handler pointed to by interrupt vector
number 2. The processor also invokes certain hardware conditions to insure that no
other interrupts, including NMI interrupts, are received until the NMI handler has
completed executing (see Section 6.7.1, “Handling Multiple NMIs”).

Also, when an NMI is received from either of the above sources, it cannot be masked
by the IF flag in the EFLAGS register.
6-8 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING
It is possible to issue a maskable hardware interrupt (through the INTR pin) to vector
2 to invoke the NMI interrupt handler; however, this interrupt will not truly be an NMI
interrupt. A true NMI interrupt that activates the processor’s NMI-handling hardware
can only be delivered through one of the mechanisms listed above.

6.7.1 Handling Multiple NMIs
While an NMI interrupt handler is executing, the processor disables additional calls to
the NMI handler until the next IRET instruction is executed. This blocking of subse-
quent NMIs prevents stacking up calls to the NMI handler. It is recommended that the
NMI interrupt handler be accessed through an interrupt gate to disable maskable
hardware interrupts (see Section 6.8.1, “Masking Maskable Hardware Interrupts”). If
the NMI handler is a virtual-8086 task with an IOPL of less than 3, an IRET instruction
issued from the handler generates a general-protection exception (see Section
20.2.7, “Sensitive Instructions”). In this case, the NMI is unmasked before the
general-protection exception handler is invoked.

6.8 ENABLING AND DISABLING INTERRUPTS
The processor inhibits the generation of some interrupts, depending on the state of
the processor and of the IF and RF flags in the EFLAGS register, as described in the
following sections.

6.8.1 Masking Maskable Hardware Interrupts
The IF flag can disable the servicing of maskable hardware interrupts received on the
processor’s INTR pin or through the local APIC (see Section 6.3.2, “Maskable Hard-
ware Interrupts”). When the IF flag is clear, the processor inhibits interrupts deliv-
ered to the INTR pin or through the local APIC from generating an internal interrupt
request; when the IF flag is set, interrupts delivered to the INTR or through the local
APIC pin are processed as normal external interrupts.

The IF flag does not affect non-maskable interrupts (NMIs) delivered to the NMI pin
or delivery mode NMI messages delivered through the local APIC, nor does it affect
processor generated exceptions. As with the other flags in the EFLAGS register, the
processor clears the IF flag in response to a hardware reset.

The fact that the group of maskable hardware interrupts includes the reserved inter-
rupt and exception vectors 0 through 32 can potentially cause confusion. Architectur-
ally, when the IF flag is set, an interrupt for any of the vectors from 0 through 32 can
be delivered to the processor through the INTR pin and any of the vectors from 16
through 32 can be delivered through the local APIC. The processor will then generate
an interrupt and call the interrupt or exception handler pointed to by the vector
number. So for example, it is possible to invoke the page-fault handler through the
INTR pin (by means of vector 14); however, this is not a true page-fault exception. It
Vol. 3A 6-9

INTERRUPT AND EXCEPTION HANDLING
is an interrupt. As with the INT n instruction (see Section 6.4.2, “Software-Generated
Exceptions”), when an interrupt is generated through the INTR pin to an exception
vector, the processor does not push an error code on the stack, so the exception
handler may not operate correctly.

The IF flag can be set or cleared with the STI (set interrupt-enable flag) and CLI
(clear interrupt-enable flag) instructions, respectively. These instructions may be
executed only if the CPL is equal to or less than the IOPL. A general-protection excep-
tion (#GP) is generated if they are executed when the CPL is greater than the IOPL.
(The effect of the IOPL on these instructions is modified slightly when the virtual
mode extension is enabled by setting the VME flag in control register CR4: see
Section 20.3, “Interrupt and Exception Handling in Virtual-8086 Mode.” Behavior is
also impacted by the PVI flag: see Section 20.4, “Protected-Mode Virtual Interrupts.”

The IF flag is also affected by the following operations:
• The PUSHF instruction stores all flags on the stack, where they can be examined

and modified. The POPF instruction can be used to load the modified flags back
into the EFLAGS register.

• Task switches and the POPF and IRET instructions load the EFLAGS register;
therefore, they can be used to modify the setting of the IF flag.

• When an interrupt is handled through an interrupt gate, the IF flag is automati-
cally cleared, which disables maskable hardware interrupts. (If an interrupt is
handled through a trap gate, the IF flag is not cleared.)

See the descriptions of the CLI, STI, PUSHF, POPF, and IRET instructions in Chapter
3, “Instruction Set Reference, A-L,” in the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2A, and Chapter 4, “Instruction Set Reference, M-
Z,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
2B, for a detailed description of the operations these instructions are allowed to
perform on the IF flag.

6.8.2 Masking Instruction Breakpoints
The RF (resume) flag in the EFLAGS register controls the response of the processor
to instruction-breakpoint conditions (see the description of the RF flag in Section 2.3,
“System Flags and Fields in the EFLAGS Register”).

When set, it prevents an instruction breakpoint from generating a debug exception
(#DB); when clear, instruction breakpoints will generate debug exceptions. The
primary function of the RF flag is to prevent the processor from going into a debug
exception loop on an instruction-breakpoint. See Section 17.3.1.1, “Instruction-
Breakpoint Exception Condition,” for more information on the use of this flag.
6-10 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING
6.8.3 Masking Exceptions and Interrupts When Switching Stacks
To switch to a different stack segment, software often uses a pair of instructions, for
example:

MOV SS, AX
MOV ESP, StackTop

If an interrupt or exception occurs after the segment selector has been loaded into
the SS register but before the ESP register has been loaded, these two parts of the
logical address into the stack space are inconsistent for the duration of the interrupt
or exception handler.

To prevent this situation, the processor inhibits interrupts, debug exceptions, and
single-step trap exceptions after either a MOV to SS instruction or a POP to SS
instruction, until the instruction boundary following the next instruction is reached.
All other faults may still be generated. If the LSS instruction is used to modify the
contents of the SS register (which is the recommended method of modifying this
register), this problem does not occur.

6.9 PRIORITY AMONG SIMULTANEOUS EXCEPTIONS AND
INTERRUPTS

If more than one exception or interrupt is pending at an instruction boundary, the
processor services them in a predictable order. Table 6-2 shows the priority among
classes of exception and interrupt sources.

Table 6-2. Priority Among Simultaneous Exceptions and Interrupts

Priority Description

1 (Highest) Hardware Reset and Machine Checks

- RESET

- Machine Check

2 Trap on Task Switch

- T flag in TSS is set

3 External Hardware Interventions

- FLUSH

- STOPCLK

- SMI

- INIT

4 Traps on the Previous Instruction

- Breakpoints

- Debug Trap Exceptions (TF flag set or data/I-O breakpoint)
Vol. 3A 6-11

INTERRUPT AND EXCEPTION HANDLING
While priority among these classes listed in Table 6-2 is consistent throughout the
architecture, exceptions within each class are implementation-dependent and may
vary from processor to processor. The processor first services a pending exception or
interrupt from the class which has the highest priority, transferring execution to the
first instruction of the handler. Lower priority exceptions are discarded; lower priority
interrupts are held pending. Discarded exceptions are re-generated when the inter-
rupt handler returns execution to the point in the program or task where the excep-
tions and/or interrupts occurred.

6.10 INTERRUPT DESCRIPTOR TABLE (IDT)
The interrupt descriptor table (IDT) associates each exception or interrupt vector
with a gate descriptor for the procedure or task used to service the associated excep-
tion or interrupt. Like the GDT and LDTs, the IDT is an array of 8-byte descriptors (in

5 Nonmaskable Interrupts (NMI) 1

6 Maskable Hardware Interrupts 1

7 Code Breakpoint Fault

8 Faults from Fetching Next Instruction

- Code-Segment Limit Violation

- Code Page Fault

9 Faults from Decoding the Next Instruction

- Instruction length > 15 bytes

- Invalid Opcode

- Coprocessor Not Available

10 (Lowest) Faults on Executing an Instruction

- Overflow

- Bound error

- Invalid TSS

- Segment Not Present

- Stack fault

- General Protection

- Data Page Fault

- Alignment Check

- x87 FPU Floating-point exception

- SIMD floating-point exception

NOTE:

1. The Intel486™ processor and earlier processors group nonmaskable and maskable interrupts in
the same priority class.

Table 6-2. Priority Among Simultaneous Exceptions and Interrupts (Contd.)
6-12 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING
protected mode). Unlike the GDT, the first entry of the IDT may contain a descriptor.
To form an index into the IDT, the processor scales the exception or interrupt vector
by eight (the number of bytes in a gate descriptor). Because there are only 256 inter-
rupt or exception vectors, the IDT need not contain more than 256 descriptors. It can
contain fewer than 256 descriptors, because descriptors are required only for the
interrupt and exception vectors that may occur. All empty descriptor slots in the IDT
should have the present flag for the descriptor set to 0.

The base addresses of the IDT should be aligned on an 8-byte boundary to maximize
performance of cache line fills. The limit value is expressed in bytes and is added to
the base address to get the address of the last valid byte. A limit value of 0 results in
exactly 1 valid byte. Because IDT entries are always eight bytes long, the limit should
always be one less than an integral multiple of eight (that is, 8N – 1).

The IDT may reside anywhere in the linear address space. As shown in Figure 6-1,
the processor locates the IDT using the IDTR register. This register holds both a
32-bit base address and 16-bit limit for the IDT.

The LIDT (load IDT register) and SIDT (store IDT register) instructions load and store
the contents of the IDTR register, respectively. The LIDT instruction loads the IDTR
register with the base address and limit held in a memory operand. This instruction
can be executed only when the CPL is 0. It normally is used by the initialization code
of an operating system when creating an IDT. An operating system also may use it to
change from one IDT to another. The SIDT instruction copies the base and limit value
stored in IDTR to memory. This instruction can be executed at any privilege level.

If a vector references a descriptor beyond the limit of the IDT, a general-protection
exception (#GP) is generated.

NOTE
Because interrupts are delivered to the processor core only once, an
incorrectly configured IDT could result in incomplete interrupt
handling and/or the blocking of interrupt delivery.
IA-32 architecture rules need to be followed for setting up IDTR
base/limit/access fields and each field in the gate descriptors. The
same apply for the Intel 64 architecture. This includes implicit
referencing of the destination code segment through the GDT or LDT
and accessing the stack.
Vol. 3A 6-13

INTERRUPT AND EXCEPTION HANDLING
6.11 IDT DESCRIPTORS
The IDT may contain any of three kinds of gate descriptors:
• Task-gate descriptor
• Interrupt-gate descriptor
• Trap-gate descriptor

Figure 6-2 shows the formats for the task-gate, interrupt-gate, and trap-gate
descriptors. The format of a task gate used in an IDT is the same as that of a task
gate used in the GDT or an LDT (see Section 7.2.5, “Task-Gate Descriptor”). The task
gate contains the segment selector for a TSS for an exception and/or interrupt
handler task.

Interrupt and trap gates are very similar to call gates (see Section 5.8.3, “Call
Gates”). They contain a far pointer (segment selector and offset) that the processor
uses to transfer program execution to a handler procedure in an exception- or inter-
rupt-handler code segment. These gates differ in the way the processor handles the
IF flag in the EFLAGS register (see Section 6.12.1.2, “Flag Usage By Exception- or
Interrupt-Handler Procedure”).

Figure 6-1. Relationship of the IDTR and IDT

IDT LimitIDT Base Address

+
Interrupt

Descriptor Table (IDT)

Gate for

0

IDTR Register

Interrupt #n

Gate for
Interrupt #3

Gate for
Interrupt #2

Gate for
Interrupt #1

151647

031
0

8

16

(n−1)∗8
6-14 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING
6.12 EXCEPTION AND INTERRUPT HANDLING
The processor handles calls to exception- and interrupt-handlers similar to the way it
handles calls with a CALL instruction to a procedure or a task. When responding to an
exception or interrupt, the processor uses the exception or interrupt vector as an
index to a descriptor in the IDT. If the index points to an interrupt gate or trap gate,
the processor calls the exception or interrupt handler in a manner similar to a CALL
to a call gate (see Section 5.8.2, “Gate Descriptors,” through Section 5.8.6,

Figure 6-2. IDT Gate Descriptors

31 16 15 1314 12 8 7 0

POffset 31..16
D
P
L

0 4

31 16 15 0

Segment Selector Offset 15..0 0

011D

Interrupt Gate

DPL
Offset
P
Selector

Descriptor Privilege Level
Offset to procedure entry point
Segment Present flag
Segment Selector for destination code segment

31 16 15 1314 12 8 7 0

P
D
P
L

0 4

31 16 15 0

TSS Segment Selector 0

1010

Task Gate

45

0 0 0

31 16 15 1314 12 8 7 0

POffset 31..16
D
P
L

0 4

31 16 15 0

Segment Selector Offset 15..0 0

111D

Trap Gate
45

0 0 0

Reserved

Size of gate: 1 = 32 bits; 0 = 16 bitsD
Vol. 3A 6-15

INTERRUPT AND EXCEPTION HANDLING
“Returning from a Called Procedure”). If index points to a task gate, the processor
executes a task switch to the exception- or interrupt-handler task in a manner similar
to a CALL to a task gate (see Section 7.3, “Task Switching”).

6.12.1 Exception- or Interrupt-Handler Procedures
An interrupt gate or trap gate references an exception- or interrupt-handler proce-
dure that runs in the context of the currently executing task (see Figure 6-3). The
segment selector for the gate points to a segment descriptor for an executable code
segment in either the GDT or the current LDT. The offset field of the gate descriptor
points to the beginning of the exception- or interrupt-handling procedure.

Figure 6-3. Interrupt Procedure Call

IDT

Interrupt or

Code Segment

Segment Selector

GDT or LDT

Segment

Interrupt
Vector

Base
Address

Destination

Procedure
Interrupt

+

Descriptor

Trap Gate

Offset
6-16 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING
When the processor performs a call to the exception- or interrupt-handler procedure:
• If the handler procedure is going to be executed at a numerically lower privilege

level, a stack switch occurs. When the stack switch occurs:

a. The segment selector and stack pointer for the stack to be used by the
handler are obtained from the TSS for the currently executing task. On this
new stack, the processor pushes the stack segment selector and stack
pointer of the interrupted procedure.

b. The processor then saves the current state of the EFLAGS, CS, and EIP
registers on the new stack (see Figures 6-4).

c. If an exception causes an error code to be saved, it is pushed on the new
stack after the EIP value.

• If the handler procedure is going to be executed at the same privilege level as the
interrupted procedure:

a. The processor saves the current state of the EFLAGS, CS, and EIP registers
on the current stack (see Figures 6-4).

b. If an exception causes an error code to be saved, it is pushed on the current
stack after the EIP value.
Vol. 3A 6-17

INTERRUPT AND EXCEPTION HANDLING
To return from an exception- or interrupt-handler procedure, the handler must use
the IRET (or IRETD) instruction. The IRET instruction is similar to the RET instruction
except that it restores the saved flags into the EFLAGS register. The IOPL field of the
EFLAGS register is restored only if the CPL is 0. The IF flag is changed only if the CPL
is less than or equal to the IOPL. See Chapter 3, “Instruction Set Reference, A-L,” of
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A, for
a description of the complete operation performed by the IRET instruction.

If a stack switch occurred when calling the handler procedure, the IRET instruction
switches back to the interrupted procedure’s stack on the return.

6.12.1.1 Protection of Exception- and Interrupt-Handler Procedures
The privilege-level protection for exception- and interrupt-handler procedures is
similar to that used for ordinary procedure calls when called through a call gate (see
Section 5.8.4, “Accessing a Code Segment Through a Call Gate”). The processor does

Figure 6-4. Stack Usage on Transfers to Interrupt and Exception-Handling Routines

 CS

Error Code

EFLAGS
CS

 EIP
ESP After
Transfer to Handler

Error Code

ESP Before
Transfer to Handler

 EFLAGS

 EIP

 SS
 ESP

Stack Usage with No
Privilege-Level Change

Stack Usage with
Privilege-Level Change

Interrupted Procedure’s

Interrupted Procedure’s
and Handler’s Stack

Handler’s Stack

ESP After
Transfer to Handler

Transfer to Handler
ESP Before

Stack
6-18 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING
not permit transfer of execution to an exception- or interrupt-handler procedure in a
less privileged code segment (numerically greater privilege level) than the CPL.

An attempt to violate this rule results in a general-protection exception (#GP). The
protection mechanism for exception- and interrupt-handler procedures is different in
the following ways:
• Because interrupt and exception vectors have no RPL, the RPL is not checked on

implicit calls to exception and interrupt handlers.
• The processor checks the DPL of the interrupt or trap gate only if an exception or

interrupt is generated with an INT n, INT 3, or INTO instruction. Here, the CPL
must be less than or equal to the DPL of the gate. This restriction prevents
application programs or procedures running at privilege level 3 from using a
software interrupt to access critical exception handlers, such as the page-fault
handler, providing that those handlers are placed in more privileged code
segments (numerically lower privilege level). For hardware-generated interrupts
and processor-detected exceptions, the processor ignores the DPL of interrupt
and trap gates.

Because exceptions and interrupts generally do not occur at predictable times, these
privilege rules effectively impose restrictions on the privilege levels at which excep-
tion and interrupt- handling procedures can run. Either of the following techniques
can be used to avoid privilege-level violations.
• The exception or interrupt handler can be placed in a conforming code segment.

This technique can be used for handlers that only need to access data available
on the stack (for example, divide error exceptions). If the handler needs data
from a data segment, the data segment needs to be accessible from privilege
level 3, which would make it unprotected.

• The handler can be placed in a nonconforming code segment with privilege level
0. This handler would always run, regardless of the CPL that the interrupted
program or task is running at.

6.12.1.2 Flag Usage By Exception- or Interrupt-Handler Procedure
When accessing an exception or interrupt handler through either an interrupt gate or
a trap gate, the processor clears the TF flag in the EFLAGS register after it saves the
contents of the EFLAGS register on the stack. (On calls to exception and interrupt
handlers, the processor also clears the VM, RF, and NT flags in the EFLAGS register,
after they are saved on the stack.) Clearing the TF flag prevents instruction tracing
from affecting interrupt response. A subsequent IRET instruction restores the TF
(and VM, RF, and NT) flags to the values in the saved contents of the EFLAGS register
on the stack.

The only difference between an interrupt gate and a trap gate is the way the
processor handles the IF flag in the EFLAGS register. When accessing an exception-
or interrupt-handling procedure through an interrupt gate, the processor clears the
IF flag to prevent other interrupts from interfering with the current interrupt handler.
A subsequent IRET instruction restores the IF flag to its value in the saved contents
Vol. 3A 6-19

INTERRUPT AND EXCEPTION HANDLING
of the EFLAGS register on the stack. Accessing a handler procedure through a trap
gate does not affect the IF flag.

6.12.2 Interrupt Tasks
When an exception or interrupt handler is accessed through a task gate in the IDT, a
task switch results. Handling an exception or interrupt with a separate task offers
several advantages:
• The entire context of the interrupted program or task is saved automatically.
• A new TSS permits the handler to use a new privilege level 0 stack when handling

the exception or interrupt. If an exception or interrupt occurs when the current
privilege level 0 stack is corrupted, accessing the handler through a task gate can
prevent a system crash by providing the handler with a new privilege level 0
stack.

• The handler can be further isolated from other tasks by giving it a separate
address space. This is done by giving it a separate LDT.

The disadvantage of handling an interrupt with a separate task is that the amount of
machine state that must be saved on a task switch makes it slower than using an
interrupt gate, resulting in increased interrupt latency.

A task gate in the IDT references a TSS descriptor in the GDT (see Figure 6-5). A
switch to the handler task is handled in the same manner as an ordinary task switch
(see Section 7.3, “Task Switching”). The link back to the interrupted task is stored in
the previous task link field of the handler task’s TSS. If an exception caused an error
code to be generated, this error code is copied to the stack of the new task.

When exception- or interrupt-handler tasks are used in an operating system, there
are actually two mechanisms that can be used to dispatch tasks: the software sched-
uler (part of the operating system) and the hardware scheduler (part of the
processor's interrupt mechanism). The software scheduler needs to accommodate
interrupt tasks that may be dispatched when interrupts are enabled.

NOTE
Because IA-32 architecture tasks are not re-entrant, an interrupt-
handler task must disable interrupts between the time it completes
handling the interrupt and the time it executes the IRET instruction.
This action prevents another interrupt from occurring while the
interrupt task’s TSS is still marked busy, which would cause a
general-protection (#GP) exception.
6-20 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING
6.13 ERROR CODE
When an exception condition is related to a specific segment selector or IDT vector,
the processor pushes an error code onto the stack of the exception handler (whether
it is a procedure or task). The error code has the format shown in Figure 6-6. The
error code resembles a segment selector; however, instead of a TI flag and RPL field,
the error code contains 3 flags:

EXT External event (bit 0) — When set, indicates that the exception
occurred during delivery of an event external to the program, such as
an interrupt or an earlier exception.

IDT Descriptor location (bit 1) — When set, indicates that the index
portion of the error code refers to a gate descriptor in the IDT; when

Figure 6-5. Interrupt Task Switch

IDT

Task Gate

TSS for Interrupt-

TSS Selector

GDT

TSS Descriptor

Interrupt
Vector

TSS
Base
Address

Handling Task
Vol. 3A 6-21

INTERRUPT AND EXCEPTION HANDLING
clear, indicates that the index refers to a descriptor in the GDT or the
current LDT.

TI GDT/LDT (bit 2) — Only used when the IDT flag is clear. When set,
the TI flag indicates that the index portion of the error code refers to
a segment or gate descriptor in the LDT; when clear, it indicates that
the index refers to a descriptor in the current GDT.

The segment selector index field provides an index into the IDT, GDT, or current LDT
to the segment or gate selector being referenced by the error code. In some cases
the error code is null (all bits are clear except possibly EXT). A null error code indi-
cates that the error was not caused by a reference to a specific segment or that a null
segment descriptor was referenced in an operation.

The format of the error code is different for page-fault exceptions (#PF). See the
“Interrupt 14—Page-Fault Exception (#PF)” section in this chapter.

The error code is pushed on the stack as a doubleword or word (depending on the
default interrupt, trap, or task gate size). To keep the stack aligned for doubleword
pushes, the upper half of the error code is reserved. Note that the error code is not
popped when the IRET instruction is executed to return from an exception handler, so
the handler must remove the error code before executing a return.

Error codes are not pushed on the stack for exceptions that are generated externally
(with the INTR or LINT[1:0] pins) or the INT n instruction, even if an error code is
normally produced for those exceptions.

6.14 EXCEPTION AND INTERRUPT HANDLING IN 64-BIT
MODE

In 64-bit mode, interrupt and exception handling is similar to what has been
described for non-64-bit modes. The following are the exceptions:
• All interrupt handlers pointed by the IDT are in 64-bit code (this does not apply to

the SMI handler).
• The size of interrupt-stack pushes is fixed at 64 bits; and the processor uses

8-byte, zero extended stores.

Figure 6-6. Error Code

31 0

Reserved
I
D
T

T
I

123

Segment Selector Index
E
X
T

6-22 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING
• The stack pointer (SS:RSP) is pushed unconditionally on interrupts. In legacy
modes, this push is conditional and based on a change in current privilege level
(CPL).

• The new SS is set to NULL if there is a change in CPL.
• IRET behavior changes.
• There is a new interrupt stack-switch mechanism.
• The alignment of interrupt stack frame is different.

6.14.1 64-Bit Mode IDT
Interrupt and trap gates are 16 bytes in length to provide a 64-bit offset for the
instruction pointer (RIP). The 64-bit RIP referenced by interrupt-gate descriptors
allows an interrupt service routine to be located anywhere in the linear-address
space. See Figure 6-7.

In 64-bit mode, the IDT index is formed by scaling the interrupt vector by 16. The
first eight bytes (bytes 7:0) of a 64-bit mode interrupt gate are similar but not iden-
tical to legacy 32-bit interrupt gates. The type field (bits 11:8 in bytes 7:4) is
described in Table 3-2. The Interrupt Stack Table (IST) field (bits 4:0 in bytes 7:4) is
used by the stack switching mechanisms described in Section 6.14.5, “Interrupt
Stack Table.” Bytes 11:8 hold the upper 32 bits of the target RIP (interrupt segment
offset) in canonical form. A general-protection exception (#GP) is generated if soft-

Figure 6-7. 64-Bit IDT Gate Descriptors

31 16 15 1314 12 8 7 0

POffset 31..16
D
P
L

0 4

31 16 15 0

Segment Selector Offset 15..0 0

TYPE

Interrupt/Trap Gate

DPL
Offset
P
Selector

Descriptor Privilege Level
Offset to procedure entry point
Segment Present flag
Segment Selector for destination code segment

45

0 0 0

31 0

Offset 63..32 8

31 0

12

11

IST0 0

2

Reserved

IST Interrupt Stack Table
Vol. 3A 6-23

INTERRUPT AND EXCEPTION HANDLING
ware attempts to reference an interrupt gate with a target RIP that is not in canonical
form.

The target code segment referenced by the interrupt gate must be a 64-bit code
segment (CS.L = 1, CS.D = 0). If the target is not a 64-bit code segment, a general-
protection exception (#GP) is generated with the IDT vector number reported as the
error code.

Only 64-bit interrupt and trap gates can be referenced in IA-32e mode (64-bit mode
and compatibility mode). Legacy 32-bit interrupt or trap gate types (0EH or 0FH) are
redefined in IA-32e mode as 64-bit interrupt and trap gate types. No 32-bit interrupt
or trap gate type exists in IA-32e mode. If a reference is made to a 16-bit interrupt
or trap gate (06H or 07H), a general-protection exception (#GP(0)) is generated.

6.14.2 64-Bit Mode Stack Frame
In legacy mode, the size of an IDT entry (16 bits or 32 bits) determines the size of
interrupt-stack-frame pushes. SS:ESP is pushed only on a CPL change. In 64-bit
mode, the size of interrupt stack-frame pushes is fixed at eight bytes. This is because
only 64-bit mode gates can be referenced. 64-bit mode also pushes SS:RSP uncon-
ditionally, rather than only on a CPL change.

Aside from error codes, pushing SS:RSP unconditionally presents operating systems
with a consistent interrupt-stackframe size across all interrupts. Interrupt service-
routine entry points that handle interrupts generated by the INTn instruction or
external INTR# signal can push an additional error code place-holder to maintain
consistency.

In legacy mode, the stack pointer may be at any alignment when an interrupt or
exception causes a stack frame to be pushed. This causes the stack frame and
succeeding pushes done by an interrupt handler to be at arbitrary alignments. In
IA-32e mode, the RSP is aligned to a 16-byte boundary before pushing the stack
frame. The stack frame itself is aligned on a 16-byte boundary when the interrupt
handler is called. The processor can arbitrarily realign the new RSP on interrupts
because the previous (possibly unaligned) RSP is unconditionally saved on the newly
aligned stack. The previous RSP will be automatically restored by a subsequent IRET.

Aligning the stack permits exception and interrupt frames to be aligned on a 16-byte
boundary before interrupts are re-enabled. This allows the stack to be formatted for
optimal storage of 16-byte XMM registers, which enables the interrupt handler to use
faster 16-byte aligned loads and stores (MOVAPS rather than MOVUPS) to save and
restore XMM registers.

Although the RSP alignment is always performed when LMA = 1, it is only of conse-
quence for the kernel-mode case where there is no stack switch or IST used. For a
stack switch or IST, the OS would have presumably put suitably aligned RSP values in
the TSS.
6-24 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING
6.14.3 IRET in IA-32e Mode
In IA-32e mode, IRET executes with an 8-byte operand size. There is nothing that
forces this requirement. The stack is formatted in such a way that for actions where
IRET is required, the 8-byte IRET operand size works correctly.

Because interrupt stack-frame pushes are always eight bytes in IA-32e mode, an
IRET must pop eight byte items off the stack. This is accomplished by preceding the
IRET with a 64-bit operand-size prefix. The size of the pop is determined by the
address size of the instruction. The SS/ESP/RSP size adjustment is determined by
the stack size.

IRET pops SS:RSP unconditionally off the interrupt stack frame only when it is
executed in 64-bit mode. In compatibility mode, IRET pops SS:RSP off the stack only
if there is a CPL change. This allows legacy applications to execute properly in
compatibility mode when using the IRET instruction. 64-bit interrupt service routines
that exit with an IRET unconditionally pop SS:RSP off of the interrupt stack frame,
even if the target code segment is running in 64-bit mode or at CPL = 0. This is
because the original interrupt always pushes SS:RSP.

In IA-32e mode, IRET is allowed to load a NULL SS under certain conditions. If the
target mode is 64-bit mode and the target CPL <> 3, IRET allows SS to be loaded
with a NULL selector. As part of the stack switch mechanism, an interrupt or excep-
tion sets the new SS to NULL, instead of fetching a new SS selector from the TSS and
loading the corresponding descriptor from the GDT or LDT. The new SS selector is set
to NULL in order to properly handle returns from subsequent nested far transfers. If
the called procedure itself is interrupted, the NULL SS is pushed on the stack frame.
On the subsequent IRET, the NULL SS on the stack acts as a flag to tell the processor
not to load a new SS descriptor.

6.14.4 Stack Switching in IA-32e Mode
The IA-32 architecture provides a mechanism to automatically switch stack frames in
response to an interrupt. The 64-bit extensions of Intel 64 architecture implement a
modified version of the legacy stack-switching mechanism and an alternative stack-
switching mechanism called the interrupt stack table (IST).

In IA-32 modes, the legacy IA-32 stack-switch mechanism is unchanged. In IA-32e
mode, the legacy stack-switch mechanism is modified. When stacks are switched as
part of a 64-bit mode privilege-level change (resulting from an interrupt), a new SS
descriptor is not loaded. IA-32e mode loads only an inner-level RSP from the TSS.
The new SS selector is forced to NULL and the SS selector’s RPL field is set to the new
CPL. The new SS is set to NULL in order to handle nested far transfers (CALLF, INT,
interrupts and exceptions). The old SS and RSP are saved on the new stack
(Figure 6-8). On the subsequent IRET, the old SS is popped from the stack and
loaded into the SS register.
Vol. 3A 6-25

INTERRUPT AND EXCEPTION HANDLING
In summary, a stack switch in IA-32e mode works like the legacy stack switch,
except that a new SS selector is not loaded from the TSS. Instead, the new SS is
forced to NULL.

6.14.5 Interrupt Stack Table
In IA-32e mode, a new interrupt stack table (IST) mechanism is available as an alter-
native to the modified legacy stack-switching mechanism described above. This
mechanism unconditionally switches stacks when it is enabled. It can be enabled on
an individual interrupt-vector basis using a field in the IDT entry. This means that
some interrupt vectors can use the modified legacy mechanism and others can use
the IST mechanism.

The IST mechanism is only available in IA-32e mode. It is part of the 64-bit mode
TSS. The motivation for the IST mechanism is to provide a method for specific inter-
rupts (such as NMI, double-fault, and machine-check) to always execute on a known
good stack. In legacy mode, interrupts can use the task-switch mechanism to set up
a known-good stack by accessing the interrupt service routine through a task gate
located in the IDT. However, the legacy task-switch mechanism is not supported in
IA-32e mode.

The IST mechanism provides up to seven IST pointers in the TSS. The pointers are
referenced by an interrupt-gate descriptor in the interrupt-descriptor table (IDT);
see Figure 6-7. The gate descriptor contains a 3-bit IST index field that provides an
offset into the IST section of the TSS. Using the IST mechanism, the processor loads
the value pointed by an IST pointer into the RSP.

When an interrupt occurs, the new SS selector is forced to NULL and the SS selector’s
RPL field is set to the new CPL. The old SS, RSP, RFLAGS, CS, and RIP are pushed
onto the new stack. Interrupt processing then proceeds as normal. If the IST index is
zero, the modified legacy stack-switching mechanism described above is used.

Figure 6-8. IA-32e Mode Stack Usage After Privilege Level Change

 CS

Error Code

 RFLAGS

 RIP

 SS
 RSP

Stack Usage with
Privilege-Level Change

Handler’s Stack

Stack Pointer After
Transfer to Handler

 CS

Error Code

 EFLAGS

 EIP

 SS
 ESP

Handler’s Stack

Legacy Mode IA-32e Mode

0
+4
+8
+12
+16
+20

0
+8
+16
+24
+32
+40
6-26 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING
6.15 EXCEPTION AND INTERRUPT REFERENCE
The following sections describe conditions which generate exceptions and interrupts.
They are arranged in the order of vector numbers. The information contained in
these sections are as follows:
• Exception Class — Indicates whether the exception class is a fault, trap, or

abort type. Some exceptions can be either a fault or trap type, depending on
when the error condition is detected. (This section is not applicable to interrupts.)

• Description — Gives a general description of the purpose of the exception or
interrupt type. It also describes how the processor handles the exception or
interrupt.

• Exception Error Code — Indicates whether an error code is saved for the
exception. If one is saved, the contents of the error code are described. (This
section is not applicable to interrupts.)

• Saved Instruction Pointer — Describes which instruction the saved (or return)
instruction pointer points to. It also indicates whether the pointer can be used to
restart a faulting instruction.

• Program State Change — Describes the effects of the exception or interrupt on
the state of the currently running program or task and the possibilities of
restarting the program or task without loss of continuity.
Vol. 3A 6-27

INTERRUPT AND EXCEPTION HANDLING
Interrupt 0—Divide Error Exception (#DE)

Exception Class Fault.

Description

Indicates the divisor operand for a DIV or IDIV instruction is 0 or that the result
cannot be represented in the number of bits specified for the destination operand.

Exception Error Code

None.

Saved Instruction Pointer

Saved contents of CS and EIP registers point to the instruction that generated the
exception.

Program State Change

A program-state change does not accompany the divide error, because the exception
occurs before the faulting instruction is executed.
6-28 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING
Interrupt 1—Debug Exception (#DB)

Exception Class Trap or Fault. The exception handler can distinguish
between traps or faults by examining the contents of DR6
and the other debug registers.

Description

Indicates that one or more of several debug-exception conditions has been detected.
Whether the exception is a fault or a trap depends on the condition (see Table 6-3).
See Chapter 17, “Debugging, Branch Profiling, and Time-Stamp Counter,” for
detailed information about the debug exceptions.

Exception Error Code

None. An exception handler can examine the debug registers to determine which
condition caused the exception.

Saved Instruction Pointer

Fault — Saved contents of CS and EIP registers point to the instruction that gener-
ated the exception.

Trap — Saved contents of CS and EIP registers point to the instruction following the
instruction that generated the exception.

Program State Change

Fault — A program-state change does not accompany the debug exception, because
the exception occurs before the faulting instruction is executed. The program can
resume normal execution upon returning from the debug exception handler.

Trap — A program-state change does accompany the debug exception, because the
instruction or task switch being executed is allowed to complete before the exception
is generated. However, the new state of the program is not corrupted and execution
of the program can continue reliably.

Table 6-3. Debug Exception Conditions and Corresponding Exception Classes

Exception Condition Exception Class

Instruction fetch breakpoint Fault

Data read or write breakpoint Trap

I/O read or write breakpoint Trap

General detect condition (in conjunction with in-circuit emulation) Fault

Single-step Trap

Task-switch Trap
Vol. 3A 6-29

INTERRUPT AND EXCEPTION HANDLING
Interrupt 2—NMI Interrupt

Exception Class Not applicable.

Description

The nonmaskable interrupt (NMI) is generated externally by asserting the
processor’s NMI pin or through an NMI request set by the I/O APIC to the local APIC.
This interrupt causes the NMI interrupt handler to be called.

Exception Error Code

Not applicable.

Saved Instruction Pointer

The processor always takes an NMI interrupt on an instruction boundary. The saved
contents of CS and EIP registers point to the next instruction to be executed at the
point the interrupt is taken. See Section 6.5, “Exception Classifications,” for more
information about when the processor takes NMI interrupts.

Program State Change

The instruction executing when an NMI interrupt is received is completed before the
NMI is generated. A program or task can thus be restarted upon returning from an
interrupt handler without loss of continuity, provided the interrupt handler saves the
state of the processor before handling the interrupt and restores the processor’s
state prior to a return.
6-30 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING
Interrupt 3—Breakpoint Exception (#BP)

Exception Class Trap.

Description

Indicates that a breakpoint instruction (INT 3) was executed, causing a breakpoint
trap to be generated. Typically, a debugger sets a breakpoint by replacing the first
opcode byte of an instruction with the opcode for the INT 3 instruction. (The INT 3
instruction is one byte long, which makes it easy to replace an opcode in a code
segment in RAM with the breakpoint opcode.) The operating system or a debugging
tool can use a data segment mapped to the same physical address space as the code
segment to place an INT 3 instruction in places where it is desired to call the
debugger.

With the P6 family, Pentium, Intel486, and Intel386 processors, it is more convenient
to set breakpoints with the debug registers. (See Section 17.3.2, “Breakpoint Excep-
tion (#BP)—Interrupt Vector 3,” for information about the breakpoint exception.) If
more breakpoints are needed beyond what the debug registers allow, the INT 3
instruction can be used.

The breakpoint (#BP) exception can also be generated by executing the INT n
instruction with an operand of 3. The action of this instruction (INT 3) is slightly
different than that of the INT 3 instruction (see “INTn/INTO/INT3—Call to Interrupt
Procedure” in Chapter 3 of the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 2A).

Exception Error Code

None.

Saved Instruction Pointer

Saved contents of CS and EIP registers point to the instruction following the INT 3
instruction.

Program State Change

Even though the EIP points to the instruction following the breakpoint instruction, the
state of the program is essentially unchanged because the INT 3 instruction does not
affect any register or memory locations. The debugger can thus resume the
suspended program by replacing the INT 3 instruction that caused the breakpoint
with the original opcode and decrementing the saved contents of the EIP register.
Upon returning from the debugger, program execution resumes with the replaced
instruction.
Vol. 3A 6-31

INTERRUPT AND EXCEPTION HANDLING
Interrupt 4—Overflow Exception (#OF)

Exception Class Trap.

Description

Indicates that an overflow trap occurred when an INTO instruction was executed. The
INTO instruction checks the state of the OF flag in the EFLAGS register. If the OF flag
is set, an overflow trap is generated.

Some arithmetic instructions (such as the ADD and SUB) perform both signed and
unsigned arithmetic. These instructions set the OF and CF flags in the EFLAGS
register to indicate signed overflow and unsigned overflow, respectively. When
performing arithmetic on signed operands, the OF flag can be tested directly or the
INTO instruction can be used. The benefit of using the INTO instruction is that if the
overflow exception is detected, an exception handler can be called automatically to
handle the overflow condition.

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction following the INTO
instruction.

Program State Change

Even though the EIP points to the instruction following the INTO instruction, the state
of the program is essentially unchanged because the INTO instruction does not affect
any register or memory locations. The program can thus resume normal execution
upon returning from the overflow exception handler.
6-32 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING
Interrupt 5—BOUND Range Exceeded Exception (#BR)

Exception Class Fault.

Description

Indicates that a BOUND-range-exceeded fault occurred when a BOUND instruction
was executed. The BOUND instruction checks that a signed array index is within the
upper and lower bounds of an array located in memory. If the array index is not
within the bounds of the array, a BOUND-range-exceeded fault is generated.

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the BOUND instruction that
generated the exception.

Program State Change

A program-state change does not accompany the bounds-check fault, because the
operands for the BOUND instruction are not modified. Returning from the BOUND-
range-exceeded exception handler causes the BOUND instruction to be restarted.
Vol. 3A 6-33

INTERRUPT AND EXCEPTION HANDLING
Interrupt 6—Invalid Opcode Exception (#UD)

Exception Class Fault.

Description

Indicates that the processor did one of the following things:
• Attempted to execute an invalid or reserved opcode.
• Attempted to execute an instruction with an operand type that is invalid for its

accompanying opcode; for example, the source operand for a LES instruction is
not a memory location.

• Attempted to execute an MMX or SSE/SSE2/SSE3 instruction on an Intel 64 or
IA-32 processor that does not support the MMX technology or
SSE/SSE2/SSE3/SSSE3 extensions, respectively. CPUID feature flags MMX (bit
23), SSE (bit 25), SSE2 (bit 26), SSE3 (ECX, bit 0), SSSE3 (ECX, bit 9) indicate
support for these extensions.

• Attempted to execute an MMX instruction or SSE/SSE2/SSE3/SSSE3 SIMD
instruction (with the exception of the MOVNTI, PAUSE, PREFETCHh, SFENCE,
LFENCE, MFENCE, CLFLUSH, MONITOR, and MWAIT instructions) when the EM
flag in control register CR0 is set (1).

• Attempted to execute an SSE/SE2/SSE3/SSSE3 instruction when the OSFXSR bit
in control register CR4 is clear (0). Note this does not include the following
SSE/SSE2/SSE3 instructions: MASKMOVQ, MOVNTQ, MOVNTI, PREFETCHh,
SFENCE, LFENCE, MFENCE, and CLFLUSH; or the 64-bit versions of the PAVGB,
PAVGW, PEXTRW, PINSRW, PMAXSW, PMAXUB, PMINSW, PMINUB, PMOVMSKB,
PMULHUW, PSADBW, PSHUFW, PADDQ, PSUBQ, PALIGNR, PABSB, PABSD,
PABSW, PHADDD, PHADDSW, PHADDW, PHSUBD, PHSUBSW, PHSUBW,
PMADDUBSM, PMULHRSW, PSHUFB, PSIGNB, PSIGND, and PSIGNW.

• Attempted to execute an SSE/SSE2/SSE3/SSSE3 instruction on an Intel 64 or
IA-32 processor that caused a SIMD floating-point exception when the
OSXMMEXCPT bit in control register CR4 is clear (0).

• Executed a UD2 instruction. Note that even though it is the execution of the UD2
instruction that causes the invalid opcode exception, the saved instruction
pointer will still points at the UD2 instruction.

• Detected a LOCK prefix that precedes an instruction that may not be locked or
one that may be locked but the destination operand is not a memory location.

• Attempted to execute an LLDT, SLDT, LTR, STR, LSL, LAR, VERR, VERW, or ARPL
instruction while in real-address or virtual-8086 mode.

• Attempted to execute the RSM instruction when not in SMM mode.

In Intel 64 and IA-32 processors that implement out-of-order execution microarchi-
tectures, this exception is not generated until an attempt is made to retire the result
of executing an invalid instruction; that is, decoding and speculatively attempting to
execute an invalid opcode does not generate this exception. Likewise, in the Pentium
6-34 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING
processor and earlier IA-32 processors, this exception is not generated as the result
of prefetching and preliminary decoding of an invalid instruction. (See Section 6.5,
“Exception Classifications,” for general rules for taking of interrupts and exceptions.)

The opcodes D6 and F1 are undefined opcodes reserved by the Intel 64 and IA-32
architectures. These opcodes, even though undefined, do not generate an invalid
opcode exception.

The UD2 instruction is guaranteed to generate an invalid opcode exception.

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the
exception.

Program State Change

A program-state change does not accompany an invalid-opcode fault, because the
invalid instruction is not executed.
Vol. 3A 6-35

INTERRUPT AND EXCEPTION HANDLING
Interrupt 7—Device Not Available Exception (#NM)

Exception Class Fault.

Description

Indicates one of the following things:

The device-not-available exception is generated by either of three conditions:
• The processor executed an x87 FPU floating-point instruction while the EM flag in

control register CR0 was set (1). See the paragraph below for the special case of
the WAIT/FWAIT instruction.

• The processor executed a WAIT/FWAIT instruction while the MP and TS flags of
register CR0 were set, regardless of the setting of the EM flag.

• The processor executed an x87 FPU, MMX, or SSE/SSE2/SSE3 instruction (with
the exception of MOVNTI, PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE, and
CLFLUSH) while the TS flag in control register CR0 was set and the EM flag is
clear.

The EM flag is set when the processor does not have an internal x87 FPU floating-
point unit. A device-not-available exception is then generated each time an x87 FPU
floating-point instruction is encountered, allowing an exception handler to call
floating-point instruction emulation routines.

The TS flag indicates that a context switch (task switch) has occurred since the last
time an x87 floating-point, MMX, or SSE/SSE2/SSE3 instruction was executed; but
that the context of the x87 FPU, XMM, and MXCSR registers were not saved. When
the TS flag is set and the EM flag is clear, the processor generates a device-not-avail-
able exception each time an x87 floating-point, MMX, or SSE/SSE2/SSE3 instruction
is encountered (with the exception of the instructions listed above). The exception
handler can then save the context of the x87 FPU, XMM, and MXCSR registers before
it executes the instruction. See Section 2.5, “Control Registers,” for more information
about the TS flag.

The MP flag in control register CR0 is used along with the TS flag to determine if WAIT
or FWAIT instructions should generate a device-not-available exception. It extends
the function of the TS flag to the WAIT and FWAIT instructions, giving the exception
handler an opportunity to save the context of the x87 FPU before the WAIT or FWAIT
instruction is executed. The MP flag is provided primarily for use with the Intel 286
and Intel386 DX processors. For programs running on the Pentium 4, Intel Xeon, P6
family, Pentium, or Intel486 DX processors, or the Intel 487 SX coprocessors, the MP
flag should always be set; for programs running on the Intel486 SX processor, the MP
flag should be clear.

Exception Error Code

None.
6-36 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING
Saved Instruction Pointer

The saved contents of CS and EIP registers point to the floating-point instruction or
the WAIT/FWAIT instruction that generated the exception.

Program State Change

A program-state change does not accompany a device-not-available fault, because
the instruction that generated the exception is not executed.

If the EM flag is set, the exception handler can then read the floating-point instruc-
tion pointed to by the EIP and call the appropriate emulation routine.

If the MP and TS flags are set or the TS flag alone is set, the exception handler can
save the context of the x87 FPU, clear the TS flag, and continue execution at the
interrupted floating-point or WAIT/FWAIT instruction.
Vol. 3A 6-37

INTERRUPT AND EXCEPTION HANDLING
Interrupt 8—Double Fault Exception (#DF)

Exception Class Abort.

Description

Indicates that the processor detected a second exception while calling an exception
handler for a prior exception. Normally, when the processor detects another excep-
tion while trying to call an exception handler, the two exceptions can be handled seri-
ally. If, however, the processor cannot handle them serially, it signals the double-fault
exception. To determine when two faults need to be signalled as a double fault, the
processor divides the exceptions into three classes: benign exceptions, contributory
exceptions, and page faults (see Table 6-4).

Table 6-5 shows the various combinations of exception classes that cause a double
fault to be generated. A double-fault exception falls in the abort class of exceptions.
The program or task cannot be restarted or resumed. The double-fault handler can
be used to collect diagnostic information about the state of the machine and/or, when
possible, to shut the application and/or system down gracefully or restart the
system.

Table 6-4. Interrupt and Exception Classes

Class Vector Number Description

Benign Exceptions and
Interrupts

 1
 2
 3
 4
 5
 6
 7
9
16
17
18

19
All
All

Debug
NMI Interrupt
Breakpoint
Overflow
BOUND Range Exceeded
Invalid Opcode
Device Not Available
Coprocessor Segment Overrun
Floating-Point Error
Alignment Check
Machine Check

SIMD floating-point
INT n
INTR

Contributory Exceptions 0
10
11
12
13

Divide Error
Invalid TSS
Segment Not Present
Stack Fault
General Protection

Page Faults 14 Page Fault
6-38 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING
A segment or page fault may be encountered while prefetching instructions;
however, this behavior is outside the domain of Table 6-5. Any further faults gener-
ated while the processor is attempting to transfer control to the appropriate fault
handler could still lead to a double-fault sequence.

If another exception occurs while attempting to call the double-fault handler, the
processor enters shutdown mode. This mode is similar to the state following execu-
tion of an HLT instruction. In this mode, the processor stops executing instructions
until an NMI interrupt, SMI interrupt, hardware reset, or INIT# is received. The
processor generates a special bus cycle to indicate that it has entered shutdown
mode. Software designers may need to be aware of the response of hardware when
it goes into shutdown mode. For example, hardware may turn on an indicator light on
the front panel, generate an NMI interrupt to record diagnostic information, invoke
reset initialization, generate an INIT initialization, or generate an SMI. If any events
are pending during shutdown, they will be handled after an wake event from shut-
down is processed (for example, A20M# interrupts).

If a shutdown occurs while the processor is executing an NMI interrupt handler, then
only a hardware reset can restart the processor. Likewise, if the shutdown occurs
while executing in SMM, a hardware reset must be used to restart the processor.

Exception Error Code

Zero. The processor always pushes an error code of 0 onto the stack of the double-
fault handler.

Saved Instruction Pointer

The saved contents of CS and EIP registers are undefined.

Program State Change

A program-state following a double-fault exception is undefined. The program or task
cannot be resumed or restarted. The only available action of the double-fault excep-
tion handler is to collect all possible context information for use in diagnostics and
then close the application and/or shut down or reset the processor.

Table 6-5. Conditions for Generating a Double Fault

Second Exception

First Exception Benign Contributory Page Fault

Benign Handle Exceptions
Serially

Handle Exceptions
Serially

Handle Exceptions
Serially

Contributory Handle Exceptions
Serially

Generate a Double
Fault

Handle Exceptions
Serially

Page Fault Handle Exceptions
Serially

Generate a Double
Fault

Generate a Double
Fault
Vol. 3A 6-39

INTERRUPT AND EXCEPTION HANDLING
If the double fault occurs when any portion of the exception handling machine state
is corrupted, the handler cannot be invoked and the processor must be reset.
6-40 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING
Interrupt 9—Coprocessor Segment Overrun

Exception Class Abort. (Intel reserved; do not use. Recent IA-32 processors
do not generate this exception.)

Description

Indicates that an Intel386 CPU-based systems with an Intel 387 math coprocessor
detected a page or segment violation while transferring the middle portion of an
Intel 387 math coprocessor operand. The P6 family, Pentium, and Intel486 proces-
sors do not generate this exception; instead, this condition is detected with a general
protection exception (#GP), interrupt 13.

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the
exception.

Program State Change

A program-state following a coprocessor segment-overrun exception is unde-
fined. The program or task cannot be resumed or restarted. The only available action
of the exception handler is to save the instruction pointer and reinitialize the x87 FPU
using the FNINIT instruction.
Vol. 3A 6-41

INTERRUPT AND EXCEPTION HANDLING
Interrupt 10—Invalid TSS Exception (#TS)

Exception Class Fault.

Description

Indicates that there was an error related to a TSS. Such an error might be detected
during a task switch or during the execution of instructions that use information from
a TSS. Table 6-6 shows the conditions that cause an invalid TSS exception to be
generated.

Table 6-6. Invalid TSS Conditions
Error Code Index Invalid Condition

TSS segment selector index The TSS segment limit is less than 67H for 32-bit TSS or less than
2CH for 16-bit TSS.

TSS segment selector index During an IRET task switch, the TI flag in the TSS segment selector
indicates the LDT.

TSS segment selector index During an IRET task switch, the TSS segment selector exceeds
descriptor table limit.

TSS segment selector index During an IRET task switch, the busy flag in the TSS descriptor
indicates an inactive task.

TSS segment selector index During an IRET task switch, an attempt to load the backlink limit
faults.

TSS segment selector index During an IRET task switch, the backlink is a NULL selector.

TSS segment selector index During an IRET task switch, the backlink points to a descriptor
which is not a busy TSS.

TSS segment selector index The new TSS descriptor is beyond the GDT limit.

TSS segment selector index The new TSS descriptor is not writable.

TSS segment selector index Stores to the old TSS encounter a fault condition.

TSS segment selector index The old TSS descriptor is not writable for a jump or IRET task
switch.

TSS segment selector index The new TSS backlink is not writable for a call or exception task
switch.

TSS segment selector index The new TSS selector is null on an attempt to lock the new TSS.

TSS segment selector index The new TSS selector has the TI bit set on an attempt to lock the
new TSS.

TSS segment selector index The new TSS descriptor is not an available TSS descriptor on an
attempt to lock the new TSS.

LDT segment selector index LDT or LDT not present.
6-42 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING
Stack segment selector
index

The stack segment selector exceeds descriptor table limit.

Stack segment selector
index

The stack segment selector is NULL.

Stack segment selector
index

The stack segment descriptor is a non-data segment.

Stack segment selector
index

The stack segment is not writable.

Stack segment selector
index

The stack segment DPL != CPL.

Stack segment selector
index

The stack segment selector RPL != CPL.

Code segment selector
index

The code segment selector exceeds descriptor table limit.

Code segment selector
index

The code segment selector is NULL.

Code segment selector
index

The code segment descriptor is not a code segment type.

Code segment selector
index

The nonconforming code segment DPL != CPL.

Code segment selector
index

The conforming code segment DPL is greater than CPL.

Data segment selector index The data segment selector exceeds the descriptor table limit.

Data segment selector index The data segment descriptor is not a readable code or data type.

Data segment selector index The data segment descriptor is a nonconforming code type and
RPL > DPL.

Data segment selector index The data segment descriptor is a nonconforming code type and CPL
> DPL.

TSS segment selector index The TSS segment selector is NULL for LTR.

TSS segment selector index The TSS segment selector has the TI bit set for LTR.

TSS segment selector index The TSS segment descriptor/upper descriptor is beyond the GDT
segment limit.

TSS segment selector index The TSS segment descriptor is not an available TSS type.

TSS segment selector index The TSS segment descriptor is an available 286 TSS type in IA-32e
mode.

Table 6-6. Invalid TSS Conditions (Contd.)
Error Code Index Invalid Condition
Vol. 3A 6-43

INTERRUPT AND EXCEPTION HANDLING
This exception can generated either in the context of the original task or in the
context of the new task (see Section 7.3, “Task Switching”). Until the processor has
completely verified the presence of the new TSS, the exception is generated in the
context of the original task. Once the existence of the new TSS is verified, the task
switch is considered complete. Any invalid-TSS conditions detected after this point
are handled in the context of the new task. (A task switch is considered complete
when the task register is loaded with the segment selector for the new TSS and, if the
switch is due to a procedure call or interrupt, the previous task link field of the new
TSS references the old TSS.)

The invalid-TSS handler must be a task called using a task gate. Handling this excep-
tion inside the faulting TSS context is not recommended because the processor state
may not be consistent.

Exception Error Code

An error code containing the segment selector index for the segment descriptor that
caused the violation is pushed onto the stack of the exception handler. If the EXT flag
is set, it indicates that the exception was caused by an event external to the currently
running program (for example, if an external interrupt handler using a task gate
attempted a task switch to an invalid TSS).

Saved Instruction Pointer

If the exception condition was detected before the task switch was carried out, the
saved contents of CS and EIP registers point to the instruction that invoked the task
switch. If the exception condition was detected after the task switch was carried out,
the saved contents of CS and EIP registers point to the first instruction of the new
task.

Program State Change

The ability of the invalid-TSS handler to recover from the fault depends on the error
condition than causes the fault. See Section 7.3, “Task Switching,” for more informa-
tion on the task switch process and the possible recovery actions that can be taken.

TSS segment selector index The TSS segment upper descriptor is not the correct type.

TSS segment selector index The TSS segment descriptor contains a non-canonical base.

TSS segment selector index There is a limit violation in attempting to load SS selector or ESP
from a TSS on a call or exception which changes privilege levels in
legacy mode.

TSS segment selector index There is a limit violation or canonical fault in attempting to load RSP
or IST from a TSS on a call or exception which changes privilege
levels in IA-32e mode.

Table 6-6. Invalid TSS Conditions (Contd.)
Error Code Index Invalid Condition
6-44 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING
If an invalid TSS exception occurs during a task switch, it can occur before or after
the commit-to-new-task point. If it occurs before the commit point, no program state
change occurs. If it occurs after the commit point (when the segment descriptor
information for the new segment selectors have been loaded in the segment regis-
ters), the processor will load all the state information from the new TSS before it
generates the exception. During a task switch, the processor first loads all the
segment registers with segment selectors from the TSS, then checks their contents
for validity. If an invalid TSS exception is discovered, the remaining segment regis-
ters are loaded but not checked for validity and therefore may not be usable for refer-
encing memory. The invalid TSS handler should not rely on being able to use the
segment selectors found in the CS, SS, DS, ES, FS, and GS registers without causing
another exception. The exception handler should load all segment registers before
trying to resume the new task; otherwise, general-protection exceptions (#GP) may
result later under conditions that make diagnosis more difficult. The Intel recom-
mended way of dealing situation is to use a task for the invalid TSS exception
handler. The task switch back to the interrupted task from the invalid-TSS exception-
handler task will then cause the processor to check the registers as it loads them
from the TSS.
Vol. 3A 6-45

INTERRUPT AND EXCEPTION HANDLING
Interrupt 11—Segment Not Present (#NP)

Exception Class Fault.

Description

Indicates that the present flag of a segment or gate descriptor is clear. The processor
can generate this exception during any of the following operations:
• While attempting to load CS, DS, ES, FS, or GS registers. [Detection of a not-

present segment while loading the SS register causes a stack fault exception
(#SS) to be generated.] This situation can occur while performing a task switch.

• While attempting to load the LDTR using an LLDT instruction. Detection of a not-
present LDT while loading the LDTR during a task switch operation causes an
invalid-TSS exception (#TS) to be generated.

• When executing the LTR instruction and the TSS is marked not present.
• While attempting to use a gate descriptor or TSS that is marked segment-not-

present, but is otherwise valid.

An operating system typically uses the segment-not-present exception to implement
virtual memory at the segment level. If the exception handler loads the segment and
returns, the interrupted program or task resumes execution.

A not-present indication in a gate descriptor, however, does not indicate that a
segment is not present (because gates do not correspond to segments). The oper-
ating system may use the present flag for gate descriptors to trigger exceptions of
special significance to the operating system.

A contributory exception or page fault that subsequently referenced a not-present
segment would cause a double fault (#DF) to be generated instead of #NP.

Exception Error Code

An error code containing the segment selector index for the segment descriptor that
caused the violation is pushed onto the stack of the exception handler. If the EXT flag
is set, it indicates that the exception resulted from either:
• an external event (NMI or INTR) that caused an interrupt, which subsequently

referenced a not-present segment
• a benign exception that subsequently referenced a not-present segment

The IDT flag is set if the error code refers to an IDT entry. This occurs when the IDT
entry for an interrupt being serviced references a not-present gate. Such an event
could be generated by an INT instruction or a hardware interrupt.

Saved Instruction Pointer

The saved contents of CS and EIP registers normally point to the instruction that
generated the exception. If the exception occurred while loading segment descrip-
6-46 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING
tors for the segment selectors in a new TSS, the CS and EIP registers point to the first
instruction in the new task. If the exception occurred while accessing a gate
descriptor, the CS and EIP registers point to the instruction that invoked the access
(for example a CALL instruction that references a call gate).

Program State Change

If the segment-not-present exception occurs as the result of loading a register (CS,
DS, SS, ES, FS, GS, or LDTR), a program-state change does accompany the excep-
tion because the register is not loaded. Recovery from this exception is possible by
simply loading the missing segment into memory and setting the present flag in the
segment descriptor.

If the segment-not-present exception occurs while accessing a gate descriptor, a
program-state change does not accompany the exception. Recovery from this excep-
tion is possible merely by setting the present flag in the gate descriptor.

If a segment-not-present exception occurs during a task switch, it can occur before
or after the commit-to-new-task point (see Section 7.3, “Task Switching”). If it
occurs before the commit point, no program state change occurs. If it occurs after
the commit point, the processor will load all the state information from the new TSS
(without performing any additional limit, present, or type checks) before it generates
the exception. The segment-not-present exception handler should not rely on being
able to use the segment selectors found in the CS, SS, DS, ES, FS, and GS registers
without causing another exception. (See the Program State Change description for
“Interrupt 10—Invalid TSS Exception (#TS)” in this chapter for additional information
on how to handle this situation.)
Vol. 3A 6-47

INTERRUPT AND EXCEPTION HANDLING
Interrupt 12—Stack Fault Exception (#SS)

Exception Class Fault.

Description

Indicates that one of the following stack related conditions was detected:
• A limit violation is detected during an operation that refers to the SS register.

Operations that can cause a limit violation include stack-oriented instructions
such as POP, PUSH, CALL, RET, IRET, ENTER, and LEAVE, as well as other memory
references which implicitly or explicitly use the SS register (for example, MOV
AX, [BP+6] or MOV AX, SS:[EAX+6]). The ENTER instruction generates this
exception when there is not enough stack space for allocating local variables.

• A not-present stack segment is detected when attempting to load the SS register.
This violation can occur during the execution of a task switch, a CALL instruction
to a different privilege level, a return to a different privilege level, an LSS
instruction, or a MOV or POP instruction to the SS register.

• A canonical violation is detected in 64-bit mode during an operation that
reference memory using the stack pointer register containing a non-canonical
memory address.

Recovery from this fault is possible by either extending the limit of the stack segment
(in the case of a limit violation) or loading the missing stack segment into memory (in
the case of a not-present violation.

In the case of a canonical violation that was caused intentionally by software,
recovery is possible by loading the correct canonical value into RSP. Otherwise, a
canonical violation of the address in RSP likely reflects some register corruption in
the software.

Exception Error Code

If the exception is caused by a not-present stack segment or by overflow of the new
stack during an inter-privilege-level call, the error code contains a segment selector
for the segment that caused the exception. Here, the exception handler can test the
present flag in the segment descriptor pointed to by the segment selector to deter-
mine the cause of the exception. For a normal limit violation (on a stack segment
already in use) the error code is set to 0.

Saved Instruction Pointer

The saved contents of CS and EIP registers generally point to the instruction that
generated the exception. However, when the exception results from attempting to
load a not-present stack segment during a task switch, the CS and EIP registers point
to the first instruction of the new task.
6-48 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING
Program State Change

A program-state change does not generally accompany a stack-fault exception,
because the instruction that generated the fault is not executed. Here, the instruction
can be restarted after the exception handler has corrected the stack fault condition.

If a stack fault occurs during a task switch, it occurs after the commit-to-new-task
point (see Section 7.3, “Task Switching”). Here, the processor loads all the state
information from the new TSS (without performing any additional limit, present, or
type checks) before it generates the exception. The stack fault handler should thus
not rely on being able to use the segment selectors found in the CS, SS, DS, ES, FS,
and GS registers without causing another exception. The exception handler should
check all segment registers before trying to resume the new task; otherwise, general
protection faults may result later under conditions that are more difficult to diagnose.
(See the Program State Change description for “Interrupt 10—Invalid TSS Exception
(#TS)” in this chapter for additional information on how to handle this situation.)
Vol. 3A 6-49

INTERRUPT AND EXCEPTION HANDLING
Interrupt 13—General Protection Exception (#GP)

Exception Class Fault.

Description

Indicates that the processor detected one of a class of protection violations called
“general-protection violations.” The conditions that cause this exception to be gener-
ated comprise all the protection violations that do not cause other exceptions to be
generated (such as, invalid-TSS, segment-not-present, stack-fault, or page-fault
exceptions). The following conditions cause general-protection exceptions to be
generated:
• Exceeding the segment limit when accessing the CS, DS, ES, FS, or GS

segments.
• Exceeding the segment limit when referencing a descriptor table (except during a

task switch or a stack switch).
• Transferring execution to a segment that is not executable.
• Writing to a code segment or a read-only data segment.
• Reading from an execute-only code segment.
• Loading the SS register with a segment selector for a read-only segment (unless

the selector comes from a TSS during a task switch, in which case an invalid-TSS
exception occurs).

• Loading the SS, DS, ES, FS, or GS register with a segment selector for a system
segment.

• Loading the DS, ES, FS, or GS register with a segment selector for an execute-
only code segment.

• Loading the SS register with the segment selector of an executable segment or a
null segment selector.

• Loading the CS register with a segment selector for a data segment or a null
segment selector.

• Accessing memory using the DS, ES, FS, or GS register when it contains a null
segment selector.

• Switching to a busy task during a call or jump to a TSS.
• Using a segment selector on a non-IRET task switch that points to a TSS

descriptor in the current LDT. TSS descriptors can only reside in the GDT. This
condition causes a #TS exception during an IRET task switch.

• Violating any of the privilege rules described in Chapter 5, “Protection.”
• Exceeding the instruction length limit of 15 bytes (this only can occur when

redundant prefixes are placed before an instruction).
• Loading the CR0 register with a set PG flag (paging enabled) and a clear PE flag

(protection disabled).
6-50 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING
• Loading the CR0 register with a set NW flag and a clear CD flag.
• Referencing an entry in the IDT (following an interrupt or exception) that is not

an interrupt, trap, or task gate.
• Attempting to access an interrupt or exception handler through an interrupt or

trap gate from virtual-8086 mode when the handler’s code segment DPL is
greater than 0.

• Attempting to write a 1 into a reserved bit of CR4.
• Attempting to execute a privileged instruction when the CPL is not equal to 0 (see

Section 5.9, “Privileged Instructions,” for a list of privileged instructions).
• Writing to a reserved bit in an MSR.
• Accessing a gate that contains a null segment selector.
• Executing the INT n instruction when the CPL is greater than the DPL of the

referenced interrupt, trap, or task gate.
• The segment selector in a call, interrupt, or trap gate does not point to a code

segment.
• The segment selector operand in the LLDT instruction is a local type (TI flag is

set) or does not point to a segment descriptor of the LDT type.
• The segment selector operand in the LTR instruction is local or points to a TSS

that is not available.
• The target code-segment selector for a call, jump, or return is null.
• If the PAE and/or PSE flag in control register CR4 is set and the processor detects

any reserved bits in a page-directory-pointer-table entry set to 1. These bits are
checked during a write to control registers CR0, CR3, or CR4 that causes a
reloading of the page-directory-pointer-table entry.

• Attempting to write a non-zero value into the reserved bits of the MXCSR register.
• Executing an SSE/SSE2/SSE3 instruction that attempts to access a 128-bit

memory location that is not aligned on a 16-byte boundary when the instruction
requires 16-byte alignment. This condition also applies to the stack segment.

A program or task can be restarted following any general-protection exception. If the
exception occurs while attempting to call an interrupt handler, the interrupted
program can be restartable, but the interrupt may be lost.

Exception Error Code

The processor pushes an error code onto the exception handler's stack. If the fault
condition was detected while loading a segment descriptor, the error code contains a
segment selector to or IDT vector number for the descriptor; otherwise, the error
code is 0. The source of the selector in an error code may be any of the following:
• An operand of the instruction.
• A selector from a gate which is the operand of the instruction.
Vol. 3A 6-51

INTERRUPT AND EXCEPTION HANDLING
• A selector from a TSS involved in a task switch.
• IDT vector number.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the
exception.

Program State Change

In general, a program-state change does not accompany a general-protection excep-
tion, because the invalid instruction or operation is not executed. An exception
handler can be designed to correct all of the conditions that cause general-protection
exceptions and restart the program or task without any loss of program continuity.

If a general-protection exception occurs during a task switch, it can occur before or
after the commit-to-new-task point (see Section 7.3, “Task Switching”). If it occurs
before the commit point, no program state change occurs. If it occurs after the
commit point, the processor will load all the state information from the new TSS
(without performing any additional limit, present, or type checks) before it generates
the exception. The general-protection exception handler should thus not rely on
being able to use the segment selectors found in the CS, SS, DS, ES, FS, and GS
registers without causing another exception. (See the Program State Change
description for “Interrupt 10—Invalid TSS Exception (#TS)” in this chapter for addi-
tional information on how to handle this situation.)

General Protection Exception in 64-bit Mode

The following conditions cause general-protection exceptions in 64-bit mode:
• If the memory address is in a non-canonical form.
• If a segment descriptor memory address is in non-canonical form.
• If the target offset in a destination operand of a call or jmp is in a non-canonical

form.
• If a code segment or 64-bit call gate overlaps non-canonical space.
• If the code segment descriptor pointed to by the selector in the 64-bit gate

doesn't have the L-bit set and the D-bit clear.
• If the EFLAGS.NT bit is set in IRET.
• If the stack segment selector of IRET is null when going back to compatibility

mode.
• If the stack segment selector of IRET is null going back to CPL3 and 64-bit mode.
• If a null stack segment selector RPL of IRET is not equal to CPL going back to non-

CPL3 and 64-bit mode.
• If the proposed new code segment descriptor of IRET has both the D-bit and the

L-bit set.
6-52 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING
• If the segment descriptor pointed to by the segment selector in the destination
operand is a code segment and it has both the D-bit and the L-bit set.

• If the segment descriptor from a 64-bit call gate is in non-canonical space.
• If the DPL from a 64-bit call-gate is less than the CPL or than the RPL of the 64-bit

call-gate.
• If the upper type field of a 64-bit call gate is not 0x0.
• If an attempt is made to load a null selector in the SS register in compatibility

mode.
• If an attempt is made to load null selector in the SS register in CPL3 and 64-bit

mode.
• If an attempt is made to load a null selector in the SS register in non-CPL3 and

64-bit mode where RPL is not equal to CPL.
• If an attempt is made to clear CR0.PG while IA-32e mode is enabled.
• If an attempt is made to set a reserved bit in CR3, CR4 or CR8.
Vol. 3A 6-53

INTERRUPT AND EXCEPTION HANDLING
Interrupt 14—Page-Fault Exception (#PF)

Exception Class Fault.

Description

Indicates that, with paging enabled (the PG flag in the CR0 register is set), the
processor detected one of the following conditions while using the page-translation
mechanism to translate a linear address to a physical address:
• The P (present) flag in a page-directory or page-table entry needed for the

address translation is clear, indicating that a page table or the page containing
the operand is not present in physical memory.

• The procedure does not have sufficient privilege to access the indicated page
(that is, a procedure running in user mode attempts to access a supervisor-mode
page).

• Code running in user mode attempts to write to a read-only page. In the Intel486
and later processors, if the WP flag is set in CR0, the page fault will also be
triggered by code running in supervisor mode that tries to write to a read-only
page.

• An instruction fetch to a linear address that translates to a physical address in a
memory page with the execute-disable bit set (for information about the
execute-disable bit, see Chapter 4, “Paging”).

• One or more reserved bits in page directory entry are set to 1. See description
below of RSVD error code flag.

The exception handler can recover from page-not-present conditions and restart the
program or task without any loss of program continuity. It can also restart the
program or task after a privilege violation, but the problem that caused the privilege
violation may be uncorrectable.

See also: Section 4.7, “Page-Fault Exceptions.”

Exception Error Code

Yes (special format). The processor provides the page-fault handler with two items of
information to aid in diagnosing the exception and recovering from it:
• An error code on the stack. The error code for a page fault has a format different

from that for other exceptions (see Figure 6-9). The error code tells the
exception handler four things:

— The P flag indicates whether the exception was due to a not-present page (0)
or to either an access rights violation or the use of a reserved bit (1).

— The W/R flag indicates whether the memory access that caused the exception
was a read (0) or write (1).
6-54 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING
— The U/S flag indicates whether the processor was executing at user mode (1)
or supervisor mode (0) at the time of the exception.

— The RSVD flag indicates that the processor detected 1s in reserved bits of the
page directory, when the PSE or PAE flags in control register CR4 are set to 1.
Note:

• The PSE flag is only available in recent Intel 64 and IA-32 processors
including the Pentium 4, Intel Xeon, P6 family, and Pentium processors.

• The PAE flag is only available on recent Intel 64 and IA-32 processors
including the Pentium 4, Intel Xeon, and P6 family processors.

• In earlier IA-32 processors, the bit position of the RSVD flag is reserved
and is cleared to 0.

— The I/D flag indicates whether the exception was caused by an instruction
fetch. This flag is reserved and cleared to 0 if CR4.SMEP = 0 (supervisor-
mode execution prevention is either unsupported or not enabled) and either
CR4.PAE = 0 (32-bit paging is in use) or IA32_EFER.NXE= 0 (the execute-
disable feature is either unsupported or not enabled). See Section 4.7, “Page-
Fault Exceptions,” for details.

• The contents of the CR2 register. The processor loads the CR2 register with the
32-bit linear address that generated the exception. The page-fault handler can
use this address to locate the corresponding page directory and page-table
entries. Another page fault can potentially occur during execution of the page-

Figure 6-9. Page-Fault Error Code

The fault was caused by a non-present page.
The fault was caused by a page-level protection violation.

The access causing the fault was a read.
The access causing the fault was a write.

The access causing the fault originated when the processor
was executing in supervisor mode.
The access causing the fault originated when the processor
was executing in user mode.

31 0

Reserved

1234

The fault was not caused by reserved bit violation.
The fault was caused by reserved bits set to 1 in a page directory.

P 0
1

W/R 0
1

U/S 0

RSVD 0
1

1

I/D

I/D 0 The fault was not caused by an instruction fetch.
1 The fault was caused by an instruction fetch.

PW
/R

U
/S

R
SVD
Vol. 3A 6-55

INTERRUPT AND EXCEPTION HANDLING
fault handler; the handler should save the contents of the CR2 register before a
second page fault can occur.1 If a page fault is caused by a page-level protection
violation, the access flag in the page-directory entry is set when the fault occurs.
The behavior of IA-32 processors regarding the access flag in the corresponding
page-table entry is model specific and not architecturally defined.

Saved Instruction Pointer

The saved contents of CS and EIP registers generally point to the instruction that
generated the exception. If the page-fault exception occurred during a task switch,
the CS and EIP registers may point to the first instruction of the new task (as
described in the following “Program State Change” section).

Program State Change

A program-state change does not normally accompany a page-fault exception,
because the instruction that causes the exception to be generated is not executed.
After the page-fault exception handler has corrected the violation (for example,
loaded the missing page into memory), execution of the program or task can be
resumed.

When a page-fault exception is generated during a task switch, the program-state
may change, as follows. During a task switch, a page-fault exception can occur
during any of following operations:
• While writing the state of the original task into the TSS of that task.
• While reading the GDT to locate the TSS descriptor of the new task.
• While reading the TSS of the new task.
• While reading segment descriptors associated with segment selectors from the

new task.
• While reading the LDT of the new task to verify the segment registers stored in

the new TSS.

In the last two cases the exception occurs in the context of the new task. The instruc-
tion pointer refers to the first instruction of the new task, not to the instruction which
caused the task switch (or the last instruction to be executed, in the case of an inter-
rupt). If the design of the operating system permits page faults to occur during task-
switches, the page-fault handler should be called through a task gate.

If a page fault occurs during a task switch, the processor will load all the state infor-
mation from the new TSS (without performing any additional limit, present, or type
checks) before it generates the exception. The page-fault handler should thus not
rely on being able to use the segment selectors found in the CS, SS, DS, ES, FS, and

1. Processors update CR2 whenever a page fault is detected. If a second page fault occurs while an
earlier page fault is being delivered, the faulting linear address of the second fault will overwrite
the contents of CR2 (replacing the previous address). These updates to CR2 occur even if the
page fault results in a double fault or occurs during the delivery of a double fault.
6-56 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING
GS registers without causing another exception. (See the Program State Change
description for “Interrupt 10—Invalid TSS Exception (#TS)” in this chapter for addi-
tional information on how to handle this situation.)

Additional Exception-Handling Information

Special care should be taken to ensure that an exception that occurs during an
explicit stack switch does not cause the processor to use an invalid stack pointer
(SS:ESP). Software written for 16-bit IA-32 processors often use a pair of instruc-
tions to change to a new stack, for example:

MOV SS, AX
MOV SP, StackTop

When executing this code on one of the 32-bit IA-32 processors, it is possible to get
a page fault, general-protection fault (#GP), or alignment check fault (#AC) after the
segment selector has been loaded into the SS register but before the ESP register
has been loaded. At this point, the two parts of the stack pointer (SS and ESP) are
inconsistent. The new stack segment is being used with the old stack pointer.

The processor does not use the inconsistent stack pointer if the exception handler
switches to a well defined stack (that is, the handler is a task or a more privileged
procedure). However, if the exception handler is called at the same privilege level
and from the same task, the processor will attempt to use the inconsistent stack
pointer.

In systems that handle page-fault, general-protection, or alignment check excep-
tions within the faulting task (with trap or interrupt gates), software executing at the
same privilege level as the exception handler should initialize a new stack by using
the LSS instruction rather than a pair of MOV instructions, as described earlier in this
note. When the exception handler is running at privilege level 0 (the normal case),
the problem is limited to procedures or tasks that run at privilege level 0, typically
the kernel of the operating system.
Vol. 3A 6-57

INTERRUPT AND EXCEPTION HANDLING
Interrupt 16—x87 FPU Floating-Point Error (#MF)

Exception Class Fault.

Description

Indicates that the x87 FPU has detected a floating-point error. The NE flag in the
register CR0 must be set for an interrupt 16 (floating-point error exception) to be
generated. (See Section 2.5, “Control Registers,” for a detailed description of the NE
flag.)

NOTE
SIMD floating-point exceptions (#XM) are signaled through interrupt
19.

While executing x87 FPU instructions, the x87 FPU detects and reports six types of
floating-point error conditions:
• Invalid operation (#I)

— Stack overflow or underflow (#IS)

— Invalid arithmetic operation (#IA)
• Divide-by-zero (#Z)
• Denormalized operand (#D)
• Numeric overflow (#O)
• Numeric underflow (#U)
• Inexact result (precision) (#P)

Each of these error conditions represents an x87 FPU exception type, and for each of
exception type, the x87 FPU provides a flag in the x87 FPU status register and a mask
bit in the x87 FPU control register. If the x87 FPU detects a floating-point error and
the mask bit for the exception type is set, the x87 FPU handles the exception auto-
matically by generating a predefined (default) response and continuing program
execution. The default responses have been designed to provide a reasonable result
for most floating-point applications.

If the mask for the exception is clear and the NE flag in register CR0 is set, the x87
FPU does the following:

1. Sets the necessary flag in the FPU status register.

2. Waits until the next “waiting” x87 FPU instruction or WAIT/FWAIT instruction is
encountered in the program’s instruction stream.

3. Generates an internal error signal that cause the processor to generate a
floating-point exception (#MF).
6-58 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING
Prior to executing a waiting x87 FPU instruction or the WAIT/FWAIT instruction, the
x87 FPU checks for pending x87 FPU floating-point exceptions (as described in step 2
above). Pending x87 FPU floating-point exceptions are ignored for “non-waiting” x87
FPU instructions, which include the FNINIT, FNCLEX, FNSTSW, FNSTSW AX, FNSTCW,
FNSTENV, and FNSAVE instructions. Pending x87 FPU exceptions are also ignored
when executing the state management instructions FXSAVE and FXRSTOR.

All of the x87 FPU floating-point error conditions can be recovered from. The x87 FPU
floating-point-error exception handler can determine the error condition that caused
the exception from the settings of the flags in the x87 FPU status word. See “Soft-
ware Exception Handling” in Chapter 8 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1, for more information on handling x87 FPU
floating-point exceptions.

Exception Error Code

None. The x87 FPU provides its own error information.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the floating-point or WAIT/FWAIT
instruction that was about to be executed when the floating-point-error exception
was generated. This is not the faulting instruction in which the error condition was
detected. The address of the faulting instruction is contained in the x87 FPU instruc-
tion pointer register. See “x87 FPU Instruction and Operand (Data) Pointers” in
Chapter 8 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1, for more information about information the FPU saves for use in handling
floating-point-error exceptions.

Program State Change

A program-state change generally accompanies an x87 FPU floating-point exception
because the handling of the exception is delayed until the next waiting x87 FPU
floating-point or WAIT/FWAIT instruction following the faulting instruction. The x87
FPU, however, saves sufficient information about the error condition to allow
recovery from the error and re-execution of the faulting instruction if needed.

In situations where non- x87 FPU floating-point instructions depend on the results of
an x87 FPU floating-point instruction, a WAIT or FWAIT instruction can be inserted in
front of a dependent instruction to force a pending x87 FPU floating-point exception
to be handled before the dependent instruction is executed. See “x87 FPU Exception
Synchronization” in Chapter 8 of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1, for more information about synchronization of x87
floating-point-error exceptions.
Vol. 3A 6-59

INTERRUPT AND EXCEPTION HANDLING
Interrupt 17—Alignment Check Exception (#AC)

Exception Class Fault.

Description

Indicates that the processor detected an unaligned memory operand when alignment
checking was enabled. Alignment checks are only carried out in data (or stack)
accesses (not in code fetches or system segment accesses). An example of an align-
ment-check violation is a word stored at an odd byte address, or a doubleword stored
at an address that is not an integer multiple of 4. Table 6-7 lists the alignment
requirements various data types recognized by the processor.

Note that the alignment check exception (#AC) is generated only for data types that
must be aligned on word, doubleword, and quadword boundaries. A general-protec-
tion exception (#GP) is generated 128-bit data types that are not aligned on a
16-byte boundary.

To enable alignment checking, the following conditions must be true:
• AM flag in CR0 register is set.

Table 6-7. Alignment Requirements by Data Type

Data Type Address Must Be Divisible By

Word 2

Doubleword 4

Single-precision floating-point (32-bits) 4

Double-precision floating-point (64-bits) 8

Double extended-precision floating-point (80-
bits)

8

Quadword 8

Double quadword 16

Segment Selector 2

32-bit Far Pointer 2

48-bit Far Pointer 4

32-bit Pointer 4

GDTR, IDTR, LDTR, or Task Register Contents 4

FSTENV/FLDENV Save Area 4 or 2, depending on operand size

FSAVE/FRSTOR Save Area 4 or 2, depending on operand size

Bit String 2 or 4 depending on the operand-size attribute.
6-60 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING
• AC flag in the EFLAGS register is set.
• The CPL is 3 (protected mode or virtual-8086 mode).

Alignment-check exceptions (#AC) are generated only when operating at privilege
level 3 (user mode). Memory references that default to privilege level 0, such as
segment descriptor loads, do not generate alignment-check exceptions, even when
caused by a memory reference made from privilege level 3.

Storing the contents of the GDTR, IDTR, LDTR, or task register in memory while at
privilege level 3 can generate an alignment-check exception. Although application
programs do not normally store these registers, the fault can be avoided by aligning
the information stored on an even word-address.

The FXSAVE/XSAVE and FXRSTOR/XRSTOR instructions save and restore a 512-byte
data structure, the first byte of which must be aligned on a 16-byte boundary. If the
alignment-check exception (#AC) is enabled when executing these instructions (and
CPL is 3), a misaligned memory operand can cause either an alignment-check excep-
tion or a general-protection exception (#GP) depending on the processor implemen-
tation (see “FXSAVE-Save x87 FPU, MMX, SSE, and SSE2 State” and “FXRSTOR-
Restore x87 FPU, MMX, SSE, and SSE2 State” in Chapter 3 of the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 2A; see “XSAVE—Save
Processor Extended States” and “XRSTOR—Restore Processor Extended States” in
Chapter 4 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2B).

The MOVDQU, MOVUPS, and MOVUPD instructions perform 128-bit unaligned loads
or stores. The LDDQU instructions loads 128-bit unaligned data.They do not generate
general-protection exceptions (#GP) when operands are not aligned on a 16-byte
boundary. If alignment checking is enabled, alignment-check exceptions (#AC) may
or may not be generated depending on processor implementation when data
addresses are not aligned on an 8-byte boundary.

FSAVE and FRSTOR instructions can generate unaligned references, which can cause
alignment-check faults. These instructions are rarely needed by application
programs.

Exception Error Code

Yes. The error code is null; all bits are clear except possibly bit 0 — EXT; see Section
6.13. EXT is set if the #AC is recognized during delivery of an event other than a soft-
ware interrupt (see “INT n/INTO/INT 3—Call to Interrupt Procedure” in Chapter 3 of
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A).

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the
exception.
Vol. 3A 6-61

INTERRUPT AND EXCEPTION HANDLING
Program State Change

A program-state change does not accompany an alignment-check fault, because the
instruction is not executed.
6-62 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING
Interrupt 18—Machine-Check Exception (#MC)

Exception Class Abort.

Description

Indicates that the processor detected an internal machine error or a bus error, or that
an external agent detected a bus error. The machine-check exception is model-
specific, available on the Pentium and later generations of processors. The imple-
mentation of the machine-check exception is different between different processor
families, and these implementations may not be compatible with future Intel 64 or
IA-32 processors. (Use the CPUID instruction to determine whether this feature is
present.)

Bus errors detected by external agents are signaled to the processor on dedicated
pins: the BINIT# and MCERR# pins on the Pentium 4, Intel Xeon, and P6 family
processors and the BUSCHK# pin on the Pentium processor. When one of these pins
is enabled, asserting the pin causes error information to be loaded into machine-
check registers and a machine-check exception is generated.

The machine-check exception and machine-check architecture are discussed in detail
in Chapter 15, “Machine-Check Architecture.” Also, see the data books for the indi-
vidual processors for processor-specific hardware information.

Exception Error Code

None. Error information is provide by machine-check MSRs.

Saved Instruction Pointer

For the Pentium 4 and Intel Xeon processors, the saved contents of extended
machine-check state registers are directly associated with the error that caused the
machine-check exception to be generated (see Section 15.3.1.2,
“IA32_MCG_STATUS MSR,” and Section 15.3.2.6, “IA32_MCG Extended Machine
Check State MSRs”).

For the P6 family processors, if the EIPV flag in the MCG_STATUS MSR is set, the
saved contents of CS and EIP registers are directly associated with the error that
caused the machine-check exception to be generated; if the flag is clear, the saved
instruction pointer may not be associated with the error (see Section 15.3.1.2,
“IA32_MCG_STATUS MSR”).

For the Pentium processor, contents of the CS and EIP registers may not be associ-
ated with the error.

Program State Change

The machine-check mechanism is enabled by setting the MCE flag in control register
CR4.
Vol. 3A 6-63

INTERRUPT AND EXCEPTION HANDLING
For the Pentium 4, Intel Xeon, P6 family, and Pentium processors, a program-state
change always accompanies a machine-check exception, and an abort class excep-
tion is generated. For abort exceptions, information about the exception can be
collected from the machine-check MSRs, but the program cannot generally be
restarted.

If the machine-check mechanism is not enabled (the MCE flag in control register CR4
is clear), a machine-check exception causes the processor to enter the shutdown
state.
6-64 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING
Interrupt 19—SIMD Floating-Point Exception (#XM)

Exception Class Fault.

Description

Indicates the processor has detected an SSE/SSE2/SSE3 SIMD floating-point excep-
tion. The appropriate status flag in the MXCSR register must be set and the particular
exception unmasked for this interrupt to be generated.

There are six classes of numeric exception conditions that can occur while executing
an SSE/ SSE2/SSE3 SIMD floating-point instruction:
• Invalid operation (#I)
• Divide-by-zero (#Z)
• Denormal operand (#D)
• Numeric overflow (#O)
• Numeric underflow (#U)
• Inexact result (Precision) (#P)

The invalid operation, divide-by-zero, and denormal-operand exceptions are pre-
computation exceptions; that is, they are detected before any arithmetic operation
occurs. The numeric underflow, numeric overflow, and inexact result exceptions are
post-computational exceptions.

See "SIMD Floating-Point Exceptions" in Chapter 11 of the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1, for additional information
about the SIMD floating-point exception classes.

When a SIMD floating-point exception occurs, the processor does either of the
following things:
• It handles the exception automatically by producing the most reasonable result

and allowing program execution to continue undisturbed. This is the response to
masked exceptions.

• It generates a SIMD floating-point exception, which in turn invokes a software
exception handler. This is the response to unmasked exceptions.

Each of the six SIMD floating-point exception conditions has a corresponding flag bit
and mask bit in the MXCSR register. If an exception is masked (the corresponding
mask bit in the MXCSR register is set), the processor takes an appropriate automatic
default action and continues with the computation. If the exception is unmasked (the
corresponding mask bit is clear) and the operating system supports SIMD floating-
point exceptions (the OSXMMEXCPT flag in control register CR4 is set), a software
exception handler is invoked through a SIMD floating-point exception. If the excep-
tion is unmasked and the OSXMMEXCPT bit is clear (indicating that the operating
system does not support unmasked SIMD floating-point exceptions), an invalid
opcode exception (#UD) is signaled instead of a SIMD floating-point exception.
Vol. 3A 6-65

INTERRUPT AND EXCEPTION HANDLING
Note that because SIMD floating-point exceptions are precise and occur immediately,
the situation does not arise where an x87 FPU instruction, a WAIT/FWAIT instruction,
or another SSE/SSE2/SSE3 instruction will catch a pending unmasked SIMD floating-
point exception.

In situations where a SIMD floating-point exception occurred while the SIMD
floating-point exceptions were masked (causing the corresponding exception flag to
be set) and the SIMD floating-point exception was subsequently unmasked, then no
exception is generated when the exception is unmasked.

When SSE/SSE2/SSE3 SIMD floating-point instructions operate on packed operands
(made up of two or four sub-operands), multiple SIMD floating-point exception
conditions may be detected. If no more than one exception condition is detected for
one or more sets of sub-operands, the exception flags are set for each exception
condition detected. For example, an invalid exception detected for one sub-operand
will not prevent the reporting of a divide-by-zero exception for another sub-operand.
However, when two or more exceptions conditions are generated for one sub-
operand, only one exception condition is reported, according to the precedences
shown in Table 6-8. This exception precedence sometimes results in the higher
priority exception condition being reported and the lower priority exception condi-
tions being ignored.

Exception Error Code

None.

Table 6-8. SIMD Floating-Point Exceptions Priority

Priority Description

1 (Highest) Invalid operation exception due to SNaN operand (or any NaN operand for
maximum, minimum, or certain compare and convert operations).

2 QNaN operand1.

3 Any other invalid operation exception not mentioned above or a divide-by-zero
exception2.

4 Denormal operand exception2.

5 Numeric overflow and underflow exceptions possibly in conjunction with the
inexact result exception2.

6 (Lowest) Inexact result exception.

NOTES:
1. Though a QNaN this is not an exception, the handling of a QNaN operand has precedence over

lower priority exceptions. For example, a QNaN divided by zero results in a QNaN, not a divide-
by-zero- exception.

2. If masked, then instruction execution continues, and a lower priority exception can occur as
well.
6-66 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING
Saved Instruction Pointer

The saved contents of CS and EIP registers point to the SSE/SSE2/SSE3 instruction
that was executed when the SIMD floating-point exception was generated. This is the
faulting instruction in which the error condition was detected.

Program State Change

A program-state change does not accompany a SIMD floating-point exception
because the handling of the exception is immediate unless the particular exception is
masked. The available state information is often sufficient to allow recovery from the
error and re-execution of the faulting instruction if needed.
Vol. 3A 6-67

INTERRUPT AND EXCEPTION HANDLING
Interrupts 32 to 255—User Defined Interrupts

Exception Class Not applicable.

Description

Indicates that the processor did one of the following things:
• Executed an INT n instruction where the instruction operand is one of the vector

numbers from 32 through 255.
• Responded to an interrupt request at the INTR pin or from the local APIC when

the interrupt vector number associated with the request is from 32 through 255.

Exception Error Code

Not applicable.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that follows the
INT n instruction or instruction following the instruction on which the INTR signal
occurred.

Program State Change

A program-state change does not accompany interrupts generated by the INT n
instruction or the INTR signal. The INT n instruction generates the interrupt within
the instruction stream. When the processor receives an INTR signal, it commits all
state changes for all previous instructions before it responds to the interrupt; so,
program execution can resume upon returning from the interrupt handler.
6-68 Vol. 3A

CHAPTER 7
TASK MANAGEMENT

This chapter describes the IA-32 architecture’s task management facilities. These
facilities are only available when the processor is running in protected mode.

This chapter focuses on 32-bit tasks and the 32-bit TSS structure. For information on
16-bit tasks and the 16-bit TSS structure, see Section 7.6, “16-Bit Task-State
Segment (TSS).” For information specific to task management in 64-bit mode, see
Section 7.7, “Task Management in 64-bit Mode.”

7.1 TASK MANAGEMENT OVERVIEW
A task is a unit of work that a processor can dispatch, execute, and suspend. It can
be used to execute a program, a task or process, an operating-system service utility,
an interrupt or exception handler, or a kernel or executive utility.

The IA-32 architecture provides a mechanism for saving the state of a task, for
dispatching tasks for execution, and for switching from one task to another. When
operating in protected mode, all processor execution takes place from within a task.
Even simple systems must define at least one task. More complex systems can use
the processor’s task management facilities to support multitasking applications.

7.1.1 Task Structure
A task is made up of two parts: a task execution space and a task-state segment
(TSS). The task execution space consists of a code segment, a stack segment, and
one or more data segments (see Figure 7-1). If an operating system or executive
uses the processor’s privilege-level protection mechanism, the task execution space
also provides a separate stack for each privilege level.

The TSS specifies the segments that make up the task execution space and provides
a storage place for task state information. In multitasking systems, the TSS also
provides a mechanism for linking tasks.

A task is identified by the segment selector for its TSS. When a task is loaded into the
processor for execution, the segment selector, base address, limit, and segment
descriptor attributes for the TSS are loaded into the task register (see Section 2.4.4,
“Task Register (TR)”).

If paging is implemented for the task, the base address of the page directory used by
the task is loaded into control register CR3.
Vol. 3A 7-1

TASK MANAGEMENT
7.1.2 Task State
The following items define the state of the currently executing task:
• The task’s current execution space, defined by the segment selectors in the

segment registers (CS, DS, SS, ES, FS, and GS).
• The state of the general-purpose registers.
• The state of the EFLAGS register.
• The state of the EIP register.
• The state of control register CR3.
• The state of the task register.
• The state of the LDTR register.
• The I/O map base address and I/O map (contained in the TSS).
• Stack pointers to the privilege 0, 1, and 2 stacks (contained in the TSS).
• Link to previously executed task (contained in the TSS).

Prior to dispatching a task, all of these items are contained in the task’s TSS, except
the state of the task register. Also, the complete contents of the LDTR register are not
contained in the TSS, only the segment selector for the LDT.

Figure 7-1. Structure of a Task

Code
Segment

Stack
Segment

(Current Priv.

Data
Segment

Stack Seg.
Priv. Level 0

Stack Seg.
Priv. Level 1

Stack
Segment

(Priv. Level 2)

Task-State
Segment

(TSS)

Task Register

CR3

Level)
7-2 Vol. 3A

TASK MANAGEMENT
7.1.3 Executing a Task
Software or the processor can dispatch a task for execution in one of the following
ways:
• A explicit call to a task with the CALL instruction.
• A explicit jump to a task with the JMP instruction.
• An implicit call (by the processor) to an interrupt-handler task.
• An implicit call to an exception-handler task.
• A return (initiated with an IRET instruction) when the NT flag in the EFLAGS

register is set.

All of these methods for dispatching a task identify the task to be dispatched with a
segment selector that points to a task gate or the TSS for the task. When dispatching
a task with a CALL or JMP instruction, the selector in the instruction may select the
TSS directly or a task gate that holds the selector for the TSS. When dispatching a
task to handle an interrupt or exception, the IDT entry for the interrupt or exception
must contain a task gate that holds the selector for the interrupt- or exception-
handler TSS.

When a task is dispatched for execution, a task switch occurs between the currently
running task and the dispatched task. During a task switch, the execution environ-
ment of the currently executing task (called the task’s state or context) is saved in
its TSS and execution of the task is suspended. The context for the dispatched task is
then loaded into the processor and execution of that task begins with the instruction
pointed to by the newly loaded EIP register. If the task has not been run since the
system was last initialized, the EIP will point to the first instruction of the task’s code;
otherwise, it will point to the next instruction after the last instruction that the task
executed when it was last active.

If the currently executing task (the calling task) called the task being dispatched (the
called task), the TSS segment selector for the calling task is stored in the TSS of the
called task to provide a link back to the calling task.

For all IA-32 processors, tasks are not recursive. A task cannot call or jump to itself.

Interrupts and exceptions can be handled with a task switch to a handler task. Here,
the processor performs a task switch to handle the interrupt or exception and auto-
matically switches back to the interrupted task upon returning from the interrupt-
handler task or exception-handler task. This mechanism can also handle interrupts
that occur during interrupt tasks.

As part of a task switch, the processor can also switch to another LDT, allowing each
task to have a different logical-to-physical address mapping for LDT-based segments.
The page-directory base register (CR3) also is reloaded on a task switch, allowing
each task to have its own set of page tables. These protection facilities help isolate
tasks and prevent them from interfering with one another.

If protection mechanisms are not used, the processor provides no protection
between tasks. This is true even with operating systems that use multiple privilege
levels for protection. A task running at privilege level 3 that uses the same LDT and
Vol. 3A 7-3

TASK MANAGEMENT
page tables as other privilege-level-3 tasks can access code and corrupt data and the
stack of other tasks.

Use of task management facilities for handling multitasking applications is optional.
Multitasking can be handled in software, with each software defined task executed in
the context of a single IA-32 architecture task.

7.2 TASK MANAGEMENT DATA STRUCTURES
The processor defines five data structures for handling task-related activities:
• Task-state segment (TSS).
• Task-gate descriptor.
• TSS descriptor.
• Task register.
• NT flag in the EFLAGS register.

When operating in protected mode, a TSS and TSS descriptor must be created for at
least one task, and the segment selector for the TSS must be loaded into the task
register (using the LTR instruction).

7.2.1 Task-State Segment (TSS)
The processor state information needed to restore a task is saved in a system
segment called the task-state segment (TSS). Figure 7-2 shows the format of a TSS
for tasks designed for 32-bit CPUs. The fields of a TSS are divided into two main cate-
gories: dynamic fields and static fields.

For information about 16-bit Intel 286 processor task structures, see Section 7.6,
“16-Bit Task-State Segment (TSS).” For information about 64-bit mode task struc-
tures, see Section 7.7, “Task Management in 64-bit Mode.”
7-4 Vol. 3A

TASK MANAGEMENT
The processor updates dynamic fields when a task is suspended during a task switch.
The following are dynamic fields:
• General-purpose register fields — State of the EAX, ECX, EDX, EBX, ESP, EBP,

ESI, and EDI registers prior to the task switch.
• Segment selector fields — Segment selectors stored in the ES, CS, SS, DS, FS,

and GS registers prior to the task switch.
• EFLAGS register field — State of the EFAGS register prior to the task switch.

Figure 7-2. 32-Bit Task-State Segment (TSS)

031

100

96

92

88

84

80

76

I/O Map Base Address

15

LDT Segment Selector

GS

FS

DS

SS

CS

72

68

64

60

56

52

48

44

40

36

32

28

24

20

SS2

16

12

8

4

0

SS1

SS0

ESP0

Previous Task Link

ESP1

ESP2

CR3 (PDBR)

T

ES

EDI

ESI

EBP

ESP

EBX

EDX

ECX

EAX

EFLAGS

EIP

Reserved bits. Set to 0.

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved
Vol. 3A 7-5

TASK MANAGEMENT
• EIP (instruction pointer) field — State of the EIP register prior to the task
switch.

• Previous task link field — Contains the segment selector for the TSS of the
previous task (updated on a task switch that was initiated by a call, interrupt, or
exception). This field (which is sometimes called the back link field) permits a
task switch back to the previous task by using the IRET instruction.

The processor reads the static fields, but does not normally change them. These
fields are set up when a task is created. The following are static fields:
• LDT segment selector field — Contains the segment selector for the task's

LDT.
• CR3 control register field — Contains the base physical address of the page

directory to be used by the task. Control register CR3 is also known as the page-
directory base register (PDBR).

• Privilege level-0, -1, and -2 stack pointer fields — These stack pointers
consist of a logical address made up of the segment selector for the stack
segment (SS0, SS1, and SS2) and an offset into the stack (ESP0, ESP1, and
ESP2). Note that the values in these fields are static for a particular task;
whereas, the SS and ESP values will change if stack switching occurs within the
task.

• T (debug trap) flag (byte 100, bit 0) — When set, the T flag causes the
processor to raise a debug exception when a task switch to this task occurs (see
Section 17.3.1.5, “Task-Switch Exception Condition”).

• I/O map base address field — Contains a 16-bit offset from the base of the
TSS to the I/O permission bit map and interrupt redirection bitmap. When
present, these maps are stored in the TSS at higher addresses. The I/O map base
address points to the beginning of the I/O permission bit map and the end of the
interrupt redirection bit map. See Chapter 13, “Input/Output,” in the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 1, for more
information about the I/O permission bit map. See Section 20.3, “Interrupt and
Exception Handling in Virtual-8086 Mode,” for a detailed description of the
interrupt redirection bit map.

If paging is used:
• Avoid placing a page boundary in the part of the TSS that the processor reads

during a task switch (the first 104 bytes). The processor may not correctly
perform address translations if a boundary occurs in this area. During a task
switch, the processor reads and writes into the first 104 bytes of each TSS (using
contiguous physical addresses beginning with the physical address of the first
byte of the TSS). So, after TSS access begins, if part of the 104 bytes is not
physically contiguous, the processor will access incorrect information without
generating a page-fault exception.

• Pages corresponding to the previous task’s TSS, the current task’s TSS, and the
descriptor table entries for each all should be marked as read/write.
7-6 Vol. 3A

TASK MANAGEMENT
• Task switches are carried out faster if the pages containing these structures are
present in memory before the task switch is initiated.

7.2.2 TSS Descriptor
The TSS, like all other segments, is defined by a segment descriptor. Figure 7-3
shows the format of a TSS descriptor. TSS descriptors may only be placed in the GDT;
they cannot be placed in an LDT or the IDT.

An attempt to access a TSS using a segment selector with its TI flag set (which indi-
cates the current LDT) causes a general-protection exception (#GP) to be generated
during CALLs and JMPs; it causes an invalid TSS exception (#TS) during IRETs. A
general-protection exception is also generated if an attempt is made to load a
segment selector for a TSS into a segment register.

The busy flag (B) in the type field indicates whether the task is busy. A busy task is
currently running or suspended. A type field with a value of 1001B indicates an inac-
tive task; a value of 1011B indicates a busy task. Tasks are not recursive. The
processor uses the busy flag to detect an attempt to call a task whose execution has
been interrupted. To insure that there is only one busy flag is associated with a task,
each TSS should have only one TSS descriptor that points to it.

The base, limit, and DPL fields and the granularity and present flags have functions
similar to their use in data-segment descriptors (see Section 3.4.5, “Segment
Descriptors”). When the G flag is 0 in a TSS descriptor for a 32-bit TSS, the limit field
must have a value equal to or greater than 67H, one byte less than the minimum size

Figure 7-3. TSS Descriptor

31 24 23 22 21 20 19 16 15 1314 12 11 8 7 0

PBase 31:24 G
D
P
L

Type

0
0

31 16 15 0

Base Address 15:00 Segment Limit 15:00

Base 23:16
A
V
L

Limit
19:16

0
1B01

TSS Descriptor

AVL
B
BASE
DPL
G

Available for use by system software
Busy flag
Segment Base Address
Descriptor Privilege Level
Granularity

LIMIT
P
TYPE

Segment Limit
Segment Present
Segment Type

0

4

Vol. 3A 7-7

TASK MANAGEMENT
of a TSS. Attempting to switch to a task whose TSS descriptor has a limit less than
67H generates an invalid-TSS exception (#TS). A larger limit is required if an I/O
permission bit map is included or if the operating system stores additional data. The
processor does not check for a limit greater than 67H on a task switch; however, it
does check when accessing the I/O permission bit map or interrupt redirection bit
map.

Any program or procedure with access to a TSS descriptor (that is, whose CPL is
numerically equal to or less than the DPL of the TSS descriptor) can dispatch the task
with a call or a jump.

In most systems, the DPLs of TSS descriptors are set to values less than 3, so that
only privileged software can perform task switching. However, in multitasking appli-
cations, DPLs for some TSS descriptors may be set to 3 to allow task switching at the
application (or user) privilege level.

7.2.3 TSS Descriptor in 64-bit mode
In 64-bit mode, task switching is not supported, but TSS descriptors still exist. The
format of a 64-bit TSS is described in Section 7.7.

In 64-bit mode, the TSS descriptor is expanded to 16 bytes (see Figure 7-4). This
expansion also applies to an LDT descriptor in 64-bit mode. Table 3-2 provides the
encoding information for the segment type field.
7-8 Vol. 3A

TASK MANAGEMENT
7.2.4 Task Register
The task register holds the 16-bit segment selector and the entire segment
descriptor (32-bit base address (64 bits in IA-32e mode), 16-bit segment limit, and
descriptor attributes) for the TSS of the current task (see Figure 2-5). This informa-
tion is copied from the TSS descriptor in the GDT for the current task. Figure 7-5
shows the path the processor uses to access the TSS (using the information in the
task register).

The task register has a visible part (that can be read and changed by software) and
an invisible part (maintained by the processor and is inaccessible by software). The
segment selector in the visible portion points to a TSS descriptor in the GDT. The
processor uses the invisible portion of the task register to cache the segment
descriptor for the TSS. Caching these values in a register makes execution of the task
more efficient. The LTR (load task register) and STR (store task register) instructions
load and read the visible portion of the task register:

Figure 7-4. Format of TSS and LDT Descriptors in 64-bit Mode

31 24 23 22 21 20 19 16 15 1314 12 11 8 7 0

PBase 31:24 G
D
P
L

Type

0
0

31 16 15 0

Base Address 15:00 Segment Limit 15:00

Base 23:16
A
V
L

Limit
19:16

0

TSS (or LDT) Descriptor

AVL
B
BASE
DPL
G

Available for use by system software
Busy flag
Segment Base Address
Descriptor Privilege Level
Granularity

LIMIT
P
TYPE

Segment Limit
Segment Present
Segment Type

0

4

31 13 12 8 7 0

Reserved

31 0

Base Address 63:32

Reserved0

8

12
Vol. 3A 7-9

TASK MANAGEMENT
The LTR instruction loads a segment selector (source operand) into the task register
that points to a TSS descriptor in the GDT. It then loads the invisible portion of the
task register with information from the TSS descriptor. LTR is a privileged instruction
that may be executed only when the CPL is 0. It’s used during system initialization to
put an initial value in the task register. Afterwards, the contents of the task register
are changed implicitly when a task switch occurs.

The STR (store task register) instruction stores the visible portion of the task register
in a general-purpose register or memory. This instruction can be executed by code
running at any privilege level in order to identify the currently running task. However,
it is normally used only by operating system software.

On power up or reset of the processor, segment selector and base address are set to
the default value of 0; the limit is set to FFFFH.

Figure 7-5. Task Register

Segment LimitSelector

+

GDT

TSS Descriptor

0

Base Address
Task

Invisible PartVisible Part

TSS

Register
7-10 Vol. 3A

TASK MANAGEMENT
7.2.5 Task-Gate Descriptor
A task-gate descriptor provides an indirect, protected reference to a task (see
Figure 7-6). It can be placed in the GDT, an LDT, or the IDT. The TSS segment
selector field in a task-gate descriptor points to a TSS descriptor in the GDT. The RPL
in this segment selector is not used.

The DPL of a task-gate descriptor controls access to the TSS descriptor during a task
switch. When a program or procedure makes a call or jump to a task through a task
gate, the CPL and the RPL field of the gate selector pointing to the task gate must be
less than or equal to the DPL of the task-gate descriptor. Note that when a task gate
is used, the DPL of the destination TSS descriptor is not used.

A task can be accessed either through a task-gate descriptor or a TSS descriptor.
Both of these structures satisfy the following needs:
• Need for a task to have only one busy flag — Because the busy flag for a task

is stored in the TSS descriptor, each task should have only one TSS descriptor.
There may, however, be several task gates that reference the same TSS
descriptor.

• Need to provide selective access to tasks — Task gates fill this need, because
they can reside in an LDT and can have a DPL that is different from the TSS
descriptor's DPL. A program or procedure that does not have sufficient privilege
to access the TSS descriptor for a task in the GDT (which usually has a DPL of 0)
may be allowed access to the task through a task gate with a higher DPL. Task
gates give the operating system greater latitude for limiting access to specific
tasks.

• Need for an interrupt or exception to be handled by an independent task
— Task gates may also reside in the IDT, which allows interrupts and exceptions

Figure 7-6. Task-Gate Descriptor

31 16 15 1314 12 11 8 7 0

P
D
P
L

Type

0

31 16 15 0

TSS Segment Selector

1010

DPL
P
TYPE

Descriptor Privilege Level
Segment Present
Segment Type

4

0Reserved

ReservedReserved
Vol. 3A 7-11

TASK MANAGEMENT
to be handled by handler tasks. When an interrupt or exception vector points to
a task gate, the processor switches to the specified task.

Figure 7-7 illustrates how a task gate in an LDT, a task gate in the GDT, and a task
gate in the IDT can all point to the same task.

7.3 TASK SWITCHING
The processor transfers execution to another task in one of four cases:
• The current program, task, or procedure executes a JMP or CALL instruction to a

TSS descriptor in the GDT.
• The current program, task, or procedure executes a JMP or CALL instruction to a

task-gate descriptor in the GDT or the current LDT.

Figure 7-7. Task Gates Referencing the Same Task

LDT

Task Gate

TSSGDT

TSS Descriptor

IDT

Task Gate

Task Gate
7-12 Vol. 3A

TASK MANAGEMENT
• An interrupt or exception vector points to a task-gate descriptor in the IDT.
• The current task executes an IRET when the NT flag in the EFLAGS register is set.

JMP, CALL, and IRET instructions, as well as interrupts and exceptions, are all mech-
anisms for redirecting a program. The referencing of a TSS descriptor or a task gate
(when calling or jumping to a task) or the state of the NT flag (when executing an
IRET instruction) determines whether a task switch occurs.

The processor performs the following operations when switching to a new task:

1. Obtains the TSS segment selector for the new task as the operand of the JMP or
CALL instruction, from a task gate, or from the previous task link field (for a task
switch initiated with an IRET instruction).

2. Checks that the current (old) task is allowed to switch to the new task. Data-
access privilege rules apply to JMP and CALL instructions. The CPL of the current
(old) task and the RPL of the segment selector for the new task must be less than
or equal to the DPL of the TSS descriptor or task gate being referenced.
Exceptions, interrupts (except for interrupts generated by the INT n instruction),
and the IRET instruction are permitted to switch tasks regardless of the DPL of
the destination task-gate or TSS descriptor. For interrupts generated by the INT n
instruction, the DPL is checked.

3. Checks that the TSS descriptor of the new task is marked present and has a valid
limit (greater than or equal to 67H).

4. Checks that the new task is available (call, jump, exception, or interrupt) or busy
(IRET return).

5. Checks that the current (old) TSS, new TSS, and all segment descriptors used in
the task switch are paged into system memory.

6. If the task switch was initiated with a JMP or IRET instruction, the processor
clears the busy (B) flag in the current (old) task’s TSS descriptor; if initiated with
a CALL instruction, an exception, or an interrupt: the busy (B) flag is left set.
(See Table 7-2.)

7. If the task switch was initiated with an IRET instruction, the processor clears the
NT flag in a temporarily saved image of the EFLAGS register; if initiated with a
CALL or JMP instruction, an exception, or an interrupt, the NT flag is left
unchanged in the saved EFLAGS image.

8. Saves the state of the current (old) task in the current task’s TSS. The processor
finds the base address of the current TSS in the task register and then copies the
states of the following registers into the current TSS: all the general-purpose
registers, segment selectors from the segment registers, the temporarily saved
image of the EFLAGS register, and the instruction pointer register (EIP).

9. If the task switch was initiated with a CALL instruction, an exception, or an
interrupt, the processor will set the NT flag in the EFLAGS loaded from the new
task. If initiated with an IRET instruction or JMP instruction, the NT flag will reflect
the state of NT in the EFLAGS loaded from the new task (see Table 7-2).
Vol. 3A 7-13

TASK MANAGEMENT
10. If the task switch was initiated with a CALL instruction, JMP instruction, an
exception, or an interrupt, the processor sets the busy (B) flag in the new task’s
TSS descriptor; if initiated with an IRET instruction, the busy (B) flag is left set.

11. Loads the task register with the segment selector and descriptor for the new
task's TSS.

12. The TSS state is loaded into the processor. This includes the LDTR register, the
PDBR (control register CR3), the EFLAGS register, the EIP register, the general-
purpose registers, and the segment selectors. A fault during the load of this state
may corrupt architectural state.

13. The descriptors associated with the segment selectors are loaded and qualified.
Any errors associated with this loading and qualification occur in the context of
the new task and may corrupt architectural state.

NOTES
If all checks and saves have been carried out successfully, the
processor commits to the task switch. If an unrecoverable error
occurs in steps 1 through 11, the processor does not complete the
task switch and insures that the processor is returned to its state
prior to the execution of the instruction that initiated the task switch.

If an unrecoverable error occurs in step 12, architectural state may
be corrupted, but an attempt will be made to handle the error in the
prior execution environment. If an unrecoverable error occurs after
the commit point (in step 13), the processor completes the task
switch (without performing additional access and segment avail-
ability checks) and generates the appropriate exception prior to
beginning execution of the new task.

If exceptions occur after the commit point, the exception handler
must finish the task switch itself before allowing the processor to
begin executing the new task. See Chapter 6, “Interrupt 10—Invalid
TSS Exception (#TS),” for more information about the affect of
exceptions on a task when they occur after the commit point of a task
switch.

14. Begins executing the new task. (To an exception handler, the first instruction of
the new task appears not to have been executed.)

The state of the currently executing task is always saved when a successful task
switch occurs. If the task is resumed, execution starts with the instruction pointed to
by the saved EIP value, and the registers are restored to the values they held when
the task was suspended.

When switching tasks, the privilege level of the new task does not inherit its privilege
level from the suspended task. The new task begins executing at the privilege level
specified in the CPL field of the CS register, which is loaded from the TSS. Because
tasks are isolated by their separate address spaces and TSSs and because privilege
7-14 Vol. 3A

TASK MANAGEMENT
rules control access to a TSS, software does not need to perform explicit privilege
checks on a task switch.

Table 7-1 shows the exception conditions that the processor checks for when
switching tasks. It also shows the exception that is generated for each check if an
error is detected and the segment that the error code references. (The order of the
checks in the table is the order used in the P6 family processors. The exact order is
model specific and may be different for other IA-32 processors.) Exception handlers
designed to handle these exceptions may be subject to recursive calls if they attempt
to reload the segment selector that generated the exception. The cause of the excep-
tion (or the first of multiple causes) should be fixed before reloading the selector.

Table 7-1. Exception Conditions Checked During a Task Switch
Condition Checked Exception1 Error Code

Reference2

Segment selector for a TSS descriptor references
the GDT and is within the limits of the table.

#GP

#TS (for IRET)

New Task’s TSS

TSS descriptor is present in memory. #NP New Task’s TSS

TSS descriptor is not busy (for task switch initiated
by a call, interrupt, or exception).

#GP (for JMP, CALL,
INT)

Task’s back-link TSS

TSS descriptor is not busy (for task switch initiated
by an IRET instruction).

#TS (for IRET) New Task’s TSS

TSS segment limit greater than or equal to 108 (for
32-bit TSS) or 44 (for 16-bit TSS).

#TS New Task’s TSS

Registers are loaded from the values in the TSS.

LDT segment selector of new task is valid 3. #TS New Task’s LDT

Code segment DPL matches segment selector RPL. #TS New Code Segment

SS segment selector is valid 2. #TS New Stack Segment

Stack segment is present in memory. #SS New Stack Segment

Stack segment DPL matches CPL. #TS New stack segment

LDT of new task is present in memory. #TS New Task’s LDT

CS segment selector is valid 3. #TS New Code Segment

Code segment is present in memory. #NP New Code Segment

Stack segment DPL matches selector RPL. #TS New Stack Segment

DS, ES, FS, and GS segment selectors are valid 3. #TS New Data Segment

DS, ES, FS, and GS segments are readable. #TS New Data Segment
Vol. 3A 7-15

TASK MANAGEMENT
The TS (task switched) flag in the control register CR0 is set every time a task switch
occurs. System software uses the TS flag to coordinate the actions of floating-point
unit when generating floating-point exceptions with the rest of the processor. The TS
flag indicates that the context of the floating-point unit may be different from that of
the current task. See Section 2.5, “Control Registers”, for a detailed description of
the function and use of the TS flag.

7.4 TASK LINKING
The previous task link field of the TSS (sometimes called the “backlink”) and the NT
flag in the EFLAGS register are used to return execution to the previous task.
EFLAGS.NT = 1 indicates that the currently executing task is nested within the
execution of another task.

When a CALL instruction, an interrupt, or an exception causes a task switch: the
processor copies the segment selector for the current TSS to the previous task link
field of the TSS for the new task; it then sets EFLAGS.NT = 1. If software uses an
IRET instruction to suspend the new task, the processor checks for EFLAGS.NT = 1;
it then uses the value in the previous task link field to return to the previous task. See
Figures 7-8.

When a JMP instruction causes a task switch, the new task is not nested. The
previous task link field is not used and EFLAGS.NT = 0. Use a JMP instruction to
dispatch a new task when nesting is not desired.

DS, ES, FS, and GS segments are present in memory. #NP New Data Segment

DS, ES, FS, and GS segment DPL greater than or
equal to CPL (unless these are
conforming segments).

#TS New Data Segment

NOTES:
1. #NP is segment-not-present exception, #GP is general-protection exception, #TS is invalid-TSS

exception, and #SS is stack-fault exception.
2. The error code contains an index to the segment descriptor referenced in this column.
3. A segment selector is valid if it is in a compatible type of table (GDT or LDT), occupies an address

within the table's segment limit, and refers to a compatible type of descriptor (for example, a seg-
ment selector in the CS register only is valid when it points to a code-segment descriptor).

Table 7-1. Exception Conditions Checked During a Task Switch (Contd.)
Condition Checked Exception1 Error Code

Reference2
7-16 Vol. 3A

TASK MANAGEMENT
Table 7-2 shows the busy flag (in the TSS segment descriptor), the NT flag, the
previous task link field, and TS flag (in control register CR0) during a task switch.

The NT flag may be modified by software executing at any privilege level. It is
possible for a program to set the NT flag and execute an IRET instruction. This might
randomly invoke the task specified in the previous link field of the current task's TSS.
To keep such spurious task switches from succeeding, the operating system should
initialize the previous task link field in every TSS that it creates to 0.

Figure 7-8. Nested Tasks

Table 7-2. Effect of a Task Switch on Busy Flag, NT Flag,
Previous Task Link Field, and TS Flag

Flag or Field Effect of JMP
instruction

Effect of CALL
Instruction or

Interrupt

Effect of IRET
Instruction

Busy (B) flag of new
task.

Flag is set. Must have
been clear before.

Flag is set. Must have
been clear before.

No change. Must have
been set.

Busy flag of old task. Flag is cleared. No change. Flag is
currently set.

Flag is cleared.

NT flag of new task. Set to value from TSS
of new task.

Flag is set. Set to value from TSS
of new task.

NT flag of old task. No change. No change. Flag is cleared.

Previous task link field
of new task.

No change. Loaded with selector
for old task’s TSS.

No change.

Previous task link field
of old task.

No change. No change. No change.

TS flag in control
register CR0.

Flag is set. Flag is set. Flag is set.

Top Level
Task

NT=0

Previous

TSS

Nested
Task

NT=1

TSS

More Deeply
Nested Task

NT=1

TSS

Currently Executing
Task

NT=1

EFLAGS

Task RegisterTask Link
Previous

Task Link
Previous

Task Link
Vol. 3A 7-17

TASK MANAGEMENT
7.4.1 Use of Busy Flag To Prevent Recursive Task Switching
A TSS allows only one context to be saved for a task; therefore, once a task is called
(dispatched), a recursive (or re-entrant) call to the task would cause the current
state of the task to be lost. The busy flag in the TSS segment descriptor is provided
to prevent re-entrant task switching and a subsequent loss of task state information.
The processor manages the busy flag as follows:

1. When dispatching a task, the processor sets the busy flag of the new task.

2. If during a task switch, the current task is placed in a nested chain (the task
switch is being generated by a CALL instruction, an interrupt, or an exception),
the busy flag for the current task remains set.

3. When switching to the new task (initiated by a CALL instruction, interrupt, or
exception), the processor generates a general-protection exception (#GP) if the
busy flag of the new task is already set. If the task switch is initiated with an IRET
instruction, the exception is not raised because the processor expects the busy
flag to be set.

4. When a task is terminated by a jump to a new task (initiated with a JMP
instruction in the task code) or by an IRET instruction in the task code, the
processor clears the busy flag, returning the task to the “not busy” state.

The processor prevents recursive task switching by preventing a task from switching
to itself or to any task in a nested chain of tasks. The chain of nested suspended tasks
may grow to any length, due to multiple calls, interrupts, or exceptions. The busy
flag prevents a task from being invoked if it is in this chain.

The busy flag may be used in multiprocessor configurations, because the processor
follows a LOCK protocol (on the bus or in the cache) when it sets or clears the busy
flag. This lock keeps two processors from invoking the same task at the same time.
See Section 8.1.2.1, “Automatic Locking,” for more information about setting the
busy flag in a multiprocessor applications.

7.4.2 Modifying Task Linkages
In a uniprocessor system, in situations where it is necessary to remove a task from a
chain of linked tasks, use the following procedure to remove the task:

1. Disable interrupts.

2. Change the previous task link field in the TSS of the pre-empting task (the task
that suspended the task to be removed). It is assumed that the pre-empting task
is the next task (newer task) in the chain from the task to be removed. Change
the previous task link field to point to the TSS of the next oldest task in the chain
or to an even older task in the chain.

3. Clear the busy (B) flag in the TSS segment descriptor for the task being removed
from the chain. If more than one task is being removed from the chain, the busy
flag for each task being remove must be cleared.

4. Enable interrupts.
7-18 Vol. 3A

TASK MANAGEMENT
In a multiprocessing system, additional synchronization and serialization operations
must be added to this procedure to insure that the TSS and its segment descriptor
are both locked when the previous task link field is changed and the busy flag is
cleared.

7.5 TASK ADDRESS SPACE
The address space for a task consists of the segments that the task can access.
These segments include the code, data, stack, and system segments referenced in
the TSS and any other segments accessed by the task code. The segments are
mapped into the processor’s linear address space, which is in turn mapped into the
processor’s physical address space (either directly or through paging).

The LDT segment field in the TSS can be used to give each task its own LDT. Giving a
task its own LDT allows the task address space to be isolated from other tasks by
placing the segment descriptors for all the segments associated with the task in the
task’s LDT.

It also is possible for several tasks to use the same LDT. This is a memory-efficient
way to allow specific tasks to communicate with or control each other, without drop-
ping the protection barriers for the entire system.

Because all tasks have access to the GDT, it also is possible to create shared
segments accessed through segment descriptors in this table.

If paging is enabled, the CR3 register (PDBR) field in the TSS allows each task to
have its own set of page tables for mapping linear addresses to physical addresses.
Or, several tasks can share the same set of page tables.

7.5.1 Mapping Tasks to the Linear and Physical Address Spaces
Tasks can be mapped to the linear address space and physical address space in one
of two ways:
• One linear-to-physical address space mapping is shared among all tasks.

— When paging is not enabled, this is the only choice. Without paging, all linear
addresses map to the same physical addresses. When paging is enabled, this
form of linear-to-physical address space mapping is obtained by using one page
directory for all tasks. The linear address space may exceed the available
physical space if demand-paged virtual memory is supported.

• Each task has its own linear address space that is mapped to the physical
address space. — This form of mapping is accomplished by using a different
page directory for each task. Because the PDBR (control register CR3) is loaded
on task switches, each task may have a different page directory.

The linear address spaces of different tasks may map to completely distinct physical
addresses. If the entries of different page directories point to different page tables
Vol. 3A 7-19

TASK MANAGEMENT
and the page tables point to different pages of physical memory, then the tasks do
not share physical addresses.

With either method of mapping task linear address spaces, the TSSs for all tasks
must lie in a shared area of the physical space, which is accessible to all tasks. This
mapping is required so that the mapping of TSS addresses does not change while the
processor is reading and updating the TSSs during a task switch. The linear address
space mapped by the GDT also should be mapped to a shared area of the physical
space; otherwise, the purpose of the GDT is defeated. Figure 7-9 shows how the
linear address spaces of two tasks can overlap in the physical space by sharing page
tables.

7.5.2 Task Logical Address Space
To allow the sharing of data among tasks, use the following techniques to create
shared logical-to-physical address-space mappings for data segments:
• Through the segment descriptors in the GDT — All tasks must have access

to the segment descriptors in the GDT. If some segment descriptors in the GDT
point to segments in the linear-address space that are mapped into an area of the
physical-address space common to all tasks, then all tasks can share the data
and code in those segments.

• Through a shared LDT — Two or more tasks can use the same LDT if the LDT
fields in their TSSs point to the same LDT. If some segment descriptors in a

Figure 7-9. Overlapping Linear-to-Physical Mappings

Task A
TSS

PDE

Page Directories

PDE

PTE
PTE
PTE

PTE
PTE

Page Tables Page Frames

Task A

Task A

Shared

Shared

Task B

Task B

Shared PT

PTE
PTE

PDE
PDE

PDBR

PDBR

Task A TSS

Task B TSS
7-20 Vol. 3A

TASK MANAGEMENT
shared LDT point to segments that are mapped to a common area of the physical
address space, the data and code in those segments can be shared among the
tasks that share the LDT. This method of sharing is more selective than sharing
through the GDT, because the sharing can be limited to specific tasks. Other
tasks in the system may have different LDTs that do not give them access to the
shared segments.

• Through segment descriptors in distinct LDTs that are mapped to
common addresses in linear address space — If this common area of the
linear address space is mapped to the same area of the physical address space
for each task, these segment descriptors permit the tasks to share segments.
Such segment descriptors are commonly called aliases. This method of sharing is
even more selective than those listed above, because, other segment descriptors
in the LDTs may point to independent linear addresses which are not shared.

7.6 16-BIT TASK-STATE SEGMENT (TSS)
The 32-bit IA-32 processors also recognize a 16-bit TSS format like the one used in
Intel 286 processors (see Figure 7-10). This format is supported for compatibility
with software written to run on earlier IA-32 processors.

The following information is important to know about the 16-bit TSS.
• Do not use a 16-bit TSS to implement a virtual-8086 task.
• The valid segment limit for a 16-bit TSS is 2CH.
• The 16-bit TSS does not contain a field for the base address of the page directory,

which is loaded into control register CR3. A separate set of page tables for each
task is not supported for 16-bit tasks. If a 16-bit task is dispatched, the page-
table structure for the previous task is used.

• The I/O base address is not included in the 16-bit TSS. None of the functions of
the I/O map are supported.

• When task state is saved in a 16-bit TSS, the upper 16 bits of the EFLAGS register
and the EIP register are lost.

• When the general-purpose registers are loaded or saved from a 16-bit TSS, the
upper 16 bits of the registers are modified and not maintained.
Vol. 3A 7-21

TASK MANAGEMENT
7.7 TASK MANAGEMENT IN 64-BIT MODE
In 64-bit mode, task structure and task state are similar to those in protected mode.
However, the task switching mechanism available in protected mode is not supported
in 64-bit mode. Task management and switching must be performed by software.
The processor issues a general-protection exception (#GP) if the following is
attempted in 64-bit mode:
• Control transfer to a TSS or a task gate using JMP, CALL, INTn, or interrupt.
• An IRET with EFLAGS.NT (nested task) set to 1.

Figure 7-10. 16-Bit TSS Format

Task LDT Selector

DS Selector

SS Selector

CS Selector

ES Selector

DI

SI

BP

SP

BX

DX

CX

AX

FLAG Word

IP (Entry Point)

SS2

SP2

SS1

SP1

SS0

SP0

Previous Task Link

15 0

42

40

36

34

32

30

38

28

26

24

22

20

18

16

14

12

10

8

6

4

2

0

7-22 Vol. 3A

TASK MANAGEMENT
Although hardware task-switching is not supported in 64-bit mode, a 64-bit task
state segment (TSS) must exist. Figure 7-11 shows the format of a 64-bit TSS. The
TSS holds information important to 64-bit mode and that is not directly related to the
task-switch mechanism. This information includes:
• RSPn — The full 64-bit canonical forms of the stack pointers (RSP) for privilege

levels 0-2.
• ISTn — The full 64-bit canonical forms of the interrupt stack table (IST) pointers.
• I/O map base address — The 16-bit offset to the I/O permission bit map from

the 64-bit TSS base.

The operating system must create at least one 64-bit TSS after activating IA-32e
mode. It must execute the LTR instruction (in 64-bit mode) to load the TR register
with a pointer to the 64-bit TSS responsible for both 64-bit-mode programs and
compatibility-mode programs.
Vol. 3A 7-23

TASK MANAGEMENT
Figure 7-11. 64-Bit TSS Format

031

100

96

92

88

84

80

76

I/O Map Base Address

15

72

68

64

60

56

52

48

44

40

36

32

28

24

20

16

12

8

4

0

RSP0 (lower 32 bits)

RSP1 (lower 32 bits)

RSP2 (lower 32 bits)

Reserved bits. Set to 0.

RSP0 (upper 32 bits)

RSP1 (upper 32 bits)

RSP2 (upper 32 bits)

IST1 (lower 32 bits)

IST1 (upper 32 bits)

IST2 (lower 32 bits)

IST3 (lower 32 bits)

IST4 (lower 32 bits)

IST5 (lower 32 bits)

IST6 (lower 32 bits)

IST7 (lower 32 bits)

IST2 (upper 32 bits)

IST3 (upper 32 bits)

IST4 (upper 32 bits)

IST5 (upper 32 bits)

IST6 (upper 32 bits)

IST7 (upper 32 bits)

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved
7-24 Vol. 3A

CHAPTER 8
MULTIPLE-PROCESSOR MANAGEMENT

The Intel 64 and IA-32 architectures provide mechanisms for managing and
improving the performance of multiple processors connected to the same system
bus. These include:
• Bus locking and/or cache coherency management for performing atomic

operations on system memory.
• Serializing instructions. These instructions apply only to the Pentium 4, Intel

Xeon, P6 family, and Pentium processors.
• An advance programmable interrupt controller (APIC) located on the processor

chip (see Chapter 10, “Advanced Programmable Interrupt Controller (APIC)”).
This feature was introduced by the Pentium processor.

• A second-level cache (level 2, L2). For the Pentium 4, Intel Xeon, and P6 family
processors, the L2 cache is included in the processor package and is tightly
coupled to the processor. For the Pentium and Intel486 processors, pins are
provided to support an external L2 cache.

• A third-level cache (level 3, L3). For Intel Xeon processors, the L3 cache is
included in the processor package and is tightly coupled to the processor.

• Intel Hyper-Threading Technology. This extension to the Intel 64 and IA-32 archi-
tectures enables a single processor core to execute two or more threads concur-
rently (see Section 8.5, “Intel® Hyper-Threading Technology and Intel® Multi-
Core Technology”).

These mechanisms are particularly useful in symmetric-multiprocessing (SMP)
systems. However, they can also be used when an Intel 64 or IA-32 processor and a
special-purpose processor (such as a communications, graphics, or video processor)
share the system bus.

These multiprocessing mechanisms have the following characteristics:
• To maintain system memory coherency — When two or more processors are

attempting simultaneously to access the same address in system memory, some
communication mechanism or memory access protocol must be available to
promote data coherency and, in some instances, to allow one processor to
temporarily lock a memory location.

• To maintain cache consistency — When one processor accesses data cached on
another processor, it must not receive incorrect data. If it modifies data, all other
processors that access that data must receive the modified data.

• To allow predictable ordering of writes to memory — In some circumstances, it is
important that memory writes be observed externally in precisely the same order
as programmed.
Vol. 3A 8-1

MULTIPLE-PROCESSOR MANAGEMENT
• To distribute interrupt handling among a group of processors — When several
processors are operating in a system in parallel, it is useful to have a centralized
mechanism for receiving interrupts and distributing them to available processors
for servicing.

• To increase system performance by exploiting the multi-threaded and multi-
process nature of contemporary operating systems and applications.

The caching mechanism and cache consistency of Intel 64 and IA-32 processors are
discussed in Chapter 11. The APIC architecture is described in Chapter 10. Bus and
memory locking, serializing instructions, memory ordering, and Intel Hyper-
Threading Technology are discussed in the following sections.

8.1 LOCKED ATOMIC OPERATIONS
The 32-bit IA-32 processors support locked atomic operations on locations in system
memory. These operations are typically used to manage shared data structures (such
as semaphores, segment descriptors, system segments, or page tables) in which two
or more processors may try simultaneously to modify the same field or flag. The
processor uses three interdependent mechanisms for carrying out locked atomic
operations:
• Guaranteed atomic operations
• Bus locking, using the LOCK# signal and the LOCK instruction prefix
• Cache coherency protocols that ensure that atomic operations can be carried out

on cached data structures (cache lock); this mechanism is present in the
Pentium 4, Intel Xeon, and P6 family processors

These mechanisms are interdependent in the following ways. Certain basic memory
transactions (such as reading or writing a byte in system memory) are always guar-
anteed to be handled atomically. That is, once started, the processor guarantees that
the operation will be completed before another processor or bus agent is allowed
access to the memory location. The processor also supports bus locking for
performing selected memory operations (such as a read-modify-write operation in a
shared area of memory) that typically need to be handled atomically, but are not
automatically handled this way. Because frequently used memory locations are often
cached in a processor’s L1 or L2 caches, atomic operations can often be carried out
inside a processor’s caches without asserting the bus lock. Here the processor’s
cache coherency protocols ensure that other processors that are caching the same
memory locations are managed properly while atomic operations are performed on
cached memory locations.

NOTE
Where there are contested lock accesses, software may need to
implement algorithms that ensure fair access to resources in order to
prevent lock starvation. The hardware provides no resource that
guarantees fairness to participating agents. It is the responsibility of
8-2 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
software to manage the fairness of semaphores and exclusive locking
functions.

The mechanisms for handling locked atomic operations have evolved with the
complexity of IA-32 processors. More recent IA-32 processors (such as the
Pentium 4, Intel Xeon, and P6 family processors) and Intel 64 provide a more refined
locking mechanism than earlier processors. These mechanisms are described in the
following sections.

8.1.1 Guaranteed Atomic Operations
The Intel486 processor (and newer processors since) guarantees that the following
basic memory operations will always be carried out atomically:
• Reading or writing a byte
• Reading or writing a word aligned on a 16-bit boundary
• Reading or writing a doubleword aligned on a 32-bit boundary

The Pentium processor (and newer processors since) guarantees that the following
additional memory operations will always be carried out atomically:
• Reading or writing a quadword aligned on a 64-bit boundary
• 16-bit accesses to uncached memory locations that fit within a 32-bit data bus

The P6 family processors (and newer processors since) guarantee that the following
additional memory operation will always be carried out atomically:
• Unaligned 16-, 32-, and 64-bit accesses to cached memory that fit within a cache

line

Accesses to cacheable memory that are split across cache lines and page boundaries
are not guaranteed to be atomic by the Intel Core 2 Duo, Intel® Atom™, Intel Core
Duo, Pentium M, Pentium 4, Intel Xeon, P6 family, Pentium, and Intel486 processors.
The Intel Core 2 Duo, Intel Atom, Intel Core Duo, Pentium M, Pentium 4, Intel Xeon,
and P6 family processors provide bus control signals that permit external memory
subsystems to make split accesses atomic; however, nonaligned data accesses will
seriously impact the performance of the processor and should be avoided.

An x87 instruction or an SSE instructions that accesses data larger than a quadword
may be implemented using multiple memory accesses. If such an instruction stores
to memory, some of the accesses may complete (writing to memory) while another
causes the operation to fault for architectural reasons (e.g. due an page-table entry
that is marked “not present”). In this case, the effects of the completed accesses
may be visible to software even though the overall instruction caused a fault. If TLB
invalidation has been delayed (see Section 4.10.4.4), such page faults may occur
even if all accesses are to the same page.
Vol. 3A 8-3

MULTIPLE-PROCESSOR MANAGEMENT
8.1.2 Bus Locking
Intel 64 and IA-32 processors provide a LOCK# signal that is asserted automatically
during certain critical memory operations to lock the system bus or equivalent link.
While this output signal is asserted, requests from other processors or bus agents for
control of the bus are blocked. Software can specify other occasions when the LOCK
semantics are to be followed by prepending the LOCK prefix to an instruction.

In the case of the Intel386, Intel486, and Pentium processors, explicitly locked
instructions will result in the assertion of the LOCK# signal. It is the responsibility of
the hardware designer to make the LOCK# signal available in system hardware to
control memory accesses among processors.

For the P6 and more recent processor families, if the memory area being accessed is
cached internally in the processor, the LOCK# signal is generally not asserted;
instead, locking is only applied to the processor’s caches (see Section 8.1.4, “Effects
of a LOCK Operation on Internal Processor Caches”).

8.1.2.1 Automatic Locking
The operations on which the processor automatically follows the LOCK semantics are
as follows:
• When executing an XCHG instruction that references memory.
• When setting the B (busy) flag of a TSS descriptor — The processor tests

and sets the busy flag in the type field of the TSS descriptor when switching to a
task. To ensure that two processors do not switch to the same task simulta-
neously, the processor follows the LOCK semantics while testing and setting this
flag.

• When updating segment descriptors — When loading a segment descriptor,
the processor will set the accessed flag in the segment descriptor if the flag is
clear. During this operation, the processor follows the LOCK semantics so that the
descriptor will not be modified by another processor while it is being updated. For
this action to be effective, operating-system procedures that update descriptors
should use the following steps:

— Use a locked operation to modify the access-rights byte to indicate that the
segment descriptor is not-present, and specify a value for the type field that
indicates that the descriptor is being updated.

— Update the fields of the segment descriptor. (This operation may require
several memory accesses; therefore, locked operations cannot be used.)

— Use a locked operation to modify the access-rights byte to indicate that the
segment descriptor is valid and present.

• The Intel386 processor always updates the accessed flag in the segment
descriptor, whether it is clear or not. The Pentium 4, Intel Xeon, P6 family,
Pentium, and Intel486 processors only update this flag if it is not already set.
8-4 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
• When updating page-directory and page-table entries — When updating
page-directory and page-table entries, the processor uses locked cycles to set
the accessed and dirty flag in the page-directory and page-table entries.

• Acknowledging interrupts — After an interrupt request, an interrupt controller
may use the data bus to send the interrupt vector for the interrupt to the
processor. The processor follows the LOCK semantics during this time to ensure
that no other data appears on the data bus when the interrupt vector is being
transmitted.

8.1.2.2 Software Controlled Bus Locking
To explicitly force the LOCK semantics, software can use the LOCK prefix with the
following instructions when they are used to modify a memory location. An invalid-
opcode exception (#UD) is generated when the LOCK prefix is used with any other
instruction or when no write operation is made to memory (that is, when the destina-
tion operand is in a register).
• The bit test and modify instructions (BTS, BTR, and BTC).
• The exchange instructions (XADD, CMPXCHG, and CMPXCHG8B).
• The LOCK prefix is automatically assumed for XCHG instruction.
• The following single-operand arithmetic and logical instructions: INC, DEC, NOT,

and NEG.
• The following two-operand arithmetic and logical instructions: ADD, ADC, SUB,

SBB, AND, OR, and XOR.

A locked instruction is guaranteed to lock only the area of memory defined by the
destination operand, but may be interpreted by the system as a lock for a larger
memory area.

Software should access semaphores (shared memory used for signalling between
multiple processors) using identical addresses and operand lengths. For example, if
one processor accesses a semaphore using a word access, other processors should
not access the semaphore using a byte access.

NOTE
Do not implement semaphores using the WC memory type. Do not
perform non-temporal stores to a cache line containing a location
used to implement a semaphore.

The integrity of a bus lock is not affected by the alignment of the memory field. The
LOCK semantics are followed for as many bus cycles as necessary to update the
entire operand. However, it is recommend that locked accesses be aligned on their
natural boundaries for better system performance:
• Any boundary for an 8-bit access (locked or otherwise).
• 16-bit boundary for locked word accesses.
Vol. 3A 8-5

MULTIPLE-PROCESSOR MANAGEMENT
• 32-bit boundary for locked doubleword accesses.
• 64-bit boundary for locked quadword accesses.

Locked operations are atomic with respect to all other memory operations and all
externally visible events. Only instruction fetch and page table accesses can pass
locked instructions. Locked instructions can be used to synchronize data written by
one processor and read by another processor.

For the P6 family processors, locked operations serialize all outstanding load and
store operations (that is, wait for them to complete). This rule is also true for the
Pentium 4 and Intel Xeon processors, with one exception. Load operations that refer-
ence weakly ordered memory types (such as the WC memory type) may not be seri-
alized.

Locked instructions should not be used to ensure that data written can be fetched as
instructions.

NOTE
The locked instructions for the current versions of the Pentium 4,
Intel Xeon, P6 family, Pentium, and Intel486 processors allow data
written to be fetched as instructions. However, Intel recommends
that developers who require the use of self-modifying code use a
different synchronizing mechanism, described in the following
sections.

8.1.3 Handling Self- and Cross-Modifying Code
The act of a processor writing data into a currently executing code segment with
the intent of executing that data as code is called self-modifying code. IA-32
processors exhibit model-specific behavior when executing self-modified code,
depending upon how far ahead of the current execution pointer the code has been
modified.

As processor microarchitectures become more complex and start to speculatively
execute code ahead of the retirement point (as in P6 and more recent processor
families), the rules regarding which code should execute, pre- or post-modification,
become blurred. To write self-modifying code and ensure that it is compliant with
current and future versions of the IA-32 architectures, use one of the following
coding options:

(* OPTION 1 *)
Store modified code (as data) into code segment;
Jump to new code or an intermediate location;
Execute new code;

(* OPTION 2 *)
Store modified code (as data) into code segment;
Execute a serializing instruction; (* For example, CPUID instruction *)
8-6 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
Execute new code;

The use of one of these options is not required for programs intended to run on the
Pentium or Intel486 processors, but are recommended to ensure compatibility with
the P6 and more recent processor families.

Self-modifying code will execute at a lower level of performance than non-self-modi-
fying or normal code. The degree of the performance deterioration will depend upon
the frequency of modification and specific characteristics of the code.

The act of one processor writing data into the currently executing code segment of a
second processor with the intent of having the second processor execute that data as
code is called cross-modifying code. As with self-modifying code, IA-32 processors
exhibit model-specific behavior when executing cross-modifying code, depending
upon how far ahead of the executing processors current execution pointer the code
has been modified.

To write cross-modifying code and ensure that it is compliant with current and future
versions of the IA-32 architecture, the following processor synchronization algorithm
must be implemented:

(* Action of Modifying Processor *)
Memory_Flag ← 0; (* Set Memory_Flag to value other than 1 *)
Store modified code (as data) into code segment;
Memory_Flag ← 1;

(* Action of Executing Processor *)
WHILE (Memory_Flag ≠ 1)

Wait for code to update;
ELIHW;
Execute serializing instruction; (* For example, CPUID instruction *)
Begin executing modified code;

(The use of this option is not required for programs intended to run on the Intel486
processor, but is recommended to ensure compatibility with the Pentium 4, Intel
Xeon, P6 family, and Pentium processors.)

Like self-modifying code, cross-modifying code will execute at a lower level of perfor-
mance than non-cross-modifying (normal) code, depending upon the frequency of
modification and specific characteristics of the code.

The restrictions on self-modifying code and cross-modifying code also apply to the
Intel 64 architecture.

8.1.4 Effects of a LOCK Operation on Internal Processor Caches
For the Intel486 and Pentium processors, the LOCK# signal is always asserted on the
bus during a LOCK operation, even if the area of memory being locked is cached in
the processor.
Vol. 3A 8-7

MULTIPLE-PROCESSOR MANAGEMENT
For the P6 and more recent processor families, if the area of memory being locked
during a LOCK operation is cached in the processor that is performing the LOCK oper-
ation as write-back memory and is completely contained in a cache line, the
processor may not assert the LOCK# signal on the bus. Instead, it will modify the
memory location internally and allow it’s cache coherency mechanism to ensure that
the operation is carried out atomically. This operation is called “cache locking.” The
cache coherency mechanism automatically prevents two or more processors that
have cached the same area of memory from simultaneously modifying data in that
area.

8.2 MEMORY ORDERING
The term memory ordering refers to the order in which the processor issues reads
(loads) and writes (stores) through the system bus to system memory. The Intel 64
and IA-32 architectures support several memory-ordering models depending on the
implementation of the architecture. For example, the Intel386 processor enforces
program ordering (generally referred to as strong ordering), where reads and
writes are issued on the system bus in the order they occur in the instruction stream
under all circumstances.

To allow performance optimization of instruction execution, the IA-32 architecture
allows departures from strong-ordering model called processor ordering in
Pentium 4, Intel Xeon, and P6 family processors. These processor-ordering varia-
tions (called here the memory-ordering model) allow performance enhancing
operations such as allowing reads to go ahead of buffered writes. The goal of any of
these variations is to increase instruction execution speeds, while maintaining
memory coherency, even in multiple-processor systems.

Section 8.2.1 and Section 8.2.2 describe the memory-ordering implemented by
Intel486, Pentium, Intel Core 2 Duo, Intel Atom, Intel Core Duo, Pentium 4, Intel
Xeon, and P6 family processors. Section 8.2.3 gives examples illustrating the
behavior of the memory-ordering model on IA-32 and Intel-64 processors. Section
8.2.4 considers the special treatment of stores for string operations and Section
8.2.5 discusses how memory-ordering behavior may be modified through the use of
specific instructions.

8.2.1 Memory Ordering in the Intel® Pentium® and Intel486™
Processors

The Pentium and Intel486 processors follow the processor-ordered memory model;
however, they operate as strongly-ordered processors under most circumstances.
Reads and writes always appear in programmed order at the system bus—except for
the following situation where processor ordering is exhibited. Read misses are
permitted to go ahead of buffered writes on the system bus when all the buffered
writes are cache hits and, therefore, are not directed to the same address being
accessed by the read miss.
8-8 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
In the case of I/O operations, both reads and writes always appear in programmed
order.

Software intended to operate correctly in processor-ordered processors (such as the
Pentium 4, Intel Xeon, and P6 family processors) should not depend on the relatively
strong ordering of the Pentium or Intel486 processors. Instead, it should ensure
that accesses to shared variables that are intended to control concurrent execution
among processors are explicitly required to obey program ordering through the use
of appropriate locking or serializing operations (see Section 8.2.5, “Strengthening or
Weakening the Memory-Ordering Model”).

8.2.2 Memory Ordering in P6 and More Recent Processor Families
The Intel Core 2 Duo, Intel Atom, Intel Core Duo, Pentium 4, and P6 family proces-
sors also use a processor-ordered memory-ordering model that can be further
defined as “write ordered with store-buffer forwarding.” This model can be character-
ized as follows.

In a single-processor system for memory regions defined as write-back cacheable,
the memory-ordering model respects the following principles (Note the memory-
ordering principles for single-processor and multiple-processor systems are written
from the perspective of software executing on the processor, where the term
“processor” refers to a logical processor. For example, a physical processor
supporting multiple cores and/or HyperThreading Technology is treated as a multi-
processor systems.):
• Reads are not reordered with other reads.
• Writes are not reordered with older reads.
• Writes to memory are not reordered with other writes, with the following

exceptions:

— writes executed with the CLFLUSH instruction;

— streaming stores (writes) executed with the non-temporal move instructions
(MOVNTI, MOVNTQ, MOVNTDQ, MOVNTPS, and MOVNTPD); and

— string operations (see Section 8.2.4.1).
• Reads may be reordered with older writes to different locations but not with older

writes to the same location.
• Reads or writes cannot be reordered with I/O instructions, locked instructions, or

serializing instructions.
• Reads cannot pass earlier LFENCE and MFENCE instructions.
• Writes cannot pass earlier LFENCE, SFENCE, and MFENCE instructions.
• LFENCE instructions cannot pass earlier reads.
• SFENCE instructions cannot pass earlier writes.
• MFENCE instructions cannot pass earlier reads or writes.
Vol. 3A 8-9

MULTIPLE-PROCESSOR MANAGEMENT
In a multiple-processor system, the following ordering principles apply:
• Individual processors use the same ordering principles as in a single-processor

system.
• Writes by a single processor are observed in the same order by all processors.
• Writes from an individual processor are NOT ordered with respect to the writes

from other processors.
• Memory ordering obeys causality (memory ordering respects transitive

visibility).
• Any two stores are seen in a consistent order by processors other than those

performing the stores
• Locked instructions have a total order.

See the example in Figure 8-1. Consider three processors in a system and each
processor performs three writes, one to each of three defined locations (A, B, and C).
Individually, the processors perform the writes in the same program order, but
because of bus arbitration and other memory access mechanisms, the order that the
three processors write the individual memory locations can differ each time the
respective code sequences are executed on the processors. The final values in loca-
tion A, B, and C would possibly vary on each execution of the write sequence.

The processor-ordering model described in this section is virtually identical to that
used by the Pentium and Intel486 processors. The only enhancements in the Pentium
4, Intel Xeon, and P6 family processors are:
• Added support for speculative reads, while still adhering to the ordering

principles above.
• Store-buffer forwarding, when a read passes a write to the same memory

location.
• Out of order store from long string store and string move operations (see Section

8.2.4, “Fast-String Operation and Out-of-Order Stores,” below).
8-10 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
NOTE
In P6 processor family, store-buffer forwarding to reads of WC memory from
streaming stores to the same address does not occur due to errata.

8.2.3 Examples Illustrating the Memory-Ordering Principles
This section provides a set of examples that illustrate the behavior of the memory-
ordering principles introduced in Section 8.2.2. They are designed to give software
writers an understanding of how memory ordering may affect the results of different
sequences of instructions.

These examples are limited to accesses to memory regions defined as write-back
cacheable (WB). (Section 8.2.3.1 describes other limitations on the generality of the
examples.) The reader should understand that they describe only software-visible
behavior. A logical processor may reorder two accesses even if one of examples indi-
cates that they may not be reordered. Such an example states only that software
cannot detect that such a reordering occurred. Similarly, a logical processor may
execute a memory access more than once as long as the behavior visible to software
is consistent with a single execution of the memory access.

Figure 8-1. Example of Write Ordering in Multiple-Processor Systems

Processor #1 Processor #2 Processor #3

Write A.3
Write B.3
Write C.3

Write A.1
Write B.1
Write A.2
Write A.3
Write C.1
Write B.2
Write C.2
Write B.3
Write C.3

Order of Writes From Individual Processors

Write A.2
Write B.2
Write C.2

Write A.1
Write B.1
Write C.1

Writes from all
processors are
not guaranteed
to occur in a
particular order.

Each processor
is guaranteed to
perform writes in
program order.

Writes are in order
with respect to
individual processes.

Example of order of actual writes
from all processors to memory
Vol. 3A 8-11

MULTIPLE-PROCESSOR MANAGEMENT
8.2.3.1 Assumptions, Terminology, and Notation
As noted above, the examples in this section are limited to accesses to memory
regions defined as write-back cacheable (WB). They apply only to ordinary loads
stores and to locked read-modify-write instructions. They do not necessarily apply to
any of the following: out-of-order stores for string instructions (see Section 8.2.4);
accesses with a non-temporal hint; reads from memory by the processor as part of
address translation (e.g., page walks); and updates to segmentation and paging
structures by the processor (e.g., to update “accessed” bits).

The principles underlying the examples in this section apply to individual memory
accesses and to locked read-modify-write instructions. The Intel-64 memory-
ordering model guarantees that, for each of the following memory-access instruc-
tions, the constituent memory operation appears to execute as a single memory
access:
• Instructions that read or write a single byte.
• Instructions that read or write a word (2 bytes) whose address is aligned on a 2

byte boundary.
• Instructions that read or write a doubleword (4 bytes) whose address is aligned

on a 4 byte boundary.
• Instructions that read or write a quadword (8 bytes) whose address is aligned on

an 8 byte boundary.

Any locked instruction (either the XCHG instruction or another read-modify-write
instruction with a LOCK prefix) appears to execute as an indivisible and uninterrupt-
ible sequence of load(s) followed by store(s) regardless of alignment.

Other instructions may be implemented with multiple memory accesses. From a
memory-ordering point of view, there are no guarantees regarding the relative order
in which the constituent memory accesses are made. There is also no guarantee that
the constituent operations of a store are executed in the same order as the constit-
uent operations of a load.

Section 8.2.3.2 through Section 8.2.3.7 give examples using the MOV instruction.
The principles that underlie these examples apply to load and store accesses in
general and to other instructions that load from or store to memory. Section 8.2.3.8
and Section 8.2.3.9 give examples using the XCHG instruction. The principles that
underlie these examples apply to other locked read-modify-write instructions.

This section uses the term “processor” is to refer to a logical processor. The examples
are written using Intel-64 assembly-language syntax and use the following nota-
tional conventions:
• Arguments beginning with an “r”, such as r1 or r2 refer to registers (e.g., EAX)

visible only to the processor being considered.
• Memory locations are denoted with x, y, z.
• Stores are written as mov [_x], val, which implies that val is being stored into

the memory location x.
8-12 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
• Loads are written as mov r, [_x], which implies that the contents of the memory
location x are being loaded into the register r.

As noted earlier, the examples refer only to software visible behavior. When the
succeeding sections make statement such as “the two stores are reordered,” the
implication is only that “the two stores appear to be reordered from the point of view
of software.”

8.2.3.2 Neither Loads Nor Stores Are Reordered with Like Operations
The Intel-64 memory-ordering model allows neither loads nor stores to be reordered
with the same kind of operation. That is, it ensures that loads are seen in program
order and that stores are seen in program order. This is illustrated by the following
example:

The disallowed return values could be exhibited only if processor 0’s two stores are
reordered (with the two loads occurring between them) or if processor 1’s two loads
are reordered (with the two stores occurring between them).

If r1 = 1, the store to y occurs before the load from y. Because the Intel-64 memory-
ordering model does not allow stores to be reordered, the earlier store to x occurs
before the load from y. Because the Intel-64 memory-ordering model does not allow
loads to be reordered, the store to x also occurs before the later load from x. This
r2 = 1.

8.2.3.3 Stores Are Not Reordered With Earlier Loads
The Intel-64 memory-ordering model ensures that a store by a processor may not
occur before a previous load by the same processor. This is illustrated by the
following example:

Example 8-1. Stores Are Not Reordered with Other Stores
Processor 0 Processor 1

mov [_x], 1 mov r1, [_y]

mov [_y], 1 mov r2, [_x]

Initially x = y = 0

r1 = 1 and r2 = 0 is not allowed

Example 8-2. Stores Are Not Reordered with Older Loads
Processor 0 Processor 1

mov r1, [_x] mov r2, [_y]

mov [_y], 1 mov [_x], 1

Initially x = y = 0

r1 = 1 and r2 = 1 is not allowed
Vol. 3A 8-13

MULTIPLE-PROCESSOR MANAGEMENT
Assume r1 = 1.
• Because r1 = 1, processor 1’s store to x occurs before processor 0’s load from x.
• Because the Intel-64 memory-ordering model prevents each store from being

reordered with the earlier load by the same processor, processor 1’s load from y
occurs before its store to x.

• Similarly, processor 0’s load from x occurs before its store to y.
• Thus, processor 1’s load from y occurs before processor 0’s store to y, implying

r2 = 0.

8.2.3.4 Loads May Be Reordered with Earlier Stores to Different
Locations

The Intel-64 memory-ordering model allows a load to be reordered with an earlier
store to a different location. However, loads are not reordered with stores to the
same location.

The fact that a load may be reordered with an earlier store to a different location is
illustrated by the following example:

At each processor, the load and the store are to different locations and hence may be
reordered. Any interleaving of the operations is thus allowed. One such interleaving
has the two loads occurring before the two stores. This would result in each load
returning value 0.

The fact that a load may not be reordered with an earlier store to the same location
is illustrated by the following example:

The Intel-64 memory-ordering model does not allow the load to be reordered with
the earlier store because the accesses are to the same location. Therefore, r1 = 1
must hold.

Example 8-3. Loads May be Reordered with Older Stores
Processor 0 Processor 1

mov [_x], 1 mov [_y], 1

mov r1, [_y] mov r2, [_x]

Initially x = y = 0

r1 = 0 and r2 = 0 is allowed

Example 8-4. Loads Are not Reordered with Older Stores to the Same Location
Processor 0

mov [_x], 1

mov r1, [_x]

Initially x = 0

r1 = 0 is not allowed
8-14 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
8.2.3.5 Intra-Processor Forwarding Is Allowed
The memory-ordering model allows concurrent stores by two processors to be seen
in different orders by those two processors; specifically, each processor may perceive
its own store occurring before that of the other. This is illustrated by the following
example:

The memory-ordering model imposes no constraints on the order in which the two
stores appear to execute by the two processors. This fact allows processor 0 to see
its store before seeing processor 1's, while processor 1 sees its store before seeing
processor 0's. (Each processor is self consistent.) This allows r2 = 0 and r4 = 0.

In practice, the reordering in this example can arise as a result of store-buffer
forwarding. While a store is temporarily held in a processor's store buffer, it can
satisfy the processor's own loads but is not visible to (and cannot satisfy) loads by
other processors.

8.2.3.6 Stores Are Transitively Visible
The memory-ordering model ensures transitive visibility of stores; stores that are
causally related appear to all processors to occur in an order consistent with the
causality relation. This is illustrated by the following example:

Assume that r1 = 1 and r2 = 1.
• Because r1 = 1, processor 0’s store occurs before processor 1’s load.
• Because the memory-ordering model prevents a store from being reordered with

an earlier load (see Section 8.2.3.3), processor 1’s load occurs before its store.
Thus, processor 0’s store causally precedes processor 1’s store.

Example 8-5. Intra-Processor Forwarding is Allowed
Processor 0 Processor 1

mov [_x], 1 mov [_y], 1

mov r1, [_x] mov r3, [_y]

mov r2, [_y] mov r4, [_x]

Initially x = y = 0

r2 = 0 and r4 = 0 is allowed

Example 8-6. Stores Are Transitively Visible
Processor 0 Processor 1 Processor 2

mov [_x], 1 mov r1, [_x]

mov [_y], 1 mov r2, [_y]

mov r3, [_x]

Initially x = y = 0

r1 = 1, r2 = 1, r3 = 0 is not allowed
Vol. 3A 8-15

MULTIPLE-PROCESSOR MANAGEMENT
• Because processor 0’s store causally precedes processor 1’s store, the memory-
ordering model ensures that processor 0’s store appears to occur before
processor 1’s store from the point of view of all processors.

• Because r2 = 1, processor 1’s store occurs before processor 2’s load.
• Because the Intel-64 memory-ordering model prevents loads from being

reordered (see Section 8.2.3.2), processor 2’s load occur in order.
• The above items imply that processor 0’s store to x occurs before processor 2’s

load from x. This implies that r3 = 1.

8.2.3.7 Stores Are Seen in a Consistent Order by Other Processors
As noted in Section 8.2.3.5, the memory-ordering model allows stores by two
processors to be seen in different orders by those two processors. However, any two
stores must appear to execute in the same order to all processors other than those
performing the stores. This is illustrated by the following example:

By the principles discussed in Section 8.2.3.2,
• processor 2’s first and second load cannot be reordered,
• processor 3’s first and second load cannot be reordered.
• If r1 = 1 and r2 = 0, processor 0’s store appears to precede processor 1’s store

with respect to processor 2.
• Similarly, r3 = 1 and r4 = 0 imply that processor 1’s store appears to precede

processor 0’s store with respect to processor 1.

Because the memory-ordering model ensures that any two stores appear to execute
in the same order to all processors (other than those performing the stores), this set
of return values is not allowed

Example 8-7. Stores Are Seen in a Consistent Order by Other Processors
Processor 0 Processor 1 Processor 2 Processor 3

mov [_x], 1 mov [_y], 1 mov r1, [_x] mov r3, [_y]

mov r2, [_y] mov r4, [_x]

Initially x = y =0

r1 = 1, r2 = 0, r3 = 1, r4 = 0 is not allowed
8-16 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
8.2.3.8 Locked Instructions Have a Total Order
The memory-ordering model ensures that all processors agree on a single execution
order of all locked instructions, including those that are larger than 8 bytes or are not
naturally aligned. This is illustrated by the following example:

Processor 2 and processor 3 must agree on the order of the two executions of XCHG.
Without loss of generality, suppose that processor 0’s XCHG occurs first.
• If r5 = 1, processor 1’s XCHG into y occurs before processor 3’s load from y.
• Because the Intel-64 memory-ordering model prevents loads from being

reordered (see Section 8.2.3.2), processor 3’s loads occur in order and,
therefore, processor 1’s XCHG occurs before processor 3’s load from x.

• Since processor 0’s XCHG into x occurs before processor 1’s XCHG (by
assumption), it occurs before processor 3’s load from x. Thus, r6 = 1.

A similar argument (referring instead to processor 2’s loads) applies if processor 1’s
XCHG occurs before processor 0’s XCHG.

8.2.3.9 Loads and Stores Are Not Reordered with Locked Instructions
The memory-ordering model prevents loads and stores from being reordered with
locked instructions that execute earlier or later. The examples in this section illustrate
only cases in which a locked instruction is executed before a load or a store. The
reader should note that reordering is prevented also if the locked instruction is
executed after a load or a store.

The first example illustrates that loads may not be reordered with earlier locked
instructions:

Example 8-8. Locked Instructions Have a Total Order
Processor 0 Processor 1 Processor 2 Processor 3

xchg [_x], r1 xchg [_y], r2

mov r3, [_x] mov r5, [_y]

mov r4, [_y] mov r6, [_x]

Initially r1 = r2 = 1, x = y = 0

r3 = 1, r4 = 0, r5 = 1, r6 = 0 is not allowed

Example 8-9. Loads Are not Reordered with Locks
Processor 0 Processor 1

xchg [_x], r1 xchg [_y], r3

mov r2, [_y] mov r4, [_x]

Initially x = y = 0, r1 = r3 = 1

r2 = 0 and r4 = 0 is not allowed
Vol. 3A 8-17

MULTIPLE-PROCESSOR MANAGEMENT
As explained in Section 8.2.3.8, there is a total order of the executions of locked
instructions. Without loss of generality, suppose that processor 0’s XCHG occurs first.

Because the Intel-64 memory-ordering model prevents processor 1’s load from
being reordered with its earlier XCHG, processor 0’s XCHG occurs before
processor 1’s load. This implies r4 = 1.

A similar argument (referring instead to processor 2’s accesses) applies if
processor 1’s XCHG occurs before processor 0’s XCHG.

The second example illustrates that a store may not be reordered with an earlier
locked instruction:

Assume r2 = 1.
• Because r2 = 1, processor 0’s store to y occurs before processor 1’s load from y.
• Because the memory-ordering model prevents a store from being reordered with

an earlier locked instruction, processor 0’s XCHG into x occurs before its store to
y. Thus, processor 0’s XCHG into x occurs before processor 1’s load from y.

• Because the memory-ordering model prevents loads from being reordered (see
Section 8.2.3.2), processor 1’s loads occur in order and, therefore, processor 1’s
XCHG into x occurs before processor 1’s load from x. Thus, r3 = 1.

8.2.4 Fast-String Operation and Out-of-Order Stores
Section 7.3.9.3 of Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1 described an optimization of repeated string operations called fast-string
operation.

As explained in that section, the stores produced by fast-string operation may appear
to execute out of order. Software dependent upon sequential store ordering should
not use string operations for the entire data structure to be stored. Data and sema-
phores should be separated. Order-dependent code should write to a discrete sema-
phore variable after any string operations to allow correctly ordered data to be seen
by all processors. Atomicity of load and store operations is guaranteed only for native
data elements of the string with native data size, and only if they are included in a
single cache line.

Section 8.2.4.1 and Section 8.2.4.2 provide further explain and examples.

Example 8-10. Stores Are not Reordered with Locks
Processor 0 Processor 1

xchg [_x], r1 mov r2, [_y]

mov [_y], 1 mov r3, [_x]

Initially x = y = 0, r1 = 1

r2 = 1 and r3 = 0 is not allowed
8-18 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
8.2.4.1 Memory-Ordering Model for String Operations on Write-Back (WB)
Memory

This section deals with the memory-ordering model for string operations on write-
back (WB) memory for the Intel 64 architecture.

The memory-ordering model respects the follow principles:

1. Stores within a single string operation may be executed out of order.

2. Stores from separate string operations (for example, stores from consecutive
string operations) do not execute out of order. All the stores from an earlier string
operation will complete before any store from a later string operation.

3. String operations are not reordered with other store operations.

Fast string operations (e.g. string operations initiated with the MOVS/STOS instruc-
tions and the REP prefix) may be interrupted by exceptions or interrupts. The inter-
rupts are precise but may be delayed - for example, the interruptions may be taken
at cache line boundaries, after every few iterations of the loop, or after operating on
every few bytes. Different implementations may choose different options, or may
even choose not to delay interrupt handling, so software should not rely on the delay.
When the interrupt/trap handler is reached, the source/destination registers point to
the next string element to be operated on, while the EIP stored in the stack points to
the string instruction, and the ECX register has the value it held following the last
successful iteration. The return from that trap/interrupt handler should cause the
string instruction to be resumed from the point where it was interrupted.

The string operation memory-ordering principles, (item 2 and 3 above) should be
interpreted by taking the incorruptibility of fast string operations into account. For
example, if a fast string operation gets interrupted after k iterations, then stores
performed by the interrupt handler will become visible after the fast string stores
from iteration 0 to k, and before the fast string stores from the (k+1)th iteration
onward.

Stores within a single string operation may execute out of order (item 1 above) only
if fast string operation is enabled. Fast string operations are enabled/disabled
through the IA32_MISC_ENABLE model specific register.

8.2.4.2 Examples Illustrating Memory-Ordering Principles for String
Operations

The following examples uses the same notation and convention as described in
Section 8.2.3.1.

In Example 8-11, processor 0 does one round of (128 iterations) doubleword string
store operation via rep:stosd, writing the value 1 (value in EAX) into a block of 512
bytes from location _x (kept in ES:EDI) in ascending order. Since each operation
stores a doubleword (4 bytes), the operation is repeated 128 times (value in ECX).
The block of memory initially contained 0. Processor 1 is reading two memory loca-
Vol. 3A 8-19

MULTIPLE-PROCESSOR MANAGEMENT
tions that are part of the memory block being updated by processor 0, i.e, reading
locations in the range _x to (_x+511).

It is possible for processor 1 to perceive that the repeated string stores in processor
0 are happening out of order. Assume that fast string operations are enabled on
processor 0.

In Example 8-12, processor 0 does two separate rounds of rep stosd operation of 128
doubleword stores, writing the value 1 (value in EAX) into the first block of 512 bytes
from location _x (kept in ES:EDI) in ascending order. It then writes 1 into a second
block of memory from (_x+512) to (_x+1023). All of the memory locations initially
contain 0. The block of memory initially contained 0. Processor 1 performs two load
operations from the two blocks of memory.

It is not possible in the above example for processor 1 to perceive any of the stores
from the later string operation (to the second 512 block) in processor 0 before seeing
the stores from the earlier string operation to the first 512 block.

The above example assumes that writes to the second block (_x+512 to _x+1023)
does not get executed while processor 0’s string operation to the first block has been
interrupted. If the string operation to the first block by processor 0 is interrupted,
and a write to the second memory block is executed by the interrupt handler, then

Example 8-11. Stores Within a String Operation May be Reordered
Processor 0 Processor 1

rep:stosd [_x] mov r1, [_z]

mov r2, [_y]

Initially on processor 0: EAX = 1, ECX=128, ES:EDI =_x

Initially [_x] to 511[_x]= 0, _x <= _y < _z < _x+512

r1 = 1 and r2 = 0 is allowed

Example 8-12. Stores Across String Operations Are not Reordered
Processor 0 Processor 1

rep:stosd [_x]

mov r1, [_z]

mov ecx, $128

mov r2, [_y]

rep:stosd 512[_x]

Initially on processor 0: EAX = 1, ECX=128, ES:EDI =_x

Initially [_x] to 1023[_x]= 0, _x <= _y < _x+512 < _z < _x+1024

r1 = 1 and r2 = 0 is not allowed
8-20 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
that change in the second memory block will be visible before the string operation to
the first memory block resumes.

In Example 8-13, processor 0 does one round of (128 iterations) doubleword string
store operation via rep:stosd, writing the value 1 (value in EAX) into a block of 512
bytes from location _x (kept in ES:EDI) in ascending order. It then writes to a second
memory location outside the memory block of the previous string operation.
Processor 1 performs two read operations, the first read is from an address outside
the 512-byte block but to be updated by processor 0, the second ready is from inside
the block of memory of string operation.

Processor 1 cannot perceive the later store by processor 0 until it sees all the stores
from the string operation. Example 8-13 assumes that processor 0’s store to [_z] is
not executed while the string operation has been interrupted. If the string operation
is interrupted and the store to [_z] by processor 0 is executed by the interrupt
handler, then changes to [_z] will become visible before the string operation
resumes.

Example 8-14 illustrates the visibility principle when a string operation is interrupted.

In Example 8-14, processor 0 started a string operation to write to a memory block
of 512 bytes starting at address _x. Processor 0 got interrupted after k iterations of
store operations. The address _y has not yet been updated by processor 0 when
processor 0 got interrupted. The interrupt handler that took control on processor 0
writes to the address _z. Processor 1 may see the store to _z from the interrupt

Example 8-13. String Operations Are not Reordered with later Stores
Processor 0 Processor 1

rep:stosd [_x] mov r1, [_z]

mov [_z], $1 mov r2, [_y]

Initially on processor 0: EAX = 1, ECX=128, ES:EDI =_x

Initially [_y] = [_z] = 0, [_x] to 511[_x]= 0, _x <= _y < _x+512, _z is a separate memory location

r1 = 1 and r2 = 0 is not allowed

Example 8-14. Interrupted String Operation
Processor 0 Processor 1

rep:stosd [_x] // interrupted before es:edi reach
_y

mov r1, [_z]

mov [_z], $1 // interrupt handler mov r2, [_y]

Initially on processor 0: EAX = 1, ECX=128, ES:EDI =_x

Initially [_y] = [_z] = 0, [_x] to 511[_x]= 0, _x <= _y < _x+512, _z is a separate memory location

r1 = 1 and r2 = 0 is allowed
Vol. 3A 8-21

MULTIPLE-PROCESSOR MANAGEMENT
handler, before seeing the remaining stores to the 512-byte memory block that are
executed when the string operation resumes.

Example 8-15 illustrates the ordering of string operations with earlier stores. No
store from a string operation can be visible before all prior stores are visible.

8.2.5 Strengthening or Weakening the Memory-Ordering Model
The Intel 64 and IA-32 architectures provide several mechanisms for strengthening
or weakening the memory-ordering model to handle special programming situations.
These mechanisms include:
• The I/O instructions, locking instructions, the LOCK prefix, and serializing

instructions force stronger ordering on the processor.
• The SFENCE instruction (introduced to the IA-32 architecture in the Pentium III

processor) and the LFENCE and MFENCE instructions (introduced in the Pentium
4 processor) provide memory-ordering and serialization capabilities for specific
types of memory operations.

• The memory type range registers (MTRRs) can be used to strengthen or weaken
memory ordering for specific area of physical memory (see Section 11.11,
“Memory Type Range Registers (MTRRs)”). MTRRs are available only in the
Pentium 4, Intel Xeon, and P6 family processors.

• The page attribute table (PAT) can be used to strengthen memory ordering for a
specific page or group of pages (see Section 11.12, “Page Attribute Table (PAT)”).
The PAT is available only in the Pentium 4, Intel Xeon, and Pentium III processors.

These mechanisms can be used as follows:

Memory mapped devices and other I/O devices on the bus are often sensitive to the
order of writes to their I/O buffers. I/O instructions can be used to (the IN and OUT
instructions) impose strong write ordering on such accesses as follows. Prior to
executing an I/O instruction, the processor waits for all previous instructions in the
program to complete and for all buffered writes to drain to memory. Only instruction
fetch and page tables walks can pass I/O instructions. Execution of subsequent

Example 8-15. String Operations Are not Reordered with Earlier Stores
Processor 0 Processor 1

mov [_z], $1 mov r1, [_y]

rep:stosd [_x] mov r2, [_z]

Initially on processor 0: EAX = 1, ECX=128, ES:EDI =_x

Initially [_y] = [_z] = 0, [_x] to 511[_x]= 0, _x <= _y < _x+512, _z is a separate memory location

r1 = 1 and r2 = 0 is not allowed
8-22 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
instructions do not begin until the processor determines that the I/O instruction has
been completed.

Synchronization mechanisms in multiple-processor systems may depend upon a
strong memory-ordering model. Here, a program can use a locking instruction such
as the XCHG instruction or the LOCK prefix to ensure that a read-modify-write oper-
ation on memory is carried out atomically. Locking operations typically operate like
I/O operations in that they wait for all previous instructions to complete and for all
buffered writes to drain to memory (see Section 8.1.2, “Bus Locking”).

Program synchronization can also be carried out with serializing instructions (see
Section 8.3). These instructions are typically used at critical procedure or task
boundaries to force completion of all previous instructions before a jump to a new
section of code or a context switch occurs. Like the I/O and locking instructions, the
processor waits until all previous instructions have been completed and all buffered
writes have been drained to memory before executing the serializing instruction.

The SFENCE, LFENCE, and MFENCE instructions provide a performance-efficient way
of ensuring load and store memory ordering between routines that produce weakly-
ordered results and routines that consume that data. The functions of these instruc-
tions are as follows:
• SFENCE — Serializes all store (write) operations that occurred prior to the

SFENCE instruction in the program instruction stream, but does not affect load
operations.

• LFENCE — Serializes all load (read) operations that occurred prior to the LFENCE
instruction in the program instruction stream, but does not affect store
operations.1

• MFENCE — Serializes all store and load operations that occurred prior to the
MFENCE instruction in the program instruction stream.

Note that the SFENCE, LFENCE, and MFENCE instructions provide a more efficient
method of controlling memory ordering than the CPUID instruction.

The MTRRs were introduced in the P6 family processors to define the cache charac-
teristics for specified areas of physical memory. The following are two examples of
how memory types set up with MTRRs can be used strengthen or weaken memory
ordering for the Pentium 4, Intel Xeon, and P6 family processors:
• The strong uncached (UC) memory type forces a strong-ordering model on

memory accesses. Here, all reads and writes to the UC memory region appear on
the bus and out-of-order or speculative accesses are not performed. This

1. Specifically, LFENCE does not execute until all prior instructions have completed locally, and no
later instruction begins execution until LFENCE completes. As a result, an instruction that loads
from memory and that precedes an LFENCE receives data from memory prior to completion of
the LFENCE. An LFENCE that follows an instruction that stores to memory might complete before
the data being stored have become globally visible. Instructions following an LFENCE may be
fetched from memory before the LFENCE, but they will not execute until the LFENCE completes.
Vol. 3A 8-23

MULTIPLE-PROCESSOR MANAGEMENT
memory type can be applied to an address range dedicated to memory mapped
I/O devices to force strong memory ordering.

• For areas of memory where weak ordering is acceptable, the write back (WB)
memory type can be chosen. Here, reads can be performed speculatively and
writes can be buffered and combined. For this type of memory, cache locking is
performed on atomic (locked) operations that do not split across cache lines,
which helps to reduce the performance penalty associated with the use of the
typical synchronization instructions, such as XCHG, that lock the bus during the
entire read-modify-write operation. With the WB memory type, the XCHG
instruction locks the cache instead of the bus if the memory access is contained
within a cache line.

The PAT was introduced in the Pentium III processor to enhance the caching charac-
teristics that can be assigned to pages or groups of pages. The PAT mechanism typi-
cally used to strengthen caching characteristics at the page level with respect to the
caching characteristics established by the MTRRs. Table 11-7 shows the interaction of
the PAT with the MTRRs.

Intel recommends that software written to run on Intel Core 2 Duo, Intel Atom, Intel
Core Duo, Pentium 4, Intel Xeon, and P6 family processors assume the processor-
ordering model or a weaker memory-ordering model. The Intel Core 2 Duo, Intel
Atom, Intel Core Duo, Pentium 4, Intel Xeon, and P6 family processors do not imple-
ment a strong memory-ordering model, except when using the UC memory type.
Despite the fact that Pentium 4, Intel Xeon, and P6 family processors support
processor ordering, Intel does not guarantee that future processors will support this
model. To make software portable to future processors, it is recommended that oper-
ating systems provide critical region and resource control constructs and API’s (appli-
cation program interfaces) based on I/O, locking, and/or serializing instructions be
used to synchronize access to shared areas of memory in multiple-processor
systems. Also, software should not depend on processor ordering in situations where
the system hardware does not support this memory-ordering model.

8.3 SERIALIZING INSTRUCTIONS
The Intel 64 and IA-32 architectures define several serializing instructions. These
instructions force the processor to complete all modifications to flags, registers, and
memory by previous instructions and to drain all buffered writes to memory before
the next instruction is fetched and executed. For example, when a MOV to control
register instruction is used to load a new value into control register CR0 to enable
protected mode, the processor must perform a serializing operation before it enters
protected mode. This serializing operation ensures that all operations that were
started while the processor was in real-address mode are completed before the
switch to protected mode is made.

The concept of serializing instructions was introduced into the IA-32 architecture
with the Pentium processor to support parallel instruction execution. Serializing
8-24 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
instructions have no meaning for the Intel486 and earlier processors that do not
implement parallel instruction execution.

It is important to note that executing of serializing instructions on P6 and more
recent processor families constrain speculative execution because the results of
speculatively executed instructions are discarded. The following instructions are seri-
alizing instructions:
• Privileged serializing instructions — INVD, INVEPT, INVLPG, INVVPID, LGDT,

LIDT, LLDT, LTR, MOV (to control register, with the exception of MOV CR82), MOV
(to debug register), WBINVD, and WRMSR3.

• Non-privileged serializing instructions — CPUID, IRET, and RSM.

When the processor serializes instruction execution, it ensures that all pending
memory transactions are completed (including writes stored in its store buffer)
before it executes the next instruction. Nothing can pass a serializing instruction and
a serializing instruction cannot pass any other instruction (read, write, instruction
fetch, or I/O). For example, CPUID can be executed at any privilege level to serialize
instruction execution with no effect on program flow, except that the EAX, EBX, ECX,
and EDX registers are modified.

The following instructions are memory-ordering instructions, not serializing instruc-
tions. These drain the data memory subsystem. They do not serialize the instruction
execution stream:4

• Non-privileged memory-ordering instructions — SFENCE, LFENCE, and
MFENCE.

The SFENCE, LFENCE, and MFENCE instructions provide more granularity in control-
ling the serialization of memory loads and stores (see Section 8.2.5, “Strengthening
or Weakening the Memory-Ordering Model”).

The following additional information is worth noting regarding serializing instruc-
tions:
• The processor does not write back the contents of modified data in its data cache

to external memory when it serializes instruction execution. Software can force
modified data to be written back by executing the WBINVD instruction, which is a
serializing instruction. The amount of time or cycles for WBINVD to complete will
vary due to the size of different cache hierarchies and other factors. As a conse-
quence, the use of the WBINVD instruction can have an impact on
interrupt/event response time.

2. MOV CR8 is not defined architecturally as a serializing instruction.

3. WRMSR to the IA32_TSC_DEADLINE MSR (MSR index 6E0H) and the X2APIC MSRs (MSR indices
802H to 83FH) are not serializing.

4. LFENCE does provide some guarantees on instruction ordering. It does not execute until all prior
instructions have completed locally, and no later instruction begins execution until LFENCE com-
pletes.
Vol. 3A 8-25

MULTIPLE-PROCESSOR MANAGEMENT
• When an instruction is executed that enables or disables paging (that is, changes
the PG flag in control register CR0), the instruction should be followed by a jump
instruction. The target instruction of the jump instruction is fetched with the new
setting of the PG flag (that is, paging is enabled or disabled), but the jump
instruction itself is fetched with the previous setting. The Pentium 4, Intel Xeon,
and P6 family processors do not require the jump operation following the move to
register CR0 (because any use of the MOV instruction in a Pentium 4, Intel Xeon,
or P6 family processor to write to CR0 is completely serializing). However, to
maintain backwards and forward compatibility with code written to run on other
IA-32 processors, it is recommended that the jump operation be performed.

• Whenever an instruction is executed to change the contents of CR3 while paging
is enabled, the next instruction is fetched using the translation tables that
correspond to the new value of CR3. Therefore the next instruction and the
sequentially following instructions should have a mapping based upon the new
value of CR3. (Global entries in the TLBs are not invalidated, see Section 4.10.4,
“Invalidation of TLBs and Paging-Structure Caches.”)

• The Pentium processor and more recent processor families use branch-prediction
techniques to improve performance by prefetching the destination of a branch
instruction before the branch instruction is executed. Consequently, instruction
execution is not deterministically serialized when a branch instruction is
executed.

8.4 MULTIPLE-PROCESSOR (MP) INITIALIZATION
The IA-32 architecture (beginning with the P6 family processors) defines a multiple-
processor (MP) initialization protocol called the Multiprocessor Specification Version
1.4. This specification defines the boot protocol to be used by IA-32 processors in
multiple-processor systems. (Here, multiple processors is defined as two or more
processors.) The MP initialization protocol has the following important features:
• It supports controlled booting of multiple processors without requiring dedicated

system hardware.
• It allows hardware to initiate the booting of a system without the need for a

dedicated signal or a predefined boot processor.
• It allows all IA-32 processors to be booted in the same manner, including those

supporting Intel Hyper-Threading Technology.
• The MP initialization protocol also applies to MP systems using Intel 64

processors.

The mechanism for carrying out the MP initialization protocol differs depending on
the IA-32 processor family, as follows:
• For P6 family processors — The selection of the BSP and APs (see Section

8.4.1, “BSP and AP Processors”) is handled through arbitration on the APIC bus,
using BIPI and FIPI messages. See Section 8.11.1, “Overview of the MP Initial-
8-26 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
ization Process For P6 Family Processors” for a complete discussion of MP initial-
ization for P6 family processors.

• Intel Xeon processors with family, model, and stepping IDs up to F09H —
The selection of the BSP and APs (see Section 8.4.1, “BSP and AP Processors”) is
handled through arbitration on the system bus, using BIPI and FIPI messages
(see Section 8.4.3, “MP Initialization Protocol Algorithm for
Intel Xeon Processors”).

• Intel Xeon processors with family, model, and stepping IDs of F0AH and
beyond, 6E0H and beyond, 6F0H and beyond — The selection of the BSP and
APs is handled through a special system bus cycle, without using BIPI and FIPI
message arbitration (see Section 8.4.3, “MP Initialization Protocol Algorithm for
Intel Xeon Processors”).

The family, model, and stepping ID for a processor is given in the EAX register when
the CPUID instruction is executed with a value of 1 in the EAX register.

8.4.1 BSP and AP Processors
The MP initialization protocol defines two classes of processors: the bootstrap
processor (BSP) and the application processors (APs). Following a power-up or
RESET of an MP system, system hardware dynamically selects one of the processors
on the system bus as the BSP. The remaining processors are designated as APs.

As part of the BSP selection mechanism, the BSP flag is set in the IA32_APIC_BASE
MSR (see Figure 10-5) of the BSP, indicating that it is the BSP. This flag is cleared for
all other processors.

The BSP executes the BIOS’s boot-strap code to configure the APIC environment,
sets up system-wide data structures, and starts and initializes the APs. When the BSP
and APs are initialized, the BSP then begins executing the operating-system initial-
ization code.

Following a power-up or reset, the APs complete a minimal self-configuration, then
wait for a startup signal (a SIPI message) from the BSP processor. Upon receiving a
SIPI message, an AP executes the BIOS AP configuration code, which ends with the
AP being placed in halt state.

For Intel 64 and IA-32 processors supporting Intel Hyper-Threading Technology, the
MP initialization protocol treats each of the logical processors on the system bus or
coherent link domain as a separate processor (with a unique APIC ID). During boot-
up, one of the logical processors is selected as the BSP and the remainder of the
logical processors are designated as APs.

8.4.2 MP Initialization Protocol Requirements and Restrictions
The MP initialization protocol imposes the following requirements and restrictions on
the system:
Vol. 3A 8-27

MULTIPLE-PROCESSOR MANAGEMENT
• The MP protocol is executed only after a power-up or RESET. If the MP protocol
has completed and a BSP is chosen, subsequent INITs (either to a specific
processor or system wide) do not cause the MP protocol to be repeated. Instead,
each logical processor examines its BSP flag (in the IA32_APIC_BASE MSR) to
determine whether it should execute the BIOS boot-strap code (if it is the BSP) or
enter a wait-for-SIPI state (if it is an AP).

• All devices in the system that are capable of delivering interrupts to the
processors must be inhibited from doing so for the duration of the MP initial-
ization protocol. The time during which interrupts must be inhibited includes the
window between when the BSP issues an INIT-SIPI-SIPI sequence to an AP and
when the AP responds to the last SIPI in the sequence.

8.4.3 MP Initialization Protocol Algorithm for
Intel Xeon Processors

Following a power-up or RESET of an MP system, the processors in the system
execute the MP initialization protocol algorithm to initialize each of the logical proces-
sors on the system bus or coherent link domain. In the course of executing this algo-
rithm, the following boot-up and initialization operations are carried out:

1. Each logical processor is assigned a unique APIC ID, based on system topology.
The unique ID is a 32-bit value if the processor supports CPUID leaf 0BH,
otherwise the unique ID is an 8-bit value. (see Section 8.4.5, “Identifying Logical
Processors in an MP System”). This ID is written into the local APIC ID register for
each processor.

2. Each logical processor is assigned a unique arbitration priority based on its
APIC ID.

3. Each logical processor executes its internal BIST simultaneously with the other
logical processors on the system bus.

4. Upon completion of the BIST, the logical processors use a hardware-defined
selection mechanism to select the BSP and the APs from the available logical
processors on the system bus. The BSP selection mechanism differs depending
on the family, model, and stepping IDs of the processors, as follows:

— Family, model, and stepping IDs of F0AH and onwards:

• The logical processors begin monitoring the BNR# signal, which is
toggling. When the BNR# pin stops toggling, each processor attempts to
issue a NOP special cycle on the system bus.

• The logical processor with the highest arbitration priority succeeds in
issuing a NOP special cycle and is nominated the BSP. This processor sets
the BSP flag in its IA32_APIC_BASE MSR, then fetches and begins
executing BIOS boot-strap code, beginning at the reset vector (physical
address FFFF FFF0H).
8-28 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
• The remaining logical processors (that failed in issuing a NOP special
cycle) are designated as APs. They leave their BSP flags in the clear state
and enter a “wait-for-SIPI state.”

— Family, model, and stepping IDs up to F09H:

• Each processor broadcasts a BIPI to “all including self.” The first processor
that broadcasts a BIPI (and thus receives its own BIPI vector), selects
itself as the BSP and sets the BSP flag in its IA32_APIC_BASE MSR. (See
Section 8.11.1, “Overview of the MP Initialization Process For P6 Family
Processors” for a description of the BIPI, FIPI, and SIPI messages.)

• The remainder of the processors (which were not selected as the BSP) are
designated as APs. They leave their BSP flags in the clear state and enter
a “wait-for-SIPI state.”

• The newly established BSP broadcasts an FIPI message to “all including
self,” which the BSP and APs treat as an end of MP initialization signal.
Only the processor with its BSP flag set responds to the FIPI message. It
responds by fetching and executing the BIOS boot-strap code, beginning
at the reset vector (physical address FFFF FFF0H).

5. As part of the boot-strap code, the BSP creates an ACPI table and an MP table and
adds its initial APIC ID to these tables as appropriate.

6. At the end of the boot-strap procedure, the BSP sets a processor counter to 1,
then broadcasts a SIPI message to all the APs in the system. Here, the SIPI
message contains a vector to the BIOS AP initialization code (at 000VV000H,
where VV is the vector contained in the SIPI message).

7. The first action of the AP initialization code is to set up a race (among the APs) to
a BIOS initialization semaphore. The first AP to the semaphore begins executing
the initialization code. (See Section 8.4.4, “MP Initialization Example,” for
semaphore implementation details.) As part of the AP initialization procedure,
the AP adds its APIC ID number to the ACPI and MP tables as appropriate and
increments the processor counter by 1. At the completion of the initialization
procedure, the AP executes a CLI instruction and halts itself.

8. When each of the APs has gained access to the semaphore and executed the AP
initialization code, the BSP establishes a count for the number of processors
connected to the system bus, completes executing the BIOS boot-strap code,
and then begins executing operating-system boot-strap and start-up code.

9. While the BSP is executing operating-system boot-strap and start-up code, the
APs remain in the halted state. In this state they will respond only to INITs, NMIs,
and SMIs. They will also respond to snoops and to assertions of the STPCLK# pin.

The following section gives an example (with code) of the MP initialization protocol
for multiple Intel Xeon processors operating in an MP configuration.

Chapter 34, “Model-Specific Registers (MSRs),” describes how to program the
LINT[0:1] pins of the processor’s local APICs after an MP configuration has been
completed.
Vol. 3A 8-29

MULTIPLE-PROCESSOR MANAGEMENT
8.4.4 MP Initialization Example
The following example illustrates the use of the MP initialization protocol used to
initialize processors in an MP system after the BSP and APs have been established.
The code runs on Intel 64 or IA-32 processors that use a protocol. This includes P6
Family processors, Pentium 4 processors, Intel Core Duo, Intel Core 2 Duo and Intel
Xeon processors.

The following constants and data definitions are used in the accompanying
code examples. They are based on the addresses of the APIC registers defined in
Table 10-1.

ICR_LOW EQU 0FEE00300H
SVR EQU 0FEE000F0H
APIC_ID EQU 0FEE00020H
LVT3 EQU 0FEE00370H
APIC_ENABLED EQU 0100H
BOOT_ID DD ?
COUNT EQU 00H
VACANT EQU 00H

8.4.4.1 Typical BSP Initialization Sequence
After the BSP and APs have been selected (by means of a hardware protocol, see
Section 8.4.3, “MP Initialization Protocol Algorithm for Intel Xeon Processors”), the
BSP begins executing BIOS boot-strap code (POST) at the normal IA-32 architecture
starting address (FFFF FFF0H). The boot-strap code typically performs the following
operations:

1. Initializes memory.

2. Loads the microcode update into the processor.

3. Initializes the MTRRs.

4. Enables the caches.

5. Executes the CPUID instruction with a value of 0H in the EAX register, then reads
the EBX, ECX, and EDX registers to determine if the BSP is “GenuineIntel.”

6. Executes the CPUID instruction with a value of 1H in the EAX register, then saves
the values in the EAX, ECX, and EDX registers in a system configuration space in
RAM for use later.

7. Loads start-up code for the AP to execute into a 4-KByte page in the lower 1
MByte of memory.

8. Switches to protected mode and ensures that the APIC address space is mapped
to the strong uncacheable (UC) memory type.

9. Determine the BSP’s APIC ID from the local APIC ID register (default is 0), the
code snippet below is an example that applies to logical processors in a system
8-30 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
whose local APIC units operate in xAPIC mode that APIC registers are accessed
using memory mapped interface:

MOV ESI, APIC_ID; Address of local APIC ID register
MOV EAX, [ESI];
AND EAX, 0FF000000H; Zero out all other bits except APIC ID
MOV BOOT_ID, EAX; Save in memory

Saves the APIC ID in the ACPI and MP tables and optionally in the system config-
uration space in RAM.

10. Converts the base address of the 4-KByte page for the AP’s bootup code into 8-bit
vector. The 8-bit vector defines the address of a 4-KByte page in the real-address
mode address space (1-MByte space). For example, a vector of 0BDH specifies a
start-up memory address of 000BD000H.

11. Enables the local APIC by setting bit 8 of the APIC spurious vector register (SVR).

MOV ESI, SVR; Address of SVR
MOV EAX, [ESI];
OR EAX, APIC_ENABLED; Set bit 8 to enable (0 on reset)
MOV [ESI], EAX;

12. Sets up the LVT error handling entry by establishing an 8-bit vector for the APIC
error handler.

MOV ESI, LVT3;
MOV EAX, [ESI];
AND EAX, FFFFFF00H; Clear out previous vector.
OR EAX, 000000xxH; xx is the 8-bit vector the APIC error handler.
MOV [ESI], EAX;

13. Initializes the Lock Semaphore variable VACANT to 00H. The APs use this
semaphore to determine the order in which they execute BIOS AP initialization
code.

14. Performs the following operation to set up the BSP to detect the presence of APs
in the system and the number of processors:

— Sets the value of the COUNT variable to 1.

— Starts a timer (set for an approximate interval of 100 milliseconds). In the AP
BIOS initialization code, the AP will increment the COUNT variable to indicate
its presence. When the timer expires, the BSP checks the value of the COUNT
variable. If the timer expires and the COUNT variable has not been incre-
mented, no APs are present or some error has occurred.

15. Broadcasts an INIT-SIPI-SIPI IPI sequence to the APs to wake them up and
initialize them:

MOV ESI, ICR_LOW; Load address of ICR low dword into ESI.
MOV EAX, 000C4500H; Load ICR encoding for broadcast INIT IPI
Vol. 3A 8-31

MULTIPLE-PROCESSOR MANAGEMENT
; to all APs into EAX.
MOV [ESI], EAX; Broadcast INIT IPI to all APs
; 10-millisecond delay loop.
MOV EAX, 000C46XXH; Load ICR encoding for broadcast SIPI IP
; to all APs into EAX, where xx is the vector computed in step 10.
MOV [ESI], EAX; Broadcast SIPI IPI to all APs
; 200-microsecond delay loop
MOV [ESI], EAX; Broadcast second SIPI IPI to all APs
; 200-microsecond delay loop

Step 15:
MOV EAX, 000C46XXH; Load ICR encoding from broadcast SIPI IP
; to all APs into EAX where xx is the vector computed in step 8.

16. Waits for the timer interrupt.

17. Reads and evaluates the COUNT variable and establishes a processor count.

18. If necessary, reconfigures the APIC and continues with the remaining system
diagnostics as appropriate.

8.4.4.2 Typical AP Initialization Sequence
When an AP receives the SIPI, it begins executing BIOS AP initialization code at the
vector encoded in the SIPI. The AP initialization code typically performs the following
operations:

1. Waits on the BIOS initialization Lock Semaphore. When control of the semaphore
is attained, initialization continues.

2. Loads the microcode update into the processor.

3. Initializes the MTRRs (using the same mapping that was used for the BSP).

4. Enables the cache.

5. Executes the CPUID instruction with a value of 0H in the EAX register, then reads
the EBX, ECX, and EDX registers to determine if the AP is “GenuineIntel.”

6. Executes the CPUID instruction with a value of 1H in the EAX register, then saves
the values in the EAX, ECX, and EDX registers in a system configuration space in
RAM for use later.

7. Switches to protected mode and ensures that the APIC address space is mapped
to the strong uncacheable (UC) memory type.

8. Determines the AP’s APIC ID from the local APIC ID register, and adds it to the MP
and ACPI tables and optionally to the system configuration space in RAM.

9. Initializes and configures the local APIC by setting bit 8 in the SVR register and
setting up the LVT3 (error LVT) for error handling (as described in steps 9 and 10
in Section 8.4.4.1, “Typical BSP Initialization Sequence”).
8-32 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
10. Configures the APs SMI execution environment. (Each AP and the BSP must have
a different SMBASE address.)

11. Increments the COUNT variable by 1.

12. Releases the semaphore.

13. Executes the CLI and HLT instructions.

14. Waits for an INIT IPI.

8.4.5 Identifying Logical Processors in an MP System
After the BIOS has completed the MP initialization protocol, each logical processor
can be uniquely identified by its local APIC ID. Software can access these APIC IDs in
either of the following ways:
• Read APIC ID for a local APIC — Code running on a logical processor can read

APIC ID in one of two ways depending on the local APIC unit is operating in
x2APIC mode (see Intel® 64 Architecture x2APIC Specification)or in xAPIC
mode:

— If the local APIC unit supports x2APIC and is operating in x2APIC mode, 32-
bit APIC ID can be read by executing a RDMSR instruction to read the
processor’s x2APIC ID register. This method is equivalent to executing CPUID
leaf 0BH described below.

— If the local APIC unit is operating in xAPIC mode, 8-bit APIC ID can be read by
executing a MOV instruction to read the processor’s local APIC ID register
(see Section 10.4.6, “Local APIC ID”). This is the ID to use for directing
physical destination mode interrupts to the processor.

• Read ACPI or MP table — As part of the MP initialization protocol, the BIOS
creates an ACPI table and an MP table. These tables are defined in the Multipro-
cessor Specification Version 1.4 and provide software with a list of the processors
in the system and their local APIC IDs. The format of the ACPI table is derived
from the ACPI specification, which is an industry standard power management
and platform configuration specification for MP systems.

• Read Initial APIC ID (If the process does not support CPUID leaf 0BH) — An
APIC ID is assigned to a logical processor during power up. This is the initial APIC
ID reported by CPUID.1:EBX[31:24] and may be different from the current value
read from the local APIC. The initial APIC ID can be used to determine the
topological relationship between logical processors for multi-processor systems
that do not support CPUID leaf 0BH.
Bits in the 8-bit initial APIC ID can be interpreted using several bit masks. Each
bit mask can be used to extract an identifier to represent a hierarchical level of
the multi-threading resource topology in an MP system (See Section 8.9.1,
“Hierarchical Mapping of Shared Resources”). The initial APIC ID may consist of
up to four bit-fields. In a non-clustered MP system, the field consists of up to
three bit fields.
Vol. 3A 8-33

MULTIPLE-PROCESSOR MANAGEMENT
• Read 32-bit APIC ID from CPUID leaf 0BH (If the processor supports CPUID
leaf 0BH) — A unique APIC ID is assigned to a logical processor during power up.
This APIC ID is reported by CPUID.0BH:EDX[31:0] as a 32-bit value. Use the 32-
bit APIC ID and CPUID leaf 0BH to determine the topological relationship between
logical processors if the processor supports CPUID leaf 0BH.
Bits in the 32-bit x2APIC ID can be extracted into sub-fields using CPUID leaf 0BH
parameters. (See Section 8.9.1, “Hierarchical Mapping of Shared Resources”).

Figure 8-2 shows two examples of APIC ID bit fields in earlier single-core processors.
In single-core Intel Xeon processors, the APIC ID assigned to a logical processor
during power-up and initialization is 8 bits. Bits 2:1 form a 2-bit physical package
identifier (which can also be thought of as a socket identifier). In systems that
configure physical processors in clusters, bits 4:3 form a 2-bit cluster ID. Bit 0 is used
in the Intel Xeon processor MP to identify the two logical processors within the
package (see Section 8.9.3, “Hierarchical ID of Logical Processors in an MP System”).
For Intel Xeon processors that do not support Intel Hyper-Threading Technology, bit
0 is always set to 0; for Intel Xeon processors supporting Intel Hyper-Threading
Technology, bit 0 performs the same function as it does for Intel Xeon processor MP.

For more recent multi-core processors, see Section 8.9.1, “Hierarchical Mapping of
Shared Resources” for a complete description of the topological relationships
between logical processors and bit field locations within an initial APIC ID across Intel
64 and IA-32 processor families.

Note the number of bit fields and the width of bit-fields are dependent on processor
and platform hardware capabilities. Software should determine these at runtime.
When initial APIC IDs are assigned to logical processors, the value of APIC ID
assigned to a logical processor will respect the bit-field boundaries corresponding
core, physical package, etc. Additional examples of the bit fields in the initial APIC ID
of multi-threading capable systems are shown in Section 8.9.
8-34 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
For P6 family processors, the APIC ID that is assigned to a processor during power-
up and initialization is 4 bits (see Figure 8-2). Here, bits 0 and 1 form a 2-bit
processor (or socket) identifier and bits 2 and 3 form a 2-bit cluster ID.

8.5 INTEL® HYPER-THREADING TECHNOLOGY AND
INTEL® MULTI-CORE TECHNOLOGY

Intel Hyper-Threading Technology and Intel multi-core technology are extensions to
Intel 64 and IA-32 architectures that enable a single physical processor to execute
two or more separate code streams (called threads) concurrently. In Intel Hyper-
Threading Technology, a single processor core provides two logical processors that
share execution resources (see Section 8.7, “Intel® Hyper-Threading Technology
Architecture”). In Intel multi-core technology, a physical processor package provides
two or more processor cores. Both configurations require chipsets and a BIOS that
support the technologies.

Software should not rely on processor names to determine whether a processor
supports Intel Hyper-Threading Technology or Intel multi-core technology. Use the
CPUID instruction to determine processor capability (see Section 8.6.2, “Initializing
Multi-Core Processors”).

Figure 8-2. Interpretation of APIC ID in Early MP Systems

0

Processor ID

17 4 3 2

Cluster

Reserved

0

Processor ID

17 4 3 25

Cluster

Reserved

APIC ID Format for Intel Xeon Processors that

APIC ID Format for P6 Family Processors

0

do not Support Intel Hyper-Threading Technology
Vol. 3A 8-35

MULTIPLE-PROCESSOR MANAGEMENT
8.6 DETECTING HARDWARE MULTI-THREADING
SUPPORT AND TOPOLOGY

Use the CPUID instruction to detect the presence of hardware multi-threading
support in a physical processor. Hardware multi-threading can support several vari-
eties of multigrade and/or Intel Hyper-Threading Technology. CPUID instruction
provides several sets of parameter information to aid software enumerating topology
information. The relevant topology enumeration parameters provided by CPUID
include:
• Hardware Multi-Threading feature flag (CPUID.1:EDX[28] = 1) —

Indicates when set that the physical package is capable of supporting Intel
Hyper-Threading Technology and/or multiple cores.

• Processor topology enumeration parameters for 8-bit APIC ID:

— Addressable IDs for Logical processors in the same Package
(CPUID.1:EBX[23:16]) — Indicates the maximum number of addressable
ID for logical processors in a physical package. Within a physical package,
there may be addressable IDs that are not occupied by any logical
processors. This parameter does not represents the hardware capability of
the physical processor.5

• Addressable IDs for processor cores in the same Package6
(CPUID.(EAX=4, ECX=07):EAX[31:26] + 1 = Y) — Indicates the maximum
number of addressable IDs attributable to processor cores (Y) in the physical
package.

• Extended Processor Topology Enumeration parameters for 32-bit APIC
ID: Intel 64 processors supporting CPUID leaf 0BH will assign unique APIC IDs to
each logical processor in the system. CPUID leaf 0BH reports the 32-bit APIC ID
and provide topology enumeration parameters. See CPUID instruction reference
pages in Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A.

The CPUID feature flag may indicate support for hardware multi-threading when only
one logical processor available in the package. In this case, the decimal value repre-
sented by bits 16 through 23 in the EBX register will have a value of 1.

Software should note that the number of logical processors enabled by system soft-
ware may be less than the value of “Addressable IDs for Logical processors”. Simi-

5. Operating system and BIOS may implement features that reduce the number of logical proces-
sors available in a platform to applications at runtime to less than the number of physical pack-
ages times the number of hardware-capable logical processors per package.

6. Software must check CPUID for its support of leaf 4 when implementing support for multi-core. If
CPUID leaf 4 is not available at runtime, software should handle the situation as if there is only
one core per package.

7. Maximum number of cores in the physical package must be queried by executing CPUID with
EAX=4 and a valid ECX input value. Valid ECX input values start from 0.
8-36 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
larly, the number of cores enabled by system software may be less than the value of
“Addressable IDs for processor cores”.

Software can detect the availability of the CPUID extended topology enumeration leaf
(0BH) by performing two steps:
• Check maximum input value for basic CPUID information by executing CPUID

with EAX= 0. If CPUID.0H:EAX is greater than or equal or 11 (0BH), then proceed
to next step,

• Check CPUID.EAX=0BH, ECX=0H:EBX is non-zero.

If both of the above conditions are true, extended topology enumeration leaf is avail-
able. Note the presence of CPUID leaf 0BH in a processor does not guarantee support
that the local APIC supports x2APIC. If CPUID.(EAX=0BH, ECX=0H):EBX returns
zero and maximum input value for basic CPUID information is greater than 0BH, then
CPUID.0BH leaf is not supported on that processor.

8.6.1 Initializing Processors
Supporting Hyper-Threading Technology

The initialization process for an MP system that contains processors supporting Intel
Hyper-Threading Technology is the same as for conventional MP systems (see
Section 8.4, “Multiple-Processor (MP) Initialization”). One logical processor in the
system is selected as the BSP and other processors (or logical processors) are desig-
nated as APs. The initialization process is identical to that described in Section 8.4.3,
“MP Initialization Protocol Algorithm for Intel Xeon Processors,” and Section 8.4.4,
“MP Initialization Example.”

During initialization, each logical processor is assigned an APIC ID that is stored in
the local APIC ID register for each logical processor. If two or more processors
supporting Intel Hyper-Threading Technology are present, each logical processor on
the system bus is assigned a unique ID (see Section 8.9.3, “Hierarchical ID of Logical
Processors in an MP System”). Once logical processors have APIC IDs, software
communicates with them by sending APIC IPI messages.

8.6.2 Initializing Multi-Core Processors
The initialization process for an MP system that contains multi-core Intel 64 or IA-32
processors is the same as for conventional MP systems (see Section 8.4, “Multiple-
Processor (MP) Initialization”). A logical processor in one core is selected as the BSP;
other logical processors are designated as APs.

During initialization, each logical processor is assigned an APIC ID. Once logical
processors have APIC IDs, software may communicate with them by sending APIC
IPI messages.
Vol. 3A 8-37

MULTIPLE-PROCESSOR MANAGEMENT
8.6.3 Executing Multiple Threads on an Intel® 64 or IA-32
Processor Supporting Hardware Multi-Threading

Upon completing the operating system boot-up procedure, the bootstrap processor
(BSP) executes operating system code. Other logical processors are placed in the
halt state. To execute a code stream (thread) on a halted logical processor, the oper-
ating system issues an interprocessor interrupt (IPI) addressed to the halted logical
processor. In response to the IPI, the processor wakes up and begins executing the
thread identified by the interrupt vector received as part of the IPI.

To manage execution of multiple threads on logical processors, an operating system
can use conventional symmetric multiprocessing (SMP) techniques. For example, the
operating-system can use a time-slice or load balancing mechanism to periodically
interrupt each of the active logical processors. Upon interrupting a logical processor,
the operating system checks its run queue for a thread waiting to be executed and
dispatches the thread to the interrupted logical processor.

8.6.4 Handling Interrupts on an IA-32 Processor Supporting
Hardware Multi-Threading

Interrupts are handled on processors supporting Intel Hyper-Threading Technology
as they are on conventional MP systems. External interrupts are received by the I/O
APIC, which distributes them as interrupt messages to specific logical processors
(see Figure 8-3).

Logical processors can also send IPIs to other logical processors by writing to the ICR
register of its local APIC (see Section 10.6, “Issuing Interprocessor Interrupts”). This
also applies to dual-core processors.
8-38 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
8.7 INTEL® HYPER-THREADING TECHNOLOGY
ARCHITECTURE

Figure 8-4 shows a generalized view of an Intel processor supporting Intel Hyper-
Threading Technology, using the original Intel Xeon processor MP as an example.
This implementation of the Intel Hyper-Threading Technology consists of two logical
processors (each represented by a separate architectural state) which share the
processor’s execution engine and the bus interface. Each logical processor also has
its own advanced programmable interrupt controller (APIC).

Figure 8-3. Local APICs and I/O APIC in MP System Supporting Intel HT Technology

I/O APIC External
Interrupts

System Chip Set

Bridge

PCI

Interrupt Messages

Local APIC

Logical
Processor 0

Local APIC

Logical
Processor 1

Hyper-Threading Technology
Intel Processor with Intel

Bus Interface

Processor Core

IPIs
Interrupt
Messages

Local APIC

Logical
Processor 0

Local APIC

Logical
Processor 1

Hyper-Threading Technology
Intel Processor with Intel

Bus Interface

Processor Core

IPIs
Interrupt
Messages
Vol. 3A 8-39

MULTIPLE-PROCESSOR MANAGEMENT
8.7.1 State of the Logical Processors
The following features are part of the architectural state of logical processors within
Intel 64 or IA-32 processors supporting Intel Hyper-Threading Technology. The
features can be subdivided into three groups:
• Duplicated for each logical processor
• Shared by logical processors in a physical processor
• Shared or duplicated, depending on the implementation

The following features are duplicated for each logical processor:
• General purpose registers (EAX, EBX, ECX, EDX, ESI, EDI, ESP, and EBP)
• Segment registers (CS, DS, SS, ES, FS, and GS)
• EFLAGS and EIP registers. Note that the CS and EIP/RIP registers for each logical

processor point to the instruction stream for the thread being executed by the
logical processor.

• x87 FPU registers (ST0 through ST7, status word, control word, tag word, data
operand pointer, and instruction pointer)

• MMX registers (MM0 through MM7)
• XMM registers (XMM0 through XMM7) and the MXCSR register
• Control registers and system table pointer registers (GDTR, LDTR, IDTR, task

register)

Figure 8-4. IA-32 Processor with Two Logical Processors Supporting Intel HT
Technology

Logical
Processor 0
Architectural

State

Bus Interface

Local APICLocal APIC

Logical
Processor 1
Architectural

State

Execution Engine

System Bus
8-40 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
• Debug registers (DR0, DR1, DR2, DR3, DR6, DR7) and the debug control MSRs
• Machine check global status (IA32_MCG_STATUS) and machine check capability

(IA32_MCG_CAP) MSRs
• Thermal clock modulation and ACPI Power management control MSRs
• Time stamp counter MSRs
• Most of the other MSR registers, including the page attribute table (PAT). See the

exceptions below.
• Local APIC registers.
• Additional general purpose registers (R8-R15), XMM registers (XMM8-XMM15),

control register, IA32_EFER on Intel 64 processors.

The following features are shared by logical processors:
• Memory type range registers (MTRRs)

Whether the following features are shared or duplicated is implementation-specific:
• IA32_MISC_ENABLE MSR (MSR address 1A0H)
• Machine check architecture (MCA) MSRs (except for the IA32_MCG_STATUS and

IA32_MCG_CAP MSRs)
• Performance monitoring control and counter MSRs

8.7.2 APIC Functionality
When a processor supporting Intel Hyper-Threading Technology support is initialized,
each logical processor is assigned a local APIC ID (see Table 10-1). The local APIC ID
serves as an ID for the logical processor and is stored in the logical processor’s APIC
ID register. If two or more processors supporting Intel Hyper-Threading Technology
are present in a dual processor (DP) or MP system, each logical processor on the
system bus is assigned a unique local APIC ID (see Section 8.9.3, “Hierarchical ID of
Logical Processors in an MP System”).

Software communicates with local processors using the APIC’s interprocessor inter-
rupt (IPI) messaging facility. Setup and programming for APICs is identical in proces-
sors that support and do not support Intel Hyper-Threading Technology. See Chapter
10, “Advanced Programmable Interrupt Controller (APIC),” for a detailed discussion.

8.7.3 Memory Type Range Registers (MTRR)
MTRRs in a processor supporting Intel Hyper-Threading Technology are shared by
logical processors. When one logical processor updates the setting of the MTRRs,
settings are automatically shared with the other logical processors in the same phys-
ical package.

The architectures require that all MP systems based on Intel 64 and IA-32 processors
(this includes logical processors) must use an identical MTRR memory map. This
Vol. 3A 8-41

MULTIPLE-PROCESSOR MANAGEMENT
gives software a consistent view of memory, independent of the processor on which
it is running. See Section 11.11, “Memory Type Range Registers (MTRRs),” for infor-
mation on setting up MTRRs.

8.7.4 Page Attribute Table (PAT)
Each logical processor has its own PAT MSR (IA32_PAT). However, as described in
Section 11.12, “Page Attribute Table (PAT),” the PAT MSR settings must be the same
for all processors in a system, including the logical processors.

8.7.5 Machine Check Architecture
In the Intel HT Technology context as implemented by processors based on Intel
NetBurst® microarchitecture, all of the machine check architecture (MCA) MSRs
(except for the IA32_MCG_STATUS and IA32_MCG_CAP MSRs) are duplicated for
each logical processor. This permits logical processors to initialize, configure, query,
and handle machine-check exceptions simultaneously within the same physical
processor. The design is compatible with machine check exception handlers that
follow the guidelines given in Chapter 15, “Machine-Check Architecture.”

The IA32_MCG_STATUS MSR is duplicated for each logical processor so that its
machine check in progress bit field (MCIP) can be used to detect recursion on the
part of MCA handlers. In addition, the MSR allows each logical processor to deter-
mine that a machine-check exception is in progress independent of the actions of
another logical processor in the same physical package.

Because the logical processors within a physical package are tightly coupled with
respect to shared hardware resources, both logical processors are notified of
machine check errors that occur within a given physical processor. If machine-check
exceptions are enabled when a fatal error is reported, all the logical processors within
a physical package are dispatched to the machine-check exception handler. If
machine-check exceptions are disabled, the logical processors enter the shutdown
state and assert the IERR# signal.

When enabling machine-check exceptions, the MCE flag in control register CR4
should be set for each logical processor.

On Intel Atom family processors that support Intel Hyper-Threading Technology, the
MCA facilities are shared between all logical processors on the same processor core.

8.7.6 Debug Registers and Extensions
Each logical processor has its own set of debug registers (DR0, DR1, DR2, DR3, DR6,
DR7) and its own debug control MSR. These can be set to control and record debug
information for each logical processor independently. Each logical processor also has
its own last branch records (LBR) stack.
8-42 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
8.7.7 Performance Monitoring Counters
Performance counters and their companion control MSRs are shared between the
logical processors within a processor core for processors based on Intel NetBurst
microarchitecture. As a result, software must manage the use of these resources.
The performance counter interrupts, events, and precise event monitoring support
can be set up and allocated on a per thread (per logical processor) basis.

See Section 18.11, “Performance Monitoring and Intel Hyper-Threading Technology
in Processors Based on Intel NetBurst® Microarchitecture,” for a discussion of perfor-
mance monitoring in the Intel Xeon processor MP.

In Intel Atom processor family that support Intel Hyper-Threading Technology, the
performance counters (general-purpose and fixed-function counters) and their
companion control MSRs are duplicated for each logical processor.

8.7.8 IA32_MISC_ENABLE MSR
The IA32_MISC_ENABLE MSR (MSR address 1A0H) is generally shared between the
logical processors in a processor core supporting Intel Hyper-Threading Technology.
However, some bit fields within IA32_MISC_ENABLE MSR may be duplicated per
logical processor. The partition of shared or duplicated bit fields within
IA32_MISC_ENABLE is implementation dependent. Software should program dupli-
cated fields carefully on all logical processors in the system to ensure consistent
behavior.

8.7.9 Memory Ordering
The logical processors in an Intel 64 or IA-32 processor supporting Intel Hyper-
Threading Technology obey the same rules for memory ordering as Intel 64 or IA-32
processors without Intel HT Technology (see Section 8.2, “Memory Ordering”). Each
logical processor uses a processor-ordered memory model that can be further
defined as “write-ordered with store buffer forwarding.” All mechanisms for strength-
ening or weakening the memory-ordering model to handle special programming situ-
ations apply to each logical processor.

8.7.10 Serializing Instructions
As a general rule, when a logical processor in a processor supporting Intel Hyper-
Threading Technology executes a serializing instruction, only that logical processor is
affected by the operation. An exception to this rule is the execution of the WBINVD,
INVD, and WRMSR instructions; and the MOV CR instruction when the state of the CD
flag in control register CR0 is modified. Here, both logical processors are serialized.
Vol. 3A 8-43

MULTIPLE-PROCESSOR MANAGEMENT
8.7.11 Microcode Update Resources
In an Intel processor supporting Intel Hyper-Threading Technology, the microcode
update facilities are shared between the logical processors; either logical processor
can initiate an update. Each logical processor has its own BIOS signature MSR
(IA32_BIOS_SIGN_ID at MSR address 8BH). When a logical processor performs an
update for the physical processor, the IA32_BIOS_SIGN_ID MSRs for resident logical
processors are updated with identical information. If logical processors initiate an
update simultaneously, the processor core provides the necessary synchronization
needed to ensure that only one update is performed at a time.

NOTE
Some processors (prior to the introduction of Intel 64 Architecture
and based on Intel NetBurst microarchitecture) do not support simul-
taneous loading of microcode update to the sibling logical processors
in the same core. All other processors support logical processors
initiating an update simultaneously. Intel recommends a common
approach that the microcode loader use the sequential technique
described in Section 9.11.6.3.

8.7.12 Self Modifying Code
Intel processors supporting Intel Hyper-Threading Technology support self-modifying
code, where data writes modify instructions cached or currently in flight. They also
support cross-modifying code, where on an MP system writes generated by one
processor modify instructions cached or currently in flight on another. See Section
8.1.3, “Handling Self- and Cross-Modifying Code,” for a description of the require-
ments for self- and cross-modifying code in an IA-32 processor.

8.7.13 Implementation-Specific Intel HT Technology Facilities
The following non-architectural facilities are implementation-specific in IA-32 proces-
sors supporting Intel Hyper-Threading Technology:
• Caches
• Translation lookaside buffers (TLBs)
• Thermal monitoring facilities

The Intel Xeon processor MP implementation is described in the following sections.

8.7.13.1 Processor Caches
For processors supporting Intel Hyper-Threading Technology, the caches are shared.
Any cache manipulation instruction that is executed on one logical processor has a
global effect on the cache hierarchy of the physical processor. Note the following:
8-44 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
• WBINVD instruction — The entire cache hierarchy is invalidated after modified
data is written back to memory. All logical processors are stopped from executing
until after the write-back and invalidate operation is completed. A special bus
cycle is sent to all caching agents. The amount of time or cycles for WBINVD to
complete will vary due to the size of different cache hierarchies and other factors.
As a consequence, the use of the WBINVD instruction can have an impact on
interrupt/event response time.

• INVD instruction — The entire cache hierarchy is invalidated without writing
back modified data to memory. All logical processors are stopped from executing
until after the invalidate operation is completed. A special bus cycle is sent to all
caching agents.

• CLFLUSH instruction — The specified cache line is invalidated from the cache
hierarchy after any modified data is written back to memory and a bus cycle is
sent to all caching agents, regardless of which logical processor caused the cache
line to be filled.

• CD flag in control register CR0 — Each logical processor has its own CR0
control register, and thus its own CD flag in CR0. The CD flags for the two logical
processors are ORed together, such that when any logical processor sets its CD
flag, the entire cache is nominally disabled.

8.7.13.2 Processor Translation Lookaside Buffers (TLBs)
In processors supporting Intel Hyper-Threading Technology, data cache TLBs are
shared. The instruction cache TLB may be duplicated or shared in each logical
processor, depending on implementation specifics of different processor families.

Entries in the TLBs are tagged with an ID that indicates the logical processor that
initiated the translation. This tag applies even for translations that are marked global
using the page-global feature for memory paging. See Section 4.10, “Caching Trans-
lation Information,” for information about global translations.

When a logical processor performs a TLB invalidation operation, only the TLB entries
that are tagged for that logical processor are guaranteed to be flushed. This protocol
applies to all TLB invalidation operations, including writes to control registers CR3
and CR4 and uses of the INVLPG instruction.

8.7.13.3 Thermal Monitor
In a processor that supports Intel Hyper-Threading Technology, logical processors
share the catastrophic shutdown detector and the automatic thermal monitoring
mechanism (see Section 14.5, “Thermal Monitoring and Protection”). Sharing results
in the following behavior:
• If the processor’s core temperature rises above the preset catastrophic shutdown

temperature, the processor core halts execution, which causes both logical
processors to stop execution.
Vol. 3A 8-45

MULTIPLE-PROCESSOR MANAGEMENT
• When the processor’s core temperature rises above the preset automatic thermal
monitor trip temperature, the clock speed of the processor core is automatically
modulated, which effects the execution speed of both logical processors.

For software controlled clock modulation, each logical processor has its own
IA32_CLOCK_MODULATION MSR, allowing clock modulation to be enabled or
disabled on a logical processor basis. Typically, if software controlled clock modula-
tion is going to be used, the feature must be enabled for all the logical processors
within a physical processor and the modulation duty cycle must be set to the same
value for each logical processor. If the duty cycle values differ between the logical
processors, the processor clock will be modulated at the highest duty cycle selected.

8.7.13.4 External Signal Compatibility
This section describes the constraints on external signals received through the pins
of a processor supporting Intel Hyper-Threading Technology and how these signals
are shared between its logical processors.
• STPCLK# — A single STPCLK# pin is provided on the physical package of the

Intel Xeon processor MP. External control logic uses this pin for power
management within the system. When the STPCLK# signal is asserted, the
processor core transitions to the stop-grant state, where instruction execution is
halted but the processor core continues to respond to snoop transactions.
Regardless of whether the logical processors are active or halted when the
STPCLK# signal is asserted, execution is stopped on both logical processors and
neither will respond to interrupts.

In MP systems, the STPCLK# pins on all physical processors are generally tied
together. As a result this signal affects all the logical processors within the system
simultaneously.

• LINT0 and LINT1 pins — A processor supporting Intel Hyper-Threading
Technology has only one set of LINT0 and LINT1 pins, which are shared between
the logical processors. When one of these pins is asserted, both logical
processors respond unless the pin has been masked in the APIC local vector
tables for one or both of the logical processors.

Typically in MP systems, the LINT0 and LINT1 pins are not used to deliver
interrupts to the logical processors. Instead all interrupts are delivered to the
local processors through the I/O APIC.

• A20M# pin — On an IA-32 processor, the A20M# pin is typically provided for
compatibility with the Intel 286 processor. Asserting this pin causes bit 20 of the
physical address to be masked (forced to zero) for all external bus memory
accesses. Processors supporting Intel Hyper-Threading Technology provide one
A20M# pin, which affects the operation of both logical processors within the
physical processor.
8-46 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
The functionality of A20M# is used primarily by older operating systems and not
used by modern operating systems. On newer Intel 64 processors, A20M# may
be absent.

8.8 MULTI-CORE ARCHITECTURE
This section describes the architecture of Intel 64 and IA-32 processors supporting
dual-core and quad-core technology. The discussion is applicable to the Intel Pentium
processor Extreme Edition, Pentium D, Intel Core Duo, Intel Core 2 Duo, Dual-core
Intel Xeon processor, Intel Core 2 Quad processors, and quad-core Intel Xeon
processors. Features vary across different microarchitectures and are detectable
using CPUID.

In general, each processor core has dedicated microarchitectural resources identical
to a single-processor implementation of the underlying microarchitecture without
hardware multi-threading capability. Each logical processor in a dual-core processor
(whether supporting Intel Hyper-Threading Technology or not) has its own APIC
functionality, PAT, machine check architecture, debug registers and extensions. Each
logical processor handles serialization instructions or self-modifying code on its own.
Memory order is handled the same way as in Intel Hyper-Threading Technology.

The topology of the cache hierarchy (with respect to whether a given cache level is
shared by one or more processor cores or by all logical processors in the physical
package) depends on the processor implementation. Software must use the deter-
ministic cache parameter leaf of CPUID instruction to discover the cache-sharing
topology between the logical processors in a multi-threading environment.

8.8.1 Logical Processor Support
The topological composition of processor cores and logical processors in a multi-core
processor can be discovered using CPUID. Within each processor core, one or more
logical processors may be available.

System software must follow the requirement MP initialization sequences (see
Section 8.4, “Multiple-Processor (MP) Initialization”) to recognize and enable logical
processors. At runtime, software can enumerate those logical processors enabled by
system software to identify the topological relationships between these logical
processors. (See Section 8.9.5, “Identifying Topological Relationships in a MP
System”).

8.8.2 Memory Type Range Registers (MTRR)
MTRR is shared between two logical processors sharing a processor core if the phys-
ical processor supports Intel Hyper-Threading Technology. MTRR is not shared
between logical processors located in different cores or different physical packages.
Vol. 3A 8-47

MULTIPLE-PROCESSOR MANAGEMENT
The Intel 64 and IA-32 architectures require that all logical processors in an MP
system use an identical MTRR memory map. This gives software a consistent view of
memory, independent of the processor on which it is running.

See Section 11.11, “Memory Type Range Registers (MTRRs).”

8.8.3 Performance Monitoring Counters
Performance counters and their companion control MSRs are shared between two
logical processors sharing a processor core if the processor core supports Intel
Hyper-Threading Technology and is based on Intel NetBurst microarchitecture. They
are not shared between logical processors in different cores or different physical
packages. As a result, software must manage the use of these resources, based on
the topology of performance monitoring resources. Performance counter interrupts,
events, and precise event monitoring support can be set up and allocated on a per
thread (per logical processor) basis.

See Section 18.11, “Performance Monitoring and Intel Hyper-Threading Technology
in Processors Based on Intel NetBurst® Microarchitecture.”

8.8.4 IA32_MISC_ENABLE MSR
Some bit fields in IA32_MISC_ENABLE MSR (MSR address 1A0H) may be shared
between two logical processors sharing a processor core, or may be shared between
different cores in a physical processor. See Chapter 34, “Model-Specific Registers
(MSRs),”.

8.8.5 Microcode Update Resources
Microcode update facilities are shared between two logical processors sharing a
processor core if the physical package supports Intel Hyper-Threading Technology.
They are not shared between logical processors in different cores or different phys-
ical packages. Either logical processor that has access to the microcode update
facility can initiate an update.

Each logical processor has its own BIOS signature MSR (IA32_BIOS_SIGN_ID at MSR
address 8BH). When a logical processor performs an update for the physical
processor, the IA32_BIOS_SIGN_ID MSRs for resident logical processors are
updated with identical information.

NOTE
Some processors (prior to the introduction of Intel 64 Architecture
and based on Intel NetBurst microarchitecture) do not support simul-
taneous loading of microcode update to the sibling logical processors
in the same core. All other processors support logical processors
initiating an update simultaneously. Intel recommends a common
8-48 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
approach that the microcode loader use the sequential technique
described in Section 9.11.6.3.

8.9 PROGRAMMING CONSIDERATIONS FOR HARDWARE
MULTI-THREADING CAPABLE PROCESSORS

In a multi-threading environment, there may be certain hardware resources that are
physically shared at some level of the hardware topology. In the multi-processor
systems, typically bus and memory sub-systems are physically shared between
multiple sockets. Within a hardware multi-threading capable processors, certain
resources are provided for each processor core, while other resources may be
provided for each logical processors (see Section 8.7, “Intel® Hyper-Threading Tech-
nology Architecture,” and Section 8.8, “Multi-Core Architecture”).

From a software programming perspective, control transfer of processor operation is
managed at the granularity of logical processor (operating systems dispatch a
runnable task by allocating an available logical processor on the platform). To
manage the topology of shared resources in a multi-threading environment, it may
be useful for software to understand and manage resources that are shared by more
than one logical processors.

8.9.1 Hierarchical Mapping of Shared Resources
The APIC_ID value associated with each logical processor in a multi-processor
system is unique (see Section 8.6, “Detecting Hardware Multi-Threading Support and
Topology”). This 8-bit or 32-bit value can be decomposed into sub-fields, where each
sub-field corresponds a hierarchical level of the topological mapping of hardware
resources.

The decomposition of an APIC_ID may consist of several sub fields representing the
topology within a physical processor package, the higher-order bits of an APIC ID
may also be used by cluster vendors to represent the topology of cluster nodes of
each coherent multiprocessor systems. If the processor does not support CPUID leaf
0BH, the 8-bit initial APIC ID can represent 4 levels of hierarchy:
• Cluster — Some multi-threading environments consists of multiple clusters of

multi-processor systems. The CLUSTER_ID sub-field is usually supported by
vendor firmware to distinguish different clusters. For non-clustered systems,
CLUSTER_ID is usually 0 and system topology is reduced to three levels of
hierarchy.

• Package — A multi-processor system consists of two or more sockets, each
mates with a physical processor package. The PACKAGE_ID sub-field distin-
guishes different physical packages within a cluster.
Vol. 3A 8-49

MULTIPLE-PROCESSOR MANAGEMENT
• Core — A physical processor package consists of one or more processor cores.
The CORE_ID sub-field distinguishes processor cores in a package. For a single-
core processor, the width of this bit field is 0.

• SMT — A processor core provides one or more logical processors sharing
execution resources. The SMT_ID sub-field distinguishes logical processors in a
core. The width of this bit field is non-zero if a processor core provides more than
one logical processors.

SMT and CORE sub-fields are bit-wise contiguous in the APIC_ID field (see
Figure 8-5).

If the processor supports CPUID leaf 0BH, the 32-bit APIC ID can represent cluster
plus several levels of topology within the physical processor package. The exact
number of hierarchical levels within a physical processor package must be enumer-
ated through CPUID leaf 0BH. Common processor families may employ topology
similar to that represented by 8-bit Initial APIC ID. In general, CPUID leaf 0BH can
support topology enumeration algorithm that decompose a 32-bit APIC ID into more
than four sub-fields (see Figure 8-6).

The width of each sub-field depends on hardware and software configurations. Field
widths can be determined at runtime using the algorithm discussed below (Example
8-16 through Example 8-20).

Figure 7-6 depicts the relationships of three of the hierarchical sub-fields in a hypo-
thetical MP system. The value of valid APIC_IDs need not be contiguous across
package boundary or core boundaries.

Figure 8-5. Generalized Four level Interpretation of the APIC ID

0

Package ID

SMT ID

X

Cluster ID

Reserved

Core ID

X=31 if x2APIC is supported

Otherwise X= 7
8-50 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
8.9.2 Hierarchical Mapping of CPUID Extended Topology Leaf
CPUID leaf 0BH provides enumeration parameters for software to identify each hier-
archy of the processor topology in a deterministic manner. Each hierarchical level of
the topology starting from the SMT level is represented numerically by a sub-leaf
index within the CPUID 0BH leaf. Each level of the topology is mapped to a sub-field
in the APIC ID, following the general relationship depicted in Figure 8-6. This mech-
anism allows software to query the exact number of levels within a physical
processor package and the bit-width of each sub-field of x2APIC ID directly. For
example,
• Starting from sub-leaf index 0 and incrementing ECX until CPUID.(EAX=0BH,

ECX=N):ECX[15:8] returns an invalid “level type“ encoding. The number of
levels within the physical processor package is “N“ (excluding PACKAGE). Using
Figure 8-6 as an example, CPUID.(EAX=0BH, ECX=3):ECX[15:8] will report
00H, indicating sub leaf 03H is invalid. This is also depicted by a pseudo code
example:

Example 8-16. Number of Levels Below the Physical Processor Package

Byte type = 1;
s = 0;
While (type) {

EAX = 0BH; // query each sub leaf of CPUID leaf 0BH
ECX = s;
CPUID;
type = ECX[15:8]; // examine level type encoding
s ++;

Figure 8-6. Conceptual Five-level Topology and 32-bit APIC ID Composition

0

Package ID

R ID

31

Cluster ID

Reserved

Q ID

SMT ID

RSMT

Q

Package

Physical Processor Topology 32-bit APIC ID Composition
Vol. 3A 8-51

MULTIPLE-PROCESSOR MANAGEMENT
}
N = ECX[7:0];

• Sub-leaf index 0 (ECX= 0 as input) provides enumeration parameters to extract
the SMT sub-field of x2APIC ID. If EAX = 0BH, and ECX =0 is specified as input
when executing CPUID, CPUID.(EAX=0BH, ECX=0):EAX[4:0] reports a value (a
right-shift count) that allow software to extract part of x2APIC ID to distinguish
the next higher topological entities above the SMT level. This value also
corresponds to the bit-width of the sub-field of x2APIC ID corresponding the
hierarchical level with sub-leaf index 0.

• For each subsequent higher sub-leaf index m, CPUID.(EAX=0BH,
ECX=m):EAX[4:0] reports the right-shift count that will allow software to extract
part of x2APIC ID to distinguish higher-level topological entities. This means the
right-shift value at of sub-leaf m, corresponds to the least significant (m+1)
subfields of the 32-bit x2APIC ID.

Example 8-17. BitWidth Determination of x2APIC ID Subfields

For m = 0, m < N, m ++;
{ cumulative_width[m] = CPUID.(EAX=0BH, ECX= m): EAX[4:0]; }
BitWidth[0] = cumulative_width[0];
For m = 1, m < N, m ++;

BitWidth[m] = cumulative_width[m] - cumulative_width[m-1];

Currently, only the following encoding of hierarchical level type are defined: 0
(invalid), 1 (SMT), and 2 (core). Software must not assume any “level type“ encoding
value to be related to any sub-leaf index, except sub-leaf 0.

Example 8-16 and Example 8-17 represent the general technique for using CPUID
leaf 0BH to enumerate processor topology of more than two levels of hierarchy inside
a physical package. Most processor families to date requires only “SMT” and “CORE”
levels within a physical package. The examples in later sections will focus on these
three-level topology only.

8.9.3 Hierarchical ID of Logical Processors in an MP System
For Intel 64 and IA-32 processors, system hardware establishes an 8-bit initial APIC
ID (or 32-bit APIC ID if the processor supports CPUID leaf 0BH) that is unique for
each logical processor following power-up or RESET (see Section 8.6.1). Each logical
processor on the system is allocated an initial APIC ID. BIOS may implement features
that tell the OS to support less than the total number of logical processors on the
system bus. Those logical processors that are not available to applications at runtime
are halted during the OS boot process. As a result, the number valid local APIC_IDs
that can be queried by affinitizing-current-thread-context (See Example 8-22) is
limited to the number of logical processors enabled at runtime by the OS boot
process.
8-52 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
Table 8-1 shows an example of the 8-bit APIC IDs that are initially reported for logical
processors in a system with four Intel Xeon MP processors that support Intel Hyper-
Threading Technology (a total of 8 logical processors, each physical package has two
processor cores and supports Intel Hyper-Threading Technology). Of the two logical
processors within a Intel Xeon processor MP, logical processor 0 is designated the
primary logical processor and logical processor 1 as the secondary logical processor.

Figure 8-7. Topological Relationships between Hierarchical IDs in a Hypothetical MP
Platform

Table 8-1. Initial APIC IDs for the Logical Processors in a System that has Four Intel
Xeon MP Processors Supporting Intel Hyper-Threading Technology1

Initial APIC ID Package ID Core ID SMT ID

0H 0H 0H 0H

1H 0H 0H 1H

2H 1H 0H 0H

3H 1H 0H 1H

4H 2H 0H 0H

5H 2H 0H 1H

6H 3H 0H 0H

7H 3H 0H 1H

NOTE:
1. Because information on the number of processor cores in a physical package was not available

in early single-core processors supporting Intel Hyper-Threading Technology, the core ID can be
treated as 0.

Package 0

Core 0

T0 T1

Core1

T0 T1

Package 1

Core 0

T0 T1

Core1

T0 T1 SMT_ID

Core ID

Package ID
Vol. 3A 8-53

MULTIPLE-PROCESSOR MANAGEMENT
Table 8-2 shows the initial APIC IDs for a hypothetical situation with a dual processor
system. Each physical package providing two processor cores, and each processor
core also supporting Intel Hyper-Threading Technology.

8.9.3.1 Hierarchical ID of Logical Processors with x2APIC ID
Table 8-3 shows an example of possible x2APIC ID assignments for a dual processor
system that support x2APIC. Each physical package providing four processor cores,
and each processor core also supporting Intel Hyper-Threading Technology. Note that
the x2APIC ID need not be contiguous in the system.

Table 8-2. Initial APIC IDs for the Logical Processors in a System that has Two
Physical Processors Supporting Dual-Core and Intel Hyper-Threading Technology

Initial APIC ID Package ID Core ID SMT ID

0H 0H 0H 0H

1H 0H 0H 1H

2H 0H 1H 0H

3H 0H 1H 1H

4H 1H 0H 0H

5H 1H 0H 1H

6H 1H 1H 0H

7H 1H 1H 1H

Table 8-3. Example of Possible x2APIC ID Assignment in a System that has Two
Physical Processors Supporting x2APIC and Intel Hyper-Threading Technology

x2APIC ID Package ID Core ID SMT ID

0H 0H 0H 0H

1H 0H 0H 1H

2H 0H 1H 0H

3H 0H 1H 1H

4H 0H 2H 0H

5H 0H 2H 1H

6H 0H 3H 0H

7H 0H 3H 1H

10H 1H 0H 0H

11H 1H 0H 1H

12H 1H 1H 0H
8-54 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
8.9.4 Algorithm for Three-Level Mappings of APIC_ID
Software can gather the initial APIC_IDs for each logical processor supported by the
operating system at runtime8 and extract identifiers corresponding to the three
levels of sharing topology (package, core, and SMT). The three-level algorithms
below focus on a non-clustered MP system for simplicity. They do not assume APIC
IDs are contiguous or that all logical processors on the platform are enabled.

Intel supports multi-threading systems where all physical processors report identical
values in CPUID leaf 0BH, CPUID.1:EBX[23:16]), CPUID.49:EAX[31:26], and
CPUID.410:EAX[25:14]. The algorithms below assume the target system has
symmetry across physical package boundaries with respect to the number of logical
processors per package, number of cores per package, and cache topology within a
package.

The extraction algorithm (for three-level mappings from an APIC ID) uses the
general procedure depicted in Example 8-18, and is supplemented by more detailed
descriptions on the derivation of topology enumeration parameters for extraction bit
masks:

1. Detect hardware multi-threading support in the processor.

2. Derive a set of bit masks that can extract the sub ID of each hierarchical level of
the topology. The algorithm to derive extraction bit masks for
SMT_ID/CORE_ID/PACKAGE_ID differs based on APIC ID is 32-bit (see step 3
below) or 8-bit (see step 4 below):

13H 1H 1H 1H

14H 1H 2H 0H

15H 1H 2H 1H

16H 1H 3H 0H

17H 1H 3H 1H

8. As noted in Section 8.6 and Section 8.9.3, the number of logical processors supported by the OS
at runtime may be less than the total number logical processors available in the platform hard-
ware.

9. Maximum number of addressable ID for processor cores in a physical processor is obtained by
executing CPUID with EAX=4 and a valid ECX index, The ECX index start at 0.

10. Maximum number addressable ID for processor cores sharing the target cache level is obtained
by executing CPUID with EAX = 4 and the ECX index corresponding to the target cache level.

Table 8-3. Example of Possible x2APIC ID Assignment in a System that has Two
Physical Processors Supporting x2APIC and Intel Hyper-Threading Technology

x2APIC ID Package ID Core ID SMT ID
Vol. 3A 8-55

MULTIPLE-PROCESSOR MANAGEMENT
3. If the processor supports CPUID leaf 0BH, each APIC ID contains a 32-bit value,
the topology enumeration parameters needed to derive three-level extraction bit
masks are:

a. Query the right-shift value for the SMT level of the topology using CPUID leaf
0BH with ECX =0H as input. The number of bits to shift-right on x2APIC ID
(EAX[4:0]) can distinguish different higher-level entities above SMT (e.g.
processor cores) in the same physical package. This is also the width of the
bit mask to extract the SMT_ID.

b. Query CPUID leaf 0BH for the amount of bit shift to distinguish next higher-
level entities (e.g. physical processor packages) in the system. This describes
an explicit three-level-topology situation for commonly available processors.
Consult Example 8-17 to adapt to situations beyond three-level topology of a
physical processor. The width of the extraction bit mask can be used to derive
the cumulative extraction bitmask to extract the sub IDs of logical processors
(including different processor cores) in the same physical package. The
extraction bit mask to distinguish merely different processor cores can be
derived by xor’ing the SMT extraction bit mask from the cumulative
extraction bit mask.

c. Query the 32-bit x2APIC ID for the logical processor where the current thread
is executing.

d. Derive the extraction bit masks corresponding to SMT_ID, CORE_ID, and
PACKAGE_ID, starting from SMT_ID.

e. Apply each extraction bit mask to the 32-bit x2APIC ID to extract sub-field
IDs.

4. If the processor does not support CPUID leaf 0BH, each initial APIC ID contains
an 8-bit value, the topology enumeration parameters needed to derive extraction
bit masks are:

a. Query the size of address space for sub IDs that can accommodate logical
processors in a physical processor package. This size parameters
(CPUID.1:EBX[23:16]) can be used to derive the width of an extraction
bitmask to enumerate the sub IDs of different logical processors in the same
physical package.

b. Query the size of address space for sub IDs that can accommodate processor
cores in a physical processor package. This size parameters can be used to
derive the width of an extraction bitmask to enumerate the sub IDs of
processor cores in the same physical package.

c. Query the 8-bit initial APIC ID for the logical processor where the current
thread is executing.

d. Derive the extraction bit masks using respective address sizes corresponding
to SMT_ID, CORE_ID, and PACKAGE_ID, starting from SMT_ID.

e. Apply each extraction bit mask to the 8-bit initial APIC ID to extract sub-field
IDs.
8-56 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
Example 8-18. Support Routines for Detecting Hardware Multi-Threading and Identifying the
Relationships Between Package, Core and Logical Processors

1. Detect support for Hardware Multi-Threading Support in a processor.

// Returns a non-zero value if CPUID reports the presence of hardware multi-threading
// support in the physical package where the current logical processor is located.
// This does not guarantee BIOS or OS will enable all logical processors in the physical
// package and make them available to applications.
// Returns zero if hardware multi-threading is not present.

#define HWMT_BIT 0x10000000

unsigned int HWMTSupported(void)
{

 // ensure cpuid instruction is supported
execute cpuid with eax = 0 to get vendor string
execute cpuid with eax = 1 to get feature flag and signature

// Check to see if this a Genuine Intel Processor

if (vendor string EQ GenuineIntel) {
return (feature_flag_edx & HWMT_BIT); // bit 28

}
return 0;

}

Example 8-19. Support Routines for Identifying Package, Core and Logical Processors from
32-bit x2APIC ID

a. Derive the extraction bitmask for logical processors in a processor core and
associated mask offset for different cores.

int DeriveSMT_Mask_Offsets (void)
{

if (!HWMTSupported()) return -1;
execute cpuid with eax = 11, ECX = 0;
If (returned level type encoding in ECX[15:8] does not match SMT) return -1;
Mask_SMT_shift = EAX[4:0]; // # bits shift right of APIC ID to distinguish different cores
SMT_MASK = ~((-1) << Mask_SMT_shift); // shift left to derive extraction bitmask for SMT_ID
return 0;

}

b. Derive the extraction bitmask for processor cores in a physical processor package
and associated mask offset for different packages.
Vol. 3A 8-57

MULTIPLE-PROCESSOR MANAGEMENT
int DeriveCore_Mask_Offsets (void)
{

if (!HWMTSupported()) return -1;
execute cpuid with eax = 11, ECX = 0;

while(ECX[15:8]) { // level type encoding is valid
If (returned level type encoding in ECX[15:8] matches CORE) {

Mask_Core_shift = EAX[4:0]; // needed to distinguish different physical packages
COREPlusSMT_MASK = ~((-1) << Mask_Core_shift);
CORE_MASK = COREPlusSMT_MASK ^ SMT_MASK;
PACKAGE_MASK = (-1) << Mask_Core_shift;
return 0

}
ECX ++;
execute cpuid with eax = 11;

}
return -1;

}

c. Query the x2APIC ID of a logical processor.

APIC_IDs for each logical processor.

unsigned char Getx2APIC_ID (void)
{

unsigned reg_edx = 0;
execute cpuid with eax = 11, ECX = 0
store returned value of edx
return (unsigned) (reg_edx) ;

}

Example 8-20. Support Routines for Identifying Package, Core and Logical Processors from 8-
bit Initial APIC ID

a. Find the size of address space for logical processors in a physical processor
package.

#define NUM_LOGICAL_BITS 0x00FF0000
// Use the mask above and CPUID.1.EBX[23:16] to obtain the max number of addressable IDs
// for logical processors in a physical package,

//Returns the size of address space of logical processors in a physical processor package;
// Software should not assume the value to be a power of 2.
8-58 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
unsigned char MaxLPIDsPerPackage(void)
{

if (!HWMTSupported()) return 1;
execute cpuid with eax = 1

store returned value of ebx
return (unsigned char) ((reg_ebx & NUM_LOGICAL_BITS) >> 16);

}

b. Find the size of address space for processor cores in a physical processor package.

// Returns the max number of addressable IDs for processor cores in a physical processor package;
// Software should not assume cpuid reports this value to be a power of 2.

unsigned MaxCoreIDsPerPackage(void)
{

if (!HWMTSupported()) return (unsigned char) 1;
if cpuid supports leaf number 4
{ // we can retrieve multi-core topology info using leaf 4

execute cpuid with eax = 4, ecx = 0
store returned value of eax
return (unsigned) ((reg_eax >> 26) +1);

}
else // must be a single-core processor
return 1;

}

c. Query the initial APIC ID of a logical processor.

#define INITIAL_APIC_ID_BITS 0xFF000000 // CPUID.1.EBX[31:24] initial APIC ID

// Returns the 8-bit unique initial APIC ID for the processor running the code.
// Software can use OS services to affinitize the current thread to each logical processor
// available under the OS to gather the initial APIC_IDs for each logical processor.

unsigned GetInitAPIC_ID (void)
{

unsigned int reg_ebx = 0;
execute cpuid with eax = 1
store returned value of ebx
return (unsigned) ((reg_ebx & INITIAL_APIC_ID_BITS) >> 24;

}

d. Find the width of an extraction bitmask from the maximum count of the bit-field
(address size).
Vol. 3A 8-59

MULTIPLE-PROCESSOR MANAGEMENT
// Returns the mask bit width of a bit field from the maximum count that bit field can represent.
// This algorithm does not assume ‘address size’ to have a value equal to power of 2.
// Address size for SMT_ID can be calculated from MaxLPIDsPerPackage()/MaxCoreIDsPerPackage()
// Then use the routine below to derive the corresponding width of SMT extraction bitmask
// Address size for CORE_ID is MaxCoreIDsPerPackage(),
// Derive the bitwidth for CORE extraction mask similarly

unsigned FindMaskWidth(Unsigned Max_Count)
{unsigned int mask_width, cnt = Max_Count;

__asm {
mov eax, cnt
mov ecx, 0
mov mask_width, ecx
dec eax
bsr cx, ax
jz next
inc cx
mov mask_width, ecx
next:
mov eax, mask_width

}
return mask_width;

}

e. Extract a sub ID from an 8-bit full ID, using address size of the sub ID and shift
count.

// The routine below can extract SMT_ID, CORE_ID, and PACKAGE_ID respectively from the init
APIC_ID
// To extract SMT_ID, MaxSubIDvalue is set to the address size of SMT_ID, Shift_Count = 0
// To extract CORE_ID, MaxSubIDvalue is the address size of CORE_ID, Shift_Count is width of SMT
extraction bitmask.
// Returns the value of the sub ID, this is not a zero-based value

Unsigned char GetSubID(unsigned char Full_ID, unsigned char MaxSubIDvalue, unsigned char
Shift_Count)
{

MaskWidth = FindMaskWidth(MaxSubIDValue);
MaskBits = ((uchar) (0xff << Shift_Count)) ^ ((uchar) (0xff << Shift_Count + MaskWidth)) ;
SubID = Full_ID & MaskBits;
Return SubID;

}

8-60 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
Software must not assume local APIC_ID values in an MP system are consecutive.
Non-consecutive local APIC_IDs may be the result of hardware configurations or
debug features implemented in the BIOS or OS.

An identifier for each hierarchical level can be extracted from an 8-bit APIC_ID using
the support routines illustrated in Example 8-20. The appropriate bit mask and shift
value to construct the appropriate bit mask for each level must be determined
dynamically at runtime.

8.9.5 Identifying Topological Relationships in a MP System
To detect the number of physical packages, processor cores, or other topological
relationships in a MP system, the following procedures are recommended:
• Extract the three-level identifiers from the APIC ID of each logical processor

enabled by system software. The sequence is as follows (See the pseudo code
shown in Example 8-21 and support routines shown in Example 8-18):

• The extraction start from the right-most bit field, corresponding to
SMT_ID, the innermost hierarchy in a three-level topology (See Figure
8-7). For the right-most bit field, the shift value of the working mask is
zero. The width of the bit field is determined dynamically using the
maximum number of logical processor per core, which can be derived
from information provided from CPUID.

• To extract the next bit-field, the shift value of the working mask is
determined from the width of the bit mask of the previous step. The width
of the bit field is determined dynamically using the maximum number of
cores per package.

• To extract the remaining bit-field, the shift value of the working mask is
determined from the maximum number of logical processor per package.
So the remaining bits in the APIC ID (excluding those bits already
extracted in the two previous steps) are extracted as the third identifier.
This applies to a non-clustered MP system, or if there is no need to
distinguish between PACKAGE_ID and CLUSTER_ID.

If there is need to distinguish between PACKAGE_ID and CLUSTER_ID,
PACKAGE_ID can be extracted using an algorithm similar to the
extraction of CORE_ID, assuming the number of physical packages in
each node of a clustered system is symmetric.

• Assemble the three-level identifiers of SMT_ID, CORE_ID, PACKAGE_IDs into
arrays for each enabled logical processor. This is shown in Example 8-22a.

• To detect the number of physical packages: use PACKAGE_ID to identify those
logical processors that reside in the same physical package. This is shown in
Example 8-22b. This example also depicts a technique to construct a mask to
represent the logical processors that reside in the same package.

• To detect the number of processor cores: use CORE_ID to identify those logical
processors that reside in the same core. This is shown in Example 8-22. This
Vol. 3A 8-61

MULTIPLE-PROCESSOR MANAGEMENT
example also depicts a technique to construct a mask to represent the logical
processors that reside in the same core.

In Example 8-21, the numerical ID value can be obtained from the value extracted
with the mask by shifting it right by shift count. Algorithms below do not shift the
value. The assumption is that the SubID values can be compared for equivalence
without the need to shift.

Example 8-21. Pseudo Code Depicting Three-level Extraction Algorithm

For Each local_APIC_ID{
// Calculate SMT_MASK, the bit mask pattern to extract SMT_ID,
// SMT_MASK is determined using topology enumertaion parameters
// from CPUID leaf 0BH (Example 8-19);
// otherwise, SMT_MASK is determined using CPUID leaf 01H and leaf 04H (Example 8-20).
// This algorithm assumes there is symmetry across core boundary, i.e. each core within a
// package has the same number of logical processors
// SMT_ID always starts from bit 0, corresponding to the right-most bit-field
SMT_ID = APIC_ID & SMT_MASK;

// Extract CORE_ID:
// CORE_MASK is determined in Example 8-19 or Example 8-20
CORE_ID = (APIC_ID & CORE_MASK) ;

// Extract PACKAGE_ID:
// Assume single cluster.
// Shift out the mask width for maximum logical processors per package
// PACKAGE_MASK is determined in Example 8-19 or Example 8-20
PACKAGE_ID = (APIC_ID & PACKAGE_MASK) ;

}

Example 8-22. Compute the Number of Packages, Cores, and Processor Relationships in a MP
System

a) Assemble lists of PACKAGE_ID, CORE_ID, and SMT_ID of each enabled logical processors

//The BIOS and/or OS may limit the number of logical processors available to applications
// after system boot. The below algorithm will compute topology for the processors visible
// to the thread that is computing it.

// Extract the 3-levels of IDs on every processor
// SystemAffinity is a bitmask of all the processors started by the OS. Use OS specific APIs to
// obtain it.
// ThreadAffinityMask is used to affinitize the topology enumeration thread to each processor
8-62 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
using OS specific APIs.
// Allocate per processor arrays to store the Package_ID, Core_ID and SMT_ID for every started
// processor.

ThreadAffinityMask = 1;
 ProcessorNum = 0;

while (ThreadAffinityMask != 0 && ThreadAffinityMask <= SystemAffinity) {
// Check to make sure we can utilize this processor first.
if (ThreadAffinityMask & SystemAffinity){

Set thread to run on the processor specified in ThreadAffinityMask
Wait if necessary and ensure thread is running on specified processor

APIC_ID = GetAPIC_ID(); // 32 bit ID in Example 8-19 or 8-bit ID in Example
8-20

Extract the Package_ID, Core_ID and SMT_ID as explained in three level extraction
algorithm of Example 8-21

PackageID[ProcessorNUM] = PACKAGE_ID;
CoreID[ProcessorNum] = CORE_ID;
SmtID[ProcessorNum] = SMT_ID;
ProcessorNum++;

}
ThreadAffinityMask <<= 1;

}
NumStartedLPs = ProcessorNum;

b) Using the list of PACKAGE_ID to count the number of physical packages in a MP system and
construct, for each package, a multi-bit mask corresponding to those logical processors residing in
the same package.

// Compute the number of packages by counting the number of processors
// with unique PACKAGE_IDs in the PackageID array.
// Compute the mask of processors in each package.

PackageIDBucket is an array of unique PACKAGE_ID values. Allocate an array of
NumStartedLPs count of entries in this array.
PackageProcessorMask is a corresponding array of the bit mask of processors belonging to
the same package, these are processors with the same PACKAGE_ID
The algorithm below assumes there is symmetry across package boundary if more than
one socket is populated in an MP system.
// Bucket Package IDs and compute processor mask for every package.

PackageNum = 1;
PackageIDBucket[0] = PackageID[0];
ProcessorMask = 1;
Vol. 3A 8-63

MULTIPLE-PROCESSOR MANAGEMENT
PackageProcessorMask[0] = ProcessorMask;
For (ProcessorNum = 1; ProcessorNum < NumStartedLPs; ProcessorNum++) {

ProcessorMask << = 1;
For (i=0; i < PackageNum; i++) {

// we may be comparing bit-fields of logical processors residing in different
// packages, the code below assume package symmetry
If (PackageID[ProcessorNum] = PackageIDBucket[i]) {

PackageProcessorMask[i] |= ProcessorMask;
Break; // found in existing bucket, skip to next iteration

}
}
if (i =PackageNum) {

//PACKAGE_ID did not match any bucket, start new bucket
PackageIDBucket[i] = PackageID[ProcessorNum];
PackageProcessorMask[i] = ProcessorMask;
PackageNum++;

}
}
// PackageNum has the number of Packages started in OS
// PackageProcessorMask[] array has the processor set of each package

c) Using the list of CORE_ID to count the number of cores in a MP system and construct, for each
core, a multi-bit mask corresponding to those logical processors residing in the same core.

Processors in the same core can be determined by bucketing the processors with the same
PACKAGE_ID and CORE_ID. Note that code below can BIT OR the values of PACKGE and CORE ID
because they have not been shifted right.
The algorithm below assumes there is symmetry across package boundary if more than one socket
is populated in an MP system.

//Bucketing PACKAGE and CORE IDs and computing processor mask for every core
CoreNum = 1;
CoreIDBucket[0] = PackageID[0] | CoreID[0];
ProcessorMask = 1;
CoreProcessorMask[0] = ProcessorMask;
For (ProcessorNum = 1; ProcessorNum < NumStartedLPs; ProcessorNum++) {

ProcessorMask << = 1;
For (i=0; i < CoreNum; i++) {

// we may be comparing bit-fields of logical processors residing in different
// packages, the code below assume package symmetry
If ((PackageID[ProcessorNum] | CoreID[ProcessorNum]) = CoreIDBucket[i]) {

CoreProcessorMask[i] |= ProcessorMask;
Break; // found in existing bucket, skip to next iteration

}

8-64 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
}
if (i = CoreNum) {

//Did not match any bucket, start new bucket
CoreIDBucket[i] = PackageID[ProcessorNum] | CoreID[ProcessorNum];
CoreProcessorMask[i] = ProcessorMask;
CoreNum++;

}
}
// CoreNum has the number of cores started in the OS
// CoreProcessorMask[] array has the processor set of each core

Other processor relationships such as processor mask of sibling cores can be
computed from set operations of the PackageProcessorMask[] and CoreProcessor-
Mask[].

The algorithm shown above can be adapted to work with earlier generations of
single-core IA-32 processors that support Intel Hyper-Threading Technology and in
situations that the deterministic cache parameter leaf is not supported (provided
CPUID supports initial APIC ID). A reference code example is available (see Intel® 64
Architecture Processor Topology Enumeration).

8.10 MANAGEMENT OF IDLE AND BLOCKED CONDITIONS
When a logical processor in an MP system (including multi-core processor or proces-
sors supporting Intel Hyper-Threading Technology) is idle (no work to do) or blocked
(on a lock or semaphore), additional management of the core execution engine
resource can be accomplished by using the HLT (halt), PAUSE, or the
MONITOR/MWAIT instructions.

8.10.1 HLT Instruction
The HLT instruction stops the execution of the logical processor on which it is
executed and places it in a halted state until further notice (see the description of the
HLT instruction in Chapter 3 of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2A). When a logical processor is halted, active logical
processors continue to have full access to the shared resources within the physical
package. Here shared resources that were being used by the halted logical processor
become available to active logical processors, allowing them to execute at greater
efficiency. When the halted logical processor resumes execution, shared resources
are again shared among all active logical processors. (See Section 8.10.6.3, “Halt
Idle Logical Processors,” for more information about using the HLT instruction with
processors supporting Intel Hyper-Threading Technology.)
Vol. 3A 8-65

MULTIPLE-PROCESSOR MANAGEMENT
8.10.2 PAUSE Instruction
The PAUSE instruction can improves the performance of processors supporting Intel
Hyper-Threading Technology when executing “spin-wait loops” and other routines
where one thread is accessing a shared lock or semaphore in a tight polling loop.
When executing a spin-wait loop, the processor can suffer a severe performance
penalty when exiting the loop because it detects a possible memory order violation
and flushes the core processor’s pipeline. The PAUSE instruction provides a hint to
the processor that the code sequence is a spin-wait loop. The processor uses this hint
to avoid the memory order violation and prevent the pipeline flush. In addition, the
PAUSE instruction de-pipelines the spin-wait loop to prevent it from consuming
execution resources excessively and consume power needlessly. (See Section
8.10.6.1, “Use the PAUSE Instruction in Spin-Wait Loops,” for more information
about using the PAUSE instruction with IA-32 processors supporting Intel Hyper-
Threading Technology.)

8.10.3 Detecting Support MONITOR/MWAIT Instruction
Streaming SIMD Extensions 3 introduced two instructions (MONITOR and MWAIT) to
help multithreaded software improve thread synchronization. In the initial imple-
mentation, MONITOR and MWAIT are available to software at ring 0. The instructions
are conditionally available at levels greater than 0. Use the following steps to detect
the availability of MONITOR and MWAIT:
• Use CPUID to query the MONITOR bit (CPUID.1.ECX[3] = 1).
• If CPUID indicates support, execute MONITOR inside a TRY/EXCEPT exception

handler and trap for an exception. If an exception occurs, MONITOR and MWAIT
are not supported at a privilege level greater than 0. See Example 8-23.

Example 8-23. Verifying MONITOR/MWAIT Support

boolean MONITOR_MWAIT_works = TRUE;
try {

_asm {
xor ecx, ecx
xor edx, edx
mov eax, MemArea
monitor
}

 // Use monitor
} except (UNWIND) {
 // if we get here, MONITOR/MWAIT is not supported

MONITOR_MWAIT_works = FALSE;
}

8-66 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
8.10.4 MONITOR/MWAIT Instruction
Operating systems usually implement idle loops to handle thread synchronization. In
a typical idle-loop scenario, there could be several “busy loops” and they would use a
set of memory locations. An impacted processor waits in a loop and poll a memory
location to determine if there is available work to execute. The posting of work is
typically a write to memory (the work-queue of the waiting processor). The time for
initiating a work request and getting it scheduled is on the order of a few bus cycles.

From a resource sharing perspective (logical processors sharing execution
resources), use of the HLT instruction in an OS idle loop is desirable but has implica-
tions. Executing the HLT instruction on a idle logical processor puts the targeted
processor in a non-execution state. This requires another processor (when posting
work for the halted logical processor) to wake up the halted processor using an inter-
processor interrupt. The posting and servicing of such an interrupt introduces a delay
in the servicing of new work requests.

In a shared memory configuration, exits from busy loops usually occur because of a
state change applicable to a specific memory location; such a change tends to be
triggered by writes to the memory location by another agent (typically a processor).

MONITOR/MWAIT complement the use of HLT and PAUSE to allow for efficient parti-
tioning and un-partitioning of shared resources among logical processors sharing
physical resources. MONITOR sets up an effective address range that is monitored for
write-to-memory activities; MWAIT places the processor in an optimized state (this
may vary between different implementations) until a write to the monitored address
range occurs.

In the initial implementation of MONITOR and MWAIT, they are available at CPL = 0
only.

Both instructions rely on the state of the processor’s monitor hardware. The monitor
hardware can be either armed (by executing the MONITOR instruction) or triggered
(due to a variety of events, including a store to the monitored memory region). If
upon execution of MWAIT, monitor hardware is in a triggered state: MWAIT behaves
as a NOP and execution continues at the next instruction in the execution stream.
The state of monitor hardware is not architecturally visible except through the
behavior of MWAIT.

Multiple events other than a write to the triggering address range can cause a
processor that executed MWAIT to wake up. These include events that would lead to
voluntary or involuntary context switches, such as:
• External interrupts, including NMI, SMI, INIT, BINIT, MCERR, A20M#
• Faults, Aborts (including Machine Check)
• Architectural TLB invalidations including writes to CR0, CR3, CR4 and certain MSR

writes; execution of LMSW (occurring prior to issuing MWAIT but after setting the
monitor)

• Voluntary transitions due to fast system call and far calls (occurring prior to
issuing MWAIT but after setting the monitor)
Vol. 3A 8-67

MULTIPLE-PROCESSOR MANAGEMENT
Power management related events (such as Thermal Monitor 2 or chipset driven
STPCLK# assertion) will not cause the monitor event pending flag to be cleared.
Faults will not cause the monitor event pending flag to be cleared.

Software should not allow for voluntary context switches in between
MONITOR/MWAIT in the instruction flow. Note that execution of MWAIT does not re-
arm the monitor hardware. This means that MONITOR/MWAIT need to be executed in
a loop. Also note that exits from the MWAIT state could be due to a condition other
than a write to the triggering address; software should explicitly check the triggering
data location to determine if the write occurred. Software should also check the value
of the triggering address following the execution of the monitor instruction (and prior
to the execution of the MWAIT instruction). This check is to identify any writes to the
triggering address that occurred during the course of MONITOR execution.

The address range provided to the MONITOR instruction must be of write-back
caching type. Only write-back memory type stores to the monitored address range
will trigger the monitor hardware. If the address range is not in memory of write-
back type, the address monitor hardware may not be set up properly or the monitor
hardware may not be armed. Software is also responsible for ensuring that
• Writes that are not intended to cause the exit of a busy loop do not write to a

location within the address region being monitored by the monitor hardware,
• Writes intended to cause the exit of a busy loop are written to locations within the

monitored address region.

Not doing so will lead to more false wakeups (an exit from the MWAIT state not due
to a write to the intended data location). These have negative performance implica-
tions. It might be necessary for software to use padding to prevent false wakeups.
CPUID provides a mechanism for determining the size data locations for monitoring
as well as a mechanism for determining the size of a the pad.

8.10.5 Monitor/Mwait Address Range Determination
To use the MONITOR/MWAIT instructions, software should know the length of the
region monitored by the MONITOR/MWAIT instructions and the size of the coherence
line size for cache-snoop traffic in a multiprocessor system. This information can be
queried using the CPUID monitor leaf function (EAX = 05H). You will need the
smallest and largest monitor line size:
• To avoid missed wake-ups: make sure that the data structure used to monitor

writes fits within the smallest monitor line-size. Otherwise, the processor may
not wake up after a write intended to trigger an exit from MWAIT.

• To avoid false wake-ups; use the largest monitor line size to pad the data
structure used to monitor writes. Software must make sure that beyond the data
structure, no unrelated data variable exists in the triggering area for MWAIT. A
pad may be needed to avoid this situation.

These above two values bear no relationship to cache line size in the system and soft-
ware should not make any assumptions to that effect. Within a single-cluster system,
8-68 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
the two parameters should default to be the same (the size of the monitor triggering
area is the same as the system coherence line size).

Based on the monitor line sizes returned by the CPUID, the OS should dynamically
allocate structures with appropriate padding. If static data structures must be used
by an OS, attempt to adapt the data structure and use a dynamically allocated data
buffer for thread synchronization. When the latter technique is not possible, consider
not using MONITOR/MWAIT when using static data structures.

To set up the data structure correctly for MONITOR/MWAIT on multi-clustered
systems: interaction between processors, chipsets, and the BIOS is required (system
coherence line size may depend on the chipset used in the system; the size could be
different from the processor’s monitor triggering area). The BIOS is responsible to
set the correct value for system coherence line size using the
IA32_MONITOR_FILTER_LINE_SIZE MSR. Depending on the relative magnitude of
the size of the monitor triggering area versus the value written into the
IA32_MONITOR_FILTER_LINE_SIZE MSR, the smaller of the parameters will be
reported as the Smallest Monitor Line Size. The larger of the parameters will be
reported as the Largest Monitor Line Size.

8.10.6 Required Operating System Support
This section describes changes that must be made to an operating system to run on
processors supporting Intel Hyper-Threading Technology. It also describes optimiza-
tions that can help an operating system make more efficient use of the logical
processors sharing execution resources. The required changes and suggested opti-
mizations are representative of the types of modifications that appear in Windows*
XP and Linux* kernel 2.4.0 operating systems for Intel processors supporting Intel
Hyper-Threading Technology. Additional optimizations for processors supporting
Intel Hyper-Threading Technology are described in the Intel® 64 and IA-32 Architec-
tures Optimization Reference Manual.

8.10.6.1 Use the PAUSE Instruction in Spin-Wait Loops
Intel recommends that a PAUSE instruction be placed in all spin-wait loops that run
on Intel processors supporting Intel Hyper-Threading Technology and multi-core
processors.

Software routines that use spin-wait loops include multiprocessor synchronization
primitives (spin-locks, semaphores, and mutex variables) and idle loops. Such
routines keep the processor core busy executing a load-compare-branch loop while a
thread waits for a resource to become available. Including a PAUSE instruction in such
a loop greatly improves efficiency (see Section 8.10.2, “PAUSE Instruction”). The
following routine gives an example of a spin-wait loop that uses a PAUSE instruction:

Spin_Lock:
CMP lockvar, 0 ;Check if lock is free
Vol. 3A 8-69

MULTIPLE-PROCESSOR MANAGEMENT
JE Get_Lock
PAUSE ;Short delay
JMP Spin_Lock

Get_Lock:
MOV EAX, 1
XCHG EAX, lockvar ;Try to get lock
CMP EAX, 0 ;Test if successful
JNE Spin_Lock

Critical_Section:
<critical section code>
MOV lockvar, 0
...

Continue:

The spin-wait loop above uses a “test, test-and-set” technique for determining the
availability of the synchronization variable. This technique is recommended when
writing spin-wait loops.

In IA-32 processor generations earlier than the Pentium 4 processor, the PAUSE
instruction is treated as a NOP instruction.

8.10.6.2 Potential Usage of MONITOR/MWAIT in C0 Idle Loops
An operating system may implement different handlers for different idle states. A
typical OS idle loop on an ACPI-compatible OS is shown in Example 8-24:

Example 8-24. A Typical OS Idle Loop

// WorkQueue is a memory location indicating there is a thread
// ready to run. A non-zero value for WorkQueue is assumed to
// indicate the presence of work to be scheduled on the processor.
// The idle loop is entered with interrupts disabled.

WHILE (1) {
IF (WorkQueue) THEN {

// Schedule work at WorkQueue.
}

ELSE {
// No work to do - wait in appropriate C-state handler depending
// on Idle time accumulated
IF (IdleTime >= IdleTimeThreshhold) THEN {

// Call appropriate C1, C2, C3 state handler, C1 handler
// shown below
}

}

8-70 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
}
// C1 handler uses a Halt instruction
VOID C1Handler()
{ STI

HLT
}

The MONITOR and MWAIT instructions may be considered for use in the C0 idle state loops, if
MONITOR and MWAIT are supported.

Example 8-25. An OS Idle Loop with MONITOR/MWAIT in the C0 Idle Loop

// WorkQueue is a memory location indicating there is a thread
// ready to run. A non-zero value for WorkQueue is assumed to
// indicate the presence of work to be scheduled on the processor.
// The following example assumes that the necessary padding has been
// added surrounding WorkQueue to eliminate false wakeups
// The idle loop is entered with interrupts disabled.

WHILE (1) {
IF (WorkQueue) THEN {

// Schedule work at WorkQueue.
}

ELSE {
// No work to do - wait in appropriate C-state handler depending
// on Idle time accumulated.
IF (IdleTime >= IdleTimeThreshhold) THEN {

// Call appropriate C1, C2, C3 state handler, C1
// handler shown below
MONITOR WorkQueue // Setup of eax with WorkQueue

// LinearAddress,
// ECX, EDX = 0

IF (WorkQueue != 0) THEN {
MWAIT
}

}
}

}
// C1 handler uses a Halt instruction.
VOID C1Handler()
{ STI

HLT
}

Vol. 3A 8-71

MULTIPLE-PROCESSOR MANAGEMENT
8.10.6.3 Halt Idle Logical Processors
If one of two logical processors is idle or in a spin-wait loop of long duration, explicitly
halt that processor by means of a HLT instruction.

In an MP system, operating systems can place idle processors into a loop that contin-
uously checks the run queue for runnable software tasks. Logical processors that
execute idle loops consume a significant amount of core’s execution resources that
might otherwise be used by the other logical processors in the physical package. For
this reason, halting idle logical processors optimizes the performance.11 If all logical
processors within a physical package are halted, the processor will enter a power-
saving state.

8.10.6.4 Potential Usage of MONITOR/MWAIT in C1 Idle Loops
An operating system may also consider replacing HLT with MONITOR/MWAIT in its C1
idle loop. An example is shown in Example 8-26:

Example 8-26. An OS Idle Loop with MONITOR/MWAIT in the C1 Idle Loop

// WorkQueue is a memory location indicating there is a thread
// ready to run. A non-zero value for WorkQueue is assumed to
// indicate the presence of work to be scheduled on the processor.
// The following example assumes that the necessary padding has been
// added surrounding WorkQueue to eliminate false wakeups
// The idle loop is entered with interrupts disabled.

WHILE (1) {
IF (WorkQueue) THEN {

// Schedule work at WorkQueue
}

ELSE {
// No work to do - wait in appropriate C-state handler depending
// on Idle time accumulated
IF (IdleTime >= IdleTimeThreshhold) THEN {
// Call appropriate C1, C2, C3 state handler, C1
// handler shown below
}

}
}

VOID C1Handler()

11. Excessive transitions into and out of the HALT state could also incur performance penalties.
Operating systems should evaluate the performance trade-offs for their operating system.
8-72 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
{ MONITOR WorkQueue // Setup of eax with WorkQueue LinearAddress,
// ECX, EDX = 0

IF (WorkQueue != 0) THEN {
STI
MWAIT // EAX, ECX = 0
}

}

8.10.6.5 Guidelines for Scheduling Threads on Logical Processors Sharing
Execution Resources

Because the logical processors, the order in which threads are dispatched to logical
processors for execution can affect the overall efficiency of a system. The following
guidelines are recommended for scheduling threads for execution.
• Dispatch threads to one logical processor per processor core before dispatching

threads to the other logical processor sharing execution resources in the same
processor core.

• In an MP system with two or more physical packages, distribute threads out over
all the physical processors, rather than concentrate them in one or two physical
processors.

• Use processor affinity to assign a thread to a specific processor core or package,
depending on the cache-sharing topology. The practice increases the chance that
the processor’s caches will contain some of the thread’s code and data when it is
dispatched for execution after being suspended.

8.10.6.6 Eliminate Execution-Based Timing Loops
Intel discourages the use of timing loops that depend on a processor’s execution
speed to measure time. There are several reasons:
• Timing loops cause problems when they are calibrated on a IA-32 processor

running at one clock speed and then executed on a processor running at another
clock speed.

• Routines for calibrating execution-based timing loops produce unpredictable
results when run on an IA-32 processor supporting Intel Hyper-Threading
Technology. This is due to the sharing of execution resources between the logical
processors within a physical package.

To avoid the problems described, timing loop routines must use a timing mechanism
for the loop that does not depend on the execution speed of the logical processors in
the system. The following sources are generally available:
• A high resolution system timer (for example, an Intel 8254).
• A high resolution timer within the processor (such as, the local APIC timer or the

time-stamp counter).
Vol. 3A 8-73

MULTIPLE-PROCESSOR MANAGEMENT
For additional information, see the Intel® 64 and IA-32 Architectures Optimization
Reference Manual.

8.10.6.7 Place Locks and Semaphores in Aligned, 128-Byte Blocks of
Memory

When software uses locks or semaphores to synchronize processes, threads, or other
code sections; Intel recommends that only one lock or semaphore be present within
a cache line (or 128 byte sector, if 128-byte sector is supported). In processors based
on Intel NetBurst microarchitecture (which support 128-byte sector consisting of two
cache lines), following this recommendation means that each lock or semaphore
should be contained in a 128-byte block of memory that begins on a 128-byte
boundary. The practice minimizes the bus traffic required to service locks.

8.11 MP INITIALIZATION FOR P6 FAMILY PROCESSORS
This section describes the MP initialization process for systems that use multiple P6
family processors. This process uses the MP initialization protocol that was intro-
duced with the Pentium Pro processor (see Section 8.4, “Multiple-Processor (MP)
Initialization”). For P6 family processors, this protocol is typically used to boot 2 or 4
processors that reside on single system bus; however, it can support from 2 to 15
processors in a multi-clustered system when the APIC busses are tied together.
Larger systems are not supported.

8.11.1 Overview of the MP Initialization Process For P6 Family
Processors

During the execution of the MP initialization protocol, one processor is selected as the
bootstrap processor (BSP) and the remaining processors are designated as applica-
tion processors (APs), see Section 8.4.1, “BSP and AP Processors.” Thereafter, the
BSP manages the initialization of itself and the APs. This initialization includes
executing BIOS initialization code and operating-system initialization code.

The MP protocol imposes the following requirements and restrictions on the system:
• An APIC clock (APICLK) must be provided.
• The MP protocol will be executed only after a power-up or RESET. If the MP

protocol has been completed and a BSP has been chosen, subsequent INITs
(either to a specific processor or system wide) do not cause the MP protocol to be
repeated. Instead, each processor examines its BSP flag (in the APIC_BASE MSR)
to determine whether it should execute the BIOS boot-strap code (if it is the BSP)
or enter a wait-for-SIPI state (if it is an AP).

• All devices in the system that are capable of delivering interrupts to the
processors must be inhibited from doing so for the duration of the MP initial-
8-74 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
ization protocol. The time during which interrupts must be inhibited includes the
window between when the BSP issues an INIT-SIPI-SIPI sequence to an AP and
when the AP responds to the last SIPI in the sequence.

The following special-purpose interprocessor interrupts (IPIs) are used during the
boot phase of the MP initialization protocol. These IPIs are broadcast on the APIC
bus.
• Boot IPI (BIPI)—Initiates the arbitration mechanism that selects a BSP from the

group of processors on the system bus and designates the remainder of the
processors as APs. Each processor on the system bus broadcasts a BIPI to all the
processors following a power-up or RESET.

• Final Boot IPI (FIPI)—Initiates the BIOS initialization procedure for the BSP. This
IPI is broadcast to all the processors on the system bus, but only the BSP
responds to it. The BSP responds by beginning execution of the BIOS initialization
code at the reset vector.

• Startup IPI (SIPI)—Initiates the initialization procedure for an AP. The SIPI
message contains a vector to the AP initialization code in the BIOS.

Table 8-4 describes the various fields of the boot phase IPIs.

For BIPI messages, the lower 4 bits of the vector field contain the APIC ID of the
processor issuing the message and the upper 4 bits contain the “generation ID” of
the message. All P6 family processor will have a generation ID of 4H. BIPIs will there-
fore use vector values ranging from 40H to 4EH (4FH can not be used because FH is
not a valid APIC ID).

8.11.2 MP Initialization Protocol Algorithm
Following a power-up or RESET of a system, the P6 family processors in the system
execute the MP initialization protocol algorithm to initialize each of the processors on
the system bus. In the course of executing this algorithm, the following boot-up and
initialization operations are carried out:

Table 8-4. Boot Phase IPI Message Format

Type
Destination
Field

Destination
Shorthand

Trigger
Mode Level

Destination
Mode

Delivery
Mode

Vector
(Hex)

BIPI Not used All including
self

Edge Deassert Don’t Care Fixed
(000)

40 to 4E*

FIPI Not used All including
self

Edge Deassert Don’t Care Fixed
(000)

10

SIPI Used All excluding
self

Edge Assert Physical StartUp
(110)

00 to FF

NOTE:
* For all P6 family processors.
Vol. 3A 8-75

MULTIPLE-PROCESSOR MANAGEMENT
1. Each processor on the system bus is assigned a unique APIC ID, based on system
topology (see Section 8.4.5, “Identifying Logical Processors in an MP System”).
This ID is written into the local APIC ID register for each processor.

2. Each processor executes its internal BIST simultaneously with the other
processors on the system bus. Upon completion of the BIST (at T0), each
processor broadcasts a BIPI to “all including self” (see Figure 8-1).

3. APIC arbitration hardware causes all the APICs to respond to the BIPIs one at a
time (at T1, T2, T3, and T4).

4. When the first BIPI is received (at time T1), each APIC compares the four least
significant bits of the BIPI’s vector field with its APIC ID. If the vector and APIC ID
match, the processor selects itself as the BSP by setting the BSP flag in its
IA32_APIC_BASE MSR. If the vector and APIC ID do not match, the processor
selects itself as an AP by entering the “wait for SIPI” state. (Note that in
Figure 8-1, the BIPI from processor 1 is the first BIPI to be handled, so processor
1 becomes the BSP.)

5. The newly established BSP broadcasts an FIPI message to “all including self.” The
FIPI is guaranteed to be handled only after the completion of the BIPIs that were
issued by the non-BSP processors.

6. After the BSP has been established, the outstanding BIPIs are received one at a
time (at T2, T3, and T4) and ignored by all processors.

Figure 8-1. MP System With Multiple Pentium III Processors

Pentium III
Processor 0

Pentium III
Processor 1

Pentium III
Processor 2

Pentium III
Processor 3

BIPI.1 BIPI.0 BIPI.3 BIPI.2 FIPI

T0 T1 T2 T3 T4 T5

System (CPU) Bus

APIC Bus

Serial Bus Activity

Processor 1
Becomes BSP
8-76 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
7. When the FIPI is finally received (at T5), only the BSP responds to it. It responds
by fetching and executing BIOS boot-strap code, beginning at the reset vector
(physical address FFFF FFF0H).

8. As part of the boot-strap code, the BSP creates an ACPI table and an MP table and
adds its initial APIC ID to these tables as appropriate.

9. At the end of the boot-strap procedure, the BSP broadcasts a SIPI message to all
the APs in the system. Here, the SIPI message contains a vector to the BIOS AP
initialization code (at 000V V000H, where VV is the vector contained in the SIPI
message).

10. All APs respond to the SIPI message by racing to a BIOS initialization semaphore.
The first one to the semaphore begins executing the initialization code. (See MP
init code for semaphore implementation details.) As part of the AP initialization
procedure, the AP adds its APIC ID number to the ACPI and MP tables as appro-
priate. At the completion of the initialization procedure, the AP executes a CLI
instruction (to clear the IF flag in the EFLAGS register) and halts itself.

11. When each of the APs has gained access to the semaphore and executed the AP
initialization code and all written their APIC IDs into the appropriate places in the
ACPI and MP tables, the BSP establishes a count for the number of processors
connected to the system bus, completes executing the BIOS boot-strap code,
and then begins executing operating-system boot-strap and start-up code.

12. While the BSP is executing operating-system boot-strap and start-up code, the
APs remain in the halted state. In this state they will respond only to INITs, NMIs,
and SMIs. They will also respond to snoops and to assertions of the STPCLK# pin.

See Section 8.4.4, “MP Initialization Example,” for an annotated example the use of
the MP protocol to boot IA-32 processors in an MP. This code should run on any IA-32
processor that used the MP protocol.

8.11.2.1 Error Detection and Handling During the MP Initialization Protocol
Errors may occur on the APIC bus during the MP initialization phase. These errors
may be transient or permanent and can be caused by a variety of failure mechanisms
(for example, broken traces, soft errors during bus usage, etc.). All serial bus related
errors will result in an APIC checksum or acceptance error.

The MP initialization protocol makes the following assumptions regarding errors that
occur during initialization:
• If errors are detected on the APIC bus during execution of the MP initialization

protocol, the processors that detect the errors are shut down.
• The MP initialization protocol will be executed by processors even if they fail their

BIST sequences.
Vol. 3A 8-77

CHAPTER 9
PROCESSOR MANAGEMENT AND INITIALIZATION

This chapter describes the facilities provided for managing processor wide functions
and for initializing the processor. The subjects covered include: processor initializa-
tion, x87 FPU initialization, processor configuration, feature determination, mode
switching, the MSRs (in the Pentium, P6 family, Pentium 4, and Intel Xeon proces-
sors), and the MTRRs (in the P6 family, Pentium 4, and Intel Xeon processors).

9.1 INITIALIZATION OVERVIEW
Following power-up or an assertion of the RESET# pin, each processor on the system
bus performs a hardware initialization of the processor (known as a hardware reset)
and an optional built-in self-test (BIST). A hardware reset sets each processor’s
registers to a known state and places the processor in real-address mode. It also
invalidates the internal caches, translation lookaside buffers (TLBs) and the branch
target buffer (BTB). At this point, the action taken depends on the processor family:
• Pentium 4 and Intel Xeon processors — All the processors on the system bus

(including a single processor in a uniprocessor system) execute the multiple
processor (MP) initialization protocol. The processor that is selected through this
protocol as the bootstrap processor (BSP) then immediately starts executing
software-initialization code in the current code segment beginning at the offset in
the EIP register. The application (non-BSP) processors (APs) go into a Wait For
Startup IPI (SIPI) state while the BSP is executing initialization code. See Section
8.4, “Multiple-Processor (MP) Initialization,” for more details. Note that in a
uniprocessor system, the single Pentium 4 or Intel Xeon processor automatically
becomes the BSP.

• P6 family processors — The action taken is the same as for the Pentium 4 and
Intel Xeon processors (as described in the previous paragraph).

• Pentium processors — In either a single- or dual- processor system, a single
Pentium processor is always pre-designated as the primary processor. Following
a reset, the primary processor behaves as follows in both single- and dual-
processor systems. Using the dual-processor (DP) ready initialization protocol,
the primary processor immediately starts executing software-initialization code
in the current code segment beginning at the offset in the EIP register. The
secondary processor (if there is one) goes into a halt state.

• Intel486 processor — The primary processor (or single processor in a unipro-
cessor system) immediately starts executing software-initialization code in the
current code segment beginning at the offset in the EIP register. (The Intel486
does not automatically execute a DP or MP initialization protocol to determine
which processor is the primary processor.)
Vol. 3A 9-1

PROCESSOR MANAGEMENT AND INITIALIZATION
The software-initialization code performs all system-specific initialization of the BSP
or primary processor and the system logic.

At this point, for MP (or DP) systems, the BSP (or primary) processor wakes up each
AP (or secondary) processor to enable those processors to execute self-configuration
code.

When all processors are initialized, configured, and synchronized, the BSP or primary
processor begins executing an initial operating-system or executive task.

The x87 FPU is also initialized to a known state during hardware reset. x87 FPU soft-
ware initialization code can then be executed to perform operations such as setting
the precision of the x87 FPU and the exception masks. No special initialization of the
x87 FPU is required to switch operating modes.

Asserting the INIT# pin on the processor invokes a similar response to a hardware
reset. The major difference is that during an INIT, the internal caches, MSRs, MTRRs,
and x87 FPU state are left unchanged (although, the TLBs and BTB are invalidated as
with a hardware reset). An INIT provides a method for switching from protected to
real-address mode while maintaining the contents of the internal caches.

9.1.1 Processor State After Reset
Table 9-1 shows the state of the flags and other registers following power-up for the
Pentium 4, Intel Xeon, P6 family, and Pentium processors. The state of control
register CR0 is 60000010H (see Figure 9-1). This places the processor is in real-
address mode with paging disabled.

9.1.2 Processor Built-In Self-Test (BIST)
Hardware may request that the BIST be performed at power-up. The EAX register is
cleared (0H) if the processor passes the BIST. A nonzero value in the EAX register
after the BIST indicates that a processor fault was detected. If the BIST is not
requested, the contents of the EAX register after a hardware reset is 0H.

The overhead for performing a BIST varies between processor families. For example,
the BIST takes approximately 30 million processor clock periods to execute on the
Pentium 4 processor. This clock count is model-specific; Intel reserves the right to
change the number of periods for any Intel 64 or IA-32 processor, without notification.

Table 9-1. IA-32 Processor States Following Power-up, Reset, or INIT

Register Pentium 4 and Intel
Xeon Processor

P6 Family Processor Pentium Processor

EFLAGS1 00000002H 00000002H 00000002H

EIP 0000FFF0H 0000FFF0H 0000FFF0H

CR0 60000010H2 60000010H2 60000010H2
9-2 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION
CR2, CR3, CR4 00000000H 00000000H 00000000H

CS Selector = F000H
Base = FFFF0000H
Limit = FFFFH
AR = Present, R/W,
Accessed

Selector = F000H
Base = FFFF0000H
Limit = FFFFH
AR = Present, R/W,
Accessed

Selector = F000H
Base = FFFF0000H
Limit = FFFFH
AR = Present, R/W,
Accessed

SS, DS, ES, FS, GS Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W,
Accessed

Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W,
Accessed

Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W,
Accessed

EDX 00000FxxH 000n06xxH3 000005xxH

EAX 04 04 04

EBX, ECX, ESI, EDI,
EBP, ESP

00000000H 00000000H 00000000H

ST0 through ST75 Pwr up or Reset: +0.0
FINIT/FNINIT: Unchanged

Pwr up or Reset: +0.0
FINIT/FNINIT: Unchanged

Pwr up or Reset: +0.0
FINIT/FNINIT: Unchanged

x87 FPU Control
Word5

Pwr up or Reset: 0040H
FINIT/FNINIT: 037FH

Pwr up or Reset: 0040H
FINIT/FNINIT: 037FH

Pwr up or Reset: 0040H
FINIT/FNINIT: 037FH

x87 FPU Status
Word5

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

x87 FPU Tag
Word5

Pwr up or Reset: 5555H
FINIT/FNINIT: FFFFH

Pwr up or Reset: 5555H
FINIT/FNINIT: FFFFH

Pwr up or Reset: 5555H
FINIT/FNINIT: FFFFH

x87 FPU Data
Operand and CS
Seg. Selectors5

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

x87 FPU Data
Operand and Inst.
Pointers5

Pwr up or Reset:
 00000000H
FINIT/FNINIT: 00000000H

Pwr up or Reset:
 00000000H
FINIT/FNINIT: 00000000H

Pwr up or Reset:
 00000000H
FINIT/FNINIT: 00000000H

MM0 through
MM75

Pwr up or Reset:
 0000000000000000H
INIT or FINIT/FNINIT:
 Unchanged

Pentium II and Pentium III
Processors Only—
Pwr up or Reset:
 0000000000000000H
INIT or FINIT/FNINIT:
 Unchanged

Pentium with MMX
Technology Only—
Pwr up or Reset:
 0000000000000000H
INIT or FINIT/FNINIT:
 Unchanged

XMM0 through
XMM7

Pwr up or Reset:
 0000000000000000H
INIT: Unchanged

Pentium III processor Only—
Pwr up or Reset:
 0000000000000000H
INIT: Unchanged

NA

MXCSR Pwr up or Reset: 1F80H
INIT: Unchanged

Pentium III processor only-
Pwr up or Reset: 1F80H
INIT: Unchanged

NA

GDTR, IDTR Base = 00000000H
Limit = FFFFH
AR = Present, R/W

Base = 00000000H
Limit = FFFFH
AR = Present, R/W

Base = 00000000H
Limit = FFFFH
AR = Present, R/W

Table 9-1. IA-32 Processor States Following Power-up, Reset, or INIT (Contd.)

Register Pentium 4 and Intel
Xeon Processor

P6 Family Processor Pentium Processor
Vol. 3A 9-3

PROCESSOR MANAGEMENT AND INITIALIZATION
LDTR, Task
Register

Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W

Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W

Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W

DR0, DR1, DR2,
DR3

00000000H 00000000H 00000000H

DR6 FFFF0FF0H FFFF0FF0H FFFF0FF0H

DR7 00000400H 00000400H 00000400H

Time-Stamp
Counter

Power up or Reset: 0H
INIT: Unchanged

Power up or Reset: 0H
INIT: Unchanged

Power up or Reset: 0H
INIT: Unchanged

Perf. Counters and
Event Select

Power up or Reset: 0H
INIT: Unchanged

Power up or Reset: 0H
INIT: Unchanged

Power up or Reset: 0H
INIT: Unchanged

All Other MSRs Pwr up or Reset:
 Undefined
INIT: Unchanged

Pwr up or Reset:
 Undefined
INIT: Unchanged

Pwr up or Reset:
 Undefined
INIT: Unchanged

Data and Code
Cache, TLBs

Invalid6 Invalid6 Invalid6

Fixed MTRRs Pwr up or Reset: Disabled
INIT: Unchanged

Pwr up or Reset: Disabled
INIT: Unchanged

Not Implemented

Variable MTRRs Pwr up or Reset: Disabled
INIT: Unchanged

Pwr up or Reset: Disabled
INIT: Unchanged

Not Implemented

Machine-Check
Architecture

Pwr up or Reset:
 Undefined
INIT: Unchanged

Pwr up or Reset:
 Undefined
INIT: Unchanged

Not Implemented

APIC Pwr up or Reset: Enabled
INIT: Unchanged

Pwr up or Reset: Enabled
INIT: Unchanged

Pwr up or Reset: Enabled
INIT: Unchanged

NOTES:
1. The 10 most-significant bits of the EFLAGS register are undefined following a reset. Software

should not depend on the states of any of these bits.
2. The CD and NW flags are unchanged, bit 4 is set to 1, all other bits are cleared.
3. Where “n” is the Extended Model Value for the respective processor.
4. If Built-In Self-Test (BIST) is invoked on power up or reset, EAX is 0 only if all tests passed. (BIST

cannot be invoked during an INIT.)
5. The state of the x87 FPU and MMX registers is not changed by the execution of an INIT.
6. Internal caches are invalid after power-up and RESET, but left unchanged with an INIT.

Table 9-1. IA-32 Processor States Following Power-up, Reset, or INIT (Contd.)

Register Pentium 4 and Intel
Xeon Processor

P6 Family Processor Pentium Processor
9-4 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION
9.1.3 Model and Stepping Information
Following a hardware reset, the EDX register contains component identification and
revision information (see Figure 9-2). For example, the model, family, and processor
type returned for the first processor in the Intel Pentium 4 family is as follows: model
(0000B), family (1111B), and processor type (00B).

The stepping ID field contains a unique identifier for the processor’s stepping ID or
revision level. The extended family and extended model fields were added to the
IA-32 architecture in the Pentium 4 processors.

Figure 9-1. Contents of CR0 Register after Reset

Figure 9-2. Version Information in the EDX Register after Reset

External x87 FPU error reporting: 0
(Not used): 1
No task switch: 0
x87 FPU instructions not trapped: 0
WAIT/FWAIT instructions not trapped: 0
Real-address mode: 0

31 19 16 15 0

P
E

1234561718282930

M
P

E
M1N

E
T
S

P
G

C
D

N
W

W
P

A
M

Paging disabled: 0

Alignment check disabled: 0

Caching disabled: 1
Not write-through disabled: 1

Write-protect disabled: 0

Reserved Reserved

31 12 11 8 7 4 3 0

EDX

Family (1111B for the Pentium 4 Processor Family)
Model (Beginning with 0000B)

1314

Processor Type

ModelFamily
Stepping

ID

15

Model
ExtendedExtended

Family

1619202728

Reserved
Vol. 3A 9-5

PROCESSOR MANAGEMENT AND INITIALIZATION
9.1.4 First Instruction Executed
The first instruction that is fetched and executed following a hardware reset is
located at physical address FFFFFFF0H. This address is 16 bytes below the
processor’s uppermost physical address. The EPROM containing the software-
initialization code must be located at this address.

The address FFFFFFF0H is beyond the 1-MByte addressable range of the processor
while in real-address mode. The processor is initialized to this starting address as
follows. The CS register has two parts: the visible segment selector part and the
hidden base address part. In real-address mode, the base address is normally
formed by shifting the 16-bit segment selector value 4 bits to the left to produce a
20-bit base address. However, during a hardware reset, the segment selector in the
CS register is loaded with F000H and the base address is loaded with FFFF0000H. The
starting address is thus formed by adding the base address to the value in the EIP
register (that is, FFFF0000 + FFF0H = FFFFFFF0H).

The first time the CS register is loaded with a new value after a hardware reset, the
processor will follow the normal rule for address translation in real-address mode
(that is, [CS base address = CS segment selector * 16]). To insure that the base
address in the CS register remains unchanged until the EPROM based software-
initialization code is completed, the code must not contain a far jump or far call or
allow an interrupt to occur (which would cause the CS selector value to be changed).

9.2 X87 FPU INITIALIZATION
Software-initialization code can determine the whether the processor contains an
x87 FPU by using the CPUID instruction. The code must then initialize the x87 FPU
and set flags in control register CR0 to reflect the state of the x87 FPU environment.

A hardware reset places the x87 FPU in the state shown in Table 9-1. This state is
different from the state the x87 FPU is placed in following the execution of an FINIT
or FNINIT instruction (also shown in Table 9-1). If the x87 FPU is to be used, the soft-
ware-initialization code should execute an FINIT/FNINIT instruction following a hard-
ware reset. These instructions, tag all data registers as empty, clear all the exception
masks, set the TOP-of-stack value to 0, and select the default rounding and precision
controls setting (round to nearest and 64-bit precision).

If the processor is reset by asserting the INIT# pin, the x87 FPU state is not changed.

9.2.1 Configuring the x87 FPU Environment
Initialization code must load the appropriate values into the MP, EM, and NE flags of
control register CR0. These bits are cleared on hardware reset of the processor.
Figure 9-2 shows the suggested settings for these flags, depending on the IA-32
processor being initialized. Initialization code can test for the type of processor
present before setting or clearing these flags.
9-6 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION
The EM flag determines whether floating-point instructions are executed by the x87
FPU (EM is cleared) or a device-not-available exception (#NM) is generated for all
floating-point instructions so that an exception handler can emulate the floating-
point operation (EM = 1). Ordinarily, the EM flag is cleared when an x87 FPU or math
coprocessor is present and set if they are not present. If the EM flag is set and no x87
FPU, math coprocessor, or floating-point emulator is present, the processor will hang
when a floating-point instruction is executed.

The MP flag determines whether WAIT/FWAIT instructions react to the setting of the
TS flag. If the MP flag is clear, WAIT/FWAIT instructions ignore the setting of the TS
flag; if the MP flag is set, they will generate a device-not-available exception (#NM)
if the TS flag is set. Generally, the MP flag should be set for processors with an inte-
grated x87 FPU and clear for processors without an integrated x87 FPU and without a
math coprocessor present. However, an operating system can choose to save the
floating-point context at every context switch, in which case there would be no need
to set the MP bit.

Table 2-1 shows the actions taken for floating-point and WAIT/FWAIT instructions
based on the settings of the EM, MP, and TS flags.

The NE flag determines whether unmasked floating-point exceptions are handled by
generating a floating-point error exception internally (NE is set, native mode) or
through an external interrupt (NE is cleared). In systems where an external interrupt
controller is used to invoke numeric exception handlers (such as MS-DOS-based
systems), the NE bit should be cleared.

9.2.2 Setting the Processor for x87 FPU Software Emulation
Setting the EM flag causes the processor to generate a device-not-available excep-
tion (#NM) and trap to a software exception handler whenever it encounters a
floating-point instruction. (Table 9-2 shows when it is appropriate to use this flag.)
Setting this flag has two functions:

Table 9-2. Recommended Settings of EM and MP Flags on IA-32 Processors

EM MP NE IA-32 processor

1 0 1 Intel486™ SX, Intel386™ DX, and Intel386™ SX processors
only, without the presence of a math coprocessor.

0 1 1 or 0* Pentium 4, Intel Xeon, P6 family, Pentium, Intel486™ DX, and
Intel 487 SX processors, and Intel386 DX and Intel386 SX
processors when a companion math coprocessor is present.

0 1 1 or 0* More recent Intel 64 or IA-32 processors

NOTE:
* The setting of the NE flag depends on the operating system being used.
Vol. 3A 9-7

PROCESSOR MANAGEMENT AND INITIALIZATION
• It allows x87 FPU code to run on an IA-32 processor that has neither an
integrated x87 FPU nor is connected to an external math coprocessor, by using a
floating-point emulator.

• It allows floating-point code to be executed using a special or nonstandard
floating-point emulator, selected for a particular application, regardless of
whether an x87 FPU or math coprocessor is present.

To emulate floating-point instructions, the EM, MP, and NE flag in control register CR0
should be set as shown in Table 9-3.

Regardless of the value of the EM bit, the Intel486 SX processor generates a device-
not-available exception (#NM) upon encountering any floating-point instruction.

9.3 CACHE ENABLING
IA-32 processors (beginning with the Intel486 processor) and Intel 64 processors
contain internal instruction and data caches. These caches are enabled by clearing
the CD and NW flags in control register CR0. (They are set during a hardware reset.)
Because all internal cache lines are invalid following reset initialization, it is not
necessary to invalidate the cache before enabling caching. Any external caches may
require initialization and invalidation using a system-specific initialization and invali-
dation code sequence.

Depending on the hardware and operating system or executive requirements, addi-
tional configuration of the processor’s caching facilities will probably be required.
Beginning with the Intel486 processor, page-level caching can be controlled with the
PCD and PWT flags in page-directory and page-table entries. Beginning with the P6
family processors, the memory type range registers (MTRRs) control the caching
characteristics of the regions of physical memory. (For the Intel486 and Pentium
processors, external hardware can be used to control the caching characteristics of
regions of physical memory.) See Chapter 11, “Memory Cache Control,” for detailed
information on configuration of the caching facilities in the Pentium 4, Intel Xeon, and
P6 family processors and system memory.

Table 9-3. Software Emulation Settings of EM, MP, and NE Flags

CR0 Bit Value

EM 1

MP 0

NE 1
9-8 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION
9.4 MODEL-SPECIFIC REGISTERS (MSRS)
Most IA-32 processors (starting from Pentium processors) and Intel 64 processors
contain a model-specific registers (MSRs). A given MSR may not be supported across
all families and models for Intel 64 and IA-32 processors. Some MSRs are designated
as architectural to simplify software programming; a feature introduced by an archi-
tectural MSR is expected to be supported in future processors. Non-architectural
MSRs are not guaranteed to be supported or to have the same functions on future
processors.

MSRs that provide control for a number of hardware and software-related features,
include:
• Performance-monitoring counters (see Chapter 23, “Introduction to Virtual-

Machine Extensions”).
• Debug extensions (see Chapter 23, “Introduction to Virtual-Machine Exten-

sions.”).
• Machine-check exception capability and its accompanying machine-check archi-

tecture (see Chapter 15, “Machine-Check Architecture”).
• MTRRs (see Section 11.11, “Memory Type Range Registers (MTRRs)”).
• Thermal and power management.
• Instruction-specific support (for example: SYSENTER, SYSEXIT, SWAPGS, etc.).
• Processor feature/mode support (for example: IA32_EFER,

IA32_FEATURE_CONTROL).

The MSRs can be read and written to using the RDMSR and WRMSR instructions,
respectively.

When performing software initialization of an IA-32 or Intel 64 processor, many of
the MSRs will need to be initialized to set up things like performance-monitoring
events, run-time machine checks, and memory types for physical memory.

Lists of available performance-monitoring events are given in Chapter 19, “Perfor-
mance Monitoring Events”, and lists of available MSRs are given in Chapter 34,
“Model-Specific Registers (MSRs)” The references earlier in this section show where
the functions of the various groups of MSRs are described in this manual.

9.5 MEMORY TYPE RANGE REGISTERS (MTRRS)
Memory type range registers (MTRRs) were introduced into the IA-32 architecture
with the Pentium Pro processor. They allow the type of caching (or no caching) to be
specified in system memory for selected physical address ranges. They allow
memory accesses to be optimized for various types of memory such as RAM, ROM,
frame buffer memory, and memory-mapped I/O devices.

In general, initializing the MTRRs is normally handled by the software initialization
code or BIOS and is not an operating system or executive function. At the very least,
Vol. 3A 9-9

PROCESSOR MANAGEMENT AND INITIALIZATION
all the MTRRs must be cleared to 0, which selects the uncached (UC) memory type.
See Section 11.11, “Memory Type Range Registers (MTRRs),” for detailed informa-
tion on the MTRRs.

9.6 INITIALIZING SSE/SSE2/SSE3/SSSE3 EXTENSIONS
For processors that contain SSE/SSE2/SSE3/SSSE3 extensions, steps must be taken
when initializing the processor to allow execution of these instructions.

1. Check the CPUID feature flags for the presence of the SSE/SSE2/SSE3/SSSE3
extensions (respectively: EDX bits 25 and 26, ECX bit 0 and 9) and support for
the FXSAVE and FXRSTOR instructions (EDX bit 24). Also check for support for
the CLFLUSH instruction (EDX bit 19). The CPUID feature flags are loaded in the
EDX and ECX registers when the CPUID instruction is executed with a 1 in the
EAX register.

2. Set the OSFXSR flag (bit 9 in control register CR4) to indicate that the operating
system supports saving and restoring the SSE/SSE2/SSE3/SSSE3 execution
environment (XXM and MXCSR registers) with the FXSAVE and FXRSTOR instruc-
tions, respectively. See Section 2.5, “Control Registers,” for a description of the
OSFXSR flag.

3. Set the OSXMMEXCPT flag (bit 10 in control register CR4) to indicate that the
operating system supports the handling of SSE/SSE2/SSE3 SIMD floating-point
exceptions (#XF). See Section 2.5, “Control Registers,” for a description of the
OSXMMEXCPT flag.

4. Set the mask bits and flags in the MXCSR register according to the mode of
operation desired for SSE/SSE2/SSE3 SIMD floating-point instructions. See
“MXCSR Control and Status Register” in Chapter 10, “Programming with
Streaming SIMD Extensions (SSE),” of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 1, for a detailed description of the bits and
flags in the MXCSR register.

9.7 SOFTWARE INITIALIZATION FOR REAL-ADDRESS
MODE OPERATION

Following a hardware reset (either through a power-up or the assertion of the
RESET# pin) the processor is placed in real-address mode and begins executing soft-
ware initialization code from physical address FFFFFFF0H. Software initialization code
must first set up the necessary data structures for handling basic system functions,
such as a real-mode IDT for handling interrupts and exceptions. If the processor is to
remain in real-address mode, software must then load additional operating-system
or executive code modules and data structures to allow reliable execution of applica-
tion programs in real-address mode.

If the processor is going to operate in protected mode, software must load the neces-
sary data structures to operate in protected mode and then switch to protected
9-10 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION
mode. The protected-mode data structures that must be loaded are described in
Section 9.8, “Software Initialization for Protected-Mode Operation.”

9.7.1 Real-Address Mode IDT
In real-address mode, the only system data structure that must be loaded into
memory is the IDT (also called the “interrupt vector table”). By default, the address
of the base of the IDT is physical address 0H. This address can be changed by using
the LIDT instruction to change the base address value in the IDTR. Software initial-
ization code needs to load interrupt- and exception-handler pointers into the IDT
before interrupts can be enabled.

The actual interrupt- and exception-handler code can be contained either in EPROM
or RAM; however, the code must be located within the 1-MByte addressable range of
the processor in real-address mode. If the handler code is to be stored in RAM, it
must be loaded along with the IDT.

9.7.2 NMI Interrupt Handling
The NMI interrupt is always enabled (except when multiple NMIs are nested). If the
IDT and the NMI interrupt handler need to be loaded into RAM, there will be a period
of time following hardware reset when an NMI interrupt cannot be handled. During
this time, hardware must provide a mechanism to prevent an NMI interrupt from
halting code execution until the IDT and the necessary NMI handler software is
loaded. Here are two examples of how NMIs can be handled during the initial states
of processor initialization:
• A simple IDT and NMI interrupt handler can be provided in EPROM. This allows an

NMI interrupt to be handled immediately after reset initialization.
• The system hardware can provide a mechanism to enable and disable NMIs by

passing the NMI# signal through an AND gate controlled by a flag in an I/O port.
Hardware can clear the flag when the processor is reset, and software can set the
flag when it is ready to handle NMI interrupts.

9.8 SOFTWARE INITIALIZATION FOR PROTECTED-MODE
OPERATION

The processor is placed in real-address mode following a hardware reset. At this
point in the initialization process, some basic data structures and code modules must
be loaded into physical memory to support further initialization of the processor, as
described in Section 9.7, “Software Initialization for Real-Address Mode Operation.”
Before the processor can be switched to protected mode, the software initialization
code must load a minimum number of protected mode data structures and code
Vol. 3A 9-11

PROCESSOR MANAGEMENT AND INITIALIZATION
modules into memory to support reliable operation of the processor in protected
mode. These data structures include the following:
• A IDT.
• A GDT.
• A TSS.
• (Optional) An LDT.
• If paging is to be used, at least one page directory and one page table.
• A code segment that contains the code to be executed when the processor

switches to protected mode.
• One or more code modules that contain the necessary interrupt and exception

handlers.

Software initialization code must also initialize the following system registers before
the processor can be switched to protected mode:
• The GDTR.
• (Optional.) The IDTR. This register can also be initialized immediately after

switching to protected mode, prior to enabling interrupts.
• Control registers CR1 through CR4.
• (Pentium 4, Intel Xeon, and P6 family processors only.) The memory type range

registers (MTRRs).

With these data structures, code modules, and system registers initialized, the
processor can be switched to protected mode by loading control register CR0 with a
value that sets the PE flag (bit 0).

9.8.1 Protected-Mode System Data Structures
The contents of the protected-mode system data structures loaded into memory
during software initialization, depend largely on the type of memory management
the protected-mode operating-system or executive is going to support: flat, flat with
paging, segmented, or segmented with paging.

To implement a flat memory model without paging, software initialization code must
at a minimum load a GDT with one code and one data-segment descriptor. A null
descriptor in the first GDT entry is also required. The stack can be placed in a normal
read/write data segment, so no dedicated descriptor for the stack is required. A flat
memory model with paging also requires a page directory and at least one page table
(unless all pages are 4 MBytes in which case only a page directory is required). See
Section 9.8.3, “Initializing Paging.”

Before the GDT can be used, the base address and limit for the GDT must be loaded
into the GDTR register using an LGDT instruction.

A multi-segmented model may require additional segments for the operating system,
as well as segments and LDTs for each application program. LDTs require segment
9-12 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION
descriptors in the GDT. Some operating systems allocate new segments and LDTs as
they are needed. This provides maximum flexibility for handling a dynamic program-
ming environment. However, many operating systems use a single LDT for all tasks,
allocating GDT entries in advance. An embedded system, such as a process
controller, might pre-allocate a fixed number of segments and LDTs for a fixed
number of application programs. This would be a simple and efficient way to struc-
ture the software environment of a real-time system.

9.8.2 Initializing Protected-Mode Exceptions and Interrupts
Software initialization code must at a minimum load a protected-mode IDT with gate
descriptor for each exception vector that the processor can generate. If interrupt or
trap gates are used, the gate descriptors can all point to the same code segment,
which contains the necessary exception handlers. If task gates are used, one TSS
and accompanying code, data, and task segments are required for each exception
handler called with a task gate.

If hardware allows interrupts to be generated, gate descriptors must be provided in
the IDT for one or more interrupt handlers.

Before the IDT can be used, the base address and limit for the IDT must be loaded
into the IDTR register using an LIDT instruction. This operation is typically carried out
immediately after switching to protected mode.

9.8.3 Initializing Paging
Paging is controlled by the PG flag in control register CR0. When this flag is clear (its
state following a hardware reset), the paging mechanism is turned off; when it is set,
paging is enabled. Before setting the PG flag, the following data structures and regis-
ters must be initialized:
• Software must load at least one page directory and one page table into physical

memory. The page table can be eliminated if the page directory contains a
directory entry pointing to itself (here, the page directory and page table reside
in the same page), or if only 4-MByte pages are used.

• Control register CR3 (also called the PDBR register) is loaded with the physical
base address of the page directory.

• (Optional) Software may provide one set of code and data descriptors in the GDT
or in an LDT for supervisor mode and another set for user mode.

With this paging initialization complete, paging is enabled and the processor is
switched to protected mode at the same time by loading control register CR0 with an
image in which the PG and PE flags are set. (Paging cannot be enabled before the
processor is switched to protected mode.)
Vol. 3A 9-13

PROCESSOR MANAGEMENT AND INITIALIZATION
9.8.4 Initializing Multitasking
If the multitasking mechanism is not going to be used and changes between privilege
levels are not allowed, it is not necessary load a TSS into memory or to initialize the
task register.

If the multitasking mechanism is going to be used and/or changes between privilege
levels are allowed, software initialization code must load at least one TSS and an
accompanying TSS descriptor. (A TSS is required to change privilege levels because
pointers to the privileged-level 0, 1, and 2 stack segments and the stack pointers for
these stacks are obtained from the TSS.) TSS descriptors must not be marked as
busy when they are created; they should be marked busy by the processor only as a
side-effect of performing a task switch. As with descriptors for LDTs, TSS descriptors
reside in the GDT.

After the processor has switched to protected mode, the LTR instruction can be used
to load a segment selector for a TSS descriptor into the task register. This instruction
marks the TSS descriptor as busy, but does not perform a task switch. The processor
can, however, use the TSS to locate pointers to privilege-level 0, 1, and 2 stacks. The
segment selector for the TSS must be loaded before software performs its first task
switch in protected mode, because a task switch copies the current task state into
the TSS.

After the LTR instruction has been executed, further operations on the task register
are performed by task switching. As with other segments and LDTs, TSSs and TSS
descriptors can be either pre-allocated or allocated as needed.

9.8.5 Initializing IA-32e Mode
On Intel 64 processors, the IA32_EFER MSR is cleared on system reset. The oper-
ating system must be in protected mode with paging enabled before attempting to
initialize IA-32e mode. IA-32e mode operation also requires physical-address exten-
sions with four levels of enhanced paging structures (see Section 4.5, “IA-32e
Paging”).

Operating systems should follow this sequence to initialize IA-32e mode:

1. Starting from protected mode, disable paging by setting CR0.PG = 0. Use the
MOV CR0 instruction to disable paging (the instruction must be located in an
identity-mapped page).

2. Enable physical-address extensions (PAE) by setting CR4.PAE = 1. Failure to
enable PAE will result in a #GP fault when an attempt is made to initialize IA-32e
mode.

3. Load CR3 with the physical base address of the Level 4 page map table (PML4).

4. Enable IA-32e mode by setting IA32_EFER.LME = 1.

5. Enable paging by setting CR0.PG = 1. This causes the processor to set the
IA32_EFER.LMA bit to 1. The MOV CR0 instruction that enables paging and the
9-14 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION
following instructions must be located in an identity-mapped page (until such
time that a branch to non-identity mapped pages can be effected).

64-bit mode paging tables must be located in the first 4 GBytes of physical-address
space prior to activating IA-32e mode. This is necessary because the MOV CR3
instruction used to initialize the page-directory base must be executed in legacy
mode prior to activating IA-32e mode (setting CR0.PG = 1 to enable paging).
Because MOV CR3 is executed in protected mode, only the lower 32 bits of the
register are written, limiting the table location to the low 4 GBytes of memory. Soft-
ware can relocate the page tables anywhere in physical memory after IA-32e mode
is activated.

The processor performs 64-bit mode consistency checks whenever software
attempts to modify any of the enable bits directly involved in activating IA-32e mode
(IA32_EFER.LME, CR0.PG, and CR4.PAE). It will generate a general protection fault
(#GP) if consistency checks fail. 64-bit mode consistency checks ensure that the
processor does not enter an undefined mode or state with unpredictable behavior.

64-bit mode consistency checks fail in the following circumstances:
• An attempt is made to enable or disable IA-32e mode while paging is enabled.
• IA-32e mode is enabled and an attempt is made to enable paging prior to

enabling physical-address extensions (PAE).
• IA-32e mode is active and an attempt is made to disable physical-address

extensions (PAE).
• If the current CS has the L-bit set on an attempt to activate IA-32e mode.
• If the TR contains a 16-bit TSS.

9.8.5.1 IA-32e Mode System Data Structures
After activating IA-32e mode, the system-descriptor-table registers (GDTR, LDTR,
IDTR, TR) continue to reference legacy protected-mode descriptor tables. Tables
referenced by the descriptors all reside in the lower 4 GBytes of linear-address space.
After activating IA-32e mode, 64-bit operating-systems should use the LGDT, LLDT,
LIDT, and LTR instructions to load the system-descriptor-table registers with refer-
ences to 64-bit descriptor tables.

9.8.5.2 IA-32e Mode Interrupts and Exceptions
Software must not allow exceptions or interrupts to occur between the time IA-32e
mode is activated and the update of the interrupt-descriptor-table register (IDTR)
that establishes references to a 64-bit interrupt-descriptor table (IDT). This is
because the IDT remains in legacy form immediately after IA-32e mode is activated.

If an interrupt or exception occurs prior to updating the IDTR, a legacy 32-bit inter-
rupt gate will be referenced and interpreted as a 64-bit interrupt gate with unpredict-
able results. External interrupts can be disabled by using the CLI instruction.

Non-maskable interrupts (NMI) must be disabled using external hardware.
Vol. 3A 9-15

PROCESSOR MANAGEMENT AND INITIALIZATION
9.8.5.3 64-bit Mode and Compatibility Mode Operation
IA-32e mode uses two code segment-descriptor bits (CS.L and CS.D, see Figure 3-8)
to control the operating modes after IA-32e mode is initialized. If CS.L = 1 and CS.D =
0, the processor is running in 64-bit mode. With this encoding, the default operand
size is 32 bits and default address size is 64 bits. Using instruction prefixes, operand
size can be changed to 64 bits or 16 bits; address size can be changed to 32 bits.

When IA-32e mode is active and CS.L = 0, the processor operates in compatibility
mode. In this mode, CS.D controls default operand and address sizes exactly as it
does in the IA-32 architecture. Setting CS.D = 1 specifies default operand and
address size as 32 bits. Clearing CS.D to 0 specifies default operand and address size
as 16 bits (the CS.L = 1, CS.D = 1 bit combination is reserved).

Compatibility mode execution is selected on a code-segment basis. This mode allows
legacy applications to coexist with 64-bit applications running in 64-bit mode. An
operating system running in IA-32e mode can execute existing 16-bit and 32-bit
applications by clearing their code-segment descriptor’s CS.L bit to 0.

In compatibility mode, the following system-level mechanisms continue to operate
using the IA-32e-mode architectural semantics:
• Linear-to-physical address translation uses the 64-bit mode extended page-

translation mechanism.
• Interrupts and exceptions are handled using the 64-bit mode mechanisms.
• System calls (calls through call gates and SYSENTER/SYSEXIT) are handled using

the IA-32e mode mechanisms.

9.8.5.4 Switching Out of IA-32e Mode Operation
To return from IA-32e mode to paged-protected mode operation. Operating systems
must use the following sequence:

1. Switch to compatibility mode.

2. Deactivate IA-32e mode by clearing CR0.PG = 0. This causes the processor to set
IA32_EFER.LMA = 0. The MOV CR0 instruction used to disable paging and
subsequent instructions must be located in an identity-mapped page.

3. Load CR3 with the physical base address of the legacy page-table-directory base
address.

4. Disable IA-32e mode by setting IA32_EFER.LME = 0.

5. Enable legacy paged-protected mode by setting CR0.PG = 1

6. A branch instruction must follow the MOV CR0 that enables paging. Both the MOV
CR0 and the branch instruction must be located in an identity-mapped page.

Registers only available in 64-bit mode (R8-R15 and XMM8-XMM15) are preserved
across transitions from 64-bit mode into compatibility mode then back into 64-bit
mode. However, values of R8-R15 and XMM8-XMM15 are undefined after transitions
9-16 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION
from 64-bit mode through compatibility mode to legacy or real mode and then back
through compatibility mode to 64-bit mode.

9.9 MODE SWITCHING
To use the processor in protected mode after hardware or software reset, a mode
switch must be performed from real-address mode. Once in protected mode, soft-
ware generally does not need to return to real-address mode. To run software written
to run in real-address mode (8086 mode), it is generally more convenient to run the
software in virtual-8086 mode, than to switch back to real-address mode.

9.9.1 Switching to Protected Mode
Before switching to protected mode from real mode, a minimum set of system data
structures and code modules must be loaded into memory, as described in Section
9.8, “Software Initialization for Protected-Mode Operation.” Once these tables are
created, software initialization code can switch into protected mode.

Protected mode is entered by executing a MOV CR0 instruction that sets the PE flag
in the CR0 register. (In the same instruction, the PG flag in register CR0 can be set to
enable paging.) Execution in protected mode begins with a CPL of 0.

Intel 64 and IA-32 processors have slightly different requirements for switching to
protected mode. To insure upwards and downwards code compatibility with Intel 64
and IA-32 processors, we recommend that you follow these steps:

1. Disable interrupts. A CLI instruction disables maskable hardware interrupts. NMI
interrupts can be disabled with external circuitry. (Software must guarantee that
no exceptions or interrupts are generated during the mode switching operation.)

2. Execute the LGDT instruction to load the GDTR register with the base address of
the GDT.

3. Execute a MOV CR0 instruction that sets the PE flag (and optionally the PG flag)
in control register CR0.

4. Immediately following the MOV CR0 instruction, execute a far JMP or far CALL
instruction. (This operation is typically a far jump or call to the next instruction in
the instruction stream.)

5. The JMP or CALL instruction immediately after the MOV CR0 instruction changes
the flow of execution and serializes the processor.

6. If paging is enabled, the code for the MOV CR0 instruction and the JMP or CALL
instruction must come from a page that is identity mapped (that is, the linear
address before the jump is the same as the physical address after paging and
protected mode is enabled). The target instruction for the JMP or CALL instruction
does not need to be identity mapped.
Vol. 3A 9-17

PROCESSOR MANAGEMENT AND INITIALIZATION
7. If a local descriptor table is going to be used, execute the LLDT instruction to load
the segment selector for the LDT in the LDTR register.

8. Execute the LTR instruction to load the task register with a segment selector to
the initial protected-mode task or to a writable area of memory that can be used
to store TSS information on a task switch.

9. After entering protected mode, the segment registers continue to hold the
contents they had in real-address mode. The JMP or CALL instruction in step 4
resets the CS register. Perform one of the following operations to update the
contents of the remaining segment registers.

— Reload segment registers DS, SS, ES, FS, and GS. If the ES, FS, and/or GS
registers are not going to be used, load them with a null selector.

— Perform a JMP or CALL instruction to a new task, which automatically resets
the values of the segment registers and branches to a new code segment.

10. Execute the LIDT instruction to load the IDTR register with the address and limit
of the protected-mode IDT.

11. Execute the STI instruction to enable maskable hardware interrupts and perform
the necessary hardware operation to enable NMI interrupts.

Random failures can occur if other instructions exist between steps 3 and 4 above.
Failures will be readily seen in some situations, such as when instructions that refer-
ence memory are inserted between steps 3 and 4 while in system management
mode.

9.9.2 Switching Back to Real-Address Mode
The processor switches from protected mode back to real-address mode if software
clears the PE bit in the CR0 register with a MOV CR0 instruction. A procedure that re-
enters real-address mode should perform the following steps:

1. Disable interrupts. A CLI instruction disables maskable hardware interrupts. NMI
interrupts can be disabled with external circuitry.

2. If paging is enabled, perform the following operations:

— Transfer program control to linear addresses that are identity mapped to
physical addresses (that is, linear addresses equal physical addresses).

— Insure that the GDT and IDT are in identity mapped pages.

— Clear the PG bit in the CR0 register.

— Move 0H into the CR3 register to flush the TLB.

3. Transfer program control to a readable segment that has a limit of 64 KBytes
(FFFFH). This operation loads the CS register with the segment limit required in
real-address mode.
9-18 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION
4. Load segment registers SS, DS, ES, FS, and GS with a selector for a descriptor
containing the following values, which are appropriate for real-address mode:

— Limit = 64 KBytes (0FFFFH)

— Byte granular (G = 0)

— Expand up (E = 0)

— Writable (W = 1)

— Present (P = 1)

— Base = any value
The segment registers must be loaded with non-null segment selectors or the
segment registers will be unusable in real-address mode. Note that if the
segment registers are not reloaded, execution continues using the descriptor
attributes loaded during protected mode.

5. Execute an LIDT instruction to point to a real-address mode interrupt table that is
within the 1-MByte real-address mode address range.

6. Clear the PE flag in the CR0 register to switch to real-address mode.

7. Execute a far JMP instruction to jump to a real-address mode program. This
operation flushes the instruction queue and loads the appropriate base-address
value in the CS register.

8. Load the SS, DS, ES, FS, and GS registers as needed by the real-address mode
code. If any of the registers are not going to be used in real-address mode, write
0s to them.

9. Execute the STI instruction to enable maskable hardware interrupts and perform
the necessary hardware operation to enable NMI interrupts.

NOTE
All the code that is executed in steps 1 through 9 must be in a single
page and the linear addresses in that page must be identity mapped
to physical addresses.

9.10 INITIALIZATION AND MODE SWITCHING EXAMPLE
This section provides an initialization and mode switching example that can be incor-
porated into an application. This code was originally written to initialize the Intel386
processor, but it will execute successfully on the Pentium 4, Intel Xeon, P6 family,
Pentium, and Intel486 processors. The code in this example is intended to reside in
EPROM and to run following a hardware reset of the processor. The function of the
code is to do the following:
• Establish a basic real-address mode operating environment.
• Load the necessary protected-mode system data structures into RAM.
Vol. 3A 9-19

PROCESSOR MANAGEMENT AND INITIALIZATION
• Load the system registers with the necessary pointers to the data structures and
the appropriate flag settings for protected-mode operation.

• Switch the processor to protected mode.

Figure 9-3 shows the physical memory layout for the processor following a hardware
reset and the starting point of this example. The EPROM that contains the initializa-
tion code resides at the upper end of the processor’s physical memory address range,
starting at address FFFFFFFFH and going down from there. The address of the first
instruction to be executed is at FFFFFFF0H, the default starting address for the
processor following a hardware reset.

The main steps carried out in this example are summarized in Table 9-4. The source
listing for the example (with the filename STARTUP.ASM) is given in Example 9-1.
The line numbers given in Table 9-4 refer to the source listing.

The following are some additional notes concerning this example:
• When the processor is switched into protected mode, the original code segment

base-address value of FFFF0000H (located in the hidden part of the CS register)
is retained and execution continues from the current offset in the EIP register.
The processor will thus continue to execute code in the EPROM until a far jump or
call is made to a new code segment, at which time, the base address in the CS
register will be changed.

• Maskable hardware interrupts are disabled after a hardware reset and should
remain disabled until the necessary interrupt handlers have been installed. The
NMI interrupt is not disabled following a reset. The NMI# pin must thus be
inhibited from being asserted until an NMI handler has been loaded and made
available to the processor.

• The use of a temporary GDT allows simple transfer of tables from the EPROM to
anywhere in the RAM area. A GDT entry is constructed with its base pointing to
address 0 and a limit of 4 GBytes. When the DS and ES registers are loaded with
this descriptor, the temporary GDT is no longer needed and can be replaced by
the application GDT.

• This code loads one TSS and no LDTs. If more TSSs exist in the application, they
must be loaded into RAM. If there are LDTs they may be loaded as well.
9-20 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION
Figure 9-3. Processor State After Reset

Table 9-4. Main Initialization Steps in STARTUP.ASM Source Listing

STARTUP.ASM Line
Numbers

Description

From To

157 157 Jump (short) to the entry code in the EPROM

162 169 Construct a temporary GDT in RAM with one entry:
0 - null
1 - R/W data segment, base = 0, limit = 4 GBytes

171 172 Load the GDTR to point to the temporary GDT

174 177 Load CR0 with PE flag set to switch to protected mode

179 181 Jump near to clear real mode instruction queue

184 186 Load DS, ES registers with GDT[1] descriptor, so both point to the
entire physical memory space

0

FFFF FFFFH
After Reset

[CS.BASE+EIP] FFFF FFF0H

EIP = 0000 FFF0H

[SP, DS, SS, ES]

FFFF 0000H

64K EPROM

CS.BASE = FFFF 0000H
DS.BASE = 0H
ES.BASE = 0H
SS.BASE = 0H
ESP = 0H
Vol. 3A 9-21

PROCESSOR MANAGEMENT AND INITIALIZATION
9.10.1 Assembler Usage
In this example, the Intel assembler ASM386 and build tools BLD386 are used to
assemble and build the initialization code module. The following assumptions are
used when using the Intel ASM386 and BLD386 tools.
• The ASM386 will generate the right operand size opcodes according to the code-

segment attribute. The attribute is assigned either by the ASM386 invocation
controls or in the code-segment definition.

• If a code segment that is going to run in real-address mode is defined, it must be
set to a USE 16 attribute. If a 32-bit operand is used in an instruction in this code
segment (for example, MOV EAX, EBX), the assembler automatically generates
an operand prefix for the instruction that forces the processor to execute a 32-bit
operation, even though its default code-segment attribute is 16-bit.

• Intel's ASM386 assembler allows specific use of the 16- or 32-bit instructions, for
example, LGDTW, LGDTD, IRETD. If the generic instruction LGDT is used, the
default- segment attribute will be used to generate the right opcode.

188 195 Perform specific board initialization that is imposed by the new
protected mode

196 218 Copy the application's GDT from ROM into RAM

220 238 Copy the application's IDT from ROM into RAM

241 243 Load application's GDTR

244 245 Load application's IDTR

247 261 Copy the application's TSS from ROM into RAM

263 267 Update TSS descriptor and other aliases in GDT (GDT alias or IDT
alias)

277 277 Load the task register (without task switch) using LTR instruction

282 286 Load SS, ESP with the value found in the application's TSS

287 287 Push EFLAGS value found in the application's TSS

288 288 Push CS value found in the application's TSS

289 289 Push EIP value found in the application's TSS

290 293 Load DS, ES with the value found in the application's TSS

296 296 Perform IRET; pop the above values and enter the application code

Table 9-4. Main Initialization Steps in STARTUP.ASM Source Listing (Contd.)

STARTUP.ASM Line
Numbers

Description

From To
9-22 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION
9.10.2 STARTUP.ASM Listing
Example 9-1 provides high-level sample code designed to move the processor into
protected mode. This listing does not include any opcode and offset information.

Example 9-1. STARTUP.ASM

MS-DOS* 5.0(045-N) 386(TM) MACRO ASSEMBLER STARTUP 09:44:51 08/19/92
PAGE 1

MS-DOS 5.0(045-N) 386(TM) MACRO ASSEMBLER V4.0, ASSEMBLY OF MODULE
STARTUP

OBJECT MODULE PLACED IN startup.obj

ASSEMBLER INVOKED BY: f:\386tools\ASM386.EXE startup.a58 pw (132)

LINE SOURCE

 1 NAME STARTUP

 2

 3 ;;

 4 ;

 5 ; ASSUMPTIONS:

 6 ;

 7 ; 1. The bottom 64K of memory is ram, and can be used for

 8 ; scratch space by this module.

 9 ;

 10 ; 2. The system has sufficient free usable ram to copy the

 11 ; initial GDT, IDT, and TSS

 12 ;

 13 ;;

 14

 15 ; configuration data - must match with build definition

 16

 17 CS_BASE EQU 0FFFF0000H

 18

 19 ; CS_BASE is the linear address of the segment STARTUP_CODE

 20 ; - this is specified in the build language file

 21

 22 RAM_START EQU 400H

 23

 24 ; RAM_START is the start of free, usable ram in the linear

 25 ; memory space. The GDT, IDT, and initial TSS will be

 26 ; copied above this space, and a small data segment will be

 27 ; discarded at this linear address. The 32-bit word at
Vol. 3A 9-23

PROCESSOR MANAGEMENT AND INITIALIZATION
 28 ; RAM_START will contain the linear address of the first

 29 ; free byte above the copied tables - this may be useful if

 30 ; a memory manager is used.

 31

 32 TSS_INDEX EQU 10

 33

 34 ; TSS_INDEX is the index of the TSS of the first task to

 35 ; run after startup

 36

 37

 38 ;;

 39

 40 ; ------------------------- STRUCTURES and EQU ---------------

 41 ; structures for system data

 42

 43 ; TSS structure

 44 TASK_STATE STRUC

 45 link DW ?

 46 link_h DW ?

 47 ESP0 DD ?

 48 SS0 DW ?

 49 SS0_h DW ?

 50 ESP1 DD ?

 51 SS1 DW ?

 52 SS1_h DW ?

 53 ESP2 DD ?

 54 SS2 DW ?

 55 SS2_h DW ?

 56 CR3_reg DD ?

 57 EIP_reg DD ?

 58 EFLAGS_regDD ?

 59 EAX_reg DD ?

 60 ECX_reg DD ?

 61 EDX_reg DD ?

 62 EBX_reg DD ?

 63 ESP_reg DD ?

 64 EBP_reg DD ?

 65 ESI_reg DD ?

 66 EDI_reg DD ?

 67 ES_reg DW ?

 68 ES_h DW ?

 69 CS_reg DW ?

 70 CS_h DW ?
9-24 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION
 71 SS_reg DW ?

 72 SS_h DW ?

 73 DS_reg DW ?

 74 DS_h DW ?

 75 FS_reg DW ?

 76 FS_h DW ?

 77 GS_reg DW ?

 78 GS_h DW ?

 79 LDT_reg DW ?

 80 LDT_h DW ?

 81 TRAP_reg DW ?

 82 IO_map_baseDW ?

 83 TASK_STATE ENDS

 84

 85 ; basic structure of a descriptor

 86 DESC STRUC

 87 lim_0_15 DW ?

 88 bas_0_15 DW ?

 89 bas_16_23DB ?

 90 access DB ?

 91 gran DB ?

 92 bas_24_31DB ?

 93 DESC ENDS

 94

 95 ; structure for use with LGDT and LIDT instructions

 96 TABLE_REG STRUC

 97 table_limDW ?

 98 table_linearDD ?

 99 TABLE_REG ENDS

 100

 101 ; offset of GDT and IDT descriptors in builder generated GDT

 102 GDT_DESC_OFF EQU 1*SIZE(DESC)

 103 IDT_DESC_OFF EQU 2*SIZE(DESC)

 104

 105 ; equates for building temporary GDT in RAM

 106 LINEAR_SEL EQU 1*SIZE (DESC)

 107 LINEAR_PROTO_LO EQU 00000FFFFH ; LINEAR_ALIAS

 108 LINEAR_PROTO_HI EQU 000CF9200H

 109

 110 ; Protection Enable Bit in CR0

 111 PE_BIT EQU 1B

 112

 113 ; --
Vol. 3A 9-25

PROCESSOR MANAGEMENT AND INITIALIZATION
 114

 115 ; ------------------------- DATA SEGMENT----------------------

 116

 117 ; Initially, this data segment starts at linear 0, according

 118 ; to the processor’s power-up state.

 119

 120 STARTUP_DATA SEGMENT RW

 121

 122 free_mem_linear_base LABEL DWORD

 123 TEMP_GDT LABEL BYTE ; must be first in segment

 124 TEMP_GDT_NULL_DESC DESC <>

 125 TEMP_GDT_LINEAR_DESC DESC <>

 126

 127 ; scratch areas for LGDT and LIDT instructions

 128 TEMP_GDT_SCRATCH TABLE_REG <>

 129 APP_GDT_RAM TABLE_REG <>

 130 APP_IDT_RAM TABLE_REG <>

 131 ; align end_data

 132 fill DW ?

 133

 134 ; last thing in this segment - should be on a dword boundary

 135 end_data LABEL BYTE

 136

 137 STARTUP_DATA ENDS

 138 ; --

 139

 140

 141 ; ------------------------- CODE SEGMENT----------------------

 142 STARTUP_CODE SEGMENT ER PUBLIC USE16

 143

 144 ; filled in by builder

 145 PUBLIC GDT_EPROM

 146 GDT_EPROM TABLE_REG <>

 147

 148 ; filled in by builder

 149 PUBLIC IDT_EPROM

 150 IDT_EPROM TABLE_REG <>

 151

 152 ; entry point into startup code - the bootstrap will vector

 153 ; here with a near JMP generated by the builder. This

 154 ; label must be in the top 64K of linear memory.

 155

 156 PUBLIC STARTUP

 157 STARTUP:

 158
9-26 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION
 159 ; DS,ES address the bottom 64K of flat linear memory

 160 ASSUME DS:STARTUP_DATA, ES:STARTUP_DATA

 161 ; See Figure 9-4

 162 ; load GDTR with temporary GDT

 163 LEA EBX,TEMP_GDT ; build the TEMP_GDT in low ram,

 164 MOV DWORD PTR [EBX],0 ; where we can address

 165 MOV DWORD PTR [EBX]+4,0

 166 MOV DWORD PTR [EBX]+8, LINEAR_PROTO_LO

 167 MOV DWORD PTR [EBX]+12, LINEAR_PROTO_HI

 168 MOV TEMP_GDT_scratch.table_linear,EBX

 169 MOV TEMP_GDT_scratch.table_lim,15

 170

 171 DB 66H; execute a 32 bit LGDT

 172 LGDT TEMP_GDT_scratch

 173

 174 ; enter protected mode

 175 MOV EBX,CR0

 176 OR EBX,PE_BIT

 177 MOV CR0,EBX

 178

 179 ; clear prefetch queue

 180 JMP CLEAR_LABEL

 181 CLEAR_LABEL:

 182

 183 ; make DS and ES address 4G of linear memory

 184 MOV CX,LINEAR_SEL

 185 MOV DS,CX

 186 MOV ES,CX

 187

 188 ; do board specific initialization

 189 ;

 190 ;

 191 ;

 192 ;

 193

 194

 195 ; See Figure 9-5

 196 ; copy EPROM GDT to ram at:

 197 ; RAM_START + size (STARTUP_DATA)

 198 MOV EAX,RAM_START

 199 ADD EAX,OFFSET (end_data)

 200 MOV EBX,RAM_START
Vol. 3A 9-27

PROCESSOR MANAGEMENT AND INITIALIZATION
 201 MOV ECX, CS_BASE

 202 ADD ECX, OFFSET (GDT_EPROM)

 203 MOV ESI, [ECX].table_linear

 204 MOV EDI,EAX

 205 MOVZX ECX, [ECX].table_lim

 206 MOV APP_GDT_ram[EBX].table_lim,CX

 207 INC ECX

 208 MOV EDX,EAX

 209 MOV APP_GDT_ram[EBX].table_linear,EAX

 210 ADD EAX,ECX

 211 REP MOVS BYTE PTR ES:[EDI],BYTE PTR DS:[ESI]

 212

 213 ; fixup GDT base in descriptor

 214 MOV ECX,EDX

 215 MOV [EDX].bas_0_15+GDT_DESC_OFF,CX

 216 ROR ECX,16

 217 MOV [EDX].bas_16_23+GDT_DESC_OFF,CL

 218 MOV [EDX].bas_24_31+GDT_DESC_OFF,CH

 219

 220 ; copy EPROM IDT to ram at:

 221 ; RAM_START+size(STARTUP_DATA)+SIZE (EPROM GDT)

 222 MOV ECX, CS_BASE

 223 ADD ECX, OFFSET (IDT_EPROM)

 224 MOV ESI, [ECX].table_linear

 225 MOV EDI,EAX

 226 MOVZX ECX, [ECX].table_lim

 227 MOV APP_IDT_ram[EBX].table_lim,CX

 228 INC ECX

 229 MOV APP_IDT_ram[EBX].table_linear,EAX

 230 MOV EBX,EAX

 231 ADD EAX,ECX

 232 REP MOVS BYTE PTR ES:[EDI],BYTE PTR DS:[ESI]

 233

 234 ; fixup IDT pointer in GDT

 235 MOV [EDX].bas_0_15+IDT_DESC_OFF,BX

 236 ROR EBX,16

 237 MOV [EDX].bas_16_23+IDT_DESC_OFF,BL

 238 MOV [EDX].bas_24_31+IDT_DESC_OFF,BH

 239

 240 ; load GDTR and IDTR

 241 MOV EBX,RAM_START

 242 DB 66H ; execute a 32 bit LGDT

 243 LGDT APP_GDT_ram[EBX]

 244 DB 66H ; execute a 32 bit LIDT

 245 LIDT APP_IDT_ram[EBX]
9-28 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION
 246

 247 ; move the TSS

 248 MOV EDI,EAX

 249 MOV EBX,TSS_INDEX*SIZE(DESC)

 250 MOV ECX,GDT_DESC_OFF ;build linear address for TSS

 251 MOV GS,CX

 252 MOV DH,GS:[EBX].bas_24_31

 253 MOV DL,GS:[EBX].bas_16_23

 254 ROL EDX,16

 255 MOV DX,GS:[EBX].bas_0_15

 256 MOV ESI,EDX

 257 LSL ECX,EBX

 258 INC ECX

 259 MOV EDX,EAX

 260 ADD EAX,ECX

 261 REP MOVS BYTE PTR ES:[EDI],BYTE PTR DS:[ESI]

 262

 263 ; fixup TSS pointer

 264 MOV GS:[EBX].bas_0_15,DX

 265 ROL EDX,16

 266 MOV GS:[EBX].bas_24_31,DH

 267 MOV GS:[EBX].bas_16_23,DL

 268 ROL EDX,16

 269 ;save start of free ram at linear location RAMSTART

 270 MOV free_mem_linear_base+RAM_START,EAX

 271

 272 ;assume no LDT used in the initial task - if necessary,

 273 ;code to move the LDT could be added, and should resemble

 274 ;that used to move the TSS

 275

 276 ; load task register

 277 LTR BX ; No task switch, only descriptor loading

 278 ; See Figure 9-6

 279 ; load minimal set of registers necessary to simulate task

 280 ; switch

 281

 282

 283 MOV AX,[EDX].SS_reg ; start loading registers

 284 MOV EDI,[EDX].ESP_reg

 285 MOV SS,AX

 286 MOV ESP,EDI ; stack now valid

 287 PUSH DWORD PTR [EDX].EFLAGS_reg

 288 PUSH DWORD PTR [EDX].CS_reg
Vol. 3A 9-29

PROCESSOR MANAGEMENT AND INITIALIZATION
 289 PUSH DWORD PTR [EDX].EIP_reg

 290 MOV AX,[EDX].DS_reg

 291 MOV BX,[EDX].ES_reg

 292 MOV DS,AX ; DS and ES no longer linear memory

 293 MOV ES,BX

294

 295 ; simulate far jump to initial task

 296 IRETD

 297

 298 STARTUP_CODE ENDS

*** WARNING #377 IN 298, (PASS 2) SEGMENT CONTAINS PRIVILEGED
INSTRUCTION(S)

 299

 300 END STARTUP, DS:STARTUP_DATA, SS:STARTUP_DATA

 301

 302

ASSEMBLY COMPLETE, 1 WARNING, NO ERRORS.
9-30 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION
Figure 9-4. Constructing Temporary GDT and Switching to Protected Mode (Lines
162-172 of List File)

FFFF FFFFH

Base=0, Limit=4G

START: [CS.BASE+EIP]

TEMP_GDT

• Jump near start

FFFF 0000H

• Construct TEMP_GDT
• LGDT
• Move to protected mode

DS, ES = GDT[1] 4 GB

0
GDT [1]
GDT [0]

GDT_SCRATCH
Base
Limit
Vol. 3A 9-31

PROCESSOR MANAGEMENT AND INITIALIZATION
Figure 9-5. Moving the GDT, IDT, and TSS from ROM to RAM (Lines 196-261 of List
File)

FFFF FFFFH

GDT RAM

• Move the GDT, IDT, TSS

• Fix Aliases

• LTR

0

RAM_START

TSS
IDT
GDT

TSS RAM
IDT RAM

from ROM to RAM
9-32 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION
9.10.3 MAIN.ASM Source Code
The file MAIN.ASM shown in Example 9-2 defines the data and stack segments for
this application and can be substituted with the main module task written in a high-
level language that is invoked by the IRET instruction executed by STARTUP.ASM.

Example 9-2. MAIN.ASM

NAME main_module
data SEGMENT RW

dw 1000 dup(?)
DATA ENDS

stack stackseg 800

Figure 9-6. Task Switching (Lines 282-296 of List File)

GDT RAM
RAM_START

TSS RAM
IDT RAM

GDT Alias
IDT Alias

DS

EIP
EFLAGS

CS
SS

0

ES

ESP

•

•
•

•
•
•

SS = TSS.SS
ESP = TSS.ESP
PUSH TSS.EFLAG
PUSH TSS.CS
PUSH TSS.EIP
ES = TSS.ES
DS = TSS.DS
IRET

GDT
Vol. 3A 9-33

PROCESSOR MANAGEMENT AND INITIALIZATION
CODE SEGMENT ER use32 PUBLIC
main_start:

nop
nop
nop

CODE ENDS

END main_start, ds:data, ss:stack

9.10.4 Supporting Files
The batch file shown in Example 9-3 can be used to assemble the source code files
STARTUP.ASM and MAIN.ASM and build the final application.

Example 9-3. Batch File to Assemble and Build the Application

ASM386 STARTUP.ASM

ASM386 MAIN.ASM

BLD386 STARTUP.OBJ, MAIN.OBJ buildfile(EPROM.BLD) bootstrap(STARTUP)
Bootload

BLD386 performs several operations in this example:

It allocates physical memory location to segments and tables.

It generates tables using the build file and the input files.

It links object files and resolves references.

It generates a boot-loadable file to be programmed into the EPROM.

Example 9-4 shows the build file used as an input to BLD386 to perform the above
functions.

Example 9-4. Build File

INIT_BLD_EXAMPLE;

SEGMENT

 *SEGMENTS(DPL = 0)

 , startup.startup_code(BASE = 0FFFF0000H)

 ;

TASK

 BOOT_TASK(OBJECT = startup, INITIAL,DPL = 0,

NOT INTENABLED)

, PROTECTED_MODE_TASK(OBJECT = main_module,DPL = 0,

NOT INTENABLED)

 ;
9-34 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION
TABLE

 GDT (

 LOCATION = GDT_EPROM

 , ENTRY = (

 10: PROTECTED_MODE_TASK

 , startup.startup_code

 , startup.startup_data

 , main_module.data

 , main_module.code

 , main_module.stack

)

),

 IDT (

 LOCATION = IDT_EPROM

);

MEMORY

 (

 RESERVE = (0..3FFFH

-- Area for the GDT, IDT, TSS copied from ROM

 , 60000H..0FFFEFFFFH)

 , RANGE = (ROM_AREA = ROM (0FFFF0000H..0FFFFFFFFH))

-- Eprom size 64K

 , RANGE = (RAM_AREA = RAM (4000H..05FFFFH))

);

END

Table 9-5 shows the relationship of each build item with an ASM source file.

Table 9-5. Relationship Between BLD Item and ASM Source File

Item ASM386 and
Startup.A58

BLD386 Controls
and BLD file

Effect

Bootstrap public startup
startup:

bootstrap
start(startup)

Near jump at 0FFFFFFF0H
to start.

GDT location public GDT_EPROM
GDT_EPROM TABLE_REG <>

TABLE
GDT(location = GDT_EPROM)

The location of the GDT
will be programmed into
the GDT_EPROM location.

IDT location public IDT_EPROM
IDT_EPROM TABLE_REG <>

TABLE
IDT(location = IDT_EPROM

The location of the IDT
will be programmed into
the IDT_EPROM location.
Vol. 3A 9-35

PROCESSOR MANAGEMENT AND INITIALIZATION
9.11 MICROCODE UPDATE FACILITIES
The Pentium 4, Intel Xeon, and P6 family processors have the capability to correct
errata by loading an Intel-supplied data block into the processor. The data block is
called a microcode update. This section describes the mechanisms the BIOS needs to
provide in order to use this feature during system initialization. It also describes a
specification that permits the incorporation of future updates into a system BIOS.

Intel considers the release of a microcode update for a silicon revision to be the
equivalent of a processor stepping and completes a full-stepping level validation for
releases of microcode updates.

A microcode update is used to correct errata in the processor. The BIOS, which has
an update loader, is responsible for loading the update on processors during system
initialization (Figure 9-7). There are two steps to this process: the first is to incorpo-
rate the necessary update data blocks into the BIOS; the second is to load update
data blocks into the processor.

RAM start RAM_START equ 400H memory (reserve = (0..3FFFH)) RAM_START is used as
the ram destination for
moving the tables. It must
be excluded from the
application's segment
area.

Location of the
application TSS
in the GDT

TSS_INDEX EQU 10 TABLE GDT(
ENTRY = (10:
PROTECTED_MODE_
TASK))

Put the descriptor of the
application TSS in GDT
entry 10.

EPROM size
and location

size and location of the
initialization code

SEGMENT startup.code (base =
0FFFF0000H) ...memory
(RANGE(
ROM_AREA = ROM(x..y))

Initialization code size
must be less than 64K
and resides at upper most
64K of the 4-GByte
memory space.

Table 9-5. Relationship Between BLD Item and ASM Source File (Contd.)

Item ASM386 and
Startup.A58

BLD386 Controls
and BLD file

Effect
9-36 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION
9.11.1 Microcode Update
A microcode update consists of an Intel-supplied binary that contains a descriptive
header and data. No executable code resides within the update. Each microcode
update is tailored for a specific list of processor signatures. A mismatch of the
processor’s signature with the signature contained in the update will result in a
failure to load. A processor signature includes the extended family, extended model,
type, family, model, and stepping of the processor (starting with processor family
0fH, model 03H, a given microcode update may be associated with one of multiple
processor signatures; see Section 9.11.2 for detail).

Microcode updates are composed of a multi-byte header, followed by encrypted data
and then by an optional extended signature table. Table 9-6 provides a definition of
the fields; Table 9-7 shows the format of an update.

The header is 48 bytes. The first 4 bytes of the header contain the header version.
The update header and its reserved fields are interpreted by software based upon the
header version. An encoding scheme guards against tampering and provides a
means for determining the authenticity of any given update. For microcode updates
with a data size field equal to 00000000H, the size of the microcode update is 2048
bytes. The first 48 bytes contain the microcode update header. The remaining 2000
bytes contain encrypted data.

For microcode updates with a data size not equal to 00000000H, the total size field
specifies the size of the microcode update. The first 48 bytes contain the microcode
update header. The second part of the microcode update is the encrypted data. The
data size field of the microcode update header specifies the encrypted data size, its
value must be a multiple of the size of DWORD. The total size field of the microcode
update header specifies the encrypted data size plus the header size; its value must
be in multiples of 1024 bytes (1 KBytes). The optional extended signature table if
implemented follows the encrypted data, and its size is calculated by (Total Size –
(Data Size + 48)).

Figure 9-7. Applying Microcode Updates

CPU

BIOS

Update
BlocksNew Update

Update
Loader
Vol. 3A 9-37

PROCESSOR MANAGEMENT AND INITIALIZATION
NOTE
The optional extended signature table is supported starting with
processor family 0FH, model 03H.

.
Table 9-6. Microcode Update Field Definitions

Field Name Offset
(bytes)

Length
(bytes)

Description

Header Version 0 4 Version number of the update header.

Update Revision 4 4 Unique version number for the update, the basis for the
update signature provided by the processor to indicate
the current update functioning within the processor.
Used by the BIOS to authenticate the update and verify
that the processor loads successfully. The value in this
field cannot be used for processor stepping identification
alone. This is a signed 32-bit number.

Date 8 4 Date of the update creation in binary format: mmddyyyy
(e.g. 07/18/98 is 07181998H).

Processor
Signature

12 4 Extended family, extended model, type, family, model,
and stepping of processor that requires this particular
update revision (e.g., 00000650H). Each microcode
update is designed specifically for a given extended
family, extended model, type, family, model, and stepping
of the processor.

The BIOS uses the processor signature field in
conjunction with the CPUID instruction to determine
whether or not an update is appropriate to load on a
processor. The information encoded within this field
exactly corresponds to the bit representations returned
by the CPUID instruction.

Checksum 16 4 Checksum of Update Data and Header. Used to verify the
integrity of the update header and data. Checksum is
correct when the summation of all the DWORDs (including
the extended Processor Signature Table) that comprise
the microcode update result in 00000000H.

Loader Revision 20 4 Version number of the loader program needed to
correctly load this update. The initial version is
00000001H.

Processor Flags 24 4 Platform type information is encoded in the lower 8 bits
of this 4-byte field. Each bit represents a particular
platform type for a given CPUID. The BIOS uses the
processor flags field in conjunction with the platform Id
bits in MSR (17H) to determine whether or not an update
is appropriate to load on a processor. Multiple bits may be
set representing support for multiple platform IDs.

Data Size 28 4 Specifies the size of the encrypted data in bytes, and
must be a multiple of DWORDs. If this value is
00000000H, then the microcode update encrypted data
is 2000 bytes (or 500 DWORDs).

Total Size 32 4 Specifies the total size of the microcode update in bytes.
It is the summation of the header size, the encrypted
data size and the size of the optional extended signature
table. This value is always a multiple of 1024.
9-38 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION
Reserved 36 12 Reserved fields for future expansion

Update Data 48 Data Size or
2000

Update data

Extended Signature
Count

Data Size +
48

4 Specifies the number of extended signature structures
(Processor Signature[n], processor flags[n] and
checksum[n]) that exist in this microcode update.

Extended
Checksum

Data Size +
52

4 Checksum of update extended processor signature table.
Used to verify the integrity of the extended processor
signature table. Checksum is correct when the
summation of the DWORDs that comprise the extended
processor signature table results in 00000000H.

Reserved Data Size +
56

12 Reserved fields

Processor
Signature[n]

Data Size +
68 + (n * 12)

4 Extended family, extended model, type, family, model,
and stepping of processor that requires this particular
update revision (e.g., 00000650H). Each microcode
update is designed specifically for a given extended
family, extended model, type, family, model, and stepping
of the processor.

The BIOS uses the processor signature field in
conjunction with the CPUID instruction to determine
whether or not an update is appropriate to load on a
processor. The information encoded within this field
exactly corresponds to the bit representations returned
by the CPUID instruction.

Processor Flags[n] Data Size +
72 + (n * 12)

4 Platform type information is encoded in the lower 8 bits
of this 4-byte field. Each bit represents a particular
platform type for a given CPUID. The BIOS uses the
processor flags field in conjunction with the platform Id
bits in MSR (17H) to determine whether or not an update
is appropriate to load on a processor. Multiple bits may be
set representing support for multiple platform IDs.

Checksum[n] Data Size +
76 + (n * 12)

4 Used by utility software to decompose a microcode
update into multiple microcode updates where each of
the new updates is constructed without the optional
Extended Processor Signature Table.

To calculate the Checksum, substitute the Primary
Processor Signature entry and the Processor Flags entry
with the corresponding Extended Patch entry. Delete the
Extended Processor Signature Table entries. The
Checksum is correct when the summation of all DWORDs
that comprise the created Extended Processor Patch
results in 00000000H.

Table 9-6. Microcode Update Field Definitions (Contd.)

Field Name Offset
(bytes)

Length
(bytes)

Description
Vol. 3A 9-39

PROCESSOR MANAGEMENT AND INITIALIZATION
Table 9-7. Microcode Update Format
31 24 16 8 0 Bytes

Header Version 0

Update Revision 4

Month: 8 Day: 8 Year: 16 8

Processor Signature (CPUID) 12

Res: 4

Extended

Fam
ily: 8

Extended
M

ode: 4

Reserved: 2

Type: 2

Fam
ily: 4

M
odel: 4

Stepping: 4

Checksum 16

Loader Revision 20

Processor Flags 24

Reserved (24 bits)

P7 P6 P5 P4 P3 P2 P1 P0

Data Size 28

Total Size 32

Reserved (12 Bytes) 36

Update Data (Data Size bytes, or 2000 Bytes if Data Size = 00000000H) 48

Extended Signature Count ‘n’ Data Size
+ 48

Extended Processor Signature Table Checksum Data Size
+ 52

Reserved (12 Bytes) Data Size
+ 56

Processor Signature[n] Data Size
+ 68 +
(n * 12)

Processor Flags[n] Data Size
+ 72 +
(n * 12)

Checksum[n] Data Size
+ 76 +
(n * 12)
9-40 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION
9.11.2 Optional Extended Signature Table
The extended signature table is a structure that may be appended to the end of the
encrypted data when the encrypted data only supports a single processor signature
(optional case). The extended signature table will always be present when the
encrypted data supports multiple processor steppings and/or models (required
case).

The extended signature table consists of a 20-byte extended signature header struc-
ture, which contains the extended signature count, the extended processor signature
table checksum, and 12 reserved bytes (Table 9-8). Following the extended signa-
ture header structure, the extended signature table contains 0-to-n extended
processor signature structures.

Each processor signature structure consist of the processor signature, processor
flags, and a checksum (Table 9-9).

The extended signature count in the extended signature header structure indicates
the number of processor signature structures that exist in the extended signature
table.

The extended processor signature table checksum is a checksum of all DWORDs that
comprise the extended signature table. That includes the extended signature count,
extended processor signature table checksum, 12 reserved bytes and the n
processor signature structures. A valid extended signature table exists when the
result of a DWORD checksum is 00000000H.

9.11.3 Processor Identification
Each microcode update is designed to for a specific processor or set of processors. To
determine the correct microcode update to load, software must ensure that one of
the processor signatures embedded in the microcode update matches the 32-bit
processor signature returned by the CPUID instruction when executed by the target
processor with EAX = 1. Attempting to load a microcode update that does not match

Table 9-8. Extended Processor Signature Table Header Structure

Extended Signature Count ‘n’ Data Size + 48
Extended Processor Signature Table Checksum Data Size + 52
Reserved (12 Bytes) Data Size + 56

Table 9-9. Processor Signature Structure

Processor Signature[n] Data Size + 68 + (n * 12)
Processor Flags[n] Data Size + 72 + (n * 12)
Checksum[n] Data Size + 76 + (n * 12)
Vol. 3A 9-41

PROCESSOR MANAGEMENT AND INITIALIZATION
a processor signature embedded in the microcode update with the processor signa-
ture returned by CPUID will cause the BIOS to reject the update.

Example 9-5 shows how to check for a valid processor signature match between the
processor and microcode update.

Example 9-5. Pseudo Code to Validate the Processor Signature

ProcessorSignature ← CPUID(1):EAX

If (Update.HeaderVersion = 00000001h)
{

// first check the ProcessorSignature field
If (ProcessorSignature = Update.ProcessorSignature)

Success

// if extended signature is present
Else If (Update.TotalSize > (Update.DataSize + 48))
{

//
// Assume the Data Size has been used to calculate the
// location of Update.ProcessorSignature[0].
//

For (N ← 0; ((N < Update.ExtendedSignatureCount) AND
 (ProcessorSignature != Update.ProcessorSignature[N])); N++);

// if the loops ended when the iteration count is
// less than the number of processor signatures in
// the table, we have a match

If (N < Update.ExtendedSignatureCount)
Success

Else
Fail

}
Else

Fail
Else

Fail

9.11.4 Platform Identification
In addition to verifying the processor signature, the intended processor platform type
must be determined to properly target the microcode update. The intended
processor platform type is determined by reading the IA32_PLATFORM_ID register,
(MSR 17H). This 64-bit register must be read using the RDMSR instruction.
9-42 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION
The three platform ID bits, when read as a binary coded decimal (BCD) number, indi-
cate the bit position in the microcode update header’s processor flags field associated
with the installed processor. The processor flags in the 48-byte header and the
processor flags field associated with the extended processor signature structures
may have multiple bits set. Each set bit represents a different platform ID that the
update supports.

Register Name: IA32_PLATFORM_ID
MSR Address: 017H
Access: Read Only

IA32_PLATFORM_ID is a 64-bit register accessed only when referenced as a Qword through a
RDMSR instruction.

To validate the platform information, software may implement an algorithm similar to
the algorithms in Example 9-6.

Example 9-6. Pseudo Code Example of Processor Flags Test

Flag ← 1 << IA32_PLATFORM_ID[52:50]

If (Update.HeaderVersion = 00000001h)
{

If (Update.ProcessorFlags & Flag)
{

Load Update

Table 9-10. Processor Flags

Bit Descriptions
63:53 Reserved
52:50 Platform Id Bits (RO). The field gives information concerning the intended platform for

the processor. See also Table 9-7.

52 51 50
0 0 0 Processor Flag 0
0 0 1 Processor Flag 1
0 1 0 Processor Flag 2
0 1 1 Processor Flag 3
1 0 0 Processor Flag 4
1 0 1 Processor Flag 5
1 1 0 Processor Flag 6
1 1 1 Processor Flag 7

49:0 Reserved
Vol. 3A 9-43

PROCESSOR MANAGEMENT AND INITIALIZATION
}
Else
{

//
// Assume the Data Size has been used to calculate the
// location of Update.ProcessorSignature[N] and a match
// on Update.ProcessorSignature[N] has already succeeded
//

If (Update.ProcessorFlags[n] & Flag)
{

Load Update
}

}
}

9.11.5 Microcode Update Checksum
Each microcode update contains a DWORD checksum located in the update header. It
is software’s responsibility to ensure that a microcode update is not corrupt. To check
for a corrupt microcode update, software must perform a unsigned DWORD (32-bit)
checksum of the microcode update. Even though some fields are signed, the
checksum procedure treats all DWORDs as unsigned. Microcode updates with a
header version equal to 00000001H must sum all DWORDs that comprise the micro-
code update. A valid checksum check will yield a value of 00000000H. Any other
value indicates the microcode update is corrupt and should not be loaded.

The checksum algorithm shown by the pseudo code in Example 9-7 treats the micro-
code update as an array of unsigned DWORDs. If the data size DWORD field at byte
offset 32 equals 00000000H, the size of the encrypted data is 2000 bytes, resulting
in 500 DWORDs. Otherwise the microcode update size in DWORDs = (Total Size / 4),
where the total size is a multiple of 1024 bytes (1 KBytes).

Example 9-7. Pseudo Code Example of Checksum Test

N ← 512

If (Update.DataSize != 00000000H)
N ← Update.TotalSize / 4

ChkSum ← 0
For (I ← 0; I < N; I++)
{

ChkSum ← ChkSum + MicrocodeUpdate[I]
}

9-44 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION
If (ChkSum = 00000000H)
Success

Else
Fail

9.11.6 Microcode Update Loader
This section describes an update loader used to load an update into a Pentium 4, Intel
Xeon, or P6 family processor. It also discusses the requirements placed on the BIOS
to ensure proper loading. The update loader described contains the minimal instruc-
tions needed to load an update. The specific instruction sequence that is required to
load an update is dependent upon the loader revision field contained within the
update header. This revision is expected to change infrequently (potentially, only
when new processor models are introduced).

Example 9-8 below represents the update loader with a loader revision of
00000001H. Note that the microcode update must be aligned on a 16-byte boundary
and the size of the microcode update must be 1-KByte granular.

Example 9-8. Assembly Code Example of Simple Microcode Update Loader

mov ecx,79h ; MSR to read in ECX

xor eax,eax ; clear EAX

xor ebx,ebx ; clear EBX

mov ax,cs ; Segment of microcode update

shl eax,4

mov bx,offset Update ; Offset of microcode update

add eax,ebx ; Linear Address of Update in EAX

add eax,48d ; Offset of the Update Data within the Update

xor edx,edx ; Zero in EDX

WRMSR ; microcode update trigger

The loader shown in Example 9-8 assumes that update is the address of a microcode
update (header and data) embedded within the code segment of the BIOS. It also
assumes that the processor is operating in real mode. The data may reside anywhere
in memory, aligned on a 16-byte boundary, that is accessible by the processor within
its current operating mode.

Before the BIOS executes the microcode update trigger (WRMSR) instruction, the
following must be true:
• In 64-bit mode, EAX contains the lower 32-bits of the microcode update linear

address. In protected mode, EAX contains the full 32-bit linear address of the
microcode update.

• In 64-bit mode, EDX contains the upper 32-bits of the microcode update linear
address. In protected mode, EDX equals zero.
Vol. 3A 9-45

PROCESSOR MANAGEMENT AND INITIALIZATION
• ECX contains 79H (address of IA32_BIOS_UPDT_TRIG).

Other requirements are:
• If the update is loaded while the processor is in real mode, then the update data

may not cross a segment boundary.
• If the update is loaded while the processor is in real mode, then the update data

may not exceed a segment limit.
• If paging is enabled, pages that are currently present must map the update data.
• The microcode update data requires a 16-byte boundary alignment.

9.11.6.1 Hard Resets in Update Loading
The effects of a loaded update are cleared from the processor upon a hard reset.
Therefore, each time a hard reset is asserted during the BIOS POST, the update must
be reloaded on all processors that observed the reset. The effects of a loaded update
are, however, maintained across a processor INIT. There are no side effects caused
by loading an update into a processor multiple times.

9.11.6.2 Update in a Multiprocessor System
A multiprocessor (MP) system requires loading each processor with update data
appropriate for its CPUID and platform ID bits. The BIOS is responsible for ensuring
that this requirement is met and that the loader is located in a module executed by
all processors in the system. If a system design permits multiple steppings of
Pentium 4, Intel Xeon, and P6 family processors to exist concurrently; then the BIOS
must verify individual processors against the update header information to ensure
appropriate loading. Given these considerations, it is most practical to load the
update during MP initialization.

9.11.6.3 Update in a System Supporting Intel Hyper-Threading Technology
Intel Hyper-Threading Technology has implications on the loading of the microcode
update. The update must be loaded for each core in a physical processor. Thus, for a
processor supporting Intel Hyper-Threading Technology, only one logical processor
per core is required to load the microcode update. Each individual logical processor
can independently load the update. However, MP initialization must provide some
mechanism (e.g. a software semaphore) to force serialization of microcode update
loads and to prevent simultaneous load attempts to the same core.

9.11.6.4 Update in a System Supporting Dual-Core Technology
Dual-core technology has implications on the loading of the microcode update. The
microcode update facility is not shared between processor cores in the same physical
package. The update must be loaded for each core in a physical processor.
9-46 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION
If processor core supports Intel Hyper-Threading Technology, the guideline described
in Section 9.11.6.3 also applies.

9.11.6.5 Update Loader Enhancements
The update loader presented in Section 9.11.6, “Microcode Update Loader,” is a
minimal implementation that can be enhanced to provide additional functionality.
Potential enhancements are described below:
• BIOS can incorporate multiple updates to support multiple steppings of the

Pentium 4, Intel Xeon, and P6 family processors. This feature provides for
operating in a mixed stepping environment on an MP system and enables a user
to upgrade to a later version of the processor. In this case, modify the loader to
check the CPUID and platform ID bits of the processor that it is running on
against the available headers before loading a particular update. The number of
updates is only limited by available BIOS space.

• A loader can load the update and test the processor to determine if the update
was loaded correctly. See Section 9.11.7, “Update Signature and Verification.”

• A loader can verify the integrity of the update data by performing a checksum on
the double words of the update summing to zero. See Section 9.11.5, “Microcode
Update Checksum.”

• A loader can provide power-on messages indicating successful loading of an
update.

9.11.7 Update Signature and Verification
The Pentium 4, Intel Xeon, and P6 family processors provide capabilities to verify the
authenticity of a particular update and to identify the current update revision. This
section describes the model-specific extensions of processors that support this
feature. The update verification method below assumes that the BIOS will only verify
an update that is more recent than the revision currently loaded in the processor.

CPUID returns a value in a model specific register in addition to its usual register
return values. The semantics of CPUID cause it to deposit an update ID value in the
64-bit model-specific register at address 08BH (IA32_BIOS_SIGN_ID). If no update
is present in the processor, the value in the MSR remains unmodified. The BIOS must
pre-load a zero into the MSR before executing CPUID. If a read of the MSR at 8BH still
returns zero after executing CPUID, this indicates that no update is present.

The update ID value returned in the EDX register after RDMSR executes indicates the
revision of the update loaded in the processor. This value, in combination with the
CPUID value returned in the EAX register, uniquely identifies a particular update. The
signature ID can be directly compared with the update revision field in a microcode
update header for verification of a correct load. No consecutive updates released for
a given stepping of a processor may share the same signature. The processor signa-
ture returned by CPUID differentiates updates for different steppings.
Vol. 3A 9-47

PROCESSOR MANAGEMENT AND INITIALIZATION
9.11.7.1 Determining the Signature
An update that is successfully loaded into the processor provides a signature that
matches the update revision of the currently functioning revision. This signature is
available any time after the actual update has been loaded. Requesting the signature
does not have a negative impact upon a loaded update.

The procedure for determining this signature shown in Example 9-9.

Example 9-9. Assembly Code to Retrieve the Update Revision

MOV ECX, 08BH ;IA32_BIOS_SIGN_ID

XOR EAX, EAX ;clear EAX

XOR EDX, EDX ;clear EDX

WRMSR ;Load 0 to MSR at 8BH

MOV EAX, 1

cpuid

MOV ECX, 08BH ;IA32_BIOS_SIGN_ID

rdmsr ;Read Model Specific Register

If there is an update active in the processor, its revision is returned in the EDX
register after the RDMSR instruction executes.

IA32_BIOS_SIGN_ID Microcode Update Signature Register
MSR Address: 08BH Accessed as a Qword
Default Value: XXXX XXXX XXXX XXXXh
Access: Read/Write

The IA32_BIOS_SIGN_ID register is used to report the microcode update signature
when CPUID executes. The signature is returned in the upper DWORD (Table 9-11).

9.11.7.2 Authenticating the Update
An update may be authenticated by the BIOS using the signature primitive,
described above, and the algorithm in Example 9-10.

Table 9-11. Microcode Update Signature
Bit Description

63:32 Microcode update signature. This field contains the signature of the currently loaded
microcode update when read following the execution of the CPUID instruction, function
1. It is required that this register field be pre-loaded with zero prior to executing the
CPUID, function 1. If the field remains equal to zero, then there is no microcode update
loaded. Another non-zero value will be the signature.

31:0 Reserved.
9-48 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION
Example 9-10. Pseudo Code to Authenticate the Update

Z ← Obtain Update Revision from the Update Header to be authenticated;
X ← Obtain Current Update Signature from MSR 8BH;

If (Z > X)
{

Load Update that is to be authenticated;
Y ← Obtain New Signature from MSR 8BH;

If (Z = Y)
Success

Else
Fail

}
Else

Fail

Example 9-10 requires that the BIOS only authenticate updates that contain a
numerically larger revision than the currently loaded revision, where Current Signa-
ture (X) < New Update Revision (Z). A processor with no loaded update is considered
to have a revision equal to zero.

This authentication procedure relies upon the decoding provided by the processor to
verify an update from a potentially hostile source. As an example, this mechanism in
conjunction with other safeguards provides security for dynamically incorporating
field updates into the BIOS.

9.11.8 Pentium 4, Intel Xeon, and P6 Family Processor
Microcode Update Specifications

This section describes the interface that an application can use to dynamically inte-
grate processor-specific updates into the system BIOS. In this discussion, the appli-
cation is referred to as the calling program or caller.

The real mode INT15 call specification described here is an Intel extension to an OEM
BIOS. This extension allows an application to read and modify the contents of the
microcode update data in NVRAM. The update loader, which is part of the system
BIOS, cannot be updated by the interface. All of the functions defined in the specifi-
cation must be implemented for a system to be considered compliant with the speci-
fication. The INT15 functions are accessible only from real mode.

9.11.8.1 Responsibilities of the BIOS
If a BIOS passes the presence test (INT 15H, AX = 0D042H, BL = 0H), it must imple-
ment all of the sub-functions defined in the INT 15H, AX = 0D042H specification.
Vol. 3A 9-49

PROCESSOR MANAGEMENT AND INITIALIZATION
There are no optional functions. BIOS must load the appropriate update for each
processor during system initialization.

A Header Version of an update block containing the value 0FFFFFFFFH indicates that
the update block is unused and available for storing a new update.

The BIOS is responsible for providing a region of non-volatile storage (NVRAM) for
each potential processor stepping within a system. This storage unit consists of one
or more update blocks. An update block is a contiguous 2048-byte block of memory.
The BIOS for a single processor system need only provide update blocks to store one
microcode update. If the BIOS for a multiple processor system is intended to support
mixed processor steppings, then the BIOS needs to provide enough update blocks to
store each unique microcode update or for each processor socket on the OEM’s
system board.

The BIOS is responsible for managing the NVRAM update blocks. This includes
garbage collection, such as removing microcode updates that exist in NVRAM for
which a corresponding processor does not exist in the system. This specification only
provides the mechanism for ensuring security, the uniqueness of an entry, and that
stale entries are not loaded. The actual update block management is implementation
specific on a per-BIOS basis.

As an example, the BIOS may use update blocks sequentially in ascending order with
CPU signatures sorted versus the first available block. In addition, garbage collection
may be implemented as a setup option to clear all NVRAM slots or as BIOS code that
searches and eliminates unused entries during boot.

NOTES
For IA-32 processors starting with family 0FH and model 03H and
Intel 64 processors, the microcode update may be as large as 16
KBytes. Thus, BIOS must allocate 8 update blocks for each microcode
update. In a MP system, a common microcode update may be
sufficient for each socket in the system.
For IA-32 processors earlier than family 0FH and model 03H, the
microcode update is 2 KBytes. An MP-capable BIOS that supports
multiple steppings must allocate a block for each socket in the system.
A single-processor BIOS that supports variable-sized microcode
update and fixed-sized microcode update must allocate one 16-KByte
region and a second region of at least 2 KBytes.

The following algorithm (Example 9-11) describes the steps performed during BIOS
initialization used to load the updates into the processor(s). The algorithm assumes:
• The BIOS ensures that no update contained within NVRAM has a header version

or loader version that does not match one currently supported by the BIOS.
• The update contains a correct checksum.
• The BIOS ensures that (at most) one update exists for each processor stepping.
• Older update revisions are not allowed to overwrite more recent ones.
9-50 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION
These requirements are checked by the BIOS during the execution of the write
update function of this interface. The BIOS sequentially scans through all of the
update blocks in NVRAM starting with index 0. The BIOS scans until it finds an update
where the processor fields in the header match the processor signature (extended
family, extended model, type, family, model, and stepping) as well as the platform
bits of the current processor.

Example 9-11. Pseudo Code, Checks Required Prior to Loading an Update

For each processor in the system
{

Determine the Processor Signature via CPUID function 1;
Determine the Platform Bits ← 1 << IA32_PLATFORM_ID[52:50];

For (I ← UpdateBlock 0, I < NumOfBlocks; I++)
{

If (Update.Header_Version = 0x00000001)
{

If ((Update.ProcessorSignature = Processor Signature) &&
 (Update.ProcessorFlags & Platform Bits))

{
Load Update.UpdateData into the Processor;
Verify update was correctly loaded into the processor
Go on to next processor

Break;
}
Else If (Update.TotalSize > (Update.DataSize + 48))
{

N ← 0
While (N < Update.ExtendedSignatureCount)
{

If ((Update.ProcessorSignature[N] =
 Processor Signature) &&
 (Update.ProcessorFlags[N] & Platform Bits))

{
Load Update.UpdateData into the Processor;
Verify update correctly loaded into the processor
Go on to next processor

Break;
}
N ← N + 1

}
I ← I + (Update.TotalSize / 2048)
If ((Update.TotalSize MOD 2048) = 0)

I ← I + 1
}

}

Vol. 3A 9-51

PROCESSOR MANAGEMENT AND INITIALIZATION
}
}

NOTES
The platform Id bits in IA32_PLATFORM_ID are encoded as a three-
bit binary coded decimal field. The platform bits in the microcode
update header are individually bit encoded. The algorithm must do a
translation from one format to the other prior to doing a check.

When performing the INT 15H, 0D042H functions, the BIOS must assume that the
caller has no knowledge of platform specific requirements. It is the responsibility of
BIOS calls to manage all chipset and platform specific prerequisites for managing the
NVRAM device. When writing the update data using the Write Update sub-function,
the BIOS must maintain implementation specific data requirements (such as the
update of NVRAM checksum). The BIOS should also attempt to verify the success of
write operations on the storage device used to record the update.

9.11.8.2 Responsibilities of the Calling Program
This section of the document lists the responsibilities of a calling program using the
interface specifications to load microcode update(s) into BIOS NVRAM.
• The calling program should call the INT 15H, 0D042H functions from a pure real

mode program and should be executing on a system that is running in pure real
mode.

• The caller should issue the presence test function (sub function 0) and verify the
signature and return codes of that function.

• It is important that the calling program provides the required scratch RAM buffers
for the BIOS and the proper stack size as specified in the interface definition.

• The calling program should read any update data that already exists in the BIOS
in order to make decisions about the appropriateness of loading the update. The
BIOS must refuse to overwrite a newer update with an older version. The update
header contains information about version and processor specifics for the calling
program to make an intelligent decision about loading.

• There can be no ambiguous updates. The BIOS must refuse to allow multiple
updates for the same CPU to exist at the same time; it also must refuse to load
updates for processors that don’t exist on the system.

• The calling application should implement a verify function that is run after the
update write function successfully completes. This function reads back the
update and verifies that the BIOS returned an image identical to the one that was
written.

Example 9-12 represents a calling program.
9-52 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION
Example 9-12. INT 15 DO42 Calling Program Pseudo-code

//
// We must be in real mode
//
If the system is not in Real mode exit
//
// Detect presence of Genuine Intel processor(s) that can be updated
// using(CPUID)
//
If no Intel processors exist that can be updated exit
//
// Detect the presence of the Intel microcode update extensions
//
If the BIOS fails the PresenceTestexit
//
// If the APIC is enabled, see if any other processors are out there
//
Read IA32_APICBASE
If APIC enabled
{

Send Broadcast Message to all processors except self via APIC
Have all processors execute CPUID, record the Processor Signature
(i.e.,Extended Family, Extended Model, Type, Family, Model,

Stepping)
Have all processors read IA32_PLATFORM_ID[52:50], record Platform
 Id Bits

If current processor cannot be updated
exit

}
//
// Determine the number of unique update blocks needed for this system
//
NumBlocks = 0
For each processor
{

If ((this is a unique processor stepping) AND
(we have a unique update in the database for this processor))

{
Checksum the update from the database;
If Checksum fails

exit
NumBlocks ← NumBlocks + size of microcode update / 2048

}
}

//
Vol. 3A 9-53

PROCESSOR MANAGEMENT AND INITIALIZATION
// Do we have enough update slots for all CPUs?
//
If there are more blocks required to support the unique processor
steppings than update blocks provided by the BIOS exit
//
// Do we need any update blocks at all? If not, we are done
//
If (NumBlocks = 0)

exit
//
// Record updates for processors in NVRAM.
//
For (I=0; I<NumBlocks; I++)
{

//
// Load each Update
//
Issue the WriteUpdate function

If (STORAGE_FULL) returned
{

Display Error -- BIOS is not managing NVRAM appropriately
exit

}

If (INVALID_REVISION) returned
{

Display Message: More recent update already loaded in NVRAM for
 this stepping
continue

}

If any other error returned
{

Display Diagnostic
exit

}

//
// Verify the update was loaded correctly
//
Issue the ReadUpdate function

If an error occurred
{

Display Diagnostic
exit
9-54 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION
}
//
// Compare the Update read to that written
//
If (Update read != Update written)
{

Display Diagnostic
exit

}

I ← I + (size of microcode update / 2048)
}
//
// Enable Update Loading, and inform user
//
Issue the Update Control function with Task = Enable.

9.11.8.3 Microcode Update Functions
Table 9-12 defines current Pentium 4, Intel Xeon, and P6 family processor microcode
update functions.

9.11.8.4 INT 15H-based Interface
Intel recommends that a BIOS interface be provided that allows additional microcode
updates to be added to system flash. The INT15H interface is the Intel-defined
method for doing this.

The program that calls this interface is responsible for providing three 64-kilobyte
RAM areas for BIOS use during calls to the read and write functions. These RAM
scratch pads can be used by the BIOS for any purpose, but only for the duration of
the function call. The calling routine places real mode segments pointing to the RAM
blocks in the CX, DX and SI registers. Calls to functions in this interface must be
made with a minimum of 32 kilobytes of stack available to the BIOS.

Table 9-12. Microcode Update Functions
Microcode Update
Function

Function
Number

Description Required/Optional

Presence test 00H Returns information about the
supported functions.

Required

Write update data 01H Writes one of the update data areas
(slots).

Required

Update control 02H Globally controls the loading of updates. Required

Read update data 03H Reads one of the update data areas
(slots).

Required
Vol. 3A 9-55

PROCESSOR MANAGEMENT AND INITIALIZATION
In general, each function returns with CF cleared and AH contains the returned
status. The general return codes and other constant definitions are listed in Section
9.11.8.9, “Return Codes.”

The OEM error field (AL) is provided for the OEM to return additional error informa-
tion specific to the platform. If the BIOS provides no additional information about the
error, OEM error must be set to SUCCESS. The OEM error field is undefined if AH
contains either SUCCESS (00H) or NOT_IMPLEMENTED (86H). In all other cases, it
must be set with either SUCCESS or a value meaningful to the OEM.

The following sections describe functions provided by the INT15H-based interface.

9.11.8.5 Function 00H—Presence Test
This function verifies that the BIOS has implemented required microcode update
functions. Table 9-13 lists the parameters and return codes for the function.

In order to assure that the BIOS function is present, the caller must verify the carry
flag, the return code, and the 64-bit signature. The update count reflects the number
of 2048-byte blocks available for storage within one non-volatile RAM.

The loader version number refers to the revision of the update loader program that is
included in the system BIOS image.

Table 9-13. Parameters for the Presence Test

Input

AX Function Code 0D042H

BL Sub-function 00H - Presence test

Output

CF Carry Flag Carry Set - Failure - AH contains status

Carry Clear - All return values valid

AH Return Code

AL OEM Error Additional OEM information.

EBX Signature Part 1 'INTE' - Part one of the signature

ECX Signature Part 2 'LPEP'- Part two of the signature

EDX Loader Version Version number of the microcode update loader

SI Update Count Number of 2048 update blocks in NVRAM the BIOS
allocated to storing microcode updates

Return Codes (see Table 9-18 for code definitions

SUCCESS The function completed successfully.

NOT_IMPLEMENTED The function is not implemented.
9-56 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION
9.11.8.6 Function 01H—Write Microcode Update Data
This function integrates a new microcode update into the BIOS storage device. Table
9-14 lists the parameters and return codes for the function.

Table 9-14. Parameters for the Write Update Data Function

Input

AX Function Code 0D042H

BL Sub-function 01H - Write update

ES:DI Update Address Real Mode pointer to the Intel Update structure. This
buffer is 2048 bytes in length if the processor supports
only fixed-size microcode update or...

Real Mode pointer to the Intel Update structure. This
buffer is 64 KBytes in length if the processor supports a
variable-size microcode update.

CX Scratch Pad1 Real mode segment address of 64 KBytes of RAM block

DX Scratch Pad2 Real mode segment address of 64 KBytes of RAM block

SI Scratch Pad3 Real mode segment address of 64 KBytes of RAM block

SS:SP Stack pointer 32 KBytes of stack minimum

Output

CF Carry Flag Carry Set - Failure - AH Contains status

Carry Clear - All return values valid

AH Return Code Status of the call

AL OEM Error Additional OEM information

Return Codes (see Table 9-18 for code definitions

SUCCESS The function completed successfully.

NOT_IMPLEMENTED The function is not implemented.

WRITE_FAILURE A failure occurred because of the inability to write the
storage device.

ERASE_FAILURE A failure occurred because of the inability to erase the
storage device.

READ_FAILURE A failure occurred because of the inability to read the
storage device.

STORAGE_FULL The BIOS non-volatile storage area is unable to
accommodate the update because all available update
blocks are filled with updates that are needed for
processors in the system.
Vol. 3A 9-57

PROCESSOR MANAGEMENT AND INITIALIZATION
Description

The BIOS is responsible for selecting an appropriate update block in the non-volatile
storage for storing the new update. This BIOS is also responsible for ensuring the
integrity of the information provided by the caller, including authenticating the
proposed update before incorporating it into storage.

Before writing the update block into NVRAM, the BIOS should ensure that the update
structure meets the following criteria in the following order:

1. The update header version should be equal to an update header version
recognized by the BIOS.

2. The update loader version in the update header should be equal to the update
loader version contained within the BIOS image.

3. The update block must checksum. This checksum is computed as a 32-bit
summation of all double words in the structure, including the header, data, and
processor signature table.

The BIOS selects update block(s) in non-volatile storage for storing the candidate
update. The BIOS can select any available update block as long as it guarantees that
only a single update exists for any given processor stepping in non-volatile storage.
If the update block selected already contains an update, the following additional
criteria apply to overwrite it:
• The processor signature in the proposed update must be equal to the processor

signature in the header of the current update in NVRAM (Processor Signature +
platform ID bits).

• The update revision in the proposed update should be greater than the update
revision in the header of the current update in NVRAM.

If no unused update blocks are available and the above criteria are not met, the BIOS
can overwrite update block(s) for a processor stepping that is no longer present in
the system. This can be done by scanning the update blocks and comparing the
processor steppings, identified in the MP Specification table, to the processor step-
pings that currently exist in the system.

CPU_NOT_PRESENT The processor stepping does not currently exist in the
system.

INVALID_HEADER The update header contains a header or loader version
that is not recognized by the BIOS.

INVALID_HEADER_CS The update does not checksum correctly.

SECURITY_FAILURE The processor rejected the update.

INVALID_REVISION The same or more recent revision of the update exists in
the storage device.

Table 9-14. Parameters for the Write Update Data Function (Contd.)

Input
9-58 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION
Finally, before storing the proposed update in NVRAM, the BIOS must verify the
authenticity of the update via the mechanism described in Section 9.11.6, “Micro-
code Update Loader.” This includes loading the update into the current processor,
executing the CPUID instruction, reading MSR 08Bh, and comparing a calculated
value with the update revision in the proposed update header for equality.

When performing the write update function, the BIOS must record the entire update,
including the header, the update data, and the extended processor signature table (if
applicable). When writing an update, the original contents may be overwritten,
assuming the above criteria have been met. It is the responsibility of the BIOS to
ensure that more recent updates are not overwritten through the use of this BIOS
call, and that only a single update exists within the NVRAM for any processor step-
ping and platform ID.

Figure 9-8 and Figure 9-9 show the process the BIOS follows to choose an update
block and ensure the integrity of the data when it stores the new microcode update.
Vol. 3A 9-59

PROCESSOR MANAGEMENT AND INITIALIZATION
Figure 9-8. Microcode Update Write Operation Flow [1]

1

Valid Update
Header Version?

Loader Revision Match
BIOS’s Loader?

Does Update Match A
CPU in The System

Write Microcode Update

Does Update
Checksum Correctly?

Yes

Yes

Yes

No
Return

CPU_NOT_PRESENT

No
Return

INVALID_HEADER

No
Return

INVALID_HEADER

No
Return

INVALID_HEADER_CS
9-60 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION
Figure 9-9. Microcode Update Write Operation Flow [2]

Return
INVALID_REVISION

Yes

1

Update Revision Newer
Than NVRAM Update?

Update Pass
Authenticity Test?

Return
SECURITY_FAILURE

Yes

Update NMRAM Record

Return
SUCCESS

Update Matching CPU
Already In NVRAM?

Space Available in
NVRAM?

Yes

No

Return
STORAGE_FULL

Replacement
policy implemented?

No

No

NoYes Yes
Vol. 3A 9-61

PROCESSOR MANAGEMENT AND INITIALIZATION
9.11.8.7 Function 02H—Microcode Update Control
This function enables loading of binary updates into the processor. Table 9-15 lists
the parameters and return codes for the function.

This control is provided on a global basis for all updates and processors. The caller
can determine the current status of update loading (enabled or disabled) without
changing the state. The function does not allow the caller to disable loading of binary
updates, as this poses a security risk.

The caller specifies the requested operation by placing one of the values from Table
9-16 in the BH register. After successfully completing this function, the BL register
contains either the enable or the disable designator. Note that if the function fails, the
update status return value is undefined.

Table 9-15. Parameters for the Control Update Sub-function

Input

AX Function Code 0D042H

BL Sub-function 02H - Control update

BH Task See the description below.

CX Scratch Pad1 Real mode segment of 64 KBytes of RAM block

DX Scratch Pad2 Real mode segment of 64 KBytes of RAM block

SI Scratch Pad3 Real mode segment of 64 KBytes of RAM block

SS:SP Stack pointer 32 kilobytes of stack minimum

Output

CF Carry Flag Carry Set - Failure - AH contains status

Carry Clear - All return values valid.

AH Return Code Status of the call

AL OEM Error Additional OEM Information.

BL Update Status Either enable or disable indicator

Return Codes (see Table 9-18 for code definitions)

SUCCESS Function completed successfully.

READ_FAILURE A failure occurred because of the inability to read the
storage device.
9-62 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION
The READ_FAILURE error code returned by this function has meaning only if the
control function is implemented in the BIOS NVRAM. The state of this feature
(enabled/disabled) can also be implemented using CMOS RAM bits where READ
failure errors cannot occur.

9.11.8.8 Function 03H—Read Microcode Update Data
This function reads a currently installed microcode update from the BIOS storage into
a caller-provided RAM buffer. Table 9-17 lists the parameters and return codes.

Table 9-16. Mnemonic Values
Mnemonic Value Meaning

Enable 1 Enable the Update loading at initialization time.

Query 2 Determine the current state of the update control without
changing its status.

Table 9-17. Parameters for the Read Microcode Update Data Function
Input

AX Function Code 0D042H

BL Sub-function 03H - Read Update

ES:DI Buffer Address Real Mode pointer to the Intel Update
structure that will be written with the
binary data

ECX Scratch Pad1 Real Mode Segment address of 64
KBytes of RAM Block (lower 16 bits)

ECX Scratch Pad2 Real Mode Segment address of 64
KBytes of RAM Block (upper 16 bits)

DX Scratch Pad3 Real Mode Segment address of 64
KBytes of RAM Block

SS:SP Stack pointer 32 KBytes of Stack Minimum

SI Update Number This is the index number of the update
block to be read. This value is zero based
and must be less than the update count
returned from the presence test
function.

Output

CF Carry Flag Carry Set - Failure - AH contains Status

Carry Clear - All return
values are valid.

AH Return Code Status of the Call
Vol. 3A 9-63

PROCESSOR MANAGEMENT AND INITIALIZATION
The read function enables the caller to read any microcode update data that already
exists in a BIOS and make decisions about the addition of new updates. As a result
of a successful call, the BIOS copies the microcode update into the location pointed
to by ES:DI, with the contents of all Update block(s) that are used to store the spec-
ified microcode update.

If the specified block is not a header block, but does contain valid data from a micro-
code update that spans multiple update blocks, then the BIOS must return Failure
with the NOT_EMPTY error code in AH.

An update block is considered unused and available for storing a new update if its
Header Version contains the value 0FFFFFFFFH after return from this function call.
The actual implementation of NVRAM storage management is not specified here and
is BIOS dependent. As an example, the actual data value used to represent an
empty block by the BIOS may be zero, rather than 0FFFFFFFFH. The BIOS is respon-
sible for translating this information into the header provided by this function.

9.11.8.9 Return Codes
After the call has been made, the return codes listed in Table 9-18 are available in the
AH register.

AL OEM Error Additional OEM Information

Return Codes (see Table 9-18 for code definitions)

SUCCESS The function completed successfully.

READ_FAILURE There was a failure because of the
inability to read the storage device.

UPDATE_NUM_INVALID Update number exceeds the maximum
number of update blocks implemented
by the BIOS.

NOT_EMPTY The specified update block is a
subsequent block in use to store a valid
microcode update that spans multiple
blocks.

The specified block is not a header block
and is not empty.

Table 9-17. Parameters for the Read Microcode Update Data Function (Contd.)
9-64 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION
Table 9-18. Return Code Definitions

Return Code Value Description

SUCCESS 00H The function completed successfully.

NOT_IMPLEMENTED 86H The function is not implemented.

ERASE_FAILURE 90H A failure because of the inability to erase the storage
device.

WRITE_FAILURE 91H A failure because of the inability to write the storage
device.

READ_FAILURE 92H A failure because of the inability to read the storage
device.

STORAGE_FULL 93H The BIOS non-volatile storage area is unable to
accommodate the update because all available update
blocks are filled with updates that are needed for
processors in the system.

CPU_NOT_PRESENT 94H The processor stepping does not currently exist in the
system.

INVALID_HEADER 95H The update header contains a header or loader version
that is not recognized by the BIOS.

INVALID_HEADER_CS 96H The update does not checksum correctly.

SECURITY_FAILURE 97H The update was rejected by the processor.

INVALID_REVISION 98H The same or more recent revision of the update exists
in the storage device.

UPDATE_NUM_INVALID 99H The update number exceeds the maximum number of
update blocks implemented by the BIOS.

NOT_EMPTY 9AH The specified update block is a subsequent block in use
to store a valid microcode update that spans multiple
blocks.

The specified block is not a header block and is not
empty.
Vol. 3A 9-65

CHAPTER 10
ADVANCED PROGRAMMABLE

INTERRUPT CONTROLLER (APIC)

The Advanced Programmable Interrupt Controller (APIC), referred to in the following
sections as the local APIC, was introduced into the IA-32 processors with the Pentium
processor (see Section 22.27, “Advanced Programmable Interrupt Controller
(APIC)”) and is included in the P6 family, Pentium 4, Intel Xeon processors, and other
more recent Intel 64 and IA-32 processor families (see Section 10.4.2, “Presence of
the Local APIC”). The local APIC performs two primary functions for the processor:
• It receives interrupts from the processor’s interrupt pins, from internal sources

and from an external I/O APIC (or other external interrupt controller). It sends
these to the processor core for handling.

• In multiple processor (MP) systems, it sends and receives interprocessor
interrupt (IPI) messages to and from other logical processors on the system bus.
IPI messages can be used to distribute interrupts among the processors in the
system or to execute system wide functions (such as, booting up processors or
distributing work among a group of processors).

The external I/O APIC is part of Intel’s system chip set. Its primary function is to
receive external interrupt events from the system and its associated I/O devices and
relay them to the local APIC as interrupt messages. In MP systems, the I/O APIC also
provides a mechanism for distributing external interrupts to the local APICs of
selected processors or groups of processors on the system bus.

This chapter provides a description of the local APIC and its programming interface.
It also provides an overview of the interface between the local APIC and the I/O
APIC. Contact Intel for detailed information about the I/O APIC.

When a local APIC has sent an interrupt to its processor core for handling, the
processor uses the interrupt and exception handling mechanism described in Chapter
6, “Interrupt and Exception Handling.” See Section 6.1, “Interrupt and Exception
Overview,” for an introduction to interrupt and exception handling.

10.1 LOCAL AND I/O APIC OVERVIEW
Each local APIC consists of a set of APIC registers (see Table 10-1) and associated
hardware that control the delivery of interrupts to the processor core and the gener-
ation of IPI messages. The APIC registers are memory mapped and can be read and
written to using the MOV instruction.

Local APICs can receive interrupts from the following sources:
• Locally connected I/O devices — These interrupts originate as an edge or

level asserted by an I/O device that is connected directly to the processor’s local
Vol. 3A 10-1

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
interrupt pins (LINT0 and LINT1). The I/O devices may also be connected to an
8259-type interrupt controller that is in turn connected to the processor through
one of the local interrupt pins.

• Externally connected I/O devices — These interrupts originate as an edge or
level asserted by an I/O device that is connected to the interrupt input pins of an
I/O APIC. Interrupts are sent as I/O interrupt messages from the I/O APIC to one
or more of the processors in the system.

• Inter-processor interrupts (IPIs) — An Intel 64 or IA-32 processor can use
the IPI mechanism to interrupt another processor or group of processors on the
system bus. IPIs are used for software self-interrupts, interrupt forwarding, or
preemptive scheduling.

• APIC timer generated interrupts — The local APIC timer can be programmed
to send a local interrupt to its associated processor when a programmed count is
reached (see Section 10.5.4, “APIC Timer”).

• Performance monitoring counter interrupts — P6 family, Pentium 4, and
Intel Xeon processors provide the ability to send an interrupt to its associated
processor when a performance-monitoring counter overflows (see Section
18.10.5.8, “Generating an Interrupt on Overflow”).

• Thermal Sensor interrupts — Pentium 4 and Intel Xeon processors provide the
ability to send an interrupt to themselves when the internal thermal sensor has
been tripped (see Section 14.5.2, “Thermal Monitor”).

• APIC internal error interrupts — When an error condition is recognized within
the local APIC (such as an attempt to access an unimplemented register), the
APIC can be programmed to send an interrupt to its associated processor (see
Section 10.5.3, “Error Handling”).

Of these interrupt sources: the processor’s LINT0 and LINT1 pins, the APIC timer, the
performance-monitoring counters, the thermal sensor, and the internal APIC error
detector are referred to as local interrupt sources. Upon receiving a signal from a
local interrupt source, the local APIC delivers the interrupt to the processor core
using an interrupt delivery protocol that has been set up through a group of APIC
registers called the local vector table or LVT (see Section 10.5.1, “Local Vector
Table”). A separate entry is provided in the local vector table for each local interrupt
source, which allows a specific interrupt delivery protocol to be set up for each
source. For example, if the LINT1 pin is going to be used as an NMI pin, the LINT1
entry in the local vector table can be set up to deliver an interrupt with vector number
2 (NMI interrupt) to the processor core.

The local APIC handles interrupts from the other two interrupt sources (externally
connected I/O devices and IPIs) through its IPI message handling facilities.

A processor can generate IPIs by programming the interrupt command register (ICR)
in its local APIC (see Section 10.6.1, “Interrupt Command Register (ICR)”). The act
of writing to the ICR causes an IPI message to be generated and issued on the
system bus (for Pentium 4 and Intel Xeon processors) or on the APIC bus (for
Pentium and P6 family processors). See Section 10.2, “System Bus Vs. APIC Bus.”
10-2 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
IPIs can be sent to other processors in the system or to the originating processor
(self-interrupts). When the target processor receives an IPI message, its local APIC
handles the message automatically (using information included in the message such
as vector number and trigger mode). See Section 10.6, “Issuing Interprocessor
Interrupts,” for a detailed explanation of the local APIC’s IPI message delivery and
acceptance mechanism.

The local APIC can also receive interrupts from externally connected devices through
the I/O APIC (see Figure 10-1). The I/O APIC is responsible for receiving interrupts
generated by system hardware and I/O devices and forwarding them to the local
APIC as interrupt messages.

Individual pins on the I/O APIC can be programmed to generate a specific interrupt
vector when asserted. The I/O APIC also has a “virtual wire mode” that allows it to
communicate with a standard 8259A-style external interrupt controller. Note that the
local APIC can be disabled (see Section 10.4.3, “Enabling or Disabling the Local
APIC”). This allows an associated processor core to receive interrupts directly from
an 8259A interrupt controller.

Both the local APIC and the I/O APIC are designed to operate in MP systems (see
Figures 10-2 and 10-3). Each local APIC handles interrupts from the I/O APIC, IPIs
from processors on the system bus, and self-generated interrupts. Interrupts can

Figure 10-1. Relationship of Local APIC and I/O APIC In Single-Processor Systems

I/O APIC External
Interrupts

System Chip Set

System Bus

Processor Core

Local APIC

Pentium 4 and

Local
Interrupts

Bridge

PCI

Intel Xeon Processors

I/O APIC External
Interrupts

System Chip Set

3-Wire APIC Bus

Processor Core

Local APIC

Pentium and P6

Local
Interrupts

Family Processors

Interrupt
Messages

Interrupt
Messages

Interrupt
Messages
Vol. 3A 10-3

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
also be delivered to the individual processors through the local interrupt pins;
however, this mechanism is commonly not used in MP systems.

Figure 10-2. Local APICs and I/O APIC When Intel Xeon Processors Are Used in
Multiple-Processor Systems

Figure 10-3. Local APICs and I/O APIC When P6 Family Processors Are Used in
Multiple-Processor Systems

I/O APIC External
Interrupts

System Chip Set

Processor System Bus

CPU

Local APIC

Processor #2

CPU

Local APIC

Processor #3

CPU

Local APIC

Processor #1

CPU

Local APIC

Processor #3

Bridge

PCI

IPIs IPIs IPIs

Interrupt
Messages

IPIsInterrupt
Messages

Interrupt
Messages

Interrupt
Messages

Interrupt
Messages

CPU

Local APIC

Processor #2

CPU

Local APIC

Processor #3

CPU

Local APIC

Processor #1

Interrupt
Messages

I/O APICExternal
Interrupts

System Chip Set

3-wire APIC Bus

CPU

Local APIC

Processor #4

IPIsIPIsIPIsIPIs Interrupt
Messages

Interrupt
Messages

Interrupt
Messages

Interrupt
Messages
10-4 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
The IPI mechanism is typically used in MP systems to send fixed interrupts (inter-
rupts for a specific vector number) and special-purpose interrupts to processors on
the system bus. For example, a local APIC can use an IPI to forward a fixed interrupt
to another processor for servicing. Special-purpose IPIs (including NMI, INIT, SMI
and SIPI IPIs) allow one or more processors on the system bus to perform system-
wide boot-up and control functions.

The following sections focus on the local APIC and its implementation in the
Pentium 4, Intel Xeon, and P6 family processors. In these sections, the terms “local
APIC” and “I/O APIC” refer to local and I/O APICs used with the P6 family processors
and to local and I/O xAPICs used with the Pentium 4 and Intel Xeon processors (see
Section 10.3, “The Intel® 82489DX External APIC, the APIC, the xAPIC, and the
X2APIC”).

10.2 SYSTEM BUS VS. APIC BUS
For the P6 family and Pentium processors, the I/O APIC and local APICs communicate
through the 3-wire inter-APIC bus (see Figure 10-3). Local APICs also use the APIC
bus to send and receive IPIs. The APIC bus and its messages are invisible to software
and are not classed as architectural.

Beginning with the Pentium 4 and Intel Xeon processors, the I/O APIC and local
APICs (using the xAPIC architecture) communicate through the system bus (see
Figure 10-2). The I/O APIC sends interrupt requests to the processors on the system
bus through bridge hardware that is part of the Intel chip set. The bridge hardware
generates the interrupt messages that go to the local APICs. IPIs between local
APICs are transmitted directly on the system bus.

10.3 THE INTEL® 82489DX EXTERNAL APIC,
THE APIC, THE XAPIC, AND THE X2APIC

The local APIC in the P6 family and Pentium processors is an architectural subset of
the Intel® 82489DX external APIC. See Section 22.27.1, “Software Visible Differ-
ences Between the Local APIC and the 82489DX.”
The APIC architecture used in the Pentium 4 and Intel Xeon processors (called the
xAPIC architecture) is an extension of the APIC architecture found in the P6 family
processors. The primary difference between the APIC and xAPIC architectures is that
with the xAPIC architecture, the local APICs and the I/O APIC communicate through
the system bus. With the APIC architecture, they communication through the APIC
bus (see Section 10.2, “System Bus Vs. APIC Bus”). Also, some APIC architectural
features have been extended and/or modified in the xAPIC architecture. These
extensions and modifications are described in Section 10.4 through Section 10.10.

The basic operating mode of the xAPIC is xAPIC mode. The x2APIC architecture is
an extension of the xAPIC architecture, primarily to increase processor address-
Vol. 3A 10-5

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
ability. The x2APIC architecture provides backward compatibility to the xAPIC archi-
tecture and forward extendability for future Intel platform innovations. These
extensions and modifications are supported by a new mode of execution (x2APIC
mode) are detailed in Section 10.12.

10.4 LOCAL APIC
The following sections describe the architecture of the local APIC and how to detect
it, identify it, and determine its status. Descriptions of how to program the local APIC
are given in Section 10.5.1, “Local Vector Table,” and Section 10.6.1, “Interrupt
Command Register (ICR).”

10.4.1 The Local APIC Block Diagram
Figure 10-4 gives a functional block diagram for the local APIC. Software interacts
with the local APIC by reading and writing its registers. APIC registers are memory-
mapped to a 4-KByte region of the processor’s physical address space with an initial
starting address of FEE00000H. For correct APIC operation, this address space must
be mapped to an area of memory that has been designated as strong uncacheable
(UC). See Section 11.3, “Methods of Caching Available.”

In MP system configurations, the APIC registers for Intel 64 or IA-32 processors on
the system bus are initially mapped to the same 4-KByte region of the physical
address space. Software has the option of changing initial mapping to a different
4-KByte region for all the local APICs or of mapping the APIC registers for each local
APIC to its own 4-KByte region. Section 10.4.5, “Relocating the Local APIC Regis-
ters,” describes how to relocate the base address for APIC registers.

On processors supporting x2APIC architecture (indicated by CPUID.01H:ECX[21] =
1), the local APIC supports operation both in xAPIC mode and (if enabled by soft-
ware) in x2APIC mode. x2APIC mode provides extended processor addressability
(see Section 10.12).

NOTE
For P6 family, Pentium 4, and Intel Xeon processors, the APIC
handles all memory accesses to addresses within the 4-KByte APIC
register space internally and no external bus cycles are produced. For
the Pentium processors with an on-chip APIC, bus cycles are
produced for accesses to the APIC register space. Thus, for software
intended to run on Pentium processors, system software should
explicitly not map the APIC register space to regular system memory.
Doing so can result in an invalid opcode exception (#UD) being
generated or unpredictable execution.
10-6 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
Figure 10-4. Local APIC Structure

Current Count
Register

Initial Count
Register

Divide Configuration
Register

Version Register

Error Status
Register

In-Service Register (ISR)

Vector
Decode

Interrupt Command
Register (ICR)

Acceptance
Logic

Vec[3:0]
& TMR Bit

Register
Select

INIT
NMI
SMI

Protocol
Translation Logic

Dest. Mode
& Vector

Processor System Bus3

APIC ID
Register

Logical Destination
Register

Destination Format
Register

Timer

Local
Interrupts 0,1

Performance
Monitoring Counters1

Error

Timer

Local Vector Table

DATA/ADDR

Prioritizer

Task Priority Register

EOI Register

INTR

EXTINT

INTA

LINT0/1

1. Introduced in P6 family processors.

Thermal Sensor2

2. Introduced in the Pentium 4 and Intel Xeon processors.

Perf. Mon.

Thermal

(Internal
Interrupt)

Sensor
(Internal
Interrupt)

Spurious Vector
Register

Local
Interrupts

3. Three-wire APIC bus in P6 family and Pentium processors.

To
CPU
Core

From
CPU
Core

Interrupt Request Register (IRR)

Trigger Mode Register (TMR)

To
CPU
Core

Processor Priority
Register

4. Not implemented in Pentium 4 and Intel Xeon processors.

Arb. ID
Register4
Vol. 3A 10-7

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
Table 10-1 shows how the APIC registers are mapped into the 4-KByte APIC register
space. Registers are 32 bits, 64 bits, or 256 bits in width; all are aligned on 128-bit
boundaries. All 32-bit registers should be accessed using 128-bit aligned 32-bit loads
or stores. Some processors may support loads and stores of less than 32 bits to some
of the APIC registers. This is model specific behavior and is not guaranteed to work
on all processors. Any FP/MMX/SSE access to an APIC register, or any access that
touches bytes 4 through 15 of an APIC register may cause undefined behavior and
must not be executed. This undefined behavior could include hangs, incorrect results
or unexpected exceptions, including machine checks, and may vary between imple-
mentations. Wider registers (64-bit or 256-bit) must be accessed using multiple 32-
bit loads or stores, with all accesses being 128-bit aligned.

The local APIC registers listed in Table 10-1 are not MSRs. The only MSR associated
with the programming of the local APIC is the IA32_APIC_BASE MSR (see Section
10.4.3, “Enabling or Disabling the Local APIC”).

NOTE
In processors based on Intel microarchitecture code name Nehalem
the Local APIC ID Register is no longer Read/Write; it is Read Only.

Table 10-1 Local APIC Register Address Map

Address Register Name Software
Read/Write

FEE0 0000H Reserved

FEE0 0010H Reserved

FEE0 0020H Local APIC ID Register Read/Write.

FEE0 0030H Local APIC Version Register Read Only.

FEE0 0040H Reserved

FEE0 0050H Reserved

FEE0 0060H Reserved

FEE0 0070H Reserved

FEE0 0080H Task Priority Register (TPR) Read/Write.

FEE0 0090H Arbitration Priority Register1 (APR) Read Only.

FEE0 00A0H Processor Priority Register (PPR) Read Only.

FEE0 00B0H EOI Register Write Only.

FEE0 00C0H Remote Read Register1 (RRD) Read Only

FEE0 00D0H Logical Destination Register Read/Write.

FEE0 00E0H Destination Format Register Read/Write (see
Section 10.6.2.2).
10-8 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
FEE0 00F0H Spurious Interrupt Vector Register Read/Write (see
Section 10.9.

FEE0 0100H In-Service Register (ISR); bits 31:0 Read Only.

FEE0 0110H In-Service Register (ISR); bits 63:32 Read Only.

FEE0 0120H In-Service Register (ISR); bits 95:64 Read Only.

FEE0 0130H In-Service Register (ISR); bits 127:96 Read Only.

FEE0 0140H In-Service Register (ISR); bits 159:128 Read Only.

FEE0 0150H In-Service Register (ISR); bits 191:160 Read Only.

FEE0 0160H In-Service Register (ISR); bits 223:192 Read Only.

FEE0 0170H In-Service Register (ISR); bits 255:224 Read Only.

FEE0 0180H Trigger Mode Register (TMR); bits 31:0 Read Only.

FEE0 0190H Trigger Mode Register (TMR); bits 63:32 Read Only.

FEE0 01A0H Trigger Mode Register (TMR); bits 95:64 Read Only.

FEE0 01B0H Trigger Mode Register (TMR); bits 127:96 Read Only.

FEE0 01C0H Trigger Mode Register (TMR); bits 159:128 Read Only.

FEE0 01D0H Trigger Mode Register (TMR); bits 191:160 Read Only.

FEE0 01E0H Trigger Mode Register (TMR); bits 223:192 Read Only.

FEE0 01F0H Trigger Mode Register (TMR); bits 255:224 Read Only.

FEE0 0200H Interrupt Request Register (IRR); bits 31:0 Read Only.

FEE0 0210H Interrupt Request Register (IRR); bits 63:32 Read Only.

FEE0 0220H Interrupt Request Register (IRR); bits 95:64 Read Only.

FEE0 0230H Interrupt Request Register (IRR); bits 127:96 Read Only.

FEE0 0240H Interrupt Request Register (IRR); bits 159:128 Read Only.

FEE0 0250H Interrupt Request Register (IRR); bits 191:160 Read Only.

FEE0 0260H Interrupt Request Register (IRR); bits 223:192 Read Only.

FEE0 0270H Interrupt Request Register (IRR); bits 255:224 Read Only.

FEE0 0280H Error Status Register Read Only.

FEE0 0290H through
FEE0 02E0H

Reserved

FEE0 02F0H LVT CMCI Register Read/Write.

FEE0 0300H Interrupt Command Register (ICR); bits 0-31 Read/Write.

Table 10-1 Local APIC Register Address Map (Contd.)

Address Register Name Software
Read/Write
Vol. 3A 10-9

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
10.4.2 Presence of the Local APIC
Beginning with the P6 family processors, the presence or absence of an on-chip local
APIC can be detected using the CPUID instruction. When the CPUID instruction is
executed with a source operand of 1 in the EAX register, bit 9 of the CPUID feature
flags returned in the EDX register indicates the presence (set) or absence (clear) of a
local APIC.

10.4.3 Enabling or Disabling the Local APIC
The local APIC can be enabled or disabled in either of two ways:

FEE0 0310H Interrupt Command Register (ICR); bits 32-63 Read/Write.

FEE0 0320H LVT Timer Register Read/Write.

FEE0 0330H LVT Thermal Sensor Register2 Read/Write.

FEE0 0340H LVT Performance Monitoring Counters
Register3

Read/Write.

FEE0 0350H LVT LINT0 Register Read/Write.

FEE0 0360H LVT LINT1 Register Read/Write.

FEE0 0370H LVT Error Register Read/Write.

FEE0 0380H Initial Count Register (for Timer) Read/Write.

FEE0 0390H Current Count Register (for Timer) Read Only.

FEE0 03A0H through
FEE0 03D0H

Reserved

FEE0 03E0H Divide Configuration Register (for Timer) Read/Write.

FEE0 03F0H Reserved

NOTES:
1. Not supported in the Pentium 4 and Intel Xeon processors. The Illegal Register Access bit (7) of

the ESR will not be set when writing to these registers.
2. Introduced in the Pentium 4 and Intel Xeon processors. This APIC register and its associated

function are implementation dependent and may not be present in future IA-32 or Intel 64 pro-
cessors.

3. Introduced in the Pentium Pro processor. This APIC register and its associated function are
implementation dependent and may not be present in future IA-32 or Intel 64 processors.

Table 10-1 Local APIC Register Address Map (Contd.)

Address Register Name Software
Read/Write
10-10 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
1. Using the APIC global enable/disable flag in the IA32_APIC_BASE MSR (MSR
address 1BH; see Figure 10-5):

— When IA32_APIC_BASE[11] is 0, the processor is functionally equivalent to
an IA-32 processor without an on-chip APIC. The CPUID feature flag for the
APIC (see Section 10.4.2, “Presence of the Local APIC”) is also set to 0.

— When IA32_APIC_BASE[11] is set to 0, processor APICs based on the 3-wire
APIC bus cannot be generally re-enabled until a system hardware reset. The
3-wire bus loses track of arbitration that would be necessary for complete re-
enabling. Certain APIC functionality can be enabled (for example:
performance and thermal monitoring interrupt generation).

— For processors that use Front Side Bus (FSB) delivery of interrupts, software
may disable or enable the APIC by setting and resetting
IA32_APIC_BASE[11]. A hardware reset is not required to re-start APIC
functionality, if software guarantees no interrupt will be sent to the APIC as
IA32_APIC_BASE[11] is cleared.

— When IA32_APIC_BASE[11] is set to 0, prior initialization to the APIC may be
lost and the APIC may return to the state described in Section 10.4.7.1,
“Local APIC State After Power-Up or Reset.”

2. Using the APIC software enable/disable flag in the spurious-interrupt vector
register (see Figure 10-23):

— If IA32_APIC_BASE[11] is 1, software can temporarily disable a local APIC at
any time by clearing the APIC software enable/disable flag in the spurious-
interrupt vector register (see Figure 10-23). The state of the local APIC when
in this software-disabled state is described in Section 10.4.7.2, “Local APIC
State After It Has Been Software Disabled.”

— When the local APIC is in the software-disabled state, it can be re-enabled at
any time by setting the APIC software enable/disable flag to 1.

For the Pentium processor, the APICEN pin (which is shared with the PICD1 pin) is
used during power-up or reset to disable the local APIC.

Note that each entry in the LVT has a mask bit that can be used to inhibit interrupts
from being delivered to the processor from selected local interrupt sources (the
LINT0 and LINT1 pins, the APIC timer, the performance-monitoring counters, the
thermal sensor, and/or the internal APIC error detector).

10.4.4 Local APIC Status and Location
The status and location of the local APIC are contained in the IA32_APIC_BASE MSR
(see Figure 10-5). MSR bit functions are described below:
• BSP flag, bit 8 ⎯ Indicates if the processor is the bootstrap processor (BSP).

See Section 8.4, “Multiple-Processor (MP) Initialization.” Following a power-up or
reset, this flag is set to 1 for the processor selected as the BSP and set to 0 for the
remaining processors (APs).
Vol. 3A 10-11

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
• APIC Global Enable flag, bit 11 ⎯ Enables or disables the local APIC (see
Section 10.4.3, “Enabling or Disabling the Local APIC”). This flag is available in
the Pentium 4, Intel Xeon, and P6 family processors. It is not guaranteed to be
available or available at the same location in future Intel 64 or IA-32 processors.

• APIC Base field, bits 12 through 35 ⎯ Specifies the base address of the APIC
registers. This 24-bit value is extended by 12 bits at the low end to form the base
address. This automatically aligns the address on a 4-KByte boundary. Following
a power-up or reset, the field is set to FEE0 0000H.

• Bits 0 through 7, bits 9 and 10, and bits MAXPHYADDR1 through 63 in the
IA32_APIC_BASE MSR are reserved.

10.4.5 Relocating the Local APIC Registers
The Pentium 4, Intel Xeon, and P6 family processors permit the starting address of
the APIC registers to be relocated from FEE00000H to another physical address by
modifying the value in the 24-bit base address field of the IA32_APIC_BASE MSR.
This extension of the APIC architecture is provided to help resolve conflicts with
memory maps of existing systems and to allow individual processors in an MP system
to map their APIC registers to different locations in physical memory.

10.4.6 Local APIC ID
At power up, system hardware assigns a unique APIC ID to each local APIC on the
system bus (for Pentium 4 and Intel Xeon processors) or on the APIC bus (for P6
family and Pentium processors). The hardware assigned APIC ID is based on system
topology and includes encoding for socket position and cluster information (see
Figure 8-2).

In MP systems, the local APIC ID is also used as a processor ID by the BIOS and the
operating system. Some processors permit software to modify the APIC ID. However,
the ability of software to modify the APIC ID is processor model specific. Because of

1. The MAXPHYADDR is 36 bits for processors that do not support CPUID leaf 80000008H, or indi-
cated by CPUID.80000008H:EAX[bits 7:0] for processors that support CPUID leaf 80000008H.

Figure 10-5. IA32_APIC_BASE MSR (APIC_BASE_MSR in P6 Family)

BSP—Processor is BSP

APIC global enable/disable
APIC Base—Base physical address

63 071011 8912

Reserved

MAXPHYADDR

APIC BaseReserved
10-12 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
this, operating system software should avoid writing to the local APIC ID register. The
value returned by bits 31-24 of the EBX register (when the CPUID instruction is
executed with a source operand value of 1 in the EAX register) is always the Initial
APIC ID (determined by the platform initialization). This is true even if software has
changed the value in the Local APIC ID register.

The processor receives the hardware assigned APIC ID (or Initial APIC ID) by
sampling pins A11# and A12# and pins BR0# through BR3# (for the Pentium 4, Intel
Xeon, and P6 family processors) and pins BE0# through BE3# (for the Pentium
processor). The APIC ID latched from these pins is stored in the APIC ID field of the
local APIC ID register (see Figure 10-6), and is used as the Initial APIC ID for the
processor.

For the P6 family and Pentium processors, the local APIC ID field in the local APIC ID
register is 4 bits. Encodings 0H through EH can be used to uniquely identify 15
different processors connected to the APIC bus. For the Pentium 4 and Intel Xeon
processors, the xAPIC specification extends the local APIC ID field to 8 bits. These
can be used to identify up to 255 processors in the system.

10.4.7 Local APIC State
The following sections describe the state of the local APIC and its registers following
a power-up or reset, after the local APIC has been software disabled, following an
INIT reset, and following an INIT-deassert message.

Figure 10-6. Local APIC ID Register

31 27 24 0

ReservedAPIC ID

Address: 0FEE0 0020H
Value after reset: 0000 0000H

P6 family and Pentium processors

Pentium 4 processors, Xeon processors, and later processors
31 24 0

ReservedAPIC ID

MSR Address: 802H

31 0

x2APIC ID

x2APIC Mode
Vol. 3A 10-13

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
x2APIC will introduce 32-bit ID; see Section 10.12.

10.4.7.1 Local APIC State After Power-Up or Reset
Following a power-up or reset of the processor, the state of local APIC and its regis-
ters are as follows:
• The following registers are reset to all 0s:

• IRR, ISR, TMR, ICR, LDR, and TPR

• Timer initial count and timer current count registers

• Divide configuration register
• The DFR register is reset to all 1s.
• The LVT register is reset to 0s except for the mask bits; these are set to 1s.
• The local APIC version register is not affected.
• The local APIC ID register is set to a unique APIC ID. (Pentium and P6 family

processors only). The Arb ID register is set to the value in the APIC ID register.
• The spurious-interrupt vector register is initialized to 000000FFH. By setting bit 8

to 0, software disables the local APIC.
• If the processor is the only processor in the system or it is the BSP in an MP

system (see Section 8.4.1, “BSP and AP Processors”); the local APIC will respond
normally to INIT and NMI messages, to INIT# signals and to STPCLK# signals. If
the processor is in an MP system and has been designated as an AP; the local
APIC will respond the same as for the BSP. In addition, it will respond to SIPI
messages. For P6 family processors only, an AP will not respond to a STPCLK#
signal.

10.4.7.2 Local APIC State After It Has Been Software Disabled
When the APIC software enable/disable flag in the spurious interrupt vector register
has been explicitly cleared (as opposed to being cleared during a power up or reset),
the local APIC is temporarily disabled (see Section 10.4.3, “Enabling or Disabling the
Local APIC”). The operation and response of a local APIC while in this software-
disabled state is as follows:
• The local APIC will respond normally to INIT, NMI, SMI, and SIPI messages.
• Pending interrupts in the IRR and ISR registers are held and require masking or

handling by the CPU.
• The local APIC can still issue IPIs. It is software’s responsibility to avoid issuing

IPIs through the IPI mechanism and the ICR register if sending interrupts
through this mechanism is not desired.

• The reception or transmission of any IPIs that are in progress when the local APIC
is disabled are completed before the local APIC enters the software-disabled
state.
10-14 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
• The mask bits for all the LVT entries are set. Attempts to reset these bits will be
ignored.

• (For Pentium and P6 family processors) The local APIC continues to listen to all
bus messages in order to keep its arbitration ID synchronized with the rest of the
system.

10.4.7.3 Local APIC State After an INIT Reset (“Wait-for-SIPI” State)
An INIT reset of the processor can be initiated in either of two ways:
• By asserting the processor’s INIT# pin.
• By sending the processor an INIT IPI (an IPI with the delivery mode set to INIT).

Upon receiving an INIT through either of these mechanisms, the processor responds
by beginning the initialization process of the processor core and the local APIC. The
state of the local APIC following an INIT reset is the same as it is after a power-up or
hardware reset, except that the APIC ID and arbitration ID registers are not affected.
This state is also referred to at the “wait-for-SIPI” state (see also: Section 8.4.2, “MP
Initialization Protocol Requirements and Restrictions”).

10.4.7.4 Local APIC State After It Receives an INIT-Deassert IPI
Only the Pentium and P6 family processors support the INIT-deassert IPI. An INIT-
disassert IPI has no affect on the state of the APIC, other than to reload the arbitra-
tion ID register with the value in the APIC ID register.

10.4.8 Local APIC Version Register
The local APIC contains a hardwired version register. Software can use this register to
identify the APIC version (see Figure 10-7). In addition, the register specifies the
number of entries in the local vector table (LVT) for a specific implementation.

The fields in the local APIC version register are as follows:
Version The version numbers of the local APIC:

0XH 82489DX discrete APIC.

10H - 15H Integrated APIC.

Other values reserved.
Max LVT Entry Shows the number of LVT entries minus 1. For the Pentium 4 and

Intel Xeon processors (which have 6 LVT entries), the value
returned in the Max LVT field is 5; for the P6 family processors
(which have 5 LVT entries), the value returned is 4; for the
Pentium processor (which has 4 LVT entries), the value returned
is 3. For processors based on the Intel microarchitecture code
name Nehalem (which has 7 LVT entries) and onward, the value
returned is 6.
Vol. 3A 10-15

1

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
Suppress EOI-broadcasts
Indicates whether software can inhibit the broadcast of EOI
message by setting bit 12 of the Spurious Interrupt Vector
Register; see Section 10.8.5 and Section 10.9.

10.5 HANDLING LOCAL INTERRUPTS
The following sections describe facilities that are provided in the local APIC for
handling local interrupts. These include: the processor’s LINT0 and LINT1 pins, the
APIC timer, the performance-monitoring counters, the thermal sensor, and the
internal APIC error detector. Local interrupt handling facilities include: the LVT, the
error status register (ESR), the divide configuration register (DCR), and the initial
count and current count registers.

10.5.1 Local Vector Table
The local vector table (LVT) allows software to specify the manner in which the local
interrupts are delivered to the processor core. It consists of the following 32-bit APIC
registers (see Figure 10-8), one for each local interrupt:
• LVT CMCI Register (FEE0 02F0H) — Specifies interrupt delivery when an

overflow condition of corrected machine check error count reaching a threshold
value occurred in a machine check bank supporting CMCI (see Section 15.5.1,
“CMCI Local APIC Interface”).

• LVT Timer Register (FEE0 0320H) — Specifies interrupt delivery when the
APIC timer signals an interrupt (see Section 10.5.4, “APIC Timer”).

• LVT Thermal Monitor Register (FEE0 0330H) — Specifies interrupt delivery
when the thermal sensor generates an interrupt (see Section 14.5.2, “Thermal
Monitor”). This LVT entry is implementation specific, not architectural. If imple-
mented, it will always be at base address FEE0 0330H.

Figure 10-7. Local APIC Version Register

31 0

Reserved

7823 15

Support for EOI-broadcast suppression

16

Reserved

25 24

VersionMax LVT Entry

Value after reset: 00BN 00VVH
V = Version, N = # of LVT entries minus 1,

Address: FEE0 0030H
B = 1 if EOI-broadcast suppression supported
0-16 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
• LVT Performance Counter Register (FEE0 0340H) — Specifies interrupt
delivery when a performance counter generates an interrupt on overflow (see
Section 18.10.5.8, “Generating an Interrupt on Overflow”). This LVT entry is
implementation specific, not architectural. If implemented, it is not guaranteed
to be at base address FEE0 0340H.

• LVT LINT0 Register (FEE0 0350H) — Specifies interrupt delivery when an
interrupt is signaled at the LINT0 pin.

• LVT LINT1 Register (FEE0 0360H) — Specifies interrupt delivery when an
interrupt is signaled at the LINT1 pin.

• LVT Error Register (FEE0 0370H) — Specifies interrupt delivery when the
APIC detects an internal error (see Section 10.5.3, “Error Handling”).

The LVT performance counter register and its associated interrupt were introduced in
the P6 processors and are also present in the Pentium 4 and Intel Xeon processors.
The LVT thermal monitor register and its associated interrupt were introduced in the
Pentium 4 and Intel Xeon processors. The LVT CMCI register and its associated inter-
rupt were introduced in the Intel Xeon 5500 processors.

As shown in Figures 10-8, some of these fields and flags are not available (and
reserved) for some entries.

The setup information that can be specified in the registers of the LVT table is as
follows:
Vector Interrupt vector number.
Delivery Mode Specifies the type of interrupt to be sent to the processor. Some

delivery modes will only operate as intended when used in
conjunction with a specific trigger mode. The allowable delivery
modes are as follows:

000 (Fixed) Delivers the interrupt specified in the vector
field.

010 (SMI) Delivers an SMI interrupt to the processor
core through the processor’s local SMI signal
path. When using this delivery mode, the
vector field should be set to 00H for future
compatibility.

100 (NMI) Delivers an NMI interrupt to the processor.
The vector information is ignored.

101 (INIT) Delivers an INIT request to the processor
core, which causes the processor to perform
an INIT. When using this delivery mode, the
vector field should be set to 00H for future
compatibility. Not supported for the LVT
CMCI register, the LVT thermal monitor reg-
ister, or the LVT performance counter regis-
ter.
Vol. 3A 10-17

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
Figure 10-8. Local Vector Table (LVT)

31 07

Vector

Timer Mode
00: One-shot
01: Periodic

1215161718

Delivery Mode
000: Fixed

100: NMI

Mask†

0: Not Masked
1: Masked

Address: FEE0 0350H

Value After Reset: 0001 0000H

Reserved
12131516

Vector

31 07810

Address: FEE0 0360H
Address: FEE0 0370H

Vector

Vector

Error

LINT1

LINT0

Value after Reset: 0001 0000H
Address: FEE0 0320H

111: ExtlNT

All other combinations
are reserved

Interrupt Input
Pin Polarity

Trigger Mode
0: Edge
1: Level

Remote
IRR

Delivery Status
0: Idle
1: Send Pending

Timer

13 11 8

11

14

17

Address: FEE0 0340H

Performance
Vector

Thermal
Vector

Mon. Counters

Sensor

Address: FEE0 0330H
† (Pentium 4 and Intel Xeon processors.) When a

performance monitoring counters interrupt is generated,
the mask bit for its associated LVT entry is set.

010: SMI

101: INIT

19

10: TSC-Deadline

VectorCMCI

Address: FEE0 02F0H
10-18 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
110 Reserved; not supported for any LVT regis-
ter.

111 (ExtINT) Causes the processor to respond to the in-
terrupt as if the interrupt originated in an
externally connected (8259A-compatible)
interrupt controller. A special INTA bus cycle
corresponding to ExtINT, is routed to the ex-
ternal controller. The external controller is
expected to supply the vector information.
The APIC architecture supports only one
ExtINT source in a system, usually con-
tained in the compatibility bridge. Only one
processor in the system should have an LVT
entry configured to use the ExtINT delivery
mode. Not supported for the LVT CMCI reg-
ister, the LVT thermal monitor register, or
the LVT performance counter register.

Delivery Status (Read Only)
Indicates the interrupt delivery status, as follows:

0 (Idle) There is currently no activity for this inter-
rupt source, or the previous interrupt from
this source was delivered to the processor
core and accepted.

1 (Send Pending)
Indicates that an interrupt from this source
has been delivered to the processor core but
has not yet been accepted (see Section
10.5.5, “Local Interrupt Acceptance”).

Interrupt Input Pin Polarity
Specifies the polarity of the corresponding interrupt pin: (0)
active high or (1) active low.

Remote IRR Flag (Read Only)
For fixed mode, level-triggered interrupts; this flag is set when
the local APIC accepts the interrupt for servicing and is reset
when an EOI command is received from the processor. The
meaning of this flag is undefined for edge-triggered interrupts
and other delivery modes.

Trigger Mode Selects the trigger mode for the local LINT0 and LINT1 pins: (0)
edge sensitive and (1) level sensitive. This flag is only used
when the delivery mode is Fixed. When the delivery mode is
NMI, SMI, or INIT, the trigger mode is always edge sensitive.
When the delivery mode is ExtINT, the trigger mode is always
level sensitive. The timer and error interrupts are always treated
as edge sensitive.
Vol. 3A 10-19

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
If the local APIC is not used in conjunction with an I/O APIC and
fixed delivery mode is selected; the Pentium 4, Intel Xeon, and
P6 family processors will always use level-sensitive triggering,
regardless if edge-sensitive triggering is selected.

Mask Interrupt mask: (0) enables reception of the interrupt and (1)
inhibits reception of the interrupt. When the local APIC handles
a performance-monitoring counters interrupt, it automatically
sets the mask flag in the LVT performance counter register. This
flag is set to 1 on reset. It can be cleared only by software.

Timer Mode Bits 18:17 selects the timer mode (see Section 10.5.4):
(00b) one-shot mode using a count-down value,
(01b) periodic mode reloading a count-down value,
(10b) TSC-Deadline mode using absolute target value in
IA32_TSC_DEADLINE MSR (see Section 10.5.4.1),
(11b) is reserved.

10.5.2 Valid Interrupt Vectors
The Intel 64 and IA-32 architectures define 256 vector numbers, ranging from 0
through 255 (see Section 6.2, “Exception and Interrupt Vectors”). Local and I/O
APICs support 240 of these vectors (in the range of 16 to 255) as valid interrupts.

When an interrupt vector in the range of 0 to 15 is sent or received through the local
APIC, the APIC indicates an illegal vector in its Error Status Register (see Section
10.5.3, “Error Handling”). The Intel 64 and IA-32 architectures reserve vectors 16
through 31 for predefined interrupts, exceptions, and Intel-reserved encodings (see
Table 6-1). However, the local APIC does not treat vectors in this range as illegal.

When an illegal vector value (0 to 15) is written to an LVT entry and the delivery
mode is Fixed (bits 8-11 equal 0), the APIC may signal an illegal vector error, without
regard to whether the mask bit is set or whether an interrupt is actually seen on the
input.

10.5.3 Error Handling
The local APIC records errors detected during interrupt handling in the error status
register (ESR). The format of the ESR is given in Figure 10-9; it contains the
following flags:
• Bit 0: Send Checksum Error.

Set when the local APIC detects a checksum error for a message that it sent on
the APIC bus. Used only on P6 family and Pentium processors.

• Bit 1: Receive Checksum Error.
Set when the local APIC detects a checksum error for a message that it received
on the APIC bus. Used only on P6 family and Pentium processors.
10-20 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
• Bit 2: Send Accept Error.
Set when the local APIC detects that a message it sent was not accepted by any
APIC on the APIC bus. Used only on P6 family and Pentium processors.

• Bit 3: Receive Accept Error.
Set when the local APIC detects that the message it received was not accepted by
any APIC on the APIC bus, including itself. Used only on P6 family and Pentium
processors.

• Bit 4: Redirectable IPI.
Set when the local APIC detects an attempt to send an IPI with the lowest-priority
delivery mode and the local APIC does not support the sending of such IPIs. This
bit is used on some Intel Core and Intel Xeon processors. As noted in Section
10.6.2, the ability of a processor to send a lowest-priority IPI is model-specific
and should be avoided.

• Bit 5: Send Illegal Vector.
Set when the local APIC detects an illegal vector (one in the range 0 to 15) in the
message that it is sending. This occurs as the result of a write to the ICR (in both
xAPIC and x2APIC modes) or to SELF IPI register (x2APIC mode only) with an
illegal vector.
If the local APIC does not support the sending of lowest-priority IPIs and software
writes the ICR to send a lowest-priority IPI with an illegal vector, the local APIC

Figure 10-9. Error Status Register (ESR)

Address: FEE0 0280H
Value after reset: 0H

31 0

Reserved

78 123456

Illegal Register Address1

Received Illegal Vector
Send Illegal Vector
Redirectable IPI2

Receive Accept Error3

Send Accept Error3

Receive Checksum Error3

Send Checksum Error3

2. Used only by some Intel Core and Intel Xeon processors;
reserved on other processors.

1. Used only by Intel Core, Pentium 4, Intel Xeon, and P6 family
processors; reserved on the Pentium processor.

NOTES:

3. Used only by the P6 family and Pentium processors;
reserved on Intel Core, Pentium 4 and Intel Xeon processors.
Vol. 3A 10-21

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
sets only the “redirectible IPI” error bit. The interrupt is not processed and hence
the “Send Illegal Vector” bit is not set in the ESR.

• Bit 6: Receive Illegal Vector.
Set when the local APIC detects an illegal vector (one in the range 0 to 15) in an
interrupt message it receives or in an interrupt generated locally from the local
vector table or via a self IPI. Such interrupts are not be delivered to the
processor; the local APIC will never set an IRR bit in the range 0 to 15.

• Bit 7: Illegal Register Address
Set when the local APIC is in xAPIC mode and software attempts to access a
register that is reserved in the processor's local-APIC register-address space; see
Table 10-1. (The local-APIC register-address space comprises the 4 KBytes at the
physical address specified in the IA32_APIC_BASE MSR.) Used only on Intel
Core, Intel Atom™, Pentium 4, Intel Xeon, and P6 family processors.
In x2APIC mode, software accesses the APIC registers using the RDMSR and
WRMSR instructions. Use of one of these instructions to access a reserved
register cause a general-protection exception (see Section 10.12.1.3). They do
not set the “Illegal Register Access” bit in the ESR.

The ESR is a write/read register. Before attempt to read from the ESR, software
should first write to it. (The value written does not affect the values read subse-
quently; only zero may be written in x2APIC mode.) This write clears any previously
logged errors and updates the ESR with any errors detected since the last write to the
ESR.

The LVT Error Register (see Section 10.5.1) allows specification of the vector of the
interrupt to be delivered to the processor core when APIC error is detected. The
register also provides a means of masking an APIC-error interrupt. This masking only
prevents delivery of APIC-error interrupts; the APIC continues to record errors in the
ESR.

10.5.4 APIC Timer
The local APIC unit contains a 32-bit programmable timer that is available to soft-
ware to time events or operations. This timer is set up by programming four regis-
ters: the divide configuration register (see Figure 10-10), the initial-count and
current-count registers (see Figure 10-11), and the LVT timer register (see
Figure 10-8).

If CPUID.06H:EAX.ARAT[bit 2] = 1, the processor’s APIC timer runs at a constant
rate regardless of P-state transitions and it continues to run at the same rate in deep
C-states.

If CPUID.06H:EAX.ARAT[bit 2] = 0 or if CPUID 06H is not supported, the APIC timer
may temporarily stop while the processor is in deep C-states or during transitions
caused by Enhanced Intel SpeedStep® Technology.

The time base for the timer is derived from the processor’s bus clock, divided by the
value specified in the divide configuration register.
10-22 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
The timer can be configured through the timer LVT entry for one-shot or periodic
operation. In one-shot mode, the timer is started by programming its initial-count
register. The initial count value is then copied into the current-count register and
count-down begins. After the timer reaches zero, an timer interrupt is generated and
the timer remains at its 0 value until reprogrammed.

In periodic mode, the current-count register is automatically reloaded from the
initial-count register when the count reaches 0 and a timer interrupt is generated,
and the count-down is repeated. If during the count-down process the initial-count
register is set, counting will restart, using the new initial-count value. The initial-
count register is a read-write register; the current-count register is read only.

A write of 0 to the initial-count register effectively stops the local APIC timer, in both
one-shot and periodic mode.

The LVT timer register determines the vector number that is delivered to the
processor with the timer interrupt that is generated when the timer count reaches
zero. The mask flag in the LVT timer register can be used to mask the timer interrupt.

Figure 10-10. Divide Configuration Register

Figure 10-11. Initial Count and Current Count Registers

Address: FEE0 03E0H
Value after reset: 0H

0

Divide Value (bits 0, 1 and 3)
000: Divide by 2
001: Divide by 4
010: Divide by 8
011: Divide by 16
100: Divide by 32
101: Divide by 64
110: Divide by 128
111: Divide by 1

31 0

Reserved

1234

31 0

Initial Count

Address: Initial Count

Value after reset: 0H

Current Count

Current Count FEE0 0390H
FEE0 0380H
Vol. 3A 10-23

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
10.5.4.1 TSC-Deadline Mode
The mode of operation of the local-APIC timer is determined by the LVT Timer
Register. Specifically, if CPUID.01H:ECX.TSC_Deadline[bit 24] = 0, the mode is
determined by bit 17 of the register; if CPUID.01H:ECX.TSC_Deadline[bit 24] = 1,
the mode is determined by bits 18:17. See Figure 10-8. (If
CPUID.01H:ECX.TSC_Deadline[bit 24] = 0, bit 18 of the register is reserved.) A write
to the LVT Timer Register that changes the timer mode disarms the local APIC timer.
The supported timer modes are given in Table 10-2. The three modes of the local
APIC timer are mutually exclusive.

The TSC-deadline mode allows software to use local APIC timer to single interrupt at
an absolute time. In TSC-deadline mode, writes to the initial-count register are
ignored; and current-count register always reads 0. Instead, timer behavior is
controlled using the IA32_TSC_DEADLINE MSR.

The IA32_TSC_DEADLINE MSR (MSR address 6E0H) is a per-logical processor MSR
that specifies the time at which a timer interrupt should occur. Writing a non-zero 64-
bit value into IA32_TSC_DEADLINE arms the timer. An interrupt is generated when
the logical processor’s time-stamp counter equals or exceeds the target value in the
IA32_TSC_DEADLINE MSR.2 When the timer generates an interrupt, it disarms itself
and clears the IA32_TSC_DEADLINE MSR. Thus, each write to the
IA32_TSC_DEADLINE MSR generates at most one timer interrupt.

In TSC-deadline mode, writing 0 to the IA32_TSC_DEADLINE MSR disarms the local-
APIC timer. Transitioning between TSC-deadline mode and other timer modes also
disarms the timer.

The hardware reset value of the IA32_TSC_DEADLINE MSR is 0. In other timer
modes (LVT bit 18 = 0), the IA32_TSC_DEADLINE MSR reads zero and writes are
ignored.

Table 10-2. Local APIC Timer Modes

LVT Bits [18:17] Timer Mode

00b One-shot mode, program count-down value in an initial-count
register. See Section 10.5.4

01b Periodic mode, program interval value in an initial-count register. See
Section 10.5.4

10b TSC-Deadline mode, program target value in IA32_TSC_DEADLINE
MSR.

11b Reserved

2. If the logical processor is in VMX non-root operation, a read of the time-stamp counter (using
either RDMSR, RDTSC, or RDTSCP) may not return the actual value of the time-stamp counter;
see Chapter 25 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
3C. It is the responsibility of software operating in VMX root operation to coordinate the virtual-
ization of the time-stamp counter and the IA32_TSC_DEADLINE MSR.
10-24 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
Software can configure the TSC-deadline timer to deliver a single interrupt using the
following algorithm:

1. Detect support for TSC-deadline mode by verifying CPUID.1:ECX.24 = 1.

2. Select the TSC-deadline mode by programming bits 18:17 of the LVT Timer
register with 10b.

3. Program the IA32_TSC_DEADLINE MSR with the target TSC value at which the
timer interrupt is desired. This causes the processor to arm the timer.

4. The processor generates a timer interrupt when the value of time-stamp counter
is greater than or equal to that of IA32_TSC_DEADLINE. It then disarms the
timer and clear the IA32_TSC_DEADLINE MSR. (Both the time-stamp counter
and the IA32_TSC_DEADLINE MSR are 64-bit unsigned integers.)

5. Software can re-arm the timer by repeating step 3.

The following are usage guidelines for TSC-deadline mode:
• Writes to the IA32_TSC_DEADLINE MSR are not serialized. Therefore, system

software should not use WRMSR to the IA32_TSC_DEADLINE MSR as a serializing
instruction. Read and write accesses to the IA32_TSC_DEADLINE and other MSR
registers will occur in program order.

• Software can disarm the timer at any time by writing 0 to the
IA32_TSC_DEADLINE MSR.

• If timer is armed, software can change the deadline (forward or backward) by
writing a new value to the IA32_TSC_DEADLINE MSR.

• If software disarms the timer or postpones the deadline, race conditions may
result in the delivery of a spurious timer interrupt. Software is expected to detect
such spurious interrupts by checking the current value of the time-stamp counter
to confirm that the interrupt was desired.3

• In xAPIC mode (in which the local-APIC registers are memory-mapped), software
must serialize between the memory-mapped write to the LVT entry and the
WRMSR to IA32_TSC_DEADLINE. In x2APIC mode, no serialization is required
between the two writes (by WRMSR) to the LVT and IA32_TSC_DEADLINE MSRs.

The following is a sample algorithm for serializing writes in xAPIC mode:

1. Memory-mapped write to LVT Timer Register, setting bits 18:17 to 10b.

2. WRMSR to the IA32_TSC_DEADLINE MSR a value much larger than current time-
stamp counter.

3. If RDMSR of the IA32_TSC_DEADLINE MSR returns zero, go to step 2.

3. If the logical processor is in VMX non-root operation, a read of the time-stamp counter (using
either RDMSR, RDTSC, or RDTSCP) may not return the actual value of the time-stamp counter;
see Chapter 25 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
3C. It is the responsibility of software operating in VMX root operation to coordinate the virtual-
ization of the time-stamp counter and the IA32_TSC_DEADLINE MSR.
Vol. 3A 10-25

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
4. WRMSR to the IA32_TSC_DEADLINE MSR the desired deadline.

10.5.5 Local Interrupt Acceptance
When a local interrupt is sent to the processor core, it is subject to the acceptance
criteria specified in the interrupt acceptance flow chart in Figure 10-17. If the inter-
rupt is accepted, it is logged into the IRR register and handled by the processor
according to its priority (see Section 10.8.4, “Interrupt Acceptance for Fixed Inter-
rupts”). If the interrupt is not accepted, it is sent back to the local APIC and retried.

10.6 ISSUING INTERPROCESSOR INTERRUPTS
The following sections describe the local APIC facilities that are provided for issuing
interprocessor interrupts (IPIs) from software. The primary local APIC facility for
issuing IPIs is the interrupt command register (ICR). The ICR can be used for the
following functions:
• To send an interrupt to another processor.
• To allow a processor to forward an interrupt that it received but did not service to

another processor for servicing.
• To direct the processor to interrupt itself (perform a self interrupt).
• To deliver special IPIs, such as the start-up IPI (SIPI) message, to other

processors.

Interrupts generated with this facility are delivered to the other processors in the
system through the system bus (for Pentium 4 and Intel Xeon processors) or the
APIC bus (for P6 family and Pentium processors). The ability for a processor to send
a lowest priority IPI is model specific and should be avoided by BIOS and operating
system software.

10.6.1 Interrupt Command Register (ICR)
The interrupt command register (ICR) is a 64-bit4 local APIC register (see
Figure 10-12) that allows software running on the processor to specify and send
interprocessor interrupts (IPIs) to other processors in the system.

To send an IPI, software must set up the ICR to indicate the type of IPI message to
be sent and the destination processor or processors. (All fields of the ICR are read-
write by software with the exception of the delivery status field, which is read-only.)
The act of writing to the low doubleword of the ICR causes the IPI to be sent.

4. In XAPIC mode the ICR is addressed as two 32-bit registers, ICR_LOW (FFE0 0300H) and
ICR_HIGH (FFE0 0310H).
10-26 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
The ICR consists of the following fields.
Vector The vector number of the interrupt being sent.
Delivery Mode Specifies the type of IPI to be sent. This field is also know as the

IPI message type field.

000 (Fixed) Delivers the interrupt specified in the vector
field to the target processor or processors.

001 (Lowest Priority)
Same as fixed mode, except that the inter-
rupt is delivered to the processor executing
at the lowest priority among the set of pro-
cessors specified in the destination field. The

Figure 10-12. Interrupt Command Register (ICR)

31 0

Reserved

7

Vector

Destination Shorthand

810

Delivery Mode
000: Fixed
001: Lowest Priority1

00: No Shorthand
01: Self

111213141516171819

10: All Including Self
11: All Excluding Self

010: SMI
011: Reserved
100: NMI
101: INIT
110: Start Up
111: Reserved

Destination Mode
0: Physical
1: Logical

Delivery Status
0: Idle
1: Send Pending

Level
0 = De-assert
1 = Assert

Trigger Mode
0: Edge
1: Level

63 32

ReservedDestination Field

56

Address: FEE0 0300H (0 - 31)

Value after Reset: 0H

Reserved

20

55

FEE0 0310H (32 - 63)

 NOTE:
1. The ability of a processor to send Lowest Priority IPI is model specific.
Vol. 3A 10-27

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
ability for a processor to send a lowest prior-
ity IPI is model specific and should be avoid-
ed by BIOS and operating system software.

010 (SMI) Delivers an SMI interrupt to the target pro-
cessor or processors. The vector field must
be programmed to 00H for future compati-
bility.

011 (Reserved)

100 (NMI) Delivers an NMI interrupt to the target pro-
cessor or processors. The vector information
is ignored.

101 (INIT) Delivers an INIT request to the target pro-
cessor or processors, which causes them to
perform an INIT. As a result of this IPI mes-
sage, all the target processors perform an
INIT. The vector field must be programmed
to 00H for future compatibility.

101 (INIT Level De-assert)
(Not supported in the Pentium 4 and Intel
Xeon processors.) Sends a synchronization
message to all the local APICs in the system
to set their arbitration IDs (stored in their
Arb ID registers) to the values of their APIC
IDs (see Section 10.7, “System and APIC
Bus Arbitration”). For this delivery mode,
the level flag must be set to 0 and trigger
mode flag to 1. This IPI is sent to all proces-
sors, regardless of the value in the destina-
tion field or the destination shorthand field;
however, software should specify the “all in-
cluding self” shorthand.

110 (Start-Up)
Sends a special “start-up” IPI (called a SIPI)
to the target processor or processors. The
vector typically points to a start-up routine
that is part of the BIOS boot-strap code (see
Section 8.4, “Multiple-Processor (MP) Initial-
ization”). IPIs sent with this delivery mode
are not automatically retried if the source
APIC is unable to deliver it. It is up to the
software to determine if the SIPI was not
successfully delivered and to reissue the
SIPI if necessary.
10-28 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
Destination Mode Selects either physical (0) or logical (1) destination mode (see
Section 10.6.2, “Determining IPI Destination”).

Delivery Status (Read Only)
Indicates the IPI delivery status, as follows:

0 (Idle) Indicates that this local APIC has completed
sending any previous IPIs.

1 (Send Pending)
Indicates that this local APIC has not com-
pleted sending the last IPI.

Level For the INIT level de-assert delivery mode this flag must be set
to 0; for all other delivery modes it must be set to 1. (This flag
has no meaning in Pentium 4 and Intel Xeon processors, and will
always be issued as a 1.)

Trigger Mode Selects the trigger mode when using the INIT level de-assert
delivery mode: edge (0) or level (1). It is ignored for all other
delivery modes. (This flag has no meaning in Pentium 4 and
Intel Xeon processors, and will always be issued as a 0.)

Destination Shorthand
Indicates whether a shorthand notation is used to specify the
destination of the interrupt and, if so, which shorthand is used.
Destination shorthands are used in place of the 8-bit destination
field, and can be sent by software using a single write to the low
doubleword of the ICR. Shorthands are defined for the following
cases: software self interrupt, IPIs to all processors in the
system including the sender, IPIs to all processors in the system
excluding the sender.

00: (No Shorthand)
The destination is specified in the destination
field.

01: (Self) The issuing APIC is the one and only destina-
tion of the IPI. This destination shorthand al-
lows software to interrupt the processor on
which it is executing. An APIC implementa-
tion is free to deliver the self-interrupt mes-
sage internally or to issue the message to
the bus and “snoop” it as with any other IPI
message.

10: (All Including Self)
The IPI is sent to all processors in the system
including the processor sending the IPI. The
APIC will broadcast an IPI message with the
destination field set to FH for Pentium and P6
family processors and to FFH for Pentium 4
and Intel Xeon processors.
Vol. 3A 10-29

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
11: (All Excluding Self)
The IPI is sent to all processors in a system
with the exception of the processor sending
the IPI. The APIC broadcasts a message with
the physical destination mode and destina-
tion field set to 0xFH for Pentium and P6
family processors and to 0xFFH for Pentium
4 and Intel Xeon processors. Support for this
destination shorthand in conjunction with
the lowest-priority delivery mode is model
specific. For Pentium 4 and Intel Xeon pro-
cessors, when this shorthand is used togeth-
er with lowest priority delivery mode, the IPI
may be redirected back to the issuing pro-
cessor.

Destination Specifies the target processor or processors. This field is only
used when the destination shorthand field is set to 00B. If the
destination mode is set to physical, then bits 56 through 59
contain the APIC ID of the target processor for Pentium and P6
family processors and bits 56 through 63 contain the APIC ID of
the target processor the for Pentium 4 and Intel Xeon proces-
sors. If the destination mode is set to logical, the interpretation
of the 8-bit destination field depends on the settings of the DFR
and LDR registers of the local APICs in all the processors in the
system (see Section 10.6.2, “Determining IPI Destination”).

Not all combinations of options for the ICR are valid. Table 10-3 shows the valid
combinations for the fields in the ICR for the Pentium 4 and Intel Xeon processors;
Table 10-4 shows the valid combinations for the fields in the ICR for the P6 family
processors. Also note that the lower half of the ICR may not be preserved over tran-
sitions to the deepest C-States.

ICR operation in x2APIC mode is discussed in Section 10.12.9.

Table 10-3 Valid Combinations for the Pentium 4 and Intel Xeon Processors’
Local xAPIC Interrupt Command Register

Destination
Shorthand

Valid/
Invalid

Trigger
Mode Delivery Mode

Destination
Mode

No Shorthand Valid Edge All Modes1 Physical or Logical

No Shorthand Invalid2 Level All Modes Physical or Logical

Self Valid Edge Fixed X3

Self Invalid2 Level Fixed X

Self Invalid X Lowest Priority, NMI, INIT, SMI, Start-
Up

X

All Including Self Valid Edge Fixed X
10-30 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
All Including Self Invalid2 Level Fixed X

All Including Self Invalid X Lowest Priority, NMI, INIT, SMI, Start-
Up

X

All Excluding
Self

Valid Edge Fixed, Lowest Priority1,4, NMI, INIT,
SMI, Start-Up

X

All Excluding
Self

Invalid2 Level FIxed, Lowest Priority4, NMI, INIT,
SMI, Start-Up

X

NOTES:
1. The ability of a processor to send a lowest priority IPI is model specific.
2. For these interrupts, if the trigger mode bit is 1 (Level), the local xAPIC will override the bit set-

ting and issue the interrupt as an edge triggered interrupt.
3. X means the setting is ignored.
4. When using the “lowest priority” delivery mode and the “all excluding self” destination, the IPI

can be redirected back to the issuing APIC, which is essentially the same as the “all including
self” destination mode.

Table 10-4 Valid Combinations for the P6 Family Processors’
Local APIC Interrupt Command Register

Destination
Shorthand

Valid/
Invalid

Trigger
Mode Delivery Mode Destination Mode

No Shorthand Valid Edge All Modes1 Physical or Logical

No Shorthand Valid2 Level Fixed, Lowest Priority1, NMI Physical or Logical

No Shorthand Valid3 Level INIT Physical or Logical

Self Valid Edge Fixed X4

Self 1 Level Fixed X

Self Invalid5 X Lowest Priority, NMI, INIT,
SMI, Start-Up

X

All including Self Valid Edge Fixed X

All including Self Valid2 Level Fixed X

All including Self Invalid5 X Lowest Priority, NMI, INIT,
SMI, Start-Up

X

All excluding Self Valid Edge All Modes1 X

All excluding Self Valid2 Level Fixed, Lowest Priority1, NMI X

All excluding Self Invalid5 Level SMI, Start-Up X

Table 10-3 Valid Combinations for the Pentium 4 and Intel Xeon Processors’
Local xAPIC Interrupt Command Register (Contd.)

Destination
Shorthand

Valid/
Invalid

Trigger
Mode Delivery Mode

Destination
Mode
Vol. 3A 10-31

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
10.6.2 Determining IPI Destination
The destination of an IPI can be one, all, or a subset (group) of the processors on the
system bus. The sender of the IPI specifies the destination of an IPI with the
following APIC registers and fields within the registers:
• ICR Register — The following fields in the ICR register are used to specify the

destination of an IPI:

— Destination Mode — Selects one of two destination modes (physical or
logical).

— Destination Field — In physical destination mode, used to specify the APIC
ID of the destination processor; in logical destination mode, used to specify a
message destination address (MDA) that can be used to select specific
processors in clusters.

— Destination Shorthand — A quick method of specifying all processors, all
excluding self, or self as the destination.

— Delivery mode, Lowest Priority — Architecturally specifies that a lowest-
priority arbitration mechanism be used to select a destination processor from
a specified group of processors. The ability of a processor to send a lowest
priority IPI is model specific and should be avoided by BIOS and operating
system software.

• Local destination register (LDR) — Used in conjunction with the logical
destination mode and MDAs to select the destination processors.

• Destination format register (DFR) — Used in conjunction with the logical
destination mode and MDAs to select the destination processors.

All excluding Self Valid3 Level INIT X

X Invalid5 Level SMI, Start-Up X

NOTES:
1. The ability of a processor to send a lowest priority IPI is model specific.
2. Treated as edge triggered if level bit is set to 1, otherwise ignored.
3. Treated as edge triggered when Level bit is set to 1; treated as “INIT Level Deassert” message

when level bit is set to 0 (deassert). Only INIT level deassert messages are allowed to have the
level bit set to 0. For all other messages the level bit must be set to 1.

4. X means the setting is ignored.
5. The behavior of the APIC is undefined.

Table 10-4 Valid Combinations for the P6 Family Processors’
Local APIC Interrupt Command Register (Contd.)

Destination
Shorthand

Valid/
Invalid

Trigger
Mode Delivery Mode Destination Mode
10-32 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
How the ICR, LDR, and DFR are used to select an IPI destination depends on the
destination mode used: physical, logical, broadcast/self, or lowest-priority delivery
mode. These destination modes are described in the following sections.

Determination of IPI destinations in x2APIC mode is discussed in Section 10.12.10.

10.6.2.1 Physical Destination Mode
In physical destination mode, the destination processor is specified by its local APIC
ID (see Section 10.4.6, “Local APIC ID”). For Pentium 4 and Intel Xeon processors,
either a single destination (local APIC IDs 00H through FEH) or a broadcast to all
APICs (the APIC ID is FFH) may be specified in physical destination mode.

A broadcast IPI (bits 28-31 of the MDA are 1's) or I/O subsystem initiated interrupt
with lowest priority delivery mode is not supported in physical destination mode and
must not be configured by software. Also, for any non-broadcast IPI or I/O
subsystem initiated interrupt with lowest priority delivery mode, software must
ensure that APICs defined in the interrupt address are present and enabled to receive
interrupts.

For the P6 family and Pentium processors, a single destination is specified in physical
destination mode with a local APIC ID of 0H through 0EH, allowing up to 15 local
APICs to be addressed on the APIC bus. A broadcast to all local APICs is specified with
0FH.

NOTE
The number of local APICs that can be addressed on the system bus
may be restricted by hardware.

10.6.2.2 Logical Destination Mode
In logical destination mode, IPI destination is specified using an 8-bit message desti-
nation address (MDA), which is entered in the destination field of the ICR. Upon
receiving an IPI message that was sent using logical destination mode, a local APIC
compares the MDA in the message with the values in its LDR and DFR to determine if
it should accept and handle the IPI. For both configurations of logical destination
mode, when combined with lowest priority delivery mode, software is responsible for
ensuring that all of the local APICs included in or addressed by the IPI or I/O
subsystem interrupt are present and enabled to receive the interrupt.

Figure 10-13 shows the layout of the logical destination register (LDR). The 8-bit
logical APIC ID field in this register is used to create an identifier that can be
compared with the MDA.

NOTE
The logical APIC ID should not be confused with the local APIC ID that
is contained in the local APIC ID register.
Vol. 3A 10-33

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
Figure 10-14 shows the layout of the destination format register (DFR). The 4-bit
model field in this register selects one of two models (flat or cluster) that can be used
to interpret the MDA when using logical destination mode.

The interpretation of MDA for the two models is described in the following para-
graphs.

1. Flat Model — This model is selected by programming DFR bits 28 through 31 to
1111. Here, a unique logical APIC ID can be established for up to 8 local APICs by
setting a different bit in the logical APIC ID field of the LDR for each local APIC. A
group of local APICs can then be selected by setting one or more bits in the MDA.
Each local APIC performs a bit-wise AND of the MDA and its logical APIC ID. If a
true condition is detected, the local APIC accepts the IPI message. A broadcast to
all APICs is achieved by setting the MDA to 1s.

2. Cluster Model — This model is selected by programming DFR bits 28 through 31
to 0000. This model supports two basic destination schemes: flat cluster and
hierarchical cluster.
The flat cluster destination model is only supported for P6 family and Pentium
processors. Using this model, all APICs are assumed to be connected through the
APIC bus. Bits 60 through 63 of the MDA contains the encoded address of the
destination cluster and bits 56 through 59 identify up to four local APICs within
the cluster (each bit is assigned to one local APIC in the cluster, as in the flat
connection model). To identify one or more local APICs, bits 60 through 63 of the

Figure 10-13. Logical Destination Register (LDR)

Figure 10-14. Destination Format Register (DFR)

31 02324

ReservedLogical APIC ID

Address: 0FEE0 00D0H
Value after reset: 0000 0000H

31 0

Model

28

Reserved (All 1s)

Address: 0FEE0 00E0H
Value after reset: FFFF FFFFH

Flat model: 1111B
Cluster model: 0000B
10-34 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
MDA are compared with bits 28 through 31 of the LDR to determine if a local APIC
is part of the cluster. Bits 56 through 59 of the MDA are compared with Bits 24
through 27 of the LDR to identify a local APICs within the cluster.
Sets of processors within a cluster can be specified by writing the target cluster
address in bits 60 through 63 of the MDA and setting selected bits in bits 56
through 59 of the MDA, corresponding to the chosen members of the cluster. In
this mode, 15 clusters (with cluster addresses of 0 through 14) each having 4
local APICs can be specified in the message. For the P6 and Pentium processor’s
local APICs, however, the APIC arbitration ID supports only 15 APIC agents.
Therefore, the total number of processors and their local APICs supported in
this mode is limited to 15. Broadcast to all local APICs is achieved by setting all
destination bits to one. This guarantees a match on all clusters and selects all
APICs in each cluster. A broadcast IPI or I/O subsystem broadcast interrupt with
lowest priority delivery mode is not supported in cluster mode and must not be
configured by software.
The hierarchical cluster destination model can be used with Pentium 4, Intel
Xeon, P6 family, or Pentium processors. With this model, a hierarchical network
can be created by connecting different flat clusters via independent system or
APIC buses. This scheme requires a cluster manager within each cluster, which is
responsible for handling message passing between system or APIC buses. One
cluster contains up to 4 agents. Thus 15 cluster managers, each with 4 agents,
can form a network of up to 60 APIC agents. Note that hierarchical APIC networks
requires a special cluster manager device, which is not part of the local or the I/O
APIC units.

NOTES
All processors that have their APIC software enabled (using the
spurious vector enable/disable bit) must have their DFRs (Desti-
nation Format Registers) programmed identically.
The default mode for DFR is flat mode. If you are using cluster mode,
DFRs must be programmed before the APIC is software enabled.
Since some chipsets do not accurately track a system view of the
logical mode, program DFRs as soon as possible after starting the
processor.

10.6.2.3 Broadcast/Self Delivery Mode
The destination shorthand field of the ICR allows the delivery mode to be by-passed
in favor of broadcasting the IPI to all the processors on the system bus and/or back
to itself (see Section 10.6.1, “Interrupt Command Register (ICR)”). Three destina-
tion shorthands are supported: self, all excluding self, and all including self. The
destination mode is ignored when a destination shorthand is used.
Vol. 3A 10-35

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
10.6.2.4 Lowest Priority Delivery Mode
With lowest priority delivery mode, the ICR is programmed to send an IPI to several
processors on the system bus, using the logical or shorthand destination mechanism
for selecting the processor. The selected processors then arbitrate with one another
over the system bus or the APIC bus, with the lowest-priority processor accepting the
IPI.

For systems based on the Intel Xeon processor, the chipset bus controller accepts
messages from the I/O APIC agents in the system and directs interrupts to the
processors on the system bus. When using the lowest priority delivery mode, the
chipset chooses a target processor to receive the interrupt out of the set of possible
targets. The Pentium 4 processor provides a special bus cycle on the system bus that
informs the chipset of the current task priority for each logical processor in the
system. The chipset saves this information and uses it to choose the lowest priority
processor when an interrupt is received.

For systems based on P6 family processors, the processor priority used in lowest-
priority arbitration is contained in the arbitration priority register (APR) in each local
APIC. Figure 10-15 shows the layout of the APR.

The APR value is computed as follows:

IF (TPR[7:4] ≥ IRRV[7:4]) AND (TPR[7:4] > ISRV[7:4])
THEN

APR[7:0] ← TPR[7:0]
ELSE

APR[7:4] ← max(TPR[7:4] AND ISRV[7:4], IRRV[7:4])
APR[3:0] ← 0.

Here, the TPR value is the task priority value in the TPR (see Figure 10-18), the IRRV
value is the vector number for the highest priority bit that is set in the IRR (see
Figure 10-20) or 00H (if no IRR bit is set), and the ISRV value is the vector number
for the highest priority bit that is set in the ISR (see Figure 10-20). Following arbitra-
tion among the destination processors, the processor with the lowest value in its APR
handles the IPI and the other processors ignore it.

Figure 10-15. Arbitration Priority Register (APR)

31 078

Reserved

Address: FEE0 0090H
Value after reset: 0H

Arbitration Priority Sub-Class

Arbitration Priority Class

4 3
10-36 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
(P6 family and Pentium processors.) For these processors, if a focus processor
exists, it may accept the interrupt, regardless of its priority. A processor is said to be
the focus of an interrupt if it is currently servicing that interrupt or if it has a pending
request for that interrupt. For Intel Xeon processors, the concept of a focus processor
is not supported.

In operating systems that use the lowest priority delivery mode but do not update
the TPR, the TPR information saved in the chipset will potentially cause the interrupt
to be always delivered to the same processor from the logical set. This behavior is
functionally backward compatible with the P6 family processor but may result in
unexpected performance implications.

10.6.3 IPI Delivery and Acceptance
When the low double-word of the ICR is written to, the local APIC creates an IPI
message from the information contained in the ICR and sends the message out on
the system bus (Pentium 4 and Intel Xeon processors) or the APIC bus (P6 family and
Pentium processors). The manner in which these IPIs are handled after being issues
in described in Section 10.8, “Handling Interrupts.”

10.7 SYSTEM AND APIC BUS ARBITRATION
When several local APICs and the I/O APIC are sending IPI and interrupt messages
on the system bus (or APIC bus), the order in which the messages are sent and
handled is determined through bus arbitration.

For the Pentium 4 and Intel Xeon processors, the local and I/O APICs use the arbitra-
tion mechanism defined for the system bus to determine the order in which IPIs are
handled. This mechanism is non-architectural and cannot be controlled by software.

For the P6 family and Pentium processors, the local and I/O APICs use an APIC-based
arbitration mechanism to determine the order in which IPIs are handled. Here, each
local APIC is given an arbitration priority of from 0 to 15, which the I/O APIC uses
during arbitration to determine which local APIC should be given access to the APIC
bus. The local APIC with the highest arbitration priority always wins bus access. Upon
completion of an arbitration round, the winning local APIC lowers its arbitration
priority to 0 and the losing local APICs each raise theirs by 1.

The current arbitration priority for a local APIC is stored in a 4-bit, software-trans-
parent arbitration ID (Arb ID) register. During reset, this register is initialized to the
APIC ID number (stored in the local APIC ID register). The INIT level-deassert IPI,
which is issued with and ICR command, can be used to resynchronize the arbitration
priorities of the local APICs by resetting Arb ID register of each agent to its current
APIC ID value. (The Pentium 4 and Intel Xeon processors do not implement the Arb
ID register.)

Section 10.10, “APIC Bus Message Passing Mechanism and Protocol (P6 Family,
Pentium Processors),” describes the APIC bus arbitration protocols and bus message
Vol. 3A 10-37

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
formats, while Section 10.6.1, “Interrupt Command Register (ICR),” describes the
INIT level de-assert IPI message.

Note that except for the SIPI IPI (see Section 10.6.1, “Interrupt Command Register
(ICR)”), all bus messages that fail to be delivered to their specified destination or
destinations are automatically retried. Software should avoid situations in which IPIs
are sent to disabled or nonexistent local APICs, causing the messages to be resent
repeatedly.

10.8 HANDLING INTERRUPTS
When a local APIC receives an interrupt from a local source, an interrupt message
from an I/O APIC, or and IPI, the manner in which it handles the message depends
on processor implementation, as described in the following sections.

10.8.1 Interrupt Handling with the Pentium 4 and Intel Xeon
Processors

With the Pentium 4 and Intel Xeon processors, the local APIC handles the local inter-
rupts, interrupt messages, and IPIs it receives as follows:

1. It determines if it is the specified destination or not (see Figure 10-16). If it is the
specified destination, it accepts the message; if it is not, it discards the message.

2. If the local APIC determines that it is the designated destination for the interrupt
and if the interrupt request is an NMI, SMI, INIT, ExtINT, or SIPI, the interrupt is
sent directly to the processor core for handling.

3. If the local APIC determines that it is the designated destination for the interrupt
but the interrupt request is not one of the interrupts given in step 2, the local
APIC sets the appropriate bit in the IRR.

4. When interrupts are pending in the IRR register, the local APIC dispatches them
to the processor one at a time, based on their priority and the current processor
priority in the PPR (see Section 10.8.3.1, “Task and Processor Priorities”).

Figure 10-16. Interrupt Acceptance Flow Chart for the Local APIC (Pentium 4 and
Intel Xeon Processors)

Wait to Receive
Bus Message

Belong to
Destination?Discard

Message

No Accept
Message

Yes
10-38 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
5. When a fixed interrupt has been dispatched to the processor core for handling,
the completion of the handler routine is indicated with an instruction in the
instruction handler code that writes to the end-of-interrupt (EOI) register in the
local APIC (see Section 10.8.5, “Signaling Interrupt Servicing Completion”). The
act of writing to the EOI register causes the local APIC to delete the interrupt
from its ISR queue and (for level-triggered interrupts) send a message on the
bus indicating that the interrupt handling has been completed. (A write to the EOI
register must not be included in the handler routine for an NMI, SMI, INIT,
ExtINT, or SIPI.)

10.8.2 Interrupt Handling with the P6 Family and Pentium
Processors

With the P6 family and Pentium processors, the local APIC handles the local inter-
rupts, interrupt messages, and IPIs it receives as follows (see Figure 10-17).

1. (IPIs only) It examines the IPI message to determines if it is the specified
destination for the IPI as described in Section 10.6.2, “Determining IPI Desti-
nation.” If it is the specified destination, it continues its acceptance procedure; if
it is not the destination, it discards the IPI message. When the message specifies
lowest-priority delivery mode, the local APIC will arbitrate with the other
processors that were designated on recipients of the IPI message (see Section
10.6.2.4, “Lowest Priority Delivery Mode”).

2. If the local APIC determines that it is the designated destination for the interrupt
and if the interrupt request is an NMI, SMI, INIT, ExtINT, or INIT-deassert
interrupt, or one of the MP protocol IPI messages (BIPI, FIPI, and SIPI), the
interrupt is sent directly to the processor core for handling.

3. If the local APIC determines that it is the designated destination for the interrupt
but the interrupt request is not one of the interrupts given in step 2, the local
APIC looks for an open slot in one of its two pending interrupt queues contained
in the IRR and ISR registers (see Figure 10-20). If a slot is available (see Section
10.8.4, “Interrupt Acceptance for Fixed Interrupts”), places the interrupt in the
slot. If a slot is not available, it rejects the interrupt request and sends it back to
the sender with a retry message.

4. When interrupts are pending in the IRR register, the local APIC dispatches them
to the processor one at a time, based on their priority and the current processor
priority in the PPR (see Section 10.8.3.1, “Task and Processor Priorities”).

5. When a fixed interrupt has been dispatched to the processor core for handling,
the completion of the handler routine is indicated with an instruction in the
instruction handler code that writes to the end-of-interrupt (EOI) register in the
local APIC (see Section 10.8.5, “Signaling Interrupt Servicing Completion”). The
act of writing to the EOI register causes the local APIC to delete the interrupt
from its queue and (for level-triggered interrupts) send a message on the bus
indicating that the interrupt handling has been completed. (A write to the EOI
Vol. 3A 10-39

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
register must not be included in the handler routine for an NMI, SMI, INIT,
ExtINT, or SIPI.)

The following sections describe the acceptance of interrupts and their handling by the
local APIC and processor in greater detail.

10.8.3 Interrupt, Task, and Processor Priority
Each interrupt delivered to the processor through the local APIC has a priority based
on its vector number. The local APIC uses this priority to determine when to service

Figure 10-17. Interrupt Acceptance Flow Chart for the Local APIC (P6 Family and
Pentium Processors)

Wait to Receive
Bus Message

Belong
to

Destination?

Is it
NMI/SMI/INIT

/ExtINT?

Delivery

Am I
Focus?

Other
Focus?

Is Interrupt Slot
Available?

Is Status a
Retry?

Discard
Message

Accept
Message

Yes

Yes

Accept
Message

Is Interrupt
Slot Avail-

able?
Arbitrate

Yes

Am I Winner? Accept
Message

YesNo

Set Status
to Retry

No

No

Yes

Set Status
to Retry

No

Discard
Message

No

Accept
Message

Yes

Lowes
PriorityFixed

Yes No

No

Yes

No

P6 Family
Processor Specific

10-40 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
the interrupt relative to the other activities of the processor, including the servicing of
other interrupts.

Each interrupt vector is an 8-bit value. The interrupt-priority class is the value of
bits 7:4 of the interrupt vector. The lowest interrupt-priority class is 1 and the highest
is 15; interrupts with vectors in the range 0–15 (with interrupt-priority class 0) are
illegal and are never delivered. Because vectors 0–31 are reserved for dedicated
uses by the Intel 64 and IA-32 architectures, software should configure interrupt
vectors to use interrupt-priority classes in the range 2–15.

Each interrupt-priority class encompasses 16 vectors. The relative priority of inter-
rupts within an interrupt-priority class is determined by the value of bits 3:0 of the
vector number. The higher the value of those bits, the higher the priority within that
interrupt-priority class. Thus, each interrupt vector comprises two parts, with the
high 4 bits indicating its interrupt-priority class and the low 4 bits indicating its
ranking within the interrupt-priority class.

10.8.3.1 Task and Processor Priorities
The local APIC also defines a task priority and a processor priority that determine
the order in which interrupts are handled. The task-priority class is the value of
bits 7:4 of the task-priority register (TPR), which can be written by software (TPR is
a read/write register); see Figure 10-18.

NOTE
In this discussion, the term “task” refers to a software defined task,
process, thread, program, or routine that is dispatched to run on the
processor by the operating system. It does not refer to an IA-32
architecture defined task as described in Chapter 7, “Task
Management.”

The task priority allows software to set a priority threshold for interrupting the
processor. This mechanism enables the operating system to temporarily block low
priority interrupts from disturbing high-priority work that the processor is doing. The
ability to block such interrupts using task priority results from the way that the TPR
controls the value of the processor-priority register (PPR).5

Figure 10-18. Task-Priority Register (TPR)

31 078

Reserved

Address: FEE0 0080H
Value after reset: 0H

Task-Priority Sub-Class

Task-Priority Class

4 3
Vol. 3A 10-41

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
The processor-priority class is a value in the range 0–15 that is maintained in
bits 7:4 of the processor-priority register (PPR); see Figure 10-19. The PPR is a read-
only register. The processor-priority class represents the current priority at which the
processor is executing.

The value of the PPR is based on the value of TPR and the value ISRV; ISRV is the
vector number of the highest priority bit that is set in the ISR or 00H if no bit is set in
the ISR. (See Section 10.8.4 for more details on the ISR.) The value of PPR is deter-
mined as follows:
• PPR[7:4] (the processor-priority class) the maximum of TPR[7:4] (the task-

priority class) and ISRV[7:4] (the priority of the highest priority interrupt in
service).

• PPR[3:0] (the processor-priority sub-class) is determined as follows:

— If TPR[7:4] > ISRV[7:4], PPR[3:0] is TPR[3:0] (the task-priority sub-class).

— If TPR[7:4] < ISRV[7:4], PPR[3:0] is 0.

— If TPR[7:4] = ISRV[7:4], PPR[3:0] may be either TPR[3:0] or 0. The actual
behavior is model-specific.

The processor-priority class determines the priority threshold for interrupting the
processor. The processor will deliver only those interrupts that have an interrupt-
priority class higher than the processor-priority class in the PPR. If the processor-
priority class is 0, the PPR does not inhibit the delivery any interrupt; if it is 15, the
processor inhibits the delivery of all interrupts. (The processor-priority mechanism
does not affect the delivery of interrupts with the NMI, SMI, INIT, ExtINT, INIT-deas-
sert, and start-up delivery modes.)

The processor does not use the processor-priority sub-class to determine which
interrupts to delivery and which to inhibit. (The processor uses the processor-priority
sub-class only to satisfy reads of the PPR.)

5. The TPR also determines the arbitration priority of the local processor; see Section 10.6.2.4,
“Lowest Priority Delivery Mode.”

Figure 10-19. Processor-Priority Register (PPR)

31 078

Reserved

Address: FEE0 00A0H
Value after reset: 0H

Processor-Priority Sub-Class

Processor-Priority Class

4 3
10-42 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
10.8.4 Interrupt Acceptance for Fixed Interrupts
The local APIC queues the fixed interrupts that it accepts in one of two interrupt
pending registers: the interrupt request register (IRR) or in-service register (ISR).
These two 256-bit read-only registers are shown in Figure 10-20. The 256 bits in
these registers represent the 256 possible vectors; vectors 0 through 15 are
reserved by the APIC (see also: Section 10.5.2, “Valid Interrupt Vectors”).

NOTE
All interrupts with an NMI, SMI, INIT, ExtINT, start-up, or INIT-
deassert delivery mode bypass the IRR and ISR registers and are
sent directly to the processor core for servicing.

The IRR contains the active interrupt requests that have been accepted, but not yet
dispatched to the processor for servicing. When the local APIC accepts an interrupt,
it sets the bit in the IRR that corresponds the vector of the accepted interrupt. When
the processor core is ready to handle the next interrupt, the local APIC clears the
highest priority IRR bit that is set and sets the corresponding ISR bit. The vector for
the highest priority bit set in the ISR is then dispatched to the processor core for
servicing.

While the processor is servicing the highest priority interrupt, the local APIC can send
additional fixed interrupts by setting bits in the IRR. When the interrupt service
routine issues a write to the EOI register (see Section 10.8.5, “Signaling Interrupt
Servicing Completion”), the local APIC responds by clearing the highest priority ISR
bit that is set. It then repeats the process of clearing the highest priority bit in the IRR
and setting the corresponding bit in the ISR. The processor core then begins
executing the service routing for the highest priority bit set in the ISR.

If more than one interrupt is generated with the same vector number, the local APIC
can set the bit for the vector both in the IRR and the ISR. This means that for the
Pentium 4 and Intel Xeon processors, the IRR and ISR can queue two interrupts for
each interrupt vector: one in the IRR and one in the ISR. Any additional interrupts
issued for the same interrupt vector are collapsed into the single bit in the IRR.

Figure 10-20. IRR, ISR and TMR Registers

255 0

Reserved

Addresses: IRR FEE0 0200H - FEE0 0270H

Value after reset: 0H

16 15

IRR

Reserved ISR

Reserved TMR

ISR FEE0 0100H - FEE0 0170H
TMR FEE0 0180H - FEE0 01F0H
Vol. 3A 10-43

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
For the P6 family and Pentium processors, the IRR and ISR registers can queue no
more than two interrupts per interrupt vector and will reject other interrupts that are
received within the same vector.

If the local APIC receives an interrupt with an interrupt-priority class higher than that
of the interrupt currently in service, and interrupts are enabled in the processor core,
the local APIC dispatches the higher priority interrupt to the processor immediately
(without waiting for a write to the EOI register). The currently executing interrupt
handler is then interrupted so the higher-priority interrupt can be handled. When the
handling of the higher-priority interrupt has been completed, the servicing of the
interrupted interrupt is resumed.

The trigger mode register (TMR) indicates the trigger mode of the interrupt (see
Figure 10-20). Upon acceptance of an interrupt into the IRR, the corresponding TMR
bit is cleared for edge-triggered interrupts and set for level-triggered interrupts. If a
TMR bit is set when an EOI cycle for its corresponding interrupt vector is generated,
an EOI message is sent to all I/O APICs.

10.8.5 Signaling Interrupt Servicing Completion
For all interrupts except those delivered with the NMI, SMI, INIT, ExtINT, the start-
up, or INIT-Deassert delivery mode, the interrupt handler must include a write to the
end-of-interrupt (EOI) register (see Figure 10-21). This write must occur at the end
of the handler routine, sometime before the IRET instruction. This action indicates
that the servicing of the current interrupt is complete and the local APIC can issue the
next interrupt from the ISR.

Upon receiving an EOI, the APIC clears the highest priority bit in the ISR and
dispatches the next highest priority interrupt to the processor. If the terminated
interrupt was a level-triggered interrupt, the local APIC also sends an end-of-inter-
rupt message to all I/O APICs.
System software may prefer to direct EOIs to specific I/O APICs rather than having
the local APIC send end-of-interrupt messages to all I/O APICs.

Software can inhibit the broadcast of EOI message by setting bit 12 of the Spurious
Interrupt Vector Register (see Section 10.9). If this bit is set, a broadcast EOI is not
generated on an EOI cycle even if the associated TMR bit indicates that the current

Figure 10-21. EOI Register

31 0

Address: 0FEE0 00B0H
Value after reset: 0H
10-44 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
interrupt was level-triggered. The default value for the bit is 0, indicating that EOI
broadcasts are performed.

Bit 12 of the Spurious Interrupt Vector Register is reserved to 0 if the processor does
not support suppression of EOI broadcasts. Support for EOI-broadcast suppression is
reported in bit 24 in the Local APIC Version Register (see Section 10.4.8); the feature
is supported if that bit is set to 1. When supported, the feature is available in both
xAPIC mode and x2APIC mode.

System software desiring to perform directed EOIs for level-triggered interrupts
should set bit 12 of the Spurious Interrupt Vector Register and follow each the EOI to
the local xAPIC for a level triggered interrupt with a directed EOI to the I/O APIC
generating the interrupt (this is done by writing to the I/O APIC’s EOI register).
System software performing directed EOIs must retain a mapping associating level-
triggered interrupts with the I/O APICs in the system.

10.8.6 Task Priority in IA-32e Mode
In IA-32e mode, operating systems can manage the 16 interrupt-priority classes
(see Section 10.8.3, “Interrupt, Task, and Processor Priority”) explicitly using the
task priority register (TPR). Operating systems can use the TPR to temporarily block
specific (low-priority) interrupts from interrupting a high-priority task. This is done
by loading TPR with a value in which the task-priority class corresponds to the
highest interrupt-priority class that is to be blocked. For example:
• Loading the TPR with a task-priority class of 8 (01000B) blocks all interrupts with

an interrupt-priority class of 8 or less while allowing all interrupts with an
interrupt-priority class of 9 or more to be recognized.

• Loading the TPR with a task-priority class of 0 enables all external interrupts.
• Loading the TPR with a task-priority class of 0FH (01111B) disables all external

interrupts.

The TPR (shown in Figure 10-18) is cleared to 0 on reset. In 64-bit mode, software
can read and write the TPR using an alternate interface, MOV CR8 instruction. The
new task-priority class is established when the MOV CR8 instruction completes
execution. Software does not need to force serialization after loading the TPR using
MOV CR8.

Use of the MOV CRn instruction requires a privilege level of 0. Programs running at
privilege level greater than 0 cannot read or write the TPR. An attempt to do so
causes a general-protection exception. The TPR is abstracted from the interrupt
controller (IC), which prioritizes and manages external interrupt delivery to the
processor. The IC can be an external device, such as an APIC or 8259. Typically, the
IC provides a priority mechanism similar or identical to the TPR. The IC, however, is
considered implementation-dependent with the under-lying priority mechanisms
subject to change. CR8, by contrast, is part of the Intel 64 architecture. Software can
depend on this definition remaining unchanged.
Vol. 3A 10-45

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
Figure 10-22 shows the layout of CR8; only the low four bits are used. The remaining
60 bits are reserved and must be written with zeros. Failure to do this causes a
general-protection exception.

10.8.6.1 Interaction of Task Priorities between CR8 and APIC
The first implementation of Intel 64 architecture includes a local advanced program-
mable interrupt controller (APIC) that is similar to the APIC used with previous IA-32
processors. Some aspects of the local APIC affect the operation of the architecturally
defined task priority register and the programming interface using CR8.

Notable CR8 and APIC interactions are:
• The processor powers up with the local APIC enabled.
• The APIC must be enabled for CR8 to function as the TPR. Writes to CR8 are

reflected into the APIC Task Priority Register.
• APIC.TPR[bits 7:4] = CR8[bits 3:0], APIC.TPR[bits 3:0] = 0. A read of CR8

returns a 64-bit value which is the value of TPR[bits 7:4], zero extended to 64
bits.

There are no ordering mechanisms between direct updates of the APIC.TPR and CR8.
Operating software should implement either direct APIC TPR updates or CR8 style
TPR updates but not mix them. Software can use a serializing instruction (for
example, CPUID) to serialize updates between MOV CR8 and stores to the APIC.

10.9 SPURIOUS INTERRUPT
A special situation may occur when a processor raises its task priority to be greater
than or equal to the level of the interrupt for which the processor INTR signal is
currently being asserted. If at the time the INTA cycle is issued, the interrupt that
was to be dispensed has become masked (programmed by software), the local APIC
will deliver a spurious-interrupt vector. Dispensing the spurious-interrupt vector does
not affect the ISR, so the handler for this vector should return without an EOI.

The vector number for the spurious-interrupt vector is specified in the spurious-inter-
rupt vector register (see Figure 10-23). The functions of the fields in this register are
as follows:

Figure 10-22. CR8 Register

63 0

Value after reset: 0H

34

Reserved
10-46 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
Spurious Vector Determines the vector number to be delivered to the processor
when the local APIC generates a spurious vector.
(Pentium 4 and Intel Xeon processors.) Bits 0 through 7 of the
this field are programmable by software.
(P6 family and Pentium processors). Bits 4 through 7 of the this
field are programmable by software, and bits 0 through 3 are
hardwired to logical ones. Software writes to bits 0 through 3
have no effect.

APIC Software Enable/Disable
Allows software to temporarily enable (1) or disable (0) the local
APIC (see Section 10.4.3, “Enabling or Disabling the Local
APIC”).

Focus Processor Checking
Determines if focus processor checking is enabled (0) or
disabled (1) when using the lowest-priority delivery mode. In
Pentium 4 and Intel Xeon processors, this bit is reserved and
should be cleared to 0.

Suppress EOI Broadcasts
Determines whether an EOI for a level-triggered interrupt
causes EOI messages to be broadcast to the I/O APICs (0) or not
(1). See Section 10.8.5. The default value for this bit is 0, indi-
cating that EOI broadcasts are performed. This bit is reserved to
0 if the processor does not support EOI-broadcast suppression.

NOTE
Do not program an LVT or IOAPIC RTE with a spurious vector even if
you set the mask bit. A spurious vector ISR does not do an EOI. If for
some reason an interrupt is generated by an LVT or RTE entry, the bit
in the in-service register will be left set for the spurious vector. This
will mask all interrupts at the same or lower priority

10.10 APIC BUS MESSAGE PASSING MECHANISM AND
PROTOCOL (P6 FAMILY, PENTIUM PROCESSORS)

The Pentium 4 and Intel Xeon processors pass messages among the local and I/O
APICs on the system bus, using the system bus message passing mechanism and
protocol.

The P6 family and Pentium processors, pass messages among the local and I/O
APICs on the serial APIC bus, as follows. Because only one message can be sent at a
time on the APIC bus, the I/O APIC and local APICs employ a “rotating priority” arbi-
tration protocol to gain permission to send a message on the APIC bus. One or more
APICs may start sending their messages simultaneously. At the beginning of every
Vol. 3A 10-47

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
message, each APIC presents the type of the message it is sending and its current
arbitration priority on the APIC bus. This information is used for arbitration. After
each arbitration cycle (within an arbitration round), only the potential winners keep
driving the bus. By the time all arbitration cycles are completed, there will be only
one APIC left driving the bus. Once a winner is selected, it is granted exclusive use of
the bus, and will continue driving the bus to send its actual message.

After each successfully transmitted message, all APICs increase their arbitration
priority by 1. The previous winner (that is, the one that has just successfully trans-
mitted its message) assumes a priority of 0 (lowest). An agent whose arbitration
priority was 15 (highest) during arbitration, but did not send a message, adopts the
previous winner’s arbitration priority, increments by 1.

Note that the arbitration protocol described above is slightly different if one of the
APICs issues a special End-Of-Interrupt (EOI). This high-priority message is granted
the bus regardless of its sender’s arbitration priority, unless more than one APIC
issues an EOI message simultaneously. In the latter case, the APICs sending the EOI
messages arbitrate using their arbitration priorities.

If the APICs are set up to use “lowest priority” arbitration (see Section 10.6.2.4,
“Lowest Priority Delivery Mode”) and multiple APICs are currently executing at the
lowest priority (the value in the APR register), the arbitration priorities (unique

Figure 10-23. Spurious-Interrupt Vector Register (SVR)

31 0

Reserved

7

Focus Processor Checking2

APIC Software Enable/Disable

8910

0: APIC Disabled
1: APIC Enabled

Spurious Vector3

Address: FEE0 00F0H
Value after reset: 0000 00FFH

0: Enabled
1: Disabled

1. Not supported on all processors.
2. Not supported in Pentium 4 and Intel Xeon processors.
3. For the P6 family and Pentium processors, bits 0 through 3

are always 0.

1112

EOI-Broadcast Suppression1

0: Enabled
1: Disabled
10-48 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
values in the Arb ID register) are used to break ties. All 8 bits of the APR are used for
the lowest priority arbitration.

10.10.1 Bus Message Formats
See Section 10.13, “APIC Bus Message Formats,” for a description of bus message
formats used to transmit messages on the serial APIC bus.

10.11 MESSAGE SIGNALLED INTERRUPTS
The PCI Local Bus Specification, Rev 2.2 (www.pcisig.com) introduces the concept of
message signalled interrupts. As the specification indicates:

“Message signalled interrupts (MSI) is an optional feature that
enables PCI devices to request service by writing a system-specified
message to a system-specified address (PCI DWORD memory write
transaction). The transaction address specifies the message
destination while the transaction data specifies the message. System
software is expected to initialize the message destination and
message during device configuration, allocating one or more non-
shared messages to each MSI capable function.”

The capabilities mechanism provided by the PCI Local Bus Specification is used to
identify and configure MSI capable PCI devices. Among other fields, this structure
contains a Message Data Register and a Message Address Register. To request
service, the PCI device function writes the contents of the Message Data Register to
the address contained in the Message Address Register (and the Message Upper
Address register for 64-bit message addresses).

Section 10.11.1 and Section 10.11.2 provide layout details for the Message Address
Register and the Message Data Register. The operation issued by the device is a PCI
write command to the Message Address Register with the Message Data Register
contents. The operation follows semantic rules as defined for PCI write operations
and is a DWORD operation.

10.11.1 Message Address Register Format
The format of the Message Address Register (lower 32-bits) is shown in
Figure 10-24.
Vol. 3A 10-49

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
Fields in the Message Address Register are as follows:

1. Bits 31-20 — These bits contain a fixed value for interrupt messages (0FEEH).
This value locates interrupts at the 1-MByte area with a base address of 4G –
18M. All accesses to this region are directed as interrupt messages. Care must to
be taken to ensure that no other device claims the region as I/O space.

2. Destination ID — This field contains an 8-bit destination ID. It identifies the
message’s target processor(s). The destination ID corresponds to bits 63:56 of
the I/O APIC Redirection Table Entry if the IOAPIC is used to dispatch the
interrupt to the processor(s).

3. Redirection hint indication (RH) — This bit indicates whether the message
should be directed to the processor with the lowest interrupt priority among
processors that can receive the interrupt.

• When RH is 0, the interrupt is directed to the processor listed in the
Destination ID field.

• When RH is 1 and the physical destination mode is used, the Destination
ID field must not be set to 0xFF; it must point to a processor that is
present and enabled to receive the interrupt.

• When RH is 1 and the logical destination mode is active in a system using
a flat addressing model, the Destination ID field must be set so that bits
set to 1 identify processors that are present and enabled to receive the
interrupt.

• If RH is set to 1 and the logical destination mode is active in a system
using cluster addressing model, then Destination ID field must not be set
to 0xFF; the processors identified with this field must be present and
enabled to receive the interrupt.

4. Destination mode (DM) — This bit indicates whether the Destination ID field
should be interpreted as logical or physical APIC ID for delivery of the lowest
priority interrupt. If RH is 1 and DM is 0, the Destination ID field is in physical
destination mode and only the processor in the system that has the matching
APIC ID is considered for delivery of that interrupt (this means no re-direction).
If RH is 1 and DM is 1, the Destination ID Field is interpreted as in logical
destination mode and the redirection is limited to only those processors that are
part of the logical group of processors based on the processor’s logical APIC ID

Figure 10-24. Layout of the MSI Message Address Register

31 20 19 12 11 4 3 2 1 0

0FEEH Destination ID Reserved RH DM XX
10-50 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
and the Destination ID field in the message. The logical group of processors
consists of those identified by matching the 8-bit Destination ID with the logical
destination identified by the Destination Format Register and the Logical
Destination Register in each local APIC. The details are similar to those described
in Section 10.6.2, “Determining IPI Destination.” If RH is 0, then the DM bit is
ignored and the message is sent ahead independent of whether the physical or
logical destination mode is used.

10.11.2 Message Data Register Format
The layout of the Message Data Register is shown in Figure 10-25.

Reserved fields are not assumed to be any value. Software must preserve their
contents on writes. Other fields in the Message Data Register are described below.

1. Vector — This 8-bit field contains the interrupt vector associated with the
message. Values range from 010H to 0FEH. Software must guarantee that the
field is not programmed with vector 00H to 0FH.

Figure 10-25. Layout of the MSI Message Data Register

Reserved

Reserved Reserved Vector

Delivery Mode

001 - Lowest Priority
010 - SMI
011 - Reserved

101 - INIT
110 - Reserved
111 - ExtINT

Trigger Mode
0 - Edge
1 - Level

Level for Trigger Mode = 0
X - Don’t care

Level for Trigger Mode = 1
0 - Deassert
1 - Assert

000 - Fixed

100 - NMI

31 16 15 14 13 11 10 8 7 0

63 32
Vol. 3A 10-51

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
2. Delivery Mode — This 3-bit field specifies how the interrupt receipt is handled.
Delivery Modes operate only in conjunction with specified Trigger Modes. Correct
Trigger Modes must be guaranteed by software. Restrictions are indicated below:

a. 000B (Fixed Mode) — Deliver the signal to all the agents listed in the
destination. The Trigger Mode for fixed delivery mode can be edge or level.

b. 001B (Lowest Priority) — Deliver the signal to the agent that is executing
at the lowest priority of all agents listed in the destination field. The trigger
mode can be edge or level.

c. 010B (System Management Interrupt or SMI) — The delivery mode is
edge only. For systems that rely on SMI semantics, the vector field is ignored
but must be programmed to all zeroes for future compatibility.

d. 100B (NMI) — Deliver the signal to all the agents listed in the destination
field. The vector information is ignored. NMI is an edge triggered interrupt
regardless of the Trigger Mode Setting.

e. 101B (INIT) — Deliver this signal to all the agents listed in the destination
field. The vector information is ignored. INIT is an edge triggered interrupt
regardless of the Trigger Mode Setting.

f. 111B (ExtINT) — Deliver the signal to the INTR signal of all agents in the
destination field (as an interrupt that originated from an 8259A compatible
interrupt controller). The vector is supplied by the INTA cycle issued by the
activation of the ExtINT. ExtINT is an edge triggered interrupt.

3. Level — Edge triggered interrupt messages are always interpreted as assert
messages. For edge triggered interrupts this field is not used. For level triggered
interrupts, this bit reflects the state of the interrupt input.

4. Trigger Mode — This field indicates the signal type that will trigger a message.

a. 0 — Indicates edge sensitive.

b. 1 — Indicates level sensitive.

10.12 EXTENDED XAPIC (X2APIC)
The x2APIC architecture extends the xAPIC architecture (described in Section 9.4) in
a backward compatible manner and provides forward extendability for future Intel
platform innovations. Specifically, the x2APIC architecture does the following:
• Retains all key elements of compatibility to the xAPIC architecture:

— delivery modes,

— interrupt and processor priorities,

— interrupt sources,

— interrupt destination types;
10-52 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
• Provides extensions to scale processor addressability for both the logical and
physical destination modes;

• Adds new features to enhance performance of interrupt delivery;
• Reduces complexity of logical destination mode interrupt delivery on link based

platform architectures.
• Uses MSR programming interface to access APIC registers in x2APIC mode

instead of memory-mapped interfaces. Memory-mapped interface is supported
when operating in xAPIC mode.

10.12.1 Detecting and Enabling x2APIC Mode
Processor support for x2APIC mode can be detected by executing CPUID with EAX=1
and then checking ECX, bit 21 ECX. If CPUID.(EAX=1):ECX.21 is set , the processor
supports the x2APIC capability and can be placed into the x2APIC mode.

System software can place the local APIC in the x2APIC mode by setting the x2APIC
mode enable bit (bit 10) in the IA32_APIC_BASE MSR at MSR address 01BH. The
layout for the IA32_APIC_BASE MSR is shown in Figure 10-26.

Table 10-5, “x2APIC operating mode configurations” describe the possible combina-
tions of the enable bit (EN - bit 11) and the extended mode bit (EXTD - bit 10) in the
IA32_APIC_BASE MSR.

Figure 10-26. IA32_APIC_BASE MSR Supporting x2APIC

Table 10-5. x2APIC Operating Mode Configurations

xAPIC global enable
(IA32_APIC_BASE[11])

x2APIC enable
(IA32_APIC_BASE[10]) Description

0 0 local APIC is disabled

0 1 Invalid

1 0 local APIC is enabled in xAPIC mode

1 1 local APIC is enabled in x2APIC mode

BSP—Processor is BSP

EN—xAPIC global enable/disable
APIC Base—Base physical address

63 071011 8912

Reserved

36 35

APIC BaseReserved

EXTD—Enable x2APIC mode
Vol. 3A 10-53

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
Once the local APIC has been switched to x2APIC mode (EN = 1, EXTD = 1),
switching back to xAPIC mode would require system software to disable the local
APIC unit. Specifically, attempting to write a value to the IA32_APIC_BASE MSR that
has (EN= 1, EXTD = 0) when the local APIC is enabled and in x2APIC mode causes a
general-protection exception. Once bit 10 in IA32_APIC_BASE MSR is set, the only
way to leave x2APIC mode using IA32_APIC_BASE would require a WRMSR to set
both bit 11 and bit 10 to zero. Section 10.12.5, “x2APIC State Transitions” provides a
detailed state diagram for the state transitions allowed for the local APIC.

10.12.1.1 Instructions to Access APIC Registers
In x2APIC mode, system software uses RDMSR and WRMSR to access the APIC regis-
ters. The MSR addresses for accessing the x2APIC registers are architecturally
defined and specified in Section 10.12.1.2, “x2APIC Register Address Space”.
Executing the RDMSR instruction with APIC register address specified in ECX returns
the content of bits 0 through 31 of the APIC registers in EAX. Bits 32 through 63 are
returned in register EDX - these bits are reserved if the APIC register being read is a
32-bit register. Similarly executing the WRMSR instruction with the APIC register
address in ECX, writes bits 0 to 31 of register EAX to bits 0 to 31 of the specified APIC
register. If the register is a 64-bit register then bits 0 to 31 of register EDX are written
to bits 32 to 63 of the APIC register. The Interrupt Command Register is the only APIC
register that is implemented as a 64-bit MSR. The semantics of handling reserved
bits are defined in Section 10.12.1.3, “Reserved Bit Checking”.

10.12.1.2 x2APIC Register Address Space
The MSR address range 800H through BFFH is architecturally reserved and dedicated
for accessing APIC registers in x2APIC mode. Table 10-6 lists the APIC registers that
are available in x2APIC mode. When appropriate, the table also gives the offset at
which each register is available on the page referenced by IA32_APIC_BASE[35:12]
in xAPIC mode.
There is a one-to-one mapping between the x2APIC MSRs and the legacy xAPIC
register offsets with the following exceptions:
• The Destination Format Register (DFR): The DFR, supported at offset 0E0H in

xAPIC mode, is not supported in x2APIC mode. There is no MSR with address
80EH.

• The Interrupt Command Register (ICR): The two 32-bit registers in xAPIC mode
(at offsets 300H and 310H) are merged into a single 64-bit MSR in x2APIC mode
(with MSR address 830H). There is no MSR with address 831H.

• The SELF IPI register. This register is available only in x2APIC mode at address
83FH. In xAPIC mode, there is no register defined at offset 3F0H.

Addresses in the range 800H–BFFH that are not listed in Table 10-6 (including 80EH
and 831H) are reserved. Executions of RDMSR and WRMSR that attempt to access
such addresses cause general-protection exceptions.
10-54 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
The MSR address space is compressed to allow for future growth. Every 32 bit
register on a 128-bit boundary in the legacy MMIO space is mapped to a single MSR
in the local x2APIC MSR address space. The upper 32-bits of all x2APIC MSRs (except
for the ICR) are reserved.

Table 10-6. Local APIC Register Address Map Supported by x2APIC

MSR Address
(x2APIC mode)

MMIO Offset
(xAPIC mode)

Register Name MSR R/W
Semantics

Comments

 802H 020H Local APIC ID register Read-only1 See Section 10.12.5.1 for
initial values.

803H 030H Local APIC Version
register

Read-only Same version used in
xAPIC mode and x2APIC
mode.

808H 080H Task Priority Register
(TPR)

Read/write Bits 31:8 are reserved.2

80AH 0A0H Processor Priority
Register (PPR)

Read-only

80BH 0B0H EOI register Write-
only3

WRMSR of a non-zero
value causes #GP(0).

80DH 0D0H Logical Destination
Register (LDR)

Read-only Read/write in xAPIC
mode.

80FH 0F0H Spurious Interrupt
Vector Register (SVR)

Read/write See Section 10.9 for
reserved bits.

810H 100H In-Service Register
(ISR); bits 31:0

Read-only

811H 110H ISR bits 63:32 Read-only

812H 120H ISR bits 95:64 Read-only

813H 130H ISR bits 127:96 Read-only

814H 140H ISR bits 159:128 Read-only

815H 150H ISR bits 191:160 Read-only

816H 160H ISR bits 223:192 Read-only

817H 170H ISR bits 255:224 Read-only

818H 180H Trigger Mode Register
(TMR); bits 31:0

Read-only

819H 190H TMR bits 63:32 Read-only

81AH 1A0H TMR bits 95:64 Read-only

81BH 1B0H TMR bits 127:96 Read-only
Vol. 3A 10-55

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
81CH 1C0H TMR bits 159:128 Read-only

81DH 1D0H TMR bits 191:160 Read-only

81EH 1E0H TMR bits 223:192 Read-only

81FH 1F0H TMR bits 255:224 Read-only

820H 200H Interrupt Request
Register (IRR); bits
31:0

Read-only

821H 210H IRR bits 63:32 Read-only

822H 220H IRR bits 95:64 Read-only

823H 230H IRR bits 127:96 Read-only

824H 240H IRR bits 159:128 Read-only

825H 250H IRR bits 191:160 Read-only

826H 260H IRR bits 223:192 Read-only

827H 270H IRR bits 255:224 Read-only

828H 280H Error Status Register
(ESR)

Read/write WRMSR of a non-zero
value causes #GP(0). See
Section 10.5.3.

82FH 2F0H LVT CMCI register Read/write See Figure 10-8 for
reserved bits.

830H4 300H and
310H

Interrupt Command
Register (ICR)

Read/write See Figure 10-28 for
reserved bits

832H 320H LVT Timer register Read/write See Figure 10-8 for
reserved bits.

833H 330H LVT Thermal Sensor
register

Read/write See Figure 10-8 for
reserved bits.

834H 340H LVT Performance
Monitoring register

Read/write See Figure 10-8 for
reserved bits.

835H 350H LVT LINT0 register Read/write See Figure 10-8 for
reserved bits.

836H 360H LVT LINT1 register Read/write See Figure 10-8 for
reserved bits.

837H 370H LVT Error register Read/write See Figure 10-8 for
reserved bits.

Table 10-6. Local APIC Register Address Map Supported by x2APIC (Contd.)

MSR Address
(x2APIC mode)

MMIO Offset
(xAPIC mode)

Register Name
MSR R/W
Semantics

Comments
10-56 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
10.12.1.3 Reserved Bit Checking
Section 10.12.1.2 and Table 10-6 specifies the reserved bit definitions for the APIC
registers in x2APIC mode. Non-zero writes (by WRMSR instruction) to reserved bits
to these registers will raise a general protection fault exception while reads return
zeros (RsvdZ semantics).
In x2APIC mode, the local APIC ID register is increased to 32 bits wide. This enables
232–1 processors to be addressable in physical destination mode. This 32-bit value is
referred to as “x2APIC ID”. A processor implementation may choose to support less
than 32 bits in its hardware. System software should be agnostic to the actual
number of bits that are implemented. All non-implemented bits will return zeros on
reads by software.
The APIC ID value of FFFF_FFFFH and the highest value corresponding to the imple-
mented bit-width of the local APIC ID register in the system are reserved and cannot
be assigned to any logical processor.

In x2APIC mode, the local APIC ID register is a read-only register to system software
and will be initialized by hardware. It is accessed via the RDMSR instruction reading
the MSR at address 0802H.

838H 380H Initial Count register
(for Timer)

Read/write

839H 390H Current Count
register (for Timer)

Read-only

83EH 3E0H Divide Configuration
Register (DCR; for
Timer)

Read/write See Figure 10-10 for
reserved bits.

83FH Not available SELF IPI5 Write-only Available only in x2APIC
mode.

NOTES:
1. WRMSR causes #GP(0) for read-only registers.
2. WRMSR causes #GP(0) for attempts to set a reserved bit to 1 in a read/write register (including

bits 63:32 of each register).
3. RDMSR causes #GP(0) for write-only registers.
4. MSR 831H is reserved; read/write operations cause general-protection exceptions. The contents

of the APIC register at MMIO offset 310H are accessible in x2APIC mode through the MSR at
address 830H.

5. SELF IPI register is supported only in x2APIC mode.

Table 10-6. Local APIC Register Address Map Supported by x2APIC (Contd.)

MSR Address
(x2APIC mode)

MMIO Offset
(xAPIC mode)

Register Name
MSR R/W
Semantics

Comments
Vol. 3A 10-57

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
Each logical processor in the system (including clusters with a communication fabric)
must be configured with an unique x2APIC ID to avoid collisions of x2APIC IDs. On
DP and high-end MP processors targeted to specific market segments and depending
on the system configuration, it is possible that logical processors in different and “un-
connected” clusters power up initialized with overlapping x2APIC IDs. In these
configurations, a model-specific means may be provided in those product segments
to enable BIOS and/or platform firmware to re-configure the x2APIC IDs in some
clusters to provide for unique and non-overlapping system wide IDs before config-
uring the disconnected components into a single system.

10.12.2 x2APIC Register Availability
The local APIC registers can be accessed via the MSR interface only when the local
APIC has been switched to the x2APIC mode as described in Section 10.12.1.
Accessing any APIC register in the MSR address range 0800H through 0BFFH via
RDMSR or WRMSR when the local APIC is not in x2APIC mode causes a general-
protection exception. In x2APIC mode, the memory mapped interface is not available
and any access to the MMIO interface will behave similar to that of a legacy xAPIC in
globally disabled state. Table 10-7 provides the interactions between the legacy &
extended modes and the legacy and register interfaces.

10.12.3 MSR Access in x2APIC Mode
To allow for efficient access to the APIC registers in x2APIC mode, the serializing
semantics of WRMSR are relaxed when writing to the APIC registers. Thus, system
software should not use “WRMSR to APIC registers in x2APIC mode” as a serializing
instruction. Read and write accesses to the APIC registers will occur in program
order. A WRMSR to an APIC register may complete before all preceding stores are
globally visible; software can prevent this by inserting a serializing instruction, an
SFENCE, or an MFENCE before the WRMSR.

The RDMSR instruction is not serializing and this behavior is unchanged when
reading APIC registers in x2APIC mode. System software accessing the APIC regis-
ters using the RDMSR instruction should not expect a serializing behavior. (Note: The
MMIO-based xAPIC interface is mapped by system software as an un-cached region.
Consequently, read/writes to the xAPIC-MMIO interface have serializing semantics in
the xAPIC mode.)

Table 10-7. MSR/MMIO Interface of a Local x2APIC in Different Modes of Operation

MMIO Interface MSR Interface

xAPIC mode Available General-protection
exception

x2APIC mode Behavior identical to xAPIC in globally
disabled state

Available
10-58 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
10.12.4 VM-Exit Controls for MSRs and x2APIC Registers
The VMX architecture allows a VMM to specify lists of MSRs to be loaded or stored on
VMX transitions using the VMX-transition MSR areas (see VM-exit MSR-store address
field, VM-exit MSR-load address field, and VM-entry MSR-load address field in Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 3C).
The X2APIC MSRs cannot to be loaded and stored on VMX transitions. A VMX transi-
tion fails if the VMM has specified that the transition should access any MSRs in the
address range from 0000_0800H to 0000_08FFH (the range used for accessing the
X2APIC registers). Specifically, processing of an 128-bit entry in any of the VMX-
transition MSR areas fails if bits 31:0 of that entry (represented as ENTRY_LOW_DW)
satisfies the expression: “ENTRY_LOW_DW & FFFFF800H = 00000800H”. Such a
failure causes an associated VM entry to fail (by reloading host state) and causes an
associated VM exit to lead to VMX abort.

10.12.5 x2APIC State Transitions
This section provides a detailed description of the x2APIC states of a local x2APIC
unit, transitions between these states as well as interactions of these states with INIT
and reset.

10.12.5.1 x2APIC States
The valid states for a local x2APIC unit is listed in Table 10-5:
• APIC disabled: IA32_APIC_BASE[EN]=0 and IA32_APIC_BASE[EXTD]=0
• xAPIC mode: IA32_APIC_BASE[EN]=1 and IA32_APIC_BASE[EXTD]=0
• x2APIC mode: IA32_APIC_BASE[EN]=1 and IA32_APIC_BASE[EXTD]=1
• Invalid: IA32_APIC_BASE[EN]=0 and IA32_APIC_BASE[EXTD]=1
The state corresponding to EXTD=1 and EN=0 is not valid and it is not possible to get
into this state. An execution of WRMSR to the IA32_APIC_BASE_MSR that attempts
a transition from a valid state to this invalid state causes a general-protection excep-
tion. Figure 10-27 shows the comprehensive state transition diagram for a local
x2APIC unit.
On coming out of reset, the local APIC unit is enabled and is in the xAPIC mode:
IA32_APIC_BASE[EN]=1 and IA32_APIC_BASE[EXTD]=0. The APIC registers are
initialized as:
• The local APIC ID is initialized by hardware with a 32 bit ID (x2APIC ID). The

lowest 8 bits of the x2APIC ID is the legacy local xAPIC ID, and is stored in the
upper 8 bits of the APIC register for access in xAPIC mode.

• The following APIC registers are reset to all zeros for those fields that are defined
in the xAPIC mode:
Vol. 3A 10-59

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
— IRR, ISR, TMR, ICR, LDR, TPR, Divide Configuration Register (See Chapter 8
of “Intel® 64 and IA-32 Architectures Software Developer’s Manual“, Vol. 3B
for details of individual APIC registers),

— Timer initial count and timer current count registers,
• The LVT registers are reset to 0s except for the mask bits; these are set to 1s.
• The local APIC version register is not affected.
• The Spurious Interrupt Vector Register is initialized to 000000FFH.
• The DFR (available only in xAPIC mode) is reset to all 1s.
• SELF IPI register is reset to zero.

x2APIC After Reset
The valid transitions from the xAPIC mode state are:
• to the x2APIC mode by setting EXT to 1 (resulting EN=1, EXTD= 1). The physical

x2APIC ID (see Figure 10-6) is preserved across this transition and the logical
x2APIC ID (see Figure 10-29) is initialized by hardware during this transition as
documented in Section 10.12.10.2. The state of the extended fields in other APIC

Figure 10-27. Local x2APIC State Transitions with IA32_APIC_BASE, INIT, and Reset

xAPIC Mode

EN =1 Illegal
Transition

Init

EN=1, Extd=1

Extended

Invalid
State

Mode

Reset

Extd = 1

Illegal
Transition

EN = 0

EN = 0 Illegal
TransitionExtd = 0

Illegal
Transition

Extd = 0

EN=1, Extd=0

EN = 0

Extd = 1

Reset

Reset

Init

Init

Disabled
EN = 0
Extd = 0

Extd = 1

EN = 0
10-60 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
registers, which was not initialized at reset, is not architecturally defined across
this transition and system software should explicitly initialize those program-
mable APIC registers.

• to the disabled state by setting EN to 0 (resulting EN=0, EXTD= 0).
The result of an INIT in the xAPIC state places the APIC in the state with EN= 1,
EXTD= 0. The state of the local APIC ID register is preserved (the 8-bit xAPIC ID is in
the upper 8 bits of the APIC ID register). All the other APIC registers are initialized as
a result of INIT.
A reset in this state places the APIC in the state with EN= 1, EXTD= 0. The state of
the local APIC ID register is initialized as described in Section 10.12.5.1. All the other
APIC registers are initialized described in Section 10.12.5.1.

x2APIC Transitions From x2APIC Mode
From the x2APIC mode, the only valid x2APIC transition using IA32_APIC_BASE is to
the state where the x2APIC is disabled by setting EN to 0 and EXTD to 0. The x2APIC
ID (32 bits) and the legacy local xAPIC ID (8 bits) are preserved across this transi-
tion. A transition from the x2APIC mode to xAPIC mode is not valid, and the corre-
sponding WRMSR to the IA32_APIC_BASE MSR causes a general-protection
exception.
A reset in this state places the x2APIC in xAPIC mode. All APIC registers (including
the local APIC ID register) are initialized as described in Section 10.12.5.1.
An INIT in this state keeps the x2APIC in the x2APIC mode. The state of the local
APIC ID register is preserved (all 32 bits). However, all the other APIC registers are
initialized as a result of the INIT transition.

x2APIC Transitions From Disabled Mode
From the disabled state, the only valid x2APIC transition using IA32_APIC_BASE is to
the xAPIC mode (EN= 1, EXTD = 0). Thus the only means to transition from x2APIC
mode to xAPIC mode is a two-step process:
• first transition from x2APIC mode to local APIC disabled mode (EN= 0, EXTD =

0),
• followed by another transition from disabled mode to xAPIC mode (EN= 1,

EXTD= 0).
Consequently, all the APIC register states in the x2APIC, except for the x2APIC ID
(32 bits), are not preserved across mode transitions.
A reset in the disabled state places the x2APIC in the xAPIC mode. All APIC registers
(including the local APIC ID register) are initialized as described in Section 10.12.5.1.
An INIT in the disabled state keeps the x2APIC in the disabled state.
Vol. 3A 10-61

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
State Changes From xAPIC Mode to x2APIC Mode
After APIC register states have been initialized by software in xAPIC mode, a transi-
tion from xAPIC mode to x2APIC mode does not affect most of the APIC register
states, except the following:
• The Logical Destination Register is not preserved.
• Any APIC ID value written to the memory-mapped local APIC ID register is not

preserved.
• The high half of the Interrupt Command Register is not preserved.

10.12.6 Routing of Device Interrupts in x2APIC Mode
The x2APIC architecture is intended to work with all existing IOxAPIC units as well as
all PCI and PCI Express (PCIe) devices that support the capability for message-
signaled interrupts (MSI). Support for x2APIC modifies only the following:
• the local APIC units;
• the interconnects joining IOxAPIC units to the local APIC units; and
• the interconnects joining MSI-capable PCI and PCIe devices to the local APIC

units.

No modifications are required to MSI-capable PCI and PCIe devices. Similarly, no
modifications are required to IOxAPIC units. This made possible through use of the
interrupt-remapping architecture specified in the Intel® Virtualization Technology for
Directed I/O, Revision 1.3 for the routing of interrupts from MSI-capable devices to
local APIC units operating in x2APIC mode.

10.12.7 Initialization by System Software
Routing of device interrupts to local APIC units operating in x2APIC mode requires
use of the interrupt-remapping architecture specified in the Intel® Virtualization
Technology for Directed I/O, Revision 1.3. Because of this, BIOS must enumerate
support for and software must enable this interrupt remapping with Extended Inter-
rupt Mode Enabled before it enabling x2APIC mode in the local APIC units.

The ACPI interfaces for the x2APIC are described in Section 5.2, “ACPI System
Description Tables,” of the Advanced Configuration and Power Interface Specifica-
tion, Revision 4.0a (http://www.acpi.info/spec.htm). The default behavior for BIOS
is to pass the control to the operating system with the local x2APICs in xAPIC mode
if all APIC IDs reported by CPUID.0BH:EDX are less than 255, and in x2APIC mode if
there are any logical processor reporting an APIC ID of 255 or greater.
10-62 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
10.12.8 CPUID Extensions And Topology Enumeration
For Intel 64 and IA-32 processors that support x2APIC, a value of 1 reported by
CPUID.01H:ECX[21] indicates that the processor supports x2APIC and the extended
topology enumeration leaf (CPUID.0BH).
The extended topology enumeration leaf can be accessed by executing CPUID with
EAX = 0BH. Processors that do not support x2APIC may support CPUID leaf 0BH.
Software can detect the availability of the extended topology enumeration leaf (0BH)
by performing two steps:
• Check maximum input value for basic CPUID information by executing CPUID

with EAX= 0. If CPUID.0H:EAX is greater than or equal or 11 (0BH), then proceed
to next step

• Check CPUID.EAX=0BH, ECX=0H:EBX is non-zero.
If both of the above conditions are true, extended topology enumeration leaf is avail-
able. If available, the extended topology enumeration leaf is the preferred mecha-
nism for enumerating topology. The presence of CPUID leaf 0BH in a processor does
not guarantee support for x2APIC. If CPUID.EAX=0BH, ECX=0H:EBX returns zero
and maximum input value for basic CPUID information is greater than 0BH, then
CPUID.0BH leaf is not supported on that processor.
The extended topology enumeration leaf is intended to assist software with enumer-
ating processor topology on systems that requires 32-bit x2APIC IDs to address indi-
vidual logical processors. Details of CPUID leaf 0BH can be found in the reference
pages of CPUID in Chapter 3 of Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 2A.
Processor topology enumeration algorithm for processors supporting the extended
topology enumeration leaf of CPUID and processors that do not support CPUID leaf
0BH are treated in Section 8.9.4, “Algorithm for Three-Level Mappings of APIC_ID”.

10.12.8.1 Consistency of APIC IDs and CPUID
The consistency of physical x2APIC ID in MSR 802H in x2APIC mode and the 32-bit
value returned in CPUID.0BH:EDX is facilitated by processor hardware.
CPUID.0BH:EDX will report the full 32 bit ID, in xAPIC and x2APIC mode. This allows
BIOS to determine if a system has processors with IDs exceeding the 8-bit initial
APIC ID limit (CPUID.01H:EBX[31:24]). Initial APIC ID (CPUID.01H:EBX[31:24]) is
always equal to CPUID.0BH:EDX[7:0].
If the values of CPUID.0BH:EDX reported by all logical processors in a system are
less than 255, BIOS can transfer control to OS in xAPIC mode.
If the values of CPUID.0BH:EDX reported by some logical processors in a system are
greater or equal than 255, BIOS must support two options to hand off to OS:
• If BIOS enables logical processors with x2APIC IDs greater than 255, then it

should enable X2APIC in Boot Strap Processor (BSP) and all Application
Processors (AP) before passing control to the OS. Application requiring processor
Vol. 3A 10-63

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
topology information must use OS provided services based on x2APIC IDs or
CPUID.0BH leaf.

• If a BIOS transfers control to OS in xAPIC mode, then the BIOS must ensure that
only logical processors with CPUID.0BH.EDX value less than 255 are enabled.
BIOS initialization on all logical processors with CPUID.0B.EDX values greater
than or equal to 255 must (a) disable APIC and execute CLI in each logical
processor, and (b) leave these logical processor in the lowest power state so that
these processors do not respond to INIT IPI during OS boot. The BSP and all the
enabled logical processor operate in xAPIC mode after BIOS passed control to
OS. Application requiring processor topology information can use OS provided
legacy services based on 8-bit initial APIC IDs or legacy topology information
from CPUID.01H and CPUID 04H leaves. Even if the BIOS passes control in xAPIC
mode, an OS can switch the processors to x2APIC mode later. BIOS SMM handler
should always read the APIC_BASE_MSR, determine the APIC mode and use the
corresponding access method.

10.12.9 ICR Operation in x2APIC Mode
In x2APIC mode, the layout of the Interrupt Command Register is shown in Figure
10-12. The lower 32 bits of ICR in x2APIC mode is identical to the lower half of the
ICR in xAPIC mode, except the Delivery Status bit is removed since it is not needed
in x2APIC mode. The destination ID field is expanded to 32 bits in x2APIC mode.
To send an IPI using the ICR, software must set up the ICR to indicate the type of IPI
message to be sent and the destination processor or processors. Self IPIs can also be
sent using the SELF IPI register (see Section 10.12.11).

A single MSR write to the Interrupt Command Register is required for dispatching an
interrupt in x2APIC mode. With the removal of the Delivery Status bit, system soft-
ware no longer has a reason to read the ICR. It remains readable only to aid in
debugging; however, software should not assume the value returned by reading the
ICR is the last written value.
A destination ID value of FFFF_FFFFH is used for broadcast of interrupts in both
logical destination and physical destination modes.

10.12.10 Determining IPI Destination in x2APIC Mode

10.12.10.1 Logical Destination Mode in x2APIC Mode
In x2APIC mode, the Logical Destination Register (LDR) is increased to 32 bits wide.
It is a read-only register to system software. This 32-bit value is referred to as
“logical x2APIC ID”. System software accesses this register via the RDMSR instruc-
tion reading the MSR at address 80DH. Figure 10-29 provides the layout of the
Logical Destination Register in x2APIC mode.
10-64 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
Figure 10-28. Interrupt Command Register (ICR) in x2APIC Mode

Figure 10-29. Logical Destination Register in x2APIC Mode

31 0

Reserved

7

Vector

Destination Shorthand

810

Delivery Mode
000: Fixed
001: Reserved

00: No Shorthand
01: Self

111213141516171819

10: All Including Self
11: All Excluding Self

010: SMI
011: Reserved
100: NMI
101: INIT
110: Start Up
111: Reserved

Destination Mode
0: Physical
1: Logical

Level
0 = De-assert
1 = Assert

Trigger Mode
0: Edge
1: Level

63 32

Destination Field

Address: 830H (63 - 0)

Value after Reset: 0H

Reserved

20

MSR Address: 80DH

31 0

Logical x2APIC ID
Vol. 3A 10-65

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
In the xAPIC mode, the Destination Format Register (DFR) through MMIO interface
determines the choice of a flat logical mode or a clustered logical mode. Flat logical
mode is not supported in the x2APIC mode. Hence the Destination Format Register
(DFR) is eliminated in x2APIC mode.
The 32-bit logical x2APIC ID field of LDR is partitioned into two sub-fields:
• Cluster ID (LDR[31:16]): is the address of the destination cluster
• Logical ID (LDR[15:0]): defines a logical ID of the individual local x2APIC within

the cluster specified by LDR[31:16].
This layout enables 2^16-1 clusters each with up to 16 unique logical IDs - effec-
tively providing an addressability of ((2^20) - 16) processors in logical destination
mode.
It is likely that processor implementations may choose to support less than 16 bits of
the cluster ID or less than 16-bits of the Logical ID in the Logical Destination Register.
However system software should be agnostic to the number of bits implemented in
the cluster ID and logical ID sub-fields. The x2APIC hardware initialization will ensure
that the appropriately initialized logical x2APIC IDs are available to system software
and reads of non-implemented bits return zero. This is a read-only register that soft-
ware must read to determine the logical x2APIC ID of the processor. Specifically,
software can apply a 16-bit mask to the lowest 16 bits of the logical x2APIC ID to
identify the logical address of a processor within a cluster without needing to know
the number of implemented bits in cluster ID and Logical ID sub-fields. Similarly,
software can create a message destination address for cluster model, by bit-Oring
the Logical X2APIC ID (31:0) of processors that have matching Cluster ID(31:16).
To enable cluster ID assignment in a fashion that matches the system topology char-
acteristics and to enable efficient routing of logical mode lowest priority device inter-
rupts in link based platform interconnects, the LDR are initialized by hardware based
on the value of x2APIC ID upon x2APIC state transitions. Details of this initialization
are provided in Section 10.12.10.2.

10.12.10.2 Deriving Logical x2APIC ID from the Local x2APIC ID
In x2APIC mode, the 32-bit logical x2APIC ID, which can be read from LDR, is derived
from the 32-bit local x2APIC ID. Specifically, the 16-bit logical ID sub-field is derived
by shifting 1 by the lowest 4 bits of the x2APIC ID, i.e. Logical ID = 1 «
x2APIC ID[3:0]. The remaining bits of the x2APIC ID then form the cluster ID portion
of the logical x2APIC ID:

Logical x2APIC ID = [(x2APIC ID[19:4] « 16) | (1 « x2APIC ID[3:0])]

The use of the lowest 4 bits in the x2APIC ID implies that at least 16 APIC IDs are
reserved for logical processors within a socket in multi-socket configurations. If more
than 16 APIC IDS are reserved for logical processors in a socket/package then
multiple cluster IDs can exist within the package.
10-66 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
The LDR initialization occurs whenever the x2APIC mode is enabled (see Section
10.12.5).

10.12.11 SELF IPI Register
SELF IPIs are used extensively by some system software. The x2APIC architecture
introduces a new register interface. This new register is dedicated to the purpose of
sending self-IPIs with the intent of enabling a highly optimized path for sending self-
IPIs.

Figure 10-30 provides the layout of the SELF IPI register. System software only spec-
ifies the vector associated with the interrupt to be sent. The semantics of sending a
self-IPI via the SELF IPI register are identical to sending a self targeted edge trig-
gered fixed interrupt with the specified vector. Specifically the semantics are identical
to the following settings for an inter-processor interrupt sent via the ICR - Destina-
tion Shorthand (ICR[19:18] = 01 (Self)), Trigger Mode (ICR[15] = 0 (Edge)),
Delivery Mode (ICR[10:8] = 000 (Fixed)), Vector (ICR[7:0] = Vector).

The SELF IPI register is a write-only register. A RDMSR instruction with address of the
SELF IPI register causes a general-protection exception.
The handling and prioritization of a self-IPI sent via the SELF IPI register is architec-
turally identical to that for an IPI sent via the ICR from a legacy xAPIC unit. Specifi-
cally the state of the interrupt would be tracked via the Interrupt Request Register
(IRR) and In Service Register (ISR) and Trigger Mode Register (TMR) as if it were
received from the system bus. Also sending the IPI via the Self Interrupt Register
ensures that interrupt is delivered to the processor core. Specifically completion of
the WRMSR instruction to the SELF IPI register implies that the interrupt has been
logged into the IRR. As expected for edge triggered interrupts, depending on the
processor priority and readiness to accept interrupts, it is possible that interrupts
sent via the SELF IPI register or via the ICR with identical vectors can be combined.

Figure 10-30. SELF IPI register

MSR Address: 083FH

31 8 7 0

Reserved Vector
Vol. 3A 10-67

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
10.13 APIC BUS MESSAGE FORMATS
This section describes the message formats used when transmitting messages on the
serial APIC bus. The information described here pertains only to the Pentium and P6
family processors.

10.13.1 Bus Message Formats
The local and I/O APICs transmit three types of messages on the serial APIC bus: EOI
message, short message, and non-focused lowest priority message. The purpose of
each type of message and its format are described below.

10.13.2 EOI Message
Local APICs send 14-cycle EOI messages to the I/O APIC to indicate that a level trig-
gered interrupt has been accepted by the processor. This interrupt, in turn, is a result
of software writing into the EOI register of the local APIC. Table 10-1 shows the
cycles in an EOI message.

The checksum is computed for cycles 6 through 9. It is a cumulative sum of the 2-bit
(Bit1:Bit0) logical data values. The carry out of all but the last addition is added to
the sum. If any APIC computes a different checksum than the one appearing on the

Table 10-1. EOI Message (14 Cycles)

Cycle Bit1 Bit0

1 1 1 11 = EOI

2 ArbID3 0 Arbitration ID bits 3 through 0

3 ArbID2 0

4 ArbID1 0

5 ArbID0 0

6 V7 V6 Interrupt vector V7 - V0

7 V5 V4

8 V3 V2

9 V1 V0

10 C C Checksum for cycles 6 - 9

11 0 0

12 A A Status Cycle 0

13 A1 A1 Status Cycle 1

14 0 0 Idle
10-68 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
bus in cycle 10, it signals an error, driving 11 on the APIC bus during cycle 12. In this
case, the APICs disregard the message. The sending APIC will receive an appropriate
error indication (see Section 10.5.3, “Error Handling”) and resend the message. The
status cycles are defined in Table 10-4.

10.13.2.1 Short Message
Short messages (21-cycles) are used for sending fixed, NMI, SMI, INIT, start-up,
ExtINT and lowest-priority-with-focus interrupts. Table 10-2 shows the cycles in a
short message.

If the physical delivery mode is being used, then cycles 15 and 16 represent the APIC
ID and cycles 13 and 14 are considered don't care by the receiver. If the logical

Table 10-2. Short Message (21 Cycles)

Cycle Bit1 Bit0

1 0 1 0 1 = normal

2 ArbID3 0 Arbitration ID bits 3 through 0

3 ArbID2 0

4 ArbID1 0

5 ArbID0 0

6 DM M2 DM = Destination Mode

7 M1 M0 M2-M0 = Delivery mode

8 L TM L = Level, TM = Trigger Mode

9 V7 V6 V7-V0 = Interrupt Vector

10 V5 V4

11 V3 V2

12 V1 V0

13 D7 D6 D7-D0 = Destination

14 D5 D4

15 D3 D2

16 D1 D0

17 C C Checksum for cycles 6-16

18 0 0

19 A A Status cycle 0

20 A1 A1 Status cycle 1

21 0 0 Idle
Vol. 3A 10-69

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
delivery mode is being used, then cycles 13 through 16 are the 8-bit logical destina-
tion field.

For shorthands of “all-incl-self” and “all-excl-self,” the physical delivery mode and an
arbitration priority of 15 (D0:D3 = 1111) are used. The agent sending the message
is the only one required to distinguish between the two cases. It does so using
internal information.

When using lowest priority delivery with an existing focus processor, the focus
processor identifies itself by driving 10 during cycle 19 and accepts the interrupt.
This is an indication to other APICs to terminate arbitration. If the focus processor
has not been found, the short message is extended on-the-fly to the non-focused
lowest-priority message. Note that except for the EOI message, messages gener-
ating a checksum or an acceptance error (see Section 10.5.3, “Error Handling”)
terminate after cycle 21.

10.13.2.2 Non-focused Lowest Priority Message
These 34-cycle messages (see Table 10-3) are used in the lowest priority delivery
mode when a focus processor is not present. Cycles 1 through 20 are same as for the
short message. If during the status cycle (cycle 19) the state of the (A:A) flags is
10B, a focus processor has been identified, and the short message format is used
(see Table 10-2). If the (A:A) flags are set to 00B, lowest priority arbitration is
started and the 34-cycles of the non-focused lowest priority message are competed.
For other combinations of status flags, refer to Section 10.13.2.3, “APIC Bus Status
Cycles.”

Table 10-3. Non-Focused Lowest Priority Message (34 Cycles)

Cycle Bit0 Bit1

1 0 1 0 1 = normal

2 ArbID3 0 Arbitration ID bits 3 through 0

3 ArbID2 0

4 ArbID1 0

5 ArbID0 0

6 DM M2 DM = Destination mode

7 M1 M0 M2-M0 = Delivery mode

8 L TM L = Level, TM = Trigger Mode

9 V7 V6 V7-V0 = Interrupt Vector

10 V5 V4

11 V3 V2

12 V1 V0

13 D7 D6 D7-D0 = Destination
10-70 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
Cycles 21 through 28 are used to arbitrate for the lowest priority processor. The
processors participating in the arbitration drive their inverted processor priority on
the bus. Only the local APICs having free interrupt slots participate in the lowest
priority arbitration. If no such APIC exists, the message will be rejected, requiring it
to be tried at a later time.

Cycles 29 through 32 are also used for arbitration in case two or more processors
have the same lowest priority. In the lowest priority delivery mode, all combinations
of errors in cycle 33 (A2 A2) will set the “accept error” bit in the error status register
(see Figure 10-9). Arbitration priority update is performed in cycle 20, and is not
affected by errors detected in cycle 33. Only the local APIC that wins in the lowest
priority arbitration, drives cycle 33. An error in cycle 33 will force the sender to
resend the message.

14 D5 D4

15 D3 D2

16 D1 D0

17 C C Checksum for cycles 6-16

18 0 0

19 A A Status cycle 0

20 A1 A1 Status cycle 1

21 P7 0 P7 - P0 = Inverted Processor Priority

22 P6 0

23 P5 0

24 P4 0

25 P3 0

26 P2 0

27 P1 0

28 P0 0

29 ArbID3 0 Arbitration ID 3 -0

30 ArbID2 0

31 ArbID1 0

32 ArbID0 0

33 A2 A2 Status Cycle

34 0 0 Idle

Table 10-3. Non-Focused Lowest Priority Message (34 Cycles) (Contd.)

Cycle Bit0 Bit1
Vol. 3A 10-71

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
10.13.2.3 APIC Bus Status Cycles
Certain cycles within an APIC bus message are status cycles. During these cycles the
status flags (A:A) and (A1:A1) are examined. Table 10-4 shows how these status
flags are interpreted, depending on the current delivery mode and existence of a
focus processor.

Table 10-4. APIC Bus Status Cycles Interpretation
Delivery
Mode

A Status A1 Status A2 Status Update
ArbID and
Cycle#

Message
Length

Retry

EOI 00: CS_OK 10: Accept XX: Yes, 13 14 Cycle No

00: CS_OK 11: Retry XX: Yes, 13 14 Cycle Yes

00: CS_OK 0X: Accept
Error

XX: No 14 Cycle Yes

11: CS_Error XX: XX: No 14 Cycle Yes

10: Error XX: XX: No 14 Cycle Yes

01: Error XX: XX: No 14 Cycle Yes

Fixed 00: CS_OK 10: Accept XX: Yes, 20 21 Cycle No

00: CS_OK 11: Retry XX: Yes, 20 21 Cycle Yes

00: CS_OK 0X: Accept
Error

XX: No 21 Cycle Yes

11: CS_Error XX: XX: No 21 Cycle Yes

10: Error XX: XX: No 21 Cycle Yes

01: Error XX: XX: No 21 Cycle Yes

NMI, SMI, INIT,
ExtINT,
Start-Up

00: CS_OK 10: Accept XX: Yes, 20 21 Cycle No

00: CS_OK 11: Retry XX: Yes, 20 21 Cycle Yes

00: CS_OK 0X: Accept
Error

XX: No 21 Cycle Yes

11: CS_Error XX: XX: No 21 Cycle Yes

10: Error XX: XX: No 21 Cycle Yes

01: Error XX: XX: No 21 Cycle Yes
10-72 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
Lowest 00: CS_OK,
NoFocus

11: Do Lowest 10: Accept Yes, 20 34 Cycle No

00: CS_OK,
NoFocus

11: Do Lowest 11: Error Yes, 20 34 Cycle Yes

00: CS_OK,
NoFocus

11: Do Lowest 0X: Error Yes, 20 34 Cycle Yes

00: CS_OK,
NoFocus

10: End and
Retry

XX: Yes, 20 34 Cycle Yes

00: CS_OK,
NoFocus

0X: Error XX: No 34 Cycle Yes

10: CS_OK,
Focus

XX: XX: Yes, 20 34 Cycle No

11: CS_Error XX: XX: No 21 Cycle Yes

01: Error XX: XX: No 21 Cycle Yes

Table 10-4. APIC Bus Status Cycles Interpretation (Contd.)
Delivery
Mode

A Status A1 Status A2 Status Update
ArbID and
Cycle#

Message
Length

Retry
Vol. 3A 10-73

CHAPTER 11
MEMORY CACHE CONTROL

This chapter describes the memory cache and cache control mechanisms, the TLBs,
and the store buffer in Intel 64 and IA-32 processors. It also describes the memory
type range registers (MTRRs) introduced in the P6 family processors and how they
are used to control caching of physical memory locations.

11.1 INTERNAL CACHES, TLBS, AND BUFFERS
The Intel 64 and IA-32 architectures support cache, translation look aside buffers
(TLBs), and a store buffer for temporary on-chip (and external) storage of instruc-
tions and data. (Figure 11-1 shows the arrangement of caches, TLBs, and the store
buffer for the Pentium 4 and Intel Xeon processors.) Table 11-1 shows the character-
istics of these caches and buffers for the Pentium 4, Intel Xeon, P6 family, and
Pentium processors. The sizes and characteristics of these units are machine
specific and may change in future versions of the processor. The CPUID
instruction returns the sizes and characteristics of the caches and buffers for the
processor on which the instruction is executed. See “CPUID—CPU Identification” in
Chapter 3, “Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 2A.

Figure 11-1. Cache Structure of the Pentium 4 and Intel Xeon Processors

Trace CacheInstruction Decoder

Bus Interface Unit

System Bus

Data Cache
Unit (L1)

 (External)

Physical
Memory

Store Buffer

Data TLBs

L2 Cache

Instruction
TLBs

L3 Cache†

† Intel Xeon processors only
Vol. 3A 11-1

MEMORY CACHE CONTROL
Figure 11-2 shows the cache arrangement of Intel Core i7 processor.

Figure 11-2. Cache Structure of the Intel Core i7 Processors

Table 11-1. Characteristics of the Caches, TLBs, Store Buffer, and
Write Combining Buffer in Intel 64 and IA-32 Processors

Cache or Buffer Characteristics

Trace Cache1 • Pentium 4 and Intel Xeon processors (Based on Intel NetBurst®
microarchitecture): 12 Kμops, 8-way set associative.

• Intel Core i7, Intel Core 2 Duo, Intel® Atom™, Intel Core Duo, Intel Core
Solo, Pentium M processor: not implemented.

• P6 family and Pentium processors: not implemented.

L1 Instruction Cache • Pentium 4 and Intel Xeon processors (Based on Intel NetBurst
microarchitecture): not implemented.

• Intel Core i7 processor: 32-KByte, 4-way set associative.
• Intel Core 2 Duo, Intel Atom, Intel Core Duo, Intel Core Solo, Pentium M

processor: 32-KByte, 8-way set associative.
• P6 family and Pentium processors: 8- or 16-KByte, 4-way set associative,

32-byte cache line size; 2-way set associative for earlier Pentium
processors.

Instruction Decoder and front end

Out-of-Order Engine

Chipset

Data Cache
Unit (L1)

Instruction
Cache

STLBData TLB

L2 Cache

ITLB

L3 Cache

IMC

QPI
11-2 Vol. 3A

MEMORY CACHE CONTROL
L1 Data Cache • Pentium 4 and Intel Xeon processors (Based on Intel NetBurst
microarchitecture): 8-KByte, 4-way set associative, 64-byte cache line
size.

• Pentium 4 and Intel Xeon processors (Based on Intel NetBurst
microarchitecture): 16-KByte, 8-way set associative, 64-byte cache line
size.

• Intel Atom processors: 24-KByte, 6-way set associative, 64-byte cache
line size.

• Intel Core i7, Intel Core 2 Duo, Intel Core Duo, Intel Core Solo, Pentium M
and Intel Xeon processors: 32-KByte, 8-way set associative, 64-byte
cache line size.

• P6 family processors: 16-KByte, 4-way set associative, 32-byte cache
line size; 8-KBytes, 2-way set associative for earlier P6 family
processors.

• Pentium processors: 16-KByte, 4-way set associative, 32-byte cache line
size; 8-KByte, 2-way set associative for earlier Pentium processors.

L2 Unified Cache • Intel Core 2 Duo and Intel Xeon processors: up to 4-MByte (or 4MBx2 in
quadcore processors), 16-way set associative, 64-byte cache line size.

• Intel Core 2 Duo and Intel Xeon processors: up to 6-MByte (or 6MBx2 in
quadcore processors), 24-way set associative, 64-byte cache line size.

• Intel Core i7, i5, i3 processors: 256KBbyte, 8-way set associative,
64-byte cache line size.

• Intel Atom processors: 512-KByte, 8-way set associative, 64-byte cache
line size.

• Intel Core Duo, Intel Core Solo processors: 2-MByte, 8-way set
associative, 64-byte cache line size

• Pentium 4 and Intel Xeon processors: 256, 512, 1024, or 2048-KByte, 8-
way set associative, 64-byte cache line size, 128-byte sector size.

• Pentium M processor: 1 or 2-MByte, 8-way set associative, 64-byte
cache line size.

• P6 family processors: 128-KByte, 256-KByte, 512-KByte, 1-MByte, or 2-
MByte, 4-way set associative, 32-byte cache line size.

• Pentium processor (external optional): System specific, typically 256- or
512-KByte, 4-way set associative, 32-byte cache line size.

L3 Unified Cache • Intel Xeon processors: 512-KByte, 1-MByte, 2-MByte, or 4-MByte, 8-way
set associative, 64-byte cache line size, 128-byte sector size.

• Intel Core i7 processor, Intel Xeon processor 5500: Up to 8MByte, 16-
way set associative, 64-byte cache line size.

• Intel Xeon processor 5600: Up to 12MByte, 64-byte cache line size.
• Intel Xeon processor 7500: Up to 24MByte, 64-byte cache line size.

Table 11-1. Characteristics of the Caches, TLBs, Store Buffer, and
Write Combining Buffer in Intel 64 and IA-32 Processors (Contd.)

Cache or Buffer Characteristics
Vol. 3A 11-3

MEMORY CACHE CONTROL
Instruction TLB
(4-KByte Pages)

• Pentium 4 and Intel Xeon processors (Based on Intel NetBurst
microarchitecture): 128 entries, 4-way set associative.

• Intel Atom processors: 32-entries, fully associative.
• Intel Core i7, i5, i3 processors: 64-entries per thread (128-entries per

core), 4-way set associative.
• Intel Core 2 Duo, Intel Core Duo, Intel Core Solo processors, Pentium M

processor: 128 entries, 4-way set associative.
• P6 family processors: 32 entries, 4-way set associative.
• Pentium processor: 32 entries, 4-way set associative; fully set

associative for Pentium processors with MMX technology.

Data TLB (4-KByte
Pages)

• Intel Core i7, i5, i3 processors, DTLB0: 64-entries, 4-way set associative.
• Intel Core 2 Duo processors: DTLB0, 16 entries, DTLB1, 256 entries, 4

ways.
• Intel Atom processors: 16-entry-per-thread micro-TLB, fully associative;

64-entry DTLB, 4-way set associative; 16-entry PDE cache, fully
associative.

• Pentium 4 and Intel Xeon processors (Based on Intel NetBurst
microarchitecture): 64 entry, fully set associative, shared with large page
DTLB.

• Intel Core Duo, Intel Core Solo processors, Pentium M processor: 128
entries, 4-way set associative.

• Pentium and P6 family processors: 64 entries, 4-way set associative;
fully set, associative for Pentium processors with MMX technology.

Instruction TLB
(Large Pages)

• Intel Core i7, i5, i3 processors: 7-entries per thread, fully associative.
• Intel Core 2 Duo processors: 4 entries, 4 ways.
• Pentium 4 and Intel Xeon processors: large pages are fragmented.
• Intel Core Duo, Intel Core Solo, Pentium M processor: 2 entries, fully

associative.
• P6 family processors: 2 entries, fully associative.
• Pentium processor: Uses same TLB as used for 4-KByte pages.

Data TLB (Large
Pages)

• Intel Core i7, i5, i3 processors, DTLB0: 32-entries, 4-way set associative.
• Intel Core 2 Duo processors: DTLB0, 16 entries, DTLB1, 32 entries, 4

ways.
• Intel Atom processors: 8 entries, 4-way set associative.
• Pentium 4 and Intel Xeon processors: 64 entries, fully set associative;

shared with small page data TLBs.
• Intel Core Duo, Intel Core Solo, Pentium M processor: 8 entries, fully

associative.
• P6 family processors: 8 entries, 4-way set associative.
• Pentium processor: 8 entries, 4-way set associative; uses same TLB as

used for 4-KByte pages in Pentium processors with MMX technology.

Second-level Unified
TLB (4-KByte
Pages)

• Intel Core i7, i5, i3 processor, STLB: 512-entries, 4-way set associative.

Table 11-1. Characteristics of the Caches, TLBs, Store Buffer, and
Write Combining Buffer in Intel 64 and IA-32 Processors (Contd.)

Cache or Buffer Characteristics
11-4 Vol. 3A

MEMORY CACHE CONTROL
Intel 64 and IA-32 processors may implement four types of caches: the trace cache,
the level 1 (L1) cache, the level 2 (L2) cache, and the level 3 (L3) cache. See
Figure 11-1. Cache availability is described below:
• Intel Core i7, i5, i3 processor Family and Intel Xeon processor Family

based on Intel® microarchitecture code name Nehalem and Intel®
microarchitecture code name Westmere — The L1 cache is divided into two
sections: one section is dedicated to caching instructions (pre-decoded instruc-
tions) and the other caches data. The L2 cache is a unified data and instruction
cache. Each processor core has its own L1 and L2. The L3 cache is an inclusive,
unified data and instruction cache, shared by all processor cores inside a physical
package. No trace cache is implemented.

• Intel® Core™ 2 processor family and Intel® Xeon® processor family
based on Intel® Core™ microarchitecture — The L1 cache is divided into two
sections: one section is dedicated to caching instructions (pre-decoded instruc-
tions) and the other caches data. The L2 cache is a unified data and instruction
cache located on the processor chip; it is shared between two processor cores in
a dual-core processor implementation. Quad-core processors have two L2, each
shared by two processor cores. No trace cache is implemented.

• Intel® Atom™ processor — The L1 cache is divided into two sections: one
section is dedicated to caching instructions (pre-decoded instructions) and the
other caches data. The L2 cache is a unified data and instruction cache is located
on the processor chip. No trace cache is implemented.

• Intel® Core™ Solo and Intel® Core™ Duo processors — The L1 cache is
divided into two sections: one section is dedicated to caching instructions (pre-
decoded instructions) and the other caches data. The L2 cache is a unified data
and instruction cache located on the processor chip. It is shared between two

Store Buffer • Intel Core i7, i5, i3 processors: 32entries.
• Intel Core 2 Duo processors: 20 entries.
• Intel Atom processors: 8 entries, used for both WC and store buffers.
• Pentium 4 and Intel Xeon processors: 24 entries.
• Pentium M processor: 16 entries.
• P6 family processors: 12 entries.
• Pentium processor: 2 buffers, 1 entry each (Pentium processors with

MMX technology have 4 buffers for 4 entries).

Write Combining
(WC) Buffer

• Intel Core 2 Duo processors: 8 entries.
• Intel Atom processors: 8 entries, used for both WC and store buffers.
• Pentium 4 and Intel Xeon processors: 6 or 8 entries.
• Intel Core Duo, Intel Core Solo, Pentium M processors: 6 entries.
• P6 family processors: 4 entries.

NOTES:
1 Introduced to the IA-32 architecture in the Pentium 4 and Intel Xeon processors.

Table 11-1. Characteristics of the Caches, TLBs, Store Buffer, and
Write Combining Buffer in Intel 64 and IA-32 Processors (Contd.)

Cache or Buffer Characteristics
Vol. 3A 11-5

MEMORY CACHE CONTROL
processor cores in a dual-core processor implementation. No trace cache is
implemented.

• Pentium® 4 and Intel® Xeon® processors Based on Intel NetBurst®
microarchitecture — The trace cache caches decoded instructions (μops) from
the instruction decoder and the L1 cache contains data. The L2 and L3 caches are
unified data and instruction caches located on the processor chip. Dualcore
processors have two L2, one in each processor core. Note that the L3 cache is
only implemented on some Intel Xeon processors.

• P6 family processors — The L1 cache is divided into two sections: one
dedicated to caching instructions (pre-decoded instructions) and the other to
caching data. The L2 cache is a unified data and instruction cache located on the
processor chip. P6 family processors do not implement a trace cache.

• Pentium® processors — The L1 cache has the same structure as on P6 family
processors. There is no trace cache. The L2 cache is a unified data and instruction
cache external to the processor chip on earlier Pentium processors and
implemented on the processor chip in later Pentium processors. For Pentium
processors where the L2 cache is external to the processor, access to the cache is
through the system bus.

For Intel Core i7 processors and processors based on Intel Core, Intel Atom, and Intel
NetBurst microarchitectures, Intel Core Duo, Intel Core Solo and Pentium M proces-
sors, the cache lines for the L1 and L2 caches (and L3 caches if supported) are 64
bytes wide. The processor always reads a cache line from system memory beginning
on a 64-byte boundary. (A 64-byte aligned cache line begins at an address with its 6
least-significant bits clear.) A cache line can be filled from memory with a 8-transfer
burst transaction. The caches do not support partially-filled cache lines, so caching
even a single doubleword requires caching an entire line.

The L1 and L2 cache lines in the P6 family and Pentium processors are 32 bytes wide,
with cache line reads from system memory beginning on a 32-byte boundary (5
least-significant bits of a memory address clear.) A cache line can be filled from
memory with a 4-transfer burst transaction. Partially-filled cache lines are not
supported.

The trace cache in processors based on Intel NetBurst microarchitecture is available
in all execution modes: protected mode, system management mode (SMM), and
real-address mode. The L1,L2, and L3 caches are also available in all execution
modes; however, use of them must be handled carefully in SMM (see Section 33.4.2,
“SMRAM Caching”).

The TLBs store the most recently used page-directory and page-table entries. They
speed up memory accesses when paging is enabled by reducing the number of
memory accesses that are required to read the page tables stored in system
memory. The TLBs are divided into four groups: instruction TLBs for 4-KByte pages,
data TLBs for 4-KByte pages; instruction TLBs for large pages (2-MByte, 4-MByte or
1-GByte pages), and data TLBs for large pages. The TLBs are normally active only in
protected mode with paging enabled. When paging is disabled or the processor is in
11-6 Vol. 3A

MEMORY CACHE CONTROL
real-address mode, the TLBs maintain their contents until explicitly or implicitly
flushed (see Section 11.9, “Invalidating the Translation Lookaside Buffers (TLBs)”).

Processors based on Intel Core microarchitectures implement one level of instruction
TLB and two levels of data TLB. Intel Core i7 processor provides a second-level
unified TLB.

The store buffer is associated with the processors instruction execution units. It
allows writes to system memory and/or the internal caches to be saved and in some
cases combined to optimize the processor’s bus accesses. The store buffer is always
enabled in all execution modes.

The processor’s caches are for the most part transparent to software. When enabled,
instructions and data flow through these caches without the need for explicit soft-
ware control. However, knowledge of the behavior of these caches may be useful in
optimizing software performance. For example, knowledge of cache dimensions and
replacement algorithms gives an indication of how large of a data structure can be
operated on at once without causing cache thrashing.

In multiprocessor systems, maintenance of cache consistency may, in rare circum-
stances, require intervention by system software. For these rare cases, the processor
provides privileged cache control instructions for use in flushing caches and forcing
memory ordering.

The Pentium III, Pentium 4, and Intel Xeon processors introduced several instructions
that software can use to improve the performance of the L1, L2, and L3 caches,
including the PREFETCHh and CLFLUSH instructions and the non-temporal move
instructions (MOVNTI, MOVNTQ, MOVNTDQ, MOVNTPS, and MOVNTPD). The use of
these instructions are discussed in Section 11.5.5, “Cache Management Instruc-
tions.”

11.2 CACHING TERMINOLOGY
IA-32 processors (beginning with the Pentium processor) and Intel 64 processors use
the MESI (modified, exclusive, shared, invalid) cache protocol to maintain consis-
tency with internal caches and caches in other processors (see Section 11.4, “Cache
Control Protocol”).

When the processor recognizes that an operand being read from memory is cache-
able, the processor reads an entire cache line into the appropriate cache (L1, L2, L3,
or all). This operation is called a cache line fill. If the memory location containing
that operand is still cached the next time the processor attempts to access the
operand, the processor can read the operand from the cache instead of going back to
memory. This operation is called a cache hit.

When the processor attempts to write an operand to a cacheable area of memory, it
first checks if a cache line for that memory location exists in the cache. If a valid
cache line does exist, the processor (depending on the write policy currently in force)
can write the operand into the cache instead of writing it out to system memory. This
operation is called a write hit. If a write misses the cache (that is, a valid cache line
Vol. 3A 11-7

MEMORY CACHE CONTROL
is not present for area of memory being written to), the processor performs a cache
line fill, write allocation. Then it writes the operand into the cache line and
(depending on the write policy currently in force) can also write it out to memory. If
the operand is to be written out to memory, it is written first into the store buffer, and
then written from the store buffer to memory when the system bus is available.
(Note that for the Pentium processor, write misses do not result in a cache line fill;
they always result in a write to memory. For this processor, only read misses result in
cache line fills.)

When operating in an MP system, IA-32 processors (beginning with the Intel486
processor) and Intel 64 processors have the ability to snoop other processor’s
accesses to system memory and to their internal caches. They use this snooping
ability to keep their internal caches consistent both with system memory and with
the caches in other processors on the bus. For example, in the Pentium and P6 family
processors, if through snooping one processor detects that another processor
intends to write to a memory location that it currently has cached in shared state,
the snooping processor will invalidate its cache line forcing it to perform a cache line
fill the next time it accesses the same memory location.

Beginning with the P6 family processors, if a processor detects (through snooping)
that another processor is trying to access a memory location that it has modified in
its cache, but has not yet written back to system memory, the snooping processor
will signal the other processor (by means of the HITM# signal) that the cache line is
held in modified state and will preform an implicit write-back of the modified data.
The implicit write-back is transferred directly to the initial requesting processor and
snooped by the memory controller to assure that system memory has been updated.
Here, the processor with the valid data may pass the data to the other processors
without actually writing it to system memory; however, it is the responsibility of the
memory controller to snoop this operation and update memory.

11.3 METHODS OF CACHING AVAILABLE
The processor allows any area of system memory to be cached in the L1, L2, and L3
caches. In individual pages or regions of system memory, it allows the type of
caching (also called memory type) to be specified (see Section 11.5). Memory types
currently defined for the Intel 64 and IA-32 architectures are (see Table 11-2):
• Strong Uncacheable (UC) —System memory locations are not cached. All

reads and writes appear on the system bus and are executed in program order
without reordering. No speculative memory accesses, page-table walks, or
prefetches of speculated branch targets are made. This type of cache-control is
useful for memory-mapped I/O devices. When used with normal RAM, it greatly
reduces processor performance.

NOTE
The behavior of FP and SSE/SSE2 operations on operands in UC
memory is implementation dependent. In some implementations,
11-8 Vol. 3A

MEMORY CACHE CONTROL
accesses to UC memory may occur more than once. To ensure
predictable behavior, use loads and stores of general purpose
registers to access UC memory that may have read or write side
effects.

• Uncacheable (UC-) — Has same characteristics as the strong uncacheable (UC)
memory type, except that this memory type can be overridden by programming
the MTRRs for the WC memory type. This memory type is available in processor
families starting from the Pentium III processors and can only be selected through
the PAT.

• Write Combining (WC) — System memory locations are not cached (as with
uncacheable memory) and coherency is not enforced by the processor’s bus
coherency protocol. Speculative reads are allowed. Writes may be delayed and
combined in the write combining buffer (WC buffer) to reduce memory accesses.
If the WC buffer is partially filled, the writes may be delayed until the next
occurrence of a serializing event; such as, an SFENCE or MFENCE instruction,
CPUID execution, a read or write to uncached memory, an interrupt occurrence,
or a LOCK instruction execution. This type of cache-control is appropriate for
video frame buffers, where the order of writes is unimportant as long as the
writes update memory so they can be seen on the graphics display. See Section
11.3.1, “Buffering of Write Combining Memory Locations,” for more information
about caching the WC memory type. This memory type is available in the
Pentium Pro and Pentium II processors by programming the MTRRs; or in
processor families starting from the Pentium III processors by programming the
MTRRs or by selecting it through the PAT.

Table 11-2. Memory Types and Their Properties

Memory Type and
Mnemonic

Cacheable Writeback
Cacheable

Allows
Speculative
Reads

Memory Ordering Model

Strong Uncacheable
(UC)

No No No Strong Ordering

Uncacheable (UC-) No No No Strong Ordering. Can only be
selected through the PAT. Can
be overridden by WC in MTRRs.

Write Combining (WC) No No Yes Weak Ordering. Available by
programming MTRRs or by
selecting it through the PAT.

Write Through (WT) Yes No Yes Speculative Processor Ordering.

Write Back (WB) Yes Yes Yes Speculative Processor Ordering.

Write Protected (WP) Yes for
reads; no for
writes

No Yes Speculative Processor Ordering.
Available by programming
MTRRs.
Vol. 3A 11-9

MEMORY CACHE CONTROL
• Write-through (WT) — Writes and reads to and from system memory are
cached. Reads come from cache lines on cache hits; read misses cause cache
fills. Speculative reads are allowed. All writes are written to a cache line (when
possible) and through to system memory. When writing through to memory,
invalid cache lines are never filled, and valid cache lines are either filled or inval-
idated. Write combining is allowed. This type of cache-control is appropriate for
frame buffers or when there are devices on the system bus that access system
memory, but do not perform snooping of memory accesses. It enforces
coherency between caches in the processors and system memory.

• Write-back (WB) — Writes and reads to and from system memory are cached.
Reads come from cache lines on cache hits; read misses cause cache fills.
Speculative reads are allowed. Write misses cause cache line fills (in processor
families starting with the P6 family processors), and writes are performed
entirely in the cache, when possible. Write combining is allowed. The write-back
memory type reduces bus traffic by eliminating many unnecessary writes to
system memory. Writes to a cache line are not immediately forwarded to system
memory; instead, they are accumulated in the cache. The modified cache lines
are written to system memory later, when a write-back operation is performed.
Write-back operations are triggered when cache lines need to be deallocated,
such as when new cache lines are being allocated in a cache that is already full.
They also are triggered by the mechanisms used to maintain cache consistency.
This type of cache-control provides the best performance, but it requires that all
devices that access system memory on the system bus be able to snoop memory
accesses to insure system memory and cache coherency.

• Write protected (WP) — Reads come from cache lines when possible, and read
misses cause cache fills. Writes are propagated to the system bus and cause
corresponding cache lines on all processors on the bus to be invalidated.
Speculative reads are allowed. This memory type is available in processor
families starting from the P6 family processors by programming the MTRRs (see
Table 11-6).

Table 11-3 shows which of these caching methods are available in the Pentium, P6
Family, Pentium 4, and Intel Xeon processors.

Table 11-3. Methods of Caching Available in Intel Core 2 Duo, Intel Atom, Intel Core
Duo, Pentium M, Pentium 4, Intel Xeon, P6 Family, and Pentium Processors

Memory Type Intel Core 2 Duo, Intel Atom, Intel
Core Duo, Pentium M, Pentium 4
and Intel Xeon Processors

P6 Family
Processors

Pentium
Processor

Strong Uncacheable (UC) Yes Yes Yes

Uncacheable (UC-) Yes Yes* No

Write Combining (WC) Yes Yes No

Write Through (WT) Yes Yes Yes

Write Back (WB) Yes Yes Yes
11-10 Vol. 3A

MEMORY CACHE CONTROL
11.3.1 Buffering of Write Combining Memory Locations
Writes to the WC memory type are not cached in the typical sense of the word
cached. They are retained in an internal write combining buffer (WC buffer) that is
separate from the internal L1, L2, and L3 caches and the store buffer. The WC buffer
is not snooped and thus does not provide data coherency. Buffering of writes to WC
memory is done to allow software a small window of time to supply more modified
data to the WC buffer while remaining as non-intrusive to software as possible. The
buffering of writes to WC memory also causes data to be collapsed; that is, multiple
writes to the same memory location will leave the last data written in the location and
the other writes will be lost.

The size and structure of the WC buffer is not architecturally defined. For the Intel
Core 2 Duo, Intel Atom, Intel Core Duo, Pentium M, Pentium 4 and Intel Xeon proces-
sors; the WC buffer is made up of several 64-byte WC buffers. For the P6 family
processors, the WC buffer is made up of several 32-byte WC buffers.

When software begins writing to WC memory, the processor begins filling the WC
buffers one at a time. When one or more WC buffers has been filled, the processor
has the option of evicting the buffers to system memory. The protocol for evicting the
WC buffers is implementation dependent and should not be relied on by software for
system memory coherency. When using the WC memory type, software must be
sensitive to the fact that the writing of data to system memory is being delayed and
must deliberately empty the WC buffers when system memory coherency is
required.

Once the processor has started to evict data from the WC buffer into system
memory, it will make a bus-transaction style decision based on how much of the
buffer contains valid data. If the buffer is full (for example, all bytes are valid), the
processor will execute a burst-write transaction on the bus. This results in all 32
bytes (P6 family processors) or 64 bytes (Pentium 4 and more recent processor)
being transmitted on the data bus in a single burst transaction. If one or more of the
WC buffer’s bytes are invalid (for example, have not been written by software), the
processor will transmit the data to memory using “partial write” transactions (one
chunk at a time, where a “chunk” is 8 bytes).

Write Protected (WP) Yes Yes No

NOTE:
* Introduced in the Pentium III processor; not available in the Pentium Pro or Pentium II processors

Table 11-3. Methods of Caching Available in Intel Core 2 Duo, Intel Atom, Intel Core
Duo, Pentium M, Pentium 4, Intel Xeon, P6 Family, and Pentium Processors (Contd.)

Memory Type Intel Core 2 Duo, Intel Atom, Intel
Core Duo, Pentium M, Pentium 4
and Intel Xeon Processors

P6 Family
Processors

Pentium
Processor
Vol. 3A 11-11

MEMORY CACHE CONTROL
This will result in a maximum of 4 partial write transactions (for P6 family processors)
or 8 partial write transactions (for the Pentium 4 and more recent processors) for one
WC buffer of data sent to memory.

The WC memory type is weakly ordered by definition. Once the eviction of a WC
buffer has started, the data is subject to the weak ordering semantics of its defini-
tion. Ordering is not maintained between the successive allocation/deallocation of
WC buffers (for example, writes to WC buffer 1 followed by writes to WC buffer 2 may
appear as buffer 2 followed by buffer 1 on the system bus). When a WC buffer is
evicted to memory as partial writes there is no guaranteed ordering between succes-
sive partial writes (for example, a partial write for chunk 2 may appear on the bus
before the partial write for chunk 1 or vice versa).

The only elements of WC propagation to the system bus that are guaranteed are
those provided by transaction atomicity. For example, with a P6 family processor, a
completely full WC buffer will always be propagated as a single 32-bit burst transac-
tion using any chunk order. In a WC buffer eviction where data will be evicted as
partials, all data contained in the same chunk (0 mod 8 aligned) will be propagated
simultaneously. Likewise, for more recent processors starting with those based on
Intel NetBurst microarchitectures, a full WC buffer will always be propagated as a
single burst transactions, using any chunk order within a transaction. For partial
buffer propagations, all data contained in the same chunk will be propagated simul-
taneously.

11.3.2 Choosing a Memory Type
The simplest system memory model does not use memory-mapped I/O with read or
write side effects, does not include a frame buffer, and uses the write-back memory
type for all memory. An I/O agent can perform direct memory access (DMA) to write-
back memory and the cache protocol maintains cache coherency.

A system can use strong uncacheable memory for other memory-mapped I/O, and
should always use strong uncacheable memory for memory-mapped I/O with read
side effects.

Dual-ported memory can be considered a write side effect, making relatively prompt
writes desirable, because those writes cannot be observed at the other port until they
reach the memory agent. A system can use strong uncacheable, uncacheable, write-
through, or write-combining memory for frame buffers or dual-ported memory that
contains pixel values displayed on a screen. Frame buffer memory is typically large (a
few megabytes) and is usually written more than it is read by the processor. Using
strong uncacheable memory for a frame buffer generates very large amounts of bus
traffic, because operations on the entire buffer are implemented using partial writes
rather than line writes. Using write-through memory for a frame buffer can displace
almost all other useful cached lines in the processor's L2 and L3 caches and L1 data
cache. Therefore, systems should use write-combining memory for frame buffers
whenever possible.
11-12 Vol. 3A

MEMORY CACHE CONTROL
Software can use page-level cache control, to assign appropriate effective memory
types when software will not access data structures in ways that benefit from write-
back caching. For example, software may read a large data structure once and not
access the structure again until the structure is rewritten by another agent. Such a
large data structure should be marked as uncacheable, or reading it will evict cached
lines that the processor will be referencing again.

A similar example would be a write-only data structure that is written to (to export
the data to another agent), but never read by software. Such a structure can be
marked as uncacheable, because software never reads the values that it writes
(though as uncacheable memory, it will be written using partial writes, while as
write-back memory, it will be written using line writes, which may not occur until the
other agent reads the structure and triggers implicit write-backs).

On the Pentium III, Pentium 4, and more recent processors, new instructions are
provided that give software greater control over the caching, prefetching, and the
write-back characteristics of data. These instructions allow software to use weakly
ordered or processor ordered memory types to improve processor performance, but
when necessary to force strong ordering on memory reads and/or writes. They also
allow software greater control over the caching of data. For a description of these
instructions and there intended use, see Section 11.5.5, “Cache Management
Instructions.”

11.3.3 Code Fetches in Uncacheable Memory
Programs may execute code from uncacheable (UC) memory, but the implications
are different from accessing data in UC memory. When doing code fetches, the
processor never transitions from cacheable code to UC code speculatively. It also
never speculatively fetches branch targets that result in UC code.

The processor may fetch the same UC cache line multiple times in order to decode an
instruction once. It may decode consecutive UC instructions in a cacheline without
fetching between each instruction. It may also fetch additional cachelines from the
same or a consecutive 4-KByte page in order to decode one non-speculative UC
instruction (this can be true even when the instruction is contained fully in one line).

Because of the above and because cacheline sizes may change in future processors,
software should avoid placing memory-mapped I/O with read side effects in the
same page or in a subsequent page used to execute UC code.

11.4 CACHE CONTROL PROTOCOL
The following section describes the cache control protocol currently defined for the
Intel 64 and IA-32 architectures.

In the L1 data cache and in the L2/L3 unified caches, the MESI (modified, exclusive,
shared, invalid) cache protocol maintains consistency with caches of other proces-
sors. The L1 data cache and the L2/L3 unified caches have two MESI status flags per
Vol. 3A 11-13

MEMORY CACHE CONTROL
cache line. Each line can be marked as being in one of the states defined in Table
11-4. In general, the operation of the MESI protocol is transparent to programs.

The L1 instruction cache in P6 family processors implements only the “SI” part of the
MESI protocol, because the instruction cache is not writable. The instruction cache
monitors changes in the data cache to maintain consistency between the caches
when instructions are modified. See Section 11.6, “Self-Modifying Code,” for more
information on the implications of caching instructions.

11.5 CACHE CONTROL
The Intel 64 and IA-32 architectures provide a variety of mechanisms for controlling
the caching of data and instructions and for controlling the ordering of reads and
writes between the processor, the caches, and memory. These mechanisms can be
divided into two groups:
• Cache control registers and bits — The Intel 64 and IA-32 architectures

define several dedicated registers and various bits within control registers and
page- and directory-table entries that control the caching system memory
locations in the L1, L2, and L3 caches. These mechanisms control the caching of
virtual memory pages and of regions of physical memory.

• Cache control and memory ordering instructions — The Intel 64 and IA-32
architectures provide several instructions that control the caching of data, the
ordering of memory reads and writes, and the prefetching of data. These instruc-
tions allow software to control the caching of specific data structures, to control
memory coherency for specific locations in memory, and to force strong memory
ordering at specific locations in a program.

The following sections describe these two groups of cache control mechanisms.

Table 11-4. MESI Cache Line States

Cache Line State M (Modified) E (Exclusive) S (Shared) I (Invalid)

This cache line is valid? Yes Yes Yes No

The memory copy is… Out of date Valid Valid —

Copies exist in caches
of other processors?

No No Maybe Maybe

A write to this line … Does not go to
the system bus.

Does not go to
the system bus.

Causes the
processor to gain
exclusive
ownership of the
line.

Goes directly to
the system bus.
11-14 Vol. 3A

MEMORY CACHE CONTROL
11.5.1 Cache Control Registers and Bits
Figure 11-3 depicts cache-control mechanisms in IA-32 processors. Other than for
the matter of memory address space, these work the same in Intel 64 processors.

The Intel 64 and IA-32 architectures provide the following cache-control registers
and bits for use in enabling or restricting caching to various pages or regions in
memory:
• CD flag, bit 30 of control register CR0 — Controls caching of system memory

locations (see Section 2.5, “Control Registers”). If the CD flag is clear, caching is
enabled for the whole of system memory, but may be restricted for individual
pages or regions of memory by other cache-control mechanisms. When the CD
flag is set, caching is restricted in the processor’s caches (cache hierarchy) for
the P6 and more recent processor families and prevented for the Pentium
processor (see note below). With the CD flag set, however, the caches will still
respond to snoop traffic. Caches should be explicitly flushed to insure memory
coherency. For highest processor performance, both the CD and the NW flags in
control register CR0 should be cleared. Table 11-5 shows the interaction of the
CD and NW flags.
The effect of setting the CD flag is somewhat different for processor families
starting with P6 family than the Pentium processor (see Table 11-5). To insure
memory coherency after the CD flag is set, the caches should be explicitly
flushed (see Section 11.5.3, “Preventing Caching”). Setting the CD flag for the
P6 and more recent processor families modify cache line fill and update
behaviour. Also, setting the CD flag on these processors do not force strict
ordering of memory accesses unless the MTRRs are disabled and/or all memory
is referenced as uncached (see Section 8.2.5, “Strengthening or Weakening the
Memory-Ordering Model”).
Vol. 3A 11-15

MEMORY CACHE CONTROL
Figure 11-3. Cache-Control Registers and Bits Available in Intel 64 and IA-32
Processors

Page-Directory or
Page-Table Entry

TLBs

MTRRs3

Physical Memory

0

FFFFFFFFH2

control overall caching
of system memory

CD and NW Flags PCD and PWT flags
control page-level
caching

G flag controls page-
level flushing of TLBs

MTRRs control caching
of selected regions of
physical memory

P
C
D

CR3

Control caching of
page directory

P
W
T

C
D

CR0

N
W

Store Buffer

P
C
D

P
W
T

G1

CR4

Enables global pages

P
G
E

designated with G flag

1. G flag only available in P6 and later processor families

3. MTRRs available only in P6 and later processor families;
 similar control available in Pentium processor with the KEN#
 and WB/WT# pins.

2. The maximum physical address size is reported by CPUID leaf
function 80000008H. The maximum physical address size of

PAT4

PAT controls caching
of virtual memory
pages

4. PAT available only in Pentium III and later processor families.

P4

A
T

FFFFFFFFFH applies only If 36-bit physical addressing is used.

5. L3 in processors based on Intel NetBurst microarchitecture can
be disabled using IA32_MISC_ENABLE MSR.
11-16 Vol. 3A

MEMORY CACHE CONTROL
Table 11-5. Cache Operating Modes

CD NW Caching and Read/Write Policy L1 L2/L31

0 0 Normal Cache Mode. Highest performance cache operation.

• Read hits access the cache; read misses may cause replacement.
• Write hits update the cache.
• Only writes to shared lines and write misses update system

memory.

Yes
Yes
Yes

Yes
Yes
Yes

• Write misses cause cache line fills.
• Write hits can change shared lines to modified under control of

the MTRRs and with associated read invalidation cycle.
• (Pentium processor only.) Write misses do not cause cache line

fills.

Yes
Yes

Yes

Yes

• (Pentium processor only.) Write hits can change shared lines to
exclusive under control of WB/WT#.

• Invalidation is allowed.
• External snoop traffic is supported.

Yes

Yes
Yes

Yes
Yes

0 1 Invalid setting.

Generates a general-protection exception (#GP) with an error code
of 0.

NA NA

1 0 No-fill Cache Mode. Memory coherency is maintained.3

• (Pentium 4 and later processor families.) State of processor after
a power up or reset.

• Read hits access the cache; read misses do not cause
replacement (see Pentium 4 and Intel Xeon processors reference
below).

• Write hits update the cache.
• Only writes to shared lines and write misses update system

memory.

Yes

Yes

Yes
Yes

Yes

Yes

Yes
Yes

• Write misses access memory.
• Write hits can change shared lines to exclusive under control of

the MTRRs and with associated read invalidation cycle.
• (Pentium processor only.) Write hits can change shared lines to

exclusive under control of the WB/WT#.

Yes
Yes

Yes

Yes
Yes

1 0 • (P6 and later processor families only.) Strict memory ordering is
not enforced unless the MTRRs are disabled and/or all memory is
referenced as uncached (see Section 7.2.4., “Strengthening or
Weakening the Memory Ordering Model”).

• Invalidation is allowed.
• External snoop traffic is supported.

Yes

Yes
Yes

Yes

Yes
Yes
Vol. 3A 11-17

MEMORY CACHE CONTROL
• NW flag, bit 29 of control register CR0 — Controls the write policy for system
memory locations (see Section 2.5, “Control Registers”). If the NW and CD flags
are clear, write-back is enabled for the whole of system memory, but may be
restricted for individual pages or regions of memory by other cache-control
mechanisms. Table 11-5 shows how the other combinations of CD and NW flags
affects caching.

NOTES
For the Pentium 4 and Intel Xeon processors, the NW flag is a don’t
care flag; that is, when the CD flag is set, the processor uses the no-
fill cache mode, regardless of the setting of the NW flag.
For Intel Atom processors, the NW flag is a don’t care flag; that is,
when the CD flag is set, the processor disables caching, regardless of
the setting of the NW flag.
For the Pentium processor, when the L1 cache is disabled (the CD and
NW flags in control register CR0 are set), external snoops are
accepted in DP (dual-processor) systems and inhibited in unipro-
cessor systems.
When snoops are inhibited, address parity is not checked and
APCHK# is not asserted for a corrupt address; however, when snoops
are accepted, address parity is checked and APCHK# is asserted for

1 1 Memory coherency is not maintained.2, 3

• (P6 family and Pentium processors.) State of the processor after
a power up or reset.

• Read hits access the cache; read misses do not cause
replacement.

• Write hits update the cache and change exclusive lines to
modified.

Yes

Yes

Yes

Yes

Yes

Yes

• Shared lines remain shared after write hit.
• Write misses access memory.
• Invalidation is inhibited when snooping; but is allowed with INVD

and WBINVD instructions.
• External snoop traffic is supported.

Yes
Yes
Yes

No

Yes
Yes
Yes

Yes

NOTES:
1. The L2/L3 column in this table is definitive for the Pentium 4, Intel Xeon, and P6 family proces-

sors. It is intended to represent what could be implemented in a system based on a Pentium pro-
cessor with an external, platform specific, write-back L2 cache.

2. The Pentium 4 and more recent processor families do not support this mode; setting the CD and
NW bits to 1 selects the no-fill cache mode.

3. Not supported In Intel Atom processors. If CD = 1 in an Intel Atom processor, caching is disabled.

Table 11-5. Cache Operating Modes

CD NW Caching and Read/Write Policy L1 L2/L31
11-18 Vol. 3A

MEMORY CACHE CONTROL
corrupt addresses.

• PCD and PWT flags in paging-structure entries — Control the memory type
used to access paging structures and pages (see Section 4.9, “Paging and
Memory Typing”).

• PCD and PWT flags in control register CR3 — Control the memory type used
to access the first paging structure of the current paging-structure hierarchy (see
Section 4.9, “Paging and Memory Typing”).

• G (global) flag in the page-directory and page-table entries (introduced
to the IA-32 architecture in the P6 family processors) — Controls the
flushing of TLB entries for individual pages. See Section 4.10, “Caching
Translation Information,” for more information about this flag.

• PGE (page global enable) flag in control register CR4 — Enables the estab-
lishment of global pages with the G flag. See Section 4.10, “Caching Translation
Information,” for more information about this flag.

• Memory type range registers (MTRRs) (introduced in P6 family
processors) — Control the type of caching used in specific regions of physical
memory. Any of the caching types described in Section 11.3, “Methods of Caching
Available,” can be selected. See Section 11.11, “Memory Type Range Registers
(MTRRs),” for a detailed description of the MTRRs.

• Page Attribute Table (PAT) MSR (introduced in the Pentium III processor)
— Extends the memory typing capabilities of the processor to permit memory
types to be assigned on a page-by-page basis (see Section 11.12, “Page Attribute
Table (PAT)”).

• Third-Level Cache Disable flag, bit 6 of the IA32_MISC_ENABLE MSR
(Available only in processors based on Intel NetBurst microarchitecture)
— Allows the L3 cache to be disabled and enabled, independently of the L1 and
L2 caches.

• KEN# and WB/WT# pins (Pentium processor) — Allow external hardware to
control the caching method used for specific areas of memory. They perform
similar (but not identical) functions to the MTRRs in the P6 family processors.

• PCD and PWT pins (Pentium processor) — These pins (which are associated
with the PCD and PWT flags in control register CR3 and in the page-directory and
page-table entries) permit caching in an external L2 cache to be controlled on a
page-by-page basis, consistent with the control exercised on the L1 cache of
these processors. The P6 and more recent processor families do not provide
these pins because the L2 cache in internal to the chip package.

11.5.2 Precedence of Cache Controls
The cache control flags and MTRRs operate hierarchically for restricting caching. That
is, if the CD flag is set, caching is prevented globally (see Table 11-5). If the CD flag
is clear, the page-level cache control flags and/or the MTRRs can be used to restrict
Vol. 3A 11-19

MEMORY CACHE CONTROL
caching. If there is an overlap of page-level and MTRR caching controls, the mecha-
nism that prevents caching has precedence. For example, if an MTRR makes a region
of system memory uncacheable, a page-level caching control cannot be used to
enable caching for a page in that region. The converse is also true; that is, if a page-
level caching control designates a page as uncacheable, an MTRR cannot be used to
make the page cacheable.

In cases where there is a overlap in the assignment of the write-back and write-
through caching policies to a page and a region of memory, the write-through policy
takes precedence. The write-combining policy (which can only be assigned through
an MTRR or the PAT) takes precedence over either write-through or write-back.

The selection of memory types at the page level varies depending on whether PAT is
being used to select memory types for pages, as described in the following sections.

On processors based on Intel NetBurst microarchitecture, the third-level cache can
be disabled by bit 6 of the IA32_MISC_ENABLE MSR. Using IA32_MISC_ENABLE[bit
6] takes precedence over the CD flag, MTRRs, and PAT for the L3 cache in those
processors. That is, when the third-level cache disable flag is set (cache disabled),
the other cache controls have no affect on the L3 cache; when the flag is clear
(enabled), the cache controls have the same affect on the L3 cache as they have on
the L1 and L2 caches.

IA32_MISC_ENABLE[bit 6] is not supported in Intel Core i7 processors, nor proces-
sors based on Intel Core, and Intel Atom microarchitectures.

11.5.2.1 Selecting Memory Types for Pentium Pro and Pentium II
Processors

The Pentium Pro and Pentium II processors do not support the PAT. Here, the effec-
tive memory type for a page is selected with the MTRRs and the PCD and PWT bits in
the page-table or page-directory entry for the page. Table 11-6 describes the
mapping of MTRR memory types and page-level caching attributes to effective
memory types, when normal caching is in effect (the CD and NW flags in control
register CR0 are clear). Combinations that appear in gray are implementation-
defined for the Pentium Pro and Pentium II processors. System designers are encour-
aged to avoid these implementation-defined combinations.

Table 11-6. Effective Page-Level Memory Type for Pentium Pro and
Pentium II Processors

MTRR Memory Type1 PCD Value PWT Value Effective Memory Type

UC X X UC

WC 0 0 WC

0 1 WC

1 0 WC

1 1 UC
11-20 Vol. 3A

MEMORY CACHE CONTROL
When normal caching is in effect, the effective memory type shown in Table 11-6 is
determined using the following rules:

1. If the PCD and PWT attributes for the page are both 0, then the effective
memory type is identical to the MTRR-defined memory type.

2. If the PCD flag is set, then the effective memory type is UC.

3. If the PCD flag is clear and the PWT flag is set, the effective memory type is WT
for the WB memory type and the MTRR-defined memory type for all other
memory types.

4. Setting the PCD and PWT flags to opposite values is considered model-specific for
the WP and WC memory types and architecturally-defined for the WB, WT, and
UC memory types.

11.5.2.2 Selecting Memory Types for Pentium III and More Recent
Processor Families

The Intel Core 2 Duo, Intel Atom, Intel Core Duo, Intel Core Solo, Pentium M,
Pentium 4, Intel Xeon, and Pentium III processors use the PAT to select effective
page-level memory types. Here, a memory type for a page is selected by the MTRRs
and the value in a PAT entry that is selected with the PAT, PCD and PWT bits in a
page-table or page-directory entry (see Section 11.12.3, “Selecting a Memory Type
from the PAT”). Table 11-7 describes the mapping of MTRR memory types and PAT
entry types to effective memory types, when normal caching is in effect (the CD and

WT 0 X WT

1 X UC

WP 0 0 WP

0 1 WP

1 0 WC

1 1 UC

WB 0 0 WB

0 1 WT

1 X UC

NOTE:

1. These effective memory types also apply to the Pentium 4, Intel Xeon, and Pentium III proces-
sors when the PAT bit is not used (set to 0) in page-table and page-directory entries.

Table 11-6. Effective Page-Level Memory Type for Pentium Pro and
Pentium II Processors (Contd.)
Vol. 3A 11-21

MEMORY CACHE CONTROL
NW flags in control register CR0 are clear).

Table 11-7. Effective Page-Level Memory Types for Pentium III and More Recent
Processor Families

MTRR Memory Type PAT Entry Value Effective Memory Type

UC UC UC1

UC- UC1

WC WC

WT UC1

WB UC1

WP UC1

WC UC UC2

UC- WC

WC WC

WT UC2,3

WB WC

WP UC2,3

WT UC UC2

UC- UC2

WC WC

WT WT

WB WT

WP WP3
11-22 Vol. 3A

MEMORY CACHE CONTROL
11.5.2.3 Writing Values Across Pages with Different Memory Types
If two adjoining pages in memory have different memory types, and a word or longer
operand is written to a memory location that crosses the page boundary between
those two pages, the operand might be written to memory twice. This action does not
present a problem for writes to actual memory; however, if a device is mapped the
memory space assigned to the pages, the device might malfunction.

WB UC UC2

UC- UC2

WC WC

WT WT

WB WB

WP WP

WP UC UC2

UC- WC3

WC WC

WT WT3

WB WP

WP WP

NOTES:
1. The UC attribute comes from the MTRRs and the processors are not required to snoop their

caches since the data could never have been cached. This attribute is preferred for performance
reasons.

2. The UC attribute came from the page-table or page-directory entry and processors are required
to check their caches because the data may be cached due to page aliasing, which is not recom-
mended.

3. These combinations were specified as “undefined” in previous editions of the Intel® 64 and IA-32
Architectures Software Developer’s Manual. However, all processors that support both the PAT
and the MTRRs determine the effective page-level memory types for these combinations as
given.

Table 11-7. Effective Page-Level Memory Types for Pentium III and More Recent
Processor Families (Contd.)

MTRR Memory Type PAT Entry Value Effective Memory Type
Vol. 3A 11-23

MEMORY CACHE CONTROL
11.5.3 Preventing Caching
To disable the L1, L2, and L3 caches after they have been enabled and have received
cache fills, perform the following steps:

1. Enter the no-fill cache mode. (Set the CD flag in control register CR0 to 1 and
the NW flag to 0.

2. Flush all caches using the WBINVD instruction.

3. Disable the MTRRs and set the default memory type to uncached or set all MTRRs
for the uncached memory type (see the discussion of the discussion of the TYPE
field and the E flag in Section 11.11.2.1, “IA32_MTRR_DEF_TYPE MSR”).

The caches must be flushed (step 2) after the CD flag is set to insure system memory
coherency. If the caches are not flushed, cache hits on reads will still occur and data
will be read from valid cache lines.

The intent of the three separate steps listed above address three distinct require-
ments: (i) discontinue new data replacing existing data in the cache (ii) ensure data
already in the cache are evicted to memory, (iii) ensure subsequent memory refer-
ences observe UC memory type semantics. Different processor implementation of
caching control hardware may allow some variation of software implementation of
these three requirements. See note below.

NOTES
Setting the CD flag in control register CR0 modifies the processor’s
caching behaviour as indicated in Table 11-5, but setting the CD flag
alone may not be sufficient across all processor families to force the
effective memory type for all physical memory to be UC nor does it
force strict memory ordering, due to hardware implementation
variations across different processor families. To force the UC
memory type and strict memory ordering on all of physical memory,
it is sufficient to either program the MTRRs for all physical memory to
be UC memory type or disable all MTRRs.
For the Pentium 4 and Intel Xeon processors, after the sequence of
steps given above has been executed, the cache lines containing the
code between the end of the WBINVD instruction and before the
MTRRS have actually been disabled may be retained in the cache
hierarchy. Here, to remove code from the cache completely, a second
WBINVD instruction must be executed after the MTRRs have been
disabled.
For Intel Atom processors, setting the CD flag forces all physical
memory to observe UC semantics (without requiring memory type of
physical memory to be set explicitly). Consequently, software does
not need to issue a second WBINVD as some other processor
generations might require.
11-24 Vol. 3A

MEMORY CACHE CONTROL
11.5.4 Disabling and Enabling the L3 Cache
On processors based on Intel NetBurst microarchitecture, the third-level cache can
be disabled by bit 6 of the IA32_MISC_ENABLE MSR. The third-level cache disable
flag (bit 6 of the IA32_MISC_ENABLE MSR) allows the L3 cache to be disabled and
enabled, independently of the L1 and L2 caches. Prior to using this control to disable
or enable the L3 cache, software should disable and flush all the processor caches, as
described earlier in Section 11.5.3, “Preventing Caching,” to prevent of loss of infor-
mation stored in the L3 cache. After the L3 cache has been disabled or enabled,
caching for the whole processor can be restored.

Newer Intel 64 processor with L3 do not support IA32_MISC_ENABLE[bit 6], the
procedure described in Section 11.5.3, “Preventing Caching,” apply to the entire
cache hierarchy.

11.5.5 Cache Management Instructions
The Intel 64 and IA-32 architectures provide several instructions for managing the
L1, L2, and L3 caches. The INVD, WBINVD, and WBINVD instructions are system
instructions that operate on the L1, L2, and L3 caches as a whole. The PREFETCHh
and CLFLUSH instructions and the non-temporal move instructions (MOVNTI,
MOVNTQ, MOVNTDQ, MOVNTPS, and MOVNTPD), which were introduced in
SSE/SSE2 extensions, offer more granular control over caching.

The INVD and WBINVD instructions are used to invalidate the contents of the L1, L2,
and L3 caches. The INVD instruction invalidates all internal cache entries, then
generates a special-function bus cycle that indicates that external caches also should
be invalidated. The INVD instruction should be used with care. It does not force a
write-back of modified cache lines; therefore, data stored in the caches and not
written back to system memory will be lost. Unless there is a specific requirement or
benefit to invalidating the caches without writing back the modified lines (such as,
during testing or fault recovery where cache coherency with main memory is not a
concern), software should use the WBINVD instruction.

The WBINVD instruction first writes back any modified lines in all the internal caches,
then invalidates the contents of both the L1, L2, and L3 caches. It ensures that cache
coherency with main memory is maintained regardless of the write policy in effect
(that is, write-through or write-back). Following this operation, the WBINVD instruc-
tion generates one (P6 family processors) or two (Pentium and Intel486 processors)
special-function bus cycles to indicate to external cache controllers that write-back of
modified data followed by invalidation of external caches should occur. The amount of
time or cycles for WBINVD to complete will vary due to the size of different cache
hierarchies and other factors. As a consequence, the use of the WBINVD instruction
can have an impact on interrupt/event response time.

The PREFETCHh instructions allow a program to suggest to the processor that a
cache line from a specified location in system memory be prefetched into the cache
hierarchy (see Section 11.8, “Explicit Caching”).
Vol. 3A 11-25

MEMORY CACHE CONTROL
The CLFLUSH instruction allow selected cache lines to be flushed from memory. This
instruction give a program the ability to explicitly free up cache space, when it is
known that cached section of system memory will not be accessed in the near future.

The non-temporal move instructions (MOVNTI, MOVNTQ, MOVNTDQ, MOVNTPS, and
MOVNTPD) allow data to be moved from the processor’s registers directly into
system memory without being also written into the L1, L2, and/or L3 caches. These
instructions can be used to prevent cache pollution when operating on data that is
going to be modified only once before being stored back into system memory. These
instructions operate on data in the general-purpose, MMX, and XMM registers.

11.5.6 L1 Data Cache Context Mode
L1 data cache context mode is a feature of processors based on the Intel NetBurst
microarchitecture that support Intel Hyper-Threading Technology. When
CPUID.1:ECX[bit 10] = 1, the processor supports setting L1 data cache context
mode using the L1 data cache context mode flag (IA32_MISC_ENABLE[bit 24]).
Selectable modes are adaptive mode (default) and shared mode.

The BIOS is responsible for configuring the L1 data cache context mode.

11.5.6.1 Adaptive Mode
Adaptive mode facilitates L1 data cache sharing between logical processors. When
running in adaptive mode, the L1 data cache is shared across logical processors in
the same core if:
• CR3 control registers for logical processors sharing the cache are identical.
• The same paging mode is used by logical processors sharing the cache.

In this situation, the entire L1 data cache is available to each logical processor
(instead of being competitively shared).

If CR3 values are different for the logical processors sharing an L1 data cache or the
logical processors use different paging modes, processors compete for cache
resources. This reduces the effective size of the cache for each logical processor.
Aliasing of the cache is not allowed (which prevents data thrashing).

11.5.6.2 Shared Mode
In shared mode, the L1 data cache is competitively shared between logical proces-
sors. This is true even if the logical processors use identical CR3 registers and paging
modes.

In shared mode, linear addresses in the L1 data cache can be aliased, meaning that
one linear address in the cache can point to different physical locations. The mecha-
nism for resolving aliasing can lead to thrashing. For this reason,
IA32_MISC_ENABLE[bit 24] = 0 is the preferred configuration for processors based
11-26 Vol. 3A

MEMORY CACHE CONTROL
on the Intel NetBurst microarchitecture that support Intel Hyper-Threading Tech-
nology.

11.6 SELF-MODIFYING CODE
A write to a memory location in a code segment that is currently cached in the
processor causes the associated cache line (or lines) to be invalidated. This check is
based on the physical address of the instruction. In addition, the P6 family and
Pentium processors check whether a write to a code segment may modify an instruc-
tion that has been prefetched for execution. If the write affects a prefetched instruc-
tion, the prefetch queue is invalidated. This latter check is based on the linear
address of the instruction. For the Pentium 4 and Intel Xeon processors, a write or a
snoop of an instruction in a code segment, where the target instruction is already
decoded and resident in the trace cache, invalidates the entire trace cache. The latter
behavior means that programs that self-modify code can cause severe degradation
of performance when run on the Pentium 4 and Intel Xeon processors.

In practice, the check on linear addresses should not create compatibility problems
among IA-32 processors. Applications that include self-modifying code use the same
linear address for modifying and fetching the instruction. Systems software, such as
a debugger, that might possibly modify an instruction using a different linear address
than that used to fetch the instruction, will execute a serializing operation, such as a
CPUID instruction, before the modified instruction is executed, which will automati-
cally resynchronize the instruction cache and prefetch queue. (See Section 8.1.3,
“Handling Self- and Cross-Modifying Code,” for more information about the use of
self-modifying code.)

For Intel486 processors, a write to an instruction in the cache will modify it in both
the cache and memory, but if the instruction was prefetched before the write, the old
version of the instruction could be the one executed. To prevent the old instruction
from being executed, flush the instruction prefetch unit by coding a jump instruction
immediately after any write that modifies an instruction.

11.7 IMPLICIT CACHING (PENTIUM 4, INTEL XEON,
AND P6 FAMILY PROCESSORS)

Implicit caching occurs when a memory element is made potentially cacheable,
although the element may never have been accessed in the normal von Neumann
sequence. Implicit caching occurs on the P6 and more recent processor families due
to aggressive prefetching, branch prediction, and TLB miss handling. Implicit caching
is an extension of the behavior of existing Intel386, Intel486, and Pentium processor
systems, since software running on these processor families also has not been able
to deterministically predict the behavior of instruction prefetch.
Vol. 3A 11-27

MEMORY CACHE CONTROL
To avoid problems related to implicit caching, the operating system must explicitly
invalidate the cache when changes are made to cacheable data that the cache coher-
ency mechanism does not automatically handle. This includes writes to dual-ported
or physically aliased memory boards that are not detected by the snooping mecha-
nisms of the processor, and changes to page- table entries in memory.

The code in Example 11-1 shows the effect of implicit caching on page-table entries.
The linear address F000H points to physical location B000H (the page-table entry for
F000H contains the value B000H), and the page-table entry for linear address F000
is PTE_F000.

Example 11-1. Effect of Implicit Caching on Page-Table Entries

mov EAX, CR3; Invalidate the TLB
mov CR3, EAX; by copying CR3 to itself
mov PTE_F000, A000H; Change F000H to point to A000H
mov EBX, [F000H];

Because of speculative execution in the P6 and more recent processor families, the
last MOV instruction performed would place the value at physical location B000H into
EBX, rather than the value at the new physical address A000H. This situation is
remedied by placing a TLB invalidation between the load and the store.

11.8 EXPLICIT CACHING
The Pentium III processor introduced four new instructions, the PREFETCHh instruc-
tions, that provide software with explicit control over the caching of data. These
instructions provide “hints” to the processor that the data requested by a PREFETCHh
instruction should be read into cache hierarchy now or as soon as possible, in antici-
pation of its use. The instructions provide different variations of the hint that allow
selection of the cache level into which data will be read.

The PREFETCHh instructions can help reduce the long latency typically associated
with reading data from memory and thus help prevent processor “stalls.” However,
these instructions should be used judiciously. Overuse can lead to resource conflicts
and hence reduce the performance of an application. Also, these instructions should
only be used to prefetch data from memory; they should not be used to prefetch
instructions. For more detailed information on the proper use of the prefetch instruc-
tion, refer to Chapter 7, “Optimizing Cache Usage,” in the Intel® 64 and IA-32 Archi-
tectures Optimization Reference Manual.
11-28 Vol. 3A

MEMORY CACHE CONTROL
11.9 INVALIDATING THE TRANSLATION LOOKASIDE
BUFFERS (TLBS)

The processor updates its address translation caches (TLBs) transparently to soft-
ware. Several mechanisms are available, however, that allow software and hardware
to invalidate the TLBs either explicitly or as a side effect of another operation. Most
details are given in Section 4.10.4, “Invalidation of TLBs and Paging-Structure
Caches.” In addition, the following operations invalidate all TLB entries, irrespective
of the setting of the G flag:
• Asserting or de-asserting the FLUSH# pin.
• (Pentium 4, Intel Xeon, and later processors only.) Writing to an MTRR (with a

WRMSR instruction).
• Writing to control register CR0 to modify the PG or PE flag.
• (Pentium 4, Intel Xeon, and later processors only.) Writing to control register CR4

to modify the PSE, PGE, or PAE flag.
• Writing to control register CR4 to change the PCIDE flag from 1 to 0.

See Section 4.10, “Caching Translation Information,” for additional information about
the TLBs.

11.10 STORE BUFFER
Intel 64 and IA-32 processors temporarily store each write (store) to memory in a
store buffer. The store buffer improves processor performance by allowing the
processor to continue executing instructions without having to wait until a write to
memory and/or to a cache is complete. It also allows writes to be delayed for more
efficient use of memory-access bus cycles.

In general, the existence of the store buffer is transparent to software, even in
systems that use multiple processors. The processor ensures that write operations
are always carried out in program order. It also insures that the contents of the store
buffer are always drained to memory in the following situations:
• When an exception or interrupt is generated.
• (P6 and more recent processor families only) When a serializing instruction is

executed.
• When an I/O instruction is executed.
• When a LOCK operation is performed.
• (P6 and more recent processor families only) When a BINIT operation is

performed.
• (Pentium III, and more recent processor families only) When using an SFENCE

instruction to order stores.
Vol. 3A 11-29

MEMORY CACHE CONTROL
• (Pentium 4 and more recent processor families only) When using an MFENCE
instruction to order stores.

The discussion of write ordering in Section 8.2, “Memory Ordering,” gives a detailed
description of the operation of the store buffer.

11.11 MEMORY TYPE RANGE REGISTERS (MTRRS)
The following section pertains only to the P6 and more recent processor families.

The memory type range registers (MTRRs) provide a mechanism for associating the
memory types (see Section 11.3, “Methods of Caching Available”) with physical-
address ranges in system memory. They allow the processor to optimize operations
for different types of memory such as RAM, ROM, frame-buffer memory, and
memory-mapped I/O devices. They also simplify system hardware design by elimi-
nating the memory control pins used for this function on earlier IA-32 processors and
the external logic needed to drive them.

The MTRR mechanism allows up to 96 memory ranges to be defined in physical
memory, and it defines a set of model-specific registers (MSRs) for specifying the
type of memory that is contained in each range. Table 11-8 shows the memory types
that can be specified and their properties; Figure 11-4 shows the mapping of physical
memory with MTRRs. See Section 11.3, “Methods of Caching Available,” for a more
detailed description of each memory type.

Following a hardware reset, the P6 and more recent processor families disable all the
fixed and variable MTRRs, which in effect makes all of physical memory uncacheable.
Initialization software should then set the MTRRs to a specific, system-defined
memory map. Typically, the BIOS (basic input/output system) software configures
the MTRRs. The operating system or executive is then free to modify the memory
map using the normal page-level cacheability attributes.

In a multiprocessor system using a processor in the P6 family or a more recent
family, each processor MUST use the identical MTRR memory map so that software
will have a consistent view of memory.

NOTE
In multiple processor systems, the operating system must maintain
MTRR consistency between all the processors in the system (that is,
all processors must use the same MTRR values). The P6 and more
recent processor families provide no hardware support for
maintaining this consistency.

Table 11-8. Memory Types That Can Be Encoded in MTRRs

Memory Type and Mnemonic Encoding in MTRR

Uncacheable (UC) 00H
11-30 Vol. 3A

MEMORY CACHE CONTROL
Write Combining (WC) 01H

Reserved* 02H

Reserved* 03H

Write-through (WT) 04H

Write-protected (WP) 05H

Writeback (WB) 06H

Reserved* 7H through FFH

NOTE:

* Use of these encodings results in a general-protection exception (#GP).

Figure 11-4. Mapping Physical Memory With MTRRs

Table 11-8. Memory Types That Can Be Encoded in MTRRs (Contd.)

0

FFFFFFFFH

80000H

BFFFFH
C0000H

FFFFFH
100000H

7FFFFH

512 KBytes

256 KBytes

256 KBytes

8 fixed ranges

16 fixed ranges

64 fixed ranges

Variable ranges

(64-KBytes each)

(16 KBytes each)

(4 KBytes each)

(from 4 KBytes to
maximum size of

Address ranges not

Physical Memory

mapped by an MTRR
are set to a default type

physical memory)
Vol. 3A 11-31

MEMORY CACHE CONTROL
11.11.1 MTRR Feature Identification
The availability of the MTRR feature is model-specific. Software can determine if
MTRRs are supported on a processor by executing the CPUID instruction and reading
the state of the MTRR flag (bit 12) in the feature information register (EDX).

If the MTRR flag is set (indicating that the processor implements MTRRs), additional
information about MTRRs can be obtained from the 64-bit IA32_MTRRCAP MSR
(named MTRRcap MSR for the P6 family processors). The IA32_MTRRCAP MSR is a
read-only MSR that can be read with the RDMSR instruction. Figure 11-5 shows the
contents of the IA32_MTRRCAP MSR. The functions of the flags and field in this
register are as follows:
• VCNT (variable range registers count) field, bits 0 through 7 — Indicates

the number of variable ranges implemented on the processor.
• FIX (fixed range registers supported) flag, bit 8 — Fixed range MTRRs

(IA32_MTRR_FIX64K_00000 through IA32_MTRR_FIX4K_0F8000) are
supported when set; no fixed range registers are supported when clear.

• WC (write combining) flag, bit 10 — The write-combining (WC) memory type
is supported when set; the WC type is not supported when clear.

• SMRR (System-Management Range Register) flag, bit 11 — The system-
management range register (SMRR) interface is supported when bit 11 is set; the
SMRR interface is not supported when clear.

Bit 9 and bits 12 through 63 in the IA32_MTRRCAP MSR are reserved. If software
attempts to write to the IA32_MTRRCAP MSR, a general-protection exception (#GP)
is generated.

Software must read IA32_MTRRCAP VCNT field to determine the number of variable
MTRRs and query other feature bits in IA32_MTRRCAP to determine additional capa-
bilities that are supported in a processor. For example, some processors may report
a value of ‘8’ in the VCNT field, other processors may report VCNT with different
values.

Figure 11-5. IA32_MTRRCAP Register

VCNT — Number of variable range registers
FIX — Fixed range registers supported
WC — Write-combining memory type supported

63 0

Reserved W
C

71011

VCNT
F
I
X

89

Reserved

SMRR — SMRR interface supported
11-32 Vol. 3A

MEMORY CACHE CONTROL
11.11.2 Setting Memory Ranges with MTRRs
The memory ranges and the types of memory specified in each range are set by three
groups of registers: the IA32_MTRR_DEF_TYPE MSR, the fixed-range MTRRs, and
the variable range MTRRs. These registers can be read and written to using the
RDMSR and WRMSR instructions, respectively. The IA32_MTRRCAP MSR indicates
the availability of these registers on the processor (see Section 11.11.1, “MTRR
Feature Identification”).

11.11.2.1 IA32_MTRR_DEF_TYPE MSR
The IA32_MTRR_DEF_TYPE MSR (named MTRRdefType MSR for the P6 family
processors) sets the default properties of the regions of physical memory that are not
encompassed by MTRRs. The functions of the flags and field in this register are as
follows:
• Type field, bits 0 through 7 — Indicates the default memory type used for

those physical memory address ranges that do not have a memory type specified
for them by an MTRR (see Table 11-8 for the encoding of this field). The legal
values for this field are 0, 1, 4, 5, and 6. All other values result in a general-
protection exception (#GP) being generated.
Intel recommends the use of the UC (uncached) memory type for all physical
memory addresses where memory does not exist. To assign the UC type to
nonexistent memory locations, it can either be specified as the default type in the
Type field or be explicitly assigned with the fixed and variable MTRRs.

• FE (fixed MTRRs enabled) flag, bit 10 — Fixed-range MTRRs are enabled
when set; fixed-range MTRRs are disabled when clear. When the fixed-range
MTRRs are enabled, they take priority over the variable-range MTRRs when
overlaps in ranges occur. If the fixed-range MTRRs are disabled, the variable-
range MTRRs can still be used and can map the range ordinarily covered by the
fixed-range MTRRs.

• E (MTRRs enabled) flag, bit 11 — MTRRs are enabled when set; all MTRRs are
disabled when clear, and the UC memory type is applied to all of physical

Figure 11-6. IA32_MTRR_DEF_TYPE MSR

Type — Default memory type

FE — Fixed-range MTRRs enable/disable
E — MTRR enable/disable

63 0

Reserved F
E

71011

Type

8912

E

Reserved
Vol. 3A 11-33

MEMORY CACHE CONTROL
memory. When this flag is set, the FE flag can disable the fixed-range MTRRs;
when the flag is clear, the FE flag has no affect. When the E flag is set, the type
specified in the default memory type field is used for areas of memory not
already mapped by either a fixed or variable MTRR.

Bits 8 and 9, and bits 12 through 63, in the IA32_MTRR_DEF_TYPE MSR are
reserved; the processor generates a general-protection exception (#GP) if software
attempts to write nonzero values to them.

11.11.2.2 Fixed Range MTRRs
The fixed memory ranges are mapped with 11 fixed-range registers of 64 bits each.
Each of these registers is divided into 8-bit fields that are used to specify the memory
type for each of the sub-ranges the register controls:
• Register IA32_MTRR_FIX64K_00000 — Maps the 512-KByte address range

from 0H to 7FFFFH. This range is divided into eight 64-KByte sub-ranges.
• Registers IA32_MTRR_FIX16K_80000 and IA32_MTRR_FIX16K_A0000

— Maps the two 128-KByte address ranges from 80000H to BFFFFH. This range
is divided into sixteen 16-KByte sub-ranges, 8 ranges per register.

• Registers IA32_MTRR_FIX4K_C0000 through
IA32_MTRR_FIX4K_F8000 — Maps eight 32-KByte address ranges from
C0000H to FFFFFH. This range is divided into sixty-four 4-KByte sub-ranges, 8
ranges per register.

Table 11-9 shows the relationship between the fixed physical-address ranges and the
corresponding fields of the fixed-range MTRRs; Table 11-8 shows memory type
encoding for MTRRs.

For the P6 family processors, the prefix for the fixed range MTRRs is MTRRfix.

11.11.2.3 Variable Range MTRRs
The Pentium 4, Intel Xeon, and P6 family processors permit software to specify the
memory type for m variable-size address ranges, using a pair of MTRRs for each
range. The number m of ranges supported is given in bits 7:0 of the IA32_MTRRCAP
MSR (see Figure 11-5 in Section 11.11.1).

The first entry in each pair (IA32_MTRR_PHYSBASEn) defines the base address and
memory type for the range; the second entry (IA32_MTRR_PHYSMASKn) contains a
mask used to determine the address range. The “n” suffix is in the range 0 through
m–1 and identifies a specific register pair.

For P6 family processors, the prefixes for these variable range MTRRs are MTRRphys-
Base and MTRRphysMask.
11-34 Vol. 3A

MEMORY CACHE CONTROL
Figure 11-7 shows flags and fields in these registers. The functions of these flags and
fields are:
• Type field, bits 0 through 7 — Specifies the memory type for the range (see

Table 11-8 for the encoding of this field).
• PhysBase field, bits 12 through (MAXPHYADDR-1) — Specifies the base

address of the address range. This 24-bit value, in the case where MAXPHYADDR
is 36 bits, is extended by 12 bits at the low end to form the base address (this
automatically aligns the address on a 4-KByte boundary).

• PhysMask field, bits 12 through (MAXPHYADDR-1) — Specifies a mask (24
bits if the maximum physical address size is 36 bits, 28 bits if the maximum
physical address size is 40 bits). The mask determines the range of the region
being mapped, according to the following relationships:

— Address_Within_Range AND PhysMask = PhysBase AND PhysMask

— This value is extended by 12 bits at the low end to form the mask value. For
more information: see Section 11.11.3, “Example Base and Mask Calcula-
tions.”

Table 11-9. Address Mapping for Fixed-Range MTRRs
Address Range (hexadecimal) MTRR

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

70000-
7FFFF

60000-
6FFFF

50000-
5FFFF

40000-
4FFFF

30000-
3FFFF

20000-
2FFFF

10000-
1FFFF

00000-
0FFFF

IA32_MTRR_
FIX64K_00000

9C000
9FFFF

98000-
98FFF

94000-
97FFF

90000-
93FFF

8C000-
8FFFF

88000-
8BFFF

84000-
87FFF

80000-
83FFF

IA32_MTRR_
FIX16K_80000

BC000
BFFFF

B8000-
BBFFF

B4000-
B7FFF

B0000-
B3FFF

AC000-
AFFFF

A8000-
ABFFF

A4000-
A7FFF

A0000-
A3FFF

IA32_MTRR_
FIX16K_A0000

C7000
C7FFF

C6000-
C6FFF

C5000-
C5FFF

C4000-
C4FFF

C3000-
C3FFF

C2000-
C2FFF

C1000-
C1FFF

C0000-
C0FFF

IA32_MTRR_
FIX4K_C0000

CF000
CFFFF

CE000-
CEFFF

CD000-
CDFFF

CC000-
CCFFF

CB000-
CBFFF

CA000-
CAFFF

C9000-
C9FFF

C8000-
C8FFF

IA32_MTRR_
FIX4K_C8000

D7000
D7FFF

D6000-
D6FFF

D5000-
D5FFF

D4000-
D4FFF

D3000-
D3FFF

D2000-
D2FFF

D1000-
D1FFF

D0000-
D0FFF

IA32_MTRR_
FIX4K_D0000

DF000
DFFFF

DE000-
DEFFF

DD000-
DDFFF

DC000-
DCFFF

DB000-
DBFFF

DA000-
DAFFF

D9000-
D9FFF

D8000-
D8FFF

IA32_MTRR_
FIX4K_D8000

E7000
E7FFF

E6000-
E6FFF

E5000-
E5FFF

E4000-
E4FFF

E3000-
E3FFF

E2000-
E2FFF

E1000-
E1FFF

E0000-
E0FFF

IA32_MTRR_
FIX4K_E0000

EF000
EFFFF

EE000-
EEFFF

ED000-
EDFFF

EC000-
ECFFF

EB000-
EBFFF

EA000-
EAFFF

E9000-
E9FFF

E8000-
E8FFF

IA32_MTRR_
FIX4K_E8000

F7000
F7FFF

F6000-
F6FFF

F5000-
F5FFF

F4000-
F4FFF

F3000-
F3FFF

F2000-
F2FFF

F1000-
F1FFF

F0000-
F0FFF

IA32_MTRR_
FIX4K_F0000

FF000
FFFFF

FE000-
FEFFF

FD000-
FDFFF

FC000-
FCFFF

FB000-
FBFFF

FA000-
FAFFF

F9000-
F9FFF

F8000-
F8FFF

IA32_MTRR_
FIX4K_F8000
Vol. 3A 11-35

MEMORY CACHE CONTROL
— The width of the PhysMask field depends on the maximum physical address
size supported by the processor.

CPUID.80000008H reports the maximum physical address size supported by
the processor. If CPUID.80000008H is not available, software may assume
that the processor supports a 36-bit physical address size (then PhysMask is
24 bits wide and the upper 28 bits of IA32_MTRR_PHYSMASKn are reserved).
See the Note below.

• V (valid) flag, bit 11 — Enables the register pair when set; disables register
pair when clear.

All other bits in the IA32_MTRR_PHYSBASEn and IA32_MTRR_PHYSMASKn registers
are reserved; the processor generates a general-protection exception (#GP) if soft-
ware attempts to write to them.

Some mask values can result in ranges that are not continuous. In such ranges, the
area not mapped by the mask value is set to the default memory type, unless some
other MTRR specifies a type for that range. Intel does not encourage the use of
"discontinuous" ranges.

Figure 11-7. IA32_MTRR_PHYSBASEn and IA32_MTRR_PHYSMASKn Variable-Range
Register Pair

V — Valid
PhysMask — Sets range mask

IA32_MTRR_PHYSMASKn Register

63 0

Reserved

101112

V Reserved

MAXPHYADDR

PhysMask

Type — Memory type for range
PhysBase — Base address of range

IA32_MTRR_PHYSBASEn Register

63 0

Reserved

1112

Type

MAXPHYADDR

PhysBase

78

Reserved

MAXPHYADDR: The bit position indicated by MAXPHYADDR depends on the maximum
physical address range supported by the processor. It is reported by CPUID leaf
function 80000008H. If CPUID does not support leaf 80000008H, the processor
supports 36-bit physical address size, then bit PhysMask consists of bits 35:12, and
bits 63:36 are reserved.
11-36 Vol. 3A

MEMORY CACHE CONTROL
NOTE
It is possible for software to parse the memory descriptions that
BIOS provides by using the ACPI/INT15 e820 interface mechanism.
This information then can be used to determine how MTRRs are
initialized (for example: allowing the BIOS to define valid memory
ranges and the maximum memory range supported by the platform,
including the processor).

See Section 11.11.4.1, “MTRR Precedences,” for information on overlapping variable
MTRR ranges.

11.11.2.4 System-Management Range Register Interface
If IA32_MTRRCAP[bit 11] is set, the processor supports the SMRR interface to
restrict access to a specified memory address range used by system-management
mode (SMM) software (see Section 33.4.2.1). If the SMRR interface is supported,
SMM software is strongly encouraged to use it to protect the SMI code and data
stored by SMI handler in the SMRAM region.

The system-management range registers consist of a pair of MSRs (see Figure 11-8).
The IA32_SMRR_PHYSBASE MSR defines the base address for the SMRAM memory
range and the memory type used to access it in SMM. The IA32_SMRR_PHYSMASK
MSR contains a valid bit and a mask that determines the SMRAM address range
protected by the SMRR interface. These MSRs may be written only in SMM; an
attempt to write them outside of SMM causes a general-protection exception.1

Figure 11-8 shows flags and fields in these registers. The functions of these flags and
fields are the following:
• Type field, bits 0 through 7 — Specifies the memory type for the range (see

Table 11-8 for the encoding of this field).
• PhysBase field, bits 12 through 31 — Specifies the base address of the

address range. The address must be less than 4 GBytes and is automatically
aligned on a 4-KByte boundary.

• PhysMask field, bits 12 through 31 — Specifies a mask that determines the
range of the region being mapped, according to the following relationships:

— Address_Within_Range AND PhysMask = PhysBase AND PhysMask

— This value is extended by 12 bits at the low end to form the mask value. For
more information: see Section 11.11.3, “Example Base and Mask Calcula-
tions.”

• V (valid) flag, bit 11 — Enables the register pair when set; disables register
pair when clear.

1. For some processor models, these MSRs can be accessed by RDMSR and WRMSR only if the
SMRR interface has been enabled in the IA32_FEATURE_CONTROL MSR. See Chapter 34.
Vol. 3A 11-37

MEMORY CACHE CONTROL
Before attempting to access these SMRR registers, software must test bit 11 in the
IA32_MTRRCAP register. If SMRR is not supported, reads from or writes to registers
cause general-protection exceptions.

When the valid flag in the IA32_SMRR_PHYSMASK MSR is 1, accesses to the specified
address range are treated as follows:
• If the logical processor is in SMM, accesses uses the memory type in the

IA32_SMRR_PHYSBASE MSR.
• If the logical processor is not in SMM, write accesses are ignored and read

accesses return a fixed value for each byte. The uncacheable memory type (UC)
is used in this case.

The above items apply even if the address range specified overlaps with a range
specified by the MTRRs.

11.11.3 Example Base and Mask Calculations
The examples in this section apply to processors that support a maximum physical
address size of 36 bits. The base and mask values entered in variable-range MTRR
pairs are 24-bit values that the processor extends to 36-bits.

For example, to enter a base address of 2 MBytes (200000H) in the
IA32_MTRR_PHYSBASE3 register, the 12 least-significant bits are truncated and the
value 000200H is entered in the PhysBase field. The same operation must be
performed on mask values. For example, to map the address range from 200000H to

Figure 11-8. IA32_SMRR_PHYSBASE and IA32_SMRR_PHYSMASK SMRR Pair

V — Valid
PhysMask — Sets range mask

IA32_SMRR_PHYSMASK Register

63 0

Reserved

101112

V Reserved

31

PhysMask

Type — Memory type for range
PhysBase — Base address of range

IA32_SMRR_PHYSBASE Register

63 0

Reserved

1112

Type

31

PhysBase

78

Reserved
11-38 Vol. 3A

MEMORY CACHE CONTROL
3FFFFFH (2 MBytes to 4 MBytes), a mask value of FFFE00000H is required. Again, the
12 least-significant bits of this mask value are truncated, so that the value entered in
the PhysMask field of IA32_MTRR_PHYSMASK3 is FFFE00H. This mask is chosen so
that when any address in the 200000H to 3FFFFFH range is AND’d with the mask
value, it will return the same value as when the base address is AND’d with the mask
value (which is 200000H).

To map the address range from 400000H to 7FFFFFH (4 MBytes to 8 MBytes), a base
value of 000400H is entered in the PhysBase field and a mask value of FFFC00H is
entered in the PhysMask field.

Example 11-2. Setting-Up Memory for a System

Here is an example of setting up the MTRRs for an system. Assume that the system
has the following characteristics:
• 96 MBytes of system memory is mapped as write-back memory (WB) for highest

system performance.
• A custom 4-MByte I/O card is mapped to uncached memory (UC) at a base

address of 64 MBytes. This restriction forces the 96 MBytes of system memory to
be addressed from 0 to 64 MBytes and from 68 MBytes to 100 MBytes, leaving a
4-MByte hole for the I/O card.

• An 8-MByte graphics card is mapped to write-combining memory (WC) beginning
at address A0000000H.

• The BIOS area from 15 MBytes to 16 MBytes is mapped to UC memory.

The following settings for the MTRRs will yield the proper mapping of the physical
address space for this system configuration.

IA32_MTRR_PHYSBASE0 = 0000 0000 0000 0006H
IA32_MTRR_PHYSMASK0 = 0000 000F FC00 0800H
Caches 0-64 MByte as WB cache type.

IA32_MTRR_PHYSBASE1 = 0000 0000 0400 0006H
IA32_MTRR_PHYSMASK1 = 0000 000F FE00 0800H
Caches 64-96 MByte as WB cache type.

IA32_MTRR_PHYSBASE2 = 0000 0000 0600 0006H
IA32_MTRR_PHYSMASK2 = 0000 000F FFC0 0800H
Caches 96-100 MByte as WB cache type.

IA32_MTRR_PHYSBASE3 = 0000 0000 0400 0000H
IA32_MTRR_PHYSMASK3 = 0000 000F FFC0 0800H
Caches 64-68 MByte as UC cache type.

IA32_MTRR_PHYSBASE4 = 0000 0000 00F0 0000H
IA32_MTRR_PHYSMASK4 = 0000 000F FFF0 0800H
Caches 15-16 MByte as UC cache type.
Vol. 3A 11-39

MEMORY CACHE CONTROL
IA32_MTRR_PHYSBASE5 = 0000 0000 A000 0001H
IA32_MTRR_PHYSMASK5 = 0000 000F FF80 0800H
Caches A0000000-A0800000 as WC type.

This MTRR setup uses the ability to overlap any two memory ranges (as long as the
ranges are mapped to WB and UC memory types) to minimize the number of MTRR
registers that are required to configure the memory environment. This setup also
fulfills the requirement that two register pairs are left for operating system usage.

11.11.3.1 Base and Mask Calculations for Greater-Than 36-bit Physical
Address Support

For Intel 64 and IA-32 processors that support greater than 36 bits of physical
address size, software should query CPUID.80000008H to determine the maximum
physical address. See the example.

Example 11-3. Setting-Up Memory for a System with a 40-Bit Address Size

If a processor supports 40-bits of physical address size, then the PhysMask field (in
IA32_MTRR_PHYSMASKn registers) is 28 bits instead of 24 bits. For this situation,
Example 11-2 should be modified as follows:

IA32_MTRR_PHYSBASE0 = 0000 0000 0000 0006H
IA32_MTRR_PHYSMASK0 = 0000 00FF FC00 0800H
Caches 0-64 MByte as WB cache type.

IA32_MTRR_PHYSBASE1 = 0000 0000 0400 0006H
IA32_MTRR_PHYSMASK1 = 0000 00FF FE00 0800H
Caches 64-96 MByte as WB cache type.

IA32_MTRR_PHYSBASE2 = 0000 0000 0600 0006H
IA32_MTRR_PHYSMASK2 = 0000 00FF FFC0 0800H
Caches 96-100 MByte as WB cache type.

IA32_MTRR_PHYSBASE3 = 0000 0000 0400 0000H
IA32_MTRR_PHYSMASK3 = 0000 00FF FFC0 0800H
Caches 64-68 MByte as UC cache type.

IA32_MTRR_PHYSBASE4 = 0000 0000 00F0 0000H
IA32_MTRR_PHYSMASK4 = 0000 00FF FFF0 0800H
Caches 15-16 MByte as UC cache type.

IA32_MTRR_PHYSBASE5 = 0000 0000 A000 0001H
IA32_MTRR_PHYSMASK5 = 0000 00FF FF80 0800H
Caches A0000000-A0800000 as WC type.
11-40 Vol. 3A

MEMORY CACHE CONTROL
11.11.4 Range Size and Alignment Requirement
A range that is to be mapped to a variable-range MTRR must meet the following
“power of 2” size and alignment rules:

1. The minimum range size is 4 KBytes and the base address of the range must be
on at least a 4-KByte boundary.

2. For ranges greater than 4 KBytes, each range must be of length 2n and its base
address must be aligned on a 2n boundary, where n is a value equal to or greater
than 12. The base-address alignment value cannot be less than its length. For
example, an 8-KByte range cannot be aligned on a 4-KByte boundary. It must be
aligned on at least an 8-KByte boundary.

11.11.4.1 MTRR Precedences
If the MTRRs are not enabled (by setting the E flag in the IA32_MTRR_DEF_TYPE
MSR), then all memory accesses are of the UC memory type. If the MTRRs are
enabled, then the memory type used for a memory access is determined as follows:

1. If the physical address falls within the first 1 MByte of physical memory and
fixed MTRRs are enabled, the processor uses the memory type stored for the
appropriate fixed-range MTRR.

2. Otherwise, the processor attempts to match the physical address with a memory
type set by the variable-range MTRRs:

— If one variable memory range matches, the processor uses the memory type
stored in the IA32_MTRR_PHYSBASEn register for that range.

— If two or more variable memory ranges match and the memory types are
identical, then that memory type is used.

— If two or more variable memory ranges match and one of the memory types
is UC, the UC memory type used.

— If two or more variable memory ranges match and the memory types are WT
and WB, the WT memory type is used.

— For overlaps not defined by the above rules, processor behavior is undefined.

3. If no fixed or variable memory range matches, the processor uses the default
memory type.

11.11.5 MTRR Initialization
On a hardware reset, the P6 and more recent processors clear the valid flags in vari-
able-range MTRRs and clear the E flag in the IA32_MTRR_DEF_TYPE MSR to disable
all MTRRs. All other bits in the MTRRs are undefined.

Prior to initializing the MTRRs, software (normally the system BIOS) must initialize all
fixed-range and variable-range MTRR register fields to 0. Software can then initialize
Vol. 3A 11-41

MEMORY CACHE CONTROL
the MTRRs according to known types of memory, including memory on devices that it
auto-configures. Initialization is expected to occur prior to booting the operating
system.

See Section 11.11.8, “MTRR Considerations in MP Systems,” for information on
initializing MTRRs in MP (multiple-processor) systems.

11.11.6 Remapping Memory Types
A system designer may re-map memory types to tune performance or because a
future processor may not implement all memory types supported by the Pentium 4,
Intel Xeon, and P6 family processors. The following rules support coherent memory-
type re-mappings:

1. A memory type should not be mapped into another memory type that has a
weaker memory ordering model. For example, the uncacheable type cannot be
mapped into any other type, and the write-back, write-through, and write-
protected types cannot be mapped into the weakly ordered write-combining
type.

2. A memory type that does not delay writes should not be mapped into a memory
type that does delay writes, because applications of such a memory type may
rely on its write-through behavior. Accordingly, the write-back type cannot be
mapped into the write-through type.

3. A memory type that views write data as not necessarily stored and read back by
a subsequent read, such as the write-protected type, can only be mapped to
another type with the same behaviour (and there are no others for the
Pentium 4, Intel Xeon, and P6 family processors) or to the uncacheable type.

In many specific cases, a system designer can have additional information about how
a memory type is used, allowing additional mappings. For example, write-through
memory with no associated write side effects can be mapped into write-back
memory.

11.11.7 MTRR Maintenance Programming Interface
The operating system maintains the MTRRs after booting and sets up or changes the
memory types for memory-mapped devices. The operating system should provide a
driver and application programming interface (API) to access and set the MTRRs. The
function calls MemTypeGet() and MemTypeSet() define this interface.

11.11.7.1 MemTypeGet() Function
The MemTypeGet() function returns the memory type of the physical memory range
specified by the parameters base and size. The base address is the starting physical
address and the size is the number of bytes for the memory range. The function
11-42 Vol. 3A

MEMORY CACHE CONTROL
automatically aligns the base address and size to 4-KByte boundaries. Pseudocode
for the MemTypeGet() function is given in Example 11-4.

Example 11-4. MemTypeGet() Pseudocode

#define MIXED_TYPES -1 /* 0 < MIXED_TYPES || MIXED_TYPES > 256 */

IF CPU_FEATURES.MTRR /* processor supports MTRRs */
THEN

Align BASE and SIZE to 4-KByte boundary;
IF (BASE + SIZE) wrap 4-GByte address space

THEN return INVALID;
FI;
IF MTRRdefType.E = 0

THEN return UC;
FI;
FirstType ¨ Get4KMemType (BASE);
/* Obtains memory type for first 4-KByte range. */
/* See Get4KMemType (4KByteRange) in Example 11-5. */
FOR each additional 4-KByte range specified in SIZE

NextType ¨ Get4KMemType (4KByteRange);
IF NextType ¼ FirstType

THEN return MixedTypes;
FI;

ROF;
return FirstType;

ELSE return UNSUPPORTED;
FI;

If the processor does not support MTRRs, the function returns UNSUPPORTED. If the
MTRRs are not enabled, then the UC memory type is returned. If more than one
memory type corresponds to the specified range, a status of MIXED_TYPES is
returned. Otherwise, the memory type defined for the range (UC, WC, WT, WB, or
WP) is returned.

The pseudocode for the Get4KMemType() function in Example 11-5 obtains the
memory type for a single 4-KByte range at a given physical address. The sample
code determines whether an PHY_ADDRESS falls within a fixed range by comparing
the address with the known fixed ranges: 0 to 7FFFFH (64-KByte regions), 80000H to
BFFFFH (16-KByte regions), and C0000H to FFFFFH (4-KByte regions). If an address
falls within one of these ranges, the appropriate bits within one of its MTRRs deter-
mine the memory type.
Vol. 3A 11-43

MEMORY CACHE CONTROL
Example 11-5. Get4KMemType() Pseudocode

IF IA32_MTRRCAP.FIX AND MTRRdefType.FE /* fixed registers enabled */

THEN IF PHY_ADDRESS is within a fixed range

return IA32_MTRR_FIX.Type;
FI;
FOR each variable-range MTRR in IA32_MTRRCAP.VCNT

IF IA32_MTRR_PHYSMASK.V = 0
THEN continue;

FI;
IF (PHY_ADDRESS AND IA32_MTRR_PHYSMASK.Mask) =

(IA32_MTRR_PHYSBASE.Base
AND IA32_MTRR_PHYSMASK.Mask)

THEN
return IA32_MTRR_PHYSBASE.Type;

FI;
ROF;
return MTRRdefType.Type;

11.11.7.2 MemTypeSet() Function
The MemTypeSet() function in Example 11-6 sets a MTRR for the physical memory
range specified by the parameters base and size to the type specified by type. The
base address and size are multiples of 4 KBytes and the size is not 0.

Example 11-6. MemTypeSet Pseudocode

IF CPU_FEATURES.MTRR (* processor supports MTRRs *)

THEN

IF BASE and SIZE are not 4-KByte aligned or size is 0

THEN return INVALID;

FI;

IF (BASE + SIZE) wrap 4-GByte address space

THEN return INVALID;

FI;

IF TYPE is invalid for Pentium 4, Intel Xeon, and P6 family
processors

THEN return UNSUPPORTED;

FI;

IF TYPE is WC and not supported

THEN return UNSUPPORTED;

FI;

IF IA32_MTRRCAP.FIX is set AND range can be mapped using a

fixed-range MTRR
11-44 Vol. 3A

MEMORY CACHE CONTROL
THEN

pre_mtrr_change();

update affected MTRR;

post_mtrr_change();

FI;

ELSE (* try to map using a variable MTRR pair *)

IF IA32_MTRRCAP.VCNT = 0

THEN return UNSUPPORTED;

FI;

IF conflicts with current variable ranges

THEN return RANGE_OVERLAP;

FI;

IF no MTRRs available

THEN return VAR_NOT_AVAILABLE;

FI;

IF BASE and SIZE do not meet the power of 2 requirements for

variable MTRRs

THEN return INVALID_VAR_REQUEST;

FI;

pre_mtrr_change();

Update affected MTRRs;

post_mtrr_change();

FI;

pre_mtrr_change()

BEGIN

disable interrupts;

Save current value of CR4;

disable and flush caches;

flush TLBs;

disable MTRRs;

IF multiprocessing

THEN maintain consistency through IPIs;

FI;

END

post_mtrr_change()

BEGIN

flush caches and TLBs;

enable MTRRs;

enable caches;

restore value of CR4;

enable interrupts;
Vol. 3A 11-45

MEMORY CACHE CONTROL
END

The physical address to variable range mapping algorithm in the MemTypeSet func-
tion detects conflicts with current variable range registers by cycling through them
and determining whether the physical address in question matches any of the current
ranges. During this scan, the algorithm can detect whether any current variable
ranges overlap and can be concatenated into a single range.

The pre_mtrr_change() function disables interrupts prior to changing the MTRRs, to
avoid executing code with a partially valid MTRR setup. The algorithm disables
caching by setting the CD flag and clearing the NW flag in control register CR0. The
caches are invalidated using the WBINVD instruction. The algorithm flushes all TLB
entries either by clearing the page-global enable (PGE) flag in control register CR4 (if
PGE was already set) or by updating control register CR3 (if PGE was already clear).
Finally, it disables MTRRs by clearing the E flag in the IA32_MTRR_DEF_TYPE MSR.

After the memory type is updated, the post_mtrr_change() function re-enables the
MTRRs and again invalidates the caches and TLBs. This second invalidation is
required because of the processor's aggressive prefetch of both instructions and
data. The algorithm restores interrupts and re-enables caching by setting the CD
flag.

An operating system can batch multiple MTRR updates so that only a single pair of
cache invalidations occur.

11.11.8 MTRR Considerations in MP Systems
In MP (multiple-processor) systems, the operating systems must maintain MTRR
consistency between all the processors in the system. The Pentium 4, Intel Xeon, and
P6 family processors provide no hardware support to maintain this consistency. In
general, all processors must have the same MTRR values.

This requirement implies that when the operating system initializes an MP system, it
must load the MTRRs of the boot processor while the E flag in register MTRRdefType
is 0. The operating system then directs other processors to load their MTRRs with the
same memory map. After all the processors have loaded their MTRRs, the operating
system signals them to enable their MTRRs. Barrier synchronization is used to
prevent further memory accesses until all processors indicate that the MTRRs are
enabled. This synchronization is likely to be a shoot-down style algorithm, with
shared variables and interprocessor interrupts.

Any change to the value of the MTRRs in an MP system requires the operating system
to repeat the loading and enabling process to maintain consistency, using the
following procedure:

1. Broadcast to all processors to execute the following code sequence.

2. Disable interrupts.

3. Wait for all processors to reach this point.
11-46 Vol. 3A

MEMORY CACHE CONTROL
4. Enter the no-fill cache mode. (Set the CD flag in control register CR0 to 1 and the
NW flag to 0.)

5. Flush all caches using the WBINVD instructions. Note on a processor that
supports self-snooping, CPUID feature flag bit 27, this step is unnecessary.

6. If the PGE flag is set in control register CR4, flush all TLBs by clearing that flag.

7. If the PGE flag is clear in control register CR4, flush all TLBs by executing a MOV
from control register CR3 to another register and then a MOV from that register
back to CR3.

8. Disable all range registers (by clearing the E flag in register MTRRdefType). If
only variable ranges are being modified, software may clear the valid bits for the
affected register pairs instead.

9. Update the MTRRs.

10. Enable all range registers (by setting the E flag in register MTRRdefType). If only
variable-range registers were modified and their individual valid bits were
cleared, then set the valid bits for the affected ranges instead.

11. Flush all caches and all TLBs a second time. (The TLB flush is required for
Pentium 4, Intel Xeon, and P6 family processors. Executing the WBINVD
instruction is not needed when using Pentium 4, Intel Xeon, and P6 family
processors, but it may be needed in future systems.)

12. Enter the normal cache mode to re-enable caching. (Set the CD and NW flags in
control register CR0 to 0.)

13. Set PGE flag in control register CR4, if cleared in Step 6 (above).

14. Wait for all processors to reach this point.

15. Enable interrupts.

11.11.9 Large Page Size Considerations
The MTRRs provide memory typing for a limited number of regions that have a
4 KByte granularity (the same granularity as 4-KByte pages). The memory type for a
given page is cached in the processor’s TLBs. When using large pages (2 MBytes,
4 MBytes, or 1 GBytes), a single page-table entry covers multiple 4-KByte granules,
each with a single memory type. Because the memory type for a large page is cached
in the TLB, the processor can behave in an undefined manner if a large page is
mapped to a region of memory that MTRRs have mapped with multiple memory
types.

Undefined behavior can be avoided by insuring that all MTRR memory-type ranges
within a large page are of the same type. If a large page maps to a region of memory
containing different MTRR-defined memory types, the PCD and PWT flags in the
page-table entry should be set for the most conservative memory type for that
range. For example, a large page used for memory mapped I/O and regular memory
Vol. 3A 11-47

MEMORY CACHE CONTROL
is mapped as UC memory. Alternatively, the operating system can map the region
using multiple 4-KByte pages each with its own memory type.

The requirement that all 4-KByte ranges in a large page are of the same memory
type implies that large pages with different memory types may suffer a performance
penalty, since they must be marked with the lowest common denominator memory
type. The same consideration apply to 1 GByte pages, each of which may consist of
multiple 2-Mbyte ranges.

The Pentium 4, Intel Xeon, and P6 family processors provide special support for the
physical memory range from 0 to 4 MBytes, which is potentially mapped by both the
fixed and variable MTRRs. This support is invoked when a Pentium 4, Intel Xeon, or
P6 family processor detects a large page overlapping the first 1 MByte of this
memory range with a memory type that conflicts with the fixed MTRRs. Here, the
processor maps the memory range as multiple 4-KByte pages within the TLB. This
operation insures correct behavior at the cost of performance. To avoid this perfor-
mance penalty, operating-system software should reserve the large page option for
regions of memory at addresses greater than or equal to 4 MBytes.

11.12 PAGE ATTRIBUTE TABLE (PAT)
The Page Attribute Table (PAT) extends the IA-32 architecture’s page-table format to
allow memory types to be assigned to regions of physical memory based on linear
address mappings. The PAT is a companion feature to the MTRRs; that is, the MTRRs
allow mapping of memory types to regions of the physical address space, where the
PAT allows mapping of memory types to pages within the linear address space. The
MTRRs are useful for statically describing memory types for physical ranges, and are
typically set up by the system BIOS. The PAT extends the functions of the PCD and
PWT bits in page tables to allow all five of the memory types that can be assigned
with the MTRRs (plus one additional memory type) to also be assigned dynamically
to pages of the linear address space.

The PAT was introduced to IA-32 architecture on the Pentium III processor. It is also
available in the Pentium 4 and Intel Xeon processors.

11.12.1 Detecting Support for the PAT Feature
An operating system or executive can detect the availability of the PAT by executing
the CPUID instruction with a value of 1 in the EAX register. Support for the PAT is indi-
cated by the PAT flag (bit 16 of the values returned to EDX register). If the PAT is
supported, the operating system or executive can use the IA32_PAT MSR to program
the PAT. When memory types have been assigned to entries in the PAT, software can
then use of the PAT-index bit (PAT) in the page-table and page-directory entries
along with the PCD and PWT bits to assign memory types from the PAT to individual
pages.
11-48 Vol. 3A

MEMORY CACHE CONTROL
Note that there is no separate flag or control bit in any of the control registers that
enables the PAT. The PAT is always enabled on all processors that support it, and the
table lookup always occurs whenever paging is enabled, in all paging modes.

11.12.2 IA32_PAT MSR
The IA32_PAT MSR is located at MSR address 277H (see Chapter 34, “Model-Specific
Registers (MSRs)”). Figure 11-9. shows the format of the 64-bit IA32_PAT MSR.

The IA32_PAT MSR contains eight page attribute fields: PA0 through PA7. The three
low-order bits of each field are used to specify a memory type. The five high-order
bits of each field are reserved, and must be set to all 0s. Each of the eight page
attribute fields can contain any of the memory type encodings specified in Table
11-10.

Note that for the P6 family processors, the IA32_PAT MSR is named the PAT MSR.

31 27 26 24 23 19 18 16 15 11 10 8 7 3 2 0

Reserved PA3 Reserved PA2 Reserved PA1 Reserved PA0

63 59 58 56 55 51 50 48 47 43 42 40 39 35 34 32

Reserved PA7 Reserved PA6 Reserved PA5 Reserved PA4

Figure 11-9. IA32_PAT MSR

Table 11-10. Memory Types That Can Be Encoded With PAT

Encoding Mnemonic

00H Uncacheable (UC)

01H Write Combining (WC)

02H Reserved*

03H Reserved*

04H Write Through (WT)

05H Write Protected (WP)

06H Write Back (WB)

07H Uncached (UC-)

08H - FFH Reserved*

NOTE:
* Using these encodings will result in a general-protection exception (#GP).
Vol. 3A 11-49

MEMORY CACHE CONTROL
11.12.3 Selecting a Memory Type from the PAT
To select a memory type for a page from the PAT, a 3-bit index made up of the PAT,
PCD, and PWT bits must be encoded in the page-table or page-directory entry for the
page. Table 11-11 shows the possible encodings of the PAT, PCD, and PWT bits and
the PAT entry selected with each encoding. The PAT bit is bit 7 in page-table entries
that point to 4-KByte pages and bit 12 in paging-structure entries that point to larger
pages. The PCD and PWT bits are bits 4 and 3, respectively, in paging-structure
entries that point to pages of any size.

The PAT entry selected for a page is used in conjunction with the MTRR setting for the
region of physical memory in which the page is mapped to determine the effective
memory type for the page, as shown in Table 11-7.

11.12.4 Programming the PAT
Table 11-12 shows the default setting for each PAT entry following a power up or
reset of the processor. The setting remain unchanged following a soft reset (INIT
reset).

Table 11-11. Selection of PAT Entries with PAT, PCD, and PWT Flags
PAT PCD PWT PAT Entry

0 0 0 PAT0

0 0 1 PAT1

0 1 0 PAT2

0 1 1 PAT3

1 0 0 PAT4

1 0 1 PAT5

1 1 0 PAT6

1 1 1 PAT7

Table 11-12. Memory Type Setting of PAT Entries Following a Power-up or Reset

PAT Entry Memory Type Following Power-up or Reset

PAT0 WB

PAT1 WT

PAT2 UC-

PAT3 UC

PAT4 WB

PAT5 WT

PAT6 UC-

PAT7 UC
11-50 Vol. 3A

MEMORY CACHE CONTROL
The values in all the entries of the PAT can be changed by writing to the IA32_PAT
MSR using the WRMSR instruction. The IA32_PAT MSR is read and write accessible
(use of the RDMSR and WRMSR instructions, respectively) to software operating at a
CPL of 0. Table 11-10 shows the allowable encoding of the entries in the PAT.
Attempting to write an undefined memory type encoding into the PAT causes a
general-protection (#GP) exception to be generated.

The operating system is responsible for insuring that changes to a PAT entry occur in
a manner that maintains the consistency of the processor caches and translation
lookaside buffers (TLB). This is accomplished by following the procedure as specified
in Section 11.11.8, “MTRR Considerations in MP Systems,” for changing the value of
an MTRR in a multiple processor system. It requires a specific sequence of operations
that includes flushing the processors caches and TLBs.

The PAT allows any memory type to be specified in the page tables, and therefore it
is possible to have a single physical page mapped to two or more different linear
addresses, each with different memory types. Intel does not support this practice
because it may lead to undefined operations that can result in a system failure. In
particular, a WC page must never be aliased to a cacheable page because WC writes
may not check the processor caches.

When remapping a page that was previously mapped as a cacheable memory type to
a WC page, an operating system can avoid this type of aliasing by doing the
following:

1. Remove the previous mapping to a cacheable memory type in the page tables;
that is, make them not present.

2. Flush the TLBs of processors that may have used the mapping, even specula-
tively.

3. Create a new mapping to the same physical address with a new memory type, for
instance, WC.

4. Flush the caches on all processors that may have used the mapping previously.
Note on processors that support self-snooping, CPUID feature flag bit 27, this
step is unnecessary.

Operating systems that use a page directory as a page table (to map large pages)
and enable page size extensions must carefully scrutinize the use of the PAT index bit
for the 4-KByte page-table entries. The PAT index bit for a page-table entry (bit 7)
corresponds to the page size bit in a page-directory entry. Therefore, the operating
system can only use PAT entries PA0 through PA3 when setting the caching type for
a page table that is also used as a page directory. If the operating system attempts
to use PAT entries PA4 through PA7 when using this memory as a page table, it effec-
tively sets the PS bit for the access to this memory as a page directory.

For compatibility with earlier IA-32 processors that do not support the PAT, care
should be taken in selecting the encodings for entries in the PAT (see Section
11.12.5, “PAT Compatibility with Earlier IA-32 Processors”).
Vol. 3A 11-51

MEMORY CACHE CONTROL
11.12.5 PAT Compatibility with Earlier IA-32 Processors
For IA-32 processors that support the PAT, the IA32_PAT MSR is always active. That
is, the PCD and PWT bits in page-table entries and in page-directory entries (that
point to pages) are always select a memory type for a page indirectly by selecting an
entry in the PAT. They never select the memory type for a page directly as they do in
earlier IA-32 processors that do not implement the PAT (see Table 11-6).

To allow compatibility for code written to run on earlier IA-32 processor that do not
support the PAT, the PAT mechanism has been designed to allow backward compati-
bility to earlier processors. This compatibility is provided through the ordering of the
PAT, PCD, and PWT bits in the 3-bit PAT entry index. For processors that do not imple-
ment the PAT, the PAT index bit (bit 7 in the page-table entries and bit 12 in the page-
directory entries) is reserved and set to 0. With the PAT bit reserved, only the first
four entries of the PAT can be selected with the PCD and PWT bits. At power-up or
reset (see Table 11-12), these first four entries are encoded to select the same
memory types as the PCD and PWT bits would normally select directly in an IA-32
processor that does not implement the PAT. So, if encodings of the first four entries
in the PAT are left unchanged following a power-up or reset, code written to run on
earlier IA-32 processors that do not implement the PAT will run correctly on IA-32
processors that do implement the PAT.
11-52 Vol. 3A

CHAPTER 12
INTEL® MMX™ TECHNOLOGY SYSTEM

PROGRAMMING

This chapter describes those features of the Intel® MMX™ technology that must be
considered when designing or enhancing an operating system to support MMX tech-
nology. It covers MMX instruction set emulation, the MMX state, aliasing of MMX
registers, saving MMX state, task and context switching considerations, exception
handling, and debugging.

12.1 EMULATION OF THE MMX INSTRUCTION SET
The IA-32 or Intel 64 architecture does not support emulation of the MMX instruc-
tions, as it does for x87 FPU instructions. The EM flag in control register CR0
(provided to invoke emulation of x87 FPU instructions) cannot be used for MMX
instruction emulation. If an MMX instruction is executed when the EM flag is set, an
invalid opcode exception (UD#) is generated. Table 12-1 shows the interaction of the
EM, MP, and TS flags in control register CR0 when executing MMX instructions.

12.2 THE MMX STATE AND MMX REGISTER ALIASING
The MMX state consists of eight 64-bit registers (MM0 through MM7). These registers
are aliased to the low 64-bits (bits 0 through 63) of floating-point registers R0
through R7 (see Figure 12-1). Note that the MMX registers are mapped to the phys-
ical locations of the floating-point registers (R0 through R7), not to the relative loca-
tions of the registers in the floating-point register stack (ST0 through ST7). As a

Table 12-1. Action Taken By MMX Instructions
for Different Combinations of EM, MP and TS

CR0 Flags

EM MP* TS Action

0 1 0 Execute.

0 1 1 #NM exception.

1 1 0 #UD exception.

1 1 1 #UD exception.

NOTE:
* For processors that support the MMX instructions, the MP flag should be set.
Vol. 3A 12-1

INTEL® MMX™ TECHNOLOGY SYSTEM PROGRAMMING
result, the MMX register mapping is fixed and is not affected by value in the Top Of
Stack (TOS) field in the floating-point status word (bits 11 through 13).

When a value is written into an MMX register using an MMX instruction, the value also
appears in the corresponding floating-point register in bits 0 through 63. Likewise,
when a floating-point value written into a floating-point register by a x87 FPU, the
low 64 bits of that value also appears in a the corresponding MMX register.

The execution of MMX instructions have several side effects on the x87 FPU state
contained in the floating-point registers, the x87 FPU tag word, and the x87 FPU
status word. These side effects are as follows:
• When an MMX instruction writes a value into an MMX register, at the same time,

bits 64 through 79 of the corresponding floating-point register are set to all 1s.
• When an MMX instruction (other than the EMMS instruction) is executed, each of

the tag fields in the x87 FPU tag word is set to 00B (valid). (See also Section
12.2.1, “Effect of MMX, x87 FPU, FXSAVE, and FXRSTOR Instructions on the x87
FPU Tag Word.”)

Figure 12-1. Mapping of MMX Registers to Floating-Point Registers

079

R7

R6

R5

R4

R3

R2

R1

R0

Floating-Point Registers
64 63

x87 FPU Status Register
1113

x87 FPU Tag

MMX Registers
TOS

Register

0

MM7

MM6

MM5

MM4

MM3

MM2

MM1

MM0

63

TOS = 0

00

00

00

00

00

00

00

00

000
12-2 Vol. 3A

INTEL® MMX™ TECHNOLOGY SYSTEM PROGRAMMING
• When the EMMS instruction is executed, each tag field in the x87 FPU tag word is
set to 11B (empty).

• Each time an MMX instruction is executed, the TOS value is set to 000B.

Execution of MMX instructions does not affect the other bits in the x87 FPU status
word (bits 0 through 10 and bits 14 and 15) or the contents of the other x87 FPU
registers that comprise the x87 FPU state (the x87 FPU control word, instruction
pointer, data pointer, or opcode registers).

Table 12-2 summarizes the effects of the MMX instructions on the x87 FPU state.

12.2.1 Effect of MMX, x87 FPU, FXSAVE, and FXRSTOR
Instructions on the x87 FPU Tag Word

Table 12-3 summarizes the effect of MMX and x87 FPU instructions and the FXSAVE
and FXRSTOR instructions on the tags in the x87 FPU tag word and the corresponding
tags in an image of the tag word stored in memory.

The values in the fields of the x87 FPU tag word do not affect the contents of the MMX
registers or the execution of MMX instructions. However, the MMX instructions do
modify the contents of the x87 FPU tag word, as is described in Section 12.2, “The
MMX State and MMX Register Aliasing.” These modifications may affect the operation
of the x87 FPU when executing x87 FPU instructions, if the x87 FPU state is not
initialized or restored prior to beginning x87 FPU instruction execution.

Note that the FSAVE, FXSAVE, and FSTENV instructions (which save x87 FPU state
information) read the x87 FPU tag register and contents of each of the floating-point
registers, determine the actual tag values for each register (empty, nonzero, zero, or
special), and store the updated tag word in memory. After executing these instruc-
tions, all the tags in the x87 FPU tag word are set to empty (11B). Likewise, the
EMMS instruction clears MMX state from the MMX/floating-point registers by setting
all the tags in the x87 FPU tag word to 11B.

Table 12-2. Effects of MMX Instructions on x87 FPU State

MMX
Instruction
Type

x87 FPU Tag
Word

TOS Field of
x87 FPU
Status
Word

Other x87
FPU Registers

Bits 64
Through 79 of
x87 FPU Data
Registers

Bits 0
Through 63 of
x87 FPU Data
Registers

Read from
MMX register

All tags set
to 00B (Valid)

000B Unchanged Unchanged Unchanged

Write to MMX
register

All tags set
to 00B (Valid)

000B Unchanged Set to all 1s Overwritten
with MMX data

EMMS All fields set
to 11B
(Empty)

000B Unchanged Unchanged Unchanged
Vol. 3A 12-3

INTEL® MMX™ TECHNOLOGY SYSTEM PROGRAMMING
12.3 SAVING AND RESTORING THE MMX STATE AND
REGISTERS

Because the MMX registers are aliased to the x87 FPU data registers, the MMX state
can be saved to memory and restored from memory as follows:
• Execute an FSAVE, FNSAVE, or FXSAVE instruction to save the MMX state to

memory. (The FXSAVE instruction also saves the state of the XMM and MXCSR
registers.)

• Execute an FRSTOR or FXRSTOR instruction to restore the MMX state from
memory. (The FXRSTOR instruction also restores the state of the XMM and
MXCSR registers.)

The save and restore methods described above are required for operating systems
(see Section 12.4, “Saving MMX State on Task or Context Switches”). Applications
can in some cases save and restore only the MMX registers in the following way:

Table 12-3. Effect of the MMX, x87 FPU, and FXSAVE/FXRSTOR Instructions on the
x87 FPU Tag Word

Instruction
Type

Instruction x87 FPU Tag Word Image of x87 FPU Tag Word
Stored in Memory

MMX All (except EMMS) All tags are set to 00B (valid). Not affected.

MMX EMMS All tags are set to 11B
(empty).

Not affected.

x87 FPU All (except FSAVE,
FSTENV, FRSTOR,
FLDENV)

Tag for modified floating-
point register is set to 00B or
11B.

Not affected.

x87 FPU and
FXSAVE

FSAVE, FSTENV,
FXSAVE

Tags and register values are
read and interpreted; then all
tags are set to 11B.

Tags are set according to the
actual values in the floating-
point registers; that is, empty
registers are marked 11B and
valid registers are marked
00B (nonzero), 01B (zero), or
10B (special).

x87 FPU and
FXRSTOR

FRSTOR, FLDENV,
FXRSTOR

All tags marked 11B in
memory are set to 11B; all
other tags are set according
to the value in the
corresponding floating-point
register: 00B (nonzero), 01B
(zero), or 10B (special).

Tags are read and
interpreted, but not modified.
12-4 Vol. 3A

INTEL® MMX™ TECHNOLOGY SYSTEM PROGRAMMING
• Execute eight MOVQ instructions to save the contents of the MMX0 through
MMX7 registers to memory. An EMMS instruction may then (optionally) be
executed to clear the MMX state in the x87 FPU.

• Execute eight MOVQ instructions to read the saved contents of MMX registers
from memory into the MMX0 through MMX7 registers.

NOTE
The IA-32 architecture does not support scanning the x87 FPU tag
word and then only saving valid entries.

12.4 SAVING MMX STATE ON TASK OR CONTEXT
SWITCHES

When switching from one task or context to another, it is often necessary to save the
MMX state. As a general rule, if the existing task switching code for an operating
system includes facilities for saving the state of the x87 FPU, these facilities can also
be relied upon to save the MMX state, without rewriting the task switch code. This
reliance is possible because the MMX state is aliased to the x87 FPU state (see
Section 12.2, “The MMX State and MMX Register Aliasing”).

With the introduction of the FXSAVE and FXRSTOR instructions and of
SSE/SSE2/SSE3/SSSE3 extensions, it is possible (and more efficient) to create state
saving facilities in the operating system or executive that save the x87
FPU/MMX/SSE/SSE2/SSE3/SSSE3 state in one operation. Section 13.5, “Designing
OS Facilities for AUTOMATICALLY Saving x87 FPU, MMX, and
SSE/SSE2/SSE3/SSSE3/SSE4 state on Task or Context Switches,” describes how to
design such facilities. The techniques describes in this section can be adapted to
saving only the MMX and x87 FPU state if needed.

12.5 EXCEPTIONS THAT CAN OCCUR WHEN EXECUTING
MMX INSTRUCTIONS

MMX instructions do not generate x87 FPU floating-point exceptions, nor do they
affect the processor’s status flags in the EFLAGS register or the x87 FPU status word.
The following exceptions can be generated during the execution of an MMX instruc-
tion:
• Exceptions during memory accesses:

— Stack-segment fault (#SS).

— General protection (#GP).

— Page fault (#PF).

— Alignment check (#AC), if alignment checking is enabled.
Vol. 3A 12-5

INTEL® MMX™ TECHNOLOGY SYSTEM PROGRAMMING
• System exceptions:

— Invalid Opcode (#UD), if the EM flag in control register CR0 is set when an
MMX instruction is executed (see Section 12.1, “Emulation of the MMX
Instruction Set”).

— Device not available (#NM), if an MMX instruction is executed when the TS
flag in control register CR0 is set. (See Section 13.5.1, “Using the TS Flag to
Control the Saving of the x87 FPU, MMX, SSE, SSE2, SSE3 SSSE3 and SSE4
State.”)

• Floating-point error (#MF). (See Section 12.5.1, “Effect of MMX Instructions on
Pending x87 Floating-Point Exceptions.”)

• Other exceptions can occur indirectly due to the faulty execution of the exception
handlers for the above exceptions.

12.5.1 Effect of MMX Instructions on Pending x87 Floating-Point
Exceptions

If an x87 FPU floating-point exception is pending and the processor encounters an
MMX instruction, the processor generates a x87 FPU floating-point error (#MF) prior
to executing the MMX instruction, to allow the pending exception to be handled by
the x87 FPU floating-point error exception handler. While this exception handler is
executing, the x87 FPU state is maintained and is visible to the handler. Upon
returning from the exception handler, the MMX instruction is executed, which will
alter the x87 FPU state, as described in Section 12.2, “The MMX State and MMX
Register Aliasing.”

12.6 DEBUGGING MMX CODE
The debug facilities operate in the same manner when executing MMX instructions as
when executing other IA-32 or Intel 64 architecture instructions.

To correctly interpret the contents of the MMX or x87 FPU registers from the
FSAVE/FNSAVE or FXSAVE image in memory, a debugger needs to take account of
the relationship between the x87 FPU register’s logical locations relative to TOS and
the MMX register’s physical locations.

In the x87 FPU context, STn refers to an x87 FPU register at location n relative to the
TOS. However, the tags in the x87 FPU tag word are associated with the physical
locations of the x87 FPU registers (R0 through R7). The MMX registers always refer
to the physical locations of the registers (with MM0 through MM7 being mapped to R0
through R7). Figure 12-2 shows this relationship. Here, the inner circle refers to the
physical location of the x87 FPU and MMX registers. The outer circle refers to the x87
FPU registers’s relative location to the current TOS.

When the TOS equals 0 (case A in Figure 12-2), ST0 points to the physical location
R0 on the floating-point stack. MM0 maps to ST0, MM1 maps to ST1, and so on.
12-6 Vol. 3A

INTEL® MMX™ TECHNOLOGY SYSTEM PROGRAMMING
When the TOS equals 2 (case B in Figure 12-2), ST0 points to the physical location
R2. MM0 maps to ST6, MM1 maps to ST7, MM2 maps to ST0, and so on.

Figure 12-2. Mapping of MMX Registers to x87 FPU Data Register Stack

MM0

MM1

MM2

MM3

MM4

MM5

MM6

MM7

ST1

ST2

ST7

ST0 ST6

ST7

ST1

TOSTOS

x87 FPU “push” x87 FPU “pop” x87 FPU “push”

x87 FPU “pop”

Case A: TOS=0 Case B: TOS=2

MM0

MM1

MM2

MM3

MM4

MM5

MM6

MM7

ST0

Outer circle = x87 FPU data register’s logical location relative to TOS
Inner circle = x87 FPU tags = MMX register’s location = FP registers’s physical location

(R0)

(R2)(R2)

(R0)
Vol. 3A 12-7

CHAPTER 13
SYSTEM PROGRAMMING FOR INSTRUCTION SET

EXTENSIONS AND PROCESSOR EXTENDED STATES

This chapter describes system programming features for instruction set extensions
operating on the processor state extension known as the SSE state (XMM registers,
MXCSR) and for processor extended states. Instruction set extensions operating on
the SSE state include the streaming SIMD extensions (SSE), streaming SIMD exten-
sions 2 (SSE2), streaming SIMD extensions 3 (SSE3), Supplemental SSE3 (SSSE3),
and SSE4.

Sections 13.1 through 13.5 cover system programming requirements to enable
SSE/SSE2/SSE3/SSSE3/SSE4 extensions, providing operating system or executive
support for the SSE/SSE2/SSE3/SSSE3/SSE4 extensions, SIMD floating-point
exceptions, exception handling, and task (context) switching.

Operating system support for SSE state, once implemented using FXSAVE/FXRSTOR,
provides a limited degree of forward support for subsequent instruction set exten-
sions operating on the same known set of processor state. Processor extended states
refer to an extension in Intel 64 architecture that will allow system executives to
implement support for multiple processor state extensions that may be introduced
over time without requiring the system executive to be modified each time a new
processor state extension is introduced.

Managing processor extended states requires the following aspects:
• using instructions like XSAVE, XRSTOR, to save/restore state information to a

memory region consistent with the processor state extensions supported in
hardware,

• using CPUID enumeration features to query the set of extended processor states
supported by the processor,

• using XSETBV instruction to enable individual processor state extensions,
• maintaining various system programming resources.

System programming for managing processor extended states is described in the
sections starting 13.6.

13.1 PROVIDING OPERATING SYSTEM SUPPORT FOR
SSE/SSE2/SSE3/SSSE3/SSE4 EXTENSIONS

To use SSE/SSE2/SSE3/SSSE3/SSE4 extensions, the operating system or executive
must provide support for initializing the processor to use these extensions, for
handling the FXSAVE and FXRSTOR state saving instructions, and for handling SIMD
floating-point exceptions. The following sections provide system programming
Vol. 3A 13-1

SYSTEM PROGRAMMING FOR INSTRUCTION SET EXTENSIONS AND PROCESSOR
guidelines for this support. Because SSE/SSE2/SSE3/SSSE3/SSE4 extensions share
the same state, experience the same sets of non-numerical and numerical exception
behavior, these guidelines that apply to SSE also apply to other sets of SIMD exten-
sions that operate on the same processor state and subject to the same sets of of
non-numerical and numerical exception behavior.

Chapter 11, “Programming with Streaming SIMD Extensions 2 (SSE2),” and Chapter
12, “Programming with SSE3, SSSE3 and SSE4,” in the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 1, discuss support for
SSE/SSE2/SSE3/SSSE3/SSE4 from an applications point of view program.

13.1.1 Adding Support to an Operating System for
SSE/SSE2/SSE3/SSSE3/SSE4 Extensions

The following guidelines describe functions that an operating system or executive
must perform to support SSE/SSE2/SSE3/SSSE3/SSE4 extensions:

1. Check that the processor supports the SSE/SSE2/SSE3/SSSE3/SSE4 extensions.

2. Check that the processor supports the FXSAVE and FXRSTOR instructions.

3. Provide an initialization for the SSE, SSE2 SSE3, SSSE3 and SSE4 states.

4. Provide support for the FXSAVE and FXRSTOR instructions.

5. Provide support (if necessary) in non-numeric exception handlers for exceptions
generated by the SSE, SSE2, SSE3 and SSE4 instructions.

6. Provide an exception handler for the SIMD floating-point exception (#XM).

The following sections describe how to implement each of these guidelines.

13.1.2 Checking for SSE/SSE2/SSE3/SSSE3/SSE4 Extension
Support

If the processor attempts to execute an unsupported SSE/SSE2/SSE3/SSSE3/SSE4
instruction, the processor generates an invalid-opcode exception (#UD).

Before an operating system or executive attempts to use
SSE/SSE2/SSE3/SSSE3/SSE4 extensions, it should check that support is present.
Make sure:
• CPUID.1:EDX.SSE[bit 25] = 1
• CPUID.1:EDX.SSE2[bit 26] = 1
• CPUID.1:ECX.SSE3[bit 0] = 1
• CPUID.1:ECX.SSSE3[bit 9] = 1
• CPUID.1:ECX.SSE4_1[bit 19] = 1
• CPUID.1:ECX.SSE4_2[bit 20] = 1
13-2 Vol. 3A

SYSTEM PROGRAMMING FOR INSTRUCTION SET EXTENSIONS AND
To use POPCNT instruction, software must check CPUID.1:ECX.POPCNT[bit 23] = 1

13.1.3 Checking for Support for the FXSAVE and FXRSTOR
Instructions

A separate check must be made to insure that the processor supports FXSAVE and
FXRSTOR. Make sure:
• CPUID.1:EDX.FXSR[bit 24] = 1

13.1.4 Initialization of the SSE/SSE2/SSE3/SSSE3/SSE4 Extensions
The operating system or executive should carry out the following steps to set up
SSE/SSE2/SSE3/SSSE3/SSE4 extensions for use by application programs:

1. Set CR4.OSFXSR[bit 9] = 1. Setting this flag assumes that the operating system
provides facilities for saving and restoring SSE/SSE2/SSE3/SSSE3/SSE4 states
using FXSAVE and FXRSTOR instructions. These instructions are commonly used
to save the SSE/SSE2/SSE3/SSSE3/SSE4 state during task switches and when
invoking the SIMD floating-point exception (#XM) handler (see Section 13.4,
“Saving the SSE/SSE2/SSE3/SSSE3/SSE4 State on Task or Context Switches,”
and Section 13.1.6, “Providing an Handler for the SIMD Floating-Point Exception
(#XM),” respectively).

If the processor does not support the FXSAVE and FXRSTOR instructions,
attempting to set the OSFXSR flag will cause an exception (#GP) to be
generated.

2. Set CR4.OSXMMEXCPT[bit 10] = 1. Setting this flag assumes that the operating
system provides an SIMD floating-point exception (#XM) handler (see Section
13.1.6, “Providing an Handler for the SIMD Floating-Point Exception (#XM)”).

NOTE
The OSFXSR and OSXMMEXCPT bits in control register CR4 must be
set by the operating system. The processor has no other way of
detecting operating-system support for the FXSAVE and FXRSTOR
instructions or for handling SIMD floating-point exceptions.

3. Clear CR0.EM[bit 2] = 0. This action disables emulation of the x87 FPU, which is
required when executing SSE/SSE2/SSE3/SSSE3/SSE4 instructions (see Section
2.5, “Control Registers”).

4. Set CR0.MP[bit 1] = 1. This setting is the required setting for Intel 64 and IA-32
processors that support the SSE/SSE2/SSE3/SSSE3/SSE4 extensions (see
Section 9.2.1, “Configuring the x87 FPU Environment”).

Table 13-1 and Table 13-2 show the actions of the processor when an
SSE/SSE2/SSE3/SSSE3/SSE4 instruction is executed, depending on the:
Vol. 3A 13-3

SYSTEM PROGRAMMING FOR INSTRUCTION SET EXTENSIONS AND PROCESSOR
• OSFXSR and OSXMMEXCPT flags in control register CR4
• SSE/SSE2/SSE3/SSSE3/SSE4 feature flags returned by CPUID
• EM, MP, and TS flags in control register CR0

Table 13-1. Action Taken for Combinations of OSFXSR, OSXMMEXCPT, SSE, SSE2,
SSE3, EM, MP, and TS1

CR4 CPUID CR0 Flags

OSFXSR OSXMMEXCPT SSE,
SSE2,
SSE32

SSE4_13

EM MP 4 TS Action

0 X5 X X 1 X #UD exception.

1 X 0 X 1 X #UD exception.

1 X 1 1 1 X #UD exception.

1 0 1 0 1 0 Execute instruction; #UD exception
if unmasked SIMD floating-point
exception is detected.

1 1 1 0 1 0 Execute instruction; #XM exception
if unmasked SIMD floating-point
exception is detected.

1 X 1 0 1 1 #NM exception.

NOTES:
1. For execution of any SSE/SSE2/SSE3 instruction except the PAUSE, PREFETCHh, SFENCE,

LFENCE, MFENCE, MOVNTI, and CLFLUSH instructions.
2. Exception conditions due to CR4.OSFXSR or CR4.OSXMMEXCPT do not apply to FISTTP.
3. Only applies to DPPS, DPPD, ROUNDPS, ROUNDPD, ROUNDSS, ROUNDSD.
4. For processors that support the MMX instructions, the MP flag should be set.
5. X — Don’t care.
13-4 Vol. 3A

SYSTEM PROGRAMMING FOR INSTRUCTION SET EXTENSIONS AND
The SIMD floating-point exception mask bits (bits 7 through 12), the flush-to-zero
flag (bit 15), the denormals-are-zero flag (bit 6), and the rounding control field (bits
13 and 14) in the MXCSR register should be left in their default values of 0. This
permits the application to determine how these features are to be used.

13.1.5 Providing Non-Numeric Exception Handlers for Exceptions
Generated by the SSE/SSE2/SSE3/SSSE3/SSE4 Instructions

SSE/SSE2/SSE3/SSSE3/SSE4 instructions can generate the same type of memory
access exceptions (such as, page fault, segment not present, and limit violations)
and other non-numeric exceptions as other Intel 64 and IA-32 architecture instruc-
tions generate.

Ordinarily, existing exception handlers can handle these and other non-numeric
exceptions without code modification. However, depending on the mechanisms used
in existing exception handlers, some modifications might need to be made.

The SSE/SSE2/SSE3/SSSE3/SSE4 extensions can generate the non-numeric excep-
tions listed below:
• Memory Access Exceptions:

— Invalid opcode (#UD).

— Stack-segment fault (#SS).

— General protection (#GP). Executing most SSE/SSE2/SSE3 instructions with
an unaligned 128-bit memory reference generates a general-protection
exception. (The MOVUPS and MOVUPD instructions allow unaligned a loads or
stores of 128-bit memory locations, without generating a general-protection
exception.) A 128-bit reference within the stack segment that is not aligned

Table 13-2. Action Taken for Combinations of OSFXSR, SSSE3, SSE4, EM, and TS

CR4 CPUID CR0 Flags

OSFXSR SSSE3
SSE4_1*
SSE4_2**

EM TS Action

0 X*** X X #UD exception.

1 0 X X #UD exception.

1 1 1 X #UD exception.

1 1 0 1 #NM exception.

NOTES:
* Applies to SSE4_1 instructions except DPPS, DPPD, ROUNDPS, ROUNDPD, ROUNDSS, ROUNDSD.
** Applies to SSE4_2 instructions except CRC32 and POPCNT.
***X — Don’t care.
Vol. 3A 13-5

SYSTEM PROGRAMMING FOR INSTRUCTION SET EXTENSIONS AND PROCESSOR
to a 16-byte boundary will also generate a general-protection exception,
instead a stack-segment fault exception (#SS).

— Page fault (#PF).

— Alignment check (#AC). When enabled, this type of alignment check
operates on operands that are less than 128-bits in size: 16-bit, 32-bit, and
64-bit. To enable the generation of alignment check exceptions, do the
following:

• Set the AM flag (bit 18 of control register CR0)

• Set the AC flag (bit 18 of the EFLAGS register)

• CPL must be 3

If alignment check exceptions are enabled, 16-bit, 32-bit, and 64-bit
misalignment will be detected for the MOVUPD and MOVUPS instructions;
detection of 128-bit misalignment is not guaranteed and may vary with
implementation.

• System Exceptions:

— Invalid-opcode exception (#UD). This exception is generated when executing
SSE/SSE2/SSE3/SSSE3 instructions under the following conditions:

• SSE/SSE2/SSE3/SSSE3/SSE4_1/SSE4_2 feature flags returned by
CPUID are set to 0. This condition does not affect the CLFLUSH
instruction, nor POPCNT.

• The CLFSH feature flag returned by the CPUID instruction is set to 0. This
exception condition only pertains to the execution of the CLFLUSH
instruction.

• The POPCNT feature flag returned by the CPUID instruction is set to 0.
This exception condition only pertains to the execution of the POPCNT
instruction.

• The EM flag (bit 2) in control register CR0 is set to 1, regardless of the
value of TS flag (bit 3) of CR0. This condition does not affect the PAUSE,
PREFETCHh, MOVNTI, SFENCE, LFENCE, MFENCE, CLFLUSH, CRC32 and
POPCNT instructions.

• The OSFXSR flag (bit 9) in control register CR4 is set to 0. This condition
does not affect the PSHUFW, MOVNTQ, MOVNTI, PAUSE, PREFETCHh,
SFENCE, LFENCE, MFENCE, CLFLUSH, CRC32 and POPCNT instructions.

• Executing a instruction that causes a SIMD floating-point exception when
the OSXMMEXCPT flag (bit 10) in control register CR4 is set to 0. See
Section 13.5.1, “Using the TS Flag to Control the Saving of the x87 FPU,
MMX, SSE, SSE2, SSE3 SSSE3 and SSE4 State.”

— Device not available (#NM). This exception is generated by executing a
SSE/SSE2/SSE3/SSSE3/SSE4 instruction when the TS flag (bit 3) of CR0 is
set to 1.
13-6 Vol. 3A

SYSTEM PROGRAMMING FOR INSTRUCTION SET EXTENSIONS AND
Other exceptions can occur indirectly due to faulty execution of the above
exceptions.

13.1.6 Providing an Handler for the SIMD Floating-Point Exception
(#XM)

SSE/SSE2/SSE3/SSSE3/SSE4 instructions do not generate numeric exceptions on
packed integer operations. They can generate the following numeric (SIMD floating-
point) exceptions on packed and scalar single-precision and double-precision
floating-point operations.
• Invalid operation (#I)
• Divide-by-zero (#Z)
• Denormal operand (#D)
• Numeric overflow (#O)
• Numeric underflow (#U)
• Inexact result (Precision) (#P)

These SIMD floating-point exceptions (with the exception of the denormal operand
exception) are defined in the IEEE Standard 754 for Binary Floating-Point Arithmetic
and represent the same conditions that cause x87 FPU floating-point error excep-
tions (#MF) to be generated for x87 FPU instructions.

Each of these exceptions can be masked, in which case the processor returns a
reasonable result to the destination operand without invoking an exception handler.
However, if any of these exceptions are left unmasked, detection of the exception
condition results in a SIMD floating-point exception (#XM) being generated. See
Chapter 6, “Interrupt 19—SIMD Floating-Point Exception (#XM).”

To handle unmasked SIMD floating-point exceptions, the operating system or execu-
tive must provide an exception handler. The section titled “SSE and SSE2 SIMD
Floating-Point Exceptions” in Chapter 11, “Programming with Streaming SIMD
Extensions 2 (SSE2),” of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1, describes the SIMD floating-point exception classes and gives
suggestions for writing an exception handler to handle them.

To indicate that the operating system provides a handler for SIMD floating-point
exceptions (#XM), the OSXMMEXCPT flag (bit 10) must be set in control register
CR0.

13.1.6.1 Numeric Error flag and IGNNE#
SSE/SSE2/SSE3/SSE4 extensions ignore the NE flag in control register CR0 (that is,
treats it as if it were always set) and the IGNNE# pin. When an unmasked SIMD
floating-point exception is detected, it is always reported by generating a SIMD
floating-point exception (#XM).
Vol. 3A 13-7

SYSTEM PROGRAMMING FOR INSTRUCTION SET EXTENSIONS AND PROCESSOR
13.2 EMULATION OF SSE/SSE2/SSE3/SSSE3/SSE4
EXTENSIONS

The Intel 64 and IA-32 architecture does not support emulation of the
SSE/SSE2/SSE3/SSSE3/SSE4 instructions, as they do for x87 FPU instructions.

The EM flag in control register CR0 (provided to invoke emulation of x87 FPU instruc-
tions) cannot be used to invoke emulation of SSE/SSE2/SSE3/SSSE3/SSE4 instruc-
tions. If an SSE/SSE2/SSE3/SSSE3/SSE4 instruction is executed when CR0.EM = 1,
an invalid opcode exception (#UD) is generated. See Table 13-1.

13.3 SAVING AND RESTORING THE
SSE/SSE2/SSE3/SSSE3/SSE4 STATE

The SSE/SSE2/SSE3/SSSE3/SSE4 state consists of the state of the XMM and MXCSR
registers. The recommended method for saving and restoring this state follows:
• Execute an FXSAVE instruction to save the state of the XMM and MXCSR registers

to memory.
• Execute an FXRSTOR instruction to restore the state of the XMM and MXCSR

registers from the image saved in memory by the FXSAVE instruction.

This save and restore method is required for all operating systems. See Section 13.5,
“Designing OS Facilities for AUTOMATICALLY Saving x87 FPU, MMX, and
SSE/SSE2/SSE3/SSSE3/SSE4 state on Task or Context Switches.”

In some cases, applications can only save the XMM and MXCSR registers in the
following way:
• Execute MOVDQ instructions to save the contents of each XMM registers to

memory.
• Execute a STMXCSR instruction to save the state of the MXCSR register to

memory.

In some cases, applications can only restore the XMM and MXCSR registers in the
following way:
• Execute MOVDQ instructions to read the saved contents of each XMM registers

from memory to XMM registers.
• Execute a LDMXCSR instruction to restore the state of the MXCSR register from

memory.
13-8 Vol. 3A

SYSTEM PROGRAMMING FOR INSTRUCTION SET EXTENSIONS AND
13.4 SAVING THE SSE/SSE2/SSE3/SSSE3/SSE4 STATE ON
TASK OR CONTEXT SWITCHES

When switching from one task or context to another, it is often necessary to save the
SSE/SSE2/SSE3/SSSE3/SSE4 state. FXSAVE and FXRSTOR instructions provide a
simple method for saving and restoring this state. See Section 13.3, “Saving and
Restoring the SSE/SSE2/SSE3/SSSE3/SSE4 State.” These instructions offer the
added benefit of saving x87 FPU and MMX state as well.

Guidelines for writing such procedures are in Section 13.5, “Designing OS Facilities
for AUTOMATICALLY Saving x87 FPU, MMX, and SSE/SSE2/SSE3/SSSE3/SSE4 state
on Task or Context Switches.”

13.5 DESIGNING OS FACILITIES FOR AUTOMATICALLY
SAVING X87 FPU, MMX, AND
SSE/SSE2/SSE3/SSSE3/SSE4 STATE ON TASK OR
CONTEXT SWITCHES

The x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 state consist of the state of the x87
FPU, MMX, XMM, and MXCSR registers. The FXSAVE and FXRSTOR instructions
provide a fast method for saving ad restoring this state. If task or context switching
facilities are already implemented in an operating system or executive and they use
FSAVE/FNSAVE and FRSTOR to save the x87 FPU and MMX state, these facilities can
be extended to save and restore SSE/SSE2/SSE3/SSSE3/SSE4 state by substituting
FXSAVE/FXRSTOR for FSAVE/FNSAVE and FRSTOR.

Where task or content switching facilities must be written from scratch, several
approaches can be taken for using the FXSAVE and FXRSTOR instructions to save and
restore x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 state:
• The operating system can require applications that are intended be run as tasks

take responsibility for saving the state of the x87 FPU, MMX, XMM, and MXCSR
registers prior to a task suspension during a task switch and for restoring the
registers when the task is resumed. This approach is appropriate for cooperative
multitasking operating systems, where the application has control over (or is able
to determine) when a task switch is about to occur and can save state prior to the
task switch.

• The operating system can take the responsibility for automatically saving the x87
FPU, MMX, XMM, and MXCSR registers as part of the task switch process (using
an FXSAVE instruction) and automatically restoring the state of the registers
when a suspended task is resumed (using an FXRSTOR instruction). Here, the
x87 FPU/MMX/SSE/SSE2/SSE3/SSE4 state must be saved as part of the task
state. This approach is appropriate for preemptive multitasking operating
systems, where the application cannot know when it is going to be preempted
and cannot prepare in advance for task switching. Here, the operating system is
Vol. 3A 13-9

SYSTEM PROGRAMMING FOR INSTRUCTION SET EXTENSIONS AND PROCESSOR
responsible for saving and restoring the task and the x87
FPU/MMX/SSE/SSE2/SSE3 state when necessary.

• The operating system can take the responsibility for saving the x87 FPU, MMX,
XMM, and MXCSR registers as part of the task switch process, but delay the
saving of the MMX and x87 FPU state until an x87 FPU, MMX, or
SSE/SSE2/SSE3/SSSE3/SSE4 instruction is actually executed by the new task.
Using this approach, the x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 state is
saved only if an x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction needs
to be executed in the new task. (See Section 13.5.1, “Using the TS Flag to
Control the Saving of the x87 FPU, MMX, SSE, SSE2, SSE3 SSSE3 and SSE4
State,” for more information.)

13.5.1 Using the TS Flag to Control the Saving of the
x87 FPU, MMX, SSE, SSE2, SSE3 SSSE3 and SSE4 State

Saving the x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 state using FXSAVE requires
processor overhead. If the new task does not access x87 FPU, MMX, XMM, and
MXCSR registers, avoid overhead by not automatically saving the state on a task
switch.

The TS flag in control register CR0 is provided to allow the operating system to delay
saving the x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 state until an instruction
that actually accesses this state is encountered in a new task. When the TS flag is
set, the processor monitors the instruction stream for an x87
FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction. When the processor detects
one of these instructions, it raises a device-not-available exception (#NM) prior to
executing the instruction. The device-not-available exception handler can then be
used to save the x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 state for the previous
task (using an FXSAVE instruction) and load the x87
FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 state for the current task (using an
FXRSTOR instruction). If the task never encounters an x87
FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction, the device-not-available excep-
tion will not be raised and a task state will not be saved unnecessarily.

NOTE
The CRC32 and POPCNT instructions do not operate on the x87
FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 state. They operate on the
general-purpose registers and are not involved in the OS’s lazy
FXSAVE/FXRSTOR technique.

The TS flag can be set either explicitly (by executing a MOV instruction to control
register CR0) or implicitly (using the IA-32 architecture’s native task switching mech-
anism). When the native task switching mechanism is used, the processor automati-
cally sets the TS flag on a task switch. After the device-not-available handler has
saved the x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 state, it should execute the
CLTS instruction to clear the TS flag.
13-10 Vol. 3A

SYSTEM PROGRAMMING FOR INSTRUCTION SET EXTENSIONS AND
Figure 13-1 gives an example of an operating system that implements x87
FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 state saving using the TS flag. In this
example, task A is the currently running task and task B is the new task. The oper-
ating system maintains a save area for the x87
FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 state for each task and defines a variable
(x87_MMX_SSE_SSE2_SSE3_StateOwner) that indicates the task that “owns” the
state. In this example, task A is the current owner.

On a task switch, the operating system task switching code must execute the
following pseudo-code to set the TS flag according to the current owner of the x87
FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 state. If the new task (task B in this
example) is not the current owner of this state, the TS flag is set to 1; otherwise, it is
set to 0.

IF Task_Being_Switched_To ≠ x87FPU_MMX_XMM_MXCSR_StateOwner
 THEN
 CR0.TS ← 1;
 ELSE
 CR0.TS ← 0;
FI;

If a new task attempts to access an x87 FPU, MMX, XMM, or MXCSR register while the
TS flag is set to 1, a device-not-available exception (#NM) is generated. The device-
not-available exception handler executes the following pseudo-code.

FXSAVE “To x87FPU/MMX/XMM/MXCSR State Save Area for Current
x87FPU_MMX_XMM_MXCSR_StateOwner”;

Figure 13-1. Example of Saving the x87 FPU, MMX, SSE, SSE2, SSE3, and SSSE3
State During an Operating-System Controlled Task Switch

Task A Task B

Application

Operating System

Task A

Operating System
Task Switching Code

Device-Not-Available
Exception Handler

Owner of x87 FPU,

CR0.TS=1 and x87 FPU
MMX, SSEx
Instruction is encountered

MMX, XMM,

x87 FPU/MMX/

State Save Area
XMM/MXCSR

Task B
x87 FPU/MMX/

State Save Area
XMM/MXCSR

Saves Task A
x87 FPU/MMX/
XMM/MXCSR State

Loads Task B
x87 FPU/MMX/
XMM/MXCSR State

MXCSR State
Vol. 3A 13-11

SYSTEM PROGRAMMING FOR INSTRUCTION SET EXTENSIONS AND PROCESSOR
FXRSTOR “x87FPU/MMX/XMM/MXCSR State From Current Task’s
x87FPU/MMX/XMM/MXCSR State Save Area”;

x87FPU_MMX_XMM_MXCSR_StateOwner ← Current_Task;
CR0.TS ← 0;

This exception handler code performs the following tasks:
• Saves the x87 FPU, MMX, XMM, or MXCSR registers in the state save area for the

current owner of the x87 FPU/MMX/XMM/MXCSR state.
• Restores the x87 FPU, MMX, XMM, or MXCSR registers from the new task’s save

area for the x87 FPU/MMX/XMM/MXCSR state.
• Updates the current x87 FPU/MMX/XMM/MXCSR state owner to be the current

task.
• Clears the TS flag.

13.6 XSAVE/XRSTOR AND PROCESSOR EXTENDED STATE
MANAGEMENT

The features associated with managing processor extended states include
• An extensible data layout for existing and future processor state extensions. The

layout of the XSAVE/XRSTOR area extends from the 512-byte FXSAVE/FXRSTOR
layout to provide compatibility and migration path from managing the legacy
FXSAVE/FXRSTOR area. Specifically, the XSAVE/XRSTOR area layout consists of:

— The FXSAVE/FXRSTOR area (512 bytes, the layout is identical to the
FXSAVE/FXRSTOR area),

— The XSAVE header area (64 bytes),

— A finite set of save areas, each corresponding to a processor extended state
(see Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2B, XSAVE instruction). The number of save areas, the offset and the
size of each save area is enumerated by CPUID leaf function 0DH.

• CPUID Enhancement: CPUID instruction provides information on

— CPUID.01H.ECX.XSAVE[bit 26]. A feature flag indicating the processor’s
support of XSAVE/XRSTOR architecture extensions

— CPUID.01H.ECX.OSXSAVE[bit 27]. A feature flag indicating whether OS has
enabled extensible state management and communicating that the OS
supports processor extended state management.

— CPUID leaf function 0DH enumerates the list of processor states (including
legacy x87 FPU, SSE states and processor extended states), the offset and
size of individual save area for each processor extended state.

• Control register enhancement and dedicated register for enabling each processor
extended state: CR4. OSXSAVE[bit 18] and XCR0 are described in Chapter 2,
13-12 Vol. 3A

SYSTEM PROGRAMMING FOR INSTRUCTION SET EXTENSIONS AND
“System Architecture Overview”. XCR0 can be read at all privilege levels but
written only at ring 0.

• Instructions to manage XCR0 and the XSAVE/XRSTOR area (see Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 2B):

— XGETBV: reads XCR0.

— XSETBV: writes to XCR0, ring 0 only.

— XRSTOR: restores from memory the processor states specified by a bit vector
mask specified in EDX:EAX.

— XSAVE: saves the current processor states to memory according to a bit
vector mask in EDX:EAX.

13.6.1 XSAVE Header
The header section includes a “XSTATE_BV“ bit vector field. If the value of a bit in
HEADER.XSTATE_BV is 1, it indicates that the corresponding processor extended
state was written to the respective save area in memory by the XSAVE instruction.

If software modifies the save area image of a particular processor state component
directly, it is responsible to update the corresponding bit in HEADER.XSTATE_BV to 1.
Otherwise, directly modified state information in a save area image may be ignored
by XRSTOR.

The order of bit vectors in XSTATE_BV matches those of XCR0. Although XCR0 has
only two bits initially defined for state management, the general relationship
between the value of XSTATE_BV and the corresponding processor state in the
XSAVE/XRSTOR layout is depicted in Figure 13-2.
Vol. 3A 13-13

SYSTEM PROGRAMMING FOR INSTRUCTION SET EXTENSIONS AND PROCESSOR
The XSAVE header is 64 bytes in length and must be aligned on 64 byte boundary.
Therefore, the XSAVE/XRSTOR region must be aligned on 64-byte boundary. The
format of the header is as follows (see Table 13-3):

The value of each bit in HEADER.XSTATE_BV may affect the action performed by
XRSTOR, depending on the logical value of the respective bits in XCR0, the restore bit
mask (EDX:EAX input to XRSTOR), and HEADER.XSTATE_BV. When an XRSTOR
instruction is executed with a restore bit mask selecting the i’th bit vector (and the
corresponding XCR0 bit is enabled), a value of "1" in the corresponding bit of

Figure 13-2. Future Layout of XSAVE/XRSTOR Area and XSTATE_BV with Five Sets
of Processor State Extensions

Table 13-3. XSAVE Header Format

15:8 7:0 Byte Offset

Reserved (Must be zero) XSTATE_BV 0

Reserved Reserved (Must be zero) 16

Reserved Reserved 32

Reserved Reserved 48

..................................

XState_BV

E
xtensions 2

X87 FPU State

Save Area

0124 3

FXSAVE

63

SSE State
FXRSTOR

XState_BV, .. Header

Ext_SaveArea2

.........................

E
xten

sions 4

Ext_SaveArea3

1111 0

Bit Position

E
xtensions 3

Updated

Not updated

Updated Ext_SaveArea4
13-14 Vol. 3A

SYSTEM PROGRAMMING FOR INSTRUCTION SET EXTENSIONS AND
HEADER.XSTATE_BV causes the processor state to be updated with contents of the
save area read from the memory image. A value of "0" in HEADER.XSTATE_BV
causes the processor state to be initialized by hardware supplied values instead of
from memory (See the operation detail of XRSTOR in Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 2B).

The save area image corresponding to a bit with "0" value in HEADER.XSTATE_BV
may or may not contain the correct state information. XRSTOR will ensure the
register state for a component is properly initialized regardless of the value of the
save area when the component header bit is zero.

13.7 INTEROPERABILITY OF XSAVE/XRSTOR AND
FXSAVE/FXRSTOR

FXSAVE instruction writes x87 FPU and SSE state information to a 512-byte FXSAVE,
FXRSTOR save area. FXRSTOR restores the processor’s x87 FPU and SSE states from
FXSAVE/FXRSTOR save area image. XSAVE/XRSTOR instructions support x87 FPU
and SSE states using the same layout as the FXSAVE/FXRSTOR area to provide
interoperability of FXSAVE versus XSAVE, and FXRSTOR versus XRSTOR.
XSAVE/XRSTOR provides the additional flexibility for system software to manage SSE
state independent of x87 FPU states. Thus system software that had been using
FXSAVE/FXRSTOR to manage x87 FPU and SSE states can transition to
XSAVE/XRSTOR to manage x87 FPU, SSE and other processor extended states in a
systematic and forward-looking manner.

It is also possible for system software to adopt an alternate approach of using
FXSAVE/FXRSTOR for x87 and SSE state management, and implementing forward
processor extended state management using XSAVE/XRSTOR. In this case, system
software must specify the bit vector mask in EDX:EAX appropriately when executing
XSAVE/XRSTOR instructions.

For instance, when using the XSAVE instruction, the OS can supply a bit vector in
EDX:EAX with the two least significant bits corresponding to x87 FPU and SSE state
equal to 0. Then, the XSAVE instruction will not write the processor’s x87 FPU and
SSE state into memory. Similarly for the XRSTOR instruction a bit vector mask in
EDX:EAX with the least two significant bit equal to 0 will cause the XRSTOR instruc-
tion to not restore nor initialize the processor’s x87 FPU and SSE state.

The processor’s action as a result of executing XRSTOR, on the x87 FPU state,
MXCSR, and XMM registers, are listed in Table 13-4 (Both bit 1 and bit 0 of XCR0 are
presumed to be 1). The x87 FPU or XMM registers may be initialized by the processor
(See XRSTOR operation in Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2B). When the MXCSR register is updated from memory, reserved
bit checking is enforced. The saving/restoring of MXCSR is bound to the SSE state,
independent of the x87 FPU state. The action of XSAVE is listed in Table 13-5.
Vol. 3A 13-15

SYSTEM PROGRAMMING FOR INSTRUCTION SET EXTENSIONS AND PROCESSOR
XSAVE, XRSTOR instructions operating on FP or SSE state will cause a #NM Device
Not Available) exception, if CR0.TS is set. Using this feature, system software can
implement the “lazy restore” technique of managing x87 FPU/SSE state using either
FXSAVE/FXRSTOR or XSAVE/XRSTOR. It can be accomplished even with the inter-
mixing of FXSAVE and XSAVE instructions.

Table 13-4. XRSTOR Action on MXCSR, x87 FPU, XMM Register

EDX:EAX XSTATE_BV MXCSR XMM Registers x87 FPU State

Bit 1 Bit 0 Bit 1 Bit 0

0 0 X X None None None

0 1 X 0 None None Init by processor

0 1 X 1 None None Load

1 0 0 X Load/Check Init by processor None

1 0 1 X Load/Check Load None

1 1 0 0 Load/Check Init by processor Init by processor

1 1 0 1 Load/Check Init by processor Load

1 1 1 0 Load/Check Load Init by processor

1 1 1 1 Load/Check Load Load

Table 13-5. XSAVE Action on MXCSR, x87 FPU, XMM Register

EDX:EAX XCR01

NOTES:
1. Attempts to set XCR0[0] to 0 cause #GP.

MXCSR XMM Registers x87 FPU State

Bit 1 Bit 0 Bit 1 Bit 0

0 0 X 1 None None None

0 1 X 1 None None Store

1 0 0 1 None None None

1 0 1 1 Store Store None

1 1 0 1 None None Store

1 1 1 1 Store Store Store
13-16 Vol. 3A

SYSTEM PROGRAMMING FOR INSTRUCTION SET EXTENSIONS AND
13.8 DETECTION, ENUMERATION, ENABLING PROCESSOR
EXTENDED STATE SUPPORT

An OS can determine if the XSAVE/XRSTOR/XGETBV/XSETBV instructions and XCR0
are available in the processor by checking the value of CPUID.1.ECX.XSAVE to be 1.
The OS must set CR4.OSXSAVE to 1 to enable the new instructions. The OS uses
XSETBV to enable the processor state component (setting the corresponding bit in
XCR0 to 1) that it will manage using XSAVE/XRSTOR. Bit 0 of XCR0 must be set to 1.
The value of CR4.OSXSAVE is reflected in CPUID.01H:ECX.OSXSAVE (bit 27) to
communicate the setting to non-privileged software.

The bits that must be enabled in XCR0 and the size of the memory region needed to
save processor extended state information must be enumerated by CPUID leaf 0DH
with ECX = 0 as input. However, the recommended usage by system software to use
XSAVE/XSAVEOPT/XRSTOR is to:
• Use mask (EDX:EAX) with all bits set to 1.
• Alternately use the master bit vector mask EDX:EAX reported by

CPUID.(EAX=0D, ECX=0H). This provides a more constrained list of features
than using all 1's in the mask.

In either case, system software is required to allocate a memory buffer according to
the size reported by CPUID.(EAX=0DH, ECX=0H):ECX. The value reported by
CPUID.(EAX=0DH, ECX=0H):ECX always includes the size of the header. Clear the
entire buffer prior to being used by XSAVE.

Figure 13-3. OS Enabling of Processor Extended State Support

Check

HW support XSAVE, XRSTOR, XSETBV, XFEM

CPUID.1H:ECX.XSAVE?

Enumerate
Extended state features
Buffer size requirement

Set valid bits in
XCR0 via XSETBVSet CR4.OSXSAVE

 to 1

Clear buffer to 0

XSETBV enabled
Vol. 3A 13-17

SYSTEM PROGRAMMING FOR INSTRUCTION SET EXTENSIONS AND PROCESSOR
The advantage of using a mask value of all-bits-set-to-1 for XSAVE/XRSTOR is that it
can simplify system software’s support for processor extended state management,
when multiple generations of hardware may support different number of processor
extended states as reported by CPUID. However, there may be additional implemen-
tation requirement of software modification that may arise due to a particular system
software or specific details introduced by a new processor extended state.

13.8.1 Application Programming Model and Processor Extended
States

New instruction set extensions may be introduced over time and operating on a
processor extended state that must be enabled in XCR0. The general application
programming model for using such instruction set extensions are:
• Check if OS has enabled processor extended state management. If

CPUID.01H:ECX.OSXSAVE is 1, the OS has enabled the
XSAVE/XRSTOR/XSETBV/XGETBV instructions and XCR0, and it has indicated
support for the processor extended state management.
Applications do not need to check the value of CPUID.01H:ECX.XSAVE because
“CPUID.01H:ECX.OSXSAVE = 1” implies OS has successfully verified
CPUID.01H:ECX.XSAVE = 1. CPUID.01H:ECX.OSXSAVE reflects the value of
CR4.OSXSAVE, and this bit cannot be set to 1 unless CPUID.01H:ECX.XSAVE = 1.

• Check whether the processor extended state component associated with a given
instruction set extension is enabled by the OS. The bits of EDX:EAX returned by
XGETBV as 1 indicate which processor extended state components have been
enabled by OS. Note, the CR4.OSFXSR is not used by OS to enable instruction
extensions requiring processor extended state support.

• Check the target instruction set extension is supported in the processor. Each
new instruction set extension is expected to provide a feature flag in CPUID when
it is introduced.
13-18 Vol. 3A

SYSTEM PROGRAMMING FOR INSTRUCTION SET EXTENSIONS AND
If all three requirements are met, applications can use the target new instruction set
extensions. If any of the above requirements are not met, an attempt to execute an
instruction operating on a processor extended state corresponding to bit offset
higher than 1 in XCR0 will cause a #UD exception.

Newer instruction extensions operating on SSE state, but not on any processor
extended states corresponding bits in XCR0 with an offset higher than 1, follow the
programming model described by Section 13.1 through Section 13.5. XCR0 is not
required to enable OS support for SSE state management, but CR4.OSFXSR is
required.

13.9 INTEL ADVANCED VECTOR EXTENSIONS (INTEL AVX)
AND YMM STATE

Intel AVX instructions comprises of 256-bit and 128-bit instructions that operates on
YMM states. The following sections describes system software support requirements
for 256-bit YMM states.

For processors that support YMM states, the YMM state exists in all operating modes.
However, the available instruction interfaces to access YMM states may vary in
different modes. XSAVE/XRSTOR and XSAVEOPT instructions can operate in all oper-
ating modes.

Figure 13-4. Application Detection of New Instruction Extensions and Processor
Extended State

Implied HW support for

Check enabled state in

XCR0 via XGETBV

Check feature flag
for Instruction set

Check feature flag

CPUID.1H:ECX.OXSAVE = 1?

OS provides processor
extended state management

State ok to use

XSAVE, XRSTOR, XGETBV, XCR0

enabled Instructions

Yes
Vol. 3A 13-19

SYSTEM PROGRAMMING FOR INSTRUCTION SET EXTENSIONS AND PROCESSOR
13.10 YMM STATE MANAGEMENT
Operating systems must use the XSAVE/XRSTOR (and optionally XSAVEOPT) instruc-
tions for YMM state management. The XSAVE/XRSTOR/XSAVEOPT instructions also
provide flexible and efficient interface to manage XMM/MXCSR states and x87 FPU
states in conjunction with newer processor extended states like YMM states.
An OS must enable its YMM state management to support AVX and any 256-bit
extensions that operate on YMM registers. Otherwise, an attempt to execute an
instruction in AVX extensions (including an enhanced 128-bit SIMD instructions using
VEX encoding) will cause a #UD exception.

13.10.1 Detection of YMM State Support
Detection of hardware support for new processor extended state is provided by the
main CPUID leaf function 0DH with index ECX = 0. Specifically, the return value in
EDX:EAX of CPUID.(EAX=0DH, ECX=0) provides a 64-bit wide bit vector of hardware
support of processor state components, beginning with bit 0 of EAX corresponding to
x87 FPU state, CPUID.(EAX=0DH, ECX=0):EAX[1] corresponding to SSE state (XMM
registers and MXCSR), CPUID.(EAX=0DH, ECX=0):EAX[2] corresponding to YMM
states.

13.10.2 Enabling of YMM State
An OS can enable YMM state support with the following steps:

• Verify the processor supports XSAVE/XRSTOR/XSETBV/XGETBV instructions and
XCR0 by checking CPUID.1.ECX.XSAVE[bit 26]=1.

• Verify the processor supports YMM state (i.e. bit 2 of XCR0 is valid) by checking
CPUID.(EAX=0DH, ECX=0):EAX.YMM[2]. The OS should also verify
CPUID.(EAX=0DH, ECX=0):EAX.SSE[bit 1]=1, because the lower 128-bits of an
YMM register are aliased to an XMM register.

The OS must determine the buffer size requirement for the XSAVE area that will
be used by XSAVE/XRSTOR (see CPUID instruction in Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2A).

• Set CR4.OSXSAVE[bit 18]=1 to enable the use of XSETBV/XGETBV instructions
to write/read XCR0.

• Supply an appropriate mask via EDX:EAX to execute XSETBV to enable the
processor state components that the OS wishes to manage using XSAVE/XRSTOR
instruction. To enable x87 FPU, SSE and YMM state management using
XSAVE/XRSTOR, the enable mask is EDX=0H, EAX=7H (The individual bits of
XCR0 is listed in Table 13-6).
13-20 Vol. 3A

SYSTEM PROGRAMMING FOR INSTRUCTION SET EXTENSIONS AND
To enable YMM state, the OS must use EDX:EAX[2:1] = 11B when executing
XSETBV. An attempt to execute XSETBV with EDX:EAX[2:1] = 10B causes a
#GP(0) exception.

13.10.3 Enabling of SIMD Floating-Exception Support
AVX instructions may generate SIMD floating-point exceptions. An OS must enable
SIMD floating-point exception support by setting CR4.OSXMMEXCPT[bit 10]=1.
The effect of CR4 setting that affects AVX enabling is listed in Table 13-7.

13.10.4 The Layout of XSAVE Area
The OS must determine the buffer size requirement by querying CPUID with
EAX=0DH, ECX=0. If the OS wishes to enable all processor extended state compo-

Table 13-6. XCR0 and Processor State Components

Bit Meaning

0 - x87
If set, the processor supports x87 FPU state management
via XSAVE/XRSTOR. This bit must be 1 if
CPUID.01H:ECX.XSAVE[26] = 1.

1 - SSE
If set, the processor supports SSE state (XMM and MXCSR)
management via XSAVE/XRSTOR. This bit must be set to
‘1’ to enable AVX.

2 - YMM
If set, the processor supports YMM state (upper 128 bits
of YMM registers) management via XSAVE. This bit must
be set to ‘1’ to enable AVX.

63:3 Reserved; must be 0.

Table 13-7. CR4 bits for AVX New Instructions technology support

Bit Meaning

CR4.OSXSAVE[bit 18] If set, the OS supports use of XSETBV/XGETBV instruc-
tion to access XCR0, XSAVE/XRSTOR to manage proces-
sor extended state. Must be set to ‘1’ to enable AVX.

CR4.OSXMMEXCPT[bit 10] Must be set to 1 to enable SIMD floating-point exceptions.
This applies to AVX operating on YMM states, and legacy
128-bit SIMD floating-point instructions operating on
XMM states.

CR4.OSFXSR[bit 9] Ignored by AVX instructions operating on YMM states.
Must be set to 1 to enable SIMD instructions operating on
XMM state.
Vol. 3A 13-21

SYSTEM PROGRAMMING FOR INSTRUCTION SET EXTENSIONS AND PROCESSOR
nents in XCR0, it can allocate the buffer size according to CPUID.(EAX=0DH,
ECX=0):ECX.
After the memory buffer for XSAVE is allocated, the entire buffer must to cleared to
zero prior to use by XSAVE.
For processors that support SSE and YMM states, the XSAVE area layout is listed in
Table 13-8. The register fields of the first 512 byte of the XSAVE area are identical to
those of the FXSAVE/FXRSTOR area.

The format of the header is as follows (see Table 13-9):

The layout of the Ext_Save_Area[YMM] contains 16 of the upper 128-bits of the YMM
registers, it is shown in Table 13-10.

Table 13-8. Layout of XSAVE Area For Processor Supporting YMM State

Save Areas Offset (Byte) Size (Bytes)

FPU/SSE SaveArea 0 512

Header 512 64

Ext_Save_Area_2
(YMM)

CPUID.(EAX=0DH, ECX=2):EBX CPUID.(EAX=0DH, ECX=2):EAX

Table 13-9. XSAVE Header Format

15:8 7:0 Byte Offset
from Header

Byte Offset
from XSAVE

Area

Reserved (Must be zero) XSTATE_BV 0 512

Reserved Reserved (Must be zero) 16 528

Reserved Reserved 32 544

Reserved Reserved 48 560
13-22 Vol. 3A

SYSTEM PROGRAMMING FOR INSTRUCTION SET EXTENSIONS AND
13.10.5 XSAVE/XRSTOR Interaction with YMM State and MXCSR
The processor’s action as a result of executing XRSTOR, on the MXCSR, XMM and
YMM registers, are listed in Table 13-4 (Both bit 1 and bit 2 of XCR0 are presumed to
be 1). The XMM registers may be initialized by the processor (See XRSTOR operation
in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B).
When the MXCSR register is updated from memory, reserved bit checking is
enforced. The saving/restoring of MXCSR is bound to both the SSE state and YMM
state. MXCSR save/restore will not be bound to any future states.

Table 13-10. XSAVE Save Area Layout for YMM State (Ext_Save_Area_2)

31 16 15 0

Byte Offset
from

YMM_Save_Are
a

Byte Offset from
XSAVE Area

YMM1[255:128] YMM0[255:128] 0 576

YMM3[255:128] YMM2[255:128] 32 608

YMM5[255:128] YMM4[255:128] 64 640

YMM7[255:128] YMM6[255:128] 96 672

YMM9[255:128] YMM8[255:128] 128 704

YMM11[255:128] YMM10[255:128] 160 736

YMM13[255:128] YMM12[255:128] 192 768

YMM15[255:128] YMM14[255:128] 224 800

Table 13-11. XRSTOR Action on MXCSR, XMM Registers, YMM Registers

EDX:EAX XSATE_BV
MXCSR

YMM_H
Registers

XMM Registers
Bit 2 Bit 1 Bit 2 Bit 1

0 0 X X None None None

0 1 X 0 Load/Check None Init by processor

0 1 X 1 Load/Check None Load

1 0 0 X Load/Check Init by processor None

1 0 1 X Load/Check Load None

1 1 0 0 Load/Check Init by processor Init by processor

1 1 0 1 Load/Check Init by processor Load

1 1 1 0 Load/Check Load Init by processor

1 1 1 1 Load/Check Load Load
Vol. 3A 13-23

SYSTEM PROGRAMMING FOR INSTRUCTION SET EXTENSIONS AND PROCESSOR
The processor supplied init values for each processor state component used by
XRSTOR is listed in Table 13-12.

The action of XSAVE is listed in Table 13-13.

13.10.6 Processor Extended State Save Optimization and XSAVEOPT
The XSAVEOPT instruction paired with XRSTOR is designed to provide a high perfor-
mance method for system software to perform state save and restore.
A processor may indicate its support for the XSAVEOPT instruction if
CPUID.(EAX=0DH, ECX=1):EAX.XSAVEOPT[Bit 0] = 1. The functionality of

Table 13-12. Processor Supplied Init Values XRSTOR May Use

Processor State Component Processor Supplied Register Values

x87 FPU State
FCW ← 037FH; FTW ← 0FFFFH; FSW ← 0H; FPU CS ← 0H;
FPU DS ← 0H; FPU IP ← 0H; FPU DP ← 0; ST0-ST7 ← 0;

SSE State1

NOTES:
1. MXCSR state is not updated by processor supplied values. MXCSR state can only

be updated by XRSTOR from state information stored in XSAVE/XRSTOR area.

If 64-bit Mode: XMM0-XMM15 ← 0H;
Else XMM0-XMM7 ← 0H

YMM State1 If 64-bit Mode: YMM0_H-YMM15_H ← 0H;
Else YMM0_H-YMM7_H ← 0H

Table 13-13. XSAVE Action on MXCSR, XMM, YMM Register

EDX:EAX XCR0
MXCSR

YMM_H
Registers XMM Registers

Bit 2 Bit 1 Bit 2 Bit 1

0 0 X X None None None

0 1 X 1 Store None Store

0 1 X 0 None None None

1 0 0 X None None None

1 0 1 1 Store Store None

1 1 0 0 None None None

1 1 0 1 Store None Store

1 1 1 1 Store Store Store
13-24 Vol. 3A

SYSTEM PROGRAMMING FOR INSTRUCTION SET EXTENSIONS AND
XSAVEOPT is similar to XSAVE. Software can use XSAVEOPT/XRSTOR in a pair-wise
manner similar to XSAVE/XRSTOR to save and restore processor extended states.
The syntax and operands for XSAVEOPT instructions are identical to XSAVE, i.e. the
mask operand in EDX:EAX specifies the subset of enabled features to be saved.
Note that software using XSAVEOPT must observe the same restrictions as XSAVE
while allocating a new save area. i.e., the header area must be initialized to zeroes.
The first 64-bits in the save image header starting at offset 512 are referred to as
XHEADER.BV. However, the instruction differs from XSAVE in several important
aspects:

1. If a component state in the processor specified by the save mask corresponds to
an INIT state, the instruction may clear the corresponding bit in XHEADER.BV,
but may not write out the state (unlike the XSAVE instruction, which always
writes out the state).

2. If the processor determines that the component state specified by the save mask
hasn't been modified since the last XRSTOR, the instruction may not write out the
state to the save area.

3. A implication of this optimization is that software which needs to examine the
saved image must first check the XHEADER.BV to see if any bits are clear. If the
header bit is clear, it means that the state is INIT and the saved memory image
may not correspond to the actual processor state.

4. The performance of XSAVEOPT will always be better than or at least equal to that
of XSAVE.

13.10.6.1 XSAVEOPT Usage Guidelines
When using the XSAVEOPT facility, software must be aware of the guidelines outlined
in Chapter , “XSAVEOPT—Save Processor Extended States Optimized” in Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 2B.
Vol. 3A 13-25

CHAPTER 14
POWER AND THERMAL MANAGEMENT

This chapter describes facilities of Intel 64 and IA-32 architecture used for power
management and thermal monitoring.

14.1 ENHANCED INTEL SPEEDSTEP® TECHNOLOGY
Enhanced Intel SpeedStep® Technology was introduced in the Pentium M processor;
it is available in Pentium 4, Intel Xeon, Intel® Core™ Solo, Intel® Core™ Duo, Intel®
Atom™ and Intel® Core™2 Duo processors. The technology manages processor
power consumption using performance state transitions. These states are defined as
discrete operating points associated with different frequencies.

Enhanced Intel SpeedStep Technology differs from previous generations of Intel
SpeedStep Technology in two ways:
• Centralization of the control mechanism and software interface in the processor

by using model-specific registers.
• Reduced hardware overhead; this permits more frequent performance state

transitions.

Previous generations of the Intel SpeedStep Technology require processors to be a
deep sleep state, holding off bus master transfers for the duration of a performance
state transition. Performance state transitions under the Enhanced Intel SpeedStep
Technology are discrete transitions to a new target frequency.

Support is indicated by CPUID, using ECX feature bit 07. Enhanced Intel SpeedStep
Technology is enabled by setting IA32_MISC_ENABLE MSR, bit 16. On reset, bit 16 of
IA32_MISC_ENABLE MSR is cleared.

14.1.1 Software Interface For Initiating Performance State
Transitions

State transitions are initiated by writing a 16-bit value to the IA32_PERF_CTL
register, see Figure 14-2. If a transition is already in progress, transition to a new
value will subsequently take effect.

Reads of IA32_PERF_CTL determine the last targeted operating point. The current
operating point can be read from IA32_PERF_STATUS. IA32_PERF_STATUS is
updated dynamically.

The 16-bit encoding that defines valid operating points is model-specific. Applications
and performance tools are not expected to use either IA32_PERF_CTL or
IA32_PERF_STATUS and should treat both as reserved. Performance monitoring
Vol. 3B 14-1

POWER AND THERMAL MANAGEMENT
tools can access model-specific events and report the occurrences of state
transitions.

14.2 P-STATE HARDWARE COORDINATION
The Advanced Configuration and Power Interface (ACPI) defines performance states
(P-state) that are used facilitate system software’s ability to manage processor
power consumption. Different P-state correspond to different performance levels
that are applied while the processor is actively executing instructions. Enhanced Intel
SpeedStep Technology supports P-state by providing software interfaces that control
the operating frequency and voltage of a processor.

With multiple processor cores residing in the same physical package, hardware
dependencies may exist for a subset of logical processors on a platform. These
dependencies may impose requirements that impact coordination of P-state transi-
tions. As a result, multi-core processors may require an OS to provide additional soft-
ware support for coordinating P-state transitions for those subsets of logical
processors.

A BIOS (following ACPI 3.0 specification) can choose to expose P-state as dependent
and hardware-coordinated to OS power management (OSPM) policy. To support
OSPMs, multi-core processors must have additional built-in support for P-state hard-
ware coordination and feedback.

Intel 64 and IA-32 processors with dependent P-state amongst a subset of logical
processors permit hardware coordination of P-state and provide a hardware-coordi-
nation feedback mechanism using IA32_MPERF MSR and IA32_APERF MSR. See
Figure 14-1 for an overview of the two 64-bit MSRs and the bullets below for a
detailed description:

• Use CPUID to check the P-State hardware coordination feedback capability bit.
CPUID.06H.ECX[Bit 0] = 1 indicates IA32_MPERF MSR and IA32_APERF MSR are
present.

• IA32_MPERF MSR (0xE7) increments in proportion to a fixed frequency, which is
configured when the processor is booted.

Figure 14-1. IA32_MPERF MSR and IA32_APERF MSR for P-state Coordination

63 0

IA32_MPERF (Addr: E7H)

630

IA32_APERF (Addr: E8H)
14-2 Vol. 3B

POWER AND THERMAL MANAGEMENT
• IA32_APERF MSR (0xE8) increments in proportion to actual performance, while
accounting for hardware coordination of P-state and TM1/TM2; or software
initiated throttling.

• The MSRs are per logical processor; they measure performance only when the
targeted processor is in the C0 state.

• Only the IA32_APERF/IA32_MPERF ratio is architecturally defined; software
should not attach meaning to the content of the individual of IA32_APERF or
IA32_MPERF MSRs.

• When either MSR overflows, both MSRs are reset to zero and continue to
increment.

• Both MSRs are full 64-bits counters. Each MSR can be written to independently.
However, software should follow the guidelines illustrated in Example 14-1.

If P-states are exposed by the BIOS as hardware coordinated, software is expected
to confirm processor support for P-state hardware coordination feedback and use the
feedback mechanism to make P-state decisions. The OSPM is expected to either save
away the current MSR values (for determination of the delta of the counter ratio at a
later time) or reset both MSRs (execute WRMSR with 0 to these MSRs individually) at
the start of the time window used for making the P-state decision. When not reset-
ting the values, overflow of the MSRs can be detected by checking whether the new
values read are less than the previously saved values.

Example 14-1 demonstrates steps for using the hardware feedback mechanism
provided by IA32_APERF MSR and IA32_MPERF MSR to determine a target P-state.

Example 14-1. Determine Target P-state From Hardware Coordinated Feedback

DWORD PercentBusy; // Percentage of processor time not idle.
// Measure “PercentBusy“ during previous sampling window.
// Typically, “PercentBusy“ is measure over a time scale suitable for
// power management decisions
//
// RDMSR of MCNT and ACNT should be performed without delay.
// Software needs to exercise care to avoid delays between
// the two RDMSRs (for example, interrupts).
MCNT = RDMSR(IA32_MPERF);
ACNT = RDMSR(IA32_APERF);

// PercentPerformance indicates the percentage of the processor
// that is in use. The calculation is based on the PercentBusy,
// that is the percentage of processor time not idle and the P-state
// hardware coordinated feedback using the ACNT/MCNT ratio.
// Note that both values need to be calculated over the same
// time window.

PercentPerformance = PercentBusy * (ACNT/MCNT);
Vol. 3B 14-3

POWER AND THERMAL MANAGEMENT
// This example does not cover the additional logic or algorithms
// necessary to coordinate multiple logical processors to a target P-state.

TargetPstate = FindPstate(PercentPerformance);

if (TargetPstate != currentPstate) {
SetPState(TargetPstate);

}
// WRMSR of MCNT and ACNT should be performed without delay.

 // Software needs to exercise care to avoid delays between
 // the two WRMSRs (for example, interrupts).
 WRMSR(IA32_MPERF, 0);
 WRMSR(IA32_APERF, 0);

14.3 SYSTEM SOFTWARE CONSIDERATIONS AND
OPPORTUNISTIC PROCESSOR PERFORMANCE
OPERATION

An Intel 64 processor may support a form of processor operation that takes advan-
tage of design headroom to opportunistically increase performance. In Intel Core i7
processors, Intel Turbo Boost Technology can convert thermal headroom into higher
performance across multi-threaded and single-threaded workloads. In Intel Core 2
processors, Intel Dynamic Acceleration can convert thermal headroom into higher
performance if only one thread is active.

14.3.1 Intel Dynamic Acceleration
Intel Core 2 Duo processor T 7700 introduces Intel Dynamic Acceleration (IDA). IDA
takes advantage of thermal design headroom and opportunistically allows a single
core to operate at a higher performance level when the operating system requests
increased performance.

14.3.2 System Software Interfaces for Opportunistic Processor
Performance Operation

Opportunistic processor operation, applicable to Intel Dynamic Acceleration and Intel
Turbo Boost Technology, has the following characteristics:
• A transition from a normal state of operation (e.g. IDA/Turbo mode disengaged)

to a target state is not guaranteed, but may occur opportunistically after the
14-4 Vol. 3B

POWER AND THERMAL MANAGEMENT
corresponding enable mechanism is activated, the headroom is available and
certain criteria are met.

• The opportunistic processor performance operation is generally transparent to
most application software.

• System software (BIOS and Operating system) must be aware of hardware
support for opportunistic processor performance operation and may need to
temporarily disengage opportunistic processor performance operation when it
requires more predictable processor operation.

• When opportunistic processor performance operation is engaged, the OS should
use hardware coordination feedback mechanisms to prevent un-intended policy
effects if it is activated during inappropriate situations.

14.3.2.1 Discover Hardware Support and Enabling of Opportunistic
Processor Operation

If an Intel 64 processor has hardware support for opportunistic processor perfor-
mance operation, the power-on default state of IA32_MISC_ENABLE[38] indicates
the presence of such hardware support. For Intel 64 processors that support oppor-
tunistic processor performance operation, the default value is 1, indicating its pres-
ence. For processors that do not support opportunistic processor performance
operation, the default value is 0. The power-on default value of
IA32_MISC_ENABLE[38] allows BIOS to detect the presence of hardware support of
opportunistic processor performance operation.

IA32_MISC_ENABLE[38] is shared across all logical processors in a physical
package. It is written by BIOS during platform initiation to enable/disable opportu-
nistic processor operation in conjunction of OS power management capabilities, see
Section 14.3.2.2. BIOS can set IA32_MISC_ENABLE[38] with 1 to disable opportu-
nistic processor performance operation; it must clear the default value of
IA32_MISC_ENABLE[38] to 0 to enable opportunistic processor performance opera-
tion. OS and applications must use CPUID leaf 06H if it needs to detect processors
that has opportunistic processor operation enabled.

When CPUID is executed with EAX = 06H on input, Bit 1 of EAX in Leaf 06H (i.e.
CPUID.06H:EAX[1]) indicates opportunistic processor performance operation, such
as IDA, has been enabled by BIOS.

Opportunistic processor performance operation can be disabled by setting bit 38 of
IA32_MISC_ENABLE. This mechanism is intended for BIOS only. If
IA32_MISC_ENABLE[38] is set, CPUID.06H:EAX[1] will return 0.

14.3.2.2 OS Control of Opportunistic Processor Performance Operation
There may be phases of software execution in which system software cannot tolerate
the non-deterministic aspects of opportunistic processor performance operation. For
example, when calibrating a real-time workload to make a CPU reservation request
Vol. 3B 14-5

POWER AND THERMAL MANAGEMENT
to the OS, it may be undesirable to allow the possibility of the processor delivering
increased performance that cannot be sustained after the calibration phase.

System software can temporarily disengage opportunistic processor performance
operation by setting bit 32 of the IA32_PERF_CTL MSR (0199H), using a read-
modify-write sequence on the MSR. The opportunistic processor performance opera-
tion can be re-engaged by clearing bit 32 in IA32_PERF_CTL MSR, using a read-
modify-write sequence. The DISENAGE bit in IA32_PERF_CTL is not reflected in bit
32 of the IA32_PERF_STATUS MSR (0198H), and it is not shared between logical
processors in a physical package. In order for OS to engage IDA/Turbo mode, the
BIOS must
• enable opportunistic processor performance operation, as described in Section

14.3.2.1,
• expose the operating points associated with IDA/Turbo mode to the OS.

14.3.2.3 Required Changes to OS Power Management P-state Policy
Intel Dynamic Acceleration (IDA) and Intel Turbo Boost Technology can provide
opportunistic performance greater than the performance level corresponding to the
maximum qualified frequency of the processor (see CPUID’s brand string informa-
tion). System software can use a pair of MSRs to observe performance feedback.
Software must query for the presence of IA32_APERF and IA32_MPERF (see Section
14.2). The ratio between IA32_APERF and IA32_MPERF is architecturally defined and
a value greater than unity indicates performance increase occurred during the obser-
vation period due to IDA. Without incorporating such performance feedback, the
target P-state evaluation algorithm can result in a non-optimal P-state target.

There are other scenarios under which OS power management may want to disable
IDA, some of these are listed below:
• When engaging ACPI defined passive thermal management, it may be more

effective to disable IDA for the duration of passive thermal management.
• When the user has indicated a policy preference of power savings over perfor-

mance, OS power management may want to disable IDA while that policy is in
effect.

Figure 14-2. IA32_PERF_CTL Register

63 0

Reserved

16

EIST Transition Target

153233 31

IDA/Turbo DISENGAGE
14-6 Vol. 3B

POWER AND THERMAL MANAGEMENT
14.3.2.4 Application Awareness of Opportunistic Processor Operation
(Optional)

There may be situations that an end user or application software wishes to be aware
of turbo mode activity. It is possible for an application-level utility to periodically
check the occurrences of opportunistic processor operation. The basic elements of an
algorithm is described below, using the characteristics of Intel Turbo Boost Tech-
nology as example.

Using an OS-provided timer service, application software can periodically calculate
the ratio between unhalted-core-clockticks (UCC) relative to the unhalted-reference-
clockticks (URC) on each logical processor to determine if that logical processor had
been requested by OS to run at some frequency higher than the invariant TSC
frequency, or the OS has determined system-level demand has reduced sufficiently
to put that logical processor into a lower-performance p-state or even lower-activity
state.

If an application software have access to information of the base operating ratio
between the invariant TSC frequency and the base clock (133.33 MHz), it can convert
the sampled ratio into a dynamic frequency estimate for each prior sampling period.
The base operating ratio can be read from MSR_PLATFORM_INFO[15:8].

The periodic sampling technique is depicted in Figure 14-3 and described below:

• The sampling period chosen by the application (to program an OS timer service)
should be sufficiently large to avoid excessive polling overhead to other applica-
tions or tasks managed by the OS.

Figure 14-3. Periodic Query of Activity Ratio of Opportunistic Processor Operation

LP 2
LP 1

n-1 n+3Sample period

LP 0

n+2n n+1

UCCn, 0

URCn, 0

FixedCtr1

FixedCtr2

LP 2
LP 1

LP 0

LP 2
LP 1

LP 0

LP 2
LP 1

LP 0

UCCn+1, 0

URCn+1, 0

UCCn+2, 0

URCn+2, 0

UCCn+3, 0

URCn+3, 0

Logical Processor i Turbo Activity Ratio = (UCCn+1, i - UCCn, i) / (URCn+1, i - URCn, i)

Unhalted core clockticks

Unhalted reference
clockticks

.....
Vol. 3B 14-7

POWER AND THERMAL MANAGEMENT
• When the OS timer service transfers control, the application can use RDPMC
(with ECX = 4000_0001H) to read IA32_PERF_FIXED_CTR1 (MSR address 30AH)
to record the unhalted core clocktick (UCC) value; followed by RDPMC
(ECX=4000_0002H) to read IA32_PERF_FIXED_CTR2 (MSR address 30BH) to
record the unhalted reference clocktick (URC) value. This pair of values is needed
for each logical processor for each sampling period.

• The application can calculate the Turbo activity ratio based on the difference of
UCC between each sample period, over the difference of URC difference. The
effective frequency of each sample period of the logical processor, i, can be
estimated by:
(UCCn+1, i - UCC n, i)/(URCn+1, i - URC n, i)* Base_operating_ratio* 133.33MHz

It is possible that the OS had requested a lower-performance P-state during a
sampling period. Thus the ratio (UCCn+1, i - UCC n, i)/(URCn+1, i - URC n, i) can reflect
the average of Turbo activity (driving the ratio above unity) and some lower P-state
transitions (causing the ratio to be < 1).

It is also possible that the OS might requested C-state transitions when the demand
is low. The above ratio generally does not account for cycles any logical processor
was idle. On Intel Core i7 processors, an application can make use of the time stamp
counter (IA-32_TSC) running at a constant frequency (i.e. Base_operating_ratio*
133.33MHz) during C-states. Thus software can calculate ratios that can indicate
fractions of sample period spent in the C0 state, using the unhalted reference clock-
ticks and the invariant TSC. Note the estimate of fraction spent in C0 may be affected
by SMM handler if the system software makes use of the “FREEZE_WHILE_SMM_EN“
capability to freeze performance counter values while the SMM handler is servicing
an SMI (see Chapter 23, “Introduction to Virtual-Machine Extensions”).

14.3.3 Intel Turbo Boost Technology
Intel Turbo Boost Technology is supported in Intel Core i7 processors and Intel Xeon
processors based on Intel® microarchitecture code name Nehalem. It uses the same
principle of leveraging thermal headroom to dynamically increase processor perfor-
mance for single-threaded and multi-threaded/multi-tasking environment. The
programming interface described in Section 14.3.2 also applies to Intel Turbo Boost
Technology.

14.3.4 Performance and Energy Bias Hint support
Intel 64 processors may support additional software hint to guide the hardware
heuristic of power management features to favor increasing dynamic performance or
conserve energy consumption.

Software can detect processor's capability to support performance-energy bias pref-
erence hint by examining bit 3 of ECX in CPUID leaf 6. The processor supports this
14-8 Vol. 3B

POWER AND THERMAL MANAGEMENT
capability if CPUID.06H:ECX.SETBH[bit 3] is set and it also implies the presence of a
new architectural MSR called IA32_ENERGY_PERF_BIAS (1B0H).

Software can program the lowest four bits of IA32_ENERGY_PERF_BIAS MSR with a
value from 0 - 15. The values represent a sliding scale, where a value of 0 (the
default reset value) corresponds to a hint preference for highest performance and a
value of 15 corresponds to the maximum energy savings. A value of 7 roughly trans-
lates into a hint to balance performance with energy consumption

The layout of IA32_ENERGY_PERF_BIAS is shown in Figure 14-4. The scope of
IA32_ENERGY_PERF_BIAS is per logical processor, which means that each of the
logical processors in the package can be programmed with a different value. This
may be especially important in virtualization scenarios, where the performance /
energy requirements of one logical processor may differ from the other. Conflicting
"hints" from various logical processors at higher hierarchy level will be resolved in
favor of performance over energy savings.

Software can use whatever criteria it sees fit to program the MSR with the appro-
priate value. However, the value only serves as a hint to the hardware and the actual
impact on performance and energy savings is model specific.

14.4 MWAIT EXTENSIONS FOR ADVANCED POWER
MANAGEMENT

IA-32 processors may support a number of C-states1 that reduce power consumption
for inactive states. Intel Core Solo and Intel Core Duo processors support both
deeper C-state and MWAIT extensions that can be used by OS to implement power
management policy.

Figure 14-4. IA32_ENERGY_PERF_BIAS Register

1. The processor-specific C-states defined in MWAIT extensions can map to ACPI defined C-state
types (C0, C1, C2, C3). The mapping relationship depends on the definition of a C-state by proces-
sor implementation and is exposed to OSPM by the BIOS using the ACPI defined _CST table.

63 0

Reserved

Energy Policy Preference Hint

4 3
Vol. 3B 14-9

POWER AND THERMAL MANAGEMENT
Software should use CPUID to discover if a target processor supports the enumera-
tion of MWAIT extensions. If CPUID.05H.ECX[Bit 0] = 1, the target processor
supports MWAIT extensions and their enumeration (see Chapter 3, “Instruction Set
Reference, A-L,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A).

If CPUID.05H.ECX[Bit 1] = 1, the target processor supports using interrupts as
break-events for MWAIT, even when interrupts are disabled. Use this feature to
measure C-state residency as follows:
• Software can write to bit 0 in the MWAIT Extensions register (ECX) when issuing

an MWAIT to enter into a processor-specific C-state or sub C-state.
• When a processor comes out of an inactive C-state or sub C-state, software can

read a timestamp before an interrupt service routine (ISR) is potentially
executed.

CPUID.05H.EDX allows software to enumerate processor-specific C-states and sub
C-states available for use with MWAIT extensions. IA-32 processors may support
more than one C-state of a given C-state type. These are called sub C-states. Numer-
ically higher C-state have higher power savings and latency (upon entering and
exiting) than lower-numbered C-state.

At CPL = 0, system software can specify desired C-state and sub C-state by using the
MWAIT hints register (EAX). Processors will not go to C-state and sub C-state deeper
than what is specified by the hint register. If CPL > 0 and if MONITOR/MWAIT is
supported at CPL > 0, the processor will only enter C1-state (regardless of the
C-state request in the hints register).

Executing MWAIT generates an exception on processors operating at a privilege level
where MONITOR/MWAIT are not supported.

NOTE
If MWAIT is used to enter a C-state (including sub C-state) that is
numerically higher than C1, a store to the address range armed by
MONITOR instruction will cause the processor to exit MWAIT if the
store was originated by other processor agents. A store from non-
processor agent may not cause the processor to exit MWAIT.

14.5 THERMAL MONITORING AND PROTECTION
The IA-32 architecture provides the following mechanisms for monitoring tempera-
ture and controlling thermal power:

1. The catastrophic shutdown detector forces processor execution to stop if the
processor’s core temperature rises above a preset limit.

2. Automatic and adaptive thermal monitoring mechanisms force the
processor to reduce it’s power consumption in order to operate within predeter-
mined temperature limits.
14-10 Vol. 3B

POWER AND THERMAL MANAGEMENT
3. The software controlled clock modulation mechanism permits operating
systems to implement power management policies that reduce power
consumption; this is in addition to the reduction offered by automatic thermal
monitoring mechanisms.

4. On-die digital thermal sensor and interrupt mechanisms permit the OS to
manage thermal conditions natively without relying on BIOS or other system
board components.

The first mechanism is not visible to software. The other three mechanisms are
visible to software using processor feature information returned by executing CPUID
with EAX = 1.

The second mechanism includes:
• Automatic thermal monitoring provides two modes of operation. One mode

modulates the clock duty cycle; the second mode changes the processor’s
frequency. Both modes are used to control the core temperature of the processor.

• Adaptive thermal monitoring can provide flexible thermal management on
processors made of multiple cores.

The third mechanism modulates the clock duty cycle of the processor. As shown in
Figure 14-5, the phrase ‘duty cycle’ does not refer to the actual duty cycle of the
clock signal. Instead it refers to the time period during which the clock signal is
allowed to drive the processor chip. By using the stop clock mechanism to control
how often the processor is clocked, processor power consumption can be modulated.

For previous automatic thermal monitoring mechanisms, software controlled mecha-
nisms that changed processor operating parameters to impact changes in thermal
conditions. Software did not have native access to the native thermal condition of the
processor; nor could software alter the trigger condition that initiated software
program control.

The fourth mechanism (listed above) provides access to an on-die digital thermal
sensor using a model-specific register and uses an interrupt mechanism to alert soft-
ware to initiate digital thermal monitoring.

Figure 14-5. Processor Modulation Through Stop-Clock Mechanism

Clock Applied to Processor

Stop-Clock Duty Cycle

25% Duty Cycle (example only)
Vol. 3B 14-11

POWER AND THERMAL MANAGEMENT
14.5.1 Catastrophic Shutdown Detector
P6 family processors introduced a thermal sensor that acts as a catastrophic shut-
down detector. This catastrophic shutdown detector was also implemented in
Pentium 4, Intel Xeon and Pentium M processors. It is always enabled. When
processor core temperature reaches a factory preset level, the sensor trips and
processor execution is halted until after the next reset cycle.

14.5.2 Thermal Monitor
Pentium 4, Intel Xeon and Pentium M processors introduced a second temperature
sensor that is factory-calibrated to trip when the processor’s core temperature
crosses a level corresponding to the recommended thermal design envelop. The trip-
temperature of the second sensor is calibrated below the temperature assigned to
the catastrophic shutdown detector.

14.5.2.1 Thermal Monitor 1
The Pentium 4 processor uses the second temperature sensor in conjunction with a
mechanism called Thermal Monitor 1 (TM1) to control the core temperature of the
processor. TM1 controls the processor’s temperature by modulating the duty cycle of
the processor clock. Modulation of duty cycles is processor model specific. Note that
the processors STPCLK# pin is not used here; the stop-clock circuitry is controlled
internally.

Support for TM1 is indicated by CPUID.1:EDX.TM[bit 29] = 1.

TM1 is enabled by setting the thermal-monitor enable flag (bit 3) in
IA32_MISC_ENABLE [see Chapter 34, “Model-Specific Registers (MSRs),”]. Following
a power-up or reset, the flag is cleared, disabling TM1. BIOS is required to enable
only one automatic thermal monitoring modes. Operating systems and applications
must not disable the operation of these mechanisms.

14.5.2.2 Thermal Monitor 2
An additional automatic thermal protection mechanism, called Thermal Monitor 2
(TM2), was introduced in the Intel Pentium M processor and also incorporated in
newer models of the Pentium 4 processor family. Intel Core Duo and Solo processors,
and Intel Core 2 Duo processor family all support TM1 and TM2. TM2 controls the
core temperature of the processor by reducing the operating frequency and voltage
of the processor and offers a higher performance level for a given level of power
reduction than TM1.

TM2 is triggered by the same temperature sensor as TM1. The mechanism to enable
TM2 may be implemented differently across various IA-32 processor families with
different CPUID signatures in the family encoding value, but will be uniform within an
IA-32 processor family.
14-12 Vol. 3B

POWER AND THERMAL MANAGEMENT
Support for TM2 is indicated by CPUID.1:ECX.TM2[bit 8] = 1.

14.5.2.3 Two Methods for Enabling TM2
On processors with CPUID family/model/stepping signature encoded as 0x69n or
0x6Dn (early Pentium M processors), TM2 is enabled if the TM_SELECT flag (bit 16)
of the MSR_THERM2_CTL register is set to 1 (Figure 14-6) and bit 3 of the
IA32_MISC_ENABLE register is set to 1.

Following a power-up or reset, the TM_SELECT flag may be cleared. BIOS is required
to enable either TM1 or TM2. Operating systems and applications must not disable
mechanisms that enable TM1 or TM2. If bit 3 of the IA32_MISC_ENABLE register is
set and TM_SELECT flag of the MSR_THERM2_CTL register is cleared, TM1 is
enabled.

On processors introduced after the Pentium 4 processor (this includes most Pentium
M processors), the method used to enable TM2 is different. TM2 is enable by setting
bit 13 of IA32_MISC_ENABLE register to 1. This applies to Intel Core Duo, Core Solo,
and Intel Core 2 processor family.

The target operating frequency and voltage for the TM2 transition after TM2 is trig-
gered is specified by the value written to MSR_THERM2_CTL, bits 15:0 (Figure 14-7).
Following a power-up or reset, BIOS is required to enable at least one of these two
thermal monitoring mechanisms. If both TM1 and TM2 are supported, BIOS may
choose to enable TM2 instead of TM1. Operating systems and applications must not
disable the mechanisms that enable TM1or TM2; and they must not alter the value in
bits 15:0 of the MSR_THERM2_CTL register.

Figure 14-6. MSR_THERM2_CTL Register On Processors with CPUID
Family/Model/Stepping Signature Encoded as 0x69n or 0x6Dn

TM_SELECT

Reserved

31 0

Reserved

16
Vol. 3B 14-13

POWER AND THERMAL MANAGEMENT
14.5.2.4 Performance State Transitions and Thermal Monitoring
If the thermal control circuitry (TCC) for thermal monitor (TM1/TM2) is active, writes
to the IA32_PERF_CTL will effect a new target operating point as follows:
• If TM1 is enabled and the TCC is engaged, the performance state transition can

commence before the TCC is disengaged.
• If TM2 is enabled and the TCC is engaged, the performance state transition

specified by a write to the IA32_PERF_CTL will commence after the TCC has
disengaged.

14.5.2.5 Thermal Status Information
The status of the temperature sensor that triggers the thermal monitor (TM1/TM2) is
indicated through the thermal status flag and thermal status log flag in the
IA32_THERM_STATUS MSR (see Figure 14-8).

The functions of these flags are:
• Thermal Status flag, bit 0 — When set, indicates that the processor core

temperature is currently at the trip temperature of the thermal monitor and that
the processor power consumption is being reduced via either TM1 or TM2,
depending on which is enabled. When clear, the flag indicates that the core
temperature is below the thermal monitor trip temperature. This flag is read only.

• Thermal Status Log flag, bit 1 — When set, indicates that the thermal sensor
has tripped since the last power-up or reset or since the last time that software
cleared this flag. This flag is a sticky bit; once set it remains set until cleared by
software or until a power-up or reset of the processor. The default state is clear.

Figure 14-7. MSR_THERM2_CTL Register for Supporting TM2

63 0

Reserved

15

TM2 Transition Target
14-14 Vol. 3B

POWER AND THERMAL MANAGEMENT
After the second temperature sensor has been tripped, the thermal monitor
(TM1/TM2) will remain engaged for a minimum time period (on the order of 1 ms).
The thermal monitor will remain engaged until the processor core temperature drops
below the preset trip temperature of the temperature sensor, taking hysteresis into
account.

While the processor is in a stop-clock state, interrupts will be blocked from inter-
rupting the processor. This holding off of interrupts increases the interrupt latency,
but does not cause interrupts to be lost. Outstanding interrupts remain pending until
clock modulation is complete.

The thermal monitor can be programmed to generate an interrupt to the processor
when the thermal sensor is tripped. The delivery mode, mask and vector for this
interrupt can be programmed through the thermal entry in the local APIC’s LVT (see
Section 10.5.1, “Local Vector Table”). The low-temperature interrupt enable and
high-temperature interrupt enable flags in the IA32_THERM_INTERRUPT MSR (see
Figure 14-9) control when the interrupt is generated; that is, on a transition from a
temperature below the trip point to above and/or vice-versa.

• High-Temperature Interrupt Enable flag, bit 0 — Enables an interrupt to be
generated on the transition from a low-temperature to a high-temperature when
set; disables the interrupt when clear.(R/W).

• Low-Temperature Interrupt Enable flag, bit 1 — Enables an interrupt to be
generated on the transition from a high-temperature to a low-temperature when
set; disables the interrupt when clear.

The thermal monitor interrupt can be masked by the thermal LVT entry. After a
power-up or reset, the low-temperature interrupt enable and high-temperature

Figure 14-8. IA32_THERM_STATUS MSR

Figure 14-9. IA32_THERM_INTERRUPT MSR

63 0

Reserved

12

Thermal Status
Thermal Status Log

63 0

Reserved

12

High-Temperature Interrupt Enable
Low-Temperature Interrupt Enable
Vol. 3B 14-15

POWER AND THERMAL MANAGEMENT
interrupt enable flags in the IA32_THERM_INTERRUPT MSR are cleared (interrupts
are disabled) and the thermal LVT entry is set to mask interrupts. This interrupt
should be handled either by the operating system or system management mode
(SMM) code.

Note that the operation of the thermal monitoring mechanism has no effect upon the
clock rate of the processor's internal high-resolution timer (time stamp counter).

14.5.2.6 Adaptive Thermal Monitor
The Intel Core 2 Duo processor family supports enhanced thermal management
mechanism, referred to as Adaptive Thermal Monitor (Adaptive TM).

Unlike TM2, Adaptive TM is not limited to one TM2 transition target. During a thermal
trip event, Adaptive TM (if enabled) selects an optimal target operating point based
on whether or not the current operating point has effectively cooled the processor.

Similar to TM2, Adaptive TM is enable by BIOS. The BIOS is required to test the TM1
and TM2 feature flags and enable all available thermal control mechanisms (including
Adaptive TM) at platform initiation.

Adaptive TM is available only to a subset of processors that support TM2.

In each chip-multiprocessing (CMP) silicon die, each core has a unique thermal
sensor that triggers independently. These thermal sensor can trigger TM1 or TM2
transitions in the same manner as described in Section 14.5.2.1 and Section
14.5.2.2. The trip point of the thermal sensor is not programmable by software since
it is set during the fabrication of the processor.

Each thermal sensor in a processor core may be triggered independently to engage
thermal management features. In Adaptive TM, both cores will transition to a lower
frequency and/or lower voltage level if one sensor is triggered.

Triggering of this sensor is visible to software via the thermal interrupt LVT entry in
the local APIC of a given core.

14.5.3 Software Controlled Clock Modulation
Pentium 4, Intel Xeon and Pentium M processors also support software-controlled
clock modulation. This provides a means for operating systems to implement a power
management policy to reduce the power consumption of the processor. Here, the
stop-clock duty cycle is controlled by software through the
IA32_CLOCK_MODULATION MSR (see Figure 14-10).
14-16 Vol. 3B

POWER AND THERMAL MANAGEMENT
The IA32_CLOCK_MODULATION MSR contains the following flag and field used to
enable software-controlled clock modulation and to select the clock modulation duty
cycle:
• On-Demand Clock Modulation Enable, bit 4 — Enables on-demand software

controlled clock modulation when set; disables software-controlled clock
modulation when clear.

• On-Demand Clock Modulation Duty Cycle, bits 1 through 3 — Selects the
on-demand clock modulation duty cycle (see Table 14-1). This field is only active
when the on-demand clock modulation enable flag is set.

Note that the on-demand clock modulation mechanism (like the thermal monitor)
controls the processor’s stop-clock circuitry internally to modulate the clock signal.
The STPCLK# pin is not used in this mechanism.

The on-demand clock modulation mechanism can be used to control processor power
consumption. Power management software can write to the
IA32_CLOCK_MODULATION MSR to enable clock modulation and to select a modula-
tion duty cycle. If on-demand clock modulation and TM1 are both enabled and the
thermal status of the processor is hot (bit 0 of the IA32_THERM_STATUS MSR is set),

Figure 14-10. IA32_CLOCK_MODULATION MSR

Table 14-1. On-Demand Clock Modulation Duty Cycle Field Encoding

Duty Cycle Field Encoding Duty Cycle

000B Reserved

001B 12.5% (Default)

010B 25.0%

011B 37.5%

100B 50.0%

101B 63.5%

110B 75%

111B 87.5%

63 0

Reserved

13

On-Demand Clock Modulation Duty Cycle
On-Demand Clock Modulation Enable

45

Reserved
Vol. 3B 14-17

POWER AND THERMAL MANAGEMENT
clock modulation at the duty cycle specified by TM1 takes precedence, regardless of
the setting of the on-demand clock modulation duty cycle.

For Hyper-Threading Technology enabled processors, the
IA32_CLOCK_MODULATION register is duplicated for each logical processor. In order
for the On-demand clock modulation feature to work properly, the feature must be
enabled on all the logical processors within a physical processor. If the programmed
duty cycle is not identical for all the logical processors, the processor clock will modu-
late to the highest duty cycle programmed.

For the P6 family processors, on-demand clock modulation was implemented
through the chipset, which controlled clock modulation through the processor’s
STPCLK# pin.

14.5.3.1 Extension of Software Controlled Clock Modulation
Extension of the software controlled clock modulation facility supports on-demand
clock modulation duty cycle with 4-bit dynamic range (increased from 3-bit range).
Granularity of clock modulation duty cycle is increased to 6.25% (compared to
12.5%).

Four bit dynamic range control is provided by using bit 0 in conjunction with bits 3:1
of the IA32_CLOCK_MODULATION MSR (see Figure 14-11).

Extension to software controlled clock modulation is supported only if
CPUID.06H:EAX[Bit 5] = 1. If CPUID.06H:EAX[Bit 5] = 0, then bit 0 of
IA32_CLOCK_MODULATION is reserved.

14.5.4 Detection of Thermal Monitor and Software Controlled
Clock Modulation Facilities

The ACPI flag (bit 22) of the CPUID feature flags indicates the presence of the
IA32_THERM_STATUS, IA32_THERM_INTERRUPT, IA32_CLOCK_MODULATION
MSRs, and the xAPIC thermal LVT entry.

The TM1 flag (bit 29) of the CPUID feature flags indicates the presence of the auto-
matic thermal monitoring facilities that modulate clock duty cycles.

Figure 14-11. IA32_CLOCK_MODULATION MSR with Clock Modulation Extension

63 0

Reserved

3

Extended On-Demand Clock Modulation Duty Cycle
On-Demand Clock Modulation Enable

45

Reserved
14-18 Vol. 3B

POWER AND THERMAL MANAGEMENT
14.5.4.1 Detection of Software Controlled Clock Modulation Extension
Processor’s support of software controlled clock modulation extension is indicated by
CPUID.06H:EAX[Bit 5] = 1.

14.5.5 On Die Digital Thermal Sensors
On die digital thermal sensor can be read using an MSR (no I/O interface). In Intel
Core Duo processors, each core has a unique digital sensor whose temperature is
accessible using an MSR. The digital thermal sensor is the preferred method for
reading the die temperature because (a) it is located closer to the hottest portions of
the die, (b) it enables software to accurately track the die temperature and the
potential activation of thermal throttling.

14.5.5.1 Digital Thermal Sensor Enumeration
The processor supports a digital thermal sensor if CPUID.06H.EAX[0] = 1. If the
processor supports digital thermal sensor, EBX[bits 3:0] determine the number of
thermal thresholds that are available for use.

Software sets thermal thresholds by using the IA32_THERM_INTERRUPT MSR. Soft-
ware reads output of the digital thermal sensor using the IA32_THERM_STATUS
MSR.

14.5.5.2 Reading the Digital Sensor
Unlike traditional analog thermal devices, the output of the digital thermal sensor is
a temperature relative to the maximum supported operating temperature of the
processor.

Temperature measurements returned by digital thermal sensors are always at or
below TCC activation temperature. Critical temperature conditions are detected
using the “Critical Temperature Status” bit. When this bit is set, the processor is
operating at a critical temperature and immediate shutdown of the system should
occur. Once the “Critical Temperature Status” bit is set, reliable operation is not guar-
anteed.

See Figure 14-12 for the layout of IA32_THERM_STATUS MSR. Bit fields include:
• Thermal Status (bit 0, RO) — This bit indicates whether the digital thermal

sensor high-temperature output signal (PROCHOT#) is currently active. Bit 0 = 1
indicates the feature is active. This bit may not be written by software; it reflects
the state of the digital thermal sensor.

• Thermal Status Log (bit 1, R/WC0) — This is a sticky bit that indicates the
history of the thermal sensor high temperature output signal (PROCHOT#).
Bit 1 = 1 if PROCHOT# has been asserted since a previous RESET or the last time
software cleared the bit. Software may clear this bit by writing a zero.
Vol. 3B 14-19

POWER AND THERMAL MANAGEMENT
• PROCHOT# or FORCEPR# Event (bit 2, RO) — Indicates whether PROCHOT#
or FORCEPR# is being asserted by another agent on the platform.

• PROCHOT# or FORCEPR# Log (bit 3, R/WC0) — Sticky bit that indicates
whether PROCHOT# or FORCEPR# has been asserted by another agent on the
platform since the last clearing of this bit or a reset. If bit 3 = 1, PROCHOT# or
FORCEPR# has been externally asserted. Software may clear this bit by writing a
zero. External PROCHOT# assertions are only acknowledged if the Bidirectional
Prochot feature is enabled.

• Critical Temperature Status (bit 4, RO) — Indicates whether the critical
temperature detector output signal is currently active. If bit 4 = 1, the critical
temperature detector output signal is currently active.

• Critical Temperature Log (bit 5, R/WC0) — Sticky bit that indicates whether
the critical temperature detector output signal has been asserted since the last
clearing of this bit or reset. If bit 5 = 1, the output signal has been asserted.
Software may clear this bit by writing a zero.

• Thermal Threshold #1 Status (bit 6, RO) — Indicates whether the actual
temperature is currently higher than or equal to the value set in Thermal
Threshold #1. If bit 6 = 0, the actual temperature is lower. If bit 6 = 1, the
actual temperature is greater than or equal to TT#1. Quantitative information of
actual temperature can be inferred from Digital Readout, bits 22:16.

• Thermal Threshold #1 Log (bit 7, R/WC0) — Sticky bit that indicates
whether the Thermal Threshold #1 has been reached since the last clearing of

Figure 14-12. IA32_THERM_STATUS Register

63 0

Reserved

15

Reading Valid

1234581016222327

Resolution in Deg. Celsius
Digital Readout

Thermal Threshold #2 Log
Thermal Threshold #2 Status
Thermal Threshold #1 Log
Thermal Threshold #1 Status
Critical Temperature Log

6793132

Critical Temperature Status
PROCHOT# or FORCEPR# Log
PROCHOT# or FORCEPR# Event
Thermal Status Log
Thermal Status

11

Power Limit Notification Log
Power Limit Notification Status
14-20 Vol. 3B

POWER AND THERMAL MANAGEMENT
this bit or a reset. If bit 7 = 1, the Threshold #1 has been reached. Software may
clear this bit by writing a zero.

• Thermal Threshold #2 Status (bit 8, RO) — Indicates whether actual
temperature is currently higher than or equal to the value set in Thermal
Threshold #2. If bit 8 = 0, the actual temperature is lower. If bit 8 = 1, the
actual temperature is greater than or equal to TT#2. Quantitative information of
actual temperature can be inferred from Digital Readout, bits 22:16.

• Thermal Threshold #2 Log (bit 9, R/WC0) — Sticky bit that indicates
whether the Thermal Threshold #2 has been reached since the last clearing of
this bit or a reset. If bit 9 = 1, the Thermal Threshold #2 has been reached.
Software may clear this bit by writing a zero.

• Power Limitation Status (bit 10, RO) — Indicates whether the processor is
currently operating below OS-requested P-state (specified in IA32_PERF_CTL) or
OS-requested clock modulation duty cycle (specified in
IA32_CLOCK_MODULATION). This field is supported only if CPUID.06H:EAX[bit
4] = 1. Package level power limit notification can be delivered independently to
IA32_PACKAGE_THERM_STATUS MSR.

• Power Notification Log (bit 11, R/WCO) — Sticky bit that indicates the
processor went below OS-requested P-state or OS-requested clock modulation
duty cycle since the last clearing of this or RESET. This field is supported only if
CPUID.06H:EAX[bit 4] = 1. Package level power limit notification is indicated
independently in IA32_PACKAGE_THERM_STATUS MSR.

• Digital Readout (bits 22:16, RO) — Digital temperature reading in 1 degree
Celsius relative to the TCC activation temperature.
0: TCC Activation temperature,
1: (TCC Activation - 1) , etc. See the processor’s data sheet for details regarding
TCC activation.
A lower reading in the Digital Readout field (bits 22:16) indicates a higher actual
temperature.

• Resolution in Degrees Celsius (bits 30:27, RO) — Specifies the resolution
(or tolerance) of the digital thermal sensor. The value is in degrees Celsius. It is
recommended that new threshold values be offset from the current temperature
by at least the resolution + 1 in order to avoid hysteresis of interrupt generation.

• Reading Valid (bit 31, RO) — Indicates if the digital readout in bits 22:16 is
valid. The readout is valid if bit 31 = 1.

Changes to temperature can be detected using two thresholds (see Figure 14-13);
one is set above and the other below the current temperature. These thresholds have
the capability of generating interrupts using the core's local APIC which software
must then service. Note that the local APIC entries used by these thresholds are also
used by the Intel® Thermal Monitor; it is up to software to determine the source of a
specific interrupt.
Vol. 3B 14-21

POWER AND THERMAL MANAGEMENT
See Figure 14-13 for the layout of IA32_THERM_INTERRUPT MSR. Bit fields include:
• High-Temperature Interrupt Enable (bit 0, R/W) — This bit allows the BIOS

to enable the generation of an interrupt on the transition from low-temperature
to a high-temperature threshold. Bit 0 = 0 (default) disables interrupts;
bit 0 = 1 enables interrupts.

• Low-Temperature Interrupt Enable (bit 1, R/W) — This bit allows the BIOS
to enable the generation of an interrupt on the transition from high-temperature
to a low-temperature (TCC de-activation). Bit 1 = 0 (default) disables interrupts;
bit 1 = 1 enables interrupts.

• PROCHOT# Interrupt Enable (bit 2, R/W) — This bit allows the BIOS or OS
to enable the generation of an interrupt when PROCHOT# has been asserted by
another agent on the platform and the Bidirectional Prochot feature is enabled.
Bit 2 = 0 disables the interrupt; bit 2 = 1 enables the interrupt.

• FORCEPR# Interrupt Enable (bit 3, R/W) — This bit allows the BIOS or OS to
enable the generation of an interrupt when FORCEPR# has been asserted by
another agent on the platform. Bit 3 = 0 disables the interrupt; bit 3 = 1 enables
the interrupt.

• Critical Temperature Interrupt Enable (bit 4, R/W) — Enables the
generation of an interrupt when the Critical Temperature Detector has detected a
critical thermal condition. The recommended response to this condition is a
system shutdown. Bit 4 = 0 disables the interrupt; bit 4 = 1 enables the
interrupt.

• Threshold #1 Value (bits 14:8, R/W) — A temperature threshold, encoded
relative to the TCC Activation temperature (using the same format as the Digital
Readout). This threshold is compared against the Digital Readout and is used to

Figure 14-13. IA32_THERM_INTERRUPT Register

63 0

Reserved

15

Threshold #2 Interrupt Enable

1234581416222324

Threshold #2 Value
Threshold #1 Interrupt Enable
Threshold #1 Value
Overheat Interrupt Enable
FORCPR# Interrupt Enable
PROCHOT# Interrupt Enable
Low Temp. Interrupt Enable
High Temp. Interrupt Enable

25

Power Limit Notification Enable
14-22 Vol. 3B

POWER AND THERMAL MANAGEMENT
generate the Thermal Threshold #1 Status and Log bits as well as the Threshold
#1 thermal interrupt delivery.

• Threshold #1 Interrupt Enable (bit 15, R/W) — Enables the generation of
an interrupt when the actual temperature crosses the Threshold #1 setting in any
direction. Bit 15 = 0 enables the interrupt; bit 15 = 1 disables the interrupt.

• Threshold #2 Value (bits 22:16, R/W) —A temperature threshold, encoded
relative to the TCC Activation temperature (using the same format as the Digital
Readout). This threshold is compared against the Digital Readout and is used to
generate the Thermal Threshold #2 Status and Log bits as well as the Threshold
#2 thermal interrupt delivery.

• Threshold #2 Interrupt Enable (bit 23, R/W) — Enables the generation of
an interrupt when the actual temperature crosses the Threshold #2 setting in any
direction. Bit 23 = 0 enables the interrupt; bit 23 = 1 disables the interrupt.

• Power Limit Notification Enable (bit 24, R/W) — Enables the generation of
power notification events when the processor went below OS-requested P-state
or OS-requested clock modulation duty cycle. This field is supported only if
CPUID.06H:EAX[bit 4] = 1. Package level power limit notification can be enabled
independently by IA32_PACKAGE_THERM_INTERRUPT MSR.

14.5.6 Power Limit Notification
Platform firmware may be capable of specifying a power limit to restrict power deliv-
ered to a platform component, such as a physical processor package. This constraint
imposed by platform firmware may occasionally cause the processor to operate
below OS-requested P or T-state. A power limit notification event can be delivered
using the existing thermal LVT entry in the local APIC.

Software can enumerate the presence of the processor’s support for power limit noti-
fication by verifying CPUID.06H:EAX[bit 4] = 1.

If CPUID.06H:EAX[bit 4] = 1, then IA32_THERM_INTERRUPT and
IA32_THERM_STATUS provides the following facility to manage power limit notifica-
tion:
• Bits 10 and 11 in IA32_THERM_STATUS informs software of the occurrence of

processor operating below OS-requested P-state or clock modulation duty cycle
setting (see Figure 14-12).

• Bit 24 in IA32_THERM_INTERRUPT enables the local APIC to deliver a thermal
event when the processor went below OS-requested P-state or clock modulation
duty cycle setting (see Figure 14-13).

14.6 PACKAGE LEVEL THERMAL MANAGEMENT
The thermal management facilities like IA32_THERM_INTERRUPT and
IA32_THERM_STATUS are often implemented with a processor core granularity. To
Vol. 3B 14-23

POWER AND THERMAL MANAGEMENT
facilitate software manage thermal events from a package level granularity, two
architectural MSR is provided for package level thermal management. The
IA32_PACKAGE_THERM_STATUS and IA32_PACKAGE_THERM_INTERRUPT MSRs
use similar interfaces as IA32_THERM_STATUS and IA32_THERM_INTERRUPT, but
are shared in each physical processor package.

Software can enumerate the presence of the processor’s support for package level
thermal management facility (IA32_PACKAGE_THERM_STATUS and
IA32_PACKAGE_THERM_INTERRUPT) by verifying CPUID.06H:EAX[bit 6] = 1.

The layout of IA32_PACKAGE_THERM_STATUS MSR is shown in Figure 14-14.

• Package Thermal Status (bit 0, RO) — This bit indicates whether the digital
thermal sensor high-temperature output signal (PROCHOT#) for the package is
currently active. Bit 0 = 1 indicates the feature is active. This bit may not be
written by software; it reflects the state of the digital thermal sensor.

• Package Thermal Status Log (bit 1, R/WC0) — This is a sticky bit that
indicates the history of the thermal sensor high temperature output signal
(PROCHOT#) of the package. Bit 1 = 1 if package PROCHOT# has been asserted
since a previous RESET or the last time software cleared the bit. Software may
clear this bit by writing a zero.

• Package PROCHOT# Event (bit 2, RO) — Indicates whether package
PROCHOT# is being asserted by another agent on the platform.

Figure 14-14. IA32_PACKAGE_THERM_STATUS Register

63 0

Reserved

15 1234581016222327

PKG Digital Readout

PKG Thermal Threshold #2 Log
PKG Thermal Threshold #2 Status
PKG Thermal Threshold #1 Log
PKG Thermal Threshold #1 Status
PKG Critical Temperature Log

6793132

PKG Critical Temperature Status
PKG PROCHOT# or FORCEPR# Log
PKG PROCHOT# or FORCEPR# Event
PKG Thermal Status Log
PKG Thermal Status

11

PKG Power Limit Notification Log
PKG Power Limit Notification Status
14-24 Vol. 3B

POWER AND THERMAL MANAGEMENT
• Package PROCHOT# Log (bit 3, R/WC0) — Sticky bit that indicates whether
package PROCHOT# has been asserted by another agent on the platform since
the last clearing of this bit or a reset. If bit 3 = 1, package PROCHOT# has been
externally asserted. Software may clear this bit by writing a zero.

• Package Critical Temperature Status (bit 4, RO) — Indicates whether the
package critical temperature detector output signal is currently active. If
bit 4 = 1, the package critical temperature detector output signal is currently
active.

• Package Critical Temperature Log (bit 5, R/WC0) — Sticky bit that indicates
whether the package critical temperature detector output signal has been
asserted since the last clearing of this bit or reset. If bit 5 = 1, the output signal
has been asserted. Software may clear this bit by writing a zero.

• Package Thermal Threshold #1 Status (bit 6, RO) — Indicates whether the
actual package temperature is currently higher than or equal to the value set in
Package Thermal Threshold #1. If bit 6 = 0, the actual temperature is lower. If
bit 6 = 1, the actual temperature is greater than or equal to PTT#1. Quantitative
information of actual package temperature can be inferred from Package Digital
Readout, bits 22:16.

• Package Thermal Threshold #1 Log (bit 7, R/WC0) — Sticky bit that
indicates whether the Package Thermal Threshold #1 has been reached since the
last clearing of this bit or a reset. If bit 7 = 1, the Package Threshold #1 has been
reached. Software may clear this bit by writing a zero.

• Package Thermal Threshold #2 Status (bit 8, RO) — Indicates whether
actual package temperature is currently higher than or equal to the value set in
Package Thermal Threshold #2. If bit 8 = 0, the actual temperature is lower. If
bit 8 = 1, the actual temperature is greater than or equal to PTT#2. Quantitative
information of actual temperature can be inferred from Package Digital Readout,
bits 22:16.

• Package Thermal Threshold #2 Log (bit 9, R/WC0) — Sticky bit that
indicates whether the Package Thermal Threshold #2 has been reached since the
last clearing of this bit or a reset. If bit 9 = 1, the Package Thermal Threshold #2
has been reached. Software may clear this bit by writing a zero.

• Package Power Limitation Status (bit 10, RO) — Indicates package power
limit is forcing one ore more processors to operate below OS-requested P-state.
Note that package power limit violation may be caused by processor cores or by
devices residing in the uncore. Software can examine IA32_THERM_STATUS to
determine if the cause originates from a processor core (see Figure 14-12).

• Package Power Notification Log (bit 11, R/WCO) — Sticky bit that indicates
any processor in the package went below OS-requested P-state or OS-requested
clock modulation duty cycle since the last clearing of this or RESET.

• Package Digital Readout (bits 22:16, RO) — Package digital temperature
reading in 1 degree Celsius relative to the package TCC activation temperature.
0: Package TCC Activation temperature,
Vol. 3B 14-25

POWER AND THERMAL MANAGEMENT
1: (PTCC Activation - 1) , etc. See the processor’s data sheet for details regarding
PTCC activation.
A lower reading in the Package Digital Readout field (bits 22:16) indicates a
higher actual temperature.

The layout of IA32_PACKAGE_THERM_INTERRUPT MSR is shown in Figure 14-15.

• Package High-Temperature Interrupt Enable (bit 0, R/W) — This bit
allows the BIOS to enable the generation of an interrupt on the transition from
low-temperature to a package high-temperature threshold. Bit 0 = 0 (default)
disables interrupts; bit 0 = 1 enables interrupts.

• Package Low-Temperature Interrupt Enable (bit 1, R/W) — This bit allows
the BIOS to enable the generation of an interrupt on the transition from high-
temperature to a low-temperature (TCC de-activation). Bit 1 = 0 (default)
disables interrupts; bit 1 = 1 enables interrupts.

• Package PROCHOT# Interrupt Enable (bit 2, R/W) — This bit allows the
BIOS or OS to enable the generation of an interrupt when Package PROCHOT#
has been asserted by another agent on the platform and the Bidirectional Prochot
feature is enabled. Bit 2 = 0 disables the interrupt; bit 2 = 1 enables the
interrupt.

• Package Critical Temperature Interrupt Enable (bit 4, R/W) — Enables the
generation of an interrupt when the Package Critical Temperature Detector has
detected a critical thermal condition. The recommended response to this
condition is a system shutdown. Bit 4 = 0 disables the interrupt; bit 4 = 1
enables the interrupt.

• Package Threshold #1 Value (bits 14:8, R/W) — A temperature threshold,
encoded relative to the Package TCC Activation temperature (using the same
format as the Digital Readout). This threshold is compared against the Package

Figure 14-15. IA32_PACKAGE_THERM_INTERRUPT Register

63 0

Reserved

15

Pkg Threshold #2 Interrupt Enable

1234581416222324

Pkg Threshold #2 Value
Pkg Threshold #1 Interrupt Enable
Pkg Threshold #1 Value
Pkg Overheat Interrupt Enable
Pkg PROCHOT# Interrupt Enable
Pkg Low Temp. Interrupt Enable
Pkg High Temp. Interrupt Enable

25

Pkg Power Limit Notification Enable
14-26 Vol. 3B

POWER AND THERMAL MANAGEMENT
Digital Readout and is used to generate the Package Thermal Threshold #1
Status and Log bits as well as the Package Threshold #1 thermal interrupt
delivery.

• Package Threshold #1 Interrupt Enable (bit 15, R/W) — Enables the
generation of an interrupt when the actual temperature crosses the Package
Threshold #1 setting in any direction. Bit 15 = 0 enables the interrupt; bit 15 =
1 disables the interrupt.

• Package Threshold #2 Value (bits 22:16, R/W) —A temperature threshold,
encoded relative to the PTCC Activation temperature (using the same format as
the Package Digital Readout). This threshold is compared against the Package
Digital Readout and is used to generate the Package Thermal Threshold #2
Status and Log bits as well as the Package Threshold #2 thermal interrupt
delivery.

• Package Threshold #2 Interrupt Enable (bit 23, R/W) — Enables the
generation of an interrupt when the actual temperature crosses the Package
Threshold #2 setting in any direction. Bit 23 = 0 enables the interrupt; bit 23 =
1 disables the interrupt.

• Package Power Limit Notification Enable (bit 24, R/W) — Enables the
generation of package power notification events.

14.6.1 Support for Passive and Active cooling
Passive and active cooling may be controlled by the OS power management agent
through ACPI control methods. On platforms providing package level thermal
management facility described in the previous section, it is recommended that active
cooling (FAN control) should be driven by measuring the package temperature using
the IA32_PACKAGE_THERM_INTERRUPT MSR.

Passive cooling (frequency throttling) should be driven by measuring (a) the core
and package temperatures, or (b) only the package temperature. If measured
package temperature led the power management agent to choose which core to
execute passive cooling, then all cores need to execute passive cooling. Core temper-
ature is measured using the IA32_THERMAL_STATUS and
IA32_THERMAL_INTERRUPT MSRs. The exact implementation details depend on the
platform firmware and possible solutions include defining two different thermal zones
(one for core temperature and passive cooling and the other for package tempera-
ture and active cooling).

14.7 PLATFORM SPECIFIC POWER MANAGEMENT
SUPPORT

This section covers power management interfaces that are not architectural but
addresses the power management needs of several platform specific components.
Vol. 3B 14-27

POWER AND THERMAL MANAGEMENT
Specifically, RAPL (Running Average Power Limit) interfaces provide mechanisms to
enforce power consumption limit. Power limiting usages have specific usages in client
and server platforms.

For client platform power limit control and for server platforms used in a data center,
the following power and thermal related usages are desirable:
• Platform Thermal Management: Robust mechanisms to manage component,

platform, and group-level thermals, either proactively or reactively (e.g., in
response to a platform-level thermal trip point).

• Platform Power Limiting: More deterministic control over the system's power
consumption, for example to meet battery life targets on rack- or container-level
power consumption goals within a datacenter.

• Power/Performance Budgeting: Efficient means to control the power consumed
(and therefore the sustained performance delivered) within and across
platforms.

The server and client usage models are addressed by RAPL interfaces, which exposes
multiple domains of power rationing within each processor socket. Generally, these
RAPL domains may be viewed to include hierarchically:
• Package domain is the processor die.
• Memory domain include the directly-attached DRAM; additional power plane may

constitutes a separate domain.

In order to manage the power consumed across multiple sockets via RAPL, individual
limits must be programmed for each processor complex. Programming specific RAPL
domain across multiple sockets is not supported.

14.7.1 RAPL Interfaces
RAPL interfaces consist of non-architectural MSRs. Each RAPL domain supports the
following set of capabilities, some of which are optional as stated below.
• Power limit - MSR interfaces to specify power limit, time window; lock bit, clamp

bit etc.
• Energy Status - Power metering interface providing energy consumption infor-

mation.
• Perf Status (Optional) - Interface providing information on the performance

effects (regression) due to power limits. It is defined as a duration metric that
measures the power limit effect in the respective domain. The meaning of
duration is domain specific.

• Power Info (Optional) - Interface providing information on the range of
parameters for a given domain, minimum power, maximum power etc.

• Policy (Optional) - 4-bit priority information which is a hint to hardware for
dividing budget between sub-domains in a parent domain.
14-28 Vol. 3B

POWER AND THERMAL MANAGEMENT
Each of the above capabilities requires specific units in order to describe them. Power
is expressed in Watts, Time is expressed in Seconds and Energy is expressed in
Joules. Scaling factors are supplied to each unit to make the information presented
meaningful in a finite number of bits. Units for power, energy and time are exposed
in the read-only MSR_RAPL_POWER_UNIT MSR.

MSR_RAPL_POWER_UNIT (Figure 14-16) provides the following information across
all RAPL domains:
• Power Units (bits 3:0): Power related information (in Watts) is based on the

multiplier, 1/ 2^PU; where PU is an unsigned integer represented by bits 3:0.
Default value is 0011b, indicating power unit is in 1/8 Watts increment.

• Energy Status Units (bits 12:8): Energy related information (in Joules) is based
on the multiplier, 1/2^ESU; where ESU is an unsigned integer represented by
bits 12:8. Default value is 10000b, indicating energy status unit is in 15.3 micro-
Joules increment.

• Time Units (bits 19:16): Time related information (in Seconds) is based on the
multiplier, 1/ 2^TU; where TU is an unsigned integer represented by bits 19:16.
Default value is 1010b, indicating time unit is in 976 micro-seconds increment.

14.7.2 RAPL Domains and Platform Specificity
The specific RAPL domains available in a platform varies across product segments.
Platforms targeting client segment support the following RAPL domain hierarchy:
• Package
• Two power planes: PP0 and PP1 (PP1 may reflect to uncore devices)

Platforms targeting server segment support the following RAPL domain hierarchy:
• Package
• Power plane: PP0
• DRAM

Figure 14-16. MSR_RAPL_POWER_UNIT Register

63 0

Reserved

13 347812151920

Time units
Energy status units
Power units

16
Vol. 3B 14-29

POWER AND THERMAL MANAGEMENT
Each level of the RAPL hierarchy provides respective set of RAPL interface MSRs.
Table 14-2 lists the RAPL MSR interfaces available for each RAPL domain. The power
limit MSR of each RAPL domain is located at offset 0 relative to an MSR base address
which is non-architectural (see Chapter 34). The energy status MSR of each domain
is located at offset 1 relative to the MSR base address of respective domain.

The presence of the optional MSR interfaces (the three right-most columns of Table
14-2) may be model-specific. See Chapter 34 for detail.

14.7.3 Package RAPL Domain
The MSR interfaces defined for the package RAPL domain are:
• MSR_PKG_POWER_LIMIT allows software to set power limits for the package and

measurement attributes associated with each limit,
• MSR_PKG_ENERGY_STATUS reports measured actual energy usage,
• MSR_PKG_POWER_INFO reports the package power range information for RAPL

usage.

MSR_PKG_RAPL_PERF_STATUS can report the performance impact of power
limiting, but its availability may be model-specific.

Table 14-2. RAPL MSR Interfaces and RAPL Domains

 Domain Power Limit
(Offset 0)

 Energy Status
(Offset 1)

 Policy
(Offset 2)

 Perf Status
(Offset 3)

 Power Info
(Offset 4)

PKG MSR_PKG_PO
WER_LIMIT

MSR_PKG_ENER
GY_STATUS

RESERVED MSR_PKG_RAPL_
PERF_STATUS

MSR_PKG_PO
WER_INFO

DRAM MSR_DRAM_
POWER_LIMIT

MSR_DRAM_EN
ERGY_STATUS

RESERVED MSR_DRAM_RAPL
_PERF_STATUS

MSR_DRAM_P
OWER_INFO

PP0 MSR_PP0_PO
WER_LIMIT

MSR_PP0_ENER
GY_STATUS

MSR_PP0_P
OLICY

RESERVED RESERVED

PP1 MSR_PP1_PO
WER_LIMIT

MSR_PP1_ENER
GY_STATUS

MSR_PP1_P
OLICY

RESERVED RESERVED
14-30 Vol. 3B

POWER AND THERMAL MANAGEMENT
MSR_PKG_POWER_LIMIT allows a software agent to define power limitation for the
package domain. Power limitation is defined in terms of average power usage
(Watts) over a time window specified in MSR_PKG_POWER_LIMIT. Two power limits
can be specified, corresponding to time windows of different sizes. Each power limit
provides independent clamping control that would permit the processor cores to go
below OS-requested state to meet the power limits. A lock mechanism allow the soft-
ware agent to enforce power limit settings. Once the lock bit is set, the power limit
settings are static and un-modifiable until next RESET.

The bit fields of MSR_PKG_POWER_LIMIT (Figure 14-17) are:
• Package Power Limit #1(bits 14:0): Sets the average power usage limit of the

package domain corresponding to time window # 1. The unit of this field is
specified by the “Power Units” field of MSR_RAPL_POWER_UNIT.

• Enable Power Limit #1(bit 15): 0 = disabled; 1 = enabled.
• Package Clamping Limitation #1 (bit 16): Allow going below OS-requested

P/T state setting during time window specified by bits 23:17.
• Time Window for Power Limit #1 (bits 23:17): Indicates the length of time

window over which the power limit #1 The numeric value encoded by bits 23:17
is represented by the product of 2^Y *F; where F is a single-digit decimal
floating-point value between 1.0 and 1.3 with the fraction digit represented by
bits 23:22, Y is an unsigned integer represented by bits 21:17. The unit of this
field is specified by the “Time Units” field of MSR_RAPL_POWER_UNIT.

• Package Power Limit #2(bits 46:32): Sets the average power usage limit of
the package domain corresponding to time window # 2. The unit of this field is
specified by the “Power Units” field of MSR_RAPL_POWER_UNIT.

• Enable Power Limit #2(bit 47): 0 = disabled; 1 = enabled.
• Package Clamping Limitation #2 (bit 48): Allow going below OS-requested

P/T state setting during time window specified by bits 23:17.

Figure 14-17. MSR_PKG_POWER_LIMIT Register

63

Enable limit #1
Pkg clamping limit #1
Enable limit #2
Pkg clamping limit #2

31 24 23 15 0

Pkg Power Limit #1

48 47 3262 56 55 49 46 14
L
O
C

Pkg Power Limit #2

1617

K

Time window
Power Limit #2

Time window
Power Limit #1
Vol. 3B 14-31

POWER AND THERMAL MANAGEMENT
• Time Window for Power Limit #2 (bits 55:49): Indicates the length of time
window over which the power limit #2 The numeric value encoded by bits 55:49
is represented by the product of 2^Y *F; where F is a single-digit decimal
floating-point value between 1.0 and 1.3 with the fraction digit represented by
bits 55:54, Y is an unsigned integer represented by bits 53:49. The unit of this
field is specified by the “Time Units” field of MSR_RAPL_POWER_UNIT. This field
may have a hard-coded value in hardware and ignores values written by
software.

• Lock (bit 63): If set, all write attempts to this MSR are ignored until next RESET.

MSR_PKG_ENERGY_STATUS is a read-only MSR. It reports the actual energy use for
the package domain. This MSR is updated every ~1msec. It has a wraparound time
of around 60 secs when power consumption is high, and may be longer otherwise.

• Total Energy Consumed (bits 31:0): The unsigned integer value represents
the total amount of energy consumed since that last time this register is cleared.
The unit of this field is specified by the “Energy Status Units” field of
MSR_RAPL_POWER_UNIT.

MSR_PKG_POWER_INFO is a read-only MSR. It reports the package power range
information for RAPL usage. This MSR provides maximum/minimum values (derived
from electrical specification), thermal specification power of the package domain. It
also provides the largest possible time window for software to program the RAPL
interface.

Figure 14-18. MSR_PKG_ENERGY_STATUS MSR

Figure 14-19. MSR_PKG_POWER_INFO Register

63 0

Reserved

Total Energy Consumed

3132

Reserved

63 31 30 15 0

Thermal Spec Power

48 47 3254 53 46 14

Maximum Power

16

Maximum Time window Minimum Power
14-32 Vol. 3B

POWER AND THERMAL MANAGEMENT
• Thermal Spec Power (bits 14:0): The unsigned integer value is the equivalent
of thermal specification power of the package domain. The unit of this field is
specified by the “Power Units” field of MSR_RAPL_POWER_UNIT.

• Minimum Power (bits 30:16): The unsigned integer value is the equivalent of
minimum power derived from electrical spec of the package domain. The unit of
this field is specified by the “Power Units” field of MSR_RAPL_POWER_UNIT.

• Maximum Power (bits 46:32): The unsigned integer value is the equivalent of
maximum power derived from the electrical spec of the package domain. The unit
of this field is specified by the “Power Units” field of MSR_RAPL_POWER_UNIT.

• Maximum Time Window (bits 53:48): The unsigned integer value is the
equivalent of largest acceptable value to program the time window of
MSR_PKG_POWER_LIMIT. The unit of this field is specified by the “Time Units”
field of MSR_RAPL_POWER_UNIT.

MSR_PKG_PERF_STATUS is a read-only MSR. It reports the total time for which the
package was throttled due to the RAPL power limits. Throttling in this context is
defined as going below the OS-requested P-state or T-state. It has a wrap-around
time of many hours. The availability of this MSR is platform specific (see Chapter 34).

• Accumulated Package Throttled Time (bits 31:0): The unsigned integer
value represents the cumulative time (since the last time this register is cleared)
that the package has throttled. The unit of this field is specified by the “Time
Units” field of MSR_RAPL_POWER_UNIT.

14.7.4 PP0/PP1 RAPL Domains
The MSR interfaces defined for the PP0 and PP1 domains are identical in layout.
Generally, PP0 refers to the processor cores. The availability of PP1 RAPL domain
interface is platform-specific. For a client platform, PP1 domain refers to the power
plane of a specific device in the uncore. For server platforms, PP1 domain is not
supported, but its PP0 domain supports the MSR_PP0_PERF_STATUS interface.
• MSR_PP0_POWER_LIMIT/MSR_PP1_POWER_LIMIT allow software to set power

limits for the respective power plane domain.

Figure 14-20. MSR_PKG_PERF_STATUS MSR

63 0

Reserved

Accumulated pkg throttled time

3132

Reserved
Vol. 3B 14-33

POWER AND THERMAL MANAGEMENT
• MSR_PP0_ENERGY_STATUS/MSR_PP1_ENERGY_STATUS report actual energy
usage on a power plane.

• MSR_PP0_POLICY/MSR_PP1_POLICY allow software to adjust balance for
respective power plane.

MSR_PP0_PERF_STATUS can report the performance impact of power limiting, but it
is not available in client platform.

MSR_PP0_POWER_LIMIT/MSR_PP1_POWER_LIMIT allows a software agent to define
power limitation for the respective power plane domain. A lock mechanism in each
power plane domain allow the software agent to enforce power limit settings inde-
pendently. Once a lock bit is set, the power limit settings in that power plane are
static and un-modifiable until next RESET.

The bit fields of MSR_PP0_POWER_LIMIT/MSR_PP1_POWER_LIMIT (Figure 14-21)
are:
• Power Limit (bits 14:0): Sets the average power usage limit of the respective

power plane domain. The unit of this field is specified by the “Power Units” field of
MSR_RAPL_POWER_UNIT.

• Enable Power Limit (bit 15): 0 = disabled; 1 = enabled.
• Clamping Limitation (bit 16): Allow going below OS-requested P/T state

setting during time window specified by bits 23:17.
• Time Window for Power Limit (bits 23:17): Indicates the length of time

window over which the power limit #1 The numeric value encoded by bits 23:17
is represented by the product of 2^Y *F; where F is a single-digit decimal
floating-point value between 1.0 and 1.3 with the fraction digit represented by
bits 23:22, Y is an unsigned integer represented by bits 21:17. The unit of this
field is specified by the “Time Units” field of MSR_RAPL_POWER_UNIT.

• Lock (bit 31): If set, all write attempts to the MSR and corresponding policy
MSR_PP0_POLICY/MSR_PP1_POLICY are ignored until next RESET.

Figure 14-21. MSR_PP0_POWER_LIMIT/MSR_PP1_POWER_LIMIT Register

63

Enable limit
Clamping limit

30 24 23 15 0

Power Limit

3132 14
L
O
C

1617

K

Time window
Power Limit
14-34 Vol. 3B

POWER AND THERMAL MANAGEMENT
MSR_PP0_ENERGY_STATUS/MSR_PP1_ENERGY_STATUS is a read-only MSR. It
reports the actual energy use for the respective power plane domain. This MSR is
updated every ~1msec.

• Total Energy Consumed (bits 31:0): The unsigned integer value represents
the total amount of energy consumed since that last time this register is cleared.
The unit of this field is specified by the “Energy Status Units” field of
MSR_RAPL_POWER_UNIT.

MSR_PP0_POLICY/MSR_PP1_POLICY provide balance power policy control for each
power plane by providing inputs to the power budgeting management algorithm. On
the platform that supports PP0 (IA cores) and PP1 (uncore graphic device), the
default value give priority to the non-IA power plane. These MSRs enable the PCU to
balance power consumption between the IA cores and uncore graphic device.

• Priority Level (bits 4:0): Priority level input to the PCU for respective power
plane. PP0 covers the IA processor cores, PP1 covers the uncore graphic device.
The value 31 is considered highest priority.

MSR_PP0_PERF_STATUS is a read-only MSR. It reports the total time for which the
PP0 domain was throttled due to the power limits. This MSR is supported only in
server platform. Throttling in this context is defined as going below the OS-requested
P-state or T-state.

Figure 14-22. MSR_PP0_ENERGY_STATUS/MSR_PP1_ENERGY_STATUS MSR

Figure 14-23. MSR_PP0_POLICY/MSR_PP1_POLICY Register

63 0

Reserved

Total Energy Consumed

3132

Reserved

63 4 0

Priority Level

5

Vol. 3B 14-35

POWER AND THERMAL MANAGEMENT
• Accumulated PP0 Throttled Time (bits 31:0): The unsigned integer value
represents the cumulative time (since the last time this register is cleared) that
the PP0 domain has throttled. The unit of this field is specified by the “Time Units”
field of MSR_RAPL_POWER_UNIT.

14.7.5 DRAM RAPL Domain
The MSR interfaces defined for the DRAM domain is supported only in the server plat-
form. The MSR interfaces are:
• MSR_DRAM_POWER_LIMIT allows software to set power limits for the DRAM

domain and measurement attributes associated with each limit,
• MSR_DRAM_ENERGY_STATUS reports measured actual energy usage,
• MSR_DRAM_POWER_INFO reports the DRAM domain power range information

for RAPL usage.
• MSR_DRAM_RAPL_PERF_STATUS can report the performance impact of power

limiting.

Figure 14-24. MSR_PP0_PERF_STATUS MSR

Figure 14-25. MSR_DRAM_POWER_LIMIT Register

63 0

Reserved

Accumulated PP0 throttled time

3132

Reserved

63

Enable limit
Clamping limit

30 24 23 15 0

Power Limit

3132 14
L
O
C

1617

K

Time window
Power Limit
14-36 Vol. 3B

POWER AND THERMAL MANAGEMENT
MSR_DRAM_POWER_LIMIT allows a software agent to define power limitation for the
DRAM domain. Power limitation is defined in terms of average power usage (Watts)
over a time window specified in MSR_DRAM_POWER_LIMIT. A power limit can be
specified along with a time window. A lock mechanism allow the software agent to
enforce power limit settings. Once the lock bit is set, the power limit settings are
static and un-modifiable until next RESET.

The bit fields of MSR_DRAM_POWER_LIMIT (Figure 14-25) are:
• DRAM Power Limit #1(bits 14:0): Sets the average power usage limit of the

DRAM domain corresponding to time window # 1. The unit of this field is specified
by the “Power Units” field of MSR_RAPL_POWER_UNIT.

• Enable Power Limit #1(bit 15): 0 = disabled; 1 = enabled.
• Time Window for Power Limit (bits 23:17): Indicates the length of time

window over which the power limit The numeric value encoded by bits 23:17 is
represented by the product of 2^Y *F; where F is a single-digit decimal floating-
point value between 1.0 and 1.3 with the fraction digit represented by bits 23:22,
Y is an unsigned integer represented by bits 21:17. The unit of this field is
specified by the “Time Units” field of MSR_RAPL_POWER_UNIT.

• Lock (bit 31): If set, all write attempts to this MSR are ignored until next RESET.

MSR_DRAM_ENERGY_STATUS is a read-only MSR. It reports the actual energy use
for the DRAM domain. This MSR is updated every ~1msec.

• Total Energy Consumed (bits 31:0): The unsigned integer value represents
the total amount of energy consumed since that last time this register is cleared.
The unit of this field is specified by the “Energy Status Units” field of
MSR_RAPL_POWER_UNIT.

MSR_DRAM_POWER_INFO is a read-only MSR. It reports the DRAM power range
information for RAPL usage. This MSR provides maximum/minimum values (derived
from electrical specification), thermal specification power of the DRAM domain. It

Figure 14-26. MSR_DRAM_ENERGY_STATUS MSR

63 0

Reserved

Total Energy Consumed

3132

Reserved
Vol. 3B 14-37

POWER AND THERMAL MANAGEMENT
also provides the largest possible time window for software to program the RAPL
interface.

• Thermal Spec Power (bits 14:0): The unsigned integer value is the equivalent
of thermal specification power of the DRAM domain. The unit of this field is
specified by the “Power Units” field of MSR_RAPL_POWER_UNIT.

• Minimum Power (bits 30:16): The unsigned integer value is the equivalent of
minimum power derived from electrical spec of the DRAM domain. The unit of this
field is specified by the “Power Units” field of MSR_RAPL_POWER_UNIT.

• Maximum Power (bits 46:32): The unsigned integer value is the equivalent of
maximum power derived from the electrical spec of the DRAM domain. The unit
of this field is specified by the “Power Units” field of MSR_RAPL_POWER_UNIT.

• Maximum Time Window (bits 53:48): The unsigned integer value is the
equivalent of largest acceptable value to program the time window of
MSR_DRAM_POWER_LIMIT. The unit of this field is specified by the “Time Units”
field of MSR_RAPL_POWER_UNIT.

MSR_DRAM_PERF_STATUS is a read-only MSR. It reports the total time for which the
package was throttled due to the RAPL power limits. Throttling in this context is
defined as going below the OS-requested P-state or T-state. It has a wrap-around
time of many hours. The availability of this MSR is platform specific (see Chapter 34).

• Accumulated Package Throttled Time (bits 31:0): The unsigned integer
value represents the cumulative time (since the last time this register is cleared)

Figure 14-27. MSR_DRAM_POWER_INFO Register

Figure 14-28. MSR_DRAM_PERF_STATUS MSR

63 31 30 15 0

Thermal Spec Power

48 47 3254 53 46 14

Maximum Power

16

Maximum Time window Minimum Power

63 0

Reserved

Accumulated DRAM throttled time

3132

Reserved
14-38 Vol. 3B

POWER AND THERMAL MANAGEMENT
that the DRAM domain has throttled. The unit of this field is specified by the
“Time Units” field of MSR_RAPL_POWER_UNIT.
Vol. 3B 14-39

CHAPTER 15
MACHINE-CHECK ARCHITECTURE

This chapter describes the machine-check architecture and machine-check exception
mechanism found in the Pentium 4, Intel Xeon, and P6 family processors. See
Chapter 6, “Interrupt 18—Machine-Check Exception (#MC),” for more information on
machine-check exceptions. A brief description of the Pentium processor’s machine
check capability is also given.
Additionally, a signaling mechanism for software to respond to hardware corrected
machine check error is covered.

15.1 MACHINE-CHECK ARCHITECTURE
The Pentium 4, Intel Xeon, and P6 family processors implement a machine-check
architecture that provides a mechanism for detecting and reporting hardware
(machine) errors, such as: system bus errors, ECC errors, parity errors, cache
errors, and TLB errors. It consists of a set of model-specific registers (MSRs) that are
used to set up machine checking and additional banks of MSRs used for recording
errors that are detected.
The processor signals the detection of an uncorrected machine-check error by gener-
ating a machine-check exception (#MC), which is an abort class exception. The
implementation of the machine-check architecture does not ordinarily permit the
processor to be restarted reliably after generating a machine-check exception.
However, the machine-check-exception handler can collect information about the
machine-check error from the machine-check MSRs.
Starting with 45nm Intel 64 processor on which CPUID reports
DisplayFamily_DisplayModel as 06H_1AH (see CPUID instruction in Chapter 3,
“Instruction Set Reference, A-L” in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2A), the processor can report information on corrected
machine-check errors and deliver a programmable interrupt for software to respond
to MC errors, referred to as corrected machine-check error interrupt (CMCI). See
Section 15.5 for detail.
Intel 64 processors supporting machine-check architecture and CMCI may also
support an additional enhancement, namely, support for software recovery from
certain uncorrected recoverable machine check errors. See Section 15.6 for detail.

15.2 COMPATIBILITY WITH PENTIUM PROCESSOR
The Pentium 4, Intel Xeon, and P6 family processors support and extend the
machine-check exception mechanism introduced in the Pentium processor. The
Pentium processor reports the following machine-check errors:
Vol. 3B 15-1

MACHINE-CHECK ARCHITECTURE
• data parity errors during read cycles
• unsuccessful completion of a bus cycle
The above errors are reported using the P5_MC_TYPE and P5_MC_ADDR MSRs
(implementation specific for the Pentium processor). Use the RDMSR instruction to
read these MSRs. See Chapter 34, “Model-Specific Registers (MSRs),” for the
addresses.
The machine-check error reporting mechanism that Pentium processors use is
similar to that used in Pentium 4, Intel Xeon, and P6 family processors. When an
error is detected, it is recorded in P5_MC_TYPE and P5_MC_ADDR; the processor
then generates a machine-check exception (#MC).
See Section 15.3.3, “Mapping of the Pentium Processor Machine-Check Errors to the
Machine-Check Architecture,” and Section 15.10.2, “Pentium Processor Machine-
Check Exception Handling,” for information on compatibility between machine-check
code written to run on the Pentium processors and code written to run on P6 family
processors.

15.3 MACHINE-CHECK MSRS
Machine check MSRs in the Pentium 4, Intel Xeon, and P6 family processors consist
of a set of global control and status registers and several error-reporting register
banks. See Figure 15-1.

Figure 15-1. Machine-Check MSRs

0

63 0

63

IA32_MCG_CAP MSR

IA32_MCG_STATUS MSR

Error-Reporting Bank Registers

0

63 0

63

IA32_MCi_CTL MSR

IA32_MCi_STATUS MSR

0

63 0

63

IA32_MCi_ADDR MSR

IA32_MCi_MISC MSR

Global Control MSRs
(One Set for Each Hardware Unit)

063

IA32_MCG_CTL MSR

063

IA32_MCi_CTL2 MSR
15-2 Vol. 3B

MACHINE-CHECK ARCHITECTURE
Each error-reporting bank is associated with a specific hardware unit (or group of
hardware units) in the processor. Use RDMSR and WRMSR to read and to write these
registers.

15.3.1 Machine-Check Global Control MSRs
The machine-check global control MSRs include the IA32_MCG_CAP,
IA32_MCG_STATUS, and IA32_MCG_CTL. See Chapter 34, “Model-Specific Registers
(MSRs),” for the addresses of these registers.

15.3.1.1 IA32_MCG_CAP MSR
The IA32_MCG_CAP MSR is a read-only register that provides information about the
machine-check architecture of the processor. Figure 15-2 shows the structure of the
register in Pentium 4, Intel Xeon, and P6 family processors.

Where:
• Count field, bits 7:0 — Indicates the number of hardware unit error-reporting

banks available in a particular processor implementation.
• MCG_CTL_P (control MSR present) flag, bit 8 — Indicates that the processor

implements the IA32_MCG_CTL MSR when set; this register is absent when clear.
• MCG_EXT_P (extended MSRs present) flag, bit 9 — Indicates that the

processor implements the extended machine-check state registers found starting
at MSR address 180H; these registers are absent when clear.

• MCG_CMCI_P (Corrected MC error counting/signaling extension
present) flag, bit 10 — Indicates (when set) that extended state and
associated MSRs necessary to support the reporting of an interrupt on a

Figure 15-2. IA32_MCG_CAP Register

MCG_TES_P[11]
MCG_EXT_CNT[23:16]

63 9

Reserved

101112

MCG_CMCI_P[10]

08 7

Count

MCG_EXT_P[9]

15162324

MCG_CTL_P[8]

MCG_SER_P[24]

25
Vol. 3B 15-3

MACHINE-CHECK ARCHITECTURE
corrected MC error event and/or count threshold of corrected MC errors, is
present. When this bit is set, it does not imply this feature is supported across all
banks. Software should check the availability of the necessary logic on a bank by
bank basis when using this signaling capability (i.e. bit 30 settable in individual
IA32_MCi_CTL2 register).

• MCG_TES_P (threshold-based error status present) flag, bit 11 —
Indicates (when set) that bits 56:53 of the IA32_MCi_STATUS MSR are part of
the architectural space. Bits 56:55 are reserved, and bits 54:53 are used to
report threshold-based error status. Note that when MCG_TES_P is not set, bits
56:53 of the IA32_MCi_STATUS MSR are model-specific.

• MCG_EXT_CNT, bits 23:16 — Indicates the number of extended machine-
check state registers present. This field is meaningful only when the MCG_EXT_P
flag is set.

• MCG_SER_P (software error recovery support present) flag, bit 24—
Indicates (when set) that the processor supports software error recovery (see
Section 15.6), and IA32_MCi_STATUS MSR bits 56:55 are used to report the
signaling of uncorrected recoverable errors and whether software must take
recovery actions for uncorrected errors. Note that when MCG_TES_P is not set,
bits 56:53 of the IA32_MCi_STATUS MSR are model-specific. If MCG_TES_P is set
but MCG_SER_P is not set, bits 56:55 are reserved.

The effect of writing to the IA32_MCG_CAP MSR is undefined.

15.3.1.2 IA32_MCG_STATUS MSR
The IA32_MCG_STATUS MSR describes the current state of the processor after a
machine-check exception has occurred (see Figure 15-3).

Where:
• RIPV (restart IP valid) flag, bit 0 — Indicates (when set) that program

execution can be restarted reliably at the instruction pointed to by the instruction
pointer pushed on the stack when the machine-check exception is generated.

Figure 15-3. IA32_MCG_STATUS Register

EIPV—Error IP valid flag
MCIP—Machine check in progress flag

63 0

Reserved

123
E
I
P
V

M
C
I
P

R
I
P
V

RIPV—Restart IP valid flag
15-4 Vol. 3B

MACHINE-CHECK ARCHITECTURE
When clear, the program cannot be reliably restarted at the pushed instruction
pointer.

• EIPV (error IP valid) flag, bit 1 — Indicates (when set) that the instruction
pointed to by the instruction pointer pushed onto the stack when the machine-
check exception is generated is directly associated with the error. When this flag
is cleared, the instruction pointed to may not be associated with the error.

• MCIP (machine check in progress) flag, bit 2 — Indicates (when set) that a
machine-check exception was generated. Software can set or clear this flag. The
occurrence of a second Machine-Check Event while MCIP is set will cause the
processor to enter a shutdown state. For information on processor behavior in
the shutdown state, please refer to the description in Chapter 6, “Interrupt and
Exception Handling”: “Interrupt 8—Double Fault Exception (#DF)”.

Bits 63:03 in IA32_MCG_STATUS are reserved.

15.3.1.3 IA32_MCG_CTL MSR
The IA32_MCG_CTL MSR is present if the capability flag MCG_CTL_P is set in the
IA32_MCG_CAP MSR.
IA32_MCG_CTL controls the reporting of machine-check exceptions. If present,
writing 1s to this register enables machine-check features and writing all 0s disables
machine-check features. All other values are undefined and/or implementation
specific.

15.3.2 Error-Reporting Register Banks
Each error-reporting register bank can contain the IA32_MCi_CTL,
IA32_MCi_STATUS, IA32_MCi_ADDR, and IA32_MCi_MISC MSRs. The number of
reporting banks is indicated by bits [7:0] of IA32_MCG_CAP MSR (address 0179H).
The first error-reporting register (IA32_MC0_CTL) always starts at address 400H.
See Chapter 34, “Model-Specific Registers (MSRs),” for addresses of the error-
reporting registers in the Pentium 4 and Intel Xeon processors; and for addresses of
the error-reporting registers P6 family processors.

15.3.2.1 IA32_MCi_CTL MSRs
The IA32_MCi_CTL MSR controls error reporting for errors produced by a particular
hardware unit (or group of hardware units). Each of the 64 flags (EEj) represents a
potential error. Setting an EEj flag enables reporting of the associated error and
clearing it disables reporting of the error. The processor does not write changes to
bits that are not implemented. Figure 15-4 shows the bit fields of IA32_MCi_CTL.
Vol. 3B 15-5

MACHINE-CHECK ARCHITECTURE
NOTE
For P6 family processors, processors based on Intel Core microarchi-
tecture (excluding those on which on which CPUID reports
DisplayFamily_DisplayModel as 06H_1AH and onward): the operating
system or executive software must not modify the contents of the
IA32_MC0_CTL MSR. This MSR is internally aliased to the
EBL_CR_POWERON MSR and controls platform-specific error
handling features. System specific firmware (the BIOS) is responsible
for the appropriate initialization of the IA32_MC0_CTL MSR. P6 family
processors only allow the writing of all 1s or all 0s to the
IA32_MCi_CTL MSR.

15.3.2.2 IA32_MCi_STATUS MSRS
Each IA32_MCi_STATUS MSR contains information related to a machine-check error
if its VAL (valid) flag is set (see Figure 15-5). Software is responsible for clearing
IA32_MCi_STATUS MSRs by explicitly writing 0s to them; writing 1s to them causes
a general-protection exception.

NOTE
Figure 15-5 depicts the IA32_MCi_STATUS MSR when
IA32_MCG_CAP[24] = 1, IA32_MCG_CAP[11] = 1 and
IA32_MCG_CAP[10] = 1. When IA32_MCG_CAP[24] = 0 and
IA32_MCG_CAP[11] = 1, bits 56:55 is reserved and bits 54:53 for
threshold-based error reporting. When IA32_MCG_CAP[11] = 0, bits
56:53 are part of the “Other Information” field. The use of bits 54:53
for threshold-based error reporting began with Intel Core Duo
processors, and is currently used for cache memory. See Section
15.4, “Enhanced Cache Error reporting,” for more information. When
IA32_MCG_CAP[10] = 0, bits 52:38 are part of the “Other Infor-
mation” field. The use of bits 52:38 for corrected MC error count is
introduced with Intel 64 processor on which CPUID reports
DisplayFamily_DisplayModel as 06H_1AH.

Where:

Figure 15-4. IA32_MCi_CTL Register

EEj—Error reporting enable flag

63 0123
E
E
0
1

E
E
0
2

E
E
0
0

E
E
6
1

E
E
6
2

E
E
6
3

62 61

.

 (where j is 00 through 63)
15-6 Vol. 3B

MACHINE-CHECK ARCHITECTURE
• MCA (machine-check architecture) error code field, bits 15:0 — Specifies
the machine-check architecture-defined error code for the machine-check error
condition detected. The machine-check architecture-defined error codes are
guaranteed to be the same for all IA-32 processors that implement the machine-
check architecture. See Section 15.9, “Interpreting the MCA Error Codes,” and
Chapter 16, “Interpreting Machine-Check Error Codes”, for information on
machine-check error codes.

• Model-specific error code field, bits 31:16 — Specifies the model-specific
error code that uniquely identifies the machine-check error condition detected.
The model-specific error codes may differ among IA-32 processors for the same
machine-check error condition. See Chapter 16, “Interpreting Machine-Check
Error Codes”for information on model-specific error codes.

• Reserved, Error Status, and Other Information fields, bits 56:32 —

• Bits 37:32 always contain “Other Information” that is implementation-
specific and is not part of the machine-check architecture. Software that
is intended to be portable among IA-32 processors should not rely on
these values.

• If IA32_MCG_CAP[10] is 0, bits 52:38 also contain “Other Information”
(in the same sense as bits 37:32).

• If IA32_MCG_CAP[10] is 1, bits 52:38 are architectural (not model-
specific). In this case, bits 52:38 reports the value of a 15 bit counter that
increments each time a corrected error is observed by the MCA recording

Figure 15-5. IA32_MCi_STATUS Register

63

Threshold-based error status (54:53)*
AR — Recovery action required for UCR error (55)**
S — Signaling an uncorrected recoverable (UCR) error (56)**
PCC — Processor context corrupted (57)

37 32 31 16 0

P
C

AE

ADDRV — MCi_ADDR register valid (58)
MISCV — MCi_MISC register valid (59)
EN — Error reporting enabled (60)
UC — Uncorrected error (61)
OVER — Error overflow (62)
VAL — MCi_STATUS register valid (63)

C

MCA Error Code
U S

R
Other MSCOD Model

54 53 3862 61 60 59 58 57 56 55 52 15

V
A
L

O
V
E
R

C N Specific Error CodeInfo
Corrected Error
Count

* When IA32_MCG_CAP[11] (MCG_TES_P) is not set, these bits are model-specific
 (part of “Other Information”).

** When IA32_MCG_CAP[11] or IA32_MCG_CAP[24] are not set, these bits are reserved, or
 model-specific (part of “Other Information”).
Vol. 3B 15-7

MACHINE-CHECK ARCHITECTURE
bank. This count value will continue to increment until cleared by
software. The most significant bit, 52, is a sticky count overflow bit.

• If IA32_MCG_CAP[11] is 0, bits 56:53 also contain “Other Information”
(in the same sense).

• If IA32_MCG_CAP[11] is 1, bits 56:53 are architectural (not model-
specific). In this case, bits 56:53 have the following functionality:

• If IA32_MCG_CAP[24] is 0, bits 56:55 are reserved.

• If IA32_MCG_CAP[24] is 1, bits 56:55 are defined as follows:

• S (Signaling) flag, bit 56 - Signals the reporting of UCR errors in this
MC bank. See Section 15.6.2 for additional detail.

• AR (Action Required) flag, bit 55 - Indicates (when set) that MCA
error code specific recovery action must be performed by system
software at the time this error was signaled. See Section 15.6.2 for
additional detail.

• If the UC bit (Figure 15-5) is 1, bits 54:53 are undefined.

• If the UC bit (Figure 15-5) is 0, bits 54:53 indicate the status of the
hardware structure that reported the threshold-based error. See
Table 15-1.

• PCC (processor context corrupt) flag, bit 57 — Indicates (when set) that the
state of the processor might have been corrupted by the error condition detected
and that reliable restarting of the processor may not be possible. When clear, this
flag indicates that the error did not affect the processor’s state. Software
restarting might be possible.

• ADDRV (IA32_MCi_ADDR register valid) flag, bit 58 — Indicates (when set)
that the IA32_MCi_ADDR register contains the address where the error occurred
(see Section 15.3.2.3, “IA32_MCi_ADDR MSRs”). When clear, this flag indicates
that the IA32_MCi_ADDR register is either not implemented or does not contain

Table 15-1. Bits 54:53 in IA32_MCi_STATUS MSRs
when IA32_MCG_CAP[11] = 1 and UC = 0

Bits 54:53 Meaning

00 No tracking - No hardware status tracking is provided for the structure reporting this
event.

01 Green - Status tracking is provided for the structure posting the event; the current
status is green (below threshold). For more information, see Section 15.4, “Enhanced
Cache Error reporting”.

10 Yellow - Status tracking is provided for the structure posting the event; the current
status is yellow (above threshold). For more information, see Section 15.4, “Enhanced
Cache Error reporting”.

11 Reserved
15-8 Vol. 3B

MACHINE-CHECK ARCHITECTURE
the address where the error occurred. Do not read these registers if they are not
implemented in the processor.

• MISCV (IA32_MCi_MISC register valid) flag, bit 59 — Indicates (when set)
that the IA32_MCi_MISC register contains additional information regarding the
error. When clear, this flag indicates that the IA32_MCi_MISC register is either
not implemented or does not contain additional information regarding the error.
Do not read these registers if they are not implemented in the processor.

• EN (error enabled) flag, bit 60 — Indicates (when set) that the error was
enabled by the associated EEj bit of the IA32_MCi_CTL register.

• UC (error uncorrected) flag, bit 61 — Indicates (when set) that the processor
did not or was not able to correct the error condition. When clear, this flag
indicates that the processor was able to correct the error condition.

• OVER (machine check overflow) flag, bit 62 — Indicates (when set) that a
machine-check error occurred while the results of a previous error were still in
the error-reporting register bank (that is, the VAL bit was already set in the
IA32_MCi_STATUS register). The processor sets the OVER flag and software is
responsible for clearing it. In general, enabled errors are written over disabled
errors, and uncorrected errors are written over corrected errors. Uncorrected
errors are not written over previous valid uncorrected errors. For more infor-
mation, see Section 15.3.2.2.1, “Overwrite Rules for Machine Check Overflow”.

• VAL (IA32_MCi_STATUS register valid) flag, bit 63 — Indicates (when set)
that the information within the IA32_MCi_STATUS register is valid. When this flag
is set, the processor follows the rules given for the OVER flag in the
IA32_MCi_STATUS register when overwriting previously valid entries. The
processor sets the VAL flag and software is responsible for clearing it.

15.3.2.2.1 Overwrite Rules for Machine Check Overflow

Table 15-2 shows the overwrite rules for how to treat a second event if the cache has
already posted an event to the MC bank – that is, what to do if the valid bit for an MC
bank already is set to 1. When more than one structure posts events in a given bank,
these rules specify whether a new event will overwrite a previous posting or not.
These rules define a priority for uncorrected (highest priority), yellow, and
green/unmonitored (lowest priority) status.
In Table 15-2, the values in the two left-most columns are
IA32_MCi_STATUS[54:53].

Table 15-2. Overwrite Rules for Enabled Errors
First Event Second Event UC bit Color MCA Info

00/green 00/green 0 00/green second

00/green yellow 0 yellow second error

yellow 00/green 0 yellow first error

yellow yellow 0 yellow either
Vol. 3B 15-9

MACHINE-CHECK ARCHITECTURE
If a second event overwrites a previously posted event, the information (as guarded
by individual valid bits) in the MCi bank is entirely from the second event. Similarly,
if a first event is retained, all of the information previously posted for that event is
retained. In either case, the OVER bit (MCi_Status[62]) will be set to indicate an
overflow.
After software polls a posting and clears the register, the valid bit is no longer set and
therefore the meaning of the rest of the bits, including the yellow/green/00 status
field in bits 54:53, is undefined. The yellow/green indication will only be posted for
events associated with monitored structures – otherwise the unmonitored (00) code
will be posted in MCi_Status[54:53].

15.3.2.3 IA32_MCi_ADDR MSRs
The IA32_MCi_ADDR MSR contains the address of the code or data memory location
that produced the machine-check error if the ADDRV flag in the IA32_MCi_STATUS
register is set (see Section 15-6, “IA32_MCi_ADDR MSR”). The IA32_MCi_ADDR
register is either not implemented or contains no address if the ADDRV flag in the
IA32_MCi_STATUS register is clear. When not implemented in the processor, all reads
and writes to this MSR will cause a general protection exception.
The address returned is an offset into a segment, linear address, or physical address.
This depends on the error encountered. When these registers are implemented,
these registers can be cleared by explicitly writing 0s to these registers. Writing 1s to
these registers will cause a general-protection exception. See Figure 15-6.

00/green/yellow UC 1 undefined second

UC 00/green/yellow 1 undefined first

Figure 15-6. IA32_MCi_ADDR MSR

Table 15-2. Overwrite Rules for Enabled Errors
First Event Second Event UC bit Color MCA Info

Address

63 0

Reserved

3536

Address*

63 0

Processor Without Support For Intel 64 Architecture

Processor With Support for Intel 64 Architecture

* Useful bits in this field depend on the address methodology in use when the

the register state is saved.
15-10 Vol. 3B

MACHINE-CHECK ARCHITECTURE
15.3.2.4 IA32_MCi_MISC MSRs
The IA32_MCi_MISC MSR contains additional information describing the machine-
check error if the MISCV flag in the IA32_MCi_STATUS register is set. The
IA32_MCi_MISC_MSR is either not implemented or does not contain additional infor-
mation if the MISCV flag in the IA32_MCi_STATUS register is clear.
When not implemented in the processor, all reads and writes to this MSR will cause a
general protection exception. When implemented in a processor, these registers can
be cleared by explicitly writing all 0s to them; writing 1s to them causes a general-
protection exception to be generated. This register is not implemented in any of the
error-reporting register banks for the P6 family processors.
If both MISCV and IA32_MCG_CAP[24] are set, the IA32_MCi_MISC_MSR is defined
according to Figure 15-7 to support software recovery of uncorrected errors (see
Section 15.6):

• Recoverable Address LSB (bits 5:0): The lowest valid recoverable address bit.
Indicates the position of the least significant bit (LSB) of the recoverable error
address. For example, if the processor logs bits [43:9] of the address, the LSB
sub-field in IA32_MCi_MISC is 01001b (9 decimal). For this example, bits [8:0]
of the recoverable error address in IA32_MCi_ADDR should be ignored.

• Address Mode (bits 8:6): Address mode for the address logged in
IA32_MCi_ADDR. The supported address modes are given in Table 15-3.

Figure 15-7. UCR Support in IA32_MCi_MISC Register

Table 15-3. Address Mode in IA32_MCi_MISC[8:6]
IA32_MCi_MISC[8:6] Encoding Definition

000 Segment Offset

001 Linear Address

010 Physical Address

011 Memory Address

Address Mode

63 0

Model Specific Information

6 5

Recoverable Address LSB

89
Vol. 3B 15-11

MACHINE-CHECK ARCHITECTURE
• Model Specific Information (bits 63:9): Not architecturally defined.

15.3.2.5 IA32_MCi_CTL2 MSRs
The IA32_MCi_CTL2 MSR provides the programming interface to use corrected MC
error signaling capability that is indicated by IA32_MCG_CAP[10] = 1. Software must
check for the presence of IA32_MCi_CTL2 on a per-bank basis.
When IA32_MCG_CAP[10] = 1, the IA32_MCi_CTL2 MSR for each bank exists, i.e.
reads and writes to these MSR are supported. However, signaling interface for
corrected MC errors may not be supported in all banks.
The layout of IA32_MCi_CTL2 is shown in Figure 15-8:

• Corrected error count threshold, bits 14:0 — Software must initialize this
field. The value is compared with the corrected error count field in
IA32_MCi_STATUS, bits 38 through 52. An overflow event is signaled to the CMCI
LVT entry (see Table 10-1) in the APIC when the count value equals the threshold
value. The new LVT entry in the APIC is at 02F0H offset from the APIC_BASE. If
CMCI interface is not supported for a particular bank (but IA32_MCG_CAP[10] =
1), this field will always read 0.

• CMCI_EN-Corrected error interrupt enable/disable/indicator, bits 30 —
Software sets this bit to enable the generation of corrected machine-check error
interrupt (CMCI). If CMCI interface is not supported for a particular bank (but
IA32_MCG_CAP[10] = 1), this bit is writeable but will always return 0 for that
bank. This bit also indicates CMCI is supported or not supported in the corre-
sponding bank. See Section 15.5 for details of software detection of CMCI facility.

100 to 110 Reserved

111 Generic

Figure 15-8. IA32_MCi_CTL2 Register

Table 15-3. Address Mode in IA32_MCi_MISC[8:6]
IA32_MCi_MISC[8:6] Encoding Definition

CMCI_EN—Enable/disable CMCI

63 15

Reserved

29

Corrected error count threshold

01431 30

Reserved
15-12 Vol. 3B

MACHINE-CHECK ARCHITECTURE
Some microarchitectural sub-systems that are the source of corrected MC errors may
be shared by more than one logical processors. Consequently, the facilities for
reporting MC errors and controlling mechanisms may be shared by more than one
logical processors. For example, the IA32_MCi_CTL2 MSR is shared between logical
processors sharing a processor core. Software is responsible to program
IA32_MCi_CTL2 MSR in a consistent manner with CMCI delivery and usage.
After processor reset, IA32_MCi_CTL2 MSRs are zero’ed.

15.3.2.6 IA32_MCG Extended Machine Check State MSRs
The Pentium 4 and Intel Xeon processors implement a variable number of extended
machine-check state MSRs. The MCG_EXT_P flag in the IA32_MCG_CAP MSR indi-
cates the presence of these extended registers, and the MCG_EXT_CNT field indi-
cates the number of these registers actually implemented. See Section 15.3.1.1,
“IA32_MCG_CAP MSR.” Also see Table 15-4.

Table 15-4. Extended Machine Check State MSRs
in Processors Without Support for Intel 64 Architecture

MSR Address Description

IA32_MCG_EAX 180H Contains state of the EAX register at the time of the machine-
check error.

IA32_MCG_EBX 181H Contains state of the EBX register at the time of the machine-
check error.

IA32_MCG_ECX 182H Contains state of the ECX register at the time of the machine-
check error.

IA32_MCG_EDX 183H Contains state of the EDX register at the time of the machine-
check error.

IA32_MCG_ESI 184H Contains state of the ESI register at the time of the machine-
check error.

IA32_MCG_EDI 185H Contains state of the EDI register at the time of the machine-
check error.

IA32_MCG_EBP 186H Contains state of the EBP register at the time of the machine-
check error.

IA32_MCG_ESP 187H Contains state of the ESP register at the time of the machine-
check error.

IA32_MCG_EFLAGS 188H Contains state of the EFLAGS register at the time of the
machine-check error.

IA32_MCG_EIP 189H Contains state of the EIP register at the time of the machine-
check error.

IA32_MCG_MISC 18AH When set, indicates that a page assist or page fault occurred
during DS normal operation.
Vol. 3B 15-13

MACHINE-CHECK ARCHITECTURE
In processors with support for Intel 64 architecture, 64-bit machine check state
MSRs are aliased to the legacy MSRs. In addition, there may be registers beyond
IA32_MCG_MISC. These may include up to five reserved MSRs
(IA32_MCG_RESERVED[1:5]) and save-state MSRs for registers introduced in 64-bit
mode. See Table 15-5.

Table 15-5. Extended Machine Check State MSRs
In Processors With Support For Intel 64 Architecture

MSR Address Description

IA32_MCG_RAX 180H Contains state of the RAX register at the time of the machine-
check error.

IA32_MCG_RBX 181H Contains state of the RBX register at the time of the machine-
check error.

IA32_MCG_RCX 182H Contains state of the RCX register at the time of the machine-
check error.

IA32_MCG_RDX 183H Contains state of the RDX register at the time of the machine-
check error.

IA32_MCG_RSI 184H Contains state of the RSI register at the time of the machine-
check error.

IA32_MCG_RDI 185H Contains state of the RDI register at the time of the machine-
check error.

IA32_MCG_RBP 186H Contains state of the RBP register at the time of the machine-
check error.

IA32_MCG_RSP 187H Contains state of the RSP register at the time of the machine-
check error.

IA32_MCG_RFLAGS 188H Contains state of the RFLAGS register at the time of the
machine-check error.

IA32_MCG_RIP 189H Contains state of the RIP register at the time of the machine-
check error.

IA32_MCG_MISC 18AH When set, indicates that a page assist or page fault occurred
during DS normal operation.

IA32_MCG_
RSERVED[1:5]

18BH-
18FH

These registers, if present, are reserved.

IA32_MCG_R8 190H Contains state of the R8 register at the time of the machine-
check error.

IA32_MCG_R9 191H Contains state of the R9 register at the time of the machine-
check error.

IA32_MCG_R10 192H Contains state of the R10 register at the time of the machine-
check error.
15-14 Vol. 3B

MACHINE-CHECK ARCHITECTURE
When a machine-check error is detected on a Pentium 4 or Intel Xeon processor, the
processor saves the state of the general-purpose registers, the R/EFLAGS register,
and the R/EIP in these extended machine-check state MSRs. This information can be
used by a debugger to analyze the error.
These registers are read/write to zero registers. This means software can read them;
but if software writes to them, only all zeros is allowed. If software attempts to write
a non-zero value into one of these registers, a general-protection (#GP) exception is
generated. These registers are cleared on a hardware reset (power-up or RESET),
but maintain their contents following a soft reset (INIT reset).

15.3.3 Mapping of the Pentium Processor Machine-Check Errors
to the Machine-Check Architecture

The Pentium processor reports machine-check errors using two registers:
P5_MC_TYPE and P5_MC_ADDR. The Pentium 4, Intel Xeon, and P6 family proces-
sors map these registers to the IA32_MCi_STATUS and IA32_MCi_ADDR in the error-
reporting register bank. This bank reports on the same type of external bus errors
reported in P5_MC_TYPE and P5_MC_ADDR.
The information in these registers can then be accessed in two ways:
• By reading the IA32_MCi_STATUS and IA32_MCi_ADDR registers as part of a

general machine-check exception handler written for Pentium 4 and P6 family
processors.

• By reading the P5_MC_TYPE and P5_MC_ADDR registers using the RDMSR
instruction.

The second capability permits a machine-check exception handler written to run on a
Pentium processor to be run on a Pentium 4, Intel Xeon, or P6 family processor. There
is a limitation in that information returned by the Pentium 4, Intel Xeon, and P6
family processors is encoded differently than information returned by the Pentium

IA32_MCG_R11 193H Contains state of the R11 register at the time of the machine-
check error.

IA32_MCG_R12 194H Contains state of the R12 register at the time of the machine-
check error.

IA32_MCG_R13 195H Contains state of the R13 register at the time of the machine-
check error.

IA32_MCG_R14 196H Contains state of the R14 register at the time of the machine-
check error.

IA32_MCG_R15 197H Contains state of the R15 register at the time of the machine-
check error.

Table 15-5. Extended Machine Check State MSRs
In Processors With Support For Intel 64 Architecture (Contd.)

MSR Address Description
Vol. 3B 15-15

MACHINE-CHECK ARCHITECTURE
processor. To run a Pentium processor machine-check exception handler on a
Pentium 4, Intel Xeon, or P6 family processor; the handler must be written to inter-
pret P5_MC_TYPE encodings correctly.

15.4 ENHANCED CACHE ERROR REPORTING
Starting with Intel Core Duo processors, cache error reporting was enhanced. In
earlier Intel processors, cache status was based on the number of correction events
that occurred in a cache. In the new paradigm, called “threshold-based error status”,
cache status is based on the number of lines (ECC blocks) in a cache that incur
repeated corrections. The threshold is chosen by Intel, based on various factors. If a
processor supports threshold-based error status, it sets IA32_MCG_CAP[11]
(MCG_TES_P) to 1; if not, to 0.
A processor that supports enhanced cache error reporting contains hardware that
tracks the operating status of certain caches and provides an indicator of their
“health”. The hardware reports a “green” status when the number of lines that incur
repeated corrections is at or below a pre-defined threshold, and a “yellow” status
when the number of affected lines exceeds the threshold. Yellow status means that
the cache reporting the event is operating correctly, but you should schedule the
system for servicing within a few weeks.
Intel recommends that you rely on this mechanism for structures supported by
threshold-base error reporting.
The CPU/system/platform response to a yellow event should be less severe than its
response to an uncorrected error. An uncorrected error means that a serious error
has actually occurred, whereas the yellow condition is a warning that the number of
affected lines has exceeded the threshold but is not, in itself, a serious event: the
error was corrected and system state was not compromised.
The green/yellow status indicator is not a foolproof early warning for an uncorrected
error resulting from the failure of two bits in the same ECC block. Such a failure can
occur and cause an uncorrected error before the yellow threshold is reached.
However, the chance of an uncorrected error increases as the number of affected
lines increases.

15.5 CORRECTED MACHINE CHECK ERROR INTERRUPT
Corrected machine-check error interrupt (CMCI) is an architectural enhancement to
the machine-check architecture. It provides capabilities beyond those of threshold-
based error reporting (Section 15.4). With threshold-based error reporting, software
is limited to use periodic polling to query the status of hardware corrected MC errors.
CMCI provides a signaling mechanism to deliver a local interrupt based on threshold
values that software can program using the IA32_MCi_CTL2 MSRs.
15-16 Vol. 3B

MACHINE-CHECK ARCHITECTURE
CMCI is disabled by default. System software is required to enable CMCI for each
IA32_MCi bank that support the reporting of hardware corrected errors if
IA32_MCG_CAP[10] = 1.
System software use IA32_MCi_CTL2 MSR to enable/disable the CMCI capability for
each bank and program threshold values into IA32_MCi_CTL2 MSR. CMCI is not
affected by the CR4.MCE bit, and it is not affected by the IA32_MCi_CTL MSR’s.
To detect the existence of thresholding for a given bank, software writes only bits
14:0 with the threshold value. If the bits persist, then thresholding is available (and
CMCI is available). If the bits are all 0's, then no thresholding exists. To detect that
CMCI signaling exists, software writes a 1 to bit 30 of the MCi_CTL2 register. Upon
subsequent read, If Bit 30 = 0, no CMCI is available for this bank. If Bit 30 = 1, then
CMCI is available and enabled.

15.5.1 CMCI Local APIC Interface
The operation of CMCI is depicted in Figure 15-9.

CMCI interrupt delivery is configured by writing to the LVT CMCI register entry in the
local APIC register space at default address of APIC_BASE + 2F0H. A CMCI interrupt
can be delivered to more than one logical processors if multiple logical processors are
affected by the associated MC errors. For example, if a corrected bit error in a cache
shared by two logical processors caused a CMCI, the interrupt will be delivered to
both logical processors sharing that microarchitectural sub-system. Similarly,
package level errors may cause CMCI to be delivered to all logical processors within
the package. However, system level errors will not be handled by CMCI.
See Section 10.5.1, “Local Vector Table” for details regarding the LVT CMCI register.

Figure 15-9. CMCI Behavior

Error threshold

63 0

MCi_CTL2

3031

Error count

53 0

Software write 1 to enable

Count overflow threshold -> CMCI LVT in local APIC

29 14

37

MCi_STATUS

3852

?=
APIC_BASE + 2F0H
Vol. 3B 15-17

MACHINE-CHECK ARCHITECTURE
15.5.2 System Software Recommendation for Managing CMCI and
Machine Check Resources

System software must enable and manage CMCI, set up interrupt handlers to service
CMCI interrupts delivered to affected logical processors, program CMCI LVT entry,
and query machine check banks that are shared by more than one logical processors.
This section describes techniques system software can implement to manage CMCI
initialization, service CMCI interrupts in a efficient manner to minimize contentions to
access shared MSR resources.

15.5.2.1 CMCI Initialization
Although a CMCI interrupt may be delivered to more than one logical processors
depending on the nature of the corrected MC error, only one instance of the interrupt
service routine needs to perform the necessary service and make queries to the
machine-check banks. The following steps describes a technique that limits the
amount of work the system has to do in response to a CMCI.
• To provide maximum flexibility, system software should define per-thread data

structure for each logical processor to allow equal-opportunity and efficient
response to interrupt delivery. Specifically, the per-thread data structure should
include a set of per-bank fields to track which machine check bank it needs to
access in response to a delivered CMCI interrupt. The number of banks that
needs to be tracked is determined by IA32_MCG_CAP[7:0].

• Initialization of per-thread data structure. The initialization of per-thread data
structure must be done serially on each logical processor in the system. The
sequencing order to start the per-thread initialization between different logical
processor is arbitrary. But it must observe the following specific detail to satisfy
the shared nature of specific MSR resources:

a. Each thread initializes its data structure to indicate that it does not own any
MC bank registers.

b. Each thread examines IA32_MCi_CTL2[30] indicator for each bank to
determine if another thread has already claimed ownership of that bank.

• If IA32_MCi_CTL2[30] had been set by another thread. This thread can
not own bank i and should proceed to step b. and examine the next
machine check bank until all of the machine check banks are exhausted.

• If IA32_MCi_CTL2[30] = 0, proceed to step c.

c. Check whether writing a 1 into IA32_MCi_CTL2[30] can return with 1 on a
subsequent read to determine this bank can support CMCI.

• If IA32_MCi_CTL2[30] = 0, this bank does not support CMCI. This thread
can not own bank i and should proceed to step b. and examine the next
machine check bank until all of the machine check banks are exhausted.

• If IA32_MCi_CTL2[30] = 1, modify the per-thread data structure to
indicate this thread claims ownership to the MC bank; proceed to initialize
15-18 Vol. 3B

MACHINE-CHECK ARCHITECTURE
the error threshold count (bits 15:0) of that bank as described in Chapter
15, “CMCI Threshold Management”. Then proceed to step b. and examine
the next machine check bank until all of the machine check banks are
exhausted.

• After the thread has examined all of the machine check banks, it sees if it owns
any MC banks to service CMCI. If any bank has been claimed by this thread:

— Ensure that the CMCI interrupt handler has been set up as described in
Chapter 15, “CMCI Interrupt Handler”.

— Initialize the CMCI LVT entry, as described in Section 15.5.1, “CMCI Local
APIC Interface”.

— Log and clear all of IA32_MCi_Status registers for the banks that this thread
owns. This will allow new errors to be logged.

15.5.2.2 CMCI Threshold Management
The Corrected MC error threshold field, IA32_MCi_CTL2[15:0], is architecturally
defined. Specifically, all these bits are writable by software, but different processor
implementations may choose to implement less than 15 bits as threshold for the
overflow comparison with IA32_MCi_STATUS[52:38]. The following describes tech-
niques that software can manage CMCI threshold to be compatible with changes in
implementation characteristics:
• Software can set the initial threshold value to 1 by writing 1 to

IA32_MCi_CTL2[15:0]. This will cause overflow condition on every corrected MC
error and generates a CMCI interrupt.

• To increase the threshold and reduce the frequency of CMCI servicing:

a. Find the maximum threshold value a given processor implementation
supports. The steps are:

• Write 7FFFH to IA32_MCi_CTL2[15:0],

• Read back IA32_MCi_CTL2[15:0], the lower 15 bits (14:0) is the
maximum threshold supported by the processor.

b. Increase the threshold to a value below the maximum value discovered using
step a.

15.5.2.3 CMCI Interrupt Handler
The following describes techniques system software may consider to implement a
CMCI service routine:
• The service routine examines its private per-thread data structure to check which

set of MC banks it has ownership. If the thread does not have ownership of a
given MC bank, proceed to the next MC bank. Ownership is determined at initial-
ization time which is described in Section [Cross Reference to 14.5.2.1].

• If the thread had claimed ownership to an MC bank,
Vol. 3B 15-19

MACHINE-CHECK ARCHITECTURE
— Check for valid MC errors by testing IA32_MCi_STATUS.VALID[63],

• Log MC errors,

• Clear the MSRs of this MC bank.

— If no valid error, proceed to next MC bank.
• When all MC banks have been processed, exit service routine and return to

original program execution.
This technique will allow each logical processors to handle corrected MC errors inde-
pendently and requires no synchronization to access shared MSR resources.

15.6 RECOVERY OF UNCORRECTED RECOVERABLE (UCR)
ERRORS

Recovery of uncorrected recoverable machine check errors is an enhancement in
machine-check architecture. The first processor that supports this feature is 45nm
Intel 64 processor on which CPUID reports DisplayFamily_DisplayModel as 06H_2EH
(see CPUID instruction in Chapter 3, “Instruction Set Reference, A-L” in the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 2A). This allow
system software to perform recovery action on certain class of uncorrected errors
and continue execution.

15.6.1 Detection of Software Error Recovery Support
Software must use bit 24 of IA32_MCG_CAP (MCG_SER_P) to detect the presence of
software error recovery support (see Figure 15-2). When IA32_MCG_CAP[24] is set,
this indicates that the processor supports software error recovery. When this bit is
clear, this indicates that there is no support for error recovery from the processor and
the primary responsibility of the machine check handler is logging the machine check
error information and shutting down the system.
The new class of architectural MCA errors from which system software can attempt
recovery is called Uncorrected Recoverable (UCR) Errors. UCR errors are uncorrected
errors that have been detected and signaled but have not corrupted the processor
context. For certain UCR errors, this means that once system software has
performed a certain recovery action, it is possible to continue execution on this
processor. UCR error reporting provides an error containment mechanism for data
poisoning. The machine check handler will use the error log information from the
error reporting registers to analyze and implement specific error recovery actions for
UCR errors.
15-20 Vol. 3B

MACHINE-CHECK ARCHITECTURE
15.6.2 UCR Error Reporting and Logging
IA32_MCi_STATUS MSR is used for reporting UCR errors and existing corrected or
uncorrected errors. The definitions of IA32_MCi_STATUS, including bit fields to iden-
tify UCR errors, is shown in Figure 15-5. UCR errors can be signaled through either
the corrected machine check interrupt (CMCI) or machine check exception (MCE)
path depending on the type of the UCR error.
When IA32_MCG_CAP[24] is set, a UCR error is indicated by the following bit settings
in the IA32_MCi_STATUS register:
• Valid (bit 63) = 1
• UC (bit 61) = 1
• PCC (bit 57) = 0
Additional information from the IA32_MCi_MISC and the IA32_MCi_ADDR registers
for the UCR error are available when the ADDRV and the MISCV flags in the
IA32_MCi_STATUS register are set (see Section 15.3.2.4). The MCA error code field
of the IA32_MCi_STATUS register indicates the type of UCR error. System software
can interpret the MCA error code field to analyze and identify the necessary recovery
action for the given UCR error.
In addition, the IA32_MCi_STATUS register bit fields, bits 56:55, are defined (see
Figure 15-5) to provide additional information to help system software to properly
identify the necessary recovery action for the UCR error:
• S (Signaling) flag, bit 56 - Indicates (when set) that a machine check exception

was generated for the UCR error reported in this MC bank and system software
needs to check the AR flag and the MCA error code fields in the
IA32_MCi_STATUS register to identify the necessary recovery action for this
error. When the S flag in the IA32_MCi_STATUS register is clear, this UCR error
was not signaled via a machine check exception and instead was reported as a
corrected machine check (CMC). System software is not required to take any
recovery action when the S flag in the IA32_MCi_STATUS register is clear.

• AR (Action Required) flag, bit 55 - Indicates (when set) that MCA error code
specific recovery action must be performed by system software at the time this
error was signaled. This recovery action must be completed successfully before
any additional work is scheduled for this processor When the RIPV flag in the
IA32_MCG_STATUS is clear, an alternative execution stream needs to be
provided; when the MCA error code specific recovery specific recovery action
cannot be successfully completed, system software must shut down the system.
When the AR flag in the IA32_MCi_STATUS register is clear, system software may
still take MCA error code specific recovery action but this is optional; system
software can safely resume program execution at the instruction pointer saved
on the stack from the machine check exception when the RIPV flag in the
IA32_MCG_STATUS register is set.

Both the S and the AR flags in the IA32_MCi_STATUS register are defined to be sticky
bits, which mean that once set, the processor does not clear them. Only software and
Vol. 3B 15-21

MACHINE-CHECK ARCHITECTURE
good power-on reset can clear the S and the AR-flags. Both the S and the AR flags
are only set when the processor reports the UCR errors (MCG_CAP[24] is set).

15.6.3 UCR Error Classification
With the S and AR flag encoding in the IA32_MCi_STATUS register, UCR errors can be
classified as:
• Uncorrected no action required (UCNA) - is a UCR error that is not signaled via a

machine check exception and, instead, is reported to system software as a
corrected machine check error. UCNA errors indicate that some data in the
system is corrupted, but the data has not been consumed and the processor
state is valid and you may continue execution on this processor. UCNA errors
require no action from system software to continue execution. A UNCA error is
indicated with UC=1, PCC=0, S=0 and AR=0 in the IA32_MCi_STATUS register.

• Software recoverable action optional (SRAO) - a UCR error is signaled via a
machine check exception and a system software recovery action is optional and
not required to continue execution from this machine check exception. SRAO
errors indicate that some data in the system is corrupt, but the data has not been
consumed and the processor state is valid. SRAO errors provide the additional
error information for system software to perform a recovery action. An SRAO
error is indicated with UC=1, PCC=0, S=1, EN=1 and AR=0 in the
IA32_MCi_STATUS register. Recovery actions for SRAO errors are MCA error code
specific. The MISCV and the ADDRV flags in the IA32_MCi_STATUS register are
set when the additional error information is available from the IA32_MCi_MISC
and the IA32_MCi_ADDR registers. System software needs to inspect the MCA
error code fields in the IA32_MCi_STATUS register to identify the specific
recovery action for a given SRAO error. If MISCV and ADDRV are not set, it is
recommended that no system software error recovery be performed however,
you can resume execution.

• Software recoverable action required (SRAR) - a UCR error that requires system
software to take a recovery action on this processor before scheduling another
stream of execution on this processor. SRAR errors indicate that the error was
detected and raised at the point of the consumption in the execution flow. An
SRAR error is indicated with UC=1, PCC=0, S=1, EN=1 and AR=1 in the
IA32_MCi_STATUS register. Recovery actions are MCA error code specific. The
MISCV and the ADDRV flags in the IA32_MCi_STATUS register are set when the
additional error information is available from the IA32_MCi_MISC and the
IA32_MCi_ADDR registers. System software needs to inspect the MCA error code
fields in the IA32_MCi_STATUS register to identify the specific recovery action for
a given SRAR error. If MISCV and ADDRV are not set, it is recommended that
system software shutdown the system.
15-22 Vol. 3B

MACHINE-CHECK ARCHITECTURE
Table 15-6 summarizes UCR, corrected, and uncorrected errors.

15.6.4 UCR Error Overwrite Rules
In general, the overwrite rules are as follows:
• UCR errors will overwrite corrected errors.
• Uncorrected (PCC=1) errors overwrite UCR (PCC=0) errors.
• UCR errors are not written over previous UCR errors.
• Corrected errors do not write over previous UCR errors.
Regardless of whether the 1st error is retained or the 2nd error is overwritten over
the 1st error, the OVER flag in the IA32_MCi_STATUS register will be set to indicate
an overflow condition. As the S flag and AR flag in the IA32_MCi_STATUS register are
defined to be sticky flags, a second event cannot clear these 2 flags once set,
however the MC bank information may be filled in for the 2nd error. The table below
shows the overwrite rules and how to treat a second error if the first event is already
logged in a MC bank along with the resulting bit setting of the UC, PCC, and AR flags
in the IA32_MCi_STATUS register. As UCNA and SRA0 errors do not require recovery
action from system software to continue program execution, a system reset by

Table 15-6. MC Error Classifications
Type of Error1

NOTES:
1. VAL=1, EN=1 for UC=1 errors; OVER=0 for UC=1 and PCC=0 errors SRAR, SRAO and UCNA errors

are supported by the processor only when IA32_MCG_CAP[24] (MCG_SER_P) is set.

UC PCC S AR Signaling Software Action Example

Uncorrected Error
(UC)

1 1 x x MCE Reset the system

SRAR 1 0 1 1 MCE For known MCACOD,
take specific recovery
action;

For unknown MCACOD,
must bugcheck

Cache to
processor load
error

SRAO 1 0 1 0 MCE For known MCACOD,
take specific recovery
action;

For unknown MCACOD,
OK to keep the system
running

Patrol scrub and
explicit writeback
poison errors

UCNA 1 0 0 0 CMC Log the error and Ok to
keep the system running

Poison detection
error

Corrected Error (CE) 0 0 x x CMC Log the error and no
corrective action
required

ECC in caches and
memory
Vol. 3B 15-23

MACHINE-CHECK ARCHITECTURE
system software is not required unless the AR flag or PCC flag is set for the UCR over-
flow case (OVER=1, VAL=1, UC=1, PCC=0).
Table 15-7 lists overwrite rules for uncorrected errors, corrected errors, and uncor-
rected recoverable errors.

15.7 MACHINE-CHECK AVAILABILITY
The machine-check architecture and machine-check exception (#MC) are model-
specific features. Software can execute the CPUID instruction to determine whether
a processor implements these features. Following the execution of the CPUID
instruction, the settings of the MCA flag (bit 14) and MCE flag (bit 7) in EDX indicate
whether the processor implements the machine-check architecture and machine-
check exception.

15.8 MACHINE-CHECK INITIALIZATION
To use the processors machine-check architecture, software must initialize the
processor to activate the machine-check exception and the error-reporting mecha-
nism.
Example 15-1 gives pseudocode for performing this initialization. This pseudocode
checks for the existence of the machine-check architecture and exception; it then

Table 15-7. Overwrite Rules for UC, CE, and UCR Errors
First Event Second Event UC PCC S AR MCA Bank Reset System

CE UCR 1 0 0 if UCNA,
else 1

1 if SRAR,
else 0

second yes, if AR=1

UCR CE 1 0 0 if UCNA,
else 1

1 if SRAR,
else 0

first yes, if AR=1

UCNA UCNA 1 0 0 0 first no

UCNA SRAO 1 0 1 0 first no

UCNA SRAR 1 0 1 1 first yes

SRAO UCNA 1 0 1 0 first no

SRAO SRAO 1 0 1 0 first no

SRAO SRAR 1 0 1 1 first yes

SRAR UCNA 1 0 1 1 first yes

SRAR SRAO 1 0 1 1 first yes

SRAR SRAR 1 0 1 1 first yes

UCR UC 1 1 undefined undefined second yes

UC UCR 1 1 undefined undefined first yes
15-24 Vol. 3B

MACHINE-CHECK ARCHITECTURE
enables machine-check exception and the error-reporting register banks. The
pseudocode shown is compatible with the Pentium 4, Intel Xeon, P6 family, and
Pentium processors.
Following power up or power cycling, IA32_MCi_STATUS registers are not guaran-
teed to have valid data until after they are initially cleared to zero by software (as
shown in the initialization pseudocode in Example 15-1). In addition, when using P6
family processors, software must set MCi_STATUS registers to zero when doing a
soft-reset.

Example 15-1. Machine-Check Initialization Pseudocode

Check CPUID Feature Flags for MCE and MCA support
IF CPU supports MCE
THEN

IF CPU supports MCA
THEN

IF (IA32_MCG_CAP.MCG_CTL_P = 1)
(* IA32_MCG_CTL register is present *)
THEN

IA32_MCG_CTL ← FFFFFFFFFFFFFFFFH;
(* enables all MCA features *)

FI

(* Determine number of error-reporting banks supported *)
COUNT← IA32_MCG_CAP.Count;
MAX_BANK_NUMBER ← COUNT - 1;

IF (Processor Family is 6H and Processor EXTMODEL:MODEL is less than 1AH)
THEN

(* Enable logging of all errors except for MC0_CTL register *)
FOR error-reporting banks (1 through MAX_BANK_NUMBER)
DO

IA32_MCi_CTL ← 0FFFFFFFFFFFFFFFFH;
OD

ELSE
(* Enable logging of all errors including MC0_CTL register *)
FOR error-reporting banks (0 through MAX_BANK_NUMBER)
DO

IA32_MCi_CTL ← 0FFFFFFFFFFFFFFFFH;
OD

FI

(* BIOS clears all errors only on power-on reset *)
IF (BIOS detects Power-on reset)
THEN

FOR error-reporting banks (0 through MAX_BANK_NUMBER)
DO

IA32_MCi_STATUS ← 0;
OD

ELSE
Vol. 3B 15-25

MACHINE-CHECK ARCHITECTURE
FOR error-reporting banks (0 through MAX_BANK_NUMBER)
DO

(Optional for BIOS and OS) Log valid errors
(OS only) IA32_MCi_STATUS ← 0;

OD

FI
FI

Setup the Machine Check Exception (#MC) handler for vector 18 in IDT

Set the MCE bit (bit 6) in CR4 register to enable Machine-Check Exceptions
FI

15.9 INTERPRETING THE MCA ERROR CODES
When the processor detects a machine-check error condition, it writes a 16-bit error
code to the MCA error code field of one of the IA32_MCi_STATUS registers and sets
the VAL (valid) flag in that register. The processor may also write a 16-bit model-
specific error code in the IA32_MCi_STATUS register depending on the implementa-
tion of the machine-check architecture of the processor.
The MCA error codes are architecturally defined for Intel 64 and IA-32 processors. To
determine the cause of a machine-check exception, the machine-check exception
handler must read the VAL flag for each IA32_MCi_STATUS register. If the flag is set,
the machine check-exception handler must then read the MCA error code field of the
register. It is the encoding of the MCA error code field [15:0] that determines the
type of error being reported and not the register bank reporting it.
There are two types of MCA error codes: simple error codes and compound error
codes.

15.9.1 Simple Error Codes
Table 15-8 shows the simple error codes. These unique codes indicate global error
information.

Table 15-8. IA32_MCi_Status [15:0] Simple Error Code Encoding
Error Code Binary Encoding Meaning

No Error 0000 0000 0000 0000 No error has been reported to this bank of
error-reporting registers.

Unclassified 0000 0000 0000 0001 This error has not been classified into the
MCA error classes.

Microcode ROM Parity
Error

0000 0000 0000 0010 Parity error in internal microcode ROM
15-26 Vol. 3B

MACHINE-CHECK ARCHITECTURE
15.9.2 Compound Error Codes
Compound error codes describe errors related to the TLBs, memory, caches, bus and
interconnect logic, and internal timer. A set of sub-fields is common to all of
compound errors. These sub-fields describe the type of access, level in the cache
hierarchy, and type of request. Table 15-9 shows the general form of the compound
error codes.

The “Interpretation” column in the table indicates the name of a compound error. The
name is constructed by substituting mnemonics for the sub-field names given within
curly braces. For example, the error code ICACHEL1_RD_ERR is constructed from the
form:

{TT}CACHE{LL}_{RRRR}_ERR,
where {TT} is replaced by I, {LL} is replaced by L1, and {RRRR} is replaced by RD.

For more information on the “Form” and “Interpretation” columns, see Sections
Section 15.9.2.1, “Correction Report Filtering (F) Bit” through Section 15.9.2.5, “Bus
and Interconnect Errors”.

External Error 0000 0000 0000 0011 The BINIT# from another processor caused
this processor to enter machine check.1

FRC Error 0000 0000 0000 0100 FRC (functional redundancy check)
master/slave error

Internal Parity Error 0000 0000 0000 0101 Internal parity error.

Internal Timer Error 0000 0100 0000 0000 Internal timer error.

Internal Unclassified 0000 01xx xxxx xxxx Internal unclassified errors. 2

NOTES:
1. BINIT# assertion will cause a machine check exception if the processor (or any processor on the

same external bus) has BINIT# observation enabled during power-on configuration (hardware
strapping) and if machine check exceptions are enabled (by setting CR4.MCE = 1).

2. At least one X must equal one. Internal unclassified errors have not been classified.

Table 15-9. IA32_MCi_Status [15:0] Compound Error Code Encoding
Type Form Interpretation

Generic Cache Hierarchy 000F 0000 0000 11LL Generic cache hierarchy error

TLB Errors 000F 0000 0001 TTLL {TT}TLB{LL}_ERR

Memory Controller Errors 000F 0000 1MMM CCCC {MMM}_CHANNEL{CCCC}_ERR

Cache Hierarchy Errors 000F 0001 RRRR TTLL {TT}CACHE{LL}_{RRRR}_ERR

Bus and Interconnect Errors 000F 1PPT RRRR IILL BUS{LL}_{PP}_{RRRR}_{II}_{T}_ERR

Table 15-8. IA32_MCi_Status [15:0] Simple Error Code Encoding (Contd.)
Vol. 3B 15-27

MACHINE-CHECK ARCHITECTURE
15.9.2.1 Correction Report Filtering (F) Bit
Starting with Intel Core Duo processors, bit 12 in the “Form” column in Table 15-9 is
used to indicate that a particular posting to a log may be the last posting for correc-
tions in that line/entry, at least for some time:
• 0 in bit 12 indicates “normal” filtering (original P6/Pentium4/Xeon processor

meaning).
• 1 in bit 12 indicates “corrected” filtering (filtering is activated for the line/entry in

the posting). Filtering means that some or all of the subsequent corrections to
this entry (in this structure) will not be posted. The enhanced error reporting
introduced with the Intel Core Duo processors is based on tracking the lines
affected by repeated corrections (see Section 15.4, “Enhanced Cache Error
reporting”). This capability is indicated by IA32_MCG_CAP[11]. Only the first few
correction events for a line are posted; subsequent redundant correction events
to the same line are not posted. Uncorrected events are always posted.

The behavior of error filtering after crossing the yellow threshold is model-specific.

15.9.2.2 Transaction Type (TT) Sub-Field
The 2-bit TT sub-field (Table 15-10) indicates the type of transaction (data, instruc-
tion, or generic). The sub-field applies to the TLB, cache, and interconnect error
conditions. Note that interconnect error conditions are primarily associated with P6
family and Pentium processors, which utilize an external APIC bus separate from the
system bus. The generic type is reported when the processor cannot determine the
transaction type.

15.9.2.3 Level (LL) Sub-Field
The 2-bit LL sub-field (see Table 15-11) indicates the level in the memory hierarchy
where the error occurred (level 0, level 1, level 2, or generic). The LL sub-field also
applies to the TLB, cache, and interconnect error conditions. The Pentium 4, Intel
Xeon, and P6 family processors support two levels in the cache hierarchy and one
level in the TLBs. Again, the generic type is reported when the processor cannot
determine the hierarchy level.

Table 15-10. Encoding for TT (Transaction Type) Sub-Field
Transaction Type Mnemonic Binary Encoding

Instruction I 00

Data D 01

Generic G 10

Table 15-11. Level Encoding for LL (Memory Hierarchy Level) Sub-Field
Hierarchy Level Mnemonic Binary Encoding

Level 0 L0 00
15-28 Vol. 3B

MACHINE-CHECK ARCHITECTURE
15.9.2.4 Request (RRRR) Sub-Field
The 4-bit RRRR sub-field (see Table 15-12) indicates the type of action associated
with the error. Actions include read and write operations, prefetches, cache evictions,
and snoops. Generic error is returned when the type of error cannot be determined.
Generic read and generic write are returned when the processor cannot determine
the type of instruction or data request that caused the error. Eviction and snoop
requests apply only to the caches. All of the other requests apply to TLBs, caches and
interconnects.

15.9.2.5 Bus and Interconnect Errors
The bus and interconnect errors are defined with the 2-bit PP (participation), 1-bit T
(time-out), and 2-bit II (memory or I/O) sub-fields, in addition to the LL and RRRR
sub-fields (see Table 15-13). The bus error conditions are implementation dependent
and related to the type of bus implemented by the processor. Likewise, the intercon-
nect error conditions are predicated on a specific implementation-dependent inter-
connect model that describes the connections between the different levels of the
storage hierarchy. The type of bus is implementation dependent, and as such is not
specified in this document. A bus or interconnect transaction consists of a request
involving an address and a response.

Level 1 L1 01

Level 2 L2 10

Generic LG 11

Table 15-12. Encoding of Request (RRRR) Sub-Field
Request Type Mnemonic Binary Encoding

Generic Error ERR 0000

Generic Read RD 0001

Generic Write WR 0010

Data Read DRD 0011

Data Write DWR 0100

Instruction Fetch IRD 0101

Prefetch PREFETCH 0110

Eviction EVICT 0111

Snoop SNOOP 1000

Table 15-13. Encodings of PP, T, and II Sub-Fields
Sub-Field Transaction Mnemonic Binary Encoding

Table 15-11. Level Encoding for LL (Memory Hierarchy Level) Sub-Field (Contd.)
Vol. 3B 15-29

MACHINE-CHECK ARCHITECTURE
15.9.2.6 Memory Controller Errors
The memory controller errors are defined with the 3-bit MMM (memory transaction
type), and 4-bit CCCC (channel) sub-fields. The encodings for MMM and CCCC are
defined in Table 15-14.

15.9.3 Architecturally Defined UCR Errors
Software recoverable compound error code are defined in this section.

PP (Participation) Local processor* originated request SRC 00

Local processor* responded to request RES 01

Local processor* observed error as
third party

OBS 10

Generic 11

T (Time-out) Request timed out TIMEOUT 1

Request did not time out NOTIMEOUT 0

II (Memory or I/O) Memory Access M 00

Reserved 01

I/O IO 10

Other transaction 11

NOTE:
* Local processor differentiates the processor reporting the error from other system compo-

nents (including the APIC, other processors, etc.).

Table 15-14. Encodings of MMM and CCCC Sub-Fields
Sub-Field Transaction Mnemonic Binary Encoding

MMM Generic undefined request GEN 000

Memory read error RD 001

Memory write error WR 010

Address/Command Error AC 011

Memory Scrubbing Error MS 100

Reserved 101-111

CCCC Channel number CHN 0000-1110

Channel not specified 1111

Table 15-13. Encodings of PP, T, and II Sub-Fields (Contd.)
15-30 Vol. 3B

MACHINE-CHECK ARCHITECTURE
15.9.3.1 Architecturally Defined SRAO Errors
The following two SRAO errors are architecturally defined.
• UCR Errors detected by memory controller scrubbing; and
• UCR Errors detected during L3 cache (L3) explicit writebacks.
The MCA error code encodings for these two architecturally-defined UCR errors
corresponds to sub-classes of compound MCA error codes (see Table 15-9). Their
values and compound encoding format are given in Table 15-15.

Table 15-16 lists values of relevant bit fields of IA32_MCi_STATUS for architecturally
defined SRAO errors.

For both the memory scrubbing and L3 explicit writeback errors, the ADDRV and
MISCV flags in the IA32_MCi_STATUS register are set to indicate that the offending
physical address information is available from the IA32_MCi_MISC and the
IA32_MCi_ADDR registers. For the memory scrubbing and L3 explicit writeback
errors, the address mode in the IA32_MCi_MISC register should be set as physical
address mode (010b) and the address LSB information in the IA32_MCi_MISC
register should indicate the lowest valid address bit in the address information
provided from the IA32_MCi_ADDR register.
An MCE signal is broadcast to all logical processors on the system on which the UCR
errors are supported. MCi_STATUS banks can be shared by logical processors within

Table 15-15. MCA Compound Error Code Encoding for SRAO Errors
Type MCACOD Value MCA Error Code Encoding1

NOTES:
1. Note that for both of these errors the correction report filtering (F) bit (bit 12) of the MCA error is

0, indicating "normal" filtering.

Memory Scrubbing 0xC0 - 0xCF 0000_0000_1100_CCCC

000F 0000 1MMM CCCC (Memory Controller Error), where

Memory subfield MMM = 100B (memory scrubbing)

Channel subfield CCCC = channel # or generic

L3 Explicit Writeback 0x17A 0000_0001_0111_1010

000F 0001 RRRR TTLL (Cache Hierarchy Error) where

Request subfields RRRR = 0111B (Eviction)

Transaction Type subfields TT = 10B (Generic)

Level subfields LL = 10B

Table 15-16. IA32_MCi_STATUS Values for SRAO Errors
SRAO Error Valid OVER UC EN MISCV ADDRV PCC S AR MCACOD

Memory Scrubbing 1 0 1 1 1 1 0 1 0 0xC0-0xCF

L3 Explicit Writeback 1 0 1 1 1 1 0 1 0 0x17A
Vol. 3B 15-31

MACHINE-CHECK ARCHITECTURE
a core or within the same package. So several logical processors may find an SRAO
error in the shared IA32_MCi_STATUS bank but other processors do not find it in any
of the IA32_MCi_STATUS banks. Table 15-17 shows the RIPV and EIPV flag indication
in the IA32_MCG_STATUS register for the memory scrubbing and L3 explicit write-
back errors on both the reporting and non-reporting logical processors.

15.9.3.2 Architecturally Defined SRAR Errors
The following two SRAR errors are architecturally defined.
• UCR Errors detected on data load; and
• UCR Errors detected on instruction fetch.
The MCA error code encodings for these two architecturally-defined UCR errors
corresponds to sub-classes of compound MCA error codes (see Table 15-9). Their
values and compound encoding format are given in Table 15-18.

Table 15-17. IA32_MCG_STATUS Flag Indication for SRAO Errors
SRAO Type Reporting Logical Processors Non-reporting Logical Processors

RIPV EIPV RIPV EIPV

Memory Scrubbing 1 0 1 0

L3 Explicit Writeback 1 0 1 0

Table 15-18. MCA Compound Error Code Encoding for SRAR Errors
Type MCACOD Value MCA Error Code Encoding1

NOTES:
1. Note that for both of these errors the correction report filtering (F) bit (bit 12) of the MCA error is

0, indicating "normal" filtering.

Data Load 0x134 0000_0001_0011_0100

000F 0001 RRRR TTLL (Cache Hierarchy Error), where

Request subfield RRRR = 0011B (Data Load)

Transaction Type subfield TT= 01B (Data)

Level subfield LL = 00B (Level 0)

Instruction Fetch 0x150 0000_0001_0101_0000

000F 0001 RRRR TTLL (Cache Hierarchy Error), where

Request subfield RRRR = 0101B (Instruction Fetch)

Transaction Type subfield TT= 00B (Instruction)

Level subfield LL = 00B (Level 0)
15-32 Vol. 3B

MACHINE-CHECK ARCHITECTURE
Table 15-19 lists values of relevant bit fields of IA32_MCi_STATUS for architecturally
defined SRAR errors.

For both the data load and instruction fetch errors, the ADDRV and MISCV flags in the
IA32_MCi_STATUS register are set to indicate that the offending physical address
information is available from the IA32_MCi_MISC and the IA32_MCi_ADDR registers.
For the memory scrubbing and L3 explicit writeback errors, the address mode in the
IA32_MCi_MISC register should be set as physical address mode (010b) and the
address LSB information in the IA32_MCi_MISC register should indicate the lowest
valid address bit in the address information provided from the IA32_MCi_ADDR
register.
An MCE signal is broadcast to all logical processors on the system on which the UCR
errors are supported. The IA32_MCG_STATUS MSR allows system software to distin-
guish the affected logical processor of an SRAR error amongst logical processors that
observed SRAR via a shared MCi_STATUS bank.
Table 15-20 shows the RIPV and EIPV flag indication in the IA32_MCG_STATUS
register for the data load and instruction fetch errors on both the reporting and non-
reporting logical processors.

The affected logical processor is the one that has detected and raised an SRAR error
at the point of the consumption in the execution flow. The affected logical processor
should find the Data Load or the Instruction Fetch error information in the
IA32_MCi_STATUS register that is reporting the SRAR error.
For Data Load recoverable errors, the affected logical processor should find that the
IA32_MCG_STATUS.RIPV flag is cleared and the IA32_MCG_STATUS.EIPV flag is set
indicating that the error is detected at the instruction pointer saved on the stack for
this machine check exception and restarting execution with the interrupted context is
not possible.
For Instruction Fetch recoverable error, the affected logical processor should find that
the RIPV flag and the EIPV Flag in the IA32_MCG_STATUS register are cleared, indi-
cating that the error is detected at the instruction pointer saved on the stack may not
be associated with this error and restarting the execution with the interrupted
context is not possible.

Table 15-19. IA32_MCi_STATUS Values for SRAR Errors
SRAR Error Valid OVER UC EN MISCV ADDRV PCC S AR MCACOD

Data Load 1 0 1 1 1 1 0 1 1 0x134

Instruction Fetch 1 0 1 1 1 1 0 1 1 0x150

Table 15-20. IA32_MCG_STATUS Flag Indication for SRAR Errors
SRAR Type Affected Logical Processors Non-Affected Logical Processors

RIPV EIPV RIPV EIPV

Data Load 0 1 1 0

instruction Fetch 0 0 1 0
Vol. 3B 15-33

MACHINE-CHECK ARCHITECTURE
The logical processors that observed but not affected by an SRAR error should find
that the RIPV flag in the IA32_MCG_STATUS register is set and the EIPV flag in the
IA32_MCG_STATUS register is cleared, indicating that it is safe to restart the execu-
tion at the instruction saved on the stack for the machine check exception on these
processors after the recovery action is successfully taken by system software.
For the Data-Load and the Instruction-Fetch recoverable errors, system software
may take the following recovery actions for the affected logical processor:
• The current executing thread cannot be continued. You must terminate the

interrupted stream of execution and provide a new stream of execution on return
from the machine check handler for the affected logical processor

In addition to taking the recovery action described above, system software may also
need to disable the use of the affected page from the program. This recovery action
by system software may prevent the occurrence of future consumption errors from
that affected page.

15.9.4 Multiple MCA Errors
When multiple MCA errors are detected within a certain detection window, the
processor may aggregate the reporting of these errors together as a single event, i.e.
a single machine exception condition. If this occurs, system software may find
multiple MCA errors logged in different MC banks on one logical processor or find
multiple MCA errors logged across different processors for a single machine check
broadcast event. In order to handle multiple UCR errors reported from a single
machine check event and possibly recover from multiple errors, system software
may consider the following:
• Whether it can recover from multiple errors is determined by the most severe

error reported on the system. If the most severe error is found to be an unrecov-
erable error (VAL=1, UC=1, PCC=1 and EN=1) after system software examines
the MC banks of all processors to which the MCA signal is broadcast, recovery
from the multiple errors is not possible and system software needs to reset the
system.

• When multiple recoverable errors are reported and no other fatal condition (e.g..
overflowed condition for SRAR error) is found for the reported recoverable errors,
it is possible for system software to recover from the multiple recoverable errors
by taking necessary recovery action for each individual recoverable error.
However, system software can no longer expect one to one relationship with the
error information recorded in the IA32_MCi_STATUS register and the states of
the RIPV and EIPV flags in the IA32_MCG_STATUS register as the states of the
RIPV and the EIPV flags in the IA32_MCG_STATUS register may indicate the
information for the most severe error recorded on the processor. System
software is required to use the RIPV flag indication in the IA32_MCG_STATUS
register to make a final decision of recoverability of the errors and find the
15-34 Vol. 3B

MACHINE-CHECK ARCHITECTURE
restart-ability requirement after examining each IA32_MCi_STATUS register
error information in the MC banks.

15.9.5 Machine-Check Error Codes Interpretation
Chapter 16, “Interpreting Machine-Check Error Codes,” provides information on
interpreting the MCA error code, model-specific error code, and other information
error code fields. For P6 family processors, information has been included on
decoding external bus errors. For Pentium 4 and Intel Xeon processors; information
is included on external bus, internal timer and cache hierarchy errors.

15.10 GUIDELINES FOR WRITING MACHINE-CHECK
SOFTWARE

The machine-check architecture and error logging can be used in three different
ways:
• To detect machine errors during normal instruction execution, using the

machine-check exception (#MC).
• To periodically check and log machine errors.
• To examine recoverable UCR errors, determine software recoverability and

perform recovery actions via a machine-check exception handler or a corrected
machine-check interrupt handler.

To use the machine-check exception, the operating system or executive software
must provide a machine-check exception handler. This handler may need to be
designed specifically for each family of processors.
A special program or utility is required to log machine errors.
Guidelines for writing a machine-check exception handler or a machine-error logging
utility are given in the following sections.

15.10.1 Machine-Check Exception Handler
The machine-check exception (#MC) corresponds to vector 18. To service machine-
check exceptions, a trap gate must be added to the IDT. The pointer in the trap gate
must point to a machine-check exception handler. Two approaches can be taken to
designing the exception handler:

1. The handler can merely log all the machine status and error information, then call
a debugger or shut down the system.

2. The handler can analyze the reported error information and, in some cases,
attempt to correct the error and restart the processor.
Vol. 3B 15-35

MACHINE-CHECK ARCHITECTURE
For Pentium 4, Intel Xeon, P6 family, and Pentium processors; virtually all machine-
check conditions cannot be corrected (they result in abort-type exceptions). The
logging of status and error information is therefore a baseline implementation
requirement.
When recovery from a machine-check error may be possible, consider the following
when writing a machine-check exception handler:
• To determine the nature of the error, the handler must read each of the error-

reporting register banks. The count field in the IA32_MCG_CAP register gives
number of register banks. The first register of register bank 0 is at address 400H.

• The VAL (valid) flag in each IA32_MCi_STATUS register indicates whether the
error information in the register is valid. If this flag is clear, the registers in that
bank do not contain valid error information and do not need to be checked.

• To write a portable exception handler, only the MCA error code field in the
IA32_MCi_STATUS register should be checked. See Section 15.9, “Interpreting
the MCA Error Codes,” for information that can be used to write an algorithm to
interpret this field.

• The RIPV, PCC, and OVER flags in each IA32_MCi_STATUS register indicate
whether recovery from the error is possible. If PCC or OVER are set, recovery is
not possible. If RIPV is not set, program execution can not be restarted reliably.
When recovery is not possible, the handler typically records the error information
and signals an abort to the operating system.

• Correctable errors are corrected automatically by the processor. The UC flag in
each IA32_MCi_STATUS register indicates whether the processor automatically
corrected an error.

• The RIPV flag in the IA32_MCG_STATUS register indicates whether the program
can be restarted at the instruction indicated by the instruction pointer (the
address of the instruction pushed on the stack when the exception was
generated). If this flag is clear, the processor may still be able to be restarted (for
debugging purposes) but not without loss of program continuity.

• For unrecoverable errors, the EIPV flag in the IA32_MCG_STATUS register
indicates whether the instruction indicated by the instruction pointer pushed on
the stack (when the exception was generated) is related to the error. If the flag is
clear, the pushed instruction may not be related to the error.

• The MCIP flag in the IA32_MCG_STATUS register indicates whether a machine-
check exception was generated. Before returning from the machine-check
exception handler, software should clear this flag so that it can be used reliably by
an error logging utility. The MCIP flag also detects recursion. The machine-check
architecture does not support recursion. When the processor detects machine-
check recursion, it enters the shutdown state.

Example 15-2 gives typical steps carried out by a machine-check exception handler.

Example 15-2. Machine-Check Exception Handler Pseudocode

IF CPU supports MCE
15-36 Vol. 3B

MACHINE-CHECK ARCHITECTURE
THEN
IF CPU supports MCA

THEN
call errorlogging routine; (* returns restartability *)

FI;
ELSE (* Pentium(R) processor compatible *)

READ P5_MC_ADDR
READ P5_MC_TYPE;
report RESTARTABILITY to console;

FI;
IF error is not restartable

THEN
report RESTARTABILITY to console;
abort system;

FI;
CLEAR MCIP flag in IA32_MCG_STATUS;

15.10.2 Pentium Processor Machine-Check Exception Handling
Machine-check exception handler on P6 family and later processor families, should
follow the guidelines described in Section 15.10.1 and Example 15-2 that check the
processor’s support of MCA.

NOTE
On processors that support MCA (CPUID.1.EDX.MCA = 1) reading the
P5_MC_TYPE and P5_MC_ADDR registers may produce invalid data.

When machine-check exceptions are enabled for the Pentium processor (MCE flag is
set in control register CR4), the machine-check exception handler uses the RDMSR
instruction to read the error type from the P5_MC_TYPE register and the machine
check address from the P5_MC_ADDR register. The handler then normally reports
these register values to the system console before aborting execution (see Example
15-2).

15.10.3 Logging Correctable Machine-Check Errors
The error handling routine for servicing the machine-check exceptions is responsible
for logging uncorrected errors.
If a machine-check error is correctable, the processor does not generate a machine-
check exception for it. To detect correctable machine-check errors, a utility program
must be written that reads each of the machine-check error-reporting register banks
and logs the results in an accounting file or data structure. This utility can be imple-
mented in either of the following ways.
• A system daemon that polls the register banks on an infrequent basis, such as

hourly or daily.
Vol. 3B 15-37

MACHINE-CHECK ARCHITECTURE
• A user-initiated application that polls the register banks and records the
exceptions. Here, the actual polling service is provided by an operating-system
driver or through the system call interface.

• An interrupt service routine servicing CMCI can read the MC banks and log the
error.

Example 15-3 gives pseudocode for an error logging utility.

Example 15-3. Machine-Check Error Logging Pseudocode

Assume that execution is restartable;
IF the processor supports MCA

THEN
FOR each bank of machine-check registers

DO
READ IA32_MCi_STATUS;
IF VAL flag in IA32_MCi_STATUS = 1

THEN
IF ADDRV flag in IA32_MCi_STATUS = 1

THEN READ IA32_MCi_ADDR;
FI;
IF MISCV flag in IA32_MCi_STATUS = 1

THEN READ IA32_MCi_MISC;
FI;
IF MCIP flag in IA32_MCG_STATUS = 1

(* Machine-check exception is in progress *)
AND PCC flag in IA32_MCi_STATUS = 1
OR RIPV flag in IA32_MCG_STATUS = 0
(* execution is not restartable *)

THEN
RESTARTABILITY = FALSE;
return RESTARTABILITY to calling procedure;

FI;
Save time-stamp counter and processor ID;
Set IA32_MCi_STATUS to all 0s;
Execute serializing instruction (i.e., CPUID);

FI;
OD;

FI;

If the processor supports the machine-check architecture, the utility reads through
the banks of error-reporting registers looking for valid register entries. It then saves
the values of the IA32_MCi_STATUS, IA32_MCi_ADDR, IA32_MCi_MISC and
IA32_MCG_STATUS registers for each bank that is valid. The routine minimizes
processing time by recording the raw data into a system data structure or file,
reducing the overhead associated with polling. User utilities analyze the collected
data in an off-line environment.
When the MCIP flag is set in the IA32_MCG_STATUS register, a machine-check
exception is in progress and the machine-check exception handler has called the
exception logging routine.
15-38 Vol. 3B

MACHINE-CHECK ARCHITECTURE
Once the logging process has been completed the exception-handling routine must
determine whether execution can be restarted, which is usually possible when
damage has not occurred (The PCC flag is clear, in the IA32_MCi_STATUS register)
and when the processor can guarantee that execution is restartable (the RIPV flag is
set in the IA32_MCG_STATUS register). If execution cannot be restarted, the system
is not recoverable and the exception-handling routine should signal the console
appropriately before returning the error status to the Operating System kernel for
subsequent shutdown.
The machine-check architecture allows buffering of exceptions from a given error-
reporting bank although the Pentium 4, Intel Xeon, and P6 family processors do not
implement this feature. The error logging routine should provide compatibility with
future processors by reading each hardware error-reporting bank's
IA32_MCi_STATUS register and then writing 0s to clear the OVER and VAL flags in
this register. The error logging utility should re-read the IA32_MCi_STATUS register
for the bank ensuring that the valid bit is clear. The processor will write the next error
into the register bank and set the VAL flags.
Additional information that should be stored by the exception-logging routine
includes the processor’s time-stamp counter value, which provides a mechanism to
indicate the frequency of exceptions. A multiprocessing operating system stores the
identity of the processor node incurring the exception using a unique identifier, such
as the processor’s APIC ID (see Section 10.8, “Handling Interrupts”).
The basic algorithm given in Example 15-3 can be modified to provide more robust
recovery techniques. For example, software has the flexibility to attempt recovery
using information unavailable to the hardware. Specifically, the machine-check
exception handler can, after logging carefully analyze the error-reporting registers
when the error-logging routine reports an error that does not allow execution to be
restarted. These recovery techniques can use external bus related model-specific
information provided with the error report to localize the source of the error within
the system and determine the appropriate recovery strategy.

15.10.4 Machine-Check Software Handler Guidelines for Error
Recovery

15.10.4.1 Machine-Check Exception Handler for Error Recovery
When writing a machine-check exception (MCE) handler to support software
recovery from Uncorrected Recoverable (UCR) errors, consider the following:
• When IA32_MCG_CAP [24] is zero, there are no recoverable errors supported

and all machine-check are fatal exceptions. The logging of status and error
information is therefore a baseline implementation requirement.

• When IA32_MCG_CAP [24] is 1, certain uncorrected errors called uncorrected
recoverable (UCR) errors may be software recoverable. The handler can analyze
Vol. 3B 15-39

MACHINE-CHECK ARCHITECTURE
the reported error information, and in some cases attempt to recover from the
uncorrected error and continue execution.

• For processors on which CPUID reports DisplayFamily_DisplayModel as 06H_0EH
and onward, an MCA signal is broadcast to all logical processors in the system
(see CPUID instruction in Chapter 3, “Instruction Set Reference, A-L” in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A).
Due to the potentially shared machine check MSR resources among the logical
processors on the same package/core, the MCE handler may be required to
synchronize with the other processors that received a machine check error and
serialize access to the machine check registers when analyzing, logging and
clearing the information in the machine check registers.

• The VAL (valid) flag in each IA32_MCi_STATUS register indicates whether the
error information in the register is valid. If this flag is clear, the registers in that
bank do not contain valid error information and should not be checked.

• The MCE handler is primarily responsible for processing uncorrected errors. The
UC flag in each IA32_MCi_Status register indicates whether the reported error
was corrected (UC=0) or uncorrected (UC=1). The MCE handler can optionally
log and clear the corrected errors in the MC banks if it can implement software
algorithm to avoid the undesired race conditions with the CMCI or CMC polling
handler.

• For uncorrectable errors, the EIPV flag in the IA32_MCG_STATUS register
indicates (when set) that the instruction pointed to by the instruction pointer
pushed onto the stack when the machine-check exception is generated is directly
associated with the error. When this flag is cleared, the instruction pointed to
may not be associated with the error.

• The MCIP flag in the IA32_MCG_STATUS register indicates whether a machine-
check exception was generated. When a machine check exception is generated,
it is expected that the MCIP flag in the IA32_MCG_STATUS register is set to 1. If
it is not set, this machine check was generated by either an INT 18 instruction or
some piece of hardware signaling an interrupt with vector 18.

When IA32_MCG_CAP [24] is 1, the following rules can apply when writing a machine
check exception (MCE) handler to support software recovery:
• The PCC flag in each IA32_MCi_STATUS register indicates whether recovery from

the error is possible for uncorrected errors (UC=1). If the PCC flag is set for
uncorrected errors (UC=1), recovery is not possible. When recovery is not
possible, the MCE handler typically records the error information and signals the
operating system to reset the system.

• The RIPV flag in the IA32_MCG_STATUS register indicates whether restarting the
program execution from the instruction pointer saved on the stack for the
machine check exception is possible. When the RIPV is set, program execution
can be restarted reliably when recovery is possible. If the RIPV flag is not set,
program execution cannot be restarted reliably. In this case the recovery
algorithm may involve terminating the current program execution and resuming
an alternate thread of execution upon return from the machine check handler
15-40 Vol. 3B

MACHINE-CHECK ARCHITECTURE
when recovery is possible. When recovery is not possible, the MCE handler
signals the operating system to reset the system.

• When the EN flag is zero but the VAL and UC flags are one in the
IA32_MCi_STATUS register, the reported uncorrected error in this bank is not
enabled. As uncorrected errors with the EN flag = 0 are not the source of
machine check exceptions, the MCE handler should log and clear non-enabled
errors when the S bit is set and should continue searching for enabled errors from
the other IA32_MCi_STATUS registers. Note that when IA32_MCG_CAP [24] is 0,
any uncorrected error condition (VAL =1 and UC=1) including the one with the
EN flag cleared are fatal and the handler must signal the operating system to
reset the system. For the errors that do not generate machine check exceptions,
the EN flag has no meaning. See Chapter 19: Table 19-11 to find the errors that
do not generate machine check exceptions.

• When the VAL flag is one, the UC flag is one, the EN flag is one and the PCC flag
is zero in the IA32_MCi_STATUS register, the error in this bank is an uncorrected
recoverable (UCR) error. The MCE handler needs to examine the S flag and the
AR flag to find the type of the UCR error for software recovery and determine if
software error recovery is possible.

• When both the S and the AR flags are clear in the IA32_MCi_STATUS register for
the UCR error (VAL=1, UC=1, EN=x and PCC=0), the error in this bank is an
uncorrected no-action required error (UCNA). UCNA errors are uncorrected but
do not require any OS recovery action to continue execution. These errors
indicate that some data in the system is corrupt, but that data has not been
consumed and may not be consumed. If that data is consumed a non-UNCA
machine check exception will be generated. UCNA errors are signaled in the same
way as corrected machine check errors and the CMCI and CMC polling handler is
primarily responsible for handling UCNA errors. Like corrected errors, the MCA
handler can optionally log and clear UCNA errors as long as it can avoid the
undesired race condition with the CMCI or CMC polling handler. As UCNA errors
are not the source of machine check exceptions, the MCA handler should
continue searching for uncorrected or software recoverable errors in all other MC
banks.

• When the S flag in the IA32_MCi_STATUS register is set for the UCR error
((VAL=1, UC=1, EN=1 and PCC=0), the error in this bank is software recoverable
and it was signaled through a machine-check exception. The AR flag in the
IA32_MCi_STATUS register further clarifies the type of the software recoverable
errors.

• When the AR flag in the IA32_MCi_STATUS register is clear for the software
recoverable error (VAL=1, UC=1, EN=1, PCC=0 and S=1), the error in this bank
is a software recoverable action optional (SRAO) error. The MCE handler and the
operating system can analyze the IA32_MCi_STATUS [15:0] to implement MCA
error code specific optional recovery action, but this recovery action is optional.
System software can resume the program execution from the instruction pointer
saved on the stack for the machine check exception when the RIPV flag in the
IA32_MCG_STATUS register is set.
Vol. 3B 15-41

MACHINE-CHECK ARCHITECTURE
• When the OVER flag in the IA32_MCi_STATUS register is set for the SRAO error
(VAL=1, UC=1, EN=1, PCC=0, S=1 and AR=0), the MCE handler cannot take
recovery action as the information of the SRAO error in the IA32_MCi_STATUS
register was potentially lost due to the overflow condition. Since the recovery
action for SRAO errors is optional, restarting the program execution from the
instruction pointer saved on the stack for the machine check exception is still
possible for the overflowed SRAO error if the RIPV flag in the IA32_MCG_STATUS
is set.

• When the AR flag in the IA32_MCi_STATUS register is set for the software
recoverable error (VAL=1, UC=1, EN=1, PCC=0 and S=1), the error in this bank
is a software recoverable action required (SRAR) error. The MCE handler and the
operating system must take recovery action in order to continue execution after
the machine-check exception. The MCA handler and the operating system need
to analyze the IA32_MCi_STATUS [15:0] to determine the MCA error code
specific recovery action. If no recovery action can be performed, the operating
system must reset the system.

• When the OVER flag in the IA32_MCi_STATUS register is set for the SRAR error
(VAL=1, UC=1, EN=1, PCC=0, S=1 and AR=1), the MCE handler cannot take
recovery action as the information of the SRAR error in the IA32_MCi_STATUS
register was potentially lost due to the overflow condition. Since the recovery
action for SRAR errors must be taken, the MCE handler must signal the operating
system to reset the system.

• When the MCE handler cannot find any uncorrected (VAL=1, UC=1 and EN=1) or
any software recoverable errors (VAL=1, UC=1, EN=1, PCC=0 and S=1) in any
of the IA32_MCi banks of the processors, this is an unexpected condition for the
MCE handler and the handler should signal the operating system to reset the
system.

• Before returning from the machine-check exception handler, software must clear
the MCIP flag in the IA32_MCG_STATUS register. The MCIP flag is used to detect
recursion. The machine-check architecture does not support recursion. When the
processor receives a machine check when MCIP is set, it automatically enters the
shutdown state.

Example 15-4 gives pseudocode for an MC exception handler that supports recovery
of UCR.

Example 15-4. Machine-Check Error Handler Pseudocode Supporting UCR

MACHINE CHECK HANDLER: (* Called from INT 18 handler *)
NOERROR = TRUE;
ProcessorCount = 0;
IF CPU supports MCA

THEN
RESTARTABILITY = TRUE;
IF (Processor Family = 6 AND DisplayModel ≥ 0EH) OR (Processor Family > 6)

THEN
MCA_BROADCAST = TRUE;
15-42 Vol. 3B

MACHINE-CHECK ARCHITECTURE
Acquire SpinLock;
ProcessorCount++; (* Allowing one logical processor at a time to examine machine check

registers *)
CALL MCA ERROR PROCESSING; (* returns RESTARTABILITY and NOERROR *)

ELSE
MCA_BROADCAST = FALSE;
(* Implement a rendezvous mechanism with the other processors if necessary *)
CALL MCA ERROR PROCESSING;

FI;
ELSE (* Pentium(R) processor compatible *)

READ P5_MC_ADDR
READ P5_MC_TYPE;
RESTARTABILITY = FALSE;

FI;

IF NOERROR = TRUE
 THEN

IF NOT (MCG_RIPV = 1 AND MCG_EIPV = 0)
THEN

RESTARTABILITY = FALSE;
FI

FI;

IF RESTARTABILITY = FALSE
THEN

Report RESTARTABILITY to console;
Reset system;

FI;

IF MCA_BROADCAST = TRUE
THEN

IF ProcessorCount = MAX_PROCESSORS
 AND NOERROR = TRUE

THEN
Report RESTARTABILITY to console;
Reset system;

FI;
Release SpinLock;
Wait till ProcessorCount = MAX_PROCESSRS on system;
(* implement a timeout and abort function if necessary *)

FI;
CLEAR MCIP flag in IA32_MCG_STATUS;
RESUME Execution;
(* End of MACHINE CHECK HANDLER*)

MCA ERROR PROCESSING: (* MCA Error Processing Routine called from MCA Handler *)
IF MCIP flag in IA32_MCG_STATUS = 0

THEN (* MCIP=0 upon MCA is unexpected *)
RESTARTABILITY = FALSE;

FI;
FOR each bank of machine-check registers
Vol. 3B 15-43

MACHINE-CHECK ARCHITECTURE
DO
CLEAR_MC_BANK = FALSE;
READ IA32_MCi_STATUS;
IF VAL Flag in IA32_MCi_STATUS = 1

THEN
IF UC Flag in IA32_MCi_STATUS = 1

THEN
IF Bit 24 in IA32_MCG_CAP = 0

THEN (* the processor does not support software error recovery *)
RESTARTABILITY = FALSE;
NOERROR = FALSE;
GOTO LOG MCA REGISTER;

FI;
(* the processor supports software error recovery *)
IF EN Flag in IA32_MCi_STATUS = 0 AND OVER Flag in IA32_MCi_STATUS=0

THEN (* It is a spurious MCA Log. Log and clear the register *)
CLEAR_MC_BANK = TRUE;
GOTO LOG MCA REGISTER;

FI;
IF PCC Flag in IA32_MCi_STATUS = 1

THEN (* processor context might have been corrupted *)
RESTARTABILITY = FALSE;

ELSE (* It is a uncorrected recoverable (UCR) error *)
IF S Flag in IA32_MCi_STATUS = 0

THEN
IF AR Flag in IA32_MCi_STATUS = 0

THEN (* It is a uncorrected no action required (UCNA) error *)
GOTO CONTINUE; (* let CMCI and CMC polling handler to process *)

ELSE
FESTARTABILITY = FALSE; (* S=0, AR=1 is illegal *)

FI
FI;
IF RESTARTABILITY = FALSE

THEN (* no need to take recovery action if RESTARTABILITY is already false *)
NOERROR = FALSE;
GOTO LOG MCA REGISTER;

FI;
(* S in IA32_MCi_STATUS = 1 *)
IF AR Flag in IA32_MCi_STATUS = 1

THEN (* It is a software recoverable and action required (SRAR) error *)
IF OVER Flag in IA32_MCi_STATUS = 1

THEN
RESTARTABILITY = FALSE;
NOERROR = FALSE;
GOTO LOG MCA REGISTER;

FI
IF MCACOD Value in IA32_MCi_STATUS is recognized
 AND Current Processor is an Affected Processor

THEN
Implement MCACOD specific recovery action;
CLEAR_MC_BANK = TURE;

ELSE
15-44 Vol. 3B

MACHINE-CHECK ARCHITECTURE
RESTARTABILITY = FALSE;
FI;

ELSE (* It is a software recoverable and action optional (SRAO) error *)
IF OVER Flag in IA32_MCi_STATUS = 0 AND
 MCACOD in IA32_MCi_STATUS is recognized

THEN
Implement MCACOD specific recovery action;

FI;
CLEAR_MC_BANK = TRUE;

FI; AR
FI; PCC
NOERROR = FALSE;
GOTO LOG MCA REGISTER;

ELSE (* It is a corrected error; continue to the next IA32_MCi_STATUS *)
GOTO CONTINUE;

FI; UC
FI; VAL

LOG MCA REGISTER:
SAVE IA32_MCi_STATUS;
If MISCV in IA32_MCi_STATUS

THEN
SAVE IA32_MCi_MISC;

FI;
IF ADDRV in IA32_MCi_STATUS

THEN
SAVE IA32_MCi_ADDR;

FI;
IF CLEAR_MC_BANK = TRUE

THEN
SET all 0 to IA32_MCi_STATUS;
If MISCV in IA32_MCi_STATUS

THEN
SET all 0 to IA32_MCi_MISC;

FI;
IF ADDRV in IA32_MCi_STATUS

THEN
SET all 0 to IA32_MCi_ADDR;

FI;
FI;
CONTINUE:

OD;
(*END FOR *)
RETURN;
(* End of MCA ERROR PROCESSING*)

15.10.4.2 Corrected Machine-Check Handler for Error Recovery
When writing a corrected machine check handler, which is invoked as a result of CMCI
or called from an OS CMC Polling dispatcher, consider the following:
Vol. 3B 15-45

MACHINE-CHECK ARCHITECTURE
• The VAL (valid) flag in each IA32_MCi_STATUS register indicates whether the
error information in the register is valid. If this flag is clear, the registers in that
bank does not contain valid error information and does not need to be checked.

• The CMCI or CMC polling handler is responsible for logging and clearing corrected
errors. The UC flag in each IA32_MCi_Status register indicates whether the
reported error was corrected (UC=0) or not (UC=1).

• When IA32_MCG_CAP [24] is one, the CMC handler is also responsible for
logging and clearing uncorrected no-action required (UCNA) errors. When the
UC flag is one but the PCC, S, and AR flags are zero in the IA32_MCi_STATUS
register, the reported error in this bank is an uncorrected no-action required
(UCNA) error.

• In addition to corrected errors and UCNA errors, the CMC handler optionally logs
uncorrected (UC=1 and PCC=1), software recoverable machine check errors
(UC=1, PCC=0 and S=1), but should avoid clearing those errors from the MC
banks. Clearing these errors may result in accidentally removing these errors
before these errors are actually handled and processed by the MCE handler for
attempted software error recovery.

Example 15-5 gives pseudocode for a CMCI handler with UCR support.

Example 15-5. Corrected Error Handler Pseudocode with UCR Support

Corrected Error HANDLER: (* Called from CMCI handler or OS CMC Polling Dispatcher*)
IF CPU supports MCA

THEN
FOR each bank of machine-check registers

DO
READ IA32_MCi_STATUS;
IF VAL flag in IA32_MCi_STATUS = 1

THEN
IF UC Flag in IA32_MCi_STATUS = 0 (* It is a corrected error *)

THEN
GOTO LOG CMC ERROR;

ELSE
IF Bit 24 in IA32_MCG_CAP = 0

THEN
GOTO CONTINUE;

FI;
IF S Flag in IA32_MCi_STATUS = 0 AND AR Flag in IA32_MCi_STATUS = 0

THEN (* It is a uncorrected no action required error *)
GOTO LOG CMC ERROR

FI
IF EN Flag in IA32_MCi_STATUS = 0

THEN (* It is a spurious MCA error *)
GOTO LOG CMC ERROR

FI;
FI;

FI;
GOTO CONTINUE;
15-46 Vol. 3B

MACHINE-CHECK ARCHITECTURE
LOG CMC ERROR:
SAVE IA32_MCi_STATUS;
If MISCV Flag in IA32_MCi_STATUS

THEN
SAVE IA32_MCi_MISC;
SET all 0 to IA32_MCi_MISC;

FI;
IF ADDRV Flag in IA32_MCi_STATUS

THEN
SAVE IA32_MCi_ADDR;
SET all 0 to IA32_MCi_ADDR

FI;
SET all 0 to IA32_MCi_STATUS;
CONTINUE:

OD;
(*END FOR *)

FI;
Vol. 3B 15-47

CHAPTER 16
INTERPRETING MACHINE-CHECK

ERROR CODES

Encoding of the model-specific and other information fields is different across
processor families. The differences are documented in the following sections.

16.1 INCREMENTAL DECODING INFORMATION:
PROCESSOR FAMILY 06H MACHINE ERROR CODES
FOR MACHINE CHECK

Section 16.1 provides information for interpreting additional model-specific fields for
external bus errors relating to processor family 06H. The references to processor
family 06H refers to only IA-32 processors with CPUID signatures listed in Table
16-1.

These errors are reported in the IA32_MCi_STATUS MSRs. They are reported archi-
tecturally) as compound errors with a general form of 0000 1PPT RRRR IILL in the
MCA error code field. See Chapter 15 for information on the interpretation of
compound error codes. Incremental decoding information is listed in Table 16-2.

Table 16-1. CPUID DisplayFamily_DisplayModel Signatures for Processor Family 06H
DisplayFamily_DisplayModel Processor Families/Processor Number Series

06_0EH Intel Core Duo, Intel Core Solo processors

06_0DH Intel Pentium M processor

06_09H Intel Pentium M processor

06_7H, 06_08H, 06_0AH,
06_0BH

Intel Pentium III Xeon Processor, Intel Pentium III Processor

06_03H, 06_05H Intel Pentium II Xeon Processor, Intel Pentium II Processor

06_01H Intel Pentium Pro Processor
Vol. 3B 16-1

INTERPRETING MACHINE-CHECK ERROR CODES
Table 16-2. Incremental Decoding Information: Processor Family 06H
Machine Error Codes For Machine Check

Type Bit No. Bit Function Bit Description

MCA error
codes1

0-15

Model specific
errors

16-18 Reserved Reserved

Model specific
errors

19-24 Bus queue request
type

000000 for BQ_DCU_READ_TYPE error

000010 for BQ_IFU_DEMAND_TYPE error

000011 for BQ_IFU_DEMAND_NC_TYPE error

000100 for BQ_DCU_RFO_TYPE error

000101 for BQ_DCU_RFO_LOCK_TYPE error

000110 for BQ_DCU_ITOM_TYPE error

001000 for BQ_DCU_WB_TYPE error

001010 for BQ_DCU_WCEVICT_TYPE error

001011 for BQ_DCU_WCLINE_TYPE error

001100 for BQ_DCU_BTM_TYPE error

001101 for BQ_DCU_INTACK_TYPE error

001110 for BQ_DCU_INVALL2_TYPE error

001111 for BQ_DCU_FLUSHL2_TYPE error

010000 for BQ_DCU_PART_RD_TYPE error

010010 for BQ_DCU_PART_WR_TYPE error

010100 for BQ_DCU_SPEC_CYC_TYPE error

011000 for BQ_DCU_IO_RD_TYPE error

011001 for BQ_DCU_IO_WR_TYPE error

011100 for BQ_DCU_LOCK_RD_TYPE error

011110 for BQ_DCU_SPLOCK_RD_TYPE error

011101 for BQ_DCU_LOCK_WR_TYPE error
16-2 Vol. 3B

INTERPRETING MACHINE-CHECK ERROR CODES
Model specific
errors

27-25 Bus queue error type 000 for BQ_ERR_HARD_TYPE error

001 for BQ_ERR_DOUBLE_TYPE error

010 for BQ_ERR_AERR2_TYPE error

100 for BQ_ERR_SINGLE_TYPE error

101 for BQ_ERR_AERR1_TYPE error

Model specific
errors

28 FRC error 1 if FRC error active

29 BERR 1 if BERR is driven

30 Internal BINIT 1 if BINIT driven for this processor

31 Reserved Reserved

Other
information

32-34 Reserved Reserved

35 External BINIT 1 if BINIT is received from external bus.

36 Response parity error This bit is asserted in IA32_MCi_STATUS if this
component has received a parity error on the
RS[2:0]# pins for a response transaction. The
RS signals are checked by the RSP# external
pin.

37 Bus BINIT This bit is asserted in IA32_MCi_STATUS if this
component has received a hard error response
on a split transaction one access that has
needed to be split across the 64-bit external
bus interface into two accesses).

38 Timeout BINIT This bit is asserted in IA32_MCi_STATUS if this
component has experienced a ROB time-out,
which indicates that no micro-instruction has
been retired for a predetermined period of
time.

A ROB time-out occurs when the 15-bit ROB
time-out counter carries a 1 out of its high
order bit. 2 The timer is cleared when a micro-
instruction retires, an exception is detected by
the core processor, RESET is asserted, or when
a ROB BINIT occurs.

Table 16-2. Incremental Decoding Information: Processor Family 06H
Machine Error Codes For Machine Check (Contd.)

Type Bit No. Bit Function Bit Description
Vol. 3B 16-3

INTERPRETING MACHINE-CHECK ERROR CODES
The ROB time-out counter is prescaled by the
8-bit PIC timer which is a divide by 128 of the
bus clock the bus clock is 1:2, 1:3, 1:4 of the
core clock). When a carry out of the 8-bit PIC
timer occurs, the ROB counter counts up by
one. While this bit is asserted, it cannot be
overwritten by another error.

39-41 Reserved Reserved

42 Hard error This bit is asserted in IA32_MCi_STATUS if this
component has initiated a bus transactions
which has received a hard error response. While
this bit is asserted, it cannot be overwritten.

43 IERR This bit is asserted in IA32_MCi_STATUS if this
component has experienced a failure that
causes the IERR pin to be asserted. While this
bit is asserted, it cannot be overwritten.

44 AERR This bit is asserted in IA32_MCi_STATUS if this
component has initiated 2 failing bus
transactions which have failed due to Address
Parity Errors AERR asserted). While this bit is
asserted, it cannot be overwritten.

45 UECC The Uncorrectable ECC error bit is asserted in
IA32_MCi_STATUS for uncorrected ECC errors.
While this bit is asserted, the ECC syndrome
field will not be overwritten.

46 CECC The correctable ECC error bit is asserted in
IA32_MCi_STATUS for corrected ECC errors.

47-54 ECC syndrome The ECC syndrome field in IA32_MCi_STATUS
contains the 8-bit ECC syndrome only if the
error was a correctable/uncorrectable ECC error
and there wasn't a previous valid ECC error
syndrome logged in IA32_MCi_STATUS.

A previous valid ECC error in IA32_MCi_STATUS
is indicated by IA32_MCi_STATUS.bit45
uncorrectable error occurred) being asserted.
After processing an ECC error, machine-check
handling software should clear
IA32_MCi_STATUS.bit45 so that future ECC
error syndromes can be logged.

Table 16-2. Incremental Decoding Information: Processor Family 06H
Machine Error Codes For Machine Check (Contd.)

Type Bit No. Bit Function Bit Description
16-4 Vol. 3B

INTERPRETING MACHINE-CHECK ERROR CODES
16.2 INCREMENTAL DECODING INFORMATION: INTEL
CORE 2 PROCESSOR FAMILY MACHINE ERROR CODES
FOR MACHINE CHECK

Table 16-4 provides information for interpreting additional model-specific fields for
external bus errors relating to processor based on Intel Core microarchitecture,
which implements the P4 bus specification. Table 16-3 lists the CPUID signatures for
Intel 64 processors that are covered by Table 16-4. These errors are reported in the
IA32_MCi_STATUS MSRs. They are reported architecturally) as compound errors
with a general form of 0000 1PPT RRRR IILL in the MCA error code field. See Chapter
15 for information on the interpretation of compound error codes.

55-56 Reserved Reserved.

Status register
validity
indicators1

57-63

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,”

for more information.
2. For processors with a CPUID signature of 06_0EH, a ROB time-out occurs when the 23-bit ROB

time-out counter carries a 1 out of its high order bit.

Table 16-3. CPUID DisplayFamily_DisplayModel Signatures for Processors Based on
Intel Core Microarchitecture

DisplayFamily_DisplayModel Processor Families/Processor Number Series

06_1DH Intel Xeon Processor 7400 series.

06_17H Intel Xeon Processor 5200, 5400 series, Intel Core 2 Quad
processor Q9650.

06_0FH Intel Xeon Processor 3000, 3200, 5100, 5300, 7300 series, Intel
Core 2 Quad, Intel Core 2 Extreme, Intel Core 2 Duo processors,
Intel Pentium dual-core processors

Table 16-2. Incremental Decoding Information: Processor Family 06H
Machine Error Codes For Machine Check (Contd.)

Type Bit No. Bit Function Bit Description
Vol. 3B 16-5

INTERPRETING MACHINE-CHECK ERROR CODES
Table 16-4. Incremental Bus Error Codes of Machine Check for Processors Based on
Intel Core Microarchitecture

Type Bit No. Bit Function Bit Description

MCA error
codes1

0-15

Model specific
errors

16-18 Reserved Reserved

Model specific
errors

19-24 Bus queue request
type

‘000001 for BQ_PREF_READ_TYPE error

000000 for BQ_DCU_READ_TYPE error

000010 for BQ_IFU_DEMAND_TYPE error

000011 for BQ_IFU_DEMAND_NC_TYPE error

000100 for BQ_DCU_RFO_TYPE error

000101 for BQ_DCU_RFO_LOCK_TYPE error

000110 for BQ_DCU_ITOM_TYPE error

001000 for BQ_DCU_WB_TYPE error

001010 for BQ_DCU_WCEVICT_TYPE error

001011 for BQ_DCU_WCLINE_TYPE error

001100 for BQ_DCU_BTM_TYPE error

001101 for BQ_DCU_INTACK_TYPE error

001110 for BQ_DCU_INVALL2_TYPE error

001111 for BQ_DCU_FLUSHL2_TYPE error

010000 for BQ_DCU_PART_RD_TYPE error

010010 for BQ_DCU_PART_WR_TYPE error

010100 for BQ_DCU_SPEC_CYC_TYPE error

011000 for BQ_DCU_IO_RD_TYPE error

011001 for BQ_DCU_IO_WR_TYPE error

011100 for BQ_DCU_LOCK_RD_TYPE error

011110 for BQ_DCU_SPLOCK_RD_TYPE error

011101 for BQ_DCU_LOCK_WR_TYPE error

100100 for BQ_L2_WI_RFO_TYPE error

100110 for BQ_L2_WI_ITOM_TYPE error
16-6 Vol. 3B

INTERPRETING MACHINE-CHECK ERROR CODES
Model specific
errors

27-25 Bus queue error type ‘001 for Address Parity Error

‘010 for Response Hard Error

‘011 for Response Parity Error

Model specific
errors

28 MCE Driven 1 if MCE is driven

29 MCE Observed 1 if MCE is observed

30 Internal BINIT 1 if BINIT driven for this processor

31 BINIT Observed 1 if BINIT is observed for this processor

Other
information

32-33 Reserved Reserved

34 PIC and FSB data
parity

Data Parity detected on either PIC or FSB
access

35 Reserved Reserved

36 Response parity error This bit is asserted in IA32_MCi_STATUS if this
component has received a parity error on the
RS[2:0]# pins for a response transaction. The
RS signals are checked by the RSP# external
pin.

37 FSB address parity Address parity error detected:

1 = Address parity error detected
0 = No address parity error

38 Timeout BINIT This bit is asserted in IA32_MCi_STATUS if this
component has experienced a ROB time-out,
which indicates that no micro-instruction has
been retired for a predetermined period of
time.

A ROB time-out occurs when the 23-bit ROB
time-out counter carries a 1 out of its high
order bit. The timer is cleared when a micro-
instruction retires, an exception is detected by
the core processor, RESET is asserted, or when
a ROB BINIT occurs.

Table 16-4. Incremental Bus Error Codes of Machine Check for Processors Based on
Intel Core Microarchitecture

Type Bit No. Bit Function Bit Description
Vol. 3B 16-7

INTERPRETING MACHINE-CHECK ERROR CODES
The ROB time-out counter is prescaled by the
8-bit PIC timer which is a divide by 128 of the
bus clock the bus clock is 1:2, 1:3, 1:4 of the
core clock). When a carry out of the 8-bit PIC
timer occurs, the ROB counter counts up by
one. While this bit is asserted, it cannot be
overwritten by another error.

39-41 Reserved Reserved

42 Hard error This bit is asserted in IA32_MCi_STATUS if this
component has initiated a bus transactions
which has received a hard error response. While
this bit is asserted, it cannot be overwritten.

43 IERR This bit is asserted in IA32_MCi_STATUS if this
component has experienced a failure that
causes the IERR pin to be asserted. While this
bit is asserted, it cannot be overwritten.

44 Reserved Reserved

45 Reserved Reserved

46 Reserved Reserved

47-54 Reserved Reserved

55-56 Reserved Reserved.

Status register
validity
indicators1

57-63

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,”

for more information.

Table 16-4. Incremental Bus Error Codes of Machine Check for Processors Based on
Intel Core Microarchitecture

Type Bit No. Bit Function Bit Description
16-8 Vol. 3B

INTERPRETING MACHINE-CHECK ERROR CODES
16.2.1 Model-Specific Machine Check Error Codes for Intel Xeon
Processor 7400 Series

Intel Xeon processor 7400 series has machine check register banks that generally
follows the description of Chapter 15 and Section 16.2. Additional error codes specific
to Intel Xeon processor 7400 series is describe in this section.

MC4_STATUS[63:0] is the main error logging for the processor’s L3 and front side
bus errors for Intel Xeon processor 7400 series. It supports the L3 Errors, Bus and
Interconnect Errors Compound Error Codes in the MCA Error Code Field.

16.2.1.1 Processor Machine Check Status Register
Incremental MCA Error Code Definition

Intel Xeon processor 7400 series use compound MCA Error Codes for logging its Bus
internal machine check errors, L3 Errors, and Bus/Interconnect Errors. It defines
incremental Machine Check error types (IA32_MC6_STATUS[15:0]) beyond those
defined in Chapter 15. Table 16-5 lists these incremental MCA error code types that
apply to IA32_MC6_STATUS. Error code details are specified in MC6_STATUS
[31:16] (see Section 16.2.2), the "Model Specific Error Code" field. The information
in the "Other_Info" field (MC4_STATUS[56:32]) is common to the three processor
error types and contains a correctable event count and specifies the MC6_MISC
register format.

Table 16-5. Incremental MCA Error Code Types for Intel Xeon Processor 7400

Processor MCA_Error_Code (MC6_STATUS[15:0])

Type Error Code Binary Encoding Meaning

C Internal Error 0000 0100 0000 0000 Internal Error Type Code

B Bus and
Interconnect

Error

0000 100x 0000 1111 Not used but this encoding is reserved for
compatibility with other MCA
implementations

0000 101x 0000 1111 Not used but this encoding is reserved for
compatibility with other MCA
implementations

0000 110x 0000 1111 Not used but this encoding is reserved for
compatibility with other MCA
implementations

0000 1110 0000 1111 Bus and Interconnection Error Type Code

0000 1111 0000 1111 Not used but this encoding is reserved for
compatibility with other MCA
implementations
Vol. 3B 16-9

INTERPRETING MACHINE-CHECK ERROR CODES
The Bold faced binary encodings are the only encodings used by the processor for
MC4_STATUS[15:0].

16.2.2 Intel Xeon Processor 7400 Model Specific Error Code Field

16.2.2.1 Processor Model Specific Error Code Field
Type B: Bus and Interconnect Error

Note: The Model Specific Error Code field in MC6_STATUS (bits 31:16)

16.2.2.2 Processor Model Specific Error Code Field
Type C: Cache Bus Controller Error

Table 16-6. Type B Bus and Interconnect Error Codes

Bit Num Sub-Field Name Description

16 FSB Request
Parity

Parity error detected during FSB request phase

19:17 Reserved

20 FSB Hard Fail
Response

“Hard Failure“ response received for a local transaction

21 FSB Response
Parity

Parity error on FSB response field detected

22 FSB Data Parity FSB data parity error on inbound data detected

31:23 --- Reserved

Table 16-7. Type C Cache Bus Controller Error Codes

MC4_STATUS[31:16] (MSCE) Value Error Description

0000_0000_0000_0001 0x0001 Inclusion Error from Core 0

0000_0000_0000_0010 0x0002 Inclusion Error from Core 1

0000_0000_0000_0011 0x0003 Write Exclusive Error from Core 0

0000_0000_0000_0100 0x0004 Write Exclusive Error from Core 1

0000_0000_0000_0101 0x0005 Inclusion Error from FSB

0000_0000_0000_0110 0x0006 SNP Stall Error from FSB

0000_0000_0000_0111 0x0007 Write Stall Error from FSB
16-10 Vol. 3B

INTERPRETING MACHINE-CHECK ERROR CODES
16.3 INCREMENTAL DECODING INFORMATION:
PROCESSOR FAMILY WITH CPUID
DISPLAYFAMILY_DISPLAYMODEL SIGNATURE
06_1AH, MACHINE ERROR CODES FOR MACHINE
CHECK

Table 16-8 through Table 16-12 provide information for interpreting additional
model-specific fields for memory controller errors relating to the processor family
with CPUID DisplayFamily_DisplaySignature 06_1AH, which supports Intel QuickPath
Interconnect links. Incremental MC error codes related to the Intel QPI links are
reported in the register banks IA32_MC0 and IA32_MC1, incremental error codes for
internal machine check is reported in the register bank IA32_MC7, and incremental
error codes for the memory controller unit is reported in the register banks
IA32_MC8.

0000_0000_0000_1000 0x0008 FSB Arb Timeout Error

0000_0000_0000_1010 0x000A Inclusion Error from Core 2

0000_0000_0000_1011 0x000B Write Exclusive Error from Core 2

0000_0010_0000_0000 0x0200 Internal Timeout error

0000_0011_0000_0000 0x0300 Internal Timeout Error

0000_0100_0000_0000 0x0400 Intel® Cache Safe Technology Queue Full Error or Disabled-
ways-in-a-set overflow

0000_0101_0000_0000 0x0500 Quiet cycle Timeout Error (correctable)

1100_0000_0000_0010 0xC002 Correctable ECC event on outgoing Core 0 data

1100_0000_0000_0100 0xC004 Correctable ECC event on outgoing Core 1 data

1100_0000_0000_1000 0xC008 Correctable ECC event on outgoing Core 2 data

1110_0000_0000_0010 0xE002 Uncorrectable ECC error on outgoing Core 0 data

1110_0000_0000_0100 0xE004 Uncorrectable ECC error on outgoing Core 1 data

1110_0000_0000_1000 0xE008 Uncorrectable ECC error on outgoing Core 2 data

 — all other encodings — Reserved

Table 16-7. Type C Cache Bus Controller Error Codes

MC4_STATUS[31:16] (MSCE) Value Error Description
Vol. 3B 16-11

INTERPRETING MACHINE-CHECK ERROR CODES
16.3.1 Intel QPI Machine Check Errors

Table 16-8. Intel QPI Machine Check Error Codes for IA32_MC0_STATUS and
IA32_MC1_STATUS

Type Bit No. Bit Function Bit Description

MCA error
codes1

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,”

for more information.

0-15 MCACOD Bus error format: 1PPTRRRRIILL

Model specific
errors

16 Header Parity if 1, QPI Header had bad parity

17 Data Parity If 1, QPI Data packet had bad parity

18 Retries Exceeded If 1, number of QPI retries was exceeded

19 Received Poison if 1, Received a data packet that was marked as
poisoned by the sender

21-20 Reserved Reserved

22 Unsupported
Message

If 1, QPI received a message encoding it does
not support

23 Unsupported Credit If 1, QPI credit type is not supported.

24 Receive Flit Overrun If 1, Sender sent too many QPI flits to the
receiver.

25 Received Failed
Response

If 1, Indicates that sender sent a failed
response to receiver.

26 Receiver Clock Jitter If 1, clock jitter detected in the internal QPI
clocking

56-27 Reserved Reserved

Status register
validity
indicators1

57-63
16-12 Vol. 3B

INTERPRETING MACHINE-CHECK ERROR CODES
Table 16-9. Intel QPI Machine Check Error Codes for IA32_MC0_MISC and
IA32_MC1_MISC

16.3.2 Internal Machine Check Errors

Table 16-10. Machine Check Error Codes for IA32_MC7_STATUS

Type Bit No. Bit Function Bit Description

Model specific
errors1

NOTES:
1. Which of these fields are valid depends on the error type.

7-0 QPI Opcode Message class and opcode from the packet with
the error

13-8 RTId QPI Request Transaction ID

15-14 Reserved Reserved

18-16 RHNID QPI Requestor/Home Node ID

23-19 Reserved Reserved

24 IIB QPI Interleave/Head Indication Bit

Type Bit No. Bit Function Bit Description

MCA error
codes1

0-15 MCACOD

Model specific
errors

23-16 Reserved Reserved

31-24 Reserved except for
the following

00h - No Error

03h - Reset firmware did not complete

08h - Received an invalid CMPD

0Ah - Invalid Power Management Request

0Dh - Invalid S-state transition

11h - VID controller does not match POC
controller selected

1Ah - MSID from POC does not match CPU MSID

56-32 Reserved Reserved

Status register
validity
indicators1

57-63
Vol. 3B 16-13

INTERPRETING MACHINE-CHECK ERROR CODES
16.3.3 Memory Controller Errors

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,”

for more information.

Table 16-11. Incremental Memory Controller Error Codes of Machine Check for
IA32_MC8_STATUS

Type Bit No. Bit Function Bit Description

MCA error
codes1

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,”

for more information.

0-15 MCACOD Memory error format: 1MMMCCCC

Model specific
errors

16 Read ECC error if 1, ECC occurred on a read

17 RAS ECC error If 1, ECC occurred on a scrub

18 Write parity error If 1, bad parity on a write

19 Redundancy loss if 1, Error in half of redundant memory

20 Reserved Reserved

21 Memory range error If 1, Memory access out of range

22 RTID out of range If 1, Internal ID invalid

23 Address parity error If 1, bad address parity

24 Byte enable parity
error

If 1, bad enable parity

Other
information

37-25 Reserved Reserved

52:38 CORE_ERR_CNT Corrected error count

56-53 Reserved Reserved

Status register
validity
indicators1

57-63
16-14 Vol. 3B

INTERPRETING MACHINE-CHECK ERROR CODES
Table 16-12. Incremental Memory Controller Error Codes of Machine Check for
IA32_MC8_MISC

16.4 INCREMENTAL DECODING INFORMATION:
PROCESSOR FAMILY WITH CPUID
DISPLAYFAMILY_DISPLAYMODEL SIGNATURE
06_2DH, MACHINE ERROR CODES FOR MACHINE
CHECK

Table 16-8 through Table 16-12 provide information for interpreting additional
model-specific fields for memory controller errors relating to the processor family
with CPUID DisplayFamily_DisplaySignature 06_2DH, which supports Intel Quick-
Path Interconnect links. Incremental MC error codes related to the Intel QPI links are
reported in the register banks IA32_MC6 and IA32_MC7, incremental error codes for
internal machine check error from PCU controller is reported in the register bank
IA32_MC4, and incremental error codes for the memory controller unit is reported in
the register banks IA32_MC8-IA32_MC11.

Type Bit No. Bit Function Bit Description

Model specific
errors1

NOTES:
1. Which of these fields are valid depends on the error type.

7-0 RTId Transaction Tracker ID

15-8 Reserved Reserved

17-16 DIMM DIMM ID which got the error

19-18 Channel Channel ID which got the error

31-20 Reserved Reserved

63-32 Syndrome ECC Syndrome
Vol. 3B 16-15

INTERPRETING MACHINE-CHECK ERROR CODES
16.4.1 Internal Machine Check Errors

Table 16-13. Machine Check Error Codes for IA32_MC4_STATUS
Type Bit No. Bit Function Bit Description

MCA error
codes1

0-15 MCACOD

Model specific
errors

19:16 Reserved except for
the following

0000b - No Error

0001b - Non_IMem_Sel

0010b - I_Parity_Error

0011b - Bad_OpCode

0100b - I_Stack_Underflow

0101b - I_Stack_Overflow

0110b - D_Stack_Underflow

0111b - D_Stack_Overflow

1000b - Non-DMem_Sel

1001b - D_Parity_Error

23-20 Reserved Reserved

31-24 Reserved except for
the following

00h - No Error

0Dh - MC_IMC_FORCE_SR_S3_TIMEOUT

0Eh - MC_CPD_UNCPD_ST_TIMOUT

0Fh - MC_PKGS_SAFE_WP_TIMEOUT

43h - MC_PECI_MAILBOX_QUIESCE_TIMEOUT

5Ch - MC_MORE_THAN_ONE_LT_AGENT

60h - MC_INVALID_PKGS_REQ_PCH

61h - MC_INVALID_PKGS_REQ_QPI

62h - MC_INVALID_PKGS_RES_QPI

63h - MC_INVALID_PKGC_RES_PCH

64h - MC_INVALID_PKG_STATE_CONFIG

70h - MC_WATCHDG_TIMEOUT_PKGC_SLAVE

71h - MC_WATCHDG_TIMEOUT_PKGC_MASTER

70h - MC_WATCHDG_TIMEOUT_PKGS_MASTER

7ah - MC_HA_FAILSTS_CHANGE_DETECTED

81h -
MC_RECOVERABLE_DIE_THERMAL_TOO_HOT
16-16 Vol. 3B

INTERPRETING MACHINE-CHECK ERROR CODES
56-32 Reserved Reserved

Status register
validity
indicators1

57-63

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,”

for more information.

Type Bit No. Bit Function Bit Description
Vol. 3B 16-17

INTERPRETING MACHINE-CHECK ERROR CODES
16.4.2 Intel QPI Machine Check Errors

Table 16-14. Intel QPI MC Error Codes for IA32_MC6_STATUS and IA32_MC7_STATUS

16.4.3 Integrated Memory Controller Machine Check Errors
MC error codes associated with integrated memory controllers are reported in the
MSRs IA32_MC8_STATUS-IA32_MC11_STATUS. The supported error codes are
follows the architectural MCACOD definition type 1MMMCCCC (see Chapter 15, “Machine-
Check Architecture,”).

16.5 INCREMENTAL DECODING INFORMATION:
PROCESSOR FAMILY 0FH MACHINE ERROR CODES
FOR MACHINE CHECK

Table 16-15 provides information for interpreting additional family 0FH model-
specific fields for external bus errors. These errors are reported in the
IA32_MCi_STATUS MSRs. They are reported architecturally) as compound errors
with a general form of 0000 1PPT RRRR IILL in the MCA error code field. See Chapter
15 for information on the interpretation of compound error codes.

Type Bit No. Bit Function Bit Description

MCA error
codes1

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,”

for more information.

0-15 MCACOD Bus error format: 1PPTRRRRIILL

Model specific
errors

56-16 Reserved Reserved

Status register
validity
indicators1

57-63
16-18 Vol. 3B

INTERPRETING MACHINE-CHECK ERROR CODES
Table 16-10 provides information on interpreting additional family 0FH, model
specific fields for cache hierarchy errors. These errors are reported in one of the

Table 16-15. Incremental Decoding Information: Processor Family 0FH
Machine Error Codes For Machine Check

Type Bit No. Bit Function Bit Description

MCA error
codes1

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,”

for more information.

0-15

Model-specific
error codes

16 FSB address parity Address parity error detected:

1 = Address parity error detected

0 = No address parity error

17 Response hard fail Hardware failure detected on response

18 Response parity Parity error detected on response

19 PIC and FSB data parity Data Parity detected on either PIC or FSB
access

20 Processor Signature =
00000F04H: Invalid PIC
request

All other processors:

Reserved

Processor Signature = 00000F04H.
Indicates error due to an invalid PIC request
access was made to PIC space with WB
memory):

1 = Invalid PIC request error

0 = No Invalid PIC request error

Reserved

21 Pad state machine The state machine that tracks P and N
data-strobe relative timing has become
unsynchronized or a glitch has been
detected.

22 Pad strobe glitch Data strobe glitch

Type Bit No. Bit Function Bit Description

23 Pad address glitch Address strobe glitch

Other
Information

24-56 Reserved Reserved

Status register
validity
indicators1

57-63
Vol. 3B 16-19

INTERPRETING MACHINE-CHECK ERROR CODES
IA32_MCi_STATUS MSRs. These errors are reported, architecturally, as compound
errors with a general form of 0000 0001 RRRR TTLL in the MCA error code field. See
Chapter 15 for how to interpret the compound error code.

16.5.1 Model-Specific Machine Check Error Codes for Intel Xeon
Processor MP 7100 Series

Intel Xeon processor MP 7100 series has 5 register banks which contains information
related to Machine Check Errors. MCi_STATUS[63:0] refers to all 5 register banks.
MC0_STATUS[63:0] through MC3_STATUS[63:0] is the same as on previous genera-
tion of Intel Xeon processors within Family 0FH. MC4_STATUS[63:0] is the main error
logging for the processor’s L3 and front side bus errors. It supports the L3 Errors, Bus
and Interconnect Errors Compound Error Codes in the MCA Error Code Field.

Table 16-16. MCi_STATUS Register Bit Definition

Bit Field Name Bits Description

MCA_Error_Code 15:0 Specifies the machine check architecture defined error code for the
machine check error condition detected. The machine check
architecture defined error codes are guaranteed to be the same for
all Intel Architecture processors that implement the machine check
architecture. See tables below

Model_Specific_E
rror_Code

31:16 Specifies the model specific error code that uniquely identifies the
machine check error condition detected. The model specific error
codes may differ among Intel Architecture processors for the same
Machine Check Error condition. See tables below

Other_Info 56:32 The functions of the bits in this field are implementation specific
and are not part of the machine check architecture. Software that is
intended to be portable among Intel Architecture processors should
not rely on the values in this field.

PCC 57 Processor Context Corrupt flag indicates that the state of
the processor might have been corrupted by the error
condition detected and that reliable restarting of the processor may
not be possible. When clear, this flag indicates that the error did not
affect the processor's state. This bit will always be set for MC errors
which are not corrected.

ADDRV 58 MC_ADDR register valid flag indicates that the MC_ADDR register
contains the address where the error occurred. When clear, this flag
indicates that the MC_ADDR register does not contain the address
where the error occurred. The MC_ADDR register should not be
read if the ADDRV bit is clear.
16-20 Vol. 3B

INTERPRETING MACHINE-CHECK ERROR CODES
16.5.1.1 Processor Machine Check Status Register
MCA Error Code Definition

Intel Xeon processor MP 7100 series use compound MCA Error Codes for logging its
CBC internal machine check errors, L3 Errors, and Bus/Interconnect Errors. It
defines additional Machine Check error types (IA32_MC4_STATUS[15:0]) beyond
those defined in Chapter 15. Table 16-17 lists these model-specific MCA error
codes. Error code details are specified in MC4_STATUS [31:16] (see Section
16.5.3), the "Model Specific Error Code" field. The information in the "Other_Info"
field (MC4_STATUS[56:32]) is common to the three processor error types and
contains a correctable event count and specifies the MC4_MISC register format.

MISCV 59 MC_MISC register valid flag indicates that the MC_MISC register
contains additional information regarding the error. When clear, this
flag indicates that the MC_MISC register does not contain additional
information regarding the error. MC_MISC should not be read if the
MISCV bit is not set.

EN 60 Error enabled flag indicates that reporting of the machine check
exception for this error was enabled by the associated flag bit of
the MC_CTL register. Note that correctable errors do not have
associated enable bits in the MC_CTL register so the EN bit should
be clear when a correctable error is logged.

UC 61 Error uncorrected flag indicates that the processor did not correct
the error condition. When clear, this flag indicates that the
processor was able to correct the event condition.

OVER 62 Machine check overflow flag indicates that a machine check error
occurred while the results of a previous error were still in the
register bank (i.e., the VAL bit was already set in the
MC_STATUS register). The processor sets the OVER flag and
software is responsible for clearing it. Enabled errors are written
over disabled errors, and uncorrected errors are written over
corrected events. Uncorrected errors are not written over previous
valid uncorrected errors.

VAL 63 MC_STATUS register valid flag indicates that the information within
the MC_STATUS register is valid. When this flag is set, the processor
follows the rules given for the OVER flag in the MC_STATUS register
when overwriting previously valid entries. The processor sets the
VAL flag and software is responsible for clearing it.

Table 16-16. MCi_STATUS Register Bit Definition (Contd.)

Bit Field Name Bits Description
Vol. 3B 16-21

INTERPRETING MACHINE-CHECK ERROR CODES
The Bold faced binary encodings are the only encodings used by the processor for
MC4_STATUS[15:0].

16.5.2 Other_Info Field (all MCA Error Types)

The MC4_STATUS[56:32] field is common to the processor's three MCA error types
(A, B & C):

Table 16-17. Incremental MCA Error Code for Intel Xeon Processor MP 7100

Processor MCA_Error_Code (MC4_STATUS[15:0])

Type Error Code Binary Encoding Meaning

C Internal Error 0000 0100 0000 0000 Internal Error Type Code

A L3 Tag Error 0000 0001 0000 1011 L3 Tag Error Type Code

B Bus and
Interconnect

Error

0000 100x 0000 1111 Not used but this encoding is reserved for
compatibility with other MCA
implementations

0000 101x 0000 1111 Not used but this encoding is reserved for
compatibility with other MCA
implementations

0000 110x 0000 1111 Not used but this encoding is reserved for
compatibility with other MCA
implementations

0000 1110 0000 1111 Bus and Interconnection Error Type Code

0000 1111 0000 1111 Not used but this encoding is reserved for
compatibility with other MCA
implementations
16-22 Vol. 3B

INTERPRETING MACHINE-CHECK ERROR CODES
Table 16-18. Other Information Field Bit Definition

Bit Field Name Bits Description

39:32 8-bit
Correct
able
Event
Count

Holds a count of the number of correctable events since cold reset.
This is a saturating counter; the counter begins at 1 (with the first
error) and saturates at a count of 255.

41:40 MC4_MI
SC
format
type

The value in this field specifies the format of information in the
MC4_MISC register. Currently, only two values are defined. Valid
only when MISCV is asserted.

43:42 – Reserved

51:44 ECC
syndro
me

ECC syndrome value for a correctable ECC event when the “Valid
ECC syndrome” bit is asserted

52 Valid
ECC
syndro
me

Set when correctable ECC event supplies the ECC syndrome

54:53 Thresh
old-
Based
Error
Status

00: No tracking - No hardware status tracking is provided for the
structure reporting this event.

01: Green - Status tracking is provided for the structure posting the
event; the current status is green (below threshold).

10: Yellow - Status tracking is provided for the structure posting the
event; the current status is yellow (above threshold).

11: Reserved for future use

Valid only if Valid bit (bit 63) is set

Undefined if the UC bit (bit 61) is set

56:55 – Reserved
Vol. 3B 16-23

INTERPRETING MACHINE-CHECK ERROR CODES
16.5.3 Processor Model Specific Error Code Field

16.5.3.1 MCA Error Type A: L3 Error

Note: The Model Specific Error Code field in MC4_STATUS (bits 31:16)

16.5.3.2 Processor Model Specific Error Code Field
Type B: Bus and Interconnect Error

Note: The Model Specific Error Code field in MC4_STATUS (bits 31:16)

Table 16-19. Type A: L3 Error Codes

Bit
Num

Sub-Field
Name

Description Legal Value(s)

18:16 L3 Error
Code

Describes the L3
error
encountered

000 - No error

001 - More than one way reporting a correctable
event

010 - More than one way reporting an uncorrectable
error

011 - More than one way reporting a tag hit

100 - No error

101 - One way reporting a correctable event

110 - One way reporting an uncorrectable error

111 - One or more ways reporting a correctable event
while one or more ways are reporting an
uncorrectable error

20:19 – Reserved 00

31:21 – Fixed pattern 0010_0000_000
16-24 Vol. 3B

INTERPRETING MACHINE-CHECK ERROR CODES
Exactly one of the bits defined in the preceding table will be set for a Bus and Inter-
connect Error. The Data ECC can be correctable or uncorrectable (the
MC4_STATUS.UC bit, of course, distinguishes between correctable and uncorrectable
cases with the Other_Info field possibly providing the ECC Syndrome for correctable
errors). All other errors for this processor MCA Error Type are uncorrectable.

Table 16-20. Type B Bus and Interconnect Error Codes

Bit Num Sub-Field Name Description

16 FSB Request
Parity

Parity error detected during FSB request phase

17 Core0 Addr Parity Parity error detected on Core 0 request’s address field

18 Core1 Addr Parity Parity error detected on Core 1 request’s address field

19 Reserved

20 FSB Response
Parity

Parity error on FSB response field detected

21 FSB Data Parity FSB data parity error on inbound data detected

22 Core0 Data Parity Data parity error on data received from Core 0 detected

23 Core1 Data Parity Data parity error on data received from Core 1 detected

24 IDS Parity Detected an Enhanced Defer parity error (phase A or phase B)

25 FSB Inbound Data
ECC

Data ECC event to error on inbound data (correctable or
uncorrectable)

26 FSB Data Glitch Pad logic detected a data strobe ‘glitch’ (or sequencing error)

27 FSB Address Glitch Pad logic detected a request strobe ‘glitch’ (or sequencing
error)

31:28 --- Reserved
Vol. 3B 16-25

INTERPRETING MACHINE-CHECK ERROR CODES
16.5.3.3 Processor Model Specific Error Code Field
Type C: Cache Bus Controller Error

Table 16-21. Type C Cache Bus Controller Error Codes

MC4_STATUS[31:16] (MSCE) Value Error Description

0000_0000_0000_0001 0x0001 Inclusion Error from Core 0

0000_0000_0000_0010 0x0002 Inclusion Error from Core 1

0000_0000_0000_0011 0x0003 Write Exclusive Error from Core 0

0000_0000_0000_0100 0x0004 Write Exclusive Error from Core 1

0000_0000_0000_0101 0x0005 Inclusion Error from FSB

0000_0000_0000_0110 0x0006 SNP Stall Error from FSB

0000_0000_0000_0111 0x0007 Write Stall Error from FSB

0000_0000_0000_1000 0x0008 FSB Arb Timeout Error

0000_0000_0000_1001 0x0009 CBC OOD Queue Underflow/overflow

0000_0001_0000_0000 0x0100 Enhanced Intel SpeedStep Technology TM1-TM2 Error

0000_0010_0000_0000 0x0200 Internal Timeout error

0000_0011_0000_0000 0x0300 Internal Timeout Error

0000_0100_0000_0000 0x0400 Intel® Cache Safe Technology Queue Full Error or Disabled-
ways-in-a-set overflow

1100_0000_0000_0001 0xC001 Correctable ECC event on outgoing FSB data

1100_0000_0000_0010 0xC002 Correctable ECC event on outgoing Core 0 data

1100_0000_0000_0100 0xC004 Correctable ECC event on outgoing Core 1 data

1110_0000_0000_0001 0xE001 Uncorrectable ECC error on outgoing FSB data

1110_0000_0000_0010 0xE002 Uncorrectable ECC error on outgoing Core 0 data

1110_0000_0000_0100 0xE004 Uncorrectable ECC error on outgoing Core 1 data

 — all other encodings — Reserved
16-26 Vol. 3B

INTERPRETING MACHINE-CHECK ERROR CODES
All errors - except for the correctable ECC types - in this table are uncorrectable. The
correctable ECC events may supply the ECC syndrome in the Other_Info field of the
MC4_STATUS MSR..

Table 16-22. Decoding Family 0FH Machine Check Codes for Cache Hierarchy Errors

Type Bit No. Bit Function Bit Description

MCA error
codes1

0-15

Model
specific error
codes

16-17 Tag Error Code Contains the tag error code for this machine check
error:

00 = No error detected

01 = Parity error on tag miss with a clean line

10 = Parity error/multiple tag match on tag hit

11 = Parity error/multiple tag match on tag miss

18-19 Data Error Code Contains the data error code for this machine check
error:

00 = No error detected

01 = Single bit error

10 = Double bit error on a clean line

11 = Double bit error on a modified line

20 L3 Error This bit is set if the machine check error originated
in the L3 it can be ignored for invalid PIC request
errors):

1 = L3 error

0 = L2 error

21 Invalid PIC Request Indicates error due to invalid PIC request access
was made to PIC space with WB memory):

1 = Invalid PIC request error

0 = No invalid PIC request error

22-31 Reserved Reserved

Other
Information

32-39 8-bit Error Count Holds a count of the number of errors since reset.
The counter begins at 0 for the first error and
saturates at a count of 255.

40-56 Reserved Reserved

Status
register
validity
indicators1

57-63
Vol. 3B 16-27

INTERPRETING MACHINE-CHECK ERROR CODES
NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for

more information.
16-28 Vol. 3B

CHAPTER 17
DEBUGGING, BRANCH PROFILING, AND TIME-STAMP

COUNTER

Intel 64 and IA-32 architectures provide debug facilities for use in debugging code
and monitoring performance. These facilities are valuable for debugging application
software, system software, and multitasking operating systems. Debug support is
accessed using debug registers (DR0 through DR7) and model-specific registers
(MSRs):
• Debug registers hold the addresses of memory and I/O locations called break-

points. Breakpoints are user-selected locations in a program, a data-storage area
in memory, or specific I/O ports. They are set where a programmer or system
designer wishes to halt execution of a program and examine the state of the
processor by invoking debugger software. A debug exception (#DB) is generated
when a memory or I/O access is made to a breakpoint address.

• MSRs monitor branches, interrupts, and exceptions; they record addresses of the
last branch, interrupt or exception taken and the last branch taken before an
interrupt or exception.

17.1 OVERVIEW OF DEBUG SUPPORT FACILITIES
The following processor facilities support debugging and performance monitoring:
• Debug exception (#DB) — Transfers program control to a debug procedure or

task when a debug event occurs.
• Breakpoint exception (#BP) — See breakpoint instruction (INT 3) below.
• Breakpoint-address registers (DR0 through DR3) — Specifies the

addresses of up to 4 breakpoints.
• Debug status register (DR6) — Reports the conditions that were in effect

when a debug or breakpoint exception was generated.
• Debug control register (DR7) — Specifies the forms of memory or I/O access

that cause breakpoints to be generated.
• T (trap) flag, TSS — Generates a debug exception (#DB) when an attempt is

made to switch to a task with the T flag set in its TSS.
• RF (resume) flag, EFLAGS register — Suppresses multiple exceptions to the

same instruction.
• TF (trap) flag, EFLAGS register — Generates a debug exception (#DB) after

every execution of an instruction.
• Breakpoint instruction (INT 3) — Generates a breakpoint exception (#BP)

that transfers program control to the debugger procedure or task. This
Vol. 3B 17-1

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
instruction is an alternative way to set code breakpoints. It is especially useful
when more than four breakpoints are desired, or when breakpoints are being
placed in the source code.

• Last branch recording facilities — Store branch records in the last branch
record (LBR) stack MSRs for the most recent taken branches, interrupts, and/or
exceptions in MSRs. A branch record consist of a branch-from and a branch-to
instruction address. Send branch records out on the system bus as branch trace
messages (BTMs).

These facilities allow a debugger to be called as a separate task or as a procedure in
the context of the current program or task. The following conditions can be used to
invoke the debugger:
• Task switch to a specific task.
• Execution of the breakpoint instruction.
• Execution of any instruction.
• Execution of an instruction at a specified address.
• Read or write to a specified memory address/range.
• Write to a specified memory address/range.
• Input from a specified I/O address/range.
• Output to a specified I/O address/range.
• Attempt to change the contents of a debug register.

17.2 DEBUG REGISTERS
Eight debug registers (see Figure 17-1) control the debug operation of the processor.
These registers can be written to and read using the move to/from debug register
form of the MOV instruction. A debug register may be the source or destination
operand for one of these instructions.

Debug registers are privileged resources; a MOV instruction that accesses these
registers can only be executed in real-address mode, in SMM or in protected mode at
a CPL of 0. An attempt to read or write the debug registers from any other privilege
level generates a general-protection exception (#GP).

The primary function of the debug registers is to set up and monitor from 1 to 4
breakpoints, numbered 0 though 3. For each breakpoint, the following information
can be specified:
• The linear address where the breakpoint is to occur.
• The length of the breakpoint location (1, 2, or 4 bytes).
• The operation that must be performed at the address for a debug exception to be

generated.
• Whether the breakpoint is enabled.
17-2 Vol. 3B

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
• Whether the breakpoint condition was present when the debug exception was
generated.

The following paragraphs describe the functions of flags and fields in the debug
registers.

Figure 17-1. Debug Registers

31 24 23 22 21 20 19 16 15 1314 12 11 8 7 0

DR7L

Reserved

0

1234569101718252627282930

G
0

L
1

L
2

L
3

G
3

L
E

G
E

G
2

G
1

0 0 G
D

R/W
0

LEN
0

R/W
1

LEN
1

R/W
2

LEN
2

R/W
3

LEN
3

31 16 15 1314 12 11 8 7 0

DR6B
0

123456910

B
1

B
2

B
3

0 1 1 1 1 1 1 1 1B
D

B
S

B
T

31 0

DR5

31 0

DR4

31 0

DR3Breakpoint 3 Linear Address

31 0

DR2Breakpoint 2 Linear Address

31 0

DR1Breakpoint 1 Linear Address

31 0

DR0Breakpoint 0 Linear Address

0 0 1

Reserved (set to 1)
Vol. 3B 17-3

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
17.2.1 Debug Address Registers (DR0-DR3)
Each of the debug-address registers (DR0 through DR3) holds the 32-bit linear
address of a breakpoint (see Figure 17-1). Breakpoint comparisons are made before
physical address translation occurs. The contents of debug register DR7 further spec-
ifies breakpoint conditions.

17.2.2 Debug Registers DR4 and DR5
Debug registers DR4 and DR5 are reserved when debug extensions are enabled
(when the DE flag in control register CR4 is set) and attempts to reference the DR4
and DR5 registers cause invalid-opcode exceptions (#UD). When debug extensions
are not enabled (when the DE flag is clear), these registers are aliased to debug
registers DR6 and DR7.

17.2.3 Debug Status Register (DR6)
The debug status register (DR6) reports debug conditions that were sampled at the
time the last debug exception was generated (see Figure 17-1). Updates to this
register only occur when an exception is generated. The flags in this register show
the following information:
• B0 through B3 (breakpoint condition detected) flags (bits 0 through 3)

— Indicates (when set) that its associated breakpoint condition was met when a
debug exception was generated. These flags are set if the condition described for
each breakpoint by the LENn, and R/Wn flags in debug control register DR7 is
true. They may or may not be set if the breakpoint is not enabled by the Ln or the
Gn flags in register DR7. Therefore on a #DB, a debug handler should check only
those B0-B3 bits which correspond to an enabled breakpoint.

• BD (debug register access detected) flag (bit 13) — Indicates that the next
instruction in the instruction stream accesses one of the debug registers (DR0
through DR7). This flag is enabled when the GD (general detect) flag in debug
control register DR7 is set. See Section 17.2.4, “Debug Control Register (DR7),”
for further explanation of the purpose of this flag.

• BS (single step) flag (bit 14) — Indicates (when set) that the debug exception
was triggered by the single-step execution mode (enabled with the TF flag in the
EFLAGS register). The single-step mode is the highest-priority debug exception.
When the BS flag is set, any of the other debug status bits also may be set.

• BT (task switch) flag (bit 15) — Indicates (when set) that the debug
exception resulted from a task switch where the T flag (debug trap flag) in the
TSS of the target task was set. See Section 7.2.1, “Task-State Segment (TSS),”
for the format of a TSS. There is no flag in debug control register DR7 to enable
or disable this exception; the T flag of the TSS is the only enabling flag.

Certain debug exceptions may clear bits 0-3. The remaining contents of the DR6
register are never cleared by the processor. To avoid confusion in identifying debug
17-4 Vol. 3B

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
exceptions, debug handlers should clear the register before returning to the inter-
rupted task.

17.2.4 Debug Control Register (DR7)
The debug control register (DR7) enables or disables breakpoints and sets break-
point conditions (see Figure 17-1). The flags and fields in this register control the
following things:
• L0 through L3 (local breakpoint enable) flags (bits 0, 2, 4, and 6) —

Enables (when set) the breakpoint condition for the associated breakpoint for the
current task. When a breakpoint condition is detected and its associated Ln flag
is set, a debug exception is generated. The processor automatically clears these
flags on every task switch to avoid unwanted breakpoint conditions in the new
task.

• G0 through G3 (global breakpoint enable) flags (bits 1, 3, 5, and 7) —
Enables (when set) the breakpoint condition for the associated breakpoint for all
tasks. When a breakpoint condition is detected and its associated Gn flag is set,
a debug exception is generated. The processor does not clear these flags on a
task switch, allowing a breakpoint to be enabled for all tasks.

• LE and GE (local and global exact breakpoint enable) flags (bits 8, 9) —
This feature is not supported in the P6 family processors, later IA-32 processors,
and Intel 64 processors. When set, these flags cause the processor to detect the
exact instruction that caused a data breakpoint condition. For backward and
forward compatibility with other Intel processors, we recommend that the LE and
GE flags be set to 1 if exact breakpoints are required.

• GD (general detect enable) flag (bit 13) — Enables (when set) debug-
register protection, which causes a debug exception to be generated prior to any
MOV instruction that accesses a debug register. When such a condition is
detected, the BD flag in debug status register DR6 is set prior to generating the
exception. This condition is provided to support in-circuit emulators.
When the emulator needs to access the debug registers, emulator software can
set the GD flag to prevent interference from the program currently executing on
the processor.
The processor clears the GD flag upon entering to the debug exception handler,
to allow the handler access to the debug registers.

• R/W0 through R/W3 (read/write) fields (bits 16, 17, 20, 21, 24, 25, 28,
and 29) — Specifies the breakpoint condition for the corresponding breakpoint.
The DE (debug extensions) flag in control register CR4 determines how the bits in
the R/Wn fields are interpreted. When the DE flag is set, the processor interprets
bits as follows:

00 — Break on instruction execution only.
01 — Break on data writes only.
Vol. 3B 17-5

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
10 — Break on I/O reads or writes.
11 — Break on data reads or writes but not instruction fetches.

When the DE flag is clear, the processor interprets the R/Wn bits the same as for
the Intel386™ and Intel486™ processors, which is as follows:

00 — Break on instruction execution only.
01 — Break on data writes only.
10 — Undefined.
11 — Break on data reads or writes but not instruction fetches.

• LEN0 through LEN3 (Length) fields (bits 18, 19, 22, 23, 26, 27, 30, and
31) — Specify the size of the memory location at the address specified in the
corresponding breakpoint address register (DR0 through DR3). These fields are
interpreted as follows:

00 — 1-byte length.
01 — 2-byte length.
10 — Undefined (or 8 byte length, see note below).
11 — 4-byte length.

If the corresponding RWn field in register DR7 is 00 (instruction execution), then the
LENn field should also be 00. The effect of using other lengths is undefined. See
Section 17.2.5, “Breakpoint Field Recognition,” below.

NOTES
For Pentium® 4 and Intel® Xeon® processors with a CPUID signature
corresponding to family 15 (model 3, 4, and 6), break point
conditions permit specifying 8-byte length on data read/write with an
of encoding 10B in the LENn field.
Encoding 10B is also supported in processors based on Intel Core
microarchitecture or enhanced Intel Core microarchitecture, the
respective CPUID signatures corresponding to family 6, model 15,
and family 6, DisplayModel value 23 (see CPUID instruction in
Chapter 3, “Instruction Set Reference, A-L” in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 2A). The
Encoding 10B is supported in processors based on Intel® Atom™
microarchitecture, with CPUID signature of family 6, DisplayModel
value 28. The encoding 10B is undefined for other processors.

17.2.5 Breakpoint Field Recognition
Breakpoint address registers (debug registers DR0 through DR3) and the LENn fields
for each breakpoint define a range of sequential byte addresses for a data or I/O
breakpoint. The LENn fields permit specification of a 1-, 2-, 4-, or 8-byte range,
beginning at the linear address specified in the corresponding debug register (DRn).
Two-byte ranges must be aligned on word boundaries; 4-byte ranges must be
aligned on doubleword boundaries. I/O addresses are zero-extended (from 16 to 32
17-6 Vol. 3B

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
bits, for comparison with the breakpoint address in the selected debug register).
These requirements are enforced by the processor; it uses LENn field bits to mask
the lower address bits in the debug registers. Unaligned data or I/O breakpoint
addresses do not yield valid results.

A data breakpoint for reading or writing data is triggered if any of the bytes partici-
pating in an access is within the range defined by a breakpoint address register and
its LENn field. Table 17-1 provides an example setup of debug registers and data
accesses that would subsequently trap or not trap on the breakpoints.

A data breakpoint for an unaligned operand can be constructed using two break-
points, where each breakpoint is byte-aligned and the two breakpoints together
cover the operand. The breakpoints generate exceptions only for the operand, not for
neighboring bytes.

Instruction breakpoint addresses must have a length specification of 1 byte (the
LENn field is set to 00). Code breakpoints for other operand sizes are undefined. The
processor recognizes an instruction breakpoint address only when it points to the
first byte of an instruction. If the instruction has prefixes, the breakpoint address
must point to the first prefix.

Table 17-1. Breakpoint Examples

Debug Register Setup

Debug Register R/Wn Breakpoint Address LENn

DR0
DR1
DR2
DR3

R/W0 = 11 (Read/Write)
R/W1 = 01 (Write)
R/W2 = 11 (Read/Write)
R/W3 = 01 (Write)

A0001H
A0002H
B0002H
C0000H

LEN0 = 00 (1 byte)
LEN1 = 00 (1 byte)
LEN2 = 01) (2 bytes)
LEN3 = 11 (4 bytes)

Data Accesses

Operation Address Access Length
(In Bytes)

Data operations that trap
- Read or write
- Read or write
- Write
- Write
- Read or write
- Read or write
- Read or write
- Write
- Write
- Write

A0001H
A0001H
A0002H
A0002H
B0001H
B0002H
B0002H
C0000H
C0001H
C0003H

1
2
1
2
4
1
2
4
2
1

Vol. 3B 17-7

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
17.2.6 Debug Registers and Intel® 64 Processors
For Intel 64 architecture processors, debug registers DR0–DR7 are 64 bits. In 16-bit
or 32-bit modes (protected mode and compatibility mode), writes to a debug register
fill the upper 32 bits with zeros. Reads from a debug register return the lower 32 bits.
In 64-bit mode, MOV DRn instructions read or write all 64 bits. Operand-size prefixes
are ignored.

In 64-bit mode, the upper 32 bits of DR6 and DR7 are reserved and must be written
with zeros. Writing 1 to any of the upper 32 bits results in a #GP(0) exception (see
Figure 17-2). All 64 bits of DR0–DR3 are writable by software. However, MOV DRn
instructions do not check that addresses written to DR0–DR3 are in the linear-
address limits of the processor implementation (address matching is supported only
on valid addresses generated by the processor implementation). Break point condi-
tions for 8-byte memory read/writes are supported in all modes.

Data operations that do not trap
- Read or write
- Read
- Read or write
- Read or write
- Read
- Read or write

A0000H
A0002H
A0003H
B0000H
C0000H
C0004H

1
1
4
2
2
4

Table 17-1. Breakpoint Examples (Contd.)

Debug Register Setup

Debug Register R/Wn Breakpoint Address LENn
17-8 Vol. 3B

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
17.3 DEBUG EXCEPTIONS
The Intel 64 and IA-32 architectures dedicate two interrupt vectors to handling
debug exceptions: vector 1 (debug exception, #DB) and vector 3 (breakpoint excep-
tion, #BP). The following sections describe how these exceptions are generated and
typical exception handler operations.

17.3.1 Debug Exception (#DB)—Interrupt Vector 1
The debug-exception handler is usually a debugger program or part of a larger soft-
ware system. The processor generates a debug exception for any of several condi-
tions. The debugger checks flags in the DR6 and DR7 registers to determine which
condition caused the exception and which other conditions might apply. Table 17-2
shows the states of these flags following the generation of each kind of breakpoint
condition.

Instruction-breakpoint and general-detect condition (see Section 17.3.1.3, “General-
Detect Exception Condition”) result in faults; other debug-exception conditions result
in traps. The debug exception may report one or both at one time. The following
sections describe each class of debug exception.

Figure 17-2. DR6/DR7 Layout on Processors Supporting Intel 64 Technology

31 24 23 22 21 20 19 16 15 1314 12 11 8 7 0

DR7L

Reserved

0

1234569101718252627282930

G
0

L
1

L
2

L
3

G
3

L
E

G
E

G
2

G
1

G
D

R/W
0

LEN
0

R/W
1

LEN
1

R/W
2

LEN
2

R/W
3

LEN
3

31 16 15 1314 12 11 8 7 0

DR6B
0

123456910

B
1

B
2

B
3

0 1 1 1 1 1 1 1 1 1B
D

B
S

B
T

63 32

63 32

DR6

DR7

0 0 0 0 1

Reserved (set to 1)
Vol. 3B 17-9

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
See also: Chapter 6, “Interrupt 1—Debug Exception (#DB),” in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3A.

17.3.1.1 Instruction-Breakpoint Exception Condition
The processor reports an instruction breakpoint when it attempts to execute an
instruction at an address specified in a breakpoint-address register (DR0 through
DR3) that has been set up to detect instruction execution (R/W flag is set to 0). Upon
reporting the instruction breakpoint, the processor generates a fault-class, debug
exception (#DB) before it executes the target instruction for the breakpoint.

Instruction breakpoints are the highest priority debug exceptions. They are serviced
before any other exceptions detected during the decoding or execution of an instruc-
tion. However, if a code instruction breakpoint is placed on an instruction located
immediately after a POP SS/MOV SS instruction, the breakpoint may not be trig-
gered. In most situations, POP SS/MOV SS will inhibit such interrupts (see
“MOV—Move” and “POP—Pop a Value from the Stack” in Chapter 4 of the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 2B).

Because the debug exception for an instruction breakpoint is generated before the
instruction is executed, if the instruction breakpoint is not removed by the exception
handler; the processor will detect the instruction breakpoint again when the instruc-
tion is restarted and generate another debug exception. To prevent looping on an
instruction breakpoint, the Intel 64 and IA-32 architectures provide the RF flag
(resume flag) in the EFLAGS register (see Section 2.3, “System Flags and Fields in

Table 17-2. Debug Exception Conditions

Debug or Breakpoint Condition DR6 Flags
Tested

DR7 Flags
Tested

Exception Class

Single-step trap BS = 1 Trap

Instruction breakpoint, at addresses
defined by DRn and LENn

Bn = 1 and
(Gn or Ln = 1)

R/Wn = 0 Fault

Data write breakpoint, at addresses
defined by DRn and LENn

Bn = 1 and
(Gn or Ln = 1)

R/Wn = 1 Trap

I/O read or write breakpoint, at
addresses defined by DRn and LENn

Bn = 1 and
(Gn or Ln = 1)

R/Wn = 2 Trap

Data read or write (but not instruction
fetches), at addresses defined by DRn
and LENn

Bn = 1 and
(Gn or Ln = 1)

R/Wn = 3 Trap

General detect fault, resulting from an
attempt to modify debug registers
(usually in conjunction with in-circuit
emulation)

BD = 1 Fault

Task switch BT = 1 Trap
17-10 Vol. 3B

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
the EFLAGS Register,” in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A). When the RF flag is set, the processor ignores instruction
breakpoints.

All Intel 64 and IA-32 processors manage the RF flag as follows. The RF Flag is
cleared at the start of the instruction after the check for code breakpoint, CS limit
violation and FP exceptions. Task Switches and IRETD/IRETQ instructions transfer
the RF image from the TSS/stack to the EFLAGS register.

When calling an event handler, Intel 64 and IA-32 processors establish the value of
the RF flag in the EFLAGS image pushed on the stack:
• For any fault-class exception except a debug exception generated in response to

an instruction breakpoint, the value pushed for RF is 1.
• For any interrupt arriving after any iteration of a repeated string instruction but

the last iteration, the value pushed for RF is 1.
• For any trap-class exception generated by any iteration of a repeated string

instruction but the last iteration, the value pushed for RF is 1.
• For other cases, the value pushed for RF is the value that was in EFLAG.RF at the

time the event handler was called. This includes:

— Debug exceptions generated in response to instruction breakpoints

— Hardware-generated interrupts arriving between instructions (including
those arriving after the last iteration of a repeated string instruction)

— Trap-class exceptions generated after an instruction completes (including
those generated after the last iteration of a repeated string instruction)

— Software-generated interrupts (RF is pushed as 0, since it was cleared at the
start of the software interrupt)

As noted above, the processor does not set the RF flag prior to calling the debug
exception handler for debug exceptions resulting from instruction breakpoints. The
debug exception handler can prevent recurrence of the instruction breakpoint by
setting the RF flag in the EFLAGS image on the stack. If the RF flag in the EFLAGS
image is set when the processor returns from the exception handler, it is copied into
the RF flag in the EFLAGS register by IRETD/IRETQ or a task switch that causes the
return. The processor then ignores instruction breakpoints for the duration of the
next instruction. (Note that the POPF, POPFD, and IRET instructions do not transfer
the RF image into the EFLAGS register.) Setting the RF flag does not prevent other
types of debug-exception conditions (such as, I/O or data breakpoints) from being
detected, nor does it prevent non-debug exceptions from being generated.

For the Pentium processor, when an instruction breakpoint coincides with another
fault-type exception (such as a page fault), the processor may generate one spurious
debug exception after the second exception has been handled, even though the
debug exception handler set the RF flag in the EFLAGS image. To prevent a spurious
exception with Pentium processors, all fault-class exception handlers should set the
RF flag in the EFLAGS image.
Vol. 3B 17-11

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
17.3.1.2 Data Memory and I/O Breakpoint Exception Conditions
Data memory and I/O breakpoints are reported when the processor attempts to
access a memory or I/O address specified in a breakpoint-address register (DR0
through DR3) that has been set up to detect data or I/O accesses (R/W flag is set to
1, 2, or 3). The processor generates the exception after it executes the instruction
that made the access, so these breakpoint condition causes a trap-class exception to
be generated.

Because data breakpoints are traps, an instruction that writes memory overwrites
the original data before the debug exception generated by a data breakpoint is
generated. If a debugger needs to save the contents of a write breakpoint location, it
should save the original contents before setting the breakpoint. The handler can
report the saved value after the breakpoint is triggered. The address in the debug
registers can be used to locate the new value stored by the instruction that triggered
the breakpoint.

If a data breakpoint is detected during an iteration of a string instruction executed
with fast-string operation (see Section 7.3.9.3 of Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 1), delivery of the resulting debug exception
may be delayed until completion of the corresponding group of iterations.

Intel486 and later processors ignore the GE and LE flags in DR7. In Intel386 proces-
sors, exact data breakpoint matching does not occur unless it is enabled by setting
the LE and/or the GE flags.

For repeated INS and OUTS instructions that generate an I/O-breakpoint debug
exception, the processor generates the exception after the completion of the first
iteration. Repeated INS and OUTS instructions generate a data-breakpoint debug
exception after the iteration in which the memory address breakpoint location is
accessed.

17.3.1.3 General-Detect Exception Condition
When the GD flag in DR7 is set, the general-detect debug exception occurs when a
program attempts to access any of the debug registers (DR0 through DR7) at the
same time they are being used by another application, such as an emulator or
debugger. This protection feature guarantees full control over the debug registers
when required. The debug exception handler can detect this condition by checking
the state of the BD flag in the DR6 register. The processor generates the exception
before it executes the MOV instruction that accesses a debug register, which causes
a fault-class exception to be generated.

17.3.1.4 Single-Step Exception Condition
The processor generates a single-step debug exception if (while an instruction is
being executed) it detects that the TF flag in the EFLAGS register is set. The excep-
tion is a trap-class exception, because the exception is generated after the instruc-
tion is executed. The processor will not generate this exception after the instruction
17-12 Vol. 3B

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
that sets the TF flag. For example, if the POPF instruction is used to set the TF flag, a
single-step trap does not occur until after the instruction that follows the POPF
instruction.

The processor clears the TF flag before calling the exception handler. If the TF flag
was set in a TSS at the time of a task switch, the exception occurs after the first
instruction is executed in the new task.

The TF flag normally is not cleared by privilege changes inside a task. The INT n and
INTO instructions, however, do clear this flag. Therefore, software debuggers that
single-step code must recognize and emulate INT n or INTO instructions rather than
executing them directly. To maintain protection, the operating system should check
the CPL after any single-step trap to see if single stepping should continue at the
current privilege level.

The interrupt priorities guarantee that, if an external interrupt occurs, single step-
ping stops. When both an external interrupt and a single-step interrupt occur
together, the single-step interrupt is processed first. This operation clears the TF flag.
After saving the return address or switching tasks, the external interrupt input is
examined before the first instruction of the single-step handler executes. If the
external interrupt is still pending, then it is serviced. The external interrupt handler
does not run in single-step mode. To single step an interrupt handler, single step an
INT n instruction that calls the interrupt handler.

17.3.1.5 Task-Switch Exception Condition
The processor generates a debug exception after a task switch if the T flag of the new
task's TSS is set. This exception is generated after program control has passed to the
new task, and prior to the execution of the first instruction of that task. The exception
handler can detect this condition by examining the BT flag of the DR6 register.

If entry 1 (#DB) in the IDT is a task gate, the T bit of the corresponding TSS should
not be set. Failure to observe this rule will put the processor in a loop.

17.3.2 Breakpoint Exception (#BP)—Interrupt Vector 3
The breakpoint exception (interrupt 3) is caused by execution of an INT 3 instruction.
See Chapter 6, “Interrupt 3—Breakpoint Exception (#BP).” Debuggers use break
exceptions in the same way that they use the breakpoint registers; that is, as a
mechanism for suspending program execution to examine registers and memory
locations. With earlier IA-32 processors, breakpoint exceptions are used extensively
for setting instruction breakpoints.

With the Intel386 and later IA-32 processors, it is more convenient to set break-
points with the breakpoint-address registers (DR0 through DR3). However, the
breakpoint exception still is useful for breakpointing debuggers, because a break-
point exception can call a separate exception handler. The breakpoint exception is
also useful when it is necessary to set more breakpoints than there are debug regis-
Vol. 3B 17-13

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
ters or when breakpoints are being placed in the source code of a program under
development.

17.4 LAST BRANCH, INTERRUPT, AND EXCEPTION
RECORDING OVERVIEW

P6 family processors introduced the ability to set breakpoints on taken branches,
interrupts, and exceptions, and to single-step from one branch to the next. This
capability has been modified and extended in the Pentium 4, Intel Xeon, Pentium M,
Intel® Core™ Solo, Intel® Core™ Duo, Intel® Core™2 Duo, Intel® Core™ i7 and
Intel® Atom™ processors to allow logging of branch trace messages in a branch trace
store (BTS) buffer in memory.

See the following sections for processor specific implementation of last branch, inter-
rupt and exception recording:

— Section 17.5, “Last Branch, Interrupt, and Exception Recording (Intel®
Core™2 Duo and Intel® Atom™ Processor Family)”

— Section 17.6, “Last Branch, Interrupt, and Exception Recording for
Processors based on Intel® Microarchitecture code name Nehalem”

— Section 17.8, “Last Branch, Interrupt, and Exception Recording (Processors
based on Intel NetBurst® Microarchitecture)”

— Section 17.9, “Last Branch, Interrupt, and Exception Recording (Intel® Core™
Solo and Intel® Core™ Duo Processors)”

— Section 17.10, “Last Branch, Interrupt, and Exception Recording (Pentium M
Processors)”

— Section 17.11, “Last Branch, Interrupt, and Exception Recording (P6 Family
Processors)”

The following subsections of Section 17.4 describe common features of profiling
branches. These features are generally enabled using the IA32_DEBUGCTL MSR
(older processor may have implemented a subset or model-specific features, see
definitions of MSR_DEBUGCTLA, MSR_DEBUGCTLB, MSR_DEBUGCTL).

17.4.1 IA32_DEBUGCTL MSR
The IA32_DEBUGCTL MSR provides bit field controls to enable debug trace inter-
rupts, debug trace stores, trace messages enable, single stepping on branches, last
branch record recording, and to control freezing of LBR stack or performance
counters on a PMI request. IA32_DEBUGCTL MSR is located at register address
01D9H.

See Figure 17-3 for the MSR layout and the bullets below for a description of the
flags:
17-14 Vol. 3B

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
• LBR (last branch/interrupt/exception) flag (bit 0) — When set, the
processor records a running trace of the most recent branches, interrupts, and/or
exceptions taken by the processor (prior to a debug exception being generated)
in the last branch record (LBR) stack. For more information, see the Section
17.5.1, “LBR Stack” (Intel® Core™2 Duo and Intel® Atom™ Processor Family)
and Section 17.6.1, “LBR Stack” (processors based on Intel® Microarchitecture
code name Nehalem).

• BTF (single-step on branches) flag (bit 1) — When set, the processor treats
the TF flag in the EFLAGS register as a “single-step on branches” flag rather than
a “single-step on instructions” flag. This mechanism allows single-stepping the
processor on taken branches. See Section 17.4.3, “Single-Stepping on
Branches,” for more information about the BTF flag.

• TR (trace message enable) flag (bit 6) — When set, branch trace messages
are enabled. When the processor detects a taken branch, interrupt, or exception;
it sends the branch record out on the system bus as a branch trace message
(BTM). See Section 17.4.4, “Branch Trace Messages,” for more information about
the TR flag.

• BTS (branch trace store) flag (bit 7) — When set, the flag enables BTS
facilities to log BTMs to a memory-resident BTS buffer that is part of the DS save
area. See Section 17.4.9, “BTS and DS Save Area.”

• BTINT (branch trace interrupt) flag (bit 8) — When set, the BTS facilities
generate an interrupt when the BTS buffer is full. When clear, BTMs are logged to
the BTS buffer in a circular fashion. See Section 17.4.5, “Branch Trace Store (BTS),”
for a description of this mechanism.

Figure 17-3. IA32_DEBUGCTL MSR for Processors based
on Intel Core microarchitecture

31

TR — Trace messages enable

BTINT — Branch trace interrupt

BTF — Single-step on branches
LBR — Last branch/interrupt/exception

Reserved

8 7 6 5 4 3 2 1 0

BTS — Branch trace store

Reserved

910

BTS_OFF_OS — BTS off in OS
BTS_OFF_USR — BTS off in user code
FREEZE_LBRS_ON_PMI
FREEZE_PERFMON_ON_PMI

111214

FREEZE_WHILE_SMM_EN
Vol. 3B 17-15

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
• BTS_OFF_OS (branch trace off in privileged code) flag (bit 9) — When set,
BTS or BTM is skipped if CPL is 0. See Section 17.8.2.

• BTS_OFF_USR (branch trace off in user code) flag (bit 10) — When set,
BTS or BTM is skipped if CPL is greater than 0. See Section 17.8.2.

• FREEZE_LBRS_ON_PMI flag (bit 11) — When set, the LBR stack is frozen on a
hardware PMI request (e.g. when a counter overflows and is configured to trigger
PMI).

• FREEZE_PERFMON_ON_PMI flag (bit 12) — When set, a PMI request clears
each of the “ENABLE” field of MSR_PERF_GLOBAL_CTRL MSR (see Figure 18-3) to
disable all the counters.

• FREEZE_WHILE_SMM_EN (bit 14) — If this bit is set, upon the delivery of an
SMI, the processor will clear all the enable bits of IA32_PERF_GLOBAL_CTRL,
save a copy of the content of IA32_DEBUGCTL and disable LBR, BTF, TR, and BTS
fields of IA32_DEBUGCTL before transferring control to the SMI handler. Subse-
quently, the enable bits of IA32_PERF_GLOBAL_CTRL will be set to 1, the saved
copy of IA32_DEBUGCTL prior to SMI delivery will be restored, after the SMI
handler issues RSM to complete its service. Note that system software must
check IA32_DEBUGCTL. to determine if the processor supports the
FREEZE_WHILE_SMM_EN control bit. FREEZE_WHILE_SMM_EN is supported if
IA32_PERF_CAPABILITIES.FREEZE_WHILE_SMM[Bit 12] is reporting 1. See
Section 18.13 for details of detecting the presence of IA32_PERF_CAPABILITIES
MSR.

17.4.2 Monitoring Branches, Exceptions, and Interrupts
When the LBR flag (bit 0) in the IA32_DEBUGCTL MSR is set, the processor automat-
ically begins recording branch records for taken branches, interrupts, and exceptions
(except for debug exceptions) in the LBR stack MSRs.

When the processor generates a a debug exception (#DB), it automatically clears the
LBR flag before executing the exception handler. This action does not clear previously
stored LBR stack MSRs. The branch record for the last four taken branches, interrupts
and/or exceptions are retained for analysis.

A debugger can use the linear addresses in the LBR stack to re-set breakpoints in the
breakpoint address registers (DR0 through DR3). This allows a backward trace from
the manifestation of a particular bug toward its source.

If the LBR flag is cleared and TR flag in the IA32_DEBUGCTL MSR remains set, the
processor will continue to update LBR stack MSRs. This is because BTM information
must be generated from entries in the LBR stack. A #DB does not automatically clear
the TR flag.
17-16 Vol. 3B

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
17.4.3 Single-Stepping on Branches
When software sets both the BTF flag (bit 1) in the IA32_DEBUGCTL MSR and the TF
flag in the EFLAGS register, the processor generates a single-step debug exception
only after instructions that cause a branch.1 This mechanism allows a debugger to
single-step on control transfers caused by branches. This “branch single stepping”
helps isolate a bug to a particular block of code before instruction single-stepping
further narrows the search. The processor clears the BTF flag when it generates a
debug exception. The debugger must set the BTF flag before resuming program
execution to continue single-stepping on branches.

17.4.4 Branch Trace Messages
Setting the TR flag (bit 6) in the IA32_DEBUGCTL MSR enables branch trace
messages (BTMs). Thereafter, when the processor detects a branch, exception, or
interrupt, it sends a branch record out on the system bus as a BTM. A debugging
device that is monitoring the system bus can read these messages and synchronize
operations with taken branch, interrupt, and exception events.

When interrupts or exceptions occur in conjunction with a taken branch, additional
BTMs are sent out on the bus, as described in Section 17.4.2, “Monitoring Branches,
Exceptions, and Interrupts.”

For P6 processor family, Pentium M processor family, processors based on Intel Core
microarchitecture, TR and LBR bits can not be set at the same time due to hardware
limitation. The content of LBR stack is undefined when TR is set.

For IA processor families based on Intel NetBurst microarchitecture, Intel microarchi-
tecture code name Nehalem and Intel Atom processor family, the processor can
collect branch records in the LBR stack and at the same time send/store BTMs when
both the TR and LBR flags are set in the IA32_DEBUGCTL MSR (or the equivalent
MSR_DEBUGCTLA, MSR_DEBUGCTLB).

The following exception applies:
• BTM may not be observable on Intel Atom processor family processors that do

not provide an externally visible system bus.

17.4.4.1 Branch Trace Message Visibility
Branch trace message (BTM) visibility is implementation specific and limited to
systems with a front side bus (FSB). BTMs may not be visible to newer system link
interfaces or a system bus that deviates from a traditional FSB.

1. Executions of CALL, IRET, and JMP that cause task switches never cause single-step debug
exceptions (regardless of the value of the BTF flag). A debugger desiring debug exceptions on
switches to a task should set the T flag (debug trap flag) in the TSS of that task. See Section
7.2.1, “Task-State Segment (TSS).”
Vol. 3B 17-17

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
17.4.5 Branch Trace Store (BTS)
A trace of taken branches, interrupts, and exceptions is useful for debugging code by
providing a method of determining the decision path taken to reach a particular code
location. The LBR flag (bit 0) of IA32_DEBUGCTL provides a mechanism for capturing
records of taken branches, interrupts, and exceptions and saving them in the last
branch record (LBR) stack MSRs, setting the TR flag for sending them out onto the
system bus as BTMs. The branch trace store (BTS) mechanism provides the addi-
tional capability of saving the branch records in a memory-resident BTS buffer, which
is part of the DS save area. The BTS buffer can be configured to be circular so that
the most recent branch records are always available or it can be configured to
generate an interrupt when the buffer is nearly full so that all the branch records can
be saved. The BTINT flag (bit 8) can be used to enable the generation of interrupt
when the BTS buffer is full. See Section 17.4.9.2, “Setting Up the DS Save Area.” for
additional details.

Setting this flag (BTS) alone can greatly reduce the performance of the processor.
CPL-qualified branch trace storing mechanism can help mitigate the performance
impact of sending/logging branch trace messages.

17.4.6 CPL-Qualified Branch Trace Mechanism
CPL-qualified branch trace mechanism is available to a subset of Intel 64 and IA-32
processors that support the branch trace storing mechanism. The processor supports
the CPL-qualified branch trace mechanism if CPUID.01H:ECX[bit 4] = 1.

The CPL-qualified branch trace mechanism is described in Section 17.4.9.4. System
software can selectively specify CPL qualification to not send/store Branch Trace
Messages associated with a specified privilege level. Two bit fields, BTS_OFF_USR
(bit 10) and BTS_OFF_OS (bit 9), are provided in the debug control register to
specify the CPL of BTMs that will not be logged in the BTS buffer or sent on the bus.

17.4.7 Freezing LBR and Performance Counters on PMI
Many issues may generate a performance monitoring interrupt (PMI); a PMI service
handler will need to determine cause to handle the situation. Two capabilities that
allow a PMI service routine to improve branch tracing and performance monitoring
are:
• Freezing LBRs on PMI (bit 11)— The processor freezes LBRs on a PMI request

by clearing the LBR bit (bit 0) in IA32_DEBUGCTL. Software must then re-enable
IA32_DEBUGCTL.[0] to continue monitoring branches. When using this feature,
software should be careful about writes to IA32_DEBUGCTL to avoid re-enabling
LBRs by accident if they were just disabled.

• Freezing PMCs on PMI (bit 12) — The processor freezes the performance
counters on a PMI request by clearing the MSR_PERF_GLOBAL_CTRL MSR (see
Figure 18-3). The PMCs affected include both general-purpose counters and
17-18 Vol. 3B

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
fixed-function counters (see Section 18.4.1, “Fixed-function Performance
Counters”). Software must re-enable counts by writing 1s to the corresponding
enable bits in MSR_PERF_GLOBAL_CTRL before leaving a PMI service routine to
continue counter operation.

Freezing LBRs and PMCs on PMIs occur when:
• A performance counter had an overflow and was programmed to signal a PMI in

case of an overflow.

— For the general-purpose counters; this is done by setting bit 20 of the
IA32_PERFEVTSELx register.

— For the fixed-function counters; this is done by setting the 3rd bit in the
corresponding 4-bit control field of the MSR_PERF_FIXED_CTR_CTRL register
(see Figure 18-1) or IA32_FIXED_CTR_CTRL MSR (see Figure 18-2).

• The PEBS buffer is almost full and reaches the interrupt threshold.
• The BTS buffer is almost full and reaches the interrupt threshold.

17.4.8 LBR Stack
The last branch record stack and top-of-stack (TOS) pointer MSRs are supported
across Intel 64 and IA-32 processor families. However, the number of MSRs in the
LBR stack and the valid range of TOS pointer value can vary between different
processor families. Table 17-3 lists the LBR stack size and TOS pointer range for
several processor families according to the CPUID signatures of
DisplayFamily_DisplayModel encoding (see CPUID instruction in Chapter 3 of Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 2A).

The last branch recording mechanism tracks not only branch instructions (like JMP,
Jcc, LOOP and CALL instructions), but also other operations that cause a change in
the instruction pointer (like external interrupts, traps and faults). The branch
recording mechanisms generally employs a set of MSRs, referred to as last branch
record (LBR) stack. The size and exact locations of the LBR stack are generally

Table 17-3. LBR Stack Size and TOS Pointer Range
DisplayFamily_DisplayModel Size of LBR Stack Range of TOS Pointer

06_2AH 16 0 to 15

06_1AH, 06_1EH, 06_1FH,
06_2EH, 06_25H, 06_2CH

16 0 to 15

06_17H, 06_1DH 4 0 to 3

06_0FH 4 0 to 3

06_1CH 8 0 to 7
Vol. 3B 17-19

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
model-specific (see Chapter 34, “Model-Specific Registers (MSRs)” of Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3C for model-specific MSR
addresses).
• Last Branch Record (LBR) Stack — The LBR consists of N pairs of MSRs (N is

listed in the LBR stack size column of Table 17-3) that store source and
destination address of recent branches (see Figure 17-3):

— MSR_LASTBRANCH_0_FROM_IP (address is model specific) through the next
consecutive (N-1) MSR address store source addresses

— MSR_LASTBRANCH_0_TO_IP (address is model specific) through the next
consecutive (N-1) MSR address store destination addresses.

• Last Branch Record Top-of-Stack (TOS) Pointer — The lowest significant M
bits of the TOS Pointer MSR (MSR_LASTBRANCH_TOS, address is model specific)
contains an M-bit pointer to the MSR in the LBR stack that contains the most
recent branch, interrupt, or exception recorded. The valid range of the M-bit POS
pointer is given in Table 17-3.

17.4.8.1 LBR Stack and Intel® 64 Processors
LBR MSRs are 64-bits. If IA-32e mode is disabled, only the lower 32-bits of the
address is recorded. If IA-32e mode is enabled, the processor writes 64-bit values
into the MSR.

In 64-bit mode, last branch records store 64-bit addresses; in compatibility mode,
the upper 32-bits of last branch records are cleared.

Software should query an architectural MSR IA32_PERF_CAPABILITIES[5:0]
about the format of the address that is stored in the LBR stack. Four formats are
defined by the following encoding:

— 000000B (32-bit record format) — Stores 32-bit offset in current CS of
respective source/destination,

Figure 17-4. 64-bit Address Layout of LBR MSR

63

Source Address

0

063

Destination Address

MSR_LASTBRANCH_0_FROM_IP through MSR_LASTBRANCH_(N-1)_FROM_IP

MSR_LASTBRANCH_0_TO_IP through MSR_LASTBRANCH_(N-1)_TO_IP
17-20 Vol. 3B

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
— 000001B (64-bit LIP record format) — Stores 64-bit linear address of
respective source/destination,

— 000010B (64-bit EIP record format) — Stores 64-bit offset (effective
address) of respective source/destination.

— 000011B (64-bit EIP record format) and Flags — Stores 64-bit offset
(effective address) of respective source/destination. LBR flags are supported
in the upper bits of ‘FROM’ register in the LBR stack. See LBR stack details
below for flag support and definition.

Processor’s support for the architectural MSR IA32_PERF_CAPABILITIES is
provided by CPUID.01H:ECX[PERF_CAPAB_MSR] (bit 15).

17.4.8.2 LBR Stack and IA-32 Processors
The LBR MSRs in IA-32 processors introduced prior to Intel 64 architecture store the
32-bit “To Linear Address” and “From Linear Address“ using the high and low half of
each 64-bit MSR.

17.4.8.3 Last Exception Records and Intel 64 Architecture
Intel 64 and IA-32 processors also provide MSRs that store the branch record for the
last branch taken prior to an exception or an interrupt. The location of the last excep-
tion record (LER) MSRs are model specific. The MSRs that store last exception
records are 64-bits. If IA-32e mode is disabled, only the lower 32-bits of the address
is recorded. If IA-32e mode is enabled, the processor writes 64-bit values into the
MSR. In 64-bit mode, last exception records store 64-bit addresses; in compatibility
mode, the upper 32-bits of last exception records are cleared.

17.4.9 BTS and DS Save Area
The Debug store (DS) feature flag (bit 21), returned by CPUID.1:EDX[21] Indicates
that the processor provides the debug store (DS) mechanism. This mechanism
allows BTMs to be stored in a memory-resident BTS buffer. See Section 17.4.5,
“Branch Trace Store (BTS).” Precise event-based sampling (PEBS, see Section
18.4.4, “Precise Event Based Sampling (PEBS),”) also uses the DS save area
provided by debug store mechanism. When CPUID.1:EDX[21] is set, the following
BTS facilities are available:
• The BTS_UNAVAILABLE flag in the IA32_MISC_ENABLE MSR indicates (when

clear) the availability of the BTS facilities, including the ability to set the BTS and
BTINT bits in the MSR_DEBUGCTLA MSR.

• The IA32_DS_AREA MSR can be programmed to point to the DS save area.

The debug store (DS) save area is a software-designated area of memory that is
used to collect the following two types of information:
Vol. 3B 17-21

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
• Branch records — When the BTS flag in the IA32_DEBUGCTL MSR is set, a
branch record is stored in the BTS buffer in the DS save area whenever a taken
branch, interrupt, or exception is detected.

• PEBS records — When a performance counter is configured for PEBS, a PEBS
record is stored in the PEBS buffer in the DS save area after the counter overflow
occurs. This record contains the architectural state of the processor (state of the
8 general purpose registers, EIP register, and EFLAGS register) at the next
occurrence of the PEBS event that caused the counter to overflow. When the
state information has been logged, the counter is automatically reset to a
preselected value, and event counting begins again.

NOTE
On processors based on Intel Core microarchitecture and for Intel
Atom processor family, PEBS is supported only for a subset of the
performance events.

NOTES
DS save area and recording mechanism is not available in the SMM.
The feature is disabled on transition to the SMM mode. Similarly DS
recording is disabled on the generation of a machine check exception
and is cleared on processor RESET and INIT. DS recording is available
in real address mode.
The BTS and PEBS facilities may not be available on all processors.
The availability of these facilities is indicated by the
BTS_UNAVAILABLE and PEBS_UNAVAILABLE flags, respectively, in
the IA32_MISC_ENABLE MSR (see Chapter 34).

The DS save area is divided into three parts (see Figure 17-5): buffer management
area, branch trace store (BTS) buffer, and PEBS buffer. The buffer management area
is used to define the location and size of the BTS and PEBS buffers. The processor
then uses the buffer management area to keep track of the branch and/or PEBS
records in their respective buffers and to record the performance counter reset value.
The linear address of the first byte of the DS buffer management area is specified
with the IA32_DS_AREA MSR.

The fields in the buffer management area are as follows:
• BTS buffer base — Linear address of the first byte of the BTS buffer. This

address should point to a natural doubleword boundary.
• BTS index — Linear address of the first byte of the next BTS record to be written

to. Initially, this address should be the same as the address in the BTS buffer
base field.

• BTS absolute maximum — Linear address of the next byte past the end of the
BTS buffer. This address should be a multiple of the BTS record size (12 bytes)
plus 1.
17-22 Vol. 3B

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
• BTS interrupt threshold — Linear address of the BTS record on which an
interrupt is to be generated. This address must point to an offset from the BTS
buffer base that is a multiple of the BTS record size. Also, it must be several
records short of the BTS absolute maximum address to allow a pending interrupt
to be handled prior to processor writing the BTS absolute maximum record.

• PEBS buffer base — Linear address of the first byte of the PEBS buffer. This
address should point to a natural doubleword boundary.

• PEBS index — Linear address of the first byte of the next PEBS record to be
written to. Initially, this address should be the same as the address in the PEBS
buffer base field.

Figure 17-5. DS Save Area

BTS Buffer Base

BTS Index

BTS Absolute

BTS Interrupt

PEBS Absolute

PEBS Interrupt

PEBS

Maximum

Maximum

Threshold

PEBS Index

PEBS Buffer Base

Threshold

Counter Reset

Reserved

0H

4H

8H

CH

10H

14H

18H

1CH

20H

24H

30H

Branch Record 0

Branch Record 1

Branch Record n

PEBS Record 0

PEBS Record 1

PEBS Record n

BTS Buffer

PEBS Buffer

DS Buffer Management Area

IA32_DS_AREA MSR
Vol. 3B 17-23

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
• PEBS absolute maximum — Linear address of the next byte past the end of the
PEBS buffer. This address should be a multiple of the PEBS record size (40 bytes)
plus 1.

• PEBS interrupt threshold — Linear address of the PEBS record on which an
interrupt is to be generated. This address must point to an offset from the PEBS
buffer base that is a multiple of the PEBS record size. Also, it must be several
records short of the PEBS absolute maximum address to allow a pending
interrupt to be handled prior to processor writing the PEBS absolute maximum
record.

• PEBS counter reset value — A 40-bit value that the counter is to be reset to
after state information has collected following counter overflow. This value allows
state information to be collected after a preset number of events have been
counted.

Figures 17-6 shows the structure of a 12-byte branch record in the BTS buffer. The
fields in each record are as follows:
• Last branch from — Linear address of the instruction from which the branch,

interrupt, or exception was taken.
• Last branch to — Linear address of the branch target or the first instruction in

the interrupt or exception service routine.
• Branch predicted — Bit 4 of field indicates whether the branch that was taken

was predicted (set) or not predicted (clear).

Figures 17-7 shows the structure of the 40-byte PEBS records. Nominally the register
values are those at the beginning of the instruction that caused the event. However,
there are cases where the registers may be logged in a partially modified state. The
linear IP field shows the value in the EIP register translated from an offset into the
current code segment to a linear address.

Figure 17-6. 32-bit Branch Trace Record Format

Last Branch From

Last Branch To

Branch Predicted

0H

4H

8H

031 4
17-24 Vol. 3B

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
17.4.9.1 DS Save Area and IA-32e Mode Operation
When IA-32e mode is active (IA32_EFER.LMA = 1), the structure of the DS save area
is shown in Figure 17-8. The organization of each field in IA-32e mode operation is
similar to that of non-IA-32e mode operation. However, each field now stores a
64-bit address. The IA32_DS_AREA MSR holds the 64-bit linear address of the first
byte of the DS buffer management area.

Figure 17-7. PEBS Record Format

EFLAGS 0H

4H

8H

031

Linear IP

10H

18H

14H

1CH

20H

24H

CH

EAX

EBX

ECX

EDX

ESI

EDI

EBP

ESP
Vol. 3B 17-25

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
When IA-32e mode is active, the structure of a branch trace record is similar to that
shown in Figure 17-6, but each field is 8 bytes in length. This makes each BTS record
24 bytes (see Figure 17-9). The structure of a PEBS record is similar to that shown in
Figure 17-7, but each field is 8 bytes in length and architectural states include
register R8 through R15. This makes the size of a PEBS record in 64-bit mode 144
bytes (see Figure 17-10).

Figure 17-8. IA-32e Mode DS Save Area

BTS Buffer Base

BTS Index

BTS Absolute

BTS Interrupt

PEBS Absolute

PEBS Interrupt

PEBS

Maximum

Maximum

Threshold

PEBS Index

PEBS Buffer Base

Threshold

Counter Reset

Reserved

0H

8H

10H

18H

20H

28H

30H

38H

40H

48H

50H

Branch Record 0

Branch Record 1

Branch Record n

PEBS Record 0

PEBS Record 1

PEBS Record n

BTS Buffer

PEBS Buffer

DS Buffer Management Area

IA32_DS_AREA MSR
17-26 Vol. 3B

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
Fields in the buffer management area of a DS save area are described in Section
17.4.9.

The format of a branch trace record and a PEBS record are the same as the 64-bit
record formats shown in Figures 17-9 and Figures 17-10, with the exception that the
branch predicted bit is not supported by Intel Core microarchitecture or Intel Atom
microarchitecture. The 64-bit record formats for BTS and PEBS apply to DS save area
for all operating modes.

Figure 17-9. 64-bit Branch Trace Record Format

Figure 17-10. 64-bit PEBS Record Format

Last Branch From

Last Branch To

Branch Predicted

0H

8H

10H

063 4

RFLAGS 0H

8H

10H

063

RIP

20H

30H

28H

38H

40H

48H

18H

RAX

RBX

RCX

RDX

RSI

RDI

RBP

RSP

R8

...

R15

50H

...

88H
Vol. 3B 17-27

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
The procedures used to program IA32_DEBUG_CTRL MSR to set up a BTS buffer or a
CPL-qualified BTS are described in Section 17.4.9.3 and Section 17.4.9.4.

Required elements for writing a DS interrupt service routine are largely the same on
processors that support using DS Save area for BTS or PEBS records. However, on
processors based on Intel NetBurst® microarchitecture, re-enabling counting
requires writing to CCCRs. But a DS interrupt service routine on processors based on
Intel Core or Intel Atom microarchitecture should:
• Re-enable the enable bits in IA32_PERF_GLOBAL_CTRL MSR if it is servicing an

overflow PMI due to PEBS.
• Clear overflow indications by writing to IA32_PERF_GLOBAL_OVF_CTRL when a

counting configuration is changed. This includes bit 62 (ClrOvfBuffer) and the
overflow indication of counters used in either PEBS or general-purpose counting
(specifically: bits 0 or 1; see Figures 18-3).

17.4.9.2 Setting Up the DS Save Area
To save branch records with the BTS buffer, the DS save area must first be set up in
memory as described in the following procedure (See Section 18.4.4.1, “Setting up
the PEBS Buffer,” for instructions for setting up a PEBS buffer, respectively, in the DS
save area):

1. Create the DS buffer management information area in memory (see Section
17.4.9, “BTS and DS Save Area,” and Section 17.4.9.1, “DS Save Area and IA-
32e Mode Operation”). Also see the additional notes in this section.

2. Write the base linear address of the DS buffer management area into the
IA32_DS_AREA MSR.

3. Set up the performance counter entry in the xAPIC LVT for fixed delivery and
edge sensitive. See Section 10.5.1, “Local Vector Table.”

4. Establish an interrupt handler in the IDT for the vector associated with the
performance counter entry in the xAPIC LVT.

5. Write an interrupt service routine to handle the interrupt. See Section 17.4.9.5,
“Writing the DS Interrupt Service Routine.”

The following restrictions should be applied to the DS save area.
• The three DS save area sections should be allocated from a non-paged pool, and

marked accessed and dirty. It is the responsibility of the operating system to
keep the pages that contain the buffer present and to mark them accessed and
dirty. The implication is that the operating system cannot do “lazy” page-table
entry propagation for these pages.

• The DS save area can be larger than a page, but the pages must be mapped to
contiguous linear addresses. The buffer may share a page, so it need not be
aligned on a 4-KByte boundary. For performance reasons, the base of the buffer
must be aligned on a doubleword boundary and should be aligned on a cache line
boundary.
17-28 Vol. 3B

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
• It is recommended that the buffer size for the BTS buffer and the PEBS buffer be
an integer multiple of the corresponding record sizes.

• The precise event records buffer should be large enough to hold the number of
precise event records that can occur while waiting for the interrupt to be
serviced.

• The DS save area should be in kernel space. It must not be on the same page as
code, to avoid triggering self-modifying code actions.

• There are no memory type restrictions on the buffers, although it is
recommended that the buffers be designated as WB memory type for
performance considerations.

• Either the system must be prevented from entering A20M mode while DS save
area is active, or bit 20 of all addresses within buffer bounds must be 0.

• Pages that contain buffers must be mapped to the same physical addresses for all
processes, such that any change to control register CR3 will not change the DS
addresses.

• The DS save area is expected to used only on systems with an enabled APIC. The
LVT Performance Counter entry in the APCI must be initialized to use an interrupt
gate instead of the trap gate.

17.4.9.3 Setting Up the BTS Buffer
Three flags in the MSR_DEBUGCTLA MSR (see Table 17-4), IA32_DEBUGCTL (see
Figure 17-3), or MSR_DEBUGCTLB (see Figure 17-16) control the generation of
branch records and storing of them in the BTS buffer; these are TR, BTS, and BTINT.
The TR flag enables the generation of BTMs. The BTS flag determines whether the
BTMs are sent out on the system bus (clear) or stored in the BTS buffer (set). BTMs
cannot be simultaneously sent to the system bus and logged in the BTS buffer. The
BTINT flag enables the generation of an interrupt when the BTS buffer is full. When
this flag is clear, the BTS buffer is a circular buffer.

The following procedure describes how to set up a DS Save area to collect branch
records in the BTS buffer:

1. Place values in the BTS buffer base, BTS index, BTS absolute maximum, and BTS
interrupt threshold fields of the DS buffer management area to set up the BTS
buffer in memory.

Table 17-4. IA32_DEBUGCTL Flag Encodings
TR BTS BTINT Description

0 X X Branch trace messages (BTMs) off

1 0 X Generate BTMs

1 1 0 Store BTMs in the BTS buffer, used here as a circular buffer

1 1 1 Store BTMs in the BTS buffer, and generate an interrupt when
the buffer is nearly full
Vol. 3B 17-29

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
2. Set the TR and BTS flags in the IA32_DEBUGCTL for Intel Core Solo and Intel
Core Duo processors or later processors (or MSR_DEBUGCTLA MSR for
processors based on Intel NetBurst Microarchitecture; or MSR_DEBUGCTLB for
Pentium M processors).

3. Clear the BTINT flag in the corresponding IA32_DEBUGCTL (or MSR_DEBUGCTLA
MSR; or MSR_DEBUGCTLB) if a circular BTS buffer is desired.

NOTES
If the buffer size is set to less than the minimum allowable value (i.e.
BTS absolute maximum < 1 + size of BTS record), the results of BTS
is undefined.
In order to prevent generating an interrupt, when working with
circular BTS buffer, SW need to set BTS interrupt threshold to a value
greater than BTS absolute maximum (fields of the DS buffer
management area). It's not enough to clear the BTINT flag itself only.

17.4.9.4 Setting Up CPL-Qualified BTS
If the processor supports CPL-qualified last branch recording mechanism, the gener-
ation of branch records and storing of them in the BTS buffer are determined by: TR,
BTS, BTS_OFF_OS, BTS_OFF_USR, and BTINT. The encoding of these five bits are
shown in Table 17-5.

Table 17-5. CPL-Qualified Branch Trace Store Encodings
TR BTS BTS_OFF_OS BTS_OFF_USR BTINT Description

0 X X X X Branch trace messages (BTMs)
off

1 0 X X X Generates BTMs but do not
store BTMs

1 1 0 0 0 Store all BTMs in the BTS buffer,
used here as a circular buffer

1 1 1 0 0 Store BTMs with CPL > 0 in the
BTS buffer

1 1 0 1 0 Store BTMs with CPL = 0 in the
BTS buffer

1 1 1 1 X Generate BTMs but do not store
BTMs

1 1 0 0 1 Store all BTMs in the BTS buffer;
generate an interrupt when the
buffer is nearly full
17-30 Vol. 3B

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
17.4.9.5 Writing the DS Interrupt Service Routine
The BTS, non-precise event-based sampling, and PEBS facilities share the same
interrupt vector and interrupt service routine (called the debug store interrupt
service routine or DS ISR). To handle BTS, non-precise event-based sampling, and
PEBS interrupts: separate handler routines must be included in the DS ISR. Use the
following guidelines when writing a DS ISR to handle BTS, non-precise event-based
sampling, and/or PEBS interrupts.
• The DS interrupt service routine (ISR) must be part of a kernel driver and operate

at a current privilege level of 0 to secure the buffer storage area.
• Because the BTS, non-precise event-based sampling, and PEBS facilities share

the same interrupt vector, the DS ISR must check for all the possible causes of
interrupts from these facilities and pass control on to the appropriate handler.

BTS and PEBS buffer overflow would be the sources of the interrupt if the buffer
index matches/exceeds the interrupt threshold specified. Detection of non-
precise event-based sampling as the source of the interrupt is accomplished by
checking for counter overflow.

• There must be separate save areas, buffers, and state for each processor in an
MP system.

• Upon entering the ISR, branch trace messages and PEBS should be disabled to
prevent race conditions during access to the DS save area. This is done by
clearing TR flag in the IA32_DEBUGCTL (or MSR_DEBUGCTLA MSR) and by
clearing the precise event enable flag in the MSR_PEBS_ENABLE MSR. These
settings should be restored to their original values when exiting the ISR.

• The processor will not disable the DS save area when the buffer is full and the
circular mode has not been selected. The current DS setting must be retained
and restored by the ISR on exit.

• After reading the data in the appropriate buffer, up to but not including the
current index into the buffer, the ISR must reset the buffer index to the beginning
of the buffer. Otherwise, everything up to the index will look like new entries upon
the next invocation of the ISR.

1 1 1 0 1 Store BTMs with CPL > 0 in the
BTS buffer; generate an
interrupt when the buffer is
nearly full

1 1 0 1 1 Store BTMs with CPL = 0 in the
BTS buffer; generate an
interrupt when the buffer is
nearly full

Table 17-5. CPL-Qualified Branch Trace Store Encodings (Contd.)
TR BTS BTS_OFF_OS BTS_OFF_USR BTINT Description
Vol. 3B 17-31

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
• The ISR must clear the mask bit in the performance counter LVT entry.
• The ISR must re-enable the counters to count via

IA32_PERF_GLOBAL_CTRL/IA32_PERF_GLOBAL_OVF_CTRL if it is servicing an
overflow PMI due to PEBS (or via CCCR's ENABLE bit on processor based on Intel
NetBurst microarchitecture).

• The Pentium 4 Processor and Intel Xeon Processor mask PMIs upon receiving an
interrupt. Clear this condition before leaving the interrupt handler.

17.5 LAST BRANCH, INTERRUPT, AND EXCEPTION
RECORDING (INTEL® CORE™2 DUO AND INTEL®
ATOM™ PROCESSOR FAMILY)

The Intel Core 2 Duo processor family and Intel Xeon processors based on Intel Core
microarchitecture or enhanced Intel Core microarchitecture provide last branch
interrupt and exception recording. The facilities described in this section also apply to
Intel Atom processor family. These capabilities are similar to those found in Pentium
4 processors, including support for the following facilities:
• Debug Trace and Branch Recording Control — The IA32_DEBUGCTL MSR

provide bit fields for software to configure mechanisms related to debug trace,
branch recording, branch trace store, and performance counter operations. See
Section 17.4.1 for a description of the flags. See Figure 17-3 for the MSR layout.

• Last branch record (LBR) stack — There are a collection of MSR pairs that
store the source and destination addresses related to recently executed
branches. See Section 17.5.1.

• Monitoring and single-stepping of branches, exceptions, and interrupts

— See Section 17.4.2 and Section 17.4.3. In addition, the ability to freeze the
LBR stack on a PMI request is available.

— The Intel Atom processor family clears the TR flag when the
FREEZE_LBRS_ON_PMI flag is set.

• Branch trace messages — See Section 17.4.4.
• Last exception records — See Section 17.8.3.
• Branch trace store and CPL-qualified BTS — See Section 17.4.5.
• FREEZE_LBRS_ON_PMI flag (bit 11) — see Section 17.4.7.
• FREEZE_PERFMON_ON_PMI flag (bit 12) — see Section 17.4.7.
• FREEZE_WHILE_SMM_EN (bit 14) — FREEZE_WHILE_SMM_EN is supported

if IA32_PERF_CAPABILITIES.FREEZE_WHILE_SMM[Bit 12] is reporting 1. See
Section 17.4.1.
17-32 Vol. 3B

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
17.5.1 LBR Stack
The last branch record stack and top-of-stack (TOS) pointer MSRs are supported
across Intel Core 2, Intel Xeon and Intel Atom processor families.

Four pairs of MSRs are supported in the LBR stack for Intel Core 2 and Intel Xeon
processor families:
• Last Branch Record (LBR) Stack

— MSR_LASTBRANCH_0_FROM_IP (address 40H) through
MSR_LASTBRANCH_3_FROM_IP (address 43H) store source addresses

— MSR_LASTBRANCH_0_TO_IP (address 60H) through
MSR_LASTBRANCH_3_TO_IP (address 63H) store destination addresses

• Last Branch Record Top-of-Stack (TOS) Pointer — The lowest significant 2
bits of the TOS Pointer MSR (MSR_LASTBRANCH_TOS, address 1C9H) contains a
pointer to the MSR in the LBR stack that contains the most recent branch,
interrupt, or exception recorded.

Eight pairs of MSRs are supported in the LBR stack for Intel Atom processors:
• Last Branch Record (LBR) Stack

— MSR_LASTBRANCH_0_FROM_IP (address 40H) through
MSR_LASTBRANCH_7_FROM_IP (address 47H) store source addresses

— MSR_LASTBRANCH_0_TO_IP (address 60H) through
MSR_LASTBRANCH_7_TO_IP (address 67H) store destination addresses

• Last Branch Record Top-of-Stack (TOS) Pointer — The lowest significant 3
bits of the TOS Pointer MSR (MSR_LASTBRANCH_TOS, address 1C9H) contains a
pointer to the MSR in the LBR stack that contains the most recent branch,
interrupt, or exception recorded.

For compatibility, the MSR_LER_TO_LIP and the MSR_LER_FROM_LIP MSRs) dupli-
cate functions of the LastExceptionToIP and LastExceptionFromIP MSRs found in P6
family processors.

17.6 LAST BRANCH, INTERRUPT, AND EXCEPTION
RECORDING FOR PROCESSORS BASED ON INTEL®
MICROARCHITECTURE CODE NAME NEHALEM

The processors based on Intel® microarchitecture code name Nehalem and Intel®
microarchitecture code name Westmere support last branch interrupt and exception
recording. These capabilities are similar to those found in Intel Core 2 processors and
adds additional capabilities:
• Debug Trace and Branch Recording Control — The IA32_DEBUGCTL MSR

provides bit fields for software to configure mechanisms related to debug trace,
Vol. 3B 17-33

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
branch recording, branch trace store, and performance counter operations. See
Section 17.4.1 for a description of the flags. See Figure 17-11 for the MSR layout.

• Last branch record (LBR) stack — There are 16 MSR pairs that store the
source and destination addresses related to recently executed branches. See
Section 17.6.1.

• Monitoring and single-stepping of branches, exceptions, and interrupts
— See Section 17.4.2 and Section 17.4.3. In addition, the ability to freeze the
LBR stack on a PMI request is available.

• Branch trace messages — The IA32_DEBUGCTL MSR provides bit fields for
software to enable each logical processor to generate branch trace messages.
See Section 17.4.4. However, not all BTM messages are observable using the
Intel® QPI link.

• Last exception records — See Section 17.8.3.
• Branch trace store and CPL-qualified BTS — See Section 17.4.6 and Section

17.4.5.
• FREEZE_LBRS_ON_PMI flag (bit 11) — see Section 17.4.7.
• FREEZE_PERFMON_ON_PMI flag (bit 12) — see Section 17.4.7.
• UNCORE_PMI_EN (bit 13) — When set. this logical processor is enabled to

receive an counter overflow interrupt form the uncore.
• FREEZE_WHILE_SMM_EN (bit 14) — FREEZE_WHILE_SMM_EN is supported

if IA32_PERF_CAPABILITIES.FREEZE_WHILE_SMM[Bit 12] is reporting 1. See
Section 17.4.1.

Processors based on Intel microarchitecture code name Nehalem provide additional
capabilities:
• Independent control of uncore PMI — The IA32_DEBUGCTL MSR provides a

bit field (see Figure 17-11) for software to enable each logical processor to
receive an uncore counter overflow interrupt.

• LBR filtering — Processors based on Intel microarchitecture code name
Nehalem support filtering of LBR based on combination of CPL and branch type
conditions. When LBR filtering is enabled, the LBR stack only captures the subset
of branches that are specified by MSR_LBR_SELECT.
17-34 Vol. 3B

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
17.6.1 LBR Stack
Processors based on Intel microarchitecture code name Nehalem provide 16 pairs of
MSR to record last branch record information. The layout of each MSR pair is shown
in Table 17-6 and Table 17-7.

Figure 17-11. IA32_DEBUGCTL MSR for Processors based
on Intel microarchitecture code name Nehalem

Table 17-6. IA32_LASTBRANCH_x_FROM_IP
Bit Field Bit Offset Access Description

Data 47:0 R/O The linear address of the branch instruction itself,
this is the “branch from“ address.

SIGN_EXt 62:48 R/0 Signed extension of bit 47 of this register.

MISPRED 63 R/O When set, indicates either the target of the branch
was mispredicted and/or the direction (taken/non-
taken) was mispredicted; otherwise, the target
branch was predicted.

Table 17-7. IA32_LASTBRANCH_x_TO_IP
Bit Field Bit Offset Access Description

Data 47:0 R/O The linear address of the target of the branch
instruction itself, this is the “branch to“ address.

31

TR — Trace messages enable

BTINT — Branch trace interrupt

BTF — Single-step on branches
LBR — Last branch/interrupt/exception

Reserved

8 7 6 5 4 3 2 1 0

BTS — Branch trace store

Reserved

910

BTS_OFF_OS — BTS off in OS
BTS_OFF_USR — BTS off in user code
FREEZE_LBRS_ON_PMI
FREEZE_PERFMON_ON_PMI

111214

FREEZE_WHILE_SMM_EN
UNCORE_PMI_EN

13
Vol. 3B 17-35

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
Processors based on Intel microarchitecture code name Nehalem have an LBR MSR
Stack as shown in Table 17-8.

Table 17-8. LBR Stack Size and TOS Pointer Range

17.6.2 Filtering of Last Branch Records
MSR_LBR_SELECT is cleared to zero at RESET, and LBR filtering is disabled, i.e. all
branches will be captured. MSR_LBR_SELECT provides bit fields to specify the condi-
tions of subsets of branches that will not be captured in the LBR. The layout of
MSR_LBR_SELECT is shown in Table 17-9.

SIGN_EXt 63:48 R/0 Signed extension of bit 47 of this register.

DisplayFamily_DisplayModel Size of LBR Stack Range of TOS Pointer

06_1AH 16 0 to 15

Table 17-9. MSR_LBR_SELECT for Intel microarchitecture code name Nehalem
Bit Field Bit Offset Access Description

CPL_EQ_0 0 R/W When set, do not capture branches occurring in ring 0

CPL_NEQ_0 1 R/W When set, do not capture branches occurring in ring
>0

JCC 2 R/W When set, do not capture conditional branches

NEAR_REL_CALL 3 R/W When set, do not capture near relative calls

NEAR_IND_CALL 4 R/W When set, do not capture near indirect calls

NEAR_RET 5 R/W When set, do not capture near returns

NEAR_IND_JMP 6 R/W When set, do not capture near indirect jumps

NEAR_REL_JMP 7 R/W When set, do not capture near relative jumps

FAR_BRANCH 8 R/W When set, do not capture far branches

Reserved 63:9 Must be zero

Table 17-7. IA32_LASTBRANCH_x_TO_IP (Contd.)
Bit Field Bit Offset Access Description
17-36 Vol. 3B

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
17.7 LAST BRANCH, INTERRUPT, AND EXCEPTION
RECORDING FOR PROCESSORS BASED ON INTEL®
MICROARCHITECTURE CODE NAME SANDY BRIDGE

Generally, all of the last branch record, interrupt and exception recording facility
described in Section 17.6, “Last Branch, Interrupt, and Exception Recording for
Processors based on Intel® Microarchitecture code name Nehalem”, apply to proces-
sors based on Intel® microarchitecture code name Sandy Bridge.

One difference of note is that MSR_LBR_SELECT is shared between two logical
processors in the same core. In Intel microarchitecture code name Sandy Bridge,
each logical processor has its own MSR_LBR_SELECT. The filtering semantics for
“Near_ind_jmp“ and “Near_rel_jmp“ has been enhanced, see Table 17-10.

17.8 LAST BRANCH, INTERRUPT, AND EXCEPTION
RECORDING (PROCESSORS BASED ON INTEL
NETBURST® MICROARCHITECTURE)

Pentium 4 and Intel Xeon processors based on Intel NetBurst microarchitecture
provide the following methods for recording taken branches, interrupts and excep-
tions:

Table 17-10. MSR_LBR_SELECT for Intel microarchitecture code name Sandy Bridge
Bit Field Bit Offset Access Description

CPL_EQ_0 0 R/W When set, do not capture branches occurring in ring 0

CPL_NEQ_0 1 R/W When set, do not capture branches occurring in ring
>0

JCC 2 R/W When set, do not capture conditional branches

NEAR_REL_CALL 3 R/W When set, do not capture near relative calls

NEAR_IND_CALL 4 R/W When set, do not capture near indirect calls

NEAR_RET 5 R/W When set, do not capture near returns

NEAR_IND_JMP 6 R/W When set, do not capture near indirect jumps except
near indirect calls and near returns

NEAR_REL_JMP 7 R/W When set, do not capture near relative jumps except
near relative calls.

FAR_BRANCH 8 R/W When set, do not capture far branches

Reserved 63:9 Must be zero
Vol. 3B 17-37

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
• Store branch records in the last branch record (LBR) stack MSRs for the most
recent taken branches, interrupts, and/or exceptions in MSRs. A branch record
consist of a branch-from and a branch-to instruction address.

• Send the branch records out on the system bus as branch trace messages
(BTMs).

• Log BTMs in a memory-resident branch trace store (BTS) buffer.

To support these functions, the processor provides the following MSRs and related
facilities:
• MSR_DEBUGCTLA MSR — Enables last branch, interrupt, and exception

recording; single-stepping on taken branches; branch trace messages (BTMs);
and branch trace store (BTS). This register is named DebugCtlMSR in the P6
family processors.

• Debug store (DS) feature flag (CPUID.1:EDX.DS[bit 21]) — Indicates that
the processor provides the debug store (DS) mechanism, which allows BTMs to
be stored in a memory-resident BTS buffer.

• CPL-qualified debug store (DS) feature flag (CPUID.1:ECX.DS-CPL[bit
4]) — Indicates that the processor provides a CPL-qualified debug store (DS)
mechanism, which allows software to selectively skip sending and storing BTMs,
according to specified current privilege level settings, into a memory-resident
BTS buffer.

• IA32_MISC_ENABLE MSR — Indicates that the processor provides the BTS
facilities.

• Last branch record (LBR) stack — The LBR stack is a circular stack that
consists of four MSRs (MSR_LASTBRANCH_0 through MSR_LASTBRANCH_3) for
the Pentium 4 and Intel Xeon processor family [CPUID family 0FH, models 0H-
02H]. The LBR stack consists of 16 MSR pairs (MSR_LASTBRANCH_0_FROM_LIP
through MSR_LASTBRANCH_15_FROM_LIP and MSR_LASTBRANCH_0_TO_LIP
through MSR_LASTBRANCH_15_TO_LIP) for the Pentium 4 and Intel Xeon
processor family [CPUID family 0FH, model 03H].

• Last branch record top-of-stack (TOS) pointer — The TOS Pointer MSR
contains a 2-bit pointer (0-3) to the MSR in the LBR stack that contains the most
recent branch, interrupt, or exception recorded for the Pentium 4 and Intel Xeon
processor family [CPUID family 0FH, models 0H-02H]. This pointer becomes a
4-bit pointer (0-15) for the Pentium 4 and Intel Xeon processor family [CPUID
family 0FH, model 03H]. See also: Table 17-11, Figure 17-12, and Section
17.8.2, “LBR Stack for Processors Based on Intel NetBurst® Microarchitecture.”

• Last exception record — See Section 17.8.3, “Last Exception Records.”

17.8.1 MSR_DEBUGCTLA MSR
The MSR_DEBUGCTLA MSR enables and disables the various last branch recording
mechanisms described in the previous section. This register can be written to using
the WRMSR instruction, when operating at privilege level 0 or when in real-address
17-38 Vol. 3B

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
mode. A protected-mode operating system procedure is required to provide user
access to this register. Figure 17-12 shows the flags in the MSR_DEBUGCTLA MSR.
The functions of these flags are as follows:
• LBR (last branch/interrupt/exception) flag (bit 0) — When set, the

processor records a running trace of the most recent branches, interrupts, and/or
exceptions taken by the processor (prior to a debug exception being generated)
in the last branch record (LBR) stack. Each branch, interrupt, or exception is
recorded as a 64-bit branch record. The processor clears this flag whenever a
debug exception is generated (for example, when an instruction or data
breakpoint or a single-step trap occurs). See Section 17.8.2, “LBR Stack for
Processors Based on Intel NetBurst® Microarchitecture.”

• BTF (single-step on branches) flag (bit 1) — When set, the processor treats
the TF flag in the EFLAGS register as a “single-step on branches” flag rather than
a “single-step on instructions” flag. This mechanism allows single-stepping the
processor on taken branches. See Section 17.4.3, “Single-Stepping on
Branches.”

• TR (trace message enable) flag (bit 2) — When set, branch trace messages
are enabled. Thereafter, when the processor detects a taken branch, interrupt, or
exception, it sends the branch record out on the system bus as a branch trace
message (BTM). See Section 17.4.4, “Branch Trace Messages.”

• BTS (branch trace store) flag (bit 3) — When set, enables the BTS facilities to
log BTMs to a memory-resident BTS buffer that is part of the DS save area. See
Section 17.4.9, “BTS and DS Save Area.”

• BTINT (branch trace interrupt) flag (bits 4) — When set, the BTS facilities
generate an interrupt when the BTS buffer is full. When clear, BTMs are logged to
the BTS buffer in a circular fashion. See Section 17.4.5, “Branch Trace Store (BTS).”

• BTS_OFF_OS (disable ring 0 branch trace store) flag (bit 5) — When set,
enables the BTS facilities to skip sending/logging CPL_0 BTMs to the memory-

Figure 17-12. MSR_DEBUGCTLA MSR for Pentium 4 and Intel Xeon Processors

31

TR — Trace messages enable

BTINT — Branch trace interrupt

BTF — Single-step on branches
LBR — Last branch/interrupt/exception

5 4 3 2 1 0

BTS — Branch trace store

Reserved

67

BTS_OFF_OS — Disable storing CPL_0 BTS
BTS_OFF_USR — Disable storing non-CPL_0 BTS
Vol. 3B 17-39

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
resident BTS buffer. See Section 17.8.2, “LBR Stack for Processors Based on Intel
NetBurst® Microarchitecture.”

• BTS_OFF_USR (disable ring 0 branch trace store) flag (bit 6) — When set,
enables the BTS facilities to skip sending/logging non-CPL_0 BTMs to the
memory-resident BTS buffer. See Section 17.8.2, “LBR Stack for Processors
Based on Intel NetBurst® Microarchitecture.”

The initial implementation of BTS_OFF_USR and BTS_OFF_OS in
MSR_DEBUGCTLA is shown in Figure 17-12. The BTS_OFF_USR and
BTS_OFF_OS fields may be implemented on other model-specific
debug control register at different locations.

See Chapter 34, “Model-Specific Registers (MSRs),” for a detailed description of each
of the last branch recording MSRs.

17.8.2 LBR Stack for Processors Based on Intel NetBurst®
Microarchitecture

The LBR stack is made up of LBR MSRs that are treated by the processor as a circular
stack. The TOS pointer (MSR_LASTBRANCH_TOS MSR) points to the LBR MSR (or
LBR MSR pair) that contains the most recent (last) branch record placed on the stack.
Prior to placing a new branch record on the stack, the TOS is incremented by 1. When
the TOS pointer reaches it maximum value, it wraps around to 0. See Table 17-11
and Figure 17-12.

Table 17-11. LBR MSR Stack Size and TOS Pointer Range for the Pentium® 4 and the
Intel® Xeon® Processor Family

The registers in the LBR MSR stack and the MSR_LASTBRANCH_TOS MSR are read-
only and can be read using the RDMSR instruction.

DisplayFamily_DisplayModel Size of LBR Stack Range of TOS Pointer

Family 0FH, Models 0H-02H;
MSRs at locations 1DBH-
1DEH.

4 0 to 3

Family 0FH, Models; MSRs at
locations 680H-68FH.

16 0 to 15

Family 0FH, Model 03H;
MSRs at locations 6C0H-
6CFH.

16 0 to 15
17-40 Vol. 3B

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
Figure 17-13 shows the layout of a branch record in an LBR MSR (or MSR pair). Each
branch record consists of two linear addresses, which represent the “from” and “to”
instruction pointers for a branch, interrupt, or exception. The contents of the from
and to addresses differ, depending on the source of the branch:
• Taken branch — If the record is for a taken branch, the “from” address is the

address of the branch instruction and the “to” address is the target instruction of
the branch.

• Interrupt — If the record is for an interrupt, the “from” address the return
instruction pointer (RIP) saved for the interrupt and the “to” address is the
address of the first instruction in the interrupt handler routine. The RIP is the
linear address of the next instruction to be executed upon returning from the
interrupt handler.

• Exception — If the record is for an exception, the “from” address is the linear
address of the instruction that caused the exception to be generated and the “to”
address is the address of the first instruction in the exception handler routine.

Additional information is saved if an exception or interrupt occurs in conjunction with
a branch instruction. If a branch instruction generates a trap type exception, two
branch records are stored in the LBR stack: a branch record for the branch instruction
followed by a branch record for the exception.

If a branch instruction is immediately followed by an interrupt, a branch record is
stored in the LBR stack for the branch instruction followed by a record for the
interrupt.

Figure 17-13. LBR MSR Branch Record Layout for the Pentium 4
and Intel Xeon Processor Family

63

From Linear Address

0

To Linear Address

63

From Linear Address

0

063

To Linear Address

32 - 31

MSR_LASTBRANCH_0 through MSR_LASTBRANCH_3
CPUID Family 0FH, Models 0H-02H

Reserved

CPUID Family 0FH, Model 03H-04H

Reserved

MSR_LASTBRANCH_0_FROM_LIP through MSR_LASTBRANCH_15_FROM_LIP

32 - 31

32 - 31

MSR_LASTBRANCH_0_TO_LIP through MSR_LASTBRANCH_15_TO_LIP
Vol. 3B 17-41

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
17.8.3 Last Exception Records
The Pentium 4, Intel Xeon, Pentium M, Intel® Core™ Solo, Intel® Core™ Duo, Intel®
Core™2 Duo, Intel® Core™ i7 and Intel® Atom™ processors provide two MSRs (the
MSR_LER_TO_LIP and the MSR_LER_FROM_LIP MSRs) that duplicate the functions
of the LastExceptionToIP and LastExceptionFromIP MSRs found in the P6 family
processors. The MSR_LER_TO_LIP and MSR_LER_FROM_LIP MSRs contain a branch
record for the last branch that the processor took prior to an exception or interrupt
being generated.

17.9 LAST BRANCH, INTERRUPT, AND EXCEPTION
RECORDING (INTEL® CORE™ SOLO AND INTEL®
CORE™ DUO PROCESSORS)

Intel Core Solo and Intel Core Duo processors provide last branch interrupt and
exception recording. This capability is almost identical to that found in Pentium 4 and
Intel Xeon processors. There are differences in the stack and in some MSR names
and locations.

Note the following:
• IA32_DEBUGCTL MSR — Enables debug trace interrupt, debug trace store,

trace messages enable, performance monitoring breakpoint flags, single
stepping on branches, and last branch. IA32_DEBUGCTL MSR is located at
register address 01D9H.
See Figure 17-14 for the layout and the entries below for a description of the
flags:

— LBR (last branch/interrupt/exception) flag (bit 0) — When set, the
processor records a running trace of the most recent branches, interrupts,
and/or exceptions taken by the processor (prior to a debug exception being
generated) in the last branch record (LBR) stack. For more information, see
the “Last Branch Record (LBR) Stack” below.

— BTF (single-step on branches) flag (bit 1) — When set, the processor
treats the TF flag in the EFLAGS register as a “single-step on branches” flag
rather than a “single-step on instructions” flag. This mechanism allows
single-stepping the processor on taken branches. See Section 17.4.3,
“Single-Stepping on Branches,” for more information about the BTF flag.

— TR (trace message enable) flag (bit 6) — When set, branch trace
messages are enabled. When the processor detects a taken branch,
interrupt, or exception; it sends the branch record out on the system bus as
a branch trace message (BTM). See Section 17.4.4, “Branch Trace Messages,”
for more information about the TR flag.
17-42 Vol. 3B

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
— BTS (branch trace store) flag (bit 7) — When set, the flag enables BTS
facilities to log BTMs to a memory-resident BTS buffer that is part of the DS
save area. See Section 17.4.9, “BTS and DS Save Area.”

— BTINT (branch trace interrupt) flag (bits 8) — When set, the BTS
facilities generate an interrupt when the BTS buffer is full. When clear, BTMs are
logged to the BTS buffer in a circular fashion. See Section 17.4.5, “Branch Trace
Store (BTS),” for a description of this mechanism.

• Debug store (DS) feature flag (bit 21), returned by the CPUID
instruction — Indicates that the processor provides the debug store (DS)
mechanism, which allows BTMs to be stored in a memory-resident BTS buffer.
See Section 17.4.5, “Branch Trace Store (BTS).”

• Last Branch Record (LBR) Stack — The LBR stack consists of 8 MSRs
(MSR_LASTBRANCH_0 through MSR_LASTBRANCH_7); bits 31-0 hold the ‘from’
address, bits 63-32 hold the ‘to’ address (MSR addresses start at 40H). See
Figure 17-15.

• Last Branch Record Top-of-Stack (TOS) Pointer — The TOS Pointer MSR
contains a 3-bit pointer (bits 2-0) to the MSR in the LBR stack that contains the
most recent branch, interrupt, or exception recorded. For Intel Core Solo and
Intel Core Duo processors, this MSR is located at register address 01C9H.

For compatibility, the Intel Core Solo and Intel Core Duo processors provide two 32-
bit MSRs (the MSR_LER_TO_LIP and the MSR_LER_FROM_LIP MSRs) that duplicate
functions of the LastExceptionToIP and LastExceptionFromIP MSRs found in P6 family
processors.

For details, see Section 17.8, “Last Branch, Interrupt, and Exception Recording
(Processors based on Intel NetBurst® Microarchitecture),” and Section 34.10, “MSRs
In Intel® Core™ Solo and Intel® Core™ Duo Processors”

Figure 17-14. IA32_DEBUGCTL MSR for Intel Core Solo
and Intel Core Duo Processors

31

TR — Trace messages enable

BTINT — Branch trace interrupt

BTF — Single-step on branches
LBR — Last branch/interrupt/exception

Reserved

8 7 6 5 4 3 2 1 0

BTS — Branch trace store

Reserved
Vol. 3B 17-43

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
17.10 LAST BRANCH, INTERRUPT, AND EXCEPTION
RECORDING (PENTIUM M PROCESSORS)

Like the Pentium 4 and Intel Xeon processor family, Pentium M processors provide
last branch interrupt and exception recording. The capability operates almost identi-
cally to that found in Pentium 4 and Intel Xeon processors. There are differences in
the shape of the stack and in some MSR names and locations. Note the following:
• MSR_DEBUGCTLB MSR — Enables debug trace interrupt, debug trace store,

trace messages enable, performance monitoring breakpoint flags, single
stepping on branches, and last branch. For Pentium M processors, this MSR is
located at register address 01D9H. See Figure 17-16 and the entries below for a
description of the flags.

— LBR (last branch/interrupt/exception) flag (bit 0) — When set, the
processor records a running trace of the most recent branches, interrupts,
and/or exceptions taken by the processor (prior to a debug exception being
generated) in the last branch record (LBR) stack. For more information, see
the “Last Branch Record (LBR) Stack” bullet below.

— BTF (single-step on branches) flag (bit 1) — When set, the processor
treats the TF flag in the EFLAGS register as a “single-step on branches” flag
rather than a “single-step on instructions” flag. This mechanism allows
single-stepping the processor on taken branches. See Section 17.4.3,
“Single-Stepping on Branches,” for more information about the BTF flag.

— PBi (performance monitoring/breakpoint pins) flags (bits 5-2) —
When these flags are set, the performance monitoring/breakpoint pins on the
processor (BP0#, BP1#, BP2#, and BP3#) report breakpoint matches in the
corresponding breakpoint-address registers (DR0 through DR3). The
processor asserts then deasserts the corresponding BPi# pin when a
breakpoint match occurs. When a PBi flag is clear, the performance
monitoring/breakpoint pins report performance events. Processor execution
is not affected by reporting performance events.

Figure 17-15. LBR Branch Record Layout for the Intel Core Solo
and Intel Core Duo Processor

063

From Linear AddressTo Linear Address

32 - 31

MSR_LASTBRANCH_0 through MSR_LASTBRANCH_7
17-44 Vol. 3B

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
— TR (trace message enable) flag (bit 6) — When set, branch trace
messages are enabled. When the processor detects a taken branch,
interrupt, or exception, it sends the branch record out on the system bus as a
branch trace message (BTM). See Section 17.4.4, “Branch Trace Messages,”
for more information about the TR flag.

— BTS (branch trace store) flag (bit 7) — When set, enables the BTS
facilities to log BTMs to a memory-resident BTS buffer that is part of the DS
save area. See Section 17.4.9, “BTS and DS Save Area.”

— BTINT (branch trace interrupt) flag (bits 8) — When set, the BTS
facilities generate an interrupt when the BTS buffer is full. When clear, BTMs are
logged to the BTS buffer in a circular fashion. See Section 17.4.5, “Branch Trace
Store (BTS),” for a description of this mechanism.

• Debug store (DS) feature flag (bit 21), returned by the CPUID
instruction — Indicates that the processor provides the debug store (DS)
mechanism, which allows BTMs to be stored in a memory-resident BTS buffer.
See Section 17.4.5, “Branch Trace Store (BTS).”

• Last Branch Record (LBR) Stack — The LBR stack consists of 8 MSRs
(MSR_LASTBRANCH_0 through MSR_LASTBRANCH_7); bits 31-0 hold the ‘from’
address, bits 63-32 hold the ‘to’ address. For Pentium M Processors, these pairs
are located at register addresses 040H-047H. See Figure 17-17.

• Last Branch Record Top-of-Stack (TOS) Pointer — The TOS Pointer MSR
contains a 3-bit pointer (bits 2-0) to the MSR in the LBR stack that contains the
most recent branch, interrupt, or exception recorded. For Pentium M Processors,
this MSR is located at register address 01C9H.

Figure 17-16. MSR_DEBUGCTLB MSR for Pentium M Processors

31

TR — Trace messages enable

BTINT — Branch trace interrupt

BTF — Single-step on branches
LBR — Last branch/interrupt/exception

Reserved

8 7 6 5 4 3 2 1 0

BTS — Branch trace store

PB3/2/1/0 — Performance monitoring breakpoint flags
Vol. 3B 17-45

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
For more detail on these capabilities, see Section 17.8.3, “Last Exception Records,”
and Section 34.11, “MSRs In the Pentium M Processor.”

17.11 LAST BRANCH, INTERRUPT, AND EXCEPTION
RECORDING (P6 FAMILY PROCESSORS)

The P6 family processors provide five MSRs for recording the last branch, interrupt,
or exception taken by the processor: DEBUGCTLMSR, LastBranchToIP, LastBranch-
FromIP, LastExceptionToIP, and LastExceptionFromIP. These registers can be used to
collect last branch records, to set breakpoints on branches, interrupts, and excep-
tions, and to single-step from one branch to the next.

See Chapter 34, “Model-Specific Registers (MSRs),” for a detailed description of each
of the last branch recording MSRs.

17.11.1 DEBUGCTLMSR Register
The version of the DEBUGCTLMSR register found in the P6 family processors enables
last branch, interrupt, and exception recording; taken branch breakpoints; the
breakpoint reporting pins; and trace messages. This register can be written to using
the WRMSR instruction, when operating at privilege level 0 or when in real-address
mode. A protected-mode operating system procedure is required to provide user
access to this register. Figure 17-18 shows the flags in the DEBUGCTLMSR register
for the P6 family processors. The functions of these flags are as follows:
• LBR (last branch/interrupt/exception) flag (bit 0) — When set, the

processor records the source and target addresses (in the LastBranchToIP,
LastBranchFromIP, LastExceptionToIP, and LastExceptionFromIP MSRs) for the
last branch and the last exception or interrupt taken by the processor prior to a
debug exception being generated. The processor clears this flag whenever a
debug exception, such as an instruction or data breakpoint or single-step trap
occurs.

Figure 17-17. LBR Branch Record Layout for the Pentium M Processor

063

From Linear AddressTo Linear Address

32 - 31

MSR_LASTBRANCH_0 through MSR_LASTBRANCH_7
17-46 Vol. 3B

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
• BTF (single-step on branches) flag (bit 1) — When set, the processor treats
the TF flag in the EFLAGS register as a “single-step on branches” flag. See
Section 17.4.3, “Single-Stepping on Branches.”

• PBi (performance monitoring/breakpoint pins) flags (bits 2 through 5)
— When these flags are set, the performance monitoring/breakpoint pins on the
processor (BP0#, BP1#, BP2#, and BP3#) report breakpoint matches in the
corresponding breakpoint-address registers (DR0 through DR3). The processor
asserts then deasserts the corresponding BPi# pin when a breakpoint match
occurs. When a PBi flag is clear, the performance monitoring/breakpoint pins
report performance events. Processor execution is not affected by reporting
performance events.

• TR (trace message enable) flag (bit 6) — When set, trace messages are
enabled as described in Section 17.4.4, “Branch Trace Messages.” Setting this
flag greatly reduces the performance of the processor. When trace messages are
enabled, the values stored in the LastBranchToIP, LastBranchFromIP, LastExcep-
tionToIP, and LastExceptionFromIP MSRs are undefined.

17.11.2 Last Branch and Last Exception MSRs
The LastBranchToIP and LastBranchFromIP MSRs are 32-bit registers for recording
the instruction pointers for the last branch, interrupt, or exception that the processor
took prior to a debug exception being generated. When a branch occurs, the
processor loads the address of the branch instruction into the LastBranchFromIP MSR
and loads the target address for the branch into the LastBranchToIP MSR.

When an interrupt or exception occurs (other than a debug exception), the address
of the instruction that was interrupted by the exception or interrupt is loaded into the
LastBranchFromIP MSR and the address of the exception or interrupt handler that is
called is loaded into the LastBranchToIP MSR.

The LastExceptionToIP and LastExceptionFromIP MSRs (also 32-bit registers) record
the instruction pointers for the last branch that the processor took prior to an excep-

Figure 17-18. DEBUGCTLMSR Register (P6 Family Processors)

31

TR — Trace messages enable
PBi — Performance monitoring/breakpoint pins
BTF — Single-step on branches
LBR — Last branch/interrupt/exception

7 6 5 4 3 2 1 0

P
B
2

P
B
1

P
B
0

B
T
F

T
R

L
B
R

P
B
3

Reserved
Vol. 3B 17-47

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
tion or interrupt being generated. When an exception or interrupt occurs, the
contents of the LastBranchToIP and LastBranchFromIP MSRs are copied into these
registers before the to and from addresses of the exception or interrupt are recorded
in the LastBranchToIP and LastBranchFromIP MSRs.

These registers can be read using the RDMSR instruction.

Note that the values stored in the LastBranchToIP, LastBranchFromIP, LastException-
ToIP, and LastExceptionFromIP MSRs are offsets into the current code segment, as
opposed to linear addresses, which are saved in last branch records for the Pentium
4 and Intel Xeon processors.

17.11.3 Monitoring Branches, Exceptions, and Interrupts
When the LBR flag in the DEBUGCTLMSR register is set, the processor automatically
begins recording branches that it takes, exceptions that are generated (except for
debug exceptions), and interrupts that are serviced. Each time a branch, exception,
or interrupt occurs, the processor records the to and from instruction pointers in the
LastBranchToIP and LastBranchFromIP MSRs. In addition, for interrupts and excep-
tions, the processor copies the contents of the LastBranchToIP and LastBranch-
FromIP MSRs into the LastExceptionToIP and LastExceptionFromIP MSRs prior to
recording the to and from addresses of the interrupt or exception.

When the processor generates a debug exception (#DB), it automatically clears the
LBR flag before executing the exception handler, but does not touch the last branch
and last exception MSRs. The addresses for the last branch, interrupt, or exception
taken are thus retained in the LastBranchToIP and LastBranchFromIP MSRs and the
addresses of the last branch prior to an interrupt or exception are retained in the
LastExceptionToIP, and LastExceptionFromIP MSRs.

The debugger can use the last branch, interrupt, and/or exception addresses in
combination with code-segment selectors retrieved from the stack to reset break-
points in the breakpoint-address registers (DR0 through DR3), allowing a backward
trace from the manifestation of a particular bug toward its source. Because the
instruction pointers recorded in the LastBranchToIP, LastBranchFromIP, LastExcepti-
onToIP, and LastExceptionFromIP MSRs are offsets into a code segment, software
must determine the segment base address of the code segment associated with the
control transfer to calculate the linear address to be placed in the breakpoint-address
registers. The segment base address can be determined by reading the segment
selector for the code segment from the stack and using it to locate the segment
descriptor for the segment in the GDT or LDT. The segment base address can then be
read from the segment descriptor.

Before resuming program execution from a debug-exception handler, the handler
must set the LBR flag again to re-enable last branch and last exception/interrupt
recording.
17-48 Vol. 3B

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
17.12 TIME-STAMP COUNTER
The Intel 64 and IA-32 architectures (beginning with the Pentium processor) define a
time-stamp counter mechanism that can be used to monitor and identify the relative
time occurrence of processor events. The counter’s architecture includes the
following components:
• TSC flag — A feature bit that indicates the availability of the time-stamp counter.

The counter is available in an if the function CPUID.1:EDX.TSC[bit 4] = 1.
• IA32_TIME_STAMP_COUNTER MSR (called TSC MSR in P6 family and

Pentium processors) — The MSR used as the counter.
• RDTSC instruction — An instruction used to read the time-stamp counter.
• TSD flag — A control register flag is used to enable or disable the time-stamp

counter (enabled if CR4.TSD[bit 2] = 1).

The time-stamp counter (as implemented in the P6 family, Pentium, Pentium M,
Pentium 4, Intel Xeon, Intel Core Solo and Intel Core Duo processors and later
processors) is a 64-bit counter that is set to 0 following a RESET of the processor.
Following a RESET, the counter increments even when the processor is halted by the
HLT instruction or the external STPCLK# pin. Note that the assertion of the external
DPSLP# pin may cause the time-stamp counter to stop.

Processor families increment the time-stamp counter differently:
• For Pentium M processors (family [06H], models [09H, 0DH]); for Pentium 4

processors, Intel Xeon processors (family [0FH], models [00H, 01H, or 02H]);
and for P6 family processors: the time-stamp counter increments with every
internal processor clock cycle.
The internal processor clock cycle is determined by the current core-clock to bus-
clock ratio. Intel® SpeedStep® technology transitions may also impact the
processor clock.

• For Pentium 4 processors, Intel Xeon processors (family [0FH], models [03H and
higher]); for Intel Core Solo and Intel Core Duo processors (family [06H], model
[0EH]); for the Intel Xeon processor 5100 series and Intel Core 2 Duo processors
(family [06H], model [0FH]); for Intel Core 2 and Intel Xeon processors (family
[06H], DisplayModel [17H]); for Intel Atom processors (family [06H],
DisplayModel [1CH]): the time-stamp counter increments at a constant rate.
That rate may be set by the maximum core-clock to bus-clock ratio of the
processor or may be set by the maximum resolved frequency at which the
processor is booted. The maximum resolved frequency may differ from the
maximum qualified frequency of the processor, see Section 18.12.5 for more
detail.
The specific processor configuration determines the behavior. Constant TSC
behavior ensures that the duration of each clock tick is uniform and supports the
use of the TSC as a wall clock timer even if the processor core changes frequency.
This is the architectural behavior moving forward.
Vol. 3B 17-49

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
NOTE
To determine average processor clock frequency, Intel recommends
the use of EMON logic to count processor core clocks over the period
of time for which the average is required. See Section 18.12,
“Counting Clocks,” and Chapter 19, “Performance-
Monitoring Events,” for more information.

The RDTSC instruction reads the time-stamp counter and is guaranteed to return a
monotonically increasing unique value whenever executed, except for a 64-bit
counter wraparound. Intel guarantees that the time-stamp counter will not wrap-
around within 10 years after being reset. The period for counter wrap is longer for
Pentium 4, Intel Xeon, P6 family, and Pentium processors.

Normally, the RDTSC instruction can be executed by programs and procedures
running at any privilege level and in virtual-8086 mode. The TSD flag allows use of
this instruction to be restricted to programs and procedures running at privilege level
0. A secure operating system would set the TSD flag during system initialization to
disable user access to the time-stamp counter. An operating system that disables
user access to the time-stamp counter should emulate the instruction through a
user-accessible programming interface.

The RDTSC instruction is not serializing or ordered with other instructions. It does not
necessarily wait until all previous instructions have been executed before reading the
counter. Similarly, subsequent instructions may begin execution before the RDTSC
instruction operation is performed.

The RDMSR and WRMSR instructions read and write the time-stamp counter, treating
the time-stamp counter as an ordinary MSR (address 10H). In the Pentium 4, Intel
Xeon, and P6 family processors, all 64-bits of the time-stamp counter are read using
RDMSR (just as with RDTSC). When WRMSR is used to write the time-stamp counter
on processors before family [0FH], models [03H, 04H]: only the low-order 32-bits of
the time-stamp counter can be written (the high-order 32 bits are cleared to 0). For
family [0FH], models [03H, 04H, 06H]; for family [06H]], model [0EH, 0FH]; for
family [06H]], DisplayModel [17H, 1AH, 1CH, 1DH]: all 64 bits are writable.

17.12.1 Invariant TSC
The time stamp counter in newer processors may support an enhancement, referred
to as invariant TSC. Processor’s support for invariant TSC is indicated by
CPUID.80000007H:EDX[8].

The invariant TSC will run at a constant rate in all ACPI P-, C-. and T-states. This is
the architectural behavior moving forward. On processors with invariant TSC
support, the OS may use the TSC for wall clock timer services (instead of ACPI or
HPET timers). TSC reads are much more efficient and do not incur the overhead
associated with a ring transition or access to a platform resource.
17-50 Vol. 3B

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
17.12.2 IA32_TSC_AUX Register and RDTSCP Support
Processors based on Intel microarchitecture code name Nehalem provide an auxiliary
TSC register, IA32_TSC_AUX that is designed to be used in conjunction with
IA32_TSC. IA32_TSC_AUX provides a 32-bit field that is initialized by privileged soft-
ware with a signature value (for example, a logical processor ID).

The primary usage of IA32_TSC_AUX in conjunction with IA32_TSC is to allow soft-
ware to read the 64-bit time stamp in IA32_TSC and signature value in
IA32_TSC_AUX with the instruction RDTSCP in an atomic operation. RDTSCP returns
the 64-bit time stamp in EDX:EAX and the 32-bit TSC_AUX signature value in ECX.
The atomicity of RDTSCP ensures that no context switch can occur between the reads
of the TSC and TSC_AUX values.

Support for RDTSCP is indicated by CPUID.80000001H:EDX[27]. As with RDTSC
instruction, non-ring 0 access is controlled by CR4.TSD (Time Stamp Disable flag).

User mode software can use RDTSCP to detect if CPU migration has occurred
between successive reads of the TSC. It can also be used to adjust for per-CPU differ-
ences in TSC values in a NUMA system.
Vol. 3B 17-51

CHAPTER 18
PERFORMANCE MONITORING

Intel 64 and IA-32 architectures provide facilities for monitoring performance.

18.1 PERFORMANCE MONITORING OVERVIEW
Performance monitoring was introduced in the Pentium processor with a set of
model-specific performance-monitoring counter MSRs. These counters permit selec-
tion of processor performance parameters to be monitored and measured. The infor-
mation obtained from these counters can be used for tuning system and compiler
performance.

In Intel P6 family of processors, the performance monitoring mechanism was
enhanced to permit a wider selection of events to be monitored and to allow greater
control events to be monitored. Next, Pentium 4 and Intel Xeon processors intro-
duced a new performance monitoring mechanism and new set of performance
events.

The performance monitoring mechanisms and performance events defined for the
Pentium, P6 family, Pentium 4, and Intel Xeon processors are not architectural. They
are all model specific (not compatible among processor families). Intel Core Solo and
Intel Core Duo processors support a set of architectural performance events and a
set of non-architectural performance events. Processors based on Intel Core
microarchitecture and Intel® Atom™ microarchitecture support enhanced architec-
tural performance events and non-architectural performance events.

Starting with Intel Core Solo and Intel Core Duo processors, there are two classes of
performance monitoring capabilities. The first class supports events for monitoring
performance using counting or sampling usage. These events are non-architectural
and vary from one processor model to another. They are similar to those available in
Pentium M processors. These non-architectural performance monitoring events are
specific to the microarchitecture and may change with enhancements. They are
discussed in Section 18.3, “Performance Monitoring (Intel® Core™ Solo and Intel®

Core™ Duo Processors).” Non-architectural events for a given microarchitecture can
not be enumerated using CPUID; and they are listed in Chapter 19, “Performance-
Monitoring Events.”

The second class of performance monitoring capabilities is referred to as architec-
tural performance monitoring. This class supports the same counting and sampling
usages, with a smaller set of available events. The visible behavior of architectural
performance events is consistent across processor implementations. Availability of
architectural performance monitoring capabilities is enumerated using the
CPUID.0AH. These events are discussed in Section 18.2.

See also:
Vol. 3B 18-1

PERFORMANCE MONITORING
— Section 18.2, “Architectural Performance Monitoring”

— Section 18.3, “Performance Monitoring (Intel® Core™ Solo and Intel® Core™

Duo Processors)”

— Section 18.4, “Performance Monitoring (Processors Based on Intel® Core™
Microarchitecture)”

— Section 18.5, “Performance Monitoring (Processors Based on Intel® Atom™
Microarchitecture)”

— Section 18.6, “Performance Monitoring for Processors Based on Intel®

Microarchitecture Code Name Nehalem”

— Section 18.7, “Performance Monitoring for Processors Based on Intel®

Microarchitecture Code Name Westmere”

— Section 18.8, “Performance Monitoring for Processors Based on Intel®

Microarchitecture Code Name Sandy Bridge”

— Section 18.8.8, “Intel® Xeon® Processor E5 Family Uncore Performance
Monitoring Facility”

— Section 18.10, “Performance Monitoring (Processors Based on Intel
NetBurst® Microarchitecture)”

— Section 18.11, “Performance Monitoring and Intel Hyper-Threading
Technology in Processors Based on Intel NetBurst® Microarchitecture”

— Section 18.14, “Performance Monitoring and Dual-Core Technology”

— Section 18.15, “Performance Monitoring on 64-bit Intel Xeon Processor MP
with Up to 8-MByte L3 Cache”

— Section 18.17, “Performance Monitoring (P6 Family Processor)”

— Section 18.18, “Performance Monitoring (Pentium Processors)”

18.2 ARCHITECTURAL PERFORMANCE MONITORING
Performance monitoring events are architectural when they behave consistently
across microarchitectures. Intel Core Solo and Intel Core Duo processors introduced
architectural performance monitoring. The feature provides a mechanism for soft-
ware to enumerate performance events and provides configuration and counting
facilities for events.

Architectural performance monitoring does allow for enhancement across processor
implementations. The CPUID.0AH leaf provides version ID for each enhancement.
Intel Core Solo and Intel Core Duo processors support base level functionality identi-
fied by version ID of 1. Processors based on Intel Core microarchitecture support, at
a minimum, the base level functionality of architectural performance monitoring.
Intel Core 2 Duo processor T 7700 and newer processors based on Intel Core
18-2 Vol. 3B

PERFORMANCE MONITORING
microarchitecture support both the base level functionality and enhanced architec-
tural performance monitoring identified by version ID of 2.

Intel Atom processor family supports the base level functionality, enhanced architec-
tural performance monitoring identified by version ID of 2 and version ID of 3
(including two general-purpose performance counters, IA32_PMC0, IA32_PMC1).
Intel Core i7 processor family supports the base level functionality, enhanced archi-
tectural performance monitoring identified by version ID of 2 and version ID of 3,
(including four general-purpose performance counters, IA32_PMC0-IA32_PMC3).

18.2.1 Architectural Performance Monitoring Version 1
Configuring an architectural performance monitoring event involves programming
performance event select registers. There are a finite number of performance event
select MSRs (IA32_PERFEVTSELx MSRs). The result of a performance monitoring
event is reported in a performance monitoring counter (IA32_PMCx MSR). Perfor-
mance monitoring counters are paired with performance monitoring select registers.

Performance monitoring select registers and counters are architectural in the
following respects:
• Bit field layout of IA32_PERFEVTSELx is consistent across microarchitectures.
• Addresses of IA32_PERFEVTSELx MSRs remain the same across microarchitec-

tures.
• Addresses of IA32_PMC MSRs remain the same across microarchitectures.
• Each logical processor has its own set of IA32_PERFEVTSELx and IA32_PMCx

MSRs. Configuration facilities and counters are not shared between logical
processors sharing a processor core.

Architectural performance monitoring provides a CPUID mechanism for enumerating
the following information:
• Number of performance monitoring counters available in a logical processor

(each IA32_PERFEVTSELx MSR is paired to the corresponding IA32_PMCx MSR)
• Number of bits supported in each IA32_PMCx
• Number of architectural performance monitoring events supported in a logical

processor

Software can use CPUID to discover architectural performance monitoring availability
(CPUID.0AH). The architectural performance monitoring leaf provides an identifier
corresponding to the version number of architectural performance monitoring avail-
able in the processor.

The version identifier is retrieved by querying CPUID.0AH:EAX[bits 7:0] (see
Chapter 3, “Instruction Set Reference, A-L,” in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 2A). If the version identifier is greater than
zero, architectural performance monitoring capability is supported. Software queries
the CPUID.0AH for the version identifier first; it then analyzes the value returned in
CPUID.0AH.EAX, CPUID.0AH.EBX to determine the facilities available.
Vol. 3B 18-3

PERFORMANCE MONITORING
In the initial implementation of architectural performance monitoring; software can
determine how many IA32_PERFEVTSELx/ IA32_PMCx MSR pairs are supported per
core, the bit-width of PMC, and the number of architectural performance monitoring
events available.

18.2.1.1 Architectural Performance Monitoring Version 1 Facilities
Architectural performance monitoring facilities include a set of performance moni-
toring counters and performance event select registers. These MSRs have the
following properties:
• IA32_PMCx MSRs start at address 0C1H and occupy a contiguous block of MSR

address space; the number of MSRs per logical processor is reported using
CPUID.0AH:EAX[15:8].

• IA32_PERFEVTSELx MSRs start at address 186H and occupy a contiguous block
of MSR address space. Each performance event select register is paired with a
corresponding performance counter in the 0C1H address block.

• The bit width of an IA32_PMCx MSR is reported using the
CPUID.0AH:EAX[23:16]. This the number of valid bits for read operation. On
write operations, the lower-order 32 bits of the MSR may be written with any
value, and the high-order bits are sign-extended from the value of bit 31.

• Bit field layout of IA32_PERFEVTSELx MSRs is defined architecturally.

See Figure 18-1 for the bit field layout of IA32_PERFEVTSELx MSRs. The bit fields
are:
• Event select field (bits 0 through 7) — Selects the event logic unit used to

detect microarchitectural conditions (see Table 18-1, for a list of architectural
events and their 8-bit codes). The set of values for this field is defined architec-
turally; each value corresponds to an event logic unit for use with an architectural
performance event. The number of architectural events is queried using
CPUID.0AH:EAX. A processor may support only a subset of pre-defined values.
18-4 Vol. 3B

PERFORMANCE MONITORING
• Unit mask (UMASK) field (bits 8 through 15) — These bits qualify the
condition that the selected event logic unit detects. Valid UMASK values for each
event logic unit are specific to the unit. For each architectural performance event,
its corresponding UMASK value defines a specific microarchitectural condition.
A pre-defined microarchitectural condition associated with an architectural event
may not be applicable to a given processor. The processor then reports only a
subset of pre-defined architectural events. Pre-defined architectural events are
listed in Table 18-1; support for pre-defined architectural events is enumerated
using CPUID.0AH:EBX. Architectural performance events available in the initial
implementation are listed in Table 19-1.

• USR (user mode) flag (bit 16) — Specifies that the selected microarchitectural
condition is counted only when the logical processor is operating at privilege
levels 1, 2 or 3. This flag can be used with the OS flag.

• OS (operating system mode) flag (bit 17) — Specifies that the selected
microarchitectural condition is counted only when the logical processor is
operating at privilege level 0. This flag can be used with the USR flag.

• E (edge detect) flag (bit 18) — Enables (when set) edge detection of the
selected microarchitectural condition. The logical processor counts the number of
deasserted to asserted transitions for any condition that can be expressed by the
other fields. The mechanism does not permit back-to-back assertions to be
distinguished.
This mechanism allows software to measure not only the fraction of time spent in
a particular state, but also the average length of time spent in such a state (for
example, the time spent waiting for an interrupt to be serviced).

Figure 18-1. Layout of IA32_PERFEVTSELx MSRs

31

INV—Invert counter mask
EN—Enable counters
INT—APIC interrupt enable
PC—Pin control

8 7 0

Event Select

E—Edge detect
OS—Operating system mode
USR—User Mode

Counter Mask
EE

N

I
N
T

19 1618 15172021222324

Reserved

I
N
V

P
C

U
S
R

O
S

Unit Mask (UMASK)(CMASK)

63
Vol. 3B 18-5

PERFORMANCE MONITORING
• PC (pin control) flag (bit 19) — When set, the logical processor toggles the
PMi pins and increments the counter when performance-monitoring events
occur; when clear, the processor toggles the PMi pins when the counter
overflows. The toggling of a pin is defined as assertion of the pin for a single bus
clock followed by deassertion.

• INT (APIC interrupt enable) flag (bit 20) — When set, the logical processor
generates an exception through its local APIC on counter overflow.

• EN (Enable Counters) Flag (bit 22) — When set, performance counting is
enabled in the corresponding performance-monitoring counter; when clear, the
corresponding counter is disabled. The event logic unit for a UMASK must be
disabled by setting IA32_PERFEVTSELx[bit 22] = 0, before writing to
IA32_PMCx.

• INV (invert) flag (bit 23) — Inverts the result of the counter-mask comparison
when set, so that both greater than and less than comparisons can be made.

• Counter mask (CMASK) field (bits 24 through 31) — When this field is not
zero, a logical processor compares this mask to the events count of the detected
microarchitectural condition during a single cycle. If the event count is greater
than or equal to this mask, the counter is incremented by one. Otherwise the
counter is not incremented.
This mask is intended for software to characterize microarchitectural conditions
that can count multiple occurrences per cycle (for example, two or more instruc-
tions retired per clock; or bus queue occupations). If the counter-mask field is 0,
then the counter is incremented each cycle by the event count associated with
multiple occurrences.

18.2.2 Additional Architectural Performance Monitoring Extensions
The enhanced features provided by architectural performance monitoring version 2
include the following:
• Fixed-function performance counter register and associated control

register — Three of the architectural performance events are counted using
three fixed-function MSRs (IA32_FIXED_CTR0 through IA32_FIXED_CTR2). Each
of the fixed-function PMC can count only one architectural performance event.
Configuring the fixed-function PMCs is done by writing to bit fields in the MSR
(IA32_FIXED_CTR_CTRL) located at address 38DH. Unlike configuring
performance events for general-purpose PMCs (IA32_PMCx) via UMASK field in
(IA32_PERFEVTSELx), configuring, programming IA32_FIXED_CTR_CTRL for
fixed-function PMCs do not require any UMASK.

• Simplified event programming — Most frequent operation in programming
performance events are enabling/disabling event counting and checking the
status of counter overflows. Architectural performance event version 2 provides
three architectural MSRs:
18-6 Vol. 3B

PERFORMANCE MONITORING
— IA32_PERF_GLOBAL_CTRL allows software to enable/disable event counting
of all or any combination of fixed-function PMCs (IA32_FIXED_CTRx) or any
general-purpose PMCs via a single WRMSR.

— IA32_PERF_GLOBAL_STATUS allows software to query counter overflow
conditions on any combination of fixed-function PMCs or general-purpose
PMCs via a single RDMSR.

— IA32_PERF_GLOBAL_OVF_CTRL allows software to clear counter overflow
conditions on any combination of fixed-function PMCs or general-purpose
PMCs via a single WRMSR.

18.2.2.1 Architectural Performance Monitoring Version 2 Facilities
The facilities provided by architectural performance monitoring version 2 can be
queried from CPUID leaf 0AH by examining the content of register EDX:
• Bits 0 through 4 of CPUID.0AH.EDX indicates the number of fixed-function

performance counters available per core,
• Bits 5 through 12 of CPUID.0AH.EDX indicates the bit-width of fixed-function

performance counters. Bits beyond the width of the fixed-function counter are
reserved and must be written as zeros.

NOTE
Early generation of processors based on Intel Core microarchitecture
may report in CPUID.0AH:EDX of support for version 2 but indicating
incorrect information of version 2 facilities.

The IA32_FIXED_CTR_CTRL MSR include multiple sets of 4-bit field, each 4 bit
field controls the operation of a fixed-function performance counter. Figure 18-2
shows the layout of 4-bit controls for each fixed-function PMC. Two sub-fields are
currently defined within each control. The definitions of the bit fields are:

Figure 18-2. Layout of IA32_FIXED_CTR_CTRL MSR

Cntr2 — Controls for IA32_FIXED_CTR2
Cntr1 — Controls for IA32_FIXED_CTR1
PMI — Enable PMI on overflow
Cntr0 — Controls for IA32_FIXED_CTR0

8 7 0

ENABLE — 0: disable; 1: OS; 2: User; 3: All ring levels

E
N

P
M
I

11 312 1

Reserved

63 2

E
N

E
N

49 5

PP
MM
II
Vol. 3B 18-7

PERFORMANCE MONITORING
• Enable field (lowest 2 bits within each 4-bit control) — When bit 0 is set,
performance counting is enabled in the corresponding fixed-function
performance counter to increment while the target condition associated with the
architecture performance event occurred at ring 0. When bit 1 is set,
performance counting is enabled in the corresponding fixed-function
performance counter to increment while the target condition associated with the
architecture performance event occurred at ring greater than 0. Writing 0 to both
bits stops the performance counter. Writing a value of 11B enables the counter to
increment irrespective of privilege levels.

• PMI field (the fourth bit within each 4-bit control) — When set, the logical
processor generates an exception through its local APIC on overflow condition of
the respective fixed-function counter.

IA32_PERF_GLOBAL_CTRL MSR provides single-bit controls to enable counting of
each performance counter. Figure 18-3 shows the layout of
IA32_PERF_GLOBAL_CTRL. Each enable bit in IA32_PERF_GLOBAL_CTRL is AND’ed
with the enable bits for all privilege levels in the respective IA32_PERFEVTSELx or
IA32_PERF_FIXED_CTR_CTRL MSRs to start/stop the counting of respective
counters. Counting is enabled if the AND’ed results is true; counting is disabled when
the result is false.

The fixed-function performance counters supported by architectural performance
version 2 is listed in Table 18-8, the pairing between each fixed-function perfor-
mance counter to an architectural performance event is also shown.

IA32_PERF_GLOBAL_STATUS MSR provides single-bit status for software to query
the overflow condition of each performance counter. The MSR also provides addi-
tional status bit to indicate overflow conditions when counters are programmed for
precise-event-based sampling (PEBS). IA32_PERF_GLOBAL_STATUS MSR also
provides a sticky bit to indicate changes to the state of performance monitoring hard-

Figure 18-3. Layout of IA32_PERF_GLOBAL_CTRL MSR

IA32_FIXED_CTR2 enable
IA32_FIXED_CTR1 enable
IA32_FIXED_CTR0 enable
IA32_PMC1 enable

2 1 0

IA32_PMC0 enable

3132333435

Reserved

63
18-8 Vol. 3B

PERFORMANCE MONITORING
ware. Figure 18-4 shows the layout of IA32_PERF_GLOBAL_STATUS. A value of 1 in
bits 0, 1, 32 through 34 indicates a counter overflow condition has occurred in the
associated counter.

When a performance counter is configured for PEBS, overflow condition in the
counter generates a performance-monitoring interrupt signaling a PEBS event. On a
PEBS event, the processor stores data records into the buffer area (see Section
18.15.5), clears the counter overflow status., and sets the “OvfBuffer” bit in
IA32_PERF_GLOBAL_STATUS.

IA32_PERF_GLOBAL_OVF_CTL MSR allows software to clear overflow indicator(s) of
any general-purpose or fixed-function counters via a single WRMSR. Software should
clear overflow indications when
• Setting up new values in the event select and/or UMASK field for counting or

sampling
• Reloading counter values to continue sampling
• Disabling event counting or sampling.

The layout of IA32_PERF_GLOBAL_OVF_CTL is shown in Figure 18-5.

Figure 18-4. Layout of IA32_PERF_GLOBAL_STATUS MSR

62

IA32_FIXED_CTR2 Overflow
IA32_FIXED_CTR1 Overflow
IA32_FIXED_CTR0 Overflow
IA32_PMC1 Overflow

2 1 0

IA32_PMC0 Overflow

3132333435

Reserved

63

CondChgd
OvfBuffer
Vol. 3B 18-9

PERFORMANCE MONITORING
18.2.2.2 Architectural Performance Monitoring Version 3 Facilities
The facilities provided by architectural performance monitoring version 1 and 2 are
also supported by architectural performance monitoring version 3. Additionally
version 3 provides enhancements to support a processor core comprising of more
than one logical processor, i.e. a processor core supporting Intel Hyper-Threading
Technology or simultaneous multi-threading capability. Specifically,
• CPUID leaf 0AH provides enumeration mechanisms to query:

— The number of general-purpose performance counters (IA32_PMCx) is
reported in CPUID.0AH:EAX[15:8], the bit width of general-purpose
performance counters (see also Section 18.2.1.1) is reported in
CPUID.0AH:EAX[23:16].

— The bit vector representing the set of architectural performance monitoring
events supported (see Section 18.2.3)

— The number of fixed-function performance counters, the bit width of fixed-
function performance counters (see also Section 18.2.2.1).

• Each general-purpose performance counter IA32_PMCx (starting at MSR address
0C1H) is associated with a corresponding IA32_PERFEVTSELx MSR (starting at
MSR address 186H). The Bit field layout of IA32_PERFEVTSELx MSRs is defined
architecturally in Figure 18-6.

Figure 18-5. Layout of IA32_PERF_GLOBAL_OVF_CTRL MSR

62

IA32_FIXED_CTR2 ClrOverflow
IA32_FIXED_CTR1 ClrOverflow
IA32_FIXED_CTR0 ClrOverflow
IA32_PMC1 ClrOverflow

2 1 0

IA32_PMC0 ClrOverflow

3132333435

Reserved

63

ClrCondChgd
ClrOvfBuffer
18-10 Vol. 3B

PERFORMANCE MONITORING
Bit 21 (AnyThread) of IA32_PERFEVTSELx is supported in architectural
performance monitoring version 3. When set to 1, it enables counting the
associated event conditions (including matching the thread’s CPL with the
OS/USR setting of IA32_PERFEVTSELx) occurring across all logical processors
sharing a processor core. When bit 21 is 0, the counter only increments the
associated event conditions (including matching the thread’s CPL with the
OS/USR setting of IA32_PERFEVTSELx) occurring in the logical processor which
programmed the IA32_PERFEVTSELx MSR.

• Each fixed-function performance counter IA32_FIXED_CTRx (starting at MSR
address 309H) is configured by a 4-bit control block in the
IA32_PERF_FIXED_CTR_CTRL MSR. The control block also allow thread-
specificity configuration using an AnyThread bit. The layout of
IA32_PERF_FIXED_CTR_CTRL MSR is shown.

Figure 18-6. Layout of IA32_PERFEVTSELx MSRs Supporting Architectural
Performance Monitoring Version 3

31

INV—Invert counter mask
EN—Enable counters

INT—APIC interrupt enable
PC—Pin control

8 7 0

Event Select

E—Edge detect
OS—Operating system mode
USR—User Mode

Counter Mask
EE

N

I
N
T

19 1618 15172021222324

Reserved

I
N
V

P
C

U
S
R

O
S

Unit Mask (UMASK)(CMASK)

63

ANY—Any Thread

A
N
Y

Vol. 3B 18-11

PERFORMANCE MONITORING
Each control block for a fixed-function performance counter provides a
AnyThread (bit position 2 + 4*N, N= 0, 1, etc.) bit. When set to 1, it enables
counting the associated event conditions (including matching the thread’s CPL
with the ENABLE setting of the corresponding control block of
IA32_PERF_FIXED_CTR_CTRL) occurring across all logical processors sharing a
processor core. When an AnyThread bit is 0 in IA32_PERF_FIXED_CTR_CTRL,
the corresponding fixed counter only increments the associated event conditions
occurring in the logical processor which programmed the
IA32_PERF_FIXED_CTR_CTRL MSR.

• The IA32_PERF_GLOBAL_CTRL, IA32_PERF_GLOBAL_STATUS,
IA32_PERF_GLOBAL_OVF_CTRL MSRs provide single-bit controls/status for each
general-purpose and fixed-function performance counter. Figure 18-8 shows the
layout of these MSR for N general-purpose performance counters (where N is
reported by CPUID.0AH:EAX[15:8]) and three fixed-function counters.
Note: Intel Atom processor family supports two general-purpose performance
monitoring counters (i.e. N =2 in Figure 18-8), other processor families in Intel
64 architecture may support a different value of N in Figure 18-8. The number N
is reported by CPUID.0AH:EAX[15:8]. Intel Core i7 processor family supports
four general-purpose performance monitoring counters (i.e. N =4 in Figure 18-8)

Figure 18-7. Layout of IA32_FIXED_CTR_CTRL MSR Supporting Architectural
Performance Monitoring Version 3

Cntr2 — Controls for IA32_FIXED_CTR2
Cntr1 — Controls for IA32_FIXED_CTR1
PMI — Enable PMI on overflow on IA32_FIXED_CTR0
AnyThread — AnyThread for IA32_FIXED_CTR0

8 7 0

ENABLE — IA32_FIXED_CTR0. 0: disable; 1: OS; 2: User; 3: All ring levels

E
N

P
M
I

11 312 1

Reserved

63 2

E
N

E
N

49 5

PP
MM
II

A
N
Y

A
N
Y

A
N
Y

18-12 Vol. 3B

PERFORMANCE MONITORING
18.2.2.3 Full-Width Writes to Performance Counter Registers
The general-purpose performance counter registers IA32_PMCx are writable via
WRMSR instruction. However, the value written into IA32_PMCx by WRMSR is the
signed extended 64-bit value of the EAX[31:0] input of WRMSR.

A processor that supports full-width writes to the general-purpose performance
counters enumerated by CPUID.0AH:EAX[15:8] will set

Figure 18-8. Layout of Global Performance Monitoring Control MSR

IA32_FIXED_CTR2 enable
IA32_FIXED_CTR1 enable
IA32_FIXED_CTR0 enable
IA32_PMC(N-1) enable

.. 1 0

.................... enable

3132333435

Reserved

63 ..N

IA32_PMC1 enable
IA32_PMC0 enable

62

IA32_FIXED_CTR2 Overflow
IA32_FIXED_CTR1 Overflow
IA32_FIXED_CTR0 Overflow
IA32_PMC1 Overflow

.. 1 0

IA32_PMC0 Overflow

313233343563

CondChgd
OvfBuffer

..N

...................... Overflow
IA32_PMC(N-1) Overflow

Global Enable Controls IA32_PERF_GLOBAL_CTRL

Global Overflow Status IA32_PERF_GLOBAL_STATUS

62

IA32_FIXED_CTR2 ClrOverflow
IA32_FIXED_CTR1 ClrOverflow
IA32_FIXED_CTR0 ClrOverflow
IA32_PMC1 ClrOverflow

.. 1 0

IA32_PMC0 ClrOverflow

313233343563

ClrCondChgd
ClrOvfBuffer

Global Overflow Status IA32_PERF_GLOBAL_OVF_CTRL

........................ ClrOverflow
IA32_PMC(N-1) ClrOverflow

N ..
Vol. 3B 18-13

PERFORMANCE MONITORING
IA32_PERF_CAPABILITIES[13] to enumerate its full-width-write capability See
Figure 18-39.

If IA32_PERF_CAPABILITIES.FW_WRITE[bit 13] =1, each IA32_PMCi is accompa-
nied by a corresponding alias address starting at 4C1H for IA32_A_PMC0.

If IA32_A_PMCi is present, the 64-bit input value (EDX:EAX) of WRMSR to
IA32_A_PMCi will cause IA32_PMCi to be updated by:

IA32_PMCi[63:32] ← SignExtend(EDX[N-32:0]);

IA32_PMCi[31:0] ← EAX[31:0];

18.2.3 Pre-defined Architectural Performance Events
Table 18-1 lists architecturally defined events.

A processor that supports architectural performance monitoring may not support all
the predefined architectural performance events (Table 18-1). The non-zero bits in
CPUID.0AH:EBX indicate the events that are not available.

The behavior of each architectural performance event is expected to be consistent on
all processors that support that event. Minor variations between microarchitectures
are noted below:
• UnHalted Core Cycles — Event select 3CH, Umask 00H

This event counts core clock cycles when the clock signal on a specific core is
running (not halted). The counter does not advance in the following conditions:

— an ACPI C-state other than C0 for normal operation

— HLT

— STPCLK# pin asserted

— being throttled by TM1

Table 18-1. UMask and Event Select Encodings for Pre-Defined
Architectural Performance Events

Bit Position
CPUID.AH.EBX

Event Name UMask Event Select

0 UnHalted Core Cycles 00H 3CH

1 Instruction Retired 00H C0H

2 UnHalted Reference Cycles 01H 3CH

3 LLC Reference 4FH 2EH

4 LLC Misses 41H 2EH

5 Branch Instruction Retired 00H C4H

6 Branch Misses Retired 00H C5H
18-14 Vol. 3B

PERFORMANCE MONITORING
— during the frequency switching phase of a performance state transition (see
Chapter 14, “Power and Thermal Management”)

The performance counter for this event counts across performance state
transitions using different core clock frequencies

• Instructions Retired — Event select C0H, Umask 00H
This event counts the number of instructions at retirement. For instructions that
consist of multiple micro-ops, this event counts the retirement of the last micro-
op of the instruction. An instruction with a REP prefix counts as one instruction
(not per iteration). Faults before the retirement of the last micro-op of a multi-
ops instruction are not counted.
This event does not increment under VM-exit conditions. Counters continue
counting during hardware interrupts, traps, and inside interrupt handlers.

• UnHalted Reference Cycles — Event select 3CH, Umask 01H
This event counts reference clock cycles while the clock signal on the core is
running. The reference clock operates at a fixed frequency, irrespective of core
frequency changes due to performance state transitions. Processors may
implement this behavior differently. See Table 19-13 and Table 19-15 in Chapter
19, “Performance-Monitoring Events.”

• Last Level Cache References — Event select 2EH, Umask 4FH
This event counts requests originating from the core that reference a cache line
in the last level cache. The event count includes speculation and cache line fills
due to the first-level cache hardware prefetcher, but may exclude cache line fills
due to other hardware-prefetchers.
Because cache hierarchy, cache sizes and other implementation-specific charac-
teristics; value comparison to estimate performance differences is not recom-
mended.

• Last Level Cache Misses — Event select 2EH, Umask 41H
This event counts each cache miss condition for references to the last level cache.
The event count may include speculation and cache line fills due to the first-level
cache hardware prefetcher, but may exclude cache line fills due to other
hardware-prefetchers.
Because cache hierarchy, cache sizes and other implementation-specific charac-
teristics; value comparison to estimate performance differences is not recom-
mended.

• Branch Instructions Retired — Event select C4H, Umask 00H
This event counts branch instructions at retirement. It counts the retirement of
the last micro-op of a branch instruction.

• All Branch Mispredict Retired — Event select C5H, Umask 00H
This event counts mispredicted branch instructions at retirement. It counts the
retirement of the last micro-op of a branch instruction in the architectural path of
execution and experienced misprediction in the branch prediction hardware.
Vol. 3B 18-15

PERFORMANCE MONITORING
Branch prediction hardware is implementation-specific across microarchitec-
tures; value comparison to estimate performance differences is not recom-
mended.

NOTE
Programming decisions or software precisians on functionality should
not be based on the event values or dependent on the existence of
performance monitoring events.

18.3 PERFORMANCE MONITORING (INTEL® CORE™ SOLO
AND INTEL® CORE™ DUO PROCESSORS)

In Intel Core Solo and Intel Core Duo processors, non-architectural performance
monitoring events are programmed using the same facilities (see Figure 18-1) used
for architectural performance events.

Non-architectural performance events use event select values that are model-
specific. Event mask (Umask) values are also specific to event logic units. Some
microarchitectural conditions detectable by a Umask value may have specificity
related to processor topology (see Section 8.6, “Detecting Hardware Multi-Threading
Support and Topology,” in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3A). As a result, the unit mask field (for example,
IA32_PERFEVTSELx[bits 15:8]) may contain sub-fields that specify topology infor-
mation of processor cores.

The sub-field layout within the Umask field may support two-bit encoding that quali-
fies the relationship between a microarchitectural condition and the originating core.
This data is shown in Table 18-2. The two-bit encoding for core-specificity is only
supported for a subset of Umask values (see Chapter 19, “Performance Monitoring
Events”) and for Intel Core Duo processors. Such events are referred to as core-
specific events.

Some microarchitectural conditions allow detection specificity only at the boundary
of physical processors. Some bus events belong to this category, providing specificity
between the originating physical processor (a bus agent) versus other agents on the
bus. Sub-field encoding for agent specificity is shown in Table 18-3.

Table 18-2. Core Specificity Encoding within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit 15:14 Encoding Description

11B All cores

10B Reserved

01B This core

00B Reserved
18-16 Vol. 3B

PERFORMANCE MONITORING
Some microarchitectural conditions are detectable only from the originating core. In
such cases, unit mask does not support core-specificity or agent-specificity encod-
ings. These are referred to as core-only conditions.

Some microarchitectural conditions allow detection specificity that includes or
excludes the action of hardware prefetches. A two-bit encoding may be supported to
qualify hardware prefetch actions. Typically, this applies only to some L2 or bus
events. The sub-field encoding for hardware prefetch qualification is shown in
Table 18-4.

Some performance events may (a) support none of the three event-specific qualifica-
tion encodings (b) may support core-specificity and agent specificity simultaneously
(c) or may support core-specificity and hardware prefetch qualification simulta-
neously. Agent-specificity and hardware prefetch qualification are mutually exclu-
sive.

In addition, some L2 events permit qualifications that distinguish cache coherent
states. The sub-field definition for cache coherency state qualification is shown in
Table 18-5. If no bits in the MESI qualification sub-field are set for an event that
requires setting MESI qualification bits, the event count will not increment.

Table 18-3. Agent Specificity Encoding within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit 13 Encoding Description

0 This agent

1 Include all agents

Table 18-4. HW Prefetch Qualification Encoding within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit 13:12 Encoding Description

11B All inclusive

10B Reserved

01B Hardware prefetch only

00B Exclude hardware prefetch

Table 18-5. MESI Qualification Definitions within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit Position 11:8 Description

Bit 11 Counts modified state

Bit 10 Counts exclusive state
Vol. 3B 18-17

PERFORMANCE MONITORING
18.4 PERFORMANCE MONITORING (PROCESSORS BASED
ON INTEL® CORE™ MICROARCHITECTURE)

In addition to architectural performance monitoring, processors based on the Intel
Core microarchitecture support non-architectural performance monitoring events.

Architectural performance events can be collected using general-purpose perfor-
mance counters. Non-architectural performance events can be collected using
general-purpose performance counters (coupled with two IA32_PERFEVTSELx MSRs
for detailed event configurations), or fixed-function performance counters (see
Section 18.4.1). IA32_PERFEVTSELx MSRs are architectural; their layout is shown in
Figure 18-1. Starting with Intel Core 2 processor T 7700, fixed-function performance
counters and associated counter control and status MSR becomes part of architec-
tural performance monitoring version 2 facilities (see also Section 18.2.2).

Non-architectural performance events in processors based on Intel Core microarchi-
tecture use event select values that are model-specific. Valid event mask (Umask)
bits are listed in Chapter 19. The UMASK field may contain sub-fields identical to
those listed in Table 18-2, Table 18-3, Table 18-4, and Table 18-5. One or more of
these sub-fields may apply to specific events on an event-by-event basis. Details are
listed in Table 19-13 in Chapter 19, “Performance-Monitoring Events.”

In addition, the UMASK filed may also contain a sub-field that allows detection spec-
ificity related to snoop responses. Bits of the snoop response qualification sub-field
are defined in Table 18-6.

Bit 9 Counts shared state

Bit 8 Counts Invalid state

Table 18-6. Bus Snoop Qualification Definitions within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit Position 11:8 Description

Bit 11 HITM response

Bit 10 Reserved

Bit 9 HIT response

Bit 8 CLEAN response

Table 18-5. MESI Qualification Definitions within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit Position 11:8 Description
18-18 Vol. 3B

PERFORMANCE MONITORING
There are also non-architectural events that support qualification of different types of
snoop operation. The corresponding bit field for snoop type qualification are listed in
Table 18-7.

No more than one sub-field of MESI, snoop response, and snoop type qualification
sub-fields can be supported in a performance event.

NOTE
Software must write known values to the performance counters prior
to enabling the counters. The content of general-purpose counters
and fixed-function counters are undefined after INIT or RESET.

18.4.1 Fixed-function Performance Counters
Processors based on Intel Core microarchitecture provide three fixed-function perfor-
mance counters. Bits beyond the width of the fixed counter are reserved and must be
written as zeros. Model-specific fixed-function performance counters on processors
that support Architectural Perfmon version 1 are 40 bits wide.

Each of the fixed-function counter is dedicated to count a pre-defined performance
monitoring events. The performance monitoring events associated with fixed-func-
tion counters and the addresses of these counters are listed in Table 18-8.

Programming the fixed-function performance counters does not involve any of the

Table 18-7. Snoop Type Qualification Definitions within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit Position 9:8 Description

Bit 9 CMP2I snoops

Bit 8 CMP2S snoops

Table 18-8. Association of Fixed-Function Performance Counters with
Architectural Performance Events

Event Name Fixed-Function PMC PMC Address

INST_RETIRED.ANY MSR_PERF_FIXED_CTR0/I
A32_FIXED_CTR0

309H

CPU_CLK_UNHALTED.CORE MSR_PERF_FIXED_CTR1//
IA32_FIXED_CTR1

30AH

CPU_CLK_UNHALTED.REF MSR_PERF_FIXED_CTR2//
IA32_FIXED_CTR2

30BH
Vol. 3B 18-19

PERFORMANCE MONITORING
IA32_PERFEVTSELx MSRs, and does not require specifying any event masks.
Instead, the MSR MSR_PERF_FIXED_CTR_CTRL provides multiple sets of 4-bit fields;
each 4-bit field controls the operation of a fixed-function performance counter (PMC).
See Figures 18-9. Two sub-fields are defined for each control. See Figure 18-9; bit
fields are:
• Enable field (low 2 bits in each 4-bit control) — When bit 0 is set,

performance counting is enabled in the corresponding fixed-function
performance counter to increment when the target condition associated with the
architecture performance event occurs at ring 0.
When bit 1 is set, performance counting is enabled in the corresponding fixed-
function performance counter to increment when the target condition associated
with the architecture performance event occurs at ring greater than 0.
Writing 0 to both bits stops the performance counter. Writing 11B causes the
counter to increment irrespective of privilege levels.

• PMI field (fourth bit in each 4-bit control) — When set, the logical processor
generates an exception through its local APIC on overflow condition of the
respective fixed-function counter.

18.4.2 Global Counter Control Facilities
Processors based on Intel Core microarchitecture provides simplified performance
counter control that simplifies the most frequent operations in programming perfor-
mance events, i.e. enabling/disabling event counting and checking the status of
counter overflows. This is done by the following three MSRs:
• MSR_PERF_GLOBAL_CTRL enables/disables event counting for all or any

combination of fixed-function PMCs (MSR_PERF_FIXED_CTRx) or general-
purpose PMCs via a single WRMSR.

Figure 18-9. Layout of MSR_PERF_FIXED_CTR_CTRL MSR

Cntr2 — Controls for MSR_PERF_FIXED_CTR2
Cntr1 — Controls for MSR_PERF_FIXED_CTR1
PMI — Enable PMI on overflow
Cntr0 — Controls for MSR_PERF_FIXED_CTR0

8 7 0

ENABLE — 0: disable; 1: OS; 2: User; 3: All ring levels

E
N

P
M
I

11 312 1

Reserved

63 2

E
N

E
N

49 5

PP
MM
II
18-20 Vol. 3B

PERFORMANCE MONITORING
• MSR_PERF_GLOBAL_STATUS allows software to query counter overflow
conditions on any combination of fixed-function PMCs (MSR_PERF_FIXED_CTRx)
or general-purpose PMCs via a single RDMSR.

• MSR_PERF_GLOBAL_OVF_CTRL allows software to clear counter overflow
conditions on any combination of fixed-function PMCs (MSR_PERF_FIXED_CTRx)
or general-purpose PMCs via a single WRMSR.

MSR_PERF_GLOBAL_CTRL MSR provides single-bit controls to enable counting in
each performance counter (see Figure 18-10). Each enable bit in
MSR_PERF_GLOBAL_CTRL is AND’ed with the enable bits for all privilege levels in the
respective IA32_PERFEVTSELx or MSR_PERF_FIXED_CTR_CTRL MSRs to start/stop
the counting of respective counters. Counting is enabled if the AND’ed results is true;
counting is disabled when the result is false.

MSR_PERF_GLOBAL_STATUS MSR provides single-bit status used by software to
query the overflow condition of each performance counter. The MSR also provides
additional status bit to indicate overflow conditions when counters are programmed
for precise-event-based sampling (PEBS). The MSR_PERF_GLOBAL_STATUS MSR
also provides a ‘sticky bit’ to indicate changes to the state of performance monitoring
hardware (see Figure 18-11). A value of 1 in bits 34:32, 1, 0 indicates an overflow
condition has occurred in the associated counter.

Figure 18-10. Layout of MSR_PERF_GLOBAL_CTRL MSR

FIXED_CTR2 enable
FIXED_CTR1 enable
FIXED_CTR0 enable
PMC1 enable

2 1 0

PMC0 enable

3132333435

Reserved

63
Vol. 3B 18-21

PERFORMANCE MONITORING
When a performance counter is configured for PEBS, an overflow condition in the
counter generates a performance-monitoring interrupt this signals a PEBS event. On
a PEBS event, the processor stores data records in the buffer area (see Section
17.4.9), clears the counter overflow status, and sets the OvfBuffer bit in
MSR_PERF_GLOBAL_STATUS.

MSR_PERF_GLOBAL_OVF_CTL MSR allows software to clear overflow the indicators
for general-purpose or fixed-function counters via a single WRMSR (see
Figure 18-12). Clear overflow indications when:
• Setting up new values in the event select and/or UMASK field for counting or

sampling
• Reloading counter values to continue sampling
• Disabling event counting or sampling

Figure 18-11. Layout of MSR_PERF_GLOBAL_STATUS MSR

Figure 18-12. Layout of MSR_PERF_GLOBAL_OVF_CTRL MSR

62

FIXED_CTR2 Overflow
FIXED_CTR1 Overflow
FIXED_CTR0 Overflow
PMC1 Overflow

2 1 0

PMC0 Overflow

3132333435

Reserved

63

CondChgd
OvfBuffer

62

FIXED_CTR2 ClrOverflow
FIXED_CTR1 ClrOverflow
FIXED_CTR0 ClrOverflow
PMC1 ClrOverflow

2 1 0

PMC0 ClrOverflow

3132333435

Reserved

63

ClrCondChgd
ClrOvfBuffer
18-22 Vol. 3B

PERFORMANCE MONITORING
18.4.3 At-Retirement Events
Many non-architectural performance events are impacted by the speculative nature
of out-of-order execution. A subset of non-architectural performance events on
processors based on Intel Core microarchitecture are enhanced with a tagging mech-
anism (similar to that found in Intel NetBurst® microarchitecture) that exclude
contributions that arise from speculative execution. The at-retirement events avail-
able in processors based on Intel Core microarchitecture does not require special
MSR programming control (see Section 18.10.6, “At-Retirement Counting”), but is
limited to IA32_PMC0. See Table 18-9 for a list of events available to processors
based on Intel Core microarchitecture.

18.4.4 Precise Event Based Sampling (PEBS)
Processors based on Intel Core microarchitecture also support precise event based
sampling (PEBS). This feature was introduced by processors based on Intel NetBurst
microarchitecture.

PEBS uses a debug store mechanism and a performance monitoring interrupt to
store a set of architectural state information for the processor. The information
provides architectural state of the instruction executed after the instruction that
caused the event (See Section 18.4.4.2).

In cases where the same instruction causes BTS and PEBS to be activated, PEBS is
processed before BTS are processed. The PMI request is held until the processor
completes processing of PEBS and BTS.

For processors based on Intel Core microarchitecture, events that support precise
sampling are listed in Table 18-10. The procedure for detecting availability of PEBS is
the same as described in Section 18.10.7.1.

Table 18-9. At-Retirement Performance Events for Intel Core Microarchitecture

Event Name UMask Event Select

ITLB_MISS_RETIRED 00H C9H

MEM_LOAD_RETIRED.L1D_MISS 01H CBH

MEM_LOAD_RETIRED.L1D_LINE_MISS 02H CBH

MEM_LOAD_RETIRED.L2_MISS 04H CBH

MEM_LOAD_RETIRED.L2_LINE_MISS 08H CBH

MEM_LOAD_RETIRED.DTLB_MISS 10H CBH

Table 18-10. PEBS Performance Events for Intel Core Microarchitecture
Event Name UMask Event Select

INSTR_RETIRED.ANY_P 00H C0H

X87_OPS_RETIRED.ANY FEH C1H
Vol. 3B 18-23

PERFORMANCE MONITORING
18.4.4.1 Setting up the PEBS Buffer
For processors based on Intel Core microarchitecture, PEBS is available using
IA32_PMC0 only. Use the following procedure to set up the processor and
IA32_PMC0 counter for PEBS:

1. Set up the precise event buffering facilities. Place values in the precise event
buffer base, precise event index, precise event absolute maximum, precise event
interrupt threshold, and precise event counter reset fields of the DS buffer
management area. In processors based on Intel Core microarchitecture, PEBS
records consist of 64-bit address entries. See Figure 17-8 to set up the precise
event records buffer in memory.

2. Enable PEBS. Set the Enable PEBS on PMC0 flag (bit 0) in IA32_PEBS_ENABLE
MSR.

3. Set up the IA32_PMC0 performance counter and IA32_PERFEVTSEL0 for an
event listed in Table 18-10.

18.4.4.2 PEBS Record Format
The PEBS record format may be extended across different processor implementa-
tions. The IA32_PERF_CAPABILITES MSR defines a mechanism for software to
handle the evolution of PEBS record format in processors that support architectural
performance monitoring with version id equals 2 or higher. The bit fields of
IA32_PERF_CAPABILITES are defined in Table 34-2 of Chapter 34, “Model-Specific
Registers (MSRs)”. The relevant bit fields that governs PEBS are:
• PEBSTrap [bit 6]: When set, PEBS recording is trap-like. After the PEBS-enabled

counter has overflowed, PEBS record is recorded for the next PEBS-able event at
the completion of the sampled instruction causing the PEBS event. When clear,
PEBS recording is fault-like. The PEBS record is recorded before the sampled
instruction causing the PEBS event.

• PEBSSaveArchRegs [bit 7]: When set, PEBS will save architectural register and
state information according to the encoded value of the PEBSRecordFormat field.
On processors based on Intel Core microarchitecture, this bit is always 1

BR_INST_RETIRED.MISPRED 00H C5H

SIMD_INST_RETIRED.ANY 1FH C7H

MEM_LOAD_RETIRED.L1D_MISS 01H CBH

MEM_LOAD_RETIRED.L1D_LINE_MISS 02H CBH

MEM_LOAD_RETIRED.L2_MISS 04H CBH

MEM_LOAD_RETIRED.L2_LINE_MISS 08H CBH

MEM_LOAD_RETIRED.DTLB_MISS 10H CBH

Table 18-10. PEBS Performance Events for Intel Core Microarchitecture (Contd.)
Event Name UMask Event Select
18-24 Vol. 3B

PERFORMANCE MONITORING
• PEBSRecordFormat [bits 11:8]: Valid encodings are:

— 0000B: Only general-purpose registers, instruction pointer and RFLAGS
registers are saved in each PEBS record (seeSection 18.10.7).

18.4.4.3 Writing a PEBS Interrupt Service Routine
The PEBS facilities share the same interrupt vector and interrupt service routine
(called the DS ISR) with the non-precise event-based sampling and BTS facilities. To
handle PEBS interrupts, PEBS handler code must be included in the DS ISR. See
Section 17.4.9.1, “DS Save Area and IA-32e Mode Operation,” for guidelines when
writing the DS ISR.

The service routine can query MSR_PERF_GLOBAL_STATUS to determine which
counter(s) caused of overflow condition. The service routine should clear overflow
indicator by writing to MSR_PERF_GLOBAL_OVF_CTL.

A comparison of the sequence of requirements to program PEBS for processors based
on Intel Core and Intel NetBurst microarchitectures is listed in Table 18-11.

Table 18-11. Requirements to Program PEBS

For Processors based on Intel
Core microarchitecture

For Processors based on Intel
NetBurst microarchitecture

Verify PEBS support of
processor/OS

• IA32_MISC_ENABLE.EMON_AVAILABE (bit 7) is set.
• IA32_MISC_ENABLE.PEBS_UNAVAILABE (bit 12) is clear.

Ensure counters are in
disabled

On initial set up or changing event
configurations, write
MSR_PERF_GLOBAL_CTRL MSR
(0x38F) with 0.

On subsequent entries:

• Clear all counters if “Counter
Freeze on PMI“ is not enabled.

• If IA32_DebugCTL.Freeze is
enabled, counters are
automatically disabled.

Counters MUST be stopped before
writing.1

Optional

Disable PEBS. Clear ENABLE PMC0 bit in
IA32_PEBS_ENABLE MSR
(0x3F1).

Optional

Check overflow
conditions.

Check
MSR_PERF_GLOBAL_STATUS MSR
(0x 38E) handle any overflow
conditions.

Check OVF flag of each CCCR for
overflow condition
Vol. 3B 18-25

PERFORMANCE MONITORING
18.4.4.4 Re-configuring PEBS Facilities
When software needs to reconfigure PEBS facilities, it should allow a quiescent period
between stopping the prior event counting and setting up a new PEBS event. The
quiescent period is to allow any latent residual PEBS records to complete its capture
at their previously specified buffer address (provided by IA32_DS_AREA).

Clear overflow status. Clear
MSR_PERF_GLOBAL_STATUS MSR
(0x 38E) using
IA32_PERF_GLOBAL_OVF_CTRL
MSR (0x390).

Clear OVF flag of each CCCR.

Write “sample-after“
values.

Configure the counter(s) with the sample after value.

Configure specific counter
configuration MSR.

• Set local enable bit 22 - 1.
• Do NOT set local counter

PMI/INT bit, bit 20 - 0.
• Event programmed must be

PEBS capable.

• Set appropriate OVF_PMI bits -
1.

• Only CCCR for
MSR_IQ_COUNTER4 support
PEBS.

Allocate buffer for PEBS
states.

Allocate a buffer in memory for the precise information.

Program the
IA32_DS_AREA MSR.

Program the IA32_DS_AREA MSR.

Configure the PEBS buffer
management records.

Configure the PEBS buffer management records in the DS buffer
management area.

Configure/Enable PEBS. Set Enable PMC0 bit in
IA32_PEBS_ENABLE MSR
(0x3F1).

Configure MSR_PEBS_ENABLE,
MSR_PEBS_MATRIX_VERT and
MSR_PEBS_MATRIX_HORZ as
needed.

Enable counters. Set Enable bits in
MSR_PERF_GLOBAL_CTRL MSR
(0x38F).

Set each CCCR enable bit 12 - 1.

NOTES:
1. Counters read while enabled are not guaranteed to be precise with event counts that occur in tim-

ing proximity to the RDMSR.

Table 18-11. Requirements to Program PEBS (Contd.)

For Processors based on Intel
Core microarchitecture

For Processors based on Intel
NetBurst microarchitecture
18-26 Vol. 3B

PERFORMANCE MONITORING
18.5 PERFORMANCE MONITORING (PROCESSORS BASED
ON INTEL® ATOM™ MICROARCHITECTURE)

Intel Atom processor family supports architectural performance monitoring capa-
bility with version ID 3 (see Section 18.2.2.2) and a host of non-architectural moni-
toring capabilities. The initial implementation of Intel Atom processor family provides
two general-purpose performance counters (IA32_PMC0, IA32_PMC1) and three
fixed-function performance counters (IA32_FIXED_CTR0, IA32_FIXED_CTR1,
IA32_FIXED_CTR2).

Non-architectural performance monitoring in Intel Atom processor family uses the
IA32_PERFEVTSELx MSR to configure a set of non-architecture performance moni-
toring events to be counted by the corresponding general-purpose performance
counter. The list of non-architectural performance monitoring events is listed in Table
19-14.

Architectural and non-architectural performance monitoring events in Intel Atom
processor family support thread qualification using bit 21 of IA32_PERFEVTSELx
MSR.

The bit fields within each IA32_PERFEVTSELx MSR are defined in Figure 18-6 and
described in Section 18.2.1.1 and Section 18.2.2.2.

Valid event mask (Umask) bits are listed in Chapter 19. The UMASK field may contain
sub-fields that provide the same qualifying actions like those listed in Table 18-2,
Table 18-3, Table 18-4, and Table 18-5. One or more of these sub-fields may apply to
specific events on an event-by-event basis. Details are listed in Table 19-14 in
Chapter 19, “Performance-Monitoring Events.” Precise Event Based Monitoring is
supported using IA32_PMC0 (see also Section 17.4.9, “BTS and DS Save Area”).

18.6 PERFORMANCE MONITORING FOR PROCESSORS
BASED ON INTEL® MICROARCHITECTURE CODE
NAME NEHALEM

Intel Core i7 processor family1 supports architectural performance monitoring capa-
bility with version ID 3 (see Section 18.2.2.2) and a host of non-architectural moni-
toring capabilities. The Intel Core i7 processor family is based on Intel®
microarchitecture code name Nehalem, and provides four general-purpose perfor-
mance counters (IA32_PMC0, IA32_PMC1, IA32_PMC2, IA32_PMC3) and three
fixed-function performance counters (IA32_FIXED_CTR0, IA32_FIXED_CTR1,
IA32_FIXED_CTR2) in the processor core.

1. Intel Xeon processor 5500 series and 3400 series are also based on Intel microarchitecture code
name Nehalem, so the performance monitoring facilities described in this section generally also
apply.
Vol. 3B 18-27

PERFORMANCE MONITORING
Non-architectural performance monitoring in Intel Core i7 processor family uses the
IA32_PERFEVTSELx MSR to configure a set of non-architecture performance moni-
toring events to be counted by the corresponding general-purpose performance
counter. The list of non-architectural performance monitoring events is listed in Table
19-14. Non-architectural performance monitoring events fall into two broad catego-
ries:
• Performance monitoring events in the processor core: These include many

events that are similar to performance monitoring events available to processor
based on Intel Core microarchitecture. Additionally, there are several enhance-
ments in the performance monitoring capability for detecting microarchitectural
conditions in the processor core or in the interaction of the processor core to the
off-core sub-systems in the physical processor package. The off-core sub-
systems in the physical processor package is loosely referred to as “uncore“.

• Performance monitoring events in the uncore: The uncore sub-system is shared
by more than one processor cores in the physical processor package. It provides
additional performance monitoring facility outside of IA32_PMCx and
performance monitoring events that are specific to the uncore sub-system.

Architectural and non-architectural performance monitoring events in Intel Core i7
processor family support thread qualification using bit 21 of IA32_PERFEVTSELx
MSR.

The bit fields within each IA32_PERFEVTSELx MSR are defined in Figure 18-6 and
described in Section 18.2.1.1 and Section 18.2.2.2.

Figure 18-13. IA32_PERF_GLOBAL_STATUS MSR

CHG (R/W)
OVF_PMI (R/W)

8 7 032 3 1

Reserved

63 2431 5662 6061

OVF_PC7 (R/O), if CCNT>7
OVF_PC6 (R/O), if CCNT>6
OVF_PC5 (R/O), if CCNT>5
OVF_PC4 (R/O), if CCNT>4
OVF_PC3 (R/O)
OVF_PC2 (R/O)
OVF_PC1 (R/O)
OVF_PC0 (R/O)

RESET Value — 0x00000000_00000000

OVF_FC2 (R/O)
OVF_FC1 (R/O)

353433

OVF_FC0 (R/O)

CCNT: CPUID.AH:EAX[15:8]
18-28 Vol. 3B

PERFORMANCE MONITORING
18.6.1 Enhancements of Performance Monitoring in the Processor
Core

The notable enhancements in the monitoring of performance events in the processor
core include:
• Four general purpose performance counters, IA32_PMCx, associated counter

configuration MSRs, IA32_PERFEVTSELx, and global counter control MSR
supporting simplified control of four counters. Each of the four performance
counter can support precise event based sampling (PEBS) and thread-qualifi-
cation of architectural and non-architectural performance events. Width of
IA32_PMCx supported by hardware has been increased. The width of counter
reported by CPUID.0AH:EAX[23:16] is 48 bits. The PEBS facility in Intel microar-
chitecture code name Nehalem has been enhanced to include new data format to
capture additional information, such as load latency.

• Load latency sampling facility. Average latency of memory load operation can be
sampled using load-latency facility in processors based on Intel microarchi-
tecture code name Nehalem. The facility can measure average latency of load
micro-operations from dispatch to when data is globally observable (GO). This
facility is used in conjunction with the PEBS facility.

• Off-core response counting facility. This facility in the processor core allows
software to count certain transaction responses between the processor core to
sub-systems outside the processor core (uncore). Counting off-core response
requires additional event qualification configuration facility in conjunction with
IA32_PERFEVTSELx. Two off-core response MSRs are provided to use in
conjunction with specific event codes that must be specified with
IA32_PERFEVTSELx.

18.6.1.1 Precise Event Based Sampling (PEBS)
All four general-purpose performance counters, IA32_PMCx, can be used for PEBS if
the performance event supports PEBS. Software uses IA32_MISC_ENABLE[7] and
IA32_MISC_ENABLE[12] to detect whether the performance monitoring facility and
PEBS functionality are supported in the processor. The MSR IA32_PEBS_ENABLE
provides 4 bits that software must use to enable which IA32_PMCx overflow condi-
tion will cause the PEBS record to be captured.

Additionally, the PEBS record is expanded to allow latency information to be
captured. The MSR IA32_PEBS_ENABLE provides 4 additional bits that software must
use to enable latency data recording in the PEBS record upon the respective
IA32_PMCx overflow condition. The layout of IA32_PEBS_ENABLE for processors
based on Intel microarchitecture code name Nehalem is shown in Figure 18-14.

When a counter is enabled to capture machine state (PEBS_EN_PMCx = 1), the
processor will write machine state information to a memory buffer specified by soft-
ware as detailed below. When the counter IA32_PMCx overflows from maximum
count to zero, the PEBS hardware is armed.
Vol. 3B 18-29

PERFORMANCE MONITORING
Upon occurrence of the next PEBS event, the PEBS hardware triggers an assist and
causes a PEBS record to be written. The format of the PEBS record is indicated by the
bit field IA32_PERF_CAPABILITIES[11:8] (see Figure 18-39).

The behavior of PEBS assists is reported by IA32_PERF_CAPABILITIES[6] (see
Figure 18-39). The return instruction pointer (RIP) reported in the PEBS record will
point to the instruction after (+1) the instruction that causes the PEBS assist. The
machine state reported in the PEBS record is the machine state after the instruction
that causes the PEBS assist is retired. For instance, if the instructions:

mov eax, [eax] ; causes PEBS assist

nop

are executed, the PEBS record will report the address of the nop, and the value of
EAX in the PEBS record will show the value read from memory, not the target address
of the read operation.

The PEBS record format is shown in Table 18-12, and each field in the PEBS record is
64 bits long. The PEBS record format, along with debug/store area storage format,
does not change regardless of IA-32e mode is active or not.
CPUID.01H:ECX.DTES64[bit 2] reports the processor’s support for 64-bit
debug/store area storage format is invariant to IA-32e mode.

Figure 18-14. Layout of IA32_PEBS_ENABLE MSR

Table 18-12. PEBS Record Format for Intel Core i7 Processor Family

Byte Offset Field Byte Offset Field

0x0 R/EFLAGS 0x58 R9

LL_EN_PMC3 (R/W)
LL_EN_PMC2 (R/W)

8 7 0

LL_EN_PMC1 (R/W)

32 333 1

Reserved

63 2431 56343536

PEBS_EN_PMC3 (R/W)
PEBS_EN_PMC2 (R/W)
PEBS_EN_PMC1 (R/W)
PEBS_EN_PMC0 (R/W)

LL_EN_PMC0 (R/W)

RESET Value — 0x00000000_00000000
18-30 Vol. 3B

PERFORMANCE MONITORING
In IA-32e mode, the full 64-bit value is written to the register. If the processor is not
operating in IA-32e mode, 32-bit value is written to registers with bits 63:32 zeroed.
Registers not defined when the processor is not in IA-32e mode are written to zero.

Bytes 0xAF:0x90 are enhancement to the PEBS record format. Support for this
enhanced PEBS record format is indicated by IA32_PERF_CAPABILITIES[11:8]
encoding of 0001B.

The value written to bytes 0x97:0x90 is the state of the
IA32_PERF_GLOBAL_STATUS register before the PEBS assist occurred. This value is
written so software can determine which counters overflowed when this PEBS record
was written. Note that this field indicates the overflow status for all counters, regard-
less of whether they were programmed for PEBS or not.

Programming PEBS Facility

Only a subset of non-architectural performance events in the processor support
PEBS. The subset of precise events are listed in Table 18-10. In addition to using
IA32_PERFEVTSELx to specify event unit/mask settings and setting the EN_PMCx bit
in the IA32_PEBS_ENABLE register for the respective counter, the software must also
initialize the DS_BUFFER_MANAGEMENT_AREA data structure in memory to support
capturing PEBS records for precise events.

NOTE
PEBS events are only valid when the following fields of
IA32_PERFEVTSELx are all zero: AnyThread, Edge, Invert, CMask.

The beginning linear address of the DS_BUFFER_MANAGEMENT_AREA data structure
must be programmed into the IA32_DS_AREA register. The layout of the
DS_BUFFER_MANAGEMENT_AREA is shown in Figure 18-15.

0x8 R/EIP 0x60 R10

0x10 R/EAX 0x68 R11

0x18 R/EBX 0x70 R12

0x20 R/ECX 0x78 R13

0x28 R/EDX 0x80 R14

0x30 R/ESI 0x88 R15

0x38 R/EDI 0x90 IA32_PERF_GLOBAL_STATUS

0x40 R/EBP 0x98 Data Linear Address

0x48 R/ESP 0xA0 Data Source Encoding

0x50 R8 0xA8 Latency value (core cycles)

Table 18-12. PEBS Record Format for Intel Core i7 Processor Family

Byte Offset Field Byte Offset Field
Vol. 3B 18-31

PERFORMANCE MONITORING
• PEBS Buffer Base: This field is programmed with the linear address of the first
byte of the PEBS buffer allocated by software. The processor reads this field to
determine the base address of the PEBS buffer. Software should allocate this
memory from the non-paged pool.

• PEBS Index: This field is initially programmed with the same value as the PEBS
Buffer Base field, or the beginning linear address of the PEBS buffer. The
processor reads this field to determine the location of the next PEBS record to
write to. After a PEBS record has been written, the processor also updates this
field with the address of the next PEBS record to be written. The figure above
illustrates the state of PEBS Index after the first PEBS record is written.

Figure 18-15. PEBS Programming Environment

BTS Buffer Base

BTS Index

BTS Absolute

BTS Interrupt

PEBS Absolute

PEBS Interrupt

PEBS

Maximum

Maximum

Threshold

PEBS Index

PEBS Buffer Base

Threshold

Counter0 Reset

Reserved

0H

8H

10H

18H

20H

28H

30H

38H

40H

48H

50H

Branch Record 0

Branch Record 1

Branch Record n

PEBS Record 0

PEBS Record 1

PEBS Record n

BTS Buffer

PEBS Buffer

DS Buffer Management Area

IA32_DS_AREA MSR

58H

60H

PEBS
Counter1 Reset

PEBS
Counter2 Reset

PEBS
Counter3 Reset
18-32 Vol. 3B

PERFORMANCE MONITORING
• PEBS Absolute Maximum: This field represents the absolute address of the
maximum length of the allocated PEBS buffer plus the starting address of the
PEBS buffer. The processor will not write any PEBS record beyond the end of
PEBS buffer, when PEBS Index equals PEBS Absolute Maximum. No signaling
is generated when PEBS buffer is full. Software must reset the PEBS Index field
to the beginning of the PEBS buffer address to continue capturing PEBS records.

• PEBS Interrupt Threshold: This field specifies the threshold value to trigger a
performance interrupt and notify software that the PEBS buffer is nearly full. This
field is programmed with the linear address of the first byte of the PEBS record
within the PEBS buffer that represents the threshold record. After the processor
writes a PEBS record and updates PEBS Index, if the PEBS Index reaches the
threshold value of this field, the processor will generate a performance interrupt.
This is the same interrupt that is generated by a performance counter overflow,
as programmed in the Performance Monitoring Counters vector in the Local
Vector Table of the Local APIC. When a performance interrupt due to PEBS buffer
full is generated, the IA32_PERF_GLOBAL_STATUS.PEBS_Ovf bit will be set.

• PEBS CounterX Reset: This field allows software to set up PEBS counter
overflow condition to occur at a rate useful for profiling workload, thereby
generating multiple PEBS records to facilitate characterizing the profile the
execution of test code. After each PEBS record is written, the processor checks
each counter to see if it overflowed and was enabled for PEBS (the corresponding
bit in IA32_PEBS_ENABLED was set). If these conditions are met, then the reset
value for each overflowed counter is loaded from the DS Buffer Management
Area. For example, if counter IA32_PMC0 caused a PEBS record to be written,
then the value of “PEBS Counter 0 Reset” would be written to counter
IA32_PMC0. If a counter is not enabled for PEBS, its value will not be modified by
the PEBS assist.

Performance Counter Prioritization

Performance monitoring interrupts are triggered by a counter transitioning from
maximum count to zero (assuming IA32_PerfEvtSelX.INT is set). This same transi-
tion will cause PEBS hardware to arm, but not trigger. PEBS hardware triggers upon
detection of the first PEBS event after the PEBS hardware has been armed (a 0 to 1
transition of the counter). At this point, a PEBS assist will be undertaken by the
processor.

Performance counters (fixed and general-purpose) are prioritized in index order. That
is, counter IA32_PMC0 takes precedence over all other counters. Counter
IA32_PMC1 takes precedence over counters IA32_PMC2 and IA32_PMC3, and so on.
This means that if simultaneous overflows or PEBS assists occur, the appropriate
action will be taken for the highest priority performance counter. For example, if
IA32_PMC1 cause an overflow interrupt and IA32_PMC2 causes an PEBS assist
simultaneously, then the overflow interrupt will be serviced first.

The PEBS threshold interrupt is triggered by the PEBS assist, and is by definition
prioritized lower than the PEBS assist. Hardware will not generate separate interrupts
for each counter that simultaneously overflows. General-purpose performance
counters are prioritized over fixed counters.
Vol. 3B 18-33

PERFORMANCE MONITORING
If a counter is programmed with a precise (PEBS-enabled) event and programmed to
generate a counter overflow interrupt, the PEBS assist is serviced before the counter
overflow interrupt is serviced. If in addition the PEBS interrupt threshold is met, the

threshold interrupt is generated after the PEBS assist completes, followed by the
counter overflow interrupt (two separate interrupts are generated).

Uncore counters may be programmed to interrupt one or more processor cores (see
Section 18.6.2). It is possible for interrupts posted from the uncore facility to occur
coincident with counter overflow interrupts from the processor core. Software must
check core and uncore status registers to determine the exact origin of counter over-
flow interrupts.

18.6.1.2 Load Latency Performance Monitoring Facility
The load latency facility provides software a means to characterize the average load
latency to different levels of cache/memory hierarchy. This facility requires processor
supporting enhanced PEBS record format in the PEBS buffer, see Table 18-12. The
facility measures latency from micro-operation (uop) dispatch to when data is
globally observable (GO).

To use this feature software must assure:
• One of the IA32_PERFEVTSELx MSR is programmed to specify the event unit

MEM_INST_RETIRED, and the LATENCY_ABOVE_THRESHOLD event mask must
be specified (IA32_PerfEvtSelX[15:0] = 0x100H). The corresponding counter
IA32_PMCx will accumulate event counts for architecturally visible loads which
exceed the programmed latency threshold specified separately in a MSR. Stores
are ignored when this event is programmed. The CMASK or INV fields of the
IA32_PerfEvtSelX register used for counting load latency must be 0. Writing
other values will result in undefined behavior.

• The MSR_PEBS_LD_LAT_THRESHOLD MSR is programmed with the desired
latency threshold in core clock cycles. Loads with latencies greater than this
value are eligible for counting and latency data reporting. The minimum value
that may be programmed in this register is 3 (the minimum detectable load
latency is 4 core clock cycles).

• The PEBS enable bit in the IA32_PEBS_ENABLE register is set for the corre-
sponding IA32_PMCx counter register. This means that both the PEBS_EN_CTRX
and LL_EN_CTRX bits must be set for the counter(s) of interest. For example, to
enable load latency on counter IA32_PMC0, the IA32_PEBS_ENABLE register
must be programmed with the 64-bit value 0x00000001.00000001.

When the load-latency facility is enabled, load operations are randomly selected by
hardware and tagged to carry information related to data source locality and latency.
Latency and data source information of tagged loads are updated internally.

When a PEBS assist occurs, the last update of latency and data source information
are captured by the assist and written as part of the PEBS record. The PEBS sample
after value (SAV), specified in PEBS CounterX Reset, operates orthogonally to the
tagging mechanism. Loads are randomly tagged to collect latency data. The SAV
18-34 Vol. 3B

PERFORMANCE MONITORING
controls the number of tagged loads with latency information that will be written into
the PEBS record field by the PEBS assists. The load latency data written to the PEBS
record will be for the last tagged load operation which retired just before the PEBS
assist was invoked.

The load-latency information written into a PEBS record (see Table 18-12, bytes
AFH:98H) consists of:
• Data Linear Address: This is the linear address of the target of the load

operation.
• Latency Value: This is the elapsed cycles of the tagged load operation between

dispatch to GO, measured in processor core clock domain.
• Data Source : The encoded value indicates the origin of the data obtained by the

load instruction. The encoding is shown in Table 18-13. In the descriptions local
memory refers to system memory physically attached to a processor package,
and remote memory referrals to system memory physically attached to another
processor package.

Table 18-13. Data Source Encoding for Load Latency Record

Encoding Description

0x0 Unknown L3 cache miss

0x1 Minimal latency core cache hit. This request was satisfied by the L1 data cache.

0x2 Pending core cache HIT. Outstanding core cache miss to same cache-line address
was already underway.

0x3 This data request was satisfied by the L2.

0x4 L3 HIT. Local or Remote home requests that hit L3 cache in the uncore with no
coherency actions required (snooping).

0x5 L3 HIT. Local or Remote home requests that hit the L3 cache and was serviced by
another processor core with a cross core snoop where no modified copies were
found. (clean).

0x6 L3 HIT. Local or Remote home requests that hit the L3 cache and was serviced by
another processor core with a cross core snoop where modified copies were found.
(HITM).

0x7 Reserved

0x8 L3 MISS. Local homed requests that missed the L3 cache and was serviced by
forwarded data following a cross package snoop where no modified copies found.
(Remote home requests are not counted).

0x9 Reserved

0xA L3 MISS. Local home requests that missed the L3 cache and was serviced by local
DRAM (go to shared state).
Vol. 3B 18-35

PERFORMANCE MONITORING
The layout of MSR_PEBS_LD_LAT_THRESHOLD is shown in Figure 18-16.

Bits 15:0 specifies the threshold load latency in core clock cycles. Performance
events with latencies greater than this value are counted in IA32_PMCx and their
latency information is reported in the PEBS record. Otherwise, they are ignored. The
minimum value that may be programmed in this field is 3.

18.6.1.3 Off-core Response Performance Monitoring in the Processor Core
Performance an event using off-core response facility can program any of the four
IA32_PERFEVTSELx MSR with specific event codes and predefine mask bit value.
Each event code for off-core response monitoring requires programming an associ-
ated configuration MSR, MSR_OFFCORE_RSP_0. There is only one off-core response
configuration MSR. Table 18-14 lists the event code, mask value and additional off-
core configuration MSR that must be programmed to count off-core response events
using IA32_PMCx.

0xB L3 MISS. Remote home requests that missed the L3 cache and was serviced by
remote DRAM (go to shared state).

0xC L3 MISS. Local home requests that missed the L3 cache and was serviced by local
DRAM (go to exclusive state).

0xD L3 MISS. Remote home requests that missed the L3 cache and was serviced by
remote DRAM (go to exclusive state).

0xE I/O, Request of input/output operation

0xF The request was to un-cacheable memory.

Figure 18-16. Layout of MSR_PEBS_LD_LAT MSR

Table 18-13. Data Source Encoding for Load Latency Record (Contd.)

Encoding Description

1615 0

Reserved

63

THRHLD - Load latency threshold

RESET Value — 0x00000000_00000000
18-36 Vol. 3B

PERFORMANCE MONITORING
The layout of MSR_OFFCORE_RSP_0 is shown in Figure 18-17. Bits 7:0 specifies the
request type of a transaction request to the uncore. Bits 15:8 specifies the response
of the uncore subsystem.

Table 18-14. Off-Core Response Event Encoding

Event code in
IA32_PERFEVTSELx

Mask Value in
IA32_PERFEVTSELx Required Off-core Response MSR

0xB7 0x01 MSR_OFFCORE_RSP_0 (address 0x1A6)

Figure 18-17. Layout of MSR_OFFCORE_RSP_0 and MSR_OFFCORE_RSP_1 to
Configure Off-core Response Events

Table 18-15. MSR_OFFCORE_RSP_0 and MSR_OFFCORE_RSP_1 Bit Field Definition

Bit Name Offset Description

DMND_DATA_RD 0 (R/W). Counts the number of demand and DCU prefetch data reads
of full and partial cachelines as well as demand data page table
entry cacheline reads. Does not count L2 data read prefetches or
instruction fetches.

RESPONSE TYPE — NON_DRAM (R/W)
RESPONSE TYPE — LOCAL_DRAM (R/W)
RESPONSE TYPE — REMOTE_DRAM (R/W)
RESPONSE TYPE — REMOTE_CACHE_FWD (R/W)

8 7 0

RESPONSE TYPE — RESERVED

11 312 1

Reserved

63 249 5610131415

RESPONSE TYPE — OTHER_CORE_HITM (R/W)
RESPONSE TYPE — OTHER_CORE_HIT_SNP (R/W)
RESPONSE TYPE — UNCORE_HIT (R/W)
REQUEST TYPE — OTHER (R/W)
REQUEST TYPE — PF_IFETCH (R/W)
REQUEST TYPE — PF_RFO (R/W)
REQUEST TYPE — PF_DATA_RD (R/W)
REQUEST TYPE — WB (R/W)
REQUEST TYPE — DMND_IFETCH (R/W)
REQUEST TYPE — DMND_RFO (R/W)
REQUEST TYPE — DMND_DATA_RD (R/W)

RESET Value — 0x00000000_00000000
Vol. 3B 18-37

PERFORMANCE MONITORING
DMND_RFO 1 (R/W). Counts the number of demand and DCU prefetch reads for
ownership (RFO) requests generated by a write to data cacheline.
Does not count L2 RFO.

DMND_IFETCH 2 (R/W). Counts the number of demand and DCU prefetch instruction
cacheline reads. Does not count L2 code read prefetches.

WB 3 (R/W). Counts the number of writeback (modified to exclusive)
transactions.

PF_DATA_RD 4 (R/W). Counts the number of data cacheline reads generated by L2
prefetchers.

PF_RFO 5 (R/W). Counts the number of RFO requests generated by L2
prefetchers.

PF_IFETCH 6 (R/W). Counts the number of code reads generated by L2
prefetchers.

OTHER 7 (R/W). Counts one of the following transaction types, including L3
invalidate, I/O, full or partial writes, WC or non-temporal stores,
CLFLUSH, Fences, lock, unlock, split lock.

UNCORE_HIT 8 (R/W). L3 Hit: local or remote home requests that hit L3 cache in the
uncore with no coherency actions required (snooping).

OTHER_CORE_HI
T_SNP

9 (R/W). L3 Hit: local or remote home requests that hit L3 cache in the
uncore and was serviced by another core with a cross core snoop
where no modified copies were found (clean).

OTHER_CORE_HI
TM

10 (R/W). L3 Hit: local or remote home requests that hit L3 cache in the
uncore and was serviced by another core with a cross core snoop
where modified copies were found (HITM).

Reserved 11 Reserved

REMOTE_CACHE_
FWD

12 (R/W). L3 Miss: local homed requests that missed the L3 cache and
was serviced by forwarded data following a cross package snoop
where no modified copies found. (Remote home requests are not
counted)

REMOTE_DRAM 13 (R/W). L3 Miss: remote home requests that missed the L3 cache and
were serviced by remote DRAM.

LOCAL_DRAM 14 (R/W). L3 Miss: local home requests that missed the L3 cache and
were serviced by local DRAM.

NON_DRAM 15 (R/W). Non-DRAM requests that were serviced by IOH.

Table 18-15. MSR_OFFCORE_RSP_0 and MSR_OFFCORE_RSP_1 Bit Field Definition

Bit Name Offset Description
18-38 Vol. 3B

PERFORMANCE MONITORING
18.6.2 Performance Monitoring Facility in the Uncore
The “uncore” in Intel microarchitecture code name Nehalem refers to subsystems in
the physical processor package that are shared by multiple processor cores. Some of
the sub-systems in the uncore include the L3 cache, Intel QuickPath Interconnect link
logic, and integrated memory controller. The performance monitoring facilities inside
the uncore operates in the same clock domain as the uncore (U-clock domain), which
is usually different from the processor core clock domain. The uncore performance
monitoring facilities described in this section apply to Intel Xeon processor 5500
series and processors with the following CPUID signatures: 06_1AH, 06_1EH,
06_1FH (see Chapter 34). An overview of the uncore performance monitoring facili-
ties is described separately.

The performance monitoring facilities available in the U-clock domain consist of:
• Eight General-purpose counters (MSR_UNCORE_PerfCntr0 through

MSR_UNCORE_PerfCntr7). The counters are 48 bits wide. Each counter is
associated with a configuration MSR, MSR_UNCORE_PerfEvtSelx, to specify
event code, event mask and other event qualification fields. A set of global
uncore performance counter enabling/overflow/status control MSRs are also
provided for software.

• Performance monitoring in the uncore provides an address/opcode match MSR
that provides event qualification control based on address value or QPI command
opcode.

• One fixed-function counter, MSR_UNCORE_FixedCntr0. The fixed-function
uncore counter increments at the rate of the U-clock when enabled.
The frequency of the uncore clock domain can be determined from the uncore
clock ratio which is available in the PCI configuration space register at offset C0H
under device number 0 and Function 0.

18.6.2.1 Uncore Performance Monitoring Management Facility
MSR_UNCORE_PERF_GLOBAL_CTRL provides bit fields to enable/disable general-
purpose and fixed-function counters in the uncore. Figure 18-18 shows the layout of
MSR_UNCORE_PERF_GLOBAL_CTRL for an uncore that is shared by four processor
cores in a physical package.
• EN_PCn (bit n, n = 0, 7): When set, enables counting for the general-purpose

uncore counter MSR_UNCORE_PerfCntr n.
• EN_FC0 (bit 32): When set, enables counting for the fixed-function uncore

counter MSR_UNCORE_FixedCntr0.
• EN_PMI_COREn (bit n, n = 0, 3 if four cores are present): When set, processor

core n is programmed to receive an interrupt signal from any interrupt enabled
uncore counter. PMI delivery due to an uncore counter overflow is enabled by
setting IA32_DEBUG_CTL.Offcore_PMI_EN to 1.

• PMI_FRZ (bit 63): When set, all U-clock uncore counters are disabled when any
one of them signals a performance interrupt. Software must explicitly re-enable
Vol. 3B 18-39

PERFORMANCE MONITORING
the counter by setting the enable bits in MSR_UNCORE_PERF_GLOBAL_CTRL
upon exit from the ISR.

MSR_UNCORE_PERF_GLOBAL_STATUS provides overflow status of the U-clock
performance counters in the uncore. This is a read-only register. If an overflow status
bit is set the corresponding counter has overflowed. The register provides a condition
change bit (bit 63) which can be quickly checked by software to determine if a signif-
icant change has occurred since the last time the condition change status was
cleared. Figure 18-19 shows the layout of MSR_UNCORE_PERF_GLOBAL_STATUS.
• OVF_PCn (bit n, n = 0, 7): When set, indicates general-purpose uncore counter

MSR_UNCORE_PerfCntr n has overflowed.
• OVF_FC0 (bit 32): When set, indicates the fixed-function uncore counter

MSR_UNCORE_FixedCntr0 has overflowed.
• OVF_PMI (bit 61): When set indicates that an uncore counter overflowed and

generated an interrupt request.
• CHG (bit 63): When set indicates that at least one status bit in

MSR_UNCORE_PERF_GLOBAL_STATUS register has changed state.

MSR_UNCORE_PERF_GLOBAL_OVF_CTRL allows software to clear the status bits in
the UNCORE_PERF_GLOBAL_STATUS register. This is a write-only register, and indi-
vidual status bits in the global status register are cleared by writing a binary one to
the corresponding bit in this register. Writing zero to any bit position in this register
has no effect on the uncore PMU hardware.

Figure 18-18. Layout of MSR_UNCORE_PERF_GLOBAL_CTRL MSR

PMI_FRZ (R/W)
EN_PMI_CORE3 (R/W)
EN_PMI_CORE2 (R/W)
EN_PMI_CORE1 (R/W)

8 7 0

EN_PMI_CORE0 (R/W)

32 348 1

Reserved

63 2431 5662 495051

EN_PC7 (R/W)
EN_PC6 (R/W)
EN_PC5 (R/W)
EN_PC4 (R/W)
EN_PC3 (R/W)
EN_PC2 (R/W)
EN_PC1 (R/W)
EN_PC0 (R/W)

EN_FC0 (R/W)

RESET Value — 0x00000000_00000000
18-40 Vol. 3B

PERFORMANCE MONITORING
Figure 18-20 shows the layout of MSR_UNCORE_PERF_GLOBAL_OVF_CTRL.

Figure 18-19. Layout of MSR_UNCORE_PERF_GLOBAL_STATUS MSR

Figure 18-20. Layout of MSR_UNCORE_PERF_GLOBAL_OVF_CTRL MSR

CHG (R/W)
OVF_PMI (R/W)

8 7 032 3 1

Reserved

63 2431 5662 6061

OVF_PC7 (R/O)
OVF_PC6 (R/O)
OVF_PC5 (R/O)
OVF_PC4 (R/O)
OVF_PC3 (R/O)

OVF_PC2 (R/O)
OVF_PC1 (R/O)
OVF_PC0 (R/O)

OVF_FC0 (R/O)

RESET Value — 0x00000000_00000000

CLR_CHG (WO1)
CLR_OVF_PMI (WO1)

8 7 032 3 1

Reserved

63 2431 5662 6061

CLR_OVF_PC7 (WO1)
CLR_OVF_PC6 (WO1)
CLR_OVF_PC5 (WO1)
CLR_OVF_PC4 (WO1)
CLR_OVF_PC3 (WO1)

CLR_OVF_PC2 (WO1)
CLR_OVF_PC1 (WO1)
CLR_OVF_PC0 (WO1)

CLR_OVF_FC0 (WO1)

RESET Value — 0x00000000_00000000
Vol. 3B 18-41

PERFORMANCE MONITORING
• CLR_OVF_PCn (bit n, n = 0, 7): Set this bit to clear the overflow status for
general-purpose uncore counter MSR_UNCORE_PerfCntr n. Writing a value other
than 1 is ignored.

• CLR_OVF_FC0 (bit 32): Set this bit to clear the overflow status for the fixed-
function uncore counter MSR_UNCORE_FixedCntr0. Writing a value other than 1
is ignored.

• CLR_OVF_PMI (bit 61): Set this bit to clear the OVF_PMI flag in
MSR_UNCORE_PERF_GLOBAL_STATUS. Writing a value other than 1 is ignored.

• CLR_CHG (bit 63): Set this bit to clear the CHG flag in
MSR_UNCORE_PERF_GLOBAL_STATUS register. Writing a value other than 1 is
ignored.

18.6.2.2 Uncore Performance Event Configuration Facility
MSR_UNCORE_PerfEvtSel0 through MSR_UNCORE_PerfEvtSel7 are used to select
performance event and configure the counting behavior of the respective uncore
performance counter. Each uncore PerfEvtSel MSR is paired with an uncore perfor-
mance counter. Each uncore counter must be locally configured using the corre-
sponding MSR_UNCORE_PerfEvtSelx and counting must be enabled using the
respective EN_PCx bit in MSR_UNCORE_PERF_GLOBAL_CTRL. Figure 18-21 shows
the layout of MSR_UNCORE_PERFEVTSELx.

• Event Select (bits 7:0): Selects the event logic unit used to detect uncore events.
• Unit Mask (bits 15:8) : Condition qualifiers for the event selection logic specified

in the Event Select field.
• OCC_CTR_RST (bit17): When set causes the queue occupancy counter

associated with this event to be cleared (zeroed). Writing a zero to this bit will be
ignored. It will always read as a zero.

Figure 18-21. Layout of MSR_UNCORE_PERFEVTSELx MSRs

31

INV—Invert counter mask
EN—Enable counters

E—Edge detect
OCC_CTR_RST—Rest Queue Occ

8 7 0

Event Select
Counter Mask

19 1618 15172021222324

Reserved

Unit Mask (UMASK)(CMASK)

63

PMI—Enable PMI on overflow

RESET Value — 0x00000000_00000000
18-42 Vol. 3B

PERFORMANCE MONITORING
• Edge Detect (bit 18): When set causes the counter to increment when a
deasserted to asserted transition occurs for the conditions that can be expressed
by any of the fields in this register.

• PMI (bit 20): When set, the uncore will generate an interrupt request when this
counter overflowed. This request will be routed to the logical processors as
enabled in the PMI enable bits (EN_PMI_COREx) in the register
MSR_UNCORE_PERF_GLOBAL_CTRL.

• EN (bit 22): When clear, this counter is locally disabled. When set, this counter is
locally enabled and counting starts when the corresponding EN_PCx bit in
MSR_UNCORE_PERF_GLOBAL_CTRL is set.

• INV (bit 23): When clear, the Counter Mask field is interpreted as greater than or
equal to. When set, the Counter Mask field is interpreted as less than.

• Counter Mask (bits 31:24): When this field is clear, it has no effect on counting.
When set to a value other than zero, the logical processor compares this field to
the event counts on each core clock cycle. If INV is clear and the event counts are
greater than or equal to this field, the counter is incremented by one. If INV is set
and the event counts are less than this field, the counter is incremented by one.
Otherwise the counter is not incremented.

Figure 18-22 shows the layout of MSR_UNCORE_FIXED_CTR_CTRL.

• EN (bit 0): When clear, the uncore fixed-function counter is locally disabled.
When set, it is locally enabled and counting starts when the EN_FC0 bit in
MSR_UNCORE_PERF_GLOBAL_CTRL is set.

• PMI (bit 2): When set, the uncore will generate an interrupt request when the
uncore fixed-function counter overflowed. This request will be routed to the
logical processors as enabled in the PMI enable bits (EN_PMI_COREx) in the
register MSR_UNCORE_PERF_GLOBAL_CTRL.

Both the general-purpose counters (MSR_UNCORE_PerfCntr) and the fixed-function
counter (MSR_UNCORE_FixedCntr0) are 48 bits wide. They support both counting

Figure 18-22. Layout of MSR_UNCORE_FIXED_CTR_CTRL MSR

8 7 03 1

Reserved

63 2456

PMI - Generate PMI on overflow
EN - Enable

RESET Value — 0x00000000_00000000
Vol. 3B 18-43

PERFORMANCE MONITORING
and sampling usages. The event logic unit can filter event counts to specific regions
of code or transaction types incoming to the home node logic.

18.6.2.3 Uncore Address/Opcode Match MSR
The Event Select field [7:0] of MSR_UNCORE_PERFEVTSELx is used to select
different uncore event logic unit. When the event “ADDR_OPCODE_MATCH“ is
selected in the Event Select field, software can filter uncore performance events
according to transaction address and certain transaction responses. The address
filter and transaction response filtering requires the use of
MSR_UNCORE_ADDR_OPCODE_MATCH register. The layout is shown in
Figure 18-23.

• Addr (bits 39:3): The physical address to match if “MatchSel“ field is set to select
address match. The uncore performance counter will increment if the lowest 40-
bit incoming physical address (excluding bits 2:0) for a transaction request
matches bits 39:3.

• Opcode (bits 47:40) : Bits 47:40 allow software to filter uncore transactions
based on QPI link message class/packed header opcode. These bits are consists
two sub-fields:

— Bits 43:40 specify the QPI packet header opcode,

— Bits 47:44 specify the QPI message classes.
Table 18-16 lists the encodings supported in the opcode field.

Figure 18-23. Layout of MSR_UNCORE_ADDR_OPCODE_MATCH MSR

Table 18-16. Opcode Field Encoding for MSR_UNCORE_ADDR_OPCODE_MATCH

Opcode [43:40] QPI Message Class

Home Request

[47:44] = 0000B

Snoop Response

[47:44] = 0001B

Data Response

[47:44] = 1110B

60

MatchSel—Select addr/Opcode
Opcode—Opcode and Message

3 2 040 394748

Reserved

ADDR

63

ADDR—Bits 39:4 of physical address

RESET Value — 0x00000000_00000000

Opcode
18-44 Vol. 3B

PERFORMANCE MONITORING
• MatchSel (bits 63:61): Software specifies the match criteria according to the
following encoding:

— 000B: Disable addr_opcode match hardware

— 100B: Count if only the address field matches,

— 010B: Count if only the opcode field matches

— 110B: Count if either opcode field matches or the address field matches

— 001B: Count only if both opcode and address field match

— Other encoding are reserved

18.6.3 Intel® Xeon® Processor 7500 Series Performance
Monitoring Facility

The performance monitoring facility in the processor core of Intel® Xeon® processor
7500 series are the same as those supported in Intel Xeon processor 5500 series.
The uncore subsystem in Intel Xeon processor 7500 series are significantly different
The uncore performance monitoring facility consist of many distributed units associ-
ated with individual logic control units (referred to as boxes) within the uncore
subsystem. A high level block diagram of the various box units of the uncore is shown
in Figure 18-24.

Uncore PMUs are programmed via MSR interfaces. Each of the distributed uncore
PMU units have several general-purpose counters. Each counter requires an associ-
ated event select MSR, and may require additional MSRs to configure sub-event
conditions. The uncore PMU MSRs associated with each box can be categorized based
on its functional scope: per-counter, per-box, or global across the uncore. The
number counters available in each box type are different. Each box generally
provides a set of MSRs to enable/disable, check status/overflow of multiple counters
within each box.

1

DMND_IFETCH 2 2

WB 3 3

PF_DATA_RD 4 4

PF_RFO 5 5

PF_IFETCH 6 6

OTHER 7 7

NON_DRAM 15 15

Table 18-16. Opcode Field Encoding for MSR_UNCORE_ADDR_OPCODE_MATCH

Opcode [43:40] QPI Message Class
Vol. 3B 18-45

PERFORMANCE MONITORING
Table 18-17 summarizes the number MSRs for uncore PMU for each box.

Figure 18-24. Distributed Units of the Uncore of Intel® Xeon® Processor 7500 Series

Table 18-17. Uncore PMU MSR Summary

Box
of
Boxes Counters per Box

Counter
Width

General
Purpose

Global
Enable Sub-control MSRs

C-Box 8 6 48 Yes per-box None

S-Box 2 4 48 Yes per-box Match/Mask

B-Box 2 4 48 Yes per-box Match/Mask

M-Box 2 6 48 Yes per-box Yes

R-Box 1 16 (2 port, 8 per
port)

48 Yes per-box Yes

W-Box 1 4 48 Yes per-box None

1 48 No per-box None

U-Box 1 1 48 Yes uncore None

PBox

L3 Cache

PBoxPBox PBox UBoxWBox

RBox BBoxBBoxMBox MBox PBoxPBox

SBox SBox

CBox CBoxCBoxCBox CBoxCBox CBoxCBox

4 Intel QPI Links

SMI Channels

SMI Channels
18-46 Vol. 3B

PERFORMANCE MONITORING
The W-Box provides 4 general-purpose counters, each requiring an event select
configuration MSR, similar to the general-purpose counters in other boxes. There is
also a fixed-function counter that increments clockticks in the uncore clock domain.

For C,S,B,M,R, and W boxes, each box provides an MSR to enable/disable counting,
configuring PMI of multiple counters within the same box, this is somewhat similar
the “global control“ programming interface, IA32_PERF_GLOBAL_CTRL, offered in
the core PMU. Similarly status information and counter overflow control for multiple
counters within the same box are also provided in C,S,B,M,R, and W boxes.

In the U-Box, MSR_U_PMON_GLOBAL_CTL provides overall uncore PMU
enable/disable and PMI configuration control. The scope of status information in the
U-box is at per-box granularity, in contrast to the per-box status information MSR (in
the C,S,B,M,R, and W boxes) providing status information of individual counter over-
flow. The difference in scope also apply to the overflow control MSR in the U-Box
versus those in the other Boxes.

The individual MSRs that provide uncore PMU interfaces are listed in Chapter 34,
Table 34-7 under the general naming style of
MSR_%box#%_PMON_%scope_function%, where %box#% designates the type of
box and zero-based index if there are more the one box of the same type,
%scope_function% follows the examples below:
• Multi-counter enabling MSRs: MSR_U_PMON_GLOBAL_CTL,

MSR_S0_PMON_BOX_CTL, MSR_C7_PMON_BOX_CTL, etc.
• Multi-counter status MSRs: MSR_U_PMON_GLOBAL_STATUS,

MSR_S0_PMON_BOX_STATUS, MSR_C7_PMON_BOX_STATUS, etc.
• Multi-counter overflow control MSRs: MSR_U_PMON_GLOBAL_OVF_CTL,

MSR_S0_PMON_BOX_OVF_CTL, MSR_C7_PMON_BOX_OVF_CTL, etc.
• Performance counters MSRs: the scope is implicitly per counter, e.g.

MSR_U_PMON_CTR, MSR_S0_PMON_CTR0, MSR_C7_PMON_CTR5, etc
• Event select MSRs: the scope is implicitly per counter, e.g.

MSR_U_PMON_EVNT_SEL, MSR_S0_PMON_EVNT_SEL0,
MSR_C7_PMON_EVNT_SEL5, etc

• Sub-control MSRs: the scope is implicitly per-box granularity, e.g.
MSR_M0_PMON_TIMESTAMP, MSR_R0_PMON_IPERF0_P1, MSR_S1_PMON_MATCH.

Details of uncore PMU MSR bit field definitions can be found in a separate document
“Intel Xeon Processor 7500 Series Uncore Performance Monitoring Guide“.
Vol. 3B 18-47

PERFORMANCE MONITORING
18.7 PERFORMANCE MONITORING FOR PROCESSORS
BASED ON INTEL® MICROARCHITECTURE CODE
NAME WESTMERE

All of the performance monitoring programming interfaces (architectural and non-
architectural core PMU facilities, and uncore PMU) described in Section 18.6 also
apply to processors based on Intel® microarchitecture code name Westmere.

Table 18-14 describes a non-architectural performance monitoring event (event code
0B7H) and associated MSR_OFFCORE_RSP_0 (address 1A6H) in the core PMU. This
event and a second functionally equivalent offcore response event using event code
0BBH and MSR_OFFCORE_RSP_1 (address 1A7H) are supported in processors based
on Intel microarchitecture code name Westmere. The event code and event mask
definitions of Non-architectural performance monitoring events are listed in Table
19-14.

The load latency facility is the same as described in Section 18.6.1.2, but added
enhancement to provide more information in the data source encoding field of each
load latency record. The additional information relates to STLB_MISS and LOCK, see
Table 18-22.

18.7.1 Intel® Xeon® Processor E7 Family Performance Monitoring
Facility

The performance monitoring facility in the processor core of the Intel® Xeon®
processor E7 family is the same as those supported in the Intel Xeon processor 5600
series2. The uncore subsystem in the Intel Xeon processor E7 family is similar to
those of the Intel Xeon processor 7500 series. The high level construction of the
uncore sub-system is similar to that shown in Figure 18-24, with the additional capa-
bility that up to 10 C-Box units are supported.

Table 18-18 summarizes the number MSRs for uncore PMU for each box.

2. Exceptions are indicated for event code 0FH in .Table 19-9; and valid bits of data source
encoding field of each load latency record is limited to bits 5:4 of Table 18-22.

Table 18-18. Uncore PMU MSR Summary for Intel® Xeon® Processor E7 Family

Box
of
Boxes Counters per Box

Counter
Width

General
Purpose

Global
Enable Sub-control MSRs

C-Box 10 6 48 Yes per-box None

S-Box 2 4 48 Yes per-box Match/Mask

B-Box 2 4 48 Yes per-box Match/Mask

M-Box 2 6 48 Yes per-box Yes
18-48 Vol. 3B

PERFORMANCE MONITORING
18.8 PERFORMANCE MONITORING FOR PROCESSORS
BASED ON INTEL® MICROARCHITECTURE CODE
NAME SANDY BRIDGE

Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series
are based on Intel microarchitecture code name Sandy Bridge; this section describes
the performance monitoring facilities provided in the processor core. The core PMU
supports architectural performance monitoring capability with version ID 3 (see
Section 18.2.2.2) and a host of non-architectural monitoring capabilities.

Architectural performance monitoring events and non-architectural monitoring
events are programmed using fixed counters and programmable counters/event
select MSRS described in Section 18.2.2.2.

The core PMU’s capability is similar to those described in Section 18.6.1 and Section
18.7, with some differences and enhancements relative to Intel microarchitecture
code name Westmere summarized in Table 18-19.

R-Box 1 16 (2 port, 8 per
port)

48 Yes per-box Yes

W-Box 1 4 48 Yes per-box None

1 48 No per-box None

U-Box 1 1 48 Yes uncore None

Table 18-19. Core PMU Comparison

Box Sandy Bridge Westmere Comment

of Fixed counters
per thread

3 3 Use CPUID to enumerate
of counters.

of general-purpose
counters per core

8 8

Counter width (R,W) R:48 , W: 32/48 R:48, W:32 See Section 18.2.2.3.

of programmable
counters per thread

4 or (8 if a core not shared
by two threads)

4 Use CPUID to enumerate
of counters.

Precise Event Based
Sampling (PEBS)
Events

See Table 18-21 See Table 18-10 IA32_PMC4-IA32_PMC7
do not support PEBS.

Table 18-18. Uncore PMU MSR Summary for Intel® Xeon® Processor E7 Family

Box
of
Boxes Counters per Box

Counter
Width

General
Purpose

Global
Enable Sub-control MSRs
Vol. 3B 18-49

PERFORMANCE MONITORING
18.8.1 Global Counter Control Facilities In Intel® Microarchitecture
Code Name Sandy Bridge

The number of general-purpose performance counters visible to a logical processor
can vary across Processors based on Intel microarchitecture code name Sandy
Bridge. Software must use CPUID to determine the number performance
counters/event select registers (See Section 18.2.1.1).

PEBS-Load Latency See Section 18.8.4.2;
Data source encoding,

STLB miss encoding,

Lock transaction encoding

Data source
encoding

PEBS-Precise Store Section 18.8.4.3 No

PEBS-PDIR yes (using precise
INST_RETIRED.ALL)

No

Off-core Response
Event

MSR 1A6H and 1A7H;
Extended request and
response types

MSR 1A6H and
1A7H, limited
response types

Nehalem supports 1A6H
only.

Figure 18-25. IA32_PERF_GLOBAL_CTRL MSR in Intel® Microarchitecture Code Name
Sandy Bridge

Table 18-19. Core PMU Comparison

Box Sandy Bridge Westmere Comment

FIXED_CTR2 enable
FIXED_CTR1 enable
FIXED_CTR0 enable

PMC7_EN (if PMC7 present)

2 1 0

PMC6_EN (if PMC6 present)

3132333435

Reserved

63

PMC5_EN (if PMC5 present)
PMC4_EN (if PMC4 present)
PMC3_EN
PMC2_EN
PMC1_EN

Valid if CPUID.0AH:EAX[15:8] = 8, else reserved.

PMC0_EN

8 7 6 5 4 3
18-50 Vol. 3B

PERFORMANCE MONITORING
Figure 18-10 depicts the layout of IA32_PERF_GLOBAL_CTRL MSR. The enable bits
(PMC4_EN, PMC5_EN, PMC6_EN, PMC7_EN) corresponding to IA32_PMC4-
IA32_PMC7 are valid only if CPUID.0AH:EAX[15:8] reports a value of ‘8’. If
CPUID.0AH:EAX[15:8] = 4, attempts to set the invalid bits will cause #GP.

Each enable bit in IA32_PERF_GLOBAL_CTRL is AND’ed with the enable bits for all
privilege levels in the respective IA32_PERFEVTSELx or
IA32_PERF_FIXED_CTR_CTRL MSRs to start/stop the counting of respective
counters. Counting is enabled if the AND’ed results is true; counting is disabled when
the result is false.
IA32_PERF_GLOBAL_STATUS MSR provides single-bit status used by software to
query the overflow condition of each performance counter. The MSR also provides
additional status bit to indicate overflow conditions when counters are programmed
for precise-event-based sampling (PEBS). The IA32_PERF_GLOBAL_STATUS MSR
also provides a ‘sticky bit’ to indicate changes to the state of performance monitoring
hardware (see Figure 18-26). A value of 1 in each bit of the PMCx_OVF field indicates
an overflow condition has occurred in the associated counter.

When a performance counter is configured for PEBS, an overflow condition in the
counter generates a performance-monitoring interrupt this signals a PEBS event. On
a PEBS event, the processor stores data records in the buffer area (see Section
17.4.9), clears the counter overflow status, and sets the OvfBuffer bit in
IA32_PERF_GLOBAL_STATUS.

Figure 18-26. IA32_PERF_GLOBAL_STATUS MSR in Intel® Microarchitecture Code
Name Sandy Bridge

62

FIXED_CTR2 Overflow (RO)
FIXED_CTR1 Overflow (RO)
FIXED_CTR0 Overflow (RO)
PMC7_OVF (RO, If PMC7 present)

2 1 0

PMC6_OVF (RO, If PMC6 present)

3132333435

Reserved

63

CondChgd
OvfBuffer

8 7 6 5 4 3

PMC5_OVF (R), If PMC5 present)
PMC4_OVF (RO, If PMC4 present)
PMC3_OVF (RO)
PMC2_OVF (RO)
PMC1_OVF (RO)
PMC0_OVF (RO)

Valid if CPUID.0AH:EAX[15:8] = 8; else reserved
Vol. 3B 18-51

PERFORMANCE MONITORING
IA32_PERF_GLOBAL_OVF_CTL MSR allows software to clear overflow the indicators
for general-purpose or fixed-function counters via a single WRMSR (see
Figure 18-27). Clear overflow indications when:
• Setting up new values in the event select and/or UMASK field for counting or

sampling
• Reloading counter values to continue sampling
• Disabling event counting or sampling

18.8.2 Counter Coalescence
In processors based on Intel microarchitecture code name Sandy Bridge, each
processor core implements eight general-purpose counters. CPUID.0AH:EAX[15:8]
will report either 4 or 8 depending specific processor’s product features.

If a processor core is shared by two logical processors, each logical processors can
access 4 counters (IA32_PMC0-IA32_PMC3). This is the same as in the prior genera-
tion for processors based on Intel microarchitecture code name Nehalem.

If a processor core is not shared by two logical processors, all eight general-purpose
counters are visible, and CPUID.0AH:EAX[15:8] reports 8. IA32_PMC4-IA32_PMC7
occupy MSR addresses 0C5H through 0C8H. Each counter is accompanied by an
event select MSR (IA32_PERFEVTSEL4-IA32_PERFEVTSEL7).

Figure 18-27. IA32_PERF_GLOBAL_OVF_CTRL MSR in Intel microarchitecture code
name Sandy Bridge

62

FIXED_CTR2 ClrOverflow
FIXED_CTR1 ClrOverflow
FIXED_CTR0 ClrOverflow
PMC7_ClrOvf (if PMC7 present)

2 1 0

PMC6_ClrOvf (if PMC6 present)

3132333435

Reserved

63

ClrCondChgd
ClrOvfBuffer

8 7 6 5 4 3

PMC5_ClrOvf (if PMC5 present)
PMC4_ClrOvf (if PMC4 present)
PMC3_ClrOvf
PMC2_ClrOvf
PMC1_ClrOvf
PMC0_ClrOvf

Valid if CPUID.0AH:EAX[15:8] = 8; else reserved
18-52 Vol. 3B

PERFORMANCE MONITORING
If CPUID.0AH:EAX[15:8] report 4, access to IA32_PMC4-IA32_PMC7, IA32_PMC4-
IA32_PMC7 will cause #GP. Writing 1’s to bit position 7:4 of
IA32_PERF_GLOBAL_CTRL, IA32_PERF_GLOBAL_STATUS, or
IA32_PERF_GLOBAL_OVF_CTL will also cause #GP.

18.8.3 Full Width Writes to Performance Counters
Processors based on Intel microarchitecture code name Sandy Bridge support full-
width writes to the general-purpose counters, IA32_PMCx. Support of full-width
writes are enumerated by IA32_PERF_CAPABILITIES.FW_WRITES[13] (see Section
18.2.2.3).

The default behavior of IA32_PMCx is unchanged, i.e. WRMSR to IA32_PMCx results
in a sign-extended 32-bit value of the input EAX written into IA32_PMCx. Full-width
writes must issue WRMSR to a dedicated alias MSR address for each IA32_PMCx.

Software must check the presence of full-width write capability and the presence of
the alias address IA32_A_PMCx by testing IA32_PERF_CAPABILITIES[13].

18.8.4 PEBS Support in Intel® Microarchitecture Code Name Sandy
Bridge

Processors based on Intel microarchitecture code name Sandy Bridge support PEBS,
similar to those offered in prior generation, with several enhanced features. The key
components and differences of PEBS facility relative to Intel microarchitecture code
name Westmere is summarized in Table 18-20.

Table 18-20. PEBS Facility Comparison

Box Sandy Bridge Westmere Comment

Valid IA32_PMCx PMC0-PMC3 PMC0-PMC3 No PEBS on PMC4-PMC7

PEBS Buffer
Programming

 Section 18.6.1.1 Section 18.6.1.1 Unchanged

IA32_PEBS_ENABLE
Layout

 Figure 18-28 Figure 18-14

PEBS record layout Physical Layout same
as Table 18-12

Table 18-12 Enhanced fields at
offsets 98H, A0H, A8H

PEBS Events See Table 18-21 See Table 18-10 IA32_PMC4-IA32_PMC7
do not support PEBS.

PEBS-Load Latency See Table 18-22 Table 18-13

PEBS-Precise Store yes; see Section
18.8.4.3

No IA32_PMC3 only

PEBS-PDIR yes No IA32_PMC1 only
Vol. 3B 18-53

PERFORMANCE MONITORING
Only IA32_PMC0 through IA32_PMC3 support PEBS.

NOTE
PEBS events are only valid when the following fields of
IA32_PERFEVTSELx are all zero: AnyThread, Edge, Invert, CMask.

In IA32_PEBS_ENABLE MSR, bit 63 is defined as PS_ENABLE: When set, this enables
IA32_PMC3 to capture precise store information. Only IA32_PMC3 supports the
precise store facility. In typical usage of PEBS, the bit fields in IA32_PEBS_ENABLE
are written to when the agent software starts PEBS operation; the enabled bit fields
should be modified only when re-programming another PEBS event or cleared when
the agent uses the performance counters for non-PEBS operations.

18.8.4.1 PEBS Record Format
The layout of PEBS records physically identical to those shown in Table 18-12, but the
fields at offset 98H, A0H and A8H have been enhanced to support additional PEBS
capabilities.
• Load/Store Data Linear Address (Offset 98H): This field will contain the linear

address of the source of the load, or linear address of the destination of the store.

SAMPLING
Restriction

Small SAV(CountDown) value incur higher
overhead than prior generation.

Figure 18-28. Layout of IA32_PEBS_ENABLE MSR

Table 18-20. PEBS Facility Comparison

Box Sandy Bridge Westmere Comment

LL_EN_PMC3 (R/W)
LL_EN_PMC2 (R/W)

8 7 0

LL_EN_PMC1 (R/W)

32 333 1

Reserved

63 2431 56343536

PEBS_EN_PMC3 (R/W)
PEBS_EN_PMC2 (R/W)
PEBS_EN_PMC1 (R/W)
PEBS_EN_PMC0 (R/W)

LL_EN_PMC0 (R/W)

RESET Value — 0x00000000_00000000

62

PS_EN (R/W)
18-54 Vol. 3B

PERFORMANCE MONITORING
• Data Source /Store Status (Offset A0H):When load latency is enabled, this field
will contain three piece of information (including an encoded value indicating the
source which satisfied the load operation). The source field encodings are
detailed in Table 18-13. When precise store is enabled, this field will contain
information indicating the status of the store, as detailed in Table 19.

• Latency Value/0 (Offset A8H): When load latency is enabled, this field contains
the latency in cycles to service the load. This field is not meaningful when precise
store is enabled and will be written to zero in that case. Upon writing the PEBS
record, microcode clears the overflow status bits in the
IA32_PERF_GLOBAL_STATUS corresponding to those counters that both
overflowed and were enabled in the IA32_PEBS_ENABLE register. The status bits
of other counters remain unaffected.

The number PEBS events has expanded. The list of PEBS events supported in Intel
microarchitecture code name Sandy Bridge is shown in Table 18-21.

Table 18-21. PEBS Performance Events for Intel® Microarchitecture Code Name Sandy
Bridge

Event Name Event Select Sub-event UMask

INST_RETIRED C0H PREC_DIST 01H1

UOPS_RETIRED C2H All 01H

Retire_Slots 02H

BR_INST_RETIRED C4H Conditional 01H

Near_Call 02H

All_branches 04H

Near_Return 08H

Not_Taken 10H

Near_Taken 20H

Far_Branches 40H

BR_MISP_RETIRED C5H Conditional 01H

Near_Call 02H

All_branches 04H

Not_Taken 10H

Taken 20H

MEM_TRANS_RETIRED CDH Load_Latency 01H

Precise_Store 02H
Vol. 3B 18-55

PERFORMANCE MONITORING
18.8.4.2 Load Latency Performance Monitoring Facility
The load latency facility in Intel microarchitecture code name Sandy Bridge is similar
to that in prior microarchitecture. It provides software a means to characterize the
average load latency to different levels of cache/memory hierarchy. This facility
requires processor supporting enhanced PEBS record format in the PEBS buffer, see
Table 18-12 and Section 18.8.4.1. The facility measures latency from micro-opera-
tion (uop) dispatch to when data is globally observable (GO).

To use this feature software must assure:
• One of the IA32_PERFEVTSELx MSR is programmed to specify the event unit

MEM_TRANS_RETIRED, and the LATENCY_ABOVE_THRESHOLD event mask must be
specified (IA32_PerfEvtSelX[15:0] = 0x1CDH). The corresponding counter
IA32_PMCx will accumulate event counts for architecturally visible loads which
exceed the programmed latency threshold specified separately in a MSR. Stores
are ignored when this event is programmed. The CMASK or INV fields of the
IA32_PerfEvtSelX register used for counting load latency must be 0. Writing
other values will result in undefined behavior.

MEM_UOP_RETIRED D0H Load 01H

Store 02H

STLB_Miss 10H

Lock 20H

SPLIT 40H

ALL 80H

MEM_LOAD_UOPS_RETIRED D1H L1_Hit 01H

L2_Hit 02H

L3_Hit 04H

Hit_LFB 40H

MEM_LOAD_UOPS_LLC_HIT_RETIRED D2H XSNP_Miss 01H

XSNP_Hit 02H

XSNP_Hitm 04H

XSNP_None 08H

MEM_LOAD_UOPS_MISC_RETIRED D4H LLC_Miss 02H

NOTES:
1. Only available on IA32_PMC1.

Table 18-21. PEBS Performance Events for Intel® Microarchitecture Code Name Sandy
Bridge (Contd.)

Event Name Event Select Sub-event UMask
18-56 Vol. 3B

PERFORMANCE MONITORING
• The MSR_PEBS_LD_LAT_THRESHOLD MSR is programmed with the desired
latency threshold in core clock cycles. Loads with latencies greater than this
value are eligible for counting and latency data reporting. The minimum value
that may be programmed in this register is 3 (the minimum detectable load
latency is 4 core clock cycles).

• The PEBS enable bit in the IA32_PEBS_ENABLE register is set for the corre-
sponding IA32_PMCx counter register. This means that both the PEBS_EN_CTRX
and LL_EN_CTRX bits must be set for the counter(s) of interest. For example, to
enable load latency on counter IA32_PMC0, the IA32_PEBS_ENABLE register
must be programmed with the 64-bit value 0x00000001.00000001.

• When Load latency event is enabled, no other PEBS event can be configured with
other counters.

When the load-latency facility is enabled, load operations are randomly selected by
hardware and tagged to carry information related to data source locality and latency.
Latency and data source information of tagged loads are updated internally. The
MEM_TRANS_RETIRED event for load latency counts only tagged retired loads. If a
load is cancelled it will not be counted and the internal state of the load latency
facility will not be updated. In this case the hardware will tag the next available load.

When a PEBS assist occurs, the last update of latency and data source information
are captured by the assist and written as part of the PEBS record. The PEBS sample
after value (SAV), specified in PEBS CounterX Reset, operates orthogonally to the
tagging mechanism. Loads are randomly tagged to collect latency data. The SAV
controls the number of tagged loads with latency information that will be written into
the PEBS record field by the PEBS assists. The load latency data written to the PEBS
record will be for the last tagged load operation which retired just before the PEBS
assist was invoked.

The physical layout of the PEBS records is the same as shown in Table 18-12. The
specificity of Data Source entry at offset A0H has been enhanced to report three
piece of information.

The layout of MSR_PEBS_LD_LAT_THRESHOLD is the same as shown in
Figure 18-16.

Table 18-22. Layout of Data Source Field of Load Latency Record

Field Position Description

Source 3:0 See Table 18-13

STLB_MISS 4 0: The load did not miss the STLB (hit the DTLB or STLB).

1: The load missed the STLB.

Lock 5 0: The load was not part of a locked transaction.

1: The load was part of a locked transaction.

Reserved 63:6
Vol. 3B 18-57

PERFORMANCE MONITORING
18.8.4.3 Precise Store Facility
Processors based on Intel microarchitecture code name Sandy Bridge offer a precise
store capability that complements the load latency facility. It provides a means to
profile store memory references in the system.

Precise stores leverage the PEBS facility and provide additional information about
sampled stores. Having precise memory reference events with linear address infor-
mation for both loads and stores can help programmers improve data structure
layout, eliminate remote node references, and identify cache-line conflicts in NUMA
systems.

Only IA32_PMC3 can be used to capture precise store information. After enabling this
facility, counter overflows will initiate the generation of PEBS records as previously
described in PEBS. Upon counter overflow hardware captures the linear address and
other status information of the next store that retires. This information is then
written to the PEBS record.

To enable the precise store facility, software must complete the following steps.
Please note that the precise store facility relies on the PEBS facility, so the PEBS
configuration requirements must be completed before attempting to capture precise
store information.
• Complete the PEBS configuration steps.
• Program the MEM_TRANS_RETIRED.PRECISE_STORE event in

IA32_PERFEVTSEL3. Only counter 3 (IA32_PMC3) supports collection of precise
store information.

• Set IA32_PEBS_ENABLE[3] and IA32_PEBS_ENABLE[63]. This enables
IA32_PMC3 as a PEBS counter and enables the precise store facility, respectively.

The precise store information written into a PEBS record affects entries at offset 98H,
A0H and A8H of Table 18-12. The specificity of Data Source entry at offset A0H has
been enhanced to report three piece of information.

Table 18-23. Layout of Precise Store Information In PEBS Record

Field Offset Description

Store Data
Linear Address

98H The linear address of the destination of the store.

Store Status A0H DCU Hit (Bit 0): The store hit the data cache closest to the core (lowest
latency cache) if this bit is set, otherwise the store missed the data
cache.

STLB Miss (bit 4): The store missed the STLB if set, otherwise the store
hit the STLB

Locked Access (bit 5): The store was part of a locked access if set,
otherwise the store was not part of a locked access.

Reserved A8H Reserved
18-58 Vol. 3B

PERFORMANCE MONITORING
18.8.4.4 Precise Distribution of Instructions Retired (PDIR)
Upon triggering a PEBS assist, there will be a finite delay between the time the
counter overflows and when the microcode starts to carry out its data collection obli-
gations. INST_RETIRED is a very common event that is used to sample where perfor-
mance bottleneck happened and to help identify its location in instruction address
space. Even if the delay is constant in core clock space, it invariably manifest as vari-
able “skids” in instruction address space. This creates a challenge for programmers
to profile a workload and pinpoint the location of bottlenecks.

The core PMU in processors based on Intel microarchitecture code name Sandy
Bridge include a facility referred to as precise distribution of Instruction Retired
(PDIR).

The PDIR facility mitigates the “skid“ problem by providing an early indication of
when the INST_RETIRED counter is about to overflow, allowing the machine to more
precisely trap on the instruction that actually caused the counter overflow thus elim-
inating skid.

PDIR applies only to the INST_RETIRED.PREC_DIST precise event, and must use
IA32_PMC1 with PerfEvtSel1 property configured and bit 1 in the
IA32_PEBS_ENABLE set to 1. INST_RETIRED.PREC_DIST is a non-architectural
performance event, it is not supported in prior generation microarchitectures. Addi-
tionally, current implementation of PDIR limits tool to quiesce the rest of the
programmable counters in the core when PDIR is active.

18.8.5 Off-core Response Performance Monitoring
The core PMU in processors based on Intel microarchitecture code name Sandy
Bridge provides off-core response facility similar to prior generation. Off-core
response can be programmed only with a specific pair of event select and counter
MSR, and with specific event codes and predefine mask bit value in a dedicated MSR
to specify attributes of the off-core transaction. Two event codes are dedicated for
off-core response event programming. Each event code for off-core response moni-
toring requires programming an associated configuration MSR,
MSR_OFFCORE_RSP_x. Table 18-24 lists the event code, mask value and additional
off-core configuration MSR that must be programmed to count off-core response
events using IA32_PMCx.

The layout of MSR_OFFCORE_RSP_0 and MSR_OFFCORE_RSP_1 are shown in
Figure 18-29 and Figure 18-30. Bits 15:0 specifies the request type of a transaction

Table 18-24. Off-Core Response Event Encoding

Counter Event code UMask Required Off-core Response MSR

PMC0 0xB7 0x01 MSR_OFFCORE_RSP_0 (address 0x1A6)

PMC3 0xBB 0x01 MSR_OFFCORE_RSP_1 (address 0x1A7)
Vol. 3B 18-59

PERFORMANCE MONITORING
request to the uncore. Bits 30:16 specifies supplier information, bits 37:31 specifies
snoop response information.

Figure 18-29. Request_Type Fields for MSR_OFFCORE_RSP_x

Table 18-25. MSR_OFFCORE_RSP_x Request_Type Field Definition

Bit Name Offset Description

DMND_DATA_RD 0 (R/W). Counts the number of demand and DCU prefetch data reads of
full and partial cachelines as well as demand data page table entry
cacheline reads. Does not count L2 data read prefetches or
instruction fetches.

DMND_RFO 1 (R/W). Counts the number of demand and DCU prefetch reads for
ownership (RFO) requests generated by a write to data cacheline.
Does not count L2 RFO prefetches.

DMND_IFETCH 2 (R/W). Counts the number of demand and DCU prefetch instruction
cacheline reads. Does not count L2 code read prefetches.

WB 3 (R/W). Counts the number of writeback (modified to exclusive)
transactions.

PF_DATA_RD 4 (R/W). Counts the number of data cacheline reads generated by L2
prefetchers.

PF_RFO 5 (R/W). Counts the number of RFO requests generated by L2
prefetchers.

RESPONSE TYPE — Other (R/W)
RESERVED

8 7 0

REQUEST TYPE — STRM_ST (R/W)

11 312 1

Reserved

63 249 5610131415

REQUEST TYPE — BUS_LOCKS (R/W)
REQUEST TYPE — PF_LLC_IFETCH (R/W)
REQUEST TYPE — PF_LLC_RFO (R/W)
REQUEST TYPE — PF_LLC_DATA_RD (R/W)
REQUEST TYPE — PF_IFETCH (R/W)
REQUEST TYPE — PF_RFO (R/W)
REQUEST TYPE — PF_DATA_RD (R/W)
REQUEST TYPE — WB (R/W)
REQUEST TYPE — DMND_IFETCH (R/W)
REQUEST TYPE — DMND_RFO (R/W)
REQUEST TYPE — DMND_DATA_RD (R/W)

RESET Value — 0x00000000_00000000

37

See Figure 18-30
18-60 Vol. 3B

PERFORMANCE MONITORING
To properly program this extra register, software must set at least one request type
bit and a valid response type pattern. Otherwise, the event count reported will be
zero. It is permissible and useful to set multiple request and response type bits in
order to obtain various classes of off-core response events. Although
MSR_OFFCORE_RSP_x allow an agent software to program numerous combinations
that meet the above guideline, not all combinations produce meaningful data.

PF_IFETCH 6 (R/W). Counts the number of code reads generated by L2 prefetchers.

PF_LLC_DATA_RD 7 (R/W). L2 prefetcher to L3 for loads.

PF_LLC_RFO 8 (R/W). RFO requests generated by L2 prefetcher

PF_LLC_IFETCH 9 (R/W). L2 prefetcher to L3 for instruction fetches.

BUS_LOCKS 10 (R/W). Bus lock and split lock requests

STRM_ST 11 (R/W). Streaming store requests

OTHER 15 (R/W). Any other request that crosses IDI, including I/O.

Figure 18-30. Response_Supplier and Snoop Info Fields for MSR_OFFCORE_RSP_x

Table 18-25. MSR_OFFCORE_RSP_x Request_Type Field Definition (Contd.)

Bit Name Offset Description

RESPONSE TYPE — NON_DRAM (R/W)
RSPNS_SNOOP — HITM (R/W)

16

RSPNS_SNOOP — HIT_FWD

33 1934 17

Reserved

63 182031 212232353637

RSPNS_SNOOP — HIT_NO_FWD (R/W)
RSPNS_SNOOP — SNP_MISS (R/W)
RSPNS_SNOOP — SNP_NOT_NEEDED (R/W)
RSPNS_SNOOP — SNPl_NONE (R/W)
RSPNS_SUPPLIER — RESERVED

RSPNS_SUPPLIER — LLC_HITF (R/W)
RSPNS_SUPPLIER — LLC_HITS (R/W)
RSPNS_SUPPLIER — LLC_HITE (R/W)
RSPNS_SUPPLIER — LLC_HITM (R/W)
RSPNS_SUPPLIER — No_SUPP (R/W)
RSPNS_SUPPLIER — ANY (R/W)

RESET Value — 0x00000000_00000000

RSPNS_SUPPLIER — Local
Vol. 3B 18-61

PERFORMANCE MONITORING
To specify a complete offcore response filter, software must properly program bits in
the request and response type fields. A valid request type must have at least one bit
set in the non-reserved bits of 15:0. A valid response type must be a non-zero value
of the following expression:

ANY | [(‘OR’ of Supplier Info Bits) & (‘OR’ of Snoop Info Bits)]

If “ANY“ bit is set, the supplier and snoop info bits are ignored.

Table 18-26. MSR_OFFCORE_RSP_x Response Supplier Info Field Definition

Subtype Bit Name Offset Description

Common Any 16 (R/W). Catch all value for any response types.

Supplier
Info

NO_SUPP 17 (R/W). No Supplier Information available

LLC_HITM 18 (R/W). M-state initial lookup stat in L3.

LLC_HITE 19 (R/W). E-state

LLC_HITS 20 (R/W). S-state

LLC_HITF 21 (R/W). F-state

LOCAL 22 (R/W). Local DRAM Controller

Reserved 30:23 Reserved

Table 18-27. MSR_OFFCORE_RSP_x Snoop Info Field Definition

Subtype Bit Name Offset Description

Snoop
Info

SNP_NONE 31 (R/W). No details on snoop-related information

SNP_NOT_NEEDED 32 (R/W). No snoop was needed to satisfy the request.

SNP_MISS 33 (R/W). A snoop was needed and it missed all snooped
caches:

-For LLC Hit, ReslHitl was returned by all cores

-For LLC Miss, Rspl was returned by all sockets and data
was returned from DRAM.
18-62 Vol. 3B

PERFORMANCE MONITORING
18.8.6 Uncore Performance Monitoring Facilities In Intel® Core™ i7-
2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor
Series

The uncore sub-system in Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel®
Core™ i3-2xxx processor series provides a unified L3 that can support up to four
processor cores. The L3 cache consists multiple slices, each slice interface with a
processor via a coherence engine, referred to as a C-Box. Each C-Box provides dedi-
cated facility of MSRs to select uncore performance monitoring events and each C-
Box event select MSR is paired with a counter register, similar in style as those
described in Section 18.6.2.2. The layout of the event select MSRs in the C-Boxes are
shown in Figure 18-31.

SNP_NO_FWD 34 (R/W). A snoop was needed and it hits in at least one
snooped cache. Hit denotes a cache-line was valid before
snoop effect. This includes:

-Snoop Hit w/ Invalidation (LLC Hit, RFO)

-Snoop Hit, Left Shared (LLC Hit/Miss, IFetch/Data_RD)

-Snoop Hit w/ Invalidation and No Forward (LLC Miss, RFO
Hit S)

In the LLC Miss case, data is returned from DRAM.

SNP_FWD 35 (R/W). A snoop was needed and data was forwarded
from a remote socket. This includes:

-Snoop Forward Clean, Left Shared (LLC Hit/Miss,
IFetch/Data_RD/RFT).

HITM 36 (R/W). A snoop was needed and it HitM-ed in local or
remote cache. HitM denotes a cache-line was in modified
state before effect as a results of snoop. This includes:

-Snoop HitM w/ WB (LLC miss, IFetch/Data_RD)

-Snoop Forward Modified w/ Invalidation (LLC Hit/Miss,
RFO)

-Snoop MtoS (LLC Hit, IFetch/Data_RD).

NON_DRAM 37 (R/W). Target was non-DRAM system address. This
includes MMIO transactions.

Table 18-27. MSR_OFFCORE_RSP_x Snoop Info Field Definition (Contd.)

Subtype Bit Name Offset Description
Vol. 3B 18-63

PERFORMANCE MONITORING
At the uncore domain level, there is a master set of control MSRs that centrally
manages all the performance monitoring facility of uncore units. Figure 18-32 shows
the layout of the uncore domain global control

MSR bit 31 of MSR_UNC_PERF_GLOBAL_CTRL provides the capability to freeze all
uncore counters when an overflow condition in a unit counter. When set and upon a
counter overflow, the uncore PMU logic will clear the global enable bit, bit 29.

Additionally, there is also a fixed counter, counting uncore clockticks, for the uncore
domain. Table 18-28 summarizes the number MSRs for uncore PMU for each box.

Figure 18-31. Layout of MSR_UNC_CBO_N_PERFEVTSELx MSR for C-Box N

Figure 18-32. Layout of MSR_UNC_PERF_GLOBAL_CTRL MSR for Uncore

28

INV—Invert counter mask
EN—Enable counters

E—Edge detect

8 7 0

Event Select
Counter Mask

19 1618 15172021222324

Reserved

Unit Mask (UMASK)(CMASK)

63

PMI—Enable PMI on overflow

RESET Value — 0x00000000_00000000

FREEZE—Freeze counters

EN—Enable all uncore counters

02829303132

Reserved

63

PMI—Wake cores on PMI

RESET Value — 0x00000000_00000000

4 3 2 1

Core Select — core 3 select
Core Select — core 2 select
Core Select — core 1select
Core Select — core 0 select
18-64 Vol. 3B

PERFORMANCE MONITORING
18.8.6.1 Uncore Performance Monitoring Events
There are certain restrictions on the uncore performance counters in each C-Box.
Specifically,
• Occupancy events are supported only with counter 0 but not counter 1.

Other uncore C-Box events can be programmed with either counter 0 or 1.

The C-Box uncore performance events described in Table 19-6 can collect perfor-
mance characteristics of transactions initiated by processor core. In that respect,
they are similar to various sub-events in the OFFCORE_RESPONSE family of perfor-
mance events in the core PMU. Information such as data supplier locality (LLC
HIT/MISS) and snoop responses can be collected via OFFCORE_RESPONSE and qual-
ified on a per-thread basis.

On the other hand, uncore performance event logic can not associate its counts with
the same level of per-thread qualification attributes as the core PMU events can.
Therefore, whenever similar event programming capabilities are available from both
core PMU and uncore PMU, the recommendation is that utilizing the core PMU events
may be less affected by artifacts, complex interactions and other factors.

18.8.7 Intel® Xeon® Processor E5 Family Performance Monitoring
Facility

The Intel® Xeon® Processor E5 Family (and Intel® Core™ i7-3930K Processor) are
based on Intel microarchitecture code name Sandy Bridge. While the processor cores
share the same microarchitecture as those of the Intel® Xeon® Processor E3 Family
and second generation Intel Core i7-2xxx, Intel Core i5-2xxx, Intel Core i3-2xxx
processor series, the uncore subsystems are different. An overview of the uncore
performance monitoring facilities of the Intel Xeon processor E5 family (and Intel
Core i7-3930K processor) is described in Section 18.8.8.

Thus, the performance monitoring facilities in the processor core generally are the
same as those described in Section 18.8 through Section 18.8.5. However, the
MSR_OFFCORE_RSP_0/MSR_OFFCORE_RSP_1 Response Supplier Info field shown in
Table 18-26 applies to Intel Core Processors with CPUID signature of
DisplayFamily_DisplayModel encoding of 06_2AH; next generation Intel Xeon
processor with CPUID signature of DisplayFamily_DisplayModel encoding of 06_2DH
supports an additional field for remote DRAM controller shown in Table 18-29. Addi-

Table 18-28. Uncore PMU MSR Summary

Box
of
Boxes Counters per Box

Counter
Width

General
Purpose

Global
Enable Comment

C-Box Up to 4 2 44 Yes Per-box

NCU 1 48 No Uncore
Vol. 3B 18-65

PERFORMANCE MONITORING
tionally, the are some small differences in the non-architectural performance moni-
toring events (see Table 19-4).

18.8.8 Intel® Xeon® Processor E5 Family Uncore Performance
Monitoring Facility

The uncore subsystem in the Intel Xeon processor E5 family based on Intel microar-
chitecture Sandy Bridge has some similarities with those of the Intel Xeon processor
E7 family based on Intel microarchitecture Sandy Bridge. Within the uncore
subsystem, localized performance counter sets are provided at logic control unit
scope. For example, each Cbox caching agent has a set of local performance
counters, and the power controller unit (PCU) has its own local performance
counters. Up to 8 C-Box units are supported in the uncore sub-system.

Table 18-30 summarizes the uncore PMU facilities providing MSR interfaces.

Table 18-29. MSR_OFFCORE_RSP_x Supplier Info Field Definition for Next Generation
Intel Xeon Processor

Subtype Bit Name Offset Description

Common Any 16 (R/W). Catch all value for any response types.

Supplier
Info

NO_SUPP 17 (R/W). No Supplier Information available

LLC_HITM 18 (R/W). M-state initial lookup stat in L3.

LLC_HITE 19 (R/W). E-state

LLC_HITS 20 (R/W). S-state

LLC_HITF 21 (R/W). F-state

LOCAL 22 (R/W). Local DRAM Controller

Remote 30:23 (R/W): Remote DRAM Controller (either all 0s or all 1s)

Table 18-30. Uncore PMU MSR Summary for Intel® Xeon® Processor E5 Family

Box
of
Boxes Counters per Box

Counter
Width

General
Purpose

Global
Enable Sub-control MSRs

C-Box 8 4 44 Yes per-box None

PCU 1 4 48 Yes per-box Match/Mask

U-Box 1 2 44 Yes uncore None
18-66 Vol. 3B

PERFORMANCE MONITORING
18.9 NEXT GENERATION INTEL CORE PROCESSOR
PERFORMANCE MONITORING FACILITY

The Next Generation Intel Core processor is based on Intel® microarchitecture code
name Ivy Bridge. The performance monitoring facilities in the processor core gener-
ally are the same as those described in Section 18.8 through Section 18.8.5. The
non-architectural performance monitoring events supported by the processor core
are listed in Table 19-4.

18.10 PERFORMANCE MONITORING (PROCESSORS
BASED ON INTEL NETBURST®
MICROARCHITECTURE)

The performance monitoring mechanism provided in Pentium 4 and Intel Xeon
processors is different from that provided in the P6 family and Pentium processors.
While the general concept of selecting, filtering, counting, and reading performance
events through the WRMSR, RDMSR, and RDPMC instructions is unchanged, the
setup mechanism and MSR layouts are incompatible with the P6 family and Pentium
processor mechanisms. Also, the RDPMC instruction has been enhanced to read the
the additional performance counters provided in the Pentium 4 and Intel Xeon
processors and to allow faster reading of counters.

The event monitoring mechanism provided with the Pentium 4 and Intel Xeon
processors (based on Intel NetBurst microarchitecture) consists of the following facil-
ities:
• The IA32_MISC_ENABLE MSR, which indicates the availability in an Intel 64 or

IA-32 processor of the performance monitoring and precise event-based
sampling (PEBS) facilities.

• Event selection control (ESCR) MSRs for selecting events to be monitored with
specific performance counters. The number available differs by family and model
(43 to 45).

• 18 performance counter MSRs for counting events.
• 18 counter configuration control (CCCR) MSRs, with one CCCR associated with

each performance counter. CCCRs sets up an associated performance counter for
a specific method of counting.

• A debug store (DS) save area in memory for storing PEBS records.
• The IA32_DS_AREA MSR, which establishes the location of the DS save area.
• The debug store (DS) feature flag (bit 21) returned by the CPUID instruction,

which indicates the availability of the DS mechanism.
• The MSR_PEBS_ENABLE MSR, which enables the PEBS facilities and replay

tagging used in at-retirement event counting.
Vol. 3B 18-67

PERFORMANCE MONITORING
• A set of predefined events and event metrics that simplify the setting up of the
performance counters to count specific events.

Table 18-31 lists the performance counters and their associated CCCRs, along with
the ESCRs that select events to be counted for each performance counter. Predefined
event metrics and events are listed in Chapter 19, “Performance-Monitoring Events.”

Table 18-31. Performance Counter MSRs and Associated CCCR and
ESCR MSRs (Pentium 4 and Intel Xeon Processors)

Counter CCCR ESCR

Name No. Addr Name Addr Name No. Addr

MSR_BPU_COUNTER0 0 300H MSR_BPU_CCCR0 360H MSR_BSU_ESCR0
MSR_FSB_ESCR0
MSR_MOB_ESCR0
MSR_PMH_ESCR0
MSR_BPU_ESCR0
MSR_IS_ESCR0
MSR_ITLB_ESCR0
MSR_IX_ESCR0

7
6
2
4
0
1
3
5

3A0H
3A2H
3AAH
3ACH
3B2H
3B4H
3B6H
3C8H

MSR_BPU_COUNTER1 1 301H MSR_BPU_CCCR1 361H MSR_BSU_ESCR0
MSR_FSB_ESCR0
MSR_MOB_ESCR0
MSR_PMH_ESCR0
MSR_BPU_ESCR0
MSR_IS_ESCR0
MSR_ITLB_ESCR0
MSR_IX_ESCR0

7
6
2
4
0
1
3
5

3A0H
3A2H
3AAH
3ACH
3B2H
3B4H
3B6H
3C8H

MSR_BPU_COUNTER2 2 302H MSR_BPU_CCCR2 362H MSR_BSU_ESCR1
MSR_FSB_ESCR1
MSR_MOB_ESCR1
MSR_PMH_ESCR1
MSR_BPU_ESCR1
MSR_IS_ESCR1
MSR_ITLB_ESCR1
MSR_IX_ESCR1

7
6
2
4
0
1
3
5

3A1H
3A3H
3ABH
3ADH
3B3H
3B5H
3B7H
3C9H

MSR_BPU_COUNTER3 3 303H MSR_BPU_CCCR3 363H MSR_BSU_ESCR1
MSR_FSB_ESCR1
MSR_MOB_ESCR1
MSR_PMH_ESCR1
MSR_BPU_ESCR1
MSR_IS_ESCR1
MSR_ITLB_ESCR1
MSR_IX_ESCR1

7
6
2
4
0
1
3
5

3A1H
3A3H
3ABH
3ADH
3B3H
3B5H
3B7H
3C9H

MSR_MS_COUNTER0 4 304H MSR_MS_CCCR0 364H MSR_MS_ESCR0
MSR_TBPU_ESCR0
MSR_TC_ESCR0

0
2
1

3C0H
3C2H
3C4H

MSR_MS_COUNTER1 5 305H MSR_MS_CCCR1 365H MSR_MS_ESCR0
MSR_TBPU_ESCR0
MSR_TC_ESCR0

0
2
1

3C0H
3C2H
3C4H
18-68 Vol. 3B

PERFORMANCE MONITORING
MSR_MS_COUNTER2 6 306H MSR_MS_CCCR2 366H MSR_MS_ESCR1
MSR_TBPU_ESCR1
MSR_TC_ESCR1

0
2
1

3C1H
3C3H
3C5H

MSR_MS_COUNTER3 7 307H MSR_MS_CCCR3 367H MSR_MS_ESCR1
MSR_TBPU_ESCR1
MSR_TC_ESCR1

0
2
1

3C1H
3C3H
3C5H

MSR_FLAME_
COUNTER0

8 308H MSR_FLAME_CCCR0 368H MSR_FIRM_ESCR0
MSR_FLAME_ESCR0
MSR_DAC_ESCR0
MSR_SAAT_ESCR0
MSR_U2L_ESCR0

1
0
5
2
3

3A4H
3A6H
3A8H
3AEH
3B0H

MSR_FLAME_
COUNTER1

9 309H MSR_FLAME_CCCR1 369H MSR_FIRM_ESCR0
MSR_FLAME_ESCR0
MSR_DAC_ESCR0
MSR_SAAT_ESCR0
MSR_U2L_ESCR0

1
0
5
2
3

3A4H
3A6H
3A8H
3AEH
3B0H

MSR_FLAME_
COUNTER2

10 30AH MSR_FLAME_CCCR2 36AH MSR_FIRM_ESCR1
MSR_FLAME_ESCR1
MSR_DAC_ESCR1
MSR_SAAT_ESCR1
MSR_U2L_ESCR1

1
0
5
2
3

3A5H
3A7H
3A9H
3AFH
3B1H

MSR_FLAME_
COUNTER3

11 30BH MSR_FLAME_CCCR3 36BH MSR_FIRM_ESCR1
MSR_FLAME_ESCR1
MSR_DAC_ESCR1
MSR_SAAT_ESCR1
MSR_U2L_ESCR1

1
0
5
2
3

3A5H
3A7H
3A9H
3AFH
3B1H

MSR_IQ_COUNTER0 12 30CH MSR_IQ_CCCR0 36CH MSR_CRU_ESCR0
MSR_CRU_ESCR2
MSR_CRU_ESCR4
MSR_IQ_ESCR01

MSR_RAT_ESCR0
MSR_SSU_ESCR0
MSR_ALF_ESCR0

4
5
6
0
2
3
1

3B8H
3CCH
3E0H
3BAH
3BCH
3BEH
3CAH

MSR_IQ_COUNTER1 13 30DH MSR_IQ_CCCR1 36DH MSR_CRU_ESCR0
MSR_CRU_ESCR2
MSR_CRU_ESCR4
MSR_IQ_ESCR01

MSR_RAT_ESCR0
MSR_SSU_ESCR0
MSR_ALF_ESCR0

4
5
6
0
2
3
1

3B8H
3CCH
3E0H
3BAH
3BCH
3BEH
3CAH

MSR_IQ_COUNTER2 14 30EH MSR_IQ_CCCR2 36EH MSR_CRU_ESCR1
MSR_CRU_ESCR3
MSR_CRU_ESCR5
MSR_IQ_ESCR11

MSR_RAT_ESCR1
MSR_ALF_ESCR1

4
5
6
0
2
1

3B9H
3CDH
3E1H
3BBH
3BDH
3CBH

Table 18-31. Performance Counter MSRs and Associated CCCR and
ESCR MSRs (Pentium 4 and Intel Xeon Processors) (Contd.)

Counter CCCR ESCR

Name No. Addr Name Addr Name No. Addr
Vol. 3B 18-69

PERFORMANCE MONITORING
The types of events that can be counted with these performance monitoring facilities
are divided into two classes: non-retirement events and at-retirement events.
• Non-retirement events (see Table 19-16) are events that occur any time during

instruction execution (such as bus transactions or cache transactions).
• At-retirement events (see Table 19-17) are events that are counted at the

retirement stage of instruction execution, which allows finer granularity in
counting events and capturing machine state.
The at-retirement counting mechanism includes facilities for tagging μops that
have encountered a particular performance event during instruction execution.
Tagging allows events to be sorted between those that occurred on an execution
path that resulted in architectural state being committed at retirement as well as
events that occurred on an execution path where the results were eventually
cancelled and never committed to architectural state (such as, the execution of a
mispredicted branch).

The Pentium 4 and Intel Xeon processor performance monitoring facilities support
the three usage models described below. The first two models can be used to count
both non-retirement and at-retirement events; the third model is used to count a
subset of at-retirement events:
• Event counting — A performance counter is configured to count one or more

types of events. While the counter is counting, software reads the counter at

MSR_IQ_COUNTER3 15 30FH MSR_IQ_CCCR3 36FH MSR_CRU_ESCR1
MSR_CRU_ESCR3
MSR_CRU_ESCR5
MSR_IQ_ESCR11

MSR_RAT_ESCR1
MSR_ALF_ESCR1

4
5
6
 0

2
1

3B9H
3CDH
3E1H

3BBH
3BDH
3CBH

MSR_IQ_COUNTER4 16 310H MSR_IQ_CCCR4 370H MSR_CRU_ESCR0
MSR_CRU_ESCR2
MSR_CRU_ESCR4
MSR_IQ_ESCR01

MSR_RAT_ESCR0
MSR_SSU_ESCR0
MSR_ALF_ESCR0

4
5
6
0
2
3
1

3B8H
3CCH
3E0H
3BAH
3BCH
3BEH
3CAH

MSR_IQ_COUNTER5 17 311H MSR_IQ_CCCR5 371H MSR_CRU_ESCR1
MSR_CRU_ESCR3
MSR_CRU_ESCR5
MSR_IQ_ESCR11

MSR_RAT_ESCR1
MSR_ALF_ESCR1

4
5
6
0
2
1

3B9H
3CDH
3E1H
3BBH
3BDH
3CBH

NOTES:
1. MSR_IQ_ESCR0 and MSR_IQ_ESCR1 are available only on early processor builds (family 0FH, mod-

els 01H-02H). These MSRs are not available on later versions.

Table 18-31. Performance Counter MSRs and Associated CCCR and
ESCR MSRs (Pentium 4 and Intel Xeon Processors) (Contd.)

Counter CCCR ESCR

Name No. Addr Name Addr Name No. Addr
18-70 Vol. 3B

PERFORMANCE MONITORING
selected intervals to determine the number of events that have been counted
between the intervals.

• Non-precise event-based sampling — A performance counter is configured to
count one or more types of events and to generate an interrupt when it
overflows. To trigger an overflow, the counter is preset to a modulus value that
will cause the counter to overflow after a specific number of events have been
counted.
When the counter overflows, the processor generates a performance monitoring
interrupt (PMI). The interrupt service routine for the PMI then records the return
instruction pointer (RIP), resets the modulus, and restarts the counter. Code
performance can be analyzed by examining the distribution of RIPs with a tool
like the VTune™ Performance Analyzer.

• Precise event-based sampling (PEBS) — This type of performance
monitoring is similar to non-precise event-based sampling, except that a
memory buffer is used to save a record of the architectural state of the processor
whenever the counter overflows. The records of architectural state provide
additional information for use in performance tuning. Precise event-based
sampling can be used to count only a subset of at-retirement events.

The following sections describe the MSRs and data structures used for performance
monitoring in the Pentium 4 and Intel Xeon processors.

18.10.1 ESCR MSRs
The 45 ESCR MSRs (see Table 18-31) allow software to select specific events to be
countered. Each ESCR is usually associated with a pair of performance counters (see
Table 18-31) and each performance counter has several ESCRs associated with it
(allowing the events counted to be selected from a variety of events).

Figure 18-33 shows the layout of an ESCR MSR. The functions of the flags and fields
are:
• USR flag, bit 2 — When set, events are counted when the processor is operating

at a current privilege level (CPL) of 1, 2, or 3. These privilege levels are generally
used by application code and unprotected operating system code.

• OS flag, bit 3 — When set, events are counted when the processor is operating
at CPL of 0. This privilege level is generally reserved for protected operating
system code. (When both the OS and USR flags are set, events are counted at all
privilege levels.)
Vol. 3B 18-71

PERFORMANCE MONITORING
• Tag enable, bit 4 — When set, enables tagging of μops to assist in at-retirement
event counting; when clear, disables tagging. See Section 18.10.6, “At-
Retirement Counting.”

• Tag value field, bits 5 through 8 — Selects a tag value to associate with a μop
to assist in at-retirement event counting.

• Event mask field, bits 9 through 24 — Selects events to be counted from the
event class selected with the event select field.

• Event select field, bits 25 through 30) — Selects a class of events to be
counted. The events within this class that are counted are selected with the event
mask field.

When setting up an ESCR, the event select field is used to select a specific class of
events to count, such as retired branches. The event mask field is then used to select
one or more of the specific events within the class to be counted. For example, when
counting retired branches, four different events can be counted: branch not taken
predicted, branch not taken mispredicted, branch taken predicted, and branch taken
mispredicted. The OS and USR flags allow counts to be enabled for events that occur
when operating system code and/or application code are being executed. If neither
the OS nor USR flag is set, no events will be counted.

The ESCRs are initialized to all 0s on reset. The flags and fields of an ESCR are config-
ured by writing to the ESCR using the WRMSR instruction. Table 18-31 gives the
addresses of the ESCR MSRs.

Writing to an ESCR MSR does not enable counting with its associated performance
counter; it only selects the event or events to be counted. The CCCR for the selected
performance counter must also be configured. Configuration of the CCCR includes
selecting the ESCR and enabling the counter.

Figure 18-33. Event Selection Control Register (ESCR) for Pentium 4
and Intel Xeon Processors without Intel HT Technology Support

31 24 8 0123492530

63 32

Reserved

Event Mask
Event
Select

USR
OS

5

Tag Enable

Tag
Value

Reserved
18-72 Vol. 3B

PERFORMANCE MONITORING
18.10.2 Performance Counters
The performance counters in conjunction with the counter configuration control
registers (CCCRs) are used for filtering and counting the events selected by the
ESCRs. The Pentium 4 and Intel Xeon processors provide 18 performance counters
organized into 9 pairs. A pair of performance counters is associated with a particular
subset of events and ESCR’s (see Table 18-31). The counter pairs are partitioned into
four groups:
• The BPU group, includes two performance counter pairs:

— MSR_BPU_COUNTER0 and MSR_BPU_COUNTER1.

— MSR_BPU_COUNTER2 and MSR_BPU_COUNTER3.
• The MS group, includes two performance counter pairs:

— MSR_MS_COUNTER0 and MSR_MS_COUNTER1.

— MSR_MS_COUNTER2 and MSR_MS_COUNTER3.
• The FLAME group, includes two performance counter pairs:

— MSR_FLAME_COUNTER0 and MSR_FLAME_COUNTER1.

— MSR_FLAME_COUNTER2 and MSR_FLAME_COUNTER3.
• The IQ group, includes three performance counter pairs:

— MSR_IQ_COUNTER0 and MSR_IQ_COUNTER1.

— MSR_IQ_COUNTER2 and MSR_IQ_COUNTER3.

— MSR_IQ_COUNTER4 and MSR_IQ_COUNTER5.

The MSR_IQ_COUNTER4 counter in the IQ group provides support for the PEBS.

Alternate counters in each group can be cascaded: the first counter in one pair can
start the first counter in the second pair and vice versa. A similar cascading is
possible for the second counters in each pair. For example, within the BPU group of
counters, MSR_BPU_COUNTER0 can start MSR_BPU_COUNTER2 and vice versa, and
MSR_BPU_COUNTER1 can start MSR_BPU_COUNTER3 and vice versa (see Section
18.10.5.6, “Cascading Counters”). The cascade flag in the CCCR register for the
performance counter enables the cascading of counters.

Each performance counter is 40-bits wide (see Figure 18-34). The RDPMC instruction
has been enhanced in the Pentium 4 and Intel Xeon processors to allow reading of
either the full counter-width (40-bits) or the low 32-bits of the counter. Reading the
low 32-bits is faster than reading the full counter width and is appropriate in situa-
tions where the count is small enough to be contained in 32 bits.

The RDPMC instruction can be used by programs or procedures running at any privi-
lege level and in virtual-8086 mode to read these counters. The PCE flag in control
register CR4 (bit 8) allows the use of this instruction to be restricted to only programs
and procedures running at privilege level 0.
Vol. 3B 18-73

PERFORMANCE MONITORING
The RDPMC instruction is not serializing or ordered with other instructions. Thus, it
does not necessarily wait until all previous instructions have been executed before
reading the counter. Similarly, subsequent instructions may begin execution before
the RDPMC instruction operation is performed.

Only the operating system, executing at privilege level 0, can directly manipulate the
performance counters, using the RDMSR and WRMSR instructions. A secure oper-
ating system would clear the PCE flag during system initialization to disable direct
user access to the performance-monitoring counters, but provide a user-accessible
programming interface that emulates the RDPMC instruction.

Some uses of the performance counters require the counters to be preset before
counting begins (that is, before the counter is enabled). This can be accomplished by
writing to the counter using the WRMSR instruction. To set a counter to a specified
number of counts before overflow, enter a 2s complement negative integer in the
counter. The counter will then count from the preset value up to -1 and overflow.
Writing to a performance counter in a Pentium 4 or Intel Xeon processor with the
WRMSR instruction causes all 40 bits of the counter to be written.

18.10.3 CCCR MSRs
Each of the 18 performance counters in a Pentium 4 or Intel Xeon processor has one
CCCR MSR associated with it (see Table 18-31). The CCCRs control the filtering and
counting of events as well as interrupt generation. Figure 18-35 shows the layout of
an CCCR MSR. The functions of the flags and fields are as follows:
• Enable flag, bit 12 — When set, enables counting; when clear, the counter is

disabled. This flag is cleared on reset.
• ESCR select field, bits 13 through 15 — Identifies the ESCR to be used to

select events to be counted with the counter associated with the CCCR.
• Compare flag, bit 18 — When set, enables filtering of the event count; when

clear, disables filtering. The filtering method is selected with the threshold,
complement, and edge flags.

• Complement flag, bit 19 — Selects how the incoming event count is compared
with the threshold value. When set, event counts that are less than or equal to
the threshold value result in a single count being delivered to the performance

Figure 18-34. Performance Counter (Pentium 4 and Intel Xeon Processors)

63 32

Reserved

31 0

Counter

39

Counter
18-74 Vol. 3B

PERFORMANCE MONITORING
counter; when clear, counts greater than the threshold value result in a count
being delivered to the performance counter (see Section 18.10.5.2, “Filtering
Events”). The complement flag is not active unless the compare flag is set.

• Threshold field, bits 20 through 23 — Selects the threshold value to be used
for comparisons. The processor examines this field only when the compare flag is
set, and uses the complement flag setting to determine the type of threshold
comparison to be made. The useful range of values that can be entered in this
field depend on the type of event being counted (see Section 18.10.5.2, “Filtering
Events”).

• Edge flag, bit 24 — When set, enables rising edge (false-to-true) edge
detection of the threshold comparison output for filtering event counts; when
clear, rising edge detection is disabled. This flag is active only when the compare
flag is set.

• FORCE_OVF flag, bit 25 — When set, forces a counter overflow on every
counter increment; when clear, overflow only occurs when the counter actually
overflows.

• OVF_PMI flag, bit 26 — When set, causes a performance monitor interrupt
(PMI) to be generated when the counter overflows occurs; when clear, disables
PMI generation. Note that the PMI is generated on the next event count after the
counter has overflowed.

Figure 18-35. Counter Configuration Control Register (CCCR)

63 32

Reserved

Reserved

Reserved: Must be set to 11B
Compare

Enable

31 24 23 20 19 16 15 12 11 017182526272930

Edge
FORCE_OVF

OVF_PMI

Threshold

Cascade
OVF

Complement

Reserved

13

ESCR
Select

Reserved
Vol. 3B 18-75

PERFORMANCE MONITORING
• Cascade flag, bit 30 — When set, enables counting on one counter of a counter
pair when its alternate counter in the other the counter pair in the same counter
group overflows (see Section 18.10.2, “Performance Counters,” for further
details); when clear, disables cascading of counters.

• OVF flag, bit 31 — Indicates that the counter has overflowed when set. This flag
is a sticky flag that must be explicitly cleared by software.

The CCCRs are initialized to all 0s on reset.

The events that an enabled performance counter actually counts are selected and
filtered by the following flags and fields in the ESCR and CCCR registers and in the
qualification order given:

1. The event select and event mask fields in the ESCR select a class of events to be
counted and one or more event types within the class, respectively.

2. The OS and USR flags in the ESCR selected the privilege levels at which events
will be counted.

3. The ESCR select field of the CCCR selects the ESCR. Since each counter has
several ESCRs associated with it, one ESCR must be chosen to select the classes
of events that may be counted.

4. The compare and complement flags and the threshold field of the CCCR select an
optional threshold to be used in qualifying an event count.

5. The edge flag in the CCCR allows events to be counted only on rising-edge transi-
tions.

The qualification order in the above list implies that the filtered output of one “stage”
forms the input for the next. For instance, events filtered using the privilege level
flags can be further qualified by the compare and complement flags and the
threshold field, and an event that matched the threshold criteria, can be further qual-
ified by edge detection.

The uses of the flags and fields in the CCCRs are discussed in greater detail in Section
18.10.5, “Programming the Performance Counters for Non-Retirement Events.”

18.10.4 Debug Store (DS) Mechanism
The debug store (DS) mechanism was introduced in the Pentium 4 and Intel Xeon
processors to allow various types of information to be collected in memory-resident
buffers for use in debugging and tuning programs. For the Pentium 4 and Intel Xeon
processors, the DS mechanism is used to collect two types of information: branch
records and precise event-based sampling (PEBS) records. The availability of the DS
mechanism in a processor is indicated with the DS feature flag (bit 21) returned by
the CPUID instruction.

See Section 17.4.5, “Branch Trace Store (BTS),” and Section 18.10.7, “Precise Event-
Based Sampling (PEBS),” for a description of these facilities. Records collected with
the DS mechanism are saved in the DS save area. See Section 17.4.9, “BTS and DS
Save Area.”
18-76 Vol. 3B

PERFORMANCE MONITORING
18.10.5 Programming the Performance Counters
for Non-Retirement Events

The basic steps to program a performance counter and to count events include the
following:

1. Select the event or events to be counted.

2. For each event, select an ESCR that supports the event using the values in the
ESCR restrictions row in Table 19-16, Chapter 19.

3. Match the CCCR Select value and ESCR name in Table 19-16 to a value listed in
Table 18-31; select a CCCR and performance counter.

4. Set up an ESCR for the specific event or events to be counted and the privilege
levels at which the are to be counted.

5. Set up the CCCR for the performance counter by selecting the ESCR and the
desired event filters.

6. Set up the CCCR for optional cascading of event counts, so that when the
selected counter overflows its alternate counter starts.

7. Set up the CCCR to generate an optional performance monitor interrupt (PMI)
when the counter overflows. If PMI generation is enabled, the local APIC must be
set up to deliver the interrupt to the processor and a handler for the interrupt
must be in place.

8. Enable the counter to begin counting.

18.10.5.1 Selecting Events to Count
Table 19-17 in Chapter 19 lists a set of at-retirement events for the Pentium 4 and
Intel Xeon processors. For each event listed in Table 19-17, setup information is
provided. Table 18-32 gives an example of one of the events.

Table 18-32. Event Example
Event Name Event Parameters Parameter Value Description

branch_retired Counts the retirement of a branch.
Specify one or more mask bits to
select any combination of branch
taken, not-taken, predicted and
mispredicted.

ESCR restrictions MSR_CRU_ESCR2
MSR_CRU_ESCR3

See Table 15-3 for the addresses of
the ESCR MSRs

Counter numbers
per ESCR

ESCR2: 12, 13, 16

ESCR3: 14, 15, 17

The counter numbers associated
with each ESCR are provided. The
performance counters and
corresponding CCCRs can be obtained
from Table 15-3.
Vol. 3B 18-77

PERFORMANCE MONITORING
For Table 19-16 and Table 19-17, Chapter 19, the name of the event is listed in the
Event Name column and parameters that define the event and other information are
listed in the Event Parameters column. The Parameter Value and Description columns
give specific parameters for the event and additional description information. Entries
in the Event Parameters column are described below.
• ESCR restrictions — Lists the ESCRs that can be used to program the event.

Typically only one ESCR is needed to count an event.
• Counter numbers per ESCR — Lists which performance counters are

associated with each ESCR. Table 18-31 gives the name of the counter and CCCR
for each counter number. Typically only one counter is needed to count the event.

• ESCR event select — Gives the value to be placed in the event select field of the
ESCR to select the event.

• ESCR event mask — Gives the value to be placed in the Event Mask field of the
ESCR to select sub-events to be counted. The parameter value column defines
the documented bits with relative bit position offset starting from 0, where the
absolute bit position of relative offset 0 is bit 9 of the ESCR. All undocumented
bits are reserved and should be set to 0.

• CCCR select — Gives the value to be placed in the ESCR select field of the CCCR
associated with the counter to select the ESCR to be used to define the event.
This value is not the address of the ESCR; it is the number of the ESCR from the
Number column in Table 18-31.

• Event specific notes — Gives additional information about the event, such as
the name of the same or a similar event defined for the P6 family processors.

• Can support PEBS — Indicates if PEBS is supported for the event (only supplied
for at-retirement events listed in Table 19-17.)

ESCR Event Select 06H ESCR[31:25]

ESCR Event Mask

Bit 0: MMNP

 1: MMNM

 2: MMTP

 3: MMTM

ESCR[24:9],

Branch Not-taken Predicted,

Branch Not-taken Mispredicted,

Branch Taken Predicted,

Branch Taken Mispredicted.

CCCR Select 05H CCCR[15:13]

Event Specific
Notes

P6: EMON_BR_INST_RETIRED

Can Support PEBS No

Requires Additional
MSRs for Tagging

No

Table 18-32. Event Example (Contd.)
Event Name Event Parameters Parameter Value Description
18-78 Vol. 3B

PERFORMANCE MONITORING
• Requires additional MSR for tagging — Indicates which if any additional
MSRs must be programmed to count the events (only supplied for the at-
retirement events listed in Table 19-17.)

NOTE
The performance-monitoring events listed in Chapter 19, “Perfor-
mance-Monitoring Events,” are intended to be used as guides for
performance tuning. The counter values reported are not guaranteed
to be absolutely accurate and should be used as a relative guide for
tuning. Known discrepancies are documented where applicable.

The following procedure shows how to set up a performance counter for basic
counting; that is, the counter is set up to count a specified event indefinitely, wrap-
ping around whenever it reaches its maximum count. This procedure is continued
through the following four sections.

Using information in Table 19-16, Chapter 19, an event to be counted can be selected
as follows:

1. Select the event to be counted.

2. Select the ESCR to be used to select events to be counted from the ESCRs field.

3. Select the number of the counter to be used to count the event from the Counter
Numbers Per ESCR field.

4. Determine the name of the counter and the CCCR associated with the counter,
and determine the MSR addresses of the counter, CCCR, and ESCR from Table
18-31.

5. Use the WRMSR instruction to write the ESCR Event Select and ESCR Event Mask
values into the appropriate fields in the ESCR. At the same time set or clear the
USR and OS flags in the ESCR as desired.

6. Use the WRMSR instruction to write the CCCR Select value into the appropriate
field in the CCCR.

NOTE
Typically all the fields and flags of the CCCR will be written with one
WRMSR instruction; however, in this procedure, several WRMSR
writes are used to more clearly demonstrate the uses of the various
CCCR fields and flags.

This setup procedure is continued in the next section, Section 18.10.5.2, “Filtering
Events.”

18.10.5.2 Filtering Events
Each counter receives up to 4 input lines from the processor hardware from which it
is counting events. The counter treats these inputs as binary inputs (input 0 has a
Vol. 3B 18-79

PERFORMANCE MONITORING
value of 1, input 1 has a value of 2, input 3 has a value of 4, and input 3 has a value
of 8). When a counter is enabled, it adds this binary input value to the counter value
on each clock cycle. For each clock cycle, the value added to the counter can then
range from 0 (no event) to 15.

For many events, only the 0 input line is active, so the counter is merely counting the
clock cycles during which the 0 input is asserted. However, for some events two or
more input lines are used. Here, the counters threshold setting can be used to filter
events. The compare, complement, threshold, and edge fields control the filtering of
counter increments by input value.

If the compare flag is set, then a “greater than” or a “less than or equal to” compar-
ison of the input value vs. a threshold value can be made. The complement flag
selects “less than or equal to” (flag set) or “greater than” (flag clear). The threshold
field selects a threshold value of from 0 to 15. For example, if the complement flag is
cleared and the threshold field is set to 6, than any input value of 7 or greater on the
4 inputs to the counter will cause the counter to be incremented by 1, and any value
less than 7 will cause an increment of 0 (or no increment) of the counter. Conversely,
if the complement flag is set, any value from 0 to 6 will increment the counter and
any value from 7 to 15 will not increment the counter. Note that when a threshold
condition has been satisfied, the input to the counter is always 1, not the input value
that is presented to the threshold filter.

The edge flag provides further filtering of the counter inputs when a threshold
comparison is being made. The edge flag is only active when the compare flag is set.
When the edge flag is set, the resulting output from the threshold filter (a value of 0
or 1) is used as an input to the edge filter. Each clock cycle, the edge filter examines
the last and current input values and sends a count to the counter only when it
detects a “rising edge” event; that is, a false-to-true transition. Figure 18-36 illus-
trates rising edge filtering.

The following procedure shows how to configure a CCCR to filter events using the
threshold filter and the edge filter. This procedure is a continuation of the setup
procedure introduced in Section 18.10.5.1, “Selecting Events to Count.”

7. (Optional) To set up the counter for threshold filtering, use the WRMSR
instruction to write values in the CCCR compare and complement flags and the
threshold field:

— Set the compare flag.

— Set or clear the complement flag for less than or equal to or greater than
comparisons, respectively.

— Enter a value from 0 to 15 in the threshold field.

8. (Optional) Select rising edge filtering by setting the CCCR edge flag.

This setup procedure is continued in the next section, Section 18.10.5.3, “Starting
Event Counting.”
18-80 Vol. 3B

PERFORMANCE MONITORING
18.10.5.3 Starting Event Counting
Event counting by a performance counter can be initiated in either of two ways. The
typical way is to set the enable flag in the counter’s CCCR. Following the instruction
to set the enable flag, event counting begins and continues until it is stopped (see
Section 18.10.5.5, “Halting Event Counting”).

The following procedural step shows how to start event counting. This step is a
continuation of the setup procedure introduced in Section 18.10.5.2, “Filtering
Events.”

9. To start event counting, use the WRMSR instruction to set the CCCR enable flag
for the performance counter.

This setup procedure is continued in the next section, Section 18.10.5.4, “Reading a
Performance Counter’s Count.”

The second way that a counter can be started by using the cascade feature. Here, the
overflow of one counter automatically starts its alternate counter (see Section
18.10.5.6, “Cascading Counters”).

18.10.5.4 Reading a Performance Counter’s Count
The Pentium 4 and Intel Xeon processors’ performance counters can be read using
either the RDPMC or RDMSR instructions. The enhanced functions of the RDPMC
instruction (including fast read) are described in Section 18.10.2, “Performance
Counters.” These instructions can be used to read a performance counter while it is
counting or when it is stopped.

The following procedural step shows how to read the event counter. This step is a
continuation of the setup procedure introduced in Section 18.10.5.3, “Starting Event
Counting.”

10. To read a performance counters current event count, execute the RDPMC
instruction with the counter number obtained from Table 18-31 used as an
operand.

Figure 18-36. Effects of Edge Filtering

Output from
Threshold Filter

Counter Increments
On Rising Edge
(False-to-True)

Processor Clock
Vol. 3B 18-81

PERFORMANCE MONITORING
This setup procedure is continued in the next section, Section 18.10.5.5, “Halting
Event Counting.”

18.10.5.5 Halting Event Counting
After a performance counter has been started (enabled), it continues counting indef-
initely. If the counter overflows (goes one count past its maximum count), it wraps
around and continues counting. When the counter wraps around, it sets its OVF flag
to indicate that the counter has overflowed. The OVF flag is a sticky flag that indi-
cates that the counter has overflowed at least once since the OVF bit was last
cleared.

To halt counting, the CCCR enable flag for the counter must be cleared.

The following procedural step shows how to stop event counting. This step is a
continuation of the setup procedure introduced in Section 18.10.5.4, “Reading a
Performance Counter’s Count.”

11. To stop event counting, execute a WRMSR instruction to clear the CCCR enable
flag for the performance counter.

To halt a cascaded counter (a counter that was started when its alternate counter
overflowed), either clear the Cascade flag in the cascaded counter’s CCCR MSR or
clear the OVF flag in the alternate counter’s CCCR MSR.

18.10.5.6 Cascading Counters
As described in Section 18.10.2, “Performance Counters,” eighteen performance
counters are implemented in pairs. Nine pairs of counters and associated CCCRs are
further organized as four blocks: BPU, MS, FLAME, and IQ (see Table 18-31). The first
three blocks contain two pairs each. The IQ block contains three pairs of counters (12
through 17) with associated CCCRs (MSR_IQ_CCCR0 through MSR_IQ_CCCR5).

The first 8 counter pairs (0 through 15) can be programmed using ESCRs to detect
performance monitoring events. Pairs of ESCRs in each of the four blocks allow many
different types of events to be counted. The cascade flag in the CCCR MSR allows
nested monitoring of events to be performed by cascading one counter to a second
counter located in another pair in the same block (see Figure 18-35 for the location
of the flag).

Counters 0 and 1 form the first pair in the BPU block. Either counter 0 or 1 can be
programmed to detect an event via MSR_MO B_ESCR0. Counters 0 and 2 can be
cascaded in any order, as can counters 1 and 3. It’s possible to set up 4 counters in
the same block to cascade on two pairs of independent events. The pairing described
also applies to subsequent blocks. Since the IQ PUB has two extra counters,
cascading operates somewhat differently if 16 and 17 are involved. In the IQ block,
counter 16 can only be cascaded from counter 14 (not from 12); counter 14 cannot
be cascaded from counter 16 using the CCCR cascade bit mechanism. Similar restric-
tions apply to counter 17.
18-82 Vol. 3B

PERFORMANCE MONITORING
Example 18-1. Counting Events

Assume a scenario where counter X is set up to count 200 occurrences of event A;
then counter Y is set up to count 400 occurrences of event B. Each counter is set up
to count a specific event and overflow to the next counter. In the above example,
counter X is preset for a count of -200 and counter Y for a count of -400; this setup
causes the counters to overflow on the 200th and 400th counts respectively.

Continuing this scenario, counter X is set up to count indefinitely and wraparound on
overflow. This is described in the basic performance counter setup procedure that
begins in Section 18.10.5.1, “Selecting Events to Count.” Counter Y is set up with the
cascade flag in its associated CCCR MSR set to 1 and its enable flag set to 0.

To begin the nested counting, the enable bit for the counter X is set. Once enabled,
counter X counts until it overflows. At this point, counter Y is automatically enabled
and begins counting. Thus counter X overflows after 200 occurrences of event A.
Counter Y then starts, counting 400 occurrences of event B before overflowing. When
performance counters are cascaded, the counter Y would typically be set up to
generate an interrupt on overflow. This is described in Section 18.10.5.8, “Gener-
ating an Interrupt on Overflow.”

The cascading counters mechanism can be used to count a single event. The
counting begins on one counter then continues on the second counter after the first
counter overflows. This technique doubles the number of event counts that can be
recorded, since the contents of the two counters can be added together.

18.10.5.7 EXTENDED CASCADING
Extended cascading is a model-specific feature in the Intel NetBurst microarchitec-
ture. The feature is available to Pentium 4 and Xeon processor family with family
encoding of 15 and model encoding greater than or equal to 2. This feature uses bit
11 in CCCRs associated with the IQ block. See Table 18-33.

Table 18-33. CCR Names and Bit Positions

CCCR Name:Bit Position Bit Name Description

MSR_IQ_CCCR1|2:11 Reserved

MSR_IQ_CCCR0:11 CASCNT4INTO0 Allow counter 4 to cascade into
counter 0

MSR_IQ_CCCR3:11 CASCNT5INTO3 Allow counter 5 to cascade into
counter 3

MSR_IQ_CCCR4:11 CASCNT5INTO4 Allow counter 5 to cascade into
counter 4

MSR_IQ_CCCR5:11 CASCNT4INTO5 Allow counter 4 to cascade into
counter 5
Vol. 3B 18-83

PERFORMANCE MONITORING
The extended cascading feature can be adapted to the sampling usage model for
performance monitoring. However, it is known that performance counters do not
generate PMI in cascade mode or extended cascade mode due to an erratum. This
erratum applies to Pentium 4 and Intel Xeon processors with model encoding of 2.
For Pentium 4 and Intel Xeon processors with model encoding of 0 and 1, the erratum
applies to processors with stepping encoding greater than 09H.

Counters 16 and 17 in the IQ block are frequently used in precise event-based
sampling or at-retirement counting of events indicating a stalled condition in the
pipeline. Neither counter 16 or 17 can initiate the cascading of counter pairs using
the cascade bit in a CCCR.

Extended cascading permits performance monitoring tools to use counters 16 and 17
to initiate cascading of two counters in the IQ block. Extended cascading from
counter 16 and 17 is conceptually similar to cascading other counters, but instead of
using CASCADE bit of a CCCR, one of the four CASCNTxINTOy bits is used.

Example 18-2. Scenario for Extended Cascading

A usage scenario for extended cascading is to sample instructions retired on logical
processor 1 after the first 4096 instructions retired on logical processor 0. A proce-
dure to program extended cascading in this scenario is outlined below:

1. Write the value 0 to counter 12.

2. Write the value 04000603H to MSR_CRU_ESCR0 (corresponding to selecting the
NBOGNTAG and NBOGTAG event masks with qualification restricted to logical
processor 1).

3. Write the value 04038800H to MSR_IQ_CCCR0. This enables CASCNT4INTO0
and OVF_PMI. An ISR can sample on instruction addresses in this case (do not
set ENABLE, or CASCADE).

4. Write the value FFFFF000H into counter 16.1.

5. Write the value 0400060CH to MSR_CRU_ESCR2 (corresponding to selecting the
NBOGNTAG and NBOGTAG event masks with qualification restricted to logical
processor 0).

6. Write the value 00039000H to MSR_IQ_CCCR4 (set ENABLE bit, but not
OVF_PMI).

Another use for cascading is to locate stalled execution in a multithreaded applica-
tion. Assume MOB replays in thread B cause thread A to stall. Getting a sample of the
stalled execution in this scenario could be accomplished by:

1. Set up counter B to count MOB replays on thread B.

2. Set up counter A to count resource stalls on thread A; set its force overflow bit
and the appropriate CASCNTxINTOy bit.

3. Use the performance monitoring interrupt to capture the program execution data
of the stalled thread.
18-84 Vol. 3B

PERFORMANCE MONITORING
18.10.5.8 Generating an Interrupt on Overflow
Any performance counter can be configured to generate a performance monitor
interrupt (PMI) if the counter overflows. The PMI interrupt service routine can then
collect information about the state of the processor or program when overflow
occurred. This information can then be used with a tool like the Intel® VTune™
Performance Analyzer to analyze and tune program performance.

To enable an interrupt on counter overflow, the OVR_PMI flag in the counter’s associ-
ated CCCR MSR must be set. When overflow occurs, a PMI is generated through the
local APIC. (Here, the performance counter entry in the local vector table [LVT] is set
up to deliver the interrupt generated by the PMI to the processor.)

The PMI service routine can use the OVF flag to determine which counter overflowed
when multiple counters have been configured to generate PMIs. Also, note that these
processors mask PMIs upon receiving an interrupt. Clear this condition before leaving
the interrupt handler.

When generating interrupts on overflow, the performance counter being used should
be preset to value that will cause an overflow after a specified number of events are
counted plus 1. The simplest way to select the preset value is to write a negative
number into the counter, as described in Section 18.10.5.6, “Cascading Counters.”
Here, however, if an interrupt is to be generated after 100 event counts, the counter
should be preset to minus 100 plus 1 (-100 + 1), or -99. The counter will then over-
flow after it counts 99 events and generate an interrupt on the next (100th) event
counted. The difference of 1 for this count enables the interrupt to be generated
immediately after the selected event count has been reached, instead of waiting for
the overflow to be propagation through the counter.

Because of latency in the microarchitecture between the generation of events and
the generation of interrupts on overflow, it is sometimes difficult to generate an
interrupt close to an event that caused it. In these situations, the FORCE_OVF flag in
the CCCR can be used to improve reporting. Setting this flag causes the counter to
overflow on every counter increment, which in turn triggers an interrupt after every
counter increment.

18.10.5.9 Counter Usage Guideline
There are some instances where the user must take care to configure counting logic
properly, so that it is not powered down. To use any ESCR, even when it is being used
just for tagging, (any) one of the counters that the particular ESCR (or its paired
ESCR) can be connected to should be enabled. If this is not done, 0 counts may
result. Likewise, to use any counter, there must be some event selected in a corre-
sponding ESCR (other than no_event, which generally has a select value of 0).
Vol. 3B 18-85

PERFORMANCE MONITORING
18.10.6 At-Retirement Counting
At-retirement counting provides a means counting only events that represent work
committed to architectural state and ignoring work that was performed speculatively
and later discarded.

The Intel NetBurst microarchitecture used in the Pentium 4 and Intel Xeon proces-
sors performs many speculative activities in an attempt to increase effective
processing speeds. One example of this speculative activity is branch prediction. The
Pentium 4 and Intel Xeon processors typically predict the direction of branches and
then decode and execute instructions down the predicted path in anticipation of the
actual branch decision. When a branch misprediction occurs, the results of instruc-
tions that were decoded and executed down the mispredicted path are canceled. If a
performance counter was set up to count all executed instructions, the count would
include instructions whose results were canceled as well as those whose results
committed to architectural state.

To provide finer granularity in event counting in these situations, the performance
monitoring facilities provided in the Pentium 4 and Intel Xeon processors provide a
mechanism for tagging events and then counting only those tagged events that
represent committed results. This mechanism is called “at-retirement counting.”

Tables 19-17 through 19-21 list predefined at-retirement events and event metrics
that can be used to for tagging events when using at retirement counting. The
following terminology is used in describing at-retirement counting:
• Bogus, non-bogus, retire — In at-retirement event descriptions, the term

“bogus” refers to instructions or μops that must be canceled because they are on
a path taken from a mispredicted branch. The terms “retired” and “non-bogus”
refer to instructions or μops along the path that results in committed architec-
tural state changes as required by the program being executed. Thus instructions
and μops are either bogus or non-bogus, but not both. Several of the Pentium 4
and Intel Xeon processors’ performance monitoring events (such as,
Instruction_Retired and Uops_Retired in Table 19-17) can count instructions or
μops that are retired based on the characterization of bogus” versus non-bogus.

• Tagging — Tagging is a means of marking μops that have encountered a
particular performance event so they can be counted at retirement. During the
course of execution, the same event can happen more than once per μop and a
direct count of the event would not provide an indication of how many μops
encountered that event.
The tagging mechanisms allow a μop to be tagged once during its lifetime and
thus counted once at retirement. The retired suffix is used for performance
metrics that increment a count once per μop, rather than once per event. For
example, a μop may encounter a cache miss more than once during its life time,
but a “Miss Retired” metric (that counts the number of retired μops that
encountered a cache miss) will increment only once for that μop. A “Miss Retired”
metric would be useful for characterizing the performance of the cache hierarchy
for a particular instruction sequence. Details of various performance metrics and
how these can be constructed using the Pentium 4 and Intel Xeon processors
18-86 Vol. 3B

PERFORMANCE MONITORING
performance events are provided in the Intel Pentium 4 Processor Optimization
Reference Manual (see Section 1.4, “Related Literature”).

• Replay — To maximize performance for the common case, the Intel NetBurst
microarchitecture aggressively schedules μops for execution before all the
conditions for correct execution are guaranteed to be satisfied. In the event that
all of these conditions are not satisfied, μops must be reissued. The mechanism
that the Pentium 4 and Intel Xeon processors use for this reissuing of μops is
called replay. Some examples of replay causes are cache misses, dependence
violations, and unforeseen resource constraints. In normal operation, some
number of replays is common and unavoidable. An excessive number of replays
is an indication of a performance problem.

• Assist — When the hardware needs the assistance of microcode to deal with
some event, the machine takes an assist. One example of this is an underflow
condition in the input operands of a floating-point operation. The hardware must
internally modify the format of the operands in order to perform the computation.
Assists clear the entire machine of μops before they begin and are costly.

18.10.6.1 Using At-Retirement Counting
The Pentium 4 and Intel Xeon processors allow counting both events and μops that
encountered a specified event. For a subset of the at-retirement events listed in Table
19-17, a μop may be tagged when it encounters that event. The tagging mechanisms
can be used in non-precise event-based sampling, and a subset of these mechanisms
can be used in PEBS. There are four independent tagging mechanisms, and each
mechanism uses a different event to count μops tagged with that mechanism:
• Front-end tagging — This mechanism pertains to the tagging of μops that

encountered front-end events (for example, trace cache and instruction counts)
and are counted with the Front_end_event event

• Execution tagging — This mechanism pertains to the tagging of μops that
encountered execution events (for example, instruction types) and are counted
with the Execution_Event event.

• Replay tagging — This mechanism pertains to tagging of μops whose
retirement is replayed (for example, a cache miss) and are counted with the
Replay_event event. Branch mispredictions are also tagged with this mechanism.

• No tags — This mechanism does not use tags. It uses the Instr_retired and the
Uops_ retired events.

Each tagging mechanism is independent from all others; that is, a μop that has been
tagged using one mechanism will not be detected with another mechanism’s tagged-
μop detector. For example, if μops are tagged using the front-end tagging mecha-
nisms, the Replay_event will not count those as tagged μops unless they are also
tagged using the replay tagging mechanism. However, execution tags allow up to
four different types of μops to be counted at retirement through execution tagging.

The independence of tagging mechanisms does not hold when using PEBS. When
using PEBS, only one tagging mechanism should be used at a time.
Vol. 3B 18-87

PERFORMANCE MONITORING
Certain kinds of μops that cannot be tagged, including I/O, uncacheable and locked
accesses, returns, and far transfers.

Table 19-17 lists the performance monitoring events that support at-retirement
counting: specifically the Front_end_event, Execution_event, Replay_event,
Inst_retired and Uops_retired events. The following sections describe the tagging
mechanisms for using these events to tag μop and count tagged μops.

18.10.6.2 Tagging Mechanism for Front_end_event
The Front_end_event counts μops that have been tagged as encountering any of the
following events:
• μop decode events — Tagging μops for μop decode events requires specifying

bits in the ESCR associated with the performance-monitoring event, Uop_type.
• Trace cache events — Tagging μops for trace cache events may require

specifying certain bits in the MSR_TC_PRECISE_EVENT MSR (see Table 19-19).

Table 19-17 describes the Front_end_event and Table 19-19 describes metrics that
are used to set up a Front_end_event count.

The MSRs specified in the Table 19-17 that are supported by the front-end tagging
mechanism must be set and one or both of the NBOGUS and BOGUS bits in the
Front_end_event event mask must be set to count events. None of the events
currently supported requires the use of the MSR_TC_PRECISE_EVENT MSR.

18.10.6.3 Tagging Mechanism For Execution_event
Table 19-17 describes the Execution_event and Table 19-20 describes metrics that
are used to set up an Execution_event count.

The execution tagging mechanism differs from other tagging mechanisms in how it
causes tagging. One upstream ESCR is used to specify an event to detect and to
specify a tag value (bits 5 through 8) to identify that event. A second downstream
ESCR is used to detect μops that have been tagged with that tag value identifier using
Execution_event for the event selection.

The upstream ESCR that counts the event must have its tag enable flag (bit 4) set
and must have an appropriate tag value mask entered in its tag value field. The 4-bit
tag value mask specifies which of tag bits should be set for a particular μop. The
value selected for the tag value should coincide with the event mask selected in the
downstream ESCR. For example, if a tag value of 1 is set, then the event mask of
NBOGUS0 should be enabled, correspondingly in the downstream ESCR. The down-
stream ESCR detects and counts tagged μops. The normal (not tag value) mask bits
in the downstream ESCR specify which tag bits to count. If any one of the tag bits
selected by the mask is set, the related counter is incremented by one. This mecha-
nism is summarized in the Table 19-20 metrics that are supported by the execution
tagging mechanism. The tag enable and tag value bits are irrelevant for the down-
stream ESCR used to select the Execution_event.
18-88 Vol. 3B

PERFORMANCE MONITORING
The four separate tag bits allow the user to simultaneously but distinctly count up to
four execution events at retirement. (This applies for non-precise event-based
sampling. There are additional restrictions for PEBS as noted in Section 18.10.7.3,
“Setting Up the PEBS Buffer.”) It is also possible to detect or count combinations of
events by setting multiple tag value bits in the upstream ESCR or multiple mask bits
in the downstream ESCR. For example, use a tag value of 3H in the upstream ESCR
and use NBOGUS0/NBOGUS1 in the downstream ESCR event mask.

18.10.6.4 Tagging Mechanism for Replay_event
Table 19-17 describes the Replay_event and Table 19-21 describes metrics that are
used to set up an Replay_event count.

The replay mechanism enables tagging of μops for a subset of all replays before
retirement. Use of the replay mechanism requires selecting the type of μop that may
experience the replay in the MSR_PEBS_MATRIX_VERT MSR and selecting the type of
event in the MSR_PEBS_ENABLE MSR. Replay tagging must also be enabled with the
UOP_Tag flag (bit 24) in the MSR_PEBS_ENABLE MSR.

The Table 19-21 lists the metrics that are support the replay tagging mechanism and
the at-retirement events that use the replay tagging mechanism, and specifies how
the appropriate MSRs need to be configured. The replay tags defined in Table A-5
also enable Precise Event-Based Sampling (PEBS, see Section 15.9.8). Each of these
replay tags can also be used in normal sampling by not setting Bit 24 nor Bit 25 in
IA_32_PEBS_ENABLE_MSR. Each of these metrics requires that the Replay_Event
(see Table 19-17) be used to count the tagged μops.

18.10.7 Precise Event-Based Sampling (PEBS)
The debug store (DS) mechanism in processors based on Intel NetBurst microarchi-
tecture allow two types of information to be collected for use in debugging and tuning
programs: PEBS records and BTS records. See Section 17.4.5, “Branch Trace Store
(BTS),” for a description of the BTS mechanism.

PEBS permits the saving of precise architectural information associated with one or
more performance events in the precise event records buffer, which is part of the DS
save area (see Section 17.4.9, “BTS and DS Save Area”). To use this mechanism, a
counter is configured to overflow after it has counted a preset number of events.
After the counter overflows, the processor copies the current state of the general-
purpose and EFLAGS registers and instruction pointer into a record in the precise
event records buffer. The processor then resets the count in the performance counter
and restarts the counter. When the precise event records buffer is nearly full, an
interrupt is generated, allowing the precise event records to be saved. A circular
buffer is not supported for precise event records.

PEBS is supported only for a subset of the at-retirement events: Execution_event,
Front_end_event, and Replay_event. Also, PEBS can only be carried out using the
one performance counter, the MSR_IQ_COUNTER4 MSR.
Vol. 3B 18-89

PERFORMANCE MONITORING
In processors based on Intel Core microarchitecture, a similar PEBS mechanism is
also supported using IA32_PMC0 and IA32_PERFEVTSEL0 MSRs (See Section
18.4.4).

18.10.7.1 Detection of the Availability of the PEBS Facilities
The DS feature flag (bit 21) returned by the CPUID instruction indicates (when set)
the availability of the DS mechanism in the processor, which supports the PEBS (and
BTS) facilities. When this bit is set, the following PEBS facilities are available:
• The PEBS_UNAVAILABLE flag in the IA32_MISC_ENABLE MSR indicates (when

clear) the availability of the PEBS facilities, including the MSR_PEBS_ENABLE
MSR.

• The enable PEBS flag (bit 24) in the MSR_PEBS_ENABLE MSR allows PEBS to be
enabled (set) or disabled (clear).

• The IA32_DS_AREA MSR can be programmed to point to the DS save area.

18.10.7.2 Setting Up the DS Save Area
Section 17.4.9.2, “Setting Up the DS Save Area,” describes how to set up and enable
the DS save area. This procedure is common for PEBS and BTS.

18.10.7.3 Setting Up the PEBS Buffer
Only the MSR_IQ_COUNTER4 performance counter can be used for PEBS. Use the
following procedure to set up the processor and this counter for PEBS:

1. Set up the precise event buffering facilities. Place values in the precise event
buffer base, precise event index, precise event absolute maximum, and precise
event interrupt threshold, and precise event counter reset fields of the DS buffer
management area (see Figure 17-5) to set up the precise event records buffer in
memory.

2. Enable PEBS. Set the Enable PEBS flag (bit 24) in MSR_PEBS_ENABLE MSR.

3. Set up the MSR_IQ_COUNTER4 performance counter and its associated CCCR
and one or more ESCRs for PEBS as described in Tables 19-17 through 19-21.

18.10.7.4 Writing a PEBS Interrupt Service Routine
The PEBS facilities share the same interrupt vector and interrupt service routine
(called the DS ISR) with the non-precise event-based sampling and BTS facilities. To
handle PEBS interrupts, PEBS handler code must be included in the DS ISR. See
Section 17.4.9.5, “Writing the DS Interrupt Service Routine,” for guidelines for
writing the DS ISR.
18-90 Vol. 3B

PERFORMANCE MONITORING
18.10.7.5 Other DS Mechanism Implications
The DS mechanism is not available in the SMM. It is disabled on transition to the SMM
mode. Similarly the DS mechanism is disabled on the generation of a machine check
exception and is cleared on processor RESET and INIT.

The DS mechanism is available in real address mode.

18.10.8 Operating System Implications
The DS mechanism can be used by the operating system as a debugging extension to
facilitate failure analysis. When using this facility, a 25 to 30 times slowdown can be
expected due to the effects of the trace store occurring on every taken branch.

Depending upon intended usage, the instruction pointers that are part of the branch
records or the PEBS records need to have an association with the corresponding
process. One solution requires the ability for the DS specific operating system
module to be chained to the context switch. A separate buffer can then be main-
tained for each process of interest and the MSR pointing to the configuration area
saved and setup appropriately on each context switch.

If the BTS facility has been enabled, then it must be disabled and state stored on
transition of the system to a sleep state in which processor context is lost. The state
must be restored on return from the sleep state.

It is required that an interrupt gate be used for the DS interrupt as opposed to a trap
gate to prevent the generation of an endless interrupt loop.

Pages that contain buffers must have mappings to the same physical address for all
processes/logical processors, such that any change to CR3 will not change DS
addresses. If this requirement cannot be satisfied (that is, the feature is enabled on
a per thread/process basis), then the operating system must ensure that the feature
is enabled/disabled appropriately in the context switch code.

18.11 PERFORMANCE MONITORING AND INTEL HYPER-
THREADING TECHNOLOGY IN PROCESSORS BASED
ON INTEL NETBURST® MICROARCHITECTURE

The performance monitoring capability of processors based on Intel NetBurst
microarchitecture and supporting Intel Hyper-Threading Technology is similar to that
described in Section 18.10. However, the capability is extended so that:
• Performance counters can be programmed to select events qualified by logical

processor IDs.
• Performance monitoring interrupts can be directed to a specific logical processor

within the physical processor.
Vol. 3B 18-91

PERFORMANCE MONITORING
The sections below describe performance counters, event qualification by logical
processor ID, and special purpose bits in ESCRs/CCCRs. They also describe
MSR_PEBS_ENABLE, MSR_PEBS_MATRIX_VERT, and MSR_TC_PRECISE_EVENT.

18.11.1 ESCR MSRs
Figure 18-37 shows the layout of an ESCR MSR in processors supporting Intel Hyper-
Threading Technology.

The functions of the flags and fields are as follows:
• T1_USR flag, bit 0 — When set, events are counted when thread 1 (logical

processor 1) is executing at a current privilege level (CPL) of 1, 2, or 3. These
privilege levels are generally used by application code and unprotected operating
system code.

• T1_OS flag, bit 1 — When set, events are counted when thread 1 (logical
processor 1) is executing at CPL of 0. This privilege level is generally reserved for
protected operating system code. (When both the T1_OS and T1_USR flags are
set, thread 1 events are counted at all privilege levels.)

• T0_USR flag, bit 2 — When set, events are counted when thread 0 (logical
processor 0) is executing at a CPL of 1, 2, or 3.

• T0_OS flag, bit 3 — When set, events are counted when thread 0 (logical
processor 0) is executing at CPL of 0. (When both the T0_OS and T0_USR flags
are set, thread 0 events are counted at all privilege levels.)

Figure 18-37. Event Selection Control Register (ESCR) for the Pentium 4 Processor,
Intel Xeon Processor and Intel Xeon Processor MP Supporting Hyper-Threading

Technology

31 24 8 0123492530

63 32

Reserved

Event Mask
Event
Select

T0_USR
T0_OS

5

Tag Enable

Tag
Value

T1_USR
T1_OS

Reserved
18-92 Vol. 3B

PERFORMANCE MONITORING
• Tag enable, bit 4 — When set, enables tagging of μops to assist in at-retirement
event counting; when clear, disables tagging. See Section 18.10.6, “At-
Retirement Counting.”

• Tag value field, bits 5 through 8 — Selects a tag value to associate with a μop
to assist in at-retirement event counting.

• Event mask field, bits 9 through 24 — Selects events to be counted from the
event class selected with the event select field.

• Event select field, bits 25 through 30) — Selects a class of events to be
counted. The events within this class that are counted are selected with the event
mask field.

The T0_OS and T0_USR flags and the T1_OS and T1_USR flags allow event counting
and sampling to be specified for a specific logical processor (0 or 1) within an Intel
Xeon processor MP (See also: Section 8.4.5, “Identifying Logical Processors in an MP
System,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A).

Not all performance monitoring events can be detected within an Intel Xeon
processor MP on a per logical processor basis (see Section 18.11.4, “Performance
Monitoring Events”). Some sub-events (specified by an event mask bits) are counted
or sampled without regard to which logical processor is associated with the detected
event.

18.11.2 CCCR MSRs
Figure 18-38 shows the layout of a CCCR MSR in processors supporting Intel Hyper-
Threading Technology. The functions of the flags and fields are as follows:
• Enable flag, bit 12 — When set, enables counting; when clear, the counter is

disabled. This flag is cleared on reset
• ESCR select field, bits 13 through 15 — Identifies the ESCR to be used to

select events to be counted with the counter associated with the CCCR.
• Active thread field, bits 16 and 17 — Enables counting depending on which

logical processors are active (executing a thread). This field enables filtering of
events based on the state (active or inactive) of the logical processors. The
encodings of this field are as follows:
00 — None. Count only when neither logical processor is active.
01 — Single. Count only when one logical processor is active (either 0 or 1).
10 — Both. Count only when both logical processors are active.
11 — Any. Count when either logical processor is active.
A halted logical processor or a logical processor in the “wait for SIPI” state is
considered inactive.
Vol. 3B 18-93

PERFORMANCE MONITORING
• Compare flag, bit 18 — When set, enables filtering of the event count; when
clear, disables filtering. The filtering method is selected with the threshold,
complement, and edge flags.

• Complement flag, bit 19 — Selects how the incoming event count is compared
with the threshold value. When set, event counts that are less than or equal to
the threshold value result in a single count being delivered to the performance
counter; when clear, counts greater than the threshold value result in a count
being delivered to the performance counter (see Section 18.10.5.2, “Filtering
Events”). The compare flag is not active unless the compare flag is set.

• Threshold field, bits 20 through 23 — Selects the threshold value to be used
for comparisons. The processor examines this field only when the compare flag is
set, and uses the complement flag setting to determine the type of threshold
comparison to be made. The useful range of values that can be entered in this
field depend on the type of event being counted (see Section 18.10.5.2, “Filtering
Events”).

• Edge flag, bit 24 — When set, enables rising edge (false-to-true) edge
detection of the threshold comparison output for filtering event counts; when
clear, rising edge detection is disabled. This flag is active only when the compare
flag is set.

Figure 18-38. Counter Configuration Control Register (CCCR)

63 32

Reserved

Reserved

Active Thread
Compare

Enable

31 24 23 20 19 16 15 12 11 017182526272930

Edge
FORCE_OVF

OVF_PMI_T0

Threshold

Cascade
OVF

Complement

Reserved

13

ESCR
Select

OVF_PMI_T1

Reserved
18-94 Vol. 3B

PERFORMANCE MONITORING
• FORCE_OVF flag, bit 25 — When set, forces a counter overflow on every
counter increment; when clear, overflow only occurs when the counter actually
overflows.

• OVF_PMI_T0 flag, bit 26 — When set, causes a performance monitor interrupt
(PMI) to be sent to logical processor 0 when the counter overflows occurs; when
clear, disables PMI generation for logical processor 0. Note that the PMI is
generate on the next event count after the counter has overflowed.

• OVF_PMI_T1 flag, bit 27 — When set, causes a performance monitor interrupt
(PMI) to be sent to logical processor 1 when the counter overflows occurs; when
clear, disables PMI generation for logical processor 1. Note that the PMI is
generate on the next event count after the counter has overflowed.

• Cascade flag, bit 30 — When set, enables counting on one counter of a counter
pair when its alternate counter in the other the counter pair in the same counter
group overflows (see Section 18.10.2, “Performance Counters,” for further
details); when clear, disables cascading of counters.

• OVF flag, bit 31 — Indicates that the counter has overflowed when set. This flag
is a sticky flag that must be explicitly cleared by software.

18.11.3 IA32_PEBS_ENABLE MSR
In a processor supporting Intel Hyper-Threading Technology and based on the Intel
NetBurst microarchitecture, PEBS is enabled and qualified with two bits in the
MSR_PEBS_ENABLE MSR: bit 25 (ENABLE_PEBS_MY_THR) and 26
(ENABLE_PEBS_OTH_THR) respectively. These bits do not explicitly identify a
specific logical processor by logic processor ID(T0 or T1); instead, they allow a soft-
ware agent to enable PEBS for subsequent threads of execution on the same logical
processor on which the agent is running (“my thread”) or for the other logical
processor in the physical package on which the agent is not running (“other thread”).

PEBS is supported for only a subset of the at-retirement events: Execution_event,
Front_end_event, and Replay_event. Also, PEBS can be carried out only with two
performance counters: MSR_IQ_CCCR4 (MSR address 370H) for logical processor 0
and MSR_IQ_CCCR5 (MSR address 371H) for logical processor 1.

Performance monitoring tools should use a processor affinity mask to bind the kernel
mode components that need to modify the ENABLE_PEBS_MY_THR and
ENABLE_PEBS_OTH_THR bits in the MSR_PEBS_ENABLE MSR to a specific logical
processor. This is to prevent these kernel mode components from migrating between
different logical processors due to OS scheduling.

18.11.4 Performance Monitoring Events
All of the events listed in Table 19-16 and 19-17 are available in an Intel Xeon
processor MP. When Intel Hyper-Threading Technology is active, many performance
monitoring events can be can be qualified by the logical processor ID, which corre-
Vol. 3B 18-95

PERFORMANCE MONITORING
sponds to bit 0 of the initial APIC ID. This allows for counting an event in any or all of
the logical processors. However, not all the events have this logic processor speci-
ficity, or thread specificity.

Here, each event falls into one of two categories:
• Thread specific (TS) — The event can be qualified as occurring on a specific

logical processor.
• Thread independent (TI) — The event cannot be qualified as being associated

with a specific logical processor.

Table 19-22 gives logical processor specific information (TS or TI) for each of the
events described in Tables 19-16 and 19-17. If for example, a TS event occurred in
logical processor T0, the counting of the event (as shown in Table 18-34) depends
only on the setting of the T0_USR and T0_OS flags in the ESCR being used to set up
the event counter. The T1_USR and T1_OS flags have no effect on the count.

When a bit in the event mask field is TI, the effect of specifying bit-0-3 of the associ-
ated ESCR are described in Table 15-6. For events that are marked as TI in Chapter
19, the effect of selectively specifying T0_USR, T0_OS, T1_USR, T1_OS bits is shown
in Table 18-35.

Table 18-34. Effect of Logical Processor and CPL Qualification
for Logical-Processor-Specific (TS) Events

T1_OS/T1_USR =
00

T1_OS/T1_USR =
01

T1_OS/T1_USR =
11

T1_OS/T1_USR =
10

T0_OS/T0_USR
= 00

Zero count Counts while T1
in USR

Counts while T1
in OS or USR

Counts while T1
in OS

T0_OS/T0_USR
= 01

Counts while T0
in USR

Counts while T0
in USR or T1 in
USR

Counts while (a)
T0 in USR or (b)
T1 in OS or (c) T1
in USR

Counts while (a)
T0 in OS or (b) T1
in OS

T0_OS/T0_USR
= 11

Counts while T0
in OS or USR

Counts while (a)
T0 in OS or (b) T0
in USR or (c) T1 in
USR

Counts
irrespective of
CPL, T0, T1

Counts while (a)
T0 in OS or (b) or
T0 in USR or (c)
T1 in OS

T0_OS/T0_USR
= 10

Counts T0 in OS Counts T0 in OS
or T1 in USR

Counts while
(a)T0 in Os or (b)
T1 in OS or (c) T1
in USR

Counts while (a)
T0 in OS or (b) T1
in OS
18-96 Vol. 3B

PERFORMANCE MONITORING
18.12 COUNTING CLOCKS
The count of cycles, also known as clockticks, forms a the basis for measuring how
long a program takes to execute. Clockticks are also used as part of efficiency ratios
like cycles per instruction (CPI). Processor clocks may stop ticking under circum-
stances like the following:
• The processor is halted when there is nothing for the CPU to do. For example, the

processor may halt to save power while the computer is servicing an I/O request.
When Intel Hyper-Threading Technology is enabled, both logical processors must
be halted for performance-monitoring counters to be powered down.

• The processor is asleep as a result of being halted or because of a power-
management scheme. There are different levels of sleep. In the some deep sleep
levels, the time-stamp counter stops counting.

In addition, processor core clocks may undergo transitions at different ratios relative
to the processor’s bus clock frequency. Some of the situations that can cause
processor core clock to undergo frequency transitions include:
• TM2 transitions
• Enhanced Intel SpeedStep Technology transitions (P-state transitions)

For Intel processors that support Intel Dynamic Acceleration or XE operation, the
processor core clocks may operate at a frequency that differs from the maximum
qualified frequency (as indicated by brand string information reported by CPUID
instruction). See Section 18.12.5 for more detail.

Table 18-35. Effect of Logical Processor and CPL Qualification
for Non-logical-Processor-specific (TI) Events

T1_OS/T1_USR =
00

T1_OS/T1_USR =
01

T1_OS/T1_USR =
11

T1_OS/T1_USR =
10

T0_OS/T0_USR =
00

Zero count Counts while (a)
T0 in USR or (b)
T1 in USR

Counts
irrespective of
CPL, T0, T1

Counts while (a)
T0 in OS or (b) T1
in OS

T0_OS/T0_USR =
01

Counts while (a)
T0 in USR or (b)
T1 in USR

Counts while (a)
T0 in USR or (b)
T1 in USR

Counts
irrespective of
CPL, T0, T1

Counts
irrespective of
CPL, T0, T1

T0_OS/T0_USR =
11

Counts
irrespective of
CPL, T0, T1

Counts
irrespective of
CPL, T0, T1

Counts
irrespective of
CPL, T0, T1

Counts
irrespective of
CPL, T0, T1

T0_OS/T0_USR =
0

Counts while (a)
T0 in OS or (b) T1
in OS

Counts
irrespective of
CPL, T0, T1

Counts
irrespective of
CPL, T0, T1

Counts while (a)
T0 in OS or (b) T1
in OS
Vol. 3B 18-97

PERFORMANCE MONITORING
There are several ways to count processor clock cycles to monitor performance.
These are:
• Non-halted clockticks — Measures clock cycles in which the specified logical

processor is not halted and is not in any power-saving state. When Intel Hyper-
Threading Technology is enabled, ticks can be measured on a per-logical-
processor basis. There are also performance events on dual-core processors that
measure clockticks per logical processor when the processor is not halted.

• Non-sleep clockticks — Measures clock cycles in which the specified physical
processor is not in a sleep mode or in a power-saving state. These ticks cannot be
measured on a logical-processor basis.

• Time-stamp counter — Measures clock cycles in which the physical processor is
not in deep sleep. These ticks cannot be measured on a logical-processor basis.

• Reference clockticks — TM2 or Enhanced Intel SpeedStep technology are two
examples of processor features that can cause processor core clockticks to
represent non-uniform tick intervals due to change of bus ratios. Performance
events that counts clockticks of a constant reference frequency was introduced
Intel Core Duo and Intel Core Solo processors. The mechanism is further
enhanced on processors based on Intel Core microarchitecture.

Some processor models permit clock cycles to be measured when the physical
processor is not in deep sleep (by using the time-stamp counter and the RDTSC
instruction). Note that such ticks cannot be measured on a per-logical-processor
basis. See Section 17.12, “Time-Stamp Counter,” for detail on processor capabilities.

The first two methods use performance counters and can be set up to cause an inter-
rupt upon overflow (for sampling). They may also be useful where it is easier for a
tool to read a performance counter than to use a time stamp counter (the timestamp
counter is accessed using the RDTSC instruction).

For applications with a significant amount of I/O, there are two ratios of interest:
• Non-halted CPI — Non-halted clockticks/instructions retired measures the CPI

for phases where the CPU was being used. This ratio can be measured on a
logical-processor basis when Intel Hyper-Threading Technology is enabled.

• Nominal CPI — Time-stamp counter ticks/instructions retired measures the CPI
over the duration of a program, including those periods when the machine halts
while waiting for I/O.

18.12.1 Non-Halted Clockticks
Use the following procedure to program ESCRs and CCCRs to obtain non-halted
clockticks on processors based on Intel NetBurst microarchitecture:

1. Select an ESCR for the global_power_events and specify the RUNNING sub-event
mask and the desired T0_OS/T0_USR/T1_OS/T1_USR bits for the targeted
processor.
18-98 Vol. 3B

PERFORMANCE MONITORING
2. Select an appropriate counter.

3. Enable counting in the CCCR for that counter by setting the enable bit.

18.12.2 Non-Sleep Clockticks
Performance monitoring counters can be configured to count clockticks whenever the
performance monitoring hardware is not powered-down. To count Non-sleep Clock-
ticks with a performance-monitoring counter, do the following:

1. Select one of the 18 counters.

2. Select any of the ESCRs whose events the selected counter can count. Set its
event select to anything other than no_event. This may not seem necessary, but
the counter may be disabled if this is not done.

3. Turn threshold comparison on in the CCCR by setting the compare bit to 1.

4. Set the threshold to 15 and the complement to 1 in the CCCR. Since no event can
exceed this threshold, the threshold condition is met every cycle and the counter
counts every cycle. Note that this overrides any qualification (e.g. by CPL)
specified in the ESCR.

5. Enable counting in the CCCR for the counter by setting the enable bit.

In most cases, the counts produced by the non-halted and non-sleep metrics are
equivalent if the physical package supports one logical processor and is not placed in
a power-saving state. Operating systems may execute an HLT instruction and place a
physical processor in a power-saving state.

On processors that support Intel Hyper-Threading Technology (Intel HT Technology),
each physical package can support two or more logical processors. Current imple-
mentation of Intel HT Technology provides two logical processors for each physical
processor. While both logical processors can execute two threads simultaneously,
one logical processor may halt to allow the other logical processor to execute without
sharing execution resources between two logical processors.

Non-halted Clockticks can be set up to count the number of processor clock cycles for
each logical processor whenever the logical processor is not halted (the count may
include some portion of the clock cycles for that logical processor to complete a tran-
sition to a halted state). Physical processors that support Intel HT Technology enter
into a power-saving state if all logical processors halt.

The Non-sleep Clockticks mechanism uses a filtering mechanism in CCCRs. The
mechanism will continue to increment as long as one logical processor is not halted
or in a power-saving state. Applications may cause a processor to enter into a power-
saving state by using an OS service that transfers control to an OS’s idle loop. The
idle loop then may place the processor into a power-saving state after an implemen-
tation-dependent period if there is no work for the processor.
Vol. 3B 18-99

PERFORMANCE MONITORING
18.12.3 Incrementing the Time-Stamp Counter
The time-stamp counter increments when the clock signal on the system bus is
active and when the sleep pin is not asserted. The counter value can be read with the
RDTSC instruction.

The time-stamp counter and the non-sleep clockticks count may not agree in all
cases and for all processors. See Section 17.12, “Time-Stamp Counter,” for more
information on counter operation.

18.12.4 Non-Halted Reference Clockticks
Software can use either processor-specific performance monitor events (for
example: CPU_CLK_UNHALTED.BUS on processors based on the Intel Core microar-
chitecture, and equivalent event specifications on the Intel Core Duo and Intel Core
Solo processors) to count non-halted reference clockticks.

These events count reference clock cycles whenever the specified processor is not
halted. The counter counts reference cycles associated with a fixed-frequency clock
source irrespective of P-state, TM2, or frequency transitions that may occur to the
processor.

18.12.5 Cycle Counting and Opportunistic Processor Operation
As a result of the state transitions due to opportunistic processor performance oper-
ation (see Chapter 14, “Power and Thermal Management”), a logical processor or a
processor core can operate at frequency different from that indicated by the
processor’s maximum qualified frequency.

The following items are expected to hold true irrespective of when opportunistic
processor operation causes state transitions:
• The time stamp counter operates at a fixed-rate frequency of the processor.
• The IA32_MPERF counter increments at the same TSC frequency irrespective of

any transitions caused by opportunistic processor operation.
• The IA32_FIXED_CTR2 counter increments at the same TSC frequency

irrespective of any transitions caused by opportunistic processor operation.
• The Local APIC timer operation is unaffected by opportunistic processor

operation.
• The TSC, IA32_MPERF, and IA32_FIXED_CTR2 operate at the same, maximum-

resolved frequency of the platform, which is equal to the product of scalable bus
frequency and maximum resolved bus ratio.

For processors based on Intel Core microarchitecture, the scalable bus frequency is
encoded in the bit field MSR_FSB_FREQ[2:0] at (0CDH), see Chapter 34, “Model-
18-100 Vol. 3B

PERFORMANCE MONITORING
Specific Registers (MSRs)”. The maximum resolved bus ratio can be read from the
following bit field:
• If XE operation is disabled, the maximum resolved bus ratio can be read in

MSR_PLATFORM_ID[12:8]. It corresponds to the maximum qualified frequency.
• IF XE operation is enabled, the maximum resolved bus ratio is given in

MSR_PERF_STAT[44:40], it corresponds to the maximum XE operation
frequency configured by BIOS.

XE operation of an Intel 64 processor is implementation specific. XE operation can be
enabled only by BIOS. If MSR_PERF_STAT[31] is set, XE operation is enabled. The
MSR_PERF_STAT[31] field is read-only.

18.13 PERFORMANCE MONITORING, BRANCH PROFILING
AND SYSTEM EVENTS

When performance monitoring facilities and/or branch profiling facilities (see Section
17.5, “Last Branch, Interrupt, and Exception Recording (Intel® Core™2 Duo and
Intel® Atom™ Processor Family)”) are enabled, these facilities capture event counts,
branch records and branch trace messages occurring in a logical processor. The
occurrence of interrupts, instruction streams due to various interrupt handlers all
contribute to the results recorded by these facilities.

If CPUID.01H:ECX.PDCM[bit 15] is 1, the processor supports the
IA32_PERF_CAPABILITIES MSR. If
IA32_PERF_CAPABILITIES.FREEZE_WHILE_SMM[Bit 12] is 1, the processor supports
the ability for system software using performance monitoring and/or branch profiling
facilities to filter out the effects of servicing system management interrupts.

If the FREEZE_WHILE_SMM capability is enabled on a logical processor and after an
SMI is delivered, the processor will clear all the enable bits of
IA32_PERF_GLOBAL_CTRL, save a copy of the content of IA32_DEBUGCTL and
disable LBR, BTF, TR, and BTS fields of IA32_DEBUGCTL before transferring control to
the SMI handler.

The enable bits of IA32_PERF_GLOBAL_CTRL will be set to 1, the saved copy of
IA32_DEBUGCTL prior to SMI delivery will be restored , after the SMI handler issues
RSM to complete its servicing.

It is the responsibility of the SMM code to ensure the state of the performance moni-
toring and branch profiling facilities are preserved upon entry or until prior to exiting
the SMM. If any of this state is modified due to actions by the SMM code, the SMM
code is required to restore such state to the values present at entry to the SMM
handler.

System software is allowed to set IA32_DEBUGCTL.FREEZE_WHILE_SMM_EN[bit 14]
to 1 only supported as indicated by
IA32_PERF_CAPABILITIES.FREEZE_WHILE_SMM[Bit 12] reporting 1.
Vol. 3B 18-101

PERFORMANCE MONITORING
18.14 PERFORMANCE MONITORING AND DUAL-CORE
TECHNOLOGY

The performance monitoring capability of dual-core processors duplicates the
microarchitectural resources of a single-core processor implementation. Each
processor core has dedicated performance monitoring resources.

In the case of Pentium D processor, each logical processor is associated with dedi-
cated resources for performance monitoring. In the case of Pentium processor
Extreme edition, each processor core has dedicated resources, but two logical
processors in the same core share performance monitoring resources (see Section
18.11, “Performance Monitoring and Intel Hyper-Threading Technology in Processors
Based on Intel NetBurst® Microarchitecture”).

18.15 PERFORMANCE MONITORING ON 64-BIT INTEL XEON
PROCESSOR MP WITH UP TO 8-MBYTE L3 CACHE

The 64-bit Intel Xeon processor MP with up to 8-MByte L3 cache has a CPUID signa-
ture of family [0FH], model [03H or 04H]. Performance monitoring capabilities avail-
able to Pentium 4 and Intel Xeon processors with the same values (see Section 18.1
and Section 18.11) apply to the 64-bit Intel Xeon processor MP with an L3 cache.

The level 3 cache is connected between the system bus and IOQ through additional
control logic. See Figure 18-40.

Figure 18-39. Layout of IA32_PERF_CAPABILITIES MSR

SMM_FREEZE (R/O)
PEBS_REC_FMT (R/O)

8 7 012 3 1

Reserved

63 2411 56

PEBS_TRAP (R/O)
LBR_FMT (R/O) - 0: 32bit, 1: 64-bit LIP, 2: 64bit EIP

PEBS_ARCH_REG (R/O)

13

FW_WRITE (R/O)
18-102 Vol. 3B

PERFORMANCE MONITORING
Additional performance monitoring capabilities and facilities unique to 64-bit Intel
Xeon processor MP with an L3 cache are described in this section. The facility for
monitoring events consists of a set of dedicated model-specific registers (MSRs),
each dedicated to a specific event. Programming of these MSRs requires using
RDMSR/WRMSR instructions with 64-bit values.

The lower 32-bits of the MSRs at addresses 107CC through 107D3 are treated as 32
bit performance counter registers. These performance counters can be accessed
using RDPMC instruction with the index starting from 18 through 25. The EDX
register returns zero when reading these 8 PMCs.

The performance monitoring capabilities consist of four events. These are:
• IBUSQ event — This event detects the occurrence of micro-architectural

conditions related to the iBUSQ unit. It provides two MSRs: MSR_IFSB_IBUSQ0
and MSR_IFSB_IBUSQ1. Configure sub-event qualification and enable/disable
functions using the high 32 bits of these MSRs. The low 32 bits act as a 32-bit
event counter. Counting starts after software writes a non-zero value to one or
more of the upper 32 bits. See Figure 18-41.

Figure 18-40. Block Diagram of 64-bit Intel Xeon Processor MP with 8-MByte L3
Vol. 3B 18-103

PERFORMANCE MONITORING
• ISNPQ event — This event detects the occurrence of microarchitectural
conditions related to the iSNPQ unit. It provides two MSRs: MSR_IFSB_ISNPQ0
and MSR_IFSB_ISNPQ1. Configure sub-event qualifications and enable/disable
functions using the high 32 bits of the MSRs. The low 32-bits act as a 32-bit event
counter. Counting starts after software writes a non-zero value to one or more of
the upper 32-bits. See Figure 18-42.

Figure 18-41. MSR_IFSB_IBUSQx, Addresses: 107CCH and 107CDH

L3_state_match

46 3845 37 36 3334

Saturate
Fill_match
Eviction_match

Snoop_match
Type_match
T1_match
T0_match

Reserved

63 56 55 48 324957585960 35

1 1

32 bit event count

031

MSR_IFSB_IBUSQx, Addresses: 107CCH and 107CDH
18-104 Vol. 3B

PERFORMANCE MONITORING
• EFSB event — This event can detect the occurrence of micro-architectural
conditions related to the iFSB unit or system bus. It provides two MSRs:
MSR_EFSB_DRDY0 and MSR_EFSB_DRDY1. Configure sub-event qualifications
and enable/disable functions using the high 32 bits of the 64-bit MSR. The low
32-bit act as a 32-bit event counter. Counting starts after software writes a non-
zero value to one or more of the qualification bits in the upper 32-bits of the MSR.
See Figure 18-43.

Figure 18-42. MSR_IFSB_ISNPQx, Addresses: 107CEH and 107CFH

L3_state_match

46 3845 37 36 3334

Saturate

Snoop_match
Type_match

T1_match
T0_match

Reserved

63 56 55 48 3257585960 3539

Agent_match

31 0

32 bit event count

MSR_IFSB_ISNPQx, Addresses: 107CEH and 107CFH
Vol. 3B 18-105

PERFORMANCE MONITORING
• IBUSQ Latency event — This event accumulates weighted cycle counts for
latency measurement of transactions in the iBUSQ unit. The count is enabled by
setting MSR_IFSB_CTRL6[bit 26] to 1; the count freezes after software sets
MSR_IFSB_CTRL6[bit 26] to 0. MSR_IFSB_CNTR7 acts as a 64-bit event
counter for this event. See Figure 18-44.

Figure 18-43. MSR_EFSB_DRDYx, Addresses: 107D0H and 107D1H

Other

49 3850 37 36 3334

Saturate

Own

Reserved

63 56 55 48 3257585960 3539

31 0

32 bit event count

MSR_EFSB_DRDYx, Addresses: 107D0H and 107D1H
18-106 Vol. 3B

PERFORMANCE MONITORING
18.16 PERFORMANCE MONITORING ON L3 AND CACHING
BUS CONTROLLER SUB-SYSTEMS

The Intel Xeon processor 7400 series and Dual-Core Intel Xeon processor 7100
series employ a distinct L3/caching bus controller sub-system. These sub-system
have a unique set of performance monitoring capability and programming interfaces
that are largely common between these two processor families.

Intel Xeon processor 7400 series are based on 45nm enhanced Intel Core microar-
chitecture. The CPUID signature is indicated by DisplayFamily_DisplayModel value of
06_1DH (see CPUID instruction in Chapter 3, “Instruction Set Reference, A-L” in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A). Intel
Xeon processor 7400 series have six processor cores that share an L3 cache.

Dual-Core Intel Xeon processor 7100 series are based on Intel NetBurst microarchi-
tecture, have a CPUID signature of family [0FH], model [06H] and a unified L3 cache
shared between two cores. Each core in an Intel Xeon processor 7100 series supports
Intel Hyper-Threading Technology, providing two logical processors per core.

Both Intel Xeon processor 7400 series and Intel Xeon processor 7100 series support
multi-processor configurations using system bus interfaces. In Intel Xeon processor
7400 series, the L3/caching bus controller sub-system provides three Simple Direct
Interface (SDI) to service transactions originated the XQ-replacement SDI logic in
each dual-core modules. In Intel Xeon processor 7100 series, the IOQ logic in each
processor core is replaced with a Simple Direct Interface (SDI) logic. The L3 cache is

Figure 18-44. MSR_IFSB_CTL6, Address: 107D2H;
MSR_IFSB_CNTR7, Address: 107D3H

Reserved

MSR_IFSB_CTL6 Address: 107D2H

MSR_IFSB_CNTR7 Address: 107D3H

Enable

63 05759

63 0

64 bit event count
Vol. 3B 18-107

PERFORMANCE MONITORING
connected between the system bus and the SDI through additional control logic. See
Figure 18-45 for the block configuration of six processor cores and the L3/Caching
bus controller sub-system in Intel Xeon processor 7400 series. Figure 18-45 shows
the block configuration of two processor cores (four logical processors) and the
L3/Caching bus controller sub-system in Intel Xeon processor 7100 series.

Almost all of the performance monitoring capabilities available to processor cores
with the same CPUID signatures (see Section 18.1 and Section 18.11) apply to Intel
Xeon processor 7100 series. The MSRs used by performance monitoring interface are
shared between two logical processors in the same processor core.

The performance monitoring capabilities available to processor with
DisplayFamily_DisplayModel signature 06_17H also apply to Intel Xeon processor
7400 series. Each processor core provides its own set of MSRs for performance moni-
toring interface.

The IOQ_allocation and IOQ_active_entries events are not supported in Intel Xeon
processor 7100 series and 7400 series. Additional performance monitoring capabili-
ties applicable to the L3/caching bus controller sub-system are described in this
section.

Figure 18-45. Block Diagram of Intel Xeon Processor 7400 Series

SDI interface

L2

SDI interface

L2

L3
GBSQ, GSNPQ,
GINTQ, ...

FSB

SDI

SDI interface

L2

Core Core Core Core Core Core
18-108 Vol. 3B

PERFORMANCE MONITORING
18.16.1 Overview of Performance Monitoring with L3/Caching Bus
Controller

The facility for monitoring events consists of a set of dedicated model-specific
registers (MSRs). There are eight event select/counting MSRs that are dedicated to
counting events associated with specified microarchitectural conditions. Program-
ming of these MSRs requires using RDMSR/WRMSR instructions with 64-bit values.
In addition, an MSR MSR_EMON_L3_GL_CTL provides simplified interface to control
freezing, resetting, re-enabling operation of any combination of these event
select/counting MSRs.

The eight MSRs dedicated to count occurrences of specific conditions are further
divided to count three sub-classes of microarchitectural conditions:
• Two MSRs (MSR_EMON_L3_CTR_CTL0 and MSR_EMON_L3_CTR_CTL1) are

dedicated to counting GBSQ events. Up to two GBSQ events can be programmed
and counted simultaneously.

• Two MSRs (MSR_EMON_L3_CTR_CTL2 and MSR_EMON_L3_CTR_CTL3) are
dedicated to counting GSNPQ events. Up to two GBSQ events can be
programmed and counted simultaneously.

Figure 18-46. Block Diagram of Intel Xeon Processor 7100 Series

SDI interface

Processor core

SDI interface

Processor core

L3
GBSQ, GSNPQ,
GINTQ, ...

FSB

SDI

Logical
processor

Logical
processor

Logical
processor

Logical
processor
Vol. 3B 18-109

PERFORMANCE MONITORING
• Four MSRs (MSR_EMON_L3_CTR_CTL4, MSR_EMON_L3_CTR_CTL5,
MSR_EMON_L3_CTR_CTL6, and MSR_EMON_L3_CTR_CTL7) are dedicated to
counting external bus operations.

The bit fields in each of eight MSRs share the following common characteristics:
• Bits 63:32 is the event control field that includes an event mask and other bit

fields that control counter operation. The event mask field specifies details of the
microarchitectural condition, and its definition differs across GBSQ, GSNPQ, FSB.

• Bits 31:0 is the event count field. If the specified condition is met during each
relevant clock domain of the event logic, the matched condition signals the
counter logic to increment the associated event count field. The lower 32-bits of
these 8 MSRs at addresses 107CC through 107D3 are treated as 32 bit
performance counter registers.

In Dual-Core Intel Xeon processor 7100 series, the uncore performance counters can
be accessed using RDPMC instruction with the index starting from 18 through 25. The
EDX register returns zero when reading these 8 PMCs.

In Intel Xeon processor 7400 series, RDPMC with ECX between 2 and 9 can be used
to access the eight uncore performance counter/control registers.

18.16.2 GBSQ Event Interface
The layout of MSR_EMON_L3_CTR_CTL0 and MSR_EMON_L3_CTR_CTL1 is given in
Figure 18-47. Counting starts after software writes a non-zero value to one or more
of the upper 32 bits.

The event mask field (bits 58:32) consists of the following eight attributes:
• Agent_Select (bits 35:32): The definition of this field differs slightly between

Intel Xeon processor 7100 and 7400.
For Intel Xeon processor 7100 series, each bit specifies a logical processor in the
physical package. The lower two bits corresponds to two logical processors in the
first processor core, the upper two bits corresponds to two logical processors in
the second processor core. 0FH encoding matches transactions from any logical
processor.
For Intel Xeon processor 7400 series, each bit of [34:32] specifies the SDI logic
of a dual-core module as the originator of the transaction. A value of 0111B in
bits [35:32] specifies transaction from any processor core.
18-110 Vol. 3B

PERFORMANCE MONITORING
• Data_Flow (bits 37:36): Bit 36 specifies demand transactions, bit 37 specifies
prefetch transactions.

• Type_Match (bits 43:38): Specifies transaction types. If all six bits are set, event
count will include all transaction types.

• Snoop_Match: (bits 46:44): The three bits specify (in ascending bit position)
clean snoop result, HIT snoop result, and HITM snoop results respectively.

• L3_State (bits 53:47): Each bit specifies an L2 coherency state.
• Core_Module_Select (bits 55:54): The valid encodings for L3 lookup differ

slightly between Intel Xeon processor 7100 and 7400.
For Intel Xeon processor 7100 series,

— 00B: Match transactions from any core in the physical package

— 01B: Match transactions from this core only

— 10B: Match transactions from the other core in the physical package

— 11B: Match transaction from both cores in the physical package
For Intel Xeon processor 7400 series,

— 00B: Match transactions from any dual-core module in the physical package

Figure 18-47. MSR_EMON_L3_CTR_CTL0/1, Addresses: 107CCH/107CDH

Core_module_select

44 3843 37 3654 53

Saturate
Cross_snoop
Fill_eviction

Snoop_match
Type_match
Data_flow
Agent_select

Reserved

63 56 55 46 324757585960 35

32 bit event count

031

MSR_EMON_L3_CTR_CTL0/1, Addresses: 107CCH/107CDH

L3_state
Vol. 3B 18-111

PERFORMANCE MONITORING
— 01B: Match transactions from this dual-core module only

— 10B: Match transactions from either one of the other two dual-core modules
in the physical package

— 11B: Match transaction from more than one dual-core modules in the
physical package

• Fill_Eviction (bits 57:56): The valid encodings are

— 00B: Match any transactions

— 01B: Match transactions that fill L3

— 10B: Match transactions that fill L3 without an eviction

— 11B: Match transaction fill L3 with an eviction
• Cross_Snoop (bit 58): The encodings are \

— 0B: Match any transactions

— 1B: Match cross snoop transactions

For each counting clock domain, if all eight attributes match, event logic signals to
increment the event count field.

18.16.3 GSNPQ Event Interface
The layout of MSR_EMON_L3_CTR_CTL2 and MSR_EMON_L3_CTR_CTL3 is given in
Figure 18-48. Counting starts after software writes a non-zero value to one or more
of the upper 32 bits.

The event mask field (bits 58:32) consists of the following six attributes:
• Agent_Select (bits 37:32): The definition of this field differs slightly between

Intel Xeon processor 7100 and 7400.
• For Intel Xeon processor 7100 series, each of the lowest 4 bits specifies a logical

processor in the physical package. The lowest two bits corresponds to two logical
processors in the first processor core, the next two bits corresponds to two logical
processors in the second processor core. Bit 36 specifies other symmetric agent
transactions. Bit 37 specifies central agent transactions. 3FH encoding matches
transactions from any logical processor.
For Intel Xeon processor 7400 series, each of the lowest 3 bits specifies a dual-
core module in the physical package. Bit 37 specifies central agent transactions.

• Type_Match (bits 43:38): Specifies transaction types. If all six bits are set, event
count will include any transaction types.

• Snoop_Match: (bits 46:44): The three bits specify (in ascending bit position)
clean snoop result, HIT snoop result, and HITM snoop results respectively.

• L2_State (bits 53:47): Each bit specifies an L3 coherency state.
• Core_Module_Select (bits 56:54): Bit 56 enables Core_Module_Select matching.

If bit 56 is clear, Core_Module_Select encoding is ignored. The valid encodings for
18-112 Vol. 3B

PERFORMANCE MONITORING
the lower two bits (bit 55, 54) differ slightly between Intel Xeon processor 7100
and 7400.
For Intel Xeon processor 7100 series, if bit 56 is set, the valid encodings for the
lower two bits (bit 55, 54) are

— 00B: Match transactions from only one core (irrespective which core) in the
physical package

— 01B: Match transactions from this core and not the other core

— 10B: Match transactions from the other core in the physical package, but not
this core

— 11B: Match transaction from both cores in the physical package
For Intel Xeon processor 7400 series, if bit 56 is set, the valid encodings for the
lower two bits (bit 55, 54) are

— 00B: Match transactions from only one dual-core module (irrespective which
module) in the physical package

— 01B: Match transactions from one or more dual-core modules.

— 10B: Match transactions from two or more dual-core modules.

— 11B: Match transaction from all three dual-core modules in the physical
package

• Block_Snoop (bit 57): specifies blocked snoop.

For each counting clock domain, if all six attributes match, event logic signals to
increment the event count field.
Vol. 3B 18-113

PERFORMANCE MONITORING
18.16.4 FSB Event Interface
The layout of MSR_EMON_L3_CTR_CTL4 through MSR_EMON_L3_CTR_CTL7 is given
in Figure 18-49. Counting starts after software writes a non-zero value to one or
more of the upper 32 bits.

The event mask field (bits 58:32) is organized as follows:
• Bit 58: must set to 1.
• FSB_Submask (bits 57:32): Specifies FSB-specific sub-event mask.

The FSB sub-event mask defines a set of independent attributes. The event logic
signals to increment the associated event count field if one of the attribute matches.
Some of the sub-event mask bit counts durations. A duration event increments at
most once per cycle.

Figure 18-48. MSR_EMON_L3_CTR_CTL2/3, Addresses: 107CEH/107CFH

L2_state

46 3844 37 364354

Saturate

Snoop_match
Type_match

Reserved

63 56 55 47 3257585960 53 39

Agent_match

31 0

32 bit event count

MSR_EMON_L3_CTR_CTL2/3, Addresses: 107CEH/107CFH

Block_snoop
Core_select
18-114 Vol. 3B

PERFORMANCE MONITORING
18.16.4.1 FSB Sub-Event Mask Interface
• FSB_type (bit 37:32): Specifies different FSB transaction types originated from

this physical package
• FSB_L_clear (bit 38): Count clean snoop results from any source for transaction

originated from this physical package
• FSB_L_hit (bit 39): Count HIT snoop results from any source for transaction

originated from this physical package
• FSB_L_hitm (bit 40): Count HITM snoop results from any source for transaction

originated from this physical package
• FSB_L_defer (bit 41): Count DEFER responses to this processor’s transactions
• FSB_L_retry (bit 42): Count RETRY responses to this processor’s transactions
• FSB_L_snoop_stall (bit 43): Count snoop stalls to this processor’s transactions
• FSB_DBSY (bit 44): Count DBSY assertions by this processor (without a

concurrent DRDY)
• FSB_DRDY (bit 45): Count DRDY assertions by this processor
• FSB_BNR (bit 46): Count BNR assertions by this processor
• FSB_IOQ_empty (bit 47): Counts each bus clocks when the IOQ is empty
• FSB_IOQ_full (bit 48): Counts each bus clocks when the IOQ is full
• FSB_IOQ_active (bit 49): Counts each bus clocks when there is at least one entry

in the IOQ

Figure 18-49. MSR_EMON_L3_CTR_CTL4/5/6/7, Addresses: 107D0H-107D3H

1

49 3850 37 36 3334

Saturate

FSB submask

Reserved

63 56 55 48 3257585960 3539

31 0

32 bit event count

MSR_EMON_L3_CTR_CTL4/5/6/7, Addresses: 107D0H-107D3H
Vol. 3B 18-115

PERFORMANCE MONITORING
• FSB_WW_data (bit 50): Counts back-to-back write transaction’s data phase.
• FSB_WW_issue (bit 51): Counts back-to-back write transaction request pairs

issued by this processor.
• FSB_WR_issue (bit 52): Counts back-to-back write-read transaction request

pairs issued by this processor.
• FSB_RW_issue (bit 53): Counts back-to-back read-write transaction request

pairs issued by this processor.
• FSB_other_DBSY (bit 54): Count DBSY assertions by another agent (without a

concurrent DRDY)
• FSB_other_DRDY (bit 55): Count DRDY assertions by another agent
• FSB_other_snoop_stall (bit 56): Count snoop stalls on the FSB due to another

agent
• FSB_other_BNR (bit 57): Count BNR assertions from another agent

18.16.5 Common Event Control Interface
The MSR_EMON_L3_GL_CTL MSR provides simplified access to query overflow status
of the GBSQ, GSNPQ, FSB event counters. It also provides control bit fields to freeze,
unfreeze, or reset those counters. The following bit fields are supported:
• GL_freeze_cmd (bit 0): Freeze the event counters specified by the

GL_event_select field.
• GL_unfreeze_cmd (bit 1): Unfreeze the event counters specified by the

GL_event_select field.
• GL_reset_cmd (bit 2): Clear the event count field of the event counters specified

by the GL_event_select field. The event select field is not affected.
• GL_event_select (bit 23:16): Selects one or more event counters to subject to

specified command operations indicated by bits 2:0. Bit 16 corresponds to
MSR_EMON_L3_CTR_CTL0, bit 23 corresponds to MSR_EMON_L3_CTR_CTL7.

• GL_event_status (bit 55:48): Indicates the overflow status of each event
counters. Bit 48 corresponds to MSR_EMON_L3_CTR_CTL0, bit 55 corresponds
to MSR_EMON_L3_CTR_CTL7.

In the event control field (bits 63:32) of each MSR, if the saturate control (bit 59, see
Figure 18-47 for example) is set, the event logic forces the value FFFF_FFFFH into
the event count field instead of incrementing it.

18.17 PERFORMANCE MONITORING (P6 FAMILY
PROCESSOR)

The P6 family processors provide two 40-bit performance counters, allowing two
types of events to be monitored simultaneously. These can either count events or
18-116 Vol. 3B

PERFORMANCE MONITORING
measure duration. When counting events, a counter increments each time a speci-
fied event takes place or a specified number of events takes place. When measuring
duration, it counts the number of processor clocks that occur while a specified condi-
tion is true. The counters can count events or measure durations that occur at any
privilege level.

Table 19-25, Chapter 19, lists the events that can be counted with the P6 family
performance monitoring counters.

NOTE
The performance-monitoring events listed in Chapter 19 are intended
to be used as guides for performance tuning. Counter values reported
are not guaranteed to be accurate and should be used as a relative
guide for tuning. Known discrepancies are documented where
applicable.

The performance-monitoring counters are supported by four MSRs: the performance
event select MSRs (PerfEvtSel0 and PerfEvtSel1) and the performance counter MSRs
(PerfCtr0 and PerfCtr1). These registers can be read from and written to using the
RDMSR and WRMSR instructions, respectively. They can be accessed using these
instructions only when operating at privilege level 0. The PerfCtr0 and PerfCtr1 MSRs
can be read from any privilege level using the RDPMC (read performance-monitoring
counters) instruction.

NOTE
The PerfEvtSel0, PerfEvtSel1, PerfCtr0, and PerfCtr1 MSRs and the
events listed in Table 19-25 are model-specific for P6 family
processors. They are not guaranteed to be available in other IA-32
processors.

18.17.1 PerfEvtSel0 and PerfEvtSel1 MSRs
The PerfEvtSel0 and PerfEvtSel1 MSRs control the operation of the performance-
monitoring counters, with one register used to set up each counter. They specify the
events to be counted, how they should be counted, and the privilege levels at which
counting should take place. Figure 18-50 shows the flags and fields in these MSRs.

The functions of the flags and fields in the PerfEvtSel0 and PerfEvtSel1 MSRs are as
follows:
• Event select field (bits 0 through 7) — Selects the event logic unit to detect

certain microarchitectural conditions (see Table 19-25, for a list of events and
their 8-bit codes).

• Unit mask (UMASK) field (bits 8 through 15) — Further qualifies the event
logic unit selected in the event select field to detect a specific microarchitectural
condition. For example, for some cache events, the mask is used as a MESI-
protocol qualifier of cache states (see Table 19-25).
Vol. 3B 18-117

PERFORMANCE MONITORING
• USR (user mode) flag (bit 16) — Specifies that events are counted only when
the processor is operating at privilege levels 1, 2 or 3. This flag can be used in
conjunction with the OS flag.

• OS (operating system mode) flag (bit 17) — Specifies that events are
counted only when the processor is operating at privilege level 0. This flag can be
used in conjunction with the USR flag.

• E (edge detect) flag (bit 18) — Enables (when set) edge detection of events.
The processor counts the number of deasserted to asserted transitions of any
condition that can be expressed by the other fields. The mechanism is limited in
that it does not permit back-to-back assertions to be distinguished. This
mechanism allows software to measure not only the fraction of time spent in a
particular state, but also the average length of time spent in such a state (for
example, the time spent waiting for an interrupt to be serviced).

• PC (pin control) flag (bit 19) — When set, the processor toggles the PMi pins
and increments the counter when performance-monitoring events occur; when
clear, the processor toggles the PMi pins when the counter overflows. The
toggling of a pin is defined as assertion of the pin for a single bus clock followed
by deassertion.

• INT (APIC interrupt enable) flag (bit 20) — When set, the processor
generates an exception through its local APIC on counter overflow.

• EN (Enable Counters) Flag (bit 22) — This flag is only present in the
PerfEvtSel0 MSR. When set, performance counting is enabled in both
performance-monitoring counters; when clear, both counters are disabled.

• INV (invert) flag (bit 23) — Inverts the result of the counter-mask comparison
when set, so that both greater than and less than comparisons can be made.

Figure 18-50. PerfEvtSel0 and PerfEvtSel1 MSRs

31

INV—Invert counter mask
EN—Enable counters*
INT—APIC interrupt enable
PC—Pin control

8 7 0

Event Select

E—Edge detect
OS—Operating system mode
USR—User Mode

* Only available in PerfEvtSel0.

Counter Mask
EE

N

I
N
T

19 1618 15172021222324

Reserved

I
N
V

P
C

U
S
R

O
S

Unit Mask (UMASK)(CMASK)
18-118 Vol. 3B

PERFORMANCE MONITORING
• Counter mask (CMASK) field (bits 24 through 31) — When nonzero, the
processor compares this mask to the number of events counted during a single
cycle. If the event count is greater than or equal to this mask, the counter is
incremented by one. Otherwise the counter is not incremented. This mask can be
used to count events only if multiple occurrences happen per clock (for example,
two or more instructions retired per clock). If the counter-mask field is 0, then
the counter is incremented each cycle by the number of events that occurred that
cycle.

18.17.2 PerfCtr0 and PerfCtr1 MSRs
The performance-counter MSRs (PerfCtr0 and PerfCtr1) contain the event or duration
counts for the selected events being counted. The RDPMC instruction can be used by
programs or procedures running at any privilege level and in virtual-8086 mode to
read these counters. The PCE flag in control register CR4 (bit 8) allows the use of this
instruction to be restricted to only programs and procedures running at privilege
level 0.

The RDPMC instruction is not serializing or ordered with other instructions. Thus, it
does not necessarily wait until all previous instructions have been executed before
reading the counter. Similarly, subsequent instructions may begin execution before
the RDPMC instruction operation is performed.

Only the operating system, executing at privilege level 0, can directly manipulate the
performance counters, using the RDMSR and WRMSR instructions. A secure oper-
ating system would clear the PCE flag during system initialization to disable direct
user access to the performance-monitoring counters, but provide a user-accessible
programming interface that emulates the RDPMC instruction.

The WRMSR instruction cannot arbitrarily write to the performance-monitoring
counter MSRs (PerfCtr0 and PerfCtr1). Instead, the lower-order 32 bits of each MSR
may be written with any value, and the high-order 8 bits are sign-extended according
to the value of bit 31. This operation allows writing both positive and negative values
to the performance counters.

18.17.3 Starting and Stopping the Performance-Monitoring Counters
The performance-monitoring counters are started by writing valid setup information
in the PerfEvtSel0 and/or PerfEvtSel1 MSRs and setting the enable counters flag in
the PerfEvtSel0 MSR. If the setup is valid, the counters begin counting following the
execution of a WRMSR instruction that sets the enable counter flag. The counters can
be stopped by clearing the enable counters flag or by clearing all the bits in the
PerfEvtSel0 and PerfEvtSel1 MSRs. Counter 1 alone can be stopped by clearing the
PerfEvtSel1 MSR.
Vol. 3B 18-119

PERFORMANCE MONITORING
18.17.4 Event and Time-Stamp Monitoring Software
To use the performance-monitoring counters and time-stamp counter, the operating
system needs to provide an event-monitoring device driver. This driver should
include procedures for handling the following operations:
• Feature checking
• Initialize and start counters
• Stop counters
• Read the event counters
• Read the time-stamp counter

The event monitor feature determination procedure must check whether the current
processor supports the performance-monitoring counters and time-stamp counter.
This procedure compares the family and model of the processor returned by the
CPUID instruction with those of processors known to support performance moni-
toring. (The Pentium and P6 family processors support performance counters.) The
procedure also checks the MSR and TSC flags returned to register EDX by the CPUID
instruction to determine if the MSRs and the RDTSC instruction are supported.

The initialize and start counters procedure sets the PerfEvtSel0 and/or PerfEvtSel1
MSRs for the events to be counted and the method used to count them and initializes
the counter MSRs (PerfCtr0 and PerfCtr1) to starting counts. The stop counters
procedure stops the performance counters (see Section 18.17.3, “Starting and Stop-
ping the Performance-Monitoring Counters”).

The read counters procedure reads the values in the PerfCtr0 and PerfCtr1 MSRs, and
a read time-stamp counter procedure reads the time-stamp counter. These proce-
dures would be provided in lieu of enabling the RDTSC and RDPMC instructions that
allow application code to read the counters.

18.17.5 Monitoring Counter Overflow
The P6 family processors provide the option of generating a local APIC interrupt when
a performance-monitoring counter overflows. This mechanism is enabled by setting
the interrupt enable flag in either the PerfEvtSel0 or the PerfEvtSel1 MSR. The
primary use of this option is for statistical performance sampling.

To use this option, the operating system should do the following things on the
processor for which performance events are required to be monitored:
• Provide an interrupt vector for handling the counter-overflow interrupt.
• Initialize the APIC PERF local vector entry to enable handling of performance-

monitor counter overflow events.
• Provide an entry in the IDT that points to a stub exception handler that returns

without executing any instructions.
• Provide an event monitor driver that provides the actual interrupt handler and

modifies the reserved IDT entry to point to its interrupt routine.
18-120 Vol. 3B

PERFORMANCE MONITORING
When interrupted by a counter overflow, the interrupt handler needs to perform the
following actions:
• Save the instruction pointer (EIP register), code-segment selector, TSS segment

selector, counter values and other relevant information at the time of the
interrupt.

• Reset the counter to its initial setting and return from the interrupt.

An event monitor application utility or another application program can read the
information collected for analysis of the performance of the profiled application.

18.18 PERFORMANCE MONITORING (PENTIUM
PROCESSORS)

The Pentium processor provides two 40-bit performance counters, which can be used
to count events or measure duration. The counters are supported by three MSRs: the
control and event select MSR (CESR) and the performance counter MSRs (CTR0 and
CTR1). These can be read from and written to using the RDMSR and WRMSR instruc-
tions, respectively. They can be accessed using these instructions only when oper-
ating at privilege level 0.

Each counter has an associated external pin (PM0/BP0 and PM1/BP1), which can be
used to indicate the state of the counter to external hardware.

NOTES
The CESR, CTR0, and CTR1 MSRs and the events listed in Table 19-26
are model-specific for the Pentium processor.
The performance-monitoring events listed in Chapter 19 are intended
to be used as guides for performance tuning. Counter values reported
are not guaranteed to be accurate and should be used as a relative
guide for tuning. Known discrepancies are documented where
applicable.

18.18.1 Control and Event Select Register (CESR)
The 32-bit control and event select MSR (CESR) controls the operation of perfor-
mance-monitoring counters CTR0 and CTR1 and the associated pins (see
Figure 18-51). To control each counter, the CESR register contains a 6-bit event
select field (ES0 and ES1), a pin control flag (PC0 and PC1), and a 3-bit counter
control field (CC0 and CC1). The functions of these fields are as follows:
• ES0 and ES1 (event select) fields (bits 0-5, bits 16-21) — Selects (by

entering an event code in the field) up to two events to be monitored. See Table
19-26 for a list of available event codes.
Vol. 3B 18-121

PERFORMANCE MONITORING
• CC0 and CC1 (counter control) fields (bits 6-8, bits 22-24) — Controls the
operation of the counter. Control codes are as follows:

000 — Count nothing (counter disabled)

001 — Count the selected event while CPL is 0, 1, or 2

010 — Count the selected event while CPL is 3

011 — Count the selected event regardless of CPL

100 — Count nothing (counter disabled)

101 — Count clocks (duration) while CPL is 0, 1, or 2

110 — Count clocks (duration) while CPL is 3

111 — Count clocks (duration) regardless of CPL
The highest order bit selects between counting events and counting clocks
(duration); the middle bit enables counting when the CPL is 3; and the low-order
bit enables counting when the CPL is 0, 1, or 2.

• PC0 and PC1 (pin control) flags (bits 9, 25) — Selects the function of the
external performance-monitoring counter pin (PM0/BP0 and PM1/BP1). Setting
one of these flags to 1 causes the processor to assert its associated pin when the
counter has overflowed; setting the flag to 0 causes the pin to be asserted when
the counter has been incremented. These flags permit the pins to be individually
programmed to indicate the overflow or incremented condition. The external
signalling of the event on the pins will lag the internal event by a few clocks as the
signals are latched and buffered.

While a counter need not be stopped to sample its contents, it must be stopped and
cleared or preset before switching to a new event. It is not possible to set one
counter separately. If only one event needs to be changed, the CESR register must

Figure 18-51. CESR MSR (Pentium Processor Only)

31

PC1—Pin control 1
CC1—Counter control 1
ES1—Event select 1
PC0—Pin control 0

8 0

CC0—Counter control 0
ES0—Event select 0

16 15212224

Reserved

9 56

ESOCC0
P
C
0

ES1CC1
P
C
1

2526 10
18-122 Vol. 3B

PERFORMANCE MONITORING
be read, the appropriate bits modified, and all bits must then be written back to
CESR. At reset, all bits in the CESR register are cleared.

18.18.2 Use of the Performance-Monitoring Pins
When performance-monitor pins PM0/BP0 and/or PM1/BP1 are configured to indicate
when the performance-monitor counter has incremented and an “occurrence event”
is being counted, the associated pin is asserted (high) each time the event occurs.
When a “duration event” is being counted, the associated PM pin is asserted for the
entire duration of the event. When the performance-monitor pins are configured to
indicate when the counter has overflowed, the associated PM pin is asserted when
the counter has overflowed.

When the PM0/BP0 and/or PM1/BP1 pins are configured to signal that a counter has
incremented, it should be noted that although the counters may increment by 1 or 2
in a single clock, the pins can only indicate that the event occurred. Moreover, since
the internal clock frequency may be higher than the external clock frequency, a
single external clock may correspond to multiple internal clocks.

A “count up to” function may be provided when the event pin is programmed to
signal an overflow of the counter. Because the counters are 40 bits, a carry out of bit
39 indicates an overflow. A counter may be preset to a specific value less then 240 −
1. After the counter has been enabled and the prescribed number of events has tran-
spired, the counter will overflow.

Approximately 5 clocks later, the overflow is indicated externally and appropriate
action, such as signaling an interrupt, may then be taken.

The PM0/BP0 and PM1/BP1 pins also serve to indicate breakpoint matches during in-
circuit emulation, during which time the counter increment or overflow function of
these pins is not available. After RESET, the PM0/BP0 and PM1/BP1 pins are config-
ured for performance monitoring, however a hardware debugger may reconfigure
these pins to indicate breakpoint matches.

18.18.3 Events Counted
Events that performance-monitoring counters can be set to count and record (using
CTR0 and CTR1) are divided in two categories: occurrence and duration:
• Occurrence events — Counts are incremented each time an event takes place.

If PM0/BP0 or PM1/BP1 pins are used to indicate when a counter increments, the
pins are asserted each clock counters increment. But if an event happens twice in
one clock, the counter increments by 2 (the pins are asserted only once).

• Duration events — Counters increment the total number of clocks that the
condition is true. When used to indicate when counters increment, PM0/BP0
and/or PM1/BP1 pins are asserted for the duration.
Vol. 3B 18-123

CHAPTER 19
PERFORMANCE-MONITORING EVENTS

This chapter lists the performance-monitoring events that can be monitored with the
Intel 64 or IA-32 processors. The ability to monitor performance events and the
events that can be monitored in these processors are mostly model-specific, except
for architectural performance events, described in Section 19.1.

Non-architectural performance events (i.e. model-specific events) are listed for each
generation of microarchitecture:
• Section 19.2 - Processors based on Intel® microarchitecture code name Ivy

Bridge
• Section 19.3 - Processors based on Intel® microarchitecture code name Sandy

Bridge
• Section 19.4 - Processors based on Intel® microarchitecture code name Nehalem
• Section 19.5 - Processors based on Intel® microarchitecture code name

Westmere
• Section 19.6 - Processors based on Enhanced Intel® Core™ microarchitecture
• Section 19.7 - Processors based on Intel® Core™ microarchitecture
• Section 19.8 - Processors based on Intel® Atom™ microarchitecture
• Section 19.9 - Intel® Core™ Solo and Intel® Core™ Duo processors
• Section 19.10 - Processors based on Intel NetBurst® microarchitecture
• Section 19.11 - Pentium® M family processors
• Section 19.12 - P6 family processors
• Section 19.13 - Pentium® processors

NOTE
These performance-monitoring events are intended to be used as
guides for performance tuning. The counter values reported by the
performance-monitoring events are approximate and believed to be
useful as relative guides for tuning software. Known discrepancies
are documented where applicable.

19.1 ARCHITECTURAL PERFORMANCE-MONITORING
EVENTS

Architectural performance events are introduced in Intel Core Solo and Intel Core
Duo processors. They are also supported on processors based on Intel Core microar-
Vol. 3B 19-1

PERFORMANCE-MONITORING EVENTS
chitecture. Table 19-1 lists pre-defined architectural performance events that can be
configured using general-purpose performance counters and associated event-select
registers.

19.2 PERFORMANCE MONITORING EVENTS FOR NEXT
GENERATION INTEL® CORE™ PROCESSORS

Next generation Intel® Core™ Processors are based on the Intel microarchitecture
code name Ivy Bridge. They support architectural performance-monitoring events
listed in Table 19-1. Non-architectural performance-monitoring events in the
processor core are listed in Table 19-2. The events in Table 19-2 apply to processors
with CPUID signature of DisplayFamily_DisplayModel encoding with the following
values: 06_3AH.

Table 19-1. Architectural Performance Events
Event
Num. Event Mask Mnemonic

Umask
Value Description Comment

3CH UnHalted Core Cycles 00H Unhalted core cycles

3CH UnHalted Reference
Cycles

01H Unhalted reference cycles Measures
bus cycle1

NOTES:
1. Implementation of this event in Intel Core 2 processor family, Intel Core Duo, and Intel Core Solo pro-

cessors measures bus clocks.

C0H Instruction Retired 00H Instruction retired

2EH LLC Reference 4FH Last level cache references

2EH LLC Misses 41H Last level cache misses

C4H Branch Instruction Retired 00H Branch instruction at retirement

C5H Branch Misses Retired 00H Mispredicted Branch Instruction at
retirement

Table 19-2. Non-Architectural Performance Events In the Processor Core of Next
Generation Intel Core i7, i5, i3 Processors

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

03H 02H LD_BLOCKS.STORE_F
ORWARD

loads blocked by overlapping with
store buffer that cannot be
forwarded .

05H 01H MISALIGN_MEM_REF.
LOADS

Speculative cache-line split load
uops dispatched to L1D.
19-2 Vol. 3B

PERFORMANCE-MONITORING EVENTS
05H 02H MISALIGN_MEM_REF.
STORES

Speculative cache-line split Store-
address uops dispatched to L1D.

07H 01H LD_BLOCKS_PARTIA
L.ADDRESS_ALIAS

False dependencies in MOB due to
partial compare on address.

08H 81H DTLB_LOAD_MISSES.
DEMAND_LD_MISS_C
AUSES_A_WALK

Misses in all TLB levels that cause a
page walk of any page size from
demand loads.

08H 82H DTLB_LOAD_MISSES.
DEMAND_LD_WALK_
COMPLETED

Misses in all TLB levels that caused
page walk completed of any size by
demand loads.

08H 84H DTLB_LOAD_MISSES.
DEMAND_LD_WALK_
DURATION

Cycle PMH is busy with a walk due
to demand loads.

0EH 01H UOPS_ISSUED.ANY Increments each cycle the # of Uops
issued by the RAT to RS.

Set Cmask = 1, Inv = 1, Any= 1to
count stalled cycles of this core.

Set Cmask = 1,
Inv = 1to count
stalled cycles

14H 01H ARITH.FPU_DIV_ACT
IVE

Cycles that the divider is active,
includes INT and FP. Set 'edge =1,
cmask=1' to count the number of
divides.

24H 01H L2_RQSTS.DEMAND_
DATA_RD_HIT

Demand Data Read requests that
hit L2 cache

24H 03H L2_RQSTS.ALL_DEM
AND_DATA_RD

Counts any demand and L1 HW
prefetch data load requests to L2.

24H 04H L2_RQSTS.RFO_HITS Counts the number of store RFO
requests that hit the L2 cache.

24H 08H L2_RQSTS.RFO_MISS Counts the number of store RFO
requests that miss the L2 cache.

24H 0CH L2_RQSTS.ALL_RFO Counts all L2 store RFO requests.

24H 10H L2_RQSTS.CODE_RD
_HIT

Number of instruction fetches that
hit the L2 cache.

24H 20H L2_RQSTS.CODE_RD
_MISS

Number of instruction fetches that
missed the L2 cache.

24H 30H L2_RQSTS.ALL_COD
E_RD

Counts all L2 code requests.

Table 19-2. Non-Architectural Performance Events In the Processor Core of Next
Generation Intel Core i7, i5, i3 Processors

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-3

PERFORMANCE-MONITORING EVENTS
27H 01H L2_STORE_LOCK_RQ
STS.MISS

RFOs that miss cache lines

27H 08H L2_STORE_LOCK_RQ
STS.HIT_M

RFOs that hit cache lines in M state

27H 0FH L2_STORE_LOCK_RQ
STS.ALL

RFOs that access cache lines in any
state

28H 01H L2_L1D_WB_RQSTS.
MISS

Not rejected writebacks that missed
LLC.

28H 04H L2_L1D_WB_RQSTS.
HIT_E

Not rejected writebacks from L1D
to L2 cache lines in E state.

28H 08H L2_L1D_WB_RQSTS.
HIT_M

Not rejected writebacks from L1D
to L2 cache lines in M state.

2EH 4FH LONGEST_LAT_CACH
E.REFERENCE

This event counts requests
originating from the core that
reference a cache line in the last
level cache.

see Table 19-1

2EH 41H LONGEST_LAT_CACH
E.MISS

This event counts each cache miss
condition for references to the last
level cache.

see Table 19-1

3CH 00H CPU_CLK_UNHALTED
.THREAD_P

Counts the number of thread cycles
while the thread is not in a halt
state. The thread enters the halt
state when it is running the HLT
instruction. The core frequency may
change from time to time due to
power or thermal throttling.

see Table 19-1

3CH 01H CPU_CLK_THREAD_
UNHALTED.REF_XCL
K

Increments at the frequency of
XCLK (100 MHz) when not halted.

see Table 19-1

48H 01H L1D_PEND_MISS.PE
NDING

Increments the number of
outstanding L1D misses every cycle.
Set Cmaks = 1 and Edge =1 to count
occurrences.

Counter 2 only;

Set Cmask = 1 to
count cycles.

49H 01H DTLB_STORE_MISSE
S.MISS_CAUSES_A_
WALK

Miss in all TLB levels causes an page
walk of any page size
(4K/2M/4M/1G).

Table 19-2. Non-Architectural Performance Events In the Processor Core of Next
Generation Intel Core i7, i5, i3 Processors

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
19-4 Vol. 3B

PERFORMANCE-MONITORING EVENTS
49H 02H DTLB_STORE_MISSE
S.WALK_COMPLETED

Miss in all TLB levels causes a page
walk that completes of any page
size (4K/2M/4M/1G).

49H 04H DTLB_STORE_MISSE
S.WALK_DURATION

Cycles PMH is busy with this walk.

49H 10H DTLB_STORE_MISSE
S.STLB_HIT

Store operations that miss the first
TLB level but hit the second and do
not cause page walks

4CH 01H LOAD_HIT_PRE.SW_
PF

Not SW-prefetch load dispatches
that hit fill buffer allocated for S/W
prefetch.

51H 01H L1D.REPLACEMENT Counts the number of lines brought
into the L1 data cache.

58H 01H MOVE_ELIMINATION.I
NT_NOT_ELIMINATE
D

Number of integer Move Elimination
candidate uops that were not
eliminated.

58H 02H MOVE_ELIMINATION.
SIMD_NOT_ELIMINAT
ED

Number of SIMD Move Elimination
candidate uops that were not
eliminated.

5CH 01H CPL_CYCLES.RING0 Unhalted core cycles when the
thread is in ring 0

Use Edge to
count transition

5CH 02H CPL_CYCLES.RING12
3

Unhalted core cycles when the
thread is not in ring 0

5EH 01H RS_EVENTS.EMPTY_
CYCLES

Cycles the RS is empty for the
thread.

5FH 01H TLB_ACCESS.LOAD_S
TLB_HIT

Counts load operations that missed
1st level DTLB but hit the 2nd level.

60H 01H OFFCORE_REQUEST
S_OUTSTANDING.DE
MAND_DATA_RD

Offcore outstanding Demand Data
Read transactions in SQ to uncore.
Set Cmask=1 to count cycles.

60H 04H OFFCORE_REQUEST
S_OUTSTANDING.DE
MAND_RFO

Offcore outstanding RFO store
transactions in SQ to uncore. Set
Cmask=1 to count cycles.

60H 08H OFFCORE_REQUEST
S_OUTSTANDING.AL
L_DATA_RD

Offcore outstanding cacheable data
read transactions in SQ to uncore.
Set Cmask=1 to count cycles.

Table 19-2. Non-Architectural Performance Events In the Processor Core of Next
Generation Intel Core i7, i5, i3 Processors

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-5

PERFORMANCE-MONITORING EVENTS
63H 01H LOCK_CYCLES.SPLIT_
LOCK_UC_LOCK_DUR
ATION

Cycles in which the L1D and L2 are
locked, due to a UC lock or split lock.

63H 02H LOCK_CYCLES.CACHE
_LOCK_DURATION

Cycles in which the L1D is locked.

79H 02H IDQ.EMPTY Counts cycles the IDQ is empty.

79H 04H IDQ.MITE_UOPS Increment each cycle # of uops
delivered to IDQ from MITE path.

Set Cmask = 1 to count cycles.

Can combine
Umask 04H and
20H

79H 08H IDQ.DSB_UOPS Increment each cycle. # of uops
delivered to IDQ from DSB path.

Set Cmask = 1 to count cycles.

Can combine
Umask 08H and
10H

79H 30H IDQ.MS_UOPS Increment each cycle # of uops
delivered to IDQ from MS by either
DSB or MITE. Set Cmask = 1 to count
cycles.

Can combine
Umask 04H, 08H
and 30H

80H 02H ICACHE.MISSES Number of Instruction Cache,
Streaming Buffer and Victim Cache
Misses. Includes UC accesses.

85H 01H ITLB_MISSES.MISS_C
AUSES_A_WALK

Misses in all ITLB levels that cause
page walks

85H 02H ITLB_MISSES.WALK_
COMPLETED

Misses in all ITLB levels that cause
completed page walks

85H 04H ITLB_MISSES.WALK_
DURATION

Cycle PMH is busy with a walk.

85H 10H ITLB_MISSES.STLB_H
IT

Number of cache load STLB hits. No
page walk.

87H 01H ILD_STALL.LCP Stalls caused by changing prefix
length of the instruction.

87H 04H ILD_STALL.IQ_FULL Stall cycles due to IQ is full.

88H 01H BR_INST_EXEC.COND Qualify conditional near branch
instructions executed, but not
necessarily retired.

Must combine
with umask 40H,
80H

88H 02H BR_INST_EXEC.DIRE
CT_JMP

Qualify all unconditional near branch
instructions excluding calls and
indirect branches.

Must combine
with umask 80H

Table 19-2. Non-Architectural Performance Events In the Processor Core of Next
Generation Intel Core i7, i5, i3 Processors

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
19-6 Vol. 3B

PERFORMANCE-MONITORING EVENTS
88H 04H BR_INST_EXEC.INDIR
ECT_JMP_NON_CALL
_RET

Qualify executed indirect near
branch instructions that are not
calls nor returns.

Must combine
with umask 80H

88H 08H BR_INST_EXEC.RETU
RN_NEAR

Qualify indirect near branches that
have a return mnemonic.

Must combine
with umask 80H

88H 10H BR_INST_EXEC.DIRE
CT_NEAR_CALL

Qualify unconditional near call
branch instructions, excluding non
call branch, executed.

Must combine
with umask 80H

88H 20H BR_INST_EXEC.INDIR
ECT_NEAR_CALL

Qualify indirect near calls, including
both register and memory indirect,
executed.

Must combine
with umask 80H

88H 40H BR_INST_EXEC.NON
TAKEN

Qualify non-taken near branches
executed.

Applicable to
umask 01H only

88H 80H BR_INST_EXEC.TAKE
N

Qualify taken near branches
executed. Must combine with
01H,02H, 04H, 08H, 10H, 20H

88H FFH BR_INST_EXEC.ALL_
BRANCHES

Counts all near executed branches
(not necessarily retired).

89H 01H BR_MISP_EXEC.CON
D

Qualify conditional near branch
instructions mispredicted.

Must combine
with umask 40H,
80H

89H 04H BR_MISP_EXEC.INDIR
ECT_JMP_NON_CALL
_RET

Qualify mispredicted indirect near
branch instructions that are not
calls nor returns.

Must combine
with umask 80H

89H 08H BR_MISP_EXEC.RETU
RN_NEAR

Qualify mispredicted indirect near
branches that have a return
mnemonic.

Must combine
with umask 80H

89H 10H BR_MISP_EXEC.DIRE
CT_NEAR_CALL

Qualify mispredicted unconditional
near call branch instructions,
excluding non call branch, executed.

Must combine
with umask 80H

89H 20H BR_MISP_EXEC.INDIR
ECT_NEAR_CALL

Qualify mispredicted indirect near
calls, including both register and
memory indirect, executed.

Must combine
with umask 80H

89H 40H BR_MISP_EXEC.NON
TAKEN

Qualify mispredicted non-taken
near branches executed,.

Applicable to
umask 01H only

89H 80H BR_MISP_EXEC.TAKE
N

Qualify mispredicted taken near
branches executed. Must combine
with 01H,02H, 04H, 08H, 10H, 20H

Table 19-2. Non-Architectural Performance Events In the Processor Core of Next
Generation Intel Core i7, i5, i3 Processors

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-7

PERFORMANCE-MONITORING EVENTS
89H FFH BR_MISP_EXEC.ALL_
BRANCHES

Counts all near executed branches
(not necessarily retired).

9CH 01H IDQ_UOPS_NOT_DEL
IVERED.CORE

Count number of non-delivered
uops to RAT per thread.

Use Cmask to
qualify uop b/w

A1H 01H UOPS_DISPATCHED_
PORT.PORT_0

Cycles which a Uop is dispatched on
port 0.

A1H 02H UOPS_DISPATCHED_
PORT.PORT_1

Cycles which a Uop is dispatched on
port 1.

A1H 04H UOPS_DISPATCHED_
PORT.PORT_2_LD

Cycles which a load uop is
dispatched on port 2.

A1H 08H UOPS_DISPATCHED_
PORT.PORT_2_STA

Cycles which a store address uop is
dispatched on port 2.

A1H 0CH UOPS_DISPATCHED_
PORT.PORT_2

Cycles which a Uop is dispatched on
port 2.

A1H 10H UOPS_DISPATCHED_
PORT.PORT_3_LD

Cycles which a load uop is
dispatched on port 3.

A1H 20H UOPS_DISPATCHED_
PORT.PORT_3_STA

Cycles which a store address uop is
dispatched on port 3.

A1H 30H UOPS_DISPATCHED_
PORT.PORT_3

Cycles which a Uop is dispatched on
port 3.

A1H 40H UOPS_DISPATCHED_
PORT.PORT_4

Cycles which a Uop is dispatched on
port 4.

A1H 80H UOPS_DISPATCHED_
PORT.PORT_5

Cycles which a Uop is dispatched on
port 5.

A2H 01H RESOURCE_STALLS.
ANY

Cycles Allocation is stalled due to
Resource Related reason.

A2H 04H RESOURCE_STALLS.R
S

Cycles stalled due to no eligible RS
entry available.

A2H 08H RESOURCE_STALLS.S
B

Cycles stalled due to no store
buffers available. (not including
draining form sync).

A2H 10H RESOURCE_STALLS.R
OB

Cycles stalled due to re-order buffer
full.

ABH 01H DSB2MITE_SWITCHE
S.COUNT

Number of DSB to MITE switches.

Table 19-2. Non-Architectural Performance Events In the Processor Core of Next
Generation Intel Core i7, i5, i3 Processors

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
19-8 Vol. 3B

PERFORMANCE-MONITORING EVENTS
ABH 02H DSB2MITE_SWITCHE
S.PENALTY_CYCLES

Cycles DSB to MITE switches caused
delay.

ACH 08H DSB_FILL.EXCEED_D
SB_LINES

DSB Fill encountered > 3 DSB lines.

AEH 01H ITLB.ITLB_FLUSH Counts the number of ITLB flushes,
includes 4k/2M/4M pages.

B0H 01H OFFCORE_REQUEST
S.DEMAND_DATA_RD

Demand data read requests sent to
uncore.

B0H 02H OFFCORE_REQUEST
S.DEMAND_CODE_RD

Demand code read requests sent to
uncore.

B0H 04H OFFCORE_REQUEST
S.DEMAND_RFO

Demand RFO read requests sent to
uncore., including regular RFOs,
locks, ItoM

B0H 08H OFFCORE_REQUEST
S.ALL_DATA_RD

Data read requests sent to uncore
(demand and prefetch).

B1H 01H UOPS_DISPATCHED.T
HREAD

Counts total number of uops to be
dispatched per-thread each cycle.
Set Cmask = 1, INV =1 to count stall
cycles.

B1H 02H UOPS_DISPATCHED.C
ORE

Counts total number of uops to be
dispatched per-core each cycle.

Do not need to
set ANY

B7H 01H OFF_CORE_RESPONS
E_0

see Section 18.8.5, “Off-core
Response Performance Monitoring”;
PMC0 only.

Requires
programming
MSR 01A6H

BBH 01H OFF_CORE_RESPONS
E_1

See Section 18.8.5, “Off-core
Response Performance Monitoring”.
PMC3 only.

Requires
programming
MSR 01A7H

C0H 00H INST_RETIRED.ANY_
P

Number of instructions at
retirement

See Table 19-1

C0H 01H INST_RETIRED.PREC
_DIST

Precise instruction retired event
with HW to reduce effect of PEBS
shadow in IP distribution

PMC1 only; Must
quiesce other
PMCs.

C1H 08H OTHER_ASSISTS.AVX
_STORE

Number of assists associated with
256-bit AVX store operations.

C1H 10H OTHER_ASSISTS.AVX
_TO_SSE

Number of transitions from AVX-
256 to legacy SSE when penalty
applicable.

Table 19-2. Non-Architectural Performance Events In the Processor Core of Next
Generation Intel Core i7, i5, i3 Processors

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-9

PERFORMANCE-MONITORING EVENTS
C1H 20H OTHER_ASSISTS.SSE
_TO_AVX

Number of transitions from SSE to
AVX-256 when penalty applicable.

C2H 01H UOPS_RETIRED.ALL Counts the number of micro-ops
retired, Use cmask=1 and invert to
count active cycles or stalled cycles.

Supports PEBS

C2H 02H UOPS_RETIRED.RETI
RE_SLOTS

Counts the number of retirement
slots used each cycle.

C3H 02H MACHINE_CLEARS.M
EMORY_ORDERING

Counts the number of machine
clears due to memory order
conflicts.

C3H 20H MACHINE_CLEARS.M
ASKMOV

Counts the number of executed
AVX masked load operations that
refer to an illegal address range
with the mask bits set to 0.

C4H 00H BR_INST_RETIRED.A
LL_BRANCHES

Branch instructions at retirement See Table 19-1

C4H 01H BR_INST_RETIRED.C
ONDITIONAL

Counts the number of conditional
branch instructions retired.

Supports PEBS

C4H 02H BR_INST_RETIRED.N
EAR_CALL

Direct and indirect near call
instructions retired.

C4H 04H BR_INST_RETIRED.A
LL_BRANCHES

Counts the number of branch
instructions retired.

C4H 08H BR_INST_RETIRED.N
EAR_RETURN

Counts the number of near return
instructions retired.

C4H 10H BR_INST_RETIRED.N
OT_TAKEN

Counts the number of not taken
branch instructions retired.

C4H 20H BR_INST_RETIRED.N
EAR_TAKEN

Number of near taken branches
retired.

C4H 40H BR_INST_RETIRED.F
AR_BRANCH

Number of far branches retired.

C5H 00H BR_MISP_RETIRED.A
LL_BRANCHES

Mispredicted branch instructions at
retirement

See Table 19-1

C5H 01H BR_MISP_RETIRED.C
ONDITIONAL

Mispredicted conditional branch
instructions retired.

Supports PEBS

C5H 02H BR_MISP_RETIRED.N
EAR_CALL

Direct and indirect mispredicted
near call instructions retired.

Table 19-2. Non-Architectural Performance Events In the Processor Core of Next
Generation Intel Core i7, i5, i3 Processors

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
19-10 Vol. 3B

PERFORMANCE-MONITORING EVENTS
C5H 04H BR_MISP_RETIRED.A
LL_BRANCHES

Mispredicted macro branch
instructions retired.

C5H 10H BR_MISP_RETIRED.N
OT_TAKEN

Mispredicted not taken branch
instructions retired.

C5H 20H BR_MISP_RETIRED.T
AKEN

Mispredicted taken branch
instructions retired.

CAH 08H FP_ASSIST.SIMD_OU
TPUT

Number of SIMD FP assists due to
Output values

CAH 10H FP_ASSIST.SIMD_INP
UT

Number of SIMD FP assists due to
input values

CAH 1EH FP_ASSIST.ANY Cycles with any input/output SSE*
or FP assists

CCH 20H ROB_MISC_EVENTS.L
BR_INSERTS

Count cases of saving new LBR
records by hardware.

CDH 01H MEM_TRANS_RETIR
ED.LOAD_LATENCY

Sample loads with specified latency
threshold. PMC3 only.

Specify threshold
in MSR 0x3F6

CDH 02H MEM_TRANS_RETIR
ED.PRECISE_STORE

Sample stores and collect precise
store operation via PEBS record.
PMC3 only.

See Section
18.8.4.3

D0H 01H MEM_UOP_RETIRED.
LOADS

Qualify retired memory uops that
are loads. Combine with umask 10H,
20H, 40H, 80H.

Supports PEBS

D0H 02H MEM_UOP_RETIRED.
STORES

Qualify retired memory uops that
are stores. Combine with umask
10H, 20H, 40H, 80H.

D0H 10H MEM_UOP_RETIRED.
STLB_MISS

Qualify retired memory uops with
STLB miss. Must combine with
umask 01H, 02H, to produce counts.

D0H 20H MEM_UOP_RETIRED.
LOCK

Qualify retired memory uops with
lock. Must combine with umask 01H,
02H, to produce counts.

D0H 40H MEM_UOP_RETIRED.
SPLIT

Qualify retired memory uops with
line split. Must combine with umask
01H, 02H, to produce counts.

D0H 80H MEM_UOP_RETIRED.
ALL

Qualify any retired memory uops.
Must combine with umask 01H,
02H, to produce counts.

Table 19-2. Non-Architectural Performance Events In the Processor Core of Next
Generation Intel Core i7, i5, i3 Processors

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-11

PERFORMANCE-MONITORING EVENTS
D1H 01H MEM_LOAD_UOPS_R
ETIRED.L1_HIT

Retired load uops with L1 cache hits
as data sources.

Supports PEBS

D1H 02H MEM_LOAD_UOPS_R
ETIRED.L2_HIT

Retired load uops with L2 cache hits
as data sources.

D1H 04H MEM_LOAD_UOPS_R
ETIRED.LLC_HIT

Retired load uops with LLC cache
hits as data sources.

D1H 40H MEM_LOAD_UOPS_R
ETIRED.HIT_LFB

Retired load uops which data
sources were load uops missed L1
but hit FB due to preceding miss to
the same cache line with data not
ready.

D2H 02H MEM_LOAD_UOPS_L
LC_HIT_RETIRED.XS
NP_HIT

Retired load uops which data
sources were LLC and cross-core
snoop hits in on-pkg core cache.

Supports PEBS

D2H 04H MEM_LOAD_UOPS_L
LC_HIT_RETIRED.XS
NP_HITM

Retired load uops which data
sources were HitM responses from
shared LLC.

D2H 08H MEM_LOAD_UOPS_L
LC_HIT_RETIRED.XS
NP_NONE

Retired load uops which data
sources were hits in LLC without
snoops required.

D3H 01H MEM_LOAD_UOPS_L
LC_MISS_RETIRED.LO
CAL_DRAM

Retired load uops which data
sources missed LLC but serviced
from local dram.

Supports PEBS.

F0H 01H L2_TRANS.DEMAND_
DATA_RD

Demand Data Read requests that
access L2 cache

F0H 02H L2_TRANS.RFO RFO requests that access L2 cache

F0H 04H L2_TRANS.CODE_RD L2 cache accesses when fetching
instructions

F0H 10H L2_TRANS.L1D_WB L1D writebacks that access L2
cache

F0H 20H L2_TRANS.L2_FILL L2 fill requests that access L2 cache

F0H 40H L2_TRANS.L2_WB L2 writebacks that access L2 cache

F0H 80H L2_TRANS.ALL_REQ
UESTS

Transactions accessing L2 pipe

F1H 01H L2_LINES_IN.I L2 cache lines in I state filling L2 Counting does
not cover rejects.

Table 19-2. Non-Architectural Performance Events In the Processor Core of Next
Generation Intel Core i7, i5, i3 Processors

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
19-12 Vol. 3B

PERFORMANCE-MONITORING EVENTS
19.3 PERFORMANCE MONITORING EVENTS FOR 2ND
GENERATION INTEL® CORE™ I7-2XXX,
INTEL® CORE™ I5-2XXX, INTEL® CORE™ I3-2XXX
PROCESSOR SERIES

Second generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-
2xxx processor series are based on the Intel microarchitecture code name Sandy
Bridge. They support architectural performance-monitoring events listed in Table
19-1. Non-architectural performance-monitoring events in the processor core are
listed in Table 19-3, Table 19-4, and Table 19-5. The events in Table 19-3 apply to
processors with CPUID signature of DisplayFamily_DisplayModel encoding with the
following values: 06_2AH and 06_2DH. The events in Table 19-4 apply to processors
with CPUID signature 06_2AH. The events in Table 19-5 apply to processors with
CPUID signature 06_2DH.

F1H 02H L2_LINES_IN.S L2 cache lines in S state filling L2 Counting does
not cover rejects.

F1H 04H L2_LINES_IN.E L2 cache lines in E state filling L2 Counting does
not cover rejects.

F1H 07H L2_LINES_IN.ALL L2 cache lines filling L2 Counting does
not cover rejects.

F2H 01H L2_LINES_OUT.DEMA
ND_CLEAN

Clean L2 cache lines evicted by
demand

F2H 02H L2_LINES_OUT.DEMA
ND_DIRTY

Dirty L2 cache lines evicted by
demand

F2H 0AH L2_LINES_OUT.DIRT
Y_ALL

Dirty L2 cache lines filling the L2 Counting does
not cover rejects.

Table 19-2. Non-Architectural Performance Events In the Processor Core of Next
Generation Intel Core i7, i5, i3 Processors

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-13

PERFORMANCE-MONITORING EVENTS
Table 19-3. Non-Architectural Performance Events In the Processor Core Common to
2nd Generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx

Processor Series and Intel® Xeon® Processors E5 Family
Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

03H 01H LD_BLOCKS.DATA_U
NKNOWN

blocked loads due to store buffer
blocks with unknown data.

03H 02H LD_BLOCKS.STORE_F
ORWARD

loads blocked by overlapping with
store buffer that cannot be
forwarded .

03H 08H LD_BLOCKS.NO_SR # of Split loads blocked due to
resource not available.

03H 10H LD_BLOCKS.ALL_BLO
CK

Number of cases where any load is
blocked but has no DCU miss.

05H 01H MISALIGN_MEM_REF.
LOADS

Speculative cache-line split load
uops dispatched to L1D.

05H 02H MISALIGN_MEM_REF.
STORES

Speculative cache-line split Store-
address uops dispatched to L1D.

07H 01H LD_BLOCKS_PARTIA
L.ADDRESS_ALIAS

False dependencies in MOB due to
partial compare on address.

07H 08H LD_BLOCKS_PARTIA
L.ALL_STA_BLOCK

The number of times that load
operations are temporarily blocked
because of older stores, with
addresses that are not yet known. A
load operation may incur more than
one block of this type.

08H 01H DTLB_LOAD_MISSES.
MISS_CAUSES_A_WA
LK

Misses in all TLB levels that cause a
page walk of any page size.

08H 02H DTLB_LOAD_MISSES.
WALK_COMPLETED

Misses in all TLB levels that caused
page walk completed of any size.

08H 04H DTLB_LOAD_MISSES.
WALK_DURATION

Cycle PMH is busy with a walk.

08H 10H DTLB_LOAD_MISSES.
STLB_HIT

Number of cache load STLB hits. No
page walk.

0DH 03H INT_MISC.RECOVERY
_CYCLES

Cycles waiting to recover after
Machine Clears or JEClear. Set
Cmask= 1.

Set Edge to
count
occurrences

0DH 40H INT_MISC.RAT_STALL
_CYCLES

Cycles RAT external stall is sent to
IDQ for this thread.
19-14 Vol. 3B

PERFORMANCE-MONITORING EVENTS
0EH 01H UOPS_ISSUED.ANY Increments each cycle the # of Uops
issued by the RAT to RS.

Set Cmask = 1, Inv = 1, Any= 1to
count stalled cycles of this core.

Set Cmask = 1,
Inv = 1to count
stalled cycles

10H 01H FP_COMP_OPS_EXE.
X87

Counts number of X87 uops
executed.

10H 10H FP_COMP_OPS_EXE.
SSE_FP_PACKED_DO
UBLE

Counts number of SSE* double
precision FP packed uops executed.

10H 20H FP_COMP_OPS_EXE.
SSE_FP_SCALAR_SIN
GLE

Counts number of SSE* single
precision FP scalar uops executed.

10H 40H FP_COMP_OPS_EXE.
SSE_PACKED SINGLE

Counts number of SSE* single
precision FP packed uops executed.

10H 80H FP_COMP_OPS_EXE.
SSE_SCALAR_DOUBL
E

Counts number of SSE* double
precision FP scalar uops executed.

11H 01H SIMD_FP_256.PACKE
D_SINGLE

Counts 256-bit packed single-
precision floating-point instructions

11H 02H SIMD_FP_256.PACKE
D_DOUBLE

Counts 256-bit packed double-
precision floating-point instructions

14H 01H ARITH.FPU_DIV_ACT
IVE

Cycles that the divider is active,
includes INT and FP. Set 'edge =1,
cmask=1' to count the number of
divides.

17H 01H INSTS_WRITTEN_TO
_IQ.INSTS

Counts the number of instructions
written into the IQ every cycle.

24H 01H L2_RQSTS.DEMAND_
DATA_RD_HIT

Demand Data Read requests that
hit L2 cache

24H 03H L2_RQSTS.ALL_DEM
AND_DATA_RD

Counts any demand and L1 HW
prefetch data load requests to L2.

24H 04H L2_RQSTS.RFO_HITS Counts the number of store RFO
requests that hit the L2 cache.

24H 08H L2_RQSTS.RFO_MISS Counts the number of store RFO
requests that miss the L2 cache.

24H 0CH L2_RQSTS.ALL_RFO Counts all L2 store RFO requests.

Table 19-3. Non-Architectural Performance Events In the Processor Core Common to
2nd Generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx

Processor Series and Intel® Xeon® Processors E5 Family
Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-15

PERFORMANCE-MONITORING EVENTS
24H 10H L2_RQSTS.CODE_RD
_HIT

Number of instruction fetches that
hit the L2 cache.

24H 20H L2_RQSTS.CODE_RD
_MISS

Number of instruction fetches that
missed the L2 cache.

24H 30H L2_RQSTS.ALL_COD
E_RD

Counts all L2 code requests.

24H 40H L2_RQSTS.PF_HIT Requests from L2 Hardware
prefetcher that hit L2.

24H 80H L2_RQSTS.PF_MISS Requests from L2 Hardware
prefetcher that missed L2.

24H C0H L2_RQSTS.ALL_PF Any requests from L2 Hardware
prefetchers

27H 01H L2_STORE_LOCK_RQ
STS.MISS

RFOs that miss cache lines

27H 04H L2_STORE_LOCK_RQ
STS.HIT_E

RFOs that hit cache lines in E state

27H 08H L2_STORE_LOCK_RQ
STS.HIT_M

RFOs that hit cache lines in M state

27H 0FH L2_STORE_LOCK_RQ
STS.ALL

RFOs that access cache lines in any
state

28H 04H L2_L1D_WB_RQSTS.
HIT_E

Not rejected writebacks from L1D
to L2 cache lines in E state.

28H 08H L2_L1D_WB_RQSTS.
HIT_M

Not rejected writebacks from L1D
to L2 cache lines in M state.

2EH 4FH LONGEST_LAT_CACH
E.REFERENCE

This event counts requests
originating from the core that
reference a cache line in the last
level cache.

see Table 19-1

2EH 41H LONGEST_LAT_CACH
E.MISS

This event counts each cache miss
condition for references to the last
level cache.

see Table 19-1

Table 19-3. Non-Architectural Performance Events In the Processor Core Common to
2nd Generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx

Processor Series and Intel® Xeon® Processors E5 Family
Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
19-16 Vol. 3B

PERFORMANCE-MONITORING EVENTS
3CH 00H CPU_CLK_UNHALTED
.THREAD_P

Counts the number of thread cycles
while the thread is not in a halt
state. The thread enters the halt
state when it is running the HLT
instruction. The core frequency may
change from time to time due to
power or thermal throttling.

see Table 19-1

3CH 01H CPU_CLK_THREAD_
UNHALTED.REF_XCL
K

Increments at the frequency of
XCLK (100 MHz) when not halted.

see Table 19-1

48H 01H L1D_PEND_MISS.PE
NDING

Increments the number of
outstanding L1D misses every cycle.
Set Cmaks = 1 and Edge =1 to count
occurrences.

Counter 2 only;

Set Cmask = 1 to
count cycles.

49H 01H DTLB_STORE_MISSE
S.MISS_CAUSES_A_
WALK

Miss in all TLB levels causes an page
walk of any page size
(4K/2M/4M/1G).

49H 02H DTLB_STORE_MISSE
S.WALK_COMPLETED

Miss in all TLB levels causes a page
walk that completes of any page
size (4K/2M/4M/1G).

49H 04H DTLB_STORE_MISSE
S.WALK_DURATION

Cycles PMH is busy with this walk.

49H 10H DTLB_STORE_MISSE
S.STLB_HIT

Store operations that miss the first
TLB level but hit the second and do
not cause page walks

4CH 01H LOAD_HIT_PRE.SW_
PF

Not SW-prefetch load dispatches
that hit fill buffer allocated for S/W
prefetch.

4CH 02H LOAD_HIT_PRE.HW_
PF

Not SW-prefetch load dispatches
that hit fill buffer allocated for H/W
prefetch.

4EH 02H HW_PRE_REQ.DL1_
MISS

Hardware Prefetch requests that
miss the L1D cache. A request is
being counted each time it access
the cache & miss it, including if a
block is applicable or if hit the Fill
Buffer for example.

This accounts for
both L1 streamer
and IP-based
(IPP) HW
prefetchers.

51H 01H L1D.REPLACEMENT Counts the number of lines brought
into the L1 data cache.

Table 19-3. Non-Architectural Performance Events In the Processor Core Common to
2nd Generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx

Processor Series and Intel® Xeon® Processors E5 Family
Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-17

PERFORMANCE-MONITORING EVENTS
51H 02H L1D.ALLOCATED_IN_
M

Counts the number of allocations of
modified L1D cache lines.

51H 04H L1D.EVICTION Counts the number of modified lines
evicted from the L1 data cache due
to replacement.

51H 08H L1D.ALL_M_REPLAC
EMENT

Cache lines in M state evicted out of
L1D due to Snoop HitM or dirty line
replacement

59H 20H PARTIAL_RAT_STALL
S.FLAGS_MERGE_UO
P

Increments the number of flags-
merge uops in flight each cycle.

Set Cmask = 1 to count cycles.

59H 40H PARTIAL_RAT_STALL
S.SLOW_LEA_WINDO
W

Cycles with at least one slow LEA
uop allocated.

59H 80H PARTIAL_RAT_STALL
S.MUL_SINGLE_UOP

Number of Multiply packed/scalar
single precision uops allocated.

5BH 0CH RESOURCE_STALLS2.
ALL_FL_EMPTY

Cycles stalled due to free list empty

5BH 0FH RESOURCE_STALLS2.
ALL_PRF_CONTROL

Cycles stalled due to control
structures full for physical registers

5BH 40H RESOURCE_STALLS2.
BOB_FULL

Cycles Allocator is stalled due
Branch Order Buffer.

5BH 4FH RESOURCE_STALLS2.
OOO_RSRC

Cycles stalled due to out of order
resources full

5CH 01H CPL_CYCLES.RING0 Unhalted core cycles when the
thread is in ring 0

Use Edge to
count transition

5CH 02H CPL_CYCLES.RING12
3

Unhalted core cycles when the
thread is not in ring 0

5EH 01H RS_EVENTS.EMPTY_
CYCLES

Cycles the RS is empty for the
thread.

60H 01H OFFCORE_REQUEST
S_OUTSTANDING.DE
MAND_DATA_RD

Offcore outstanding Demand Data
Read transactions in SQ to uncore.
Set Cmask=1 to count cycles.

60H 04H OFFCORE_REQUEST
S_OUTSTANDING.DE
MAND_RFO

Offcore outstanding RFO store
transactions in SQ to uncore. Set
Cmask=1 to count cycles.

Table 19-3. Non-Architectural Performance Events In the Processor Core Common to
2nd Generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx

Processor Series and Intel® Xeon® Processors E5 Family
Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
19-18 Vol. 3B

PERFORMANCE-MONITORING EVENTS
60H 08H OFFCORE_REQUEST
S_OUTSTANDING.AL
L_DATA_RD

Offcore outstanding cacheable data
read transactions in SQ to uncore.
Set Cmask=1 to count cycles.

63H 01H LOCK_CYCLES.SPLIT_
LOCK_UC_LOCK_DUR
ATION

Cycles in which the L1D and L2 are
locked, due to a UC lock or split lock.

63H 02H LOCK_CYCLES.CACHE
_LOCK_DURATION

Cycles in which the L1D is locked.

79H 02H IDQ.EMPTY Counts cycles the IDQ is empty.

79H 04H IDQ.MITE_UOPS Increment each cycle # of uops
delivered to IDQ from MITE path.

Set Cmask = 1 to count cycles.

Can combine
Umask 04H and
20H

79H 08H IDQ.DSB_UOPS Increment each cycle. # of uops
delivered to IDQ from DSB path.

Set Cmask = 1 to count cycles.

Can combine
Umask 08H and
10H

79H 10H IDQ.MS_DSB_UOPS Increment each cycle # of uops
delivered to IDQ when MS busy by
DSB. Set Cmask = 1 to count cycles
MS is busy. Set Cmask=1 and Edge
=1 to count MS activations.

Can combine
Umask 08H and
10H

79H 20H IDQ.MS_MITE_UOPS Increment each cycle # of uops
delivered to IDQ when MS is busy by
MITE. Set Cmask = 1 to count cycles.

Can combine
Umask 04H and
20H

79H 30H IDQ.MS_UOPS Increment each cycle # of uops
delivered to IDQ from MS by either
DSB or MITE. Set Cmask = 1 to count
cycles.

Can combine
Umask 04H, 08H
and 30H

80H 02H ICACHE.MISSES Number of Instruction Cache,
Streaming Buffer and Victim Cache
Misses. Includes UC accesses.

85H 01H ITLB_MISSES.MISS_C
AUSES_A_WALK

Misses in all ITLB levels that cause
page walks

85H 02H ITLB_MISSES.WALK_
COMPLETED

Misses in all ITLB levels that cause
completed page walks

85H 04H ITLB_MISSES.WALK_
DURATION

Cycle PMH is busy with a walk.

Table 19-3. Non-Architectural Performance Events In the Processor Core Common to
2nd Generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx

Processor Series and Intel® Xeon® Processors E5 Family
Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-19

PERFORMANCE-MONITORING EVENTS
85H 10H ITLB_MISSES.STLB_H
IT

Number of cache load STLB hits. No
page walk.

87H 01H ILD_STALL.LCP Stalls caused by changing prefix
length of the instruction.

87H 04H ILD_STALL.IQ_FULL Stall cycles due to IQ is full.

88H 01H BR_INST_EXEC.COND Qualify conditional near branch
instructions executed, but not
necessarily retired.

Must combine
with umask 40H,
80H

88H 02H BR_INST_EXEC.DIRE
CT_JMP

Qualify all unconditional near branch
instructions excluding calls and
indirect branches.

Must combine
with umask 80H

88H 04H BR_INST_EXEC.INDIR
ECT_JMP_NON_CALL
_RET

Qualify executed indirect near
branch instructions that are not
calls nor returns.

Must combine
with umask 80H

88H 08H BR_INST_EXEC.RETU
RN_NEAR

Qualify indirect near branches that
have a return mnemonic.

Must combine
with umask 80H

88H 10H BR_INST_EXEC.DIRE
CT_NEAR_CALL

Qualify unconditional near call
branch instructions, excluding non
call branch, executed.

Must combine
with umask 80H

88H 20H BR_INST_EXEC.INDIR
ECT_NEAR_CALL

Qualify indirect near calls, including
both register and memory indirect,
executed.

Must combine
with umask 80H

88H 40H BR_INST_EXEC.NON
TAKEN

Qualify non-taken near branches
executed.

Applicable to
umask 01H only

88H 80H BR_INST_EXEC.TAKE
N

Qualify taken near branches
executed. Must combine with
01H,02H, 04H, 08H, 10H, 20H

88H FFH BR_INST_EXEC.ALL_
BRANCHES

Counts all near executed branches
(not necessarily retired).

89H 01H BR_MISP_EXEC.CON
D

Qualify conditional near branch
instructions mispredicted.

Must combine
with umask 40H,
80H

89H 04H BR_MISP_EXEC.INDIR
ECT_JMP_NON_CALL
_RET

Qualify mispredicted indirect near
branch instructions that are not
calls nor returns.

Must combine
with umask 80H

Table 19-3. Non-Architectural Performance Events In the Processor Core Common to
2nd Generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx

Processor Series and Intel® Xeon® Processors E5 Family
Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
19-20 Vol. 3B

PERFORMANCE-MONITORING EVENTS
89H 08H BR_MISP_EXEC.RETU
RN_NEAR

Qualify mispredicted indirect near
branches that have a return
mnemonic.

Must combine
with umask 80H

89H 10H BR_MISP_EXEC.DIRE
CT_NEAR_CALL

Qualify mispredicted unconditional
near call branch instructions,
excluding non call branch, executed.

Must combine
with umask 80H

89H 20H BR_MISP_EXEC.INDIR
ECT_NEAR_CALL

Qualify mispredicted indirect near
calls, including both register and
memory indirect, executed.

Must combine
with umask 80H

89H 40H BR_MISP_EXEC.NON
TAKEN

Qualify mispredicted non-taken
near branches executed,.

Applicable to
umask 01H only

89H 80H BR_MISP_EXEC.TAKE
N

Qualify mispredicted taken near
branches executed. Must combine
with 01H,02H, 04H, 08H, 10H, 20H

89H FFH BR_MISP_EXEC.ALL_
BRANCHES

Counts all near executed branches
(not necessarily retired).

9CH 01H IDQ_UOPS_NOT_DEL
IVERED.CORE

Count number of non-delivered
uops to RAT per thread.

Use Cmask to
qualify uop b/w

A1H 01H UOPS_DISPATCHED_
PORT.PORT_0

Cycles which a Uop is dispatched on
port 0.

A1H 02H UOPS_DISPATCHED_
PORT.PORT_1

Cycles which a Uop is dispatched on
port 1.

A1H 04H UOPS_DISPATCHED_
PORT.PORT_2_LD

Cycles which a load uop is
dispatched on port 2.

A1H 08H UOPS_DISPATCHED_
PORT.PORT_2_STA

Cycles which a store address uop is
dispatched on port 2.

A1H 0CH UOPS_DISPATCHED_
PORT.PORT_2

Cycles which a Uop is dispatched on
port 2.

A1H 10H UOPS_DISPATCHED_
PORT.PORT_3_LD

Cycles which a load uop is
dispatched on port 3.

A1H 20H UOPS_DISPATCHED_
PORT.PORT_3_STA

Cycles which a store address uop is
dispatched on port 3.

A1H 30H UOPS_DISPATCHED_
PORT.PORT_3

Cycles which a Uop is dispatched on
port 3.

A1H 40H UOPS_DISPATCHED_
PORT.PORT_4

Cycles which a Uop is dispatched on
port 4.

Table 19-3. Non-Architectural Performance Events In the Processor Core Common to
2nd Generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx

Processor Series and Intel® Xeon® Processors E5 Family
Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-21

PERFORMANCE-MONITORING EVENTS
A1H 80H UOPS_DISPATCHED_
PORT.PORT_5

Cycles which a Uop is dispatched on
port 5.

A2H 01H RESOURCE_STALLS.
ANY

Cycles Allocation is stalled due to
Resource Related reason.

A2H 02H RESOURCE_STALLS.L
B

Counts the cycles of stall due to lack
of load buffers.

A2H 04H RESOURCE_STALLS.R
S

Cycles stalled due to no eligible RS
entry available.

A2H 08H RESOURCE_STALLS.S
B

Cycles stalled due to no store
buffers available. (not including
draining form sync).

A2H 10H RESOURCE_STALLS.R
OB

Cycles stalled due to re-order buffer
full.

A2H 20H RESOURCE_STALLS.F
CSW

Cycles stalled due to writing the
FPU control word.

A2H 40H RESOURCE_STALLS.
MXCSR

Cycles stalled due to the MXCSR
register rename occurring to close
to a previous MXCSR rename.

A2H 80H RESOURCE_STALLS.
OTHER

Cycles stalled while execution was
stalled due to other resource issues.

ABH 01H DSB2MITE_SWITCHE
S.COUNT

Number of DSB to MITE switches.

ABH 02H DSB2MITE_SWITCHE
S.PENALTY_CYCLES

Cycles DSB to MITE switches caused
delay.

ACH 02H DSB_FILL.OTHER_CA
NCEL

Cases of cancelling valid DSB fill not
because of exceeding way limit

ACH 08H DSB_FILL.EXCEED_D
SB_LINES

DSB Fill encountered > 3 DSB lines.

ACH 0AH DSB_FILL.ALL_CANC
EL

Cases of cancelling valid Decode
Stream Buffer (DSB) fill not because
of exceeding way limit

AEH 01H ITLB.ITLB_FLUSH Counts the number of ITLB flushes,
includes 4k/2M/4M pages.

B0H 01H OFFCORE_REQUEST
S.DEMAND_DATA_RD

Demand data read requests sent to
uncore.

Table 19-3. Non-Architectural Performance Events In the Processor Core Common to
2nd Generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx

Processor Series and Intel® Xeon® Processors E5 Family
Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
19-22 Vol. 3B

PERFORMANCE-MONITORING EVENTS
B0H 04H OFFCORE_REQUEST
S.DEMAND_RFO

Demand RFO read requests sent to
uncore., including regular RFOs,
locks, ItoM

B0H 08H OFFCORE_REQUEST
S.ALL_DATA_RD

Data read requests sent to uncore
(demand and prefetch).

B1H 01H UOPS_DISPATCHED.T
HREAD

Counts total number of uops to be
dispatched per-thread each cycle.
Set Cmask = 1, INV =1 to count stall
cycles.

B1H 02H UOPS_DISPATCHED.C
ORE

Counts total number of uops to be
dispatched per-core each cycle.

Do not need to
set ANY

B2H 01H OFFCORE_REQUEST
S_BUFFER.SQ_FULL

Offcore requests buffer cannot take
more entries for this thread core.

B6H 01H AGU_BYPASS_CANCE
L.COUNT

Counts executed load operations
with all the following traits: 1.
addressing of the format [base +
offset], 2. the offset is between 1
and 2047, 3. the address specified
in the base register is in one page
and the address [base+offset] is in
another page.

B7H 01H OFF_CORE_RESPONS
E_0

see Section 18.8.5, “Off-core
Response Performance Monitoring”;
PMC0 only.

Requires
programming
MSR 01A6H

BBH 01H OFF_CORE_RESPONS
E_1

See Section 18.8.5, “Off-core
Response Performance Monitoring”.
PMC3 only.

Requires
programming
MSR 01A7H

BDH 01H TLB_FLUSH.DTLB_T
HREAD

DTLB flush attempts of the thread-
specific entries

BDH 20H TLB_FLUSH.STLB_A
NY

Count number of STLB flush
attempts

BFH 05H L1D_BLOCKS.BANK_
CONFLICT_CYCLES

Cycles when dispatched loads are
cancelled due to L1D bank conflicts
with other load ports

cmask=1

C0H 00H INST_RETIRED.ANY_
P

Number of instructions at
retirement

See Table 19-1

Table 19-3. Non-Architectural Performance Events In the Processor Core Common to
2nd Generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx

Processor Series and Intel® Xeon® Processors E5 Family
Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-23

PERFORMANCE-MONITORING EVENTS
C0H 01H INST_RETIRED.PREC
_DIST

Precise instruction retired event
with HW to reduce effect of PEBS
shadow in IP distribution

PMC1 only; Must
quiesce other
PMCs.

C1H 02H OTHER_ASSISTS.ITL
B_MISS_RETIRED

Instructions that experienced an
ITLB miss.

C1H 08H OTHER_ASSISTS.AVX
_STORE

Number of assists associated with
256-bit AVX store operations.

C1H 10H OTHER_ASSISTS.AVX
_TO_SSE

Number of transitions from AVX-
256 to legacy SSE when penalty
applicable.

C1H 20H OTHER_ASSISTS.SSE
_TO_AVX

Number of transitions from SSE to
AVX-256 when penalty applicable.

C2H 01H UOPS_RETIRED.ALL Counts the number of micro-ops
retired, Use cmask=1 and invert to
count active cycles or stalled cycles.

Supports PEBS

C2H 02H UOPS_RETIRED.RETI
RE_SLOTS

Counts the number of retirement
slots used each cycle.

C3H 02H MACHINE_CLEARS.M
EMORY_ORDERING

Counts the number of machine
clears due to memory order
conflicts.

C3H 04H MACHINE_CLEARS.S
MC

Counts the number of times that a
program writes to a code section.

C3H 20H MACHINE_CLEARS.M
ASKMOV

Counts the number of executed
AVX masked load operations that
refer to an illegal address range
with the mask bits set to 0.

C4H 00H BR_INST_RETIRED.A
LL_BRANCHES

Branch instructions at retirement See Table 19-1

C4H 01H BR_INST_RETIRED.C
ONDITIONAL

Counts the number of conditional
branch instructions retired.

Supports PEBS

C4H 02H BR_INST_RETIRED.N
EAR_CALL

Direct and indirect near call
instructions retired.

C4H 04H BR_INST_RETIRED.A
LL_BRANCHES

Counts the number of branch
instructions retired.

C4H 08H BR_INST_RETIRED.N
EAR_RETURN

Counts the number of near return
instructions retired.

Table 19-3. Non-Architectural Performance Events In the Processor Core Common to
2nd Generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx

Processor Series and Intel® Xeon® Processors E5 Family
Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
19-24 Vol. 3B

PERFORMANCE-MONITORING EVENTS
C4H 10H BR_INST_RETIRED.N
OT_TAKEN

Counts the number of not taken
branch instructions retired.

C4H 20H BR_INST_RETIRED.N
EAR_TAKEN

Number of near taken branches
retired.

C4H 40H BR_INST_RETIRED.F
AR_BRANCH

Number of far branches retired.

C5H 00H BR_MISP_RETIRED.A
LL_BRANCHES

Mispredicted branch instructions at
retirement

See Table 19-1

C5H 01H BR_MISP_RETIRED.C
ONDITIONAL

Mispredicted conditional branch
instructions retired.

Supports PEBS

C5H 02H BR_MISP_RETIRED.N
EAR_CALL

Direct and indirect mispredicted
near call instructions retired.

C5H 04H BR_MISP_RETIRED.A
LL_BRANCHES

Mispredicted macro branch
instructions retired.

C5H 10H BR_MISP_RETIRED.N
OT_TAKEN

Mispredicted not taken branch
instructions retired.

C5H 20H BR_MISP_RETIRED.T
AKEN

Mispredicted taken branch
instructions retired.

CAH 02H FP_ASSIST.X87_OUT
PUT

Number of X87 assists due to
output value.

CAH 04H FP_ASSIST.X87_INP
UT

Number of X87 assists due to input
value.

CAH 08H FP_ASSIST.SIMD_OU
TPUT

Number of SIMD FP assists due to
Output values

CAH 10H FP_ASSIST.SIMD_INP
UT

Number of SIMD FP assists due to
input values

CAH 1EH FP_ASSIST.ANY Cycles with any input/output SSE*
or FP assists

CCH 20H ROB_MISC_EVENTS.L
BR_INSERTS

Count cases of saving new LBR
records by hardware.

CDH 01H MEM_TRANS_RETIR
ED.LOAD_LATENCY

Sample loads with specified latency
threshold. PMC3 only.

Specify threshold
in MSR 0x3F6

CDH 02H MEM_TRANS_RETIR
ED.PRECISE_STORE

Sample stores and collect precise
store operation via PEBS record.
PMC3 only.

See Section
18.8.4.3

Table 19-3. Non-Architectural Performance Events In the Processor Core Common to
2nd Generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx

Processor Series and Intel® Xeon® Processors E5 Family
Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-25

PERFORMANCE-MONITORING EVENTS
D0H 01H MEM_UOP_RETIRED.
LOADS

Qualify retired memory uops that
are loads. Combine with umask 10H,
20H, 40H, 80H.

Supports PEBS

D0H 02H MEM_UOP_RETIRED.
STORES

Qualify retired memory uops that
are stores. Combine with umask
10H, 20H, 40H, 80H.

D0H 10H MEM_UOP_RETIRED.
STLB_MISS

Qualify retired memory uops with
STLB miss. Must combine with
umask 01H, 02H, to produce counts.

D0H 20H MEM_UOP_RETIRED.
LOCK

Qualify retired memory uops with
lock. Must combine with umask 01H,
02H, to produce counts.

D0H 40H MEM_UOP_RETIRED.
SPLIT

Qualify retired memory uops with
line split. Must combine with umask
01H, 02H, to produce counts.

D0H 80H MEM_UOP_RETIRED.
ALL

Qualify any retired memory uops.
Must combine with umask 01H,
02H, to produce counts.

D1H 01H MEM_LOAD_UOPS_R
ETIRED.L1_HIT

Retired load uops with L1 cache hits
as data sources.

Supports PEBS

D1H 02H MEM_LOAD_UOPS_R
ETIRED.L2_HIT

Retired load uops with L2 cache hits
as data sources.

D1H 40H MEM_LOAD_UOPS_R
ETIRED.HIT_LFB

Retired load uops which data
sources were load uops missed L1
but hit FB due to preceding miss to
the same cache line with data not
ready.

D2H 01H MEM_LOAD_UOPS_L
LC_HIT_RETIRED.XS
NP_MISS

Retired load uops which data
sources were LLC hit and cross-core
snoop missed in on-pkg core cache.

Supports PEBS

D2H 02H MEM_LOAD_UOPS_L
LC_HIT_RETIRED.XS
NP_HIT

Retired load uops which data
sources were LLC and cross-core
snoop hits in on-pkg core cache.

D2H 04H MEM_LOAD_UOPS_L
LC_HIT_RETIRED.XS
NP_HITM

Retired load uops which data
sources were HitM responses from
shared LLC.

Table 19-3. Non-Architectural Performance Events In the Processor Core Common to
2nd Generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx

Processor Series and Intel® Xeon® Processors E5 Family
Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
19-26 Vol. 3B

PERFORMANCE-MONITORING EVENTS
D2H 08H MEM_LOAD_UOPS_L
LC_HIT_RETIRED.XS
NP_NONE

Retired load uops which data
sources were hits in LLC without
snoops required.

D4H 02H MEM_LOAD_UOPS_M
ISC_RETIRED.LLC_MI
SS

Retired load uops with unknown
information as data source in cache
serviced the load.

Supports PEBS.

F0H 01H L2_TRANS.DEMAND_
DATA_RD

Demand Data Read requests that
access L2 cache

F0H 02H L2_TRANS.RFO RFO requests that access L2 cache

F0H 04H L2_TRANS.CODE_RD L2 cache accesses when fetching
instructions

F0H 08H L2_TRANS.ALL_PF L2 or LLC HW prefetches that
access L2 cache

including rejects.

F0H 10H L2_TRANS.L1D_WB L1D writebacks that access L2
cache

F0H 20H L2_TRANS.L2_FILL L2 fill requests that access L2 cache

F0H 40H L2_TRANS.L2_WB L2 writebacks that access L2 cache

F0H 80H L2_TRANS.ALL_REQ
UESTS

Transactions accessing L2 pipe

F1H 01H L2_LINES_IN.I L2 cache lines in I state filling L2 Counting does
not cover rejects.

F1H 02H L2_LINES_IN.S L2 cache lines in S state filling L2 Counting does
not cover rejects.

F1H 04H L2_LINES_IN.E L2 cache lines in E state filling L2 Counting does
not cover rejects.

F1H 07H L2_LINES_IN.ALL L2 cache lines filling L2 Counting does
not cover rejects.

F2H 01H L2_LINES_OUT.DEMA
ND_CLEAN

Clean L2 cache lines evicted by
demand

F2H 02H L2_LINES_OUT.DEMA
ND_DIRTY

Dirty L2 cache lines evicted by
demand

F2H 04H L2_LINES_OUT.PF_C
LEAN

Clean L2 cache lines evicted by L2
prefetch

F2H 08H L2_LINES_OUT.PF_DI
RTY

Dirty L2 cache lines evicted by L2
prefetch

Table 19-3. Non-Architectural Performance Events In the Processor Core Common to
2nd Generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx

Processor Series and Intel® Xeon® Processors E5 Family
Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-27

PERFORMANCE-MONITORING EVENTS
Non-architecture performance monitoring events in the processor core that are
applicable only to Intel processor with CPUID signature of
DisplayFamily_DisplayModel 06_2AH are listed in Table 19-4.

F2H 0AH L2_LINES_OUT.DIRT
Y_ALL

Dirty L2 cache lines filling the L2 Counting does
not cover rejects.

F4H 10H SQ_MISC.SPLIT_LOCK Split locks in SQ

Table 19-4. Non-Architectural Performance Events applicable only to the Processor
core for 2nd Generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx

Processor Series
Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

D1H 04H MEM_LOAD_UOPS_R
ETIRED.LLC_HIT

Retired load uops which data sources
were data hits in LLC without snoops
required.

Supports PEBS

B7H/BB
H

01H OFF_CORE_RESPONS
E_N

Sub-events of
OFF_CORE_RESPONSE_N (suffix N =
0, 1) programmed using MSR
01A6H/01A7H with values shown in
the comment column.

OFFCORE_RESPONSE.ALL_CODE_RD.LLC_HIT_N 0x10003C024
4

OFFCORE_RESPONSE.ALL_CODE_RD.LLC_HIT.NO_SNOOP_NE
EDED_N

0x1003C0244

OFFCORE_RESPONSE.ALL_CODE_RD.LLC_HIT.SNOOP_MISS_
N

0x2003C0244

OFFCORE_RESPONSE.ALL_CODE_RD.LLC_HIT.MISS_DRAM_N 0x300400244

OFFCORE_RESPONSE.ALL_DATA_RD.LLC_HIT.ANY_RESPONS
E_N

0x3F803C009
1

OFFCORE_RESPONSE.ALL_DATA_RD.LLC_MISS.DRAM_N 0x300400091

OFFCORE_RESPONSE.ALL_PF_CODE_RD.LLC_HIT.ANY_RESP
ONSE_N

0x3F803C024
0

OFFCORE_RESPONSE.ALL_PF_CODE_RD.LLC_HIT.HIT_OTHER
_CORE_NO_FWD_N

0x4003C0240

Table 19-3. Non-Architectural Performance Events In the Processor Core Common to
2nd Generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx

Processor Series and Intel® Xeon® Processors E5 Family
Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
19-28 Vol. 3B

PERFORMANCE-MONITORING EVENTS
OFFCORE_RESPONSE.ALL_PF_CODE_RD.LLC_HIT.HITM_OTH
ER_CORE_N

0x10003C024
0

OFFCORE_RESPONSE.ALL_PF_CODE_RD.LLC_HIT.NO_SNOOP
_NEEDED_N

0x1003C0240

OFFCORE_RESPONSE.ALL_PF_CODE_RD.LLC_HIT.SNOOP_MIS
S_N

0x2003C0240

OFFCORE_RESPONSE.ALL_PF_CODE_RD.LLC_MISS.DRAM_N 0x300400240

OFFCORE_RESPONSE.ALL_PF_DATA_RD.LLC_MISS.DRAM_N 0x300400090

OFFCORE_RESPONSE.ALL_PF_RFO.LLC_HIT.ANY_RESPONSE
_N

0x3F803C012
0

OFFCORE_RESPONSE.ALL_PF_RFO.LLC_HIT.HIT_OTHER_COR
E_NO_FWD_N

0x4003C0120

OFFCORE_RESPONSE.ALL_PF_RFO.LLC_HIT.HITM_OTHER_C
ORE_N

0x10003C012
0

OFFCORE_RESPONSE.ALL_PF_RfO.LLC_HIT.NO_SNOOP_NEE
DED_N

0x1003C0120

OFFCORE_RESPONSE.ALL_PF_RFO.LLC_HIT.SNOOP_MISS_N 0x2003C0120

OFFCORE_RESPONSE.ALL_PF_RFO.LLC_MISS.DRAM_N 0x300400120

OFFCORE_RESPONSE.ALL_READS.LLC_MISS.DRAM_N 0x3004003F7

OFFCORE_RESPONSE.ALL_RFO.LLC_HIT.ANY_RESPONSE_N 0x3F803C012
2

OFFCORE_RESPONSE.ALL_RFO.LLC_HIT.HIT_OTHER_CORE_N
O_FWD_N

0x4003C0122

OFFCORE_RESPONSE.ALL_RFO.LLC_HIT.HITM_OTHER_CORE
_N

0x10003C012
2

OFFCORE_RESPONSE.ALL_RFO.LLC_HIT.NO_SNOOP_NEEDED
_N

0x1003C0122

OFFCORE_RESPONSE.ALL_RFO.LLC_HIT.SNOOP_MISS_N 0x2003C0122

OFFCORE_RESPONSE.ALL_RFO.LLC_MISS.DRAM_N 0x300400122

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_HIT.HIT_OTHE
R_CORE_NO_FWD_N

0x4003C0004

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_HIT.HITM_OT
HER_CORE_N

0x10003C000
4

Table 19-4. Non-Architectural Performance Events applicable only to the Processor
core for 2nd Generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx

Processor Series
Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-29

PERFORMANCE-MONITORING EVENTS
OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_HIT.NO_SNOO
P_NEEDED_N

0x1003C0004

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_HIT.SNOOP_M
ISS_N

0x2003C0004

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.DRAM_N 0x300400004

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.DRAM_N 0x300400001

OFFCORE_RESPONSE.DEMAND_RFO.LLC_HIT.ANY_RESPONS
E_N

0x3F803C000
2

OFFCORE_RESPONSE.DEMAND_RFO.LLC_HIT.HIT_OTHER_CO
RE_NO_FWD_N

0x4003C0002

OFFCORE_RESPONSE.DEMAND_RFO.LLC_HIT.HITM_OTHER_C
ORE_N

0x10003C000
2

OFFCORE_RESPONSE.DEMAND_RFO.LLC_HIT.NO_SNOOP_NE
EDED_N

0x1003C0002

OFFCORE_RESPONSE.DEMAND_RFO.LLC_HIT.SNOOP_MISS_N 0x2003C0002

OFFCORE_RESPONSE.DEMAND_RFO.LLC_MISS.DRAM_N 0x300400002

OFFCORE_RESPONSE.OTHER.ANY_RESPONSE_N 0x18000

OFFCORE_RESPONSE.PF_L2_CODE_RD.LLC_HIT.HIT_OTHER_
CORE_NO_FWD_N

0x4003C0040

OFFCORE_RESPONSE.PF_L2_CODE_RD.LLC_HIT.HITM_OTHE
R_CORE_N

0x10003C004
0

OFFCORE_RESPONSE.PF_L2_CODE_RD.LLC_HIT.NO_SNOOP_
NEEDED_N

0x1003C0040

OFFCORE_RESPONSE.PF_L2_CODE_RD.LLC_HIT.SNOOP_MISS
_N

0x2003C0040

OFFCORE_RESPONSE.PF_L2_CODE_RD.LLC_MISS.DRAM_N 0x300400040

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.DRAM_N 0x300400010

OFFCORE_RESPONSE.PF_L2_RFO.LLC_HIT.ANY_RESPONSE_
N

0x3F803C002
0

OFFCORE_RESPONSE.PF_L2_RFO.LLC_HIT.HIT_OTHER_CORE
_NO_FWD_N

0x4003C0020

OFFCORE_RESPONSE.PF_L2_RFO.LLC_HIT.HITM_OTHER_CO
RE_N

0x10003C002
0

Table 19-4. Non-Architectural Performance Events applicable only to the Processor
core for 2nd Generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx

Processor Series
Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
19-30 Vol. 3B

PERFORMANCE-MONITORING EVENTS
Non-architecture performance monitoring events in the processor core that are
applicable only to Intel Xeon processor E5 family (and Intel Core i7-3930 processor)
based on Intel microarchitecture Sandy Bridge, with CPUID signature of
DisplayFamily_DisplayModel 06_2DH, are listed in Table 19-5.

OFFCORE_RESPONSE.PF_L2_RFO.LLC_HIT.NO_SNOOP_NEED
ED_N

0x1003C0020

OFFCORE_RESPONSE.PF_L2_RFO.LLC_HIT.SNOOP_MISS_N 0x2003C0020

OFFCORE_RESPONSE.PF_L2_RFO.LLC_MISS.DRAM_N 0x300400020

OFFCORE_RESPONSE.PF_LLC_CODE_RD.LLC_HIT.HIT_OTHER
_CORE_NO_FWD_N

0x4003C0200

OFFCORE_RESPONSE.PF_LLC_CODE_RD.LLC_HIT.HITM_OTHE
R_CORE_N

0x10003C020
0

OFFCORE_RESPONSE.PF_LLC_CODE_RD.LLC_HIT.NO_SNOOP
_NEEDED_N

0x1003C0200

OFFCORE_RESPONSE.PF_LLC_CODE_RD.LLC_HIT.SNOOP_MIS
S_N

0x2003C0200

OFFCORE_RESPONSE.PF_LLC_CODE_RD.LLC_MISS.DRAM_N 0x300400200

OFFCORE_RESPONSE.PF_LLC_DATA_RD.LLC_MISS.DRAM_N 0x300400080

OFFCORE_RESPONSE.PF_LLC_RFO.LLC_HIT.ANY_RESPONSE
_N

0x3F803C010
0

OFFCORE_RESPONSE.PF_LLC_RFO.LLC_HIT.HIT_OTHER_COR
E_NO_FWD_N

0x4003C0100

OFFCORE_RESPONSE.PF_LLC_RFO.LLC_HIT.HITM_OTHER_CO
RE_N

0x10003C010
0

OFFCORE_RESPONSE.PF_LLC_RFO.LLC_HIT.NO_SNOOP_NEE
DED_N

0x1003C0100

OFFCORE_RESPONSE.PF_LLC_RFO.LLC_HIT.SNOOP_MISS_N 0x2003C0100

OFFCORE_RESPONSE.PF_LLC_RFO.LLC_MISS.DRAM_N 0x300400100

Table 19-4. Non-Architectural Performance Events applicable only to the Processor
core for 2nd Generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx

Processor Series
Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-31

PERFORMANCE-MONITORING EVENTS
Table 19-5. Non-Architectural Performance Events Applicable only to the Processor
Core of Intel® Xeon® Processor E5 Family

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

B7H/BB
H

01H OFF_CORE_RESPONS
E_N

Sub-events of
OFF_CORE_RESPONSE_N (suffix N =
0, 1) programmed using MSR
01A6H/01A7H with values shown in
the comment column.

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.ANY_RE
SPONSE_N

0x3FFFC0000
4

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.LOCAL_D
RAM_N

0x600400004

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.REMOTE
_DRAM_N

0x67F800004

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.REMOTE
_HIT_FWD_N

0x87F800004

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.REMOTE
_HITM_N

0x107FC0000
4

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.ANY_DR
AM_N

0x67FC00001

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.ANY_RE
SPONSE_N

0x3F803C000
1

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.LOCAL_D
RAM_N

0x600400001

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.REMOTE
_DRAM_N

0x67F800001

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.REMOTE
_HIT_FWD_N

0x87F800001

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.REMOTE
_HITM_N

0x107FC0000
1

OFFCORE_RESPONSE.PF_L2_CODE_RD.LLC_MISS.ANY_RESP
ONSE_N

0x3F803C004
0

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.ANY_DRAM
_N

0x67FC00010

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.ANY_RESP
ONSE_N

0x3F803C001
0

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.LOCAL_DR
AM_N

0x600400010
19-32 Vol. 3B

PERFORMANCE-MONITORING EVENTS
Non-architectural Performance monitoring events that are located in the uncore sub-
system are implementation specific between different platforms using processors
based on Intel microarchitecture Sandy Bridge. Processors with CPUID signature of
DisplayFamily_DisplayModel 06_2AH support performance events listed in Table
19-6.

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.REMOTE_D
RAM_N

0x67F800010

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.REMOTE_HI
T_FWD_N

0x87F800010

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.REMOTE_HI
TM_N

0x107FC0001
0

OFFCORE_RESPONSE.PF_LLC_CODE_RD.LLC_MISS.ANY_RES
PONSE_N

0x3FFFC0020
0

OFFCORE_RESPONSE.PF_LLC_DATA_RD.LLC_MISS.ANY_RES
PONSE_N

0x3FFFC0008
0

Table 19-6. Non-Architectural Performance Events In the Processor Uncore for 2nd
Generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor

Series
Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

22H 01H UNC_CBO_XSNP_RE
SPONSE.RSPIHITI

Snoop responses received from
processor cores to requests initiated
by this Cbox.

Must combine
with one of the
umask values
of 20H, 40H,
80H

22H 02H UNC_CBO_XSNP_RE
SPONSE.RSPIHITFSE

22H 04H UNC_CBO_XSNP_RE
SPONSE.RSPSHITFSE

22H 08H UNC_CBO_XSNP_RE
SPONSE.RSPSFWDM

22H 01H UNC_CBO_XSNP_RE
SPONSE.RSPIFWDM

Table 19-5. Non-Architectural Performance Events Applicable only to the Processor
Core of Intel® Xeon® Processor E5 Family

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-33

PERFORMANCE-MONITORING EVENTS
22H 20H UNC_CBO_XSNP_RE
SPONSE.AND_EXTER
NAL

Filter on cross-core snoops resulted in
external snoop request. Must combine
with at least one of 01H, 02H, 04H,
08H, 10H

22H 40H UNC_CBO_XSNP_RE
SPONSE.AND_XCORE

Filter on cross-core snoops resulted in
core request. Must combine with at
least one of 01H, 02H, 04H, 08H, 10H

22H 80H UNC_CBO_XSNP_RE
SPONSE.AND_XCORE

Filter on cross-core snoops resulted in
LLC evictions. Must combine with at
least one of 01H, 02H, 04H, 08H, 10H

34H 01H UNC_CBO_CACHE_LO
OKUP.M

LLC lookup request that access cache
and found line in M-state.

Must combine
with one of the
umask values
of 10H, 20H,
40H, 80H

34H 02H UNC_CBO_CACHE_LO
OKUP.E

LLC lookup request that access cache
and found line in E-state.

34H 04H UNC_CBO_CACHE_LO
OKUP.S

LLC lookup request that access cache
and found line in S-state.

34H 08H UNC_CBO_CACHE_LO
OKUP.I

LLC lookup request that access cache
and found line in I-state.

34H 10H UNC_CBO_CACHE_LO
OKUP.AND_READ

Filter on processor core initiated
cacheable read requests. Must
combine with at least one of 01H,
02H, 04H, 08H

34H 20H UNC_CBO_CACHE_LO
OKUP.AND_READ

Filter on processor core initiated
cacheable write requests. Must
combine with at least one of 01H,
02H, 04H, 08H

34H 40H UNC_CBO_CACHE_LO
OKUP.AND_EXTSNP

Filter on external snoop requests.
Must combine with at least one of
01H, 02H, 04H, 08H

34H 80H UNC_CBO_CACHE_LO
OKUP.AND_ANY

Filter on any IRQ or IPQ initiated
requests including uncacheable, non-
coherent requests. Must combine with
at least one of 01H, 02H, 04H, 08H

Table 19-6. Non-Architectural Performance Events In the Processor Uncore for 2nd
Generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor

Series
Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
19-34 Vol. 3B

PERFORMANCE-MONITORING EVENTS
19.4 PERFORMANCE MONITORING EVENTS FOR
INTEL® CORE™ I7 PROCESSOR FAMILY AND INTEL®

XEON® PROCESSOR FAMILY
Processors based on the Intel microarchitecture code name Nehalem support the
architectural and non-architectural performance-monitoring events listed in Table
19-1 and Table 19-7. The events in Table 19-7 generally applies to processors with
CPUID signature of DisplayFamily_DisplayModel encoding with the following values:
06_1AH, 06_1EH, 06_1FH, and 06_2EH. However, Intel Xeon processors with CPUID
signature of DisplayFamily_DisplayModel 06_2EH have a small number of events that
are not supported in processors with CPUID signature 06_1AH, 06_1EH, and
06_1FH. These events are noted in the comment column.

80H 01H UNC_IMPH_CBO_TRK
_OCCUPANCY.ALL

Counts cycles weighted by the
number of core-outgoing valid entries.
Valid entries are between allocation
to the first of IDIO or DRSO messages.
Accounts for coherent and in-
coherent traffic

Counter 0 only

81H 01H UNC_IMPH_CBO_TRK
_REQUEST.ALL

Counts the number of core-outgoing
entries. Accounts for coherent and in-
coherent traffic

81H 20H UNC_IMPH_CBO_TRK
_REQUEST.WRITES

Counts the number of allocated write
entries, include full, partial, and
evictions.

81H 80H UNC_IMPH_CBO_TRK
_REQUEST.EVICTION
S

Counts the number of evictions
allocated.

83H 01H UNC_IMPH_COH_TR
K_OCCUPANCY.ALL

Counts cycles weighted by the
number of core-outgoing valid entries
in the coherent tracker queue.

Counter 0 only

84H 01H UNC_IMPH_COH_TR
K_REQUEST.ALL

Counts the number of core-outgoing
entries in the coherent tracker queue.

Table 19-6. Non-Architectural Performance Events In the Processor Uncore for 2nd
Generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor

Series
Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-35

PERFORMANCE-MONITORING EVENTS
In addition, these processors (CPUID signature of DisplayFamily_DisplayModel
06_1AH, 06_1EH, 06_1FH) also support the following non-architectural, product-
specific uncore performance-monitoring events listed in Table 19-8.

Fixed counters in the core PMU support the architecture events defined in Table
19-12.

Table 19-7. Non-Architectural Performance Events In the Processor Core for Intel®
Core™ i7 Processor and Intel® Xeon® Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

04H 07H SB_DRAIN.ANY Counts the number of store buffer
drains.

06H 04H STORE_BLOCKS.AT_
RET

Counts number of loads delayed
with at-Retirement block code. The
following loads need to be executed
at retirement and wait for all senior
stores on the same thread to be
drained: load splitting across 4K
boundary (page split), load
accessing uncacheable (UC or
USWC) memory, load lock, and load
with page table in UC or USWC
memory region.

06H 08H STORE_BLOCKS.L1D
_BLOCK

Cacheable loads delayed with L1D
block code.

07H 01H PARTIAL_ADDRESS_
ALIAS

Counts false dependency due to
partial address aliasing.

08H 01H DTLB_LOAD_MISSES.
ANY

Counts all load misses that cause a
page walk.

08H 02H DTLB_LOAD_MISSES.
WALK_COMPLETED

Counts number of completed page
walks due to load miss in the STLB.

08H 10H DTLB_LOAD_MISSES.
STLB_HIT

Number of cache load STLB hits.

08H 20H DTLB_LOAD_MISSES.
PDE_MISS

Number of DTLB cache load misses
where the low part of the linear to
physical address translation was
missed.

08H 80H DTLB_LOAD_MISSES.
LARGE_WALK_COMP
LETED

Counts number of completed large
page walks due to load miss in the
STLB.

0BH 01H MEM_INST_RETIRED.
LOADS

Counts the number of instructions
with an architecturally-visible load
retired on the architected path.
19-36 Vol. 3B

PERFORMANCE-MONITORING EVENTS
0BH 02H MEM_INST_RETIRED.
STORES

Counts the number of instructions
with an architecturally-visible store
retired on the architected path.

0BH 10H MEM_INST_RETIRED.
LATENCY_ABOVE_T
HRESHOLD

Counts the number of instructions
exceeding the latency specified
with ld_lat facility.

In conjunction
with ld_lat
facility

0CH 01H MEM_STORE_RETIRE
D.DTLB_MISS

The event counts the number of
retired stores that missed the DTLB.
The DTLB miss is not counted if the
store operation causes a fault. Does
not counter prefetches. Counts both
primary and secondary misses to
the TLB.

0EH 01H UOPS_ISSUED.ANY Counts the number of Uops issued
by the Register Allocation Table to
the Reservation Station, i.e. the
UOPs issued from the front end to
the back end.

0EH 01H UOPS_ISSUED.STALL
ED_CYCLES

Counts the number of cycles no
Uops issued by the Register
Allocation Table to the Reservation
Station, i.e. the UOPs issued from
the front end to the back end.

set “invert=1,
cmask = 1“

0EH 02H UOPS_ISSUED.FUSED Counts the number of fused Uops
that were issued from the Register
Allocation Table to the Reservation
Station.

0FH 01H MEM_UNCORE_RETI
RED.L3_DATA_MISS_
UNKNOWN

Counts number of memory load
instructions retired where the
memory reference missed L3 and
data source is unknown.

Available only for
CPUID signature
06_2EH

0FH 02H MEM_UNCORE_RETI
RED.OTHER_CORE_L
2_HITM

Counts number of memory load
instructions retired where the
memory reference hit modified data
in a sibling core residing on the
same socket.

Table 19-7. Non-Architectural Performance Events In the Processor Core for Intel®
Core™ i7 Processor and Intel® Xeon® Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-37

PERFORMANCE-MONITORING EVENTS
0FH 08H MEM_UNCORE_RETI
RED.REMOTE_CACHE
_LOCAL_HOME_HIT

Counts number of memory load
instructions retired where the
memory reference missed the L1,
L2 and L3 caches and HIT in a
remote socket's cache. Only counts
locally homed lines.

0FH 10H MEM_UNCORE_RETI
RED.REMOTE_DRAM

Counts number of memory load
instructions retired where the
memory reference missed the L1,
L2 and L3 caches and was remotely
homed. This includes both DRAM
access and HITM in a remote
socket's cache for remotely homed
lines.

0FH 20H MEM_UNCORE_RETI
RED.LOCAL_DRAM

Counts number of memory load
instructions retired where the
memory reference missed the L1,
L2 and L3 caches and required a
local socket memory reference. This
includes locally homed cachelines
that were in a modified state in
another socket.

0FH 80H MEM_UNCORE_RETI
RED.UNCACHEABLE

Counts number of memory load
instructions retired where the
memory reference missed the L1,
L2 and L3 caches and to perform
I/O.

Available only for
CPUID signature
06_2EH

10H 01H FP_COMP_OPS_EXE.
X87

Counts the number of FP
Computational Uops Executed. The
number of FADD, FSUB, FCOM,
FMULs, integer MULsand IMULs,
FDIVs, FPREMs, FSQRTS, integer
DIVs, and IDIVs. This event does not
distinguish an FADD used in the
middle of a transcendental flow
from a separate FADD instruction.

10H 02H FP_COMP_OPS_EXE.
MMX

Counts number of MMX Uops
executed.

10H 04H FP_COMP_OPS_EXE.
SSE_FP

Counts number of SSE and SSE2 FP
uops executed.

Table 19-7. Non-Architectural Performance Events In the Processor Core for Intel®
Core™ i7 Processor and Intel® Xeon® Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
19-38 Vol. 3B

PERFORMANCE-MONITORING EVENTS
10H 08H FP_COMP_OPS_EXE.
SSE2_INTEGER

Counts number of SSE2 integer
uops executed.

10H 10H FP_COMP_OPS_EXE.
SSE_FP_PACKED

Counts number of SSE FP packed
uops executed.

10H 20H FP_COMP_OPS_EXE.
SSE_FP_SCALAR

Counts number of SSE FP scalar
uops executed.

10H 40H FP_COMP_OPS_EXE.
SSE_SINGLE_PRECISI
ON

Counts number of SSE* FP single
precision uops executed.

10H 80H FP_COMP_OPS_EXE.
SSE_DOUBLE_PRECI
SION

Counts number of SSE* FP double
precision uops executed.

12H 01H SIMD_INT_128.PACK
ED_MPY

Counts number of 128 bit SIMD
integer multiply operations.

12H 02H SIMD_INT_128.PACK
ED_SHIFT

Counts number of 128 bit SIMD
integer shift operations.

12H 04H SIMD_INT_128.PACK Counts number of 128 bit SIMD
integer pack operations.

12H 08H SIMD_INT_128.UNPA
CK

Counts number of 128 bit SIMD
integer unpack operations.

12H 10H SIMD_INT_128.PACK
ED_LOGICAL

Counts number of 128 bit SIMD
integer logical operations.

12H 20H SIMD_INT_128.PACK
ED_ARITH

Counts number of 128 bit SIMD
integer arithmetic operations.

12H 40H SIMD_INT_128.SHUF
FLE_MOVE

Counts number of 128 bit SIMD
integer shuffle and move
operations.

13H 01H LOAD_DISPATCH.RS Counts number of loads dispatched
from the Reservation Station that
bypass the Memory Order Buffer.

13H 02H LOAD_DISPATCH.RS_
DELAYED

Counts the number of delayed RS
dispatches at the stage latch. If an
RS dispatch can not bypass to LB, it
has another chance to dispatch
from the one-cycle delayed staging
latch before it is written into the LB.

Table 19-7. Non-Architectural Performance Events In the Processor Core for Intel®
Core™ i7 Processor and Intel® Xeon® Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-39

PERFORMANCE-MONITORING EVENTS
13H 04H LOAD_DISPATCH.MO
B

Counts the number of loads
dispatched from the Reservation
Station to the Memory Order Buffer.

13H 07H LOAD_DISPATCH.ANY Counts all loads dispatched from the
Reservation Station.

14H 01H ARITH.CYCLES_DIV_
BUSY

Counts the number of cycles the
divider is busy executing divide or
square root operations. The divide
can be integer, X87 or Streaming
SIMD Extensions (SSE). The square
root operation can be either X87 or
SSE.

Set 'edge =1, invert=1, cmask=1' to
count the number of divides.

Count may be
incorrect When
SMT is on.

14H 02H ARITH.MUL Counts the number of multiply
operations executed. This includes
integer as well as floating point
multiply operations but excludes
DPPS mul and MPSAD.

Count may be
incorrect When
SMT is on

17H 01H INST_QUEUE_WRITE
S

Counts the number of instructions
written into the instruction queue
every cycle.

18H 01H INST_DECODED.DEC0 Counts number of instructions that
require decoder 0 to be decoded.
Usually, this means that the
instruction maps to more than 1
uop.

19H 01H TWO_UOP_INSTS_D
ECODED

An instruction that generates two
uops was decoded.

Table 19-7. Non-Architectural Performance Events In the Processor Core for Intel®
Core™ i7 Processor and Intel® Xeon® Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
19-40 Vol. 3B

PERFORMANCE-MONITORING EVENTS
1EH 01H INST_QUEUE_WRITE
_CYCLES

This event counts the number of
cycles during which instructions are
written to the instruction queue.
Dividing this counter by the number
of instructions written to the
instruction queue
(INST_QUEUE_WRITES) yields the
average number of instructions
decoded each cycle. If this number is
less than four and the pipe stalls,
this indicates that the decoder is
failing to decode enough
instructions per cycle to sustain the
4-wide pipeline.

If SSE*
instructions that
are 6 bytes or
longer arrive one
after another,
then front end
throughput may
limit execution
speed. In such
case,

20H 01H LSD_OVERFLOW Counts number of loops that can’t
stream from the instruction queue.

24H 01H L2_RQSTS.LD_HIT Counts number of loads that hit the
L2 cache. L2 loads include both L1D
demand misses as well as L1D
prefetches. L2 loads can be
rejected for various reasons. Only
non rejected loads are counted.

24H 02H L2_RQSTS.LD_MISS Counts the number of loads that
miss the L2 cache. L2 loads include
both L1D demand misses as well as
L1D prefetches.

24H 03H L2_RQSTS.LOADS Counts all L2 load requests. L2 loads
include both L1D demand misses as
well as L1D prefetches.

24H 04H L2_RQSTS.RFO_HIT Counts the number of store RFO
requests that hit the L2 cache. L2
RFO requests include both L1D
demand RFO misses as well as L1D
RFO prefetches. Count includes WC
memory requests, where the data is
not fetched but the permission to
write the line is required.

Table 19-7. Non-Architectural Performance Events In the Processor Core for Intel®
Core™ i7 Processor and Intel® Xeon® Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-41

PERFORMANCE-MONITORING EVENTS
24H 08H L2_RQSTS.RFO_MISS Counts the number of store RFO
requests that miss the L2 cache. L2
RFO requests include both L1D
demand RFO misses as well as L1D
RFO prefetches.

24H 0CH L2_RQSTS.RFOS Counts all L2 store RFO requests. L2
RFO requests include both L1D
demand RFO misses as well as L1D
RFO prefetches.

24H 10H L2_RQSTS.IFETCH_H
IT

Counts number of instruction
fetches that hit the L2 cache. L2
instruction fetches include both L1I
demand misses as well as L1I
instruction prefetches.

24H 20H L2_RQSTS.IFETCH_M
ISS

Counts number of instruction
fetches that miss the L2 cache. L2
instruction fetches include both L1I
demand misses as well as L1I
instruction prefetches.

24H 30H L2_RQSTS.IFETCHES Counts all instruction fetches. L2
instruction fetches include both L1I
demand misses as well as L1I
instruction prefetches.

24H 40H L2_RQSTS.PREFETC
H_HIT

Counts L2 prefetch hits for both
code and data.

24H 80H L2_RQSTS.PREFETC
H_MISS

Counts L2 prefetch misses for both
code and data.

24H C0H L2_RQSTS.PREFETC
HES

Counts all L2 prefetches for both
code and data.

24H AAH L2_RQSTS.MISS Counts all L2 misses for both code
and data.

24H FFH L2_RQSTS.REFEREN
CES

Counts all L2 requests for both code
and data.

26H 01H L2_DATA_RQSTS.DE
MAND.I_STATE

Counts number of L2 data demand
loads where the cache line to be
loaded is in the I (invalid) state, i.e. a
cache miss. L2 demand loads are
both L1D demand misses and L1D
prefetches.

Table 19-7. Non-Architectural Performance Events In the Processor Core for Intel®
Core™ i7 Processor and Intel® Xeon® Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
19-42 Vol. 3B

PERFORMANCE-MONITORING EVENTS
26H 02H L2_DATA_RQSTS.DE
MAND.S_STATE

Counts number of L2 data demand
loads where the cache line to be
loaded is in the S (shared) state. L2
demand loads are both L1D demand
misses and L1D prefetches.

26H 04H L2_DATA_RQSTS.DE
MAND.E_STATE

Counts number of L2 data demand
loads where the cache line to be
loaded is in the E (exclusive) state.
L2 demand loads are both L1D
demand misses and L1D prefetches.

26H 08H L2_DATA_RQSTS.DE
MAND.M_STATE

Counts number of L2 data demand
loads where the cache line to be
loaded is in the M (modified) state.
L2 demand loads are both L1D
demand misses and L1D prefetches.

26H 0FH L2_DATA_RQSTS.DE
MAND.MESI

Counts all L2 data demand requests.
L2 demand loads are both L1D
demand misses and L1D prefetches.

26H 10H L2_DATA_RQSTS.PR
EFETCH.I_STATE

Counts number of L2 prefetch data
loads where the cache line to be
loaded is in the I (invalid) state, i.e. a
cache miss.

26H 20H L2_DATA_RQSTS.PR
EFETCH.S_STATE

Counts number of L2 prefetch data
loads where the cache line to be
loaded is in the S (shared) state. A
prefetch RFO will miss on an S state
line, while a prefetch read will hit on
an S state line.

26H 40H L2_DATA_RQSTS.PR
EFETCH.E_STATE

Counts number of L2 prefetch data
loads where the cache line to be
loaded is in the E (exclusive) state.

26H 80H L2_DATA_RQSTS.PR
EFETCH.M_STATE

Counts number of L2 prefetch data
loads where the cache line to be
loaded is in the M (modified) state.

26H F0H L2_DATA_RQSTS.PR
EFETCH.MESI

Counts all L2 prefetch requests.

26H FFH L2_DATA_RQSTS.AN
Y

Counts all L2 data requests.

Table 19-7. Non-Architectural Performance Events In the Processor Core for Intel®
Core™ i7 Processor and Intel® Xeon® Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-43

PERFORMANCE-MONITORING EVENTS
27H 01H L2_WRITE.RFO.I_STA
TE

Counts number of L2 demand store
RFO requests where the cache line
to be loaded is in the I (invalid) state,
i.e, a cache miss. The L1D prefetcher
does not issue a RFO prefetch.

This is a demand
RFO request

27H 02H L2_WRITE.RFO.S_ST
ATE

Counts number of L2 store RFO
requests where the cache line to be
loaded is in the S (shared) state. The
L1D prefetcher does not issue a
RFO prefetch,.

This is a demand
RFO request

27H 08H L2_WRITE.RFO.M_ST
ATE

Counts number of L2 store RFO
requests where the cache line to be
loaded is in the M (modified) state.
The L1D prefetcher does not issue a
RFO prefetch.

This is a demand
RFO request

27H 0EH L2_WRITE.RFO.HIT Counts number of L2 store RFO
requests where the cache line to be
loaded is in either the S, E or M
states. The L1D prefetcher does not
issue a RFO prefetch.

This is a demand
RFO request

27H 0FH L2_WRITE.RFO.MESI Counts all L2 store RFO
requests.The L1D prefetcher does
not issue a RFO prefetch.

This is a demand
RFO request

27H 10H L2_WRITE.LOCK.I_ST
ATE

Counts number of L2 demand lock
RFO requests where the cache line
to be loaded is in the I (invalid) state,
i.e. a cache miss.

27H 20H L2_WRITE.LOCK.S_S
TATE

Counts number of L2 lock RFO
requests where the cache line to be
loaded is in the S (shared) state.

27H 40H L2_WRITE.LOCK.E_S
TATE

Counts number of L2 demand lock
RFO requests where the cache line
to be loaded is in the E (exclusive)
state.

27H 80H L2_WRITE.LOCK.M_S
TATE

Counts number of L2 demand lock
RFO requests where the cache line
to be loaded is in the M (modified)
state.

Table 19-7. Non-Architectural Performance Events In the Processor Core for Intel®
Core™ i7 Processor and Intel® Xeon® Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
19-44 Vol. 3B

PERFORMANCE-MONITORING EVENTS
27H E0H L2_WRITE.LOCK.HIT Counts number of L2 demand lock
RFO requests where the cache line
to be loaded is in either the S, E, or
M state.

27H F0H L2_WRITE.LOCK.MESI Counts all L2 demand lock RFO
requests.

28H 01H L1D_WB_L2.I_STATE Counts number of L1 writebacks to
the L2 where the cache line to be
written is in the I (invalid) state, i.e.
a cache miss.

28H 02H L1D_WB_L2.S_STAT
E

Counts number of L1 writebacks to
the L2 where the cache line to be
written is in the S state.

28H 04H L1D_WB_L2.E_STAT
E

Counts number of L1 writebacks to
the L2 where the cache line to be
written is in the E (exclusive) state.

28H 08H L1D_WB_L2.M_STAT
E

Counts number of L1 writebacks to
the L2 where the cache line to be
written is in the M (modified) state.

28H 0FH L1D_WB_L2.MESI Counts all L1 writebacks to the L2 .

2EH 4FH L3_LAT_CACHE.REFE
RENCE

This event counts requests
originating from the core that
reference a cache line in the last
level cache. The event count
includes speculative traffic but
excludes cache line fills due to a L2
hardware-prefetch. Because cache
hierarchy, cache sizes and other
implementation-specific
characteristics; value comparison to
estimate performance differences is
not recommended.

see Table 19-1

Table 19-7. Non-Architectural Performance Events In the Processor Core for Intel®
Core™ i7 Processor and Intel® Xeon® Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-45

PERFORMANCE-MONITORING EVENTS
2EH 41H L3_LAT_CACHE.MISS This event counts each cache miss
condition for references to the last
level cache. The event count may
include speculative traffic but
excludes cache line fills due to L2
hardware-prefetches. Because
cache hierarchy, cache sizes and
other implementation-specific
characteristics; value comparison to
estimate performance differences is
not recommended.

see Table 19-1

3CH 00H CPU_CLK_UNHALTED
.THREAD_P

Counts the number of thread cycles
while the thread is not in a halt
state. The thread enters the halt
state when it is running the HLT
instruction. The core frequency may
change from time to time due to
power or thermal throttling.

see Table 19-1

3CH 01H CPU_CLK_UNHALTED
.REF_P

Increments at the frequency of TSC
when not halted.

see Table 19-1

40H 01H L1D_CACHE_LD.I_ST
ATE

Counts L1 data cache read requests
where the cache line to be loaded is
in the I (invalid) state, i.e. the read
request missed the cache.

Counter 0, 1 only

40H 02H L1D_CACHE_LD.S_ST
ATE

Counts L1 data cache read requests
where the cache line to be loaded is
in the S (shared) state.

Counter 0, 1 only

40H 04H L1D_CACHE_LD.E_ST
ATE

Counts L1 data cache read requests
where the cache line to be loaded is
in the E (exclusive) state.

Counter 0, 1 only

40H 08H L1D_CACHE_LD.M_S
TATE

Counts L1 data cache read requests
where the cache line to be loaded is
in the M (modified) state.

Counter 0, 1 only

40H 0FH L1D_CACHE_LD.MESI Counts L1 data cache read requests. Counter 0, 1 only

41H 02H L1D_CACHE_ST.S_ST
ATE

Counts L1 data cache store RFO
requests where the cache line to be
loaded is in the S (shared) state.

Counter 0, 1 only

Table 19-7. Non-Architectural Performance Events In the Processor Core for Intel®
Core™ i7 Processor and Intel® Xeon® Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
19-46 Vol. 3B

PERFORMANCE-MONITORING EVENTS
41H 04H L1D_CACHE_ST.E_ST
ATE

Counts L1 data cache store RFO
requests where the cache line to be
loaded is in the E (exclusive) state.

Counter 0, 1 only

41H 08H L1D_CACHE_ST.M_S
TATE

Counts L1 data cache store RFO
requests where cache line to be
loaded is in the M (modified) state.

Counter 0, 1 only

42H 01H L1D_CACHE_LOCK.HI
T

Counts retired load locks that hit in
the L1 data cache or hit in an
already allocated fill buffer. The
lock portion of the load lock
transaction must hit in the L1D.

The initial load
will pull the lock
into the L1 data
cache. Counter 0,
1 only

42H 02H L1D_CACHE_LOCK.S_
STATE

Counts L1 data cache retired load
locks that hit the target cache line in
the shared state.

Counter 0, 1 only

42H 04H L1D_CACHE_LOCK.E_
STATE

Counts L1 data cache retired load
locks that hit the target cache line in
the exclusive state.

Counter 0, 1 only

42H 08H L1D_CACHE_LOCK.M
_STATE

Counts L1 data cache retired load
locks that hit the target cache line in
the modified state.

Counter 0, 1 only

43H 01H L1D_ALL_REF.ANY Counts all references (uncached,
speculated and retired) to the L1
data cache, including all loads and
stores with any memory types. The
event counts memory accesses only
when they are actually performed.
For example, a load blocked by
unknown store address and later
performed is only counted once.

The event does
not include non-
memory
accesses, such as
I/O accesses.
Counter 0, 1 only

43H 02H L1D_ALL_REF.CACHE
ABLE

Counts all data reads and writes
(speculated and retired) from
cacheable memory, including locked
operations.

Counter 0, 1 only

49H 01H DTLB_MISSES.ANY Counts the number of misses in the
STLB which causes a page walk.

49H 02H DTLB_MISSES.WALK_
COMPLETED

Counts number of misses in the
STLB which resulted in a completed
page walk.

Table 19-7. Non-Architectural Performance Events In the Processor Core for Intel®
Core™ i7 Processor and Intel® Xeon® Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-47

PERFORMANCE-MONITORING EVENTS
49H 10H DTLB_MISSES.STLB_
HIT

Counts the number of DTLB first
level misses that hit in the second
level TLB. This event is only
relevant if the core contains
multiple DTLB levels.

49H 20H DTLB_MISSES.PDE_M
ISS

Number of DTLB misses caused by
low part of address, includes
references to 2M pages because 2M
pages do not use the PDE.

49H 80H DTLB_MISSES.LARGE
_WALK_COMPLETED

Counts number of misses in the
STLB which resulted in a completed
page walk for large pages.

4CH 01H LOAD_HIT_PRE Counts load operations sent to the
L1 data cache while a previous SSE
prefetch instruction to the same
cache line has started prefetching
but has not yet finished.

4EH 01H L1D_PREFETCH.REQ
UESTS

Counts number of hardware
prefetch requests dispatched out of
the prefetch FIFO.

4EH 02H L1D_PREFETCH.MISS Counts number of hardware
prefetch requests that miss the
L1D. There are two prefetchers in
the L1D. A streamer, which predicts
lines sequentially after this one
should be fetched, and the IP
prefetcher that remembers access
patterns for the current instruction.
The streamer prefetcher stops on
an L1D hit, while the IP prefetcher
does not.

4EH 04H L1D_PREFETCH.TRIG
GERS

Counts number of prefetch requests
triggered by the Finite State
Machine and pushed into the
prefetch FIFO. Some of the prefetch
requests are dropped due to
overwrites or competition between
the IP index prefetcher and
streamer prefetcher. The prefetch
FIFO contains 4 entries.

Table 19-7. Non-Architectural Performance Events In the Processor Core for Intel®
Core™ i7 Processor and Intel® Xeon® Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
19-48 Vol. 3B

PERFORMANCE-MONITORING EVENTS
51H 01H L1D.REPL Counts the number of lines brought
into the L1 data cache.

Counter 0, 1 only

51H 02H L1D.M_REPL Counts the number of modified lines
brought into the L1 data cache.

Counter 0, 1 only

51H 04H L1D.M_EVICT Counts the number of modified lines
evicted from the L1 data cache due
to replacement.

Counter 0, 1 only

51H 08H L1D.M_SNOOP_EVIC
T

Counts the number of modified lines
evicted from the L1 data cache due
to snoop HITM intervention.

Counter 0, 1 only

52H 01H L1D_CACHE_PREFET
CH_LOCK_FB_HIT

Counts the number of cacheable
load lock speculated instructions
accepted into the fill buffer.

53H 01H L1D_CACHE_LOCK_F
B_HIT

Counts the number of cacheable
load lock speculated or retired
instructions accepted into the fill
buffer.

63H 01H CACHE_LOCK_CYCLE
S.L1D_L2

Cycle count during which the L1D
and L2 are locked. A lock is
asserted when there is a locked
memory access, due to uncacheable
memory, a locked operation that
spans two cache lines, or a page
walk from an uncacheable page
table.

Counter 0, 1 only.
L1D and L2 locks
have a very high
performance
penalty and it is
highly
recommended to
avoid such
accesses.

63H 02H CACHE_LOCK_CYCLE
S.L1D

Counts the number of cycles that
cacheline in the L1 data cache unit
is locked.

Counter 0, 1 only.

6CH 01H IO_TRANSACTIONS Counts the number of completed I/O
transactions.

80H 01H L1I.HITS Counts all instruction fetches that
hit the L1 instruction cache.

Table 19-7. Non-Architectural Performance Events In the Processor Core for Intel®
Core™ i7 Processor and Intel® Xeon® Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-49

PERFORMANCE-MONITORING EVENTS
80H 02H L1I.MISSES Counts all instruction fetches that
miss the L1I cache. This includes
instruction cache misses, streaming
buffer misses, victim cache misses
and uncacheable fetches. An
instruction fetch miss is counted
only once and not once for every
cycle it is outstanding.

80H 03H L1I.READS Counts all instruction fetches,
including uncacheable fetches that
bypass the L1I.

80H 04H L1I.CYCLES_STALLED Cycle counts for which an
instruction fetch stalls due to a L1I
cache miss, ITLB miss or ITLB fault.

82H 01H LARGE_ITLB.HIT Counts number of large ITLB hits.

85H 01H ITLB_MISSES.ANY Counts the number of misses in all
levels of the ITLB which causes a
page walk.

85H 02H ITLB_MISSES.WALK_
COMPLETED

Counts number of misses in all
levels of the ITLB which resulted in
a completed page walk.

87H 01H ILD_STALL.LCP Cycles Instruction Length Decoder
stalls due to length changing
prefixes: 66, 67 or REX.W (for
EM64T) instructions which change
the length of the decoded
instruction.

87H 02H ILD_STALL.MRU Instruction Length Decoder stall
cycles due to Brand Prediction Unit
(PBU) Most Recently Used (MRU)
bypass.

87H 04H ILD_STALL.IQ_FULL Stall cycles due to a full instruction
queue.

87H 08H ILD_STALL.REGEN Counts the number of regen stalls.

87H 0FH ILD_STALL.ANY Counts any cycles the Instruction
Length Decoder is stalled.

Table 19-7. Non-Architectural Performance Events In the Processor Core for Intel®
Core™ i7 Processor and Intel® Xeon® Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
19-50 Vol. 3B

PERFORMANCE-MONITORING EVENTS
88H 01H BR_INST_EXEC.COND Counts the number of conditional
near branch instructions executed,
but not necessarily retired.

88H 02H BR_INST_EXEC.DIRE
CT

Counts all unconditional near branch
instructions excluding calls and
indirect branches.

88H 04H BR_INST_EXEC.INDIR
ECT_NON_CALL

Counts the number of executed
indirect near branch instructions
that are not calls.

88H 07H BR_INST_EXEC.NON
_CALLS

Counts all non call near branch
instructions executed, but not
necessarily retired.

88H 08H BR_INST_EXEC.RETU
RN_NEAR

Counts indirect near branches that
have a return mnemonic.

88H 10H BR_INST_EXEC.DIRE
CT_NEAR_CALL

Counts unconditional near call
branch instructions, excluding non
call branch, executed.

88H 20H BR_INST_EXEC.INDIR
ECT_NEAR_CALL

Counts indirect near calls, including
both register and memory indirect,
executed.

88H 30H BR_INST_EXEC.NEAR
_CALLS

Counts all near call branches
executed, but not necessarily
retired.

88H 40H BR_INST_EXEC.TAKE
N

Counts taken near branches
executed, but not necessarily
retired.

88H 7FH BR_INST_EXEC.ANY Counts all near executed branches
(not necessarily retired). This
includes only instructions and not
micro-op branches. Frequent
branching is not necessarily a major
performance issue. However
frequent branch mispredictions may
be a problem.

89H 01H BR_MISP_EXEC.CON
D

Counts the number of mispredicted
conditional near branch instructions
executed, but not necessarily
retired.

Table 19-7. Non-Architectural Performance Events In the Processor Core for Intel®
Core™ i7 Processor and Intel® Xeon® Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-51

PERFORMANCE-MONITORING EVENTS
89H 02H BR_MISP_EXEC.DIRE
CT

Counts mispredicted macro
unconditional near branch
instructions, excluding calls and
indirect branches (should always be
0).

89H 04H BR_MISP_EXEC.INDIR
ECT_NON_CALL

Counts the number of executed
mispredicted indirect near branch
instructions that are not calls.

89H 07H BR_MISP_EXEC.NON
_CALLS

Counts mispredicted non call near
branches executed, but not
necessarily retired.

89H 08H BR_MISP_EXEC.RETU
RN_NEAR

Counts mispredicted indirect
branches that have a rear return
mnemonic.

89H 10H BR_MISP_EXEC.DIRE
CT_NEAR_CALL

Counts mispredicted non-indirect
near calls executed, (should always
be 0).

89H 20H BR_MISP_EXEC.INDIR
ECT_NEAR_CALL

Counts mispredicted indirect near
calls exeucted, including both
register and memory indirect.

89H 30H BR_MISP_EXEC.NEA
R_CALLS

Counts all mispredicted near call
branches executed, but not
necessarily retired.

89H 40H BR_MISP_EXEC.TAKE
N

Counts executed mispredicted near
branches that are taken, but not
necessarily retired.

89H 7FH BR_MISP_EXEC.ANY Counts the number of mispredicted
near branch instructions that were
executed, but not necessarily
retired.

Table 19-7. Non-Architectural Performance Events In the Processor Core for Intel®
Core™ i7 Processor and Intel® Xeon® Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
19-52 Vol. 3B

PERFORMANCE-MONITORING EVENTS
A2H 01H RESOURCE_STALLS.
ANY

Counts the number of Allocator
resource related stalls. Includes
register renaming buffer entries,
memory buffer entries. In addition
to resource related stalls, this event
counts some other events. Includes
stalls arising during branch
misprediction recovery, such as if
retirement of the mispredicted
branch is delayed and stalls arising
while store buffer is draining from
synchronizing operations.

Does not include
stalls due to
SuperQ (off core)
queue full, too
many cache
misses, etc.

A2H 02H RESOURCE_STALLS.L
OAD

Counts the cycles of stall due to lack
of load buffer for load operation.

A2H 04H RESOURCE_STALLS.R
S_FULL

This event counts the number of
cycles when the number of
instructions in the pipeline waiting
for execution reaches the limit the
processor can handle. A high count
of this event indicates that there
are long latency operations in the
pipe (possibly load and store
operations that miss the L2 cache,
or instructions dependent upon
instructions further down the
pipeline that have yet to retire.

When RS is full,
new instructions
can not enter the
reservation
station and start
execution.

A2H 08H RESOURCE_STALLS.S
TORE

This event counts the number of
cycles that a resource related stall
will occur due to the number of
store instructions reaching the limit
of the pipeline, (i.e. all store buffers
are used). The stall ends when a
store instruction commits its data to
the cache or memory.

A2H 10H RESOURCE_STALLS.R
OB_FULL

Counts the cycles of stall due to re-
order buffer full.

A2H 20H RESOURCE_STALLS.F
PCW

Counts the number of cycles while
execution was stalled due to writing
the floating-point unit (FPU) control
word.

Table 19-7. Non-Architectural Performance Events In the Processor Core for Intel®
Core™ i7 Processor and Intel® Xeon® Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-53

PERFORMANCE-MONITORING EVENTS
A2H 40H RESOURCE_STALLS.
MXCSR

Stalls due to the MXCSR register
rename occurring to close to a
previous MXCSR rename. The
MXCSR provides control and status
for the MMX registers.

A2H 80H RESOURCE_STALLS.
OTHER

Counts the number of cycles while
execution was stalled due to other
resource issues.

A6H 01H MACRO_INSTS.FUSIO
NS_DECODED

Counts the number of instructions
decoded that are macro-fused but
not necessarily executed or retired.

A7H 01H BACLEAR_FORCE_IQ Counts number of times a BACLEAR
was forced by the Instruction
Queue. The IQ is also responsible
for providing conditional branch
prediciton direction based on a
static scheme and dynamic data
provided by the L2 Branch
Prediction Unit. If the conditional
branch target is not found in the
Target Array and the IQ predicts
that the branch is taken, then the IQ
will force the Branch Address
Calculator to issue a BACLEAR. Each
BACLEAR asserted by the BAC
generates approximately an 8 cycle
bubble in the instruction fetch
pipeline.

A8H 01H LSD.UOPS Counts the number of micro-ops
delivered by loop stream detector.

Use cmask=1 and
invert to count
cycles

AEH 01H ITLB_FLUSH Counts the number of ITLB flushes.

B0H 40H OFFCORE_REQUEST
S.L1D_WRITEBACK

Counts number of L1D writebacks
to the uncore.

B1H 01H UOPS_EXECUTED.PO
RT0

Counts number of Uops executed
that were issued on port 0. Port 0
handles integer arithmetic, SIMD
and FP add Uops.

Table 19-7. Non-Architectural Performance Events In the Processor Core for Intel®
Core™ i7 Processor and Intel® Xeon® Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
19-54 Vol. 3B

PERFORMANCE-MONITORING EVENTS
B1H 02H UOPS_EXECUTED.PO
RT1

Counts number of Uops executed
that were issued on port 1. Port 1
handles integer arithmetic, SIMD,
integer shift, FP multiply and FP
divide Uops.

B1H 04H UOPS_EXECUTED.PO
RT2_CORE

Counts number of Uops executed
that were issued on port 2. Port 2
handles the load Uops. This is a core
count only and can not be collected
per thread.

B1H 08H UOPS_EXECUTED.PO
RT3_CORE

Counts number of Uops executed
that were issued on port 3. Port 3
handles store Uops. This is a core
count only and can not be collected
per thread.

B1H 10H UOPS_EXECUTED.PO
RT4_CORE

Counts number of Uops executed
that where issued on port 4. Port 4
handles the value to be stored for
the store Uops issued on port 3.
This is a core count only and can not
be collected per thread.

B1H 1FH UOPS_EXECUTED.CO
RE_ACTIVE_CYCLES_
NO_PORT5

Counts cycles when the Uops
executed were issued from any
ports except port 5. Use Cmask=1
for active cycles; Cmask=0 for
weighted cycles; Use CMask=1,
Invert=1 to count P0-4 stalled
cycles Use Cmask=1, Edge=1,
Invert=1 to count P0-4 stalls.

B1H 20H UOPS_EXECUTED.PO
RT5

Counts number of Uops executed
that where issued on port 5.

B1H 3FH UOPS_EXECUTED.CO
RE_ACTIVE_CYCLES

Counts cycles when the Uops are
executing . Use Cmask=1 for active
cycles; Cmask=0 for weighted
cycles; Use CMask=1, Invert=1 to
count P0-4 stalled cycles Use
Cmask=1, Edge=1, Invert=1 to
count P0-4 stalls.

Table 19-7. Non-Architectural Performance Events In the Processor Core for Intel®
Core™ i7 Processor and Intel® Xeon® Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-55

PERFORMANCE-MONITORING EVENTS
B1H 40H UOPS_EXECUTED.PO
RT015

Counts number of Uops executed
that where issued on port 0, 1, or 5.

use cmask=1,
invert=1 to count
stall cycles

B1H 80H UOPS_EXECUTED.PO
RT234

Counts number of Uops executed
that where issued on port 2, 3, or 4.

B2H 01H OFFCORE_REQUEST
S_SQ_FULL

Counts number of cycles the SQ is
full to handle off-core requests.

B7H 01H OFF_CORE_RESPONS
E_0

see Section 18.6.1.3, “Off-core
Response Performance Monitoring
in the Processor Core”.

Requires
programming
MSR 01A6H

B8H 01H SNOOP_RESPONSE.H
IT

Counts HIT snoop response sent by
this thread in response to a snoop
request.

B8H 02H SNOOP_RESPONSE.H
ITE

Counts HIT E snoop response sent
by this thread in response to a
snoop request.

B8H 04H SNOOP_RESPONSE.H
ITM

Counts HIT M snoop response sent
by this thread in response to a
snoop request.

BBH 01H OFF_CORE_RESPONS
E_1

See Section 18.7, “Performance
Monitoring for Processors Based on
Intel® Microarchitecture Code
Name Westmere”.

Requires
programming
MSR 01A7H

C0H 00H INST_RETIRED.ANY_
P

See Table 19-1
Notes: INST_RETIRED.ANY is
counted by a designated fixed
counter. INST_RETIRED.ANY_P is
counted by a programmable counter
and is an architectural performance
event. Event is supported if
CPUID.A.EBX[1] = 0.

Counting:
Faulting
executions of
GETSEC/VM
entry/VM
Exit/MWait will
not count as
retired
instructions.

C0H 02H INST_RETIRED.X87 Counts the number of MMX
instructions retired.

Table 19-7. Non-Architectural Performance Events In the Processor Core for Intel®
Core™ i7 Processor and Intel® Xeon® Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
19-56 Vol. 3B

PERFORMANCE-MONITORING EVENTS
C0H 04H INST_RETIRED.MMX Counts the number of floating point
computational operations retired:
floating point computational
operations executed by the assist
handler and sub-operations of
complex floating point instructions
like transcendental instructions.

C2H 01H UOPS_RETIRED.ANY Counts the number of micro-ops
retired, (macro-fused=1, micro-
fused=2, others=1; maximum count
of 8 per cycle). Most instructions are
composed of one or two micro-ops.
Some instructions are decoded into
longer sequences such as repeat
instructions, floating point
transcendental instructions, and
assists.

Use cmask=1 and
invert to count
active cycles or
stalled cycles

C2H 02H UOPS_RETIRED.RETI
RE_SLOTS

Counts the number of retirement
slots used each cycle.

C2H 04H UOPS_RETIRED.MAC
RO_FUSED

Counts number of macro-fused uops
retired.

C3H 01H MACHINE_CLEARS.CY
CLES

Counts the cycles machine clear is
asserted.

C3H 02H MACHINE_CLEARS.M
EM_ORDER

Counts the number of machine
clears due to memory order
conflicts.

C3H 04H MACHINE_CLEARS.S
MC

Counts the number of times that a
program writes to a code section.
Self-modifying code causes a sever
penalty in all Intel 64 and IA-32
processors. The modified cache line
is written back to the L2 and
L3caches.

C4H 00H BR_INST_RETIRED.A
LL_BRANCHES

 Branch instructions at retirement See Table 19-1

C4H 01H BR_INST_RETIRED.C
ONDITIONAL

Counts the number of conditional
branch instructions retired.

Table 19-7. Non-Architectural Performance Events In the Processor Core for Intel®
Core™ i7 Processor and Intel® Xeon® Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-57

PERFORMANCE-MONITORING EVENTS
C4H 02H BR_INST_RETIRED.N
EAR_CALL

Counts the number of direct &
indirect near unconditional calls
retired.

C5H 00H BR_MISP_RETIRED.A
LL_BRANCHES

Mispredicted branch instructions at
retirement

See Table 19-1

C5H 02H BR_MISP_RETIRED.N
EAR_CALL

Counts mispredicted direct &
indirect near unconditional retired
calls.

C7H 01H SSEX_UOPS_RETIRE
D.PACKED_SINGLE

Counts SIMD packed single-precision
floating point Uops retired.

C7H 02H SSEX_UOPS_RETIRE
D.SCALAR_SINGLE

Counts SIMD calar single-precision
floating point Uops retired.

C7H 04H SSEX_UOPS_RETIRE
D.PACKED_DOUBLE

Counts SIMD packed double-
precision floating point Uops retired.

C7H 08H SSEX_UOPS_RETIRE
D.SCALAR_DOUBLE

Counts SIMD scalar double-precision
floating point Uops retired.

C7H 10H SSEX_UOPS_RETIRE
D.VECTOR_INTEGER

Counts 128-bit SIMD vector integer
Uops retired.

C8H 20H ITLB_MISS_RETIRED Counts the number of retired
instructions that missed the ITLB
when the instruction was fetched.

CBH 01H MEM_LOAD_RETIRED
.L1D_HIT

Counts number of retired loads that
hit the L1 data cache.

CBH 02H MEM_LOAD_RETIRED
.L2_HIT

Counts number of retired loads that
hit the L2 data cache.

CBH 04H MEM_LOAD_RETIRED
.L3_UNSHARED_HIT

Counts number of retired loads that
hit their own, unshared lines in the
L3 cache.

CBH 08H MEM_LOAD_RETIRED
.OTHER_CORE_L2_HI
T_HITM

Counts number of retired loads that
hit in a sibling core's L2 (on die core).
Since the L3 is inclusive of all cores
on the package, this is an L3 hit.
This counts both clean or modified
hits.

CBH 10H MEM_LOAD_RETIRED
.L3_MISS

Counts number of retired loads that
miss the L3 cache. The load was
satisfied by a remote socket, local
memory or an IOH.

Table 19-7. Non-Architectural Performance Events In the Processor Core for Intel®
Core™ i7 Processor and Intel® Xeon® Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
19-58 Vol. 3B

PERFORMANCE-MONITORING EVENTS
CBH 40H MEM_LOAD_RETIRED
.HIT_LFB

Counts number of retired loads that
miss the L1D and the address is
located in an allocated line fill buffer
and will soon be committed to
cache. This is counting secondary
L1D misses.

CBH 80H MEM_LOAD_RETIRED
.DTLB_MISS

Counts the number of retired loads
that missed the DTLB. The DTLB
miss is not counted if the load
operation causes a fault. This event
counts loads from cacheable
memory only. The event does not
count loads by software prefetches.
Counts both primary and secondary
misses to the TLB.

CCH 01H FP_MMX_TRANS.TO
_FP

Counts the first floating-point
instruction following any MMX
instruction. You can use this event
to estimate the penalties for the
transitions between floating-point
and MMX technology states.

CCH 02H FP_MMX_TRANS.TO
_MMX

Counts the first MMX instruction
following a floating-point
instruction. You can use this event
to estimate the penalties for the
transitions between floating-point
and MMX technology states.

CCH 03H FP_MMX_TRANS.AN
Y

Counts all transitions from floating
point to MMX instructions and from
MMX instructions to floating point
instructions. You can use this event
to estimate the penalties for the
transitions between floating-point
and MMX technology states.

D0H 01H MACRO_INSTS.DECO
DED

Counts the number of instructions
decoded, (but not necessarily
executed or retired).

Table 19-7. Non-Architectural Performance Events In the Processor Core for Intel®
Core™ i7 Processor and Intel® Xeon® Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-59

PERFORMANCE-MONITORING EVENTS
D1H 02H UOPS_DECODED.MS Counts the number of Uops decoded
by the Microcode Sequencer, MS.
The MS delivers uops when the
instruction is more than 4 uops long
or a microcode assist is occurring.

D1H 04H UOPS_DECODED.ESP
_FOLDING

Counts number of stack pointer
(ESP) instructions decoded: push ,
pop , call , ret, etc. ESP instructions
do not generate a Uop to increment
or decrement ESP. Instead, they
update an ESP_Offset register that
keeps track of the delta to the
current value of the ESP register.

D1H 08H UOPS_DECODED.ESP
_SYNC

Counts number of stack pointer
(ESP) sync operations where an ESP
instruction is corrected by adding
the ESP offset register to the
current value of the ESP register.

D2H 01H RAT_STALLS.FLAGS Counts the number of cycles during
which execution stalled due to
several reasons, one of which is a
partial flag register stall. A partial
register stall may occur when two
conditions are met: 1) an instruction
modifies some, but not all, of the
flags in the flag register and 2) the
next instruction, which depends on
flags, depends on flags that were
not modified by this instruction.

D2H 02H RAT_STALLS.REGIST
ERS

This event counts the number of
cycles instruction execution latency
became longer than the defined
latency because the instruction
used a register that was partially
written by previous instruction.

Table 19-7. Non-Architectural Performance Events In the Processor Core for Intel®
Core™ i7 Processor and Intel® Xeon® Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
19-60 Vol. 3B

PERFORMANCE-MONITORING EVENTS
D2H 04H RAT_STALLS.ROB_RE
AD_PORT

Counts the number of cycles when
ROB read port stalls occurred, which
did not allow new micro-ops to
enter the out-of-order pipeline.
Note that, at this stage in the
pipeline, additional stalls may occur
at the same cycle and prevent the
stalled micro-ops from entering the
pipe. In such a case, micro-ops retry
entering the execution pipe in the
next cycle and the ROB-read port
stall is counted again.

D2H 08H RAT_STALLS.SCOREB
OARD

Counts the cycles where we stall
due to microarchitecturally required
serialization. Microcode
scoreboarding stalls.

D2H 0FH RAT_STALLS.ANY Counts all Register Allocation Table
stall cycles due to: Cycles when
ROB read port stalls occurred, which
did not allow new micro-ops to
enter the execution pipe. Cycles
when partial register stalls occurred
Cycles when flag stalls occurred
Cycles floating-point unit (FPU)
status word stalls occurred. To
count each of these conditions
separately use the events:
RAT_STALLS.ROB_READ_PORT,
RAT_STALLS.PARTIAL,
RAT_STALLS.FLAGS, and
RAT_STALLS.FPSW.

D4H 01H SEG_RENAME_STALL
S

Counts the number of stall cycles
due to the lack of renaming
resources for the ES, DS, FS, and GS
segment registers. If a segment is
renamed but not retired and a
second update to the same
segment occurs, a stall occurs in the
front-end of the pipeline until the
renamed segment retires.

Table 19-7. Non-Architectural Performance Events In the Processor Core for Intel®
Core™ i7 Processor and Intel® Xeon® Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-61

PERFORMANCE-MONITORING EVENTS
D5H 01H ES_REG_RENAMES Counts the number of times the ES
segment register is renamed.

DBH 01H UOP_UNFUSION Counts unfusion events due to
floating point exception to a fused
uop.

E0H 01H BR_INST_DECODED Counts the number of branch
instructions decoded.

E5H 01H BPU_MISSED_CALL_
RET

Counts number of times the Branch
Prediciton Unit missed predicting a
call or return branch.

E6H 01H BACLEAR.CLEAR Counts the number of times the
front end is resteered, mainly when
the Branch Prediction Unit cannot
provide a correct prediction and this
is corrected by the Branch Address
Calculator at the front end. This can
occur if the code has many branches
such that they cannot be consumed
by the BPU. Each BACLEAR asserted
by the BAC generates
approximately an 8 cycle bubble in
the instruction fetch pipeline. The
effect on total execution time
depends on the surrounding code.

E6H 02H BACLEAR.BAD_TARG
ET

Counts number of Branch Address
Calculator clears (BACLEAR)
asserted due to conditional branch
instructions in which there was a
target hit but the direction was
wrong. Each BACLEAR asserted by
the BAC generates approximately
an 8 cycle bubble in the instruction
fetch pipeline.

E8H 01H BPU_CLEARS.EARLY Counts early (normal) Branch
Prediction Unit clears: BPU
predicted a taken branch after
incorrectly assuming that it was not
taken.

The BPU clear
leads to 2 cycle
bubble in the
Front End.

Table 19-7. Non-Architectural Performance Events In the Processor Core for Intel®
Core™ i7 Processor and Intel® Xeon® Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
19-62 Vol. 3B

PERFORMANCE-MONITORING EVENTS
E8H 02H BPU_CLEARS.LATE Counts late Branch Prediction Unit
clears due to Most Recently Used
conflicts. The PBU clear leads to a 3
cycle bubble in the Front End.

F0H 01H L2_TRANSACTIONS.L
OAD

Counts L2 load operations due to
HW prefetch or demand loads.

F0H 02H L2_TRANSACTIONS.
RFO

Counts L2 RFO operations due to
HW prefetch or demand RFOs.

F0H 04H L2_TRANSACTIONS.I
FETCH

Counts L2 instruction fetch
operations due to HW prefetch or
demand ifetch.

F0H 08H L2_TRANSACTIONS.
PREFETCH

Counts L2 prefetch operations.

F0H 10H L2_TRANSACTIONS.L
1D_WB

Counts L1D writeback operations to
the L2.

F0H 20H L2_TRANSACTIONS.
FILL

Counts L2 cache line fill operations
due to load, RFO, L1D writeback or
prefetch.

F0H 40H L2_TRANSACTIONS.
WB

Counts L2 writeback operations to
the L3.

F0H 80H L2_TRANSACTIONS.
ANY

Counts all L2 cache operations.

F1H 02H L2_LINES_IN.S_STAT
E

Counts the number of cache lines
allocated in the L2 cache in the S
(shared) state.

F1H 04H L2_LINES_IN.E_STAT
E

Counts the number of cache lines
allocated in the L2 cache in the E
(exclusive) state.

F1H 07H L2_LINES_IN.ANY Counts the number of cache lines
allocated in the L2 cache.

F2H 01H L2_LINES_OUT.DEMA
ND_CLEAN

Counts L2 clean cache lines evicted
by a demand request.

F2H 02H L2_LINES_OUT.DEMA
ND_DIRTY

Counts L2 dirty (modified) cache
lines evicted by a demand request.

F2H 04H L2_LINES_OUT.PREF
ETCH_CLEAN

Counts L2 clean cache line evicted
by a prefetch request.

Table 19-7. Non-Architectural Performance Events In the Processor Core for Intel®
Core™ i7 Processor and Intel® Xeon® Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-63

PERFORMANCE-MONITORING EVENTS
F2H 08H L2_LINES_OUT.PREF
ETCH_DIRTY

Counts L2 modified cache line
evicted by a prefetch request.

F2H 0FH L2_LINES_OUT.ANY Counts all L2 cache lines evicted for
any reason.

F4H 10H SQ_MISC.SPLIT_LOCK Counts the number of SQ lock splits
across a cache line.

F6H 01H SQ_FULL_STALL_CY
CLES

Counts cycles the Super Queue is
full. Neither of the threads on this
core will be able to access the
uncore.

F7H 01H FP_ASSIST.ALL Counts the number of floating point
operations executed that required
micro-code assist intervention.
Assists are required in the following
cases: SSE instructions, (Denormal
input when the DAZ flag is off or
Underflow result when the FTZ flag
is off): x87 instructions, (NaN or
denormal are loaded to a register or
used as input from memory, Division
by 0 or Underflow output).

F7H 02H FP_ASSIST.OUTPUT Counts number of floating point
micro-code assist when the output
value (destination register) is
invalid.

F7H 04H FP_ASSIST.INPUT Counts number of floating point
micro-code assist when the input
value (one of the source operands
to an FP instruction) is invalid.

FDH 01H SIMD_INT_64.PACKE
D_MPY

Counts number of SID integer 64 bit
packed multiply operations.

FDH 02H SIMD_INT_64.PACKE
D_SHIFT

Counts number of SID integer 64 bit
packed shift operations.

FDH 04H SIMD_INT_64.PACK Counts number of SID integer 64 bit
pack operations.

FDH 08H SIMD_INT_64.UNPAC
K

Counts number of SID integer 64 bit
unpack operations.

Table 19-7. Non-Architectural Performance Events In the Processor Core for Intel®
Core™ i7 Processor and Intel® Xeon® Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
19-64 Vol. 3B

PERFORMANCE-MONITORING EVENTS
Non-architectural Performance monitoring events that are located in the uncore sub-
system are implementation specific between different platforms using processors
based on Intel microarchitecture code name Nehalem. Processors with CPUID signa-
ture of DisplayFamily_DisplayModel 06_1AH, 06_1EH, and 06_1FH support perfor-
mance events listed in Table 19-8.

FDH 10H SIMD_INT_64.PACKE
D_LOGICAL

Counts number of SID integer 64 bit
logical operations.

FDH 20H SIMD_INT_64.PACKE
D_ARITH

Counts number of SID integer 64 bit
arithmetic operations.

FDH 40H SIMD_INT_64.SHUFF
LE_MOVE

Counts number of SID integer 64 bit
shift or move operations.

Table 19-8. Non-Architectural Performance Events In the Processor Uncore for Intel®
Core™ i7 Processor and Intel® Xeon® Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

00H 01H UNC_GQ_CYCLES_FU
LL.READ_TRACKER

Uncore cycles Global Queue read
tracker is full.

00H 02H UNC_GQ_CYCLES_FU
LL.WRITE_TRACKER

Uncore cycles Global Queue write
tracker is full.

00H 04H UNC_GQ_CYCLES_FU
LL.PEER_PROBE_TR
ACKER

Uncore cycles Global Queue peer
probe tracker is full. The peer probe
tracker queue tracks snoops from the
IOH and remote sockets.

01H 01H UNC_GQ_CYCLES_NO
T_EMPTY.READ_TRA
CKER

Uncore cycles were Global Queue read
tracker has at least one valid entry.

01H 02H UNC_GQ_CYCLES_NO
T_EMPTY.WRITE_TR
ACKER

Uncore cycles were Global Queue
write tracker has at least one valid
entry.

01H 04H UNC_GQ_CYCLES_NO
T_EMPTY.PEER_PRO
BE_TRACKER

Uncore cycles were Global Queue peer
probe tracker has at least one valid
entry. The peer probe tracker queue
tracks IOH and remote socket snoops.

Table 19-7. Non-Architectural Performance Events In the Processor Core for Intel®
Core™ i7 Processor and Intel® Xeon® Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-65

PERFORMANCE-MONITORING EVENTS
03H 01H UNC_GQ_ALLOC.REA
D_TRACKER

Counts the number of tread tracker
allocate to deallocate entries. The GQ
read tracker allocate to deallocate
occupancy count is divided by the
count to obtain the average read
tracker latency.

03H 02H UNC_GQ_ALLOC.RT_
L3_MISS

Counts the number GQ read tracker
entries for which a full cache line read
has missed the L3. The GQ read
tracker L3 miss to fill occupancy count
is divided by this count to obtain the
average cache line read L3 miss
latency. The latency represents the
time after which the L3 has
determined that the cache line has
missed. The time between a GQ read
tracker allocation and the L3
determining that the cache line has
missed is the average L3 hit latency.
The total L3 cache line read miss
latency is the hit latency + L3 miss
latency.

03H 04H UNC_GQ_ALLOC.RT_
TO_L3_RESP

Counts the number of GQ read tracker
entries that are allocated in the read
tracker queue that hit or miss the L3.
The GQ read tracker L3 hit occupancy
count is divided by this count to
obtain the average L3 hit latency.

03H 08H UNC_GQ_ALLOC.RT_
TO_RTID_ACQUIRED

Counts the number of GQ read tracker
entries that are allocated in the read
tracker, have missed in the L3 and
have not acquired a Request
Transaction ID. The GQ read tracker
L3 miss to RTID acquired occupancy
count is divided by this count to
obtain the average latency for a read
L3 miss to acquire an RTID.

Table 19-8. Non-Architectural Performance Events In the Processor Uncore for Intel®
Core™ i7 Processor and Intel® Xeon® Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
19-66 Vol. 3B

PERFORMANCE-MONITORING EVENTS
03H 10H UNC_GQ_ALLOC.WT_
TO_RTID_ACQUIRED

Counts the number of GQ write
tracker entries that are allocated in
the write tracker, have missed in the
L3 and have not acquired a Request
Transaction ID. The GQ write tracker
L3 miss to RTID occupancy count is
divided by this count to obtain the
average latency for a write L3 miss to
acquire an RTID.

03H 20H UNC_GQ_ALLOC.WRI
TE_TRACKER

Counts the number of GQ write
tracker entries that are allocated in
the write tracker queue that miss the
L3. The GQ write tracker occupancy
count is divided by the this count to
obtain the average L3 write miss
latency.

03H 40H UNC_GQ_ALLOC.PEE
R_PROBE_TRACKER

Counts the number of GQ peer probe
tracker (snoop) entries that are
allocated in the peer probe tracker
queue that miss the L3. The GQ peer
probe occupancy count is divided by
this count to obtain the average L3
peer probe miss latency.

04H 01H UNC_GQ_DATA.FROM
_QPI

Cycles Global Queue Quickpath
Interface input data port is busy
importing data from the Quickpath
Interface. Each cycle the input port
can transfer 8 or 16 bytes of data.

04H 02H UNC_GQ_DATA.FROM
_QMC

Cycles Global Queue Quickpath
Memory Interface input data port is
busy importing data from the
Quickpath Memory Interface. Each
cycle the input port can transfer 8 or
16 bytes of data.

04H 04H UNC_GQ_DATA.FROM
_L3

Cycles GQ L3 input data port is busy
importing data from the Last Level
Cache. Each cycle the input port can
transfer 32 bytes of data.

Table 19-8. Non-Architectural Performance Events In the Processor Uncore for Intel®
Core™ i7 Processor and Intel® Xeon® Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-67

PERFORMANCE-MONITORING EVENTS
04H 08H UNC_GQ_DATA.FROM
_CORES_02

Cycles GQ Core 0 and 2 input data
port is busy importing data from
processor cores 0 and 2. Each cycle
the input port can transfer 32 bytes
of data.

04H 10H UNC_GQ_DATA.FROM
_CORES_13

Cycles GQ Core 1 and 3 input data
port is busy importing data from
processor cores 1 and 3. Each cycle
the input port can transfer 32 bytes
of data.

05H 01H UNC_GQ_DATA.TO_Q
PI_QMC

Cycles GQ QPI and QMC output data
port is busy sending data to the
Quickpath Interface or Quickpath
Memory Interface. Each cycle the
output port can transfer 32 bytes of
data.

05H 02H UNC_GQ_DATA.TO_L
3

Cycles GQ L3 output data port is busy
sending data to the Last Level Cache.
Each cycle the output port can
transfer 32 bytes of data.

05H 04H UNC_GQ_DATA.TO_C
ORES

Cycles GQ Core output data port is
busy sending data to the Cores. Each
cycle the output port can transfer 32
bytes of data.

06H 01H UNC_SNP_RESP_TO_
LOCAL_HOME.I_STAT
E

Number of snoop responses to the
local home that L3 does not have the
referenced cache line.

06H 02H UNC_SNP_RESP_TO_
LOCAL_HOME.S_STA
TE

Number of snoop responses to the
local home that L3 has the referenced
line cached in the S state.

06H 04H UNC_SNP_RESP_TO_
LOCAL_HOME.FWD_S
_STATE

Number of responses to code or data
read snoops to the local home that
the L3 has the referenced cache line
in the E state. The L3 cache line state
is changed to the S state and the line
is forwarded to the local home in the
S state.

Table 19-8. Non-Architectural Performance Events In the Processor Uncore for Intel®
Core™ i7 Processor and Intel® Xeon® Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
19-68 Vol. 3B

PERFORMANCE-MONITORING EVENTS
06H 08H UNC_SNP_RESP_TO_
LOCAL_HOME.FWD_I
_STATE

Number of responses to read
invalidate snoops to the local home
that the L3 has the referenced cache
line in the M state. The L3 cache line
state is invalidated and the line is
forwarded to the local home in the M
state.

06H 10H UNC_SNP_RESP_TO_
LOCAL_HOME.CONFLI
CT

Number of conflict snoop responses
sent to the local home.

06H 20H UNC_SNP_RESP_TO_
LOCAL_HOME.WB

Number of responses to code or data
read snoops to the local home that
the L3 has the referenced line cached
in the M state.

07H 01H UNC_SNP_RESP_TO_
REMOTE_HOME.I_ST
ATE

Number of snoop responses to a
remote home that L3 does not have
the referenced cache line.

07H 02H UNC_SNP_RESP_TO_
REMOTE_HOME.S_ST
ATE

Number of snoop responses to a
remote home that L3 has the
referenced line cached in the S state.

07H 04H UNC_SNP_RESP_TO_
REMOTE_HOME.FWD
_S_STATE

Number of responses to code or data
read snoops to a remote home that
the L3 has the referenced cache line
in the E state. The L3 cache line state
is changed to the S state and the line
is forwarded to the remote home in
the S state.

07H 08H UNC_SNP_RESP_TO_
REMOTE_HOME.FWD
_I_STATE

Number of responses to read
invalidate snoops to a remote home
that the L3 has the referenced cache
line in the M state. The L3 cache line
state is invalidated and the line is
forwarded to the remote home in the
M state.

07H 10H UNC_SNP_RESP_TO_
REMOTE_HOME.CON
FLICT

Number of conflict snoop responses
sent to the local home.

Table 19-8. Non-Architectural Performance Events In the Processor Uncore for Intel®
Core™ i7 Processor and Intel® Xeon® Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-69

PERFORMANCE-MONITORING EVENTS
07H 20H UNC_SNP_RESP_TO_
REMOTE_HOME.WB

Number of responses to code or data
read snoops to a remote home that
the L3 has the referenced line cached
in the M state.

07H 24H UNC_SNP_RESP_TO_
REMOTE_HOME.HITM

Number of HITM snoop responses to a
remote home

08H 01H UNC_L3_HITS.READ Number of code read, data read and
RFO requests that hit in the L3

08H 02H UNC_L3_HITS.WRITE Number of writeback requests that
hit in the L3. Writebacks from the
cores will always result in L3 hits due
to the inclusive property of the L3.

08H 04H UNC_L3_HITS.PROBE Number of snoops from IOH or remote
sockets that hit in the L3.

08H 03H UNC_L3_HITS.ANY Number of reads and writes that hit
the L3.

09H 01H UNC_L3_MISS.READ Number of code read, data read and
RFO requests that miss the L3.

09H 02H UNC_L3_MISS.WRITE Number of writeback requests that
miss the L3. Should always be zero as
writebacks from the cores will always
result in L3 hits due to the inclusive
property of the L3.

09H 04H UNC_L3_MISS.PROBE Number of snoops from IOH or remote
sockets that miss the L3.

09H 03H UNC_L3_MISS.ANY Number of reads and writes that miss
the L3.

0AH 01H UNC_L3_LINES_IN.M
_STATE

Counts the number of L3 lines
allocated in M state. The only time a
cache line is allocated in the M state is
when the line was forwarded in M
state is forwarded due to a Snoop
Read Invalidate Own request.

0AH 02H UNC_L3_LINES_IN.E_
STATE

Counts the number of L3 lines
allocated in E state.

0AH 04H UNC_L3_LINES_IN.S_
STATE

Counts the number of L3 lines
allocated in S state.

Table 19-8. Non-Architectural Performance Events In the Processor Uncore for Intel®
Core™ i7 Processor and Intel® Xeon® Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
19-70 Vol. 3B

PERFORMANCE-MONITORING EVENTS
0AH 08H UNC_L3_LINES_IN.F_
STATE

Counts the number of L3 lines
allocated in F state.

0AH 0FH UNC_L3_LINES_IN.A
NY

Counts the number of L3 lines
allocated in any state.

0BH 01H UNC_L3_LINES_OUT.
M_STATE

Counts the number of L3 lines
victimized that were in the M state.
When the victim cache line is in M
state, the line is written to its home
cache agent which can be either local
or remote.

0BH 02H UNC_L3_LINES_OUT.
E_STATE

Counts the number of L3 lines
victimized that were in the E state.

0BH 04H UNC_L3_LINES_OUT.
S_STATE

Counts the number of L3 lines
victimized that were in the S state.

0BH 08H UNC_L3_LINES_OUT.
I_STATE

Counts the number of L3 lines
victimized that were in the I state.

0BH 10H UNC_L3_LINES_OUT.
F_STATE

Counts the number of L3 lines
victimized that were in the F state.

0BH 1FH UNC_L3_LINES_OUT.
ANY

Counts the number of L3 lines
victimized in any state.

20H 01H UNC_QHL_REQUEST
S.IOH_READS

Counts number of Quickpath Home
Logic read requests from the IOH.

20H 02H UNC_QHL_REQUEST
S.IOH_WRITES

Counts number of Quickpath Home
Logic write requests from the IOH.

20H 04H UNC_QHL_REQUEST
S.REMOTE_READS

Counts number of Quickpath Home
Logic read requests from a remote
socket.

20H 08H UNC_QHL_REQUEST
S.REMOTE_WRITES

Counts number of Quickpath Home
Logic write requests from a remote
socket.

20H 10H UNC_QHL_REQUEST
S.LOCAL_READS

Counts number of Quickpath Home
Logic read requests from the local
socket.

20H 20H UNC_QHL_REQUEST
S.LOCAL_WRITES

Counts number of Quickpath Home
Logic write requests from the local
socket.

Table 19-8. Non-Architectural Performance Events In the Processor Uncore for Intel®
Core™ i7 Processor and Intel® Xeon® Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-71

PERFORMANCE-MONITORING EVENTS
21H 01H UNC_QHL_CYCLES_F
ULL.IOH

Counts uclk cycles all entries in the
Quickpath Home Logic IOH are full.

21H 02H UNC_QHL_CYCLES_F
ULL.REMOTE

Counts uclk cycles all entries in the
Quickpath Home Logic remote tracker
are full.

21H 04H UNC_QHL_CYCLES_F
ULL.LOCAL

Counts uclk cycles all entries in the
Quickpath Home Logic local tracker
are full.

22H 01H UNC_QHL_CYCLES_N
OT_EMPTY.IOH

Counts uclk cycles all entries in the
Quickpath Home Logic IOH is busy.

22H 02H UNC_QHL_CYCLES_N
OT_EMPTY.REMOTE

Counts uclk cycles all entries in the
Quickpath Home Logic remote tracker
is busy.

22H 04H UNC_QHL_CYCLES_N
OT_EMPTY.LOCAL

Counts uclk cycles all entries in the
Quickpath Home Logic local tracker is
busy.

23H 01H UNC_QHL_OCCUPAN
CY.IOH

QHL IOH tracker allocate to deallocate
read occupancy.

23H 02H UNC_QHL_OCCUPAN
CY.REMOTE

QHL remote tracker allocate to
deallocate read occupancy.

23H 04H UNC_QHL_OCCUPAN
CY.LOCAL

QHL local tracker allocate to
deallocate read occupancy.

24H 02H UNC_QHL_ADDRESS
_CONFLICTS.2WAY

Counts number of QHL Active Address
Table (AAT) entries that saw a max of
2 conflicts. The AAT is a structure that
tracks requests that are in conflict.
The requests themselves are in the
home tracker entries. The count is
reported when an AAT entry
deallocates.

24H 04H UNC_QHL_ADDRESS
_CONFLICTS.3WAY

Counts number of QHL Active Address
Table (AAT) entries that saw a max of
3 conflicts. The AAT is a structure that
tracks requests that are in conflict.
The requests themselves are in the
home tracker entries. The count is
reported when an AAT entry
deallocates.

Table 19-8. Non-Architectural Performance Events In the Processor Uncore for Intel®
Core™ i7 Processor and Intel® Xeon® Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
19-72 Vol. 3B

PERFORMANCE-MONITORING EVENTS
25H 01H UNC_QHL_CONFLICT
_CYCLES.IOH

Counts cycles the Quickpath Home
Logic IOH Tracker contains two or
more requests with an address
conflict. A max of 3 requests can be in
conflict.

25H 02H UNC_QHL_CONFLICT
_CYCLES.REMOTE

Counts cycles the Quickpath Home
Logic Remote Tracker contains two or
more requests with an address
conflict. A max of 3 requests can be in
conflict.

25H 04H UNC_QHL_CONFLICT
_CYCLES.LOCAL

Counts cycles the Quickpath Home
Logic Local Tracker contains two or
more requests with an address
conflict. A max of 3 requests can be
in conflict.

26H 01H UNC_QHL_TO_QMC_
BYPASS

Counts number or requests to the
Quickpath Memory Controller that
bypass the Quickpath Home Logic. All
local accesses can be bypassed. For
remote requests, only read requests
can be bypassed.

27H 01H UNC_QMC_NORMAL_
FULL.READ.CH0

Uncore cycles all the entries in the
DRAM channel 0 medium or low
priority queue are occupied with read
requests.

27H 02H UNC_QMC_NORMAL_
FULL.READ.CH1

Uncore cycles all the entries in the
DRAM channel 1 medium or low
priority queue are occupied with read
requests.

27H 04H UNC_QMC_NORMAL_
FULL.READ.CH2

Uncore cycles all the entries in the
DRAM channel 2 medium or low
priority queue are occupied with read
requests.

27H 08H UNC_QMC_NORMAL_
FULL.WRITE.CH0

Uncore cycles all the entries in the
DRAM channel 0 medium or low
priority queue are occupied with write
requests.

Table 19-8. Non-Architectural Performance Events In the Processor Uncore for Intel®
Core™ i7 Processor and Intel® Xeon® Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-73

PERFORMANCE-MONITORING EVENTS
27H 10H UNC_QMC_NORMAL_
FULL.WRITE.CH1

Counts cycles all the entries in the
DRAM channel 1 medium or low
priority queue are occupied with write
requests.

27H 20H UNC_QMC_NORMAL_
FULL.WRITE.CH2

Uncore cycles all the entries in the
DRAM channel 2 medium or low
priority queue are occupied with write
requests.

28H 01H UNC_QMC_ISOC_FUL
L.READ.CH0

Counts cycles all the entries in the
DRAM channel 0 high priority queue
are occupied with isochronous read
requests.

28H 02H UNC_QMC_ISOC_FUL
L.READ.CH1

Counts cycles all the entries in the
DRAM channel 1high priority queue
are occupied with isochronous read
requests.

28H 04H UNC_QMC_ISOC_FUL
L.READ.CH2

Counts cycles all the entries in the
DRAM channel 2 high priority queue
are occupied with isochronous read
requests.

28H 08H UNC_QMC_ISOC_FUL
L.WRITE.CH0

Counts cycles all the entries in the
DRAM channel 0 high priority queue
are occupied with isochronous write
requests.

28H 10H UNC_QMC_ISOC_FUL
L.WRITE.CH1

Counts cycles all the entries in the
DRAM channel 1 high priority queue
are occupied with isochronous write
requests.

28H 20H UNC_QMC_ISOC_FUL
L.WRITE.CH2

Counts cycles all the entries in the
DRAM channel 2 high priority queue
are occupied with isochronous write
requests.

29H 01H UNC_QMC_BUSY.REA
D.CH0

Counts cycles where Quickpath
Memory Controller has at least 1
outstanding read request to DRAM
channel 0.

Table 19-8. Non-Architectural Performance Events In the Processor Uncore for Intel®
Core™ i7 Processor and Intel® Xeon® Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
19-74 Vol. 3B

PERFORMANCE-MONITORING EVENTS
29H 02H UNC_QMC_BUSY.REA
D.CH1

Counts cycles where Quickpath
Memory Controller has at least 1
outstanding read request to DRAM
channel 1.

29H 04H UNC_QMC_BUSY.REA
D.CH2

Counts cycles where Quickpath
Memory Controller has at least 1
outstanding read request to DRAM
channel 2.

29H 08H UNC_QMC_BUSY.WRI
TE.CH0

Counts cycles where Quickpath
Memory Controller has at least 1
outstanding write request to DRAM
channel 0.

29H 10H UNC_QMC_BUSY.WRI
TE.CH1

Counts cycles where Quickpath
Memory Controller has at least 1
outstanding write request to DRAM
channel 1.

29H 20H UNC_QMC_BUSY.WRI
TE.CH2

Counts cycles where Quickpath
Memory Controller has at least 1
outstanding write request to DRAM
channel 2.

2AH 01H UNC_QMC_OCCUPAN
CY.CH0

IMC channel 0 normal read request
occupancy.

2AH 02H UNC_QMC_OCCUPAN
CY.CH1

IMC channel 1 normal read request
occupancy.

2AH 04H UNC_QMC_OCCUPAN
CY.CH2

IMC channel 2 normal read request
occupancy.

2BH 01H UNC_QMC_ISSOC_OC
CUPANCY.CH0

IMC channel 0 issoc read request
occupancy.

2BH 02H UNC_QMC_ISSOC_OC
CUPANCY.CH1

IMC channel 1 issoc read request
occupancy.

2BH 04H UNC_QMC_ISSOC_OC
CUPANCY.CH2

IMC channel 2 issoc read request
occupancy.

2BH 07H UNC_QMC_ISSOC_RE
ADS.ANY

IMC issoc read request occupancy.

Table 19-8. Non-Architectural Performance Events In the Processor Uncore for Intel®
Core™ i7 Processor and Intel® Xeon® Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-75

PERFORMANCE-MONITORING EVENTS
2CH 01H UNC_QMC_NORMAL_
READS.CH0

Counts the number of Quickpath
Memory Controller channel 0 medium
and low priority read requests. The
QMC channel 0 normal read
occupancy divided by this count
provides the average QMC channel 0
read latency.

2CH 02H UNC_QMC_NORMAL_
READS.CH1

Counts the number of Quickpath
Memory Controller channel 1 medium
and low priority read requests. The
QMC channel 1 normal read
occupancy divided by this count
provides the average QMC channel 1
read latency.

2CH 04H UNC_QMC_NORMAL_
READS.CH2

Counts the number of Quickpath
Memory Controller channel 2 medium
and low priority read requests. The
QMC channel 2 normal read
occupancy divided by this count
provides the average QMC channel 2
read latency.

2CH 07H UNC_QMC_NORMAL_
READS.ANY

Counts the number of Quickpath
Memory Controller medium and low
priority read requests. The QMC
normal read occupancy divided by this
count provides the average QMC read
latency.

2DH 01H UNC_QMC_HIGH_PRI
ORITY_READS.CH0

Counts the number of Quickpath
Memory Controller channel 0 high
priority isochronous read requests.

2DH 02H UNC_QMC_HIGH_PRI
ORITY_READS.CH1

Counts the number of Quickpath
Memory Controller channel 1 high
priority isochronous read requests.

2DH 04H UNC_QMC_HIGH_PRI
ORITY_READS.CH2

Counts the number of Quickpath
Memory Controller channel 2 high
priority isochronous read requests.

2DH 07H UNC_QMC_HIGH_PRI
ORITY_READS.ANY

Counts the number of Quickpath
Memory Controller high priority
isochronous read requests.

Table 19-8. Non-Architectural Performance Events In the Processor Uncore for Intel®
Core™ i7 Processor and Intel® Xeon® Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
19-76 Vol. 3B

PERFORMANCE-MONITORING EVENTS
2EH 01H UNC_QMC_CRITICAL_
PRIORITY_READS.CH
0

Counts the number of Quickpath
Memory Controller channel 0 critical
priority isochronous read requests.

2EH 02H UNC_QMC_CRITICAL_
PRIORITY_READS.CH
1

Counts the number of Quickpath
Memory Controller channel 1 critical
priority isochronous read requests.

2EH 04H UNC_QMC_CRITICAL_
PRIORITY_READS.CH
2

Counts the number of Quickpath
Memory Controller channel 2 critical
priority isochronous read requests.

2EH 07H UNC_QMC_CRITICAL_
PRIORITY_READS.AN
Y

Counts the number of Quickpath
Memory Controller critical priority
isochronous read requests.

2FH 01H UNC_QMC_WRITES.F
ULL.CH0

Counts number of full cache line
writes to DRAM channel 0.

2FH 02H UNC_QMC_WRITES.F
ULL.CH1

Counts number of full cache line
writes to DRAM channel 1.

2FH 04H UNC_QMC_WRITES.F
ULL.CH2

Counts number of full cache line
writes to DRAM channel 2.

2FH 07H UNC_QMC_WRITES.F
ULL.ANY

Counts number of full cache line
writes to DRAM.

2FH 08H UNC_QMC_WRITES.P
ARTIAL.CH0

Counts number of partial cache line
writes to DRAM channel 0.

2FH 10H UNC_QMC_WRITES.P
ARTIAL.CH1

Counts number of partial cache line
writes to DRAM channel 1.

2FH 20H UNC_QMC_WRITES.P
ARTIAL.CH2

Counts number of partial cache line
writes to DRAM channel 2.

2FH 38H UNC_QMC_WRITES.P
ARTIAL.ANY

Counts number of partial cache line
writes to DRAM.

30H 01H UNC_QMC_CANCEL.C
H0

Counts number of DRAM channel 0
cancel requests.

30H 02H UNC_QMC_CANCEL.C
H1

Counts number of DRAM channel 1
cancel requests.

30H 04H UNC_QMC_CANCEL.C
H2

Counts number of DRAM channel 2
cancel requests.

30H 07H UNC_QMC_CANCEL.A
NY

Counts number of DRAM cancel
requests.

Table 19-8. Non-Architectural Performance Events In the Processor Uncore for Intel®
Core™ i7 Processor and Intel® Xeon® Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-77

PERFORMANCE-MONITORING EVENTS
31H 01H UNC_QMC_PRIORITY
_UPDATES.CH0

Counts number of DRAM channel 0
priority updates. A priority update
occurs when an ISOC high or critical
request is received by the QHL and
there is a matching request with
normal priority that has already been
issued to the QMC. In this instance,
the QHL will send a priority update to
QMC to expedite the request.

31H 02H UNC_QMC_PRIORITY
_UPDATES.CH1

Counts number of DRAM channel 1
priority updates. A priority update
occurs when an ISOC high or critical
request is received by the QHL and
there is a matching request with
normal priority that has already been
issued to the QMC. In this instance,
the QHL will send a priority update to
QMC to expedite the request.

31H 04H UNC_QMC_PRIORITY
_UPDATES.CH2

Counts number of DRAM channel 2
priority updates. A priority update
occurs when an ISOC high or critical
request is received by the QHL and
there is a matching request with
normal priority that has already been
issued to the QMC. In this instance,
the QHL will send a priority update to
QMC to expedite the request.

31H 07H UNC_QMC_PRIORITY
_UPDATES.ANY

Counts number of DRAM priority
updates. A priority update occurs
when an ISOC high or critical request
is received by the QHL and there is a
matching request with normal priority
that has already been issued to the
QMC. In this instance, the QHL will
send a priority update to QMC to
expedite the request.

33H 04H UNC_QHL_FRC_ACK_
CNFLTS.LOCAL

Counts number of Force Acknowledge
Conflict messages sent by the
Quickpath Home Logic to the local
home.

Table 19-8. Non-Architectural Performance Events In the Processor Uncore for Intel®
Core™ i7 Processor and Intel® Xeon® Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
19-78 Vol. 3B

PERFORMANCE-MONITORING EVENTS
40H 01H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.HO
ME.LINK_0

Counts cycles the Quickpath outbound
link 0 HOME virtual channel is stalled
due to lack of a VNA and VN0 credit.
Note that this event does not filter
out when a flit would not have been
selected for arbitration because
another virtual channel is getting
arbitrated.

40H 02H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.SNO
OP.LINK_0

Counts cycles the Quickpath outbound
link 0 SNOOP virtual channel is stalled
due to lack of a VNA and VN0 credit.
Note that this event does not filter
out when a flit would not have been
selected for arbitration because
another virtual channel is getting
arbitrated.

40H 04H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.NDR
.LINK_0

Counts cycles the Quickpath outbound
link 0 non-data response virtual
channel is stalled due to lack of a VNA
and VN0 credit. Note that this event
does not filter out when a flit would
not have been selected for arbitration
because another virtual channel is
getting arbitrated.

40H 08H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.HO
ME.LINK_1

Counts cycles the Quickpath outbound
link 1 HOME virtual channel is stalled
due to lack of a VNA and VN0 credit.
Note that this event does not filter
out when a flit would not have been
selected for arbitration because
another virtual channel is getting
arbitrated.

40H 10H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.SNO
OP.LINK_1

Counts cycles the Quickpath outbound
link 1 SNOOP virtual channel is stalled
due to lack of a VNA and VN0 credit.
Note that this event does not filter
out when a flit would not have been
selected for arbitration because
another virtual channel is getting
arbitrated.

Table 19-8. Non-Architectural Performance Events In the Processor Uncore for Intel®
Core™ i7 Processor and Intel® Xeon® Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-79

PERFORMANCE-MONITORING EVENTS
40H 20H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.NDR
.LINK_1

Counts cycles the Quickpath outbound
link 1 non-data response virtual
channel is stalled due to lack of a VNA
and VN0 credit. Note that this event
does not filter out when a flit would
not have been selected for arbitration
because another virtual channel is
getting arbitrated.

40H 07H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.LIN
K_0

Counts cycles the Quickpath outbound
link 0 virtual channels are stalled due
to lack of a VNA and VN0 credit. Note
that this event does not filter out
when a flit would not have been
selected for arbitration because
another virtual channel is getting
arbitrated.

40H 38H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.LIN
K_1

Counts cycles the Quickpath outbound
link 1 virtual channels are stalled due
to lack of a VNA and VN0 credit. Note
that this event does not filter out
when a flit would not have been
selected for arbitration because
another virtual channel is getting
arbitrated.

41H 01H UNC_QPI_TX_STALL
ED_MULTI_FLIT.DRS.
LINK_0

Counts cycles the Quickpath outbound
link 0 Data ResponSe virtual channel
is stalled due to lack of VNA and VN0
credits. Note that this event does not
filter out when a flit would not have
been selected for arbitration because
another virtual channel is getting
arbitrated.

41H 02H UNC_QPI_TX_STALL
ED_MULTI_FLIT.NCB.
LINK_0

Counts cycles the Quickpath outbound
link 0 Non-Coherent Bypass virtual
channel is stalled due to lack of VNA
and VN0 credits. Note that this event
does not filter out when a flit would
not have been selected for arbitration
because another virtual channel is
getting arbitrated.

Table 19-8. Non-Architectural Performance Events In the Processor Uncore for Intel®
Core™ i7 Processor and Intel® Xeon® Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
19-80 Vol. 3B

PERFORMANCE-MONITORING EVENTS
41H 04H UNC_QPI_TX_STALL
ED_MULTI_FLIT.NCS.
LINK_0

Counts cycles the Quickpath outbound
link 0 Non-Coherent Standard virtual
channel is stalled due to lack of VNA
and VN0 credits. Note that this event
does not filter out when a flit would
not have been selected for arbitration
because another virtual channel is
getting arbitrated.

41H 08H UNC_QPI_TX_STALL
ED_MULTI_FLIT.DRS.
LINK_1

Counts cycles the Quickpath outbound
link 1 Data ResponSe virtual channel
is stalled due to lack of VNA and VN0
credits. Note that this event does not
filter out when a flit would not have
been selected for arbitration because
another virtual channel is getting
arbitrated.

41H 10H UNC_QPI_TX_STALL
ED_MULTI_FLIT.NCB.
LINK_1

Counts cycles the Quickpath outbound
link 1 Non-Coherent Bypass virtual
channel is stalled due to lack of VNA
and VN0 credits. Note that this event
does not filter out when a flit would
not have been selected for arbitration
because another virtual channel is
getting arbitrated.

41H 20H UNC_QPI_TX_STALL
ED_MULTI_FLIT.NCS.
LINK_1

Counts cycles the Quickpath outbound
link 1 Non-Coherent Standard virtual
channel is stalled due to lack of VNA
and VN0 credits. Note that this event
does not filter out when a flit would
not have been selected for arbitration
because another virtual channel is
getting arbitrated.

41H 07H UNC_QPI_TX_STALL
ED_MULTI_FLIT.LINK
_0

Counts cycles the Quickpath outbound
link 0 virtual channels are stalled due
to lack of VNA and VN0 credits. Note
that this event does not filter out
when a flit would not have been
selected for arbitration because
another virtual channel is getting
arbitrated.

Table 19-8. Non-Architectural Performance Events In the Processor Uncore for Intel®
Core™ i7 Processor and Intel® Xeon® Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-81

PERFORMANCE-MONITORING EVENTS
41H 38H UNC_QPI_TX_STALL
ED_MULTI_FLIT.LINK
_1

Counts cycles the Quickpath outbound
link 1 virtual channels are stalled due
to lack of VNA and VN0 credits. Note
that this event does not filter out
when a flit would not have been
selected for arbitration because
another virtual channel is getting
arbitrated.

42H 02H UNC_QPI_TX_HEADE
R.BUSY.LINK_0

Number of cycles that the header
buffer in the Quickpath Interface
outbound link 0 is busy.

42H 08H UNC_QPI_TX_HEADE
R.BUSY.LINK_1

Number of cycles that the header
buffer in the Quickpath Interface
outbound link 1 is busy.

43H 01H UNC_QPI_RX_NO_PP
T_CREDIT.STALLS.LIN
K_0

Number of cycles that snoop packets
incoming to the Quickpath Interface
link 0 are stalled and not sent to the
GQ because the GQ Peer Probe
Tracker (PPT) does not have any
available entries.

43H 02H UNC_QPI_RX_NO_PP
T_CREDIT.STALLS.LIN
K_1

Number of cycles that snoop packets
incoming to the Quickpath Interface
link 1 are stalled and not sent to the
GQ because the GQ Peer Probe
Tracker (PPT) does not have any
available entries.

60H 01H UNC_DRAM_OPEN.C
H0

Counts number of DRAM Channel 0
open commands issued either for read
or write. To read or write data, the
referenced DRAM page must first be
opened.

60H 02H UNC_DRAM_OPEN.C
H1

Counts number of DRAM Channel 1
open commands issued either for read
or write. To read or write data, the
referenced DRAM page must first be
opened.

Table 19-8. Non-Architectural Performance Events In the Processor Uncore for Intel®
Core™ i7 Processor and Intel® Xeon® Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
19-82 Vol. 3B

PERFORMANCE-MONITORING EVENTS
60H 04H UNC_DRAM_OPEN.C
H2

Counts number of DRAM Channel 2
open commands issued either for read
or write. To read or write data, the
referenced DRAM page must first be
opened.

61H 01H UNC_DRAM_PAGE_C
LOSE.CH0

DRAM channel 0 command issued to
CLOSE a page due to page idle timer
expiration. Closing a page is done by
issuing a precharge.

61H 02H UNC_DRAM_PAGE_C
LOSE.CH1

DRAM channel 1 command issued to
CLOSE a page due to page idle timer
expiration. Closing a page is done by
issuing a precharge.

61H 04H UNC_DRAM_PAGE_C
LOSE.CH2

DRAM channel 2 command issued to
CLOSE a page due to page idle timer
expiration. Closing a page is done by
issuing a precharge.

62H 01H UNC_DRAM_PAGE_M
ISS.CH0

Counts the number of precharges
(PRE) that were issued to DRAM
channel 0 because there was a page
miss. A page miss refers to a situation
in which a page is currently open and
another page from the same bank
needs to be opened. The new page
experiences a page miss. Closing of
the old page is done by issuing a
precharge.

62H 02H UNC_DRAM_PAGE_M
ISS.CH1

Counts the number of precharges
(PRE) that were issued to DRAM
channel 1 because there was a page
miss. A page miss refers to a situation
in which a page is currently open and
another page from the same bank
needs to be opened. The new page
experiences a page miss. Closing of
the old page is done by issuing a
precharge.

Table 19-8. Non-Architectural Performance Events In the Processor Uncore for Intel®
Core™ i7 Processor and Intel® Xeon® Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-83

PERFORMANCE-MONITORING EVENTS
62H 04H UNC_DRAM_PAGE_M
ISS.CH2

Counts the number of precharges
(PRE) that were issued to DRAM
channel 2 because there was a page
miss. A page miss refers to a situation
in which a page is currently open and
another page from the same bank
needs to be opened. The new page
experiences a page miss. Closing of
the old page is done by issuing a
precharge.

63H 01H UNC_DRAM_READ_C
AS.CH0

Counts the number of times a read
CAS command was issued on DRAM
channel 0.

63H 02H UNC_DRAM_READ_C
AS.AUTOPRE_CH0

Counts the number of times a read
CAS command was issued on DRAM
channel 0 where the command issued
used the auto-precharge (auto page
close) mode.

63H 04H UNC_DRAM_READ_C
AS.CH1

Counts the number of times a read
CAS command was issued on DRAM
channel 1.

63H 08H UNC_DRAM_READ_C
AS.AUTOPRE_CH1

Counts the number of times a read
CAS command was issued on DRAM
channel 1 where the command issued
used the auto-precharge (auto page
close) mode.

63H 10H UNC_DRAM_READ_C
AS.CH2

Counts the number of times a read
CAS command was issued on DRAM
channel 2.

63H 20H UNC_DRAM_READ_C
AS.AUTOPRE_CH2

Counts the number of times a read
CAS command was issued on DRAM
channel 2 where the command issued
used the auto-precharge (auto page
close) mode.

64H 01H UNC_DRAM_WRITE_
CAS.CH0

Counts the number of times a write
CAS command was issued on DRAM
channel 0.

Table 19-8. Non-Architectural Performance Events In the Processor Uncore for Intel®
Core™ i7 Processor and Intel® Xeon® Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
19-84 Vol. 3B

PERFORMANCE-MONITORING EVENTS
64H 02H UNC_DRAM_WRITE_
CAS.AUTOPRE_CH0

Counts the number of times a write
CAS command was issued on DRAM
channel 0 where the command issued
used the auto-precharge (auto page
close) mode.

64H 04H UNC_DRAM_WRITE_
CAS.CH1

Counts the number of times a write
CAS command was issued on DRAM
channel 1.

64H 08H UNC_DRAM_WRITE_
CAS.AUTOPRE_CH1

Counts the number of times a write
CAS command was issued on DRAM
channel 1 where the command issued
used the auto-precharge (auto page
close) mode.

64H 10H UNC_DRAM_WRITE_
CAS.CH2

Counts the number of times a write
CAS command was issued on DRAM
channel 2.

64H 20H UNC_DRAM_WRITE_
CAS.AUTOPRE_CH2

Counts the number of times a write
CAS command was issued on DRAM
channel 2 where the command issued
used the auto-precharge (auto page
close) mode.

65H 01H UNC_DRAM_REFRES
H.CH0

Counts number of DRAM channel 0
refresh commands. DRAM loses data
content over time. In order to keep
correct data content, the data values
have to be refreshed periodically.

65H 02H UNC_DRAM_REFRES
H.CH1

Counts number of DRAM channel 1
refresh commands. DRAM loses data
content over time. In order to keep
correct data content, the data values
have to be refreshed periodically.

65H 04H UNC_DRAM_REFRES
H.CH2

Counts number of DRAM channel 2
refresh commands. DRAM loses data
content over time. In order to keep
correct data content, the data values
have to be refreshed periodically.

Table 19-8. Non-Architectural Performance Events In the Processor Uncore for Intel®
Core™ i7 Processor and Intel® Xeon® Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-85

PERFORMANCE-MONITORING EVENTS
Intel Xeon processors with CPUID signature of DisplayFamily_DisplayModel 06_2EH
have a distinct uncore sub-system that is significantly different from the uncore
found in processors with CPUID signature 06_1AH, 06_1EH, and 06_1FH. Non-archi-
tectural Performance monitoring events for its uncore will be available in future docu-
mentation.

19.5 PERFORMANCE MONITORING EVENTS FOR
PROCESSORS BASED ON
INTEL® MICROARCHITECTURE CODE NAME
WESTMERE

Intel 64 processors based on Intel® microarchitecture code name Westmere support
the architectural and non-architectural performance-monitoring events listed in
Table 19-1 and Table 19-9. Table 19-9 applies to processors with CPUID signature of
DisplayFamily_DisplayModel encoding with the following values: 06_25H, 06_2CH.
In addition, these processors (CPUID signature of DisplayFamily_DisplayModel
06_25H, 06_2CH) also support the following non-architectural, product-specific
uncore performance-monitoring events listed in Table 19-10. Fixed counters support
the architecture events defined in Table 19-12.

66H 01H UNC_DRAM_PRE_AL
L.CH0

Counts number of DRAM Channel 0
precharge-all (PREALL) commands
that close all open pages in a rank.
PREALL is issued when the DRAM
needs to be refreshed or needs to go
into a power down mode.

66H 02H UNC_DRAM_PRE_AL
L.CH1

Counts number of DRAM Channel 1
precharge-all (PREALL) commands
that close all open pages in a rank.
PREALL is issued when the DRAM
needs to be refreshed or needs to go
into a power down mode.

66H 04H UNC_DRAM_PRE_AL
L.CH2

Counts number of DRAM Channel 2
precharge-all (PREALL) commands
that close all open pages in a rank.
PREALL is issued when the DRAM
needs to be refreshed or needs to go
into a power down mode.

Table 19-8. Non-Architectural Performance Events In the Processor Uncore for Intel®
Core™ i7 Processor and Intel® Xeon® Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
19-86 Vol. 3B

PERFORMANCE-MONITORING EVENTS
Table 19-9. Non-Architectural Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

03H 02H LOAD_BLOCK.OVERL
AP_STORE

Loads that partially overlap an
earlier store.

04H 07H SB_DRAIN.ANY All Store buffer stall cycles.

05H 02H MISALIGN_MEMORY.S
TORE

All store referenced with misaligned
address.

06H 04H STORE_BLOCKS.AT_
RET

Counts number of loads delayed
with at-Retirement block code. The
following loads need to be executed
at retirement and wait for all senior
stores on the same thread to be
drained: load splitting across 4K
boundary (page split), load accessing
uncacheable (UC or USWC) memory,
load lock, and load with page table in
UC or USWC memory region.

06H 08H STORE_BLOCKS.L1D
_BLOCK

Cacheable loads delayed with L1D
block code.

07H 01H PARTIAL_ADDRESS_
ALIAS

Counts false dependency due to
partial address aliasing.

08H 01H DTLB_LOAD_MISSES.
ANY

Counts all load misses that cause a
page walk.

08H 02H DTLB_LOAD_MISSES.
WALK_COMPLETED

Counts number of completed page
walks due to load miss in the STLB.

08H 04H DTLB_LOAD_MISSES.
WALK_CYCLES

Cycles PMH is busy with a page walk
due to a load miss in the STLB.

08H 10H DTLB_LOAD_MISSES.
STLB_HIT

Number of cache load STLB hits.

08H 20H DTLB_LOAD_MISSES.
PDE_MISS

Number of DTLB cache load misses
where the low part of the linear to
physical address translation was
missed.

0BH 01H MEM_INST_RETIRED.
LOADS

Counts the number of instructions
with an architecturally-visible load
retired on the architected path.

0BH 02H MEM_INST_RETIRED.
STORES

Counts the number of instructions
with an architecturally-visible store
retired on the architected path.
Vol. 3B 19-87

PERFORMANCE-MONITORING EVENTS
0BH 10H MEM_INST_RETIRED.
LATENCY_ABOVE_T
HRESHOLD

Counts the number of instructions
exceeding the latency specified with
ld_lat facility.

In conjunction
with ld_lat
facility

0CH 01H MEM_STORE_RETIRE
D.DTLB_MISS

The event counts the number of
retired stores that missed the DTLB.
The DTLB miss is not counted if the
store operation causes a fault. Does
not counter prefetches. Counts both
primary and secondary misses to
the TLB.

0EH 01H UOPS_ISSUED.ANY Counts the number of Uops issued
by the Register Allocation Table to
the Reservation Station, i.e. the
UOPs issued from the front end to
the back end.

0EH 01H UOPS_ISSUED.STALL
ED_CYCLES

Counts the number of cycles no
Uops issued by the Register
Allocation Table to the Reservation
Station, i.e. the UOPs issued from
the front end to the back end.

set “invert=1,
cmask = 1“

0EH 02H UOPS_ISSUED.FUSED Counts the number of fused Uops
that were issued from the Register
Allocation Table to the Reservation
Station.

0FH 01H MEM_UNCORE_RETI
RED.UNKNOWN_SOU
RCE

Load instructions retired with
unknown LLC miss (Precise Event).

Applicable to one
and two sockets

0FH 02H MEM_UNCORE_RETI
RED.OHTER_CORE_L
2_HIT

Load instructions retired that HIT
modified data in sibling core (Precise
Event).

Applicable to one
and two sockets

0FH 04H MEM_UNCORE_RETI
RED.REMOTE_HITM

Load instructions retired that HIT
modified data in remote socket
(Precise Event).

Applicable to two
sockets only

0FH 08H MEM_UNCORE_RETI
RED.LOCAL_DRAM_A
ND_REMOTE_CACHE
_HIT

Load instructions retired local dram
and remote cache HIT data sources
(Precise Event).

Applicable to one
and two sockets

Table 19-9. Non-Architectural Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
19-88 Vol. 3B

PERFORMANCE-MONITORING EVENTS
0FH 10H MEM_UNCORE_RETI
RED.REMOTE_DRAM

Load instructions retired remote
DRAM and remote home-remote
cache HITM (Precise Event).

Applicable to two
sockets only

0FH 20H MEM_UNCORE_RETI
RED.OTHER_LLC_MIS
S

Load instructions retired other LLC
miss (Precise Event).

Applicable to two
sockets only

0FH 80H MEM_UNCORE_RETI
RED.UNCACHEABLE

Load instructions retired I/O (Precise
Event).

Applicable to one
and two sockets

10H 01H FP_COMP_OPS_EXE.
X87

Counts the number of FP
Computational Uops Executed. The
number of FADD, FSUB, FCOM,
FMULs, integer MULsand IMULs,
FDIVs, FPREMs, FSQRTS, integer
DIVs, and IDIVs. This event does not
distinguish an FADD used in the
middle of a transcendental flow
from a separate FADD instruction.

10H 02H FP_COMP_OPS_EXE.
MMX

Counts number of MMX Uops
executed.

10H 04H FP_COMP_OPS_EXE.
SSE_FP

Counts number of SSE and SSE2 FP
uops executed.

10H 08H FP_COMP_OPS_EXE.
SSE2_INTEGER

Counts number of SSE2 integer uops
executed.

10H 10H FP_COMP_OPS_EXE.
SSE_FP_PACKED

Counts number of SSE FP packed
uops executed.

10H 20H FP_COMP_OPS_EXE.
SSE_FP_SCALAR

Counts number of SSE FP scalar
uops executed.

10H 40H FP_COMP_OPS_EXE.
SSE_SINGLE_PRECISI
ON

Counts number of SSE* FP single
precision uops executed.

10H 80H FP_COMP_OPS_EXE.
SSE_DOUBLE_PRECI
SION

Counts number of SSE* FP double
precision uops executed.

12H 01H SIMD_INT_128.PACK
ED_MPY

Counts number of 128 bit SIMD
integer multiply operations.

12H 02H SIMD_INT_128.PACK
ED_SHIFT

Counts number of 128 bit SIMD
integer shift operations.

Table 19-9. Non-Architectural Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-89

PERFORMANCE-MONITORING EVENTS
12H 04H SIMD_INT_128.PACK Counts number of 128 bit SIMD
integer pack operations.

12H 08H SIMD_INT_128.UNPA
CK

Counts number of 128 bit SIMD
integer unpack operations.

12H 10H SIMD_INT_128.PACK
ED_LOGICAL

Counts number of 128 bit SIMD
integer logical operations.

12H 20H SIMD_INT_128.PACK
ED_ARITH

Counts number of 128 bit SIMD
integer arithmetic operations.

12H 40H SIMD_INT_128.SHUF
FLE_MOVE

Counts number of 128 bit SIMD
integer shuffle and move
operations.

13H 01H LOAD_DISPATCH.RS Counts number of loads dispatched
from the Reservation Station that
bypass the Memory Order Buffer.

13H 02H LOAD_DISPATCH.RS_
DELAYED

Counts the number of delayed RS
dispatches at the stage latch. If an
RS dispatch can not bypass to LB, it
has another chance to dispatch from
the one-cycle delayed staging latch
before it is written into the LB.

13H 04H LOAD_DISPATCH.MO
B

Counts the number of loads
dispatched from the Reservation
Station to the Memory Order Buffer.

13H 07H LOAD_DISPATCH.ANY Counts all loads dispatched from the
Reservation Station.

14H 01H ARITH.CYCLES_DIV_
BUSY

Counts the number of cycles the
divider is busy executing divide or
square root operations. The divide
can be integer, X87 or Streaming
SIMD Extensions (SSE). The square
root operation can be either X87 or
SSE.

Set 'edge =1, invert=1, cmask=1' to
count the number of divides.

Count may be
incorrect When
SMT is on

Table 19-9. Non-Architectural Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
19-90 Vol. 3B

PERFORMANCE-MONITORING EVENTS
14H 02H ARITH.MUL Counts the number of multiply
operations executed. This includes
integer as well as floating point
multiply operations but excludes
DPPS mul and MPSAD.

Count may be
incorrect When
SMT is on

17H 01H INST_QUEUE_WRITE
S

Counts the number of instructions
written into the instruction queue
every cycle.

18H 01H INST_DECODED.DEC0 Counts number of instructions that
require decoder 0 to be decoded.
Usually, this means that the
instruction maps to more than 1
uop.

19H 01H TWO_UOP_INSTS_D
ECODED

An instruction that generates two
uops was decoded.

1EH 01H INST_QUEUE_WRITE
_CYCLES

This event counts the number of
cycles during which instructions are
written to the instruction queue.
Dividing this counter by the number
of instructions written to the
instruction queue
(INST_QUEUE_WRITES) yields the
average number of instructions
decoded each cycle. If this number is
less than four and the pipe stalls,
this indicates that the decoder is
failing to decode enough
instructions per cycle to sustain the
4-wide pipeline.

If SSE*
instructions that
are 6 bytes or
longer arrive one
after another,
then front end
throughput may
limit execution
speed.

20H 01H LSD_OVERFLOW Number of loops that can not stream
from the instruction queue.

24H 01H L2_RQSTS.LD_HIT Counts number of loads that hit the
L2 cache. L2 loads include both L1D
demand misses as well as L1D
prefetches. L2 loads can be rejected
for various reasons. Only non
rejected loads are counted.

Table 19-9. Non-Architectural Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-91

PERFORMANCE-MONITORING EVENTS
24H 02H L2_RQSTS.LD_MISS Counts the number of loads that
miss the L2 cache. L2 loads include
both L1D demand misses as well as
L1D prefetches.

24H 03H L2_RQSTS.LOADS Counts all L2 load requests. L2 loads
include both L1D demand misses as
well as L1D prefetches.

24H 04H L2_RQSTS.RFO_HIT Counts the number of store RFO
requests that hit the L2 cache. L2
RFO requests include both L1D
demand RFO misses as well as L1D
RFO prefetches. Count includes WC
memory requests, where the data is
not fetched but the permission to
write the line is required.

24H 08H L2_RQSTS.RFO_MISS Counts the number of store RFO
requests that miss the L2 cache. L2
RFO requests include both L1D
demand RFO misses as well as L1D
RFO prefetches.

24H 0CH L2_RQSTS.RFOS Counts all L2 store RFO requests. L2
RFO requests include both L1D
demand RFO misses as well as L1D
RFO prefetches..

24H 10H L2_RQSTS.IFETCH_H
IT

Counts number of instruction
fetches that hit the L2 cache. L2
instruction fetches include both L1I
demand misses as well as L1I
instruction prefetches.

24H 20H L2_RQSTS.IFETCH_M
ISS

Counts number of instruction
fetches that miss the L2 cache. L2
instruction fetches include both L1I
demand misses as well as L1I
instruction prefetches.

24H 30H L2_RQSTS.IFETCHES Counts all instruction fetches. L2
instruction fetches include both L1I
demand misses as well as L1I
instruction prefetches.

Table 19-9. Non-Architectural Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
19-92 Vol. 3B

PERFORMANCE-MONITORING EVENTS
24H 40H L2_RQSTS.PREFETC
H_HIT

Counts L2 prefetch hits for both
code and data.

24H 80H L2_RQSTS.PREFETC
H_MISS

Counts L2 prefetch misses for both
code and data.

24H C0H L2_RQSTS.PREFETC
HES

Counts all L2 prefetches for both
code and data.

24H AAH L2_RQSTS.MISS Counts all L2 misses for both code
and data.

24H FFH L2_RQSTS.REFEREN
CES

Counts all L2 requests for both code
and data.

26H 01H L2_DATA_RQSTS.DE
MAND.I_STATE

Counts number of L2 data demand
loads where the cache line to be
loaded is in the I (invalid) state, i.e. a
cache miss. L2 demand loads are
both L1D demand misses and L1D
prefetches.

26H 02H L2_DATA_RQSTS.DE
MAND.S_STATE

Counts number of L2 data demand
loads where the cache line to be
loaded is in the S (shared) state. L2
demand loads are both L1D demand
misses and L1D prefetches.

26H 04H L2_DATA_RQSTS.DE
MAND.E_STATE

Counts number of L2 data demand
loads where the cache line to be
loaded is in the E (exclusive) state.
L2 demand loads are both L1D
demand misses and L1D prefetches.

26H 08H L2_DATA_RQSTS.DE
MAND.M_STATE

Counts number of L2 data demand
loads where the cache line to be
loaded is in the M (modified) state.
L2 demand loads are both L1D
demand misses and L1D prefetches.

26H 0FH L2_DATA_RQSTS.DE
MAND.MESI

Counts all L2 data demand requests.
L2 demand loads are both L1D
demand misses and L1D prefetches.

26H 10H L2_DATA_RQSTS.PR
EFETCH.I_STATE

Counts number of L2 prefetch data
loads where the cache line to be
loaded is in the I (invalid) state, i.e. a
cache miss.

Table 19-9. Non-Architectural Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-93

PERFORMANCE-MONITORING EVENTS
26H 20H L2_DATA_RQSTS.PR
EFETCH.S_STATE

Counts number of L2 prefetch data
loads where the cache line to be
loaded is in the S (shared) state. A
prefetch RFO will miss on an S state
line, while a prefetch read will hit on
an S state line.

26H 40H L2_DATA_RQSTS.PR
EFETCH.E_STATE

Counts number of L2 prefetch data
loads where the cache line to be
loaded is in the E (exclusive) state.

26H 80H L2_DATA_RQSTS.PR
EFETCH.M_STATE

Counts number of L2 prefetch data
loads where the cache line to be
loaded is in the M (modified) state.

26H F0H L2_DATA_RQSTS.PR
EFETCH.MESI

Counts all L2 prefetch requests.

26H FFH L2_DATA_RQSTS.AN
Y

Counts all L2 data requests.

27H 01H L2_WRITE.RFO.I_STA
TE

Counts number of L2 demand store
RFO requests where the cache line
to be loaded is in the I (invalid) state,
i.e, a cache miss. The L1D prefetcher
does not issue a RFO prefetch.

This is a demand
RFO request

27H 02H L2_WRITE.RFO.S_ST
ATE

Counts number of L2 store RFO
requests where the cache line to be
loaded is in the S (shared) state. The
L1D prefetcher does not issue a RFO
prefetch,.

This is a demand
RFO request

27H 08H L2_WRITE.RFO.M_ST
ATE

Counts number of L2 store RFO
requests where the cache line to be
loaded is in the M (modified) state.
The L1D prefetcher does not issue a
RFO prefetch.

This is a demand
RFO request

27H 0EH L2_WRITE.RFO.HIT Counts number of L2 store RFO
requests where the cache line to be
loaded is in either the S, E or M
states. The L1D prefetcher does not
issue a RFO prefetch.

This is a demand
RFO request

27H 0FH L2_WRITE.RFO.MESI Counts all L2 store RFO
requests.The L1D prefetcher does
not issue a RFO prefetch.

This is a demand
RFO request

Table 19-9. Non-Architectural Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
19-94 Vol. 3B

PERFORMANCE-MONITORING EVENTS
27H 10H L2_WRITE.LOCK.I_ST
ATE

Counts number of L2 demand lock
RFO requests where the cache line
to be loaded is in the I (invalid) state,
i.e. a cache miss.

27H 20H L2_WRITE.LOCK.S_S
TATE

Counts number of L2 lock RFO
requests where the cache line to be
loaded is in the S (shared) state.

27H 40H L2_WRITE.LOCK.E_S
TATE

Counts number of L2 demand lock
RFO requests where the cache line
to be loaded is in the E (exclusive)
state.

27H 80H L2_WRITE.LOCK.M_S
TATE

Counts number of L2 demand lock
RFO requests where the cache line
to be loaded is in the M (modified)
state.

27H E0H L2_WRITE.LOCK.HIT Counts number of L2 demand lock
RFO requests where the cache line
to be loaded is in either the S, E, or
M state.

27H F0H L2_WRITE.LOCK.MESI Counts all L2 demand lock RFO
requests.

28H 01H L1D_WB_L2.I_STATE Counts number of L1 writebacks to
the L2 where the cache line to be
written is in the I (invalid) state, i.e. a
cache miss.

28H 02H L1D_WB_L2.S_STAT
E

Counts number of L1 writebacks to
the L2 where the cache line to be
written is in the S state.

28H 04H L1D_WB_L2.E_STAT
E

Counts number of L1 writebacks to
the L2 where the cache line to be
written is in the E (exclusive) state.

28H 08H L1D_WB_L2.M_STAT
E

Counts number of L1 writebacks to
the L2 where the cache line to be
written is in the M (modified) state.

28H 0FH L1D_WB_L2.MESI Counts all L1 writebacks to the L2 .

Table 19-9. Non-Architectural Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-95

PERFORMANCE-MONITORING EVENTS
2EH 41H L3_LAT_CACHE.MISS Counts uncore Last Level Cache
misses. Because cache hierarchy,
cache sizes and other
implementation-specific
characteristics; value comparison to
estimate performance differences is
not recommended.

see Table 19-1

2EH 4FH L3_LAT_CACHE.REFE
RENCE

Counts uncore Last Level Cache
references. Because cache
hierarchy, cache sizes and other
implementation-specific
characteristics; value comparison to
estimate performance differences is
not recommended.

see Table 19-1

3CH 00H CPU_CLK_UNHALTED
.THREAD_P

Counts the number of thread cycles
while the thread is not in a halt
state. The thread enters the halt
state when it is running the HLT
instruction. The core frequency may
change from time to time due to
power or thermal throttling.

see Table 19-1

3CH 01H CPU_CLK_UNHALTED
.REF_P

Increments at the frequency of TSC
when not halted.

see Table 19-1

49H 01H DTLB_MISSES.ANY Counts the number of misses in the
STLB which causes a page walk.

49H 02H DTLB_MISSES.WALK_
COMPLETED

Counts number of misses in the
STLB which resulted in a completed
page walk.

49H 04H DTLB_MISSES.WALK_
CYCLES

Counts cycles of page walk due to
misses in the STLB.

49H 10H DTLB_MISSES.STLB_
HIT

Counts the number of DTLB first
level misses that hit in the second
level TLB. This event is only
relevant if the core contains multiple
DTLB levels.

49H 20H DTLB_MISSES.PDE_M
ISS

Number of DTLB misses caused by
low part of address, includes
references to 2M pages because 2M
pages do not use the PDE.

Table 19-9. Non-Architectural Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
19-96 Vol. 3B

PERFORMANCE-MONITORING EVENTS
49H 80H DTLB_MISSES.LARGE
_WALK_COMPLETED

Counts number of completed large
page walks due to misses in the
STLB.

4CH 01H LOAD_HIT_PRE Counts load operations sent to the
L1 data cache while a previous SSE
prefetch instruction to the same
cache line has started prefetching
but has not yet finished.

Counter 0, 1 only

4EH 01H L1D_PREFETCH.REQ
UESTS

Counts number of hardware
prefetch requests dispatched out of
the prefetch FIFO.

Counter 0, 1 only

4EH 02H L1D_PREFETCH.MISS Counts number of hardware
prefetch requests that miss the L1D.
There are two prefetchers in the
L1D. A streamer, which predicts
lines sequentially after this one
should be fetched, and the IP
prefetcher that remembers access
patterns for the current instruction.
The streamer prefetcher stops on an
L1D hit, while the IP prefetcher
does not.

Counter 0, 1 only

4EH 04H L1D_PREFETCH.TRIG
GERS

Counts number of prefetch requests
triggered by the Finite State
Machine and pushed into the
prefetch FIFO. Some of the prefetch
requests are dropped due to
overwrites or competition between
the IP index prefetcher and
streamer prefetcher. The prefetch
FIFO contains 4 entries.

Counter 0, 1 only

4FH 10H EPT.WALK_CYCLES Counts Extended Page walk cycles.

51H 01H L1D.REPL Counts the number of lines brought
into the L1 data cache.

Counter 0, 1 only

51H 02H L1D.M_REPL Counts the number of modified lines
brought into the L1 data cache.

Counter 0, 1 only

51H 04H L1D.M_EVICT Counts the number of modified lines
evicted from the L1 data cache due
to replacement.

Counter 0, 1 only

Table 19-9. Non-Architectural Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-97

PERFORMANCE-MONITORING EVENTS
51H 08H L1D.M_SNOOP_EVIC
T

Counts the number of modified lines
evicted from the L1 data cache due
to snoop HITM intervention.

Counter 0, 1 only

52H 01H L1D_CACHE_PREFET
CH_LOCK_FB_HIT

Counts the number of cacheable
load lock speculated instructions
accepted into the fill buffer.

60H 01H OFFCORE_REQUEST
S_OUTSTANDING.DE
MAND.READ_DATA

Counts weighted cycles of offcore
demand data read requests. Does
not include L2 prefetch requests.

counter 0

60H 02H OFFCORE_REQUEST
S_OUTSTANDING.DE
MAND.READ_CODE

Counts weighted cycles of offcore
demand code read requests. Does
not include L2 prefetch requests.

counter 0

60H 04H OFFCORE_REQUEST
S_OUTSTANDING.DE
MAND.RFO

Counts weighted cycles of offcore
demand RFO requests. Does not
include L2 prefetch requests.

counter 0

60H 08H OFFCORE_REQUEST
S_OUTSTANDING.AN
Y.READ

Counts weighted cycles of offcore
read requests of any kind. Include L2
prefetch requests.

counter 0

63H 01H CACHE_LOCK_CYCLE
S.L1D_L2

Cycle count during which the L1D
and L2 are locked. A lock is asserted
when there is a locked memory
access, due to uncacheable memory,
a locked operation that spans two
cache lines, or a page walk from an
uncacheable page table. This event
does not cause locks, it merely
detects them.

Counter 0, 1 only.
L1D and L2 locks
have a very high
performance
penalty and it is
highly
recommended to
avoid such
accesses.

63H 02H CACHE_LOCK_CYCLE
S.L1D

Counts the number of cycles that
cacheline in the L1 data cache unit is
locked.

Counter 0, 1 only.

6CH 01H IO_TRANSACTIONS Counts the number of completed I/O
transactions.

80H 01H L1I.HITS Counts all instruction fetches that
hit the L1 instruction cache.

Table 19-9. Non-Architectural Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
19-98 Vol. 3B

PERFORMANCE-MONITORING EVENTS
80H 02H L1I.MISSES Counts all instruction fetches that
miss the L1I cache. This includes
instruction cache misses, streaming
buffer misses, victim cache misses
and uncacheable fetches. An
instruction fetch miss is counted
only once and not once for every
cycle it is outstanding.

80H 03H L1I.READS Counts all instruction fetches,
including uncacheable fetches that
bypass the L1I.

80H 04H L1I.CYCLES_STALLED Cycle counts for which an instruction
fetch stalls due to a L1I cache miss,
ITLB miss or ITLB fault.

82H 01H LARGE_ITLB.HIT Counts number of large ITLB hits.

85H 01H ITLB_MISSES.ANY Counts the number of misses in all
levels of the ITLB which causes a
page walk.

85H 02H ITLB_MISSES.WALK_
COMPLETED

Counts number of misses in all levels
of the ITLB which resulted in a
completed page walk.

85H 04H ITLB_MISSES.WALK_
CYCLES

Counts ITLB miss page walk cycles.

85H 80H ITLB_MISSES.LARGE_
WALK_COMPLETED

Counts number of completed large
page walks due to misses in the
STLB.

87H 01H ILD_STALL.LCP Cycles Instruction Length Decoder
stalls due to length changing
prefixes: 66, 67 or REX.W (for
EM64T) instructions which change
the length of the decoded
instruction.

87H 02H ILD_STALL.MRU Instruction Length Decoder stall
cycles due to Brand Prediction Unit
(PBU) Most Recently Used (MRU)
bypass.

87H 04H ILD_STALL.IQ_FULL Stall cycles due to a full instruction
queue.

Table 19-9. Non-Architectural Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-99

PERFORMANCE-MONITORING EVENTS
87H 08H ILD_STALL.REGEN Counts the number of regen stalls.

87H 0FH ILD_STALL.ANY Counts any cycles the Instruction
Length Decoder is stalled.

88H 01H BR_INST_EXEC.COND Counts the number of conditional
near branch instructions executed,
but not necessarily retired.

88H 02H BR_INST_EXEC.DIRE
CT

Counts all unconditional near branch
instructions excluding calls and
indirect branches.

88H 04H BR_INST_EXEC.INDIR
ECT_NON_CALL

Counts the number of executed
indirect near branch instructions
that are not calls.

88H 07H BR_INST_EXEC.NON
_CALLS

Counts all non call near branch
instructions executed, but not
necessarily retired.

88H 08H BR_INST_EXEC.RETU
RN_NEAR

Counts indirect near branches that
have a return mnemonic.

88H 10H BR_INST_EXEC.DIRE
CT_NEAR_CALL

Counts unconditional near call
branch instructions, excluding non
call branch, executed.

88H 20H BR_INST_EXEC.INDIR
ECT_NEAR_CALL

Counts indirect near calls, including
both register and memory indirect,
executed.

88H 30H BR_INST_EXEC.NEAR
_CALLS

Counts all near call branches
executed, but not necessarily
retired.

88H 40H BR_INST_EXEC.TAKE
N

Counts taken near branches
executed, but not necessarily
retired.

88H 7FH BR_INST_EXEC.ANY Counts all near executed branches
(not necessarily retired). This
includes only instructions and not
micro-op branches. Frequent
branching is not necessarily a major
performance issue. However
frequent branch mispredictions may
be a problem.

Table 19-9. Non-Architectural Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
19-100 Vol. 3B

PERFORMANCE-MONITORING EVENTS
89H 01H BR_MISP_EXEC.CON
D

Counts the number of mispredicted
conditional near branch instructions
executed, but not necessarily
retired.

89H 02H BR_MISP_EXEC.DIRE
CT

Counts mispredicted macro
unconditional near branch
instructions, excluding calls and
indirect branches (should always be
0).

89H 04H BR_MISP_EXEC.INDIR
ECT_NON_CALL

Counts the number of executed
mispredicted indirect near branch
instructions that are not calls.

89H 07H BR_MISP_EXEC.NON
_CALLS

Counts mispredicted non call near
branches executed, but not
necessarily retired.

89H 08H BR_MISP_EXEC.RETU
RN_NEAR

Counts mispredicted indirect
branches that have a rear return
mnemonic.

89H 10H BR_MISP_EXEC.DIRE
CT_NEAR_CALL

Counts mispredicted non-indirect
near calls executed, (should always
be 0).

89H 20H BR_MISP_EXEC.INDIR
ECT_NEAR_CALL

Counts mispredicted indirect near
calls exeucted, including both
register and memory indirect.

89H 30H BR_MISP_EXEC.NEA
R_CALLS

Counts all mispredicted near call
branches executed, but not
necessarily retired.

89H 40H BR_MISP_EXEC.TAKE
N

Counts executed mispredicted near
branches that are taken, but not
necessarily retired.

89H 7FH BR_MISP_EXEC.ANY Counts the number of mispredicted
near branch instructions that were
executed, but not necessarily
retired.

Table 19-9. Non-Architectural Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-101

PERFORMANCE-MONITORING EVENTS
A2H 01H RESOURCE_STALLS.
ANY

Counts the number of Allocator
resource related stalls. Includes
register renaming buffer entries,
memory buffer entries. In addition
to resource related stalls, this event
counts some other events. Includes
stalls arising during branch
misprediction recovery, such as if
retirement of the mispredicted
branch is delayed and stalls arising
while store buffer is draining from
synchronizing operations.

Does not include
stalls due to
SuperQ (off core)
queue full, too
many cache
misses, etc.

A2H 02H RESOURCE_STALLS.L
OAD

Counts the cycles of stall due to lack
of load buffer for load operation.

A2H 04H RESOURCE_STALLS.R
S_FULL

This event counts the number of
cycles when the number of
instructions in the pipeline waiting
for execution reaches the limit the
processor can handle. A high count
of this event indicates that there are
long latency operations in the pipe
(possibly load and store operations
that miss the L2 cache, or
instructions dependent upon
instructions further down the
pipeline that have yet to retire.

When RS is full,
new instructions
can not enter the
reservation
station and start
execution.

A2H 08H RESOURCE_STALLS.S
TORE

This event counts the number of
cycles that a resource related stall
will occur due to the number of
store instructions reaching the limit
of the pipeline, (i.e. all store buffers
are used). The stall ends when a
store instruction commits its data to
the cache or memory.

A2H 10H RESOURCE_STALLS.R
OB_FULL

Counts the cycles of stall due to re-
order buffer full.

A2H 20H RESOURCE_STALLS.F
PCW

Counts the number of cycles while
execution was stalled due to writing
the floating-point unit (FPU) control
word.

Table 19-9. Non-Architectural Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
19-102 Vol. 3B

PERFORMANCE-MONITORING EVENTS
A2H 40H RESOURCE_STALLS.
MXCSR

Stalls due to the MXCSR register
rename occurring to close to a
previous MXCSR rename. The
MXCSR provides control and status
for the MMX registers.

A2H 80H RESOURCE_STALLS.
OTHER

Counts the number of cycles while
execution was stalled due to other
resource issues.

A6H 01H MACRO_INSTS.FUSIO
NS_DECODED

Counts the number of instructions
decoded that are macro-fused but
not necessarily executed or retired.

A7H 01H BACLEAR_FORCE_IQ Counts number of times a BACLEAR
was forced by the Instruction
Queue. The IQ is also responsible
for providing conditional branch
prediciton direction based on a static
scheme and dynamic data provided
by the L2 Branch Prediction Unit. If
the conditional branch target is not
found in the Target Array and the IQ
predicts that the branch is taken,
then the IQ will force the Branch
Address Calculator to issue a
BACLEAR. Each BACLEAR asserted
by the BAC generates approximately
an 8 cycle bubble in the instruction
fetch pipeline.

A8H 01H LSD.UOPS Counts the number of micro-ops
delivered by loop stream detector.

Use cmask=1 and
invert to count
cycles

AEH 01H ITLB_FLUSH Counts the number of ITLB flushes.

B0H 01H OFFCORE_REQUEST
S.DEMAND.READ_DA
TA

Counts number of offcore demand
data read requests. Does not count
L2 prefetch requests.

B0H 02H OFFCORE_REQUEST
S.DEMAND.READ_CO
DE

Counts number of offcore demand
code read requests. Does not count
L2 prefetch requests.

Table 19-9. Non-Architectural Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-103

PERFORMANCE-MONITORING EVENTS
B0H 04H OFFCORE_REQUEST
S.DEMAND.RFO

Counts number of offcore demand
RFO requests. Does not count L2
prefetch requests.

B0H 08H OFFCORE_REQUEST
S.ANY.READ

Counts number of offcore read
requests. Includes L2 prefetch
requests.

B0H 10H OFFCORE_REQUEST
S.ANY.RFO

Counts number of offcore RFO
requests. Includes L2 prefetch
requests.

B0H 40H OFFCORE_REQUEST
S.L1D_WRITEBACK

Counts number of L1D writebacks to
the uncore.

B0H 80H OFFCORE_REQUEST
S.ANY

Counts all offcore requests.

B1H 01H UOPS_EXECUTED.PO
RT0

Counts number of Uops executed
that were issued on port 0. Port 0
handles integer arithmetic, SIMD and
FP add Uops.

B1H 02H UOPS_EXECUTED.PO
RT1

Counts number of Uops executed
that were issued on port 1. Port 1
handles integer arithmetic, SIMD,
integer shift, FP multiply and FP
divide Uops.

B1H 04H UOPS_EXECUTED.PO
RT2_CORE

Counts number of Uops executed
that were issued on port 2. Port 2
handles the load Uops. This is a core
count only and can not be collected
per thread.

B1H 08H UOPS_EXECUTED.PO
RT3_CORE

Counts number of Uops executed
that were issued on port 3. Port 3
handles store Uops. This is a core
count only and can not be collected
per thread.

B1H 10H UOPS_EXECUTED.PO
RT4_CORE

Counts number of Uops executed
that where issued on port 4. Port 4
handles the value to be stored for
the store Uops issued on port 3. This
is a core count only and can not be
collected per thread.

Table 19-9. Non-Architectural Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
19-104 Vol. 3B

PERFORMANCE-MONITORING EVENTS
B1H 1FH UOPS_EXECUTED.CO
RE_ACTIVE_CYCLES_
NO_PORT5

Counts number of cycles there are
one or more uops being executed
and were issued on ports 0-4. This is
a core count only and can not be
collected per thread.

B1H 20H UOPS_EXECUTED.PO
RT5

Counts number of Uops executed
that where issued on port 5.

B1H 3FH UOPS_EXECUTED.CO
RE_ACTIVE_CYCLES

Counts number of cycles there are
one or more uops being executed on
any ports. This is a core count only
and can not be collected per thread.

B1H 40H UOPS_EXECUTED.PO
RT015

Counts number of Uops executed
that where issued on port 0, 1, or 5.

use cmask=1,
invert=1 to count
stall cycles

B1H 80H UOPS_EXECUTED.PO
RT234

Counts number of Uops executed
that where issued on port 2, 3, or 4.

B2H 01H OFFCORE_REQUEST
S_SQ_FULL

Counts number of cycles the SQ is
full to handle off-core requests.

B3H 01H SNOOPQ_REQUESTS
_OUTSTANDING.DAT
A

Counts weighted cycles of snoopq
requests for data. Counter 0 only.

Use cmask=1 to
count cycles not
empty.

B3H 02H SNOOPQ_REQUESTS
_OUTSTANDING.INVA
LIDATE

Counts weighted cycles of snoopq
invalidate requests. Counter 0 only.

Use cmask=1 to
count cycles not
empty.

B3H 04H SNOOPQ_REQUESTS
_OUTSTANDING.COD
E

Counts weighted cycles of snoopq
requests for code. Counter 0 only.

Use cmask=1 to
count cycles not
empty.

B4H 01H SNOOPQ_REQUESTS.
CODE

Counts the number of snoop code
requests.

B4H 02H SNOOPQ_REQUESTS.
DATA

Counts the number of snoop data
requests.

B4H 04H SNOOPQ_REQUESTS.
INVALIDATE

Counts the number of snoop
invalidate requests.

B7H 01H OFF_CORE_RESPONS
E_0

see Section 18.6.1.3, “Off-core
Response Performance Monitoring
in the Processor Core”

Requires
programming
MSR 01A6H

Table 19-9. Non-Architectural Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-105

PERFORMANCE-MONITORING EVENTS
B8H 01H SNOOP_RESPONSE.H
IT

Counts HIT snoop response sent by
this thread in response to a snoop
request.

B8H 02H SNOOP_RESPONSE.H
ITE

Counts HIT E snoop response sent
by this thread in response to a
snoop request.

B8H 04H SNOOP_RESPONSE.H
ITM

Counts HIT M snoop response sent
by this thread in response to a
snoop request.

BBH 01H OFF_CORE_RESPONS
E_1

see Section 18.6.1.3, “Off-core
Response Performance Monitoring
in the Processor Core”

Use MSR 01A7H

C0H 00H INST_RETIRED.ANY_
P

See Table 19-1
Notes: INST_RETIRED.ANY is
counted by a designated fixed
counter. INST_RETIRED.ANY_P is
counted by a programmable counter
and is an architectural performance
event. Event is supported if
CPUID.A.EBX[1] = 0.

Counting:
Faulting
executions of
GETSEC/VM
entry/VM
Exit/MWait will
not count as
retired
instructions.

C0H 02H INST_RETIRED.X87 Counts the number of floating point
computational operations retired:
floating point computational
operations executed by the assist
handler and sub-operations of
complex floating point instructions
like transcendental instructions.

C0H 04H INST_RETIRED.MMX Counts the number of retired: MMX
instructions.

C2H 01H UOPS_RETIRED.ANY Counts the number of micro-ops
retired, (macro-fused=1, micro-
fused=2, others=1; maximum count
of 8 per cycle). Most instructions are
composed of one or two micro-ops.
Some instructions are decoded into
longer sequences such as repeat
instructions, floating point
transcendental instructions, and
assists.

Use cmask=1 and
invert to count
active cycles or
stalled cycles

Table 19-9. Non-Architectural Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
19-106 Vol. 3B

PERFORMANCE-MONITORING EVENTS
C2H 02H UOPS_RETIRED.RETI
RE_SLOTS

Counts the number of retirement
slots used each cycle

C2H 04H UOPS_RETIRED.MAC
RO_FUSED

Counts number of macro-fused uops
retired.

C3H 01H MACHINE_CLEARS.CY
CLES

Counts the cycles machine clear is
asserted.

C3H 02H MACHINE_CLEARS.M
EM_ORDER

Counts the number of machine
clears due to memory order
conflicts.

C3H 04H MACHINE_CLEARS.S
MC

Counts the number of times that a
program writes to a code section.
Self-modifying code causes a sever
penalty in all Intel 64 and IA-32
processors. The modified cache line
is written back to the L2 and
L3caches.

C4H 00H BR_INST_RETIRED.A
LL_BRANCHES

Branch instructions at retirement See Table 19-1

C4H 01H BR_INST_RETIRED.C
ONDITIONAL

Counts the number of conditional
branch instructions retired.

C4H 02H BR_INST_RETIRED.N
EAR_CALL

Counts the number of direct &
indirect near unconditional calls
retired.

C5H 00H BR_MISP_RETIRED.A
LL_BRANCHES

Mispredicted branch instructions at
retirement

See Table 19-1

C5H 01H BR_MISP_RETIRED.C
ONDITIONAL

Counts mispredicted conditional
retired calls.

C5H 02H BR_MISP_RETIRED.N
EAR_CALL

Counts mispredicted direct &
indirect near unconditional retired
calls.

C5H 04H BR_MISP_RETIRED.A
LL_BRANCHES

Counts all mispredicted retired calls.

C7H 01H SSEX_UOPS_RETIRE
D.PACKED_SINGLE

Counts SIMD packed single-precision
floating point Uops retired.

C7H 02H SSEX_UOPS_RETIRE
D.SCALAR_SINGLE

Counts SIMD calar single-precision
floating point Uops retired.

Table 19-9. Non-Architectural Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-107

PERFORMANCE-MONITORING EVENTS
C7H 04H SSEX_UOPS_RETIRE
D.PACKED_DOUBLE

Counts SIMD packed double-
precision floating point Uops retired.

C7H 08H SSEX_UOPS_RETIRE
D.SCALAR_DOUBLE

Counts SIMD scalar double-precision
floating point Uops retired.

C7H 10H SSEX_UOPS_RETIRE
D.VECTOR_INTEGER

Counts 128-bit SIMD vector integer
Uops retired.

C8H 20H ITLB_MISS_RETIRED Counts the number of retired
instructions that missed the ITLB
when the instruction was fetched.

CBH 01H MEM_LOAD_RETIRED
.L1D_HIT

Counts number of retired loads that
hit the L1 data cache.

CBH 02H MEM_LOAD_RETIRED
.L2_HIT

Counts number of retired loads that
hit the L2 data cache.

CBH 04H MEM_LOAD_RETIRED
.L3_UNSHARED_HIT

Counts number of retired loads that
hit their own, unshared lines in the
L3 cache.

CBH 08H MEM_LOAD_RETIRED
.OTHER_CORE_L2_HI
T_HITM

Counts number of retired loads that
hit in a sibling core's L2 (on die core).
Since the L3 is inclusive of all cores
on the package, this is an L3 hit. This
counts both clean or modified hits.

CBH 10H MEM_LOAD_RETIRED
.L3_MISS

Counts number of retired loads that
miss the L3 cache. The load was
satisfied by a remote socket, local
memory or an IOH.

CBH 40H MEM_LOAD_RETIRED
.HIT_LFB

Counts number of retired loads that
miss the L1D and the address is
located in an allocated line fill buffer
and will soon be committed to cache.
This is counting secondary L1D
misses.

Table 19-9. Non-Architectural Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
19-108 Vol. 3B

PERFORMANCE-MONITORING EVENTS
CBH 80H MEM_LOAD_RETIRED
.DTLB_MISS

Counts the number of retired loads
that missed the DTLB. The DTLB
miss is not counted if the load
operation causes a fault. This event
counts loads from cacheable
memory only. The event does not
count loads by software prefetches.
Counts both primary and secondary
misses to the TLB.

CCH 01H FP_MMX_TRANS.TO
_FP

Counts the first floating-point
instruction following any MMX
instruction. You can use this event
to estimate the penalties for the
transitions between floating-point
and MMX technology states.

CCH 02H FP_MMX_TRANS.TO
_MMX

Counts the first MMX instruction
following a floating-point
instruction. You can use this event
to estimate the penalties for the
transitions between floating-point
and MMX technology states.

CCH 03H FP_MMX_TRANS.AN
Y

Counts all transitions from floating
point to MMX instructions and from
MMX instructions to floating point
instructions. You can use this event
to estimate the penalties for the
transitions between floating-point
and MMX technology states.

D0H 01H MACRO_INSTS.DECO
DED

Counts the number of instructions
decoded, (but not necessarily
executed or retired).

D1H 01H UOPS_DECODED.STA
LL_CYCLES

Counts the cycles of decoder stalls.
INV=1, Cmask= 1

D1H 02H UOPS_DECODED.MS Counts the number of Uops decoded
by the Microcode Sequencer, MS.
The MS delivers uops when the
instruction is more than 4 uops long
or a microcode assist is occurring.

Table 19-9. Non-Architectural Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-109

PERFORMANCE-MONITORING EVENTS
D1H 04H UOPS_DECODED.ESP
_FOLDING

Counts number of stack pointer
(ESP) instructions decoded: push ,
pop , call , ret, etc. ESP instructions
do not generate a Uop to increment
or decrement ESP. Instead, they
update an ESP_Offset register that
keeps track of the delta to the
current value of the ESP register.

D1H 08H UOPS_DECODED.ESP
_SYNC

Counts number of stack pointer
(ESP) sync operations where an ESP
instruction is corrected by adding
the ESP offset register to the
current value of the ESP register.

D2H 01H RAT_STALLS.FLAGS Counts the number of cycles during
which execution stalled due to
several reasons, one of which is a
partial flag register stall. A partial
register stall may occur when two
conditions are met: 1) an instruction
modifies some, but not all, of the
flags in the flag register and 2) the
next instruction, which depends on
flags, depends on flags that were
not modified by this instruction.

D2H 02H RAT_STALLS.REGIST
ERS

This event counts the number of
cycles instruction execution latency
became longer than the defined
latency because the instruction
used a register that was partially
written by previous instruction.

Table 19-9. Non-Architectural Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
19-110 Vol. 3B

PERFORMANCE-MONITORING EVENTS
D2H 04H RAT_STALLS.ROB_RE
AD_PORT

Counts the number of cycles when
ROB read port stalls occurred, which
did not allow new micro-ops to enter
the out-of-order pipeline. Note that,
at this stage in the pipeline,
additional stalls may occur at the
same cycle and prevent the stalled
micro-ops from entering the pipe. In
such a case, micro-ops retry
entering the execution pipe in the
next cycle and the ROB-read port
stall is counted again.

D2H 08H RAT_STALLS.SCOREB
OARD

Counts the cycles where we stall
due to microarchitecturally required
serialization. Microcode
scoreboarding stalls.

D2H 0FH RAT_STALLS.ANY Counts all Register Allocation Table
stall cycles due to: Cycles when ROB
read port stalls occurred, which did
not allow new micro-ops to enter
the execution pipe. Cycles when
partial register stalls occurred
Cycles when flag stalls occurred
Cycles floating-point unit (FPU)
status word stalls occurred. To count
each of these conditions separately
use the events:
RAT_STALLS.ROB_READ_PORT,
RAT_STALLS.PARTIAL,
RAT_STALLS.FLAGS, and
RAT_STALLS.FPSW.

D4H 01H SEG_RENAME_STALL
S

Counts the number of stall cycles
due to the lack of renaming
resources for the ES, DS, FS, and GS
segment registers. If a segment is
renamed but not retired and a
second update to the same segment
occurs, a stall occurs in the front-
end of the pipeline until the
renamed segment retires.

Table 19-9. Non-Architectural Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-111

PERFORMANCE-MONITORING EVENTS
D5H 01H ES_REG_RENAMES Counts the number of times the ES
segment register is renamed.

DBH 01H UOP_UNFUSION Counts unfusion events due to
floating point exception to a fused
uop.

E0H 01H BR_INST_DECODED Counts the number of branch
instructions decoded.

E5H 01H BPU_MISSED_CALL_
RET

Counts number of times the Branch
Prediciton Unit missed predicting a
call or return branch.

E6H 01H BACLEAR.CLEAR Counts the number of times the
front end is resteered, mainly when
the Branch Prediction Unit cannot
provide a correct prediction and this
is corrected by the Branch Address
Calculator at the front end. This can
occur if the code has many branches
such that they cannot be consumed
by the BPU. Each BACLEAR asserted
by the BAC generates approximately
an 8 cycle bubble in the instruction
fetch pipeline. The effect on total
execution time depends on the
surrounding code.

E6H 02H BACLEAR.BAD_TARG
ET

Counts number of Branch Address
Calculator clears (BACLEAR)
asserted due to conditional branch
instructions in which there was a
target hit but the direction was
wrong. Each BACLEAR asserted by
the BAC generates approximately an
8 cycle bubble in the instruction
fetch pipeline.

E8H 01H BPU_CLEARS.EARLY Counts early (normal) Branch
Prediction Unit clears: BPU predicted
a taken branch after incorrectly
assuming that it was not taken.

The BPU clear
leads to 2 cycle
bubble in the
Front End.

Table 19-9. Non-Architectural Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
19-112 Vol. 3B

PERFORMANCE-MONITORING EVENTS
E8H 02H BPU_CLEARS.LATE Counts late Branch Prediction Unit
clears due to Most Recently Used
conflicts. The PBU clear leads to a 3
cycle bubble in the Front End.

ECH 01H THREAD_ACTIVE Counts cycles threads are active.

F0H 01H L2_TRANSACTIONS.L
OAD

Counts L2 load operations due to
HW prefetch or demand loads.

F0H 02H L2_TRANSACTIONS.
RFO

Counts L2 RFO operations due to
HW prefetch or demand RFOs.

F0H 04H L2_TRANSACTIONS.I
FETCH

Counts L2 instruction fetch
operations due to HW prefetch or
demand ifetch.

F0H 08H L2_TRANSACTIONS.
PREFETCH

Counts L2 prefetch operations.

F0H 10H L2_TRANSACTIONS.L
1D_WB

Counts L1D writeback operations to
the L2.

F0H 20H L2_TRANSACTIONS.
FILL

Counts L2 cache line fill operations
due to load, RFO, L1D writeback or
prefetch.

F0H 40H L2_TRANSACTIONS.
WB

Counts L2 writeback operations to
the L3.

F0H 80H L2_TRANSACTIONS.
ANY

Counts all L2 cache operations.

F1H 02H L2_LINES_IN.S_STAT
E

Counts the number of cache lines
allocated in the L2 cache in the S
(shared) state.

F1H 04H L2_LINES_IN.E_STAT
E

Counts the number of cache lines
allocated in the L2 cache in the E
(exclusive) state.

F1H 07H L2_LINES_IN.ANY Counts the number of cache lines
allocated in the L2 cache.

F2H 01H L2_LINES_OUT.DEMA
ND_CLEAN

Counts L2 clean cache lines evicted
by a demand request.

F2H 02H L2_LINES_OUT.DEMA
ND_DIRTY

Counts L2 dirty (modified) cache
lines evicted by a demand request.

F2H 04H L2_LINES_OUT.PREF
ETCH_CLEAN

Counts L2 clean cache line evicted
by a prefetch request.

Table 19-9. Non-Architectural Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-113

PERFORMANCE-MONITORING EVENTS
F2H 08H L2_LINES_OUT.PREF
ETCH_DIRTY

Counts L2 modified cache line
evicted by a prefetch request.

F2H 0FH L2_LINES_OUT.ANY Counts all L2 cache lines evicted for
any reason.

F4H 04H SQ_MISC.LRU_HINTS Counts number of Super Queue LRU
hints sent to L3.

F4H 10H SQ_MISC.SPLIT_LOCK Counts the number of SQ lock splits
across a cache line.

F6H 01H SQ_FULL_STALL_CY
CLES

Counts cycles the Super Queue is
full. Neither of the threads on this
core will be able to access the
uncore.

F7H 01H FP_ASSIST.ALL Counts the number of floating point
operations executed that required
micro-code assist intervention.
Assists are required in the following
cases: SSE instructions, (Denormal
input when the DAZ flag is off or
Underflow result when the FTZ flag
is off): x87 instructions, (NaN or
denormal are loaded to a register or
used as input from memory, Division
by 0 or Underflow output).

F7H 02H FP_ASSIST.OUTPUT Counts number of floating point
micro-code assist when the output
value (destination register) is invalid.

F7H 04H FP_ASSIST.INPUT Counts number of floating point
micro-code assist when the input
value (one of the source operands to
an FP instruction) is invalid.

FDH 01H SIMD_INT_64.PACKE
D_MPY

Counts number of SID integer 64 bit
packed multiply operations.

FDH 02H SIMD_INT_64.PACKE
D_SHIFT

Counts number of SID integer 64 bit
packed shift operations.

FDH 04H SIMD_INT_64.PACK Counts number of SID integer 64 bit
pack operations.

FDH 08H SIMD_INT_64.UNPAC
K

Counts number of SID integer 64 bit
unpack operations.

Table 19-9. Non-Architectural Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
19-114 Vol. 3B

PERFORMANCE-MONITORING EVENTS
Non-architectural Performance monitoring events of the uncore sub-system for
Processors with CPUID signature of DisplayFamily_DisplayModel 06_25H, 06_2CH,
and 06_1FH support performance events listed in Table 19-10.

FDH 10H SIMD_INT_64.PACKE
D_LOGICAL

Counts number of SID integer 64 bit
logical operations.

FDH 20H SIMD_INT_64.PACKE
D_ARITH

Counts number of SID integer 64 bit
arithmetic operations.

FDH 40H SIMD_INT_64.SHUFF
LE_MOVE

Counts number of SID integer 64 bit
shift or move operations.

Table 19-10. Non-Architectural Performance Events In the Processor Uncore for
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

00H 01H UNC_GQ_CYCLES_FU
LL.READ_TRACKER

Uncore cycles Global Queue read
tracker is full.

00H 02H UNC_GQ_CYCLES_FU
LL.WRITE_TRACKER

Uncore cycles Global Queue write
tracker is full.

00H 04H UNC_GQ_CYCLES_FU
LL.PEER_PROBE_TR
ACKER

Uncore cycles Global Queue peer
probe tracker is full. The peer probe
tracker queue tracks snoops from the
IOH and remote sockets.

01H 01H UNC_GQ_CYCLES_NO
T_EMPTY.READ_TRA
CKER

Uncore cycles were Global Queue read
tracker has at least one valid entry.

01H 02H UNC_GQ_CYCLES_NO
T_EMPTY.WRITE_TR
ACKER

Uncore cycles were Global Queue
write tracker has at least one valid
entry.

01H 04H UNC_GQ_CYCLES_NO
T_EMPTY.PEER_PRO
BE_TRACKER

Uncore cycles were Global Queue peer
probe tracker has at least one valid
entry. The peer probe tracker queue
tracks IOH and remote socket snoops.

Table 19-9. Non-Architectural Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-115

PERFORMANCE-MONITORING EVENTS
02H 01H UNC_GQ_OCCUPANC
Y.READ_TRACKER

Increments the number of queue
entries (code read, data read, and
RFOs) in the tread tracker. The GQ
read tracker allocate to deallocate
occupancy count is divided by the
count to obtain the average read
tracker latency.

03H 01H UNC_GQ_ALLOC.REA
D_TRACKER

Counts the number of tread tracker
allocate to deallocate entries. The GQ
read tracker allocate to deallocate
occupancy count is divided by the
count to obtain the average read
tracker latency.

03H 02H UNC_GQ_ALLOC.RT_
L3_MISS

Counts the number GQ read tracker
entries for which a full cache line read
has missed the L3. The GQ read
tracker L3 miss to fill occupancy count
is divided by this count to obtain the
average cache line read L3 miss
latency. The latency represents the
time after which the L3 has
determined that the cache line has
missed. The time between a GQ read
tracker allocation and the L3
determining that the cache line has
missed is the average L3 hit latency.
The total L3 cache line read miss
latency is the hit latency + L3 miss
latency.

03H 04H UNC_GQ_ALLOC.RT_
TO_L3_RESP

Counts the number of GQ read tracker
entries that are allocated in the read
tracker queue that hit or miss the L3.
The GQ read tracker L3 hit occupancy
count is divided by this count to
obtain the average L3 hit latency.

Table 19-10. Non-Architectural Performance Events In the Processor Uncore for
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
19-116 Vol. 3B

PERFORMANCE-MONITORING EVENTS
03H 08H UNC_GQ_ALLOC.RT_
TO_RTID_ACQUIRED

Counts the number of GQ read tracker
entries that are allocated in the read
tracker, have missed in the L3 and
have not acquired a Request
Transaction ID. The GQ read tracker
L3 miss to RTID acquired occupancy
count is divided by this count to
obtain the average latency for a read
L3 miss to acquire an RTID.

03H 10H UNC_GQ_ALLOC.WT_
TO_RTID_ACQUIRED

Counts the number of GQ write
tracker entries that are allocated in
the write tracker, have missed in the
L3 and have not acquired a Request
Transaction ID. The GQ write tracker
L3 miss to RTID occupancy count is
divided by this count to obtain the
average latency for a write L3 miss to
acquire an RTID.

03H 20H UNC_GQ_ALLOC.WRI
TE_TRACKER

Counts the number of GQ write
tracker entries that are allocated in
the write tracker queue that miss the
L3. The GQ write tracker occupancy
count is divided by the this count to
obtain the average L3 write miss
latency.

03H 40H UNC_GQ_ALLOC.PEE
R_PROBE_TRACKER

Counts the number of GQ peer probe
tracker (snoop) entries that are
allocated in the peer probe tracker
queue that miss the L3. The GQ peer
probe occupancy count is divided by
this count to obtain the average L3
peer probe miss latency.

04H 01H UNC_GQ_DATA.FROM
_QPI

Cycles Global Queue Quickpath
Interface input data port is busy
importing data from the Quickpath
Interface. Each cycle the input port
can transfer 8 or 16 bytes of data.

Table 19-10. Non-Architectural Performance Events In the Processor Uncore for
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-117

PERFORMANCE-MONITORING EVENTS
04H 02H UNC_GQ_DATA.FROM
_QMC

Cycles Global Queue Quickpath
Memory Interface input data port is
busy importing data from the
Quickpath Memory Interface. Each
cycle the input port can transfer 8 or
16 bytes of data.

04H 04H UNC_GQ_DATA.FROM
_L3

Cycles GQ L3 input data port is busy
importing data from the Last Level
Cache. Each cycle the input port can
transfer 32 bytes of data.

04H 08H UNC_GQ_DATA.FROM
_CORES_02

Cycles GQ Core 0 and 2 input data
port is busy importing data from
processor cores 0 and 2. Each cycle
the input port can transfer 32 bytes
of data.

04H 10H UNC_GQ_DATA.FROM
_CORES_13

Cycles GQ Core 1 and 3 input data
port is busy importing data from
processor cores 1 and 3. Each cycle
the input port can transfer 32 bytes
of data.

05H 01H UNC_GQ_DATA.TO_Q
PI_QMC

Cycles GQ QPI and QMC output data
port is busy sending data to the
Quickpath Interface or Quickpath
Memory Interface. Each cycle the
output port can transfer 32 bytes of
data.

05H 02H UNC_GQ_DATA.TO_L
3

Cycles GQ L3 output data port is busy
sending data to the Last Level Cache.
Each cycle the output port can
transfer 32 bytes of data.

05H 04H UNC_GQ_DATA.TO_C
ORES

Cycles GQ Core output data port is
busy sending data to the Cores. Each
cycle the output port can transfer 32
bytes of data.

06H 01H UNC_SNP_RESP_TO_
LOCAL_HOME.I_STAT
E

Number of snoop responses to the
local home that L3 does not have the
referenced cache line.

Table 19-10. Non-Architectural Performance Events In the Processor Uncore for
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
19-118 Vol. 3B

PERFORMANCE-MONITORING EVENTS
06H 02H UNC_SNP_RESP_TO_
LOCAL_HOME.S_STA
TE

Number of snoop responses to the
local home that L3 has the referenced
line cached in the S state.

06H 04H UNC_SNP_RESP_TO_
LOCAL_HOME.FWD_S
_STATE

Number of responses to code or data
read snoops to the local home that
the L3 has the referenced cache line
in the E state. The L3 cache line state
is changed to the S state and the line
is forwarded to the local home in the
S state.

06H 08H UNC_SNP_RESP_TO_
LOCAL_HOME.FWD_I
_STATE

Number of responses to read
invalidate snoops to the local home
that the L3 has the referenced cache
line in the M state. The L3 cache line
state is invalidated and the line is
forwarded to the local home in the M
state.

06H 10H UNC_SNP_RESP_TO_
LOCAL_HOME.CONFLI
CT

Number of conflict snoop responses
sent to the local home.

06H 20H UNC_SNP_RESP_TO_
LOCAL_HOME.WB

Number of responses to code or data
read snoops to the local home that
the L3 has the referenced line cached
in the M state.

07H 01H UNC_SNP_RESP_TO_
REMOTE_HOME.I_ST
ATE

Number of snoop responses to a
remote home that L3 does not have
the referenced cache line.

07H 02H UNC_SNP_RESP_TO_
REMOTE_HOME.S_ST
ATE

Number of snoop responses to a
remote home that L3 has the
referenced line cached in the S state.

07H 04H UNC_SNP_RESP_TO_
REMOTE_HOME.FWD
_S_STATE

Number of responses to code or data
read snoops to a remote home that
the L3 has the referenced cache line
in the E state. The L3 cache line state
is changed to the S state and the line
is forwarded to the remote home in
the S state.

Table 19-10. Non-Architectural Performance Events In the Processor Uncore for
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-119

PERFORMANCE-MONITORING EVENTS
07H 08H UNC_SNP_RESP_TO_
REMOTE_HOME.FWD
_I_STATE

Number of responses to read
invalidate snoops to a remote home
that the L3 has the referenced cache
line in the M state. The L3 cache line
state is invalidated and the line is
forwarded to the remote home in the
M state.

07H 10H UNC_SNP_RESP_TO_
REMOTE_HOME.CON
FLICT

Number of conflict snoop responses
sent to the local home.

07H 20H UNC_SNP_RESP_TO_
REMOTE_HOME.WB

Number of responses to code or data
read snoops to a remote home that
the L3 has the referenced line cached
in the M state.

07H 24H UNC_SNP_RESP_TO_
REMOTE_HOME.HITM

Number of HITM snoop responses to a
remote home

08H 01H UNC_L3_HITS.READ Number of code read, data read and
RFO requests that hit in the L3

08H 02H UNC_L3_HITS.WRITE Number of writeback requests that
hit in the L3. Writebacks from the
cores will always result in L3 hits due
to the inclusive property of the L3.

08H 04H UNC_L3_HITS.PROBE Number of snoops from IOH or remote
sockets that hit in the L3.

08H 03H UNC_L3_HITS.ANY Number of reads and writes that hit
the L3.

09H 01H UNC_L3_MISS.READ Number of code read, data read and
RFO requests that miss the L3.

09H 02H UNC_L3_MISS.WRITE Number of writeback requests that
miss the L3. Should always be zero as
writebacks from the cores will always
result in L3 hits due to the inclusive
property of the L3.

09H 04H UNC_L3_MISS.PROBE Number of snoops from IOH or remote
sockets that miss the L3.

09H 03H UNC_L3_MISS.ANY Number of reads and writes that miss
the L3.

Table 19-10. Non-Architectural Performance Events In the Processor Uncore for
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
19-120 Vol. 3B

PERFORMANCE-MONITORING EVENTS
0AH 01H UNC_L3_LINES_IN.M
_STATE

Counts the number of L3 lines
allocated in M state. The only time a
cache line is allocated in the M state is
when the line was forwarded in M
state is forwarded due to a Snoop
Read Invalidate Own request.

0AH 02H UNC_L3_LINES_IN.E_
STATE

Counts the number of L3 lines
allocated in E state.

0AH 04H UNC_L3_LINES_IN.S_
STATE

Counts the number of L3 lines
allocated in S state.

0AH 08H UNC_L3_LINES_IN.F_
STATE

Counts the number of L3 lines
allocated in F state.

0AH 0FH UNC_L3_LINES_IN.A
NY

Counts the number of L3 lines
allocated in any state.

0BH 01H UNC_L3_LINES_OUT.
M_STATE

Counts the number of L3 lines
victimized that were in the M state.
When the victim cache line is in M
state, the line is written to its home
cache agent which can be either local
or remote.

0BH 02H UNC_L3_LINES_OUT.
E_STATE

Counts the number of L3 lines
victimized that were in the E state.

0BH 04H UNC_L3_LINES_OUT.
S_STATE

Counts the number of L3 lines
victimized that were in the S state.

0BH 08H UNC_L3_LINES_OUT.
I_STATE

Counts the number of L3 lines
victimized that were in the I state.

0BH 10H UNC_L3_LINES_OUT.
F_STATE

Counts the number of L3 lines
victimized that were in the F state.

0BH 1FH UNC_L3_LINES_OUT.
ANY

Counts the number of L3 lines
victimized in any state.

0CH 01H UNC_GQ_SNOOP.GOT
O_S

Counts the number of remote snoops
that have requested a cache line be
set to the S state.

0CH 02H UNC_GQ_SNOOP.GOT
O_I

Counts the number of remote snoops
that have requested a cache line be
set to the I state.

Table 19-10. Non-Architectural Performance Events In the Processor Uncore for
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-121

PERFORMANCE-MONITORING EVENTS
0CH 04H UNC_GQ_SNOOP.GOT
O_S_HIT_E

Counts the number of remote snoops
that have requested a cache line be
set to the S state from E state.

Requires
writing MSR
301H with
mask = 2H

0CH 04H UNC_GQ_SNOOP.GOT
O_S_HIT_F

Counts the number of remote snoops
that have requested a cache line be
set to the S state from F (forward)
state.

Requires
writing MSR
301H with
mask = 8H

0CH 04H UNC_GQ_SNOOP.GOT
O_S_HIT_M

Counts the number of remote snoops
that have requested a cache line be
set to the S state from M state.

Requires
writing MSR
301H with
mask = 1H

0CH 04H UNC_GQ_SNOOP.GOT
O_S_HIT_S

Counts the number of remote snoops
that have requested a cache line be
set to the S state from S state.

Requires
writing MSR
301H with
mask = 4H

0CH 08H UNC_GQ_SNOOP.GOT
O_I_HIT_E

Counts the number of remote snoops
that have requested a cache line be
set to the I state from E state.

Requires
writing MSR
301H with
mask = 2H

0CH 08H UNC_GQ_SNOOP.GOT
O_I_HIT_F

Counts the number of remote snoops
that have requested a cache line be
set to the I state from F (forward)
state.

Requires
writing MSR
301H with
mask = 8H

0CH 08H UNC_GQ_SNOOP.GOT
O_I_HIT_M

Counts the number of remote snoops
that have requested a cache line be
set to the I state from M state.

Requires
writing MSR
301H with
mask = 1H

0CH 08H UNC_GQ_SNOOP.GOT
O_I_HIT_S

Counts the number of remote snoops
that have requested a cache line be
set to the I state from S state.

Requires
writing MSR
301H with
mask = 4H

20H 01H UNC_QHL_REQUEST
S.IOH_READS

Counts number of Quickpath Home
Logic read requests from the IOH.

20H 02H UNC_QHL_REQUEST
S.IOH_WRITES

Counts number of Quickpath Home
Logic write requests from the IOH.

20H 04H UNC_QHL_REQUEST
S.REMOTE_READS

Counts number of Quickpath Home
Logic read requests from a remote
socket.

Table 19-10. Non-Architectural Performance Events In the Processor Uncore for
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
19-122 Vol. 3B

PERFORMANCE-MONITORING EVENTS
20H 08H UNC_QHL_REQUEST
S.REMOTE_WRITES

Counts number of Quickpath Home
Logic write requests from a remote
socket.

20H 10H UNC_QHL_REQUEST
S.LOCAL_READS

Counts number of Quickpath Home
Logic read requests from the local
socket.

20H 20H UNC_QHL_REQUEST
S.LOCAL_WRITES

Counts number of Quickpath Home
Logic write requests from the local
socket.

21H 01H UNC_QHL_CYCLES_F
ULL.IOH

Counts uclk cycles all entries in the
Quickpath Home Logic IOH are full.

21H 02H UNC_QHL_CYCLES_F
ULL.REMOTE

Counts uclk cycles all entries in the
Quickpath Home Logic remote tracker
are full.

21H 04H UNC_QHL_CYCLES_F
ULL.LOCAL

Counts uclk cycles all entries in the
Quickpath Home Logic local tracker
are full.

22H 01H UNC_QHL_CYCLES_N
OT_EMPTY.IOH

Counts uclk cycles all entries in the
Quickpath Home Logic IOH is busy.

22H 02H UNC_QHL_CYCLES_N
OT_EMPTY.REMOTE

Counts uclk cycles all entries in the
Quickpath Home Logic remote tracker
is busy.

22H 04H UNC_QHL_CYCLES_N
OT_EMPTY.LOCAL

Counts uclk cycles all entries in the
Quickpath Home Logic local tracker is
busy.

23H 01H UNC_QHL_OCCUPAN
CY.IOH

QHL IOH tracker allocate to deallocate
read occupancy.

23H 02H UNC_QHL_OCCUPAN
CY.REMOTE

QHL remote tracker allocate to
deallocate read occupancy.

23H 04H UNC_QHL_OCCUPAN
CY.LOCAL

QHL local tracker allocate to
deallocate read occupancy.

Table 19-10. Non-Architectural Performance Events In the Processor Uncore for
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-123

PERFORMANCE-MONITORING EVENTS
24H 02H UNC_QHL_ADDRESS
_CONFLICTS.2WAY

Counts number of QHL Active Address
Table (AAT) entries that saw a max of
2 conflicts. The AAT is a structure that
tracks requests that are in conflict.
The requests themselves are in the
home tracker entries. The count is
reported when an AAT entry
deallocates.

24H 04H UNC_QHL_ADDRESS
_CONFLICTS.3WAY

Counts number of QHL Active Address
Table (AAT) entries that saw a max of
3 conflicts. The AAT is a structure that
tracks requests that are in conflict.
The requests themselves are in the
home tracker entries. The count is
reported when an AAT entry
deallocates.

25H 01H UNC_QHL_CONFLICT
_CYCLES.IOH

Counts cycles the Quickpath Home
Logic IOH Tracker contains two or
more requests with an address
conflict. A max of 3 requests can be in
conflict.

25H 02H UNC_QHL_CONFLICT
_CYCLES.REMOTE

Counts cycles the Quickpath Home
Logic Remote Tracker contains two or
more requests with an address
conflict. A max of 3 requests can be in
conflict.

25H 04H UNC_QHL_CONFLICT
_CYCLES.LOCAL

Counts cycles the Quickpath Home
Logic Local Tracker contains two or
more requests with an address
conflict. A max of 3 requests can be
in conflict.

26H 01H UNC_QHL_TO_QMC_
BYPASS

Counts number or requests to the
Quickpath Memory Controller that
bypass the Quickpath Home Logic. All
local accesses can be bypassed. For
remote requests, only read requests
can be bypassed.

Table 19-10. Non-Architectural Performance Events In the Processor Uncore for
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
19-124 Vol. 3B

PERFORMANCE-MONITORING EVENTS
28H 01H UNC_QMC_ISOC_FUL
L.READ.CH0

Counts cycles all the entries in the
DRAM channel 0 high priority queue
are occupied with isochronous read
requests.

28H 02H UNC_QMC_ISOC_FUL
L.READ.CH1

Counts cycles all the entries in the
DRAM channel 1high priority queue
are occupied with isochronous read
requests.

28H 04H UNC_QMC_ISOC_FUL
L.READ.CH2

Counts cycles all the entries in the
DRAM channel 2 high priority queue
are occupied with isochronous read
requests.

28H 08H UNC_QMC_ISOC_FUL
L.WRITE.CH0

Counts cycles all the entries in the
DRAM channel 0 high priority queue
are occupied with isochronous write
requests.

28H 10H UNC_QMC_ISOC_FUL
L.WRITE.CH1

Counts cycles all the entries in the
DRAM channel 1 high priority queue
are occupied with isochronous write
requests.

28H 20H UNC_QMC_ISOC_FUL
L.WRITE.CH2

Counts cycles all the entries in the
DRAM channel 2 high priority queue
are occupied with isochronous write
requests.

29H 01H UNC_QMC_BUSY.REA
D.CH0

Counts cycles where Quickpath
Memory Controller has at least 1
outstanding read request to DRAM
channel 0.

29H 02H UNC_QMC_BUSY.REA
D.CH1

Counts cycles where Quickpath
Memory Controller has at least 1
outstanding read request to DRAM
channel 1.

29H 04H UNC_QMC_BUSY.REA
D.CH2

Counts cycles where Quickpath
Memory Controller has at least 1
outstanding read request to DRAM
channel 2.

Table 19-10. Non-Architectural Performance Events In the Processor Uncore for
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-125

PERFORMANCE-MONITORING EVENTS
29H 08H UNC_QMC_BUSY.WRI
TE.CH0

Counts cycles where Quickpath
Memory Controller has at least 1
outstanding write request to DRAM
channel 0.

29H 10H UNC_QMC_BUSY.WRI
TE.CH1

Counts cycles where Quickpath
Memory Controller has at least 1
outstanding write request to DRAM
channel 1.

29H 20H UNC_QMC_BUSY.WRI
TE.CH2

Counts cycles where Quickpath
Memory Controller has at least 1
outstanding write request to DRAM
channel 2.

2AH 01H UNC_QMC_OCCUPAN
CY.CH0

IMC channel 0 normal read request
occupancy.

2AH 02H UNC_QMC_OCCUPAN
CY.CH1

IMC channel 1 normal read request
occupancy.

2AH 04H UNC_QMC_OCCUPAN
CY.CH2

IMC channel 2 normal read request
occupancy.

2AH 07H UNC_QMC_OCCUPAN
CY.ANY

Normal read request occupancy for
any channel.

2BH 01H UNC_QMC_ISSOC_OC
CUPANCY.CH0

IMC channel 0 issoc read request
occupancy.

2BH 02H UNC_QMC_ISSOC_OC
CUPANCY.CH1

IMC channel 1 issoc read request
occupancy.

2BH 04H UNC_QMC_ISSOC_OC
CUPANCY.CH2

IMC channel 2 issoc read request
occupancy.

2BH 07H UNC_QMC_ISSOC_RE
ADS.ANY

IMC issoc read request occupancy.

2CH 01H UNC_QMC_NORMAL_
READS.CH0

Counts the number of Quickpath
Memory Controller channel 0 medium
and low priority read requests. The
QMC channel 0 normal read
occupancy divided by this count
provides the average QMC channel 0
read latency.

Table 19-10. Non-Architectural Performance Events In the Processor Uncore for
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
19-126 Vol. 3B

PERFORMANCE-MONITORING EVENTS
2CH 02H UNC_QMC_NORMAL_
READS.CH1

Counts the number of Quickpath
Memory Controller channel 1 medium
and low priority read requests. The
QMC channel 1 normal read
occupancy divided by this count
provides the average QMC channel 1
read latency.

2CH 04H UNC_QMC_NORMAL_
READS.CH2

Counts the number of Quickpath
Memory Controller channel 2 medium
and low priority read requests. The
QMC channel 2 normal read
occupancy divided by this count
provides the average QMC channel 2
read latency.

2CH 07H UNC_QMC_NORMAL_
READS.ANY

Counts the number of Quickpath
Memory Controller medium and low
priority read requests. The QMC
normal read occupancy divided by this
count provides the average QMC read
latency.

2DH 01H UNC_QMC_HIGH_PRI
ORITY_READS.CH0

Counts the number of Quickpath
Memory Controller channel 0 high
priority isochronous read requests.

2DH 02H UNC_QMC_HIGH_PRI
ORITY_READS.CH1

Counts the number of Quickpath
Memory Controller channel 1 high
priority isochronous read requests.

2DH 04H UNC_QMC_HIGH_PRI
ORITY_READS.CH2

Counts the number of Quickpath
Memory Controller channel 2 high
priority isochronous read requests.

2DH 07H UNC_QMC_HIGH_PRI
ORITY_READS.ANY

Counts the number of Quickpath
Memory Controller high priority
isochronous read requests.

2EH 01H UNC_QMC_CRITICAL_
PRIORITY_READS.CH
0

Counts the number of Quickpath
Memory Controller channel 0 critical
priority isochronous read requests.

2EH 02H UNC_QMC_CRITICAL_
PRIORITY_READS.CH
1

Counts the number of Quickpath
Memory Controller channel 1 critical
priority isochronous read requests.

Table 19-10. Non-Architectural Performance Events In the Processor Uncore for
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-127

PERFORMANCE-MONITORING EVENTS
2EH 04H UNC_QMC_CRITICAL_
PRIORITY_READS.CH
2

Counts the number of Quickpath
Memory Controller channel 2 critical
priority isochronous read requests.

2EH 07H UNC_QMC_CRITICAL_
PRIORITY_READS.AN
Y

Counts the number of Quickpath
Memory Controller critical priority
isochronous read requests.

2FH 01H UNC_QMC_WRITES.F
ULL.CH0

Counts number of full cache line
writes to DRAM channel 0.

2FH 02H UNC_QMC_WRITES.F
ULL.CH1

Counts number of full cache line
writes to DRAM channel 1.

2FH 04H UNC_QMC_WRITES.F
ULL.CH2

Counts number of full cache line
writes to DRAM channel 2.

2FH 07H UNC_QMC_WRITES.F
ULL.ANY

Counts number of full cache line
writes to DRAM.

2FH 08H UNC_QMC_WRITES.P
ARTIAL.CH0

Counts number of partial cache line
writes to DRAM channel 0.

2FH 10H UNC_QMC_WRITES.P
ARTIAL.CH1

Counts number of partial cache line
writes to DRAM channel 1.

2FH 20H UNC_QMC_WRITES.P
ARTIAL.CH2

Counts number of partial cache line
writes to DRAM channel 2.

2FH 38H UNC_QMC_WRITES.P
ARTIAL.ANY

Counts number of partial cache line
writes to DRAM.

30H 01H UNC_QMC_CANCEL.C
H0

Counts number of DRAM channel 0
cancel requests.

30H 02H UNC_QMC_CANCEL.C
H1

Counts number of DRAM channel 1
cancel requests.

30H 04H UNC_QMC_CANCEL.C
H2

Counts number of DRAM channel 2
cancel requests.

30H 07H UNC_QMC_CANCEL.A
NY

Counts number of DRAM cancel
requests.

Table 19-10. Non-Architectural Performance Events In the Processor Uncore for
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
19-128 Vol. 3B

PERFORMANCE-MONITORING EVENTS
31H 01H UNC_QMC_PRIORITY
_UPDATES.CH0

Counts number of DRAM channel 0
priority updates. A priority update
occurs when an ISOC high or critical
request is received by the QHL and
there is a matching request with
normal priority that has already been
issued to the QMC. In this instance,
the QHL will send a priority update to
QMC to expedite the request.

31H 02H UNC_QMC_PRIORITY
_UPDATES.CH1

Counts number of DRAM channel 1
priority updates. A priority update
occurs when an ISOC high or critical
request is received by the QHL and
there is a matching request with
normal priority that has already been
issued to the QMC. In this instance,
the QHL will send a priority update to
QMC to expedite the request.

31H 04H UNC_QMC_PRIORITY
_UPDATES.CH2

Counts number of DRAM channel 2
priority updates. A priority update
occurs when an ISOC high or critical
request is received by the QHL and
there is a matching request with
normal priority that has already been
issued to the QMC. In this instance,
the QHL will send a priority update to
QMC to expedite the request.

31H 07H UNC_QMC_PRIORITY
_UPDATES.ANY

Counts number of DRAM priority
updates. A priority update occurs
when an ISOC high or critical request
is received by the QHL and there is a
matching request with normal priority
that has already been issued to the
QMC. In this instance, the QHL will
send a priority update to QMC to
expedite the request.

32H 01H UNC_IMC_RETRY.CH
0

Counts number of IMC DRAM channel
0 retries. DRAM retry only occurs
when configured in RAS mode.

Table 19-10. Non-Architectural Performance Events In the Processor Uncore for
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-129

PERFORMANCE-MONITORING EVENTS
32H 02H UNC_IMC_RETRY.CH
1

Counts number of IMC DRAM channel
1 retries. DRAM retry only occurs
when configured in RAS mode.

32H 04H UNC_IMC_RETRY.CH
2

Counts number of IMC DRAM channel
2 retries. DRAM retry only occurs
when configured in RAS mode.

32H 07H UNC_IMC_RETRY.AN
Y

Counts number of IMC DRAM retries
from any channel. DRAM retry only
occurs when configured in RAS mode.

33H 01H UNC_QHL_FRC_ACK_
CNFLTS.IOH

Counts number of Force Acknowledge
Conflict messages sent by the
Quickpath Home Logic to the IOH.

33H 02H UNC_QHL_FRC_ACK_
CNFLTS.REMOTE

Counts number of Force Acknowledge
Conflict messages sent by the
Quickpath Home Logic to the remote
home.

33H 04H UNC_QHL_FRC_ACK_
CNFLTS.LOCAL

Counts number of Force Acknowledge
Conflict messages sent by the
Quickpath Home Logic to the local
home.

33H 07H UNC_QHL_FRC_ACK_
CNFLTS.ANY

Counts number of Force Acknowledge
Conflict messages sent by the
Quickpath Home Logic.

34H 01H UNC_QHL_SLEEPS.IO
H_ORDER

Counts number of occurrences a
request was put to sleep due to IOH
ordering (write after read) conflicts.
While in the sleep state, the request is
not eligible to be scheduled to the
QMC.

34H 02H UNC_QHL_SLEEPS.R
EMOTE_ORDER

Counts number of occurrences a
request was put to sleep due to
remote socket ordering (write after
read) conflicts. While in the sleep
state, the request is not eligible to be
scheduled to the QMC.

Table 19-10. Non-Architectural Performance Events In the Processor Uncore for
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
19-130 Vol. 3B

PERFORMANCE-MONITORING EVENTS
34H 04H UNC_QHL_SLEEPS.L
OCAL_ORDER

Counts number of occurrences a
request was put to sleep due to local
socket ordering (write after read)
conflicts. While in the sleep state, the
request is not eligible to be scheduled
to the QMC.

34H 08H UNC_QHL_SLEEPS.IO
H_CONFLICT

Counts number of occurrences a
request was put to sleep due to IOH
address conflicts. While in the sleep
state, the request is not eligible to be
scheduled to the QMC.

34H 10H UNC_QHL_SLEEPS.R
EMOTE_CONFLICT

Counts number of occurrences a
request was put to sleep due to
remote socket address conflicts. While
in the sleep state, the request is not
eligible to be scheduled to the QMC.

34H 20H UNC_QHL_SLEEPS.L
OCAL_CONFLICT

Counts number of occurrences a
request was put to sleep due to local
socket address conflicts. While in the
sleep state, the request is not eligible
to be scheduled to the QMC.

35H 01H UNC_ADDR_OPCODE
_MATCH.IOH

Counts number of requests from the
IOH, address/opcode of request is
qualified by mask value written to
MSR 396H. The following mask values
are supported:

0: NONE

40000000_00000000H:RSPFWDI

40001A00_00000000H:RSPFWDS

40001D00_00000000H:RSPIWB

Match
opcode/addres
s by writing
MSR 396H
with mask
supported
mask value

Table 19-10. Non-Architectural Performance Events In the Processor Uncore for
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-131

PERFORMANCE-MONITORING EVENTS
35H 02H UNC_ADDR_OPCODE
_MATCH.REMOTE

Counts number of requests from the
remote socket, address/opcode of
request is qualified by mask value
written to MSR 396H. The following
mask values are supported:

0: NONE

40000000_00000000H:RSPFWDI

40001A00_00000000H:RSPFWDS

40001D00_00000000H:RSPIWB

Match
opcode/addres
s by writing
MSR 396H
with mask
supported
mask value

35H 04H UNC_ADDR_OPCODE
_MATCH.LOCAL

Counts number of requests from the
local socket, address/opcode of
request is qualified by mask value
written to MSR 396H. The following
mask values are supported:

0: NONE

40000000_00000000H:RSPFWDI

40001A00_00000000H:RSPFWDS

40001D00_00000000H:RSPIWB

Match
opcode/addres
s by writing
MSR 396H
with mask
supported
mask value

40H 01H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.HO
ME.LINK_0

Counts cycles the Quickpath outbound
link 0 HOME virtual channel is stalled
due to lack of a VNA and VN0 credit.
Note that this event does not filter
out when a flit would not have been
selected for arbitration because
another virtual channel is getting
arbitrated.

40H 02H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.SNO
OP.LINK_0

Counts cycles the Quickpath outbound
link 0 SNOOP virtual channel is stalled
due to lack of a VNA and VN0 credit.
Note that this event does not filter
out when a flit would not have been
selected for arbitration because
another virtual channel is getting
arbitrated.

Table 19-10. Non-Architectural Performance Events In the Processor Uncore for
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
19-132 Vol. 3B

PERFORMANCE-MONITORING EVENTS
40H 04H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.NDR
.LINK_0

Counts cycles the Quickpath outbound
link 0 non-data response virtual
channel is stalled due to lack of a VNA
and VN0 credit. Note that this event
does not filter out when a flit would
not have been selected for arbitration
because another virtual channel is
getting arbitrated.

40H 08H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.HO
ME.LINK_1

Counts cycles the Quickpath outbound
link 1 HOME virtual channel is stalled
due to lack of a VNA and VN0 credit.
Note that this event does not filter
out when a flit would not have been
selected for arbitration because
another virtual channel is getting
arbitrated.

40H 10H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.SNO
OP.LINK_1

Counts cycles the Quickpath outbound
link 1 SNOOP virtual channel is stalled
due to lack of a VNA and VN0 credit.
Note that this event does not filter
out when a flit would not have been
selected for arbitration because
another virtual channel is getting
arbitrated.

40H 20H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.NDR
.LINK_1

Counts cycles the Quickpath outbound
link 1 non-data response virtual
channel is stalled due to lack of a VNA
and VN0 credit. Note that this event
does not filter out when a flit would
not have been selected for arbitration
because another virtual channel is
getting arbitrated.

40H 07H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.LIN
K_0

Counts cycles the Quickpath outbound
link 0 virtual channels are stalled due
to lack of a VNA and VN0 credit. Note
that this event does not filter out
when a flit would not have been
selected for arbitration because
another virtual channel is getting
arbitrated.

Table 19-10. Non-Architectural Performance Events In the Processor Uncore for
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-133

PERFORMANCE-MONITORING EVENTS
40H 38H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.LIN
K_1

Counts cycles the Quickpath outbound
link 1 virtual channels are stalled due
to lack of a VNA and VN0 credit. Note
that this event does not filter out
when a flit would not have been
selected for arbitration because
another virtual channel is getting
arbitrated.

41H 01H UNC_QPI_TX_STALL
ED_MULTI_FLIT.DRS.
LINK_0

Counts cycles the Quickpath outbound
link 0 Data ResponSe virtual channel
is stalled due to lack of VNA and VN0
credits. Note that this event does not
filter out when a flit would not have
been selected for arbitration because
another virtual channel is getting
arbitrated.

41H 02H UNC_QPI_TX_STALL
ED_MULTI_FLIT.NCB.
LINK_0

Counts cycles the Quickpath outbound
link 0 Non-Coherent Bypass virtual
channel is stalled due to lack of VNA
and VN0 credits. Note that this event
does not filter out when a flit would
not have been selected for arbitration
because another virtual channel is
getting arbitrated.

41H 04H UNC_QPI_TX_STALL
ED_MULTI_FLIT.NCS.
LINK_0

Counts cycles the Quickpath outbound
link 0 Non-Coherent Standard virtual
channel is stalled due to lack of VNA
and VN0 credits. Note that this event
does not filter out when a flit would
not have been selected for arbitration
because another virtual channel is
getting arbitrated.

41H 08H UNC_QPI_TX_STALL
ED_MULTI_FLIT.DRS.
LINK_1

Counts cycles the Quickpath outbound
link 1 Data ResponSe virtual channel
is stalled due to lack of VNA and VN0
credits. Note that this event does not
filter out when a flit would not have
been selected for arbitration because
another virtual channel is getting
arbitrated.

Table 19-10. Non-Architectural Performance Events In the Processor Uncore for
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
19-134 Vol. 3B

PERFORMANCE-MONITORING EVENTS
41H 10H UNC_QPI_TX_STALL
ED_MULTI_FLIT.NCB.
LINK_1

Counts cycles the Quickpath outbound
link 1 Non-Coherent Bypass virtual
channel is stalled due to lack of VNA
and VN0 credits. Note that this event
does not filter out when a flit would
not have been selected for arbitration
because another virtual channel is
getting arbitrated.

41H 20H UNC_QPI_TX_STALL
ED_MULTI_FLIT.NCS.
LINK_1

Counts cycles the Quickpath outbound
link 1 Non-Coherent Standard virtual
channel is stalled due to lack of VNA
and VN0 credits. Note that this event
does not filter out when a flit would
not have been selected for arbitration
because another virtual channel is
getting arbitrated.

41H 07H UNC_QPI_TX_STALL
ED_MULTI_FLIT.LINK
_0

Counts cycles the Quickpath outbound
link 0 virtual channels are stalled due
to lack of VNA and VN0 credits. Note
that this event does not filter out
when a flit would not have been
selected for arbitration because
another virtual channel is getting
arbitrated.

41H 38H UNC_QPI_TX_STALL
ED_MULTI_FLIT.LINK
_1

Counts cycles the Quickpath outbound
link 1 virtual channels are stalled due
to lack of VNA and VN0 credits. Note
that this event does not filter out
when a flit would not have been
selected for arbitration because
another virtual channel is getting
arbitrated.

42H 01H UNC_QPI_TX_HEADE
R.FULL.LINK_0

Number of cycles that the header
buffer in the Quickpath Interface
outbound link 0 is full.

42H 02H UNC_QPI_TX_HEADE
R.BUSY.LINK_0

Number of cycles that the header
buffer in the Quickpath Interface
outbound link 0 is busy.

Table 19-10. Non-Architectural Performance Events In the Processor Uncore for
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-135

PERFORMANCE-MONITORING EVENTS
42H 04H UNC_QPI_TX_HEADE
R.FULL.LINK_1

Number of cycles that the header
buffer in the Quickpath Interface
outbound link 1 is full.

42H 08H UNC_QPI_TX_HEADE
R.BUSY.LINK_1

Number of cycles that the header
buffer in the Quickpath Interface
outbound link 1 is busy.

43H 01H UNC_QPI_RX_NO_PP
T_CREDIT.STALLS.LIN
K_0

Number of cycles that snoop packets
incoming to the Quickpath Interface
link 0 are stalled and not sent to the
GQ because the GQ Peer Probe
Tracker (PPT) does not have any
available entries.

43H 02H UNC_QPI_RX_NO_PP
T_CREDIT.STALLS.LIN
K_1

Number of cycles that snoop packets
incoming to the Quickpath Interface
link 1 are stalled and not sent to the
GQ because the GQ Peer Probe
Tracker (PPT) does not have any
available entries.

60H 01H UNC_DRAM_OPEN.C
H0

Counts number of DRAM Channel 0
open commands issued either for read
or write. To read or write data, the
referenced DRAM page must first be
opened.

60H 02H UNC_DRAM_OPEN.C
H1

Counts number of DRAM Channel 1
open commands issued either for read
or write. To read or write data, the
referenced DRAM page must first be
opened.

60H 04H UNC_DRAM_OPEN.C
H2

Counts number of DRAM Channel 2
open commands issued either for read
or write. To read or write data, the
referenced DRAM page must first be
opened.

61H 01H UNC_DRAM_PAGE_C
LOSE.CH0

DRAM channel 0 command issued to
CLOSE a page due to page idle timer
expiration. Closing a page is done by
issuing a precharge.

Table 19-10. Non-Architectural Performance Events In the Processor Uncore for
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
19-136 Vol. 3B

PERFORMANCE-MONITORING EVENTS
61H 02H UNC_DRAM_PAGE_C
LOSE.CH1

DRAM channel 1 command issued to
CLOSE a page due to page idle timer
expiration. Closing a page is done by
issuing a precharge.

61H 04H UNC_DRAM_PAGE_C
LOSE.CH2

DRAM channel 2 command issued to
CLOSE a page due to page idle timer
expiration. Closing a page is done by
issuing a precharge.

62H 01H UNC_DRAM_PAGE_M
ISS.CH0

Counts the number of precharges
(PRE) that were issued to DRAM
channel 0 because there was a page
miss. A page miss refers to a situation
in which a page is currently open and
another page from the same bank
needs to be opened. The new page
experiences a page miss. Closing of
the old page is done by issuing a
precharge.

62H 02H UNC_DRAM_PAGE_M
ISS.CH1

Counts the number of precharges
(PRE) that were issued to DRAM
channel 1 because there was a page
miss. A page miss refers to a situation
in which a page is currently open and
another page from the same bank
needs to be opened. The new page
experiences a page miss. Closing of
the old page is done by issuing a
precharge.

62H 04H UNC_DRAM_PAGE_M
ISS.CH2

Counts the number of precharges
(PRE) that were issued to DRAM
channel 2 because there was a page
miss. A page miss refers to a situation
in which a page is currently open and
another page from the same bank
needs to be opened. The new page
experiences a page miss. Closing of
the old page is done by issuing a
precharge.

63H 01H UNC_DRAM_READ_C
AS.CH0

Counts the number of times a read
CAS command was issued on DRAM
channel 0.

Table 19-10. Non-Architectural Performance Events In the Processor Uncore for
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-137

PERFORMANCE-MONITORING EVENTS
63H 02H UNC_DRAM_READ_C
AS.AUTOPRE_CH0

Counts the number of times a read
CAS command was issued on DRAM
channel 0 where the command issued
used the auto-precharge (auto page
close) mode.

63H 04H UNC_DRAM_READ_C
AS.CH1

Counts the number of times a read
CAS command was issued on DRAM
channel 1.

63H 08H UNC_DRAM_READ_C
AS.AUTOPRE_CH1

Counts the number of times a read
CAS command was issued on DRAM
channel 1 where the command issued
used the auto-precharge (auto page
close) mode.

63H 10H UNC_DRAM_READ_C
AS.CH2

Counts the number of times a read
CAS command was issued on DRAM
channel 2.

63H 20H UNC_DRAM_READ_C
AS.AUTOPRE_CH2

Counts the number of times a read
CAS command was issued on DRAM
channel 2 where the command issued
used the auto-precharge (auto page
close) mode.

64H 01H UNC_DRAM_WRITE_
CAS.CH0

Counts the number of times a write
CAS command was issued on DRAM
channel 0.

64H 02H UNC_DRAM_WRITE_
CAS.AUTOPRE_CH0

Counts the number of times a write
CAS command was issued on DRAM
channel 0 where the command issued
used the auto-precharge (auto page
close) mode.

64H 04H UNC_DRAM_WRITE_
CAS.CH1

Counts the number of times a write
CAS command was issued on DRAM
channel 1.

64H 08H UNC_DRAM_WRITE_
CAS.AUTOPRE_CH1

Counts the number of times a write
CAS command was issued on DRAM
channel 1 where the command issued
used the auto-precharge (auto page
close) mode.

Table 19-10. Non-Architectural Performance Events In the Processor Uncore for
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
19-138 Vol. 3B

PERFORMANCE-MONITORING EVENTS
64H 10H UNC_DRAM_WRITE_
CAS.CH2

Counts the number of times a write
CAS command was issued on DRAM
channel 2.

64H 20H UNC_DRAM_WRITE_
CAS.AUTOPRE_CH2

Counts the number of times a write
CAS command was issued on DRAM
channel 2 where the command issued
used the auto-precharge (auto page
close) mode.

65H 01H UNC_DRAM_REFRES
H.CH0

Counts number of DRAM channel 0
refresh commands. DRAM loses data
content over time. In order to keep
correct data content, the data values
have to be refreshed periodically.

65H 02H UNC_DRAM_REFRES
H.CH1

Counts number of DRAM channel 1
refresh commands. DRAM loses data
content over time. In order to keep
correct data content, the data values
have to be refreshed periodically.

65H 04H UNC_DRAM_REFRES
H.CH2

Counts number of DRAM channel 2
refresh commands. DRAM loses data
content over time. In order to keep
correct data content, the data values
have to be refreshed periodically.

66H 01H UNC_DRAM_PRE_AL
L.CH0

Counts number of DRAM Channel 0
precharge-all (PREALL) commands
that close all open pages in a rank.
PREALL is issued when the DRAM
needs to be refreshed or needs to go
into a power down mode.

66H 02H UNC_DRAM_PRE_AL
L.CH1

Counts number of DRAM Channel 1
precharge-all (PREALL) commands
that close all open pages in a rank.
PREALL is issued when the DRAM
needs to be refreshed or needs to go
into a power down mode.

Table 19-10. Non-Architectural Performance Events In the Processor Uncore for
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-139

PERFORMANCE-MONITORING EVENTS
66H 04H UNC_DRAM_PRE_AL
L.CH2

Counts number of DRAM Channel 2
precharge-all (PREALL) commands
that close all open pages in a rank.
PREALL is issued when the DRAM
needs to be refreshed or needs to go
into a power down mode.

67H 01H UNC_DRAM_THERM
AL_THROTTLED

Uncore cycles DRAM was throttled
due to its temperature being above
the thermal throttling threshold.

80H 01H UNC_THERMAL_THR
OTTLING_TEMP.CORE
_0

Cycles that the PCU records that core
0 is above the thermal throttling
threshold temperature.

80H 02H UNC_THERMAL_THR
OTTLING_TEMP.CORE
_1

Cycles that the PCU records that core
1 is above the thermal throttling
threshold temperature.

80H 04H UNC_THERMAL_THR
OTTLING_TEMP.CORE
_2

Cycles that the PCU records that core
2 is above the thermal throttling
threshold temperature.

80H 08H UNC_THERMAL_THR
OTTLING_TEMP.CORE
_3

Cycles that the PCU records that core
3 is above the thermal throttling
threshold temperature.

81H 01H UNC_THERMAL_THR
OTTLED_TEMP.CORE
_0

Cycles that the PCU records that core
0 is in the power throttled state due
to core’s temperature being above the
thermal throttling threshold.

81H 02H UNC_THERMAL_THR
OTTLED_TEMP.CORE
_1

Cycles that the PCU records that core
1 is in the power throttled state due
to core’s temperature being above the
thermal throttling threshold.

81H 04H UNC_THERMAL_THR
OTTLED_TEMP.CORE
_2

Cycles that the PCU records that core
2 is in the power throttled state due
to core’s temperature being above the
thermal throttling threshold.

81H 08H UNC_THERMAL_THR
OTTLED_TEMP.CORE
_3

Cycles that the PCU records that core
3 is in the power throttled state due
to core’s temperature being above the
thermal throttling threshold.

Table 19-10. Non-Architectural Performance Events In the Processor Uncore for
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
19-140 Vol. 3B

PERFORMANCE-MONITORING EVENTS
82H 01H UNC_PROCHOT_ASS
ERTION

Number of system assertions of
PROCHOT indicating the entire
processor has exceeded the thermal
limit.

83H 01H UNC_THERMAL_THR
OTTLING_PROCHOT.C
ORE_0

Cycles that the PCU records that core
0 is a low power state due to the
system asserting PROCHOT the entire
processor has exceeded the thermal
limit.

83H 02H UNC_THERMAL_THR
OTTLING_PROCHOT.C
ORE_1

Cycles that the PCU records that core
1 is a low power state due to the
system asserting PROCHOT the entire
processor has exceeded the thermal
limit.

83H 04H UNC_THERMAL_THR
OTTLING_PROCHOT.C
ORE_2

Cycles that the PCU records that core
2 is a low power state due to the
system asserting PROCHOT the entire
processor has exceeded the thermal
limit.

83H 08H UNC_THERMAL_THR
OTTLING_PROCHOT.C
ORE_3

Cycles that the PCU records that core
3 is a low power state due to the
system asserting PROCHOT the entire
processor has exceeded the thermal
limit.

84H 01H UNC_TURBO_MODE.
CORE_0

Uncore cycles that core 0 is operating
in turbo mode.

84H 02H UNC_TURBO_MODE.
CORE_1

Uncore cycles that core 1 is operating
in turbo mode.

84H 04H UNC_TURBO_MODE.
CORE_2

Uncore cycles that core 2 is operating
in turbo mode.

84H 08H UNC_TURBO_MODE.
CORE_3

Uncore cycles that core 3 is operating
in turbo mode.

85H 02H UNC_CYCLES_UNHAL
TED_L3_FLL_ENABL
E

Uncore cycles that at least one core is
unhalted and all L3 ways are enabled.

86H 01H UNC_CYCLES_UNHAL
TED_L3_FLL_DISABL
E

Uncore cycles that at least one core is
unhalted and all L3 ways are disabled.

Table 19-10. Non-Architectural Performance Events In the Processor Uncore for
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B 19-141

PERFORMANCE-MONITORING EVENTS
19.6 PERFORMANCE MONITORING EVENTS FOR
INTEL® XEON® PROCESSOR 5200, 5400 SERIES
AND INTEL® CORE™2 EXTREME PROCESSORS QX
9000 SERIES

Processors based on the Enhanced Intel Core microarchitecture support the architec-
tural and non-architectural performance-monitoring events listed in Table 19-1 and
Table 19-13. In addition, they also support the following non-architectural perfor-
mance-monitoring events listed in Table 19-11. Fixed counters support the architec-
ture events defined in Table 19-12.

19.7 PERFORMANCE MONITORING EVENTS FOR
INTEL® XEON® PROCESSOR 3000, 3200, 5100,
5300 SERIES AND INTEL® CORE™2 DUO
PROCESSORS

Processors based on the Intel Core microarchitecture support architectural and non-
architectural performance-monitoring events.

Fixed-function performance counters are introduced first on processors based on
Intel Core microarchitecture. Table 19-12 lists pre-defined performance events that
can be counted using fixed-function performance counters.

Table 19-11. Non-Architectural Performance Events for Processors Based on
Enhanced Intel Core Microarchitecture

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

C0H 08H INST_RETIRED.VM_H
OST

Instruction retired while in VMX
root operations.

D2H 10H RAT_STAALS.OTHER
_SERIALIZATION_ST
ALLS

This events counts the number of
stalls due to other RAT resource
serialization not counted by Umask
value 0FH.
19-142 Vol. 3B

PERFORMANCE-MONITORING EVENTS
Table 19-13 lists general-purpose non-architectural performance-monitoring events
supported in processors based on Intel Core microarchitecture. For convenience,

Table 19-12. Fixed-Function Performance Counter
and Pre-defined Performance Events

Fixed-Function
Performance
Counter Address

Event Mask
Mnemonic Description

MSR_PERF_FIXED_
CTR0/IA32_PERF_FIX
ED_CTR0

309H Inst_Retired.Any This event counts the number of
instructions that retire execution. For
instructions that consist of multiple micro-
ops, this event counts the retirement of
the last micro-op of the instruction. The
counter continue counting during
hardware interrupts, traps, and inside
interrupt handlers.

MSR_PERF_FIXED_
CTR1/IA32_PERF_FIX
ED_CTR1

30AH CPU_CLK_UNHALT
ED.CORE

This event counts the number of core
cycles while the core is not in a halt state.
The core enters the halt state when it is
running the HLT instruction. This event is a
component in many key event ratios.

The core frequency may change from time
to time due to transitions associated with
Enhanced Intel SpeedStep Technology or
TM2. For this reason this event may have
a changing ratio with regards to time.

When the core frequency is constant, this
event can approximate elapsed time while
the core was not in halt state.

MSR_PERF_FIXED_
CTR2/IA32_PERF_FIX
ED_CTR2

30BH CPU_CLK_UNHALT
ED.REF

This event counts the number of
reference cycles when the core is not in a
halt state and not in a TM stop-clock state.
The core enters the halt state when it is
running the HLT instruction or the MWAIT
instruction.

This event is not affected by core
frequency changes (e.g., P states) but
counts at the same frequency as the time
stamp counter. This event can
approximate elapsed time while the core
was not in halt state and not in a TM stop-
clock state.

This event has a constant ratio with the
CPU_CLK_UNHALTED.BUS event.
Vol. 3B 19-143

PERFORMANCE-MONITORING EVENTS
Table 19-13 also includes architectural events and describes minor model-specific
behavior where applicable. Software must use a general-purpose performance
counter to count events listed in Table 19-13.

Table 19-13. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture

Event
Num

Umask
Value Event Name Definition

Description and
Comment

03H 02H LOAD_BLOCK.STA Loads blocked
by a preceding
store with
unknown
address

This event indicates that loads are blocked
by preceding stores. A load is blocked
when there is a preceding store to an
address that is not yet calculated. The
number of events is greater or equal to
the number of load operations that were
blocked.

If the load and the store are always to
different addresses, check why the
memory disambiguation mechanism is not
working. To avoid such blocks, increase the
distance between the store and the
following load so that the store address is
known at the time the load is dispatched.

03H 04H LOAD_BLOCK.STD Loads blocked
by a preceding
store with
unknown data

This event indicates that loads are blocked
by preceding stores. A load is blocked
when there is a preceding store to the
same address and the stored data value is
not yet known. The number of events is
greater or equal to the number of load
operations that were blocked.

To avoid such blocks, increase the distance
between the store and the dependant
load, so that the store data is known at
the time the load is dispatched.

03H 08H LOAD_BLOCK.
OVERLAP_STORE

Loads that
partially
overlap an
earlier store, or
4-Kbyte aliased
with a previous
store

This event indicates that loads are blocked
due to a variety of reasons. Some of the
triggers for this event are when a load is
blocked by a preceding store, in one of the
following:

• Some of the loaded byte locations are
written by the preceding store and
some are not.

• The load is from bytes written by the
preceding store, the store is aligned to
its size and either:
19-144 Vol. 3B

PERFORMANCE-MONITORING EVENTS
• The load’s data size is one or two bytes
and it is not aligned to the store.

• The load’s data size is of four or eight
bytes and the load is misaligned.

• The load is from bytes written by the
preceding store, the store is misaligned
and the load is not aligned on the
beginning of the store.

• The load is split over an eight byte
boundary (excluding 16-byte loads).

• The load and store have the same
offset relative to the beginning of
different 4-KByte pages. This case is
also called 4-KByte aliasing.

• In all these cases the load is blocked
until after the blocking store retires and
the stored data is committed to the
cache hierarchy.

03H 10H LOAD_BLOCK.
UNTIL_RETIRE

Loads blocked
until retirement

This event indicates that load operations
were blocked until retirement. The number
of events is greater or equal to the
number of load operations that were
blocked.
This includes mainly uncacheable loads
and split loads (loads that cross the cache
line boundary) but may include other cases
where loads are blocked until retirement.

Table 19-13. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3B 19-145

PERFORMANCE-MONITORING EVENTS
03H 20H LOAD_BLOCK.L1D Loads blocked
by the L1 data
cache

This event indicates that loads are blocked
due to one or more reasons. Some
triggers for this event are:

• The number of L1 data cache misses
exceeds the maximum number of
outstanding misses supported by the
processor. This includes misses
generated as result of demand fetches,
software prefetches or hardware
prefetches.

• Cache line split loads.
• Partial reads, such as reads to un-

cacheable memory, I/O instructions and
more.

• A locked load operation is in progress.
The number of events is greater or
equal to the number of load operations
that were blocked.

04H 01H SB_DRAIN_
CYCLES

Cycles while
stores are
blocked due to
store buffer
drain

This event counts every cycle during
which the store buffer is draining. This
includes:

• Serializing operations such as CPUID
• Synchronizing operations such as XCHG
• Interrupt acknowledgment
• Other conditions, such as cache flushing

04H 02H STORE_BLOCK.
ORDER

Cycles while
store is waiting
for a preceding
store to be
globally
observed

This event counts the total duration, in
number of cycles, which stores are waiting
for a preceding stored cache line to be
observed by other cores.
This situation happens as a result of the
strong store ordering behavior, as defined
in “Memory Ordering,” Chapter 8, Intel® 64
and IA-32 Architectures Software
Developer’s Manual, Volume 3A.

The stall may occur and be noticeable if
there are many cases when a store either
misses the L1 data cache or hits a cache
line in the Shared state. If the store
requires a bus transaction to read the
cache line then the stall ends when snoop
response for the bus transaction arrives.

Table 19-13. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
19-146 Vol. 3B

PERFORMANCE-MONITORING EVENTS
04H 08H STORE_BLOCK.
SNOOP

A store is
blocked due to
a conflict with
an external or
internal snoop.

This event counts the number of cycles
the store port was used for snooping the
L1 data cache and a store was stalled by
the snoop. The store is typically
resubmitted one cycle later.

06H 00H SEGMENT_REG_
LOADS

Number of
segment
register loads

This event counts the number of segment
register load operations. Instructions that
load new values into segment registers
cause a penalty.

This event indicates performance issues in
16-bit code. If this event occurs
frequently, it may be useful to calculate
the number of instructions retired per
segment register load. If the resulting
calculation is low (on average a small
number of instructions are executed
between segment register loads), then the
code’s segment register usage should be
optimized.

As a result of branch misprediction, this
event is speculative and may include
segment register loads that do not
actually occur. However, most segment
register loads are internally serialized and
such speculative effects are minimized.

07H 00H SSE_PRE_EXEC.
NTA

Streaming SIMD
Extensions
(SSE) Prefetch
NTA
instructions
executed

This event counts the number of times the
SSE instruction prefetchNTA is executed.

This instruction prefetches the data to the
L1 data cache.

07H 01H SSE_PRE_EXEC.L1 Streaming SIMD
Extensions
(SSE)
PrefetchT0
instructions
executed

This event counts the number of times the
SSE instruction prefetchT0 is executed.
This instruction prefetches the data to the
L1 data cache and L2 cache.

Table 19-13. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3B 19-147

PERFORMANCE-MONITORING EVENTS
07H 02H SSE_PRE_EXEC.L2 Streaming
SIMD
Extensions
(SSE)
PrefetchT1 and
PrefetchT2
instructions
executed

This event counts the number of times the
SSE instructions prefetchT1 and
prefetchT2 are executed. These
instructions prefetch the data to the L2
cache.

07H 03H SSE_PRE_
EXEC.STORES

Streaming SIMD
Extensions
(SSE) Weakly-
ordered store
instructions
executed

This event counts the number of times
SSE non-temporal store instructions are
executed.

08H 01H DTLB_MISSES.
ANY

Memory
accesses that
missed the
DTLB

This event counts the number of Data
Table Lookaside Buffer (DTLB) misses. The
count includes misses detected as a result
of speculative accesses.

Typically a high count for this event
indicates that the code accesses a large
number of data pages.

08H 02H DTLB_MISSES
.MISS_LD

DTLB misses
due to load
operations

This event counts the number of Data
Table Lookaside Buffer (DTLB) misses due
to load operations.

This count includes misses detected as a
result of speculative accesses.

08H 04H DTLB_MISSES.L0_
MISS_LD

L0 DTLB misses
due to load
operations

This event counts the number of level 0
Data Table Lookaside Buffer (DTLB0)
misses due to load operations.

This count includes misses detected as a
result of speculative accesses. Loads that
miss that DTLB0 and hit the DTLB1 can
incur two-cycle penalty.

Table 19-13. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
19-148 Vol. 3B

PERFORMANCE-MONITORING EVENTS
08H 08H DTLB_MISSES.
MISS_ST

TLB misses due
to store
operations

This event counts the number of Data
Table Lookaside Buffer (DTLB) misses due
to store operations.

This count includes misses detected as a
result of speculative accesses. Address
translation for store operations is
performed in the DTLB1.

09H 01H MEMORY_
DISAMBIGUATION.
RESET

Memory
disambiguation
reset cycles

This event counts the number of cycles
during which memory disambiguation
misprediction occurs. As a result the
execution pipeline is cleaned and
execution of the mispredicted load
instruction and all succeeding instructions
restarts.

This event occurs when the data address
accessed by a load instruction, collides
infrequently with preceding stores, but
usually there is no collision. It happens
rarely, and may have a penalty of about 20
cycles.

09H 02H MEMORY_DISAMBI
GUATION.SUCCESS

Number of
loads
successfully
disambiguated.

This event counts the number of load
operations that were successfully
disambiguated. Loads are preceded by a
store with an unknown address, but they
are not blocked.

0CH 01H PAGE_WALKS
.COUNT

Number of
page-walks
executed

This event counts the number of page-
walks executed due to either a DTLB or
ITLB miss.

The page walk duration,
PAGE_WALKS.CYCLES, divided by number
of page walks is the average duration of a
page walk. The average can hint whether
most of the page-walks are satisfied by
the caches or cause an L2 cache miss.

Table 19-13. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3B 19-149

PERFORMANCE-MONITORING EVENTS
0CH 02H PAGE_WALKS.
CYCLES

Duration of
page-walks in
core cycles

This event counts the duration of page-
walks in core cycles. The paging mode in
use typically affects the duration of page
walks.

Page walk duration divided by number of
page walks is the average duration of
page-walks. The average can hint at
whether most of the page-walks are
satisfied by the caches or cause an L2
cache miss.

10H 00H FP_COMP_OPS
_EXE

Floating point
computational
micro-ops
executed

This event counts the number of floating
point computational micro-ops executed.

Use IA32_PMC0 only.

11H 00H FP_ASSIST Floating point
assists

This event counts the number of floating
point operations executed that required
micro-code assist intervention. Assists are
required in the following cases:

• Streaming SIMD Extensions (SSE)
instructions:

• Denormal input when the DAZ
(Denormals Are Zeros) flag is off

• Underflow result when the FTZ (Flush
To Zero) flag is off

• X87 instructions:
• NaN or denormal are loaded to a

register or used as input from memory
• Division by 0
• Underflow output
Use IA32_PMC1 only.

12H 00H MUL Multiply
operations
executed

This event counts the number of multiply
operations executed. This includes integer
as well as floating point multiply
operations.

Use IA32_PMC1 only.

13H 00H DIV Divide
operations
executed

This event counts the number of divide
operations executed. This includes integer
divides, floating point divides and square-
root operations executed.

Use IA32_PMC1 only.

Table 19-13. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
19-150 Vol. 3B

PERFORMANCE-MONITORING EVENTS
14H 00H CYCLES_DIV
_BUSY

Cycles the
divider busy

This event counts the number of cycles
the divider is busy executing divide or
square root operations. The divide can be
integer, X87 or Streaming SIMD
Extensions (SSE). The square root
operation can be either X87 or SSE.

Use IA32_PMC0 only.

18H 00H IDLE_DURING
_DIV

Cycles the
divider is busy
and all other
execution units
are idle.

This event counts the number of cycles
the divider is busy (with a divide or a
square root operation) and no other
execution unit or load operation is in
progress.

Load operations are assumed to hit the L1
data cache. This event considers only
micro-ops dispatched after the divider
started operating.

Use IA32_PMC0 only.

19H 00H DELAYED_
BYPASS.FP

Delayed bypass
to FP operation

This event counts the number of times
floating point operations use data
immediately after the data was generated
by a non-floating point execution unit.
Such cases result in one penalty cycle due
to data bypass between the units.

Use IA32_PMC1 only.

19H 01H DELAYED_
BYPASS.SIMD

Delayed bypass
to SIMD
operation

This event counts the number of times
SIMD operations use data immediately
after the data was generated by a non-
SIMD execution unit. Such cases result in
one penalty cycle due to data bypass
between the units.

Use IA32_PMC1 only.

Table 19-13. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3B 19-151

PERFORMANCE-MONITORING EVENTS
19H 02H DELAYED_
BYPASS.LOAD

Delayed bypass
to load
operation

This event counts the number of delayed
bypass penalty cycles that a load
operation incurred.

When load operations use data
immediately after the data was generated
by an integer execution unit, they may
(pending on certain dynamic internal
conditions) incur one penalty cycle due to
delayed data bypass between the units.

Use IA32_PMC1 only.

21H See
Table
18-2

L2_ADS.(Core) Cycles L2
address bus is
in use

This event counts the number of cycles
the L2 address bus is being used for
accesses to the L2 cache or bus queue. It
can count occurrences for this core or both
cores.

23H See
Table
18-2

L2_DBUS_BUSY
_RD.(Core)

Cycles the L2
transfers data
to the core

This event counts the number of cycles
during which the L2 data bus is busy
transferring data from the L2 cache to the
core. It counts for all L1 cache misses (data
and instruction) that hit the L2 cache.

This event can count occurrences for this
core or both cores.

24H Com-
bined
mask
from
Table
18-2
and
Table
18-4

L2_LINES_IN.
(Core, Prefetch)

L2 cache
misses

This event counts the number of cache
lines allocated in the L2 cache. Cache lines
are allocated in the L2 cache as a result of
requests from the L1 data and instruction
caches and the L2 hardware prefetchers
to cache lines that are missing in the L2
cache.

This event can count occurrences for this
core or both cores. It can also count
demand requests and L2 hardware
prefetch requests together or separately.

25H See
Table
18-2

L2_M_LINES_IN.
(Core)

L2 cache line
modifications

This event counts whenever a modified
cache line is written back from the L1 data
cache to the L2 cache.

This event can count occurrences for this
core or both cores.

Table 19-13. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
19-152 Vol. 3B

PERFORMANCE-MONITORING EVENTS
26H See
Table
18-2
and
Table
18-4

L2_LINES_OUT.
(Core, Prefetch)

L2 cache lines
evicted

This event counts the number of L2 cache
lines evicted.

This event can count occurrences for this
core or both cores. It can also count
evictions due to demand requests and L2
hardware prefetch requests together or
separately.

27H See
Table
18-2
and
Table
18-4

L2_M_LINES_OUT.(
Core, Prefetch)

Modified lines
evicted from
the L2 cache

This event counts the number of L2
modified cache lines evicted. These lines
are written back to memory unless they
also exist in a modified-state in one of the
L1 data caches.

This event can count occurrences for this
core or both cores. It can also count
evictions due to demand requests and L2
hardware prefetch requests together or
separately.

28H Com-
bined
mask
from
Table
18-2
and
Table
18-5

L2_IFETCH.(Core,
Cache Line State)

L2 cacheable
instruction
fetch requests

This event counts the number of
instruction cache line requests from the
IFU. It does not include fetch requests
from uncacheable memory. It does not
include ITLB miss accesses.

This event can count occurrences for this
core or both cores. It can also count
accesses to cache lines at different MESI
states.

29H Combin
ed mask
from
Table
18-2,
Table
18-4,
and
Table
18-5

L2_LD.(Core,
Prefetch, Cache
Line State)

L2 cache reads This event counts L2 cache read requests
coming from the L1 data cache and L2
prefetchers.

The event can count occurrences:

• for this core or both cores
• due to demand requests and L2

hardware prefetch requests together or
separately

• of accesses to cache lines at different
MESI states

Table 19-13. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3B 19-153

PERFORMANCE-MONITORING EVENTS
2AH See
Table
18-2
and
Table
18-5

L2_ST.(Core, Cache
Line State)

L2 store
requests

This event counts all store operations that
miss the L1 data cache and request the
data from the L2 cache.

The event can count occurrences for this
core or both cores. It can also count
accesses to cache lines at different MESI
states.

2BH See
Table
18-2
and
Table
18-5

L2_LOCK.(Core,
Cache Line State)

L2 locked
accesses

This event counts all locked accesses to
cache lines that miss the L1 data cache.

The event can count occurrences for this
core or both cores. It can also count
accesses to cache lines at different MESI
states.

2EH See
Table
18-2,
Table
18-4,
and
Table
18-5

L2_RQSTS.(Core,
Prefetch, Cache
Line State)

L2 cache
requests

This event counts all completed L2 cache
requests. This includes L1 data cache
reads, writes, and locked accesses, L1 data
prefetch requests, instruction fetches, and
all L2 hardware prefetch requests.

This event can count occurrences:

• for this core or both cores.
• due to demand requests and L2

hardware prefetch requests together,
or separately

• of accesses to cache lines at different
MESI states

2EH 41H L2_RQSTS.SELF.
DEMAND.I_STATE

L2 cache
demand
requests from
this core that
missed the L2

This event counts all completed L2 cache
demand requests from this core that miss
the L2 cache. This includes L1 data cache
reads, writes, and locked accesses, L1 data
prefetch requests, and instruction fetches.

This is an architectural performance event.

2EH 4FH L2_RQSTS.SELF.
DEMAND.MESI

L2 cache
demand
requests from
this core

This event counts all completed L2 cache
demand requests from this core. This
includes L1 data cache reads, writes, and
locked accesses, L1 data prefetch
requests, and instruction fetches.

This is an architectural performance event.

Table 19-13. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
19-154 Vol. 3B

PERFORMANCE-MONITORING EVENTS
30H See
Table
18-2,
Table
18-4,
and
Table
18-5

L2_REJECT_BUSQ.(
Core, Prefetch,
Cache Line State)

Rejected L2
cache requests

This event indicates that a pending L2
cache request that requires a bus
transaction is delayed from moving to the
bus queue. Some of the reasons for this
event are:

• The bus queue is full.
• The bus queue already holds an entry

for a cache line in the same set.
The number of events is greater or equal
to the number of requests that were
rejected.

• for this core or both cores.
• due to demand requests and L2

hardware prefetch requests together,
or separately.

• of accesses to cache lines at different
MESI states.

32H See
Table
18-2

L2_NO_REQ.(Core) Cycles no L2
cache requests
are pending

This event counts the number of cycles
that no L2 cache requests were pending
from a core. When using the BOTH_CORE
modifier, the event counts only if none of
the cores have a pending request. The
event counts also when one core is halted
and the other is not halted.

The event can count occurrences for this
core or both cores.

3AH 00H EIST_TRANS Number of
Enhanced Intel
SpeedStep
Technology
(EIST)
transitions

This event counts the number of
transitions that include a frequency
change, either with or without voltage
change. This includes Enhanced Intel
SpeedStep Technology (EIST) and TM2
transitions.

The event is incremented only while the
counting core is in C0 state. Since
transitions to higher-numbered CxE states
and TM2 transitions include a frequency
change or voltage transition, the event is
incremented accordingly.

Table 19-13. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3B 19-155

PERFORMANCE-MONITORING EVENTS
3BH C0H THERMAL_TRIP Number of
thermal trips

This event counts the number of thermal
trips. A thermal trip occurs whenever the
processor temperature exceeds the
thermal trip threshold temperature.

Following a thermal trip, the processor
automatically reduces frequency and
voltage. The processor checks the
temperature every millisecond and returns
to normal when the temperature falls
below the thermal trip threshold
temperature.

3CH 00H CPU_CLK_
UNHALTED.
CORE_P

Core cycles
when core is
not halted

This event counts the number of core
cycles while the core is not in a halt state.
The core enters the halt state when it is
running the HLT instruction. This event is a
component in many key event ratios.

The core frequency may change due to
transitions associated with Enhanced Intel
SpeedStep Technology or TM2. For this
reason, this event may have a changing
ratio in regard to time.

When the core frequency is constant, this
event can give approximate elapsed time
while the core not in halt state.

This is an architectural performance event.

3CH 01H CPU_CLK_
UNHALTED.BUS

Bus cycles
when core is
not halted

This event counts the number of bus
cycles while the core is not in the halt
state. This event can give a measurement
of the elapsed time while the core was not
in the halt state. The core enters the halt
state when it is running the HLT
instruction.

The event also has a constant ratio with
CPU_CLK_UNHALTED.REF event, which is
the maximum bus to processor frequency
ratio.

Non-halted bus cycles are a component in
many key event ratios.

Table 19-13. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
19-156 Vol. 3B

PERFORMANCE-MONITORING EVENTS
3CH 02H CPU_CLK_
UNHALTED.NO
_OTHER

Bus cycles
when core is
active and the
other is halted

This event counts the number of bus
cycles during which the core remains non-
halted and the other core on the processor
is halted.

This event can be used to determine the
amount of parallelism exploited by an
application or a system. Divide this event
count by the bus frequency to determine
the amount of time that only one core was
in use.

40H See
Table
18-5

L1D_CACHE_LD.
(Cache Line State)

L1 cacheable
data reads

This event counts the number of data
reads from cacheable memory. Locked
reads are not counted.

41H See
Table
18-5

L1D_CACHE_ST.
(Cache Line State)

L1 cacheable
data writes

This event counts the number of data
writes to cacheable memory. Locked
writes are not counted.

42H See
Table
18-5

L1D_CACHE_
LOCK.(Cache Line
State)

L1 data
cacheable
locked reads

This event counts the number of locked
data reads from cacheable memory.

42H 10H L1D_CACHE_
LOCK_DURATION

Duration of L1
data cacheable
locked
operation

This event counts the number of cycles
during which any cache line is locked by
any locking instruction.

Locking happens at retirement and
therefore the event does not occur for
instructions that are speculatively
executed. Locking duration is shorter than
locked instruction execution duration.

43H 01H L1D_ALL_REF All references
to the L1 data
cache

This event counts all references to the L1
data cache, including all loads and stores
with any memory types.

The event counts memory accesses only
when they are actually performed. For
example, a load blocked by unknown store
address and later performed is only
counted once.

The event includes non-cacheable
accesses, such as I/O accesses.

Table 19-13. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3B 19-157

PERFORMANCE-MONITORING EVENTS
43H 02H L1D_ALL_
CACHE_REF

L1 Data
cacheable
reads and
writes

This event counts the number of data
reads and writes from cacheable memory,
including locked operations.

This event is a sum of:

• L1D_CACHE_LD.MESI
• L1D_CACHE_ST.MESI
• L1D_CACHE_LOCK.MESI

45H 0FH L1D_REPL Cache lines
allocated in the
L1 data cache

This event counts the number of lines
brought into the L1 data cache.

46H 00H L1D_M_REPL Modified cache
lines allocated
in the L1 data
cache

This event counts the number of modified
lines brought into the L1 data cache.

47H 00H L1D_M_EVICT Modified cache
lines evicted
from the L1
data cache

This event counts the number of modified
lines evicted from the L1 data cache,
whether due to replacement or by snoop
HITM intervention.

48H 00H L1D_PEND_
MISS

Total number of
outstanding L1
data cache
misses at any
cycle

This event counts the number of
outstanding L1 data cache misses at any
cycle. An L1 data cache miss is
outstanding from the cycle on which the
miss is determined until the first chunk of
data is available. This event counts:

• all cacheable demand requests
• L1 data cache hardware prefetch

requests
• requests to write through memory
• requests to write combine memory
Uncacheable requests are not counted.
The count of this event divided by the
number of L1 data cache misses,
L1D_REPL, is the average duration in core
cycles of an L1 data cache miss.

49H 01H L1D_SPLIT.LOADS Cache line split
loads from the
L1 data cache

This event counts the number of load
operations that span two cache lines. Such
load operations are also called split loads.
Split load operations are executed at
retirement.

Table 19-13. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
19-158 Vol. 3B

PERFORMANCE-MONITORING EVENTS
49H 02H L1D_SPLIT.
STORES

Cache line split
stores to the
L1 data cache

This event counts the number of store
operations that span two cache lines.

4BH 00H SSE_PRE_
MISS.NTA

Streaming SIMD
Extensions
(SSE) Prefetch
NTA
instructions
missing all
cache levels

This event counts the number of times the
SSE instructions prefetchNTA were
executed and missed all cache levels.

Due to speculation an executed instruction
might not retire. This instruction
prefetches the data to the L1 data cache.

4BH 01H SSE_PRE_
MISS.L1

Streaming SIMD
Extensions
(SSE)
PrefetchT0
instructions
missing all
cache levels

This event counts the number of times the
SSE instructions prefetchT0 were
executed and missed all cache levels.

Due to speculation executed instruction
might not retire. The prefetchT0
instruction prefetches data to the L2
cache and L1 data cache.

4BH 02H SSE_PRE_
MISS.L2

Streaming SIMD
Extensions
(SSE)
PrefetchT1 and
PrefetchT2
instructions
missing all
cache levels

This event counts the number of times the
SSE instructions prefetchT1 and
prefetchT2 were executed and missed all
cache levels.

Due to speculation, an executed
instruction might not retire. The
prefetchT1 and PrefetchNT2 instructions
prefetch data to the L2 cache.

4CH 00H LOAD_HIT_PRE Load
operations
conflicting with
a software
prefetch to the
same address

This event counts load operations sent to
the L1 data cache while a previous
Streaming SIMD Extensions (SSE) prefetch
instruction to the same cache line has
started prefetching but has not yet
finished.

4EH 10H L1D_PREFETCH.
REQUESTS

L1 data cache
prefetch
requests

This event counts the number of times the
L1 data cache requested to prefetch a
data cache line. Requests can be rejected
when the L2 cache is busy and
resubmitted later or lost.

All requests are counted, including those
that are rejected.

Table 19-13. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3B 19-159

PERFORMANCE-MONITORING EVENTS
60H See
Table
18-2
and
Table
18-3

BUS_REQUEST_
OUTSTANDING.
(Core and Bus
Agents)

Outstanding
cacheable data
read bus
requests
duration

This event counts the number of pending
full cache line read transactions on the bus
occurring in each cycle. A read transaction
is pending from the cycle it is sent on the
bus until the full cache line is received by
the processor.

The event counts only full-line cacheable
read requests from either the L1 data
cache or the L2 prefetchers. It does not
count Read for Ownership transactions,
instruction byte fetch transactions, or any
other bus transaction.

61H See
Table
18-3.

BUS_BNR_DRV.
(Bus Agents)

Number of Bus
Not Ready
signals
asserted

This event counts the number of Bus Not
Ready (BNR) signals that the processor
asserts on the bus to suspend additional
bus requests by other bus agents.

A bus agent asserts the BNR signal when
the number of data and snoop
transactions is close to the maximum that
the bus can handle. To obtain the number
of bus cycles during which the BNR signal
is asserted, multiply the event count by
two.

While this signal is asserted, new
transactions cannot be submitted on the
bus. As a result, transaction latency may
have higher impact on program
performance.

Table 19-13. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
19-160 Vol. 3B

PERFORMANCE-MONITORING EVENTS
62H See
Table
18-3

BUS_DRDY_
CLOCKS.(Bus
Agents)

Bus cycles
when data is
sent on the bus

This event counts the number of bus
cycles during which the DRDY (Data
Ready) signal is asserted on the bus. The
DRDY signal is asserted when data is sent
on the bus. With the 'THIS_AGENT' mask
this event counts the number of bus
cycles during which this agent (the
processor) writes data on the bus back to
memory or to other bus agents. This
includes all explicit and implicit data
writebacks, as well as partial writes.

With the 'ALL_AGENTS' mask, this event
counts the number of bus cycles during
which any bus agent sends data on the
bus. This includes all data reads and writes
on the bus.

63H See
Table
18-2
and
Table
18-3

BUS_LOCK_
CLOCKS.(Core and
Bus Agents)

Bus cycles
when a LOCK
signal asserted

This event counts the number of bus
cycles, during which the LOCK signal is
asserted on the bus. A LOCK signal is
asserted when there is a locked memory
access, due to:

• uncacheable memory
• locked operation that spans two cache

lines
• page-walk from an uncacheable page

table
Bus locks have a very high performance
penalty and it is highly recommended to
avoid such accesses.

64H See
Table
18-2

BUS_DATA_
RCV.(Core)

Bus cycles
while processor
receives data

This event counts the number of bus
cycles during which the processor is busy
receiving data.

65H See
Table
18-2
and
Table
18-3

BUS_TRANS_BRD.(
Core and Bus
Agents)

Burst read bus
transactions

This event counts the number of burst
read transactions including:

• L1 data cache read misses (and L1 data
cache hardware prefetches)

• L2 hardware prefetches by the DPL and
L2 streamer

• IFU read misses of cacheable lines.
It does not include RFO transactions.

Table 19-13. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3B 19-161

PERFORMANCE-MONITORING EVENTS
66H See
Table
18-2
and
Table
18-3.

BUS_TRANS_RFO.(
Core and Bus
Agents)

RFO bus
transactions

This event counts the number of Read For
Ownership (RFO) bus transactions, due to
store operations that miss the L1 data
cache and the L2 cache. It also counts RFO
bus transactions due to locked operations.

67H See
Table
18-2
and
Table
18-3.

BUS_TRANS_WB.
(Core and Bus
Agents)

Explicit
writeback bus
transactions

This event counts all explicit writeback bus
transactions due to dirty line evictions. It
does not count implicit writebacks due to
invalidation by a snoop request.

68H See
Table
18-2
and
Table
18-3

BUS_TRANS_
IFETCH.(Core and
Bus Agents)

Instruction-
fetch bus
transactions

This event counts all instruction fetch full
cache line bus transactions.

69H See
Table
18-2
and
Table
18-3

BUS_TRANS_
INVAL.(Core and
Bus Agents)

Invalidate bus
transactions

This event counts all invalidate
transactions. Invalidate transactions are
generated when:

• A store operation hits a shared line in
the L2 cache.

• A full cache line write misses the L2
cache or hits a shared line in the L2
cache.

6AH See
Table
18-2
and
Table
18-3

BUS_TRANS_
PWR.(Core and Bus
Agents)

Partial write
bus transaction

This event counts partial write bus
transactions.

6BH See
Table
18-2
and
Table
18-3

BUS_TRANS
_P.(Core and Bus
Agents)

Partial bus
transactions

This event counts all (read and write)
partial bus transactions.

Table 19-13. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
19-162 Vol. 3B

PERFORMANCE-MONITORING EVENTS
6CH See
Table
18-2
and
Table
18-3

BUS_TRANS_IO.(C
ore and Bus
Agents)

IO bus
transactions

This event counts the number of
completed I/O bus transactions as a result
of IN and OUT instructions. The count does
not include memory mapped IO.

6DH See
Table
18-2
and
Table
18-3

BUS_TRANS_
DEF.(Core and Bus
Agents)

Deferred bus
transactions

This event counts the number of deferred
transactions.

6EH See
Table
18-2
and
Table
18-3

BUS_TRANS_
BURST.(Core and
Bus Agents)

Burst (full
cache-line) bus
transactions

This event counts burst (full cache line)
transactions including:

• Burst reads
• RFOs
• Explicit writebacks
• Write combine lines

6FH See
Table
18-2
and
Table
18-3

BUS_TRANS_
MEM.(Core and Bus
Agents)

Memory bus
transactions

This event counts all memory bus
transactions including:

• Burst transactions
• Partial reads and writes - invalidate

transactions
The BUS_TRANS_MEM count is the sum of
BUS_TRANS_BURST, BUS_TRANS_P and
BUS_TRANS_IVAL.

70H See
Table
18-2
and
Table
18-3

BUS_TRANS_
ANY.(Core and Bus
Agents)

All bus
transactions

This event counts all bus transactions. This
includes:

• Memory transactions
• IO transactions (non memory-mapped)
• Deferred transaction completion
• Other less frequent transactions, such

as interrupts

Table 19-13. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3B 19-163

PERFORMANCE-MONITORING EVENTS
77H See
Table
18-2
and
Table
18-6

EXT_SNOOP.
(Bus Agents, Snoop
Response)

External
snoops

This event counts the snoop responses to
bus transactions. Responses can be
counted separately by type and by bus
agent.

With the 'THIS_AGENT' mask, the event
counts snoop responses from this
processor to bus transactions sent by this
processor. With the 'ALL_AGENTS' mask
the event counts all snoop responses seen
on the bus.

78H See
Table
18-2
and
Table
18-7

CMP_SNOOP.(Core,
Snoop Type)

L1 data cache
snooped by
other core

This event counts the number of times the
L1 data cache is snooped for a cache line
that is needed by the other core in the
same processor. The cache line is either
missing in the L1 instruction or data
caches of the other core, or is available for
reading only and the other core wishes to
write the cache line.

The snoop operation may change the
cache line state. If the other core issued a
read request that hit this core in E state,
typically the state changes to S state in
this core. If the other core issued a read
for ownership request (due a write miss or
hit to S state) that hits this core's cache
line in E or S state, this typically results in
invalidation of the cache line in this core. If
the snoop hits a line in M state, the state is
changed at a later opportunity.

These snoops are performed through the
L1 data cache store port. Therefore,
frequent snoops may conflict with
extensive stores to the L1 data cache,
which may increase store latency and
impact performance.

7AH See
Table
18-3

BUS_HIT_DRV.

(Bus Agents)

HIT signal
asserted

This event counts the number of bus
cycles during which the processor drives
the HIT# pin to signal HIT snoop response.

Table 19-13. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
19-164 Vol. 3B

PERFORMANCE-MONITORING EVENTS
7BH See
Table
18-3

BUS_HITM_DRV.

(Bus Agents)

HITM signal
asserted

This event counts the number of bus
cycles during which the processor drives
the HITM# pin to signal HITM snoop
response.

7DH See
Table
18-2

BUSQ_EMPTY.

(Core)

Bus queue
empty

This event counts the number of cycles
during which the core did not have any
pending transactions in the bus queue. It
also counts when the core is halted and
the other core is not halted.

This event can count occurrences for this
core or both cores.

7EH See
Table
18-2
and
Table
18-3

SNOOP_STALL_
DRV.(Core and Bus
Agents)

Bus stalled for
snoops

This event counts the number of times
that the bus snoop stall signal is asserted.
To obtain the number of bus cycles during
which snoops on the bus are prohibited,
multiply the event count by two.

During the snoop stall cycles, no new bus
transactions requiring a snoop response
can be initiated on the bus. A bus agent
asserts a snoop stall signal if it cannot
response to a snoop request within three
bus cycles.

7FH See
Table
18-2

BUS_IO_WAIT.
(Core)

IO requests
waiting in the
bus queue

This event counts the number of core
cycles during which IO requests wait in the
bus queue. With the SELF modifier this
event counts IO requests per core.

With the BOTH_CORE modifier, this event
increments by one for any cycle for which
there is a request from either core.

80H 00H L1I_READS Instruction
fetches

This event counts all instruction fetches,
including uncacheable fetches that bypass
the Instruction Fetch Unit (IFU).

81H 00H L1I_MISSES Instruction
Fetch Unit
misses

This event counts all instruction fetches
that miss the Instruction Fetch Unit (IFU)
or produce memory requests. This
includes uncacheable fetches.

An instruction fetch miss is counted only
once and not once for every cycle it is
outstanding.

Table 19-13. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3B 19-165

PERFORMANCE-MONITORING EVENTS
82H 02H ITLB.SMALL_MISS ITLB small page
misses

This event counts the number of
instruction fetches from small pages that
miss the ITLB.

82H 10H ITLB.LARGE_MISS ITLB large page
misses

This event counts the number of
instruction fetches from large pages that
miss the ITLB.

82H 40H ITLB.FLUSH ITLB flushes This event counts the number of ITLB
flushes. This usually happens upon CR3 or
CR0 writes, which are executed by the
operating system during process switches.

82H 12H ITLB.MISSES ITLB misses This event counts the number of
instruction fetches from either small or
large pages that miss the ITLB.

83H 02H INST_QUEUE.FULL Cycles during
which the
instruction
queue is full

This event counts the number of cycles
during which the instruction queue is full.
In this situation, the core front-end stops
fetching more instructions. This is an
indication of very long stalls in the back-
end pipeline stages.

86H 00H CYCLES_L1I_
MEM_STALLED

Cycles during
which
instruction
fetches stalled

This event counts the number of cycles for
which an instruction fetch stalls, including
stalls due to any of the following reasons:

• instruction Fetch Unit cache misses
• instruction TLB misses
• instruction TLB faults

87H 00H ILD_STALL Instruction
Length Decoder
stall cycles due
to a length
changing prefix

This event counts the number of cycles
during which the instruction length
decoder uses the slow length decoder.
Usually, instruction length decoding is
done in one cycle. When the slow decoder
is used, instruction decoding requires 6
cycles.

Table 19-13. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
19-166 Vol. 3B

PERFORMANCE-MONITORING EVENTS
The slow decoder is used in the following
cases:

• operand override prefix (66H)
preceding an instruction with
immediate data

• address override prefix (67H) preceding
an instruction with a modr/m in real, big
real, 16-bit protected or 32-bit
protected modes

To avoid instruction length decoding stalls,
generate code using imm8 or imm32
values instead of imm16 values. If you
must use an imm16 value, store the value
in a register using “mov reg, imm32” and
use the register format of the instruction.

88H 00H BR_INST_EXEC Branch
instructions
executed

This event counts all executed branches
(not necessarily retired). This includes only
instructions and not micro-op branches.

Frequent branching is not necessarily a
major performance issue. However
frequent branch mispredictions may be a
problem.

89H 00H BR_MISSP_EXEC Mispredicted
branch
instructions
executed

This event counts the number of
mispredicted branch instructions that
were executed.

8AH 00H BR_BAC_
MISSP_EXEC

Branch
instructions
mispredicted at
decoding

This event counts the number of branch
instructions that were mispredicted at
decoding.

8BH 00H BR_CND_EXEC Conditional
branch
instructions
executed.

This event counts the number of
conditional branch instructions executed,
but not necessarily retired.

8CH 00H BR_CND_
MISSP_EXEC

Mispredicted
conditional
branch
instructions
executed

This event counts the number of
mispredicted conditional branch
instructions that were executed.

Table 19-13. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3B 19-167

PERFORMANCE-MONITORING EVENTS
8DH 00H BR_IND_EXEC Indirect branch
instructions
executed

This event counts the number of indirect
branch instructions that were executed.

8EH 00H BR_IND_MISSP
_EXEC

Mispredicted
indirect branch
instructions
executed

This event counts the number of
mispredicted indirect branch instructions
that were executed.

8FH 00H BR_RET_EXEC RET
instructions
executed

This event counts the number of RET
instructions that were executed.

90H 00H BR_RET_
MISSP_EXEC

Mispredicted
RET
instructions
executed

This event counts the number of
mispredicted RET instructions that were
executed.

91H 00H BR_RET_BAC_
MISSP_EXEC

RET
instructions
executed
mispredicted at
decoding

This event counts the number of RET
instructions that were executed and were
mispredicted at decoding.

92H 00H BR_CALL_EXEC CALL
instructions
executed

This event counts the number of CALL
instructions executed.

93H 00H BR_CALL_
MISSP_EXEC

Mispredicted
CALL
instructions
executed

This event counts the number of
mispredicted CALL instructions that were
executed.

94H 00H BR_IND_CALL_
EXEC

Indirect CALL
instructions
executed

This event counts the number of indirect
CALL instructions that were executed.

97H 00H BR_TKN_
BUBBLE_1

Branch
predicted taken
with bubble 1

The events BR_TKN_BUBBLE_1 and
BR_TKN_BUBBLE_2 together count the
number of times a taken branch prediction
incurred a one-cycle penalty. The penalty
incurs when:

• Too many taken branches are placed
together. To avoid this, unroll loops and
add a non-taken branch in the middle of
the taken sequence.

• The branch target is unaligned. To avoid
this, align the branch target.

Table 19-13. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
19-168 Vol. 3B

PERFORMANCE-MONITORING EVENTS
98H 00H BR_TKN_
BUBBLE_2

Branch
predicted taken
with bubble 2

The events BR_TKN_BUBBLE_1 and
BR_TKN_BUBBLE_2 together count the
number of times a taken branch prediction
incurred a one-cycle penalty. The penalty
incurs when:

• Too many taken branches are placed
together. To avoid this, unroll loops and
add a non-taken branch in the middle of
the taken sequence.

• The branch target is unaligned. To avoid
this, align the branch target.

A0H 00H RS_UOPS_
DISPATCHED

Micro-ops
dispatched for
execution

This event counts the number of micro-
ops dispatched for execution. Up to six
micro-ops can be dispatched in each cycle.

A1H 01H RS_UOPS_
DISPATCHED.PORT
0

Cycles micro-
ops dispatched
for execution
on port 0

This event counts the number of cycles for
which micro-ops dispatched for execution.
Each cycle, at most one micro-op can be
dispatched on the port. Issue Ports are
described in Intel® 64 and IA-32
Architectures Optimization Reference
Manual. Use IA32_PMC0 only.

A1H 02H RS_UOPS_
DISPATCHED.PORT
1

Cycles micro-
ops dispatched
for execution
on port 1

This event counts the number of cycles for
which micro-ops dispatched for execution.
Each cycle, at most one micro-op can be
dispatched on the port. Use IA32_PMC0
only.

A1H 04H RS_UOPS_
DISPATCHED.PORT
2

Cycles micro-
ops dispatched
for execution
on port 2

This event counts the number of cycles for
which micro-ops dispatched for execution.
Each cycle, at most one micro-op can be
dispatched on the port. Use IA32_PMC0
only.

A1H 08H RS_UOPS_
DISPATCHED.PORT
3

Cycles micro-
ops dispatched
for execution
on port 3

This event counts the number of cycles for
which micro-ops dispatched for execution.
Each cycle, at most one micro-op can be
dispatched on the port. Use IA32_PMC0
only.

Table 19-13. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3B 19-169

PERFORMANCE-MONITORING EVENTS
A1H 10H RS_UOPS_
DISPATCHED.PORT
4

Cycles micro-
ops dispatched
for execution
on port 4

This event counts the number of cycles for
which micro-ops dispatched for execution.
Each cycle, at most one micro-op can be
dispatched on the port. Use IA32_PMC0
only.

A1H 20H RS_UOPS_
DISPATCHED.PORT
5

Cycles micro-
ops dispatched
for execution
on port 5

This event counts the number of cycles for
which micro-ops dispatched for execution.
Each cycle, at most one micro-op can be
dispatched on the port. Use IA32_PMC0
only.

AAH 01H MACRO_INSTS.
DECODED

Instructions
decoded

This event counts the number of
instructions decoded (but not necessarily
executed or retired).

AAH 08H MACRO_INSTS.
CISC_DECODED

CISC
Instructions
decoded

This event counts the number of complex
instructions decoded. Complex instructions
usually have more than four micro-ops.
Only one complex instruction can be
decoded at a time.

ABH 01H ESP.SYNCH ESP register
content
synchron-
ization

This event counts the number of times
that the ESP register is explicitly used in
the address expression of a load or store
operation, after it is implicitly used, for
example by a push or a pop instruction.

ESP synch micro-op uses resources from
the rename pipe-stage and up to
retirement. The expected ratio of this
event divided by the number of ESP
implicit changes is 0,2. If the ratio is
higher, consider rearranging your code to
avoid ESP synchronization events.

Table 19-13. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
19-170 Vol. 3B

PERFORMANCE-MONITORING EVENTS
ABH 02H ESP.ADDITIONS ESP register
automatic
additions

This event counts the number of ESP
additions performed automatically by the
decoder. A high count of this event is good,
since each automatic addition performed
by the decoder saves a micro-op from the
execution units.

To maximize the number of ESP additions
performed automatically by the decoder,
choose instructions that implicitly use the
ESP, such as PUSH, POP, CALL, and RET
instructions whenever possible.

B0H 00H SIMD_UOPS_EXEC SIMD micro-ops
executed
(excluding
stores)

This event counts all the SIMD micro-ops
executed. It does not count MOVQ and
MOVD stores from register to memory.

B1H 00H SIMD_SAT_UOP_
EXEC

SIMD saturated
arithmetic
micro-ops
executed

This event counts the number of SIMD
saturated arithmetic micro-ops executed.

B3H 01H SIMD_UOP_
TYPE_EXEC.MUL

SIMD packed
multiply micro-
ops executed

This event counts the number of SIMD
packed multiply micro-ops executed.

B3H 02H SIMD_UOP_TYPE_
EXEC.SHIFT

SIMD packed
shift micro-ops
executed

This event counts the number of SIMD
packed shift micro-ops executed.

B3H 04H SIMD_UOP_TYPE_
EXEC.PACK

SIMD pack
micro-ops
executed

This event counts the number of SIMD
pack micro-ops executed.

B3H 08H SIMD_UOP_TYPE_
EXEC.UNPACK

SIMD unpack
micro-ops
executed

This event counts the number of SIMD
unpack micro-ops executed.

B3H 10H SIMD_UOP_TYPE_
EXEC.LOGICAL

SIMD packed
logical micro-
ops executed

This event counts the number of SIMD
packed logical micro-ops executed.

B3H 20H SIMD_UOP_TYPE_
EXEC.ARITHMETIC

SIMD packed
arithmetic
micro-ops
executed

This event counts the number of SIMD
packed arithmetic micro-ops executed.

Table 19-13. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3B 19-171

PERFORMANCE-MONITORING EVENTS
C0H 00H INST_RETIRED.
ANY_P

Instructions
retired

This event counts the number of
instructions that retire execution. For
instructions that consist of multiple micro-
ops, this event counts the retirement of
the last micro-op of the instruction. The
counter continue counting during
hardware interrupts, traps, and inside
interrupt handlers.

INST_RETIRED.ANY_P is an architectural
performance event.

C0H 01H INST_RETIRED.
LOADS

Instructions
retired, which
contain a load

This event counts the number of
instructions retired that contain a load
operation.

C0H 02H INST_RETIRED.
STORES

Instructions
retired, which
contain a store

This event counts the number of
instructions retired that contain a store
operation.

C0H 04H INST_RETIRED.
OTHER

Instructions
retired, with no
load or store
operation

This event counts the number of
instructions retired that do not contain a
load or a store operation.

C1H 01H X87_OPS_
RETIRED.FXCH

FXCH
instructions
retired

This event counts the number of FXCH
instructions retired. Modern compilers
generate more efficient code and are less
likely to use this instruction. If you obtain a
high count for this event consider
recompiling the code.

C1H FEH X87_OPS_
RETIRED.ANY

Retired
floating-point
computational
operations
(precise event)

This event counts the number of floating-
point computational operations retired. It
counts:

• floating point computational operations
executed by the assist handler

• sub-operations of complex floating-
point instructions like transcendental
instructions

Table 19-13. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
19-172 Vol. 3B

PERFORMANCE-MONITORING EVENTS
This event does not count:

• floating-point computational operations
that cause traps or assists.

• floating-point loads and stores.
When this event is captured with the
precise event mechanism, the collected
samples contain the address of the
instruction that was executed immediately
after the instruction that caused the
event.

C2H 01H UOPS_RETIRED.
LD_IND_BR

Fused load+op
or load+indirect
branch retired

This event counts the number of retired
micro-ops that fused a load with another
operation. This includes:

• Fusion of a load and an arithmetic
operation, such as with the following
instruction: ADD EAX, [EBX] where the
content of the memory location
specified by EBX register is loaded,
added to EXA register, and the result is
stored in EAX.

• Fusion of a load and a branch in an
indirect branch operation, such as with
the following instructions:

• JMP [RDI+200]
• RET
• Fusion decreases the number of micro-

ops in the processor pipeline. A high
value for this event count indicates that
the code is using the processor
resources effectively.

C2H 02H UOPS_RETIRED.
STD_STA

Fused store
address + data
retired

This event counts the number of store
address calculations that are fused with
store data emission into one micro-op.
Traditionally, each store operation
required two micro-ops.

This event counts fusion of retired micro-
ops only. Fusion decreases the number of
micro-ops in the processor pipeline. A high
value for this event count indicates that
the code is using the processor resources
effectively.

Table 19-13. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3B 19-173

PERFORMANCE-MONITORING EVENTS
C2H 04H UOPS_RETIRED.
MACRO_FUSION

Retired
instruction
pairs fused into
one micro-op

This event counts the number of times
CMP or TEST instructions were fused with
a conditional branch instruction into one
micro-op. It counts fusion by retired micro-
ops only.

Fusion decreases the number of micro-ops
in the processor pipeline. A high value for
this event count indicates that the code
uses the processor resources more
effectively.

C2H 07H UOPS_RETIRED.
FUSED

Fused micro-
ops retired

This event counts the total number of
retired fused micro-ops. The counts
include the following fusion types:

• Fusion of load operation with an
arithmetic operation or with an indirect
branch (counted by event
UOPS_RETIRED.LD_IND_BR)

• Fusion of store address and data
(counted by event
UOPS_RETIRED.STD_STA)

• Fusion of CMP or TEST instruction with
a conditional branch instruction
(counted by event
UOPS_RETIRED.MACRO_FUSION)

Fusion decreases the number of micro-ops
in the processor pipeline. A high value for
this event count indicates that the code is
using the processor resources effectively.

C2H 08H UOPS_RETIRED.
NON_FUSED

Non-fused
micro-ops
retired

This event counts the number of micro-
ops retired that were not fused.

C2H 0FH UOPS_RETIRED.
ANY

Micro-ops
retired

This event counts the number of micro-
ops retired. The processor decodes
complex macro instructions into a
sequence of simpler micro-ops. Most
instructions are composed of one or two
micro-ops.

Table 19-13. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
19-174 Vol. 3B

PERFORMANCE-MONITORING EVENTS
Some instructions are decoded into longer
sequences such as repeat instructions,
floating point transcendental instructions,
and assists. In some cases micro-op
sequences are fused or whole instructions
are fused into one micro-op.

See other UOPS_RETIRED events for
differentiating retired fused and non-
fused micro-ops.

C3H 01H MACHINE_
NUKES.SMC

Self-Modifying
Code detected

This event counts the number of times
that a program writes to a code section.
Self-modifying code causes a sever
penalty in all Intel 64 and IA-32
processors.

C3H 04H MACHINE_NUKES.
MEM_ORDER

Execution
pipeline restart
due to memory
ordering
conflict or
memory
disambiguation
misprediction

This event counts the number of times the
pipeline is restarted due to either multi-
threaded memory ordering conflicts or
memory disambiguation misprediction.

A multi-threaded memory ordering conflict
occurs when a store, which is executed in
another core, hits a load that is executed
out of order in this core but not yet retired.
As a result, the load needs to be restarted
to satisfy the memory ordering model.

See Chapter 8, “Multiple-Processor
Management” in the Intel® 64 and IA-32
Architectures Software Developer’s
Manual, Volume 3A.

To count memory disambiguation
mispredictions, use the event
MEMORY_DISAMBIGUATION.RESET.

C4H 00H BR_INST_RETIRED.
ANY

Retired branch
instructions

This event counts the number of branch
instructions retired. This is an architectural
performance event.

C4H 01H BR_INST_RETIRED.
PRED_NOT_
TAKEN

Retired branch
instructions
that were
predicted not-
taken

This event counts the number of branch
instructions retired that were correctly
predicted to be not-taken.

Table 19-13. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3B 19-175

PERFORMANCE-MONITORING EVENTS
C4H 02H BR_INST_RETIRED.
MISPRED_NOT_
TAKEN

Retired branch
instructions
that were
mispredicted
not-taken

This event counts the number of branch
instructions retired that were
mispredicted and not-taken.

C4H 04H BR_INST_RETIRED.
PRED_TAKEN

Retired branch
instructions
that were
predicted taken

This event counts the number of branch
instructions retired that were correctly
predicted to be taken.

C4H 08H BR_INST_RETIRED.
MISPRED_TAKEN

Retired branch
instructions
that were
mispredicted
taken

This event counts the number of branch
instructions retired that were
mispredicted and taken.

C4H 0CH BR_INST_RETIRED.
TAKEN

Retired taken
branch
instructions

This event counts the number of branches
retired that were taken.

C5H 00H BR_INST_RETIRED.
MISPRED

Retired
mispredicted
branch
instructions.
(precise event)

This event counts the number of retired
branch instructions that were
mispredicted by the processor. A branch
misprediction occurs when the processor
predicts that the branch would be taken,
but it is not, or vice-versa.

This is an architectural performance event.

C6H 01H CYCLES_INT_
MASKED

Cycles during
which
interrupts are
disabled

This event counts the number of cycles
during which interrupts are disabled.

C6H 02H CYCLES_INT_
PENDING_AND
_MASKED

Cycles during
which
interrupts are
pending and
disabled

This event counts the number of cycles
during which there are pending interrupts
but interrupts are disabled.

C7H 01H SIMD_INST_
RETIRED.PACKED_
SINGLE

Retired SSE
packed-single
instructions

This event counts the number of SSE
packed-single instructions retired.

C7H 02H SIMD_INST_
RETIRED.SCALAR_
SINGLE

Retired SSE
scalar-single
instructions

This event counts the number of SSE
scalar-single instructions retired.

Table 19-13. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
19-176 Vol. 3B

PERFORMANCE-MONITORING EVENTS
C7H 04H SIMD_INST_
RETIRED.PACKED_
DOUBLE

Retired SSE2
packed-double
instructions

This event counts the number of SSE2
packed-double instructions retired.

C7H 08H SIMD_INST_
RETIRED.SCALAR_
DOUBLE

Retired SSE2
scalar-double
instructions

This event counts the number of SSE2
scalar-double instructions retired.

C7H 10H SIMD_INST_
RETIRED.VECTOR

Retired SSE2
vector integer
instructions

This event counts the number of SSE2
vector integer instructions retired.

C7H 1FH SIMD_INST_
RETIRED.ANY

Retired
Streaming SIMD
instructions
(precise event)

This event counts the overall number of
retired SIMD instructions that use XMM
registers. To count each type of SIMD
instruction separately, use the following
events:

• SIMD_INST_RETIRED.PACKED_SINGLE
• SIMD_INST_RETIRED.SCALAR_SINGLE
• SIMD_INST_RETIRED.PACKED_DOUBLE
• SIMD_INST_RETIRED.SCALAR_DOUBLE
• and SIMD_INST_RETIRED.VECTOR
When this event is captured with the
precise event mechanism, the collected
samples contain the address of the
instruction that was executed immediately
after the instruction that caused the
event.

C8H 00H HW_INT_RCV Hardware
interrupts
received

This event counts the number of hardware
interrupts received by the processor.

C9H 00H ITLB_MISS_
RETIRED

Retired
instructions
that missed the
ITLB

This event counts the number of retired
instructions that missed the ITLB when
they were fetched.

Table 19-13. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3B 19-177

PERFORMANCE-MONITORING EVENTS
CAH 01H SIMD_COMP_
INST_RETIRED.
PACKED_SINGLE

Retired
computational
SSE packed-
single
instructions

This event counts the number of
computational SSE packed-single
instructions retired. Computational
instructions perform arithmetic
computations (for example: add, multiply
and divide).

Instructions that perform load and store
operations or logical operations, like XOR,
OR, and AND are not counted by this
event.

CAH 02H SIMD_COMP_
INST_RETIRED.
SCALAR_SINGLE

Retired
computational
SSE scalar-
single
instructions

This event counts the number of
computational SSE scalar-single
instructions retired. Computational
instructions perform arithmetic
computations (for example: add, multiply
and divide).

Instructions that perform load and store
operations or logical operations, like XOR,
OR, and AND are not counted by this
event.

CAH 04H SIMD_COMP_
INST_RETIRED.
PACKED_DOUBLE

Retired
computational
SSE2 packed-
double
instructions

This event counts the number of
computational SSE2 packed-double
instructions retired. Computational
instructions perform arithmetic
computations (for example: add, multiply
and divide).

Instructions that perform load and store
operations or logical operations, like XOR,
OR, and AND are not counted by this
event.

CAH 08H SIMD_COMP_INST_
RETIRED.SCALAR_
DOUBLE

Retired
computational
SSE2 scalar-
double
instructions

This event counts the number of
computational SSE2 scalar-double
instructions retired. Computational
instructions perform arithmetic
computations (for example: add, multiply
and divide).

Instructions that perform load and store
operations or logical operations, like XOR,
OR, and AND are not counted by this
event.

Table 19-13. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
19-178 Vol. 3B

PERFORMANCE-MONITORING EVENTS
CBH 01H MEM_LOAD_
RETIRED.L1D
_MISS

Retired loads
that miss the
L1 data cache
(precise event)

This event counts the number of retired
load operations that missed the L1 data
cache. This includes loads from cache lines
that are currently being fetched, due to a
previous L1 data cache miss to the same
cache line.

This event counts loads from cacheable
memory only. The event does not count
loads by software prefetches.

When this event is captured with the
precise event mechanism, the collected
samples contain the address of the
instruction that was executed immediately
after the instruction that caused the
event.

Use IA32_PMC0 only.

CBH 02H MEM_LOAD_
RETIRED.L1D_
LINE_MISS

L1 data cache
line missed by
retired loads
(precise event)

This event counts the number of load
operations that miss the L1 data cache
and send a request to the L2 cache to
fetch the missing cache line. That is the
missing cache line fetching has not yet
started.

The event count is equal to the number of
cache lines fetched from the L2 cache by
retired loads.

This event counts loads from cacheable
memory only. The event does not count
loads by software prefetches.

The event might not be counted if the load
is blocked (see LOAD_BLOCK events).

When this event is captured with the
precise event mechanism, the collected
samples contain the address of the
instruction that was executed immediately
after the instruction that caused the
event.

Use IA32_PMC0 only.

Table 19-13. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3B 19-179

PERFORMANCE-MONITORING EVENTS
CBH 04H MEM_LOAD_
RETIRED.L2_MISS

Retired loads
that miss the
L2 cache
(precise event)

This event counts the number of retired
load operations that missed the L2 cache.

This event counts loads from cacheable
memory only. It does not count loads by
software prefetches.

When this event is captured with the
precise event mechanism, the collected
samples contain the address of the
instruction that was executed immediately
after the instruction that caused the
event.

Use IA32_PMC0 only.

CBH 08H MEM_LOAD_
RETIRED.L2_LINE_
MISS

L2 cache line
missed by
retired loads
(precise event)

This event counts the number of load
operations that miss the L2 cache and
result in a bus request to fetch the missing
cache line. That is the missing cache line
fetching has not yet started.

This event count is equal to the number of
cache lines fetched from memory by
retired loads.

This event counts loads from cacheable
memory only. The event does not count
loads by software prefetches.

The event might not be counted if the load
is blocked (see LOAD_BLOCK events).

When this event is captured with the
precise event mechanism, the collected
samples contain the address of the
instruction that was executed immediately
after the instruction that caused the
event.

Use IA32_PMC0 only.

Table 19-13. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
19-180 Vol. 3B

PERFORMANCE-MONITORING EVENTS
CBH 10H MEM_LOAD_
RETIRED.DTLB_
MISS

Retired loads
that miss the
DTLB (precise
event)

This event counts the number of retired
loads that missed the DTLB. The DTLB
miss is not counted if the load operation
causes a fault.

This event counts loads from cacheable
memory only. The event does not count
loads by software prefetches.

When this event is captured with the
precise event mechanism, the collected
samples contain the address of the
instruction that was executed immediately
after the instruction that caused the
event.

Use IA32_PMC0 only.

CCH 01H FP_MMX_TRANS_
TO_MMX

Transitions
from Floating
Point to MMX
Instructions

This event counts the first MMX
instructions following a floating-point
instruction. Use this event to estimate the
penalties for the transitions between
floating-point and MMX states.

CCH 02H FP_MMX_TRANS_
TO_FP

Transitions
from MMX
Instructions to
Floating Point
Instructions

This event counts the first floating-point
instructions following any MMX
instruction. Use this event to estimate the
penalties for the transitions between
floating-point and MMX states.

CDH 00H SIMD_ASSIST SIMD assists
invoked

This event counts the number of SIMD
assists invoked. SIMD assists are invoked
when an EMMS instruction is executed,
changing the MMX state in the floating
point stack.

CEH 00H SIMD_INSTR_
RETIRED

SIMD
Instructions
retired

This event counts the number of retired
SIMD instructions that use MMX registers.

CFH 00H SIMD_SAT_INSTR_
RETIRED

Saturated
arithmetic
instructions
retired

This event counts the number of saturated
arithmetic SIMD instructions that retired.

Table 19-13. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3B 19-181

PERFORMANCE-MONITORING EVENTS
D2H 01H RAT_STALLS.
ROB_READ_PORT

ROB read port
stalls cycles

This event counts the number of cycles
when ROB read port stalls occurred, which
did not allow new micro-ops to enter the
out-of-order pipeline.

Note that, at this stage in the pipeline,
additional stalls may occur at the same
cycle and prevent the stalled micro-ops
from entering the pipe. In such a case,
micro-ops retry entering the execution
pipe in the next cycle and the ROB-read-
port stall is counted again.

D2H 02H RAT_STALLS.
PARTIAL_CYCLES

Partial register
stall cycles

This event counts the number of cycles
instruction execution latency became
longer than the defined latency because
the instruction uses a register that was
partially written by previous instructions.

D2H 04H RAT_STALLS.
FLAGS

Flag stall cycles This event counts the number of cycles
during which execution stalled due to
several reasons, one of which is a partial
flag register stall.

A partial register stall may occur when
two conditions are met:

• an instruction modifies some, but not
all, of the flags in the flag register

• the next instruction, which depends on
flags, depends on flags that were not
modified by this instruction

D2H 08H RAT_STALLS.
FPSW

FPU status
word stall

This event indicates that the FPU status
word (FPSW) is written. To obtain the
number of times the FPSW is written
divide the event count by 2.

The FPSW is written by instructions with
long latency; a small count may indicate a
high penalty.

D2H 0FH RAT_STALLS.
ANY

All RAT stall
cycles

This event counts the number of stall
cycles due to conditions described by:

• RAT_STALLS.ROB_READ_PORT
• RAT_STALLS.PARTIAL
• RAT_STALLS.FLAGS
• RAT_STALLS.FPSW.

Table 19-13. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
19-182 Vol. 3B

PERFORMANCE-MONITORING EVENTS
D4H 01H SEG_RENAME_
STALLS.ES

Segment
rename stalls -
ES

This event counts the number of stalls due
to the lack of renaming resources for the
ES segment register. If a segment is
renamed, but not retired and a second
update to the same segment occurs, a stall
occurs in the front-end of the pipeline until
the renamed segment retires.

D4H 02H SEG_RENAME_
STALLS.DS

Segment
rename stalls -
DS

This event counts the number of stalls due
to the lack of renaming resources for the
DS segment register. If a segment is
renamed, but not retired and a second
update to the same segment occurs, a stall
occurs in the front-end of the pipeline until
the renamed segment retires.

D4H 04H SEG_RENAME_
STALLS.FS

Segment
rename stalls -
FS

This event counts the number of stalls due
to the lack of renaming resources for the
FS segment register.

If a segment is renamed, but not retired
and a second update to the same segment
occurs, a stall occurs in the front-end of
the pipeline until the renamed segment
retires.

D4H 08H SEG_RENAME_
STALLS.GS

Segment
rename stalls -
GS

This event counts the number of stalls due
to the lack of renaming resources for the
GS segment register.

If a segment is renamed, but not retired
and a second update to the same segment
occurs, a stall occurs in the front-end of
the pipeline until the renamed segment
retires.

D4H 0FH SEG_RENAME_
STALLS.ANY

Any
(ES/DS/FS/GS)
segment
rename stall

This event counts the number of stalls due
to the lack of renaming resources for the
ES, DS, FS, and GS segment registers.

If a segment is renamed but not retired
and a second update to the same segment
occurs, a stall occurs in the front-end of
the pipeline until the renamed segment
retires.

D5H 01H SEG_REG_
RENAMES.ES

Segment
renames - ES

This event counts the number of times the
ES segment register is renamed.

Table 19-13. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3B 19-183

PERFORMANCE-MONITORING EVENTS
D5H 02H SEG_REG_
RENAMES.DS

Segment
renames - DS

This event counts the number of times the
DS segment register is renamed.

D5H 04H SEG_REG_
RENAMES.FS

Segment
renames - FS

This event counts the number of times the
FS segment register is renamed.

D5H 08H SEG_REG_
RENAMES.GS

Segment
renames - GS

This event counts the number of times the
GS segment register is renamed.

D5H 0FH SEG_REG_
RENAMES.ANY

Any
(ES/DS/FS/GS)
segment
rename

This event counts the number of times
any of the four segment registers
(ES/DS/FS/GS) is renamed.

DCH 01H RESOURCE_
STALLS.ROB_FULL

Cycles during
which the ROB
full

This event counts the number of cycles
when the number of instructions in the
pipeline waiting for retirement reaches
the limit the processor can handle.

A high count for this event indicates that
there are long latency operations in the
pipe (possibly load and store operations
that miss the L2 cache, and other
instructions that depend on these cannot
execute until the former instructions
complete execution). In this situation new
instructions can not enter the pipe and
start execution.

DCH 02H RESOURCE_
STALLS.RS_FULL

Cycles during
which the RS
full

This event counts the number of cycles
when the number of instructions in the
pipeline waiting for execution reaches the
limit the processor can handle.

A high count of this event indicates that
there are long latency operations in the
pipe (possibly load and store operations
that miss the L2 cache, and other
instructions that depend on these cannot
execute until the former instructions
complete execution). In this situation new
instructions can not enter the pipe and
start execution.

Table 19-13. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
19-184 Vol. 3B

PERFORMANCE-MONITORING EVENTS
DCH 04 RESOURCE_
STALLS.LD_ST

Cycles during
which the
pipeline has
exceeded load
or store limit or
waiting to
commit all
stores

This event counts the number of cycles
while resource-related stalls occur due to:

• The number of load instructions in the
pipeline reached the limit the processor
can handle. The stall ends when a
loading instruction retires.

• The number of store instructions in the
pipeline reached the limit the processor
can handle. The stall ends when a
storing instruction commits its data to
the cache or memory.

• There is an instruction in the pipe that
can be executed only when all previous
stores complete and their data is
committed in the caches or memory.
For example, the SFENCE and MFENCE
instructions require this behavior.

DCH 08H RESOURCE_
STALLS.FPCW

Cycles stalled
due to FPU
control word
write

This event counts the number of cycles
while execution was stalled due to writing
the floating-point unit (FPU) control word.

DCH 10H RESOURCE_
STALLS.BR_MISS_C
LEAR

Cycles stalled
due to branch
misprediction

This event counts the number of cycles
after a branch misprediction is detected at
execution until the branch and all older
micro-ops retire. During this time new
micro-ops cannot enter the out-of-order
pipeline.

DCH 1FH RESOURCE_
STALLS.ANY

Resource
related stalls

This event counts the number of cycles
while resource-related stalls occurs for
any conditions described by the following
events:

• RESOURCE_STALLS.ROB_FULL
• RESOURCE_STALLS.RS_FULL
• RESOURCE_STALLS.LD_ST
• RESOURCE_STALLS.FPCW
• RESOURCE_STALLS.BR_MISS_CLEAR

E0H 00H BR_INST_
DECODED

Branch
instructions
decoded

This event counts the number of branch
instructions decoded.

Table 19-13. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3B 19-185

PERFORMANCE-MONITORING EVENTS
19.8 PERFORMANCE MONITORING EVENTS FOR
INTEL® ATOM™ PROCESSORS

Processors based on the Intel Atom microarchitecture support the architectural
performance-monitoring events listed in Table 19-1 and fixed-function performance
events using fixed counter listed in Table 19-12. In addition, they also support the
following non-architectural performance-monitoring events listed in Table 19-14.

E4H 00H BOGUS_BR Bogus branches This event counts the number of byte
sequences that were mistakenly detected
as taken branch instructions.

This results in a BACLEAR event. This
occurs mainly after task switches.

E6H 00H BACLEARS BACLEARS
asserted

This event counts the number of times the
front end is resteered, mainly when the
BPU cannot provide a correct prediction
and this is corrected by other branch
handling mechanisms at the front and.
This can occur if the code has many
branches such that they cannot be
consumed by the BPU.

Each BACLEAR asserted costs
approximately 7 cycles of instruction
fetch. The effect on total execution time
depends on the surrounding code.

F0 00H PREF_RQSTS_UP Upward
prefetches
issued from
DPL

This event counts the number of upward
prefetches issued from the Data Prefetch
Logic (DPL) to the L2 cache. A prefetch
request issued to the L2 cache cannot be
cancelled and the requested cache line is
fetched to the L2 cache.

F8 00H PREF_RQSTS_DN Downward
prefetches
issued from
DPL.

This event counts the number of
downward prefetches issued from the
Data Prefetch Logic (DPL) to the L2 cache.
A prefetch request issued to the L2 cache
cannot be cancelled and the requested
cache line is fetched to the L2 cache.

Table 19-13. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
19-186 Vol. 3B

PERFORMANCE-MONITORING EVENTS
Table 19-14. Non-Architectural Performance Events for Intel Atom Processors
Event
Num.

Umask
Value Event Name Definition Description and Comment

02H 81H STORe_FORWA
RDS.GOOD

Good store
forwards

This event counts the number of times store
data was forwarded directly to a load.

06H 00H SEGMENT_REG_
LOADS.ANY

Number of
segment
register loads

This event counts the number of segment
register load operations. Instructions that
load new values into segment registers cause
a penalty. This event indicates performance
issues in 16-bit code. If this event occurs
frequently, it may be useful to calculate the
number of instructions retired per segment
register load. If the resulting calculation is low
(on average a small number of instructions
are executed between segment register
loads), then the code’s segment register
usage should be optimized.

As a result of branch misprediction, this event
is speculative and may include segment
register loads that do not actually occur.
However, most segment register loads are
internally serialized and such speculative
effects are minimized.

07H 01H PREFETCH.PREF
ETCHT0

Streaming SIMD
Extensions
(SSE)
PrefetchT0
instructions
executed.

This event counts the number of times the
SSE instruction prefetchT0 is executed. This
instruction prefetches the data to the L1
data cache and L2 cache.

07H 06H PREFETCH.SW_
L2

Streaming SIMD
Extensions
(SSE)
PrefetchT1 and
PrefetchT2
instructions
executed

This event counts the number of times the
SSE instructions prefetchT1 and prefetchT2
are executed. These instructions prefetch the
data to the L2 cache.

07H 08H PREFETCH.PREF
ETCHNTA

Streaming SIMD
Extensions
(SSE) Prefetch
NTA
instructions
executed

This event counts the number of times the
SSE instruction prefetchNTA is executed. This
instruction prefetches the data to the L1
data cache.
Vol. 3B 19-187

PERFORMANCE-MONITORING EVENTS
08H 07H DATA_TLB_MIS
SES.DTLB_MISS

Memory
accesses that
missed the
DTLB

This event counts the number of Data Table
Lookaside Buffer (DTLB) misses. The count
includes misses detected as a result of
speculative accesses. Typically a high count
for this event indicates that the code
accesses a large number of data pages.

08H 05H DATA_TLB_MIS
SES.DTLB_MISS
_LD

DTLB misses
due to load
operations

This event counts the number of Data Table
Lookaside Buffer (DTLB) misses due to load
operations. This count includes misses
detected as a result of speculative accesses.

08H 09H DATA_TLB_MIS
SES.L0_DTLB_M
ISS_LD

L0_DTLB misses
due to load
operations

This event counts the number of L0_DTLB
misses due to load operations. This count
includes misses detected as a result of
speculative accesses.

08H 06H DATA_TLB_MIS
SES.DTLB_MISS
_ST

DTLB misses
due to store
operations

This event counts the number of Data Table
Lookaside Buffer (DTLB) misses due to store
operations. This count includes misses
detected as a result of speculative accesses.

0CH 03H PAGE_WALKS.W
ALKS

Number of
page-walks
executed

This event counts the number of page-walks
executed due to either a DTLB or ITLB miss.
The page walk duration,
PAGE_WALKS.CYCLES, divided by number of
page walks is the average duration of a page
walk. This can hint to whether most of the
page-walks are satisfied by the caches or
cause an L2 cache miss.

Edge trigger bit must be set.

0CH 03H PAGE_WALKS.C
YCLES

Duration of
page-walks in
core cycles

This event counts the duration of page-walks
in core cycles. The paging mode in use
typically affects the duration of page walks.
Page walk duration divided by number of
page walks is the average duration of page-
walks. This can hint at whether most of the
page-walks are satisfied by the caches or
cause an L2 cache miss.

Edge trigger bit must be cleared.

10H 01H X87_COMP_OP
S_EXE.ANY.S

Floating point
computational
micro-ops
executed

This event counts the number of x87 floating
point computational micro-ops executed.

Table 19-14. Non-Architectural Performance Events for Intel Atom Processors
Event
Num.

Umask
Value Event Name Definition Description and Comment
19-188 Vol. 3B

PERFORMANCE-MONITORING EVENTS
10H 81H X87_COMP_OP
S_EXE.ANY.AR

Floating point
computational
micro-ops
retired

This event counts the number of x87 floating
point computational micro-ops retired.

11H 01H FP_ASSIST Floating point
assists

This event counts the number of floating
point operations executed that required
micro-code assist intervention. These assists
are required in the following cases:

X87 instructions:

1. NaN or denormal are loaded to a register or
used as input from memory

2. Division by 0

3. Underflow output

11H 81H FP_ASSIST.AR Floating point
assists

This event counts the number of floating
point operations executed that required
micro-code assist intervention. These assists
are required in the following cases:

X87 instructions:

1. NaN or denormal are loaded to a register or
used as input from memory

2. Division by 0

3. Underflow output

12H 01H MUL.S Multiply
operations
executed

This event counts the number of multiply
operations executed. This includes integer as
well as floating point multiply operations.

12H 81H MUL.AR Multiply
operations
retired

This event counts the number of multiply
operations retired. This includes integer as
well as floating point multiply operations.

13H 01H DIV.S Divide
operations
executed

This event counts the number of divide
operations executed. This includes integer
divides, floating point divides and square-root
operations executed.

13H 81H DIV.AR Divide
operations
retired

This event counts the number of divide
operations retired. This includes integer
divides, floating point divides and square-root
operations executed.

Table 19-14. Non-Architectural Performance Events for Intel Atom Processors
Event
Num.

Umask
Value Event Name Definition Description and Comment
Vol. 3B 19-189

PERFORMANCE-MONITORING EVENTS
14H 01H CYCLES_DIV_BU
SY

Cycles the
driver is busy

This event counts the number of cycles the
divider is busy executing divide or square
root operations. The divide can be integer,
X87 or Streaming SIMD Extensions (SSE). The
square root operation can be either X87 or
SSE.

21H See
Table
18-2

L2_ADS Cycles L2
address bus is in
use

This event counts the number of cycles the
L2 address bus is being used for accesses to
the L2 cache or bus queue.

This event can count occurrences for this
core or both cores.

22H See
Table
18-2

L2_DBUS_BUSY Cycles the L2
cache data bus
is busy

This event counts core cycles during which
the L2 cache data bus is busy transferring
data from the L2 cache to the core. It counts
for all L1 cache misses (data and instruction)
that hit the L2 cache. The count will
increment by two for a full cache-line
request.

24H See
Table
18-2
and
Table
18-4

L2_LINES_IN L2 cache misses This event counts the number of cache lines
allocated in the L2 cache. Cache lines are
allocated in the L2 cache as a result of
requests from the L1 data and instruction
caches and the L2 hardware prefetchers to
cache lines that are missing in the L2 cache.

This event can count occurrences for this
core or both cores. This event can also count
demand requests and L2 hardware prefetch
requests together or separately.

25H See
Table
18-2

L2_M_LINES_IN L2 cache line
modifications

This event counts whenever a modified
cache line is written back from the L1 data
cache to the L2 cache.

This event can count occurrences for this
core or both cores.

26H See
Table
18-2
and
Table
18-4

L2_LINES_OUT L2 cache lines
evicted

This event counts the number of L2 cache
lines evicted.

This event can count occurrences for this
core or both cores. This event can also count
evictions due to demand requests and L2
hardware prefetch requests together or
separately.

Table 19-14. Non-Architectural Performance Events for Intel Atom Processors
Event
Num.

Umask
Value Event Name Definition Description and Comment
19-190 Vol. 3B

PERFORMANCE-MONITORING EVENTS
27H See
Table
18-2
and
Table
18-4

L2_M_LINES_O
UT

Modified lines
evicted from
the L2 cache

This event counts the number of L2 modified
cache lines evicted. These lines are written
back to memory unless they also exist in a
shared-state in one of the L1 data caches.

This event can count occurrences for this
core or both cores. This event can also count
evictions due to demand requests and L2
hardware prefetch requests together or
separately.

28H See
Table
18-2
and
Table
18-5

L2_IFETCH L2 cacheable
instruction
fetch requests

This event counts the number of instruction
cache line requests from the ICache. It does
not include fetch requests from uncacheable
memory. It does not include ITLB miss
accesses.

This event can count occurrences for this
core or both cores. This event can also count
accesses to cache lines at different MESI
states.

29H See
Table
18-2,
Table
18-4
and
Table
18-5

L2_LD L2 cache reads This event counts L2 cache read requests
coming from the L1 data cache and L2
prefetchers.

This event can count occurrences for this
core or both cores. This event can count
occurrences

- for this core or both cores.

- due to demand requests and L2 hardware
prefetch requests together or separately.

- of accesses to cache lines at different MESI
states.

2AH See
Table
18-2
and
Table
18-5

L2_ST L2 store
requests

This event counts all store operations that
miss the L1 data cache and request the data

from the L2 cache.

This event can count occurrences for this
core or both cores. This event can also count
accesses to cache lines at different MESI
states.

Table 19-14. Non-Architectural Performance Events for Intel Atom Processors
Event
Num.

Umask
Value Event Name Definition Description and Comment
Vol. 3B 19-191

PERFORMANCE-MONITORING EVENTS
2BH See
Table
18-2
and
Table
18-5

L2_LOCK L2 locked
accesses

This event counts all locked accesses to
cache lines that miss the L1 data cache.

This event can count occurrences for this
core or both cores. This event can also count
accesses to cache lines at different MESI
states.

2EH See
Table
18-2,
Table
18-4
and
Table
18-5

L2_RQSTS L2 cache
requests

This event counts all completed L2 cache
requests. This includes L1 data cache reads,
writes, and locked accesses, L1 data prefetch
requests, instruction fetches, and all L2
hardware prefetch requests.

This event can count occurrences

- for this core or both cores.

- due to demand requests and L2 hardware
prefetch requests together, or separately.

- of accesses to cache lines at different MESI
states.

2EH 41H L2_RQSTS.SELF.
DEMAND.I_STAT
E

L2 cache
demand
requests from
this core that
missed the L2

This event counts all completed L2 cache
demand requests from this core that miss the
L2 cache. This includes L1 data cache reads,
writes, and locked accesses, L1 data prefetch
requests, and instruction fetches.

This is an architectural performance event.

2EH 4FH L2_RQSTS.SELF.
DEMAND.MESI

L2 cache
demand
requests from
this core

This event counts all completed L2 cache
demand requests from this core. This includes
L1 data cache reads, writes, and locked
accesses, L1 data prefetch requests, and
instruction fetches.

This is an architectural performance event.

Table 19-14. Non-Architectural Performance Events for Intel Atom Processors
Event
Num.

Umask
Value Event Name Definition Description and Comment
19-192 Vol. 3B

PERFORMANCE-MONITORING EVENTS
30H See
Table
18-2,
Table
18-4
and
Table
18-5

L2_REJECT_BUS
Q

Rejected L2
cache requests

This event indicates that a pending L2 cache
request that requires a bus transaction is
delayed from moving to the bus queue. Some
of the reasons for this event are:

- The bus queue is full.

- The bus queue already holds an entry for a
cache line in the same set.

The number of events is greater or equal to
the number of requests that were rejected.

- for this core or both cores.

- due to demand requests and L2 hardware
prefetch requests together, or separately.

- of accesses to cache lines at different MESI
states.

32H See
Table
18-2

L2_NO_REQ Cycles no L2
cache requests
are pending

This event counts the number of cycles that
no L2 cache requests are pending.

3AH 00H EIST_TRANS Number of
Enhanced Intel
SpeedStep(R)
Technology
(EIST)
transitions

This event counts the number of Enhanced
Intel SpeedStep(R) Technology (EIST)
transitions that include a frequency change,
either with or without VID change. This event
is incremented only while the counting core is
in C0 state. Since the CxE states include an
EIST transition, the event will be incremented
accordingly.

EIST transitions are commonly initiated by
OS, but can be initiated by HW internally. For
example: CxE states are C-states (C1,C2,C3…)
which not only place the CPU into a sleep
state by turning off the clock and other
components, but also lower the voltage
(which reduces the leakage power
consumption). The same is true for thermal
throttling transition which uses EIST
internally.

Table 19-14. Non-Architectural Performance Events for Intel Atom Processors
Event
Num.

Umask
Value Event Name Definition Description and Comment
Vol. 3B 19-193

PERFORMANCE-MONITORING EVENTS
3BH C0H THERMAL_TRIP Number of
thermal trips

This event counts the number of thermal
trips. A thermal trip occurs whenever the
processor temperature exceeds the thermal
trip threshold temperature. Following a
thermal trip, the processor automatically
reduces frequency and voltage. The
processor checks the temperature every
millisecond, and returns to normal when the
temperature falls below the thermal trip
threshold temperature.

3CH 00H CPU_CLK_UNH
ALTED.CORE_P

Core cycles
when core is not
halted

This event counts the number of core cycles
while the core is not in a halt state. The core
enters the halt state when it is running the
HLT instruction. This event is a component in
many key event ratios.

In mobile systems the core frequency may
change from time to time. For this reason this
event may have a changing ratio with regards
to time. In systems with a constant core
frequency, this event can give you a
measurement of the elapsed time while the
core was not in halt state by dividing the
event count by the core frequency.

-This is an architectural performance event.

- The event CPU_CLK_UNHALTED.CORE_P is
counted by a programmable counter.

- The event CPU_CLK_UNHALTED.CORE is
counted by a designated fixed counter,
leaving the two programmable counters
available for other events.

Table 19-14. Non-Architectural Performance Events for Intel Atom Processors
Event
Num.

Umask
Value Event Name Definition Description and Comment
19-194 Vol. 3B

PERFORMANCE-MONITORING EVENTS
3CH 01H CPU_CLK_UNH
ALTED.BUS

Bus cycles
when core is not
halted

This event counts the number of bus cycles
while the core is not in the halt state. This
event can give you a measurement of the
elapsed time while the core was not in the
halt state, by dividing the event count by the
bus frequency. The core enters the halt state
when it is running the HLT instruction.

The event also has a constant ratio with
CPU_CLK_UNHALTED.REF event, which is the
maximum bus to processor frequency ratio.

Non-halted bus cycles are a component in
many key event ratios.

3CH 02H CPU_CLK_UNH
ALTED.NO_OTH
ER

Bus cycles
when core is
active and the
other is halted

This event counts the number of bus cycles
during which the core remains non-halted,
and the other core on the processor is halted.

This event can be used to determine the
amount of parallelism exploited by an
application or a system. Divide this event
count by the bus frequency to determine the
amount of time that only one core was in use.

40H 21H L1D_CACHE.LD L1 Cacheable
Data Reads

This event counts the number of data reads
from cacheable memory.

40H 22H L1D_CACHE.ST L1 Cacheable
Data Writes

This event counts the number of data writes
to cacheable memory.

60H See
Table
18-2
and
Table
18-3

BUS_REQUEST_
OUTSTANDING

Outstanding
cacheable data
read bus
requests
duration

This event counts the number of pending full
cache line read transactions on the bus
occurring in each cycle. A read transaction is
pending from the cycle it is sent on the bus
until the full cache line is received by the
processor. NOTE: This event is thread-
independent and will not provide a count per
logical processor when AnyThr is disabled.

Table 19-14. Non-Architectural Performance Events for Intel Atom Processors
Event
Num.

Umask
Value Event Name Definition Description and Comment
Vol. 3B 19-195

PERFORMANCE-MONITORING EVENTS
61H See
Table
18-3

BUS_BNR_DRV Number of Bus
Not Ready
signals asserted

This event counts the number of Bus Not
Ready (BNR) signals that the processor
asserts on the bus to suspend additional bus
requests by other bus agents. A bus agent
asserts the BNR signal when the number of
data and snoop transactions is close to the
maximum that the bus can handle.

While this signal is asserted, new
transactions cannot be submitted on the bus.
As a result, transaction latency may have
higher impact on program performance.
NOTE: This event is thread-independent and
will not provide a count per logical processor
when AnyThr is disabled.

62H See
Table
18-3

BUS_DRDY_CLO
CKS

Bus cycles
when data is
sent on the bus

This event counts the number of bus cycles
during which the DRDY (Data Ready) signal is
asserted on the bus. The DRDY signal is
asserted when data is sent on the bus.

This event counts the number of bus cycles
during which this agent (the processor)
writes data on the bus back to memory or to
other bus agents. This includes all explicit and
implicit data writebacks, as well as partial
writes.
NOTE: This event is thread-independent and
will not provide a count per logical processor
when AnyThr is disabled.

63H See
Table
18-2
and
Table
18-3

BUS_LOCK_CLO
CKS

Bus cycles
when a LOCK
signal is
asserted.

This event counts the number of bus cycles,
during which the LOCK signal is asserted on
the bus. A LOCK signal is asserted when
there is a locked memory access, due to:

- Uncacheable memory

- Locked operation that spans two cache lines

- Page-walk from an uncacheable page table.

Bus locks have a very high performance
penalty and it is highly recommended to avoid
such accesses. NOTE: This event is thread-
independent and will not provide a count per
logical processor when AnyThr is disabled.

Table 19-14. Non-Architectural Performance Events for Intel Atom Processors
Event
Num.

Umask
Value Event Name Definition Description and Comment
19-196 Vol. 3B

PERFORMANCE-MONITORING EVENTS
64H See
Table
18-2

BUS_DATA_RCV Bus cycles while
processor
receives data

This event counts the number of cycles
during which the processor is busy receiving
data. NOTE: This event is thread-independent
and will not provide a count per logical
processor when AnyThr is disabled.

65H See
Table
18-2
and
Table
18-3

BUS_TRANS_B
RD

Burst read bus
transactions

This event counts the number of burst read
transactions including:

- L1 data cache read misses (and L1 data
cache hardware prefetches)

- L2 hardware prefetches by the DPL and L2
streamer

- IFU read misses of cacheable lines.

It does not include RFO transactions.

66H See
Table
18-2
and
Table
18-3

BUS_TRANS_RF
O

RFO bus
transactions

This event counts the number of Read For
Ownership (RFO) bus transactions, due to
store operations that miss the L1 data cache
and the L2 cache. This event also counts RFO
bus transactions due to locked operations.

67H See
Table
18-2
and
Table
18-3

BUS_TRANS_W
B

Explicit
writeback bus
transactions

This event counts all explicit writeback bus
transactions due to dirty line evictions. It
does not count implicit writebacks due to
invalidation by a snoop request.

68H See
Table
18-2
and
Table
18-3

BUS_TRANS_IF
ETCH

Instruction-
fetch bus
transactions.

This event counts all instruction fetch full
cache line bus transactions.

69H See
Table
18-2
and
Table
18-3

BUS_TRANS_IN
VAL

Invalidate bus
transactions

This event counts all invalidate transactions.
Invalidate transactions are generated when:

- A store operation hits a shared line in the L2
cache.

- A full cache line write misses the L2 cache
or hits a shared line in the L2 cache.

Table 19-14. Non-Architectural Performance Events for Intel Atom Processors
Event
Num.

Umask
Value Event Name Definition Description and Comment
Vol. 3B 19-197

PERFORMANCE-MONITORING EVENTS
6AH See
Table
18-2
and
Table
18-3

BUS_TRANS_P
WR

Partial write bus
transaction.

This event counts partial write bus
transactions.

6BH See
Table
18-2
and
Table
18-3

BUS_TRANS_P Partial bus
transactions

This event counts all (read and write) partial
bus transactions.

6CH See
Table
18-2
and
Table
18-3

BUS_TRANS_IO IO bus
transactions

This event counts the number of completed
I/O bus transactions as a result of IN and OUT
instructions. The count does not include
memory mapped IO.

6DH See
Table
18-2
and
Table
18-3

BUS_TRANS_D
EF

Deferred bus
transactions

This event counts the number of deferred
transactions.

6EH See
Table
18-2
and
Table
18-3

BUS_TRANS_B
URST

Burst (full
cache-line) bus
transactions.

This event counts burst (full cache line)
transactions including:

- Burst reads

- RFOs

- Explicit writebacks

- Write combine lines

6FH See
Table
18-2
and
Table
18-3

BUS_TRANS_M
EM

Memory bus
transactions

This event counts all memory bus
transactions including:

- burst transactions

- partial reads and writes

- invalidate transactions

The BUS_TRANS_MEM count is the sum of
BUS_TRANS_BURST, BUS_TRANS_P and
BUS_TRANS_INVAL.

Table 19-14. Non-Architectural Performance Events for Intel Atom Processors
Event
Num.

Umask
Value Event Name Definition Description and Comment
19-198 Vol. 3B

PERFORMANCE-MONITORING EVENTS
70H See
Table
18-2
and
Table
18-3

BUS_TRANS_A
NY

All bus
transactions

This event counts all bus transactions. This
includes:

- Memory transactions

- IO transactions (non memory-mapped)

- Deferred transaction completion

- Other less frequent transactions, such as
interrupts

77H See
Table
18-2
and
Table
18-5

EXT_SNOOP External snoops This event counts the snoop responses to
bus transactions. Responses can be counted
separately by type and by bus agent. NOTE:
This event is thread-independent and will not
provide a count per logical processor when
AnyThr is disabled.

7AH See
Table
18-3

BUS_HIT_DRV HIT signal
asserted

This event counts the number of bus cycles
during which the processor drives the HIT#
pin to signal HIT snoop response. NOTE: This
event is thread-independent and will not
provide a count per logical processor when
AnyThr is disabled.

7BH See
Table
18-3

BUS_HITM_DRV HITM signal
asserted

This event counts the number of bus cycles
during which the processor drives the HITM#
pin to signal HITM snoop response. NOTE:
This event is thread-independent and will not
provide a count per logical processor when
AnyThr is disabled.

7DH See
Table
18-2

BUSQ_EMPTY Bus queue is
empty

This event counts the number of cycles
during which the core did not have any
pending transactions in the bus queue.

NOTE: This event is thread-independent and
will not provide a count per logical processor
when AnyThr is disabled.

7EH See
Table
18-2
and
Table
18-3

SNOOP_STALL_
DRV

Bus stalled for
snoops

This event counts the number of times that
the bus snoop stall signal is asserted. During
the snoop stall cycles no new bus
transactions requiring a snoop response can
be initiated on the bus. NOTE: This event is
thread-independent and will not provide a
count per logical processor when AnyThr is
disabled.

Table 19-14. Non-Architectural Performance Events for Intel Atom Processors
Event
Num.

Umask
Value Event Name Definition Description and Comment
Vol. 3B 19-199

PERFORMANCE-MONITORING EVENTS
7FH See
Table
18-2

BUS_IO_WAIT IO requests
waiting in the
bus queue

This event counts the number of core cycles
during which IO requests wait in the bus
queue. This event counts IO requests from
the core.

80H 03H ICACHE.ACCESS
ES

Instruction
fetches

This event counts all instruction fetches,
including uncacheable fetches.

80H 02H ICACHE.MISSES Icache miss This event counts all instruction fetches that
miss the Instruction cache or produce
memory requests. This includes uncacheable
fetches. An instruction fetch miss is counted
only once and not once for every cycle it is
outstanding.

82H 04H ITLB.FLUSH ITLB flushes This event counts the number of ITLB
flushes.

82H 02H ITLB.MISSES ITLB misses This event counts the number of instruction
fetches that miss the ITLB.

AAH 02H MACRO_INSTS.C
ISC_DECODED

CISC macro
instructions
decoded

This event counts the number of complex
instructions decoded, but not necessarily
executed or retired. Only one complex
instruction can be decoded at a time.

AAH 03H MACRO_INSTS.
ALL_DECODED

All Instructions
decoded

This event counts the number of instructions
decoded.

B0H 00H SIMD_UOPS_EX
EC.S

SIMD micro-ops
executed
(excluding
stores)

This event counts all the SIMD micro-ops
executed. This event does not count MOVQ
and MOVD stores from register to memory.

B0H 80H SIMD_UOPS_EX
EC.AR

SIMD micro-ops
retired
(excluding
stores)

This event counts the number of SIMD
saturated arithmetic micro-ops executed.

B1H 00H SIMD_SAT_UOP
_EXEC.S

SIMD saturated
arithmetic
micro-ops
executed

This event counts the number of SIMD
saturated arithmetic micro-ops executed.

B1H 80H SIMD_SAT_UOP
_EXEC.AR

SIMD saturated
arithmetic
micro-ops
retired

This event counts the number of SIMD
saturated arithmetic micro-ops retired.

Table 19-14. Non-Architectural Performance Events for Intel Atom Processors
Event
Num.

Umask
Value Event Name Definition Description and Comment
19-200 Vol. 3B

PERFORMANCE-MONITORING EVENTS
B3H 01H SIMD_UOP_TYP
E_EXEC.MUL.S

SIMD packed
multiply micro-
ops executed

This event counts the number of SIMD packed
multiply micro-ops executed.

B3H 81H SIMD_UOP_TYP
E_EXEC.MUL.AR

SIMD packed
multiply micro-
ops retired

This event counts the number of SIMD packed
multiply micro-ops retired.

B3H 02H SIMD_UOP_TYP
E_EXEC.SHIFT.S

SIMD packed
shift micro-ops
executed

This event counts the number of SIMD packed
shift micro-ops executed.

B3H 82H SIMD_UOP_TYP
E_EXEC.SHIFT.A
R

SIMD packed
shift micro-ops
retired

This event counts the number of SIMD packed
shift micro-ops retired.

B3H 04H SIMD_UOP_TYP
E_EXEC.PACK.S

SIMD pack
micro-ops
executed

This event counts the number of SIMD pack
micro-ops executed.

B3H 84H SIMD_UOP_TYP
E_EXEC.PACK.A
R

SIMD pack
micro-ops
retired

This event counts the number of SIMD pack
micro-ops retired.

B3H 08H SIMD_UOP_TYP
E_EXEC.UNPAC
K.S

SIMD unpack
micro-ops
executed

This event counts the number of SIMD
unpack micro-ops executed.

B3H 88H SIMD_UOP_TYP
E_EXEC.UNPAC
K.AR

SIMD unpack
micro-ops
retired

This event counts the number of SIMD
unpack micro-ops retired.

B3H 10H SIMD_UOP_TYP
E_EXEC.LOGICA
L.S

SIMD packed
logical micro-
ops executed

This event counts the number of SIMD packed
logical micro-ops executed.

B3H 90H SIMD_UOP_TYP
E_EXEC.LOGICA
L.AR

SIMD packed
logical micro-
ops retired

This event counts the number of SIMD packed
logical micro-ops retired.

B3H 20H SIMD_UOP_TYP
E_EXEC.ARITHM
ETIC.S

SIMD packed
arithmetic
micro-ops
executed

This event counts the number of SIMD packed
arithmetic micro-ops executed.

B3H A0H SIMD_UOP_TYP
E_EXEC.ARITHM
ETIC.AR

SIMD packed
arithmetic
micro-ops
retired

This event counts the number of SIMD packed
arithmetic micro-ops retired.

Table 19-14. Non-Architectural Performance Events for Intel Atom Processors
Event
Num.

Umask
Value Event Name Definition Description and Comment
Vol. 3B 19-201

PERFORMANCE-MONITORING EVENTS
C0H 00H INST_RETIRED.
ANY_P

Instructions
retired (precise
event).

This event counts the number of instructions
that retire execution. For instructions that
consist of multiple micro-ops, this event
counts the retirement of the last micro-op of
the instruction. The counter continues
counting during hardware interrupts, traps,
and inside interrupt handlers.

N/A 00H INST_RETIRED.
ANY

Instructions
retired

This event counts the number of instructions
that retire execution. For instructions that
consist of multiple micro-ops, this event
counts the retirement of the last micro-op of
the instruction. The counter continues
counting during hardware interrupts, traps,
and inside interrupt handlers.

C2H 10H UOPS_RETIRED.
ANY

Micro-ops
retired

This event counts the number of micro-ops
retired. The processor decodes complex
macro instructions into a sequence of simpler
micro-ops. Most instructions are composed of
one or two micro-ops. Some instructions are
decoded into longer sequences such as
repeat instructions, floating point
transcendental instructions, and assists. In
some cases micro-op sequences are fused or
whole instructions are fused into one micro-
op. See other UOPS_RETIRED events for
differentiating retired fused and non-fused
micro-ops.

C3H 01H MACHINE_CLEA
RS.SMC

Self-Modifying
Code detected

This event counts the number of times that a
program writes to a code section. Self-
modifying code causes a severe penalty in all
Intel® architecture processors.

C4H 00H BR_INST_RETIR
ED.ANY

Retired branch
instructions

This event counts the number of branch
instructions retired.

This is an architectural performance event.

C4H 01H BR_INST_RETIR
ED.PRED_NOT_
TAKEN

Retired branch
instructions
that were
predicted not-
taken

This event counts the number of branch
instructions retired that were correctly
predicted to be not-taken.

Table 19-14. Non-Architectural Performance Events for Intel Atom Processors
Event
Num.

Umask
Value Event Name Definition Description and Comment
19-202 Vol. 3B

PERFORMANCE-MONITORING EVENTS
C4H 02H BR_INST_RETIR
ED.MISPRED_N
OT_TAKEN

Retired branch
instructions
that were
mispredicted
not-taken

This event counts the number of branch
instructions retired that were mispredicted
and not-taken.

C4H 04H BR_INST_RETIR
ED.PRED_TAKE
N

Retired branch
instructions
that were
predicted taken

This event counts the number of branch
instructions retired that were correctly
predicted to be taken.

C4H 08H BR_INST_RETIR
ED.MISPRED_TA
KEN

Retired branch
instructions
that were
mispredicted
taken

This event counts the number of branch
instructions retired that were mispredicted
and taken.

C4H 0AH BR_INST_RETIR
ED.MISPRED

Retired
mispredicted
branch
instructions
(precise event)

This event counts the number of retired
branch instructions that were mispredicted
by the processor. A branch misprediction
occurs when the processor predicts that the
branch would be taken, but it is not, or vice-
versa. Mispredicted branches degrade the
performance because the processor starts
executing instructions along a wrong path it
predicts. When the misprediction is
discovered, all the instructions executed in
the wrong path must be discarded, and the
processor must start again on the correct
path.

Using the Profile-Guided Optimization (PGO)
features of the Intel® C++ compiler may help
reduce branch mispredictions. See the
compiler documentation for more information
on this feature.

Table 19-14. Non-Architectural Performance Events for Intel Atom Processors
Event
Num.

Umask
Value Event Name Definition Description and Comment
Vol. 3B 19-203

PERFORMANCE-MONITORING EVENTS
To determine the branch misprediction ratio,
divide the BR_INST_RETIRED.MISPRED event
count by the number of
BR_INST_RETIRED.ANY event count. To
determine the number of mispredicted
branches per instruction, divide the number
of mispredicted branches by the
INST_RETIRED.ANY event count. To measure
the impact of the branch mispredictions use
the event
RESOURCE_STALLS.BR_MISS_CLEAR.

Tips

- See the optimization guide for tips on
reducing branch mispredictions.

- PGO's purpose is to have straight line code
for the most frequent execution paths,
reducing branches taken and increasing the
"basic block" size, possibly also reducing the
code footprint or working-set.

C4H 0CH BR_INST_RETIR
ED.TAKEN

Retired taken
branch
instructions

This event counts the number of branches
retired that were taken.

C4H 0FH BR_INST_RETIR
ED.ANY1

Retired branch
instructions

This event counts the number of branch
instructions retired that were mispredicted.
This event is a duplicate of
BR_INST_RETIRED.MISPRED.

C5H 00H BR_INST_RETIR
ED.MISPRED

Retired
mispredicted
branch
instructions
(precise event).

This event counts the number of retired
branch instructions that were mispredicted
by the processor. A branch misprediction
occurs when the processor predicts that the
branch would be taken, but it is not, or vice-
versa. Mispredicted branches degrade the
performance because the processor starts
executing instructions along a wrong path it
predicts. When the misprediction is
discovered, all the instructions executed in
the wrong path must be discarded, and the
processor must start again on the correct
path.

Table 19-14. Non-Architectural Performance Events for Intel Atom Processors
Event
Num.

Umask
Value Event Name Definition Description and Comment
19-204 Vol. 3B

PERFORMANCE-MONITORING EVENTS
Using the Profile-Guided Optimization (PGO)
features of the Intel® C++ compiler may help
reduce branch mispredictions. See the
compiler documentation for more information
on this feature.

To determine the branch misprediction ratio,
divide the BR_INST_RETIRED.MISPRED event
count by the number of
BR_INST_RETIRED.ANY event count. To
determine the number of mispredicted
branches per instruction, divide the number
of mispredicted branches by the
INST_RETIRED.ANY event count. To measure
the impact of the branch mispredictions use
the event
RESOURCE_STALLS.BR_MISS_CLEAR.

Tips

- See the optimization guide for tips on
reducing branch mispredictions.

- PGO's purpose is to have straight line code
for the most frequent execution paths,
reducing branches taken and increasing the
"basic block" size, possibly also reducing the
code footprint or working-set.

C6H 01H CYCLES_INT_M
ASKED.CYCLES_I
NT_MASKED

Cycles during
which interrupts
are disabled

This event counts the number of cycles
during which interrupts are disabled.

C6H 02H CYCLES_INT_M
ASKED.CYCLES_I
NT_PENDING_A
ND_MASKED

Cycles during
which interrupts
are pending and
disabled

This event counts the number of cycles
during which there are pending interrupts but
interrupts are disabled.

C7H 01H SIMD_INST_RET
IRED.PACKED_SI
NGLE

Retired
Streaming SIMD
Extensions
(SSE) packed-
single
instructions

This event counts the number of SSE packed-
single instructions retired.

Table 19-14. Non-Architectural Performance Events for Intel Atom Processors
Event
Num.

Umask
Value Event Name Definition Description and Comment
Vol. 3B 19-205

PERFORMANCE-MONITORING EVENTS
C7H 02H SIMD_INST_RET
IRED.SCALAR_SI
NGLE

Retired
Streaming SIMD
Extensions
(SSE) scalar-
single
instructions

This event counts the number of SSE scalar-
single instructions retired.

C7H 04H SIMD_INST_RET
IRED.PACKED_D
OUBLE

Retired
Streaming SIMD
Extensions 2
(SSE2) packed-
double
instructions

This event counts the number of SSE2
packed-double instructions retired.

C7H 08H SIMD_INST_RET
IRED.SCALAR_D
OUBLE

Retired
Streaming SIMD
Extensions 2
(SSE2) scalar-
double
instructions.

This event counts the number of SSE2 scalar-
double instructions retired.

C7H 10H SIMD_INST_RET
IRED.VECTOR

Retired
Streaming SIMD
Extensions 2
(SSE2) vector
instructions.

This event counts the number of SSE2 vector
instructions retired.

C7H 1FH SIMD_INST_RET
IRED.ANY

Retired
Streaming SIMD
instructions

This event counts the overall number of SIMD
instructions retired. To count each type of
SIMD instruction separately, use the following
events:

SIMD_INST_RETIRED.PACKED_SINGLE,
SIMD_INST_RETIRED.SCALAR_SINGLE,
SIMD_INST_RETIRED.PACKED_DOUBLE,
SIMD_INST_RETIRED.SCALAR_DOUBLE, and
SIMD_INST_RETIRED.VECTOR.

C8H 00H HW_INT_RCV Hardware
interrupts
received

This event counts the number of hardware
interrupts received by the processor. This
event will count twice for dual-pipe micro-
ops.

Table 19-14. Non-Architectural Performance Events for Intel Atom Processors
Event
Num.

Umask
Value Event Name Definition Description and Comment
19-206 Vol. 3B

PERFORMANCE-MONITORING EVENTS
CAH 01H SIMD_COMP_IN
ST_RETIRED.PA
CKED_SINGLE

Retired
computational
Streaming SIMD
Extensions
(SSE) packed-
single
instructions.

This event counts the number of
computational SSE packed-single instructions
retired. Computational instructions perform
arithmetic computations, like add, multiply
and divide. Instructions that perform load and
store operations or logical operations, like
XOR, OR, and AND are not counted by this
event.

CAH 02H SIMD_COMP_IN
ST_RETIRED.SC
ALAR_SINGLE

Retired
computational
Streaming SIMD
Extensions
(SSE) scalar-
single
instructions.

This event counts the number of
computational SSE scalar-single instructions
retired. Computational instructions perform
arithmetic computations, like add, multiply
and divide. Instructions that perform load and
store operations or logical operations, like
XOR, OR, and AND are not counted by this
event.

CAH 04H SIMD_COMP_IN
ST_RETIRED.PA
CKED_DOUBLE

Retired
computational
Streaming SIMD
Extensions 2
(SSE2) packed-
double
instructions.

This event counts the number of
computational SSE2 packed-double
instructions retired. Computational
instructions perform arithmetic
computations, like add, multiply and divide.
Instructions that perform load and store
operations or logical operations, like XOR, OR,
and AND are not counted by this event.

CAH 08H SIMD_COMP_IN
ST_RETIRED.SC
ALAR_DOUBLE

Retired
computational
Streaming SIMD
Extensions 2
(SSE2) scalar-
double
instructions

This event counts the number of
computational SSE2 scalar-double
instructions retired. Computational
instructions perform arithmetic
computations, like add, multiply and divide.
Instructions that perform load and store
operations or logical operations, like XOR, OR,
and AND are not counted by this event.

CBH 01H MEM_LOAD_RE
TIRED.L2_HIT

Retired loads
that hit the L2
cache (precise
event)

This event counts the number of retired load
operations that missed the L1 data cache and
hit the L2 cache.

CBH 02H MEM_LOAD_RE
TIRED.L2_MISS

Retired loads
that miss the L2
cache (precise
event)

This event counts the number of retired load
operations that missed the L2 cache.

Table 19-14. Non-Architectural Performance Events for Intel Atom Processors
Event
Num.

Umask
Value Event Name Definition Description and Comment
Vol. 3B 19-207

PERFORMANCE-MONITORING EVENTS
CBH 04H MEM_LOAD_RE
TIRED.DTLB_MI
SS

Retired loads
that miss the
DTLB (precise
event)

This event counts the number of retired loads
that missed the DTLB. The DTLB miss is not
counted if the load operation causes a fault.

CDH 00H SIMD_ASSIST SIMD assists
invoked

This event counts the number of SIMD assists
invoked. SIMD assists are invoked when an
EMMS instruction is executed after MMX™
technology code has changed the MMX state
in the floating point stack. For example, these
assists are required in the following cases:

Streaming SIMD Extensions (SSE)
instructions:

1. Denormal input when the DAZ (Denormals
Are Zeros) flag is off

2. Underflow result when the FTZ (Flush To
Zero) flag is off

CEH 00H SIMD_INSTR_RE
TIRED

SIMD
Instructions
retired

This event counts the number of SIMD
instructions that retired.

CFH 00H SIMD_SAT_INST
R_RETIRED

Saturated
arithmetic
instructions
retired

This event counts the number of saturated
arithmetic SIMD instructions that retired.

E0H 01H BR_INST_DECO
DED

Branch
instructions
decoded

This event counts the number of branch
instructions decoded.

Table 19-14. Non-Architectural Performance Events for Intel Atom Processors
Event
Num.

Umask
Value Event Name Definition Description and Comment
19-208 Vol. 3B

PERFORMANCE-MONITORING EVENTS
19.9 PERFORMANCE MONITORING EVENTS FOR INTEL®
CORE™ SOLO AND INTEL® CORE™ DUO PROCESSORS

Table 19-15 lists non-architectural performance events for Intel Core Duo proces-
sors. If a non-architectural event requires qualification in core specificity, it is indi-
cated in the comment column. Table 19-15 also applies to Intel Core Solo processors;
bits in the unit mask corresponding to core-specificity are reserved and should be
00B.

E4H 01H BOGUS_BR Bogus branches This event counts the number of byte
sequences that were mistakenly detected as
taken branch instructions. This results in a
BACLEAR event and the BTB is flushed. This
occurs mainly after task switches.

E6H 01H BACLEARS.ANY BACLEARS
asserted

This event counts the number of times the
front end is redirected for a branch
prediction, mainly when an early branch
prediction is corrected by other branch
handling mechanisms in the front-end. This
can occur if the code has many branches such
that they cannot be consumed by the branch
predictor. Each Baclear asserted costs
approximately 7 cycles. The effect on total
execution time depends on the surrounding
code.

Table 19-15. Non-Architectural Performance Events
in Intel Core Solo and Intel Core Duo Processors

Event
Num.

Event Mask
Mnemonic

Umask
Value Description Comment

03H LD_Blocks 00H Load operations delayed due to
store buffer blocks.

The preceding store may be
blocked due to unknown address,
unknown data, or conflict due to
partial overlap between the load
and store.

04H SD_Drains 00H Cycles while draining store buffers.

Table 19-14. Non-Architectural Performance Events for Intel Atom Processors
Event
Num.

Umask
Value Event Name Definition Description and Comment
Vol. 3B 19-209

PERFORMANCE-MONITORING EVENTS
05H Misalign_Mem_Ref 00H Misaligned data memory
references (MOB splits of loads
and stores).

06H Seg_Reg_Loads 00H Segment register loads.

07H SSE_PrefNta_Ret 00H SSE software prefetch instruction
PREFETCHNTA retired.

07H SSE_PrefT1_Ret 01H SSE software prefetch instruction
PREFETCHT1 retired.

07H SSE_PrefT2_Ret 02H SSE software prefetch instruction
PREFETCHT2 retired.

07H SSE_NTStores_Ret 03H SSE streaming store instruction
retired.

10H FP_Comps_Op_Exe 00H FP computational Instruction
executed. FADD, FSUB, FCOM,
FMULs, MUL, IMUL, FDIVs, DIV, IDIV,
FPREMs, FSQRT are included; but
exclude FADD or FMUL used in the
middle of a transcendental
instruction.

11H FP_Assist 00H FP exceptions experienced
microcode assists.

IA32_PMC1
only.

12H Mul 00H Multiply operations (a speculative
count, including FP and integer
multiplies).

IA32_PMC1
only.

13H Div 00H Divide operations (a speculative
count, including FP and integer
divisions).

IA32_PMC1
only.

14H Cycles_Div_Busy 00H Cycles the divider is busy. IA32_PMC0
only.

21H L2_ADS 00H L2 Address strobes. Requires core-
specificity

22H Dbus_Busy 00H Core cycle during which data bus
was busy (increments by 4).

Requires core-
specificity

23H Dbus_Busy_Rd 00H Cycles data bus is busy
transferring data to a core
(increments by 4).

Requires core-
specificity

Table 19-15. Non-Architectural Performance Events
in Intel Core Solo and Intel Core Duo Processors (Contd.)

Event
Num.

Event Mask
Mnemonic

Umask
Value Description Comment
19-210 Vol. 3B

PERFORMANCE-MONITORING EVENTS
24H L2_Lines_In 00H L2 cache lines allocated. Requires core-
specificity and
HW prefetch
qualification

25H L2_M_Lines_In 00H L2 Modified-state cache lines
allocated.

Requires core-
specificity

26H L2_Lines_Out 00H L2 cache lines evicted. Requires core-
specificity and
HW prefetch
qualification

27H L2_M_Lines_Out 00H L2 Modified-state cache lines
evicted.

28H L2_IFetch Requires
MESI
qualification

L2 instruction fetches from
instruction fetch unit (includes
speculative fetches).

Requires core-
specificity

29H L2_LD Requires
MESI
qualification

L2 cache reads. Requires core-
specificity

2AH L2_ST Requires
MESI
qualification

L2 cache writes (includes
speculation).

Requires core-
specificity

2EH L2_Rqsts Requires
MESI
qualification

L2 cache reference requests. Requires core-
specificity, HW
prefetch
qualification30H L2_Reject_Cycles Requires

MESI
qualification

Cycles L2 is busy and rejecting
new requests.

32H L2_No_Request_
Cycles

Requires
MESI
qualification

Cycles there is no request to
access L2.

3AH EST_Trans_All 00H Any Intel Enhanced SpeedStep(R)
Technology transitions.

3AH EST_Trans_All 10H Intel Enhanced SpeedStep
Technology frequency transitions.

3BH Thermal_Trip C0H Duration in a thermal trip based on
the current core clock.

Use edge
trigger to count
occurrence

3CH NonHlt_Ref_Cycles 01H Non-halted bus cycles.

Table 19-15. Non-Architectural Performance Events
in Intel Core Solo and Intel Core Duo Processors (Contd.)

Event
Num.

Event Mask
Mnemonic

Umask
Value Description Comment
Vol. 3B 19-211

PERFORMANCE-MONITORING EVENTS
3CH Serial_Execution_
Cycles

02H Non-halted bus cycles of this core
executing code while the other
core is halted.

40H DCache_Cache_LD Requires
MESI
qualification

L1 cacheable data read operations.

41H DCache_Cache_ST Requires
MESI
qualification

L1 cacheable data write
operations.

42H DCache_Cache_
Lock

Requires
MESI
qualification

L1 cacheable lock read operations
to invalid state.

43H Data_Mem_Ref 01H L1 data read and writes of
cacheable and non-cacheable
types.

44H Data_Mem_Cache_
Ref

02H L1 data cacheable read and write
operations.

45H DCache_Repl 0FH L1 data cache line replacements.

46H DCache_M_Repl 00H L1 data M-state cache line
allocated.

47H DCache_M_Evict 00H L1 data M-state cache line evicted.

48H DCache_Pend_Miss 00H Weighted cycles of L1 miss
outstanding.

Use Cmask =1
to count
duration.

49H Dtlb_Miss 00H Data references that missed TLB.

4BH SSE_PrefNta_Miss 00H PREFETCHNTA missed all caches.

4BH SSE_PrefT1_Miss 01H PREFETCHT1 missed all caches.

4BH SSE_PrefT2_Miss 02H PREFETCHT2 missed all caches.

4BH SSE_NTStores_
Miss

03H SSE streaming store instruction
missed all caches.

4FH L1_Pref_Req 00H L1 prefetch requests due to DCU
cache misses.

May overcount
if request re-
submitted

Table 19-15. Non-Architectural Performance Events
in Intel Core Solo and Intel Core Duo Processors (Contd.)

Event
Num.

Event Mask
Mnemonic

Umask
Value Description Comment
19-212 Vol. 3B

PERFORMANCE-MONITORING EVENTS
60H Bus_Req_
Outstanding

00; Requires
core-
specificity,
and agent
specificity

Weighted cycles of cacheable bus
data read requests. This event
counts full-line read request from
DCU or HW prefetcher, but not
RFO, write, instruction fetches, or
others.

Use Cmask =1
to count
duration.

Use Umask bit
12 to include
HWP or exclude
HWP separately.

61H Bus_BNR_Clocks 00H External bus cycles while BNR
asserted.

62H Bus_DRDY_Clocks 00H External bus cycles while DRDY
asserted.

Requires agent
specificity

63H Bus_Locks_Clocks 00H External bus cycles while bus lock
signal asserted.

Requires core
specificity

64H Bus_Data_Rcv 40H Number of data chunks received
by this processor.

65H Bus_Trans_Brd See comment. Burst read bus transactions (data
or code).

Requires core
specificity

66H Bus_Trans_RFO See comment. Completed read for ownership
(RFO) transactions.

Requires agent
specificity

Requires core
specificity

Each
transaction
counts its
address strobe

Retried
transaction may
be counted
more than once

68H Bus_Trans_Ifetch See comment. Completed instruction fetch
transactions.

69H Bus_Trans_Inval See comment. Completed invalidate transactions.

6AH Bus_Trans_Pwr See comment. Completed partial write
transactions.

6BH Bus_Trans_P See comment. Completed partial transactions
(include partial read + partial write
+ line write).

6CH Bus_Trans_IO See comment. Completed I/O transactions (read
and write).

6DH Bus_Trans_Def 20H Completed defer transactions. Requires core
specificity

Retried
transaction may
be counted
more than once

Table 19-15. Non-Architectural Performance Events
in Intel Core Solo and Intel Core Duo Processors (Contd.)

Event
Num.

Event Mask
Mnemonic

Umask
Value Description Comment
Vol. 3B 19-213

PERFORMANCE-MONITORING EVENTS
67H Bus_Trans_WB C0H Completed writeback transactions
from DCU (does not include L2
writebacks).

Requires agent
specificity

Each
transaction
counts its
address strobe

Retried
transaction may
be counted
more than once

6EH Bus_Trans_Burst C0H Completed burst transactions (full
line transactions include reads,
write, RFO, and writebacks).

6FH Bus_Trans_Mem C0H Completed memory transactions.
This includes Bus_Trans_Burst +
Bus_Trans_P+Bus_Trans_Inval.

70H Bus_Trans_Any C0H Any completed bus transactions.

77H Bus_Snoops 00H Counts any snoop on the bus. Requires MESI
qualification

Requires agent
specificity

78H DCU_Snoop_To_
Share

01H DCU snoops to share-state L1
cache line due to L1 misses.

Requires core
specificity

7DH Bus_Not_In_Use 00H Number of cycles there is no
transaction from the core.

Requires core
specificity

7EH Bus_Snoop_Stall 00H Number of bus cycles while bus
snoop is stalled.

80H ICache_Reads 00H Number of instruction fetches
from ICache, streaming buffers
(both cacheable and uncacheable
fetches).

81H ICache_Misses 00H Number of instruction fetch misses
from ICache, streaming buffers.

85H ITLB_Misses 00H Number of iITLB misses.

86H IFU_Mem_Stall 00H Cycles IFU is stalled while waiting
for data from memory.

87H ILD_Stall 00H Number of instruction length
decoder stalls (Counts number of
LCP stalls).

88H Br_Inst_Exec 00H Branch instruction executed
(includes speculation).

Table 19-15. Non-Architectural Performance Events
in Intel Core Solo and Intel Core Duo Processors (Contd.)

Event
Num.

Event Mask
Mnemonic

Umask
Value Description Comment
19-214 Vol. 3B

PERFORMANCE-MONITORING EVENTS
89H Br_Missp_Exec 00H Branch instructions executed and
mispredicted at execution
(includes branches that do not
have prediction or mispredicted).

8AH Br_BAC_Missp_
Exec

00H Branch instructions executed that
were mispredicted at front end.

8BH Br_Cnd_Exec 00H Conditional branch instructions
executed.

8CH Br_Cnd_Missp_
Exec

00H Conditional branch instructions
executed that were mispredicted.

8DH Br_Ind_Exec 00H Indirect branch instructions
executed.

8EH Br_Ind_Missp_Exec 00H Indirect branch instructions
executed that were mispredicted.

8FH Br_Ret_Exec 00H Return branch instructions
executed.

90H Br_Ret_Missp_Exec 00H Return branch instructions
executed that were mispredicted.

91H Br_Ret_BAC_Missp_
Exec

00H Return branch instructions
executed that were mispredicted
at the front end.

92H Br_Call_Exec 00H Return call instructions executed.

93H Br_Call_Missp_Exec 00H Return call instructions executed
that were mispredicted.

94H Br_Ind_Call_Exec 00H Indirect call branch instructions
executed.

A2H Resource_Stall 00H Cycles while there is a resource
related stall (renaming, buffer
entries) as seen by allocator.

B0H MMX_Instr_Exec 00H Number of MMX instructions
executed (does not include MOVQ
and MOVD stores).

B1H SIMD_Int_Sat_Exec 00H Number of SIMD Integer saturating
instructions executed.

B3H SIMD_Int_Pmul_
Exec

01H Number of SIMD Integer packed
multiply instructions executed.

Table 19-15. Non-Architectural Performance Events
in Intel Core Solo and Intel Core Duo Processors (Contd.)

Event
Num.

Event Mask
Mnemonic

Umask
Value Description Comment
Vol. 3B 19-215

PERFORMANCE-MONITORING EVENTS
B3H SIMD_Int_Psft_Exec 02H Number of SIMD Integer packed
shift instructions executed.

B3H SIMD_Int_Pck_Exec 04H Number of SIMD Integer pack
operations instruction executed.

B3H SIMD_Int_Upck_
Exec

08H Number of SIMD Integer unpack
instructions executed.

B3H SIMD_Int_Plog_
Exec

10H Number of SIMD Integer packed
logical instructions executed.

B3H SIMD_Int_Pari_Exec 20H Number of SIMD Integer packed
arithmetic instructions executed.

C0H Instr_Ret 00H Number of instruction retired
(Macro fused instruction count
as 2).

C1H FP_Comp_Instr_Ret 00H Number of FP compute
instructions retired (X87
instruction or instruction that
contain X87 operations).

Use IA32_PMC0
only.

C2H Uops_Ret 00H Number of micro-ops retired
(include fused uops).

C3H SMC_Detected 00H Number of times self-modifying
code condition detected.

C4H Br_Instr_Ret 00H Number of branch instructions
retired.

C5H Br_MisPred_Ret 00H Number of mispredicted branch
instructions retired.

C6H Cycles_Int_Masked 00H Cycles while interrupt is disabled.

C7H Cycles_Int_Pedning_
Masked

00H Cycles while interrupt is disabled
and interrupts are pending.

C8H HW_Int_Rx 00H Number of hardware interrupts
received.

C9H Br_Taken_Ret 00H Number of taken branch
instruction retired.

CAH Br_MisPred_Taken_
Ret

00H Number of taken and mispredicted
branch instructions retired.

CCH MMX_FP_Trans 00H Number of transitions from MMX
to X87.

Table 19-15. Non-Architectural Performance Events
in Intel Core Solo and Intel Core Duo Processors (Contd.)

Event
Num.

Event Mask
Mnemonic

Umask
Value Description Comment
19-216 Vol. 3B

PERFORMANCE-MONITORING EVENTS
CCH FP_MMX_Trans 01H Number of transitions from X87 to
MMX.

CDH MMX_Assist 00H Number of EMMS executed.

CEH MMX_Instr_Ret 00H Number of MMX instruction
retired.

D0H Instr_Decoded 00H Number of instruction decoded.

D7H ESP_Uops 00H Number of ESP folding instruction
decoded.

D8H SIMD_FP_SP_Ret 00H Number of SSE/SSE2 single
precision instructions retired
(packed and scalar).

D8H SIMD_FP_SP_S_
Ret

01H Number of SSE/SSE2 scalar single
precision instructions retired.

D8H SIMD_FP_DP_P_
Ret

02H Number of SSE/SSE2 packed
double precision instructions
retired.

D8H SIMD_FP_DP_S_
Ret

03H Number of SSE/SSE2 scalar double
precision instructions retired.

D8H SIMD_Int_128_Ret 04H Number of SSE2 128 bit integer
instructions retired.

D9H SIMD_FP_SP_P_
Comp_Ret

00H Number of SSE/SSE2 packed single
precision compute instructions
retired (does not include AND, OR,
XOR).

D9H SIMD_FP_SP_S_
Comp_Ret

01H Number of SSE/SSE2 scalar single
precision compute instructions
retired (does not include AND, OR,
XOR).

D9H SIMD_FP_DP_P_
Comp_Ret

02H Number of SSE/SSE2 packed
double precision compute
instructions retired (does not
include AND, OR, XOR).

D9H SIMD_FP_DP_S_
Comp_Ret

03H Number of SSE/SSE2 scalar double
precision compute instructions
retired (does not include AND, OR,
XOR).

DAH Fused_Uops_Ret 00H All fused uops retired.

Table 19-15. Non-Architectural Performance Events
in Intel Core Solo and Intel Core Duo Processors (Contd.)

Event
Num.

Event Mask
Mnemonic

Umask
Value Description Comment
Vol. 3B 19-217

PERFORMANCE-MONITORING EVENTS
19.10 PENTIUM 4 AND INTEL XEON PROCESSOR
PERFORMANCE-MONITORING EVENTS

Tables 19-16, 19-17 and list performance-monitoring events that can be counted or
sampled on processors based on Intel NetBurst® microarchitecture. Table 19-16 lists
the non-retirement events, and Table 19-17 lists the at-retirement events. Tables
19-19, 19-20, and 19-21 describes three sets of parameters that are available for
three of the at-retirement counting events defined in Table 19-17. Table 19-22 shows
which of the non-retirement and at retirement events are logical processor specific
(TS) (see Section 18.11.4, “Performance Monitoring Events”) and which are non-
logical processor specific (TI).

Some of the Pentium 4 and Intel Xeon processor performance-monitoring events
may be available only to specific models. The performance-monitoring events listed
in Tables 19-16 and 19-17 apply to processors with CPUID signature that matches
family encoding 15, model encoding 0, 1, 2 3, 4, or 6. Table applies to processors
with a CPUID signature that matches family encoding 15, model encoding 3, 4 or 6.

The functionality of performance-monitoring events in Pentium 4 and Intel Xeon
processors is also available when IA-32e mode is enabled.

DAH Fused_Ld_Uops_
Ret

01H Fused load uops retired.

DAH Fused_St_Uops_Ret 02H Fused store uops retired.

DBH Unfusion 00H Number of unfusion events in the
ROB (due to exception).

E0H Br_Instr_Decoded 00H Branch instructions decoded.

E2H BTB_Misses 00H Number of branches the BTB did
not produce a prediction.

E4H Br_Bogus 00H Number of bogus branches.

E6H BAClears 00H Number of BAClears asserted.

F0H Pref_Rqsts_Up 00H Number of hardware prefetch
requests issued in forward
streams.

F8H Pref_Rqsts_Dn 00H Number of hardware prefetch
requests issued in backward
streams.

Table 19-15. Non-Architectural Performance Events
in Intel Core Solo and Intel Core Duo Processors (Contd.)

Event
Num.

Event Mask
Mnemonic

Umask
Value Description Comment
19-218 Vol. 3B

PERFORMANCE-MONITORING EVENTS
Table 19-16. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting

Event Name Event Parameters Parameter Value Description

TC_deliver_mode This event counts the duration (in
clock cycles) of the operating
modes of the trace cache and
decode engine in the processor
package. The mode is specified by
one or more of the event mask
bits.

ESCR restrictions MSR_TC_ESCR0

MSR_TC_ESCR1

Counter numbers
per ESCR

ESCR0: 4, 5

ESCR1: 6, 7

ESCR Event Select 01H ESCR[31:25]

ESCR Event Mask

Bit

0: DD

1: DB

2: DI

ESCR[24:9]

Both logical processors are in
deliver mode.

Logical processor 0 is in deliver
mode and logical processor 1 is in
build mode.

Logical processor 0 is in deliver
mode and logical processor 1 is
either halted, under a machine
clear condition or transitioning to
a long microcode flow.

3: BD

4: BB

Logical processor 0 is in build
mode and logical processor 1 is in
deliver mode.

Both logical processors are in build
mode.

5: BI Logical processor 0 is in build
mode and logical processor 1 is
either halted, under a machine
clear condition or transitioning to
a long microcode flow.
Vol. 3B 19-219

PERFORMANCE-MONITORING EVENTS
6: ID

7: IB

Logical processor 0 is either
halted, under a machine clear
condition or transitioning to a long
microcode flow. Logical processor
1 is in deliver mode.

Logical processor 0 is either
halted, under a machine clear
condition or transitioning to a long
microcode flow. Logical processor
1 is in build mode.

CCCR Select 01H CCCR[15:13]

Event Specific
Notes

If only one logical processor is
available from a physical
processor package, the event
mask should be interpreted as
logical processor 1 is halted. Event
mask bit 2 was previously known
as “DELIVER”, bit 5 was previously
known as “BUILD”.

BPU_fetch_
request

This event counts instruction
fetch requests of specified
request type by the Branch
Prediction unit. Specify one or
more mask bits to qualify the
request type(s).

ESCR restrictions MSR_BPU_ESCR0
MSR_BPU_ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 03H ESCR[31:25]

ESCR Event Mask

Bit 0: TCMISS

ESCR[24:9]

Trace cache lookup miss

CCCR Select 00H CCCR[15:13]

ITLB_reference This event counts translations
using the Instruction Translation
Look-aside Buffer (ITLB).

Table 19-16. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
19-220 Vol. 3B

PERFORMANCE-MONITORING EVENTS
ESCR restrictions MSR_ITLB_ESCR0

MSR_ITLB_ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 18H ESCR[31:25]

ESCR Event Mask

Bit

0: HIT

1: MISS

2: HIT_UC

ESCR[24:9]

ITLB hit

ITLB miss

Uncacheable ITLB hit

CCCR Select 03H CCCR[15:13]

Event Specific
Notes

All page references regardless of
the page size are looked up as
actual 4-KByte pages. Use the
page_walk_type event with the
ITMISS mask for a more
conservative count.

memory_cancel This event counts the canceling of
various type of request in the
Data cache Address Control unit
(DAC). Specify one or more mask
bits to select the type of requests
that are canceled.

ESCR restrictions MSR_DAC_ESCR0

MSR_DAC_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 02H ESCR[31:25]

ESCR Event Mask

Bit

2: ST_RB_FULL

3: 64K_CONF

ESCR[24:9]

Replayed because no store
request buffer is available

Conflicts due to 64-KByte aliasing

CCCR Select 05H CCCR[15:13]

Table 19-16. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
Vol. 3B 19-221

PERFORMANCE-MONITORING EVENTS
Event Specific
Notes

All_CACHE_MISS includes
uncacheable memory in count.

memory_
complete

This event counts the completion
of a load split, store split,
uncacheable (UC) split, or UC load.
Specify one or more mask bits to
select the operations to be
counted.

ESCR restrictions MSR_SAAT_ESCR0

MSR_SAAT_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 08H ESCR[31:25]

ESCR Event Mask

Bit

0: LSC

1: SSC

ESCR[24:9]

Load split completed, excluding
UC/WC loads

Any split stores completed

CCCR Select 02H CCCR[15:13]

load_port_replay This event counts replayed events
at the load port. Specify one or
more mask bits to select the
cause of the replay.

ESCR restrictions MSR_SAAT_ESCR0

MSR_SAAT_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 04H ESCR[31:25]

ESCR Event Mask

Bit 1: SPLIT_LD

ESCR[24:9]

Split load.

CCCR Select 02H CCCR[15:13]

Event Specific
Notes

Must use ESCR1 for at-retirement
counting.

Table 19-16. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
19-222 Vol. 3B

PERFORMANCE-MONITORING EVENTS
store_port_replay This event counts replayed events
at the store port. Specify one or
more mask bits to select the
cause of the replay.

ESCR restrictions MSR_SAAT_ESCR0

MSR_SAAT_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 05H ESCR[31:25]

ESCR Event Mask

Bit 1: SPLIT_ST

ESCR[24:9]

Split store

CCCR Select 02H CCCR[15:13]

Event Specific
Notes

Must use ESCR1 for at-retirement
counting.

MOB_load_replay This event triggers if the memory
order buffer (MOB) caused a load
operation to be replayed. Specify
one or more mask bits to select
the cause of the replay.

ESCR restrictions MSR_MOB_ESCR0

MSR_MOB_ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 03H ESCR[31:25]

ESCR Event Mask

Bit

1: NO_STA

3: NO_STD

ESCR[24:9]

Replayed because of unknown
store address.

Replayed because of unknown
store data.

Table 19-16. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
Vol. 3B 19-223

PERFORMANCE-MONITORING EVENTS
4: PARTIAL_DATA

5: UNALGN_ADDR

Replayed because of partially
overlapped data access between
the load and store operations.

Replayed because the lower 4 bits
of the linear address do not match
between the load and store
operations.

CCCR Select 02H CCCR[15:13]

page_walk_type This event counts various types
of page walks that the page miss
handler (PMH) performs.

ESCR restrictions MSR_PMH_
ESCR0

MSR_PMH_
ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 01H ESCR[31:25]

ESCR Event Mask

Bit

0: DTMISS

1: ITMISS

ESCR[24:9]

Page walk for a data TLB miss
(either load or store).

Page walk for an instruction TLB
miss.

CCCR Select 04H CCCR[15:13]

BSQ_cache
_reference

This event counts cache
references (2nd level cache or 3rd
level cache) as seen by the bus
unit.

Specify one or more mask bit to
select an access according to the
access type (read type includes
both load and RFO, write type
includes writebacks and evictions)
and the access result (hit, misses).

Table 19-16. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
19-224 Vol. 3B

PERFORMANCE-MONITORING EVENTS
ESCR restrictions MSR_BSU_
ESCR0

MSR_BSU_
ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 0CH ESCR[31:25]

Bit

0: RD_2ndL_HITS

1: RD_2ndL_HITE

2: RD_2ndL_HITM

3: RD_3rdL_HITS

ESCR[24:9]

Read 2nd level cache hit Shared
(includes load and RFO)

Read 2nd level cache hit Exclusive
(includes load and RFO)

Read 2nd level cache hit Modified
(includes load and RFO)

Read 3rd level cache hit Shared
(includes load and RFO)

4: RD_3rdL_HITE

5: RD_3rdL_HITM

Read 3rd level cache hit Exclusive
(includes load and RFO)

Read 3rd level cache hit Modified
(includes load and RFO)

ESCR Event Mask 8: RD_2ndL_MISS

9: RD_3rdL_MISS

10: WR_2ndL_MISS

Read 2nd level cache miss
(includes load and RFO)

Read 3rd level cache miss
(includes load and RFO)

A Writeback lookup from DAC
misses the 2nd level cache
(unlikely to happen)

CCCR Select 07H CCCR[15:13]

Event Specific
Notes

1: The implementation of this
event in current Pentium 4 and
Xeon processors treats either
a load operation or a request
for ownership (RFO) request as
a “read” type operation.

Table 19-16. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
Vol. 3B 19-225

PERFORMANCE-MONITORING EVENTS
2: Currently this event causes
both over and undercounting
by as much as a factor of two
due to an erratum.

3: It is possible for a transaction
that is started as a prefetch to
change the transaction's
internal status, making it no
longer a prefetch. or change
the access result status (hit,
miss) as seen by this event.

IOQ_allocation This event counts the various
types of transactions on the bus.
A count is generated each time a
transaction is allocated into the
IOQ that matches the specified
mask bits. An allocated entry can
be a sector (64 bytes) or a chunks
of 8 bytes.

Requests are counted once per
retry. The event mask bits
constitute 4 bit fields. A
transaction type is specified by
interpreting the values of each bit
field.

Specify one or more event mask
bits in a bit field to select the
value of the bit field.

Each field (bits 0-4 are one field)
are independent of and can be
ORed with the others. The
request type field is further
combined with bit 5 and 6 to form
a binary expression. Bits 7 and 8
form a bit field to specify the
memory type of the target
address.

Table 19-16. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
19-226 Vol. 3B

PERFORMANCE-MONITORING EVENTS
Bits 13 and 14 form a bit field to
specify the source agent of the
request. Bit 15 affects read
operation only. The event is
triggered by evaluating the logical
expression: (((Request type) OR
Bit 5 OR Bit 6) OR (Memory type))
AND (Source agent).

ESCR restrictions MSR_FSB_ESCR0,
MSR_FSB_ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1;

ESCR1: 2, 3

ESCR Event Select 03H ESCR[31:25]

ESCR Event Mask

Bits

0-4 (single field)

 5: ALL_READ

 6: ALL_WRITE

 7: MEM_UC

 8: MEM_WC

ESCR[24:9]

Bus request type (use 00001 for
invalid or default)

Count read entries

Count write entries

Count UC memory access entries

Count WC memory access entries

 9: MEM_WT

10: MEM_WP

Count write-through (WT)
memory access entries.

Count write-protected (WP)
memory access entries

11: MEM_WB

13: OWN

Count WB memory access entries.

Count all store requests driven by
processor, as opposed to other
processor or DMA.

14: OTHER

15: PREFETCH

Count all requests driven by other
processors or DMA.

Include HW and SW prefetch
requests in the count.

CCCR Select 06H CCCR[15:13]

Table 19-16. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
Vol. 3B 19-227

PERFORMANCE-MONITORING EVENTS
Event Specific
Notes

1: If PREFETCH bit is cleared,
sectors fetched using prefetch
are excluded in the counts. If
PREFETCH bit is set, all sectors
or chunks read are counted.

2: Specify the edge trigger in
CCCR to avoid double counting.

3: The mapping of interpreted bit
field values to transaction
types may differ with different
processor model
implementations of the
Pentium 4 processor family.
Applications that program
performance monitoring
events should use CPUID to
determine processor models
when using this event. The
logic equations that trigger the
event are model-specific (see
4a and 4b below).

4a:For Pentium 4 and Xeon
Processors starting with CPUID
Model field encoding equal to 2
or greater, this event is
triggered by evaluating the
logical expression ((Request
type) and (Bit 5 or Bit 6) and
(Memory type) and (Source
agent)).

Table 19-16. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
19-228 Vol. 3B

PERFORMANCE-MONITORING EVENTS
4b:For Pentium 4 and Xeon
Processors with CPUID Model
field encoding less than 2, this
event is triggered by
evaluating the logical
expression [((Request type) or
Bit 5 or Bit 6) or (Memory
type)] and (Source agent). Note
that event mask bits for
memory type are ignored if
either ALL_READ or
ALL_WRITE is specified.

5: This event is known to ignore
CPL in early implementations
of Pentium 4 and Xeon
Processors. Both user requests
and OS requests are included in
the count. This behavior is
fixed starting with Pentium 4
and Xeon Processors with
CPUID signature 0xF27 (Family
15, Model 2, Stepping 7).

6: For write-through (WT) and
write-protected (WP) memory
types, this event counts reads
as the number of 64-byte
sectors. Writes are counted by
individual chunks.

7: For uncacheable (UC) memory
types, this events counts the
number of 8-byte chunks
allocated.

8: For Pentium 4 and Xeon
Processors with CPUID
Signature less than 0xf27, only
MSR_FSB_ESCR0 is available.

Table 19-16. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
Vol. 3B 19-229

PERFORMANCE-MONITORING EVENTS
IOQ_active_
entries

This event counts the number of
entries (clipped at 15) in the IOQ
that are active. An allocated entry
can be a sector (64 bytes) or a
chunks of 8 bytes.

The event must be programmed in
conjunction with IOQ_allocation.
Specify one or more event mask
bits to select the transactions
that is counted.

ESCR restrictions MSR_FSB_ESCR1

Counter numbers
per ESCR

ESCR1: 2, 3

ESCR Event Select 01AH ESCR[30:25]

ESCR Event Mask

Bits

0-4 (single field)

5: ALL_READ

6: ALL_WRITE

7: MEM_UC

8: MEM_WC

ESCR[24:9]

Bus request type (use 00001 for
invalid or default).

Count read entries.

Count write entries.

Count UC memory access entries.

Count WC memory access entries.

9: MEM_WT

10: MEM_WP

Count write-through (WT)
memory access entries.

Count write-protected (WP)
memory access entries.

11: MEM_WB

13: OWN

Count WB memory access entries.

Count all store requests driven by
processor, as opposed to other
processor or DMA.

14: OTHER

15: PREFETCH

Count all requests driven by other
processors or DMA.

Include HW and SW prefetch
requests in the count.

CCCR Select 06H CCCR[15:13]

Table 19-16. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
19-230 Vol. 3B

PERFORMANCE-MONITORING EVENTS
Event Specific
Notes

1: Specified desired mask bits in
ESCR0 and ESCR1.

2: See the ioq_allocation event
for descriptions of the mask
bits.

3: Edge triggering should not be
used when counting cycles.

4: The mapping of interpreted bit
field values to transaction
types may differ across
different processor model
implementations of the
Pentium 4 processor family.
Applications that programs
performance monitoring
events should use the CPUID
instruction to detect processor
models when using this event.
The logical expression that
triggers this event as describe
below:

5a:For Pentium 4 and Xeon
Processors starting with CPUID
MODEL field encoding equal to
2 or greater, this event is
triggered by evaluating the
logical expression ((Request
type) and (Bit 5 or Bit 6) and
(Memory type) and (Source
agent)).

Table 19-16. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
Vol. 3B 19-231

PERFORMANCE-MONITORING EVENTS
5b:For Pentium 4 and Xeon
Processors starting with CPUID
MODEL field encoding less than
2, this event is triggered by
evaluating the logical
expression [((Request type) or
Bit 5 or Bit 6) or (Memory
type)] and (Source agent).
Event mask bits for memory
type are ignored if either
ALL_READ or ALL_WRITE is
specified.

5c:This event is known to ignore
CPL in the current
implementations of Pentium 4
and Xeon Processors Both user
requests and OS requests are
included in the count.

6: An allocated entry can be a full
line (64 bytes) or in individual
chunks of 8 bytes.

FSB_data_
activity

This event increments once for
each DRDY or DBSY event that
occurs on the front side bus. The
event allows selection of a
specific DRDY or DBSY event.

ESCR restrictions MSR_FSB_ESCR0
MSR_FSB_ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 17H ESCR[31:25]

ESCR Event Mask

Bit 0:

ESCR[24:9]

DRDY_DRV Count when this processor drives
data onto the bus - includes
writes and implicit writebacks.

Table 19-16. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
19-232 Vol. 3B

PERFORMANCE-MONITORING EVENTS
Asserted two processor clock
cycles for partial writes and 4
processor clocks (usually in
consecutive bus clocks) for full
line writes.

1: DRDY_OWN Count when this processor reads
data from the bus - includes loads
and some PIC transactions.
Asserted two processor clock
cycles for partial reads and 4
processor clocks (usually in
consecutive bus clocks) for full
line reads.

Count DRDY events that we drive.

Count DRDY events sampled that
we own.

2: DRDY_OTHER Count when data is on the bus but
not being sampled by the
processor. It may or may not be
being driven by this processor.

Asserted two processor clock
cycles for partial transactions and
4 processor clocks (usually in
consecutive bus clocks) for full
line transactions.

3: DBSY_DRV Count when this processor
reserves the bus for use in the
next bus cycle in order to drive
data. Asserted for two processor
clock cycles for full line writes and
not at all for partial line writes.

May be asserted multiple times (in
consecutive bus clocks) if we stall
the bus waiting for a cache lock to
complete.

Table 19-16. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
Vol. 3B 19-233

PERFORMANCE-MONITORING EVENTS
4: DBSY_OWN Count when some agent reserves
the bus for use in the next bus
cycle to drive data that this
processor will sample.

Asserted for two processor clock
cycles for full line writes and not
at all for partial line writes. May be
asserted multiple times (all one
bus clock apart) if we stall the bus
for some reason.

5:DBSY_OTHER Count when some agent reserves
the bus for use in the next bus
cycle to drive data that this
processor will NOT sample. It may
or may not be being driven by this
processor.

Asserted two processor clock
cycles for partial transactions and
4 processor clocks (usually in
consecutive bus clocks) for full
line transactions.

CCCR Select 06H CCCR[15:13]

Event Specific
Notes

Specify edge trigger in the CCCR
MSR to avoid double counting.

DRDY_OWN and DRDY_OTHER are
mutually exclusive; similarly for
DBSY_OWN and DBSY_OTHER.

BSQ_allocation This event counts allocations in
the Bus Sequence Unit (BSQ)
according to the specified mask
bit encoding. The event mask bits
consist of four sub-groups:

• request type,
• request length
• memory type
• and sub-group consisting

mostly of independent bits
(bits 5, 6, 7, 8, 9, and 10)

Specify an encoding for each sub-
group.

Table 19-16. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
19-234 Vol. 3B

PERFORMANCE-MONITORING EVENTS
ESCR restrictions MSR_BSU_ESCR0

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR Event Select 05H ESCR[31:25]

ESCR Event Mask Bit

0: REQ_TYPE0
1: REQ_TYPE1

ESCR[24:9]

Request type encoding (bit 0 and
1) are:

0 – Read (excludes read
invalidate)
1 – Read invalidate
2 – Write (other than
writebacks)
3 – Writeback (evicted from
cache). (public)

2: REQ_LEN0
3: REQ_LEN1

Request length encoding (bit 2, 3)
are:

0 – 0 chunks
1 – 1 chunks
3 – 8 chunks

5: REQ_IO_TYPE

6: REQ_LOCK_
 TYPE

7: REQ_CACHE_
 TYPE

Request type is input or output.

Request type is bus lock.

Request type is cacheable.

8: REQ_SPLIT_
 TYPE

9: REQ_DEM_TYPE

10: REQ_ORD_
 TYPE

Request type is a bus 8-byte
chunk split across 8-byte
boundary.

Request type is a demand if set.
Request type is HW.SW prefetch
if 0.

Request is an ordered type.

Table 19-16. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
Vol. 3B 19-235

PERFORMANCE-MONITORING EVENTS
11: MEM_TYPE0
12: MEM_TYPE1
13: MEM_TYPE2

Memory type encodings (bit
11-13) are:

0 – UC
1 – WC
4 – WT
5 – WP
6 – WB

CCCR Select 07H CCCR[15:13]

Event Specific
Notes

1: Specify edge trigger in CCCR to
avoid double counting.

2: A writebacks to 3rd level cache
from 2nd level cache counts as
a separate entry, this is in
additional to the entry
allocated for a request to the
bus.

3: A read request to WB memory
type results in a request to the
64-byte sector, containing the
target address, followed by a
prefetch request to an
adjacent sector.

4: For Pentium 4 and Xeon
processors with CPUID model
encoding value equals to 0 and
1, an allocated BSQ entry
includes both the demand
sector and prefetched 2nd
sector.

5: An allocated BSQ entry for a
data chunk is any request less
than 64 bytes.

6a:This event may undercount for
requests of split type
transactions if the data
address straddled across
modulo-64 byte boundary.

Table 19-16. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
19-236 Vol. 3B

PERFORMANCE-MONITORING EVENTS
6b:This event may undercount for
requests of read request of
16-byte operands from WC or
UC address.

6c: This event may undercount WC
partial requests originated
from store operands that are
dwords.

bsq_active_
entries

This event represents the number
of BSQ entries (clipped at 15)
currently active (valid) which meet
the subevent mask criteria during
allocation in the BSQ. Active
request entries are allocated on
the BSQ until de-allocated.

De-allocation of an entry does not
necessarily imply the request is
filled. This event must be
programmed in conjunction with
BSQ_allocation. Specify one or
more event mask bits to select
the transactions that is counted.

ESCR restrictions ESCR1

Counter numbers
per ESCR

ESCR1: 2, 3

ESCR Event Select 06H ESCR[30:25]

ESCR Event Mask ESCR[24:9]

CCCR Select 07H CCCR[15:13]

Event Specific
Notes

1: Specified desired mask bits in
ESCR0 and ESCR1.

2: See the BSQ_allocation event
for descriptions of the mask
bits.

3: Edge triggering should not be
used when counting cycles.

Table 19-16. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
Vol. 3B 19-237

PERFORMANCE-MONITORING EVENTS
4: This event can be used to
estimate the latency of a
transaction from allocation to
de-allocation in the BSQ. The
latency observed by
BSQ_allocation includes the
latency of FSB, plus additional
overhead.

5: Additional overhead may
include the time it takes to
issue two requests (the sector
by demand and the adjacent
sector via prefetch). Since
adjacent sector prefetches
have lower priority that
demand fetches, on a heavily
used system there is a high
probability that the adjacent
sector prefetch will have to
wait until the next bus
arbitration.

6: For Pentium 4 and Xeon
processors with CPUID model
encoding value less than 3, this
event is updated every clock.

7: For Pentium 4 and Xeon
processors with CPUID model
encoding value equals to 3 or 4,
this event is updated every
other clock.

SSE_input_assist This event counts the number of
times an assist is requested to
handle problems with input
operands for SSE/SSE2/SSE3
operations; most notably
denormal source operands when
the DAZ bit is not set. Set bit 15
of the event mask to use this
event.

Table 19-16. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
19-238 Vol. 3B

PERFORMANCE-MONITORING EVENTS
ESCR restrictions MSR_FIRM_ESCR0
MSR_FIRM_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 34H ESCR[31:25]

ESCR Event Mask

15: ALL

ESCR[24:9]

Count assists for SSE/SSE2/SSE3
μops.

CCCR Select 01H CCCR[15:13]

Event Specific
Notes

1: Not all requests for assists are
actually taken. This event is
known to overcount in that it
counts requests for assists
from instructions on the non-
retired path that do not incur a
performance penalty. An assist
is actually taken only for non-
bogus μops. Any appreciable
counts for this event are an
indication that the DAZ or FTZ
bit should be set and/or the
source code should be changed
to eliminate the condition.

2: Two common situations for an
SSE/SSE2/SSE3 operation
needing an assist are: (1) when
a denormal constant is used as
an input and the Denormals-
Are-Zero (DAZ) mode is not
set, (2) when the input operand
uses the underflowed result of
a previous SSE/SSE2/SSE3
operation and neither the DAZ
nor Flush-To-Zero (FTZ) modes
are set.

Table 19-16. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
Vol. 3B 19-239

PERFORMANCE-MONITORING EVENTS
3: Enabling the DAZ mode
prevents SSE/SSE2/SSE3
operations from needing
assists in the first situation.
Enabling the FTZ mode
prevents SSE/SSE2/SSE3
operations from needing
assists in the second situation.

packed_SP_uop This event increments for each
packed single-precision μop,
specified through the event mask
for detection.

ESCR restrictions MSR_FIRM_ESCR0
MSR_FIRM_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 08H ESCR[31:25]

ESCR Event Mask

Bit 15: ALL

ESCR[24:9]

Count all μops operating on
packed single-precision operands.

CCCR Select 01H CCCR[15:13]

Event Specific
Notes

1: If an instruction contains more
than one packed SP μops, each
packed SP μop that is specified
by the event mask will be
counted.

2: This metric counts instances of
packed memory μops in a
repeat move string.

packed_DP_uop This event increments for each
packed double-precision μop,
specified through the event mask
for detection.

ESCR restrictions MSR_FIRM_ESCR0

MSR_FIRM_ESCR1

Table 19-16. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
19-240 Vol. 3B

PERFORMANCE-MONITORING EVENTS
Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 0CH ESCR[31:25]

ESCR Event Mask

Bit 15: ALL

ESCR[24:9]

Count all μops operating on
packed double-precision operands.

CCCR Select 01H CCCR[15:13]

Event Specific
Notes

If an instruction contains more
than one packed DP μops, each
packed DP μop that is specified by
the event mask will be counted.

scalar_SP_uop This event increments for each
scalar single-precision μop,
specified through the event mask
for detection.

ESCR restrictions MSR_FIRM_ESCR0

MSR_FIRM_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 0AH ESCR[31:25]

ESCR Event Mask

Bit 15: ALL

ESCR[24:9]

Count all μops operating on scalar
single-precision operands.

CCCR Select 01H CCCR[15:13]

Event Specific
Notes

If an instruction contains more
than one scalar SP μops, each
scalar SP μop that is specified by
the event mask will be counted.

scalar_DP_uop This event increments for each
scalar double-precision μop,
specified through the event mask
for detection.

ESCR restrictions MSR_FIRM_ESCR0

MSR_FIRM_ESCR1

Table 19-16. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
Vol. 3B 19-241

PERFORMANCE-MONITORING EVENTS
Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 0EH ESCR[31:25]

ESCR Event Mask

Bit 15: ALL

ESCR[24:9]

Count all μops operating on scalar
double-precision operands.

CCCR Select 01H CCCR[15:13]

Event Specific
Notes

If an instruction contains more
than one scalar DP μops, each
scalar DP μop that is specified by
the event mask is counted.

64bit_MMX_uop This event increments for each
MMX instruction, which operate
on 64-bit SIMD operands.

ESCR restrictions MSR_FIRM_ESCR0

MSR_FIRM_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 02H ESCR[31:25]

ESCR Event Mask

Bit 15: ALL

ESCR[24:9]

Count all μops operating on 64-
bit SIMD integer operands in
memory or MMX registers.

CCCR Select 01H CCCR[15:13]

Event Specific
Notes

If an instruction contains more
than one 64-bit MMX μops, each
64-bit MMX μop that is specified
by the event mask will be
counted.

128bit_MMX_uop This event increments for each
integer SIMD SSE2 instruction,
which operate on 128-bit SIMD
operands.

Table 19-16. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
19-242 Vol. 3B

PERFORMANCE-MONITORING EVENTS
ESCR restrictions MSR_FIRM_ESCR0

MSR_FIRM_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 1AH ESCR[31:25]

ESCR Event Mask

Bit 15: ALL

ESCR[24:9]

Count all μops operating on 128-
bit SIMD integer operands in
memory or XMM registers.

CCCR Select 01H CCCR[15:13]

Event Specific
Notes

If an instruction contains more
than one 128-bit MMX μops, each
128-bit MMX μop that is specified
by the event mask will be
counted.

x87_FP_uop This event increments for each
x87 floating-point μop, specified
through the event mask for
detection.

ESCR restrictions MSR_FIRM_ESCR0
MSR_FIRM_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 04H ESCR[31:25]

ESCR Event Mask

Bit 15: ALL

ESCR[24:9]

Count all x87 FP μops.

CCCR Select 01H CCCR[15:13]

Event Specific
Notes

1: If an instruction contains more
than one x87 FP μops, each
x87 FP μop that is specified by
the event mask will be counted.

2: This event does not count x87
FP μop for load, store, move
between registers.

Table 19-16. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
Vol. 3B 19-243

PERFORMANCE-MONITORING EVENTS
TC_misc This event counts miscellaneous
events detected by the TC. The
counter will count twice for each
occurrence.

ESCR restrictions MSR_TC_ESCR0
MSR_TC_ESCR1

Counter numbers
per ESCR

ESCR0: 4, 5

ESCR1: 6, 7

ESCR Event Select 06H ESCR[31:25]

CCCR Select 01H CCCR[15:13]

ESCR Event Mask

Bit 4: FLUSH

ESCR[24:9]

Number of flushes

global_power
_events

This event accumulates the time
during which a processor is not
stopped.

ESCR restrictions MSR_FSB_ESCR0

MSR_FSB_ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 013H ESCR[31:25]

ESCR Event Mask Bit 0: Running ESCR[24:9]

The processor is active (includes
the handling of HLT STPCLK and
throttling.

CCCR Select 06H CCCR[15:13]

tc_ms_xfer This event counts the number of
times that uop delivery changed
from TC to MS ROM.

ESCR restrictions MSR_MS_ESCR0

MSR_MS_ESCR1

Counter numbers
per ESCR

ESCR0: 4, 5

ESCR1: 6, 7

ESCR Event Select 05H ESCR[31:25]

Table 19-16. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
19-244 Vol. 3B

PERFORMANCE-MONITORING EVENTS
ESCR Event Mask

Bit 0: CISC

ESCR[24:9]

A TC to MS transfer occurred.

CCCR Select 0H CCCR[15:13]

uop_queue_
writes

This event counts the number of
valid uops written to the uop
queue. Specify one or more mask
bits to select the source type of
writes.

ESCR restrictions MSR_MS_ESCR0

MSR_MS_ESCR1

Counter numbers
per ESCR

ESCR0: 4, 5

ESCR1: 6, 7

ESCR Event Select 09H ESCR[31:25]

ESCR Event Mask

Bit

0: FROM_TC_
BUILD

ESCR[24:9]

The uops being written are from
TC build mode.

1: FROM_TC_
DELIVER

2: FROM_ROM

The uops being written are from
TC deliver mode.

The uops being written are from
microcode ROM.

CCCR Select 0H CCCR[15:13]

retired_mispred

_branch_type

This event counts retiring
mispredicted branches by type.

ESCR restrictions MSR_TBPU_ESCR0

MSR_TBPU_ESCR1

Counter numbers
per ESCR

ESCR0: 4, 5

ESCR1: 6, 7

ESCR Event Select 05H ESCR[30:25]

ESCR Event Mask

Bit

1: CONDITIONAL

2: CALL

ESCR[24:9]

Conditional jumps.

Indirect call branches.

Table 19-16. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
Vol. 3B 19-245

PERFORMANCE-MONITORING EVENTS
3: RETURN

4: INDIRECT

Return branches.

Returns, indirect calls, or indirect
jumps.

CCCR Select 02H CCCR[15:13]

Event Specific
Notes

This event may overcount
conditional branches if:

• Mispredictions cause the trace
cache and delivery engine to
build new traces.

• When the processor's pipeline
is being cleared.

retired_branch

_type

This event counts retiring
branches by type. Specify one or
more mask bits to qualify the
branch by its type.

ESCR restrictions MSR_TBPU_ESCR0

MSR_TBPU_ESCR1

Counter numbers
per ESCR

ESCR0: 4, 5

ESCR1: 6, 7

ESCR Event Select 04H ESCR[30:25]

ESCR Event Mask

Bit

1: CONDITIONAL

2: CALL

ESCR[24:9]

Conditional jumps.

Direct or indirect calls.

3: RETURN

4: INDIRECT

Return branches.

Returns, indirect calls, or indirect
jumps.

CCCR Select 02H CCCR[15:13]

Event Specific
Notes

This event may overcount
conditional branches if :

• Mispredictions cause the trace
cache and delivery engine to
build new traces.

• When the processor's pipeline
is being cleared.

Table 19-16. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
19-246 Vol. 3B

PERFORMANCE-MONITORING EVENTS
resource_stall This event monitors the
occurrence or latency of stalls in
the Allocator.

ESCR restrictions MSR_ALF_ESCR0

MSR_ALF_ESCR1

Counter numbers
per ESCR

ESCR0: 12, 13, 16
ESCR1: 14, 15, 17

ESCR Event Select 01H ESCR[30:25]

Event Masks

Bit

ESCR[24:9]

5: SBFULL A Stall due to lack of store buffers.

CCCR Select 01H CCCR[15:13]

Event Specific
Notes

This event may not be supported
in all models of the processor
family.

WC_Buffer This event counts Write
Combining Buffer operations that
are selected by the event mask.

ESCR restrictions MSR_DAC_ESCR0

MSR_DAC_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 05H ESCR[30:25]

Event Masks

Bit

ESCR[24:9]

0: WCB_EVICTS WC Buffer evictions of all causes.

1: WCB_FULL_
 EVICT

WC Buffer eviction: no WC buffer
is available.

CCCR Select 05H CCCR[15:13]

Table 19-16. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
Vol. 3B 19-247

PERFORMANCE-MONITORING EVENTS
Event Specific
Notes

This event is useful for detecting
the subset of 64K aliasing cases
that are more costly (i.e. 64K
aliasing cases involving stores) as
long as there are no significant
contributions due to write
combining buffer full or hit-
modified conditions.

b2b_cycles This event can be configured to
count the number back-to-back
bus cycles using sub-event mask
bits 1 through 6.

ESCR restrictions MSR_FSB_ESCR0

MSR_FSB_ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 016H ESCR[30:25]

Event Masks Bit ESCR[24:9]

CCCR Select 03H CCCR[15:13]

Event Specific
Notes

This event may not be supported
in all models of the processor
family.

bnr This event can be configured to
count bus not ready conditions
using sub-event mask bits 0
through 2.

ESCR restrictions MSR_FSB_ESCR0

MSR_FSB_ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 08H ESCR[30:25]

Event Masks Bit ESCR[24:9]

CCCR Select 03H CCCR[15:13]

Event Specific
Notes

This event may not be supported
in all models of the processor
family.

Table 19-16. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
19-248 Vol. 3B

PERFORMANCE-MONITORING EVENTS
snoop This event can be configured to
count snoop hit modified bus
traffic using sub-event mask bits
2, 6 and 7.

ESCR restrictions MSR_FSB_ESCR0
MSR_FSB_ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 06H ESCR[30:25]

Event Masks Bit ESCR[24:9]

CCCR Select 03H CCCR[15:13]

Event Specific
Notes

This event may not be supported
in all models of the processor
family.

Response This event can be configured to
count different types of
responses using sub-event mask
bits 1,2, 8, and 9.

ESCR restrictions MSR_FSB_ESCR0

MSR_FSB_ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 04H ESCR[30:25]

Event Masks Bit ESCR[24:9]

CCCR Select 03H CCCR[15:13]

Event Specific
Notes

This event may not be supported
in all models of the processor
family.

Table 19-16. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
Vol. 3B 19-249

PERFORMANCE-MONITORING EVENTS
Table 19-17. Performance Monitoring Events For Intel NetBurst
Microarchitecture for At-Retirement Counting

Event Name Event Parameters Parameter Value Description

front_end_event This event counts the retirement
of tagged μops, which are
specified through the front-end
tagging mechanism. The event
mask specifies bogus or non-bogus
μops.

ESCR restrictions MSR_CRU_ESCR2

MSR_CRU_ESCR3

Counter numbers
per ESCR

ESCR2: 12, 13, 16

ESCR3: 14, 15, 17

ESCR Event Select 08H ESCR[31:25]

ESCR Event Mask

Bit

0: NBOGUS

1: BOGUS

ESCR[24:9]

The marked μops are not bogus.

The marked μops are bogus.

CCCR Select 05H CCCR[15:13]

Can Support PEBS Yes

Require Additional
MSRs for tagging

Selected ESCRs
and/or MSR_TC_
PRECISE_EVENT

See list of metrics supported by
Front_end tagging in Table A-3

execution_event This event counts the retirement
of tagged μops, which are
specified through the execution
tagging mechanism.

The event mask allows from one
to four types of μops to be
specified as either bogus or non-
bogus μops to be tagged.

ESCR restrictions MSR_CRU_ESCR2

MSR_CRU_ESCR3

Counter numbers
per ESCR

ESCR2: 12, 13, 16

ESCR3: 14, 15, 17

ESCR Event Select 0CH ESCR[31:25]
19-250 Vol. 3B

PERFORMANCE-MONITORING EVENTS
ESCR Event Mask

Bit

0: NBOGUS0

1: NBOGUS1

2: NBOGUS2

3: NBOGUS3

4: BOGUS0

5: BOGUS1

6: BOGUS2

7: BOGUS3

ESCR[24:9]

The marked μops are not bogus.

The marked μops are not bogus.

The marked μops are not bogus.

The marked μops are not bogus.

The marked μops are bogus.

The marked μops are bogus.

The marked μops are bogus.

The marked μops are bogus.

CCCR Select 05H CCCR[15:13]

Event Specific
Notes

Each of the 4 slots to specify the
bogus/non-bogus μops must be
coordinated with the 4 TagValue
bits in the ESCR (for example,
NBOGUS0 must accompany a ‘1’ in
the lowest bit of the TagValue
field in ESCR, NBOGUS1 must
accompany a ‘1’ in the next but
lowest bit of the TagValue field).

Can Support PEBS Yes

Require Additional
MSRs for tagging

An ESCR for an
upstream event

See list of metrics supported by
execution tagging in Table A-4.

replay_event This event counts the retirement
of tagged μops, which are
specified through the replay
tagging mechanism. The event
mask specifies bogus or non-bogus
μops.

ESCR restrictions MSR_CRU_ESCR2

MSR_CRU_ESCR3

Counter numbers
per ESCR

ESCR2: 12, 13, 16

ESCR3: 14, 15, 17

ESCR Event Select 09H ESCR[31:25]

Table 19-17. Performance Monitoring Events For Intel NetBurst
Microarchitecture for At-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
Vol. 3B 19-251

PERFORMANCE-MONITORING EVENTS
ESCR Event Mask

Bit

0: NBOGUS

1: BOGUS

ESCR[24:9]

The marked μops are not bogus.

The marked μops are bogus.

CCCR Select 05H CCCR[15:13]

Event Specific
Notes

Supports counting tagged μops
with additional MSRs.

Can Support PEBS Yes

Require Additional
MSRs for tagging

IA32_PEBS_
ENABLE

MSR_PEBS_
MATRIX_VERT

Selected ESCR

See list of metrics supported by
replay tagging in Table A-5.

instr_retired This event counts instructions that
are retired during a clock cycle.

Mask bits specify bogus or non-
bogus (and whether they are
tagged using the front-end
tagging mechanism).

ESCR restrictions MSR_CRU_ESCR0

MSR_CRU_ESCR1

Counter numbers
per ESCR

ESCR0: 12, 13, 16

ESCR1: 14, 15, 17

ESCR Event Select 02H ESCR[31:25]

ESCR Event Mask

Bit

0: NBOGUSNTAG

1: NBOGUSTAG

ESCR[24:9]

Non-bogus instructions that are
not tagged.

Non-bogus instructions that are
tagged.

2: BOGUSNTAG

3: BOGUSTAG

Bogus instructions that are not
tagged.

Bogus instructions that are
tagged.

CCCR Select 04H CCCR[15:13]

Table 19-17. Performance Monitoring Events For Intel NetBurst
Microarchitecture for At-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
19-252 Vol. 3B

PERFORMANCE-MONITORING EVENTS
Event Specific
Notes

1: The event count may vary
depending on the
microarchitectural states of the
processor when the event
detection is enabled.

2: The event may count more
than once for some instructions
with complex uop flows and
were interrupted before
retirement.

Can Support PEBS No

uops_retired This event counts μops that are
retired during a clock cycle. Mask
bits specify bogus or non-bogus.

ESCR restrictions MSR_CRU_ESCR0

MSR_CRU_ESCR1

Counter numbers
per ESCR

ESCR0: 12, 13, 16

ESCR1: 14, 15, 17

ESCR Event Select 01H ESCR[31:25]

ESCR Event Mask

Bit

0: NBOGUS

1: BOGUS

ESCR[24:9]

The marked μops are not bogus.

The marked μops are bogus.

CCCR Select 04H CCCR[15:13]

Event Specific
Notes

P6: EMON_UOPS_RETIRED

Can Support PEBS No

uop_type This event is used in conjunction
with the front-end at-retirement
mechanism to tag load and store
μops.

ESCR restrictions MSR_RAT_ESCR0

MSR_RAT_ESCR1

Counter numbers
per ESCR

ESCR0: 12, 13, 16

ESCR1: 14, 15, 17

Table 19-17. Performance Monitoring Events For Intel NetBurst
Microarchitecture for At-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
Vol. 3B 19-253

PERFORMANCE-MONITORING EVENTS
ESCR Event Select 02H ESCR[31:25]

ESCR Event Mask

Bit

1: TAGLOADS

2: TAGSTORES

ESCR[24:9]

The μop is a load operation.

The μop is a store operation.

CCCR Select 02H CCCR[15:13]

Event Specific
Notes

Setting the TAGLOADS and
TAGSTORES mask bits does not
cause a counter to increment.
They are only used to tag uops.

Can Support PEBS No

branch_retired This event counts the retirement
of a branch. Specify one or more
mask bits to select any
combination of taken, not-taken,
predicted and mispredicted.

ESCR restrictions MSR_CRU_ESCR2
MSR_CRU_ESCR3

See Table 18-31 for the addresses
of the ESCR MSRs

Counter numbers
per ESCR

ESCR2: 12, 13, 16

ESCR3: 14, 15, 17

The counter numbers associated
with each ESCR are provided. The
performance counters and
corresponding CCCRs can be
obtained from Table 18-31.

ESCR Event Select 06H ESCR[31:25]

ESCR Event Mask

Bit

0: MMNP

1: MMNM

2: MMTP

3: MMTM

ESCR[24:9]

Branch not-taken predicted

Branch not-taken mispredicted

Branch taken predicted

Branch taken mispredicted

CCCR Select 05H CCCR[15:13]

Event Specific
Notes

P6: EMON_BR_INST_RETIRED

Can Support PEBS No

Table 19-17. Performance Monitoring Events For Intel NetBurst
Microarchitecture for At-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
19-254 Vol. 3B

PERFORMANCE-MONITORING EVENTS
mispred_branch_
retired

This event represents the
retirement of mispredicted branch
instructions.

ESCR restrictions MSR_CRU_ESCR0

MSR_CRU_ESCR1

Counter numbers
per ESCR

ESCR0: 12, 13, 16

ESCR1: 14, 15, 17

ESCR Event Select 03H ESCR[31:25]

ESCR Event Mask

Bit 0: NBOGUS

ESCR[24:9]

The retired instruction is not
bogus.

CCCR Select 04H CCCR[15:13]

Can Support PEBS No

x87_assist This event counts the retirement
of x87 instructions that required
special handling.

Specifies one or more event mask
bits to select the type of
assistance.

ESCR restrictions MSR_CRU_ESCR2

MSR_CRU_ESCR3

Counter numbers
per ESCR

ESCR2: 12, 13, 16

ESCR3: 14, 15, 17

ESCR Event Select 03H ESCR[31:25]

ESCR Event Mask

Bit

0: FPSU

1: FPSO

ESCR[24:9]

Handle FP stack underflow

Handle FP stack overflow

2: POAO

3: POAU

4: PREA

Handle x87 output overflow

Handle x87 output underflow

Handle x87 input assist

CCCR Select 05H CCCR[15:13]

Can Support PEBS No

Table 19-17. Performance Monitoring Events For Intel NetBurst
Microarchitecture for At-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
Vol. 3B 19-255

PERFORMANCE-MONITORING EVENTS
machine_clear This event increments according to
the mask bit specified while the
entire pipeline of the machine is
cleared. Specify one of the mask
bit to select the cause.

ESCR restrictions MSR_CRU_ESCR2

MSR_CRU_ESCR3

Counter numbers
per ESCR

ESCR2: 12, 13, 16

ESCR3: 14, 15, 17

ESCR Event Select 02H ESCR[31:25]

ESCR Event Mask

Bit

0: CLEAR

ESCR[24:9]

Counts for a portion of the many
cycles while the machine is cleared
for any cause. Use Edge triggering
for this bit only to get a count of
occurrence versus a duration.

2: MOCLEAR

6: SMCLEAR

Increments each time the machine
is cleared due to memory ordering
issues.

Increments each time the machine
is cleared due to self-modifying
code issues.

CCCR Select 05H CCCR[15:13]

Can Support PEBS No

Table 19-17. Performance Monitoring Events For Intel NetBurst
Microarchitecture for At-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
19-256 Vol. 3B

PERFORMANCE-MONITORING EVENTS
Table 19-18. Intel NetBurst Microarchitecture Model-Specific Performance
Monitoring Events (For Model Encoding 3, 4 or 6)

Event Name Event Parameters Parameter Value Description

instr_completed This event counts instructions that
have completed and retired during
a clock cycle. Mask bits specify
whether the instruction is bogus
or non-bogus and whether they
are:

ESCR restrictions MSR_CRU_ESCR0

MSR_CRU_ESCR1

Counter numbers
per ESCR

ESCR0: 12, 13, 16

ESCR1: 14, 15, 17

ESCR Event Select 07H ESCR[31:25]

ESCR Event Mask

Bit

0: NBOGUS

1: BOGUS

ESCR[24:9]

Non-bogus instructions

Bogus instructions

CCCR Select 04H CCCR[15:13]

Event Specific
Notes

This metric differs from
instr_retired, since it counts
instructions completed, rather
than the number of times that
instructions started.

Can Support PEBS No
Vol. 3B 19-257

PERFORMANCE-MONITORING EVENTS
Table 19-19. List of Metrics Available for Front_end Tagging
(For Front_end Event Only)

Front-end
metric1

MSR_
TC_PRECISE_EVEN
T MSR Bit field

 Additional MSR Event mask value for
Front_end_event

memory_loads None Set TAGLOADS bit
in ESCR
corresponding to
event Uop_Type.

NBOGUS

memory_stores None Set TAGSTORES bit
in the ESCR
corresponding to
event Uop_Type.

NBOGUS

NOTES:
1. There may be some undercounting of front end events when there is an overflow or underflow of

the floating point stack.

Table 19-20. List of Metrics Available for Execution Tagging
(For Execution Event Only)

Execution metric Upstream ESCR TagValue in
Upstream ESCR

Event mask value for
execution_event

packed_SP_retired Set ALL bit in event
mask, TagUop bit in
ESCR of
packed_SP_uop.

1 NBOGUS0

packed_DP_retired Set ALL bit in event
mask, TagUop bit in
ESCR of
packed_DP_uop.

1 NBOGUS0

scalar_SP_retired Set ALL bit in event
mask, TagUop bit in
ESCR of
scalar_SP_uop.

1 NBOGUS0

scalar_DP_retired Set ALL bit in event
mask, TagUop bit in
ESCR of
scalar_DP_uop.

1 NBOGUS0

128_bit_MMX_retired Set ALL bit in event
mask, TagUop bit in
ESCR of
128_bit_MMX_uop.

1 NBOGUS0
19-258 Vol. 3B

PERFORMANCE-MONITORING EVENTS
64_bit_MMX_retired Set ALL bit in event
mask, TagUop bit in
ESCR of
64_bit_MMX_uop.

1 NBOGUS0

X87_FP_retired Set ALL bit in event
mask, TagUop bit in
ESCR of
x87_FP_uop.

1 NBOGUS0

X87_SIMD_memory_m
oves_retired

Set ALLP0, ALLP2
bits in event mask,
TagUop bit in ESCR
of X87_SIMD_
moves_uop.

1 NBOGUS0

Table 19-21. List of Metrics Available for Replay Tagging
(For Replay Event Only)

Replay metric1

IA32_PEBS_
ENABLE Field
to Set

MSR_PEBS_
MATRIX_VERT
Bit Field to Set

Additional MSR/
Event

Event Mask
Value for
Replay_event

1stL_cache_load
_miss_retired

Bit 0, Bit 24,
Bit 25

Bit 0 None NBOGUS

2ndL_cache_load
_miss_retired2

Bit 1, Bit 24,
Bit 25

Bit 0 None NBOGUS

DTLB_load_miss
_retired

Bit 2, Bit 24,
Bit 25

Bit 0 None NBOGUS

DTLB_store_miss
_retired

Bit 2, Bit 24,
Bit 25

Bit 1 None NBOGUS

DTLB_all_miss
_retired

Bit 2, Bit 24,
Bit 25

Bit 0, Bit 1 None NBOGUS

Tagged_mispred_
branch

Bit 15, Bit 16,
Bit 24, Bit 25

Bit 4 None NBOGUS

MOB_load
_replay_retired3

Bit 9, Bit 24,
Bit 25

Bit 0 Select
MOB_load_replay
event and set
PARTIAL_DATA and
UNALGN_ADDR bit.

NBOGUS

Table 19-20. List of Metrics Available for Execution Tagging
(For Execution Event Only) (Contd.)

Execution metric Upstream ESCR TagValue in
Upstream ESCR

Event mask value for
execution_event
Vol. 3B 19-259

PERFORMANCE-MONITORING EVENTS
split_load_retired Bit 10, Bit 24,
Bit 25

Bit 0 Select
load_port_replay
event with the
MSR_SAAT_ESCR1
MSR and set the
SPLIT_LD mask bit.

NBOGUS

split_store_retired Bit 10, Bit 24,
Bit 25

Bit 1 Select
store_port_replay
event with the
MSR_SAAT_ESCR0
MSR and set the
SPLIT_ST mask bit.

NBOGUS

NOTES:
1. Certain kinds of μops cannot be tagged. These include I/O operations, UC and locked accesses,

returns, and far transfers.
2. 2nd-level misses retired does not count all 2nd-level misses. It only includes those references that

are found to be misses by the fast detection logic and not those that are later found to be misses.
3. While there are several causes for a MOB replay, the event counted with this event mask setting is

the case where the data from a load that would otherwise be forwarded is not an aligned subset of
the data from a preceding store.

Table 19-21. List of Metrics Available for Replay Tagging
(For Replay Event Only) (Contd.)

Replay metric1

IA32_PEBS_
ENABLE Field
to Set

MSR_PEBS_
MATRIX_VERT
Bit Field to Set

Additional MSR/
Event

Event Mask
Value for
Replay_event
19-260 Vol. 3B

PERFORMANCE-MONITORING EVENTS
Table 19-22. Event Mask Qualification for Logical Processors

Event Type Event Name Event Masks, ESCR[24:9] TS or TI

Non-Retirement BPU_fetch_request Bit 0: TCMISS TS

Non-Retirement BSQ_allocation Bit

0: REQ_TYPE0 TS

1: REQ_TYPE1 TS

2: REQ_LEN0 TS

3: REQ_LEN1 TS

5: REQ_IO_TYPE TS

6: REQ_LOCK_TYPE TS

7: REQ_CACHE_TYPE TS

8: REQ_SPLIT_TYPE TS

9: REQ_DEM_TYPE TS

10: REQ_ORD_TYPE TS

11: MEM_TYPE0 TS

12: MEM_TYPE1 TS

13: MEM_TYPE2 TS

Non-Retirement BSQ_cache_reference Bit

0: RD_2ndL_HITS TS

1: RD_2ndL_HITE TS

2: RD_2ndL_HITM TS

3: RD_3rdL_HITS TS

4: RD_3rdL_HITE TS

5: RD_3rdL_HITM TS

6: WR_2ndL_HIT TS

7: WR_3rdL_HIT TS

8: RD_2ndL_MISS TS

9: RD_3rdL_MISS TS

10: WR_2ndL_MISS TS

11: WR_3rdL_MISS TS
Vol. 3B 19-261

PERFORMANCE-MONITORING EVENTS
Non-Retirement memory_cancel Bit

2: ST_RB_FULL TS

3: 64K_CONF TS

Non-Retirement SSE_input_assist Bit 15: ALL TI

Non-Retirement 64bit_MMX_uop Bit 15: ALL TI

Non-Retirement packed_DP_uop Bit 15: ALL TI

Non-Retirement packed_SP_uop Bit 15: ALL TI

Non-Retirement scalar_DP_uop Bit 15: ALL TI

Non-Retirement scalar_SP_uop Bit 15: ALL TI

Non-Retirement 128bit_MMX_uop Bit 15: ALL TI

Non-Retirement x87_FP_uop Bit 15: ALL TI

Non-Retirement x87_SIMD_moves_uop Bit

3: ALLP0 TI

4: ALLP2 TI

Non-Retirement FSB_data_activity Bit

0: DRDY_DRV TI

1: DRDY_OWN TI

2: DRDY_OTHER TI

3: DBSY_DRV TI

4: DBSY_OWN TI

5: DBSY_OTHER TI

Non-Retirement IOQ_allocation Bit

0: ReqA0 TS

1: ReqA1 TS

2: ReqA2 TS

3: ReqA3 TS

4: ReqA4 TS

5: ALL_READ TS

6: ALL_WRITE TS

7: MEM_UC TS

8: MEM_WC TS

Table 19-22. Event Mask Qualification for Logical Processors (Contd.)

Event Type Event Name Event Masks, ESCR[24:9] TS or TI
19-262 Vol. 3B

PERFORMANCE-MONITORING EVENTS
9: MEM_WT TS

10: MEM_WP TS

11: MEM_WB TS

13: OWN TS

14: OTHER TS

15: PREFETCH TS

Non-Retirement IOQ_active_entries Bit

0: ReqA0

TS

1:ReqA1 TS

2: ReqA2 TS

3: ReqA3 TS

4: ReqA4 TS

5: ALL_READ TS

6: ALL_WRITE TS

7: MEM_UC TS

8: MEM_WC TS

9: MEM_WT TS

10: MEM_WP TS

11: MEM_WB TS

13: OWN TS

14: OTHER TS

15: PREFETCH TS

Non-Retirement global_power_events Bit 0: RUNNING TS

Non-Retirement ITLB_reference Bit

0: HIT TS

1: MISS TS

2: HIT_UC TS

Table 19-22. Event Mask Qualification for Logical Processors (Contd.)

Event Type Event Name Event Masks, ESCR[24:9] TS or TI
Vol. 3B 19-263

PERFORMANCE-MONITORING EVENTS
Non-Retirement MOB_load_replay Bit

1: NO_STA TS

3: NO_STD TS

4: PARTIAL_DATA TS

5: UNALGN_ADDR TS

Non-Retirement page_walk_type Bit

0: DTMISS TI

1: ITMISS TI

Non-Retirement uop_type Bit

1: TAGLOADS TS

2: TAGSTORES TS

Non-Retirement load_port_replay Bit 1: SPLIT_LD TS

Non-Retirement store_port_replay Bit 1: SPLIT_ST TS

Non-Retirement memory_complete Bit

0: LSC TS

1: SSC TS

2: USC TS

3: ULC TS

Non-Retirement retired_mispred_branch_
type

Bit

0: UNCONDITIONAL TS

1: CONDITIONAL TS

2: CALL TS

3: RETURN TS

4: INDIRECT TS

Non-Retirement retired_branch_type Bit

0: UNCONDITIONAL TS

1: CONDITIONAL TS

2: CALL TS

3: RETURN TS

4: INDIRECT TS

Table 19-22. Event Mask Qualification for Logical Processors (Contd.)

Event Type Event Name Event Masks, ESCR[24:9] TS or TI
19-264 Vol. 3B

PERFORMANCE-MONITORING EVENTS
Non-Retirement tc_ms_xfer Bit

0: CISC TS

Non-Retirement tc_misc Bit

4: FLUSH TS

Non-Retirement TC_deliver_mode Bit

0: DD TI

1: DB TI

2: DI TI

3: BD TI

4: BB TI

5: BI TI

6: ID TI

7: IB TI

Non-Retirement uop_queue_writes Bit

0: FROM_TC_BUILD TS

1: FROM_TC_DELIVER TS

2: FROM_ROM TS

Non-Retirement resource_stall Bit 5: SBFULL TS

Non-Retirement WC_Buffer Bit TI

0: WCB_EVICTS TI

1: WCB_FULL_EVICT TI

2: WCB_HITM_EVICT TI

At Retirement instr_retired Bit

0: NBOGUSNTAG TS

1: NBOGUSTAG TS

2: BOGUSNTAG TS

3: BOGUSTAG TS

Table 19-22. Event Mask Qualification for Logical Processors (Contd.)

Event Type Event Name Event Masks, ESCR[24:9] TS or TI
Vol. 3B 19-265

PERFORMANCE-MONITORING EVENTS
At Retirement machine_clear Bit

0: CLEAR TS

2: MOCLEAR TS

6: SMCCLEAR TS

At Retirement front_end_event Bit

0: NBOGUS TS

1: BOGUS TS

At Retirement replay_event Bit

0: NBOGUS TS

1: BOGUS TS

At Retirement execution_event Bit

0: NONBOGUS0 TS

1: NONBOGUS1 TS

2: NONBOGUS2 TS

3: NONBOGUS3 TS

4: BOGUS0 TS

5: BOGUS1 TS

6: BOGUS2 TS

7: BOGUS3 TS

At Retirement x87_assist Bit

0: FPSU TS

1: FPSO TS

2: POAO TS

3: POAU TS

4: PREA TS

At Retirement branch_retired Bit

0: MMNP TS

1: MMNM TS

2: MMTP TS

3: MMTM TS

At Retirement mispred_branch_retired Bit 0: NBOGUS TS

Table 19-22. Event Mask Qualification for Logical Processors (Contd.)

Event Type Event Name Event Masks, ESCR[24:9] TS or TI
19-266 Vol. 3B

PERFORMANCE-MONITORING EVENTS
19.11 PERFORMANCE MONITORING EVENTS FOR
INTEL® PENTIUM® M PROCESSORS

The Pentium M processor’s performance-monitoring events are based on monitoring
events for the P6 family of processors. All of these performance events are model
specific for the Pentium M processor and are not available in this form in other
processors. Table 19-23 lists the Performance-Monitoring events that were added in
the Pentium M processor.

At Retirement uops_retired Bit

0: NBOGUS TS

1: BOGUS TS

At Retirement instr_completed Bit

0: NBOGUS TS

1: BOGUS TS

Table 19-23. Performance Monitoring Events on Intel® Pentium® M
Processors

Name Hex Values Descriptions

Power Management

EMON_EST_TRANS 58H Number of Enhanced Intel SpeedStep
technology transitions:

Mask = 00H - All transitions

Mask = 02H - Only Frequency
transitions

EMON_THERMAL_TRIP 59H Duration/Occurrences in thermal trip; to
count number of thermal trips: bit 22 in
PerfEvtSel0/1 needs to be set to enable
edge detect.

BPU

BR_INST_EXEC 88H Branch instructions that were executed
(not necessarily retired).

BR_MISSP_EXEC 89H Branch instructions executed that were
mispredicted at execution.

Table 19-22. Event Mask Qualification for Logical Processors (Contd.)

Event Type Event Name Event Masks, ESCR[24:9] TS or TI
Vol. 3B 19-267

PERFORMANCE-MONITORING EVENTS
BR_BAC_MISSP_EXEC 8AH Branch instructions executed that were
mispredicted at front end (BAC).

BR_CND_EXEC 8BH Conditional branch instructions that
were executed.

BR_CND_MISSP_EXEC 8CH Conditional branch instructions
executed that were mispredicted.

BR_IND_EXEC 8DH Indirect branch instructions executed.

BR_IND_MISSP_EXEC 8EH Indirect branch instructions executed
that were mispredicted.

BR_RET_EXEC 8FH Return branch instructions executed.

BR_RET_MISSP_EXEC 90H Return branch instructions executed
that were mispredicted at execution.

BR_RET_BAC_MISSP_EXEC 91H Return branch instructions executed
that were mispredicted at front end
(BAC).

BR_CALL_EXEC 92H CALL instruction executed.

BR_CALL_MISSP_EXEC 93H CALL instruction executed and miss
predicted.

BR_IND_CALL_EXEC 94H Indirect CALL instructions executed.

Decoder

EMON_SIMD_INSTR_RETIRED CEH Number of retired MMX instructions.

EMON_SYNCH_UOPS D3H Sync micro-ops

EMON_ESP_UOPS D7H Total number of micro-ops

EMON_FUSED_UOPS_RET DAH Number of retired fused micro-ops:

Mask = 0 - Fused micro-ops

Mask = 1 - Only load+Op micro-ops

Mask = 2 - Only std+sta micro-ops

EMON_UNFUSION DBH Number of unfusion events in the ROB,
happened on a FP exception to a fused
µop.

Table 19-23. Performance Monitoring Events on Intel® Pentium® M
Processors (Contd.)

Name Hex Values Descriptions
19-268 Vol. 3B

PERFORMANCE-MONITORING EVENTS
A number of P6 family processor performance monitoring events are modified for the
Pentium M processor. Table 19-24 lists the performance monitoring events that were
changed in the Pentium M processor, and differ from performance monitoring events
for the P6 family of processors.

Prefetcher

EMON_PREF_RQSTS_UP F0H Number of upward prefetches issued

EMON_PREF_RQSTS_DN F8H Number of downward prefetches issued

Table 19-24. Performance Monitoring Events Modified on Intel® Pentium® M
Processors

Name Hex
Values

Descriptions

CPU_CLK_UNHALTED 79H Number of cycles during which the processor is not
halted, and not in a thermal trip.

EMON_SSE_SSE2_INST_
RETIRED

D8H Streaming SIMD Extensions Instructions Retired:

Mask = 0 – SSE packed single and scalar single

Mask = 1 – SSE scalar-single

Mask = 2 – SSE2 packed-double

Mask = 3 – SSE2 scalar-double

EMON_SSE_SSE2_COMP_INST_
RETIRED

D9H Computational SSE Instructions Retired:

Mask = 0 – SSE packed single

Mask = 1 – SSE Scalar-single

Mask = 2 – SSE2 packed-double

Mask = 3 – SSE2 scalar-double

Table 19-23. Performance Monitoring Events on Intel® Pentium® M
Processors (Contd.)

Name Hex Values Descriptions
Vol. 3B 19-269

PERFORMANCE-MONITORING EVENTS
19.12 P6 FAMILY PROCESSOR PERFORMANCE-
MONITORING EVENTS

Table 19-25 lists the events that can be counted with the performance-monitoring
counters and read with the RDPMC instruction for the P6 family processors. The unit
column gives the microarchitecture or bus unit that produces the event; the event
number column gives the hexadecimal number identifying the event; the mnemonic
event name column gives the name of the event; the unit mask column gives the unit
mask required (if any); the description column describes the event; and the
comments column gives additional information about the event.

All of these performance events are model specific for the P6 family processors and
are not available in this form in the Pentium 4 processors or the Pentium processors.
Some events (such as those added in later generations of the P6 family processors)
are only available in specific processors in the P6 family. All performance event
encodings not listed in Table 19-25 are reserved and their use will result in undefined
counter results.

See the end of the table for notes related to certain entries in the table.

L2_LD 29H L2 data loads Mask[0] = 1 – count I state lines

Mask[1] = 1 – count S state
lines

Mask[2] = 1 – count E state
lines

Mask[3] = 1 – count M state
lines

Mask[5:4]:

00H – Excluding hardware-
prefetched lines

01H - Hardware-prefetched
lines only

02H/03H – All (HW-prefetched
lines and non HW --Prefetched
lines)

L2_LINES_IN 24H L2 lines
allocated

L2_LINES_OUT 26H L2 lines evicted

L2_M_LINES_OUT 27H Lw M-state lines
evicted

Table 19-24. Performance Monitoring Events Modified on Intel® Pentium® M
Processors (Contd.)

Name Hex
Values

Descriptions
19-270 Vol. 3B

PERFORMANCE-MONITORING EVENTS
Table 19-25. Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments

Data Cache
Unit (DCU)

43H DATA_MEM_REFS 00H All loads from any
memory type. All stores
to any memory type.
Each part of a split is
counted separately. The
internal logic counts not
only memory loads and
stores, but also internal
retries.

80-bit floating-point
accesses are double
counted, since they are
decomposed into a 16-bit
exponent load and a
64-bit mantissa load.
Memory accesses are
only counted when they
are actually performed
(such as a load that gets
squashed because a
previous cache miss is
outstanding to the same
address, and which finally
gets performed, is only
counted once).

Does not include I/O
accesses, or other
nonmemory accesses.

45H DCU_LINES_IN 00H Total lines allocated in
DCU.

46H DCU_M_LINES_IN 00H Number of M state lines
allocated in DCU.

47H DCU_M_LINES_
OUT

00H Number of M state lines
evicted from DCU.

This includes evictions
via snoop HITM,
intervention or
replacement.
Vol. 3B 19-271

PERFORMANCE-MONITORING EVENTS
48H DCU_MISS_
OUTSTANDING

00H Weighted number of
cycles while a DCU miss is
outstanding, incremented
by the number of
outstanding cache
misses at any particular
time.

Cacheable read requests
only are considered.

Uncacheable requests
are excluded.

Read-for-ownerships are
counted, as well as line
fills, invalidates, and
stores.

An access that also
misses the L2 is
short-changed by 2
cycles (i.e., if counts
N cycles, should be
N+2 cycles).

Subsequent loads
to the same cache
line will not result in
any additional
counts.

Count value not
precise, but still
useful.

Instruction
Fetch Unit
(IFU)

80H IFU_IFETCH 00H Number of instruction
fetches, both cacheable
and noncacheable,
including UC fetches.

81H IFU_IFETCH_
MISS

00H Number of instruction
fetch misses

All instruction fetches
that do not hit the IFU
(i.e., that produce
memory requests). This
includes UC accesses.

85H ITLB_MISS 00H Number of ITLB misses.

86H IFU_MEM_STALL 00H Number of cycles
instruction fetch is
stalled, for any reason.

Includes IFU cache
misses, ITLB misses, ITLB
faults, and other minor
stalls.

87H ILD_STALL 00H Number of cycles that
the instruction length
decoder is stalled.

Table 19-25. Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments
19-272 Vol. 3B

PERFORMANCE-MONITORING EVENTS
L2 Cache1 28H L2_IFETCH MESI
0FH

Number of L2 instruction
fetches.

This event indicates that
a normal instruction
fetch was received by
the L2.

The count includes only
L2 cacheable instruction
fetches; it does not
include UC instruction
fetches.

It does not include ITLB
miss accesses.

29H L2_LD MESI
0FH

Number of L2 data loads.

This event indicates that
a normal, unlocked, load
memory access was
received by the L2.

It includes only L2
cacheable memory
accesses; it does not
include I/O accesses,
other nonmemory
accesses, or memory
accesses such as UC/WT
memory accesses.

It does include L2
cacheable TLB miss
memory accesses.

2AH L2_ST MESI
0FH

Number of L2 data
stores.

This event indicates that
a normal, unlocked, store
memory access was
received by the L2.

Table 19-25. Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments
Vol. 3B 19-273

PERFORMANCE-MONITORING EVENTS
it indicates that the DCU
sent a read-for-
ownership request to the
L2. It also includes Invalid
to Modified requests sent
by the DCU to the L2.

It includes only L2
cacheable memory
accesses; it does not
include I/O accesses,
other nonmemory
accesses, or memory
accesses such as UC/WT
memory accesses.

It includes TLB miss
memory accesses.

24H L2_LINES_IN 00H Number of lines allocated
in the L2.

26H L2_LINES_OUT 00H Number of lines removed
from the L2 for any
reason.

25H L2_M_LINES_INM 00H Number of modified lines
allocated in the L2.

27H L2_M_LINES_
OUTM

00H Number of modified lines
removed from the L2 for
any reason.

2EH L2_RQSTS MESI
0FH

Total number of L2
requests.

21H L2_ADS 00H Number of L2 address
strobes.

22H L2_DBUS_BUSY 00H Number of cycles during
which the L2 cache data
bus was busy.

23H L2_DBUS_BUSY_
RD

00H Number of cycles during
which the data bus was
busy transferring read
data from L2 to the
processor.

Table 19-25. Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments
19-274 Vol. 3B

PERFORMANCE-MONITORING EVENTS
External
Bus Logic
(EBL)2

62H BUS_DRDY_
CLOCKS

00H
(Self)

20H
(Any)

Number of clocks during
which DRDY# is asserted.

Utilization of the external
system data bus during
data transfers.

Unit Mask = 00H
counts bus clocks
when the processor
is driving DRDY#.

Unit Mask = 20H
counts in processor
clocks when any
agent is driving
DRDY#.

63H BUS_LOCK_
CLOCKS

00H
(Self)

20H
(Any)

Number of clocks during
which LOCK# is asserted
on the external system
bus.3

Always counts in
processor clocks.

60H BUS_REQ_
OUTSTANDING

00H
(Self)

Number of bus requests
outstanding.

This counter is
incremented by the
number of cacheable
read bus requests
outstanding in any given
cycle.

Counts only DCU
full-line cacheable
reads, not RFOs,
writes, instruction
fetches, or anything
else. Counts
“waiting for bus to
complete” (last data
chunk received).

65H BUS_TRAN_BRD 00H
(Self)

20H
(Any)

Number of burst read
transactions.

66H BUS_TRAN_RFO 00H
(Self)

20H
(Any)

Number of completed
read for ownership
transactions.

67H BUS_TRANS_WB 00H
(Self)

20H
(Any)

Number of completed
write back transactions.

Table 19-25. Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments
Vol. 3B 19-275

PERFORMANCE-MONITORING EVENTS
68H BUS_TRAN_
IFETCH

00H
(Self)

20H
(Any)

Number of completed
instruction fetch
transactions.

69H BUS_TRAN_INVA
L

00H
(Self)

20H
(Any)

Number of completed
invalidate transactions.

6AH BUS_TRAN_PWR 00H
(Self)

20H
(Any)

Number of completed
partial write
transactions.

6BH BUS_TRANS_P 00H
(Self)

20H
(Any)

Number of completed
partial transactions.

6CH BUS_TRANS_IO 00H
(Self)

20H
(Any)

Number of completed I/O
transactions.

6DH BUS_TRAN_DEF 00H
(Self)

20H
(Any)

Number of completed
deferred transactions.

6EH BUS_TRAN_
BURST

00H
(Self)

20H
(Any)

Number of completed
burst transactions.

70H BUS_TRAN_ANY 00H
(Self)

20H
(Any)

Number of all completed
bus transactions.

Address bus utilization
can be calculated
knowing the minimum
address bus occupancy.

Includes special cycles,
etc.

Table 19-25. Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments
19-276 Vol. 3B

PERFORMANCE-MONITORING EVENTS
6FH BUS_TRAN_MEM 00H
(Self)

20H
(Any)

Number of completed
memory transactions.

64H BUS_DATA_RCV 00H
(Self)

Number of bus clock
cycles during which this
processor is receiving
data.

61H BUS_BNR_DRV 00H
(Self)

Number of bus clock
cycles during which this
processor is driving the
BNR# pin.

7AH BUS_HIT_DRV 00H
(Self)

Number of bus clock
cycles during which this
processor is driving the
HIT# pin.

Includes cycles due
to snoop stalls.

The event counts
correctly, but BPMi
(breakpoint
monitor) pins
function as follows
based on the
setting of the PC
bits (bit 19 in the
PerfEvtSel0 and
PerfEvtSel1
registers):

• If the core-clock-
to- bus-clock
ratio is 2:1 or 3:1,
and a PC bit is
set, the BPMi
pins will be
asserted for a
single clock when
the counters
overflow.

Table 19-25. Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments
Vol. 3B 19-277

PERFORMANCE-MONITORING EVENTS
• If the PC bit is
clear, the
processor
toggles the BPMi
pins when the
counter
overflows.

• If the clock ratio
is not 2:1 or 3:1,
the BPMi pins
will not function
for these
performance-
monitoring
counter events.

7BH BUS_HITM_DRV 00H
(Self)

Number of bus clock
cycles during which this
processor is driving the
HITM# pin.

Includes cycles due
to snoop stalls.

The event counts
correctly, but BPMi
(breakpoint
monitor) pins
function as follows
based on the
setting of the PC
bits (bit 19 in the
PerfEvtSel0 and
PerfEvtSel1
registers):

• If the core-clock-
to- bus-clock
ratio is 2:1 or 3:1,
and a PC bit is
set, the BPMi
pins will be
asserted for a
single clock when
the counters
overflow.

Table 19-25. Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments
19-278 Vol. 3B

PERFORMANCE-MONITORING EVENTS
• If the PC bit is
clear, the
processor
toggles the
BPMipins when
the counter
overflows.

• If the clock ratio
is not 2:1 or 3:1,
the BPMi pins
will not function
for these
performance-
monitoring
counter events.

7EH BUS_SNOOP_
STALL

00H
(Self)

Number of clock cycles
during which the bus is
snoop stalled.

Floating-
Point Unit

C1H FLOPS 00H Number of computational
floating-point operations
retired.

Excludes floating-point
computational operations
that cause traps or
assists.

Includes floating-point
computational operations
executed by the assist
handler.

Includes internal sub-
operations for complex
floating-point
instructions like
transcendentals.

Excludes floating-point
loads and stores.

Counter 0 only.

Table 19-25. Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments
Vol. 3B 19-279

PERFORMANCE-MONITORING EVENTS
10H FP_COMP_OPS_
EXE

00H Number of computational
floating-point operations
executed.

The number of FADD,
FSUB, FCOM, FMULs,
integer MULs and IMULs,
FDIVs, FPREMs, FSQRTS,
integer DIVs, and IDIVs.

This number does not
include the number of
cycles, but the number of
operations.

This event does not
distinguish an FADD used
in the middle of a
transcendental flow from
a separate FADD
instruction.

Counter 0 only.

11H FP_ASSIST 00H Number of floating-point
exception cases handled
by microcode.

Counter 1 only.

This event includes
counts due to
speculative
execution.

12H MUL 00H Number of multiplies.

This count includes
integer as well as FP
multiplies and is
speculative.

Counter 1 only.

13H DIV 00H Number of divides.

This count includes
integer as well as FP
divides and is
speculative.

Counter 1 only.

Table 19-25. Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments
19-280 Vol. 3B

PERFORMANCE-MONITORING EVENTS
14H CYCLES_DIV_
BUSY

00H Number of cycles during
which the divider is busy,
and cannot accept new
divides.

This includes integer and
FP divides, FPREM,
FPSQRT, etc. and is
speculative.

Counter 0 only.

Memory
Ordering

03H LD_BLOCKS 00H Number of load
operations delayed due
to store buffer blocks.

Includes counts caused
by preceding stores
whose addresses are
unknown, preceding
stores whose addresses
are known but whose
data is unknown, and
preceding stores that
conflicts with the load
but which incompletely
overlap the load.

04H SB_DRAINS 00H Number of store buffer
drain cycles.

Incremented every cycle
the store buffer is
draining.

Draining is caused by
serializing operations like
CPUID, synchronizing
operations like XCHG,
interrupt
acknowledgment, as well
as other conditions (such
as cache flushing).

Table 19-25. Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments
Vol. 3B 19-281

PERFORMANCE-MONITORING EVENTS
05H MISALIGN_
MEM_REF

00H Number of misaligned
data memory references.

Incremented by 1 every
cycle, during which either
the processor’s load or
store pipeline dispatches
a misaligned μop.

Counting is performed if
it is the first or second
half, or if it is blocked,
squashed, or missed.

In this context,
misaligned means
crossing a 64-bit
boundary.

MISALIGN_MEM_
REF is only an
approximation to
the true number of
misaligned memory
references.

The value returned
is roughly
proportional to the
number of
misaligned memory
accesses (the size
of the problem).

07H EMON_KNI_PREF
_DISPATCHED

Number of Streaming
SIMD extensions
prefetch/weakly-ordered
instructions dispatched
(speculative prefetches
are included in counting):

Counters 0 and 1.
Pentium III
processor only.

00H

01H

02H

03H

0: prefetch NTA

1: prefetch T1

2: prefetch T2

3: weakly ordered stores

4BH EMON_KNI_PREF
_MISS

Number of
prefetch/weakly-ordered
instructions that miss all
caches:

Counters 0 and 1.
Pentium III
processor only.

00H

01H

02H

03H

0: prefetch NTA

1: prefetch T1

2: prefetch T2

3: weakly ordered stores

Table 19-25. Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments
19-282 Vol. 3B

PERFORMANCE-MONITORING EVENTS
Instruction
Decoding
and
Retirement

C0H INST_RETIRED 00H Number of instructions
retired.

A hardware
interrupt received
during/after the
last iteration of the
REP STOS flow
causes the counter
to undercount by 1
instruction.

An SMI received
while executing a
HLT instruction will
cause the
performance
counter to not
count the RSM
instruction and
undercount by 1.

C2H UOPS_RETIRED 00H Number of μops retired.

D0H INST_DECODED 00H Number of instructions
decoded.

D8H EMON_KNI_INST_
RETIRED

00H

01H

Number of Streaming
SIMD extensions retired:

0: packed & scalar

1: scalar

Counters 0 and 1.
Pentium III
processor only.

D9H EMON_KNI_
COMP_
INST_RET

00H

01H

Number of Streaming
SIMD extensions
computation instructions
retired:

0: packed and scalar

1: scalar

Counters 0 and 1.
Pentium III
processor only.

Table 19-25. Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments
Vol. 3B 19-283

PERFORMANCE-MONITORING EVENTS
Interrupts C8H HW_INT_RX 00H Number of hardware
interrupts received.

C6H CYCLES_INT_
MASKED

00H Number of processor
cycles for which
interrupts are disabled.

C7H CYCLES_INT_
PENDING_
AND_MASKED

00H Number of processor
cycles for which
interrupts are disabled
and interrupts are
pending.

Branches C4H BR_INST_
RETIRED

00H Number of branch
instructions retired.

C5H BR_MISS_PRED_
RETIRED

00H Number of mispredicted
branches retired.

C9H BR_TAKEN_
RETIRED

00H Number of taken
branches retired.

CAH BR_MISS_PRED_
TAKEN_RET

00H Number of taken
mispredictions branches
retired.

E0H BR_INST_
DECODED

00H Number of branch
instructions decoded.

E2H BTB_MISSES 00H Number of branches for
which the BTB did not
produce a prediction.

E4H BR_BOGUS 00H Number of bogus
branches.

E6H BACLEARS 00H Number of times
BACLEAR is asserted.

This is the number of
times that a static branch
prediction was made, in
which the branch
decoder decided to make
a branch prediction
because the BTB did not.

Table 19-25. Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments
19-284 Vol. 3B

PERFORMANCE-MONITORING EVENTS
Stalls A2H RESOURCE_
STALLS

00H Incremented by 1 during
every cycle for which
there is a resource
related stall.

Includes register
renaming buffer entries,
memory buffer entries.

Does not include stalls
due to bus queue full, too
many cache misses, etc.

In addition to resource
related stalls, this event
counts some other
events.

Includes stalls arising
during branch
misprediction recovery,
such as if retirement of
the mispredicted branch
is delayed and stalls
arising while store buffer
is draining from
synchronizing operations.

D2H PARTIAL_RAT_
STALLS

00H Number of cycles or
events for partial stalls.
This includes flag partial
stalls.

Segment
Register
Loads

06H SEGMENT_REG_
LOADS

00H Number of segment
register loads.

Clocks 79H CPU_CLK_
UNHALTED

00H Number of cycles during
which the processor is
not halted.

Table 19-25. Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments
Vol. 3B 19-285

PERFORMANCE-MONITORING EVENTS
MMX Unit B0H MMX_INSTR_
EXEC

00H Number of MMX
Instructions Executed.

Available in Intel
Celeron, Pentium II
and Pentium II Xeon
processors only.

Does not account
for MOVQ and
MOVD stores from
register to memory.

B1H MMX_SAT_
INSTR_EXEC

00H Number of MMX
Saturating Instructions
Executed.

Available in Pentium

II and Pentium III
processors only.

B2H MMX_UOPS_
EXEC

0FH Number of MMX μops
Executed.

Available in Pentium

II and Pentium III
processors only.

B3H MMX_INSTR_
TYPE_EXEC

01H

02H

04H

MMX packed multiply
instructions executed.

MMX packed shift
instructions executed.

MMX pack operation
instructions executed.

Available in Pentium

II and Pentium III
processors only.

08H

10H

20H

MMX unpack operation
instructions executed.

MMX packed logical
instructions executed.

MMX packed arithmetic
instructions executed.

CCH FP_MMX_TRANS 00H

01H

Transitions from MMX
instruction to floating-
point instructions.

Transitions from floating-
point instructions to
MMX instructions.

Available in Pentium

II and Pentium III
processors only.

CDH MMX_ASSIST 00H Number of MMX Assists
(that is, the number of
EMMS instructions
executed).

Available in Pentium

II and Pentium III
processors only.

CEH MMX_INSTR_RET 00H Number of MMX
Instructions Retired.

Available in Pentium

II processors only.

Table 19-25. Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments
19-286 Vol. 3B

PERFORMANCE-MONITORING EVENTS
Segment
Register
Renaming

D4H SEG_RENAME_
STALLS

Number of Segment
Register Renaming Stalls:

Available in Pentium

II and Pentium III
processors only.

02H

04H

08H

0FH

Segment register ES

Segment register DS

Segment register FS

Segment register FS

Segment registers
ES + DS + FS + GS

D5H SEG_REG_
RENAMES

Number of Segment
Register Renames:

Available in Pentium

II and Pentium III
processors only.

01H

02H

04H

08H

0FH

Segment register ES

Segment register DS

Segment register FS

Segment register FS

Segment registers
ES + DS + FS + GS

D6H RET_SEG_
RENAMES

00H Number of segment
register rename events
retired.

Available in Pentium

II and Pentium III
processors only.

NOTES:
1. Several L2 cache events, where noted, can be further qualified using the Unit Mask (UMSK) field

in the PerfEvtSel0 and PerfEvtSel1 registers. The lower 4 bits of the Unit Mask field are used in
conjunction with L2 events to indicate the cache state or cache states involved.
The P6 family processors identify cache states using the “MESI” protocol and consequently each
bit in the Unit Mask field represents one of the four states: UMSK[3] = M (8H) state, UMSK[2] = E
(4H) state, UMSK[1] = S (2H) state, and UMSK[0] = I (1H) state. UMSK[3:0] = MESI” (FH) should be
used to collect data for all states; UMSK = 0H, for the applicable events, will result in nothing
being counted.

2. All of the external bus logic (EBL) events, except where noted, can be further qualified using the
Unit Mask (UMSK) field in the PerfEvtSel0 and PerfEvtSel1 registers.
Bit 5 of the UMSK field is used in conjunction with the EBL events to indicate whether the pro-
cessor should count transactions that are self- generated (UMSK[5] = 0) or transactions that
result from any processor on the bus (UMSK[5] = 1).

3. L2 cache locks, so it is possible to have a zero count.

Table 19-25. Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments
Vol. 3B 19-287

PERFORMANCE-MONITORING EVENTS
19.13 PENTIUM PROCESSOR PERFORMANCE-
MONITORING EVENTS

Table 19-26 lists the events that can be counted with the performance-monitoring
counters for the Pentium processor. The Event Number column gives the hexadec-
imal code that identifies the event and that is entered in the ES0 or ES1 (event
select) fields of the CESR MSR. The Mnemonic Event Name column gives the name of
the event, and the Description and Comments columns give detailed descriptions of
the events. Most events can be counted with either counter 0 or counter 1; however,
some events can only be counted with only counter 0 or only counter 1 (as noted).

NOTE
The events in the table that are shaded are implemented only in the
Pentium processor with MMX technology.

Table 19-26. Events That Can Be Counted with Pentium Processor
Performance-Monitoring Counters

Event
Num.

Mnemonic Event
Name Description Comments

00H DATA_READ Number of memory data
reads (internal data
cache hit and miss
combined).

Split cycle reads are counted
individually. Data Memory Reads that
are part of TLB miss processing are
not included. These events may
occur at a maximum of two per clock.
I/O is not included.

01H DATA_WRITE Number of memory data
writes (internal data
cache hit and miss
combined); I/O not
included.

Split cycle writes are counted
individually. These events may occur
at a maximum of two per clock. I/O is
not included.

0H2 DATA_TLB_MISS Number of misses to the
data cache translation
look-aside buffer.
19-288 Vol. 3B

PERFORMANCE-MONITORING EVENTS
03H DATA_READ_MISS Number of memory read
accesses that miss the
internal data cache
whether or not the
access is cacheable or
noncacheable.

Additional reads to the same cache
line after the first BRDY# of the
burst line fill is returned but before
the final (fourth) BRDY# has been
returned, will not cause the counter
to be incremented additional times.

Data accesses that are part of TLB
miss processing are not included.
Accesses directed to I/O space are
not included.

04H DATA WRITE MISS Number of memory
write accesses that miss
the internal data cache
whether or not the
access is cacheable or
noncacheable.

Data accesses that are part of TLB
miss processing are not included.
Accesses directed to I/O space are
not included.

05H WRITE_HIT_TO_
M-_OR_E-
STATE_LINES

Number of write hits to
exclusive or modified
lines in the data cache.

These are the writes that may be
held up if EWBE# is inactive. These
events may occur a maximum of two
per clock.

06H DATA_CACHE_
LINES_
WRITTEN_BACK

Number of dirty lines
(all) that are written
back, regardless of the
cause.

Replacements and internal and
external snoops can all cause
writeback and are counted.

07H EXTERNAL_
SNOOPS

Number of accepted
external snoops
whether they hit in the
code cache or data
cache or neither.

Assertions of EADS# outside of the
sampling interval are not counted,
and no internal snoops are counted.

08H EXTERNAL_DATA_
CACHE_SNOOP_
HITS

Number of external
snoops to the data
cache.

Snoop hits to a valid line in either the
data cache, the data line fill buffer, or
one of the write back buffers are all
counted as hits.

09H MEMORY ACCESSES
IN BOTH PIPES

Number of data memory
reads or writes that are
paired in both pipes of
the pipeline.

These accesses are not necessarily
run in parallel due to cache misses,
bank conflicts, etc.

0AH BANK CONFLICTS Number of actual bank
conflicts.

Table 19-26. Events That Can Be Counted with Pentium Processor
Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event
Name Description Comments
Vol. 3B 19-289

PERFORMANCE-MONITORING EVENTS
0BH MISALIGNED DATA
MEMORY OR I/O
REFERENCES

Number of memory or
I/O reads or writes that
are misaligned.

A 2- or 4-byte access is misaligned
when it crosses a 4-byte boundary;
an 8-byte access is misaligned when
it crosses an 8-byte boundary. Ten
byte accesses are treated as two
separate accesses of 8 and 2 bytes
each.

0CH CODE READ Number of instruction
reads; whether the read
is cacheable or
noncacheable.

Individual 8-byte noncacheable
instruction reads are counted.

0DH CODE TLB MISS Number of instruction
reads that miss the code
TLB whether the read is
cacheable or
noncacheable.

Individual 8-byte noncacheable
instruction reads are counted.

0EH CODE CACHE MISS Number of instruction
reads that miss the
internal code cache;
whether the read is
cacheable or
noncacheable.

Individual 8-byte noncacheable
instruction reads are counted.

0FH ANY SEGMENT
REGISTER LOADED

Number of writes into
any segment register in
real or protected mode
including the LDTR,
GDTR, IDTR, and TR.

Segment loads are caused by explicit
segment register load instructions,
far control transfers, and task
switches. Far control transfers and
task switches causing a privilege
level change will signal this event
twice. Interrupts and exceptions may
initiate a far control transfer.

10H Reserved

11H Reserved

Table 19-26. Events That Can Be Counted with Pentium Processor
Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event
Name Description Comments
19-290 Vol. 3B

PERFORMANCE-MONITORING EVENTS
12H Branches Number of taken and
not taken branches,
including: conditional
branches, jumps, calls,
returns, software
interrupts, and interrupt
returns.

 Also counted as taken branches are
serializing instructions, VERR and
VERW instructions, some segment
descriptor loads, hardware interrupts
(including FLUSH#), and
programmatic exceptions that invoke
a trap or fault handler. The pipe is
not necessarily flushed.

The number of branches actually
executed is measured, not the
number of predicted branches.

13H BTB_HITS Number of BTB hits that
occur.

Hits are counted only for those
instructions that are actually
executed.

14H TAKEN_BRANCH_
OR_BTB_HIT

Number of taken
branches or BTB hits
that occur.

This event type is a logical OR of
taken branches and BTB hits. It
represents an event that may cause
a hit in the BTB. Specifically, it is
either a candidate for a space in the
BTB or it is already in the BTB.

15H PIPELINE FLUSHES Number of pipeline
flushes that occur

Pipeline flushes are
caused by BTB misses
on taken branches,
mispredictions,
exceptions, interrupts,
and some segment
descriptor loads.

The counter will not be incremented
for serializing instructions (serializing
instructions cause the prefetch
queue to be flushed but will not
trigger the Pipeline Flushed event
counter) and software interrupts
(software interrupts do not flush the
pipeline).

Table 19-26. Events That Can Be Counted with Pentium Processor
Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event
Name Description Comments
Vol. 3B 19-291

PERFORMANCE-MONITORING EVENTS
16H INSTRUCTIONS_
EXECUTED

Number of instructions
executed (up to two per
clock).

Invocations of a fault handler are
considered instructions. All hardware
and software interrupts and
exceptions will also cause the count
to be incremented. Repeat prefixed
string instructions will only
increment this counter once despite
the fact that the repeat loop
executes the same instruction
multiple times until the loop criteria
is satisfied.

This applies to all the Repeat string
instruction prefixes (i.e., REP, REPE,
REPZ, REPNE, and REPNZ). This
counter will also only increment once
per each HLT instruction executed
regardless of how many cycles the
processor remains in the HALT state.

17H INSTRUCTIONS_
EXECUTED_ V PIPE

Number of instructions
executed in the V_pipe.

The event indicates the
number of instructions
that were paired.

This event is the same as the 16H
event except it only counts the
number of instructions actually
executed in the V-pipe.

18H BUS_CYCLE_
DURATION

Number of clocks while
a bus cycle is in
progress.

This event measures
bus use.

The count includes HLDA, AHOLD,
and BOFF# clocks.

19H WRITE_BUFFER_
FULL_STALL_
DURATION

Number of clocks while
the pipeline is stalled
due to full write buffers.

Full write buffers stall data memory
read misses, data memory write
misses, and data memory write hits
to S-state lines. Stalls on I/O
accesses are not included.

1AH WAITING_FOR_
DATA_MEMORY_
READ_STALL_
DURATION

Number of clocks while
the pipeline is stalled
while waiting for data
memory reads.

Data TLB Miss processing is also
included in the count. The pipeline
stalls while a data memory read is in
progress including attempts to read
that are not bypassed while a line is
being filled.

Table 19-26. Events That Can Be Counted with Pentium Processor
Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event
Name Description Comments
19-292 Vol. 3B

PERFORMANCE-MONITORING EVENTS
1BH STALL ON WRITE
TO AN E- OR M-
STATE LINE

Number of stalls on
writes to E- or M-state
lines.

1CH LOCKED BUS CYCLE Number of locked bus
cycles that occur as the
result of the LOCK prefix
or LOCK instruction,
page-table updates, and
descriptor table
updates.

Only the read portion of the locked
read-modify-write is counted. Split
locked cycles (SCYC active) count as
two separate accesses. Cycles
restarted due to BOFF# are not re-
counted.

1DH I/O READ OR WRITE
CYCLE

Number of bus cycles
directed to I/O space.

Misaligned I/O accesses will generate
two bus cycles. Bus cycles restarted
due to BOFF# are not re-counted.

1EH NONCACHEABLE_
MEMORY_READS

Number of
noncacheable
instruction or data
memory read bus cycles.

The count includes read
cycles caused by TLB
misses, but does not
include read cycles to
I/O space.

Cycles restarted due to BOFF# are
not re-counted.

1FH PIPELINE_AGI_
STALLS

Number of address
generation interlock
(AGI) stalls.

An AGI occurring in both
the U- and V- pipelines
in the same clock signals
this event twice.

An AGI occurs when the instruction
in the execute stage of either of U-
or V-pipelines is writing to either the
index or base address register of an
instruction in the D2 (address
generation) stage of either the U- or
V- pipelines.

20H Reserved

21H Reserved

Table 19-26. Events That Can Be Counted with Pentium Processor
Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event
Name Description Comments
Vol. 3B 19-293

PERFORMANCE-MONITORING EVENTS
22H FLOPS Number of floating-
point operations that
occur.

Number of floating-point adds,
subtracts, multiplies, divides,
remainders, and square roots are
counted. The transcendental
instructions consist of multiple adds
and multiplies and will signal this
event multiple times. Instructions
generating the divide-by-zero,
negative square root, special
operand, or stack exceptions will not
be counted.

Instructions generating all other
floating-point exceptions will be
counted. The integer multiply
instructions and other instructions
which use the x87 FPU will be
counted.

23H BREAKPOINT
MATCH ON DR0
REGISTER

Number of matches on
register DR0 breakpoint.

The counters is incremented
regardless if the breakpoints are
enabled or not. However, if
breakpoints are not enabled, code
breakpoint matches will not be
checked for instructions executed in
the V-pipe and will not cause this
counter to be incremented. (They are
checked on instruction executed in
the U-pipe only when breakpoints
are not enabled.)

These events correspond to the
signals driven on the BP[3:0] pins.
Refer to Chapter 17, “Debugging,
Branch Profiling, and Time-Stamp
Counter” for more information.

24H BREAKPOINT
MATCH ON DR1
REGISTER

Number of matches on
register DR1 breakpoint.

See comment for 23H event.

25H BREAKPOINT
MATCH ON DR2
REGISTER

Number of matches on
register DR2 breakpoint.

See comment for 23H event.

Table 19-26. Events That Can Be Counted with Pentium Processor
Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event
Name Description Comments
19-294 Vol. 3B

PERFORMANCE-MONITORING EVENTS
26H BREAKPOINT
MATCH ON DR3
REGISTER

Number of matches on
register DR3 breakpoint.

See comment for 23H event.

27H HARDWARE
INTERRUPTS

Number of taken INTR
and NMI interrupts.

28H DATA_READ_OR_
WRITE

Number of memory data
reads and/or writes
(internal data cache hit
and miss combined).

Split cycle reads and writes are
counted individually. Data Memory
Reads that are part of TLB miss
processing are not included. These
events may occur at a maximum of
two per clock. I/O is not included.

29H DATA_READ_MISS
OR_WRITE MISS

Number of memory read
and/or write accesses
that miss the internal
data cache, whether or
not the access is
cacheable or
noncacheable.

Additional reads to the same cache
line after the first BRDY# of the
burst line fill is returned but before
the final (fourth) BRDY# has been
returned, will not cause the counter
to be incremented additional times.

Data accesses that are part of TLB
miss processing are not included.
Accesses directed to I/O space are
not included.

2AH BUS_OWNERSHIP_
LATENCY
(Counter 0)

The time from LRM bus
ownership request to
bus ownership granted
(that is, the time from
the earlier of a PBREQ
(0), PHITM# or HITM#
assertion to a PBGNT
assertion)

The ratio of the 2AH events counted
on counter 0 and counter 1 is the
average stall time due to bus
ownership conflict.

2AH BUS OWNERSHIP
TRANSFERS
(Counter 1)

The number of buss
ownership transfers
(that is, the number of
PBREQ (0) assertions

The ratio of the 2AH events counted
on counter 0 and counter 1 is the
average stall time due to bus
ownership conflict.

2BH MMX_
INSTRUCTIONS_
EXECUTED_
U-PIPE (Counter 0)

Number of MMX
instructions executed in
the U-pipe

Table 19-26. Events That Can Be Counted with Pentium Processor
Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event
Name Description Comments
Vol. 3B 19-295

PERFORMANCE-MONITORING EVENTS
2BH MMX_
INSTRUCTIONS_
EXECUTED_
V-PIPE (Counter 1)

Number of MMX
instructions executed in
the V-pipe

2CH CACHE_M-
STATE_LINE_
SHARING
(Counter 0)

Number of times a
processor identified a
hit to a modified line due
to a memory access in
the other processor
(PHITM (O))

If the average memory latencies of
the system are known, this event
enables the user to count the Write
Backs on PHITM(O) penalty and the
Latency on Hit Modified(I) penalty.

2CH CACHE_LINE_
SHARING
(Counter 1)

Number of shared data
lines in the L1 cache
(PHIT (O))

2DH EMMS_
INSTRUCTIONS_
EXECUTED (Counter
0)

Number of EMMS
instructions executed

2DH TRANSITIONS_
BETWEEN_MMX_
AND_FP_
INSTRUCTIONS
(Counter 1)

Number of transitions
between MMX and
floating-point
instructions or vice
versa

An even count indicates
the processor is in MMX
state. an odd count
indicates it is in FP state.

This event counts the first floating-
point instruction following an MMX
instruction or first MMX instruction
following a floating-point instruction.

The count may be used to estimate
the penalty in transitions between
floating-point state and MMX state.

2EH BUS_UTILIZATION_
DUE_TO_
PROCESSOR_
ACTIVITY
(Counter 0)

Number of clocks the
bus is busy due to the
processor’s own activity
(the bus activity that is
caused by the
processor)

2EH WRITES_TO_
NONCACHEABLE_
MEMORY
(Counter 1)

Number of write
accesses to
noncacheable memory

The count includes write cycles
caused by TLB misses and I/O write
cycles.

Cycles restarted due to BOFF# are
not re-counted.

Table 19-26. Events That Can Be Counted with Pentium Processor
Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event
Name Description Comments
19-296 Vol. 3B

PERFORMANCE-MONITORING EVENTS
2FH SATURATING_
MMX_
INSTRUCTIONS_
EXECUTED (Counter
0)

Number of saturating
MMX instructions
executed,
independently of
whether they actually
saturated.

2FH SATURATIONS_
PERFORMED
(Counter 1)

Number of MMX
instructions that used
saturating arithmetic
when at least one of its
results actually
saturated

If an MMX instruction operating on 4
doublewords saturated in three out
of the four results, the counter will
be incremented by one only.

30H NUMBER_OF_
CYCLES_NOT_IN_
HALT_STATE
(Counter 0)

Number of cycles the
processor is not idle due
to HLT instruction

This event will enable the user to
calculate “net CPI”. Note that during
the time that the processor is
executing the HLT instruction, the
Time-Stamp Counter is not disabled.
Since this event is controlled by the
Counter Controls CC0, CC1 it can be
used to calculate the CPI at CPL=3,
which the TSC cannot provide.

30H DATA_CACHE_
TLB_MISS_
STALL_DURATION
(Counter 1)

Number of clocks the
pipeline is stalled due to
a data cache translation
look-aside buffer (TLB)
miss

31H MMX_
INSTRUCTION_
DATA_READS
(Counter 0)

Number of MMX
instruction data reads

31H MMX_
INSTRUCTION_
DATA_READ_
MISSES
(Counter 1)

Number of MMX
instruction data read
misses

32H FLOATING_POINT_S
TALLS_DURATION
(Counter 0)

Number of clocks while
pipe is stalled due to a
floating-point freeze

Table 19-26. Events That Can Be Counted with Pentium Processor
Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event
Name Description Comments
Vol. 3B 19-297

PERFORMANCE-MONITORING EVENTS
32H TAKEN_BRANCHES
(Counter 1)

Number of taken
branches

33H D1_STARVATION_
AND_FIFO_IS_
EMPTY
(Counter 0)

Number of times D1
stage cannot issue ANY
instructions since the
FIFO buffer is empty

The D1 stage can issue 0, 1, or 2
instructions per clock if those are
available in an instructions FIFO
buffer.

33H D1_STARVATION_
AND_ONLY_ONE_
INSTRUCTION_IN_
FIFO
(Counter 1)

Number of times the D1
stage issues a single
instruction (since the
FIFO buffer had just one
instruction ready)

The D1 stage can issue 0, 1, or 2
instructions per clock if those are
available in an instructions FIFO
buffer.

When combined with the previously
defined events, Instruction Executed
(16H) and Instruction Executed in
the V-pipe (17H), this event enables
the user to calculate the numbers of
time pairing rules prevented issuing
of two instructions.

34H MMX_
INSTRUCTION_
DATA_WRITES
(Counter 0)

Number of data writes
caused by MMX
instructions

34H MMX_
INSTRUCTION_
DATA_WRITE_
MISSES
(Counter 1)

Number of data write
misses caused by MMX
instructions

Table 19-26. Events That Can Be Counted with Pentium Processor
Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event
Name Description Comments
19-298 Vol. 3B

PERFORMANCE-MONITORING EVENTS
35H PIPELINE_
FLUSHES_DUE_
TO_WRONG_
BRANCH_
PREDICTIONS
(Counter 0)

Number of pipeline
flushes due to wrong
branch predictions
resolved in either the E-
stage or the WB-stage

The count includes any pipeline flush
due to a branch that the pipeline did
not follow correctly. It includes cases
where a branch was not in the BTB,
cases where a branch was in the BTB
but was mispredicted, and cases
where a branch was correctly
predicted but to the wrong address.

Branches are resolved in either the
Execute stage (E-stage) or the
Writeback stage (WB-stage). In the
later case, the misprediction penalty
is larger by one clock. The difference
between the 35H event count in
counter 0 and counter 1 is the
number of E-stage resolved
branches.

35H PIPELINE_
FLUSHES_DUE_
TO_WRONG_
BRANCH_
PREDICTIONS_
RESOLVED_IN_
WB-STAGE
(Counter 1)

Number of pipeline
flushes due to wrong
branch predictions
resolved in the WB-
stage

See note for event 35H (Counter 0).

36H MISALIGNED_
DATA_MEMORY_
REFERENCE_ON_
MMX_
INSTRUCTIONS
(Counter 0)

Number of misaligned
data memory references
when executing MMX
instructions

36H PIPELINE_
ISTALL_FOR_MMX_
INSTRUCTION_
DATA_MEMORY_
READS
(Counter 1)

Number clocks during
pipeline stalls caused by
waits form MMX
instruction data memory
reads

T3:

Table 19-26. Events That Can Be Counted with Pentium Processor
Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event
Name Description Comments
Vol. 3B 19-299

PERFORMANCE-MONITORING EVENTS
37H MISPREDICTED_
OR_
UNPREDICTED_
RETURNS
(Counter 1)

Number of returns
predicted incorrectly or
not predicted at all

The count is the difference between
the total number of executed returns
and the number of returns that were
correctly predicted. Only RET
instructions are counted (for
example, IRET instructions are not
counted).

37H PREDICTED_
RETURNS
(Counter 1)

Number of predicted
returns (whether they
are predicted correctly
and incorrectly

Only RET instructions are counted
(for example, IRET instructions are
not counted).

38H MMX_MULTIPLY_
UNIT_INTERLOCK
(Counter 0)

Number of clocks the
pipe is stalled since the
destination of previous
MMX multiply
instruction is not ready
yet

The counter will not be incremented
if there is another cause for a stall.
For each occurrence of a multiply
interlock, this event will be counted
twice (if the stalled instruction
comes on the next clock after the
multiply) or by once (if the stalled
instruction comes two clocks after
the multiply).

38H MOVD/MOVQ_
STORE_STALL_
DUE_TO_
PREVIOUS_MMX_
OPERATION
(Counter 1)

Number of clocks a
MOVD/MOVQ instruction
store is stalled in D2
stage due to a previous
MMX operation with a
destination to be used in
the store instruction.

39H RETURNS
(Counter 0)

Number or returns
executed.

Only RET instructions are counted;
IRET instructions are not counted.
Any exception taken on a RET
instruction and any interrupt
recognized by the processor on the
instruction boundary prior to the
execution of the RET instruction will
also cause this counter to be
incremented.

39H Reserved

Table 19-26. Events That Can Be Counted with Pentium Processor
Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event
Name Description Comments
19-300 Vol. 3B

PERFORMANCE-MONITORING EVENTS
3AH BTB_FALSE_
ENTRIES
(Counter 0)

Number of false entries
in the Branch Target
Buffer

False entries are causes for
misprediction other than a wrong
prediction.

3AH BTB_MISS_
PREDICTION_ON_
NOT-TAKEN_
BRANCH
(Counter 1)

Number of times the
BTB predicted a not-
taken branch as taken

3BH FULL_WRITE_
BUFFER_STALL_
DURATION_
WHILE_
EXECUTING_MMX_I
NSTRUCTIONS
(Counter 0)

Number of clocks while
the pipeline is stalled
due to full write buffers
while executing MMX
instructions

3BH STALL_ON_MMX_
INSTRUCTION_
WRITE_TO E-_OR_
M-STATE_LINE
(Counter 1)

Number of clocks during
stalls on MMX
instructions writing to
E- or M-state lines

Table 19-26. Events That Can Be Counted with Pentium Processor
Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event
Name Description Comments
Vol. 3B 19-301

CHAPTER 20
8086 EMULATION

IA-32 processors (beginning with the Intel386 processor) provide two ways to
execute new or legacy programs that are assembled and/or compiled to run on an
Intel 8086 processor:
• Real-address mode.
• Virtual-8086 mode.

Figure 2-3 shows the relationship of these operating modes to protected mode and
system management mode (SMM).

When the processor is powered up or reset, it is placed in the real-address mode.
This operating mode almost exactly duplicates the execution environment of the
Intel 8086 processor, with some extensions. Virtually any program assembled and/or
compiled to run on an Intel 8086 processor will run on an IA-32 processor in this
mode.

When running in protected mode, the processor can be switched to virtual-8086
mode to run 8086 programs. This mode also duplicates the execution environment of
the Intel 8086 processor, with extensions. In virtual-8086 mode, an 8086 program
runs as a separate protected-mode task. Legacy 8086 programs are thus able to run
under an operating system (such as Microsoft Windows*) that takes advantage of
protected mode and to use protected-mode facilities, such as the protected-mode
interrupt- and exception-handling facilities. Protected-mode multitasking permits
multiple virtual-8086 mode tasks (with each task running a separate 8086 program)
to be run on the processor along with other non-virtual-8086 mode tasks.

This section describes both the basic real-address mode execution environment and
the virtual-8086-mode execution environment, available on the IA-32 processors
beginning with the Intel386 processor.

20.1 REAL-ADDRESS MODE
The IA-32 architecture’s real-address mode runs programs written for the Intel 8086,
Intel 8088, Intel 80186, and Intel 80188 processors, or for the real-address mode of
the Intel 286, Intel386, Intel486, Pentium, P6 family, Pentium 4, and Intel Xeon
processors.

The execution environment of the processor in real-address mode is designed to
duplicate the execution environment of the Intel 8086 processor. To an 8086
program, a processor operating in real-address mode behaves like a high-speed
8086 processor. The principal features of this architecture are defined in Chapter 3,
“Basic Execution Environment”, of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1.
Vol. 3B 20-1

8086 EMULATION
The following is a summary of the core features of the real-address mode execution
environment as would be seen by a program written for the 8086:
• The processor supports a nominal 1-MByte physical address space (see Section

20.1.1, “Address Translation in Real-Address Mode”, for specific details). This
address space is divided into segments, each of which can be up to 64 KBytes in
length. The base of a segment is specified with a 16-bit segment selector, which
is zero extended to form a 20-bit offset from address 0 in the address space. An
operand within a segment is addressed with a 16-bit offset from the base of the
segment. A physical address is thus formed by adding the offset to the 20-bit
segment base (see Section 20.1.1, “Address Translation in Real-Address Mode”).

• All operands in “native 8086 code” are 8-bit or 16-bit values. (Operand size
override prefixes can be used to access 32-bit operands.)

• Eight 16-bit general-purpose registers are provided: AX, BX, CX, DX, SP, BP, SI,
and DI. The extended 32 bit registers (EAX, EBX, ECX, EDX, ESP, EBP, ESI, and
EDI) are accessible to programs that explicitly perform a size override operation.

• Four segment registers are provided: CS, DS, SS, and ES. (The FS and GS
registers are accessible to programs that explicitly access them.) The CS register
contains the segment selector for the code segment; the DS and ES registers
contain segment selectors for data segments; and the SS register contains the
segment selector for the stack segment.

• The 8086 16-bit instruction pointer (IP) is mapped to the lower 16-bits of the EIP
register. Note this register is a 32-bit register and unintentional address wrapping
may occur.

• The 16-bit FLAGS register contains status and control flags. (This register is
mapped to the 16 least significant bits of the 32-bit EFLAGS register.)

• All of the Intel 8086 instructions are supported (see Section 20.1.3, “Instructions
Supported in Real-Address Mode”).

• A single, 16-bit-wide stack is provided for handling procedure calls and
invocations of interrupt and exception handlers. This stack is contained in the
stack segment identified with the SS register. The SP (stack pointer) register
contains an offset into the stack segment. The stack grows down (toward lower
segment offsets) from the stack pointer. The BP (base pointer) register also
contains an offset into the stack segment that can be used as a pointer to a
parameter list. When a CALL instruction is executed, the processor pushes the
current instruction pointer (the 16 least-significant bits of the EIP register and,
on far calls, the current value of the CS register) onto the stack. On a return,
initiated with a RET instruction, the processor pops the saved instruction pointer
from the stack into the EIP register (and CS register on far returns). When an
implicit call to an interrupt or exception handler is executed, the processor
pushes the EIP, CS, and EFLAGS (low-order 16-bits only) registers onto the
stack. On a return from an interrupt or exception handler, initiated with an IRET
instruction, the processor pops the saved instruction pointer and EFLAGS image
from the stack into the EIP, CS, and EFLAGS registers.
20-2 Vol. 3B

8086 EMULATION
• A single interrupt table, called the “interrupt vector table” or “interrupt table,” is
provided for handling interrupts and exceptions (see Figure 20-2). The interrupt
table (which has 4-byte entries) takes the place of the interrupt descriptor table
(IDT, with 8-byte entries) used when handling protected-mode interrupts and
exceptions. Interrupt and exception vector numbers provide an index to entries
in the interrupt table. Each entry provides a pointer (called a “vector”) to an
interrupt- or exception-handling procedure. See Section 20.1.4, “Interrupt and
Exception Handling”, for more details. It is possible for software to relocate the
IDT by means of the LIDT instruction on IA-32 processors beginning with the
Intel386 processor.

• The x87 FPU is active and available to execute x87 FPU instructions in real-
address mode. Programs written to run on the Intel 8087 and Intel 287 math
coprocessors can be run in real-address mode without modification.

The following extensions to the Intel 8086 execution environment are available in the
IA-32 architecture’s real-address mode. If backwards compatibility to Intel 286 and
Intel 8086 processors is required, these features should not be used in new programs
written to run in real-address mode.
• Two additional segment registers (FS and GS) are available.
• Many of the integer and system instructions that have been added to later IA-32

processors can be executed in real-address mode (see Section 20.1.3, “Instruc-
tions Supported in Real-Address Mode”).

• The 32-bit operand prefix can be used in real-address mode programs to execute
the 32-bit forms of instructions. This prefix also allows real-address mode
programs to use the processor’s 32-bit general-purpose registers.

• The 32-bit address prefix can be used in real-address mode programs, allowing
32-bit offsets.

The following sections describe address formation, registers, available instructions,
and interrupt and exception handling in real-address mode. For information on I/O in
real-address mode, see Chapter 13, “Input/Output”, of the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1.

20.1.1 Address Translation in Real-Address Mode
In real-address mode, the processor does not interpret segment selectors as indexes
into a descriptor table; instead, it uses them directly to form linear addresses as the
8086 processor does. It shifts the segment selector left by 4 bits to form a 20-bit
base address (see Figure 20-1). The offset into a segment is added to the base
address to create a linear address that maps directly to the physical address space.

When using 8086-style address translation, it is possible to specify addresses larger
than 1 MByte. For example, with a segment selector value of FFFFH and an offset of
FFFFH, the linear (and physical) address would be 10FFEFH (1 megabyte plus 64
KBytes). The 8086 processor, which can form addresses only up to 20 bits long, trun-
cates the high-order bit, thereby “wrapping” this address to FFEFH. When operating
Vol. 3B 20-3

8086 EMULATION
in real-address mode, however, the processor does not truncate such an address and
uses it as a physical address. (Note, however, that for IA-32 processors beginning
with the Intel486 processor, the A20M# signal can be used in real-address mode to
mask address line A20, thereby mimicking the 20-bit wrap-around behavior of the
8086 processor.) Care should be take to ensure that A20M# based address wrapping
is handled correctly in multiprocessor based system.

The IA-32 processors beginning with the Intel386 processor can generate 32-bit
offsets using an address override prefix; however, in real-address mode, the value of
a 32-bit offset may not exceed FFFFH without causing an exception.

For full compatibility with Intel 286 real-address mode, pseudo-protection faults
(interrupt 12 or 13) occur if a 32-bit offset is generated outside the range 0 through
FFFFH.

20.1.2 Registers Supported in Real-Address Mode
The register set available in real-address mode includes all the registers defined for
the 8086 processor plus the new registers introduced in later IA-32 processors, such
as the FS and GS segment registers, the debug registers, the control registers, and
the floating-point unit registers. The 32-bit operand prefix allows a real-address
mode program to use the 32-bit general-purpose registers (EAX, EBX, ECX, EDX,
ESP, EBP, ESI, and EDI).

20.1.3 Instructions Supported in Real-Address Mode
The following instructions make up the core instruction set for the 8086 processor. If
backwards compatibility to the Intel 286 and Intel 8086 processors is required, only
these instructions should be used in a new program written to run in real-address
mode.

Figure 20-1. Real-Address Mode Address Translation

19 0

16-bit Segment Selector

3

0 0 0 0Base

19 0

16-bit Effective Address

15

0 0 0 0Offset

0

20-bit Linear AddressLinear
Address

+

=

4

16

19
20-4 Vol. 3B

8086 EMULATION
• Move (MOV) instructions that move operands between general-purpose
registers, segment registers, and between memory and general-purpose
registers.

• The exchange (XCHG) instruction.
• Load segment register instructions LDS and LES.
• Arithmetic instructions ADD, ADC, SUB, SBB, MUL, IMUL, DIV, IDIV, INC, DEC,

CMP, and NEG.
• Logical instructions AND, OR, XOR, and NOT.
• Decimal instructions DAA, DAS, AAA, AAS, AAM, and AAD.
• Stack instructions PUSH and POP (to general-purpose registers and segment

registers).
• Type conversion instructions CWD, CDQ, CBW, and CWDE.
• Shift and rotate instructions SAL, SHL, SHR, SAR, ROL, ROR, RCL, and RCR.
• TEST instruction.
• Control instructions JMP, Jcc, CALL, RET, LOOP, LOOPE, and LOOPNE.
• Interrupt instructions INT n, INTO, and IRET.
• EFLAGS control instructions STC, CLC, CMC, CLD, STD, LAHF, SAHF, PUSHF, and

POPF.
• I/O instructions IN, INS, OUT, and OUTS.
• Load effective address (LEA) instruction, and translate (XLATB) instruction.
• LOCK prefix.
• Repeat prefixes REP, REPE, REPZ, REPNE, and REPNZ.
• Processor halt (HLT) instruction.
• No operation (NOP) instruction.

The following instructions, added to later IA-32 processors (some in the Intel 286
processor and the remainder in the Intel386 processor), can be executed in real-
address mode, if backwards compatibility to the Intel 8086 processor is not required.
• Move (MOV) instructions that operate on the control and debug registers.
• Load segment register instructions LSS, LFS, and LGS.
• Generalized multiply instructions and multiply immediate data.
• Shift and rotate by immediate counts.
• Stack instructions PUSHA, PUSHAD, POPA and POPAD, and PUSH immediate

data.
• Move with sign extension instructions MOVSX and MOVZX.
• Long-displacement Jcc instructions.
• Exchange instructions CMPXCHG, CMPXCHG8B, and XADD.
• String instructions MOVS, CMPS, SCAS, LODS, and STOS.
Vol. 3B 20-5

8086 EMULATION
• Bit test and bit scan instructions BT, BTS, BTR, BTC, BSF, and BSR; the byte-set-
on condition instruction SETcc; and the byte swap (BSWAP) instruction.

• Double shift instructions SHLD and SHRD.
• EFLAGS control instructions PUSHF and POPF.
• ENTER and LEAVE control instructions.
• BOUND instruction.
• CPU identification (CPUID) instruction.
• System instructions CLTS, INVD, WINVD, INVLPG, LGDT, SGDT, LIDT, SIDT,

LMSW, SMSW, RDMSR, WRMSR, RDTSC, and RDPMC.

Execution of any of the other IA-32 architecture instructions (not given in the
previous two lists) in real-address mode result in an invalid-opcode exception (#UD)
being generated.

20.1.4 Interrupt and Exception Handling
When operating in real-address mode, software must provide interrupt and excep-
tion-handling facilities that are separate from those provided in protected mode.
Even during the early stages of processor initialization when the processor is still in
real-address mode, elementary real-address mode interrupt and exception-handling
facilities must be provided to insure reliable operation of the processor, or the initial-
ization code must insure that no interrupts or exceptions will occur.

The IA-32 processors handle interrupts and exceptions in real-address mode similar
to the way they handle them in protected mode. When a processor receives an inter-
rupt or generates an exception, it uses the vector number of the interrupt or excep-
tion as an index into the interrupt table. (In protected mode, the interrupt table is
called the interrupt descriptor table (IDT), but in real-address mode, the table is
usually called the interrupt vector table, or simply the interrupt table.) The entry
in the interrupt vector table provides a pointer to an interrupt- or exception-handler
procedure. (The pointer consists of a segment selector for a code segment and a 16-
bit offset into the segment.) The processor performs the following actions to make an
implicit call to the selected handler:

1. Pushes the current values of the CS and EIP registers onto the stack. (Only the 16
least-significant bits of the EIP register are pushed.)

2. Pushes the low-order 16 bits of the EFLAGS register onto the stack.

3. Clears the IF flag in the EFLAGS register to disable interrupts.

4. Clears the TF, RC, and AC flags, in the EFLAGS register.

5. Transfers program control to the location specified in the interrupt vector table.

An IRET instruction at the end of the handler procedure reverses these steps to
return program control to the interrupted program. Exceptions do not return error
codes in real-address mode.
20-6 Vol. 3B

8086 EMULATION
The interrupt vector table is an array of 4-byte entries (see Figure 20-2). Each entry
consists of a far pointer to a handler procedure, made up of a segment selector and
an offset. The processor scales the interrupt or exception vector by 4 to obtain an
offset into the interrupt table. Following reset, the base of the interrupt vector table
is located at physical address 0 and its limit is set to 3FFH. In the Intel 8086
processor, the base address and limit of the interrupt vector table cannot be
changed. In the later IA-32 processors, the base address and limit of the interrupt
vector table are contained in the IDTR register and can be changed using the LIDT
instruction.

(For backward compatibility to Intel 8086 processors, the default base address and
limit of the interrupt vector table should not be changed.)

Table 20-1 shows the interrupt and exception vectors that can be generated in real-
address mode and virtual-8086 mode, and in the Intel 8086 processor. See Chapter
6, “Interrupt and Exception Handling”, for a description of the exception conditions.

Figure 20-2. Interrupt Vector Table in Real-Address Mode

0

2

4

8

12

015

Segment Selector

Offset

* Interrupt vector number 0 selects entry 0

Interrupt Vector 0*

Entry 1

Entry 2

Entry 3

Up to Entry 255

IDTR(called “interrupt vector 0”) in the interrupt
vector table. Interrupt vector 0 in turn
points to the start of the interrupt handler
for interrupt 0.
Vol. 3B 20-7

8086 EMULATION
20.2 VIRTUAL-8086 MODE
Virtual-8086 mode is actually a special type of a task that runs in protected mode.
When the operating-system or executive switches to a virtual-8086-mode task, the
processor emulates an Intel 8086 processor. The execution environment of the
processor while in the 8086-emulation state is the same as is described in Section
20.1, “Real-Address Mode” for real-address mode, including the extensions. The
major difference between the two modes is that in virtual-8086 mode the 8086
emulator uses some protected-mode services (such as the protected-mode interrupt
and exception-handling and paging facilities).

As in real-address mode, any new or legacy program that has been assembled
and/or compiled to run on an Intel 8086 processor will run in a virtual-8086-mode
task. And several 8086 programs can be run as virtual-8086-mode tasks concur-
rently with normal protected-mode tasks, using the processor’s multitasking
facilities.

Table 20-1. Real-Address Mode Exceptions and Interrupts

Vector
No.

Description Real-Address
Mode

Virtual-8086
Mode

Intel 8086
Processor

 0 Divide Error (#DE) Yes Yes Yes

 1 Debug Exception (#DB) Yes Yes No

 2 NMI Interrupt Yes Yes Yes

 3 Breakpoint (#BP) Yes Yes Yes

 4 Overflow (#OF) Yes Yes Yes

 5 BOUND Range Exceeded (#BR) Yes Yes Reserved

 6 Invalid Opcode (#UD) Yes Yes Reserved

 7 Device Not Available (#NM) Yes Yes Reserved

 8 Double Fault (#DF) Yes Yes Reserved

 9 (Intel reserved. Do not use.) Reserved Reserved Reserved

10 Invalid TSS (#TS) Reserved Yes Reserved

11 Segment Not Present (#NP) Reserved Yes Reserved

12 Stack Fault (#SS) Yes Yes Reserved

13 General Protection (#GP)* Yes Yes Reserved

14 Page Fault (#PF) Reserved Yes Reserved

15 (Intel reserved. Do not use.) Reserved Reserved Reserved

16 Floating-Point Error (#MF) Yes Yes Reserved

17 Alignment Check (#AC) Reserved Yes Reserved

18 Machine Check (#MC) Yes Yes Reserved
20-8 Vol. 3B

8086 EMULATION
20.2.1 Enabling Virtual-8086 Mode
The processor runs in virtual-8086 mode when the VM (virtual machine) flag in the
EFLAGS register is set. This flag can only be set when the processor switches to a
new protected-mode task or resumes virtual-8086 mode via an IRET instruction.

System software cannot change the state of the VM flag directly in the EFLAGS
register (for example, by using the POPFD instruction). Instead it changes the flag in
the image of the EFLAGS register stored in the TSS or on the stack following a call to
an interrupt- or exception-handler procedure. For example, software sets the VM flag
in the EFLAGS image in the TSS when first creating a virtual-8086 task.

The processor tests the VM flag under three general conditions:
• When loading segment registers, to determine whether to use 8086-style

address translation.
• When decoding instructions, to determine which instructions are not supported in

virtual-8086 mode and which instructions are sensitive to IOPL.
• When checking privileged instructions, on page accesses, or when performing

other permission checks. (Virtual-8086 mode always executes at CPL 3.)

20.2.2 Structure of a Virtual-8086 Task
A virtual-8086-mode task consists of the following items:
• A 32-bit TSS for the task.
• The 8086 program.
• A virtual-8086 monitor.
• 8086 operating-system services.

The TSS of the new task must be a 32-bit TSS, not a 16-bit TSS, because the 16-bit
TSS does not load the most-significant word of the EFLAGS register, which contains
the VM flag. All TSS’s, stacks, data, and code used to handle exceptions when in
virtual-8086 mode must also be 32-bit segments.

19-31 (Intel reserved. Do not use.) Reserved Reserved Reserved

32-
255

User Defined Interrupts Yes Yes Yes

NOTE:
* In the real-address mode, vector 13 is the segment overrun exception. In protected and vir-

tual-8086 modes, this exception covers all general-protection error conditions, including traps
to the virtual-8086 monitor from virtual-8086 mode.

Table 20-1. Real-Address Mode Exceptions and Interrupts (Contd.)

Vector
No.

Description Real-Address
Mode

Virtual-8086
Mode

Intel 8086
Processor
Vol. 3B 20-9

8086 EMULATION
The processor enters virtual-8086 mode to run the 8086 program and returns to
protected mode to run the virtual-8086 monitor.

The virtual-8086 monitor is a 32-bit protected-mode code module that runs at a CPL
of 0. The monitor consists of initialization, interrupt- and exception-handling, and I/O
emulation procedures that emulate a personal computer or other 8086-based plat-
form. Typically, the monitor is either part of or closely associated with the protected-
mode general-protection (#GP) exception handler, which also runs at a CPL of 0. As
with any protected-mode code module, code-segment descriptors for the virtual-
8086 monitor must exist in the GDT or in the task’s LDT. The virtual-8086 monitor
also may need data-segment descriptors so it can examine the IDT or other parts of
the 8086 program in the first 1 MByte of the address space. The linear addresses
above 10FFEFH are available for the monitor, the operating system, and other system
software.

The 8086 operating-system services consists of a kernel and/or operating-system
procedures that the 8086 program makes calls to. These services can be imple-
mented in either of the following two ways:
• They can be included in the 8086 program. This approach is desirable for either

of the following reasons:

— The 8086 program code modifies the 8086 operating-system services.

— There is not sufficient development time to merge the 8086 operating-
system services into main operating system or executive.

• They can be implemented or emulated in the virtual-8086 monitor. This approach
is desirable for any of the following reasons:

— The 8086 operating-system procedures can be more easily coordinated
among several virtual-8086 tasks.

— Memory can be saved by not duplicating 8086 operating-system procedure
code for several virtual-8086 tasks.

— The 8086 operating-system procedures can be easily emulated by calls to the
main operating system or executive.

The approach chosen for implementing the 8086 operating-system services may
result in different virtual-8086-mode tasks using different 8086 operating-system
services.

20.2.3 Paging of Virtual-8086 Tasks
Even though a program running in virtual-8086 mode can use only 20-bit linear
addresses, the processor converts these addresses into 32-bit linear addresses
before mapping them to the physical address space. If paging is being used, the
8086 address space for a program running in virtual-8086 mode can be paged and
located in a set of pages in physical address space. If paging is used, it is transparent
to the program running in virtual-8086 mode just as it is for any task running on the
processor.
20-10 Vol. 3B

8086 EMULATION
Paging is not necessary for a single virtual-8086-mode task, but paging is useful or
necessary in the following situations:
• When running multiple virtual-8086-mode tasks. Here, paging allows the lower 1

MByte of the linear address space for each virtual-8086-mode task to be mapped
to a different physical address location.

• When emulating the 8086 address-wraparound that occurs at 1 MByte. When
using 8086-style address translation, it is possible to specify addresses larger
than 1 MByte. These addresses automatically wraparound in the Intel 8086
processor (see Section 20.1.1, “Address Translation in Real-Address Mode”). If
any 8086 programs depend on address wraparound, the same effect can be
achieved in a virtual-8086-mode task by mapping the linear addresses between
100000H and 110000H and linear addresses between 0 and 10000H to the same
physical addresses.

• When sharing the 8086 operating-system services or ROM code that is common
to several 8086 programs running as different 8086-mode tasks.

• When redirecting or trapping references to memory-mapped I/O devices.

20.2.4 Protection within a Virtual-8086 Task
Protection is not enforced between the segments of an 8086 program. Either of the
following techniques can be used to protect the system software running in a virtual-
8086-mode task from the 8086 program:
• Reserve the first 1 MByte plus 64 KBytes of each task’s linear address space for

the 8086 program. An 8086 processor task cannot generate addresses outside
this range.

• Use the U/S flag of page-table entries to protect the virtual-8086 monitor and
other system software in the virtual-8086 mode task space. When the processor
is in virtual-8086 mode, the CPL is 3. Therefore, an 8086 processor program has
only user privileges. If the pages of the virtual-8086 monitor have supervisor
privilege, they cannot be accessed by the 8086 program.

20.2.5 Entering Virtual-8086 Mode
Figure 20-3 summarizes the methods of entering and leaving virtual-8086 mode.
The processor switches to virtual-8086 mode in either of the following situations:
• Task switch when the VM flag is set to 1 in the EFLAGS register image stored in

the TSS for the task. Here the task switch can be initiated in either of two ways:

— A CALL or JMP instruction.

— An IRET instruction, where the NT flag in the EFLAGS image is set to 1.
• Return from a protected-mode interrupt or exception handler when the VM flag is

set to 1 in the EFLAGS register image on the stack.
Vol. 3B 20-11

8086 EMULATION
When a task switch is used to enter virtual-8086 mode, the TSS for the virtual-8086-
mode task must be a 32-bit TSS. (If the new TSS is a 16-bit TSS, the upper word of
the EFLAGS register is not in the TSS, causing the processor to clear the VM flag
when it loads the EFLAGS register.) The processor updates the VM flag prior to
loading the segment registers from their images in the new TSS. The new setting of
the VM flag determines whether the processor interprets the contents of the segment
registers as 8086-style segment selectors or protected-mode segment selectors.
When the VM flag is set, the segment registers are loaded from the TSS, using 8086-
style address translation to form base addresses.

See Section 20.3, “Interrupt and Exception Handling in Virtual-8086 Mode”, for infor-
mation on entering virtual-8086 mode on a return from an interrupt or exception
handler.
20-12 Vol. 3B

8086 EMULATION
Figure 20-3. Entering and Leaving Virtual-8086 Mode

Monitor
Virtual-8086

Real Mode
Code

Protected-
Mode Tasks

Virtual-8086
Mode Tasks

(8086
Programs)

Protected-
Mode Interrupt
and Exception

Handlers

Task Switch1

VM = 1

Protected
Mode

Virtual-8086
Mode

Real-Address
Mode

RESET

PE=1
PE=0 or
RESET

#GP Exception3

CALL

RET

Task Switch
VM=0

Redirect Interrupt to 8086 Program
Interrupt or Exception Handler6

IRET4

Interrupt or
Exception2

VM = 0

NOTES:

- CALL or JMP where the VM flag in the EFLAGS image is 1.
- IRET where VM is 1 and NT is 1.

4. Normal return from protected-mode interrupt or exception handler.

3. General-protection exception caused by software interrupt (INT n), IRET,
POPF, PUSHF, IN, or OUT when IOPL is less than 3.

2. Hardware interrupt or exception; software interrupt (INT n) when IOPL is 3.

5. A return from the 8086 monitor to redirect an interrupt or exception back
 to an interrupt or exception handler in the 8086 program running in virtual-

6. Internal redirection of a software interrupt (INT n) when VME is 1,
IOPL is <3, and the redirection bit is 1.

IRET5

8086 mode.

1. Task switch carried out in either of two ways:
Vol. 3B 20-13

8086 EMULATION
20.2.6 Leaving Virtual-8086 Mode
The processor can leave the virtual-8086 mode only through an interrupt or excep-
tion. The following are situations where an interrupt or exception will lead to the
processor leaving virtual-8086 mode (see Figure 20-3):
• The processor services a hardware interrupt generated to signal the suspension

of execution of the virtual-8086 application. This hardware interrupt may be
generated by a timer or other external mechanism. Upon receiving the hardware
interrupt, the processor enters protected mode and switches to a protected-
mode (or another virtual-8086 mode) task either through a task gate in the
protected-mode IDT or through a trap or interrupt gate that points to a handler
that initiates a task switch. A task switch from a virtual-8086 task to another task
loads the EFLAGS register from the TSS of the new task. The value of the VM flag
in the new EFLAGS determines if the new task executes in virtual-8086 mode or
not.

• The processor services an exception caused by code executing the virtual-8086
task or services a hardware interrupt that “belongs to” the virtual-8086 task.
Here, the processor enters protected mode and services the exception or
hardware interrupt through the protected-mode IDT (normally through an
interrupt or trap gate) and the protected-mode exception- and interrupt-
handlers. The processor may handle the exception or interrupt within the context
of the virtual 8086 task and return to virtual-8086 mode on a return from the
handler procedure. The processor may also execute a task switch and handle the
exception or interrupt in the context of another task.

• The processor services a software interrupt generated by code executing in the
virtual-8086 task (such as a software interrupt to call a MS-DOS* operating
system routine). The processor provides several methods of handling these
software interrupts, which are discussed in detail in Section 20.3.3, “Class
3—Software Interrupt Handling in Virtual-8086 Mode”. Most of them involve the
processor entering protected mode, often by means of a general-protection
(#GP) exception. In protected mode, the processor can send the interrupt to the
virtual-8086 monitor for handling and/or redirect the interrupt back to the
application program running in virtual-8086 mode task for handling.
IA-32 processors that incorporate the virtual mode extension (enabled with the
VME flag in control register CR4) are capable of redirecting software-generated
interrupts back to the program’s interrupt handlers without leaving virtual-8086
mode. See Section 20.3.3.4, “Method 5: Software Interrupt Handling”, for more
information on this mechanism.

• A hardware reset initiated by asserting the RESET or INIT pin is a special kind of
interrupt. When a RESET or INIT is signaled while the processor is in virtual-8086
mode, the processor leaves virtual-8086 mode and enters real-address mode.

• Execution of the HLT instruction in virtual-8086 mode will cause a general-
protection (GP#) fault, which the protected-mode handler generally sends to the
virtual-8086 monitor. The virtual-8086 monitor then determines the correct
20-14 Vol. 3B

8086 EMULATION
execution sequence after verifying that it was entered as a result of a HLT
execution.

See Section 20.3, “Interrupt and Exception Handling in Virtual-8086 Mode”, for infor-
mation on leaving virtual-8086 mode to handle an interrupt or exception generated
in virtual-8086 mode.

20.2.7 Sensitive Instructions
When an IA-32 processor is running in virtual-8086 mode, the CLI, STI, PUSHF, POPF,
INT n, and IRET instructions are sensitive to IOPL. The IN, INS, OUT, and OUTS
instructions, which are sensitive to IOPL in protected mode, are not sensitive in
virtual-8086 mode.

The CPL is always 3 while running in virtual-8086 mode; if the IOPL is less than 3, an
attempt to use the IOPL-sensitive instructions listed above triggers a general-protec-
tion exception (#GP). These instructions are sensitive to IOPL to give the virtual-
8086 monitor a chance to emulate the facilities they affect.

20.2.8 Virtual-8086 Mode I/O
Many 8086 programs written for non-multitasking systems directly access I/O ports.
This practice may cause problems in a multitasking environment. If more than one
program accesses the same port, they may interfere with each other. Most multi-
tasking systems require application programs to access I/O ports through the oper-
ating system. This results in simplified, centralized control.

The processor provides I/O protection for creating I/O that is compatible with the
environment and transparent to 8086 programs. Designers may take any of several
possible approaches to protecting I/O ports:
• Protect the I/O address space and generate exceptions for all attempts to

perform I/O directly.
• Let the 8086 program perform I/O directly.
• Generate exceptions on attempts to access specific I/O ports.
• Generate exceptions on attempts to access specific memory-mapped I/O ports.

The method of controlling access to I/O ports depends upon whether they are
I/O-port mapped or memory mapped.

20.2.8.1 I/O-Port-Mapped I/O
The I/O permission bit map in the TSS can be used to generate exceptions on
attempts to access specific I/O port addresses. The I/O permission bit map of each
virtual-8086-mode task determines which I/O addresses generate exceptions for
that task. Because each task may have a different I/O permission bit map, the
addresses that generate exceptions for one task may be different from the addresses
Vol. 3B 20-15

8086 EMULATION
for another task. This differs from protected mode in which, if the CPL is less than or
equal to the IOPL, I/O access is allowed without checking the I/O permission bit map.
See Chapter 13, “Input/Output”, in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1, for more information about the I/O permission bit
map.

20.2.8.2 Memory-Mapped I/O
In systems which use memory-mapped I/O, the paging facilities of the processor can
be used to generate exceptions for attempts to access I/O ports. The virtual-8086
monitor may use paging to control memory-mapped I/O in these ways:
• Map part of the linear address space of each task that needs to perform I/O to the

physical address space where I/O ports are placed. By putting the I/O ports at
different addresses (in different pages), the paging mechanism can enforce
isolation between tasks.

• Map part of the linear address space to pages that are not-present. This
generates an exception whenever a task attempts to perform I/O to those pages.
System software then can interpret the I/O operation being attempted.

Software emulation of the I/O space may require too much operating system inter-
vention under some conditions. In these cases, it may be possible to generate an
exception for only the first attempt to access I/O. The system software then may
determine whether a program can be given exclusive control of I/O temporarily, the
protection of the I/O space may be lifted, and the program allowed to run at full
speed.

20.2.8.3 Special I/O Buffers
Buffers of intelligent controllers (for example, a bit-mapped frame buffer) also can be
emulated using page mapping. The linear space for the buffer can be mapped to a
different physical space for each virtual-8086-mode task. The virtual-8086 monitor
then can control which virtual buffer to copy onto the real buffer in the physical
address space.

20.3 INTERRUPT AND EXCEPTION HANDLING
IN VIRTUAL-8086 MODE

When the processor receives an interrupt or detects an exception condition while in
virtual-8086 mode, it invokes an interrupt or exception handler, just as it does in
protected or real-address mode. The interrupt or exception handler that is invoked
and the mechanism used to invoke it depends on the class of interrupt or exception
that has been detected or generated and the state of various system flags and fields.
20-16 Vol. 3B

8086 EMULATION
In virtual-8086 mode, the interrupts and exceptions are divided into three classes for
the purposes of handling:
• Class 1 — All processor-generated exceptions and all hardware interrupts,

including the NMI interrupt and the hardware interrupts sent to the processor’s
external interrupt delivery pins. All class 1 exceptions and interrupts are handled
by the protected-mode exception and interrupt handlers.

• Class 2 — Special case for maskable hardware interrupts (Section 6.3.2,
“Maskable Hardware Interrupts”) when the virtual mode extensions are enabled.

• Class 3 — All software-generated interrupts, that is interrupts generated with
the INT n instruction1.

The method the processor uses to handle class 2 and 3 interrupts depends on the
setting of the following flags and fields:
• IOPL field (bits 12 and 13 in the EFLAGS register) — Controls how class 3

software interrupts are handled when the processor is in virtual-8086 mode (see
Section 2.3, “System Flags and Fields in the EFLAGS Register”). This field also
controls the enabling of the VIF and VIP flags in the EFLAGS register when the
VME flag is set. The VIF and VIP flags are provided to assist in the handling of
class 2 maskable hardware interrupts.

• VME flag (bit 0 in control register CR4) — Enables the virtual mode extension
for the processor when set (see Section 2.5, “Control Registers”).

• Software interrupt redirection bit map (32 bytes in the TSS, see
Figure 20-5) — Contains 256 flags that indicates how class 3 software
interrupts should be handled when they occur in virtual-8086 mode. A software
interrupt can be directed either to the interrupt and exception handlers in the
currently running 8086 program or to the protected-mode interrupt and
exception handlers.

• The virtual interrupt flag (VIF) and virtual interrupt pending flag (VIP)
in the EFLAGS register — Provides virtual interrupt support for the handling
of class 2 maskable hardware interrupts (see Section 20.3.2, “Class 2—Maskable
Hardware Interrupt Handling in Virtual-8086 Mode Using the Virtual Interrupt
Mechanism”).

NOTE
The VME flag, software interrupt redirection bit map, and VIF and VIP
flags are only available in IA-32 processors that support the virtual
mode extensions. These extensions were introduced in the IA-32
architecture with the Pentium processor.

The following sections describe the actions that processor takes and the possible
actions of interrupt and exception handlers for the two classes of interrupts described

1. The INT 3 instruction is a special case (see the description of the INT n instruction in Chapter 3,
“Instruction Set Reference, A-L”, of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2A).
Vol. 3B 20-17

8086 EMULATION
in the previous paragraphs. These sections describe three possible types of interrupt
and exception handlers:
• Protected-mode interrupt and exceptions handlers — These are the

standard handlers that the processor calls through the protected-mode IDT.
• Virtual-8086 monitor interrupt and exception handlers — These handlers

are resident in the virtual-8086 monitor, and they are commonly accessed
through a general-protection exception (#GP, interrupt 13) that is directed to the
protected-mode general-protection exception handler.

• 8086 program interrupt and exception handlers — These handlers are part
of the 8086 program that is running in virtual-8086 mode.

The following sections describe how these handlers are used, depending on the
selected class and method of interrupt and exception handling.

20.3.1 Class 1—Hardware Interrupt and Exception Handling in
Virtual-8086 Mode

In virtual-8086 mode, the Pentium, P6 family, Pentium 4, and Intel Xeon processors
handle hardware interrupts and exceptions in the same manner as they are handled
by the Intel486 and Intel386 processors. They invoke the protected-mode interrupt
or exception handler that the interrupt or exception vector points to in the IDT. Here,
the IDT entry must contain either a 32-bit trap or interrupt gate or a task gate. The
following sections describe various ways that a virtual-8086 mode interrupt or excep-
tion can be handled after the protected-mode handler has been invoked.

See Section 20.3.2, “Class 2—Maskable Hardware Interrupt Handling in Virtual-8086
Mode Using the Virtual Interrupt Mechanism”, for a description of the virtual interrupt
mechanism that is available for handling maskable hardware interrupts while in
virtual-8086 mode. When this mechanism is either not available or not enabled,
maskable hardware interrupts are handled in the same manner as exceptions, as
described in the following sections.

20.3.1.1 Handling an Interrupt or Exception Through a Protected-Mode
Trap or Interrupt Gate

When an interrupt or exception vector points to a 32-bit trap or interrupt gate in the
IDT, the gate must in turn point to a nonconforming, privilege-level 0, code segment.
When accessing this code segment, processor performs the following steps.

1. Switches to 32-bit protected mode and privilege level 0.

2. Saves the state of the processor on the privilege-level 0 stack. The states of the
EIP, CS, EFLAGS, ESP, SS, ES, DS, FS, and GS registers are saved (see
Figure 20-4).

3. Clears the segment registers. Saving the DS, ES, FS, and GS registers on the
stack and then clearing the registers lets the interrupt or exception handler safely
20-18 Vol. 3B

8086 EMULATION
save and restore these registers regardless of the type segment selectors they
contain (protected-mode or 8086-style). The interrupt and exception handlers,
which may be called in the context of either a protected-mode task or a virtual-
8086-mode task, can use the same code sequences for saving and restoring the
registers for any task. Clearing these registers before execution of the IRET
instruction does not cause a trap in the interrupt handler. Interrupt procedures
that expect values in the segment registers or that return values in the segment
registers must use the register images saved on the stack for privilege level 0.

4. Clears VM, NT, RF and TF flags (in the EFLAGS register). If the gate is an interrupt
gate, clears the IF flag.

5. Begins executing the selected interrupt or exception handler.

If the trap or interrupt gate references a procedure in a conforming segment or in a
segment at a privilege level other than 0, the processor generates a general-protec-
tion exception (#GP). Here, the error code is the segment selector of the code
segment to which a call was attempted.

Figure 20-4. Privilege Level 0 Stack After Interrupt or
Exception in Virtual-8086 Mode

Unused

Old GS

Old ESP

With Error Code

ESP from

Old FS

Old DS

Old ES

Old SS

Old EFLAGS

Old CS

Old EIP

Error Code New ESP

TSS
Unused

Old GS

Old ESP

Without Error Code

ESP from

Old FS

Old DS

Old ES

Old SS

Old EFLAGS

Old CS

Old EIP New ESP

TSS
Vol. 3B 20-19

8086 EMULATION
Interrupt and exception handlers can examine the VM flag on the stack to determine
if the interrupted procedure was running in virtual-8086 mode. If so, the interrupt or
exception can be handled in one of three ways:
• The protected-mode interrupt or exception handler that was called can handle

the interrupt or exception.
• The protected-mode interrupt or exception handler can call the virtual-8086

monitor to handle the interrupt or exception.
• The virtual-8086 monitor (if called) can in turn pass control back to the 8086

program’s interrupt and exception handler.

If the interrupt or exception is handled with a protected-mode handler, the handler
can return to the interrupted program in virtual-8086 mode by executing an IRET
instruction. This instruction loads the EFLAGS and segment registers from the
images saved in the privilege level 0 stack (see Figure 20-4). A set VM flag in the
EFLAGS image causes the processor to switch back to virtual-8086 mode. The CPL at
the time the IRET instruction is executed must be 0, otherwise the processor does
not change the state of the VM flag.

The virtual-8086 monitor runs at privilege level 0, like the protected-mode interrupt
and exception handlers. It is commonly closely tied to the protected-mode general-
protection exception (#GP, vector 13) handler. If the protected-mode interrupt or
exception handler calls the virtual-8086 monitor to handle the interrupt or exception,
the return from the virtual-8086 monitor to the interrupted virtual-8086 mode
program requires two return instructions: a RET instruction to return to the
protected-mode handler and an IRET instruction to return to the interrupted
program.

The virtual-8086 monitor has the option of directing the interrupt and exception back
to an interrupt or exception handler that is part of the interrupted 8086 program, as
described in Section 20.3.1.2, “Handling an Interrupt or Exception With an 8086
Program Interrupt or Exception Handler”.

20.3.1.2 Handling an Interrupt or Exception With an 8086 Program
Interrupt or Exception Handler

Because it was designed to run on an 8086 processor, an 8086 program running in a
virtual-8086-mode task contains an 8086-style interrupt vector table, which starts at
linear address 0. If the virtual-8086 monitor correctly directs an interrupt or excep-
tion vector back to the virtual-8086-mode task it came from, the handlers in the
8086 program can handle the interrupt or exception. The virtual-8086 monitor must
carry out the following steps to send an interrupt or exception back to the 8086
program:

1. Use the 8086 interrupt vector to locate the appropriate handler procedure in the
8086 program interrupt table.
20-20 Vol. 3B

8086 EMULATION
2. Store the EFLAGS (low-order 16 bits only), CS and EIP values of the 8086
program on the privilege-level 3 stack. This is the stack that the virtual-8086-
mode task is using. (The 8086 handler may use or modify this information.)

3. Change the return link on the privilege-level 0 stack to point to the privilege-level
3 handler procedure.

4. Execute an IRET instruction to pass control to the 8086 program handler.

5. When the IRET instruction from the privilege-level 3 handler triggers a general-
protection exception (#GP) and thus effectively again calls the virtual-8086
monitor, restore the return link on the privilege-level 0 stack to point to the
original, interrupted, privilege-level 3 procedure.

6. Copy the low order 16 bits of the EFLAGS image from the privilege-level 3 stack
to the privilege-level 0 stack (because some 8086 handlers modify these flags to
return information to the code that caused the interrupt).

7. Execute an IRET instruction to pass control back to the interrupted 8086
program.

Note that if an operating system intends to support all 8086 MS-DOS-based
programs, it is necessary to use the actual 8086 interrupt and exception handlers
supplied with the program. The reason for this is that some programs modify their
own interrupt vector table to substitute (or hook in series) their own specialized
interrupt and exception handlers.

20.3.1.3 Handling an Interrupt or Exception Through a Task Gate
When an interrupt or exception vector points to a task gate in the IDT, the processor
performs a task switch to the selected interrupt- or exception-handling task. The
following actions are carried out as part of this task switch:

1. The EFLAGS register with the VM flag set is saved in the current TSS.

2. The link field in the TSS of the called task is loaded with the segment selector of
the TSS for the interrupted virtual-8086-mode task.

3. The EFLAGS register is loaded from the image in the new TSS, which clears the
VM flag and causes the processor to switch to protected mode.

4. The NT flag in the EFLAGS register is set.

5. The processor begins executing the selected interrupt- or exception-handler
task.

When an IRET instruction is executed in the handler task and the NT flag in the
EFLAGS register is set, the processors switches from a protected-mode interrupt- or
exception-handler task back to a virtual-8086-mode task. Here, the EFLAGS and
segment registers are loaded from images saved in the TSS for the virtual-8086-
mode task. If the VM flag is set in the EFLAGS image, the processor switches back to
virtual-8086 mode on the task switch. The CPL at the time the IRET instruction is
Vol. 3B 20-21

8086 EMULATION
executed must be 0, otherwise the processor does not change the state of the VM
flag.

20.3.2 Class 2—Maskable Hardware Interrupt Handling in
Virtual-8086 Mode Using the Virtual Interrupt Mechanism

Maskable hardware interrupts are those interrupts that are delivered through the
INTR# pin or through an interrupt request to the local APIC (see Section 6.3.2,
“Maskable Hardware Interrupts”). These interrupts can be inhibited (masked) from
interrupting an executing program or task by clearing the IF flag in the EFLAGS
register.

When the VME flag in control register CR4 is set and the IOPL field in the EFLAGS
register is less than 3, two additional flags are activated in the EFLAGS register:
• VIF (virtual interrupt) flag, bit 19 of the EFLAGS register.
• VIP (virtual interrupt pending) flag, bit 20 of the EFLAGS register.

These flags provide the virtual-8086 monitor with more efficient control over
handling maskable hardware interrupts that occur during virtual-8086 mode tasks.
They also reduce interrupt-handling overhead, by eliminating the need for all IF
related operations (such as PUSHF, POPF, CLI, and STI instructions) to trap to the
virtual-8086 monitor. The purpose and use of these flags are as follows.

NOTE
The VIF and VIP flags are only available in IA-32 processors that
support the virtual mode extensions. These extensions were
introduced in the IA-32 architecture with the Pentium processor.
When this mechanism is either not available or not enabled,
maskable hardware interrupts are handled as class 1 interrupts.
Here, if VIF and VIP flags are needed, the virtual-8086 monitor can
implement them in software.

Existing 8086 programs commonly set and clear the IF flag in the EFLAGS register to
enable and disable maskable hardware interrupts, respectively; for example, to
disable interrupts while handling another interrupt or an exception. This practice
works well in single task environments, but can cause problems in multitasking and
multiple-processor environments, where it is often desirable to prevent an applica-
tion program from having direct control over the handling of hardware interrupts.
When using earlier IA-32 processors, this problem was often solved by creating a
virtual IF flag in software. The IA-32 processors (beginning with the Pentium
processor) provide hardware support for this virtual IF flag through the VIF and VIP
flags.

The VIF flag is a virtualized version of the IF flag, which an application program
running from within a virtual-8086 task can used to control the handling of maskable
hardware interrupts. When the VIF flag is enabled, the CLI and STI instructions
operate on the VIF flag instead of the IF flag. When an 8086 program executes the
20-22 Vol. 3B

8086 EMULATION
CLI instruction, the processor clears the VIF flag to request that the virtual-8086
monitor inhibit maskable hardware interrupts from interrupting program execution;
when it executes the STI instruction, the processor sets the VIF flag requesting that
the virtual-8086 monitor enable maskable hardware interrupts for the 8086
program. But actually the IF flag, managed by the operating system, always controls
whether maskable hardware interrupts are enabled. Also, if under these circum-
stances an 8086 program tries to read or change the IF flag using the PUSHF or POPF
instructions, the processor will change the VIF flag instead, leaving IF unchanged.

The VIP flag provides software a means of recording the existence of a deferred (or
pending) maskable hardware interrupt. This flag is read by the processor but never
explicitly written by the processor; it can only be written by software.

If the IF flag is set and the VIF and VIP flags are enabled, and the processor receives
a maskable hardware interrupt (interrupt vector 0 through 255), the processor
performs and the interrupt handler software should perform the following
operations:

1. The processor invokes the protected-mode interrupt handler for the interrupt
received, as described in the following steps. These steps are almost identical to
those described for method 1 interrupt and exception handling in Section
20.3.1.1, “Handling an Interrupt or Exception Through a Protected-Mode Trap or
Interrupt Gate”:

a. Switches to 32-bit protected mode and privilege level 0.

b. Saves the state of the processor on the privilege-level 0 stack. The states of
the EIP, CS, EFLAGS, ESP, SS, ES, DS, FS, and GS registers are saved (see
Figure 20-4).

c. Clears the segment registers.

d. Clears the VM flag in the EFLAGS register.

e. Begins executing the selected protected-mode interrupt handler.

2. The recommended action of the protected-mode interrupt handler is to read the
VM flag from the EFLAGS image on the stack. If this flag is set, the handler makes
a call to the virtual-8086 monitor.

3. The virtual-8086 monitor should read the VIF flag in the EFLAGS register.

— If the VIF flag is clear, the virtual-8086 monitor sets the VIP flag in the
EFLAGS image on the stack to indicate that there is a deferred interrupt
pending and returns to the protected-mode handler.

— If the VIF flag is set, the virtual-8086 monitor can handle the interrupt if it
“belongs” to the 8086 program running in the interrupted virtual-8086 task;
otherwise, it can call the protected-mode interrupt handler to handle the
interrupt.

4. The protected-mode handler executes a return to the program executing in
virtual-8086 mode.
Vol. 3B 20-23

8086 EMULATION
5. Upon returning to virtual-8086 mode, the processor continues execution of the
8086 program.

When the 8086 program is ready to receive maskable hardware interrupts, it
executes the STI instruction to set the VIF flag (enabling maskable hardware
interrupts). Prior to setting the VIF flag, the processor automatically checks the VIP
flag and does one of the following, depending on the state of the flag:
• If the VIP flag is clear (indicating no pending interrupts), the processor sets the

VIF flag.
• If the VIP flag is set (indicating a pending interrupt), the processor generates a

general-protection exception (#GP).

The recommended action of the protected-mode general-protection exception
handler is to then call the virtual-8086 monitor and let it handle the pending inter-
rupt. After handling the pending interrupt, the typical action of the virtual-8086
monitor is to clear the VIP flag and set the VIF flag in the EFLAGS image on the stack,
and then execute a return to the virtual-8086 mode. The next time the processor
receives a maskable hardware interrupt, it will then handle it as described in steps 1
through 5 earlier in this section.

If the processor finds that both the VIF and VIP flags are set at the beginning of an
instruction, it generates a general-protection exception. This action allows the
virtual-8086 monitor to handle the pending interrupt for the virtual-8086 mode task
for which the VIF flag is enabled. Note that this situation can only occur immediately
following execution of a POPF or IRET instruction or upon entering a virtual-8086
mode task through a task switch.

Note that the states of the VIF and VIP flags are not modified in real-address mode or
during transitions between real-address and protected modes.

NOTE
The virtual interrupt mechanism described in this section is also
available for use in protected mode, see Section 20.4, “Protected-
Mode Virtual Interrupts”.

20.3.3 Class 3—Software Interrupt Handling in Virtual-8086 Mode
When the processor receives a software interrupt (an interrupt generated with the
INT n instruction) while in virtual-8086 mode, it can use any of six different methods
to handle the interrupt. The method selected depends on the settings of the VME flag
in control register CR4, the IOPL field in the EFLAGS register, and the software inter-
rupt redirection bit map in the TSS. Table 20-2 lists the six methods of handling soft-
ware interrupts in virtual-8086 mode and the respective settings of the VME flag,
IOPL field, and the bits in the interrupt redirection bit map for each method. The table
also summarizes the various actions the processor takes for each method.

The VME flag enables the virtual mode extensions for the Pentium and later IA-32
processors. When this flag is clear, the processor responds to interrupts and excep-
20-24 Vol. 3B

8086 EMULATION
tions in virtual-8086 mode in the same manner as an Intel386 or Intel486 processor
does. When this flag is set, the virtual mode extension provides the following
enhancements to virtual-8086 mode:
• Speeds up the handling of software-generated interrupts in virtual-8086 mode by

allowing the processor to bypass the virtual-8086 monitor and redirect software
interrupts back to the interrupt handlers that are part of the currently running
8086 program.

• Supports virtual interrupts for software written to run on the 8086 processor.

The IOPL value interacts with the VME flag and the bits in the interrupt redirection bit
map to determine how specific software interrupts should be handled.

The software interrupt redirection bit map (see Figure 20-5) is a 32-byte field in the
TSS. This map is located directly below the I/O permission bit map in the TSS. Each
bit in the interrupt redirection bit map is mapped to an interrupt vector. Bit 0 in the
interrupt redirection bit map (which maps to vector zero in the interrupt table) is
located at the I/O base map address in the TSS minus 32 bytes. When a bit in this bit
map is set, it indicates that the associated software interrupt (interrupt generated
with an INT n instruction) should be handled through the protected-mode IDT and
interrupt and exception handlers. When a bit in this bit map is clear, the processor
redirects the associated software interrupt back to the interrupt table in the 8086
program (located at linear address 0 in the program’s address space).

NOTE
The software interrupt redirection bit map does not affect hardware
generated interrupts and exceptions. Hardware generated interrupts
and exceptions are always handled by the protected-mode interrupt
and exception handlers.
Vol. 3B 20-25

8086 EMULATION
Table 20-2. Software Interrupt Handling Methods While in Virtual-8086 Mode

Method VME IOPL

Bit in
Redir.

Bitmap* Processor Action

1 0 3 X Interrupt directed to a protected-mode interrupt handler:

• Switches to privilege-level 0 stack
• Pushes GS, FS, DS and ES onto privilege-level 0 stack
• Pushes SS, ESP, EFLAGS, CS and EIP of interrupted task onto

privilege-level 0 stack
• Clears VM, RF, NT, and TF flags
• If serviced through interrupt gate, clears IF flag
• Clears GS, FS, DS and ES to 0
• Sets CS and EIP from interrupt gate

2 0 < 3 X Interrupt directed to protected-mode general-protection
exception (#GP) handler.

3 1 < 3 1 Interrupt directed to a protected-mode general-protection
exception (#GP) handler; VIF and VIP flag support for handling
class 2 maskable hardware interrupts.

4 1 3 1 Interrupt directed to protected-mode interrupt handler: (see
method 1 processor action).

5 1 3 0 Interrupt redirected to 8086 program interrupt handler:

• Pushes EFLAGS
• Pushes CS and EIP (lower 16 bits only)
• Clears IF flag
• Clears TF flag
• Loads CS and EIP (lower 16 bits only) from selected entry in

the interrupt vector table of the current virtual-8086 task

6 1 < 3 0 Interrupt redirected to 8086 program interrupt handler; VIF and
VIP flag support for handling class 2 maskable hardware
interrupts:

• Pushes EFLAGS with IOPL set to 3 and VIF copied to IF
• Pushes CS and EIP (lower 16 bits only)
• Clears the VIF flag
• Clears TF flag
• Loads CS and EIP (lower 16 bits only) from selected entry in

the interrupt vector table of the current virtual-8086 task

NOTE:
* When set to 0, software interrupt is redirected back to the 8086 program interrupt handler;

when set to 1, interrupt is directed to protected-mode handler.
20-26 Vol. 3B

8086 EMULATION
Redirecting software interrupts back to the 8086 program potentially speeds up
interrupt handling because a switch back and forth between virtual-8086 mode and
protected mode is not required. This latter interrupt-handling technique is particu-
larly useful for 8086 operating systems (such as MS-DOS) that use the INT n instruc-
tion to call operating system procedures.

The CPUID instruction can be used to verify that the virtual mode extension is imple-
mented on the processor. Bit 1 of the feature flags register (EDX) indicates the avail-
ability of the virtual mode extension (see “CPUID—CPU Identification” in Chapter 3,
“Instruction Set Reference, A-L”, of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2A).

The following sections describe the six methods (or mechanisms) for handling soft-
ware interrupts in virtual-8086 mode. See Section 20.3.2, “Class 2—Maskable Hard-
ware Interrupt Handling in Virtual-8086 Mode Using the Virtual Interrupt
Mechanism”, for a description of the use of the VIF and VIP flags in the EFLAGS
register for handling maskable hardware interrupts.

20.3.3.1 Method 1: Software Interrupt Handling
When the VME flag in control register CR4 is clear and the IOPL field is 3, a Pentium
or later IA-32 processor handles software interrupts in the same manner as they are
handled by an Intel386 or Intel486 processor. It executes an implicit call to the inter-

Figure 20-5. Software Interrupt Redirection Bit Map in TSS

I/O Map Base

Task-State Segment (TSS)

64H

31 24 23 0

1 1111111

I/O Permission Bit Map

0

I/O map
base must
not exceed
DFFFH.

Last byte of
bit

map must be

Software Interrupt Redirection Bit Map (32 Bytes)
Vol. 3B 20-27

8086 EMULATION
rupt handler in the protected-mode IDT pointed to by the interrupt vector. See
Section 20.3.1, “Class 1—Hardware Interrupt and Exception Handling in Virtual-8086
Mode”, for a complete description of this mechanism and its possible uses.

20.3.3.2 Methods 2 and 3: Software Interrupt Handling
When a software interrupt occurs in virtual-8086 mode and the method 2 or 3 condi-
tions are present, the processor generates a general-protection exception (#GP).
Method 2 is enabled when the VME flag is set to 0 and the IOPL value is less than 3.
Here the IOPL value is used to bypass the protected-mode interrupt handlers and
cause any software interrupt that occurs in virtual-8086 mode to be treated as a
protected-mode general-protection exception (#GP). The general-protection excep-
tion handler calls the virtual-8086 monitor, which can then emulate an 8086-
program interrupt handler or pass control back to the 8086 program’s handler, as
described in Section 20.3.1.2, “Handling an Interrupt or Exception With an 8086
Program Interrupt or Exception Handler”.

Method 3 is enabled when the VME flag is set to 1, the IOPL value is less than 3, and
the corresponding bit for the software interrupt in the software interrupt redirection
bit map is set to 1. Here, the processor performs the same operation as it does for
method 2 software interrupt handling. If the corresponding bit for the software inter-
rupt in the software interrupt redirection bit map is set to 0, the interrupt is handled
using method 6 (see Section 20.3.3.5, “Method 6: Software Interrupt Handling”).

20.3.3.3 Method 4: Software Interrupt Handling
Method 4 handling is enabled when the VME flag is set to 1, the IOPL value is 3, and
the bit for the interrupt vector in the redirection bit map is set to 1. Method 4 soft-
ware interrupt handling allows method 1 style handling when the virtual mode exten-
sion is enabled; that is, the interrupt is directed to a protected-mode handler (see
Section 20.3.3.1, “Method 1: Software Interrupt Handling”).

20.3.3.4 Method 5: Software Interrupt Handling
Method 5 software interrupt handling provides a streamlined method of redirecting
software interrupts (invoked with the INT n instruction) that occur in virtual 8086
mode back to the 8086 program’s interrupt vector table and its interrupt handlers.
Method 5 handling is enabled when the VME flag is set to 1, the IOPL value is 3, and
the bit for the interrupt vector in the redirection bit map is set to 0. The processor
performs the following actions to make an implicit call to the selected 8086 program
interrupt handler:

1. Pushes the low-order 16 bits of the EFLAGS register onto the stack.

2. Pushes the current values of the CS and EIP registers onto the current stack.
(Only the 16 least-significant bits of the EIP register are pushed and no stack
switch occurs.)
20-28 Vol. 3B

8086 EMULATION
3. Clears the IF flag in the EFLAGS register to disable interrupts.

4. Clears the TF flag, in the EFLAGS register.

5. Locates the 8086 program interrupt vector table at linear address 0 for the 8086-
mode task.

6. Loads the CS and EIP registers with values from the interrupt vector table entry
pointed to by the interrupt vector number. Only the 16 low-order bits of the EIP
are loaded and the 16 high-order bits are set to 0. The interrupt vector table is
assumed to be at linear address 0 of the current virtual-8086 task.

7. Begins executing the selected interrupt handler.

An IRET instruction at the end of the handler procedure reverses these steps to
return program control to the interrupted 8086 program.

Note that with method 5 handling, a mode switch from virtual-8086 mode to
protected mode does not occur. The processor remains in virtual-8086 mode
throughout the interrupt-handling operation.

The method 5 handling actions are virtually identical to the actions the processor
takes when handling software interrupts in real-address mode. The benefit of using
method 5 handling to access the 8086 program handlers is that it avoids the over-
head of methods 2 and 3 handling, which requires first going to the virtual-8086
monitor, then to the 8086 program handler, then back again to the virtual-8086
monitor, before returning to the interrupted 8086 program (see Section 20.3.1.2,
“Handling an Interrupt or Exception With an 8086 Program Interrupt or Exception
Handler”).

NOTE
Methods 1 and 4 handling can handle a software interrupt in a virtual-
8086 task with a regular protected-mode handler, but this approach
requires all virtual-8086 tasks to use the same software interrupt
handlers, which generally does not give sufficient latitude to the
programs running in the virtual-8086 tasks, particularly MS-DOS
programs.

20.3.3.5 Method 6: Software Interrupt Handling
Method 6 handling is enabled when the VME flag is set to 1, the IOPL value is less
than 3, and the bit for the interrupt or exception vector in the redirection bit map is
set to 0. With method 6 interrupt handling, software interrupts are handled in the
same manner as was described for method 5 handling (see Section 20.3.3.4,
“Method 5: Software Interrupt Handling”).

Method 6 differs from method 5 in that with the IOPL value set to less than 3, the VIF
and VIP flags in the EFLAGS register are enabled, providing virtual interrupt support
for handling class 2 maskable hardware interrupts (see Section 20.3.2, “Class
2—Maskable Hardware Interrupt Handling in Virtual-8086 Mode Using the Virtual
Interrupt Mechanism”). These flags provide the virtual-8086 monitor with an effi-
Vol. 3B 20-29

8086 EMULATION
cient means of handling maskable hardware interrupts that occur during a virtual-
8086 mode task. Also, because the IOPL value is less than 3 and the VIF flag is
enabled, the information pushed on the stack by the processor when invoking the
interrupt handler is slightly different between methods 5 and 6 (see Table 20-2).

20.4 PROTECTED-MODE VIRTUAL INTERRUPTS
The IA-32 processors (beginning with the Pentium processor) also support the VIF
and VIP flags in the EFLAGS register in protected mode by setting the PVI (protected-
mode virtual interrupt) flag in the CR4 register. Setting the PVI flag allows applica-
tions running at privilege level 3 to execute the CLI and STI instructions without
causing a general-protection exception (#GP) or affecting hardware interrupts.

When the PVI flag is set to 1, the CPL is 3, and the IOPL is less than 3, the STI and
CLI instructions set and clear the VIF flag in the EFLAGS register, leaving IF unaf-
fected. In this mode of operation, an application running in protected mode and at a
CPL of 3 can inhibit interrupts in the same manner as is described in Section 20.3.2,
“Class 2—Maskable Hardware Interrupt Handling in Virtual-8086 Mode Using the
Virtual Interrupt Mechanism”, for a virtual-8086 mode task. When the application
executes the CLI instruction, the processor clears the VIF flag. If the processor
receives a maskable hardware interrupt, the processor invokes the protected-mode
interrupt handler. This handler checks the state of the VIF flag in the EFLAGS register.
If the VIF flag is clear (indicating that the active task does not want to have interrupts
handled now), the handler sets the VIP flag in the EFLAGS image on the stack and
returns to the privilege-level 3 application, which continues program execution.
When the application executes a STI instruction to set the VIF flag, the processor
automatically invokes the general-protection exception handler, which can then
handle the pending interrupt. After handing the pending interrupt, the handler typi-
cally sets the VIF flag and clears the VIP flag in the EFLAGS image on the stack and
executes a return to the application program. The next time the processor receives a
maskable hardware interrupt, the processor will handle it in the normal manner for
interrupts received while the processor is operating at a CPL of 3.

As with the virtual mode extension (enabled with the VME flag in the CR4 register),
the protected-mode virtual interrupt extension only affects maskable hardware
interrupts (interrupt vectors 32 through 255). NMI interrupts and exceptions are
handled in the normal manner.

When protected-mode virtual interrupts are disabled (that is, when the PVI flag in
control register CR4 is set to 0, the CPL is less than 3, or the IOPL value is 3), then
the CLI and STI instructions execute in a manner compatible with the Intel486
processor. That is, if the CPL is greater (less privileged) than the I/O privilege level
(IOPL), a general-protection exception occurs. If the IOPL value is 3, CLI and STI
clear or set the IF flag, respectively.

PUSHF, POPF, IRET and INT are executed like in the Intel486 processor, regardless of
whether protected-mode virtual interrupts are enabled.
20-30 Vol. 3B

8086 EMULATION
It is only possible to enter virtual-8086 mode through a task switch or the execution
of an IRET instruction, and it is only possible to leave virtual-8086 mode by faulting
to a protected-mode interrupt handler (typically the general-protection exception
handler, which in turn calls the virtual 8086-mode monitor). In both cases, the
EFLAGS register is saved and restored. This is not true, however, in protected mode
when the PVI flag is set and the processor is not in virtual-8086 mode. Here, it is
possible to call a procedure at a different privilege level, in which case the EFLAGS
register is not saved or modified. However, the states of VIF and VIP flags are never
examined by the processor when the CPL is not 3.
Vol. 3B 20-31

CHAPTER 21
MIXING 16-BIT AND 32-BIT CODE

Program modules written to run on IA-32 processors can be either 16-bit modules or
32-bit modules. Table 21-1 shows the characteristic of 16-bit and 32-bit modules.

The IA-32 processors function most efficiently when executing 32-bit program
modules. They can, however, also execute 16-bit program modules, in any of the
following ways:
• In real-address mode.
• In virtual-8086 mode.
• System management mode (SMM).
• As a protected-mode task, when the code, data, and stack segments for the task

are all configured as a 16-bit segments.
• By integrating 16-bit and 32-bit segments into a single protected-mode task.
• By integrating 16-bit operations into 32-bit code segments.

Real-address mode, virtual-8086 mode, and SMM are native 16-bit modes. A legacy
program assembled and/or compiled to run on an Intel 8086 or Intel 286 processor
should run in real-address mode or virtual-8086 mode without modification. Sixteen-
bit program modules can also be written to run in real-address mode for handling
system initialization or to run in SMM for handling system management functions.
See Chapter 20, “8086 Emulation,” for detailed information on real-address mode
and virtual-8086 mode; see Chapter 33, “System Management Mode,” for informa-
tion on SMM.

This chapter describes how to integrate 16-bit program modules with 32-bit program
modules when operating in protected mode and how to mix 16-bit and 32-bit code
within 32-bit code segments.

Table 21-1. Characteristics of 16-Bit and 32-Bit Program Modules

Characteristic 16-Bit Program Modules 32-Bit Program Modules

Segment Size 0 to 64 KBytes 0 to 4 GBytes

Operand Sizes 8 bits and 16 bits 8 bits and 32 bits

Pointer Offset Size (Address
Size)

16 bits 32 bits

Stack Pointer Size 16 Bits 32 Bits

Control Transfers Allowed to
Code Segments of This Size

16 Bits 32 Bits
Vol. 3B 21-1

MIXING 16-BIT AND 32-BIT CODE
21.1 DEFINING 16-BIT AND 32-BIT PROGRAM MODULES
The following IA-32 architecture mechanisms are used to distinguish between and
support 16-bit and 32-bit segments and operations:
• The D (default operand and address size) flag in code-segment descriptors.
• The B (default stack size) flag in stack-segment descriptors.
• 16-bit and 32-bit call gates, interrupt gates, and trap gates.
• Operand-size and address-size instruction prefixes.
• 16-bit and 32-bit general-purpose registers.

The D flag in a code-segment descriptor determines the default operand-size and
address-size for the instructions of a code segment. (In real-address mode and
virtual-8086 mode, which do not use segment descriptors, the default is 16 bits.) A
code segment with its D flag set is a 32-bit segment; a code segment with its D flag
clear is a 16-bit segment.

The B flag in the stack-segment descriptor specifies the size of stack pointer (the
32-bit ESP register or the 16-bit SP register) used by the processor for implicit stack
references. The B flag for all data descriptors also controls upper address range for
expand down segments.

When transferring program control to another code segment through a call gate,
interrupt gate, or trap gate, the operand size used during the transfer is determined
by the type of gate used (16-bit or 32-bit), (not by the D-flag or prefix of the transfer
instruction). The gate type determines how return information is saved on the stack
(or stacks).

For most efficient and trouble-free operation of the processor, 32-bit programs or
tasks should have the D flag in the code-segment descriptor and the B flag in the
stack-segment descriptor set, and 16-bit programs or tasks should have these flags
clear. Program control transfers from 16-bit segments to 32-bit segments (and vice
versa) are handled most efficiently through call, interrupt, or trap gates.

Instruction prefixes can be used to override the default operand size and address size
of a code segment. These prefixes can be used in real-address mode as well as in
protected mode and virtual-8086 mode. An operand-size or address-size prefix only
changes the size for the duration of the instruction.

21.2 MIXING 16-BIT AND 32-BIT OPERATIONS WITHIN A
CODE SEGMENT

The following two instruction prefixes allow mixing of 32-bit and 16-bit operations
within one segment:
• The operand-size prefix (66H)
• The address-size prefix (67H)
21-2 Vol. 3B

MIXING 16-BIT AND 32-BIT CODE
These prefixes reverse the default size selected by the D flag in the code-segment
descriptor. For example, the processor can interpret the (MOV mem, reg) instruction
in any of four ways:
• In a 32-bit code segment:

— Moves 32 bits from a 32-bit register to memory using a 32-bit effective
address.

— If preceded by an operand-size prefix, moves 16 bits from a 16-bit register to
memory using a 32-bit effective address.

— If preceded by an address-size prefix, moves 32 bits from a 32-bit register to
memory using a 16-bit effective address.

— If preceded by both an address-size prefix and an operand-size prefix, moves
16 bits from a 16-bit register to memory using a 16-bit effective address.

• In a 16-bit code segment:

— Moves 16 bits from a 16-bit register to memory using a 16-bit effective
address.

— If preceded by an operand-size prefix, moves 32 bits from a 32-bit register to
memory using a 16-bit effective address.

— If preceded by an address-size prefix, moves 16 bits from a 16-bit register to
memory using a 32-bit effective address.

— If preceded by both an address-size prefix and an operand-size prefix, moves
32 bits from a 32-bit register to memory using a 32-bit effective address.

The previous examples show that any instruction can generate any combination of
operand size and address size regardless of whether the instruction is in a 16- or
32-bit segment. The choice of the 16- or 32-bit default for a code segment is
normally based on the following criteria:
• Performance — Always use 32-bit code segments when possible. They run

much faster than 16-bit code segments on P6 family processors, and somewhat
faster on earlier IA-32 processors.

• The operating system the code segment will be running on — If the
operating system is a 16-bit operating system, it may not support 32-bit program
modules.

• Mode of operation — If the code segment is being designed to run in real-
address mode, virtual-8086 mode, or SMM, it must be a 16-bit code segment.

• Backward compatibility to earlier IA-32 processors — If a code segment
must be able to run on an Intel 8086 or Intel 286 processor, it must be a 16-bit
code segment.
Vol. 3B 21-3

MIXING 16-BIT AND 32-BIT CODE
21.3 SHARING DATA AMONG MIXED-SIZE CODE
SEGMENTS

Data segments can be accessed from both 16-bit and 32-bit code segments. When a
data segment that is larger than 64 KBytes is to be shared among 16- and 32-bit
code segments, the data that is to be accessed from the 16-bit code segments must
be located within the first 64 KBytes of the data segment. The reason for this is that
16-bit pointers by definition can only point to the first 64 KBytes of a segment.

A stack that spans less than 64 KBytes can be shared by both 16- and 32-bit code
segments. This class of stacks includes:
• Stacks in expand-up segments with the G (granularity) and B (big) flags in the

stack-segment descriptor clear.
• Stacks in expand-down segments with the G and B flags clear.
• Stacks in expand-up segments with the G flag set and the B flag clear and where

the stack is contained completely within the lower 64 KBytes. (Offsets greater
than FFFFH can be used for data, other than the stack, which is not shared.)

See Section 3.4.5, “Segment Descriptors,” for a description of the G and B flags and
the expand-down stack type.

The B flag cannot, in general, be used to change the size of stack used by a 16-bit
code segment. This flag controls the size of the stack pointer only for implicit stack
references such as those caused by interrupts, exceptions, and the PUSH, POP, CALL,
and RET instructions. It does not control explicit stack references, such as accesses
to parameters or local variables. A 16-bit code segment can use a 32-bit stack only if
the code is modified so that all explicit references to the stack are preceded by the
32-bit address-size prefix, causing those references to use 32-bit addressing and
explicit writes to the stack pointer are preceded by a 32-bit operand-size prefix.

In 32-bit, expand-down segments, all offsets may be greater than 64 KBytes; there-
fore, 16-bit code cannot use this kind of stack segment unless the code segment is
modified to use 32-bit addressing.

21.4 TRANSFERRING CONTROL AMONG MIXED-SIZE CODE
SEGMENTS

There are three ways for a procedure in a 16-bit code segment to safely make a call
to a 32-bit code segment:
• Make the call through a 32-bit call gate.
• Make a 16-bit call to a 32-bit interface procedure. The interface procedure then

makes a 32-bit call to the intended destination.
• Modify the 16-bit procedure, inserting an operand-size prefix before the call, to

change it to a 32-bit call.
21-4 Vol. 3B

MIXING 16-BIT AND 32-BIT CODE
Likewise, there are three ways for procedure in a 32-bit code segment to safely make
a call to a 16-bit code segment:
• Make the call through a 16-bit call gate. Here, the EIP value at the CALL

instruction cannot exceed FFFFH.
• Make a 32-bit call to a 16-bit interface procedure. The interface procedure then

makes a 16-bit call to the intended destination.
• Modify the 32-bit procedure, inserting an operand-size prefix before the call,

changing it to a 16-bit call. Be certain that the return offset does not exceed
FFFFH.

These methods of transferring program control overcome the following architectural
limitations imposed on calls between 16-bit and 32-bit code segments:
• Pointers from 16-bit code segments (which by default can only be 16 bits) cannot

be used to address data or code located beyond FFFFH in a 32-bit segment.
• The operand-size attributes for a CALL and its companion RETURN instruction

must be the same to maintain stack coherency. This is also true for implicit calls
to interrupt and exception handlers and their companion IRET instructions.

• A 32-bit parameters (particularly a pointer parameter) greater than FFFFH
cannot be squeezed into a 16-bit parameter location on a stack.

• The size of the stack pointer (SP or ESP) changes when switching between 16-bit
and 32-bit code segments.

These limitations are discussed in greater detail in the following sections.

21.4.1 Code-Segment Pointer Size
For control-transfer instructions that use a pointer to identify the next instruction
(that is, those that do not use gates), the operand-size attribute determines the size
of the offset portion of the pointer. The implications of this rule are as follows:
• A JMP, CALL, or RET instruction from a 32-bit segment to a 16-bit segment is

always possible using a 32-bit operand size, providing the 32-bit pointer does not
exceed FFFFH.

• A JMP, CALL, or RET instruction from a 16-bit segment to a 32-bit segment
cannot address a destination greater than FFFFH, unless the instruction is given
an operand-size prefix.

See Section 21.4.5, “Writing Interface Procedures,” for an interface procedure that
can transfer program control from 16-bit segments to destinations in 32-bit
segments beyond FFFFH.

21.4.2 Stack Management for Control Transfer
Because the stack is managed differently for 16-bit procedure calls than for 32-bit
calls, the operand-size attribute of the RET instruction must match that of the CALL
Vol. 3B 21-5

MIXING 16-BIT AND 32-BIT CODE
instruction (see Figure 21-1). On a 16-bit call, the processor pushes the contents of
the 16-bit IP register and (for calls between privilege levels) the 16-bit SP register.
The matching RET instruction must also use a 16-bit operand size to pop these 16-bit
values from the stack into the 16-bit registers.

A 32-bit CALL instruction pushes the contents of the 32-bit EIP register and (for
inter-privilege-level calls) the 32-bit ESP register. Here, the matching RET instruction
must use a 32-bit operand size to pop these 32-bit values from the stack into the
32-bit registers. If the two parts of a CALL/RET instruction pair do not have matching
operand sizes, the stack will not be managed correctly and the values of the instruc-
tion pointer and stack pointer will not be restored to correct values.

Figure 21-1. Stack after Far 16- and 32-Bit Calls

SP

After 16-bit Call

PARM 1

IP SP

SS

PARM 2

CS

031

SS

EIP

After 32-bit Call

CS

ESP

ESP

PARM 2

PARM 1

031

With Privilege Transition

Stack
Growth

After 16-bit Call

PARM 1

IP SP

PARM 2

CS

031

Without Privilege Transition

Stack
Growth

After 32-bit Call

PARM 1

ESP

PARM 2

CS

031

EIP

Undefined
21-6 Vol. 3B

MIXING 16-BIT AND 32-BIT CODE
While executing 32-bit code, if a call is made to a 16-bit code segment which is at the
same or a more privileged level (that is, the DPL of the called code segment is less
than or equal to the CPL of the calling code segment) through a 16-bit call gate, then
the upper 16-bits of the ESP register may be unreliable upon returning to the 32-bit
code segment (that is, after executing a RET in the 16-bit code segment).

When the CALL instruction and its matching RET instruction are in code segments
that have D flags with the same values (that is, both are 32-bit code segments or
both are 16-bit code segments), the default settings may be used. When the CALL
instruction and its matching RET instruction are in segments which have different
D-flag settings, an operand-size prefix must be used.

21.4.2.1 Controlling the Operand-Size Attribute For a Call
Three things can determine the operand-size of a call:
• The D flag in the segment descriptor for the calling code segment.
• An operand-size instruction prefix.
• The type of call gate (16-bit or 32-bit), if a call is made through a call gate.

When a call is made with a pointer (rather than a call gate), the D flag for the calling
code segment determines the operand-size for the CALL instruction. This operand-
size attribute can be overridden by prepending an operand-size prefix to the CALL
instruction. So, for example, if the D flag for a code segment is set for 16 bits and the
operand-size prefix is used with a CALL instruction, the processor will cause the infor-
mation stored on the stack to be stored in 32-bit format. If the call is to a 32-bit code
segment, the instructions in that code segment will be able to read the stack coher-
ently. Also, a RET instruction from the 32-bit code segment without an operand-size
prefix will maintain stack coherency with the 16-bit code segment being returned to.

When a CALL instruction references a call-gate descriptor, the type of call is deter-
mined by the type of call gate (16-bit or 32-bit). The offset to the destination in the
code segment being called is taken from the gate descriptor; therefore, if a 32-bit call
gate is used, a procedure in a 16-bit code segment can call a procedure located more
than 64 KBytes from the base of a 32-bit code segment, because a 32-bit call gate
uses a 32-bit offset.

Note that regardless of the operand size of the call and how it is determined, the size
of the stack pointer used (SP or ESP) is always controlled by the B flag in the stack-
segment descriptor currently in use (that is, when B is clear, SP is used, and when B
is set, ESP is used).

An unmodified 16-bit code segment that has run successfully on an 8086 processor
or in real-mode on a later IA-32 architecture processor will have its D flag clear and
will not use operand-size override prefixes. As a result, all CALL instructions in this
code segment will use the 16-bit operand-size attribute. Procedures in these code
Vol. 3B 21-7

MIXING 16-BIT AND 32-BIT CODE
segments can be modified to safely call procedures to 32-bit code segments in either
of two ways:
• Relink the CALL instruction to point to 32-bit call gates (see Section 21.4.2.2,

“Passing Parameters With a Gate”).
• Add a 32-bit operand-size prefix to each CALL instruction.

21.4.2.2 Passing Parameters With a Gate
When referencing 32-bit gates with 16-bit procedures, it is important to consider the
number of parameters passed in each procedure call. The count field of the gate
descriptor specifies the size of the parameter string to copy from the current stack to
the stack of a more privileged (numerically lower privilege level) procedure. The
count field of a 16-bit gate specifies the number of 16-bit words to be copied,
whereas the count field of a 32-bit gate specifies the number of 32-bit doublewords
to be copied. The count field for a 32-bit gate must thus be half the size of the
number of words being placed on the stack by a 16-bit procedure. Also, the 16-bit
procedure must use an even number of words as parameters.

21.4.3 Interrupt Control Transfers
A program-control transfer caused by an exception or interrupt is always carried out
through an interrupt or trap gate (located in the IDT). Here, the type of the gate
(16-bit or 32-bit) determines the operand-size attribute used in the implicit call to
the exception or interrupt handler procedure in another code segment.

A 32-bit interrupt or trap gate provides a safe interface to a 32-bit exception or inter-
rupt handler when the exception or interrupt occurs in either a 32-bit or a 16-bit code
segment. It is sometimes impractical, however, to place exception or interrupt
handlers in 16-bit code segments, because only 16-bit return addresses are saved on
the stack. If an exception or interrupt occurs in a 32-bit code segment when the EIP
was greater than FFFFH, the 16-bit handler procedure cannot provide the correct
return address.

21.4.4 Parameter Translation
When segment offsets or pointers (which contain segment offsets) are passed as
parameters between 16-bit and 32-bit procedures, some translation is required. If a
32-bit procedure passes a pointer to data located beyond 64 KBytes to a 16-bit
procedure, the 16-bit procedure cannot use it. Except for this limitation, interface
code can perform any format conversion between 32-bit and 16-bit pointers that
may be needed.

Parameters passed by value between 32-bit and 16-bit code also may require trans-
lation between 32-bit and 16-bit formats. The form of the translation is application-
dependent.
21-8 Vol. 3B

MIXING 16-BIT AND 32-BIT CODE
21.4.5 Writing Interface Procedures
Placing interface code between 32-bit and 16-bit procedures can be the solution to
the following interface problems:
• Allowing procedures in 16-bit code segments to call procedures with offsets

greater than FFFFH in 32-bit code segments.
• Matching operand-size attributes between companion CALL and RET instructions.
• Translating parameters (data), including managing parameter strings with a

variable count or an odd number of 16-bit words.
• The possible invalidation of the upper bits of the ESP register.

The interface procedure is simplified where these rules are followed.

1. The interface procedure must reside in a 32-bit code segment (the D flag for the
code-segment descriptor is set).

2. All procedures that may be called by 16-bit procedures must have offsets not
greater than FFFFH.

3. All return addresses saved by 16-bit procedures must have offsets not greater
than FFFFH.

The interface procedure becomes more complex if any of these rules are violated. For
example, if a 16-bit procedure calls a 32-bit procedure with an entry point beyond
FFFFH, the interface procedure will need to provide the offset to the entry point. The
mapping between 16- and 32-bit addresses is only performed automatically when a
call gate is used, because the gate descriptor for a call gate contains a 32-bit
address. When a call gate is not used, the interface code must provide the 32-bit
address.

The structure of the interface procedure depends on the types of calls it is going to
support, as follows:
• Calls from 16-bit procedures to 32-bit procedures — Calls to the interface

procedure from a 16-bit code segment are made with 16-bit CALL instructions
(by default, because the D flag for the calling code-segment descriptor is clear),
and 16-bit operand-size prefixes are used with RET instructions to return from
the interface procedure to the calling procedure. Calls from the interface
procedure to 32-bit procedures are performed with 32-bit CALL instructions (by
default, because the D flag for the interface procedure’s code segment is set),
and returns from the called procedures to the interface procedure are performed
with 32-bit RET instructions (also by default).

• Calls from 32-bit procedures to 16-bit procedures — Calls to the interface
procedure from a 32-bit code segment are made with 32-bit CALL instructions
(by default), and returns to the calling procedure from the interface procedure
are made with 32-bit RET instructions (also by default). Calls from the interface
procedure to 16-bit procedures require the CALL instructions to have the
operand-size prefixes, and returns from the called procedures to the interface
procedure are performed with 16-bit RET instructions (by default).
Vol. 3B 21-9

CHAPTER 22
ARCHITECTURE COMPATIBILITY

Intel 64 and IA-32 processors are binary compatible. Compatibility means that,
within limited constraints, programs that execute on previous generations of proces-
sors will produce identical results when executed on later processors. The compati-
bility constraints and any implementation differences between the Intel 64 and IA-32
processors are described in this chapter.

Each new processor has enhanced the software visible architecture from that found
in earlier Intel 64 and IA-32 processors. Those enhancements have been defined
with consideration for compatibility with previous and future processors. This chapter
also summarizes the compatibility considerations for those extensions.

22.1 PROCESSOR FAMILIES AND CATEGORIES
IA-32 processors are referred to in several different ways in this chapter, depending
on the type of compatibility information being related, as described in the following:
• IA-32 Processors — All the Intel processors based on the Intel IA-32 Archi-

tecture, which include the 8086/88, Intel 286, Intel386, Intel486, Pentium,
Pentium Pro, Pentium II, Pentium III, Pentium 4, and Intel Xeon processors.

• 32-bit Processors — All the IA-32 processors that use a 32-bit architecture,
which include the Intel386, Intel486, Pentium, Pentium Pro, Pentium II,
Pentium III, Pentium 4, and Intel Xeon processors.

• 16-bit Processors — All the IA-32 processors that use a 16-bit architecture,
which include the 8086/88 and Intel 286 processors.

• P6 Family Processors — All the IA-32 processors that are based on the P6
microarchitecture, which include the Pentium Pro, Pentium II, and Pentium III
processors.

• Pentium® 4 Processors — A family of IA-32 and Intel 64 processors that are
based on the Intel NetBurst® microarchitecture.

• Intel® Pentium® M Processors — A family of IA-32 processors that are based
on the Intel Pentium M processor microarchitecture.

• Intel® Core™ Duo and Solo Processors — Families of IA-32 processors that
are based on an improved Intel Pentium M processor microarchitecture.

• Intel® Xeon® Processors — A family of IA-32 and Intel 64 processors that are
based on the Intel NetBurst microarchitecture. This family includes the Intel Xeon
processor and the Intel Xeon processor MP based on the Intel NetBurst microar-
chitecture. Intel Xeon processors 3000, 3100, 3200, 3300, 3200, 5100, 5200,
5300, 5400, 7200, 7300 series are based on Intel Core microarchitectures and
support Intel 64 architecture.
Vol. 3B 22-1

ARCHITECTURE COMPATIBILITY
• Pentium® D Processors — A family of dual-core Intel 64 processors that
provides two processor cores in a physical package. Each core is based on the
Intel NetBurst microarchitecture.

• Pentium® Processor Extreme Editions — A family of dual-core Intel 64
processors that provides two processor cores in a physical package. Each core is
based on the Intel NetBurst microarchitecture and supports Intel Hyper-
Threading Technology.

• Intel® Core™ 2 Processor family— A family of Intel 64 processors that are
based on the Intel Core microarchitecture. Intel Pentium Dual-Core processors
are also based on the Intel Core microarchitecture.

• Intel® Atom™ Processors — A family of IA-32 and Intel 64 processors that are
based on the Intel Atom microarchitecture.

22.2 RESERVED BITS
Throughout this manual, certain bits are marked as reserved in many register and
memory layout descriptions. When bits are marked as undefined or reserved, it is
essential for compatibility with future processors that software treat these bits as
having a future, though unknown effect. Software should follow these guidelines in
dealing with reserved bits:
• Do not depend on the states of any reserved bits when testing the values of

registers or memory locations that contain such bits. Mask out the reserved bits
before testing.

• Do not depend on the states of any reserved bits when storing them to memory
or to a register.

• Do not depend on the ability to retain information written into any reserved bits.
• When loading a register, always load the reserved bits with the values indicated

in the documentation, if any, or reload them with values previously read from the
same register.

Software written for existing IA-32 processor that handles reserved bits correctly will
port to future IA-32 processors without generating protection exceptions.

22.3 ENABLING NEW FUNCTIONS AND MODES
Most of the new control functions defined for the P6 family and Pentium processors
are enabled by new mode flags in the control registers (primarily register CR4). This
register is undefined for IA-32 processors earlier than the Pentium processor.
Attempting to access this register with an Intel486 or earlier IA-32 processor results
in an invalid-opcode exception (#UD). Consequently, programs that execute
correctly on the Intel486 or earlier IA-32 processor cannot erroneously enable these
functions. Attempting to set a reserved bit in register CR4 to a value other than its
22-2 Vol. 3B

ARCHITECTURE COMPATIBILITY
original value results in a general-protection exception (#GP). So, programs that
execute on the P6 family and Pentium processors cannot erroneously enable func-
tions that may be implemented in future IA-32 processors.

The P6 family and Pentium processors do not check for attempts to set reserved bits
in model-specific registers; however these bits may be checked on more recent
processors. It is the obligation of the software writer to enforce this discipline. These
reserved bits may be used in future Intel processors.

22.4 DETECTING THE PRESENCE OF NEW FEATURES
THROUGH SOFTWARE

Software can check for the presence of new architectural features and extensions in
either of two ways:

1. Test for the presence of the feature or extension. Software can test for the
presence of new flags in the EFLAGS register and control registers. If these flags
are reserved (meaning not present in the processor executing the test), an
exception is generated. Likewise, software can attempt to execute a new
instruction, which results in an invalid-opcode exception (#UD) being generated
if it is not supported.

2. Execute the CPUID instruction. The CPUID instruction (added to the IA-32 in the
Pentium processor) indicates the presence of new features directly.

See Chapter 14, “Processor Identification and Feature Determination,” in the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for detailed
information on detecting new processor features and extensions.

22.5 INTEL MMX TECHNOLOGY
The Pentium processor with MMX technology introduced the MMX technology and a
set of MMX instructions to the IA-32. The MMX instructions are described in Chapter
9, “Programming with Intel® MMX™ Technology,” in the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 1, and in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volumes 2A, 2B & 2C. The MMX tech-
nology and MMX instructions are also included in the Pentium II, Pentium III, Pentium
4, and Intel Xeon processors.

22.6 STREAMING SIMD EXTENSIONS (SSE)
The Streaming SIMD Extensions (SSE) were introduced in the Pentium III processor.
The SSE extensions consist of a new set of instructions and a new set of registers.
The new registers include the eight 128-bit XMM registers and the 32-bit MXCSR
Vol. 3B 22-3

ARCHITECTURE COMPATIBILITY
control and status register. These instructions and registers are designed to allow
SIMD computations to be made on single-precision floating-point numbers. Several
of these new instructions also operate in the MMX registers. SSE instructions and
registers are described in Section 10, “Programming with Streaming SIMD Exten-
sions (SSE),” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1, and in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volumes 2A, 2B & 2C.

22.7 STREAMING SIMD EXTENSIONS 2 (SSE2)
The Streaming SIMD Extensions 2 (SSE2) were introduced in the Pentium 4 and Intel
Xeon processors. They consist of a new set of instructions that operate on the XMM
and MXCSR registers and perform SIMD operations on double-precision floating-
point values and on integer values. Several of these new instructions also operate in
the MMX registers. SSE2 instructions and registers are described in Chapter 11,
“Programming with Streaming SIMD Extensions 2 (SSE2),” in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 1, and in the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B & 2C.

22.8 STREAMING SIMD EXTENSIONS 3 (SSE3)
The Streaming SIMD Extensions 3 (SSE3) were introduced in Pentium 4 processors
supporting Intel Hyper-Threading Technology and Intel Xeon processors. SSE3
extensions include 13 instructions. Ten of these 13 instructions support the single
instruction multiple data (SIMD) execution model used with SSE/SSE2 extensions.
One SSE3 instruction accelerates x87 style programming for conversion to integer.
The remaining two instructions (MONITOR and MWAIT) accelerate synchronization
of threads. SSE3 instructions are described in Chapter 12, “Programming with SSE3,
SSSE3 and SSE4,” in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1, and in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volumes 2A, 2B & 2C.

22.9 ADDITIONAL STREAMING SIMD EXTENSIONS
The Supplemental Streaming SIMD Extensions 3 (SSSE3) were introduced in the
Intel Core 2 processor and Intel Xeon processor 5100 series. Streaming SIMD Exten-
sions 4 provided 54 new instructions introduced in 45nm Intel Xeon processors and
Intel Core 2 processors. SSSE3, SSE4.1 and SSE4.2 instructions are described in
Chapter 12, “Programming with SSE3, SSSE3 and SSE4,” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1, and in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B & 2C.
22-4 Vol. 3B

ARCHITECTURE COMPATIBILITY
22.10 INTEL HYPER-THREADING TECHNOLOGY
Intel Hyper-Threading Technology provides two logical processors that can execute
two separate code streams (called threads) concurrently by using shared resources
in a single processor core or in a physical package.

This feature was introduced in the Intel Xeon processor MP and later steppings of the
Intel Xeon processor, and Pentium 4 processors supporting Intel Hyper-Threading
Technology. The feature is also found in the Pentium processor Extreme Edition. See
also: Section 8.7, “Intel® Hyper-Threading Technology Architecture.”

Intel Atom processors also support Intel Hyper-Threading Technology.

22.11 MULTI-CORE TECHNOLOGY
The Pentium D processor and Pentium processor Extreme Edition provide two
processor cores in each physical processor package. See also: Section 8.5, “Intel®
Hyper-Threading Technology and Intel® Multi-Core Technology,” and Section 8.8,
“Multi-Core Architecture.” Intel Core 2 Duo, Intel Pentium Dual-Core processors,
Intel Xeon processors 3000, 3100, 5100, 5200 series provide two processor cores in
each physical processor package. Intel Core 2 Extreme, Intel Core 2 Quad proces-
sors, Intel Xeon processors 3200, 3300, 5300, 5400, 7300 series provide two
processor cores in each physical processor package.

22.12 SPECIFIC FEATURES OF DUAL-CORE PROCESSOR
Dual-core processors may have some processor-specific features. Use CPUID feature
flags to detect the availability features. Note the following:
• CPUID Brand String — On Pentium processor Extreme Edition, the process will

report the correct brand string only after the correct microcode updates are
loaded.

• Enhanced Intel SpeedStep Technology — This feature is supported in
Pentium D processor but not in Pentium processor Extreme Edition.

22.13 NEW INSTRUCTIONS IN THE PENTIUM AND LATER
IA-32 PROCESSORS

Table 22-1 identifies the instructions introduced into the IA-32 in the Pentium
processor and later IA-32 processors.
Vol. 3B 22-5

ARCHITECTURE COMPATIBILITY
22.13.1 Instructions Added Prior to the Pentium Processor
The following instructions were added in the Intel486 processor:
• BSWAP (byte swap) instruction.
• XADD (exchange and add) instruction.
• CMPXCHG (compare and exchange) instruction.
• ΙNVD (invalidate cache) instruction.
• WBINVD (write-back and invalidate cache) instruction.
• INVLPG (invalidate TLB entry) instruction.

The following instructions were added in the Intel386 processor:
• LSS, LFS, and LGS (load SS, FS, and GS registers).
• Long-displacement conditional jumps.

Table 22-1. New Instruction in the Pentium Processor and
Later IA-32 Processors

Instruction CPUID Identification Bits Introduced In

CMOVcc (conditional move) EDX, Bit 15 Pentium Pro processor

FCMOVcc (floating-point conditional
move)

EDX, Bits 0 and 15

FCOMI (floating-point compare and set
EFLAGS)

EDX, Bits 0 and 15

RDPMC (read performance monitoring
counters)

EAX, Bits 8-11, set to 6H;
see Note 1

UD2 (undefined) EAX, Bits 8-11, set to 6H

CMPXCHG8B (compare and exchange 8
bytes)

EDX, Bit 8 Pentium processor

CPUID (CPU identification) None; see Note 2

RDTSC (read time-stamp counter) EDX, Bit 4

RDMSR (read model-specific register) EDX, Bit 5

WRMSR (write model-specific register) EDX, Bit 5

MMX Instructions EDX, Bit 23

NOTES:
1. The RDPMC instruction was introduced in the P6 family of processors and added to later model

Pentium processors. This instruction is model specific in nature and not architectural.
2. The CPUID instruction is available in all Pentium and P6 family processors and in later models of

the Intel486 processors. The ability to set and clear the ID flag (bit 21) in the EFLAGS register
indicates the availability of the CPUID instruction.
22-6 Vol. 3B

ARCHITECTURE COMPATIBILITY
• Single-bit instructions.
• Bit scan instructions.
• Double-shift instructions.
• Byte set on condition instruction.
• Move with sign/zero extension.
• Generalized multiply instruction.
• MOV to and from control registers.
• MOV to and from test registers (now obsolete).
• MOV to and from debug registers.
• RSM (resume from SMM). This instruction was introduced in the Intel386 SL and

Intel486 SL processors.

The following instructions were added in the Intel 387 math coprocessor:
• FPREM1.
• FUCOM, FUCOMP, and FUCOMPP.

22.14 OBSOLETE INSTRUCTIONS
The MOV to and from test registers instructions were removed from the Pentium
processor and future IA-32 processors. Execution of these instructions generates an
invalid-opcode exception (#UD).

22.15 UNDEFINED OPCODES
All new instructions defined for IA-32 processors use binary encodings that were
reserved on earlier-generation processors. Attempting to execute a reserved opcode
always results in an invalid-opcode (#UD) exception being generated. Consequently,
programs that execute correctly on earlier-generation processors cannot erroneously
execute these instructions and thereby produce unexpected results when executed
on later IA-32 processors.

22.16 NEW FLAGS IN THE EFLAGS REGISTER
The section titled “EFLAGS Register” in Chapter 3, “Basic Execution Environment,” of
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1,
shows the configuration of flags in the EFLAGS register for the P6 family processors.
No new flags have been added to this register in the P6 family processors. The flags
added to this register in the Pentium and Intel486 processors are described in the
following sections.
Vol. 3B 22-7

ARCHITECTURE COMPATIBILITY
The following flags were added to the EFLAGS register in the Pentium processor:
• VIF (virtual interrupt flag), bit 19.
• VIP (virtual interrupt pending), bit 20.
• ID (identification flag), bit 21.

The AC flag (bit 18) was added to the EFLAGS register in the Intel486 processor.

22.16.1 Using EFLAGS Flags to Distinguish Between 32-Bit IA-32
Processors

The following bits in the EFLAGS register that can be used to differentiate between
the 32-bit IA-32 processors:
• Bit 18 (the AC flag) can be used to distinguish an Intel386 processor from the P6

family, Pentium, and Intel486 processors. Since it is not implemented on the
Intel386 processor, it will always be clear.

• Bit 21 (the ID flag) indicates whether an application can execute the CPUID
instruction. The ability to set and clear this bit indicates that the processor is a P6
family or Pentium processor. The CPUID instruction can then be used to
determine which processor.

• Bits 19 (the VIF flag) and 20 (the VIP flag) will always be zero on processors that
do not support virtual mode extensions, which includes all 32-bit processors prior
to the Pentium processor.

See Chapter 14, “Processor Identification and Feature Determination,” in the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for more infor-
mation on identifying processors.

22.17 STACK OPERATIONS
This section identifies the differences in stack implementation between the various
IA-32 processors.

22.17.1 PUSH SP
The P6 family, Pentium, Intel486, Intel386, and Intel 286 processors push a different
value on the stack for a PUSH SP instruction than the 8086 processor. The 32-bit
processors push the value of the SP register before it is decremented as part of the
push operation; the 8086 processor pushes the value of the SP register after it is
decremented. If the value pushed is important, replace PUSH SP instructions with the
following three instructions:

PUSH BP
MOV BP, SP
22-8 Vol. 3B

ARCHITECTURE COMPATIBILITY
XCHG BP, [BP]

This code functions as the 8086 processor PUSH SP instruction on the P6 family,
Pentium, Intel486, Intel386, and Intel 286 processors.

22.17.2 EFLAGS Pushed on the Stack
The setting of the stored values of bits 12 through 15 (which includes the IOPL field
and the NT flag) in the EFLAGS register by the PUSHF instruction, by interrupts, and
by exceptions is different with the 32-bit IA-32 processors than with the 8086 and
Intel 286 processors. The differences are as follows:
• 8086 processor—bits 12 through 15 are always set.
• Intel 286 processor—bits 12 through 15 are always cleared in real-address mode.
• 32-bit processors in real-address mode—bit 15 (reserved) is always cleared, and

bits 12 through 14 have the last value loaded into them.

22.18 X87 FPU
This section addresses the issues that must be faced when porting floating-point
software designed to run on earlier IA-32 processors and math coprocessors to a
Pentium 4, Intel Xeon, P6 family, or Pentium processor with integrated x87 FPU. To
software, a Pentium 4, Intel Xeon, or P6 family processor looks very much like a
Pentium processor. Floating-point software which runs on a Pentium or Intel486 DX
processor, or on an Intel486 SX processor/Intel 487 SX math coprocessor system or
an Intel386 processor/Intel 387 math coprocessor system, will run with at most
minor modifications on a Pentium 4, Intel Xeon, or P6 family processor. To port code
directly from an Intel 286 processor/Intel 287 math coprocessor system or an
Intel 8086 processor/8087 math coprocessor system to a Pentium 4, Intel Xeon, P6
family, or Pentium processor, certain additional issues must be addressed.

In the following sections, the term “32-bit x87 FPUs” refers to the P6 family, Pentium,
and Intel486 DX processors, and to the Intel 487 SX and Intel 387 math coproces-
sors; the term “16-bit IA-32 math coprocessors” refers to the Intel 287 and 8087
math coprocessors.

22.18.1 Control Register CR0 Flags
The ET, NE, and MP flags in control register CR0 control the interface between the
integer unit of an IA-32 processor and either its internal x87 FPU or an external math
coprocessor. The effect of these flags in the various IA-32 processors are described in
the following paragraphs.

The ET (extension type) flag (bit 4 of the CR0 register) is used in the Intel386
processor to indicate whether the math coprocessor in the system is an Intel 287
Vol. 3B 22-9

ARCHITECTURE COMPATIBILITY
math coprocessor (flag is clear) or an Intel 387 DX math coprocessor (flag is set).
This bit is hardwired to 1 in the P6 family, Pentium, and Intel486 processors.

The NE (Numeric Exception) flag (bit 5 of the CR0 register) is used in the P6 family,
Pentium, and Intel486 processors to determine whether unmasked floating-point
exceptions are reported internally through interrupt vector 16 (flag is set) or exter-
nally through an external interrupt (flag is clear). On a hardware reset, the NE flag is
initialized to 0, so software using the automatic internal error-reporting mechanism
must set this flag to 1. This flag is nonexistent on the Intel386 processor.

As on the Intel 286 and Intel386 processors, the MP (monitor coprocessor) flag (bit 1
of register CR0) determines whether the WAIT/FWAIT instructions or waiting-type
floating-point instructions trap when the context of the x87 FPU is different from that
of the currently-executing task. If the MP and TS flag are set, then a WAIT/FWAIT
instruction and waiting instructions will cause a device-not-available exception
(interrupt vector 7). The MP flag is used on the Intel 286 and Intel386 processors to
support the use of a WAIT/FWAIT instruction to wait on a device other than a math
coprocessor. The device reports its status through the BUSY# pin. Since the P6
family, Pentium, and Intel486 processors do not have such a pin, the MP flag has no
relevant use and should be set to 1 for normal operation.

22.18.2 x87 FPU Status Word
This section identifies differences to the x87 FPU status word for the different IA-32
processors and math coprocessors, the reason for the differences, and their impact
on software.

22.18.2.1 Condition Code Flags (C0 through C3)
The following information pertains to differences in the use of the condition code
flags (C0 through C3) located in bits 8, 9, 10, and 14 of the x87 FPU status word.

After execution of an FINIT instruction or a hardware reset on a 32-bit x87 FPU, the
condition code flags are set to 0. The same operations on a 16-bit IA-32 math copro-
cessor leave these flags intact (they contain their prior value). This difference in
operation has no impact on software and provides a consistent state after reset.

Transcendental instruction results in the core range of the P6 family and Pentium
processors may differ from the Intel486 DX processor and Intel 487 SX math copro-
cessor by 2 to 3 units in the last place (ulps)—(see “Transcendental Instruction Accu-
racy” in Chapter 8, “Programming with the x87 FPU,” of the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1). As a result, the value saved
in the C1 flag may also differ.

After an incomplete FPREM/FPREM1 instruction, the C0, C1, and C3 flags are set to 0
on the 32-bit x87 FPUs. After the same operation on a 16-bit IA-32 math copro-
cessor, these flags are left intact.
22-10 Vol. 3B

ARCHITECTURE COMPATIBILITY
On the 32-bit x87 FPUs, the C2 flag serves as an incomplete flag for the FTAN instruc-
tion. On the 16-bit IA-32 math coprocessors, the C2 flag is undefined for the FPTAN
instruction. This difference has no impact on software, because Intel 287 or 8087
programs do not check C2 after an FPTAN instruction. The use of this flag on later
processors allows fast checking of operand range.

22.18.2.2 Stack Fault Flag
When unmasked stack overflow or underflow occurs on a 32-bit x87 FPU, the IE flag
(bit 0) and the SF flag (bit 6) of the x87 FPU status word are set to indicate a stack
fault and condition code flag C1 is set or cleared to indicate overflow or underflow,
respectively. When unmasked stack overflow or underflow occurs on a 16-bit IA-32
math coprocessor, only the IE flag is set. Bit 6 is reserved on these processors. The
addition of the SF flag on a 32-bit x87 FPU has no impact on software. Existing excep-
tion handlers need not change, but may be upgraded to take advantage of the addi-
tional information.

22.18.3 x87 FPU Control Word
Only affine closure is supported for infinity control on a 32-bit x87 FPU. The infinity
control flag (bit 12 of the x87 FPU control word) remains programmable on these
processors, but has no effect. This change was made to conform to the IEEE Stan-
dard 754 for Binary Floating-Point Arithmetic. On a 16-bit IA-32 math coprocessor,
both affine and projective closures are supported, as determined by the setting of bit
12. After a hardware reset, the default value of bit 12 is projective. Software that
requires projective infinity arithmetic may give different results.

22.18.4 x87 FPU Tag Word
When loading the tag word of a 32-bit x87 FPU, using an FLDENV, FRSTOR, or
FXRSTOR (Pentium III processor only) instruction, the processor examines the
incoming tag and classifies the location only as empty or non-empty. Thus, tag
values of 00, 01, and 10 are interpreted by the processor to indicate a non-empty
location. The tag value of 11 is interpreted by the processor to indicate an empty
location. Subsequent operations on a non-empty register always examine the value
in the register, not the value in its tag. The FSTENV, FSAVE, and FXSAVE (Pentium III
processor only) instructions examine the non-empty registers and put the correct
values in the tags before storing the tag word.

The corresponding tag for a 16-bit IA-32 math coprocessor is checked before each
register access to determine the class of operand in the register; the tag is updated
after every change to a register so that the tag always reflects the most recent status
of the register. Software can load a tag with a value that disagrees with the contents
of a register (for example, the register contains a valid value, but the tag says
special). Here, the 16-bit IA-32 math coprocessors honor the tag and do not examine
the register.
Vol. 3B 22-11

ARCHITECTURE COMPATIBILITY
Software written to run on a 16-bit IA-32 math coprocessor may not operate
correctly on a 16-bit x87 FPU, if it uses the FLDENV, FRSTOR, or FXRSTOR instruc-
tions to change tags to values (other than to empty) that are different from actual
register contents.

The encoding in the tag word for the 32-bit x87 FPUs for unsupported data formats
(including pseudo-zero and unnormal) is special (10B), to comply with IEEE Standard
754. The encoding in the 16-bit IA-32 math coprocessors for pseudo-zero and
unnormal is valid (00B) and the encoding for other unsupported data formats is
special (10B). Code that recognizes the pseudo-zero or unnormal format as valid
must therefore be changed if it is ported to a 32-bit x87 FPU.

22.18.5 Data Types
This section discusses the differences of data types for the various x87 FPUs and
math coprocessors.

22.18.5.1 NaNs
The 32-bit x87 FPUs distinguish between signaling NaNs (SNaNs) and quiet NaNs
(QNaNs). These x87 FPUs only generate QNaNs and normally do not generate an
exception upon encountering a QNaN. An invalid-operation exception (#I) is gener-
ated only upon encountering a SNaN, except for the FCOM, FIST, and FBSTP instruc-
tions, which also generates an invalid-operation exceptions for a QNaNs. This
behavior matches IEEE Standard 754.

The 16-bit IA-32 math coprocessors only generate one kind of NaN (the equivalent of
a QNaN), but the raise an invalid-operation exception upon encountering any kind of
NaN.

When porting software written to run on a 16-bit IA-32 math coprocessor to a 32-bit
x87 FPU, uninitialized memory locations that contain QNaNs should be changed to
SNaNs to cause the x87 FPU or math coprocessor to fault when uninitialized memory
locations are referenced.

22.18.5.2 Pseudo-zero, Pseudo-NaN, Pseudo-infinity, and Unnormal
Formats

The 32-bit x87 FPUs neither generate nor support the pseudo-zero, pseudo-NaN,
pseudo-infinity, and unnormal formats. Whenever they encounter them in an arith-
metic operation, they raise an invalid-operation exception. The 16-bit IA-32 math
coprocessors define and support special handling for these formats. Support for
these formats was dropped to conform with IEEE Standard 754 for Binary Floating-
Point Arithmetic.

This change should not impact software ported from 16-bit IA-32 math coprocessors
to 32-bit x87 FPUs. The 32-bit x87 FPUs do not generate these formats, and there-
fore will not encounter them unless software explicitly loads them in the data regis-
22-12 Vol. 3B

ARCHITECTURE COMPATIBILITY
ters. The only affect may be in how software handles the tags in the tag word (see
also: Section 22.18.4, “x87 FPU Tag Word”).

22.18.6 Floating-Point Exceptions
This section identifies the implementation differences in exception handling for
floating-point instructions in the various x87 FPUs and math coprocessors.

22.18.6.1 Denormal Operand Exception (#D)
When the denormal operand exception is masked, the 32-bit x87 FPUs automatically
normalize denormalized numbers when possible; whereas, the 16-bit IA-32 math
coprocessors return a denormal result. A program written to run on a 16-bit IA-32
math coprocessor that uses the denormal exception solely to normalize denormal-
ized operands is redundant when run on the 32-bit x87 FPUs. If such a program is run
on 32-bit x87 FPUs, performance can be improved by masking the denormal excep-
tion. Floating-point programs run faster when the FPU performs normalization of
denormalized operands.

The denormal operand exception is not raised for transcendental instructions and the
FXTRACT instruction on the 16-bit IA-32 math coprocessors. This exception is raised
for these instructions on the 32-bit x87 FPUs. The exception handlers ported to these
latter processors need to be changed only if the handlers gives special treatment to
different opcodes.

22.18.6.2 Numeric Overflow Exception (#O)
On the 32-bit x87 FPUs, when the numeric overflow exception is masked and the
rounding mode is set to chop (toward 0), the result is the largest positive or smallest
negative number. The 16-bit IA-32 math coprocessors do not signal the overflow
exception when the masked response is not ∞; that is, they signal overflow only
when the rounding control is not set to round to 0. If rounding is set to chop (toward
0), the result is positive or negative ∞. Under the most common rounding modes, this
difference has no impact on existing software.

If rounding is toward 0 (chop), a program on a 32-bit x87 FPU produces, under over-
flow conditions, a result that is different in the least significant bit of the significand,
compared to the result on a 16-bit IA-32 math coprocessor. The reason for this differ-
ence is IEEE Standard 754 compatibility.

When the overflow exception is not masked, the precision exception is flagged on the
32-bit x87 FPUs. When the result is stored in the stack, the significand is rounded
according to the precision control (PC) field of the FPU control word or according to
the opcode. On the 16-bit IA-32 math coprocessors, the precision exception is not
flagged and the significand is not rounded. The impact on existing software is that if
the result is stored on the stack, a program running on a 32-bit x87 FPU produces a
different result under overflow conditions than on a 16-bit IA-32 math coprocessor.
Vol. 3B 22-13

ARCHITECTURE COMPATIBILITY
The difference is apparent only to the exception handler. This difference is for IEEE
Standard 754 compatibility.

22.18.6.3 Numeric Underflow Exception (#U)
When the underflow exception is masked on the 32-bit x87 FPUs, the underflow
exception is signaled when both the result is tiny and denormalization results in a
loss of accuracy. When the underflow exception is unmasked and the instruction is
supposed to store the result on the stack, the significand is rounded to the appro-
priate precision (according to the PC flag in the FPU control word, for those instruc-
tions controlled by PC, otherwise to extended precision), after adjusting the
exponent.

When the underflow exception is masked on the 16-bit IA-32 math coprocessors and
rounding is toward 0, the underflow exception flag is raised on a tiny result, regard-
less of loss of accuracy. When the underflow exception is not masked and the desti-
nation is the stack, the significand is not rounded, but instead is left as is.

When the underflow exception is masked, this difference has no impact on existing
software. The underflow exception occurs less often when rounding is toward 0.

When the underflow exception not masked. A program running on a 32-bit x87 FPU
produces a different result during underflow conditions than on a 16-bit IA-32 math
coprocessor if the result is stored on the stack. The difference is only in the least
significant bit of the significand and is apparent only to the exception handler.

22.18.6.4 Exception Precedence
There is no difference in the precedence of the denormal-operand exception on the
32-bit x87 FPUs, whether it be masked or not. When the denormal-operand excep-
tion is not masked on the 16-bit IA-32 math coprocessors, it takes precedence over
all other exceptions. This difference causes no impact on existing software, but some
unneeded normalization of denormalized operands is prevented on the Intel486
processor and Intel 387 math coprocessor.

22.18.6.5 CS and EIP For FPU Exceptions
On the Intel 32-bit x87 FPUs, the values from the CS and EIP registers saved for
floating-point exceptions point to any prefixes that come before the floating-point
instruction. On the 8087 math coprocessor, the saved CS and IP registers points to
the floating-point instruction.

22.18.6.6 FPU Error Signals
The floating-point error signals to the P6 family, Pentium, and Intel486 processors do
not pass through an interrupt controller; an INT# signal from an Intel 387, Intel 287
or 8087 math coprocessors does. If an 8086 processor uses another exception for
22-14 Vol. 3B

ARCHITECTURE COMPATIBILITY
the 8087 interrupt, both exception vectors should call the floating-point-error excep-
tion handler. Some instructions in a floating-point-error exception handler may need
to be deleted if they use the interrupt controller. The P6 family, Pentium, and Intel486
processors have signals that, with the addition of external logic, support reporting for
emulation of the interrupt mechanism used in many personal computers.

On the P6 family, Pentium, and Intel486 processors, an undefined floating-point
opcode will cause an invalid-opcode exception (#UD, interrupt vector 6). Undefined
floating-point opcodes, like legal floating-point opcodes, cause a device not available
exception (#NM, interrupt vector 7) when either the TS or EM flag in control register
CR0 is set. The P6 family, Pentium, and Intel486 processors do not check for floating-
point error conditions on encountering an undefined floating-point opcode.

22.18.6.7 Assertion of the FERR# Pin
When using the MS-DOS compatibility mode for handing floating-point exceptions,
the FERR# pin must be connected to an input to an external interrupt controller. An
external interrupt is then generated when the FERR# output drives the input to the
interrupt controller and the interrupt controller in turn drives the INTR pin on the
processor.

For the P6 family and Intel386 processors, an unmasked floating-point exception
always causes the FERR# pin to be asserted upon completion of the instruction that
caused the exception. For the Pentium and Intel486 processors, an unmasked
floating-point exception may cause the FERR# pin to be asserted either at the end of
the instruction causing the exception or immediately before execution of the next
floating-point instruction. (Note that the next floating-point instruction would not be
executed until the pending unmasked exception has been handled.) See Appendix D,
“Guidelines for Writing x87 FPU Extension Handlers,” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1, for a complete description of
the required mechanism for handling floating-point exceptions using the MS-DOS
compatibility mode.

Using FERR# and IGNNE# to handle floating-point exception is deprecated by
modern operating systems; this approach also limits newer processors to operate
with one logical processor active.

22.18.6.8 Invalid Operation Exception On Denormals
An invalid-operation exception is not generated on the 32-bit x87 FPUs upon encoun-
tering a denormal value when executing a FSQRT, FDIV, or FPREM instruction or upon
conversion to BCD or to integer. The operation proceeds by first normalizing the
value. On the 16-bit IA-32 math coprocessors, upon encountering this situation, the
invalid-operation exception is generated. This difference has no impact on existing
software. Software running on the 32-bit x87 FPUs continues to execute in cases
where the 16-bit IA-32 math coprocessors trap. The reason for this change was to
eliminate an exception from being raised.
Vol. 3B 22-15

ARCHITECTURE COMPATIBILITY
22.18.6.9 Alignment Check Exceptions (#AC)
If alignment checking is enabled, a misaligned data operand on the P6 family,
Pentium, and Intel486 processors causes an alignment check exception (#AC) when
a program or procedure is running at privilege-level 3, except for the stack portion of
the FSAVE/FNSAVE, FXSAVE, FRSTOR, and FXRSTOR instructions.

22.18.6.10 Segment Not Present Exception During FLDENV
On the Intel486 processor, when a segment not present exception (#NP) occurs in
the middle of an FLDENV instruction, it can happen that part of the environment is
loaded and part not. In such cases, the FPU control word is left with a value of 007FH.
The P6 family and Pentium processors ensure the internal state is correct at all times
by attempting to read the first and last bytes of the environment before updating the
internal state.

22.18.6.11 Device Not Available Exception (#NM)
The device-not-available exception (#NM, interrupt 7) will occur in the P6 family,
Pentium, and Intel486 processors as described in Section 2.5, “Control Registers,”
Table 2-1, and Chapter 6, “Interrupt 7—Device Not Available Exception (#NM).”

22.18.6.12 Coprocessor Segment Overrun Exception
The coprocessor segment overrun exception (interrupt 9) does not occur in the P6
family, Pentium, and Intel486 processors. In situations where the Intel 387 math
coprocessor would cause an interrupt 9, the P6 family, Pentium, and Intel486 proces-
sors simply abort the instruction. To avoid undetected segment overruns, it is recom-
mended that the floating-point save area be placed in the same page as the TSS. This
placement will prevent the FPU environment from being lost if a page fault occurs
during the execution of an FLDENV, FRSTOR, or FXRSTOR instruction while the oper-
ating system is performing a task switch.

22.18.6.13 General Protection Exception (#GP)
A general-protection exception (#GP, interrupt 13) occurs if the starting address of a
floating-point operand falls outside a segment’s size. An exception handler should be
included to report these programming errors.

22.18.6.14 Floating-Point Error Exception (#MF)
In real mode and protected mode (not including virtual-8086 mode), interrupt vector
16 must point to the floating-point exception handler. In virtual 8086 mode, the
virtual-8086 monitor can be programmed to accommodate a different location of the
interrupt vector for floating-point exceptions.
22-16 Vol. 3B

ARCHITECTURE COMPATIBILITY
22.18.7 Changes to Floating-Point Instructions
This section identifies the differences in floating-point instructions for the various
Intel FPU and math coprocessor architectures, the reason for the differences, and
their impact on software.

22.18.7.1 FDIV, FPREM, and FSQRT Instructions
The 32-bit x87 FPUs support operations on denormalized operands and, when
detected, an underflow exception can occur, for compatibility with the IEEE Standard
754. The 16-bit IA-32 math coprocessors do not operate on denormalized operands
or return underflow results. Instead, they generate an invalid-operation exception
when they detect an underflow condition. An existing underflow exception handler
will require change only if it gives different treatment to different opcodes. Also, it is
possible that fewer invalid-operation exceptions will occur.

22.18.7.2 FSCALE Instruction
With the 32-bit x87 FPUs, the range of the scaling operand is not restricted. If (0 < |
ST(1) < 1), the scaling factor is 0; therefore, ST(0) remains unchanged. If the
rounded result is not exact or if there was a loss of accuracy (masked underflow), the
precision exception is signaled. With the 16-bit IA-32 math coprocessors, the range
of the scaling operand is restricted. If (0 < | ST(1) | < 1), the result is undefined and
no exception is signaled. The impact of this difference on exiting software is that
different results are delivered on the 32-bit and 16-bit FPUs and math coprocessors
when (0 < | ST(1) | < 1).

22.18.7.3 FPREM1 Instruction
The 32-bit x87 FPUs compute a partial remainder according to IEEE Standard 754.
This instruction does not exist on the 16-bit IA-32 math coprocessors. The avail-
ability of the FPREM1 instruction has is no impact on existing software.

22.18.7.4 FPREM Instruction
On the 32-bit x87 FPUs, the condition code flags C0, C3, C1 in the status word
correctly reflect the three low-order bits of the quotient following execution of the
FPREM instruction. On the 16-bit IA-32 math coprocessors, the quotient bits are
incorrect when performing a reduction of (64N + M) when (N ≥ 1) and M is 1 or 2. This
difference does not affect existing software; software that works around the bug
should not be affected.

22.18.7.5 FUCOM, FUCOMP, and FUCOMPP Instructions
When executing the FUCOM, FUCOMP, and FUCOMPP instructions, the 32-bit x87
FPUs perform unordered compare according to IEEE Standard 754. These instruc-
Vol. 3B 22-17

ARCHITECTURE COMPATIBILITY
tions do not exist on the 16-bit IA-32 math coprocessors. The availability of these
new instructions has no impact on existing software.

22.18.7.6 FPTAN Instruction
On the 32-bit x87 FPUs, the range of the operand for the FPTAN instruction is much
less restricted (| ST(0) | < 263) than on earlier math coprocessors. The instruction
reduces the operand internally using an internal π/4 constant that is more accurate.
The range of the operand is restricted to (| ST(0) | < π/4) on the 16-bit IA-32 math
coprocessors; the operand must be reduced to this range using FPREM. This change
has no impact on existing software.

22.18.7.7 Stack Overflow
On the 32-bit x87 FPUs, if an FPU stack overflow occurs when the invalid-operation
exception is masked, the FPU returns the real, integer, or BCD-integer indefinite
value to the destination operand, depending on the instruction being executed. On
the 16-bit IA-32 math coprocessors, the original operand remains unchanged
following a stack overflow, but it is loaded into register ST(1). This difference has no
impact on existing software.

22.18.7.8 FSIN, FCOS, and FSINCOS Instructions
On the 32-bit x87 FPUs, these instructions perform three common trigonometric
functions. These instructions do not exist on the 16-bit IA-32 math coprocessors. The
availability of these instructions has no impact on existing software, but using them
provides a performance upgrade.

22.18.7.9 FPATAN Instruction
On the 32-bit x87 FPUs, the range of operands for the FPATAN instruction is unre-
stricted. On the 16-bit IA-32 math coprocessors, the absolute value of the operand in
register ST(0) must be smaller than the absolute value of the operand in register
ST(1). This difference has impact on existing software.

22.18.7.10 F2XM1 Instruction
The 32-bit x87 FPUs support a wider range of operands (–1 < ST (0) < + 1) for the
F2XM1 instruction. The supported operand range for the 16-bit IA-32 math coproces-
sors is (0 ≤ ST(0) ≤ 0.5). This difference has no impact on existing software.

22.18.7.11 FLD Instruction
On the 32-bit x87 FPUs, when using the FLD instruction to load an extended-real
value, a denormal-operand exception is not generated because the instruction is not
22-18 Vol. 3B

ARCHITECTURE COMPATIBILITY
arithmetic. The 16-bit IA-32 math coprocessors do report a denormal-operand
exception in this situation. This difference does not affect existing software.

On the 32-bit x87 FPUs, loading a denormal value that is in single- or double-real
format causes the value to be converted to extended-real format. Loading a
denormal value on the 16-bit IA-32 math coprocessors causes the value to be
converted to an unnormal. If the next instruction is FXTRACT or FXAM, the 32-bit x87
FPUs will give a different result than the 16-bit IA-32 math coprocessors. This change
was made for IEEE Standard 754 compatibility.

On the 32-bit x87 FPUs, loading an SNaN that is in single- or double-real format
causes the FPU to generate an invalid-operation exception. The 16-bit IA-32 math
coprocessors do not raise an exception when loading a signaling NaN. The invalid-
operation exception handler for 16-bit math coprocessor software needs to be
updated to handle this condition when porting software to 32-bit FPUs. This change
was made for IEEE Standard 754 compatibility.

22.18.7.12 FXTRACT Instruction
On the 32-bit x87 FPUs, if the operand is 0 for the FXTRACT instruction, the divide-
by-zero exception is reported and –∞ is delivered to register ST(1). If the operand is
+∞, no exception is reported. If the operand is 0 on the 16-bit IA-32 math coproces-
sors, 0 is delivered to register ST(1) and no exception is reported. If the operand is
+∞, the invalid-operation exception is reported. These differences have no impact on
existing software. Software usually bypasses 0 and ∞. This change is due to the IEEE
Standard 754 recommendation to fully support the “logb” function.

22.18.7.13 Load Constant Instructions
On 32-bit x87 FPUs, rounding control is in effect for the load constant instructions.
Rounding control is not in effect for the 16-bit IA-32 math coprocessors. Results for
the FLDPI, FLDLN2, FLDLG2, and FLDL2E instructions are the same as for the 16-bit
IA-32 math coprocessors when rounding control is set to round to nearest or round
to +∞. They are the same for the FLDL2T instruction when rounding control is set to
round to nearest, round to –∞, or round to zero. Results are different from the 16-bit
IA-32 math coprocessors in the least significant bit of the mantissa if rounding
control is set to round to –∞ or round to 0 for the FLDPI, FLDLN2, FLDLG2, and
FLDL2E instructions; they are different for the FLDL2T instruction if round to +∞ is
specified. These changes were implemented for compatibility with IEEE Standard
754 for Floating-Point Arithmetic recommendations.

22.18.7.14 FSETPM Instruction
With the 32-bit x87 FPUs, the FSETPM instruction is treated as NOP (no operation).
This instruction informs the Intel 287 math coprocessor that the processor is in
protected mode. This change has no impact on existing software. The 32-bit x87
Vol. 3B 22-19

ARCHITECTURE COMPATIBILITY
FPUs handle all addressing and exception-pointer information, whether in protected
mode or not.

22.18.7.15 FXAM Instruction
With the 32-bit x87 FPUs, if the FPU encounters an empty register when executing
the FXAM instruction, it not generate combinations of C0 through C3 equal to 1101 or
1111. The 16-bit IA-32 math coprocessors may generate these combinations, among
others. This difference has no impact on existing software; it provides a performance
upgrade to provide repeatable results.

22.18.7.16 FSAVE and FSTENV Instructions
With the 32-bit x87 FPUs, the address of a memory operand pointer stored by FSAVE
or FSTENV is undefined if the previous floating-point instruction did not refer to
memory

22.18.8 Transcendental Instructions
The floating-point results of the P6 family and Pentium processors for transcendental
instructions in the core range may differ from the Intel486 processors by about 2 or
3 ulps (see “Transcendental Instruction Accuracy” in Chapter 8, “Programming with
the x87 FPU,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1). Condition code flag C1 of the status word may differ as a result. The exact
threshold for underflow and overflow will vary by a few ulps. The P6 family and
Pentium processors’ results will have a worst case error of less than 1 ulp when
rounding to the nearest-even and less than 1.5 ulps when rounding in other modes.
The transcendental instructions are guaranteed to be monotonic, with respect to the
input operands, throughout the domain supported by the instruction.

Transcendental instructions may generate different results in the round-up flag (C1)
on the 32-bit x87 FPUs. The round-up flag is undefined for these instructions on the
16-bit IA-32 math coprocessors. This difference has no impact on existing software.

22.18.9 Obsolete Instructions
The 8087 math coprocessor instructions FENI and FDISI and the Intel 287 math
coprocessor instruction FSETPM are treated as integer NOP instructions in the 32-bit
x87 FPUs. If these opcodes are detected in the instruction stream, no specific opera-
tion is performed and no internal states are affected.
22-20 Vol. 3B

ARCHITECTURE COMPATIBILITY
22.18.10 WAIT/FWAIT Prefix Differences
On the Intel486 processor, when a WAIT/FWAIT instruction precedes a floating-point
instruction (one which itself automatically synchronizes with the previous floating-
point instruction), the WAIT/FWAIT instruction is treated as a no-op. Pending
floating-point exceptions from a previous floating-point instruction are processed not
on the WAIT/FWAIT instruction but on the floating-point instruction following the
WAIT/FWAIT instruction. In such a case, the report of a floating-point exception may
appear one instruction later on the Intel486 processor than on a P6 family or Pentium
FPU, or on Intel 387 math coprocessor.

22.18.11 Operands Split Across Segments and/or Pages
On the P6 family, Pentium, and Intel486 processor FPUs, when the first half of an
operand to be written is inside a page or segment and the second half is outside, a
memory fault can cause the first half to be stored but not the second half. In this situ-
ation, the Intel 387 math coprocessor stores nothing.

22.18.12 FPU Instruction Synchronization
On the 32-bit x87 FPUs, all floating-point instructions are automatically synchro-
nized; that is, the processor automatically waits until the previous floating-point
instruction has completed before completing the next floating-point instruction. No
explicit WAIT/FWAIT instructions are required to assure this synchronization. For the
8087 math coprocessors, explicit waits are required before each floating-point
instruction to ensure synchronization. Although 8087 programs having explicit WAIT
instructions execute perfectly on the 32-bit IA-32 processors without reassembly,
these WAIT instructions are unnecessary.

22.19 SERIALIZING INSTRUCTIONS
Certain instructions have been defined to serialize instruction execution to ensure
that modifications to flags, registers and memory are completed before the next
instruction is executed (or in P6 family processor terminology “committed to machine
state”). Because the P6 family processors use branch-prediction and out-of-order
execution techniques to improve performance, instruction execution is not generally
serialized until the results of an executed instruction are committed to machine state
(see Chapter 2, “Intel® 64 and IA-32 Architectures,” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1).

As a result, at places in a program or task where it is critical to have execution
completed for all previous instructions before executing the next instruction (for
example, at a branch, at the end of a procedure, or in multiprocessor dependent
code), it is useful to add a serializing instruction. See Section 8.3, “Serializing
Instructions,” for more information on serializing instructions.
Vol. 3B 22-21

ARCHITECTURE COMPATIBILITY
22.20 FPU AND MATH COPROCESSOR INITIALIZATION
Table 9-1 shows the states of the FPUs in the P6 family, Pentium, Intel486 processors
and of the Intel 387 math coprocessor and Intel 287 coprocessor following a power-
up, reset, or INIT, or following the execution of an FINIT/FNINIT instruction. The
following is some additional compatibility information concerning the initialization of
x87 FPUs and math coprocessors.

22.20.1 Intel® 387 and Intel® 287 Math Coprocessor Initialization
Following an Intel386 processor reset, the processor identifies its coprocessor type
(Intel® 287 or Intel® 387 DX math coprocessor) by sampling its ERROR# input some
time after the falling edge of RESET# signal and before execution of the first floating-
point instruction. The Intel 287 coprocessor keeps its ERROR# output in inactive
state after hardware reset; the Intel 387 coprocessor keeps its ERROR# output in
active state after hardware reset.

Upon hardware reset or execution of the FINIT/FNINIT instruction, the Intel 387
math coprocessor signals an error condition. The P6 family, Pentium, and Intel486
processors, like the Intel 287 coprocessor, do not.

22.20.2 Intel486 SX Processor and Intel 487 SX Math Coprocessor
Initialization

When initializing an Intel486 SX processor and an Intel 487 SX math coprocessor,
the initialization routine should check the presence of the math coprocessor and
should set the FPU related flags (EM, MP, and NE) in control register CR0 accordingly
(see Section 2.5, “Control Registers,” for a complete description of these flags). Table
22-2 gives the recommended settings for these flags when the math coprocessor is
present. The FSTCW instruction will give a value of FFFFH for the Intel486 SX micro-
processor and 037FH for the Intel 487 SX math coprocessor.

The EM and MP flags in register CR0 are interpreted as shown in Table 22-3.

Table 22-2. Recommended Values of the EM, MP, and NE Flags for Intel486 SX
Microprocessor/Intel 487 SX Math Coprocessor System

CR0 Flags Intel486 SX Processor Only Intel 487 SX Math Coprocessor Present

EM 1 0

MP 0 1

NE 1 0, for MS-DOS* systems
1, for user-defined exception handler
22-22 Vol. 3B

ARCHITECTURE COMPATIBILITY
Following is an example code sequence to initialize the system and check for the
presence of Intel486 SX processor/Intel 487 SX math coprocessor.

fninit
fstcw mem_loc
mov ax, mem_loc
cmp ax, 037fh
jz Intel487_SX_Math_CoProcessor_present ;ax=037fh
jmp Intel486_SX_microprocessor_present ;ax=ffffh

If the Intel 487 SX math coprocessor is not present, the following code can be run to
set the CR0 register for the Intel486 SX processor.

mov eax, cr0
and eax, fffffffdh ;make MP=0
or eax, 0024h ;make EM=1, NE=1
mov cr0, eax

This initialization will cause any floating-point instruction to generate a device not
available exception (#NH), interrupt 7. The software emulation will then take control
to execute these instructions. This code is not required if an Intel 487 SX math
coprocessor is present in the system. In that case, the typical initialization routine for
the Intel486 SX microprocessor will be adequate.

Also, when designing an Intel486 SX processor based system with an Intel 487 SX
math coprocessor, timing loops should be independent of clock speed and clocks per
instruction. One way to attain this is to implement these loops in hardware and not in
software (for example, BIOS).

Table 22-3. EM and MP Flag Interpretation

EM MP Interpretation

0 0 Floating-point instructions are passed to FPU; WAIT/FWAIT
and other waiting-type instructions ignore TS.

0 1 Floating-point instructions are passed to FPU; WAIT/FWAIT
and other waiting-type instructions test TS.

1 0 Floating-point instructions trap to emulator; WAIT/FWAIT and
other waiting-type instructions ignore TS.

1 1 Floating-point instructions trap to emulator; WAIT/FWAIT and
other waiting-type instructions test TS.
Vol. 3B 22-23

ARCHITECTURE COMPATIBILITY
22.21 CONTROL REGISTERS
The following sections identify the new control registers and control register flags
and fields that were introduced to the 32-bit IA-32 in various processor families. See
Figure 2-6 for the location of these flags and fields in the control registers.

The Pentium III processor introduced one new control flag in control register CR4:
• OSXMMEXCPT (bit 10) — The OS will set this bit if it supports unmasked SIMD

floating-point exceptions.

The Pentium II processor introduced one new control flag in control register CR4:
• OSFXSR (bit 9) — The OS supports saving and restoring the Pentium III processor

state during context switches.

The Pentium Pro processor introduced three new control flags in control register CR4:
• PAE (bit 5) — Physical address extension. Enables paging mechanism to

reference extended physical addresses when set; restricts physical addresses to
32 bits when clear (see also: Section 22.22.1.1, “Physical Memory Addressing
Extension”).

• PGE (bit 7) — Page global enable. Inhibits flushing of frequently-used or shared
pages on CR3 writes (see also: Section 22.22.1.2, “Global Pages”).

• PCE (bit 8) — Performance-monitoring counter enable. Enables execution of the
RDPMC instruction at any protection level.

The content of CR4 is 0H following a hardware reset.

Control register CR4 was introduced in the Pentium processor. This register contains
flags that enable certain new extensions provided in the Pentium processor:
• VME — Virtual-8086 mode extensions. Enables support for a virtual interrupt flag

in virtual-8086 mode (see Section 20.3, “Interrupt and Exception Handling in
Virtual-8086 Mode”).

• PVI — Protected-mode virtual interrupts. Enables support for a virtual interrupt
flag in protected mode (see Section 20.4, “Protected-Mode Virtual Interrupts”).

• TSD — Time-stamp disable. Restricts the execution of the RDTSC instruction to
procedures running at privileged level 0.

• DE — Debugging extensions. Causes an undefined opcode (#UD) exception to be
generated when debug registers DR4 and DR5 are references for improved
performance (see Section 22.23.3, “Debug Registers DR4 and DR5”).

• PSE — Page size extensions. Enables 4-MByte pages with 32-bit paging when set
(see Section 4.3, “32-Bit Paging”).

• MCE — Machine-check enable. Enables the machine-check exception, allowing
exception handling for certain hardware error conditions (see Chapter 15,
“Machine-Check Architecture”).

The Intel486 processor introduced five new flags in control register CR0:
22-24 Vol. 3B

ARCHITECTURE COMPATIBILITY
• NE — Numeric error. Enables the normal mechanism for reporting floating-point
numeric errors.

• WP — Write protect. Write-protects read-only pages against supervisor-mode
accesses.

• AM — Alignment mask. Controls whether alignment checking is performed.
Operates in conjunction with the AC (Alignment Check) flag.

• NW — Not write-through. Enables write-throughs and cache invalidation cycles
when clear and disables invalidation cycles and write-throughs that hit in the
cache when set.

• CD — Cache disable. Enables the internal cache when clear and disables the
cache when set.

The Intel486 processor introduced two new flags in control register CR3:
• PCD — Page-level cache disable. The state of this flag is driven on the PCD# pin

during bus cycles that are not paged, such as interrupt acknowledge cycles, when
paging is enabled. The PCD# pin is used to control caching in an external cache
on a cycle-by-cycle basis.

• PWT — Page-level write-through. The state of this flag is driven on the PWT# pin
during bus cycles that are not paged, such as interrupt acknowledge cycles, when
paging is enabled. The PWT# pin is used to control write through in an external
cache on a cycle-by-cycle basis.

22.22 MEMORY MANAGEMENT FACILITIES
The following sections describe the new memory management facilities available in
the various IA-32 processors and some compatibility differences.

22.22.1 New Memory Management Control Flags
The Pentium Pro processor introduced three new memory management features:
physical memory addressing extension, the global bit in page-table entries, and
general support for larger page sizes. These features are only available when oper-
ating in protected mode.

22.22.1.1 Physical Memory Addressing Extension
The new PAE (physical address extension) flag in control register CR4, bit 5, may
enable additional address lines on the processor, allowing extended physical
addresses. This option can only be used when paging is enabled, using a new page-
table mechanism provided to support the larger physical address range (see Section
4.1, “Paging Modes and Control Bits”).
Vol. 3B 22-25

ARCHITECTURE COMPATIBILITY
22.22.1.2 Global Pages
The new PGE (page global enable) flag in control register CR4, bit 7, provides a
mechanism for preventing frequently used pages from being flushed from the trans-
lation lookaside buffer (TLB). When this flag is set, frequently used pages (such as
pages containing kernel procedures or common data tables) can be marked global by
setting the global flag in a page-directory or page-table entry.

On a task switch or a write to control register CR3 (which normally causes the TLBs
to be flushed), the entries in the TLB marked global are not flushed. Marking pages
global in this manner prevents unnecessary reloading of the TLB due to TLB misses
on frequently used pages. See Section 4.10, “Caching Translation Information” for a
detailed description of this mechanism.

22.22.1.3 Larger Page Sizes
The P6 family processors support large page sizes. For 32-bit paging, this facility is
enabled with the PSE (page size extension) flag in control register CR4, bit 4. When
this flag is set, the processor supports either 4-KByte or 4-MByte page sizes. PAE
paging and IA-32e paging support 2-MByte pages regardless of the value of CR4.PSE
(see Section 4.4, “PAE Paging” and Section 4.5, “IA-32e Paging”). See Chapter 4,
“Paging,” for more information about large page sizes.

22.22.2 CD and NW Cache Control Flags
The CD and NW flags in control register CR0 were introduced in the Intel486
processor. In the P6 family and Pentium processors, these flags are used to imple-
ment a writeback strategy for the data cache; in the Intel486 processor, they imple-
ment a write-through strategy. See Table 11-5 for a comparison of these bits on the
P6 family, Pentium, and Intel486 processors. For complete information on caching,
see Chapter 11, “Memory Cache Control.”

22.22.3 Descriptor Types and Contents
Operating-system code that manages space in descriptor tables often contains an
invalid value in the access-rights field of descriptor-table entries to identify unused
entries. Access rights values of 80H and 00H remain invalid for the P6 family,
Pentium, Intel486, Intel386, and Intel 286 processors. Other values that were invalid
on the Intel 286 processor may be valid on the 32-bit processors because uses for
these bits have been defined.
22-26 Vol. 3B

ARCHITECTURE COMPATIBILITY
22.22.4 Changes in Segment Descriptor Loads
On the Intel386 processor, loading a segment descriptor always causes a locked read
and write to set the accessed bit of the descriptor. On the P6 family, Pentium, and
Intel486 processors, the locked read and write occur only if the bit is not already set.

22.23 DEBUG FACILITIES
The P6 family and Pentium processors include extensions to the Intel486 processor
debugging support for breakpoints. To use the new breakpoint features, it is neces-
sary to set the DE flag in control register CR4.

22.23.1 Differences in Debug Register DR6
It is not possible to write a 1 to reserved bit 12 in debug status register DR6 on the
P6 family and Pentium processors; however, it is possible to write a 1 in this bit on the
Intel486 processor. See Table 9-1 for the different setting of this register following a
power-up or hardware reset.

22.23.2 Differences in Debug Register DR7
The P6 family and Pentium processors determines the type of breakpoint access by
the R/W0 through R/W3 fields in debug control register DR7 as follows:

00 Break on instruction execution only.

01 Break on data writes only.

10 Undefined if the DE flag in control register CR4 is cleared; break on I/O reads
or writes but not instruction fetches if the DE flag in control register CR4 is
set.

11 Break on data reads or writes but not instruction fetches.

On the P6 family and Pentium processors, reserved bits 11, 12, 14 and 15 are hard-
wired to 0. On the Intel486 processor, however, bit 12 can be set. See Table 9-1 for
the different settings of this register following a power-up or hardware reset.

22.23.3 Debug Registers DR4 and DR5
Although the DR4 and DR5 registers are documented as reserved, previous genera-
tions of processors aliased references to these registers to debug registers DR6 and
DR7, respectively. When debug extensions are not enabled (the DE flag in control
register CR4 is cleared), the P6 family and Pentium processors remain compatible
with existing software by allowing these aliased references. When debug extensions
Vol. 3B 22-27

ARCHITECTURE COMPATIBILITY
are enabled (the DE flag is set), attempts to reference registers DR4 or DR5 will
result in an invalid-opcode exception (#UD).

22.24 RECOGNITION OF BREAKPOINTS
For the Pentium processor, it is recommended that debuggers execute the LGDT
instruction before returning to the program being debugged to ensure that break-
points are detected. This operation does not need to be performed on the P6 family,
Intel486, or Intel386 processors.

The implementation of test registers on the Intel486 processor used for testing the
cache and TLB has been redesigned using MSRs on the P6 family and Pentium
processors. (Note that MSRs used for this function are different on the P6 family and
Pentium processors.) The MOV to and from test register instructions generate
invalid-opcode exceptions (#UD) on the P6 family processors.

22.25 EXCEPTIONS AND/OR EXCEPTION CONDITIONS
This section describes the new exceptions and exception conditions added to the 32-
bit IA-32 processors and implementation differences in existing exception handling.
See Chapter 6, “Interrupt and Exception Handling,” for a detailed description of the
IA-32 exceptions.

The Pentium III processor introduced new state with the XMM registers. Computations
involving data in these registers can produce exceptions. A new MXCSR
control/status register is used to determine which exception or exceptions have
occurred. When an exception associated with the XMM registers occurs, an interrupt
is generated.
• SIMD floating-point exception (#XF, interrupt 19) — New exceptions associated

with the SIMD floating-point registers and resulting computations.

No new exceptions were added with the Pentium Pro and Pentium II processors. The
set of available exceptions is the same as for the Pentium processor. However, the
following exception condition was added to the IA-32 with the Pentium Pro
processor:
• Machine-check exception (#MC, interrupt 18) — New exception conditions. Many

exception conditions have been added to the machine-check exception and a new
architecture has been added for handling and reporting on hardware errors. See
Chapter 15, “Machine-Check Architecture,” for a detailed description of the new
conditions.

The following exceptions and/or exception conditions were added to the IA-32 with
the Pentium processor:
• Machine-check exception (#MC, interrupt 18) — New exception. This exception

reports parity and other hardware errors. It is a model-specific exception and
22-28 Vol. 3B

ARCHITECTURE COMPATIBILITY
may not be implemented or implemented differently in future processors. The
MCE flag in control register CR4 enables the machine-check exception. When this
bit is clear (which it is at reset), the processor inhibits generation of the machine-
check exception.

• General-protection exception (#GP, interrupt 13) — New exception condition
added. An attempt to write a 1 to a reserved bit position of a special register
causes a general-protection exception to be generated.

• Page-fault exception (#PF, interrupt 14) — New exception condition added. When
a 1 is detected in any of the reserved bit positions of a page-table entry, page-
directory entry, or page-directory pointer during address translation, a page-fault
exception is generated.

The following exception was added to the Intel486 processor:
• Alignment-check exception (#AC, interrupt 17) — New exception. Reports

unaligned memory references when alignment checking is being performed.

The following exceptions and/or exception conditions were added to the Intel386
processor:
• Divide-error exception (#DE, interrupt 0)

— Change in exception handling. Divide-error exceptions on the Intel386
processors always leave the saved CS:IP value pointing to the instruction that
failed. On the 8086 processor, the CS:IP value points to the next instruction.

— Change in exception handling. The Intel386 processors can generate the
largest negative number as a quotient for the IDIV instruction (80H and
8000H). The 8086 processor generates a divide-error exception instead.

• Invalid-opcode exception (#UD, interrupt 6) — New exception condition added.
Improper use of the LOCK instruction prefix can generate an invalid-opcode
exception.

• Page-fault exception (#PF, interrupt 14) — New exception condition added. If
paging is enabled in a 16-bit program, a page-fault exception can be generated
as follows. Paging can be used in a system with 16-bit tasks if all tasks use the
same page directory. Because there is no place in a 16-bit TSS to store the PDBR
register, switching to a 16-bit task does not change the value of the PDBR
register. Tasks ported from the Intel 286 processor should be given 32-bit TSSs
so they can make full use of paging.

• General-protection exception (#GP, interrupt 13) — New exception condition
added. The Intel386 processor sets a limit of 15 bytes on instruction length. The
only way to violate this limit is by putting redundant prefixes before an
instruction. A general-protection exception is generated if the limit on instruction
length is violated. The 8086 processor has no instruction length limit.
Vol. 3B 22-29

ARCHITECTURE COMPATIBILITY
22.25.1 Machine-Check Architecture
The Pentium Pro processor introduced a new architecture to the IA-32 for handling
and reporting on machine-check exceptions. This machine-check architecture
(described in detail in Chapter 15, “Machine-Check Architecture”) greatly expands
the ability of the processor to report on internal hardware errors.

22.25.2 Priority of Exceptions
The priority of exceptions are broken down into several major categories:

1. Traps on the previous instruction

2. External interrupts

3. Faults on fetching the next instruction

4. Faults in decoding the next instruction

5. Faults on executing an instruction

There are no changes in the priority of these major categories between the different
processors, however, exceptions within these categories are implementation depen-
dent and may change from processor to processor.

22.25.3 Exception Conditions of Legacy SIMD Instructions Operating
on MMX Registers

MMX instructions and a subset of SSE, SSE2, SSSE3 instructions operate on MMX
registers. The exception conditions of these instructions are described in the
following tables.
22-30 Vol. 3B

ARCHITECTURE COMPATIBILITY
Table 22-4. Exception Conditions for Legacy SIMD/MMX Instructions with FP
Exception and 16-Byte Alignment

Exception
R

ea
l

V
ir

tu
al

 8
0

8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode,
#UD

X X X X
If an unmasked SIMD floating-point exception and
CR4.OSXMMEXCPT[bit 10] = 0.

X X X X
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H)

X X X X If any corresponding CPUID feature flag is ‘0’

#MF X X X X If there is a pending X87 FPU exception

#NM X X X X If CR0.TS[bit 3]=1

Stack, SS(0)

X For an illegal address in the SS segment

X
If a memory address referencing the SS segment is
in a non-canonical form

General Protec-
tion, #GP(0)

X X X X Legacy SSE: Memory operand is not 16-byte aligned

X
For an illegal memory operand effective address in
the CS, DS, ES, FS or GS segments.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effective
address space from 0 to FFFFH

#PF(fault-code) X X X For a page fault

#XM X X X X
If an unmasked SIMD floating-point exception and
CR4.OSXMMEXCPT[bit 10] = 1

Applicable
Instructions

CVTPD2PI, CVTTPD2PI
Vol. 3B 22-31

ARCHITECTURE COMPATIBILITY
Table 22-5. Exception Conditions for Legacy SIMD/MMX Instructions with XMM and FP
Exception

Exception

R
ea

l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X X X
If an unmasked SIMD floating-point exception
and CR4.OSXMMEXCPT[bit 10] = 0.

X X X X
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H)

X X X X If any corresponding CPUID feature flag is ‘0’

#MF X X X X If there is a pending X87 FPU exception

#NM X X X X If CR0.TS[bit 3]=1

Stack, SS(0)

X For an illegal address in the SS segment

X
If a memory address referencing the SS segment
is in a non-canonical form

General Protection,
#GP(0)

X
For an illegal memory operand effective address
in the CS, DS, ES, FS or GS segments.

X
If the memory address is in a non-canonical
form.

X X
If any part of the operand lies outside the effec-
tive address space from 0 to FFFFH

#PF(fault-code) X X X For a page fault

Alignment Check
#AC(0)

X X X
If alignment checking is enabled and an
unaligned memory reference is made while the
current privilege level is 3.

SIMD Floating-point
Exception, #XM

X X X X
If an unmasked SIMD floating-point exception
and CR4.OSXMMEXCPT[bit 10] = 1

Applicable Instruc-
tions

CVTPI2PS, CVTPS2PI, CVTTPS2PI
22-32 Vol. 3B

ARCHITECTURE COMPATIBILITY
Table 22-6. Exception Conditions for Legacy SIMD/MMX Instructions with XMM and
without FP Exception

Exception
R

ea
l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X X X
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H)

X X X X If any corresponding CPUID feature flag is ‘0’

#MF1

NOTES:
1. Applies to “CVTPI2PD xmm, mm” but not “CVTPI2PD xmm, m64”.

X X X X If there is a pending X87 FPU exception

#NM X X X X If CR0.TS[bit 3]=1

Stack, SS(0)

X For an illegal address in the SS segment

X
If a memory address referencing the SS seg-
ment is in a non-canonical form

General Protection,
#GP(0)

X
For an illegal memory operand effective
address in the CS, DS, ES, FS or GS segments.

X
If the memory address is in a non-canonical
form.

X X
If any part of the operand lies outside the
effective address space from 0 to FFFFH

 #PF(fault-code) X X X For a page fault

Alignment Check
#AC(0)

X X X
If alignment checking is enabled and an
unaligned memory reference is made while the
current privilege level is 3.

Applicable Instruc-
tions

CVTPI2PD
Vol. 3B 22-33

ARCHITECTURE COMPATIBILITY
Table 22-7. Exception Conditions for SIMD/MMX Instructions with Memory Reference

Exception

R
ea

l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X X X If CR0.EM[bit 2] = 1.

X X X X If preceded by a LOCK prefix (F0H)

X X X X If any corresponding CPUID feature flag is ‘0’

#MF X X X X If there is a pending X87 FPU exception

#NM X X X X If CR0.TS[bit 3]=1

Stack, SS(0)

X For an illegal address in the SS segment

X
If a memory address referencing the SS seg-
ment is in a non-canonical form

General Protection,
#GP(0)

X
For an illegal memory operand effective address
in the CS, DS, ES, FS or GS segments.

X
If the memory address is in a non-canonical
form.

X X
If any part of the operand lies outside the effec-
tive address space from 0 to FFFFH

 #PF(fault-code) X X X For a page fault

Alignment Check
#AC(0)

X X X
If alignment checking is enabled and an
unaligned memory reference is made while the
current privilege level is 3.

Applicable Instruc-
tions

PABSB, PABSD, PABSW, PACKSSWB, PACKSSDW, PACKUSWB,
PADDB, PADDD, PADDQ, PADDW, PADDSB, PADDSW,
PADDUSB, PADDUSW, PALIGNR, PAND, PANDN, PAVGB,
PAVGW, PCMPEQB, PCMPEQD, PCMPEQW, PCMPGTB, PCMPGTD,
PCMPGTW, PHADDD, PHADDW, PHADDSW, PHSUBD, PHSUBW,
PHSUBSW, PINSRW, PMADDUBSW, PMADDWD, PMAXSW,
PMAXUB, PMINSW, PMINUB, PMULHRSW, PMULHUW, PMULHW,
PMULLW, PMULUDQ, PSADBW, PSHUFB, PSHUFW, PSIGNB
PSIGND PSIGNW, PSLLW, PSLLD, PSLLQ, PSRAD, PSRAW,
PSRLW, PSRLD, PSRLQ, PSUBB, PSUBD, PSUBQ, PSUBW,
PSUBSB, PSUBSW, PSUBUSB, PSUBUSW, PUNPCKHBW,
PUNPCKHWD, PUNPCKHDQ, PUNPCKLBW, PUNPCKLWD,
PUNPCKLDQ, PXOR
22-34 Vol. 3B

ARCHITECTURE COMPATIBILITY
Table 22-8. Exception Conditions for Legacy SIMD/MMX Instructions without FP
Exception

Exception
R

ea
l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X X X
If CR0.EM[bit 2] = 1.
If ModR/M.mod != 11b1

NOTES:
1. Applies to MASKMOVQ only.

X X X X If preceded by a LOCK prefix (F0H)

X X X X If any corresponding CPUID feature flag is ‘0’

#MF X X X X If there is a pending X87 FPU exception

#NM X X X X If CR0.TS[bit 3]=1

Stack, SS(0)

X For an illegal address in the SS segment

X
If a memory address referencing the SS segment
is in a non-canonical form

#GP(0)

X

For an illegal memory operand effective address in
the CS, DS, ES, FS or GS segments.
If the destination operand is in a non-writable seg-
ment.2

If the DS, ES, FS, or GS register contains a NULL
segment selector.3

2. Applies to MASKMOVQ and MOVQ (mmreg) only.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effec-
tive address space from 0 to FFFFH

 #PF(fault-code) X X X For a page fault

#AC(0) X X X
If alignment checking is enabled and an unaligned
memory reference is made while the current privi-
lege level is 3.

Applicable Instruc-
tions

MASKMOVQ, MOVNTQ, “MOVQ (mmreg)”
Vol. 3B 22-35

ARCHITECTURE COMPATIBILITY
22.26 INTERRUPTS
The following differences in handling interrupts are found among the IA-32
processors.

22.26.1 Interrupt Propagation Delay
External hardware interrupts may be recognized on different instruction boundaries
on the P6 family, Pentium, Intel486, and Intel386 processors, due to the superscaler
designs of the P6 family and Pentium processors. Therefore, the EIP pushed onto the
stack when servicing an interrupt may be different for the P6 family, Pentium,
Intel486, and Intel386 processors.

22.26.2 NMI Interrupts
After an NMI interrupt is recognized by the P6 family, Pentium, Intel486, Intel386,
and Intel 286 processors, the NMI interrupt is masked until the first IRET instruction
is executed, unlike the 8086 processor.

3. Applies to MASKMOVQ only.

Table 22-9. Exception Conditions for Legacy SIMD/MMX Instructions without
Memory Reference

Exception

R
ea

l

V
ir

tu
al

 8
0

x8
6

Pr
ot

ec
te

d
an

d
Co

m
pa

ti
bi

lit
y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X X X If CR0.EM[bit 2] = 1.

X X X X If preceded by a LOCK prefix (F0H)

X X X X If any corresponding CPUID feature flag is ‘0’

#MF X X X X If there is a pending X87 FPU exception

#NM X X If CR0.TS[bit 3]=1

Applicable Instruc-
tions

PEXTRW, PMOVMSKB
22-36 Vol. 3B

ARCHITECTURE COMPATIBILITY
22.26.3 IDT Limit
The LIDT instruction can be used to set a limit on the size of the IDT. A double-fault
exception (#DF) is generated if an interrupt or exception attempts to read a vector
beyond the limit. Shutdown then occurs on the 32-bit IA-32 processors if the double-
fault handler vector is beyond the limit. (The 8086 processor does not have a shut-
down mode nor a limit.)

22.27 ADVANCED PROGRAMMABLE INTERRUPT
CONTROLLER (APIC)

The Advanced Programmable Interrupt Controller (APIC), referred to in this book as
the local APIC, was introduced into the IA-32 processors with the Pentium
processor (beginning with the 735/90 and 815/100 models) and is included in the
Pentium 4, Intel Xeon, and P6 family processors. The features and functions of the
local APIC are derived from the Intel 82489DX external APIC, which was used with
the Intel486 and early Pentium processors. Additional refinements of the local APIC
architecture were incorporated in the Pentium 4 and Intel Xeon processors.

22.27.1 Software Visible Differences Between the Local APIC and
the 82489DX

The following features in the local APIC features differ from those found in the
82489DX external APIC:
• When the local APIC is disabled by clearing the APIC software enable/disable flag

in the spurious-interrupt vector MSR, the state of its internal registers are
unaffected, except that the mask bits in the LVT are all set to block local
interrupts to the processor. Also, the local APIC ceases accepting IPIs except for
INIT, SMI, NMI, and start-up IPIs. In the 82489DX, when the local unit is
disabled, all the internal registers including the IRR, ISR and TMR are cleared and
the mask bits in the LVT are set. In this state, the 82489DX local unit will accept
only the reset deassert message.

• In the local APIC, NMI and INIT (except for INIT deassert) are always treated as
edge triggered interrupts, even if programmed otherwise. In the 82489DX, these
interrupts are always level triggered.

• In the local APIC, IPIs generated through the ICR are always treated as edge
triggered (except INIT Deassert). In the 82489DX, the ICR can be used to
generate either edge or level triggered IPIs.

• In the local APIC, the logical destination register supports 8 bits; in the 82489DX,
it supports 32 bits.

• In the local APIC, the APIC ID register is 4 bits wide; in the 82489DX, it is 8 bits
wide.
Vol. 3B 22-37

ARCHITECTURE COMPATIBILITY
• The remote read delivery mode provided in the 82489DX and local APIC for
Pentium processors is not supported in the local APIC in the Pentium 4, Intel
Xeon, and P6 family processors.

• For the 82489DX, in the lowest priority delivery mode, all the target local APICs
specified by the destination field participate in the lowest priority arbitration. For
the local APIC, only those local APICs which have free interrupt slots will
participate in the lowest priority arbitration.

22.27.2 New Features Incorporated in the Local APIC for the P6
Family and Pentium Processors

The local APIC in the Pentium and P6 family processors have the following new
features not found in the 82489DX external APIC.
• Cluster addressing is supported in logical destination mode.
• Focus processor checking can be enabled/disabled.
• Interrupt input signal polarity can be programmed for the LINT0 and LINT1 pins.
• An SMI IPI is supported through the ICR and I/O redirection table.
• An error status register is incorporated into the LVT to log and report APIC errors.

In the P6 family processors, the local APIC incorporates an additional LVT register to
handle performance monitoring counter interrupts.

22.27.3 New Features Incorporated in the Local APIC of the Pentium
4 and Intel Xeon Processors

The local APIC in the Pentium 4 and Intel Xeon processors has the following new
features not found in the P6 family and Pentium processors and in the 82489DX.
• The local APIC ID is extended to 8 bits.
• An thermal sensor register is incorporated into the LVT to handle thermal sensor

interrupts.
• The the ability to deliver lowest-priority interrupts to a focus processor is no

longer supported.
• The flat cluster logical destination mode is not supported.

22.28 TASK SWITCHING AND TSS
This section identifies the implementation differences of task switching, additions to
the TSS and the handling of TSSs and TSS segment selectors.
22-38 Vol. 3B

ARCHITECTURE COMPATIBILITY
22.28.1 P6 Family and Pentium Processor TSS
When the virtual mode extensions are enabled (by setting the VME flag in control
register CR4), the TSS in the P6 family and Pentium processors contain an interrupt
redirection bit map, which is used in virtual-8086 mode to redirect interrupts back to
an 8086 program.

22.28.2 TSS Selector Writes
During task state saves, the Intel486 processor writes 2-byte segment selectors into
a 32-bit TSS, leaving the upper 16 bits undefined. For performance reasons, the P6
family and Pentium processors write 4-byte segment selectors into the TSS, with the
upper 2 bytes being 0. For compatibility reasons, code should not depend on the
value of the upper 16 bits of the selector in the TSS.

22.28.3 Order of Reads/Writes to the TSS
The order of reads and writes into the TSS is processor dependent. The P6 family and
Pentium processors may generate different page-fault addresses in control register
CR2 in the same TSS area than the Intel486 and Intel386 processors, if a TSS
crosses a page boundary (which is not recommended).

22.28.4 Using A 16-Bit TSS with 32-Bit Constructs
Task switches using 16-bit TSSs should be used only for pure 16-bit code. Any new
code written using 32-bit constructs (operands, addressing, or the upper word of the
EFLAGS register) should use only 32-bit TSSs. This is due to the fact that the 32-bit
processors do not save the upper 16 bits of EFLAGS to a 16-bit TSS. A task switch
back to a 16-bit task that was executing in virtual mode will never re-enable the
virtual mode, as this flag was not saved in the upper half of the EFLAGS value in the
TSS. Therefore, it is strongly recommended that any code using 32-bit constructs
use a 32-bit TSS to ensure correct behavior in a multitasking environment.

22.28.5 Differences in I/O Map Base Addresses
The Intel486 processor considers the TSS segment to be a 16-bit segment and wraps
around the 64K boundary. Any I/O accesses check for permission to access this I/O
address at the I/O base address plus the I/O offset. If the I/O map base address
exceeds the specified limit of 0DFFFH, an I/O access will wrap around and obtain the
permission for the I/O address at an incorrect location within the TSS. A TSS limit
violation does not occur in this situation on the Intel486 processor. However, the P6
family and Pentium processors consider the TSS to be a 32-bit segment and a limit
violation occurs when the I/O base address plus the I/O offset is greater than the TSS
limit. By following the recommended specification for the I/O base address to be less
Vol. 3B 22-39

ARCHITECTURE COMPATIBILITY
than 0DFFFH, the Intel486 processor will not wrap around and access incorrect loca-
tions within the TSS for I/O port validation and the P6 family and Pentium processors
will not experience general-protection exceptions (#GP). Figure 22-1 demonstrates
the different areas accessed by the Intel486 and the P6 family and Pentium
processors.

22.29 CACHE MANAGEMENT
The P6 family processors include two levels of internal caches: L1 (level 1) and L2
(level 2). The L1 cache is divided into an instruction cache and a data cache; the L2
cache is a general-purpose cache. See Section 11.1, “Internal Caches, TLBs, and
Buffers,” for a description of these caches. (Note that although the Pentium II
processor L2 cache is physically located on a separate chip in the cassette, it is
considered an internal cache.)

The Pentium processor includes separate level 1 instruction and data caches. The
data cache supports a writeback (or alternatively write-through, on a line by line
basis) policy for memory updates.

The Intel486 processor includes a single level 1 cache for both instructions and data.

The meaning of the CD and NW flags in control register CR0 have been redefined for
the P6 family and Pentium processors. For these processors, the recommended value
(00B) enables writeback for the data cache of the Pentium processor and for the L1

Figure 22-1. I/O Map Base Address Differences

Intel486 Processor

FFFFHI/O Map
Base Addres

FFFFH

FFFFH + 10H = FH
for I/O Validation

0H

FFFFH

FFFFH

I/O access at port 10H checks

0H

FFFFH + 10H = Outside Segment
for I/O Validation

bitmap at I/O address FFFFH + 10H,
which exceeds segment limit.
Wrap around does not occur,
general-protection exception (#GP)

I/O access at port 10H checks
bitmap at I/O map base address
FFFFH + 10H = offset 10H.
Offset FH from beginning of
TSS segment results because

P6 family and Pentium Processors

I/O Map
Base Addres

occurs. wraparound occurs.
22-40 Vol. 3B

ARCHITECTURE COMPATIBILITY
data cache and L2 cache of the P6 family processors. In the Intel486 processor,
setting these flags to (00B) enables write-through for the cache.

External system hardware can force the Pentium processor to disable caching or to
use the write-through cache policy should that be required. In the P6 family proces-
sors, the MTRRs can be used to override the CD and NW flags (see Table 11-6).

The P6 family and Pentium processors support page-level cache management in the
same manner as the Intel486 processor by using the PCD and PWT flags in control
register CR3, the page-directory entries, and the page-table entries. The Intel486
processor, however, is not affected by the state of the PWT flag since the internal
cache of the Intel486 processor is a write-through cache.

22.29.1 Self-Modifying Code with Cache Enabled
On the Intel486 processor, a write to an instruction in the cache will modify it in both
the cache and memory. If the instruction was prefetched before the write, however,
the old version of the instruction could be the one executed. To prevent this problem,
it is necessary to flush the instruction prefetch unit of the Intel486 processor by
coding a jump instruction immediately after any write that modifies an instruction.
The P6 family and Pentium processors, however, check whether a write may modify
an instruction that has been prefetched for execution. This check is based on the
linear address of the instruction. If the linear address of an instruction is found to be
present in the prefetch queue, the P6 family and Pentium processors flush the
prefetch queue, eliminating the need to code a jump instruction after any writes that
modify an instruction.

Because the linear address of the write is checked against the linear address of the
instructions that have been prefetched, special care must be taken for self-modifying
code to work correctly when the physical addresses of the instruction and the written
data are the same, but the linear addresses differ. In such cases, it is necessary to
execute a serializing operation to flush the prefetch queue after the write and before
executing the modified instruction. See Section 8.3, “Serializing Instructions,” for
more information on serializing instructions.

NOTE
The check on linear addresses described above is not in practice a
concern for compatibility. Applications that include self-modifying
code use the same linear address for modifying and fetching the
instruction. System software, such as a debugger, that might
possibly modify an instruction using a different linear address than
that used to fetch the instruction must execute a serializing
operation, such as IRET, before the modified instruction is executed.
Vol. 3B 22-41

ARCHITECTURE COMPATIBILITY
22.29.2 Disabling the L3 Cache
A unified third-level (L3) cache in processors based on Intel NetBurst microarchitec-
ture (see Section 11.1, “Internal Caches, TLBs, and Buffers”) provides the third-level
cache disable flag, bit 6 of the IA32_MISC_ENABLE MSR. The third-level cache
disable flag allows the L3 cache to be disabled and enabled, independently of the L1
and L2 caches (see Section 11.5.4, “Disabling and Enabling the L3 Cache”). The
third-level cache disable flag applies only to processors based on Intel NetBurst
microarchitecture. Processors with L3 and based on other microarchitectures do not
support the third-level cache disable flag.

22.30 PAGING
This section identifies enhancements made to the paging mechanism and implemen-
tation differences in the paging mechanism for various IA-32 processors.

22.30.1 Large Pages
The Pentium processor extended the memory management/paging facilities of the
IA-32 to allow large (4 MBytes) pages sizes (see Section 4.3, “32-Bit Paging”). The
first P6 family processor (the Pentium Pro processor) added a 2 MByte page size to
the IA-32 in conjunction with the physical address extension (PAE) feature (see
Section 4.4, “PAE Paging”).

The availability of large pages with 32-bit paging on any IA-32 processor can be
determined via feature bit 3 (PSE) of register EDX after the CPUID instruction has
been execution with an argument of 1. (Large pages are always available with PAE
paging and IA-32e paging.) Intel processors that do not support the CPUID instruc-
tion support only 32-bit paging and do not support page size enhancements. (See
“CPUID—CPU Identification” in Chapter 3, “Instruction Set Reference, A-L,” in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A, and AP-
485, Intel Processor Identification and the CPUID Instruction, for more information
on the CPUID instruction.)

22.30.2 PCD and PWT Flags
The PCD and PWT flags were introduced to the IA-32 in the Intel486 processor to
control the caching of pages:
• PCD (page-level cache disable) flag—Controls caching on a page-by-page basis.
• PWT (page-level write-through) flag—Controls the write-through/writeback

caching policy on a page-by-page basis. Since the internal cache of the Intel486
processor is a write-through cache, it is not affected by the state of the PWT flag.
22-42 Vol. 3B

ARCHITECTURE COMPATIBILITY
22.30.3 Enabling and Disabling Paging
Paging is enabled and disabled by loading a value into control register CR0 that modi-
fies the PG flag. For backward and forward compatibility with all IA-32 processors,
Intel recommends that the following operations be performed when enabling or
disabling paging:

1. Execute a MOV CR0, REG instruction to either set (enable paging) or clear
(disable paging) the PG flag.

2. Execute a near JMP instruction.

The sequence bounded by the MOV and JMP instructions should be identity mapped
(that is, the instructions should reside on a page whose linear and physical addresses
are identical).

For the P6 family processors, the MOV CR0, REG instruction is serializing, so the
jump operation is not required. However, for backwards compatibility, the JMP
instruction should still be included.

22.31 STACK OPERATIONS
This section identifies the differences in the stack mechanism for the various IA-32
processors.

22.31.1 Selector Pushes and Pops
When pushing a segment selector onto the stack, the Pentium 4, Intel Xeon, P6
family, and Intel486 processors decrement the ESP register by the operand size and
then write 2 bytes. If the operand size is 32-bits, the upper two bytes of the write are
not modified. The Pentium processor decrements the ESP register by the operand
size and determines the size of the write by the operand size. If the operand size is
32-bits, the upper two bytes are written as 0s.

When popping a segment selector from the stack, the Pentium 4, Intel Xeon, P6
family, and Intel486 processors read 2 bytes and increment the ESP register by the
operand size of the instruction. The Pentium processor determines the size of the
read from the operand size and increments the ESP register by the operand size.

It is possible to align a 32-bit selector push or pop such that the operation generates
an exception on a Pentium processor and not on an Pentium 4, Intel Xeon, P6 family,
or Intel486 processor. This could occur if the third and/or fourth byte of the operation
lies beyond the limit of the segment or if the third and/or fourth byte of the operation
is locate on a non-present or inaccessible page.

For a POP-to-memory instruction that meets the following conditions:
• The stack segment size is 16-bit.
• Any 32-bit addressing form with the SIB byte specifying ESP as the base register.
Vol. 3B 22-43

ARCHITECTURE COMPATIBILITY
• The initial stack pointer is FFFCH (32-bit operand) or FFFEH (16-bit operand) and
will wrap around to 0H as a result of the POP operation.

The result of the memory write is implementation-specific. For example, in P6 family
processors, the result of the memory write is SS:0H plus any scaled index and
displacement. In Pentium processors, the result of the memory write may be either a
stack fault (real mode or protected mode with stack segment size of 64 KByte), or
write to SS:10000H plus any scaled index and displacement (protected mode and
stack segment size exceeds 64 KByte).

22.31.2 Error Code Pushes
The Intel486 processor implements the error code pushed on the stack as a 16-bit
value. When pushed onto a 32-bit stack, the Intel486 processor only pushes 2 bytes
and updates ESP by 4. The P6 family and Pentium processors’ error code is a full 32
bits with the upper 16 bits set to zero. The P6 family and Pentium processors, there-
fore, push 4 bytes and update ESP by 4. Any code that relies on the state of the upper
16 bits may produce inconsistent results.

22.31.3 Fault Handling Effects on the Stack
During the handling of certain instructions, such as CALL and PUSHA, faults may
occur in different sequences for the different processors. For example, during far
calls, the Intel486 processor pushes the old CS and EIP before a possible branch fault
is resolved. A branch fault is a fault from a branch instruction occurring from a
segment limit or access rights violation. If a branch fault is taken, the Intel486 and
P6 family processors will have corrupted memory below the stack pointer. However,
the ESP register is backed up to make the instruction restartable. The P6 family
processors issue the branch before the pushes. Therefore, if a branch fault does
occur, these processors do not corrupt memory below the stack pointer. This imple-
mentation difference, however, does not constitute a compatibility problem, as only
values at or above the stack pointer are considered to be valid. Other operations that
encounter faults may also corrupt memory below the stack pointer and this behavior
may vary on different implementations.

22.31.4 Interlevel RET/IRET From a 16-Bit Interrupt or Call Gate
If a call or interrupt is made from a 32-bit stack environment through a 16-bit gate,
only 16 bits of the old ESP can be pushed onto the stack. On the subsequent
RET/IRET, the 16-bit ESP is popped but the full 32-bit ESP is updated since control is
being resumed in a 32-bit stack environment. The Intel486 processor writes the SS
selector into the upper 16 bits of ESP. The P6 family and Pentium processors write
zeros into the upper 16 bits.
22-44 Vol. 3B

ARCHITECTURE COMPATIBILITY
22.32 MIXING 16- AND 32-BIT SEGMENTS
The features of the 16-bit Intel 286 processor are an object-code compatible subset
of those of the 32-bit IA-32 processors. The D (default operation size) flag in
segment descriptors indicates whether the processor treats a code or data segment
as a 16-bit or 32-bit segment; the B (default stack size) flag in segment descriptors
indicates whether the processor treats a stack segment as a 16-bit or 32-bit
segment.

The segment descriptors used by the Intel 286 processor are supported by the 32-bit
IA-32 processors if the Intel-reserved word (highest word) of the descriptor is clear.
On the 32-bit IA-32 processors, this word includes the upper bits of the base address
and the segment limit.

The segment descriptors for data segments, code segments, local descriptor tables
(there are no descriptors for global descriptor tables), and task gates are the same
for the 16- and 32-bit processors. Other 16-bit descriptors (TSS segment, call gate,
interrupt gate, and trap gate) are supported by the 32-bit processors.

The 32-bit processors also have descriptors for TSS segments, call gates, interrupt
gates, and trap gates that support the 32-bit architecture. Both kinds of descriptors
can be used in the same system.

For those segment descriptors common to both 16- and 32-bit processors, clear bits
in the reserved word cause the 32-bit processors to interpret these descriptors
exactly as an Intel 286 processor does, that is:
• Base Address — The upper 8 bits of the 32-bit base address are clear, which limits

base addresses to 24 bits.
• Limit — The upper 4 bits of the limit field are clear, restricting the value of the

limit field to 64 KBytes.
• Granularity bit — The G (granularity) flag is clear, indicating the value of the

16-bit limit is interpreted in units of 1 byte.
• Big bit — In a data-segment descriptor, the B flag is clear in the segment

descriptor used by the 32-bit processors, indicating the segment is no larger than
64 KBytes.

• Default bit — In a code-segment descriptor, the D flag is clear, indicating 16-bit
addressing and operands are the default. In a stack-segment descriptor, the D
flag is clear, indicating use of the SP register (instead of the ESP register) and a
64-KByte maximum segment limit.

For information on mixing 16- and 32-bit code in applications, see Chapter 21,
“Mixing 16-Bit and 32-Bit Code.”

22.33 SEGMENT AND ADDRESS WRAPAROUND
This section discusses differences in segment and address wraparound between the
P6 family, Pentium, Intel486, Intel386, Intel 286, and 8086 processors.
Vol. 3B 22-45

ARCHITECTURE COMPATIBILITY
22.33.1 Segment Wraparound
On the 8086 processor, an attempt to access a memory operand that crosses offset
65,535 or 0FFFFH or offset 0 (for example, moving a word to offset 65,535 or
pushing a word when the stack pointer is set to 1) causes the offset to wrap around
modulo 65,536 or 010000H. With the Intel 286 processor, any base and offset combi-
nation that addresses beyond 16 MBytes wraps around to the 1 MByte of the address
space. The P6 family, Pentium, Intel486, and Intel386 processors in real-address
mode generate an exception in these cases:
• A general-protection exception (#GP) if the segment is a data segment (that is,

if the CS, DS, ES, FS, or GS register is being used to address the segment).
• A stack-fault exception (#SS) if the segment is a stack segment (that is, if the SS

register is being used).

An exception to this behavior occurs when a stack access is data aligned, and the
stack pointer is pointing to the last aligned piece of data that size at the top of the
stack (ESP is FFFFFFFCH). When this data is popped, no segment limit violation
occurs and the stack pointer will wrap around to 0.

The address space of the P6 family, Pentium, and Intel486 processors may wrap-
around at 1 MByte in real-address mode. An external A20M# pin forces wraparound
if enabled. On Intel 8086 processors, it is possible to specify addresses greater than
1 MByte. For example, with a selector value FFFFH and an offset of FFFFH, the effec-
tive address would be 10FFEFH (1 MByte plus 65519 bytes). The 8086 processor,
which can form addresses up to 20 bits long, truncates the uppermost bit, which
“wraps” this address to FFEFH. However, the P6 family, Pentium, and Intel486
processors do not truncate this bit if A20M# is not enabled.

If a stack operation wraps around the address limit, shutdown occurs. (The 8086
processor does not have a shutdown mode or a limit.)

The behavior when executing near the limit of a 4-GByte selector (limit=0xFFFFFFFF)
is different between the Pentium Pro and the Pentium 4 family of processors. On the
Pentium Pro, instructions which cross the limit -- for example, a two byte instruction
such as INC EAX that is encoded as 0xFF 0xC0 starting exactly at the limit faults for
a segment violation (a one byte instruction at 0xFFFFFFFF does not cause an excep-
tion). Using the Pentium 4 microprocessor family, neither of these situations causes
a fault.

Segment wraparound and the functionality of A20M# is used primarily by older oper-
ating systems and not used by modern operating systems. On newer Intel 64 proces-
sors, A20M# may be absent.

22.34 STORE BUFFERS AND MEMORY ORDERING
The Pentium 4, Intel Xeon, and P6 family processors provide a store buffer for
temporary storage of writes (stores) to memory (see Section 11.10, “Store Buffer”).
Writes stored in the store buffer(s) are always written to memory in program order,
22-46 Vol. 3B

ARCHITECTURE COMPATIBILITY
with the exception of “fast string” store operations (see Section 8.2.4, “Fast-String
Operation and Out-of-Order Stores”).

The Pentium processor has two store buffers, one corresponding to each of the pipe-
lines. Writes in these buffers are always written to memory in the order they were
generated by the processor core.

It should be noted that only memory writes are buffered and I/O writes are not. The
Pentium 4, Intel Xeon, P6 family, Pentium, and Intel486 processors do not synchro-
nize the completion of memory writes on the bus and instruction execution after a
write. An I/O, locked, or serializing instruction needs to be executed to synchronize
writes with the next instruction (see Section 8.3, “Serializing Instructions”).

The Pentium 4, Intel Xeon, and P6 family processors use processor ordering to main-
tain consistency in the order that data is read (loaded) and written (stored) in a
program and the order the processor actually carries out the reads and writes. With
this type of ordering, reads can be carried out speculatively and in any order, reads
can pass buffered writes, and writes to memory are always carried out in program
order. (See Section 8.2, “Memory Ordering,” for more information about processor
ordering.) The Pentium III processor introduced a new instruction to serialize writes
and make them globally visible. Memory ordering issues can arise between a
producer and a consumer of data. The SFENCE instruction provides a performance-
efficient way of ensuring ordering between routines that produce weakly-ordered
results and routines that consume this data.

No re-ordering of reads occurs on the Pentium processor, except under the condition
noted in Section 8.2.1, “Memory Ordering in the Intel® Pentium® and Intel486™
Processors,” and in the following paragraph describing the Intel486 processor.

Specifically, the store buffers are flushed before the IN instruction is executed. No
reads (as a result of cache miss) are reordered around previously generated writes
sitting in the store buffers. The implication of this is that the store buffers will be
flushed or emptied before a subsequent bus cycle is run on the external bus.

On both the Intel486 and Pentium processors, under certain conditions, a memory
read will go onto the external bus before the pending memory writes in the buffer
even though the writes occurred earlier in the program execution. A memory read
will only be reordered in front of all writes pending in the buffers if all writes pending
in the buffers are cache hits and the read is a cache miss. Under these conditions, the
Intel486 and Pentium processors will not read from an external memory location that
needs to be updated by one of the pending writes.

During a locked bus cycle, the Intel486 processor will always access external
memory, it will never look for the location in the on-chip cache. All data pending in
the Intel486 processor's store buffers will be written to memory before a locked cycle
is allowed to proceed to the external bus. Thus, the locked bus cycle can be used for
eliminating the possibility of reordering read cycles on the Intel486 processor. The
Pentium processor does check its cache on a read-modify-write access and, if the
cache line has been modified, writes the contents back to memory before locking the
bus. The P6 family processors write to their cache on a read-modify-write operation
(if the access does not split across a cache line) and does not write back to system
Vol. 3B 22-47

ARCHITECTURE COMPATIBILITY
memory. If the access does split across a cache line, it locks the bus and accesses
system memory.

I/O reads are never reordered in front of buffered memory writes on an IA-32
processor. This ensures an update of all memory locations before reading the status
from an I/O device.

22.35 BUS LOCKING
The Intel 286 processor performs the bus locking differently than the Intel P6 family,
Pentium, Intel486, and Intel386 processors. Programs that use forms of memory
locking specific to the Intel 286 processor may not run properly when run on later
processors.

A locked instruction is guaranteed to lock only the area of memory defined by the
destination operand, but may lock a larger memory area. For example, typical 8086
and Intel 286 configurations lock the entire physical memory space. Programmers
should not depend on this.

On the Intel 286 processor, the LOCK prefix is sensitive to IOPL. If the CPL is greater
than the IOPL, a general-protection exception (#GP) is generated. On the Intel386
DX, Intel486, and Pentium, and P6 family processors, no check against IOPL is
performed.

The Pentium processor automatically asserts the LOCK# signal when acknowledging
external interrupts. After signaling an interrupt request, an external interrupt
controller may use the data bus to send the interrupt vector to the processor. After
receiving the interrupt request signal, the processor asserts LOCK# to insure that no
other data appears on the data bus until the interrupt vector is received. This bus
locking does not occur on the P6 family processors.

22.36 BUS HOLD
Unlike the 8086 and Intel 286 processors, but like the Intel386 and Intel486 proces-
sors, the P6 family and Pentium processors respond to requests for control of the bus
from other potential bus masters, such as DMA controllers, between transfers of
parts of an unaligned operand, such as two words which form a doubleword. Unlike
the Intel386 processor, the P6 family, Pentium and Intel486 processors respond to
bus hold during reset initialization.

22.37 MODEL-SPECIFIC EXTENSIONS TO THE IA-32
Certain extensions to the IA-32 are specific to a processor or family of IA-32 proces-
sors and may not be implemented or implemented in the same way in future proces-
22-48 Vol. 3B

ARCHITECTURE COMPATIBILITY
sors. The following sections describe these model-specific extensions. The CPUID
instruction indicates the availability of some of the model-specific features.

22.37.1 Model-Specific Registers
The Pentium processor introduced a set of model-specific registers (MSRs) for use in
controlling hardware functions and performance monitoring. To access these MSRs,
two new instructions were added to the IA-32 architecture: read MSR (RDMSR) and
write MSR (WRMSR). The MSRs in the Pentium processor are not guaranteed to be
duplicated or provided in the next generation IA-32 processors.

The P6 family processors greatly increased the number of MSRs available to soft-
ware. See Chapter 34, “Model-Specific Registers (MSRs),” for a complete list of the
available MSRs. The new registers control the debug extensions, the performance
counters, the machine-check exception capability, the machine-check architecture,
and the MTRRs. These registers are accessible using the RDMSR and WRMSR instruc-
tions. Specific information on some of these new MSRs is provided in the following
sections. As with the Pentium processor MSR, the P6 family processor MSRs are not
guaranteed to be duplicated or provided in the next generation IA-32 processors.

22.37.2 RDMSR and WRMSR Instructions
The RDMSR (read model-specific register) and WRMSR (write model-specific
register) instructions recognize a much larger number of model-specific registers in
the P6 family processors. (See “RDMSR—Read from Model Specific Register” and
“WRMSR—Write to Model Specific Register” in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volumes 2A, 2B & 2C for more information.)

22.37.3 Memory Type Range Registers
Memory type range registers (MTRRs) are a new feature introduced into the IA-32 in
the Pentium Pro processor. MTRRs allow the processor to optimize memory opera-
tions for different types of memory, such as RAM, ROM, frame buffer memory, and
memory-mapped I/O.

MTRRs are MSRs that contain an internal map of how physical address ranges are
mapped to various types of memory. The processor uses this internal memory map
to determine the cacheability of various physical memory locations and the optimal
method of accessing memory locations. For example, if a memory location is speci-
fied in an MTRR as write-through memory, the processor handles accesses to this
location as follows. It reads data from that location in lines and caches the read data
or maps all writes to that location to the bus and updates the cache to maintain cache
coherency. In mapping the physical address space with MTRRs, the processor recog-
nizes five types of memory: uncacheable (UC), uncacheable, speculatable, write-
combining (WC), write-through (WT), write-protected (WP), and writeback (WB).
Vol. 3B 22-49

ARCHITECTURE COMPATIBILITY
Earlier IA-32 processors (such as the Intel486 and Pentium processors) used the
KEN# (cache enable) pin and external logic to maintain an external memory map and
signal cacheable accesses to the processor. The MTRR mechanism simplifies hard-
ware designs by eliminating the KEN# pin and the external logic required to drive it.

See Chapter 9, “Processor Management and Initialization,” and Chapter 34, “Model-
Specific Registers (MSRs),” for more information on the MTRRs.

22.37.4 Machine-Check Exception and Architecture
The Pentium processor introduced a new exception called the machine-check excep-
tion (#MC, interrupt 18). This exception is used to detect hardware-related errors,
such as a parity error on a read cycle.

The P6 family processors extend the types of errors that can be detected and that
generate a machine-check exception. It also provides a new machine-check architec-
ture for recording information about a machine-check error and provides extended
recovery capability.

The machine-check architecture provides several banks of reporting registers for
recording machine-check errors. Each bank of registers is associated with a specific
hardware unit in the processor. The primary focus of the machine checks is on bus
and interconnect operations; however, checks are also made of translation lookaside
buffer (TLB) and cache operations.

The machine-check architecture can correct some errors automatically and allow for
reliable restart of instruction execution. It also collects sufficient information for soft-
ware to use in correcting other machine errors not corrected by hardware.

See Chapter 15, “Machine-Check Architecture,” for more information on the
machine-check exception and the machine-check architecture.

22.37.5 Performance-Monitoring Counters
The P6 family and Pentium processors provide two performance-monitoring counters
for use in monitoring internal hardware operations. The number of performance
monitoring counters and associated programming interfaces may be implementation
specific for Pentium 4 processors, Pentium M processors. Later processors may have
implemented these as part of an architectural performance monitoring feature. The
architectural and non-architectural performance monitoring interfaces for different
processor families are described in Chapter 18, “Performance Monitoring,”. Chapter
19, “Performance-Monitoring Events.” lists all the events that can be counted for
architectural performance monitoring events and non-architectural events. The
counters are set up, started, and stopped using two MSRs and the RDMSR and
WRMSR instructions. For the P6 family processors, the current count for a particular
counter can be read using the new RDPMC instruction.
22-50 Vol. 3B

ARCHITECTURE COMPATIBILITY
The performance-monitoring counters are useful for debugging programs, optimizing
code, diagnosing system failures, or refining hardware designs. See Chapter 18,
“Performance Monitoring,” for more information on these counters.

22.38 TWO WAYS TO RUN INTEL 286 PROCESSOR TASKS
When porting 16-bit programs to run on 32-bit IA-32 processors, there are two
approaches to consider:
• Porting an entire 16-bit software system to a 32-bit processor, complete with the

old operating system, loader, and system builder. Here, all tasks will have 16-bit
TSSs. The 32-bit processor is being used as if it were a faster version of the 16-bit
processor.

• Porting selected 16-bit applications to run in a 32-bit processor environment with
a 32-bit operating system, loader, and system builder. Here, the TSSs used to
represent 286 tasks should be changed to 32-bit TSSs. It is possible to mix 16
and 32-bit TSSs, but the benefits are small and the problems are great. All tasks
in a 32-bit software system should have 32-bit TSSs. It is not necessary to
change the 16-bit object modules themselves; TSSs are usually constructed by
the operating system, by the loader, or by the system builder. See Chapter 21,
“Mixing 16-Bit and 32-Bit Code,” for more detailed information about mixing
16-bit and 32-bit code.

Because the 32-bit processors use the contents of the reserved word of 16-bit
segment descriptors, 16-bit programs that place values in this word may not run
correctly on the 32-bit processors.
Vol. 3B 22-51

CHAPTER 23
INTRODUCTION TO VIRTUAL-MACHINE EXTENSIONS

23.1 OVERVIEW
This chapter describes the basics of virtual machine architecture and an overview of
the virtual-machine extensions (VMX) that support virtualization of processor hard-
ware for multiple software environments.

Information about VMX instructions is provided in Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 2B. Other aspects of VMX and system
programming considerations are described in chapters of Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3B.

23.2 VIRTUAL MACHINE ARCHITECTURE
Virtual-machine extensions define processor-level support for virtual machines on
IA-32 processors. Two principal classes of software are supported:
• Virtual-machine monitors (VMM) — A VMM acts as a host and has full control

of the processor(s) and other platform hardware. A VMM presents guest software
(see next paragraph) with an abstraction of a virtual processor and allows it to
execute directly on a logical processor. A VMM is able to retain selective control of
processor resources, physical memory, interrupt management, and I/O.

• Guest software — Each virtual machine (VM) is a guest software environment
that supports a stack consisting of operating system (OS) and application
software. Each operates independently of other virtual machines and uses on the
same interface to processor(s), memory, storage, graphics, and I/O provided by
a physical platform. The software stack acts as if it were running on a platform
with no VMM. Software executing in a virtual machine must operate with reduced
privilege so that the VMM can retain control of platform resources.

23.3 INTRODUCTION TO VMX OPERATION
Processor support for virtualization is provided by a form of processor operation
called VMX operation. There are two kinds of VMX operation: VMX root operation and
VMX non-root operation. In general, a VMM will run in VMX root operation and guest
software will run in VMX non-root operation. Transitions between VMX root operation
and VMX non-root operation are called VMX transitions. There are two kinds of VMX
transitions. Transitions into VMX non-root operation are called VM entries. Transi-
tions from VMX non-root operation to VMX root operation are called VM exits.
Vol. 3C 23-1

INTRODUCTION TO VIRTUAL-MACHINE EXTENSIONS
Processor behavior in VMX root operation is very much as it is outside VMX operation.
The principal differences are that a set of new instructions (the VMX instructions) is
available and that the values that can be loaded into certain control registers are
limited (see Section 23.8).

Processor behavior in VMX non-root operation is restricted and modified to facilitate
virtualization. Instead of their ordinary operation, certain instructions (including the
new VMCALL instruction) and events cause VM exits to the VMM. Because these
VM exits replace ordinary behavior, the functionality of software in VMX non-root
operation is limited. It is this limitation that allows the VMM to retain control of
processor resources.

There is no software-visible bit whose setting indicates whether a logical processor is
in VMX non-root operation. This fact may allow a VMM to prevent guest software from
determining that it is running in a virtual machine.

Because VMX operation places restrictions even on software running with current
privilege level (CPL) 0, guest software can run at the privilege level for which it was
originally designed. This capability may simplify the development of a VMM.

23.4 LIFE CYCLE OF VMM SOFTWARE
Figure 23-1 illustrates the life cycle of a VMM and its guest software as well as the
interactions between them. The following items summarize that life cycle:
• Software enters VMX operation by executing a VMXON instruction.
• Using VM entries, a VMM can then enter guests into virtual machines (one at a

time). The VMM effects a VM entry using instructions VMLAUNCH and
VMRESUME; it regains control using VM exits.

• VM exits transfer control to an entry point specified by the VMM. The VMM can
take action appropriate to the cause of the VM exit and can then return to the
virtual machine using a VM entry.

• Eventually, the VMM may decide to shut itself down and leave VMX operation. It
does so by executing the VMXOFF instruction.
23-2 Vol. 3C

INTRODUCTION TO VIRTUAL-MACHINE EXTENSIONS
23.5 VIRTUAL-MACHINE CONTROL STRUCTURE
VMX non-root operation and VMX transitions are controlled by a data structure called
a virtual-machine control structure (VMCS).

Access to the VMCS is managed through a component of processor state called the
VMCS pointer (one per logical processor). The value of the VMCS pointer is the 64-bit
address of the VMCS. The VMCS pointer is read and written using the instructions
VMPTRST and VMPTRLD. The VMM configures a VMCS using the VMREAD, VMWRITE,
and VMCLEAR instructions.

A VMM could use a different VMCS for each virtual machine that it supports. For a
virtual machine with multiple logical processors (virtual processors), the VMM could
use a different VMCS for each virtual processor.

23.6 DISCOVERING SUPPORT FOR VMX
Before system software enters into VMX operation, it must discover the presence of
VMX support in the processor. System software can determine whether a processor
supports VMX operation using CPUID. If CPUID.1:ECX.VMX[bit 5] = 1, then VMX
operation is supported. See Chapter 3, “Instruction Set Reference, A-L” of Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 2A.

The VMX architecture is designed to be extensible so that future processors in VMX
operation can support additional features not present in first-generation implemen-
tations of the VMX architecture. The availability of extensible VMX features is
reported to software using a set of VMX capability MSRs (see Appendix A, “VMX
Capability Reporting Facility”).

Figure 23-1. Interaction of a Virtual-Machine Monitor and Guests

VM Monitor

Guest 0 Guest 1

VM Exit VM ExitVM Entry

VMXOFFVMXON
Vol. 3C 23-3

INTRODUCTION TO VIRTUAL-MACHINE EXTENSIONS
23.7 ENABLING AND ENTERING VMX OPERATION
Before system software can enter VMX operation, it enables VMX by setting
CR4.VMXE[bit 13] = 1. VMX operation is then entered by executing the VMXON
instruction. VMXON causes an invalid-opcode exception (#UD) if executed with
CR4.VMXE = 0. Once in VMX operation, it is not possible to clear CR4.VMXE (see
Section 23.8). System software leaves VMX operation by executing the VMXOFF
instruction. CR4.VMXE can be cleared outside of VMX operation after executing of
VMXOFF.

VMXON is also controlled by the IA32_FEATURE_CONTROL MSR (MSR address 3AH).
This MSR is cleared to zero when a logical processor is reset. The relevant bits of the
MSR are:
• Bit 0 is the lock bit. If this bit is clear, VMXON causes a general-protection

exception. If the lock bit is set, WRMSR to this MSR causes a general-protection
exception; the MSR cannot be modified until a power-up reset condition. System
BIOS can use this bit to provide a setup option for BIOS to disable support for
VMX. To enable VMX support in a platform, BIOS must set bit 1, bit 2, or both
(see below), as well as the lock bit.

• Bit 1 enables VMXON in SMX operation. If this bit is clear, execution of
VMXON in SMX operation causes a general-protection exception. Attempts to set
this bit on logical processors that do not support both VMX operation (see Section
23.6) and SMX operation (see Chapter 6, “Safer Mode Extensions Reference,” in
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B)
cause general-protection exceptions.

• Bit 2 enables VMXON outside SMX operation. If this bit is clear, execution of
VMXON outside SMX operation causes a general-protection exception. Attempts
to set this bit on logical processors that do not support VMX operation (see
Section 23.6) cause general-protection exceptions.

NOTE
A logical processor is in SMX operation if GETSEC[SEXIT] has not
been executed since the last execution of GETSEC[SENTER]. A logical
processor is outside SMX operation if GETSEC[SENTER] has not been
executed or if GETSEC[SEXIT] was executed after the last execution
of GETSEC[SENTER]. See Chapter 6, “Safer Mode Extensions
Reference,” in Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2B.

Before executing VMXON, software should allocate a naturally aligned 4-KByte region
of memory that a logical processor may use to support VMX operation.1 This region
is called the VMXON region. The address of the VMXON region (the VMXON pointer)

1. Future processors may require that a different amount of memory be reserved. If so, this fact is
reported to software using the VMX capability-reporting mechanism.
23-4 Vol. 3C

INTRODUCTION TO VIRTUAL-MACHINE EXTENSIONS
is provided in an operand to VMXON. Section 24.10.5, “VMXON Region,” details how
software should initialize and access the VMXON region.

23.8 RESTRICTIONS ON VMX OPERATION
VMX operation places restrictions on processor operation. These are detailed below:
• In VMX operation, processors may fix certain bits in CR0 and CR4 to specific

values and not support other values. VMXON fails if any of these bits contains an
unsupported value (see “VMXON—Enter VMX Operation” in Chapter 29 of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C).
Any attempt to set one of these bits to an unsupported value while in VMX
operation (including VMX root operation) using any of the CLTS, LMSW, or MOV
CR instructions causes a general-protection exception. VM entry or VM exit
cannot set any of these bits to an unsupported value.1

NOTES
The first processors to support VMX operation require that the
following bits be 1 in VMX operation: CR0.PE, CR0.NE, CR0.PG, and
CR4.VMXE. The restrictions on CR0.PE and CR0.PG imply that VMX
operation is supported only in paged protected mode (including
IA-32e mode). Therefore, guest software cannot be run in unpaged
protected mode or in real-address mode. See Section 30.2,
“Supporting Processor Operating Modes in Guest Environments,” for
a discussion of how a VMM might support guest software that expects
to run in unpaged protected mode or in real-address mode.
Later processors support a VM-execution control called “unrestricted
guest” (see Section 24.6.2). If this control is 1, CR0.PE and CR0.PG
may be 0 in VMX non-root operation (even if the capability MSR
IA32_VMX_CR0_FIXED0 reports otherwise).2 Such processors allow
guest software to run in unpaged protected mode or in real-address
mode.

• VMXON fails if a logical processor is in A20M mode (see “VMXON—Enter VMX
Operation” in Chapter 29 of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3C). Once the processor is in VMX operation, A20M

1. Software should consult the VMX capability MSRs IA32_VMX_CR0_FIXED0 and
IA32_VMX_CR0_FIXED1 to determine how bits in CR0 are set. (see Appendix A.7). For CR4, soft-
ware should consult the VMX capability MSRs IA32_VMX_CR4_FIXED0 and
IA32_VMX_CR4_FIXED1 (see Appendix A.8).

2. “Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the pri-
mary processor-based VM-execution controls is 0, VMX non-root operation functions as if the
“unrestricted guest” VM-execution control were 0. See Section 24.6.2.
Vol. 3C 23-5

INTRODUCTION TO VIRTUAL-MACHINE EXTENSIONS
interrupts are blocked. Thus, it is impossible to be in A20M mode in VMX
operation.

• The INIT signal is blocked whenever a logical processor is in VMX root operation.
It is not blocked in VMX non-root operation. Instead, INITs cause VM exits (see
Section 25.3, “Other Causes of VM Exits”).
23-6 Vol. 3C

CHAPTER 24
VIRTUAL-MACHINE CONTROL STRUCTURES

24.1 OVERVIEW
A logical processor uses virtual-machine control data structures (VMCSs) while
it is in VMX operation. These manage transitions into and out of VMX non-root oper-
ation (VM entries and VM exits) as well as processor behavior in VMX non-root oper-
ation. This structure is manipulated by the new instructions VMCLEAR, VMPTRLD,
VMREAD, and VMWRITE.

A VMM can use a different VMCS for each virtual machine that it supports. For a
virtual machine with multiple logical processors (virtual processors), the VMM can
use a different VMCS for each virtual processor.

A logical processor associates a region in memory with each VMCS. This region is
called the VMCS region.1 Software references a specific VMCS using the 64-bit
physical address of the region (a VMCS pointer). VMCS pointers must be aligned on
a 4-KByte boundary (bits 11:0 must be zero). These pointers must not set bits
beyond the processor’s physical-address width.2,3

A logical processor may maintain a number of VMCSs that are active. The processor
may optimize VMX operation by maintaining the state of an active VMCS in memory,
on the processor, or both. At any given time, at most one of the active VMCSs is the
current VMCS. (This document frequently uses the term “the VMCS” to refer to the
current VMCS.) The VMLAUNCH, VMREAD, VMRESUME, and VMWRITE instructions
operate only on the current VMCS.

The following items describe how a logical processor determines which VMCSs are
active and which is current:
• The memory operand of the VMPTRLD instruction is the address of a VMCS. After

execution of the instruction, that VMCS is both active and current on the logical
processor. Any other VMCS that had been active remains so, but no other VMCS
is current.

• The memory operand of the VMCLEAR instruction is also the address of a VMCS.
After execution of the instruction, that VMCS is neither active nor current on the

1. The amount of memory required for a VMCS region is at most 4 KBytes. The exact size is imple-
mentation specific and can be determined by consulting the VMX capability MSR
IA32_VMX_BASIC to determine the size of the VMCS region (see Appendix A.1).

2. Software can determine a processor’s physical-address width by executing CPUID with
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

3. If IA32_VMX_BASIC[48] is read as 1, these pointers must not set any bits in the range 63:32; see
Appendix A.1.
Vol. 3C 24-1

VIRTUAL-MACHINE CONTROL STRUCTURES
logical processor. If the VMCS had been current on the logical processor, the
logical processor no longer has a current VMCS.

The VMPTRST instruction stores the address of the logical processor’s current VMCS
into a specified memory location (it stores the value FFFFFFFF_FFFFFFFFH if there is
no current VMCS).

The launch state of a VMCS determines which VM-entry instruction should be used
with that VMCS: the VMLAUNCH instruction requires a VMCS whose launch state is
“clear”; the VMRESUME instruction requires a VMCS whose launch state is
“launched”. A logical processor maintains a VMCS’s launch state in the corresponding
VMCS region. The following items describe how a logical processor manages the
launch state of a VMCS:
• If the launch state of the current VMCS is “clear”, successful execution of the

VMLAUNCH instruction changes the launch state to “launched”.
• The memory operand of the VMCLEAR instruction is the address of a VMCS. After

execution of the instruction, the launch state of that VMCS is “clear”.
• There are no other ways to modify the launch state of a VMCS (it cannot be

modified using VMWRITE) and there is no direct way to discover it (it cannot be
read using VMREAD).

Figure 24-1 illustrates the different states of a VMCS. It uses “X” to refer to the VMCS
and “Y” to refer to any other VMCS. Thus: “VMPTRLD X” always makes X current and
active; “VMPTRLD Y” always makes X not current (because it makes Y current);
VMLAUNCH makes the launch state of X “launched” if X was current and its launch
state was “clear”; and VMCLEAR X always makes X inactive and not current and
makes its launch state “clear”.

The figure does not illustrate operations that do not modify the VMCS state relative
to these parameters (e.g., execution of VMPTRLD X when X is already current). Note
that VMCLEAR X makes X “inactive, not current, and clear,” even if X’s current state
is not defined (e.g., even if X has not yet been initialized). See Section 24.10.3.
24-2 Vol. 3C

VIRTUAL-MACHINE CONTROL STRUCTURES
24.2 FORMAT OF THE VMCS REGION
A VMCS region comprises up to 4-KBytes.1 The format of a VMCS region is given in
Table 24-1.

The first 32 bits of the VMCS region contain the VMCS revision identifier. Proces-
sors that maintain VMCS data in different formats (see below) use different VMCS

Figure 24-1. States of VMCS X

1. The exact size is implementation specific and can be determined by consulting the VMX capabil-
ity MSR IA32_VMX_BASIC to determine the size of the VMCS region (see Appendix A.1).

Table 24-1. Format of the VMCS Region

Byte Offset Contents

0 VMCS revision identifier

4 VMX-abort indicator

8 VMCS data (implementation-specific format)

Active
Not Current

Clear

Active
Current
Clear

Inactive
Not Current

Clear

Active
Not Current
Launched

Active
Current

Launched

VM
PTRLD X

VM
CLEAR X

VMLAUNCH

VM
CLEAR X

VMCLEAR XVMCLEAR X

VMCLEAR X

Anything
Else

V
M

P
T

R
L

D
 X

V
M

P
T

R
L

D
 Y

V
M

P
T

R
L

D
 X

V
M

P
T

R
L

D
 Y
Vol. 3C 24-3

VIRTUAL-MACHINE CONTROL STRUCTURES
revision identifiers. These identifiers enable software to avoid using a VMCS region
formatted for one processor on a processor that uses a different format.1

Software should write the VMCS revision identifier to the VMCS region before using
that region for a VMCS. The VMCS revision identifier is never written by the
processor; VMPTRLD may fail if its operand references a VMCS region whose VMCS
revision identifier differs from that used by the processor. Software can discover the
VMCS revision identifier that a processor uses by reading the VMX capability MSR
IA32_VMX_BASIC (see Appendix A, “VMX Capability Reporting Facility”).

The next 32 bits of the VMCS region are used for the VMX-abort indicator. The
contents of these bits do not control processor operation in any way. A logical
processor writes a non-zero value into these bits if a VMX abort occurs (see Section
27.7). Software may also write into this field.

The remainder of the VMCS region is used for VMCS data (those parts of the VMCS
that control VMX non-root operation and the VMX transitions). The format of these
data is implementation-specific. VMCS data are discussed in Section 24.3 through
Section 24.9. To ensure proper behavior in VMX operation, software should maintain
the VMCS region and related structures (enumerated in Section 24.10.4) in
writeback cacheable memory. Future implementations may allow or require a
different memory type2. Software should consult the VMX capability MSR
IA32_VMX_BASIC (see Appendix A.1).

24.3 ORGANIZATION OF VMCS DATA
The VMCS data are organized into six logical groups:
• Guest-state area. Processor state is saved into the guest-state area on

VM exits and loaded from there on VM entries.
• Host-state area. Processor state is loaded from the host-state area on VM exits.
• VM-execution control fields. These fields control processor behavior in VMX

non-root operation. They determine in part the causes of VM exits.
• VM-exit control fields. These fields control VM exits.
• VM-entry control fields. These fields control VM entries.
• VM-exit information fields. These fields receive information on VM exits and

describe the cause and the nature of VM exits. They are read-only.

1. Logical processors that use the same VMCS revision identifier use the same size for VMCS
regions.

2. Alternatively, software may map any of these regions or structures with the UC memory type.
Doing so is strongly discouraged unless necessary as it will cause the performance of transitions
using those structures to suffer significantly. In addition, the processor will continue to use the
memory type reported in the VMX capability MSR IA32_VMX_BASIC with exceptions noted in
Appendix A.1.
24-4 Vol. 3C

VIRTUAL-MACHINE CONTROL STRUCTURES
The VM-execution control fields, the VM-exit control fields, and the VM-entry control
fields are sometimes referred to collectively as VMX controls.

24.4 GUEST-STATE AREA
This section describes fields contained in the guest-state area of the VMCS. As noted
earlier, processor state is loaded from these fields on every VM entry (see Section
26.3.2) and stored into these fields on every VM exit (see Section 27.3).

24.4.1 Guest Register State
The following fields in the guest-state area correspond to processor registers:
• Control registers CR0, CR3, and CR4 (64 bits each; 32 bits on processors that do

not support Intel 64 architecture).
• Debug register DR7 (64 bits; 32 bits on processors that do not support Intel 64

architecture).
• RSP, RIP, and RFLAGS (64 bits each; 32 bits on processors that do not support

Intel 64 architecture).1

• The following fields for each of the registers CS, SS, DS, ES, FS, GS, LDTR, and
TR:

— Selector (16 bits).

— Base address (64 bits; 32 bits on processors that do not support Intel 64
architecture). The base-address fields for CS, SS, DS, and ES have only 32
architecturally-defined bits; nevertheless, the corresponding VMCS fields
have 64 bits on processors that support Intel 64 architecture.

— Segment limit (32 bits). The limit field is always a measure in bytes.

— Access rights (32 bits). The format of this field is given in Table 24-2 and
detailed as follows:

• The low 16 bits correspond to bits 23:8 of the upper 32 bits of a 64-bit
segment descriptor. While bits 19:16 of code-segment and data-segment
descriptors correspond to the upper 4 bits of the segment limit, the corre-
sponding bits (bits 11:8) are reserved in this VMCS field.

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most
processors that support VMX operation also support Intel 64 architecture. For processors that do
not support Intel 64 architecture, this notation refers to the 32-bit forms of those registers
(EAX, EIP, ESP, EFLAGS, etc.). In a few places, notation such as EAX is used to refer specifically to
lower 32 bits of the indicated register.
Vol. 3C 24-5

VIRTUAL-MACHINE CONTROL STRUCTURES
• Bit 16 indicates an unusable segment. Attempts to use such a segment
fault except in 64-bit mode. In general, a segment register is unusable if
it has been loaded with a null selector.1

• Bits 31:17 are reserved.

The base address, segment limit, and access rights compose the “hidden” part
(or “descriptor cache”) of each segment register. These data are included in the
VMCS because it is possible for a segment register’s descriptor cache to be incon-
sistent with the segment descriptor in memory (in the GDT or the LDT)
referenced by the segment register’s selector.
The value of the DPL field for SS is always equal to the logical processor’s current
privilege level (CPL).2

• The following fields for each of the registers GDTR and IDTR:

1. There are a few exceptions to this statement. For example, a segment with a non-null selector
may be unusable following a task switch that fails after its commit point; see “Interrupt
10—Invalid TSS Exception (#TS)” in Section 6.14, “Exception and Interrupt Handling in 64-bit
Mode,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A. In
contrast, the TR register is usable after processor reset despite having a null selector; see Table
10-1 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

Table 24-2. Format of Access Rights

Bit Position(s) Field

3:0 Segment type

4 S — Descriptor type (0 = system; 1 = code or data)

6:5 DPL — Descriptor privilege level

7 P — Segment present

11:8 Reserved

12 AVL — Available for use by system software

13 Reserved (except for CS)
L — 64-bit mode active (for CS only)

14 D/B — Default operation size (0 = 16-bit segment; 1 = 32-bit segment)

15 G — Granularity

16 Segment unusable (0 = usable; 1 = unusable)

31:17 Reserved
24-6 Vol. 3C

VIRTUAL-MACHINE CONTROL STRUCTURES
— Base address (64 bits; 32 bits on processors that do not support Intel 64
architecture).

— Limit (32 bits). The limit fields contain 32 bits even though these fields are
specified as only 16 bits in the architecture.

• The following MSRs:

— IA32_DEBUGCTL (64 bits)

— IA32_SYSENTER_CS (32 bits)

— IA32_SYSENTER_ESP and IA32_SYSENTER_EIP (64 bits; 32 bits on
processors that do not support Intel 64 architecture)

— IA32_PERF_GLOBAL_CTRL (64 bits). This field is supported only on logical
processors that support the 1-setting of the “load IA32_PERF_GLOBAL_CTRL”
VM-entry control.

— IA32_PAT (64 bits). This field is supported only on logical processors that
support either the 1-setting of the “load IA32_PAT” VM-entry control or that
of the “save IA32_PAT” VM-exit control.

— IA32_EFER (64 bits). This field is supported only on logical processors that
support either the 1-setting of the “load IA32_EFER” VM-entry control or that
of the “save IA32_EFER” VM-exit control.

• The register SMBASE (32 bits). This register contains the base address of the
logical processor’s SMRAM image.

24.4.2 Guest Non-Register State
In addition to the register state described in Section 24.4.1, the guest-state area
includes the following fields that characterize guest state but which do not corre-
spond to processor registers:
• Activity state (32 bits). This field identifies the logical processor’s activity state.

When a logical processor is executing instructions normally, it is in the active
state. Execution of certain instructions and the occurrence of certain events may
cause a logical processor to transition to an inactive state in which it ceases to
execute instructions.
The following activity states are defined:1

— 0: Active. The logical processor is executing instructions normally.

— 1: HLT. The logical processor is inactive because it executed the HLT
instruction.

2. In protected mode, CPL is also associated with the RPL field in the CS selector. However, the RPL
fields are not meaningful in real-address mode or in virtual-8086 mode.

1. Execution of the MWAIT instruction may put a logical processor into an inactive state. However,
this VMCS field never reflects this state. See Section 27.1.
Vol. 3C 24-7

VIRTUAL-MACHINE CONTROL STRUCTURES
— 2: Shutdown. The logical processor is inactive because it incurred a triple
fault1 or some other serious error.

— 3: Wait-for-SIPI. The logical processor is inactive because it is waiting for a
startup-IPI (SIPI).

Future processors may include support for other activity states. Software should
read the VMX capability MSR IA32_VMX_MISC (see Appendix A.6) to determine
what activity states are supported.

• Interruptibility state (32 bits). The IA-32 architecture includes features that
permit certain events to be blocked for a period of time. This field contains
information about such blocking. Details and the format of this field are given in
Table 24-3.

1. A triple fault occurs when a logical processor encounters an exception while attempting to
deliver a double fault.

Table 24-3. Format of Interruptibility State

Bit
Position(s)

Bit Name Notes

0 Blocking by STI See the “STI—Set Interrupt Flag” section in Chapter 4 of the
Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2B.

Execution of STI with RFLAGS.IF = 0 blocks interrupts (and,
optionally, other events) for one instruction after its
execution. Setting this bit indicates that this blocking is in
effect.

1 Blocking by
MOV SS

See the “MOV—Move a Value from the Stack” and “POP—Pop
a Value from the Stack” sections in Chapter 4 of the Intel® 64
and IA-32 Architectures Software Developer’s Manual,
Volume 2B, and Section 6.8.3 in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Execution of a MOV to SS or a POP to SS blocks interrupts for
one instruction after its execution. In addition, certain debug
exceptions are inhibited between a MOV to SS or a POP to SS
and a subsequent instruction. Setting this bit indicates that
the blocking of all these events is in effect. This document
uses the term “blocking by MOV SS,” but it applies equally to
POP SS.

2 Blocking by SMI See Section 33.2. System-management interrupts (SMIs) are
disabled while the processor is in system-management mode
(SMM). Setting this bit indicates that blocking of SMIs is in
effect.
24-8 Vol. 3C

VIRTUAL-MACHINE CONTROL STRUCTURES
• Pending debug exceptions (64 bits; 32 bits on processors that do not support
Intel 64 architecture). IA-32 processors may recognize one or more debug
exceptions without immediately delivering them.1 This field contains information
about such exceptions. This field is described in Table 24-4.

3 Blocking by NMI See Section 6.7.1 in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3A and Section 33.8.

Delivery of a non-maskable interrupt (NMI) or a system-
management interrupt (SMI) blocks subsequent NMIs until the
next execution of IRET. See Section 25.4 for how this
behavior of IRET may change in VMX non-root operation.
Setting this bit indicates that blocking of NMIs is in effect.
Clearing this bit does not imply that NMIs are not
(temporarily) blocked for other reasons.

If the “virtual NMIs” VM-execution control (see Section
24.6.1) is 1, this bit does not control the blocking of NMIs.
Instead, it refers to “virtual-NMI blocking” (the fact that guest
software is not ready for an NMI).

31:4 Reserved VM entry will fail if these bits are not 0. See Section 26.3.1.5.

1. For example, execution of a MOV to SS or a POP to SS may inhibit some debug exceptions for one
instruction. See Section 6.8.3 of Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A. In addition, certain events incident to an instruction (for example, an INIT signal) may
take priority over debug traps generated by that instruction. See Table 6-2 in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3A.

Table 24-4. Format of Pending-Debug-Exceptions

Bit
Position(s)

Bit Name Notes

3:0 B3 – B0 When set, each of these bits indicates that the corresponding
breakpoint condition was met. Any of these bits may be set
even if the corresponding enabling bit in DR7 is not set.

11:4 Reserved VM entry fails if these bits are not 0. See Section 26.3.1.5.

12 Enabled
breakpoint

When set, this bit indicates that at least one data or I/O
breakpoint was met and was enabled in DR7.

Table 24-3. Format of Interruptibility State (Contd.)

Bit
Position(s)

Bit Name Notes
Vol. 3C 24-9

VIRTUAL-MACHINE CONTROL STRUCTURES
• VMCS link pointer (64 bits). This field is included for future expansion. Software
should set this field to FFFFFFFF_FFFFFFFFH to avoid VM-entry failures (see
Section 26.3.1.5).

• VMX-preemption timer value (32 bits). This field is supported only on logical
processors that support the 1-setting of the “activate VMX-preemption timer”
VM-execution control. This field contains the value that the VMX-preemption
timer will use following the next VM entry with that setting. See Section 25.7.1
and Section 26.6.4.

• Page-directory-pointer-table entries (PDPTEs; 64 bits each). These four (4)
fields (PDPTE0, PDPTE1, PDPTE2, and PDPTE3) are supported only on logical
processors that support the 1-setting of the “enable EPT” VM-execution control.
They correspond to the PDPTEs referenced by CR3 when PAE paging is in use (see
Section 4.4 in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A). They are used only if the “enable EPT” VM-execution control
is 1.

24.5 HOST-STATE AREA
This section describes fields contained in the host-state area of the VMCS. As noted
earlier, processor state is loaded from these fields on every VM exit (see Section
27.5).

All fields in the host-state area correspond to processor registers:
• CR0, CR3, and CR4 (64 bits each; 32 bits on processors that do not support Intel

64 architecture).
• RSP and RIP (64 bits each; 32 bits on processors that do not support Intel 64

architecture).
• Selector fields (16 bits each) for the segment registers CS, SS, DS, ES, FS, GS,

and TR. There is no field in the host-state area for the LDTR selector.
• Base-address fields for FS, GS, TR, GDTR, and IDTR (64 bits each; 32 bits on

processors that do not support Intel 64 architecture).

13 Reserved VM entry fails if this bit is not 0. See Section 26.3.1.5.

14 BS When set, this bit indicates that a debug exception would
have been triggered by single-step execution mode.

63:15 Reserved VM entry fails if these bits are not 0. See Section 26.3.1.5.
Bits 63:32 exist only on processors that support Intel 64
architecture.

Table 24-4. Format of Pending-Debug-Exceptions (Contd.)

Bit
Position(s)

Bit Name Notes
24-10 Vol. 3C

VIRTUAL-MACHINE CONTROL STRUCTURES
• The following MSRs:

— IA32_SYSENTER_CS (32 bits)

— IA32_SYSENTER_ESP and IA32_SYSENTER_EIP (64 bits; 32 bits on
processors that do not support Intel 64 architecture).

— IA32_PERF_GLOBAL_CTRL (64 bits). This field is supported only on logical
processors that support the 1-setting of the “load IA32_PERF_GLOBAL_CTRL”
VM-exit control.

— IA32_PAT (64 bits). This field is supported only on logical processors that
support either the 1-setting of the “load IA32_PAT” VM-exit control.

— IA32_EFER (64 bits). This field is supported only on logical processors that
support either the 1-setting of the “load IA32_EFER” VM-exit control.

In addition to the state identified here, some processor state components are loaded
with fixed values on every VM exit; there are no fields corresponding to these compo-
nents in the host-state area. See Section 27.5 for details of how state is loaded on
VM exits.

24.6 VM-EXECUTION CONTROL FIELDS
The VM-execution control fields govern VMX non-root operation. These are described
in Section 24.6.1 through Section 24.6.8.

24.6.1 Pin-Based VM-Execution Controls
The pin-based VM-execution controls constitute a 32-bit vector that governs the
handling of asynchronous events (for example: interrupts).1 Table 24-5 lists the
controls. See Chapter 25 for how these controls affect processor behavior in VMX
non-root operation.

1. Some asynchronous events cause VM exits regardless of the settings of the pin-based VM-exe-
cution controls (see Section 25.3).
Vol. 3C 24-11

VIRTUAL-MACHINE CONTROL STRUCTURES
All other bits in this field are reserved, some to 0 and some to 1. Software should
consult the VMX capability MSRs IA32_VMX_PINBASED_CTLS and
IA32_VMX_TRUE_PINBASED_CTLS (see Appendix A.3.1) to determine how to set
reserved bits. Failure to set reserved bits properly causes subsequent VM entries to
fail (see Section 26.2.1.1).

The first processors to support the virtual-machine extensions supported only the 1-
settings of bits 1, 2, and 4. The VMX capability MSR IA32_VMX_PINBASED_CTLS will
always report that these bits must be 1. Logical processors that support the 0-
settings of any of these bits will support the VMX capability MSR
IA32_VMX_TRUE_PINBASED_CTLS MSR, and software should consult this MSR to
discover support for the 0-settings of these bits. Software that is not aware of the
functionality of any one of these bits should set that bit to 1.

24.6.2 Processor-Based VM-Execution Controls
The processor-based VM-execution controls constitute two 32-bit vectors that
govern the handling of synchronous events, mainly those caused by the execution of
specific instructions.1 These are the primary processor-based VM-execution
controls and the secondary processor-based VM-execution controls.

Table 24-5. Definitions of Pin-Based VM-Execution Controls
Bit Position(s) Name Description

0 External-interrupt
exiting

If this control is 1, external interrupts cause VM exits.
Otherwise, they are delivered normally through the guest
interrupt-descriptor table (IDT). If this control is 1, the value
of RFLAGS.IF does not affect interrupt blocking.

3 NMI exiting If this control is 1, non-maskable interrupts (NMIs) cause
VM exits. Otherwise, they are delivered normally using
descriptor 2 of the IDT. This control also determines
interactions between IRET and blocking by NMI (see Section
25.4).

5 Virtual NMIs If this control is 1, NMIs are never blocked and the “blocking
by NMI” bit (bit 3) in the interruptibility-state field indicates
“virtual-NMI blocking” (see Table 24-3). This control also
interacts with the “NMI-window exiting” VM-execution
control (see Section 24.6.2).

This control can be set only if the “NMI exiting” VM-execution
control (above) is 1.

6 Activate VMX-
preemption timer

If this control is 1, the VMX-preemption timer counts down in
VMX non-root operation; see Section 25.7.1. A VM exit occurs
when the timer counts down to zero; see Section 25.3.
24-12 Vol. 3C

VIRTUAL-MACHINE CONTROL STRUCTURES
Table 24-6 lists the primary processor-based VM-execution controls. See Chapter 25
for more details of how these controls affect processor behavior in VMX non-root
operation.

1. Some instructions cause VM exits regardless of the settings of the processor-based VM-execu-
tion controls (see Section 25.1.2), as do task switches (see Section 25.3).

Table 24-6. Definitions of Primary Processor-Based VM-Execution Controls
Bit Position(s) Name Description

2 Interrupt-window
exiting

If this control is 1, a VM exit occurs at the beginning of any
instruction if RFLAGS.IF = 1 and there are no other blocking
of interrupts (see Section 24.4.2).

3 Use TSC offsetting This control determines whether executions of RDTSC,
executions of RDTSCP, and executions of RDMSR that read
from the IA32_TIME_STAMP_COUNTER MSR return a value
modified by the TSC offset field (see Section 24.6.5 and
Section 25.4).

7 HLT exiting This control determines whether executions of HLT cause
VM exits.

9 INVLPG exiting This determines whether executions of INVLPG cause
VM exits.

10 MWAIT exiting This control determines whether executions of MWAIT cause
VM exits.

11 RDPMC exiting This control determines whether executions of RDPMC cause
VM exits.

12 RDTSC exiting This control determines whether executions of RDTSC and
RDTSCP cause VM exits.

15 CR3-load exiting In conjunction with the CR3-target controls (see Section
24.6.7), this control determines whether executions of MOV
to CR3 cause VM exits. See Section 25.1.3.

The first processors to support the virtual-machine
extensions supported only the 1-setting of this control.

16 CR3-store exiting This control determines whether executions of MOV from
CR3 cause VM exits.

The first processors to support the virtual-machine
extensions supported only the 1-setting of this control.

19 CR8-load exiting This control determines whether executions of MOV to CR8
cause VM exits.

This control must be 0 on processors that do not support
Intel 64 architecture.
Vol. 3C 24-13

VIRTUAL-MACHINE CONTROL STRUCTURES
20 CR8-store exiting This control determines whether executions of MOV from
CR8 cause VM exits.

This control must be 0 on processors that do not support
Intel 64 architecture.

21 Use TPR shadow Setting this control to 1 activates the TPR shadow, which is
maintained in a page of memory addressed by the virtual-
APIC address. See Section 25.4.

This control must be 0 on processors that do not support
Intel 64 architecture.

22 NMI-window
exiting

If this control is 1, a VM exit occurs at the beginning of any
instruction if there is no virtual-NMI blocking (see Section
24.4.2).

This control can be set only if the “virtual NMIs” VM-execution
control (see Section 24.6.1) is 1.

23 MOV-DR exiting This control determines whether executions of MOV DR
cause VM exits.

24 Unconditional I/O
exiting

This control determines whether executions of I/O
instructions (IN, INS/INSB/INSW/INSD, OUT, and
OUTS/OUTSB/OUTSW/OUTSD) cause VM exits.

This control is ignored if the “use I/O bitmaps” control is 1.

25 Use I/O bitmaps This control determines whether I/O bitmaps are used to
restrict executions of I/O instructions (see Section 24.6.4 and
Section 25.1.3).

For this control, “0” means “do not use I/O bitmaps” and “1”
means “use I/O bitmaps.” If the I/O bitmaps are used, the
setting of the “unconditional I/O exiting” control is ignored.

27 Monitor trap flag If this control is 1, the monitor trap flag debugging feature is
enabled. See Section 25.7.2.

28 Use MSR bitmaps This control determines whether MSR bitmaps are used to
control execution of the RDMSR and WRMSR instructions (see
Section 24.6.9 and Section 25.1.3).

For this control, “0” means “do not use MSR bitmaps” and “1”
means “use MSR bitmaps.” If the MSR bitmaps are not used,
all executions of the RDMSR and WRMSR instructions cause
VM exits.

29 MONITOR exiting This control determines whether executions of MONITOR
cause VM exits.

Table 24-6. Definitions of Primary Processor-Based VM-Execution Controls (Contd.)
Bit Position(s) Name Description
24-14 Vol. 3C

VIRTUAL-MACHINE CONTROL STRUCTURES
All other bits in this field are reserved, some to 0 and some to 1. Software should
consult the VMX capability MSRs IA32_VMX_PROCBASED_CTLS and
IA32_VMX_TRUE_PROCBASED_CTLS (see Appendix A.3.2) to determine how to set
reserved bits. Failure to set reserved bits properly causes subsequent VM entries to
fail (see Section 26.2.1.1).

The first processors to support the virtual-machine extensions supported only the 1-
settings of bits 1, 4–6, 8, 13–16, and 26. The VMX capability MSR
IA32_VMX_PROCBASED_CTLS will always report that these bits must be 1. Logical
processors that support the 0-settings of any of these bits will support the VMX capa-
bility MSR IA32_VMX_TRUE_PROCBASED_CTLS MSR, and software should consult
this MSR to discover support for the 0-settings of these bits. Software that is not
aware of the functionality of any one of these bits should set that bit to 1.

Bit 31 of the primary processor-based VM-execution controls determines whether
the secondary processor-based VM-execution controls are used. If that bit is 0,
VM entry and VMX non-root operation function as if all the secondary processor-
based VM-execution controls were 0. Processors that support only the 0-setting of
bit 31 of the primary processor-based VM-execution controls do not support the
secondary processor-based VM-execution controls.

Table 24-7 lists the secondary processor-based VM-execution controls. See Chapter
25 for more details of how these controls affect processor behavior in VMX non-root
operation.

30 PAUSE exiting This control determines whether executions of PAUSE cause
VM exits.

31 Activate secondary
controls

This control determines whether the secondary processor-
based VM-execution controls are used. If this control is 0, the
logical processor operates as if all the secondary processor-
based VM-execution controls were also 0.

Table 24-7. Definitions of Secondary Processor-Based VM-Execution Controls
Bit Position(s) Name Description

0 Virtualize APIC
accesses

If this control is 1, a VM exit occurs on any attempt to access
data on the page with the APIC-access address. See Section
25.2.

1 Enable EPT If this control is 1, extended page tables (EPT) are enabled.
See Section 28.2.

2 Descriptor-table
exiting

This control determines whether executions of LGDT, LIDT,
LLDT, LTR, SGDT, SIDT, SLDT, and STR cause VM exits.

3 Enable RDTSCP If this control is 0, any execution of RDTSCP causes an invalid-
opcode exception (#UD).

Table 24-6. Definitions of Primary Processor-Based VM-Execution Controls (Contd.)
Bit Position(s) Name Description
Vol. 3C 24-15

VIRTUAL-MACHINE CONTROL STRUCTURES
All other bits in this field are reserved to 0. Software should consult the VMX capa-
bility MSR IA32_VMX_PROCBASED_CTLS2 (see Appendix A.3.3) to determine which
bits may be set to 1. Failure to clear reserved bits causes subsequent VM entries to
fail (see Section 26.2.1.1).

24.6.3 Exception Bitmap
The exception bitmap is a 32-bit field that contains one bit for each exception.
When an exception occurs, its vector is used to select a bit in this field. If the bit is 1,
the exception causes a VM exit. If the bit is 0, the exception is delivered normally
through the IDT, using the descriptor corresponding to the exception’s vector.

Whether a page fault (exception with vector 14) causes a VM exit is determined by
bit 14 in the exception bitmap as well as the error code produced by the page fault
and two 32-bit fields in the VMCS (the page-fault error-code mask and page-
fault error-code match). See Section 25.3 for details.

24.6.4 I/O-Bitmap Addresses
The VM-execution control fields include the 64-bit physical addresses of I/O
bitmaps A and B (each of which are 4 KBytes in size). I/O bitmap A contains one bit

4 Virtualize x2APIC
mode

Setting this control to 1 causes RDMSR and WRMSR to MSR
808H to use the TPR shadow, which is maintained on the
virtual-APIC page. See Section 25.4.

5 Enable VPID If this control is 1, cached translations of linear addresses are
associated with a virtual-processor identifier (VPID). See
Section 28.1.

6 WBINVD exiting This control determines whether executions of WBINVD
cause VM exits.

7 Unrestricted guest This control determines whether guest software may run in
unpaged protected mode or in real-address mode.

10 PAUSE-loop exiting This control determines whether a series of executions of
PAUSE can cause a VM exit (see Section 24.6.13 and Section
25.1.3).

11 RDRAND exiting This control determines whether executions of RDRAND
cause VM exits.

12 Enable INVPCID If this control is 0, any execution of INVPCID causes an
invalid-opcode exception (#UD).

13 Enable
VM functions

Setting this control to 1 enables use of the VMFUNC
instruction in VMX non-root operation. See Section 25.7.4.

Table 24-7. Definitions of Secondary Processor-Based VM-Execution Controls (Contd.)
Bit Position(s) Name Description
24-16 Vol. 3C

VIRTUAL-MACHINE CONTROL STRUCTURES
for each I/O port in the range 0000H through 7FFFH; I/O bitmap B contains bits for
ports in the range 8000H through FFFFH.

A logical processor uses these bitmaps if and only if the “use I/O bitmaps” control is
1. If the bitmaps are used, execution of an I/O instruction causes a VM exit if any bit
in the I/O bitmaps corresponding to a port it accesses is 1. See Section 25.1.3 for
details. If the bitmaps are used, their addresses must be 4-KByte aligned.

24.6.5 Time-Stamp Counter Offset
VM-execution control fields include a 64-bit TSC-offset field. If the “RDTSC exiting”
control is 0 and the “use TSC offsetting” control is 1, this field controls executions of
the RDTSC and RDTSCP instructions. It also controls executions of the RDMSR
instruction that read from the IA32_TIME_STAMP_COUNTER MSR. For all of these,
the signed value of the TSC offset is combined with the contents of the time-stamp
counter (using signed addition) and the sum is reported to guest software in
EDX:EAX. See Chapter 25 for a detailed treatment of the behavior of RDTSC,
RDTSCP, and RDMSR in VMX non-root operation.

24.6.6 Guest/Host Masks and Read Shadows for CR0 and CR4
VM-execution control fields include guest/host masks and read shadows for the
CR0 and CR4 registers. These fields control executions of instructions that access
those registers (including CLTS, LMSW, MOV CR, and SMSW). They are 64 bits on
processors that support Intel 64 architecture and 32 bits on processors that do not.

In general, bits set to 1 in a guest/host mask correspond to bits “owned” by the host:
• Guest attempts to set them (using CLTS, LMSW, or MOV to CR) to values differing

from the corresponding bits in the corresponding read shadow cause VM exits.
• Guest reads (using MOV from CR or SMSW) return values for these bits from the

corresponding read shadow.

Bits cleared to 0 correspond to bits “owned” by the guest; guest attempts to modify
them succeed and guest reads return values for these bits from the control register
itself.

See Chapter 25 for details regarding how these fields affect VMX non-root operation.

24.6.7 CR3-Target Controls
The VM-execution control fields include a set of 4 CR3-target values and a CR3-
target count. The CR3-target values each have 64 bits on processors that support
Intel 64 architecture and 32 bits on processors that do not. The CR3-target count has
32 bits on all processors.

An execution of MOV to CR3 in VMX non-root operation does not cause a VM exit if its
source operand matches one of these values. If the CR3-target count is n, only the
Vol. 3C 24-17

VIRTUAL-MACHINE CONTROL STRUCTURES
first n CR3-target values are considered; if the CR3-target count is 0, MOV to CR3
always causes a VM exit

There are no limitations on the values that can be written for the CR3-target values.
VM entry fails (see Section 26.2) if the CR3-target count is greater than 4.

Future processors may support a different number of CR3-target values. Software
should read the VMX capability MSR IA32_VMX_MISC (see Appendix A.6) to deter-
mine the number of values supported.

24.6.8 Controls for APIC Accesses
There are three mechanisms by which software accesses registers of the logical
processor’s local APIC:
• If the local APIC is in xAPIC mode, it can perform memory-mapped accesses to

addresses in the 4-KByte page referenced by the physical address in the
IA32_APIC_BASE MSR (see Section 10.4.4, “Local APIC Status and Location” in
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A
and Intel® 64 Architecture Processor Topology Enumeration).1

• If the local APIC is in x2APIC mode, it can accesses the local APIC’s registers
using the RDMSR and WRMSR instructions (see Intel® 64 Architecture Processor
Topology Enumeration).

• In 64-bit mode, it can access the local APIC’s task-priority register (TPR) using
the MOV CR8 instruction.

There are three processor-based VM-execution controls (see Section 24.6.2) that
control such accesses. There are “use TPR shadow”, “virtualize APIC accesses”, and
“virtualize x2APIC mode”. These controls interact with the following fields:
• APIC-access address (64 bits). This field contains the physical address of the

4-KByte APIC-access page. If the “virtualize APIC accesses” VM-execution
control is 1, operations that access this page may cause VM exits. See Section
25.2 and Section 25.5.
The APIC-access address exists only on processors that support the 1-setting of
the “virtualize APIC accesses” VM-execution control.

• Virtual-APIC address (64 bits). This field contains the physical address of the
4-KByte virtual-APIC page.
If the “use TPR shadow” VM-execution control is 1, the virtual-APIC address must
be 4-KByte aligned. The virtual-APIC page is accessed by the following
operations if the “use TPR shadow” VM-execution control is 1:

— The MOV CR8 instructions (see Section 25.1.3 and Section 25.4).

— Accesses to byte 80H on the APIC-access page if, in addition, the “virtualize
APIC accesses” VM-execution control is 1 (see Section 25.5.3).

1. If the local APIC does not support x2APIC mode, it is always in xAPIC mode.
24-18 Vol. 3C

VIRTUAL-MACHINE CONTROL STRUCTURES
— The RDMSR and WRMSR instructions if, in addition, the value of ECX is 808H
(indicating the TPR MSR) and the “virtualize x2APIC mode” VM-execution
control is 1 (see Section 25.4).

The virtual-APIC address exists only on processors that support the 1-setting of
the “use TPR shadow” VM-execution control.

• TPR threshold (32 bits). Bits 3:0 of this field determine the threshold below
which the TPR shadow (bits 7:4 of byte 80H of the virtual-APIC page) cannot fall.
A VM exit occurs after an operation (e.g., an execution of MOV to CR8) that
reduces the TPR shadow below this value. See Section 25.4 and Section 25.5.3.
The TPR threshold exists only on processors that support the 1-setting of the
“use TPR shadow” VM-execution control.

24.6.9 MSR-Bitmap Address
On processors that support the 1-setting of the “use MSR bitmaps” VM-execution
control, the VM-execution control fields include the 64-bit physical address of four
contiguous MSR bitmaps, which are each 1-KByte in size. This field does not exist
on processors that do not support the 1-setting of that control. The four bitmaps are:
• Read bitmap for low MSRs (located at the MSR-bitmap address). This contains

one bit for each MSR address in the range 00000000H to 00001FFFH. The bit
determines whether an execution of RDMSR applied to that MSR causes a
VM exit.

• Read bitmap for high MSRs (located at the MSR-bitmap address plus 1024).
This contains one bit for each MSR address in the range C0000000H
toC0001FFFH. The bit determines whether an execution of RDMSR applied to that
MSR causes a VM exit.

• Write bitmap for low MSRs (located at the MSR-bitmap address plus 2048).
This contains one bit for each MSR address in the range 00000000H to
00001FFFH. The bit determines whether an execution of WRMSR applied to that
MSR causes a VM exit.

• Write bitmap for high MSRs (located at the MSR-bitmap address plus 3072).
This contains one bit for each MSR address in the range C0000000H
toC0001FFFH. The bit determines whether an execution of WRMSR applied to
that MSR causes a VM exit.

A logical processor uses these bitmaps if and only if the “use MSR bitmaps” control
is 1. If the bitmaps are used, an execution of RDMSR or WRMSR causes a VM exit if
the value of RCX is in neither of the ranges covered by the bitmaps or if the appro-
priate bit in the MSR bitmaps (corresponding to the instruction and the RCX value) is
1. See Section 25.1.3 for details. If the bitmaps are used, their address must be 4-
KByte aligned.
Vol. 3C 24-19

VIRTUAL-MACHINE CONTROL STRUCTURES
24.6.10 Executive-VMCS Pointer
The executive-VMCS pointer is a 64-bit field used in the dual-monitor treatment of
system-management interrupts (SMIs) and system-management mode (SMM). SMM
VM exits save this field as described in Section 33.15.2. VM entries that return from
SMM use this field as described in Section 33.15.4.

24.6.11 Extended-Page-Table Pointer (EPTP)
The extended-page-table pointer (EPTP) contains the address of the base of EPT
PML4 table (see Section 28.2.2), as well as other EPT configuration information. The
format of this field is shown in Table 24-8.

The EPTP exists only on processors that support the 1-setting of the “enable EPT”
VM-execution control.

24.6.12 Virtual-Processor Identifier (VPID)
The virtual-processor identifier (VPID) is a 16-bit field. It exists only on proces-
sors that support the 1-setting of the “enable VPID” VM-execution control. See
Section 28.1 for details regarding the use of this field.

Table 24-8. Format of Extended-Page-Table Pointer

Bit Position(s) Field

2:0 EPT paging-structure memory type (see Section 28.2.4):

0 = Uncacheable (UC)
6 = Write-back (WB)

Other values are reserved.1

NOTES:
1. Software should read the VMX capability MSR IA32_VMX_EPT_VPID_CAP (see Appendix A.10) to

determine what EPT paging-structure memory types are supported.

5:3 This value is 1 less than the EPT page-walk length (see Section 28.2.2)

11:6 Reserved

N–1:12 Bits N–1:12 of the physical address of the 4-KByte aligned EPT PML4 table2

2. N is the physical-address width supported by the logical processor. Software can determine a pro-
cessor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-
address width is returned in bits 7:0 of EAX.

63:N Reserved
24-20 Vol. 3C

VIRTUAL-MACHINE CONTROL STRUCTURES
24.6.13 Controls for PAUSE-Loop Exiting
On processors that support the 1-setting of the “PAUSE-loop exiting” VM-execution
control, the VM-execution control fields include the following 32-bit fields:
• PLE_Gap. Software can configure this field as an upper bound on the amount of

time between two successive executions of PAUSE in a loop.
• PLE_Window. Software can configure this field as an upper bound on the

amount of time a guest is allowed to execute in a PAUSE loop.

These fields measure time based on a counter that runs at the same rate as the
timestamp counter (TSC). See Section 25.1.3 for more details regarding PAUSE-loop
exiting.

24.6.14 VM-Function Controls
The VM-function controls constitute a 64-bit vector that governs use of the
VMFUNC instruction in VMX non-root operation. This field is supported only on
processors that support the 1-settings of both the “activate secondary controls”
primary processor-based VM-execution control and the “enable VM functions”
secondary processor-based VM-execution control.

Table 24-9 lists the VM-function controls. See Section 25.7.4 for more details of how
these controls affect processor behavior in VMX non-root operation.

All other bits in this field are reserved to 0. Software should consult the VMX capa-
bility MSR IA32_VMX_VMFUNC (see Appendix A.11) to determine which bits are
reserved. Failure to clear reserved bits causes subsequent VM entries to fail (see
Section 26.2.1.1).

Processors that support the 1-setting of the “EPTP switching” VM-function control
also support a 64-bit field called the EPTP-list address. This field contains the phys-
ical address of the 4-KByte EPTP list. The EPTP list comprises 512 8-Byte entries
(each an EPTP value) and is used by the EPTP-switching VM function (see Section
25.7.4.3).

24.7 VM-EXIT CONTROL FIELDS
The VM-exit control fields govern the behavior of VM exits. They are discussed in
Section 24.7.1 and Section 24.7.2.

Table 24-9. Definitions of VM-Function Controls
Bit Position(s) Name Description

0 EPTP switching The EPTP-switching VM function changes the EPT pointer to
a value chosen from the EPTP list. See Section 25.7.4.3.
Vol. 3C 24-21

VIRTUAL-MACHINE CONTROL STRUCTURES
24.7.1 VM-Exit Controls
The VM-exit controls constitute a 32-bit vector that governs the basic operation of
VM exits. Table 24-10 lists the controls supported. See Chapter 27 for complete
details of how these controls affect VM exits.

Table 24-10. Definitions of VM-Exit Controls

Bit Position(s) Name Description

2 Save debug
controls

This control determines whether DR7 and the
IA32_DEBUGCTL MSR are saved on VM exit.

The first processors to support the virtual-machine
extensions supported only the 1-setting of this control.

9 Host address-
space size

On processors that support Intel 64 architecture, this
control determines whether a logical processor is in 64-bit
mode after the next VM exit. Its value is loaded into CS.L,
IA32_EFER.LME, and IA32_EFER.LMA on every VM exit.1

This control must be 0 on processors that do not support
Intel 64 architecture.

12 Load
IA32_PERF_GLOB
AL_CTRL

This control determines whether the
IA32_PERF_GLOBAL_CTRL MSR is loaded on VM exit.

15 Acknowledge
interrupt on exit

This control affects VM exits due to external interrupts:

• If such a VM exit occurs and this control is 1, the logical
processor acknowledges the interrupt controller,
acquiring the interrupt’s vector. The vector is stored in
the VM-exit interruption-information field, which is
marked valid.

• If such a VM exit occurs and this control is 0, the
interrupt is not acknowledged and the VM-exit
interruption-information field is marked invalid.

18 Save IA32_PAT This control determines whether the IA32_PAT MSR is
saved on VM exit.

19 Load IA32_PAT This control determines whether the IA32_PAT MSR is
loaded on VM exit.

20 Save IA32_EFER This control determines whether the IA32_EFER MSR is
saved on VM exit.

21 Load IA32_EFER This control determines whether the IA32_EFER MSR is
loaded on VM exit.

22 Save VMX-
preemption timer
value

This control determines whether the value of the VMX-
preemption timer is saved on VM exit.
24-22 Vol. 3C

VIRTUAL-MACHINE CONTROL STRUCTURES
All other bits in this field are reserved, some to 0 and some to 1. Software should
consult the VMX capability MSRs IA32_VMX_EXIT_CTLS and
IA32_VMX_TRUE_EXIT_CTLS (see Appendix A.4) to determine how it should set the
reserved bits. Failure to set reserved bits properly causes subsequent VM entries to
fail (see Section 26.2.1.2).

The first processors to support the virtual-machine extensions supported only the 1-
settings of bits 0–8, 10, 11, 13, 14, 16, and 17. The VMX capability MSR
IA32_VMX_EXIT_CTLS always reports that these bits must be 1. Logical processors
that support the 0-settings of any of these bits will support the VMX capability MSR
IA32_VMX_TRUE_EXIT_CTLS MSR, and software should consult this MSR to discover
support for the 0-settings of these bits. Software that is not aware of the functionality
of any one of these bits should set that bit to 1.

24.7.2 VM-Exit Controls for MSRs
A VMM may specify lists of MSRs to be stored and loaded on VM exits. The following
VM-exit control fields determine how MSRs are stored on VM exits:

• VM-exit MSR-store count (32 bits). This field specifies the number of MSRs to
be stored on VM exit. It is recommended that this count not exceed 512 bytes.1
Otherwise, unpredictable processor behavior (including a machine check) may
result during VM exit.

• VM-exit MSR-store address (64 bits). This field contains the physical address
of the VM-exit MSR-store area. The area is a table of entries, 16 bytes per entry,
where the number of entries is given by the VM-exit MSR-store count. The format
of each entry is given in Table 24-11. If the VM-exit MSR-store count is not zero,
the address must be 16-byte aligned.

See Section 27.4 for how this area is used on VM exits.

NOTES:
1. Since Intel 64 architecture specifies that IA32_EFER.LMA is always set to the logical-AND of

CR0.PG and IA32_EFER.LME, and since CR0.PG is always 1 in VMX operation, IA32_EFER.LMA is
always identical to IA32_EFER.LME in VMX operation.

1. Future implementations may allow more MSRs to be stored reliably. Software should consult the
VMX capability MSR IA32_VMX_MISC to determine the number supported (see Appendix A.6).

Table 24-11. Format of an MSR Entry
Bit Position(s) Contents

31:0 MSR index

63:32 Reserved

127:64 MSR data
Vol. 3C 24-23

VIRTUAL-MACHINE CONTROL STRUCTURES
The following VM-exit control fields determine how MSRs are loaded on VM exits:
• VM-exit MSR-load count (32 bits). This field contains the number of MSRs to

be loaded on VM exit. It is recommended that this count not exceed 512 bytes.
Otherwise, unpredictable processor behavior (including a machine check) may
result during VM exit.1

• VM-exit MSR-load address (64 bits). This field contains the physical address of
the VM-exit MSR-load area. The area is a table of entries, 16 bytes per entry,
where the number of entries is given by the VM-exit MSR-load count (see
Table 24-11). If the VM-exit MSR-load count is not zero, the address must be
16-byte aligned.

See Section 27.6 for how this area is used on VM exits.

24.8 VM-ENTRY CONTROL FIELDS
The VM-entry control fields govern the behavior of VM entries. They are discussed in
Sections 24.8.1 through 24.8.3.

24.8.1 VM-Entry Controls
The VM-entry controls constitute a 32-bit vector that governs the basic operation
of VM entries. Table 24-12 lists the controls supported. See Chapter 26 for how these
controls affect VM entries.

1. Future implementations may allow more MSRs to be loaded reliably. Software should consult the
VMX capability MSR IA32_VMX_MISC to determine the number supported (see Appendix A.6).

Table 24-12. Definitions of VM-Entry Controls
Bit Position(s) Name Description

2 Load debug
controls

This control determines whether DR7 and the
IA32_DEBUGCTL MSR are loaded on VM exit.

The first processors to support the virtual-machine
extensions supported only the 1-setting of this control.

9 IA-32e mode guest On processors that support Intel 64 architecture, this control
determines whether the logical processor is in IA-32e mode
after VM entry. Its value is loaded into IA32_EFER.LMA as
part of VM entry.1

This control must be 0 on processors that do not support
Intel 64 architecture.

10 Entry to SMM This control determines whether the logical processor is in
system-management mode (SMM) after VM entry. This
control must be 0 for any VM entry from outside SMM.
24-24 Vol. 3C

VIRTUAL-MACHINE CONTROL STRUCTURES
All other bits in this field are reserved, some to 0 and some to 1. Software should
consult the VMX capability MSRs IA32_VMX_ENTRY_CTLS and
IA32_VMX_TRUE_ENTRY_CTLS (see Appendix A.5) to determine how it should set
the reserved bits. Failure to set reserved bits properly causes subsequent VM entries
to fail (see Section 26.2.1.3).

The first processors to support the virtual-machine extensions supported only the 1-
settings of bits 0–8 and 12. The VMX capability MSR IA32_VMX_ENTRY_CTLS always
reports that these bits must be 1. Logical processors that support the 0-settings of
any of these bits will support the VMX capability MSR IA32_VMX_TRUE_ENTRY_CTLS
MSR, and software should consult this MSR to discover support for the 0-settings of
these bits. Software that is not aware of the functionality of any one of these bits
should set that bit to 1.

24.8.2 VM-Entry Controls for MSRs
A VMM may specify a list of MSRs to be loaded on VM entries. The following VM-entry
control fields manage this functionality:
• VM-entry MSR-load count (32 bits). This field contains the number of MSRs to

be loaded on VM entry. It is recommended that this count not exceed 512 bytes.
Otherwise, unpredictable processor behavior (including a machine check) may
result during VM entry.1

11 Deactivate dual-
monitor treatment

If set to 1, the default treatment of SMIs and SMM is in effect
after the VM entry (see Section 33.15.7). This control must
be 0 for any VM entry from outside SMM.

13 Load
IA32_PERF_GLOBA
L_CTRL

This control determines whether the
IA32_PERF_GLOBAL_CTRL MSR is loaded on VM entry.

14 Load IA32_PAT This control determines whether the IA32_PAT MSR is loaded
on VM entry.

15 Load IA32_EFER This control determines whether the IA32_EFER MSR is
loaded on VM entry.

NOTES:
1. Bit 5 of the IA32_VMX_MISC MSR is read as 1 on any logical processor that supports the 1-setting

of the “unrestricted guest” VM-execution control. If it is read as 1, every VM exit stores the value of
IA32_EFER.LMA into the “IA-32e mode guest” VM-entry control (see Section 27.2).

1. Future implementations may allow more MSRs to be loaded reliably. Software should consult the
VMX capability MSR IA32_VMX_MISC to determine the number supported (see Appendix A.6).

Table 24-12. Definitions of VM-Entry Controls (Contd.)
Bit Position(s) Name Description
Vol. 3C 24-25

VIRTUAL-MACHINE CONTROL STRUCTURES
• VM-entry MSR-load address (64 bits). This field contains the physical address
of the VM-entry MSR-load area. The area is a table of entries, 16 bytes per entry,
where the number of entries is given by the VM-entry MSR-load count. The
format of entries is described in Table 24-11. If the VM-entry MSR-load count is
not zero, the address must be 16-byte aligned.

See Section 26.4 for details of how this area is used on VM entries.

24.8.3 VM-Entry Controls for Event Injection
VM entry can be configured to conclude by delivering an event through the IDT (after
all guest state and MSRs have been loaded). This process is called event injection
and is controlled by the following three VM-entry control fields:
• VM-entry interruption-information field (32 bits). This field provides details

about the event to be injected. Table 24-13 describes the field.

— The vector (bits 7:0) determines which entry in the IDT is used or which
other event is injected.

— The interruption type (bits 10:8) determines details of how the injection is
performed. In general, a VMM should use the type hardware exception for
all exceptions other than breakpoint exceptions (#BP; generated by INT3)
and overflow exceptions (#OF; generated by INTO); it should use the type
software exception for #BP and #OF. The type other event is used for
injection of events that are not delivered through the IDT.

— For exceptions, the deliver-error-code bit (bit 11) determines whether
delivery pushes an error code on the guest stack.

Table 24-13. Format of the VM-Entry Interruption-Information Field
Bit
Position(s)

Content

7:0 Vector of interrupt or exception

10:8 Interruption type:

0: External interrupt
1: Reserved
2: Non-maskable interrupt (NMI)
3: Hardware exception
4: Software interrupt
5: Privileged software exception
6: Software exception
7: Other event

11 Deliver error code (0 = do not deliver; 1 = deliver)

30:12 Reserved

31 Valid
24-26 Vol. 3C

VIRTUAL-MACHINE CONTROL STRUCTURES
— VM entry injects an event if and only if the valid bit (bit 31) is 1. The valid bit
in this field is cleared on every VM exit (see Section 27.2).

• VM-entry exception error code (32 bits). This field is used if and only if the
valid bit (bit 31) and the deliver-error-code bit (bit 11) are both set in the
VM-entry interruption-information field.

• VM-entry instruction length (32 bits). For injection of events whose type is
software interrupt, software exception, or privileged software exception, this
field is used to determine the value of RIP that is pushed on the stack.

See Section 26.5 for details regarding the mechanics of event injection, including the
use of the interruption type and the VM-entry instruction length.

VM exits clear the valid bit (bit 31) in the VM-entry interruption-information field.

24.9 VM-EXIT INFORMATION FIELDS
The VMCS contains a section of read-only fields that contain information about the
most recent VM exit. Attempts to write to these fields with VMWRITE fail (see
“VMWRITE—Write Field to Virtual-Machine Control Structure” in Chapter 29 of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C).

24.9.1 Basic VM-Exit Information
The following VM-exit information fields provide basic information about a VM exit:
• Exit reason (32 bits). This field encodes the reason for the VM exit and has the

structure given in Table 24-14.

Table 24-14. Format of Exit Reason

Bit
Position(s)

Contents

15:0 Basic exit reason

27:16 Reserved (cleared to 0)

28 Pending MTF VM exit

29 VM exit from VMX root operation

30 Reserved (cleared to 0)

31 VM-entry failure (0 = true VM exit; 1 = VM-entry failure)
Vol. 3C 24-27

VIRTUAL-MACHINE CONTROL STRUCTURES
— Bits 15:0 provide basic information about the cause of the VM exit (if bit 31 is
clear) or of the VM-entry failure (if bit 31 is set). Appendix C enumerates the
basic exit reasons.

— Bit 28 is set only by an SMM VM exit (see Section 33.15.2) that took priority
over an MTF VM exit (see Section 25.7.2) that would have occurred had the
SMM VM exit not occurred. See Section 33.15.2.3.

— Bit 29 is set if and only if the processor was in VMX root operation at the time
the VM exit occurred. This can happen only for SMM VM exits. See Section
33.15.2.

— Because some VM-entry failures load processor state from the host-state
area (see Section 26.7), software must be able to distinguish such cases from
true VM exits. Bit 31 is used for that purpose.

• Exit qualification (64 bits; 32 bits on processors that do not support Intel 64
architecture). This field contains additional information about the cause of
VM exits due to the following: debug exceptions; page-fault exceptions; start-up
IPIs (SIPIs); task switches; INVEPT; INVLPG;INVVPID; LGDT; LIDT; LLDT; LTR;
SGDT; SIDT; SLDT; STR; VMCLEAR; VMPTRLD; VMPTRST; VMREAD; VMWRITE;
VMXON; control-register accesses; MOV DR; I/O instructions; and MWAIT. The
format of the field depends on the cause of the VM exit. See Section 27.2.1 for
details.

• Guest-linear address (64 bits; 32 bits on processors that do not support
Intel 64 architecture). This field is used in the following cases:

— VM exits due to attempts to execute LMSW with a memory operand.

— VM exits due to attempts to execute INS or OUTS.

— VM exits due to system-management interrupts (SMIs) that arrive
immediately after retirement of I/O instructions.

— Certain VM exits due to EPT violations
See Section 27.2.1 and Section 33.15.2.3 for details of when and how this field is
used.

• Guest-physical address (64 bits). This field is used VM exits due to EPT
violations and EPT misconfigurations. See Section 27.2.1 for details of when and
how this field is used.

24.9.2 Information for VM Exits Due to Vectored Events
Event-specific information is provided for VM exits due to the following vectored
events: exceptions (including those generated by the instructions INT3, INTO,
BOUND, and UD2); external interrupts that occur while the “acknowledge interrupt
on exit” VM-exit control is 1; and non-maskable interrupts (NMIs). This information
is provided in the following fields:
24-28 Vol. 3C

VIRTUAL-MACHINE CONTROL STRUCTURES
• VM-exit interruption information (32 bits). This field receives basic
information associated with the event causing the VM exit. Table 24-15 describes
this field.

• VM-exit interruption error code (32 bits). For VM exits caused by hardware
exceptions that would have delivered an error code on the stack, this field
receives that error code.

Section 27.2.2 provides details of how these fields are saved on VM exits.

24.9.3 Information for VM Exits That Occur During Event Delivery
Additional information is provided for VM exits that occur during event delivery in
VMX non-root operation.1 This information is provided in the following fields:
• IDT-vectoring information (32 bits). This field receives basic information

associated with the event that was being delivered when the VM exit occurred.
Table 24-16 describes this field.

Table 24-15. Format of the VM-Exit Interruption-Information Field
Bit Position(s) Content

7:0 Vector of interrupt or exception

10:8 Interruption type:

0: External interrupt
1: Not used
2: Non-maskable interrupt (NMI)
3: Hardware exception
4 – 5: Not used
6: Software exception
7: Not used

11 Error code valid (0 = invalid; 1 = valid)

12 NMI unblocking due to IRET

30:13 Reserved (cleared to 0)

31 Valid

1. This includes cases in which the event delivery was caused by event injection as part of
VM entry; see Section 26.5.1.2.

Table 24-16. Format of the IDT-Vectoring Information Field
Bit
Position(s)

Content

7:0 Vector of interrupt or exception
Vol. 3C 24-29

VIRTUAL-MACHINE CONTROL STRUCTURES
• IDT-vectoring error code (32 bits). For VM exits the occur during delivery of
hardware exceptions that would have delivered an error code on the stack, this
field receives that error code.

See Section 27.2.3 provides details of how these fields are saved on VM exits.

24.9.4 Information for VM Exits Due to Instruction Execution
The following fields are used for VM exits caused by attempts to execute certain
instructions in VMX non-root operation:
• VM-exit instruction length (32 bits). For VM exits resulting from instruction

execution, this field receives the length in bytes of the instruction whose
execution led to the VM exit.1 See Section 27.2.4 for details of when and how this
field is used.

• VM-exit instruction information (32 bits). This field is used for VM exits due
to attempts to execute INS, INVEPT, INVVPID, LIDT, LGDT, LLDT, LTR, OUTS,
SIDT, SGDT, SLDT, STR, VMCLEAR, VMPTRLD, VMPTRST, VMREAD, VMWRITE, or
VMXON.2 The format of the field depends on the cause of the VM exit. See
Section 27.2.4 for details.

10:8 Interruption type:

0: External interrupt
1: Not used
2: Non-maskable interrupt (NMI)
3: Hardware exception
4: Software interrupt
5: Privileged software exception
6: Software exception
7: Not used

11 Error code valid (0 = invalid; 1 = valid)

12 Undefined

30:13 Reserved (cleared to 0)

31 Valid

1. This field is also used for VM exits that occur during the delivery of a software interrupt or soft-
ware exception.

2. Whether the processor provides this information on VM exits due to attempts to execute INS or
OUTS can be determined by consulting the VMX capability MSR IA32_VMX_BASIC (see Appendix
A.1).

Table 24-16. Format of the IDT-Vectoring Information Field (Contd.)
Bit
Position(s)

Content
24-30 Vol. 3C

VIRTUAL-MACHINE CONTROL STRUCTURES
The following fields (64 bits each; 32 bits on processors that do not support Intel 64
architecture) are used only for VM exits due to SMIs that arrive immediately after
retirement of I/O instructions. They provide information about that I/O instruction:
• I/O RCX. The value of RCX before the I/O instruction started.
• I/O RSI. The value of RSI before the I/O instruction started.
• I/O RDI. The value of RDI before the I/O instruction started.
• I/O RIP. The value of RIP before the I/O instruction started (the RIP that

addressed the I/O instruction).

24.9.5 VM-Instruction Error Field
The 32-bit VM-instruction error field does not provide information about the most
recent VM exit. In fact, it is not modified on VM exits. Instead, it provides information
about errors encountered by a non-faulting execution of one of the VMX instructions.

24.10 SOFTWARE USE OF THE VMCS AND RELATED
STRUCTURES

This section details guidelines that software should observe when using a VMCS and
related structures. It also provides descriptions of consequences for failing to follow
guidelines.

24.10.1 Software Use of Virtual-Machine Control Structures
To ensure proper processor behavior, software should observe certain guidelines
when using an active VMCS.

No VMCS should ever be active on more than one logical processor. If a VMCS is to be
“migrated” from one logical processor to another, the first logical processor should
execute VMCLEAR for the VMCS (to make it inactive on that logical processor and to
ensure that all VMCS data are in memory) before the other logical processor
executes VMPTRLD for the VMCS (to make it active on the second logical processor).
A VMCS that is made active on more than one logical processor may become
corrupted (see below).

Software should use the VMREAD and VMWRITE instructions to access the different
fields in the current VMCS (see Section 24.10.2). Software should never access or
modify the VMCS data of an active VMCS using ordinary memory operations, in part
because the format used to store the VMCS data is implementation-specific and not
architecturally defined, and also because a logical processor may maintain some
VMCS data of an active VMCS on the processor and not in the VMCS region. The
following items detail some of the hazards of accessing VMCS data using ordinary
memory operations:
Vol. 3C 24-31

VIRTUAL-MACHINE CONTROL STRUCTURES
• Any data read from a VMCS with an ordinary memory read does not reliably
reflect the state of the VMCS. Results may vary from time to time or from logical
processor to logical processor.

• Writing to a VMCS with an ordinary memory write is not guaranteed to have a
deterministic effect on the VMCS. Doing so may cause the VMCS to become
corrupted (see below).

(Software can avoid these hazards by removing any linear-address mappings to a
VMCS region before executing a VMPTRLD for that region and by not remapping it
until after executing VMCLEAR for that region.)

If a logical processor leaves VMX operation, any VMCSs active on that logical
processor may be corrupted (see below). To prevent such corruption of a VMCS that
may be used either after a return to VMX operation or on another logical processor,
software should VMCLEAR that VMCS before executing the VMXOFF instruction or
removing power from the processor (e.g., as part of a transition to the S3 and S4
power states).

This section has identified operations that may cause a VMCS to become corrupted.
These operations may cause the VMCS’s data to become undefined. Behavior may be
unpredictable if that VMCS used subsequently on any logical processor. The following
items detail some hazards of VMCS corruption:
• VM entries may fail for unexplained reasons or may load undesired processor

state.
• The processor may not correctly support VMX non-root operation as documented

in Chapter 25 and may generate unexpected VM exits.
• VM exits may load undesired processor state, save incorrect state into the VMCS,

or cause the logical processor to transition to a shutdown state.

24.10.2 VMREAD, VMWRITE, and Encodings of VMCS Fields
Every field of the VMCS is associated with a 32-bit value that is its encoding. The
encoding is provided in an operand to VMREAD and VMWRITE when software wishes
to read or write that field. These instructions fail if given, in 64-bit mode, an operand
that sets an encoding bit beyond bit 32. See Chapter 29 of the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3C, for a description of these
instructions.

The structure of the 32-bit encodings of the VMCS components is determined princi-
pally by the width of the fields and their function in the VMCS. See Table 24-17.

Table 24-17. Structure of VMCS Component Encoding

Bit Position(s) Contents

0 Access type (0 = full; 1 = high); must be full for 16-bit, 32-bit, and natural-
width fields
24-32 Vol. 3C

VIRTUAL-MACHINE CONTROL STRUCTURES
The following items detail the meaning of the bits in each encoding:
• Field width. Bits 14:13 encode the width of the field.

— A value of 0 indicates a 16-bit field.

— A value of 1 indicates a 64-bit field.

— A value of 2 indicates a 32-bit field.

— A value of 3 indicates a natural-width field. Such fields have 64 bits on
processors that support Intel 64 architecture and 32 bits on processors that
do not.

Fields whose encodings use value 1 are specially treated to allow 32-bit software
access to all 64 bits of the field. Such access is allowed by defining, for each such
field, an encoding that allows direct access to the high 32 bits of the field. See
below.

• Field type. Bits 11:10 encode the type of VMCS field: control, guest-state, host-
state, or read-only data. The last category includes the VM-exit information fields
and the VM-instruction error field.

• Index. Bits 9:1 distinguish components with the same field width and type.
• Access type. Bit 0 must be 0 for all fields except for 64-bit fields (those with

field-width 1; see above). A VMREAD or VMWRITE using an encoding with this bit
cleared to 0 accesses the entire field. For a 64-bit field with field-width 1, a
VMREAD or VMWRITE using an encoding with this bit set to 1 accesses only the
high 32 bits of the field.

Appendix B gives the encodings of all fields in the VMCS.

9:1 Index

11:10 Type:

0: control
1: read-only data
2: guest state
3: host state

12 Reserved (must be 0)

14:13 Width:

0: 16-bit
1: 64-bit
2: 32-bit
3: natural-width

31:15 Reserved (must be 0)

Table 24-17. Structure of VMCS Component Encoding (Contd.)

Bit Position(s) Contents
Vol. 3C 24-33

VIRTUAL-MACHINE CONTROL STRUCTURES
The following describes the operation of VMREAD and VMWRITE based on processor
mode, VMCS-field width, and access type:
• 16-bit fields:

— A VMREAD returns the value of the field in bits 15:0 of the destination
operand; other bits of the destination operand are cleared to 0.

— A VMWRITE writes the value of bits 15:0 of the source operand into the VMCS
field; other bits of the source operand are not used.

• 32-bit fields:

— A VMREAD returns the value of the field in bits 31:0 of the destination
operand; in 64-bit mode, bits 63:32 of the destination operand are cleared to
0.

— A VMWRITE writes the value of bits 31:0 of the source operand into the VMCS
field; in 64-bit mode, bits 63:32 of the source operand are not used.

• 64-bit fields and natural-width fields using the full access type outside IA-32e
mode.

— A VMREAD returns the value of bits 31:0 of the field in its destination
operand; bits 63:32 of the field are ignored.

— A VMWRITE writes the value of its source operand to bits 31:0 of the field and
clears bits 63:32 of the field.

• 64-bit fields and natural-width fields using the full access type in 64-bit mode
(only on processors that support Intel 64 architecture).

— A VMREAD returns the value of the field in bits 63:0 of the destination
operand

— A VMWRITE writes the value of bits 63:0 of the source operand into the VMCS
field.

• 64-bit fields using the high access type.

— A VMREAD returns the value of bits 63:32 of the field in bits 31:0 of the
destination operand; in 64-bit mode, bits 63:32 of the destination operand
are cleared to 0.

— A VMWRITE writes the value of bits 31:0 of the source operand to bits 63:32
of the field; in 64-bit mode, bits 63:32 of the source operand are not used.

Software seeking to read a 64-bit field outside IA-32e mode can use VMREAD with
the full access type (reading bits 31:0 of the field) and VMREAD with the high access
type (reading bits 63:32 of the field); the order of the two VMREAD executions is not
important. Software seeking to modify a 64-bit field outside IA-32e mode should first
use VMWRITE with the full access type (establishing bits 31:0 of the field while
clearing bits 63:32) and then use VMWRITE with the high access type (establishing
bits 63:32 of the field).
24-34 Vol. 3C

VIRTUAL-MACHINE CONTROL STRUCTURES
24.10.3 Initializing a VMCS
Software should initialize fields in a VMCS (using VMWRITE) before using the VMCS
for VM entry. Failure to do so may result in unpredictable behavior; for example, a
VM entry may fail for unexplained reasons, or a successful transition (VM entry or
VM exit) may load processor state with unexpected values.

It is not necessary to initialize fields that the logical processor will not use. (For
example, it is not necessary to unitize the MSR-bitmap address if the “use MSR
bitmaps” VM-execution control is 0.)

A processor maintains some VMCS information that cannot be modified with the
VMWRITE instruction; this includes a VMCS’s launch state (see Section 24.1). Such
information may be stored in the VMCS data portion of a VMCS region. Because the
format of this information is implementation-specific, there is no way for software to
know, when it first allocates a region of memory for use as a VMCS region, how the
processor will determine this information from the contents of the memory region.

In addition to its other functions, the VMCLEAR instruction initializes any implemen-
tation-specific information in the VMCS region referenced by its operand. To avoid
the uncertainties of implementation-specific behavior, software should execute
VMCLEAR on a VMCS region before making the corresponding VMCS active with
VMPTRLD for the first time. (Figure 24-1 illustrates how execution of VMCLEAR puts
a VMCS into a well-defined state.)

The following software usage is consistent with these limitations:
• VMCLEAR should be executed for a VMCS before it is used for VM entry for the

first time.
• VMLAUNCH should be used for the first VM entry using a VMCS after VMCLEAR

has been executed for that VMCS.
• VMRESUME should be used for any subsequent VM entry using a VMCS (until the

next execution of VMCLEAR for the VMCS).

It is expected that, in general, VMRESUME will have lower latency than VMLAUNCH.
Since “migrating” a VMCS from one logical processor to another requires use of
VMCLEAR (see Section 24.10.1), which sets the launch state of the VMCS to “clear”,
such migration requires the next VM entry to be performed using VMLAUNCH. Soft-
ware developers can avoid the performance cost of increased VM-entry latency by
avoiding unnecessary migration of a VMCS from one logical processor to another.

24.10.4 Software Access to Related Structures
In addition to data in the VMCS region itself, VMX non-root operation can be
controlled by data structures that are referenced by pointers in a VMCS (for example,
the I/O bitmaps). While the pointers to these data structures are parts of the VMCS,
the data structures themselves are not. They are not accessible using VMREAD and
VMWRITE but by ordinary memory writes.
Vol. 3C 24-35

VIRTUAL-MACHINE CONTROL STRUCTURES
Software should ensure that each such data structure is modified only when no
logical processor with a current VMCS that references it is in VMX non-root operation.
Doing otherwise may lead to unpredictable behavior (including behaviors identified in
Section 24.10.1).

24.10.5 VMXON Region
Before executing VMXON, software allocates a region of memory (called the VMXON
region)1 that the logical processor uses to support VMX operation. The physical
address of this region (the VMXON pointer) is provided in an operand to VMXON. The
VMXON pointer is subject to the limitations that apply to VMCS pointers:
• The VMXON pointer must be 4-KByte aligned (bits 11:0 must be zero).
• The VMXON pointer must not set any bits beyond the processor’s physical-

address width.2,3

Before executing VMXON, software should write the VMCS revision identifier (see
Section 24.2) to the VMXON region. It need not initialize the VMXON region in any
other way. Software should use a separate region for each logical processor and
should not access or modify the VMXON region of a logical processor between execu-
tion of VMXON and VMXOFF on that logical processor. Doing otherwise may lead to
unpredictable behavior (including behaviors identified in Section 24.10.1).

1. The amount of memory required for the VMXON region is the same as that required for a VMCS
region. This size is implementation specific and can be determined by consulting the VMX capa-
bility MSR IA32_VMX_BASIC (see Appendix A.1).

2. Software can determine a processor’s physical-address width by executing CPUID with
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

3. If IA32_VMX_BASIC[48] is read as 1, the VMXON pointer must not set any bits in the range
63:32; see Appendix A.1.
24-36 Vol. 3C

CHAPTER 25
VMX NON-ROOT OPERATION

In a virtualized environment using VMX, the guest software stack typically runs on a
logical processor in VMX non-root operation. This mode of operation is similar to that
of ordinary processor operation outside of the virtualized environment. This chapter
describes the differences between VMX non-root operation and ordinary processor
operation with special attention to causes of VM exits (which bring a logical processor
from VMX non-root operation to root operation). The differences between VMX non-
root operation and ordinary processor operation are described in the following
sections:
• Section 25.1, “Instructions That Cause VM Exits”
• Section 25.2, “APIC-Access VM Exits”
• Section 25.3, “Other Causes of VM Exits”
• Section 25.4, “Changes to Instruction Behavior in VMX Non-Root Operation”
• Section 25.5, “APIC Accesses That Do Not Cause VM Exits”
• Section 25.6, “Other Changes in VMX Non-Root Operation”
• Section 25.7, “Features Specific to VMX Non-Root Operation”

Chapter 24, “Virtual-Machine Control Structures,” describes the data control struc-
tures that govern VMX non-root operation. Chapter 26, “VM Entries,” describes the
operation of VM entries by which the processor transitions from VMX root operation
to VMX non-root operation. Chapter 27, “VM Exits,” describes the operation of
VM exits by which the processor transitions from VMX non-root operation to VMX root
operation.

25.1 INSTRUCTIONS THAT CAUSE VM EXITS
Certain instructions may cause VM exits if executed in VMX non-root operation.
Unless otherwise specified, such VM exits are “fault-like,” meaning that the instruc-
tion causing the VM exit does not execute and no processor state is updated by the
instruction. Section 27.1 details architectural state in the context of a VM exit.

Section 25.1.1 defines the prioritization between faults and VM exits for instructions
subject to both. Section 25.1.2 identifies instructions that cause VM exits whenever
they are executed in VMX non-root operation (and thus can never be executed in
VMX non-root operation). Section 25.1.3 identifies instructions that cause VM exits
depending on the settings of certain VM-execution control fields (see Section 24.6).
Vol. 3C 25-1

VMX NON-ROOT OPERATION
25.1.1 Relative Priority of Faults and VM Exits
The following principles describe the ordering between existing faults and VM exits:
• Certain exceptions have priority over VM exits. These include invalid-opcode

exceptions, faults based on privilege level,1 and general-protection exceptions
that are based on checking I/O permission bits in the task-state segment (TSS).
For example, execution of RDMSR with CPL = 3 generates a general-protection
exception and not a VM exit.2

• Faults incurred while fetching instruction operands have priority over VM exits
that are conditioned based on the contents of those operands (see LMSW in
Section 25.1.3).

• VM exits caused by execution of the INS and OUTS instructions (resulting either
because the “unconditional I/O exiting” VM-execution control is 1 or because the
“use I/O bitmaps control is 1) have priority over the following faults:

— A general-protection fault due to the relevant segment (ES for INS; DS for
OUTS unless overridden by an instruction prefix) being unusable

— A general-protection fault due to an offset beyond the limit of the relevant
segment

— An alignment-check exception
• Fault-like VM exits have priority over exceptions other than those mentioned

above. For example, RDMSR of a non-existent MSR with CPL = 0 generates a
VM exit and not a general-protection exception.

When Section 25.1.2 or Section 25.1.3 (below) identify an instruction execution that
may lead to a VM exit, it is assumed that the instruction does not incur a fault that
takes priority over a VM exit.

25.1.2 Instructions That Cause VM Exits Unconditionally
The following instructions cause VM exits when they are executed in VMX non-root
operation: CPUID, GETSEC,3 INVD, and XSETBV.4 This is also true of instructions
introduced with VMX, which include: INVEPT, INVVPID, VMCALL,5 VMCLEAR,

1. These include faults generated by attempts to execute, in virtual-8086 mode, privileged instruc-
tions that are not recognized in that mode.

2. MOV DR is an exception to this rule; see Section 25.1.3.

3. An execution of GETSEC in VMX non-root operation causes a VM exit if CR4.SMXE[Bit 14] = 1
regardless of the value of CPL or RAX. An execution of GETSEC causes an invalid-opcode excep-
tion (#UD) if CR4.SMXE[Bit 14] = 0.

4. An execution of XSETBV in VMX non-root operation causes a VM exit if CR4.OSXSAVE[Bit 18] =
1 regardless of the value of CPL, RAX, RCX, or RDX. An execution of XSETBV causes an invalid-
opcode exception (#UD) if CR4.OSXSAVE[Bit 18] = 0.
25-2 Vol. 3C

VMX NON-ROOT OPERATION
VMLAUNCH, VMPTRLD, VMPTRST, VMREAD, VMRESUME, VMWRITE, VMXOFF, and
VMXON.

25.1.3 Instructions That Cause VM Exits Conditionally
Certain instructions cause VM exits in VMX non-root operation depending on the
setting of the VM-execution controls. The following instructions can cause “fault-like”
VM exits based on the conditions described:
• CLTS. The CLTS instruction causes a VM exit if the bits in position 3 (corre-

sponding to CR0.TS) are set in both the CR0 guest/host mask and the CR0 read
shadow.

• HLT. The HLT instruction causes a VM exit if the “HLT exiting” VM-execution
control is 1.

• IN, INS/INSB/INSW/INSD, OUT, OUTS/OUTSB/OUTSW/OUTSD. The
behavior of each of these instructions is determined by the settings of the
“unconditional I/O exiting” and “use I/O bitmaps” VM-execution controls:

— If both controls are 0, the instruction executes normally.

— If the “unconditional I/O exiting” VM-execution control is 1 and the “use I/O
bitmaps” VM-execution control is 0, the instruction causes a VM exit.

— If the “use I/O bitmaps” VM-execution control is 1, the instruction causes a
VM exit if it attempts to access an I/O port corresponding to a bit set to 1 in
the appropriate I/O bitmap (see Section 24.6.4). If an I/O operation “wraps
around” the 16-bit I/O-port space (accesses ports FFFFH and 0000H), the I/O
instruction causes a VM exit (the “unconditional I/O exiting” VM-execution
control is ignored if the “use I/O bitmaps” VM-execution control is 1).

See Section 25.1.1 for information regarding the priority of VM exits relative to
faults that may be caused by the INS and OUTS instructions.

• INVLPG. The INVLPG instruction causes a VM exit if the “INVLPG exiting”
VM-execution control is 1.

• INVPCID. The INVPCID instruction causes a VM exit if the “INVLPG exiting” and
“enable INVPCID” VM-execution controls are both 1.1

• LGDT, LIDT, LLDT, LTR, SGDT, SIDT, SLDT, STR. These instructions cause
VM exits if the “descriptor-table exiting” VM-execution control is 1.2

5. Under the dual-monitor treatment of SMIs and SMM, executions of VMCALL cause SMM VM exits
in VMX root operation outside SMM. See Section 33.15.2.

1. “Enable INVPCID” is a secondary processor-based VM-execution control. If bit 31 of the primary
processor-based VM-execution controls is 0, VMX non-root operation functions as if the “enable
INVPCID” VM-execution control were 0. See Section 24.6.2.

2. “Descriptor-table exiting” is a secondary processor-based VM-execution control. If bit 31 of the
primary processor-based VM-execution controls is 0, VMX non-root operation functions as if the
“descriptor-table exiting” VM-execution control were 0. See Section 24.6.2.
Vol. 3C 25-3

VMX NON-ROOT OPERATION
• LMSW. In general, the LMSW instruction causes a VM exit if it would write, for
any bit set in the low 4 bits of the CR0 guest/host mask, a value different than the
corresponding bit in the CR0 read shadow. LMSW never clears bit 0 of CR0
(CR0.PE); thus, LMSW causes a VM exit if either of the following are true:

— The bits in position 0 (corresponding to CR0.PE) are set in both the CR0
guest/mask and the source operand, and the bit in position 0 is clear in the
CR0 read shadow.

— For any bit position in the range 3:1, the bit in that position is set in the CR0
guest/mask and the values of the corresponding bits in the source operand
and the CR0 read shadow differ.

• MONITOR. The MONITOR instruction causes a VM exit if the “MONITOR exiting”
VM-execution control is 1.

• MOV from CR3. The MOV from CR3 instruction causes a VM exit if the “CR3-
store exiting” VM-execution control is 1. The first processors to support the
virtual-machine extensions supported only the 1-setting of this control.

• MOV from CR8. The MOV from CR8 instruction (which can be executed only in
64-bit mode) causes a VM exit if the “CR8-store exiting” VM-execution control is
1. If this control is 0, the behavior of the MOV from CR8 instruction is modified if
the “use TPR shadow” VM-execution control is 1 (see Section 25.4).

• MOV to CR0. The MOV to CR0 instruction causes a VM exit unless the value of its
source operand matches, for the position of each bit set in the CR0 guest/host
mask, the corresponding bit in the CR0 read shadow. (If every bit is clear in the
CR0 guest/host mask, MOV to CR0 cannot cause a VM exit.)

• MOV to CR3. The MOV to CR3 instruction causes a VM exit unless the “CR3-load
exiting” VM-execution control is 0 or the value of its source operand is equal to
one of the CR3-target values specified in the VMCS. If the CR3-target count in n,
only the first n CR3-target values are considered; if the CR3-target count is 0,
MOV to CR3 always causes a VM exit.
The first processors to support the virtual-machine extensions supported only
the 1-setting of the “CR3-load exiting” VM-execution control. These processors
always consult the CR3-target controls to determine whether an execution of
MOV to CR3 causes a VM exit.

• MOV to CR4. The MOV to CR4 instruction causes a VM exit unless the value of its
source operand matches, for the position of each bit set in the CR4 guest/host
mask, the corresponding bit in the CR4 read shadow.

• MOV to CR8. The MOV to CR8 instruction (which can be executed only in 64-bit
mode) causes a VM exit if the “CR8-load exiting” VM-execution control is 1. If this
control is 0, the behavior of the MOV to CR8 instruction is modified if the “use TPR
shadow” VM-execution control is 1 (see Section 25.4) and it may cause a trap-
like VM exit (see below).

• MOV DR. The MOV DR instruction causes a VM exit if the “MOV-DR exiting”
VM-execution control is 1. Such VM exits represent an exception to the principles
identified in Section 25.1.1 in that they take priority over the following: general-
25-4 Vol. 3C

VMX NON-ROOT OPERATION
protection exceptions based on privilege level; and invalid-opcode exceptions
that occur because CR4.DE=1 and the instruction specified access to DR4 or DR5.

• MWAIT. The MWAIT instruction causes a VM exit if the “MWAIT exiting”
VM-execution control is 1. If this control is 0, the behavior of the MWAIT
instruction may be modified (see Section 25.4).

• PAUSE.The behavior of each of this instruction depends on CPL and the settings
of the “PAUSE exiting” and “PAUSE-loop exiting” VM-execution controls:1

— CPL = 0.

• If the “PAUSE exiting” and “PAUSE-loop exiting” VM-execution controls
are both 0, the PAUSE instruction executes normally.

• If the “PAUSE exiting” VM-execution control is 1, the PAUSE instruction
causes a VM exit (the “PAUSE-loop exiting” VM-execution control is
ignored if CPL = 0 and the “PAUSE exiting” VM-execution control is 1).

• If the “PAUSE exiting” VM-execution control is 0 and the “PAUSE-loop
exiting” VM-execution control is 1, the following treatment applies.

The logical processor determines the amount of time between this
execution of PAUSE and the previous execution of PAUSE at CPL 0. If this
amount of time exceeds the value of the VM-execution control field
PLE_Gap, the processor considers this execution to be the first execution
of PAUSE in a loop. (It also does so for the first execution of PAUSE at CPL
0 after VM entry.)

Otherwise, the logical processor determines the amount of time since the
most recent execution of PAUSE that was considered to be the first in a
loop. If this amount of time exceeds the value of the VM-execution control
field PLE_Window, a VM exit occurs.

For purposes of these computations, time is measured based on a counter
that runs at the same rate as the timestamp counter (TSC).

— CPL > 0.

• If the “PAUSE exiting” VM-execution control is 0, the PAUSE instruction
executes normally.

• If the “PAUSE exiting” VM-execution control is 1, the PAUSE instruction
causes a VM exit.

The “PAUSE-loop exiting” VM-execution control is ignored if CPL > 0.
• RDMSR. The RDMSR instruction causes a VM exit if any of the following are true:

— The “use MSR bitmaps” VM-execution control is 0.

1. “PAUSE-loop exiting” is a secondary processor-based VM-execution control. If bit 31 of the pri-
mary processor-based VM-execution controls is 0, VMX non-root operation functions as if the
“PAUSE-loop exiting” VM-execution control were 0. See Section 24.6.2.
Vol. 3C 25-5

VMX NON-ROOT OPERATION
— The value of ECX is not in the range 00000000H – 00001FFFH or
C0000000H – C0001FFFH.

— The value of ECX is in the range 00000000H – 00001FFFH and bit n in read
bitmap for low MSRs is 1, where n is the value of ECX.

— The value of ECX is in the range C0000000H – C0001FFFH and bit n in read
bitmap for high MSRs is 1, where n is the value of ECX & 00001FFFH.

See Section 24.6.9 for details regarding how these bitmaps are identified.
• RDPMC. The RDPMC instruction causes a VM exit if the “RDPMC exiting”

VM-execution control is 1.
• RDRAND. The RDRAND instruction causes a VM exit if the “RDRAND exiting”

VM-execution control is 1.1

• RDTSC. The RDTSC instruction causes a VM exit if the “RDTSC exiting”
VM-execution control is 1.

• RDTSCP. The RDTSCP instruction causes a VM exit if the “RDTSC exiting” and
“enable RDTSCP” VM-execution controls are both 1.2

• RSM. The RSM instruction causes a VM exit if executed in system-management
mode (SMM).3

• WBINVD. The WBINVD instruction causes a VM exit if the “WBINVD exiting”
VM-execution control is 1.4

• WRMSR. The WRMSR instruction causes a VM exit if any of the following are
true:

— The “use MSR bitmaps” VM-execution control is 0.

— The value of ECX is not in the range 00000000H – 00001FFFH or
C0000000H – C0001FFFH.

— The value of ECX is in the range 00000000H – 00001FFFH and bit n in write
bitmap for low MSRs is 1, where n is the value of ECX.

— The value of ECX is in the range C0000000H – C0001FFFH and bit n in write
bitmap for high MSRs is 1, where n is the value of ECX & 00001FFFH.

1. “RDRAND exiting” is a secondary processor-based VM-execution control. If bit 31 of the primary
processor-based VM-execution controls is 0, VMX non-root operation functions as if the
“RDRAND exiting” VM-execution control were 0. See Section 24.6.2.

2. “Enable RDTSCP” is a secondary processor-based VM-execution control. If bit 31 of the primary
processor-based VM-execution controls is 0, VMX non-root operation functions as if the “enable
RDTSCP” VM-execution control were 0. See Section 24.6.2.

3. Execution of the RSM instruction outside SMM causes an invalid-opcode exception regardless of
whether the processor is in VMX operation. It also does so in VMX root operation in SMM; see
Section 33.15.3.

4. “WBINVD exiting” is a secondary processor-based VM-execution control. If bit 31 of the primary
processor-based VM-execution controls is 0, VMX non-root operation functions as if the
“WBINVD exiting” VM-execution control were 0. See Section 24.6.2.
25-6 Vol. 3C

VMX NON-ROOT OPERATION
See Section 24.6.9 for details regarding how these bitmaps are identified.
If an execution of WRMSR does not cause a VM exit as specified above and
ECX = 808H (indicating the TPR MSR), instruction behavior is modified if the
“virtualize x2APIC mode” VM-execution control is 1 (see Section 25.4) and it
may cause a trap-like VM exit (see below).1

The MOV to CR8 and WRMSR instructions may cause “trap-like” VM exits. In such a
case, the instruction completes before the VM exit occurs and that processor state is
updated by the instruction (for example, the value of CS:RIP saved in the guest-state
area of the VMCS references the next instruction).

Specifically, a trap-like VM exit occurs following either instruction if the execution
reduces the value of the TPR shadow below that of the TPR threshold VM-execution
control field (see Section 24.6.8 and Section 25.4) and the following hold:
• For MOV to CR8:

— The “CR8-load exiting” VM-execution control is 0.

— The “use TPR shadow” VM-execution control is 1.
• For WRMSR:

— The “use MSR bitmaps” VM-execution control is 1, the value of ECX is 808H,
and bit 808H in write bitmap for low MSRs is 0 (see above).

— The “virtualize x2APIC mode” VM-execution control is 1.

25.2 APIC-ACCESS VM EXITS
If the “virtualize APIC accesses” VM-execution control is 1, an attempt to access
memory using a physical address on the APIC-access page (see Section 24.6.8)
causes a VM exit.2,3 Such a VM exit is called an APIC-access VM exit.

Whether an operation that attempts to access memory with a physical address on the
APIC-access page causes an APIC-access VM exit may be qualified based on the type
of access. Section 25.2.1 describes the treatment of linear accesses, while Section
25.2.3 describes that of physical accesses. Section 25.2.4 discusses accesses to the
TPR field on the APIC-access page (called VTPR accesses), which do not, if the “use
TPR shadow” VM-execution control is 1, cause APIC-access VM exits.

1. “Virtualize x2APIC mode” is a secondary processor-based VM-execution control. If bit 31 of the
primary processor-based VM-execution controls is 0, VMX non-root operation functions as if the
“virtualize x2APIC mode” VM-execution control were 0. See Section 24.6.2.

2. “Virtualize APIC accesses” is a secondary processor-based VM-execution control. If bit 31 of the
primary processor-based VM-execution controls is 0, VMX non-root operation functions as if the
“virtualize APIC accesses” VM-execution control were 0. See Section 24.6.2.

3. Even when addresses are translated using EPT (see Section 28.2), the determination of whether
an APIC-access VM exit occurs depends on an access’s physical address, not its guest-physical
address.
Vol. 3C 25-7

VMX NON-ROOT OPERATION
25.2.1 Linear Accesses to the APIC-Access Page
An access to the APIC-access page is called a linear access if (1) it results from a
memory access using a linear address; and (2) the access’s physical address is the
translation of that linear address. Section 25.2.1.1 specifies which linear accesses to
the APIC-access page cause APIC-access VM exits.

In general, the treatment of APIC-access VM exits caused by linear accesses is
similar to that of page faults and EPT violations. Based upon this treatment, Section
25.2.1.2 specifies the priority of such VM exits with respect to other events, while
Section 25.2.1.3 discusses instructions that may cause page faults without accessing
memory and the treatment when they access the APIC-access page.

25.2.1.1 Linear Accesses That Cause APIC-Access VM Exits
Whether a linear access to the APIC-access page causes an APIC-access VM exit
depends in part of the nature of the translation used by the linear address:
• If the linear access uses a translation with a 4-KByte page, it causes an APIC-

access VM exit.
• If the linear access uses a translation with a large page (2-MByte, 4-MByte, or

1-GByte), the access may or may not cause an APIC-access VM exit. Section
25.5.1 describes the treatment of such accesses that do not cause an APIC-
access VM exits.
If CR0.PG = 1 and EPT is in use (the “enable EPT” VM-execution control is 1), a
linear access uses a translation with a large page only if a large page is specified
by both the guest paging structures and the EPT paging structures.1

It is recommended that software configure the paging structures so that any transla-
tion to the APIC-access page uses a 4-KByte page.

A linear access to the APIC-access page might not cause an APIC-access VM exit if
the “enable EPT” VM-execution control is 1 and software has not properly invalidate
information cached from the EPT paging structures:
• At time t1, EPT was in use, the EPTP value was X, and some guest-physical

address Y translated to an address that was not on the APIC-access page at that
time. (This might be because the “virtualize APIC accesses” VM-execution control
was 0.)

• At later time t2, EPT is in use, the EPTP value is X, and a memory access uses a
linear address that translates to Y, which now translates to an address on the

1. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation,
CR0.PG must be 1 unless the “unrestricted guest” VM-execution control and bit 31 of the primary
processor-based VM-execution controls are both 1. “Enable EPT” is a secondary processor-based
VM-execution control. If bit 31 of the primary processor-based VM-execution controls is 0, VMX
non-root operation functions as if the “enable EPT” VM-execution control were 0. See Section
24.6.2.
25-8 Vol. 3C

VMX NON-ROOT OPERATION
APIC-access page. (This implies that the “virtualize APIC accesses” VM-execution
control is 1 at this time.)

• Software did not execute the INVEPT instruction between times t1 and t2, either
with the all-context INVEPT type or with the single-context INVEPT type and X as
the INVEPT descriptor.

In this case, the linear access at time t2 might or might not cause an APIC-access
VM exit. If it does not, the access operates on memory on the APIC-access page.

Software can avoid this situation through appropriate use of the INVEPT instruction;
see Section 28.3.3.4.

A linear access to the APIC-access page might not cause an APIC-access VM exit if
the “enable VPID” VM-execution control is 1 and software has not properly invali-
dated the TLBs and paging-structure caches:
• At time t1, the processor was in VMX non-root operation with non-zero VPID X,

and some linear address Y translated to an address that was not on the APIC-
access page at that time. (This might be because the “virtualize APIC accesses”
VM-execution control was 0.)

• At later time t2, the processor was again in VMX non-root operation with VPID X,
and a memory access uses linear address, which now translates to an address on
the APIC-access page. (This implies that the “virtualize APIC accesses” VM-
execution control is 1 at this time.)

• Software did not execute the INVVPID instruction in any of the following ways
between times t1 and t2:

— With the individual-address INVVPID type and an INVVPID descriptor
specifying VPID X and linear address Y.

— With the single-context INVVPID type and an INVVPID descriptor specifying
VPID X.

— With the all-context INVEPT type.

— With the single-context-retaining-globals INVVPID type and an INVVPID
descriptor specifying VPID X (assuming that, at time t1, the translation for Y
was global; see Section 4.10, “Caching Translation Information” in Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 3A for details
regarding global translations).

In this case, the linear access at time t2 might or might not cause an APIC-access
VM exit. If it does not, the access operates on memory on the APIC-access page.

Software can avoid this situation through appropriate use of the INVVPID instruction;
see Section 28.3.3.3.

25.2.1.2 Priority of APIC-Access VM Exits Caused by Linear Accesses
The following items specify the priority relative to other events of APIC-access
VM exits caused by linear accesses.
Vol. 3C 25-9

VMX NON-ROOT OPERATION
• The priority of an APIC-access VM exit on a linear access to memory is below that
of any page fault or EPT violation that that access may incur. That is, a linear
access does not cause an APIC-access VM exit if it would cause a page fault or an
EPT violation.

• A linear access does not cause an APIC-access VM exit until after the accessed
bits are set in the paging structures.

• A linear write access will not cause an APIC-access VM exit until after the dirty bit
is set in the appropriate paging structure.

• With respect to all other events, any APIC-access VM exit due to a linear access
has the same priority as any page fault or EPT violation that the linear access
could cause. (This item applies to other events that the linear access may
generate as well as events that may be generated by other accesses by the same
instruction or operation.)

These principles imply among other things, that an APIC-access VM exit may occur
during the execution of a repeated string instruction (including INS and OUTS).
Suppose, for example, that the first n iterations (n may be 0) of such an instruction
do not access the APIC-access page and that the next iteration does access that
page. As a result, the first n iterations may complete and be followed by an APIC-
access VM exit. The instruction pointer saved in the VMCS references the repeated
string instruction and the values of the general-purpose registers reflect the comple-
tion of n iterations.

25.2.1.3 Instructions That May Cause Page Faults or EPT Violations
Without Accessing Memory

APIC-access VM exits may occur as a result of executing an instruction that can
cause a page fault or an EPT violation even if that instruction would not access the
APIC-access page. The following are some examples:
• The CLFLUSH instruction is considered to read from the linear address in its

source operand. If that address translates to one on the APIC-access page, the
instruction causes an APIC-access VM exit.

• The ENTER instruction causes a page fault if the byte referenced by the final
value of the stack pointer is not writable (even though ENTER does not write to
that byte if its size operand is non-zero). If that byte is writable but is on the
APIC-access page, ENTER causes an APIC-access VM exit.1

• An execution of the MASKMOVQ or MASKMOVDQU instructions with a zero mask
may or may not cause a page fault or an EPT violation if the destination page is
unwritable (the behavior is implementation-specific). An execution with a zero
mask causes an APIC-access VM exit only on processors for which it could cause
a page fault or an EPT violation.

1. The ENTER instruction may also cause page faults due to the memory accesses that it actually
does perform. With regard to APIC-access VM exits, these are treated just as accesses by any
other instruction.
25-10 Vol. 3C

VMX NON-ROOT OPERATION
• The MONITOR instruction is considered to read from the effective address in RAX.
If the linear address corresponding to that address translates to one on the APIC-
access page, the instruction causes an APIC-access VM exit.1

• An execution of the PREFETCH instruction that would result in an access to the
APIC-access page does not cause an APIC-access VM exit.

25.2.2 Guest-Physical Accesses to the APIC-Access Page
An access to the APIC-access page is called a guest-physical access if
(1) CR0.PG = 1;2 (2) the “enable EPT” VM-execution control is 1;3 (3) the access’s
physical address is the result of an EPT translation; and (4) either (a) the access was
not generated by a linear address; or (b) the access’s guest-physical address is not
the translation of the access’s linear address. Guest-physical accesses include the
following when guest-physical addresses are being translated using EPT:
• Reads from the guest paging structures when translating a linear address (such

an access uses a guest-physical address that is not the translation of that linear
address).

• Loads of the page-directory-pointer-table entries by MOV to CR when the logical
processor is using (or that causes the logical processor to use) PAE paging.4

• Updates to the accessed and dirty bits in the guest paging structures when using
a linear address (such an access uses a guest-physical address that is not the
translation of that linear address).

Section 25.2.2.1 specifies when guest-physical accesses to the APIC-access page
might not cause APIC-access VM exits. In general, the treatment of APIC-access
VM exits caused by guest-physical accesses is similar to that of EPT violations. Based
upon this treatment, Section 25.2.2.2 specifies the priority of such VM exits with
respect to other events.

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most
processors that support VMX operation also support Intel 64 architecture. For IA-32 processors,
this notation refers to the 32-bit forms of those registers (EAX, EIP, ESP, EFLAGS, etc.). In a few
places, notation such as EAX is used to refer specifically to lower 32 bits of the indicated regis-
ter.

2. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation,
CR0.PG must be 1 unless the “unrestricted guest” VM-execution control and bit 31 of the primary
processor-based VM-execution controls are both 1.

3. “Enable EPT” is a secondary processor-based VM-execution control. If bit 31 of the primary pro-
cessor-based VM-execution controls is 0, VMX non-root operation functions as if the “enable
EPT” VM-execution control were 0. See Section 24.6.2.

4. A logical processor uses PAE paging if CR0.PG = 1, CR4.PAE = 1 and IA32_EFER.LMA = 0. See
Section 4.4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.
Vol. 3C 25-11

VMX NON-ROOT OPERATION
25.2.2.1 Guest-Physical Accesses That Might Not Cause APIC-Access
VM Exits

Whether a guest-physical access to the APIC-access page causes an APIC-access
VM exit depends on the nature of the EPT translation used by the guest-physical
address and on how software is managing information cached from the EPT paging
structures. The following items detail cases in which a guest-physical access to the
APIC-access page might not cause an APIC-access VM exit:
• If the access uses a guest-physical address whose translation to the APIC-access

page uses an EPT PDPTE that maps a 1-GByte page (because bit 7 of the EPT
PDPTE is 1).

• If the access uses a guest-physical address whose translation to the APIC-access
page uses an EPT PDE that maps a 2-MByte page (because bit 7 of the EPT PDE
is 1).

• Software has not properly invalidated information cached from the EPT paging
structures:

— At time t1, EPT was in use, the EPTP value was X, and some guest-physical
address Y translated to an address that was not on the APIC-access page at
that time. (This might be because the “virtualize APIC accesses” VM-
execution control was 0.)

— At later time t2, the EPTP value is X and a memory access uses guest-physical
address Y, which now translates to an address on the APIC-access page. (This
implies that the “virtualize APIC accesses” VM-execution control is 1 at this
time.)

— Software did not execute the INVEPT instruction, either with the all-context
INVEPT type or with the single-context INVEPT type and X as the INVEPT
descriptor, between times t1 and t2.

In any of the above cases, the guest-physical access at time t2 might or might not an
APIC-access VM exit. If it does not, the access operates on memory on the APIC-
access page.

Software can avoid this situation through appropriate use of the INVEPT instruction;
see Section 28.3.3.4.

25.2.2.2 Priority of APIC-Access VM Exits Caused by Guest-Physical
Accesses

The following items specify the priority relative to other events of APIC-access
VM exits caused by guest-physical accesses.
• The priority of an APIC-access VM exit caused by a guest-physical access to

memory is below that of any EPT violation that that access may incur. That is, a
guest-physical access does not cause an APIC-access VM exit if it would cause an
EPT violation.
25-12 Vol. 3C

VMX NON-ROOT OPERATION
• With respect to all other events, any APIC-access VM exit caused by a guest-
physical access has the same priority as any EPT violation that the guest-physical
access could cause.

25.2.3 Physical Accesses to the APIC-Access Page
An access to the APIC-access page is called a physical access if (1) either (a) the
“enable EPT” VM-execution control is 0;1 or (b) the access’s physical address is not
the result of a translation through the EPT paging structures; and (2) either (a) the
access is not generated by a linear address; or (b) the access’s physical address is
not the translation of its linear address.

Physical accesses include the following:
• If the “enable EPT” VM-execution control is 0:

— Reads from the paging structures when translating a linear address.

— Loads of the page-directory-pointer-table entries by MOV to CR when the
logical processor is using (or that causes the logical processor to use) PAE
paging.2

— Updates to the accessed and dirty bits in the paging structures.
• If the “enable EPT” VM-execution control is 1, accesses to the EPT paging

structures.
• Any of the following accesses made by the processor to support VMX non-root

operation:

— Accesses to the VMCS region.

— Accesses to data structures referenced (directly or indirectly) by physical
addresses in VM-execution control fields in the VMCS. These include the I/O
bitmaps, the MSR bitmaps, and the virtual-APIC page.

• Accesses that effect transitions into and out of SMM.3 These include the
following:

— Accesses to SMRAM during SMI delivery and during execution of RSM.

— Accesses during SMM VM exits (including accesses to MSEG) and during
VM entries that return from SMM.

1. “Enable EPT” is a secondary processor-based VM-execution control. If bit 31 of the primary pro-
cessor-based VM-execution controls is 0, VMX non-root operation functions as if the “enable
EPT” VM-execution control were 0. See Section 24.6.2.

2. A logical processor uses PAE paging if CR0.PG = 1, CR4.PAE = 1 and IA32_EFER.LMA = 0. See
Section 4.4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

3. Technically, these accesses do not occur in VMX non-root operation. They are included here for
clarity.
Vol. 3C 25-13

VMX NON-ROOT OPERATION
A physical access to the APIC-access page may or may not cause an APIC-access
VM exit. (A physical write to the APIC-access page may write to memory as specified
in Section 25.5.2 before causing the APIC-access VM exit.) The priority of an APIC-
access VM exit caused by physical access is not defined relative to other events that
the access may cause. Section 25.5.2 describes the treatment of physical accesses to
the APIC-access page that do not cause APIC-access VM exits.

It is recommended that software not set the APIC-access address to any of those
used by physical memory accesses (identified above). For example, it should not set
the APIC-access address to the physical address of any of the active paging struc-
tures if the “enable EPT” VM-execution control is 0.

25.2.4 VTPR Accesses
A memory access is a VTPR access if all of the following hold: (1) the “use TPR
shadow” VM-execution control is 1; (2) the access is not for an instruction fetch;
(3) the access is at most 32 bits in width; and (4) the access is to offset 80H on the
APIC-access page.

A memory access is not a VTPR access (even if it accesses only bytes in the range
80H–83H on the APIC-access page) if any of the following hold: (1) the “use TPR
shadow” VM-execution control is 0; (2) the access is for an instruction fetch; (3) the
access is more than 32 bits in width; or (4) the access is to some offset is on the
APIC-access page other than 80H. For example, a 16-bit access to offset 81H on the
APIC-access page is not a VTPR access, even if the “use TPR shadow” VM-execution
control is 1.

In general, VTPR accesses do not cause APIC-access VM exits. Instead, they are
treated as described in Section 25.5.3. Physical VTPR accesses (see Section 25.2.3)
may or may not cause APIC-access VM exits; see Section 25.5.2.

25.3 OTHER CAUSES OF VM EXITS
In addition to VM exits caused by instruction execution, the following events can
cause VM exits:
• Exceptions. Exceptions (faults, traps, and aborts) cause VM exits based on the

exception bitmap (see Section 24.6.3). If an exception occurs, its vector (in the
range 0–31) is used to select a bit in the exception bitmap. If the bit is 1, a
VM exit occurs; if the bit is 0, the exception is delivered normally through the
guest IDT. This use of the exception bitmap applies also to exceptions generated
by the instructions INT3, INTO, BOUND, and UD2.
Page faults (exceptions with vector 14) are specially treated. When a page fault
occurs, a logical processor consults (1) bit 14 of the exception bitmap; (2) the
error code produced with the page fault [PFEC]; (3) the page-fault error-code
mask field [PFEC_MASK]; and (4) the page-fault error-code match field
[PFEC_MATCH]. It checks if PFEC & PFEC_MASK = PFEC_MATCH. If there is
25-14 Vol. 3C

VMX NON-ROOT OPERATION
equality, the specification of bit 14 in the exception bitmap is followed (for
example, a VM exit occurs if that bit is set). If there is inequality, the meaning of
that bit is reversed (for example, a VM exit occurs if that bit is clear).
Thus, if software desires VM exits on all page faults, it can set bit 14 in the
exception bitmap to 1 and set the page-fault error-code mask and match fields
each to 00000000H. If software desires VM exits on no page faults, it can set bit
14 in the exception bitmap to 1, the page-fault error-code mask field to
00000000H, and the page-fault error-code match field to FFFFFFFFH.

• Triple fault. A VM exit occurs if the logical processor encounters an exception
while attempting to call the double-fault handler and that exception itself does
not cause a VM exit due to the exception bitmap. This applies to the case in which
the double-fault exception was generated within VMX non-root operation, the
case in which the double-fault exception was generated during event injection by
VM entry, and to the case in which VM entry is injecting a double-fault exception.

• External interrupts. An external interrupt causes a VM exit if the “external-
interrupt exiting” VM-execution control is 1. Otherwise, the interrupt is delivered
normally through the IDT. (If a logical processor is in the shutdown state or the
wait-for-SIPI state, external interrupts are blocked. The interrupt is not delivered
through the IDT and no VM exit occurs.)

• Non-maskable interrupts (NMIs). An NMI causes a VM exit if the “NMI
exiting” VM-execution control is 1. Otherwise, it is delivered using descriptor 2 of
the IDT. (If a logical processor is in the wait-for-SIPI state, NMIs are blocked. The
NMI is not delivered through the IDT and no VM exit occurs.)

• INIT signals. INIT signals cause VM exits. A logical processor performs none of
the operations normally associated with these events. Such exits do not modify
register state or clear pending events as they would outside of VMX operation. (If
a logical processor is in the wait-for-SIPI state, INIT signals are blocked. They do
not cause VM exits in this case.)

• Start-up IPIs (SIPIs). SIPIs cause VM exits. If a logical processor is not in
the wait-for-SIPI activity state when a SIPI arrives, no VM exit occurs and the
SIPI is discarded. VM exits due to SIPIs do not perform any of the normal
operations associated with those events: they do not modify register state as
they would outside of VMX operation. (If a logical processor is not in the wait-for-
SIPI state, SIPIs are blocked. They do not cause VM exits in this case.)

• Task switches. Task switches are not allowed in VMX non-root operation. Any
attempt to effect a task switch in VMX non-root operation causes a VM exit. See
Section 25.6.2.

• System-management interrupts (SMIs). If the logical processor is using the
dual-monitor treatment of SMIs and system-management mode (SMM), SMIs
cause SMM VM exits. See Section 33.15.2.1

1. Under the dual-monitor treatment of SMIs and SMM, SMIs also cause SMM VM exits if they occur
in VMX root operation outside SMM. If the processor is using the default treatment of SMIs and
SMM, SMIs are delivered as described in Section 33.14.1.
Vol. 3C 25-15

VMX NON-ROOT OPERATION
• VMX-preemption timer. A VM exit occurs when the timer counts down to zero.
See Section 25.7.1 for details of operation of the VMX-preemption timer.
Debug-trap exceptions and higher priority events take priority over VM exits
caused by the VMX-preemption timer. VM exits caused by the VMX-preemption
timer take priority over VM exits caused by the “NMI-window exiting”
VM-execution control and lower priority events.
These VM exits wake a logical processor from the same inactive states as would
a non-maskable interrupt. Specifically, they wake a logical processor from the
shutdown state and from the states entered using the HLT and MWAIT instruc-
tions. These VM exits do not occur if the logical processor is in the wait-for-SIPI
state.

In addition, there are controls that cause VM exits based on the readiness of guest
software to receive interrupts:
• If the “interrupt-window exiting” VM-execution control is 1, a VM exit occurs

before execution of any instruction if RFLAGS.IF = 1 and there is no blocking of
events by STI or by MOV SS (see Table 24-3). Such a VM exit occurs immediately
after VM entry if the above conditions are true (see Section 26.6.5).
Non-maskable interrupts (NMIs) and higher priority events take priority over
VM exits caused by this control. VM exits caused by this control take priority over
external interrupts and lower priority events.
These VM exits wake a logical processor from the same inactive states as would
an external interrupt. Specifically, they wake a logical processor from the states
entered using the HLT and MWAIT instructions. These VM exits do not occur if the
logical processor is in the shutdown state or the wait-for-SIPI state.

• If the “NMI-window exiting” VM-execution control is 1, a VM exit occurs before
execution of any instruction if there is no virtual-NMI blocking and there is no
blocking of events by MOV SS (see Table 24-3). (A logical processor may also
prevent such a VM exit if there is blocking of events by STI.) Such a VM exit
occurs immediately after VM entry if the above conditions are true (see Section
26.6.6).
VM exits caused by the VMX-preemption timer and higher priority events take
priority over VM exits caused by this control. VM exits caused by this control take
priority over non-maskable interrupts (NMIs) and lower priority events.
These VM exits wake a logical processor from the same inactive states as would
an NMI. Specifically, they wake a logical processor from the shutdown state and
from the states entered using the HLT and MWAIT instructions. These VM exits do
not occur if the logical processor is in the wait-for-SIPI state.
25-16 Vol. 3C

VMX NON-ROOT OPERATION
25.4 CHANGES TO INSTRUCTION BEHAVIOR IN VMX NON-
ROOT OPERATION

The behavior of some instructions is changed in VMX non-root operation. Some of
these changes are determined by the settings of certain VM-execution control fields.
The following items detail such changes:
• CLTS. Behavior of the CLTS instruction is determined by the bits in position 3

(corresponding to CR0.TS) in the CR0 guest/host mask and the CR0 read
shadow:

— If bit 3 in the CR0 guest/host mask is 0, CLTS clears CR0.TS normally (the
value of bit 3 in the CR0 read shadow is irrelevant in this case), unless CR0.TS
is fixed to 1 in VMX operation (see Section 23.8), in which case CLTS causes
a general-protection exception.

— If bit 3 in the CR0 guest/host mask is 1 and bit 3 in the CR0 read shadow is 0,
CLTS completes but does not change the contents of CR0.TS.

— If the bits in position 3 in the CR0 guest/host mask and the CR0 read shadow
are both 1, CLTS causes a VM exit.

• INVPCID. Behavior of the INVPCID instruction is determined first by the setting
of the “enable INVPCID” VM-execution control:1

— If the “enable INVPCID” VM-execution control is 0, INVPCID causes an
invalid-opcode exception (#UD).

— If the “enable INVPCID” VM-execution control is 1, treatment is based on the
setting of the “INVLPG exiting” VM-execution control:

• If the “INVLPG exiting” VM-execution control is 0, INVPCID operates
normally.

• If the “INVLPG exiting” VM-execution control is 1, INVPCID causes a
VM exit.

• IRET. Behavior of IRET with regard to NMI blocking (see Table 24-3) is
determined by the settings of the “NMI exiting” and “virtual NMIs” VM-execution
controls:

— If the “NMI exiting” VM-execution control is 0, IRET operates normally and
unblocks NMIs. (If the “NMI exiting” VM-execution control is 0, the “virtual
NMIs” control must be 0; see Section 26.2.1.1.)

— If the “NMI exiting” VM-execution control is 1, IRET does not affect blocking
of NMIs. If, in addition, the “virtual NMIs” VM-execution control is 1, the
logical processor tracks virtual-NMI blocking. In this case, IRET removes any
virtual-NMI blocking.

1. “Enable INVPCID” is a secondary processor-based VM-execution control. If bit 31 of the primary
processor-based VM-execution controls is 0, VMX non-root operation functions as if the “enable
INVPCID” VM-execution control were 0. See Section 24.6.2.
Vol. 3C 25-17

VMX NON-ROOT OPERATION
The unblocking of NMIs or virtual NMIs specified above occurs even if IRET
causes a fault.

• LMSW. Outside of VMX non-root operation, LMSW loads its source operand into
CR0[3:0], but it does not clear CR0.PE if that bit is set. In VMX non-root
operation, an execution of LMSW that does not cause a VM exit (see Section
25.1.3) leaves unmodified any bit in CR0[3:0] corresponding to a bit set in the
CR0 guest/host mask. An attempt to set any other bit in CR0[3:0] to a value not
supported in VMX operation (see Section 23.8) causes a general-protection
exception. Attempts to clear CR0.PE are ignored without fault.

• MOV from CR0. The behavior of MOV from CR0 is determined by the CR0
guest/host mask and the CR0 read shadow. For each position corresponding to a
bit clear in the CR0 guest/host mask, the destination operand is loaded with the
value of the corresponding bit in CR0. For each position corresponding to a bit set
in the CR0 guest/host mask, the destination operand is loaded with the value of
the corresponding bit in the CR0 read shadow. Thus, if every bit is cleared in the
CR0 guest/host mask, MOV from CR0 reads normally from CR0; if every bit is set
in the CR0 guest/host mask, MOV from CR0 returns the value of the CR0 read
shadow.
Depending on the contents of the CR0 guest/host mask and the CR0 read
shadow, bits may be set in the destination that would never be set when reading
directly from CR0.

• MOV from CR3. If the “enable EPT” VM-execution control is 1 and an execution
of MOV from CR3 does not cause a VM exit (see Section 25.1.3), the value loaded
from CR3 is a guest-physical address; see Section 28.2.1.

• MOV from CR4. The behavior of MOV from CR4 is determined by the CR4
guest/host mask and the CR4 read shadow. For each position corresponding to a
bit clear in the CR4 guest/host mask, the destination operand is loaded with the
value of the corresponding bit in CR4. For each position corresponding to a bit set
in the CR4 guest/host mask, the destination operand is loaded with the value of
the corresponding bit in the CR4 read shadow. Thus, if every bit is cleared in the
CR4 guest/host mask, MOV from CR4 reads normally from CR4; if every bit is set
in the CR4 guest/host mask, MOV from CR4 returns the value of the CR4 read
shadow.
Depending on the contents of the CR4 guest/host mask and the CR4 read
shadow, bits may be set in the destination that would never be set when reading
directly from CR4.

• MOV from CR8. Behavior of the MOV from CR8 instruction (which can be
executed only in 64-bit mode) is determined by the settings of the “CR8-store
exiting” and “use TPR shadow” VM-execution controls:

— If both controls are 0, MOV from CR8 operates normally.

— If the “CR8-store exiting” VM-execution control is 0 and the “use TPR
shadow” VM-execution control is 1, MOV from CR8 reads from the TPR
shadow. Specifically, it loads bits 3:0 of its destination operand with the value
25-18 Vol. 3C

VMX NON-ROOT OPERATION
of bits 7:4 of byte 80H of the virtual-APIC page (see Section 24.6.8). Bits
63:4 of the destination operand are cleared.

— If the “CR8-store exiting” VM-execution control is 1, MOV from CR8 causes a
VM exit; the “use TPR shadow” VM-execution control is ignored in this case.

• MOV to CR0. An execution of MOV to CR0 that does not cause a VM exit (see
Section 25.1.3) leaves unmodified any bit in CR0 corresponding to a bit set in the
CR0 guest/host mask. Treatment of attempts to modify other bits in CR0 depends
on the setting of the “unrestricted guest” VM-execution control:1

— If the control is 0, MOV to CR0 causes a general-protection exception if it
attempts to set any bit in CR0 to a value not supported in VMX operation (see
Section 23.8).

— If the control is 1, MOV to CR0 causes a general-protection exception if it
attempts to set any bit in CR0 other than bit 0 (PE) or bit 31 (PG) to a value
not supported in VMX operation. It remains the case, however, that MOV to
CR0 causes a general-protection exception if it would result in CR0.PE = 0
and CR0.PG = 1 or if it would result in CR0.PG = 1, CR4.PAE = 0, and
IA32_EFER.LME = 1.

• MOV to CR3. If the “enable EPT” VM-execution control is 1 and an execution of
MOV to CR3 does not cause a VM exit (see Section 25.1.3), the value loaded into
CR3 is treated as a guest-physical address; see Section 28.2.1.

— If PAE paging is not being used, the instruction does not use the guest-
physical address to access memory and it does not cause it to be translated
through EPT.2

— If PAE paging is being used, the instruction translates the guest-physical
address through EPT and uses the result to load the four (4) page-directory-
pointer-table entries (PDPTEs). The instruction does not use the guest-
physical addresses the PDPTEs to access memory and it does not cause them
to be translated through EPT.

• MOV to CR4. An execution of MOV to CR4 that does not cause a VM exit (see
Section 25.1.3) leaves unmodified any bit in CR4 corresponding to a bit set in the
CR4 guest/host mask. Such an execution causes a general-protection exception
if it attempts to set any bit in CR4 (not corresponding to a bit set in the CR4
guest/host mask) to a value not supported in VMX operation (see Section 23.8).

• MOV to CR8. Behavior of the MOV to CR8 instruction (which can be executed
only in 64-bit mode) is determined by the settings of the “CR8-load exiting” and
“use TPR shadow” VM-execution controls:

— If both controls are 0, MOV to CR8 operates normally.

1. “Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the pri-
mary processor-based VM-execution controls is 0, VMX non-root operation functions as if the
“unrestricted guest” VM-execution control were 0. See Section 24.6.2.

2. A logical processor uses PAE paging if CR0.PG = 1, CR4.PAE = 1 and IA32_EFER.LMA = 0. See
Section 4.4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.
Vol. 3C 25-19

VMX NON-ROOT OPERATION
— If the “CR8-load exiting” VM-execution control is 0 and the “use TPR shadow”
VM-execution control is 1, MOV to CR8 writes to the TPR shadow. Specifically,
it stores bits 3:0 of its source operand into bits 7:4 of byte 80H of the virtual-
APIC page (see Section 24.6.8); bits 3:0 of that byte and bytes 129-131 of
that page are cleared. Such a store may cause a VM exit to occur after it
completes (see Section 25.1.3).

— If the “CR8-load exiting” VM-execution control is 1, MOV to CR8 causes a
VM exit; the “use TPR shadow” VM-execution control is ignored in this case.

• MWAIT. Behavior of the MWAIT instruction (which always causes an invalid-
opcode exception—#UD—if CPL > 0) is determined by the setting of the “MWAIT
exiting” VM-execution control:

— If the “MWAIT exiting” VM-execution control is 1, MWAIT causes a VM exit.

— If the “MWAIT exiting” VM-execution control is 0, MWAIT operates normally if
any of the following is true: (1) the “interrupt-window exiting” VM-execution
control is 0; (2) ECX[0] is 0; or (3) RFLAGS.IF = 1.

— If the “MWAIT exiting” VM-execution control is 0, the “interrupt-window
exiting” VM-execution control is 1, ECX[0] = 1, and RFLAGS.IF = 0, MWAIT
does not cause the processor to enter an implementation-dependent
optimized state; instead, control passes to the instruction following the
MWAIT instruction.

• RDMSR. Section 25.1.3 identifies when executions of the RDMSR instruction
cause VM exits. If such an execution causes neither a fault due to CPL > 0 nor a
VM exit, the instruction’s behavior may be modified for certain values of ECX:

— If ECX contains 10H (indicating the IA32_TIME_STAMP_COUNTER MSR), the
value returned by the instruction is determined by the setting of the “use TSC
offsetting” VM-execution control as well as the TSC offset:

• If the control is 0, the instruction operates normally, loading EAX:EDX
with the value of the IA32_TIME_STAMP_COUNTER MSR.

• If the control is 1, the instruction loads EAX:EDX with the sum (using
signed addition) of the value of the IA32_TIME_STAMP_COUNTER MSR
and the value of the TSC offset (interpreted as a signed value).

The 1-setting of the “use TSC-offsetting” VM-execution control does not
effect executions of RDMSR if ECX contains 6E0H (indicating the
IA32_TSC_DEADLINE MSR). Such executions return the APIC-timer deadline
relative to the actual timestamp counter without regard to the TSC offset.

— If ECX contains 808H (indicating the TPR MSR), instruction behavior is
determined by the setting of the “virtualize x2APIC mode” VM-execution
control:1

1. “Virtualize x2APIC mode” is a secondary processor-based VM-execution control. If bit 31 of the
primary processor-based VM-execution controls is 0, VMX non-root operation functions as if the
“virtualize x2APIC mode” VM-execution control were 0. See Section 24.6.2.
25-20 Vol. 3C

VMX NON-ROOT OPERATION
• If the control is 0, the instruction operates normally. If the local APIC is in
x2APIC mode, EAX[7:0] is loaded with the value of the APIC’s task-
priority register (EDX and EAX[31:8] are cleared to 0). If the local APIC is
not in x2APIC mode, a general-protection fault occurs.

• If the control is 1, the instruction loads EAX:EDX with the value of
bytes 87H:80H of the virtual-APIC page. This occurs even if the local APIC
is not in x2APIC mode (no general-protection fault occurs because the
local APIC is not x2APIC mode).

• RDTSC. Behavior of the RDTSC instruction is determined by the settings of the
“RDTSC exiting” and “use TSC offsetting” VM-execution controls as well as the
TSC offset:

— If both controls are 0, RDTSC operates normally.

— If the “RDTSC exiting” VM-execution control is 0 and the “use TSC offsetting”
VM-execution control is 1, RDTSC loads EAX:EDX with the sum (using signed
addition) of the value of the IA32_TIME_STAMP_COUNTER MSR and the
value of the TSC offset (interpreted as a signed value).

— If the “RDTSC exiting” VM-execution control is 1, RDTSC causes a VM exit.
• RDTSCP. Behavior of the RDTSCP instruction is determined first by the setting of

the “enable RDTSCP” VM-execution control:1

— If the “enable RDTSCP” VM-execution control is 0, RDTSCP causes an invalid-
opcode exception (#UD).

— If the “enable RDTSCP” VM-execution control is 1, treatment is based on the
settings of the “RDTSC exiting” and “use TSC offsetting” VM-execution
controls as well as the TSC offset:

• If both controls are 0, RDTSCP operates normally.

• If the “RDTSC exiting” VM-execution control is 0 and the “use TSC
offsetting” VM-execution control is 1, RDTSCP loads EAX:EDX with the
sum (using signed addition) of the value of the
IA32_TIME_STAMP_COUNTER MSR and the value of the TSC offset (inter-
preted as a signed value); it also loads ECX with the value of bits 31:0 of
the IA32_TSC_AUX MSR.

• If the “RDTSC exiting” VM-execution control is 1, RDTSCP causes a
VM exit.

• SMSW. The behavior of SMSW is determined by the CR0 guest/host mask and
the CR0 read shadow. For each position corresponding to a bit clear in the CR0
guest/host mask, the destination operand is loaded with the value of the corre-
sponding bit in CR0. For each position corresponding to a bit set in the CR0
guest/host mask, the destination operand is loaded with the value of the corre-

1. “Enable RDTSCP” is a secondary processor-based VM-execution control. If bit 31 of the primary
processor-based VM-execution controls is 0, VMX non-root operation functions as if the “enable
RDTSCP” VM-execution control were 0. See Section 24.6.2.
Vol. 3C 25-21

VMX NON-ROOT OPERATION
sponding bit in the CR0 read shadow. Thus, if every bit is cleared in the CR0
guest/host mask, MOV from CR0 reads normally from CR0; if every bit is set in
the CR0 guest/host mask, MOV from CR0 returns the value of the CR0 read
shadow.
Note the following: (1) for any memory destination or for a 16-bit register desti-
nation, only the low 16 bits of the CR0 guest/host mask and the CR0 read shadow
are used (bits 63:16 of a register destination are left unchanged); (2) for a 32-bit
register destination, only the low 32 bits of the CR0 guest/host mask and the CR0
read shadow are used (bits 63:32 of the destination are cleared); and
(3) depending on the contents of the CR0 guest/host mask and the CR0 read
shadow, bits may be set in the destination that would never be set when reading
directly from CR0.

• WRMSR. Section 25.1.3 identifies when executions of the WRMSR instruction
cause VM exits. If such an execution neither a fault due to CPL > 0 nor a VM exit,
the instruction’s behavior may be modified for certain values of ECX:

— If ECX contains 79H (indicating IA32_BIOS_UPDT_TRIG MSR), no microcode
update is loaded, and control passes to the next instruction. This implies that
microcode updates cannot be loaded in VMX non-root operation.

— If ECX contains 808H (indicating the TPR MSR) and either EDX or EAX[31:8]
is non-zero, a general-protection fault occurs (this is true even if the logical
processor is not in VMX non-root operation). Otherwise, instruction behavior
is determined by the setting of the “virtualize x2APIC mode” VM-execution
control and the value of the TPR-threshold VM-execution control field:

• If the control is 0, the instruction operates normally. If the local APIC is in
x2APIC mode, the value of EAX[7:0] is written to the APIC’s task-priority
register. If the local APIC is not in x2APIC mode, a general-protection
fault occurs.

• If the control is 1, the instruction stores the value of EAX:EDX to
bytes 87H:80H of the virtual-APIC page. This store occurs even if the
local APIC is not in x2APIC mode (no general-protection fault occurs
because the local APIC is not x2APIC mode). The store may cause a
VM exit to occur after the instruction completes (see Section 25.1.3).

• The 1-setting of the “use TSC-offsetting” VM-execution control does not
effect executions of WRMSR if ECX contains 10H (indicating the
IA32_TIME_STAMP_COUNTER MSR). Such executions modify the actual
timestamp counter without regard to the TSC offset.

• The 1-setting of the “use TSC-offsetting” VM-execution control does not
effect executions of WRMSR if ECX contains 6E0H (indicating the
IA32_TSC_DEADLINE MSR). Such executions modify the APIC-timer
deadline relative to the actual timestamp counter without regard to the
TSC offset.
25-22 Vol. 3C

VMX NON-ROOT OPERATION
25.5 APIC ACCESSES THAT DO NOT CAUSE VM EXITS
As noted in Section 25.2, if the “virtualize APIC accesses” VM-execution control is 1,
most memory accesses to the APIC-access page (see Section 24.6.2) cause APIC-
access VM exits.1 Section 25.2 identifies potential exceptions. These are covered in
Section 25.5.1 through Section 25.5.3.

In some cases, an attempt to access memory on the APIC-access page is converted
to an access to the virtual-APIC page (see Section 24.6.8). In these cases, the access
uses the memory type reported in bit 53:50 of the IA32_VMX_BASIC MSR (see
Appendix A.1).

25.5.1 Linear Accesses to the APIC-Access Page Using Large-Page
Translations

As noted in Section 25.2.1, a linear access to the APIC-access page using translation
with a large page (2-MByte, 4-MByte, or 1-GByte) may or may not cause an APIC-
access VM exit. If it does not and the access is not a VTPR access (see Section
25.2.4), the access operates on memory on the APIC-access page. Section 25.5.3
describes the treatment if there is no APIC-access VM exit and the access is a VTPR
access.

25.5.2 Physical Accesses to the APIC-Access Page
A physical access to the APIC-access page may or may not cause an APIC-access
VM exit. If it does not and the access is not a VTPR access (see Section 25.2.4), the
access operates on memory on the APIC-access page (this may happen if the access
causes an APIC-access VM exit). Section 25.5.3 describes the treatment if there is no
APIC-access VM exit and the access is a VTPR access.

25.5.3 VTPR Accesses
As noted in Section 25.2.4, a memory access is a VTPR access if all of the following
hold: (1) the “use TPR shadow” VM-execution control is 1; (2) the access is not for
an instruction fetch; (3) the access is at most 32 bits in width; and (4) the access is
to offset 80H on the APIC-access page.

The treatment of VTPR accesses depends on the nature of the access:
• A linear VTPR access using a translation with a 4-KByte page does not cause an

APIC-access VM exit. Instead, it is converted so that, instead of accessing offset

1. “Virtualize APIC accesses” is a secondary processor-based VM-execution control. If bit 31 of the
primary processor-based VM-execution controls is 0, VMX non-root operation functions as if the
“virtualize APIC accesses” VM-execution control were 0. See Section 24.6.2.
Vol. 3C 25-23

VMX NON-ROOT OPERATION
80H on the APIC-access page, it accesses offset 80H on the virtual-APIC page.
Further details are provided in Section 25.5.3.1 to Section 25.5.3.3.

• A linear VTPR access using a translation with a large page (2-MByte, 4-MByte, or
1-GByte) may be treated in either of two ways:

— It may operate on memory on the APIC-access page. The details in Section
25.5.3.1 to Section 25.5.3.3 do not apply.

— It may be converted so that, instead of accessing offset 80H on the APIC-
access page, it accesses offset 80H on the virtual-APIC page. Further details
are provided in Section 25.5.3.1 to Section 25.5.3.3.

• A physical VTPR access may be treated in one of three ways:

— It may cause an APIC-access VM exit. The details in Section 25.5.3.1 to
Section 25.5.3.3 do not apply.

— It may operate on memory on the APIC-access page (and possibly then cause
an APIC-access VM exit). The details in Section 25.5.3.1 to Section 25.5.3.3
do not apply.

— It may be converted so that, instead of accessing offset 80H on the APIC-
access page, it accesses offset 80H on the virtual-APIC page. Further details
are provided in Section 25.5.3.1 to Section 25.5.3.3.

Linear VTPR accesses never cause APIC-access VM exits (recall that an access is a
VTPR access only if the “use TPR shadow” VM-execution control is 1).

25.5.3.1 Treatment of Individual VTPR Accesses
The following items detail the treatment of VTPR accesses:
• VTPR read accesses. Such an access completes normally (reading data from the

field at offset 80H on the virtual-APIC page).
The following items detail certain instructions that are considered to perform
read accesses and how they behavior when accessing the VTPR:

— A VTPR access using the CLFLUSH instruction flushes data for offset 80H on
the virtual-APIC page.

— A VTPR access using the LMSW instruction may cause a VM exit due to the
CR0 guest/host mask and the CR0 read shadow.

— A VTPR access using the MONITOR instruction causes the logical processor to
monitor offset 80H on the virtual-APIC page.

— A VTPR access using the PREFETCH instruction may prefetch data; if so, it is
from offset 80H on the virtual-APIC page.

• VTPR write accesses. Such an access completes normally (writing data to the
field at offset 80H on the virtual-APIC page) and causes a TPR-shadow update
(see Section 25.5.3.3).
25-24 Vol. 3C

VMX NON-ROOT OPERATION
The following items detail certain instructions that are considered to perform
write accesses and how they behavior when accessing the VTPR:

— The ENTER instruction is considered to write to VTPR if the byte referenced by
the final value of the stack pointer is at offset 80H on the APIC-access page
(even though ENTER does not write to that byte if its size operand is non-
zero). The instruction is followed by a TPR-shadow update.

— A VTPR access using the SMSW instruction stores data determined by the
current CR0 contents, the CR0 guest/host mask, and the CR0 read shadow.
The instruction is followed by a TPR-shadow update.

25.5.3.2 Operations with Multiple Accesses
Some operations may access multiple addresses. These operations include the
execution of some instructions and the delivery of events through the IDT (including
those injected with VM entry). In some cases, the Intel® 64 architecture specifies the
ordering of these memory accesses. The following items describe the treatment of
VTPR accesses that are part of such multi-access operations:
• Read-modify-write instructions may first perform a VTPR read access and then a

VTPR write access. Both accesses complete normally (as described in Section
25.5.3.1). The instruction is followed by a TPR-shadow update (see Section
25.5.3.3).

• Some operations may perform a VTPR write access and subsequently cause a
fault. This situation is treated as follows:

— If the fault leads to a VM exit, no TPR-shadow update occurs.

— If the fault does not lead to a VM exit, a TPR-shadow update occurs after fault
delivery completes and before execution of the fault handler.

• If an operation includes a VTPR access and an access to some other field on the
APIC-access page, the latter access causes an APIC-access VM exit as described
in Section 25.2.
If the operation performs a VTPR write access before the APIC-access VM exit,
there is no TPR-shadow update.

• Suppose that the first iteration of a repeated string instruction (including OUTS)
that accesses the APIC-access page performs a VTPR read access and that the
next iteration would read from the APIC-access page using an offset other than
80H. The following items describe the behavior of the logical processor:

— The iteration that performs the VTPR read access completes successfully,
reading data from offset 80H on the virtual-APIC page.

— The iteration that would read from the other offset causes an APIC-access
VM exit. The instruction pointer saved in the VMCS references the repeated
string instruction and the values of the general-purpose registers are such
that iteration would be repeated if the instruction were restarted.
Vol. 3C 25-25

VMX NON-ROOT OPERATION
• Suppose that the first iteration of a repeated string instruction (including INS)
that accesses the APIC-access page performs a VTPR write access and that the
next iteration would write to the APIC-access page using an offset other than
80H. The following items describe the behavior of the logical processor:

— The iteration that performs the VTPR write access writes data to offset 80H on
the virtual-APIC page. The write is followed by a TPR-shadow update, which
may cause a VM exit (see Section 25.5.3.3).

— If the TPR-shadow update does cause a VM exit, the instruction pointer saved
in the VMCS references the repeated string instruction and the values of the
general-purpose registers are such that the next iteration would be
performed if the instruction were restarted.

— If the TPR-shadow update does not cause a VM exit, the iteration that would
write to the other offset causes an APIC-access VM exit. The instruction
pointer saved in the VMCS references the repeated string instruction and the
values of the general-purpose registers are such that that iteration would be
repeated if the instruction were restarted.

• Suppose that the last iteration of a repeated string instruction (including INS)
performs a VTPR write access. The iteration writes data to offset 80H on the
virtual-APIC page. The write is followed by a TPR-shadow update, which may
cause a VM exit (see Section 25.5.3.3). If it does, the instruction pointer saved in
the VMCS references the instruction after the string instruction and the values of
the general-purpose registers reflect completion of the string instruction.

25.5.3.3 TPR-Shadow Updates
If the “use TPR shadow” and “virtualize APIC accesses” VM-execution controls are
both 1, a logical processor performs certain actions after any operation (or iteration
of a repeated string instruction) with a VTPR write access. These actions are called a
TPR-shadow update. (As noted in Section 25.5.3.2, a TPR-shadow update does not
occur following an access that causes a VM exit.)

A TPR-shadow update includes the following actions:

1. Bits 31:8 at offset 80H on the virtual-APIC page are cleared.

2. If the value of bits 3:0 of the TPR threshold VM-execution control field is greater
than the value of bits 7:4 at offset 80H on the virtual-APIC page, a VM exit will
occur.

TPR-shadow updates take priority over system-management interrupts (SMIs), INIT
signals, and lower priority events. A TPR-shadow update thus has priority over any
debug exceptions that may have been triggered by the operation causing the TPR-
shadow update. TPR-shadow updates (and any VM exits they cause) are not blocked
if RFLAGS.IF = 0 or by the MOV SS, POP SS, or STI instructions.
25-26 Vol. 3C

VMX NON-ROOT OPERATION
25.6 OTHER CHANGES IN VMX NON-ROOT OPERATION
Treatments of event blocking and of task switches differ in VMX non-root operation as
described in the following sections.

25.6.1 Event Blocking
Event blocking is modified in VMX non-root operation as follows:
• If the “external-interrupt exiting” VM-execution control is 1, RFLAGS.IF does not

control the blocking of external interrupts. In this case, an external interrupt that
is not blocked for other reasons causes a VM exit (even if RFLAGS.IF = 0).

• If the “external-interrupt exiting” VM-execution control is 1, external interrupts
may or may not be blocked by STI or by MOV SS (behavior is implementation-
specific).

• If the “NMI exiting” VM-execution control is 1, non-maskable interrupts (NMIs)
may or may not be blocked by STI or by MOV SS (behavior is implementation-
specific).

25.6.2 Treatment of Task Switches
Task switches are not allowed in VMX non-root operation. Any attempt to effect a
task switch in VMX non-root operation causes a VM exit. However, the following
checks are performed (in the order indicated), possibly resulting in a fault, before
there is any possibility of a VM exit due to task switch:

1. If a task gate is being used, appropriate checks are made on its P bit and on the
proper values of the relevant privilege fields. The following cases detail the
privilege checks performed:

a. If CALL, INT n, or JMP accesses a task gate in IA-32e mode, a general-
protection exception occurs.

b. If CALL, INT n, INT3, INTO, or JMP accesses a task gate outside IA-32e mode,
privilege-levels checks are performed on the task gate but, if they pass,
privilege levels are not checked on the referenced task-state segment (TSS)
descriptor.

c. If CALL or JMP accesses a TSS descriptor directly in IA-32e mode, a general-
protection exception occurs.

d. If CALL or JMP accesses a TSS descriptor directly outside IA-32e mode,
privilege levels are checked on the TSS descriptor.

e. If a non-maskable interrupt (NMI), an exception, or an external interrupt
accesses a task gate in the IDT in IA-32e mode, a general-protection
exception occurs.
Vol. 3C 25-27

VMX NON-ROOT OPERATION
f. If a non-maskable interrupt (NMI), an exception other than breakpoint
exceptions (#BP) and overflow exceptions (#OF), or an external interrupt
accesses a task gate in the IDT outside IA-32e mode, no privilege checks are
performed.

g. If IRET is executed with RFLAGS.NT = 1 in IA-32e mode, a general-
protection exception occurs.

h. If IRET is executed with RFLAGS.NT = 1 outside IA-32e mode, a TSS
descriptor is accessed directly and no privilege checks are made.

2. Checks are made on the new TSS selector (for example, that is within GDT
limits).

3. The new TSS descriptor is read. (A page fault results if a relevant GDT page is not
present).

4. The TSS descriptor is checked for proper values of type (depends on type of task
switch), P bit, S bit, and limit.

Only if checks 1–4 all pass (do not generate faults) might a VM exit occur. However,
the ordering between a VM exit due to a task switch and a page fault resulting from
accessing the old TSS or the new TSS is implementation-specific. Some logical
processors may generate a page fault (instead of a VM exit due to a task switch) if
accessing either TSS would cause a page fault. Other logical processors may
generate a VM exit due to a task switch even if accessing either TSS would cause a
page fault.

If an attempt at a task switch through a task gate in the IDT causes an exception
(before generating a VM exit due to the task switch) and that exception causes a
VM exit, information about the event whose delivery that accessed the task gate is
recorded in the IDT-vectoring information fields and information about the exception
that caused the VM exit is recorded in the VM-exit interruption-information fields.
See Section 27.2. The fact that a task gate was being accessed is not recorded in the
VMCS.

If an attempt at a task switch through a task gate in the IDT causes VM exit due to
the task switch, information about the event whose delivery accessed the task gate
is recorded in the IDT-vectoring fields of the VMCS. Since the cause of such a VM exit
is a task switch and not an interruption, the valid bit for the VM-exit interruption
information field is 0. See Section 27.2.

25.7 FEATURES SPECIFIC TO VMX NON-ROOT OPERATION
Some VM-execution controls support features that are specific to VMX non-root oper-
ation. These are the VMX-preemption timer (Section 25.7.1) and the monitor trap
flag (Section 25.7.2), translation of guest-physical addresses (Section 25.7.3), and
VM functions (Section 25.7.4).
25-28 Vol. 3C

VMX NON-ROOT OPERATION
25.7.1 VMX-Preemption Timer
If the last VM entry was performed with the 1-setting of “activate VMX-preemption
timer” VM-execution control, the VMX-preemption timer counts down (from the
value loaded by VM entry; see Section 26.6.4) in VMX non-root operation. When the
timer counts down to zero, it stops counting down and a VM exit occurs (see Section
25.3).

The VMX-preemption timer counts down at rate proportional to that of the timestamp
counter (TSC). Specifically, the timer counts down by 1 every time bit X in the TSC
changes due to a TSC increment. The value of X is in the range 0–31 and can be
determined by consulting the VMX capability MSR IA32_VMX_MISC (see Appendix
A.6).

The VMX-preemption timer operates in the C-states C0, C1, and C2; it also operates
in the shutdown and wait-for-SIPI states. If the timer counts down to zero in any
state other than the wait-for SIPI state, the logical processor transitions to the C0 C-
state and causes a VM exit; the timer does not cause a VM exit if it counts down to
zero in the wait-for-SIPI state. The timer is not decremented in C-states deeper than
C2.

Treatment of the timer in the case of system management interrupts (SMIs) and
system-management mode (SMM) depends on whether the treatment of SMIs and
SMM:
• If the default treatment of SMIs and SMM (see Section 33.14) is active, the VMX-

preemption timer counts across an SMI to VMX non-root operation, subsequent
execution in SMM, and the return from SMM via the RSM instruction. However,
the timer can cause a VM exit only from VMX non-root operation. If the timer
expires during SMI, in SMM, or during RSM, a timer-induced VM exit occurs
immediately after RSM with its normal priority unless it is blocked based on
activity state (Section 25.3).

• If the dual-monitor treatment of SMIs and SMM (see Section 33.15) is active,
transitions into and out of SMM are VM exits and VM entries, respectively. The
treatment of the VMX-preemption timer by those transitions is mostly the same
as for ordinary VM exits and VM entries; Section 33.15.2 and Section 33.15.4
detail some differences.

25.7.2 Monitor Trap Flag
The monitor trap flag is a debugging feature that causes VM exits to occur on
certain instruction boundaries in VMX non-root operation. Such VM exits are called
MTF VM exits. An MTF VM exit may occur on an instruction boundary in VMX non-
root operation as follows:
• If the “monitor trap flag” VM-execution control is 1 and VM entry is injecting a

vectored event (see Section 26.5.1), an MTF VM exit is pending on the instruction
boundary before the first instruction following the VM entry.
Vol. 3C 25-29

VMX NON-ROOT OPERATION
• If VM entry is injecting a pending MTF VM exit (see Section 26.5.2), an MTF
VM exit is pending on the instruction boundary before the first instruction
following the VM entry. This is the case even if the “monitor trap flag” VM-
execution control is 0.

• If the “monitor trap flag” VM-execution control is 1, VM entry is not injecting an
event, and a pending event (e.g., debug exception or interrupt) is delivered
before an instruction can execute, an MTF VM exit is pending on the instruction
boundary following delivery of the event (or any nested exception).

• Suppose that the “monitor trap flag” VM-execution control is 1, VM entry is not
injecting an event, and the first instruction following VM entry is a REP-prefixed
string instruction:

— If the first iteration of the instruction causes a fault, an MTF VM exit is
pending on the instruction boundary following delivery of the fault (or any
nested exception).

— If the first iteration of the instruction does not cause a fault, an MTF VM exit
is pending on the instruction boundary after that iteration.

• Suppose that the “monitor trap flag” VM-execution control is 1, VM entry is not
injecting an event, and the first instruction following VM entry is not a REP-
prefixed string instruction:

— If the instruction causes a fault, an MTF VM exit is pending on the instruction
boundary following delivery of the fault (or any nested exception).1

— If the instruction does not cause a fault, an MTF VM exit is pending on the
instruction boundary following execution of that instruction. If the instruction
is INT3 or INTO, this boundary follows delivery of any software exception. If
the instruction is INT n, this boundary follows delivery of a software interrupt.
If the instruction is HLT, the MTF VM exit will be from the HLT activity state.

No MTF VM exit occurs if another VM exit occurs before reaching the instruction
boundary on which an MTF VM exit would be pending (e.g., due to an exception or
triple fault).

An MTF VM exit occurs on the instruction boundary on which it is pending unless a
higher priority event takes precedence or the MTF VM exit is blocked due to the
activity state:
• System-management interrupts (SMIs), INIT signals, and higher priority events

take priority over MTF VM exits. MTF VM exits take priority over debug-trap
exceptions and lower priority events.

• No MTF VM exit occurs if the processor is in either the shutdown activity state or
wait-for-SIPI activity state. If a non-maskable interrupt subsequently takes the

1. This item includes the cases of an invalid opcode exception—#UD— generated by the UD2
instruction and a BOUND-range exceeded exception—#BR—generated by the BOUND instruc-
tion.
25-30 Vol. 3C

VMX NON-ROOT OPERATION
logical processor out of the shutdown activity state without causing a VM exit, an
MTF VM exit is pending after delivery of that interrupt.

25.7.3 Translation of Guest-Physical Addresses Using EPT
The extended page-table mechanism (EPT) is a feature that can be used to support
the virtualization of physical memory. When EPT is in use, certain physical addresses
are treated as guest-physical addresses and are not used to access memory directly.
Instead, guest-physical addresses are translated by traversing a set of EPT paging
structures to produce physical addresses that are used to access memory.

Details of the EPT are given in Section 28.2.

25.7.4 VM Functions
A VM function is an operation provided by the processor that can be invoked from
VMX non-root operation without a VM exit. VM functions are enabled and configured
by the settings of different fields in the VMCS. Software in VMX non-root operation
invokes a VM function with the VMFUNC instruction; the value of EAX selects the
specific VM function being invoked.

Section 25.7.4.1 explains how VM functions are enabled. Section 25.7.4.2 specifies
the behavior of the VMFUNC instruction. Section 25.7.4.3 describes a specific
VM function called EPTP switching.

25.7.4.1 Enabling VM Functions
Software enables VM functions generally by setting the “enable VM functions” VM-
execution control. A specific VM function is enabled by setting the corresponding VM-
function control.

Suppose, for example, that software wants to enable EPTP switching (VM function 0;
see Section 24.6.14).To do so, it must set the “activate secondary controls” VM-
execution control (bit 31 of the primary processor-based VM-execution controls), the
“enable VM functions” VM-execution control (bit 13 of the secondary processor-
based VM-execution controls) and the “EPTP switching” VM-function control (bit 0 of
the VM-function controls).

25.7.4.2 General Operation of the VMFUNC Instruction
The VMFUNC instruction causes an invalid-opcode exception (#UD) if the “enable
VM functions” VM-execution controls is 01 or the value of EAX is greater than 63 (only

1. “Enable VM functions” is a secondary processor-based VM-execution control. If bit 31 of the pri-
mary processor-based VM-execution controls is 0, VMX non-root operation functions as if the
“enable VM functions” VM-execution control were 0. See Section 24.6.2.
Vol. 3C 25-31

VMX NON-ROOT OPERATION
VM functions 0–63 can be enable). Otherwise, the instruction causes a VM exit if the
bit at position EAX is 0 in the VM-function controls (the selected VM function is not
enabled). If such a VM exit occurs, the basic exit reason used is 59 (3BH), indicating
“VMFUNC”, and the length of the VMFUNC instruction is saved into the VM-exit
instruction-length field. If the instruction causes neither an invalid-opcode exception
nor a VM exit due to a disabled VM function, it performs the functionality of the
VM function specified by the value in EAX.

Individual VM functions may perform additional fault checking (e.g., one might cause
a general-protection exception if CPL > 0). In addition, specific VM functions may
include checks that might result in a VM exit. If such a VM exit occurs, VM-exit infor-
mation is saved as described in the previous paragraph. The specification of a
VM function may indicate that additional VM-exit information is provided.

The specific behavior of the EPTP-switching VM function (including checks that result
in VM exits) is given in Section 25.7.4.3.

25.7.4.3 EPTP Switching
EPTP switching is VM function 0. This VM function allows software in VMX non-root
operation to load a new value for the EPT pointer (EPTP), thereby establishing a
different EPT paging-structure hierarchy (see Section 28.2 for details of the opera-
tion of EPT). Software is limited to selecting from a list of potential EPTP values
configured in advance by software in VMX root operation.

Specifically, the value of ECX is used to select an entry from the EPTP list, the 4-
KByte structure referenced by the EPTP-list address (see Section 24.6.14; because
this structure contains 512 8-Byte entries, VMFUNC causes a VM exit if ECX ≥ 512).
If the selected entry is a valid EPTP value (it would not cause VM entry to fail; see
Section 26.2.1.1), it is stored in the EPTP field of the current VMCS and is used for
subsequent accesses using guest-physical addresses. The following pseudocode
provides details:

IF ECX ≥ 512
THEN VM exit;
ELSE

tent_EPTP ← 8 bytes from EPTP-list address + 8 * ECX;
IF tent_EPTP is not a valid EPTP value (would cause VM entry to fail if in EPTP)

THEN VMexit;
ELSE

write tent_EPTP to the EPTP field in the current VMCS;
start using tent_EPTP as the new EPTP value for address translation;

FI;
FI;

Execution of the EPTP-switching VM function does not modify the state of any regis-
ters; no flags are modified.
25-32 Vol. 3C

VMX NON-ROOT OPERATION
As noted in Section 25.7.4.2, an execution of the EPTP-switching VM function that
causes a VM exit (as specified above), uses the basic exit reason 59, indicating
“VMFUNC”. The length of the VMFUNC instruction is saved into the VM-exit instruc-
tion-length field. No additional VM-exit information is provided.

An execution of VMFUNC loads EPTP from the EPTP list (and thus does not cause a
fault or VM exit) is called an EPTP-switching VMFUNC. After an EPTP-switching
VMFUNC, control passes to the next instruction. The logical processor starts creating
and using guest-physical and combined mappings associated with the new value of
bits 51:12 of EPTP; the combined mappings created and used are associated with the
current VPID and PCID (these are not changed by VMFUNC).1 If the “enable VPID”
VM-execution control is 0, an EPTP-switching VMFUNC invalidates combined
mappings associated with VPID 0000H (for all PCIDs and for all EP4TA values, where
EP4TA is the value of bits 51:12 of EPTP).

Because an EPTP-switching VMFUNC may change the translation of guest-physical
addresses, it may affect use of the guest-physical address in CR3. The EPTP-
switching VMFUNC cannot itself cause a VM exit due to an EPT violation or an EPT
misconfiguration due to the translation of that guest-physical address through the
new EPT paging structures. The following items provide details that apply if
CR0.PG = 1:
• If 32-bit paging or IA-32e paging is in use (either CR4.PAE = 0 or

IA32_EFER.LMA = 1), the next memory access with a linear address uses the
translation of the guest-physical address in CR3 through the new EPT paging
structures. As a result, this access may cause a VM exit due to an EPT violation or
an EPT misconfiguration encountered during that translation.

• If PAE paging is in use (CR4.PAE = 1 and IA32_EFER.LMA = 0), an EPTP-
switching VMFUNC does not load the four page-directory-pointer-table entries
(PDPTEs) from the guest-physical address in CR3. The logical processor
continues to use the four guest-physical addresses already present in the
PDPTEs. The guest-physical address in CR3 is not translated through the new EPT
paging structures (until some operation that would load the PDPTEs).
The EPTP-switching VMFUNC cannot itself cause a VM exit due to an EPT
violation or an EPT misconfiguration encountered during the translation of a
guest-physical address in any of the PDPTEs. A subsequent memory access with
a linear address uses the translation of the guest-physical address in the
appropriate PDPTE through the new EPT paging structures. As a result, such an
access may cause a VM exit due to an EPT violation or an EPT misconfiguration
encountered during that translation.

1. If the “enable VPID” VM-execution control is 0, the current VPID is 0000H; if CR4.PCIDE = 0, the
current PCID is 000H.
Vol. 3C 25-33

VMX NON-ROOT OPERATION
25.8 UNRESTRICTED GUESTS
The first processors to support VMX operation require CR0.PE and CR0.PG to be 1 in
VMX operation (see Section 23.8). This restriction implies that guest software cannot
be run in unpaged protected mode or in real-address mode. Later processors support
a VM-execution control called “unrestricted guest”.1 If this control is 1, CR0.PE and
CR0.PG may be 0 in VMX non-root operation. Such processors allow guest software
to run in unpaged protected mode or in real-address mode. The following items
describe the behavior of such software:
• The MOV CR0 instructions does not cause a general-protection exception simply

because it would set either CR0.PE and CR0.PG to 0. See Section 25.4 for details.
• A logical processor treats the values of CR0.PE and CR0.PG in VMX non-root

operation just as it does outside VMX operation. Thus, if CR0.PE = 0, the
processor operates as it does normally in real-address mode (for example, it uses
the 16-bit interrupt table to deliver interrupts and exceptions). If CR0.PG = 0,
the processor operates as it does normally when paging is disabled.

• Processor operation is modified by the fact that the processor is in VMX non-root
operation and by the settings of the VM-execution controls just as it is in
protected mode or when paging is enabled. Instructions, interrupts, and
exceptions that cause VM exits in protected mode or when paging is enabled also
do so in real-address mode or when paging is disabled. The following examples
should be noted:

— If CR0.PG = 0, page faults do not occur and thus cannot cause VM exits.

— If CR0.PE = 0, invalid-TSS exceptions do not occur and thus cannot cause
VM exits.

— If CR0.PE = 0, the following instructions cause invalid-opcode exceptions and
do not cause VM exits: INVEPT, INVVPID, LLDT, LTR, SLDT, STR, VMCLEAR,
VMLAUNCH, VMPTRLD, VMPTRST, VMREAD, VMRESUME, VMWRITE, VMXOFF,
and VMXON.

• If CR0.PG = 0, each linear address is passed directly to the EPT mechanism for
translation to a physical address.2 The guest memory type passed on to the EPT
mechanism is WB (writeback).

1. “Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the pri-
mary processor-based VM-execution controls is 0, VMX non-root operation functions as if the
“unrestricted guest” VM-execution control were 0. See Section 24.6.2.

2. As noted in Section 26.2.1.1, the “enable EPT” VM-execution control must be 1 if the “unre-
stricted guest” VM-execution control is 1.
25-34 Vol. 3C

CHAPTER 26
VM ENTRIES

Software can enter VMX non-root operation using either of the VM-entry instructions
VMLAUNCH and VMRESUME. VMLAUNCH can be used only with a VMCS whose launch
state is clear and VMRESUME can be used only with a VMCS whose the launch state
is launched. VMLAUNCH should be used for the first VM entry after VMCLEAR; VMRE-
SUME should be used for subsequent VM entries with the same VMCS.

Each VM entry performs the following steps in the order indicated:

1. Basic checks are performed to ensure that VM entry can commence
(Section 26.1).

2. The control and host-state areas of the VMCS are checked to ensure that they are
proper for supporting VMX non-root operation and that the VMCS is correctly
configured to support the next VM exit (Section 26.2).

3. The following may be performed in parallel or in any order (Section 26.3):

• The guest-state area of the VMCS is checked to ensure that, after the
VM entry completes, the state of the logical processor is consistent with
IA-32 and Intel 64 architectures.

• Processor state is loaded from the guest-state area and based on controls in
the VMCS.

• Address-range monitoring is cleared.

4. MSRs are loaded from the VM-entry MSR-load area (Section 26.4).

5. If VMLAUNCH is being executed, the launch state of the VMCS is set to
“launched.”

6. An event may be injected in the guest context (Section 26.5).

Steps 1–4 above perform checks that may cause VM entry to fail. Such failures occur
in one of the following three ways:
• Some of the checks in Section 26.1 may generate ordinary faults (for example,

an invalid-opcode exception). Such faults are delivered normally.
• Some of the checks in Section 26.1 and all the checks in Section 26.2 cause

control to pass to the instruction following the VM-entry instruction. The failure is
indicated by setting RFLAGS.ZF1 (if there is a current VMCS) or RFLAGS.CF (if
there is no current VMCS). If there is a current VMCS, an error number indicating
the cause of the failure is stored in the VM-instruction error field. See Chapter 29

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most
processors that support VMX operation also support Intel 64 architecture. For IA-32 processors,
this notation refers to the 32-bit forms of those registers (EAX, EIP, ESP, EFLAGS, etc.). In a few
places, notation such as EAX is used to refer specifically to lower 32 bits of the indicated register.
Vol. 3C 26-1

VM ENTRIES
of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
3C for the error numbers.

• The checks in Section 26.3 and Section 26.4 cause processor state to be loaded
from the host-state area of the VMCS (as would be done on a VM exit).
Information about the failure is stored in the VM-exit information fields. See
Section 26.7 for details.

EFLAGS.TF = 1 causes a VM-entry instruction to generate a single-step debug excep-
tion only if failure of one of the checks in Section 26.1 and Section 26.2 causes
control to pass to the following instruction. A VM-entry does not generate a single-
step debug exception in any of the following cases: (1) the instruction generates a
fault; (2) failure of one of the checks in Section 26.3 or in loading MSRs causes
processor state to be loaded from the host-state area of the VMCS; or (3) the instruc-
tion passes all checks in Section 26.1, Section 26.2, and Section 26.3 and there is no
failure in loading MSRs.

Section 33.15 describes the dual-monitor treatment of system-management inter-
rupts (SMIs) and system-management mode (SMM). Under this treatment, code
running in SMM returns using VM entries instead of the RSM instruction. A VM entry
returns from SMM if it is executed in SMM and the “entry to SMM” VM-entry control
is 0. VM entries that return from SMM differ from ordinary VM entries in ways that
are detailed in Section 33.15.4.

26.1 BASIC VM-ENTRY CHECKS
Before a VM entry commences, the current state of the logical processor is checked
in the following order:

1. If the logical processor is in virtual-8086 mode or compatibility mode, an
invalid-opcode exception is generated.

2. If the current privilege level (CPL) is not zero, a general-protection exception is
generated.

3. If there is no current VMCS, RFLAGS.CF is set to 1 and control passes to the next
instruction.

4. If there is a current VMCS, the following conditions are evaluated in order; any of
these cause VM entry to fail:

a. if there is MOV-SS blocking (see Table 24-3)

b. if the VM entry is invoked by VMLAUNCH and the VMCS launch state is not
clear

c. if the VM entry is invoked by VMRESUME and the VMCS launch state is not
launched

If any of these checks fail, RFLAGS.ZF is set to 1 and control passes to the next
instruction. An error number indicating the cause of the failure is stored in the
26-2 Vol. 3C

VM ENTRIES
VM-instruction error field. See Chapter 29 of the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3C for the error numbers.

26.2 CHECKS ON VMX CONTROLS AND HOST-STATE AREA
If the checks in Section 26.1 do not cause VM entry to fail, the control and host-state
areas of the VMCS are checked to ensure that they are proper for supporting VMX
non-root operation, that the VMCS is correctly configured to support the next
VM exit, and that, after the next VM exit, the processor’s state is consistent with the
Intel 64 and IA-32 architectures.

VM entry fails if any of these checks fail. When such failures occur, control is passed
to the next instruction, RFLAGS.ZF is set to 1 to indicate the failure, and the
VM-instruction error field is loaded with an error number that indicates whether the
failure was due to the controls or the host-state area (see Chapter 29 of the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 3C).

These checks may be performed in any order. Thus, an indication by error number of
one cause (for example, host state) does not imply that there are not also other
errors. Different processors may thus give different error numbers for the same
VMCS. Some checks prevent establishment of settings (or combinations of settings)
that are currently reserved. Future processors may allow such settings (or combina-
tions) and may not perform the corresponding checks. The correctness of software
should not rely on VM-entry failures resulting from the checks documented in this
section.

The checks on the controls and the host-state area are presented in Section 26.2.1
through Section 26.2.4. These sections reference VMCS fields that correspond to
processor state. Unless otherwise stated, these references are to fields in the host-
state area.

26.2.1 Checks on VMX Controls
This section identifies VM-entry checks on the VMX control fields.

26.2.1.1 VM-Execution Control Fields
VM entries perform the following checks on the VM-execution control fields:1

• Reserved bits in the pin-based VM-execution controls must be set properly.
Software may consult the VMX capability MSRs to determine the proper settings
(see Appendix A.3.1).

1. If the “activate secondary controls” primary processor-based VM-execution control is 0, VM entry
operates as if each secondary processor-based VM-execution control were 0.
Vol. 3C 26-3

VM ENTRIES
• Reserved bits in the primary processor-based VM-execution controls must be set
properly. Software may consult the VMX capability MSRs to determine the proper
settings (see Appendix A.3.2).

• If the “activate secondary controls” primary processor-based VM-execution
control is 1, reserved bits in the secondary processor-based VM-execution
controls must be cleared. Software may consult the VMX capability MSRs to
determine which bits are reserved (see Appendix A.3.3).
If the “activate secondary controls” primary processor-based VM-execution
control is 0 (or if the processor does not support the 1-setting of that control),
no checks are performed on the secondary processor-based VM-execution
controls. The logical processor operates as if all the secondary processor-based
VM-execution controls were 0.

• The CR3-target count must not be greater than 4. Future processors may support
a different number of CR3-target values. Software should read the VMX capability
MSR IA32_VMX_MISC to determine the number of values supported (see
Appendix A.6).

• If the “use I/O bitmaps” VM-execution control is 1, bits 11:0 of each I/O-bitmap
address must be 0. Neither address should set any bits beyond the processor’s
physical-address width.1,2

• If the “use MSR bitmaps” VM-execution control is 1, bits 11:0 of the MSR-bitmap
address must be 0. The address should not set any bits beyond the processor’s
physical-address width.3

• If the “use TPR shadow” VM-execution control is 1, the virtual-APIC address must
satisfy the following checks:

— Bits 11:0 of the address must be 0.

— The address should not set any bits beyond the processor’s physical-address
width.4

If all of the above checks are satisfied and the “use TPR shadow” VM-execution
control is 1, bytes 81H-83H on the virtual-APIC page (see Section 24.6.8) may
be cleared (behavior may be implementation-specific).
The clearing of these bytes may occur even if the VM entry fails. This is true
either if the failure causes control to pass to the instruction following the VM-

1. Software can determine a processor’s physical-address width by executing CPUID with
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

2. If IA32_VMX_BASIC[48] is read as 1, these addresses must not set any bits in the range 63:32;
see Appendix A.1.

3. If IA32_VMX_BASIC[48] is read as 1, this address must not set any bits in the range 63:32; see
Appendix A.1.

4. If IA32_VMX_BASIC[48] is read as 1, this address must not set any bits in the range 63:32; see
Appendix A.1.
26-4 Vol. 3C

VM ENTRIES
entry instruction or if it causes processor state to be loaded from the host-state
area of the VMCS.

• If the “use TPR shadow” VM-execution control is 1, bits 31:4 of the TPR threshold
VM-execution control field must be 0.

• The following check is performed if the “use TPR shadow” VM-execution control is
1 and the “virtualize APIC accesses” VM-execution control is 0: the value of
bits 3:0 of the TPR threshold VM-execution control field should not be greater
than the value of bits 7:4 in byte 80H on the virtual-APIC page (see Section
24.6.8).

• If the “NMI exiting” VM-execution control is 0, the “virtual NMIs” VM-execution
control must be 0.

• If the “virtual NMIs” VM-execution control is 0, the “NMI-window exiting” VM-
execution control must be 0.

• If the “virtualize APIC-accesses” VM-execution control is 1, the APIC-access
address must satisfy the following checks:

— Bits 11:0 of the address must be 0.

— The address should not set any bits beyond the processor’s physical-address
width.1

• If the “virtualize x2APIC mode” VM-execution control is 1, the “use TPR shadow”
VM-execution control must be 1 and the “virtualize APIC accesses” VM-execution
control must be 0.2

• If the “enable VPID” VM-execution control is 1, the value of the VPID VM-
execution control field must not be 0000H.3

• If the “enable EPT” VM-execution control is 1, the EPTP VM-execution control field
(see Table 24-8 in Section 24.6.11) must satisfy the following checks:4

— The EPT memory type (bits 2:0) must be a value supported by the logical
processor as indicated in the IA32_VMX_EPT_VPID_CAP MSR (see Appendix
A.10).

1. If IA32_VMX_BASIC[48] is read as 1, this address must not set any bits in the range 63:32; see
Appendix A.1.

2. “Virtualize x2APIC mode” is a secondary processor-based VM-execution control. If bit 31 of the
primary processor-based VM-execution controls is 0, VM entry functions as if the “virtualize
x2APIC mode” VM-execution control were 0. See Section 24.6.2.

3. “Enable VPID” is a secondary processor-based VM-execution control. If bit 31 of the primary pro-
cessor-based VM-execution controls is 0, VM entry functions as if the “enable VPID” VM-execu-
tion control were 0. See Section 24.6.2.

4. “Enable EPT” is a secondary processor-based VM-execution control. If bit 31 of the primary pro-
cessor-based VM-execution controls is 0, VM entry functions as if the “enable EPT” VM-execu-
tion control were 0. See Section 24.6.2.
Vol. 3C 26-5

VM ENTRIES
— Bits 5:3 (1 less than the EPT page-walk length) must be 3, indicating an EPT
page-walk length of 4; see Section 28.2.2.

— Reserved bits 11:6 and 63:N (where N is the processor’s physical-address
width) must all be 0.

— If the “unrestricted guest” VM-execution control is 1, the “enable EPT” VM-
execution control must also be 1.1

• If the “enable VM functions” processor-based VM-execution control is 1, reserved
bits in the VM-function controls must be clear.2 Software may consult the VMX
capability MSRs to determine which bits are reserved (see Appendix A.11). In
addition, the following check is performed based on the setting of bits in the VM-
function controls (see Section 24.6.14):

— If “EPTP switching” VM-function control is 1, the “enable EPT” VM-execution
control must also 1. In addition, the EPTP-list address must satisfy the
following checks:

• Bits 11:0 of the address must be 0.

• The address must not set any bits beyond the processor’s physical-
address width.

If the “enable VM functions” processor-based VM-execution control is 0, no
checks are performed on the VM-function controls.

26.2.1.2 VM-Exit Control Fields
VM entries perform the following checks on the VM-exit control fields.
• Reserved bits in the VM-exit controls must be set properly. Software may consult

the VMX capability MSRs to determine the proper settings (see Appendix A.4).
• If “activate VMX-preemption timer” VM-execution control is 0, the “save VMX-

preemption timer value” VM-exit control must also be 0.
• The following checks are performed for the VM-exit MSR-store address if the

VM-exit MSR-store count field is non-zero:

— The lower 4 bits of the VM-exit MSR-store address must be 0. The address
should not set any bits beyond the processor’s physical-address width.3

1. “Unrestricted guest” and “enable EPT” are both secondary processor-based VM-execution con-
trols. If bit 31 of the primary processor-based VM-execution controls is 0, VM entry functions as
if both these controls were 0. See Section 24.6.2.

2. “Enable VM functions” is a secondary processor-based VM-execution control. If bit 31 of the pri-
mary processor-based VM-execution controls is 0, VM entry functions as if the “enable
VM functions” VM-execution control were 0. See Section 24.6.2.

3. Software can determine a processor’s physical-address width by executing CPUID with
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.
26-6 Vol. 3C

VM ENTRIES
— The address of the last byte in the VM-exit MSR-store area should not set any
bits beyond the processor’s physical-address width. The address of this last
byte is VM-exit MSR-store address + (MSR count * 16) – 1. (The arithmetic
used for the computation uses more bits than the processor’s physical-
address width.)

If IA32_VMX_BASIC[48] is read as 1, neither address should set any bits in the
range 63:32; see Appendix A.1.

• The following checks are performed for the VM-exit MSR-load address if the
VM-exit MSR-load count field is non-zero:

— The lower 4 bits of the VM-exit MSR-load address must be 0. The address
should not set any bits beyond the processor’s physical-address width.

— The address of the last byte in the VM-exit MSR-load area should not set any
bits beyond the processor’s physical-address width. The address of this last
byte is VM-exit MSR-load address + (MSR count * 16) – 1. (The arithmetic
used for the computation uses more bits than the processor’s physical-
address width.)

If IA32_VMX_BASIC[48] is read as 1, neither address should set any bits in the
range 63:32; see Appendix A.1.

26.2.1.3 VM-Entry Control Fields
VM entries perform the following checks on the VM-entry control fields.
• Reserved bits in the VM-entry controls must be set properly. Software may

consult the VMX capability MSRs to determine the proper settings (see Appendix
A.5).

• Fields relevant to VM-entry event injection must be set properly. These fields are
the VM-entry interruption-information field (see Table 24-13 in Section 24.8.3),
the VM-entry exception error code, and the VM-entry instruction length. If the
valid bit (bit 31) in the VM-entry interruption-information field is 1, the following
must hold:

— The field’s interruption type (bits 10:8) is not set to a reserved value. Value 1
is reserved on all logical processors; value 7 (other event) is reserved on
logical processors that do not support the 1-setting of the “monitor trap flag”
VM-execution control.

— The field’s vector (bits 7:0) is consistent with the interruption type:

• If the interruption type is non-maskable interrupt (NMI), the vector is 2.

• If the interruption type is hardware exception, the vector is at most 31.

• If the interruption type is other event, the vector is 0 (pending MTF
VM exit).

— The field's deliver-error-code bit (bit 11) is 1 if and only if (1) either (a) the
"unrestricted guest" VM-execution control is 0; or (b) bit 0 (corresponding to
Vol. 3C 26-7

VM ENTRIES
CR0.PE) is set in the CR0 field in the guest-state area; (2) the interruption
type is hardware exception; and (3) the vector indicates an exception that
would normally deliver an error code (8 = #DF; 10 = TS; 11 = #NP; 12 =
#SS; 13 = #GP; 14 = #PF; or 17 = #AC).

— Reserved bits in the field (30:12) are 0.

— If the deliver-error-code bit (bit 11) is 1, bits 31:15 of the VM-entry
exception error-code field are 0.

— If the interruption type is software interrupt, software exception, or
privileged software exception, the VM-entry instruction-length field is in the
range 1–15.

• The following checks are performed for the VM-entry MSR-load address if the
VM-entry MSR-load count field is non-zero:

— The lower 4 bits of the VM-entry MSR-load address must be 0. The address
should not set any bits beyond the processor’s physical-address width.1

— The address of the last byte in the VM-entry MSR-load area should not set any
bits beyond the processor’s physical-address width. The address of this last
byte is VM-entry MSR-load address + (MSR count * 16) – 1. (The arithmetic
used for the computation uses more bits than the processor’s physical-
address width.)

If IA32_VMX_BASIC[48] is read as 1, neither address should set any bits in the
range 63:32; see Appendix A.1.

• If the processor is not in SMM, the “entry to SMM” and “deactivate dual-monitor
treatment” VM-entry controls must be 0.

• The “entry to SMM” and “deactivate dual-monitor treatment” VM-entry controls
cannot both be 1.

26.2.2 Checks on Host Control Registers and MSRs
The following checks are performed on fields in the host-state area that correspond
to control registers and MSRs:
• The CR0 field must not set any bit to a value not supported in VMX operation (see

Section 23.8).2

• The CR4 field must not set any bit to a value not supported in VMX operation (see
Section 23.8).

1. Software can determine a processor’s physical-address width by executing CPUID with
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

2. The bits corresponding to CR0.NW (bit 29) and CR0.CD (bit 30) are never checked because the
values of these bits are not changed by VM exit; see Section 27.5.1.
26-8 Vol. 3C

VM ENTRIES
• On processors that support Intel 64 architecture, the CR3 field must be such that
bits 63:52 and bits in the range 51:32 beyond the processor’s physical-address
width must be 0.1,2

• On processors that support Intel 64 architecture, the IA32_SYSENTER_ESP field
and the IA32_SYSENTER_EIP field must each contain a canonical address.

• If the “load IA32_PERF_GLOBAL_CTRL” VM-exit control is 1, bits reserved in the
IA32_PERF_GLOBAL_CTRL MSR must be 0 in the field for that register (see
Figure 18-3).

• If the “load IA32_PAT” VM-exit control is 1, the value of the field for the IA32_PAT
MSR must be one that could be written by WRMSR without fault at CPL 0. Specif-
ically, each of the 8 bytes in the field must have one of the values 0 (UC), 1 (WC),
4 (WT), 5 (WP), 6 (WB), or 7 (UC-).

• If the “load IA32_EFER” VM-exit control is 1, bits reserved in the IA32_EFER MSR
must be 0 in the field for that register. In addition, the values of the LMA and LME
bits in the field must each be that of the “host address-space size” VM-exit
control.

26.2.3 Checks on Host Segment and Descriptor-Table Registers
The following checks are performed on fields in the host-state area that correspond
to segment and descriptor-table registers:
• In the selector field for each of CS, SS, DS, ES, FS, GS and TR, the RPL (bits 1:0)

and the TI flag (bit 2) must be 0.
• The selector fields for CS and TR cannot be 0000H.
• The selector field for SS cannot be 0000H if the “host address-space size” VM-exit

control is 0.
• On processors that support Intel 64 architecture, the base-address fields for FS,

GS, GDTR, IDTR, and TR must contain canonical addresses.

26.2.4 Checks Related to Address-Space Size
On processors that support Intel 64 architecture, the following checks related to
address-space size are performed on VMX controls and fields in the host-state area:
• If the logical processor is outside IA-32e mode (if IA32_EFER.LMA = 0) at the

time of VM entry, the following must hold:

1. Software can determine a processor’s physical-address width by executing CPUID with
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

2. Bit 63 of the CR3 field in the host-state area must be 0. This is true even though, If CR4.PCIDE =
1, bit 63 of the source operand to MOV to CR3 is used to determine whether cached translation
information is invalidated.
Vol. 3C 26-9

VM ENTRIES
— The “IA-32e mode guest” VM-entry control is 0.

— The “host address-space size” VM-exit control is 0.
• If the logical processor is in IA-32e mode (if IA32_EFER.LMA = 1) at the time of

VM entry, the “host address-space size” VM-exit control must be 1.
• If the “host address-space size” VM-exit control is 0, the following must hold:

— The “IA-32e mode guest” VM-entry control is 0.

— Bit 17 of the CR4 field (corresponding to CR4.PCIDE) is 0.

— Bits 63:32 in the RIP field is 0.
• If the “host address-space size” VM-exit control is 1, the following must hold:

— Bit 5 of the CR4 field (corresponding to CR4.PAE) is 1.

— The RIP field contains a canonical address.

On processors that do not support Intel 64 architecture, checks are performed to
ensure that the “IA-32e mode guest” VM-entry control and the “host address-space
size” VM-exit control are both 0.

26.3 CHECKING AND LOADING GUEST STATE
If all checks on the VMX controls and the host-state area pass (see Section 26.2), the
following operations take place concurrently: (1) the guest-state area of the VMCS is
checked to ensure that, after the VM entry completes, the state of the logical
processor is consistent with IA-32 and Intel 64 architectures; (2) processor state is
loaded from the guest-state area or as specified by the VM-entry control fields; and
(3) address-range monitoring is cleared.

Because the checking and the loading occur concurrently, a failure may be discov-
ered only after some state has been loaded. For this reason, the logical processor
responds to such failures by loading state from the host-state area, as it would for a
VM exit. See Section 26.7.

26.3.1 Checks on the Guest State Area
This section describes checks performed on fields in the guest-state area. These
checks may be performed in any order. Some checks prevent establishment of
settings (or combinations of settings) that are currently reserved. Future processors
may allow such settings (or combinations) and may not perform the corresponding
checks. The correctness of software should not rely on VM-entry failures resulting
from the checks documented in this section.

The following subsections reference fields that correspond to processor state. Unless
otherwise stated, these references are to fields in the guest-state area.
26-10 Vol. 3C

VM ENTRIES
26.3.1.1 Checks on Guest Control Registers, Debug Registers, and MSRs
The following checks are performed on fields in the guest-state area corresponding to
control registers, debug registers, and MSRs:
• The CR0 field must not set any bit to a value not supported in VMX operation

(see Section 23.8). The following are exceptions:

— Bit 0 (corresponding to CR0.PE) and bit 31 (PG) are not checked if the
“unrestricted guest” VM-execution control is 1.1

— Bit 29 (corresponding to CR0.NW) and bit 30 (CD) are never checked
because the values of these bits are not changed by VM entry; see Section
26.3.2.1.

• If bit 31 in the CR0 field (corresponding to PG) is 1, bit 0 in that field (PE) must
also be 1.2

• The CR4 field must not set any bit to a value not supported in VMX operation
(see Section 23.8).

• If the “load debug controls” VM-entry control is 1, bits reserved in the
IA32_DEBUGCTL MSR must be 0 in the field for that register. The first processors
to support the virtual-machine extensions supported only the 1-setting of this
control and thus performed this check unconditionally.

• The following checks are performed on processors that support Intel 64 archi-
tecture:

— If the “IA-32e mode guest” VM-entry control is 1, bit 31 in the CR0 field
(corresponding to CR0.PG) and bit 5 in the CR4 field (corresponding to
CR4.PAE) must each be 1.3

— If the “IA-32e mode guest” VM-entry control is 0, bit 17 in the CR4 field
(corresponding to CR4.PCIDE) must each be 0.

— The CR3 field must be such that bits 63:52 and bits in the range 51:32
beyond the processor’s physical-address width are 0.4,5

— If the “load debug controls” VM-entry control is 1, bits 63:32 in the DR7 field
must be 0. The first processors to support the virtual-machine extensions

1. “Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the pri-
mary processor-based VM-execution controls is 0, VM entry functions as if the “unrestricted
guest” VM-execution control were 0. See Section 24.6.2.

2. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PE must be 1 in VMX operation,
bit 0 in the CR0 field must be 1 unless the “unrestricted guest” VM-execution control and bit 31
of the primary processor-based VM-execution controls are both 1.

3. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation,
bit 31 in the CR0 field must be 1 unless the “unrestricted guest” VM-execution control and bit 31
of the primary processor-based VM-execution controls are both 1.

4. Software can determine a processor’s physical-address width by executing CPUID with
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.
Vol. 3C 26-11

VM ENTRIES
supported only the 1-setting of this control and thus performed this check
unconditionally (if they supported Intel 64 architecture).

— The IA32_SYSENTER_ESP field and the IA32_SYSENTER_EIP field must each
contain a canonical address.

• If the “load IA32_PERF_GLOBAL_CTRL” VM-entry control is 1, bits reserved in the
IA32_PERF_GLOBAL_CTRL MSR must be 0 in the field for that register (see
Figure 18-3).

• If the “load IA32_PAT” VM-entry control is 1, the value of the field for the
IA32_PAT MSR must be one that could be written by WRMSR without fault at CPL
0. Specifically, each of the 8 bytes in the field must have one of the values 0 (UC),
1 (WC), 4 (WT), 5 (WP), 6 (WB), or 7 (UC-).

• If the “load IA32_EFER” VM-entry control is 1, the following checks are performed
on the field for the IA32_EFER MSR :

— Bits reserved in the IA32_EFER MSR must be 0.

— Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of the
“IA-32e mode guest” VM-exit control. It must also be identical to bit 8 (LME)
if bit 31 in the CR0 field (corresponding to CR0.PG) is 1.1

26.3.1.2 Checks on Guest Segment Registers
This section specifies the checks on the fields for CS, SS, DS, ES, FS, GS, TR, and
LDTR. The following terms are used in defining these checks:
• The guest will be virtual-8086 if the VM flag (bit 17) is 1 in the RFLAGS field in

the guest-state area.
• The guest will be IA-32e mode if the “IA-32e mode guest” VM-entry control is 1.

(This is possible only on processors that support Intel 64 architecture.)
• Any one of these registers is said to be usable if the unusable bit (bit 16) is 0 in

the access-rights field for that register.

The following are the checks on these fields:
• Selector fields.

— TR. The TI flag (bit 2) must be 0.

— LDTR. If LDTR is usable, the TI flag (bit 2) must be 0.

5. Bit 63 of the CR3 field in the guest-state area must be 0. This is true even though, If
CR4.PCIDE = 1, bit 63 of the source operand to MOV to CR3 is used to determine whether cached
translation information is invalidated.

1. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation,
bit 31 in the CR0 field must be 1 unless the “unrestricted guest” VM-execution control and bit 31
of the primary processor-based VM-execution controls are both 1.
26-12 Vol. 3C

VM ENTRIES
— SS. If the guest will not be virtual-8086 and the “unrestricted guest” VM-
execution control is 0, the RPL (bits 1:0) must equal the RPL of the selector
field for CS.1

• Base-address fields.

— CS, SS, DS, ES, FS, GS. If the guest will be virtual-8086, the address must be
the selector field shifted left 4 bits (multiplied by 16).

— The following checks are performed on processors that support Intel 64 archi-
tecture:

• TR, FS, GS. The address must be canonical.

• LDTR. If LDTR is usable, the address must be canonical.

• CS. Bits 63:32 of the address must be zero.

• SS, DS, ES. If the register is usable, bits 63:32 of the address must be
zero.

• Limit fields for CS, SS, DS, ES, FS, GS. If the guest will be virtual-8086, the field
must be 0000FFFFH.

• Access-rights fields.

— CS, SS, DS, ES, FS, GS.

• If the guest will be virtual-8086, the field must be 000000F3H. This
implies the following:

— Bits 3:0 (Type) must be 3, indicating an expand-up read/write
accessed data segment.

— Bit 4 (S) must be 1.

— Bits 6:5 (DPL) must be 3.

— Bit 7 (P) must be 1.

— Bits 11:8 (reserved), bit 12 (software available), bit 13 (reserved/L),
bit 14 (D/B), bit 15 (G), bit 16 (unusable), and bits 31:17 (reserved)
must all be 0.

• If the guest will not be virtual-8086, the different sub-fields are
considered separately:

— Bits 3:0 (Type).

• CS. The values allowed depend on the setting of the
“unrestricted guest” VM-execution control:

— If the control is 0, the Type must be 9, 11, 13, or 15
(accessed code segment).

1. “Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the pri-
mary processor-based VM-execution controls is 0, VM entry functions as if the “unrestricted
guest” VM-execution control were 0. See Section 24.6.2.
Vol. 3C 26-13

VM ENTRIES
— If the control is 1, the Type must be either 3 (read/write
accessed expand-up data segment) or one of 9, 11, 13, and
15 (accessed code segment).

• SS. If SS is usable, the Type must be 3 or 7 (read/write,
accessed data segment).

• DS, ES, FS, GS. The following checks apply if the register is
usable:

— Bit 0 of the Type must be 1 (accessed).

— If bit 3 of the Type is 1 (code segment), then bit 1 of the
Type must be 1 (readable).

— Bit 4 (S). If the register is CS or if the register is usable, S must
be 1.

— Bits 6:5 (DPL).

• CS.

— If the Type is 3 (read/write accessed expand-up data
segment), the DPL must be 0. The Type can be 3 only if the
“unrestricted guest” VM-execution control is 1.

— If the Type is 9 or 11 (non-conforming code segment), the
DPL must equal the DPL in the access-rights field for SS.

— If the Type is 13 or 15 (conforming code segment), the DPL
cannot be greater than the DPL in the access-rights field for
SS.

• SS.

— If the “unrestricted guest” VM-execution control is 0, the DPL
must equal the RPL from the selector field.

— The DPL must be 0 either if the Type in the access-rights field
for CS is 3 (read/write accessed expand-up data segment) or
if bit 0 in the CR0 field (corresponding to CR0.PE) is 0.1

• DS, ES, FS, GS. The DPL cannot be less than the RPL in the
selector field if (1) the “unrestricted guest” VM-execution control
is 0; (2) the register is usable; and (3) the Type in the access-
rights field is in the range 0 – 11 (data segment or non-
conforming code segment).

— Bit 7 (P). If the register is CS or if the register is usable, P must be 1.

1. The following apply if either the “unrestricted guest” VM-execution control or bit 31 of the pri-
mary processor-based VM-execution controls is 0: (1) bit 0 in the CR0 field must be 1 if the capa-
bility MSR IA32_VMX_CR0_FIXED0 reports that CR0.PE must be 1 in VMX operation; and (2) the
Type in the access-rights field for CS cannot be 3.
26-14 Vol. 3C

VM ENTRIES
— Bits 11:8 (reserved). If the register is CS or if the register is usable,
these bits must all be 0.

— Bit 14 (D/B). For CS, D/B must be 0 if the guest will be IA-32e mode
and the L bit (bit 13) in the access-rights field is 1.

— Bit 15 (G). The following checks apply if the register is CS or if the
register is usable:

• If any bit in the limit field in the range 11:0 is 0, G must be 0.

• If any bit in the limit field in the range 31:20 is 1, G must be 1.

— Bits 31:17 (reserved). If the register is CS or if the register is
usable, these bits must all be 0.

— TR. The different sub-fields are considered separately:

• Bits 3:0 (Type).

— If the guest will not be IA-32e mode, the Type must be 3 (16-bit
busy TSS) or 11 (32-bit busy TSS).

— If the guest will be IA-32e mode, the Type must be 11 (64-bit busy
TSS).

• Bit 4 (S). S must be 0.

• Bit 7 (P). P must be 1.

• Bits 11:8 (reserved). These bits must all be 0.

• Bit 15 (G).

— If any bit in the limit field in the range 11:0 is 0, G must be 0.

— If any bit in the limit field in the range 31:20 is 1, G must be 1.

• Bit 16 (Unusable). The unusable bit must be 0.

• Bits 31:17 (reserved). These bits must all be 0.

— LDTR. The following checks on the different sub-fields apply only if LDTR is
usable:

• Bits 3:0 (Type). The Type must be 2 (LDT).

• Bit 4 (S). S must be 0.

• Bit 7 (P). P must be 1.

• Bits 11:8 (reserved). These bits must all be 0.

• Bit 15 (G).

— If any bit in the limit field in the range 11:0 is 0, G must be 0.

— If any bit in the limit field in the range 31:20 is 1, G must be 1.

• Bits 31:17 (reserved). These bits must all be 0.
Vol. 3C 26-15

VM ENTRIES
26.3.1.3 Checks on Guest Descriptor-Table Registers
The following checks are performed on the fields for GDTR and IDTR:
• On processors that support Intel 64 architecture, the base-address fields must

contain canonical addresses.
• Bits 31:16 of each limit field must be 0.

26.3.1.4 Checks on Guest RIP and RFLAGS
The following checks are performed on fields in the guest-state area corresponding to
RIP and RFLAGS:
• RIP. The following checks are performed on processors that support Intel 64

architecture:

— Bits 63:32 must be 0 if the “IA-32e mode guest” VM-entry control is 0 or if
the L bit (bit 13) in the access-rights field for CS is 0.

— If the processor supports N < 64 linear-address bits, bits 63:N must be
identical if the “IA-32e mode guest” VM-entry control is 1 and the L bit in the
access-rights field for CS is 1.1 (No check applies if the processor supports 64
linear-address bits.)

• RFLAGS.

— Reserved bits 63:22 (bits 31:22 on processors that do not support Intel 64
architecture), bit 15, bit 5 and bit 3 must be 0 in the field, and reserved bit 1
must be 1.

— The VM flag (bit 17) must be 0 either if the “IA-32e mode guest” VM-entry
control is 1 or if bit 0 in the CR0 field (corresponding to CR0.PE) is 0.2

— The IF flag (RFLAGS[bit 9]) must be 1 if the valid bit (bit 31) in the VM-entry
interruption-information field is 1 and the interruption type (bits 10:8) is
external interrupt.

26.3.1.5 Checks on Guest Non-Register State
The following checks are performed on fields in the guest-state area corresponding to
non-register state:
• Activity state.

— The activity-state field must contain a value in the range 0 – 3, indicating an
activity state supported by the implementation (see Section 24.4.2). Future

1. Software can determine the number N by executing CPUID with 80000008H in EAX. The num-
ber of linear-address bits supported is returned in bits 15:8 of EAX.

2. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PE must be 1 in VMX operation,
bit 0 in the CR0 field must be 1 unless the “unrestricted guest” VM-execution control and bit 31
of the primary processor-based VM-execution controls are both 1.
26-16 Vol. 3C

VM ENTRIES
processors may include support for other activity states. Software should
read the VMX capability MSR IA32_VMX_MISC (see Appendix A.6) to
determine what activity states are supported.

— The activity-state field must not indicate the HLT state if the DPL (bits 6:5) in
the access-rights field for SS is not 0.1

— The activity-state field must indicate the active state if the interruptibility-
state field indicates blocking by either MOV-SS or by STI (if either bit 0 or
bit 1 in that field is 1).

— If the valid bit (bit 31) in the VM-entry interruption-information field is 1, the
interruption to be delivered (as defined by interruption type and vector) must
not be one that would normally be blocked while a logical processor is in the
activity state corresponding to the contents of the activity-state field. The
following items enumerate the interruptions (as specified in the VM-entry
interruption-information field) whose injection is allowed for the different
activity states:

• Active. Any interruption is allowed.

• HLT. The only events allowed are the following:

— Those with interruption type external interrupt or non-maskable
interrupt (NMI).

— Those with interruption type hardware exception and vector 1
(debug exception) or vector 18 (machine-check exception).

— Those with interruption type other event and vector 0 (pending MTF
VM exit).

See Table 24-13 in Section 24.8.3 for details regarding the format of the
VM-entry interruption-information field.

• Shutdown. Only NMIs and machine-check exceptions are allowed.

• Wait-for-SIPI. No interruptions are allowed.

— The activity-state field must not indicate the wait-for-SIPI state if the “entry
to SMM” VM-entry control is 1.

• Interruptibility state.

— The reserved bits (bits 31:4) must be 0.

— The field cannot indicate blocking by both STI and MOV SS (bits 0 and 1
cannot both be 1).

— Bit 0 (blocking by STI) must be 0 if the IF flag (bit 9) is 0 in the RFLAGS field.

— Bit 0 (blocking by STI) and bit 1 (blocking by MOV-SS) must both be 0 if the
valid bit (bit 31) in the VM-entry interruption-information field is 1 and the

1. As noted in Section 24.4.1, SS.DPL corresponds to the logical processor’s current privilege level
(CPL).
Vol. 3C 26-17

VM ENTRIES
interruption type (bits 10:8) in that field has value 0, indicating external
interrupt.

— Bit 1 (blocking by MOV-SS) must be 0 if the valid bit (bit 31) in the VM-entry
interruption-information field is 1 and the interruption type (bits 10:8) in that
field has value 2, indicating non-maskable interrupt (NMI).

— Bit 2 (blocking by SMI) must be 0 if the processor is not in SMM.

— Bit 2 (blocking by SMI) must be 1 if the “entry to SMM” VM-entry control is 1.

— A processor may require bit 0 (blocking by STI) to be 0 if the valid bit (bit 31)
in the VM-entry interruption-information field is 1 and the interruption type
(bits 10:8) in that field has value 2, indicating NMI. Other processors may not
make this requirement.

— Bit 3 (blocking by NMI) must be 0 if the “virtual NMIs” VM-execution control
is 1, the valid bit (bit 31) in the VM-entry interruption-information field is 1,
and the interruption type (bits 10:8) in that field has value 2 (indicating
NMI).

NOTE
If the “virtual NMIs” VM-execution control is 0, there is no
requirement that bit 3 be 0 if the valid bit in the VM-entry
interruption-information field is 1 and the interruption type in that
field has value 2.

• Pending debug exceptions.

— Bits 11:4, bit 13, and bits 63:15 (bits 31:15 on processors that do not
support Intel 64 architecture) must be 0.

— The following checks are performed if any of the following holds: (1) the
interruptibility-state field indicates blocking by STI (bit 0 in that field is 1);
(2) the interruptibility-state field indicates blocking by MOV SS (bit 1 in that
field is 1); or (3) the activity-state field indicates HLT:

• Bit 14 (BS) must be 1 if the TF flag (bit 8) in the RFLAGS field is 1 and the
BTF flag (bit 1) in the IA32_DEBUGCTL field is 0.

• Bit 14 (BS) must be 0 if the TF flag (bit 8) in the RFLAGS field is 0 or the
BTF flag (bit 1) in the IA32_DEBUGCTL field is 1.

• VMCS link pointer. The following checks apply if the field contains a value other
than FFFFFFFF_FFFFFFFFH:

— Bits 11:0 must be 0.

— Bits beyond the processor’s physical-address width must be 0.1,2

1. Software can determine a processor’s physical-address width by executing CPUID with
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.
26-18 Vol. 3C

VM ENTRIES
— The 32 bits located in memory referenced by the value of the field (as a
physical address) must contain the processor’s VMCS revision identifier (see
Section 24.2).

— If the processor is not in SMM or the “entry to SMM” VM-entry control is 1, the
field must not contain the current VMCS pointer.

— If the processor is in SMM and the “entry to SMM” VM-entry control is 0, the
field must not contain the VMXON pointer.

26.3.1.6 Checks on Guest Page-Directory-Pointer-Table Entries
If CR0.PG =1, CR4.PAE = 1, and IA32_EFER.LMA = 0, the logical processor also uses
PAE paging (see Section 4.4 in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3A).1 When PAE paging is in use, the physical address in
CR3 references a table of page-directory-pointer-table entries (PDPTEs). A MOV
to CR3 when PAE paging is in use checks the validity of the PDPTEs.

A VM entry is to a guest that uses PAE paging if (1) bit 31 (corresponding to CR0.PG)
is set in the CR0 field in the guest-state area; (2) bit 5 (corresponding to CR4.PAE) is
set in the CR4 field; and (3) the “IA-32e mode guest” VM-entry control is 0. Such a
VM entry checks the validity of the PDPTEs:
• If the “enable EPT” VM-execution control is 0, VM entry checks the validity of the

PDPTEs referenced by the CR3 field in the guest-state area if either (1) PAE
paging was not in use before the VM entry; or (2) the value of CR3 is changing as
a result of the VM entry. VM entry may check their validity even if neither (1) nor
(2) hold.2

• If the “enable EPT” VM-execution control is 1, VM entry checks the validity of the
PDPTE fields in the guest-state area (see Section 24.4.2).

A VM entry to a guest that does not use PAE paging does not check the validity of any
PDPTEs.

A VM entry that checks the validity of the PDPTEs uses the same checks that are used
when CR3 is loaded with MOV to CR3 when PAE paging is in use.3 If MOV to CR3

2. If IA32_VMX_BASIC[48] is read as 1, this field must not set any bits in the range 63:32; see
Appendix A.1.

1. On processors that support Intel 64 architecture, the physical-address extension may support
more than 36 physical-address bits. Software can determine the number physical-address bits
supported by executing CPUID with 80000008H in EAX. The physical-address width is returned
in bits 7:0 of EAX.

2. “Enable EPT” is a secondary processor-based VM-execution control. If bit 31 of the primary pro-
cessor-based VM-execution controls is 0, VM entry functions as if the “enable EPT” VM-execu-
tion control were 0. See Section 24.6.2.

3. This implies that (1) bits 11:9 in each PDPTE are ignored; and (2) if bit 0 (present) is clear in one
of the PDPTEs, bits 63:1 of that PDPTE are ignored.
Vol. 3C 26-19

VM ENTRIES
would cause a general-protection exception due to the PDPTEs that would be loaded
(e.g., because a reserved bit is set), the VM entry fails.

26.3.2 Loading Guest State
Processor state is updated on VM entries in the following ways:
• Some state is loaded from the guest-state area.
• Some state is determined by VM-entry controls.
• The page-directory pointers are loaded based on the values of certain control

registers.

This loading may be performed in any order and in parallel with the checking of VMCS
contents (see Section 26.3.1).

The loading of guest state is detailed in Section 26.3.2.1 to Section 26.3.2.4. These
sections reference VMCS fields that correspond to processor state. Unless otherwise
stated, these references are to fields in the guest-state area.

In addition to the state loading described in this section, VM entries may load MSRs
from the VM-entry MSR-load area (see Section 26.4). This loading occurs only after
the state loading described in this section and the checking of VMCS contents
described in Section 26.3.1.

26.3.2.1 Loading Guest Control Registers, Debug Registers, and MSRs
The following items describe how guest control registers, debug registers, and MSRs
are loaded on VM entry:
• CR0 is loaded from the CR0 field with the exception of the following bits, which

are never modified on VM entry: ET (bit 4); reserved bits 15:6, 17, and 28:19;
NW (bit 29) and CD (bit 30).1 The values of these bits in the CR0 field are
ignored.

• CR3 and CR4 are loaded from the CR3 field and the CR4 field, respectively.
• If the “load debug controls” VM-execution control is 1, DR7 is loaded from the

DR7 field with the exception that bit 12 and bits 15:14 are always 0 and bit 10 is
always 1. The values of these bits in the DR7 field are ignored.
The first processors to support the virtual-machine extensions supported only
the 1-setting of the “load debug controls” VM-execution control and thus always
loaded DR7 from the DR7 field.

1. Bits 15:6, bit 17, and bit 28:19 of CR0 and CR0.ET are unchanged by executions of MOV to CR0.
Bits 15:6, bit 17, and bit 28:19 of CR0 are always 0 and CR0.ET is always 1.
26-20 Vol. 3C

VM ENTRIES
• The following describes how some MSRs are loaded using fields in the guest-state
area:

— If the “load debug controls” VM-execution control is 1, the IA32_DEBUGCTL
MSR is loaded from the IA32_DEBUGCTL field. The first processors to support
the virtual-machine extensions supported only the 1-setting of this control
and thus always loaded the IA32_DEBUGCTL MSR from the IA32_DEBUGCTL
field.

— The IA32_SYSENTER_CS MSR is loaded from the IA32_SYSENTER_CS field.
Since this field has only 32 bits, bits 63:32 of the MSR are cleared to 0.

— The IA32_SYSENTER_ESP and IA32_SYSENTER_EIP MSRs are loaded from
the IA32_SYSENTER_ESP field and the IA32_SYSENTER_EIP field, respec-
tively. On processors that do not support Intel 64 architecture, these fields
have only 32 bits; bits 63:32 of the MSRs are cleared to 0.

— The following are performed on processors that support Intel 64 architecture:

• The MSRs FS.base and GS.base are loaded from the base-address fields
for FS and GS, respectively (see Section 26.3.2.2).

• If the “load IA32_EFER” VM-entry control is 0, bits in the IA32_EFER MSR
are modified as follows:

— IA32_EFER.LMA is loaded with the setting of the “IA-32e mode
guest” VM-entry control.

— If CR0 is being loaded so that CR0.PG = 1, IA32_EFER.LME is also
loaded with the setting of the “IA-32e mode guest” VM-entry
control.1 Otherwise, IA32_EFER.LME is unmodified.

See below for the case in which the “load IA32_EFER” VM-entry control is
1

— If the “load IA32_PERF_GLOBAL_CTRL” VM-entry control is 1, the
IA32_PERF_GLOBAL_CTRL MSR is loaded from the
IA32_PERF_GLOBAL_CTRL field.

— If the “load IA32_PAT” VM-entry control is 1, the IA32_PAT MSR is loaded
from the IA32_PAT field.

— If the “load IA32_EFER” VM-entry control is 1, the IA32_EFER MSR is loaded
from the IA32_EFER field.

With the exception of FS.base and GS.base, any of these MSRs is subsequently
overwritten if it appears in the VM-entry MSR-load area. See Section 26.4.

• The SMBASE register is unmodified by all VM entries except those that return
from SMM.

1. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation,
VM entry must be loading CR0 so that CR0.PG = 1 unless the “unrestricted guest” VM-execution
control and bit 31 of the primary processor-based VM-execution controls are both 1.
Vol. 3C 26-21

VM ENTRIES
26.3.2.2 Loading Guest Segment Registers and Descriptor-Table Registers
For each of CS, SS, DS, ES, FS, GS, TR, and LDTR, fields are loaded from the guest-
state area as follows:

• The unusable bit is loaded from the access-rights field. This bit can never be set
for TR (see Section 26.3.1.2). If it is set for one of the other registers, the
following apply:

— For each of CS, SS, DS, ES, FS, and GS, uses of the segment cause faults
(general-protection exception or stack-fault exception) outside 64-bit mode,
just as they would had the segment been loaded using a null selector. This bit
does not cause accesses to fault in 64-bit mode.

— If this bit is set for LDTR, uses of LDTR cause general-protection exceptions in
all modes, just as they would had LDTR been loaded using a null selector.

If this bit is clear for any of CS, SS, DS, ES, FS, GS, TR, and LDTR, a null
selector value does not cause a fault (general-protection exception or stack-
fault exception).

• TR. The selector, base, limit, and access-rights fields are loaded.
• CS.

— The following fields are always loaded: selector, base address, limit, and
(from the access-rights field) the L, D, and G bits.

— For the other fields, the unusable bit of the access-rights field is consulted:

• If the unusable bit is 0, all of the access-rights field is loaded.
• If the unusable bit is 1, the remainder of CS access rights are undefined

after VM entry.
• SS, DS, ES, FS, GS, and LDTR.

— The selector fields are loaded.
— For the other fields, the unusable bit of the corresponding access-rights field

is consulted:

• If the unusable bit is 0, the base-address, limit, and access-rights fields
are loaded.

• If the unusable bit is 1, the base address, the segment limit, and the
remainder of the access rights are undefined after VM entry with the
following exceptions:

— Bits 3:0 of the base address for SS are cleared to 0.

— SS.DPL is always loaded from the SS access-rights field. This will be
the current privilege level (CPL) after the VM entry completes.

— SS.B is always set to 1.

— The base addresses for FS and GS are loaded from the corre-
sponding fields in the VMCS. On processors that support Intel 64
26-22 Vol. 3C

VM ENTRIES
architecture, the values loaded for base addresses for FS and GS are
also manifest in the FS.base and GS.base MSRs.

— On processors that support Intel 64 architecture, the base address
for LDTR is set to an undefined but canonical value.

— On processors that support Intel 64 architecture, bits 63:32 of the
base addresses for SS, DS, and ES are cleared to 0.

GDTR and IDTR are loaded using the base and limit fields.

26.3.2.3 Loading Guest RIP, RSP, and RFLAGS
RSP, RIP, and RFLAGS are loaded from the RSP field, the RIP field, and the RFLAGS
field, respectively. The following items regard the upper 32 bits of these fields on
VM entries that are not to 64-bit mode:
• Bits 63:32 of RSP are undefined outside 64-bit mode. Thus, a logical processor

may ignore the contents of bits 63:32 of the RSP field on VM entries that are not
to 64-bit mode.

• As noted in Section 26.3.1.4, bits 63:32 of the RIP and RFLAGS fields must be 0
on VM entries that are not to 64-bit mode.

26.3.2.4 Loading Page-Directory-Pointer-Table Entries
As noted in Section 26.3.1.6, the logical processor uses PAE paging if bit 5 in CR4
(CR4.PAE) is 1 and IA32_EFER.LMA is 0. A VM entry to a guest that uses PAE paging
loads the PDPTEs into internal, non-architectural registers based on the setting of the
“enable EPT” VM-execution control:
• If the control is 0, the PDPTEs are loaded from the page-directory-pointer table

referenced by the physical address in the value of CR3 being loaded by the
VM entry (see Section 26.3.2.1). The values loaded are treated as physical
addresses in VMX non-root operation.

• If the control is 1, the PDPTEs are loaded from corresponding fields in the guest-
state area (see Section 24.4.2). The values loaded are treated as guest-physical
addresses in VMX non-root operation.

26.3.2.5 Updating Non-Register State
Section 28.3 describe how the VMX architecture controls how a logical processor
manages information in the TLBs and paging-structure caches. The following items
detail how VM entries invalidate cached mappings:
• If the “enable VPID” VM-execution control is 0, the logical processor invalidates

linear mappings and combined mappings associated with VPID 0000H (for all
PCIDs); combined mappings for VPID 0000H are invalidated for all EP4TA values
(EP4TA is the value of bits 51:12 of EPTP).
Vol. 3C 26-23

VM ENTRIES
• VM entries are not required to invalidate any guest-physical mappings, nor are
they required to invalidate any linear mappings or combined mappings if the
“enable VPID” VM-execution control is 1.

26.3.3 Clearing Address-Range Monitoring
The Intel 64 and IA-32 architectures allow software to monitor a specified address
range using the MONITOR and MWAIT instructions. See Section 8.10.4 in the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 3A. VM entries
clear any address-range monitoring that may be in effect.

26.4 LOADING MSRS
VM entries may load MSRs from the VM-entry MSR-load area (see Section 24.8.2).
Specifically each entry in that area (up to the number specified in the VM-entry MSR-
load count) is processed in order by loading the MSR indexed by bits 31:0 with the
contents of bits 127:64 as they would be written by WRMSR.1

Processing of an entry fails in any of the following cases:
• The value of bits 31:0 is either C0000100H (the IA32_FS_BASE MSR) or

C0000101 (the IA32_GS_BASE MSR).
• The value of bits 31:8 is 000008H, meaning that the indexed MSR is one that

allows access to an APIC register when the local APIC is in x2APIC mode.
• The value of bits 31:0 indicates an MSR that can be written only in system-

management mode (SMM) and the VM entry did not commence in SMM.
(IA32_SMM_MONITOR_CTL is an MSR that can be written only in SMM.)

• The value of bits 31:0 indicates an MSR that cannot be loaded on VM entries for
model-specific reasons. A processor may prevent loading of certain MSRs even if
they can normally be written by WRMSR. Such model-specific behavior is
documented in Chapter 34.

• Bits 63:32 are not all 0.
• An attempt to write bits 127:64 to the MSR indexed by bits 31:0 of the entry

would cause a general-protection exception if executed via WRMSR with
CPL = 0.2

1. Because attempts to modify the value of IA32_EFER.LMA by WRMSR are ignored, attempts to
modify it using the VM-entry MSR-load area are also ignored.

2. If CR0.PG = 1, WRMSR to the IA32_EFER MSR causes a general-protection exception if it would
modify the LME bit. If VM entry has established CR0.PG = 1, the IA32_EFER MSR should not be
included in the VM-entry MSR-load area for the purpose of modifying the LME bit.
26-24 Vol. 3C

VM ENTRIES
The VM entry fails if processing fails for any entry. The logical processor responds to
such failures by loading state from the host-state area, as it would for a VM exit. See
Section 26.7.

If any MSR is being loaded in such a way that would architecturally require a TLB
flush, the TLBs are updated so that, after VM entry, the logical processor will not use
any translations that were cached before the transition.

26.5 EVENT INJECTION
If the valid bit in the VM-entry interruption-information field (see Section 24.8.3) is
1, VM entry causes an event to be delivered (or made pending) after all components
of guest state have been loaded (including MSRs) and after the VM-execution control
fields have been established.
• If the interruption type in the field is 0 (external interrupt), 2 (non-maskable

interrupt); 3 (hardware exception), 4 (software interrupt), 5 (privileged software
exception), or 6 (software exception), the event is delivered as described in
Section 26.5.1.

• If the interruption type in the field is 7 (other event) and the vector field is 0, an
MTF VM exit is pending after VM entry. See Section 26.5.2.

26.5.1 Vectored-Event Injection
VM entry delivers an injected vectored event within the guest context established by
VM entry. This means that delivery occurs after all components of guest state have
been loaded (including MSRs) and after the VM-execution control fields have been
established.1 The event is delivered using the vector in that field to select a
descriptor in the IDT. Since event injection occurs after loading IDTR from the guest-
state area, this is the guest IDT.

Section 26.5.1.1 provides details of vectored-event injection. In general, the event is
delivered exactly as if it had been generated normally.

If event delivery encounters a nested exception (for example, a general-protection
exception because the vector indicates a descriptor beyond the IDT limit), the excep-
tion bitmap is consulted using the vector of that exception. If the bit is 0, the excep-
tion is delivered through the IDT. If the bit is 1, a VM exit occurs. Section 26.5.1.2
details cases in which event injection causes a VM exit.

1. This does not imply that injection of an exception or interrupt will cause a VM exit due to the set-
tings of VM-execution control fields (such as the exception bitmap) that would cause a VM exit if
the event had occurred in VMX non-root operation. In contrast, a nested exception encountered
during event delivery may cause a VM exit; see Section 26.5.1.1.
Vol. 3C 26-25

VM ENTRIES
26.5.1.1 Details of Vectored-Event Injection
The event-injection process is controlled by the contents of the VM-entry interruption
information field (format given in Table 24-13), the VM-entry exception error-code
field, and the VM-entry instruction-length field. The following items provide details of
the process:
• The value pushed on the stack for RFLAGS is generally that which was loaded

from the guest-state area. The value pushed for the RF flag is not modified based
on the type of event being delivered. However, the pushed value of RFLAGS may
be modified if a software interrupt is being injected into a guest that will be in
virtual-8086 mode (see below). After RFLAGS is pushed on the stack, the value
in the RFLAGS register is modified as is done normally when delivering an event
through the IDT.

• The instruction pointer that is pushed on the stack depends on the type of event
and whether nested exceptions occur during its delivery. The term current
guest RIP refers to the value to be loaded from the guest-state area. The value
pushed is determined as follows:1

— If VM entry successfully injects (with no nested exception) an event with
interruption type external interrupt, NMI, or hardware exception, the current
guest RIP is pushed on the stack.

— If VM entry successfully injects (with no nested exception) an event with
interruption type software interrupt, privileged software exception, or
software exception, the current guest RIP is incremented by the VM-entry
instruction length before being pushed on the stack.

— If VM entry encounters an exception while injecting an event and that
exception does not cause a VM exit, the current guest RIP is pushed on the
stack regardless of event type or VM-entry instruction length. If the
encountered exception does cause a VM exit that saves RIP, the saved RIP is
current guest RIP.

• If the deliver-error-code bit (bit 11) is set in the VM-entry interruption-
information field, the contents of the VM-entry exception error-code field is
pushed on the stack as an error code would be pushed during delivery of an
exception.

• DR6, DR7, and the IA32_DEBUGCTL MSR are not modified by event injection,
even if the event has vector 1 (normal deliveries of debug exceptions, which have
vector 1, do update these registers).

• If VM entry is injecting a software interrupt and the guest will be in virtual-8086
mode (RFLAGS.VM = 1), no general-protection exception can occur due to
RFLAGS.IOPL < 3. A VM monitor should check RFLAGS.IOPL before injecting
such an event and, if desired, inject a general-protection exception instead of a
software interrupt.

1. While these items refer to RIP, the width of the value pushed (16 bits, 32 bits, or 64 bits) is
determined normally.
26-26 Vol. 3C

VM ENTRIES
• If VM entry is injecting a software interrupt and the guest will be in virtual-8086
mode with virtual-8086 mode extensions (RFLAGS.VM = CR4.VME = 1), event
delivery is subject to VME-based interrupt redirection based on the software
interrupt redirection bitmap in the task-state segment (TSS) as follows:

— If bit n in the bitmap is clear (where n is the number of the software
interrupt), the interrupt is directed to an 8086 program interrupt handler: the
processor uses a 16-bit interrupt-vector table (IVT) located at linear address
zero. If the value of RFLAGS.IOPL is less than 3, the following modifications
are made to the value of RFLAGS that is pushed on the stack: IOPL is set to
3, and IF is set to the value of VIF.

— If bit n in the bitmap is set (where n is the number of the software interrupt),
the interrupt is directed to a protected-mode interrupt handler. (In other
words, the injection is treated as described in the next item.) In this case, the
software interrupt does not invoke such a handler if RFLAGS.IOPL < 3 (a
general-protection exception occurs instead). However, as noted above,
RFLAGS.IOPL cannot cause an injected software interrupt to cause such a
exception. Thus, in this case, the injection invokes a protected-mode
interrupt handler independent of the value of RFLAGS.IOPL.

Injection of events of other types are not subject to this redirection.
• If VM entry is injecting a software interrupt (not redirected as described above)

or software exception, privilege checking is performed on the IDT descriptor
being accessed as would be the case for executions of INT n, INT3, or INTO (the
descriptor’s DPL cannot be less than CPL). There is no checking of RFLAGS.IOPL,
even if the guest will be in virtual-8086 mode. Failure of this check may lead to a
nested exception. Injection of an event with interruption type external interrupt,
NMI, hardware exception, and privileged software exception, or with interruption
type software interrupt and being redirected as described above, do not perform
these checks.

• If VM entry is injecting a non-maskable interrupt (NMI) and the “virtual NMIs”
VM-execution control is 1, virtual-NMI blocking is in effect after VM entry.

• The transition causes a last-branch record to be logged if the LBR bit is set in the
IA32_DEBUGCTL MSR. This is true even for events such as debug exceptions,
which normally clear the LBR bit before delivery.

• The last-exception record MSRs (LERs) may be updated based on the setting of
the LBR bit in the IA32_DEBUGCTL MSR. Events such as debug exceptions, which
normally clear the LBR bit before they are delivered, and therefore do not
normally update the LERs, may do so as part of VM-entry event injection.

• If injection of an event encounters a nested exception that does not itself cause a
VM exit, the value of the EXT bit (bit 0) in any error code pushed on the stack is
determined as follows:

— If event being injected has interruption type external interrupt, NMI,
hardware exception, or privileged software exception and encounters a
nested exception (but does not produce a double fault), the error code for the
first such exception encountered sets the EXT bit.
Vol. 3C 26-27

VM ENTRIES
— If event being injected is a software interrupt or an software exception and
encounters a nested exception (but does not produce a double fault), the
error code for the first such exception encountered clears the EXT bit.

— If event delivery encounters a nested exception and delivery of that
exception encounters another exception (but does not produce a double
fault), the error code for that exception sets the EXT bit. If a double fault is
produced, the error code for the double fault is 0000H (the EXT bit is clear).

26.5.1.2 VM Exits During Event Injection
An event being injected never causes a VM exit directly regardless of the settings of
the VM-execution controls. For example, setting the “NMI exiting” VM-execution
control to 1 does not cause a VM exit due to injection of an NMI.

However, the event-delivery process may lead to a VM exit:
• If the vector in the VM-entry interruption-information field identifies a task gate

in the IDT, the attempted task switch may cause a VM exit just as it would had
the injected event occurred during normal execution in VMX non-root operation
(see Section 25.6.2).

• If event delivery encounters a nested exception, a VM exit may occur depending
on the contents of the exception bitmap (see Section 25.3).

• If event delivery generates a double-fault exception (due to a nested exception);
the logical processor encounters another nested exception while attempting to
call the double-fault handler; and that exception does not cause a VM exit due to
the exception bitmap; then a VM exit occurs due to triple fault (see Section
25.3).

• If event delivery injects a double-fault exception and encounters a nested
exception that does not cause a VM exit due to the exception bitmap, then a
VM exit occurs due to triple fault (see Section 25.3).

• If the “virtualize APIC accesses” VM-execution control is 1 and event delivery
generates an access to the APIC-access page, that access may cause an APIC-
access VM exit (see Section 25.2) or, if the access is a VTPR access, be treated as
specified in Section 25.5.3.1

If the event-delivery process does cause a VM exit, the processor state before the
VM exit is determined just as it would be had the injected event occurred during
normal execution in VMX non-root operation. If the injected event directly accesses a
task gate that cause a VM exit or if the first nested exception encountered causes a
VM exit, information about the injected event is saved in the IDT-vectoring informa-
tion field (see Section 27.2.3).

1. “Virtualize APIC accesses” is a secondary processor-based VM-execution control. If bit 31 of the
primary processor-based VM-execution controls is 0, VM entry functions as if the “virtualize APIC
accesses” VM-execution control were 0. See Section 24.6.2.
26-28 Vol. 3C

VM ENTRIES
26.5.1.3 Event Injection for VM Entries to Real-Address Mode
If VM entry is loading CR0.PE with 0, any injected vectored event is delivered as
would normally be done in real-address mode.1 Specifically, VM entry uses the vector
provided in the VM-entry interruption-information field to select a 4-byte entry from
an interrupt-vector table at the linear address in IDTR.base. Further details are
provided in Section 15.1.4 in Volume 3A of the IA-32 Intel® Architecture Software
Developer’s Manual.

Because bit 11 (deliver error code) in the VM-entry interruption-information field
must be 0 if CR0.PE will be 0 after VM entry (see Section 26.2.1.3), vectored events
injected with CR0.PE = 0 do not push an error code on the stack. This is consistent
with event delivery in real-address mode.

If event delivery encounters a fault (due to a violation of IDTR.limit or of SS.limit),
the fault is treated as if it had occurred during event delivery in VMX non-root opera-
tion. Such a fault may lead to a VM exit as discussed in Section 26.5.1.2.

26.5.2 Injection of Pending MTF VM Exits
If the interruption type in the VM-entry interruption-information field is 7 (other
event) and the vector field is 0, VM entry causes an MTF VM exit to be pending on the
instruction boundary following VM entry. This is the case even if the “monitor trap
flag” VM-execution control is 0. See Section 25.7.2 for the treatment of pending MTF
VM exits.

26.6 SPECIAL FEATURES OF VM ENTRY
This section details a variety of features of VM entry. It uses the following termi-
nology: a VM entry is vectoring if the valid bit (bit 31) of the VM-entry interruption
information field is 1 and the interruption type in the field is 0 (external interrupt), 2
(non-maskable interrupt); 3 (hardware exception), 4 (software interrupt), 5 (privi-
leged software exception), or 6 (software exception).

26.6.1 Interruptibility State
The interruptibility-state field in the guest-state area (see Table 24-3) contains bits
that control blocking by STI, blocking by MOV SS, and blocking by NMI. This field
impacts event blocking after VM entry as follows:
• If the VM entry is vectoring, there is no blocking by STI or by MOV SS following

the VM entry, regardless of the contents of the interruptibility-state field.

1. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PE must be 1 in VMX operation,
VM entry must be loading CR0.PE with 1 unless the “unrestricted guest” VM-execution control
and bit 31 of the primary processor-based VM-execution controls are both 1.
Vol. 3C 26-29

VM ENTRIES
• If the VM entry is not vectoring, the following apply:

— Events are blocked by STI if and only if bit 0 in the interruptibility-state field
is 1. This blocking is cleared after the guest executes one instruction or incurs
an exception (including a debug exception made pending by VM entry; see
Section 26.6.3).

— Events are blocked by MOV SS if and only if bit 1 in the interruptibility-state
field is 1. This may affect the treatment of pending debug exceptions; see
Section 26.6.3. This blocking is cleared after the guest executes one
instruction or incurs an exception (including a debug exception made pending
by VM entry).

• The blocking of non-maskable interrupts (NMIs) is determined as follows:

— If the “virtual NMIs” VM-execution control is 0, NMIs are blocked if and only if
bit 3 (blocking by NMI) in the interruptibility-state field is 1. If the “NMI
exiting” VM-execution control is 0, execution of the IRET instruction removes
this blocking (even if the instruction generates a fault). If the “NMI exiting”
control is 1, IRET does not affect this blocking.

— The following items describe the use of bit 3 (blocking by NMI) in the inter-
ruptibility-state field if the “virtual NMIs” VM-execution control is 1:

• The bit’s value does not affect the blocking of NMIs after VM entry. NMIs
are not blocked in VMX non-root operation (except for ordinary blocking
for other reasons, such as by the MOV SS instruction, the wait-for-SIPI
state, etc.)

• The bit’s value determines whether there is virtual-NMI blocking after
VM entry. If the bit is 1, virtual-NMI blocking is in effect after VM entry. If
the bit is 0, there is no virtual-NMI blocking after VM entry unless the
VM entry is injecting an NMI (see Section 26.5.1.1). Execution of IRET
removes virtual-NMI blocking (even if the instruction generates a fault).

If the “NMI exiting” VM-execution control is 0, the “virtual NMIs” control must
be 0; see Section 26.2.1.1.

• Blocking of system-management interrupts (SMIs) is determined as follows:

— If the VM entry was not executed in system-management mode (SMM), SMI
blocking is unchanged by VM entry.

— If the VM entry was executed in SMM, SMIs are blocked after VM entry if and
only if the bit 2 in the interruptibility-state field is 1.

26.6.2 Activity State
The activity-state field in the guest-state area controls whether, after VM entry, the
logical processor is active or in one of the inactive states identified in Section 24.4.2.
The use of this field is determined as follows:
26-30 Vol. 3C

VM ENTRIES
• If the VM entry is vectoring, the logical processor is in the active state after
VM entry. While the consistency checks described in Section 26.3.1.5 on the
activity-state field do apply in this case, the contents of the activity-state field do
not determine the activity state after VM entry.

• If the VM entry is not vectoring, the logical processor ends VM entry in the
activity state specified in the guest-state area. If VM entry ends with the logical
processor in an inactive activity state, the VM entry generates any special bus
cycle that is normally generated when that activity state is entered from the
active state. If VM entry would end with the logical processor in the shutdown
state and the logical processor is in SMX operation,1 an Intel® TXT shutdown
condition occurs. The error code used is 0000H, indicating “legacy shutdown.”
See Intel® Trusted Execution Technology Preliminary Architecture Specification.

• Some activity states unconditionally block certain events. The following blocking
is in effect after any VM entry that puts the processor in the indicated state:

— The active state blocks start-up IPIs (SIPIs). SIPIs that arrive while a logical
processor is in the active state and in VMX non-root operation are discarded
and do not cause VM exits.

— The HLT state blocks start-up IPIs (SIPIs). SIPIs that arrive while a logical
processor is in the HLT state and in VMX non-root operation are discarded and
do not cause VM exits.

— The shutdown state blocks external interrupts and SIPIs. External interrupts
that arrive while a logical processor is in the shutdown state and in VMX non-
root operation do not cause VM exits even if the “external-interrupt exiting”
VM-execution control is 1. SIPIs that arrive while a logical processor is in the
shutdown state and in VMX non-root operation are discarded and do not
cause VM exits.

— The wait-for-SIPI state blocks external interrupts, non-maskable interrupts
(NMIs), INIT signals, and system-management interrupts (SMIs). Such
events do not cause VM exits if they arrive while a logical processor is in the
wait-for-SIPI state and in VMX non-root operation do not cause VM exits
regardless of the settings of the pin-based VM-execution controls.

26.6.3 Delivery of Pending Debug Exceptions after VM Entry
The pending debug exceptions field in the guest-state area indicates whether there
are debug exceptions that have not yet been delivered (see Section 24.4.2). This
section describes how these are treated on VM entry.

There are no pending debug exceptions after VM entry if any of the following are
true:

1. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last
execution of GETSEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference,” in Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 2B.
Vol. 3C 26-31

VM ENTRIES
• The VM entry is vectoring with one of the following interruption types: external
interrupt, non-maskable interrupt (NMI), hardware exception, or privileged
software exception.

• The interruptibility-state field does not indicate blocking by MOV SS and the
VM entry is vectoring with either of the following interruption type: software
interrupt or software exception.

• The VM entry is not vectoring and the activity-state field indicates either
shutdown or wait-for-SIPI.

If none of the above hold, the pending debug exceptions field specifies the debug
exceptions that are pending for the guest. There are valid pending debug excep-
tions if either the BS bit (bit 14) or the enable-breakpoint bit (bit 12) is 1. If there
are valid pending debug exceptions, they are handled as follows:
• If the VM entry is not vectoring, the pending debug exceptions are treated as

they would had they been encountered normally in guest execution:

— If the logical processor is not blocking such exceptions (the interruptibility-
state field indicates no blocking by MOV SS), a debug exception is delivered
after VM entry (see below).

— If the logical processor is blocking such exceptions (due to blocking by
MOV SS), the pending debug exceptions are held pending or lost as would
normally be the case.

• If the VM entry is vectoring (with interruption type software interrupt or software
exception and with blocking by MOV SS), the following items apply:

— For injection of a software interrupt or of a software exception with vector 3
(#BP) or vector 4 (#OF), the pending debug exceptions are treated as they
would had they been encountered normally in guest execution if the corre-
sponding instruction (INT3 or INTO) were executed after a MOV SS that
encountered a debug trap.

— For injection of a software exception with a vector other than 3 and 4, the
pending debug exceptions may be lost or they may be delivered after
injection (see below).

If there are no valid pending debug exceptions (as defined above), no pending debug
exceptions are delivered after VM entry.

If a pending debug exception is delivered after VM entry, it has the priority of “traps
on the previous instruction” (see Section 6.9 in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3A). Thus, INIT signals and system-
management interrupts (SMIs) take priority of such an exception, as do VM exits
induced by the TPR shadow (see Section 26.6.7) and pending MTF VM exits (see
Section 26.6.8. The exception takes priority over any pending non-maskable inter-
rupt (NMI) or external interrupt and also over VM exits due to the 1-settings of the
“interrupt-window exiting” and “NMI-window exiting” VM-execution controls.
26-32 Vol. 3C

VM ENTRIES
A pending debug exception delivered after VM entry causes a VM exit if the bit 1
(#DB) is 1 in the exception bitmap. If it does not cause a VM exit, it updates DR6
normally.

26.6.4 VMX-Preemption Timer
If the “activate VMX-preemption timer” VM-execution control is 1, VM entry starts
the VMX-preemption timer with the unsigned value in the VMX-preemption timer-
value field.

It is possible for the VMX-preemption timer to expire during VM entry (e.g., if the
value in the VMX-preemption timer-value field is zero). If this happens (and if the VM
entry was not to the wait-for-SIPI state), a VM exit occurs with its normal priority
after any event injection and before execution of any instruction following VM entry.
For example, any pending debug exceptions established by VM entry (see Section
26.6.3) take priority over a timer-induced VM exit. (The timer-induced VM exit will
occur after delivery of the debug exception, unless that exception or its delivery
causes a different VM exit.)

See Section 25.7.1 for details of the operation of the VMX-preemption timer in VMX
non-root operation, including the blocking and priority of the VM exits that it causes.

26.6.5 Interrupt-Window Exiting
The “interrupt-window exiting” VM-execution control may cause a VM exit to occur
immediately after VM entry (see Section 25.3 for details).

The following items detail the treatment of these VM exits:
• These VM exits follow event injection if such injection is specified for VM entry.
• Non-maskable interrupts (NMIs) and higher priority events take priority over

VM exits caused by this control. VM exits caused by this control take priority over
external interrupts and lower priority events.

• VM exits caused by this control wake the logical processor if it just entered the
HLT state because of a VM entry (see Section 26.6.2). They do not occur if the
logical processor just entered the shutdown state or the wait-for-SIPI state.

26.6.6 NMI-Window Exiting
The “NMI-window exiting” VM-execution control may cause a VM exit to occur imme-
diately after VM entry (see Section 25.3 for details).

The following items detail the treatment of these VM exits:
• These VM exits follow event injection if such injection is specified for VM entry.
Vol. 3C 26-33

VM ENTRIES
• Debug-trap exceptions (see Section 26.6.3) and higher priority events take
priority over VM exits caused by this control. VM exits caused by this control take
priority over non-maskable interrupts (NMIs) and lower priority events.

• VM exits caused by this control wake the logical processor if it just entered either
the HLT state or the shutdown state because of a VM entry (see Section 26.6.2).
They do not occur if the logical processor just entered the wait-for-SIPI state.

26.6.7 VM Exits Induced by the TPR Shadow
If the “use TPR shadow” and “virtualize APIC accesses” VM-execution controls are
both 1, a VM exit occurs immediately after VM entry if the value of bits 3:0 of the TPR
threshold VM-execution control field is greater than the value of bits 7:4 in byte 80H
on the virtual-APIC page (see Section 24.6.8).1

The following items detail the treatment of these VM exits:
• The VM exits are not blocked if RFLAGS.IF = 0 or by the setting of bits in the

interruptibility-state field in guest-state area.
• The VM exits follow event injection if such injection is specified for VM entry.
• VM exits caused by this control take priority over system-management interrupts

(SMIs), INIT signals, and lower priority events. They thus have priority over the
VM exits described in Section 26.6.5, Section 26.6.6, and Section 26.6.8, as well
as any interrupts or debug exceptions that may be pending at the time of
VM entry.

• These VM exits wake the logical processor if it just entered the HLT state as part
of a VM entry (see Section 26.6.2). They do not occur if the logical processor just
entered the shutdown state or the wait-for-SIPI state.
If such a VM exit is suppressed because the processor just entered the
shutdown state, it occurs after the delivery of any event that cause the logical
processor to leave the shutdown state while remaining in VMX non-root
operation (e.g., due to an NMI that occurs while the “NMI-exiting” VM-execution
control is 0).

• The basic exit reason is “TPR below threshold.”

26.6.8 Pending MTF VM Exits
As noted in Section 26.5.2, VM entry may cause an MTF VM exit to be pending imme-
diately after VM entry. The following items detail the treatment of these VM exits:

1. “Virtualize APIC accesses” is a secondary processor-based VM-execution control. If bit 31 of the
primary processor-based VM-execution controls is 0, VM entry functions as if the “virtualize APIC
accesses” VM-execution control were 0. See Section 24.6.2.
26-34 Vol. 3C

VM ENTRIES
• System-management interrupts (SMIs), INIT signals, and higher priority events
take priority over these VM exits. These VM exits take priority over debug-trap
exceptions and lower priority events.

• These VM exits wake the logical processor if it just entered the HLT state because
of a VM entry (see Section 26.6.2). They do not occur if the logical processor just
entered the shutdown state or the wait-for-SIPI state.

26.6.9 VM Entries and Advanced Debugging Features
VM entries are not logged with last-branch records, do not produce branch-trace
messages, and do not update the branch-trace store.

26.7 VM-ENTRY FAILURES DURING OR AFTER LOADING
GUEST STATE

VM-entry failures due to the checks identified in Section 26.3.1 and failures during
the MSR loading identified in Section 26.4 are treated differently from those that
occur earlier in VM entry. In these cases, the following steps take place:

1. Information about the VM-entry failure is recorded in the VM-exit information
fields:

— Exit reason.

• Bits 15:0 of this field contain the basic exit reason. It is loaded with a
number indicating the general cause of the VM-entry failure. The
following numbers are used:

33. VM-entry failure due to invalid guest state. A VM entry failed one of
the checks identified in Section 26.3.1.

34. VM-entry failure due to MSR loading. A VM entry failed in an attempt
to load MSRs (see Section 26.4).

41. VM-entry failure due to machine-check event. A machine-check event
occurred during VM entry (see Section 26.8).

• Bit 31 is set to 1 to indicate a VM-entry failure.

• The remainder of the field (bits 30:16) is cleared.

— Exit qualification. This field is set based on the exit reason.

• VM-entry failure due to invalid guest state. In most cases, the exit quali-
fication is cleared to 0. The following non-zero values are used in the
cases indicated:

1. Not used.

2. Failure was due to a problem loading the PDPTEs (see Section
26.3.1.6).
Vol. 3C 26-35

VM ENTRIES
3. Failure was due to an attempt to inject a non-maskable interrupt
(NMI) into a guest that is blocking events through the STI blocking bit
in the interruptibility-state field. Such failures are implementation-
specific (see Section 26.3.1.5).

4. Failure was due to an invalid VMCS link pointer (see Section
26.3.1.5).

VM-entry checks on guest-state fields may be performed in any order.
Thus, an indication by exit qualification of one cause does not imply that
there are not also other errors. Different processors may give different
exit qualifications for the same VMCS.

• VM-entry failure due to MSR loading. The exit qualification is loaded to
indicate which entry in the VM-entry MSR-load area caused the problem
(1 for the first entry, 2 for the second, etc.).

— All other VM-exit information fields are unmodified.

2. Processor state is loaded as would be done on a VM exit (see Section 27.5). If
this results in [CR4.PAE & CR0.PG & ~IA32_EFER.LMA] = 1, page-directory-
pointer-table entries (PDPTEs) may be checked and loaded (see Section 27.5.4).

3. The state of blocking by NMI is what it was before VM entry.

4. MSRs are loaded as specified in the VM-exit MSR-load area (see Section 27.6).

Although this process resembles that of a VM exit, many steps taken during a VM exit
do not occur for these VM-entry failures:
• Most VM-exit information fields are not updated (see step 1 above).
• The valid bit in the VM-entry interruption-information field is not cleared.
• The guest-state area is not modified.
• No MSRs are saved into the VM-exit MSR-store area.

26.8 MACHINE-CHECK EVENTS DURING VM ENTRY
If a machine-check event occurs during a VM entry, one of the following occurs:
• The machine-check event is handled as if it occurred before the VM entry:

— If CR4.MCE = 0, operation of the logical processor depends on whether the
logical processor is in SMX operation:1

1. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last
execution of GETSEC[SENTER]. A logical processor is outside SMX operation if GETSEC[SENTER]
has not been executed or if GETSEC[SEXIT] was executed after the last execution of GET-
SEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference,” in Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2B.
26-36 Vol. 3C

VM ENTRIES
• If the logical processor is in SMX operation, an Intel® TXT shutdown
condition occurs. The error code used is 000CH, indicating “unrecoverable
machine-check condition.”

• If the logical processor is outside SMX operation, it goes to the shutdown
state.

— If CR4.MCE = 1, a machine-check exception (#MC) is delivered through the
IDT.

• The machine-check event is handled after VM entry completes:

— If the VM entry ends with CR4.MCE = 0, operation of the logical processor
depends on whether the logical processor is in SMX operation:

• If the logical processor is in SMX operation, an Intel® TXT shutdown
condition occurs with error code 000CH (unrecoverable machine-check
condition).

• If the logical processor is outside SMX operation, it goes to the shutdown
state.

— If the VM entry ends with CR4.MCE = 1, a machine-check exception (#MC) is
generated:

• If bit 18 (#MC) of the exception bitmap is 0, the exception is delivered
through the guest IDT.

• If bit 18 of the exception bitmap is 1, the exception causes a VM exit.
• A VM-entry failure occurs as described in Section 26.7. The basic exit reason is

41, for “VM-entry failure due to machine-check event.”

The first option is not used if the machine-check event occurs after any guest state
has been loaded. The second option is used only if VM entry is able to load all guest
state.
Vol. 3C 26-37

CHAPTER 27
VM EXITS

VM exits occur in response to certain instructions and events in VMX non-root opera-
tion as detailed in Section 25.1 through Section 25.3. VM exits perform the following
operations:

1. Information about the cause of the VM exit is recorded in the VM-exit information
fields and VM-entry control fields are modified as described in Section 27.2.

2. Processor state is saved in the guest-state area (Section 27.3).

3. MSRs may be saved in the VM-exit MSR-store area (Section 27.4).

4. The following may be performed in parallel and in any order (Section 27.5):

— Processor state is loaded based in part on the host-state area and some
VM-exit controls. This step is not performed for SMM VM exits that activate
the dual-monitor treatment of SMIs and SMM. See Section 33.15.6 for
information on how processor state is loaded by such VM exits.

— Address-range monitoring is cleared.

5. MSRs may be loaded from the VM-exit MSR-load area (Section 27.6). This step is
not performed for SMM VM exits that activate the dual-monitor treatment of
SMIs and SMM.

VM exits are not logged with last-branch records, do not produce branch-trace
messages, and do not update the branch-trace store.

Section 27.1 clarifies the nature of the architectural state before a VM exit begins.
The steps described above are detailed in Section 27.2 through Section 27.6.

Section 33.15 describes the dual-monitor treatment of system-management inter-
rupts (SMIs) and system-management mode (SMM). Under this treatment, ordinary
transitions to SMM are replaced by VM exits to a separate SMM monitor. Called SMM
VM exits, these are caused by the arrival of an SMI or the execution of VMCALL in
VMX root operation. SMM VM exits differ from other VM exits in ways that are
detailed in Section 33.15.2.

27.1 ARCHITECTURAL STATE BEFORE A VM EXIT
This section describes the architectural state that exists before a VM exit, especially
for VM exits caused by events that would normally be delivered through the IDT.
Note the following:
• An exception causes a VM exit directly if the bit corresponding to that exception

is set in the exception bitmap. A non-maskable interrupt (NMI) causes a VM exit
directly if the “NMI exiting” VM-execution control is 1. An external interrupt
Vol. 3C 27-1

VM EXITS
causes a VM exit directly if the “external-interrupt exiting” VM-execution control
is 1. A start-up IPI (SIPI) that arrives while a logical processor is in the wait-for-
SIPI activity state causes a VM exit directly. INIT signals that arrive while the
processor is not in the wait-for-SIPI activity state cause VM exits directly.

• An exception, NMI, external interrupt, or software interrupt causes a VM exit
indirectly if it does not do so directly but delivery of the event causes a nested
exception, double fault, task switch, APIC access (see Section 25.2), EPT
violation, or EPT misconfiguration that causes a VM exit.

• An event results in a VM exit if it causes a VM exit (directly or indirectly).

The following bullets detail when architectural state is and is not updated in response
to VM exits:
• If an event causes a VM exit directly, it does not update architectural state as it

would have if it had it not caused the VM exit:

— A debug exception does not update DR6, DR7.GD, or IA32_DEBUGCTL.LBR.
(Information about the nature of the debug exception is saved in the exit
qualification field.)

— A page fault does not update CR2. (The linear address causing the page fault
is saved in the exit-qualification field.)

— An NMI causes subsequent NMIs to be blocked, but only after the VM exit
completes.

— An external interrupt does not acknowledge the interrupt controller and the
interrupt remains pending, unless the “acknowledge interrupt on exit”
VM-exit control is 1. In such a case, the interrupt controller is acknowledged
and the interrupt is no longer pending.

— The flags L0 – L3 in DR7 (bit 0, bit 2, bit 4, and bit 6) are not cleared when a
task switch causes a VM exit.

— If a task switch causes a VM exit, none of the following are modified by the
task switch: old task-state segment (TSS); new TSS; old TSS descriptor; new
TSS descriptor; RFLAGS.NT1; or the TR register.

— No last-exception record is made if the event that would do so directly causes
a VM exit.

— If a machine-check exception causes a VM exit directly, this does not prevent
machine-check MSRs from being updated. These are updated by the
machine-check event itself and not the resulting machine-check exception.

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most
processors that support VMX operation also support Intel 64 architecture. For processors that do
not support Intel 64 architecture, this notation refers to the 32-bit forms of those registers
(EAX, EIP, ESP, EFLAGS, etc.). In a few places, notation such as EAX is used to refer specifically to
lower 32 bits of the indicated register.
27-2 Vol. 3C

VM EXITS
— If the logical processor is in an inactive state (see Section 24.4.2) and not
executing instructions, some events may be blocked but others may return
the logical processor to the active state. Unblocked events may cause
VM exits.1 If an unblocked event causes a VM exit directly, a return to the
active state occurs only after the VM exit completes.2 The VM exit generates
any special bus cycle that is normally generated when the active state is
entered from that activity state.

MTF VM exits (see Section 25.7.2 and Section 26.6.8) are not blocked in the
HLT activity state. If an MTF VM exit occurs in the HLT activity state, the
logical processor returns to the active state only after the VM exit completes.
MTF VM exits are blocked the shutdown state and the wait-for-SIPI state.

• If an event causes a VM exit indirectly, the event does update architectural state:

— A debug exception updates DR6, DR7, and the IA32_DEBUGCTL MSR. No
debug exceptions are considered pending.

— A page fault updates CR2.

— An NMI causes subsequent NMIs to be blocked before the VM exit
commences.

— An external interrupt acknowledges the interrupt controller and the interrupt
is no longer pending.

— If the logical processor had been in an inactive state, it enters the active state
and, before the VM exit commences, generates any special bus cycle that is
normally generated when the active state is entered from that activity state.

— There is no blocking by STI or by MOV SS when the VM exit commences.

— Processor state that is normally updated as part of delivery through the IDT
(CS, RIP, SS, RSP, RFLAGS) is not modified. However, the incomplete delivery
of the event may write to the stack.

— The treatment of last-exception records is implementation dependent:

• Some processors make a last-exception record when beginning the
delivery of an event through the IDT (before it can encounter a nested
exception). Such processors perform this update even if the event
encounters a nested exception that causes a VM exit (including the case
where nested exceptions lead to a triple fault).

• Other processors delay making a last-exception record until event
delivery has reached some event handler successfully (perhaps after one
or more nested exceptions). Such processors do not update the last-

1. If a VM exit takes the processor from an inactive state resulting from execution of a specific
instruction (HLT or MWAIT), the value saved for RIP by that VM exit will reference the following
instruction.

2. An exception is made if the logical processor had been inactive due to execution of MWAIT; in
this case, it is considered to have become active before the VM exit.
Vol. 3C 27-3

VM EXITS
exception record if a VM exit or triple fault occurs before an event handler
is reached.

• If the “virtual NMIs” VM-execution control is 1, VM entry injects an NMI, and
delivery of the NMI causes a nested exception, double fault, task switch, or APIC
access that causes a VM exit, virtual-NMI blocking is in effect before the VM exit
commences.

• If a VM exit results from a fault, EPT violation, or EPT misconfiguration
encountered during execution of IRET and the “NMI exiting” VM-execution
control is 0, any blocking by NMI is cleared before the VM exit commences.
However, the previous state of blocking by NMI may be recorded in the VM-exit
interruption-information field; see Section 27.2.2.

• If a VM exit results from a fault, EPT violation, or EPT misconfiguration
encountered during execution of IRET and the “virtual NMIs” VM-execution
control is 1, virtual-NMI blocking is cleared before the VM exit commences.
However, the previous state of virtual-NMI blocking may be recorded in the
VM-exit interruption-information field; see Section 27.2.2.

• Suppose that a VM exit is caused directly by an x87 FPU Floating-Point Error
(#MF) or by any of the following events if the event was unblocked due to (and
given priority over) an x87 FPU Floating-Point Error: an INIT signal, an external
interrupt, an NMI, an SMI; or a machine-check exception. In these cases, there
is no blocking by STI or by MOV SS when the VM exit commences.

• Normally, a last-branch record may be made when an event is delivered through
the IDT. However, if such an event results in a VM exit before delivery is
complete, no last-branch record is made.

• If machine-check exception results in a VM exit, processor state is suspect and
may result in suspect state being saved to the guest-state area. A VM monitor
should consult the RIPV and EIPV bits in the IA32_MCG_STATUS MSR before
resuming a guest that caused a VM exit resulting from a machine-check
exception.

• If a VM exit results from a fault, APIC access (see Section 25.2), EPT violation, or
EPT misconfiguration encountered while executing an instruction, data
breakpoints due to that instruction may have been recognized and information
about them may be saved in the pending debug exceptions field (see Section
27.3.4).

• The following VM exits are considered to happen after an instruction is executed:

— VM exits resulting from debug traps (single-step, I/O breakpoints, and data
breakpoints).

— VM exits resulting from debug exceptions whose recognition was delayed by
blocking by MOV SS.

— VM exits resulting from some machine-check exceptions.

— Trap-like VM exits due to execution of MOV to CR8 when the “CR8-load
exiting” VM-execution control is 0 and the “use TPR shadow” VM-execution
27-4 Vol. 3C

VM EXITS
control is 1. (Such VM exits can occur only from 64-bit mode and thus only on
processors that support Intel 64 architecture.)

— Trap-like VM exits due to execution of WRMSR when the “use MSR bitmaps”
VM-execution control is 1, the value of ECX is 808H, bit 808H in write bitmap
for low MSRs is 0, and the “virtualize x2APIC mode” VM-execution control is
1. See Section 25.1.3.

— VM exits caused by TPR-shadow updates (see Section 25.5.3.3) that result
from APIC accesses as part of instruction execution.

For these VM exits, the instruction’s modifications to architectural state complete
before the VM exit occurs. Such modifications include those to the logical
processor’s interruptibility state (see Table 24-3). If there had been blocking by
MOV SS, POP SS, or STI before the instruction executed, such blocking is no
longer in effect.

27.2 RECORDING VM-EXIT INFORMATION AND UPDATING
VM-ENTRY CONTROL FIELDS

VM exits begin by recording information about the nature of and reason for the
VM exit in the VM-exit information fields. Section 27.2.1 to Section 27.2.4 detail the
use of these fields.

In addition to updating the VM-exit information fields, the valid bit (bit 31) is cleared
in the VM-entry interruption-information field. If bit 5 of the IA32_VMX_MISC MSR
(index 485H) is read as 1 (see Appendix A.6), the value of IA32_EFER.LMA is stored
into the “IA-32e mode guest” VM-entry control.1

27.2.1 Basic VM-Exit Information
Section 24.9.1 defines the basic VM-exit information fields. The following items detail
their use.
• Exit reason.

— Bits 15:0 of this field contain the basic exit reason. It is loaded with a number
indicating the general cause of the VM exit. Appendix C lists the numbers
used and their meaning.

— The remainder of the field (bits 31:16) is cleared to 0 (certain SMM VM exits
may set some of these bits; see Section 33.15.2.3).2

1. Bit 5 of the IA32_VMX_MISC MSR is read as 1 on any logical processor that supports the 1-set-
ting of the “unrestricted guest” VM-execution control.

2. Bit 13 of this field is set on certain VM-entry failures; see Section 26.7.
Vol. 3C 27-5

VM EXITS
• Exit qualification. This field is saved for VM exits due to the following causes:
debug exceptions; page-fault exceptions; start-up IPIs (SIPIs); system-
management interrupts (SMIs) that arrive immediately after the retirement of
I/O instructions; task switches; INVEPT; INVLPG; INVPCID; INVVPID; LGDT;
LIDT; LLDT; LTR; SGDT; SIDT; SLDT; STR; VMCLEAR; VMPTRLD; VMPTRST;
VMREAD; VMWRITE; VMXON; control-register accesses; MOV DR; I/O instruc-
tions; MWAIT; accesses to the APIC-access page (see Section 25.2); and EPT
violations. For all other VM exits, this field is cleared. The following items provide
details:

— For a debug exception, the exit qualification contains information about the
debug exception. The information has the format given in Table 27-1.

— For a page-fault exception, the exit qualification contains the linear address
that caused the page fault. On processors that support Intel 64 architecture,
bits 63:32 are cleared if the logical processor was not in 64-bit mode before
the VM exit.

— For a start-up IPI (SIPI), the exit qualification contains the SIPI vector
information in bits 7:0. Bits 63:8 of the exit qualification are cleared to 0.

Table 27-1. Exit Qualification for Debug Exceptions

Bit Position(s) Contents

3:0 B3 – B0. When set, each of these bits indicates that the corresponding
breakpoint condition was met. Any of these bits may be set even if its
corresponding enabling bit in DR7 is not set.

12:4 Reserved (cleared to 0).

13 BD. When set, this bit indicates that the cause of the debug exception is
“debug register access detected.”

14 BS. When set, this bit indicates that the cause of the debug exception is
either the execution of a single instruction (if RFLAGS.TF = 1 and
IA32_DEBUGCTL.BTF = 0) or a taken branch (if
RFLAGS.TF = DEBUGCTL.BTF = 1).

63:15 Reserved (cleared to 0). Bits 63:32 exist only on processors that
support Intel 64 architecture.
27-6 Vol. 3C

VM EXITS
— For a task switch, the exit qualification contains details about the task switch,
encoded as shown in Table 27-2.

— For INVLPG, the exit qualification contains the linear-address operand of the
instruction.

• On processors that support Intel 64 architecture, bits 63:32 are cleared if
the logical processor was not in 64-bit mode before the VM exit.

• If the INVLPG source operand specifies an unusable segment, the linear
address specified in the exit qualification will match the linear address
that the INVLPG would have used if no VM exit occurred. This address is
not architecturally defined and may be implementation-specific.

— For INVEPT, INVPCID, INVVPID, LGDT, LIDT, LLDT, LTR, SGDT, SIDT, SLDT,
STR, VMCLEAR, VMPTRLD, VMPTRST, VMREAD, VMWRITE, and VMXON, the
exit qualification receives the value of the instruction’s displacement field,
which is sign-extended to 64 bits if necessary (32 bits on processors that do
not support Intel 64 architecture). If the instruction has no displacement (for
example, has a register operand), zero is stored into the exit qualification.

On processors that support Intel 64 architecture, an exception is made for
RIP-relative addressing (used only in 64-bit mode). Such addressing causes
an instruction to use an address that is the sum of the displacement field
and the value of RIP that references the following instruction. In this case,
the exit qualification is loaded with the sum of the displacement field and
the appropriate RIP value.

In all cases, bits of this field beyond the instruction’s address size are
undefined. For example, suppose that the address-size field in the VM-exit
instruction-information field (see Section 24.9.4 and Section 27.2.4) reports
an n-bit address size. Then bits 63:n (bits 31:n on processors that do not
support Intel 64 architecture) of the instruction displacement are undefined.

Table 27-2. Exit Qualification for Task Switch

Bit Position(s) Contents

15:0 Selector of task-state segment (TSS) to which the guest attempted to switch

29:16 Reserved (cleared to 0)

31:30 Source of task switch initiation:

0: CALL instruction
1: IRET instruction
2: JMP instruction
3: Task gate in IDT

63:32 Reserved (cleared to 0). These bits exist only on processors that support Intel
64 architecture.
Vol. 3C 27-7

VM EXITS
— For a control-register access, the exit qualification contains information about
the access and has the format given in Table 27-3.

Table 27-3. Exit Qualification for Control-Register Accesses

Bit Positions Contents

3:0 Number of control register (0 for CLTS and LMSW). Bit 3 is always 0 on
processors that do not support Intel 64 architecture as they do not support CR8.

5:4 Access type:

0 = MOV to CR
1 = MOV from CR
2 = CLTS
3 = LMSW

6 LMSW operand type:

0 = register
1 = memory

For CLTS and MOV CR, cleared to 0

7 Reserved (cleared to 0)

11:8 For MOV CR, the general-purpose register:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support
Intel 64 architecture)

For CLTS and LMSW, cleared to 0

15:12 Reserved (cleared to 0)

31:16 For LMSW, the LMSW source data

For CLTS and MOV CR, cleared to 0

63:32 Reserved (cleared to 0). These bits exist only on processors that support Intel
64 architecture.
27-8 Vol. 3C

VM EXITS
— For MOV DR, the exit qualification contains information about the instruction
and has the format given in Table 27-4.

— For an I/O instruction, the exit qualification contains information about the
instruction and has the format given in Table 27-5.

Table 27-4. Exit Qualification for MOV DR

Bit Position(s) Contents

2:0 Number of debug register

3 Reserved (cleared to 0)

4 Direction of access (0 = MOV to DR; 1 = MOV from DR)

7:5 Reserved (cleared to 0)

11:8 General-purpose register:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8 –15 = R8 – R15, respectively

63:12 Reserved (cleared to 0)

Table 27-5. Exit Qualification for I/O Instructions

Bit Position(s) Contents

2:0 Size of access:

0 = 1-byte
1 = 2-byte
3 = 4-byte

Other values not used

3 Direction of the attempted access (0 = OUT, 1 = IN)

4 String instruction (0 = not string; 1 = string)
Vol. 3C 27-9

VM EXITS
— For MWAIT, the exit qualification contains a value that indicates whether
address-range monitoring hardware was armed. The exit qualification is set
either to 0 (if address-range monitoring hardware is not armed) or to 1 (if
address-range monitoring hardware is armed).

— For an APIC-access VM exit resulting from a linear access or a guest-physical
access to the APIC-access page (see Section 25.2.1 and Section 25.2.2), the
exit qualification contains information about the access and has the format
given in Table 27-6.1

5 REP prefixed (0 = not REP; 1 = REP)

6 Operand encoding (0 = DX, 1 = immediate)

15:7 Reserved (cleared to 0)

31:16 Port number (as specified in DX or in an immediate operand)

63:32 Reserved (cleared to 0). These bits exist only on processors that support Intel
64 architecture.

Table 27-6. Exit Qualification for APIC-Access VM Exits from Linear Accesses and
Guest-Physical Accesses

Bit Position(s) Contents

11:0 • If the APIC-access VM exit is due to a linear access, the offset of access
within the APIC page.

• Undefined if the APIC-access VM exit is due a guest-physical access

15:12 Access type:

0 = linear access for a data read during instruction execution
1 = linear access for a data write during instruction execution
2 = linear access for an instruction fetch
3 = linear access (read or write) during event delivery
10 = guest-physical access during event delivery
15 = guest-physical access for an instruction fetch or during instruction
execution

Other values not used

63:16 Reserved (cleared to 0). Bits 63:32 exist only on processors that support
Intel 64 architecture.

Table 27-5. Exit Qualification for I/O Instructions (Contd.)

Bit Position(s) Contents
27-10 Vol. 3C

VM EXITS
Such a VM exit that set bits 15:12 of the exit qualification to 0000b (data
read during instruction execution) or 0001b (data write during instruction
execution) set bit 12—which distinguishes data read from data write—to that
which would have been stored in bit 1—W/R—of the page-fault error code had
the access caused a page fault instead of an APIC-access VM exit. This
implies the following:

• For an APIC-access VM exit caused by the CLFLUSH instruction, the
access type is “data read during instruction execution.”

• For an APIC-access VM exit caused by the ENTER instruction, the access
type is “data write during instruction execution.”

• For an APIC-access VM exit caused by the MASKMOVQ instruction or the
MASKMOVDQU instruction, the access type is “data write during
instruction execution.”

• For an APIC-access VM exit caused by the MONITOR instruction, the
access type is “data read during instruction execution.”

Such a VM exit stores 1 for bit 31 for IDT-vectoring information field (see
Section 27.2.3) if and only if it sets bits 15:12 of the exit qualification to
0011b (linear access during event delivery) or 1010b (guest-physical access
during event delivery).

See Section 25.2.1.3 for further discussion of these instructions and APIC-
access VM exits.

For APIC-access VM exits resulting from physical accesses, the APIC-access
page (see Section 25.2.3), the exit qualification is undefined.

— For an EPT violation, the exit qualification contains information about the
access causing the EPT violation and has the format given in Table 27-5.

1. The exit qualification is undefined if the access was part of the logging of a branch record or a
precise-event-based-sampling (PEBS) record to the DS save area. It is recommended that soft-
ware configure the paging structures so that no address in the DS save area translates to an
address on the APIC-access page.

Table 27-7. Exit Qualification for EPT Violations

Bit Position(s) Contents

0 Set if the access causing the EPT violation was a data read.

1 Set if the access causing the EPT violation was a data write.

2 Set if the access causing the EPT violation was an instruction fetch.
Vol. 3C 27-11

VM EXITS
An EPT violation that occurs during as a result of execution of a read-modify-
write operation sets bit 1 (data write). Whether it also sets bit 0 (data read)
is implementation-specific and, for a given implementation, may differ for
different kinds of read-modify-write operations.

Bit 12 is undefined in any of the following cases:

• If the “NMI exiting” VM-execution control is 1 and the “virtual NMIs”
VM-execution control is 0.

3 The logical-AND of bit 0 in the EPT paging-structures entries used to translate
the guest-physical address of the access causing the EPT violation (indicates
that the guest-physical address was readable).1

4 The logical-AND of bit 1 in the EPT paging-structures entries used to translate
the guest-physical address of the access causing the EPT violation (indicates
that the guest-physical address was writeable).

5 The logical-AND of bit 2 in the EPT paging-structures entries used to translate
the guest-physical address of the access causing the EPT violation (indicates
that the guest-physical address was executable).

6 Reserved (cleared to 0).

7 Set if the guest linear-address field is valid.

The guest linear-address field is valid for all EPT violations except those
resulting from an attempt to load the guest PDPTEs as part of the execution of
the MOV CR instruction.

8 If bit 7 is 1:

• Set if the access causing the EPT violation is to a guest-physical address
that is the translation of a linear address.

• Clear if the access causing the EPT violation is to a paging-structure entry
as part of a page walk or the update of an accessed or dirty bit.

Reserved if bit 7 is 0 (cleared to 0).

11:9 Reserved (cleared to 0).

12 NMI unblocking due to IRET

63:13 Reserved (cleared to 0).

NOTES:
1. Bits 5:3 are cleared to 0 if any of EPT paging-structures entries used to translate the guest-physi-

cal address of the access causing the EPT violation is not present (see Section 28.2.2).

Table 27-7. Exit Qualification for EPT Violations (Contd.)

Bit Position(s) Contents
27-12 Vol. 3C

VM EXITS
• If the VM exit sets the valid bit in the IDT-vectoring information field (see
Section 27.2.3).

Otherwise, bit 12 is defined as follows:

• If the “virtual NMIs” VM-execution control is 0, the EPT violation was
caused by a memory access as part of execution of the IRET instruction,
and blocking by NMI (see Table 24-3) was in effect before execution of
IRET, bit 12 is set to 1.

• If the “virtual NMIs” VM-execution control is 1,the EPT violation was
caused by a memory access as part of execution of the IRET instruction,
and virtual-NMI blocking was in effect before execution of IRET, bit 12 is
set to 1.

• For all other relevant VM exits, bit 12 is cleared to 0.
• Guest-linear address. For some VM exits, this field receives a linear address

that pertains to the VM exit. The field is set for different VM exits as follows:

— VM exits due to attempts to execute LMSW with a memory operand. In these
cases, this field receives the linear address of that operand. Bits 63:32 are
cleared if the logical processor was not in 64-bit mode before the VM exit.

— VM exits due to attempts to execute INS or OUTS for which the relevant
segment is usable (if the relevant segment is not usable, the value is
undefined). (ES is always the relevant segment for INS; for OUTS, the
relevant segment is DS unless overridden by an instruction prefix.) The linear
address is the base address of relevant segment plus (E)DI (for INS) or (E)SI
(for OUTS). Bits 63:32 are cleared if the logical processor was not in 64-bit
mode before the VM exit.

— VM exits due to EPT violations that set bit 7 of the exit qualification (see
Table 27-7; these are all EPT violations except those resulting from an
attempt to load the PDPTEs as of execution of the MOV CR instruction). The
linear address may translate to the guest-physical address whose access
caused the EPT violation. Alternatively, translation of the linear address may
reference a paging-structure entry whose access caused the EPT violation.
Bits 63:32 are cleared if the logical processor was not in 64-bit mode before
the VM exit.

— For all other VM exits, the field is undefined.
• Guest-physical address. For a VM exit due to an EPT violation or an EPT

misconfiguration, this field receives the guest-physical address that caused the
EPT violation or EPT misconfiguration. For all other VM exits, the field is
undefined.

27.2.2 Information for VM Exits Due to Vectored Events
Section 24.9.2 defines fields containing information for VM exits due to the following
events: exceptions (including those generated by the instructions INT3, INTO,
Vol. 3C 27-13

VM EXITS
BOUND, and UD2); external interrupts that occur while the “acknowledge interrupt
on exit” VM-exit control is 1; and non-maskable interrupts (NMIs). Such VM exits
include those that occur on an attempt at a task switch that causes an exception
before generating the VM exit due to the task switch that causes the VM exit.

The following items detail the use of these fields:
• VM-exit interruption information (format given in Table 24-15). The following

items detail how this field is established for VM exits due to these events:

— For an exception, bits 7:0 receive the exception vector (at most 31). For an
NMI, bits 7:0 are set to 2. For an external interrupt, bits 7:0 receive the
interrupt number.

— Bits 10:8 are set to 0 (external interrupt), 2 (non-maskable interrupt), 3
(hardware exception), or 6 (software exception). Hardware exceptions
comprise all exceptions except breakpoint exceptions (#BP; generated by
INT3) and overflow exceptions (#OF; generated by INTO); these are
software exceptions. BOUND-range exceeded exceptions (#BR; generated by
BOUND) and invalid opcode exceptions (#UD) generated by UD2 are
hardware exceptions.

— Bit 11 is set to 1 if the VM exit is caused by a hardware exception that would
have delivered an error code on the stack. This bit is always 0 if the VM exit
occurred while the logical processor was in real-address mode (CR0.PE=0).1
If bit 11 is set to 1, the error code is placed in the VM-exit interruption error
code (see below).

— Bit 12 is undefined in any of the following cases:

• If the “NMI exiting” VM-execution control is 1 and the “virtual NMIs”
VM-execution control is 0.

• If the VM exit sets the valid bit in the IDT-vectoring information field (see
Section 27.2.3).

• If the VM exit is due to a double fault (the interruption type is hardware
exception and the vector is 8).

Otherwise, bit 12 is defined as follows:

• If the “virtual NMIs” VM-execution control is 0, the VM exit is due to a
fault on the IRET instruction (other than a debug exception for an
instruction breakpoint), and blocking by NMI (see Table 24-3) was in
effect before execution of IRET, bit 12 is set to 1.

• If the “virtual NMIs” VM-execution control is 1, the VM exit is due to a
fault on the IRET instruction (other than a debug exception for an

1. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PE must be 1 in VMX operation, a
logical processor cannot be in real-address mode unless the “unrestricted guest” VM-execution
control and bit 31 of the primary processor-based VM-execution controls are both 1.
27-14 Vol. 3C

VM EXITS
instruction breakpoint), and virtual-NMI blocking was in effect before
execution of IRET, bit 12 is set to 1.

• For all other relevant VM exits, bit 12 is cleared to 0.1

— Bits 30:13 are always set to 0.

— Bit 31 is always set to 1.
For other VM exits (including those due to external interrupts when the
“acknowledge interrupt on exit” VM-exit control is 0), the field is marked invalid
(by clearing bit 31) and the remainder of the field is undefined.

• VM-exit interruption error code.

— For VM exits that set both bit 31 (valid) and bit 11 (error code valid) in the
VM-exit interruption-information field, this field receives the error code that
would have been pushed on the stack had the event causing the VM exit been
delivered normally through the IDT. The EXT bit is set in this field exactly
when it would be set normally. For exceptions that occur during the delivery
of double fault (if the IDT-vectoring information field indicates a double fault),
the EXT bit is set to 1, assuming that (1) that the exception would produce an
error code normally (if not incident to double-fault delivery) and (2) that the
error code uses the EXT bit (not for page faults, which use a different format).

— For other VM exits, the value of this field is undefined.

27.2.3 Information for VM Exits During Event Delivery
Section 24.9.3 defined fields containing information for VM exits that occur while
delivering an event through the IDT and as a result of any of the following cases:2

• A fault occurs during event delivery and causes a VM exit (because the bit
associated with the fault is set to 1 in the exception bitmap).

• A task switch is invoked through a task gate in the IDT. The VM exit occurs due to
the task switch only after the initial checks of the task switch pass (see Section
25.6.2).

• Event delivery causes an APIC-access VM exit (see Section 25.2).
• An EPT violation or EPT misconfiguration that occurs during event delivery.

These fields are used for VM exits that occur during delivery of events injected as
part of VM entry (see Section 26.5.1.2).

1. The conditions imply that, if the “NMI exiting” VM-execution control is 0 or the “virtual NMIs” VM-
execution control is 1, bit 12 is always cleared to 0 by VM exits due to debug exceptions.

2. This includes the case in which a VM exit occurs while delivering a software interrupt (INT n)
through the 16-bit IVT (interrupt vector table) that is used in virtual-8086 mode with virtual-
machine extensions (if RFLAGS.VM = CR4.VME = 1).
Vol. 3C 27-15

VM EXITS
A VM exit is not considered to occur during event delivery in any of the following
circumstances:
• The original event causes the VM exit directly (for example, because the original

event is a non-maskable interrupt (NMI) and the “NMI exiting” VM-execution
control is 1).

• The original event results in a double-fault exception that causes the VM exit
directly.

• The VM exit occurred as a result of fetching the first instruction of the handler
invoked by the event delivery.

• The VM exit is caused by a triple fault.

The following items detail the use of these fields:
• IDT-vectoring information (format given in Table 24-16). The following items

detail how this field is established for VM exits that occur during event delivery:

— If the VM exit occurred during delivery of an exception, bits 7:0 receive the
exception vector (at most 31). If the VM exit occurred during delivery of an
NMI, bits 7:0 are set to 2. If the VM exit occurred during delivery of an
external interrupt, bits 7:0 receive the interrupt number.

— Bits 10:8 are set to indicate the type of event that was being delivered when
the VM exit occurred: 0 (external interrupt), 2 (non-maskable interrupt), 3
(hardware exception), 4 (software interrupt), 5 (privileged software
interrupt), or 6 (software exception).

Hardware exceptions comprise all exceptions except breakpoint exceptions
(#BP; generated by INT3) and overflow exceptions (#OF; generated by
INTO); these are software exceptions. BOUND-range exceeded exceptions
(#BR; generated by BOUND) and invalid opcode exceptions (#UD) generated
by UD2 are hardware exceptions.

Bits 10:8 may indicate privileged software interrupt if such an event was
injected as part of VM entry.

— Bit 11 is set to 1 if the VM exit occurred during delivery of a hardware
exception that would have delivered an error code on the stack. This bit is
always 0 if the VM exit occurred while the logical processor was in real-
address mode (CR0.PE=0).1 If bit 11 is set to 1, the error code is placed in
the IDT-vectoring error code (see below).

— Bit 12 is undefined.

— Bits 30:13 are always set to 0.

— Bit 31 is always set to 1.

1. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PE must be 1 in VMX operation, a
logical processor cannot be in real-address mode unless the “unrestricted guest” VM-execution
control and bit 31 of the primary processor-based VM-execution controls are both 1.
27-16 Vol. 3C

VM EXITS
For other VM exits, the field is marked invalid (by clearing bit 31) and the
remainder of the field is undefined.

• IDT-vectoring error code.

— For VM exits that set both bit 31 (valid) and bit 11 (error code valid) in the
IDT-vectoring information field, this field receives the error code that would
have been pushed on the stack by the event that was being delivered through
the IDT at the time of the VM exit. The EXT bit is set in this field when it would
be set normally.

— For other VM exits, the value of this field is undefined.

27.2.4 Information for VM Exits Due to Instruction Execution
Section 24.9.4 defined fields containing information for VM exits that occur due to
instruction execution. (The VM-exit instruction length is also used for VM exits that
occur during the delivery of a software interrupt or software exception.) The
following items detail their use.
• VM-exit instruction length. This field is used in the following cases:

— For fault-like VM exits due to attempts to execute one of the following
instructions that cause VM exits unconditionally (see Section 25.1.2) or
based on the settings of VM-execution controls (see Section 25.1.3): CLTS,
CPUID, GETSEC, HLT, IN, INS, INVD, INVEPT, INVLPG, INVPCID, INVVPID,
LGDT, LIDT, LLDT, LMSW, LTR, MONITOR, MOV CR, MOV DR, MWAIT, OUT,
OUTS, PAUSE, RDMSR, RDPMC, RDRAND, RDTSC, RDTSCP, RSM, SGDT, SIDT,
SLDT, STR, VMCALL, VMCLEAR, VMLAUNCH, VMPTRLD, VMPTRST, VMREAD,
VMRESUME, VMWRITE, VMXOFF, VMXON, WBINVD, WRMSR, and XSETBV.1

— For VM exits due to software exceptions (those generated by executions of
INT3 or INTO).

— For VM exits due to faults encountered during delivery of a software
interrupt, privileged software exception, or software exception.

— For VM exits due to attempts to effect a task switch via instruction execution.
These are VM exits that produce an exit reason indicating task switch and
either of the following:

• An exit qualification indicating execution of CALL, IRET, or JMP
instruction.

• An exit qualification indicating a task gate in the IDT and an IDT-vectoring
information field indicating that the task gate was encountered during

1. This item applies only to fault-like VM exits. It does not apply to trap-like VM exits following exe-
cutions of the MOV to CR8 instruction when the “use TPR shadow” VM-execution control is 1 or
to those following executions of the WRMSR instruction when the “virtualize x2APIC mode” VM-
execution control is 1.
Vol. 3C 27-17

VM EXITS
delivery of a software interrupt, privileged software exception, or
software exception.

— For APIC-access VM exits resulting from linear accesses (see Section 25.2.1)
and encountered during delivery of a software interrupt, privileged software
exception, or software exception.1

— For VM exits due executions of VMFUNC that fail because one of the following
is true:

• EAX indicates a VM function that is not enabled (the bit at position EAX is
0 in the VM-function controls; see Section 25.7.4.2).

• EAX = 0 and either ECX ≥ 512 or the value of ECX selects an invalid
tentative EPTP value (see Section 25.7.4.3).

In all the above cases, this field receives the length in bytes (1–15) of the
instruction (including any instruction prefixes) whose execution led to the
VM exit (see the next paragraph for one exception).
The cases of VM exits encountered during delivery of a software interrupt,
privileged software exception, or software exception include those encountered
during delivery of events injected as part of VM entry (see Section 26.5.1.2). If
the original event was injected as part of VM entry, this field receives the value of
the VM-entry instruction length.
All VM exits other than those listed in the above items leave this field undefined.

• VM-exit instruction information. For VM exits due to attempts to execute
INS, INVEPT, INVPCID, INVVPID, LIDT, LGDT, LLDT, LTR, OUTS, RDRAND, SIDT,
SGDT, SLDT, STR, VMCLEAR, VMPTRLD, VMPTRST, VMREAD, VMWRITE, or
VMXON, this field receives information about the instruction that caused the
VM exit. The format of the field depends on the identity of the instruction causing
the VM exit:

— For VM exits due to attempts to execute INS or OUTS, the field has the format
is given in Table 27-8.2

1. The VM-exit instruction-length field is not defined following APIC-access VM exits resulting from
physical accesses (see Section 25.2.3) even if encountered during delivery of a software inter-
rupt, privileged software exception, or software exception.

Table 27-8. Format of the VM-Exit Instruction-Information Field as Used for INS and
OUTS

Bit Position(s) Content

6:0 Undefined.

2. The format of the field was undefined for these VM exits on the first processors to support the
virtual-machine extensions. Software can determine whether the format specified in Table 27-8
is used by consulting the VMX capability MSR IA32_VMX_BASIC (see Appendix A.1).
27-18 Vol. 3C

VM EXITS
— For VM exits due to attempts to execute INVEPT, INVPCID, or INVVPID, the
field has the format is given in Table 27-9.

9:7 Address size:

0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used.

14:10 Undefined.

17:15 Segment register:

0: ES
1: CS
2: SS
3: DS
4: FS
5: GS

Other values not used. Undefined for VM exits due to execution of INS.

31:18 Undefined.

Table 27-9. Format of the VM-Exit Instruction-Information Field as Used for INVEPT,
INVPCID, and INVVPID

Bit Position(s) Content

1:0 Scaling:

0: no scaling
1: scale by 2
2: scale by 4
3: scale by 8 (used only on processors that support Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

6:2 Undefined.

9:7 Address size:

0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used.

10 Cleared to 0.

14:11 Undefined.

Table 27-8. Format of the VM-Exit Instruction-Information Field as Used for INS and
OUTS (Contd.)

Bit Position(s) Content
Vol. 3C 27-19

VM EXITS
— For VM exits due to attempts to execute LIDT, LGDT, SIDT, or SGDT, the field
has the format is given in Table 27-10.

17:15 Segment register:

0: ES
1: CS
2: SS
3: DS
4: FS
5: GS

Other values not used.

21:18 IndexReg:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support
Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

22 IndexReg invalid (0 = valid; 1 = invalid)

26:23 BaseReg (encoded as IndexReg above)

Undefined for memory instructions with no base register (bit 27 is set).

27 BaseReg invalid (0 = valid; 1 = invalid)

31:28 Reg2 (same encoding as IndexReg above)

Table 27-10. Format of the VM-Exit Instruction-Information Field as Used for LIDT,
LGDT, SIDT, or SGDT

Bit Position(s) Content

1:0 Scaling:

0: no scaling
1: scale by 2
2: scale by 4
3: scale by 8 (used only on processors that support Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

Table 27-9. Format of the VM-Exit Instruction-Information Field as Used for INVEPT,
INVPCID, and INVVPID (Contd.)

Bit Position(s) Content
27-20 Vol. 3C

VM EXITS
6:2 Undefined.

9:7 Address size:

0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used.

10 Cleared to 0.

11 Operand size:

0: 16-bit
1: 32-bit

Undefined for VM exits from 64-bit mode.

14:12 Undefined.

17:15 Segment register:

0: ES
1: CS
2: SS
3: DS
4: FS
5: GS

Other values not used.

21:18 IndexReg:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support
Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

22 IndexReg invalid (0 = valid; 1 = invalid)

26:23 BaseReg (encoded as IndexReg above)

Undefined for instructions with no base register (bit 27 is set).

27 BaseReg invalid (0 = valid; 1 = invalid)

Table 27-10. Format of the VM-Exit Instruction-Information Field as Used for LIDT,
LGDT, SIDT, or SGDT (Contd.)

Bit Position(s) Content
Vol. 3C 27-21

VM EXITS
— For VM exits due to attempts to execute LLDT, LTR, SLDT, or STR, the field has
the format is given in Table 27-11.

29:28 Instruction identity:

0: SGDT
1: SIDT
2: LGDT
3: LIDT

31:30 Undefined.

Table 27-11. Format of the VM-Exit Instruction-Information Field as Used for LLDT,
LTR, SLDT, and STR

Bit Position(s) Content

1:0 Scaling:

0: no scaling
1: scale by 2
2: scale by 4
3: scale by 8 (used only on processors that support Intel 64 architecture)

Undefined for register instructions (bit 10 is set) and for memory instructions with
no index register (bit 10 is clear and bit 22 is set).

2 Undefined.

6:3 Reg1:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support
Intel 64 architecture)

Undefined for memory instructions (bit 10 is clear).

9:7 Address size:

0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used. Undefined for register instructions (bit 10 is set).

10 Mem/Reg (0 = memory; 1 = register).

Table 27-10. Format of the VM-Exit Instruction-Information Field as Used for LIDT,
LGDT, SIDT, or SGDT (Contd.)

Bit Position(s) Content
27-22 Vol. 3C

VM EXITS
— For VM exits due to attempts to execute RDRAND, the field has the format is
given in Table 27-12.

14:11 Undefined.

17:15 Segment register:

0: ES
1: CS
2: SS
3: DS
4: FS
5: GS

Other values not used. Undefined for register instructions (bit 10 is set).

21:18 IndexReg (encoded as Reg1 above)

Undefined for register instructions (bit 10 is set) and for memory instructions with
no index register (bit 10 is clear and bit 22 is set).

22 IndexReg invalid (0 = valid; 1 = invalid)

Undefined for register instructions (bit 10 is set).

26:23 BaseReg (encoded as Reg1 above)

Undefined for register instructions (bit 10 is set) and for memory instructions with
no base register (bit 10 is clear and bit 27 is set).

27 BaseReg invalid (0 = valid; 1 = invalid)

Undefined for register instructions (bit 10 is set).

29:28 Instruction identity:

0: SLDT
1: STR
2: LLDT
3: LTR

31:30 Undefined.

Table 27-12. Format of the VM-Exit Instruction-Information Field as Used for
RDRAND

Bit Position(s) Content

2:0 Undefined.

Table 27-11. Format of the VM-Exit Instruction-Information Field as Used for LLDT,
LTR, SLDT, and STR (Contd.)

Bit Position(s) Content
Vol. 3C 27-23

VM EXITS
— For VM exits due to attempts to execute VMCLEAR, VMPTRLD, VMPTRST, or
VMXON, the field has the format is given in Table 27-13.

6:3 Destination register:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support
Intel 64 architecture)

10:7 Undefined.

12:11 Operand size:

0: 16-bit
1: 32-bit
2: 64-bit

The value 3 is not used.

31:13 Undefined.

Table 27-13. Format of the VM-Exit Instruction-Information Field as Used for
VMCLEAR, VMPTRLD, VMPTRST, and VMXON

Bit Position(s) Content

1:0 Scaling:

0: no scaling
1: scale by 2
2: scale by 4
3: scale by 8 (used only on processors that support Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

6:2 Undefined.

9:7 Address size:

0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used.

10 Cleared to 0.

Table 27-12. Format of the VM-Exit Instruction-Information Field as Used for
RDRAND (Contd.)

Bit Position(s) Content
27-24 Vol. 3C

VM EXITS
— For VM exits due to attempts to execute VMREAD or VMWRITE, the field has
the format is given in Table 27-14.

14:11 Undefined.

17:15 Segment register:

0: ES
1: CS
2: SS
3: DS
4: FS
5: GS

Other values not used.

21:18 IndexReg:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support
Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

22 IndexReg invalid (0 = valid; 1 = invalid)

26:23 BaseReg (encoded as IndexReg above)

Undefined for instructions with no base register (bit 27 is set).

27 BaseReg invalid (0 = valid; 1 = invalid)

31:28 Undefined.

Table 27-13. Format of the VM-Exit Instruction-Information Field as Used for
VMCLEAR, VMPTRLD, VMPTRST, and VMXON (Contd.)

Bit Position(s) Content
Vol. 3C 27-25

VM EXITS
Table 27-14. Format of the VM-Exit Instruction-Information Field as Used for
VMREAD and VMWRITE

Bit Position(s) Content

1:0 Scaling:

0: no scaling
1: scale by 2
2: scale by 4
3: scale by 8 (used only on processors that support Intel 64 architecture)

Undefined for register instructions (bit 10 is set) and for memory instructions with
no index register (bit 10 is clear and bit 22 is set).

2 Undefined.

6:3 Reg1:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support
Intel 64 architecture)

Undefined for memory instructions (bit 10 is clear).

9:7 Address size:

0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used. Undefined for register instructions (bit 10 is set).

10 Mem/Reg (0 = memory; 1 = register).

14:11 Undefined.

17:15 Segment register:

0: ES
1: CS
2: SS
3: DS
4: FS
5: GS

Other values not used. Undefined for register instructions (bit 10 is set).

21:18 IndexReg (encoded as Reg1 above)

Undefined for register instructions (bit 10 is set) and for memory instructions with
no index register (bit 10 is clear and bit 22 is set).
27-26 Vol. 3C

VM EXITS
For all other VM exits, the field is undefined.
• I/O RCX, I/O RSI, I/O RDI, I/O RIP. These fields are undefined except for

SMM VM exits due to system-management interrupts (SMIs) that arrive
immediately after retirement of I/O instructions. See Section 33.15.2.3.

27.3 SAVING GUEST STATE
Each field in the guest-state area of the VMCS (see Section 24.4) is written with the
corresponding component of processor state. On processors that support Intel 64
architecture, the full values of each natural-width field (see Section 24.10.2) is saved
regardless of the mode of the logical processor before and after the VM exit.

In general, the state saved is that which was in the logical processor at the time the
VM exit commences. See Section 27.1 for a discussion of which architectural updates
occur at that time.

Section 27.3.1 through Section 27.3.4 provide details for how certain components of
processor state are saved. These sections reference VMCS fields that correspond to
processor state. Unless otherwise stated, these references are to fields in the guest-
state area.

27.3.1 Saving Control Registers, Debug Registers, and MSRs
Contents of certain control registers, debug registers, and MSRs is saved as follows:
• The contents of CR0, CR3, CR4, and the IA32_SYSENTER_CS,

IA32_SYSENTER_ESP, and IA32_SYSENTER_EIP MSRs are saved into the corre-
sponding fields. Bits 63:32 of the IA32_SYSENTER_CS MSR are not saved. On
processors that do not support Intel 64 architecture, bits 63:32 of the
IA32_SYSENTER_ESP and IA32_SYSENTER_EIP MSRs are not saved.

22 IndexReg invalid (0 = valid; 1 = invalid)

Undefined for register instructions (bit 10 is set).

26:23 BaseReg (encoded as Reg1 above)

Undefined for register instructions (bit 10 is set) and for memory instructions with
no base register (bit 10 is clear and bit 27 is set).

27 BaseReg invalid (0 = valid; 1 = invalid)

Undefined for register instructions (bit 10 is set).

31:28 Reg2 (same encoding as Reg1 above)

Table 27-14. Format of the VM-Exit Instruction-Information Field as Used for
VMREAD and VMWRITE (Contd.)

Bit Position(s) Content
Vol. 3C 27-27

VM EXITS
• If the “save debug controls” VM-exit control is 1, the contents of DR7 and the
IA32_DEBUGCTL MSR are saved into the corresponding fields. The first
processors to support the virtual-machine extensions supported only the 1-
setting of this control and thus always saved data into these fields.

• If the “save IA32_PAT” VM-exit control is 1, the contents of the IA32_PAT MSR
are saved into the corresponding field.

• If the “save IA32_EFER” VM-exit control is 1, the contents of the IA32_EFER MSR
are saved into the corresponding field.

• The value of the SMBASE field is undefined after all VM exits except SMM
VM exits. See Section 33.15.2.

27.3.2 Saving Segment Registers and Descriptor-Table Registers
For each segment register (CS, SS, DS, ES, FS, GS, LDTR, or TR), the values saved
for the base-address, segment-limit, and access rights are based on whether the
register was unusable (see Section 24.4.1) before the VM exit:
• If the register was unusable, the values saved into the following fields are

undefined: (1) base address; (2) segment limit; and (3) bits 7:0 and bits 15:12
in the access-rights field. The following exceptions apply:

— CS.

• The base-address and segment-limit fields are saved.

• The L, D, and G bits are saved in the access-rights field.

— SS.

• DPL is saved in the access-rights field.

• On processors that support Intel 64 architecture, bits 63:32 of the value
saved for the base address are always zero.

— DS and ES. On processors that support Intel 64 architecture, bits 63:32 of
the values saved for the base addresses are always zero.

— FS and GS. The base-address field is saved.

— LDTR. The value saved for the base address is always canonical.
• If the register was not unusable, the values saved into the following fields are

those which were in the register before the VM exit: (1) base address;
(2) segment limit; and (3) bits 7:0 and bits 15:12 in access rights.

• Bits 31:17 and 11:8 in the access-rights field are always cleared. Bit 16 is set to
1 if and only if the segment is unusable.

The contents of the GDTR and IDTR registers are saved into the corresponding base-
address and limit fields.
27-28 Vol. 3C

VM EXITS
27.3.3 Saving RIP, RSP, and RFLAGS
The contents of the RIP, RSP, and RFLAGS registers are saved as follows:
• The value saved in the RIP field is determined by the nature and cause of the

VM exit:

— If the VM exit occurs due to by an attempt to execute an instruction that
causes VM exits unconditionally or that has been configured to cause a
VM exit via the VM-execution controls, the value saved references that
instruction.

— If the VM exit is caused by an occurrence of an INIT signal, a start-up IPI
(SIPI), or system-management interrupt (SMI), the value saved is that which
was in RIP before the event occurred.

— If the VM exit occurs due to the 1-setting of either the “interrupt-window
exiting” VM-execution control or the “NMI-window exiting” VM-execution
control, the value saved is that which would be in the register had the VM exit
not occurred.

— If the VM exit is due to an external interrupt, non-maskable interrupt (NMI),
or hardware exception (as defined in Section 27.2.2), the value saved is the
return pointer that would have been saved (either on the stack had the event
been delivered through a trap or interrupt gate,1 or into the old task-state
segment had the event been delivered through a task gate).

— If the VM exit is due to a triple fault, the value saved is the return pointer that
would have been saved (either on the stack had the event been delivered
through a trap or interrupt gate, or into the old task-state segment had the
event been delivered through a task gate) had delivery of the double fault not
encountered the nested exception that caused the triple fault.

— If the VM exit is due to a software exception (due to an execution of INT3 or
INTO), the value saved references the INT3 or INTO instruction that caused
that exception.

— Suppose that the VM exit is due to a task switch that was caused by execution
of CALL, IRET, or JMP or by execution of a software interrupt (INT n) or
software exception (due to execution of INT3 or INTO) that encountered a
task gate in the IDT. The value saved references the instruction that caused
the task switch (CALL, IRET, JMP, INT n, INT3, or INTO).

— Suppose that the VM exit is due to a task switch that was caused by a task
gate in the IDT that was encountered for any reason except the direct access
by a software interrupt or software exception. The value saved is that which
would have been saved in the old task-state segment had the task switch
completed normally.

1. The reference here is to the full value of RIP before any truncation that would occur had the
stack width been only 32 bits or 16 bits.
Vol. 3C 27-29

VM EXITS
— If the VM exit is due to an execution of MOV to CR8 or WRMSR that reduced
the value of the TPR shadow1 below that of TPR threshold VM-execution
control field, the value saved references the instruction following the MOV to
CR8 or WRMSR.

— If the VM exit was caused by a TPR-shadow update (see Section 21.5.3.3)
that results from an APIC access as part of instruction execution, the value
saved references the instruction following the one whose execution caused
the VTPR access.

• The contents of the RSP register are saved into the RSP field.
• With the exception of the resume flag (RF; bit 16), the contents of the RFLAGS

register is saved into the RFLAGS field. RFLAGS.RF is saved as follows:

— If the VM exit is caused directly by an event that would normally be delivered
through the IDT, the value saved is that which would appear in the saved
RFLAGS image (either that which would be saved on the stack had the event
been delivered through a trap or interrupt gate2 or into the old task-state
segment had the event been delivered through a task gate) had the event
been delivered through the IDT. See below for VM exits due to task switches
caused by task gates in the IDT.

— If the VM exit is caused by a triple fault, the value saved is that which the
logical processor would have in RF in the RFLAGS register had the triple fault
taken the logical processor to the shutdown state.

— If the VM exit is caused by a task switch (including one caused by a task gate
in the IDT), the value saved is that which would have been saved in the
RFLAGS image in the old task-state segment (TSS) had the task switch
completed normally without exception.

— If the VM exit is caused by an attempt to execute an instruction that uncondi-
tionally causes VM exits or one that was configured to do with a VM-execution
control, the value saved is 0.3

— For APIC-access VM exits and for VM exits caused by EPT violations and EPT
misconfigurations, the value saved depends on whether the VM exit occurred
during delivery of an event through the IDT:

1. The TPR shadow is bits 7:4 of the byte at offset 80H of the virtual-APIC page (see Section
24.6.8).

2. The reference here is to the full value of RFLAGS before any truncation that would occur had the
stack width been only 32 bits or 16 bits.

3. This is true even if RFLAGS.RF was 1 before the instruction was executed. If, in response to such
a VM exit, a VM monitor re-enters the guest to re-execute the instruction that caused the
VM exit (for example, after clearing the VM-execution control that caused the VM exit), the
instruction may encounter a code breakpoint that has already been processed. A VM monitor can
avoid this by setting the guest value of RFLAGS.RF to 1 before resuming guest software.
27-30 Vol. 3C

VM EXITS
• If the VM exit stored 0 for bit 31 for IDT-vectoring information field
(because the VM exit did not occur during delivery of an event through
the IDT; see Section 27.2.3), the value saved is 1.

• If the VM exit stored 1 for bit 31 for IDT-vectoring information field
(because the VM exit did occur during delivery of an event through the
IDT), the value saved is the value that would have appeared in the saved
RFLAGS image had the event been delivered through the IDT (see
above).

— For all other VM exits, the value saved is the value RFLAGS.RF had before the
VM exit occurred.

27.3.4 Saving Non-Register State
Information corresponding to guest non-register state is saved as follows:
• The activity-state field is saved with the logical processor’s activity state before

the VM exit.1 See Section 27.1 for details of how events leading to a VM exit may
affect the activity state.

• The interruptibility-state field is saved to reflect the logical processor’s interrupt-
ibility before the VM exit. See Section 27.1 for details of how events leading to a
VM exit may affect this state. VM exits that end outside system-management
mode (SMM) save bit 2 (blocking by SMI) as 0 regardless of the state of such
blocking before the VM exit.
Bit 3 (blocking by NMI) is treated specially if the “virtual NMIs” VM-execution
control is 1. In this case, the value saved for this field does not indicate the
blocking of NMIs but rather the state of virtual-NMI blocking.

• The pending debug exceptions field is saved as clear for all VM exits except the
following:

— A VM exit caused by an INIT signal, a machine-check exception, or a system-
management interrupt (SMI).

— A VM exit with basic exit reason either “TPR below threshold.”2

— A VM exit with basic exit reason “monitor trap flag.”

— VM exits that are not caused by debug exceptions and that occur while there
is MOV-SS blocking of debug exceptions.

For VM exits that do not clear the field, the value saved is determined as follows:

— Each of bits 3:0 may be set if it corresponds to a matched breakpoint. This
may be true even if the corresponding breakpoint is not enabled in DR7.

1. If this activity state was an inactive state resulting from execution of a specific instruction (HLT
or MWAIT), the value saved for RIP by that VM exit will reference the following instruction.

2. This item includes VM exits that occur after executions of MOV to CR8 or WRMSR (Section
25.1.3), TPR-shadow updates (Section 25.5.3.3), and certain VM entries (Section 26.6.7).
Vol. 3C 27-31

VM EXITS
— Suppose that a VM exit is due to an INIT signal, a machine-check exception,
or an SMI; or that a VM exit has basic exit reason “TPR below threshold” or
“monitor trap flag.” In this case, the value saved sets bits corresponding to
the causes of any debug exceptions that were pending at the time of the
VM exit.

If the VM exit occurs immediately after VM entry, the value saved may match
that which was loaded on VM entry (see Section 26.6.3). Otherwise, the
following items apply:

• Bit 12 (enabled breakpoint) is set to 1 if there was at least one matched
data or I/O breakpoint that was enabled in DR7. Bit 12 is also set if it had
been set on VM entry, causing there to be valid pending debug exceptions
(see Section 26.6.3) and the VM exit occurred before those exceptions
were either delivered or lost. In other cases, bit 12 is cleared to 0.

• Bit 14 (BS) is set if RFLAGS.TF = 1 in either of the following cases:

• IA32_DEBUGCTL.BTF = 0 and the cause of a pending debug
exception was the execution of a single instruction.

• IA32_DEBUGCTL.BTF = 1 and the cause of a pending debug
exception was a taken branch.

— Suppose that a VM exit is due to another reason (but not a debug exception)
and occurs while there is MOV-SS blocking of debug exceptions. In this case,
the value saved sets bits corresponding to the causes of any debug
exceptions that were pending at the time of the VM exit. If the VM exit occurs
immediately after VM entry (no instructions were executed in VMX non-root
operation), the value saved may match that which was loaded on VM entry
(see Section 26.6.3). Otherwise, the following items apply:

• Bit 12 (enabled breakpoint) is set to 1 if there was at least one matched
data or I/O breakpoint that was enabled in DR7. Bit 12 is also set if it had
been set on VM entry, causing there to be valid pending debug exceptions
(see Section 26.6.3) and the VM exit occurred before those exceptions
were either delivered or lost. In other cases, bit 12 is cleared to 0.

• The setting of bit 14 (BS) is implementation-specific. However, it is not
set if RFLAGS.TF = 0 or IA32_DEBUGCTL.BTF = 1.

— The reserved bits in the field are cleared.
• If the “save VMX-preemption timer value” VM-exit control is 1, the value of timer

is saved into the VMX-preemption timer-value field. This is the value loaded from
this field on VM entry as subsequently decremented (see Section 25.7.1). VM
exits due to timer expiration save the value 0. Other VM exits may also save the
value 0 if the timer expired during VM exit. (If the “save VMX-preemption timer
value” VM-exit control is 0, VM exit does not modify the value of the VMX-
preemption timer-value field.)

• If the logical processor supports the 1-setting of the “enable EPT” VM-execution
control, values are saved into the four (4) PDPTE fields as follows:
27-32 Vol. 3C

VM EXITS
— If the “enable EPT” VM-execution control is 1 and the logical processor was
using PAE paging at the time of the VM exit, the PDPTE values currently in use
are saved:1

• The values saved into bits 11:9 of each of the fields is undefined.

• If the value saved into one of the fields has bit 0 (present) clear, the value
saved into bits 63:1 of that field is undefined. That value need not
correspond to the value that was loaded by VM entry or to any value that
might have been loaded in VMX non-root operation.

• If the value saved into one of the fields has bit 0 (present) set, the value
saved into bits 63:12 of the field is a guest-physical address.

— If the “enable EPT” VM-execution control is 0 or the logical processor was not
using PAE paging at the time of the VM exit, the values saved are undefined.

27.4 SAVING MSRS
After processor state is saved to the guest-state area, values of MSRs may be stored
into the VM-exit MSR-store area (see Section 24.7.2). Specifically each entry in that
area (up to the number specified in the VM-exit MSR-store count) is processed in
order by storing the value of the MSR indexed by bits 31:0 (as they would be read by
RDMSR) into bits 127:64. Processing of an entry fails in either of the following cases:
• The value of bits 31:8 is 000008H, meaning that the indexed MSR is one that

allows access to an APIC register when the local APIC is in x2APIC mode.
• The value of bits 31:0 indicates an MSR that can be read only in system-

management mode (SMM) and the VM exit will not end in SMM.
• The value of bits 31:0 indicates an MSR that cannot be saved on VM exits for

model-specific reasons. A processor may prevent certain MSRs (based on the
value of bits 31:0) from being stored on VM exits, even if they can normally be
read by RDMSR. Such model-specific behavior is documented in Chapter 34.

• Bits 63:32 of the entry are not all 0.
• An attempt to read the MSR indexed by bits 31:0 would cause a general-

protection exception if executed via RDMSR with CPL = 0.

A VMX abort occurs if processing fails for any entry. See Section 27.7.

1. A logical processor uses PAE paging if CR0.PG = 1, CR4.PAE = 1 and IA32_EFER.LMA = 0. See
Section 4.4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.
“Enable EPT” is a secondary processor-based VM-execution control. If bit 31 of the primary pro-
cessor-based VM-execution controls is 0, VM exit functions as if the “enable EPT” VM-execution
control were 0. See Section 24.6.2.
Vol. 3C 27-33

VM EXITS
27.5 LOADING HOST STATE
Processor state is updated on VM exits in the following ways:
• Some state is loaded from or otherwise determined by the contents of the host-

state area.
• Some state is determined by VM-exit controls.
• Some state is established in the same way on every VM exit.
• The page-directory pointers are loaded based on the values of certain control

registers.

This loading may be performed in any order.

On processors that support Intel 64 architecture, the full values of each 64-bit field
loaded (for example, the base address for GDTR) is loaded regardless of the mode of
the logical processor before and after the VM exit.

The loading of host state is detailed in Section 27.5.1 to Section 27.5.5. These
sections reference VMCS fields that correspond to processor state. Unless otherwise
stated, these references are to fields in the host-state area.

A logical processor is in IA-32e mode after a VM exit only if the “host address-space
size” VM-exit control is 1. If the logical processor was in IA-32e mode before the
VM exit and this control is 0, a VMX abort occurs. See Section 27.7.

In addition to loading host state, VM exits clear address-range monitoring (Section
27.5.6).

After the state loading described in this section, VM exits may load MSRs from the
VM-exit MSR-load area (see Section 27.6). This loading occurs only after the state
loading described in this section.

27.5.1 Loading Host Control Registers, Debug Registers, MSRs
VM exits load new values for controls registers, debug registers, and some MSRs:
• CR0, CR3, and CR4 are loaded from the CR0 field, the CR3 field, and the CR4

field, respectively, with the following exceptions:

— The following bits are not modified:
27-34 Vol. 3C

VM EXITS
• For CR0, ET, CD, NW; bits 63:32 (on processors that support Intel 64
architecture), 28:19, 17, and 15:6; and any bits that are fixed in VMX
operation (see Section 23.8).1

• For CR3, bits 63:52 and bits in the range 51:32 beyond the processor’s
physical-address width (they are cleared to 0).2 (This item applies only to
processors that support Intel 64 architecture.)

• For CR4, any bits that are fixed in VMX operation (see Section 23.8).

— CR4.PAE is set to 1 if the “host address-space size” VM-exit control is 1.

— CR4.PCIDE is set to 0 if the “host address-space size” VM-exit control is 0.
• DR7 is set to 400H.
• The following MSRs are established as follows:

— The IA32_DEBUGCTL MSR is cleared to 00000000_00000000H.

— The IA32_SYSENTER_CS MSR is loaded from the IA32_SYSENTER_CS field.
Since that field has only 32 bits, bits 63:32 of the MSR are cleared to 0.

— IA32_SYSENTER_ESP MSR and IA32_SYSENTER_EIP MSR are loaded from
the IA32_SYSENTER_ESP field and the IA32_SYSENTER_EIP field, respec-
tively.

If the processor does not support the Intel 64 architecture, these fields have
only 32 bits; bits 63:32 of the MSRs are cleared to 0.

If the processor does support the Intel 64 architecture and the processor
supports N < 64 linear-address bits, each of bits 63:N is set to the value of
bit N–1.3

— The following steps are performed on processors that support Intel 64 archi-
tecture:

• The MSRs FS.base and GS.base are loaded from the base-address fields
for FS and GS, respectively (see Section 27.5.2).

• The LMA and LME bits in the IA32_EFER MSR are each loaded with the
setting of the “host address-space size” VM-exit control.

— If the “load IA32_PERF_GLOBAL_CTRL” VM-exit control is 1, the
IA32_PERF_GLOBAL_CTRL MSR is loaded from the
IA32_PERF_GLOBAL_CTRL field. Bits that are reserved in that MSR are
maintained with their reserved values.

1. Bits 28:19, 17, and 15:6 of CR0 and CR0.ET are unchanged by executions of MOV to CR0. CR0.ET
is always 1 and the other bits are always 0.

2. Software can determine a processor’s physical-address width by executing CPUID with
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

3. Software can determine the number N by executing CPUID with 80000008H in EAX. The num-
ber of linear-address bits supported is returned in bits 15:8 of EAX.
Vol. 3C 27-35

VM EXITS
— If the “load IA32_PAT” VM-exit control is 1, the IA32_PAT MSR is loaded from
the IA32_PAT field. Bits that are reserved in that MSR are maintained with
their reserved values.

— If the “load IA32_EFER” VM-exit control is 1, the IA32_EFER MSR is loaded
from the IA32_EFER field. Bits that are reserved in that MSR are maintained
with their reserved values.

With the exception of FS.base and GS.base, any of these MSRs is subsequently
overwritten if it appears in the VM-exit MSR-load area. See Section 27.6.

27.5.2 Loading Host Segment and Descriptor-Table Registers
Each of the registers CS, SS, DS, ES, FS, GS, and TR is loaded as follows (see below
for the treatment of LDTR):
• The selector is loaded from the selector field. The segment is unusable if its

selector is loaded with zero. The checks specified Section 26.3.1.2 limit the
selector values that may be loaded. In particular, CS and TR are never loaded
with zero and are thus never unusable. SS can be loaded with zero only on
processors that support Intel 64 architecture and only if the VM exit is to 64-bit
mode (64-bit mode allows use of segments marked unusable).

• The base address is set as follows:

— CS. Cleared to zero.

— SS, DS, and ES. Undefined if the segment is unusable; otherwise, cleared to
zero.

— FS and GS. Undefined (but, on processors that support Intel 64 architecture,
canonical) if the segment is unusable and the VM exit is not to 64-bit mode;
otherwise, loaded from the base-address field.

If the processor supports the Intel 64 architecture and the processor
supports N < 64 linear-address bits, each of bits 63:N is set to the value of
bit N–1.1 The values loaded for base addresses for FS and GS are also
manifest in the FS.base and GS.base MSRs.

— TR. Loaded from the host-state area. If the processor supports the Intel 64
architecture and the processor supports N < 64 linear-address bits, each of
bits 63:N is set to the value of bit N–1.

• The segment limit is set as follows:

— CS. Set to FFFFFFFFH (corresponding to a descriptor limit of FFFFFH and a G-
bit setting of 1).

— SS, DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set
to FFFFFFFFH.

1. Software can determine the number N by executing CPUID with 80000008H in EAX. The num-
ber of linear-address bits supported is returned in bits 15:8 of EAX.
27-36 Vol. 3C

VM EXITS
— TR. Set to 00000067H.
• The type field and S bit are set as follows:

— CS. Type set to 11 and S set to 1 (execute/read, accessed, non-conforming
code segment).

— SS, DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise,
type set to 3 and S set to 1 (read/write, accessed, expand-up data segment).

— TR. Type set to 11 and S set to 0 (busy 32-bit task-state segment).
• The DPL is set as follows:

— CS, SS, and TR. Set to 0. The current privilege level (CPL) will be 0 after the
VM exit completes.

— DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set to
0.

• The P bit is set as follows:

— CS, TR. Set to 1.

— SS, DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set
to 1.

• On processors that support Intel 64 architecture, CS.L is loaded with the setting
of the “host address-space size” VM-exit control. Because the value of this
control is also loaded into IA32_EFER.LMA (see Section 27.5.1), no VM exit is
ever to compatibility mode (which requires IA32_EFER.LMA = 1 and CS.L = 0).

• D/B.

— CS. Loaded with the inverse of the setting of the “host address-space size”
VM-exit control. For example, if that control is 0, indicating a 32-bit guest,
CS.D/B is set to 1.

— SS. Set to 1.

— DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set to
1.

— TR. Set to 0.
• G.

— CS. Set to 1.

— SS, DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set
to 1.

— TR. Set to 0.

The host-state area does not contain a selector field for LDTR. LDTR is established as
follows on all VM exits: the selector is cleared to 0000H, the segment is marked
unusable and is otherwise undefined (although the base address is always canon-
ical).
Vol. 3C 27-37

VM EXITS
The base addresses for GDTR and IDTR are loaded from the GDTR base-address field
and the IDTR base-address field, respectively. If the processor supports the Intel 64
architecture and the processor supports N < 64 linear-address bits, each of bits 63:N
of each base address is set to the value of bit N–1 of that base address. The GDTR
and IDTR limits are each set to FFFFH.

27.5.3 Loading Host RIP, RSP, and RFLAGS
RIP and RSP are loaded from the RIP field and the RSP field, respectively. RFLAGS is
cleared, except bit 1, which is always set.

27.5.4 Checking and Loading Host Page-Directory-Pointer-Table
Entries

If CR0.PG = 1, CR4.PAE = 1, and IA32_EFER.LMA = 0, the logical processor uses
PAE paging. See Section 4.4 of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3A.1 When in PAE paging is in use, the physical address
in CR3 references a table of page-directory-pointer-table entries (PDPTEs). A
MOV to CR3 when PAE paging is in use checks the validity of the PDPTEs and, if they
are valid, loads them into the processor (into internal, non-architectural registers).

A VM exit is to a VMM that uses PAE paging if (1) bit 5 (corresponding to CR4.PAE) is
set in the CR4 field in the host-state area of the VMCS; and (2) the “host address-
space size” VM-exit control is 0. Such a VM exit may check the validity of the PDPTEs
referenced by the CR3 field in the host-state area of the VMCS. Such a VM exit must
check their validity if either (1) PAE paging was not in use before the VM exit; or
(2) the value of CR3 is changing as a result of the VM exit. A VM exit to a VMM that
does not use PAE paging must not check the validity of the PDPTEs.

A VM exit that checks the validity of the PDPTEs uses the same checks that are used
when CR3 is loaded with MOV to CR3 when PAE paging is in use. If MOV to CR3 would
cause a general-protection exception due to the PDPTEs that would be loaded (e.g.,
because a reserved bit is set), a VMX abort occurs (see Section 27.7). If a VM exit to
a VMM that uses PAE does not cause a VMX abort, the PDPTEs are loaded into the
processor as would MOV to CR3, using the value of CR3 being load by the VM exit.

27.5.5 Updating Non-Register State
VM exits affect the non-register state of a logical processor as follows:
• A logical processor is always in the active state after a VM exit.

1. On processors that support Intel 64 architecture, the physical-address extension may support
more than 36 physical-address bits. Software can determine a processor’s physical-address
width by executing CPUID with 80000008H in EAX. The physical-address width is returned in
bits 7:0 of EAX.
27-38 Vol. 3C

VM EXITS
• Event blocking is affected as follows:

— There is no blocking by STI or by MOV SS after a VM exit.

— VM exits caused directly by non-maskable interrupts (NMIs) cause blocking
by NMI (see Table 24-3). Other VM exits do not affect blocking by NMI. (See
Section 27.1 for the case in which an NMI causes a VM exit indirectly.)

• There are no pending debug exceptions after a VM exit.

Section 28.3 describes how the VMX architecture controls how a logical processor
manages information in the TLBs and paging-structure caches. The following items
detail how VM exits invalidate cached mappings:
• If the “enable VPID” VM-execution control is 0, the logical processor invalidates

linear mappings and combined mappings associated with VPID 0000H (for all
PCIDs); combined mappings for VPID 0000H are invalidated for all EP4TA values
(EP4TA is the value of bits 51:12 of EPTP).

• VM exits are not required to invalidate any guest-physical mappings, nor are they
required to invalidate any linear mappings or combined mappings if the “enable
VPID” VM-execution control is 1.

27.5.6 Clearing Address-Range Monitoring
The Intel 64 and IA-32 architectures allow software to monitor a specified address
range using the MONITOR and MWAIT instructions. See Section 8.10.4 in the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 3A. VM exits clear
any address-range monitoring that may be in effect.

27.6 LOADING MSRS
VM exits may load MSRs from the VM-exit MSR-load area (see Section 24.7.2).
Specifically each entry in that area (up to the number specified in the VM-exit MSR-
load count) is processed in order by loading the MSR indexed by bits 31:0 with the
contents of bits 127:64 as they would be written by WRMSR.

Processing of an entry fails in any of the following cases:
• The value of bits 31:0 is either C0000100H (the IA32_FS_BASE MSR) or

C0000101H (the IA32_GS_BASE MSR).
• The value of bits 31:8 is 000008H, meaning that the indexed MSR is one that

allows access to an APIC register when the local APIC is in x2APIC mode.
• The value of bits 31:0 indicates an MSR that can be written only in system-

management mode (SMM) and the VM exit will not end in SMM.
(IA32_SMM_MONITOR_CTL is an MSR that can be written only in SMM.)

• The value of bits 31:0 indicates an MSR that cannot be loaded on VM exits for
model-specific reasons. A processor may prevent loading of certain MSRs even if
Vol. 3C 27-39

VM EXITS
they can normally be written by WRMSR. Such model-specific behavior is
documented in Chapter 34.

• Bits 63:32 are not all 0.
• An attempt to write bits 127:64 to the MSR indexed by bits 31:0 of the entry

would cause a general-protection exception if executed via WRMSR with
CPL = 0.1

If processing fails for any entry, a VMX abort occurs. See Section 27.7.

If any MSR is being loaded in such a way that would architecturally require a TLB
flush, the TLBs are updated so that, after VM exit, the logical processor does not use
any translations that were cached before the transition.

27.7 VMX ABORTS
A problem encountered during a VM exit leads to a VMX abort. A VMX abort takes a
logical processor into a shutdown state as described below.

A VMX abort does not modify the VMCS data in the VMCS region of any active VMCS.
The contents of these data are thus suspect after the VMX abort.

On a VMX abort, a logical processor saves a nonzero 32-bit VMX-abort indicator field
at byte offset 4 in the VMCS region of the VMCS whose misconfiguration caused the
failure (see Section 24.2). The following values are used:

1. There was a failure in saving guest MSRs (see Section 27.4).

2. Host checking of the page-directory-pointer-table entries (PDPTEs) failed (see
Section 27.5.4).

3. The current VMCS has been corrupted (through writes to the corresponding
VMCS region) in such a way that the logical processor cannot complete the
VM exit properly.

4. There was a failure on loading host MSRs (see Section 27.6).

5. There was a machine-check event during VM exit (see Section 27.8).

6. The logical processor was in IA-32e mode before the VM exit and the “host
address-space size” VM-entry control was 0 (see Section 27.5).

Some of these causes correspond to failures during the loading of state from the
host-state area. Because the loading of such state may be done in any order (see
Section 27.5) a VM exit that might lead to a VMX abort for multiple reasons (for
example, the current VMCS may be corrupt and the host PDPTEs might not be prop-

1. Note the following about processors that support Intel 64 architecture. If CR0.PG = 1, WRMSR to
the IA32_EFER MSR causes a general-protection exception if it would modify the LME bit. Since
CR0.PG is always 1 in VMX operation, the IA32_EFER MSR should not be included in the VM-exit
MSR-load area for the purpose of modifying the LME bit.
27-40 Vol. 3C

VM EXITS
erly configured). In such cases, the VMX-abort indicator could correspond to any one
of those reasons.

A logical processor never reads the VMX-abort indicator in a VMCS region and writes
it only with one of the non-zero values mentioned above. The VMX-abort indicator
allows software on one logical processor to diagnose the VMX-abort on another. For
this reason, it is recommended that software running in VMX root operation zero the
VMX-abort indicator in the VMCS region of any VMCS that it uses.

After saving the VMX-abort indicator, operation of a logical processor experiencing a
VMX abort depends on whether the logical processor is in SMX operation:1

• If the logical processor is in SMX operation, an Intel® TXT shutdown condition
occurs. The error code used is 000DH, indicating “VMX abort.” See Intel® Trusted
Execution Technology Measured Launched Environment Programming Guide.

• If the logical processor is outside SMX operation, it issues a special bus cycle (to
notify the chipset) and enters the VMX-abort shutdown state. RESET is the
only event that wakes a logical processor from the VMX-abort shutdown state.
The following events do not affect a logical processor in this state: machine-
check events; INIT signals; external interrupts; non-maskable interrupts (NMIs);
start-up IPIs (SIPIs); and system-management interrupts (SMIs).

27.8 MACHINE-CHECK EVENTS DURING VM EXIT
If a machine-check event occurs during VM exit, one of the following occurs:
• The machine-check event is handled as if it occurred before the VM exit:

— If CR4.MCE = 0, operation of the logical processor depends on whether the
logical processor is in SMX operation:2

• If the logical processor is in SMX operation, an Intel® TXT shutdown
condition occurs. The error code used is 000CH, indicating “unrecoverable
machine-check condition.”

• If the logical processor is outside SMX operation, it goes to the shutdown
state.

1. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last
execution of GETSEC[SENTER]. A logical processor is outside SMX operation if GETSEC[SENTER]
has not been executed or if GETSEC[SEXIT] was executed after the last execution of GET-
SEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference,” in Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2B.

2. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last
execution of GETSEC[SENTER]. A logical processor is outside SMX operation if GETSEC[SENTER]
has not been executed or if GETSEC[SEXIT] was executed after the last execution of GET-
SEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference,” in Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2B.
Vol. 3C 27-41

VM EXITS
— If CR4.MCE = 1, a machine-check exception (#MC) is generated:

• If bit 18 (#MC) of the exception bitmap is 0, the exception is delivered
through the guest IDT.

• If bit 18 of the exception bitmap is 1, the exception causes a VM exit.
• The machine-check event is handled after VM exit completes:

— If the VM exit ends with CR4.MCE = 0, operation of the logical processor
depends on whether the logical processor is in SMX operation:

• If the logical processor is in SMX operation, an Intel® TXT shutdown
condition occurs with error code 000CH (unrecoverable machine-check
condition).

• If the logical processor is outside SMX operation, it goes to the shutdown
state.

— If the VM exit ends with CR4.MCE = 1, a machine-check exception (#MC) is
delivered through the host IDT.

• A VMX abort is generated (see Section 27.7). The logical processor blocks events
as done normally in VMX abort. The VMX abort indicator is 5, for “machine-check
event during VM exit.”

The first option is not used if the machine-check event occurs after any host state has
been loaded. The second option is used only if VM entry is able to load all host state.
27-42 Vol. 3C

CHAPTER 28
VMX SUPPORT FOR ADDRESS TRANSLATION

The architecture for VMX operation includes two features that support address trans-
lation: virtual-processor identifiers (VPIDs) and the extended page-table mechanism
(EPT). VPIDs are a mechanism for managing translations of linear addresses. EPT
defines a layer of address translation that augments the translation of linear
addresses.

Section 28.1 details the architecture of VPIDs. Section 28.2 provides the details of
EPT. Section 28.3 explains how a logical processor may cache information from the
paging structures, how it may use that cached information, and how software can
managed the cached information.

28.1 VIRTUAL PROCESSOR IDENTIFIERS (VPIDS)
The original architecture for VMX operation required VMX transitions to flush the TLBs
and paging-structure caches. This ensured that translations cached for the old linear-
address space would not be used after the transition.

Virtual-processor identifiers (VPIDs) introduce to VMX operation a facility by which
a logical processor may cache information for multiple linear-address spaces. When
VPIDs are used, VMX transitions may retain cached information and the logical
processor switches to a different linear-address space.

Section 28.3 details the mechanisms by which a logical processor manages informa-
tion cached for multiple address spaces. A logical processor may tag some cached
information with a 16-bit VPID. This section specifies how the current VPID is deter-
mined at any point in time:
• The current VPID is 0000H in the following situations:

— Outside VMX operation. (This includes operation in system-management
mode under the default treatment of SMIs and SMM with VMX operation; see
Section 33.14.)

— In VMX root operation.

— In VMX non-root operation when the “enable VPID” VM-execution control is 0.
• If the logical processor is in VMX non-root operation and the “enable VPID” VM-

execution control is 1, the current VPID is the value of the VPID VM-execution
control field in the VMCS. (VM entry ensures that this value is never 0000H; see
Section 26.2.1.1.)

VPIDs and PCIDs (see Section 4.10.1) can be used concurrently. When this is done,
the processor associates cached information with both a VPID and a PCID. Such
Vol. 3C 28-1

VMX SUPPORT FOR ADDRESS TRANSLATION
information is used only if the current VPID and PCID both match those associated
with the cached information.

28.2 THE EXTENDED PAGE TABLE MECHANISM (EPT)
The extended page-table mechanism (EPT) is a feature that can be used to support
the virtualization of physical memory. When EPT is in use, certain addresses that
would normally be treated as physical addresses (and used to access memory) are
instead treated as guest-physical addresses. Guest-physical addresses are trans-
lated by traversing a set of EPT paging structures to produce physical addresses
that are used to access memory.
• Section 28.2.1 gives an overview of EPT.
• Section 28.2.2 describes operation of EPT-based address translation.
• Section 28.2.3 discusses VM exits that may be caused by EPT.
• Section 28.2.4 describes interactions between EPT and memory typing.

28.2.1 EPT Overview
EPT is used when the “enable EPT” VM-execution control is 1.1 It translates the
guest-physical addresses used in VMX non-root operation and those used by
VM entry for event injection.

The translation from guest-physical addresses to physical addresses is determined
by a set of EPT paging structures. The EPT paging structures are similar to those
used to translate linear addresses while the processor is in IA-32e mode. Section
28.2.2 gives the details of the EPT paging structures.

If CR0.PG = 1, linear addresses are translated through paging structures referenced
through control register CR3 . While the “enable EPT” VM-execution control is 1,
these are called guest paging structures. There are no guest paging structures if
CR0.PG = 0.2

1. “Enable EPT” is a secondary processor-based VM-execution control. If bit 31 of the primary pro-
cessor-based VM-execution controls is 0, the logical processor operates as if the “enable EPT”
VM-execution control were 0. See Section 24.6.2.

2. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation,
CR0.PG can be 0 in VMX non-root operation only if the “unrestricted guest” VM-execution control
and bit 31 of the primary processor-based VM-execution controls are both 1.
28-2 Vol. 3C

VMX SUPPORT FOR ADDRESS TRANSLATION
When the “enable EPT” VM-execution control is 1, the identity of guest-physical
addresses depends on the value of CR0.PG:
• If CR0.PG = 0, each linear address is treated as a guest-physical address.
• If CR0.PG = 1, guest-physical addresses are those derived from the contents of

control register CR3 and the guest paging structures. (This includes the values of
the PDPTEs, which logical processors store in internal, non-architectural
registers.) The latter includes (in page-table entries and in other paging-
structure entries for which bit 7—PS—is 1) the addresses to which linear
addresses are translated by the guest paging structures.

If CR0.PG = 1, the translation of a linear address to a physical address requires
multiple translations of guest-physical addresses using EPT. Assume, for example,
that CR4.PAE = CR4.PSE = 0. The translation of a 32-bit linear address then oper-
ates as follows:
• Bits 31:22 of the linear address select an entry in the guest page directory

located at the guest-physical address in CR3. The guest-physical address of the
guest page-directory entry (PDE) is translated through EPT to determine the
guest PDE’s physical address.

• Bits 21:12 of the linear address select an entry in the guest page table located at
the guest-physical address in the guest PDE. The guest-physical address of the
guest page-table entry (PTE) is translated through EPT to determine the guest
PTE’s physical address.

• Bits 11:0 of the linear address is the offset in the page frame located at the
guest-physical address in the guest PTE. The guest-physical address determined
by this offset is translated through EPT to determine the physical address to
which the original linear address translates.

In addition to translating a guest-physical address to a physical address, EPT speci-
fies the privileges that software is allowed when accessing the address. Attempts at
disallowed accesses are called EPT violations and cause VM exits. See Section
28.2.3.

A logical processor uses EPT to translate guest-physical addresses only when those
addresses are used to access memory. This principle implies the following:
• The MOV to CR3 instruction loads CR3 with a guest-physical address. Whether

that address is translated through EPT depends on whether PAE paging is being
used.1

— If PAE paging is not being used, the instruction does not use that address to
access memory and does not cause it to be translated through EPT. (If
CR0.PG = 1, the address will be translated through EPT on the next memory
accessing using a linear address.)

1. A logical processor uses PAE paging if CR0.PG = 1, CR4.PAE = 1 and IA32_EFER.LMA = 0. See
Section 4.4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.
Vol. 3C 28-3

VMX SUPPORT FOR ADDRESS TRANSLATION
— If PAE paging is being used, the instruction loads the four (4) page-directory-
pointer-table entries (PDPTEs) from that address and it does cause the
address to be translated through EPT.

• Section 4.4.1 identifies executions of MOV to CR0 and MOV to CR4 that load the
PDPTEs from the guest-physical address in CR3. Such executions cause that
address to be translated through EPT.

• The PDPTEs contain guest-physical addresses. The instructions that load the
PDPTEs (see above) do not use those addresses to access memory and do not
cause them to be translated through EPT. The address in a PDPTE will be
translated through EPT on the next memory accessing using a linear address that
uses that PDPTE.

28.2.2 EPT Translation Mechanism
The EPT translation mechanism uses only bits 47:0 of each guest-physical address.1
It uses a page-walk length of 4, meaning that at most 4 EPT paging-structure entries
are accessed to translate a guest-physical address.2

These 48 bits are partitioned by the logical processor to traverse the EPT paging
structures:
• A 4-KByte naturally aligned EPT PML4 table is located at the physical address

specified in bits 51:12 of the extended-page-table pointer (EPTP), a VM-
execution control field (see Table 24-8 in Section 24.6.11). An EPT PML4 table
comprises 512 64-bit entries (EPT PML4Es). An EPT PML4E is selected using the
physical address defined as follows:

— Bits 63:52 are all 0.

— Bits 51:12 are from the EPTP.

— Bits 11:3 are bits 47:39 of the guest-physical address.

— Bits 2:0 are all 0.
Because an EPT PML4E is identified using bits 47:39 of the guest-physical
address, it controls access to a 512-GByte region of the guest-physical-address
space.

• A 4-KByte naturally aligned EPT page-directory-pointer table is located at the
physical address specified in bits 51:12 of the EPT PML4E (see Table 28-1). An

1. No processors supporting the Intel 64 architecture support more than 48 physical-address bits.
Thus, no such processor can produce a guest-physical address with more than 48 bits. An
attempt to use such an address causes a page fault. An attempt to load CR3 with such an
address causes a general-protection fault. If PAE paging is being used, an attempt to load CR3
that would load a PDPTE with such an address causes a general-protection fault.

2. Future processors may include support for other EPT page-walk lengths. Software should read
the VMX capability MSR IA32_VMX_EPT_VPID_CAP (see Appendix A.10) to determine what EPT
page-walk lengths are supported.
28-4 Vol. 3C

VMX SUPPORT FOR ADDRESS TRANSLATION
EPT page-directory-pointer table comprises 512 64-bit entries (PDPTEs). An EPT
PDPTE is selected using the physical address defined as follows:

— Bits 63:52 are all 0.

— Bits 51:12 are from the EPT PML4 entry.

— Bits 11:3 are bits 38:30 of the guest-physical address.

— Bits 2:0 are all 0.

Because a PDPTE is identified using bits 47:30 of the guest-physical address, it
controls access to a 1-GByte region of the guest-physical-address space. Use of the
PDPTE depends on the value of bit 7 in that entry:1

• If bit 7 of the EPT PDPTE is 1, the EPT PDPTE maps a 1-GByte page (see
Table 28-2). The final physical address is computed as follows:

Table 28-1. Format of an EPT PML4 Entry (PML4E)

Bit
Position(s)

Contents

0 Read access; indicates whether reads are allowed from the 512-GByte region
controlled by this entry

1 Write access; indicates whether writes are allowed to the 512-GByte region
controlled by this entry

2 Execute access; indicates whether instruction fetches are allowed from the 512-
GByte region controlled by this entry

7:3 Reserved (must be 0)

11:8 Ignored

(N–1):12 Physical address of 4-KByte aligned EPT page-directory-pointer table referenced
by this entry1

NOTES:
1. N is the physical-address width supported by the processor. Software can determine a processor’s

physical-address width by executing CPUID with 80000008H in EAX. The physical-address width
is returned in bits 7:0 of EAX.

51:N Reserved (must be 0)

63:52 Ignored

1. Not all processors allow bit 7 of an EPT PDPTE to be set to 1. Software should read the VMX
capability MSR IA32_VMX_EPT_VPID_CAP (see Appendix A.10) to determine whether this is
allowed.
Vol. 3C 28-5

VMX SUPPORT FOR ADDRESS TRANSLATION
— Bits 63:52 are all 0.

— Bits 51:30 are from the EPT PDPTE.

— Bits 29:0 are from the original guest-physical address.
• If bit 7 of the EPT PDPTE is 0, a 4-KByte naturally aligned EPT page directory is

located at the physical address specified in bits 51:12 of the EPT PDPTE (see
Table 28-3). An EPT page-directory comprises 512 64-bit entries (PDEs). An EPT
PDE is selected using the physical address defined as follows:

— Bits 63:52 are all 0.

— Bits 51:12 are from the EPT PDPTE.

— Bits 11:3 are bits 29:21 of the guest-physical address.

— Bits 2:0 are all 0.

Table 28-2. Format of an EPT Page-Directory-Pointer-Table Entry (PDPTE) that Maps
a 1-GByte Page

Bit
Position(s)

Contents

0 Read access; indicates whether reads are allowed from the 1-GByte page
referenced by this entry

1 Write access; indicates whether writes are allowed to the 1-GByte page
referenced by this entry

2 Execute access; indicates whether instruction fetches are allowed from the 1-
GByte page referenced by this entry

5:3 EPT memory type for this 1-GByte page (see Section 28.2.4)

6 Ignore PAT memory type for this 1-GByte page (see Section 28.2.4)

7 Must be 1 (otherwise, this entry references an EPT page directory)

11:8 Ignored

29:12 Reserved (must be 0)

(N–1):30 Physical address of the 1-GByte page referenced by this entry1

51:N Reserved (must be 0)

63:52 Ignored

NOTES:
1. N is the physical-address width supported by the logical processor.
28-6 Vol. 3C

VMX SUPPORT FOR ADDRESS TRANSLATION
Because an EPT PDE is identified using bits 47:21 of the guest-physical address, it
controls access to a 2-MByte region of the guest-physical-address space. Use of the
EPT PDE depends on the value of bit 7 in that entry:
• If bit 7 of the EPT PDE is 1, the EPT PDE maps a 2-MByte page (see Table 28-4).

The final physical address is computed as follows:

— Bits 63:52 are all 0.

— Bits 51:21 are from the EPT PDE.

— Bits 20:0 are from the original guest-physical address.
• If bit 7 of the EPT PDE is 0, a 4-KByte naturally aligned EPT page table is located

at the physical address specified in bits 51:12 of the EPT PDE (see Table 28-5).
An EPT page table comprises 512 64-bit entries (PTEs). An EPT PTE is selected
using a physical address defined as follows:

— Bits 63:52 are all 0.

— Bits 51:12 are from the EPT PDE.

— Bits 11:3 are bits 20:12 of the guest-physical address.

— Bits 2:0 are all 0.

Table 28-3. Format of an EPT Page-Directory-Pointer-Table Entry (PDPTE) that
References an EPT Page Directory

Bit
Position(s)

Contents

0 Read access; indicates whether reads are allowed from the 1-GByte region
controlled by this entry

1 Write access; indicates whether writes are allowed to the 1-GByte region
controlled by this entry

2 Execute access; indicates whether instruction fetches are allowed from the 1-
GByte region controlled by this entry

7:3 Reserved (must be 0)

11:8 Ignored

(N–1):12 Physical address of 4-KByte aligned EPT page directory referenced by this entry1

51:N Reserved (must be 0)

63:52 Ignored

NOTES:
1. N is the physical-address width supported by the logical processor.
Vol. 3C 28-7

VMX SUPPORT FOR ADDRESS TRANSLATION
• Because an EPT PTE is identified using bits 47:12 of the guest-physical address,
every EPT PTE maps a 4-KByte page (see Table 28-6). The final physical address
is computed as follows:

• Bits 63:52 are all 0.

• Bits 51:12 are from the EPT PTE.

• Bits 11:0 are from the original guest-physical address.

If bits 2:0 of an EPT paging-structure entry are all 0, the entry is not present. The
processor ignores bits 63:3 and does uses the entry neither to reference another EPT
paging-structure entry nor to produce a physical address. A reference using a guest-
physical address whose translation encounters an EPT paging-structure that is not
present causes an EPT violation (see Section 28.2.3.2).

The discussion above describes how the EPT paging structures reference each other
and how the logical processor traverses those structures when translating a guest-
physical address. It does not cover all details of the translation process. Additional
details are provided as follows:

Table 28-4. Format of an EPT Page-Directory Entry (PDE) that Maps a 2-MByte Page

Bit
Position(s)

Contents

0 Read access; indicates whether reads are allowed from the 2-MByte page
referenced by this entry

1 Write access; indicates whether writes are allowed to the 2-MByte page
referenced by this entry

2 Execute access; indicates whether instruction fetches are allowed from the 2-
MByte page referenced by this entry

5:3 EPT memory type for this 2-MByte page (see Section 28.2.4)

6 Ignore PAT memory type for this 2-MByte page (see Section 28.2.4)

7 Must be 1 (otherwise, this entry references an EPT page table)

11:8 Ignored

20:12 Reserved (must be 0)

(N–1):21 Physical address of the 2-MByte page referenced by this entry1

51:N Reserved (must be 0)

63:52 Ignored

NOTES:
1. N is the physical-address width supported by the logical processor.
28-8 Vol. 3C

VMX SUPPORT FOR ADDRESS TRANSLATION
• Situations in which the translation process may lead to VM exits (sometimes
before the process completes) are described in Section 28.2.3.

• Interactions between the EPT translation mechanism and memory typing are
described in Section 28.2.4.

Figure 28-1 gives a summary of the formats of the EPTP and the EPT paging-struc-
ture entries. For the EPT paging structure entries, it identifies separately the format
of entries that map pages, those that reference other EPT paging structures, and
those that do neither because they are “not present”; bits 2:0 and bit 7 are high-
lighted because they determine how a paging-structure entry is used.

28.2.3 EPT-Induced VM Exits
Accesses using guest-physical addresses may cause VM exits due to EPT miscon-
figurations and EPT violations. An EPT misconfiguration occurs when, in the
course of translation a guest-physical address, the logical processor encounters an
EPT paging-structure entry that contains an unsupported value. An EPT violation
occurs when there is no EPT misconfiguration but the EPT paging-structure entries
disallow an access using the guest-physical address.

Table 28-5. Format of an EPT Page-Directory Entry (PDE) that References an EPT
Page Table

Bit
Position(s)

Contents

0 Read access; indicates whether reads are allowed from the 2-MByte region
controlled by this entry

1 Write access; indicates whether writes are allowed to the 2-MByte region
controlled by this entry

2 Execute access; indicates whether instruction fetches are allowed from the 2-
MByte region controlled by this entry

6:3 Reserved (must be 0)

7 Must be 0 (otherwise, this entry maps a 2-MByte page)

11:8 Ignored

(N–1):12 Physical address of 4-KByte aligned EPT page table referenced by this entry1

51:N Reserved (must be 0)

63:52 Ignored

NOTES:
1. N is the physical-address width supported by the logical processor.
Vol. 3C 28-9

VMX SUPPORT FOR ADDRESS TRANSLATION
EPT misconfigurations and EPT violations occur only due to an attempt to access
memory with a guest-physical address. Loading CR3 with a guest-physical address
with the MOV to CR3 instruction can cause neither an EPT configuration nor an EPT
violation until that address is used to access a paging structure.1

28.2.3.1 EPT Misconfigurations
AN EPT misconfiguration occurs if any of the following is identified while translating a
guest-physical address:
• The value of bits 2:0 of an EPT paging-structure entry is either 010b (write-only)

or 110b (write/execute).
• The value of bits 2:0 of an EPT paging-structure entry is 100b (execute-only) and

this value is not supported by the logical processor. Software should read the

Table 28-6. Format of an EPT Page-Table Entry

Bit
Position(s)

Contents

0 Read access; indicates whether reads are allowed from the 4-KByte page
referenced by this entry

1 Write access; indicates whether writes are allowed to the 4-KByte page
referenced by this entry

2 Execute access; indicates whether instruction fetches are allowed from the 4-
KByte page referenced by this entry

5:3 EPT memory type for this 4-KByte page (see Section 28.2.4)

6 Ignore PAT memory type for this 4-KByte page (see Section 28.2.4)

11:7 Ignored

(N–1):12 Physical address of the 4-KByte page referenced by this entry1

51:N Reserved (must be 0)

63:52 Ignored

NOTES:
1. N is the physical-address width supported by the logical processor.

1. If the logical processor is using PAE paging—because CR0.PG = CR4.PAE = 1 and
IA32_EFER.LMA = 0—the MOV to CR3 instruction loads the PDPTEs from memory using the
guest-physical address being loaded into CR3. In this case, therefore, the MOV to CR3 instruction
may cause an EPT misconfiguration or an EPT violation.
28-10 Vol. 3C

VMX SUPPORT FOR ADDRESS TRANSLATION
VMX capability MSR IA32_VMX_EPT_VPID_CAP to determine whether this value
is supported (see Appendix A.10).

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

M1 M-1 3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Reserved Address of EPT PML4 table Reserved
EPT

PWL–
1

EPT
PS
MT

EPTP2

Ignored Rsvd. Address of EPT page-directory-pointer table Ign. Reserved XW R PML4E:
present

Ignored 0 0 0
PML4E:

not
present

Ignored Rsvd.
Physical

address of
1GB page

Reserved Ign. 1

I
P
A
T

EPT
MT XW R

PDPTE:
1GB
page

Ignored Rsvd. Address of EPT page directory Ign. 0 Rsvd. XW R
PDPTE:
page

directory

Ignored 0 0 0
PDTPE:

not
present

Ignored Rsvd. Physical address
of 2MB page Reserved Ign. 1

I
P
A
T

EPT
MT XW R

PDE:
2MB
page

Ignored Rsvd. Address of EPT page table Ign. 0 Rsvd. XW R
PDE:
page
table

Ignored 0 0 0
PDE:
not

present

Ignored Rsvd. Physical address of 4KB page Ign.

I
P
A
T

EPT
MT XW R

PTE:
4KB
page

Ignored 0 0 0
PTE:
not

present

Figure 28-1. Formats of EPTP and EPT Paging-Structure Entries

NOTES:
1. M is an abbreviation for MAXPHYADDR.
2. See Section 24.6.11 for details of the EPTP.
Vol. 3C 28-11

VMX SUPPORT FOR ADDRESS TRANSLATION
• The value of bits 2:0 of an EPT paging-structure entry is not 000b (the entry is
present) and one of the following holds:

— A reserved bit is set. This includes the setting of a bit in the range 51:12 that
is beyond the logical processor’s physical-address width.1 See Section 28.2.2
for details of which bits are reserved in which EPT paging-structure entries.

— The entry is the last one used to translate a guest physical address (either an
EPT PDE with bit 7 set to 1 or an EPT PTE) and the value of bits 5:3 (EPT
memory type) is 2, 3, or 7 (these values are reserved).

EPT misconfigurations result when an EPT paging-structure entry is configured with
settings reserved for future functionality. Software developers should be aware that
such settings may be used in the future and that an EPT paging-structure entry that
causes an EPT misconfiguration on one processor might not do so in the future.

28.2.3.2 EPT Violations
An EPT violation may occur during an access using a guest-physical address whose
translation does not cause an EPT misconfiguration. An EPT violation occurs in any of
the following situations:
• Translation of the guest-physical address encounters an EPT paging-structure

entry that is not present (see Section 28.2.2).
• The access is a data read and bit 0 was clear in any of the EPT paging-structure

entries used to translate the guest-physical address. Reads by the logical
processor of guest paging structures to translate a linear address are considered
to be data reads.

• The access is a data write and bit 1 was clear in any of the EPT paging-structure
entries used to translate the guest-physical address. Writes by the logical
processor to guest paging structures to update accessed and dirty flags are
considered to be data writes.

• The access is an instruction fetch and bit 2 was clear in any of the EPT paging-
structure entries used to translate the guest-physical address.

28.2.3.3 Prioritization of EPT-Induced VM Exits
The translation of a linear address to a physical address requires one or more trans-
lations of guest-physical addresses using EPT (see Section 28.2.1). This section
specifies the relative priority of EPT-induced VM exits with respect to each other and
to other events that may be encountered when accessing memory using a linear
address.

For an access to a guest-physical address, determination of whether an EPT miscon-
figuration or an EPT violation occurs is based on an iterative process:2

1. Software can determine a processor’s physical-address width by executing CPUID with
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.
28-12 Vol. 3C

VMX SUPPORT FOR ADDRESS TRANSLATION
1. An EPT paging-structure entry is read (initially, this is an EPT PML4 entry):

a. If the entry is not present (bits 2:0 are all 0), an EPT violation occurs.

b. If the entry is present but its contents are not configured properly (see
Section 28.2.3.1), an EPT misconfiguration occurs.

c. If the entry is present and its contents are configured properly, operation
depends on whether the entry references another EPT paging structure
(whether it is an EPT PDE with bit 7 set to 1 or an EPT PTE):

i) If the entry does reference another EPT paging structure, an entry from
that structure is accessed; step 1 is executed for that other entry.

ii) Otherwise, the entry is used to produce the ultimate physical address
(the translation of the original guest-physical address); step 2 is
executed.

2. Once the ultimate physical address is determined, the privileges determined by
the EPT paging-structure entries are evaluated:

a. If the access to the guest-physical address is not allowed by these privileges
(see Section 28.2.3.2), an EPT violation occurs.

b. If the access to the guest-physical address is allowed by these privileges,
memory is accessed using the ultimate physical address.

If CR0.PG = 1, the translation of a linear address is also an iterative process, with the
processor first accessing an entry in the guest paging structure referenced by the
guest-physical address in CR3 (or, if PAE paging is in use, the guest-physical address
in the appropriate PDPTE register), then accessing an entry in another guest paging
structure referenced by the guest-physical address in the first guest paging-structure
entry, etc. Each guest-physical address is itself translated using EPT and may cause
an EPT-induced VM exit. The following items detail how page faults and EPT-induced
VM exits are recognized during this iterative process:

1. An attempt is made to access a guest paging-structure entry with a guest-
physical address (initially, the address in CR3 or PDPTE register).

a. If the access fails because of an EPT misconfiguration or an EPT violation (see
above), an EPT-induced VM exit occurs.

b. If the access does not cause an EPT-induced VM exit, bit 0 (the present flag)
of the entry is consulted:

i) If the present flag is 0 or any reserved bit is set, a page fault occurs.

ii) If the present flag is 1, no reserved bit is set, operation depends on
whether the entry references another guest paging structure (whether it
is a guest PDE with PS = 1 or a guest PTE):

2. This is a simplification of the more detailed description given in Section 28.2.2.
Vol. 3C 28-13

VMX SUPPORT FOR ADDRESS TRANSLATION
• If the entry does reference another guest paging structure, an entry
from that structure is accessed; step 1 is executed for that other
entry.

• Otherwise, the entry is used to produce the ultimate guest-physical
address (the translation of the original linear address); step 2 is
executed.

2. Once the ultimate guest-physical address is determined, the privileges
determined by the guest paging-structure entries are evaluated:

a. If the access to the linear address is not allowed by these privileges (e.g., it
was a write to a read-only page), a page fault occurs.

b. If the access to the linear address is allowed by these privileges, an attempt
is made to access memory at the ultimate guest-physical address:

i) If the access fails because of an EPT misconfiguration or an EPT violation
(see above), an EPT-induced VM exit occurs.

ii) If the access does not cause an EPT-induced VM exit, memory is accessed
using the ultimate physical address (the translation, using EPT, of the
ultimate guest-physical address).

If CR0.PG = 0, a linear address is treated as a guest-physical address and is trans-
lated using EPT (see above). This process, if it completes without an EPT violation or
EPT misconfiguration, produces a physical address and determines the privileges
allowed by the EPT paging-structure entries. If these privileges do not allow the
access to the physical address (see Section 28.2.3.2), an EPT violation occurs.
Otherwise, memory is accessed using the physical address.

28.2.4 EPT and Memory Typing
This section specifies how a logical processor determines the memory type use for a
memory access while EPT is in use. (See Chapter 11, “Memory Cache Control” of
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A for
details of memory typing in the Intel 64 architecture.) Section 28.2.4.1 explains how
the memory type is determined for accesses to the EPT paging structures. Section
28.2.4.2 explains how the memory type is determined for an access using a guest-
physical address that is translated using EPT.

28.2.4.1 Memory Type Used for Accessing EPT Paging Structures
This section explains how the memory type is determined for accesses to the EPT
paging structures. The determination is based first on the value of bit 30 (cache
disable—CD) in control register CR0:
• If CR0.CD = 0, the memory type used for any such reference is the EPT paging-

structure memory type, which is specified in bits 2:0 of the extended-page-table
pointer (EPTP), a VM-execution control field (see Section 24.6.11). A value of 0
28-14 Vol. 3C

VMX SUPPORT FOR ADDRESS TRANSLATION
indicates the uncacheable type (UC), while a value of 6 indicates the write-back
type (WB). Other values are reserved.

• If CR0.CD = 1, the memory type used for any such reference is uncacheable
(UC).

The MTRRs have no effect on the memory type used for an access to an EPT paging
structure.

28.2.4.2 Memory Type Used for Translated Guest-Physical Addresses
The effective memory type of a memory access using a guest-physical address (an
access that is translated using EPT) is the memory type that is used to access
memory. The effective memory type is based on the value of bit 30 (cache
disable—CD) in control register CR0; the last EPT paging-structure entry used to
translate the guest-physical address (either an EPT PDE with bit 7 set to 1 or an EPT
PTE); and the PAT memory type (see below):
• The PAT memory type depends on the value of CR0.PG:

— If CR0.PG = 0, the PAT memory type is WB (writeback).1

— If CR0.PG = 1, the PAT memory type is the memory type selected from the
IA32_PAT MSR as specified in Section 11.12.3, “Selecting a Memory Type
from the PAT”.2

• The EPT memory type is specified in bits 5:3 of the last EPT paging-structure
entry: 0 = UC; 1 = WC; 4 = WT; 5 = WP; and 6 = WB. Other values are reserved
and cause EPT misconfigurations (see Section 28.2.3).

• If CR0.CD = 0, the effective memory type depends upon the value of bit 6 of the
last EPT paging-structure entry:

— If the value is 0, the effective memory type is the combination of the EPT
memory type and the PAT memory type specified in Table 11-7 in Section
11.5.2.2, using the EPT memory type in place of the MTRR memory type.

— If the value is 1, the memory type used for the access is the EPT memory
type. The PAT memory type is ignored.

• If CR0.CD = 1, the effective memory type is UC.

1. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation,
CR0.PG can be 0 in VMX non-root operation only if the “unrestricted guest” VM-execution control
and bit 31 of the primary processor-based VM-execution controls are both 1.

2. Table 11-11 in Section 11.12.3, “Selecting a Memory Type from the PAT” illustrates how the PAT
memory type is selected based on the values of the PAT, PCD, and PWT bits in a page-table entry
(or page-directory entry with PS = 1). For accesses to a guest paging-structure entry X, the PAT
memory type is selected from the table by using a value of 0 for the PAT bit with the values of
PCD and PWT from the paging-structure entry Y that references X (or from CR3 if X is in the root
paging structure). With PAE paging, the PAT memory type for accesses to the PDPTEs is WB.
Vol. 3C 28-15

VMX SUPPORT FOR ADDRESS TRANSLATION
The MTRRs have no effect on the memory type used for an access to a guest-physical
address.

28.3 CACHING TRANSLATION INFORMATION
Processors supporting Intel® 64 and IA-32 architectures may accelerate the
address-translation process by caching on the processor data from the structures in
memory that control that process. Such caching is discussed in Section 4.10,
“Caching Translation Information” in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3A. The current section describes how this caching
interacts with the VMX architecture.

The VPID and EPT features of the architecture for VMX operation augment this
caching architecture. EPT defines the guest-physical address space and defines
translations to that address space (from the linear-address space) and from that
address space (to the physical-address space). Both features control the ways in
which a logical processor may create and use information cached from the paging
structures.

Section 28.3.1 describes the different kinds of information that may be cached.
Section 28.3.2 specifies when such information may be cached and how it may be
used. Section 28.3.3 details how software can invalidate cached information.

28.3.1 Information That May Be Cached
Section 4.10, “Caching Translation Information” in Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3A identifies two kinds of translation-related
information that may be cached by a logical processor: translations, which are
mappings from linear page numbers to physical page frames, and paging-structure
caches, which map the upper bits of a linear page number to information from the
paging-structure entries used to translate linear addresses matching those upper
bits.

The same kinds of information may be cached when VPIDs and EPT are in use. A
logical processor may cache and use such information based on its function. Informa-
tion with different functionality is identified as follows:
• Linear mappings.1 There are two kinds:

— Linear translations. Each of these is a mapping from a linear page number to
the physical page frame to which it translates, along with information about
access privileges and memory typing.

— Linear paging-structure-cache entries. Each of these is a mapping from the
upper portion of a linear address to the physical address of the paging
structure used to translate the corresponding region of the linear-address

1. Earlier versions of this manual used the term “VPID-tagged” to identify linear mappings.
28-16 Vol. 3C

VMX SUPPORT FOR ADDRESS TRANSLATION
space, along with information about access privileges. For example,
bits 47:39 of a linear address would map to the address of the relevant page-
directory-pointer table.

Linear mappings do not contain information from any EPT paging structure.
• Guest-physical mappings.1 There are two kinds:

— Guest-physical translations. Each of these is a mapping from a guest-physical
page number to the physical page frame to which it translates, along with
information about access privileges and memory typing.

— Guest-physical paging-structure-cache entries. Each of these is a mapping
from the upper portion of a guest-physical address to the physical address of
the EPT paging structure used to translate the corresponding region of the
guest-physical address space, along with information about access
privileges.

The information in guest-physical mappings about access privileges and memory
typing is derived from EPT paging structures.

• Combined mappings.2 There are two kinds:

— Combined translations. Each of these is a mapping from a linear page number
to the physical page frame to which it translates, along with information
about access privileges and memory typing.

— Combined paging-structure-cache entries. Each of these is a mapping from
the upper portion of a linear address to the physical address of the paging
structure used to translate the corresponding region of the linear-address
space, along with information about access privileges.

The information in combined mappings about access privileges and memory
typing is derived from both guest paging structures and EPT paging structures.

28.3.2 Creating and Using Cached Translation Information
The following items detail the creation of the mappings described in the previous
section:3

• The following items describe the creation of mappings while EPT is not in use
(including execution outside VMX non-root operation):

1. Earlier versions of this manual used the term “EPTP-tagged” to identify guest-physical mappings.

2. Earlier versions of this manual used the term “dual-tagged” to identify combined mappings.

3. This section associated cached information with the current VPID and PCID. If PCIDs are not sup-
ported or are not being used (e.g., because CR4.PCIDE = 0), all the information is implicitly associ-
ated with PCID 000H; see Section 4.10.1, “Process-Context Identifiers (PCIDs),” in Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3A.
Vol. 3C 28-17

VMX SUPPORT FOR ADDRESS TRANSLATION
— Linear mappings may be created. They are derived from the paging
structures referenced (directly or indirectly) by the current value of CR3 and
are associated with the current VPID and the current PCID.

— No linear mappings are created with information derived from paging-
structure entries that are not present (bit 0 is 0) or that set reserved bits. For
example, if a PTE is not present, no linear mapping are created for any linear
page number whose translation would use that PTE.

— No guest-physical or combined mappings are created while EPT is not in use.
• The following items describe the creation of mappings while EPT is in use:

— Guest-physical mappings may be created. They are derived from the EPT
paging structures referenced (directly or indirectly) by bits 51:12 of the
current EPTP. These 40 bits contain the address of the EPT-PML4-table. (the
notation EP4TA refers to those 40 bits). Newly created guest-physical
mappings are associated with the current EP4TA.

— Combined mappings may be created. They are derived from the EPT paging
structures referenced (directly or indirectly) by the current EP4TA. If
CR0.PG = 1, they are also derived from the paging structures referenced
(directly or indirectly) by the current value of CR3. They are associated with
the current VPID, the current PCID, and the current EP4TA.1 No combined
paging-structure-cache entries are created if CR0.PG = 0.2

— No guest-physical mappings or combined mappings are created with
information derived from EPT paging-structure entries that are not present
(bits 2:0 are all 0) or that are misconfigured (see Section 28.2.3.1).

— No combined mappings are created with information derived from guest
paging-structure entries that are not present or that set reserved bits.

— No linear mappings are created while EPT is in use.

The following items detail the use of the various mappings:
• If EPT is not in use (e.g., when outside VMX non-root operation), a logical

processor may use cached mappings as follows:

— For accesses using linear addresses, it may use linear mappings associated
with the current VPID and the current PCID. It may also use global TLB
entries (linear mappings) associated with the current VPID and any PCID.

— No guest-physical or combined mappings are used while EPT is not in use.
• If EPT is in use, a logical processor may use cached mappings as follows:

1. At any given time, a logical processor may be caching combined mappings for a VPID and a PCID
that are associated with different EP4TAs. Similarly, it may be caching combined mappings for an
EP4TA that are associated with different VPIDs and PCIDs.

2. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation,
CR0.PG can be 0 in VMX non-root operation only if the “unrestricted guest” VM-execution control
and bit 31 of the primary processor-based VM-execution controls are both 1.
28-18 Vol. 3C

VMX SUPPORT FOR ADDRESS TRANSLATION
— For accesses using linear addresses, it may use combined mappings
associated with the current VPID, the current PCID, and the current EP4TA. It
may also use global TLB entries (combined mappings) associated with the
current VPID, the current EP4TA, and any PCID.

— For accesses using guest-physical addresses, it may use guest-physical
mappings associated with the current EP4TA.

— No linear mappings are used while EPT is in use.

28.3.3 Invalidating Cached Translation Information
Software modifications of paging structures (including EPT paging structures) may
result in inconsistencies between those structures and the mappings cached by a
logical processor. Certain operations invalidate information cached by a logical
processor and can be used to eliminate such inconsistencies.

28.3.3.1 Operations that Invalidate Cached Mappings
The following operations invalidate cached mappings as indicated:
• Operations that architecturally invalidate entries in the TLBs or paging-structure

caches independent of VMX operation (e.g., the INVLPG and INVPCID instruc-
tions) invalidate linear mappings and combined mappings.1 They are required to
do so only for the current VPID (but, for combined mappings, all EP4TAs). Linear
mappings for the current VPID are invalidated even if EPT is in use.2 Combined
mappings for the current VPID are invalidated even if EPT is not in use.3

• An EPT violation invalidates any guest-physical mappings (associated with the
current EP4TA) that would be used to translate the guest-physical address that
caused the EPT violation. If that guest-physical address was the translation of a
linear address, the EPT violation also invalidates any combined mappings for that
linear address associated with the current PCID, the current VPID and the current
EP4TA.

• If the “enable VPID” VM-execution control is 0, VM entries and VM exits
invalidate linear mappings and combined mappings associated with VPID 0000H

1. See Section 4.10.4, “Invalidation of TLBs and Paging-Structure Caches,” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A for an enumeration of operations that
architecturally invalidate entries in the TLBs and paging-structure caches independent of VMX
operation.

2. While no linear mappings are created while EPT is in use, a logical processor may retain, while
EPT is in use, linear mappings (for the same VPID as the current one) there were created earlier,
when EPT was not in use.

3. While no combined mappings are created while EPT is not in use, a logical processor may retain,
while EPT is in not use, combined mappings (for the same VPID as the current one) there were
created earlier, when EPT was in use.
Vol. 3C 28-19

VMX SUPPORT FOR ADDRESS TRANSLATION
(for all PCIDs). Combined mappings for VPID 0000H are invalidated for all
EP4TAs.

• Execution of the INVVPID instruction invalidates linear mappings and combined
mappings. Invalidation is based on instruction operands, called the INVVPID type
and the INVVPID descriptor. Four INVVPID types are currently defined:

— Individual-address. If the INVVPID type is 0, the logical processor
invalidates linear mappings and combined mappings associated with the
VPID specified in the INVVPID descriptor and that would be used to translate
the linear address specified in of the INVVPID descriptor. Linear mappings
and combined mappings for that VPID and linear address are invalidated for
all PCIDs and, for combined mappings, all EP4TAs. (The instruction may also
invalidate mappings associated with other VPIDs and for other linear
addresses.)

— Single-context. If the INVVPID type is 1, the logical processor invalidates all
linear mappings and combined mappings associated with the VPID specified
in the INVVPID descriptor. Linear mappings and combined mappings for that
VPID are invalidated for all PCIDs and, for combined mappings, all EP4TAs.
(The instruction may also invalidate mappings associated with other VPIDs.)

— All-context. If the INVVPID type is 2, the logical processor invalidates linear
mappings and combined mappings associated with all VPIDs except VPID
0000H and with all PCIDs. (The instruction may also invalidate linear
mappings with VPID 0000H.) Combined mappings are invalidated for all
EP4TAs.

— Single-context-retaining-globals. If the INVVPID type is 3, the logical
processor invalidates linear mappings and combined mappings associated
with the VPID specified in the INVVPID descriptor. Linear mappings and
combined mappings for that VPID are invalidated for all PCIDs and, for
combined mappings, all EP4TAs. The logical processor is not required to
invalidate information that was used for global translations (although it may
do so). See Section 4.10, “Caching Translation Information” for details
regarding global translations. (The instruction may also invalidate mappings
associated with other VPIDs.)

See Chapter 29 of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3C for details of the INVVPID instruction. See Section 28.3.3.3
for guidelines regarding use of this instruction.

• Execution of the INVEPT instruction invalidates guest-physical mappings and
combined mappings. Invalidation is based on instruction operands, called the
INVEPT type and the INVEPT descriptor. Two INVEPT types are currently defined:

— Single-context. If the INVEPT type is 1, the logical processor invalidates all
guest-physical mappings and combined mappings associated with the EP4TA
specified in the INVEPT descriptor. Combined mappings for that EP4TA are
invalidated for all VPIDs and all PCIDs. (The instruction may invalidate
mappings associated with other EP4TAs.)
28-20 Vol. 3C

VMX SUPPORT FOR ADDRESS TRANSLATION
— All-context. If the INVEPT type is 2, the logical processor invalidates guest-
physical mappings and combined mappings associated with all EP4TAs (and,
for combined mappings, for all VPIDs and PCIDs).

See Chapter 29 of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3C for details of the INVEPT instruction. See Section 28.3.3.4 for
guidelines regarding use of this instruction.

• A power-up or a reset invalidates all linear mappings, guest-physical mappings,
and combined mappings.

28.3.3.2 Operations that Need Not Invalidate Cached Mappings
The following items detail cases of operations that are not required to invalidate
certain cached mappings:
• Operations that architecturally invalidate entries in the TLBs or paging-structure

caches independent of VMX operation are not required to invalidate any guest-
physical mappings.

• The INVVPID instruction is not required to invalidate any guest-physical
mappings.

• The INVEPT instruction is not required to invalidate any linear mappings.
• VMX transitions are not required to invalidate any guest-physical mappings. If

the “enable VPID” VM-execution control is 1, VMX transitions are not required to
invalidate any linear mappings or combined mappings.

• The VMXOFF and VMXON instructions are not required to invalidate any linear
mappings, guest-physical mappings, or combined mappings.

A logical processor may invalidate any cached mappings at any time. For this reason,
the operations identified above may invalidate the indicated mappings despite the
fact that doing so is not required.

28.3.3.3 Guidelines for Use of the INVVPID Instruction
The need for VMM software to use the INVVPID instruction depends on how that soft-
ware is virtualizing memory (e.g., see Section 31.3, “Memory Virtualization”).

If EPT is not in use, it is likely that the VMM is virtualizing the guest paging structures.
Such a VMM may configure the VMCS so that all or some of the operations that inval-
idate entries the TLBs and the paging-structure caches (e.g., the INVLPG instruction)
cause VM exits. If VMM software is emulating these operations, it may be necessary
to use the INVVPID instruction to ensure that the logical processor’s TLBs and the
paging-structure caches are appropriately invalidated.

Requirements of when software should use the INVVPID instruction depend on the
specific algorithm being used for page-table virtualization. The following items
provide guidelines for software developers:
Vol. 3C 28-21

VMX SUPPORT FOR ADDRESS TRANSLATION
• Emulation of the INVLPG instruction may require execution of the INVVPID
instruction as follows:

— The INVVPID type is individual-address (0).

— The VPID in the INVVPID descriptor is the one assigned to the virtual
processor whose execution is being emulated.

— The linear address in the INVVPID descriptor is that of the operand of the
INVLPG instruction being emulated.

• Some instructions invalidate all entries in the TLBs and paging-structure
caches—except for global translations. An example is the MOV to CR3 instruction.
(See Section 4.10, “Caching Translation Information” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A for details regarding
global translations.) Emulation of such an instruction may require execution of
the INVVPID instruction as follows:

— The INVVPID type is single-context-retaining-globals (3).

— The VPID in the INVVPID descriptor is the one assigned to the virtual
processor whose execution is being emulated.

• Some instructions invalidate all entries in the TLBs and paging-structure
caches—including for global translations. An example is the MOV to CR4
instruction if the value of value of bit 4 (page global enable—PGE) is changing.
Emulation of such an instruction may require execution of the INVVPID
instruction as follows:

— The INVVPID type is single-context (1).

— The VPID in the INVVPID descriptor is the one assigned to the virtual
processor whose execution is being emulated.

If EPT is not in use, the logical processor associates all mappings it creates with the
current VPID, and it will use such mappings to translate linear addresses. For that
reason, a VMM should not use the same VPID for different non-EPT guests that use
different page tables. Doing so may result in one guest using translations that pertain
to the other.

If EPT is in use, the instructions enumerated above might not be configured to cause
VM exits and the VMM might not be emulating them. In that case, executions of the
instructions by guest software properly invalidate the required entries in the TLBs
and paging-structure caches (see Section 28.3.3.1); execution of the INVVPID
instruction is not required.

If EPT is in use, the logical processor associates all mappings it creates with the value
of bits 51:12 of current EPTP. If a VMM uses different EPTP values for different guests,
it may use the same VPID for those guests. Doing so cannot result in one guest using
translations that pertain to the other.

The following guidelines apply more generally and are appropriate even if EPT is in
use:
28-22 Vol. 3C

VMX SUPPORT FOR ADDRESS TRANSLATION
• As detailed in Section 25.2.1.1, an access to the APIC-access page might not
cause an APIC-access VM exit if software does not properly invalidate information
that may be cached from the paging structures. If, at one time, the current VPID
on a logical processor was a non-zero value X, it is recommended that software
use the INVVPID instruction with the “single-context” INVVPID type and with
VPID X in the INVVPID descriptor before a VM entry on the same logical
processor that establishes VPID X and either (a) the “virtualize APIC accesses”
VM-execution control was changed from 0 to 1; or (b) the value of the APIC-
access address was changed.

• Software can use the INVVPID instruction with the “all-context” INVVPID type
immediately after execution of the VMXON instruction or immediately prior to
execution of the VMXOFF instruction. Either prevents potentially undesired
retention of information cached from paging structures between separate uses of
VMX operation.

28.3.3.4 Guidelines for Use of the INVEPT Instruction
The following items provide guidelines for use of the INVEPT instruction to invalidate
information cached from the EPT paging structures.
• Software should use the INVEPT instruction with the “single-context” INVEPT

type after making any of the following changes to an EPT paging-structure entry
(the INVEPT descriptor should contain an EPTP value that references — directly
or indirectly — the modified EPT paging structure):

— Changing any of the privilege bits 2:0 from 1 to 0.

— Changing the physical address in bits 51:12.

— For an EPT PDPTE or an EPT PDE, changing bit 7 (which determines whether
the entry maps a page).

— For the last EPT paging-structure entry used to translate a guest-physical
address (either an EPT PDE with bit 7 set to 1 or an EPT PTE), changing either
bits 5:3 or bit 6. (These bits determine the effective memory type of
accesses using that EPT paging-structure entry; see Section 28.2.4.)

• Software may use the INVEPT instruction after modifying a present EPT paging-
structure entry to change any of the privilege bits 2:0 from 0 to 1. Failure to do
so may cause an EPT violation that would not otherwise occur. Because an EPT
violation invalidates any mappings that would be used by the access that caused
the EPT violation (see Section 28.3.3.1), an EPT violation will not recur if the
original access is performed again, even if the INVEPT instruction is not executed.

• Because a logical processor does not cache any information derived from EPT
paging-structure entries that are not present or misconfigured (see Section
28.2.3.1), it is not necessary to execute INVEPT following modification of an EPT
paging-structure entry that had been not present or misconfigured.

• As detailed in Section 25.2.1.1 and Section 25.2.2.1, an access to the APIC-
access page might not cause an APIC-access VM exit if software does not
Vol. 3C 28-23

VMX SUPPORT FOR ADDRESS TRANSLATION
properly invalidate information that may be cached from the EPT paging
structures. If EPT was in use on a logical processor at one time with EPTP X, it is
recommended that software use the INVEPT instruction with the “single-context”
INVEPT type and with EPTP X in the INVEPT descriptor before a VM entry on the
same logical processor that enables EPT with EPTP X and either (a) the “virtualize
APIC accesses” VM-execution control was changed from 0 to 1; or (b) the value
of the APIC-access address was changed.

• Software can use the INVEPT instruction with the “all-context” INVEPT type
immediately after execution of the VMXON instruction or immediately prior to
execution of the VMXOFF instruction. Either prevents potentially undesired
retention of information cached from EPT paging structures between separate
uses of VMX operation.

In a system containing more than one logical processor, software must account for
the fact that information from an EPT paging-structure entry may be cached on
logical processors other than the one that modifies that entry. The process of propa-
gating the changes to a paging-structure entry is commonly referred to as “TLB
shootdown.” A discussion of TLB shootdown appears in Section 4.10.5, “Propagation
of Paging-Structure Changes to Multiple Processors,” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.
28-24 Vol. 3C

CHAPTER 29
VMX INSTRUCTION REFERENCE

NOTE
This chapter was previously located in the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2B as chapter 5.

29.1 OVERVIEW
This chapter describes the virtual-machine extensions (VMX) for the Intel 64 and
IA-32 architectures. VMX is intended to support virtualization of processor hardware
and a system software layer acting as a host to multiple guest software environ-
ments. The virtual-machine extensions (VMX) includes five instructions that manage
the virtual-machine control structure (VMCS), four instructions that manage VMX
operation, two TLB-management instructions, and two instructions for use by guest
software. Additional details of VMX are described in Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3C.

The behavior of the VMCS-maintenance instructions is summarized below:
• VMPTRLD — This instruction takes a single 64-bit source operand that is in

memory. It makes the referenced VMCS active and current, loading the current-
VMCS pointer with this operand and establishes the current VMCS based on the
contents of VMCS-data area in the referenced VMCS region. Because this makes
the referenced VMCS active, a logical processor may start maintaining on the
processor some of the VMCS data for the VMCS.

• VMPTRST — This instruction takes a single 64-bit destination operand that is in
memory. The current-VMCS pointer is stored into the destination operand.

• VMCLEAR — This instruction takes a single 64-bit operand that is in memory.
The instruction sets the launch state of the VMCS referenced by the operand to
“clear”, renders that VMCS inactive, and ensures that data for the VMCS have
been written to the VMCS-data area in the referenced VMCS region. If the
operand is the same as the current-VMCS pointer, that pointer is made invalid.

• VMREAD — This instruction reads a component from the VMCS (the encoding of
that field is given in a register operand) and stores it into a destination operand
that may be a register or in memory.

• VMWRITE — This instruction writes a component to the VMCS (the encoding of
that field is given in a register operand) from a source operand that may be a
register or in memory.

The behavior of the VMX management instructions is summarized below:
• VMLAUNCH — This instruction launches a virtual machine managed by the

VMCS. A VM entry occurs, transferring control to the VM.
Vol. 3C 29-1

VMX INSTRUCTION REFERENCE
• VMRESUME — This instruction resumes a virtual machine managed by the
VMCS. A VM entry occurs, transferring control to the VM.

• VMXOFF — This instruction causes the processor to leave VMX operation.
• VMXON — This instruction takes a single 64-bit source operand that is in

memory. It causes a logical processor to enter VMX root operation and to use the
memory referenced by the operand to support VMX operation.

The behavior of the VMX-specific TLB-management instructions is summarized
below:
• INVEPT — This instruction invalidates entries in the TLBs and paging-structure

caches that were derived from extended page tables (EPT).
• INVVPID — This instruction invalidates entries in the TLBs and paging-structure

caches based on a Virtual-Processor Identifier (VPID).

None of the instructions above can be executed in compatibility mode; they generate
invalid-opcode exceptions if executed in compatibility mode.

The behavior of the guest-available instructions is summarized below:
• VMCALL — This instruction allows software in VMX non-root operation to call the

VMM for service. A VM exit occurs, transferring control to the VMM.
• VMFUNC — This instruction allows software in VMX non-root operation to invoke

a VM function (processor functionality enabled and configured by software in
VMX root operation) without a VM exit.

29.2 CONVENTIONS
The operation sections for the VMX instructions in Section 29.3 use the pseudo-func-
tion VMexit, which indicates that the logical processor performs a VM exit.

The operation sections also use the pseudo-functions VMsucceed, VMfail,
VMfailInvalid, and VMfailValid. These pseudo-functions signal instruction success or
failure by setting or clearing bits in RFLAGS and, in some cases, by writing the
VM-instruction error field. The following pseudocode fragments detail these func-
tions:

VMsucceed:
CF ← 0;
PF ← 0;
AF ← 0;
ZF ← 0;
SF ← 0;
OF ← 0;

VMfail(ErrorNumber):
IF VMCS pointer is valid
29-2 Vol. 3C

VMX INSTRUCTION REFERENCE
THEN VMfailValid(ErrorNumber);
ELSE VMfailInvalid;

FI;

VMfailInvalid:
CF ← 1;
PF ← 0;
AF ← 0;
ZF ← 0;
SF ← 0;
OF ← 0;

VMfailValid(ErrorNumber):// executed only if there is a current VMCS
CF ← 0;
PF ← 0;
AF ← 0;
ZF ← 1;
SF ← 0;
OF ← 0;
Set the VM-instruction error field to ErrorNumber;

The different VM-instruction error numbers are enumerated in Section 29.4, “VM
Instruction Error Numbers”.

29.3 VMX INSTRUCTIONS
This section provides detailed descriptions of the VMX instructions.
Vol. 3C 29-3

VMX INSTRUCTION REFERENCE
INVEPT— Invalidate Translations Derived from EPT

Description

Invalidates mappings in the translation lookaside buffers (TLBs) and paging-struc-
ture caches that were derived from extended page tables (EPT). (See Chapter 28,
“VMX Support for Address Translation” in the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3C.) Invalidation is based on the INVEPT type
specified in the register operand and the INVEPT descriptor specified in the
memory operand.

Outside IA-32e mode, the register operand is always 32 bits, regardless of the value
of CS.D; in 64-bit mode, the register operand has 64 bits (the instruction cannot be
executed in compatibility mode).

The INVEPT types supported by a logical processors are reported in the
IA32_VMX_EPT_VPID_CAP MSR (see Appendix A, “VMX Capability Reporting Facility”
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C).
There are two INVEPT types currently defined:
• Single-context invalidation. If the INVEPT type is 1, the logical processor

invalidates all mappings associated with bits 51:12 of the EPT pointer (EPTP)
specified in the INVEPT descriptor. It may invalidate other mappings as well.

• Global invalidation: If the INVEPT type is 2, the logical processor invalidates
mappings associated with all EPTPs.

If an unsupported INVEPT type is specified, the instruction fails.

INVEPT invalidates all the specified mappings for the indicated EPTP(s) regardless of
the VPID and PCID values with which those mappings may be associated.

The INVEPT descriptor comprises 128 bits and contains a 64-bit EPTP value in
bits 63:0 (see Figure 29-1).

Opcode Instruction Description

66 0F 38 80 INVEPT r64, m128 Invalidates EPT-derived entries in the TLBs and
paging-structure caches (in 64-bit mode)

66 0F 38 80 INVEPT r32, m128 Invalidates EPT-derived entries in the TLBs and
paging-structure caches (outside 64-bit mode)

Figure 29-1. INVEPT Descriptor

127 64 63 0

Reserved (must be zero) EPT pointer (EPTP)
29-4 Vol. 3C INVEPT— Invalidate Translations Derived from EPT

VMX INSTRUCTION REFERENCE
Operation

IF (not in VMX operation) or (CR0.PE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;

ELSIF in VMX non-root operation
THEN VM exit;

ELSIF CPL > 0
THEN #GP(0);
ELSE

INVEPT_TYPE ← value of register operand;
IF IA32_VMX_EPT_VPID_CAP MSR indicates that processor does not support INVEPT_TYPE

THEN VMfail(Invalid operand to INVEPT/INVVPID);
ELSE // INVEPT_TYPE must be 1 or 2

INVEPT_DESC ← value of memory operand;
EPTP ← INVEPT_DESC[63:0];
CASE INVEPT_TYPE OF

1: // single-context invalidation
IF VM entry with the “enable EPT“ VM execution control set to 1
would fail due to the EPTP value

THEN VMfail(Invalid operand to INVEPT/INVVPID);
ELSE

Invalidate mappings associated with EPTP[51:12];
VMsucceed;

FI;
BREAK;

2: // global invalidation
Invalidate mappings associated with all EPTPs;
VMsucceed;
BREAK;

ESAC;
FI;

FI;

Flags Affected

See the operation section and Section 29.2.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains an unusable segment.
If the source operand is located in an execute-only code
segment.
Vol. 3C 29-5INVEPT— Invalidate Translations Derived from EPT

VMX INSTRUCTION REFERENCE
#PF(fault-code) If a page fault occurs in accessing the memory operand.
#SS(0) If the memory operand effective address is outside the SS

segment limit.
If the SS register contains an unusable segment.

#UD If not in VMX operation.
If the logical processor does not support EPT
(IA32_VMX_PROCBASED_CTLS2[33]=0).
If the logical processor supports EPT
(IA32_VMX_PROCBASED_CTLS2[33]=1) but does not support
the INVEPT instruction (IA32_VMX_EPT_VPID_CAP[20]=0).

Real-Address Mode Exceptions
#UD A logical processor cannot be in real-address mode while in VMX

operation and the INVEPT instruction is not recognized outside
VMX operation.

Virtual-8086 Mode Exceptions
#UD The INVEPT instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The INVEPT instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory operand is in the CS, DS, ES, FS, or GS segments
and the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing the memory operand.
#SS(0) If the memory operand is in the SS segment and the memory

address is in a non-canonical form.
#UD If not in VMX operation.

If the logical processor does not support EPT
(IA32_VMX_PROCBASED_CTLS2[33]=0).
If the logical processor supports EPT
(IA32_VMX_PROCBASED_CTLS2[33]=1) but does not support
the INVEPT instruction (IA32_VMX_EPT_VPID_CAP[20]=0).
29-6 Vol. 3C INVEPT— Invalidate Translations Derived from EPT

VMX INSTRUCTION REFERENCE
INVVPID— Invalidate Translations Based on VPID

Description

Invalidates mappings in the translation lookaside buffers (TLBs) and paging-struc-
ture caches based on virtual-processor identifier (VPID). (See Chapter 28, “VMX
Support for Address Translation” in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3C.) Invalidation is based on the INVVPID type speci-
fied in the register operand and the INVVPID descriptor specified in the memory
operand.

Outside IA-32e mode, the register operand is always 32 bits, regardless of the value
of CS.D; in 64-bit mode, the register operand has 64 bits (the instruction cannot be
executed in compatibility mode).

The INVVPID types supported by a logical processors are reported in the
IA32_VMX_EPT_VPID_CAP MSR (see Appendix A, “VMX Capability Reporting Facility”
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C).
There are four INVVPID types currently defined:
• Individual-address invalidation: If the INVVPID type is 0, the logical processor

invalidates mappings for the linear address and VPID specified in the INVVPID
descriptor. In some cases, it may invalidate mappings for other linear addresses
(or other VPIDs) as well.

• Single-context invalidation: If the INVVPID type is 1, the logical processor
invalidates all mappings tagged with the VPID specified in the INVVPID
descriptor. In some cases, it may invalidate mappings for other VPIDs as well.

• All-contexts invalidation: If the INVVPID type is 2, the logical processor
invalidates all mappings tagged with all VPIDs except VPID 0000H. In some
cases, it may invalidate translations with VPID 0000H as well.

• Single-context invalidation, retaining global translations: If the INVVPID type is
3, the logical processor invalidates all mappings tagged with the VPID specified in
the INVVPID descriptor except global translations. In some cases, it may
invalidate global translations (and mappings with other VPIDs) as well. See the
“Caching Translation Information” section in Chapter 4 of the IA-32 Intel Archi-
tecture Software Developer’s Manual, Volumes 3A for information about global
translations.

If an unsupported INVVPID type is specified, the instruction fails.

Opcode Instruction Description

66 0F 38 81 INVVPID r64, m128 Invalidates entries in the TLBs and paging-structure
caches based on VPID (in 64-bit mode)

66 0F 38 81 INVVPID r32, m128 Invalidates entries in the TLBs and paging-structure
caches based on VPID (outside 64-bit mode)
Vol. 3C 29-7INVVPID— Invalidate Translations Based on VPID

VMX INSTRUCTION REFERENCE
INVVPID invalidates all the specified mappings for the indicated VPID(s) regardless
of the EPTP and PCID values with which those mappings may be associated.

The INVVPID descriptor comprises 128 bits and consists of a VPID and a linear
address as shown in Figure 29-2.

Operation

IF (not in VMX operation) or (CR0.PE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;

ELSIF in VMX non-root operation
THEN VM exit;

ELSIF CPL > 0
THEN #GP(0);
ELSE

INVVPID_TYPE ← value of register operand;
IF IA32_VMX_EPT_VPID_CAP MSR indicates that processor does not support
INVVPID_TYPE

THEN VMfail(Invalid operand to INVEPT/INVVPID);
ELSE // INVVPID_TYPE must be in the range 0–3

INVVPID_DESC ← value of memory operand;
IF INVVPID_DESC[63:16] ≠ 0

THEN VMfail(Invalid operand to INVEPT/INVVPID);
ELSE

CASE INVVPID_TYPE OF
0: // individual-address invalidation

VPID ← INVVPID_DESC[15:0];
IF VPID = 0

THEN VMfail(Invalid operand to INVEPT/INVVPID);
ELSE

GL_ADDR ← INVVPID_DESC[127:64];
IF (GL_ADDR is not in a canonical form)

THEN
VMfail(Invalid operand to INVEPT/INVVPID);

ELSE

Figure 29-2. INVVPID Descriptor

127 64 63 01516

Reserved (must be zero)Linear Address VPID
29-8 Vol. 3C INVVPID— Invalidate Translations Based on VPID

VMX INSTRUCTION REFERENCE
Invalidate mappings for GL_ADDR tagged
with VPID;

VMsucceed;
FI;

FI;
BREAK;

1: // single-context invalidation
VPID ← INVVPID_DESC[15:0];
IF VPID = 0

THEN VMfail(Invalid operand to INVEPT/INVVPID);
ELSE

Invalidate all mappings tagged with VPID;
VMsucceed;

FI;
BREAK;

2: // all-context invalidation
Invalidate all mappings tagged with all non-zero VPIDs;
VMsucceed;
BREAK;

3: // single-context invalidation retaining globals
VPID ← INVVPID_DESC[15:0];
IF VPID = 0

THEN VMfail(Invalid operand to INVEPT/INVVPID);
ELSE

Invalidate all mappings tagged with VPID except
global translations;

VMsucceed;
FI;
BREAK;

ESAC;
FI;

FI;
FI;

Flags Affected

See the operation section and Section 29.2.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains an unusable segment.
Vol. 3C 29-9INVVPID— Invalidate Translations Based on VPID

VMX INSTRUCTION REFERENCE
If the source operand is located in an execute-only code
segment.

#PF(fault-code) If a page fault occurs in accessing the memory operand.
#SS(0) If the memory operand effective address is outside the SS

segment limit.
If the SS register contains an unusable segment.

#UD If not in VMX operation.
If the logical processor does not support VPIDs
(IA32_VMX_PROCBASED_CTLS2[37]=0).
If the logical processor supports VPIDs
(IA32_VMX_PROCBASED_CTLS2[37]=1) but does not support
the INVVPID instruction (IA32_VMX_EPT_VPID_CAP[32]=0).

Real-Address Mode Exceptions
#UD A logical processor cannot be in real-address mode while in VMX

operation and the INVVPID instruction is not recognized outside
VMX operation.

Virtual-8086 Mode Exceptions
#UD The INVVPID instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The INVVPID instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory operand is in the CS, DS, ES, FS, or GS segments
and the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing the memory operand.
#SS(0) If the memory destination operand is in the SS segment and the

memory address is in a non-canonical form.
#UD If not in VMX operation.

If the logical processor does not support VPIDs
(IA32_VMX_PROCBASED_CTLS2[37]=0).
If the logical processor supports VPIDs
(IA32_VMX_PROCBASED_CTLS2[37]=1) but does not support
the INVVPID instruction (IA32_VMX_EPT_VPID_CAP[32]=0).
29-10 Vol. 3C INVVPID— Invalidate Translations Based on VPID

VMX INSTRUCTION REFERENCE
VMCALL—Call to VM Monitor

Description

This instruction allows guest software can make a call for service into an underlying
VM monitor. The details of the programming interface for such calls are VMM-specific;
this instruction does nothing more than cause a VM exit, registering the appropriate
exit reason.

Use of this instruction in VMX root operation invokes an SMM monitor (see Section
33.15.2 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3C). This invocation will activate the dual-monitor treatment of system-
management interrupts (SMIs) and system-management mode (SMM) if it is not
already active (see Section 33.15.6 in the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3C).

Operation

IF not in VMX operation
THEN #UD;

ELSIF in VMX non-root operation
THEN VM exit;

ELSIF (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;

ELSIF CPL > 0
THEN #GP(0);

ELSIF in SMM or the logical processor does not support the dual-monitor treatment of SMIs and
SMM or the valid bit in the IA32_SMM_MONITOR_CTL MSR is clear

THEN VMfail (VMCALL executed in VMX root operation);
ELSIF dual-monitor treatment of SMIs and SMM is active

THEN perform an SMM VM exit (see Section 33.15.2
 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C);

ELSIF current-VMCS pointer is not valid
THEN VMfailInvalid;

ELSIF launch state of current VMCS is not clear
THEN VMfailValid(VMCALL with non-clear VMCS);

ELSIF VM-exit control fields are not valid (see Section 33.15.6.1 of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3C)

THEN VMfailValid (VMCALL with invalid VM-exit control fields);
ELSE

enter SMM;

Opcode Instruction Description

0F 01 C1 VMCALL Call to VM monitor by causing VM exit.
Vol. 3C 29-11VMCALL—Call to VM Monitor

VMX INSTRUCTION REFERENCE
read revision identifier in MSEG;
IF revision identifier does not match that supported by processor

THEN
leave SMM;
VMfailValid(VMCALL with incorrect MSEG revision identifier);

ELSE
read SMM-monitor features field in MSEG (see Section 33.15.6.2,
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C);
IF features field is invalid

THEN
leave SMM;
VMfailValid(VMCALL with invalid SMM-monitor features);

ELSE activate dual-monitor treatment of SMIs and SMM (see Section 33.15.6
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
3C);

FI;
FI;

FI;

Flags Affected
See the operation section and Section 29.2.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0 and the logical processor is

in VMX root operation.
#UD If executed outside VMX operation.

Real-Address Mode Exceptions
#UD If executed outside VMX operation.

Virtual-8086 Mode Exceptions
#UD If executed outside VMX non-root operation.

Compatibility Mode Exceptions
#UD If executed outside VMX non-root operation.

64-Bit Mode Exceptions
#UD If executed outside VMX non-root operation.
29-12 Vol. 3C VMCALL—Call to VM Monitor

VMX INSTRUCTION REFERENCE
VMCLEAR—Clear Virtual-Machine Control Structure

Description

This instruction applies to the VMCS whose VMCS region resides at the physical
address contained in the instruction operand. The instruction ensures that VMCS
data for that VMCS (some of these data may be currently maintained on the
processor) are copied to the VMCS region in memory. It also initializes parts of the
VMCS region (for example, it sets the launch state of that VMCS to clear). See
Chapter 24, “Virtual-Machine Control Structures,” in the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3C.

The operand of this instruction is always 64 bits and is always in memory. If the
operand is the current-VMCS pointer, then that pointer is made invalid (set to
FFFFFFFF_FFFFFFFFH).

Note that the VMCLEAR instruction might not explicitly write any VMCS data to
memory; the data may be already resident in memory before the VMCLEAR is
executed.

Operation

IF (register operand) or (not in VMX operation) or (CR0.PE = 0) or (RFLAGS.VM = 1) or
(IA32_EFER.LMA = 1 and CS.L = 0)

THEN #UD;
ELSIF in VMX non-root operation

THEN VM exit;
ELSIF CPL > 0

THEN #GP(0);
ELSE

addr ← contents of 64-bit in-memory operand;
IF addr is not 4KB-aligned OR
addr sets any bits beyond the physical-address width1

THEN VMfail(VMCLEAR with invalid physical address);
ELSIF addr = VMXON pointer

THEN VMfail(VMCLEAR with VMXON pointer);
ELSE

ensure that data for VMCS referenced by the operand is in memory;
initialize implementation-specific data in VMCS region;

Opcode Instruction Description

66 0F C7 /6 VMCLEAR m64 Copy VMCS data to VMCS region in memory.

1. If IA32_VMX_BASIC[48] is read as 1, VMfail occurs if addr sets any bits in the range 63:32; see
Appendix A.1.
Vol. 3C 29-13VMCLEAR—Clear Virtual-Machine Control Structure

VMX INSTRUCTION REFERENCE
launch state of VMCS referenced by the operand ← “clear”
IF operand addr = current-VMCS pointer

THEN current-VMCS pointer ← FFFFFFFF_FFFFFFFFH;
FI;
VMsucceed;

FI;
FI;

Flags Affected
See the operation section and Section 29.2.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains an unusable segment.
If the operand is located in an execute-only code segment.

#PF(fault-code) If a page fault occurs in accessing the memory operand.
#SS(0) If the memory operand effective address is outside the SS

segment limit.
If the SS register contains an unusable segment.

#UD If operand is a register.
If not in VMX operation.

Real-Address Mode Exceptions
#UD A logical processor cannot be in real-address mode while in VMX

operation and the VMCLEAR instruction is not recognized outside
VMX operation.

Virtual-8086 Mode Exceptions
#UD The VMCLEAR instruction is not recognized in virtual-8086

mode.

Compatibility Mode Exceptions
#UD The VMCLEAR instruction is not recognized in compatibility

mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the source operand is in the CS, DS, ES, FS, or GS segments
and the memory address is in a non-canonical form.
29-14 Vol. 3C VMCLEAR—Clear Virtual-Machine Control Structure

VMX INSTRUCTION REFERENCE
#PF(fault-code) If a page fault occurs in accessing the memory operand.
#SS(0) If the source operand is in the SS segment and the memory

address is in a non-canonical form.
#UD If operand is a register.

If not in VMX operation.
Vol. 3C 29-15VMCLEAR—Clear Virtual-Machine Control Structure

VMX INSTRUCTION REFERENCE
VMFUNC—Invoke VM function

Description

This instruction allows software in VMX non-root operation to invoke a VM function,
which is processor functionality enabled and configured by software in VMX root oper-
ation. The value of EAX selects the specific VM function being invoked.

The behavior of each VM function (including any additional fault checking) is specified
in Section 25.7.4, “VM Functions,” in Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3C.

Operation

Perform functionality of the VM function specified in EAX;

Flags Affected
Depends on the VM function specified in EAX. See Section 25.7.4, “VM Functions,” in
Intel 64 and IA-32 Architecture Software Developer’s Manual, Volume 3C.

Protected Mode Exceptions (not including those defined by specific VM functions)
#UD If executed outside VMX non-root operation.

If “enable VM functions” VM-execution control is 0.
If EAX ≥ 64.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

Opcode Instruction Description

0F 01 D4 VMFUNC Invoke VM function specified in EAX.
29-16 Vol. 3C VMFUNC—Invoke VM function

VMX INSTRUCTION REFERENCE
VMLAUNCH/VMRESUME—Launch/Resume Virtual Machine

Description

Effects a VM entry managed by the current VMCS.
• VMLAUNCH fails if the launch state of current VMCS is not “clear”. If the

instruction is successful, it sets the launch state to “launched.”
• VMRESUME fails if the launch state of the current VMCS is not “launched.”

If VM entry is attempted, the logical processor performs a series of consistency
checks as detailed in Chapter 26, “VM Entries,” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3C. Failure to pass checks on the VMX
controls or on the host-state area passes control to the instruction following the
VMLAUNCH or VMRESUME instruction. If these pass but checks on the guest-state
area fail, the logical processor loads state from the host-state area of the VMCS,
passing control to the instruction referenced by the RIP field in the host-state area.

VM entry is not allowed when events are blocked by MOV SS or POP SS. Neither
VMLAUNCH nor VMRESUME should be used immediately after either MOV to SS or
POP to SS.

Operation

IF (not in VMX operation) or (CR0.PE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;

ELSIF in VMX non-root operation
THEN VMexit;

ELSIF CPL > 0
THEN #GP(0);

ELSIF current-VMCS pointer is not valid
THEN VMfailInvalid;

ELSIF events are being blocked by MOV SS
THEN VMfailValid(VM entry with events blocked by MOV SS);

ELSIF (VMLAUNCH and launch state of current VMCS is not “clear”)
THEN VMfailValid(VMLAUNCH with non-clear VMCS);

ELSIF (VMRESUME and launch state of current VMCS is not “launched”)
THEN VMfailValid(VMRESUME with non-launched VMCS);
ELSE

Check settings of VMX controls and host-state area;
IF invalid settings

Opcode Instruction Description

0F 01 C2 VMLAUNCH Launch virtual machine managed by current VMCS.

0F 01 C3 VMRESUME Resume virtual machine managed by current VMCS.
Vol. 3C 29-17VMLAUNCH/VMRESUME—Launch/Resume Virtual Machine

VMX INSTRUCTION REFERENCE
THEN VMfailValid(VM entry with invalid VMX-control field(s)) or
VMfailValid(VM entry with invalid host-state field(s)) or
VMfailValid(VM entry with invalid executive-VMCS pointer)) or
VMfailValid(VM entry with non-launched executive VMCS) or
VMfailValid(VM entry with executive-VMCS pointer not VMXON pointer) or
VMfailValid(VM entry with invalid VM-execution control fields in executive
VMCS)
as appropriate;

ELSE
Attempt to load guest state and PDPTRs as appropriate;
clear address-range monitoring;
IF failure in checking guest state or PDPTRs

THEN VM entry fails (see Section 26.7, in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C);
ELSE

Attempt to load MSRs from VM-entry MSR-load area;
IF failure

THEN VM entry fails (see Section 26.7, in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3C);

ELSE
IF VMLAUNCH

THEN launch state of VMCS ← “launched”;
FI;
IF in SMM and “entry to SMM” VM-entry control is 0

THEN
IF “deactivate dual-monitor treatment” VM-entry
control is 0

THEN SMM-transfer VMCS pointer ←
current-VMCS pointer;

FI;
IF executive-VMCS pointer is VMX pointer

THEN current-VMCS pointer ←
VMCS-link pointer;
ELSE current-VMCS pointer ←
executive-VMCS pointer;

FI;
leave SMM;

FI;
VM entry succeeds;

FI;
FI;

FI;
FI;
29-18 Vol. 3C VMLAUNCH/VMRESUME—Launch/Resume Virtual Machine

VMX INSTRUCTION REFERENCE
Further details of the operation of the VM-entry appear in Chapter 26 of Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 3C.

Flags Affected

See the operation section and Section 29.2.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.
#UD If executed outside VMX operation.

Real-Address Mode Exceptions
#UD A logical processor cannot be in real-address mode while in VMX

operation and the VMLAUNCH and VMRESUME instructions are
not recognized outside VMX operation.

Virtual-8086 Mode Exceptions
#UD The VMLAUNCH and VMRESUME instructions are not recognized

in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The VMLAUNCH and VMRESUME instructions are not recognized

in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.
#UD If executed outside VMX operation.
Vol. 3C 29-19VMLAUNCH/VMRESUME—Launch/Resume Virtual Machine

VMX INSTRUCTION REFERENCE
VMPTRLD—Load Pointer to Virtual-Machine Control Structure

Description

Marks the current-VMCS pointer valid and loads it with the physical address in the
instruction operand. The instruction fails if its operand is not properly aligned, sets
unsupported physical-address bits, or is equal to the VMXON pointer. In addition, the
instruction fails if the 32 bits in memory referenced by the operand do not match the
VMCS revision identifier supported by this processor.1

The operand of this instruction is always 64 bits and is always in memory.

Operation

IF (register operand) or (not in VMX operation) or (CR0.PE = 0) or (RFLAGS.VM = 1) or
(IA32_EFER.LMA = 1 and CS.L = 0)

THEN #UD;
ELSIF in VMX non-root operation

THEN VMexit;
ELSIF CPL > 0

THEN #GP(0);
ELSE

addr ← contents of 64-bit in-memory source operand;
IF addr is not 4KB-aligned OR
addr sets any bits beyond the physical-address width2

THEN VMfail(VMPTRLD with invalid physical address);
ELSIF addr = VMXON pointer

THEN VMfail(VMPTRLD with VMXON pointer);
ELSE

rev ← 32 bits located at physical address addr;
IF rev ≠ VMCS revision identifier supported by processor

THEN VMfail(VMPTRLD with incorrect VMCS revision identifier);
ELSE

current-VMCS pointer ← addr;
VMsucceed;

Opcode Instruction Description

0F C7 /6 VMPTRLD m64 Loads the current VMCS pointer from memory.

1. Software should consult the VMX capability MSR VMX_BASIC to discover the VMCS revision iden-
tifier supported by this processor (see Appendix A, “VMX Capability Reporting Facility,” in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C).

2. If IA32_VMX_BASIC[48] is read as 1, VMfail occurs if addr sets any bits in the range 63:32; see
Appendix A.1.
29-20 Vol. 3C VMPTRLD—Load Pointer to Virtual-Machine Control Structure

VMX INSTRUCTION REFERENCE
FI;
FI;

FI;

Flags Affected

See the operation section and Section 29.2.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory source operand effective address is outside the
CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains an unusable segment.
If the source operand is located in an execute-only code
segment.

#PF(fault-code) If a page fault occurs in accessing the memory source operand.
#SS(0) If the memory source operand effective address is outside the

SS segment limit.
If the SS register contains an unusable segment.

#UD If operand is a register.
If not in VMX operation.

Real-Address Mode Exceptions
#UD A logical processor cannot be in real-address mode while in VMX

operation and the VMPTRLD instruction is not recognized
outside VMX operation.

Virtual-8086 Mode Exceptions
#UD The VMPTRLD instruction is not recognized in virtual-8086

mode.

Compatibility Mode Exceptions
#UD The VMPTRLD instruction is not recognized in compatibility

mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the source operand is in the CS, DS, ES, FS, or GS segments
and the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing the memory source operand.
Vol. 3C 29-21VMPTRLD—Load Pointer to Virtual-Machine Control Structure

VMX INSTRUCTION REFERENCE
#SS(0) If the source operand is in the SS segment and the memory
address is in a non-canonical form.

#UD If operand is a register.
If not in VMX operation.
29-22 Vol. 3C VMPTRLD—Load Pointer to Virtual-Machine Control Structure

VMX INSTRUCTION REFERENCE
VMPTRST—Store Pointer to Virtual-Machine Control Structure

Description

Stores the current-VMCS pointer into a specified memory address. The operand of
this instruction is always 64 bits and is always in memory.

Operation

IF (register operand) or (not in VMX operation) or (CR0.PE = 0) or (RFLAGS.VM = 1) or
(IA32_EFER.LMA = 1 and CS.L = 0)

THEN #UD;
ELSIF in VMX non-root operation

THEN VMexit;
ELSIF CPL > 0

THEN #GP(0);
ELSE

64-bit in-memory destination operand ← current-VMCS pointer;
VMsucceed;

FI;

Flags Affected
See the operation section and Section 29.2.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory destination operand effective address is outside
the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains an unusable segment.
If the destination operand is located in a read-only data
segment or any code segment.

#PF(fault-code) If a page fault occurs in accessing the memory destination
operand.

#SS(0) If the memory destination operand effective address is outside
the SS segment limit.
If the SS register contains an unusable segment.

#UD If operand is a register.
If not in VMX operation.

Opcode Instruction Description

0F C7 /7 VMPTRST m64 Stores the current VMCS pointer into memory.
Vol. 3C 29-23VMPTRST—Store Pointer to Virtual-Machine Control Structure

VMX INSTRUCTION REFERENCE
Real-Address Mode Exceptions
#UD A logical processor cannot be in real-address mode while in VMX

operation and the VMPTRST instruction is not recognized outside
VMX operation.

Virtual-8086 Mode Exceptions
#UD The VMPTRST instruction is not recognized in virtual-8086

mode.

Compatibility Mode Exceptions
#UD The VMPTRST instruction is not recognized in compatibility

mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the destination operand is in the CS, DS, ES, FS, or GS
segments and the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing the memory destination
operand.

#SS(0) If the destination operand is in the SS segment and the memory
address is in a non-canonical form.

#UD If operand is a register.
If not in VMX operation.
29-24 Vol. 3C VMPTRST—Store Pointer to Virtual-Machine Control Structure

VMX INSTRUCTION REFERENCE
VMREAD—Read Field from Virtual-Machine Control Structure

Description

Reads a specified field from the VMCS and stores it into a specified destination
operand (register or memory).

The specific VMCS field is identified by the VMCS-field encoding contained in the
register source operand. Outside IA-32e mode, the source operand has 32 bits,
regardless of the value of CS.D. In 64-bit mode, the source operand has 64 bits;
however, if bits 63:32 of the source operand are not zero, VMREAD will fail due to an
attempt to access an unsupported VMCS component (see operation section).

The effective size of the destination operand, which may be a register or in memory,
is always 32 bits outside IA-32e mode (the setting of CS.D is ignored with respect to
operand size) and 64 bits in 64-bit mode. If the VMCS field specified by the source
operand is shorter than this effective operand size, the high bits of the destination
operand are cleared to 0. If the VMCS field is longer, then the high bits of the field are
not read.

Note that any faults resulting from accessing a memory destination operand can
occur only after determining, in the operation section below, that the VMCS pointer is
valid and that the specified VMCS field is supported.

Operation

IF (not in VMX operation) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;

ELSIF in VMX non-root operation
THEN VMexit;

ELSIF CPL > 0
THEN #GP(0);

ELSIF current-VMCS pointer is not valid
THEN VMfailInvalid;

ELSIF register source operand does not correspond to any VMCS field
THEN VMfailValid(VMREAD/VMWRITE from/to unsupported VMCS component);
ELSE

DEST ← contents of VMCS field indexed by register source operand;
VMsucceed;

FI;

Opcode Instruction Description

0F 78 VMREAD r/m64, r64 Reads a specified VMCS field (in 64-bit mode).

0F 78 VMREAD r/m32, r32 Reads a specified VMCS field (outside 64-bit mode).
Vol. 3C 29-25VMREAD—Read Field from Virtual-Machine Control Structure

VMX INSTRUCTION REFERENCE
Flags Affected

See the operation section and Section 29.2.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If a memory destination operand effective address is outside the
CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains an unusable segment.
If the destination operand is located in a read-only data
segment or any code segment.

#PF(fault-code) If a page fault occurs in accessing a memory destination
operand.

#SS(0) If a memory destination operand effective address is outside the
SS segment limit.
If the SS register contains an unusable segment.

#UD If not in VMX operation.

Real-Address Mode Exceptions
#UD A logical processor cannot be in real-address mode while in VMX

operation and the VMREAD instruction is not recognized outside
VMX operation.

Virtual-8086 Mode Exceptions
#UD The VMREAD instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The VMREAD instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory destination operand is in the CS, DS, ES, FS, or
GS segments and the memory address is in a non-canonical
form.

#PF(fault-code) If a page fault occurs in accessing a memory destination
operand.

#SS(0) If the memory destination operand is in the SS segment and the
memory address is in a non-canonical form.

#UD If not in VMX operation.
29-26 Vol. 3C VMREAD—Read Field from Virtual-Machine Control Structure

VMX INSTRUCTION REFERENCE
VMRESUME—Resume Virtual Machine

See VMLAUNCH/VMRESUME—Launch/Resume Virtual Machine.
Vol. 3C 29-27VMRESUME—Resume Virtual Machine

VMX INSTRUCTION REFERENCE
VMWRITE—Write Field to Virtual-Machine Control Structure

Description

Writes to a specified field in the VMCS specified by a secondary source operand
(register only) using the contents of a primary source operand (register or memory).

The VMCS field is identified by the VMCS-field encoding contained in the register
secondary source operand. Outside IA-32e mode, the secondary source operand is
always 32 bits, regardless of the value of CS.D. In 64-bit mode, the secondary source
operand has 64 bits; however, if bits 63:32 of the secondary source operand are not
zero, VMWRITE will fail due to an attempt to access an unsupported VMCS compo-
nent (see operation section).

The effective size of the primary source operand, which may be a register or in
memory, is always 32 bits outside IA-32e mode (the setting of CS.D is ignored with
respect to operand size) and 64 bits in 64-bit mode. If the VMCS field specified by the
secondary source operand is shorter than this effective operand size, the high bits of
the primary source operand are ignored. If the VMCS field is longer, then the high bits
of the field are cleared to 0.

Note that any faults resulting from accessing a memory source operand occur after
determining, in the operation section below, that the VMCS pointer is valid but before
determining if the destination VMCS field is supported.

Operation

IF (not in VMX operation) or (CR0.PE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;

ELSIF in VMX non-root operation
THEN VMexit;

ELSIF CPL > 0
THEN #GP(0);

ELSIF current-VMCS pointer is not valid
THEN VMfailInvalid;

ELSIF register destination operand does not correspond to any VMCS field
THEN VMfailValid(VMREAD/VMWRITE from/to unsupported VMCS component);

ELSIF VMCS field indexed by register destination operand is read-only)
THEN VMfailValid(VMWRITE to read-only VMCS component);
ELSE

VMCS field indexed by register destination operand ← SRC;
VMsucceed;

Opcode Instruction Description

0F 79 VMWRITE r64, r/m64 Writes a specified VMCS field (in 64-bit mode)

0F 79 VMWRITE r32, r/m32 Writes a specified VMCS field (outside 64-bit mode)
29-28 Vol. 3C VMWRITE—Write Field to Virtual-Machine Control Structure

VMX INSTRUCTION REFERENCE
FI;

Flags Affected
See the operation section and Section 29.2.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If a memory source operand effective address is outside the CS,
DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains an unusable segment.
If the source operand is located in an execute-only code
segment.

#PF(fault-code) If a page fault occurs in accessing a memory source operand.
#SS(0) If a memory source operand effective address is outside the SS

segment limit.
If the SS register contains an unusable segment.

#UD If not in VMX operation.

Real-Address Mode Exceptions
#UD A logical processor cannot be in real-address mode while in VMX

operation and the VMWRITE instruction is not recognized
outside VMX operation.

Virtual-8086 Mode Exceptions
#UD The VMWRITE instruction is not recognized in virtual-8086

mode.

Compatibility Mode Exceptions
#UD The VMWRITE instruction is not recognized in compatibility

mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory source operand is in the CS, DS, ES, FS, or GS
segments and the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing a memory source operand.
#SS(0) If the memory source operand is in the SS segment and the

memory address is in a non-canonical form.
#UD If not in VMX operation.
Vol. 3C 29-29VMWRITE—Write Field to Virtual-Machine Control Structure

VMX INSTRUCTION REFERENCE
VMXOFF—Leave VMX Operation

Description

Takes the logical processor out of VMX operation, unblocks INIT signals, conditionally
re-enables A20M, and clears any address-range monitoring.1

Operation

IF (not in VMX operation) or (CR0.PE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;

ELSIF in VMX non-root operation
THEN VMexit;

ELSIF CPL > 0
THEN #GP(0);

ELSIF dual-monitor treatment of SMIs and SMM is active
THEN VMfail(VMXOFF under dual-monitor treatment of SMIs and SMM);
ELSE

leave VMX operation;
unblock INIT;
IF IA32_SMM_MONITOR_CTL[2] = 02

THEN unblock SMIs;
IF outside SMX operation3

THEN unblock and enable A20M;
FI;
clear address-range monitoring;
VMsucceed;

FI;

Opcode Instruction Description

0F 01 C4 VMXOFF Leaves VMX operation.

1. See the information on MONITOR/MWAIT in Chapter 8, “Multiple-Processor Management,” of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

2. Setting IA32_SMM_MONITOR_CTL[bit 2] to 1 prevents VMXOFF from unblocking SMIs regardless
of the value of the register’s value bit (bit 0). Not all processors allow this bit to be set to 1. Soft-
ware should consult the VMX capability MSR IA32_VMX_MISC (see Appendix A.6) to determine
whether this is allowed.

3. A logical processor is outside SMX operation if GETSEC[SENTER] has not been executed or if
GETSEC[SEXIT] was executed after the last execution of GETSEC[SENTER]. See Chapter 6, “Safer
Mode Extensions Reference.”
29-30 Vol. 3C VMXOFF—Leave VMX Operation

VMX INSTRUCTION REFERENCE
Flags Affected

See the operation section and Section 29.2.

Protected Mode Exceptions
#GP(0) If executed in VMX root operation with CPL > 0.
#UD If executed outside VMX operation.

Real-Address Mode Exceptions
#UD A logical processor cannot be in real-address mode while in VMX

operation and the VMXOFF instruction is not recognized outside
VMX operation.

Virtual-8086 Mode Exceptions
#UD The VMXOFF instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The VMXOFF instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If executed in VMX root operation with CPL > 0.
#UD If executed outside VMX operation.
Vol. 3C 29-31VMXOFF—Leave VMX Operation

VMX INSTRUCTION REFERENCE
VMXON—Enter VMX Operation

Description

Puts the logical processor in VMX operation with no current VMCS, blocks INIT
signals, disables A20M, and clears any address-range monitoring established by the
MONITOR instruction.1

The operand of this instruction is a 4KB-aligned physical address (the VMXON
pointer) that references the VMXON region, which the logical processor may use to
support VMX operation. This operand is always 64 bits and is always in memory.

Operation

IF (register operand) or (CR0.PE = 0) or (CR4.VMXE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1
and CS.L = 0)

THEN #UD;
ELSIF not in VMX operation

THEN
IF (CPL > 0) or (in A20M mode) or
(the values of CR0 and CR4 are not supported in VMX operation2) or
(bit 0 (lock bit) of IA32_FEATURE_CONTROL MSR is clear) or
(in SMX operation3 and bit 1 of IA32_FEATURE_CONTROL MSR is clear) or
(outside SMX operation and bit 2 of IA32_FEATURE_CONTROL MSR is clear)

THEN #GP(0);
ELSE

addr ← contents of 64-bit in-memory source operand;
IF addr is not 4KB-aligned or
addr sets any bits beyond the physical-address width4

THEN VMfailInvalid;

Opcode Instruction Description

F3 0F C7 /6 VMXON m64 Enter VMX root operation.

1. See the information on MONITOR/MWAIT in Chapter 8, “Multiple-Processor Management,” of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

2. See Section 19.8 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
3B.

3. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last
execution of GETSEC[SENTER]. A logical processor is outside SMX operation if GETSEC[SENTER]
has not been executed or if GETSEC[SEXIT] was executed after the last execution of GET-
SEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference.”

4. If IA32_VMX_BASIC[48] is read as 1, VMfailInvalid occurs if addr sets any bits in the range 63:32;
see Appendix A.1.
29-32 Vol. 3C VMXON—Enter VMX Operation

VMX INSTRUCTION REFERENCE
ELSE
rev ← 32 bits located at physical address addr;
IF rev ≠ VMCS revision identifier supported by processor

THEN VMfailInvalid;
ELSE

current-VMCS pointer ← FFFFFFFF_FFFFFFFFH;
enter VMX operation;
block INIT signals;
block and disable A20M;
clear address-range monitoring;
VMsucceed;

FI;
FI;

FI;
ELSIF in VMX non-root operation

THEN VMexit;
ELSIF CPL > 0

THEN #GP(0);
ELSE VMfail(“VMXON executed in VMX root operation”);

FI;

Flags Affected
See the operation section and Section 29.2.

Protected Mode Exceptions
#GP(0) If executed outside VMX operation with CPL>0 or with invalid

CR0 or CR4 fixed bits.
If executed in A20M mode.
If the memory source operand effective address is outside the
CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains an unusable segment.
If the source operand is located in an execute-only code
segment.

#PF(fault-code) If a page fault occurs in accessing the memory source operand.
#SS(0) If the memory source operand effective address is outside the

SS segment limit.
If the SS register contains an unusable segment.

#UD If operand is a register.
If executed with CR4.VMXE = 0.
Vol. 3C 29-33VMXON—Enter VMX Operation

VMX INSTRUCTION REFERENCE
Real-Address Mode Exceptions
#UD The VMXON instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The VMXON instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The VMXON instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If executed outside VMX operation with CPL > 0 or with invalid

CR0 or CR4 fixed bits.
If executed in A20M mode.
If the source operand is in the CS, DS, ES, FS, or GS segments
and the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing the memory source operand.
#SS(0) If the source operand is in the SS segment and the memory

address is in a non-canonical form.
#UD If operand is a register.

If executed with CR4.VMXE = 0.
29-34 Vol. 3C

VMX INSTRUCTION REFERENCE
29.4 VM INSTRUCTION ERROR NUMBERS
For certain error conditions, the VM-instruction error field is loaded with an error
number to indicate the source of the error. Table 29-1 lists VM-instruction error
numbers.

Table 29-1. VM-Instruction Error Numbers
Error
Number Description

1 VMCALL executed in VMX root operation

2 VMCLEAR with invalid physical address

3 VMCLEAR with VMXON pointer

4 VMLAUNCH with non-clear VMCS

5 VMRESUME with non-launched VMCS

6 VMRESUME after VMXOFF (VMXOFF and VMXON between VMLAUNCH and VMRESUME)1

7 VM entry with invalid control field(s)2,3

8 VM entry with invalid host-state field(s)2

9 VMPTRLD with invalid physical address

10 VMPTRLD with VMXON pointer

11 VMPTRLD with incorrect VMCS revision identifier

12 VMREAD/VMWRITE from/to unsupported VMCS component

13 VMWRITE to read-only VMCS component

15 VMXON executed in VMX root operation

16 VM entry with invalid executive-VMCS pointer2

17 VM entry with non-launched executive VMCS2

18 VM entry with executive-VMCS pointer not VMXON pointer (when attempting to
deactivate the dual-monitor treatment of SMIs and SMM)2

19 VMCALL with non-clear VMCS (when attempting to activate the dual-monitor treatment
of SMIs and SMM)

20 VMCALL with invalid VM-exit control fields

22 VMCALL with incorrect MSEG revision identifier (when attempting to activate the dual-
monitor treatment of SMIs and SMM)

23 VMXOFF under dual-monitor treatment of SMIs and SMM

24 VMCALL with invalid SMM-monitor features (when attempting to activate the dual-
monitor treatment of SMIs and SMM)
Vol. 3C 29-35

VMX INSTRUCTION REFERENCE
25 VM entry with invalid VM-execution control fields in executive VMCS (when attempting to
return from SMM)2,3

26 VM entry with events blocked by MOV SS.

28 Invalid operand to INVEPT/INVVPID.

NOTES:
1. Earlier versions of this manual described this error as “VMRESUME with a corrupted VMCS”.
2. VM-entry checks on control fields and host-state fields may be performed in any order. Thus, an

indication by error number of one cause does not imply that there are not also other errors. Differ-
ent processors may give different error numbers for the same VMCS.

3. Error number 7 is not used for VM entries that return from SMM that fail due to invalid
VM-execution control fields in the executive VMCS. Error number 25 is used for these cases.

Table 29-1. VM-Instruction Error Numbers (Contd.)
Error
Number Description
29-36 Vol. 3C

CHAPTER 30
VIRTUAL-MACHINE MONITOR PROGRAMMING

CONSIDERATIONS

30.1 VMX SYSTEM PROGRAMMING OVERVIEW
The Virtual Machine Monitor (VMM) is a software class used to manage virtual
machines (VM). This chapter describes programming considerations for VMMs.

Each VM behaves like a complete physical machine and can run operating system
(OS) and applications. The VMM software layer runs at the most privileged level and
has complete ownership of the underlying system hardware. The VMM controls
creation of a VM, transfers control to a VM, and manages situations that can cause
transitions between the guest VMs and host VMM. The VMM allows the VMs to share
the underlying hardware and yet provides isolation between the VMs. The guest soft-
ware executing in a VM is unaware of any transitions that might have occurred
between the VM and its host.

30.2 SUPPORTING PROCESSOR OPERATING MODES IN
GUEST ENVIRONMENTS

Typically, VMMs transfer control to a VM using VMX transitions referred to as VM
entries. The boundary conditions that define what a VM is allowed to execute in isola-
tion are specified in a virtual-machine control structure (VMCS).

As noted in Section 23.8, processors may fix certain bits in CR0 and CR4 to specific
values and not support other values. The first processors to support VMX operation
require that CR0.PE and CR0.PG be 1 in VMX operation. Thus, a VM entry is allowed
only to guests with paging enabled that are in protected mode or in virtual-8086
mode. Guest execution in other processor operating modes need to be specially
handled by the VMM.

One example of such a condition is guest execution in real-mode. A VMM could
support guest real-mode execution using at least two approaches:
• By using a fast instruction set emulator in the VMM.
• By using the similarity between real-mode and virtual-8086 mode to support

real-mode guest execution in a virtual-8086 container. The virtual-8086
container may be implemented as a virtual-8086 container task within a monitor
that emulates real-mode guest state and instructions, or by running the guest VM
as the virtual-8086 container (by entering the guest with RFLAGS.VM1 set).
Attempts by real-mode code to access privileged state outside the virtual-8086
container would trap to the VMM and would also need to be emulated.
Vol. 3C 30-1

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
Another example of such a condition is guest execution in protected mode with
paging disabled. A VMM could support such guest execution by using “identity” page
tables to emulate unpaged protected mode.

30.2.1 Using Unrestricted Guest Mode
Processors which support the “unrestricted guest” VM-execution control allow VM
software to run in real-address mode and unpaged protected mode. Since these
modes do not use paging, VMM software must virtualize guest memory using EPT.

Special notes for 64-bit VMM software using the 1-setting of the “unrestricted guest”
VM-execution control:
• It is recommended that 64-bit VMM software use the 1-settings of the "load

IA32_EFER" VM entry control and the "save IA32_EFER" VM-exit control. If VM
entry is establishing CR0.PG=0 and if the "IA-32e mode guest" and "load
IA32_EFER" VM entry controls are both 0, VM entry leaves IA32_EFER.LME
unmodified (i.e., the host value will persist in the guest).

• It is not necessary for VMM software to track guest transitions into and out of IA-
32e mode for the purpose of maintaining the correct setting of the "IA-32e mode
guest" VM entry control. This is because VM exits on processors supporting the
1-setting of the "unrestricted guest" VM-execution control save the (guest) value
of IA32_EFER.LMA into the "IA-32e mode guest" VM entry control.

30.3 MANAGING VMCS REGIONS AND POINTERS
A VMM must observe necessary procedures when working with a VMCS, the associ-
ated VMCS pointer, and the VMCS region. It must also not assume the state of persis-
tency for VMCS regions in memory or cache.

Before entering VMX operation, the host VMM allocates a VMXON region. A VMM can
host several virtual machines and have many VMCSs active under its management.
A unique VMCS region is required for each virtual machine; a VMXON region is
required for the VMM itself.

A VMM determines the VMCS region size by reading IA32_VMX_BASIC MSR; it
creates VMCS regions of this size using a 4-KByte-aligned area of physical memory.
Each VMCS region needs to be initialized with a VMCS revision identifier (at byte
offset 0) identical to the revision reported by the processor in the VMX capability
MSR.

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most
processors that support VMX operation also support Intel 64 architecture. For processors that do
not support Intel 64 architecture, this notation refers to the 32-bit forms of those registers
(EAX, EIP, ESP, EFLAGS, etc.).
30-2 Vol. 3C

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
NOTE
Software must not read or write directly to the VMCS data region as
the format is not architecturally defined. Consequently, Intel
recommends that the VMM remove any linear-address mappings to
VMCS regions before loading.

System software does not need to do special preparation to the VMXON region before
entering into VMX operation. The address of the VMXON region for the VMM is
provided as an operand to VMXON instruction. Once in VMX root operation, the VMM
needs to prepare data fields in the VMCS that control the execution of a VM upon a
VM entry. The VMM can make a VMCS the current VMCS by using the VMPTRLD
instruction. VMCS data fields must be read or written only through VMREAD and
VMWRITE commands respectively.

Every component of the VMCS is identified by a 32-bit encoding that is provided as
an operand to VMREAD and VMWRITE. Appendix B provides the encodings. A VMM
must properly initialize all fields in a VMCS before using the current VMCS for VM
entry.

A VMCS is referred to as a controlling VMCS if it is the current VMCS on a logical
processor in VMX non-root operation. A current VMCS for controlling a logical
processor in VMX non-root operation may be referred to as a working VMCS if the
logical processor is not in VMX non-root operation. The relationship of active, current
(i.e. working) and controlling VMCS during VMX operation is shown in Figure 30-1.

NOTE
As noted in Section 24.1, the processor may optimize VMX operation
by maintaining the state of an active VMCS (one for which VMPTRLD
has been executed) on the processor. Before relinquishing control to
other system software that may, without informing the VMM, remove
power from the processor (e.g., for transitions to S3 or S4) or leave
VMX operation, a VMM must VMCLEAR all active VMCSs. This ensures
that all VMCS data cached by the processor are flushed to memory
and that no other software can corrupt the current VMM’s VMCS data.
It is also recommended that the VMM execute VMXOFF after such
executions of VMCLEAR.

The VMX capability MSR IA32_VMX_BASIC reports the memory type used by the
processor for accessing a VMCS or any data structures referenced through pointers in
the VMCS. Software must maintain the VMCS structures in cache-coherent memory.
Software must always map the regions hosting the I/O bitmaps, MSR bitmaps, VM-
exit MSR-store area, VM-exit MSR-load area, and VM-entry MSR-load area to the
write-back (WB) memory type. Mapping these regions to uncacheable (UC) memory
type is supported, but strongly discouraged due to negative impact on performance.
Vol. 3C 30-3

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
30.4 USING VMX INSTRUCTIONS
VMX instructions are allowed only in VMX root operation. An attempt to execute a
VMX instruction in VMX non-root operation causes a VM exit.

Figure 30-1. VMX Transitions and States of VMCS in a Logical Processor

(a) VMX Operation and VMX Transitions

(b) State of VMCS and VMX Operation

Processor
Operation

VMXON

VM Entry VM Entry VM Entry VM Entry

VM Exit VM Exit
VM Exit

VM Exit

VMXOFF

Outside
VMX

Operation

VMX Root
Operation

VMX
Non-Root
Operation

Legend:

Legend:
Inactive
VMCS

Current VMCS
(working)

Active VMCS
(not current)

Current VMCS
(controlling)

VMCS B

VMCS A

VMLAUNCH
VMRESUME

VMPTRLD B

VMCLEAR B

VM Exit VM Exit

VMPTRLD A VMPTRLD A

VMCLEAR A

VM Exit VM Exit

VMLAUNCH VMRESUME
30-4 Vol. 3C

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
Processors perform various checks while executing any VMX instruction. They follow
well-defined error handling on failures. VMX instruction execution failures detected
before loading of a guest state are handled by the processor as follows:
• If the working-VMCS pointer is not valid, the instruction fails by setting

RFLAGS.CF to 1.
• If the working-VMCS pointer is valid, RFLAGS.ZF is set to 1 and the proper error-

code is saved in the VM-instruction error field of the working-VMCS.

Software is required to check RFLAGS.CF and RFLAGS.ZF to determine the success or
failure of VMX instruction executions.

The following items provide details regarding use of the VM-entry instructions
(VMLAUNCH and VMRESUME):
• If the working-VMCS pointer is valid, the state of the working VMCS may cause

the VM-entry instruction to fail. RFLAGS.ZF is set to 1 and one of the following
values is saved in the VM-instruction error field:

— 4: VMLAUNCH with non-clear VMCS.
If this error occurs, software can avoid the error by executing VMRESUME.

— 5: VMRESUME with non-launched VMCS.
If this error occurs, software can avoid the error by executing VMLAUNCH.

— 6: VMRESUME after VMXOFF.2
If this error occurs, software can avoid the error by executing the following
sequence of instructions:

VMPTRST working-VMCS pointer
VMCLEAR working-VMCS pointer
VMPTRLD working-VMCS pointer
VMLAUNCH

(VMPTRST may not be necessary is software already knows the working-
VMCS pointer.)

• If none of the above errors occur, the processor checks on the VMX controls and
host-state area. If any of these checks fail, the VM-entry instruction fails.
RFLAGS.ZF is set to 1 and either 7 (VM entry with invalid control field(s)) or 8
(VM entry with invalid host-state field(s)) is saved in the VM-instruction error
field.

• After a VM-entry instruction (VMRESUME or VMLAUNCH) successfully completes
the general checks and checks on VMX controls and the host-state area (see
Section 26.2), any errors encountered while loading of guest-state (due to bad
guest-state or bad MSR loading) causes the processor to load state from the
host-state area of the working VMCS as if a VM exit had occurred (see Section
30.7).

2. Earlier versions of this manual described this error as “VMRESUME with a corrupted VMCS”.
Vol. 3C 30-5

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
This failure behavior differs from that of VM exits in that no guest-state is saved
to the guest-state area. A VMM can detect its VM-exit handler was invoked by
such a failure by checking bit 31 (for 1) in the exit reason field of the working
VMCS and further identify the failure by using the exit qualification field.

See Chapter 26 for more details about the VM-entry instructions.

30.5 VMM SETUP & TEAR DOWN
VMMs need to ensure that the processor is running in protected mode with paging
before entering VMX operation. The following list describes the minimal steps
required to enter VMX root operation with a VMM running at CPL = 0.
• Check VMX support in processor using CPUID.
• Determine the VMX capabilities supported by the processor through the VMX

capability MSRs. See Section 30.5.1 and Appendix A.
• Create a VMXON region in non-pageable memory of a size specified by

IA32_VMX_BASIC MSR and aligned to a 4-KByte boundary. Software should read
the capability MSRs to determine width of the physical addresses that may be
used for the VMXON region and ensure the entire VMXON region can be
addressed by addresses with that width. Also, software must ensure that the
VMXON region is hosted in cache-coherent memory.

• Initialize the version identifier in the VMXON region (the first 32 bits) with the
VMCS revision identifier reported by capability MSRs.

• Ensure the current processor operating mode meets the required CR0 fixed bits
(CR0.PE = 1, CR0.PG = 1). Other required CR0 fixed bits can be detected
through the IA32_VMX_CR0_FIXED0 and IA32_VMX_CR0_FIXED1 MSRs.

• Enable VMX operation by setting CR4.VMXE = 1. Ensure the resultant CR4 value
supports all the CR4 fixed bits reported in the IA32_VMX_CR4_FIXED0 and
IA32_VMX_CR4_FIXED1 MSRs.

• Ensure that the IA32_FEATURE_CONTROL MSR (MSR index 3AH) has been
properly programmed and that its lock bit is set (Bit 0 = 1). This MSR is generally
configured by the BIOS using WRMSR.

• Execute VMXON with the physical address of the VMXON region as the operand.
Check successful execution of VMXON by checking if RFLAGS.CF = 0.

Upon successful execution of the steps above, the processor is in VMX root operation.

A VMM executing in VMX root operation and CPL = 0 leaves VMX operation by
executing VMXOFF and verifies successful execution by checking if RFLAGS.CF = 0
and RFLAGS.ZF = 0.

If an SMM monitor has been configured to service SMIs while in VMX operation (see
Section 33.15), the SMM monitor needs to be torn down before the executive
monitor can leave VMX operation (see Section 33.15.7). VMXOFF fails for the execu-
30-6 Vol. 3C

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
tive monitor (a VMM that entered VMX operation by way of issuing VMXON) if SMM
monitor is configured.

30.5.1 Algorithms for Determining VMX Capabilities
As noted earlier, a VMM should determine the VMX capabilities supported by the
processor by reading the VMX capability MSRs. The architecture for these MSRs is
detailed in Appendix A.

As noted in Chapter 24, “Virtual-Machine Control Structures”, certain VMX controls
are reserved and must be set to a specific value (0 or 1) determined by the processor.
The specific value to which a reserved control must be set is its default setting.
Most controls have a default setting of 0; Appendix A.2 identifies those controls that
have a default setting of 1. The term default1 describes the class of controls whose
default setting is 1. The are controls in this class from the pin-based VM-execution
controls, the primary processor-based VM-execution controls, the VM-exit controls,
and the VM-entry controls. There are no secondary processor-based VM-execution
controls in the default1 class.

Future processors may define new functionality for one or more reserved controls.
Such processors would allow each newly defined control to be set either to 0 or to 1.
Software that does not desire a control’s new functionality should set the control to
its default setting.

The capability MSRs IA32_VMX_PINBASED_CTLS, IA32_VMX_PROCBASED_CTLS,
IA32_VMX_EXIT_CTLS, and IA32_VMX_ENTRY_CTLS report, respectively, on the
allowed settings of most of the pin-based VM-execution controls, the primary
processor-based VM-execution controls, the VM-exit controls, and the VM-entry
controls. However, they will always report that any control in the default1 class must
be 1. If a logical processor allows any control in the default1 class to be 0, it indicates
this fact by returning 1 for the value of bit 55 of the IA32_VMX_BASIC MSR. If this bit
is 1, the logical processor supports the capability MSRs
IA32_VMX_TRUE_PINBASED_CTLS, IA32_VMX_TRUE_PROCBASED_CTLS,
IA32_VMX_TRUE_EXIT_CTLS, and IA32_VMX_TRUE_ENTRY_CTLS. These capability
MSRs report, respectively, on the allowed settings of all of the pin-based VM-execu-
tion controls, the primary processor-based VM-execution controls, the VM-exit
controls, and the VM-entry controls.

Software may use one of the following high-level algorithms to determine the correct
default control settings:3

1. The following algorithm does not use the details given in Appendix A.2:

a. Ignore bit 55 of the IA32_VMX_BASIC MSR.

3. These algorithms apply only to the pin-based VM-execution controls, the primary processor-
based VM-execution controls, the VM-exit controls, and the VM-entry controls. Because there are
no secondary processor-based VM-execution controls in the default1 class, a VMM can always
set to 0 any such control whose meaning is unknown to it.
Vol. 3C 30-7

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
b. Using RDMSR, read the VMX capability MSRs IA32_VMX_PINBASED_CTLS,
IA32_VMX_PROCBASED_CTLS, IA32_VMX_EXIT_CTLS, and
IA32_VMX_ENTRY_CTLS.

c. Set the VMX controls as follows:

i) If the relevant VMX capability MSR reports that a control has a single
setting, use that setting.

ii) If (1) the relevant VMX capability MSR reports that a control can be set to
0 or 1; and (2) the control’s meaning is known to the VMM; then set the
control based on functionality desired.

iii) If (1) the relevant VMX capability MSR reports that a control can be set to
0 or 1; and (2) the control’s meaning is not known to the VMM; then set
the control to 0.

A VMM using this algorithm will set to 1 all controls in the default1 class (in
step (c)(i)). It will operate correctly even on processors that allow some
controls in the default1 class to be 0. However, such a VMM will not be able to
use the new features enabled by the 0-setting of such controls. For that reason,
this algorithm is not recommended.

2. The following algorithm uses the details given in Appendix A.2. This algorithm
requires software to know the identity of the controls in the default1 class:

a. Using RDMSR, read the IA32_VMX_BASIC MSR.

b. Use bit 55 of that MSR as follows:

i) If bit 55 is 0, use RDMSR to read the VMX capability MSRs
IA32_VMX_PINBASED_CTLS, IA32_VMX_PROCBASED_CTLS,
IA32_VMX_EXIT_CTLS, and IA32_VMX_ENTRY_CTLS.

ii) If bit 55 is 1, use RDMSR to read the VMX capability MSRs
IA32_VMX_TRUE_PINBASED_CTLS,
IA32_VMX_TRUE_PROCBASED_CTLS, IA32_VMX_TRUE_EXIT_CTLS, and
IA32_VMX_TRUE_ENTRY_CTLS.

c. Set the VMX controls as follows:

i) If the relevant VMX capability MSR reports that a control has a single
setting, use that setting.

ii) If (1) the relevant VMX capability MSR reports that a control can be set to
0 or 1; and (2) the control’s meaning is known to the VMM; then set the
control based on functionality desired.

iii) If (1) the relevant VMX capability MSR reports that a control can be set to
0 or 1; (2) the control’s meaning is not known to the VMM; and (3) the
control is not in the default1 class; then set the control to 0.

iv) If (1) the relevant VMX capability MSR reports that a control can be set to
0 or 1; (2) the control’s meaning is not known to the VMM; and (3) the
control is in the default1 class; then set the control to 1.
30-8 Vol. 3C

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
A VMM using this algorithm will set to 1 all controls in default1 class whose
meaning it does not know (either in step (c)(i) or step (c)(iv)). It will operate
correctly even on processors that allow some controls in the default1 class to be
0. Unlike a VMM using Algorithm 1, a VMM using Algorithm 2 will be able to use
the new features enabled by the 0-setting of such controls.

3. The following algorithm uses the details given in Appendix A.2. This algorithm
does not require software to know the identity of the controls in the default1
class:

a. Using RDMSR, read the VMX capability MSRs IA32_VMX_BASIC,
IA32_VMX_PINBASED_CTLS, IA32_VMX_PROCBASED_CTLS,
IA32_VMX_EXIT_CTLS, and IA32_VMX_ENTRY_CTLS.

b. If bit 55 of the IA32_VMX_BASIC MSR is 0, set the VMX controls as follows:

i) If the relevant VMX capability MSR reports that a control has a single
setting, use that setting.

ii) If (1) the relevant VMX capability MSR reports that a control can be set to
0 or 1; and (2) the control’s meaning is known to the VMM; then set the
control based on functionality desired.

iii) If (1) the relevant VMX capability MSR reports that a control can be set to
0 or 1; and (2) the control’s meaning is not known to the VMM; then set
the control to 0.

c. If bit 55 of the IA32_VMX_BASIC MSR is 1, use RDMSR to read the VMX
capability MSRs IA32_VMX_TRUE_PINBASED_CTLS,
IA32_VMX_TRUE_PROCBASED_CTLS, IA32_VMX_TRUE_EXIT_CTLS, and
IA32_VMX_TRUE_ENTRY_CTLS. Set the VMX controls as follows:

i) If the relevant VMX capability MSR just read reports that a control has a
single setting, use that setting.

ii) If (1) the relevant VMX capability MSR just read reports that a control can
be set to 0 or 1; and (2) the control’s meaning is known to the VMM; then
set the control based on functionality desired.

iii) If (1) the relevant VMX capability MSR just read reports that a control can
be set to 0 or 1; (2) the control’s meaning is not known to the VMM; and
(3) the relevant VMX capability MSR as read in step (a) reports that a
control can be set to 0; then set the control to 0.

iv) If (1) the relevant VMX capability MSR just read reports that a control can
be set to 0 or 1; (2) the control’s meaning is not known to the VMM; and
(3) the relevant VMX capability MSR as read in step (a) reports that a
control must be 1; then set the control to 1.

A VMM using this algorithm will set to 1 all controls in the default1 class whose
meaning it does not know (in step (b)(i), step (c)(i), or step (c)(iv)). It will
operate correctly even on processors that allow some controls in the default1
class to be 0. Unlike a VMM using Algorithm 1, a VMM using Algorithm 3 will be
able to use the new features enabled by the 0-setting of such controls. Unlike a
Vol. 3C 30-9

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
VMM using Algorithm 2, a VMM using Algorithm 3 need not know the identities
of the controls in the default1 class.

30.6 PREPARATION AND LAUNCHING A VIRTUAL
MACHINE

The following list describes the minimal steps required by the VMM to set up and
launch a guest VM.
• Create a VMCS region in non-pageable memory of size specified by the VMX

capability MSR IA32_VMX_BASIC and aligned to 4-KBytes. Software should read
the capability MSRs to determine width of the physical addresses that may be
used for a VMCS region and ensure the entire VMCS region can be addressed by
addresses with that width. The term “guest-VMCS address” refers to the physical
address of the new VMCS region for the following steps.

• Initialize the version identifier in the VMCS (first 32 bits) with the VMCS revision
identifier reported by the VMX capability MSR IA32_VMX_BASIC.

• Execute the VMCLEAR instruction by supplying the guest-VMCS address. This will
initialize the new VMCS region in memory and set the launch state of the VMCS
to “clear”. This action also invalidates the working-VMCS pointer register to
FFFFFFFF_FFFFFFFFH. Software should verify successful execution of VMCLEAR
by checking if RFLAGS.CF = 0 and RFLAGS.ZF = 0.

• Execute the VMPTRLD instruction by supplying the guest-VMCS address. This
initializes the working-VMCS pointer with the new VMCS region’s physical
address.

• Issue a sequence of VMWRITEs to initialize various host-state area fields in the
working VMCS. The initialization sets up the context and entry-points to the VMM
upon subsequent VM exits from the guest. Host-state fields include control
registers (CR0, CR3 and CR4), selector fields for the segment registers (CS, SS,
DS, ES, FS, GS and TR), and base-address fields (for FS, GS, TR, GDTR and IDTR;
RSP, RIP and the MSRs that control fast system calls).
Chapter 25 describes the host-state consistency checking done by the processor
for VM entries. The VMM is required to set up host-state that comply with these
consistency checks. For example, VMX requires the host-area to have a task
register (TR) selector with TI and RPL fields set to 0 and pointing to a valid TSS.

• Use VMWRITEs to set up the various VM-exit control fields, VM-entry control
fields, and VM-execution control fields in the VMCS. Care should be taken to
make sure the settings of individual fields match the allowed 0 and 1 settings for
the respective controls as reported by the VMX capability MSRs (see Appendix A).
Any settings inconsistent with the settings reported by the capability MSRs will
cause VM entries to fail.

• Use VMWRITE to initialize various guest-state area fields in the working VMCS.
This sets up the context and entry-point for guest execution upon VM entry.
30-10 Vol. 3C

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
Chapter 25 describes the guest-state loading and checking done by the processor
for VM entries to protected and virtual-8086 guest execution.

• The VMM is required to set up guest-state that complies with these consistency
checks:

— If the VMM design requires the initial VM launch to cause guest software
(typically the guest virtual BIOS) execution from the guest’s reset vector, it
may need to initialize the guest execution state to reflect the state of a
physical processor at power-on reset (described in Chapter 9, Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3A).

— The VMM may need to initialize additional guest execution state that is not
captured in the VMCS guest-state area by loading them directly on the
respective processor registers. Examples include general purpose registers,
the CR2 control register, debug registers, floating point registers and so forth.
VMM may support lazy loading of FPU, MMX, SSE, and SSE2 states with
CR0.TS = 1 (described in Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3A).

• Execute VMLAUNCH to launch the guest VM. If VMLAUNCH fails due to any
consistency checks before guest-state loading, RFLAGS.CF or RFLAGS.ZF will be
set and the VM-instruction error field (see Section 24.9.5) will contain the error-
code. If guest-state consistency checks fail upon guest-state loading, the
processor loads state from the host-state area as if a VM exit had occurred (see
Section 30.6).

VMLAUNCH updates the controlling-VMCS pointer with the working-VMCS pointer
and saves the old value of controlling-VMCS as the parent pointer. In addition, the
launch state of the guest VMCS is changed to “launched” from “clear”. Any
programmed exit conditions will cause the guest to VM exit to the VMM. The VMM
should execute VMRESUME instruction for subsequent VM entries to guests in a
“launched” state.

30.7 HANDLING OF VM EXITS
This section provides examples of software steps involved in a VMM’s handling of VM-
exit conditions:
• Determine the exit reason through a VMREAD of the exit-reason field in the

working-VMCS. Appendix C describes exit reasons and their encodings.
• VMREAD the exit-qualification from the VMCS if the exit-reason field provides a

valid qualification. The exit-qualification field provides additional details on the
VM-exit condition. For example, in case of page faults, the exit-qualification field
provides the guest linear address that caused the page fault.

• Depending on the exit reason, fetch other relevant fields from the VMCS.
Appendix C lists the various exit reasons.
Vol. 3C 30-11

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
• Handle the VM-exit condition appropriately in the VMM. This may involve the
VMM emulating one or more guest instructions, programming the underlying
host hardware resources, and then re-entering the VM to continue execution.

30.7.1 Handling VM Exits Due to Exceptions
As noted in Section 25.3, an exception causes a VM exit if the bit corresponding to
the exception’s vector is set in the exception bitmap. (For page faults, the error code
also determines whether a VM exit occurs.) This section provide some guidelines of
how a VMM might handle such exceptions.

Exceptions result when a logical processor encounters an unusual condition that soft-
ware may not have expected. When guest software encounters an exception, it may
be the case that the condition was caused by the guest software. For example, a
guest application may attempt to access a page that is restricted to supervisor
access. Alternatively, the condition causing the exception may have been established
by the VMM. For example, a guest OS may attempt to access a page that the VMM
has chosen to make not present.

When the condition causing an exception was established by guest software, the
VMM may choose to reflect the exception to guest software. When the condition was
established by the VMM itself, the VMM may choose to resume guest software after
removing the condition.

30.7.1.1 Reflecting Exceptions to Guest Software
If the VMM determines that a VM exit was caused by an exception due to a condition
established by guest software, it may reflect that exception to guest software. The
VMM would cause the exception to be delivered to guest software, where it can be
handled as it would be if the guest were running on a physical machine. This section
describes how that may be done.

In general, the VMM can deliver the exception to guest software using VM-entry
event injection as described in Section 26.5. The VMM can copy (using VMREAD and
VMWRITE) the contents of the VM-exit interruption-information field (which is valid,
since the VM exit was caused by an exception) to the VM-entry interruption-informa-
tion field (which, if valid, will cause the exception to be delivered as part of the next
VM entry). The VMM would also copy the contents of the VM-exit interruption error-
code field to the VM-entry exception error-code field; this need not be done if bit 11
(error code valid) is clear in the VM-exit interruption-information field. After this, the
VMM can execute VMRESUME.

The following items provide details that may qualify the general approach:
• Care should be taken to ensure that reserved bits 30:12 in the VM-entry inter-

ruption-information field are 0. In particular, some VM exits may set bit 12 in the
VM-exit interruption-information field to indicate NMI unblocking due to IRET. If
this bit is copied as 1 into the VM-entry interruption-information field, the next
VM entry will fail because that bit should be 0.
30-12 Vol. 3C

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
• Bit 31 (valid) of the IDT-vectoring information field indicates, if set, that the
exception causing the VM exit occurred while another event was being delivered
to guest software. If this is the case, it may not be appropriate simply to reflect
that exception to guest software. To provide proper virtualization of the exception
architecture, a VMM should handle nested events as a physical processor would.
Processor handling is described in Chapter 6, “Interrupt 8—Double Fault
Exception (#DF)” in Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A.

— The VMM should reflect the exception causing the VM exit to guest software
in any of the following cases:

• The value of bits 10:8 (interruption type) of the IDT-vectoring
information field is anything other than 3 (hardware exception).

• The value of bits 7:0 (vector) of the IDT-vectoring information field
indicates a benign exception (1, 2, 3, 4, 5, 6, 7, 9, 16, 17, 18, or 19).

• The value of bits 7:0 (vector) of the VM-exit interruption-information field
indicates a benign exception.

• The value of bits 7:0 of the IDT-vectoring information field indicates a
contributory exception (0, 10, 11, 12, or 13) and the value of bits 7:0 of
the VM-exit interruption-information field indicates a page fault (14).

— If the value of bits 10:8 of the IDT-vectoring information field is 3 (hardware
exception), the VMM should reflect a double-fault exception to guest software
in any of the following cases:

• The value of bits 7:0 of the IDT-vectoring information field and the value
of bits 7:0 of the VM-exit interruption-information field each indicates a
contributory exception.

• The value of bits 7:0 of the IDT-vectoring information field indicates a
page fault and the value of bits 7:0 of the VM-exit interruption-
information field indicates either a contributory exception or a page fault.

A VMM can reflect a double-fault exception to guest software by setting the
VM-entry interruption-information and VM-entry exception error-code fields
as follows:

• Set bits 7:0 (vector) of the VM-entry interruption-information field to 8
(#DF).

• Set bits 10:8 (interruption type) of the VM-entry interruption-information
field to 3 (hardware exception).

• Set bit 11 (deliver error code) of the VM-entry interruption-information
field to 1.

• Clear bits 30:12 (reserved) of VM-entry interruption-information field.

• Set bit 31 (valid) of VM-entry interruption-information field.

• Set the VM-entry exception error-code field to zero.
Vol. 3C 30-13

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
— If the value of bits 10:8 of the IDT-vectoring information field is 3 (hardware
exception) and the value of bits 7:0 is 8 (#DF), guest software would have
encountered a triple fault. Event injection should not be used in this case. The
VMM may choose to terminate the guest, or it might choose to enter the
guest in the shutdown activity state.

30.7.1.2 Resuming Guest Software after Handling an Exception
If the VMM determines that a VM exit was caused by an exception due to a condition
established by the VMM itself, it may choose to resume guest software after
removing the condition. The approach for removing the condition may be specific to
the VMM’s software architecture. and algorithms This section describes how guest
software may be resumed after removing the condition.

In general, the VMM can resume guest software simply by executing VMRESUME. The
following items provide details of cases that may require special handling:
• If the “NMI exiting” VM-execution control is 0, bit 12 of the VM-exit interruption-

information field indicates that the VM exit was due to a fault encountered during
an execution of the IRET instruction that unblocked non-maskable interrupts
(NMIs). In particular, it provides this indication if the following are both true:

— Bit 31 (valid) in the IDT-vectoring information field is 0.

— The value of bits 7:0 (vector) of the VM-exit interruption-information field is
not 8 (the VM exit is not due to a double-fault exception).

If both are true and bit 12 of the VM-exit interruption-information field is 1, NMIs
were blocked before guest software executed the IRET instruction that caused
the fault that caused the VM exit. The VMM should set bit 3 (blocking by NMI) in
the interruptibility-state field (using VMREAD and VMWRITE) before resuming
guest software.

• If the “virtual NMIs” VM-execution control is 1, bit 12 of the VM-exit interruption-
information field indicates that the VM exit was due to a fault encountered during
an execution of the IRET instruction that removed virtual-NMI blocking. In
particular, it provides this indication if the following are both true:

— Bit 31 (valid) in the IDT-vectoring information field is 0.

— The value of bits 7:0 (vector) of the VM-exit interruption-information field is
not 8 (the VM exit is not due to a double-fault exception).

If both are true and bit 12 of the VM-exit interruption-information field is 1, there
was virtual-NMI blocking before guest software executed the IRET instruction
that caused the fault that caused the VM exit. The VMM should set bit 3 (blocking
by NMI) in the interruptibility-state field (using VMREAD and VMWRITE) before
resuming guest software.

• Bit 31 (valid) of the IDT-vectoring information field indicates, if set, that the
exception causing the VM exit occurred while another event was being delivered
to guest software. The VMM should ensure that the other event is delivered when
30-14 Vol. 3C

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
guest software is resumed. It can do so using the VM-entry event injection
described in Section 26.5 and detailed in the following paragraphs:

— The VMM can copy (using VMREAD and VMWRITE) the contents of the IDT-
vectoring information field (which is presumed valid) to the VM-entry inter-
ruption-information field (which, if valid, will cause the exception to be
delivered as part of the next VM entry).

• The VMM should ensure that reserved bits 30:12 in the VM-entry inter-
ruption-information field are 0. In particular, the value of bit 12 in the IDT-
vectoring information field is undefined after all VM exits. If this bit is
copied as 1 into the VM-entry interruption-information field, the next
VM entry will fail because the bit should be 0.

• If the “virtual NMIs” VM-execution control is 1 and the value of bits 10:8
(interruption type) in the IDT-vectoring information field is 2 (indicating
NMI), the VM exit occurred during delivery of an NMI that had been
injected as part of the previous VM entry. In this case, bit 3 (blocking by
NMI) will be 1 in the interruptibility-state field in the VMCS. The VMM
should clear this bit; otherwise, the next VM entry will fail (see Section
26.3.1.5).

— The VMM can also copy the contents of the IDT-vectoring error-code field to
the VM-entry exception error-code field. This need not be done if bit 11 (error
code valid) is clear in the IDT-vectoring information field.

— The VMM can also copy the contents of the VM-exit instruction-length field to
the VM-entry instruction-length field. This need be done only if bits 10:8
(interruption type) in the IDT-vectoring information field indicate either
software interrupt, privileged software exception, or software exception.

30.8 MULTI-PROCESSOR CONSIDERATIONS
The most common VMM design will be the symmetric VMM. This type of VMM runs the
same VMM binary on all logical processors. Like a symmetric operating system, the
symmetric VMM is written to ensure all critical data is updated by only one processor
at a time, IO devices are accessed sequentially, and so forth. Asymmetric VMM
designs are possible. For example, an asymmetric VMM may run its scheduler on one
processor and run just enough of the VMM on other processors to allow the correct
execution of guest VMs. The remainder of this section focuses on the multi-processor
considerations for a symmetric VMM.

A symmetric VMM design does not preclude asymmetry in its operations. For
example, a symmetric VMM can support asymmetric allocation of logical processor
resources to guests. Multiple logical processors can be brought into a single guest
environment to support an MP-aware guest OS. Because an active VMCS can not
control more than one logical processor simultaneously, a symmetric VMM must
make copies of its VMCS to control the VM allocated to support an MP-aware guest
Vol. 3C 30-15

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
OS. Care must be taken when accessing data structures shared between these
VMCSs. See Section 30.8.4.

Although it may be easier to develop a VMM that assumes a fully-symmetric view of
hardware capabilities (with all processors supporting the same processor feature
sets, including the same revision of VMX), there are advantages in developing a VMM
that comprehends different levels of VMX capability (reported by VMX capability
MSRs). One possible advantage of such an approach could be that an existing soft-
ware installation (VMM and guest software stack) could continue to run without
requiring software upgrades to the VMM, when the software installation is upgraded
to run on hardware with enhancements in the processor’s VMX capabilities. Another
advantage could be that a single software installation image, consisting of a VMM and
guests, could be deployed to multiple hardware platforms with varying VMX capabil-
ities. In such cases, the VMM could fall back to a common subset of VMX features
supported by all VMX revisions, or choose to understand the asymmetry of the VMX
capabilities and assign VMs accordingly.

This section outlines some of the considerations to keep in mind when developing an
MP-aware VMM.

30.8.1 Initialization
Before enabling VMX, an MP-aware VMM must check to make sure that all processors
in the system are compatible and support features required. This can be done by:
• Checking the CPUID on each logical processor to ensure VMX is supported and

that the overall feature set of each logical processor is compatible.
• Checking VMCS revision identifiers on each logical processor.
• Checking each of the “allowed-1” or “allowed-0” fields of the VMX capability

MSR’s on each processor.

30.8.2 Moving a VMCS Between Processors
An MP-aware VMM is free to assign any logical processor to a VM. But for perfor-
mance considerations, moving a guest VMCS to another logical processor is slower
than resuming that guest VMCS on the same logical processor. Certain VMX perfor-
mance features (such as caching of portions of the VMCS in the processor) are opti-
mized for a guest VMCS that runs on the same logical processor.

The reasons are:
• To restart a guest on the same logical processor, a VMM can use VMRESUME.

VMRESUME is expected to be faster than VMLAUNCH in general.
• To migrate a VMCS to another logical processor, a VMM must use the sequence of

VMCLEAR, VMPTRLD and VMLAUNCH.
• Operations involving VMCLEAR can impact performance negatively. See

Section 24.10.3.
30-16 Vol. 3C

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
A VMM scheduler should make an effort to schedule a guest VMCS to run on the
logical processor where it last ran. Such a scheduler might also benefit from doing
lazy VMCLEARs (that is: performing a VMCLEAR on a VMCS only when the scheduler
knows the VMCS is being moved to a new logical processor). The remainder of this
section describes the steps a VMM must take to move a VMCS from one processor to
another.

A VMM must check the VMCS revision identifier in the VMX capability MSR
IA32_VMX_BASIC to determine if the VMCS regions are identical between all logical
processors. If the VMCS regions are identical (same revision ID) the following
sequence can be used to move or copy the VMCS from one logical processor to
another:
• Perform a VMCLEAR operation on the source logical processor. This ensures that

all VMCS data that may be cached by the processor are flushed to memory.
• Copy the VMCS region from one memory location to another location. This is an

optional step assuming the VMM wishes to relocate the VMCS or move the VMCS
to another system.

• Perform a VMPTRLD of the physical address of VMCS region on the destination
processor to establish its current VMCS pointer.

If the revision identifiers are different, each field must be copied to an intermediate
structure using individual reads (VMREAD) from the source fields and writes
(VMWRITE) to destination fields. Care must be taken on fields that are hard-wired to
certain values on some processor implementations.

30.8.3 Paired Index-Data Registers
A VMM may need to virtualize hardware that is visible to software using paired index-
data registers. Paired index-data register interfaces, such as those used in PCI (CF8,
CFC), require special treatment in cases where a VM performing writes to these pairs
can be moved during execution. In this case, the index (e.g. CF8) should be part of
the virtualized state. If the VM is moved during execution, writes to the index should
be redone so subsequent data reads/writes go to the right location.

30.8.4 External Data Structures
Certain fields in the VMCS point to external data structures (for example: the MSR
bitmap, the I/O bitmaps). If a logical processor is in VMX non-root operation, none of
the external structures referenced by that logical processor's current VMCS should be
modified by any logical processor or DMA. Before updating one of these structures,
the VMM must ensure that no logical processor whose current VMCS references the
structure is in VMX non-root operation.

If a VMM uses multiple VMCS with each VMCS using separate external structures,
and these structures must be kept synchronized, the VMM must apply the same care
to updating these structures.
Vol. 3C 30-17

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
30.8.5 CPUID Emulation
CPUID reports information that is used by OS and applications to detect hardware
features. It also provides multi-threading/multi-core configuration information. For
example, MP-aware OSs rely on data reported by CPUID to discover the topology of
logical processors in a platform (see Section 8.9, “Programming Considerations for
Hardware Multi-Threading Capable Processors,” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3A).

If a VMM is to support asymmetric allocation of logical processor resources to guest
OSs that are MP aware, then the VMM must emulate CPUID for its guests. The emula-
tion of CPUID by the VMM must ensure the guest’s view of CPUID leaves are consis-
tent with the logical processor allocation committed by the VMM to each guest OS.

30.9 32-BIT AND 64-BIT GUEST ENVIRONMENTS
For the most part, extensions provided by VMX to support virtualization are orthog-
onal to the extensions provided by Intel 64 architecture. There are considerations
that impact VMM designs. These are described in the following subsections.

30.9.1 Operating Modes of Guest Environments
For Intel 64 processors, VMX operation supports host and guest environments that
run in IA-32e mode or without IA-32e mode. VMX operation also supports host and
guest environments on IA-32 processors.

A VMM entering VMX operation while IA-32e mode is active is considered to be an
IA-32e mode host. A VMM entering VMX operation while IA-32e mode is not activated
or not available is referred to as a 32-bit VMM. The type of guest operations such
VMMs support are summarized in Table 30-1.

A VM exit may occur to an IA-32e mode guest in either 64-bit sub-mode or compati-
bility sub-mode of IA-32e mode. VMMs may resume guests in either mode. The sub-
mode in which an IA-32e mode guest resumes VMX non-root operation is determined
by the attributes of the code segment which experienced the VM exit. If CS.L = 1,
the guest is executing in 64-bit mode; if CS.L = 0, the guest is executing in compat-
ibility mode (see Section 30.9.5).

Table 30-1. Operating Modes for Host and Guest Environments
Capability Guest Operation

in IA-32e mode
Guest Operation
Not Requiring IA-32e Mode

IA-32e mode VMM Yes Yes

32-bit VMM Not supported Yes
30-18 Vol. 3C

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
Not all of an IA-32e mode VMM must run in 64-bit mode. While some parts of an
IA-32e mode VMM must run in 64-bit mode, there are only a few restrictions
preventing a VMM from executing in compatibility mode. The most notable restriction
is that most VMX instructions cause exceptions when executed in compatibility mode.

30.9.2 Handling Widths of VMCS Fields
Individual VMCS control fields must be accessed using VMREAD or VMWRITE instruc-
tions. Outside of 64-Bit mode, VMREAD and VMWRITE operate on 32 bits of data. The
widths of VMCS control fields may vary depending on whether a processor supports
Intel 64 architecture.

Many VMCS fields are architected to extend transparently on processors supporting
Intel 64 architecture (64 bits on processors that support Intel 64 architecture, 32 bits
on processors that do not). Some VMCS fields are 64-bits wide regardless of whether
the processor supports Intel 64 architecture or is in IA-32e mode.

30.9.2.1 Natural-Width VMCS Fields
Many VMCS fields operate using natural width. Such fields return (on reads) and set
(on writes) 32-bits when operating in 32-bit mode and 64-bits when operating in
64-bit mode. For the most part, these fields return the naturally expected data
widths. The “Guest RIP” field in the VMCS guest-state area is an example of this type
of field.

30.9.2.2 64-Bit VMCS Fields
Unlike natural width fields, these fields are fixed to 64-bit width on all processors.
When in 64-bit mode, reads of these fields return 64-bit wide data and writes to
these fields write 64-bits. When outside of 64-bit mode, reads of these fields return
the low 32-bits and writes to these fields write the low 32-bits and zero the upper
32-bits. Should a non-IA-32e mode host require access to the upper 32-bits of these
fields, a separate VMCS encoding is used when issuing VMREAD/VMWRITE instruc-
tions.

The VMCS control field “MSR bitmap address” (which contains the physical address of
a region of memory which specifies which MSR accesses should generate VM-exits) is
an example of this type of field. Specifying encoding 00002004H to VMREAD returns
the lower 32-bits to non-IA-32e mode hosts and returns 64-bits to 64-bit hosts. The
separate encoding 00002005H returns only the upper 32-bits.

30.9.3 IA-32e Mode Hosts
An IA-32e mode host is required to support 64-bit guest environments. Because acti-
vating IA-32e mode currently requires that paging be disabled temporarily and VMX
entry requires paging to be enabled, IA-32e mode must be enabled before entering
Vol. 3C 30-19

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
VMX operation. For this reason, it is not possible to toggle in and out of IA-32e mode
in a VMM.

Section 30.5 describes the steps required to launch a VMM. An IA-32e mode host is
also required to set the “host address-space size” VMCS VM-exit control to 1. The
value of this control is then loaded in the IA32_EFER.LME/LMA and CS.L bits on each
VM exit. This establishes a 64-bit host environment as execution transfers to the
VMM entry point. At a minimum, the entry point is required to be in a 64-bit code
segment. Subsequently, the VMM can, if it chooses, switch to 32-bit compatibility
mode on a code-segment basis (see Section 30.9.1). Note, however, that VMX
instructions other than VMCALL are not supported in compatibility mode; they
generate an invalid opcode exception if used.

The following VMCS controls determine the value of IA32_EFER when a VM exit
occurs: the “host address-space size” control (described above), the “load
IA32_EFER” VM-exit control, the “VM-exit MSR-load count,” and the “VM-exit MSR-
load address” (see Section 27.3).

If the “load IA32_EFER” VM-exit control is 1, the value of the LME and LMA bits in the
IA32_EFER field in the host-state area must be the value of the “host address-space
size” VM-exit control.

The loading of IA32_EFER.LME/LMA and CS.L bits established by the “host address-
space size” control precede any loading of the IA32_EFER MSR due from the VM-exit
MSR-load area. If IA32_EFER is specified in the VM-exit MSR-load area, the value of
the LME bit in the load image of IA32_EFER should match the setting of the “host
address-space size” control. Otherwise the attempt to modify the LME bit (while
paging is enabled) will lead to a VMX-abort. However, IA32_EFER.LMA is always set
by the processor to equal IA32_EFER.LME & CR0.PG; the value specified for LMA in
the load image of the IA32_EFER MSR is ignored. For these and performance
reasons, VMM writers may choose to not use the VM-exit/entry MSR-load/save areas
for IA32_EFER.

On a VMM teardown, VMX operation should be exited before deactivating IA-32e
mode if the latter is required.

30.9.4 IA-32e Mode Guests
A 32-bit guest can be launched by either IA-32e-mode hosts or non-IA-32e-mode
hosts. A 64-bit guests can only be launched by a IA-32e-mode host.

In addition to the steps outlined in Section 30.6, VMM writers need to:
• Set the “IA-32e-mode guest” VM-entry control to 1 in the VMCS to assure

VM-entry (VMLAUNCH or VMRESUME) will establish a 64-bit (or 32-bit
compatible) guest operating environment.

• Enable paging (CR0.PG) and PAE mode (CR4.PAE) to assure VM-entry to a 64-bit
guest will succeed.
30-20 Vol. 3C

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
• Ensure that the host to be in IA-32e mode (the IA32_EFER.LMA must be set to 1)
and the setting of the VM-exit “host address-space size” control bit in the VMCS
must also be set to 1.

If each of the above conditions holds true, then VM-entry will copy the value of the
VM-entry “IA-32e-mode guest” control bit into the guests IA32_EFER.LME bit, which
will result in subsequent activation of IA-32e mode. If any of the above conditions is
false, the VM-entry will fail and load state from the host-state area of the working
VMCS as if a VM exit had occurred (see Section 26.7).

The following VMCS controls determine the value of IA32_EFER on a VM entry: the
“IA-32e-mode guest” VM-entry control (described above), the “load IA32_EFER” VM-
entry control, the “VM-entry MSR-load count,” and the “VM-entry MSR-load address”
(see Section 26.4).

If the “load IA32_EFER” VM-entry control is 1, the value of the LME and LMA bits in
the IA32_EFER field in the guest-state area must be the value of the “IA-32e-mode
guest” VM-exit control. Otherwise, the VM entry fails.

The loading of IA32_EFER.LME bit (described above) precedes any loading of the
IA32_EFER MSR from the VM-entry MSR-load area of the VMCS. If loading of
IA32_EFER is specified in the VM-entry MSR-load area, the value of the LME bit in the
load image should be match the setting of the “IA-32e-mode guest” VM-entry
control. Otherwise, the attempt to modify the LME bit (while paging is enabled)
results in a failed VM entry. However, IA32_EFER.LMA is always set by the processor
to equal IA32_EFER.LME & CR0.PG; the value specified for LMA in the load image of
the IA32_EFER MSR is ignored. For these and performance reasons, VMM writers
may choose to not use the VM-exit/entry MSR-load/save areas for IA32_EFER MSR.

Note that the VMM can control the processor’s architectural state when transferring
control to a VM. VMM writers may choose to launch guests in protected mode and
subsequently allow the guest to activate IA-32e mode or they may allow guests to
toggle in and out of IA-32e mode. In this case, the VMM should require VM exit on
accesses to the IA32_EFER MSR to detect changes in the operating mode and modify
the VM-entry “IA-32e-mode guest” control accordingly.

A VMM should save/restore the extended (full 64-bit) contents of the guest general-
purpose registers, the new general-purpose registers (R8-R15) and the SIMD regis-
ters introduced in 64-bit mode should it need to modify these upon VM exit.

30.9.5 32-Bit Guests
To launch or resume a 32-bit guest, VMM writers can follow the steps outlined in
Section 30.6, making sure that the “IA-32e-mode guest” VM-entry control bit is set
to 0. Then the “IA-32e-mode guest” control bit is copied into the guest
IA32_EFER.LME bit, establishing IA32_EFER.LMA as 0.
Vol. 3C 30-21

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
30.10 HANDLING MODEL SPECIFIC REGISTERS
Model specific registers (MSR) provide a wide range of functionality. They affect
processor features, control the programming interfaces, or are used in conjunction
with specific instructions. As part of processor virtualization, a VMM may wish to
protect some or all MSR resources from direct guest access.

VMX operation provides the following features to virtualize processor MSRs.

30.10.1 Using VM-Execution Controls
Processor-based VM-execution controls provide two levels of support for handling
guest access to processor MSRs using RDMSR and WRMSR:
• MSR bitmaps: In VMX implementations that support a 1-setting (see Appendix

A) of the user-MSR-bitmaps execution control bit, MSR bitmaps can be used to
provide flexibility in managing guest MSR accesses. The MSR-bitmap-address in
the guest VMCS can be programmed by VMM to point to a bitmap region which
specifies VM-exit behavior when reading and writing individual MSRs.
MSR bitmaps form a 4-KByte region in physical memory and are required to be
aligned to a 4-KByte boundary. The first 1-KByte region manages read control of
MSRs in the range 00000000H-00001FFFH; the second 1-KByte region covers
read control of MSR addresses in the range C0000000H-C0001FFFH. The bitmaps
for write control of these MSRs are located in the 2-KByte region immediately
following the read control bitmaps. While the MSR bitmap address is part of
VMCS, the MSR bitmaps themselves are not. This implies MSR bitmaps are not
accessible through VMREAD and VMWRITE instructions but rather by using
ordinary memory writes. Also, they are not specially cached by the processor and
may be placed in normal cache-coherent memory by the VMM.
When MSR bitmap addresses are properly programmed and the use-MSR-bitmap
control (see Section 24.6.2) is set, the processor consults the associated bit in
the appropriate bitmap on guest MSR accesses to the corresponding MSR and
causes a VM exit if the bit in the bitmap is set. Otherwise, the access is permitted
to proceed. This level of protection may be utilized by VMMs to selectively allow
guest access to some MSRs while virtualizing others.

• Default MSR protection: If the use-MSR-bitmap control is not set, an attempt
by a guest to access any MSR causes a VM exit. This also occurs for any attempt
to access an MSR outside the ranges identified above (even if the use-MSR-
bitmap control is set).

VM exits due to guest MSR accesses may be identified by the VMM through VM-exit
reason codes. The MSR-read exit reason implies guest software attempted to read an
MSR protected either by default or through MSR bitmaps. The MSR-write exit reason
implies guest software attempting to write a MSR protected through the VM-execu-
tion controls. Upon VM exits caused by MSR accesses, the VMM may virtualize the
guest MSR access through emulation of RDMSR/WRMSR.
30-22 Vol. 3C

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
30.10.2 Using VM-Exit Controls for MSRs
If a VMM allows its guest to access MSRs directly, the VMM may need to store guest
MSR values and load host MSR values for these MSRs on VM exits. This is especially
true if the VMM uses the same MSRs while in VMX root operation.

A VMM can use the VM-exit MSR-store-address and the VM-exit MSR-store-count exit
control fields (see Section 24.7.2) to manage how MSRs are stored on VM exits. The
VM-exit MSR-store-address field contains the physical address (16-byte aligned) of
the VM-exit MSR-store area (a table of entries with 16 bytes per entry). Each table
entry specifies an MSR whose value needs to be stored on VM exits. The VM-exit
MSR-store-count contains the number of entries in the table.

Similarly the VM-exit MSR-load-address and VM-exit MSR-load-count fields point to
the location and size of the VM-exit MSR load area. The entries in the VM-exit MSR-
load area contain the host expected values of specific MSRs when a VM exit occurs.

Upon VM-exit, bits 127:64 of each entry in the VM-exit MSR-store area is updated
with the contents of the MSR indexed by bits 31:0. Also, bits 127:64 of each entry in
the VM-exit MSR-load area is updated by loading with values from bits 127:64 the
contents of the MSR indexed by bits 31:0.

30.10.3 Using VM-Entry Controls for MSRs
A VMM may require specific MSRs to be loaded explicitly on VM entries while
launching or resuming guest execution. The VM-entry MSR-load-address and
VM-entry MSR-load-count entry control fields determine how MSRs are loaded on
VM-entries. The VM-entry MSR-load-address and count fields are similar in structure
and function to the VM-exit MSR-load address and count fields, except the MSR
loading is done on VM-entries.

30.10.4 Handling Special-Case MSRs and Instructions
A number of instructions make use of designated MSRs in their operation. The VMM
may need to consider saving the states of those MSRs. Instructions that merit such
consideration include SYSENTER/SYSEXIT, SYSCALL/SYSRET, SWAPGS.

30.10.4.1 Handling IA32_EFER MSR
The IA32_EFER MSR includes bit fields that allow system software to enable
processor features. For example: the SCE bit enables SYSCALL/SYSRET and the NXE
bit enables the execute-disable bits in the paging-structure entries.

VMX provides hardware support to load the IA32_EFER MSR on VMX transitions and
to save it on VM exits. Because of this, VMM software need not use the RDMSR and
WRMSR instruction to give the register different values during host and guest execu-
tion.
Vol. 3C 30-23

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
30.10.4.2 Handling the SYSENTER and SYSEXIT Instructions
The SYSENTER and SYSEXIT instructions use three dedicated MSRs
(IA32_SYSENTER_CS, IA32_SYSENTER_ESP and IA32_SYSENTER_EIP) to manage
fast system calls. These MSRs may be utilized by both the VMM and the guest OS to
manage system calls in VMX root operation and VMX non-root operation respectively.

VM entries load these MSRs from fields in the guest-state area of the VMCS. VM exits
save the values of these MSRs into those fields and loads the MSRs from fields in the
host-state area.

30.10.4.3 Handling the SYSCALL and SYSRET Instructions
The SYSCALL/SYSRET instructions are similar to SYSENTER/SYSEXIT but are
designed to operate within the context of a 64-bit flat code segment. They are avail-
able only in 64-bit mode and only when the SCE bit of the IA32_EFER MSR is set.
SYSCALL/SYSRET invocations can occur from either 32-bit compatibility mode appli-
cation code or from 64-bit application code. Three related MSR registers
(IA32_STAR, IA32_LSTAR, IA32_FMASK) are used in conjunction with fast system
calls/returns that use these instructions.

64-Bit hosts which make use of these instructions in the VMM environment will need
to save the guest state of the above registers on VM exit, load the host state, and
restore the guest state on VM entry. One possible approach is to use the VM-exit
MSR-save and MSR-load areas and the VM-entry MSR-load area defined by controls
in the VMCS. A disadvantage to this approach, however, is that the approach results
in the unconditional saving, loading, and restoring of MSR registers on each VM exit
or VM entry.

Depending on the design of the VMM, it is likely that many VM-exits will require no
fast system call support but the VMM will be burdened with the additional overhead
of saving and restoring MSRs if the VMM chooses to support fast system call
uniformly. Further, even if the host intends to support fast system calls during a
VM-exit, some of the MSR values (such as the setting of the SCE bit in IA32_EFER)
may not require modification as they may already be set to the appropriate value in
the guest.

For performance reasons, a VMM may perform lazy save, load, and restore of these
MSR values on certain VM exits when it is determined that this is acceptable. The
lazy-save-load-restore operation can be carried out “manually” using RDMSR and
WRMSR.

30.10.4.4 Handling the SWAPGS Instruction
The SWAPGS instruction is available only in 64-bit mode. It swaps the contents of
two specific MSRs (IA32_GSBASE and IA32_KERNEL_GSBASE). The IA32_GSBASE
MSR shadows the base address portion of the GS descriptor register; the
IA32_KERNEL_GSBASE MSR holds the base address of the GS segment used by the
kernel (typically it houses kernel structures). SWAPGS is intended for use with fast
30-24 Vol. 3C

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
system calls when in 64-bit mode to allow immediate access to kernel structures on
transition to kernel mode.

Similar to SYSCALL/SYSRET, IA-32e mode hosts which use fast system calls may
need to save, load, and restore these MSR registers on VM exit and VM entry using
the guidelines discussed in previous paragraphs.

30.10.4.5 Implementation Specific Behavior on Writing to Certain MSRs
As noted in Section 26.4 and Section 27.4, a processor may prevent writing to
certain MSRs when loading guest states on VM entries or storing guest states on VM
exits. This is done to ensure consistent operation. The subset and number of MSRs
subject to restrictions are implementation specific. For initial VMX implementations,
there are two MSRs: IA32_BIOS_UPDT_TRIG and IA32_BIOS_SIGN_ID (see Chapter
34).

30.10.5 Handling Accesses to Reserved MSR Addresses
Privileged software (either a VMM or a guest OS) can access a model specific register
by specifying addresses in MSR address space. VMMs, however, must prevent a guest
from accessing reserved MSR addresses in MSR address space.

Consult Chapter 34 for lists of supported MSRs and their usage. Use the MSR bitmap
control to cause a VM exit when a guest attempts to access a reserved MSR address.
The response to such a VM exit should be to reflect #GP(0) back to the guest.

30.11 HANDLING ACCESSES TO CONTROL REGISTERS
Bit fields in control registers (CR0, CR4) control various aspects of processor opera-
tion. The VMM must prevent guests from modifying bits in CR0 or CR4 that are
reserved at the time the VMM is written.

Guest/host masks should be used by the VMM to cause VM exits when a guest
attempts to modify reserved bits. Read shadows should be used to ensure that the
guest always reads the reserved value (usually 0) for such bits. The VMM response to
VM exits due to attempts from a guest to modify reserved bits should be to emulate
the response which the processor would have normally produced (usually a #GP(0)).

30.12 PERFORMANCE CONSIDERATIONS
VMX provides hardware features that may be used for improving processor virtual-
ization performance. VMMs must be designed to use this support properly. The basic
idea behind most of these performance optimizations of the VMM is to reduce the
number of VM exits while executing a guest VM.
Vol. 3C 30-25

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
This section lists ways that VMMs can take advantage of the performance enhancing
features in VMX.
• Read Access to Control Registers. Analysis of common client workloads with

common PC operating systems in a virtual machine shows a large number of
VM-exits are caused by control register read accesses (particularly CR0). Reads
of CR0 and CR4 does not cause VM exits. Instead, they return values from the
CR0/CR4 read-shadows configured by the VMM in the guest controlling-VMCS
with the guest-expected values.

• Write Access to Control Registers. Most VMM designs require only certain bits
of the control registers to be protected from direct guest access. Write access to
CR0/CR4 registers can be reduced by defining the host-owned and guest-owned
bits in them through the CR0/CR4 host/guest masks in the VMCS. CR0/CR4 write
values by the guest are qualified with the mask bits. If they change only guest-
owned bits, they are allowed without causing VM exits. Any write that cause
changes to host-owned bits cause VM exits and need to be handled by the VMM.

• Access Rights based Page Table protection. For VMM that implement
access-rights-based page table protection, the VMCS provides a CR3 target value
list that can be consulted by the processor to determine if a VM exit is required.
Loading of CR3 with a value matching an entry in the CR3 target-list are allowed
to proceed without VM exits. The VMM can utilize the CR3 target-list to save
page-table hierarchies whose state is previously verified by the VMM.

• Page-fault handling. Another common cause for a VM exit is due to page-faults
induced by guest address remapping done through virtual memory virtualization.
VMX provides page-fault error-code mask and match fields in the VMCS to filter
VM exits due to page-faults based on their cause (reflected in the error-code).

30.13 USE OF THE VMX-PREEMPTION TIMER
The VMX-preemption timer allows VMM software to preempt guest VM execution
after a specified amount of time. Typical VMX-preemption timer usage is to program
the initial VM quantum into the timer, save the timer value on each successive VM-
exit (using the VM-exit control “save preemption timer value”) and run the VM until
the timer expires.

In an alternative scenario, the VMM may use another timer (e.g. the TSC) to track
the amount of time the VM has run while still using the VMX-preemption timer for VM
preemption. In this scenario the VMM would not save the VMX-preemption timer on
each VM-exit but instead would reload the VMX-preemption timer with initial VM
quantum less the time the VM has already run. This scenario includes all the VM-
entry and VM-exit latencies in the VM run time.

In both scenarios, on each successive VM-entry the VMX-preemption timer contains
a smaller value until the VM quantum ends. If the VMX-preemption timer is loaded
with a value smaller than the VM-entry latency then the VM will not execute any
30-26 Vol. 3C

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
instructions before the timer expires. The VMM must ensure the initial VM quantum is
greater than the VM-entry latency; otherwise the VM will make no forward progress.
Vol. 3C 30-27

CHAPTER 31
VIRTUALIZATION OF SYSTEM RESOURCES

31.1 OVERVIEW
When a VMM is hosting multiple guest environments (VMs), it must monitor potential
interactions between software components using the same system resources. These
interactions can require the virtualization of resources. This chapter describes the
virtualization of system resources. These include: debugging facilities, address
translation, physical memory, and microcode update facilities.

31.2 VIRTUALIZATION SUPPORT FOR DEBUGGING
FACILITIES

The Intel 64 and IA-32 debugging facilities (see Chapter 17) provide breakpoint
instructions, exception conditions, register flags, debug registers, control registers
and storage buffers for functions related to debugging system and application soft-
ware. In VMX operation, a VMM can support debugging system and application soft-
ware from within virtual machines if the VMM properly virtualizes debugging
facilities. The following list describes features relevant to virtualizing these facilities.
• The VMM can program the exception-bitmap (see Section 24.6.3) to ensure it

gets control on debug functions (like breakpoint exceptions occurring while
executing guest code such as INT3 instructions). Normally, debug exceptions
modify debug registers (such as DR6, DR7, IA32_DEBUGCTL). However, if debug
exceptions cause VM exits, exiting occurs before register modification.

• The VMM may utilize the VM-entry event injection facilities described in Section
26.5 to inject debug or breakpoint exceptions to the guest. See Section 31.2.1
for a more detailed discussion.

• The MOV-DR exiting control bit in the processor-based VM-execution control field
(see Section 24.6.2) can be enabled by the VMM to cause VM exits on explicit
guest access of various processor debug registers (for example, MOV to/from
DR0-DR7). These exits would always occur on guest access of DR0-DR7 registers
regardless of the values in CPL, DR4.DE or DR7.GD. Since all guest task switches
cause VM exits, a VMM can control any indirect guest access or modification of
debug registers during guest task switches.

• Guest software access to debug-related model-specific registers (such as
IA32_DEBUGCTL MSR) can be trapped by the VMM through MSR access control
features (such as the MSR-bitmaps that are part of processor-based VM-
execution controls). See Section 30.10 for details on MSR virtualization.
Vol. 3C 31-1

VIRTUALIZATION OF SYSTEM RESOURCES
• Debug registers such as DR7 and the IA32_DEBUGCTL MSR may be explicitly
modified by the guest (through MOV-DR or WRMSR instructions) or modified
implicitly by the processor as part of generating debug exceptions. The current
values of DR7 and the IA32_DEBUGCTL MSR are saved to guest-state area of
VMCS on every VM exit. Pending debug exceptions are debug exceptions that are
recognized by the processor but not yet delivered. See Section 26.6.3 for details
on pending debug exceptions.

• DR7 and the IA32-DEBUGCTL MSR are loaded from values in the guest-state area
of the VMCS on every VM entry. This allows the VMM to properly virtualize debug
registers when injecting debug exceptions to guest. Similarly, the RFLAGS1
register is loaded on every VM entry (or pushed to stack if injecting a virtual
event) from guest-state area of the VMCS. Pending debug exceptions are also
loaded from guest-state area of VMCS so that they may be delivered after VM
entry is completed.

31.2.1 Debug Exceptions
If a VMM emulates a guest instruction that would encounter a debug trap (single step
or data or I/O breakpoint), it should cause that trap to be delivered. The VMM should
not inject the debug exception using VM-entry event injection, but should set the
appropriate bits in the pending debug exceptions field. This method will give the trap
the right priority with respect to other events. (If the exception bitmap was
programmed to cause VM exits on debug exceptions, the debug trap will cause a VM
exit. At this point, the trap can be injected during VM entry with the proper priority.)

There is a valid pending debug exception if the BS bit (see Table 24-4) is set, regard-
less of the values of RFLAGS.TF or IA32_DEBUGCTL.BTF. The values of these bits do
not impact the delivery of pending debug exceptions.

VMMs should exercise care when emulating a guest write (attempted using WRMSR)
to IA32_DEBUGCTL to modify BTF if this is occurring with RFLAGS.TF = 1 and after a
MOV SS or POP SS instruction (for example: while debug exceptions are blocked).
Note the following:
• Normally, if WRMSR clears BTF while RFLAGS.TF = 1 and with debug exceptions

blocked, a single-step trap will occur after WRMSR. A VMM emulating such an
instruction should set the BS bit (see Table 24-4) in the pending debug
exceptions field before VM entry.

• Normally, if WRMSR sets BTF while RFLAGS.TF = 1 and with debug exceptions
blocked, neither a single-step trap nor a taken-branch trap can occur after
WRMSR. A VMM emulating such an instruction should clear the BS bit (see Table
24-4) in the pending debug exceptions field before VM entry.

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most
processors that support VMX operation also support Intel 64 architecture. For processors that do
not support Intel 64 architecture, this notation refers to the 32-bit forms of those registers
(EAX, EIP, ESP, EFLAGS, etc.).
31-2 Vol. 3C

VIRTUALIZATION OF SYSTEM RESOURCES
31.3 MEMORY VIRTUALIZATION
VMMs must control physical memory to ensure VM isolation and to remap guest
physical addresses in host physical address space for virtualization. Memory virtual-
ization allows the VMM to enforce control of physical memory and yet support guest
OSs’ expectation to manage memory address translation.

31.3.1 Processor Operating Modes & Memory Virtualization
Memory virtualization is required to support guest execution in various processor
operating modes. This includes: protected mode with paging, protected mode with
no paging, real-mode and any other transient execution modes. VMX allows guest
operation in protected-mode with paging enabled and in virtual-8086 mode (with
paging enabled) to support guest real-mode execution. Guest execution in transient
operating modes (such as in real mode with one or more segment limits greater than
64-KByte) must be emulated by the VMM.

Since VMX operation requires processor execution in protected mode with paging
(through CR0 and CR4 fixed bits), the VMM may utilize paging structures to support
memory virtualization. To support guest real-mode execution, the VMM may estab-
lish a simple flat page table for guest linear to host physical address mapping.
Memory virtualization algorithms may also need to capture other guest operating
conditions (such as guest performing A20M# address masking) to map the resulting
20-bit effective guest physical addresses.

31.3.2 Guest & Host Physical Address Spaces
Memory virtualization provides guest software with contiguous guest physical
address space starting zero and extending to the maximum address supported by
the guest virtual processor’s physical address width. The VMM utilizes guest physical
to host physical address mapping to locate all or portions of the guest physical
address space in host memory. The VMM is responsible for the policies and algo-
rithms for this mapping which may take into account the host system physical
memory map and the virtualized physical memory map exposed to a guest by the
VMM. The memory virtualization algorithm needs to accommodate various guest
memory uses (such as: accessing DRAM, accessing memory-mapped registers of
virtual devices or core logic functions and so forth). For example:
• To support guest DRAM access, the VMM needs to map DRAM-backed guest

physical addresses to host-DRAM regions. The VMM also requires the guest to
host memory mapping to be at page granularity.

• Virtual devices (I/O devices or platform core logic) emulated by the VMM may
claim specific regions in the guest physical address space to locate memory-
mapped registers. Guest access to these virtual registers may be configured to
cause page-fault induced VM-exits by marking these regions as always not
Vol. 3C 31-3

VIRTUALIZATION OF SYSTEM RESOURCES
present. The VMM may handle these VM exits by invoking appropriate virtual
device emulation code.

31.3.3 Virtualizing Virtual Memory by Brute Force
VMX provides the hardware features required to fully virtualize guest virtual memory
accesses. VMX allows the VMM to trap guest accesses to the PAT (Page Attribute
Table) MSR and the MTRR (Memory Type Range Registers). This control allows the
VMM to virtualize the specific memory type of a guest memory. The VMM may control
caching by controlling the guest CR0.CRD and CR0.NW bits, as well as by trapping
guest execution of the INVD instruction. The VMM can trap guest CR3 loads and
stores, and it may trap guest execution of INVLPG.

Because a VMM must retain control of physical memory, it must also retain control
over the processor’s address-translation mechanisms. Specifically, this means that
only the VMM can access CR3 (which contains the base of the page directory) and can
execute INVLPG (the only other instruction that directly manipulates the TLB).

At the same time that the VMM controls address translation, a guest operating
system will also expect to perform normal memory management functions. It will
access CR3, execute INVLPG, and modify (what it believes to be) page directories
and page tables. Virtualization of address translation must tolerate and support
guest attempts to control address translation.

A simple-minded way to do this would be to ensure that all guest attempts to access
address-translation hardware trap to the VMM where such operations can be properly
emulated. It must ensure that accesses to page directories and page tables also get
trapped. This may be done by protecting these in-memory structures with conven-
tional page-based protection. The VMM can do this because it can locate the page
directory because its base address is in CR3 and the VMM receives control on any
change to CR3; it can locate the page tables because their base addresses are in the
page directory.

Such a straightforward approach is not necessarily desirable. Protection of the in-
memory translation structures may be cumbersome. The VMM may maintain these
structures with different values (e.g., different page base addresses) than guest soft-
ware. This means that there must be traps on guest attempt to read these structures
and that the VMM must maintain, in auxiliary data structures, the values to return to
these reads. There must also be traps on modifications to these structures even if the
translations they effect are never used. All this implies considerable overhead that
should be avoided.

31.3.4 Alternate Approach to Memory Virtualization
Guest software is allowed to freely modify the guest page-table hierarchy without
causing traps to the VMM. Because of this, the active page-table hierarchy might not
always be consistent with the guest hierarchy. Any potential problems arising from
31-4 Vol. 3C

VIRTUALIZATION OF SYSTEM RESOURCES
inconsistencies can be solved using techniques analogous to those used by the
processor and its TLB.

This section describes an alternative approach that allows guest software to freely
access page directories and page tables. Traps occur on CR3 accesses and executions
of INVLPG. They also occur when necessary to ensure that guest modifications to the
translation structures actually take effect. The software mechanisms to support this
approach are collectively called virtual TLB. This is because they emulate the func-
tionality of the processor’s physical translation look-aside buffer (TLB).

The basic idea behind the virtual TLB is similar to that behind the processor TLB.
While the page-table hierarchy defines the relationship between physical to linear
address, it does not directly control the address translation of each memory access.
Instead, translation is controlled by the TLB, which is occasionally filled by the
processor with translations derived from the page-table hierarchy. With a virtual TLB,
the page-table hierarchy established by guest software (specifically, the guest oper-
ating system) does not control translation, either directly or indirectly. Instead,
translation is controlled by the processor (through its TLB) and by the VMM (through
a page-table hierarchy that it maintains).

Specifically, the VMM maintains an alternative page-table hierarchy that effectively
caches translations derived from the hierarchy maintained by guest software. The
remainder of this document refers to the former as the active page-table hierarchy
(because it is referenced by CR3 and may be used by the processor to load its TLB)
and the latter as the guest page-table hierarchy (because it is maintained by guest
software). The entries in the active hierarchy may resemble the corresponding
entries in the guest hierarchy in some ways and may differ in others.

Guest software is allowed to freely modify the guest page-table hierarchy without
causing VM exits to the VMM. Because of this, the active page-table hierarchy might
not always be consistent with the guest hierarchy. Any potential problems arising
from any inconsistencies can be solved using techniques analogous to those used by
the processor and its TLB. Note the following:
• Suppose the guest page-table hierarchy allows more access than active hierarchy

(for example: there is a translation for a linear address in the guest hierarchy but
not in the active hierarchy); this is analogous to a situation in which the TLB
allows less access than the page-table hierarchy. If an access occurs that would
be allowed by the guest hierarchy but not the active one, a page fault occurs; this
is analogous to a TLB miss. The VMM gains control (as it handles all page faults)
and can update the active page-table hierarchy appropriately; this corresponds
to a TLB fill.

• Suppose the guest page-table hierarchy allows less access than the active
hierarchy; this is analogous to a situation in which the TLB allows more access
than the page-table hierarchy. This situation can occur only if the guest operating
system has modified a page-table entry to reduce access (for example: by
marking it not-present). Because the older, more permissive translation may
have been cached in the TLB, the processor is architecturally permitted to use the
older translation and allow more access. Thus, the VMM may (through the active
page-table hierarchy) also allow greater access. For the new, less permissive
Vol. 3C 31-5

VIRTUALIZATION OF SYSTEM RESOURCES
translation to take effect, guest software should flush any older translations from
the TLB either by executing INVLPG or by loading CR3. Because both these
operations will cause a trap to the VMM, the VMM will gain control and can
remove from the active page-table hierarchy the translations indicated by guest
software (the translation of a specific linear address for INVLPG or all translations
for a load of CR3).

As noted previously, the processor reads the page-table hierarchy to cache transla-
tions in the TLB. It also writes to the hierarchy to main the accessed (A) and dirty (D)
bits in the PDEs and PTEs. The virtual TLB emulates this behavior as follows:
• When a page is accessed by guest software, the A bit in the corresponding PTE

(or PDE for a 4-MByte page) in the active page-table hierarchy will be set by the
processor (the same is true for PDEs when active page tables are accessed by the
processor). For guest software to operate properly, the VMM should update the A
bit in the guest entry at this time. It can do this reliably if it keeps the active PTE
(or PDE) marked not-present until it has set the A bit in the guest entry.

• When a page is written by guest software, the D bit in the corresponding PTE (or
PDE for a 4-MByte page) in the active page-table hierarchy will be set by the
processor. For guest software to operate properly, the VMM should update the D
bit in the guest entry at this time. It can do this reliably if it keeps the active PTE
(or PDE) marked read-only until it has set the D bit in the guest entry. This
solution is valid for guest software running at privilege level 3; support for more
privileged guest software is described in Section 31.3.5.

31.3.5 Details of Virtual TLB Operation
This section describes in more detail how a VMM could support a virtual TLB. It
explains how an active page-table hierarchy is initialized and how it is maintained in
response to page faults, uses of INVLPG, and accesses to CR3. The mechanisms
described here are the minimum necessary. They may not result in the best perfor-
mance.
31-6 Vol. 3C

VIRTUALIZATION OF SYSTEM RESOURCES
As noted above, the VMM maintains an active page-table hierarchy for each virtual
machine that it supports. It also maintains, for each machine, values that the
machine expects for control registers CR0, CR2, CR3, and CR4 (they control address
translation). These values are called the guest control registers.

In general, the VMM selects the physical-address space that is allocated to guest
software. The term guest address refers to an address installed by guest software in
the guest CR3, in a guest PDE (as a page table base address or a page base address),
or in a guest PTE (as a page base address). While guest software considers these to
be specific physical addresses, the VMM may map them differently.

31.3.5.1 Initialization of Virtual TLB
To enable the Virtual TLB scheme, the VMCS must be set up to trigger VM exits on:
• All writes to CR3 (the CR3-target count should be 0) or the paging-mode bits in

CR0 and CR4 (using the CR0 and CR4 guest/host masks)
• Page-fault (#PF) exceptions
• Execution of INVLPG

Figure 31-1. Virtual TLB Scheme

refill on
TLB miss

CR3

PD

PT

PT

F

F

F

F

PD

"Virtual TLB"

Active Guest

INVLPG
MOV to CR3
task switch

refill on
page fault

set accessed
and dirty bits

TLB

PD = page directory
PT = page table
F = page frame

INVLPG
MOV to

CR3
task switch

Active Page-Table Hierarchy Guest Page-Table Hierarchy

PT

PT

F

F

F

F

CR3

set dirty
accessed

OM19040
Vol. 3C 31-7

VIRTUALIZATION OF SYSTEM RESOURCES
When guest software first enables paging, the VMM creates an aligned 4-KByte active
page directory that is invalid (all entries marked not-present). This invalid directory
is analogous to an empty TLB.

31.3.5.2 Response to Page Faults
Page faults can occur for a variety of reasons. In some cases, the page fault alerts the
VMM to an inconsistency between the active and guest page-table hierarchy. In such
cases, the VMM can update the former and re-execute the faulting instruction. In
other cases, the hierarchies are already consistent and the fault should be handled
by the guest operating system. The VMM can detect this and use an established
mechanism for raising a page fault to guest software.

The VMM can handle a page fault by following these steps (The steps below assume
the guest is operating in a paging mode without PAE. Analogous steps to handle
address translation using PAE or four-level paging mechanisms can be derived by
VMM developers according to the paging behavior defined in Chapter 3 of the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 3A):

1. First consult the active PDE, which can be located using the upper 10 bits of the
faulting address and the current value of CR3. The active PDE is the source of the
fault if it is marked not present or if its R/W bit and U/S bits are inconsistent with
the attempted guest access (the guest privilege level and the values of CR0.WP
and CR4.SMEP should also be taken into account).

2. If the active PDE is the source of the fault, consult the corresponding guest PDE
using the same 10 bits from the faulting address and the physical address that
corresponds to the guest address in the guest CR3. If the guest PDE would cause
a page fault (for example: it is marked not present), then raise a page fault to the
guest operating system.
The following steps assume that the guest PDE would not have caused a page
fault.

3. If the active PDE is the source of the fault and the guest PDE contains, as page-
table base address (if PS = 0) or page base address (PS = 1), a guest address
that the VMM has chosen not to support; then raise a machine check (or some
other abort) to the guest operating system.
The following steps assume that the guest address in the guest PDE is supported
for the virtual machine.

4. If the active PDE is marked not-present, then set the active PDE to correspond to
guest PDE as follows:

a. If the active PDE contains a page-table base address (if PS = 0), then
allocate an aligned 4-KByte active page table marked completely invalid and
set the page-table base address in the active PDE to be the physical address
of the newly allocated page table.
31-8 Vol. 3C

VIRTUALIZATION OF SYSTEM RESOURCES
b. If the active PDE contains a page base address (if PS = 1), then set the page
base address in the active PDE to be the physical page base address that
corresponds to the guest address in the guest PDE.

c. Set the P, U/S, and PS bits in the active PDE to be identical to those in the
guest PDE.

d. Set the PWT, PCD, and G bits according to the policy of the VMM.

e. Set A = 1 in the guest PDE.

f. If D = 1 in the guest PDE or PS = 0 (meaning that this PDE refers to a page
table), then set the R/W bit in the active PDE as in the guest PDE.

g. If D = 0 in the guest PDE, PS = 1 (this is a 4-MByte page), and the attempted
access is a write; then set R/W in the active PDE as in the guest PDE and set
D = 1 in the guest PDE.

h. If D = 0 in the guest PDE, PS = 1, and the attempted access is not a write;
then set R/W = 0 in the active PDE.

i. After modifying the active PDE, re-execute the faulting instruction.
The remaining steps assume that the active PDE is already marked present.

5. If the active PDE is the source of the fault, the active PDE refers to a 4-MByte
page (PS = 1), the attempted access is a write; D = 0 in the guest PDE, and the
active PDE has caused a fault solely because it has R/W = 0; then set R/W in the
active PDE as in the guest PDE; set D = 1 in the guest PDE, and re-execute the
faulting instruction.

6. If the active PDE is the source of the fault and none of the above cases apply,
then raise a page fault of the guest operating system.
The remaining steps assume that the source of the original page fault is not the
active PDE.

NOTE
It is possible that the active PDE might be causing a fault even
though the guest PDE would not. However, this can happen only if the
guest operating system increased access in the guest PDE and did
not take action to ensure that older translations were flushed from
the TLB. Such translations might have caused a page fault if the
guest software were running on bare hardware.

7. If the active PDE refers to a 4-MByte page (PS = 1) but is not the source of the
fault, then the fault resulted from an inconsistency between the active page-table
hierarchy and the processor’s TLB. Since the transition to the VMM caused an
address-space change and flushed the processor’s TLB, the VMM can simply re-
execute the faulting instruction.
The remaining steps assume that PS = 0 in the active and guest PDEs.
Vol. 3C 31-9

VIRTUALIZATION OF SYSTEM RESOURCES
8. Consult the active PTE, which can be located using the next 10 bits of the faulting
address (bits 21–12) and the physical page-table base address in the active PDE.
The active PTE is the source of the fault if it is marked not-present or if its R/W bit
and U/S bits are inconsistent with the attempted guest access (the guest
privilege level and the values of CR0.WP and CR4.SMEP should also be taken into
account).

9. If the active PTE is not the source of the fault, then the fault has resulted from an
inconsistency between the active page-table hierarchy and the processor’s TLB.
Since the transition to the VMM caused an address-space change and flushed the
processor’s TLB, the VMM simply re-executes the faulting instruction.
The remaining steps assume that the active PTE is the source of the fault.

10. Consult the corresponding guest PTE using the same 10 bits from the faulting
address and the physical address that correspond to the guest page-table base
address in the guest PDE. If the guest PTE would cause a page fault (it is marked
not-present), the raise a page fault to the guest operating system.
The following steps assume that the guest PTE would not have caused a page
fault.

11. If the guest PTE contains, as page base address, a physical address that is not
valid for the virtual machine being supported; then raise a machine check (or
some other abort) to the guest operating system.
The following steps assume that the address in the guest PTE is valid for the
virtual machine.

12. If the active PTE is marked not-present, then set the active PTE to correspond to
guest PTE:

a. Set the page base address in the active PTE to be the physical address that
corresponds to the guest page base address in the guest PTE.

b. Set the P, U/S, and PS bits in the active PTE to be identical to those in the
guest PTE.

c. Set the PWT, PCD, and G bits according to the policy of the VMM.

d. Set A = 1 in the guest PTE.

e. If D = 1 in the guest PTE, then set the R/W bit in the active PTE as in the
guest PTE.

f. If D = 0 in the guest PTE and the attempted access is a write, then set R/W in
the active PTE as in the guest PTE and set D = 1 in the guest PTE.

g. If D = 0 in the guest PTE and the attempted access is not a write, then set
R/W = 0 in the active PTE.

h. After modifying the active PTE, re-execute the faulting instruction.
The remaining steps assume that the active PTE is already marked present.

13. If the attempted access is a write, D = 0 (not dirty) in the guest PTE and the
active PTE has caused a fault solely because it has R/W = 0 (read-only); then set
31-10 Vol. 3C

VIRTUALIZATION OF SYSTEM RESOURCES
R/W in the active PTE as in the guest PTE, set D = 1 in the guest PTE and re-
execute the faulting instruction.

14. If none of the above cases apply, then raise a page fault of the guest operating
system.

31.3.5.3 Response to Uses of INVLPG
Operating-systems can use INVLPG to flush entries from the TLB. This instruction
takes a linear address as an operand and software expects any cached translations
for the address to be flushed. A VMM should set the processor-based VM-execution
control “INVLPG exiting” to 1 so that any attempts by a privileged guest to execute
INVLPG will trap to the VMM. The VMM can then modify the active page-table hier-
archy to emulate the desired effect of the INVLPG.

The following steps are performed. Note that these steps are performed only if the
guest invocation of INVLPG would not fault and only if the guest software is running
at privilege level 0:

1. Locate the relevant active PDE using the upper 10 bits of the operand address
and the current value of CR3. If the PDE refers to a 4-MByte page (PS = 1), then
set P = 0 in the PDE.

2. If the PDE is marked present and refers to a page table (PS = 0), locate the
relevant active PTE using the next 10 bits of the operand address (bits 21–12)
and the page-table base address in the PDE. Set P = 0 in the PTE. Examine all
PTEs in the page table; if they are now all marked not-present, de-allocate the
page table and set P = 0 in the PDE (this step may be optional).

31.3.5.4 Response to CR3 Writes
A guest operating system may attempt to write to CR3. Any write to CR3 implies a
TLB flush and a possible page table change. The following steps are performed:

1. The VMM notes the new CR3 value (used later to walk guest page tables) and
emulates the write.

2. The VMM allocates a new PD page, with all invalid entries.

3. The VMM sets actual processor CR3 register to point to the new PD page.

The VMM may, at this point, speculatively fill in VTLB mappings for performance
reasons.

31.4 MICROCODE UPDATE FACILITY
The microcode code update facility may be invoked at various points during the oper-
ation of a platform. Typically, the BIOS invokes the facility on all processors during
the BIOS boot process. This is sufficient to boot the BIOS and operating system. As a
Vol. 3C 31-11

VIRTUALIZATION OF SYSTEM RESOURCES
microcode update more current than the system BIOS may be available, system soft-
ware should provide another mechanism for invoking the microcode update facility.
The implications of the microcode update mechanism on the design of the VMM are
described in this section.

NOTE
Microcode updates must not be performed during VMX non-root
operation. Updates performed in VMX non-root operation may result
in unpredictable system behavior.

31.4.1 Early Load of Microcode Updates
The microcode update facility may be invoked early in the VMM or guest OS boot
process. Loading the microcode update early provides the opportunity to correct
errata affecting the boot process but the technique generally requires a reboot of the
software.

A microcode update may be loaded from the OS or VMM image loader. Typically, such
image loaders do not run on every logical processor, so this method effects only one
logical processor. Later in the VMM or OS boot process, after bringing all application
processors on-line, the VMM or OS needs to invoke the microcode update facility for
all application processors.

Depending on the order of the VMM and the guest OS boot, the microcode update
facility may be invoked by the VMM or the guest OS. For example, if the guest OS
boots first and then loads the VMM, the guest OS may invoke the microcode update
facility on all the logical processors. If a VMM boots before its guests, then the VMM
may invoke the microcode update facility during its boot process. In both cases, the
VMM or OS should invoke the microcode update facilities soon after performing the
multiprocessor startup.

In the early load scenario, microcode updates may be contained in the VMM or OS
image or, the VMM or OS may manage a separate database or file of microcode
updates. Maintaining a separate microcode update image database has the advan-
tage of reducing the number of required VMM or OS releases as a result of microcode
update releases.

31.4.2 Late Load of Microcode Updates
A microcode update may be loaded during normal system operation. This allows
system software to activate the microcode update at anytime without requiring a
system reboot. This scenario does not allow the microcode update to correct errata
which affect the processor’s boot process but does allow high-availability systems to
activate microcode updates without interrupting the availability of the system. In this
late load scenario, either the VMM or a designated guest may load the microcode
update. If the guest is loading the microcode update, the VMM must make sure that
31-12 Vol. 3C

VIRTUALIZATION OF SYSTEM RESOURCES
the entire guest memory buffer (which contains the microcode update image) will not
cause a page fault when accessed.

If the VMM loads the microcode update, then the VMM must have access to the
current set of microcode updates. These updates could be part of the VMM image or
could be contained in a separate microcode update image database (for example: a
database file on disk or in memory). Again, maintaining a separate microcode update
image database has the advantage of reducing the number of required VMM or OS
releases as a result of microcode update releases.

The VMM may wish to prevent a guest from loading a microcode update or may wish
to support the microcode update requested by a guest using emulation (without
actually loading the microcode update). To prevent microcode update loading, the
VMM may return a microcode update signature value greater than the value of
IA32_BIOS_SIGN_ID MSR. A well behaved guest will not attempt to load an older
microcode update. The VMM may also drop the guest attempts to write to
IA32_BIOS_UPDT_TRIG MSR, preventing the guest from loading any microcode
updates. Later, when the guest queries IA32_BIOS_SIGN_ID MSR, the VMM could
emulate the microcode update signature that the guest expects.

In general, loading a microcode update later will limit guest software’s visibility of
features that may be enhanced by a microcode update.
Vol. 3C 31-13

CHAPTER 32
HANDLING BOUNDARY CONDITIONS IN A VIRTUAL

MACHINE MONITOR

32.1 OVERVIEW
This chapter describes what a VMM must consider when handling exceptions, inter-
rupts, error conditions, and transitions between activity states.

32.2 INTERRUPT HANDLING IN VMX OPERATION
The following bullets summarize VMX support for handling interrupts:
• Control of processor exceptions. The VMM can get control on specific guest

exceptions through the exception-bitmap in the guest controlling VMCS. The
exception bitmap is a 32-bit field that allows the VMM to specify processor
behavior on specific exceptions (including traps, faults, and aborts). Setting a
specific bit in the exception bitmap implies VM exits will be generated when the
corresponding exception occurs. Any exceptions that are programmed not to
cause VM exits are delivered directly to the guest through the guest IDT. The
exception bitmap also controls execution of relevant instructions such as BOUND,
INTO and INT3. VM exits on page-faults are treated in such a way the page-fault
error code is qualified through the page-fault-error-code mask and match fields
in the VMCS.

• Control over triple faults. If a fault occurs while attempting to call a double-
fault handler in the guest and that fault is not configured to cause a VM exit in the
exception bitmap, the resulting triple fault causes a VM exit.

• Control of external interrupts. VMX allows both host and guest control of
external interrupts through the “external-interrupt exiting” VM execution control.
If the control is 0, external-interrupts do not cause VM exits and the interrupt
delivery is masked by the guest programmed RFLAGS.IF value.1 If the control is
1, external-interrupts causes VM exits and are not masked by RFLAGS.IF. The
VMM can identify VM exits due to external interrupts by checking the exit reason
for an “external interrupt” (value = 1).

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most
processors that support VMX operation also support Intel 64 architecture. For processors that do
not support Intel 64 architecture, this notation refers to the 32-bit forms of those registers
(EAX, EIP, ESP, EFLAGS, etc.).
Vol. 3C 32-1

HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR
• Control of other events. There is a pin-based VM-execution control that
controls system behavior (exit or no-exit) for NMI events. Most VMM usages will
need handling of NMI external events in the VMM and hence will specify host
control of these events.
Some processors also support a pin-based VM-execution control called “virtual
NMIs.” When this control is set, NMIs cause VM exits, but the processor tracks
guest readiness for virtual NMIs. This control interacts with the “NMI-window
exiting” VM-execution control (see below).
INIT and SIPI events always cause VM exits.

• Acknowledge interrupt on exit. The “acknowledge interrupt on exit” VM-exit
control in the controlling VMCS controls processor behavior for external interrupt
acknowledgement. If the control is 1, the processor acknowledges the interrupt
controller to acquire the interrupt vector upon VM exit, and stores the vector in
the VM-exit interruption-information field. If the control is 0, the external
interrupt is not acknowledged during VM exit. Since RFLAGS.IF is automatically
cleared on VM exits due to external interrupts, VMM re-enabling of interrupts
(setting RFLAGS.IF = 1) initiates the external interrupt acknowledgement and
vectoring of the external interrupt through the monitor/host IDT.

• Event-masking Support. VMX captures the masking conditions of specific
events while in VMX non-root operation through the interruptibility-state field in
the guest-state area of the VMCS.
This feature allows proper virtualization of various interrupt blocking states, such
as: (a) blocking of external interrupts for the instruction following STI; (b)
blocking of interrupts for the instruction following a MOV-SS or POP-SS
instruction; (c) SMI blocking of subsequent SMIs until the next execution of RSM;
and (d) NMI/SMI blocking of NMIs until the next execution of IRET or RSM.
INIT and SIPI events are treated specially. INIT assertions are always blocked in
VMX root operation and while in SMM, and unblocked otherwise. SIPI events are
always blocked in VMX root operation.
The interruptibility state is loaded from the VMCS guest-state area on every
VM entry and saved into the VMCS on every VM exit.

• Event injection. VMX operation allows injecting interruptions to a guest virtual
machine through the use of VM-entry interrupt-information field in VMCS.
Injectable interruptions include external interrupts, NMI, processor exceptions,
software generated interrupts, and software traps. If the interrupt-information
field indicates a valid interrupt, exception or trap event upon the next VM entry;
the processor will use the information in the field to vector a virtual interruption
through the guest IDT after all guest state and MSRs are loaded. Delivery
through the guest IDT emulates vectoring in non-VMX operation by doing the
normal privilege checks and pushing appropriate entries to the guest stack
(entries may include RFLAGS, EIP and exception error code). A VMM with host
control of NMI and external interrupts can use the event-injection facility to
forward virtual interruptions to various guest virtual machines.
32-2 Vol. 3C

HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR
• Interrupt-window exiting. When set to 1, the “interrupt-window exiting” VM-
execution control (Section 24.6.2) causes VM exits when guest RFLAGS.IF is 1
and no other conditions block external interrupts. A VM exit occurs at the
beginning of any instruction at which RFLAGS.IF = 1 and on which the interrupt-
ibility state of the guest would allow delivery of an interrupt. For example: when
the guest executes an STI instruction, RFLAGS = 1, and if at the completion of
next instruction the interruptibility state masking due to STI is removed; a
VM exit occurs if the “interrupt-window exiting” VM-execution control is 1. This
feature allows a VMM to queue a virtual interrupt to the guest when the guest is
not in an interruptible state. The VMM can set the “interrupt-window exiting” VM-
execution control for the guest and depend on a VM exit to know when the guest
becomes interruptible (and, therefore, when it can inject a virtual interrupt). The
VMM can detect such VM exits by checking for the basic exit reason “interrupt-
window” (value = 7). If this feature is not used, the VMM will need to poll and
check the interruptibility state of the guest to deliver virtual interrupts.

• NMI-window exiting. If the “virtual NMIs” VM-execution is set, the processor
tracks virtual-NMI blocking. The “NMI-window exiting” VM-execution control
(Section 24.6.2) causes VM exits when there is no virtual-NMI blocking. For
example, after execution of the IRET instruction, a VM exit occurs if the “NMI-
window exiting” VM-execution control is 1. This feature allows a VMM to queue a
virtual NMI to a guest when the guest is not ready to receive NMIs. The VMM can
set the “NMI-window exiting” VM-execution control for the guest and depend on
a VM exit to know when the guest becomes ready for NMIs (and, therefore, when
it can inject a virtual NMI). The VMM can detect such VM exits by checking for the
basic exit reason “NMI window” (value = 8). If this feature is not used, the VMM
will need to poll and check the interruptibility state of the guest to deliver virtual
NMIs.

• VM-exit information. The VM-exit information fields provide details on VM exits
due to exceptions and interrupts. This information is provided through the exit-
qualification, VM-exit-interruption-information, instruction-length and inter-
ruption-error-code fields. Also, for VM exits that occur in the course of vectoring
through the guest IDT, information about the event that was being vectored
through the guest IDT is provided in the IDT-vectoring-information and IDT-
vectoring-error-code fields. These information fields allow the VMM to identify
the exception cause and to handle it properly.

32.3 EXTERNAL INTERRUPT VIRTUALIZATION
VMX operation allows both host and guest control of external interrupts. While guest
control of external interrupts might be suitable for partitioned usages (different CPU
cores/threads and I/O devices partitioned to independent virtual machines), most
VMMs built upon VMX are expected to utilize host control of external interrupts. The
rest of this section describes a general host-controlled interrupt virtualization archi-
tecture for standard PC platforms through the use of VMX supported features.
Vol. 3C 32-3

HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR
With host control of external interrupts, the VMM (or the host OS in a hosted VMM
model) manages the physical interrupt controllers in the platform and the interrupts
generated through them. The VMM exposes software-emulated virtual interrupt
controller devices (such as PIC and APIC) to each guest virtual machine instance.

32.3.1 Virtualization of Interrupt Vector Space
The Intel 64 and IA-32 architectures use 8-bit vectors of which 224 (20H – FFH) are
available for external interrupts. Vectors are used to select the appropriate entry in
the interrupt descriptor table (IDT). VMX operation allows each guest to control its
own IDT. Host vectors refer to vectors delivered by the platform to the processor
during the interrupt acknowledgement cycle. Guest vectors refer to vectors
programmed by a guest to select an entry in its guest IDT. Depending on the I/O
resource management models supported by the VMM design, the guest vector space
may or may not overlap with the underlying host vector space.
• Interrupts from virtual devices: Guest vector numbers for virtual interrupts

delivered to guests on behalf of emulated virtual devices have no direct relation
to the host vector numbers of interrupts from physical devices on which they are
emulated. A guest-vector assigned for a virtual device by the guest operating
environment is saved by the VMM and utilized when injecting virtual interrupts on
behalf of the virtual device.

• Interrupts from assigned physical devices: Hardware support for I/O device
assignment allows physical I/O devices in the host platform to be assigned
(direct-mapped) to VMs. Guest vectors for interrupts from direct-mapped
physical devices take up equivalent space from the host vector space, and
require the VMM to perform host-vector to guest-vector mapping for interrupts.

Figure 32-1 illustrates the functional relationship between host external interrupts
and guest virtual external interrupts. Device A is owned by the host and generates
external interrupts with host vector X. The host IDT is set up such that the interrupt
service routine (ISR) for device driver A is hooked to host vector X as normal. VMM
emulates (over device A) virtual device C in software which generates virtual inter-
rupts to the VM with guest expected vector P. Device B is assigned to a VM and gener-
ates external interrupts with host vector Y. The host IDT is programmed to hook the
VMM interrupt service routine (ISR) for assigned devices for vector Y, and the VMM
handler injects virtual interrupt with guest vector Q to the VM. The guest operating
system programs the guest to hook appropriate guest driver’s ISR to vectors P
and Q.
32-4 Vol. 3C

HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR
32.3.2 Control of Platform Interrupts
To meet the interrupt virtualization requirements, the VMM needs to take ownership
of the physical interrupts and the various interrupt controllers in the platform. VMM
control of physical interrupts may be enabled through the host-control settings of the
“external-interrupt exiting” VM-execution control. To take ownership of the platform
interrupt controllers, the VMM needs to expose the virtual interrupt controller devices
to the virtual machines and restrict guest access to the platform interrupt controllers.

Intel 64 and IA-32 platforms can support three types of external interrupt control
mechanisms: Programmable Interrupt Controllers (PIC), Advanced Programmable

Figure 32-1. Host External Interrupts and Guest Virtual Interrupts

Device Driver B

Device Driver C

Virtual Device C
Emulation

Device Driver A

Monitor Handler

Host IDTR

Device A Device B

Hardware

Platform Interrupt Platform Interrupt

Virtual Machine Monitor (VMM)

Host IDT

H
os

t

H
o

st

V
ec

to
r

X

V
e

ct
or

 Y

Guest IDTR

Guest IDT

Guest
Vector P

VM

Virtual Interrupt Virtual Interrupt

Guest
Vector Q

OM19041
Vol. 3C 32-5

HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR
Interrupt Controllers (APIC), and Message Signaled Interrupts (MSI). The following
sections provide information on the virtualization of each of these mechanisms.

32.3.2.1 PIC Virtualization
Typical PIC-enabled platform implementations support dual 8259 interrupt control-
lers cascaded as master and slave controllers. They supporting up to 15 possible
interrupt inputs. The 8259 controllers are programmed through initialization
command words (ICWx) and operation command words (OCWx) accessed through
specific I/O ports. The various interrupt line states are captured in the PIC through
interrupt requests, interrupt service routines and interrupt mask registers.

Guest access to the PIC I/O ports can be restricted by activating I/O bitmaps in the
guest controlling-VMCS (activate-I/O-bitmap bit in VM-execution control field set
to 1) and pointing the I/O-bitmap physical addresses to valid bitmap regions. Bits
corresponding to the PIC I/O ports can be cleared to cause a VM exit on guest access
to these ports.

If the VMM is not supporting direct access to any I/O ports from a guest, it can set the
unconditional-I/O-exiting in the VM-execution control field instead of activating I/O
bitmaps. The exit-reason field in VM-exit information allows identification of VM exits
due to I/O access and can provide an exit-qualification to identify details about the
guest I/O operation that caused the VM exit.

The VMM PIC virtualization needs to emulate the platform PIC functionality including
interrupt priority, mask, request and service states, and specific guest programmed
modes of PIC operation.

32.3.2.2 xAPIC Virtualization
Most modern Intel 64 and IA-32 platforms include support for an APIC. While the
standard PIC is intended for use on uniprocessor systems, APIC can be used in either
uniprocessor or multi-processor systems.

APIC based interrupt control consists of two physical components: the interrupt
acceptance unit (Local APIC) which is integrated with the processor, and the interrupt
delivery unit (I/O APIC) which is part of the I/O subsystem. APIC virtualization
involves protecting the platform’s local and I/O APICs and emulating them for the
guest.

32.3.2.3 Local APIC Virtualization
The local APIC is responsible for the local interrupt sources, interrupt acceptance,
dispensing interrupts to the logical processor, and generating inter-processor inter-
rupts. Software interacts with the local APIC by reading and writing its memory-
mapped registers residing within a 4-KByte uncached memory region with base
address stored in the IA32_APIC_BASE MSR. Since the local APIC registers are
memory-mapped, the VMM can utilize memory virtualization techniques (such as
32-6 Vol. 3C

HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR
page-table virtualization) to trap guest accesses to the page frame hosting the
virtual local APIC registers.

Local APIC virtualization in the VMM needs to emulate the various local APIC opera-
tions and registers, such as: APIC identification/format registers, the local vector
table (LVT), the interrupt command register (ICR), interrupt capture registers (TMR,
IRR and ISR), task and processor priority registers (TPR, PPR), the EOI register and
the APIC-timer register. Since local APICs are designed to operate with non-specific
EOI, local APIC emulation also needs to emulate broadcast of EOI to the guest’s
virtual I/O APICs for level triggered virtual interrupts.

A local APIC allows interrupt masking at two levels: (1) mask bit in the local vector
table entry for local interrupts and (2) raising processor priority through the TPR
registers for masking lower priority external interrupts. The VMM needs to compre-
hend these virtual local APIC mask settings as programmed by the guest in addition
to the guest virtual processor interruptibility state (when injecting APIC routed
external virtual interrupts to a guest VM).

VMX provides several features which help the VMM to virtualize the local APIC. These
features allow many of guest TPR accesses (using CR8 only) to occur without VM
exits to the VMM:
• The VMCS contains a “virtual-APIC address” field. This 64-bit field is the physical

address of the 4-KByte virtual APIC page (4-KByte aligned). The virtual-APIC
page contains a TPR shadow, which is accessed by the MOV CR8 instruction. The
TPR shadow comprises bits 7:4 in byte 80H of the virtual-APIC page.

• The TPR threshold: bits 3:0 of this 32-bit field determine the threshold below
which the TPR shadow cannot fall. A VM exit will occur after an execution of MOV
CR8 that reduces the TPR shadow below this value.

• The processor-based VM-execution controls field contains a “use TPR shadow” bit
and a “CR8-store exiting” bit. If the “use TPR shadow” VM-execution control is 1
and the “CR8-store exiting” VM-execution control is 0, then a MOV from CR8
reads from the TPR shadow. If the “CR8-store exiting” VM-execution control is 1,
then MOV from CR8 causes a VM exit; the “use TPR shadow” VM-execution
control is ignored in this case.

• The processor-based VM-execution controls field contains a “CR8-load exiting”
bit. If the “use TPR shadow” VM-execution control is set and the “CR8-load
exiting” VM-execution control is clear, then MOV to CR8 writes to the “TPR
shadow”. A VM exit will occur after this write if the value written is below the TPR
threshold. If the “CR8-load exiting” VM-execution control is set, then MOV to CR8
causes a VM exit; the “use TPR shadow” VM-execution control is ignored in this
case.

32.3.2.4 I/O APIC Virtualization
The I/O APIC registers are typically mapped to a 1 MByte region where each I/O APIC
is allocated a 4K address window within this range. The VMM may utilize physical
memory virtualization to trap guest accesses to the virtual I/O APIC memory-
Vol. 3C 32-7

HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR
mapped registers. The I/O APIC virtualization needs to emulate the various I/O APIC
operations and registers such as identification/version registers, indirect-I/O-access
registers, EOI register, and the I/O redirection table. I/O APIC virtualization also
need to emulate various redirection table entry settings such as delivery mode,
destination mode, delivery status, polarity, masking, and trigger mode programmed
by the guest and track remote-IRR state on guest EOI writes to various virtual local
APICs.

32.3.2.5 Virtualization of Message Signaled Interrupts
The PCI Local Bus Specification (Rev. 2.2) introduces the concept of message
signaled interrupts (MSI). MSI enable PCI devices to request service by writing a
system-specified message to a system specified address. The transaction address
specifies the message destination while the transaction data specifies the interrupt
vector, trigger mode and delivery mode. System software is expected to configure
the message data and address during MSI device configuration, allocating one or
more no-shared messages to MSI capable devices. Chapter 10, “Advanced Program-
mable Interrupt Controller (APIC),” specifies the MSI message address and data
register formats to be followed on Intel 64 and IA-32 platforms. While MSI is optional
for conventional PCI devices, it is the preferred interrupt mechanism for PCI-Express
devices.

Since the MSI address and data are configured through PCI configuration space, to
control these physical interrupts the VMM needs to assume ownership of PCI config-
uration space. This allows the VMM to capture the guest configuration of message
address and data for MSI-capable virtual and assigned guest devices. PCI configura-
tion transactions on PC-compatible systems are generated by software through two
different methods:

1. The standard CONFIG_ADDRESS/CONFIG_DATA register mechanism
(CFCH/CF8H ports) as defined in the PCI Local Bus Specification.

2. The enhanced flat memory-mapped (MEMCFG) configuration mechanism as
defined in the PCI-Express Base Specification (Rev. 1.0a.).

The CFCH/CF8H configuration access from guests can be trapped by the VMM
through use of I/O-bitmap VM-execution controls. The memory-mapped PCI-Express
MEMCFG guest configuration accesses can be trapped by VMM through physical
memory virtualization.

32.3.3 Examples of Handling of External Interrupts
The following sections illustrate interrupt processing in a VMM (when used to support
the external interrupt virtualization requirements).
32-8 Vol. 3C

HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR
32.3.3.1 Guest Setup
The VMM sets up the guest to cause a VM exit to the VMM on external interrupts. This
is done by setting the “external-interrupt exiting” VM-execution control in the guest
controlling-VMCS.

32.3.3.2 Processor Treatment of External Interrupt
Interrupts are automatically masked by hardware in the processor on VM exit by
clearing RFLAGS.IF. The exit-reason field in VMCS is set to 1 to indicate an external
interrupt as the exit reason.

If the VMM is utilizing the acknowledge-on-exit feature (by setting the “acknowledge
interrupt on exit” VM-exit control), the processor acknowledges the interrupt,
retrieves the host vector, and saves the interrupt in the VM-exit-interruption-infor-
mation field (in the VM-exit information region of the VMCS) before transitioning
control to the VMM.

32.3.3.3 Processing of External Interrupts by VMM
Upon VM exit, the VMM can determine the exit cause of an external interrupt by
checking the exit-reason field (value = 1) in VMCS. If the acknowledge-interrupt-on-
exit control (see Section 24.7.1) is enabled, the VMM can use the saved host vector
(in the exit-interruption-information field) to switch to the appropriate interrupt
handler. If the “acknowledge interrupt on exit” VM-exit control is 0, the VMM may re-
enable interrupts (by setting RFLAGS.IF) to allow vectoring of external interrupts
through the monitor/host IDT.

The following steps may need to be performed by the VMM to process an external
interrupt:
• Host Owned I/O Devices: For host-owned I/O devices, the interrupting device

is owned by the VMM (or hosting OS in a hosted VMM). In this model, the
interrupt service routine in the VMM/host driver is invoked and, upon ISR
completion, the appropriate write sequences (TPR updates, EOI etc.) to
respective interrupt controllers are performed as normal. If the work completion
indicated by the driver implies virtual device activity, the VMM runs the virtual
device emulation. Depending on the device class, physical device activity could
imply activity by multiple virtual devices mapped over the device. For each
affected virtual device, the VMM injects a virtual external interrupt event to
respective guest virtual machines. The guest driver interacts with the emulated
virtual device to process the virtual interrupt. The interrupt controller emulation
in the VMM supports various guest accesses to the VMM’s virtual interrupt
controller.

• Guest Assigned I/O Devices: For assigned I/O devices, either the VMM uses a
software proxy or it can directly map the physical device to the assigned VM. In
both cases, servicing of the interrupt condition on the physical device is initiated
by the driver running inside the guest VM. With host control of external
Vol. 3C 32-9

HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR
interrupts, interrupts from assigned physical devices cause VM exits to the VMM
and vectoring through the host IDT to the registered VMM interrupt handler. To
unblock delivery of other low priority platform interrupts, the VMM interrupt
handler must mask the interrupt source (for level triggered interrupts) and issue
the appropriate EOI write sequences.

Once the physical interrupt source is masked and the platform EOI generated, the
VMM can map the host vector to its corresponding guest vector to inject the virtual
interrupt into the assigned VM. The guest software does EOI write sequences to its
virtual interrupt controller after completing interrupt processing. For level triggered
interrupts, these EOI writes to the virtual interrupt controller may be trapped by the
VMM which may in turn unmask the previously masked interrupt source.

32.3.3.4 Generation of Virtual Interrupt Events by VMM
The following provides some of the general steps that need to be taken by VMM
designs when generating virtual interrupts:

1. Check virtual processor interruptibility state. The virtual processor interruptibility
state is reflected in the guest RFLAGS.IF flag and the processor interruptibility-
state saved in the guest state area of the controlling-VMCS. If RFLAGS.IF is set
and the interruptibility state indicates readiness to take external interrupts (STI-
masking and MOV-SS/POP-SS-masking bits are clear), the guest virtual
processor is ready to take external interrupts. If the VMM design supports non-
active guest sleep states, the VMM needs to make sure the current guest sleep
state allows injection of external interrupt events.

2. If the guest virtual processor state is currently not interruptible, a VMM may
utilize the “interrupt-window exiting” VM-execution to notify the VM (through a
VM exit) when the virtual processor state changes to interruptible state.

3. Check the virtual interrupt controller state. If the guest VM exposes a virtual local
APIC, the current value of its processor priority register specifies if guest
software allows dispensing an external virtual interrupt with a specific priority to
the virtual processor. If the virtual interrupt is routed through the local vector
table (LVT) entry of the local APIC, the mask bits in the corresponding LVT entry
specifies if the interrupt is currently masked. Similarly, the virtual interrupt
controller’s current mask (IO-APIC or PIC) and priority settings reflect guest
state to accept specific external interrupts. The VMM needs to check both the
virtual processor and interrupt controller states to verify its guest interruptibility
state. If the guest is currently interruptible, the VMM can inject the virtual
interrupt. If the current guest state does not allow injecting a virtual interrupt,
the interrupt needs to be queued by the VMM until it can be delivered.

4. Prioritize the use of VM-entry event injection. A VMM may use VM-entry event
injection to deliver various virtual events (such as external interrupts,
exceptions, traps, and so forth). VMM designs may prioritize use of virtual-
interrupt injection between these event types. Since each VM entry allows
injection of one event, depending on the VMM event priority policies, the VMM
may need to queue the external virtual interrupt if a higher priority event is to be
32-10 Vol. 3C

HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR
delivered on the next VM entry. Since the VMM has masked this particular
interrupt source (if it was level triggered) and done EOI to the platform interrupt
controller, other platform interrupts can be serviced while this virtual interrupt
event is queued for later delivery to the VM.

5. Update the virtual interrupt controller state. When the above checks have
passed, before generating the virtual interrupt to the guest, the VMM updates the
virtual interrupt controller state (Local-APIC, IO-APIC and/or PIC) to reflect
assertion of the virtual interrupt. This involves updating the various interrupt
capture registers, and priority registers as done by the respective hardware
interrupt controllers. Updating the virtual interrupt controller state is required for
proper interrupt event processing by guest software.

6. Inject the virtual interrupt on VM entry. To inject an external virtual interrupt to a
guest VM, the VMM sets up the VM-entry interruption-information field in the
guest controlling-VMCS before entry to guest using VMRESUME. Upon VM entry,
the processor will use this vector to access the gate in guest’s IDT and the value
of RFLAGS and EIP in guest-state area of controlling-VMCS is pushed on the
guest stack. If the guest RFLAGS.IF is clear, the STI-masking bit is set, or the
MOV- SS/POP-SS-masking bit is set, the VM entry will fail and the processor will
load state from the host-state area of the working VMCS as if a VM exit had
occurred (see Section 26.7).

32.4 ERROR HANDLING BY VMM
Error conditions may occur during VM entries and VM exits and a few other situa-
tions. This section describes how VMM should handle these error conditions,
including triple faults and machine-check exceptions.

32.4.1 VM-Exit Failures
All VM exits load processor state from the host-state area of the VMCS that was the
controlling VMCS before the VM exit. This state is checked for consistency while being
loaded. Because the host-state is checked on VM entry, these checks will generally
succeed. Failure is possible only if host software is incorrect or if VMCS data in the
VMCS region in memory has been written by guest software (or by I/O DMA) since
the last VM entry. VM exits may fail for the following reasons:
• There was a failure on storing guest MSRs.
• There was failure in loading a PDPTR.
• The controlling VMCS has been corrupted (through writes to the corresponding

VMCS region) in such a way that the implementation cannot complete the VM
exit.

• There was a failure on loading host MSRs.
• A machine-check event occurred.
Vol. 3C 32-11

HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR
If one of these problems occurs on a VM exit, a VMX abort results.

32.4.2 Machine-Check Considerations
The following sequence determine how machine-check events are handled during
VMXON, VMXOFF, VM entries, and VM exits:
• VMXOFF and VMXON:

If a machine-check event occurs during VMXOFF or VMXON and CR4.MCE = 1, a
machine-check exception (#MC) is generated. If CR4.MCE = 0, the processor
goes to shutdown state.

• VM entry:
If a machine-check event occurs during VM entry, one of the following three
treatments must occur:

a. Normal delivery before VM entry. If CR4.MCE = 1 before VM entry, delivery of
a machine-check exception (#MC) through the host IDT occurs. If
CR4.MCE = 0, the processor goes to shutdown state.

b. Normal delivery after VM entry. If CR4.MCE = 1 after VM entry, delivery of a
machine-check exception (#MC) through the guest IDT occurs (alternatively,
this exception may cause a VM exit). If CR4.MCE = 0, the processor goes to
shutdown state.

c. Load state from the host-state area of the working VMCS as if a VM exit had
occurred (see Section 26.7). The basic exit reason will be “VM-entry failure
due to machine-check event.”

If the machine-check event occurs after any guest state has been loaded, option
a above will not be used; it may be used if the machine-check event occurs while
checking host state and VMX controls (or while reporting a failure due to such
checks). An implementation may use option b only if all guest state has been
loaded properly.

• VM exit:
If a machine-check event occurs during VM exit, one of the following three
treatments must occur:

a. Normal delivery before VM exit. If CR4.MCE = 1 before the VM exit, delivery
of a machine-check exception (#MC) through the guest IDT (alternatively,
this may cause a VM exit). If CR4.MCE = 0, the processor goes to shutdown
state.

b. Normal delivery after VM exit. If CR4.MCE = 1 after the VM exit, delivery of a
machine-check exception (#MC) through the host IDT. If CR4.MCE = 0, the
processor goes to shutdown state.

c. Fail the VM exit. If the VM exit is to VMX root operation, a VMX abort will
result; it will block events as done normally in VMX abort. The VMX abort
indicator will show that a machine-check event induced the abort operation.
32-12 Vol. 3C

HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR
If a machine-check event is induced by an action in VMX non-root operation
before any determination is made that the inducing action may cause a VM exit,
that machine-check event should be considered as happening during guest
execution in VMX non-root operation. This is the case even if the part of the
action that caused the machine-check event was VMX-specific (for example, the
processor’s consulting an I/O bitmap). If a machine-check exception occurs and
if bit 12H of the exception bitmap is cleared to 0, the exception is delivered to the
guest through gate 12H of its IDT; if the bit is set to 1, the machine-check
exception causes a VM exit.

NOTE
The state saved in the guest-state area on VM exits due to machine-
check exceptions should be considered suspect. A VMM should
consult the RIPV and EIPV bits in the IA32_MCG_STATUS MSR before
resuming a guest that caused a VM exit due to a machine-check
exception.

32.4.3 MCA Error Handling Guidelines for VMM
Section 32.4.2 covers general requirements for VMMs to handle machine-check
exceptions, when normal operation of the guest machine and/or the VMM is no
longer possible. enhancements of machine-check architecture in newer processors
may support software recovery of uncorrected MC errors (UCR) signaled through
either machine-check exceptions or corrected machine-check interrupt (CMCI).
Section 15.5 and Section 15.6 describes details of these more recent enhancements
of machine-check architecture.

In general, Virtual Machine Monitor (VMM) error handling should follow the recom-
mendations for OS error handling described in Section 15.3, Section 15.6, Section
15.9, and Section 15.10. This section describes additional guidelines for hosted and
native hypervisor-based VMM implementations to support corrected MC errors and
recoverable uncorrected MC errors.

Because a hosted VMM provides virtualization services in the context of an existing
standard host OS, the host OS controls platform hardware through the host OS
services such as the standard OS device drivers. In hosted VMMs. MCA errors will be
handled by the host OS error handling software.

In native VMMs, the hypervisor runs on the hardware directly, and may provide only
a limited set of platform services for guest VMs. Most platform services may instead
be provided by a “control OS”. In hypervisor-based VMMs, MCA errors will either be
delivered directly to the VMM MCA handler (when the error is signaled while in the
VMM context) or cause by a VM exit from a guest VM or be delivered to the MCA inter-
cept handler. There are two general approaches the hypervisor can use to handle the
MCA error: either within the hypervisor itself or by forwarding the error to the control
OS.
Vol. 3C 32-13

HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR
32.4.3.1 VMM Error Handling Strategies
Broadly speaking, there are two strategies that VMMs may take for error handling:
• Basic error handling: in this approach the guest VM is treated as any other thread

of execution. If the error recovery action does not support restarting the thread
after handling the error, the guest VM should be terminated.

• MCA virtualization: in this approach, the VMM virtualizes the MCA events and
hardware. This enables the VMM to intercept MCA events and inject an MCA into
the guest VM. The guest VM then has the opportunity to attempt error recovery
actions, rather than being terminated by the VMM.

Details of these approaches and implementation considerations for hosted and native
VMMs are discussed below.

32.4.3.2 Basic VMM MCA error recovery handling
The simplest approach is for the VMM to treat the guest VM as any other thread of
execution:
• MCE's that occur outside the stream of execution of a virtual machine guest will

cause an MCE abort and may be handled by the MCA error handler following the
recovery actions and guidelines described in Section 15.9, and Section 15.10.
This includes logging the error and taking appropriate recovery actions when
necessary. The VMM must not resume the interrupted thread of execution or
another VM until it has taken the appropriate recovery action or, in the case of
fatal MCAs, reset the system.

• MCE's that occur while executing in the context of a virtual machine will be
intercepted by the VMM. The MCA intercept handler may follow the error handling
guidelines listed in Section 15.9 and Section 15.10 for SRAO and SRAR errors.
For SRAR errors, terminating the thread of execution will involve terminating the
affected guest VM. For fatal errors the MCA handler should log the error and reset
the system -- the VMM should not resume execution of the interrupted VM.

32.4.3.3 Implementation Considerations for the Basic Model
For hosted VMMs, the host OS MCA error handling code will perform error analysis
and initiate the appropriate recovery actions. For the basic model this flow does not
change when terminating a guest VM although the specific actions needed to termi-
nate a guest VM may be different than terminating an application or user process.

For native, hypervisor-based VMMs, MCA errors will either be delivered directly to the
VMM MCA handler (when the error is signaled while in the VMM context) or cause a
VM exit from a guest VM or be delivered to the MCA intercept handler. There are two
general approaches the hypervisor can use to handle the MCA error: either by
forwarding the error to the control OS or within the hypervisor itself. These
approaches are described in the following paragraphs.
32-14 Vol. 3C

HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR
The hypervisor may forward the error to the control OS for handling errors. This
approach simplifies the hypervisor error handling since it relies on the control OS to
implement the basic error handling model. The control OS error handling code will be
similar to the error handling code in the hosted VMM. Errors can be forwarded to the
control OS via an OS callback or by injecting an MCE event into the control OS.
Injecting an MCE will cause the control OS MCA error handler to be invoked. The
control OS is responsible for terminating the affected guest VM, if necessary, which
may require cooperation from the hypervisor.

Alternatively, the error may be handled completely in the hypervisor. The hypervisor
error handler is enhanced to implement the basic error handling model and the
hypervisor error handler has the capability to fully analyze the error information and
take recovery actions based on the guidelines. In this case error handling steps in the
hypervisor are similar to those for the hosted VMM described above (where the
hypervisor replaces the host OS actions). The hypervisor is responsible for termi-
nating the affected guest VM, if necessary.

In all cases, if a fatal error is detected the VMM error handler should log the error and
reset the system. The VMM error handler must ensure that guest VMs are not
resumed after a fatal error is detected to ensure error containment is maintained.

32.4.3.4 MCA Virtualization
A more sophisticated approach for handling errors is to virtualize the MCA. This
involves virtualizing the MCA hardware and intercepting the MCA event in the VMM
when a guest VM is interrupted by an MCA. After analyzing the error, the VMM error
handler may then decide to inject an MCE abort into the guest VM for attempted
guest VM error recovery. This would enable the guest OS the opportunity to take
recovery actions specific to that guest.

For MCA virtualization, the VMM must provide the guest physical address for memory
errors instead of the system physical address when reporting the errors to the guest
VM. To compute the guest physical address, the VMM needs to maintain a reverse
mapping of system physical page addresses to guest physical page addresses.

When the MCE is injected into the guest VM, the guest OS MCA handler would be
invoked. The guest OS implements the MCA handling guidelines and it could poten-
tially terminate the interrupted thread of execution within the guest instead of termi-
nating the VM. The guest OS may also disable use of the affected page by the guest.
When disabling the page the VMM error handler may handle the case where a page is
shared by the VMM and a guest or by two guests. In these cases the page use must
be disabled in both contexts to ensure no subsequent consumption errors are gener-
ated.

32.4.3.5 Implementation Considerations for the MCA Virtualization Model
MCA virtualization may be done in either hosted VMMs or hypervisor-based VMMs.
The error handling flow is similar to the flow described in the basic handling case. The
major difference is that the recovery action includes injecting the MCE abort into the
Vol. 3C 32-15

HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR
guest VM to enable recovery by the guest OS when the MCA interrupts the execution
of a guest VM.

32.5 HANDLING ACTIVITY STATES BY VMM
A VMM might place a logic processor in the wait-for-SIPI activity state if supporting
certain guest operating system using the multi-processor (MP) start-up algorithm. A
guest with direct access to the physical local APIC and using the MP start-up algo-
rithm sends an INIT-SIPI-SIPI IPI sequence to start the application processor. In
order to trap the SIPIs, the VMM must start the logic processor which is the target of
the SIPIs in wait-for-SIPI mode.
32-16 Vol. 3C

CHAPTER 33
SYSTEM MANAGEMENT MODE

This chapter describes aspects of IA-64 and IA-32 architecture used in system
management mode (SMM).

SMM provides an alternate operating environment that can be used to monitor and
manage various system resources for more efficient energy usage, to control system
hardware, and/or to run proprietary code. It was introduced into the IA-32 architec-
ture in the Intel386 SL processor (a mobile specialized version of the Intel386
processor). It is also available in the Pentium M, Pentium 4, Intel Xeon, P6 family, and
Pentium and Intel486 processors (beginning with the enhanced versions of the
Intel486 SL and Intel486 processors).

33.1 SYSTEM MANAGEMENT MODE OVERVIEW
SMM is a special-purpose operating mode provided for handling system-wide func-
tions like power management, system hardware control, or proprietary OEM-
designed code. It is intended for use only by system firmware, not by applications
software or general-purpose systems software. The main benefit of SMM is that it
offers a distinct and easily isolated processor environment that operates transpar-
ently to the operating system or executive and software applications.

When SMM is invoked through a system management interrupt (SMI), the processor
saves the current state of the processor (the processor’s context), then switches to a
separate operating environment contained in system management RAM (SMRAM).
While in SMM, the processor executes SMI handler code to perform operations such
as powering down unused disk drives or monitors, executing proprietary code, or
placing the whole system in a suspended state. When the SMI handler has completed
its operations, it executes a resume (RSM) instruction. This instruction causes the
processor to reload the saved context of the processor, switch back to protected or
real mode, and resume executing the interrupted application or operating-system
program or task.

The following SMM mechanisms make it transparent to applications programs and
operating systems:
• The only way to enter SMM is by means of an SMI.
• The processor executes SMM code in a separate address space (SMRAM) that can

be made inaccessible from the other operating modes.
• Upon entering SMM, the processor saves the context of the interrupted program

or task.
Vol. 3C 33-1

SYSTEM MANAGEMENT MODE
• All interrupts normally handled by the operating system are disabled upon entry
into SMM.

• The RSM instruction can be executed only in SMM.

SMM is similar to real-address mode in that there are no privilege levels or address
mapping. An SMM program can address up to 4 GBytes of memory and can execute
all I/O and applicable system instructions. See Section 33.5 for more information
about the SMM execution environment.

NOTES
Software developers should be aware that, even if a logical processor
was using the physical-address extension (PAE) mechanism
(introduced in the P6 family processors) or was in IA-32e mode
before an SMI, this will not be the case after the SMI is delivered. This
is because delivery of an SMI disables paging (see Table 33-4). (This
does not apply if the dual-monitor treatment of SMIs and SMM is
active; see Section 33.15.)

33.1.1 System Management Mode and VMX Operation
Traditionally, SMM services system management interrupts and then resumes
program execution (back to the software stack consisting of executive and applica-
tion software; see Section 33.2 through Section 33.13).

A virtual machine monitor (VMM) using VMX can act as a host to multiple virtual
machines and each virtual machine can support its own software stack of executive
and application software. On processors that support VMX, virtual-machine exten-
sions may use system-management interrupts (SMIs) and system-management
mode (SMM) in one of two ways:
• Default treatment. System firmware handles SMIs. The processor saves archi-

tectural states and critical states relevant to VMX operation upon entering SMM.
When the firmware completes servicing SMIs, it uses RSM to resume VMX
operation.

• Dual-monitor treatment. Two VM monitors collaborate to control the servicing
of SMIs: one VMM operates outside of SMM to provide basic virtualization in
support for guests; the other VMM operates inside SMM (while in VMX operation)
to support system-management functions. The former is referred to as
executive monitor, the latter SMM-transfer monitor (STM).1

The default treatment is described in Section 33.14, “Default Treatment of SMIs and
SMM with VMX Operation and SMX Operation”. Dual-monitor treatment of SMM is
described in Section 33.15, “Dual-Monitor Treatment of SMIs and SMM”.

1. The dual-monitor treatment may not be supported by all processors. Software should consult the
VMX capability MSR IA32_VMX_BASIC (see Appendix A.1) to determine whether it is supported.
33-2 Vol. 3C

SYSTEM MANAGEMENT MODE
33.2 SYSTEM MANAGEMENT INTERRUPT (SMI)
The only way to enter SMM is by signaling an SMI through the SMI# pin on the
processor or through an SMI message received through the APIC bus. The SMI is a
nonmaskable external interrupt that operates independently from the processor’s
interrupt- and exception-handling mechanism and the local APIC. The SMI takes
precedence over an NMI and a maskable interrupt. SMM is non-reentrant; that is, the
SMI is disabled while the processor is in SMM.

NOTES
In the Pentium 4, Intel Xeon, and P6 family processors, when a
processor that is designated as an application processor during an MP
initialization sequence is waiting for a startup IPI (SIPI), it is in a
mode where SMIs are masked. However if a SMI is received while an
application processor is in the wait for SIPI mode, the SMI will be
pended. The processor then responds on receipt of a SIPI by
immediately servicing the pended SMI and going into SMM before
handling the SIPI.
An SMI may be blocked for one instruction following execution of STI,
MOV to SS, or POP into SS.

33.3 SWITCHING BETWEEN SMM AND THE OTHER
PROCESSOR OPERATING MODES

Figure 2-3 shows how the processor moves between SMM and the other processor
operating modes (protected, real-address, and virtual-8086). Signaling an SMI while
the processor is in real-address, protected, or virtual-8086 modes always causes the
processor to switch to SMM. Upon execution of the RSM instruction, the processor
always returns to the mode it was in when the SMI occurred.

33.3.1 Entering SMM
The processor always handles an SMI on an architecturally defined “interruptible”
point in program execution (which is commonly at an IA-32 architecture instruction
boundary). When the processor receives an SMI, it waits for all instructions to retire
and for all stores to complete. The processor then saves its current context in SMRAM
(see Section 33.4), enters SMM, and begins to execute the SMI handler.

Upon entering SMM, the processor signals external hardware that SMM handling has
begun. The signaling mechanism used is implementation dependent. For the P6
family processors, an SMI acknowledge transaction is generated on the system bus
and the multiplexed status signal EXF4 is asserted each time a bus transaction is
generated while the processor is in SMM. For the Pentium and Intel486 processors,
the SMIACT# pin is asserted.
Vol. 3C 33-3

SYSTEM MANAGEMENT MODE
An SMI has a greater priority than debug exceptions and external interrupts. Thus, if
an NMI, maskable hardware interrupt, or a debug exception occurs at an instruction
boundary along with an SMI, only the SMI is handled. Subsequent SMI requests are
not acknowledged while the processor is in SMM. The first SMI interrupt request that
occurs while the processor is in SMM (that is, after SMM has been acknowledged to
external hardware) is latched and serviced when the processor exits SMM with the
RSM instruction. The processor will latch only one SMI while in SMM.

See Section 33.5 for a detailed description of the execution environment when in
SMM.

33.3.2 Exiting From SMM
The only way to exit SMM is to execute the RSM instruction. The RSM instruction is
only available to the SMI handler; if the processor is not in SMM, attempts to execute
the RSM instruction result in an invalid-opcode exception (#UD) being generated.

The RSM instruction restores the processor’s context by loading the state save image
from SMRAM back into the processor’s registers. The processor then returns an
SMIACK transaction on the system bus and returns program control back to the
interrupted program.

Upon successful completion of the RSM instruction, the processor signals external
hardware that SMM has been exited. For the P6 family processors, an SMI acknowl-
edge transaction is generated on the system bus and the multiplexed status signal
EXF4 is no longer generated on bus cycles. For the Pentium and Intel486 processors,
the SMIACT# pin is deserted.

If the processor detects invalid state information saved in the SMRAM, it enters the
shutdown state and generates a special bus cycle to indicate it has entered shutdown
state. Shutdown happens only in the following situations:
• A reserved bit in control register CR4 is set to 1 on a write to CR4. This error

should not happen unless SMI handler code modifies reserved areas of the
SMRAM saved state map (see Section 33.4.1). CR4 is saved in the state map in a
reserved location and cannot be read or modified in its saved state.

• An illegal combination of bits is written to control register CR0, in particular PG
set to 1 and PE set to 0, or NW set to 1 and CD set to 0.

• CR4.PCIDE would be set to 1 and IA32_EFER.LMA to 0.
• (For the Pentium and Intel486 processors only.) If the address stored in the

SMBASE register when an RSM instruction is executed is not aligned on a
32-KByte boundary. This restriction does not apply to the P6 family processors.

In the shutdown state, Intel processors stop executing instructions until a RESET#,
INIT# or NMI# is asserted. While Pentium family processors recognize the SMI#
signal in shutdown state, P6 family and Intel486 processors do not. Intel does not
support using SMI# to recover from shutdown states for any processor family; the
response of processors in this circumstance is not well defined. On Pentium 4 and
later processors, shutdown will inhibit INTR and A20M but will not change any of the
33-4 Vol. 3C

SYSTEM MANAGEMENT MODE
other inhibits. On these processors, NMIs will be inhibited if no action is taken in the
SMM handler to uninhibit them (see Section 33.8).

If the processor is in the HALT state when the SMI is received, the processor handles
the return from SMM slightly differently (see Section 33.10). Also, the SMBASE
address can be changed on a return from SMM (see Section 33.11).

33.4 SMRAM
While in SMM, the processor executes code and stores data in the SMRAM space. The
SMRAM space is mapped to the physical address space of the processor and can be
up to 4 GBytes in size. The processor uses this space to save the context of the
processor and to store the SMI handler code, data and stack. It can also be used to
store system management information (such as the system configuration and
specific information about powered-down devices) and OEM-specific information.

The default SMRAM size is 64 KBytes beginning at a base physical address in physical
memory called the SMBASE (see Figure 33-1). The SMBASE default value following a
hardware reset is 30000H. The processor looks for the first instruction of the SMI
handler at the address [SMBASE + 8000H]. It stores the processor’s state in the area
from [SMBASE + FE00H] to [SMBASE + FFFFH]. See Section 33.4.1 for a description
of the mapping of the state save area.

The system logic is minimally required to decode the physical address range for the
SMRAM from [SMBASE + 8000H] to [SMBASE + FFFFH]. A larger area can be
decoded if needed. The size of this SMRAM can be between 32 KBytes and 4 GBytes.

The location of the SMRAM can be changed by changing the SMBASE value (see
Section 33.11). It should be noted that all processors in a multiple-processor system
are initialized with the same SMBASE value (30000H). Initialization software must
sequentially place each processor in SMM and change its SMBASE so that it does not
overlap those of other processors.

The actual physical location of the SMRAM can be in system memory or in a separate
RAM memory. The processor generates an SMI acknowledge transaction (P6 family
processors) or asserts the SMIACT# pin (Pentium and Intel486 processors) when the
processor receives an SMI (see Section 33.3.1).

System logic can use the SMI acknowledge transaction or the assertion of the
SMIACT# pin to decode accesses to the SMRAM and redirect them (if desired) to
specific SMRAM memory. If a separate RAM memory is used for SMRAM, system logic
should provide a programmable method of mapping the SMRAM into system memory
space when the processor is not in SMM. This mechanism will enable start-up proce-
dures to initialize the SMRAM space (that is, load the SMI handler) before executing
the SMI handler during SMM.
Vol. 3C 33-5

SYSTEM MANAGEMENT MODE
33.4.1 SMRAM State Save Map
When an IA-32 processor that does not support Intel 64 architecture initially enters
SMM, it writes its state to the state save area of the SMRAM. The state save area
begins at [SMBASE + 8000H + 7FFFH] and extends down to [SMBASE + 8000H +
7E00H]. Table 33-1 shows the state save map. The offset in column 1 is relative to
the SMBASE value plus 8000H. Reserved spaces should not be used by software.

Some of the registers in the SMRAM state save area (marked YES in column 3) may
be read and changed by the SMI handler, with the changed values restored to the
processor registers by the RSM instruction. Some register images are read-only, and
must not be modified (modifying these registers will result in unpredictable
behavior). An SMI handler should not rely on any values stored in an area that is
marked as reserved.

Figure 33-1. SMRAM Usage

Table 33-1. SMRAM State Save Map

Offset
(Added to SMBASE +

8000H)

Register Writable?

7FFCH CR0 No

7FF8H CR3 No

7FF4H EFLAGS Yes

7FF0H EIP Yes

7FECH EDI Yes

7FE8H ESI Yes

7FE4H EBP Yes

7FE0H ESP Yes

Start of State Save Area
SMBASE + FFFFH

SMBASE

SMBASE + 8000H

SMRAM

SMI Handler Entry Point
33-6 Vol. 3C

SYSTEM MANAGEMENT MODE
The following registers are saved (but not readable) and restored upon exiting SMM:
• Control register CR4. (This register is cleared to all 0s when entering SMM).
• The hidden segment descriptor information stored in segment registers CS, DS,

ES, FS, GS, and SS.

7FDCH EBX Yes

7FD8H EDX Yes

7FD4H ECX Yes

7FD0H EAX Yes

7FCCH DR6 No

7FC8H DR7 No

7FC4H TR1 No

7FC0H Reserved No

7FBCH GS1 No

7FB8H FS1 No

7FB4H DS1 No

7FB0H SS1 No

7FACH CS1 No

7FA8H ES1 No

7FA4H I/O State Field, see Section 33.7 No

7FA0H I/O Memory Address Field, see Section 33.7 No

7F9FH-7F03H Reserved No

7F02H Auto HALT Restart Field (Word) Yes

7F00H I/O Instruction Restart Field (Word) Yes

7EFCH SMM Revision Identifier Field (Doubleword) No

7EF8H SMBASE Field (Doubleword) Yes

7EF7H - 7E00H Reserved No

NOTE:
1. The two most significant bytes are reserved.

Table 33-1. SMRAM State Save Map (Contd.)

Offset
(Added to SMBASE +

8000H)

Register Writable?
Vol. 3C 33-7

SYSTEM MANAGEMENT MODE
If an SMI request is issued for the purpose of powering down the processor, the
values of all reserved locations in the SMM state save must be saved to nonvolatile
memory.

The following state is not automatically saved and restored following an SMI and the
RSM instruction, respectively:
• Debug registers DR0 through DR3.
• The x87 FPU registers.
• The MTRRs.
• Control register CR2.
• The model-specific registers (for the P6 family and Pentium processors) or test

registers TR3 through TR7 (for the Pentium and Intel486 processors).
• The state of the trap controller.
• The machine-check architecture registers.
• The APIC internal interrupt state (ISR, IRR, etc.).
• The microcode update state.

If an SMI is used to power down the processor, a power-on reset will be required
before returning to SMM, which will reset much of this state back to its default
values. So an SMI handler that is going to trigger power down should first read these
registers listed above directly, and save them (along with the rest of RAM) to nonvol-
atile storage. After the power-on reset, the continuation of the SMI handler should
restore these values, along with the rest of the system's state. Anytime the SMI
handler changes these registers in the processor, it must also save and restore them.

NOTES
A small subset of the MSRs (such as, the time-stamp counter and
performance-monitoring counters) are not arbitrarily writable and
therefore cannot be saved and restored. SMM-based power-down
and restoration should only be performed with operating systems
that do not use or rely on the values of these registers.
Operating system developers should be aware of this fact and insure
that their operating-system assisted power-down and restoration
software is immune to unexpected changes in these register values.

33.4.1.1 SMRAM State Save Map and Intel 64 Architecture
When the processor initially enters SMM, it writes its state to the state save area of
the SMRAM. The state save area on an Intel 64 processor at [SMBASE + 8000H +
7FFFH] and extends to [SMBASE + 8000H + 7C00H].

Support for Intel 64 architecture is reported by CPUID.80000001:EDX[29] = 1. The
layout of the SMRAM state save map is shown in Table 33-3.
33-8 Vol. 3C

SYSTEM MANAGEMENT MODE
Additionally, the SMRAM state save map shown in Table 33-3 also applies to proces-
sors with the following CPUID signatures listed in Table 33-2, irrespective of the value
in CPUID.80000001:EDX[29].

Table 33-2. Processor Signatures and 64-bit SMRAM State Save Map Format
DisplayFamily_DisplayModel Processor Families/Processor Number Series

06_17H Intel Xeon Processor 5200, 5400 series, Intel Core 2 Quad
processor Q9xxx, Intel Core 2 Duo processors E8000, T9000,

06_0FH Intel Xeon Processor 3000, 3200, 5100, 5300, 7300 series, Intel
Core 2 Quad, Intel Core 2 Extreme, Intel Core 2 Duo processors,
Intel Pentium dual-core processors

06_1CH Intel® Atom™ processors

Table 33-3. SMRAM State Save Map for Intel 64 Architecture

Offset
(Added to SMBASE +

8000H)

Register Writable?

7FF8H CR0 No

7FF0H CR3 No

7FE8H RFLAGS Yes

7FE0H IA32_EFER Yes

7FD8H RIP Yes

7FD0H DR6 No

7FC8H DR7 No

7FC4H TR SEL1 No

7FC0H LDTR SEL1 No

7FBCH GS SEL1 No

7FB8H FS SEL1 No

7FB4H DS SEL1 No

7FB0H SS SEL1 No

7FACH CS SEL1 No

7FA8H ES SEL1 No

7FA4H IO_MISC No

7F9CH IO_MEM_ADDR No
Vol. 3C 33-9

SYSTEM MANAGEMENT MODE
7F94H RDI Yes

7F8CH RSI Yes

7F84H RBP Yes

7F7CH RSP Yes

7F74H RBX Yes

7F6CH RDX Yes

7F64H RCX Yes

7F5CH RAX Yes

7F54H R8 Yes

7F4CH R9 Yes

7F44H R10 Yes

7F3CH R11 Yes

7F34H R12 Yes

7F2CH R13 Yes

7F24H R14 Yes

7F1CH R15 Yes

7F1BH-7F04H Reserved No

7F02H Auto HALT Restart Field (Word) Yes

7F00H I/O Instruction Restart Field (Word) Yes

7EFCH SMM Revision Identifier Field (Doubleword) No

7EF8H SMBASE Field (Doubleword) Yes

7EF7H - 7EE4H Reserved No

7EE0H Setting of “enable EPT” VM-execution control No

7ED8H Value of EPTP VM-execution control field No

7ED7H - 7EA0H Reserved No

7E9CH LDT Base (lower 32 bits) No

7E98H Reserved No

7E94H IDT Base (lower 32 bits) No

7E90H Reserved No

Table 33-3. SMRAM State Save Map for Intel 64 Architecture (Contd.)

Offset
(Added to SMBASE +

8000H)

Register Writable?
33-10 Vol. 3C

SYSTEM MANAGEMENT MODE
33.4.2 SMRAM Caching
An IA-32 processor does not automatically write back and invalidate its caches before
entering SMM or before exiting SMM. Because of this behavior, care must be taken in
the placement of the SMRAM in system memory and in the caching of the SMRAM to
prevent cache incoherence when switching back and forth between SMM and
protected mode operation. Either of the following three methods of locating the
SMRAM in system memory will guarantee cache coherency:
• Place the SRAM in a dedicated section of system memory that the operating

system and applications are prevented from accessing. Here, the SRAM can be
designated as cacheable (WB, WT, or WC) for optimum processor performance,
without risking cache incoherence when entering or exiting SMM.

• Place the SRAM in a section of memory that overlaps an area used by the
operating system (such as the video memory), but designate the SMRAM as
uncacheable (UC). This method prevents cache access when in SMM to maintain
cache coherency, but the use of uncacheable memory reduces the performance
of SMM code.

• Place the SRAM in a section of system memory that overlaps an area used by the
operating system and/or application code, but explicitly flush (write back and
invalidate) the caches upon entering and exiting SMM mode. This method
maintains cache coherency, but incurs the overhead of two complete cache
flushes.

7E8CH GDT Base (lower 32 bits) No

7E8BH - 7E44H Reserved No

7E40H CR4 No

7E3FH - 7DF0H Reserved No

7DE8H IO_EIP Yes

7DE7H - 7DDCH Reserved No

7DD8H IDT Base (Upper 32 bits) No

7DD4H LDT Base (Upper 32 bits) No

7DD0H GDT Base (Upper 32 bits) No

7DCFH - 7C00H Reserved No

NOTE:
1. The two most significant bytes are reserved.

Table 33-3. SMRAM State Save Map for Intel 64 Architecture (Contd.)

Offset
(Added to SMBASE +

8000H)

Register Writable?
Vol. 3C 33-11

SYSTEM MANAGEMENT MODE
For Pentium 4, Intel Xeon, and P6 family processors, a combination of the first two
methods of locating the SMRAM is recommended. Here the SMRAM is split between
an overlapping and a dedicated region of memory. Upon entering SMM, the SMRAM
space that is accessed overlaps video memory (typically located in low memory).
This SMRAM section is designated as UC memory. The initial SMM code then jumps to
a second SMRAM section that is located in a dedicated region of system memory
(typically in high memory). This SMRAM section can be cached for optimum
processor performance.

For systems that explicitly flush the caches upon entering SMM (the third method
described above), the cache flush can be accomplished by asserting the FLUSH# pin
at the same time as the request to enter SMM (generally initiated by asserting the
SMI# pin). The priorities of the FLUSH# and SMI# pins are such that the FLUSH# is
serviced first. To guarantee this behavior, the processor requires that the following
constraints on the interaction of FLUSH# and SMI# be met. In a system where the
FLUSH# and SMI# pins are synchronous and the set up and hold times are met, then
the FLUSH# and SMI# pins may be asserted in the same clock. In asynchronous
systems, the FLUSH# pin must be asserted at least one clock before the SMI# pin to
guarantee that the FLUSH# pin is serviced first.

Upon leaving SMM (for systems that explicitly flush the caches), the WBINVD instruc-
tion should be executed prior to leaving SMM to flush the caches.

NOTES
In systems based on the Pentium processor that use the FLUSH# pin
to write back and invalidate cache contents before entering SMM, the
processor will prefetch at least one cache line in between when the
Flush Acknowledge cycle is run and the subsequent recognition of
SMI# and the assertion of SMIACT#.
It is the obligation of the system to ensure that these lines are not
cached by returning KEN# inactive to the Pentium processor.

33.4.2.1 System Management Range Registers (SMRR)
SMI handler code and data stored by SMM code resides in SMRAM. The SMRR inter-
face is an enhancement in Intel 64 architecture to limit cacheable reference of
addresses in SMRAM to code running in SMM. The SMRR interface can be configured
only by code running in SMM. Details of SMRR is described in Section 11.11.2.4.

33.5 SMI HANDLER EXECUTION ENVIRONMENT
After saving the current context of the processor, the processor initializes its core
registers to the values shown in Table 33-4. Upon entering SMM, the PE and PG flags
in control register CR0 are cleared, which places the processor in an environment
similar to real-address mode. The differences between the SMM execution environ-
ment and the real-address mode execution environment are as follows:
33-12 Vol. 3C

SYSTEM MANAGEMENT MODE
• The addressable SMRAM address space ranges from 0 to FFFFFFFFH (4 GBytes).
(The physical address extension — enabled with the PAE flag in control register
CR4 — is not supported in SMM.)

• The normal 64-KByte segment limit for real-address mode is increased to
4 GBytes.

• The default operand and address sizes are set to 16 bits, which restricts the
addressable SMRAM address space to the 1-MByte real-address mode limit for
native real-address-mode code. However, operand-size and address-size
override prefixes can be used to access the address space beyond the 1-MByte.

• Near jumps and calls can be made to anywhere in the 4-GByte address space if a
32-bit operand-size override prefix is used. Due to the real-address-mode style
of base-address formation, a far call or jump cannot transfer control to a
segment with a base address of more than 20 bits (1 MByte). However, since the
segment limit in SMM is 4 GBytes, offsets into a segment that go beyond the
1-MByte limit are allowed when using 32-bit operand-size override prefixes. Any
program control transfer that does not have a 32-bit operand-size override prefix
truncates the EIP value to the 16 low-order bits.

• Data and the stack can be located anywhere in the 4-GByte address space, but
can be accessed only with a 32-bit address-size override if they are located above
1 MByte. As with the code segment, the base address for a data or stack segment
cannot be more than 20 bits.

The value in segment register CS is automatically set to the default of 30000H for the
SMBASE shifted 4 bits to the right; that is, 3000H. The EIP register is set to 8000H.
When the EIP value is added to shifted CS value (the SMBASE), the resulting linear
address points to the first instruction of the SMI handler.

Table 33-4. Processor Register Initialization in SMM

Register Contents

General-purpose registers Undefined

EFLAGS 00000002H

EIP 00008000H

CS selector SMM Base shifted right 4 bits (default 3000H)

CS base SMM Base (default 30000H)

DS, ES, FS, GS, SS Selectors 0000H

DS, ES, FS, GS, SS Bases 000000000H

DS, ES, FS, GS, SS Limits 0FFFFFFFFH

CR0 PE, EM, TS, and PG flags set to 0; others unmodified

CR4 Cleared to zero

DR6 Undefined

DR7 00000400H
Vol. 3C 33-13

SYSTEM MANAGEMENT MODE
The other segment registers (DS, SS, ES, FS, and GS) are cleared to 0 and their
segment limits are set to 4 GBytes. In this state, the SMRAM address space may be
treated as a single flat 4-GByte linear address space. If a segment register is loaded
with a 16-bit value, that value is then shifted left by 4 bits and loaded into the
segment base (hidden part of the segment register). The limits and attributes are not
modified.

Maskable hardware interrupts, exceptions, NMI interrupts, SMI interrupts, A20M
interrupts, single-step traps, breakpoint traps, and INIT operations are inhibited
when the processor enters SMM. Maskable hardware interrupts, exceptions, single-
step traps, and breakpoint traps can be enabled in SMM if the SMM execution envi-
ronment provides and initializes an interrupt table and the necessary interrupt and
exception handlers (see Section 33.6).

33.6 EXCEPTIONS AND INTERRUPTS WITHIN SMM
When the processor enters SMM, all hardware interrupts are disabled in the following
manner:
• The IF flag in the EFLAGS register is cleared, which inhibits maskable hardware

interrupts from being generated.
• The TF flag in the EFLAGS register is cleared, which disables single-step traps.
• Debug register DR7 is cleared, which disables breakpoint traps. (This action

prevents a debugger from accidentally breaking into an SMM handler if a debug
breakpoint is set in normal address space that overlays code or data in SMRAM.)

• NMI, SMI, and A20M interrupts are blocked by internal SMM logic. (See Section
33.8 for more information about how NMIs are handled in SMM.)

Software-invoked interrupts and exceptions can still occur, and maskable hardware
interrupts can be enabled by setting the IF flag. Intel recommends that SMM code be
written in so that it does not invoke software interrupts (with the INT n, INTO, INT 3,
or BOUND instructions) or generate exceptions.

If the SMM handler requires interrupt and exception handling, an SMM interrupt table
and the necessary exception and interrupt handlers must be created and initialized
from within SMM. Until the interrupt table is correctly initialized (using the LIDT
instruction), exceptions and software interrupts will result in unpredictable processor
behavior.

The following restrictions apply when designing SMM interrupt and exception-
handling facilities:
• The interrupt table should be located at linear address 0 and must contain real-

address mode style interrupt vectors (4 bytes containing CS and IP).
• Due to the real-address mode style of base address formation, an interrupt or

exception cannot transfer control to a segment with a base address of more that
20 bits.
33-14 Vol. 3C

SYSTEM MANAGEMENT MODE
• An interrupt or exception cannot transfer control to a segment offset of more
than 16 bits (64 KBytes).

• When an exception or interrupt occurs, only the 16 least-significant bits of the
return address (EIP) are pushed onto the stack. If the offset of the interrupted
procedure is greater than 64 KBytes, it is not possible for the interrupt/exception
handler to return control to that procedure. (One solution to this problem is for a
handler to adjust the return address on the stack.)

• The SMBASE relocation feature affects the way the processor will return from an
interrupt or exception generated while the SMI handler is executing. For
example, if the SMBASE is relocated to above 1 MByte, but the exception
handlers are below 1 MByte, a normal return to the SMI handler is not possible.
One solution is to provide the exception handler with a mechanism for calculating
a return address above 1 MByte from the 16-bit return address on the stack, then
use a 32-bit far call to return to the interrupted procedure.

• If an SMI handler needs access to the debug trap facilities, it must insure that an
SMM accessible debug handler is available and save the current contents of
debug registers DR0 through DR3 (for later restoration). Debug registers DR0
through DR3 and DR7 must then be initialized with the appropriate values.

• If an SMI handler needs access to the single-step mechanism, it must insure that
an SMM accessible single-step handler is available, and then set the TF flag in the
EFLAGS register.

• If the SMI design requires the processor to respond to maskable hardware
interrupts or software-generated interrupts while in SMM, it must ensure that
SMM accessible interrupt handlers are available and then set the IF flag in the
EFLAGS register (using the STI instruction). Software interrupts are not blocked
upon entry to SMM, so they do not need to be enabled.

33.7 MANAGING SYNCHRONOUS AND ASYNCHRONOUS
SYSTEM MANAGEMENT INTERRUPTS

When coding for a multiprocessor system or a system with Intel HT Technology, it
was not always possible for an SMI handler to distinguish between a synchronous
SMI (triggered during an I/O instruction) and an asynchronous SMI. To facilitate the
discrimination of these two events, incremental state information has been added to
the SMM state save map.

Processors that have an SMM revision ID of 30004H or higher have the incremental
state information described below.

33.7.1 I/O State Implementation
Within the extended SMM state save map, a bit (IO_SMI) is provided that is set only
when an SMI is either taken immediately after a successful I/O instruction or is taken
Vol. 3C 33-15

SYSTEM MANAGEMENT MODE
after a successful iteration of a REP I/O instruction (the successful notion pertains to
the processor point of view; not necessarily to the corresponding platform function).
When set, the IO_SMI bit provides a strong indication that the corresponding SMI
was synchronous. In this case, the SMM State Save Map also supplies the port
address of the I/O operation. The IO_SMI bit and the I/O Port Address may be used
in conjunction with the information logged by the platform to confirm that the SMI
was indeed synchronous.

The IO_SMI bit by itself is a strong indication, not a guarantee, that the SMI is
synchronous. This is because an asynchronous SMI might coincidentally be taken
after an I/O instruction. In such a case, the IO_SMI bit would still be set in the SMM
state save map.

Information characterizing the I/O instruction is saved in two locations in the SMM
State Save Map (Table 33-5). The IO_SMI bit also serves as a valid bit for the rest of
the I/O information fields. The contents of these I/O information fields are not
defined when the IO_SMI bit is not set.

When IO_SMI is set, the other fields may be interpreted as follows:
• I/O length:

• 001 – Byte

• 010 – Word

• 100 – Dword
• I/O instruction type (Table 33-6)

Table 33-5. I/O Instruction Information in the SMM State Save Map
State (SMM Rev. ID: 30004H or
higher)

Format

31 16 15 8 7 4 3 1 0

I/0 State Field

SMRAM offset 7FA4

I/O
 Port

Reserved

I/O
 Type

I/O
 Length

IO
_SM

I

31 0

I/O Memory Address Field

SMRAM offset 7FA0

I/O Memory Address

Table 33-6. I/O Instruction Type Encodings
Instruction Encoding

IN Immediate 1001

IN DX 0001

OUT Immediate 1000
33-16 Vol. 3C

SYSTEM MANAGEMENT MODE
33.8 NMI HANDLING WHILE IN SMM
NMI interrupts are blocked upon entry to the SMI handler. If an NMI request occurs
during the SMI handler, it is latched and serviced after the processor exits SMM. Only
one NMI request will be latched during the SMI handler. If an NMI request is pending
when the processor executes the RSM instruction, the NMI is serviced before the next
instruction of the interrupted code sequence. This assumes that NMIs were not
blocked before the SMI occurred. If NMIs were blocked before the SMI occurred, they
are blocked after execution of RSM.

Although NMI requests are blocked when the processor enters SMM, they may be
enabled through software by executing an IRET instruction. If the SMM handler
requires the use of NMI interrupts, it should invoke a dummy interrupt service
routine for the purpose of executing an IRET instruction. Once an IRET instruction is
executed, NMI interrupt requests are serviced in the same “real mode” manner in
which they are handled outside of SMM.

A special case can occur if an SMI handler nests inside an NMI handler and then
another NMI occurs. During NMI interrupt handling, NMI interrupts are disabled, so
normally NMI interrupts are serviced and completed with an IRET instruction one at
a time. When the processor enters SMM while executing an NMI handler, the
processor saves the SMRAM state save map but does not save the attribute to keep
NMI interrupts disabled. Potentially, an NMI could be latched (while in SMM or upon
exit) and serviced upon exit of SMM even though the previous NMI handler has still
not completed. One or more NMIs could thus be nested inside the first NMI handler.
The NMI interrupt handler should take this possibility into consideration.

Also, for the Pentium processor, exceptions that invoke a trap or fault handler will
enable NMI interrupts from inside of SMM. This behavior is implementation specific
for the Pentium processor and is not part of the IA-32 architecture.

33.9 SMM REVISION IDENTIFIER
The SMM revision identifier field is used to indicate the version of SMM and the SMM
extensions that are supported by the processor (see Figure 33-2). The SMM revision
identifier is written during SMM entry and can be examined in SMRAM space at offset

OUT DX 0000

INS 0011

OUTS 0010

REP INS 0111

REP OUTS 0110

Table 33-6. I/O Instruction Type Encodings (Contd.)
Instruction Encoding
Vol. 3C 33-17

SYSTEM MANAGEMENT MODE
7EFCH. The lower word of the SMM revision identifier refers to the version of the base
SMM architecture.

The upper word of the SMM revision identifier refers to the extensions available. If
the I/O instruction restart flag (bit 16) is set, the processor supports the I/O instruc-
tion restart (see Section 33.12); if the SMBASE relocation flag (bit 17) is set, SMRAM
base address relocation is supported (see Section 33.11).

33.10 AUTO HALT RESTART
If the processor is in a HALT state (due to the prior execution of a HLT instruction)
when it receives an SMI, the processor records the fact in the auto HALT restart flag
in the saved processor state (see Figure 33-3). (This flag is located at offset 7F02H
and bit 0 in the state save area of the SMRAM.)

If the processor sets the auto HALT restart flag upon entering SMM (indicating that
the SMI occurred when the processor was in the HALT state), the SMI handler has
two options:
• It can leave the auto HALT restart flag set, which instructs the RSM instruction to

return program control to the HLT instruction. This option in effect causes the
processor to re-enter the HALT state after handling the SMI. (This is the default
operation.)

• It can clear the auto HALT restart flag, with instructs the RSM instruction to
return program control to the instruction following the HLT instruction.

Figure 33-2. SMM Revision Identifier

SMM Revision Identifier

I/O Instruction Restart
SMBASE Relocation

Register Offset
7EFCH

31 0

Reserved

18 17 16 15
33-18 Vol. 3C

SYSTEM MANAGEMENT MODE
These options are summarized in Table 33-7. If the processor was not in a HALT state
when the SMI was received (the auto HALT restart flag is cleared), setting the flag to
1 will cause unpredictable behavior when the RSM instruction is executed.

If the HLT instruction is restarted, the processor will generate a memory access to
fetch the HLT instruction (if it is not in the internal cache), and execute a HLT bus
transaction. This behavior results in multiple HLT bus transactions for the same HLT
instruction.

33.10.1 Executing the HLT Instruction in SMM
The HLT instruction should not be executed during SMM, unless interrupts have been
enabled by setting the IF flag in the EFLAGS register. If the processor is halted in
SMM, the only event that can remove the processor from this state is a maskable
hardware interrupt or a hardware reset.

33.11 SMBASE RELOCATION
The default base address for the SMRAM is 30000H. This value is contained in an
internal processor register called the SMBASE register. The operating system or
executive can relocate the SMRAM by setting the SMBASE field in the saved state
map (at offset 7EF8H) to a new value (see Figure 33-4). The RSM instruction reloads
the internal SMBASE register with the value in the SMBASE field each time it exits
SMM. All subsequent SMI requests will use the new SMBASE value to find the starting

Figure 33-3. Auto HALT Restart Field

Table 33-7. Auto HALT Restart Flag Values

Value of Flag
After Entry to
SMM

Value of Flag
When Exiting SMM

Action of Processor When Exiting SMM

0

0

1

1

0

1

0

1

Returns to next instruction in interrupted program or task.

Unpredictable.

Returns to next instruction after HLT instruction.

Returns to HALT state.

Auto HALT Restart

015

Reserved
Register Offset
7F02H

1

Vol. 3C 33-19

SYSTEM MANAGEMENT MODE
address for the SMI handler (at SMBASE + 8000H) and the SMRAM state save area
(from SMBASE + FE00H to SMBASE + FFFFH). (The processor resets the value in its
internal SMBASE register to 30000H on a RESET, but does not change it on an INIT.)

In multiple-processor systems, initialization software must adjust the SMBASE value
for each processor so that the SMRAM state save areas for each processor do not
overlap. (For Pentium and Intel486 processors, the SMBASE values must be aligned
on a 32-KByte boundary or the processor will enter shutdown state during the execu-
tion of a RSM instruction.)

If the SMBASE relocation flag in the SMM revision identifier field is set, it indicates the
ability to relocate the SMBASE (see Section 33.9).

33.11.1 Relocating SMRAM to an Address Above 1 MByte
In SMM, the segment base registers can only be updated by changing the value in the
segment registers. The segment registers contain only 16 bits, which allows only 20
bits to be used for a segment base address (the segment register is shifted left 4 bits
to determine the segment base address). If SMRAM is relocated to an address above
1 MByte, software operating in real-address mode can no longer initialize the
segment registers to point to the SMRAM base address (SMBASE).

The SMRAM can still be accessed by using 32-bit address-size override prefixes to
generate an offset to the correct address. For example, if the SMBASE has been relo-
cated to FFFFFFH (immediately below the 16-MByte boundary) and the DS, ES, FS,
and GS registers are still initialized to 0H, data in SMRAM can be accessed by using
32-bit displacement registers, as in the following example:

mov esi,00FFxxxxH; 64K segment immediately below 16M
mov ax,ds:[esi]

A stack located above the 1-MByte boundary can be accessed in the same manner.

33.12 I/O INSTRUCTION RESTART
If the I/O instruction restart flag in the SMM revision identifier field is set (see Section
33.9), the I/O instruction restart mechanism is present on the processor. This mech-
anism allows an interrupted I/O instruction to be re-executed upon returning from

Figure 33-4. SMBASE Relocation Field

031

SMM Base
Register Offset
7EF8H
33-20 Vol. 3C

SYSTEM MANAGEMENT MODE
SMM mode. For example, if an I/O instruction is used to access a powered-down I/O
device, a chip set supporting this device can intercept the access and respond by
asserting SMI#. This action invokes the SMI handler to power-up the device. Upon
returning from the SMI handler, the I/O instruction restart mechanism can be used to
re-execute the I/O instruction that caused the SMI.

The I/O instruction restart field (at offset 7F00H in the SMM state-save area, see
Figure 33-5) controls I/O instruction restart. When an RSM instruction is executed, if
this field contains the value FFH, then the EIP register is modified to point to the I/O
instruction that received the SMI request. The processor will then automatically re-
execute the I/O instruction that the SMI trapped. (The processor saves the necessary
machine state to insure that re-execution of the instruction is handled coherently.)

If the I/O instruction restart field contains the value 00H when the RSM instruction is
executed, then the processor begins program execution with the instruction following
the I/O instruction. (When a repeat prefix is being used, the next instruction may be
the next I/O instruction in the repeat loop.) Not re-executing the interrupted I/O
instruction is the default behavior; the processor automatically initializes the I/O
instruction restart field to 00H upon entering SMM. Table 33-8 summarizes the states
of the I/O instruction restart field.

The I/O instruction restart mechanism does not indicate the cause of the SMI. It is
the responsibility of the SMI handler to examine the state of the processor to deter-
mine the cause of the SMI and to determine if an I/O instruction was interrupted and
should be restarted upon exiting SMM. If an SMI interrupt is signaled on a non-I/O
instruction boundary, setting the I/O instruction restart field to FFH prior to executing
the RSM instruction will likely result in a program error.

Figure 33-5. I/O Instruction Restart Field

Table 33-8. I/O Instruction Restart Field Values

Value of Flag After
Entry to SMM

Value of Flag When
Exiting SMM

Action of Processor When Exiting SMM

00H

00H

00H

FFH

Does not re-execute trapped I/O instruction.

Re-executes trapped I/O instruction.

015

I/O Instruction Restart Field Register Offset
7F00H
Vol. 3C 33-21

SYSTEM MANAGEMENT MODE
33.12.1 Back-to-Back SMI Interrupts When I/O Instruction Restart Is
Being Used

If an SMI interrupt is signaled while the processor is servicing an SMI interrupt that
occurred on an I/O instruction boundary, the processor will service the new SMI
request before restarting the originally interrupted I/O instruction. If the I/O instruc-
tion restart field is set to FFH prior to returning from the second SMI handler, the EIP
will point to an address different from the originally interrupted I/O instruction, which
will likely lead to a program error. To avoid this situation, the SMI handler must be
able to recognize the occurrence of back-to-back SMI interrupts when I/O instruction
restart is being used and insure that the handler sets the I/O instruction restart field
to 00H prior to returning from the second invocation of the SMI handler.

33.13 SMM MULTIPLE-PROCESSOR CONSIDERATIONS
The following should be noted when designing multiple-processor systems:
• Any processor in a multiprocessor system can respond to an SMM.
• Each processor needs its own SMRAM space. This space can be in system

memory or in a separate RAM.
• The SMRAMs for different processors can be overlapped in the same memory

space. The only stipulation is that each processor needs its own state save area
and its own dynamic data storage area. (Also, for the Pentium and Intel486
processors, the SMBASE address must be located on a 32-KByte boundary.) Code
and static data can be shared among processors. Overlapping SMRAM spaces can
be done more efficiently with the P6 family processors because they do not
require that the SMBASE address be on a 32-KByte boundary.

• The SMI handler will need to initialize the SMBASE for each processor.
• Processors can respond to local SMIs through their SMI# pins or to SMIs received

through the APIC interface. The APIC interface can distribute SMIs to different
processors.

• Two or more processors can be executing in SMM at the same time.
• When operating Pentium processors in dual processing (DP) mode, the SMIACT#

pin is driven only by the MRM processor and should be sampled with ADS#. For
additional details, see Chapter 14 of the Pentium Processor Family User’s Manual,
Volume 1.

SMM is not re-entrant, because the SMRAM State Save Map is fixed relative to the
SMBASE. If there is a need to support two or more processors in SMM mode at the
same time then each processor should have dedicated SMRAM spaces. This can be
done by using the SMBASE Relocation feature (see Section 33.11).
33-22 Vol. 3C

SYSTEM MANAGEMENT MODE
33.14 DEFAULT TREATMENT OF SMIS AND SMM WITH VMX
OPERATION AND SMX OPERATION

Under the default treatment, the interactions of SMIs and SMM with VMX operation
are few. This section details those interactions. It also explains how this treatment
affects SMX operation.

33.14.1 Default Treatment of SMI Delivery
Ordinary SMI delivery saves processor state into SMRAM and then loads state based
on architectural definitions. Under the default treatment, processors that support
VMX operation perform SMI delivery as follows:

enter SMM;
save the following internal to the processor:

CR4.VMXE
an indication of whether the logical processor was in VMX operation (root or non-root)

IF the logical processor is in VMX operation
THEN

save current VMCS pointer internal to the processor;
leave VMX operation;
save VMX-critical state defined below;

FI;
IF the logical processor supports SMX operation

THEN
save internal to the logical processor an indication of whether the Intel® TXT private space

is locked;
IF the TXT private space is unlocked

THEN lock the TXT private space;
FI;

FI;
CR4.VMXE ← 0;
perform ordinary SMI delivery:

save processor state in SMRAM;
set processor state to standard SMM values;1

invalidate linear mappings and combined mappings associated with VPID 0000H (for all PCIDs);
combined mappings for VPID 0000H are invalidated for all EP4TA values (EP4TA is the value of bits
51:12 of EPTP; see Section 28.3);

The pseudocode above makes reference to the saving of VMX-critical state. This
state consists of the following: (1) SS.DPL (the current privilege level);
(2) RFLAGS.VM2; (3) the state of blocking by STI and by MOV SS (see Table 24-3 in

1. This causes the logical processor to block INIT signals, NMIs, and SMIs.
Vol. 3C 33-23

SYSTEM MANAGEMENT MODE
Section 24.4.2); (4) the state of virtual-NMI blocking (only if the processor is in VMX
non-root operation and the “virtual NMIs” VM-execution control is 1); and (5) an
indication of whether an MTF VM exit is pending (see Section 25.7.2). These data
may be saved internal to the processor or in the VMCS region of the current VMCS.
Processors that do not support SMI recognition while there is blocking by STI or by
MOV SS need not save the state of such blocking.

If the logical processor supports the 1-setting of the “enable EPT” VM-execution
control and the logical processor was in VMX non-root operation at the time of an
SMI, it saves the value of that control into bit 0 of the 32-bit field at offset SMBASE +
8000H + 7EE0H (SMBASE + FEE0H; see Table 33-3).1 If the logical processor was
not in VMX non-root operation at the time of the SMI, it saves 0 into that bit. If the
logical processor saves 1 into that bit (it was in VMX non-root operation and the
“enable EPT” VM-execution control was 1), it saves the value of the EPT pointer
(EPTP) into the 64-bit field at offset SMBASE + 8000H + 7ED8H (SMBASE + FED8H).

Because SMI delivery causes a logical processor to leave VMX operation, all the
controls associated with VMX non-root operation are disabled in SMM and thus
cannot cause VM exits while the logical processor in SMM.

33.14.2 Default Treatment of RSM
Ordinary execution of RSM restores processor state from SMRAM. Under the default
treatment, processors that support VMX operation perform RSM as follows:

IF VMXE = 1 in CR4 image in SMRAM
THEN fail and enter shutdown state;
ELSE

restore state normally from SMRAM;
invalidate linear mappings and combined mappings associated with all VPIDs and all PCIDs;

combined mappings are invalidated for all EP4TA values (EP4TA is the value of bits 51:12 of EPTP;
see Section 28.3);

IF the logical processor supports SMX operation andthe Intel® TXT private space was
unlocked at the time of the last SMI (as saved)

THEN unlock the TXT private space;
FI;
CR4.VMXE ← value stored internally;

2. Section 33.14 and Section 33.15 use the notation RAX, RIP, RSP, RFLAGS, etc. for processor reg-
isters because most processors that support VMX operation also support Intel 64 architecture.
For processors that do not support Intel 64 architecture, this notation refers to the 32-bit forms
of these registers (EAX, EIP, ESP, EFLAGS, etc.). In a few places, notation such as EAX is used to
refer specifically to the lower 32 bits of the register.

1. “Enable EPT” is a secondary processor-based VM-execution control. If bit 31 of the primary pro-
cessor-based VM-execution controls is 0, SMI functions as the “enable EPT” VM-execution control
were 0. See Section 24.6.2.
33-24 Vol. 3C

SYSTEM MANAGEMENT MODE
IF internal storage indicates that the logical processor
had been in VMX operation (root or non-root)

THEN
enter VMX operation (root or non-root);
restore VMX-critical state as defined in Section 33.14.1;
set to their fixed values any bits in CR0 and CR4 whose values must be fixed in

VMX operation (see Section 23.8);1

IF RFLAGS.VM = 0 AND (in VMX root operation OR the “unrestricted guest” VM-
execution control is 0)2

THEN
CS.RPL ← SS.DPL;
SS.RPL ← SS.DPL;

FI;
restore current VMCS pointer;

FI;
leave SMM;
IF logical processor will be in VMX operation or in SMX operation after RSM

THEN block A20M and leave A20M mode;
FI;

FI;

RSM unblocks SMIs. It restores the state of blocking by NMI (see Table 24-3 in
Section 24.4.2) as follows:
• If the RSM is not to VMX non-root operation or if the “virtual NMIs” VM-execution

control will be 0, the state of NMI blocking is restored normally.
• If the RSM is to VMX non-root operation and the “virtual NMIs” VM-execution

control will be 1, NMIs are not blocked after RSM. The state of virtual-NMI
blocking is restored as part of VMX-critical state.

INIT signals are blocked after RSM if and only if the logical processor will be in VMX
root operation.

If RSM returns a logical processor to VMX non-root operation, it re-establishes the
controls associated with the current VMCS. If the “interrupt-window exiting”
VM-execution control is 1, a VM exit occurs immediately after RSM if the enabling
conditions apply. The same is true for the “NMI-window exiting” VM-execution
control. Such VM exits occur with their normal priority. See Section 25.3.

1. If the RSM is to VMX non-root operation and both the “unrestricted guest” VM-execution control
and bit 31 of the primary processor-based VM-execution controls will be 1, CR0.PE and CR0.PG
retain the values that were loaded from SMRAM regardless of what is reported in the capability
MSR IA32_VMX_CR0_FIXED0.

2. “Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the pri-
mary processor-based VM-execution controls is 0, VM entry functions as if the “unrestricted
guest” VM-execution control were 0. See Section 24.6.2.
Vol. 3C 33-25

SYSTEM MANAGEMENT MODE
If an MTF VM exit was pending at the time of the previous SMI, an MTF VM exit is
pending on the instruction boundary following execution of RSM. The following items
detail the treatment of MTF VM exits that may be pending following RSM:
• System-management interrupts (SMIs), INIT signals, and higher priority events

take priority over these MTF VM exits. These MTF VM exits take priority over
debug-trap exceptions and lower priority events.

• These MTF VM exits wake the logical processor if RSM caused the logical
processor to enter the HLT state (see Section 33.10). They do not occur if the
logical processor just entered the shutdown state.

33.14.3 Protection of CR4.VMXE in SMM
Under the default treatment, CR4.VMXE is treated as a reserved bit while a logical
processor is in SMM. Any attempt by software running in SMM to set this bit causes a
general-protection exception. In addition, software cannot use VMX instructions or
enter VMX operation while in SMM.

33.14.4 VMXOFF and SMI Unblocking
The VMXOFF instruction can be executed only with the default treatment (see Section
33.15.1) and only outside SMM. If SMIs are blocked when VMXOFF is executed,
VMXOFF unblocks them unless IA32_SMM_MONITOR_CTL[bit 2] is 1 (see Section
33.15.5 for details regarding this MSR).1 Section 33.15.7 identifies a case in which
SMIs may be blocked when VMXOFF is executed.

Not all processors allow this bit to be set to 1. Software should consult the VMX capa-
bility MSR IA32_VMX_MISC (see Appendix A.6) to determine whether this is allowed.

33.15 DUAL-MONITOR TREATMENT OF SMIs AND SMM
Dual-monitor treatment is activated through the cooperation of the executive
monitor (the VMM that operates outside of SMM to provide basic virtualization) and
the SMM-transfer monitor (STM; the VMM that operates inside SMM—while in VMX
operation—to support system-management functions). Control is transferred to the
STM through VM exits; VM entries are used to return from SMM.

The dual-monitor treatment may not be supported by all processors. Software should
consult the VMX capability MSR IA32_VMX_BASIC (see Appendix A.1) to determine
whether it is supported.

1. Setting IA32_SMM_MONITOR_CTL[bit 2] to 1 prevents VMXOFF from unblocking SMIs regardless
of the value of the register’s valid bit (bit 0).
33-26 Vol. 3C

SYSTEM MANAGEMENT MODE
33.15.1 Dual-Monitor Treatment Overview
The dual-monitor treatment uses an executive monitor and an SMM-transfer monitor
(STM). Transitions from the executive monitor or its guests to the STM are called
SMM VM exits and are discussed in Section 33.15.2. SMM VM exits are caused by
SMIs as well as executions of VMCALL in VMX root operation. The latter allow the
executive monitor to call the STM for service.

The STM runs in VMX root operation and uses VMX instructions to establish a VMCS
and perform VM entries to its own guests. This is done all inside SMM (see Section
33.15.3). The STM returns from SMM, not by using the RSM instruction, but by using
a VM entry that returns from SMM. Such VM entries are described in Section 33.15.4.

Initially, there is no STM and the default treatment (Section 33.14) is used. The dual-
monitor treatment is not used until it is enabled and activated. The steps to do this
are described in Section 33.15.5 and Section 33.15.6.

It is not possible to leave VMX operation under the dual-monitor treatment; VMXOFF
will fail if executed. The dual-monitor treatment must be deactivated first. The STM
deactivates dual-monitor treatment using a VM entry that returns from SMM with the
“deactivate dual-monitor treatment” VM-entry control set to 1 (see Section 33.15.7).

The executive monitor configures any VMCS that it uses for VM exits to the executive
monitor. SMM VM exits, which transfer control to the STM, use a different VMCS.
Under the dual-monitor treatment, each logical processor uses a separate VMCS
called the SMM-transfer VMCS. When the dual-monitor treatment is active, the
logical processor maintains another VMCS pointer called the SMM-transfer VMCS
pointer. The SMM-transfer VMCS pointer is established when the dual-monitor treat-
ment is activated.

33.15.2 SMM VM Exits
An SMM VM exit is a VM exit that begins outside SMM and that ends in SMM.

Unlike other VM exits, SMM VM exits can begin in VMX root operation. SMM VM exits
result from the arrival of an SMI outside SMM or from execution of VMCALL in VMX
root operation outside SMM. Execution of VMCALL in VMX root operation causes an
SMM VM exit only if the valid bit is set in the IA32_SMM_MONITOR_CTL MSR (see
Section 33.15.5).

Execution of VMCALL in VMX root operation causes an SMM VM exit even under the
default treatment. This SMM VM exit activates the dual-monitor treatment (see
Section 33.15.6).

Differences between SMM VM exits and other VM exits are detailed in Sections
33.15.2.1 through 33.15.2.5. Differences between SMM VM exits that activate the
dual-monitor treatment and other SMM VM exits are described in Section 33.15.6.
Vol. 3C 33-27

SYSTEM MANAGEMENT MODE
33.15.2.1 Architectural State Before a VM Exit
System-management interrupts (SMIs) that cause SMM VM exits always do so
directly. They do not save state to SMRAM as they do under the default treatment.

33.15.2.2 Updating the Current-VMCS and Executive-VMCS Pointers
SMM VM exits begin by performing the following steps:

1. The executive-VMCS pointer field in the SMM-transfer VMCS is loaded as follows:

— If the SMM VM exit commenced in VMX non-root operation, it receives the
current-VMCS pointer.

— If the SMM VM exit commenced in VMX root operation, it receives the VMXON
pointer.

2. The current-VMCS pointer is loaded with the value of the SMM-transfer VMCS
pointer.

The last step ensures that the current VMCS is the SMM-transfer VMCS. VM-exit
information is recorded in that VMCS, and VM-entry control fields in that VMCS are
updated. State is saved into the guest-state area of that VMCS. The VM-exit controls
and host-state area of that VMCS determine how the VM exit operates.

33.15.2.3 Recording VM-Exit Information
SMM VM exits differ from other VM exit with regard to the way they record VM-exit
information. The differences follow.
• Exit reason.

— Bits 15:0 of this field contain the basic exit reason. The field is loaded with
the reason for the SMM VM exit: I/O SMI (an SMI arrived immediately after
retirement of an I/O instruction), other SMI, or VMCALL. See Appendix C,
“VMX Basic Exit Reasons”.

— SMM VM exits are the only VM exits that may occur in VMX root operation.
Because the SMM-transfer monitor may need to know whether it was invoked
from VMX root or VMX non-root operation, this information is stored in bit 29
of the exit-reason field (see Table 24-14 in Section 24.9.1). The bit is set by
SMM VM exits from VMX root operation.

— If the SMM VM exit occurred in VMX non-root operation and an MTF VM exit
was pending, bit 28 of the exit-reason field is set; otherwise, it is cleared.

— Bits 27:16 and bits 31:30 are cleared.
• Exit qualification. For an SMM VM exit due an SMI that arrives immediately

after the retirement of an I/O instruction, the exit qualification contains
information about the I/O instruction that retired immediately before the SMI.It
has the format given in Table 33-9.
33-28 Vol. 3C

SYSTEM MANAGEMENT MODE
• Guest linear address. This field is used for VM exits due to SMIs that arrive
immediately after the retirement of an INS or OUTS instruction for which the
relevant segment (ES for INS; DS for OUTS unless overridden by an instruction
prefix) is usable. The field receives the value of the linear address generated by
ES:(E)DI (for INS) or segment:(E)SI (for OUTS; the default segment is DS but
can be overridden by a segment override prefix) at the time the instruction
started. If the relevant segment is not usable, the value is undefined. On
processors that support Intel 64 architecture, bits 63:32 are clear if the logical
processor was not in 64-bit mode before the VM exit.

• I/O RCX, I/O RSI, I/O RDI, and I/O RIP. For an SMM VM exit due an SMI
that arrives immediately after the retirement of an I/O instruction, these fields
receive the values that were in RCX, RSI, RDI, and RIP, respectively, before the
I/O instruction executed. Thus, the value saved for I/O RIP addresses the I/O
instruction.

33.15.2.4 Saving Guest State
SMM VM exits save the contents of the SMBASE register into the corresponding field
in the guest-state area.

Table 33-9. Exit Qualification for SMIs That Arrive Immediately
After the Retirement of an I/O Instruction

Bit Position(s) Contents

2:0 Size of access:

0 = 1-byte
1 = 2-byte
3 = 4-byte

Other values not used.

3 Direction of the attempted access (0 = OUT, 1 = IN)

4 String instruction (0 = not string; 1 = string)

5 REP prefixed (0 = not REP; 1 = REP)

6 Operand encoding (0 = DX, 1 = immediate)

15:7 Reserved (cleared to 0)

31:16 Port number (as specified in the I/O instruction)

63:32 Reserved (cleared to 0). These bits exist only on processors
that support Intel 64 architecture.
Vol. 3C 33-29

SYSTEM MANAGEMENT MODE
The value of the VMX-preemption timer is saved into the corresponding field in the
guest-state area if the “save VMX-preemption timer value” VM-exit control is 1. That
field becomes undefined if, in addition, either the SMM VM exit is from VMX root
operation or the SMM VM exit is from VMX non-root operation and the “activate VMX-
preemption timer” VM-execution control is 0.

33.15.2.5 Updating Non-Register State
SMM VM exits affect the non-register state of a logical processor as follows:
• SMM VM exits cause non-maskable interrupts (NMIs) to be blocked; they may be

unblocked through execution of IRET or through a VM entry (depending on the
value loaded for the interruptibility state and the setting of the “virtual NMIs”
VM-execution control).

• SMM VM exits cause SMIs to be blocked; they may be unblocked by a VM entry
that returns from SMM (see Section 33.15.4).

SMM VM exits invalidate linear mappings and combined mappings associated with
VPID 0000H for all PCIDs. Combined mappings for VPID 0000H are invalidated for all
EP4TA values (EP4TA is the value of bits 51:12 of EPTP; see Section 28.3). (Ordinary
VM exits are not required to perform such invalidation if the “enable VPID” VM-
execution control is 1; see Section 27.5.5.)

33.15.3 Operation of the SMM-Transfer Monitor
Once invoked, the SMM-transfer monitor (STM) is in VMX root operation and can use
VMX instructions to configure VMCSs and to cause VM entries to virtual machines
supported by those structures. As noted in Section 33.15.1, the VMXOFF instruction
cannot be used under the dual-monitor treatment and thus cannot be used by the
STM.

The RSM instruction also cannot be used under the dual-monitor treatment. As noted
in Section 25.1.3, it causes a VM exit if executed in SMM in VMX non-root operation.
If executed in VMX root operation, it causes an invalid-opcode exception. The STM
uses VM entries to return from SMM (see Section 33.15.4).

33.15.4 VM Entries that Return from SMM
The SMM-transfer monitor (STM) returns from SMM using a VM entry with the “entry
to SMM” VM-entry control clear. VM entries that return from SMM reverse the effects
of an SMM VM exit (see Section 33.15.2).

VM entries that return from SMM may differ from other VM entries in that they do not
necessarily enter VMX non-root operation. If the executive-VMCS pointer field in the
current VMCS contains the VMXON pointer, the logical processor remains in VMX root
operation after VM entry.
33-30 Vol. 3C

SYSTEM MANAGEMENT MODE
For differences between VM entries that return from SMM and other VM entries see
Sections 33.15.4.1 through 33.15.4.10.

33.15.4.1 Checks on the Executive-VMCS Pointer Field
VM entries that return from SMM perform the following checks on the executive-
VMCS pointer field in the current VMCS:
• Bits 11:0 must be 0.
• The pointer must not set any bits beyond the processor’s physical-address

width.1,2

• The 32 bits located in memory referenced by the physical address in the pointer
must contain the processor’s VMCS revision identifier (see Section 24.2).

The checks above are performed before the checks described in Section 33.15.4.2
and before any of the following checks:
• 'If the "deactivate dual-monitor treatment" VM-entry control is 0 and the

executive-VMCS pointer field does not contain the VMXON pointer, the launch
state of the executive VMCS (the VMCS referenced by the executive-VMCS
pointer field) must be launched (see Section 24.10.3).

• If the “deactivate dual-monitor treatment” VM-entry control is 1, the executive-
VMCS pointer field must contain the VMXON pointer (see Section 33.15.7).3

33.15.4.2 Checks on VM-Execution Control Fields
VM entries that return from SMM differ from other VM entries with regard to the
checks performed on the VM-execution control fields specified in Section 26.2.1.1.
They do not apply the checks to the current VMCS. Instead, VM-entry behavior
depends on whether the executive-VMCS pointer field contains the VMXON pointer:
• If the executive-VMCS pointer field contains the VMXON pointer (the VM entry

remains in VMX root operation), the checks are not performed at all.
• If the executive-VMCS pointer field does not contain the VMXON pointer (the

VM entry enters VMX non-root operation), the checks are performed on the
VM-execution control fields in the executive VMCS (the VMCS referenced by the
executive-VMCS pointer field in the current VMCS). These checks are performed
after checking the executive-VMCS pointer field itself (for proper alignment).

1. Software can determine a processor’s physical-address width by executing CPUID with
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

2. If IA32_VMX_BASIC[48] is read as 1, this pointer must not set any bits in the range 63:32; see
Appendix A.1.

3. The STM can determine the VMXON pointer by reading the executive-VMCS pointer field in the
current VMCS after the SMM VM exit that activates the dual-monitor treatment.
Vol. 3C 33-31

SYSTEM MANAGEMENT MODE
Other VM entries ensure that, if “activate VMX-preemption timer” VM-execution
control is 0, the “save VMX-preemption timer value” VM-exit control is also 0. This
check is not performed by VM entries that return from SMM.

33.15.4.3 Checks on VM-Entry Control Fields
VM entries that return from SMM differ from other VM entries with regard to the
checks performed on the VM-entry control fields specified in Section 26.2.1.3.

Specifically, if the executive-VMCS pointer field contains the VMXON pointer (the
VM entry remains in VMX root operation), the following must not all hold for the
VM-entry interruption-information field:
• the valid bit (bit 31) in the VM-entry interruption-information field is 1
• the interruption type (bits 10:8) is not 7 (other event); and
• the vector (bits 7:0) is not 0 (pending MTF VM exit).

33.15.4.4 Checks on the Guest State Area
Section 26.3.1 specifies checks performed on fields in the guest-state area of the
VMCS. Some of these checks are conditioned on the settings of certain VM-execution
controls (e.g., “virtual NMIs” or “unrestricted guest”). VM entries that return from
SMM modify these checks based on whether the executive-VMCS pointer field
contains the VMXON pointer:1

• If the executive-VMCS pointer field contains the VMXON pointer (the VM entry
remains in VMX root operation), the checks are performed as all relevant VM-
execution controls were 0. (As a result, some checks may not be performed at
all.)

• If the executive-VMCS pointer field does not contain the VMXON pointer (the
VM entry enters VMX non-root operation), this check is performed based on the
settings of the VM-execution controls in the executive VMCS (the VMCS
referenced by the executive-VMCS pointer field in the current VMCS).

For VM entries that return from SMM, the activity-state field must not indicate the
wait-for-SIPI state if the executive-VMCS pointer field contains the VMXON pointer
(the VM entry is to VMX root operation).

33.15.4.5 Loading Guest State
VM entries that return from SMM load the SMBASE register from the SMBASE field.

VM entries that return from SMM invalidate linear mappings and combined mappings
associated with all VPIDs. Combined mappings are invalidated for all EP4TA values
(EP4TA is the value of bits 51:12 of EPTP; see Section 28.3). (Ordinary VM entries

1. The STM can determine the VMXON pointer by reading the executive-VMCS pointer field in the
current VMCS after the SMM VM exit that activates the dual-monitor treatment.
33-32 Vol. 3C

SYSTEM MANAGEMENT MODE
are required to perform such invalidation only for VPID 0000H and are not required
to do even that if the “enable VPID” VM-execution control is 1; see Section 26.3.2.5.)

33.15.4.6 VMX-Preemption Timer
A VM entry that returns from SMM activates the VMX-preemption timer only if the
executive-VMCS pointer field does not contain the VMXON pointer (the VM entry
enters VMX non-root operation) and the “activate VMX-preemption timer” VM-execu-
tion control is 1 in the executive VMCS (the VMCS referenced by the executive-VMCS
pointer field). In this case, VM entry starts the VMX-preemption timer with the value
in the VMX-preemption timer-value field in the current VMCS.

33.15.4.7 Updating the Current-VMCS and SMM-Transfer VMCS Pointers
Successful VM entries (returning from SMM) load the SMM-transfer VMCS pointer
with the current-VMCS pointer. Following this, they load the current-VMCS pointer
from a field in the current VMCS:
• If the executive-VMCS pointer field contains the VMXON pointer (the VM entry

remains in VMX root operation), the current-VMCS pointer is loaded from the
VMCS-link pointer field.

• If the executive-VMCS pointer field does not contain the VMXON pointer (the
VM entry enters VMX non-root operation), the current-VMCS pointer is loaded
with the value of the executive-VMCS pointer field.

If the VM entry successfully enters VMX non-root operation, the VM-execution
controls in effect after the VM entry are those from the new current VMCS. This
includes any structures external to the VMCS referenced by VM-execution control
fields.

The updating of these VMCS pointers occurs before event injection. Event injection is
determined, however, by the VM-entry control fields in the VMCS that was current
when the VM entry commenced.

33.15.4.8 VM Exits Induced by VM Entry
Section 26.5.1.2 describes how the event-delivery process invoked by event injec-
tion may lead to a VM exit. Section 26.6.3 to Section 26.6.7 describe other situations
that may cause a VM exit to occur immediately after a VM entry.

Whether these VM exits occur is determined by the VM-execution control fields in the
current VMCS. For VM entries that return from SMM, they can occur only if the exec-
utive-VMCS pointer field does not contain the VMXON pointer (the VM entry enters
VMX non-root operation).

In this case, determination is based on the VM-execution control fields in the VMCS
that is current after the VM entry. This is the VMCS referenced by the value of the
executive-VMCS pointer field at the time of the VM entry (see Section 33.15.4.7).
Vol. 3C 33-33

SYSTEM MANAGEMENT MODE
This VMCS also controls the delivery of such VM exits. Thus, VM exits induced by a
VM entry returning from SMM are to the executive monitor and not to the STM.

33.15.4.9 SMI Blocking
VM entries that return from SMM determine the blocking of system-management
interrupts (SMIs) as follows:
• If the “deactivate dual-monitor treatment” VM-entry control is 0, SMIs are

blocked after VM entry if and only if the bit 2 in the interruptibility-state field is 1.
• If the “deactivate dual-monitor treatment” VM-entry control is 1, the blocking of

SMIs depends on whether the logical processor is in SMX operation:1

— If the logical processor is in SMX operation, SMIs are blocked after VM entry.

— If the logical processor is outside SMX operation, SMIs are unblocked after
VM entry.

VM entries that return from SMM and that do not deactivate the dual-monitor treat-
ment may leave SMIs blocked. This feature exists to allow the STM to invoke func-
tionality outside of SMM without unblocking SMIs.

33.15.4.10 Failures of VM Entries That Return from SMM
Section 26.7 describes the treatment of VM entries that fail during or after loading
guest state. Such failures record information in the VM-exit information fields and
load processor state as would be done on a VM exit. The VMCS used is the one that
was current before the VM entry commenced. Control is thus transferred to the STM
and the logical processor remains in SMM.

33.15.5 Enabling the Dual-Monitor Treatment
Code and data for the SMM-transfer monitor (STM) reside in a region of SMRAM
called the monitor segment (MSEG). Code running in SMM determines the location
of MSEG and establishes its content. This code is also responsible for enabling the
dual-monitor treatment.

SMM code enables the dual-monitor treatment and determines the location of MSEG
by writing to IA32_SMM_MONITOR_CTL MSR (index 9BH). The MSR has the following
format:

1. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last
execution of GETSEC[SENTER]. A logical processor is outside SMX operation if GETSEC[SENTER]
has not been executed or if GETSEC[SEXIT] was executed after the last execution of GET-
SEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference,” in Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2B.
33-34 Vol. 3C

SYSTEM MANAGEMENT MODE
• Bit 0 is the register’s valid bit. The STM may be invoked using VMCALL only if this
bit is 1. Because VMCALL is used to activate the dual-monitor treatment (see
Section 33.15.6), the dual-monitor treatment cannot be activated if the bit is 0.
This bit is cleared when the logical processor is reset.

• Bit 1 is reserved.
• Bit 2 determines whether executions of VMXOFF unblock SMIs under the default

treatment of SMIs and SMM. Executions of VMXOFF unblock SMIs unless bit 2 is
1 (the value of bit 0 is irrelevant). See Section 33.14.4.
Certain leaf functions of the GETSEC instruction clear this bit (see Chapter 5,
“Safer Mode Extensions Reference,” in Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 2C)

• Bits 11:3 are reserved.
• Bits 31:12 contain a value that, when shifted right 12 bits, is the physical address

of MSEG (the MSEG base address).
• Bits 63:32 are reserved.

The following items detail use of this MSR:
• The IA32_SMM_MONITOR_CTL MSR is supported only on processors that support

the dual-monitor treatment.1 On other processors, accesses to the MSR using
RDMSR or WRMSR generate a general-protection fault (#GP(0)).

• A write to the IA32_SMM_MONITOR_CTL MSR using WRMSR generates a
general-protection fault (#GP(0)) if executed outside of SMM or if an attempt is
made to set any reserved bit. An attempt to write to IA32_SMM_MONITOR_CTL
MSR fails if made as part of a VM exit that does not end in SMM or part of a
VM entry that does not begin in SMM.

• Reads from IA32_SMM_MONITOR_CTL MSR using RDMSR are allowed any time
RDMSR is allowed. The MSR may be read as part of any VM exit.

• The dual-monitor treatment can be activated only if the valid bit in the MSR is set
to 1.

The 32 bytes located at the MSEG base address are called the MSEG header. The
format of the MSEG header is given in Table 33-10 (each field is 32 bits).

1. Software should consult the VMX capability MSR IA32_VMX_BASIC (see Appendix A.1) to deter-
mine whether the dual-monitor treatment is supported.

Table 33-10. Format of MSEG Header

Byte Offset Field

0 MSEG-header revision identifier

4 SMM-transfer monitor features

8 GDTR limit
Vol. 3C 33-35

SYSTEM MANAGEMENT MODE
To ensure proper behavior in VMX operation, software should maintain the MSEG
header in writeback cacheable memory. Future implementations may allow or
require a different memory type.1 Software should consult the VMX capability MSR
IA32_VMX_BASIC (see Appendix A.1).

SMM code should enable the dual-monitor treatment (by setting the valid bit in
IA32_SMM_MONITOR_CTL MSR) only after establishing the content of the MSEG
header as follows:
• Bytes 3:0 contain the MSEG revision identifier. Different processors may use

different MSEG revision identifiers. These identifiers enable software to avoid
using an MSEG header formatted for one processor on a processor that uses a
different format. Software can discover the MSEG revision identifier that a
processor uses by reading the VMX capability MSR IA32_VMX_MISC (see
Appendix A.6).

• Bytes 7:4 contain the SMM-transfer monitor features field. Bits 31:1 of this
field are reserved and must be zero. Bit 0 of the field is the IA-32e mode SMM
feature bit. It indicates whether the logical processor will be in IA-32e mode
after the STM is activated (see Section 33.15.6).

• Bytes 31:8 contain fields that determine how processor state is loaded when the
STM is activated (see Section 33.15.6.4). SMM code should establish these fields
so that activating of the STM invokes the STM’s initialization code.

33.15.6 Activating the Dual-Monitor Treatment
The dual-monitor treatment may be enabled by SMM code as described in Section
33.15.5. The dual-monitor treatment is activated only if it is enabled and only by the

12 GDTR base offset

16 CS selector

20 EIP offset

24 ESP offset

28 CR3 offset

1. Alternatively, software may map the MSEG header with the UC memory type; this may be neces-
sary, depending on how memory is organized. Doing so is strongly discouraged unless necessary
as it will cause the performance of transitions using those structures to suffer significantly. In
addition, the processor will continue to use the memory type reported in the VMX capability MSR
IA32_VMX_BASIC with exceptions noted in Appendix A.1.

Table 33-10. Format of MSEG Header (Contd.)

Byte Offset Field
33-36 Vol. 3C

SYSTEM MANAGEMENT MODE
executive monitor. The executive monitor activates the dual-monitor treatment by
executing VMCALL in VMX root operation.

When VMCALL activates the dual-monitor treatment, it causes an SMM VM exit.
Differences between this SMM VM exit and other SMM VM exits are discussed in
Sections 33.15.6.1 through 33.15.6.5. See also “VMCALL—Call to VM Monitor” in
Chapter 29 of Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3C.

33.15.6.1 Initial Checks
An execution of VMCALL attempts to activate the dual-monitor treatment if (1) the
processor supports the dual-monitor treatment;1 (2) the logical processor is in VMX
root operation; (3) the logical processor is outside SMM and the valid bit is set in the
IA32_SMM_MONITOR_CTL MSR; (4) the logical processor is not in virtual-8086
mode and not in compatibility mode; (5) CPL = 0; and (6) the dual-monitor treat-
ment is not active.

The VMCS that manages SMM VM exit caused by this VMCALL is the current VMCS
established by the executive monitor. The VMCALL performs the following checks on
the current VMCS in the order indicated:

1. There must be a current VMCS pointer.

2. The launch state of the current VMCS must be clear.

3. The VM-exit control fields must be valid:

— Reserved bits in the VM-exit controls must be set properly. Software may
consult the VMX capability MSR IA32_VMX_EXIT_CTLS to determine the
proper settings (see Appendix A.4).

— The following checks are performed for the VM-exit MSR-store address if the
VM-exit MSR-store count field is non-zero:

• The lower 4 bits of the VM-exit MSR-store address must be 0. The address
should not set any bits beyond the processor’s physical-address width.2

• The address of the last byte in the VM-exit MSR-store area should not set
any bits beyond the processor’s physical-address width. The address of
this last byte is VM-exit MSR-store address + (MSR count * 16) – 1. (The
arithmetic used for the computation uses more bits than the processor’s
physical-address width.)

If IA32_VMX_BASIC[48] is read as 1, neither address should set any bits in
the range 63:32; see Appendix A.1.

1. Software should consult the VMX capability MSR IA32_VMX_BASIC (see Appendix A.1) to deter-
mine whether the dual-monitor treatment is supported.

2. Software can determine a processor’s physical-address width by executing CPUID with
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.
Vol. 3C 33-37

SYSTEM MANAGEMENT MODE
If any of these checks fail, subsequent checks are skipped and VMCALL fails. If all
these checks succeed, the logical processor uses the IA32_SMM_MONITOR_CTL MSR
to determine the base address of MSEG. The following checks are performed in the
order indicated:

1. The logical processor reads the 32 bits at the base of MSEG and compares them
to the processor’s MSEG revision identifier.

2. The logical processor reads the SMM-transfer monitor features field:

— Bit 0 of the field is the IA-32e mode SMM feature bit, and it indicates whether
the logical processor will be in IA-32e mode after the SMM-transfer monitor
(STM) is activated.

• If the VMCALL is executed on a processor that does not support Intel 64
architecture, the IA-32e mode SMM feature bit must be 0.

• If the VMCALL is executed in 64-bit mode, the IA-32e mode SMM feature
bit must be 1.

— Bits 31:1 of this field are currently reserved and must be zero.

If any of these checks fail, subsequent checks are skipped and the VMCALL fails.

33.15.6.2 MSEG Checking
SMM VM exits that activate the dual-monitor treatment check the following before
updating the current-VMCS pointer and the executive-VMCS pointer field (see
Section 33.15.2.2):
• The 32 bits at the MSEG base address (used as a physical address) must contain

the processor’s MSEG revision identifier.
• Bits 31:1 of the SMM-transfer monitor features field in the MSEG header (see

Table 33-10) must be 0. Bit 0 of the field (the IA-32e mode SMM feature bit)
must be 0 if the processor does not support Intel 64 architecture.

If either of these checks fail, execution of VMCALL fails.

33.15.6.3 Updating the Current-VMCS and Executive-VMCS Pointers
Before performing the steps in Section 33.15.2.2, SMM VM exits that activate the
dual-monitor treatment begin by loading the SMM-transfer VMCS pointer with the
value of the current-VMCS pointer.

33.15.6.4 Loading Host State
The VMCS that is current during an SMM VM exit that activates the dual-monitor
treatment was established by the executive monitor. It does not contain the VM-exit
controls and host state required to initialize the STM. For this reason, such SMM
VM exits do not load processor state as described in Section 27.5. Instead, state is
33-38 Vol. 3C

SYSTEM MANAGEMENT MODE
set to fixed values or loaded based on the content of the MSEG header (see
Table 33-10):
• CR0 is set to as follows:

— PG, NE, ET, MP, and PE are all set to 1.

— CD and NW are left unchanged.

— All other bits are cleared to 0.
• CR3 is set as follows:

— Bits 63:32 are cleared on processors that supports IA-32e mode.

— Bits 31:12 are set to bits 31:12 of the sum of the MSEG base address and the
CR3-offset field in the MSEG header.

— Bits 11:5 and bits 2:0 are cleared (the corresponding bits in the CR3-offset
field in the MSEG header are ignored).

— Bits 4:3 are set to bits 4:3 of the CR3-offset field in the MSEG header.
• CR4 is set as follows:

— MCE and PGE are cleared.

— PAE is set to the value of the IA-32e mode SMM feature bit.

— If the IA-32e mode SMM feature bit is clear, PSE is set to 1 if supported by the
processor; if the bit is set, PSE is cleared.

— All other bits are unchanged.
• DR7 is set to 400H.
• The IA32_DEBUGCTL MSR is cleared to 00000000_00000000H.
• The registers CS, SS, DS, ES, FS, and GS are loaded as follows:

— All registers are usable.

— CS.selector is loaded from the corresponding field in the MSEG header (the
high 16 bits are ignored), with bits 2:0 cleared to 0. If the result is 0000H,
CS.selector is set to 0008H.

— The selectors for SS, DS, ES, FS, and GS are set to CS.selector+0008H. If the
result is 0000H (if the CS selector was 0xFFF8), these selectors are instead
set to 0008H.

— The base addresses of all registers are cleared to zero.

— The segment limits for all registers are set to FFFFFFFFH.

— The AR bytes for the registers are set as follows:

• CS.Type is set to 11 (execute/read, accessed, non-conforming code
segment).

• For SS, DS, FS, and GS, the Type is set to 3 (read/write, accessed,
expand-up data segment).
Vol. 3C 33-39

SYSTEM MANAGEMENT MODE
• The S bits for all registers are set to 1.

• The DPL for each register is set to 0.

• The P bits for all registers are set to 1.

• On processors that support Intel 64 architecture, CS.L is loaded with the
value of the IA-32e mode SMM feature bit.

• CS.D is loaded with the inverse of the value of the IA-32e mode SMM
feature bit.

• For each of SS, DS, FS, and GS, the D/B bit is set to 1.

• The G bits for all registers are set to 1.
• LDTR is unusable. The LDTR selector is cleared to 0000H, and the register is

otherwise undefined (although the base address is always canonical)
• GDTR.base is set to the sum of the MSEG base address and the GDTR base-offset

field in the MSEG header (bits 63:32 are always cleared on processors that
supports IA-32e mode). GDTR.limit is set to the corresponding field in the MSEG
header (the high 16 bits are ignored).

• IDTR.base is unchanged. IDTR.limit is cleared to 0000H.
• RIP is set to the sum of the MSEG base address and the value of the RIP-offset

field in the MSEG header (bits 63:32 are always cleared on logical processors
that support IA-32e mode).

• RSP is set to the sum of the MSEG base address and the value of the RSP-offset
field in the MSEG header (bits 63:32 are always cleared on logical processor that
supports IA-32e mode).

• RFLAGS is cleared, except bit 1, which is always set.
• The logical processor is left in the active state.
• Event blocking after the SMM VM exit is as follows:

— There is no blocking by STI or by MOV SS.

— There is blocking by non-maskable interrupts (NMIs) and by SMIs.
• There are no pending debug exceptions after the SMM VM exit.
• For processors that support IA-32e mode, the IA32_EFER MSR is modified so that

LME and LMA both contain the value of the IA-32e mode SMM feature bit.

If any of CR3[63:5], CR4.PAE, CR4.PSE, or IA32_EFER.LMA is changing, the TLBs are
updated so that, after VM exit, the logical processor does not use translations that
were cached before the transition. This is not necessary for changes that would not
affect paging due to the settings of other bits (for example, changes to CR4.PSE if
IA32_EFER.LMA was 1 before and after the transition).
33-40 Vol. 3C

SYSTEM MANAGEMENT MODE
33.15.6.5 Loading MSRs
The VM-exit MSR-load area is not used by SMM VM exits that activate the dual-
monitor treatment. No MSRs are loaded from that area.

33.15.7 Deactivating the Dual-Monitor Treatment
The SMM-transfer monitor may deactivate the dual-monitor treatment and return
the processor to default treatment of SMIs and SMM (see Section 33.14). It does this
by executing a VM entry with the “deactivate dual-monitor treatment” VM-entry
control set to 1.

As noted in Section 26.2.1.3 and Section 33.15.4.1, an attempt to deactivate the
dual-monitor treatment fails in the following situations: (1) the processor is not in
SMM; (2) the “entry to SMM” VM-entry control is 1; or (3) the executive-VMCS
pointer does not contain the VMXON pointer (the VM entry is to VMX non-root oper-
ation).

As noted in Section 33.15.4.9, VM entries that deactivate the dual-monitor treat-
ment ignore the SMI bit in the interruptibility-state field of the guest-state area.
Instead, the blocking of SMIs following such a VM entry depends on whether the
logical processor is in SMX operation:1

• If the logical processor is in SMX operation, SMIs are blocked after VM entry.
SMIs may later be unblocked by the VMXOFF instruction (see Section 33.14.4) or
by certain leaf functions of the GETSEC instruction (see Chapter 5, “Safer Mode
Extensions Reference,” in Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2C).

• If the logical processor is outside SMX operation, SMIs are unblocked after
VM entry.

33.16 SMI AND PROCESSOR EXTENDED STATE
MANAGEMENT

On processors that support processor extended states using XSAVE/XRSTOR (see
Chapter 13, “System Programming for Instruction Set Extensions and Processor
Extended States”), the processor does not save any XSAVE/XRSTOR related state on
an SMI. It is the responsibility of the SMM handler code to properly preserve the state
information (including CR4.OSXSAVE, XCR0, and possibly processor extended states

1. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last
execution of GETSEC[SENTER]. A logical processor is outside SMX operation if GETSEC[SENTER]
has not been executed or if GETSEC[SEXIT] was executed after the last execution of GET-
SEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference,” in Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2B.
Vol. 3C 33-41

SYSTEM MANAGEMENT MODE
using XSAVE/XRSTOR). Therefore, the SMM handler must follow the rules described
in Chapter 13.
33-42 Vol. 3C

CHAPTER 34
MODEL-SPECIFIC REGISTERS (MSRS)

This chapter lists MSRs provided in Intel® Core™ 2 processor family, Intel® Atom™,
Intel® Core™ Duo, Intel® Core™ Solo, Pentium® 4 and Intel® Xeon® processors, P6
family processors, and Pentium® processors in Tables 34-13, 34-18, and 34-19,
respectively. All MSRs listed can be read with the RDMSR and written with the
WRMSR instructions.

Register addresses are given in both hexadecimal and decimal. The register name is
the mnemonic register name and the bit description describes individual bits in
registers.

Model specific registers and its bit-fields may be supported for a finite range of
processor families/models. To distinguish between different processor family and/or
models, software must use CPUID.01H leaf function to query the combination of
DisplayFamily and DisplayModel to determine model-specific availability of MSRs
(see CPUID instruction in Chapter 3, “Instruction Set Reference, A-L” in the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 2A). Table 34-1 lists
the signature values of DisplayFamily and DisplayModel for various processor fami-
lies or processor number series.

Table 34-1. CPUID Signature Values of DisplayFamily_DisplayModel
DisplayFamily_DisplayModel Processor Families/Processor Number Series

06_3AH Next Generation Intel Core processor based on Intel
microarchitecture Ivy Bridge

06_2DH Next Generation Intel Xeon processor

06_2FH Intel Xeon processor E7 family

06_2AH Intel Xeon processor E3 family; Second Generation Intel Core i7, i5,
i3 Processors 2xxx Series

06_2EH Intel Xeon processor 7500, 6500 series

06_25H, 06_2CH Intel Xeon processors 3600, 5600 series, Intel Core i7, i5 and i3
Processors

06_1EH, 06_1FH Intel Core i7 and i5 Processors

06_1AH Intel Core i7 Processor, Intel Xeon Processor 3400, 3500, 5500
series

06_1DH Intel Xeon Processor MP 7400 series

06_17H Intel Xeon Processor 3100, 3300, 5200, 5400 series, Intel Core 2
Quad processors 8000, 9000 series
Vol. 3C 34-1

MODEL-SPECIFIC REGISTERS (MSRS)
34.1 ARCHITECTURAL MSRS
Many MSRs have carried over from one generation of IA-32 processors to the next
and to Intel 64 processors. A subset of MSRs and associated bit fields, which do not
change on future processor generations, are now considered architectural MSRs. For
historical reasons (beginning with the Pentium 4 processor), these “architectural
MSRs” were given the prefix “IA32_”. Table 34-2 lists the architectural MSRs, their
addresses, their current names, their names in previous IA-32 processors, and bit
fields that are considered architectural. MSR addresses outside Table 34-2 and
certain bitfields in an MSR address that may overlap with architectural MSR
addresses are model-specific. Code that accesses a machine specified MSR and that
is executed on a processor that does not support that MSR will generate an excep-
tion.

06_0FH Intel Xeon Processor 3000, 3200, 5100, 5300, 7300 series, Intel
Core 2 Quad processor 6000 series, Intel Core 2 Extreme 6000
series, Intel Core 2 Duo 4000, 5000, 6000, 7000 series processors,
Intel Pentium dual-core processors

06_0EH Intel Core Duo, Intel Core Solo processors

06_0DH Intel Pentium M processor

06_1CH Intel Atom processor

0F_06H Intel Xeon processor 7100, 5000 Series, Intel Xeon Processor MP,
Intel Pentium 4, Pentium D processors

0F_03H, 0F_04H Intel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4,
Pentium D processors

06_09H Intel Pentium M processor

0F_02H Intel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4
processors

0F_0H, 0F_01H Intel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4
processors

06_7H, 06_08H, 06_0AH,
06_0BH

Intel Pentium III Xeon Processor, Intel Pentium III Processor

06_03H, 06_05H Intel Pentium II Xeon Processor, Intel Pentium II Processor

06_01H Intel Pentium Pro Processor

05_01H, 05_02H, 05_04H Intel Pentium Processor, Intel Pentium Processor with MMX
Technology

Table 34-1. CPUID Signature (Contd.)Values of DisplayFamily_DisplayModel (Contd.)
DisplayFamily_DisplayModel Processor Families/Processor Number Series
34-2 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
Architectural MSR or individual bit fields in an architectural MSR may be introduced or
transitioned at the granularity of certain processor family/model or the presence of
certain CPUID feature flags. The right-most column of Table 34-2 provides informa-
tion on the introduction of each architectural MSR or its individual fields. This infor-
mation is expressed either as signature values of “DF_DM“ (see Table 34-1) or via
CPUID flags.

Certain bit field position may be related to the maximum physical address width, the
value of which is expressed as “MAXPHYWID“ in Table 34-2. “MAXPHYWID“ is reported by
CPUID.8000_0008H leaf.

MSR address range between 40000000H - 400000FFH is marked as a specially
reserved range. All existing and future processors will not implement any features
using any MSR in this range.

Table 34-2. IA-32 Architectural MSRs

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal

0H 0 IA32_P5_MC_ADDR
(P5_MC_ADDR)

See Section 34.13, “MSRs in
Pentium Processors.”

Pentium
Processor
(05_01H)

1H 1 IA32_P5_MC_TYPE
(P5_MC_TYPE)

See Section 34.13, “MSRs in
Pentium Processors.”

DF_DM = 05_01H

6H 6 IA32_MONITOR_FILTER_S
IZE

See Section 8.10.5,
“Monitor/Mwait Address
Range Determination.”

0F_03H

10H 16 IA32_TIME_STAMP_
COUNTER (TSC)

See Section 17.12, “Time-
Stamp Counter.”

05_01H

17H 23 IA32_PLATFORM_ID
(MSR_PLATFORM_ID)

Platform ID. (RO)
The operating system can use
this MSR to determine “slot”
information for the processor
and the proper microcode
update to load.

06_01H

49:0 Reserved.
Vol. 3C 34-3

MODEL-SPECIFIC REGISTERS (MSRS)
52:50 Platform Id. (RO)

Contains information
concerning the intended
platform for the processor.
52 51 50
0 0 0 Processor Flag 0
0 0 1 Processor Flag 1
0 1 0 Processor Flag 2
0 1 1 Processor Flag 3
1 0 0 Processor Flag 4
1 0 1 Processor Flag 5
1 1 0 Processor Flag 6
1 1 1 Processor Flag 7

63:53 Reserved.

1BH 27 IA32_APIC_BASE
(APIC_BASE)

06_01H

7:0 Reserved

8 BSP flag (R/W)

9 Reserved

10 Enable x2APIC mode 06_1AH

11 APIC Global Enable (R/W)

(MAXPHYWID - 1):12 APIC Base (R/W)

63: MAXPHYWID Reserved

3AH 58 IA32_FEATURE_CONTROL Control Features in Intel 64
Processor. (R/W)

If CPUID.01H:
ECX[bit 5 or bit 6]
= 1

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
34-4 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
0 Lock bit (R/WO): (1 = locked).
When set, locks this MSR from
being written, writes to this
bit will result in GP(0).

Note: Once the Lock bit is set,
the contents of this register
cannot be modified.
Therefore the lock bit must
be set after configuring
support

for Intel Virtualization
Technology and prior to
transferring control to an
option ROM or the OS. Hence,
once the Lock bit is set, the
entire

IA32_FEATURE_CONTROL_M
SR contents are preserved
across RESET when
PWRGOOD is not deasserted.

If
CPUID.01H:ECX[bi
t 5 or bit 6] = 1

1 Enable VMX inside SMX
operation (R/WL): This bit
enables a system executive
to use VMX in conjunction
with SMX to support Intel®
Trusted Execution
Technology.

BIOS must set this bit only
when the CPUID function 1
returns VMX feature flag and
SMX feature flag set (ECX bits
5 and 6 respectively).

If
CPUID.01H:ECX[bi
t 5 and bit 6] are
set to 1

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
Vol. 3C 34-5

MODEL-SPECIFIC REGISTERS (MSRS)
2 Enable VMX outside SMX
operation (R/WL): This bit
enables VMX for system
executive that do not require
SMX.

BIOS must set this bit only
when the CPUID function 1
returns VMX feature flag set
(ECX bit 5).

If
CPUID.01H:ECX[bi
t 5 or bit 6] = 1

7:3 Reserved

14:8 SENTER Local Function
Enables (R/WL): When set,
each bit in the field
represents an enable control
for a corresponding SENTER
function. This bit is supported
only if CPUID.1:ECX.[bit 6] is
set

If
CPUID.01H:ECX[bi
t 6] = 1

15 SENTER Global Enable (R/WL):
This bit must be set to enable
SENTER leaf functions. This
bit is supported only if
CPUID.1:ECX.[bit 6] is set

If
CPUID.01H:ECX[bi
t 6] = 1

63:16 Reserved

79H 121 IA32_BIOS_UPDT_TRIG
(BIOS_UPDT_TRIG)

BIOS Update Trigger (W)

Executing a WRMSR
instruction to this MSR causes
a microcode update to be
loaded into the processor. See
Section 9.11.6, “Microcode
Update Loader.”

A processor may prevent
writing to this MSR when
loading guest states on VM
entries or saving guest states
on VM exits.

06_01H

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
34-6 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
8BH 139 IA32_BIOS_SIGN_ID
(BIOS_SIGN/BBL_CR
_D3)

BIOS Update Signature (RO)

Returns the microcode update
signature following the
execution of CPUID.01H.

A processor may prevent
writing to this MSR when
loading guest states on VM
entries or saving guest states
on VM exits.

06_01H

31:0 Reserved

63:32 It is recommended that this
field be pre-loaded with 0
prior to executing CPUID.

If the field remains 0
following the execution of
CPUID; this indicates that no
microcode update is loaded.
Any non-zero value is the
microcode update signature.

9BH 155 IA32_SMM_MONITOR_CTL SMM Monitor Configuration
(R/W)

If CPUID.01H:
ECX[bit 5 or bit 6]
= 1

0 Valid (R/W)

1 Reserved

2 Controls SMI unblocking by
VMXOFF (see Section
33.14.4)

If
IA32_VMX_MISC[
bit 28])

11:3 Reserved

31:12 MSEG Base (R/W)

63:32 Reserved

C1H 193 IA32_PMC0 (PERFCTR0) General Performance Counter
0 (R/W)

If CPUID.0AH:
EAX[15:8] > 0

C2H 194 IA32_PMC1 (PERFCTR1) General Performance Counter
1 (R/W)

If CPUID.0AH:
EAX[15:8] > 1

C3H 195 IA32_PMC2 General Performance Counter
2 (R/W)

If CPUID.0AH:
EAX[15:8] > 2

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
Vol. 3C 34-7

MODEL-SPECIFIC REGISTERS (MSRS)
C4H 196 IA32_PMC3 General Performance Counter
3 (R/W)

If CPUID.0AH:
EAX[15:8] > 3

C5H 197 IA32_PMC4 General Performance Counter
4 (R/W)

If CPUID.0AH:
EAX[15:8] > 4

C6H 198 IA32_PMC5 General Performance Counter
5 (R/W)

If CPUID.0AH:
EAX[15:8] > 5

C7H 199 IA32_PMC6 General Performance Counter
6 (R/W)

If CPUID.0AH:
EAX[15:8] > 6

C8H 200 IA32_PMC7 General Performance Counter
7 (R/W)

If CPUID.0AH:
EAX[15:8] > 7

E7H 231 IA32_MPERF Maximum Qualified
Performance Clock Counter
(R/Write to clear)

If CPUID.06H:
ECX[0] = 1

63:0 C0_MCNT: C0 Maximum
Frequency Clock Count.

Increments at fixed interval
(relative to TSC freq.) when
the logical processor is in C0.

Cleared upon overflow /
wrap-around of IA32_APERF.

E8H 232 IA32_APERF Actual Performance Clock
Counter (R/Write to clear)

If CPUID.06H:
ECX[0] = 1

63:0 C0_ACNT: C0 Actual
Frequency Clock Count.

Accumulates core clock
counts at the coordinated
clock frequency, when the
logical processor is in C0.

Cleared upon overflow /
wrap-around of IA32_MPERF.

FEH 254 IA32_MTRRCAP
(MTRRcap)

MTRR Capability (RO) Section
11.11.2.1,
“IA32_MTRR_DEF_TYPE
MSR.”

06_01H

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
34-8 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
7:0 VCNT: The number of variable
memory type ranges in the
processor.

8 Fixed range MTRRs are
supported when set.

9 Reserved.

10 WC Supported when set.

11 SMRR Supported when set.

63:12 Reserved.

174H 372 IA32_SYSENTER_CS SYSENTER_CS_MSR (R/W) 06_01H

15:0 CS Selector

63:16 Reserved.

175H 373 IA32_SYSENTER_ESP SYSENTER_ESP_MSR (R/W) 06_01H

176H 374 IA32_SYSENTER_EIP SYSENTER_EIP_MSR (R/W) 06_01H

179H 377 IA32_MCG_CAP
(MCG_CAP)

Global Machine Check
Capability (RO)

06_01H

7:0 Count: Number of reporting
banks.

8 MCG_CTL_P: IA32_MCG_CTL
is present if this bit is set

9 MCG_EXT_P: Extended
machine check state registers
are present if this bit is set

10 MCP_CMCI_P: Support for
corrected MC error event is
present.

06_1AH

11 MCG_TES_P: Threshold-based
error status register are
present if this bit is set.

15:12 Reserved

23:16 MCG_EXT_CNT: Number of
extended machine check
state registers present.

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
Vol. 3C 34-9

MODEL-SPECIFIC REGISTERS (MSRS)
24 MCG_SER_P: The processor
supports software error
recovery if this bit is set.

63:25 Reserved.

17AH 378 IA32_MCG_STATUS
(MCG_STATUS)

Global Machine Check Status
(RO)

06_01H

17BH 379 IA32_MCG_CTL
(MCG_CTL)

Global Machine Check Control
(R/W)

06_01H

180H-
185H

384-
389

Reserved 06_0EH1

186H 390 IA32_PERFEVTSEL0
(PERFEVTSEL0)

Performance Event Select
Register 0 (R/W)

If CPUID.0AH:
EAX[15:8] > 0

7:0 Event Select: Selects a
performance event logic unit.

15:8 UMask: Qualifies the
microarchitectural condition
to detect on the selected
event logic.

16 USR: Counts while in privilege
level is not ring 0.

17 OS: Counts while in privilege
level is ring 0.

18 Edge: Enables edge detection
if set.

19 PC: enables pin control.

20 INT: enables interrupt on
counter overflow.

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
34-10 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
21 AnyThread: When set to 1, it
enables counting the
associated event conditions
occurring across all logical
processors sharing a
processor core. When set to 0,
the counter only increments
the associated event
conditions occurring in the
logical processor which
programmed the MSR.

22 EN: enables the
corresponding performance
counter to commence
counting when this bit is set.

23 INV: invert the CMASK.

31:24 CMASK: When CMASK is not
zero, the corresponding
performance counter
increments each cycle if the
event count is greater than or
equal to the CMASK.

63:32 Reserved.

187H 391 IA32_PERFEVTSEL1
(PERFEVTSEL1)

Performance Event Select
Register 1 (R/W)

If CPUID.0AH:
EAX[15:8] > 1

188H 392 IA32_PERFEVTSEL2 Performance Event Select
Register 2 (R/W)

If CPUID.0AH:
EAX[15:8] > 2

189H 393 IA32_PERFEVTSEL3 Performance Event Select
Register 3 (R/W)

If CPUID.0AH:
EAX[15:8] > 3

18AH-
197H

394-
407

Reserved 06_0EH2

198H 408 IA32_PERF_STATUS (RO) 0F_03H

15:0 Current performance State
Value

63:16 Reserved.

199H 409 IA32_PERF_CTL (R/W) 0F_03H

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
Vol. 3C 34-11

MODEL-SPECIFIC REGISTERS (MSRS)
15:0 Target performance State
Value

31:16 Reserved.

32 IDA Engage. (R/W)

When set to 1: disengages
IDA

06_0FH (Mobile)

63:33 Reserved.

19AH 410 IA32_CLOCK_MODULATIO
N

Clock Modulation Control
(R/W)

See Section 14.5.3, “Software
Controlled Clock Modulation.”

0F_0H

0 Extended On-Demand Clock
Modulation Duty Cycle:

If
CPUID.06H:EAX[5]
= 1

3:1 On-Demand Clock Modulation
Duty Cycle: Specific encoded
values for target duty cycle
modulation.

4 On-Demand Clock Modulation
Enable: Set 1 to enable
modulation.

63:5 Reserved.

19BH 411 IA32_THERM_INTERRUPT Thermal Interrupt Control
(R/W)

Enables and disables the
generation of an interrupt on
temperature transitions
detected with the processor’s
thermal sensors and thermal
monitor.

See Section 14.5.2, “Thermal
Monitor.”

0F_0H

0 High-Temperature Interrupt
Enable

1 Low-Temperature Interrupt
Enable

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
34-12 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
2 PROCHOT# Interrupt Enable

3 FORCEPR# Interrupt Enable

4 Critical Temperature Interrupt
Enable

7:5 Reserved.

14:8 Threshold #1 Value

15 Threshold #1 Interrupt
Enable

22:16 Threshold #2 Value

23 Threshold #2 Interrupt
Enable

24 Power Limit Notification
Enable

If
CPUID.06H:EAX[4]
= 1

63:25 Reserved.

19CH 412 IA32_THERM_STATUS Thermal Status Information
(RO)

Contains status information
about the processor’s thermal
sensor and automatic thermal
monitoring facilities.

See Section 14.5.2, “Thermal
Monitor”

0F_0H

0 Thermal Status (RO):

1 Thermal Status Log (R/W):

2 PROCHOT # or FORCEPR#
event (RO)

3 PROCHOT # or FORCEPR# log
(R/WC0)

4 Critical Temperature Status
(RO)

5 Critical Temperature Status
log (R/WC0)

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
Vol. 3C 34-13

MODEL-SPECIFIC REGISTERS (MSRS)
6 Thermal Threshold #1 Status
(RO)

If
CPUID.01H:ECX[8]
= 1

7 Thermal Threshold #1 log
(R/WC0)

If
CPUID.01H:ECX[8]
= 1

8 Thermal Threshold #2 Status
(RO)

If
CPUID.01H:ECX[8]
= 1

9 Thermal Threshold #1 log
(R/WC0)

If
CPUID.01H:ECX[8]
= 1

10 Power Limitation Status (RO) If
CPUID.06H:EAX[4]
= 1

11 Power Limitation log (R/WC0) If
CPUID.06H:EAX[4]
= 1

15:12 Reserved.

22:16 Digital Readout (RO) If
CPUID.06H:EAX[0]
= 1

26:23 Reserved.

30:27 Resolution in Degrees Celsius
(RO)

If
CPUID.06H:EAX[0]
= 1

31 Reading Valid (RO) If
CPUID.06H:EAX[0]
= 1

63:32 Reserved.

1A0H 416 IA32_MISC_ENABLE Enable Misc. Processor
Features. (R/W)

Allows a variety of processor
functions to be enabled and
disabled.

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
34-14 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
0 Fast-Strings Enable.

When set, the fast-strings
feature (for REP MOVS and
REP STORS) is enabled
(default); when clear, fast-
strings are disabled.

0F_0H

2:1 Reserved.

3 Automatic Thermal Control
Circuit Enable. (R/W)

1 = Setting this bit enables
the thermal control
circuit (TCC) portion of
the Intel Thermal
Monitor feature. This
allows the processor to
automatically reduce
power consumption in
response to TCC
activation.

0 = Disabled (default).
Note: In some products
clearing this bit might be
ignored in critical thermal
conditions, and TM1, TM2 and
adaptive thermal throttling
will still be activated.

0F_0H

6:4 Reserved

7 Performance Monitoring
Available. (R)

1 = Performance monitoring
enabled

0 = Performance monitoring
disabled

0F_0H

10:8 Reserved.

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
Vol. 3C 34-15

MODEL-SPECIFIC REGISTERS (MSRS)
11 Branch Trace Storage
Unavailable. (RO)

1 = Processor doesn’t
support branch trace
storage (BTS)

0 = BTS is supported

0F_0H

12 Precise Event Based
Sampling (PEBS)
Unavailable. (RO)

1 = PEBS is not supported;
0 = PEBS is supported.

06_0FH

15:13 Reserved.

16 Enhanced Intel SpeedStep
Technology Enable. (R/W)

0= Enhanced Intel
SpeedStep Technology
disabled

1 = Enhanced Intel
SpeedStep Technology
enabled

06_0DH

17 Reserved.

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
34-16 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
18 ENABLE MONITOR FSM. (R/W)

When this bit is set to 0, the
MONITOR feature flag is not
set (CPUID.01H:ECX[bit
3] = 0). This indicates that
MONITOR/MWAIT are not
supported.

Software attempts to
execute MONITOR/MWAIT will
cause #UD when this bit is 0.

When this bit is set to 1
(default), MONITOR/MWAIT
are supported
(CPUID.01H:ECX[bit 3] = 1).

If the SSE3 feature flag
ECX[0] is not set
(CPUID.01H:ECX[bit 0] = 0),
the OS must not attempt to
alter this bit. BIOS must leave
it in the default state. Writing
this bit when the SSE3
feature flag is set to 0 may
generate a #GP exception.

0F_03H

21:19 Reserved.

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
Vol. 3C 34-17

MODEL-SPECIFIC REGISTERS (MSRS)
22 Limit CPUID Maxval. (R/W)

When this bit is set to 1,
CPUID.00H returns a
maximum value in EAX[7:0] of
3.

BIOS should contain a setup
question that allows users to
specify when the installed OS
does not support CPUID
functions greater than 3.

Before setting this bit, BIOS
must execute the CPUID.0H
and examine the maximum
value returned in EAX[7:0]. If
the maximum value is greater
than 3, the bit is supported.

Otherwise, the bit is not
supported. Writing to this bit
when the maximum value is
greater than 3 may generate
a #GP exception.

Setting this bit may cause
unexpected behavior in
software that depends on the
availability of CPUID leaves
greater than 3.

0F_03H

23 xTPR Message Disable.
(R/W)

When set to 1, xTPR
messages are disabled. xTPR
messages are optional
messages that allow the
processor to inform the
chipset of its priority.

if
CPUID.01H:ECX[1
4] = 1

33:24 Reserved.

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
34-18 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
34 XD Bit Disable. (R/W)

When set to 1, the Execute
Disable Bit feature (XD Bit) is
disabled and the XD Bit
extended feature flag will be
clear (CPUID.80000001H:
EDX[20]=0).

When set to a 0 (default), the
Execute Disable Bit feature (if
available) allows the OS to
enable PAE paging and take
advantage of data only pages.

BIOS must not alter the
contents of this bit location, if
XD bit is not supported..
Writing this bit to 1 when the
XD Bit extended feature flag
is set to 0 may generate a
#GP exception.

if
CPUID.80000001
H:EDX[20] = 1

63:35 Reserved.

1B0H 432 IA32_ENERGY_PERF_BIA
S

Performance Energy Bias Hint
(R/W)

if
CPUID.6H:ECX[3]
= 1

3:0 Power Policy Preference:

0 indicates preference to
highest performance.

15 indicates preference to
maximize energy saving.

63:4 Reserved.

1B1H 433 IA32_PACKAGE_THERM_S
TATUS

Package Thermal Status
Information (RO)

Contains status information
about the package’s thermal
sensor.

See Section 14.6, “Package
Level Thermal Management.”

06_2AH

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
Vol. 3C 34-19

MODEL-SPECIFIC REGISTERS (MSRS)
0 Pkg Thermal Status (RO):

1 Pkg Thermal Status Log
(R/W):

2 Pkg PROCHOT # event (RO)

3 Pkg PROCHOT # log (R/WC0)

4 Pkg Critical Temperature
Status (RO)

5 Pkg Critical Temperature
Status log (R/WC0)

6 Pkg Thermal Threshold #1
Status (RO)

7 Pkg Thermal Threshold #1 log
(R/WC0)

8 Pkg Thermal Threshold #2
Status (RO)

9 Pkg Thermal Threshold #1 log
(R/WC0)

10 Pkg Power Limitation Status
(RO)

11 Pkg Power Limitation log
(R/WC0)

15:12 Reserved.

22:16 Pkg Digital Readout (RO)

63:23 Reserved.

1B2H 434 IA32_PACKAGE_THERM_I
NTERRUPT

Pkg Thermal Interrupt Control
(R/W)

Enables and disables the
generation of an interrupt on
temperature transitions
detected with the package’s
thermal sensor.

See Section 14.6, “Package
Level Thermal Management.”

06_2AH

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
34-20 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
0 Pkg High-Temperature
Interrupt Enable

1 Pkg Low-Temperature
Interrupt Enable

2 Pkg PROCHOT# Interrupt
Enable

3 Reserved.

4 Pkr Overheat Interrupt Enable

7:5 Reserved.

14:8 Pkg Threshold #1 Value

15 Pkg Threshold #1 Interrupt
Enable

22:16 Pkg Threshold #2 Value

23 Pkg Threshold #2 Interrupt
Enable

24 Pkg Power Limit Notification
Enable

63:25 Reserved.

1D9H 473 IA32_DEBUGCTL
(MSR_DEBUGCTLA,
MSR_DEBUGCTLB)

Trace/Profile Resource
Control (R/W)

06_0EH

0 LBR: Setting this bit to 1
enables the processor to
record a running trace of the
most recent branches taken
by the processor in the LBR
stack.

06_01H

1 BTF: Setting this bit to 1
enables the processor to
treat EFLAGS.TF as single-
step on branches instead of
single-step on instructions.

06_01H

5:2 Reserved.

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
Vol. 3C 34-21

MODEL-SPECIFIC REGISTERS (MSRS)
6 TR: Setting this bit to 1
enables branch trace
messages to be sent.

06_0EH

7 BTS: Setting this bit enables
branch trace messages
(BTMs) to be logged in a BTS
buffer.

06_0EH

8 BTINT: When clear, BTMs are
logged in a BTS buffer in
circular fashion. When this bit
is set, an interrupt is
generated by the BTS facility
when the BTS buffer is full.

06_0EH

9 1: BTS_OFF_OS: When set,
BTS or BTM is skipped if
CPL = 0.

06_0FH

10 BTS_OFF_USR: When set, BTS
or BTM is skipped if CPL > 0.

06_0FH

11 FREEZE_LBRS_ON_PMI: When
set, the LBR stack is frozen on
a PMI request.

If CPUID.01H:
ECX[15] = 1 and
CPUID.0AH:
EAX[7:0] > 1

12 FREEZE_PERFMON_ON_PMI:
When set, each ENABLE bit of
the global counter control
MSR are frozen (address
3BFH) on a PMI request

If CPUID.01H:
ECX[15] = 1 and
CPUID.0AH:
EAX[7:0] > 1

13 ENABLE_UNCORE_PMI: When
set, enables the logical
processor to receive and
generate PMI on behalf of the
uncore.

06_1AH

14 FREEZE_WHILE_SMM: When
set, freezes perfmon and
trace messages while in SMM.

if
IA32_PERF_CAPA
BILITIES[12] = '1

63:15 Reserved.

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
34-22 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
1F2H 498 IA32_SMRR_PHYSBASE SMRR Base Address.
(Writeable only in SMM)

Base address of SMM memory
range.

06_1AH

7:0 Type. Specifies memory type
of the range.

11:8 Reserved.

31:12 PhysBase.

SMRR physical Base Address.

63:32 Reserved.

1F3H 499 IA32_SMRR_PHYSMASK SMRR Range Mask.
(Writeable only in SMM)

Range Mask of SMM memory
range.

06_1AH

10:0 Reserved.

11 Valid.

Enable range mask

31:12 PhysMask.

SMRR address range mask.

63:32 Reserved.

1F8H 504 IA32_PLATFORM_DCA_CA
P

DCA Capability (R) 06_0FH

1F9H 505 IA32_CPU_DCA_CAP If set, CPU supports Prefetch-
Hint type.

1FAH 506 IA32_DCA_0_CAP DCA type 0 Status and
Control register.

06_2EH

0 DCA_ACTIVE: Set by HW
when DCA is fuse-enabled
and no defeatures are set.

06_2EH

2:1 TRANSACTION 06_2EH

6:3 DCA_TYPE 06_2EH

10:7 DCA_QUEUE_SIZE 06_2EH

12:11 Reserved. 06_2EH

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
Vol. 3C 34-23

MODEL-SPECIFIC REGISTERS (MSRS)
16:13 DCA_DELAY: Writes will
update the register but have
no HW side-effect.

06_2EH

23:17 Reserved. 06_2EH

24 SW_BLOCK: SW can request
DCA block by setting this bit.

06_2EH

25 Reserved. 06_2EH

26 HW_BLOCK: Set when DCA is
blocked by HW (e.g. CR0.CD =
1).

06_2EH

31:27 Reserved. 06_2EH

200H 512 IA32_MTRR_PHYSBASE0
(MTRRphysBase0)

See Section 11.11.2.3,
“Variable Range MTRRs.”

06_01H

201H 513 IA32_MTRR_PHYSMASK0 MTRRphysMask0 06_01H

202H 514 IA32_MTRR_PHYSBASE1 MTRRphysBase1 06_01H

203H 515 IA32_MTRR_PHYSMASK1 MTRRphysMask1 06_01H

204H 516 IA32_MTRR_PHYSBASE2 MTRRphysBase2 06_01H

205H 517 IA32_MTRR_PHYSMASK2 MTRRphysMask2 06_01H

206H 518 IA32_MTRR_PHYSBASE3 MTRRphysBase3 06_01H

207H 519 IA32_MTRR_PHYSMASK3 MTRRphysMask3 06_01H

208H 520 IA32_MTRR_PHYSBASE4 MTRRphysBase4 06_01H

209H 521 IA32_MTRR_PHYSMASK4 MTRRphysMask4 06_01H

20AH 522 IA32_MTRR_PHYSBASE5 MTRRphysBase5 06_01H

20BH 523 IA32_MTRR_PHYSMASK5 MTRRphysMask5 06_01H

20CH 524 IA32_MTRR_PHYSBASE6 MTRRphysBase6 06_01H

20DH 525 IA32_MTRR_PHYSMASK6 MTRRphysMask6 06_01H

20EH 526 IA32_MTRR_PHYSBASE7 MTRRphysBase7 06_01H

20FH 527 IA32_MTRR_PHYSMASK7 MTRRphysMask7 06_01H

210H 528 IA32_MTRR_PHYSBASE8 MTRRphysBase8 if
IA32_MTRR_CAP[
7:0] > 8

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
34-24 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
211H 529 IA32_MTRR_PHYSMASK8 MTRRphysMask8 if
IA32_MTRR_CAP[
7:0] > 8

212H 530 IA32_MTRR_PHYSBASE9 MTRRphysBase9 if
IA32_MTRR_CAP[
7:0] > 9

213H 531 IA32_MTRR_PHYSMASK9 MTRRphysMask9 if
IA32_MTRR_CAP[
7:0] > 9

250H 592 IA32_MTRR_FIX64K_000
00

MTRRfix64K_00000 06_01H

258H 600 IA32_MTRR_FIX16K_800
00

MTRRfix16K_80000 06_01H

259H 601 IA32_MTRR_FIX16K_A00
00

MTRRfix16K_A0000 06_01H

268H 616 IA32_MTRR_FIX4K_C000
0 (MTRRfix4K_C0000)

See Section 11.11.2.2, “Fixed
Range MTRRs.”

06_01H

269H 617 IA32_MTRR_FIX4K_C800
0

MTRRfix4K_C8000 06_01H

26AH 618 IA32_MTRR_FIX4K_D000
0

MTRRfix4K_D0000 06_01H

26BH 619 IA32_MTRR_FIX4K_D800
0

MTRRfix4K_D8000 06_01H

26CH 620 IA32_MTRR_FIX4K_E000
0

MTRRfix4K_E0000 06_01H

26DH 621 IA32_MTRR_FIX4K_E800
0

MTRRfix4K_E8000 06_01H

26EH 622 IA32_MTRR_FIX4K_F000
0

MTRRfix4K_F0000 06_01H

26FH 623 IA32_MTRR_FIX4K_F800
0

MTRRfix4K_F8000 06_01H

277H 631 IA32_PAT IA32_PAT (R/W) 06_05H

2:0 PA0

7:3 Reserved

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
Vol. 3C 34-25

MODEL-SPECIFIC REGISTERS (MSRS)
10:8 PA1

15:11 Reserved

18:16 PA2

23:19 Reserved

26:24 PA3

31:27 Reserved

34:32 PA4

39:35 Reserved

42:40 PA5

47:43 Reserved

50:48 PA6

55:51 Reserved

58:56 PA7

63:59 Reserved

280H 640 IA32_MC0_CTL2 (R/W) 06_1AH

14:0 Corrected error count
threshold

29:15 Reserved

30 CMCI_EN

63:31 Reserved

281H 641 IA32_MC1_CTL2 (R/W) same fields as
IA32_MC0_CTL2

06_1AH

282H 642 IA32_MC2_CTL2 (R/W) same fields as
IA32_MC0_CTL2

06_1AH

283H 643 IA32_MC3_CTL2 (R/W) same fields as
IA32_MC0_CTL2

06_1AH

284H 644 IA32_MC4_CTL2 (R/W) same fields as
IA32_MC0_CTL2

06_1AH

285H 645 IA32_MC5_CTL2 (R/W) same fields as
IA32_MC0_CTL2

06_1AH

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
34-26 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
286H 646 IA32_MC6_CTL2 (R/W) same fields as
IA32_MC0_CTL2

06_1AH

287H 647 IA32_MC7_CTL2 (R/W) same fields as
IA32_MC0_CTL2

06_1AH

288H 648 IA32_MC8_CTL2 (R/W) same fields as
IA32_MC0_CTL2

06_1AH

289H 649 IA32_MC9_CTL2 (R/W) same fields as
IA32_MC0_CTL2

06_2EH

28AH 650 IA32_MC10_CTL2 (R/W) same fields as
IA32_MC0_CTL2

06_2EH

28BH 651 IA32_MC11_CTL2 (R/W) same fields as
IA32_MC0_CTL2

06_2EH

28CH 652 IA32_MC12_CTL2 (R/W) same fields as
IA32_MC0_CTL2

06_2EH

28DH 653 IA32_MC13_CTL2 (R/W) same fields as
IA32_MC0_CTL2

06_2EH

28EH 654 IA32_MC14_CTL2 (R/W) same fields as
IA32_MC0_CTL2

06_2EH

28FH 655 IA32_MC15_CTL2 (R/W) same fields as
IA32_MC0_CTL2

06_2EH

290H 656 IA32_MC16_CTL2 (R/W) same fields as
IA32_MC0_CTL2

06_2EH

291H 657 IA32_MC17_CTL2 (R/W) same fields as
IA32_MC0_CTL2

06_2EH

292H 658 IA32_MC18_CTL2 (R/W) same fields as
IA32_MC0_CTL2

06_2EH

293H 659 IA32_MC19_CTL2 (R/W) same fields as
IA32_MC0_CTL2

06_2EH

294H 660 IA32_MC20_CTL2 (R/W) same fields as
IA32_MC0_CTL2

06_2EH

295H 661 IA32_MC21_CTL2 (R/W) same fields as
IA32_MC0_CTL2

06_2EH

2FFH 767 IA32_MTRR_DEF_TYPE MTRRdefType (R/W) 06_01H

2:0 Default Memory Type

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
Vol. 3C 34-27

MODEL-SPECIFIC REGISTERS (MSRS)
9:3 Reserved

10 Fixed Range MTRR Enable

11 MTRR Enable

63:12 Reserved

309H 777 IA32_FIXED_CTR0
(MSR_PERF_FIXED_CTR0)

Fixed-Function Performance
Counter 0 (R/W): Counts
Instr_Retired.Any

If CPUID.0AH:
EDX[4:0] > 0

30AH 778 IA32_FIXED_CTR1
(MSR_PERF_FIXED_CTR1)

Fixed-Function Performance
Counter 1 0 (R/W): Counts
CPU_CLK_Unhalted.Core

If CPUID.0AH:
EDX[4:0] > 1

30BH 779 IA32_FIXED_CTR2
(MSR_PERF_FIXED_CTR2)

Fixed-Function Performance
Counter 0 0 (R/W): Counts
CPU_CLK_Unhalted.Ref

If CPUID.0AH:
EDX[4:0] > 2

345H 837 IA32_PERF_CAPABILITIES RO If CPUID.01H:
ECX[15] = 1

5:0 LBR format

6 PEBS Trap

7 PEBSSaveArchRegs

11:8 PEBS Record Format

12 1: Freeze while SMM is
supported

13 1: Full width of counter
writable via IA32_A_PMCx

63:14 Reserved

38DH 909 IA32_FIXED_CTR_CTRL
(MSR_PERF_FIXED_CTR_C
TRL)

Fixed-Function Performance
Counter Control (R/W)

Counter increments while the
results of ANDing respective
enable bit in
IA32_PERF_GLOBAL_CTRL
with the corresponding OS or
USR bits in this MSR is true.

If CPUID.0AH:
EAX[7:0] > 1

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
34-28 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
0 EN0_OS: Enable Fixed
Counter 0 to count while CPL
= 0

1 EN0_Usr: Enable Fixed
Counter 0 to count while CPL
> 0

2 AnyThread: When set to 1, it
enables counting the
associated event conditions
occurring across all logical
processors sharing a
processor core. When set to 0,
the counter only increments
the associated event
conditions occurring in the
logical processor which
programmed the MSR.

If CPUID.0AH:

EAX[7:0] > 2

3 EN0_PMI: Enable PMI when
fixed counter 0 overflows

4 EN1_OS: Enable Fixed
Counter 1to count while CPL
= 0

5 EN1_Usr: Enable Fixed
Counter 1to count while CPL
> 0

6 AnyThread: When set to 1, it
enables counting the
associated event conditions
occurring across all logical
processors sharing a
processor core. When set to 0,
the counter only increments
the associated event
conditions occurring in the
logical processor which
programmed the MSR.

If CPUID.0AH:

EAX[7:0] > 2

7 EN1_PMI: Enable PMI when
fixed counter 1 overflows

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
Vol. 3C 34-29

MODEL-SPECIFIC REGISTERS (MSRS)
8 EN2_OS: Enable Fixed
Counter 2 to count while CPL
= 0

9 EN2_Usr: Enable Fixed
Counter 2 to count while CPL
> 0

10 AnyThread: When set to 1, it
enables counting the
associated event conditions
occurring across all logical
processors sharing a
processor core. When set to 0,
the counter only increments
the associated event
conditions occurring in the
logical processor which
programmed the MSR.

If CPUID.0AH:

EAX[7:0] > 2

11 EN2_PMI: Enable PMI when
fixed counter 2 overflows

63:12 Reserved

38EH 910 IA32_PERF_GLOBAL_STA
TUS
(MSR_PERF_GLOBAL_STA
TUS)

Global Performance Counter
Status (RO)

If CPUID.0AH:
EAX[7:0] > 0

0 Ovf_PMC0: Overflow status
of IA32_PMC0

If CPUID.0AH:
EAX[7:0] > 0

1 Ovf_PMC1: Overflow status
of IA32_PMC1

If CPUID.0AH:
EAX[7:0] > 0

2 Ovf_PMC2: Overflow status
of IA32_PMC2

06_2EH

3 Ovf_PMC3: Overflow status
of IA32_PMC3

06_2EH

31:4 Reserved

32 Ovf_FixedCtr0: Overflow
status of IA32_FIXED_CTR0

If CPUID.0AH:
EAX[7:0] > 1

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
34-30 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
33 Ovf_FixedCtr1: Overflow
status of IA32_FIXED_CTR1

If CPUID.0AH:
EAX[7:0] > 1

34 Ovf_FixedCtr2: Overflow
status of IA32_FIXED_CTR2

If CPUID.0AH:
EAX[7:0] > 1

60:35 Reserved

61 Ovf_Uncore: Uncore counter
overflow status

If CPUID.0AH:
EAX[7:0] > 2

62 OvfBuf: DS SAVE area Buffer
overflow status

If CPUID.0AH:
EAX[7:0] > 0

63 CondChg: status bits of this
register has changed

If CPUID.0AH:
EAX[7:0] > 0

38FH 911 IA32_PERF_GLOBAL_CTR
L
(MSR_PERF_GLOBAL_CTR
L)

Global Performance Counter
Control (R/W)

Counter increments while the
result of ANDing respective
enable bit in this MSR with
the corresponding OS or USR
bits in the general-purpose or
fixed counter control MSR is
true.

If CPUID.0AH:
EAX[7:0] > 0

0 EN_PMC0 If CPUID.0AH:
EAX[7:0] > 0

1 EN_PMC1 If CPUID.0AH:
EAX[7:0] > 0

31:2 Reserved

32 EN_FIXED_CTR0 If CPUID.0AH:
EAX[7:0] > 1

33 EN_FIXED_CTR1 If CPUID.0AH:
EAX[7:0] > 1

34 EN_FIXED_CTR2 If CPUID.0AH:
EAX[7:0] > 1

63:35 Reserved

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
Vol. 3C 34-31

MODEL-SPECIFIC REGISTERS (MSRS)
390H 912 IA32_PERF_GLOBAL_OVF
_CTRL
(MSR_PERF_GLOBAL_OVF
_CTRL)

Global Performance Counter
Overflow Control (R/W)

If CPUID.0AH:
EAX[7:0] > 0

0 Set 1 to Clear Ovf_PMC0 bit If CPUID.0AH:
EAX[7:0] > 0

1 Set 1 to Clear Ovf_PMC1 bit If CPUID.0AH:
EAX[7:0] > 0

31:2 Reserved

32 Set 1 to Clear
Ovf_FIXED_CTR0 bit

If CPUID.0AH:
EAX[7:0] > 1

33 Set 1 to Clear
Ovf_FIXED_CTR1 bit

If CPUID.0AH:
EAX[7:0] > 1

34 Set 1 to Clear
Ovf_FIXED_CTR2 bit

If CPUID.0AH:
EAX[7:0] > 1

60:35 Reserved

61 Set 1 to Clear Ovf_Uncore: bit 06_2EH

62 Set 1 to Clear OvfBuf: bit If CPUID.0AH:
EAX[7:0] > 0

63 Set to 1to clear CondChg: bit If CPUID.0AH:
EAX[7:0] > 0

3F1H 1009 IA32_PEBS_ENABLE PEBS Control (R/W)

0 Enable PEBS on IA32_PMC0 06_0FH

1-3 Reserved or Model specific

31:4 Reserved

35-32 Reserved or Model specific

63:36 Reserved

400H 1024 IA32_MC0_CTL MC0_CTL P6 Family
Processors

401H 1025 IA32_MC0_STATUS MC0_STATUS P6 Family
Processors

402H 1026 IA32_MC0_ADDR1 MC0_ADDR P6 Family
Processors

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
34-32 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
403H 1027 IA32_MC0_MISC MC0_MISC P6 Family
Processors

404H 1028 IA32_MC1_CTL MC1_CTL P6 Family
Processors

405H 1029 IA32_MC1_STATUS MC1_STATUS P6 Family
Processors

406H 1030 IA32_MC1_ADDR2 MC1_ADDR P6 Family
Processors

407H 1031 IA32_MC1_MISC MC1_MISC P6 Family
Processors

408H 1032 IA32_MC2_CTL MC2_CTL P6 Family
Processors

409H 1033 IA32_MC2_STATUS MC2_STATUS P6 Family
Processors

40AH 1034 IA32_MC2_ADDR1 MC2_ADDR P6 Family
Processors

40BH 1035 IA32_MC2_MISC MC2_MISC P6 Family
Processors

40CH 1036 IA32_MC3_CTL MC3_CTL P6 Family
Processors

40DH 1037 IA32_MC3_STATUS MC3_STATUS P6 Family
Processors

40EH 1038 IA32_MC3_ADDR1 MC3_ADDR P6 Family
Processors

40FH 1039 IA32_MC3_MISC MC3_MISC P6 Family
Processors

410H 1040 IA32_MC4_CTL MC4_CTL P6 Family
Processors

411H 1041 IA32_MC4_STATUS MC4_STATUS P6 Family
Processors

412H 1042 IA32_MC4_ADDR1 MC4_ADDR P6 Family
Processors

413H 1043 IA32_MC4_MISC MC4_MISC P6 Family
Processors

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
Vol. 3C 34-33

MODEL-SPECIFIC REGISTERS (MSRS)
414H 1044 IA32_MC5_CTL MC5_CTL 06_0FH

415H 1045 IA32_MC5_STATUS MC5_STATUS 06_0FH

416H 1046 IA32_MC5_ADDR1 MC5_ADDR 06_0FH

417H 1047 IA32_MC5_MISC MC5_MISC 06_0FH

418H 1048 IA32_MC6_CTL MC6_CTL 06_1DH

419H 1049 IA32_MC6_STATUS MC6_STATUS 06_1DH

41AH 1050 IA32_MC6_ADDR1 MC6_ADDR 06_1DH

41BH 1051 IA32_MC6_MISC MC6_MISC 06_1DH

41CH 1052 IA32_MC7_CTL MC7_CTL 06_1AH

41DH 1053 IA32_MC7_STATUS MC7_STATUS 06_1AH

41EH 1054 IA32_MC7_ADDR1 MC7_ADDR 06_1AH

41FH 1055 IA32_MC7_MISC MC7_MISC 06_1AH

420H 1056 IA32_MC8_CTL MC8_CTL 06_1AH

421H 1057 IA32_MC8_STATUS MC8_STATUS 06_1AH

422H 1058 IA32_MC8_ADDR1 MC8_ADDR 06_1AH

423H 1059 IA32_MC8_MISC MC8_MISC 06_1AH

424H 1060 IA32_MC9_CTL MC9_CTL 06_2EH

425H 1061 IA32_MC9_STATUS MC9_STATUS 06_2EH

426H 1062 IA32_MC9_ADDR1 MC9_ADDR 06_2EH

427H 1063 IA32_MC9_MISC MC9_MISC 06_2EH

428H 1064 IA32_MC10_CTL MC10_CTL 06_2EH

429H 1065 IA32_MC10_STATUS MC10_STATUS 06_2EH

42AH 1066 IA32_MC10_ADDR1 MC10_ADDR 06_2EH

42BH 1067 IA32_MC10_MISC MC10_MISC 06_2EH

42CH 1068 IA32_MC11_CTL MC11_CTL 06_2EH

42DH 1069 IA32_MC11_STATUS MC11_STATUS 06_2EH

42EH 1070 IA32_MC11_ADDR1 MC11_ADDR 06_2EH

42FH 1071 IA32_MC11_MISC MC11_MISC 06_2EH

430H 1072 IA32_MC12_CTL MC12_CTL 06_2EH

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
34-34 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
431H 1073 IA32_MC12_STATUS MC12_STATUS 06_2EH

432H 1074 IA32_MC12_ADDR1 MC12_ADDR 06_2EH

433H 1075 IA32_MC12_MISC MC12_MISC 06_2EH

434H 1076 IA32_MC13_CTL MC13_CTL 06_2EH

435H 1077 IA32_MC13_STATUS MC13_STATUS 06_2EH

436H 1078 IA32_MC13_ADDR1 MC13_ADDR 06_2EH

437H 1079 IA32_MC13_MISC MC13_MISC 06_2EH

438H 1080 IA32_MC14_CTL MC14_CTL 06_2EH

439H 1081 IA32_MC14_STATUS MC14_STATUS 06_2EH

43AH 1082 IA32_MC14_ADDR1 MC14_ADDR 06_2EH

43BH 1083 IA32_MC14_MISC MC14_MISC 06_2EH

43CH 1084 IA32_MC15_CTL MC15_CTL 06_2EH

43DH 1085 IA32_MC15_STATUS MC15_STATUS 06_2EH

43EH 1086 IA32_MC15_ADDR1 MC15_ADDR 06_2EH

43FH 1087 IA32_MC15_MISC MC15_MISC 06_2EH

440H 1088 IA32_MC16_CTL MC16_CTL 06_2EH

441H 1089 IA32_MC16_STATUS MC16_STATUS 06_2EH

442H 1090 IA32_MC16_ADDR1 MC16_ADDR 06_2EH

443H 1091 IA32_MC16_MISC MC16_MISC 06_2EH

444H 1092 IA32_MC17_CTL MC17_CTL 06_2EH

445H 1093 IA32_MC17_STATUS MC17_STATUS 06_2EH

446H 1094 IA32_MC17_ADDR1 MC17_ADDR 06_2EH

447H 1095 IA32_MC17_MISC MC17_MISC 06_2EH

448H 1096 IA32_MC18_CTL MC18_CTL 06_2EH

449H 1097 IA32_MC18_STATUS MC18_STATUS 06_2EH

44AH 1098 IA32_MC18_ADDR1 MC18_ADDR 06_2EH

44BH 1099 IA32_MC18_MISC MC18_MISC 06_2EH

44CH 1100 IA32_MC19_CTL MC19_CTL 06_2EH

44DH 1101 IA32_MC19_STATUS MC19_STATUS 06_2EH

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
Vol. 3C 34-35

MODEL-SPECIFIC REGISTERS (MSRS)
44EH 1102 IA32_MC19_ADDR1 MC19_ADDR 06_2EH

44FH 1103 IA32_MC19_MISC MC19_MISC 06_2EH

450H 1104 IA32_MC20_CTL MC20_CTL 06_2EH

451H 1105 IA32_MC20_STATUS MC20_STATUS 06_2EH

452H 1106 IA32_MC20_ADDR1 MC20_ADDR 06_2EH

453H 1107 IA32_MC20_MISC MC20_MISC 06_2EH

454H 1108 IA32_MC21_CTL MC21_CTL 06_2EH

455H 1109 IA32_MC21_STATUS MC21_STATUS 06_2EH

456H 1110 IA32_MC21_ADDR1 MC21_ADDR 06_2EH

457H 1111 IA32_MC21_MISC MC21_MISC 06_2EH

480H 1152 IA32_VMX_BASIC Reporting Register of Basic
VMX Capabilities. (R/O)

See Appendix A.1, “Basic VMX
Information.”

If
CPUID.01H:ECX.[bi
t 5] = 1

481H 1153 IA32_VMX_PINBASED_CT
LS

Capability Reporting
Register of Pin-based
VM-execution Controls.
(R/O)

See Appendix A.3.1, “Pin-
Based VM-Execution
Controls.”

If
CPUID.01H:ECX.[bi
t 5] = 1

482H 1154 IA32_VMX_PROCBASED_
CTLS

Capability Reporting
Register of Primary
Processor-based
VM-execution Controls.
(R/O)

See Appendix A.3.2, “Primary
Processor-Based VM-
Execution Controls.”

If
CPUID.01H:ECX.[bi
t 5] = 1

483H 1155 IA32_VMX_EXIT_CTLS Capability Reporting
Register of VM-exit
Controls. (R/O)

See Appendix A.4, “VM-Exit
Controls.”

If
CPUID.01H:ECX.[bi
t 5] = 1

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
34-36 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
484H 1156 IA32_VMX_ENTRY_CTLS Capability Reporting
Register of VM-entry
Controls. (R/O)

See Appendix A.5, “VM-Entry
Controls.”

If
CPUID.01H:ECX.[bi
t 5] = 1

485H 1157 IA32_VMX_MISC Reporting Register of
Miscellaneous VMX
Capabilities. (R/O)

See Appendix A.6,
“Miscellaneous Data.”

If
CPUID.01H:ECX.[bi
t 5] = 1

486H 1158 IA32_VMX_CRO_FIXED0 Capability Reporting
Register of CR0 Bits Fixed
to 0. (R/O)

See Appendix A.7, “VMX-
Fixed Bits in CR0.”

If
CPUID.01H:ECX.[bi
t 5] = 1

487H 1159 IA32_VMX_CRO_FIXED1 Capability Reporting
Register of CR0 Bits Fixed
to 1. (R/O)

See Appendix A.7, “VMX-
Fixed Bits in CR0.”

If
CPUID.01H:ECX.[bi
t 5] = 1

488H 1160 IA32_VMX_CR4_FIXED0 Capability Reporting
Register of CR4 Bits Fixed
to 0. (R/O)

See Appendix A.8, “VMX-
Fixed Bits in CR4.”

If
CPUID.01H:ECX.[bi
t 5] = 1

489H 1161 IA32_VMX_CR4_FIXED1 Capability Reporting
Register of CR4 Bits Fixed
to 1. (R/O)

See Appendix A.8, “VMX-
Fixed Bits in CR4.”

If
CPUID.01H:ECX.[bi
t 5] = 1

48AH 1162 IA32_VMX_VMCS_ENUM Capability Reporting
Register of VMCS Field
Enumeration. (R/O).

See Appendix A.9, “VMCS
Enumeration.”

If
CPUID.01H:ECX.[bi
t 5] = 1

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
Vol. 3C 34-37

MODEL-SPECIFIC REGISTERS (MSRS)
48BH 1163 IA32_VMX_PROCBASED_
CTLS2

Capability Reporting
Register of Secondary
Processor-based
VM-execution Controls.
(R/O)

See Appendix A.3.3,
“Secondary Processor-Based
VM-Execution Controls.”

If (
CPUID.01H:ECX.[bi
t 5] and
IA32_VMX_PROC
BASED_CTLS[bit 6
3])

48CH 1164 IA32_VMX_EPT_VPID_CA
P

Capability Reporting
Register of EPT and VPID.
(R/O)

See Appendix A.10, “VPID and
EPT Capabilities.”

If (
CPUID.01H:ECX.[bi
t 5],
IA32_VMX_PROC
BASED_CTLS[bit 6
3], and either
IA32_VMX_PROC
BASED_CTLS2[bit
33] or
IA32_VMX_PROC
BASED_CTLS2[bit
37])

48DH 1165 IA32_VMX_TRUE_PINBAS
ED_CTLS

Capability Reporting
Register of Pin-based
VM-execution Flex Controls.
(R/O)

See Appendix A.3.1, “Pin-
Based VM-Execution
Controls.”

If (
CPUID.01H:ECX.[bi
t 5] = 1 and
IA32_VMX_BASIC
[bit 55])

48EH 1166 IA32_VMX_TRUE_PROCB
ASED_CTLS

Capability Reporting
Register of Primary
Processor-based
VM-execution Flex Controls.
(R/O)

See Appendix A.3.2, “Primary
Processor-Based VM-
Execution Controls.”

If(
CPUID.01H:ECX.[bi
t 5] = 1 and
IA32_VMX_BASIC
[bit 55])

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
34-38 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
48FH 1167 IA32_VMX_TRUE_EXIT_C
TLS

Capability Reporting
Register of VM-exit Flex
Controls. (R/O)

See Appendix A.4, “VM-Exit
Controls.”

If(
CPUID.01H:ECX.[bi
t 5] = 1 and
IA32_VMX_BASIC
[bit 55])

490H 1168 IA32_VMX_TRUE_ENTRY
_CTLS

Capability Reporting
Register of VM-entry Flex
Controls. (R/O)

See Appendix A.5, “VM-Entry
Controls.”

If(
CPUID.01H:ECX.[bi
t 5] = 1 and
IA32_VMX_BASIC
[bit 55])

4C1H 1217 IA32_A_PMC0 Full Width Writable
IA32_PMC0 Alias (R/W)

(If CPUID.0AH:
EAX[15:8] > 0) &

IA32_PERF_CAPA
BILITIES[13] = 1

4C2H 1218 IA32_A_PMC1 Full Width Writable
IA32_PMC1 Alias (R/W)

(If CPUID.0AH:
EAX[15:8] > 1) &

IA32_PERF_CAPA
BILITIES[13] = 1

4C3H 1219 IA32_A_PMC2 Full Width Writable
IA32_PMC2 Alias (R/W)

(If CPUID.0AH:
EAX[15:8] > 2) &

IA32_PERF_CAPA
BILITIES[13] = 1

4C4H 1220 IA32_A_PMC3 Full Width Writable
IA32_PMC3 Alias (R/W)

(If CPUID.0AH:
EAX[15:8] > 3) &

IA32_PERF_CAPA
BILITIES[13] = 1

4C5H 1221 IA32_A_PMC4 Full Width Writable
IA32_PMC4 Alias (R/W)

(If CPUID.0AH:
EAX[15:8] > 4) &

IA32_PERF_CAPA
BILITIES[13] = 1

4C6H 1222 IA32_A_PMC5 Full Width Writable
IA32_PMC5 Alias (R/W)

(If CPUID.0AH:
EAX[15:8] > 5) &

IA32_PERF_CAPA
BILITIES[13] = 1

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
Vol. 3C 34-39

MODEL-SPECIFIC REGISTERS (MSRS)
4C7H 1223 IA32_A_PMC6 Full Width Writable
IA32_PMC6 Alias (R/W)

(If CPUID.0AH:
EAX[15:8] > 6) &

IA32_PERF_CAPA
BILITIES[13] = 1

4C8H 1224 IA32_A_PMC7 Full Width Writable
IA32_PMC7 Alias (R/W)

(If CPUID.0AH:
EAX[15:8] > 7) &

IA32_PERF_CAPA
BILITIES[13] = 1

600H 1536 IA32_DS_AREA DS Save Area. (R/W)

Points to the linear address of
the first byte of the DS buffer
management area, which is
used to manage the BTS and
PEBS buffers.

See Section 18.10.4, “Debug
Store (DS) Mechanism.”

0F_0H

63:0 The linear address of the first
byte of the DS buffer
management area, if IA-32e
mode is active.

31:0 The linear address of the first
byte of the DS buffer
management area, if not in IA-
32e mode.

63:32 Reserved iff not in IA-32e
mode.

6E0H 1760 IA32_TSC_DEADLINE TSC Target of Local APIC’s
TSC Deadline Mode. (R/W)

If(
CPUID.01H:ECX.[bi
t 25] = 1

802H 2050 IA32_X2APIC_APICID x2APIC ID Register. (R/O)

See x2APIC Specification

If (
CPUID.01H:ECX.[bi
t 21] = 1)

803H 2051 IA32_X2APIC_VERSION x2APIC Version Register.
(R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
34-40 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
808H 2056 IA32_X2APIC_TPR x2APIC Task Priority
Register. (R/W)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

80AH 2058 IA32_X2APIC_PPR x2APIC Processor Priority
Register. (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

80BH 2059 IA32_X2APIC_EOI x2APIC EOI Register. (W/O) If (
CPUID.01H:ECX.[bi
t 21] = 1)

80DH 2061 IA32_X2APIC_LDR x2APIC Logical Destination
Register. (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

80FH 2063 IA32_X2APIC_SIVR x2APIC Spurious Interrupt
Vector Register. (R/W)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

810H 2064 IA32_X2APIC_ISR0 x2APIC In-Service Register
Bits 31:0. (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

811H 2065 IA32_X2APIC_ISR1 x2APIC In-Service Register
Bits 63:32. (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

812H 2066 IA32_X2APIC_ISR2 x2APIC In-Service Register
Bits 95:64. (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

813H 2067 IA32_X2APIC_ISR3 x2APIC In-Service Register
Bits 127:96. (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

814H 2068 IA32_X2APIC_ISR4 x2APIC In-Service Register
Bits 159:128. (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

815H 2069 IA32_X2APIC_ISR5 x2APIC In-Service Register
Bits 191:160. (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

816H 2070 IA32_X2APIC_ISR6 x2APIC In-Service Register
Bits 223:192. (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
Vol. 3C 34-41

MODEL-SPECIFIC REGISTERS (MSRS)
817H 2071 IA32_X2APIC_ISR7 x2APIC In-Service Register
Bits 255:224. (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

818H 2072 IA32_X2APIC_TMR0 x2APIC Trigger Mode
Register Bits 31:0. (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

819H 2073 IA32_X2APIC_TMR1 x2APIC Trigger Mode
Register Bits 63:32. (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

81AH 2074 IA32_X2APIC_TMR2 x2APIC Trigger Mode
Register Bits 95:64. (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

81BH 2075 IA32_X2APIC_TMR3 x2APIC Trigger Mode
Register Bits 127:96. (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

81CH 2076 IA32_X2APIC_TMR4 x2APIC Trigger Mode
Register Bits 159:128 (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

81DH 2077 IA32_X2APIC_TMR5 x2APIC Trigger Mode
Register Bits 191:160 (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

81EH 2078 IA32_X2APIC_TMR6 x2APIC Trigger Mode
Register Bits 223:192 (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

81FH 2079 IA32_X2APIC_TMR7 x2APIC Trigger Mode
Register Bits 255:224 (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

820H 2080 IA32_X2APIC_IRR0 x2APIC Interrupt Request
Register Bits 31:0. (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

821H 2081 IA32_X2APIC_IRR1 x2APIC Interrupt Request
Register Bits 63:32. (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

822H 2082 IA32_X2APIC_IRR2 x2APIC Interrupt Request
Register Bits 95:64. (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
34-42 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
823H 2083 IA32_X2APIC_IRR3 x2APIC Interrupt Request
Register Bits 127:96. (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

824H 2084 IA32_X2APIC_IRR4 x2APIC Interrupt Request
Register Bits 159:128.
(R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

825H 2085 IA32_X2APIC_IRR5 x2APIC Interrupt Request
Register Bits 191:160.
(R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

826H 2086 IA32_X2APIC_IRR6 x2APIC Interrupt Request
Register Bits 223:192.
(R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

827H 2087 IA32_X2APIC_IRR7 x2APIC Interrupt Request
Register Bits 255:224.
(R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

828H 2088 IA32_X2APIC_ESR x2APIC Error Status
Register. (R/W)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

82FH 2095 IA32_X2APIC_LVT_CMCI x2APIC LVT Corrected
Machine Check Interrupt
Register. (R/W)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

830H 2096 IA32_X2APIC_ICR x2APIC Interrupt Command
Register. (R/W)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

832H 2098 IA32_X2APIC_LVT_TIMER x2APIC LVT Timer Interrupt
Register. (R/W)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

833H 2099 IA32_X2APIC_LVT_THER
MAL

x2APIC LVT Thermal Sensor
Interrupt Register. (R/W)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

834H 2100 IA32_X2APIC_LVT_PMI x2APIC LVT Performance
Monitor Interrupt Register.
(R/W)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

835H 2101 IA32_X2APIC_LVT_LINT0 x2APIC LVT LINT0 Register.
(R/W)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
Vol. 3C 34-43

MODEL-SPECIFIC REGISTERS (MSRS)
836H 2102 IA32_X2APIC_LVT_LINT1 x2APIC LVT LINT1 Register.
(R/W)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

837H 2103 IA32_X2APIC_LVT_ERRO
R

x2APIC LVT Error Register.
(R/W)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

838H 2104 IA32_X2APIC_INIT_COUN
T

x2APIC Initial Count
Register. (R/W)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

839H 2105 IA32_X2APIC_CUR_COUN
T

x2APIC Current Count
Register. (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

83EH 2110 IA32_X2APIC_DIV_CONF x2APIC Divide Configuration
Register. (R/W)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

83FH 2111 IA32_X2APIC_SELF_IPI x2APIC Self IPI Register.
(W/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

4000_
0000H
-
4000_
00FFH

Reserved MSR Address
Space

All existing and future
processors will not
implement MSR in this
range.

C000_
0080H

IA32_EFER Extended Feature Enables. If (
CPUID.80000001.
EDX.[bit 20] or
CPUID.80000001.
EDX.[bit29])

0 SYSCALL Enable. (R/W)

Enables SYSCALL/SYSRET
instructions in 64-bit mode.

7:1 Reserved.

8 IA-32e Mode Enable. (R/W)

Enables IA-32e mode
operation.

9 Reserved.

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
34-44 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
10 IA-32e Mode Active. (R)

Indicates IA-32e mode is
active when set.

11 Execute Disable Bit Enable.
(R)

63:12 Reserved.

C000_
0081H

IA32_STAR System Call Target Address.
(R/W)

If
CPUID.80000001.
EDX.[bit 29] = 1

C000_
0082H

IA32_LSTAR IA-32e Mode System Call
Target Address. (R/W)

If
CPUID.80000001.
EDX.[bit 29] = 1

C000_
0084H

IA32_FMASK System Call Flag Mask.
(R/W)

If
CPUID.80000001.
EDX.[bit 29] = 1

C000_
0100H

IA32_FS_BASE Map of BASE Address of FS.
(R/W)

If
CPUID.80000001.
EDX.[bit 29] = 1

C000_
0101H

IA32_GS_BASE Map of BASE Address of GS.
(R/W)

If
CPUID.80000001.
EDX.[bit 29] = 1

C000_
0102H

IA32_KERNEL_GS_BASE Swap Target of BASE
Address of GS. (R/W)

If
CPUID.80000001.
EDX.[bit 29] = 1

C000_
0103H

IA32_TSC_AUX Auxiliary TSC (RW) If
CPUID.80000001
H: EDX[27] = 1

31:0 AUX: Auxiliary signature of
TSC

63:32 Reserved.

NOTES:
1. In processors based on Intel NetBurst® microarchitecture, MSR addresses 180H-197H are sup-

ported, software must treat them as model-specific. Starting with Intel Core Duo processors, MSR
addresses 180H-185H, 188H-197H are reserved.

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
Vol. 3C 34-45

MODEL-SPECIFIC REGISTERS (MSRS)
34.2 MSRS IN THE INTEL® CORE™ 2 PROCESSOR FAMILY
Table 34-3 lists model-specific registers (MSRs) for Intel Core 2 processor family and
for Intel Xeon processors based on Intel Core microarchitecture, architectural MSR
addresses are also included in Table 34-3. These processors have a CPUID signature
with DisplayFamily_DisplayModel of 06_0FH, see Table 34-1.

MSRs listed in Table 34-2 and Table 34-3 are also supported by processors based on
the Enhanced Intel Core microarchitecture. Processors based on the Enhanced Intel
Core microarchitecture have the CPUID signature DisplayFamily_DisplayModel of
06_17H.

The column “Shared/Unique” applies to multi-core processors based on Intel Core
microarchitecture. “Unique” means each processor core has a separate MSR, or a bit
field in an MSR governs only a core independently. “Shared” means the MSR or the
bit field in an MSR address governs the operation of both processor cores.

2. The *_ADDR MSRs may or may not be present; this depends on flag settings in IA32_MCi_STATUS.
See Section 15.3.2.3 and Section 15.3.2.4 for more information.

Table 34-3. MSRs in Processors Based on Intel Core Microarchitecture

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

0H 0 IA32_P5_MC_
ADDR

Unique See Section 34.13, “MSRs in Pentium
Processors.”

1H 1 IA32_P5_MC_
TYPE

Unique See Section 34.13, “MSRs in Pentium
Processors.”

6H 6 IA32_MONITOR_
FILTER_SIZE

Unique See Section 8.10.5, “Monitor/Mwait Address
Range Determination.” andTable 34-2

10H 16 IA32_TIME_
STAMP_COUNTER

Unique See Section 17.12, “Time-Stamp Counter,” and
see Table 34-2

17H 23 IA32_PLATFORM_I
D

Shared Platform ID. (R)
See Table 34-2.

17H 23 MSR_PLATFORM_I
D

Shared Model Specific Platform ID. (R)

7:0 Reserved.

12:8 Maximum Qualified Ratio. (R)

The maximum allowed bus ratio.

49:13 Reserved.
34-46 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
52:50 See Table 34-2.

63:53 Reserved.

1BH 27 IA32_APIC_BASE Unique See Section 10.4.4, “Local APIC Status and
Location.” and Table 34-2

2AH 42 MSR_EBL_CR_
POWERON

Shared Processor Hard Power-On Configuration.
(R/W)

Enables and disables processor features; (R)
indicates current processor configuration.

0 Reserved

1 Data Error Checking Enable. (R/W)
1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

2 Response Error Checking Enable. (R/W)
1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

3 MCERR# Drive Enable. (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

4 Address Parity Enable. (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

5 Reserved

6 Reserved

7 BINIT# Driver Enable. (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

8 Output Tri-state Enabled. (R/O)

1 = Enabled; 0 = Disabled

9 Execute BIST. (R/O)

1 = Enabled; 0 = Disabled

Table 34-3. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3C 34-47

MODEL-SPECIFIC REGISTERS (MSRS)
10 MCERR# Observation Enabled. (R/O)

1 = Enabled; 0 = Disabled

11 Intel TXT Capable Chipset. (R/O)

1 = Present; 0 = Not Present

12 BINIT# Observation Enabled. (R/O)

1 = Enabled; 0 = Disabled

13 Reserved

14 1 MByte Power on Reset Vector. (R/O)

1 = 1 MByte; 0 = 4 GBytes

15 Reserved.

17:16 APIC Cluster ID. (R/O)

18 N/2 Non-Integer Bus Ratio. (R/O)

0 = Integer ratio; 1 = Non-integer ratio

19 Reserved.

21: 20 Symmetric Arbitration ID. (R/O)

26:22 Integer Bus Frequency Ratio. (R/O)

3AH 58 IA32_FEATURE_
CONTROL

Unique Control Features in Intel 64Processor.
(R/W).

See Table 34-2.

3 Unique SMRR Enable. (R/WL).

When this bit is set and the lock bit is set
makes the SMRR_PHYS_BASE and
SMRR_PHYS_MASK registers read visible and
writeable while in SMM.

Table 34-3. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
34-48 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
40H 64 MSR_
LASTBRANCH_0_F
ROM_IP

Unique Last Branch Record 0 From IP. (R/W)

One of four pairs of last branch record
registers on the last branch record stack. This
part of the stack contains pointers to the
source instruction for one of the last four
branches, exceptions, or interrupts taken by
the processor. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.10, “Last Branch, Interrupt, and

Exception Recording (Pentium M
Processors).”

41H 65 MSR_
LASTBRANCH_1_F
ROM_IP

Unique Last Branch Record 1 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

42H 66 MSR_
LASTBRANCH_2_F
ROM_IP

Unique Last Branch Record 2 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

43H 67 MSR_
LASTBRANCH_3_F
ROM_IP

Unique Last Branch Record 3 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

60H 96 MSR_
LASTBRANCH_0_
TO_LIP

Unique Last Branch Record 0 To IP. (R/W)

One of four pairs of last branch record
registers on the last branch record stack. This
part of the stack contains pointers to the
destination instruction for one of the last four
branches, exceptions, or interrupts taken by
the processor.

61H 97 MSR_
LASTBRANCH_1_
TO_LIP

Unique Last Branch Record 1 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

62H 98 MSR_
LASTBRANCH_2_
TO_LIP

Unique Last Branch Record 2 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

Table 34-3. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3C 34-49

MODEL-SPECIFIC REGISTERS (MSRS)
63H 99 MSR_
LASTBRANCH_3_
TO_LIP

Unique Last Branch Record 3 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

79H 121 IA32_BIOS_
UPDT_TRIG

Unique BIOS Update Trigger Register. (W)

See Table 34-2.

8BH 139 IA32_BIOS_
SIGN_ID

Unique BIOS Update Signature ID. (RO)

See Table 34-2.

A0H 160 MSR_SMRR_PHYS
BASE

Unique System Management Mode Base Address
register. (WO in SMM)

Model-specific implementation of SMRR-like
interface, read visible and write only in SMM.

11:0 Reserved.

31:12 PhysBase. SMRR physical Base Address.

63:32 Reserved.

A1H 161 MSR_SMRR_PHYS
MASK

Unique System Management Mode Physical
Address Mask register. (WO in SMM)

Model-specific implementation of SMRR-like
interface, read visible and write only in SMM..

10:0 Reserved.

11 Valid. Physical address base and range mask
are valid.

31:12 PhysMask. SMRR physical address range mask.

63:32 Reserved.

C1H 193 IA32_PMC0 Unique Performance counter register. See
Table 34-2.

C2H 194 IA32_PMC1 Unique Performance counter register. See
Table 34-2.

CDH 205 MSR_FSB_FREQ Shared Scaleable Bus Speed(RO).

This field indicates the intended scaleable bus
clock speed for processors based on Intel Core
microarchitecture:

Table 34-3. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
34-50 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
2:0 • 101B: 100 MHz (FSB 400)
• 001B: 133 MHz (FSB 533)
• 011B: 167 MHz (FSB 667)
• 010B: 200 MHz (FSB 800)
• 000B: 267 MHz (FSB 1067)
• 100B: 333 MHz (FSB 1333)

133.33 MHz should be utilized if performing
calculation with System Bus Speed when
encoding is 001B.

166.67 MHz should be utilized if performing
calculation with System Bus Speed when
encoding is 011B.

266.67 MHz should be utilized if performing
calculation with System Bus Speed when
encoding is 000B.

333.33 MHz should be utilized if performing
calculation with System Bus Speed when
encoding is 100B.

63:3 Reserved.

CDH 205 MSR_FSB_FREQ Shared Scaleable Bus Speed(RO).

This field indicates the intended scaleable bus
clock speed for processors based on Enhanced
Intel Core microarchitecture:

2:0 • 101B: 100 MHz (FSB 400)
• 001B: 133 MHz (FSB 533)
• 011B: 167 MHz (FSB 667)
• 010B: 200 MHz (FSB 800)
• 000B: 267 MHz (FSB 1067)
• 100B: 333 MHz (FSB 1333)
• 110B: 400 MHz (FSB 1600)

133.33 MHz should be utilized if performing
calculation with System Bus Speed when
encoding is 001B.

166.67 MHz should be utilized if performing
calculation with System Bus Speed when
encoding is 011B.

Table 34-3. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3C 34-51

MODEL-SPECIFIC REGISTERS (MSRS)
266.67 MHz should be utilized if performing
calculation with System Bus Speed when
encoding is 110B.

333.33 MHz should be utilized if performing
calculation with System Bus Speed when
encoding is 111B.

63:3 Reserved.

E7H 231 IA32_MPERF Unique Maximum Performance Frequency Clock
Count. (RW) see Table 34-2

E8H 232 IA32_APERF Unique Actual Performance Frequency Clock Count.
(RW) See Table 34-2.

FEH 254 IA32_MTRRCAP Unique See Table 34-2.

11 Unique SMRR Capability Using MSR 0A0H and
0A1H. (R)

11EH 281 MSR_BBL_CR_
CTL3

Shared

0 L2 Hardware Enabled. (RO)

1 = If the L2 is hardware-enabled
0 = Indicates if the L2 is hardware-disabled

7:1 Reserved.

8 L2 Enabled. (R/W)

1 = L2 cache has been initialized
0 = Disabled (default)
Until this bit is set the processor will not
respond to the WBINVD instruction or the
assertion of the FLUSH# input.

22:9 Reserved.

23 L2 Not Present. (RO)

0 = L2 Present
1 = L2 Not Present

63:24 Reserved.

Table 34-3. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
34-52 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
174H 372 IA32_SYSENTER_C
S

Unique See Table 34-2.

175H 373 IA32_SYSENTER_E
SP

Unique See Table 34-2.

176H 374 IA32_SYSENTER_E
IP

Unique See Table 34-2.

179H 377 IA32_MCG_CAP Unique See Table 34-2.

17AH 378 IA32_MCG_
STATUS

Unique

0 RIPV.

When set, bit indicates that the instruction
addressed by the instruction pointer pushed
on the stack (when the machine check was
generated) can be used to restart the
program. If cleared, the program cannot be
reliably restarted.

1 EIPV.

When set, bit indicates that the instruction
addressed by the instruction pointer pushed
on the stack (when the machine check was
generated) is directly associated with the
error.

2 MCIP.

When set, bit indicates that a machine check
has been generated. If a second machine
check is detected while this bit is still set, the
processor enters a shutdown state. Software
should write this bit to 0 after processing a
machine check exception.

63:3 Reserved.

186H 390 IA32_
PERFEVTSEL0

Unique See Table 34-2.

187H 391 IA32_
PERFEVTSEL1

Unique See Table 34-2.

Table 34-3. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3C 34-53

MODEL-SPECIFIC REGISTERS (MSRS)
198H 408 IA32_PERF_STAT
US

Shared See Table 34-2.

198H 408 MSR_PERF_STATU
S

Shared

15:0 Current Performance State Value.

30:16 Reserved.

31 XE Operation (R/O).

If set, XE operation is enabled. Default is
cleared.

39:32 Reserved.

44:40 Maximum Bus Ratio (R/O)

Indicates maximum bus ratio configured for
the processor.

45 Reserved.

46 Non-Integer Bus Ratio (R/O)

Indicates non-integer bus ratio is enabled.
Applies processors based on Enhanced Intel
Core microarchitecture.

63:47 Reserved.

199H 409 IA32_PERF_CTL Unique See Table 34-2.

19AH 410 IA32_CLOCK_
MODULATION

Unique Clock Modulation. (R/W)

See Table 34-2.

IA32_CLOCK_MODULATION MSR was
originally named IA32_THERM_CONTROL
MSR.

19BH 411 IA32_THERM_
INTERRUPT

Unique Thermal Interrupt Control. (R/W)

See Table 34-2.

19CH 412 IA32_THERM_
STATUS

Unique Thermal Monitor Status. (R/W)

See Table 34-2.

19DH 413 MSR_THERM2_
CTL

Unique

Table 34-3. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
34-54 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
15:0 Reserved.

16 TM_SELECT. (R/W)

Mode of automatic thermal monitor:

0 = Thermal Monitor 1 (thermally-initiated
on-die modulation of the stop-clock duty
cycle)

1 = Thermal Monitor 2 (thermally-initiated
frequency transitions)

If bit 3 of the IA32_MISC_ENABLE register is
cleared, TM_SELECT has no effect. Neither
TM1 nor TM2 are enabled.

63:16 Reserved.

1A0 416 IA32_MISC_
ENABLE

Enable Misc. Processor Features. (R/W)

Allows a variety of processor functions to be
enabled and disabled.

0 Fast-Strings Enable. See Table 34-2.

2:1 Reserved.

3 Unique Automatic Thermal Control Circuit Enable.
(R/W) See Table 34-2.

6:4 Reserved.

7 Shared Performance Monitoring Available. (R) See
Table 34-2.

8 Reserved.

9 Hardware Prefetcher Disable. (R/W)

When set, disables the hardware prefetcher
operation on streams of data. When clear
(default), enables the prefetch queue.

Disabling of the hardware prefetcher may
impact processor performance.

Table 34-3. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3C 34-55

MODEL-SPECIFIC REGISTERS (MSRS)
10 Shared FERR# Multiplexing Enable. (R/W)

1 = FERR# asserted by the processor to
indicate a pending break event within
the processor

0 = Indicates compatible FERR# signaling
behavior

This bit must be set to 1 to support XAPIC
interrupt model usage.

11 Shared Branch Trace Storage Unavailable. (RO) See
Table 34-2.

12 Shared Precise Event Based Sampling Unavailable.
(RO) See Table 34-2.

13 Shared TM2 Enable. (R/W)

When this bit is set (1) and the thermal sensor
indicates that the die temperature is at the
pre-determined threshold, the Thermal
Monitor 2 mechanism is engaged. TM2 will
reduce the bus to core ratio and voltage
according to the value last written to
MSR_THERM2_CTL bits 15:0.

When this bit is clear (0, default), the
processor does not change the VID signals or
the bus to core ratio when the processor
enters a thermally managed state.

The BIOS must enable this feature if the TM2
feature flag (CPUID.1:ECX[8]) is set; if the TM2
feature flag is not set, this feature is not
supported and BIOS must not alter the
contents of the TM2 bit location.

The processor is operating out of specification
if both this bit and the TM1 bit are set to 0.

15:14 Reserved.

16 Shared Enhanced Intel SpeedStep Technology
Enable. (R/W) See Table 34-2.

18 Shared ENABLE MONITOR FSM. (R/W) See Table 34-2.

Table 34-3. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
34-56 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
19 Shared Adjacent Cache Line Prefetch Disable.
(R/W)

When set to 1, the processor fetches the
cache line that contains data currently
required by the processor. When set to 0, the
processor fetches cache lines that comprise a
cache line pair (128 bytes).

Single processor platforms should not set this
bit. Server platforms should set or clear this
bit based on platform performance observed
in validation and testing.

BIOS may contain a setup option that controls
the setting of this bit.

20 Shared Enhanced Intel SpeedStep Technology
Select Lock. (R/WO)

When set, this bit causes the following bits to
become read-only:

• Enhanced Intel SpeedStep Technology
Select Lock (this bit),

• Enhanced Intel SpeedStep Technology
Enable bit.

The bit must be set before an Enhanced Intel
SpeedStep Technology transition is requested.
This bit is cleared on reset.

21 Reserved.

22 Shared Limit CPUID Maxval. (R/W) See Table 34-2.

23 Shared xTPR Message Disable. (R/W) See
Table 34-2.

33:24 Reserved.

34 Unique XD Bit Disable. (R/W) See Table 34-2.

36:35 Reserved.

Table 34-3. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3C 34-57

MODEL-SPECIFIC REGISTERS (MSRS)
37 Unique DCU Prefetcher Disable. (R/W)

When set to 1, The DCU L1 data cache
prefetcher is disabled. The default value after
reset is 0. BIOS may write ‘1’ to disable this
feature.

The DCU prefetcher is an L1 data cache
prefetcher. When the DCU prefetcher detects
multiple loads from the same line done within
a time limit, the DCU prefetcher assumes the
next line will be required. The next line is
prefetched in to the L1 data cache from
memory or L2.

38 Shared IDA Disable. (R/W)

When set to 1 on processors that support IDA,
the Intel Dynamic Acceleration feature (IDA) is
disabled and the IDA_Enable feature flag will
be clear (CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support
IDA, CPUID.06H: EAX[1] reports the
processor’s support of IDA is enabled.

Note: the power-on default value is used by
BIOS to detect hardware support of IDA. If
power-on default value is 1, IDA is available in
the processor. If power-on default value is 0,
IDA is not available.

39 Unique IP Prefetcher Disable. (R/W)

When set to 1, The IP prefetcher is disabled.
The default value after reset is 0. BIOS may
write ‘1’ to disable this feature.

The IP prefetcher is an L1 data cache
prefetcher. The IP prefetcher looks for
sequential load history to determine whether
to prefetch the next expected data into the
L1 cache from memory or L2.

63:40 Reserved.

Table 34-3. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
34-58 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
1C9H 457 MSR_
LASTBRANCH_
TOS

Unique Last Branch Record Stack TOS. (R)

Contains an index (bits 0-3) that points to the
MSR containing the most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 40H).

1D9H 473 IA32_DEBUGCTL Unique Debug Control. (R/W) see Table 34-2

1DDH 477 MSR_LER_FROM_
LIP

Unique Last Exception Record From Linear IP. (R)

Contains a pointer to the last branch
instruction that the processor executed prior
to the last exception that was generated or
the last interrupt that was handled.

1DEH 478 MSR_LER_TO_
LIP

Unique Last Exception Record To Linear IP. (R)

This area contains a pointer to the target of
the last branch instruction that the processor
executed prior to the last exception that was
generated or the last interrupt that was
handled.

200H 512 IA32_MTRR_PHYS
BASE0

Unique See Table 34-2.

201H 513 IA32_MTRR_PHYS
MASK0

Unique See Table 34-2.

202H 514 IA32_MTRR_PHYS
BASE1

Unique See Table 34-2.

203H 515 IA32_MTRR_PHYS
MASK1

Unique See Table 34-2.

204H 516 IA32_MTRR_PHYS
BASE2

Unique See Table 34-2.

205H 517 IA32_MTRR_PHYS
MASK2

Unique See Table 34-2.

206H 518 IA32_MTRR_PHYS
BASE3

Unique See Table 34-2.

207H 519 IA32_MTRR_PHYS
MASK3

Unique See Table 34-2.

Table 34-3. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3C 34-59

MODEL-SPECIFIC REGISTERS (MSRS)
208H 520 IA32_MTRR_PHYS
BASE4

Unique See Table 34-2.

209H 521 IA32_MTRR_PHYS
MASK4

Unique See Table 34-2.

20AH 522 IA32_MTRR_PHYS
BASE5

Unique See Table 34-2.

20BH 523 IA32_MTRR_PHYS
MASK5

Unique See Table 34-2.

20CH 524 IA32_MTRR_PHYS
BASE6

Unique See Table 34-2.

20DH 525 IA32_MTRR_PHYS
MASK6

Unique See Table 34-2.

20EH 526 IA32_MTRR_PHYS
BASE7

Unique See Table 34-2.

20FH 527 IA32_MTRR_PHYS
MASK7

Unique See Table 34-2.

250H 592 IA32_MTRR_FIX6
4K_00000

Unique See Table 34-2.

258H 600 IA32_MTRR_FIX1
6K_80000

Unique See Table 34-2.

259H 601 IA32_MTRR_FIX1
6K_A0000

Unique See Table 34-2.

268H 616 IA32_MTRR_FIX4
K_C0000

Unique See Table 34-2.

269H 617 IA32_MTRR_FIX4
K_C8000

Unique See Table 34-2.

26AH 618 IA32_MTRR_FIX4
K_D0000

Unique See Table 34-2.

26BH 619 IA32_MTRR_FIX4
K_D8000

Unique See Table 34-2.

26CH 620 IA32_MTRR_FIX4
K_E0000

Unique See Table 34-2.

Table 34-3. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
34-60 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
26DH 621 IA32_MTRR_FIX4
K_E8000

Unique See Table 34-2.

26EH 622 IA32_MTRR_FIX4
K_F0000

Unique See Table 34-2.

26FH 623 IA32_MTRR_FIX4
K_F8000

Unique See Table 34-2.

277H 631 IA32_PAT Unique See Table 34-2.

2FFH 767 IA32_MTRR_DEF_
TYPE

Unique Default Memory Types. (R/W) See
Table 34-2.

309H 777 IA32_FIXED_CTR0 Unique Fixed-Function Performance Counter
Register 0. (R/W) See Table 34-2.

309H 777 MSR_PERF_FIXED
_CTR0

Unique Fixed-Function Performance Counter
Register 0. (R/W)

30AH 778 IA32_FIXED_CTR1 Unique Fixed-Function Performance Counter
Register 1. (R/W) See Table 34-2.

30AH 778 MSR_PERF_FIXED
_CTR1

Unique Fixed-Function Performance Counter
Register 1. (R/W)

30BH 779 IA32_FIXED_CTR2 Unique Fixed-Function Performance Counter
Register 2. (R/W) See Table 34-2.

30BH 779 MSR_PERF_FIXED
_CTR2

Unique Fixed-Function Performance Counter
Register 2. (R/W)

345H 837 IA32_PERF_CAPA
BILITIES

Unique See Table 34-2. See Section 17.4.1,
“IA32_DEBUGCTL MSR.”

345H 837 MSR_PERF_CAPAB
ILITIES

Unique RO. This applies to processors that do not
support architectural perfmon version 2.

5:0 LBR Format. See Table 34-2.

6 PEBS Record Format.

7 PEBSSaveArchRegs. See Table 34-2.

63:8 Reserved.

38DH 909 IA32_FIXED_CTR_
CTRL

Unique Fixed-Function-Counter Control Register.
(R/W) See Table 34-2.

Table 34-3. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3C 34-61

MODEL-SPECIFIC REGISTERS (MSRS)
38DH 909 MSR_PERF_FIXED
_CTR_CTRL

Unique Fixed-Function-Counter Control Register.
(R/W)

38EH 910 IA32_PERF_
GLOBAL_STAUS

Unique See Table 34-2. See Section 18.4.2, “Global
Counter Control Facilities.”

38EH 910 MSR_PERF_
GLOBAL_STAUS

Unique See Section 18.4.2, “Global Counter Control
Facilities.”

38FH 911 IA32_PERF_
GLOBAL_CTRL

Unique See Table 34-2. See Section 18.4.2, “Global
Counter Control Facilities.”

38FH 911 MSR_PERF_
GLOBAL_CTRL

Unique See Section 18.4.2, “Global Counter Control
Facilities.”

390H 912 IA32_PERF_
GLOBAL_OVF_
CTRL

Unique See Table 34-2. See Section 18.4.2, “Global
Counter Control Facilities.”

390H 912 MSR_PERF_
GLOBAL_OVF_
CTRL

Unique See Section 18.4.2, “Global Counter Control
Facilities.”

3F1H 1009 MSR_PEBS_
ENABLE

Unique See Table 34-2. See Section 18.4.4, “Precise
Event Based Sampling (PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

400H 1024 IA32_MC0_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_
STATUS

Unique See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.”

402H 1026 IA32_MC0_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the IA32_MC0_STATUS register
is clear.

When not implemented in the processor, all
reads and writes to this MSR will cause a
general-protection exception.

404H 1028 IA32_MC1_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_
STATUS

Unique See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.”

Table 34-3. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
34-62 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
406H 1030 IA32_MC1_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the IA32_MC1_STATUS register
is clear.

When not implemented in the processor, all
reads and writes to this MSR will cause a
general-protection exception.

408H 1032 IA32_MC2_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_
STATUS

Unique See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.”

40AH 1034 IA32_MC2_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the IA32_MC2_STATUS register
is clear.

When not implemented in the processor, all
reads and writes to this MSR will cause a
general-protection exception.

40CH 1036 MSR_MC4_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 MSR_MC4_
STATUS

Unique See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.”

40EH 1038 MSR_MC4_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the MSR_MC4_STATUS register
is clear.

When not implemented in the processor, all
reads and writes to this MSR will cause a
general-protection exception.

410H 1040 MSR_MC3_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 MSR_MC3_
STATUS

See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.”

Table 34-3. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3C 34-63

MODEL-SPECIFIC REGISTERS (MSRS)
412H 1042 MSR_MC3_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the MSR_MC3_STATUS register
is clear.

When not implemented in the processor, all
reads and writes to this MSR will cause a
general-protection exception.

413H 1043 MSR_MC3_MISC Unique

414H 1044 MSR_MC5_CTL Unique

415H 1045 MSR_MC5_
STATUS

Unique

416H 1046 MSR_MC5_ADDR Unique

417H 1047 MSR_MC5_MISC Unique

419H 1045 MSR_MC6_
STATUS

Unique Apply to Intel Xeon processor 7400 series
(processor signature 06_1D) only. See Section
15.3.2.2, “IA32_MCi_STATUS MSRS.” and
Chapter 23.

480H 1152 IA32_VMX_BASIC Unique Reporting Register of Basic VMX
Capabilities. (R/O) See Table 34-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBA
SED_CTLS

Unique Capability Reporting Register of Pin-based
VM-execution Controls. (R/O) See
Table 34-2.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCB
ASED_CTLS

Unique Capability Reporting Register of Primary
Processor-based VM-execution Controls.
(R/O)

See Appendix A.3, “VM-Execution Controls.”

483H 1155 IA32_VMX_EXIT_
CTLS

Unique Capability Reporting Register of VM-exit
Controls. (R/O) See Table 34-2.

See Appendix A.4, “VM-Exit Controls.”

Table 34-3. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
34-64 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
484H 1156 IA32_VMX_
ENTRY_CTLS

Unique Capability Reporting Register of VM-entry
Controls. (R/O) See Table 34-2.

See Appendix A.5, “VM-Entry Controls.”

485H 1157 IA32_VMX_MISC Unique Reporting Register of Miscellaneous VMX
Capabilities. (R/O) See Table 34-2.

See Appendix A.6, “Miscellaneous Data.”

486H 1158 IA32_VMX_CR0_
FIXED0

Unique Capability Reporting Register of CR0 Bits
Fixed to 0. (R/O) See Table 34-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

487H 1159 IA32_VMX_CR0_
FIXED1

Unique Capability Reporting Register of CR0 Bits
Fixed to 1. (R/O) See Table 34-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

488H 1160 IA32_VMX_CR4_FI
XED0

Unique Capability Reporting Register of CR4 Bits
Fixed to 0. (R/O) See Table 34-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

489H 1161 IA32_VMX_CR4_FI
XED1

Unique Capability Reporting Register of CR4 Bits
Fixed to 1. (R/O) See Table 34-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

48AH 1162 IA32_VMX_
VMCS_ENUM

Unique Capability Reporting Register of VMCS Field
Enumeration. (R/O). See Table 34-2.

See Appendix A.9, “VMCS Enumeration.”

48BH 1163 IA32_VMX_PROCB
ASED_CTLS2

Unique Capability Reporting Register of Secondary
Processor-based VM-execution Controls.
(R/O)

See Appendix A.3, “VM-Execution Controls.”

600H 1536 IA32_DS_AREA Unique DS Save Area. (R/W). See Table 34-2.

See Section 18.10.4, “Debug Store (DS)
Mechanism.”

107CC
H

MSR_EMON_L3_C
TR_CTL0

Unique GBUSQ Event Control/Counter Register.
(R/W).

Apply to Intel Xeon processor 7400 series
(processor signature 06_1D) only. See Section
17.2.2

Table 34-3. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3C 34-65

MODEL-SPECIFIC REGISTERS (MSRS)
107CD
H

MSR_EMON_L3_C
TR_CTL1

Unique GBUSQ Event Control/Counter Register.
(R/W).

Apply to Intel Xeon processor 7400 series
(processor signature 06_1D) only. See Section
17.2.2

107CE
H

MSR_EMON_L3_C
TR_CTL2

Unique GSNPQ Event Control/Counter Register.
(R/W).

Apply to Intel Xeon processor 7400 series
(processor signature 06_1D) only. See Section
17.2.2

107CF
H

MSR_EMON_L3_C
TR_CTL3

Unique GSNPQ Event Control/Counter Register.
(R/W).

Apply to Intel Xeon processor 7400 series
(processor signature 06_1D) only. See Section
17.2.2

107D0
H

MSR_EMON_L3_C
TR_CTL4

Unique FSB Event Control/Counter Register. (R/W).

Apply to Intel Xeon processor 7400 series
(processor signature 06_1D) only. See Section
17.2.2

107D1
H

MSR_EMON_L3_C
TR_CTL5

Unique FSB Event Control/Counter Register. (R/W).

Apply to Intel Xeon processor 7400 series
(processor signature 06_1D) only. See Section
17.2.2

107D2
H

MSR_EMON_L3_C
TR_CTL6

Unique FSB Event Control/Counter Register. (R/W).

Apply to Intel Xeon processor 7400 series
(processor signature 06_1D) only. See Section
17.2.2

107D3
H

MSR_EMON_L3_C
TR_CTL7

Unique FSB Event Control/Counter Register. (R/W).

Apply to Intel Xeon processor 7400 series
(processor signature 06_1D) only. See Section
17.2.2

Table 34-3. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
34-66 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
34.3 MSRS IN THE INTEL® ATOM™ PROCESSOR FAMILY
Table 34-4 lists model-specific registers (MSRs) for Intel Atom processor family,
architectural MSR addresses are also included in Table 34-4. These processors have
a CPUID signature with DisplayFamily_DisplayModel of 06_1CH, see Table 34-1.

The column “Shared/Unique” applies to logical processors sharing the same core in
processors based on the Intel Atom microarchitecture. “Unique” means each logical
processor has a separate MSR, or a bit field in an MSR governs only a logical
processor. “Shared” means the MSR or the bit field in an MSR address governs the
operation of both logical processors in the same core.

107D8
H

MSR_EMON_L3
_GL_CTL

Unique L3/FSB Common Control Register. (R/W).

Apply to Intel Xeon processor 7400 series
(processor signature 06_1D) only. See Section
17.2.2

C000_
0080H

IA32_EFER Unique Extended Feature Enables. See Table 34-2.

C000_
0081H

IA32_STAR Unique System Call Target Address. (R/W). See
Table 34-2.

C000_
0082H

IA32_LSTAR Unique IA-32e Mode System Call Target Address.
(R/W). See Table 34-2.

C000_
0084H

IA32_FMASK Unique System Call Flag Mask. (R/W). See
Table 34-2.

C000_
0100H

IA32_FS_BASE Unique Map of BASE Address of FS. (R/W). See
Table 34-2.

C000_
0101H

IA32_GS_BASE Unique Map of BASE Address of GS. (R/W). See
Table 34-2.

C000_
0102H

IA32_KERNEL_GS
BASE

Unique Swap Target of BASE Address of GS. (R/W).
See Table 34-2.

Table 34-3. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3C 34-67

MODEL-SPECIFIC REGISTERS (MSRS)
Table 34-4. MSRs in Intel Atom Processor Family

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

0H 0 IA32_P5_MC_
ADDR

Shared See Section 34.13, “MSRs in Pentium
Processors.”

1H 1 IA32_P5_MC_
TYPE

Shared See Section 34.13, “MSRs in Pentium
Processors.”

6H 6 IA32_MONITOR_
FILTER_SIZE

Unique See Section 8.10.5, “Monitor/Mwait Address
Range Determination.” andTable 34-2

10H 16 IA32_TIME_
STAMP_COUNTER

Shared See Section 17.12, “Time-Stamp Counter,” and
see Table 34-2.

17H 23 IA32_PLATFORM_I
D

Shared Platform ID. (R)
See Table 34-2.

17H 23 MSR_PLATFORM_I
D

Shared Model Specific Platform ID. (R)

7:0 Reserved.

12:8 Maximum Qualified Ratio. (R)

The maximum allowed bus ratio.

63:13 Reserved.

1BH 27 IA32_APIC_BASE Unique See Section 10.4.4, “Local APIC Status and
Location,” and Table 34-2.

2AH 42 MSR_EBL_CR_
POWERON

Shared Processor Hard Power-On Configuration.
(R/W)

Enables and disables processor features; (R)
indicates current processor configuration.

0 Reserved.

1 Data Error Checking Enable. (R/W)
1 = Enabled; 0 = Disabled
Always 0.

2 Response Error Checking Enable. (R/W)
1 = Enabled; 0 = Disabled
Always 0.

3 AERR# Drive Enable. (R/W)

1 = Enabled; 0 = Disabled
Always 0.
34-68 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
4 BERR# Enable for initiator bus requests.
(R/W)

1 = Enabled; 0 = Disabled
Always 0.

5 Reserved.

6 Reserved.

7 BINIT# Driver Enable. (R/W)

1 = Enabled; 0 = Disabled
Always 0.

8 Reserved.

9 Execute BIST. (R/O)

1 = Enabled; 0 = Disabled

10 AERR# Observation Enabled. (R/O)

1 = Enabled; 0 = Disabled
Always 0.

11 Reserved.

12 BINIT# Observation Enabled. (R/O)

1 = Enabled; 0 = Disabled
Always 0.

13 Reserved.

14 1 MByte Power on Reset Vector. (R/O)

1 = 1 MByte; 0 = 4 GBytes

15 Reserved

17:16 APIC Cluster ID. (R/O)

Always 00B.

19: 18 Reserved.

21: 20 Symmetric Arbitration ID. (R/O)

Always 00B.

26:22 Integer Bus Frequency Ratio. (R/O)

Table 34-4. MSRs in Intel Atom Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3C 34-69

MODEL-SPECIFIC REGISTERS (MSRS)
3AH 58 IA32_FEATURE_
CONTROL

Unique Control Features in Intel 64Processor.
(R/W).

See Table 34-2.

40H 64 MSR_
LASTBRANCH_0_F
ROM_IP

Unique Last Branch Record 0 From IP. (R/W)

One of eight pairs of last branch record
registers on the last branch record stack. This
part of the stack contains pointers to the
source instruction for one of the last eight
branches, exceptions, or interrupts taken by
the processor. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.10, “Last Branch, Interrupt, and

Exception Recording (Pentium M
Processors).”

41H 65 MSR_
LASTBRANCH_1_F
ROM_IP

Unique Last Branch Record 1 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

42H 66 MSR_
LASTBRANCH_2_F
ROM_IP

Unique Last Branch Record 2 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

43H 67 MSR_
LASTBRANCH_3_F
ROM_IP

Unique Last Branch Record 3 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

44H 68 MSR_
LASTBRANCH_4_F
ROM_IP

Unique Last Branch Record 4 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

45H 69 MSR_
LASTBRANCH_5_F
ROM_IP

Unique Last Branch Record 5 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

46H 70 MSR_
LASTBRANCH_6_F
ROM_IP

Unique Last Branch Record 6 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

47H 71 MSR_
LASTBRANCH_7_F
ROM_IP

Unique Last Branch Record 7 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

Table 34-4. MSRs in Intel Atom Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
34-70 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
60H 96 MSR_
LASTBRANCH_0_
TO_LIP

Unique Last Branch Record 0 To IP. (R/W)

One of eight pairs of last branch record
registers on the last branch record stack. This
part of the stack contains pointers to the
destination instruction for one of the last
eight branches, exceptions, or interrupts
taken by the processor.

61H 97 MSR_
LASTBRANCH_1_
TO_LIP

Unique Last Branch Record 1 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

62H 98 MSR_
LASTBRANCH_2_
TO_LIP

Unique Last Branch Record 2 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

63H 99 MSR_
LASTBRANCH_3_
TO_LIP

Unique Last Branch Record 3 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

64H 100 MSR_
LASTBRANCH_4_
TO_LIP

Unique Last Branch Record 4 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

65H 101 MSR_
LASTBRANCH_5_
TO_LIP

Unique Last Branch Record 5 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

66H 102 MSR_
LASTBRANCH_6_
TO_LIP

Unique Last Branch Record 6 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

67H 103 MSR_
LASTBRANCH_7_
TO_LIP

Unique Last Branch Record 7 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

79H 121 IA32_BIOS_
UPDT_TRIG

Unique BIOS Update Trigger Register. (W)

See Table 34-2.

8BH 139 IA32_BIOS_
SIGN_ID

Unique BIOS Update Signature ID. (RO)

See Table 34-2.

C1H 193 IA32_PMC0 Unique Performance counter register. See
Table 34-2.

Table 34-4. MSRs in Intel Atom Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3C 34-71

MODEL-SPECIFIC REGISTERS (MSRS)
C2H 194 IA32_PMC1 Unique Performance counter register. See
Table 34-2.

CDH 205 MSR_FSB_FREQ Shared Scaleable Bus Speed(RO).

This field indicates the intended scaleable bus
clock speed for processors based on Intel
Atom microarchitecture:

2:0 • 101B: 100 MHz (FSB 400)
• 001B: 133 MHz (FSB 533)
• 011B: 167 MHz (FSB 667)

133.33 MHz should be utilized if performing
calculation with System Bus Speed when
encoding is 001B.

166.67 MHz should be utilized if performing
calculation with System Bus Speed when
encoding is 011B.

63:3 Reserved.

E7H 231 IA32_MPERF Unique Maximum Performance Frequency Clock
Count. (RW) See Table 34-2.

E8H 232 IA32_APERF Unique Actual Performance Frequency Clock Count.
(RW) See Table 34-2.

FEH 254 IA32_MTRRCAP Shared Memory Type Range Register. (R) See
Table 34-2.

11EH 281 MSR_BBL_CR_
CTL3

Shared

0 L2 Hardware Enabled. (RO)

1 = If the L2 is hardware-enabled
0 = Indicates if the L2 is hardware-disabled

7:1 Reserved.

8 L2 Enabled. (R/W)

1 = L2 cache has been initialized
0 = Disabled (default)
Until this bit is set the processor will not
respond to the WBINVD instruction or the
assertion of the FLUSH# input.

22:9 Reserved.

Table 34-4. MSRs in Intel Atom Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
34-72 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
23 L2 Not Present. (RO)

0 = L2 Present
1 = L2 Not Present

63:24 Reserved.

174H 372 IA32_SYSENTER_C
S

Unique See Table 34-2.

175H 373 IA32_SYSENTER_E
SP

Unique See Table 34-2.

176H 374 IA32_SYSENTER_E
IP

Unique See Table 34-2.

17AH 378 IA32_MCG_
STATUS

Unique

0 RIPV.

When set, bit indicates that the instruction
addressed by the instruction pointer pushed
on the stack (when the machine check was
generated) can be used to restart the
program. If cleared, the program cannot be
reliably restarted

1 EIPV.

When set, bit indicates that the instruction
addressed by the instruction pointer pushed
on the stack (when the machine check was
generated) is directly associated with the
error.

2 MCIP.

When set, bit indicates that a machine check
has been generated. If a second machine
check is detected while this bit is still set, the
processor enters a shutdown state. Software
should write this bit to 0 after processing a
machine check exception.

63:3 Reserved.

186H 390 IA32_
PERFEVTSEL0

Unique See Table 34-2.

Table 34-4. MSRs in Intel Atom Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3C 34-73

MODEL-SPECIFIC REGISTERS (MSRS)
187H 391 IA32_
PERFEVTSEL1

Unique See Table 34-2.

198H 408 IA32_PERF_STAT
US

Shared See Table 34-2.

198H 408 MSR_PERF_STATU
S

Shared

15:0 Current Performance State Value.

39:16 Reserved.

44:40 Maximum Bus Ratio (R/O)

Indicates maximum bus ratio configured for
the processor.

63:45 Reserved.

199H 409 IA32_PERF_CTL Unique See Table 34-2.

19AH 410 IA32_CLOCK_
MODULATION

Unique Clock Modulation. (R/W)

See Table 34-2.

IA32_CLOCK_MODULATION MSR was
originally named IA32_THERM_CONTROL
MSR.

19BH 411 IA32_THERM_
INTERRUPT

Unique Thermal Interrupt Control. (R/W)

See Table 34-2.

19CH 412 IA32_THERM_
STATUS

Unique Thermal Monitor Status. (R/W)

See Table 34-2.

19DH 413 MSR_THERM2_
CTL

Shared

15:0 Reserved.

Table 34-4. MSRs in Intel Atom Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
34-74 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
16 TM_SELECT. (R/W)

Mode of automatic thermal monitor:

0 = Thermal Monitor 1 (thermally-initiated
on-die modulation of the stop-clock duty
cycle)

1 = Thermal Monitor 2 (thermally-initiated
frequency transitions)

If bit 3 of the IA32_MISC_ENABLE register is
cleared, TM_SELECT has no effect. Neither
TM1 nor TM2 are enabled.

63:17 Reserved.

1A0 416 IA32_MISC_
ENABLE

Unique Enable Misc. Processor Features. (R/W)

Allows a variety of processor functions to be
enabled and disabled.

0 Fast-Strings Enable. See Table 34-2.

2:1 Reserved.

3 Unique Automatic Thermal Control Circuit Enable.
(R/W) See Table 34-2.

6:4 Reserved.

7 Shared Performance Monitoring Available. (R) See
Table 34-2.

8 Reserved.

9 Reserved.

10 Shared FERR# Multiplexing Enable. (R/W)

1 = FERR# asserted by the processor to
indicate a pending break event within
the processor

0 = Indicates compatible FERR# signaling
behavior

This bit must be set to 1 to support XAPIC
interrupt model usage.

11 Shared Branch Trace Storage Unavailable. (RO) See
Table 34-2.

12 Shared Precise Event Based Sampling Unavailable.
(RO) See Table 34-2.

Table 34-4. MSRs in Intel Atom Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3C 34-75

MODEL-SPECIFIC REGISTERS (MSRS)
13 Shared TM2 Enable. (R/W)

When this bit is set (1) and the thermal sensor
indicates that the die temperature is at the
pre-determined threshold, the Thermal
Monitor 2 mechanism is engaged. TM2 will
reduce the bus to core ratio and voltage
according to the value last written to
MSR_THERM2_CTL bits 15:0.

When this bit is clear (0, default), the
processor does not change the VID signals or
the bus to core ratio when the processor
enters a thermally managed state.

The BIOS must enable this feature if the TM2
feature flag (CPUID.1:ECX[8]) is set; if the TM2
feature flag is not set, this feature is not
supported and BIOS must not alter the
contents of the TM2 bit location.

The processor is operating out of specification
if both this bit and the TM1 bit are set to 0.

15:14 Reserved.

16 Shared Enhanced Intel SpeedStep Technology
Enable. (R/W) See Table 34-2.

18 Shared ENABLE MONITOR FSM. (R/W) See Table 34-2.

19 Reserved.

20 Shared Enhanced Intel SpeedStep Technology
Select Lock. (R/WO)

When set, this bit causes the following bits to
become read-only:

• Enhanced Intel SpeedStep Technology
Select Lock (this bit),

• Enhanced Intel SpeedStep Technology
Enable bit.

The bit must be set before an Enhanced Intel
SpeedStep Technology transition is requested.
This bit is cleared on reset.

21 Reserved.

Table 34-4. MSRs in Intel Atom Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
34-76 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
22 Unique Limit CPUID Maxval. (R/W) See Table 34-2.

23 Shared xTPR Message Disable. (R/W) See
Table 34-2.

33:24 Reserved.

34 Unique XD Bit Disable. (R/W) See Table 34-2.

63:35 Reserved.

1C9H 457 MSR_
LASTBRANCH_
TOS

Unique Last Branch Record Stack TOS. (R)

Contains an index (bits 0-2) that points to the
MSR containing the most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 40H).

1D9H 473 IA32_DEBUGCTL Unique Debug Control. (R/W) See Table 34-2.

1DDH 477 MSR_LER_FROM_
LIP

Unique Last Exception Record From Linear IP. (R)

Contains a pointer to the last branch
instruction that the processor executed prior
to the last exception that was generated or
the last interrupt that was handled.

1DEH 478 MSR_LER_TO_
LIP

Unique Last Exception Record To Linear IP. (R)

This area contains a pointer to the target of
the last branch instruction that the processor
executed prior to the last exception that was
generated or the last interrupt that was
handled.

200H 512 IA32_MTRR_PHYS
BASE0

Shared See Table 34-2.

201H 513 IA32_MTRR_PHYS
MASK0

Shared See Table 34-2.

202H 514 IA32_MTRR_PHYS
BASE1

Shared See Table 34-2.

203H 515 IA32_MTRR_PHYS
MASK1

Shared See Table 34-2.

204H 516 IA32_MTRR_PHYS
BASE2

Shared See Table 34-2.

205H 517 IA32_MTRR_PHYS
MASK2

Shared See Table 34-2.

Table 34-4. MSRs in Intel Atom Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3C 34-77

MODEL-SPECIFIC REGISTERS (MSRS)
206H 518 IA32_MTRR_PHYS
BASE3

Shared See Table 34-2.

207H 519 IA32_MTRR_PHYS
MASK3

Shared See Table 34-2.

208H 520 IA32_MTRR_PHYS
BASE4

Shared See Table 34-2.

209H 521 IA32_MTRR_PHYS
MASK4

Shared See Table 34-2.

20AH 522 IA32_MTRR_PHYS
BASE5

Shared See Table 34-2.

20BH 523 IA32_MTRR_PHYS
MASK5

Shared See Table 34-2.

20CH 524 IA32_MTRR_PHYS
BASE6

Shared See Table 34-2.

20DH 525 IA32_MTRR_PHYS
MASK6

Shared See Table 34-2.

20EH 526 IA32_MTRR_PHYS
BASE7

Shared See Table 34-2.

20FH 527 IA32_MTRR_PHYS
MASK7

Shared See Table 34-2.

250H 592 IA32_MTRR_FIX6
4K_00000

Shared See Table 34-2.

258H 600 IA32_MTRR_FIX1
6K_80000

Shared See Table 34-2.

259H 601 IA32_MTRR_FIX1
6K_A0000

Shared See Table 34-2.

268H 616 IA32_MTRR_FIX4
K_C0000

Shared See Table 34-2.

269H 617 IA32_MTRR_FIX4
K_C8000

Shared See Table 34-2.

26AH 618 IA32_MTRR_FIX4
K_D0000

Shared See Table 34-2.

26BH 619 IA32_MTRR_FIX4
K_D8000

Shared See Table 34-2.

Table 34-4. MSRs in Intel Atom Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
34-78 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
26CH 620 IA32_MTRR_FIX4
K_E0000

Shared See Table 34-2.

26DH 621 IA32_MTRR_FIX4
K_E8000

Shared See Table 34-2.

26EH 622 IA32_MTRR_FIX4
K_F0000

Shared See Table 34-2.

26FH 623 IA32_MTRR_FIX4
K_F8000

Shared See Table 34-2.

277H 631 IA32_PAT Unique See Table 34-2.

309H 777 IA32_FIXED_CTR0 Unique Fixed-Function Performance Counter
Register 0. (R/W) See Table 34-2.

30AH 778 IA32_FIXED_CTR1 Unique Fixed-Function Performance Counter
Register 1. (R/W) See Table 34-2.

30BH 779 IA32_FIXED_CTR2 Unique Fixed-Function Performance Counter
Register 2. (R/W) See Table 34-2.

345H 837 IA32_PERF_CAPA
BILITIES

Shared See Table 34-2. See Section 17.4.1,
“IA32_DEBUGCTL MSR.”

38DH 909 IA32_FIXED_CTR_
CTRL

Unique Fixed-Function-Counter Control Register.
(R/W) See Table 34-2.

38EH 910 IA32_PERF_
GLOBAL_STAUS

Unique See Table 34-2. See Section 18.4.2, “Global
Counter Control Facilities.”

38FH 911 IA32_PERF_
GLOBAL_CTRL

Unique See Table 34-2. See Section 18.4.2, “Global
Counter Control Facilities.”

390H 912 IA32_PERF_
GLOBAL_OVF_
CTRL

Unique See Table 34-2. See Section 18.4.2, “Global
Counter Control Facilities.”

3F1H 1009 MSR_PEBS_
ENABLE

Unique See Table 34-2. See Section 18.4.4, “Precise
Event Based Sampling (PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

400H 1024 IA32_MC0_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_
STATUS

Shared See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.”

Table 34-4. MSRs in Intel Atom Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3C 34-79

MODEL-SPECIFIC REGISTERS (MSRS)
402H 1026 IA32_MC0_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the IA32_MC0_STATUS register
is clear.

When not implemented in the processor, all
reads and writes to this MSR will cause a
general-protection exception.

404H 1028 IA32_MC1_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_
STATUS

Shared See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.”

408H 1032 IA32_MC2_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_
STATUS

Shared See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.”

40AH 1034 IA32_MC2_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the IA32_MC2_STATUS register
is clear.

When not implemented in the processor, all
reads and writes to this MSR will cause a
general-protection exception.

40CH 1036 MSR_MC3_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 MSR_MC3_
STATUS

Shared See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.”

4OEH 1038 MSR_MC3_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the MSR_MC3_STATUS register
is clear.

When not implemented in the processor, all
reads and writes to this MSR will cause a
general-protection exception.

410H 1040 MSR_MC4_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 MSR_MC4_
STATUS

Shared See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.”

Table 34-4. MSRs in Intel Atom Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
34-80 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
412H 1042 MSR_MC4_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the MSR_MC4_STATUS register
is clear.

When not implemented in the processor, all
reads and writes to this MSR will cause a
general-protection exception.

480H 1152 IA32_VMX_BASIC Unique Reporting Register of Basic VMX
Capabilities. (R/O) See Table 34-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBA
SED_CTLS

Unique Capability Reporting Register of Pin-based
VM-execution Controls. (R/O) See
Table 34-2.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCB
ASED_CTLS

Unique Capability Reporting Register of Primary
Processor-based VM-execution Controls.
(R/O)

See Appendix A.3, “VM-Execution Controls.”

483H 1155 IA32_VMX_EXIT_
CTLS

Unique Capability Reporting Register of VM-exit
Controls. (R/O) See Table 34-2.

See Appendix A.4, “VM-Exit Controls.”

484H 1156 IA32_VMX_
ENTRY_CTLS

Unique Capability Reporting Register of VM-entry
Controls. (R/O) See Table 34-2.

See Appendix A.5, “VM-Entry Controls.”

485H 1157 IA32_VMX_MISC Unique Reporting Register of Miscellaneous VMX
Capabilities. (R/O) See Table 34-2.

See Appendix A.6, “Miscellaneous Data.”

486H 1158 IA32_VMX_CR0_
FIXED0

Unique Capability Reporting Register of CR0 Bits
Fixed to 0. (R/O) See Table 34-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

487H 1159 IA32_VMX_CR0_
FIXED1

Unique Capability Reporting Register of CR0 Bits
Fixed to 1. (R/O) See Table 34-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

Table 34-4. MSRs in Intel Atom Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3C 34-81

MODEL-SPECIFIC REGISTERS (MSRS)
488H 1160 IA32_VMX_CR4_FI
XED0

Unique Capability Reporting Register of CR4 Bits
Fixed to 0. (R/O) See Table 34-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

489H 1161 IA32_VMX_CR4_FI
XED1

Unique Capability Reporting Register of CR4 Bits
Fixed to 1. (R/O) See Table 34-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

48AH 1162 IA32_VMX_
VMCS_ENUM

Unique Capability Reporting Register of VMCS Field
Enumeration. (R/O). See Table 34-2.

See Appendix A.9, “VMCS Enumeration.”

48BH 1163 IA32_VMX_PROCB
ASED_CTLS2

Unique Capability Reporting Register of Secondary
Processor-based VM-execution Controls.
(R/O)

See Appendix A.3, “VM-Execution Controls.”

600H 1536 IA32_DS_AREA Unique DS Save Area. (R/W). See Table 34-2.

See Section 18.10.4, “Debug Store (DS)
Mechanism.”

C000_
0080H

IA32_EFER Unique Extended Feature Enables. See Table 34-2.

C000_
0081H

IA32_STAR Unique System Call Target Address. (R/W). See
Table 34-2.

C000_
0082H

IA32_LSTAR Unique IA-32e Mode System Call Target Address.
(R/W). See Table 34-2.

C000_
0084H

IA32_FMASK Unique System Call Flag Mask. (R/W). See
Table 34-2.

C000_
0100H

IA32_FS_BASE Unique Map of BASE Address of FS. (R/W). See
Table 34-2.

C000_
0101H

IA32_GS_BASE Unique Map of BASE Address of GS. (R/W). See
Table 34-2.

C000_
0102H

IA32_KERNEL_GS
BASE

Unique Swap Target of BASE Address of GS. (R/W).
See Table 34-2.

Table 34-4. MSRs in Intel Atom Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
34-82 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
34.4 MSRS IN THE INTEL® MICROARCHITECTURE CODE
NAME NEHALEM

Table 34-5 lists model-specific registers (MSRs) that are common for Intel® microar-
chitecture code name Nehalem. These include Intel Core i7 and i5 processor family.
Architectural MSR addresses are also included in Table 34-5. These processors have
a CPUID signature with DisplayFamily_DisplayModel of 06_1AH, 06_1EH, 06_1FH,
06_2EH, see Table 34-1. Additional MSRs specific to 06_1AH, 06_1EH, 06_1FH are
listed in Table 34-6. Some MSRs listed in these tables are used by BIOS. More infor-
mation about these MSR can be found at http://biosbits.org.

The column “Scope” represents the package/core/thread scope of individual bit field
of an MSR. “Thread” means this bit field must be programmed on each logical
processor independently. “Core” means the bit field must be programmed on each
processor core independently, logical processors in the same core will be affected by
change of this bit on the other logical processor in the same core. “Package“ means
the bit field must be programmed once for each physical package. Change of a bit
filed with a package scope will affect all logical processors in that physical package.

Table 34-5. MSRs in Processors Based on Intel Microarchitecture Code Name
Nehalem

Register
Address Register Name

Scope
Bit Description

 Hex Dec

0H 0 IA32_P5_MC_
ADDR

Thread See Section 34.13, “MSRs in Pentium
Processors.”

1H 1 IA32_P5_MC_
TYPE

Thread See Section 34.13, “MSRs in Pentium
Processors.”

6H 6 IA32_MONITOR_
FILTER_SIZE

Thread See Section 8.10.5, “Monitor/Mwait Address
Range Determination,” and Table 34-2.

10H 16 IA32_TIME_
STAMP_COUNTER

Thread See Section 17.12, “Time-Stamp Counter,” and
see Table 34-2.

17H 23 IA32_PLATFORM_I
D

Package Platform ID. (R)
See Table 34-2.

17H 23 MSR_PLATFORM_I
D

Package Model Specific Platform ID. (R)

49:0 Reserved.

52:50 See Table 34-2.

63:53 Reserved.
Vol. 3C 34-83

MODEL-SPECIFIC REGISTERS (MSRS)
1BH 27 IA32_APIC_BASE Thread See Section 10.4.4, “Local APIC Status and
Location,” and Table 34-2.

34H 52 MSR_SMI_
COUNT

Thread SMI Counter. (R/O).

31:0 SMI Count. (R/O)

Count SMIs

63:32 Reserved.

3AH 58 IA32_FEATURE_
CONTROL

Thread Control Features in Intel 64Processor.
(R/W).

See Table 34-2.

79H 121 IA32_BIOS_
UPDT_TRIG

Core BIOS Update Trigger Register. (W)

See Table 34-2.

8BH 139 IA32_BIOS_
SIGN_ID

Thread BIOS Update Signature ID. (RO)

See Table 34-2.

C1H 193 IA32_PMC0 Thread Performance counter register. See
Table 34-2.

C2H 194 IA32_PMC1 Thread Performance counter register. See
Table 34-2.

C3H 195 IA32_PMC2 Thread Performance counter register. See
Table 34-2.

C4H 196 IA32_PMC3 Thread Performance counter register. See
Table 34-2.

CEH 206 MSR_PLATFORM_I
NFO

Package see http://biosbits.org.

7:0 Reserved.

15:8 Package Maximum Non-Turbo Ratio. (R/O)

The is the ratio of the frequency that invariant
TSC runs at. The invariant TSC frequency can
be computed by multiplying this ratio by
133.33 MHz.

27:16 Reserved.

Table 34-5. MSRs in Processors Based on Intel Microarchitecture Code Name
Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-84 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
28 Package Programmable Ratio Limit for Turbo Mode.
(R/O)

When set to 1, indicates that Programmable
Ratio Limits for Turbo mode is enabled, and
when set to 0, indicates Programmable Ratio
Limits for Turbo mode is disabled.

29 Package Programmable TDC-TDP Limit for Turbo
Mode. (R/O)

When set to 1, indicates that TDC/TDP Limits
for Turbo mode are programmable, and when
set to 0, indicates TDC and TDP Limits for
Turbo mode are not programmable.

39:30 Reserved.

47:40 Package Maximum Efficiency Ratio. (R/O)

The is the minimum ratio (maximum
efficiency) that the processor can operates, in
units of 133.33MHz.

63:48 Reserved.

E2H 226 MSR_PKG_CST_CO
NFIG_CONTROL

Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-
state code names, unrelated to MWAIT
extension C-state parameters or ACPI C-
States. See http://biosbits.org.

Table 34-5. MSRs in Processors Based on Intel Microarchitecture Code Name
Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-85

MODEL-SPECIFIC REGISTERS (MSRS)
2:0 Package C-State limit. (R/W)

Specifies the lowest processor-specific C-
state code name (consuming the least power).
for the package. The default is set as factory-
configured package C-state limit.

The following C-state code name encodings
are supported:

000b: C0 (no package C-sate support)

001b: C1 (Behavior is the same as 000b)

010b: C3

011b: C6

100b: C7

101b and 110b: Reserved

111: No package C-state limit.

Note: This field cannot be used to limit
package C-state to C3.

9:3 Reserved.

10 I/O MWAIT Redirection Enable. (R/W)

When set, will map IO_read instructions sent
to IO register specified by
MSR_PMG_IO_CAPTURE_BASE to MWAIT
instructions.

14:11 Reserved.

15 CFG Lock. (R/WO)

When set, lock bits 15:0 of this register until
next reset.

23:16 Reserved.

24 Interrupt filtering enable. (R/W)

When set, processor cores in a deep C-State
will wake only when the event message is
destined for that core. When 0, all processor
cores in a deep C-State will wake for an event
message.

Table 34-5. MSRs in Processors Based on Intel Microarchitecture Code Name
Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-86 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
25 C3 state auto demotion enable. (R/W)

When set, the processor will conditionally
demote C6/C7 requests to C3 based on uncore
auto-demote information.

26 C1 state auto demotion enable. (R/W)

When set, the processor will conditionally
demote C3/C6/C7 requests to C1 based on
uncore auto-demote information.

63:27 Reserved.

E4H 228 MSR_PMG_IO_CAP
TURE_BASE

Core Power Management IO Redirection in C-state
(R/W) See http://biosbits.org.

15:0 LVL_2 Base Address. (R/W)

Specifies the base address visible to software
for IO redirection. If IO MWAIT Redirection is
enabled, reads to this address will be
consumed by the power management logic
and decoded to MWAIT instructions. When IO
port address redirection is enabled, this is the
IO port address reported to the OS/software.

18:16 C-state Range. (R/W)

Specifies the encoding value of the maximum
C-State code name to be included when IO
read to MWAIT redirection is enabled by
MSR_PMG_CST_CONFIG_CONTROL[bit10]:

000b - C3 is the max C-State to include

001b - C6 is the max C-State to include

010b - C7 is the max C-State to include

63:19 Reserved.

E7H 231 IA32_MPERF Thread Maximum Performance Frequency Clock
Count. (RW) See Table 34-2.

E8H 232 IA32_APERF Thread Actual Performance Frequency Clock Count.
(RW) See Table 34-2.

FEH 254 IA32_MTRRCAP Thread See Table 34-2.

Table 34-5. MSRs in Processors Based on Intel Microarchitecture Code Name
Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-87

MODEL-SPECIFIC REGISTERS (MSRS)
174H 372 IA32_SYSENTER_C
S

Thread See Table 34-2.

175H 373 IA32_SYSENTER_E
SP

Thread See Table 34-2.

176H 374 IA32_SYSENTER_E
IP

Thread See Table 34-2.

179H 377 IA32_MCG_CAP Thread See Table 34-2.

17AH 378 IA32_MCG_
STATUS

Thread

0 RIPV.

When set, bit indicates that the instruction
addressed by the instruction pointer pushed
on the stack (when the machine check was
generated) can be used to restart the
program. If cleared, the program cannot be
reliably restarted.

1 EIPV.

When set, bit indicates that the instruction
addressed by the instruction pointer pushed
on the stack (when the machine check was
generated) is directly associated with the
error.

2 MCIP.

When set, bit indicates that a machine check
has been generated. If a second machine
check is detected while this bit is still set, the
processor enters a shutdown state. Software
should write this bit to 0 after processing a
machine check exception.

63:3 Reserved.

186H 390 IA32_
PERFEVTSEL0

Thread See Table 34-2.

187H 391 IA32_
PERFEVTSEL1

Thread See Table 34-2.

Table 34-5. MSRs in Processors Based on Intel Microarchitecture Code Name
Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-88 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
188H 392 IA32_
PERFEVTSEL2

Thread See Table 34-2.

189H 393 IA32_
PERFEVTSEL3

Thread See Table 34-2.

198H 408 IA32_PERF_STAT
US

Core See Table 34-2.

15:0 Current Performance State Value.

63:16 Reserved.

199H 409 IA32_PERF_CTL Thread See Table 34-2.

19AH 410 IA32_CLOCK_
MODULATION

Thread Clock Modulation. (R/W)

See Table 34-2.

IA32_CLOCK_MODULATION MSR was
originally named IA32_THERM_CONTROL
MSR.

0 Reserved.

3:1 On demand Clock Modulation Duty Cycle (R/W).

4 On demand Clock Modulation Enable (R/W).

63:5 Reserved.

19BH 411 IA32_THERM_
INTERRUPT

Core Thermal Interrupt Control. (R/W)

See Table 34-2.

19CH 412 IA32_THERM_
STATUS

Core Thermal Monitor Status. (R/W)

See Table 34-2.

1A0 416 IA32_MISC_
ENABLE

Enable Misc. Processor Features. (R/W)

Allows a variety of processor functions to be
enabled and disabled.

0 Thread Fast-Strings Enable. See Table 34-2.

2:1 Reserved.

3 Thread Automatic Thermal Control Circuit Enable.
(R/W) See Table 34-2.

6:4 Reserved.

Table 34-5. MSRs in Processors Based on Intel Microarchitecture Code Name
Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-89

MODEL-SPECIFIC REGISTERS (MSRS)
7 Thread Performance Monitoring Available. (R) See
Table 34-2.

10:8 Reserved.

11 Thread Branch Trace Storage Unavailable. (RO) See
Table 34-2.

12 Thread Precise Event Based Sampling Unavailable.
(RO) See Table 34-2.

15:13 Reserved.

16 Package Enhanced Intel SpeedStep Technology
Enable. (R/W) See Table 34-2.

18 Thread ENABLE MONITOR FSM. (R/W) See Table 34-2.

21:19 Reserved.

22 Thread Limit CPUID Maxval. (R/W) See Table 34-2.

23 Thread xTPR Message Disable. (R/W) See
Table 34-2.

33:24 Reserved.

34 Thread XD Bit Disable. (R/W) See Table 34-2.

37:35 Reserved.

38 Package Turbo Mode Disable. (R/W)

When set to 1 on processors that support Intel
Turbo Boost Technology, the turbo mode
feature is disabled and the IDA_Enable feature
flag will be clear (CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support
IDA, CPUID.06H: EAX[1] reports the
processor’s support of turbo mode is enabled.

Note: the power-on default value is used by
BIOS to detect hardware support of turbo
mode. If power-on default value is 1, turbo
mode is available in the processor. If power-on
default value is 0, turbo mode is not available.

63:39 Reserved.

Table 34-5. MSRs in Processors Based on Intel Microarchitecture Code Name
Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-90 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
1A2H 418 MSR_
TEMPERATURE_TA
RGET

Thread

15:0 Reserved.

23:16 Temperature Target. (R)

The minimum temperature at which
PROCHOT# will be asserted. The value is
degree C.

63:24 Reserved.

1A6H 422 MSR_OFFCORE_RS
P_0

Thread Offcore Response Event Select Register (R/W)

1AAH 426 MSR_MISC_PWR_
MGMT

See http://biosbits.org.

0 Package EIST Hardware Coordination Disable (R/W).

When 0, enables hardware coordination of
EIST request from processor cores; When 1,
disables hardware coordination of EIST
requests.

1 Thread Energy/Performance Bias Enable. (R/W)

This bit makes the IA32_ENERGY_PERF_BIAS
register (MSR 1B0h) visible to software with
Ring 0 privileges. This bit’s status (1 or 0) is
also reflected by CPUID.(EAX=06h):ECX[3].

63:2 Reserved.

1ADH 428 MSR_TURBO_POW
ER_CURRENT_LIMI
T

See http://biosbits.org.

14:0 Package TDP Limit (R/W)

TDP limit in 1/8 Watt granularity.

15 Package TDP Limit Override Enable (R/W)

A value = 0 indicates override is not active,
and a value = 1 indicates active.

Table 34-5. MSRs in Processors Based on Intel Microarchitecture Code Name
Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-91

MODEL-SPECIFIC REGISTERS (MSRS)
30:16 Package TDC Limit (R/W)

TDC limit in 1/8 Amp granularity.

31 Package TDC Limit Override Enable (R/W)

A value = 0 indicates override is not active,
and a value = 1 indicates active.

63:32 Reserved.

1ADH 429 MSR_TURBO_RATI
O_LIMIT

Package Maximum Ratio Limit of Turbo Mode.

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C.

Maximum turbo ratio limit of 1 core active.

15:8 Package Maximum Ratio Limit for 2C.

Maximum turbo ratio limit of 2 core active.

23:16 Package Maximum Ratio Limit for 3C.

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C.

Maximum turbo ratio limit of 4 core active.

63:32 Reserved.

1C8H 456 MSR_LBR_SELECT Core Last Branch Record Filtering Select Register
(R/W) see Section 17.6.2, “Filtering of Last
Branch Records.”

1C9H 457 MSR_
LASTBRANCH_
TOS

Thread Last Branch Record Stack TOS. (R)

Contains an index (bits 0-3) that points to the
MSR containing the most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at
680H).

1D9H 473 IA32_DEBUGCTL Thread Debug Control. (R/W) See Table 34-2.

Table 34-5. MSRs in Processors Based on Intel Microarchitecture Code Name
Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-92 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
1DDH 477 MSR_LER_FROM_
LIP

Thread Last Exception Record From Linear IP. (R)

Contains a pointer to the last branch
instruction that the processor executed prior
to the last exception that was generated or
the last interrupt that was handled.

1DEH 478 MSR_LER_TO_
LIP

Thread Last Exception Record To Linear IP. (R)

This area contains a pointer to the target of
the last branch instruction that the processor
executed prior to the last exception that was
generated or the last interrupt that was
handled.

1F2H 498 IA32_SMRR_PHYS
BASE

Core See Table 34-2.

1F3H 499 IA32_SMRR_PHYS
MASK

Core See Table 34-2.

1FCH 508 MSR_POWER_CTL Core Power Control Register. See
http://biosbits.org.

0 Reserved.

1 Package C1E Enable. (R/W)

When set to ‘1’, will enable the CPU to switch
to the Minimum Enhanced Intel SpeedStep
Technology operating point when all
execution cores enter MWAIT (C1).

63:2 Reserved.

200H 512 IA32_MTRR_PHYS
BASE0

Thread See Table 34-2.

201H 513 IA32_MTRR_PHYS
MASK0

Thread See Table 34-2.

202H 514 IA32_MTRR_PHYS
BASE1

Thread See Table 34-2.

203H 515 IA32_MTRR_PHYS
MASK1

Thread See Table 34-2.

Table 34-5. MSRs in Processors Based on Intel Microarchitecture Code Name
Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-93

MODEL-SPECIFIC REGISTERS (MSRS)
204H 516 IA32_MTRR_PHYS
BASE2

Thread See Table 34-2.

205H 517 IA32_MTRR_PHYS
MASK2

Thread See Table 34-2.

206H 518 IA32_MTRR_PHYS
BASE3

Thread See Table 34-2.

207H 519 IA32_MTRR_PHYS
MASK3

Thread See Table 34-2.

208H 520 IA32_MTRR_PHYS
BASE4

Thread See Table 34-2.

209H 521 IA32_MTRR_PHYS
MASK4

Thread See Table 34-2.

20AH 522 IA32_MTRR_PHYS
BASE5

Thread See Table 34-2.

20BH 523 IA32_MTRR_PHYS
MASK5

Thread See Table 34-2.

20CH 524 IA32_MTRR_PHYS
BASE6

Thread See Table 34-2.

20DH 525 IA32_MTRR_PHYS
MASK6

Thread See Table 34-2.

20EH 526 IA32_MTRR_PHYS
BASE7

Thread See Table 34-2.

20FH 527 IA32_MTRR_PHYS
MASK7

Thread See Table 34-2.

210H 528 IA32_MTRR_PHYS
BASE8

Thread See Table 34-2.

211H 529 IA32_MTRR_PHYS
MASK8

Thread See Table 34-2.

212H 530 IA32_MTRR_PHYS
BASE9

Thread See Table 34-2.

213H 531 IA32_MTRR_PHYS
MASK9

Thread See Table 34-2.

Table 34-5. MSRs in Processors Based on Intel Microarchitecture Code Name
Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-94 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
250H 592 IA32_MTRR_FIX6
4K_00000

Thread See Table 34-2.

258H 600 IA32_MTRR_FIX1
6K_80000

Thread See Table 34-2.

259H 601 IA32_MTRR_FIX1
6K_A0000

Thread See Table 34-2.

268H 616 IA32_MTRR_FIX4
K_C0000

Thread See Table 34-2.

269H 617 IA32_MTRR_FIX4
K_C8000

Thread See Table 34-2.

26AH 618 IA32_MTRR_FIX4
K_D0000

Thread See Table 34-2.

26BH 619 IA32_MTRR_FIX4
K_D8000

Thread See Table 34-2.

26CH 620 IA32_MTRR_FIX4
K_E0000

Thread See Table 34-2.

26DH 621 IA32_MTRR_FIX4
K_E8000

Thread See Table 34-2.

26EH 622 IA32_MTRR_FIX4
K_F0000

Thread See Table 34-2.

26FH 623 IA32_MTRR_FIX4
K_F8000

Thread See Table 34-2.

277H 631 IA32_PAT Thread See Table 34-2.

280H 640 IA32_MC0_CTL2 Package See Table 34-2.

281H 641 IA32_MC1_CTL2 Package See Table 34-2.

282H 642 IA32_MC2_CTL2 Core See Table 34-2.

283H 643 IA32_MC3_CTL2 Core See Table 34-2.

284H 644 IA32_MC4_CTL2 Core See Table 34-2.

285H 645 IA32_MC5_CTL2 Core See Table 34-2.

286H 646 IA32_MC6_CTL2 Package See Table 34-2.

287H 647 IA32_MC7_CTL2 Package See Table 34-2.

Table 34-5. MSRs in Processors Based on Intel Microarchitecture Code Name
Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-95

MODEL-SPECIFIC REGISTERS (MSRS)
288H 648 IA32_MC8_CTL2 Package See Table 34-2.

2FFH 767 IA32_MTRR_DEF_
TYPE

Thread Default Memory Types. (R/W) See
Table 34-2.

309H 777 IA32_FIXED_CTR0 Thread Fixed-Function Performance Counter
Register 0. (R/W) See Table 34-2.

30AH 778 IA32_FIXED_CTR1 Thread Fixed-Function Performance Counter
Register 1. (R/W) See Table 34-2.

30BH 779 IA32_FIXED_CTR2 Thread Fixed-Function Performance Counter
Register 2. (R/W) See Table 34-2.

345H 837 IA32_PERF_CAPA
BILITIES

Thread See Table 34-2. See Section 17.4.1,
“IA32_DEBUGCTL MSR.”

5:0 LBR Format. See Table 34-2.

6 PEBS Record Format.

7 PEBSSaveArchRegs. See Table 34-2.

11:8 PEBS_REC_FORMAT. See Table 34-2.

12 SMM_FREEZE. See Table 34-2.

63:13 Reserved.

38DH 909 IA32_FIXED_CTR_
CTRL

Thread Fixed-Function-Counter Control Register.
(R/W) See Table 34-2.

38EH 910 IA32_PERF_
GLOBAL_STAUS

Thread See Table 34-2. See Section 18.4.2, “Global
Counter Control Facilities.”

38EH 910 MSR_PERF_
GLOBAL_STAUS

Thread (RO)

61 UNC_Ovf. Uncore overflowed if 1.

38FH 911 IA32_PERF_
GLOBAL_CTRL

Thread See Table 34-2. See Section 18.4.2, “Global
Counter Control Facilities.”

390H 912 IA32_PERF_
GLOBAL_OVF_
CTRL

Thread See Table 34-2. See Section 18.4.2, “Global
Counter Control Facilities.”

Table 34-5. MSRs in Processors Based on Intel Microarchitecture Code Name
Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-96 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
390H 912 MSR_PERF_
GLOBAL_OVF_
CTRL

Thread (R/W)

61 CLR_UNC_Ovf. Set 1 to clear UNC_Ovf.

3F1H 1009 MSR_PEBS_
ENABLE

Thread See Section 18.6.1.1, “Precise Event Based
Sampling (PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

1 Enable PEBS on IA32_PMC1. (R/W)

2 Enable PEBS on IA32_PMC2. (R/W)

3 Enable PEBS on IA32_PMC3. (R/W)

31:4 Reserved.

32 Enable Load Latency on IA32_PMC0. (R/W)

33 Enable Load Latency on IA32_PMC1. (R/W)

34 Enable Load Latency on IA32_PMC2. (R/W)

35 Enable Load Latency on IA32_PMC3. (R/W)

63:36 Reserved.

3F6H 1014 MSR_PEBS_
LD_LAT

Thread See Section 18.6.1.2, “Load Latency
Performance Monitoring Facility.”

15:0 Minimum threshold latency value of tagged
load operation that will be counted. (R/W)

63:36 Reserved.

3F8H 1016 MSR_PKG_C3_RES
IDENCY

Package Note: C-state values are processor specific C-
state code names, unrelated to MWAIT
extension C-state parameters or ACPI C-
States.

63:0 Package C3 Residency Counter. (R/O)

Value since last reset that this package is in
processor-specific C3 states. Count at the
same frequency as the TSC.

Table 34-5. MSRs in Processors Based on Intel Microarchitecture Code Name
Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-97

MODEL-SPECIFIC REGISTERS (MSRS)
3F9H 1017 MSR_PKG_C6_RES
IDENCY

Package Note: C-state values are processor specific C-
state code names, unrelated to MWAIT
extension C-state parameters or ACPI C-
States.

63:0 Package C6 Residency Counter. (R/O)

Value since last reset that this package is in
processor-specific C6 states. Count at the
same frequency as the TSC.

3FAH 1018 MSR_PKG_C7_RES
IDENCY

Package Note: C-state values are processor specific C-
state code names, unrelated to MWAIT
extension C-state parameters or ACPI C-
States.

63:0 Package C7 Residency Counter. (R/O)

Value since last reset that this package is in
processor-specific C7 states. Count at the
same frequency as the TSC.

3FCH 1020 MSR_CORE_C3_RE
SIDENCY

Core Note: C-state values are processor specific C-
state code names, unrelated to MWAIT
extension C-state parameters or ACPI C-
States.

63:0 CORE C3 Residency Counter. (R/O)

Value since last reset that this core is in
processor-specific C3 states. Count at the
same frequency as the TSC.

3FDH 1021 MSR_CORE_C6_RE
SIDENCY

Core Note: C-state values are processor specific C-
state code names, unrelated to MWAIT
extension C-state parameters or ACPI C-
States.

63:0 CORE C6 Residency Counter. (R/O)

Value since last reset that this core is in
processor-specific C6 states. Count at the
same frequency as the TSC.

400H 1024 IA32_MC0_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

Table 34-5. MSRs in Processors Based on Intel Microarchitecture Code Name
Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-98 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
401H 1025 IA32_MC0_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.”

402H 1026 IA32_MC0_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the IA32_MC0_STATUS register
is clear.

When not implemented in the processor, all
reads and writes to this MSR will cause a
general-protection exception.

403H 1027 MSR_MC0_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

404H 1028 IA32_MC1_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.”

406H 1030 IA32_MC1_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the IA32_MC1_STATUS register
is clear.

When not implemented in the processor, all
reads and writes to this MSR will cause a
general-protection exception.

407H 1031 MSR_MC1_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

408H 1032 IA32_MC2_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_
STATUS

Core See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.”

40AH 1034 IA32_MC2_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the IA32_MC2_STATUS register
is clear.

When not implemented in the processor, all
reads and writes to this MSR will cause a
general-protection exception.

Table 34-5. MSRs in Processors Based on Intel Microarchitecture Code Name
Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-99

MODEL-SPECIFIC REGISTERS (MSRS)
40BH 1035 MSR_MC2_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

40CH 1036 MSR_MC3_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 MSR_MC3_
STATUS

Core See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.”

40EH 1038 MSR_MC3_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the MSR_MC4_STATUS register
is clear.

When not implemented in the processor, all
reads and writes to this MSR will cause a
general-protection exception.

40FH 1039 MSR_MC3_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

410H 1040 MSR_MC4_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 MSR_MC4_
STATUS

Core See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.”

412H 1042 MSR_MC4_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the MSR_MC3_STATUS register
is clear.

When not implemented in the processor, all
reads and writes to this MSR will cause a
general-protection exception.

413H 1043 MSR_MC4_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

414H 1044 MSR_MC5_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

415H 1045 MSR_MC5_
STATUS

Core See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.”

416H 1046 MSR_MC5_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

417H 1047 MSR_MC5_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

418H 1048 MSR_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

Table 34-5. MSRs in Processors Based on Intel Microarchitecture Code Name
Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-100 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
419H 1049 MSR_MC6_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

41AH 1050 MSR_MC6_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41BH 1051 MSR_MC6_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

41CH 1052 MSR_MC7_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

41DH 1053 MSR_MC7_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

41EH 1054 MSR_MC7_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41FH 1055 MSR_MC7_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

420H 1056 MSR_MC8_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

421H 1057 MSR_MC8_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

422H 1058 MSR_MC8_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

423H 1059 MSR_MC8_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

480H 1152 IA32_VMX_BASIC Thread Reporting Register of Basic VMX
Capabilities. (R/O) See Table 34-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBA
SED_CTLS

Thread Capability Reporting Register of Pin-based
VM-execution Controls. (R/O) See
Table 34-2.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCB
ASED_CTLS

Thread Capability Reporting Register of Primary
Processor-based VM-execution Controls.
(R/O)

See Appendix A.3, “VM-Execution Controls.”

483H 1155 IA32_VMX_EXIT_
CTLS

Thread Capability Reporting Register of VM-exit
Controls. (R/O) See Table 34-2.

See Appendix A.4, “VM-Exit Controls.”

484H 1156 IA32_VMX_
ENTRY_CTLS

Thread Capability Reporting Register of VM-entry
Controls. (R/O) See Table 34-2.

See Appendix A.5, “VM-Entry Controls.”

Table 34-5. MSRs in Processors Based on Intel Microarchitecture Code Name
Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-101

MODEL-SPECIFIC REGISTERS (MSRS)
485H 1157 IA32_VMX_MISC Thread Reporting Register of Miscellaneous VMX
Capabilities. (R/O) See Table 34-2.

See Appendix A.6, “Miscellaneous Data.”

486H 1158 IA32_VMX_CR0_
FIXED0

Thread Capability Reporting Register of CR0 Bits
Fixed to 0. (R/O) See Table 34-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

487H 1159 IA32_VMX_CR0_
FIXED1

Thread Capability Reporting Register of CR0 Bits
Fixed to 1. (R/O) See Table 34-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

488H 1160 IA32_VMX_CR4_FI
XED0

Thread Capability Reporting Register of CR4 Bits
Fixed to 0. (R/O) See Table 34-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

489H 1161 IA32_VMX_CR4_FI
XED1

Thread Capability Reporting Register of CR4 Bits
Fixed to 1. (R/O) See Table 34-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

48AH 1162 IA32_VMX_
VMCS_ENUM

Thread Capability Reporting Register of VMCS Field
Enumeration. (R/O). See Table 34-2.

See Appendix A.9, “VMCS Enumeration.”

48BH 1163 IA32_VMX_PROCB
ASED_CTLS2

Thread Capability Reporting Register of Secondary
Processor-based VM-execution Controls.
(R/O)

See Appendix A.3, “VM-Execution Controls.”

600H 1536 IA32_DS_AREA Thread DS Save Area. (R/W). See Table 34-2.

See Section 18.10.4, “Debug Store (DS)
Mechanism.”

Table 34-5. MSRs in Processors Based on Intel Microarchitecture Code Name
Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-102 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
680H 1664 MSR_
LASTBRANCH_0_F
ROM_IP

Thread Last Branch Record 0 From IP. (R/W)

One of sixteen pairs of last branch record
registers on the last branch record stack. This
part of the stack contains pointers to the
source instruction for one of the last sixteen
branches, exceptions, or interrupts taken by
the processor. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.6.1, “LBR Stack.”

681H 1665 MSR_
LASTBRANCH_1_F
ROM_IP

Thread Last Branch Record 1 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

682H 1666 MSR_
LASTBRANCH_2_F
ROM_IP

Thread Last Branch Record 2 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

683H 1667 MSR_
LASTBRANCH_3_F
ROM_IP

Thread Last Branch Record 3 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

684H 1668 MSR_
LASTBRANCH_4_F
ROM_IP

Thread Last Branch Record 4 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

685H 1669 MSR_
LASTBRANCH_5_F
ROM_IP

Thread Last Branch Record 5 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

686H 1670 MSR_
LASTBRANCH_6_F
ROM_IP

Thread Last Branch Record 6 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

687H 1671 MSR_
LASTBRANCH_7_F
ROM_IP

Thread Last Branch Record 7 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

688H 1672 MSR_
LASTBRANCH_8_F
ROM_IP

Thread Last Branch Record 8 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

Table 34-5. MSRs in Processors Based on Intel Microarchitecture Code Name
Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-103

MODEL-SPECIFIC REGISTERS (MSRS)
689H 1673 MSR_
LASTBRANCH_9_F
ROM_IP

Thread Last Branch Record 9 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

68AH 1674 MSR_
LASTBRANCH_10_
FROM_IP

Thread Last Branch Record 10 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

68BH 1675 MSR_
LASTBRANCH_11_
FROM_IP

Thread Last Branch Record 11 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

68CH 1676 MSR_
LASTBRANCH_12_
FROM_IP

Thread Last Branch Record 12 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

68DH 1677 MSR_
LASTBRANCH_13_
FROM_IP

Thread Last Branch Record 13 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

68EH 1678 MSR_
LASTBRANCH_14_
FROM_IP

Thread Last Branch Record 14 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

68FH 1679 MSR_
LASTBRANCH_15_
FROM_IP

Thread Last Branch Record 15 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

6C0H 1728 MSR_
LASTBRANCH_0_
TO_LIP

Thread Last Branch Record 0 To IP. (R/W)

One of sixteen pairs of last branch record
registers on the last branch record stack. This
part of the stack contains pointers to the
destination instruction for one of the last
sixteen branches, exceptions, or interrupts
taken by the processor.

6C1H 1729 MSR_
LASTBRANCH_1_
TO_LIP

Thread Last Branch Record 1 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

Table 34-5. MSRs in Processors Based on Intel Microarchitecture Code Name
Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-104 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
6C2H 1730 MSR_
LASTBRANCH_2_
TO_LIP

Thread Last Branch Record 2 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6C3H 1731 MSR_
LASTBRANCH_3_
TO_LIP

Thread Last Branch Record 3 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6C4H 1732 MSR_
LASTBRANCH_4_
TO_LIP

Thread Last Branch Record 4 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6C5H 1733 MSR_
LASTBRANCH_5_
TO_LIP

Thread Last Branch Record 5 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6C6H 1734 MSR_
LASTBRANCH_6_
TO_LIP

Thread Last Branch Record 6 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6C7H 1735 MSR_
LASTBRANCH_7_
TO_LIP

Thread Last Branch Record 7 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6C8H 1736 MSR_
LASTBRANCH_8_
TO_LIP

Thread Last Branch Record 8 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6C9H 1737 MSR_
LASTBRANCH_9_
TO_LIP

Thread Last Branch Record 9 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6CAH 1738 MSR_
LASTBRANCH_10_
TO_LIP

Thread Last Branch Record 10 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6CBH 1739 MSR_
LASTBRANCH_11_
TO_LIP

Thread Last Branch Record 11 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

Table 34-5. MSRs in Processors Based on Intel Microarchitecture Code Name
Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-105

MODEL-SPECIFIC REGISTERS (MSRS)
6CCH 1740 MSR_
LASTBRANCH_12_
TO_LIP

Thread Last Branch Record 12 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6CDH 1741 MSR_
LASTBRANCH_13_
TO_LIP

Thread Last Branch Record 13 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6CEH 1742 MSR_
LASTBRANCH_14_
TO_LIP

Thread Last Branch Record 14 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6CFH 1743 MSR_
LASTBRANCH_15_
TO_LIP

Thread Last Branch Record 15 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

802H 2050 IA32_X2APIC_API
CID

Thread x2APIC ID register (R/O) See x2APIC
Specification.

803H 2051 IA32_X2APIC_VER
SION

Thread x2APIC Version register (R/O)

808H 2056 IA32_X2APIC_TPR Thread x2APIC Task Priority register (R/W)

80AH 2058 IA32_X2APIC_PPR Thread x2APIC Processor Priority register (R/O)

80BH 2059 IA32_X2APIC_EOI Thread x2APIC EOI register (W/O)

80DH 2061 IA32_X2APIC_LDR Thread x2APIC Logical Destination register (R/O)

80FH 2063 IA32_X2APIC_SIV
R

Thread x2APIC Spurious Interrupt Vector register
(R/W)

810H 2064 IA32_X2APIC_ISR
0

Thread x2APIC In-Service register bits [31:0] (R/O)

811H 2065 IA32_X2APIC_ISR
1

Thread x2APIC In-Service register bits [63:32] (R/O)

812H 2066 IA32_X2APIC_ISR
2

Thread x2APIC In-Service register bits [95:64] (R/O)

813H 2067 IA32_X2APIC_ISR
3

Thread x2APIC In-Service register bits [127:96] (R/O)

Table 34-5. MSRs in Processors Based on Intel Microarchitecture Code Name
Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-106 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
814H 2068 IA32_X2APIC_ISR
4

Thread x2APIC In-Service register bits [159:128]
(R/O)

815H 2069 IA32_X2APIC_ISR
5

Thread x2APIC In-Service register bits [191:160]
(R/O)

816H 2070 IA32_X2APIC_ISR
6

Thread x2APIC In-Service register bits [223:192]
(R/O)

817H 2071 IA32_X2APIC_ISR
7

Thread x2APIC In-Service register bits [255:224]
(R/O)

818H 2072 IA32_X2APIC_TM
R0

Thread x2APIC Trigger Mode register bits [31:0] (R/O)

819H 2073 IA32_X2APIC_TM
R1

Thread x2APIC Trigger Mode register bits [63:32]
(R/O)

81AH 2074 IA32_X2APIC_TM
R2

Thread x2APIC Trigger Mode register bits [95:64]
(R/O)

81BH 2075 IA32_X2APIC_TM
R3

Thread x2APIC Trigger Mode register bits [127:96]
(R/O)

81CH 2076 IA32_X2APIC_TM
R4

Thread x2APIC Trigger Mode register bits [159:128]
(R/O)

81DH 2077 IA32_X2APIC_TM
R5

Thread x2APIC Trigger Mode register bits [191:160]
(R/O)

81EH 2078 IA32_X2APIC_TM
R6

Thread x2APIC Trigger Mode register bits [223:192]
(R/O)

81FH 2079 IA32_X2APIC_TM
R7

Thread x2APIC Trigger Mode register bits [255:224]
(R/O)

820H 2080 IA32_X2APIC_IRR
0

Thread x2APIC Interrupt Request register bits [31:0]
(R/O)

821H 2081 IA32_X2APIC_IRR
1

Thread x2APIC Interrupt Request register bits [63:32]
(R/O)

822H 2082 IA32_X2APIC_IRR
2

Thread x2APIC Interrupt Request register bits [95:64]
(R/O)

823H 2083 IA32_X2APIC_IRR
3

Thread x2APIC Interrupt Request register bits
[127:96] (R/O)

Table 34-5. MSRs in Processors Based on Intel Microarchitecture Code Name
Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-107

MODEL-SPECIFIC REGISTERS (MSRS)
824H 2084 IA32_X2APIC_IRR
4

Thread x2APIC Interrupt Request register bits
[159:128] (R/O)

825H 2085 IA32_X2APIC_IRR
5

Thread x2APIC Interrupt Request register bits
[191:160] (R/O)

826H 2086 IA32_X2APIC_IRR
6

Thread x2APIC Interrupt Request register bits
[223:192] (R/O)

827H 2087 IA32_X2APIC_IRR
7

Thread x2APIC Interrupt Request register bits
[255:224] (R/O)

828H 2088 IA32_X2APIC_ESR Thread x2APIC Error Status register (R/W)

82FH 2095 IA32_X2APIC_LVT
_CMCI

Thread x2APIC LVT Corrected Machine Check
Interrupt register (R/W)

830H 2096 IA32_X2APIC_ICR Thread x2APIC Interrupt Command register (R/W)

832H 2098 IA32_X2APIC_LVT
_TIMER

Thread x2APIC LVT Timer Interrupt register (R/W)

833H 2099 IA32_X2APIC_LVT
_THERMAL

Thread x2APIC LVT Thermal Sensor Interrupt register
(R/W)

834H 2100 IA32_X2APIC_LVT
_PMI

Thread x2APIC LVT Performance Monitor register
(R/W)

835H 2101 IA32_X2APIC_LVT
_LINT0

Thread x2APIC LVT LINT0 register (R/W)

836H 2102 IA32_X2APIC_LVT
_LINT1

Thread x2APIC LVT LINT1 register (R/W)

837H 2103 IA32_X2APIC_LVT
_ERROR

Thread x2APIC LVT Error register (R/W)

838H 2104 IA32_X2APIC_INIT
_COUNT

Thread x2APIC Initial Count register (R/W)

839H 2105 IA32_X2APIC_CUR
_COUNT

Thread x2APIC Current Count register (R/O)

83EH 2110 IA32_X2APIC_DIV
_CONF

Thread x2APIC Divide Configuration register (R/W)

83FH 2111 IA32_X2APIC_SEL
F_IPI

Thread x2APIC Self IPI register (W/O)

Table 34-5. MSRs in Processors Based on Intel Microarchitecture Code Name
Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-108 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
34.4.1 Additional MSRs in the Intel® Xeon® Processor 5500 and
3400 Series

Intel Xeon Processor 5500 and 3400 series support additional model-specific regis-
ters listed in Table 34-6. These MSRs also apply to Intel Core i7 and i5 processor
family CPUID signature with DisplayFamily_DisplayModel of 06_1AH, 06_1EH and
06_1FH, see Table 34-1.

C000_
0080H

IA32_EFER Thread Extended Feature Enables. See Table 34-2.

C000_
0081H

IA32_STAR Thread System Call Target Address. (R/W). See
Table 34-2.

C000_
0082H

IA32_LSTAR Thread IA-32e Mode System Call Target Address.
(R/W). See Table 34-2.

C000_
0084H

IA32_FMASK Thread System Call Flag Mask. (R/W). See
Table 34-2.

C000_
0100H

IA32_FS_BASE Thread Map of BASE Address of FS. (R/W). See
Table 34-2.

C000_
0101H

IA32_GS_BASE Thread Map of BASE Address of GS. (R/W). See
Table 34-2.

C000_
0102H

IA32_KERNEL_GS
BASE

Thread Swap Target of BASE Address of GS. (R/W).
See Table 34-2.

C000_
0103H

IA32_TSC_AUX Thread AUXILIARY TSC Signature. (R/W). See
Table 34-2 and Section 17.12.2,
“IA32_TSC_AUX Register and RDTSCP
Support.”

Table 34-5. MSRs in Processors Based on Intel Microarchitecture Code Name
Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-109

MODEL-SPECIFIC REGISTERS (MSRS)
Table 34-6. Additional MSRs in Intel Xeon Processor 5500 and 3400 Series

Register
Address Register Name

Scope
Bit Description

 Hex Dec

1ADH 429 MSR_TURBO_RATI
O_LIMIT

Package Actual maximum turbo frequency is multiplied
by 133.33MHz. (not available to model
06_2EH)

7:0 Maximum Turbo Ratio Limit 1C. (R/O)

maximum Turbo mode ratio limit with 1 core
active.

15:8 Maximum Turbo Ratio Limit 2C. (R/O)

maximum Turbo mode ratio limit with 2cores
active.

23:16 Maximum Turbo Ratio Limit 3C. (R/O)

maximum Turbo mode ratio limit with 3cores
active.

31:24 Maximum Turbo Ratio Limit 4C. (R/O)

maximum Turbo mode ratio limit with 4 cores
active.

63:32 Reserved.

301H 769 MSR_GQ_SNOOP_
MESF

Package

0 From M to S (R/W).

1 From E to S (R/W).

2 From S to S (R/W).

3 From F to S (R/W).

4 From M to I (R/W).

5 From E to I (R/W).

6 From S to I (R/W).

7 From F to I (R/W).

63:8 Reserved.

391H 913 MSR_UNCORE_PE
RF_GLOBAL_CTRL

Package See Section 18.6.2.1, “Uncore Performance
Monitoring Management Facility.”

392H 914 MSR_UNCORE_PE
RF_GLOBAL_STAT
US

Package See Section 18.6.2.1, “Uncore Performance
Monitoring Management Facility.”
34-110 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
393H 915 MSR_UNCORE_PE
RF_GLOBAL_OVF_
CTRL

Package See Section 18.6.2.1, “Uncore Performance
Monitoring Management Facility.”

394H 916 MSR_UNCORE_FIX
ED_CTR0

Package See Section 18.6.2.1, “Uncore Performance
Monitoring Management Facility.”

395H 917 MSR_UNCORE_FIX
ED_CTR_CTRL

Package See Section 18.6.2.1, “Uncore Performance
Monitoring Management Facility.”

396H 918 MSR_UNCORE_AD
DR_OPCODE_MAT
CH

Package See Section 18.6.2.3, “Uncore Address/Opcode
Match MSR.”

3B0H 960 MSR_UNCORE_PM
C0

Package See Section 18.6.2.2, “Uncore Performance
Event Configuration Facility.”

3B1H 961 MSR_UNCORE_PM
C1

Package See Section 18.6.2.2, “Uncore Performance
Event Configuration Facility.”

3B2H 962 MSR_UNCORE_PM
C2

Package See Section 18.6.2.2, “Uncore Performance
Event Configuration Facility.”

3B3H 963 MSR_UNCORE_PM
C3

Package See Section 18.6.2.2, “Uncore Performance
Event Configuration Facility.”

3B4H 964 MSR_UNCORE_PM
C4

Package See Section 18.6.2.2, “Uncore Performance
Event Configuration Facility.”

3B5H 965 MSR_UNCORE_PM
C5

Package See Section 18.6.2.2, “Uncore Performance
Event Configuration Facility.”

3B6H 966 MSR_UNCORE_PM
C6

Package See Section 18.6.2.2, “Uncore Performance
Event Configuration Facility.”

3B7H 967 MSR_UNCORE_PM
C7

Package See Section 18.6.2.2, “Uncore Performance
Event Configuration Facility.”

3C0H 944 MSR_UNCORE_PE
RFEVTSEL0

Package See Section 18.6.2.2, “Uncore Performance
Event Configuration Facility.”

3C1H 945 MSR_UNCORE_PE
RFEVTSEL1

Package See Section 18.6.2.2, “Uncore Performance
Event Configuration Facility.”

3C2H 946 MSR_UNCORE_PE
RFEVTSEL2

Package See Section 18.6.2.2, “Uncore Performance
Event Configuration Facility.”

3C3H 947 MSR_UNCORE_PE
RFEVTSEL3

Package See Section 18.6.2.2, “Uncore Performance
Event Configuration Facility.”

Table 34-6. Additional MSRs in Intel Xeon Processor 5500 and 3400 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-111

MODEL-SPECIFIC REGISTERS (MSRS)
34.4.2 Additional MSRs in the Intel® Xeon® Processor 7500 Series
Intel Xeon Processor 7500 series support MSRs listed in Table 34-5 (except MSR
address 1ADH) and additional model-specific registers listed in Table 34-7.

3C4H 948 MSR_UNCORE_PE
RFEVTSEL4

Package See Section 18.6.2.2, “Uncore Performance
Event Configuration Facility.”

3C5H 949 MSR_UNCORE_PE
RFEVTSEL5

Package See Section 18.6.2.2, “Uncore Performance
Event Configuration Facility.”

3C6H 950 MSR_UNCORE_PE
RFEVTSEL6

Package See Section 18.6.2.2, “Uncore Performance
Event Configuration Facility.”

3C7H 951 MSR_UNCORE_PE
RFEVTSEL7

Package See Section 18.6.2.2, “Uncore Performance
Event Configuration Facility.”

Table 34-7. Additional MSRs in Intel Xeon Processor 7500 Series

Register
Address Register Name

Scope
Bit Description

 Hex Dec

1ADH 429 MSR_TURBO_RATI
O_LIMIT

Package Reserved.

Attempt to read/write will cause #UD

289H 649 IA32_MC9_CTL2 Package See Table 34-2.

28AH 650 IA32_MC10_CTL2 Package See Table 34-2.

28BH 651 IA32_MC11_CTL2 Package See Table 34-2.

28CH 652 IA32_MC12_CTL2 Package See Table 34-2.

28DH 653 IA32_MC13_CTL2 Package See Table 34-2.

28EH 654 IA32_MC14_CTL2 Package See Table 34-2.

28FH 655 IA32_MC15_CTL2 Package See Table 34-2.

290H 656 IA32_MC16_CTL2 Package See Table 34-2.

291H 657 IA32_MC17_CTL2 Package See Table 34-2.

292H 658 IA32_MC18_CTL2 Package See Table 34-2.

293H 659 IA32_MC19_CTL2 Package See Table 34-2.

294H 660 IA32_MC20_CTL2 Package See Table 34-2.

Table 34-6. Additional MSRs in Intel Xeon Processor 5500 and 3400 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-112 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
295H 661 IA32_MC21_CTL2 Package See Table 34-2.

394H 816 MSR_W_PMON_FI
XED_CTR

Package Uncore W-box perfmon fixed counter

395H 817 MSR_W_PMON_FI
XED_CTR_CTL

Package Uncore U-box perfmon fixed counter control
MSR

424H 1060 MSR_MC9_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

425H 1061 MSR_MC9_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

426H 1062 MSR_MC9_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

427H 1063 MSR_MC9_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

428H 1064 MSR_MC10_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

429H 1065 MSR_MC10_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

42AH 1066 MSR_MC10_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

42BH 1067 MSR_MC10_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

42CH 1068 MSR_MC11_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

42DH 1069 MSR_MC11_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

42EH 1070 MSR_MC11_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

42FH 1071 MSR_MC11_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

430H 1072 MSR_MC12_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

431H 1073 MSR_MC12_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

432H 1074 MSR_MC12_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

433H 1075 MSR_MC12_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

434H 1076 MSR_MC13_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

435H 1077 MSR_MC13_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

436H 1078 MSR_MC13_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

437H 1079 MSR_MC13_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

438H 1080 MSR_MC14_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

Table 34-7. Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-113

MODEL-SPECIFIC REGISTERS (MSRS)
439H 1081 MSR_MC14_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

43AH 1082 MSR_MC14_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

43BH 1083 MSR_MC14_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

43CH 1084 MSR_MC15_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

43DH 1085 MSR_MC15_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

43EH 1086 MSR_MC15_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

43FH 1087 MSR_MC15_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

440H 1088 MSR_MC16_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

441H 1089 MSR_MC16_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

442H 1090 MSR_MC16_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

443H 1091 MSR_MC16_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

444H 1092 MSR_MC17_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

445H 1093 MSR_MC17_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

446H 1094 MSR_MC17_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

447H 1095 MSR_MC17_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

448H 1096 MSR_MC18_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

449H 1097 MSR_MC18_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

44AH 1098 MSR_MC18_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

44BH 1099 MSR_MC18_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

44CH 1100 MSR_MC19_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

44DH 1101 MSR_MC19_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

44EH 1102 MSR_MC19_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

44FH 1103 MSR_MC19_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

450H 1104 MSR_MC20_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

Table 34-7. Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-114 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
451H 1105 MSR_MC20_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

452H 1106 MSR_MC20_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

453H 1107 MSR_MC20_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

454H 1108 MSR_MC21_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

455H 1109 MSR_MC21_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

456H 1110 MSR_MC21_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

457H 1111 MSR_MC21_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

C00H 3072 MSR_U_PMON_GL
OBAL_CTRL

Package Uncore U-box perfmon global control MSR

C01H 3073 MSR_U_PMON_GL
OBAL_STATUS

Package Uncore U-box perfmon global status MSR

C02H 3074 MSR_U_PMON_GL
OBAL_OVF_CTRL

Package Uncore U-box perfmon global overflow control
MSR

C10H 3088 MSR_U_PMON_EV
NT_SEL

Package Uncore U-box perfmon event select MSR

C11H 3089 MSR_U_PMON_CT
R

Package Uncore U-box perfmon counter MSR

C20H 3104 MSR_B0_PMON_B
OX_CTRL

Package Uncore B-box 0 perfmon local box control MSR

C21H 3105 MSR_B0_PMON_B
OX_STATUS

Package Uncore B-box 0 perfmon local box status MSR

C22H 3106 MSR_B0_PMON_B
OX_OVF_CTRL

Package Uncore B-box 0 perfmon local box overflow
control MSR

C30H 3120 MSR_B0_PMON_E
VNT_SEL0

Package Uncore B-box 0 perfmon event select MSR

C31H 3121 MSR_B0_PMON_C
TR0

Package Uncore B-box 0 perfmon counter MSR

C32H 3122 MSR_B0_PMON_E
VNT_SEL1

Package Uncore B-box 0 perfmon event select MSR

Table 34-7. Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-115

MODEL-SPECIFIC REGISTERS (MSRS)
C33H 3123 MSR_B0_PMON_C
TR1

Package Uncore B-box 0 perfmon counter MSR

C34H 3124 MSR_B0_PMON_E
VNT_SEL2

Package Uncore B-box 0 perfmon event select MSR

C35H 3125 MSR_B0_PMON_C
TR2

Package Uncore B-box 0 perfmon counter MSR

C36H 3126 MSR_B0_PMON_E
VNT_SEL3

Package Uncore B-box 0 perfmon event select MSR

C37H 3127 MSR_B0_PMON_C
TR3

Package Uncore B-box 0 perfmon counter MSR

C40H 3136 MSR_S0_PMON_B
OX_CTRL

Package Uncore S-box 0 perfmon local box control MSR

C41H 3137 MSR_S0_PMON_B
OX_STATUS

Package Uncore S-box 0 perfmon local box status MSR

C42H 3138 MSR_S0_PMON_B
OX_OVF_CTRL

Package Uncore S-box 0 perfmon local box overflow
control MSR

C50H 3152 MSR_S0_PMON_E
VNT_SEL0

Package Uncore S-box 0 perfmon event select MSR

C51H 3153 MSR_S0_PMON_C
TR0

Package Uncore S-box 0 perfmon counter MSR

C52H 3154 MSR_S0_PMON_E
VNT_SEL1

Package Uncore S-box 0 perfmon event select MSR

C53H 3155 MSR_S0_PMON_C
TR1

Package Uncore S-box 0 perfmon counter MSR

C54H 3156 MSR_S0_PMON_E
VNT_SEL2

Package Uncore S-box 0 perfmon event select MSR

C55H 3157 MSR_S0_PMON_C
TR2

Package Uncore S-box 0 perfmon counter MSR

C56H 3158 MSR_S0_PMON_E
VNT_SEL3

Package Uncore S-box 0 perfmon event select MSR

C57H 3159 MSR_S0_PMON_C
TR3

Package Uncore S-box 0 perfmon counter MSR

Table 34-7. Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-116 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
C60H 3168 MSR_B1_PMON_B
OX_CTRL

Package Uncore B-box 1 perfmon local box control MSR

C61H 3169 MSR_B1_PMON_B
OX_STATUS

Package Uncore B-box 1 perfmon local box status MSR

C62H 3170 MSR_B1_PMON_B
OX_OVF_CTRL

Package Uncore B-box 1 perfmon local box overflow
control MSR

C70H 3184 MSR_B1_PMON_E
VNT_SEL0

Package Uncore B-box 1 perfmon event select MSR

C71H 3185 MSR_B1_PMON_C
TR0

Package Uncore B-box 1 perfmon counter MSR

C72H 3186 MSR_B1_PMON_E
VNT_SEL1

Package Uncore B-box 1 perfmon event select MSR

C73H 3187 MSR_B1_PMON_C
TR1

Package Uncore B-box 1 perfmon counter MSR

C74H 3188 MSR_B1_PMON_E
VNT_SEL2

Package Uncore B-box 1 perfmon event select MSR

C75H 3189 MSR_B1_PMON_C
TR2

Package Uncore B-box 1 perfmon counter MSR

C76H 3190 MSR_B1_PMON_E
VNT_SEL3

Package Uncore B-box 1vperfmon event select MSR

C77H 3191 MSR_B1_PMON_C
TR3

Package Uncore B-box 1 perfmon counter MSR

C80H 3120 MSR_W_PMON_BO
X_CTRL

Package Uncore W-box perfmon local box control MSR

C81H 3121 MSR_W_PMON_BO
X_STATUS

Package Uncore W-box perfmon local box status MSR

C82H 3122 MSR_W_PMON_BO
X_OVF_CTRL

Package Uncore W-box perfmon local box overflow
control MSR

C90H 3136 MSR_W_PMON_EV
NT_SEL0

Package Uncore W-box perfmon event select MSR

C91H 3137 MSR_W_PMON_CT
R0

Package Uncore W-box perfmon counter MSR

Table 34-7. Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-117

MODEL-SPECIFIC REGISTERS (MSRS)
C92H 3138 MSR_W_PMON_EV
NT_SEL1

Package Uncore W-box perfmon event select MSR

C93H 3139 MSR_W_PMON_CT
R1

Package Uncore W-box perfmon counter MSR

C94H 3140 MSR_W_PMON_EV
NT_SEL2

Package Uncore W-box perfmon event select MSR

C95H 3141 MSR_W_PMON_CT
R2

Package Uncore W-box perfmon counter MSR

C96H 3142 MSR_W_PMON_EV
NT_SEL3

Package Uncore W-box perfmon event select MSR

C97H 3143 MSR_W_PMON_CT
R3

Package Uncore W-box perfmon counter MSR

CA0H 3232 MSR_M0_PMON_B
OX_CTRL

Package Uncore M-box 0 perfmon local box control MSR

CA1H 3233 MSR_M0_PMON_B
OX_STATUS

Package Uncore M-box 0 perfmon local box status MSR

CA2H 3234 MSR_M0_PMON_B
OX_OVF_CTRL

Package Uncore M-box 0 perfmon local box overflow
control MSR

CA4H 3236 MSR_M0_PMON_T
IMESTAMP

Package Uncore M-box 0 perfmon time stamp unit
select MSR

CA5H 3237 MSR_M0_PMON_D
SP

Package Uncore M-box 0 perfmon DSP unit select MSR

CA6H 3238 MSR_M0_PMON_I
SS

Package Uncore M-box 0 perfmon ISS unit select MSR

CA7H 3239 MSR_M0_PMON_M
AP

Package Uncore M-box 0 perfmon MAP unit select MSR

CA8H 3240 MSR_M0_PMON_M
SC_THR

Package Uncore M-box 0 perfmon MIC THR select MSR

CA9H 3241 MSR_M0_PMON_P
GT

Package Uncore M-box 0 perfmon PGT unit select MSR

CAAH 3242 MSR_M0_PMON_P
LD

Package Uncore M-box 0 perfmon PLD unit select MSR

Table 34-7. Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-118 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
CABH 3243 MSR_M0_PMON_Z
DP

Package Uncore M-box 0 perfmon ZDP unit select MSR

CB0H 3248 MSR_M0_PMON_E
VNT_SEL0

Package Uncore M-box 0 perfmon event select MSR

CB1H 3249 MSR_M0_PMON_C
TR0

Package Uncore M-box 0 perfmon counter MSR

CB2H 3250 MSR_M0_PMON_E
VNT_SEL1

Package Uncore M-box 0 perfmon event select MSR

CB3H 3251 MSR_M0_PMON_C
TR1

Package Uncore M-box 0 perfmon counter MSR

CB4H 3252 MSR_M0_PMON_E
VNT_SEL2

Package Uncore M-box 0 perfmon event select MSR

CB5H 3253 MSR_M0_PMON_C
TR2

Package Uncore M-box 0 perfmon counter MSR

CB6H 3254 MSR_M0_PMON_E
VNT_SEL3

Package Uncore M-box 0 perfmon event select MSR

CB7H 3255 MSR_M0_PMON_C
TR3

Package Uncore M-box 0 perfmon counter MSR

CB8H 3256 MSR_M0_PMON_E
VNT_SEL4

Package Uncore M-box 0 perfmon event select MSR

CB9H 3257 MSR_M0_PMON_C
TR4

Package Uncore M-box 0 perfmon counter MSR

CBAH 3258 MSR_M0_PMON_E
VNT_SEL5

Package Uncore M-box 0 perfmon event select MSR

CBBH 3259 MSR_M0_PMON_C
TR5

Package Uncore M-box 0 perfmon counter MSR

CC0H 3264 MSR_S1_PMON_B
OX_CTRL

Package Uncore S-box 1 perfmon local box control MSR

CC1H 3265 MSR_S1_PMON_B
OX_STATUS

Package Uncore S-box 1 perfmon local box status MSR

CC2H 3266 MSR_S1_PMON_B
OX_OVF_CTRL

Package Uncore S-box 1 perfmon local box overflow
control MSR

Table 34-7. Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-119

MODEL-SPECIFIC REGISTERS (MSRS)
CD0H 3280 MSR_S1_PMON_E
VNT_SEL0

Package Uncore S-box 1 perfmon event select MSR

CD1H 3281 MSR_S1_PMON_C
TR0

Package Uncore S-box 1 perfmon counter MSR

CD2H 3282 MSR_S1_PMON_E
VNT_SEL1

Package Uncore S-box 1 perfmon event select MSR

CD3H 3283 MSR_S1_PMON_C
TR1

Package Uncore S-box 1 perfmon counter MSR

CD4H 3284 MSR_S1_PMON_E
VNT_SEL2

Package Uncore S-box 1 perfmon event select MSR

CD5H 3285 MSR_S1_PMON_C
TR2

Package Uncore S-box 1 perfmon counter MSR

CD6H 3286 MSR_S1_PMON_E
VNT_SEL3

Package Uncore S-box 1 perfmon event select MSR

CD7H 3287 MSR_S1_PMON_C
TR3

Package Uncore S-box 1 perfmon counter MSR

CE0H 3296 MSR_M1_PMON_B
OX_CTRL

Package Uncore M-box 1 perfmon local box control MSR

CE1H 3297 MSR_M1_PMON_B
OX_STATUS

Package Uncore M-box 1 perfmon local box status MSR

CE2H 3298 MSR_M1_PMON_B
OX_OVF_CTRL

Package Uncore M-box 1 perfmon local box overflow
control MSR

CE4H 3300 MSR_M1_PMON_T
IMESTAMP

Package Uncore M-box 1 perfmon time stamp unit
select MSR

CE5H 3301 MSR_M1_PMON_D
SP

Package Uncore M-box 1 perfmon DSP unit select MSR

CE6H 3302 MSR_M1_PMON_I
SS

Package Uncore M-box 1 perfmon ISS unit select MSR

CE7H 3303 MSR_M1_PMON_M
AP

Package Uncore M-box 1 perfmon MAP unit select MSR

CE8H 3304 MSR_M1_PMON_M
SC_THR

Package Uncore M-box 1 perfmon MIC THR select MSR

Table 34-7. Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-120 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
CE9H 3305 MSR_M1_PMON_P
GT

Package Uncore M-box 1 perfmon PGT unit select MSR

CEAH 3306 MSR_M1_PMON_P
LD

Package Uncore M-box 1 perfmon PLD unit select MSR

CEBH 3307 MSR_M1_PMON_Z
DP

Package Uncore M-box 1 perfmon ZDP unit select MSR

CF0H 3312 MSR_M1_PMON_E
VNT_SEL0

Package Uncore M-box 1 perfmon event select MSR

CF1H 3313 MSR_M1_PMON_C
TR0

Package Uncore M-box 1 perfmon counter MSR

CF2H 3314 MSR_M1_PMON_E
VNT_SEL1

Package Uncore M-box 1 perfmon event select MSR

CF3H 3315 MSR_M1_PMON_C
TR1

Package Uncore M-box 1 perfmon counter MSR

CF4H 3316 MSR_M1_PMON_E
VNT_SEL2

Package Uncore M-box 1 perfmon event select MSR

CF5H 3317 MSR_M1_PMON_C
TR2

Package Uncore M-box 1 perfmon counter MSR

CF6H 3318 MSR_M1_PMON_E
VNT_SEL3

Package Uncore M-box 1 perfmon event select MSR

CF7H 3319 MSR_M1_PMON_C
TR3

Package Uncore M-box 1 perfmon counter MSR

CF8H 3320 MSR_M1_PMON_E
VNT_SEL4

Package Uncore M-box 1 perfmon event select MSR

CF9H 3321 MSR_M1_PMON_C
TR4

Package Uncore M-box 1 perfmon counter MSR

CFAH 3322 MSR_M1_PMON_E
VNT_SEL5

Package Uncore M-box 1 perfmon event select MSR

CFBH 3323 MSR_M1_PMON_C
TR5

Package Uncore M-box 1 perfmon counter MSR

D00H 3328 MSR_C0_PMON_B
OX_CTRL

Package Uncore C-box 0 perfmon local box control MSR

Table 34-7. Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-121

MODEL-SPECIFIC REGISTERS (MSRS)
D01H 3329 MSR_C0_PMON_B
OX_STATUS

Package Uncore C-box 0 perfmon local box status MSR

D02H 3330 MSR_C0_PMON_B
OX_OVF_CTRL

Package Uncore C-box 0 perfmon local box overflow
control MSR

D10H 3344 MSR_C0_PMON_E
VNT_SEL0

Package Uncore C-box 0 perfmon event select MSR

D11H 3345 MSR_C0_PMON_C
TR0

Package Uncore C-box 0 perfmon counter MSR

D12H 3346 MSR_C0_PMON_E
VNT_SEL1

Package Uncore C-box 0 perfmon event select MSR

D13H 3347 MSR_C0_PMON_C
TR1

Package Uncore C-box 0 perfmon counter MSR

D14H 3348 MSR_C0_PMON_E
VNT_SEL2

Package Uncore C-box 0 perfmon event select MSR

D15H 3349 MSR_C0_PMON_C
TR2

Package Uncore C-box 0 perfmon counter MSR

D16H 3350 MSR_C0_PMON_E
VNT_SEL3

Package Uncore C-box 0 perfmon event select MSR

D17H 3351 MSR_C0_PMON_C
TR3

Package Uncore C-box 0 perfmon counter MSR

D18H 3352 MSR_C0_PMON_E
VNT_SEL4

Package Uncore C-box 0 perfmon event select MSR

D19H 3353 MSR_C0_PMON_C
TR4

Package Uncore C-box 0 perfmon counter MSR

D1AH 3354 MSR_C0_PMON_E
VNT_SEL5

Package Uncore C-box 0 perfmon event select MSR

D1BH 3355 MSR_C0_PMON_C
TR5

Package Uncore C-box 0 perfmon counter MSR

D20H 3360 MSR_C4_PMON_B
OX_CTRL

Package Uncore C-box 4 perfmon local box control MSR

D21H 3361 MSR_C4_PMON_B
OX_STATUS

Package Uncore C-box 4 perfmon local box status MSR

Table 34-7. Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-122 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
D22H 3362 MSR_C4_PMON_B
OX_OVF_CTRL

Package Uncore C-box 4 perfmon local box overflow
control MSR

D30H 3376 MSR_C4_PMON_E
VNT_SEL0

Package Uncore C-box 4 perfmon event select MSR

D31H 3377 MSR_C4_PMON_C
TR0

Package Uncore C-box 4 perfmon counter MSR

D32H 3378 MSR_C4_PMON_E
VNT_SEL1

Package Uncore C-box 4 perfmon event select MSR

D33H 3379 MSR_C4_PMON_C
TR1

Package Uncore C-box 4 perfmon counter MSR

D34H 3380 MSR_C4_PMON_E
VNT_SEL2

Package Uncore C-box 4 perfmon event select MSR

D35H 3381 MSR_C4_PMON_C
TR2

Package Uncore C-box 4 perfmon counter MSR

D36H 3382 MSR_C4_PMON_E
VNT_SEL3

Package Uncore C-box 4 perfmon event select MSR

D37H 3383 MSR_C4_PMON_C
TR3

Package Uncore C-box 4 perfmon counter MSR

D38H 3384 MSR_C4_PMON_E
VNT_SEL4

Package Uncore C-box 4 perfmon event select MSR

D39H 3385 MSR_C4_PMON_C
TR4

Package Uncore C-box 4 perfmon counter MSR

D3AH 3386 MSR_C4_PMON_E
VNT_SEL5

Package Uncore C-box 4 perfmon event select MSR

D3BH 3387 MSR_C4_PMON_C
TR5

Package Uncore C-box 4 perfmon counter MSR

D40H 3392 MSR_C2_PMON_B
OX_CTRL

Package Uncore C-box 2 perfmon local box control MSR

D41H 3393 MSR_C2_PMON_B
OX_STATUS

Package Uncore C-box 2 perfmon local box status MSR

D42H 3394 MSR_C2_PMON_B
OX_OVF_CTRL

Package Uncore C-box 2 perfmon local box overflow
control MSR

Table 34-7. Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-123

MODEL-SPECIFIC REGISTERS (MSRS)
D50H 3408 MSR_C2_PMON_E
VNT_SEL0

Package Uncore C-box 2 perfmon event select MSR

D51H 3409 MSR_C2_PMON_C
TR0

Package Uncore C-box 2 perfmon counter MSR

D52H 3410 MSR_C2_PMON_E
VNT_SEL1

Package Uncore C-box 2 perfmon event select MSR

D53H 3411 MSR_C2_PMON_C
TR1

Package Uncore C-box 2 perfmon counter MSR

D54H 3412 MSR_C2_PMON_E
VNT_SEL2

Package Uncore C-box 2 perfmon event select MSR

D55H 3413 MSR_C2_PMON_C
TR2

Package Uncore C-box 2 perfmon counter MSR

D56H 3414 MSR_C2_PMON_E
VNT_SEL3

Package Uncore C-box 2 perfmon event select MSR

D57H 3415 MSR_C2_PMON_C
TR3

Package Uncore C-box 2 perfmon counter MSR

D58H 3416 MSR_C2_PMON_E
VNT_SEL4

Package Uncore C-box 2 perfmon event select MSR

D59H 3417 MSR_C2_PMON_C
TR4

Package Uncore C-box 2 perfmon counter MSR

D5AH 3418 MSR_C2_PMON_E
VNT_SEL5

Package Uncore C-box 2 perfmon event select MSR

D5BH 3419 MSR_C2_PMON_C
TR5

Package Uncore C-box 2 perfmon counter MSR

D60H 3424 MSR_C6_PMON_B
OX_CTRL

Package Uncore C-box 6 perfmon local box control MSR

D61H 3425 MSR_C6_PMON_B
OX_STATUS

Package Uncore C-box 6 perfmon local box status MSR

D62H 3426 MSR_C6_PMON_B
OX_OVF_CTRL

Package Uncore C-box 6 perfmon local box overflow
control MSR

D70H 3440 MSR_C6_PMON_E
VNT_SEL0

Package Uncore C-box 6 perfmon event select MSR

Table 34-7. Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-124 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
D71H 3441 MSR_C6_PMON_C
TR0

Package Uncore C-box 6 perfmon counter MSR

D72H 3442 MSR_C6_PMON_E
VNT_SEL1

Package Uncore C-box 6 perfmon event select MSR

D73H 3443 MSR_C6_PMON_C
TR1

Package Uncore C-box 6 perfmon counter MSR

D74H 3444 MSR_C6_PMON_E
VNT_SEL2

Package Uncore C-box 6 perfmon event select MSR

D75H 3445 MSR_C6_PMON_C
TR2

Package Uncore C-box 6 perfmon counter MSR

D76H 3446 MSR_C6_PMON_E
VNT_SEL3

Package Uncore C-box 6 perfmon event select MSR

D77H 3447 MSR_C6_PMON_C
TR3

Package Uncore C-box 6 perfmon counter MSR

D78H 3448 MSR_C6_PMON_E
VNT_SEL4

Package Uncore C-box 6 perfmon event select MSR

D79H 3449 MSR_C6_PMON_C
TR4

Package Uncore C-box 6 perfmon counter MSR

D7AH 3450 MSR_C6_PMON_E
VNT_SEL5

Package Uncore C-box 6 perfmon event select MSR

D7BH 3451 MSR_C6_PMON_C
TR5

Package Uncore C-box 6 perfmon counter MSR

D80H 3456 MSR_C1_PMON_B
OX_CTRL

Package Uncore C-box 1 perfmon local box control MSR

D81H 3457 MSR_C1_PMON_B
OX_STATUS

Package Uncore C-box 1 perfmon local box status MSR

D82H 3458 MSR_C1_PMON_B
OX_OVF_CTRL

Package Uncore C-box 1 perfmon local box overflow
control MSR

D90H 3472 MSR_C1_PMON_E
VNT_SEL0

Package Uncore C-box 1 perfmon event select MSR

D91H 3473 MSR_C1_PMON_C
TR0

Package Uncore C-box 1 perfmon counter MSR

Table 34-7. Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-125

MODEL-SPECIFIC REGISTERS (MSRS)
D92H 3474 MSR_C1_PMON_E
VNT_SEL1

Package Uncore C-box 1 perfmon event select MSR

D93H 3475 MSR_C1_PMON_C
TR1

Package Uncore C-box 1 perfmon counter MSR

D94H 3476 MSR_C1_PMON_E
VNT_SEL2

Package Uncore C-box 1 perfmon event select MSR

D95H 3477 MSR_C1_PMON_C
TR2

Package Uncore C-box 1 perfmon counter MSR

D96H 3478 MSR_C1_PMON_E
VNT_SEL3

Package Uncore C-box 1 perfmon event select MSR

D97H 3479 MSR_C1_PMON_C
TR3

Package Uncore C-box 1 perfmon counter MSR

D98H 3480 MSR_C1_PMON_E
VNT_SEL4

Package Uncore C-box 1 perfmon event select MSR

D99H 3481 MSR_C1_PMON_C
TR4

Package Uncore C-box 1 perfmon counter MSR

D9AH 3482 MSR_C1_PMON_E
VNT_SEL5

Package Uncore C-box 1 perfmon event select MSR

D9BH 3483 MSR_C1_PMON_C
TR5

Package Uncore C-box 1 perfmon counter MSR

DA0H 3488 MSR_C5_PMON_B
OX_CTRL

Package Uncore C-box 5 perfmon local box control MSR

DA1H 3489 MSR_C5_PMON_B
OX_STATUS

Package Uncore C-box 5 perfmon local box status MSR

DA2H 3490 MSR_C5_PMON_B
OX_OVF_CTRL

Package Uncore C-box 5 perfmon local box overflow
control MSR

DB0H 3504 MSR_C5_PMON_E
VNT_SEL0

Package Uncore C-box 5 perfmon event select MSR

DB1H 3505 MSR_C5_PMON_C
TR0

Package Uncore C-box 5 perfmon counter MSR

DB2H 3506 MSR_C5_PMON_E
VNT_SEL1

Package Uncore C-box 5 perfmon event select MSR

Table 34-7. Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-126 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
DB3H 3507 MSR_C5_PMON_C
TR1

Package Uncore C-box 5 perfmon counter MSR

DB4H 3508 MSR_C5_PMON_E
VNT_SEL2

Package Uncore C-box 5 perfmon event select MSR

DB5H 3509 MSR_C5_PMON_C
TR2

Package Uncore C-box 5 perfmon counter MSR

DB6H 3510 MSR_C5_PMON_E
VNT_SEL3

Package Uncore C-box 5 perfmon event select MSR

DB7H 3511 MSR_C5_PMON_C
TR3

Package Uncore C-box 5 perfmon counter MSR

DB8H 3512 MSR_C5_PMON_E
VNT_SEL4

Package Uncore C-box 5 perfmon event select MSR

DB9H 3513 MSR_C5_PMON_C
TR4

Package Uncore C-box 5 perfmon counter MSR

DBAH 3514 MSR_C5_PMON_E
VNT_SEL5

Package Uncore C-box 5 perfmon event select MSR

DBBH 3515 MSR_C5_PMON_C
TR5

Package Uncore C-box 5 perfmon counter MSR

DC0H 3520 MSR_C3_PMON_B
OX_CTRL

Package Uncore C-box 3 perfmon local box control MSR

DC1H 3521 MSR_C3_PMON_B
OX_STATUS

Package Uncore C-box 3 perfmon local box status MSR

DC2H 3522 MSR_C3_PMON_B
OX_OVF_CTRL

Package Uncore C-box 3 perfmon local box overflow
control MSR

DD0H 3536 MSR_C3_PMON_E
VNT_SEL0

Package Uncore C-box 3 perfmon event select MSR

DD1H 3537 MSR_C3_PMON_C
TR0

Package Uncore C-box 3 perfmon counter MSR

DD2H 3538 MSR_C3_PMON_E
VNT_SEL1

Package Uncore C-box 3 perfmon event select MSR

DD3H 3539 MSR_C3_PMON_C
TR1

Package Uncore C-box 3 perfmon counter MSR

Table 34-7. Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-127

MODEL-SPECIFIC REGISTERS (MSRS)
DD4H 3540 MSR_C3_PMON_E
VNT_SEL2

Package Uncore C-box 3 perfmon event select MSR

DD5H 3541 MSR_C3_PMON_C
TR2

Package Uncore C-box 3 perfmon counter MSR

DD6H 3542 MSR_C3_PMON_E
VNT_SEL3

Package Uncore C-box 3 perfmon event select MSR

DD7H 3543 MSR_C3_PMON_C
TR3

Package Uncore C-box 3 perfmon counter MSR

DD8H 3544 MSR_C3_PMON_E
VNT_SEL4

Package Uncore C-box 3 perfmon event select MSR

DD9H 3545 MSR_C3_PMON_C
TR4

Package Uncore C-box 3 perfmon counter MSR

DDAH 3546 MSR_C3_PMON_E
VNT_SEL5

Package Uncore C-box 3 perfmon event select MSR

DDBH 3547 MSR_C3_PMON_C
TR5

Package Uncore C-box 3 perfmon counter MSR

DE0H 3552 MSR_C7_PMON_B
OX_CTRL

Package Uncore C-box 7 perfmon local box control MSR

DE1H 3553 MSR_C7_PMON_B
OX_STATUS

Package Uncore C-box 7 perfmon local box status MSR

DE2H 3554 MSR_C7_PMON_B
OX_OVF_CTRL

Package Uncore C-box 7 perfmon local box overflow
control MSR

DF0H 3568 MSR_C7_PMON_E
VNT_SEL0

Package Uncore C-box 7 perfmon event select MSR

DF1H 3569 MSR_C7_PMON_C
TR0

Package Uncore C-box 7 perfmon counter MSR

DF2H 3570 MSR_C7_PMON_E
VNT_SEL1

Package Uncore C-box 7 perfmon event select MSR

DF3H 3571 MSR_C7_PMON_C
TR1

Package Uncore C-box 7 perfmon counter MSR

DF4H 3572 MSR_C7_PMON_E
VNT_SEL2

Package Uncore C-box 7 perfmon event select MSR

Table 34-7. Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-128 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
DF5H 3573 MSR_C7_PMON_C
TR2

Package Uncore C-box 7 perfmon counter MSR

DF6H 3574 MSR_C7_PMON_E
VNT_SEL3

Package Uncore C-box 7 perfmon event select MSR

DF7H 3575 MSR_C7_PMON_C
TR3

Package Uncore C-box 7 perfmon counter MSR

DF8H 3576 MSR_C7_PMON_E
VNT_SEL4

Package Uncore C-box 7 perfmon event select MSR

DF9H 3577 MSR_C7_PMON_C
TR4

Package Uncore C-box 7 perfmon counter MSR

DFAH 3578 MSR_C7_PMON_E
VNT_SEL5

Package Uncore C-box 7 perfmon event select MSR

DFBH 3579 MSR_C7_PMON_C
TR5

Package Uncore C-box 7 perfmon counter MSR

E00H 3584 MSR_R0_PMON_B
OX_CTRL

Package Uncore R-box 0 perfmon local box control MSR

E01H 3585 MSR_R0_PMON_B
OX_STATUS

Package Uncore R-box 0 perfmon local box status MSR

E02H 3586 MSR_R0_PMON_B
OX_OVF_CTRL

Package Uncore R-box 0 perfmon local box overflow
control MSR

E04H 3588 MSR_R0_PMON_IP
ERF0_P0

Package Uncore R-box 0 perfmon IPERF0 unit Port 0
select MSR

E05H 3589 MSR_R0_PMON_IP
ERF0_P1

Package Uncore R-box 0 perfmon IPERF0 unit Port 1
select MSR

E06H 3590 MSR_R0_PMON_IP
ERF0_P2

Package Uncore R-box 0 perfmon IPERF0 unit Port 2
select MSR

E07H 3591 MSR_R0_PMON_IP
ERF0_P3

Package Uncore R-box 0 perfmon IPERF0 unit Port 3
select MSR

E08H 3592 MSR_R0_PMON_IP
ERF0_P4

Package Uncore R-box 0 perfmon IPERF0 unit Port 4
select MSR

E09H 3593 MSR_R0_PMON_IP
ERF0_P5

Package Uncore R-box 0 perfmon IPERF0 unit Port 5
select MSR

Table 34-7. Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-129

MODEL-SPECIFIC REGISTERS (MSRS)
E0AH 3594 MSR_R0_PMON_IP
ERF0_P6

Package Uncore R-box 0 perfmon IPERF0 unit Port 6
select MSR

E0BH 3595 MSR_R0_PMON_IP
ERF0_P7

Package Uncore R-box 0 perfmon IPERF0 unit Port 7
select MSR

E0CH 3596 MSR_R0_PMON_Q
LX_P0

Package Uncore R-box 0 perfmon QLX unit Port 0
select MSR

E0DH 3597 MSR_R0_PMON_Q
LX_P1

Package Uncore R-box 0 perfmon QLX unit Port 1
select MSR

E0EH 3598 MSR_R0_PMON_Q
LX_P2

Package Uncore R-box 0 perfmon QLX unit Port 2
select MSR

E0FH 3599 MSR_R0_PMON_Q
LX_P3

Package Uncore R-box 0 perfmon QLX unit Port 3
select MSR

E10H 3600 MSR_R0_PMON_E
VNT_SEL0

Package Uncore R-box 0 perfmon event select MSR

E11H 3601 MSR_R0_PMON_C
TR0

Package Uncore R-box 0 perfmon counter MSR

E12H 3602 MSR_R0_PMON_E
VNT_SEL1

Package Uncore R-box 0 perfmon event select MSR

E13H 3603 MSR_R0_PMON_C
TR1

Package Uncore R-box 0 perfmon counter MSR

E14H 3604 MSR_R0_PMON_E
VNT_SEL2

Package Uncore R-box 0 perfmon event select MSR

E15H 3605 MSR_R0_PMON_C
TR2

Package Uncore R-box 0 perfmon counter MSR

E16H 3606 MSR_R0_PMON_E
VNT_SEL3

Package Uncore R-box 0 perfmon event select MSR

E17H 3607 MSR_R0_PMON_C
TR3

Package Uncore R-box 0 perfmon counter MSR

E18H 3608 MSR_R0_PMON_E
VNT_SEL4

Package Uncore R-box 0 perfmon event select MSR

E19H 3609 MSR_R0_PMON_C
TR4

Package Uncore R-box 0 perfmon counter MSR

Table 34-7. Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-130 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
E1AH 3610 MSR_R0_PMON_E
VNT_SEL5

Package Uncore R-box 0 perfmon event select MSR

E1BH 3611 MSR_R0_PMON_C
TR5

Package Uncore R-box 0 perfmon counter MSR

E1CH 3612 MSR_R0_PMON_E
VNT_SEL6

Package Uncore R-box 0 perfmon event select MSR

E1DH 3613 MSR_R0_PMON_C
TR6

Package Uncore R-box 0 perfmon counter MSR

E1EH 3614 MSR_R0_PMON_E
VNT_SEL7

Package Uncore R-box 0 perfmon event select MSR

E1FH 3615 MSR_R0_PMON_C
TR7

Package Uncore R-box 0 perfmon counter MSR

E20H 3616 MSR_R1_PMON_B
OX_CTRL

Package Uncore R-box 1 perfmon local box control MSR

E21H 3617 MSR_R1_PMON_B
OX_STATUS

Package Uncore R-box 1 perfmon local box status MSR

E22H 3618 MSR_R1_PMON_B
OX_OVF_CTRL

Package Uncore R-box 1 perfmon local box overflow
control MSR

E24H 3620 MSR_R1_PMON_IP
ERF1_P8

Package Uncore R-box 1 perfmon IPERF1 unit Port 8
select MSR

E25H 3621 MSR_R1_PMON_IP
ERF1_P9

Package Uncore R-box 1 perfmon IPERF1 unit Port 9
select MSR

E26H 3622 MSR_R1_PMON_IP
ERF1_P10

Package Uncore R-box 1 perfmon IPERF1 unit Port 10
select MSR

E27H 3623 MSR_R1_PMON_IP
ERF1_P11

Package Uncore R-box 1 perfmon IPERF1 unit Port 11
select MSR

E28H 3624 MSR_R1_PMON_IP
ERF1_P12

Package Uncore R-box 1 perfmon IPERF1 unit Port 12
select MSR

E29H 3625 MSR_R1_PMON_IP
ERF1_P13

Package Uncore R-box 1 perfmon IPERF1 unit Port 13
select MSR

E2AH 3626 MSR_R1_PMON_IP
ERF1_P14

Package Uncore R-box 1 perfmon IPERF1 unit Port 14
select MSR

Table 34-7. Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-131

MODEL-SPECIFIC REGISTERS (MSRS)
E2BH 3627 MSR_R1_PMON_IP
ERF1_P15

Package Uncore R-box 1 perfmon IPERF1 unit Port 15
select MSR

E2CH 3628 MSR_R1_PMON_Q
LX_P4

Package Uncore R-box 1 perfmon QLX unit Port 4
select MSR

E2DH 3629 MSR_R1_PMON_Q
LX_P5

Package Uncore R-box 1 perfmon QLX unit Port 5
select MSR

E2EH 3630 MSR_R1_PMON_Q
LX_P6

Package Uncore R-box 1 perfmon QLX unit Port 6
select MSR

E2FH 3631 MSR_R1_PMON_Q
LX_P7

Package Uncore R-box 1 perfmon QLX unit Port 7
select MSR

E30H 3632 MSR_R1_PMON_E
VNT_SEL8

Package Uncore R-box 1 perfmon event select MSR

E31H 3633 MSR_R1_PMON_C
TR8

Package Uncore R-box 1 perfmon counter MSR

E32H 3634 MSR_R1_PMON_E
VNT_SEL9

Package Uncore R-box 1 perfmon event select MSR

E33H 3635 MSR_R1_PMON_C
TR9

Package Uncore R-box 1 perfmon counter MSR

E34H 3636 MSR_R1_PMON_E
VNT_SEL10

Package Uncore R-box 1 perfmon event select MSR

E35H 3637 MSR_R1_PMON_C
TR10

Package Uncore R-box 1 perfmon counter MSR

E36H 3638 MSR_R1_PMON_E
VNT_SEL11

Package Uncore R-box 1 perfmon event select MSR

E37H 3639 MSR_R1_PMON_C
TR11

Package Uncore R-box 1 perfmon counter MSR

E38H 3640 MSR_R1_PMON_E
VNT_SEL12

Package Uncore R-box 1 perfmon event select MSR

E39H 3641 MSR_R1_PMON_C
TR12

Package Uncore R-box 1 perfmon counter MSR

E3AH 3642 MSR_R1_PMON_E
VNT_SEL13

Package Uncore R-box 1 perfmon event select MSR

Table 34-7. Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-132 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
E3BH 3643 MSR_R1_PMON_C
TR13

Package Uncore R-box 1perfmon counter MSR

E3CH 3644 MSR_R1_PMON_E
VNT_SEL14

Package Uncore R-box 1 perfmon event select MSR

E3DH 3645 MSR_R1_PMON_C
TR14

Package Uncore R-box 1 perfmon counter MSR

E3EH 3646 MSR_R1_PMON_E
VNT_SEL15

Package Uncore R-box 1 perfmon event select MSR

E3FH 3647 MSR_R1_PMON_C
TR15

Package Uncore R-box 1 perfmon counter MSR

E45H 3653 MSR_B0_PMON_M
ATCH

Package Uncore B-box 0 perfmon local box match MSR

E46H 3654 MSR_B0_PMON_M
ASK

Package Uncore B-box 0 perfmon local box mask MSR

E49H 3657 MSR_S0_PMON_M
ATCH

Package Uncore S-box 0 perfmon local box match MSR

E4AH 3658 MSR_S0_PMON_M
ASK

Package Uncore S-box 0 perfmon local box mask MSR

E4DH 3661 MSR_B1_PMON_M
ATCH

Package Uncore B-box 1 perfmon local box match MSR

E4EH 3662 MSR_B1_PMON_M
ASK

Package Uncore B-box 1 perfmon local box mask MSR

E54H 3668 MSR_M0_PMON_M
M_CONFIG

Package Uncore M-box 0 perfmon local box address
match/mask config MSR

E55H 3669 MSR_M0_PMON_A
DDR_MATCH

Package Uncore M-box 0 perfmon local box address
match MSR

E56H 3670 MSR_M0_PMON_A
DDR_MASK

Package Uncore M-box 0 perfmon local box address
mask MSR

E59H 3673 MSR_S1_PMON_M
ATCH

Package Uncore S-box 1 perfmon local box match MSR

E5AH 3674 MSR_S1_PMON_M
ASK

Package Uncore S-box 1 perfmon local box mask MSR

E5CH 3676 MSR_M1_PMON_M
M_CONFIG

Package Uncore M-box 1 perfmon local box address
match/mask config MSR

Table 34-7. Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-133

MODEL-SPECIFIC REGISTERS (MSRS)
34.5 MSRS IN THE INTEL XEON PROCESSOR 5600 SERIES
(INTEL® MICROARCHITECTURE CODE NAME
WESTMERE)

Intel Xeon processor 5600 series (Intel® microarchitecture code name Westmere)
supports the MSR interfaces listed in Table 34-5, Table 34-6, plus additional MSR
listed in Table 34-8. These MSRs also apply to Intel Core i7, i5 and i3 processor family
with CPUID signature DisplayFamily_DisplayModel of 06_25H and 06_2CH, see Table
34-1.

E5DH 3677 MSR_M1_PMON_A
DDR_MATCH

Package Uncore M-box 1 perfmon local box address
match MSR

E5EH 3678 MSR_M1_PMON_A
DDR_MASK

Package Uncore M-box 1 perfmon local box address
mask MSR

3B5H 965 MSR_UNCORE_PM
C5

Package See Section 18.6.2.2, “Uncore Performance
Event Configuration Facility.”

Table 34-8. Additional MSRs Supported by Intel Processors (Intel Microarchitecture
Code Name Westmere)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

1A7H 423 MSR_OFFCORE_RS
P_1

Thread Offcore Response Event Select Register (R/W)

1ADH 429 MSR_TURBO_RATI
O_LIMIT

Package Maximum Ratio Limit of Turbo Mode.

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C.

Maximum turbo ratio limit of 1 core active.

15:8 Package Maximum Ratio Limit for 2C.

Maximum turbo ratio limit of 2 core active.

23:16 Package Maximum Ratio Limit for 3C.

Maximum turbo ratio limit of 3 core active.

Table 34-7. Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-134 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
34.6 MSRS IN THE INTEL XEON PROCESSOR E7 FAMILY
(INTEL® MICROARCHITECTURE CODE NAME
WESTMERE)

Intel Xeon processor E7 family (Intel® microarchitecture code name Westmere)
supports the MSR interfaces listed in Table 34-5 (except MSR address 1ADH), Table
34-6, plus additional MSR listed in Table 34-9.

31:24 Package Maximum Ratio Limit for 4C.

Maximum turbo ratio limit of 4 core active.

39:32 Package Maximum Ratio Limit for 5C.

Maximum turbo ratio limit of 5 core active.

47:40 Package Maximum Ratio Limit for 6C.

Maximum turbo ratio limit of 6 core active.

63:48 Reserved.

1B0H 432 IA32_ENERGY_PE
RF_BIAS

Package See Table 34-2.

Table 34-9. Additional MSRs Supported by Intel Xeon Processor E7 Family

Register
Address Register Name

Scope
Bit Description

 Hex Dec

1A7H 423 MSR_OFFCORE_RS
P_1

Thread Offcore Response Event Select Register (R/W)

1ADH 429 MSR_TURBO_RATI
O_LIMIT

Package Reserved.

Attempt to read/write will cause #UD

1B0H 432 IA32_ENERGY_PE
RF_BIAS

Package See Table 34-2.

F40H 3904 MSR_C8_PMON_B
OX_CTRL

Package Uncore C-box 8 perfmon local box control MSR

Table 34-8. Additional MSRs Supported by Intel Processors (Contd.)(Intel
Microarchitecture Code Name Westmere)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-135

MODEL-SPECIFIC REGISTERS (MSRS)
F41H 3905 MSR_C8_PMON_B
OX_STATUS

Package Uncore C-box 8 perfmon local box status MSR

F42H 3906 MSR_C8_PMON_B
OX_OVF_CTRL

Package Uncore C-box 8 perfmon local box overflow
control MSR

F50H 3920 MSR_C8_PMON_E
VNT_SEL0

Package Uncore C-box 8 perfmon event select MSR

F51H 3921 MSR_C8_PMON_C
TR0

Package Uncore C-box 8 perfmon counter MSR

F52H 3922 MSR_C8_PMON_E
VNT_SEL1

Package Uncore C-box 8 perfmon event select MSR

F53H 3923 MSR_C8_PMON_C
TR1

Package Uncore C-box 8 perfmon counter MSR

F54H 3924 MSR_C8_PMON_E
VNT_SEL2

Package Uncore C-box 8 perfmon event select MSR

F55H 3925 MSR_C8_PMON_C
TR2

Package Uncore C-box 8 perfmon counter MSR

F56H 3926 MSR_C8_PMON_E
VNT_SEL3

Package Uncore C-box 8 perfmon event select MSR

F57H 3927 MSR_C8_PMON_C
TR3

Package Uncore C-box 8 perfmon counter MSR

F58H 3928 MSR_C8_PMON_E
VNT_SEL4

Package Uncore C-box 8 perfmon event select MSR

F59H 3929 MSR_C8_PMON_C
TR4

Package Uncore C-box 8 perfmon counter MSR

F5AH 3930 MSR_C8_PMON_E
VNT_SEL5

Package Uncore C-box 8 perfmon event select MSR

F5BH 3931 MSR_C8_PMON_C
TR5

Package Uncore C-box 8 perfmon counter MSR

FC0H 4032 MSR_C9_PMON_B
OX_CTRL

Package Uncore C-box 9 perfmon local box control MSR

FC1H 4033 MSR_C9_PMON_B
OX_STATUS

Package Uncore C-box 9 perfmon local box status MSR

Table 34-9. Additional MSRs Supported by Intel Xeon Processor E7 Family (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-136 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
34.7 MSRS IN INTEL® PROCESSOR FAMILY (INTEL®
MICROARCHITECTURE CODE NAME SANDY BRIDGE)

Table 34-10 lists model-specific registers (MSRs) that are common to Intel®
processor family based on Intel® microarchitecture (Sandy Bridge). All architectural
MSRs listed in Table 34-2 are supported. These processors have a CPUID signature

FC2H 4034 MSR_C9_PMON_B
OX_OVF_CTRL

Package Uncore C-box 9 perfmon local box overflow
control MSR

FD0H 4048 MSR_C9_PMON_E
VNT_SEL0

Package Uncore C-box 9 perfmon event select MSR

FD1H 4049 MSR_C9_PMON_C
TR0

Package Uncore C-box 9 perfmon counter MSR

FD2H 4050 MSR_C9_PMON_E
VNT_SEL1

Package Uncore C-box 9 perfmon event select MSR

FD3H 4051 MSR_C9_PMON_C
TR1

Package Uncore C-box 9 perfmon counter MSR

FD4H 4052 MSR_C9_PMON_E
VNT_SEL2

Package Uncore C-box 9 perfmon event select MSR

FD5H 4053 MSR_C9_PMON_C
TR2

Package Uncore C-box 9 perfmon counter MSR

FD6H 4054 MSR_C9_PMON_E
VNT_SEL3

Package Uncore C-box 9 perfmon event select MSR

FD7H 4055 MSR_C9_PMON_C
TR3

Package Uncore C-box 9 perfmon counter MSR

FD8H 4056 MSR_C9_PMON_E
VNT_SEL4

Package Uncore C-box 9 perfmon event select MSR

FD9H 4057 MSR_C9_PMON_C
TR4

Package Uncore C-box 9 perfmon counter MSR

FDAH 4058 MSR_C9_PMON_E
VNT_SEL5

Package Uncore C-box 9 perfmon event select MSR

FDBH 4059 MSR_C9_PMON_C
TR5

Package Uncore C-box 9 perfmon counter MSR

Table 34-9. Additional MSRs Supported by Intel Xeon Processor E7 Family (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-137

MODEL-SPECIFIC REGISTERS (MSRS)
with DisplayFamily_DisplayModel of 06_2AH, 06_2DH, see Table 34-1. Additional
MSRs specific to 06_2AH are listed in Table 34-11.

Table 34-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge

Register
Address Register Name

Scope
Bit Description

 Hex Dec

0H 0 IA32_P5_MC_
ADDR

Thread See Section 34.13, “MSRs in Pentium
Processors.”

1H 1 IA32_P5_MC_
TYPE

Thread See Section 34.13, “MSRs in Pentium
Processors.”

6H 6 IA32_MONITOR_
FILTER_SIZE

Thread See Section 8.10.5, “Monitor/Mwait Address
Range Determination,” and Table 34-2.

10H 16 IA32_TIME_
STAMP_COUNTER

Thread See Section 17.12, “Time-Stamp Counter,” and
see Table 34-2.

17H 23 IA32_PLATFORM_I
D

Package Platform ID. (R)
See Table 34-2.

1BH 27 IA32_APIC_BASE Thread See Section 10.4.4, “Local APIC Status and
Location,” and Table 34-2.

34H 52 MSR_SMI_
COUNT

Thread SMI Counter. (R/O).

31:0 SMI Count. (R/O)

Count SMIs

63:32 Reserved.

3AH 58 IA32_FEATURE_
CONTROL

Thread Control Features in Intel 64Processor.
(R/W).

See Table 34-2.

79H 121 IA32_BIOS_
UPDT_TRIG

Core BIOS Update Trigger Register. (W)

See Table 34-2.

8BH 139 IA32_BIOS_
SIGN_ID

Thread BIOS Update Signature ID. (RO)

See Table 34-2.

C1H 193 IA32_PMC0 Thread Performance counter register. See
Table 34-2.

C2H 194 IA32_PMC1 Thread Performance counter register. See
Table 34-2.
34-138 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
C3H 195 IA32_PMC2 Thread Performance counter register. See
Table 34-2.

C4H 196 IA32_PMC3 Thread Performance counter register. See
Table 34-2.

C5H 197 IA32_PMC4 Core Performance counter register. See
Table 34-2.

C6H 198 IA32_PMC5 Core Performance counter register. See
Table 34-2.

C7H 199 IA32_PMC6 Core Performance counter register. See
Table 34-2.

C8H 200 IA32_PMC7 Core Performance counter register. See
Table 34-2.

CEH 206 MSR_PLATFORM_I
NFO

Package See http://biosbits.org.

7:0 Reserved.

15:8 Package Maximum Non-Turbo Ratio. (R/O)

The is the ratio of the frequency that invariant
TSC runs at. Frequency = ratio * 100 MHz.

27:16 Reserved.

28 Package Programmable Ratio Limit for Turbo Mode.
(R/O)

When set to 1, indicates that Programmable
Ratio Limits for Turbo mode is enabled, and
when set to 0, indicates Programmable Ratio
Limits for Turbo mode is disabled.

29 Package Programmable TDP Limit for Turbo Mode.
(R/O)

When set to 1, indicates that TDP Limits for
Turbo mode are programmable, and when set
to 0, indicates TDP Limit for Turbo mode is not
programmable.

39:30 Reserved.

Table 34-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-139

MODEL-SPECIFIC REGISTERS (MSRS)
47:40 Package Maximum Efficiency Ratio. (R/O)

The is the minimum ratio (maximum
efficiency) that the processor can operates, in
units of 100MHz.

63:48 Reserved.

E2H 226 MSR_PKG_CST_CO
NFIG_CONTROL

Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-
state code names, unrelated to MWAIT
extension C-state parameters or ACPI C-
States.

See http://biosbits.org.

2:0 Package C-State limit. (R/W)

Specifies the lowest processor-specific C-
state code name (consuming the least power).
for the package. The default is set as factory-
configured package C-state limit.

The following C-state code name encodings
are supported:

000b: C0/C1 (no package C-sate support)

001b: C2

010b: C6 no retention

011b: C6 retention

100b: C7

101b: C7s

111: No package C-state limit.

Note: This field cannot be used to limit
package C-state to C3.

9:3 Reserved.

10 I/O MWAIT Redirection Enable. (R/W)

When set, will map IO_read instructions sent
to IO register specified by
MSR_PMG_IO_CAPTURE_BASE to MWAIT
instructions

14:11 Reserved.

Table 34-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-140 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
15 CFG Lock. (R/WO)

When set, lock bits 15:0 of this register until
next reset.

24:16 Reserved.

25 C3 state auto demotion enable. (R/W)

When set, the processor will conditionally
demote C6/C7 requests to C3 based on uncore
auto-demote information.

26 C1 state auto demotion enable. (R/W)

When set, the processor will conditionally
demote C3/C6/C7 requests to C1 based on
uncore auto-demote information.

27 Enable C3 undemotion (R/W)

When set, enables undemotion from demoted
C3.

28 Enable C1 undemotion (R/W)

When set, enables undemotion from demoted
C1.

63:29 Reserved.

E4H 228 MSR_PMG_IO_CAP
TURE_BASE

Core Power Management IO Redirection in C-state
(R/W) See http://biosbits.org.

15:0 LVL_2 Base Address. (R/W)

Specifies the base address visible to software
for IO redirection. If IO MWAIT Redirection is
enabled, reads to this address will be
consumed by the power management logic
and decoded to MWAIT instructions. When IO
port address redirection is enabled, this is the
IO port address reported to the OS/software.

Table 34-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-141

MODEL-SPECIFIC REGISTERS (MSRS)
18:16 C-state Range. (R/W)

Specifies the encoding value of the maximum
C-State code name to be included when IO
read to MWAIT redirection is enabled by
MSR_PMG_CST_CONFIG_CONTROL[bit10]:

000b - C3 is the max C-State to include

001b - C6 is the max C-State to include

010b - C7 is the max C-State to include

63:19 Reserved.

E7H 231 IA32_MPERF Thread Maximum Performance Frequency Clock
Count. (RW) See Table 34-2.

E8H 232 IA32_APERF Thread Actual Performance Frequency Clock Count.
(RW) See Table 34-2.

FEH 254 IA32_MTRRCAP Thread See Table 34-2.

174H 372 IA32_SYSENTER_C
S

Thread See Table 34-2.

175H 373 IA32_SYSENTER_E
SP

Thread See Table 34-2.

176H 374 IA32_SYSENTER_E
IP

Thread See Table 34-2.

179H 377 IA32_MCG_CAP Thread See Table 34-2.

17AH 378 IA32_MCG_
STATUS

Thread

0 RIPV.

When set, bit indicates that the instruction
addressed by the instruction pointer pushed
on the stack (when the machine check was
generated) can be used to restart the
program. If cleared, the program cannot be
reliably restarted.

Table 34-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-142 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
1 EIPV.

When set, bit indicates that the instruction
addressed by the instruction pointer pushed
on the stack (when the machine check was
generated) is directly associated with the
error.

2 MCIP.

When set, bit indicates that a machine check
has been generated. If a second machine
check is detected while this bit is still set, the
processor enters a shutdown state. Software
should write this bit to 0 after processing a
machine check exception.

63:3 Reserved.

186H 390 IA32_
PERFEVTSEL0

Thread See Table 34-2.

187H 391 IA32_
PERFEVTSEL1

Thread See Table 34-2.

188H 392 IA32_
PERFEVTSEL2

Thread See Table 34-2.

189H 393 IA32_
PERFEVTSEL3

Thread See Table 34-2.

18AH 394 IA32_
PERFEVTSEL4

Core See Table 34-2; If CPUID.0AH:EAX[15:8] = 8

18BH 395 IA32_
PERFEVTSEL5

Core See Table 34-2; If CPUID.0AH:EAX[15:8] = 8

18CH 396 IA32_
PERFEVTSEL6

Core See Table 34-2; If CPUID.0AH:EAX[15:8] = 8

18DH 397 IA32_
PERFEVTSEL7

Core See Table 34-2; If CPUID.0AH:EAX[15:8] = 8

198H 408 IA32_PERF_STAT
US

Package See Table 34-2.

15:0 Current Performance State Value.

63:16 Reserved.

Table 34-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-143

MODEL-SPECIFIC REGISTERS (MSRS)
198H 408 MSR_PERF_STATU
S

Package

47:32 Core Voltage (R/O)

P-state core voltage can be computed by

MSR_PERF_STATUS[37:32] * (float) 1/(2^13).

199H 409 IA32_PERF_CTL Thread See Table 34-2.

19AH 410 IA32_CLOCK_
MODULATION

Thread Clock Modulation. (R/W)

see Table 34-2

IA32_CLOCK_MODULATION MSR was
originally named IA32_THERM_CONTROL
MSR.

3:0 On demand Clock Modulation Duty Cycle (R/W).

In 6.25% increment

4 On demand Clock Modulation Enable (R/W).

63:5 Reserved.

19BH 411 IA32_THERM_
INTERRUPT

Core Thermal Interrupt Control. (R/W)

See Table 34-2.

19CH 412 IA32_THERM_
STATUS

Core Thermal Monitor Status. (R/W)

See Table 34-2.

1A0 416 IA32_MISC_
ENABLE

Enable Misc. Processor Features. (R/W)

Allows a variety of processor functions to be
enabled and disabled.

0 Thread Fast-Strings Enable. See Table 34-2

6:1 Reserved.

7 Thread Performance Monitoring Available. (R) See
Table 34-2.

10:8 Reserved.

11 Thread Branch Trace Storage Unavailable. (RO) See
Table 34-2.

12 Thread Precise Event Based Sampling Unavailable.
(RO) See Table 34-2.

Table 34-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-144 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
15:13 Reserved.

16 Package Enhanced Intel SpeedStep Technology
Enable. (R/W) See Table 34-2.

18 Thread ENABLE MONITOR FSM. (R/W) See Table 34-2.

21:19 Reserved.

22 Thread Limit CPUID Maxval. (R/W) See Table 34-2.

23 Thread xTPR Message Disable. (R/W) See
Table 34-2.

33:24 Reserved.

34 Thread XD Bit Disable. (R/W) See Table 34-2.

37:35 Reserved.

38 Package Turbo Mode Disable. (R/W)

When set to 1 on processors that support Intel
Turbo Boost Technology, the turbo mode
feature is disabled and the IDA_Enable feature
flag will be clear (CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support
IDA, CPUID.06H: EAX[1] reports the
processor’s support of turbo mode is enabled.

Note: the power-on default value is used by
BIOS to detect hardware support of turbo
mode. If power-on default value is 1, turbo
mode is available in the processor. If power-on
default value is 0, turbo mode is not available.

63:39 Reserved.

1A2H 418 MSR_
TEMPERATURE_TA
RGET

Unique

15:0 Reserved.

23:16 Temperature Target. (R)

The minimum temperature at which
PROCHOT# will be asserted. The value is
degree C.

Table 34-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-145

MODEL-SPECIFIC REGISTERS (MSRS)
63:24 Reserved.

1A6H 422 MSR_OFFCORE_RS
P_0

Thread Offcore Response Event Select Register (R/W)

1A7H 422 MSR_OFFCORE_RS
P_1

Thread Offcore Response Event Select Register (R/W)

1AAH 426 MSR_MISC_PWR_
MGMT

See http://biosbits.org.

1ADH 428 MSR_TURBO_PWR
_CURRENT_LIMIT

See http://biosbits.org.

1B0H 432 IA32_ENERGY_PE
RF_BIAS

Package See Table 34-2.

1B1H 433 IA32_PACKAGE_T
HERM_STATUS

Package See Table 34-2.

1B2H 434 IA32_PACKAGE_T
HERM_INTERRUPT

Package See Table 34-2.

1C8H 456 MSR_LBR_SELECT Thread Last Branch Record Filtering Select Register
(R/W) See Section 17.6.2, “Filtering of Last
Branch Records.”

1C9H 457 MSR_
LASTBRANCH_
TOS

Thread Last Branch Record Stack TOS. (R)

Contains an index (bits 0-3) that points to the
MSR containing the most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at
680H).

1D9H 473 IA32_DEBUGCTL Thread Debug Control. (R/W) See Table 34-2.

1DDH 477 MSR_LER_FROM_
LIP

Thread Last Exception Record From Linear IP. (R)

Contains a pointer to the last branch
instruction that the processor executed prior
to the last exception that was generated or
the last interrupt that was handled.

Table 34-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-146 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
1DEH 478 MSR_LER_TO_
LIP

Thread Last Exception Record To Linear IP. (R)

This area contains a pointer to the target of
the last branch instruction that the processor
executed prior to the last exception that was
generated or the last interrupt that was
handled.

1F2H 498 IA32_SMRR_PHYS
BASE

Core See Table 34-2.

1F3H 499 IA32_SMRR_PHYS
MASK

Core See Table 34-2.

1FCH 508 MSR_POWER_CTL Core See http://biosbits.org.

200H 512 IA32_MTRR_PHYS
BASE0

Thread See Table 34-2.

201H 513 IA32_MTRR_PHYS
MASK0

Thread See Table 34-2.

202H 514 IA32_MTRR_PHYS
BASE1

Thread See Table 34-2.

203H 515 IA32_MTRR_PHYS
MASK1

Thread See Table 34-2.

204H 516 IA32_MTRR_PHYS
BASE2

Thread See Table 34-2.

205H 517 IA32_MTRR_PHYS
MASK2

Thread See Table 34-2.

206H 518 IA32_MTRR_PHYS
BASE3

Thread See Table 34-2.

207H 519 IA32_MTRR_PHYS
MASK3

Thread See Table 34-2.

208H 520 IA32_MTRR_PHYS
BASE4

Thread See Table 34-2.

209H 521 IA32_MTRR_PHYS
MASK4

Thread See Table 34-2.

20AH 522 IA32_MTRR_PHYS
BASE5

Thread See Table 34-2.

Table 34-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-147

MODEL-SPECIFIC REGISTERS (MSRS)
20BH 523 IA32_MTRR_PHYS
MASK5

Thread See Table 34-2.

20CH 524 IA32_MTRR_PHYS
BASE6

Thread See Table 34-2.

20DH 525 IA32_MTRR_PHYS
MASK6

Thread See Table 34-2.

20EH 526 IA32_MTRR_PHYS
BASE7

Thread See Table 34-2.

20FH 527 IA32_MTRR_PHYS
MASK7

Thread See Table 34-2.

210H 528 IA32_MTRR_PHYS
BASE8

Thread See Table 34-2.

211H 529 IA32_MTRR_PHYS
MASK8

Thread See Table 34-2.

212H 530 IA32_MTRR_PHYS
BASE9

Thread See Table 34-2.

213H 531 IA32_MTRR_PHYS
MASK9

Thread See Table 34-2.

250H 592 IA32_MTRR_FIX6
4K_00000

Thread See Table 34-2.

258H 600 IA32_MTRR_FIX1
6K_80000

Thread See Table 34-2.

259H 601 IA32_MTRR_FIX1
6K_A0000

Thread See Table 34-2.

268H 616 IA32_MTRR_FIX4
K_C0000

Thread See Table 34-2.

269H 617 IA32_MTRR_FIX4
K_C8000

Thread See Table 34-2.

26AH 618 IA32_MTRR_FIX4
K_D0000

Thread See Table 34-2.

26BH 619 IA32_MTRR_FIX4
K_D8000

Thread See Table 34-2.

Table 34-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-148 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
26CH 620 IA32_MTRR_FIX4
K_E0000

Thread See Table 34-2.

26DH 621 IA32_MTRR_FIX4
K_E8000

Thread See Table 34-2.

26EH 622 IA32_MTRR_FIX4
K_F0000

Thread See Table 34-2.

26FH 623 IA32_MTRR_FIX4
K_F8000

Thread See Table 34-2.

277H 631 IA32_PAT Thread See Table 34-2.

280H 640 IA32_MC0_CTL2 Core See Table 34-2.

281H 641 IA32_MC1_CTL2 Core See Table 34-2.

282H 642 IA32_MC2_CTL2 Core See Table 34-2.

283H 643 IA32_MC3_CTL2 Core See Table 34-2.

284H 644 MSR_MC4_CTL2 Package Always 0 (CMCI not supported).

2FFH 767 IA32_MTRR_DEF_
TYPE

Thread Default Memory Types. (R/W) See
Table 34-2.

309H 777 IA32_FIXED_CTR0 Thread Fixed-Function Performance Counter
Register 0. (R/W) See Table 34-2.

30AH 778 IA32_FIXED_CTR1 Thread Fixed-Function Performance Counter
Register 1. (R/W) See Table 34-2.

30BH 779 IA32_FIXED_CTR2 Thread Fixed-Function Performance Counter
Register 2. (R/W) See Table 34-2.

345H 837 IA32_PERF_CAPA
BILITIES

Thread See Table 34-2. See Section 17.4.1,
“IA32_DEBUGCTL MSR.”

5:0 LBR Format. See Table 34-2.

6 PEBS Record Format.

7 PEBSSaveArchRegs. See Table 34-2.

11:8 PEBS_REC_FORMAT. See Table 34-2.

12 SMM_FREEZE. See Table 34-2.

63:13 Reserved.

Table 34-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-149

MODEL-SPECIFIC REGISTERS (MSRS)
38DH 909 IA32_FIXED_CTR_
CTRL

Thread Fixed-Function-Counter Control Register.
(R/W) See Table 34-2.

38EH 910 IA32_PERF_
GLOBAL_STAUS

Thread See Table 34-2. See Section 18.4.2, “Global
Counter Control Facilities.”

38FH 911 IA32_PERF_
GLOBAL_CTRL

Thread See Table 34-2. See Section 18.4.2, “Global
Counter Control Facilities.”

390H 912 IA32_PERF_
GLOBAL_OVF_
CTRL

Thread See Table 34-2. See Section 18.4.2, “Global
Counter Control Facilities.”

391H 913 MSR_UNC_PERF_
GLOBAL_CTRL

Package Uncore PMU global control

0 Core 0 select

1 Core 1 select

2 Core 2 select

3 Core 3 select

18:4 Reserved.

29 Enable all uncore counters

30 Enable PMI on overflow

31 Enable Freezing counter when overflow

63:32 Reserved.

392H 914 MSR_UNC_PERF_
GLOBAL_STATUS

Package Uncore PMU main status

0 Fixed counter overflowed

1 CBox counter overflowed

63:2 Reserved.

394H 916 MSR_UNC_PERF_
FIXED_CTRL

Package Uncore fixed counter control (R/W)

19:0 Reserved

20 Enable overflow

21 Reserved

22 Enable counting

Table 34-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-150 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
63:23 Reserved.

395H 917 MSR_UNC_PERF_
FIXED_CTR

Package Uncore fixed counter

47:0 Current count

63:48 Reserved.

3F1H 1009 MSR_PEBS_
ENABLE

Thread See Section 18.6.1.1, “Precise Event Based
Sampling (PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

1 Enable PEBS on IA32_PMC1. (R/W)

2 Enable PEBS on IA32_PMC2. (R/W)

3 Enable PEBS on IA32_PMC3. (R/W)

31:4 Reserved.

32 Enable Load Latency on IA32_PMC0. (R/W)

33 Enable Load Latency on IA32_PMC1. (R/W)

34 Enable Load Latency on IA32_PMC2. (R/W)

35 Enable Load Latency on IA32_PMC3. (R/W)

63:36 Reserved.

3F6H 1014 MSR_PEBS_
LD_LAT

Thread see See Section 18.6.1.2, “Load Latency
Performance Monitoring Facility.”

15:0 Minimum threshold latency value of tagged
load operation that will be counted. (R/W)

63:36 Reserved.

3F8H 1016 MSR_PKG_C3_RES
IDENCY

Package Note: C-state values are processor specific C-
state code names, unrelated to MWAIT
extension C-state parameters or ACPI C-
States.

63:0 Package C3 Residency Counter. (R/O)

Value since last reset that this package is in
processor-specific C3 states. Count at the
same frequency as the TSC.

Table 34-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-151

MODEL-SPECIFIC REGISTERS (MSRS)
3F9H 1017 MSR_PKG_C6_RES
IDENCY

Package Note: C-state values are processor specific C-
state code names, unrelated to MWAIT
extension C-state parameters or ACPI C-
States.

63:0 Package C6 Residency Counter. (R/O)

Value since last reset that this package is in
processor-specific C6 states. Count at the
same frequency as the TSC.

3FAH 1018 MSR_PKG_C7_RES
IDENCY

Package Note: C-state values are processor specific C-
state code names, unrelated to MWAIT
extension C-state parameters or ACPI C-
States.

63:0 Package C7 Residency Counter. (R/O)

Value since last reset that this package is in
processor-specific C7 states. Count at the
same frequency as the TSC.

3FCH 1020 MSR_CORE_C3_RE
SIDENCY

Core Note: C-state values are processor specific C-
state code names, unrelated to MWAIT
extension C-state parameters or ACPI C-
States.

63:0 CORE C3 Residency Counter. (R/O)

Value since last reset that this core is in
processor-specific C3 states. Count at the
same frequency as the TSC.

3FDH 1021 MSR_CORE_C6_RE
SIDENCY

Core Note: C-state values are processor specific C-
state code names, unrelated to MWAIT
extension C-state parameters or ACPI C-
States.

63:0 CORE C6 Residency Counter. (R/O)

Value since last reset that this core is in
processor-specific C6 states. Count at the
same frequency as the TSC.

3FEH 1022 MSR_CORE_C7_RE
SIDENCY

Core Note: C-state values are processor specific C-
state code names, unrelated to MWAIT
extension C-state parameters or ACPI C-
States.

Table 34-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-152 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
63:0 CORE C7 Residency Counter. (R/O)

Value since last reset that this core is in
processor-specific C7 states. Count at the
same frequency as the TSC.

400H 1024 IA32_MC0_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_
STATUS

Core See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

402H 1026 IA32_MC0_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

403H 1027 IA32_MC0_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

404H 1028 IA32_MC1_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_
STATUS

Core See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

406H 1030 IA32_MC1_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

407H 1031 IA32_MC1_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

408H 1032 IA32_MC2_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_
STATUS

Core See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

40AH 1034 IA32_MC2_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

40BH 1035 IA32_MC2_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

40CH 1036 IA32_MC3_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 IA32_MC3_
STATUS

Core See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

40EH 1038 IA32_MC3_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

40FH 1039 IA32_MC3_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

410H 1040 MSR_MC4_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

0 PCU Hardware Error. (R/W)

When set, enables signaling of PCU hardware
detected errors.

1 PCU Controller Error. (R/W)

When set, enables signaling of PCU controller
detected errors

Table 34-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-153

MODEL-SPECIFIC REGISTERS (MSRS)
2 PCU Firmware Error. (R/W)

When set, enables signaling of PCU firmware
detected errors

63:2 Reserved.

411H 1041 IA32_MC4_
STATUS

Core See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

480H 1152 IA32_VMX_BASIC Thread Reporting Register of Basic VMX
Capabilities. (R/O) See Table 34-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBA
SED_CTLS

Thread Capability Reporting Register of Pin-based
VM-execution Controls. (R/O) See
Table 34-2.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCB
ASED_CTLS

Thread Capability Reporting Register of Primary
Processor-based VM-execution Controls.
(R/O)

See Appendix A.3, “VM-Execution Controls.”

483H 1155 IA32_VMX_EXIT_
CTLS

Thread Capability Reporting Register of VM-exit
Controls. (R/O) See Table 34-2.

See Appendix A.4, “VM-Exit Controls.”

484H 1156 IA32_VMX_
ENTRY_CTLS

Thread Capability Reporting Register of VM-entry
Controls. (R/O) See Table 34-2.

See Appendix A.5, “VM-Entry Controls.”

485H 1157 IA32_VMX_MISC Thread Reporting Register of Miscellaneous VMX
Capabilities. (R/O) See Table 34-2.

See Appendix A.6, “Miscellaneous Data.”

486H 1158 IA32_VMX_CR0_
FIXED0

Thread Capability Reporting Register of CR0 Bits
Fixed to 0. (R/O) See Table 34-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

487H 1159 IA32_VMX_CR0_
FIXED1

Thread Capability Reporting Register of CR0 Bits
Fixed to 1. (R/O) See Table 34-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

Table 34-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-154 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
488H 1160 IA32_VMX_CR4_FI
XED0

Thread Capability Reporting Register of CR4 Bits
Fixed to 0. (R/O) See Table 34-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

489H 1161 IA32_VMX_CR4_FI
XED1

Thread Capability Reporting Register of CR4 Bits
Fixed to 1. (R/O) See Table 34-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

48AH 1162 IA32_VMX_
VMCS_ENUM

Thread Capability Reporting Register of VMCS Field
Enumeration. (R/O). See Table 34-2.

See Appendix A.9, “VMCS Enumeration.”

48BH 1163 IA32_VMX_PROCB
ASED_CTLS2

Thread Capability Reporting Register of Secondary
Processor-based VM-execution Controls.
(R/O)

See Appendix A.3, “VM-Execution Controls.”

4C1H 1217 IA32_A_PMC0 Thread See Table 34-2.

4C2H 1218 IA32_A_PMC1 Thread See Table 34-2.

4C3H 1219 IA32_A_PMC2 Thread See Table 34-2.

4C4H 1220 IA32_A_PMC3 Thread See Table 34-2.

4C5H 1221 IA32_A_PMC4 Core See Table 34-2.

4C6H 1222 IA32_A_PMC5 Core See Table 34-2.

4C7H 1223 IA32_A_PMC6 Core See Table 34-2.

C8H 200 IA32_A_PMC7 Core See Table 34-2.

600H 1536 IA32_DS_AREA Thread DS Save Area. (R/W). See Table 34-2.

See Section 18.10.4, “Debug Store (DS)
Mechanism.”

606H 1542 MSR_RAPL_POWE
R_UNIT

Package Unit Multipliers used in RAPL Interfaces (R/O)
See Section 14.7.1, “RAPL Interfaces.”

60AH 1546 MSR_PKGC3_IRTL Package Package C3 Interrupt Response Limit (R/W)

Note: C-state values are processor specific C-
state code names, unrelated to MWAIT
extension C-state parameters or ACPI C-
States.

Table 34-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-155

MODEL-SPECIFIC REGISTERS (MSRS)
9:0 Interrupt response time limit. (R/W)

Specifies the limit that should be used to
decide if the package should be put into a
package C3 state.

12:10 Time Unit. (R/W)

Specifies the encoding value of time unit of
the interrupt response time limit. The
following time unit encodings are supported:

000b: 1 ns

001b: 32 ns

010b: 1024 ns

011b: 32768 ns

100b: 1048576 ns

101b: 33554432 ns

14:13 Reserved.

15 Valid. (R/W)

Indicates whether the values in bits 12:0 are
valid and can be used by the processor for
package C-sate management.

63:16 Reserved.

60BH 1547 MSR_PKGC6_IRTL Package Package C6 Interrupt Response Limit (R/W)

This MSR defines the budget allocated for the
package to exit from C6 to a C0 state, where
interrupt request can be delivered to the core
and serviced. Additional core-exit latency amy
be applicable depending on the actual C-state
the core is in.

Note: C-state values are processor specific C-
state code names, unrelated to MWAIT
extension C-state parameters or ACPI C-
States.

9:0 Interrupt response time limit. (R/W)

Specifies the limit that should be used to
decide if the package should be put into a
package C6 state.

Table 34-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-156 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
12:10 Time Unit. (R/W)

Specifies the encoding value of time unit of
the interrupt response time limit. The
following time unit encodings are supported:

000b: 1 ns

001b: 32 ns

010b: 1024 ns

011b: 32768 ns

100b: 1048576 ns

101b: 33554432 ns

14:13 Reserved.

15 Valid. (R/W)

Indicates whether the values in bits 12:0 are
valid and can be used by the processor for
package C-sate management.

63:16 Reserved.

60CH 1548 MSR_PKGC7_IRTL Package Package C7 Interrupt Response Limit (R/W)

This MSR defines the budget allocated for the
package to exit from C7 to a C0 state, where
interrupt request can be delivered to the core
and serviced. Additional core-exit latency amy
be applicable depending on the actual C-state
the core is in.

Note: C-state values are processor specific C-
state code names, unrelated to MWAIT
extension C-state parameters or ACPI C-
States.

9:0 Interrupt response time limit. (R/W)

Specifies the limit that should be used to
decide if the package should be put into a
package C7 state.

Table 34-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-157

MODEL-SPECIFIC REGISTERS (MSRS)
12:10 Time Unit. (R/W)

Specifies the encoding value of time unit of
the interrupt response time limit. The
following time unit encodings are supported:

000b: 1 ns

001b: 32 ns

010b: 1024 ns

011b: 32768 ns

100b: 1048576 ns

101b: 33554432 ns

14:13 Reserved.

15 Valid. (R/W)

Indicates whether the values in bits 12:0 are
valid and can be used by the processor for
package C-sate management.

63:16 Reserved.

60DH 1549 MSR_PKG_C2_RES
IDENCY

Package Note: C-state values are processor specific C-
state code names, unrelated to MWAIT
extension C-state parameters or ACPI C-
States.

63:0 Package C2 Residency Counter. (R/O)

Value since last reset that this package is in
processor-specific C2 states. Count at the
same frequency as the TSC.

610H 1552 MSR_PKG_RAPL_P
OWER_LIMIT

Package PKG RAPL Power Limit Control (R/W) See
Section 14.7.3, “Package RAPL Domain.”

611H 1553 MSR_PKG_ENERY_
STATUS

Package PKG Energy Status (R/O) See Section 14.7.3,
“Package RAPL Domain.”

614H 1556 MSR_PKG_POWER
_INFO

Package PKG RAPL Parameters (R/W) See Section
14.7.3, “Package RAPL Domain.”

638H 1592 MSR_PP0_POWER
_LIMIT

Package PP0 RAPL Power Limit Control (R/W) See
Section 14.7.4, “PP0/PP1 RAPL Domains.”

639H 1593 MSR_PP0_ENERY_
STATUS

Package PP0 Energy Status (R/O) See Section 14.7.4,
“PP0/PP1 RAPL Domains.”

Table 34-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-158 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
63AH 1594 MSR_PP0_POLICY Package PP0 Balance Policy (R/W) See Section 14.7.4,
“PP0/PP1 RAPL Domains.”

63BH 1595 MSR_PP0_PERF_S
TATUS

Package PP0 Performance Throttling Status (R/O) See
Section 14.7.4, “PP0/PP1 RAPL Domains.”

680H 1664 MSR_
LASTBRANCH_0_F
ROM_IP

Thread Last Branch Record 0 From IP. (R/W)

One of sixteen pairs of last branch record
registers on the last branch record stack. This
part of the stack contains pointers to the
source instruction for one of the last sixteen
branches, exceptions, or interrupts taken by
the processor. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.6.1, “LBR Stack.”

681H 1665 MSR_
LASTBRANCH_1_F
ROM_IP

Thread Last Branch Record 1 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

682H 1666 MSR_
LASTBRANCH_2_F
ROM_IP

Thread Last Branch Record 2 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

683H 1667 MSR_
LASTBRANCH_3_F
ROM_IP

Thread Last Branch Record 3 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

684H 1668 MSR_
LASTBRANCH_4_F
ROM_IP

Thread Last Branch Record 4 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

685H 1669 MSR_
LASTBRANCH_5_F
ROM_IP

Thread Last Branch Record 5 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

686H 1670 MSR_
LASTBRANCH_6_F
ROM_IP

Thread Last Branch Record 6 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

687H 1671 MSR_
LASTBRANCH_7_F
ROM_IP

Thread Last Branch Record 7 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

Table 34-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-159

MODEL-SPECIFIC REGISTERS (MSRS)
688H 1672 MSR_
LASTBRANCH_8_F
ROM_IP

Thread Last Branch Record 8 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

689H 1673 MSR_
LASTBRANCH_9_F
ROM_IP

Thread Last Branch Record 9 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

68AH 1674 MSR_
LASTBRANCH_10_
FROM_IP

Thread Last Branch Record 10 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

68BH 1675 MSR_
LASTBRANCH_11_
FROM_IP

Thread Last Branch Record 11 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

68CH 1676 MSR_
LASTBRANCH_12_
FROM_IP

Thread Last Branch Record 12 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

68DH 1677 MSR_
LASTBRANCH_13_
FROM_IP

Thread Last Branch Record 13 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

68EH 1678 MSR_
LASTBRANCH_14_
FROM_IP

Thread Last Branch Record 14 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

68FH 1679 MSR_
LASTBRANCH_15_
FROM_IP

Thread Last Branch Record 15 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

6C0H 1728 MSR_
LASTBRANCH_0_
TO_LIP

Thread Last Branch Record 0 To IP. (R/W)

One of sixteen pairs of last branch record
registers on the last branch record stack. This
part of the stack contains pointers to the
destination instruction for one of the last
sixteen branches, exceptions, or interrupts
taken by the processor.

6C1H 1729 MSR_
LASTBRANCH_1_
TO_LIP

Thread Last Branch Record 1 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

Table 34-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-160 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
6C2H 1730 MSR_
LASTBRANCH_2_
TO_LIP

Thread Last Branch Record 2 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6C3H 1731 MSR_
LASTBRANCH_3_
TO_LIP

Thread Last Branch Record 3 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6C4H 1732 MSR_
LASTBRANCH_4_
TO_LIP

Thread Last Branch Record 4 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6C5H 1733 MSR_
LASTBRANCH_5_
TO_LIP

Thread Last Branch Record 5 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6C6H 1734 MSR_
LASTBRANCH_6_
TO_LIP

Thread Last Branch Record 6 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6C7H 1735 MSR_
LASTBRANCH_7_
TO_LIP

Thread Last Branch Record 7 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6C8H 1736 MSR_
LASTBRANCH_8_
TO_LIP

Thread Last Branch Record 8 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6C9H 1737 MSR_
LASTBRANCH_9_
TO_LIP

Thread Last Branch Record 9 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6CAH 1738 MSR_
LASTBRANCH_10_
TO_LIP

Thread Last Branch Record 10 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6CBH 1739 MSR_
LASTBRANCH_11_
TO_LIP

Thread Last Branch Record 11 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6CCH 1740 MSR_
LASTBRANCH_12_
TO_LIP

Thread Last Branch Record 12 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

Table 34-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-161

MODEL-SPECIFIC REGISTERS (MSRS)
6CDH 1741 MSR_
LASTBRANCH_13_
TO_LIP

Thread Last Branch Record 13 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6CEH 1742 MSR_
LASTBRANCH_14_
TO_LIP

Thread Last Branch Record 14 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6CFH 1743 MSR_
LASTBRANCH_15_
TO_LIP

Thread Last Branch Record 15 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6E0H 1760 IA32_TSC_DEADLI
NE

Thread See Table 34-2.

700H 1792 MSR_UNC_CBO_0_
PERFEVTSEL0

Package Uncore C-Box 0, counter 0 event select MSR

701H 1793 MSR_UNC_CBO_0_
PERFEVTSEL1

Package Uncore C-Box 0, counter 1 event select MSR

705H 1797 MSR_UNC_CBO_0_
UNIT_STATUS

Package Uncore C-Box 0, Overflow Status

706H 1798 MSR_UNC_CBO_0_
PER_CTR0

Package Uncore C-Box 0, performance counter 0

707H 1799 MSR_UNC_CBO_0_
PER_CTR1

Package Uncore C-Box 0, performance counter 1

710H 1808 MSR_UNC_CBO_1_
PERFEVTSEL0

Package Uncore C-Box 1, counter 0 event select MSR

711H 1809 MSR_UNC_CBO_1_
PERFEVTSEL1

Package Uncore C-Box 1, counter 1 event select MSR

715H 1813 MSR_UNC_CBO_1_
UNIT_STATUS

Package Uncore C-Box 1, Overflow Status

716H 1814 MSR_UNC_CBO_1_
PER_CTR0

Package Uncore C-Box 1, performance counter 0

717H 1815 MSR_UNC_CBO_1_
PER_CTR1

Package Uncore C-Box 1, performance counter 1

720H 1824 MSR_UNC_CBO_2_
PERFEVTSEL0

Package Uncore C-Box 2, counter 0 event select MSR

Table 34-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-162 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
721H 1824 MSR_UNC_CBO_2_
PERFEVTSEL1

Package Uncore C-Box 2, counter 1 event select MSR

725H 1829 MSR_UNC_CBO_2_
UNIT_STATUS

Package Uncore C-Box 2, Overflow Status

726H 1830 MSR_UNC_CBO_2_
PER_CTR0

Package Uncore C-Box 2, performance counter 0

727H 1831 MSR_UNC_CBO_2_
PER_CTR1

Package Uncore C-Box 2, performance counter 1

730H 1840 MSR_UNC_CBO_3_
PERFEVTSEL0

Package Uncore C-Box 3, counter 0 event select MSR

731H 1841 MSR_UNC_CBO_3_
PERFEVTSEL1

Package Uncore C-Box 3, counter 1 event select MSR

725H 1845 MSR_UNC_CBO_3_
UNIT_STATUS

Package Uncore C-Box 3, Overflow Status

736H 1846 MSR_UNC_CBO_3_
PER_CTR0

Package Uncore C-Box 3, performance counter 0

737H 1847 MSR_UNC_CBO_3_
PER_CTR1

Package Uncore C-Box 3, performance counter 1

C000_
0080H

IA32_EFER Thread Extended Feature Enables. See Table 34-2.

C000_
0081H

IA32_STAR Thread System Call Target Address. (R/W). See
Table 34-2.

C000_
0082H

IA32_LSTAR Thread IA-32e Mode System Call Target Address.
(R/W). See Table 34-2.

C000_
0084H

IA32_FMASK Thread System Call Flag Mask. (R/W). See
Table 34-2.

C000_
0100H

IA32_FS_BASE Thread Map of BASE Address of FS. (R/W). See
Table 34-2.

C000_
0101H

IA32_GS_BASE Thread Map of BASE Address of GS. (R/W). See
Table 34-2.

C000_
0102H

IA32_KERNEL_GS
BASE

Thread Swap Target of BASE Address of GS. (R/W).
See Table 34-2.

Table 34-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-163

MODEL-SPECIFIC REGISTERS (MSRS)
34.7.1 MSRs In Second Generation Intel® Core Processor Family
(Intel® Microarchitecture Code Name Sandy Bridge)

Table 34-11 lists model-specific registers (MSRs) that are specific to second genera-
tion for Intel® Core processor family (Intel® microarchitecture code name Sandy
Bridge). These processors have a CPUID signature with DisplayFamily_DisplayModel
of 06_2AH, see Table 34-1.

C000_
0103H

IA32_TSC_AUX Thread AUXILIARY TSC Signature. (R/W). See
Table 34-2 and Section 17.12.2,
“IA32_TSC_AUX Register and RDTSCP
Support.”

Table 34-11. MSRs Supported by Second Generation Intel Core Processors (Intel
Microarchitecture Code Name Sandy Bridge)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

1ADH 429 MSR_TURBO_RATI
O_LIMIT

Package Maximum Ratio Limit of Turbo Mode.

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C.

Maximum turbo ratio limit of 1 core active.

15:8 Package Maximum Ratio Limit for 2C.

Maximum turbo ratio limit of 2 core active.

23:16 Package Maximum Ratio Limit for 3C.

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C.

Maximum turbo ratio limit of 4 core active.

63:32 Reserved.

640H 1600 MSR_PP1_POWER
_LIMIT

Package PP1 RAPL Power Limit Control (R/W) See
Section 14.7.4, “PP0/PP1 RAPL Domains.”

Table 34-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-164 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
34.7.2 MSRs In Next Generation Intel® Xeon Processor Family
(Intel® Microarchitecture Code Name Sandy Bridge)

Table 34-12 lists selected model-specific registers (MSRs) that are specific to the
next generation Intel® Xeon processor family (Intel® microarchitecture code name
Sandy Bridge). These processors have a CPUID signature with
DisplayFamily_DisplayModel of 06_2DH, see Table 34-1.

641H 1601 MSR_PP1_ENERY_
STATUS

Package PP1 Energy Status (R/O) See Section 14.7.4,
“PP0/PP1 RAPL Domains.”

642H 1602 MSR_PP1_POLICY Package PP1 Balance Policy (R/W) See Section 14.7.4,
“PP0/PP1 RAPL Domains.”

Table 34-12. Selected MSRs Supported by Next Generation Intel Xeon Processors
(Intel Microarchitecture Code Name Sandy Bridge)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

285H 645 IA32_MC5_CTL2 Package See Table 34-2.

286H 646 IA32_MC6_CTL2 Package See Table 34-2.

287H 647 IA32_MC7_CTL2 Package See Table 34-2.

288H 648 IA32_MC8_CTL2 Package See Table 34-2.

289H 649 IA32_MC9_CTL2 Package See Table 34-2.

28AH 650 IA32_MC10_CTL2 Package See Table 34-2.

28BH 651 IA32_MC11_CTL2 Package See Table 34-2.

28CH 652 IA32_MC12_CTL2 Package See Table 34-2.

28DH 653 IA32_MC13_CTL2 Package See Table 34-2.

28EH 654 IA32_MC14_CTL2 Package See Table 34-2.

28FH 655 IA32_MC15_CTL2 Package See Table 34-2.

290H 656 IA32_MC16_CTL2 Package See Table 34-2.

291H 657 IA32_MC17_CTL2 Package See Table 34-2.

Table 34-11. MSRs Supported by Second Generation Intel Core Processors
(Contd.)(Intel Microarchitecture Code Name Sandy Bridge)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-165

MODEL-SPECIFIC REGISTERS (MSRS)
292H 658 IA32_MC18_CTL2 Package See Table 34-2.

293H 659 IA32_MC19_CTL2 Package See Table 34-2.

414H 1044 MSR_MC5_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

415H 1045 MSR_MC5_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

416H 1046 MSR_MC5_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

417H 1047 MSR_MC5_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

418H 1048 MSR_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

419H 1049 MSR_MC6_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

41AH 1050 MSR_MC6_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41BH 1051 MSR_MC6_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

41CH 1052 MSR_MC7_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

41DH 1053 MSR_MC7_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

41EH 1054 MSR_MC7_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41FH 1055 MSR_MC7_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

420H 1056 MSR_MC8_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

421H 1057 MSR_MC8_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

422H 1058 MSR_MC8_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

423H 1059 MSR_MC8_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

424H 1060 MSR_MC9_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

425H 1061 MSR_MC9_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

426H 1062 MSR_MC9_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

427H 1063 MSR_MC9_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

428H 1064 MSR_MC10_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

429H 1065 MSR_MC10_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

Table 34-12. Selected MSRs Supported by Next Generation Intel Xeon Processors
(Intel Microarchitecture Code Name Sandy Bridge) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-166 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
42AH 1066 MSR_MC10_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

42BH 1067 MSR_MC10_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

42CH 1068 MSR_MC11_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

42DH 1069 MSR_MC11_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

42EH 1070 MSR_MC11_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

42FH 1071 MSR_MC11_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

430H 1072 MSR_MC12_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

431H 1073 MSR_MC12_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

432H 1074 MSR_MC12_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

433H 1075 MSR_MC12_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

434H 1076 MSR_MC13_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

435H 1077 MSR_MC13_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

436H 1078 MSR_MC13_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

437H 1079 MSR_MC13_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

438H 1080 MSR_MC14_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

439H 1081 MSR_MC14_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

43AH 1082 MSR_MC14_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

43BH 1083 MSR_MC14_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

43CH 1084 MSR_MC15_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

43DH 1085 MSR_MC15_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

43EH 1086 MSR_MC15_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

43FH 1087 MSR_MC15_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

440H 1088 MSR_MC16_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

441H 1089 MSR_MC16_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

Table 34-12. Selected MSRs Supported by Next Generation Intel Xeon Processors
(Intel Microarchitecture Code Name Sandy Bridge) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-167

MODEL-SPECIFIC REGISTERS (MSRS)
442H 1090 MSR_MC16_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

443H 1091 MSR_MC16_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

444H 1092 MSR_MC17_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

445H 1093 MSR_MC17_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

446H 1094 MSR_MC17_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

447H 1095 MSR_MC17_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

448H 1096 MSR_MC18_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

449H 1097 MSR_MC18_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

44AH 1098 MSR_MC18_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

44BH 1099 MSR_MC18_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

44CH 1100 MSR_MC19_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

44DH 1101 MSR_MC19_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

44EH 1102 MSR_MC19_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

44FH 1103 MSR_MC19_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

618H 1560 MSR_DRAM_POWE
R_LIMIT

Package DRAM RAPL Power Limit Control (R/W) See
Section 14.7.5, “DRAM RAPL Domain.”

619H 1561 MSR_DRAM_ENER
Y_STATUS

Package DRAM Energy Status (R/O) See Section 14.7.5,
“DRAM RAPL Domain.”

61BH 1563 MSR_DRAM_PERF
_STATUS

Package DRAM Performance Throttling Status (R/O)
See Section 14.7.5, “DRAM RAPL Domain.”

61CH 1564 MSR_DRAM_POWE
R_INFO

Package DRAM RAPL Parameters (R/W) See Section
14.7.5, “DRAM RAPL Domain.”

Table 34-12. Selected MSRs Supported by Next Generation Intel Xeon Processors
(Intel Microarchitecture Code Name Sandy Bridge) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-168 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
34.8 MSRS IN THE NEXT GENERATION INTEL CORE
PROCESSOR (INTEL® MICROARCHITECTURE CODE
NAME IVY BRIDGE)

Next Generation Intel Core processor (Intel® microarchitecture code name Ivy
Bridge) supports the MSR interfaces listed in Table 34-10 and Table 34-11.

34.9 MSRS IN THE PENTIUM® 4 AND INTEL® XEON®
PROCESSORS

Table 34-13 lists MSRs (architectural and model-specific) that are defined across
processor generations based on Intel NetBurst microarchitecture. The processor can
be identified by its CPUID signatures of DisplayFamily encoding of 0FH, see
Table 34-1.
• MSRs with an “IA32_” prefix are designated as “architectural.” This means that

the functions of these MSRs and their addresses remain the same for succeeding
families of IA-32 processors.

• MSRs with an “MSR_” prefix are model specific with respect to address function-
alities. The column “Model Availability” lists the model encoding value(s) within
the Pentium 4 and Intel Xeon processor family at the specified register address.
The model encoding value of a processor can be queried using CPUID. See
“CPUID—CPU Identification” in Chapter 3 of the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 2A.

Table 34-13. MSRs in the Pentium 4 and Intel Xeon Processors

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

0H 0 IA32_P5_MC_ADDR 0, 1, 2,
3, 4, 6

Shared See Section 34.13, “MSRs in
Pentium Processors.”

1H 1 IA32_P5_MC_TYPE 0, 1, 2,
3, 4, 6

Shared See Section 34.13, “MSRs in
Pentium Processors.”

6H 6 IA32_MONITOR_
FILTER_LINE_SIZE

3, 4, 6 Shared See Section 8.10.5,
“Monitor/Mwait Address Range
Determination.”

10H 16 IA32_TIME_STAMP_
COUNTER

0, 1, 2,
3, 4, 6

Unique Time Stamp Counter.

See Table 34-2.
Vol. 3C 34-169

MODEL-SPECIFIC REGISTERS (MSRS)
On earlier processors, only the
lower 32 bits are writable. On any
write to the lower 32 bits, the
upper 32 bits are cleared. For
processor family 0FH, models 3
and 4: all 64 bits are writable.

17H 23 IA32_PLATFORM_ID 0, 1, 2,
3, 4, 6

Shared Platform ID. (R). See Table 34-2.

The operating system can use this
MSR to determine “slot”
information for the processor and
the proper microcode update to
load.

1BH 27 IA32_APIC_BASE 0, 1, 2,
3, 4, 6

Unique APIC Location and Status. (R/W)

See Table 34-2. See Section
10.4.4, “Local APIC Status and
Location.”

2AH 42 MSR_EBC_HARD_
POWERON

0, 1, 2,
3, 4, 6

Shared Processor Hard Power-On
Configuration.

(R/W) Enables and disables
processor features; (R) indicates
current processor configuration.

0 Output Tri-state Enabled. (R)

Indicates whether tri-state output
is enabled (1) or disabled (0) as set
by the strapping of SMI#. The
value in this bit is written on the
deassertion of RESET#; the bit is
set to 1 when the address bus
signal is asserted.

1 Execute BIST. (R)

Indicates whether the execution
of the BIST is enabled (1) or
disabled (0) as set by the
strapping of INIT#. The value in
this bit is written on the
deassertion of RESET#; the bit is
set to 1 when the address bus
signal is asserted.

Table 34-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
34-170 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
2 In Order Queue Depth. (R)

Indicates whether the in order
queue depth for the system bus is
1 (1) or up to 12 (0) as set by the
strapping of A7#. The value in this
bit is written on the deassertion of
RESET#; the bit is set to 1 when
the address bus signal is asserted.

3 MCERR# Observation Disabled.
(R)

Indicates whether MCERR#
observation is enabled (0) or
disabled (1) as determined by the
strapping of A9#. The value in this
bit is written on the deassertion of
RESET#; the bit is set to 1 when
the address bus signal is asserted.

4 BINIT# Observation Enabled. (R)

Indicates whether BINIT#
observation is enabled (0) or
disabled (1) as determined by the
strapping of A10#. The value in
this bit is written on the
deassertion of RESET#; the bit is
set to 1 when the address bus
signal is asserted.

6:5 APIC Cluster ID. (R)

Contains the logical APIC cluster ID
value as set by the strapping of
A12# and A11#. The logical
cluster ID value is written into the
field on the deassertion of
RESET#; the field is set to 1 when
the address bus signal is asserted.

Table 34-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3C 34-171

MODEL-SPECIFIC REGISTERS (MSRS)
7 Bus Park Disable. (R)

Indicates whether bus park is
enabled (0) or disabled (1) as set
by the strapping of A15#. The
value in this bit is written on the
deassertion of RESET#; the bit is
set to 1 when the address bus
signal is asserted.

11:8 Reserved.

13:12 Agent ID. (R)

Contains the logical agent ID value
as set by the strapping of BR[3:0].
The logical ID value is written into
the field on the deassertion of
RESET#; the field is set to 1 when
the address bus signal is asserted.

63:14 Reserved.

2BH 43 MSR_EBC_SOFT_
POWERON

0, 1, 2,
3, 4, 6

Shared Processor Soft Power-On
Configuration. (R/W)

Enables and disables processor
features.

0 RCNT/SCNT On Request
Encoding Enable. (R/W)

Controls the driving of RCNT/SCNT
on the request encoding. Set to
enable (1); clear to disabled (0,
default).

1 Data Error Checking Disable.
(R/W)

Set to disable system data bus
parity checking; clear to enable
parity checking.

2 Response Error Checking
Disable. (R/W)

Set to disable (default); clear to
enable.

Table 34-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
34-172 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
3 Address/Request Error Checking
Disable. (R/W)

Set to disable (default); clear to
enable.

4 Initiator MCERR# Disable. (R/W)

Set to disable MCERR# driving for
initiator bus requests (default);
clear to enable.

5 Internal MCERR# Disable. (R/W)

Set to disable MCERR# driving for
initiator internal errors (default);
clear to enable.

6 BINIT# Driver Disable. (R/W)

Set to disable BINIT# driver
(default); clear to enable driver.

63:7 Reserved.

2CH 44 MSR_EBC_
FREQUENCY_ID

2,3, 4,
6

Shared Processor Frequency
Configuration.

The bit field layout of this MSR
varies according to the MODEL
value in the CPUID version
information. The following bit field
layout applies to Pentium 4 and
Xeon Processors with MODEL
encoding equal or greater than 2.

(R) The field Indicates the current
processor frequency configuration.

15:0 Reserved.

Table 34-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3C 34-173

MODEL-SPECIFIC REGISTERS (MSRS)
18:16 Scalable Bus Speed. (R/W)

Indicates the intended scalable
bus speed:
Encoding Scalable Bus Speed
000B 100 MHz (Model 2)
000B 266 MHz (Model 3 or 4)
001B 133 MHz
010B 200 MHz
011B 166 MHz
100B 333 MHz (Model 6)

133.33 MHz should be utilized if
performing calculation with
System Bus Speed when encoding
is 001B.

166.67 MHz should be utilized if
performing calculation with
System Bus Speed when encoding
is 011B.

266.67 MHz should be utilized if
performing calculation with
System Bus Speed when encoding
is 000B and model encoding = 3
or 4.

333.33 MHz should be utilized if
performing calculation with
System Bus Speed when encoding
is 100B and model encoding = 6.

All other values are reserved.

23:19 Reserved.

31:24 Core Clock Frequency to System
Bus Frequency Ratio. (R)

The processor core clock
frequency to system bus
frequency ratio observed at the
de-assertion of the reset pin.

63:25 Reserved.

Table 34-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
34-174 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
2CH 44 MSR_EBC_
FREQUENCY_ID

0, 1 Shared Processor Frequency
Configuration. (R)

The bit field layout of this MSR
varies according to the MODEL
value of the CPUID version
information. This bit field layout
applies to Pentium 4 and Xeon
Processors with MODEL encoding
less than 2.

Indicates current processor
frequency configuration.

20:0 Reserved.

23:21 Scalable Bus Speed. (R/W)

Indicates the intended scalable
bus speed:
Encoding Scalable Bus Speed
000B 100 MHz

All others values reserved.

63:24 Reserved.

3AH 58 IA32_FEATURE_
CONTROL

3, 4, 6 Unique Control Features in IA-32
Processor. (R/W). See Table 34-2

(If CPUID.01H:ECX.[bit 5])

79H 121 IA32_BIOS_UPDT_
TRIG

0, 1, 2,
3, 4, 6

Shared BIOS Update Trigger Register.
(W) See Table 34-2.

8BH 139 IA32_BIOS_SIGN_ID 0, 1, 2,
3, 4, 6

Unique BIOS Update Signature ID. (R/W)

See Table 34-2.

9BH 155 IA32_SMM_MONITOR_
CTL

3, 4, 6 Unique SMM Monitor Configuration.
(R/W). See Table 34-2.

FEH 254 IA32_MTRRCAP 0, 1, 2,
3, 4, 6

Unique MTRR Information.

See Section 11.11.1, “MTRR
Feature Identification.”.

Table 34-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3C 34-175

MODEL-SPECIFIC REGISTERS (MSRS)
174H 372 IA32_SYSENTER_CS 0, 1, 2,
3, 4, 6

Unique CS register target for CPL 0
code. (R/W). See Table 34-2.

See Section 5.8.7, “Performing
Fast Calls to System Procedures
with the SYSENTER and SYSEXIT
Instructions.”

175H 373 IA32_SYSENTER_ESP 0, 1, 2,
3, 4, 6

Unique Stack pointer for CPL 0 stack.
(R/W). See Table 34-2.

See Section 5.8.7, “Performing
Fast Calls to System Procedures
with the SYSENTER and SYSEXIT
Instructions.”

176H 374 IA32_SYSENTER_EIP 0, 1, 2,
3, 4, 6

Unique CPL 0 code entry point. (R/W).

See Table 34-2. See Section 5.8.7,
“Performing Fast Calls to System
Procedures with the SYSENTER
and SYSEXIT Instructions.”

179H 377 IA32_MCG_CAP 0, 1, 2,
3, 4, 6

Unique Machine Check Capabilities. (R)

See Table 34-2. See Section
15.3.1.1, “IA32_MCG_CAP MSR.”

17AH 378 IA32_MCG_STATUS 0, 1, 2,
3, 4, 6

Unique Machine Check Status. (R). See
Table 34-2. See Section 15.3.1.2,
“IA32_MCG_STATUS MSR.”

17BH 379 IA32_MCG_CTL Machine Check Feature Enable.
(R/W). See Table 34-2.

See Section 15.3.1.3,
“IA32_MCG_CTL MSR.”

180H 384 MSR_MCG_RAX 0, 1, 2,
3, 4, 6

Unique Machine Check EAX/RAX Save
State.

See Section 15.3.2.6, “IA32_MCG
Extended Machine Check State
MSRs.”

63:0 Contains register state at time of
machine check error. When in non-
64-bit modes at the time of the
error, bits 63-32 do not contain
valid data.

Table 34-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
34-176 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
181H 385 MSR_MCG_RBX 0, 1, 2,
3, 4, 6

Unique Machine Check EBX/RBX Save
State.

See Section 15.3.2.6, “IA32_MCG
Extended Machine Check State
MSRs.”

63:0 Contains register state at time of
machine check error. When in non-
64-bit modes at the time of the
error, bits 63-32 do not contain
valid data.

182H 386 MSR_MCG_RCX 0, 1, 2,
3, 4, 6

Unique Machine Check ECX/RCX Save
State.

See Section 15.3.2.6, “IA32_MCG
Extended Machine Check State
MSRs.”

63:0 Contains register state at time of
machine check error. When in non-
64-bit modes at the time of the
error, bits 63-32 do not contain
valid data.

183H 387 MSR_MCG_RDX 0, 1, 2,
3, 4, 6

Unique Machine Check EDX/RDX Save
State.

See Section 15.3.2.6, “IA32_MCG
Extended Machine Check State
MSRs.”

63:0 Contains register state at time of
machine check error. When in non-
64-bit modes at the time of the
error, bits 63-32 do not contain
valid data.

184H 388 MSR_MCG_RSI 0, 1, 2,
3, 4, 6

Unique Machine Check ESI/RSI Save
State.

See Section 15.3.2.6, “IA32_MCG
Extended Machine Check State
MSRs.”

Table 34-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3C 34-177

MODEL-SPECIFIC REGISTERS (MSRS)
63:0 Contains register state at time of
machine check error. When in non-
64-bit modes at the time of the
error, bits 63-32 do not contain
valid data.

185H 389 MSR_MCG_RDI 0, 1, 2,
3, 4, 6

Unique Machine Check EDI/RDI Save
State.

See Section 15.3.2.6, “IA32_MCG
Extended Machine Check State
MSRs.”

63:0 Contains register state at time of
machine check error. When in non-
64-bit modes at the time of the
error, bits 63-32 do not contain
valid data.

186H 390 MSR_MCG_RBP 0, 1, 2,
3, 4, 6

Unique Machine Check EBP/RBP Save
State.

See Section 15.3.2.6, “IA32_MCG
Extended Machine Check State
MSRs.”

63:0 Contains register state at time of
machine check error. When in non-
64-bit modes at the time of the
error, bits 63-32 do not contain
valid data.

187H 391 MSR_MCG_RSP 0, 1, 2,
3, 4, 6

Unique Machine Check ESP/RSP Save
State.

See Section 15.3.2.6, “IA32_MCG
Extended Machine Check State
MSRs.”

63:0 Contains register state at time of
machine check error. When in non-
64-bit modes at the time of the
error, bits 63-32 do not contain
valid data.

Table 34-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
34-178 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
188H 392 MSR_MCG_RFLAGS 0, 1, 2,
3, 4, 6

Unique Machine Check EFLAGS/RFLAG
Save State.

See Section 15.3.2.6, “IA32_MCG
Extended Machine Check State
MSRs.”

63:0 Contains register state at time of
machine check error. When in non-
64-bit modes at the time of the
error, bits 63-32 do not contain
valid data.

189H 393 MSR_MCG_RIP 0, 1, 2,
3, 4, 6

Unique Machine Check EIP/RIP Save
State.

See Section 15.3.2.6, “IA32_MCG
Extended Machine Check State
MSRs.”

63:0 Contains register state at time of
machine check error. When in non-
64-bit modes at the time of the
error, bits 63-32 do not contain
valid data.

18AH 394 MSR_MCG_MISC 0, 1, 2,
3, 4, 6

Unique Machine Check Miscellaneous.

See Section 15.3.2.6, “IA32_MCG
Extended Machine Check State
MSRs.”

0 DS.

When set, the bit indicates that a
page assist or page fault occurred
during DS normal operation. The
processors response is to shut
down.

The bit is used as an aid for
debugging DS handling code. It is
the responsibility of the user (BIOS
or operating system) to clear this
bit for normal operation.

63:1 Reserved.

Table 34-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3C 34-179

MODEL-SPECIFIC REGISTERS (MSRS)
18BH -
18FH

395 MSR_MCG_
RESERVED1 -
MSR_MCG_
RESERVED5

Reserved.

190H 400 MSR_MCG_R8 0, 1, 2,
3, 4, 6

Unique Machine Check R8.

See Section 15.3.2.6, “IA32_MCG
Extended Machine Check State
MSRs.”

63-0 Registers R8-15 (and the
associated state-save MSRs) exist
only in Intel 64 processors. These
registers contain valid information
only when the processor is
operating in 64-bit mode at the
time of the error.

191H 401 MSR_MCG_R9 0, 1, 2,
3, 4, 6

Unique Machine Check R9D/R9.

See Section 15.3.2.6, “IA32_MCG
Extended Machine Check State
MSRs.”

63-0 Registers R8-15 (and the
associated state-save MSRs) exist
only in Intel 64 processors. These
registers contain valid information
only when the processor is
operating in 64-bit mode at the
time of the error.

192H 402 MSR_MCG_R10 0, 1, 2,
3, 4, 6

Unique Machine Check R10.

See Section 15.3.2.6, “IA32_MCG
Extended Machine Check State
MSRs.”

63-0 Registers R8-15 (and the
associated state-save MSRs) exist
only in Intel 64 processors. These
registers contain valid information
only when the processor is
operating in 64-bit mode at the
time of the error.

Table 34-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
34-180 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
193H 403 MSR_MCG_R11 0, 1, 2,
3, 4, 6

Unique Machine Check R11.

See Section 15.3.2.6, “IA32_MCG
Extended Machine Check State
MSRs.”

63-0 Registers R8-15 (and the
associated state-save MSRs) exist
only in Intel 64 processors. These
registers contain valid information
only when the processor is
operating in 64-bit mode at the
time of the error.

194H 404 MSR_MCG_R12 0, 1, 2,
3, 4, 6

Unique Machine Check R12.

See Section 15.3.2.6, “IA32_MCG
Extended Machine Check State
MSRs.”

63-0 Registers R8-15 (and the
associated state-save MSRs) exist
only in Intel 64 processors. These
registers contain valid information
only when the processor is
operating in 64-bit mode at the
time of the error.

195H 405 MSR_MCG_R13 0, 1, 2,
3, 4, 6

Unique Machine Check R13.

See Section 15.3.2.6, “IA32_MCG
Extended Machine Check State
MSRs.”

63-0 Registers R8-15 (and the
associated state-save MSRs) exist
only in Intel 64 processors. These
registers contain valid information
only when the processor is
operating in 64-bit mode at the
time of the error.

196H 406 MSR_MCG_R14 0, 1, 2,
3, 4, 6

Unique Machine Check R14.

See Section 15.3.2.6, “IA32_MCG
Extended Machine Check State
MSRs.”

Table 34-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3C 34-181

MODEL-SPECIFIC REGISTERS (MSRS)
63-0 Registers R8-15 (and the
associated state-save MSRs) exist
only in Intel 64 processors. These
registers contain valid information
only when the processor is
operating in 64-bit mode at the
time of the error.

197H 407 MSR_MCG_R15 0, 1, 2,
3, 4, 6

Unique Machine Check R15.

See Section 15.3.2.6, “IA32_MCG
Extended Machine Check State
MSRs.”

63-0 Registers R8-15 (and the
associated state-save MSRs) exist
only in Intel 64 processors. These
registers contain valid information
only when the processor is
operating in 64-bit mode at the
time of the error.

198H 408 IA32_PERF_STATUS 3, 4, 6 Unique See Table 34-2. See Section 14.1,
“Enhanced Intel Speedstep®
Technology.”

199H 409 IA32_PERF_CTL 3, 4, 6 Unique See Table 34-2. See Section 14.1,
“Enhanced Intel Speedstep®
Technology.”

19AH 410 IA32_CLOCK_
MODULATION

0, 1, 2,
3, 4, 6

Unique Thermal Monitor Control. (R/W)

See Table 34-2.

See Section 14.5.3, “Software
Controlled Clock Modulation.”

19BH 411 IA32_THERM_
INTERRUPT

0, 1, 2,
3, 4, 6

Unique Thermal Interrupt Control. (R/W)

See Section 14.5.2, “Thermal
Monitor,” and see Table 34-2.

19CH 412 IA32_THERM_STATUS 0, 1, 2,
3, 4, 6

Shared Thermal Monitor Status. (R/W)

See Section 14.5.2, “Thermal
Monitor,” and see Table 34-2.

19DH 413 MSR_THERM2_CTL Thermal Monitor 2 Control.

Table 34-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
34-182 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
3, Shared For Family F, Model 3 processors:
When read, specifies the value of
the target TM2 transition last
written. When set, it sets the next
target value for TM2 transition.

4, 6 Shared For Family F, Model 4 and Model 6
processors: When read, specifies
the value of the target TM2
transition last written. Writes may
cause #GP exceptions.

1A0H 416 IA32_MISC_ENABLE 0, 1, 2,
3, 4, 6

Shared Enable Miscellaneous Processor
Features. (R/W)

0 Fast-Strings Enable. See
Table 34-2.

1 Reserved.

2 x87 FPU Fopcode Compatibility
Mode Enable.

3 Thermal Monitor 1 Enable.

See Section 14.5.2, “Thermal
Monitor,” and see Table 34-2.

4 Split-Lock Disable.

When set, the bit causes an #AC
exception to be issued instead of a
split-lock cycle. Operating systems
that set this bit must align system
structures to avoid split-lock
scenarios.

When the bit is clear (default),
normal split-locks are issued to the
bus.

This debug feature is specific to
the Pentium 4 processor.

5 Reserved.

Table 34-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3C 34-183

MODEL-SPECIFIC REGISTERS (MSRS)
6 Third-Level Cache Disable. (R/W)

When set, the third-level cache is
disabled; when clear (default) the
third-level cache is enabled. This
flag is reserved for processors
that do not have a third-level
cache.

Note that the bit controls only the
third-level cache; and only if
overall caching is enabled through
the CD flag of control register CR0,
the page-level cache controls,
and/or the MTRRs.

See Section 11.5.4, “Disabling and
Enabling the L3 Cache.”

7 Performance Monitoring
Available. (R). See Table 34-2.

8 Suppress Lock Enable.

When set, assertion of LOCK on
the bus is suppressed during a
Split Lock access. When clear
(default), LOCK is not suppressed.

9 Prefetch Queue Disable.

When set, disables the prefetch
queue. When clear (default),
enables the prefetch queue.

10 FERR# Interrupt Reporting
Enable. (R/W)

When set, interrupt reporting
through the FERR# pin is enabled;
when clear, this interrupt
reporting function is disabled.

Table 34-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
34-184 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
When this flag is set and the
processor is in the stop-clock state
(STPCLK# is asserted), asserting
the FERR# pin signals to the
processor that an interrupt (such
as, INIT#, BINIT#, INTR, NMI, SMI#,
or RESET#) is pending and that
the processor should return to
normal operation to handle the
interrupt.

This flag does not affect the
normal operation of the FERR# pin
(to indicate an unmasked floating-
point error) when the STPCLK#
pin is not asserted.

11 Branch Trace Storage
Unavailable (BTS_UNAVILABLE).
(R). See Table 34-2.

When set, the processor does not
support branch trace storage
(BTS); when clear, BTS is
supported.

12 PEBS_UNAVILABLE: Precise
Event Based Sampling
Unavailable. (R). See Table 34-2.

When set, the processor does not
support precise event-based
sampling (PEBS); when clear, PEBS
is supported.

13 3 TM2 Enable. (R/W)

When this bit is set (1) and the
thermal sensor indicates that the
die temperature is at the pre-
determined threshold, the
Thermal Monitor 2 mechanism is
engaged. TM2 will reduce the bus
to core ratio and voltage according
to the value last written to
MSR_THERM2_CTL bits 15:0.

Table 34-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3C 34-185

MODEL-SPECIFIC REGISTERS (MSRS)
When this bit is clear (0, default),
the processor does not change the
VID signals or the bus to core ratio
when the processor enters a
thermal managed state.

If the TM2 feature flag (ECX[8]) is
not set to 1 after executing CPUID
with EAX = 1, then this feature is
not supported and BIOS must not
alter the contents of this bit
location. The processor is
operating out of spec if both this
bit and the TM1 bit are set to
disabled states.

17:14 Reserved.

18 3, 4, 6 ENABLE MONITOR FSM. (R/W)

See Table 34-2.

19 Adjacent Cache Line Prefetch
Disable. (R/W)

When set to 1, the processor
fetches the cache line of the 128-
byte sector containing currently
required data. When set to 0, the
processor fetches both cache lines
in the sector.

Single processor platforms should
not set this bit. Server platforms
should set or clear this bit based
on platform performance
observed in validation and testing.

BIOS may contain a setup option
that controls the setting of this bit.

21:20 Reserved.

22 3, 4, 6 Limit CPUID MAXVAL. (R/W)

See Table 34-2.

Table 34-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
34-186 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
Setting this can cause unexpected
behavior to software that
depends on the availability of
CPUID leaves greater than 3.

23 Shared xTPR Message Disable. (R/W)

See Table 34-2.

24 L1 Data Cache Context Mode.
(R/W)

When set, the L1 data cache is
placed in shared mode; when clear
(default), the cache is placed in
adaptive mode. This bit is only
enabled for IA-32 processors that
support Intel Hyper-Threading
Technology. See Section 11.5.6,
“L1 Data Cache Context Mode.”

When L1 is running in adaptive
mode and CR3s are identical, data
in L1 is shared across logical
processors. Otherwise, L1 is not
shared and cache use is
competitive.

If the Context ID feature flag
(ECX[10]) is set to 0 after
executing CPUID with EAX = 1, the
ability to switch modes is not
supported. BIOS must not alter the
contents of
IA32_MISC_ENABLE[24].

33:25 Reserved.

34 Unique XD Bit Disable. (R/W)

See Table 34-2.

63:35 Reserved.

1A1H 417 MSR_PLATFORM_BRV 3, 4, 6 Shared Platform Feature Requirements.
(R)

17:0 Reserved.

Table 34-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3C 34-187

MODEL-SPECIFIC REGISTERS (MSRS)
18 PLATFORM Requirements.

When set to 1, indicates the
processor has specific platform
requirements. The details of the
platform requirements are listed in
the respective data sheets of the
processor.

63:19 Reserved.

1D7H 471 MSR_LER_FROM_LIP 0, 1, 2,
3, 4, 6

Unique Last Exception Record From
Linear IP. (R)

Contains a pointer to the last
branch instruction that the
processor executed prior to the
last exception that was generated
or the last interrupt that was
handled.

See Section 17.8.3, “Last
Exception Records.”

31:0 From Linear IP.

Linear address of the last branch
instruction.

63:32 Reserved.

1D7H 471 63:0 Unique From Linear IP.

Linear address of the last branch
instruction (If IA-32e mode is
active).

1D8H 472 MSR_LER_TO_LIP 0, 1, 2,
3, 4, 6

Unique Last Exception Record To Linear
IP. (R)

This area contains a pointer to the
target of the last branch
instruction that the processor
executed prior to the last
exception that was generated or
the last interrupt that was
handled.

See Section 17.8.3, “Last
Exception Records.”

Table 34-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
34-188 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
31:0 From Linear IP.

Linear address of the target of the
last branch instruction.

63:32 Reserved.

1D8H 472 63:0 Unique From Linear IP.

Linear address of the target of the
last branch instruction (If IA-32e
mode is active).

1D9H 473 MSR_DEBUGCTLA 0, 1, 2,
3, 4, 6

Unique Debug Control. (R/W)

Controls how several debug
features are used. Bit definitions
are discussed in the referenced
section.

See Section 17.8.1,
“MSR_DEBUGCTLA MSR.”

1DAH 474 MSR_LASTBRANCH
_TOS

0, 1, 2,
3, 4, 6

Unique Last Branch Record Stack TOS.
(R)

Contains an index (0-3 or 0-15)
that points to the top of the last
branch record stack (that is, that
points the index of the MSR
containing the most recent branch
record).

See Section 17.8.2, “LBR Stack for
Processors Based on Intel
NetBurst® Microarchitecture”; and
addresses 1DBH-1DEH and 680H-
68FH.

Table 34-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3C 34-189

MODEL-SPECIFIC REGISTERS (MSRS)
1DBH 475 MSR_LASTBRANCH_0 0, 1, 2 Unique Last Branch Record 0. (R/W)

One of four last branch record
registers on the last branch record
stack. It contains pointers to the
source and destination instruction
for one of the last four branches,
exceptions, or interrupts that the
processor took.

MSR_LASTBRANCH_0 through
MSR_LASTBRANCH_3 at 1DBH-
1DEH are available only on family
0FH, models 0H-02H. They have
been replaced by the MSRs at
680H-68FH and 6C0H-6CFH.

See Section 17.8, “Last Branch,
Interrupt, and Exception Recording
(Processors based on Intel
NetBurst® Microarchitecture).”

1DDH 477 MSR_LASTBRANCH_2 0, 1, 2 Unique Last Branch Record 2.

See description of the
MSR_LASTBRANCH_0 MSR at
1DBH.

1DEH 478 MSR_LASTBRANCH_3 0, 1, 2 Unique Last Branch Record 3.

See description of the
MSR_LASTBRANCH_0 MSR at
1DBH.

200H 512 IA32_MTRR_PHYS
BASE0

0, 1, 2,
3, 4, 6

Shared Variable Range Base MTRR.

See Section 11.11.2.3, “Variable
Range MTRRs.”

201H 513 IA32_MTRR_
PHYSMASK0

0, 1, 2,
3, 4, 6

Shared Variable Range Mask MTRR.

See Section 11.11.2.3, “Variable
Range MTRRs.”

202H 514 IA32_MTRR_
PHYSBASE1

0, 1, 2,
3, 4, 6

Shared Variable Range Mask MTRR.

See Section 11.11.2.3, “Variable
Range MTRRs.”

Table 34-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
34-190 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
203H 515 IA32_MTRR_
PHYSMASK1

0, 1, 2,
3, 4, 6

Shared Variable Range Mask MTRR.

See Section 11.11.2.3, “Variable
Range MTRRs.”

204H 516 IA32_MTRR_
PHYSBASE2

0, 1, 2,
3, 4, 6

Shared Variable Range Mask MTRR.

See Section 11.11.2.3, “Variable
Range MTRRs.”

205H 517 IA32_MTRR_
PHYSMASK2

0, 1, 2,
3, 4, 6

Shared Variable Range Mask MTRR.

See Section 11.11.2.3, “Variable
Range MTRRs”.

206H 518 IA32_MTRR_
PHYSBASE3

0, 1, 2,
3, 4, 6

Shared Variable Range Mask MTRR.

See Section 11.11.2.3, “Variable
Range MTRRs.”

207H 519 IA32_MTRR_
PHYSMASK3

0, 1, 2,
3, 4, 6

Shared Variable Range Mask MTRR.

See Section 11.11.2.3, “Variable
Range MTRRs.”

208H 520 IA32_MTRR_
PHYSBASE4

0, 1, 2,
3, 4, 6

Shared Variable Range Mask MTRR.

See Section 11.11.2.3, “Variable
Range MTRRs.”

209H 521 IA32_MTRR_
PHYSMASK4

0, 1, 2,
3, 4, 6

Shared Variable Range Mask MTRR.

See Section 11.11.2.3, “Variable
Range MTRRs.”

20AH 522 IA32_MTRR_
PHYSBASE5

0, 1, 2,
3, 4, 6

Shared Variable Range Mask MTRR.

See Section 11.11.2.3, “Variable
Range MTRRs.”

20BH 523 IA32_MTRR_
PHYSMASK5

0, 1, 2,
3, 4, 6

Shared Variable Range Mask MTRR.

See Section 11.11.2.3, “Variable
Range MTRRs.”

20CH 524 IA32_MTRR_
PHYSBASE6

0, 1, 2,
3, 4, 6

Shared Variable Range Mask MTRR.

See Section 11.11.2.3, “Variable
Range MTRRs.”

20DH 525 IA32_MTRR_
PHYSMASK6

0, 1, 2,
3, 4, 6

Shared Variable Range Mask MTRR.

See Section 11.11.2.3, “Variable
Range MTRRs.”

Table 34-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3C 34-191

MODEL-SPECIFIC REGISTERS (MSRS)
20EH 526 IA32_MTRR_
PHYSBASE7

0, 1, 2,
3, 4, 6

Shared Variable Range Mask MTRR.

See Section 11.11.2.3, “Variable
Range MTRRs.”

20FH 527 IA32_MTRR_
PHYSMASK7

0, 1, 2,
3, 4, 6

Shared Variable Range Mask MTRR.

See Section 11.11.2.3, “Variable
Range MTRRs.”

250H 592 IA32_MTRR_FIX64K_
00000

0, 1, 2,
3, 4, 6

Shared Fixed Range MTRR.

See Section 11.11.2.2, “Fixed
Range MTRRs.”

258H 600 IA32_MTRR_FIX16K_
80000

0, 1, 2,
3, 4, 6

Shared Fixed Range MTRR.

See Section 11.11.2.2, “Fixed
Range MTRRs.”

259H 601 IA32_MTRR_FIX16K_
A0000

0, 1, 2,
3, 4, 6

Shared Fixed Range MTRR.

See Section 11.11.2.2, “Fixed
Range MTRRs.”

268H 616 IA32_MTRR_FIX4K_
C0000

0, 1, 2,
3, 4, 6

Shared Fixed Range MTRR.

See Section 11.11.2.2, “Fixed
Range MTRRs.”

269H 617 IA32_MTRR_FIX4K_
C8000

0, 1, 2,
3, 4, 6

Shared Fixed Range MTRR.

See Section 11.11.2.2, “Fixed
Range MTRRs”.

26AH 618 IA32_MTRR_FIX4K_
D0000

0, 1, 2,
3, 4, 6

Shared Fixed Range MTRR.

See Section 11.11.2.2, “Fixed
Range MTRRs”.

26BH 619 IA32_MTRR_FIX4K_
D8000

0, 1, 2,
3, 4, 6

Shared Fixed Range MTRR.

See Section 11.11.2.2, “Fixed
Range MTRRs.”

26CH 620 IA32_MTRR_FIX4K_
E0000

0, 1, 2,
3, 4, 6

Shared Fixed Range MTRR.

See Section 11.11.2.2, “Fixed
Range MTRRs.”

26DH 621 IA32_MTRR_FIX4K_
E8000

0, 1, 2,
3, 4, 6

Shared Fixed Range MTRR.

See Section 11.11.2.2, “Fixed
Range MTRRs.”

Table 34-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
34-192 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
26EH 622 IA32_MTRR_FIX4K_
F0000

0, 1, 2,
3, 4, 6

Shared Fixed Range MTRR.

See Section 11.11.2.2, “Fixed
Range MTRRs.”

26FH 623 IA32_MTRR_FIX4K_
F8000

0, 1, 2,
3, 4, 6

Shared Fixed Range MTRR.

See Section 11.11.2.2, “Fixed
Range MTRRs.”

277H 631 IA32_PAT 0, 1, 2,
3, 4, 6

Unique Page Attribute Table.

See Section 11.11.2.2, “Fixed
Range MTRRs.”

2FFH 767 IA32_MTRR_DEF_
TYPE

0, 1, 2,
3, 4, 6

Shared Default Memory Types. (R/W)

see Table 34-2

See Section 11.11.2.1,
“IA32_MTRR_DEF_TYPE MSR.”

300H 768 MSR_BPU_COUNTER0 0, 1, 2,
3, 4, 6

Shared See Section 18.10.2,
“Performance Counters.”

301H 769 MSR_BPU_COUNTER1 0, 1, 2,
3, 4, 6

Shared See Section 18.10.2,
“Performance Counters.”

302H 770 MSR_BPU_COUNTER2 0, 1, 2,
3, 4, 6

Shared See Section 18.10.2,
“Performance Counters.”

303H 771 MSR_BPU_COUNTER3 0, 1, 2,
3, 4, 6

Shared See Section 18.10.2,
“Performance Counters.”

304H 772 MSR_MS_COUNTER0 0, 1, 2,
3, 4, 6

Shared See Section 18.10.2,
“Performance Counters.”

305H 773 MSR_MS_COUNTER1 0, 1, 2,
3, 4, 6

Shared See Section 18.10.2,
“Performance Counters.”

306H 774 MSR_MS_COUNTER2 0, 1, 2,
3, 4, 6

Shared See Section 18.10.2,
“Performance Counters.”

307H 775 MSR_MS_COUNTER3 0, 1, 2,
3, 4, 6

Shared See Section 18.10.2,
“Performance Counters.”

308H 776 MSR_FLAME_
COUNTER0

0, 1, 2,
3, 4, 6

Shared See Section 18.10.2,
“Performance Counters.”

309H 777 MSR_FLAME_
COUNTER1

0, 1, 2,
3, 4, 6

Shared See Section 18.10.2,
“Performance Counters.”

Table 34-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3C 34-193

MODEL-SPECIFIC REGISTERS (MSRS)
30AH 778 MSR_FLAME_
COUNTER2

0, 1, 2,
3, 4, 6

Shared See Section 18.10.2,
“Performance Counters.”

30BH 779 MSR_FLAME_
COUNTER3

0, 1, 2,
3, 4, 6

Shared See Section 18.10.2,
“Performance Counters.”

3OCH 780 MSR_IQ_COUNTER0 0, 1, 2,
3, 4, 6

Shared See Section 18.10.2,
“Performance Counters.”

3ODH 781 MSR_IQ_COUNTER1 0, 1, 2,
3, 4, 6

Shared See Section 18.10.2,
“Performance Counters.”

3OEH 782 MSR_IQ_COUNTER2 0, 1, 2,
3, 4, 6

Shared See Section 18.10.2,
“Performance Counters.”

3OFH 783 MSR_IQ_COUNTER3 0, 1, 2,
3, 4, 6

Shared See Section 18.10.2,
“Performance Counters.”

310H 784 MSR_IQ_COUNTER4 0, 1, 2,
3, 4, 6

Shared See Section 18.10.2,
“Performance Counters.”

311H 785 MSR_IQ_COUNTER5 0, 1, 2,
3, 4, 6

Shared See Section 18.10.2,
“Performance Counters.”

360H 864 MSR_BPU_CCCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.10.3, “CCCR MSRs.”

361H 865 MSR_BPU_CCCR1 0, 1, 2,
3, 4, 6

Shared See Section 18.10.3, “CCCR MSRs.”

362H 866 MSR_BPU_CCCR2 0, 1, 2,
3, 4, 6

Shared See Section 18.10.3, “CCCR MSRs.”

363H 867 MSR_BPU_CCCR3 0, 1, 2,
3, 4, 6

Shared See Section 18.10.3, “CCCR MSRs.”

364H 868 MSR_MS_CCCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.10.3, “CCCR MSRs.”

365H 869 MSR_MS_CCCR1 0, 1, 2,
3, 4, 6

Shared See Section 18.10.3, “CCCR MSRs.”

366H 870 MSR_MS_CCCR2 0, 1, 2,
3, 4, 6

Shared See Section 18.10.3, “CCCR MSRs.”

367H 871 MSR_MS_CCCR3 0, 1, 2,
3, 4, 6

Shared See Section 18.10.3, “CCCR MSRs.”

368H 872 MSR_FLAME_CCCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.10.3, “CCCR MSRs.”

Table 34-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
34-194 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
369H 873 MSR_FLAME_CCCR1 0, 1, 2,
3, 4, 6

Shared See Section 18.10.3, “CCCR MSRs.”

36AH 874 MSR_FLAME_CCCR2 0, 1, 2,
3, 4, 6

Shared See Section 18.10.3, “CCCR MSRs.”

36BH 875 MSR_FLAME_CCCR3 0, 1, 2,
3, 4, 6

Shared See Section 18.10.3, “CCCR MSRs.”

36CH 876 MSR_IQ_CCCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.10.3, “CCCR MSRs.”

36DH 877 MSR_IQ_CCCR1 0, 1, 2,
3, 4, 6

Shared See Section 18.10.3, “CCCR MSRs.”

36EH 878 MSR_IQ_CCCR2 0, 1, 2,
3, 4, 6

Shared See Section 18.10.3, “CCCR MSRs.”

36FH 879 MSR_IQ_CCCR3 0, 1, 2,
3, 4, 6

Shared See Section 18.10.3, “CCCR MSRs.”

370H 880 MSR_IQ_CCCR4 0, 1, 2,
3, 4, 6

Shared See Section 18.10.3, “CCCR MSRs.”

371H 881 MSR_IQ_CCCR5 0, 1, 2,
3, 4, 6

Shared See Section 18.10.3, “CCCR MSRs.”

3A0H 928 MSR_BSU_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3A1H 929 MSR_BSU_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3A2H 930 MSR_FSB_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3A3H 931 MSR_FSB_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3A4H 932 MSR_FIRM_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3A5H 933 MSR_FIRM_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3A6H 934 MSR_FLAME_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3A7H 935 MSR_FLAME_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

Table 34-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3C 34-195

MODEL-SPECIFIC REGISTERS (MSRS)
3A8H 936 MSR_DAC_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3A9H 937 MSR_DAC_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3AAH 938 MSR_MOB_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3ABH 939 MSR_MOB_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3ACH 940 MSR_PMH_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3ADH 941 MSR_PMH_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3AEH 942 MSR_SAAT_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3AFH 943 MSR_SAAT_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3B0H 944 MSR_U2L_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3B1H 945 MSR_U2L_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3B2H 946 MSR_BPU_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3B3H 947 MSR_BPU_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3B4H 948 MSR_IS_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3B5H 949 MSR_IS_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3B6H 950 MSR_ITLB_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3B7H 951 MSR_ITLB_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3B8H 952 MSR_CRU_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

Table 34-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
34-196 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
3B9H 953 MSR_CRU_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3BAH 954 MSR_IQ_ESCR0 0, 1, 2 Shared See Section 18.10.1, “ESCR MSRs.”

This MSR is not available on later
processors. It is only available on
processor family 0FH, models
01H-02H.

3BBH 955 MSR_IQ_ESCR1 0, 1, 2 Shared See Section 18.10.1, “ESCR MSRs.”

This MSR is not available on later
processors. It is only available on
processor family 0FH, models
01H-02H.

3BCH 956 MSR_RAT_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3BDH 957 MSR_RAT_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3BEH 958 MSR_SSU_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3C0H 960 MSR_MS_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3C1H 961 MSR_MS_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3C2H 962 MSR_TBPU_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3C3H 963 MSR_TBPU_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3C4H 964 MSR_TC_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3C5H 965 MSR_TC_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3C8H 968 MSR_IX_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3C9H 969 MSR_IX_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

Table 34-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3C 34-197

MODEL-SPECIFIC REGISTERS (MSRS)
3CAH 970 MSR_ALF_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3CBH 971 MSR_ALF_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3CCH 972 MSR_CRU_ESCR2 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3CDH 973 MSR_CRU_ESCR3 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3E0H 992 MSR_CRU_ESCR4 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3E1H 993 MSR_CRU_ESCR5 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3FOH 1008 MSR_TC_PRECISE
_EVENT

0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3F1H 1009 MSR_PEBS_ENABLE 0, 1, 2,
3, 4, 6

Shared Precise Event-Based Sampling
(PEBS). (R/W)

Controls the enabling of precise
event sampling and replay tagging.

12:0 See Table 19-21.

23:13 Reserved.

24 UOP Tag.

Enables replay tagging when set.

25 ENABLE_PEBS_MY_THR. (R/W)

Enables PEBS for the target logical
processor when set; disables PEBS
when clear (default).

See Section 18.11.3,
“IA32_PEBS_ENABLE MSR,” for an
explanation of the target logical
processor.

This bit is called ENABLE_PEBS in
IA-32 processors that do not
support Intel Hyper-Threading
Technology.

Table 34-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
34-198 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
26 ENABLE_PEBS_OTH_THR. (R/W)

Enables PEBS for the target logical
processor when set; disables PEBS
when clear (default).

See Section 18.11.3,
“IA32_PEBS_ENABLE MSR,” for an
explanation of the target logical
processor.

This bit is reserved for IA-32
processors that do not support
Intel Hyper-Threading Technology.

63:27 Reserved.

3F2H 1010 MSR_PEBS_MATRIX
_VERT

0, 1, 2,
3, 4, 6

Shared See Table 19-21.

400H 1024 IA32_MC0_CTL 0, 1, 2,
3, 4, 6

Shared See Section 15.3.2.1,
“IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS 0, 1, 2,
3, 4, 6

Shared See Section 15.3.2.2,
“IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR 0, 1, 2,
3, 4, 6

Shared See Section 15.3.2.3,
“IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is
either not implemented or
contains no address if the ADDRV
flag in the IA32_MC0_STATUS
register is clear.

When not implemented in the
processor, all reads and writes to
this MSR will cause a general-
protection exception.

403H 1027 IA32_MC0_MISC 0, 1, 2,
3, 4, 6

Shared See Section 15.3.2.4,
“IA32_MCi_MISC MSRs.”

The IA32_MC0_MISC MSR is either
not implemented or does not
contain additional information if
the MISCV flag in the
IA32_MC0_STATUS register is
clear.

Table 34-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3C 34-199

MODEL-SPECIFIC REGISTERS (MSRS)
When not implemented in the
processor, all reads and writes to
this MSR will cause a general-
protection exception.

404H 1028 IA32_MC1_CTL 0, 1, 2,
3, 4, 6

Shared See Section 15.3.2.1,
“IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS 0, 1, 2,
3, 4, 6

Shared See Section 15.3.2.2,
“IA32_MCi_STATUS MSRS.”

406H 1030 IA32_MC1_ADDR 0, 1, 2,
3, 4, 6

Shared See Section 15.3.2.3,
“IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is
either not implemented or
contains no address if the ADDRV
flag in the IA32_MC1_STATUS
register is clear.

When not implemented in the
processor, all reads and writes to
this MSR will cause a general-
protection exception.

407H 1031 IA32_MC1_MISC Shared See Section 15.3.2.4,
“IA32_MCi_MISC MSRs.”

The IA32_MC1_MISC MSR is either
not implemented or does not
contain additional information if
the MISCV flag in the
IA32_MC1_STATUS register is
clear.

When not implemented in the
processor, all reads and writes to
this MSR will cause a general-
protection exception.

408H 1032 IA32_MC2_CTL 0, 1, 2,
3, 4, 6

Shared See Section 15.3.2.1,
“IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS 0, 1, 2,
3, 4, 6

Shared See Section 15.3.2.2,
“IA32_MCi_STATUS MSRS.”

Table 34-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
34-200 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
40AH 1034 IA32_MC2_ADDR See Section 15.3.2.3,
“IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is
either not implemented or
contains no address if the ADDRV
flag in the IA32_MC2_STATUS
register is clear. When not
implemented in the processor, all
reads and writes to this MSR will
cause a general-protection
exception.

40BH 1035 IA32_MC2_MISC See Section 15.3.2.4,
“IA32_MCi_MISC MSRs.”

The IA32_MC2_MISC MSR is either
not implemented or does not
contain additional information if
the MISCV flag in the
IA32_MC2_STATUS register is
clear.

When not implemented in the
processor, all reads and writes to
this MSR will cause a general-
protection exception.

40CH 1036 IA32_MC3_CTL 0, 1, 2,
3, 4, 6

Shared See Section 15.3.2.1,
“IA32_MCi_CTL MSRs.”

40DH 1037 IA32_MC3_STATUS 0, 1, 2,
3, 4, 6

Shared See Section 15.3.2.2,
“IA32_MCi_STATUS MSRS.”

40EH 1038 IA32_MC3_ADDR 0, 1, 2,
3, 4, 6

Shared See Section 15.3.2.3,
“IA32_MCi_ADDR MSRs.”

The IA32_MC3_ADDR register is
either not implemented or
contains no address if the ADDRV
flag in the IA32_MC3_STATUS
register is clear.

When not implemented in the
processor, all reads and writes to
this MSR will cause a general-
protection exception.

Table 34-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3C 34-201

MODEL-SPECIFIC REGISTERS (MSRS)
40FH 1039 IA32_MC3_MISC 0, 1, 2,
3, 4, 6

Shared See Section 15.3.2.4,
“IA32_MCi_MISC MSRs.”

The IA32_MC3_MISC MSR is either
not implemented or does not
contain additional information if
the MISCV flag in the
IA32_MC3_STATUS register is
clear.

When not implemented in the
processor, all reads and writes to
this MSR will cause a general-
protection exception.

410H 1040 IA32_MC4_CTL 0, 1, 2,
3, 4, 6

Shared See Section 15.3.2.1,
“IA32_MCi_CTL MSRs.”

411H 1041 IA32_MC4_STATUS 0, 1, 2,
3, 4, 6

Shared See Section 15.3.2.2,
“IA32_MCi_STATUS MSRS.”

412H 1042 IA32_MC4_ADDR See Section 15.3.2.3,
“IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is
either not implemented or
contains no address if the ADDRV
flag in the IA32_MC4_STATUS
register is clear.

When not implemented in the
processor, all reads and writes to
this MSR will cause a general-
protection exception.

413H 1043 IA32_MC4_MISC See Section 15.3.2.4,
“IA32_MCi_MISC MSRs.”

The IA32_MC2_MISC MSR is either
not implemented or does not
contain additional information if
the MISCV flag in the
IA32_MC4_STATUS register is
clear.

Table 34-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
34-202 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
When not implemented in the
processor, all reads and writes to
this MSR will cause a general-
protection exception.

480H 1152 IA32_VMX_BASIC 3, 4, 6 Unique Reporting Register of Basic VMX
Capabilities. (R/O). See
Table 34-2.

See Appendix A.1, “Basic VMX
Information.”

481H 1153 IA32_VMX_PINBASED
_CTLS

3, 4, 6 Unique Capability Reporting Register of
Pin-based VM-execution
Controls. (R/O). See Table 34-2.

See Appendix A.3, “VM-Execution
Controls.”

482H 1154 IA32_VMX_
PROCBASED_CTLS

3, 4, 6 Unique Capability Reporting Register of
Primary Processor-based
VM-execution Controls. (R/O)

See Appendix A.3, “VM-Execution
Controls,” and see Table 34-2.

483H 1155 IA32_VMX_EXIT_CTLS 3, 4, 6 Unique Capability Reporting Register of
VM-exit Controls. (R/O)

See Appendix A.4, “VM-Exit
Controls,” and see Table 34-2.

484H 1156 IA32_VMX_ENTRY_
CTLS

3, 4, 6 Unique Capability Reporting Register of
VM-entry Controls. (R/O)

See Appendix A.5, “VM-Entry
Controls,” and see Table 34-2.

485H 1157 IA32_VMX_MISC 3, 4, 6 Unique Reporting Register of
Miscellaneous VMX Capabilities.
(R/O)

See Appendix A.6, “Miscellaneous
Data,” and see Table 34-2.

486H 1158 IA32_VMX_CR0_
FIXED0

3, 4, 6 Unique Capability Reporting Register of
CR0 Bits Fixed to 0. (R/O)

See Appendix A.7, “VMX-Fixed Bits
in CR0,” and see Table 34-2.

Table 34-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3C 34-203

MODEL-SPECIFIC REGISTERS (MSRS)
487H 1159 IA32_VMX_CR0_
FIXED1

3, 4, 6 Unique Capability Reporting Register of
CR0 Bits Fixed to 1. (R/O)

See Appendix A.7, “VMX-Fixed Bits
in CR0,” and see Table 34-2.

488H 1160 IA32_VMX_CR4_
FIXED0

3, 4, 6 Unique Capability Reporting Register of
CR4 Bits Fixed to 0. (R/O)

See Appendix A.8, “VMX-Fixed Bits
in CR4,” and see Table 34-2.

489H 1161 IA32_VMX_CR4_
FIXED1

3, 4, 6 Unique Capability Reporting Register of
CR4 Bits Fixed to 1. (R/O)

See Appendix A.8, “VMX-Fixed Bits
in CR4,” and see Table 34-2.

48AH 1162 IA32_VMX_VMCS_
ENUM

3, 4, 6 Unique Capability Reporting Register of
VMCS Field Enumeration. (R/O).

See Appendix A.9, “VMCS
Enumeration,” and see Table 34-2.

48BH 1163 IA32_VMX_
PROCBASED_CTLS2

3, 4, 6 Unique Capability Reporting Register of
Secondary Processor-based
VM-execution Controls. (R/O)

See Appendix A.3, “VM-Execution
Controls,” and see Table 34-2.

600H 1536 IA32_DS_AREA 0, 1, 2,
3, 4, 6

Unique DS Save Area. (R/W). See
Table 34-2.

See Section 18.10.4, “Debug Store
(DS) Mechanism.”

680H 1664 MSR_LASTBRANCH
_0_FROM_LIP

3, 4, 6 Unique Last Branch Record 0. (R/W)

One of 16 pairs of last branch
record registers on the last branch
record stack (680H-68FH). This
part of the stack contains pointers
to the source instruction for one
of the last 16 branches,
exceptions, or interrupts taken by
the processor.

Table 34-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
34-204 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
The MSRs at 680H-68FH, 6C0H-
6CfH are not available in processor
releases before family 0FH, model
03H. These MSRs replace MSRs
previously located at 1DBH-
1DEH.which performed the same
function for early releases.

See Section 17.8, “Last Branch,
Interrupt, and Exception Recording
(Processors based on Intel
NetBurst® Microarchitecture).”

681H 1665 MSR_LASTBRANCH
_1_FROM_LIP

3, 4, 6 Unique Last Branch Record 1.

See description of
MSR_LASTBRANCH_0 at 680H.

682H 1666 MSR_LASTBRANCH
_2_FROM_LIP

3, 4, 6 Unique Last Branch Record 2.

See description of
MSR_LASTBRANCH_0 at 680H.

683H 1667 MSR_LASTBRANCH
_3_FROM_LIP

3, 4, 6 Unique Last Branch Record 3.

See description of
MSR_LASTBRANCH_0 at 680H.

684H 1668 MSR_LASTBRANCH
_4_FROM_LIP

3, 4, 6 Unique Last Branch Record 4.

See description of
MSR_LASTBRANCH_0 at 680H.

685H 1669 MSR_LASTBRANCH
_5_FROM_LIP

3, 4, 6 Unique Last Branch Record 5.

See description of
MSR_LASTBRANCH_0 at 680H.

686H 1670 MSR_LASTBRANCH
_6_FROM_LIP

3, 4, 6 Unique Last Branch Record 6.

See description of
MSR_LASTBRANCH_0 at 680H.

687H 1671 MSR_LASTBRANCH
_7_FROM_LIP

3, 4, 6 Unique Last Branch Record 7.

See description of
MSR_LASTBRANCH_0 at 680H.

688H 1672 MSR_LASTBRANCH
_8_FROM_LIP

3, 4, 6 Unique Last Branch Record 8.

See description of
MSR_LASTBRANCH_0 at 680H.

Table 34-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3C 34-205

MODEL-SPECIFIC REGISTERS (MSRS)
689H 1673 MSR_LASTBRANCH
_9_FROM_LIP

3, 4, 6 Unique Last Branch Record 9.

See description of
MSR_LASTBRANCH_0 at 680H.

68AH 1674 MSR_LASTBRANCH
_10_FROM_LIP

3, 4, 6 Unique Last Branch Record 10.

See description of
MSR_LASTBRANCH_0 at 680H.

68BH 1675 MSR_LASTBRANCH
_11_FROM_LIP

3, 4, 6 Unique Last Branch Record 11.

See description of
MSR_LASTBRANCH_0 at 680H.

68CH 1676 MSR_LASTBRANCH
_12_FROM_LIP

3, 4, 6 Unique Last Branch Record 12.

See description of
MSR_LASTBRANCH_0 at 680H.

68DH 1677 MSR_LASTBRANCH
_13_FROM_LIP

3, 4, 6 Unique Last Branch Record 13.

See description of
MSR_LASTBRANCH_0 at 680H.

68EH 1678 MSR_LASTBRANCH
_14_FROM_LIP

3, 4, 6 Unique Last Branch Record 14.

See description of
MSR_LASTBRANCH_0 at 680H.

68FH 1679 MSR_LASTBRANCH
_15_FROM_LIP

3, 4, 6 Unique Last Branch Record 15.

See description of
MSR_LASTBRANCH_0 at 680H.

6C0H 1728 MSR_LASTBRANCH
_0_TO_LIP

3, 4, 6 Unique Last Branch Record 0. (R/W)

One of 16 pairs of last branch
record registers on the last branch
record stack (6C0H-6CFH). This
part of the stack contains pointers
to the destination instruction for
one of the last 16 branches,
exceptions, or interrupts that the
processor took.

See Section 17.8, “Last Branch,
Interrupt, and Exception Recording
(Processors based on Intel
NetBurst® Microarchitecture).”

Table 34-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
34-206 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
6C1H 1729 MSR_LASTBRANCH
_1_TO_LIP

3, 4, 6 Unique Last Branch Record 1.

See description of
MSR_LASTBRANCH_0 at 6C0H.

6C2H 1730 MSR_LASTBRANCH
_2_TO_LIP

3, 4, 6 Unique Last Branch Record 2.

See description of
MSR_LASTBRANCH_0 at 6C0H.

6C3H 1731 MSR_LASTBRANCH
_3_TO_LIP

3, 4, 6 Unique Last Branch Record 3.

See description of
MSR_LASTBRANCH_0 at 6C0H.

6C4H 1732 MSR_LASTBRANCH
_4_TO_LIP

3, 4, 6 Unique Last Branch Record 4.

See description of
MSR_LASTBRANCH_0 at 6C0H.

6C5H 1733 MSR_LASTBRANCH
_5_TO_LIP

3, 4, 6 Unique Last Branch Record 5.

See description of
MSR_LASTBRANCH_0 at 6C0H.

6C6H 1734 MSR_LASTBRANCH
_6_TO_LIP

3, 4, 6 Unique Last Branch Record 6.

See description of
MSR_LASTBRANCH_0 at 6C0H.

6C7H 1735 MSR_LASTBRANCH
_7_TO_LIP

3, 4, 6 Unique Last Branch Record 7.

See description of
MSR_LASTBRANCH_0 at 6C0H.

6C8H 1736 MSR_LASTBRANCH
_8_TO_LIP

3, 4, 6 Unique Last Branch Record 8.

See description of
MSR_LASTBRANCH_0 at 6C0H.

6C9H 1737 MSR_LASTBRANCH
_9_TO_LIP

3, 4, 6 Unique Last Branch Record 9.

See description of
MSR_LASTBRANCH_0 at 6C0H.

6CAH 1738 MSR_LASTBRANCH
_10_TO_LIP

3, 4, 6 Unique Last Branch Record 10.

See description of
MSR_LASTBRANCH_0 at 6C0H.

6CBH 1739 MSR_LASTBRANCH
_11_TO_LIP

3, 4, 6 Unique Last Branch Record 11.

See description of
MSR_LASTBRANCH_0 at 6C0H.

Table 34-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3C 34-207

MODEL-SPECIFIC REGISTERS (MSRS)
6CCH 1740 MSR_LASTBRANCH
_12_TO_LIP

3, 4, 6 Unique Last Branch Record 12.

See description of
MSR_LASTBRANCH_0 at 6C0H.

6CDH 1741 MSR_LASTBRANCH
_13_TO_LIP

3, 4, 6 Unique Last Branch Record 13.

See description of
MSR_LASTBRANCH_0 at 6C0H.

6CEH 1742 MSR_LASTBRANCH
_14_TO_LIP

3, 4, 6 Unique Last Branch Record 14.

See description of
MSR_LASTBRANCH_0 at 6C0H.

6CFH 1743 MSR_LASTBRANCH
_15_TO_LIP

3, 4, 6 Unique Last Branch Record 15.

See description of
MSR_LASTBRANCH_0 at 6C0H.

C000_
0080H

IA32_EFER 3, 4, 6 Unique Extended Feature Enables. See
Table 34-2.

C000_
0081H

IA32_STAR 3, 4, 6 Unique System Call Target Address.
(R/W)

See Table 34-2.

C000_
0082H

IA32_LSTAR 3, 4, 6 Unique IA-32e Mode System Call Target
Address. (R/W)

See Table 34-2.

C000_
0084H

IA32_FMASK 3, 4, 6 Unique System Call Flag Mask. (R/W)

See Table 34-2.

C000_
0100H

IA32_FS_BASE 3, 4, 6 Unique Map of BASE Address of FS.
(R/W)

See Table 34-2.

C000_
0101H

IA32_GS_BASE 3, 4, 6 Unique Map of BASE Address of GS.
(R/W)

See Table 34-2.

C000_
0102H

IA32_KERNEL_
GSBASE

3, 4, 6 Unique Swap Target of BASE Address of
GS. (R/W)

See Table 34-2.

Table 34-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
34-208 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
34.9.1 MSRs Unique to Intel Xeon Processor MP with L3 Cache
The MSRs listed in Table 34-14 apply to Intel Xeon Processor MP with up to 8MB level
three cache. These processors can be detected by enumerating the deterministic
cache parameter leaf of CPUID instruction (with EAX = 4 as input) to detect the pres-
ence of the third level cache, and with CPUID reporting family encoding 0FH, model
encoding 3 or 4 (see CPUID instruction for more details).

NOTES
1. For HT-enabled processors, there may be more than one logical processors per physical unit. If

an MSR is Shared, this means that one MSR is shared between logical processors. If an MSR is
unique, this means that each logical processor has its own MSR.

Table 34-14. MSRs Unique to 64-bit Intel Xeon Processor MP with
Up to an 8 MB L3 Cache

Register Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique Bit Description

107CCH MSR_IFSB_BUSQ0 3, 4 Shared IFSB BUSQ Event Control
and Counter Register.
(R/W)

See Section 18.15,
“Performance Monitoring on
64-bit Intel Xeon Processor
MP with Up to 8-MByte L3
Cache.”

107CDH MSR_IFSB_BUSQ1 3, 4 Shared IFSB BUSQ Event Control
and Counter Register.
(R/W)

107CEH MSR_IFSB_SNPQ0 3, 4 Shared IFSB SNPQ Event Control
and Counter Register.
(R/W)

See Section 18.15,
“Performance Monitoring on
64-bit Intel Xeon Processor
MP with Up to 8-MByte L3
Cache.”

Table 34-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3C 34-209

MODEL-SPECIFIC REGISTERS (MSRS)
The MSRs listed in Table 34-15 apply to Intel Xeon Processor 7100 series. These
processors can be detected by enumerating the deterministic cache parameter leaf of
CPUID instruction (with EAX = 4 as input) to detect the presence of the third level
cache, and with CPUID reporting family encoding 0FH, model encoding 6 (See CPUID
instruction for more details.). The performance monitoring MSRs listed in
Table 34-15 are shared between logical processors in the same core, but are repli-
cated for each core.

107CFH MSR_IFSB_SNPQ1 3, 4 Shared IFSB SNPQ Event Control
and Counter Register.
(R/W)

107D0H MSR_EFSB_DRDY0 3, 4 Shared EFSB DRDY Event Control
and Counter Register.
(R/W)

See Section 18.15,
“Performance Monitoring on
64-bit Intel Xeon Processor
MP with Up to 8-MByte L3
Cache” for details.

107D1H MSR_EFSB_DRDY1 3, 4 Shared EFSB DRDY Event Control
and Counter Register.
(R/W)

107D2H MSR_IFSB_CTL6 3, 4 Shared IFSB Latency Event Control
Register. (R/W)

See Section 18.15,
“Performance Monitoring on
64-bit Intel Xeon Processor
MP with Up to 8-MByte L3
Cache” for details.

107D3H MSR_IFSB_CNTR7 3, 4 Shared IFSB Latency Event
Counter Register. (R/W)

See Section 18.15,
“Performance Monitoring on
64-bit Intel Xeon Processor
MP with Up to 8-MByte L3
Cache.”

Table 34-14. MSRs Unique to 64-bit Intel Xeon Processor MP with
Up to an 8 MB L3 Cache (Contd.)

Register Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique Bit Description
34-210 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
Table 34-15. MSRs Unique to Intel Xeon Processor 7100 Series

Register Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique Bit Description

107CCH MSR_EMON_L3_CTR_C
TL0

6 Shared GBUSQ Event Control and
Counter Register. (R/W)

See Section 18.15,
“Performance Monitoring on
64-bit Intel Xeon Processor
MP with Up to 8-MByte L3
Cache.”

107CDH MSR_EMON_L3_CTR_C
TL1

6 Shared GBUSQ Event Control and
Counter Register. (R/W)

107CEH MSR_EMON_L3_CTR_C
TL2

6 Shared GSNPQ Event Control and
Counter Register. (R/W)

See Section 18.15,
“Performance Monitoring on
64-bit Intel Xeon Processor
MP with Up to 8-MByte L3
Cache.”

107CFH MSR_EMON_L3_CTR_C
TL3

6 Shared GSNPQ Event Control and
Counter Register (R/W)

107D0H MSR_EMON_L3_CTR_C
TL4

6 Shared FSB Event Control and
Counter Register. (R/W)

See Section 18.15,
“Performance Monitoring on
64-bit Intel Xeon Processor
MP with Up to 8-MByte L3
Cache” for details.

107D1H MSR_EMON_L3_CTR_C
TL5

6 Shared FSB Event Control and
Counter Register. (R/W)

107D2H MSR_EMON_L3_CTR_C
TL6

6 Shared FSB Event Control and
Counter Register. (R/W)

107D3H MSR_EMON_L3_CTR_C
TL7

6 Shared FSB Event Control and
Counter Register. (R/W)
Vol. 3C 34-211

MODEL-SPECIFIC REGISTERS (MSRS)
34.10 MSRS IN INTEL® CORE™ SOLO AND INTEL® CORE™

DUO PROCESSORS
Model-specific registers (MSRs) for Intel Core Solo, Intel Core Duo processors, and
Dual-core Intel Xeon processor LV are listed in Table 34-16. The column
“Shared/Unique” applies to Intel Core Duo processor. “Unique” means each
processor core has a separate MSR, or a bit field in an MSR governs only a core inde-
pendently. “Shared” means the MSR or the bit field in an MSR address governs the
operation of both processor cores.

Table 34-16. MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel
Xeon Processor LV

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

0H 0 P5_MC_ADDR Unique See Section 34.13, “MSRs in Pentium
Processors,” and see Table 34-2.

1H 1 P5_MC_TYPE Unique See Section 34.13, “MSRs in Pentium
Processors,” and see Table 34-2.

6H 6 IA32_MONITOR_
FILTER_SIZE

Unique See Section 8.10.5, “Monitor/Mwait Address
Range Determination,” and see Table 34-2.

10H 16 IA32_TIME_
STAMP_COUNTER

Unique See Section 17.12, “Time-Stamp Counter,” and
see Table 34-2.

17H 23 IA32_PLATFORM_
ID

Shared Platform ID. (R) See Table 34-2.

The operating system can use this MSR to
determine “slot” information for the processor
and the proper microcode update to load.

1BH 27 IA32_APIC_BASE Unique See Section 10.4.4, “Local APIC Status and
Location,” and see Table 34-2.

2AH 42 MSR_EBL_CR_
POWERON

Shared Processor Hard Power-On Configuration.
(R/W)

Enables and disables processor features; (R)
indicates current processor configuration.

0 Reserved.

1 Data Error Checking Enable. (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

2 Response Error Checking Enable. (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.
34-212 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
3 MCERR# Drive Enable. (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

4 Address Parity Enable. (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

6: 5 Reserved

7 BINIT# Driver Enable. (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

8 Output Tri-state Enabled. (R/O)

1 = Enabled; 0 = Disabled

9 Execute BIST. (R/O)

1 = Enabled; 0 = Disabled

10 MCERR# Observation Enabled. (R/O)

1 = Enabled; 0 = Disabled

11 Reserved

12 BINIT# Observation Enabled. (R/O)

1 = Enabled; 0 = Disabled

13 Reserved

14 1 MByte Power on Reset Vector. (R/O)

1 = 1 MByte; 0 = 4 GBytes

15 Reserved

17:16 APIC Cluster ID. (R/O)

18 System Bus Frequency. (R/O)

0 = 100 MHz
1 = Reserved

19 Reserved.

21: 20 Symmetric Arbitration ID. (R/O)

26:22 Clock Frequency Ratio. (R/O)

Table 34-16. MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel
Xeon Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3C 34-213

MODEL-SPECIFIC REGISTERS (MSRS)
3AH 58 IA32_FEATURE_
CONTROL

Unique Control Features in IA-32 Processor. (R/W)

See Table 34-2.

40H 64 MSR_
LASTBRANCH_0

Unique Last Branch Record 0. (R/W)

One of 8 last branch record registers on the
last branch record stack: bits 31-0 hold the
‘from’ address and bits 63-32 hold the ‘to’
address. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.10, “Last Branch, Interrupt, and

Exception Recording (Pentium M
Processors).”

41H 65 MSR_
LASTBRANCH_1

Unique Last Branch Record 1. (R/W)

See description of MSR_LASTBRANCH_0.

42H 66 MSR_
LASTBRANCH_2

Unique Last Branch Record 2. (R/W)

See description of MSR_LASTBRANCH_0.

43H 67 MSR_
LASTBRANCH_3

Unique Last Branch Record 3. (R/W)

See description of MSR_LASTBRANCH_0.

44H 68 MSR_
LASTBRANCH_4

Unique Last Branch Record 4. (R/W)

See description of MSR_LASTBRANCH_0.

45H 69 MSR_
LASTBRANCH_5

Unique Last Branch Record 5. (R/W)

See description of MSR_LASTBRANCH_0.

46H 70 MSR_
LASTBRANCH_6

Unique Last Branch Record 6. (R/W)

See description of MSR_LASTBRANCH_0.

47H 71 MSR_
LASTBRANCH_7

Unique Last Branch Record 7. (R/W)

See description of MSR_LASTBRANCH_0.

79H 121 IA32_BIOS_
UPDT_TRIG

Unique BIOS Update Trigger Register (W). See
Table 34-2.

8BH 139 IA32_BIOS_
SIGN_ID

Unique BIOS Update Signature ID (RO). See
Table 34-2.

C1H 193 IA32_PMC0 Unique Performance counter register. See
Table 34-2.

C2H 194 IA32_PMC1 Unique Performance counter register. See
Table 34-2.

Table 34-16. MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel
Xeon Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
34-214 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
CDH 205 MSR_FSB_FREQ Shared Scaleable Bus Speed. (RO)

This field indicates the scaleable bus clock
speed:

2:0 • 101B: 100 MHz (FSB 400)
• 001B: 133 MHz (FSB 533)
• 011B: 167 MHz (FSB 667)

133.33 MHz should be utilized if performing
calculation with System Bus Speed when
encoding is 101B.

166.67 MHz should be utilized if performing
calculation with System Bus Speed when
encoding is 001B.

63:3 Reserved.

E7H 231 IA32_MPERF Unique Maximum Performance Frequency Clock
Count. (RW). See Table 34-2.

E8H 232 IA32_APERF Unique Actual Performance Frequency Clock Count.
(RW). See Table 34-2.

FEH 254 IA32_MTRRCAP Unique See Table 34-2.

11EH 281 MSR_BBL_CR_
CTL3

Shared

0 L2 Hardware Enabled. (RO)

1 = If the L2 is hardware-enabled
0 = Indicates if the L2 is hardware-disabled

7:1 Reserved.

8 L2 Enabled. (R/W)

1 = L2 cache has been initialized
0 = Disabled (default)
Until this bit is set the processor will not
respond to the WBINVD instruction or the
assertion of the FLUSH# input.

22:9 Reserved.

Table 34-16. MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel
Xeon Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3C 34-215

MODEL-SPECIFIC REGISTERS (MSRS)
23 L2 Not Present. (RO)

0 = L2 Present
1 = L2 Not Present

63:24 Reserved.

174H 372 IA32_SYSENTER
_CS

Unique See Table 34-2.

175H 373 IA32_SYSENTER
_ESP

Unique See Table 34-2.

176H 374 IA32_SYSENTER
_EIP

Unique See Table 34-2.

179H 377 IA32_MCG_CAP Unique See Table 34-2.

17AH 378 IA32_MCG_
STATUS

Unique

0 RIPV.

When set, this bit indicates that the
instruction addressed by the instruction
pointer pushed on the stack (when the
machine check was generated) can be used to
restart the program. If this bit is cleared, the
program cannot be reliably restarted.

1 EIPV.

When set, this bit indicates that the
instruction addressed by the instruction
pointer pushed on the stack (when the
machine check was generated) is directly
associated with the error.

2 MCIP.

When set, this bit indicates that a machine
check has been generated. If a second
machine check is detected while this bit is still
set, the processor enters a shutdown state.
Software should write this bit to 0 after
processing a machine check exception.

Table 34-16. MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel
Xeon Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
34-216 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
63:3 Reserved.

186H 390 IA32_
PERFEVTSEL0

Unique See Table 34-2 .

187H 391 IA32_
PERFEVTSEL1

Unique See Table 34-2.

198H 408 IA32_PERF_STAT
US

Shared See Table 34-2.

199H 409 IA32_PERF_CTL Unique See Table 34-2.

19AH 410 IA32_CLOCK_
MODULATION

Unique Clock Modulation. (R/W)

See Table 34-2.

19BH 411 IA32_THERM_
INTERRUPT

Unique Thermal Interrupt Control. (R/W)

See Table 34-2 .

See Section 14.5.2, “Thermal Monitor.”

19CH 412 IA32_THERM_
STATUS

Unique Thermal Monitor Status. (R/W)

See Table 34-2.

See Section 14.5.2, “Thermal Monitor”.

19DH 413 MSR_THERM2_
CTL

Unique

15:0 Reserved.

16 TM_SELECT. (R/W)

Mode of automatic thermal monitor:

0 = Thermal Monitor 1 (thermally-initiated
on-die modulation of the stop-clock duty
cycle)

1 = Thermal Monitor 2 (thermally-initiated
frequency transitions)

If bit 3 of the IA32_MISC_ENABLE register is
cleared, TM_SELECT has no effect. Neither
TM1 nor TM2 will be enabled.

63:16 Reserved.

1A0 416 IA32_MISC_
ENABLE

Enable Miscellaneous Processor Features.

(R/W) Allows a variety of processor functions
to be enabled and disabled.

Table 34-16. MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel
Xeon Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3C 34-217

MODEL-SPECIFIC REGISTERS (MSRS)
2:0 Reserved.

3 Unique Automatic Thermal Control Circuit Enable.
(R/W)

See Table 34-2.

6:4 Reserved.

7 Shared Performance Monitoring Available. (R). See
Table 34-2.

9:8 Reserved.

10 Shared FERR# Multiplexing Enable. (R/W)

1 = FERR# asserted by the processor to
indicate a pending break event within
the processor

0 = Indicates compatible FERR# signaling
behavior

This bit must be set to 1 to support XAPIC
interrupt model usage.

11 Shared Branch Trace Storage Unavailable. (RO). See
Table 34-2.

12 Reserved.

13 Shared TM2 Enable. (R/W)

When this bit is set (1) and the thermal sensor
indicates that the die temperature is at the
pre-determined threshold, the Thermal
Monitor 2 mechanism is engaged. TM2 will
reduce the bus to core ratio and voltage
according to the value last written to
MSR_THERM2_CTL bits 15:0.

Table 34-16. MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel
Xeon Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
34-218 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
When this bit is clear (0, default), the
processor does not change the VID signals or
the bus to core ratio when the processor
enters a thermal managed state.

If the TM2 feature flag (ECX[8]) is not set to 1
after executing CPUID with EAX = 1, then this
feature is not supported and BIOS must not
alter the contents of this bit location. The
processor is operating out of spec if both this
bit and the TM1 bit are set to disabled states.

15:14 Reserved.

16 Shared Enhanced Intel SpeedStep Technology
Enable. (R/W)

1 = Enhanced Intel SpeedStep Technology
enabled

18 Shared ENABLE MONITOR FSM. (R/W)

See Table 34-2.

19 Reserved.

22 Shared Limit CPUID Maxval. (R/W)

See Table 34-2.

Setting this bit may cause behavior in
software that depends on the availability of
CPUID leaves greater than 3.

33:23 Reserved.

34 Shared XD Bit Disable. (R/W)

See Table 34-2.

63:35 Reserved.

1C9H 457 MSR_
LASTBRANCH_
TOS

Unique Last Branch Record Stack TOS. (R)

Contains an index (bits 0-3) that points to the
MSR containing the most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 40H).

Table 34-16. MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel
Xeon Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3C 34-219

MODEL-SPECIFIC REGISTERS (MSRS)
1D9H 473 IA32_DEBUGCTL Unique Debug Control. (R/W)

Controls how several debug features are used.
Bit definitions are discussed in the referenced
section.

1DDH 477 MSR_LER_FROM_
LIP

Unique Last Exception Record From Linear IP. (R)

Contains a pointer to the last branch
instruction that the processor executed prior
to the last exception that was generated or
the last interrupt that was handled.

1DEH 478 MSR_LER_TO_LIP Unique Last Exception Record To Linear IP. (R)

This area contains a pointer to the target of
the last branch instruction that the processor
executed prior to the last exception that was
generated or the last interrupt that was
handled.

1E0H 480 ROB_CR_
BKUPTMPDR6

Unique

1:0 Reserved.

2 Fast String Enable bit. (Default, enabled)

200H 512 MTRRphysBase0 Unique

201H 513 MTRRphysMask0 Unique

202H 514 MTRRphysBase1 Unique

203H 515 MTRRphysMask1 Unique

204H 516 MTRRphysBase2 Unique

205H 517 MTRRphysMask2 Unique

206H 518 MTRRphysBase3 Unique

207H 519 MTRRphysMask3 Unique

208H 520 MTRRphysBase4 Unique

209H 521 MTRRphysMask4 Unique

20AH 522 MTRRphysBase5 Unique

20BH 523 MTRRphysMask5 Unique

Table 34-16. MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel
Xeon Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
34-220 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
20CH 524 MTRRphysBase6 Unique

20DH 525 MTRRphysMask6 Unique

20EH 526 MTRRphysBase7 Unique

20FH 527 MTRRphysMask7 Unique

250H 592 MTRRfix64K_
00000

Unique

258H 600 MTRRfix16K_
80000

Unique

259H 601 MTRRfix16K_
A0000

Unique

268H 616 MTRRfix4K_
C0000

Unique

269H 617 MTRRfix4K_
C8000

Unique

26AH 618 MTRRfix4K_
D0000

Unique

26BH 619 MTRRfix4K_
D8000

Unique

26CH 620 MTRRfix4K_
E0000

Unique

26DH 621 MTRRfix4K_
E8000

Unique

26EH 622 MTRRfix4K_
F0000

Unique

26FH 623 MTRRfix4K_
F8000

Unique

2FFH 767 IA32_MTRR_DEF_
TYPE

Unique Default Memory Types. (R/W). see
Table 34-2.

See Section 11.11.2.1,
“IA32_MTRR_DEF_TYPE MSR.”

400H 1024 IA32_MC0_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

Table 34-16. MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel
Xeon Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3C 34-221

MODEL-SPECIFIC REGISTERS (MSRS)
401H 1025 IA32_MC0_
STATUS

Unique See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.”

402H 1026 IA32_MC0_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the IA32_MC0_STATUS register
is clear. When not implemented in the
processor, all reads and writes to this MSR will
cause a general-protection exception.

404H 1028 IA32_MC1_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_
STATUS

Unique See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.”

406H 1030 IA32_MC1_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the IA32_MC1_STATUS register
is clear. When not implemented in the
processor, all reads and writes to this MSR will
cause a general-protection exception.

408H 1032 IA32_MC2_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_
STATUS

Unique See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.”

40AH 1034 IA32_MC2_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the IA32_MC2_STATUS register
is clear. When not implemented in the
processor, all reads and writes to this MSR will
cause a general-protection exception.

40CH 1036 MSR_MC4_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 MSR_MC4_
STATUS

Unique See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.”

Table 34-16. MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel
Xeon Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
34-222 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
40EH 1038 MSR_MC4_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the MSR_MC4_STATUS register
is clear. When not implemented in the
processor, all reads and writes to this MSR will
cause a general-protection exception.

410H 1040 MSR_MC3_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 MSR_MC3_
STATUS

See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.”

412H 1042 MSR_MC3_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the MSR_MC3_STATUS register
is clear. When not implemented in the
processor, all reads and writes to this MSR will
cause a general-protection exception.

413H 1043 MSR_MC3_MISC Unique

414H 1044 MSR_MC5_CTL Unique

415H 1045 MSR_MC5_
STATUS

Unique

416H 1046 MSR_MC5_ADDR Unique

417H 1047 MSR_MC5_MISC Unique

480H 1152 IA32_VMX_BASIC Unique Reporting Register of Basic VMX
Capabilities. (R/O). See Table 34-2.

See Appendix A.1, “Basic VMX Information”

(If CPUID.01H:ECX.[bit 9])

481H 1153 IA32_VMX_PINBA
SED_CTLS

Unique Capability Reporting Register of Pin-based
VM-execution Controls. (R/O)

See Appendix A.3, “VM-Execution Controls”

(If CPUID.01H:ECX.[bit 9])

Table 34-16. MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel
Xeon Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3C 34-223

MODEL-SPECIFIC REGISTERS (MSRS)
482H 1154 IA32_VMX_PROCB
ASED_CTLS

Unique Capability Reporting Register of Primary
Processor-based VM-execution Controls.
(R/O)

See Appendix A.3, “VM-Execution Controls”

(If CPUID.01H:ECX.[bit 9])

483H 1155 IA32_VMX_EXIT_
CTLS

Unique Capability Reporting Register of VM-exit
Controls. (R/O)

See Appendix A.4, “VM-Exit Controls”

(If CPUID.01H:ECX.[bit 9])

484H 1156 IA32_VMX_
ENTRY_CTLS

Unique Capability Reporting Register of VM-entry
Controls. (R/O)

See Appendix A.5, “VM-Entry Controls”

(If CPUID.01H:ECX.[bit 9])

485H 1157 IA32_VMX_MISC Unique Reporting Register of Miscellaneous VMX
Capabilities. (R/O)

See Appendix A.6, “Miscellaneous Data”

(If CPUID.01H:ECX.[bit 9])

486H 1158 IA32_VMX_CR0_
FIXED0

Unique Capability Reporting Register of CR0 Bits
Fixed to 0. (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0”

(If CPUID.01H:ECX.[bit 9])

487H 1159 IA32_VMX_CR0_
FIXED1

Unique Capability Reporting Register of CR0 Bits
Fixed to 1. (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0”

(If CPUID.01H:ECX.[bit 9])

488H 1160 IA32_VMX_CR4_FI
XED0

Unique Capability Reporting Register of CR4 Bits
Fixed to 0. (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4”

(If CPUID.01H:ECX.[bit 9])

489H 1161 IA32_VMX_CR4_FI
XED1

Unique Capability Reporting Register of CR4 Bits
Fixed to 1. (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4”

(If CPUID.01H:ECX.[bit 9])

Table 34-16. MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel
Xeon Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
34-224 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
34.11 MSRS IN THE PENTIUM M PROCESSOR
Model-specific registers (MSRs) for the Pentium M processor are similar to those
described in Section 34.12 for P6 family processors. The following table describes
new MSRs and MSRs whose behavior has changed on the Pentium M processor.

48AH 1162 IA32_VMX_
VMCS_ENUM

Unique Capability Reporting Register of VMCS Field
Enumeration. (R/O).

See Appendix A.9, “VMCS Enumeration”

(If CPUID.01H:ECX.[bit 9])

48BH 1163 IA32_VMX_PROCB
ASED_CTLS2

Unique Capability Reporting Register of Secondary
Processor-based VM-execution Controls.
(R/O)

See Appendix A.3, “VM-Execution Controls”

(If CPUID.01H:ECX.[bit 9] and
IA32_VMX_PROCBASED_CTLS[bit 63])

600H 1536 IA32_DS_AREA Unique DS Save Area. (R/W)

See Table 34-2.

See Section 18.10.4, “Debug Store (DS)
Mechanism.”

31:0 DS Buffer Management Area.

Linear address of the first byte of the DS
buffer management area.

63:32 Reserved.

C000_
0080H

IA32_EFER Unique See Table 34-2.

10:0 Reserved.

11 Execute Disable Bit Enable.

63:12 Reserved

Table 34-16. MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel
Xeon Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3C 34-225

MODEL-SPECIFIC REGISTERS (MSRS)
Table 34-17. MSRs in Pentium M Processors

Register
Address

Register Name Bit Description

 Hex Dec

0H 0 P5_MC_ADDR See Section 34.13, “MSRs in Pentium Processors.”

1H 1 P5_MC_TYPE See Section 34.13, “MSRs in Pentium Processors.”

10H 16 IA32_TIME_STAMP_
COUNTER

See Section 17.12, “Time-Stamp Counter,” and see
Table 34-2.

17H 23 IA32_PLATFORM_ID Platform ID. (R). See Table 34-2.

The operating system can use this MSR to
determine “slot” information for the processor and
the proper microcode update to load.

2AH 42 MSR_EBL_CR_POWERON Processor Hard Power-On Configuration.

(R/W) Enables and disables processor features. (R)
Indicates current processor configuration.

0 Reserved.

1 Data Error Checking Enable. (R)

0 = Disabled
Always 0 on the Pentium M processor.

2 Response Error Checking Enable. (R)

0 = Disabled
Always 0 on the Pentium M processor.

3 MCERR# Drive Enable. (R)

0 = Disabled
Always 0 on the Pentium M processor.

4 Address Parity Enable. (R)

0 = Disabled
Always 0 on the Pentium M processor.

6:5 Reserved.

7 BINIT# Driver Enable. (R)

1 = Enabled; 0 = Disabled
Always 0 on the Pentium M processor.

8 Output Tri-state Enabled. (R/O)

1 = Enabled; 0 = Disabled

9 Execute BIST. (R/O)

1 = Enabled; 0 = Disabled
34-226 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
10 MCERR# Observation Enabled. (R/O)

1 = Enabled; 0 = Disabled
Always 0 on the Pentium M processor.

11 Reserved.

12 BINIT# Observation Enabled. (R/O)

1 = Enabled; 0 = Disabled
Always 0 on the Pentium M processor.

13 Reserved

14 1 MByte Power on Reset Vector. (R/O)

1 = 1 MByte; 0 = 4 GBytes
Always 0 on the Pentium M processor.

15 Reserved.

17:16 APIC Cluster ID. (R/O)

Always 00B on the Pentium M processor.

18 System Bus Frequency. (R/O)

0 = 100 MHz
1 = Reserved
Always 0 on the Pentium M processor.

19 Reserved.

21: 20 Symmetric Arbitration ID. (R/O)

Always 00B on the Pentium M processor.

26:22 Clock Frequency Ratio (R/O)

40H 64 MSR_LASTBRANCH_0 Last Branch Record 0. (R/W)

One of 8 last branch record registers on the last
branch record stack: bits 31-0 hold the ‘from’
address and bits 63-32 hold the to address.

See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.10, “Last Branch, Interrupt, and

Exception Recording (Pentium M Processors)”

41H 65 MSR_LASTBRANCH_1 Last Branch Record 1. (R/W)

See description of MSR_LASTBRANCH_0.

Table 34-17. MSRs in Pentium M Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
Vol. 3C 34-227

MODEL-SPECIFIC REGISTERS (MSRS)
42H 66 MSR_LASTBRANCH_2 Last Branch Record 2. (R/W)

See description of MSR_LASTBRANCH_0.

43H 67 MSR_LASTBRANCH_3 Last Branch Record 3. (R/W)

See description of MSR_LASTBRANCH_0.

44H 68 MSR_LASTBRANCH_4 Last Branch Record 4. (R/W)

See description of MSR_LASTBRANCH_0.

45H 69 MSR_LASTBRANCH_5 Last Branch Record 5. (R/W)

See description of MSR_LASTBRANCH_0.

46H 70 MSR_LASTBRANCH_6 Last Branch Record 6. (R/W)

See description of MSR_LASTBRANCH_0.

47H 71 MSR_LASTBRANCH_7 Last Branch Record 7. (R/W)

See description of MSR_LASTBRANCH_0.

119H 281 MSR_BBL_CR_CTL

63:0 Reserved.

11EH 281 MSR_BBL_CR_CTL3

0 L2 Hardware Enabled. (RO)

1 = If the L2 is hardware-enabled
0 = Indicates if the L2 is hardware-disabled

4:1 Reserved.

5 ECC Check Enable. (RO)

This bit enables ECC checking on the cache data
bus. ECC is always generated on write cycles.

0 = Disabled (default)
1 = Enabled
For the Pentium M processor, ECC checking on the
cache data bus is always enabled.

7:6 Reserved.

Table 34-17. MSRs in Pentium M Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
34-228 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
8 L2 Enabled. (R/W)

1 = L2 cache has been initialized
0 = Disabled (default)
Until this bit is set the processor will not respond
to the WBINVD instruction or the assertion of the
FLUSH# input.

22:9 Reserved.

23 L2 Not Present. (RO)

0 = L2 Present
1 = L2 Not Present

63:24 Reserved.

179H 377 IA32_MCG_CAP

7:0 Count. (RO)

Indicates the number of hardware unit error
reporting banks available in the processor.

8 IA32_MCG_CTL Present. (RO)

1 = Indicates that the processor implements the
MSR_MCG_CTL register found at MSR 17BH.

0 = Not supported.

63:9 Reserved.

17AH 378 IA32_MCG_STATUS

0 RIPV.

When set, this bit indicates that the instruction
addressed by the instruction pointer pushed on
the stack (when the machine check was
generated) can be used to restart the program. If
this bit is cleared, the program cannot be reliably
restarted.

1 EIPV.

When set, this bit indicates that the instruction
addressed by the instruction pointer pushed on
the stack (when the machine check was
generated) is directly associated with the error.

Table 34-17. MSRs in Pentium M Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
Vol. 3C 34-229

MODEL-SPECIFIC REGISTERS (MSRS)
2 MCIP.

When set, this bit indicates that a machine check
has been generated. If a second machine check is
detected while this bit is still set, the processor
enters a shutdown state. Software should write
this bit to 0 after processing a machine check
exception.

63:3 Reserved.

198H 408 IA32_PERF_STATUS See Table 34-2.

199H 409 IA32_PERF_CTL See Table 34-2.

19AH 410 IA32_CLOCK_
MODULATION

Clock Modulation. (R/W). See Table 34-2.

See Section 14.5.3, “Software Controlled Clock
Modulation.”

19BH 411 IA32_THERM_
INTERRUPT

Thermal Interrupt Control. (R/W). See
Table 34-2.

See Section 14.5.2, “Thermal Monitor.”

19CH 412 IA32_THERM_
STATUS

Thermal Monitor Status. (R/W). See Table 34-2.

See Section 14.5.2, “Thermal Monitor.”

19DH 413 MSR_THERM2_CTL

15:0 Reserved.

16 TM_SELECT. (R/W)

Mode of automatic thermal monitor:

0 = Thermal Monitor 1 (thermally-initiated on-die
modulation of the stop-clock duty cycle)

1 = Thermal Monitor 2 (thermally-initiated
frequency transitions)

If bit 3 of the IA32_MISC_ENABLE register is
cleared, TM_SELECT has no effect. Neither TM1
nor TM2 will be enabled.

63:16 Reserved.

1A0 416 IA32_MISC_ENABLE Enable Miscellaneous Processor Features.
(R/W)

Allows a variety of processor functions to be
enabled and disabled.

Table 34-17. MSRs in Pentium M Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
34-230 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
2:0 Reserved.

3 Automatic Thermal Control Circuit Enable. (R/W)

1 = Setting this bit enables the thermal control
circuit (TCC) portion of the Intel Thermal
Monitor feature. This allows processor clocks
to be automatically modulated based on the
processor's thermal sensor operation.

0 = Disabled (default).
The automatic thermal control circuit enable bit
determines if the thermal control circuit (TCC) will
be activated when the processor's internal
thermal sensor determines the processor is about
to exceed its maximum operating temperature.

When the TCC is activated and TM1 is enabled, the
processors clocks will be forced to a 50% duty
cycle. BIOS must enable this feature.

The bit should not be confused with the on-
demand thermal control circuit enable bit.

6:4 Reserved.

7 Performance Monitoring Available. (R)

1 = Performance monitoring enabled
0 = Performance monitoring disabled

9:8 Reserved.

10 FERR# Multiplexing Enable. (R/W)

1 = FERR# asserted by the processor to indicate
a pending break event within the processor

0 = Indicates compatible FERR# signaling
behavior

This bit must be set to 1 to support XAPIC
interrupt model usage.

Branch Trace Storage Unavailable. (RO)

1 = Processor doesn’t support branch trace
storage (BTS)

0 = BTS is supported

Table 34-17. MSRs in Pentium M Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
Vol. 3C 34-231

MODEL-SPECIFIC REGISTERS (MSRS)
12 Precise Event Based Sampling Unavailable. (RO)

1 = Processor does not support precise event-
based sampling (PEBS);

0 = PEBS is supported.
The Pentium M processor does not support PEBS.

15:13 Reserved.

16 Enhanced Intel SpeedStep Technology Enable.
(R/W)

1 = Enhanced Intel SpeedStep Technology
enabled.

On the Pentium M processor, this bit may be
configured to be read-only.

22:17 Reserved.

23 xTPR Message Disable. (R/W)

When set to 1, xTPR messages are disabled. xTPR
messages are optional messages that allow the
processor to inform the chipset of its priority. The
default is processor specific.

63:24 Reserved.

1C9H 457 MSR_LASTBRANCH_TOS Last Branch Record Stack TOS. (R)

Contains an index (bits 0-3) that points to the MSR
containing the most recent branch record. See also:

• MSR_LASTBRANCH_0_FROM_IP (at 40H)
• Section 17.10, “Last Branch, Interrupt, and

Exception Recording (Pentium M Processors)”

1D9H 473 MSR_DEBUGCTLB Debug Control. (R/W)

Controls how several debug features are used. Bit
definitions are discussed in the referenced section.

See Section 17.10, “Last Branch, Interrupt, and
Exception Recording (Pentium M Processors).”

Table 34-17. MSRs in Pentium M Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
34-232 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
1DDH 477 MSR_LER_TO_LIP Last Exception Record To Linear IP. (R)

This area contains a pointer to the target of the
last branch instruction that the processor
executed prior to the last exception that was
generated or the last interrupt that was handled.

See Section 17.10, “Last Branch, Interrupt, and
Exception Recording (Pentium M Processors)” and
Section 17.11.2, “Last Branch and Last Exception
MSRs.”

1DEH 478 MSR_LER_FROM_LIP Last Exception Record From Linear IP. (R)

Contains a pointer to the last branch instruction
that the processor executed prior to the last
exception that was generated or the last interrupt
that was handled.

See Section 17.10, “Last Branch, Interrupt, and
Exception Recording (Pentium M Processors)” and
Section 17.11.2, “Last Branch and Last Exception
MSRs.”

2FFH 767 IA32_MTRR_DEF_
TYPE

Default Memory Types. (R/W)

Sets the memory type for the regions of physical
memory that are not mapped by the MTRRs.

See Section 11.11.2.1, “IA32_MTRR_DEF_TYPE
MSR.”

400H 1024 IA32_MC0_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR See Section 14.3.2.3., “IA32_MCi_ADDR MSRs”.

The IA32_MC0_ADDR register is either not
implemented or contains no address if the ADDRV
flag in the IA32_MC0_STATUS register is clear.
When not implemented in the processor, all reads
and writes to this MSR will cause a general-
protection exception.

404H 1028 IA32_MC1_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

Table 34-17. MSRs in Pentium M Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
Vol. 3C 34-233

MODEL-SPECIFIC REGISTERS (MSRS)
406H 1030 IA32_MC1_ADDR See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is either not
implemented or contains no address if the ADDRV
flag in the IA32_MC1_STATUS register is clear.
When not implemented in the processor, all reads
and writes to this MSR will cause a general-
protection exception.

408H 1032 IA32_MC2_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS See Chapter 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40AH 1034 IA32_MC2_ADDR See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not
implemented or contains no address if the ADDRV
flag in the IA32_MC2_STATUS register is clear.
When not implemented in the processor, all reads
and writes to this MSR will cause a general-
protection exception.

40CH 1036 MSR_MC4_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 MSR_MC4_STATUS See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40EH 1038 MSR_MC4_ADDR See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not
implemented or contains no address if the ADDRV
flag in the MSR_MC4_STATUS register is clear.
When not implemented in the processor, all reads
and writes to this MSR will cause a general-
protection exception.

410H 1040 MSR_MC3_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 MSR_MC3_STATUS See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

412H 1042 MSR_MC3_ADDR See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not
implemented or contains no address if the ADDRV
flag in the MSR_MC3_STATUS register is clear.
When not implemented in the processor, all reads
and writes to this MSR will cause a general-
protection exception.

Table 34-17. MSRs in Pentium M Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
34-234 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
34.12 MSRS IN THE P6 FAMILY PROCESSORS
The following MSRs are defined for the P6 family processors. The MSRs in this table
that are shaded are available only in the Pentium II and Pentium III processors.
Beginning with the Pentium 4 processor, some of the MSRs in this list have been
designated as “architectural” and have had their names changed. See Table 34-2 for
a list of the architectural MSRs.

600H 1536 IA32_DS_AREA DS Save Area. (R/W). See Table 34-2.

Points to the DS buffer management area, which is
used to manage the BTS and PEBS buffers. See
Section 18.10.4, “Debug Store (DS) Mechanism.”

31:0 DS Buffer Management Area.

Linear address of the first byte of the DS buffer
management area.

63:32 Reserved.

Table 34-18. MSRs in the P6 Family Processors

Register
Address

Register Name Bit Description

 Hex Dec

0H 0 P5_MC_ADDR See Section 34.13, “MSRs in Pentium Processors.”

1H 1 P5_MC_TYPE See Section 34.13, “MSRs in Pentium Processors.”

10H 16 TSC See Section 17.12, “Time-Stamp Counter.”

17H 23 IA32_PLATFORM_ID Platform ID. (R)

The operating system can use this MSR to
determine “slot” information for the processor and
the proper microcode update to load.

49:0 Reserved.

Table 34-17. MSRs in Pentium M Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
Vol. 3C 34-235

MODEL-SPECIFIC REGISTERS (MSRS)
52:50 Platform Id. (R)

Contains information concerning the intended
platform for the processor.
52 51 50
0 0 0 Processor Flag 0
0 0 1 Processor Flag 1
0 1 0 Processor Flag 2
0 1 1 Processor Flag 3
1 0 0 Processor Flag 4
1 0 1 Processor Flag 5
1 1 0 Processor Flag 6
1 1 1 Processor Flag 7

56:53 L2 Cache Latency Read.

59:57 Reserved.

60 Clock Frequency Ratio Read.

63:61 Reserved.

1BH 27 APIC_BASE Section 10.4.4, “Local APIC Status and Location.”

7:0 Reserved.

8 Boot Strap Processor indicator Bit.

1 = BSP

10:9 Reserved.

11 APIC Global Enable Bit - Permanent till reset.

1 = Enabled
0 = Disabled

31:12 APIC Base Address.

63:32 Reserved.

2AH 42 EBL_CR_POWERON Processor Hard Power-On Configuration. (R/W)

Enables and disables processor features; (R)
indicates current processor configuration.

0 Reserved.1

1 Data Error Checking Enable. (R/W)

1 = Enabled
0 = Disabled

Table 34-18. MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
34-236 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
2 Response Error Checking Enable FRCERR
Observation Enable. (R/W)

1 = Enabled
0 = Disabled

3 AERR# Drive Enable. (R/W)

1 = Enabled
0 = Disabled

4 BERR# Enable for Initiator Bus Requests. (R/W)

1 = Enabled
0 = Disabled

5 Reserved.

6 BERR# Driver Enable for Initiator Internal Errors.
(R/W)

1 = Enabled
0 = Disabled

7 BINIT# Driver Enable. (R/W)

1 = Enabled
0 = Disabled

8 Output Tri-state Enabled. (R)

1 = Enabled
0 = Disabled

9 Execute BIST. (R)

1 = Enabled
0 = Disabled

10 AERR# Observation Enabled. (R)

1 = Enabled
0 = Disabled

11 Reserved.

12 BINIT# Observation Enabled. (R)

1 = Enabled
0 = Disabled

Table 34-18. MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
Vol. 3C 34-237

MODEL-SPECIFIC REGISTERS (MSRS)
13 In Order Queue Depth. (R)

1 = 1
0 = 8

14 1-MByte Power on Reset Vector. (R)

1 = 1MByte
0 = 4GBytes

 15 FRC Mode Enable. (R)

1 = Enabled
0 = Disabled

 17:16 APIC Cluster ID. (R)

19:18 System Bus Frequency. (R)

00 = 66MHz
10 = 100Mhz
01 = 133MHz
11 = Reserved

21: 20 Symmetric Arbitration ID. (R)

25:22 Clock Frequency Ratio. (R)

26 Low Power Mode Enable. (R/W)

27 Clock Frequency Ratio.

 63:28 Reserved.1

33H 51 TEST_CTL Test Control Register.

29:0 Reserved.

30 Streaming Buffer Disable.

31 Disable LOCK#.

Assertion for split locked access.

79H 121 BIOS_UPDT_TRIG BIOS Update Trigger Register.

 88 136 BBL_CR_D0[63:0] Chunk 0 data register D[63:0]: used to write to and
read from the L2

 89 137 BBL_CR_D1[63:0] Chunk 1 data register D[63:0]: used to write to and
read from the L2

 8A 138 BBL_CR_D2[63:0] Chunk 2 data register D[63:0]: used to write to and
read from the L2

Table 34-18. MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
34-238 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
8BH 139 BIOS_SIGN/BBL_CR_D3[6
3:0]

BIOS Update Signature Register or Chunk 3 data
register D[63:0].

Used to write to and read from the L2 depending
on the usage model.

C1H 193 PerfCtr0 (PERFCTR0)

C2H 194 PerfCtr1 (PERFCTR1)

FEH 254 MTRRcap

 116 278 BBL_CR_ADDR [63:0]

BBL_CR_ADDR [63:32]

BBL_CR_ADDR [31:3]

BBL_CR_ADDR [2:0]

Address register: used to send specified address
(A31-A3) to L2 during cache initialization accesses.

Reserved,

Address bits [35:3]

Reserved Set to 0.

 118 280 BBL_CR_DECC[63:0] Data ECC register D[7:0]: used to write ECC and
read ECC to/from L2

 119 281 BBL_CR_CTL

BL_CR_CTL[63:22]

BBL_CR_CTL[21]

Control register: used to program L2 commands to
be issued via cache configuration accesses
mechanism. Also receives L2 lookup response

Reserved

Processor number2

Disable = 1
Enable = 0
Reserved

BBL_CR_CTL[20:19]

BBL_CR_CTL[18]

BBL_CR_CTL[17]

BBL_CR_CTL[16]

BBL_CR_CTL[15:14]

BBL_CR_CTL[13:12]

BBL_CR_CTL[11:10]

BBL_CR_CTL[9:8]

BBL_CR_CTL[7]

BBL_CR_CTL[6:5]

User supplied ECC

Reserved

L2 Hit

Reserved

State from L2

Modified - 11,Exclusive - 10, Shared - 01, Invalid -
00

Way from L2

Way 0 - 00, Way 1 - 01, Way 2 - 10, Way 3 - 11

Way to L2

Reserved

State to L2

Table 34-18. MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
Vol. 3C 34-239

MODEL-SPECIFIC REGISTERS (MSRS)
BBL_CR_CTL[4:0]

01100
01110
01111
00010
00011
010 + MESI encode
111 + MESI encode
100 + MESI encode

L2 Command

Data Read w/ LRU update (RLU)
Tag Read w/ Data Read (TRR)
Tag Inquire (TI)
L2 Control Register Read (CR)
L2 Control Register Write (CW)
Tag Write w/ Data Read (TWR)
Tag Write w/ Data Write (TWW)
Tag Write (TW)

 11A 282 BBL_CR_TRIG Trigger register: used to initiate a cache
configuration accesses access, Write only with Data
= 0.

 11B 283 BBL_CR_BUSY Busy register: indicates when a cache configuration
accesses L2 command is in progress. D[0] = 1 =
BUSY

11E 286 BBL_CR_CTL3

BBL_CR_CTL3[63:26]

BBL_CR_CTL3[25]

BBL_CR_CTL3[24]

BBL_CR_CTL3[23]

Control register 3: used to configure the L2 Cache

Reserved

Cache bus fraction (read only)

Reserved

L2 Hardware Disable (read only)

BBL_CR_CTL3[22:20]

111
110
101
100
011
010
001
000

BBL_CR_CTL3[19]

BBL_CR_CTL3[18]

L2 Physical Address Range support

64GBytes
32GBytes
16GBytes
8GBytes
4GBytes
2GBytes
1GBytes
512MBytes

Reserved

Cache State error checking enable (read/write)

Table 34-18. MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
34-240 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
 BBL_CR_CTL3[17:13

00001
00010
00100
01000
10000

BBL_CR_CTL3[12:11]

BBL_CR_CTL3[10:9]

00
01
10
11

BBL_CR_CTL3[8]

BBL_CR_CTL3[7]

BBL_CR_CTL3[6]

BBL_CR_CTL3[5]

BBL_CR_CTL3[4:1]

BBL_CR_CTL3[0]

Cache size per bank (read/write)

256KBytes
512KBytes
1MByte
2MByte
4MBytes

Number of L2 banks (read only)

L2 Associativity (read only)

Direct Mapped
2 Way
4 Way
Reserved

L2 Enabled (read/write)

CRTN Parity Check Enable (read/write)

Address Parity Check Enable (read/write)

ECC Check Enable (read/write)

L2 Cache Latency (read/write)

L2 Configured (read/write

)

174H 372 SYSENTER_CS_MSR CS register target for CPL 0 code

175H 373 SYSENTER_ESP_MSR Stack pointer for CPL 0 stack

176H 374 SYSENTER_EIP_MSR CPL 0 code entry point

179H 377 MCG_CAP

17AH 378 MCG_STATUS

17BH 379 MCG_CTL

186H 390 PerfEvtSel0 (EVNTSEL0)

7:0 Event Select.

Refer to Performance Counter section for a list of
event encodings.

15:8 UMASK (Unit Mask).

Unit mask register set to 0 to enable all count
options.

Table 34-18. MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
Vol. 3C 34-241

MODEL-SPECIFIC REGISTERS (MSRS)
16 USER.

Controls the counting of events at Privilege levels
of 1, 2, and 3.

17 OS.

Controls the counting of events at Privilege level
of 0.

18 E.

Occurrence/Duration Mode Select

1 = Occurrence
0 = Duration

19 PC.

Enabled the signaling of performance counter
overflow via BP0 pin

20 INT.

Enables the signaling of counter overflow via input
to APIC

1 = Enable
0 = Disable

22 ENABLE.

Enables the counting of performance events in
both counters

1 = Enable
0 = Disable

23 INV.

Inverts the result of the CMASK condition

1 = Inverted
0 = Non-Inverted

31:24 CMASK (Counter Mask).

Table 34-18. MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
34-242 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
187H 391 PerfEvtSel1 (EVNTSEL1)

7:0 Event Select.

Refer to Performance Counter section for a list of
event encodings.

15:8 UMASK (Unit Mask).

Unit mask register set to 0 to enable all count
options.

16 USER.

Controls the counting of events at Privilege levels
of 1, 2, and 3.

17 OS.

Controls the counting of events at Privilege level
of 0

18 E.

Occurrence/Duration Mode Select

1 = Occurrence
0 = Duration

19 PC.

Enabled the signaling of performance counter
overflow via BP0 pin.

20 INT.

Enables the signaling of counter overflow via input
to APIC

1 = Enable
0 = Disable

23 INV.

Inverts the result of the CMASK condition

1 = Inverted
0 = Non-Inverted

31:24 CMASK (Counter Mask).

1D9H 473 DEBUGCTLMSR

0 Enable/Disable Last Branch Records

1 Branch Trap Flag

Table 34-18. MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
Vol. 3C 34-243

MODEL-SPECIFIC REGISTERS (MSRS)
2 Performance Monitoring/Break Point Pins

3 Performance Monitoring/Break Point Pins

4 Performance Monitoring/Break Point Pins

5 Performance Monitoring/Break Point Pins

6 Enable/Disable Execution Trace Messages

31:7 Reserved

1DBH 475 LASTBRANCHFROMIP

1DCH 476 LASTBRANCHTOIP

1DDH 477 LASTINTFROMIP

1DEH 478 LASTINTTOIP

1E0H 480 ROB_CR_BKUPTMPDR6

1:0 Reserved

2 Fast String Enable bit. Default is enabled

200H 512 MTRRphysBase0

201H 513 MTRRphysMask0

202H 514 MTRRphysBase1

203H 515 MTRRphysMask1

204H 516 MTRRphysBase2

205H 517 MTRRphysMask2

206H 518 MTRRphysBase3

207H 519 MTRRphysMask3

208H 520 MTRRphysBase4

209H 521 MTRRphysMask4

20AH 522 MTRRphysBase5

20BH 523 MTRRphysMask5

20CH 524 MTRRphysBase6

20DH 525 MTRRphysMask6

20EH 526 MTRRphysBase7

20FH 527 MTRRphysMask7

Table 34-18. MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
34-244 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
250H 592 MTRRfix64K_00000

258H 600 MTRRfix16K_80000

259H 601 MTRRfix16K_A0000

268H 616 MTRRfix4K_C0000

269H 617 MTRRfix4K_C8000

26AH 618 MTRRfix4K_D0000

26BH 619 MTRRfix4K_D8000

26CH 620 MTRRfix4K_E0000

26DH 621 MTRRfix4K_E8000

26EH 622 MTRRfix4K_F0000

26FH 623 MTRRfix4K_F8000

2FFH 767 MTRRdefType

2:0 Default memory type

10 Fixed MTRR enable

11 MTRR Enable

400H 1024 MC0_CTL

401H 1025 MC0_STATUS

15:0 MC_STATUS_MCACOD

31:16 MC_STATUS_MSCOD

57 MC_STATUS_DAM

58 MC_STATUS_ADDRV

59 MC_STATUS_MISCV

60 MC_STATUS_EN. (Note: For MC0_STATUS only, this
bit is hardcoded to 1.)

61 MC_STATUS_UC

62 MC_STATUS_O

63 MC_STATUS_V

402H 1026 MC0_ADDR

403H 1027 MC0_MISC Defined in MCA architecture but not implemented
in the P6 family processors.

Table 34-18. MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
Vol. 3C 34-245

MODEL-SPECIFIC REGISTERS (MSRS)
404H 1028 MC1_CTL

405H 1029 MC1_STATUS Bit definitions same as MC0_STATUS.

406H 1030 MC1_ADDR

407H 1031 MC1_MISC Defined in MCA architecture but not implemented
in the P6 family processors.

408H 1032 MC2_CTL

409H 1033 MC2_STATUS Bit definitions same as MC0_STATUS.

40AH 1034 MC2_ADDR

40BH 1035 MC2_MISC Defined in MCA architecture but not implemented
in the P6 family processors.

40CH 1036 MC4_CTL

40DH 1037 MC4_STATUS Bit definitions same as MC0_STATUS, except bits 0,
4, 57, and 61 are hardcoded to 1.

40EH 1038 MC4_ADDR Defined in MCA architecture but not implemented
in P6 Family processors.

40FH 1039 MC4_MISC Defined in MCA architecture but not implemented
in the P6 family processors.

410H 1040 MC3_CTL

411H 1041 MC3_STATUS Bit definitions same as MC0_STATUS.

412H 1042 MC3_ADDR

413H 1043 MC3_MISC Defined in MCA architecture but not implemented
in the P6 family processors.

NOTES
1. Bit 0 of this register has been redefined several times, and is no longer used in P6 family

processors.
2. The processor number feature may be disabled by setting bit 21 of the BBL_CR_CTL MSR

(model-specific register address 119h) to “1”. Once set, bit 21 of the BBL_CR_CTL may not be
cleared. This bit is write-once. The processor number feature will be disabled until the processor
is reset.

3. The Pentium III processor will prevent FSB frequency overclocking with a new shutdown mecha-
nism. If the FSB frequency selected is greater than the internal FSB frequency the processor will
shutdown. If the FSB selected is less than the internal FSB frequency the BIOS may choose to
use bit 11 to implement its own shutdown policy.

Table 34-18. MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
34-246 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
34.13 MSRS IN PENTIUM PROCESSORS
The following MSRs are defined for the Pentium processors. The P5_MC_ADDR,
P5_MC_TYPE, and TSC MSRs (named IA32_P5_MC_ADDR, IA32_P5_MC_TYPE, and
IA32_TIME_STAMP_COUNTER in the Pentium 4 processor) are architectural; that is,
code that accesses these registers will run on Pentium 4 and P6 family processors
without generating exceptions (see Section 34.1, “Architectural MSRs”). The CESR,
CTR0, and CTR1 MSRs are unique to Pentium processors; code that accesses these
registers will generate exceptions on Pentium 4 and P6 family processors.

Table 34-19. MSRs in the Pentium Processor

Register
Address

 Hex Dec Register Name Bit Description

0H 0 P5_MC_ADDR See Section 15.10.2, “Pentium Processor Machine-Check
Exception Handling.”

1H 1 P5_MC_TYPE See Section 15.10.2, “Pentium Processor Machine-Check
Exception Handling.”

10H 16 TSC See Section 17.12, “Time-Stamp Counter.”

11H 17 CESR See Section 18.18.1, “Control and Event Select Register (CESR).”

12H 18 CTR0 Section 18.18.3, “Events Counted.”

13H 19 CTR1 Section 18.18.3, “Events Counted.”
Vol. 3C 34-247

APPENDIX A
VMX CAPABILITY REPORTING FACILITY

The ability of a processor to support VMX operation and related instructions is indi-
cated by CPUID.1:ECX.VMX[bit 5] = 1. A value 1 in this bit indicates support for VMX
features.

Support for specific features detailed in Chapter 24 and other VMX chapters is deter-
mined by reading values from a set of capability MSRs. These MSRs are indexed
starting at MSR address 480H. VMX capability MSRs are read-only; an attempt to
write them (with WRMSR) produces a general-protection exception (#GP(0)). They
do not exist on processors that do not support VMX operation; an attempt to read
them (with RDMSR) on such processors produces a general-protection exception
(#GP(0)).

A.1 BASIC VMX INFORMATION
The IA32_VMX_BASIC MSR (index 480H) consists of the following fields:
• Bits 31:0 contain the 32-bit VMCS revision identifier used by the processor.

Logical processors that use the same VMCS revision identifier use the same size
for VMCS regions (see next item)

• Bits 44:32 report the number of bytes that software should allocate for the
VMXON region and any VMCS region. It is a value greater than 0 and at most
4096 (bit 44 is set if and only if bits 43:32 are clear).

• Bit 48 indicates the width of the physical addresses that may be used for the
VMXON region, each VMCS, and data structures referenced by pointers in a VMCS
(I/O bitmaps, virtual-APIC page, MSR areas for VMX transitions). If the bit is 0,
these addresses are limited to the processor’s physical-address width.1 If the bit
is 1, these addresses are limited to 32 bits. This bit is always 0 for processors that
support Intel 64 architecture.

• If bit 49 is read as 1, the logical processor supports the dual-monitor treatment
of system-management interrupts and system-management mode. See Section
33.15 for details of this treatment.

• Bits 53:50 report the memory type that the logical processor uses to access the
VMCS for VMREAD and VMWRITE and to access the VMCS, data structures
referenced by pointers in the VMCS (I/O bitmaps, virtual-APIC page, MSR areas
for VMX transitions), and the MSEG header during VM entries, VM exits, and in
VMX non-root operation.2

1. On processors that support Intel 64 architecture, the pointer must not set bits beyond the pro-
cessor's physical address width.
Vol. 3C A-1

VMX CAPABILITY REPORTING FACILITY
The first processors to support VMX operation use the write-back type. The
values used are given in Table A-1.

If software needs to access these data structures (e.g., to modify the contents of
the MSR bitmaps), it can configure the paging structures to map them into the
linear-address space. If it does so, it should establish mappings that use the
memory type reported in this MSR.1

• If bit 54 is read as 1, the logical processor reports information in the VM-exit
instruction-information field on VM exits due to execution of the INS and OUTS
instructions. This reporting is done only if this bit is read as 1.

• Bit 55 is read as 1 if any VMX controls that default to 1 may be cleared to 0. See
Appendix A.2 for details. It also reports support for the VMX capability MSRs
IA32_VMX_TRUE_PINBASED_CTLS, IA32_VMX_TRUE_PROCBASED_CTLS,
IA32_VMX_TRUE_EXIT_CTLS, and IA32_VMX_TRUE_ENTRY_CTLS. See
Appendix A.3.1, Appendix A.3.2, Appendix A.4, and Appendix A.5 for details.

• The values of bits 47:45 and bits 63:56 are reserved and are read as 0.

A.2 RESERVED CONTROLS AND DEFAULT SETTINGS
As noted in Chapter 24, “Virtual-Machine Control Structures”, certain VMX controls
are reserved and must be set to a specific value (0 or 1) determined by the processor.
The specific value to which a reserved control must be set is its default setting.

2. If the MTRRs are disabled by clearing the E bit (bit 11) in the IA32_MTRR_DEF_TYPE MSR, the
logical processor uses the UC memory type to access the indicated data structures, regardless of
the value reported in bits 53:50 in the IA32_VMX_BASIC MSR. The processor will also use the UC
memory type if the setting of CR0.CD on this logical processor (or another logical processor on
the same physical processor) would cause it to do so for all memory accesses. The values of
IA32_MTRR_DEF_TYPE.E and CR0.CD do not affect the value reported in
IA32_VMX_BASIC[53:50].

Table A-1. Memory Types Used For VMCS Access
Value(s) Field

0 Uncacheable (UC)

1–5 Not used

6 Write Back (WB)

7–15 Not used

1. Alternatively, software may map any of these regions or structures with the UC memory type.
(This may be necessary for the MSEG header.) Doing so is discouraged unless necessary as it will
cause the performance of software accesses to those structures to suffer. The processor will
continue to use the memory type reported in the VMX capability MSR IA32_VMX_BASIC with the
exceptions noted.
A-2 Vol. 3C

VMX CAPABILITY REPORTING FACILITY
Software can discover the default setting of a reserved control by consulting the
appropriate VMX capability MSR (see Appendix A.3 through Appendix A.5).

Future processors may define new functionality for one or more reserved controls.
Such processors would allow each newly defined control to be set either to 0 or to 1.
Software that does not desire a control’s new functionality should set the control to
its default setting. For that reason, it is useful for software to know the default
settings of the reserved controls.

Default settings partition the various controls into the following classes:
• Always-flexible. These have never been reserved.
• Default0. These are (or have been) reserved with a default setting of 0.
• Default1. They are (or have been) reserved with a default setting of 1.

As noted in Appendix A.1, a logical processor uses bit 55 of the
IA32_VMX_BASIC MSR to indicate whether any of the default1 controls may be 0:
• If bit 55 of the IA32_VMX_BASIC MSR is read as 0, all the default1 controls are

reserved and must be 1. VM entry will fail if any of these controls are 1 (see
Section 26.2.1).

• If bit 55 of the IA32_VMX_BASIC MSR is read as 1, not all the default1 controls
are reserved, and some (but not necessarily all) may be 0. The CPU supports four
(4) new VMX capability MSRs: IA32_VMX_TRUE_PINBASED_CTLS,
IA32_VMX_TRUE_PROCBASED_CTLS, IA32_VMX_TRUE_EXIT_CTLS, and
IA32_VMX_TRUE_ENTRY_CTLS. See Appendix A.3 through Appendix A.5 for
details. (These MSRs are not supported if bit 55 of the IA32_VMX_BASIC MSR is
read as 0.)

See Section 30.5.1 for recommended software algorithms for proper capability
detection of the default1 controls.

A.3 VM-EXECUTION CONTROLS
There are separate capability MSRs for the pin-based VM-execution controls, the
primary processor-based VM-execution controls, and the secondary processor-based
VM-execution controls. These are described in Appendix A.3.1, Appendix A.3.2, and
Appendix A.3.3, respectively.

A.3.1 Pin-Based VM-Execution Controls
The IA32_VMX_PINBASED_CTLS MSR (index 481H) reports on the allowed settings
of most of the pin-based VM-execution controls (see Section 24.6.1):
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows

control X (bit X of the pin-based VM-execution controls) to be 0 if bit X in the MSR
is cleared to 0; if bit X in the MSR is set to 1, VM entry fails if control X is 0.
Vol. 3C A-3

VMX CAPABILITY REPORTING FACILITY
Exceptions are made for the pin-based VM-execution controls in the default1
class (see Appendix A.2). These are bits 1, 2, and 4; the corresponding bits of the
IA32_VMX_PINBASED_CTLS MSR are always read as 1. The treatment of these
controls by VM entry is determined by bit 55 in the IA32_VMX_BASIC MSR:

— If bit 55 in the IA32_VMX_BASIC MSR is read as 0, VM entry fails if any pin-
based VM-execution control in the default1 class is 0.

— If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the
IA32_VMX_TRUE_PINBASED_CTLS MSR (see below) reports which of the
pin-based VM-execution controls in the default1 class can be 0 on VM entry.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows
control X to be 1 if bit 32+X in the MSR is set to 1; if bit 32+X in the MSR is
cleared to 0, VM entry fails if control X is 1.

If bit 55 in the IA32_VMX_BASIC MSR is read as 1,
the IA32_VMX_TRUE_PINBASED_CTLS MSR (index 48DH) reports on the allowed
settings of all of the pin-based VM-execution controls:
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows

control X to be 0 if bit X in the MSR is cleared to 0; if bit X in the MSR is set to 1,
VM entry fails if control X is 0. There are no exceptions.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows
control X to be 1 if bit 32+X in the MSR is set to 1; if bit 32+X in the MSR is
cleared to 0, VM entry fails if control X is 1.

It is necessary for software to consult only one of the capability MSRs to determine
the allowed settings of the pin-based VM-execution controls:
• If bit 55 in the IA32_VMX_BASIC MSR is read as 0, all information about the

allowed settings of the pin-based VM-execution controls is contained in
the IA32_VMX_PINBASED_CTLS MSR. (The IA32_VMX_TRUE_PINBASED_CTLS
MSR is not supported.)

• If bit 55 in the IA32_VMX_BASIC MSR is read as 1, all information about the
allowed settings of the pin-based VM-execution controls is contained in
the IA32_VMX_TRUE_PINBASED_CTLS MSR. Assuming that software knows that
the default1 class of pin-based VM-execution controls contains bits 1, 2, and 4,
there is no need for software to consult the IA32_VMX_PINBASED_CTLS MSR.

A.3.2 Primary Processor-Based VM-Execution Controls
The IA32_VMX_PROCBASED_CTLS MSR (index 482H) reports on the allowed
settings of most of the primary processor-based VM-execution controls (see Section
24.6.2):
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows

control X (bit X of the primary processor-based VM-execution controls) to be 0 if
bit X in the MSR is cleared to 0; if bit X in the MSR is set to 1, VM entry fails if
control X is 0.
A-4 Vol. 3C

VMX CAPABILITY REPORTING FACILITY
Exceptions are made for the primary processor-based VM-execution controls in
the default1 class (see Appendix A.2). These are bits 1, 4–6, 8, 13–16, and 26;
the corresponding bits of the IA32_VMX_PROCBASED_CTLS MSR are always read
as 1. The treatment of these controls by VM entry is determined by bit 55 in the
IA32_VMX_BASIC MSR:

— If bit 55 in the IA32_VMX_BASIC MSR is read as 0, VM entry fails if any of the
primary processor-based VM-execution controls in the default1 class is 0.

— If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the
IA32_VMX_TRUE_PROCBASED_CTLS MSR (see below) reports which of the
primary processor-based VM-execution controls in the default1 class can be 0
on VM entry.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows
control X to be 1 if bit 32+X in the MSR is set to 1; if bit 32+X in the MSR is
cleared to 0, VM entry fails if control X is 1.

If bit 55 in the IA32_VMX_BASIC MSR is read as 1,
the IA32_VMX_TRUE_PROCBASED_CTLS MSR (index 48EH) reports on the allowed
settings of all of the primary processor-based VM-execution controls:
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows

control X to be 0 if bit X in the MSR is cleared to 0; if bit X in the MSR is set to 1,
VM entry fails if control X is 0. There are no exceptions.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows
control X to be 1 if bit 32+X in the MSR is set to 1; if bit 32+X in the MSR is
cleared to 0, VM entry fails if control X is 1.

It is necessary for software to consult only one of the capability MSRs to determine
the allowed settings of the primary processor-based VM-execution controls:
• If bit 55 in the IA32_VMX_BASIC MSR is read as 0, all information about the

allowed settings of the primary processor-based VM-execution controls is
contained in the IA32_VMX_PROCBASED_CTLS MSR. (The
IA32_VMX_TRUE_PROCBASED_CTLS MSR is not supported.)

• If bit 55 in the IA32_VMX_BASIC MSR is read as 1, all information about the
allowed settings of the processor-based VM-execution controls is contained in the
IA32_VMX_TRUE_PROCBASED_CTLS MSR. Assuming that software knows that
the default1 class of processor-based VM-execution controls contains bits 1, 4–6,
8, 13–16, and 26, there is no need for software to consult the
IA32_VMX_PROCBASED_CTLS MSR.

A.3.3 Secondary Processor-Based VM-Execution Controls
The IA32_VMX_PROCBASED_CTLS2 MSR (index 48BH) reports on the allowed
settings of the secondary processor-based VM-execution controls (see Section
24.6.2). VM entries perform the following checks:
Vol. 3C A-5

VMX CAPABILITY REPORTING FACILITY
• Bits 31:0 indicate the allowed 0-settings of these controls. These bits are always
0. This fact indicates that VM entry allows each bit of the secondary processor-
based VM-execution controls to be 0 (reserved bits must be 0)

• Bits 63:32 indicate the allowed 1-settings of these controls; the 1-setting is not
allowed for any reserved bit. VM entry allows control X (bit X of the secondary
processor-based VM-execution controls) to be 1 if bit 32+X in the MSR is set to 1;
if bit 32+X in the MSR is cleared to 0, VM entry fails if control X and the “activate
secondary controls” primary processor-based VM-execution control are both 1.

The IA32_VMX_PROCBASED_CTLS2 MSR exists only on processors that support the
1-setting of the “activate secondary controls” VM-execution control (only if bit 63 of
the IA32_VMX_PROCBASED_CTLS MSR is 1).

A.4 VM-EXIT CONTROLS
The IA32_VMX_EXIT_CTLS MSR (index 483H) reports on the allowed settings of
most of the VM-exit controls (see Section 24.7.1):
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows

control X (bit X of the VM-exit controls) to be 0 if bit X in the MSR is cleared to 0;
if bit X in the MSR is set to 1, VM entry fails if control X is 0.
Exceptions are made for the VM-exit controls in the default1 class (see Appendix
A.2). These are bits 0–8, 10, 11, 13, 14, 16, and 17; the corresponding bits of
the IA32_VMX_EXIT_CTLS MSR are always read as 1. The treatment of these
controls by VM entry is determined by bit 55 in the IA32_VMX_BASIC MSR:

— If bit 55 in the IA32_VMX_BASIC MSR is read as 0, VM entry fails if any
VM-exit control in the default1 class is 0.

— If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the
IA32_VMX_TRUE_EXIT_CTLS MSR (see below) reports which of the VM-exit
controls in the default1 class can be 0 on VM entry.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows
control 32+X to be 1 if bit X in the MSR is set to 1; if bit 32+X in the MSR is
cleared to 0, VM entry fails if control X is 1.

If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the IA32_VMX_TRUE_EXIT_CTLS
MSR (index 48FH) reports on the allowed settings of all of the VM-exit controls:
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows

control X to be 0 if bit X in the MSR is cleared to 0; if bit X in the MSR is set to 1,
VM entry fails if control X is 0. There are no exceptions.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows
control X to be 1 if bit 32+X in the MSR is set to 1; if bit 32+X in the MSR is
cleared to 0, VM entry fails if control X is 1.

It is necessary for software to consult only one of the capability MSRs to determine
the allowed settings of the VM-exit controls:
A-6 Vol. 3C

VMX CAPABILITY REPORTING FACILITY
• If bit 55 in the IA32_VMX_BASIC MSR is read as 0, all information about the
allowed settings of the VM-exit controls is contained in the
IA32_VMX_EXIT_CTLS MSR. (The IA32_VMX_TRUE_EXIT_CTLS MSR is not
supported.)

• If bit 55 in the IA32_VMX_BASIC MSR is read as 1, all information about the
allowed settings of the VM-exit controls is contained in the
IA32_VMX_TRUE_EXIT_CTLS MSR. Assuming that software knows that the
default1 class of VM-exit controls contains bits 0–8, 10, 11, 13, 14, 16, and 17,
there is no need for software to consult the IA32_VMX_EXIT_CTLS MSR.

A.5 VM-ENTRY CONTROLS
The IA32_VMX_ENTRY_CTLS MSR (index 484H) reports on the allowed settings of
most of the VM-entry controls (see Section 24.8.1):
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows

control X (bit X of the VM-entry controls) to be 0 if bit X in the MSR is cleared to
0; if bit X in the MSR is set to 1, VM entry fails if control X is 0.
Exceptions are made for the VM-entry controls in the default1 class (see
Appendix A.2). These are bits 0–8 and 12; the corresponding bits of the
IA32_VMX_ENTRY_CTLS MSR are always read as 1. The treatment of these
controls by VM entry is determined by bit 55 in the IA32_VMX_BASIC MSR:

— If bit 55 in the IA32_VMX_BASIC MSR is read as 0, VM entry fails if any
VM-entry control in the default1 class is 0.

— If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the
IA32_VMX_TRUE_ENTRY_CTLS MSR (see below) reports which of the
VM-entry controls in the default1 class can be 0 on VM entry.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry fails if bit X
is 1 in the VM-entry controls and bit 32+X is 0 in this MSR.

If bit 55 in the IA32_VMX_BASIC MSR is read as 1,
the IA32_VMX_TRUE_ENTRY_CTLS MSR (index 490H) reports on the allowed
settings of all of the VM-entry controls:
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows

control X to be 0 if bit X in the MSR is cleared to 0; if bit X in the MSR is set to 1,
VM entry fails if control X is 0. There are no exceptions.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows
control 32+X to be 1 if bit X in the MSR is set to 1; if bit 32+X in the MSR is
cleared to 0, VM entry fails if control X is 1.

It is necessary for software to consult only one of the capability MSRs to determine
the allowed settings of the VM-entry controls:
• If bit 55 in the IA32_VMX_BASIC MSR is read as 0, all information about the

allowed settings of the VM-entry controls is contained in the
Vol. 3C A-7

VMX CAPABILITY REPORTING FACILITY
IA32_VMX_ENTRY_CTLS MSR. (The IA32_VMX_TRUE_ENTRY_CTLS MSR is not
supported.)

• If bit 55 in the IA32_VMX_BASIC MSR is read as 1, all information about the
allowed settings of the VM-entry controls is contained in the
IA32_VMX_TRUE_ENTRY_CTLS MSR. Assuming that software knows that the
default1 class of VM-entry controls contains bits 0–8 and 12, there is no need for
software to consult the IA32_VMX_ENTRY_CTLS MSR.

A.6 MISCELLANEOUS DATA
The IA32_VMX_MISC MSR (index 485H) consists of the following fields:
• Bits 4:0 report a value X that specifies the relationship between the rate of the

VMX-preemption timer and that of the timestamp counter (TSC). Specifically, the
VMX-preemption timer (if it is active) counts down by 1 every time bit X in the
TSC changes due to a TSC increment.

• If bit 5 is read as 1, VM exits store the value of IA32_EFER.LMA into the “IA-32e
mode guest” VM-entry control; see Section 27.2 for more details. This bit is read
as 1 on any logical processor that supports the 1-setting of the “unrestricted
guest” VM-execution control.

• Bits 8:6 report, as a bitmap, the activity states supported by the implemen-
tation:

— Bit 6 reports (if set) the support for activity state 1 (HLT).

— Bit 7 reports (if set) the support for activity state 2 (shutdown).

— Bit 8 reports (if set) the support for activity state 3 (wait-for-SIPI).
If an activity state is not supported, the implementation causes a VM entry to fail
if it attempts to establish that activity state. All implementations support
VM entry to activity state 0 (active).

• Bits 24:16 indicate the number of CR3-target values supported by the processor.
This number is a value between 0 and 256, inclusive (bit 24 is set if and only if
bits 23:16 are clear).

• Bits 27:25 is used to compute the recommended maximum number of MSRs that
should appear in the VM-exit MSR-store list, the VM-exit MSR-load list, or the
VM-entry MSR-load list. Specifically, if the value bits 27:25 of IA32_VMX_MISC is
N, then 512 * (N + 1) is the recommended maximum number of MSRs to be
included in each list. If the limit is exceeded, undefined processor behavior may
result (including a machine check during the VMX transition).

• If bit 28 is read as 1, bit 2 of the IA32_SMM_MONITOR_CTL can be set to 1.
VMXOFF unblocks SMIs unless IA32_SMM_MONITOR_CTL[bit 2] is 1 (see Section
33.14.4).

• Bits 63:32 report the 32-bit MSEG revision identifier used by the processor.
• Bits 15:9 and bits 31:29 are reserved and are read as 0.
A-8 Vol. 3C

VMX CAPABILITY REPORTING FACILITY
A.7 VMX-FIXED BITS IN CR0
The IA32_VMX_CR0_FIXED0 MSR (index 486H) and IA32_VMX_CR0_FIXED1 MSR
(index 487H) indicate how bits in CR0 may be set in VMX operation. They report on
bits in CR0 that are allowed to be 0 and to be 1, respectively, in VMX operation. If
bit X is 1 in IA32_VMX_CR0_FIXED0, then that bit of CR0 is fixed to 1 in VMX opera-
tion. Similarly, if bit X is 0 in IA32_VMX_CR0_FIXED1, then that bit of CR0 is fixed to
0 in VMX operation. It is always the case that, if bit X is 1 in IA32_VMX_CR0_FIXED0,
then that bit is also 1 in IA32_VMX_CR0_FIXED1; if bit X is 0 in
IA32_VMX_CR0_FIXED1, then that bit is also 0 in IA32_VMX_CR0_FIXED0. Thus,
each bit in CR0 is either fixed to 0 (with value 0 in both MSRs), fixed to 1 (1 in both
MSRs), or flexible (0 in IA32_VMX_CR0_FIXED0 and 1 in IA32_VMX_CR0_FIXED1).

A.8 VMX-FIXED BITS IN CR4
The IA32_VMX_CR4_FIXED0 MSR (index 488H) and IA32_VMX_CR4_FIXED1 MSR
(index 489H) indicate how bits in CR4 may be set in VMX operation. They report on
bits in CR4 that are allowed to be 0 and 1, respectively, in VMX operation. If bit X is 1
in IA32_VMX_CR4_FIXED0, then that bit of CR4 is fixed to 1 in VMX operation. Simi-
larly, if bit X is 0 in IA32_VMX_CR4_FIXED1, then that bit of CR4 is fixed to 0 in VMX
operation. It is always the case that, if bit X is 1 in IA32_VMX_CR4_FIXED0, then
that bit is also 1 in IA32_VMX_CR4_FIXED1; if bit X is 0 in IA32_VMX_CR4_FIXED1,
then that bit is also 0 in IA32_VMX_CR4_FIXED0. Thus, each bit in CR4 is either fixed
to 0 (with value 0 in both MSRs), fixed to 1 (1 in both MSRs), or flexible (0 in
IA32_VMX_CR4_FIXED0 and 1 in IA32_VMX_CR4_FIXED1).

A.9 VMCS ENUMERATION
The IA32_VMX_VMCS_ENUM MSR (index 48AH) provides information to assist soft-
ware in enumerating fields in the VMCS.

As noted in Section 24.10.2, each field in the VMCS is associated with a 32-bit
encoding which is structured as follows:
• Bits 31:15 are reserved (must be 0).
• Bits 14:13 indicate the field’s width.
• Bit 12 is reserved (must be 0).
• Bits 11:10 indicate the field’s type.
• Bits 9:1 is an index field that distinguishes different fields with the same width

and type.
• Bit 0 indicates access type.

IA32_VMX_VMCS_ENUM indicates to software the highest index value used in the
encoding of any field supported by the processor:
Vol. 3C A-9

VMX CAPABILITY REPORTING FACILITY
• Bits 9:1 contain the highest index value used for any VMCS encoding.
• Bit 0 and bits 63:10 are reserved and are read as 0.

A.10 VPID AND EPT CAPABILITIES
The IA32_VMX_EPT_VPID_CAP MSR (index 48CH) reports information about the
capabilities of the logical processor with regard to virtual-processor identifiers
(VPIDs, Section 28.1) and extended page tables (EPT, Section 28.2):
• If bit 0 is read as 1, the logical processor allows software to configure EPT

paging-structure entries in which bits 2:0 have value 100b (indicating an
execute-only translation).

• Bit 6 indicates support for a page-walk length of 4.
• If bit 8 is read as 1, the logical processor allows software to configure the EPT

paging-structure memory type to be uncacheable (UC); see Section 24.6.11.
• If bit 14 is read as 1, the logical processor allows software to configure the EPT

paging-structure memory type to be write-back (WB).
• If bit 16 is read as 1, the logical processor allows software to configure a EPT PDE

to map a 2-Mbyte page (by setting bit 7 in the EPT PDE).
• If bit 17 is read as 1, the logical processor allows software to configure a EPT

PDPTE to map a 1-Gbyte page (by setting bit 7 in the EPT PDPTE).
• Support for the INVEPT instruction (see Chapter 29 of the Intel® 64 and IA-32

Architectures Software Developer’s Manual, Volume 3C and Section 28.3.3.1).

— If bit 20 is read as 1, the INVEPT instruction is supported.

— If bit 25 is read as 1, the single-context INVEPT type is supported.

— If bit 26 is read as 1, the all-context INVEPT type is supported.
• Support for the INVVPID instruction (see Chapter 29 of the Intel® 64 and IA-32

Architectures Software Developer’s Manual, Volume 3C and Section 28.3.3.1).

— If bit 32 is read as 1, the INVVPID instruction is supported.

— If bit 40 is read as 1, the individual-address INVVPID type is supported.

— If bit 41 is read as 1, the single-context INVVPID type is supported.

— If bit 42 is read as 1, the all-context INVVPID type is supported.

— If bit 43 is read as 1, the single-context-retaining-globals INVVPID type is
supported.

• Bits 5:1, bit 7, bits 13:9, bit 15, bits 19:17, bits 24:21, bits 31:27, bits 39:33,
and bits 63:44 are reserved and are read as 0.

The IA32_VMX_EPT_VPID_CAP MSR exists only on processors that support the 1-
setting of the “activate secondary controls” VM-execution control (only if bit 63 of the
IA32_VMX_PROCBASED_CTLS MSR is 1) and that support either the 1-setting of the
A-10 Vol. 3C

VMX CAPABILITY REPORTING FACILITY
“enable EPT” VM-execution control (only if bit 33 of the
IA32_VMX_PROCBASED_CTLS2 MSR is 1) or the 1-setting of the “enable VPID” VM-
execution control (only if bit 37 of the IA32_VMX_PROCBASED_CTLS2 MSR is 1).

A.11 VM FUNCTIONS
The IA32_VMX_VMFUNC MSR (index 491H) reports on the allowed settings of the
VM-function controls (see Section 24.6.14). VM entry allows bit X of the VM-function
controls to be 1 if bit X in the MSR is set to 1; if bit X in the MSR is cleared to 0,
VM entry fails if bit X of the VM-function controls, the “activate secondary controls”
primary processor-based VM-execution control, and the “enable VM functions”
secondary processor-based VM-execution control are all 1.

The IA32_VMX_VMFUNC MSR exists only on processors that support the 1-setting of
the “activate secondary controls” VM-execution control (only if bit 63 of the
IA32_VMX_PROCBASED_CTLS MSR is 1) and the 1-setting of the “enable VM func-
tions” secondary processor-based VM-execution control (only if bit 45 of the
IA32_VMX_PROCBASED_CTLS2 MSR is 1).
Vol. 3C A-11

APPENDIX B
FIELD ENCODING IN VMCS

Every component of the VMCS is encoded by a 32-bit field that can be used by
VMREAD and VMWRITE. Section 24.10.2 describes the structure of the encoding
space (the meanings of the bits in each 32-bit encoding).

This appendix enumerates all fields in the VMCS and their encodings. Fields are
grouped by width (16-bit, 32-bit, etc.) and type (guest-state, host-state, etc.)

B.1 16-BIT FIELDS
A value of 0 in bits 14:13 of an encoding indicates a 16-bit field. Only guest-state
areas and the host-state area contain 16-bit fields. As noted in Section 24.10.2, each
16-bit field allows only full access, meaning that bit 0 of its encoding is 0. Each such
encoding is thus an even number.

B.1.1 16-Bit Control Field
A value of 0 in bits 11:10 of an encoding indicates a control field. These fields are
distinguished by their index value in bits 9:1. There is only one such 16-bit field as
given in Table B-1.

B.1.2 16-Bit Guest-State Fields
A value of 2 in bits 11:10 of an encoding indicates a field in the guest-state area.
These fields are distinguished by their index value in bits 9:1. Table B-2 enumerates
16-bit guest-state fields.

Table B-1. Encoding for 16-Bit Control Fields (0000_00xx_xxxx_xxx0B)
Field Name Index Encoding

Virtual-processor identifier (VPID)1

NOTES:
1. This field exists only on processors that support the 1-setting of the “enable VPID” VM-execution

control.

000000000B 00000000H

Table B-2. Encodings for 16-Bit Guest-State Fields (0000_10xx_xxxx_xxx0B)
Field Name Index Encoding

Guest ES selector 000000000B 00000800H
Vol. 3C B-1

FIELD ENCODING IN VMCS
B.1.3 16-Bit Host-State Fields
A value of 3 in bits 11:10 of an encoding indicates a field in the host-state area.
These fields are distinguished by their index value in bits 9:1. Table B-3 enumerates
the 16-bit host-state fields.

B.2 64-BIT FIELDS
A value of 1 in bits 14:13 of an encoding indicates a 64-bit field. There are 64-bit
fields only for controls and for guest state. As noted in Section 24.10.2, every 64-bit
field has two encodings, which differ on bit 0, the access type. Thus, each such field
has an even encoding for full access and an odd encoding for high access.

Guest CS selector 000000001B 00000802H

Guest SS selector 000000010B 00000804H

Guest DS selector 000000011B 00000806H

Guest FS selector 000000100B 00000808H

Guest GS selector 000000101B 0000080AH

Guest LDTR selector 000000110B 0000080CH

Guest TR selector 000000111B 0000080EH

Table B-3. Encodings for 16-Bit Host-State Fields (0000_11xx_xxxx_xxx0B)
Field Name Index Encoding

Host ES selector 000000000B 00000C00H

Host CS selector 000000001B 00000C02H

Host SS selector 000000010B 00000C04H

Host DS selector 000000011B 00000C06H

Host FS selector 000000100B 00000C08H

Host GS selector 000000101B 00000C0AH

Host TR selector 000000110B 00000C0CH

Table B-2. Encodings for 16-Bit Guest-State Fields (0000_10xx_xxxx_xxx0B)
Field Name Index Encoding
B-2 Vol. 3C

FIELD ENCODING IN VMCS
B.2.1 64-Bit Control Fields
A value of 0 in bits 11:10 of an encoding indicates a control field. These fields are
distinguished by their index value in bits 9:1. Table B-4 enumerates the 64-bit
control fields.

Table B-4. Encodings for 64-Bit Control Fields (0010_00xx_xxxx_xxxAb)
Field Name Index Encoding

Address of I/O bitmap A (full) 000000000B 00002000H

Address of I/O bitmap A (high) 000000000B 00002001H

Address of I/O bitmap B (full) 000000001B 00002002H

Address of I/O bitmap B (high) 000000001B 00002003H

Address of MSR bitmaps (full)1 000000010B 00002004H

Address of MSR bitmaps (high)1 000000010B 00002005H

VM-exit MSR-store address (full) 000000011B 00002006H

VM-exit MSR-store address (high) 000000011B 00002007H

VM-exit MSR-load address (full) 000000100B 00002008H

VM-exit MSR-load address (high) 000000100B 00002009H

VM-entry MSR-load address (full) 000000101B 0000200AH

VM-entry MSR-load address (high) 000000101B 0000200BH

Executive-VMCS pointer (full) 000000110B 0000200CH

Executive-VMCS pointer (high) 000000110B 0000200DH

TSC offset (full) 000001000B 00002010H

TSC offset (high) 000001000B 00002011H

Virtual-APIC address (full)2 000001001B 00002012H

Virtual-APIC address (high)2 000001001B 00002013H

APIC-access address (full)3 000001010B 00002014H

APIC-access address (high)3 000001010B 00002015H

VM-function controls (full)4 000001100B 00002018H

VM-function controls (high)4 000001100B 00002019H

EPT pointer (EPTP; full)5 000001101B 0000201AH

EPT pointer (EPTP; high)5 000001101B 0000201BH

EPTP-list address (full)6 000010010B 00002024H

EPTP-list address (high)6 000010010B 00002025H
Vol. 3C B-3

FIELD ENCODING IN VMCS
B.2.2 64-Bit Read-Only Data Field
A value of 1 in bits 11:10 of an encoding indicates a read-only data field. These fields
are distinguished by their index value in bits 9:1. There is only one such 64-bit field
as given in Table B-5.(As with other 64-bit fields, this one has two encodings.)

B.2.3 64-Bit Guest-State Fields
A value of 2 in bits 11:10 of an encoding indicates a field in the guest-state area.
These fields are distinguished by their index value in bits 9:1. Table B-6 enumerates
the 64-bit guest-state fields.

NOTES:
1. This field exists only on processors that support the 1-setting of the “use MSR bitmaps”

VM-execution control.
2. This field exists only on processors that support either the 1-setting of the “use TPR shadow”

VM-execution control.
3. This field exists only on processors that support the 1-setting of the “virtualize APIC accesses”

VM-execution control.
4. This field exists only on processors that support the 1-setting of the “enable VM functions” VM-

execution control.
5. This field exists only on processors that support the 1-setting of the “enable EPT” VM-execution

control.
6. This field exists only on processors that support the 1-setting of the “EPTP switching” VM-func-

tion control.

Table B-5. Encodings for 64-Bit Read-Only Data Field (0010_01xx_xxxx_xxxAb)
Field Name Index Encoding

Guest-physical address (full)1

NOTES:
1. This field exists only on processors that support the 1-setting of the "enable EPT” VM-execution

control.

000000000B 00002400H

Guest-physical address (high)1 000000000B 00002401H

Table B-6. Encodings for 64-Bit Guest-State Fields (0010_10xx_xxxx_xxxAb)
Field Name Index Encoding

VMCS link pointer (full) 000000000B 00002800H

VMCS link pointer (high) 000000000B 00002801H

Guest IA32_DEBUGCTL (full) 000000001B 00002802H
B-4 Vol. 3C

FIELD ENCODING IN VMCS
B.2.4 64-Bit Host-State Fields
A value of 3 in bits 11:10 of an encoding indicates a field in the host-state area.
These fields are distinguished by their index value in bits 9:1. Table B-7 enumerates
the 64-bit control fields.

Guest IA32_DEBUGCTL (high) 000000001B 00002803H

Guest IA32_PAT (full)1 000000010B 00002804H

Guest IA32_PAT (high)1 000000010B 00002805H

Guest IA32_EFER (full)2 000000011B 00002806H

Guest IA32_EFER (high)2 000000011B 00002807H

Guest IA32_PERF_GLOBAL_CTRL (full)3 000000100B 00002808H

Guest IA32_PERF_GLOBAL_CTRL (high)3 000000100B 00002809H

Guest PDPTE0 (full)4 000000101B 0000280AH

Guest PDPTE0 (high)4 000000101B 0000280BH

Guest PDPTE1 (full)4 000000110B 0000280CH

Guest PDPTE1 (high)4 000000110B 0000280DH

Guest PDPTE2 (full)4 000000111B 0000280EH

Guest PDPTE2 (high)4 000000111B 0000280FH

Guest PDPTE3 (full)4 000001000B 00002810H

Guest PDPTE3 (high)4 000001000B 00002811H

NOTES:
1. This field exists only on processors that support either the 1-setting of the "load IA32_PAT" VM-

entry control or that of the "save IA32_PAT" VM-exit control.
2. This field exists only on processors that support either the 1-setting of the "load IA32_EFER" VM-

entry control or that of the "save IA32_EFER" VM-exit control.
3. This field exists only on processors that support the 1-setting of the "load

IA32_PERF_GLOBAL_CTRL" VM-entry control.
4. This field exists only on processors that support the 1-setting of the "enable EPT" VM-execution

control.

Table B-7. Encodings for 64-Bit Host-State Fields (0010_11xx_xxxx_xxxAb)
Field Name Index Encoding

Host IA32_PAT (full)1 000000000B 00002C00H

Table B-6. Encodings for 64-Bit Guest-State Fields (0010_10xx_xxxx_xxxAb)
Field Name Index Encoding
Vol. 3C B-5

FIELD ENCODING IN VMCS
B.3 32-BIT FIELDS
A value of 2 in bits 14:13 of an encoding indicates a 32-bit field. As noted in Section
24.10.2, each 32-bit field allows only full access, meaning that bit 0 of its encoding
is 0. Each such encoding is thus an even number.

B.3.1 32-Bit Control Fields
A value of 0 in bits 11:10 of an encoding indicates a control field. These fields are
distinguished by their index value in bits 9:1. Table B-8 enumerates the 32-bit
control fields.

Host IA32_PAT (high)1 000000000B 00002C01H

Host IA32_EFER (full)2 000000001B 00002C02H

Host IA32_EFER (high)2 000000001B 00002C03H

Host IA32_PERF_GLOBAL_CTRL (full)3 000000010B 00002C04H

Host IA32_PERF_GLOBAL_CTRL (high)3 000000010B 00002C05H

NOTES:
1. This field exists only on processors that support the 1-setting of the "load IA32_PAT" VM-exit

control.
2. This field exists only on processors that support the 1-setting of the "load IA32_EFER" VM-exit

control.
3. This field exists only on processors that support the 1-setting of the "load

IA32_PERF_GLOBAL_CTRL" VM-exit control.

Table B-8. Encodings for 32-Bit Control Fields (0100_00xx_xxxx_xxx0B)
Field Name Index Encoding

Pin-based VM-execution controls 000000000B 00004000H

Primary processor-based VM-execution controls 000000001B 00004002H

Exception bitmap 000000010B 00004004H

Page-fault error-code mask 000000011B 00004006H

Page-fault error-code match 000000100B 00004008H

CR3-target count 000000101B 0000400AH

VM-exit controls 000000110B 0000400CH

VM-exit MSR-store count 000000111B 0000400EH

Table B-7. Encodings for 64-Bit Host-State Fields (0010_11xx_xxxx_xxxAb)
Field Name Index Encoding
B-6 Vol. 3C

FIELD ENCODING IN VMCS
B.3.2 32-Bit Read-Only Data Fields
A value of 1 in bits 11:10 of an encoding indicates a read-only data field. These fields
are distinguished by their index value in bits 9:1. Table B-9 enumerates the 32-bit
read-only data fields.

VM-exit MSR-load count 000001000B 00004010H

VM-entry controls 000001001B 00004012H

VM-entry MSR-load count 000001010B 00004014H

VM-entry interruption-information field 000001011B 00004016H

VM-entry exception error code 000001100B 00004018H

VM-entry instruction length 000001101B 0000401AH

TPR threshold1 000001110B 0000401CH

Secondary processor-based VM-execution controls2 000001111b 0000401EH

PLE_Gap3 000010000b 00004020H

PLE_Window3 000010001b 00004022H

NOTES:
1. This field exists only on processors that support the 1-setting of the “use TPR shadow” VM-exe-

cution control.
2. This field exists only on processors that support the 1-setting of the “activate secondary controls”

VM-execution control.
3. This field exists only on processors that support the 1-setting of the “PAUSE-loop exiting”

VM-execution control.

Table B-9. Encodings for 32-Bit Read-Only Data Fields (0100_01xx_xxxx_xxx0B)
Field Name Index Encoding

VM-instruction error 000000000B 00004400H

Exit reason 000000001B 00004402H

VM-exit interruption information 000000010B 00004404H

VM-exit interruption error code 000000011B 00004406H

IDT-vectoring information field 000000100B 00004408H

IDT-vectoring error code 000000101B 0000440AH

VM-exit instruction length 000000110B 0000440CH

VM-exit instruction information 000000111B 0000440EH

Table B-8. Encodings for 32-Bit Control Fields (0100_00xx_xxxx_xxx0B) (Contd.)
Field Name Index Encoding
Vol. 3C B-7

FIELD ENCODING IN VMCS
B.3.3 32-Bit Guest-State Fields
A value of 2 in bits 11:10 of an encoding indicates a field in the guest-state area.
These fields are distinguished by their index value in bits 9:1. Table B-10 enumerates
the 32-bit guest-state fields.

Table B-10. Encodings for 32-Bit Guest-State Fields
(0100_10xx_xxxx_xxx0B)

Field Name Index Encoding

Guest ES limit 000000000B 00004800H

Guest CS limit 000000001B 00004802H

Guest SS limit 000000010B 00004804H

Guest DS limit 000000011B 00004806H

Guest FS limit 000000100B 00004808H

Guest GS limit 000000101B 0000480AH

Guest LDTR limit 000000110B 0000480CH

Guest TR limit 000000111B 0000480EH

Guest GDTR limit 000001000B 00004810H

Guest IDTR limit 000001001B 00004812H

Guest ES access rights 000001010B 00004814H

Guest CS access rights 000001011B 00004816H

Guest SS access rights 000001100B 00004818H

Guest DS access rights 000001101B 0000481AH

Guest FS access rights 000001110B 0000481CH

Guest GS access rights 000001111B 0000481EH

Guest LDTR access rights 000010000B 00004820H

Guest TR access rights 000010001B 00004822H

Guest interruptibility state 000010010B 00004824H

Guest activity state 000010011B 00004826H

Guest SMBASE 000010100B 00004828H

Guest IA32_SYSENTER_CS 000010101B 0000482AH

VMX-preemption timer value1

NOTES:
1. This field exists only on processors that support the 1-setting of the "activate VMX-preemption

timer" VM-execution control.

000010111B 0000482EH
B-8 Vol. 3C

FIELD ENCODING IN VMCS
The limit fields for GDTR and IDTR are defined to be 32 bits in width even though
these fields are only 16-bits wide in the Intel 64 and IA-32 architectures. VM entry
ensures that the high 16 bits of both these fields are cleared to 0.

B.3.4 32-Bit Host-State Field
A value of 3 in bits 11:10 of an encoding indicates a field in the host-state area.
There is only one such 32-bit field as given in Table B-11.

B.4 NATURAL-WIDTH FIELDS
A value of 3 in bits 14:13 of an encoding indicates a natural-width field. As noted in
Section 24.10.2, each of these fields allows only full access, meaning that bit 0 of its
encoding is 0. Each such encoding is thus an even number.

B.4.1 Natural-Width Control Fields
A value of 0 in bits 11:10 of an encoding indicates a control field. These fields are
distinguished by their index value in bits 9:1. Table B-12 enumerates the natural-
width control fields.

Table B-11. Encoding for 32-Bit Host-State Field (0100_11xx_xxxx_xxx0B)
Field Name Index Encoding

Host IA32_SYSENTER_CS 000000000B 00004C00H

Table B-12. Encodings for Natural-Width Control Fields (0110_00xx_xxxx_xxx0B)
Field Name Index Encoding

CR0 guest/host mask 000000000B 00006000H

CR4 guest/host mask 000000001B 00006002H

CR0 read shadow 000000010B 00006004H

CR4 read shadow 000000011B 00006006H

CR3-target value 0 000000100B 00006008H

CR3-target value 1 000000101B 0000600AH

CR3-target value 2 000000110B 0000600CH

CR3-target value 31 000000111B 0000600EH
Vol. 3C B-9

FIELD ENCODING IN VMCS
B.4.2 Natural-Width Read-Only Data Fields
A value of 1 in bits 11:10 of an encoding indicates a read-only data field. These fields
are distinguished by their index value in bits 9:1. Table B-13 enumerates the natural-
width read-only data fields.

B.4.3 Natural-Width Guest-State Fields
A value of 2 in bits 11:10 of an encoding indicates a field in the guest-state area.
These fields are distinguished by their index value in bits 9:1. Table B-14 enumerates
the natural-width guest-state fields.

NOTES:
1. If a future implementation supports more than 4 CR3-target values, they will be encoded consec-

utively following the 4 encodings given here.

Table B-13. Encodings for Natural-Width Read-Only Data Fields
(0110_01xx_xxxx_xxx0B)

Field Name Index Encoding

Exit qualification 000000000B 00006400H

I/O RCX 000000001B 00006402H

I/O RSI 000000010B 00006404H

I/O RDI 000000011B 00006406H

I/O RIP 000000100B 00006408H

Guest-linear address 000000101B 0000640AH

Table B-14. Encodings for Natural-Width Guest-State Fields
(0110_10xx_xxxx_xxx0B)

Field Name Index Encoding

Guest CR0 000000000B 00006800H

Guest CR3 000000001B 00006802H

Guest CR4 000000010B 00006804H

Guest ES base 000000011B 00006806H

Guest CS base 000000100B 00006808H

Guest SS base 000000101B 0000680AH

Guest DS base 000000110B 0000680CH
B-10 Vol. 3C

FIELD ENCODING IN VMCS
The base-address fields for ES, CS, SS, and DS in the guest-state area are defined to
be natural-width (with 64 bits on processors supporting Intel 64 architecture) even
though these fields are only 32-bits wide in the Intel 64 architecture. VM entry
ensures that the high 32 bits of these fields are cleared to 0.

B.4.4 Natural-Width Host-State Fields
A value of 3 in bits 11:10 of an encoding indicates a field in the host-state area.
These fields are distinguished by their index value in bits 9:1. Table B-15 enumerates
the natural-width host-state fields.

Guest FS base 000000111B 0000680EH

Guest GS base 000001000B 00006810H

Guest LDTR base 000001001B 00006812H

Guest TR base 000001010B 00006814H

Guest GDTR base 000001011B 00006816H

Guest IDTR base 000001100B 00006818H

Guest DR7 000001101B 0000681AH

Guest RSP 000001110B 0000681CH

Guest RIP 000001111B 0000681EH

Guest RFLAGS 000010000B 00006820H

Guest pending debug exceptions 000010001B 00006822H

Guest IA32_SYSENTER_ESP 000010010B 00006824H

Guest IA32_SYSENTER_EIP 000010011B 00006826H

Table B-15. Encodings for Natural-Width Host-State Fields
(0110_11xx_xxxx_xxx0B)

Field Name Index Encoding

Host CR0 000000000B 00006C00H

Host CR3 000000001B 00006C02H

Host CR4 000000010B 00006C04H

Host FS base 000000011B 00006C06H

Host GS base 000000100B 00006C08H

Host TR base 000000101B 00006C0AH

Table B-14. Encodings for Natural-Width Guest-State Fields
(0110_10xx_xxxx_xxx0B) (Contd.)

Field Name Index Encoding
Vol. 3C B-11

FIELD ENCODING IN VMCS
Host GDTR base 000000110B 00006C0CH

Host IDTR base 000000111B 00006C0EH

Host IA32_SYSENTER_ESP 000001000B 00006C10H

Host IA32_SYSENTER_EIP 000001001B 00006C12H

Host RSP 000001010B 00006C14H

Host RIP 000001011B 00006C16H

Table B-15. Encodings for Natural-Width Host-State Fields
(0110_11xx_xxxx_xxx0B) (Contd.)

Field Name Index Encoding
B-12 Vol. 3C

APPENDIX C
VMX BASIC EXIT REASONS

Every VM exit writes a 32-bit exit reason to the VMCS (see Section 24.9.1). Certain
VM-entry failures also do this (see Section 26.7). The low 16 bits of the exit-reason
field form the basic exit reason which provides basic information about the cause of
the VM exit or VM-entry failure.

Table C-1 lists values for basic exit reasons and explains their meaning. Entries apply
to VM exits, unless otherwise noted.

Table C-1. Basic Exit Reasons
Basic Exit
Reason Description

0 Exception or non-maskable interrupt (NMI). Either:

1: Guest software caused an exception and the bit in the exception bitmap
associated with exception’s vector was 1.

2: An NMI was delivered to the logical processor and the “NMI exiting”
VM-execution control was 1. This case includes executions of BOUND that cause
#BR, executions of INT3 (they cause #BP), executions of INTO that cause #OF,
and executions of UD2 (they cause #UD).

1 External interrupt. An external interrupt arrived and the “external-interrupt
exiting” VM-execution control was 1.

2 Triple fault. The logical processor encountered an exception while attempting to
call the double-fault handler and that exception did not itself cause a VM exit due
to the exception bitmap.

3 INIT signal. An INIT signal arrived

4 Start-up IPI (SIPI). A SIPI arrived while the logical processor was in the “wait-for-
SIPI” state.

5 I/O system-management interrupt (SMI). An SMI arrived immediately after
retirement of an I/O instruction and caused an SMM VM exit (see Section 33.15.2).

6 Other SMI. An SMI arrived and caused an SMM VM exit (see Section 33.15.2) but
not immediately after retirement of an I/O instruction.

7 Interrupt window. At the beginning of an instruction, RFLAGS.IF was 1; events
were not blocked by STI or by MOV SS; and the “interrupt-window exiting”
VM-execution control was 1.

8 NMI window. At the beginning of an instruction, there was no virtual-NMI blocking;
events were not blocked by MOV SS; and the “NMI-window exiting” VM-execution
control was 1.

9 Task switch. Guest software attempted a task switch.

10 CPUID. Guest software attempted to execute CPUID.
Vol. 3C C-1

VMX BASIC EXIT REASONS
11 GETSEC. Guest software attempted to execute GETSEC.

12 HLT. Guest software attempted to execute HLT and the “HLT exiting”
VM-execution control was 1.

13 INVD. Guest software attempted to execute INVD.

14 INVLPG. Guest software attempted to execute INVLPG and the “INVLPG exiting”
VM-execution control was 1.

15 RDPMC. Guest software attempted to execute RDPMC and the “RDPMC exiting”
VM-execution control was 1.

16 RDTSC. Guest software attempted to execute RDTSC and the “RDTSC exiting”
VM-execution control was 1.

17 RSM. Guest software attempted to execute RSM in SMM.

18 VMCALL. VMCALL was executed either by guest software (causing an
ordinary VM exit) or by the executive monitor (causing an SMM VM exit; see
Section 33.15.2).

19 VMCLEAR. Guest software attempted to execute VMCLEAR.

20 VMLAUNCH. Guest software attempted to execute VMLAUNCH.

21 VMPTRLD. Guest software attempted to execute VMPTRLD.

22 VMPTRST. Guest software attempted to execute VMPTRST.

23 VMREAD. Guest software attempted to execute VMREAD.

24 VMRESUME. Guest software attempted to execute VMRESUME.

25 VMWRITE. Guest software attempted to execute VMWRITE.

26 VMXOFF. Guest software attempted to execute VMXOFF.

27 VMXON. Guest software attempted to execute VMXON.

28 Control-register accesses. Guest software attempted to access CR0, CR3, CR4, or
CR8 using CLTS, LMSW, or MOV CR and the VM-execution control fields indicate
that a VM exit should occur (see Section 25.1 for details). This basic exit reason is
not used for trap-like VM exits following executions of the MOV to CR8 instruction
when the “use TPR shadow” VM-execution control is 1.

29 MOV DR. Guest software attempted a MOV to or from a debug register and the
“MOV-DR exiting” VM-execution control was 1.

30 I/O instruction. Guest software attempted to execute an I/O instruction and either:

1: The “use I/O bitmaps” VM-execution control was 0 and the “unconditional I/O
exiting” VM-execution control was 1.

2: The “use I/O bitmaps” VM-execution control was 1 and a bit in the I/O bitmap
associated with one of the ports accessed by the I/O instruction was 1.

Table C-1. Basic Exit Reasons (Contd.)
Basic Exit
Reason Description
C-2 Vol. 3C

VMX BASIC EXIT REASONS
31 RDMSR. Guest software attempted to execute RDMSR and either:

1: The “use MSR bitmaps” VM-execution control was 0.
2: The value of RCX is neither in the range 00000000H – 00001FFFH nor in the

range C0000000H – C0001FFFH.
3: The value of RCX was in the range 00000000H – 00001FFFH and the nth bit in

read bitmap for low MSRs is 1, where n was the value of RCX.
4: The value of RCX is in the range C0000000H – C0001FFFH and the nth bit in

read bitmap for high MSRs is 1, where n is the value of RCX & 00001FFFH.

32 WRMSR. Guest software attempted to execute WRMSR and either:

1: The “use MSR bitmaps” VM-execution control was 0.
2: The value of RCX is neither in the range 00000000H – 00001FFFH nor in the

range C0000000H – C0001FFFH.
3: The value of RCX was in the range 00000000H – 00001FFFH and the nth bit in

write bitmap for low MSRs is 1, where n was the value of RCX.
4: The value of RCX is in the range C0000000H – C0001FFFH and the nth bit in

write bitmap for high MSRs is 1, where n is the value of RCX & 00001FFFH.

33 VM-entry failure due to invalid guest state. A VM entry failed one of the checks
identified in Section 26.3.1.

34 VM-entry failure due to MSR loading. A VM entry failed in an attempt to load
MSRs. See Section 26.4.

36 MWAIT. Guest software attempted to execute MWAIT and the “MWAIT exiting”
VM-execution control was 1.

37 Monitor trap flag. A VM entry occurred due to the 1-setting of the “monitor trap
flag” VM-execution control and injection of an MTF VM exit as part of VM entry.
See Section 25.7.2.

39 MONITOR. Guest software attempted to execute MONITOR and the “MONITOR
exiting” VM-execution control was 1.

40 PAUSE. Either guest software attempted to execute PAUSE and the “PAUSE
exiting” VM-execution control was 1 or the “PAUSE-loop exiting” VM-execution
control was 1 and guest software executed a PAUSE loop with execution time
exceeding PLE_Window (see Section 25.1.3).

41 VM-entry failure due to machine-check event. A machine-check event occurred
during VM entry (see Section 26.8).

43 TPR below threshold. The logical processor determined that the value of the TPR
shadow was below that of the TPR threshold VM-execution control field while the
“use TPR shadow” VM-execution control was 1 in one of the following cases:

• After guest software executed MOV to CR8 (see Section 25.1.3).
• As part of a TPR-shadow update (see Section 25.5.3.3).
• After VM entry with the 1-setting of the “virtualize APIC accesses” VM-

execution control (see Section 26.6.7).

Table C-1. Basic Exit Reasons (Contd.)
Basic Exit
Reason Description
Vol. 3C C-3

VMX BASIC EXIT REASONS
44 APIC access. Guest software attempted to access memory at a physical address on
the APIC-access page and the “virtualize APIC accesses” VM-execution control was
1 (see Section 25.2).

46 Access to GDTR or IDTR. Guest software attempted to execute LGDT, LIDT, SGDT,
or SIDT and the “descriptor-table exiting” VM-execution control was 1.

47 Access to LDTR or TR. Guest software attempted to execute LLDT, LTR, SLDT, or
STR and the “descriptor-table exiting” VM-execution control was 1.

48 EPT violation. An attempt to access memory with a guest-physical address was
disallowed by the configuration of the EPT paging structures.

49 EPT misconfiguration. An attempt to access memory with a guest-physical address
encountered a misconfigured EPT paging-structure entry.

50 INVEPT. Guest software attempted to execute INVEPT.

51 RDTSCP. Guest software attempted to execute RDTSCP and the “enable RDTSCP”
and “RDTSC exiting” VM-execution controls were both 1.

52 VMX-preemption timer expired. The preemption timer counted down to zero.

53 INVVPID. Guest software attempted to execute INVVPID.

54 WBINVD. Guest software attempted to execute WBINVD and the “WBINVD exiting”
VM-execution control was 1.

55 XSETBV. Guest software attempted to execute XSETBV.

57 RDRAND. Guest software attempted to execute RDRAND and the “RDRAND
exiting” VM-execution control was 1.

58 INVPCID. Guest software attempted to execute INVPCID and the “enable INVPCID”
and “INVLPG exiting” VM-execution controls were both 1.

59 VMFUNC. Guest software invoked a VM function with the VMFUNC instruction and
the VM function either was not enabled or generated a function-specific condition
causing a VM exit.

Table C-1. Basic Exit Reasons (Contd.)
Basic Exit
Reason Description
C-4 Vol. 3C

COMBINED INDEX
Numerics
0000, Vol.2-B-59
128-bit

packed byte integers data type, Vol.1-4-13,
Vol.1-11-5

packed double-precision floating-point
data type, Vol.1-4-13, Vol.1-11-5

packed doubleword integers data type,
Vol.1-4-13

packed quadword integers data type, Vol.1-4-13
packed SIMD data types, Vol.1-4-12
packed single-precision floating-point

data type, Vol.1-4-13, Vol.1-10-8
packed word integers data type, Vol.1-4-13,

Vol.1-11-5
16-bit

address size, Vol.1-3-11
operand size, Vol.1-3-11

16-bit code, mixing with 32-bit code, Vol.3-21-1
286 processor, Vol.1-2-1
32-bit

address size, Vol.1-3-11
operand size, Vol.1-3-11

32-bit code, mixing with 16-bit code, Vol.3-21-1
32-bit physical addressing

overview, Vol.3-3-7
36-bit physical addressing

overview, Vol.3-3-7
64-bit

packed byte integers data type, Vol.1-4-12,
Vol.1-9-3

packed doubleword integers data type,
Vol.1-4-12

packed doubleword integers data types,
Vol.1-9-4

packed word integers data type, Vol.1-4-12,
Vol.1-9-4

64-bit mode
sub-mode of IA-32e, Vol.1-3-2
address calculation, Vol.1-3-12
address size, Vol.1-3-25
address space, Vol.1-3-6
BOUND instruction, Vol.1-7-26
branch behavior, Vol.1-6-11
byte register limitation, Vol.1-3-17
call gates, Vol.3-5-20
CALL instruction, Vol.1-6-12, Vol.1-7-25
canonical address, Vol.1-3-13
CMPS instruction, Vol.1-7-29
CMPXCHG16B instruction, Vol.1-7-7
code segment descriptors, Vol.3-5-5, Vol.3-9-16
control and debug registers, Vol.2-2-15
control registers, Vol.3-2-17
CR8 register, Vol.3-2-18
D flag, Vol.3-5-5
data types, Vol.1-7-2
debug registers, Vol.3-2-9
DEC instruction, Vol.1-7-12

decimal arithmetic instructions, Vol.1-7-15
default operand and address sizes, Vol.1-3-2
default operand size, Vol.2-2-15
descriptors, Vol.3-5-5, Vol.3-5-7
direct memory-offset MOVs, Vol.2-2-13
DPL field, Vol.3-5-5
exception handling, Vol.3-6-22
exceptions, Vol.1-6-19
external interrupts, Vol.3-10-45
far pointer, Vol.1-4-9
fast system calls, Vol.3-5-32
feature list, Vol.1-2-28
GDTR register, Vol.1-3-6, Vol.3-2-16, Vol.3-2-17
general purpose encodings, Vol.2-B-24
GP faults, causes of, Vol.3-6-52
IDTR register, Vol.1-3-6, Vol.3-2-17
immediates, Vol.2-2-14
INC instruction, Vol.1-7-12
initialization process, Vol.3-2-12, Vol.3-9-14
instruction pointer, Vol.1-3-12, Vol.1-3-24
instructions introduced, Vol.1-5-38
interrupt and trap gates, Vol.3-6-23
interrupt controller, Vol.3-10-45
interrupt descriptors, Vol.3-2-7
interrupt handling, Vol.3-6-22
interrupt stack table, Vol.3-6-26
interrupts, Vol.1-6-19
introduction, Vol.1-2-28, Vol.1-3-2, Vol.1-7-2,

Vol.2-2-9
IRET instruction, Vol.1-7-26, Vol.3-6-25
I/O instructions, Vol.1-7-30
JCC instruction, Vol.1-6-12, Vol.1-7-25
JCXZ instruction, Vol.1-6-12, Vol.1-7-25
JMP instruction, Vol.1-6-12, Vol.1-7-25
L flag, Vol.3-3-16, Vol.3-5-5
LAHF instruction, Vol.1-7-32
LDTR register, Vol.1-3-6
legacy modes, Vol.1-2-29
LODS instruction, Vol.1-7-29
logical address translation, Vol.3-3-9
LOOP instruction, Vol.1-6-12, Vol.1-7-25
machine instructions, Vol.2-B-1
memory models, Vol.1-3-11
memory operands, Vol.1-3-29
MMX technology, Vol.1-9-2
MOV CRn, Vol.3-2-17, Vol.3-10-45
MOVS instruction, Vol.1-7-29
MOVSXD instruction, Vol.1-7-11
near pointer, Vol.1-4-9
null segment checking, Vol.3-5-9
operand addressing, Vol.1-3-32
operand size, Vol.1-3-25
operands, Vol.1-3-28, Vol.1-3-29
paging, Vol.3-2-8
POPF instruction, Vol.1-7-32
promoted instructions, Vol.1-3-2
PUSHA, PUSHAD, POPA, POPAD, Vol.1-7-10
PUSHF instruction, Vol.1-7-32
Combined Volumes 1, 2A, 2B, 2C, 3A, 3B and 3C Index -1

COMBINED INDEX
PUSHFD instruction, Vol.1-7-32
reading counters, Vol.3-2-33
reading & writing MSRs, Vol.3-2-33
real address mode, Vol.1-3-11
reg (reg) field, Vol.2-B-4
register operands, Vol.1-3-28
registers and mode changes, Vol.3-9-16
REP prefix, Vol.1-7-29
RET instruction, Vol.1-6-12, Vol.1-7-25
REX prefix, Vol.1-3-2, Vol.1-3-16, Vol.1-3-25
REX prefixes, Vol.2-2-9, Vol.2-B-2
RFLAGS register, Vol.1-7-32, Vol.3-2-15
RIP register, Vol.1-3-12
RIP-relative addressing, Vol.1-3-24, Vol.1-3-32,

Vol.2-2-14
SAHF instruction, Vol.1-7-32
SCAS instruction, Vol.1-7-29
segment descriptor tables, Vol.3-3-22, Vol.3-5-5
segment loading instructions, Vol.3-3-12
segment registers, Vol.1-3-20
segmentation, Vol.1-3-11, Vol.1-3-30
segments, Vol.3-3-6
SIMD encodings, Vol.2-B-54
special instruction encodings, Vol.2-B-94
SSE extensions, Vol.1-10-4
SSE2 extensions, Vol.1-11-4
SSE3 extensions, Vol.1-12-1
SSSE3 extensions, Vol.1-12-1
stack behavior, Vol.1-6-5
stack switching, Vol.3-5-28, Vol.3-6-25
STOS instruction, Vol.1-7-29
summary table notation, Vol.2-3-10
SYSCALL and SYSRET, Vol.3-2-10, Vol.3-5-32
SYSENTER and SYSEXIT, Vol.3-5-31
system registers, Vol.3-2-9
task gate, Vol.3-7-22
task priority, Vol.3-2-25, Vol.3-10-45
task register, Vol.3-2-17
TR register, Vol.1-3-6
TSS

stack pointers, Vol.3-7-23
x87 FPU, Vol.1-8-2
See also: IA-32e mode, compatibility mode

8086
emulation, support for, Vol.3-20-1
processor, exceptions and interrupts, Vol.3-20-8

8086 processor, Vol.1-2-1
8086/8088 processor, Vol.3-22-8
8087 math coprocessor, Vol.3-22-9
8088 processor, Vol.1-2-1
82489DX, Vol.3-22-37

Local APIC and I/O APICs, Vol.3-10-5

A
A20M# signal, Vol.3-20-4, Vol.3-22-46, Vol.3-23-5
AAA instruction, Vol.1-7-14, Vol.2-3-23, Vol.2-3-25
AAD instruction, Vol.1-7-14, Vol.2-3-25

AAM instruction, Vol.1-7-14, Vol.2-3-27
AAS instruction, Vol.1-7-14, Vol.2-3-29
Aborts

description of, Vol.3-6-7
restarting a program or task after, Vol.3-6-8

AC (alignment check) flag, EFLAGS register,
Vol.1-3-23, Vol.3-2-14, Vol.3-6-61,
Vol.3-22-8

Access rights
checking, Vol.3-2-30
checking caller privileges, Vol.3-5-37
description of, Vol.3-5-35
invalid values, Vol.3-22-26

Access rights, segment descriptor, Vol.1-6-9,
Vol.1-6-14

ADC instruction, Vol.1-7-12, Vol.2-3-31,
Vol.2-3-598, Vol.3-8-5

ADD instruction, Vol.1-7-12, Vol.2-3-23, Vol.2-3-35,
Vol.2-3-292, Vol.2-3-598, Vol.3-8-5

ADDPD instruction, Vol.1-11-8, Vol.2-3-38
ADDPS instruction, Vol.1-10-12, Vol.2-3-40
Address

size prefix, Vol.3-21-2
space, of task, Vol.3-7-19

Address size attribute
code segment, Vol.1-3-24
description of, Vol.1-3-24
of stack, Vol.1-6-3

Address sizes, Vol.1-3-11
Address space

64-bit mode, Vol.1-3-2, Vol.1-3-6
compatibility mode, Vol.1-3-2
overview of, Vol.1-3-3
physical, Vol.1-3-8

Address translation
in real-address mode, Vol.3-20-3
logical to linear, Vol.3-3-9
overview, Vol.3-3-8

Addressing methods
RIP-relative, Vol.2-2-14

Addressing modes
assembler, Vol.1-3-32
base, Vol.1-3-30, Vol.1-3-31, Vol.1-3-32
base plus displacement, Vol.1-3-31
base plus index plus displacement, Vol.1-3-32
base plus index time scale plus displacement,

Vol.1-3-32
canonical address, Vol.1-3-13
displacement, Vol.1-3-30, Vol.1-3-31, Vol.1-3-32
effective address, Vol.1-3-30
immediate operands, Vol.1-3-27
index, Vol.1-3-30, Vol.1-3-32
index times scale plus displacement, Vol.1-3-32
memory operands, Vol.1-3-28, Vol.1-3-29
register operands, Vol.1-3-27, Vol.1-3-28
RIP-relative addressing, Vol.1-3-24, Vol.1-3-32
scale factor, Vol.1-3-30, Vol.1-3-32
specifying a segment selector, Vol.1-3-29
Index-2 Combined Volumes 1, 2A, 2B, 2C, 3A, 3B and 3C

COMBINED INDEX
specifying an offset, Vol.1-3-30
specifying offsets in 64-bit mode, Vol.1-3-32

Addressing, segments, Vol.2-1-6, Vol.3-1-9
ADDSD instruction, Vol.1-11-8, Vol.2-3-42
ADDSS instruction, Vol.1-10-12, Vol.2-3-44
ADDSUBPD instruction, Vol.1-5-26, Vol.1-12-5,

Vol.2-3-46
ADDSUBPS instruction, Vol.1-5-26, Vol.1-12-5,

Vol.2-3-49
Advanced media boost, Vol.1-2-15
Advanced power management

C-state and Sub C-state, Vol.3-14-9
MWAIT extensions, Vol.3-14-9
See also: thermal monitoring

Advanced programmable interrupt controller (see I/O
APIC or Local APIC)

advanced smart cache, Vol.1-2-15
AESDEC/AESDECLAST- Perform One Round of an AES

Decryption Flow, Vol.2-3-58
AESIMC- Perform the AES InvMixColumn

Transformation, Vol.2-3-54
AESKEYGENASSIST - AES Round Key Generation

Assist, Vol.2-3-62
AF (adjust) flag, EFLAGS register, Vol.1-3-21,

Vol.1-A-1
AH register, Vol.1-3-16
AL register, Vol.1-3-16
Alignment

check exception, Vol.3-2-14, Vol.3-6-60,
Vol.3-22-16, Vol.3-22-29

checking, Vol.3-5-39
words, doublewords, quadwords, Vol.1-4-2

AM (alignment mask) flag
CR0 control register, Vol.3-2-14, Vol.3-2-20,

Vol.3-22-25
AND instruction, Vol.1-7-15, Vol.2-3-64,

Vol.2-3-598, Vol.3-8-5
ANDNPD instruction, Vol.1-11-9, Vol.2-3-71
ANDNPS instruction, Vol.1-10-13, Vol.2-3-73
ANDPD instruction, Vol.1-11-9, Vol.2-3-67
ANDPS instruction, Vol.1-10-13, Vol.2-3-69
APIC, Vol.3-10-57, Vol.3-10-58, Vol.3-10-59
APIC bus

arbitration mechanism and protocol, Vol.3-10-37,
Vol.3-10-47

bus message format, Vol.3-10-49, Vol.3-10-68
diagram of, Vol.3-10-3, Vol.3-10-4
EOI message format, Vol.3-10-20, Vol.3-10-68
nonfocused lowest priority message, Vol.3-10-70
short message format, Vol.3-10-69
SMI message, Vol.3-33-3
status cycles, Vol.3-10-72
structure of, Vol.3-10-5
See also

local APIC
APIC flag, CPUID instruction, Vol.3-10-10
APIC ID, Vol.3-10-57, Vol.3-10-63, Vol.3-10-66
APIC (see I/O APIC or Local APIC)

Arctangent, x87 FPU operation, Vol.1-8-30,
Vol.2-3-395

Arithmetic instructions, x87 FPU, Vol.1-8-36
ARPL instruction, Vol.2-3-75, Vol.3-2-30, Vol.3-5-38

not supported in 64-bit mode, Vol.3-2-30
Assembler, addressing modes, Vol.1-3-32
Asymmetric processing model, Vol.1-12-2
Atomic operations

automatic bus locking, Vol.3-8-4
effects of a locked operation on internal processor

caches, Vol.3-8-7
guaranteed, description of, Vol.3-8-3
overview of, Vol.3-8-2, Vol.3-8-4
software-controlled bus locking, Vol.3-8-5

At-retirement
counting, Vol.3-18-23, Vol.3-18-86
events, Vol.3-18-23, Vol.3-18-70, Vol.3-18-72,

Vol.3-18-86, Vol.3-18-93
authenticated code execution mode, Vol.2-5-4
Auto HALT restart

field, SMM, Vol.3-33-18
SMM, Vol.3-33-18

Automatic bus locking, Vol.3-8-4
Automatic thermal monitoring mechanism,

Vol.3-14-10
AX register, Vol.1-3-16

B
B (busy) flag

TSS descriptor, Vol.3-7-7, Vol.3-7-13,
Vol.3-7-14, Vol.3-7-18, Vol.3-8-4

B (default size) flag, segment descriptor, Vol.1-3-24
B (default stack size) flag

segment descriptor, Vol.3-21-2, Vol.3-22-45
B0-B3 (BP condition detected) flags

DR6 register, Vol.3-17-4
Backlink (see Previous task link)
Base address fields, segment descriptor, Vol.3-3-14
Base (operand addressing), Vol.1-3-30, Vol.1-3-31,

Vol.1-3-32, Vol.2-2-4
Basic execution environment, Vol.1-3-2
Basic programming environment, Vol.1-7-1,

Vol.1-7-2
B-bit, x87 FPU status word, Vol.1-8-7
BCD integers

packed, Vol.1-4-14, Vol.2-3-292, Vol.2-3-294,
Vol.2-3-333, Vol.2-3-335

relationship to status flags, Vol.1-3-22
unpacked, Vol.1-4-13, Vol.1-7-14, Vol.2-3-23,

Vol.2-3-25, Vol.2-3-27, Vol.2-3-29
x87 FPU encoding, Vol.1-4-14, Vol.1-4-15

BD (debug register access detected) flag, DR6
register, Vol.3-17-4, Vol.3-17-12

BH register, Vol.1-3-16
Bias value

numeric overflow, Vol.1-8-42
numeric underflow, Vol.1-8-43
Combined Volumes 1, 2A, 2B, 2C, 3A, 3B and 3C Index -3

COMBINED INDEX
Biased exponent, Vol.1-4-18
Biasing constant, for floating-point numbers,

Vol.1-4-8
Binary numbers, Vol.1-1-7, Vol.2-1-6, Vol.3-1-9
Binary-coded decimal (see BCD)
BINIT# signal, Vol.3-2-31
BIOS role in microcode updates, Vol.3-9-49
Bit field, Vol.1-4-10
Bit order, Vol.1-1-5, Vol.2-1-4, Vol.3-1-7
BL register, Vol.1-3-16
bootstrap processor, Vol.2-5-21, Vol.2-5-28,

Vol.2-5-37, Vol.2-5-39, Vol.2-5-40
BOUND instruction, Vol.1-6-18, Vol.1-7-26,

Vol.1-7-33, Vol.2-3-89, Vol.2-4-620,
Vol.3-2-7, Vol.3-6-6, Vol.3-6-33

BOUND range exceeded exception (#BR), Vol.1-6-18,
Vol.2-3-89, Vol.2-4-620, Vol.3-6-33

BP register, Vol.1-3-16
BP0#, BP1#, BP2#, and BP3# pins, Vol.3-17-44,

Vol.3-17-47
Branch

control transfer instructions, Vol.1-7-21
hints, Vol.1-11-18
on EFLAGS register status flags, Vol.1-7-23,

Vol.1-8-9
on x87 FPU condition codes, Vol.1-8-9,

Vol.1-8-29
prediction, Vol.1-2-10

Branch hints, Vol.2-2-2
Branch record

branch trace message, Vol.3-17-17
IA-32e mode, Vol.3-17-26
saving, Vol.3-17-19, Vol.3-17-33, Vol.3-17-40
saving as a branch trace message, Vol.3-17-18
structure, Vol.3-17-41
structure of in BTS buffer, Vol.3-17-24

Branch trace message (see BTM)
Branch trace store (see BTS)
Brand information, Vol.2-3-226

processor brand index, Vol.2-3-229
processor brand string, Vol.2-3-226

Breakpoint exception (#BP), Vol.3-6-6, Vol.3-6-31,
Vol.3-17-13

Breakpoints
data breakpoint, Vol.3-17-7
data breakpoint exception conditions,

Vol.3-17-12
description of, Vol.3-17-1
DR0-DR3 debug registers, Vol.3-17-4
example, Vol.3-17-7
exception, Vol.3-6-31
field recognition, Vol.3-17-6, Vol.3-17-8
general-detect exception condition, Vol.3-17-12
instruction breakpoint, Vol.3-17-7
instruction breakpoint exception condition,

Vol.3-17-10
I/O breakpoint exception conditions, Vol.3-17-12
LEN0 - LEN3 (Length) fields

DR7 register, Vol.3-17-6
R/W0-R/W3 (read/write) fields

DR7 register, Vol.3-17-5
single-step exception condition, Vol.3-17-12
task-switch exception condition, Vol.3-17-13

BS (single step) flag, DR6 register, Vol.3-17-4
BSF instruction, Vol.1-7-20, Vol.2-3-92
BSP flag, IA32_APIC_BASE MSR, Vol.3-10-11
BSR instruction, Vol.1-7-20, Vol.2-3-95
BSWAP instruction, Vol.1-7-5, Vol.2-3-98,

Vol.3-22-6
BT instruction, Vol.1-3-20, Vol.1-3-22, Vol.1-7-20,

Vol.2-3-100
BT (task switch) flag, DR6 register, Vol.3-17-4,

Vol.3-17-13
BTC instruction, Vol.1-3-20, Vol.1-3-22, Vol.1-7-20,

Vol.2-3-103, Vol.2-3-598, Vol.3-8-5
BTF (single-step on branches) flag

DEBUGCTLMSR MSR, Vol.3-17-47
BTMs (branch trace messages)

description of, Vol.3-17-17
enabling, Vol.3-17-15, Vol.3-17-29, Vol.3-17-30,

Vol.3-17-39, Vol.3-17-42, Vol.3-17-45
TR (trace message enable) flag

MSR_DEBUGCTLA MSR, Vol.3-17-39
MSR_DEBUGCTLB MSR, Vol.3-17-15,

Vol.3-17-42, Vol.3-17-45
BTR instruction, Vol.1-3-20, Vol.1-3-22, Vol.1-7-20,

Vol.2-3-106, Vol.2-3-598, Vol.3-8-5
BTS, Vol.3-17-22
BTS buffer

description of, Vol.3-17-22
introduction to, Vol.3-17-14, Vol.3-17-18
records in, Vol.3-17-24
setting up, Vol.3-17-29
structure of, Vol.3-17-23, Vol.3-17-26,

Vol.3-18-32
BTS instruction, Vol.1-3-20, Vol.1-3-22, Vol.1-7-20,

Vol.2-3-109, Vol.2-3-598, Vol.3-8-5
BTS (branch trace store) facilities

availability of, Vol.3-17-38
BTS_UNAVAILABLE flag,

IA32_MISC_ENABLE MSR, Vol.3-17-22,
Vol.3-34-185

introduction to, Vol.3-17-14
setting up BTS buffer, Vol.3-17-29
writing an interrupt service routine for,

Vol.3-17-31
Built-in self-test (BIST)

description of, Vol.3-9-1
performing, Vol.3-9-2

Bus
errors detected with MCA, Vol.3-15-35
hold, Vol.3-22-48
locking, Vol.3-8-4, Vol.3-22-48

BX register, Vol.1-3-16
Byte, Vol.1-4-1
Byte order, Vol.1-1-5, Vol.2-1-4, Vol.3-1-7
Index-4 Combined Volumes 1, 2A, 2B, 2C, 3A, 3B and 3C

COMBINED INDEX
C
C (conforming) flag, segment descriptor, Vol.3-5-16
C1 flag, x87 FPU status word, Vol.1-8-7, Vol.1-8-38,

Vol.1-8-42, Vol.1-8-44, Vol.3-22-10,
Vol.3-22-20

C2 flag, x87 FPU status word, Vol.1-8-7, Vol.3-22-11
Cache and TLB information, Vol.2-3-219
Cache control, Vol.3-11-30

adaptive mode, L1 Data Cache, Vol.3-11-26
cache management instructions, Vol.3-11-25,

Vol.3-11-26
cache mechanisms in IA-32 processors,

Vol.3-22-40
caching terminology, Vol.3-11-7
CD flag, CR0 control register, Vol.3-11-15,

Vol.3-22-26
choosing a memory type, Vol.3-11-12
CPUID feature flag, Vol.3-11-26
flags and fields, Vol.3-11-14
flushing TLBs, Vol.3-11-29
G (global) flag

page-directory entries, Vol.3-11-19
page-table entries, Vol.3-11-19

internal caches, Vol.3-11-1
MemTypeGet() function, Vol.3-11-42
MemTypeSet() function, Vol.3-11-44
MESI protocol, Vol.3-11-7, Vol.3-11-13
methods of caching available, Vol.3-11-8
MTRR initialization, Vol.3-11-41
MTRR precedences, Vol.3-11-41
MTRRs, description of, Vol.3-11-30
multiple-processor considerations, Vol.3-11-46
NW flag, CR0 control register, Vol.3-11-18,

Vol.3-22-26
operating modes, Vol.3-11-17
overview of, Vol.3-11-1
page attribute table (PAT), Vol.3-11-48
PCD flag

CR3 control register, Vol.3-11-19
page-directory entries, Vol.3-11-19,

Vol.3-11-47
page-table entries, Vol.3-11-19, Vol.3-11-47

PGE (page global enable) flag, CR4 control register
, Vol.3-11-19

precedence of controls, Vol.3-11-19
preventing caching, Vol.3-11-24
protocol, Vol.3-11-13
PWT flag

CR3 control register, Vol.3-11-19
page-directory entries, Vol.3-11-47
page-table entries, Vol.3-11-47

remapping memory types, Vol.3-11-42
setting up memory ranges with MTRRs,

Vol.3-11-33
shared mode, L1 Data Cache, Vol.3-11-26
variable-range MTRRs, Vol.3-11-34, Vol.3-11-37

Cache Inclusiveness, Vol.2-3-201
Caches, Vol.3-2-10

cache hit, Vol.3-11-7
cache line, Vol.3-11-7
cache line fill, Vol.3-11-7
cache write hit, Vol.3-11-7
description of, Vol.3-11-1
effects of a locked operation on internal processor

caches, Vol.3-8-7
enabling, Vol.3-9-8
management, instructions, Vol.3-2-31,

Vol.3-11-25
Caches, invalidating (flushing), Vol.2-3-529,

Vol.2-4-662
cache, smart, Vol.1-2-6
Caching

cache control protocol, Vol.3-11-13
cache line, Vol.3-11-7
cache management instructions, Vol.3-11-25
cache mechanisms in IA-32 processors,

Vol.3-22-40
caching terminology, Vol.3-11-7
choosing a memory type, Vol.3-11-12
flushing TLBs, Vol.3-11-29
implicit caching, Vol.3-11-27
internal caches, Vol.3-11-1
L1 (level 1) cache, Vol.3-11-5
L2 (level 2) cache, Vol.3-11-5
L3 (level 3) cache, Vol.3-11-5
methods of caching available, Vol.3-11-8
MTRRs, description of, Vol.3-11-30
operating modes, Vol.3-11-17
overview of, Vol.3-11-1
self-modifying code, effect on, Vol.3-11-27,

Vol.3-22-41
snooping, Vol.3-11-8
store buffer, Vol.3-11-29
TLBs, Vol.3-11-6
UC (strong uncacheable) memory type, Vol.3-11-8
UC- (uncacheable) memory type, Vol.3-11-9
WB (write back) memory type, Vol.3-11-10
WC (write combining) memory type, Vol.3-11-9
WP (write protected) memory type, Vol.3-11-10
write-back caching, Vol.3-11-8
WT (write through) memory type, Vol.3-11-10

Call gate, Vol.1-6-9
Call gates

16-bit, interlevel return from, Vol.3-22-44
accessing a code segment through, Vol.3-5-22
description of, Vol.3-5-19
for 16-bit and 32-bit code modules, Vol.3-21-2
IA-32e mode, Vol.3-5-20
introduction to, Vol.3-2-5
mechanism, Vol.3-5-22
privilege level checking rules, Vol.3-5-23

CALL instruction, Vol.1-3-24, Vol.1-6-4, Vol.1-6-5,
Vol.1-6-9, Vol.1-7-22, Vol.1-7-33,
Vol.2-3-112, Vol.3-2-6, Vol.3-3-11,
Combined Volumes 1, 2A, 2B, 2C, 3A, 3B and 3C Index -5

COMBINED INDEX
Vol.3-5-15, Vol.3-5-22, Vol.3-5-29,
Vol.3-7-3, Vol.3-7-12, Vol.3-7-13,
Vol.3-21-7

Caller access privileges, checking, Vol.3-5-37
Calls

16 and 32-bit code segments, Vol.3-21-4
controlling operand-size attribute, Vol.3-21-7
returning from, Vol.3-5-28

Calls (see Procedure calls)
Canonical address, Vol.1-3-13
GETSEC, Vol.2-5-3
Capability MSRs

See VMX capability MSRs
Catastrophic shutdown detector

Thermal monitoring
catastrophic shutdown detector, Vol.3-14-12

catastrophic shutdown detector, Vol.3-14-10
CBW instruction, Vol.1-7-11, Vol.2-3-131
CC0 and CC1 (counter control) fields, CESR MSR

(Pentium processor), Vol.3-18-122
CD (cache disable) flag, CR0 control register,

Vol.3-2-19, Vol.3-9-8, Vol.3-11-15,
Vol.3-11-17, Vol.3-11-19, Vol.3-11-24,
Vol.3-11-46, Vol.3-11-47, Vol.3-22-25,
Vol.3-22-26, Vol.3-22-40

CDQ instruction, Vol.1-7-11, Vol.2-3-290
CDQE instruction, Vol.2-3-131
Celeron processor

description of, Vol.1-2-3
CESR (control and event select) MSR (Pentium

processor), Vol.3-18-121
CF (carry) flag, EFLAGS register, Vol.1-3-21,

Vol.1-A-1, Vol.2-3-35, Vol.2-3-100,
Vol.2-3-103, Vol.2-3-106, Vol.2-3-109,
Vol.2-3-133, Vol.2-3-142, Vol.2-3-296,
Vol.2-3-495, Vol.2-3-501, Vol.2-4-142,
Vol.2-4-440, Vol.2-4-511, Vol.2-4-529,
Vol.2-4-533, Vol.2-4-560, Vol.2-4-574

CH register, Vol.1-3-16
CL register, Vol.1-3-16
CLC instruction, Vol.1-3-22, Vol.1-7-31, Vol.2-3-133
CLD instruction, Vol.1-3-22, Vol.1-7-31, Vol.2-3-134
CLFLSH feature flag, CPUID instruction, Vol.3-9-10
CLFLUSH instruction, Vol.1-11-17, Vol.2-3-135,

Vol.3-2-21, Vol.3-8-9, Vol.3-9-10,
Vol.3-11-26

CPUID flag, Vol.2-3-218
CLI instruction, Vol.1-14-5, Vol.2-3-137, Vol.3-6-10
Clocks

counting processor clocks, Vol.3-18-97
Hyper-Threading Technology, Vol.3-18-97
nominal CPI, Vol.3-18-97
non-halted clockticks, Vol.3-18-97
non-halted CPI, Vol.3-18-97
non-sleep Clockticks, Vol.3-18-97
time stamp counter, Vol.3-18-97

CLTS instruction, Vol.2-3-140, Vol.3-2-29,
Vol.3-5-34, Vol.3-25-3, Vol.3-25-17

Cluster model, local APIC, Vol.3-10-34
CMC instruction, Vol.1-3-22, Vol.1-7-31, Vol.2-3-142
CMOVcc flag, Vol.2-3-218
CMOVcc instructions, Vol.1-7-4, Vol.1-7-6,

Vol.2-3-143, Vol.3-22-6
CPUID flag, Vol.2-3-218

CMP instruction, Vol.1-7-12, Vol.2-3-150
CMPPD instruction, Vol.1-11-10, Vol.2-3-153
CMPPS instruction, Vol.1-10-13, Vol.2-3-163
CMPS instruction, Vol.1-3-22, Vol.1-7-27,

Vol.2-3-170, Vol.2-4-467
CMPSB instruction, Vol.2-3-170
CMPSD instruction, Vol.1-11-10, Vol.2-3-170,

Vol.2-3-176
CMPSQ instruction, Vol.2-3-170
CMPSS instruction, Vol.1-10-14, Vol.2-3-182
CMPSW instruction, Vol.2-3-170
CMPXCHG instruction, Vol.1-7-6, Vol.2-3-188,

Vol.2-3-598, Vol.3-8-5, Vol.3-22-6
CMPXCHG16B instruction, Vol.1-7-7, Vol.2-3-191

CPUID bit, Vol.2-3-214
CMPXCHG8B instruction, Vol.1-7-6, Vol.2-3-191,

Vol.3-8-5, Vol.3-22-6
CPUID flag, Vol.2-3-217

Code modules
16 bit vs. 32 bit, Vol.3-21-2
mixing 16-bit and 32-bit code, Vol.3-21-1
sharing data, mixed-size code segs, Vol.3-21-4
transferring control, mixed-size code segs,

Vol.3-21-4
Code segment, Vol.1-3-19
Code segments

accessing data in, Vol.3-5-14
accessing through a call gate, Vol.3-5-22
description of, Vol.3-3-16
descriptor format, Vol.3-5-3
descriptor layout, Vol.3-5-3
direct calls or jumps to, Vol.3-5-15
paging of, Vol.3-2-8
pointer size, Vol.3-21-5
privilege level checks

transferring control between code segs,
Vol.3-5-14

COMISD instruction, Vol.1-11-10, Vol.2-3-194
COMISS instruction, Vol.1-10-14, Vol.2-3-196
Compare

compare and exchange, Vol.1-7-6
integers, Vol.1-7-12
real numbers, x87 FPU, Vol.1-8-28
strings, Vol.1-7-27

Compatibility
IA-32 architecture, Vol.3-22-1
software, Vol.3-1-7

Compatibility mode
address space, Vol.1-3-2
branch functions, Vol.1-6-12
call gate descriptors, Vol.1-6-12
code segment descriptor, Vol.3-5-5
Index-6 Combined Volumes 1, 2A, 2B, 2C, 3A, 3B and 3C

COMBINED INDEX
code segment descriptors, Vol.3-9-16
control registers, Vol.3-2-17
CS.L and CS.D, Vol.3-9-16
debug registers, Vol.3-2-31
EFLAGS register, Vol.3-2-15
exception handling, Vol.3-2-7
gates, Vol.3-2-6
GDTR register, Vol.3-2-16, Vol.3-2-17
global and local descriptor tables, Vol.3-2-5
IDTR register, Vol.3-2-17
interrupt handling, Vol.3-2-7
introduction, Vol.1-2-28, Vol.1-3-2, Vol.2-2-9
L flag, Vol.3-3-16, Vol.3-5-5
memory management, Vol.3-2-8
memory models, Vol.1-3-11
MMX technology, Vol.1-9-2
operation, Vol.3-9-16
see 64-bit mode
segment loading instructions, Vol.3-3-12
segmentation, Vol.1-3-30
segments, Vol.3-3-6
SSE extensions, Vol.1-10-4
SSE2 extensions, Vol.1-11-4
SSE3 extensions, Vol.1-12-1
SSSE3 extensions, Vol.1-12-1
summary table notation, Vol.2-3-11
switching to, Vol.3-9-16
SYSCALL and SYSRET, Vol.3-5-32
SYSENTER and SYSEXIT, Vol.3-5-31
system flags, Vol.3-2-15
system registers, Vol.3-2-9
task register, Vol.3-2-17
x87 FPU, Vol.1-8-2
See also: 64-bit mode, IA-32e mode
See also: IA-32e mode, 64-bit mode

Compatibility, software, Vol.1-1-6, Vol.2-1-5
Condition code flags, EFLAGS register, Vol.2-3-143
Condition code flags, x87 FPU status word

branching on, Vol.1-8-9
compatibility information, Vol.3-22-10
conditional moves on, Vol.1-8-9
description of, Vol.1-8-6
flags affected by instructions, Vol.2-3-18
interpretation of, Vol.1-8-8
setting, Vol.2-3-445, Vol.2-3-447, Vol.2-3-450
use of, Vol.1-8-28

Conditional jump, Vol.2-3-548
Conditional moves, x87 FPU condition codes,

Vol.1-8-9
Conforming code segment, Vol.2-3-570
Conforming code segments

accessing, Vol.3-5-17
C (conforming) flag, Vol.3-5-16
description of, Vol.3-3-18

Constants (floating point), Vol.1-8-25
Constants (floating point), loading, Vol.2-3-383
Context, task (see Task state)
Control registers

64-bit mode, Vol.1-3-6, Vol.3-2-17
CR0, Vol.3-2-17
CR1 (reserved), Vol.3-2-17
CR2, Vol.3-2-17
CR3 (PDBR), Vol.3-2-8, Vol.3-2-17
CR4, Vol.3-2-17
description of, Vol.3-2-17
introduction to, Vol.3-2-9
overview of, Vol.1-3-5
VMX operation, Vol.3-30-25

Control registers, moving values to and from,
Vol.2-4-45

Coprocessor segment
overrun exception, Vol.3-6-41, Vol.3-22-16

Core microarchitecture, Vol.1-2-14, Vol.1-2-17,
Vol.1-2-18, Vol.1-2-19

core microarchitecture, Vol.1-2-14, Vol.1-2-17,
Vol.1-2-18

Core Solo and Core Duo, Vol.1-2-5
Cosine, x87 FPU operation, Vol.1-8-30, Vol.2-3-351,

Vol.2-3-420
Counter mask field

PerfEvtSel0 and PerfEvtSel1 MSRs (P6 family
processors), Vol.3-18-6, Vol.3-18-119

CPL, Vol.2-3-137, Vol.2-4-630
description of, Vol.3-5-10
field, CS segment selector, Vol.3-5-2

CPUID instruction, Vol.2-3-198, Vol.2-3-218
36-bit page size extension, Vol.2-3-218
AP-485, Vol.1-1-10, Vol.2-1-9, Vol.3-1-11
APIC on-chip, Vol.2-3-217
availability, Vol.3-22-6
basic CPUID information, Vol.2-3-199
cache and TLB characteristics, Vol.2-3-200
CLFLUSH flag, Vol.1-11-17, Vol.2-3-218
CLFLUSH instruction cache line size, Vol.2-3-211
CMOVcc feature flag, Vol.1-7-5
CMPXCHG16B flag, Vol.2-3-214
CMPXCHG8B flag, Vol.2-3-217
control register flags, Vol.3-2-26
CPL qualified debug store, Vol.2-3-214
debug extensions, CR4.DE, Vol.2-3-217
debug store supported, Vol.2-3-218
detecting features, Vol.3-22-3
determine support for, Vol.1-3-23
deterministic cache parameters leaf, Vol.2-3-200,

Vol.2-3-203, Vol.2-3-204, Vol.2-3-205,
Vol.2-3-206

earlier processors, Vol.1-15-2
extended function information, Vol.2-3-206
feature information, Vol.2-3-216
FPU on-chip, Vol.2-3-217
FSAVE flag, Vol.2-3-218
FXRSTOR flag, Vol.2-3-218
FXSAVE-FXRSTOR flag, Vol.1-10-21
IA-32e mode available, Vol.2-3-207
input limits for EAX, Vol.2-3-208
L1 Context ID, Vol.2-3-214
Combined Volumes 1, 2A, 2B, 2C, 3A, 3B and 3C Index -7

COMBINED INDEX
local APIC physical ID, Vol.2-3-212
machine check architecture, Vol.2-3-218
machine check exception, Vol.2-3-217
memory type range registers, Vol.2-3-217
MMX feature flag, Vol.1-9-11
MONITOR feature information, Vol.2-3-224
MONITOR/MWAIT flag, Vol.2-3-214
MONITOR/MWAIT leaf, Vol.2-3-201, Vol.2-3-202,

Vol.2-3-203, Vol.2-3-204
MWAIT feature information, Vol.2-3-224
page attribute table, Vol.2-3-218
page size extension, Vol.2-3-217
performance monitoring features, Vol.2-3-225
physical address bits, Vol.2-3-208
physical address extension, Vol.2-3-217
power management, Vol.2-3-224, Vol.2-3-225
processor brand index, Vol.2-3-211, Vol.2-3-226
processor brand string, Vol.2-3-207, Vol.2-3-226
processor identification, Vol.1-15-1
processor serial number, Vol.2-3-200,

Vol.2-3-218
processor type field, Vol.2-3-211
RDMSR flag, Vol.2-3-217
returned in EBX, Vol.2-3-211
returned in ECX & EDX, Vol.2-3-212
self snoop, Vol.2-3-219
serializing instructions, Vol.3-8-25
serializing use, Vol.1-14-7
SpeedStep technology, Vol.2-3-214
SS2 extensions flag, Vol.2-3-219
SSE extensions flag, Vol.2-3-219
SSE feature flag, Vol.1-10-1, Vol.1-10-9
SSE2 feature flag, Vol.1-11-1, Vol.1-12-7,

Vol.1-12-8
SSE3 extensions flag, Vol.2-3-214
SSE3 feature flag, Vol.1-12-8
SSSE2 feature flag, Vol.1-12-13, Vol.1-12-28,

Vol.1-12-29, Vol.1-12-37
SSSE3 extensions flag, Vol.2-3-214
summary of, Vol.1-7-34
syntax for data, Vol.3-1-9
SYSENTER flag, Vol.2-3-217
SYSEXIT flag, Vol.2-3-217
thermal management, Vol.2-3-224, Vol.2-3-225
thermal monitor, Vol.2-3-214, Vol.2-3-218,

Vol.2-3-219
time stamp counter, Vol.2-3-217
using CPUID, Vol.2-3-198
vendor ID string, Vol.2-3-208
version information, Vol.2-3-199, Vol.2-3-224
virtual 8086 Mode flag, Vol.2-3-217
virtual address bits, Vol.2-3-208
WRMSR flag, Vol.2-3-217

CQO instruction, Vol.2-3-290
CR0 control register, Vol.2-4-548, Vol.3-22-9

description of, Vol.3-2-17
introduction to, Vol.3-2-9
state following processor reset, Vol.3-9-2

CR1 control register (reserved), Vol.3-2-17
CR2 control register

description of, Vol.3-2-17
introduction to, Vol.3-2-9

CR3 control register (PDBR)
associated with a task, Vol.3-7-1, Vol.3-7-3
description of, Vol.3-2-17
in TSS, Vol.3-7-5, Vol.3-7-19
introduction to, Vol.3-2-9
loading during initialization, Vol.3-9-13
memory management, Vol.3-2-8
page directory base address, Vol.3-2-8
page table base address, Vol.3-2-7

CR4 control register
description of, Vol.3-2-17
enabling control functions, Vol.3-22-2
inclusion in IA-32 architecture, Vol.3-22-24
introduction to, Vol.3-2-9
VMX usage of, Vol.3-23-4

CR8 register, Vol.3-2-9
64-bit mode, Vol.3-2-18
compatibility mode, Vol.3-2-18
description of, Vol.3-2-18
task priority level bits, Vol.3-2-25
when available, Vol.3-2-18

CS register, Vol.1-3-17, Vol.1-3-19, Vol.2-3-114,
Vol.2-3-514, Vol.2-3-537, Vol.2-3-557,
Vol.2-4-40, Vol.2-4-337, Vol.3-22-14

state following initialization, Vol.3-9-6
C-state, Vol.3-14-9
CTI instruction, Vol.1-7-32
CTR0 and CTR1 (performance counters) MSRs

(Pentium processor), Vol.3-18-121,
Vol.3-18-123

Current privilege level (see CPL)
Current stack, Vol.1-6-2, Vol.1-6-4
CVTDQ2PD instruction, Vol.1-11-14, Vol.2-3-236
CVTDQ2PS instruction, Vol.1-11-14, Vol.2-3-243
CVTPD2DQ instruction, Vol.1-11-14, Vol.2-3-245
CVTPD2PI instruction, Vol.1-11-13, Vol.2-3-248
CVTPD2PS instruction, Vol.1-11-12, Vol.2-3-250
CVTPI2PD instruction, Vol.1-11-13, Vol.2-3-253
CVTPI2PS instruction, Vol.1-10-16, Vol.2-3-255
CVTPS2DQ instruction, Vol.1-11-14, Vol.2-3-257,

Vol.2-3-258
CVTPS2PD instruction, Vol.1-11-12, Vol.2-3-259
CVTPS2PI instruction, Vol.1-10-16, Vol.2-3-262
CVTSD2SI instruction, Vol.1-11-14, Vol.2-3-264
CVTSD2SS instruction, Vol.1-11-12, Vol.2-3-266
CVTSI2SD instruction, Vol.1-11-14, Vol.2-3-268
CVTSI2SS instruction, Vol.1-10-16, Vol.2-3-270
CVTSS2SD instruction, Vol.1-11-12, Vol.2-3-272
CVTSS2SI instruction, Vol.1-10-16, Vol.2-3-274
CVTTPD2DQ instruction, Vol.1-11-14, Vol.2-3-276
CVTTPD2PI instruction, Vol.1-11-13, Vol.2-3-276,

Vol.2-3-279
CVTTPS2DQ instruction, Vol.1-11-14, Vol.2-3-281
CVTTPS2PI instruction, Vol.1-10-16, Vol.2-3-284
Index-8 Combined Volumes 1, 2A, 2B, 2C, 3A, 3B and 3C

COMBINED INDEX
CVTTSD2SI instruction, Vol.1-11-14, Vol.2-3-286
CVTTSS2SI instruction, Vol.1-10-16, Vol.2-3-288
CWD instruction, Vol.1-7-11, Vol.2-3-290
CWDE instruction, Vol.1-7-11, Vol.2-3-131
CX register, Vol.1-3-16
C/C++ compiler intrinsics

compiler functional equivalents, Vol.2-C-1
composite, Vol.2-C-17
description of, Vol.2-3-15
lists of, Vol.2-C-1
simple, Vol.2-C-2

D
D (default operation size) flag

segment descriptor, Vol.3-21-2, Vol.3-22-45
D (default operation size) flag, segment descriptor,

Vol.2-4-342
D (default size) flag, segment descriptor, Vol.1-6-3
DAA instruction, Vol.1-7-14, Vol.2-3-292
DAS instruction, Vol.1-7-14, Vol.2-3-294
Data breakpoint exception conditions, Vol.3-17-12
Data movement instructions, Vol.1-7-3
Data pointer, x87 FPU, Vol.1-8-13
Data registers, x87 FPU, Vol.1-8-2
Data segment, Vol.1-3-19
Data segments

description of, Vol.3-3-16
descriptor layout, Vol.3-5-3
expand-down type, Vol.3-3-15
paging of, Vol.3-2-8
privilege level checking when accessing,

Vol.3-5-12
Data types

128-bit packed SIMD, Vol.1-4-12
64-bit mode, Vol.1-7-2
64-bit packed SIMD, Vol.1-4-11
alignment, Vol.1-4-2
BCD integers, Vol.1-4-13, Vol.1-7-14
bit field, Vol.1-4-10
byte, Vol.1-4-1
doubleword, Vol.1-4-1
floating-point, Vol.1-4-6
fundamental, Vol.1-4-1
integers, Vol.1-4-4
numeric, Vol.1-4-3
operated on by GP instructions, Vol.1-7-1,

Vol.1-7-2
operated on by MMX technology, Vol.1-9-3
operated on by SSE extensions, Vol.1-10-8
operated on by SSE2 extensions, Vol.1-11-5
operated on by x87 FPU, Vol.1-8-18
operated on in 64-bit mode, Vol.1-4-9
packed bytes, Vol.1-9-3
packed doublewords, Vol.1-9-3
packed SIMD, Vol.1-4-11
packed words, Vol.1-9-3
pointers, Vol.1-4-9

quadword, Vol.1-4-1, Vol.1-9-3
signed integers, Vol.1-4-5
strings, Vol.1-4-11
unsigned integers, Vol.1-4-5
word, Vol.1-4-1

DAZ (denormals-are-zeros) flag
MXCSR register, Vol.1-10-7

DE (debugging extensions) flag, CR4 control register,
Vol.3-2-23, Vol.3-22-24, Vol.3-22-27,
Vol.3-22-28

DE (denormal operand exception) flag
MXCSR register, Vol.1-11-21
x87 FPU status word, Vol.1-8-7, Vol.1-8-40

Debug exception (#DB), Vol.3-6-10, Vol.3-6-29,
Vol.3-7-6, Vol.3-17-9, Vol.3-17-16,
Vol.3-17-48

Debug registers
64-bit mode, Vol.1-3-6
legacy modes, Vol.1-3-5

Debug registers, moving value to and from,
Vol.2-4-49

Debug store (see DS)
DEBUGCTLMSR MSR, Vol.3-17-46, Vol.3-17-48,

Vol.3-34-243
Debugging facilities

breakpoint exception (#BP), Vol.3-17-1
debug exception (#DB), Vol.3-17-1
DR6 debug status register, Vol.3-17-1
DR7 debug control register, Vol.3-17-1
exceptions, Vol.3-17-9
INT3 instruction, Vol.3-17-1
last branch, interrupt, and exception recording,

Vol.3-17-2, Vol.3-17-14
masking debug exceptions, Vol.3-6-10
overview of, Vol.3-17-1
performance-monitoring counters, Vol.3-18-1
registers

description of, Vol.3-17-2
introduction to, Vol.3-2-9
loading, Vol.3-2-30

RF (resume) flag, EFLAGS, Vol.3-17-1
see DS (debug store) mechanism
T (debug trap) flag, TSS, Vol.3-17-1
TF (trap) flag, EFLAGS, Vol.3-17-1
virtualization, Vol.3-31-1
VMX operation, Vol.3-31-2

DEC instruction, Vol.1-7-12, Vol.2-3-296,
Vol.2-3-598, Vol.3-8-5

Decimal integers, x87 FPU, Vol.1-4-15
Deeper sleep, Vol.1-2-6
Denormal number (see Denormalized finite number)
Denormal operand exception (#D), Vol.3-22-13

overview of, Vol.1-4-28
SSE and SSE2 extensions, Vol.1-11-21
x87 FPU, Vol.1-8-39

Denormalization process, Vol.1-4-21
Denormalized finite number, Vol.1-4-7, Vol.1-4-20,

Vol.2-3-450
Combined Volumes 1, 2A, 2B, 2C, 3A, 3B and 3C Index -9

COMBINED INDEX
Denormalized operand, Vol.3-22-17
Denormals-are-zero

DAZ flag, MXCSR register, Vol.1-10-7, Vol.1-11-3,
Vol.1-11-4, Vol.1-11-28

mode, Vol.1-10-7, Vol.1-11-28
Detecting and Enabling SMX

level 2, Vol.2-5-2
Device-not-available exception (#NM), Vol.3-2-21,

Vol.3-2-30, Vol.3-6-36, Vol.3-9-8,
Vol.3-22-15, Vol.3-22-16

DF (direction) flag, EFLAGS register, Vol.1-3-22,
Vol.1-A-1, Vol.2-3-134, Vol.2-3-172,
Vol.2-3-505, Vol.2-3-601, Vol.2-4-110,
Vol.2-4-175, Vol.2-4-515, Vol.2-4-561

DFR
Destination Format Register, Vol.3-10-54,

Vol.3-10-60, Vol.3-10-66
DH register, Vol.1-3-16
DI register, Vol.1-3-16
Digital media boost, Vol.1-2-6
Digital readout bits, Vol.3-14-21, Vol.3-14-25
Displacement (operand addressing), Vol.1-3-30,

Vol.1-3-31, Vol.1-3-32, Vol.2-2-4
DIV instruction, Vol.1-7-13, Vol.2-3-299, Vol.3-6-28
Divide, Vol.1-4-29
Divide by zero exception (#Z)

SSE and SSE2 extensions, Vol.1-11-22
x87 FPU, Vol.1-8-41

Divide configuration register, local APIC, Vol.3-10-23
Divide error exception (#DE), Vol.2-3-299
Divide-error exception (#DE), Vol.3-6-28,

Vol.3-22-29
DIVPD instruction, Vol.1-11-8, Vol.2-3-303
DIVPS instruction, Vol.1-10-12, Vol.2-3-305
DIVSD instruction, Vol.1-11-8, Vol.2-3-307
DIVSS instruction, Vol.1-10-12, Vol.2-3-309
DL register, Vol.1-3-16
DM (denormal operand exception) mask bit

MXCSR register, Vol.1-11-21
x87 FPU, Vol.1-8-40
x87 FPU control word, Vol.1-8-11

Double-extended-precision FP format, Vol.1-4-6
Double-fault exception (#DF), Vol.3-6-38,

Vol.3-22-37
Double-precision floating-point format, Vol.1-4-6
Doubleword, Vol.1-4-1
DPL (descriptor privilege level) field, segment

descriptor, Vol.3-3-14, Vol.3-5-2,
Vol.3-5-5, Vol.3-5-10

DR0-DR3 breakpoint-address registers, Vol.3-17-1,
Vol.3-17-4, Vol.3-17-44, Vol.3-17-47,
Vol.3-17-48

DR4-DR5 debug registers, Vol.3-17-4, Vol.3-22-27
DR6 debug status register, Vol.3-17-4

B0-B3 (BP detected) flags, Vol.3-17-4
BD (debug register access detected) flag,

Vol.3-17-4
BS (single step) flag, Vol.3-17-4

BT (task switch) flag, Vol.3-17-4
debug exception (#DB), Vol.3-6-29
reserved bits, Vol.3-22-27

DR7 debug control register, Vol.3-17-5
G0-G3 (global breakpoint enable) flags, Vol.3-17-5
GD (general detect enable) flag, Vol.3-17-5
GE (global exact breakpoint enable) flag,

Vol.3-17-5
L0-L3 (local breakpoint enable) flags, Vol.3-17-5
LE local exact breakpoint enable) flag, Vol.3-17-5
LEN0-LEN3 (Length) fields, Vol.3-17-6
R/W0-R/W3 (read/write) fields, Vol.3-17-5,

Vol.3-22-27
DS feature flag, CPUID instruction, Vol.3-17-21,

Vol.3-17-38, Vol.3-17-43, Vol.3-17-45
DS register, Vol.1-3-17, Vol.1-3-19, Vol.2-3-171,

Vol.2-3-578, Vol.2-3-601, Vol.2-4-110,
Vol.2-4-174, Vol.2-4-175

DS save area, Vol.3-17-23, Vol.3-17-25, Vol.3-17-26
DS (debug store) mechanism

availability of, Vol.3-18-76
description of, Vol.3-18-76
DS feature flag, CPUID instruction, Vol.3-18-76
DS save area, Vol.3-17-21, Vol.3-17-25
IA-32e mode, Vol.3-17-25
interrupt service routine (DS ISR), Vol.3-17-31
setting up, Vol.3-17-28

Dual-core technology
architecture, Vol.3-8-47
introduction, Vol.1-2-24
logical processors supported, Vol.3-8-36
MTRR memory map, Vol.3-8-48
multi-threading feature flag, Vol.3-8-36
performance monitoring, Vol.3-18-102
specific features, Vol.3-22-5

Dual-monitor treatment, Vol.3-33-27
DX register, Vol.1-3-16
Dynamic data flow analysis, Vol.1-2-10
Dynamic execution, Vol.1-2-10, Vol.1-2-15,

Vol.1-2-17, Vol.1-2-18
D/B (default operation size/default stack pointer size

and/or upper bound) flag, segment
descriptor, Vol.3-3-15, Vol.3-5-6

E
E (edge detect) flag

PerfEvtSel0 and PerfEvtSel1 MSRs (P6 family),
Vol.3-18-5

E (edge detect) flag, PerfEvtSel0 and PerfEvtSel1
MSRs (P6 family processors), Vol.3-18-118

E (expansion direction) flag
segment descriptor, Vol.3-5-2, Vol.3-5-6

E (MTRRs enabled) flag
IA32_MTRR_DEF_TYPE MSR, Vol.3-11-33

EAX register, Vol.1-3-14, Vol.1-3-16
EBP register, Vol.1-3-14, Vol.1-3-16, Vol.1-6-4,

Vol.1-6-8
Index-10 Combined Volumes 1, 2A, 2B, 2C, 3A, 3B and 3C

COMBINED INDEX
EBX register, Vol.1-3-14, Vol.1-3-16
ECX register, Vol.1-3-14, Vol.1-3-16
EDI register, Vol.1-3-14, Vol.1-3-16, Vol.2-4-514,

Vol.2-4-561, Vol.2-4-566
EDX register, Vol.1-3-14, Vol.1-3-16
Effective address, Vol.1-3-30, Vol.2-3-583
EFLAGS register

64-bit mode, Vol.1-7-2
condition codes, Vol.1-B-1, Vol.2-3-147,

Vol.2-3-342, Vol.2-3-348
cross-reference with instructions, Vol.1-A-1
description of, Vol.1-3-20
flags affected by instructions, Vol.2-3-18
identifying 32-bit processors, Vol.3-22-8
instructions that operate on, Vol.1-7-30
introduction to, Vol.3-2-9
new flags, Vol.3-22-7
overview, Vol.1-3-14
part of basic programming environment,

Vol.1-7-1
popping, Vol.2-4-348
popping on return from interrupt, Vol.2-3-537
pushing, Vol.2-4-431
pushing on interrupts, Vol.2-3-514
restoring from stack, Vol.1-6-8
saved in TSS, Vol.3-7-5
saving, Vol.2-4-500
saving on a procedure call, Vol.1-6-8
status flags, Vol.1-8-9, Vol.1-8-10, Vol.1-8-29,

Vol.2-3-150, Vol.2-3-553, Vol.2-4-521,
Vol.2-4-601

system flags, Vol.3-2-12
use with CMOVcc instructions, Vol.1-7-4
VMX operation, Vol.3-30-4

EIP register, Vol.2-3-113, Vol.2-3-514, Vol.2-3-537,
Vol.2-3-557, Vol.3-22-14

description of, Vol.1-3-24
overview, Vol.1-3-14
part of basic programming environment,

Vol.1-7-1
relationship to CS register, Vol.1-3-19
saved in TSS, Vol.3-7-6
state following initialization, Vol.3-9-6

EM (emulation) flag
CR0 control register, Vol.3-2-21, Vol.3-2-22,

Vol.3-6-36, Vol.3-9-6, Vol.3-9-8, Vol.3-12-1,
Vol.3-13-3

EMMS instruction, Vol.1-9-10, Vol.1-9-12,
Vol.2-3-317, Vol.3-12-3

Encodings
See machine instructions, opcodes

Enhanced Intel Deeper Sleep, Vol.1-2-6
Enhanced Intel SpeedStep Technology

ACPI 3.0 specification, Vol.3-14-2
IA32_APERF MSR, Vol.3-14-2
IA32_MPERF MSR, Vol.3-14-2
IA32_PERF_CTL MSR, Vol.3-14-1
IA32_PERF_STATUS MSR, Vol.3-14-1

introduction, Vol.3-14-1
multiple processor cores, Vol.3-14-2
performance transitions, Vol.3-14-1
P-state coordination, Vol.3-14-2
See also: thermal monitoring

ENTER instruction, Vol.1-6-19, Vol.1-6-20,
Vol.1-7-30, Vol.2-3-319

GETSEC, Vol.2-5-4, Vol.2-5-12, Vol.1-5-39
EOI

End Of Interrupt register, Vol.3-10-55
Error code, Vol.3-16-5, Vol.3-16-11, Vol.3-16-15,

Vol.3-16-18
architectural MCA, Vol.3-16-1, Vol.3-16-5,

Vol.3-16-11, Vol.3-16-15, Vol.3-16-18
decoding IA32_MCi_STATUS, Vol.3-16-1,

Vol.3-16-5, Vol.3-16-11, Vol.3-16-15,
Vol.3-16-18

exception, description of, Vol.3-6-20
external bus, Vol.3-16-1, Vol.3-16-5,

Vol.3-16-11, Vol.3-16-15, Vol.3-16-18
memory hierarchy, Vol.3-16-5, Vol.3-16-11,

Vol.3-16-15, Vol.3-16-18
pushing on stack, Vol.3-22-44
watchdog timer, Vol.3-16-1, Vol.3-16-5,

Vol.3-16-11, Vol.3-16-15, Vol.3-16-18
Error numbers

VM-instruction error field, Vol.3-29-35
Error signals, Vol.3-22-14, Vol.3-22-15
Error-reporting bank registers, Vol.3-15-3
ERROR#

input, Vol.3-22-22
output, Vol.3-22-22

ES register, Vol.1-3-17, Vol.1-3-19, Vol.2-3-578,
Vol.2-4-175, Vol.2-4-514, Vol.2-4-515,
Vol.2-4-566, Vol.2-4-567

ES (exception summary) flag
x87 FPU status word, Vol.1-8-45

ES0 and ES1 (event select) fields, CESR MSR (Pentium
processor), Vol.3-18-121

ESC instructions, x87 FPU, Vol.1-8-23
ESI register, Vol.1-3-14, Vol.1-3-16, Vol.2-3-171,

Vol.2-3-601, Vol.2-4-110, Vol.2-4-174,
Vol.2-4-561

ESP register, Vol.1-3-16, Vol.2-3-114, Vol.2-4-337
ESP register (stack pointer), Vol.1-3-14, Vol.1-6-3,

Vol.1-6-4
ESR

Error Status Register, Vol.3-10-56
ET (extension type) flag, CR0 control register,

Vol.3-2-20, Vol.3-22-9
Event select field, PerfEvtSel0 and PerfEvtSel1 MSRs

(P6 family processors), Vol.3-18-4,
Vol.3-18-20, Vol.3-18-117

Events
at-retirement, Vol.3-18-86
at-retirement (Pentium 4 processor), Vol.3-18-70
non-retirement (Pentium 4 processor),

Vol.3-18-70, Vol.3-19-219
Combined Volumes 1, 2A, 2B, 2C, 3A, 3B and 3C Index -11

COMBINED INDEX
P6 family processors, Vol.3-19-270
Pentium processor, Vol.3-19-288

Exception flags, x87 FPU status word, Vol.1-8-7
Exception handler

calling, Vol.3-6-15
defined, Vol.3-6-1
flag usage by handler procedure, Vol.3-6-19
machine-check exception handler, Vol.3-15-35
machine-check exceptions (#MC), Vol.3-15-35
machine-error logging utility, Vol.3-15-35
procedures, Vol.3-6-16
protection of handler procedures, Vol.3-6-18
task, Vol.3-6-20, Vol.3-7-3

Exception handlers
overview of, Vol.1-6-13
SIMD floating-point exceptions, Vol.1-E-1
SSE and SSE2 extensions, Vol.1-11-25,

Vol.1-11-26
typical actions of a FP exception handler,

Vol.1-4-33
x87 FPU, Vol.1-8-46

Exception priority, floating-point exceptions,
Vol.1-4-32

Exception-flag masks, x87 FPU control word,
Vol.1-8-11

Exceptions
64-bit mode, Vol.1-6-19
alignment check, Vol.3-22-16
BOUND range exceeded (#BR), Vol.2-3-89,

Vol.2-4-620
classifications, Vol.3-6-6
compound error codes, Vol.3-15-27
conditions checked during a task switch,

Vol.3-7-15
coprocessor segment overrun, Vol.3-22-16
description of, Vol.1-6-13, Vol.3-2-7, Vol.3-6-1
device not available, Vol.3-22-16
double fault, Vol.3-6-38
error code, Vol.3-6-20
exception bitmap, Vol.3-31-2
execute-disable bit, Vol.3-5-47
floating-point error, Vol.3-22-16
general protection, Vol.3-22-16
handler, Vol.1-6-13
handler mechanism, Vol.3-6-16
handler procedures, Vol.3-6-16
handling, Vol.3-6-15
handling in real-address mode, Vol.3-20-6
handling in SMM, Vol.3-33-14
handling in virtual-8086 mode, Vol.3-20-16
handling through a task gate in virtual-8086 mode

, Vol.3-20-21
handling through a trap or interrupt gate in

virtual-8086 mode, Vol.3-20-18
IA-32e mode, Vol.3-2-7
IDT, Vol.3-6-12
implicit call to handler, Vol.1-6-1
in real-address mode, Vol.1-6-17

initializing for protected-mode operation,
Vol.3-9-13

invalid-opcode, Vol.3-22-7
masking debug exceptions, Vol.3-6-10
masking when switching stack segments,

Vol.3-6-11
MCA error codes, Vol.3-15-26
MMX instructions, Vol.3-12-1
notation, Vol.1-1-9, Vol.2-1-7, Vol.3-1-10
overflow exception (#OF), Vol.2-3-513
overview of, Vol.3-6-1
priorities among simultaneous exceptions and

interrupts, Vol.3-6-11
priority of, Vol.3-22-30
priority of, x87 FPU exceptions, Vol.3-22-14
reference information on all exceptions,

Vol.3-6-27
reference information, 64-bit mode, Vol.3-6-22
restarting a task or program, Vol.3-6-7
returning from, Vol.2-3-537
segment not present, Vol.3-22-16
simple error codes, Vol.3-15-26
sources of, Vol.3-6-5
summary of, Vol.3-6-3
vector, Vol.1-6-13
vectors, Vol.3-6-2

Executable, Vol.3-3-15
Execute-disable bit capability

conditions for, Vol.3-5-43
CPUID flag, Vol.3-5-43
detecting and enabling, Vol.3-5-43
exception handling, Vol.3-5-47
page-fault exceptions, Vol.3-6-54
paging data structures, Vol.3-13-14
protection matrix for IA-32e mode, Vol.3-5-44
protection matrix for legacy modes, Vol.3-5-45
reserved bit checking, Vol.3-5-45

Execution events, Vol.3-19-258
GETSEC, Vol.2-5-4, Vol.2-5-6
Exit-reason numbers

VM entries & exits, Vol.3-C-1
Expand-down data segment type, Vol.3-3-15
Exponent, extracting from floating-point number,

Vol.2-3-468
Exponent, floating-point number, Vol.1-4-16
Extended signature table, Vol.3-9-41
extended signature table, Vol.3-9-41
External bus errors, detected with machine-check

architecture, Vol.3-15-35
Extract exponent and significand, x87 FPU operation

, Vol.2-3-468

F
F2XM1 instruction, Vol.1-8-32, Vol.2-3-325,

Vol.2-3-468, Vol.3-22-18
FABS instruction, Vol.1-8-26, Vol.2-3-327
FADD instruction, Vol.1-8-25, Vol.2-3-329
Index-12 Combined Volumes 1, 2A, 2B, 2C, 3A, 3B and 3C

COMBINED INDEX
FADDP instruction, Vol.1-8-25, Vol.2-3-329
Family 06H, Vol.3-16-1
Family 0FH, Vol.3-16-1

microcode update facilities, Vol.3-9-37
Far call

description of, Vol.1-6-5
operation, Vol.1-6-6

Far pointer
16-bit addressing, Vol.1-3-11
32-bit addressing, Vol.1-3-11
64-bit mode, Vol.1-4-9
description of, Vol.1-3-8, Vol.1-4-9
legacy modes, Vol.1-4-9

Far pointer, loading, Vol.2-3-577
Far return operation, Vol.1-6-6
Far return, RET instruction, Vol.2-4-470
Faults

description of, Vol.3-6-6
restarting a program or task after, Vol.3-6-7

FBLD instruction, Vol.1-8-24, Vol.2-3-333
FBSTP instruction, Vol.1-8-24, Vol.2-3-335
FCHS instruction, Vol.1-8-26, Vol.2-3-338
FCLEX instruction, Vol.2-3-340
FCLEX/FNCLEX instructions, Vol.1-8-7
FCMOVcc instructions, Vol.1-8-10, Vol.1-8-24,

Vol.2-3-342, Vol.3-22-6
FCOM instruction, Vol.1-8-9, Vol.1-8-27, Vol.2-3-344
FCOMI instruction, Vol.1-8-10, Vol.1-8-27,

Vol.2-3-348, Vol.3-22-6
FCOMIP instruction, Vol.1-8-10, Vol.1-8-27,

Vol.2-3-348, Vol.3-22-6
FCOMP instruction, Vol.1-8-9, Vol.1-8-27,

Vol.2-3-344
FCOMPP instruction, Vol.1-8-9, Vol.1-8-27,

Vol.2-3-344
FCOS instruction, Vol.1-8-7, Vol.1-8-30,

Vol.2-3-351, Vol.3-22-18
FDECSTP instruction, Vol.2-3-353
FDISI instruction (obsolete), Vol.3-22-20
FDIV instruction, Vol.1-8-26, Vol.2-3-355,

Vol.3-22-15, Vol.3-22-17
FDIVP instruction, Vol.1-8-26, Vol.2-3-355
FDIVR instruction, Vol.1-8-26, Vol.2-3-359
FDIVRP instruction, Vol.1-8-26, Vol.2-3-359
FE (fixed MTRRs enabled) flag,

IA32_MTRR_DEF_TYPE MSR, Vol.3-11-33
Feature

determination, of processor, Vol.3-22-3
information, processor, Vol.3-22-3

Feature determination, of processor, Vol.1-15-1
Feature information, processor, Vol.2-3-198
FENI instruction (obsolete), Vol.3-22-20
FFREE instruction, Vol.2-3-363
FIADD instruction, Vol.1-8-26, Vol.2-3-329
FICOM instruction, Vol.1-8-9, Vol.1-8-27,

Vol.2-3-364
FICOMP instruction, Vol.1-8-9, Vol.1-8-27,

Vol.2-3-364

FIDIV instruction, Vol.1-8-26, Vol.2-3-355
FIDIVR instruction, Vol.1-8-26, Vol.2-3-359
FILD instruction, Vol.1-8-24, Vol.2-3-367
FIMUL instruction, Vol.1-8-26, Vol.2-3-390
FINCSTP instruction, Vol.2-3-369
FINIT instruction, Vol.2-3-371
FINIT/FNINIT instructions, Vol.1-8-7, Vol.1-8-11,

Vol.1-8-12, Vol.1-8-33, Vol.2-3-412,
Vol.3-22-10, Vol.3-22-22

FIST instruction, Vol.1-8-24, Vol.2-3-373
FISTP instruction, Vol.1-8-24, Vol.2-3-373
FISTTP instruction, Vol.1-5-26, Vol.1-12-4,

Vol.2-3-377
FISUB instruction, Vol.1-8-26, Vol.2-3-437
FISUBR instruction, Vol.1-8-26, Vol.2-3-441
FIX (fixed range registers supported) flag,

IA32_MTRRCAPMSR, Vol.3-11-32
Fixed-range MTRRs

description of, Vol.3-11-34
Flags

cross-reference with instructions, Vol.1-A-1
Flat memory model, Vol.1-3-8, Vol.1-3-18
Flat segmentation model, Vol.3-3-3, Vol.3-3-4
FLD instruction, Vol.1-8-23, Vol.2-3-380,

Vol.3-22-18
FLD1 instruction, Vol.1-8-25, Vol.2-3-383
FLDCW instruction, Vol.1-8-10, Vol.1-8-33,

Vol.2-3-385
FLDENV instruction, Vol.1-8-7, Vol.1-8-13,

Vol.1-8-16, Vol.1-8-34, Vol.2-3-387,
Vol.3-22-16

FLDL2E instruction, Vol.1-8-25, Vol.2-3-383,
Vol.3-22-19

FLDL2T instruction, Vol.1-8-25, Vol.2-3-383,
Vol.3-22-19

FLDLG2 instruction, Vol.1-8-25, Vol.2-3-383,
Vol.3-22-19

FLDLN2 instruction, Vol.1-8-25, Vol.2-3-383,
Vol.3-22-19

FLDPI instruction, Vol.1-8-25, Vol.2-3-383,
Vol.3-22-19

FLDSW instruction, Vol.1-8-33
FLDZ instruction, Vol.1-8-25, Vol.2-3-383
Floating point instructions

machine encodings, Vol.2-B-95
Floating-point data types

biasing constant, Vol.1-4-8
denormalized finite number, Vol.1-4-7
description of, Vol.1-4-6
double extended precision format, Vol.1-4-6,

Vol.1-4-7
double precision format, Vol.1-4-6, Vol.1-4-7
infinites, Vol.1-4-7
normalized finite number, Vol.1-4-7
single precision format, Vol.1-4-6, Vol.1-4-7
SSE extensions, Vol.1-10-8
SSE2 extensions, Vol.1-11-5
storing in memory, Vol.1-4-9
Combined Volumes 1, 2A, 2B, 2C, 3A, 3B and 3C Index -13

COMBINED INDEX
x87 FPU, Vol.1-8-18
zeros, Vol.1-4-7

Floating-point error exception (#MF), Vol.3-22-16
Floating-point exception handlers

SSE and SSE2 extensions, Vol.1-11-25,
Vol.1-11-26

typical actions, Vol.1-4-33
x87 FPU, Vol.1-8-46

Floating-point exceptions
denormal operand exception (#D), Vol.1-4-28,

Vol.1-8-40, Vol.1-11-21, Vol.1-C-1,
Vol.3-22-13

divide by zero exception (#Z), Vol.1-4-29,
Vol.1-8-41, Vol.1-11-22, Vol.1-C-1

exception conditions, Vol.1-4-28
exception priority, Vol.1-4-32
inexact result (precision) exception (#P),

Vol.1-4-31, Vol.1-8-43, Vol.1-11-22,
Vol.1-C-1

invalid operation exception (#I), Vol.1-4-28,
Vol.1-8-37, Vol.1-11-20

invalid operation (#I), Vol.3-22-19
invalid-operation exception (#IA), Vol.1-C-1
invalid-operation exception (#IS), Vol.1-C-1
invalid-operation exception (#I), Vol.1-C-1
numeric overflow exception (#O), Vol.1-4-29,

Vol.1-8-41, Vol.1-11-22, Vol.1-C-1
numeric overflow (#O), Vol.3-22-13
numeric underflow exception (#U), Vol.1-4-30,

Vol.1-8-42, Vol.1-11-22, Vol.1-C-1
numeric underflow (#U), Vol.3-22-14
saved CS and EIP values, Vol.3-22-14
SSE and SSE2 SIMD, Vol.2-3-21
summary of, Vol.1-4-26, Vol.1-C-1
typical handler actions, Vol.1-4-33
x87 FPU, Vol.2-3-21

Floating-point format
biased exponent, Vol.1-4-18
description of, Vol.1-8-18
exponent, Vol.1-4-16
fraction, Vol.1-4-16
indefinite, Vol.1-4-8
QNaN floating-point indefinite, Vol.1-4-24
real number system, Vol.1-4-15
sign, Vol.1-4-16
significand, Vol.1-4-16

Floating-point numbers
defined, Vol.1-4-16
encoding, Vol.1-4-8

Flushing
caches, Vol.2-3-529, Vol.2-4-662
TLB entry, Vol.2-3-531

Flush-to-zero
FZ flag, MXCSR register, Vol.1-10-7, Vol.1-11-3
mode, Vol.1-10-7

FLUSH# pin, Vol.3-6-4
FMUL instruction, Vol.1-8-26, Vol.2-3-390
FMULP instruction, Vol.1-8-26, Vol.2-3-390

FNCLEX instruction, Vol.2-3-340
FNINIT instruction, Vol.2-3-371
FNOP instruction, Vol.1-8-33, Vol.2-3-394
FNSAVE instruction, Vol.2-3-412, Vol.3-12-4
FNSTCW instruction, Vol.2-3-428
FNSTENV instruction, Vol.2-3-387, Vol.2-3-431
FNSTSW instruction, Vol.2-3-434
Focus processor, local APIC, Vol.3-10-37
Fopcode compatibility mode, Vol.1-8-15
FORCEPR# log, Vol.3-14-20, Vol.3-14-25
FORCPR# interrupt enable bit, Vol.3-14-22
FPATAN instruction, Vol.1-8-30, Vol.2-3-395,

Vol.3-22-18
FPREM instruction, Vol.1-8-7, Vol.1-8-26,

Vol.1-8-31, Vol.2-3-398, Vol.3-22-10,
Vol.3-22-15, Vol.3-22-17

FPREM1 instruction, Vol.1-8-7, Vol.1-8-26,
Vol.1-8-31, Vol.2-3-401, Vol.3-22-10,
Vol.3-22-17

FPTAN instruction, Vol.1-8-7, Vol.2-3-404,
Vol.3-22-11, Vol.3-22-18

Fraction, floating-point number, Vol.1-4-16
FRNDINT instruction, Vol.1-8-26, Vol.2-3-407
Front_end events, Vol.3-19-258
FRSTOR instruction, Vol.1-8-7, Vol.1-8-13,

Vol.1-8-16, Vol.1-8-34, Vol.2-3-409,
Vol.3-12-4, Vol.3-22-16

FS register, Vol.1-3-17, Vol.1-3-19, Vol.2-3-578
FSAVE instruction, Vol.2-3-412, Vol.3-12-3,

Vol.3-12-4
FSAVE/FNSAVE instructions, Vol.1-8-6, Vol.1-8-7,

Vol.1-8-13, Vol.1-8-16, Vol.1-8-34,
Vol.2-3-409, Vol.3-22-16, Vol.3-22-20

FSCALE instruction, Vol.1-8-32, Vol.2-3-416,
Vol.3-22-17

FSIN instruction, Vol.1-8-7, Vol.1-8-30, Vol.2-3-418,
Vol.3-22-18

FSINCOS instruction, Vol.1-8-7, Vol.1-8-30,
Vol.2-3-420, Vol.3-22-18

FSQRT instruction, Vol.1-8-26, Vol.2-3-423,
Vol.3-22-15, Vol.3-22-17

FST instruction, Vol.1-8-24, Vol.2-3-425
FSTCW instruction, Vol.2-3-428
FSTCW/FNSTCW instructions, Vol.1-8-10, Vol.1-8-33
FSTENV instruction, Vol.2-3-431, Vol.3-12-3
FSTENV/FNSTENV instructions, Vol.1-8-6,

Vol.1-8-13, Vol.1-8-16, Vol.1-8-34,
Vol.3-22-20

FSTP instruction, Vol.1-8-24, Vol.2-3-425
FSTSW instruction, Vol.2-3-434
FSTSW/FNSTSW instructions, Vol.1-8-6, Vol.1-8-33
FSUB instruction, Vol.1-8-26, Vol.2-3-437
FSUBP instruction, Vol.1-8-26, Vol.2-3-437
FSUBR instruction, Vol.1-8-26, Vol.2-3-441
FSUBRP instruction, Vol.1-8-26, Vol.2-3-441
FTAN instruction, Vol.3-22-11
FTST instruction, Vol.1-8-9, Vol.1-8-27, Vol.2-3-445
Index-14 Combined Volumes 1, 2A, 2B, 2C, 3A, 3B and 3C

COMBINED INDEX
FUCOM instruction, Vol.1-8-27, Vol.2-3-447,
Vol.3-22-17

FUCOMI instruction, Vol.1-8-10, Vol.1-8-27,
Vol.2-3-348, Vol.3-22-6

FUCOMIP instruction, Vol.1-8-10, Vol.1-8-27,
Vol.2-3-348, Vol.3-22-6

FUCOMP instruction, Vol.1-8-27, Vol.2-3-447,
Vol.3-22-17

FUCOMPP instruction, Vol.1-8-9, Vol.1-8-27,
Vol.2-3-447, Vol.3-22-17

FWAIT instruction, Vol.3-6-36
FXAM instruction, Vol.1-8-7, Vol.1-8-27,

Vol.2-3-450, Vol.3-22-19, Vol.3-22-20
FXCH instruction, Vol.1-8-24, Vol.2-3-452
FXRSTOR instruction, Vol.1-5-13, Vol.1-8-18,

Vol.1-10-20, Vol.1-11-34, Vol.2-3-454,
Vol.3-2-24, Vol.3-2-25, Vol.3-9-10,
Vol.3-12-3, Vol.3-12-4, Vol.3-12-5,
Vol.3-13-1, Vol.3-13-3, Vol.3-13-8

CPUID flag, Vol.2-3-218
FXSAVE instruction, Vol.1-5-13, Vol.1-8-18,

Vol.1-10-20, Vol.1-11-34, Vol.2-3-458,
Vol.2-4-656, Vol.2-4-658, Vol.2-4-674,
Vol.2-4-686, Vol.2-4-693, Vol.2-4-697,
Vol.2-4-702, Vol.3-2-24, Vol.3-2-25,
Vol.3-9-10, Vol.3-12-3, Vol.3-12-4,
Vol.3-12-5, Vol.3-13-1, Vol.3-13-3,
Vol.3-13-8

CPUID flag, Vol.2-3-218
FXSR feature flag, CPUID instruction, Vol.3-9-10
FXTRACT instruction, Vol.1-8-26, Vol.2-3-416,

Vol.2-3-468, Vol.3-22-13, Vol.3-22-19
FYL2X instruction, Vol.1-8-32, Vol.2-3-470
FYL2XP1 instruction, Vol.1-8-32, Vol.2-3-472

G
G (global) flag

page-directory entries, Vol.3-11-19
page-table entries, Vol.3-11-19

G (granularity) flag
segment descriptor, Vol.3-3-13, Vol.3-3-15,

Vol.3-5-2, Vol.3-5-6
G0-G3 (global breakpoint enable) flags

DR7 register, Vol.3-17-5
Gate descriptors

call gates, Vol.3-5-19
description of, Vol.3-5-18
IA-32e mode, Vol.3-5-20

Gates, Vol.3-2-5
IA-32e mode, Vol.3-2-6

GD (general detect enable) flag
DR7 register, Vol.3-17-5, Vol.3-17-12

GDT
description of, Vol.3-2-5, Vol.3-3-21
IA-32e mode, Vol.3-2-5
index field of segment selector, Vol.3-3-9
initializing, Vol.3-9-12

paging of, Vol.3-2-8
pointers to exception/interrupt handlers,

Vol.3-6-16
segment descriptors in, Vol.3-3-13
selecting with TI flag of segment selector,

Vol.3-3-10
task switching, Vol.3-7-12
task-gate descriptor, Vol.3-7-11
TSS descriptors, Vol.3-7-7
use in address translation, Vol.3-3-8

GDT (global descriptor table), Vol.2-3-590,
Vol.2-3-593

GDTR register, Vol.1-3-5, Vol.1-3-6
description of, Vol.3-2-5, Vol.3-2-9, Vol.3-2-16,

Vol.3-3-21
IA-32e mode, Vol.3-2-5, Vol.3-2-16
limit, Vol.3-5-7
loading during initialization, Vol.3-9-12
storing, Vol.3-3-21

GDTR (global descriptor table register), Vol.2-3-590,
Vol.2-4-525

GE (global exact breakpoint enable) flag
DR7 register, Vol.3-17-5, Vol.3-17-12

General purpose registers
64-bit mode, Vol.1-3-6, Vol.1-3-17
description of, Vol.1-3-13, Vol.1-3-14
overview of, Vol.1-3-3, Vol.1-3-6
parameter passing, Vol.1-6-7
part of basic programming environment,

Vol.1-7-1, Vol.1-7-2
using REX prefix, Vol.1-3-17

General-detect exception condition, Vol.3-17-12
General-protection exception (#GP), Vol.3-3-17,

Vol.3-5-9, Vol.3-5-10, Vol.3-5-16,
Vol.3-5-17, Vol.3-6-13, Vol.3-6-19,
Vol.3-6-50, Vol.3-7-7, Vol.3-17-2,
Vol.3-22-16, Vol.3-22-29, Vol.3-22-46,
Vol.3-22-48

General-purpose instructions
64-bit encodings, Vol.2-B-24
64-bit mode, Vol.1-7-2
basic programming environment, Vol.1-7-1
data types operated on, Vol.1-7-1, Vol.1-7-2
description of, Vol.1-7-1
non-64-bit encodings, Vol.2-B-9
origin of, Vol.1-7-1
programming with, Vol.1-7-1
summary of, Vol.1-5-3, Vol.1-7-3

General-purpose registers
moving value to and from, Vol.2-4-40
popping all, Vol.2-4-342
pushing all, Vol.2-4-428

General-purpose registers, saved in TSS, Vol.3-7-5
GETSEC, Vol.2-5-1, Vol.2-5-3, Vol.2-5-7
Global control MSRs, Vol.3-15-3
Global descriptor table register (see GDTR)
Global descriptor table (see GDT)
GS register, Vol.1-3-17, Vol.1-3-19, Vol.2-3-578
Combined Volumes 1, 2A, 2B, 2C, 3A, 3B and 3C Index -15

COMBINED INDEX
H
HADDPD instruction, Vol.1-5-27, Vol.1-12-6,

Vol.2-3-474, Vol.2-3-476
HADDPS instruction, Vol.1-5-26, Vol.1-12-5,

Vol.2-3-477
HALT state

relationship to SMI interrupt, Vol.3-33-5,
Vol.3-33-18

Hardware reset
description of, Vol.3-9-1
processor state after reset, Vol.3-9-2
state of MTRRs following, Vol.3-11-30
value of SMBASE following, Vol.3-33-5

Hexadecimal numbers, Vol.1-1-7, Vol.2-1-6,
Vol.3-1-9

high-temperature interrupt enable bit, Vol.3-14-22,
Vol.3-14-26

HITM# line, Vol.3-11-8
HLT instruction, Vol.2-3-481, Vol.3-2-31,

Vol.3-5-34, Vol.3-6-39, Vol.3-25-3,
Vol.3-33-18, Vol.3-33-19

Horizontal processing model, Vol.1-12-2
HSUBPD instruction, Vol.1-5-27, Vol.1-12-6,

Vol.2-3-483
HSUBPS instruction, Vol.1-5-26, Vol.1-12-6,

Vol.2-3-486
HT Technology

first processor, Vol.1-2-4
implementing, Vol.1-2-24
introduction, Vol.1-2-23

Hyper-Threading Technology
architectural state of a logical processor,

Vol.3-8-47
architecture description, Vol.3-8-39
caches, Vol.3-8-44
counting clockticks, Vol.3-18-99
debug registers, Vol.3-8-42
description of, Vol.3-8-35, Vol.3-22-5
detecting, Vol.3-8-51, Vol.3-8-52, Vol.3-8-57,

Vol.3-8-58
executing multiple threads, Vol.3-8-38
execution-based timing loops, Vol.3-8-73
external signal compatibility, Vol.3-8-46
halting logical processors, Vol.3-8-72
handling interrupts, Vol.3-8-38
HLT instruction, Vol.3-8-65
IA32_MISC_ENABLE MSR, Vol.3-8-43, Vol.3-8-48
initializing IA-32 processors with, Vol.3-8-37
introduction of into the IA-32 architecture,

Vol.3-22-5
local a, Vol.3-8-40
local APIC

functionality in logical processor, Vol.3-8-41
logical processors, identifying, Vol.3-8-52
machine check architecture, Vol.3-8-42
managing idle and blocked conditions, Vol.3-8-65
mapping resources, Vol.3-8-49
memory ordering, Vol.3-8-43

microcode update resources, Vol.3-8-44,
Vol.3-8-48, Vol.3-9-46

MP systems, Vol.3-8-39
MTRRs, Vol.3-8-41, Vol.3-8-47
multi-threading feature flag, Vol.3-8-36
multi-threading support, Vol.3-8-35
PAT, Vol.3-8-42
PAUSE instruction, Vol.3-8-66, Vol.3-8-67
performance monitoring, Vol.3-18-91,

Vol.3-18-102
performance monitoring counters, Vol.3-8-43,

Vol.3-8-48
placement of locks and semaphores, Vol.3-8-74
required operating system support, Vol.3-8-69
scheduling multiple threads, Vol.3-8-73
self modifying code, Vol.3-8-44
serializing instructions, Vol.3-8-43
spin-wait loops

PAUSE instructions in, Vol.3-8-69, Vol.3-8-70,
Vol.3-8-72

thermal monitor, Vol.3-8-45
TLBs, Vol.3-8-45

I
IA32, Vol.3-15-5
IA-32 architecture

history of, Vol.1-2-1
introduction to, Vol.1-2-1

IA-32 Intel architecture
compatibility, Vol.3-22-1
processors, Vol.3-22-1

IA32e mode
registers and mode changes, Vol.3-9-16

IA-32e mode
call gates, Vol.3-5-20
code segment descriptor, Vol.3-5-5
CPUID flag, Vol.2-3-207
D flag, Vol.3-5-5
data structures and initialization, Vol.3-9-15
debug registers, Vol.3-2-9
debug store area, Vol.3-17-25
descriptors, Vol.3-2-6
DPL field, Vol.3-5-5
exceptions during initialization, Vol.3-9-15
feature-enable register, Vol.3-2-10
gates, Vol.3-2-6
global and local descriptor tables, Vol.3-2-5
IA32_EFER MSR, Vol.3-2-10, Vol.3-5-43
initialization process, Vol.3-9-14
interrupt stack table, Vol.3-6-26
interrupts and exceptions, Vol.3-2-7
introduction, Vol.1-2-28, Vol.2-2-9, Vol.2-2-16
IRET instruction, Vol.3-6-25
L flag, Vol.3-3-16, Vol.3-5-5
logical address, Vol.3-3-9
MOV CRn, Vol.3-9-14
MTRR calculations, Vol.3-11-40
Index-16 Combined Volumes 1, 2A, 2B, 2C, 3A, 3B and 3C

COMBINED INDEX
NXE bit, Vol.3-5-43
page level protection, Vol.3-5-43
paging, Vol.3-2-8
PDE tables, Vol.3-5-44
PDP tables, Vol.3-5-44
PML4 tables, Vol.3-5-44
PTE tables, Vol.3-5-44
registers and data structures, Vol.3-2-2
see 64-bit mode
see compatibility mode
segment descriptor tables, Vol.3-3-22, Vol.3-5-5
segment descriptors, Vol.3-3-13
segment loading instructions, Vol.3-3-12
segmentation, Vol.1-3-30, Vol.3-3-6
stack switching, Vol.3-5-28, Vol.3-6-25
SYSCALL and SYSRET, Vol.3-5-32
SYSENTER and SYSEXIT, Vol.3-5-31
system descriptors, Vol.3-3-19
system registers, Vol.3-2-9
task switching, Vol.3-7-22
task-state segments, Vol.3-2-7
terminating mode operation, Vol.3-9-16
See also: 64-bit mode, compatibility mode

IA32_APERF MSR, Vol.3-14-2
IA32_APIC_BASE MSR, Vol.3-8-27, Vol.3-8-29,

Vol.3-10-8, Vol.3-10-11, Vol.3-34-170
IA32_BIOS_SIGN_ID MSR, Vol.3-34-175
IA32_BIOS_UPDT_TRIG MSR, Vol.3-31-13,

Vol.3-34-175
IA32_BISO_SIGN_ID MSR, Vol.3-31-13
IA32_CLOCK_MODULATION MSR, Vol.3-8-46,

Vol.3-14-16, Vol.3-14-17, Vol.3-14-18,
Vol.3-14-21, Vol.3-14-32, Vol.3-14-33,
Vol.3-14-35, Vol.3-14-36, Vol.3-14-37,
Vol.3-14-38, Vol.3-34-54, Vol.3-34-74,
Vol.3-34-89, Vol.3-34-144, Vol.3-34-182,
Vol.3-34-217, Vol.3-34-230

IA32_CTL MSR, Vol.3-34-176
IA32_DEBUGCTL MSR, Vol.3-27-35, Vol.3-34-189
IA32_DS_AREA MSR, Vol.3-17-21, Vol.3-17-22,

Vol.3-17-25, Vol.3-17-28, Vol.3-18-67,
Vol.3-18-90, Vol.3-34-204

IA32_EFER MSR, Vol.3-2-10, Vol.3-2-12, Vol.3-5-43,
Vol.3-27-35, Vol.3-30-23

IA32_FEATURE_CONTROL MSR, Vol.3-23-4
IA32_KernelGSbase MSR, Vol.3-2-10
IA32_LSTAR MSR, Vol.3-2-10, Vol.3-5-32
IA32_MCG_CAP MSR, Vol.3-15-3, Vol.3-15-36,

Vol.3-34-176
IA32_MCG_CTL MSR, Vol.3-15-3, Vol.3-15-5
IA32_MCG_EAX MSR, Vol.3-15-13
IA32_MCG_EBP MSR, Vol.3-15-13
IA32_MCG_EBX MSR, Vol.3-15-13
IA32_MCG_ECX MSR, Vol.3-15-13
IA32_MCG_EDI MSR, Vol.3-15-13
IA32_MCG_EDX MSR, Vol.3-15-13
IA32_MCG_EFLAGS MSR, Vol.3-15-13
IA32_MCG_EIP MSR, Vol.3-15-13

IA32_MCG_ESI MSR, Vol.3-15-13
IA32_MCG_ESP MSR, Vol.3-15-13
IA32_MCG_MISC MSR, Vol.3-15-13, Vol.3-15-14,

Vol.3-34-179
IA32_MCG_R10 MSR, Vol.3-15-14, Vol.3-34-180
IA32_MCG_R11 MSR, Vol.3-15-15, Vol.3-34-181
IA32_MCG_R12 MSR, Vol.3-15-15
IA32_MCG_R13 MSR, Vol.3-15-15
IA32_MCG_R14 MSR, Vol.3-15-15
IA32_MCG_R15 MSR, Vol.3-15-15, Vol.3-34-182
IA32_MCG_R8 MSR, Vol.3-15-14
IA32_MCG_R9 MSR, Vol.3-15-14
IA32_MCG_RAX MSR, Vol.3-15-14, Vol.3-34-176
IA32_MCG_RBP MSR, Vol.3-15-14
IA32_MCG_RBX MSR, Vol.3-15-14, Vol.3-34-177
IA32_MCG_RCX MSR, Vol.3-15-14
IA32_MCG_RDI MSR, Vol.3-15-14
IA32_MCG_RDX MSR, Vol.3-15-14
IA32_MCG_RESERVEDn, Vol.3-34-180
IA32_MCG_RESERVEDn MSR, Vol.3-15-14
IA32_MCG_RFLAGS MSR, Vol.3-15-14, Vol.3-34-179
IA32_MCG_RIP MSR, Vol.3-15-14, Vol.3-34-179
IA32_MCG_RSI MSR, Vol.3-15-14
IA32_MCG_RSP MSR, Vol.3-15-14
IA32_MCG_STATUS MSR, Vol.3-15-3, Vol.3-15-4,

Vol.3-15-36, Vol.3-15-38, Vol.3-27-4
IA32_MCi_ADDR MSR, Vol.3-15-10, Vol.3-15-38,

Vol.3-34-199
IA32_MCi_CTL MSR, Vol.3-15-5, Vol.3-34-199
IA32_MCi_MISC MSR, Vol.3-15-11, Vol.3-15-12,

Vol.3-15-13, Vol.3-15-38, Vol.3-34-199
IA32_MCi_STATUS MSR, Vol.3-15-6, Vol.3-15-36,

Vol.3-15-38, Vol.3-34-199
decoding for Family 06H, Vol.3-16-1
decoding for Family 0FH, Vol.3-16-1, Vol.3-16-5,

Vol.3-16-11, Vol.3-16-15, Vol.3-16-18
IA32_MISC_ENABLE MSR, Vol.1-8-15, Vol.3-14-1,

Vol.3-14-12, Vol.3-17-22, Vol.3-17-38,
Vol.3-18-67, Vol.3-34-182, Vol.3-34-183

IA32_MPERF MSR, Vol.3-14-2
IA32_MTRRCAP MSR, Vol.3-11-32, Vol.3-11-33,

Vol.3-34-175
IA32_MTRR_DEF_TYPE MSR, Vol.3-11-33
IA32_MTRR_FIXn, fixed ranger MTRRs, Vol.3-11-34
IA32_MTRR_PHYS BASEn MTRR, Vol.3-34-190
IA32_MTRR_PHYSBASEn MTRR, Vol.3-34-190
IA32_MTRR_PHYSMASKn MTRR, Vol.3-34-190
IA32_P5_MC_ADDR MSR, Vol.3-34-169
IA32_P5_MC_TYPE MSR, Vol.3-34-169
IA32_PAT_CR MSR, Vol.3-11-49
IA32_PEBS_ENABLE MSR, Vol.3-18-24, Vol.3-18-67,

Vol.3-18-90, Vol.3-19-259, Vol.3-34-198
IA32_PERF_CTL MSR, Vol.3-14-1
IA32_PERF_STATUS MSR, Vol.3-14-1
IA32_PLATFORM_ID, Vol.3-34-46, Vol.3-34-68,

Vol.3-34-83, Vol.3-34-138, Vol.3-34-170,
Vol.3-34-212, Vol.3-34-226,
Vol.3-34-235
Combined Volumes 1, 2A, 2B, 2C, 3A, 3B and 3C Index -17

COMBINED INDEX
IA32_STAR MSR, Vol.3-5-32
IA32_STAR_CS MSR, Vol.3-2-10
IA32_STATUS MSR, Vol.3-34-176
IA32_SYSCALL_FLAG_MASK MSR, Vol.3-2-10
IA32_SYSENTER_CS MSR, Vol.2-4-592, Vol.2-4-597,

Vol.3-5-31, Vol.3-5-32, Vol.3-27-27,
Vol.3-34-176

IA32_SYSENTER_EIP MSR, Vol.2-4-592, Vol.3-5-31,
Vol.3-27-35, Vol.3-34-176

IA32_SYSENTER_ESP MSR, Vol.2-4-592, Vol.3-5-31,
Vol.3-27-35, Vol.3-34-176

IA32_TERM_CONTROL MSR, Vol.3-34-54,
Vol.3-34-74, Vol.3-34-89, Vol.3-34-144

IA32_THERM_INTERRUPT MSR, Vol.3-14-15,
Vol.3-14-18, Vol.3-14-19, Vol.3-14-22,
Vol.3-34-182

FORCPR# interrupt enable bit, Vol.3-14-22
high-temperature interrupt enable bit,

Vol.3-14-22, Vol.3-14-26
low-temperature interrupt enable bit,

Vol.3-14-22, Vol.3-14-26
overheat interrupt enable bit, Vol.3-14-22,

Vol.3-14-26
THERMTRIP# interrupt enable bit, Vol.3-14-22,

Vol.3-14-26
threshold #1 interrupt enable bit, Vol.3-14-23,

Vol.3-14-27
threshold #1 value, Vol.3-14-22, Vol.3-14-26
threshold #2 interrupt enable, Vol.3-14-23,

Vol.3-14-27
threshold #2 value, Vol.3-14-23, Vol.3-14-27

IA32_THERM_STATUS MSR, Vol.3-14-18,
Vol.3-14-19, Vol.3-34-182

digital readout bits, Vol.3-14-21, Vol.3-14-25
out-of-spec status bit, Vol.3-14-20, Vol.3-14-25
out-of-spec status log, Vol.3-14-20, Vol.3-14-25
PROCHOT# or FORCEPR# event bit, Vol.3-14-20,

Vol.3-14-24, Vol.3-14-25
PROCHOT# or FORCEPR# log, Vol.3-14-20,

Vol.3-14-25
resolution in degrees, Vol.3-14-21
thermal status bit, Vol.3-14-19, Vol.3-14-24
thermal status log, Vol.3-14-19, Vol.3-14-24
thermal threshold #1 log, Vol.3-14-20,

Vol.3-14-25
thermal threshold #1 status, Vol.3-14-20,

Vol.3-14-25
thermal threshold #2 log, Vol.3-14-21,

Vol.3-14-25
thermal threshold #2 status, Vol.3-14-21,

Vol.3-14-25
validation bit, Vol.3-14-21

IA32_TIME_STAMP_COUNTER MSR, Vol.3-34-169
IA32_VMX_BASIC MSR, Vol.3-24-4, Vol.3-30-2,

Vol.3-30-7, Vol.3-30-8, Vol.3-30-9,
Vol.3-30-17, Vol.3-34-64, Vol.3-34-81,

Vol.3-34-101, Vol.3-34-154,
Vol.3-34-203, Vol.3-34-223, Vol.3-A-1,
Vol.3-A-3

IA32_VMX_CR0_FIXED0 MSR, Vol.3-23-5,
Vol.3-30-6, Vol.3-34-65, Vol.3-34-81,
Vol.3-34-102, Vol.3-34-154,
Vol.3-34-203, Vol.3-34-224, Vol.3-A-9

IA32_VMX_CR0_FIXED1 MSR, Vol.3-23-5,
Vol.3-30-6, Vol.3-34-65, Vol.3-34-81,
Vol.3-34-102, Vol.3-34-154,
Vol.3-34-204, Vol.3-34-224, Vol.3-A-9

IA32_VMX_CR4_FIXED0 MSR, Vol.3-23-5,
Vol.3-30-6, Vol.3-34-65, Vol.3-34-82,
Vol.3-34-102, Vol.3-34-155,
Vol.3-34-204, Vol.3-34-224, Vol.3-A-9

IA32_VMX_CR4_FIXED1 MSR, Vol.3-23-5,
Vol.3-30-6, Vol.3-34-65, Vol.3-34-82,
Vol.3-34-102, Vol.3-34-155,
Vol.3-34-204, Vol.3-34-224,
Vol.3-34-225, Vol.3-A-9

IA32_VMX_ENTRY_CTLS MSR, Vol.3-30-7,
Vol.3-30-8, Vol.3-30-9, Vol.3-34-65,
Vol.3-34-81, Vol.3-34-101, Vol.3-34-154,
Vol.3-34-203, Vol.3-34-224, Vol.3-A-3,
Vol.3-A-7, Vol.3-A-8

IA32_VMX_EXIT_CTLS MSR, Vol.3-30-7, Vol.3-30-8,
Vol.3-30-9, Vol.3-34-64, Vol.3-34-81,
Vol.3-34-101, Vol.3-34-154,
Vol.3-34-203, Vol.3-34-224, Vol.3-A-3,
Vol.3-A-6, Vol.3-A-7

IA32_VMX_MISC MSR, Vol.3-24-8, Vol.3-26-4,
Vol.3-26-17, Vol.3-33-36, Vol.3-34-65,
Vol.3-34-81, Vol.3-34-102, Vol.3-34-154,
Vol.3-34-203, Vol.3-34-224, Vol.3-A-8

IA32_VMX_PINBASED_CTLS MSR, Vol.3-30-7,
Vol.3-30-8, Vol.3-30-9, Vol.3-34-64,
Vol.3-34-81, Vol.3-34-101, Vol.3-34-154,
Vol.3-34-203, Vol.3-34-223, Vol.3-A-3,
Vol.3-A-4

IA32_VMX_PROCBASED_CTLS MSR, Vol.3-24-12,
Vol.3-30-7, Vol.3-30-8, Vol.3-30-9,
Vol.3-34-64, Vol.3-34-65, Vol.3-34-81,
Vol.3-34-82, Vol.3-34-101, Vol.3-34-102,
Vol.3-34-154, Vol.3-34-155,
Vol.3-34-203, Vol.3-34-224,
Vol.3-34-225, Vol.3-A-3, Vol.3-A-4,
Vol.3-A-5, Vol.3-A-6, Vol.3-A-10,
Vol.3-A-11

IA32_VMX_VMCS_ENUM MSR, Vol.3-34-204,
Vol.3-A-9

ICR
Interrupt Command Register, Vol.3-10-54,

Vol.3-10-60, Vol.3-10-67
ID (identification) flag

EFLAGS register, Vol.3-2-15, Vol.3-22-8
ID (identification) flag, EFLAGS register, Vol.1-3-23
IDIV instruction, Vol.1-7-13, Vol.2-3-490,

Vol.3-6-28, Vol.3-22-29
Index-18 Combined Volumes 1, 2A, 2B, 2C, 3A, 3B and 3C

COMBINED INDEX
IDT
64-bit mode, Vol.3-6-23
call interrupt & exception-handlers from,

Vol.3-6-15
change base & limit in real-address mode,

Vol.3-20-7
description of, Vol.3-6-12
handling NMIs during initialization, Vol.3-9-11
initializing protected-mode operation, Vol.3-9-13
initializing real-address mode operation,

Vol.3-9-11
introduction to, Vol.3-2-7
limit, Vol.3-22-37
paging of, Vol.3-2-8
structure in real-address mode, Vol.3-20-7
task switching, Vol.3-7-13
task-gate descriptor, Vol.3-7-11
types of descriptors allowed, Vol.3-6-14
use in real-address mode, Vol.3-20-6

IDT (interrupt descriptor table), Vol.2-3-514,
Vol.2-3-590

IDTR register, Vol.1-3-5, Vol.1-3-6
description of, Vol.3-2-17, Vol.3-6-13
IA-32e mode, Vol.3-2-17
introduction to, Vol.3-2-7
limit, Vol.3-5-7
loading in real-address mode, Vol.3-20-7
storing, Vol.3-3-21

IDTR (interrupt descriptor table register),
Vol.2-3-590, Vol.2-4-543

IE (invalid operation exception) flag
MXCSR register, Vol.1-11-20
x87 FPU status word, Vol.1-8-7, Vol.1-8-38,

Vol.1-8-39, Vol.3-22-11
IEEE Standard 754, Vol.1-4-6, Vol.1-4-15, Vol.1-8-1
IEEE Standard 754 for Binary Floating-Point

Arithmetic, Vol.3-22-11, Vol.3-22-12,
Vol.3-22-13, Vol.3-22-14, Vol.3-22-17,
Vol.3-22-19

IF (interrupt enable) flag
EFLAGS register, Vol.1-3-23, Vol.1-6-14,

Vol.1-14-5, Vol.1-A-1, Vol.3-2-13,
Vol.3-2-14, Vol.3-6-9, Vol.3-6-14,
Vol.3-6-19, Vol.3-20-6, Vol.3-20-29,
Vol.3-33-14

IF (interrupt enable) flag, EFLAGS register,
Vol.2-3-137, Vol.2-4-562

IM (invalid operation exception) mask bit
MXCSR register, Vol.1-11-20
x87 FPU control word, Vol.1-8-11

Immediate operands, Vol.1-3-27, Vol.2-2-4
IMUL instruction, Vol.1-7-13, Vol.2-3-494
IN instruction, Vol.1-5-8, Vol.1-7-29, Vol.1-14-4,

Vol.2-3-499, Vol.3-8-22, Vol.3-22-47,
Vol.3-25-3

INC instruction, Vol.1-7-12, Vol.2-3-501,
Vol.2-3-598, Vol.3-8-5

Indefinite

description of, Vol.1-4-24, Vol.1-13-26
floating-point format, Vol.1-4-8, Vol.1-4-19
integer, Vol.1-4-6, Vol.1-8-21
packed BCD integer, Vol.1-4-15
QNaN floating-point, Vol.1-4-22, Vol.1-4-24

Index field, segment selector, Vol.3-3-9
Index (operand addressing), Vol.1-3-30, Vol.1-3-32,

Vol.2-2-4
Inexact result (precision)

exception (#P), overview, Vol.1-4-31
exception (#P), SSE-SSE2 extensions,

Vol.1-11-23
exception (#P), x87 FPU, Vol.1-8-43
on floating-point operations, Vol.1-4-25

Infinity control flag, x87 FPU control word,
Vol.1-8-12

Infinity, floating-point format, Vol.1-4-7, Vol.1-4-21
INIT interrupt, Vol.3-10-5
INIT pin, Vol.1-3-20
Initial-count register, local APIC, Vol.3-10-22,

Vol.3-10-23
Initialization

built-in self-test (BIST), Vol.3-9-1, Vol.3-9-2
CS register state following, Vol.3-9-6
EIP register state following, Vol.3-9-6
example, Vol.3-9-19
first instruction executed, Vol.3-9-6
hardware reset, Vol.3-9-1
IA-32e mode, Vol.3-9-14
IDT, protected mode, Vol.3-9-13
IDT, real-address mode, Vol.3-9-11
Intel486 SX processor and Intel 487 SX math

coprocessor, Vol.3-22-22
location of software-initialization code, Vol.3-9-6
machine-check initialization, Vol.3-15-24
model and stepping information, Vol.3-9-5
multitasking environment, Vol.3-9-14
overview, Vol.3-9-1
paging, Vol.3-9-13
processor state after reset, Vol.3-9-2
protected mode, Vol.3-9-11
real-address mode, Vol.3-9-10
RESET# pin, Vol.3-9-1
setting up exception- and interrupt-handling

facilities, Vol.3-9-13
x87 FPU, Vol.3-9-6

Initialization x87 FPU, Vol.2-3-371
initiating logical processor, Vol.2-5-4, Vol.2-5-6,

Vol.2-5-12, Vol.2-5-13, Vol.2-5-27,
Vol.2-5-28

INIT# pin, Vol.3-6-4, Vol.3-9-2
INIT# signal, Vol.3-2-31, Vol.3-23-6
Input/output (see I/O)
INS instruction, Vol.1-5-8, Vol.1-7-29, Vol.1-14-4,

Vol.2-3-504, Vol.2-4-467, Vol.3-17-12
INSB instruction, Vol.2-3-504
INSD instruction, Vol.2-3-504
Combined Volumes 1, 2A, 2B, 2C, 3A, 3B and 3C Index -19

COMBINED INDEX
instruction encodings, Vol.2-B-89, Vol.2-B-98,
Vol.2-B-108

Instruction format
base field, Vol.2-2-4
description of reference information, Vol.2-3-1
displacement, Vol.2-2-4
immediate, Vol.2-2-4
index field, Vol.2-2-4
Mod field, Vol.2-2-4
ModR/M byte, Vol.2-2-4
opcode, Vol.2-2-3
operands, Vol.2-1-6
prefixes, Vol.2-2-1
reg/opcode field, Vol.2-2-4
r/m field, Vol.2-2-4
scale field, Vol.2-2-4
SIB byte, Vol.2-2-4
See also: machine instructions, opcodes

Instruction operands, Vol.1-1-7, Vol.3-1-8
Instruction pointer

64-bit mode, Vol.1-7-2
EIP register, Vol.1-3-14, Vol.1-3-24
RIP register, Vol.1-3-24
RIP, EIP, IP compared, Vol.1-3-12
x87 FPU, Vol.1-8-13

Instruction prefixes
effect on SSE and SSE2 instructions, Vol.1-11-37
REX prefix, Vol.1-3-2, Vol.1-3-16

Instruction reference, nomenclature, Vol.2-3-1
Instruction set

binary arithmetic instructions, Vol.1-7-12
bit scan instructions, Vol.1-7-20
bit test and modify instructions, Vol.1-7-20
byte-set-on-condition instructions, Vol.1-7-20
cacheability control instructions, Vol.1-5-20,

Vol.1-5-25
comparison and sign change instruction,

Vol.1-7-12
control transfer instructions, Vol.1-7-21
data movement instructions, Vol.1-7-3
decimal arithmetic instructions, Vol.1-7-13
EFLAGS cross-reference, Vol.1-A-1
EFLAGS instructions, Vol.1-7-30
exchange instructions, Vol.1-7-5
FXSAVE and FXRSTOR instructions, Vol.1-5-13
general-purpose instructions, Vol.1-5-3
grouped by processor, Vol.1-5-1, Vol.1-5-2
increment and decrement instructions,

Vol.1-7-12
instruction ordering instructions, Vol.1-5-20,

Vol.1-5-25
I/O instructions, Vol.1-5-8, Vol.1-7-29
logical instructions, Vol.1-7-15
MMX instructions, Vol.1-5-14, Vol.1-9-6
multiply and divide instructions, Vol.1-7-13
processor identification instruction, Vol.1-7-34
repeating string operations, Vol.1-7-28
rotate instructions, Vol.1-7-18

segment register instructions, Vol.1-7-32
shift instructions, Vol.1-7-15
SIMD instructions, introduction to, Vol.1-2-20
software interrupt instructions, Vol.1-7-25
SSE instructions, Vol.1-5-16
SSE2 instructions, Vol.1-5-21
stack manipulation instructions, Vol.1-7-7
string operation instructions, Vol.1-7-26
summary, Vol.1-5-1
system instructions, Vol.1-5-37
test instruction, Vol.1-7-21
type conversion instructions, Vol.1-7-10
x87 FPU and SIMD state management instructions

, Vol.1-5-13
x87 FPU instructions, Vol.1-5-10

Instruction set, reference, Vol.2-3-1
Instruction-breakpoint exception condition,

Vol.3-17-10
Instructions

new instructions, Vol.3-22-5
obsolete instructions, Vol.3-22-7
privileged, Vol.3-5-33
serializing, Vol.3-8-24, Vol.3-8-43, Vol.3-22-21
supported in real-address mode, Vol.3-20-4
system, Vol.3-2-10, Vol.3-2-27

INSW instruction, Vol.2-3-504
INS/INSB/INSW/INSD instruction, Vol.3-25-3
INT 3 instruction, Vol.2-3-513, Vol.3-2-7, Vol.3-6-31
INT instruction, Vol.1-6-18, Vol.1-7-33, Vol.3-2-7,

Vol.3-5-15
INT n instruction, Vol.3-3-11, Vol.3-6-1, Vol.3-6-5,

Vol.3-6-6, Vol.3-17-13
INT (APIC interrupt enable) flag, PerfEvtSel0 and

PerfEvtSel1 MSRs (P6 family processors),
Vol.3-18-6, Vol.3-18-118

INT15 and microcode updates, Vol.3-9-55
INT3 instruction, Vol.3-3-11, Vol.3-6-6
Integers

description of, Vol.1-4-4
indefinite, Vol.1-4-6, Vol.1-8-21
signed integer encodings, Vol.1-4-6
signed, description of, Vol.1-4-5
unsigned integer encodings, Vol.1-4-5
unsigned, description of, Vol.1-4-5

Integer, storing, x87 FPU data type, Vol.2-3-373
Intel 287 math coprocessor, Vol.3-22-9
Intel 387 math coprocessor system, Vol.3-22-9
Intel 487 SX math coprocessor, Vol.3-22-9,

Vol.3-22-22
Intel 64 architecture

64-bit mode, Vol.1-3-2
64-bit mode instructions, Vol.1-5-38
address space, Vol.1-3-8
compatibility mode, Vol.1-3-2
data types, Vol.1-4-1
definition of, Vol.1-1-3, Vol.2-1-3, Vol.3-1-3
executing calls, Vol.1-6-1
general purpose instructions, Vol.1-7-1
Index-20 Combined Volumes 1, 2A, 2B, 2C, 3A, 3B and 3C

COMBINED INDEX
generations, Vol.1-2-29
history of, Vol.1-2-1
IA32e mode, Vol.1-3-2
instruction format, Vol.2-2-1
introduction, Vol.1-2-28
memory organization, Vol.1-3-8, Vol.1-3-10
relation to IA-32, Vol.1-1-3, Vol.2-1-3, Vol.3-1-3
See also: IA-32e mode

Intel 8086 processor, Vol.3-22-9
Intel Advanced Digital Media Boost, Vol.1-2-6,

Vol.1-2-15
Intel Advanced Smart Cache, Vol.1-2-15
Intel Advanced Thermal Manager, Vol.1-2-6
Intel Core 2 Extreme processor family, Vol.1-2-6,

Vol.1-2-26
Intel Core Duo processor, Vol.1-2-5, Vol.1-2-25
Intel Core microarchitecture, Vol.1-2-6, Vol.1-2-14,

Vol.1-2-17, Vol.1-2-18, Vol.1-2-19,
Vol.1-2-26

Intel Core Solo and Duo processors
model-specific registers, Vol.3-34-212

Intel Core Solo and Intel Core Duo processors
Enhanced Intel SpeedStep technology, Vol.3-14-1
event mask (Umask), Vol.3-18-16, Vol.3-18-18
last branch, interrupt, exception recording,

Vol.3-17-42
notes on P-state transitions, Vol.3-14-2
performance monitoring, Vol.3-18-16,

Vol.3-18-18
performance monitoring events, Vol.3-19-2,

Vol.3-19-13, Vol.3-19-35, Vol.3-19-142,
Vol.3-19-186

sub-fields layouts, Vol.3-18-16, Vol.3-18-18
time stamp counters, Vol.3-17-49

Intel Core Solo processor, Vol.1-2-5
Intel developer link, Vol.1-1-11, Vol.2-1-10,

Vol.3-1-12
Intel Dynamic Power Coordination, Vol.1-2-6
Intel NetBurst microarchitecture, Vol.1-1-2,

Vol.2-1-2, Vol.3-1-2
description of, Vol.1-2-11
introduction, Vol.1-2-11

Intel Pentium D processor, Vol.1-2-25
Intel Pentium processor Extreme Edition, Vol.1-2-24
Intel Smart Cache, Vol.1-2-6
Intel Smart Memory Access, Vol.1-2-6, Vol.1-2-15
Intel software network link, Vol.1-1-11, Vol.2-1-10,

Vol.3-1-12
Intel SpeedStep Technology

See: Enhanced Intel SpeedStep Technology
Intel VTune Performance Analyzer

related information, Vol.1-1-10, Vol.2-1-9,
Vol.3-1-11

Intel Wide Dynamic Execution, Vol.1-2-6, Vol.1-2-15,
Vol.1-2-17, Vol.1-2-18

Intel Xeon processor, Vol.1-1-1, Vol.2-1-1, Vol.3-1-2
description of, Vol.1-2-4

last branch, interrupt, and exception recording,
Vol.3-17-37

time-stamp counter, Vol.3-17-49
Intel Xeon processor 5100 series, Vol.1-2-6,

Vol.1-2-26
Intel Xeon processor MP

with 8MB L3 cache, Vol.3-18-102, Vol.3-18-107
Intel286 processor, Vol.3-22-9
Intel386 DX processor, Vol.3-22-9
Intel386 processor, Vol.1-2-2
Intel386 SL processor, Vol.3-2-10
Intel486 DX processor, Vol.3-22-9
Intel486 processor

history of, Vol.1-2-2
Intel486 SX processor, Vol.3-22-9, Vol.3-22-22
Intel® Trusted Execution Technology, Vol.2-5-4
Inter-privilege level

call, CALL instruction, Vol.2-3-113
return, RET instruction, Vol.2-4-470

Inter-privilege level call
description of, Vol.1-6-8
operation, Vol.1-6-10

Interprivilege level calls
call mechanism, Vol.3-5-22
stack switching, Vol.3-5-25

Inter-privilege level return
description of, Vol.1-6-8
operation, Vol.1-6-10

Interprocessor interrupt (IPIs), Vol.3-10-2
Interprocessor interrupt (IPI)

in MP systems, Vol.3-10-1
interrupt, Vol.3-6-17
Interrupt Command Register, Vol.3-10-54
Interrupt command register (ICR), local APIC,

Vol.3-10-26
Interrupt gate, Vol.1-6-14
Interrupt gates

16-bit, interlevel return from, Vol.3-22-44
clearing IF flag, Vol.3-6-10, Vol.3-6-19
difference between interrupt and trap gates,

Vol.3-6-19
for 16-bit and 32-bit code modules, Vol.3-21-2
handling a virtual-8086 mode interrupt or

exception through, Vol.3-20-18
in IDT, Vol.3-6-14
introduction to, Vol.3-2-5, Vol.3-2-7
layout of, Vol.3-6-14

Interrupt handler, Vol.1-6-13
calling, Vol.3-6-15
defined, Vol.3-6-1
flag usage by handler procedure, Vol.3-6-19
procedures, Vol.3-6-16
protection of handler procedures, Vol.3-6-18
task, Vol.3-6-20, Vol.3-7-3

Interrupt vector, Vol.1-6-13
Interrupts

64-bit mode, Vol.1-6-19
automatic bus locking, Vol.3-22-48
Combined Volumes 1, 2A, 2B, 2C, 3A, 3B and 3C Index -21

COMBINED INDEX
control transfers between 16- and 32-bit code
modules, Vol.3-21-8

description of, Vol.1-6-13, Vol.3-2-7, Vol.3-6-1
destination, Vol.3-10-38
distribution mechanism, local APIC, Vol.3-10-36
enabling and disabling, Vol.3-6-9
handler, Vol.1-6-13
handling, Vol.3-6-15
handling in real-address mode, Vol.3-20-6
handling in SMM, Vol.3-33-14
handling in virtual-8086 mode, Vol.3-20-16
handling multiple NMIs, Vol.3-6-9
handling through a task gate in virtual-8086 mode

, Vol.3-20-21
handling through a trap or interrupt gate in

virtual-8086 mode, Vol.3-20-18
IA-32e mode, Vol.3-2-7, Vol.3-2-17
IDT, Vol.3-6-12
IDTR, Vol.3-2-17
implicit call to an interrupt handler

procedure, Vol.1-6-14
implicit call to an interrupt handler task,

Vol.1-6-17
implicit call to interrupt handler procedure,

Vol.1-6-14
implicit call to interrupt handler task, Vol.1-6-17
in real-address mode, Vol.1-6-17
initializing for protected-mode operation,

Vol.3-9-13
interrupt descriptor table register (see IDTR)
interrupt descriptor table (see IDT)
interrupt vector 4, Vol.2-3-513
list of, Vol.3-6-3, Vol.3-20-8
local APIC, Vol.3-10-1
maskable, Vol.1-6-13
maskable hardware interrupts, Vol.3-2-13
masking maskable hardware interrupts, Vol.3-6-9
masking when switching stack segments,

Vol.3-6-11
message signalled interrupts, Vol.3-10-49
on-die sensors for, Vol.3-14-11
overview of, Vol.3-6-1
priorities among simultaneous exceptions and

interrupts, Vol.3-6-11
priority, Vol.3-10-40
propagation delay, Vol.3-22-36
real-address mode, Vol.3-20-8
restarting a task or program, Vol.3-6-7
returning from, Vol.2-3-537
software, Vol.2-3-513, Vol.3-6-68
sources of, Vol.3-10-1
summary of, Vol.3-6-3
thermal monitoring, Vol.3-14-11
user defined, Vol.3-6-2, Vol.3-6-68
user-defined, Vol.1-6-13
valid APIC interrupts, Vol.3-10-20
vector, Vol.1-6-13
vectors, Vol.3-6-2

virtual-8086 mode, Vol.3-20-8
INTn instruction, Vol.1-7-26, Vol.2-3-513
INTO instruction, Vol.1-6-18, Vol.1-7-26, Vol.1-7-33,

Vol.2-3-513, Vol.3-2-7, Vol.3-3-11,
Vol.3-6-6, Vol.3-6-32, Vol.3-17-13

Intrinsics
compiler functional equivalents, Vol.2-C-1
composite, Vol.2-C-17
description of, Vol.2-3-15
list of, Vol.2-C-1
simple, Vol.2-C-2

INTR# pin, Vol.3-6-2, Vol.3-6-9
Invalid arithmetic operand exception (#IA)

description of, Vol.1-8-39
masked response to, Vol.1-8-39

Invalid opcode exception (#UD), Vol.3-2-22,
Vol.3-6-34, Vol.3-6-65, Vol.3-12-1,
Vol.3-17-4, Vol.3-22-7, Vol.3-22-15,
Vol.3-22-28, Vol.3-22-29, Vol.3-33-4

Invalid operation exception (#I)
overview, Vol.1-4-28
SSE and SSE2 extensions, Vol.1-11-20
x87 FPU, Vol.1-8-37

Invalid TSS exception (#TS), Vol.3-6-42, Vol.3-7-8
Invalid-operation exception, x87 FPU, Vol.3-22-15,

Vol.3-22-19
INVD instruction, Vol.2-3-529, Vol.3-2-31,

Vol.3-5-34, Vol.3-11-25, Vol.3-22-6
INVLPG instruction, Vol.2-3-531, Vol.3-2-31,

Vol.3-5-34, Vol.3-22-6, Vol.3-25-3,
Vol.3-31-5, Vol.3-31-6

IOPL (I/O privilege level) field
EFLAGS register, Vol.1-3-23, Vol.1-14-4

IOPL (I/O privilege level) field, EFLAGS register,
Vol.2-3-137, Vol.2-4-431, Vol.2-4-562

description of, Vol.3-2-13
on return from exception, interrupt handler,

Vol.3-6-18
sensitive instructions in virtual-8086 mode,

Vol.3-20-15
virtual interrupt, Vol.3-2-14, Vol.3-2-15

IPI (see interprocessor interrupt)
IRET instruction, Vol.1-3-24, Vol.1-6-17, Vol.1-6-18,

Vol.1-7-22, Vol.1-7-33, Vol.1-14-5,
Vol.2-3-537, Vol.3-3-11, Vol.3-6-9,
Vol.3-6-10, Vol.3-6-18, Vol.3-6-19,
Vol.3-6-25, Vol.3-7-13, Vol.3-8-25,
Vol.3-20-6, Vol.3-20-29, Vol.3-25-17

IRETD instruction, Vol.2-3-537, Vol.3-2-14,
Vol.3-8-25

IRR
Interrupt Request Register, Vol.3-10-56,

Vol.3-10-60, Vol.3-10-67
IRR (interrupt request register), local APIC,

Vol.3-10-43
ISR

In Service Register, Vol.3-10-55, Vol.3-10-60,
Vol.3-10-67
Index-22 Combined Volumes 1, 2A, 2B, 2C, 3A, 3B and 3C

COMBINED INDEX
I/O
address space, Vol.1-14-2
breakpoint exception conditions, Vol.3-17-12
in virtual-8086 mode, Vol.3-20-15
instruction restart flag

SMM revision identifier field, Vol.3-33-20
instruction restart flag, SMM revision identifier

field, Vol.3-33-21
instruction serialization, Vol.1-14-7
instructions, Vol.1-5-8, Vol.1-7-29, Vol.1-14-3
IO_SMI bit, Vol.3-33-15
I/O permission bit map, TSS, Vol.3-7-6
I/O privilege level (see IOPL)
map base, Vol.1-14-5
map base address field, TSS, Vol.3-7-6
permission bit map, Vol.1-14-5
ports, Vol.1-3-5, Vol.1-14-1, Vol.1-14-2,

Vol.1-14-4, Vol.1-14-7
restarting following SMI interrupt, Vol.3-33-20
saving I/O state, Vol.3-33-15
sensitive instructions, Vol.1-14-4
SMM state save map, Vol.3-33-15

I/O APIC, Vol.3-10-38
bus arbitration, Vol.3-10-37
description of, Vol.3-10-1
external interrupts, Vol.3-6-4
information about, Vol.3-10-1
interrupt sources, Vol.3-10-2
local APIC and I/O APIC, Vol.3-10-3, Vol.3-10-4
overview of, Vol.3-10-1
valid interrupts, Vol.3-10-20
See also: local APIC

J
J-bit, Vol.1-4-16
Jcc instructions, Vol.1-3-22, Vol.1-3-24, Vol.1-7-23,

Vol.2-3-548
JMP instruction, Vol.1-3-24, Vol.1-7-21, Vol.1-7-33,

Vol.2-3-556, Vol.3-2-6, Vol.3-3-11,
Vol.3-5-15, Vol.3-5-22, Vol.3-7-3,
Vol.3-7-12, Vol.3-7-13

Jump operation, Vol.2-3-556

K
KEN# pin, Vol.3-11-19, Vol.3-22-50

L
L0-L3 (local breakpoint enable) flags

DR7 register, Vol.3-17-5
L1 Context ID, Vol.2-3-214
L1 (level 1) cache, Vol.1-2-10, Vol.1-2-13

caching methods, Vol.3-11-8
CPUID feature flag, Vol.3-11-26
description of, Vol.3-11-5
effect of using write-through memory,

Vol.3-11-12

introduction of, Vol.3-22-40
invalidating and flushing, Vol.3-11-25
MESI cache protocol, Vol.3-11-13
shared and adaptive mode, Vol.3-11-26

L2 (level 2) cache, Vol.1-2-10, Vol.1-2-13
caching methods, Vol.3-11-8
description of, Vol.3-11-5
disabling, Vol.3-11-25
effect of using write-through memory,

Vol.3-11-12
introduction of, Vol.3-22-40
invalidating and flushing, Vol.3-11-25
MESI cache protocol, Vol.3-11-13

L3 (level 3) cache
caching methods, Vol.3-11-8
description of, Vol.3-11-5
disabling and enabling, Vol.3-11-19, Vol.3-11-25
effect of using write-through memory,

Vol.3-11-12
introduction of, Vol.3-22-42
invalidating and flushing, Vol.3-11-25
MESI cache protocol, Vol.3-11-13

LAHF instruction, Vol.1-3-20, Vol.1-7-31,
Vol.2-3-567

LAR instruction, Vol.2-3-569, Vol.3-2-30, Vol.3-5-35
Larger page sizes

introduction of, Vol.3-22-42
support for, Vol.3-22-26

Last branch
interrupt & exception recording

description of, Vol.2-4-484, Vol.3-17-14,
Vol.3-17-32, Vol.3-17-33, Vol.3-17-37,
Vol.3-17-39, Vol.3-17-42, Vol.3-17-44,
Vol.3-17-46

record stack, Vol.3-17-20, Vol.3-17-21,
Vol.3-17-33, Vol.3-17-38, Vol.3-17-40,
Vol.3-17-43, Vol.3-17-45, Vol.3-34-189,
Vol.3-34-190, Vol.3-34-204

record top-of-stack pointer, Vol.3-17-20,
Vol.3-17-33, Vol.3-17-38, Vol.3-17-43,
Vol.3-17-45

Last instruction opcode, x87 FPU, Vol.1-8-15
LastBranchFromIP MSR, Vol.3-17-47, Vol.3-17-48
LastBranchToIP MSR, Vol.3-17-47, Vol.3-17-48
LastExceptionFromIP MSR, Vol.3-17-33,

Vol.3-17-42, Vol.3-17-43, Vol.3-17-47,
Vol.3-17-48

LastExceptionToIP MSR, Vol.3-17-33, Vol.3-17-42,
Vol.3-17-43, Vol.3-17-47, Vol.3-17-48

LBR (last branch/interrupt/exception) flag,
DEBUGCTLMSR MSR, Vol.3-17-16,
Vol.3-17-39, Vol.3-17-46, Vol.3-17-48

LDDQU instruction, Vol.1-5-26, Vol.1-12-4,
Vol.2-3-573

LDMXCSR instruction, Vol.1-10-17, Vol.1-11-34,
Vol.2-3-575, Vol.2-4-449, Vol.2-4-664

LDR
Combined Volumes 1, 2A, 2B, 2C, 3A, 3B and 3C Index -23

COMBINED INDEX
Logical Destination Register, Vol.3-10-60,
Vol.3-10-64, Vol.3-10-66

LDS instruction, Vol.1-7-33, Vol.2-3-577, Vol.3-3-11,
Vol.3-5-12

LDT
associated with a task, Vol.3-7-3
description of, Vol.3-2-5, Vol.3-2-6, Vol.3-3-21
index into with index field of segment selector,

Vol.3-3-9
pointer to in TSS, Vol.3-7-6
pointers to exception and interrupt handlers,

Vol.3-6-16
segment descriptors in, Vol.3-3-13
segment selector field, TSS, Vol.3-7-19
selecting with TI (table indicator) flag of segment

selector, Vol.3-3-10
setting up during initialization, Vol.3-9-12
task switching, Vol.3-7-12
task-gate descriptor, Vol.3-7-11
use in address translation, Vol.3-3-8

LDT (local descriptor table), Vol.2-3-593
LDTR register, Vol.1-3-5, Vol.1-3-6

description of, Vol.3-2-5, Vol.3-2-6, Vol.3-2-9,
Vol.3-2-16, Vol.3-3-21

IA-32e mode, Vol.3-2-16
limit, Vol.3-5-7
storing, Vol.3-3-21

LDTR (local descriptor table register), Vol.2-3-593,
Vol.2-4-546

LE (local exact breakpoint enable) flag, DR7 register,
Vol.3-17-5, Vol.3-17-12

LEA instruction, Vol.1-7-34, Vol.2-3-583
LEAVE instruction, Vol.1-6-19, Vol.1-6-25,

Vol.1-7-30, Vol.2-3-586
LEN0-LEN3 (Length) fields, DR7 register, Vol.3-17-6
LES instruction, Vol.1-7-33, Vol.2-3-577, Vol.3-3-11,

Vol.3-5-12, Vol.3-6-34
LFENCE instruction, Vol.1-11-17, Vol.2-3-588,

Vol.3-2-21, Vol.3-8-9, Vol.3-8-22,
Vol.3-8-23, Vol.3-8-25

LFS instruction, Vol.2-3-577, Vol.3-3-11, Vol.3-5-12
LGDT instruction, Vol.2-3-590, Vol.3-2-29,

Vol.3-5-34, Vol.3-8-25, Vol.3-9-12,
Vol.3-22-28

LGS instruction, Vol.1-7-33, Vol.2-3-577, Vol.3-3-11,
Vol.3-5-12

LIDT instruction, Vol.2-3-590, Vol.3-2-29,
Vol.3-5-34, Vol.3-6-13, Vol.3-8-25,
Vol.3-9-11, Vol.3-20-7, Vol.3-22-37

Limit checking
description of, Vol.3-5-6
pointer offsets are within limits, Vol.3-5-36

Limit field, segment descriptor, Vol.3-5-2, Vol.3-5-6
Linear address, Vol.1-3-8

description of, Vol.3-3-8
IA-32e mode, Vol.3-3-9
introduction to, Vol.3-2-8

Linear address space, Vol.3-3-8

defined, Vol.1-3-8, Vol.3-3-1
maximum size, Vol.1-3-8
of task, Vol.3-7-19

Link (to previous task) field, TSS, Vol.3-6-20
Linking tasks

mechanism, Vol.3-7-16
modifying task linkages, Vol.3-7-18

LINT pins
function of, Vol.3-6-2

LLDT instruction, Vol.2-3-593, Vol.3-2-29,
Vol.3-5-34, Vol.3-8-25

LMSW instruction, Vol.2-3-596, Vol.3-2-29,
Vol.3-5-34, Vol.3-25-4, Vol.3-25-18

Load effective address operation, Vol.2-3-583
Local APIC, Vol.3-10-55

64-bit mode, Vol.3-10-46
APIC_ID value, Vol.3-8-49
arbitration over the APIC bus, Vol.3-10-37
arbitration over the system bus, Vol.3-10-37
block diagram, Vol.3-10-6
cluster model, Vol.3-10-34
CR8 usage, Vol.3-10-46
current-count register, Vol.3-10-23
description of, Vol.3-10-1
detecting with CPUID, Vol.3-10-10
DFR (destination format register), Vol.3-10-34
divide configuration register, Vol.3-10-23
enabling and disabling, Vol.3-10-10
external interrupts, Vol.3-6-2
features

Pentium 4 and Intel Xeon, Vol.3-22-38
Pentium and P6, Vol.3-22-38

focus processor, Vol.3-10-37
global enable flag, Vol.3-10-12
IA32_APIC_BASE MSR, Vol.3-10-11
initial-count register, Vol.3-10-22, Vol.3-10-23
internal error interrupts, Vol.3-10-2
interrupt command register (ICR), Vol.3-10-26
interrupt destination, Vol.3-10-38
interrupt distribution mechanism, Vol.3-10-36
interrupt sources, Vol.3-10-2
IRR (interrupt request register), Vol.3-10-43
I/O APIC, Vol.3-10-1
local APIC and 82489DX, Vol.3-22-37
local APIC and I/O APIC, Vol.3-10-3, Vol.3-10-4
local vector table (LVT), Vol.3-10-16
logical destination mode, Vol.3-10-33
LVT (local-APIC version register), Vol.3-10-15
mapping of resources, Vol.3-8-49
MDA (message destination address), Vol.3-10-33
overview of, Vol.3-10-1
performance-monitoring counter, Vol.3-18-120
physical destination mode, Vol.3-10-33
receiving external interrupts, Vol.3-6-2
register address map, Vol.3-10-8, Vol.3-10-55
shared resources, Vol.3-8-49
SMI interrupt, Vol.3-33-3
spurious interrupt, Vol.3-10-46
Index-24 Combined Volumes 1, 2A, 2B, 2C, 3A, 3B and 3C

COMBINED INDEX
spurious-interrupt vector register, Vol.3-10-11
state after a software (INIT) reset, Vol.3-10-15
state after INIT-deassert message, Vol.3-10-15
state after power-up reset, Vol.3-10-14
state of, Vol.3-10-47
SVR (spurious-interrupt vector register),

Vol.3-10-11
timer, Vol.3-10-22
timer generated interrupts, Vol.3-10-2
TMR (trigger mode register), Vol.3-10-43
valid interrupts, Vol.3-10-20
version register, Vol.3-10-15

Local descriptor table register (see LDTR)
Local descriptor table (see LDT)
Local vector table (LVT)

description of, Vol.3-10-16
thermal entry, Vol.3-14-15

Local x2APIC, Vol.3-10-45, Vol.3-10-59, Vol.3-10-66
Local xAPIC ID, Vol.3-10-59
LOCK prefix, Vol.2-3-32, Vol.2-3-36, Vol.2-3-65,

Vol.2-3-104, Vol.2-3-107, Vol.2-3-110,
Vol.2-3-189, Vol.2-3-296, Vol.2-3-501,
Vol.2-3-598, Vol.2-4-157, Vol.2-4-162,
Vol.2-4-165, Vol.2-4-512, Vol.2-4-574,
Vol.2-4-668, Vol.2-4-672, Vol.2-4-680,
Vol.3-2-31, Vol.3-2-32, Vol.3-6-34,
Vol.3-8-2, Vol.3-8-4, Vol.3-8-5,
Vol.3-8-22, Vol.3-22-48

LOCK signal, Vol.1-7-5
Locked (atomic) operations

automatic bus locking, Vol.3-8-4
bus locking, Vol.3-8-4
effects on caches, Vol.3-8-7
loading a segment descriptor, Vol.3-22-27
on IA-32 processors, Vol.3-22-48
overview of, Vol.3-8-2
software-controlled bus locking, Vol.3-8-5

Locking operation, Vol.2-3-598
LOCK# signal, Vol.3-2-32, Vol.3-8-2, Vol.3-8-4,

Vol.3-8-5, Vol.3-8-8
LODS instruction, Vol.1-3-22, Vol.1-7-27,

Vol.2-3-600, Vol.2-4-467
LODSB instruction, Vol.2-3-600
LODSD instruction, Vol.2-3-600
LODSQ instruction, Vol.2-3-600
LODSW instruction, Vol.2-3-600
Log epsilon, x87 FPU operation, Vol.1-8-32,

Vol.2-3-470
Log (base 2), x87 FPU operation, Vol.2-3-472
Logical address, Vol.1-3-8

description of, Vol.3-3-8
IA-32e mode, Vol.3-3-9

Logical address space, of task, Vol.3-7-20
Logical destination mode, local APIC, Vol.3-10-33
Logical processors

per physical package, Vol.3-8-36
Logical x2APIC ID, Vol.3-10-66
LOOP instructions, Vol.1-7-24, Vol.2-3-604

LOOPcc instructions, Vol.1-3-22, Vol.1-7-24,
Vol.2-3-604

low-temperature interrupt enable bit, Vol.3-14-22,
Vol.3-14-26

LSL instruction, Vol.2-3-607, Vol.3-2-30, Vol.3-5-36
LSS instruction, Vol.1-7-33, Vol.2-3-577, Vol.3-3-11,

Vol.3-5-12
LTR instruction, Vol.2-3-611, Vol.3-2-29,

Vol.3-5-34, Vol.3-7-9, Vol.3-8-25,
Vol.3-9-14

LVT (see Local vector table)

M
Machine check architecture

CPUID flag, Vol.2-3-218
description, Vol.2-3-218
VMX considerations, Vol.3-32-16

Machine check registers, Vol.1-3-5
Machine instructions

64-bit mode, Vol.2-B-1
condition test (tttn) field, Vol.2-B-7
direction bit (d) field, Vol.2-B-8
floating-point instruction encodings, Vol.2-B-95
general description, Vol.2-B-1
general-purpose encodings, Vol.2-B-9–

Vol.2-B-53
legacy prefixes, Vol.2-B-2
MMX encodings, Vol.2-B-55–Vol.2-B-59
opcode fields, Vol.2-B-2
operand size (w) bit, Vol.2-B-5
P6 family encodings, Vol.2-B-59
Pentium processor family encodings, Vol.2-B-54
reg (reg) field, Vol.2-B-3, Vol.2-B-4
REX prefixes, Vol.2-B-2
segment register (sreg) field, Vol.2-B-6
sign-extend (s) bit, Vol.2-B-5
SIMD 64-bit encodings, Vol.2-B-54
special 64-bit encodings, Vol.2-B-94
special fields, Vol.2-B-2
special-purpose register (eee) field, Vol.2-B-6
SSE encodings, Vol.2-B-60–Vol.2-B-69
SSE2 encodings, Vol.2-B-69–Vol.2-B-86
SSE3 encodings, Vol.2-B-87–Vol.2-B-89
SSSE3 encodings, Vol.2-B-89–Vol.2-B-93
VMX encodings, Vol.2-B-173–Vol.2-B-174,

Vol.2-B-175–??
See also: opcodes

Machine specific registers (see MSRs)
Machine status word, CR0 register, Vol.2-3-596,

Vol.2-4-548
Machine-check architecture

availability of MCA and exception, Vol.3-15-24
compatibility with Pentium processor, Vol.3-15-1
compound error codes, Vol.3-15-27
CPUID flags, Vol.3-15-24
error codes, Vol.3-15-26, Vol.3-15-27
error-reporting bank registers, Vol.3-15-2
Combined Volumes 1, 2A, 2B, 2C, 3A, 3B and 3C Index -25

COMBINED INDEX
error-reporting MSRs, Vol.3-15-5
extended machine check state MSRs, Vol.3-15-13
external bus errors, Vol.3-15-35
first introduced, Vol.3-22-30
global MSRs, Vol.3-15-2, Vol.3-15-3
initialization of, Vol.3-15-24
introduction of in IA-32 processors, Vol.3-22-50
logging correctable errors, Vol.3-15-37,

Vol.3-15-39, Vol.3-15-45
machine-check exception handler, Vol.3-15-35
machine-check exception (#MC), Vol.3-15-1
MSRs, Vol.3-15-2
overview of MCA, Vol.3-15-1
Pentium processor exception handling,

Vol.3-15-37
Pentium processor style error reporting,

Vol.3-15-15
simple error codes, Vol.3-15-26
VMX considerations, Vol.3-32-12, Vol.3-32-13
writing machine-check software, Vol.3-15-35

Machine-check exception (#MC), Vol.3-6-63,
Vol.3-15-1, Vol.3-15-24, Vol.3-15-35,
Vol.3-22-28, Vol.3-22-50

Mapping of shared resources, Vol.3-8-49
Maskable hardware interrupts

description of, Vol.3-6-5
handling with virtual interrupt mechanism,

Vol.3-20-22
masking, Vol.3-2-13, Vol.3-6-9

Maskable interrupts, Vol.1-6-13
Masked responses

denormal operand exception (#D), Vol.1-4-28,
Vol.1-8-40

divide by zero exception (#Z), Vol.1-4-29,
Vol.1-8-41

inexact result (precision) exception (#P),
Vol.1-4-32, Vol.1-8-44

invalid arithmetic operation (#IA), Vol.1-8-39
invalid operation exception (#I), Vol.1-4-28
numeric overflow exception (#O), Vol.1-4-30,

Vol.1-8-41
numeric underflow exception (#U), Vol.1-4-31,

Vol.1-8-43
stack overflow or underflow

exception (#IS), Vol.1-8-38
MASKMOVDQU instruction, Vol.1-11-17,

Vol.1-11-36, Vol.2-4-49
MASKMOVQ instruction, Vol.1-10-18, Vol.1-11-36,

Vol.2-4-637
Masks, exception-flags

MXCSR register, Vol.1-10-6
x87 FPU control word, Vol.1-8-11

MAXPD instruction, Vol.1-11-9, Vol.2-4-13
MAXPS instruction, Vol.1-10-12, Vol.2-4-16
MAXSD instruction, Vol.1-11-9, Vol.2-4-19
MAXSS instruction, Vol.1-10-13, Vol.2-4-21
MCA flag, CPUID instruction, Vol.3-15-24
MCE flag, CPUID instruction, Vol.3-15-24

MCE (machine-check enable) flag
CR4 control register, Vol.3-2-23, Vol.3-22-24

MDA (message destination address)
local APIC, Vol.3-10-33

measured environment, Vol.2-5-1
Measured Launched Environment, Vol.2-5-1,

Vol.2-5-33
Memory, Vol.3-11-1

flat memory model, Vol.1-3-8
management registers, Vol.1-3-5
memory type range registers (MTRRs), Vol.1-3-5
modes of operation, Vol.1-3-10
organization, Vol.1-3-8
physical, Vol.1-3-8
real address mode memory model, Vol.1-3-9,

Vol.1-3-10
segmented memory model, Vol.1-3-8
virtual-8086 mode memory model, Vol.1-3-9,

Vol.1-3-10
Memory management

introduction to, Vol.3-2-8
overview, Vol.3-3-1
paging, Vol.3-3-1, Vol.3-3-2
registers, Vol.3-2-15
segments, Vol.3-3-1, Vol.3-3-2, Vol.3-3-3,

Vol.3-3-9
virtualization of, Vol.3-31-3

Memory operands
64-bit mode, Vol.1-3-29
legacy modes, Vol.1-3-28

Memory ordering
in IA-32 processors, Vol.3-22-46
overview, Vol.3-8-8
processor ordering, Vol.3-8-8
strengthening or weakening, Vol.3-8-22
write ordering, Vol.3-8-8

Memory type range registers (see MTRRs)
Memory types

caching methods, defined, Vol.3-11-8
choosing, Vol.3-11-12
MTRR types, Vol.3-11-30
selecting for Pentium III and Pentium 4 processors

, Vol.3-11-21
selecting for Pentium Pro and Pentium II

processors, Vol.3-11-20
UC (strong uncacheable), Vol.3-11-8
UC- (uncacheable), Vol.3-11-9
WB (write back), Vol.3-11-10
WC (write combining), Vol.3-11-9
WP (write protected), Vol.3-11-10
writing values across pages with different

memory types, Vol.3-11-23
WT (write through), Vol.3-11-10

Memory-mapped I/O, Vol.1-14-2
MemTypeGet() function, Vol.3-11-42
MemTypeSet() function, Vol.3-11-44
MESI cache protocol, Vol.3-11-7, Vol.3-11-13
Message address register, Vol.3-10-49
Index-26 Combined Volumes 1, 2A, 2B, 2C, 3A, 3B and 3C

COMBINED INDEX
Message data register format, Vol.3-10-51
Message signalled interrupts

message address register, Vol.3-10-49
message data register format, Vol.3-10-49

MFENCE instruction, Vol.1-11-17, Vol.1-11-37,
Vol.2-4-23, Vol.3-2-21, Vol.3-8-9,
Vol.3-8-22, Vol.3-8-23, Vol.3-8-25

Microarchitecture
(see Intel NetBurst microarchitecture)
(see P6 family microarchitecture)

Microcode update facilities
authenticating an update, Vol.3-9-48
BIOS responsibilities, Vol.3-9-49
calling program responsibilities, Vol.3-9-52
checksum, Vol.3-9-44
extended signature table, Vol.3-9-41
family 0FH processors, Vol.3-9-37
field definitions, Vol.3-9-37
format of update, Vol.3-9-37
function 00H presence test, Vol.3-9-56
function 01H write microcode update data,

Vol.3-9-57
function 02H microcode update control,

Vol.3-9-62
function 03H read microcode update data,

Vol.3-9-63
general description, Vol.3-9-37
HT Technology, Vol.3-9-46
INT 15H-based interface, Vol.3-9-55
overview, Vol.3-9-36
process description, Vol.3-9-37
processor identification, Vol.3-9-41
processor signature, Vol.3-9-41
return codes, Vol.3-9-64
update loader, Vol.3-9-45
update signature and verification, Vol.3-9-47
update specifications, Vol.3-9-49
VMX non-root operation, Vol.3-25-22,

Vol.3-31-12
VMX support

early loading, Vol.3-31-12
late loading, Vol.3-31-12
virtualization issues, Vol.3-31-11

MINPD instruction, Vol.1-11-9, Vol.2-4-25
MINPS instruction, Vol.1-10-13, Vol.2-4-28
MINSD instruction, Vol.1-11-9, Vol.2-4-31
MINSS instruction, Vol.1-10-13, Vol.2-4-33
Mixing 16-bit and 32-bit code

in IA-32 processors, Vol.3-22-45
overview, Vol.3-21-1

MLE, Vol.2-5-1
MMX instruction set

arithmetic instructions, Vol.1-9-8
comparison instructions, Vol.1-9-9
conversion instructions, Vol.1-9-9
data transfer instructions, Vol.1-9-8
EMMS instruction, Vol.1-9-10
logical instructions, Vol.1-9-10

overview, Vol.1-9-6
shift instructions, Vol.1-9-10

MMX instructions
CPUID flag for technology, Vol.2-3-218
encodings, Vol.2-B-55

MMX registers
description of, Vol.1-9-3
overview of, Vol.1-3-3

MMX technology
64-bit mode, Vol.1-9-2
64-bit packed SIMD data types, Vol.1-4-11
compatibility mode, Vol.1-9-2
compatibility with FPU architecture, Vol.1-9-10
data types, Vol.1-9-3
debugging MMX code, Vol.3-12-6
detecting MMX technology with CPUID instruction

, Vol.1-9-11
effect of instruction prefixes on MMX instructions

, Vol.1-9-14
effect of MMX instructions on pending x87

floating-point exceptions, Vol.3-12-6
emulation of the MMX instruction set, Vol.3-12-1
exception handling in MMX code, Vol.1-9-14
exceptions that can occur when executing MMX

instructions, Vol.3-12-1
IA-32e mode, Vol.1-9-2
instruction set, Vol.1-5-14, Vol.1-9-6
interfacing with MMX code, Vol.1-9-13
introduction of into the IA-32 architecture,

Vol.3-22-3
introduction to, Vol.1-9-1
memory data formats, Vol.1-9-4
mixing MMX and floating-point instructions,

Vol.1-9-13
MMX registers, Vol.1-9-3
programming environment (overview), Vol.1-9-2
register aliasing, Vol.3-12-1
register mapping, Vol.1-9-14
saturation arithmetic, Vol.1-9-5
SIMD execution environment, Vol.1-9-4
state, Vol.3-12-1
state, saving and restoring, Vol.3-12-4
system programming, Vol.3-12-1
task or context switches, Vol.3-12-5
transitions between x87 FPU - MMX code,

Vol.1-9-12
updating MMX technology routines using 128-bit

SIMD integer instructions, Vol.1-11-35
using MMX code in a multitasking operating

system environment, Vol.1-9-14
using the EMMS instruction, Vol.1-9-12
using TS flag to control saving of MMX state,

Vol.3-13-10
wraparound mode, Vol.1-9-5

Mod field, instruction format, Vol.2-2-4
Mode switching

example, Vol.3-9-19
real-address and protected mode, Vol.3-9-17
Combined Volumes 1, 2A, 2B, 2C, 3A, 3B and 3C Index -27

COMBINED INDEX
to SMM, Vol.3-33-3
Model and stepping information, following processor

initialization or reset, Vol.3-9-5
Model & family information, Vol.2-3-224
Model-specific registers (see MSRs)
Modes of operation

64-bit mode, Vol.1-3-2
compatibility mode, Vol.1-3-2
memory models used with, Vol.1-3-10
overview, Vol.1-3-1, Vol.1-3-6
protected mode, Vol.1-3-1
real address mode, Vol.1-3-1
system management mode (SMM), Vol.1-3-1

Modes of operation (see Operating modes)
ModR/M byte, Vol.2-2-4

16-bit addressing forms, Vol.2-2-6
32-bit addressing forms of, Vol.2-2-7
description of, Vol.2-2-4

MONITOR instruction, Vol.1-5-27, Vol.1-12-7,
Vol.2-4-35, Vol.3-25-4

CPUID flag, Vol.2-3-214
feature data, Vol.2-3-224

Moore’s law, Vol.1-2-29
MOV instruction, Vol.1-7-4, Vol.1-7-33, Vol.2-4-38,

Vol.3-3-11, Vol.3-5-12
MOV instruction (control registers), Vol.2-4-45
MOV instruction (debug registers), Vol.2-4-49,

Vol.2-4-58
MOV (control registers) instructions, Vol.3-2-29,

Vol.3-2-30, Vol.3-5-34, Vol.3-8-25,
Vol.3-9-17

MOV (debug registers) instructions, Vol.3-2-30,
Vol.3-5-34, Vol.3-8-25, Vol.3-17-12

MOVAPD instruction, Vol.1-11-7, Vol.1-11-34,
Vol.2-4-52

MOVAPS instruction, Vol.1-10-11, Vol.1-11-34,
Vol.2-4-55

MOVD instruction, Vol.1-9-8, Vol.2-4-58
MOVDDUP instruction, Vol.1-5-27, Vol.1-12-5,

Vol.2-4-64
MOVDQ2Q instruction, Vol.1-11-16, Vol.2-4-73
MOVDQA instruction, Vol.1-11-15, Vol.1-11-34,

Vol.2-4-67
MOVDQU instruction, Vol.1-11-15, Vol.1-11-34,

Vol.2-4-70
MOVHLPS instruction, Vol.1-10-11, Vol.2-4-75
MOVHPD instruction, Vol.1-11-8, Vol.2-4-77
MOVHPS instruction, Vol.1-10-11, Vol.2-4-79
MOVLHP instruction, Vol.2-4-81
MOVLHPS instruction, Vol.1-10-11, Vol.2-4-81
MOVLPD instruction, Vol.1-11-8, Vol.2-4-83
MOVLPS instruction, Vol.1-10-11, Vol.2-4-85
MOVMSKPD instruction, Vol.1-11-8, Vol.2-4-87
MOVMSKPS instruction, Vol.1-10-11, Vol.2-4-89
MOVNTDQ instruction, Vol.1-11-17, Vol.1-11-36,

Vol.2-4-108, Vol.3-8-9, Vol.3-11-7,
Vol.3-11-26

MOVNTI instruction, Vol.1-11-17, Vol.1-11-36,
Vol.2-4-108, Vol.3-2-21, Vol.3-8-9,
Vol.3-11-7, Vol.3-11-26

MOVNTPD instruction, Vol.1-11-17, Vol.1-11-36,
Vol.2-4-99, Vol.3-8-9, Vol.3-11-7,
Vol.3-11-26

MOVNTPS instruction, Vol.1-10-18, Vol.1-11-36,
Vol.2-4-101, Vol.3-8-9, Vol.3-11-7,
Vol.3-11-26

MOVNTQ instruction, Vol.1-10-18, Vol.1-11-36,
Vol.2-4-103, Vol.3-8-9, Vol.3-11-7,
Vol.3-11-26

MOVQ instruction, Vol.1-9-8, Vol.2-4-58,
Vol.2-4-105

MOVQ2DQ instruction, Vol.1-11-16, Vol.2-4-107
MOVS instruction, Vol.1-3-22, Vol.1-7-27,

Vol.2-4-109, Vol.2-4-467
MOVSB instruction, Vol.2-4-109
MOVSD instruction, Vol.1-11-7, Vol.1-11-34,

Vol.2-4-109, Vol.2-4-114
MOVSHDUP instruction, Vol.1-5-27, Vol.1-12-4,

Vol.2-4-117
MOVSLDUP instruction, Vol.1-5-27, Vol.1-12-4,

Vol.2-4-120
MOVSQ instruction, Vol.2-4-109
MOVSS instruction, Vol.1-10-11, Vol.1-11-34,

Vol.2-4-123
MOVSW instruction, Vol.2-4-109
MOVSX instruction, Vol.1-7-11, Vol.2-4-126
MOVSXD instruction, Vol.1-7-11, Vol.2-4-126
MOVUPD instruction, Vol.1-11-7, Vol.1-11-34,

Vol.2-4-129
MOVUPS instruction, Vol.1-10-9, Vol.1-10-11,

Vol.1-11-34, Vol.2-4-132
MOVZX instruction, Vol.1-7-11, Vol.2-4-135
MP (monitor coprocessor) flag

CR0 control register, Vol.3-2-21, Vol.3-2-22,
Vol.3-6-36, Vol.3-9-6, Vol.3-9-8, Vol.3-12-1,
Vol.3-22-10

MS-DOS compatibility mode, Vol.1-8-46, Vol.1-D-1
MSR, Vol.3-34-206

Model Specific Register, Vol.3-10-53, Vol.3-10-54
MSRs, Vol.1-3-5

architectural, Vol.3-34-2
description of, Vol.3-9-9
introduction of in IA-32 processors, Vol.3-22-49
introduction to, Vol.3-2-9
list of, Vol.3-34-1
machine-check architecture, Vol.3-15-3
P6 family processors, Vol.3-34-235
Pentium 4 processor, Vol.3-34-46, Vol.3-34-67,

Vol.3-34-169, Vol.3-34-209
Pentium processors, Vol.3-34-247
reading and writing, Vol.3-2-26, Vol.3-2-33,

Vol.3-2-34
reading & writing in 64-bit mode, Vol.3-2-33
virtualization support, Vol.3-30-22
VMX support, Vol.3-30-22
Index-28 Combined Volumes 1, 2A, 2B, 2C, 3A, 3B and 3C

COMBINED INDEX
MSRs (model specific registers)
reading, Vol.2-4-451

MSR_ TC_PRECISE_EVENT MSR, Vol.3-19-258
MSR_DEBUBCTLB MSR, Vol.3-17-15, Vol.3-17-35,

Vol.3-17-43, Vol.3-17-45
MSR_DEBUGCTLA MSR, Vol.3-17-14, Vol.3-17-21,

Vol.3-17-22, Vol.3-17-29, Vol.3-17-31,
Vol.3-17-38, Vol.3-18-14, Vol.3-18-19,
Vol.3-18-23, Vol.3-18-55, Vol.3-34-189

MSR_DEBUGCTLB MSR, Vol.3-17-14, Vol.3-17-42,
Vol.3-17-44, Vol.3-34-59, Vol.3-34-77,
Vol.3-34-92, Vol.3-34-146, Vol.3-34-220,
Vol.3-34-232

MSR_EBC_FREQUENCY_ID MSR, Vol.3-34-173,
Vol.3-34-175

MSR_EBC_HARD_POWERON MSR, Vol.3-34-170
MSR_EBC_SOFT_POWERON MSR, Vol.3-34-172
MSR_IFSB_CNTR7 MSR, Vol.3-18-106
MSR_IFSB_CTRL6 MSR, Vol.3-18-106
MSR_IFSB_DRDY0 MSR, Vol.3-18-105
MSR_IFSB_DRDY1 MSR, Vol.3-18-105
MSR_IFSB_IBUSQ0 MSR, Vol.3-18-103
MSR_IFSB_IBUSQ1 MSR, Vol.3-18-103
MSR_IFSB_ISNPQ0 MSR, Vol.3-18-104
MSR_IFSB_ISNPQ1 MSR, Vol.3-18-104
MSR_LASTBRANCH _TOS, Vol.3-34-189
MSR_LASTBRANCH_n MSR, Vol.3-17-20,

Vol.3-17-21, Vol.3-17-40, Vol.3-17-41,
Vol.3-34-190

MSR_LASTBRANCH_n_FROM_LIP MSR, Vol.3-17-20,
Vol.3-17-21, Vol.3-17-40, Vol.3-17-41,
Vol.3-34-204

MSR_LASTBRANCH_n_TO_LIP MSR, Vol.3-17-20,
Vol.3-17-21, Vol.3-17-40, Vol.3-17-41,
Vol.3-34-206

MSR_LASTBRANCH_TOS MSR, Vol.3-17-40
MSR_LER_FROM_LIP MSR, Vol.3-17-33, Vol.3-17-42,

Vol.3-17-43, Vol.3-34-188
MSR_LER_TO_LIP MSR, Vol.3-17-33, Vol.3-17-42,

Vol.3-17-43, Vol.3-34-188
MSR_PEBS_ MATRIX_VERT MSR, Vol.3-19-259
MSR_PEBS_MATRIX_VERT MSR, Vol.3-34-199
MSR_PLATFORM_BRV, Vol.3-34-187
MTRR feature flag, CPUID instruction, Vol.3-11-32
MTRRcap MSR, Vol.3-11-32
MTRRfix MSR, Vol.3-11-34
MTRRs, Vol.1-3-5, Vol.3-8-22

base & mask calculations, Vol.3-11-38,
Vol.3-11-40

cache control, Vol.3-11-19
description of, Vol.3-9-9, Vol.3-11-30
dual-core processors, Vol.3-8-48
enabling caching, Vol.3-9-8
feature identification, Vol.3-11-32
fixed-range registers, Vol.3-11-34
IA32_MTRRCAP MSR, Vol.3-11-32
IA32_MTRR_DEF_TYPE MSR, Vol.3-11-33
initialization of, Vol.3-11-41

introduction of in IA-32 processors, Vol.3-22-49
introduction to, Vol.3-2-9
large page size considerations, Vol.3-11-47
logical processors, Vol.3-8-48
mapping physical memory with, Vol.3-11-31
memory types and their properties, Vol.3-11-30
MemTypeGet() function, Vol.3-11-42
MemTypeSet() function, Vol.3-11-44
multiple-processor considerations, Vol.3-11-46
precedence of cache controls, Vol.3-11-19
precedences, Vol.3-11-41
programming interface, Vol.3-11-42
remapping memory types, Vol.3-11-42
state of following a hardware reset, Vol.3-11-30
variable-range registers, Vol.3-11-34,

Vol.3-11-37
MUL instruction, Vol.1-7-13, Vol.2-3-27, Vol.2-4-142
MULPD instruction, Vol.1-11-8, Vol.2-4-145
MULPS instruction, Vol.1-10-12, Vol.2-4-147
MULSD instruction, Vol.1-11-8, Vol.2-4-149
MULSS instruction, Vol.1-10-12, Vol.2-4-151
Multi-byte no operation, Vol.2-4-157, Vol.2-4-160,

Vol.2-B-17
Multi-core technology, Vol.1-2-24

See multi-threading support
Multiple-processor management

bus locking, Vol.3-8-4
guaranteed atomic operations, Vol.3-8-3
initialization

MP protocol, Vol.3-8-26
procedure, Vol.3-8-75

local APIC, Vol.3-10-1
memory ordering, Vol.3-8-8
MP protocol, Vol.3-8-26
overview of, Vol.3-8-1
SMM considerations, Vol.3-33-22
VMM design, Vol.3-30-15

asymmetric, Vol.3-30-15
CPUID emulation, Vol.3-30-18
external data structures, Vol.3-30-17
index-data registers, Vol.3-30-17
initialization, Vol.3-30-16
moving between processors, Vol.3-30-16
symmetric, Vol.3-30-15

Multiple-processor system
local APIC and I/O APICs, Pentium 4, Vol.3-10-4
local APIC and I/O APIC, P6 family, Vol.3-10-4

Multisegment model, Vol.3-3-5
Multitasking

initialization for, Vol.3-9-14
initializing IA-32e mode, Vol.3-9-14
linking tasks, Vol.3-7-16
mechanism, description of, Vol.3-7-3
overview, Vol.3-7-1
setting up TSS, Vol.3-9-14
setting up TSS descriptor, Vol.3-9-14

Multi-threading capability, Vol.1-2-24
Multi-threading support
Combined Volumes 1, 2A, 2B, 2C, 3A, 3B and 3C Index -29

COMBINED INDEX
executing multiple threads, Vol.3-8-38
handling interrupts, Vol.3-8-38
logical processors per package, Vol.3-8-36
mapping resources, Vol.3-8-49
microcode updates, Vol.3-8-48
performance monitoring counters, Vol.3-8-48
programming considerations, Vol.3-8-49
See also: Hyper-Threading Technology and

dual-core technology
MVMM, Vol.2-5-1, Vol.2-5-6, Vol.2-5-7, Vol.2-5-49
MWAIT instruction, Vol.1-5-27, Vol.1-12-7,

Vol.2-4-153, Vol.3-25-5
CPUID flag, Vol.2-3-214
feature data, Vol.2-3-224
power management extensions, Vol.3-14-9

MXCSR register, Vol.1-11-23, Vol.3-6-65,
Vol.3-9-10, Vol.3-13-8

denormals-are-zero (DAZ) flag, Vol.1-10-7,
Vol.1-11-3, Vol.1-11-4

description, Vol.1-10-5
flush-to-zero flag (FZ), Vol.1-10-7
FXSAVE and FXRSTOR instructions, Vol.1-11-34
LDMXCSR instruction, Vol.1-11-34
load and store instructions, Vol.1-10-17
RC field, Vol.1-4-26
saving on a procedure or function call,

Vol.1-11-34
SIMD floating-point mask and flag bits, Vol.1-10-6
SIMD floating-point rounding control field,

Vol.1-10-7
state management instructions, Vol.1-5-20,

Vol.1-10-17
STMXCSR instruction, Vol.1-11-34
writing to while preventing general-protection

exceptions (#GP), Vol.1-11-30

N
NaNs

description of, Vol.1-4-19, Vol.1-4-21
encoding of, Vol.1-4-7, Vol.1-4-8, Vol.1-4-19
SNaNs vs. QNaNs, Vol.1-4-21

NaN, compatibility, IA-32 processors, Vol.3-22-12
NaN. testing for, Vol.2-3-445
NE (numeric error) flag

CR0 control register, Vol.3-2-20, Vol.3-6-58,
Vol.3-9-6, Vol.3-9-8, Vol.3-22-10,
Vol.3-22-25

Near
return, RET instruction, Vol.2-4-470

Near call
description of, Vol.1-6-5
operation, Vol.1-6-5

Near pointer
64-bit mode, Vol.1-4-9
legacy modes, Vol.1-4-9

Near return operation, Vol.1-6-5

NEG instruction, Vol.1-7-12, Vol.2-3-598,
Vol.2-4-157, Vol.3-8-5

NetBurst microarchitecture (see Intel NetBurst
microarchitecture)

NMI interrupt, Vol.3-2-31, Vol.3-10-5
description of, Vol.3-6-2
handling during initialization, Vol.3-9-11
handling in SMM, Vol.3-33-14
handling multiple NMIs, Vol.3-6-9
masking, Vol.3-22-36
receiving when processor is shutdown,

Vol.3-6-39
reference information, Vol.3-6-30
vector, Vol.3-6-2

NMI# pin, Vol.3-6-2, Vol.3-6-30
No operation, Vol.2-4-157, Vol.2-4-160, Vol.2-B-17
Nomenclature, used in instruction reference pages,

Vol.2-3-1
Nominal CPI method, Vol.3-18-98
Non-arithmetic instructions, x87 FPU, Vol.1-8-36
Nonconforming code segments

accessing, Vol.3-5-16
C (conforming) flag, Vol.3-5-16
description of, Vol.3-3-18

Non-halted clockticks, Vol.3-18-98
setting up counters, Vol.3-18-98

Non-Halted CPI method, Vol.3-18-98
Nonmaskable interrupt (see NMI)
Non-number encodings, floating-point format,

Vol.1-4-18
Non-precise event-based sampling

defined, Vol.3-18-71
used for at-retirement counting, Vol.3-18-87
writing an interrupt service routine for,

Vol.3-17-31
Non-retirement events, Vol.3-18-70, Vol.3-19-219
Non-sleep clockticks, Vol.3-18-98

setting up counters, Vol.3-18-98
Non-temporal data

caching of, Vol.1-10-18
description, Vol.1-10-18
temporal vs. non-temporal data, Vol.1-10-18

Non-waiting instructions, x87 FPU, Vol.1-8-34,
Vol.1-8-46

NOP instruction, Vol.1-7-34, Vol.2-4-160
Normalized finite number, Vol.1-4-7, Vol.1-4-18,

Vol.1-4-20
NOT instruction, Vol.1-7-15, Vol.2-3-598,

Vol.2-4-162, Vol.3-8-5
Notation

bit and byte order, Vol.1-1-5, Vol.2-1-4,
Vol.3-1-7

conventions, Vol.3-1-7
exceptions, Vol.1-1-9, Vol.2-1-7, Vol.3-1-10
hexadecimal and binary numbers, Vol.1-1-7,

Vol.2-1-6, Vol.3-1-9
instruction operands, Vol.1-1-7, Vol.2-1-6
Instructions
Index-30 Combined Volumes 1, 2A, 2B, 2C, 3A, 3B and 3C

COMBINED INDEX
operands, Vol.3-1-8
notational conventions, Vol.1-1-5
reserved bits, Vol.1-1-6, Vol.2-1-5, Vol.3-1-7
segmented addressing, Vol.1-1-7, Vol.2-1-6,

Vol.3-1-9
Notational conventions, Vol.2-1-4
NT (nested task) flag

EFLAGS register, Vol.3-2-13, Vol.3-7-13,
Vol.3-7-16

NT (nested task) flag, EFLAGS register, Vol.1-3-23,
Vol.1-A-1, Vol.2-3-537

Null segment selector, checking for, Vol.3-5-9
Numeric overflow exception (#O), Vol.3-22-13

overview, Vol.1-4-29
SSE and SSE2 extensions, Vol.1-11-22
x87 FPU, Vol.1-8-7, Vol.1-8-41

Numeric underflow exception (#U), Vol.3-22-14
overview, Vol.1-4-30
SSE and SSE2 extensions, Vol.1-11-22
x87 FPU, Vol.1-8-7, Vol.1-8-42

NV (invert) flag, PerfEvtSel0 MSR
(P6 family processors), Vol.3-18-6, Vol.3-18-118

NW (not write-through) flag
CR0 control register, Vol.3-2-20, Vol.3-9-8,

Vol.3-11-17, Vol.3-11-18, Vol.3-11-24,
Vol.3-11-46, Vol.3-11-47, Vol.3-22-25,
Vol.3-22-26, Vol.3-22-40

NXE bit, Vol.3-5-43

O
Obsolete instructions, Vol.3-22-7, Vol.3-22-20
OE (numeric overflow exception) flag

MXCSR register, Vol.1-11-22
x87 FPU status word, Vol.1-8-7, Vol.1-8-41

OF flag, EFLAGS register, Vol.3-6-32
OF (carry) flag, EFLAGS register, Vol.2-3-495
OF (overflow) flag

EFLAGS register, Vol.1-3-21, Vol.1-6-18
OF (overflow) flag, EFLAGS register, Vol.1-A-1,

Vol.2-3-35, Vol.2-3-513, Vol.2-4-142,
Vol.2-4-511, Vol.2-4-529, Vol.2-4-533,
Vol.2-4-574

Offset (operand addressing), Vol.1-3-30
Offset (operand addressing, 64-bit mode), Vol.1-3-32
OM (numeric overflow exception) mask bit

MXCSR register, Vol.1-11-22
x87 FPU control word, Vol.1-8-11, Vol.1-8-41

On die digital thermal sensor, Vol.3-14-19
relevant MSRs, Vol.3-14-19
sensor enumeration, Vol.3-14-19

On-Demand
clock modulation enable bits, Vol.3-14-17

On-demand
clock modulation duty cycle bits, Vol.3-14-17

On-die sensors, Vol.3-14-11
Opcode format, Vol.2-2-3
Opcodes

addressing method codes for, Vol.2-A-2
extensions, Vol.2-A-20
extensions tables, Vol.2-A-21
group numbers, Vol.2-A-20
integers

one-byte opcodes, Vol.2-A-10
two-byte opcodes, Vol.2-A-12

key to abbreviations, Vol.2-A-2
look-up examples, Vol.2-A-5, Vol.2-A-20,

Vol.2-A-23
ModR/M byte, Vol.2-A-20
one-byte opcodes, Vol.2-A-5, Vol.2-A-10
opcode maps, Vol.2-A-1
operand type codes for, Vol.2-A-3
register codes for, Vol.2-A-4
superscripts in tables, Vol.2-A-8
two-byte opcodes, Vol.2-A-6, Vol.2-A-7,

Vol.2-A-12
undefined, Vol.3-22-7
VMX instructions, Vol.2-B-173, Vol.2-B-175
x87 ESC instruction opcodes, Vol.2-A-23

Operand
addressing, modes, Vol.1-3-26
instruction, Vol.1-1-7
size attribute, Vol.1-3-24
sizes, Vol.1-3-11, Vol.1-3-25
x87 FPU instructions, Vol.1-8-23

Operands, Vol.2-1-6
instruction, Vol.3-1-8
operand-size prefix, Vol.3-21-2

Operating modes
64-bit mode, Vol.3-2-10
compatibility mode, Vol.3-2-10
IA-32e mode, Vol.3-2-10, Vol.3-2-11
introduction to, Vol.3-2-10
protected mode, Vol.3-2-10
SMM (system management mode), Vol.3-2-10
transitions between, Vol.3-2-11, Vol.3-13-17
virtual-8086 mode, Vol.3-2-11
VMX operation

enabling and entering, Vol.3-23-4
guest environments, Vol.3-30-1

OR instruction, Vol.1-7-15, Vol.2-3-598,
Vol.2-4-164, Vol.3-8-5

Ordering I/O, Vol.1-14-7
ORPD instruction, Vol.1-11-9, Vol.2-4-167
ORPS instruction, Vol.1-10-13, Vol.2-4-169
OS (operating system mode) flag

PerfEvtSel0 and PerfEvtSel1 MSRs (P6 only),
Vol.3-18-5, Vol.3-18-118

OSFXSR (FXSAVE/FXRSTOR support) flag
CR4 control register, Vol.3-2-24, Vol.3-9-10,

Vol.3-13-3
OSXMMEXCPT flag

control register CR4, Vol.1-11-25
Combined Volumes 1, 2A, 2B, 2C, 3A, 3B and 3C Index -31

COMBINED INDEX
OSXMMEXCPT (SIMD floating-point exception
support) flag, CR4 control register,
Vol.3-2-25, Vol.3-6-65, Vol.3-9-10,
Vol.3-13-3

OUT instruction, Vol.1-5-8, Vol.1-7-29, Vol.1-14-4,
Vol.2-4-171, Vol.3-8-22, Vol.3-25-3

Out-of-spec status bit, Vol.3-14-20, Vol.3-14-25
Out-of-spec status log, Vol.3-14-20, Vol.3-14-25
OUTS instruction, Vol.1-5-8, Vol.1-7-29, Vol.1-14-4,

Vol.2-4-174, Vol.2-4-467
OUTSB instruction, Vol.2-4-174
OUTSD instruction, Vol.2-4-174
OUTSW instruction, Vol.2-4-174
OUTS/OUTSB/OUTSW/OUTSD instruction,

Vol.3-17-12, Vol.3-25-3
Overflow exception (#OF), Vol.1-6-18, Vol.2-3-513,

Vol.3-6-32
Overflow, x87 FPU stack, Vol.1-8-37, Vol.1-8-38
Overheat interrupt enable bit, Vol.3-14-22,

Vol.3-14-26

P
P (present) flag

page-directory entry, Vol.3-6-54
page-table entry, Vol.3-6-54
segment descriptor, Vol.3-3-14

P5_MC_ADDR MSR, Vol.3-15-15, Vol.3-15-37,
Vol.3-34-46, Vol.3-34-68, Vol.3-34-83,
Vol.3-34-138, Vol.3-34-212,
Vol.3-34-226, Vol.3-34-235,
Vol.3-34-247

P5_MC_TYPE MSR, Vol.3-15-15, Vol.3-15-37,
Vol.3-34-46, Vol.3-34-68, Vol.3-34-83,
Vol.3-34-138, Vol.3-34-212,
Vol.3-34-226, Vol.3-34-235,
Vol.3-34-247

P6 family microarchitecture
description of, Vol.1-2-9
history of, Vol.1-2-3

P6 family processors
compatibility with FP software, Vol.3-22-9
description of, Vol.1-1-1, Vol.2-1-1, Vol.3-1-1
history of, Vol.1-2-3
last branch, interrupt, and exception recording,

Vol.3-17-46
list of performance-monitoring events,

Vol.3-19-270
machine encodings, Vol.2-B-59
MSR supported by, Vol.3-34-235
P6 family microarchitecture, Vol.1-2-9

PABSB instruction, Vol.1-5-29, Vol.1-12-11,
Vol.2-4-180

PABSD instruction, Vol.1-12-11, Vol.2-4-180
PABSW instruction, Vol.1-5-29, Vol.1-12-11,

Vol.2-4-180
Packed

BCD integer indefinite, Vol.1-4-15

BCD integers, Vol.1-4-14
bytes, Vol.1-9-3
doublewords, Vol.1-9-3
SIMD data types, Vol.1-4-11
SIMD floating-point values, Vol.1-4-12
SIMD integers, Vol.1-4-11, Vol.1-4-12
words, Vol.1-9-3

PACKSSDW instruction, Vol.2-4-184
PACKSSWB instruction, Vol.1-9-9, Vol.2-4-184
PACKUSWB instruction, Vol.1-9-9, Vol.2-4-191
PADDB instruction, Vol.1-9-8, Vol.2-4-194
PADDD instruction, Vol.1-9-8, Vol.2-4-194
PADDQ instruction, Vol.1-11-15, Vol.2-4-198
PADDSB instruction, Vol.1-9-8, Vol.2-4-200
PADDSW instruction, Vol.1-9-8, Vol.2-4-200
PADDUSB instruction, Vol.1-9-8, Vol.2-4-203
PADDUSW instruction, Vol.1-9-8, Vol.2-4-203
PADDW instruction, Vol.1-9-8, Vol.2-4-194
PAE paging

feature flag, CR4 register, Vol.3-2-23
flag, CR4 control register, Vol.3-3-7, Vol.3-22-24,

Vol.3-22-25
Page attribute table (PAT)

compatibility with earlier IA-32 processors,
Vol.3-11-52

detecting support for, Vol.3-11-48
IA32_CR_PAT MSR, Vol.3-11-49
introduction to, Vol.3-11-48
memory types that can be encoded with,

Vol.3-11-49
MSR, Vol.3-11-19
precedence of cache controls, Vol.3-11-20
programming, Vol.3-11-50
selecting a memory type with, Vol.3-11-50

Page directories, Vol.3-2-8
Page directory

base address (PDBR), Vol.3-7-6
introduction to, Vol.3-2-8
overview, Vol.3-3-2
setting up during initialization, Vol.3-9-13

Page directory pointers, Vol.3-2-8
Page frame (see Page)
Page tables, Vol.3-2-8

introduction to, Vol.3-2-8
overview, Vol.3-3-2
setting up during initialization, Vol.3-9-13

Page-directory entries, Vol.3-8-5, Vol.3-11-6
Page-fault exception (#PF), Vol.3-4-64, Vol.3-6-54,

Vol.3-22-29
Pages

disabling protection of, Vol.3-5-1
enabling protection of, Vol.3-5-1
introduction to, Vol.3-2-8
overview, Vol.3-3-2
PG flag, CR0 control register, Vol.3-5-2
split, Vol.3-22-21

Page-table entries, Vol.3-8-5, Vol.3-11-6,
Vol.3-11-27
Index-32 Combined Volumes 1, 2A, 2B, 2C, 3A, 3B and 3C

COMBINED INDEX
Paging
combining segment and page-level protection,

Vol.3-5-41
combining with segmentation, Vol.3-3-7
defined, Vol.3-3-1
IA-32e mode, Vol.3-2-8
initializing, Vol.3-9-13
introduction to, Vol.3-2-8
large page size MTRR considerations, Vol.3-11-47
mapping segments to pages, Vol.3-4-64
page boundaries regarding TSS, Vol.3-7-6
page-fault exception, Vol.3-6-54
page-level protection, Vol.3-5-2, Vol.3-5-5,

Vol.3-5-39
page-level protection flags, Vol.3-5-40
virtual-8086 tasks, Vol.3-20-10

PALIGNR instruction, Vol.1-5-30, Vol.1-12-12,
Vol.2-4-206

PAND instruction, Vol.1-9-10, Vol.2-4-208
PANDN instruction, Vol.1-9-10, Vol.2-4-210
Parameter

passing, between 16- and 32-bit call gates,
Vol.3-21-8

translation, between 16- and 32-bit code
segments, Vol.3-21-8

Parameter passing
argument list, Vol.1-6-8
on stack, Vol.1-6-7
on the stack, Vol.1-6-7
through general-purpose registers, Vol.1-6-7
x87 FPU register stack, Vol.1-8-5
XMM registers, Vol.1-11-34

GETSEC, Vol.2-5-5
PAUSE instruction, Vol.1-11-18, Vol.2-4-212,

Vol.3-2-21, Vol.3-25-5
PAVGB instruction, Vol.1-10-16, Vol.2-4-214
PAVGW instruction, Vol.2-4-214
PBi (performance monitoring/breakpoint pins) flags,

DEBUGCTLMSR MSR, Vol.3-17-44,
Vol.3-17-47

PC (pin control) flag, PerfEvtSel0 and PerfEvtSel1
MSRs (P6 family processors), Vol.3-18-6,
Vol.3-18-118

PC (precision) field, x87 FPU control word, Vol.1-8-11
PC0 and PC1 (pin control) fields, CESR MSR (Pentium

processor), Vol.3-18-122
PCD pin (Pentium processor), Vol.3-11-19
PCD (page-level cache disable) flag

CR3 control register, Vol.3-2-22, Vol.3-11-19,
Vol.3-22-25, Vol.3-22-41

page-directory entries, Vol.3-9-8, Vol.3-11-19,
Vol.3-11-47

page-table entries, Vol.3-9-8, Vol.3-11-19,
Vol.3-11-47, Vol.3-22-42

PCE flag, CR4 register, Vol.2-4-455
PCE (performance monitoring counter enable) flag,

CR4 control register, Vol.3-2-24,
Vol.3-5-34, Vol.3-18-74, Vol.3-18-119

PCE (performance-monitoring counter enable) flag,
CR4 control register, Vol.3-22-24

PCMPEQB instruction, Vol.1-9-9, Vol.2-4-227
PCMPEQD instruction, Vol.1-9-9, Vol.2-4-227
PCMPEQW instruction, Vol.1-9-9, Vol.2-4-227
PCMPGTB instruction, Vol.1-9-9, Vol.2-4-237
PCMPGTD instruction, Vol.1-9-9, Vol.2-4-237
PCMPGTW instruction, Vol.1-9-9, Vol.2-4-237
PDBR (see CR3 control register)
PE (inexact result exception) flag, Vol.1-11-23

MXCSR register, Vol.1-4-25
x87 FPU status word, Vol.1-4-25, Vol.1-8-7,

Vol.1-8-44
PE (protection enable) flag, CR0 control register,

Vol.3-2-22, Vol.3-5-1, Vol.3-9-13,
Vol.3-9-17, Vol.3-33-12

PE (protection enable) flag, CR0 register, Vol.2-3-596
PEBS records, Vol.3-17-26
PEBS (precise event-based sampling) facilities

availability of, Vol.3-18-90
description of, Vol.3-18-71, Vol.3-18-89
DS save area, Vol.3-17-22
IA-32e mode, Vol.3-17-26
PEBS buffer, Vol.3-17-22, Vol.3-18-90
PEBS records, Vol.3-17-22, Vol.3-17-24
writing a PEBS interrupt service routine,

Vol.3-18-90
writing interrupt service routine, Vol.3-17-31

PEBS_UNAVAILABLE flag
IA32_MISC_ENABLE MSR, Vol.3-17-22,

Vol.3-34-185
Pending break enable, Vol.2-3-219
Pentium 4 processor, Vol.1-1-1, Vol.2-1-1, Vol.3-1-2

compatibility with FP software, Vol.3-22-9
description of, Vol.1-2-4, Vol.1-2-5
last branch, interrupt, and exception recording,

Vol.3-17-37
list of performance-monitoring events,

Vol.3-19-1, Vol.3-19-218
MSRs supported, Vol.3-34-46, Vol.3-34-67,

Vol.3-34-169, Vol.3-34-209
time-stamp counter, Vol.3-17-49

Pentium 4 processor supporting Hyper-Threading
Technology

description of, Vol.1-2-4, Vol.1-2-5
Pentium II processor, Vol.1-1-2, Vol.2-1-2, Vol.3-1-2

description of, Vol.1-2-3
P6 family microarchitecture, Vol.1-2-9

Pentium II Xeon processor
description of, Vol.1-2-3

Pentium III processor, Vol.1-1-2, Vol.2-1-2, Vol.3-1-2
description of, Vol.1-2-4
P6 family microarchitecture, Vol.1-2-9

Pentium III Xeon processor
description of, Vol.1-2-4

Pentium M processor
description of, Vol.1-2-5
instructions supported, Vol.1-2-5
Combined Volumes 1, 2A, 2B, 2C, 3A, 3B and 3C Index -33

COMBINED INDEX
last branch, interrupt, and exception recording,
Vol.3-17-44

MSRs supported by, Vol.3-34-225
time-stamp counter, Vol.3-17-49

Pentium Pro processor, Vol.1-1-2, Vol.2-1-2,
Vol.3-1-2

description of, Vol.1-2-3
P6 family microarchitecture, Vol.1-2-9

Pentium processor, Vol.1-1-1, Vol.2-1-1, Vol.3-1-1,
Vol.3-22-9

compatibility with MCA, Vol.3-15-1
history of, Vol.1-2-2
list of performance-monitoring events,

Vol.3-19-288
MSR supported by, Vol.3-34-247
performance-monitoring counters, Vol.3-18-121

Pentium processor Extreme Edition
introduction, Vol.1-2-5

Pentium processor family processors
machine encodings, Vol.2-B-54

Pentium processor with MMX technology, Vol.1-2-3
PerfCtr0 and PerfCtr1 MSRs

(P6 family processors), Vol.3-18-117,
Vol.3-18-119

PerfEvtSel0 and PerfEvtSel1 MSRs
(P6 family processors), Vol.3-18-117

PerfEvtSel0 and PerfEvtSel1 MSRs (P6 family
processors), Vol.3-18-117

Performance events
architectural, Vol.3-18-1
Intel Core Solo and Intel Core Duo processors,

Vol.3-18-1
non-architectural, Vol.3-18-1
non-retirement events (Pentium 4 processor),

Vol.3-19-219
P6 family processors, Vol.3-19-270
Pentium 4 and Intel Xeon processors, Vol.3-17-37
Pentium M processors, Vol.3-17-44
Pentium processor, Vol.3-19-288

Performance monitoring counters, Vol.1-3-5
Performance state, Vol.3-14-2
Performance-monitoring counters

counted events (P6 family processors),
Vol.3-19-270

counted events (Pentium 4 processor),
Vol.3-19-1, Vol.3-19-218

counted events (Pentium processors),
Vol.3-18-123

CPUID inquiry for, Vol.2-3-225
description of, Vol.3-18-1, Vol.3-18-2
events that can be counted (Pentium processors),

Vol.3-19-288
interrupt, Vol.3-10-2
introduction of in IA-32 processors, Vol.3-22-50
monitoring counter overflow (P6 family

processors), Vol.3-18-120
overflow, monitoring (P6 family processors),

Vol.3-18-120

overview of, Vol.3-2-10
P6 family processors, Vol.3-18-116
Pentium II processor, Vol.3-18-116
Pentium Pro processor, Vol.3-18-116
Pentium processor, Vol.3-18-121
reading, Vol.3-2-32, Vol.3-18-119
setting up (P6 family processors), Vol.3-18-117
software drivers for, Vol.3-18-120
starting and stopping, Vol.3-18-119

PEXTRW instruction, Vol.1-10-17, Vol.2-4-250
PF (parity) flag, EFLAGS register, Vol.1-3-21,

Vol.1-A-1
PG (paging) flag

CR0 control register, Vol.3-2-19, Vol.3-5-2
PG (paging) flag, CR0 control register, Vol.3-9-13,

Vol.3-9-17, Vol.3-22-43, Vol.3-33-12
PGE (page global enable) flag, CR4 control register,

Vol.3-2-24, Vol.3-11-19, Vol.3-22-24,
Vol.3-22-26

PHADDD instruction, Vol.1-5-28, Vol.1-12-10,
Vol.2-4-253

PHADDSW instruction, Vol.1-5-28, Vol.1-12-10,
Vol.2-4-256

PHADDW instruction, Vol.1-5-28, Vol.1-12-10,
Vol.2-4-253

PHSUBD instruction, Vol.1-5-28, Vol.1-12-10,
Vol.2-4-260

PHSUBSW instruction, Vol.1-5-28, Vol.1-12-10,
Vol.2-4-263

PHSUBW instruction, Vol.1-5-28, Vol.1-12-10,
Vol.2-4-260

PhysBase field, IA32_MTRR_PHYSBASEn MTRR,
Vol.3-11-35, Vol.3-11-37

Physical
address space, Vol.1-3-8
memory, Vol.1-3-8

Physical address extension
introduction to, Vol.3-3-7

Physical address space
4 GBytes, Vol.3-3-7
64 GBytes, Vol.3-3-7
addressing, Vol.3-2-8
defined, Vol.3-3-1
description of, Vol.3-3-7
guest and host spaces, Vol.3-31-3
IA-32e mode, Vol.3-3-8
mapped to a task, Vol.3-7-19
mapping with variable-range MTRRs, Vol.3-11-34,

Vol.3-11-37
memory virtualization, Vol.3-31-3
See also: VMM, VMX

Physical destination mode, local APIC, Vol.3-10-33
PhysMask

IA32_MTRR_PHYSMASKn MTRR, Vol.3-11-35,
Vol.3-11-37

Pi, Vol.2-3-383
PINSRW instruction, Vol.1-10-17, Vol.2-4-268,

Vol.2-4-371
Index-34 Combined Volumes 1, 2A, 2B, 2C, 3A, 3B and 3C

COMBINED INDEX
Pi, x87 FPU constant, Vol.1-8-31
PM (inexact result exception) mask bit

MXCSR register, Vol.1-11-23
x87 FPU control word, Vol.1-8-11, Vol.1-8-44

PM0/BP0 and PM1/BP1 (performance-monitor) pins
(Pentium processor), Vol.3-18-121,
Vol.3-18-123

PMADDUBSW instruction, Vol.1-5-29, Vol.1-12-11,
Vol.2-4-271

PMADDUDSW instruction, Vol.2-4-271
PMADDWD instruction, Vol.1-9-9, Vol.2-4-273
PMAXSW instruction, Vol.1-10-17, Vol.2-4-281
PMAXUB instruction, Vol.1-10-17, Vol.2-4-284
PMINSW instruction, Vol.1-10-17, Vol.2-4-296
PMINUB instruction, Vol.1-10-17, Vol.2-4-299
PML4 tables, Vol.3-2-8
PMOVMSKB instruction, Vol.1-10-17, Vol.2-4-302
PMULHRSW instruction, Vol.1-5-29, Vol.1-12-11,

Vol.2-4-318
PMULHUW instruction, Vol.1-10-17, Vol.2-4-321
PMULHW instruction, Vol.2-4-324
PMULLW instruction, Vol.2-4-329
PMULUDQ instruction, Vol.1-11-15, Vol.2-4-332
Pointer data types, Vol.1-4-9
Pointers

64-bit mode, Vol.1-4-9
code-segment pointer size, Vol.3-21-5
far pointer, Vol.1-4-9
limit checking, Vol.3-5-36
near pointer, Vol.1-4-9
validation, Vol.3-5-34

POP instruction, Vol.1-6-1, Vol.1-6-3, Vol.1-7-8,
Vol.1-7-33, Vol.2-4-335, Vol.3-3-11

POPA instruction, Vol.1-6-8, Vol.1-7-9, Vol.2-4-342
POPAD instruction, Vol.2-4-342
POPF instruction, Vol.1-3-20, Vol.1-6-8, Vol.1-7-31,

Vol.1-14-5, Vol.2-4-348, Vol.3-6-10,
Vol.3-17-13

POPFD instruction, Vol.1-3-20, Vol.1-6-8,
Vol.1-7-31, Vol.2-4-348

POPFQ instruction, Vol.2-4-348
POR instruction, Vol.1-9-10, Vol.2-4-352
Power consumption

software controlled clock, Vol.3-14-11,
Vol.3-14-16

Power coordination, Vol.1-2-6
Precise event-based sampling (see PEBS)
PREFETCHh instruction, Vol.2-4-354, Vol.3-2-21,

Vol.3-11-7, Vol.3-11-25
PREFETCHh instructions, Vol.1-10-19, Vol.1-11-36
Prefixes

Address-size override prefix, Vol.2-2-2
Branch hints, Vol.2-2-2
branch hints, Vol.2-2-2
instruction, description of, Vol.2-2-1
legacy prefix encodings, Vol.2-B-2
LOCK, Vol.2-2-2, Vol.2-3-598
Operand-size override prefix, Vol.2-2-2

REP or REPE/REPZ, Vol.2-2-2
REPNE/REPNZ, Vol.2-2-2
REP/REPE/REPZ/REPNE/REPNZ, Vol.2-4-465
REX prefix encodings, Vol.2-B-2
Segment override prefixes, Vol.2-2-2

Previous task link field, TSS, Vol.3-7-6, Vol.3-7-16,
Vol.3-7-18

Privilege levels
checking when accessing data segments,

Vol.3-5-12
checking, for call gates, Vol.3-5-22
checking, when transferring program control

between code segments, Vol.3-5-14
description of, Vol.1-6-9, Vol.3-5-9
inter-privilege level calls, Vol.1-6-8
protection rings, Vol.1-6-9, Vol.3-5-11
stack switching, Vol.1-6-15

Privileged instructions, Vol.3-5-33
Procedure calls

description of, Vol.1-6-5
far call, Vol.1-6-5
for block-structured languages, Vol.1-6-19
inter-privilege level call, Vol.1-6-10
linking, Vol.1-6-4
near call, Vol.1-6-5
overview, Vol.1-6-1
return instruction pointer (EIP register), Vol.1-6-4
saving procedure state information, Vol.1-6-8
stack, Vol.1-6-1
stack switching, Vol.1-6-10
to exception handler procedure, Vol.1-6-14
to exception task, Vol.1-6-17
to interrupt handler procedure, Vol.1-6-14
to interrupt task, Vol.1-6-17
to other privilege levels, Vol.1-6-8
types of, Vol.1-6-1

Processor families
06H, Vol.3-16-1
0FH, Vol.3-16-1

Processor identification
earlier Intel architecture processors, Vol.1-15-2
early processors, Vol.1-15-2
notes on where to start, Vol.1-15-1
using CPUID, Vol.1-15-1
using CPUID instruction, Vol.1-15-1

Processor management
initialization, Vol.3-9-1
local APIC, Vol.3-10-1
microcode update facilities, Vol.3-9-36
overview of, Vol.3-8-1
See also: multiple-processor management

Processor ordering, description of, Vol.3-8-8
Processor state information, saving, Vol.1-6-8
PROCHOT# log, Vol.3-14-20, Vol.3-14-25
PROCHOT# or FORCEPR# event bit, Vol.3-14-20,

Vol.3-14-24, Vol.3-14-25
Protected mode

IDT initialization, Vol.3-9-13
Combined Volumes 1, 2A, 2B, 2C, 3A, 3B and 3C Index -35

COMBINED INDEX
initialization for, Vol.3-9-11
I/O, Vol.1-14-4
memory models used, Vol.1-3-10
mixing 16-bit and 32-bit code modules,

Vol.3-21-2
mode switching, Vol.3-9-17
overview, Vol.1-3-1
PE flag, CR0 register, Vol.3-5-1
switching to, Vol.3-5-1, Vol.3-9-17
system data structures required during

initialization, Vol.3-9-11, Vol.3-9-12
Protection

combining segment & page-level, Vol.3-5-41
disabling, Vol.3-5-1
enabling, Vol.3-5-1
flags used for page-level protection, Vol.3-5-2,

Vol.3-5-5
flags used for segment-level protection, Vol.3-5-2
IA-32e mode, Vol.3-5-5
of exception, interrupt-handler procedures,

Vol.3-6-18
overview of, Vol.3-5-1
page level, Vol.3-5-1, Vol.3-5-39, Vol.3-5-41,

Vol.3-5-43
page level, overriding, Vol.3-5-41
page-level protection flags, Vol.3-5-40
read/write, page level, Vol.3-5-40
segment level, Vol.3-5-1
user/supervisor type, Vol.3-5-40

Protection rings, Vol.1-6-9, Vol.3-5-11
PSADBW instruction, Vol.1-10-17, Vol.2-4-357
PSE (page size extension) flag

CR4 control register, Vol.3-2-23, Vol.3-11-29,
Vol.3-22-24, Vol.3-22-26

PSE-36 page size extension, Vol.3-3-7
Pseudo-functions

VMfail, Vol.3-29-2
VMfailInvalid, Vol.3-29-2
VMfailValid, Vol.3-29-2
VMsucceed, Vol.3-29-2

Pseudo-infinity, Vol.3-22-12
Pseudo-NaN, Vol.3-22-12
Pseudo-zero, Vol.3-22-12
PSHUFB instruction, Vol.1-5-29, Vol.1-12-12,

Vol.2-4-360
PSHUFD instruction, Vol.1-11-16, Vol.2-4-363
PSHUFHW instruction, Vol.1-11-15, Vol.2-4-365
PSHUFLW instruction, Vol.1-11-15, Vol.2-4-367
PSHUFW instruction, Vol.1-10-17, Vol.1-11-16,

Vol.2-4-369
PSIGNB instruction, Vol.2-4-371
PSIGNB/W/D instruction, Vol.1-5-29, Vol.1-12-12
PSIGND instruction, Vol.2-4-371
PSIGNW instruction, Vol.2-4-371
PSLLD instruction, Vol.1-9-10, Vol.2-4-378
PSLLDQ instruction, Vol.1-11-16, Vol.2-4-376
PSLLQ instruction, Vol.1-9-10, Vol.2-4-378
PSLLW instruction, Vol.1-9-10, Vol.2-4-378

PSRAD instruction, Vol.2-4-385
PSRAW instruction, Vol.2-4-385
PSRLD instruction, Vol.2-4-392
PSRLDQ instruction, Vol.1-11-16, Vol.2-4-390
PSRLQ instruction, Vol.2-4-392
PSRLW instruction, Vol.2-4-392
P-state, Vol.3-14-2
PSUBB instruction, Vol.1-9-8, Vol.2-4-398
PSUBD instruction, Vol.1-9-8, Vol.2-4-398
PSUBQ instruction, Vol.1-11-15, Vol.2-4-402
PSUBSB instruction, Vol.1-9-8, Vol.2-4-404
PSUBSW instruction, Vol.1-9-8, Vol.2-4-404
PSUBUSB instruction, Vol.1-9-8, Vol.2-4-407
PSUBUSW instruction, Vol.1-9-8, Vol.2-4-407
PSUBW instruction, Vol.1-9-8, Vol.2-4-398
PUNPCKHBW instruction, Vol.1-9-9, Vol.2-4-412
PUNPCKHDQ instruction, Vol.1-9-9, Vol.2-4-412
PUNPCKHQDQ instruction, Vol.1-11-16, Vol.2-4-412
PUNPCKHWD instruction, Vol.1-9-9, Vol.2-4-412
PUNPCKLBW instruction, Vol.1-9-9, Vol.2-4-418
PUNPCKLDQ instruction, Vol.1-9-9, Vol.2-4-418
PUNPCKLQDQ instruction, Vol.1-11-16, Vol.2-4-418
PUNPCKLWD instruction, Vol.1-9-9, Vol.2-4-418
PUSH instruction, Vol.1-6-1, Vol.1-6-3, Vol.1-7-7,

Vol.1-7-33, Vol.2-4-423, Vol.3-22-8
PUSHA instruction, Vol.1-6-8, Vol.1-7-8, Vol.2-4-428
PUSHAD instruction, Vol.2-4-428
PUSHF instruction, Vol.1-3-20, Vol.1-6-8,

Vol.1-7-31, Vol.2-4-431, Vol.3-6-10,
Vol.3-22-9

PUSHFD instruction, Vol.1-3-20, Vol.1-6-8,
Vol.1-7-31, Vol.2-4-431

PVI (protected-mode virtual interrupts) flag
CR4 control register, Vol.3-2-14, Vol.3-2-15,

Vol.3-2-23, Vol.3-22-24
PWT pin (Pentium processor), Vol.3-11-19
PWT (page-level write-through) flag

CR3 control register, Vol.3-2-23, Vol.3-11-19,
Vol.3-22-25, Vol.3-22-41

page-directory entries, Vol.3-9-8, Vol.3-11-19,
Vol.3-11-47

page-table entries, Vol.3-9-8, Vol.3-11-47,
Vol.3-22-42

PXOR instruction, Vol.1-9-10, Vol.2-4-434

Q
QNaN floating-point indefinite, Vol.1-4-7, Vol.1-4-22,

Vol.1-4-24, Vol.1-8-21
QNaNs

description of, Vol.1-4-22
effect on COMISD and UCOMISD, Vol.1-11-10
encodings, Vol.1-4-7
operating on, Vol.1-4-22
rules for generating, Vol.1-4-23
using in applications, Vol.1-4-23

QNaN, compatibility, IA-32 processors, Vol.3-22-12
Quadword, Vol.1-4-1, Vol.1-9-3
Index-36 Combined Volumes 1, 2A, 2B, 2C, 3A, 3B and 3C

COMBINED INDEX
Quiet NaN (see QNaN)

R
R8D-R15D registers, Vol.1-3-16
R8-R15 registers, Vol.1-3-16
RAX register, Vol.1-3-16
RBP register, Vol.1-3-16, Vol.1-6-5
RBX register, Vol.1-3-16
RC (rounding control) field

MXCSR register, Vol.1-4-26, Vol.1-10-7
x87 FPU control word, Vol.1-4-26, Vol.1-8-12

RC (rounding control) field, x87 FPU control word,
Vol.2-3-374, Vol.2-3-383, Vol.2-3-425

RCL instruction, Vol.1-7-19, Vol.2-4-436
RCPPS instruction, Vol.1-10-12, Vol.2-4-444
RCPSS instruction, Vol.1-10-12, Vol.2-4-447
RCR instruction, Vol.1-7-19, Vol.2-4-436
RCX register, Vol.1-3-16
RDI register, Vol.1-3-16
RDMSR instruction, Vol.2-4-451, Vol.2-4-455,

Vol.2-4-461, Vol.3-2-26, Vol.3-2-33,
Vol.3-2-34, Vol.3-5-34, Vol.3-17-40,
Vol.3-17-48, Vol.3-17-50, Vol.3-18-74,
Vol.3-18-117, Vol.3-18-119,
Vol.3-18-121, Vol.3-22-6, Vol.3-22-49,
Vol.3-25-5, Vol.3-25-20

CPUID flag, Vol.2-3-217
RDPMC instruction, Vol.2-4-453, Vol.3-2-32,

Vol.3-5-34, Vol.3-18-73, Vol.3-18-117,
Vol.3-18-119, Vol.3-22-6, Vol.3-22-24,
Vol.3-22-50, Vol.3-25-6

in 64-bit mode, Vol.3-2-33
RDRAND, Vol.1-7-35
RDTSC instruction, Vol.2-4-459, Vol.2-4-461,

Vol.2-4-463, Vol.3-2-32, Vol.3-5-34,
Vol.3-17-50, Vol.3-22-6, Vol.3-25-6,
Vol.3-25-21

in 64-bit mode, Vol.3-2-33
RDX register, Vol.1-3-16
reading sensors, Vol.3-14-19
Read/write

protection, page level, Vol.3-5-40
rights, checking, Vol.3-5-36

Real address mode
handling exceptions in, Vol.1-6-17
handling interrupts in, Vol.1-6-17
memory model, Vol.1-3-9, Vol.1-3-10
memory model used, Vol.1-3-11
not in 64-bit mode, Vol.1-3-11
overview, Vol.1-3-1

Real numbers
continuum, Vol.1-4-16
encoding, Vol.1-4-18, Vol.1-4-19
notation, Vol.1-4-18, Vol.1-13-27
system, Vol.1-4-15

Real-address mode
8086 emulation, Vol.3-20-1

address translation in, Vol.3-20-3
description of, Vol.3-20-1
exceptions and interrupts, Vol.3-20-8
IDT initialization, Vol.3-9-11
IDT, changing base and limit of, Vol.3-20-7
IDT, structure of, Vol.3-20-7
IDT, use of, Vol.3-20-6
initialization, Vol.3-9-10
instructions supported, Vol.3-20-4
interrupt and exception handling, Vol.3-20-6
interrupts, Vol.3-20-8
introduction to, Vol.3-2-10
mode switching, Vol.3-9-17
native 16-bit mode, Vol.3-21-1
overview of, Vol.3-20-1
registers supported, Vol.3-20-4
switching to, Vol.3-9-18

Recursive task switching, Vol.3-7-18
Register operands

64-bit mode, Vol.1-3-28
legacy modes, Vol.1-3-27

Register stack, x87 FPU, Vol.1-8-2
Registers

64-bit mode, Vol.1-3-16, Vol.1-3-20
control registers, Vol.1-3-5
CR in 64-bit mode, Vol.1-3-6
debug registers, Vol.1-3-5
EFLAGS register, Vol.1-3-14, Vol.1-3-20
EIP register, Vol.1-3-14, Vol.1-3-24
general purpose registers, Vol.1-3-13, Vol.1-3-14
instruction pointer, Vol.1-3-14
machine check registers, Vol.1-3-5
memory management registers, Vol.1-3-5
MMX registers, Vol.1-3-3, Vol.1-9-3
MSRs, Vol.1-3-5
MTRRs, Vol.1-3-5
MXCSR register, Vol.1-10-6
performance monitoring counters, Vol.1-3-5
REX prefix, Vol.1-3-16
segment registers, Vol.1-3-13, Vol.1-3-17
x87 FPU registers, Vol.1-8-1
XMM registers, Vol.1-3-3, Vol.1-10-4

Reg/opcode field, instruction format, Vol.2-2-4
Related literature, Vol.1-1-10, Vol.2-1-8, Vol.3-1-11
Remainder, x87 FPU operation, Vol.2-3-401
Replay events, Vol.3-19-259
REP/REPE/REPZ/REPNE/REPNZ

prefixes, Vol.1-7-28, Vol.1-14-4
REP/REPE/REPZ/REPNE/REPNZ prefixes,

Vol.2-3-172, Vol.2-3-505, Vol.2-4-175,
Vol.2-4-465

Requested privilege level (see RPL)
Reserved

use of reserved bits, Vol.2-1-5
Reserved bits, Vol.1-1-6, Vol.3-1-7, Vol.3-22-2
RESET pin, Vol.1-3-20
RESET# pin, Vol.3-6-4, Vol.3-22-22
RESET# signal, Vol.3-2-31
Combined Volumes 1, 2A, 2B, 2C, 3A, 3B and 3C Index -37

COMBINED INDEX
Resolution in degrees, Vol.3-14-21
Responding logical processor, Vol.2-5-6
responding logical processor, Vol.2-5-4, Vol.2-5-5,

Vol.2-5-6
Restarting program or task, following an exception or

interrupt, Vol.3-6-7
Restricting addressable domain, Vol.3-5-40
RET instruction, Vol.1-3-24, Vol.1-6-4, Vol.1-6-5,

Vol.1-7-22, Vol.1-7-33, Vol.2-4-470,
Vol.3-5-15, Vol.3-5-28, Vol.3-21-7

Return instruction pointer, Vol.1-6-4
Returning

from a called procedure, Vol.3-5-28
from an interrupt or exception handler,

Vol.3-6-18
Returns, from procedure calls

exception handler, return from, Vol.1-6-14
far return, Vol.1-6-6
inter-privilege level return, Vol.1-6-10
interrupt handler, return from, Vol.1-6-14
near return, Vol.1-6-5

REX prefixes, Vol.1-3-2, Vol.1-3-16, Vol.1-3-25
addressing modes, Vol.2-2-11
and INC/DEC, Vol.2-2-10
encodings, Vol.2-2-10, Vol.2-B-2
field names, Vol.2-2-11
ModR/M byte, Vol.2-2-10
overview, Vol.2-2-9
REX.B, Vol.2-2-10
REX.R, Vol.2-2-10
REX.W, Vol.2-2-10
special encodings, Vol.2-2-13

RF (resume) flag
EFLAGS register, Vol.3-2-14, Vol.3-6-10

RF (resume) flag, EFLAGS register, Vol.1-3-23,
Vol.1-A-1

RFLAGS, Vol.1-3-24
RFLAGS register, Vol.1-7-32

See EFLAGS register
RIP register, Vol.1-6-5

64-bit mode, Vol.1-7-2
description of, Vol.1-3-24
relation to EIP, Vol.1-7-2

RIP-relative addressing, Vol.2-2-14
ROL instruction, Vol.1-7-19, Vol.2-4-436
ROR instruction, Vol.1-7-19, Vol.2-4-436
Rounding

modes, floating-point operations, Vol.1-4-25,
Vol.1-4-26, Vol.2-4-484

modes, x87 FPU, Vol.1-8-12
toward zero (truncation), Vol.1-4-26

Rounding control (RC) field
MXCSR register, Vol.1-4-25, Vol.1-10-7,

Vol.2-4-484
x87 FPU control word, Vol.1-4-25, Vol.1-8-12,

Vol.2-4-484
Rounding, round to integer, x87 FPU operation,

Vol.2-3-407

RPL
description of, Vol.3-3-10, Vol.3-5-11
field, segment selector, Vol.3-5-2

RPL field, Vol.2-3-75
RSI register, Vol.1-3-16
RSM instruction, Vol.2-4-493, Vol.3-2-31,

Vol.3-8-25, Vol.3-22-7, Vol.3-25-6,
Vol.3-33-1, Vol.3-33-3, Vol.3-33-4,
Vol.3-33-17, Vol.3-33-21, Vol.3-33-25

RSP register, Vol.1-3-16, Vol.1-6-5
RSQRTPS instruction, Vol.1-10-12, Vol.2-4-495
RSQRTSS instruction, Vol.1-10-12, Vol.2-4-498
RsvdZ, Vol.3-10-57
R/m field, instruction format, Vol.2-2-4
R/S# pin, Vol.3-6-4
R/W (read/write) flag

page-directory entry, Vol.3-5-2, Vol.3-5-3,
Vol.3-5-40

page-table entry, Vol.3-5-2, Vol.3-5-3,
Vol.3-5-40

R/W0-R/W3 (read/write) fields
DR7 register, Vol.3-17-5, Vol.3-22-27

S
S (descriptor type) flag

segment descriptor, Vol.3-3-14, Vol.3-3-16,
Vol.3-5-2, Vol.3-5-7

Safer Mode Extensions, Vol.2-5-1
SAHF instruction, Vol.1-3-20, Vol.1-7-31,

Vol.2-4-500
SAL instruction, Vol.1-7-15, Vol.2-4-502
SAR instruction, Vol.1-7-17, Vol.2-4-502
Saturation arithmetic (MMX instructions), Vol.1-9-5
SBB instruction, Vol.1-7-12, Vol.2-3-598,

Vol.2-4-510, Vol.3-8-5
Scalar operations

defined, Vol.1-10-10, Vol.1-11-7
scalar double-precision FP operands, Vol.1-11-7
scalar single-precision FP operands, Vol.1-10-10

Scale (operand addressing), Vol.1-3-30, Vol.1-3-32,
Vol.2-2-4

Scale, x87 FPU operation, Vol.1-8-32, Vol.2-3-416
Scaling bias value, Vol.1-8-42, Vol.1-8-43
Scan string instructions, Vol.2-4-514
SCAS instruction, Vol.1-3-22, Vol.1-7-27,

Vol.2-4-467, Vol.2-4-514
SCASB instruction, Vol.2-4-514
SCASD instruction, Vol.2-4-514
SCASW instruction, Vol.2-4-514
Segment

defined, Vol.1-3-8
descriptor, segment limit, Vol.2-3-607
limit, Vol.2-3-607
maximum number, Vol.1-3-8
registers, moving values to and from, Vol.2-4-40
selector, RPL field, Vol.2-3-75

Segment descriptors
Index-38 Combined Volumes 1, 2A, 2B, 2C, 3A, 3B and 3C

COMBINED INDEX
access rights, Vol.3-5-35
access rights, invalid values, Vol.3-22-26
automatic bus locking while updating, Vol.3-8-4
base address fields, Vol.3-3-14
code type, Vol.3-5-3
data type, Vol.3-5-3
description of, Vol.3-2-5, Vol.3-3-13
DPL (descriptor privilege level) field, Vol.3-3-14,

Vol.3-5-2
D/B (default operation size/default stack pointer

size and/or upper bound) flag, Vol.3-3-15,
Vol.3-5-6

E (expansion direction) flag, Vol.3-5-2, Vol.3-5-6
G (granularity) flag, Vol.3-3-15, Vol.3-5-2,

Vol.3-5-6
limit field, Vol.3-5-2, Vol.3-5-6
loading, Vol.3-22-27
P (segment-present) flag, Vol.3-3-14
S (descriptor type) flag, Vol.3-3-14, Vol.3-3-16,

Vol.3-5-2, Vol.3-5-7
segment limit field, Vol.3-3-13
system type, Vol.3-5-3
tables, Vol.3-3-20
TSS descriptor, Vol.3-7-7, Vol.3-7-8
type field, Vol.3-3-14, Vol.3-3-16, Vol.3-5-2,

Vol.3-5-7
type field, encoding, Vol.3-3-19
when P (segment-present) flag is clear,

Vol.3-3-15
Segment limit

checking, Vol.3-2-30
field, segment descriptor, Vol.3-3-13

Segment not present exception (#NP), Vol.3-3-14
Segment override prefixes, Vol.1-3-29
Segment registers

64-bit mode, Vol.1-3-20, Vol.1-3-30, Vol.1-7-2
default usage rules, Vol.1-3-29
description of, Vol.1-3-13, Vol.1-3-17,

Vol.3-3-10
IA-32e mode, Vol.3-3-12
part of basic programming environment,

Vol.1-7-1
saved in TSS, Vol.3-7-5

Segment selector
description of, Vol.1-3-8, Vol.1-3-17
segment override prefixes, Vol.1-3-29
specifying, Vol.1-3-29

Segment selectors
description of, Vol.3-3-9
index field, Vol.3-3-9
null, Vol.3-5-9
null in 64-bit mode, Vol.3-5-9
RPL field, Vol.3-3-10, Vol.3-5-2
TI (table indicator) flag, Vol.3-3-10

Segmented addressing, Vol.2-1-6, Vol.3-1-9
Segmented memory model, Vol.1-1-7, Vol.1-3-8,

Vol.1-3-18
Segment-not-present exception (#NP), Vol.3-6-46

Segments
64-bit mode, Vol.3-3-6
basic flat model, Vol.3-3-3
code type, Vol.3-3-16
combining segment, page-level protection,

Vol.3-5-41
combining with paging, Vol.3-3-7
compatibility mode, Vol.3-3-6
data type, Vol.3-3-16
defined, Vol.3-3-1
disabling protection of, Vol.3-5-1
enabling protection of, Vol.3-5-1
mapping to pages, Vol.3-4-64
multisegment usage model, Vol.3-3-5
protected flat model, Vol.3-3-4
segment-level protection, Vol.3-5-2, Vol.3-5-5
segment-not-present exception, Vol.3-6-46
system, Vol.3-2-5
types, checking access rights, Vol.3-5-35
typing, Vol.3-5-7
using, Vol.3-3-3
wraparound, Vol.3-22-46

SELF IPI register, Vol.3-10-54
Self Snoop, Vol.2-3-219
Self-modifying code, effect on caches, Vol.3-11-27
GETSEC, Vol.2-5-2, Vol.2-5-4, Vol.2-5-6
SENTER sleep state, Vol.2-5-12
Serialization of I/O instructions, Vol.1-14-7
Serializing, Vol.3-8-24
Serializing instructions, Vol.1-14-7

CPUID, Vol.3-8-24
HT technology, Vol.3-8-43
non-privileged, Vol.3-8-24
privileged, Vol.3-8-24

SETcc instructions, Vol.1-3-22, Vol.1-7-20,
Vol.2-4-519

GETSEC, Vol.2-5-5
SF (sign) flag, EFLAGS register, Vol.1-3-21,

Vol.1-A-1, Vol.2-3-35
SF (stack fault) flag, x87 FPU status word, Vol.1-8-9,

Vol.1-8-38, Vol.3-22-11
SFENCE instruction, Vol.1-10-20, Vol.1-11-17,

Vol.1-11-37, Vol.2-4-524, Vol.3-2-21,
Vol.3-8-9, Vol.3-8-22, Vol.3-8-23,
Vol.3-8-25

SGDT instruction, Vol.2-4-525, Vol.3-2-29,
Vol.3-3-21

SHAF instruction, Vol.2-4-500
Shared resources

mapping of, Vol.3-8-49
Shift instructions, Vol.2-4-502
SHL instruction, Vol.1-7-15, Vol.2-4-502
SHLD instruction, Vol.1-7-18, Vol.2-4-528
SHR instruction, Vol.1-7-16, Vol.2-4-502
SHRD instruction, Vol.1-7-18, Vol.2-4-532
Shuffle instructions

SSE extensions, Vol.1-10-14
SSE2 extensions, Vol.1-11-10
Combined Volumes 1, 2A, 2B, 2C, 3A, 3B and 3C Index -39

COMBINED INDEX
SHUFPD instruction, Vol.1-11-10, Vol.2-4-536
SHUFPS instruction, Vol.2-4-539
Shutdown

resulting from double fault, Vol.3-6-39
resulting from out of IDT limit condition,

Vol.3-6-39
SI register, Vol.1-3-16
SIB byte, Vol.2-2-4

32-bit addressing forms of, Vol.2-2-8
description of, Vol.2-2-4

SIDT instruction, Vol.2-4-525, Vol.2-4-543,
Vol.3-2-29, Vol.3-3-21, Vol.3-6-13

Signaling NaN (see SNaN)
Signed

infinity, Vol.1-4-21
integers, description of, Vol.1-4-5
integers, encodings, Vol.1-4-6
zero, Vol.1-4-20

Significand, extracting from floating-point number,
Vol.2-3-468

Significand, of floating-point number, Vol.1-4-16
Sign, floating-point number, Vol.1-4-16
SIMD floating-point exception (#XF), Vol.3-2-25,

Vol.3-6-65, Vol.3-9-10
SIMD floating-point exception (#XM), Vol.1-11-25
SIMD floating-point exceptions

denormal operand exception (#D), Vol.1-11-21
description of, Vol.3-6-65, Vol.3-13-7
divide-by-zero (#Z), Vol.1-11-22
exception conditions, Vol.1-11-19
exception handlers, Vol.1-E-1
handler, Vol.3-13-3
inexact result exception (#P), Vol.1-11-23
invalid operation exception (#I), Vol.1-11-20
list of, Vol.1-11-19
numeric overflow exception (#O), Vol.1-11-22
numeric underflow exception (#U), Vol.1-11-22
precision exception (#P), Vol.1-11-23
software handling, Vol.1-11-26
summary of, Vol.1-C-1
support for, Vol.3-2-25
writing exception handlers for, Vol.1-E-1

SIMD floating-point exceptions, unmasking, effects of
, Vol.2-3-575, Vol.2-4-449, Vol.2-4-664

SIMD floating-point flag bits, Vol.1-10-6
SIMD floating-point mask bits, Vol.1-10-6
SIMD floating-point rounding control field, Vol.1-10-7
SIMD (single-instruction, multiple-data)

execution model, Vol.1-2-3, Vol.1-2-4, Vol.1-9-4
instructions, Vol.1-2-20, Vol.1-5-21, Vol.1-10-10
MMX instructions, Vol.1-5-14
operations, on packed double-precision

floating-point operands, Vol.1-11-6
operations, on packed single-precision

floating-point operands, Vol.1-10-9
packed data types, Vol.1-4-11
SSE instructions, Vol.1-5-16

SSE2 instructions, Vol.1-11-6, Vol.1-12-3,
Vol.1-12-9

Sine, x87 FPU operation, Vol.1-8-30, Vol.2-3-418,
Vol.2-3-420

Single-precision floating-point format, Vol.1-4-6
Single-stepping

breakpoint exception condition, Vol.3-17-12
on branches, Vol.3-17-17
on exceptions, Vol.3-17-17
on interrupts, Vol.3-17-17
TF (trap) flag, EFLAGS register, Vol.3-17-12

SINIT, Vol.2-5-5
SLDT instruction, Vol.2-4-546, Vol.3-2-29
Sleep, Vol.1-2-6
SLTR instruction, Vol.3-3-21
Smart cache, Vol.1-2-6
Smart memory access, Vol.1-2-15
smart memory access, Vol.1-2-6
SMBASE

default value, Vol.3-33-5
relocation of, Vol.3-33-19

GETSEC, Vol.2-5-5
SMI handler

description of, Vol.3-33-1
execution environment for, Vol.3-33-12
exiting from, Vol.3-33-4
location in SMRAM, Vol.3-33-5
VMX treatment of, Vol.3-33-23

SMI interrupt, Vol.3-2-31, Vol.3-10-5
description of, Vol.3-33-1, Vol.3-33-3
IO_SMI bit, Vol.3-33-15
priority, Vol.3-33-4
switching to SMM, Vol.3-33-3
synchronous and asynchronous, Vol.3-33-15
VMX treatment of, Vol.3-33-23

SMI# pin, Vol.3-6-4, Vol.3-33-3, Vol.3-33-21
SMM

asynchronous SMI, Vol.3-33-15
auto halt restart, Vol.3-33-18
executing the HLT instruction in, Vol.3-33-19
exiting from, Vol.3-33-4
handling exceptions and interrupts, Vol.3-33-14
introduction to, Vol.3-2-10
I/O instruction restart, Vol.3-33-20
I/O state implementation, Vol.3-33-15
memory model used, Vol.1-3-11
native 16-bit mode, Vol.3-21-1
overview, Vol.1-3-1
overview of, Vol.3-33-1
revision identifier, Vol.3-33-17
revision identifier field, Vol.3-33-17
switching to, Vol.3-33-3
switching to from other operating modes,

Vol.3-33-3
synchronous SMI, Vol.3-33-15
VMX operation

default RSM treatment, Vol.3-33-24
default SMI delivery, Vol.3-33-23
Index-40 Combined Volumes 1, 2A, 2B, 2C, 3A, 3B and 3C

COMBINED INDEX
dual-monitor treatment, Vol.3-33-27
overview, Vol.3-33-2
protecting CR4.VMXE, Vol.3-33-26
RSM instruction, Vol.3-33-25
SMM monitor, Vol.3-33-2
SMM VM exits, Vol.3-27-1, Vol.3-33-27
SMM-transfer VMCS, Vol.3-33-27
SMM-transfer VMCS pointer, Vol.3-33-27
VMCS pointer preservation, Vol.3-33-23
VMX-critical state, Vol.3-33-23

SMRAM
caching, Vol.3-33-11
description of, Vol.3-33-1
state save map, Vol.3-33-6
structure of, Vol.3-33-5

SMSW instruction, Vol.2-4-548, Vol.3-2-29,
Vol.3-25-21

SNaNs
description of, Vol.1-4-22
effect on COMISD and UCOMISD, Vol.1-11-10
encodings, Vol.1-4-7
operating on, Vol.1-4-22
typical uses of, Vol.1-4-22
using in applications, Vol.1-4-23

SNaN, compatibility, IA-32 processors, Vol.3-22-12,
Vol.3-22-19

Snooping mechanism, Vol.3-11-8
Software compatibility, Vol.1-1-6
Software controlled clock

modulation control bits, Vol.3-14-17
power consumption, Vol.3-14-11, Vol.3-14-16

Software interrupts, Vol.3-6-5
Software-controlled bus locking, Vol.3-8-5
SP register, Vol.1-3-16
Speculative execution, Vol.1-2-10, Vol.1-2-13
SpeedStep technology, Vol.2-3-214
Spin-wait loops

programming with PAUSE instruction,
Vol.1-11-18

Split pages, Vol.3-22-21
Spurious interrupt, local APIC, Vol.3-10-46
SQRTPD instruction, Vol.1-11-8, Vol.2-4-551
SQRTPS instruction, Vol.1-10-12, Vol.2-4-553
SQRTSD instruction, Vol.1-11-9, Vol.2-4-556
SQRTSS instruction, Vol.1-10-12, Vol.2-4-558
Square root, Fx87 PU operation, Vol.2-3-423
SS register, Vol.1-3-17, Vol.1-3-19, Vol.1-6-1,

Vol.2-3-578, Vol.2-4-40, Vol.2-4-337
SSE extensions

128-bit packed single-precision data type,
Vol.1-10-8

64-bit mode, Vol.1-10-4
64-bit SIMD integer instructions, Vol.1-10-16
branching on arithmetic operations, Vol.1-11-36
cacheability control instructions, Vol.1-10-18
cacheability hint instructions, Vol.1-11-36
cacheability instruction encodings, Vol.2-B-68

caller-save requirement for procedure and
function calls, Vol.1-11-35

checking for SSE and SSE2 support, Vol.1-11-28
checking for with CPUID, Vol.3-13-2
checking support for FXSAVE/FXRSTOR,

Vol.3-13-3
comparison instructions, Vol.1-10-13
compatibility mode, Vol.1-10-4
compatibility of SIMD and x87 FPU floating-point

data types, Vol.1-11-32
conversion instructions, Vol.1-10-15
CPUID feature flag, Vol.3-9-10
CPUID flag, Vol.2-3-219
data movement instructions, Vol.1-10-11
data types, Vol.1-10-8, Vol.1-12-1
denormal operand exception (#D), Vol.1-11-21
denormals-are-zeros mode, Vol.1-10-7
divide by zero exception (#Z), Vol.1-11-22
EM flag, Vol.3-2-22
emulation of, Vol.3-13-8
exceptions, Vol.1-11-18
facilities for automatic saving of state,

Vol.3-13-9, Vol.3-13-12
floating-point encodings, Vol.2-B-60
floating-point format, Vol.1-4-15, Vol.1-4-16
flush-to-zero mode, Vol.1-10-7
generating SIMD FP exceptions, Vol.1-11-23
guidelines for using, Vol.1-11-27
handling combinations of masked and unmasked

exceptions, Vol.1-11-26
handling masked exceptions, Vol.1-11-23
handling SIMD floating-point exceptions in

software, Vol.1-11-26
handling unmasked exceptions, Vol.1-11-25,

Vol.1-11-26
inexact result exception (#P), Vol.1-11-23
initialization, Vol.3-9-10
instruction encodings, Vol.2-B-60
instruction prefixes, effect on SSE and SSE2

instructions, Vol.1-11-37
instruction set, Vol.1-5-16, Vol.1-10-9
integer instruction encodings, Vol.2-B-67
interaction of SIMD and x87 FPU floating-point

exceptions, Vol.1-11-26
interaction of SSE and SSE2 instructions with x87

FPU and MMX instructions, Vol.1-11-31
interfacing with SSE and SSE2 procedures and

functions, Vol.1-11-34
intermixing packed and scalar floating-point

and 128-bit SIMD integer instructions
and data, Vol.1-11-32

introduction, Vol.1-2-4
introduction of into the IA-32 architecture,

Vol.3-22-3
invalid operation exception (#I), Vol.1-11-20
logical instructions, Vol.1-10-13
masked responses to invalid arithmetic operations

, Vol.1-11-20
Combined Volumes 1, 2A, 2B, 2C, 3A, 3B and 3C Index -41

COMBINED INDEX
memory ordering encodings, Vol.2-B-68
memory ordering instruction, Vol.1-10-20
MMX technology compatibility, Vol.1-10-8
MXCSR register, Vol.1-10-5
MXCSR state management instructions,

Vol.1-10-17
non-temporal data, operating on, Vol.1-10-18
numeric overflow exception (#O), Vol.1-11-22
numeric underflow exception (#U), Vol.1-11-22
overview, Vol.1-10-1
packed 128-Bit SIMD data types, Vol.1-4-12
packed and scalar floating-point instructions,

Vol.1-10-9
programming environment, Vol.1-10-3
providing exception handlers for, Vol.3-13-5,

Vol.3-13-7
providing operating system support for,

Vol.3-13-1
QNaN floating-point indefinite, Vol.1-4-24
restoring SSE and SSE2 state, Vol.1-11-30
REX prefixes, Vol.1-10-4
saving and restoring state, Vol.3-13-8
saving SSE and SSE2 state, Vol.1-11-30
saving state on task, context switches,

Vol.3-13-9
saving XMM register state on a procedure or

function call, Vol.1-11-34
shuffle instructions, Vol.1-10-14
SIMD floating-point exception conditions,

Vol.1-11-19
SIMD floating-point exception cross reference,

Vol.1-C-4
SIMD Floating-point exception (#XF), Vol.3-6-65
SIMD floating-point exception (#XM),

Vol.1-11-25, Vol.1-11-26
SIMD floating-point exceptions, Vol.1-11-19
SIMD floating-point mask and flag bits, Vol.1-10-6
SIMD floating-point rounding control field,

Vol.1-10-7
SSE and SSE2 conversion instruction chart,

Vol.1-11-13
SSE feature flag, CPUID instruction, Vol.1-11-28
SSE2 compatibility, Vol.1-10-8
system programming, Vol.3-13-1
unpack instructions, Vol.1-10-14
updating MMX technology routines

using128-bit SIMD integer instructions,
Vol.1-11-35

using TS flag to control saving of state,
Vol.3-13-10

x87 FPU compatibility, Vol.1-10-8
XMM registers, Vol.1-10-4

SSE feature flag
CPUID instruction, Vol.3-13-2

SSE feature flag, CPUID instruction, Vol.1-11-28,
Vol.1-12-7

SSE instructions
descriptions of, Vol.1-10-9

SIMD floating-point exception cross-reference,
Vol.1-C-4

summary of, Vol.1-5-16
SSE2 extensions

128-bit packed single-precision
data type, Vol.1-11-4

128-bit packed single-precision data type,
Vol.1-12-2

128-bit SIMD integer instruction
extensions, Vol.1-11-16

64-bit and 128-bit SIMD integer instructions,
Vol.1-11-15

64-bit mode, Vol.1-11-4
arithmetic instructions, Vol.1-11-8
branch hints, Vol.1-11-18
branching on arithmetic operations, Vol.1-11-36
cacheability control instructions, Vol.1-11-17
cacheability hint instructions, Vol.1-11-36
cacheability instruction encodings, Vol.2-B-86
caller-save requirement for procedure and

function calls, Vol.1-11-35
checking for SSE and SSE2 support, Vol.1-11-28
checking for with CPUID, Vol.3-13-2
checking support for FXSAVE/FXRSTOR,

Vol.3-13-3
comparison instructions, Vol.1-11-9
compatibility mode, Vol.1-11-4
compatibility of SIMD and x87 FPU floating-point

data types, Vol.1-11-32
conversion instructions, Vol.1-11-12
CPUID feature flag, Vol.3-9-10
CPUID flag, Vol.2-3-219
data movement instructions, Vol.1-11-7
data types, Vol.1-11-4, Vol.1-11-5, Vol.1-12-2
denormal operand exception (#D), Vol.1-11-21
denormals-are-zero mode, Vol.1-11-4
divide by zero exception (#Z), Vol.1-11-22
EM flag, Vol.3-2-22
emulation of, Vol.3-13-8
exceptions, Vol.1-11-18
facilities for automatic saving of state,

Vol.3-13-9, Vol.3-13-12
floating-point encodings, Vol.2-B-70
floating-point format, Vol.1-4-15, Vol.1-4-16
generating SIMD floating-point exceptions,

Vol.1-11-23
guidelines for using, Vol.1-11-27
handling combinations of masked and unmasked

exceptions, Vol.1-11-26
handling masked exceptions, Vol.1-11-23
handling SIMD floating-point exceptions in

software, Vol.1-11-26
handling unmasked exceptions, Vol.1-11-25,

Vol.1-11-26
inexact result exception (#P), Vol.1-11-23
initialization, Vol.3-9-10
initialization of, Vol.1-11-29
Index-42 Combined Volumes 1, 2A, 2B, 2C, 3A, 3B and 3C

COMBINED INDEX
instruction prefixes, effect on SSE and SSE2
instructions, Vol.1-11-37

instruction set, Vol.1-5-21
instructions, Vol.1-11-6, Vol.1-12-3, Vol.1-12-9
integer instruction encodings, Vol.2-B-79
interaction of SIMD and x87 FPU floating-point

exceptions, Vol.1-11-26
interaction of SSE and SSE2 instructions with x87

FPU and MMX instructions, Vol.1-11-31
interfacing with SSE and SSE2 procedures and

functions, Vol.1-11-34
intermixing packed and scalar floating-point and

128-bit SIMD integer instructions and data,
Vol.1-11-32

introduction of into the IA-32 architecture,
Vol.3-22-4

invalid operation exception (#I), Vol.1-11-20
logical instructions, Vol.1-11-9
masked responses to invalid arithmetic operations

, Vol.1-11-20
memory ordering instructions, Vol.1-11-17
MMX technology compatibility, Vol.1-11-4
numeric overflow exception (#O), Vol.1-11-22
numeric underflow exception (#U), Vol.1-11-22
overview of, Vol.1-11-1
packed 128-Bit SIMD data types, Vol.1-4-12
packed and scalar floating-point instructions,

Vol.1-11-6
programming environment, Vol.1-11-3
providing exception handlers for, Vol.3-13-5,

Vol.3-13-7
providing operating system support for,

Vol.3-13-1
QNaN floating-point indefinite, Vol.1-4-24
restoring SSE and SSE2 state, Vol.1-11-30
REX prefixes, Vol.1-11-4
saving and restoring state, Vol.3-13-8
saving SSE and SSE2 state, Vol.1-11-30
saving state on task, context switches,

Vol.3-13-9
saving XMM register state on a procedure or

function call, Vol.1-11-34
shuffle instructions, Vol.1-11-10
SIMD floating-point exception conditions,

Vol.1-11-19
SIMD floating-point exception cross reference,

Vol.1-C-7
SIMD Floating-point exception (#XF), Vol.3-6-65
SIMD floating-point exception (#XM),

Vol.1-11-25, Vol.1-11-26
SIMD floating-point exceptions, Vol.1-11-19
SSE and SSE2 conversion instruction chart,

Vol.1-11-13
SSE compatibility, Vol.1-11-4
SSE2 feature flag, CPUID instruction, Vol.1-11-28
system programming, Vol.3-13-1
unpack instructions, Vol.1-11-10

updating MMX technology routines using 128-bit
SIMD integer instructions, Vol.1-11-35

using TS flag to control saving state, Vol.3-13-10
writing applications with, Vol.1-11-27
x87 FPU compatibility, Vol.1-11-4

SSE2 feature flag
CPUID instruction, Vol.3-13-2

SSE2 feature flag, CPUID instruction, Vol.1-11-28,
Vol.1-12-7

SSE2 instructions
descriptions of, Vol.1-11-6, Vol.1-12-3,

Vol.1-12-9
SIMD floating-point exception cross-reference,

Vol.1-C-7
summary of, Vol.1-5-21

SSE3
CPUID flag, Vol.2-3-214

SSE3 extensions
64-bit mode, Vol.1-12-1
asymmetric processing, Vol.1-12-2
checking for with CPUID, Vol.3-13-2
compatibility mode, Vol.1-12-1
CPUID feature flag, Vol.3-9-10
CPUID flag, Vol.2-3-214
DNA exceptions, Vol.1-12-13
EM flag, Vol.3-2-22
emulation, Vol.1-12-14
emulation of, Vol.3-13-8
enabling support in a system executive,

Vol.1-12-7, Vol.1-12-28
event mgmt instruction encodings, Vol.2-B-88
example verifying SS3 support, Vol.3-8-62,

Vol.3-8-66, Vol.3-14-3
exceptions, Vol.1-12-13
facilities for automatic saving of state,

Vol.3-13-9, Vol.3-13-12
floating-point instruction encodings, Vol.2-B-87
guideline for packed addition/subtraction

instructions, Vol.1-12-8
horizontal addition/subtraction instructions,

Vol.1-12-5
horizontal processing, Vol.1-12-2
initialization, Vol.3-9-10
instruction that addresses cache line splits,

Vol.1-5-26
instruction that improves X87-FP integer

conversion, Vol.1-5-26
instructions for horizontal addition/subtraction,

Vol.1-5-26
instructions for packed addition/subtraction,

Vol.1-5-26
instructions that enhance

LOAD/MOVE/DUPLICATE, Vol.1-5-27
instructions that improve synchronization

between agents, Vol.1-5-27
integer instruction encodings, Vol.2-B-88,

Vol.2-B-89
Combined Volumes 1, 2A, 2B, 2C, 3A, 3B and 3C Index -43

COMBINED INDEX
introduction of into the IA-32 architecture,
Vol.3-22-4

LOAD/MOVE/DUPLICATE enhancement
instructions, Vol.1-12-4

MMX technology compatibility, Vol.1-12-2
numeric error flag and IGNNE#, Vol.1-12-14
packed addition/subtraction instructions,

Vol.1-12-5
programming environment, Vol.1-12-1
providing exception handlers for, Vol.3-13-5,

Vol.3-13-7
providing operating system support for,

Vol.3-13-1
REX prefixes, Vol.1-12-1
saving and restoring state, Vol.3-13-8
saving state on task, context switches,

Vol.3-13-9
SIMD floating-point exception cross reference,

Vol.1-C-11, Vol.1-C-13
specialized 120-bit load instruction, Vol.1-12-4
SSE compatibility, Vol.1-12-2
SSE2 compatibility, Vol.1-12-2
system programming, Vol.3-13-1
using TS flag to control saving of state,

Vol.3-13-10
x87 FPU compatibility, Vol.1-12-2

SSE3 feature flag
CPUID instruction, Vol.3-13-2

SSE3 instructions
descriptions of, Vol.1-12-3
SIMD floating-point exception

cross-reference, Vol.1-C-11, Vol.1-C-13
summary of, Vol.1-5-25

SSSE3 extensions, Vol.2-B-89, Vol.2-B-98,
Vol.2-B-108

64-bit mode, Vol.1-12-1
asymmetric processing, Vol.1-12-2
checking for support, Vol.1-12-13
compatibility, Vol.1-12-2
compatibility mode, Vol.1-12-1
CPUID flag, Vol.2-3-214
data types, Vol.1-12-1
DNA exceptions, Vol.1-12-13
emulation, Vol.1-12-14
enabling support in a system executive,

Vol.1-12-12
exceptions, Vol.1-12-13
horizontal add/subtract instructions, Vol.1-12-9
horizontal processing, Vol.1-12-2
MMX technology compatibility, Vol.1-12-2
multiply and add packed instructions, Vol.1-12-11
numeric error flag and IGNNE#, Vol.1-12-14
packed absolute value instructions, Vol.1-12-11
packed align instruction, Vol.1-12-12
packed multiply high instructions, Vol.1-12-11
packed shuffle instruction, Vol.1-12-12
programming environment, Vol.1-12-1
SSSE2 compatibility, Vol.1-12-2

x87 FPU compatibility, Vol.1-12-2
SSSE3 instructions

descriptions of, Vol.1-12-8
summary of, Vol.1-5-27

Stack
64-bit mode, Vol.1-3-6, Vol.1-6-5
64-bit mode behavior, Vol.1-6-19
address-size attribute, Vol.1-6-3
alignment, Vol.1-6-3
alignment of stack pointer, Vol.1-6-3
current stack, Vol.1-6-2, Vol.1-6-4
description of, Vol.1-6-1
EIP register (return instruction pointer), Vol.1-6-4
maximum size, Vol.1-6-1
number allowed, Vol.1-6-1
overview of, Vol.1-3-5
passing parameters on, Vol.1-6-7
popping values from, Vol.1-6-1
procedure linking information, Vol.1-6-4
pushing values on, Vol.1-6-1
return instruction pointer, Vol.1-6-4
SS register, Vol.1-6-1
stack segment, Vol.1-3-19, Vol.1-6-1
stack-frame base pointer, EBP register, Vol.1-6-4
switching

on calls to interrupt and exception handlers,
Vol.1-6-15

on inter-privilege level calls, Vol.1-6-11,
Vol.1-6-16

privilege levels, Vol.1-6-10
width, Vol.1-6-3

Stack fault exception (#SS), Vol.3-6-48
Stack fault, x87 FPU, Vol.3-22-11, Vol.3-22-18
Stack pointers

privilege level 0, 1, and 2 stacks, Vol.3-7-6
size of, Vol.3-3-15

Stack segments
paging of, Vol.3-2-8
privilege level check when loading SS register,

Vol.3-5-14
size of stack pointer, Vol.3-3-15

Stack switching
exceptions/interrupts when switching stacks,

Vol.3-6-11
IA-32e mode, Vol.3-6-25
inter-privilege level calls, Vol.3-5-25

Stack-fault exception (#SS), Vol.3-22-46
Stacks

error code pushes, Vol.3-22-44
faults, Vol.3-6-48
for privilege levels 0, 1, and 2, Vol.3-5-26
interlevel RET/IRET

from a 16-bit interrupt or call gate,
Vol.3-22-44

interrupt stack table, 64-bit mode, Vol.3-6-26
management of control transfers for

16- and 32-bit procedure calls, Vol.3-21-5
operation on pushes and pops, Vol.3-22-43
Index-44 Combined Volumes 1, 2A, 2B, 2C, 3A, 3B and 3C

COMBINED INDEX
pointers to in TSS, Vol.3-7-6
stack switching, Vol.3-5-25, Vol.3-6-25
usage on call to exception

or interrupt handler, Vol.3-22-44
Stack, pushing values on, Vol.2-4-423
Stack, x87 FPU

stack fault, Vol.1-8-9
stack overflow and underflow exception (#IS),

Vol.1-8-7, Vol.1-8-37, Vol.1-8-38
Status flags

EFLAGS register, Vol.1-3-21, Vol.1-8-9,
Vol.1-8-10, Vol.1-8-29

Status flags, EFLAGS register, Vol.2-3-147,
Vol.2-3-150, Vol.2-3-342, Vol.2-3-348,
Vol.2-3-553, Vol.2-4-521, Vol.2-4-601

STC instruction, Vol.1-3-22, Vol.1-7-31, Vol.2-4-560
STD instruction, Vol.1-3-22, Vol.1-7-31, Vol.2-4-561
Stepping information, Vol.2-3-224
Stepping information, following processor

initialization or reset, Vol.3-9-5
STI instruction, Vol.1-7-32, Vol.1-14-5, Vol.2-4-562,

Vol.3-6-10
Sticky bits, Vol.1-8-7
STMXCSR instruction, Vol.1-10-17, Vol.1-11-34,

Vol.2-4-565
Store buffer

caching terminology, Vol.3-11-8
characteristics of, Vol.3-11-5
description of, Vol.3-11-7, Vol.3-11-29
in IA-32 processors, Vol.3-22-46
location of, Vol.3-11-1
operation of, Vol.3-11-29

STOS instruction, Vol.1-3-22, Vol.1-7-27,
Vol.2-4-467, Vol.2-4-566

STOSB instruction, Vol.2-4-566
STOSD instruction, Vol.2-4-566
STOSQ instruction, Vol.2-4-566
STOSW instruction, Vol.2-4-566
STPCLK# pin, Vol.3-6-4
STR instruction, Vol.2-4-571, Vol.3-2-29,

Vol.3-3-21, Vol.3-7-9
Streaming SIMD extensions 2 (see SSE2 extensions)
Streaming SIMD extensions (see SSE extensions)
String data type, Vol.1-4-11
String instructions, Vol.2-3-170, Vol.2-3-504,

Vol.2-3-600, Vol.2-4-109, Vol.2-4-174,
Vol.2-4-514, Vol.2-4-566

Strong uncached (UC) memory type
description of, Vol.3-11-8
effect on memory ordering, Vol.3-8-23
use of, Vol.3-9-10, Vol.3-11-12

ST(0), top-of-stack register, Vol.1-8-4
Sub C-state, Vol.3-14-9
SUB instruction, Vol.1-7-12, Vol.2-3-29,

Vol.2-3-294, Vol.2-3-598, Vol.2-4-573,
Vol.3-8-5

SUBPD instruction, Vol.2-4-576
SUBSS instruction, Vol.2-4-583

Superscalar microarchitecture
P6 family microarchitecture, Vol.1-2-3
P6 family processors, Vol.1-2-9
Pentium 4 processor, Vol.1-2-12
Pentium Pro processor, Vol.1-2-3
Pentium processor, Vol.1-2-2

Supervisor mode
description of, Vol.3-5-40
U/S (user/supervisor) flag, Vol.3-5-40

SVR (spurious-interrupt vector register), local APIC,
Vol.3-10-11, Vol.3-22-37

SWAPGS instruction, Vol.2-4-585, Vol.3-2-10,
Vol.3-30-23

SYSCALL instruction, Vol.2-4-587, Vol.3-2-10,
Vol.3-5-32, Vol.3-30-23

SYSENTER instruction, Vol.2-4-589, Vol.3-3-11,
Vol.3-5-15, Vol.3-5-30, Vol.3-5-31,
Vol.3-30-23, Vol.3-30-24

CPUID flag, Vol.2-3-217
SYSENTER_CS_MSR, Vol.3-5-30
SYSENTER_EIP_MSR, Vol.3-5-30
SYSENTER_ESP_MSR, Vol.3-5-30
SYSEXIT instruction, Vol.2-4-594, Vol.3-3-11,

Vol.3-5-15, Vol.3-5-30, Vol.3-5-31,
Vol.3-30-23, Vol.3-30-24

CPUID flag, Vol.2-3-217
SYSRET instruction, Vol.2-4-598, Vol.3-2-10,

Vol.3-5-32, Vol.3-30-23
System

architecture, Vol.3-2-2, Vol.3-2-3
data structures, Vol.3-2-3
instructions, Vol.3-2-10, Vol.3-2-27
registers in IA-32e mode, Vol.3-2-9
registers, introduction to, Vol.3-2-9
segment descriptor, layout of, Vol.3-5-3
segments, paging of, Vol.3-2-8

System management mode (see SMM)
System programming

MMX technology, Vol.3-12-1
SSE/SSE2/SSE3 extensions, Vol.3-13-1
virtualization of resources, Vol.3-31-1

System-management mode (see SMM)

T
T (debug trap) flag, TSS, Vol.3-7-6
Tangent, x87 FPU operation, Vol.1-8-30,

Vol.2-3-404
Task gate, Vol.1-6-17
Task gates

descriptor, Vol.3-7-11
executing a task, Vol.3-7-3
handling a virtual-8086 mode interrupt or

exception through, Vol.3-20-21
IA-32e mode, Vol.3-2-7
in IDT, Vol.3-6-14
introduction for IA-32e, Vol.3-2-6
introduction to, Vol.3-2-5, Vol.3-2-6, Vol.3-2-7
Combined Volumes 1, 2A, 2B, 2C, 3A, 3B and 3C Index -45

COMBINED INDEX
layout of, Vol.3-6-14
referencing of TSS descriptor, Vol.3-6-20

Task management, Vol.3-7-1
data structures, Vol.3-7-4
mechanism, description of, Vol.3-7-3

Task register, Vol.1-3-5, Vol.3-3-21
description of, Vol.3-2-17, Vol.3-7-1, Vol.3-7-9
IA-32e mode, Vol.3-2-17
initializing, Vol.3-9-14
introduction to, Vol.3-2-9
loading, Vol.2-3-611
storing, Vol.2-4-571

Task state segment (see TSS)
Task switch

CALL instruction, Vol.2-3-113
return from nested task, IRET instruction,

Vol.2-3-537
Task switching

description of, Vol.3-7-3
exception condition, Vol.3-17-13
operation, Vol.3-7-13
preventing recursive task switching, Vol.3-7-18
saving MMX state on, Vol.3-12-5
saving SSE/SSE2/SSE3 state

on task or context switches, Vol.3-13-9
T (debug trap) flag, Vol.3-7-6

Tasks
address space, Vol.3-7-19
description of, Vol.3-7-1
exception handler, Vol.1-6-17
exception-handler task, Vol.3-6-16
executing, Vol.3-7-3
Intel 286 processor tasks, Vol.3-22-51
interrupt handler, Vol.1-6-17
interrupt-handler task, Vol.3-6-16
interrupts and exceptions, Vol.3-6-20
linking, Vol.3-7-16
logical address space, Vol.3-7-20
management, Vol.3-7-1
mapping linear and physical address space,

Vol.3-7-19
restart following an exception or interrupt,

Vol.3-6-7
state (context), Vol.3-7-2, Vol.3-7-3
structure, Vol.3-7-1
switching, Vol.3-7-3
task management data structures, Vol.3-7-4

Temporal data, Vol.1-10-18
TEST instruction, Vol.1-7-21, Vol.2-4-600,

Vol.2-4-652
TF (trap) flag, EFLAGS register, Vol.1-3-23,

Vol.1-A-1, Vol.3-2-12, Vol.3-6-19,
Vol.3-17-12, Vol.3-17-15, Vol.3-17-39,
Vol.3-17-42, Vol.3-17-44, Vol.3-17-47,
Vol.3-20-6, Vol.3-20-29, Vol.3-33-14

Thermal Monitor, Vol.1-2-6
CPUID flag, Vol.2-3-219

Thermal Monitor 2, Vol.2-3-214

CPUID flag, Vol.2-3-214
Thermal monitoring

advanced power management, Vol.3-14-9
automatic, Vol.3-14-12
automatic thermal monitoring, Vol.3-14-10
catastrophic shutdown detector, Vol.3-14-10,

Vol.3-14-12
clock-modulation bits, Vol.3-14-17
C-state, Vol.3-14-9
detection of facilities, Vol.3-14-18
Enhanced Intel SpeedStep Technology,

Vol.3-14-1
IA32_APERF MSR, Vol.3-14-2
IA32_MPERF MSR, Vol.3-14-2
IA32_THERM_INTERRUPT MSR, Vol.3-14-19
IA32_THERM_STATUS MSR, Vol.3-14-19
interrupt enable/disable flags, Vol.3-14-15
interrupt mechanisms, Vol.3-14-11
MWAIT extensions for, Vol.3-14-9
on die sensors, Vol.3-14-11, Vol.3-14-19
overview of, Vol.3-14-1, Vol.3-14-10
performance state transitions, Vol.3-14-14
sensor interrupt, Vol.3-10-2
setting thermal thresholds, Vol.3-14-19
software controlled clock modulation,

Vol.3-14-11, Vol.3-14-16
status flags, Vol.3-14-14
status information, Vol.3-14-14, Vol.3-14-16
stop clock mechanism, Vol.3-14-11
thermal monitor 1 (TM1), Vol.3-14-12
thermal monitor 2 (TM2), Vol.3-14-12
TM flag, CPUID instruction, Vol.3-14-18

Thermal status bit, Vol.3-14-19, Vol.3-14-24
Thermal status log bit, Vol.3-14-19, Vol.3-14-24
Thermal threshold #1 log, Vol.3-14-20, Vol.3-14-25
Thermal threshold #1 status, Vol.3-14-20,

Vol.3-14-25
Thermal threshold #2 log, Vol.3-14-21, Vol.3-14-25
Thermal threshold #2 status, Vol.3-14-21,

Vol.3-14-25
THERMTRIP# interrupt enable bit, Vol.3-14-22,

Vol.3-14-26
thread timeout indicator, Vol.3-16-5, Vol.3-16-11,

Vol.3-16-15, Vol.3-16-18
Threshold #1 interrupt enable bit, Vol.3-14-23,

Vol.3-14-27
Threshold #1 value, Vol.3-14-22, Vol.3-14-26
Threshold #2 interrupt enable, Vol.3-14-23,

Vol.3-14-27
Threshold #2 value, Vol.3-14-23, Vol.3-14-27
TI (table indicator) flag, segment selector, Vol.3-3-10
Time Stamp Counter, Vol.2-3-217
Timer, local APIC, Vol.3-10-22
Time-stamp counter

counting clockticks, Vol.3-18-98
description of, Vol.3-17-49
IA32_TIME_STAMP_COUNTER MSR, Vol.3-17-49
RDTSC instruction, Vol.3-17-49
Index-46 Combined Volumes 1, 2A, 2B, 2C, 3A, 3B and 3C

COMBINED INDEX
reading, Vol.3-2-32
software drivers for, Vol.3-18-120
TSC flag, Vol.3-17-49
TSD flag, Vol.3-17-49

Time-stamp counter, reading, Vol.2-4-461,
Vol.2-4-463

Tiny number, Vol.1-4-20
TLB entry, invalidating (flushing), Vol.2-3-531
TLBs

description of, Vol.3-11-1, Vol.3-11-6
flushing, Vol.3-11-29
invalidating (flushing), Vol.3-2-31
relationship to PGE flag, Vol.3-22-26
relationship to PSE flag, Vol.3-11-29
virtual TLBs, Vol.3-31-5

TM1 and TM2
See: thermal monitoring, Vol.3-14-12

TMR
Trigger Mode Register, Vol.3-10-44, Vol.3-10-55,

Vol.3-10-60, Vol.3-10-67
TMR (Trigger Mode Register), local APIC, Vol.3-10-43
TOP (stack TOP) field

x87 FPU status word, Vol.1-8-3, Vol.1-9-12
TPR

Task Priority Register, Vol.3-10-55, Vol.3-10-60
TR register, Vol.1-3-6
TR (trace message enable) flag

DEBUGCTLMSR MSR, Vol.3-17-15, Vol.3-17-39,
Vol.3-17-42, Vol.3-17-45, Vol.3-17-47

Trace cache, Vol.1-2-13, Vol.3-11-6
Transcendental instruction accuracy, Vol.1-8-32,

Vol.3-22-10, Vol.3-22-20
Translation lookaside buffer (see TLB)
Trap gate, Vol.1-6-14
Trap gates

difference between interrupt and trap gates,
Vol.3-6-19

for 16-bit and 32-bit code modules, Vol.3-21-2
handling a virtual-8086 mode interrupt or

exception through, Vol.3-20-18
in IDT, Vol.3-6-14
introduction for IA-32e, Vol.3-2-6
introduction to, Vol.3-2-5, Vol.3-2-7
layout of, Vol.3-6-14

Traps
description of, Vol.3-6-6
restarting a program or task after, Vol.3-6-7

Truncation
description of, Vol.1-4-26
with SSE-SSE2 conversion instructions,

Vol.1-4-26
Trusted Platform Module, Vol.2-5-6
TS (task switched) flag

CR0 control register, Vol.3-2-20, Vol.3-2-30,
Vol.3-6-36, Vol.3-12-1, Vol.3-13-4,
Vol.3-13-10

TS (task switched) flag, CR0 register, Vol.2-3-140
TSD flag, CR4 register, Vol.2-4-461, Vol.2-4-463

TSD (time-stamp counter disable) flag
CR4 control register, Vol.3-2-23, Vol.3-5-34,

Vol.3-17-50, Vol.3-22-24
TSS

16-bit TSS, structure of, Vol.3-7-21
32-bit TSS, structure of, Vol.3-7-4
64-bit mode, Vol.3-7-22
CR3 control register (PDBR), Vol.3-7-5,

Vol.3-7-19
description of, Vol.3-2-5, Vol.3-2-6, Vol.3-7-1,

Vol.3-7-4
EFLAGS register, Vol.3-7-5
EFLAGS.NT, Vol.3-7-16
EIP, Vol.3-7-6
executing a task, Vol.3-7-3
floating-point save area, Vol.3-22-16
format in 64-bit mode, Vol.3-7-22
general-purpose registers, Vol.3-7-5
IA-32e mode, Vol.3-2-7
initialization for multitasking, Vol.3-9-14
interrupt stack table, Vol.3-7-23
invalid TSS exception, Vol.3-6-42
IRET instruction, Vol.3-7-16
I/O map base, Vol.1-14-5
I/O map base address field, Vol.3-7-6,

Vol.3-22-39
I/O permission bit map, Vol.1-14-5, Vol.3-7-6,

Vol.3-7-23
LDT segment selector field, Vol.3-7-6, Vol.3-7-19
link field, Vol.3-6-20
order of reads/writes to, Vol.3-22-39
pointed to by task-gate descriptor, Vol.3-7-11
previous task link field, Vol.3-7-6, Vol.3-7-16,

Vol.3-7-18
privilege-level 0, 1, and 2 stacks, Vol.3-5-26
referenced by task gate, Vol.3-6-20
saving state of EFLAGS register, Vol.1-3-20
segment registers, Vol.3-7-5
T (debug trap) flag, Vol.3-7-6
task register, Vol.3-7-9
using 16-bit TSSs in a 32-bit environment,

Vol.3-22-39
virtual-mode extensions, Vol.3-22-39

TSS descriptor
B (busy) flag, Vol.3-7-7
busy flag, Vol.3-7-18
initialization for multitasking, Vol.3-9-14
structure of, Vol.3-7-7, Vol.3-7-8

TSS segment selector
field, task-gate descriptor, Vol.3-7-11
writes, Vol.3-22-39

TSS, relationship to task register, Vol.2-4-571
Type

checking, Vol.3-5-7
field, IA32_MTRR_DEF_TYPE MSR, Vol.3-11-33
field, IA32_MTRR_PHYSBASEn MTRR,

Vol.3-11-35, Vol.3-11-37
Combined Volumes 1, 2A, 2B, 2C, 3A, 3B and 3C Index -47

COMBINED INDEX
field, segment descriptor, Vol.3-3-14, Vol.3-3-16,
Vol.3-3-19, Vol.3-5-2, Vol.3-5-7

of segment, Vol.3-5-7

U
UC- (uncacheable) memory type, Vol.3-11-9
UCOMISD instruction, Vol.1-11-10, Vol.2-4-603
UCOMISS instruction, Vol.1-10-14, Vol.2-4-605
UD2 instruction, Vol.1-7-34, Vol.2-4-607, Vol.3-22-6
UE (numeric underflow exception) flag

MXCSR register, Vol.1-11-22
x87 FPU status word, Vol.1-8-7, Vol.1-8-43

UM (numeric underflow exception) mask bit
MXCSR register, Vol.1-11-22
x87 FPU control word, Vol.1-8-11, Vol.1-8-43

Uncached (UC-) memory type, Vol.3-11-12
Uncached (UC) memory type (see Strong uncached

(UC) memory type)
Undefined opcodes, Vol.3-22-7
Undefined, format opcodes, Vol.2-3-445
Underflow

FPU exception
(see Numeric underflow exception)

numeric, floating-point, Vol.1-4-20
x87 FPU stack, Vol.1-8-37, Vol.1-8-38

Underflow, x87 FPU stack, Vol.1-8-38
Unit mask field, PerfEvtSel0 and PerfEvtSel1 MSRs

(P6 family processors), Vol.3-18-5,
Vol.3-18-7, Vol.3-18-8, Vol.3-18-9,
Vol.3-18-10, Vol.3-18-11, Vol.3-18-12,
Vol.3-18-13, Vol.3-18-20, Vol.3-18-21,
Vol.3-18-22, Vol.3-18-37, Vol.3-18-40,
Vol.3-18-50, Vol.3-18-51, Vol.3-18-52,
Vol.3-18-118

Un-normal number, Vol.3-22-12
Unordered values, Vol.2-3-344, Vol.2-3-445,

Vol.2-3-447
Unpack instructions

SSE extensions, Vol.1-10-14
SSE2 extensions, Vol.1-11-10

UNPCKHPD instruction, Vol.1-11-11, Vol.2-4-608
UNPCKHPS instruction, Vol.1-10-15, Vol.2-4-611
UNPCKLPD instruction, Vol.1-11-11, Vol.2-4-614
UNPCKLPS instruction, Vol.1-10-15, Vol.2-4-617
Unsigned integers

description of, Vol.1-4-5
range of, Vol.1-4-5
types, Vol.1-4-5

Unsupported, Vol.1-8-21
floating-point formats, x87 FPU, Vol.1-8-21
x87 FPU instructions, Vol.1-8-35

User mode
description of, Vol.3-5-40
U/S (user/supervisor) flag, Vol.3-5-40

User-defined interrupts, Vol.3-6-2, Vol.3-6-68

USR (user mode) flag, PerfEvtSel0 and PerfEvtSel1
MSRs (P6 family processors), Vol.3-18-5,
Vol.3-18-7, Vol.3-18-8, Vol.3-18-9,
Vol.3-18-11, Vol.3-18-12, Vol.3-18-13,
Vol.3-18-20, Vol.3-18-21, Vol.3-18-22,
Vol.3-18-37, Vol.3-18-40, Vol.3-18-50,
Vol.3-18-51, Vol.3-18-52, Vol.3-18-118

U/S (user/supervisor) flag
page-directory entry, Vol.3-5-2, Vol.3-5-3,

Vol.3-5-40
page-table entries, Vol.3-20-11
page-table entry, Vol.3-5-2, Vol.3-5-3,

Vol.3-5-40

V
V (valid) flag

IA32_MTRR_PHYSMASKn MTRR, Vol.3-11-36,
Vol.3-11-37

Variable-range MTRRs, description of, Vol.3-11-34,
Vol.3-11-37

VCNT (variable range registers count) field,
IA32_MTRRCAP MSR, Vol.3-11-32

Vector (see Interrupt vector)
Vectors

exceptions, Vol.3-6-2
interrupts, Vol.3-6-2

VERR instruction, Vol.2-4-630, Vol.3-2-30,
Vol.3-5-36

Version information, processor, Vol.2-3-198
VERW instruction, Vol.2-4-630, Vol.3-2-30,

Vol.3-5-36
VEX, Vol.2-3-4
VEX.B, Vol.2-3-4
VEX.L, Vol.2-3-4
VEX.mmmmm, Vol.2-3-4
VEX.pp, Vol.2-3-5
VEX.R, Vol.2-3-6
VEX.vvvv, Vol.2-3-4
VEX.W, Vol.2-3-4
VEX.X, Vol.2-3-4
VFMADD132PD/VFMADD213PD/VFMADD231PD -

Fused Multiply-Add of Packed
Double-Precision Floating-Point Values,
Vol.2-4-629

VIF (virtual interrupt) flag
EFLAGS register, Vol.3-2-14, Vol.3-2-15,

Vol.3-22-8
VIF (virtual interrupt) flag, EFLAGS register,

Vol.1-3-23
VIP (virtual interrupt pending) flag

EFLAGS register, Vol.1-3-23, Vol.3-2-14,
Vol.3-2-15, Vol.3-22-8

Virtual 8086 mode
description of, Vol.1-3-23
memory model, Vol.1-3-9, Vol.1-3-10

Virtual Machine Monitor, Vol.2-5-1
Virtual memory, Vol.3-2-8, Vol.3-3-1, Vol.3-3-2
Index-48 Combined Volumes 1, 2A, 2B, 2C, 3A, 3B and 3C

COMBINED INDEX
Virtual-8086 mode
8086 emulation, Vol.3-20-1
description of, Vol.3-20-8
emulating 8086 operating system calls,

Vol.3-20-27
enabling, Vol.3-20-9
entering, Vol.3-20-11
exception and interrupt handling overview,

Vol.3-20-16
exceptions and interrupts, handling through a task

gate, Vol.3-20-20
exceptions and interrupts, handling through a trap

or interrupt gate, Vol.3-20-18
handling exceptions and interrupts through a task

gate, Vol.3-20-21
interrupts, Vol.3-20-8
introduction to, Vol.3-2-11
IOPL sensitive instructions, Vol.3-20-15
I/O-port-mapped I/O, Vol.3-20-15
leaving, Vol.3-20-14
memory mapped I/O, Vol.3-20-16
native 16-bit mode, Vol.3-21-1
overview of, Vol.3-20-1
paging of virtual-8086 tasks, Vol.3-20-10
protection within a virtual-8086 task,

Vol.3-20-11
special I/O buffers, Vol.3-20-16
structure of a virtual-8086 task, Vol.3-20-9
virtual I/O, Vol.3-20-15
VM flag, EFLAGS register, Vol.3-2-14

Virtual-8086 tasks
paging of, Vol.3-20-10
protection within, Vol.3-20-11
structure of, Vol.3-20-9

Virtualization
debugging facilities, Vol.3-31-1
interrupt vector space, Vol.3-32-4
memory, Vol.3-31-3
microcode update facilities, Vol.3-31-11
operating modes, Vol.3-31-3
page faults, Vol.3-31-8
system resources, Vol.3-31-1
TLBs, Vol.3-31-5

VM
OSs and application software, Vol.3-30-1
programming considerations, Vol.3-30-1

VM entries
basic VM-entry checks, Vol.3-26-2
checking guest state

control registers, Vol.3-26-11
debug registers, Vol.3-26-11
descriptor-table registers, Vol.3-26-16
MSRs, Vol.3-26-11
non-register state, Vol.3-26-16
RIP and RFLAGS, Vol.3-26-16
segment registers, Vol.3-26-12

checks on controls, host-state area, Vol.3-26-3
registers and MSRs, Vol.3-26-8

segment and descriptor-table registers,
Vol.3-26-9

VMX control checks, Vol.3-26-3
exit-reason numbers, Vol.3-C-1
loading guest state, Vol.3-26-20

control and debug registers, MSRs,
Vol.3-26-20

RIP, RSP, RFLAGS, Vol.3-26-23
segment & descriptor-table registers,

Vol.3-26-22
loading MSRs, Vol.3-26-24

failure cases, Vol.3-26-24
VM-entry MSR-load area, Vol.3-26-24

overview of failure conditions, Vol.3-26-1
overview of steps, Vol.3-26-1
VMLAUNCH and VMRESUME, Vol.3-26-1
See also: VMCS, VMM, VM exits

VM exits
architectural state

existing before exit, Vol.3-27-1
updating state before exit, Vol.3-27-2

basic VM-exit information fields, Vol.3-27-5
basic exit reasons, Vol.3-27-5
exit qualification, Vol.3-27-6

exception bitmap, Vol.3-27-1
exceptions (faults, traps, and aborts), Vol.3-25-14
exit-reason numbers, Vol.3-C-1
external interrupts, Vol.3-25-15
handling of exits due to exceptions, Vol.3-30-12
IA-32 faults and VM exits, Vol.3-25-2
INITs, Vol.3-25-15
instructions that cause:

conditional exits, Vol.3-25-3
unconditional exits, Vol.3-25-2

interrupt-window exiting, Vol.3-25-16
non-maskable interrupts (NMIs), Vol.3-25-15
page faults, Vol.3-25-14
reflecting exceptions to guest, Vol.3-30-12
resuming guest after exception handling,

Vol.3-30-14
start-up IPIs (SIPIs), Vol.3-25-15
task switches, Vol.3-25-15
See also: VMCS, VMM, VM entries

VM (virtual 8086 mode) flag, EFLAGS register,
Vol.1-3-23, Vol.2-3-537

VM (virtual-8086 mode) flag
EFLAGS register, Vol.3-2-12, Vol.3-2-14

VMCALL instruction, Vol.1-5-39, Vol.1-5-40,
Vol.3-29-2

VMCLEAR instruction, Vol.1-5-38, Vol.1-5-39,
Vol.3-29-1, Vol.3-30-10

VMCS
error numbers, Vol.3-29-35
field encodings, Vol.3-1-6, Vol.3-B-1

16-bit guest-state fields, Vol.3-B-1
16-bit host-state fields, Vol.3-B-2
32-bit control fields, Vol.3-B-1, Vol.3-B-6
32-bit guest-state fields, Vol.3-B-8
Combined Volumes 1, 2A, 2B, 2C, 3A, 3B and 3C Index -49

COMBINED INDEX
32-bit read-only data fields, Vol.3-B-7
64-bit control fields, Vol.3-B-3
64-bit guest-state fields, Vol.3-B-4, Vol.3-B-5
natural-width control fields, Vol.3-B-9
natural-width guest-state fields, Vol.3-B-10
natural-width host-state fields, Vol.3-B-11
natural-width read-only data fields,

Vol.3-B-10
format of VMCS region, Vol.3-24-3
guest-state area, Vol.3-24-4, Vol.3-24-5

guest non-register state, Vol.3-24-7
guest register state, Vol.3-24-5

host-state area, Vol.3-24-4, Vol.3-24-10
introduction, Vol.3-24-1
migrating between processors, Vol.3-24-31
software access to, Vol.3-24-31
VMCS data, Vol.3-24-3
VMCS pointer, Vol.3-24-1, Vol.3-30-2
VMCS region, Vol.3-24-1, Vol.3-30-2
VMCS revision identifier, Vol.3-24-3
VM-entry control fields, Vol.3-24-4, Vol.3-24-24

entry controls, Vol.3-24-24
entry controls for event injection, Vol.3-24-26
entry controls for MSRs, Vol.3-24-25

VM-execution control fields, Vol.3-24-4,
Vol.3-24-11
controls for CR8 accesses, Vol.3-24-18
CR3-target controls, Vol.3-24-17
exception bitmap, Vol.3-24-16
I/O bitmaps, Vol.3-24-16
masks & read shadows CR0 & CR4,

Vol.3-24-17
pin-based controls, Vol.3-24-11
processor-based controls, Vol.3-24-12
time-stamp counter offset, Vol.3-24-17

VM-exit control fields, Vol.3-24-4, Vol.3-24-21
exit controls, Vol.3-24-22
exit controls for MSRs, Vol.3-24-23

VM-exit information fields, Vol.3-24-4,
Vol.3-24-27
basic exit information, Vol.3-24-27, Vol.3-C-1
basic VM-exit information, Vol.3-24-27
exits due to instruction execution,

Vol.3-24-30
exits due to vectored events, Vol.3-24-28
exits occurring during event delivery,

Vol.3-24-29
VM-instruction error field, Vol.3-24-31

VM-instruction error field, Vol.3-26-1,
Vol.3-29-35

VMREAD instruction, Vol.3-30-2
field encodings, Vol.3-1-6, Vol.3-B-1

VMWRITE instruction, Vol.3-30-2
field encodings, Vol.3-1-6, Vol.3-B-1

VMX-abort indicator, Vol.3-24-3
See also: VM entries, VM exits, VMM, VMX

VME (virtual-8086 mode extensions) flag, CR4 control
register, Vol.3-2-14, Vol.3-2-15,
Vol.3-2-23, Vol.3-22-24

VMLAUNCH instruction, Vol.1-5-39, Vol.1-5-40,
Vol.3-29-1, Vol.3-30-11

VMM, Vol.2-5-1
asymmetric design, Vol.3-30-15
control registers, Vol.3-30-25
CPUID instruction emulation, Vol.3-30-18
debug exceptions, Vol.3-31-2
debugging facilities, Vol.3-31-1, Vol.3-31-2
entering VMX root operation, Vol.3-30-6
error handling, Vol.3-30-4
exception bitmap, Vol.3-31-2
external interrupts, Vol.3-32-1
fast instruction set emulator, Vol.3-30-1
index data pairs, usage of, Vol.3-30-17
interrupt handling, Vol.3-32-1
interrupt vectors, Vol.3-32-4
leaving VMX operation, Vol.3-30-6
machine checks, Vol.3-32-12, Vol.3-32-13,

Vol.3-32-16
memory virtualization, Vol.3-31-3
microcode update facilities, Vol.3-31-11
multi-processor considerations, Vol.3-30-15
operating modes, Vol.3-30-18
programming considerations, Vol.3-30-1
response to page faults, Vol.3-31-8
root VMCS, Vol.3-30-2
SMI transfer monitor, Vol.3-30-6
steps for launching VMs, Vol.3-30-10
SWAPGS instruction, Vol.3-30-23
symmetric design, Vol.3-30-15
SYSCALL/SYSRET instructions, Vol.3-30-23
SYSENTER/SYSEXIT instructions, Vol.3-30-23
triple faults, Vol.3-32-1
virtual TLBs, Vol.3-31-5
virtual-8086 container, Vol.3-30-1
virtualization of system resources, Vol.3-31-1
VM exits, Vol.3-27-1
VM exits, handling of, Vol.3-30-11
VMCLEAR instruction, Vol.3-30-10
VMCS field width, Vol.3-30-19
VMCS pointer, Vol.3-30-2
VMCS region, Vol.3-30-2
VMCS revision identifier, Vol.3-30-2
VMCS, writing/reading fields, Vol.3-30-3
VM-exit failures, Vol.3-32-11
VMLAUNCH instruction, Vol.3-30-11
VMREAD instruction, Vol.3-30-3
VMRESUME instruction, Vol.3-30-11
VMWRITE instruction, Vol.3-30-3, Vol.3-30-10
VMXOFF instruction, Vol.3-30-6
See also: VMCS, VM entries, VM exits, VMX

VMM software interrupts, Vol.3-32-1
VMPTRLD instruction, Vol.1-5-38, Vol.1-5-39,

Vol.3-29-1
Index-50 Combined Volumes 1, 2A, 2B, 2C, 3A, 3B and 3C

COMBINED INDEX
VMPTRST instruction, Vol.1-5-38, Vol.1-5-39,
Vol.3-29-1

VMREAD instruction, Vol.1-5-39, Vol.1-5-40,
Vol.3-29-1, Vol.3-30-2, Vol.3-30-3

field encodings, Vol.3-B-1
VMRESUME instruction, Vol.1-5-39, Vol.1-5-40,

Vol.3-29-2, Vol.3-30-11
VMWRITE instruction, Vol.1-5-39, Vol.1-5-40,

Vol.3-29-1, Vol.3-30-2, Vol.3-30-3,
Vol.3-30-10

field encodings, Vol.3-B-1
VMX

A20M# signal, Vol.3-23-5
capability MSRs

overview, Vol.3-23-3, Vol.3-A-1
IA32_VMX_BASIC MSR, Vol.3-24-4,

Vol.3-30-2, Vol.3-30-7, Vol.3-30-8,
Vol.3-30-9, Vol.3-30-17, Vol.3-34-64,
Vol.3-34-81, Vol.3-34-101, Vol.3-34-154,
Vol.3-34-203, Vol.3-34-223, Vol.3-A-1,
Vol.3-A-3

IA32_VMX_CR0_FIXED0 MSR, Vol.3-23-5,
Vol.3-30-6, Vol.3-34-65, Vol.3-34-81,
Vol.3-34-102, Vol.3-34-154,
Vol.3-34-203, Vol.3-34-224, Vol.3-A-9

IA32_VMX_CR0_FIXED1 MSR, Vol.3-23-5,
Vol.3-30-6, Vol.3-34-65, Vol.3-34-81,
Vol.3-34-102, Vol.3-34-154,
Vol.3-34-204, Vol.3-34-224, Vol.3-A-9

IA32_VMX_CR4_FIXED0 MSR, Vol.3-23-5,
Vol.3-30-6, Vol.3-34-65, Vol.3-34-82,
Vol.3-34-102, Vol.3-34-155,
Vol.3-34-204, Vol.3-34-224

IA32_VMX_CR4_FIXED1 MSR, Vol.3-23-5,
Vol.3-30-6, Vol.3-34-65, Vol.3-34-82,
Vol.3-34-102, Vol.3-34-155,
Vol.3-34-204, Vol.3-34-224,
Vol.3-34-225

IA32_VMX_ENTRY_CTLS MSR, Vol.3-30-7,
Vol.3-30-8, Vol.3-30-9, Vol.3-34-65,
Vol.3-34-81, Vol.3-34-101, Vol.3-34-154,
Vol.3-34-203, Vol.3-34-224, Vol.3-A-3,
Vol.3-A-7, Vol.3-A-8

IA32_VMX_EXIT_CTLS MSR, Vol.3-30-7,
Vol.3-30-8, Vol.3-30-9, Vol.3-34-64,
Vol.3-34-81, Vol.3-34-101, Vol.3-34-154,
Vol.3-34-203, Vol.3-34-224, Vol.3-A-3,
Vol.3-A-6, Vol.3-A-7

IA32_VMX_MISC MSR, Vol.3-24-8,
Vol.3-26-4, Vol.3-26-17, Vol.3-33-36,
Vol.3-34-65, Vol.3-34-81, Vol.3-34-102,
Vol.3-34-154, Vol.3-34-203,
Vol.3-34-224, Vol.3-A-8

IA32_VMX_PINBASED_CTLS MSR, Vol.3-30-7,
Vol.3-30-8, Vol.3-30-9, Vol.3-34-64,
Vol.3-34-81, Vol.3-34-101, Vol.3-34-154,
Vol.3-34-203, Vol.3-34-223, Vol.3-A-3,
Vol.3-A-4

IA32_VMX_PROCBASED_CTLS MSR,
Vol.3-24-12, Vol.3-30-7, Vol.3-30-8,
Vol.3-30-9, Vol.3-34-64, Vol.3-34-65,
Vol.3-34-81, Vol.3-34-82, Vol.3-34-101,
Vol.3-34-102, Vol.3-34-154,
Vol.3-34-155, Vol.3-34-203,
Vol.3-34-224, Vol.3-34-225, Vol.3-A-3,
Vol.3-A-4, Vol.3-A-5, Vol.3-A-6,
Vol.3-A-10, Vol.3-A-11

IA32_VMX_VMCS_ENUM MSR, Vol.3-34-204
CPUID instruction, Vol.3-23-3, Vol.3-A-1
CR4 control register, Vol.3-23-4
CR4 fixed bits, Vol.3-A-9
debugging facilities, Vol.3-31-1
EFLAGS, Vol.3-30-4
entering operation, Vol.3-23-4
entering root operation, Vol.3-30-6
error handling, Vol.3-30-4
guest software, Vol.3-23-1
IA32_FEATURE_CONTROL MSR, Vol.3-23-4
INIT# signal, Vol.3-23-6
instruction set, Vol.1-5-38, Vol.1-5-39,

Vol.3-23-3
introduction, Vol.1-2-29, Vol.3-23-1
memory virtualization, Vol.3-31-3
microcode update facilities, Vol.3-25-22,

Vol.3-31-11, Vol.3-31-12
non-root operation, Vol.3-23-1

event blocking, Vol.3-25-27
instruction changes, Vol.3-25-17
overview, Vol.3-25-1
task switches not allowed, Vol.3-25-27
see VM exits

operation restrictions, Vol.3-23-5
root operation, Vol.3-23-1
SMM

CR4.VMXE reserved, Vol.3-33-26
overview, Vol.3-33-2
RSM instruction, Vol.3-33-25
VMCS pointer, Vol.3-33-23
VMX-critical state, Vol.3-33-23

testing for support, Vol.3-23-3
Virtual machine monitor (VMM), Vol.1-2-29
virtual TLBs, Vol.3-31-5
virtualization, Vol.1-2-29
virtual-machine control structure (VMCS),

Vol.3-23-3
virtual-machine monitor (VMM), Vol.3-23-1
vitualization of system resources, Vol.3-31-1
VM entries and exits, Vol.3-23-1
VM exits, Vol.3-27-1
VMCS pointer, Vol.3-23-3
VMM life cycle, Vol.3-23-2
VMXOFF instruction, Vol.3-23-4
VMXON instruction, Vol.3-23-4
VMXON pointer, Vol.3-23-4
VMXON region, Vol.3-23-4
See also:VMM, VMCS, VM entries, VM exits
Combined Volumes 1, 2A, 2B, 2C, 3A, 3B and 3C Index -51

COMBINED INDEX
VMXOFF instruction, Vol.1-5-39, Vol.3-23-4,
Vol.3-29-2

VMXON instruction, Vol.1-5-39, Vol.3-23-4,
Vol.3-29-2

W
Waiting instructions, x87 FPU, Vol.1-8-34
WAIT/FWAIT instructions, Vol.1-8-34, Vol.1-8-45,

Vol.2-4-660, Vol.3-6-36, Vol.3-22-10,
Vol.3-22-21

GETSEC, Vol.2-5-6
WB (write back) memory type, Vol.3-8-24,

Vol.3-11-10, Vol.3-11-12
WB (write-back) pin (Pentium processor), Vol.3-11-19
WBINVD instruction, Vol.2-4-662, Vol.3-2-31,

Vol.3-5-34, Vol.3-11-24, Vol.3-11-25,
Vol.3-22-6

WBINVD/INVD bit, Vol.2-3-201
WB/WT# pins, Vol.3-11-19
WC buffer (see Write combining (WC) buffer)
WC memory type, Vol.1-10-18
WC (write combining)

flag, IA32_MTRRCAP MSR, Vol.3-11-32
memory type, Vol.3-11-9, Vol.3-11-12

wide dynamic execution, Vol.1-2-6
Word, Vol.1-4-1
WP (write protected) memory type, Vol.3-11-10
WP (write protect) flag

CR0 control register, Vol.3-2-20, Vol.3-5-41,
Vol.3-22-25

Wraparound mode (MMX instructions), Vol.1-9-5
Write

hit, Vol.3-11-7
Write combining (WC) buffer, Vol.3-11-5, Vol.3-11-11
Write-back and invalidate caches, Vol.2-4-662
Write-back caching, Vol.3-11-8
WRMSR instruction, Vol.2-4-666, Vol.3-2-26,

Vol.3-2-32, Vol.3-2-33, Vol.3-2-34,
Vol.3-5-34, Vol.3-8-25, Vol.3-17-38,
Vol.3-17-46, Vol.3-17-50, Vol.3-18-74,
Vol.3-18-117, Vol.3-18-119,
Vol.3-18-121, Vol.3-22-6, Vol.3-22-49,
Vol.3-25-22

CPUID flag, Vol.2-3-217
WT (write through) memory type, Vol.3-11-10,

Vol.3-11-12
WT# (write-through) pin (Pentium processor),

Vol.3-11-19

X
x2APIC ID, Vol.3-10-58, Vol.3-10-59, Vol.3-10-63,

Vol.3-10-66
x2APIC Mode, Vol.3-10-45, Vol.3-10-54,

Vol.3-10-57, Vol.3-10-58, Vol.3-10-59,
Vol.3-10-63, Vol.3-10-64, Vol.3-10-66

x87 FPU

64-bit mode, Vol.1-8-2
checking for pending x87 FPU exceptions,

Vol.2-4-660
compatibility mode, Vol.1-8-2
compatibility with IA-32 x87 FPUs and math

coprocessors, Vol.3-22-9
configuring the x87 FPU environment, Vol.3-9-6
constants, Vol.2-3-383
control word, Vol.1-8-10
data pointer, Vol.1-8-13
data registers, Vol.1-8-2
device-not-available exception, Vol.3-6-36
effect of MMX instructions on pending x87

floating-point exceptions, Vol.3-12-6
effects of MMX instructions on x87 FPU state,

Vol.3-12-3
effects of MMX, x87 FPU, FXSAVE, and FXRSTOR

instructions on x87 FPU tag word, Vol.3-12-3
error signals, Vol.3-22-14, Vol.3-22-15
execution environment, Vol.1-8-1
floating-point data types, Vol.1-8-18
floating-point format, Vol.1-4-15, Vol.1-4-16
fopcode compatibility mode, Vol.1-8-15
FXSAVE and FXRSTOR instructions, Vol.1-11-34
IEEE Standard 754, Vol.1-8-1
initialization, Vol.2-3-371, Vol.3-9-6
instruction opcodes, Vol.2-A-23
instruction pointer, Vol.1-8-13
instruction set, Vol.1-8-22
instruction synchronization, Vol.3-22-21
last instruction opcode, Vol.1-8-15
overview of registers, Vol.1-3-3
programming, Vol.1-8-1
QNaN floating-point indefinite, Vol.1-4-24
register stack, Vol.1-8-2
register stack, aliasing with MMX registers,

Vol.3-12-2
register stack, parameter passing, Vol.1-8-5
registers, Vol.1-8-1
save and restore state instructions, Vol.1-5-13
saving registers, Vol.1-11-34
setting up for software emulation of x87 FPU

functions, Vol.3-9-7
state, Vol.1-8-16
state, image, Vol.1-8-17, Vol.1-8-18
state, saving, Vol.1-8-16, Vol.1-8-18
status register, Vol.1-8-6
tag word, Vol.1-8-12
transcendental instruction accuracy, Vol.1-8-32
using TS flag to control saving of x87 FPU state,

Vol.3-13-10
x87 floating-point error exception (#MF),

Vol.3-6-58
x87 FPU control word

compatibility, IA-32 processors, Vol.3-22-11
description of, Vol.1-8-10
exception-flag mask bits, Vol.1-8-11
infinity control flag, Vol.1-8-12
Index-52 Combined Volumes 1, 2A, 2B, 2C, 3A, 3B and 3C

COMBINED INDEX
loading, Vol.2-3-385, Vol.2-3-387
precision control (PC) field, Vol.1-8-11
RC field, Vol.2-3-374, Vol.2-3-383, Vol.2-3-425
restoring, Vol.2-3-409
rounding control (RC) field, Vol.1-4-26, Vol.1-8-12
saving, Vol.2-3-412, Vol.2-3-431
storing, Vol.2-3-428

x87 FPU data pointer, Vol.2-3-387, Vol.2-3-409,
Vol.2-3-412, Vol.2-3-431

x87 FPU exception handling
description of, Vol.1-8-46
floating-point exception summary, Vol.1-C-2
MS-DOS compatibility mode, Vol.1-8-46
native mode, Vol.1-8-46

x87 FPU floating-point error exception (#MF),
Vol.3-6-58

x87 FPU floating-point exceptions
denormal operand exception, Vol.1-8-40
division-by-zero, Vol.1-8-41
exception conditions, Vol.1-8-37
exception summary, Vol.1-C-2
guidelines for writing exception handlers,

Vol.1-D-1
inexact-result (precision), Vol.1-8-43
interaction of SIMD and x87 FPU floating-point

exceptions, Vol.1-11-26
invalid arithmetic operand, Vol.1-8-37,

Vol.1-8-39
MS-DOS compatibility mode, Vol.1-D-1
numeric overflow, Vol.1-8-41
numeric underflow, Vol.1-8-42
software handling, Vol.1-8-46
stack overflow, Vol.1-8-7, Vol.1-8-37
stack underflow, Vol.1-8-7, Vol.1-8-37,

Vol.1-8-38
summary of, Vol.1-8-35
synchronization, Vol.1-8-44

x87 FPU instruction pointer, Vol.2-3-387,
Vol.2-3-409, Vol.2-3-412, Vol.2-3-431

x87 FPU instructions
arithmetic vs. non-arithmetic instructions,

Vol.1-8-36
basic arithmetic, Vol.1-8-25
comparison and classification, Vol.1-8-27
control, Vol.1-8-33
data transfer, Vol.1-8-23
exponential, Vol.1-8-32
instruction set, Vol.1-8-22
load constant, Vol.1-8-25
logarithmic, Vol.1-8-32
operands, Vol.1-8-23
overview, Vol.1-8-22
save and restore state, Vol.1-8-33
scale, Vol.1-8-32
transcendental, Vol.1-8-32
transitions between x87 FPU and MMX code,

Vol.1-9-12
trigonometric, Vol.1-8-30

unsupported, Vol.1-8-35
x87 FPU last opcode, Vol.2-3-387, Vol.2-3-409,

Vol.2-3-412, Vol.2-3-431
x87 FPU status word

condition code flags, Vol.1-8-6, Vol.2-3-344,
Vol.2-3-364, Vol.2-3-445, Vol.2-3-447,
Vol.2-3-450, Vol.3-22-10

DE flag, Vol.1-8-40
description of, Vol.1-8-6
exception flags, Vol.1-8-7
loading, Vol.2-3-387
OE flag, Vol.1-8-41
PE flag, Vol.1-8-7
restoring, Vol.2-3-409
saving, Vol.2-3-412, Vol.2-3-431, Vol.2-3-434
stack fault flag, Vol.1-8-9
TOP field, Vol.1-8-3, Vol.2-3-369
top of stack (TOP) pointer, Vol.1-8-6
x87 FPU flags affected by instructions,

Vol.2-3-18
x87 FPU tag word, Vol.1-8-12, Vol.1-9-12,

Vol.2-3-387, Vol.2-3-409, Vol.2-3-412,
Vol.2-3-431, Vol.3-22-11

XADD instruction, Vol.1-7-6, Vol.2-3-598,
Vol.2-4-668, Vol.3-8-5, Vol.3-22-6

xAPIC, Vol.3-10-54, Vol.3-10-58
determining lowest priority processor,

Vol.3-10-36
interrupt control register, Vol.3-10-30
introduction to, Vol.3-10-5
message passing protocol on system bus,

Vol.3-10-47
new features, Vol.3-22-38
spurious vector, Vol.3-10-47
using system bus, Vol.3-10-5

xAPIC Mode, Vol.3-10-45, Vol.3-10-53, Vol.3-10-59,
Vol.3-10-64, Vol.3-10-66

XCHG instruction, Vol.1-7-5, Vol.2-3-598,
Vol.2-4-671, Vol.3-8-4, Vol.3-8-5,
Vol.3-8-23

XCR0, Vol.1-13-23
XFEATURE_ENABLED_MASK, Vol.2-4-674,

Vol.2-4-687, Vol.2-4-693, Vol.2-4-697,
Vol.2-4-698, Vol.2-4-702, Vol.2-4-703,
Vol.3-2-25, Vol.3-13-13, Vol.3-13-14,
Vol.3-13-15, Vol.3-13-17, Vol.3-13-18

XGETBV, Vol.2-4-674, Vol.2-4-686, Vol.2-B-59,
Vol.3-2-25, Vol.3-2-28, Vol.3-2-29,
Vol.3-13-13, Vol.3-13-18

XLAB instruction, Vol.2-4-676
XLAT instruction, Vol.2-4-676
XLAT/XLATB instruction, Vol.1-7-34
XMM registers

64-bit mode, Vol.1-3-6
description, Vol.1-10-4
FXSAVE and FXRSTOR instructions, Vol.1-11-34
overview of, Vol.1-3-3
parameters passing in, Vol.1-11-34
Combined Volumes 1, 2A, 2B, 2C, 3A, 3B and 3C Index -53

COMBINED INDEX
saving on a procedure or function call,
Vol.1-11-34

XMM registers, saving, Vol.3-13-8
XOR instruction, Vol.1-7-15, Vol.2-3-598,

Vol.2-4-679, Vol.3-8-5
XORPD instruction, Vol.1-11-9, Vol.2-4-682
XORPS instruction, Vol.1-10-13, Vol.2-4-684
XRSTOR, Vol.1-13-23, Vol.2-4-694, Vol.2-4-698,

Vol.2-B-59
XSAVE, Vol.1-13-23, Vol.1-13-31, Vol.2-4-674,

Vol.2-4-675, Vol.2-4-686, Vol.2-4-687,
Vol.2-4-688, Vol.2-4-689, Vol.2-4-690,
Vol.2-4-691, Vol.2-4-693, Vol.2-4-694,
Vol.2-4-695, Vol.2-4-696, Vol.2-4-697,
Vol.2-4-698, Vol.2-4-700, Vol.2-4-701,
Vol.2-4-703, Vol.2-B-59, Vol.3-2-25,
Vol.3-13-1, Vol.3-13-12, Vol.3-13-13,
Vol.3-13-14, Vol.3-13-15, Vol.3-13-16,
Vol.3-13-17, Vol.3-13-18

XSETBV, Vol.2-4-697, Vol.2-4-702, Vol.2-B-59,
Vol.3-2-25, Vol.3-2-26, Vol.3-2-28,
Vol.3-2-34, Vol.3-13-1, Vol.3-13-13,
Vol.3-13-17

Z
ZE (divide by zero exception) flag

x87 FPU status word, Vol.1-8-7, Vol.1-8-41
ZE (divide by zero exception) flag bit

MXCSR register, Vol.1-11-22
Zero, floating-point format, Vol.1-4-7, Vol.1-4-20
ZF flag, EFLAGS register, Vol.3-5-36
ZF (zero) flag, EFLAGS register, Vol.1-3-21,

Vol.1-A-1, Vol.2-3-188, Vol.2-3-569,
Vol.2-3-604, Vol.2-3-607, Vol.2-4-467,
Vol.2-4-630

ZM (divide by zero exception) mask bit
MXCSR register, Vol.1-11-22
x87 FPU control word, Vol.1-8-11, Vol.1-8-41

-, Vol.3-34-212
Index-54 Combined Volumes 1, 2A, 2B, 2C, 3A, 3B and 3C

	Volume 1: Basic Architecture
	Chapter 1 About This Manual
	1.1 Intel® 64 and IA-32 Processors Covered in this Manual
	1.2 Overview of Volume 1: Basic Architecture
	1.3 Notational Conventions
	1.3.1 Bit and Byte Order
	1.3.2 Reserved Bits and Software Compatibility
	1.3.2.1 Instruction Operands

	1.3.3 Hexadecimal and Binary Numbers
	1.3.4 Segmented Addressing
	1.3.5 A New Syntax for CPUID, CR, and MSR Values
	1.3.6 Exceptions

	1.4 Related Literature

	Chapter 2 Intel® 64 and IA-32 Architectures
	2.1 Brief History of Intel® 64 and IA-32 Architecture
	2.1.1 16-bit Processors and Segmentation (1978)
	2.1.2 The Intel® 286 Processor (1982)
	2.1.3 The Intel386™ Processor (1985)
	2.1.4 The Intel486™ Processor (1989)
	2.1.5 The Intel® Pentium® Processor (1993)
	2.1.6 The P6 Family of Processors (1995-1999)
	2.1.7 The Intel® Pentium® 4 Processor Family (2000-2006)
	2.1.8 The Intel® Xeon® Processor (2001- 2007)
	2.1.9 The Intel® Pentium® M Processor (2003-Current)
	2.1.10 The Intel® Pentium® Processor Extreme Edition (2005-2007)
	2.1.11 The Intel® Core™ Duo and Intel® Core™ Solo Processors (2006-2007)
	2.1.12 The Intel® Xeon® Processor 5100, 5300 Series and Intel® Core™2 Processor Family (2006-Current)
	2.1.13 The Intel® Xeon® Processor 5200, 5400, 7400 Series and Intel® Core™2 Processor Family (2007-Current)
	2.1.14 The Intel® Atom™ Processor Family (2008-Current)
	2.1.15 The Intel® Core™i7 Processor Family (2008-Current)
	2.1.16 The Intel® Xeon® Processor 7500 Series (2010)
	2.1.17 2010 Intel® Core™ Processor Family (2010)
	2.1.18 The Intel® Xeon® Processor 5600 Series (2010)
	2.1.19 Second Generation Intel® Core™ Processor Family (2011)

	2.2 More on SPECIFIC advances
	2.2.1 P6 Family Microarchitecture
	2.2.2 Intel NetBurst® Microarchitecture
	2.2.2.1 The Front End Pipeline
	2.2.2.2 Out-Of-Order Execution Core
	2.2.2.3 Retirement Unit

	2.2.3 Intel® Core™ Microarchitecture
	2.2.3.1 The Front End
	2.2.3.2 Execution Core

	2.2.4 Intel® Atom™ Microarchitecture
	2.2.5 Intel® Microarchitecture Code Name Nehalem
	2.2.6 Intel® Microarchitecture Code Name Sandy Bridge
	2.2.7 SIMD Instructions
	2.2.8 Intel® Hyper-Threading Technology
	2.2.8.1 Some Implementation Notes

	2.2.9 Multi-Core Technology
	2.2.10 Intel® 64 Architecture
	2.2.11 Intel® Virtualization Technology (Intel® VT)

	2.3 Intel® 64 and IA-32 processor generations

	Chapter 3 Basic Execution Environment
	3.1 Modes of Operation
	3.1.1 Intel® 64 Architecture

	3.2 Overview of the Basic Execution Environment
	3.2.1 64-Bit Mode Execution Environment

	3.3 Memory Organization
	3.3.1 IA-32 Memory Models
	3.3.2 Paging and Virtual Memory
	3.3.3 Memory Organization in 64-Bit Mode
	3.3.4 Modes of Operation vs. Memory Model
	3.3.5 32-Bit and 16-Bit Address and Operand Sizes
	3.3.6 Extended Physical Addressing in Protected Mode
	3.3.7 Address Calculations in 64-Bit Mode
	3.3.7.1 Canonical Addressing

	3.4 Basic Program Execution Registers
	3.4.1 General-Purpose Registers
	3.4.1.1 General-Purpose Registers in 64-Bit Mode

	3.4.2 Segment Registers
	3.4.2.1 Segment Registers in 64-Bit Mode

	3.4.3 EFLAGS Register
	3.4.3.1 Status Flags
	3.4.3.2 DF Flag
	3.4.3.3 System Flags and IOPL Field
	3.4.3.4 RFLAGS Register in 64-Bit Mode

	3.5 Instruction Pointer
	3.5.1 Instruction Pointer in 64-Bit Mode

	3.6 Operand-Size and Address-Size Attributes
	3.6.1 Operand Size and Address Size in 64-Bit Mode

	3.7 Operand Addressing
	3.7.1 Immediate Operands
	3.7.2 Register Operands
	3.7.2.1 Register Operands in 64-Bit Mode

	3.7.3 Memory Operands
	3.7.3.1 Memory Operands in 64-Bit Mode

	3.7.4 Specifying a Segment Selector
	3.7.4.1 Segmentation in 64-Bit Mode

	3.7.5 Specifying an Offset
	3.7.5.1 Specifying an Offset in 64-Bit Mode

	3.7.6 Assembler and Compiler Addressing Modes
	3.7.7 I/O Port Addressing

	Chapter 4 Data Types
	4.1 Fundamental Data Types
	4.1.1 Alignment of Words, Doublewords, Quadwords, and Double Quadwords

	4.2 Numeric Data Types
	4.2.1 Integers
	4.2.1.1 Unsigned Integers
	4.2.1.2 Signed Integers

	4.2.2 Floating-Point Data Types

	4.3 Pointer Data Types
	4.3.1 Pointer Data Types in 64-Bit Mode

	4.4 Bit Field Data Type
	4.5 String Data Types
	4.6 Packed SIMD Data Types
	4.6.1 64-Bit SIMD Packed Data Types
	4.6.2 128-Bit Packed SIMD Data Types

	4.7 BCD and Packed BCD Integers
	4.8 Real Numbers and Floating-Point Formats
	4.8.1 Real Number System
	4.8.2 Floating-Point Format
	4.8.2.1 Normalized Numbers
	4.8.2.2 Biased Exponent

	4.8.3 Real Number and Non-number Encodings
	4.8.3.1 Signed Zeros
	4.8.3.2 Normalized and Denormalized Finite Numbers
	4.8.3.3 Signed Infinities
	4.8.3.4 NaNs
	4.8.3.5 Operating on SNaNs and QNaNs
	4.8.3.6 Using SNaNs and QNaNs in Applications
	4.8.3.7 QNaN Floating-Point Indefinite
	4.8.3.8 Half-Precision Floating-Point Operation

	4.8.4 Rounding
	4.8.4.1 Rounding Control (RC) Fields
	4.8.4.2 Truncation with SSE and SSE2 Conversion Instructions

	4.9 Overview of Floating-Point Exceptions
	4.9.1 Floating-Point Exception Conditions
	4.9.1.1 Invalid Operation Exception (#I)
	4.9.1.2 Denormal Operand Exception (#D)
	4.9.1.3 Divide-By-Zero Exception (#Z)
	4.9.1.4 Numeric Overflow Exception (#O)
	4.9.1.5 Numeric Underflow Exception (#U)
	4.9.1.6 Inexact-Result (Precision) Exception (#P)

	4.9.2 Floating-Point Exception Priority
	4.9.3 Typical Actions of a Floating-Point Exception Handler

	Chapter 5 Instruction Set Summary
	5.1 General-Purpose Instructions
	5.1.1 Data Transfer Instructions
	5.1.2 Binary Arithmetic Instructions
	5.1.3 Decimal Arithmetic Instructions
	5.1.4 Logical Instructions
	5.1.5 Shift and Rotate Instructions
	5.1.6 Bit and Byte Instructions
	5.1.7 Control Transfer Instructions
	5.1.8 String Instructions
	5.1.9 I/O Instructions
	5.1.10 Enter and Leave Instructions
	5.1.11 Flag Control (EFLAG) Instructions
	5.1.12 Segment Register Instructions
	5.1.13 Miscellaneous Instructions
	5.1.14 Random Number Generator Instruction

	5.2 x87 FPU Instructions
	5.2.1 x87 FPU Data Transfer Instructions
	5.2.2 x87 FPU Basic Arithmetic Instructions
	5.2.3 x87 FPU Comparison Instructions
	5.2.4 x87 FPU Transcendental Instructions
	5.2.5 x87 FPU Load Constants Instructions
	5.2.6 x87 FPU Control Instructions

	5.3 x87 FPU AND SIMD State Management Instructions
	5.4 MMX™ Instructions
	5.4.1 MMX Data Transfer Instructions
	5.4.2 MMX Conversion Instructions
	5.4.3 MMX Packed Arithmetic Instructions
	5.4.4 MMX Comparison Instructions
	5.4.5 MMX Logical Instructions
	5.4.6 MMX Shift and Rotate Instructions
	5.4.7 MMX State Management Instructions

	5.5 SSE Instructions
	5.5.1 SSE SIMD Single-Precision Floating-Point Instructions
	5.5.1.1 SSE Data Transfer Instructions
	5.5.1.2 SSE Packed Arithmetic Instructions
	5.5.1.3 SSE Comparison Instructions
	5.5.1.4 SSE Logical Instructions
	5.5.1.5 SSE Shuffle and Unpack Instructions
	5.5.1.6 SSE Conversion Instructions

	5.5.2 SSE MXCSR State Management Instructions
	5.5.3 SSE 64-Bit SIMD Integer Instructions
	5.5.4 SSE Cacheability Control, Prefetch, and Instruction Ordering Instructions

	5.6 SSE2 Instructions
	5.6.1 SSE2 Packed and Scalar Double-Precision Floating-Point Instructions
	5.6.1.1 SSE2 Data Movement Instructions
	5.6.1.2 SSE2 Packed Arithmetic Instructions
	5.6.1.3 SSE2 Logical Instructions
	5.6.1.4 SSE2 Compare Instructions
	5.6.1.5 SSE2 Shuffle and Unpack Instructions
	5.6.1.6 SSE2 Conversion Instructions

	5.6.2 SSE2 Packed Single-Precision Floating-Point Instructions
	5.6.3 SSE2 128-Bit SIMD Integer Instructions
	5.6.4 SSE2 Cacheability Control and Ordering Instructions

	5.7 SSE3 Instructions
	5.7.1 SSE3 x87-FP Integer Conversion Instruction
	5.7.2 SSE3 Specialized 128-bit Unaligned Data Load Instruction
	5.7.3 SSE3 SIMD Floating-Point Packed ADD/SUB Instructions
	5.7.4 SSE3 SIMD Floating-Point Horizontal ADD/SUB Instructions
	5.7.5 SSE3 SIMD Floating-Point LOAD/MOVE/DUPLICATE Instructions
	5.7.6 SSE3 Agent Synchronization Instructions

	5.8 Supplemental Streaming SIMD Extensions 3 (SSSE3) Instructions
	5.8.1 Horizontal Addition/Subtraction
	5.8.2 Packed Absolute Values
	5.8.3 Multiply and Add Packed Signed and Unsigned Bytes
	5.8.4 Packed Multiply High with Round and Scale
	5.8.5 Packed Shuffle Bytes
	5.8.6 Packed Sign
	5.8.7 Packed Align Right

	5.9 SSE4 Instructions
	5.10 SSE4.1 Instructions
	5.10.1 Dword Multiply Instructions
	5.10.2 Floating-Point Dot Product Instructions
	5.10.3 Streaming Load Hint Instruction
	5.10.4 Packed Blending Instructions
	5.10.5 Packed Integer MIN/MAX Instructions
	5.10.6 Floating-Point Round Instructions with Selectable Rounding Mode
	5.10.7 Insertion and Extractions from XMM Registers
	5.10.8 Packed Integer Format Conversions
	5.10.9 Improved Sums of Absolute Differences (SAD) for 4-Byte Blocks
	5.10.10 Horizontal Search
	5.10.11 Packed Test
	5.10.12 Packed Qword Equality Comparisons
	5.10.13 Dword Packing With Unsigned Saturation

	5.11 SSE4.2 Instruction Set
	5.11.1 String and Text Processing Instructions
	5.11.2 Packed Comparison SIMD integer Instruction
	5.11.3 Application-Targeted Accelerator Instructions

	5.12 AESNI and PCLMULQDQ
	5.13 Intel® Advanced Vector Extensions (AVX)
	5.14 16-bit Floating-Point Conversion
	5.15 System Instructions
	5.16 64-Bit Mode Instructions
	5.17 Virtual-Machine Extensions
	5.18 Safer Mode Extensions

	Chapter 6 Procedure Calls, Interrupts, and Exceptions
	6.1 Procedure Call Types
	6.2 Stacks
	6.2.1 Setting Up a Stack
	6.2.2 Stack Alignment
	6.2.3 Address-Size Attributes for Stack Accesses
	6.2.4 Procedure Linking Information
	6.2.4.1 Stack-Frame Base Pointer
	6.2.4.2 Return Instruction Pointer

	6.2.5 Stack Behavior in 64-Bit Mode

	6.3 Calling Procedures Using CALL and RET
	6.3.1 Near CALL and RET Operation
	6.3.2 Far CALL and RET Operation
	6.3.3 Parameter Passing
	6.3.3.1 Passing Parameters Through the General-Purpose Registers
	6.3.3.2 Passing Parameters on the Stack
	6.3.3.3 Passing Parameters in an Argument List

	6.3.4 Saving Procedure State Information
	6.3.5 Calls to Other Privilege Levels
	6.3.6 CALL and RET Operation Between Privilege Levels
	6.3.7 Branch Functions in 64-Bit Mode

	6.4 Interrupts and Exceptions
	6.4.1 Call and Return Operation for Interrupt or Exception Handling Procedures
	6.4.2 Calls to Interrupt or Exception Handler Tasks
	6.4.3 Interrupt and Exception Handling in Real-Address Mode
	6.4.4 INT n, INTO, INT 3, and BOUND Instructions
	6.4.5 Handling Floating-Point Exceptions
	6.4.6 Interrupt and Exception Behavior in 64-Bit Mode

	6.5 Procedure Calls for Block-Structured Languages
	6.5.1 ENTER Instruction
	6.5.2 LEAVE Instruction

	Chapter 7 Programming With General-Purpose Instructions
	7.1 Programming environment for GP Instructions
	7.2 Programming Environment for GP Instructions in 64-Bit Mode
	7.3 Summary of GP Instructions
	7.3.1 Data Transfer Instructions
	7.3.1.1 General Data Movement Instructions
	7.3.1.2 Exchange Instructions
	7.3.1.3 Exchange Instructions in 64-Bit Mode
	7.3.1.4 Stack Manipulation Instructions
	7.3.1.5 Stack Manipulation Instructions in 64-Bit Mode
	7.3.1.6 Type Conversion Instructions
	7.3.1.7 Type Conversion Instructions in 64-Bit Mode

	7.3.2 Binary Arithmetic Instructions
	7.3.2.1 Addition and Subtraction Instructions
	7.3.2.2 Increment and Decrement Instructions
	7.3.2.3 Increment and Decrement Instructions in 64-Bit Mode
	7.3.2.4 Comparison and Sign Change Instruction
	7.3.2.5 Multiplication and Divide Instructions

	7.3.3 Decimal Arithmetic Instructions
	7.3.3.1 Packed BCD Adjustment Instructions
	7.3.3.2 Unpacked BCD Adjustment Instructions

	7.3.4 Decimal Arithmetic Instructions in 64-Bit Mode
	7.3.5 Logical Instructions
	7.3.6 Shift and Rotate Instructions
	7.3.6.1 Shift Instructions
	7.3.6.2 Double-Shift Instructions
	7.3.6.3 Rotate Instructions

	7.3.7 Bit and Byte Instructions
	7.3.7.1 Bit Test and Modify Instructions
	7.3.7.2 Bit Scan Instructions
	7.3.7.3 Byte Set on Condition Instructions
	7.3.7.4 Test Instruction

	7.3.8 Control Transfer Instructions
	7.3.8.1 Unconditional Transfer Instructions
	7.3.8.2 Conditional Transfer Instructions
	7.3.8.3 Control Transfer Instructions in 64-Bit Mode
	7.3.8.4 Software Interrupt Instructions
	7.3.8.5 Software Interrupt Instructions in 64-bit Mode and Compatibility Mode

	7.3.9 String Operations
	7.3.9.1 String Instructions
	7.3.9.2 Repeated String Operations
	7.3.9.3 Fast-String Operation
	7.3.9.4 String Operations in 64-Bit Mode

	7.3.10 I/O Instructions
	7.3.11 I/O Instructions in 64-Bit Mode
	7.3.12 Enter and Leave Instructions
	7.3.13 Flag Control (EFLAG) Instructions
	7.3.13.1 Carry and Direction Flag Instructions
	7.3.13.2 EFLAGS Transfer Instructions
	7.3.13.3 Interrupt Flag Instructions

	7.3.14 Flag Control (RFLAG) Instructions in 64-Bit Mode
	7.3.15 Segment Register Instructions
	7.3.15.1 Segment-Register Load and Store Instructions
	7.3.15.2 Far Control Transfer Instructions
	7.3.15.3 Software Interrupt Instructions
	7.3.15.4 Load Far Pointer Instructions

	7.3.16 Miscellaneous Instructions
	7.3.16.1 Address Computation Instruction
	7.3.16.2 Table Lookup Instructions
	7.3.16.3 Processor Identification Instruction
	7.3.16.4 No-Operation and Undefined Instructions

	7.3.17 Random Number Generator Instruction

	Chapter 8 Programming with the x87 FPU
	8.1 x87 FPU Execution Environment
	8.1.1 x87 FPU in 64-Bit Mode and Compatibility Mode
	8.1.2 x87 FPU Data Registers
	8.1.2.1 Parameter Passing With the x87 FPU Register Stack

	8.1.3 x87 FPU Status Register
	8.1.3.1 Top of Stack (TOP) Pointer
	8.1.3.2 Condition Code Flags
	8.1.3.3 x87 FPU Floating-Point Exception Flags
	8.1.3.4 Stack Fault Flag

	8.1.4 Branching and Conditional Moves on Condition Codes
	8.1.5 x87 FPU Control Word
	8.1.5.1 x87 FPU Floating-Point Exception Mask Bits
	8.1.5.2 Precision Control Field
	8.1.5.3 Rounding Control Field

	8.1.6 Infinity Control Flag
	8.1.7 x87 FPU Tag Word
	8.1.8 x87 FPU Instruction and Data (Operand) Pointers
	8.1.9 Last Instruction Opcode
	8.1.9.1 Fopcode Compatibility Sub-mode

	8.1.10 Saving the x87 FPU’s State with FSTENV/FNSTENV and FSAVE/FNSAVE
	8.1.11 Saving the x87 FPU’s State with FXSAVE

	8.2 x87 FPU Data Types
	8.2.1 Indefinites
	8.2.2 Unsupported Double Extended-Precision Floating-Point Encodings and Pseudo-Denormals

	8.3 x86 FPU Instruction Set
	8.3.1 Escape (ESC) Instructions
	8.3.2 x87 FPU Instruction Operands
	8.3.3 Data Transfer Instructions
	8.3.4 Load Constant Instructions
	8.3.5 Basic Arithmetic Instructions
	8.3.6 Comparison and Classification Instructions
	8.3.6.1 Branching on the x87 FPU Condition Codes

	8.3.7 Trigonometric Instructions
	8.3.8 Pi
	8.3.9 Logarithmic, Exponential, and Scale
	8.3.10 Transcendental Instruction Accuracy
	8.3.11 x87 FPU Control Instructions
	8.3.12 Waiting vs. Non-waiting Instructions
	8.3.13 Unsupported x87 FPU Instructions

	8.4 x87 FPU Floating-Point Exception Handling
	8.4.1 Arithmetic vs. Non-arithmetic Instructions

	8.5 x87 FPU Floating-Point Exception Conditions
	8.5.1 Invalid Operation Exception
	8.5.1.1 Stack Overflow or Underflow Exception (#IS)
	8.5.1.2 Invalid Arithmetic Operand Exception (#IA)

	8.5.2 Denormal Operand Exception (#D)
	8.5.3 Divide-By-Zero Exception (#Z)
	8.5.4 Numeric Overflow Exception (#O)
	8.5.5 Numeric Underflow Exception (#U)
	8.5.6 Inexact-Result (Precision) Exception (#P)

	8.6 x87 FPU Exception Synchronization
	8.7 Handling x87 FPU Exceptions in Software
	8.7.1 Native Mode
	8.7.2 MS-DOS* Compatibility Sub-mode
	8.7.3 Handling x87 FPU Exceptions in Software

	Chapter 9 Programming with Intel® MMX™ Technology
	9.1 Overview of MMX Technology
	9.2 The MMX Technology Programming Environment
	9.2.1 MMX Technology in 64-Bit Mode and Compatibility Mode
	9.2.2 MMX Registers
	9.2.3 MMX Data Types
	9.2.4 Memory Data Formats
	9.2.5 Single Instruction, Multiple Data (SIMD) Execution Model

	9.3 Saturation and Wraparound Modes
	9.4 MMX Instructions
	9.4.1 Data Transfer Instructions
	9.4.2 Arithmetic Instructions
	9.4.3 Comparison Instructions
	9.4.4 Conversion Instructions
	9.4.5 Unpack Instructions
	9.4.6 Logical Instructions
	9.4.7 Shift Instructions
	9.4.8 EMMS Instruction

	9.5 Compatibility with x87 FPU Architecture
	9.5.1 MMX Instructions and the x87 FPU Tag Word

	9.6 WRITING APPLICATIONS WITH MMX CODE
	9.6.1 Checking for MMX Technology Support
	9.6.2 Transitions Between x87 FPU and MMX Code
	9.6.3 Using the EMMS Instruction
	9.6.4 Mixing MMX and x87 FPU Instructions
	9.6.5 Interfacing with MMX Code
	9.6.6 Using MMX Code in a Multitasking Operating System Environment
	9.6.7 Exception Handling in MMX Code
	9.6.8 Register Mapping
	9.6.9 Effect of Instruction Prefixes on MMX Instructions

	Chapter 10 Programming with Streaming SIMD Extensions (SSE)
	10.1 Overview of SSE Extensions
	10.2 SSE Programming Environment
	10.2.1 SSE in 64-Bit Mode and Compatibility Mode
	10.2.2 XMM Registers
	10.2.3 MXCSR Control and Status Register
	10.2.3.1 SIMD Floating-Point Mask and Flag Bits
	10.2.3.2 SIMD Floating-Point Rounding Control Field
	10.2.3.3 Flush-To-Zero
	10.2.3.4 Denormals-Are-Zeros

	10.2.4 Compatibility of SSE Extensions with SSE2/SSE3/MMX and the x87 FPU

	10.3 SSE Data Types
	10.4 SSE Instruction Set
	10.4.1 SSE Packed and Scalar Floating-Point Instructions
	10.4.1.1 SSE Data Movement Instructions
	10.4.1.2 SSE Arithmetic Instructions

	10.4.2 SSE Logical Instructions
	10.4.2.1 SSE Comparison Instructions
	10.4.2.2 SSE Shuffle and Unpack Instructions

	10.4.3 SSE Conversion Instructions
	10.4.4 SSE 64-Bit SIMD Integer Instructions
	10.4.5 MXCSR State Management Instructions
	10.4.6 Cacheability Control, Prefetch, and Memory Ordering Instructions
	10.4.6.1 Cacheability Control Instructions
	10.4.6.2 Caching of Temporal vs. Non-Temporal Data
	10.4.6.3 PREFETCHh Instructions
	10.4.6.4 SFENCE Instruction

	10.5 FXSAVE and FXRSTOR Instructions
	10.6 Handling SSE Instruction Exceptions
	10.7 Writing Applications with the SSE Extensions

	Chapter 11 Programming with Streaming SIMD Extensions 2 (SSE2)
	11.1 Overview of SSE2 Extensions
	11.2 SSE2 Programming Environment
	11.2.1 SSE2 in 64-Bit Mode and Compatibility Mode
	11.2.2 Compatibility of SSE2 Extensions with SSE, MMX Technology and x87 FPU Programming Environment
	11.2.3 Denormals-Are-Zeros Flag

	11.3 SSE2 Data Types
	11.4 SSE2 Instructions
	11.4.1 Packed and Scalar Double-Precision Floating-Point Instructions
	11.4.1.1 Data Movement Instructions
	11.4.1.2 SSE2 Arithmetic Instructions
	11.4.1.3 SSE2 Logical Instructions
	11.4.1.4 SSE2 Comparison Instructions
	11.4.1.5 SSE2 Shuffle and Unpack Instructions
	11.4.1.6 SSE2 Conversion Instructions

	11.4.2 SSE2 64-Bit and 128-Bit SIMD Integer Instructions
	11.4.3 128-Bit SIMD Integer Instruction Extensions
	11.4.4 Cacheability Control and Memory Ordering Instructions
	11.4.4.1 FLUSH Cache Line
	11.4.4.2 Cacheability Control Instructions
	11.4.4.3 Memory Ordering Instructions
	11.4.4.4 Pause

	11.4.5 Branch Hints

	11.5 SSE, SSE2, and SSE3 Exceptions
	11.5.1 SIMD Floating-Point Exceptions
	11.5.2 SIMD Floating-Point Exception Conditions
	11.5.2.1 Invalid Operation Exception (#I)
	11.5.2.2 Denormal-Operand Exception (#D)
	11.5.2.3 Divide-By-Zero Exception (#Z)
	11.5.2.4 Numeric Overflow Exception (#O)
	11.5.2.5 Numeric Underflow Exception (#U)
	11.5.2.6 Inexact-Result (Precision) Exception (#P)

	11.5.3 Generating SIMD Floating-Point Exceptions
	11.5.3.1 Handling Masked Exceptions
	11.5.3.2 Handling Unmasked Exceptions
	11.5.3.3 Handling Combinations of Masked and Unmasked Exceptions

	11.5.4 Handling SIMD Floating-Point Exceptions in Software
	11.5.5 Interaction of SIMD and x87 FPU Floating-Point Exceptions

	11.6 Writing Applications with SSE/SSE2 Extensions
	11.6.1 General Guidelines for Using SSE/SSE2 Extensions
	11.6.2 Checking for SSE/SSE2 Support
	11.6.3 Checking for the DAZ Flag in the MXCSR Register
	11.6.4 Initialization of SSE/SSE2 Extensions
	11.6.5 Saving and Restoring the SSE/SSE2 State
	11.6.6 Guidelines for Writing to the MXCSR Register
	11.6.7 Interaction of SSE/SSE2 Instructions with x87 FPU and MMX Instructions
	11.6.8 Compatibility of SIMD and x87 FPU Floating-Point Data Types
	11.6.9 Mixing Packed and Scalar Floating-Point and 128-Bit SIMD Integer Instructions and Data
	11.6.10 Interfacing with SSE/SSE2 Procedures and Functions
	11.6.10.1 Passing Parameters in XMM Registers
	11.6.10.2 Saving XMM Register State on a Procedure or Function Call
	11.6.10.3 Caller-Save Recommendation for Procedure and Function Calls

	11.6.11 Updating Existing MMX Technology Routines Using 128-Bit SIMD Integer Instructions
	11.6.12 Branching on Arithmetic Operations
	11.6.13 Cacheability Hint Instructions
	11.6.14 Effect of Instruction Prefixes on the SSE/SSE2 Instructions

	Chapter 12 Programming with SSE3, SSSE3, SSE4 and AESNI
	12.1 Programming Environment and Data types
	12.1.1 SSE3, SSSE3, SSE4 in 64-Bit Mode and Compatibility Mode
	12.1.2 Compatibility of SSE3/SSSE3 with MMX Technology, the x87 FPU Environment, and SSE/SSE2 Extensions
	12.1.3 Horizontal and Asymmetric Processing

	12.2 Overview of SSE3 Instructions
	12.3 SSE3 Instructions
	12.3.1 x87 FPU Instruction for Integer Conversion
	12.3.2 SIMD Integer Instruction for Specialized 128-bit Unaligned Data Load
	12.3.3 SIMD Floating-Point Instructions That Enhance LOAD/MOVE/DUPLICATE Performance
	12.3.4 SIMD Floating-Point Instructions Provide Packed Addition/Subtraction
	12.3.5 SIMD Floating-Point Instructions Provide Horizontal Addition/Subtraction
	12.3.6 Two Thread Synchronization Instructions

	12.4 Writing Applications with SSE3 Extensions
	12.4.1 Guidelines for Using SSE3 Extensions
	12.4.2 Checking for SSE3 Support
	12.4.3 Enable FTZ and DAZ for SIMD Floating-Point Computation
	12.4.4 Programming SSE3 with SSE/SSE2 Extensions

	12.5 Overview of SSSE3 Instructions
	12.6 SSSE3 Instructions
	12.6.1 Horizontal Addition/Subtraction
	12.6.2 Packed Absolute Values
	12.6.3 Multiply and Add Packed Signed and Unsigned Bytes
	12.6.4 Packed Multiply High with Round and Scale
	12.6.5 Packed Shuffle Bytes
	12.6.6 Packed Sign
	12.6.7 Packed Align Right

	12.7 Writing Applications with SSSE3 Extensions
	12.7.1 Guidelines for Using SSSE3 Extensions
	12.7.2 Checking for SSSE3 Support

	12.8 SSE3/SSSE3 and SSE4 Exceptions
	12.8.1 Device Not Available (DNA) Exceptions
	12.8.2 Numeric Error flag and IGNNE#
	12.8.3 Emulation
	12.8.4 IEEE 754 Compliance of SSE4.1 Floating-Point Instructions

	12.9 SSE4 Overview
	12.10 SSE4.1 Instruction Set
	12.10.1 Dword Multiply Instructions
	12.10.2 Floating-Point Dot Product Instructions
	12.10.3 Streaming Load Hint Instruction
	12.10.4 Packed Blending Instructions
	12.10.5 Packed Integer MIN/MAX Instructions
	12.10.6 Floating-Point Round Instructions with Selectable Rounding Mode
	12.10.7 Insertion and Extractions from XMM Registers
	12.10.8 Packed Integer Format Conversions
	12.10.9 Improved Sums of Absolute Differences (SAD) for 4-Byte Blocks
	12.10.10 Horizontal Search
	12.10.11 Packed Test
	12.10.12 Packed Qword Equality Comparisons
	12.10.13 Dword Packing With Unsigned Saturation

	12.11 SSE4.2 Instruction Set
	12.11.1 String and Text Processing Instructions
	12.11.1.1 Memory Operand Alignment

	12.11.2 Packed Comparison SIMD Integer Instruction
	12.11.3 Application-Targeted Accelerator Instructions

	12.12 Writing Applications with SSE4 Extensions
	12.12.1 Guidelines for Using SSE4 Extensions
	12.12.2 Checking for SSE4.1 Support
	12.12.3 Checking for SSE4.2 Support

	12.13 AESNI Overview
	12.13.1 Little-Endian Architecture and Big-Endian Specification (FIPS 197)
	12.13.1.1 AES Data Structure in Intel 64 Architecture

	12.13.2 AES Transformations and Functions
	12.13.3 PCLMULQDQ
	12.13.4 Checking for AESNI Support

	Chapter 13 Programming with AVX
	13.1 Intel AVX Overview
	13.1.1 256-Bit Wide SIMD Register Support
	13.1.2 Instruction Syntax Enhancements
	13.1.3 VEX Prefix Instruction Encoding Support

	13.2 Functional Overview
	13.2.1 256-bit Floating-Point Arithmetic Processing Enhancements
	13.2.2 256-bit Non-Arithmetic Instruction Enhancements
	13.2.3 Arithmetic Primitives for 128-bit Vector and Scalar processing
	13.2.4 Non-Arithmetic Primitives for 128-bit Vector and Scalar Processing

	13.3 Memory alignment
	13.4 SIMD floating-point ExCeptions
	13.5 Detection of AVX Instructions
	13.5.1 Detection of VEX-Encoded AES and VPCLMULQDQ

	13.6 Emulation
	13.7 Writing AVX floating-point exception handlers
	13.8 Half-Precision Floating-Point Conversion
	13.8.1 Detection of F16C Instructions

	Chapter 14 Input/Output
	14.1 I/O Port Addressing
	14.2 I/O Port Hardware
	14.3 I/O Address Space
	14.3.1 Memory-Mapped I/O

	14.4 I/O Instructions
	14.5 Protected-Mode I/O
	14.5.1 I/O Privilege Level
	14.5.2 I/O Permission Bit Map

	14.6 Ordering I/O

	Chapter 15 Processor Identification and Feature Determination
	15.1 Using the CPUID Instruction
	15.1.1 Notes on Where to Start
	15.1.2 Identification of Earlier IA-32 Processors

	Appendix A EFLAGS Cross-Reference
	A.1 EFLAGS and Instructions

	Appendix B EFLAGS Condition Codes
	B.1 Condition Codes

	Appendix C Floating-Point Exceptions Summary
	C.1 Overview
	C.2 x87 FPU Instructions
	C.3 SSE Instructions
	C.4 SSE2 Instructions
	C.5 SSE3 Instructions
	C.6 SSSE3 Instructions
	C.7 SSE4 Instructions

	Appendix D Guidelines for Writing x87 FPU Exception Handlers
	D.1 MS-DOS Compatibility Sub-mode for Handling x87 FPU Exceptions
	D.2 Implementation of the MS-DOS* Compatibility Sub-mode in the Intel486™, Pentium®, and P6 Processor Family, and Pentium® 4 Processors
	D.2.1 MS-DOS* Compatibility Sub-mode in the Intel486™ and Pentium® Processors
	D.2.1.1 Basic Rules: When FERR# Is Generated
	D.2.1.2 Recommended External Hardware to Support the MS-DOS* Compatibility Sub-mode
	D.2.1.3 No-Wait x87 FPU Instructions Can Get x87 FPU Interrupt in Window

	D.2.2 MS-DOS* Compatibility Sub-mode in the P6 Family and Pentium® 4 Processors

	D.3 Recommended Protocol for MS-DOS* Compatibility Handlers
	D.3.1 Floating-Point Exceptions and Their Defaults
	D.3.2 Two Options for Handling Numeric Exceptions
	D.3.2.1 Automatic Exception Handling: Using Masked Exceptions
	D.3.2.2 Software Exception Handling

	D.3.3 Synchronization Required for Use of x87 FPU Exception Handlers
	D.3.3.1 Exception Synchronization: What, Why, and When
	D.3.3.2 Exception Synchronization Examples
	D.3.3.3 Proper Exception Synchronization

	D.3.4 x87 FPU Exception Handling Examples
	D.3.5 Need for Storing State of IGNNE# Circuit If Using x87 FPU and SMM
	D.3.6 Considerations When x87 FPU Shared Between Tasks
	D.3.6.1 Speculatively Deferring x87 FPU Saves, General Overview
	D.3.6.2 Tracking x87 FPU Ownership
	D.3.6.3 Interaction of x87 FPU State Saves and Floating-Point Exception Association
	D.3.6.4 Interrupt Routing From the Kernel
	D.3.6.5 Special Considerations for Operating Systems that Support Streaming SIMD Extensions

	D.4 Differences For Handlers Using Native Mode
	D.4.1 Origin with the Intel 286 and Intel 287, and Intel386 and Intel 387 Processors
	D.4.2 Changes with Intel486, Pentium and Pentium Pro Processors with CR0.NE[bit 5] = 1
	D.4.3 Considerations When x87 FPU Shared Between Tasks Using Native Mode

	Appendix E Guidelines for Writing SIMD Floating-Point Exception Handlers
	E.1 Two Options for Handling Floating-Point Exceptions
	E.2 Software Exception Handling
	E.3 Exception Synchronization
	E.4 SIMD Floating-Point Exceptions and the IEEE Standard 754
	E.4.1 Floating-Point Emulation
	E.4.2 SSE/SSE2/SSE3 Response To Floating-Point Exceptions
	E.4.2.1 Numeric Exceptions
	E.4.2.2 Results of Operations with NaN Operands or a NaN Result for SSE/SSE2/SSE3 Numeric Instructions
	E.4.2.3 Condition Codes, Exception Flags, and Response for Masked and Unmasked Numeric Exceptions

	E.4.3 Example SIMD Floating-Point Emulation Implementation

	Volume 2: Instruction Reference, A-Z
	Chapter 1 About This Manual
	1.1 Intel® 64 and IA-32 Processors Covered in this Manual
	1.2 Overview of Volume 2A, 2B and 2C: Instruction Set Reference
	1.3 Notational Conventions
	1.3.1 Bit and Byte Order
	1.3.2 Reserved Bits and Software Compatibility
	1.3.3 Instruction Operands
	1.3.4 Hexadecimal and Binary Numbers
	1.3.5 Segmented Addressing
	1.3.6 Exceptions
	1.3.7 A New Syntax for CPUID, CR, and MSR Values

	1.4 Related Literature

	Chapter 2 Instruction Format
	2.1 Instruction Format for Protected Mode, real-address Mode, and virtual-8086 mode
	2.1.1 Instruction Prefixes
	2.1.2 Opcodes
	2.1.3 ModR/M and SIB Bytes
	2.1.4 Displacement and Immediate Bytes
	2.1.5 Addressing-Mode Encoding of ModR/M and SIB Bytes

	2.2 IA-32e Mode
	2.2.1 REX Prefixes
	2.2.1.1 Encoding
	2.2.1.2 More on REX Prefix Fields
	2.2.1.3 Displacement
	2.2.1.4 Direct Memory-Offset MOVs
	2.2.1.5 Immediates
	2.2.1.6 RIP-Relative Addressing
	2.2.1.7 Default 64-Bit Operand Size

	2.2.2 Additional Encodings for Control and Debug Registers

	2.3 INTEL® ADVANCED VECTOR EXTENSIONS (INTEL® AVX)
	2.3.1 Instruction Format
	2.3.2 VEX and the LOCK prefix
	2.3.3 VEX and the 66H, F2H, and F3H prefixes
	2.3.4 VEX and the REX prefix
	2.3.5 The VEX Prefix
	2.3.5.1 VEX Byte 0, bits[7:0]
	2.3.5.2 VEX Byte 1, bit [7] - ‘R’
	2.3.5.3 3-byte VEX byte 1, bit[6] - ‘X’
	2.3.5.4 3-byte VEX byte 1, bit[5] - ‘B’
	2.3.5.5 3-byte VEX byte 2, bit[7] - ‘W’
	2.3.5.6 2-byte VEX Byte 1, bits[6:3] and 3-byte VEX Byte 2, bits [6:3]- ‘vvvv’ the Source or dest Register Specifier

	2.3.6 Instruction Operand Encoding and VEX.vvvv, ModR/M
	2.3.6.1 3-byte VEX byte 1, bits[4:0] - “m-mmmm”
	2.3.6.2 2-byte VEX byte 1, bit[2], and 3-byte VEX byte 2, bit [2]- “L”
	2.3.6.3 2-byte VEX byte 1, bits[1:0], and 3-byte VEX byte 2, bits [1:0]- “pp”

	2.3.7 The Opcode Byte
	2.3.8 The MODRM, SIB, and Displacement Bytes
	2.3.9 The Third Source Operand (Immediate Byte)
	2.3.10 AVX Instructions and the Upper 128-bits of YMM registers
	2.3.10.1 Vector Length Transition and Programming Considerations

	2.3.11 AVX Instruction Length

	2.4 Instruction Exception Specification
	2.4.1 Exceptions Type 1 (Aligned memory reference)
	2.4.2 Exceptions Type 2 (>=16 Byte Memory Reference, Unaligned)
	2.4.3 Exceptions Type 3 (<16 Byte memory argument)
	2.4.4 Exceptions Type 4 (>=16 Byte mem arg no alignment, no floating-point exceptions)
	2.4.5 Exceptions Type 5 (<16 Byte mem arg and no FP exceptions)
	2.4.6 Exceptions Type 6 (VEX-Encoded Instructions Without Legacy SSE Analogues)
	2.4.7 Exceptions Type 7 (No FP exceptions, no memory arg)
	2.4.8 Exceptions Type 8 (AVX and no memory argument)

	Chapter 3 Instruction Set Reference, A-L
	3.1 Interpreting the Instruction Reference Pages
	3.1.1 Instruction Format
	3.1.1.1 Opcode Column in the Instruction Summary Table (Instructions without VEX prefix)
	3.1.1.2 Opcode Column in the Instruction Summary Table (Instructions with VEX prefix)
	3.1.1.3 Instruction Column in the Opcode Summary Table
	3.1.1.4 Operand Encoding Column in the Instruction Summary Table
	3.1.1.5 64/32-bit Mode Column in the Instruction Summary Table
	3.1.1.6 CPUID Support Column in the Instruction Summary Table
	3.1.1.7 Description Column in the Instruction Summary Table
	3.1.1.8 Description Section
	3.1.1.9 Operation Section
	3.1.1.10 Intel® C/C++ Compiler Intrinsics Equivalents Section
	3.1.1.11 Flags Affected Section
	3.1.1.12 FPU Flags Affected Section
	3.1.1.13 Protected Mode Exceptions Section
	3.1.1.14 Real-Address Mode Exceptions Section
	3.1.1.15 Virtual-8086 Mode Exceptions Section
	3.1.1.16 Floating-Point Exceptions Section
	3.1.1.17 SIMD Floating-Point Exceptions Section
	3.1.1.18 Compatibility Mode Exceptions Section
	3.1.1.19 64-Bit Mode Exceptions Section

	3.2 Instructions (A-L)
	AAA-ASCII Adjust After Addition
	AAD-ASCII Adjust AX Before Division
	AAM-ASCII Adjust AX After Multiply
	AAS-ASCII Adjust AL After Subtraction
	ADC-Add with Carry
	ADD-Add
	ADDPD-Add Packed Double-Precision Floating-Point Values
	ADDPS-Add Packed Single-Precision Floating-Point Values
	ADDSD-Add Scalar Double-Precision Floating-Point Values
	ADDSS-Add Scalar Single-Precision Floating-Point Values
	ADDSUBPD-Packed Double-FP Add/Subtract
	ADDSUBPS-Packed Single-FP Add/Subtract
	AESDEC-Perform One Round of an AES Decryption Flow
	AESDECLAST-Perform Last Round of an AES Decryption Flow
	AESENC-Perform One Round of an AES Encryption Flow
	AESENCLAST-Perform Last Round of an AES Encryption Flow
	AESIMC-Perform the AES InvMixColumn Transformation
	AESKEYGENASSIST-AES Round Key Generation Assist
	AND-Logical AND
	ANDPD-Bitwise Logical AND of Packed Double-Precision Floating- Point Values
	ANDPS-Bitwise Logical AND of Packed Single-Precision Floating-Point Values
	ANDNPD-Bitwise Logical AND NOT of Packed Double-Precision Floating-Point Values
	ANDNPS-Bitwise Logical AND NOT of Packed Single-Precision Floating-Point Values
	ARPL-Adjust RPL Field of Segment Selector
	BLENDPD - Blend Packed Double Precision Floating-Point Values
	BLENDPS - Blend Packed Single Precision Floating-Point Values
	BLENDVPD - Variable Blend Packed Double Precision Floating-Point Values
	BLENDVPS - Variable Blend Packed Single Precision Floating-Point Values
	BOUND-Check Array Index Against Bounds
	BSF-Bit Scan Forward
	BSR-Bit Scan Reverse
	BSWAP-Byte Swap
	BT-Bit Test
	BTC-Bit Test and Complement
	BTR-Bit Test and Reset
	BTS-Bit Test and Set
	CALL-Call Procedure
	CBW/CWDE/CDQE-Convert Byte to Word/Convert Word to Doubleword/Convert Doubleword to Quadword
	CLC-Clear Carry Flag
	CLD-Clear Direction Flag
	CLFLUSH-Flush Cache Line
	CLI - Clear Interrupt Flag
	CLTS-Clear Task-Switched Flag in CR0
	CMC-Complement Carry Flag
	CMOVcc-Conditional Move
	CMP-Compare Two Operands
	CMPPD-Compare Packed Double-Precision Floating-Point Values
	CMPPS-Compare Packed Single-Precision Floating-Point Values
	CMPS/CMPSB/CMPSW/CMPSD/CMPSQ-Compare String Operands
	CMPSD-Compare Scalar Double-Precision Floating-Point Values
	CMPSS-Compare Scalar Single-Precision Floating-Point Values
	CMPXCHG-Compare and Exchange
	CMPXCHG8B/CMPXCHG16B-Compare and Exchange Bytes
	COMISD-Compare Scalar Ordered Double-Precision Floating-Point Values and Set EFLAGS
	COMISS-Compare Scalar Ordered Single-Precision Floating-Point Values and Set EFLAGS
	CPUID-CPU Identification
	CRC32 - Accumulate CRC32 Value
	CVTDQ2PD-Convert Packed Dword Integers to Packed Double- Precision FP Values
	CVTDQ2PS-Convert Packed Dword Integers to Packed Single- Precision FP Values
	CVTPD2DQ-Convert Packed Double-Precision FP Values to Packed Dword Integers
	CVTPD2PI-Convert Packed Double-Precision FP Values to Packed Dword Integers
	CVTPD2PS-Convert Packed Double-Precision FP Values to Packed Single-Precision FP Values
	CVTPI2PD-Convert Packed Dword Integers to Packed Double- Precision FP Values
	CVTPI2PS-Convert Packed Dword Integers to Packed Single-Precision FP Values
	CVTPS2DQ-Convert Packed Single-Precision FP Values to Packed Dword Integers
	CVTPS2PD-Convert Packed Single-Precision FP Values to Packed Double-Precision FP Values
	CVTPS2PI-Convert Packed Single-Precision FP Values to Packed Dword Integers
	CVTSD2SI-Convert Scalar Double-Precision FP Value to Integer
	CVTSD2SS-Convert Scalar Double-Precision FP Value to Scalar Single- Precision FP Value
	CVTSI2SD-Convert Dword Integer to Scalar Double-Precision FP Value
	CVTSI2SS-Convert Dword Integer to Scalar Single-Precision FP Value
	CVTSS2SD-Convert Scalar Single-Precision FP Value to Scalar Double- Precision FP Value
	CVTSS2SI-Convert Scalar Single-Precision FP Value to Dword Integer
	CVTTPD2DQ-Convert with Truncation Packed Double-Precision FP Values to Packed Dword Integers
	CVTTPD2PI-Convert with Truncation Packed Double-Precision FP Values to Packed Dword Integers
	CVTTPS2DQ-Convert with Truncation Packed Single-Precision FP Values to Packed Dword Integers
	CVTTPS2PI-Convert with Truncation Packed Single-Precision FP Values to Packed Dword Integers
	CVTTSD2SI-Convert with Truncation Scalar Double-Precision FP Value to Signed Integer
	CVTTSS2SI-Convert with Truncation Scalar Single-Precision FP Value to Dword Integer
	CWD/CDQ/CQO-Convert Word to Doubleword/Convert Doubleword to Quadword
	DAA-Decimal Adjust AL after Addition
	DAS-Decimal Adjust AL after Subtraction
	DEC-Decrement by 1
	DIV-Unsigned Divide
	DIVPD-Divide Packed Double-Precision Floating-Point Values
	DIVPS-Divide Packed Single-Precision Floating-Point Values
	DIVSD-Divide Scalar Double-Precision Floating-Point Values
	DIVSS-Divide Scalar Single-Precision Floating-Point Values
	DPPD - Dot Product of Packed Double Precision Floating-Point Values
	DPPS - Dot Product of Packed Single Precision Floating-Point Values
	EMMS-Empty MMX Technology State
	ENTER-Make Stack Frame for Procedure Parameters
	EXTRACTPS - Extract Packed Single Precision Floating-Point Value
	F2XM1-Compute 2x-1
	FABS-Absolute Value
	FADD/FADDP/FIADD-Add
	FBLD-Load Binary Coded Decimal
	FBSTP-Store BCD Integer and Pop
	FCHS-Change Sign
	FCLEX/FNCLEX-Clear Exceptions
	FCMOVcc-Floating-Point Conditional Move
	FCOM/FCOMP/FCOMPP-Compare Floating Point Values
	FCOMI/FCOMIP/ FUCOMI/FUCOMIP-Compare Floating Point Values and Set EFLAGS
	FCOS-Cosine
	FDECSTP-Decrement Stack-Top Pointer
	FDIV/FDIVP/FIDIV-Divide
	FDIVR/FDIVRP/FIDIVR-Reverse Divide
	FFREE-Free Floating-Point Register
	FICOM/FICOMP-Compare Integer
	FILD-Load Integer
	FINCSTP-Increment Stack-Top Pointer
	FINIT/FNINIT-Initialize Floating-Point Unit
	FIST/FISTP-Store Integer
	FISTTP-Store Integer with Truncation
	FLD-Load Floating Point Value
	FLD1/FLDL2T/FLDL2E/FLDPI/FLDLG2/FLDLN2/FLDZ-Load Constant
	FLDCW-Load x87 FPU Control Word
	FLDENV-Load x87 FPU Environment
	FMUL/FMULP/FIMUL-Multiply
	FNOP-No Operation
	FPATAN-Partial Arctangent
	FPREM-Partial Remainder
	FPREM1-Partial Remainder
	FPTAN-Partial Tangent
	FRNDINT-Round to Integer
	FRSTOR-Restore x87 FPU State
	FSAVE/FNSAVE-Store x87 FPU State
	FSCALE-Scale
	FSIN-Sine
	FSINCOS-Sine and Cosine
	FSQRT-Square Root
	FST/FSTP-Store Floating Point Value
	FSTCW/FNSTCW-Store x87 FPU Control Word
	FSTENV/FNSTENV-Store x87 FPU Environment
	FSTSW/FNSTSW-Store x87 FPU Status Word
	FSUB/FSUBP/FISUB-Subtract
	FSUBR/FSUBRP/FISUBR-Reverse Subtract
	FTST-TEST
	FUCOM/FUCOMP/FUCOMPP-Unordered Compare Floating Point Values
	FXAM-Examine ModR/M
	FXCH-Exchange Register Contents
	FXRSTOR-Restore x87 FPU, MMX , XMM, and MXCSR State
	FXSAVE-Save x87 FPU, MMX Technology, and SSE State
	FXTRACT-Extract Exponent and Significand
	FYL2X-Compute y * log2x
	FYL2XP1-Compute y * log2(x +1)
	HADDPD-Packed Double-FP Horizontal Add
	HADDPS-Packed Single-FP Horizontal Add
	HLT-Halt
	HSUBPD-Packed Double-FP Horizontal Subtract
	HSUBPS-Packed Single-FP Horizontal Subtract
	IDIV-Signed Divide
	IMUL-Signed Multiply
	IN-Input from Port
	INC-Increment by 1
	INS/INSB/INSW/INSD-Input from Port to String
	INSERTPS - Insert Packed Single Precision Floating-Point Value
	INT n/INTO/INT 3-Call to Interrupt Procedure
	INVD-Invalidate Internal Caches
	INVLPG-Invalidate TLB Entry
	INVPCID-Invalidate Process-Context Identifier
	IRET/IRETD-Interrupt Return
	Jcc-Jump if Condition Is Met
	JMP-Jump
	LAHF-Load Status Flags into AH Register
	LAR-Load Access Rights Byte
	LDDQU-Load Unaligned Integer 128 Bits
	LDMXCSR-Load MXCSR Register
	LDS/LES/LFS/LGS/LSS-Load Far Pointer
	LEA-Load Effective Address
	LEAVE-High Level Procedure Exit
	LFENCE-Load Fence
	LGDT/LIDT-Load Global/Interrupt Descriptor Table Register
	LLDT-Load Local Descriptor Table Register
	LMSW-Load Machine Status Word
	LOCK-Assert LOCK# Signal Prefix
	LODS/LODSB/LODSW/LODSD/LODSQ-Load String
	LOOP/LOOPcc-Loop According to ECX Counter
	LSL-Load Segment Limit
	LTR-Load Task Register

	Chapter 4 Instruction Set Reference, M-Z
	4.1 Imm8 Control Byte Operation for PCMPESTRI / PCMPESTRM / PCMPISTRI / PCMPISTRM
	4.1.1 General Description
	4.1.2 Source Data Format
	4.1.3 Aggregation Operation
	4.1.4 Polarity
	4.1.5 Output Selection
	4.1.6 Valid/Invalid Override of Comparisons
	4.1.7 Summary of Im8 Control byte
	4.1.8 Diagram Comparison and Aggregation Process

	4.2 Instructions (M-Z)
	MASKMOVDQU-Store Selected Bytes of Double Quadword
	MASKMOVQ-Store Selected Bytes of Quadword
	MAXPD-Return Maximum Packed Double-Precision Floating-Point Values
	MAXPS-Return Maximum Packed Single-Precision Floating-Point Values
	MAXSD-Return Maximum Scalar Double-Precision Floating-Point Value
	MAXSS-Return Maximum Scalar Single-Precision Floating-Point Value
	MFENCE-Memory Fence
	MINPD-Return Minimum Packed Double-Precision Floating-Point Values
	MINPS-Return Minimum Packed Single-Precision Floating-Point Values
	MINSD-Return Minimum Scalar Double-Precision Floating-Point Value
	MINSS-Return Minimum Scalar Single-Precision Floating-Point Value
	MONITOR-Set Up Monitor Address
	MOV-Move
	MOV-Move to/from Control Registers
	MOV-Move to/from Debug Registers
	MOVAPD-Move Aligned Packed Double-Precision Floating-Point Values
	MOVAPS-Move Aligned Packed Single-Precision Floating-Point Values
	MOVBE-Move Data After Swapping Bytes
	MOVD/MOVQ-Move Doubleword/Move Quadword
	MOVDDUP-Move One Double-FP and Duplicate
	MOVDQA-Move Aligned Double Quadword
	MOVDQU-Move Unaligned Double Quadword
	MOVDQ2Q-Move Quadword from XMM to MMX Technology Register
	MOVHLPS- Move Packed Single-Precision Floating-Point Values High to Low
	MOVHPD-Move High Packed Double-Precision Floating-Point Value
	MOVHPS-Move High Packed Single-Precision Floating-Point Values
	MOVLHPS-Move Packed Single-Precision Floating-Point Values Low to High
	MOVLPD-Move Low Packed Double-Precision Floating-Point Value
	MOVLPS-Move Low Packed Single-Precision Floating-Point Values
	MOVMSKPD-Extract Packed Double-Precision Floating-Point Sign Mask
	MOVMSKPS-Extract Packed Single-Precision Floating-Point Sign Mask
	MOVNTDQA - Load Double Quadword Non-Temporal Aligned Hint
	MOVNTDQ-Store Double Quadword Using Non-Temporal Hint
	MOVNTI-Store Doubleword Using Non-Temporal Hint
	MOVNTPD-Store Packed Double-Precision Floating-Point Values Using Non-Temporal Hint
	MOVNTPS-Store Packed Single-Precision Floating-Point Values Using Non-Temporal Hint
	MOVNTQ-Store of Quadword Using Non-Temporal Hint
	MOVQ-Move Quadword
	MOVQ2DQ-Move Quadword from MMX Technology to XMM Register
	MOVS/MOVSB/MOVSW/MOVSD/MOVSQ-Move Data from String to String
	MOVSD-Move Scalar Double-Precision Floating-Point Value
	MOVSHDUP-Move Packed Single-FP High and Duplicate
	MOVSLDUP-Move Packed Single-FP Low and Duplicate
	MOVSS-Move Scalar Single-Precision Floating-Point Values
	MOVSX/MOVSXD-Move with Sign-Extension
	MOVUPD-Move Unaligned Packed Double-Precision Floating-Point Values
	MOVUPS-Move Unaligned Packed Single-Precision Floating-Point Values
	MOVZX-Move with Zero-Extend
	MPSADBW - Compute Multiple Packed Sums of Absolute Difference
	MUL-Unsigned Multiply
	MULPD-Multiply Packed Double-Precision Floating-Point Values
	MULPS-Multiply Packed Single-Precision Floating-Point Values
	MULSD-Multiply Scalar Double-Precision Floating-Point Values
	MULSS-Multiply Scalar Single-Precision Floating-Point Values
	MWAIT-Monitor Wait
	NEG-Two's Complement Negation
	NOP-No Operation
	NOT-One's Complement Negation
	OR-Logical Inclusive OR
	ORPD-Bitwise Logical OR of Double-Precision Floating-Point Values
	ORPS-Bitwise Logical OR of Single-Precision Floating-Point Values
	OUT-Output to Port
	OUTS/OUTSB/OUTSW/OUTSD-Output String to Port
	PABSB/PABSW/PABSD - Packed Absolute Value
	PACKSSWB/PACKSSDW-Pack with Signed Saturation
	PACKUSDW - Pack with Unsigned Saturation
	PACKUSWB-Pack with Unsigned Saturation
	PADDB/PADDW/PADDD-Add Packed Integers
	PADDQ-Add Packed Quadword Integers
	PADDSB/PADDSW-Add Packed Signed Integers with Signed Saturation
	PADDUSB/PADDUSW-Add Packed Unsigned Integers with Unsigned Saturation
	PALIGNR - Packed Align Right
	PAND-Logical AND
	PANDN-Logical AND NOT
	PAUSE-Spin Loop Hint
	PAVGB/PAVGW-Average Packed Integers
	PBLENDVB - Variable Blend Packed Bytes
	PBLENDW - Blend Packed Words
	PCLMULQDQ - Carry-Less Multiplication Quadword
	PCMPEQB/PCMPEQW/PCMPEQD- Compare Packed Data for Equal
	PCMPEQQ - Compare Packed Qword Data for Equal
	PCMPESTRI - Packed Compare Explicit Length Strings, Return Index
	PCMPESTRM - Packed Compare Explicit Length Strings, Return Mask
	PCMPGTB/PCMPGTW/PCMPGTD-Compare Packed Signed Integers for Greater Than
	PCMPGTQ - Compare Packed Data for Greater Than
	PCMPISTRI - Packed Compare Implicit Length Strings, Return Index
	PCMPISTRM - Packed Compare Implicit Length Strings, Return Mask
	PEXTRB/PEXTRD/PEXTRQ - Extract Byte/Dword/Qword
	PEXTRW-Extract Word
	PHADDW/PHADDD - Packed Horizontal Add
	PHADDSW - Packed Horizontal Add and Saturate
	PHMINPOSUW - Packed Horizontal Word Minimum
	PHSUBW/PHSUBD - Packed Horizontal Subtract
	PHSUBSW - Packed Horizontal Subtract and Saturate
	PINSRB/PINSRD/PINSRQ - Insert Byte/Dword/Qword
	PINSRW-Insert Word
	PMADDUBSW - Multiply and Add Packed Signed and Unsigned Bytes
	PMADDWD-Multiply and Add Packed Integers
	PMAXSB - Maximum of Packed Signed Byte Integers
	PMAXSD - Maximum of Packed Signed Dword Integers
	PMAXSW-Maximum of Packed Signed Word Integers
	PMAXUB-Maximum of Packed Unsigned Byte Integers
	PMAXUD - Maximum of Packed Unsigned Dword Integers
	PMAXUW - Maximum of Packed Word Integers
	PMINSB - Minimum of Packed Signed Byte Integers
	PMINSD - Minimum of Packed Dword Integers
	PMINSW-Minimum of Packed Signed Word Integers
	PMINUB-Minimum of Packed Unsigned Byte Integers
	PMINUD - Minimum of Packed Dword Integers
	PMINUW - Minimum of Packed Word Integers
	PMOVMSKB-Move Byte Mask
	PMOVSX - Packed Move with Sign Extend
	PMOVZX - Packed Move with Zero Extend
	PMULDQ - Multiply Packed Signed Dword Integers
	PMULHRSW - Packed Multiply High with Round and Scale
	PMULHUW-Multiply Packed Unsigned Integers and Store High Result
	PMULHW-Multiply Packed Signed Integers and Store High Result
	PMULLD - Multiply Packed Signed Dword Integers and Store Low Result
	PMULLW-Multiply Packed Signed Integers and Store Low Result
	PMULUDQ-Multiply Packed Unsigned Doubleword Integers
	POP-Pop a Value from the Stack
	POPA/POPAD-Pop All General-Purpose Registers
	POPCNT - Return the Count of Number of Bits Set to 1
	POPF/POPFD/POPFQ-Pop Stack into EFLAGS Register
	POR-Bitwise Logical OR
	PREFETCHh-Prefetch Data Into Caches
	PSADBW-Compute Sum of Absolute Differences
	PSHUFB - Packed Shuffle Bytes
	PSHUFD-Shuffle Packed Doublewords
	PSHUFHW-Shuffle Packed High Words
	PSHUFLW-Shuffle Packed Low Words
	PSHUFW-Shuffle Packed Words
	PSIGNB/PSIGNW/PSIGND - Packed SIGN
	PSLLDQ-Shift Double Quadword Left Logical
	PSLLW/PSLLD/PSLLQ-Shift Packed Data Left Logical
	PSRAW/PSRAD-Shift Packed Data Right Arithmetic
	PSRLDQ-Shift Double Quadword Right Logical
	PSRLW/PSRLD/PSRLQ-Shift Packed Data Right Logical
	PSUBB/PSUBW/PSUBD-Subtract Packed Integers
	PSUBQ-Subtract Packed Quadword Integers
	PSUBSB/PSUBSW-Subtract Packed Signed Integers with Signed Saturation
	PSUBUSB/PSUBUSW-Subtract Packed Unsigned Integers with Unsigned Saturation
	PTEST- Logical Compare
	PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ- Unpack High Data
	PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ- Unpack Low Data
	PUSH-Push Word, Doubleword or Quadword Onto the Stack
	PUSHA/PUSHAD-Push All General-Purpose Registers
	PUSHF/PUSHFD-Push EFLAGS Register onto the Stack
	PXOR-Logical Exclusive OR
	RCL/RCR/ROL/ROR--Rotate
	RCPPS-Compute Reciprocals of Packed Single-Precision Floating- Point Values
	RCPSS-Compute Reciprocal of Scalar Single-Precision Floating-Point Values
	RDFSBASE/RDGSBASE-Read FS/GS Segment Base
	RDMSR-Read from Model Specific Register
	RDPMC-Read Performance-Monitoring Counters
	RDRAND-Read Random Number
	RDTSC-Read Time-Stamp Counter
	RDTSCP-Read Time-Stamp Counter and Processor ID
	REP/REPE/REPZ/REPNE/REPNZ-Repeat String Operation Prefix
	RET-Return from Procedure
	ROUNDPD - Round Packed Double Precision Floating-Point Values
	ROUNDPS - Round Packed Single Precision Floating-Point Values
	ROUNDSD - Round Scalar Double Precision Floating-Point Values
	ROUNDSS - Round Scalar Single Precision Floating-Point Values
	RSM-Resume from System Management Mode
	RSQRTPS-Compute Reciprocals of Square Roots of Packed Single- Precision Floating-Point Values
	RSQRTSS-Compute Reciprocal of Square Root of Scalar Single- Precision Floating-Point Value
	SAHF-Store AH into Flags
	SAL/SAR/SHL/SHR-Shift
	SBB-Integer Subtraction with Borrow
	SCAS/SCASB/SCASW/SCASD-Scan String
	SETcc-Set Byte on Condition
	SFENCE-Store Fence
	SGDT-Store Global Descriptor Table Register
	SHLD-Double Precision Shift Left
	SHRD-Double Precision Shift Right
	SHUFPD-Shuffle Packed Double-Precision Floating-Point Values
	SHUFPS-Shuffle Packed Single-Precision Floating-Point Values
	SIDT-Store Interrupt Descriptor Table Register
	SLDT-Store Local Descriptor Table Register
	SMSW-Store Machine Status Word
	SQRTPD-Compute Square Roots of Packed Double-Precision Floating- Point Values
	SQRTPS-Compute Square Roots of Packed Single-Precision Floating- Point Values
	SQRTSD-Compute Square Root of Scalar Double-Precision Floating- Point Value
	SQRTSS-Compute Square Root of Scalar Single-Precision Floating- Point Value
	STC-Set Carry Flag
	STD-Set Direction Flag
	STI-Set Interrupt Flag
	STMXCSR-Store MXCSR Register State
	STOS/STOSB/STOSW/STOSD/STOSQ-Store String
	STR-Store Task Register
	SUB-Subtract
	SUBPD-Subtract Packed Double-Precision Floating-Point Values
	SUBPS-Subtract Packed Single-Precision Floating-Point Values
	SUBSD-Subtract Scalar Double-Precision Floating-Point Values
	SUBSS-Subtract Scalar Single-Precision Floating-Point Values
	SWAPGS-Swap GS Base Register
	SYSCALL-Fast System Call
	SYSENTER-Fast System Call
	SYSEXIT-Fast Return from Fast System Call
	SYSRET-Return From Fast System Call
	TEST-Logical Compare
	UCOMISD-Unordered Compare Scalar Double-Precision Floating-Point Values and Set EFLAGS
	UCOMISS-Unordered Compare Scalar Single-Precision Floating-Point Values and Set EFLAGS
	UD2-Undefined Instruction
	UNPCKHPD-Unpack and Interleave High Packed Double-Precision Floating-Point Values
	UNPCKHPS-Unpack and Interleave High Packed Single-Precision Floating-Point Values
	UNPCKLPD-Unpack and Interleave Low Packed Double-Precision Floating-Point Values
	UNPCKLPS-Unpack and Interleave Low Packed Single-Precision Floating-Point Values
	VBROADCAST-Load with Broadcast
	VCVTPH2PS-Convert 16-bit FP Values to Single-Precision FP Values
	VCVTPS2PH-Convert Single-Precision FP value to 16-bit FP value
	VERR/VERW-Verify a Segment for Reading or Writing
	VEXTRACTF128 - Extract Packed Floating-Point Values
	VINSERTF128 - Insert Packed Floating-Point Values
	VMASKMOV-Conditional SIMD Packed Loads and Stores
	VPERMILPD - Permute Double-Precision Floating-Point Values
	VPERMILPS - Permute Single-Precision Floating-Point Values
	VPERM2F128 - Permute Floating-Point Values
	VTESTPD/VTESTPS-Packed Bit Test
	VZEROALL-Zero All YMM Registers
	VZEROUPPER-Zero Upper Bits of YMM Registers
	WAIT/FWAIT-Wait
	WBINVD-Write Back and Invalidate Cache
	WRFSBASE/WRGSBASE-Write FS/GS Segment Base
	WRMSR-Write to Model Specific Register
	XADD-Exchange and Add
	XCHG-Exchange Register/Memory with Register
	XGETBV-Get Value of Extended Control Register
	XLAT/XLATB-Table Look-up Translation
	XOR-Logical Exclusive OR
	XORPD-Bitwise Logical XOR for Double-Precision Floating-Point Values
	XORPS-Bitwise Logical XOR for Single-Precision Floating-Point Values
	XRSTOR-Restore Processor Extended States
	XSAVE-Save Processor Extended States
	XSAVEOPT-Save Processor Extended States Optimized
	XSETBV-Set Extended Control Register

	Chapter 5 Safer Mode Extensions Reference
	5.1 Overview
	5.2 SMX Functionality
	5.2.1 Detecting and Enabling SMX
	5.2.2 SMX Instruction Summary
	5.2.2.1 GETSEC[CAPABILITIES]
	5.2.2.2 GETSEC[ENTERACCS]
	5.2.2.3 GETSEC[EXITAC]
	5.2.2.4 GETSEC[SENTER]
	5.2.2.5 GETSEC[SEXIT]
	5.2.2.6 GETSEC[PARAMETERS]
	5.2.2.7 GETSEC[SMCTRL]
	5.2.2.8 GETSEC[WAKEUP]

	5.2.3 Measured Environment and SMX

	5.3 GETSEC Leaf Functions
	GETSEC[CAPABILITIES] - Report the SMX Capabilities
	GETSEC[ENTERACCS] - Execute Authenticated Chipset Code
	GETSEC[EXITAC]-Exit Authenticated Code Execution Mode
	GETSEC[SENTER]-Enter a Measured Environment
	GETSEC[SEXIT]-Exit Measured Environment
	GETSEC[PARAMETERS]-Report the SMX Parameters
	GETSEC[SMCTRL]-SMX Mode Control
	GETSEC[WAKEUP]-Wake up sleeping processors in measured environment

	Appendix A Opcode Map
	A.1 Using Opcode Tables
	A.2 Key to Abbreviations
	A.2.1 Codes for Addressing Method
	A.2.2 Codes for Operand Type
	A.2.3 Register Codes
	A.2.4 Opcode Look-up Examples for One, Two, and Three-Byte Opcodes
	A.2.4.1 One-Byte Opcode Instructions
	A.2.4.2 Two-Byte Opcode Instructions
	A.2.4.3 Three-Byte Opcode Instructions
	A.2.4.4 VEX Prefix Instructions

	A.2.5 Superscripts Utilized in Opcode Tables

	A.3 One, Two, and THREE-Byte Opcode Maps
	A.4 Opcode Extensions For One-Byte And Two- byte Opcodes
	A.4.1 Opcode Look-up Examples Using Opcode Extensions
	A.4.2 Opcode Extension Tables

	A.5 Escape Opcode Instructions
	A.5.1 Opcode Look-up Examples for Escape Instruction Opcodes
	A.5.2 Escape Opcode Instruction Tables
	A.5.2.1 Escape Opcodes with D8 as First Byte
	A.5.2.2 Escape Opcodes with D9 as First Byte
	A.5.2.3 Escape Opcodes with DA as First Byte
	A.5.2.4 Escape Opcodes with DB as First Byte
	A.5.2.5 Escape Opcodes with DC as First Byte
	A.5.2.6 Escape Opcodes with DD as First Byte
	A.5.2.7 Escape Opcodes with DE as First Byte
	A.5.2.8 Escape Opcodes with DF As First Byte

	Appendix B Instruction Formats and Encodings
	B.1 Machine Instruction Format
	B.1.1 Legacy Prefixes
	B.1.2 REX Prefixes
	B.1.3 Opcode Fields
	B.1.4 Special Fields
	B.1.4.1 Reg Field (reg) for Non-64-Bit Modes
	B.1.4.2 Reg Field (reg) for 64-Bit Mode
	B.1.4.3 Encoding of Operand Size (w) Bit
	B.1.4.4 Sign-Extend (s) Bit
	B.1.4.5 Segment Register (sreg) Field
	B.1.4.6 Special-Purpose Register (eee) Field
	B.1.4.7 Condition Test (tttn) Field
	B.1.4.8 Direction (d) Bit

	B.1.5 Other Notes

	B.2 General-Purpose Instruction Formats and Encodings for Non-64-Bit Modes
	B.2.1 General Purpose Instruction Formats and Encodings for 64-Bit Mode

	B.3 Pentium® Processor Family Instruction Formats and Encodings
	B.4 64-bit Mode Instruction Encodings for SIMD Instruction Extensions
	B.5 MMX Instruction Formats and Encodings
	B.5.1 Granularity Field (gg)
	B.5.2 MMX Technology and General-Purpose Register Fields (mmxreg and reg)
	B.5.3 MMX Instruction Formats and Encodings Table

	B.6 Processor ExtendeD State INstruction Formats and EncodIngs
	B.7 P6 Family INstruction Formats and Encodings
	B.8 SSE Instruction Formats and Encodings
	B.9 SSE2 Instruction Formats and Encodings
	B.9.1 Granularity Field (gg)

	B.10 SSE3 Formats and Encodings Table
	B.11 SSsE3 Formats and Encoding Table
	B.12 AESNI and PCLMULQDQ INstruction Formats and Encodings
	B.13 Special Encodings for 64-Bit Mode
	B.14 SSE4.1 Formats and Encoding Table
	B.15 SSE4.2 Formats and Encoding Table
	B.16 AVX Formats and Encoding Table
	B.17 Floating-Point Instruction Formats and Encodings
	B.18 VMX Instructions
	B.19 SMX Instructions

	Appendix C Intel® C/C++ Compiler Intrinsics and Functional Equivalents
	C.1 Simple Intrinsics
	C.2 Composite Intrinsics

	Volume 3: System Programming Guide
	Chapter 1 About This Manual
	1.1 Intel® 64 and IA-32 Processors Covered in this Manual
	1.2 Overview of The SYSTEM PROGRAMMING GUIDE
	1.3 Notational Conventions
	1.3.1 Bit and Byte Order
	1.3.2 Reserved Bits and Software Compatibility
	1.3.3 Instruction Operands
	1.3.4 Hexadecimal and Binary Numbers
	1.3.5 Segmented Addressing
	1.3.6 Syntax for CPUID, CR, and MSR Values
	1.3.7 Exceptions

	1.4 Related Literature

	Chapter 2 System Architecture Overview
	2.1 Overview of the System-Level Architecture
	2.1.1 Global and Local Descriptor Tables
	2.1.1.1 Global and Local Descriptor Tables in IA-32e Mode

	2.1.2 System Segments, Segment Descriptors, and Gates
	2.1.2.1 Gates in IA-32e Mode

	2.1.3 Task-State Segments and Task Gates
	2.1.3.1 Task-State Segments in IA-32e Mode

	2.1.4 Interrupt and Exception Handling
	2.1.4.1 Interrupt and Exception Handling IA-32e Mode

	2.1.5 Memory Management
	2.1.5.1 Memory Management in IA-32e Mode

	2.1.6 System Registers
	2.1.6.1 System Registers in IA-32e Mode

	2.1.7 Other System Resources

	2.2 Modes of Operation
	2.3 System Flags and Fields in the EFLAGS Register
	2.3.1 System Flags and Fields in IA-32e Mode

	2.4 Memory-Management Registers
	2.4.1 Global Descriptor Table Register (GDTR)
	2.4.2 Local Descriptor Table Register (LDTR)
	2.4.3 IDTR Interrupt Descriptor Table Register
	2.4.4 Task Register (TR)

	2.5 Control Registers
	2.5.1 CPUID Qualification of Control Register Flags

	2.6 Extended Control Registers (Including XCR0)
	2.7 System Instruction Summary
	2.7.1 Loading and Storing System Registers
	2.7.2 Verifying of Access Privileges
	2.7.3 Loading and Storing Debug Registers
	2.7.4 Invalidating Caches and TLBs
	2.7.5 Controlling the Processor
	2.7.6 Reading Performance-Monitoring and Time-Stamp Counters
	2.7.6.1 Reading Counters in 64-Bit Mode

	2.7.7 Reading and Writing Model-Specific Registers
	2.7.7.1 Reading and Writing Model-Specific Registers in 64-Bit Mode

	2.7.8 Enabling Processor Extended States

	Chapter 3 Protected-Mode Memory Management
	3.1 Memory Management Overview
	3.2 Using Segments
	3.2.1 Basic Flat Model
	3.2.2 Protected Flat Model
	3.2.3 Multi-Segment Model
	3.2.4 Segmentation in IA-32e Mode
	3.2.5 Paging and Segmentation

	3.3 Physical Address Space
	3.3.1 Intel® 64 Processors and Physical Address Space

	3.4 Logical and Linear Addresses
	3.4.1 Logical Address Translation in IA-32e Mode
	3.4.2 Segment Selectors
	3.4.3 Segment Registers
	3.4.4 Segment Loading Instructions in IA-32e Mode
	3.4.5 Segment Descriptors
	3.4.5.1 Code- and Data-Segment Descriptor Types

	3.5 System Descriptor Types
	3.5.1 Segment Descriptor Tables
	3.5.2 Segment Descriptor Tables in IA-32e Mode

	Chapter 4 Paging
	4.1 Paging Modes and Control Bits
	4.1.1 Three Paging Modes
	4.1.2 Paging-Mode Enabling
	4.1.3 Paging-Mode Modifiers
	4.1.4 Enumeration of Paging Features by CPUID

	4.2 Hierarchical Paging Structures: an Overview
	4.3 32-Bit Paging
	4.4 PAE Paging
	4.4.1 PDPTE Registers
	4.4.2 Linear-Address Translation with PAE Paging

	4.5 IA-32e Paging
	4.6 Access Rights
	4.7 Page-Fault Exceptions
	4.8 Accessed and Dirty Flags
	4.9 Paging and Memory Typing
	4.9.1 Paging and Memory Typing When the PAT is Not Supported (Pentium Pro and Pentium II Processors)
	4.9.2 Paging and Memory Typing When the PAT is Supported (Pentium III and More Recent Processor Families)
	4.9.3 Caching Paging-Related Information about Memory Typing

	4.10 Caching Translation Information
	4.10.1 Process-Context Identifiers (PCIDs)
	4.10.2 Translation Lookaside Buffers (TLBs)
	4.10.2.1 Page Numbers, Page Frames, and Page Offsets
	4.10.2.2 Caching Translations in TLBs
	4.10.2.3 Details of TLB Use
	4.10.2.4 Global Pages

	4.10.3 Paging-Structure Caches
	4.10.3.1 Caches for Paging Structures
	4.10.3.2 Using the Paging-Structure Caches to Translate Linear Addresses
	4.10.3.3 Multiple Cached Entries for a Single Paging-Structure Entry

	4.10.4 Invalidation of TLBs and Paging-Structure Caches
	4.10.4.1 Operations that Invalidate TLBs and Paging-Structure Caches
	4.10.4.2 Recommended Invalidation
	4.10.4.3 Optional Invalidation
	4.10.4.4 Delayed Invalidation

	4.10.5 Propagation of Paging-Structure Changes to Multiple Processors

	4.11 Interactions with Virtual-Machine Extensions (VMX)
	4.11.1 VMX Transitions
	4.11.2 VMX Support for Address Translation

	4.12 Using Paging for Virtual Memory
	4.13 Mapping Segments to Pages

	Chapter 5 Protection
	5.1 Enabling and Disabling Segment and Page Protection
	5.2 Fields and Flags Used for Segment-Level and Page-Level Protection
	5.2.1 Code Segment Descriptor in 64-bit Mode

	5.3 Limit Checking
	5.3.1 Limit Checking in 64-bit Mode

	5.4 Type Checking
	5.4.1 Null Segment Selector Checking
	5.4.1.1 NULL Segment Checking in 64-bit Mode

	5.5 Privilege Levels
	5.6 Privilege Level Checking When Accessing Data Segments
	5.6.1 Accessing Data in Code Segments

	5.7 Privilege Level Checking When Loading the SS Register
	5.8 Privilege Level Checking When Transferring Program Control Between Code Segments
	5.8.1 Direct Calls or Jumps to Code Segments
	5.8.1.1 Accessing Nonconforming Code Segments
	5.8.1.2 Accessing Conforming Code Segments

	5.8.2 Gate Descriptors
	5.8.3 Call Gates
	5.8.3.1 IA-32e Mode Call Gates

	5.8.4 Accessing a Code Segment Through a Call Gate
	5.8.5 Stack Switching
	5.8.5.1 Stack Switching in 64-bit Mode

	5.8.6 Returning from a Called Procedure
	5.8.7 Performing Fast Calls to System Procedures with the SYSENTER and SYSEXIT Instructions
	5.8.7.1 SYSENTER and SYSEXIT Instructions in IA-32e Mode

	5.8.8 Fast System Calls in 64-bit Mode

	5.9 Privileged Instructions
	5.10 Pointer Validation
	5.10.1 Checking Access Rights (LAR Instruction)
	5.10.2 Checking Read/Write Rights (VERR and VERW Instructions)
	5.10.3 Checking That the Pointer Offset Is Within Limits (LSL Instruction)
	5.10.4 Checking Caller Access Privileges (ARPL Instruction)
	5.10.5 Checking Alignment

	5.11 Page-Level Protection
	5.11.1 Page-Protection Flags
	5.11.2 Restricting Addressable Domain
	5.11.3 Page Type
	5.11.4 Combining Protection of Both Levels of Page Tables
	5.11.5 Overrides to Page Protection

	5.12 Combining Page and Segment Protection
	5.13 Page-Level Protection and Execute-Disable Bit
	5.13.1 Detecting and Enabling the Execute-Disable Capability
	5.13.2 Execute-Disable Page Protection
	5.13.3 Reserved Bit Checking
	5.13.4 Exception Handling

	Chapter 6 Interrupt and Exception Handling
	6.1 Interrupt and Exception Overview
	6.2 Exception and Interrupt Vectors
	6.3 Sources of Interrupts
	6.3.1 External Interrupts
	6.3.2 Maskable Hardware Interrupts
	6.3.3 Software-Generated Interrupts

	6.4 Sources of Exceptions
	6.4.1 Program-Error Exceptions
	6.4.2 Software-Generated Exceptions
	6.4.3 Machine-Check Exceptions

	6.5 Exception Classifications
	6.6 Program or Task Restart
	6.7 NonMaskable Interrupt (NMI)
	6.7.1 Handling Multiple NMIs

	6.8 Enabling and Disabling Interrupts
	6.8.1 Masking Maskable Hardware Interrupts
	6.8.2 Masking Instruction Breakpoints
	6.8.3 Masking Exceptions and Interrupts When Switching Stacks

	6.9 Priority Among Simultaneous Exceptions and Interrupts
	6.10 Interrupt Descriptor Table (IDT)
	6.11 IDT Descriptors
	6.12 Exception and Interrupt Handling
	6.12.1 Exception- or Interrupt-Handler Procedures
	6.12.1.1 Protection of Exception- and Interrupt-Handler Procedures
	6.12.1.2 Flag Usage By Exception- or Interrupt-Handler Procedure

	6.12.2 Interrupt Tasks

	6.13 Error Code
	6.14 Exception and Interrupt Handling in 64-bit Mode
	6.14.1 64-Bit Mode IDT
	6.14.2 64-Bit Mode Stack Frame
	6.14.3 IRET in IA-32e Mode
	6.14.4 Stack Switching in IA-32e Mode
	6.14.5 Interrupt Stack Table

	6.15 Exception and Interrupt Reference
	Interrupt 0-Divide Error Exception (#DE)
	Interrupt 1-Debug Exception (#DB)
	Interrupt 2-NMI Interrupt
	Interrupt 3-Breakpoint Exception (#BP)
	Interrupt 4-Overflow Exception (#OF)
	Interrupt 5-BOUND Range Exceeded Exception (#BR)
	Interrupt 6-Invalid Opcode Exception (#UD)
	Interrupt 7-Device Not Available Exception (#NM)
	Interrupt 8-Double Fault Exception (#DF)
	Interrupt 9-Coprocessor Segment Overrun
	Interrupt 10-Invalid TSS Exception (#TS)
	Interrupt 11-Segment Not Present (#NP)
	Interrupt 12-Stack Fault Exception (#SS)
	Interrupt 13-General Protection Exception (#GP)
	Interrupt 14-Page-Fault Exception (#PF)
	Interrupt 16-x87 FPU Floating-Point Error (#MF)
	Interrupt 17-Alignment Check Exception (#AC)
	Interrupt 18-Machine-Check Exception (#MC)
	Interrupt 19-SIMD Floating-Point Exception (#XM)
	Interrupts 32 to 255-User Defined Interrupts

	Chapter 7 Task Management
	7.1 Task Management Overview
	7.1.1 Task Structure
	7.1.2 Task State
	7.1.3 Executing a Task

	7.2 Task Management Data Structures
	7.2.1 Task-State Segment (TSS)
	7.2.2 TSS Descriptor
	7.2.3 TSS Descriptor in 64-bit mode
	7.2.4 Task Register
	7.2.5 Task-Gate Descriptor

	7.3 Task Switching
	7.4 Task Linking
	7.4.1 Use of Busy Flag To Prevent Recursive Task Switching
	7.4.2 Modifying Task Linkages

	7.5 Task Address Space
	7.5.1 Mapping Tasks to the Linear and Physical Address Spaces
	7.5.2 Task Logical Address Space

	7.6 16-Bit Task-State Segment (TSS)
	7.7 Task Management in 64-bit Mode

	Chapter 8 Multiple-Processor Management
	8.1 Locked Atomic Operations
	8.1.1 Guaranteed Atomic Operations
	8.1.2 Bus Locking
	8.1.2.1 Automatic Locking
	8.1.2.2 Software Controlled Bus Locking

	8.1.3 Handling Self- and Cross-Modifying Code
	8.1.4 Effects of a LOCK Operation on Internal Processor Caches

	8.2 Memory Ordering
	8.2.1 Memory Ordering in the Intel® Pentium® and Intel486™ Processors
	8.2.2 Memory Ordering in P6 and More Recent Processor Families
	8.2.3 Examples Illustrating the Memory-Ordering Principles
	8.2.3.1 Assumptions, Terminology, and Notation
	8.2.3.2 Neither Loads Nor Stores Are Reordered with Like Operations
	8.2.3.3 Stores Are Not Reordered With Earlier Loads
	8.2.3.4 Loads May Be Reordered with Earlier Stores to Different Locations
	8.2.3.5 Intra-Processor Forwarding Is Allowed
	8.2.3.6 Stores Are Transitively Visible
	8.2.3.7 Stores Are Seen in a Consistent Order by Other Processors
	8.2.3.8 Locked Instructions Have a Total Order
	8.2.3.9 Loads and Stores Are Not Reordered with Locked Instructions

	8.2.4 Fast-String Operation and Out-of-Order Stores
	8.2.4.1 Memory-Ordering Model for String Operations on Write-Back (WB) Memory
	8.2.4.2 Examples Illustrating Memory-Ordering Principles for String Operations

	8.2.5 Strengthening or Weakening the Memory-Ordering Model

	8.3 Serializing Instructions
	8.4 Multiple-Processor (MP) Initialization
	8.4.1 BSP and AP Processors
	8.4.2 MP Initialization Protocol Requirements and Restrictions
	8.4.3 MP Initialization Protocol Algorithm for Intel Xeon Processors
	8.4.4 MP Initialization Example
	8.4.4.1 Typical BSP Initialization Sequence
	8.4.4.2 Typical AP Initialization Sequence

	8.4.5 Identifying Logical Processors in an MP System

	8.5 Intel® Hyper-Threading Technology and Intel® Multi-Core Technology
	8.6 Detecting Hardware Multi-Threading Support and Topology
	8.6.1 Initializing Processors Supporting Hyper-Threading Technology
	8.6.2 Initializing Multi-Core Processors
	8.6.3 Executing Multiple Threads on an Intel® 64 or IA-32 Processor Supporting Hardware Multi-Threading
	8.6.4 Handling Interrupts on an IA-32 Processor Supporting Hardware Multi-Threading

	8.7 Intel® Hyper-Threading Technology Architecture
	8.7.1 State of the Logical Processors
	8.7.2 APIC Functionality
	8.7.3 Memory Type Range Registers (MTRR)
	8.7.4 Page Attribute Table (PAT)
	8.7.5 Machine Check Architecture
	8.7.6 Debug Registers and Extensions
	8.7.7 Performance Monitoring Counters
	8.7.8 IA32_MISC_ENABLE MSR
	8.7.9 Memory Ordering
	8.7.10 Serializing Instructions
	8.7.11 Microcode Update Resources
	8.7.12 Self Modifying Code
	8.7.13 Implementation-Specific Intel HT Technology Facilities
	8.7.13.1 Processor Caches
	8.7.13.2 Processor Translation Lookaside Buffers (TLBs)
	8.7.13.3 Thermal Monitor
	8.7.13.4 External Signal Compatibility

	8.8 Multi-Core Architecture
	8.8.1 Logical Processor Support
	8.8.2 Memory Type Range Registers (MTRR)
	8.8.3 Performance Monitoring Counters
	8.8.4 IA32_MISC_ENABLE MSR
	8.8.5 Microcode Update Resources

	8.9 Programming Considerations for Hardware Multi-Threading Capable Processors
	8.9.1 Hierarchical Mapping of Shared Resources
	8.9.2 Hierarchical Mapping of CPUID Extended Topology Leaf
	8.9.3 Hierarchical ID of Logical Processors in an MP System
	8.9.3.1 Hierarchical ID of Logical Processors with x2APIC ID

	8.9.4 Algorithm for Three-Level Mappings of APIC_ID
	8.9.5 Identifying Topological Relationships in a MP System

	8.10 Management of Idle and Blocked Conditions
	8.10.1 HLT Instruction
	8.10.2 PAUSE Instruction
	8.10.3 Detecting Support MONITOR/MWAIT Instruction
	8.10.4 MONITOR/MWAIT Instruction
	8.10.5 Monitor/Mwait Address Range Determination
	8.10.6 Required Operating System Support
	8.10.6.1 Use the PAUSE Instruction in Spin-Wait Loops
	8.10.6.2 Potential Usage of MONITOR/MWAIT in C0 Idle Loops
	8.10.6.3 Halt Idle Logical Processors
	8.10.6.4 Potential Usage of MONITOR/MWAIT in C1 Idle Loops
	8.10.6.5 Guidelines for Scheduling Threads on Logical Processors Sharing Execution Resources
	8.10.6.6 Eliminate Execution-Based Timing Loops
	8.10.6.7 Place Locks and Semaphores in Aligned, 128-Byte Blocks of Memory

	8.11 MP Initialization For P6 Family Processors
	8.11.1 Overview of the MP Initialization Process For P6 Family Processors
	8.11.2 MP Initialization Protocol Algorithm
	8.11.2.1 Error Detection and Handling During the MP Initialization Protocol

	Chapter 9 Processor Management and Initialization
	9.1 Initialization Overview
	9.1.1 Processor State After Reset
	9.1.2 Processor Built-In Self-Test (BIST)
	9.1.3 Model and Stepping Information
	9.1.4 First Instruction Executed

	9.2 x87 FPU Initialization
	9.2.1 Configuring the x87 FPU Environment
	9.2.2 Setting the Processor for x87 FPU Software Emulation

	9.3 Cache Enabling
	9.4 Model-Specific Registers (MSRs)
	9.5 Memory Type Range Registers (MTRRs)
	9.6 Initializing SSE/SSE2/SSE3/SSSE3 Extensions
	9.7 Software Initialization for Real-Address Mode Operation
	9.7.1 Real-Address Mode IDT
	9.7.2 NMI Interrupt Handling

	9.8 Software Initialization for Protected-Mode Operation
	9.8.1 Protected-Mode System Data Structures
	9.8.2 Initializing Protected-Mode Exceptions and Interrupts
	9.8.3 Initializing Paging
	9.8.4 Initializing Multitasking
	9.8.5 Initializing IA-32e Mode
	9.8.5.1 IA-32e Mode System Data Structures
	9.8.5.2 IA-32e Mode Interrupts and Exceptions
	9.8.5.3 64-bit Mode and Compatibility Mode Operation
	9.8.5.4 Switching Out of IA-32e Mode Operation

	9.9 Mode Switching
	9.9.1 Switching to Protected Mode
	9.9.2 Switching Back to Real-Address Mode

	9.10 Initialization and Mode Switching Example
	9.10.1 Assembler Usage
	9.10.2 STARTUP.ASM Listing
	9.10.3 MAIN.ASM Source Code
	9.10.4 Supporting Files

	9.11 Microcode Update Facilities
	9.11.1 Microcode Update
	9.11.2 Optional Extended Signature Table
	9.11.3 Processor Identification
	9.11.4 Platform Identification
	9.11.5 Microcode Update Checksum
	9.11.6 Microcode Update Loader
	9.11.6.1 Hard Resets in Update Loading
	9.11.6.2 Update in a Multiprocessor System
	9.11.6.3 Update in a System Supporting Intel Hyper-Threading Technology
	9.11.6.4 Update in a System Supporting Dual-Core Technology
	9.11.6.5 Update Loader Enhancements

	9.11.7 Update Signature and Verification
	9.11.7.1 Determining the Signature
	9.11.7.2 Authenticating the Update

	9.11.8 Pentium 4, Intel Xeon, and P6 Family Processor Microcode Update Specifications
	9.11.8.1 Responsibilities of the BIOS
	9.11.8.2 Responsibilities of the Calling Program
	9.11.8.3 Microcode Update Functions
	9.11.8.4 INT 15H-based Interface
	9.11.8.5 Function 00H-Presence Test
	9.11.8.6 Function 01H-Write Microcode Update Data
	9.11.8.7 Function 02H-Microcode Update Control
	9.11.8.8 Function 03H-Read Microcode Update Data
	9.11.8.9 Return Codes

	Chapter 10 Advanced Programmable Interrupt Controller (APIC)
	10.1 Local and I/O APIC Overview
	10.2 System Bus Vs. APIC Bus
	10.3 The Intel® 82489DX External APIC, the APIC, the xAPIC, and the X2APIC
	10.4 Local APIC
	10.4.1 The Local APIC Block Diagram
	10.4.2 Presence of the Local APIC
	10.4.3 Enabling or Disabling the Local APIC
	10.4.4 Local APIC Status and Location
	10.4.5 Relocating the Local APIC Registers
	10.4.6 Local APIC ID
	10.4.7 Local APIC State
	10.4.7.1 Local APIC State After Power-Up or Reset
	10.4.7.2 Local APIC State After It Has Been Software Disabled
	10.4.7.3 Local APIC State After an INIT Reset (“Wait-for-SIPI” State)
	10.4.7.4 Local APIC State After It Receives an INIT-Deassert IPI

	10.4.8 Local APIC Version Register

	10.5 Handling Local Interrupts
	10.5.1 Local Vector Table
	10.5.2 Valid Interrupt Vectors
	10.5.3 Error Handling
	10.5.4 APIC Timer
	10.5.4.1 TSC-Deadline Mode

	10.5.5 Local Interrupt Acceptance

	10.6 Issuing Interprocessor Interrupts
	10.6.1 Interrupt Command Register (ICR)
	10.6.2 Determining IPI Destination
	10.6.2.1 Physical Destination Mode
	10.6.2.2 Logical Destination Mode
	10.6.2.3 Broadcast/Self Delivery Mode
	10.6.2.4 Lowest Priority Delivery Mode

	10.6.3 IPI Delivery and Acceptance

	10.7 System and APIC Bus Arbitration
	10.8 Handling Interrupts
	10.8.1 Interrupt Handling with the Pentium 4 and Intel Xeon Processors
	10.8.2 Interrupt Handling with the P6 Family and Pentium Processors
	10.8.3 Interrupt, Task, and Processor Priority
	10.8.3.1 Task and Processor Priorities

	10.8.4 Interrupt Acceptance for Fixed Interrupts
	10.8.5 Signaling Interrupt Servicing Completion
	10.8.6 Task Priority in IA-32e Mode
	10.8.6.1 Interaction of Task Priorities between CR8 and APIC

	10.9 Spurious Interrupt
	10.10 APIC Bus Message Passing Mechanism and Protocol (P6 Family, Pentium Processors)
	10.10.1 Bus Message Formats

	10.11 Message Signalled Interrupts
	10.11.1 Message Address Register Format
	10.11.2 Message Data Register Format

	10.12 Extended XAPIC (x2APIC)
	10.12.1 Detecting and Enabling x2APIC Mode
	10.12.1.1 Instructions to Access APIC Registers
	10.12.1.2 x2APIC Register Address Space
	10.12.1.3 Reserved Bit Checking

	10.12.2 x2APIC Register Availability
	10.12.3 MSR Access in x2APIC Mode
	10.12.4 VM-Exit Controls for MSRs and x2APIC Registers
	10.12.5 x2APIC State Transitions
	10.12.5.1 x2APIC States
	x2APIC After Reset
	x2APIC Transitions From x2APIC Mode
	x2APIC Transitions From Disabled Mode
	State Changes From xAPIC Mode to x2APIC Mode

	10.12.6 Routing of Device Interrupts in x2APIC Mode
	10.12.7 Initialization by System Software
	10.12.8 CPUID Extensions And Topology Enumeration
	10.12.8.1 Consistency of APIC IDs and CPUID

	10.12.9 ICR Operation in x2APIC Mode
	10.12.10 Determining IPI Destination in x2APIC Mode
	10.12.10.1 Logical Destination Mode in x2APIC Mode
	10.12.10.2 Deriving Logical x2APIC ID from the Local x2APIC ID

	10.12.11 SELF IPI Register

	10.13 APIC Bus Message Formats
	10.13.1 Bus Message Formats
	10.13.2 EOI Message
	10.13.2.1 Short Message
	10.13.2.2 Non-focused Lowest Priority Message
	10.13.2.3 APIC Bus Status Cycles

	Chapter 11 Memory Cache Control
	11.1 Internal Caches, TLBs, and Buffers
	11.2 Caching Terminology
	11.3 Methods of Caching Available
	11.3.1 Buffering of Write Combining Memory Locations
	11.3.2 Choosing a Memory Type
	11.3.3 Code Fetches in Uncacheable Memory

	11.4 Cache Control Protocol
	11.5 Cache Control
	11.5.1 Cache Control Registers and Bits
	11.5.2 Precedence of Cache Controls
	11.5.2.1 Selecting Memory Types for Pentium Pro and Pentium II Processors
	11.5.2.2 Selecting Memory Types for Pentium III and More Recent Processor Families
	11.5.2.3 Writing Values Across Pages with Different Memory Types

	11.5.3 Preventing Caching
	11.5.4 Disabling and Enabling the L3 Cache
	11.5.5 Cache Management Instructions
	11.5.6 L1 Data Cache Context Mode
	11.5.6.1 Adaptive Mode
	11.5.6.2 Shared Mode

	11.6 Self-Modifying Code
	11.7 Implicit Caching (Pentium 4, Intel Xeon, and P6 Family Processors)
	11.8 Explicit Caching
	11.9 Invalidating the Translation Lookaside Buffers (TLBs)
	11.10 Store Buffer
	11.11 Memory Type Range Registers (MTRRs)
	11.11.1 MTRR Feature Identification
	11.11.2 Setting Memory Ranges with MTRRs
	11.11.2.1 IA32_MTRR_DEF_TYPE MSR
	11.11.2.2 Fixed Range MTRRs
	11.11.2.3 Variable Range MTRRs
	11.11.2.4 System-Management Range Register Interface

	11.11.3 Example Base and Mask Calculations
	11.11.3.1 Base and Mask Calculations for Greater-Than 36-bit Physical Address Support

	11.11.4 Range Size and Alignment Requirement
	11.11.4.1 MTRR Precedences

	11.11.5 MTRR Initialization
	11.11.6 Remapping Memory Types
	11.11.7 MTRR Maintenance Programming Interface
	11.11.7.1 MemTypeGet() Function
	11.11.7.2 MemTypeSet() Function

	11.11.8 MTRR Considerations in MP Systems
	11.11.9 Large Page Size Considerations

	11.12 Page Attribute Table (PAT)
	11.12.1 Detecting Support for the PAT Feature
	11.12.2 IA32_PAT MSR
	11.12.3 Selecting a Memory Type from the PAT
	11.12.4 Programming the PAT
	11.12.5 PAT Compatibility with Earlier IA-32 Processors

	Chapter 12 Intel® MMX™ Technology System Programming
	12.1 Emulation of the MMX Instruction Set
	12.2 The MMX State and MMX Register Aliasing
	12.2.1 Effect of MMX, x87 FPU, FXSAVE, and FXRSTOR Instructions on the x87 FPU Tag Word

	12.3 Saving and Restoring the MMX State and Registers
	12.4 Saving MMX State on Task or Context Switches
	12.5 EXCEPTIONS That Can Occur When Executing MMX Instructions
	12.5.1 Effect of MMX Instructions on Pending x87 Floating-Point Exceptions

	12.6 Debugging MMX Code

	Chapter 13 System Programming For Instruction Set Extensions And Processor Extended States
	13.1 Providing Operating System Support for SSE/SSE2/SSE3/SSSE3/SSE4 Extensions
	13.1.1 Adding Support to an Operating System for SSE/SSE2/SSE3/SSSE3/SSE4 Extensions
	13.1.2 Checking for SSE/SSE2/SSE3/SSSE3/SSE4 Extension Support
	13.1.3 Checking for Support for the FXSAVE and FXRSTOR Instructions
	13.1.4 Initialization of the SSE/SSE2/SSE3/SSSE3/SSE4 Extensions
	13.1.5 Providing Non-Numeric Exception Handlers for Exceptions Generated by the SSE/SSE2/SSE3/SSSE3/SSE4 Instructions
	13.1.6 Providing an Handler for the SIMD Floating-Point Exception (#XM)
	13.1.6.1 Numeric Error flag and IGNNE#

	13.2 Emulation of SSE/SSE2/SSE3/SSSE3/SSE4 Extensions
	13.3 Saving and Restoring the SSE/SSE2/SSE3/SSSE3/SSE4 State
	13.4 Saving the SSE/SSE2/SSE3/SSSE3/SSE4 State on Task or Context Switches
	13.5 Designing OS Facilities for AUTOMATICALLY Saving x87 FPU, MMX, and SSE/SSE2/SSE3/SSSE3/SSE4 state on Task or Context Switches
	13.5.1 Using the TS Flag to Control the Saving of the x87 FPU, MMX, SSE, SSE2, SSE3 SSSE3 and SSE4 State

	13.6 XSAVE/XRSTOR and Processor Extended state management
	13.6.1 XSAVE Header

	13.7 Interoperability of XSAVE/XRSTOR and FXSAVE/FXRSTOR
	13.8 Detection, Enumeration, Enabling Processor Extended State Support
	13.8.1 Application Programming Model and Processor Extended States

	13.9 Intel Advanced Vector Extensions (Intel AVX) and YMM State
	13.10 YMM State Management
	13.10.1 Detection of YMM State Support
	13.10.2 Enabling of YMM State
	13.10.3 Enabling of SIMD Floating-Exception Support
	13.10.4 The Layout of XSAVE Area
	13.10.5 XSAVE/XRSTOR Interaction with YMM State and MXCSR
	13.10.6 Processor Extended State Save Optimization and XSAVEOPT
	13.10.6.1 XSAVEOPT Usage Guidelines

	Chapter 14 Power and Thermal Management
	14.1 Enhanced Intel Speedstep® Technology
	14.1.1 Software Interface For Initiating Performance State Transitions

	14.2 P-State Hardware Coordination
	14.3 System Software Considerations and Opportunistic processor Performance operation
	14.3.1 Intel Dynamic Acceleration
	14.3.2 System Software Interfaces for Opportunistic Processor Performance Operation
	14.3.2.1 Discover Hardware Support and Enabling of Opportunistic Processor Operation
	14.3.2.2 OS Control of Opportunistic Processor Performance Operation
	14.3.2.3 Required Changes to OS Power Management P-state Policy
	14.3.2.4 Application Awareness of Opportunistic Processor Operation (Optional)

	14.3.3 Intel Turbo Boost Technology
	14.3.4 Performance and Energy Bias Hint support

	14.4 MWAIT Extensions for Advanced Power Management
	14.5 Thermal Monitoring and Protection
	14.5.1 Catastrophic Shutdown Detector
	14.5.2 Thermal Monitor
	14.5.2.1 Thermal Monitor 1
	14.5.2.2 Thermal Monitor 2
	14.5.2.3 Two Methods for Enabling TM2
	14.5.2.4 Performance State Transitions and Thermal Monitoring
	14.5.2.5 Thermal Status Information
	14.5.2.6 Adaptive Thermal Monitor

	14.5.3 Software Controlled Clock Modulation
	14.5.3.1 Extension of Software Controlled Clock Modulation

	14.5.4 Detection of Thermal Monitor and Software Controlled Clock Modulation Facilities
	14.5.4.1 Detection of Software Controlled Clock Modulation Extension

	14.5.5 On Die Digital Thermal Sensors
	14.5.5.1 Digital Thermal Sensor Enumeration
	14.5.5.2 Reading the Digital Sensor

	14.5.6 Power Limit Notification

	14.6 Package Level Thermal Management
	14.6.1 Support for Passive and Active cooling

	14.7 Platform Specific Power Management Support
	14.7.1 RAPL Interfaces
	14.7.2 RAPL Domains and Platform Specificity
	14.7.3 Package RAPL Domain
	14.7.4 PP0/PP1 RAPL Domains
	14.7.5 DRAM RAPL Domain

	Chapter 15 Machine-Check Architecture
	15.1 Machine-Check Architecture
	15.2 Compatibility with Pentium Processor
	15.3 Machine-Check MSRs
	15.3.1 Machine-Check Global Control MSRs
	15.3.1.1 IA32_MCG_CAP MSR
	15.3.1.2 IA32_MCG_STATUS MSR
	15.3.1.3 IA32_MCG_CTL MSR

	15.3.2 Error-Reporting Register Banks
	15.3.2.1 IA32_MCi_CTL MSRs
	15.3.2.2 IA32_MCi_STATUS MSRS
	15.3.2.3 IA32_MCi_ADDR MSRs
	15.3.2.4 IA32_MCi_MISC MSRs
	15.3.2.5 IA32_MCi_CTL2 MSRs
	15.3.2.6 IA32_MCG Extended Machine Check State MSRs

	15.3.3 Mapping of the Pentium Processor Machine-Check Errors to the Machine-Check Architecture

	15.4 Enhanced Cache Error reporting
	15.5 Corrected Machine Check Error Interrupt
	15.5.1 CMCI Local APIC Interface
	15.5.2 System Software Recommendation for Managing CMCI and Machine Check Resources
	15.5.2.1 CMCI Initialization
	15.5.2.2 CMCI Threshold Management
	15.5.2.3 CMCI Interrupt Handler

	15.6 Recovery of Uncorrected Recoverable (UCR) Errors
	15.6.1 Detection of Software Error Recovery Support
	15.6.2 UCR Error Reporting and Logging
	15.6.3 UCR Error Classification
	15.6.4 UCR Error Overwrite Rules

	15.7 Machine-Check Availability
	15.8 Machine-Check Initialization
	15.9 Interpreting the MCA Error Codes
	15.9.1 Simple Error Codes
	15.9.2 Compound Error Codes
	15.9.2.1 Correction Report Filtering (F) Bit
	15.9.2.2 Transaction Type (TT) Sub-Field
	15.9.2.3 Level (LL) Sub-Field
	15.9.2.4 Request (RRRR) Sub-Field
	15.9.2.5 Bus and Interconnect Errors
	15.9.2.6 Memory Controller Errors

	15.9.3 Architecturally Defined UCR Errors
	15.9.3.1 Architecturally Defined SRAO Errors
	15.9.3.2 Architecturally Defined SRAR Errors

	15.9.4 Multiple MCA Errors
	15.9.5 Machine-Check Error Codes Interpretation

	15.10 Guidelines for Writing Machine-Check Software
	15.10.1 Machine-Check Exception Handler
	15.10.2 Pentium Processor Machine-Check Exception Handling
	15.10.3 Logging Correctable Machine-Check Errors
	15.10.4 Machine-Check Software Handler Guidelines for Error Recovery
	15.10.4.1 Machine-Check Exception Handler for Error Recovery
	15.10.4.2 Corrected Machine-Check Handler for Error Recovery

	Chapter 16 Interpreting Machine-Check Error Codes
	16.1 Incremental Decoding Information: Processor Family 06H Machine Error Codes For Machine Check
	16.2 Incremental Decoding Information: Intel Core 2 Processor Family Machine Error Codes For Machine Check
	16.2.1 Model-Specific Machine Check Error Codes for Intel Xeon Processor 7400 Series
	16.2.1.1 Processor Machine Check Status Register Incremental MCA Error Code Definition

	16.2.2 Intel Xeon Processor 7400 Model Specific Error Code Field
	16.2.2.1 Processor Model Specific Error Code Field Type B: Bus and Interconnect Error
	16.2.2.2 Processor Model Specific Error Code Field Type C: Cache Bus Controller Error

	16.3 Incremental Decoding Information: Processor Family with CPUID DisplayFamily_DisplayModel Signature 06_1AH, Machine Error Codes For Machine Check
	16.3.1 Intel QPI Machine Check Errors
	16.3.2 Internal Machine Check Errors
	16.3.3 Memory Controller Errors

	16.4 Incremental Decoding Information: Processor Family with CPUID DisplayFamily_DisplayModel Signature 06_2DH, Machine Error Codes For Machine Check
	16.4.1 Internal Machine Check Errors
	16.4.2 Intel QPI Machine Check Errors
	16.4.3 Integrated Memory Controller Machine Check Errors

	16.5 Incremental Decoding Information: Processor Family 0FH Machine Error Codes For Machine Check
	16.5.1 Model-Specific Machine Check Error Codes for Intel Xeon Processor MP 7100 Series
	16.5.1.1 Processor Machine Check Status Register MCA Error Code Definition

	16.5.2 Other_Info Field (all MCA Error Types)
	16.5.3 Processor Model Specific Error Code Field
	16.5.3.1 MCA Error Type A: L3 Error
	16.5.3.2 Processor Model Specific Error Code Field Type B: Bus and Interconnect Error
	16.5.3.3 Processor Model Specific Error Code Field Type C: Cache Bus Controller Error

	Chapter 17 Debugging, Branch Profiling, and Time-Stamp Counter
	17.1 Overview of Debug Support Facilities
	17.2 Debug Registers
	17.2.1 Debug Address Registers (DR0-DR3)
	17.2.2 Debug Registers DR4 and DR5
	17.2.3 Debug Status Register (DR6)
	17.2.4 Debug Control Register (DR7)
	17.2.5 Breakpoint Field Recognition
	17.2.6 Debug Registers and Intel® 64 Processors

	17.3 Debug Exceptions
	17.3.1 Debug Exception (#DB)-Interrupt Vector 1
	17.3.1.1 Instruction-Breakpoint Exception Condition
	17.3.1.2 Data Memory and I/O Breakpoint Exception Conditions
	17.3.1.3 General-Detect Exception Condition
	17.3.1.4 Single-Step Exception Condition
	17.3.1.5 Task-Switch Exception Condition

	17.3.2 Breakpoint Exception (#BP)-Interrupt Vector 3

	17.4 Last Branch, Interrupt, and Exception Recording Overview
	17.4.1 IA32_DEBUGCTL MSR
	17.4.2 Monitoring Branches, Exceptions, and Interrupts
	17.4.3 Single-Stepping on Branches
	17.4.4 Branch Trace Messages
	17.4.4.1 Branch Trace Message Visibility

	17.4.5 Branch Trace Store (BTS)
	17.4.6 CPL-Qualified Branch Trace Mechanism
	17.4.7 Freezing LBR and Performance Counters on PMI
	17.4.8 LBR Stack
	17.4.8.1 LBR Stack and Intel® 64 Processors
	17.4.8.2 LBR Stack and IA-32 Processors
	17.4.8.3 Last Exception Records and Intel 64 Architecture

	17.4.9 BTS and DS Save Area
	17.4.9.1 DS Save Area and IA-32e Mode Operation
	17.4.9.2 Setting Up the DS Save Area
	17.4.9.3 Setting Up the BTS Buffer
	17.4.9.4 Setting Up CPL-Qualified BTS
	17.4.9.5 Writing the DS Interrupt Service Routine

	17.5 Last Branch, Interrupt, and Exception Recording (Intel® Core™2 Duo and Intel® Atom™ Processor Family)
	17.5.1 LBR Stack

	17.6 Last Branch, Interrupt, and Exception Recording for Processors based on Intel® Microarchitecture code name Nehalem
	17.6.1 LBR Stack
	17.6.2 Filtering of Last Branch Records

	17.7 Last Branch, Interrupt, and Exception Recording for Processors based on Intel® Microarchitecture code name Sandy Bridge
	17.8 Last Branch, Interrupt, and Exception Recording (Processors based on Intel NetBurst® Microarchitecture)
	17.8.1 MSR_DEBUGCTLA MSR
	17.8.2 LBR Stack for Processors Based on Intel NetBurst® Microarchitecture
	17.8.3 Last Exception Records

	17.9 Last Branch, Interrupt, and Exception Recording (Intel® Core™ Solo and Intel® Core™ Duo Processors)
	17.10 Last Branch, Interrupt, and Exception Recording (Pentium M Processors)
	17.11 Last Branch, Interrupt, and Exception Recording (P6 Family Processors)
	17.11.1 DEBUGCTLMSR Register
	17.11.2 Last Branch and Last Exception MSRs
	17.11.3 Monitoring Branches, Exceptions, and Interrupts

	17.12 Time-Stamp Counter
	17.12.1 Invariant TSC
	17.12.2 IA32_TSC_AUX Register and RDTSCP Support

	Chapter 18 Performance Monitoring
	18.1 Performance Monitoring Overview
	18.2 Architectural Performance Monitoring
	18.2.1 Architectural Performance Monitoring Version 1
	18.2.1.1 Architectural Performance Monitoring Version 1 Facilities

	18.2.2 Additional Architectural Performance Monitoring Extensions
	18.2.2.1 Architectural Performance Monitoring Version 2 Facilities
	18.2.2.2 Architectural Performance Monitoring Version 3 Facilities
	18.2.2.3 Full-Width Writes to Performance Counter Registers

	18.2.3 Pre-defined Architectural Performance Events

	18.3 Performance Monitoring (Intel® Core™ Solo and Intel® Core™ Duo Processors)
	18.4 Performance Monitoring (Processors Based on Intel® Core™ Microarchitecture)
	18.4.1 Fixed-function Performance Counters
	18.4.2 Global Counter Control Facilities
	18.4.3 At-Retirement Events
	18.4.4 Precise Event Based Sampling (PEBS)
	18.4.4.1 Setting up the PEBS Buffer
	18.4.4.2 PEBS Record Format
	18.4.4.3 Writing a PEBS Interrupt Service Routine
	18.4.4.4 Re-configuring PEBS Facilities

	18.5 Performance Monitoring (Processors Based on Intel® Atom™ Microarchitecture)
	18.6 Performance Monitoring for Processors Based on Intel® Microarchitecture Code Name Nehalem
	18.6.1 Enhancements of Performance Monitoring in the Processor Core
	18.6.1.1 Precise Event Based Sampling (PEBS)
	18.6.1.2 Load Latency Performance Monitoring Facility
	18.6.1.3 Off-core Response Performance Monitoring in the Processor Core

	18.6.2 Performance Monitoring Facility in the Uncore
	18.6.2.1 Uncore Performance Monitoring Management Facility
	18.6.2.2 Uncore Performance Event Configuration Facility
	18.6.2.3 Uncore Address/Opcode Match MSR

	18.6.3 Intel® Xeon® Processor 7500 Series Performance Monitoring Facility

	18.7 Performance Monitoring for Processors Based on Intel® Microarchitecture Code Name Westmere
	18.7.1 Intel® Xeon® Processor E7 Family Performance Monitoring Facility

	18.8 Performance Monitoring for Processors Based on Intel® Microarchitecture Code Name Sandy Bridge
	18.8.1 Global Counter Control Facilities In Intel® Microarchitecture Code Name Sandy Bridge
	18.8.2 Counter Coalescence
	18.8.3 Full Width Writes to Performance Counters
	18.8.4 PEBS Support in Intel® Microarchitecture Code Name Sandy Bridge
	18.8.4.1 PEBS Record Format
	18.8.4.2 Load Latency Performance Monitoring Facility
	18.8.4.3 Precise Store Facility
	18.8.4.4 Precise Distribution of Instructions Retired (PDIR)

	18.8.5 Off-core Response Performance Monitoring
	18.8.6 Uncore Performance Monitoring Facilities In Intel® Core™ i7- 2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series
	18.8.6.1 Uncore Performance Monitoring Events

	18.8.7 Intel® Xeon® Processor E5 Family Performance Monitoring Facility
	18.8.8 Intel® Xeon® Processor E5 Family Uncore Performance Monitoring Facility

	18.9 Next Generation Intel Core Processor Performance Monitoring Facility
	18.10 Performance Monitoring (Processors Based on Intel NetBurst® Microarchitecture)
	18.10.1 ESCR MSRs
	18.10.2 Performance Counters
	18.10.3 CCCR MSRs
	18.10.4 Debug Store (DS) Mechanism
	18.10.5 Programming the Performance Counters for Non-Retirement Events
	18.10.5.1 Selecting Events to Count
	18.10.5.2 Filtering Events
	18.10.5.3 Starting Event Counting
	18.10.5.4 Reading a Performance Counter’s Count
	18.10.5.5 Halting Event Counting
	18.10.5.6 Cascading Counters
	18.10.5.7 EXTENDED CASCADING
	18.10.5.8 Generating an Interrupt on Overflow
	18.10.5.9 Counter Usage Guideline

	18.10.6 At-Retirement Counting
	18.10.6.1 Using At-Retirement Counting
	18.10.6.2 Tagging Mechanism for Front_end_event
	18.10.6.3 Tagging Mechanism For Execution_event
	18.10.6.4 Tagging Mechanism for Replay_event

	18.10.7 Precise Event-Based Sampling (PEBS)
	18.10.7.1 Detection of the Availability of the PEBS Facilities
	18.10.7.2 Setting Up the DS Save Area
	18.10.7.3 Setting Up the PEBS Buffer
	18.10.7.4 Writing a PEBS Interrupt Service Routine
	18.10.7.5 Other DS Mechanism Implications

	18.10.8 Operating System Implications

	18.11 Performance Monitoring and Intel Hyper- Threading Technology in Processors Based on Intel NetBurst® Microarchitecture
	18.11.1 ESCR MSRs
	18.11.2 CCCR MSRs
	18.11.3 IA32_PEBS_ENABLE MSR
	18.11.4 Performance Monitoring Events

	18.12 Counting Clocks
	18.12.1 Non-Halted Clockticks
	18.12.2 Non-Sleep Clockticks
	18.12.3 Incrementing the Time-Stamp Counter
	18.12.4 Non-Halted Reference Clockticks
	18.12.5 Cycle Counting and Opportunistic Processor Operation

	18.13 Performance Monitoring, Branch Profiling and System Events
	18.14 Performance Monitoring and Dual-Core Technology
	18.15 Performance Monitoring on 64-bit Intel Xeon Processor MP with Up to 8-MByte L3 Cache
	18.16 Performance Monitoring on L3 and Caching Bus Controller sub-systems
	18.16.1 Overview of Performance Monitoring with L3/Caching Bus Controller
	18.16.2 GBSQ Event Interface
	18.16.3 GSNPQ Event Interface
	18.16.4 FSB Event Interface
	18.16.4.1 FSB Sub-Event Mask Interface

	18.16.5 Common Event Control Interface

	18.17 Performance Monitoring (P6 Family Processor)
	18.17.1 PerfEvtSel0 and PerfEvtSel1 MSRs
	18.17.2 PerfCtr0 and PerfCtr1 MSRs
	18.17.3 Starting and Stopping the Performance-Monitoring Counters
	18.17.4 Event and Time-Stamp Monitoring Software
	18.17.5 Monitoring Counter Overflow

	18.18 Performance Monitoring (Pentium Processors)
	18.18.1 Control and Event Select Register (CESR)
	18.18.2 Use of the Performance-Monitoring Pins
	18.18.3 Events Counted

	Chapter 19 Performance-Monitoring Events
	19.1 Architectural Performance-Monitoring Events
	19.2 Performance Monitoring Events for Next Generation Intel® Core™ ProcessorS
	19.3 Performance Monitoring Events for 2nd Generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series
	19.4 Performance Monitoring Events for Intel® Core™ i7 Processor Family and Intel® Xeon® Processor Family
	19.5 Performance Monitoring Events for processors based on Intel® microarchitecture Code Name Westmere
	19.6 Performance Monitoring Events for Intel® Xeon® Processor 5200, 5400 Series and Intel® Core™2 Extreme Processors QX 9000 Series
	19.7 Performance Monitoring Events for Intel® Xeon® Processor 3000, 3200, 5100, 5300 Series and Intel® Core™2 Duo ProcessorS
	19.8 Performance Monitoring Events for Intel® Atom™ Processors
	19.9 Performance Monitoring Events for Intel® Core™ Solo and Intel® Core™ Duo Processors
	19.10 Pentium 4 and Intel Xeon Processor Performance-Monitoring Events
	19.11 Performance Monitoring Events for Intel® Pentium® M Processors
	19.12 P6 Family Processor Performance- Monitoring Events
	19.13 Pentium Processor Performance- Monitoring Events

	Chapter 20 8086 Emulation
	20.1 Real-Address Mode
	20.1.1 Address Translation in Real-Address Mode
	20.1.2 Registers Supported in Real-Address Mode
	20.1.3 Instructions Supported in Real-Address Mode
	20.1.4 Interrupt and Exception Handling

	20.2 Virtual-8086 Mode
	20.2.1 Enabling Virtual-8086 Mode
	20.2.2 Structure of a Virtual-8086 Task
	20.2.3 Paging of Virtual-8086 Tasks
	20.2.4 Protection within a Virtual-8086 Task
	20.2.5 Entering Virtual-8086 Mode
	20.2.6 Leaving Virtual-8086 Mode
	20.2.7 Sensitive Instructions
	20.2.8 Virtual-8086 Mode I/O
	20.2.8.1 I/O-Port-Mapped I/O
	20.2.8.2 Memory-Mapped I/O
	20.2.8.3 Special I/O Buffers

	20.3 Interrupt and Exception Handling in Virtual-8086 Mode
	20.3.1 Class 1-Hardware Interrupt and Exception Handling in Virtual-8086 Mode
	20.3.1.1 Handling an Interrupt or Exception Through a Protected-Mode Trap or Interrupt Gate
	20.3.1.2 Handling an Interrupt or Exception With an 8086 Program Interrupt or Exception Handler
	20.3.1.3 Handling an Interrupt or Exception Through a Task Gate

	20.3.2 Class 2-Maskable Hardware Interrupt Handling in Virtual-8086 Mode Using the Virtual Interrupt Mechanism
	20.3.3 Class 3-Software Interrupt Handling in Virtual-8086 Mode
	20.3.3.1 Method 1: Software Interrupt Handling
	20.3.3.2 Methods 2 and 3: Software Interrupt Handling
	20.3.3.3 Method 4: Software Interrupt Handling
	20.3.3.4 Method 5: Software Interrupt Handling
	20.3.3.5 Method 6: Software Interrupt Handling

	20.4 Protected-Mode Virtual Interrupts

	Chapter 21 Mixing 16-Bit and 32-Bit Code
	21.1 Defining 16-Bit and 32-Bit Program Modules
	21.2 Mixing 16-Bit and 32-Bit Operations Within a Code Segment
	21.3 Sharing Data Among Mixed-Size Code Segments
	21.4 Transferring Control Among Mixed-Size Code Segments
	21.4.1 Code-Segment Pointer Size
	21.4.2 Stack Management for Control Transfer
	21.4.2.1 Controlling the Operand-Size Attribute For a Call
	21.4.2.2 Passing Parameters With a Gate

	21.4.3 Interrupt Control Transfers
	21.4.4 Parameter Translation
	21.4.5 Writing Interface Procedures

	Chapter 22 Architecture Compatibility
	22.1 Processor Families and Categories
	22.2 Reserved Bits
	22.3 Enabling New Functions and Modes
	22.4 Detecting the Presence of New Features Through Software
	22.5 Intel MMX Technology
	22.6 Streaming SIMD Extensions (SSE)
	22.7 Streaming SIMD Extensions 2 (SSE2)
	22.8 Streaming SIMD Extensions 3 (SSE3)
	22.9 Additional Streaming SIMD Extensions
	22.10 Intel Hyper-Threading Technology
	22.11 Multi-Core Technology
	22.12 Specific Features of Dual-Core Processor
	22.13 New Instructions In the Pentium and Later IA-32 Processors
	22.13.1 Instructions Added Prior to the Pentium Processor

	22.14 Obsolete Instructions
	22.15 Undefined Opcodes
	22.16 New Flags in the EFLAGS Register
	22.16.1 Using EFLAGS Flags to Distinguish Between 32-Bit IA-32 Processors

	22.17 Stack Operations
	22.17.1 PUSH SP
	22.17.2 EFLAGS Pushed on the Stack

	22.18 x87 FPU
	22.18.1 Control Register CR0 Flags
	22.18.2 x87 FPU Status Word
	22.18.2.1 Condition Code Flags (C0 through C3)
	22.18.2.2 Stack Fault Flag

	22.18.3 x87 FPU Control Word
	22.18.4 x87 FPU Tag Word
	22.18.5 Data Types
	22.18.5.1 NaNs
	22.18.5.2 Pseudo-zero, Pseudo-NaN, Pseudo-infinity, and Unnormal Formats

	22.18.6 Floating-Point Exceptions
	22.18.6.1 Denormal Operand Exception (#D)
	22.18.6.2 Numeric Overflow Exception (#O)
	22.18.6.3 Numeric Underflow Exception (#U)
	22.18.6.4 Exception Precedence
	22.18.6.5 CS and EIP For FPU Exceptions
	22.18.6.6 FPU Error Signals
	22.18.6.7 Assertion of the FERR# Pin
	22.18.6.8 Invalid Operation Exception On Denormals
	22.18.6.9 Alignment Check Exceptions (#AC)
	22.18.6.10 Segment Not Present Exception During FLDENV
	22.18.6.11 Device Not Available Exception (#NM)
	22.18.6.12 Coprocessor Segment Overrun Exception
	22.18.6.13 General Protection Exception (#GP)
	22.18.6.14 Floating-Point Error Exception (#MF)

	22.18.7 Changes to Floating-Point Instructions
	22.18.7.1 FDIV, FPREM, and FSQRT Instructions
	22.18.7.2 FSCALE Instruction
	22.18.7.3 FPREM1 Instruction
	22.18.7.4 FPREM Instruction
	22.18.7.5 FUCOM, FUCOMP, and FUCOMPP Instructions
	22.18.7.6 FPTAN Instruction
	22.18.7.7 Stack Overflow
	22.18.7.8 FSIN, FCOS, and FSINCOS Instructions
	22.18.7.9 FPATAN Instruction
	22.18.7.10 F2XM1 Instruction
	22.18.7.11 FLD Instruction
	22.18.7.12 FXTRACT Instruction
	22.18.7.13 Load Constant Instructions
	22.18.7.14 FSETPM Instruction
	22.18.7.15 FXAM Instruction
	22.18.7.16 FSAVE and FSTENV Instructions

	22.18.8 Transcendental Instructions
	22.18.9 Obsolete Instructions
	22.18.10 WAIT/FWAIT Prefix Differences
	22.18.11 Operands Split Across Segments and/or Pages
	22.18.12 FPU Instruction Synchronization

	22.19 Serializing Instructions
	22.20 FPU and Math Coprocessor Initialization
	22.20.1 Intel® 387 and Intel® 287 Math Coprocessor Initialization
	22.20.2 Intel486 SX Processor and Intel 487 SX Math Coprocessor Initialization

	22.21 Control Registers
	22.22 Memory Management Facilities
	22.22.1 New Memory Management Control Flags
	22.22.1.1 Physical Memory Addressing Extension
	22.22.1.2 Global Pages
	22.22.1.3 Larger Page Sizes

	22.22.2 CD and NW Cache Control Flags
	22.22.3 Descriptor Types and Contents
	22.22.4 Changes in Segment Descriptor Loads

	22.23 Debug Facilities
	22.23.1 Differences in Debug Register DR6
	22.23.2 Differences in Debug Register DR7
	22.23.3 Debug Registers DR4 and DR5

	22.24 Recognition of Breakpoints
	22.25 Exceptions and/or Exception Conditions
	22.25.1 Machine-Check Architecture
	22.25.2 Priority of Exceptions
	22.25.3 Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers

	22.26 Interrupts
	22.26.1 Interrupt Propagation Delay
	22.26.2 NMI Interrupts
	22.26.3 IDT Limit

	22.27 Advanced Programmable Interrupt Controller (APIC)
	22.27.1 Software Visible Differences Between the Local APIC and the 82489DX
	22.27.2 New Features Incorporated in the Local APIC for the P6 Family and Pentium Processors
	22.27.3 New Features Incorporated in the Local APIC of the Pentium 4 and Intel Xeon Processors

	22.28 Task Switching and TSs
	22.28.1 P6 Family and Pentium Processor TSS
	22.28.2 TSS Selector Writes
	22.28.3 Order of Reads/Writes to the TSS
	22.28.4 Using A 16-Bit TSS with 32-Bit Constructs
	22.28.5 Differences in I/O Map Base Addresses

	22.29 Cache Management
	22.29.1 Self-Modifying Code with Cache Enabled
	22.29.2 Disabling the L3 Cache

	22.30 Paging
	22.30.1 Large Pages
	22.30.2 PCD and PWT Flags
	22.30.3 Enabling and Disabling Paging

	22.31 Stack Operations
	22.31.1 Selector Pushes and Pops
	22.31.2 Error Code Pushes
	22.31.3 Fault Handling Effects on the Stack
	22.31.4 Interlevel RET/IRET From a 16-Bit Interrupt or Call Gate

	22.32 Mixing 16- and 32-Bit Segments
	22.33 Segment and Address Wraparound
	22.33.1 Segment Wraparound

	22.34 Store Buffers and Memory Ordering
	22.35 Bus Locking
	22.36 Bus Hold
	22.37 Model-Specific Extensions to the IA-32
	22.37.1 Model-Specific Registers
	22.37.2 RDMSR and WRMSR Instructions
	22.37.3 Memory Type Range Registers
	22.37.4 Machine-Check Exception and Architecture
	22.37.5 Performance-Monitoring Counters

	22.38 Two Ways to Run Intel 286 Processor Tasks

	Chapter 23 Introduction to Virtual-Machine Extensions
	23.1 Overview
	23.2 Virtual Machine Architecture
	23.3 Introduction to VMX Operation
	23.4 Life Cycle of VMM Software
	23.5 Virtual-Machine Control Structure
	23.6 Discovering Support for VMX
	23.7 Enabling and Entering VMX Operation
	23.8 Restrictions on VMX Operation

	Chapter 24 Virtual-Machine Control Structures
	24.1 Overview
	24.2 Format of the VMCS Region
	24.3 Organization of VMCS Data
	24.4 Guest-State Area
	24.4.1 Guest Register State
	24.4.2 Guest Non-Register State

	24.5 Host-State Area
	24.6 VM-Execution Control Fields
	24.6.1 Pin-Based VM-Execution Controls
	24.6.2 Processor-Based VM-Execution Controls
	24.6.3 Exception Bitmap
	24.6.4 I/O-Bitmap Addresses
	24.6.5 Time-Stamp Counter Offset
	24.6.6 Guest/Host Masks and Read Shadows for CR0 and CR4
	24.6.7 CR3-Target Controls
	24.6.8 Controls for APIC Accesses
	24.6.9 MSR-Bitmap Address
	24.6.10 Executive-VMCS Pointer
	24.6.11 Extended-Page-Table Pointer (EPTP)
	24.6.12 Virtual-Processor Identifier (VPID)
	24.6.13 Controls for PAUSE-Loop Exiting
	24.6.14 VM-Function Controls

	24.7 VM-Exit Control Fields
	24.7.1 VM-Exit Controls
	24.7.2 VM-Exit Controls for MSRs

	24.8 VM-Entry Control Fields
	24.8.1 VM-Entry Controls
	24.8.2 VM-Entry Controls for MSRs
	24.8.3 VM-Entry Controls for Event Injection

	24.9 VM-Exit Information Fields
	24.9.1 Basic VM-Exit Information
	24.9.2 Information for VM Exits Due to Vectored Events
	24.9.3 Information for VM Exits That Occur During Event Delivery
	24.9.4 Information for VM Exits Due to Instruction Execution
	24.9.5 VM-Instruction Error Field

	24.10 Software Use of the VMCS and Related Structures
	24.10.1 Software Use of Virtual-Machine Control Structures
	24.10.2 VMREAD, VMWRITE, and Encodings of VMCS Fields
	24.10.3 Initializing a VMCS
	24.10.4 Software Access to Related Structures
	24.10.5 VMXON Region

	Chapter 25 VMX Non-Root Operation
	25.1 Instructions That Cause VM Exits
	25.1.1 Relative Priority of Faults and VM Exits
	25.1.2 Instructions That Cause VM Exits Unconditionally
	25.1.3 Instructions That Cause VM Exits Conditionally

	25.2 APIC-Access VM Exits
	25.2.1 Linear Accesses to the APIC-Access Page
	25.2.1.1 Linear Accesses That Cause APIC-Access VM Exits
	25.2.1.2 Priority of APIC-Access VM Exits Caused by Linear Accesses
	25.2.1.3 Instructions That May Cause Page Faults or EPT Violations Without Accessing Memory

	25.2.2 Guest-Physical Accesses to the APIC-Access Page
	25.2.2.1 Guest-Physical Accesses That Might Not Cause APIC-Access VM Exits
	25.2.2.2 Priority of APIC-Access VM Exits Caused by Guest-Physical Accesses

	25.2.3 Physical Accesses to the APIC-Access Page
	25.2.4 VTPR Accesses

	25.3 Other Causes of VM Exits
	25.4 Changes to Instruction Behavior in VMX Non- Root Operation
	25.5 APIC Accesses That Do Not Cause VM Exits
	25.5.1 Linear Accesses to the APIC-Access Page Using Large-Page Translations
	25.5.2 Physical Accesses to the APIC-Access Page
	25.5.3 VTPR Accesses
	25.5.3.1 Treatment of Individual VTPR Accesses
	25.5.3.2 Operations with Multiple Accesses
	25.5.3.3 TPR-Shadow Updates

	25.6 Other Changes in VMX Non-Root Operation
	25.6.1 Event Blocking
	25.6.2 Treatment of Task Switches

	25.7 Features Specific to VMX Non-Root Operation
	25.7.1 VMX-Preemption Timer
	25.7.2 Monitor Trap Flag
	25.7.3 Translation of Guest-Physical Addresses Using EPT
	25.7.4 VM Functions
	25.7.4.1 Enabling VM Functions
	25.7.4.2 General Operation of the VMFUNC Instruction
	25.7.4.3 EPTP Switching

	25.8 Unrestricted Guests

	Chapter 26 VM Entries
	26.1 Basic VM-Entry Checks
	26.2 Checks on VMX Controls and Host-State Area
	26.2.1 Checks on VMX Controls
	26.2.1.1 VM-Execution Control Fields
	26.2.1.2 VM-Exit Control Fields
	26.2.1.3 VM-Entry Control Fields

	26.2.2 Checks on Host Control Registers and MSRs
	26.2.3 Checks on Host Segment and Descriptor-Table Registers
	26.2.4 Checks Related to Address-Space Size

	26.3 Checking and Loading Guest State
	26.3.1 Checks on the Guest State Area
	26.3.1.1 Checks on Guest Control Registers, Debug Registers, and MSRs
	26.3.1.2 Checks on Guest Segment Registers
	26.3.1.3 Checks on Guest Descriptor-Table Registers
	26.3.1.4 Checks on Guest RIP and RFLAGS
	26.3.1.5 Checks on Guest Non-Register State
	26.3.1.6 Checks on Guest Page-Directory-Pointer-Table Entries

	26.3.2 Loading Guest State
	26.3.2.1 Loading Guest Control Registers, Debug Registers, and MSRs
	26.3.2.2 Loading Guest Segment Registers and Descriptor-Table Registers
	26.3.2.3 Loading Guest RIP, RSP, and RFLAGS
	26.3.2.4 Loading Page-Directory-Pointer-Table Entries
	26.3.2.5 Updating Non-Register State

	26.3.3 Clearing Address-Range Monitoring

	26.4 Loading MSRs
	26.5 Event Injection
	26.5.1 Vectored-Event Injection
	26.5.1.1 Details of Vectored-Event Injection
	26.5.1.2 VM Exits During Event Injection
	26.5.1.3 Event Injection for VM Entries to Real-Address Mode

	26.5.2 Injection of Pending MTF VM Exits

	26.6 Special Features of VM Entry
	26.6.1 Interruptibility State
	26.6.2 Activity State
	26.6.3 Delivery of Pending Debug Exceptions after VM Entry
	26.6.4 VMX-Preemption Timer
	26.6.5 Interrupt-Window Exiting
	26.6.6 NMI-Window Exiting
	26.6.7 VM Exits Induced by the TPR Shadow
	26.6.8 Pending MTF VM Exits
	26.6.9 VM Entries and Advanced Debugging Features

	26.7 VM-Entry Failures During or After Loading Guest State
	26.8 Machine-Check Events During VM Entry

	Chapter 27 VM Exits
	27.1 Architectural State Before a VM Exit
	27.2 Recording VM-Exit Information and Updating VM-Entry Control Fields
	27.2.1 Basic VM-Exit Information
	27.2.2 Information for VM Exits Due to Vectored Events
	27.2.3 Information for VM Exits During Event Delivery
	27.2.4 Information for VM Exits Due to Instruction Execution

	27.3 Saving Guest State
	27.3.1 Saving Control Registers, Debug Registers, and MSRs
	27.3.2 Saving Segment Registers and Descriptor-Table Registers
	27.3.3 Saving RIP, RSP, and RFLAGS
	27.3.4 Saving Non-Register State

	27.4 Saving MSRs
	27.5 Loading Host State
	27.5.1 Loading Host Control Registers, Debug Registers, MSRs
	27.5.2 Loading Host Segment and Descriptor-Table Registers
	27.5.3 Loading Host RIP, RSP, and RFLAGS
	27.5.4 Checking and Loading Host Page-Directory-Pointer-Table Entries
	27.5.5 Updating Non-Register State
	27.5.6 Clearing Address-Range Monitoring

	27.6 Loading MSRs
	27.7 VMX Aborts
	27.8 Machine-Check Events During VM Exit

	Chapter 28 VMX Support for Address Translation
	28.1 Virtual Processor Identifiers (VPIDs)
	28.2 The Extended Page Table Mechanism (EPT)
	28.2.1 EPT Overview
	28.2.2 EPT Translation Mechanism
	28.2.3 EPT-Induced VM Exits
	28.2.3.1 EPT Misconfigurations
	28.2.3.2 EPT Violations
	28.2.3.3 Prioritization of EPT-Induced VM Exits

	28.2.4 EPT and Memory Typing
	28.2.4.1 Memory Type Used for Accessing EPT Paging Structures
	28.2.4.2 Memory Type Used for Translated Guest-Physical Addresses

	28.3 Caching Translation Information
	28.3.1 Information That May Be Cached
	28.3.2 Creating and Using Cached Translation Information
	28.3.3 Invalidating Cached Translation Information
	28.3.3.1 Operations that Invalidate Cached Mappings
	28.3.3.2 Operations that Need Not Invalidate Cached Mappings
	28.3.3.3 Guidelines for Use of the INVVPID Instruction
	28.3.3.4 Guidelines for Use of the INVEPT Instruction

	Chapter 29 VMX Instruction Reference
	29.1 Overview
	29.2 Conventions
	29.3 VMX Instructions
	INVEPT- Invalidate Translations Derived from EPT
	INVVPID- Invalidate Translations Based on VPID
	VMCALL-Call to VM Monitor
	VMCLEAR-Clear Virtual-Machine Control Structure
	VMFUNC-Invoke VM function
	VMLAUNCH/VMRESUME-Launch/Resume Virtual Machine
	VMPTRLD-Load Pointer to Virtual-Machine Control Structure
	VMPTRST-Store Pointer to Virtual-Machine Control Structure
	VMREAD-Read Field from Virtual-Machine Control Structure
	VMRESUME-Resume Virtual Machine
	VMWRITE-Write Field to Virtual-Machine Control Structure
	VMXOFF-Leave VMX Operation
	VMXON-Enter VMX Operation

	29.4 VM Instruction Error Numbers

	Chapter 30 Virtual-Machine Monitor Programming Considerations
	30.1 VMX System Programming Overview
	30.2 Supporting Processor Operating Modes in Guest Environments
	30.2.1 Using Unrestricted Guest Mode

	30.3 Managing VMCS Regions and Pointers
	30.4 Using VMX Instructions
	30.5 VMM Setup & Tear Down
	30.5.1 Algorithms for Determining VMX Capabilities

	30.6 Preparation and Launching a Virtual Machine
	30.7 Handling of VM Exits
	30.7.1 Handling VM Exits Due to Exceptions
	30.7.1.1 Reflecting Exceptions to Guest Software
	30.7.1.2 Resuming Guest Software after Handling an Exception

	30.8 Multi-Processor Considerations
	30.8.1 Initialization
	30.8.2 Moving a VMCS Between Processors
	30.8.3 Paired Index-Data Registers
	30.8.4 External Data Structures
	30.8.5 CPUID Emulation

	30.9 32-Bit and 64-Bit Guest Environments
	30.9.1 Operating Modes of Guest Environments
	30.9.2 Handling Widths of VMCS Fields
	30.9.2.1 Natural-Width VMCS Fields
	30.9.2.2 64-Bit VMCS Fields

	30.9.3 IA-32e Mode Hosts
	30.9.4 IA-32e Mode Guests
	30.9.5 32-Bit Guests

	30.10 Handling Model Specific Registers
	30.10.1 Using VM-Execution Controls
	30.10.2 Using VM-Exit Controls for MSRs
	30.10.3 Using VM-Entry Controls for MSRs
	30.10.4 Handling Special-Case MSRs and Instructions
	30.10.4.1 Handling IA32_EFER MSR
	30.10.4.2 Handling the SYSENTER and SYSEXIT Instructions
	30.10.4.3 Handling the SYSCALL and SYSRET Instructions
	30.10.4.4 Handling the SWAPGS Instruction
	30.10.4.5 Implementation Specific Behavior on Writing to Certain MSRs

	30.10.5 Handling Accesses to Reserved MSR Addresses

	30.11 Handling Accesses to Control Registers
	30.12 Performance Considerations
	30.13 Use of The VMX-Preemption Timer

	Chapter 31 Virtualization of System Resources
	31.1 Overview
	31.2 Virtualization Support for Debugging Facilities
	31.2.1 Debug Exceptions

	31.3 Memory Virtualization
	31.3.1 Processor Operating Modes & Memory Virtualization
	31.3.2 Guest & Host Physical Address Spaces
	31.3.3 Virtualizing Virtual Memory by Brute Force
	31.3.4 Alternate Approach to Memory Virtualization
	31.3.5 Details of Virtual TLB Operation
	31.3.5.1 Initialization of Virtual TLB
	31.3.5.2 Response to Page Faults
	31.3.5.3 Response to Uses of INVLPG
	31.3.5.4 Response to CR3 Writes

	31.4 Microcode Update Facility
	31.4.1 Early Load of Microcode Updates
	31.4.2 Late Load of Microcode Updates

	Chapter 32 Handling Boundary Conditions in a Virtual Machine Monitor
	32.1 Overview
	32.2 Interrupt Handling in VMX Operation
	32.3 External Interrupt Virtualization
	32.3.1 Virtualization of Interrupt Vector Space
	32.3.2 Control of Platform Interrupts
	32.3.2.1 PIC Virtualization
	32.3.2.2 xAPIC Virtualization
	32.3.2.3 Local APIC Virtualization
	32.3.2.4 I/O APIC Virtualization
	32.3.2.5 Virtualization of Message Signaled Interrupts

	32.3.3 Examples of Handling of External Interrupts
	32.3.3.1 Guest Setup
	32.3.3.2 Processor Treatment of External Interrupt
	32.3.3.3 Processing of External Interrupts by VMM
	32.3.3.4 Generation of Virtual Interrupt Events by VMM

	32.4 Error Handling by VMM
	32.4.1 VM-Exit Failures
	32.4.2 Machine-Check Considerations
	32.4.3 MCA Error Handling Guidelines for VMM
	32.4.3.1 VMM Error Handling Strategies
	32.4.3.2 Basic VMM MCA error recovery handling
	32.4.3.3 Implementation Considerations for the Basic Model
	32.4.3.4 MCA Virtualization
	32.4.3.5 Implementation Considerations for the MCA Virtualization Model

	32.5 Handling Activity States by VMM

	Chapter 33 System Management Mode
	33.1 System Management Mode Overview
	33.1.1 System Management Mode and VMX Operation

	33.2 System Management Interrupt (SMI)
	33.3 Switching Between SMM and the Other Processor Operating Modes
	33.3.1 Entering SMM
	33.3.2 Exiting From SMM

	33.4 SMRAM
	33.4.1 SMRAM State Save Map
	33.4.1.1 SMRAM State Save Map and Intel 64 Architecture

	33.4.2 SMRAM Caching
	33.4.2.1 System Management Range Registers (SMRR)

	33.5 SMI Handler Execution Environment
	33.6 Exceptions and Interrupts Within SMM
	33.7 Managing Synchronous and Asynchronous System Management Interrupts
	33.7.1 I/O State Implementation

	33.8 NMI Handling While in SMM
	33.9 SMM Revision Identifier
	33.10 Auto HALT Restart
	33.10.1 Executing the HLT Instruction in SMM

	33.11 SMBASE Relocation
	33.11.1 Relocating SMRAM to an Address Above 1 MByte

	33.12 I/O Instruction Restart
	33.12.1 Back-to-Back SMI Interrupts When I/O Instruction Restart Is Being Used

	33.13 SMM Multiple-Processor Considerations
	33.14 Default Treatment of SMIs and SMM with VMX Operation and SMX Operation
	33.14.1 Default Treatment of SMI Delivery
	33.14.2 Default Treatment of RSM
	33.14.3 Protection of CR4.VMXE in SMM
	33.14.4 VMXOFF and SMI Unblocking

	33.15 Dual-Monitor Treatment of SMIs and SMM
	33.15.1 Dual-Monitor Treatment Overview
	33.15.2 SMM VM Exits
	33.15.2.1 Architectural State Before a VM Exit
	33.15.2.2 Updating the Current-VMCS and Executive-VMCS Pointers
	33.15.2.3 Recording VM-Exit Information
	33.15.2.4 Saving Guest State
	33.15.2.5 Updating Non-Register State

	33.15.3 Operation of the SMM-Transfer Monitor
	33.15.4 VM Entries that Return from SMM
	33.15.4.1 Checks on the Executive-VMCS Pointer Field
	33.15.4.2 Checks on VM-Execution Control Fields
	33.15.4.3 Checks on VM-Entry Control Fields
	33.15.4.4 Checks on the Guest State Area
	33.15.4.5 Loading Guest State
	33.15.4.6 VMX-Preemption Timer
	33.15.4.7 Updating the Current-VMCS and SMM-Transfer VMCS Pointers
	33.15.4.8 VM Exits Induced by VM Entry
	33.15.4.9 SMI Blocking
	33.15.4.10 Failures of VM Entries That Return from SMM

	33.15.5 Enabling the Dual-Monitor Treatment
	33.15.6 Activating the Dual-Monitor Treatment
	33.15.6.1 Initial Checks
	33.15.6.2 MSEG Checking
	33.15.6.3 Updating the Current-VMCS and Executive-VMCS Pointers
	33.15.6.4 Loading Host State
	33.15.6.5 Loading MSRs

	33.15.7 Deactivating the Dual-Monitor Treatment

	33.16 SMI and Processor Extended State Management

	Chapter 34 Model-Specific Registers (MSRs)
	34.1 Architectural MSRs
	34.2 MSRs In the Intel® Core™ 2 Processor Family
	34.3 MSRs In the Intel® Atom™ Processor Family
	34.4 MSRs In the Intel® Microarchitecture Code Name Nehalem
	34.4.1 Additional MSRs in the Intel® Xeon® Processor 5500 and 3400 Series
	34.4.2 Additional MSRs in the Intel® Xeon® Processor 7500 Series

	34.5 MSRs In the Intel Xeon Processor 5600 Series (Intel® Microarchitecture Code Name Westmere)
	34.6 MSRs In the Intel Xeon Processor E7 Family (Intel® Microarchitecture Code Name Westmere)
	34.7 MSRs In Intel® Processor Family (Intel® Microarchitecture Code Name Sandy Bridge)
	34.7.1 MSRs In Second Generation Intel® Core Processor Family (Intel® Microarchitecture Code Name Sandy Bridge)
	34.7.2 MSRs In Next Generation Intel® Xeon Processor Family (Intel® Microarchitecture Code Name Sandy Bridge)

	34.8 MSRs In the Next Generation Intel Core Processor (Intel® Microarchitecture Code Name Ivy Bridge)
	34.9 MSRs In the Pentium® 4 and Intel® Xeon® Processors
	34.9.1 MSRs Unique to Intel Xeon Processor MP with L3 Cache

	34.10 MSRs In Intel® Core™ Solo and Intel® Core™ Duo Processors
	34.11 MSRs In the Pentium M Processor
	34.12 MSRs In the P6 Family Processors
	34.13 MSRs in Pentium Processors

	Appendix A VMX Capability Reporting Facility
	A.1 Basic VMX Information
	A.2 Reserved Controls and Default Settings
	A.3 VM-Execution Controls
	A.3.1 Pin-Based VM-Execution Controls
	A.3.2 Primary Processor-Based VM-Execution Controls
	A.3.3 Secondary Processor-Based VM-Execution Controls

	A.4 VM-Exit Controls
	A.5 VM-Entry Controls
	A.6 Miscellaneous Data
	A.7 VMX-Fixed Bits in CR0
	A.8 VMX-Fixed Bits in CR4
	A.9 VMCS Enumeration
	A.10 VPID and EPT Capabilities
	A.11 VM Functions

	Appendix B Field Encoding in VMCS
	B.1 16-Bit Fields
	B.1.1 16-Bit Control Field
	B.1.2 16-Bit Guest-State Fields
	B.1.3 16-Bit Host-State Fields

	B.2 64-Bit Fields
	B.2.1 64-Bit Control Fields
	B.2.2 64-Bit Read-Only Data Field
	B.2.3 64-Bit Guest-State Fields
	B.2.4 64-Bit Host-State Fields

	B.3 32-Bit Fields
	B.3.1 32-Bit Control Fields
	B.3.2 32-Bit Read-Only Data Fields
	B.3.3 32-Bit Guest-State Fields
	B.3.4 32-Bit Host-State Field

	B.4 Natural-Width Fields
	B.4.1 Natural-Width Control Fields
	B.4.2 Natural-Width Read-Only Data Fields
	B.4.3 Natural-Width Guest-State Fields
	B.4.4 Natural-Width Host-State Fields

	Appendix C VMX Basic Exit Reasons

	Index

