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CHAPTER 1
ABOUT THIS MANUAL

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: 
Basic Architecture (order number 253665) is part of a set that describes the architec-
ture and programming environment of Intel® 64 and IA-32 architecture processors. 
Other volumes in this set are:
• The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 

2A, 2B & 2C: Instruction Set Reference (order numbers 253666, 253667 and 
326018).

• The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 
3A, 3B & 3C: System Programming Guide (order numbers 253668, 253669 and 
326019).

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, 
describes the basic architecture and programming environment of Intel 64 and IA-32 
processors. The Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volumes 2A, 2B & 2C, describe the instruction set of the processor and the opcode 
structure. These volumes apply to application programmers and to programmers 
who write operating systems or executives. The Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volumes 3A, 3B & 3C, describe the operating-system 
support environment of Intel 64 and IA-32 processors. These volumes target oper-
ating-system and BIOS designers. In addition, the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 3B, addresses the programming environment 
for classes of software that host operating systems. 

1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN 
THIS MANUAL

This manual set includes information pertaining primarily to the most recent Intel 64 
and IA-32 processors, which include: 
• Pentium® processors
• P6 family processors
• Pentium® 4 processors
• Pentium® M processors
• Intel® Xeon® processors
• Pentium® D processors
• Pentium® processor Extreme Editions
• 64-bit Intel® Xeon® processors
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• Intel® CoreTM Duo processor
• Intel® CoreTM Solo processor
• Dual-Core Intel® Xeon® processor LV
• Intel® CoreTM2 Duo processor
• Intel® CoreTM2 Quad processor Q6000 series
• Intel® Xeon® processor 3000, 3200 series
• Intel® Xeon® processor 5000 series
• Intel® Xeon® processor 5100, 5300 series
• Intel® CoreTM2 Extreme processor X7000 and X6800 series
• Intel® CoreTM2 Extreme processor QX6000 series
• Intel® Xeon® processor 7100 series
• Intel® Pentium® Dual-Core processor
• Intel® Xeon® processor 7200, 7300 series
• Intel® Xeon® processor 5200, 5400, 7400 series
• Intel® CoreTM2 Extreme processor QX9000 and X9000 series
• Intel® CoreTM2 Quad processor Q9000 series
• Intel® CoreTM2 Duo processor E8000, T9000 series
• Intel® AtomTM processor family
• Intel® CoreTM i7 processor
• Intel® CoreTM i5 processor
• Intel® Xeon® processor E7-8800/4800/2800 product families 
• Intel® Xeon® processor E5 family
• Intel® Xeon® processor E3 family
• Intel® CoreTM i7-3930K processor
• 2nd generation Intel® CoreTM i7-2xxx, Intel® CoreTM i5-2xxx, Intel® CoreTM i3-

2xxx processor series

P6 family processors are IA-32 processors based on the P6 family microarchitecture. 
This includes the Pentium® Pro, Pentium® II, Pentium® III, and Pentium® III Xeon® 
processors. 

The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based 
on the Intel NetBurst® microarchitecture. Most early Intel® Xeon® processors are 
based on the Intel NetBurst® microarchitecture. Intel Xeon processor 5000, 7100 
series are based on the Intel NetBurst® microarchitecture.

The Intel® CoreTM Duo, Intel® CoreTM Solo and dual-core Intel® Xeon® processor LV 
are based on an improved Pentium® M processor microarchitecture. 
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The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200 and 7300 series, Intel® 
Pentium® dual-core, Intel® CoreTM2 Duo, Intel® CoreTM2 Quad, and Intel® CoreTM2 
Extreme processors are based on Intel® CoreTM microarchitecture.

The Intel® Xeon® processor 5200, 5400, 7400 series, Intel® CoreTM2 Quad processor 
Q9000 series, and Intel® CoreTM2 Extreme processor QX9000, X9000 series, Intel® 
CoreTM2 processor E8000 series are based on Enhanced Intel® CoreTM microarchitec-
ture.

The Intel® AtomTM processor family is based on the Intel® AtomTM microarchitecture 
and supports Intel 64 architecture.

The Intel® CoreTM i7 processor and the Intel® CoreTM i5 processor are based on the 
Intel® microarchitecture code name Nehalem and support Intel 64 architecture.

Processors based on Intel® microarchitecture code name Westmere support Intel 64 
architecture.

P6 family, Pentium® M, Intel® CoreTM Solo, Intel® CoreTM Duo processors, dual-core 
Intel® Xeon® processor LV, and early generations of Pentium 4 and Intel Xeon 
processors support IA-32 architecture. The Intel® AtomTM processor Z5xx series 
support IA-32 architecture.

The Intel® Xeon® processor E5 family, Intel® Xeon® processor E3 family, Intel® 
CoreTM i7-3930K processor, 2nd generation Intel® CoreTM i7-2xxx, Intel® CoreTM i5-
2xxx, Intel® CoreTM i3-2xxx processor series, Intel® Xeon® processor E7-
8800/4800/2800 product families, Intel® Xeon® processor 3000, 3200, 5000, 5100, 
5200, 5300, 5400, 7100, 7200, 7300, 7400 series, Intel® CoreTM2 Duo, Intel® 
CoreTM2 Extreme processors, Intel Core 2 Quad processors, Pentium® D processors, 
Pentium® Dual-Core processor, newer generations of Pentium 4 and Intel Xeon 
processor family support Intel® 64 architecture.

IA-32 architecture is the instruction set architecture and programming environment 
for Intel's 32-bit microprocessors. 

Intel® 64 architecture is the instruction set architecture and programming environ-
ment which is the superset of Intel’s 32-bit and 64-bit architectures. It is compatible 
with the IA-32 architecture.

1.2 OVERVIEW OF VOLUME 1: BASIC ARCHITECTURE
A description of this manual’s content follows:

Chapter 1 — About This Manual. Gives an overview of all five volumes of the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual. It also describes 
the notational conventions in these manuals and lists related Intel manuals and 
documentation of interest to programmers and hardware designers.

Chapter 2 — Intel® 64 and IA-32 Architectures. Introduces the Intel 64 and 
IA-32 architectures along with the families of Intel processors that are based on 
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these architectures. It also gives an overview of the common features found in these 
processors and brief history of the Intel 64 and IA-32 architectures.

Chapter 3 — Basic Execution Environment. Introduces the models of memory 
organization and describes the register set used by applications.

Chapter 4 — Data Types. Describes the data types and addressing modes recog-
nized by the processor; provides an overview of real numbers and floating-point 
formats and of floating-point exceptions.

Chapter 5 — Instruction Set Summary. Lists all Intel 64 and IA-32 instructions, 
divided into technology groups.

Chapter 6 — Procedure Calls, Interrupts, and Exceptions. Describes the proce-
dure stack and mechanisms provided for making procedure calls and for servicing 
interrupts and exceptions.

Chapter 7 — Programming with General-Purpose Instructions. Describes 
basic load and store, program control, arithmetic, and string instructions that 
operate on basic data types, general-purpose and segment registers; also describes 
system instructions that are executed in protected mode.

Chapter 8 — Programming with the x87 FPU. Describes the x87 floating-point 
unit (FPU), including floating-point registers and data types; gives an overview of the 
floating-point instruction set and describes the processor's floating-point exception 
conditions.

Chapter 9 — Programming with Intel® MMX™ Technology. Describes Intel 
MMX technology, including MMX registers and data types; also provides an overview 
of the MMX instruction set. 

Chapter 10 — Programming with Streaming SIMD Extensions (SSE). 
Describes SSE extensions, including XMM registers, the MXCSR register, and packed 
single-precision floating-point data types; provides an overview of the SSE instruc-
tion set and gives guidelines for writing code that accesses the SSE extensions. 

Chapter 11 — Programming with Streaming SIMD Extensions 2 (SSE2). 
Describes SSE2 extensions, including XMM registers and packed double-precision 
floating-point data types; provides an overview of the SSE2 instruction set and gives 
guidelines for writing code that accesses SSE2 extensions. This chapter also 
describes SIMD floating-point exceptions that can be generated with SSE and SSE2 
instructions. It also provides general guidelines for incorporating support for SSE and 
SSE2 extensions into operating system and applications code.

Chapter 12 — Programming with SSE3, SSSE3 and SSE4. Provides an overview 
of the SSE3 instruction set, Supplemental SSE3, SSE4, and guidelines for writing 
code that accesses these extensions.

Chapter 13 — Input/Output. Describes the processor’s I/O mechanism, including 
I/O port addressing, I/O instructions, and I/O protection mechanisms.

Chapter 14 — Processor Identification and Feature Determination. Describes 
how to determine the CPU type and features available in the processor.
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Appendix A — EFLAGS Cross-Reference. Summarizes how the IA-32 instructions 
affect the flags in the EFLAGS register.

Appendix B — EFLAGS Condition Codes. Summarizes how conditional jump, 
move, and ‘byte set on condition code’ instructions use condition code flags (OF, CF, 
ZF, SF, and PF) in the EFLAGS register.

Appendix C — Floating-Point Exceptions Summary. Summarizes exceptions 
raised by the x87 FPU floating-point and SSE/SSE2/SSE3 floating-point instructions.

Appendix D — Guidelines for Writing x87 FPU Exception Handlers. Describes 
how to design and write MS-DOS* compatible exception handling facilities for FPU 
exceptions (includes software and hardware requirements and assembly-language 
code examples). This appendix also describes general techniques for writing robust 
FPU exception handlers.

Appendix E — Guidelines for Writing SIMD Floating-Point Exception 
Handlers. Gives guidelines for writing exception handlers for exceptions generated 
by SSE/SSE2/SSE3 floating-point instructions.

1.3 NOTATIONAL CONVENTIONS
This manual uses specific notation for data-structure formats, for symbolic represen-
tation of instructions, and for hexadecimal and binary numbers. This notation is 
described below.

1.3.1 Bit and Byte Order
In illustrations of data structures in memory, smaller addresses appear toward the 
bottom of the figure; addresses increase toward the top. Bit positions are numbered 
from right to left. The numerical value of a set bit is equal to two raised to the power 
of the bit position. Intel 64 and IA-32 processors are “little endian” machines; this 
means the bytes of a word are numbered starting from the least significant byte. See 
Figure 1-1.
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1.3.2 Reserved Bits and Software Compatibility
In many register and memory layout descriptions, certain bits are marked as 
reserved. When bits are marked as reserved, it is essential for compatibility with 
future processors that software treat these bits as having a future, though unknown, 
effect. The behavior of reserved bits should be regarded as not only undefined, but 
unpredictable. 

Software should follow these guidelines in dealing with reserved bits:
• Do not depend on the states of any reserved bits when testing the values of 

registers that contain such bits. Mask out the reserved bits before testing.
• Do not depend on the states of any reserved bits when storing to memory or to a 

register.
• Do not depend on the ability to retain information written into any reserved bits.
• When loading a register, always load the reserved bits with the values indicated 

in the documentation, if any, or reload them with values previously read from the 
same register.

NOTE
Avoid any software dependence upon the state of reserved bits in 
Intel 64 and IA-32 registers. Depending upon the values of reserved 
register bits will make software dependent upon the unspecified 
manner in which the processor handles these bits. Programs that 
depend upon reserved values risk incompatibility with future 
processors.

Figure 1-1.  Bit and Byte Order
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1.3.2.1  Instruction Operands
When instructions are represented symbolically, a subset of the IA-32 assembly 
language is used. In this subset, an instruction has the following format:

label: mnemonic argument1, argument2, argument3

where:
• A label is an identifier which is followed by a colon.
• A mnemonic is a reserved name for a class of instruction opcodes which have 

the same function.
• The operands argument1, argument2, and argument3 are optional. There 

may be from zero to three operands, depending on the opcode. When present, 
they take the form of either literals or identifiers for data items. Operand 
identifiers are either reserved names of registers or are assumed to be assigned 
to data items declared in another part of the program (which may not be shown 
in the example).

When two operands are present in an arithmetic or logical instruction, the right 
operand is the source and the left operand is the destination. 

For example:

LOADREG: MOV EAX, SUBTOTAL

In this example, LOADREG is a label, MOV is the mnemonic identifier of an opcode, 
EAX is the destination operand, and SUBTOTAL is the source operand. Some 
assembly languages put the source and destination in reverse order.

1.3.3 Hexadecimal and Binary Numbers
Base 16 (hexadecimal) numbers are represented by a string of hexadecimal digits 
followed by the character H (for example, 0F82EH). A hexadecimal digit is a char-
acter from the following set: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F.

Base 2 (binary) numbers are represented by a string of 1s and 0s, sometimes 
followed by the character B (for example, 1010B). The “B” designation is only used in 
situations where confusion as to the type of number might arise.

1.3.4 Segmented Addressing
The processor uses byte addressing. This means memory is organized and accessed 
as a sequence of bytes. Whether one or more bytes are being accessed, a byte 
address is used to locate the byte or bytes memory. The range of memory that can 
be addressed is called an address space.

The processor also supports segmented addressing. This is a form of addressing 
where a program may have many independent address spaces, called segments. 
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For example, a program can keep its code (instructions) and stack in separate 
segments. Code addresses would always refer to the code space, and stack 
addresses would always refer to the stack space. The following notation is used to 
specify a byte address within a segment: 

Segment-register:Byte-address

For example, the following segment address identifies the byte at address FF79H in 
the segment pointed by the DS register:

DS:FF79H

The following segment address identifies an instruction address in the code segment. 
The CS register points to the code segment and the EIP register contains the address 
of the instruction.

CS:EIP

1.3.5 A New Syntax for CPUID, CR, and MSR Values
Obtain feature flags, status, and system information by using the CPUID instruction, 
by checking control register bits, and by reading model-specific registers. We are 
moving toward a new syntax to represent this information. See Figure 1-2.
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1.3.6 Exceptions
An exception is an event that typically occurs when an instruction causes an error. 
For example, an attempt to divide by zero generates an exception. However, some 
exceptions, such as breakpoints, occur under other conditions. Some types of excep-
tions may provide error codes. An error code reports additional information about the 
error. An example of the notation used to show an exception and error code is shown 
below:

#PF(fault code)

Figure 1-2.  Syntax for CPUID, CR, and MSR Data Presentation
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This example refers to a page-fault exception under conditions where an error code 
naming a type of fault is reported. Under some conditions, exceptions that produce 
error codes may not be able to report an accurate code. In this case, the error code 
is zero, as shown below for a general-protection exception:

#GP(0)

1.4 RELATED LITERATURE
Literature related to Intel 64 and IA-32 processors is listed on-line at: 
http://www.intel.com/content/www/us/en/processors/architectures-software-
developer-manuals.html.html

Some of the documents listed at this web site can be viewed on-line; others can be 
ordered. The literature available is listed by Intel processor and then by the following 
literature types: applications notes, data sheets, manuals, papers, and specification 
updates. 

See also: 
• The data sheet for a particular Intel 64 or IA-32 processor
• The specification update for a particular Intel 64 or IA-32 processor
• Intel® C++ Compiler documentation and online help:

http://software.intel.com/en-us/articles/intel-compilers/
• Intel® Fortran Compiler documentation and online help:

http://software.intel.com/en-us/articles/intel-compilers/
• Intel® VTune™ Performance Analyzer documentation and online help:

http://www.intel.com/cd/software/products/asmo-na/eng/index.htm 
• Intel® 64 and IA-32 Architectures Software Developer’s Manual (in three or five 

volumes):
http://www.intel.com/content/www/us/en/processors/architectures-software-
developer-manuals.html.html

• Intel® 64 and IA-32 Architectures Optimization Reference Manual: 
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-
32-architectures-optimization-manual.html

• Intel® Processor Identification with the CPUID Instruction, AP-485:
http://www.intel.com/Assets/PDF/appnote/241618.pdf

• Intel 64 Architecture x2APIC Specification:
http://www.intel.com/content/www/us/en/architecture-and-technology/64-
architecture-x2apic-specification.html

• Intel 64 Architecture Processor Topology Enumeration:
http://softwarecommunity.intel.com/articles/eng/3887.htm
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• Intel® Trusted Execution Technology Measured Launched Environment 
Programming Guide:

http://www.intel.com/content/www/us/en/software-developers/intel-txt-
software-development-guide.html

• Intel® SSE4 Programming Reference: 
http://edc.intel.com/Link.aspx?id=1630&wapkw=intel® sse4 programming 
reference

• Developing Multi-threaded Applications: A Platform Consistent Approach:
http://cache-
www.intel.com/cd/00/00/05/15/51534_developing_multithreaded_applications.
pdf

• Using Spin-Loops on Intel® Pentium® 4 Processor and Intel® Xeon® Processor:
http://software.intel.com/en-us/articles/ap949-using-spin-loops-on-intel-
pentiumr-4-processor-and-intel-xeonr-processor/

• Performance Monitoring Unit Sharing Guide
http://software.intel.com/file/30388

More relevant links are:
• Software network link:

http://softwarecommunity.intel.com/isn/home/
• Developer centers:

http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/index.htm
• Processor support general link:

http://www.intel.com/support/processors/
• Software products and packages:

http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
• Intel 64 and IA-32 processor manuals (printed or PDF downloads):

http://www.intel.com/content/www/us/en/processors/architectures-software-
developer-manuals.html.html

• Intel® Multi-Core Technology:
http://software.intel.com/partner/multicore

• Intel® Hyper-Threading Technology (Intel® HT Technology):
http://www.intel.com/technology/platform-technology/hyper-
threading/index.htm
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CHAPTER 2
INTEL® 64 AND IA-32 ARCHITECTURES

The exponential growth of computing power and ownership has made the computer 
one of the most important forces shaping business and society. Intel 64 and IA-32 
architectures have been at the forefront of the computer revolution and is today the 
preferred computer architecture, as measured by computers in use and the total 
computing power available in the world.

2.1 BRIEF HISTORY OF INTEL® 64 AND IA-32 
ARCHITECTURE

The following sections provide a summary of the major technical evolutions from 
IA-32 to Intel 64 architecture: starting from the Intel 8086 processor to the latest 
Intel® Core® 2 Duo, Core 2 Quad and Intel Xeon processor 5300 and 7300 series. 
Object code created for processors released as early as 1978 still executes on the 
latest processors in the Intel 64 and IA-32 architecture families.

2.1.1 16-bit Processors and Segmentation (1978)
The IA-32 architecture family was preceded by 16-bit processors, the 8086 and 
8088. The 8086 has 16-bit registers and a 16-bit external data bus, with 20-bit 
addressing giving a 1-MByte address space. The 8088 is similar to the 8086 except it 
has an 8-bit external data bus. 

The 8086/8088 introduced segmentation to the IA-32 architecture. With segmenta-
tion, a 16-bit segment register contains a pointer to a memory segment of up to 
64 KBytes. Using four segment registers at a time, 8086/8088 processors are able to 
address up to 256 KBytes without switching between segments. The 20-bit 
addresses that can be formed using a segment register and an additional 16-bit 
pointer provide a total address range of 1 MByte.

2.1.2 The Intel® 286 Processor (1982)
The Intel 286 processor introduced protected mode operation into the IA-32 archi-
tecture. Protected mode uses the segment register content as selectors or pointers 
into descriptor tables. Descriptors provide 24-bit base addresses with a physical 
memory size of up to 16 MBytes, support for virtual memory management on a 
segment swapping basis, and a number of protection mechanisms. These mecha-
nisms include: 
• Segment limit checking
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• Read-only and execute-only segment options
• Four privilege levels 

2.1.3 The Intel386™ Processor (1985)
The Intel386 processor was the first 32-bit processor in the IA-32 architecture family. 
It introduced 32-bit registers for use both to hold operands and for addressing. The 
lower half of each 32-bit Intel386 register retains the properties of the 16-bit regis-
ters of earlier generations, permitting backward compatibility. The processor also 
provides a virtual-8086 mode that allows for even greater efficiency when executing 
programs created for 8086/8088 processors. 

In addition, the Intel386 processor has support for:
• A 32-bit address bus that supports up to 4-GBytes of physical memory
• A segmented-memory model and a flat memory model
• Paging, with a fixed 4-KByte page size providing a method for virtual memory 

management
• Support for parallel stages

2.1.4 The Intel486™ Processor (1989)
The Intel486™ processor added more parallel execution capability by expanding the 
Intel386 processor’s instruction decode and execution units into five pipelined 
stages. Each stage operates in parallel with the others on up to five instructions in 
different stages of execution. 

In addition, the processor added:
• An 8-KByte on-chip first-level cache that increased the percent of instructions 

that could execute at the scalar rate of one per clock
• An integrated x87 FPU
• Power saving and system management capabilities

2.1.5 The Intel® Pentium® Processor (1993)
The introduction of the Intel Pentium processor added a second execution pipeline to 
achieve superscalar performance (two pipelines, known as u and v, together can 
execute two instructions per clock). The on-chip first-level cache doubled, with 8 
KBytes devoted to code and another 8 KBytes devoted to data. The data cache uses 
the MESI protocol to support more efficient write-back cache in addition to the write-
through cache previously used by the Intel486 processor. Branch prediction with an 
on-chip branch table was added to increase performance in looping constructs. 

In addition, the processor added:
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• Extensions to make the virtual-8086 mode more efficient and allow for 4-MByte 
as well as 4-KByte pages

• Internal data paths of 128 and 256 bits add speed to internal data transfers
• Burstable external data bus was increased to 64 bits
• An APIC to support systems with multiple processors
• A dual processor mode to support glueless two processor systems

A subsequent stepping of the Pentium family introduced Intel MMX technology (the 
Pentium Processor with MMX technology). Intel MMX technology uses the single-
instruction, multiple-data (SIMD) execution model to perform parallel computations 
on packed integer data contained in 64-bit registers. 

See Section 2.2.7, “SIMD Instructions.”

2.1.6 The P6 Family of Processors (1995-1999)
The P6 family of processors was based on a superscalar microarchitecture that set 
new performance standards; see also Section 2.2.1, “P6 Family Microarchitecture.” 
One of the goals in the design of the P6 family microarchitecture was to exceed the 
performance of the Pentium processor significantly while using the same 0.6-
micrometer, four-layer, metal BICMOS manufacturing process. Members of this 
family include the following: 
• The Intel Pentium Pro processor is three-way superscalar. Using parallel 

processing techniques, the processor is able on average to decode, dispatch, and 
complete execution of (retire) three instructions per clock cycle. The Pentium Pro 
introduced the dynamic execution (micro-data flow analysis, out-of-order 
execution, superior branch prediction, and speculative execution) in a 
superscalar implementation. The processor was further enhanced by its caches. 
It has the same two on-chip 8-KByte 1st-Level caches as the Pentium processor 
and an additional 256-KByte Level 2 cache in the same package as the processor.

• The Intel Pentium II processor added Intel MMX technology to the P6 family 
processors along with new packaging and several hardware enhancements. The 
processor core is packaged in the single edge contact cartridge (SECC). The Level 
l data and instruction caches were enlarged to 16 KBytes each, and Level 2 cache 
sizes of 256 KBytes, 512 KBytes, and 1 MByte are supported. A half-clock speed 
backside bus connects the Level 2 cache to the processor. Multiple low-power 
states such as AutoHALT, Stop-Grant, Sleep, and Deep Sleep are supported to 
conserve power when idling.

• The Pentium II Xeon processor combined the premium characteristics of 
previous generations of Intel processors. This includes: 4-way, 8-way (and up) 
scalability and a 2 MByte 2nd-Level cache running on a full-clock speed backside 
bus.

• The Intel Celeron processor family focused on the value PC market segment. 
Its introduction offers an integrated 128 KBytes of Level 2 cache and a plastic pin 
grid array (P.P.G.A.) form factor to lower system design cost.
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• The Intel Pentium III processor introduced the Streaming SIMD Extensions 
(SSE) to the IA-32 architecture. SSE extensions expand the SIMD execution 
model introduced with the Intel MMX technology by providing a new set of 128-
bit registers and the ability to perform SIMD operations on packed single-
precision floating-point values. See Section 2.2.7, “SIMD Instructions.”

• The Pentium III Xeon processor extended the performance levels of the IA-32 
processors with the enhancement of a full-speed, on-die, and Advanced Transfer 
Cache.

2.1.7 The Intel® Pentium® 4 Processor Family (2000-2006) 
The Intel Pentium 4 processor family is based on Intel NetBurst microarchitecture; 
see Section 2.2.2, “Intel NetBurst® Microarchitecture.”

The Intel Pentium 4 processor introduced Streaming SIMD Extensions 2 (SSE2); see 
Section 2.2.7, “SIMD Instructions.” The Intel Pentium 4 processor 3.40 GHz, 
supporting Hyper-Threading Technology introduced Streaming SIMD Extensions 3 
(SSE3); see Section 2.2.7, “SIMD Instructions.”

Intel 64 architecture was introduced in the Intel Pentium 4 Processor Extreme Edition 
supporting Hyper-Threading Technology and in the Intel Pentium 4 Processor 6xx and 
5xx sequences.

Intel® Virtualization Technology (Intel® VT) was introduced in the Intel Pentium 4 
processor 672 and 662.

2.1.8 The Intel® Xeon® Processor (2001- 2007)
Intel Xeon processors (with exception for dual-core Intel Xeon processor LV, Intel 
Xeon processor 5100 series) are based on the Intel NetBurst microarchitecture; see 
Section 2.2.2, “Intel NetBurst® Microarchitecture.” As a family, this group of IA-32 
processors (more recently Intel 64 processors) is designed for use in multi-processor 
server systems and high-performance workstations. 

The Intel Xeon processor MP introduced support for Intel® Hyper-Threading Tech-
nology; see Section 2.2.8, “Intel® Hyper-Threading Technology.”

The 64-bit Intel Xeon processor 3.60 GHz (with an 800 MHz System Bus) was used to 
introduce Intel 64 architecture. The Dual-Core Intel Xeon processor includes dual 
core technology. The Intel Xeon processor 70xx series includes Intel Virtualization 
Technology.

The Intel Xeon processor 5100 series introduces power-efficient, high performance 
Intel Core microarchitecture. This processor is based on Intel 64 architecture; it 
includes Intel Virtualization Technology and dual-core technology. The Intel Xeon 
processor 3000 series are also based on Intel Core microarchitecture. The Intel Xeon 
processor 5300 series introduces four processor cores in a physical package, they are 
also based on Intel Core microarchitecture. 
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2.1.9 The Intel® Pentium® M Processor (2003-Current)
The Intel Pentium M processor family is a high performance, low power mobile 
processor family with microarchitectural enhancements over previous generations of 
IA-32 Intel mobile processors. This family is designed for extending battery life and 
seamless integration with platform innovations that enable new usage models (such 
as extended mobility, ultra thin form-factors, and integrated wireless networking).

Its enhanced microarchitecture includes:
• Support for Intel Architecture with Dynamic Execution
• A high performance, low-power core manufactured using Intel’s advanced 

process technology with copper interconnect
• On-die, primary 32-KByte instruction cache and 32-KByte write-back data cache
• On-die, second-level cache (up to 2 MByte) with Advanced Transfer Cache Archi-

tecture
• Advanced Branch Prediction and Data Prefetch Logic
• Support for MMX technology, Streaming SIMD instructions, and the SSE2 

instruction set
• A 400 or 533 MHz, Source-Synchronous Processor System Bus
• Advanced power management using Enhanced Intel SpeedStep® technology

2.1.10 The Intel® Pentium® Processor Extreme Edition (2005-2007) 
The Intel Pentium processor Extreme Edition introduced dual-core technology. This 
technology provides advanced hardware multi-threading support. The processor is 
based on Intel NetBurst microarchitecture and supports SSE, SSE2, SSE3, Hyper-
Threading Technology, and Intel 64 architecture.

See also:
• Section 2.2.2, “Intel NetBurst® Microarchitecture”
• Section 2.2.3, “Intel® Core™ Microarchitecture”
• Section 2.2.7, “SIMD Instructions”
• Section 2.2.8, “Intel® Hyper-Threading Technology”
• Section 2.2.9, “Multi-Core Technology”
• Section 2.2.10, “Intel® 64 Architecture”

2.1.11 The Intel® Core™ Duo and Intel® Core™ Solo Processors 
(2006-2007)

The Intel Core Duo processor offers power-efficient, dual-core performance with a 
low-power design that extends battery life. This family and the single-core Intel Core 
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Solo processor offer microarchitectural enhancements over Pentium M processor 
family.

Its enhanced microarchitecture includes:
• Intel® Smart Cache which allows for efficient data sharing between two 

processor cores
• Improved decoding and SIMD execution
• Intel® Dynamic Power Coordination and Enhanced Intel® Deeper Sleep to reduce 

power consumption
• Intel® Advanced Thermal Manager which features digital thermal sensor 

interfaces
• Support for power-optimized 667 MHz bus

The dual-core Intel Xeon processor LV is based on the same microarchitecture as 
Intel Core Duo processor, and supports IA-32 architecture.

2.1.12 The Intel® Xeon® Processor 5100, 5300 Series and 
Intel® Core™2 Processor Family (2006-Current)

The Intel Xeon processor 3000, 3200, 5100, 5300, and 7300 series, Intel Pentium 
Dual-Core, Intel Core 2 Extreme, Intel Core 2 Quad processors, and Intel Core 2 Duo 
processor family support Intel 64 architecture; they are based on the high-perfor-
mance, power-efficient Intel® Core microarchitecture built on 65 nm process tech-
nology. The Intel Core microarchitecture includes the following innovative features:
• Intel® Wide Dynamic Execution to increase performance and execution 

throughput
• Intel® Intelligent Power Capability to reduce power consumption
• Intel® Advanced Smart Cache which allows for efficient data sharing between 

two processor cores
• Intel® Smart Memory Access to increase data bandwidth and hide latency of 

memory accesses
• Intel® Advanced Digital Media Boost which improves application performance 

using multiple generations of Streaming SIMD extensions 

The Intel Xeon processor 5300 series, Intel Core 2 Extreme processor QX6800 series, 
and Intel Core 2 Quad processors support Intel quad-core technology.

2.1.13 The Intel® Xeon® Processor 5200, 5400, 7400 Series and 
Intel® Core™2 Processor Family (2007-Current)

The Intel Xeon processor 5200, 5400, and 7400 series, Intel Core 2 Quad processor 
Q9000 Series, Intel Core 2 Duo processor E8000 series support Intel 64 architecture; 
they are based on the Enhanced Intel® Core microarchitecture using 45 nm process 
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technology. The Enhanced Intel Core microarchitecture provides the following 
improved features:
• A radix-16 divider, faster OS primitives further increases the performance of 

Intel® Wide Dynamic Execution. 
• Improves Intel® Advanced Smart Cache with Up to 50% larger level-two cache 

and up to 50% increase in way-set associativity. 
• A 128-bit shuffler engine significantly improves the performance of Intel® 

Advanced Digital Media Boost and SSE4.

Intel Xeon processor 5400 series and Intel Core 2 Quad processor Q9000 Series 
support Intel quad-core technology. Intel Xeon processor 7400 series offers up to six 
processor cores and an L3 cache up to 16 MBytes.

2.1.14 The Intel® Atom™ Processor Family (2008-Current)
The Intel® AtomTM processors are built on 45 nm process technology. They are based 
on a new microarchitecture, Intel® AtomTM microarchitecture, which is optimized for 
ultra low power devices. The Intel® AtomTM microarchitecture features two in-order 
execution pipelines that minimize power consumption, increase battery life, and 
enable ultra-small form factors.  It provides the following features:
• Enhanced Intel® SpeedStep® Technology
• Intel® Hyper-Threading Technology
• Deep Power Down Technology with Dynamic Cache Sizing
• Support for new instructions up to and including Supplemental Streaming SIMD 

Extensions 3 (SSSE3).
• Support for Intel® Virtualization Technology
• Support for Intel® 64 Architecture (excluding Intel Atom processor Z5xx Series)

2.1.15 The Intel® Core™i7 Processor Family (2008-Current)
The Intel Core i7 processor 900 series support Intel 64 architecture; they are based 
on Intel® microarchitecture code name Nehalem using 45 nm process technology. 
The Intel Core i7 processor and Intel Xeon processor 5500 series include the 
following innovative features:
• Intel® Turbo Boost Technology converts thermal headroom into higher perfor-

mance. 
• Intel® HyperThreading Technology in conjunction with Quadcore to provide four 

cores and eight threads. 
• Dedicated power control unit to reduce active and idle power consumption.
• Integrated memory controller on the processor supporting three channel of DDR3 

memory.
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• 8 MB inclusive Intel® Smart Cache.
• Intel® QuickPath interconnect (QPI) providing point-to-point link to chipset.
• Support for SSE4.2 and SSE4.1 instruction sets.
• Second generation Intel Virtualization Technology.

2.1.16 The Intel® Xeon® Processor 7500 Series (2010)
The Intel Xeon processor 7500 and 6500 series are based on Intel microarchitecture 
code name Nehalem using 45 nm process technology. They support the same 
features described in Section 2.1.15, plus the following innovative features:
• Up to eight cores per physical processor package.
• Up to 24 MB inclusive Intel® Smart Cache.
• Provides Intel® Scalable Memory Interconnect (Intel® SMI) channels with Intel® 

7500 Scalable Memory Buffer to connect to system memory. 
• Advanced RAS supporting software recoverable machine check architecture.

2.1.17 2010 Intel® Core™ Processor Family (2010)
2010 Intel Core processor family spans Intel Core i7, i5 and i3 processors. They are 
based on Intel® microarchitecture code name Westmere using 32 nm process tech-
nology. The innovative features can include:
• Deliver smart performance using Intel Hyper-Threading Technology plus Intel 

Turbo Boost Technology. 
• Enhanced Intel Smart Cache and integrated memory controller.
• Intelligent power gating.
• Repartitioned platform with on-die integration of 45nm integrated graphics.
• Range of instruction set support up to AESNI, PCLMULQDQ, SSE4.2 and SSE4.1.

2.1.18 The Intel® Xeon® Processor 5600 Series (2010)
The Intel Xeon processor 5600 series are based on Intel microarchitecture code 
name Westmere using 32 nm process technology. They support the same features 
described in Section 2.1.15, plus the following innovative features:
• Up to six cores per physical processor package.
• Up to 12 MB enhanced Intel® Smart Cache.
• Support for AESNI, PCLMULQDQ, SSE4.2 and SSE4.1 instruction sets.
• Flexible Intel Virtualization Technologies across processor and I/O.
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2.1.19 Second Generation Intel® Core™ Processor Family (2011)
Second Generation Intel Core processor family spans Intel Core i7, i5 and i3 proces-
sors based on Intel® microarchitecture code name Sandy Bridge. They are built from 
32 nm process technology and have innovative features including:
• Intel Turbo Boost Technology for Intel Core i5 and i7 processors
• Intel Hyper-Threading Technology. 
• Enhanced Intel Smart Cache and integrated memory controller.
• Processor graphics and built-in visual features like Intel® Quick Sync Video, 

Intel® InsiderTM etc.
• Range of instruction set support up to AVX, AESNI, PCLMULQDQ, SSE4.2 and 

SSE4.1.

2.2 MORE ON SPECIFIC ADVANCES
The following sections provide more information on major innovations.

2.2.1 P6 Family Microarchitecture
The Pentium Pro processor introduced a new microarchitecture commonly referred to 
as P6 processor microarchitecture. The P6 processor microarchitecture was later 
enhanced with an on-die, Level 2 cache, called Advanced Transfer Cache.

The microarchitecture is a three-way superscalar, pipelined architecture. Three-way 
superscalar means that by using parallel processing techniques, the processor is able 
on average to decode, dispatch, and complete execution of (retire) three instructions 
per clock cycle. To handle this level of instruction throughput, the P6 processor family 
uses a decoupled, 12-stage superpipeline that supports out-of-order instruction 
execution. 

Figure 2-1 shows a conceptual view of the P6 processor microarchitecture pipeline 
with the Advanced Transfer Cache enhancement. 
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To ensure a steady supply of instructions and data for the instruction execution pipe-
line, the P6 processor microarchitecture incorporates two cache levels. The Level 1 
cache provides an 8-KByte instruction cache and an 8-KByte data cache, both closely 
coupled to the pipeline. The Level 2 cache provides 256-KByte, 512-KByte, or 
1-MByte static RAM that is coupled to the core processor through a full clock-speed 
64-bit cache bus.

The centerpiece of the P6 processor microarchitecture is an out-of-order execution 
mechanism called dynamic execution. Dynamic execution incorporates three data-
processing concepts:
• Deep branch prediction allows the processor to decode instructions beyond 

branches to keep the instruction pipeline full. The P6 processor family 
implements highly optimized branch prediction algorithms to predict the direction 
of the instruction.

• Dynamic data flow analysis requires real-time analysis of the flow of data 
through the processor to determine dependencies and to detect opportunities for 
out-of-order instruction execution. The out-of-order execution core can monitor 

Figure 2-1.  The P6 Processor Microarchitecture with Advanced Transfer Cache 
Enhancement
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many instructions and execute these instructions in the order that best optimizes 
the use of the processor’s multiple execution units, while maintaining the data 
integrity.

• Speculative execution refers to the processor’s ability to execute instructions 
that lie beyond a conditional branch that has not yet been resolved, and 
ultimately to commit the results in the order of the original instruction stream. To 
make speculative execution possible, the P6 processor microarchitecture 
decouples the dispatch and execution of instructions from the commitment of 
results. The processor’s out-of-order execution core uses data-flow analysis to 
execute all available instructions in the instruction pool and store the results in 
temporary registers. The retirement unit then linearly searches the instruction 
pool for completed instructions that no longer have data dependencies with other 
instructions or unresolved branch predictions. When completed instructions are 
found, the retirement unit commits the results of these instructions to memory 
and/or the IA-32 registers (the processor’s eight general-purpose registers and 
eight x87 FPU data registers) in the order they were originally issued and retires 
the instructions from the instruction pool.

2.2.2 Intel NetBurst® Microarchitecture
The Intel NetBurst microarchitecture provides:
• The Rapid Execution Engine

— Arithmetic Logic Units (ALUs) run at twice the processor frequency 

— Basic integer operations can dispatch in 1/2 processor clock tick
• Hyper-Pipelined Technology

— Deep pipeline to enable industry-leading clock rates for desktop PCs and 
servers

— Frequency headroom and scalability to continue leadership into the future
• Advanced Dynamic Execution

— Deep, out-of-order, speculative execution engine

• Up to 126 instructions in flight

• Up to 48 loads and 24 stores in pipeline1

— Enhanced branch prediction capability

• Reduces the misprediction penalty associated with deeper pipelines 

• Advanced branch prediction algorithm

• 4K-entry branch target array

1. Intel 64 and IA-32 processors based on the Intel NetBurst microarchitecture at 90 nm process 
can handle more than 24 stores in flight.
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• New cache subsystem

— First level caches

• Advanced Execution Trace Cache stores decoded instructions

• Execution Trace Cache removes decoder latency from main execution 
loops

• Execution Trace Cache integrates path of program execution flow into a 
single line

• Low latency data cache

— Second level cache

• Full-speed, unified 8-way Level 2 on-die Advance Transfer Cache

• Bandwidth and performance increases with processor frequency
• High-performance, quad-pumped bus interface to the Intel NetBurst microarchi-

tecture system bus

— Supports quad-pumped, scalable bus clock to achieve up to 4X effective 
speed

— Capable of delivering up to 8.5 GBytes of bandwidth per second
• Superscalar issue to enable parallelism
• Expanded hardware registers with renaming to avoid register name space 

limitations
• 64-byte cache line size (transfers data up to two lines per sector)

Figure 2-2 is an overview of the Intel NetBurst microarchitecture. This microarchitec-
ture pipeline is made up of three sections: (1) the front end pipeline, (2) the out-of-
order execution core, and (3) the retirement unit. 
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2.2.2.1  The Front End Pipeline
The front end supplies instructions in program order to the out-of-order execution 
core. It performs a number of functions:
• Prefetches instructions that are likely to be executed
• Fetches instructions that have not already been prefetched
• Decodes instructions into micro-operations
• Generates microcode for complex instructions and special-purpose code
• Delivers decoded instructions from the execution trace cache
• Predicts branches using highly advanced algorithm

The pipeline is designed to address common problems in high-speed, pipelined 
microprocessors. Two of these problems contribute to major sources of delays:
• time to decode instructions fetched from the target

Figure 2-2.  The Intel NetBurst Microarchitecture
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• wasted decode bandwidth due to branches or branch target in the middle of 
cache lines

The operation of the pipeline’s trace cache addresses these issues. Instructions are 
constantly being fetched and decoded by the translation engine (part of the 
fetch/decode logic) and built into sequences of µops called traces. At any time, 
multiple traces (representing prefetched branches) are being stored in the trace 
cache. The trace cache is searched for the instruction that follows the active branch. 
If the instruction also appears as the first instruction in a pre-fetched branch, the 
fetch and decode of instructions from the memory hierarchy ceases and the pre-
fetched branch becomes the new source of instructions (see Figure 2-2).

The trace cache and the translation engine have cooperating branch prediction hard-
ware. Branch targets are predicted based on their linear addresses using branch 
target buffers (BTBs) and fetched as soon as possible.

2.2.2.2  Out-Of-Order Execution Core
The out-of-order execution core’s ability to execute instructions out of order is a key 
factor in enabling parallelism. This feature enables the processor to reorder instruc-
tions so that if one µop is delayed, other µops may proceed around it. The processor 
employs several buffers to smooth the flow of µops.

The core is designed to facilitate parallel execution. It can dispatch up to six µops per 
cycle (this exceeds trace cache and retirement µop bandwidth). Most pipelines can 
start executing a new µop every cycle, so several instructions can be in flight at a 
time for each pipeline. A number of arithmetic logical unit (ALU) instructions can 
start at two per cycle; many floating-point instructions can start once every two 
cycles. 

2.2.2.3  Retirement Unit
The retirement unit receives the results of the executed µops from the out-of-order 
execution core and processes the results so that the architectural state updates 
according to the original program order. 

When a µop completes and writes its result, it is retired. Up to three µops may be 
retired per cycle. The Reorder Buffer (ROB) is the unit in the processor which buffers 
completed µops, updates the architectural state in order, and manages the ordering 
of exceptions. The retirement section also keeps track of branches and sends 
updated branch target information to the BTB. The BTB then purges pre-fetched 
traces that are no longer needed.

2.2.3 Intel® Core™ Microarchitecture
Intel Core microarchitecture introduces the following features that enable high 
performance and power-efficient performance for single-threaded as well as multi-
threaded workloads:
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• Intel® Wide Dynamic Execution enable each processor core to fetch, 
dispatch, execute in high bandwidths to support retirement of up to four instruc-
tions per cycle.

— Fourteen-stage efficient pipeline

— Three arithmetic logical units

— Four decoders to decode up to five instruction per cycle 

— Macro-fusion and micro-fusion to improve front-end throughput

— Peak issue rate of dispatching up to six micro-ops per cycle

— Peak retirement bandwidth of up to 4 micro-ops per cycle

— Advanced branch prediction

— Stack pointer tracker to improve efficiency of executing function/procedure 
entries and exits

• Intel® Advanced Smart Cache delivers higher bandwidth from the second 
level cache to the core, and optimal performance and flexibility for single-
threaded and multi-threaded applications.

— Large second level cache up to 4 MB and 16-way associativity

— Optimized for multicore and single-threaded execution environments

— 256 bit internal data path to improve bandwidth from L2 to first-level data 
cache

• Intel® Smart Memory Access prefetches data from memory in response to 
data access patterns and reduces cache-miss exposure of out-of-order 
execution.

— Hardware prefetchers to reduce effective latency of second-level cache 
misses

— Hardware prefetchers to reduce effective latency of first-level data cache 
misses

— Memory disambiguation to improve efficiency of speculative execution 
execution engine

• Intel® Advanced Digital Media Boost improves most 128-bit SIMD instruction 
with single-cycle throughput and floating-point operations.

— Single-cycle throughput of most 128-bit SIMD instructions

— Up to eight floating-point operation per cycle

— Three issue ports available to dispatching SIMD instructions for execution

Intel Core 2 Extreme, Intel Core 2 Duo processors and Intel Xeon processor 5100 
series implement two processor cores based on the Intel Core microarchitecture, the 
functionality of the subsystems in each core are depicted in Figure 2-3. 
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2.2.3.1  The Front End
The front end of Intel Core microarchitecture provides several enhancements to feed 
the Intel Wide Dynamic Execution engine:
• Instruction fetch unit prefetches instructions into an instruction queue to 

maintain steady supply of instruction to the decode units.
• Four-wide decode unit can decode 4 instructions per cycle or 5 instructions per 

cycle with Macrofusion.
• Macrofusion fuses common sequence of two instructions as one decoded 

instruction (micro-ops) to increase decoding throughput.
• Microfusion fuses common sequence of two micro-ops as one micro-ops to 

improve retirement throughput.
• Instruction queue provides caching of short loops to improve efficiency.
• Stack pointer tracker improves efficiency of executing procedure/function entries 

and exits.

Figure 2-3.  The Intel Core Microarchitecture Pipeline Functionality
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• Branch prediction unit employs dedicated hardware to handle different types of 
branches for improved branch prediction.

• Advanced branch prediction algorithm directs instruction fetch unit to fetch 
instructions likely in the architectural code path for decoding.

2.2.3.2  Execution Core 
The execution core of the Intel Core microarchitecture is superscalar and can process 
instructions out of order to increase the overall rate of instructions executed per cycle 
(IPC). The execution core employs the following feature to improve execution 
throughput and efficiency:
• Up to six micro-ops can be dispatched to execute per cycle
• Up to four instructions can be retired per cycle
• Three full arithmetic logical units
• SIMD instructions can be dispatched through three issue ports
• Most SIMD instructions have 1-cycle throughput (including 128-bit SIMD instruc-

tions)
• Up to eight floating-point operation per cycle
• Many long-latency computation operation are pipelined in hardware to increase 

overall throughput
• Reduced exposure to data access delays using Intel Smart Memory Access

2.2.4 Intel® Atom™ Microarchitecture
Intel Atom microarchitecture maximizes power-efficient performance for single-
threaded and multi-threaded workloads by providing:
• Advanced Micro-Ops Execution 

— Single-micro-op instruction execution from decode to retirement, including 
instructions with register-only, load, and store semantics.

— Sixteen-stage, in-order pipeline optimized for throughput and reduced power 
consumption.

— Dual pipelines to enable decode, issue, execution and retirement of two 
instructions per cycle.

— Advanced stack pointer to improve efficiency of executing function 
entry/returns.

• Intel® Smart Cache

— Second level cache is 512 KB and 8-way associativity.

— Optimized for multi-threaded and single-threaded execution environments
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— 256 bit internal data path between L2 and L1 data cache improves high 
bandwidth.

• Efficient Memory Access

— Efficient hardware prefetchers to L1 and L2, speculatively loading data likely 
to be requested by processor to reduce cache miss impact.

• Intel® Digital Media Boost

— Two issue ports for dispatching SIMD instructions to execution units.

— Single-cycle throughput for most 128-bit integer SIMD instructions

— Up to six floating-point operations per cycle

— Up to two 128-bit SIMD integer operations per cycle

— Safe Instruction Recognition (SIR) to allow long-latency floating-point 
operations to retire out of order with respect to integer instructions.

2.2.5 Intel® Microarchitecture Code Name Nehalem
Intel microarchitecture code name Nehalem provides the foundation for many inno-
vative features of Intel Core i7 processors. It builds on the success of 45nm Intel 
Core microarchitecture and provides the following feature enhancements:
• Enhanced processor core

— Improved branch prediction and recovery from misprediction.

— Enhanced loop streaming to improve front end performance and reduce 
power consumption.

— Deeper buffering in out-of-order engine to extract parallelism.

— Enhanced execution units to provide acceleration in CRC, string/text 
processing and data shuffling.

• Smart Memory Access

— Integrated memory controller provides low-latency access to system memory 
and scalable memory bandwidth

— New cache hierarchy organization with shared, inclusive L3 to reduce snoop 
traffic

— Two level TLBs and increased TLB size.

— Fast unaligned memory access.
• HyperThreading Technology

— Provides two hardware threads (logical processors) per core.

— Takes advantage of 4-wide execution engine, large L3, and massive memory 
bandwidth.

• Dedicated Power management Innovations
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— Integrated microcontroller with optimized embedded firmware to manage 
power consumption.

— Embedded real-time sensors for temperature, current, and power.

— Integrated power gate to turn off/on per-core power consumption

— Versatility to reduce power consumption of memory, link subsystems.

2.2.6 Intel® Microarchitecture Code Name Sandy Bridge
Intel® microarchitecture code name Sandy Bridge builds on the successes of Intel® 
Core™ microarchitecture and Intel microarchitecture code name Nehalem. It offers 
the following innovative features:
• Intel Advanced Vector Extensions (Intel AVX)

— 256-bit floating-point instruction set extensions to the 128-bit Intel 
Streaming SIMD Extensions, providing up to 2X performance benefits relative 
to 128-bit code.

— Non-destructive destination encoding offers more flexible coding techniques.

— Supports flexible migration and co-existence between 256-bit AVX code, 
128-bit AVX code and legacy 128-bit SSE code.

• Enhanced front-end and execution engine

— New decoded Icache component that improves front-end bandwidth and 
reduces branch misprediction penalty.

— Advanced branch prediction.

— Additional macro-fusion support.

— Larger dynamic execution window.

— Multi-precision integer arithmetic enhancements (ADC/SBB, MUL/IMUL).

— LEA bandwidth improvement.

— Reduction of general execution stalls (read ports, writeback conflicts, bypass 
latency, partial stalls).

— Fast floating-point exception handling.

— XSAVE/XRSTORE performance improvements and XSAVEOPT new 
instruction.

• Cache hierarchy improvements for wider data path

— Doubling of bandwidth enabled by two symmetric ports for memory 
operation.

— Simultaneous handling of more in-flight loads and stores enabled by 
increased buffers.

— Internal bandwidth of two loads and one store each cycle.
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— Improved prefetching.

— High bandwidth low latency LLC architecture.

— High bandwidth ring architecture of on-die interconnect.

For additional information on Intel® Advanced Vector Extensions (AVX), see Section 
5.13, “Intel® Advanced Vector Extensions (AVX)” and Chapter 13, “Programming 
with AVX” in Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 1.

2.2.7 SIMD Instructions
Beginning with the Pentium II and Pentium with Intel MMX technology processor 
families, six extensions have been introduced into the Intel 64 and IA-32 architec-
tures to perform single-instruction multiple-data (SIMD) operations. These exten-
sions include the MMX technology, SSE extensions, SSE2 extensions, SSE3 
extensions, Supplemental Streaming SIMD Extensions 3, and SSE4. Each of these 
extensions provides a group of instructions that perform SIMD operations on packed 
integer and/or packed floating-point data elements. 

SIMD integer operations can use the 64-bit MMX or the 128-bit XMM registers. SIMD 
floating-point operations use 128-bit XMM registers. Figure 2-4 shows a summary of 
the various SIMD extensions (MMX technology, SSE, SSE2, SSE3, SSSE3, and SSE4), 
the data types they operate on, and how the data types are packed into MMX and 
XMM registers.

The Intel MMX technology was introduced in the Pentium II and Pentium with MMX 
technology processor families. MMX instructions perform SIMD operations on packed 
byte, word, or doubleword integers located in MMX registers. These instructions are 
useful in applications that operate on integer arrays and streams of integer data that 
lend themselves to SIMD processing.

SSE extensions were introduced in the Pentium III processor family. SSE instructions 
operate on packed single-precision floating-point values contained in XMM registers 
and on packed integers contained in MMX registers. Several SSE instructions provide 
state management, cache control, and memory ordering operations. Other SSE 
instructions are targeted at applications that operate on arrays of single-precision 
floating-point data elements (3-D geometry, 3-D rendering, and video encoding and 
decoding applications).

SSE2 extensions were introduced in Pentium 4 and Intel Xeon processors. SSE2 
instructions operate on packed double-precision floating-point values contained in 
XMM registers and on packed integers contained in MMX and XMM registers. SSE2 
integer instructions extend IA-32 SIMD operations by adding new 128-bit SIMD 
integer operations and by expanding existing 64-bit SIMD integer operations to 
128-bit XMM capability. SSE2 instructions also provide new cache control and 
memory ordering operations.

SSE3 extensions were introduced with the Pentium 4 processor supporting Hyper-
Threading Technology (built on 90 nm process technology). SSE3 offers 13 instruc-
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tions that accelerate performance of Streaming SIMD Extensions technology, 
Streaming SIMD Extensions 2 technology, and x87-FP math capabilities.

SSSE3 extensions were introduced with the Intel Xeon processor 5100 series and 
Intel Core 2 processor family. SSSE3 offer 32 instructions to accelerate processing of 
SIMD integer data.

SSE4 extensions offer 54 instructions. 47 of them are referred to as SSE4.1 instruc-
tions. SSE4.1 are introduced with Intel Xeon processor 5400 series and Intel Core 2 
Extreme processor QX9650. The other 7 SSE4 instructions are referred to as SSE4.2 
instructions.

AESNI and PCLMULQDQ introduce 7 new instructions. Six of them are primitives for 
accelerating algorithms based on AES encryption/decryption standard, referred to as 
AESNI.

The PCLMULQDQ instruction accelerates general-purpose block encryption, which 
can perform carry-less multiplication for two binary numbers up to 64-bit wide.

Intel 64 architecture allows four generations of 128-bit SIMD extensions to access up 
to 16 XMM registers. IA-32 architecture provides 8 XMM registers.

Intel® Advanced Vector Extensions offers comprehensive architectural enhance-
ments over previous generations of Streaming SIMD Extensions. Intel AVX intro-
duces the following architectural enhancements:
• Support for 256-bit wide vectors and SIMD register set.
• 256-bit floating-point instruction set enhancement with up to 2X performance 

gain relative to 128-bit Streaming SIMD extensions.
• Instruction syntax support for generalized three-operand syntax to improve 

instruction programming flexibility and efficient encoding of new instruction 
extensions.

• Enhancement of legacy 128-bit SIMD instruction extensions to support three 
operand syntax and to simplify compiler vectorization of high-level language 
expressions.

• Support flexible deployment of 256-bit AVX code, 128-bit AVX code, legacy 128-
bit code and scalar code.

In addition to performance considerations, programmers should also be cognizant of 
the implications of VEX-encoded AVX instructions with the expectations of system 
software components that manage the processor state components enabled by 
XCR0. For additional information see Section 2.3.10.1, “Vector Length Transition and 
Programming Considerations” in Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 2A.

See also: 
• Section 5.4, “MMX™ Instructions,” and Chapter 9, “Programming with Intel® 

MMX™ Technology”
• Section 5.5, “SSE Instructions,” and Chapter 10, “Programming with Streaming 

SIMD Extensions (SSE)”
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• Section 5.6, “SSE2 Instructions,” and Chapter 11, “Programming with Streaming 
SIMD Extensions 2 (SSE2)”

• Section 5.7, “SSE3 Instructions”, Section 5.8, “Supplemental Streaming SIMD 
Extensions 3 (SSSE3) Instructions”, Section 5.9, “SSE4 Instructions”, and 
Chapter 12, “Programming with SSE3, SSSE3, SSE4 and AESNI”

Figure 2-4.  SIMD Extensions, Register Layouts, and Data Types
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2.2.8 Intel® Hyper-Threading Technology
Intel Hyper-Threading Technology (Intel HT Technology) was developed to improve 
the performance of IA-32 processors when executing multi-threaded operating 
system and application code or single-threaded applications under multi-tasking 
environments. The technology enables a single physical processor to execute two or 
more separate code streams (threads) concurrently using shared execution 
resources. 

Intel HT Technology is one form of hardware multi-threading capability in IA-32 
processor families. It differs from multi-processor capability using separate physi-
cally distinct packages with each physical processor package mated with a physical 
socket. Intel HT Technology provides hardware multi-threading capability with a 
single physical package by using shared execution resources in a processor core.

Architecturally, an IA-32 processor that supports Intel HT Technology consists of two 
or more logical processors, each of which has its own IA-32 architectural state. Each 
logical processor consists of a full set of IA-32 data registers, segment registers, 
control registers, debug registers, and most of the MSRs. Each also has its own 
advanced programmable interrupt controller (APIC). 

Figure 2-5 shows a comparison of a processor that supports Intel HT Technology 
(implemented with two logical processors) and a traditional dual processor system. 

Unlike a traditional MP system configuration that uses two or more separate physical 
IA-32 processors, the logical processors in an IA-32 processor supporting Intel HT 
Technology share the core resources of the physical processor. This includes the 

Figure 2-5.  Comparison of an IA-32 Processor Supporting Hyper-Threading 
Technology and a Traditional Dual Processor System
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execution engine and the system bus interface. After power up and initialization, 
each logical processor can be independently directed to execute a specified thread, 
interrupted, or halted.

Intel HT Technology leverages the process and thread-level parallelism found in 
contemporary operating systems and high-performance applications by providing 
two or more logical processors on a single chip. This configuration allows two or more 
threads1 to be executed simultaneously on each a physical processor. Each logical 
processor executes instructions from an application thread using the resources in the 
processor core. The core executes these threads concurrently, using out-of-order 
instruction scheduling to maximize the use of execution units during each clock cycle.

2.2.8.1  Some Implementation Notes
All Intel HT Technology configurations require:
• A processor that supports Intel HT Technology
• A chipset and BIOS that utilize the technology
• Operating system optimizations

See http://www.intel.com/products/ht/hyperthreading_more.htm for information.

At the firmware (BIOS) level, the basic procedures to initialize the logical processors 
in a processor supporting Intel HT Technology are the same as those for a traditional 
DP or MP platform. The mechanisms that are described in the Multiprocessor Specifi-
cation, Version 1.4 to power-up and initialize physical processors in an MP system 
also apply to logical processors in a processor that supports Intel HT Technology. 

An operating system designed to run on a traditional DP or MP platform may use 
CPUID to determine the presence of hardware multi-threading support feature and 
the number of logical processors they provide.

Although existing operating system and application code should run correctly on a 
processor that supports Intel HT Technology, some code modifications are recom-
mended to get the optimum benefit. These modifications are discussed in Chapter 7, 
“Multiple-Processor Management,” Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3A.

2.2.9 Multi-Core Technology
Multi-core technology is another form of hardware multi-threading capability in IA-32 
processor families. Multi-core technology enhances hardware multi-threading capa-
bility by providing two or more execution cores in a physical package.

The Intel Pentium processor Extreme Edition is the first member in the IA-32 
processor family to introduce multi-core technology. The processor provides hard-

1. In the remainder of this document, the term “thread” will be used as a general term for the terms 
“process” and “thread.”
2-24 Vol. 1



INTEL® 64 AND IA-32 ARCHITECTURES
ware multi-threading support with both two processor cores and Intel Hyper-
Threading Technology. This means that the Intel Pentium processor Extreme Edition 
provides four logical processors in a physical package (two logical processors for 
each processor core). The Dual-Core Intel Xeon processor features multi-core, Intel 
Hyper-Threading Technology and supports multi-processor platforms. 

The Intel Pentium D processor also features multi-core technology. This processor 
provides hardware multi-threading support with two processor cores but does not 
offer Intel Hyper-Threading Technology. This means that the Intel Pentium D 
processor provides two logical processors in a physical package, with each logical 
processor owning the complete execution resources of a processor core.

The Intel Core 2 processor family, Intel Xeon processor 3000 series, Intel Xeon 
processor 5100 series, and Intel Core Duo processor offer power-efficient multi-core 
technology. The processor contains two cores that share a smart second level cache. 
The Level 2 cache enables efficient data sharing between two cores to reduce 
memory traffic to the system bus.
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The Pentium® dual-core processor is based on the same technology as the Intel Core 
2 Duo processor family.

The Intel Xeon processor 7300, 5300 and 3200 series, Intel Core 2 Extreme Quad-
Core processor, and Intel Core 2 Quad processors support Intel quad-core tech-
nology. The Quad-core Intel Xeon processors and the Quad-Core Intel Core 2 
processor family are also in Figure 2-7. 

Figure 2-6.  Intel 64 and IA-32 Processors that Support Dual-Core 
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Intel Core i7 processors support Intel quad-core technology, Intel HyperThreading 
Technology, provides Intel QuickPath interconnect link to the chipset and have inte-
grated memory controller supporting three channel to DDR3 memory.

Figure 2-7.  Intel 64 Processors that Support Quad-Core 
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2.2.10 Intel® 64 Architecture
Intel 64 architecture increases the linear address space for software to 64 bits and 
supports physical address space up to 40 bits. The technology also introduces a new 
operating mode referred to as IA-32e mode.

IA-32e mode operates in one of two sub-modes: (1) compatibility mode enables a 
64-bit operating system to run most legacy 32-bit software unmodified, (2) 64-bit 
mode enables a 64-bit operating system to run applications written to access 64-bit 
address space. 

In the 64-bit mode, applications may access:
• 64-bit flat linear addressing
• 8 additional general-purpose registers (GPRs)
• 8 additional registers for streaming SIMD extensions (SSE, SSE2, SSE3 and 

SSSE3)
• 64-bit-wide GPRs and instruction pointers
• uniform byte-register addressing
• fast interrupt-prioritization mechanism

Figure 2-8.  Intel Core i7 Processor 
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• a new instruction-pointer relative-addressing mode

An Intel 64 architecture processor supports existing IA-32 software because it is able 
to run all non-64-bit legacy modes supported by IA-32 architecture. Most existing 
IA-32 applications also run in compatibility mode.

2.2.11 Intel® Virtualization Technology (Intel® VT)
Intel® Virtualization Technology for Intel 64 and IA-32 architectures provide exten-
sions that support virtualization. The extensions are referred to as Virtual Machine 
Extensions (VMX). An Intel 64 or IA-32 platform with VMX can function as multiple 
virtual systems (or virtual machines). Each virtual machine can run operating 
systems and applications in separate partitions. 

VMX also provides programming interface for a new layer of system software (called 
the Virtual Machine Monitor (VMM)) used to manage the operation of virtual 
machines. Information on VMX and on the programming of VMMs is in Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3B. Chapter 5, “VMX 
Instruction Reference,” in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 2B, provides information on VMX instructions. 

Intel Core i7 processor provides the following enhancements to Intel Virtualization 
Technology:
• Virtual processor ID (VPID) to reduce the cost of VMM managing transitions.
• Extended page table (EPT) to reduce the number of transitions for VMM to 

manage memory virtualization.
• Reduced latency of VM transitions.

2.3 INTEL® 64 AND IA-32 PROCESSOR GENERATIONS
In the mid-1960s, Intel cofounder and Chairman Emeritus Gordon Moore had this 
observation: “... the number of transistors that would be incorporated on a silicon die 
would double every 18 months for the next several years.” Over the past three and 
half decades, this prediction known as “Moore's Law” has continued to hold true.

The computing power and the complexity (or roughly, the number of transistors per 
processor) of Intel architecture processors has grown in close relation to Moore's law. 
By taking advantage of new process technology and new microarchitecture designs, 
each new generation of IA-32 processors has demonstrated frequency-scaling head-
room and new performance levels over the previous generation processors.

The key features of the Intel Pentium 4 processor, Intel Xeon processor, Intel Xeon 
processor MP, Pentium III processor, and Pentium III Xeon processor with advanced 
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transfer cache are shown in Table 2-1. Older generation IA-32 processors, which do 
not employ on-die Level 2 cache, are shown in Table 2-2. 

Table 2-1.  Key Features of Most Recent IA-32 Processors 

Intel 
Processor

Date 
Intro-
duced

Micro-
architecture

Top-Bin 
Clock Fre-
quency at 
Intro-
duction

Tran-
sistors

Register 
Sizes1

NOTES:
1. The register size and external data bus size are given in bits.

Syste
m Bus 
Band-
width

Max. 
Extern. 
Addr. 
Space

On-Die 
Caches2

2. First level cache is denoted using the abbreviation L1, 2nd level cache is denoted as L2. The size
of L1 includes the first-level data cache and the instruction cache where applicable, but 
does not include the trace cache.

Intel Pentium M
Processor 7553

3. Intel processor numbers are not a measure of performance. Processor numbers differentiate 
features within each processor family, not across different processor families. 
See http://www.intel.com/products/processor_number for details.

2004 Intel Pentium M 
Processor

2.00 GHz 140 M GP: 32 
FPU: 80 
MMX: 64
XMM: 128

3.2 GB/s 4 GB L1: 64 KB
L2: 2 MB

Intel Core Duo
Processor 
T26003

2006 Improved Intel Pentium 
M Processor 
Microarchitecture; Dual 
Core;
Intel Smart Cache, 
Advanced Thermal 
Manager

2.16 GHz  152M GP: 32 
FPU: 80 
MMX: 64
XMM: 128

5.3 GB/s 4 GB L1: 64 KB
L2: 2 MB (2MB 
Total)

Intel Atom
Processor Z5xx 
series

2008 Intel Atom 
Microarchitecture; 
Intel Virtualization 
Technology.

1.86 GHz - 800 
MHz

 47M GP: 32 
FPU: 80 
MMX: 64
XMM: 128

Up to 4.2 
GB/s

4 GB L1: 56 KB4

L2: 512KB 

4. In Intel Atom Processor, the size of L1 instruction cache is 32 KBytes, L1 data cache is 24 KBytes.

Table 2-2.  Key Features of Most Recent Intel 64 Processors

Intel 
Processor

Date 
Intro-
duced

Micro-
architec-ture

Top-Bin 
Fre-
quency 
at Intro-
duction

Tran-
sistor
s

Register 
Sizes

System 
Bus/QP
I Link 
Speed

Max. 
Extern
. Addr. 
Space

On-Die 
Caches

64-bit Intel Xeon
Processor with 
800 MHz 
System Bus

2004 Intel NetBurst 
Microarchitecture; 
Intel Hyper-Threading 
Technology; Intel 64 
Architecture

3.60 GHz 125 M GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

6.4 GB/s 64 GB 12K µop 
Execution 
Trace Cache;
16 KB L1;
1 MB L2

64-bit Intel Xeon
Processor MP 
with 8MB L3

2005 Intel NetBurst 
Microarchitecture; 
Intel Hyper-Threading 
Technology; Intel 64 
Architecture 

3.33 GHz 675M GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

5.3 GB/s 1 1024 GB 
(1 TB)

12K µop 
Execution 
Trace Cache;
16 KB L1;
1 MB L2,
8 MB L3
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Intel Pentium 4
Processor 
Extreme Edition 
Supporting 
Hyper-Threading 
Technology

2005 Intel NetBurst 
Microarchitecture; 
Intel Hyper-Threading 
Technology; Intel 64 
Architecture 

3.73 GHz 164 M GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

8.5 GB/s 64 GB 12K µop 
Execution 
Trace Cache;
16 KB L1;
2 MB L2

Intel Pentium 
Processor 
Extreme Edition 
840

2005 Intel NetBurst 
Microarchitecture; 
Intel Hyper-Threading 
Technology; Intel 64 
Architecture;
Dual-core 2

3.20 GHz 230 M GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

6.4 GB/s 64 GB 12K µop 
Execution 
Trace Cache;
16 KB L1;
1MB L2 (2MB 
Total)

Dual-Core Intel 
Xeon 
Processor 7041

2005 Intel NetBurst 
Microarchitecture; 
Intel Hyper-Threading 
Technology; Intel 64 
Architecture;
Dual-core 3

3.00 GHz  321M GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

6.4 GB/s 64 GB 12K µop 
Execution 
Trace Cache;
16 KB L1;
2MB L2 (4MB 
Total)

Intel Pentium 4
Processor 672

2005 Intel NetBurst 
Microarchitecture; 
Intel Hyper-Threading 
Technology; Intel 64 
Architecture;
Intel Virtualization 
Technology.

3.80 GHz 164 M GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

6.4 GB/s 64 GB 12K µop 
Execution 
Trace Cache;
16 KB L1;
2MB L2 

Intel Pentium 
Processor 
Extreme Edition 
955

2006 Intel NetBurst 
Microarchitecture; 
Intel 64 Architecture; 
Dual Core;
Intel Virtualization 
Technology.

3.46 GHz  376M GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

8.5 GB/s 64 GB 12K µop 
Execution 
Trace Cache;
16 KB L1;
2MB L2 
(4MB Total)

Intel Core 2 
Extreme 
Processor 
X6800

2006 Intel Core 
Microarchitecture; 
Dual Core; 
Intel 64 Architecture;
Intel Virtualization 
Technology.

2.93 GHz  291M GP: 32,64 
FPU: 80 
MMX: 64
XMM: 128

8.5 GB/s 64 GB L1: 64 KB
L2: 4MB (4MB 
Total)

Intel Xeon
Processor 5160

2006 Intel Core 
Microarchitecture; 
Dual Core; 
Intel 64 Architecture;
Intel Virtualization 
Technology.

3.00 GHz  291M GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

10.6 GB/s 64 GB L1: 64 KB
L2: 4MB (4MB 
Total)

Intel Xeon
Processor 7140

2006 Intel NetBurst 
Microarchitecture; 
Dual Core; 
Intel 64 Architecture;
Intel Virtualization 
Technology.

3.40 GHz  1.3 B GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

12.8 GB/s 64 GB L1: 64 KB
L2: 1MB (2MB 
Total)
L3: 16 MB 
(16MB Total)

Intel Core 2 
Extreme 
Processor 
QX6700

2006 Intel Core 
Microarchitecture; 
Quad Core; 
Intel 64 Architecture;
Intel Virtualization 
Technology.

2.66 GHz 582M GP: 32,64 
FPU: 80 
MMX: 64
XMM: 128

8.5 GB/s 64 GB L1: 64 KB
L2: 4MB (4MB 
Total)

Table 2-2.  Key Features of Most Recent Intel 64 Processors (Contd.)

Intel 
Processor

Date 
Intro-
duced

Micro-
architec-ture

Top-Bin 
Fre-
quency 
at Intro-
duction

Tran-
sistor
s

Register 
Sizes

System 
Bus/QP
I Link 
Speed

Max. 
Extern
. Addr. 
Space

On-Die 
Caches
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Quad-core Intel 
Xeon
Processor 5355

2006 Intel Core 
Microarchitecture; 
Quad Core; 
Intel 64 Architecture;
Intel Virtualization 
Technology.

2.66 GHz 582 M GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

10.6 GB/s 256 GB L1: 64 KB
L2: 4MB (8 MB 
Total)

Intel Core 2 Duo 
Processor 
E6850

2007 Intel Core 
Microarchitecture; 
Dual Core; 
Intel 64 Architecture;
Intel Virtualization 
Technology;
Intel Trusted 
Execution Technology

3.00 GHz 291 M GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

10.6 GB/s 64 GB L1: 64 KB
L2: 4MB (4MB 
Total)

Intel Xeon
Processor 7350

2007 Intel Core 
Microarchitecture; 
Quad Core; 
Intel 64 Architecture;
Intel Virtualization 
Technology.

2.93 GHz  582 M GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

8.5 GB/s 1024 GB L1: 64 KB
L2: 4MB (8MB 
Total)

Intel Xeon
Processor 5472

2007 Enhanced Intel Core 
Microarchitecture; 
Quad Core; 
Intel 64 Architecture;
Intel Virtualization 
Technology.

3.00 GHz  820 M GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

12.8 GB/s 256 GB L1: 64 KB
L2: 6MB 
(12MB Total)

Intel Atom
Processor

2008 Intel Atom 
Microarchitecture; 
Intel 64 Architecture;
Intel Virtualization 
Technology.

2.0 - 1.60 GHz 47 M GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

Up to 4.2 
GB/s

Up to 64GB L1: 56 KB4

L2: 512KB 

Intel Xeon
Processor 7460

2008 Enhanced Intel Core 
Microarchitecture; Six 
Cores; 
Intel 64 Architecture;
Intel Virtualization 
Technology.

2.67 GHz  1.9 B GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

8.5 GB/s 1024 GB L1: 64 KB
L2: 3MB (9MB 
Total)
L3: 16MB

Intel Atom
Processor 330

2008 Intel Atom 
Microarchitecture; 
Intel 64 Architecture;
Dual core;
Intel Virtualization 
Technology.

1.60 GHz 94 M GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

Up to 4.2 
GB/s

Up to 64GB L1: 56 KB5

L2: 512KB 
(1MB Total)

Intel Core i7-965
Processor 
Extreme Edition

2008 Intel microarchitecture 
code name Nehalem; 
Quadcore; 
HyperThreading 
Technology; Intel QPI; 
Intel 64 Architecture;
Intel Virtualization 
Technology.

3.20 GHz  731 M GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

QPI: 6.4 
GT/s; 
Memory: 25 
GB/s 

64 GB L1: 64 KB
L2: 256KB 
L3: 8MB

Table 2-2.  Key Features of Most Recent Intel 64 Processors (Contd.)

Intel 
Processor

Date 
Intro-
duced

Micro-
architec-ture

Top-Bin 
Fre-
quency 
at Intro-
duction

Tran-
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s

Register 
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System 
Bus/QP
I Link 
Speed

Max. 
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On-Die 
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Intel Core i7-
620M
Processor 

2010 Intel Turbo Boost 
Technology, Intel 
microarchitecture 
code name Westmere; 
Dualcore; 
HyperThreading 
Technology; Intel 64 
Architecture;
Intel Virtualization 
Technology., 
Integrated graphics

2.66 GHz  383 M GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

64 GB L1: 64 KB
L2: 256KB 
L3: 4MB

Intel Xeon-
Processor 5680

2010 Intel Turbo Boost 
Technology, Intel 
microarchitecture 
code name Westmere; 
Six core; 
HyperThreading 
Technology; Intel 64 
Architecture;
Intel Virtualization 
Technology.

3.33 GHz 1.1B GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

QPI: 6.4 
GT/s; 32 
GB/s

1 TB L1: 64 KB
L2: 256KB 
L3: 12MB

Intel Xeon-
Processor 7560

2010 Intel Turbo Boost 
Technology, Intel 
microarchitecture 
code name Nehalem; 
Eight core; 
HyperThreading 
Technology; Intel 64 
Architecture;
Intel Virtualization 
Technology.

2.26 GHz 2.3B GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

QPI: 6.4 
GT/s; 
Memory: 76 
GB/s 

16 TB L1: 64 KB
L2: 256KB 
L3: 24MB

Intel Core i7-
2600K
Processor 

2011 Intel Turbo Boost 
Technology, Intel 
microarchitecture 
code name Sandy 
Bridge; Four core; 
HyperThreading 
Technology; Intel 64 
Architecture;
Intel Virtualization 
Technology., 
Processor graphics, 
Quicksync Video

3.40 GHz  995M GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128
YMM: 256

DMI: 5 GT/s; 
Memory: 21 
GB/s

64 GB L1: 64 KB
L2: 256KB 
L3: 8MB

Intel Xeon-
Processor E3-
1280

2011 Intel Turbo Boost 
Technology, Intel 
microarchitecture 
code name Sandy 
Bridge; Four core; 
HyperThreading 
Technology; Intel 64 
Architecture;
Intel Virtualization 
Technology.

3.50 GHz GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128
YMM: 256

DMI: 5 GT/s; 
Memory: 21 
GB/s

1 TB L1: 64 KB
L2: 256KB 
L3: 8MB

Intel Xeon-
Processor E7-
8870

2011 Intel Turbo Boost 
Technology, Intel 
microarchitecture 
code name Westmere; 
Ten core; 
HyperThreading 
Technology; Intel 64 
Architecture;
Intel Virtualization 
Technology.

2.40 GHz 2.2B GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

QPI: 6.4 
GT/s; 
Memory: 
102 GB/s 

16 TB L1: 64 KB
L2: 256KB 
L3: 30MB

Table 2-2.  Key Features of Most Recent Intel 64 Processors (Contd.)

Intel 
Processor

Date 
Intro-
duced

Micro-
architec-ture

Top-Bin 
Fre-
quency 
at Intro-
duction

Tran-
sistor
s

Register 
Sizes

System 
Bus/QP
I Link 
Speed

Max. 
Extern
. Addr. 
Space

On-Die 
Caches
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NOTES:
1. The 64-bit Intel Xeon Processor MP with an 8-MByte L3 supports a multi-processor platform with a 

dual system bus; this creates a platform bandwidth with 10.6 GBytes.
2. In Intel Pentium Processor Extreme Edition 840, the size of on-die cache is listed for each core. The

total size of L2 in the physical package in 2 MBytes.
3. In Dual-Core Intel Xeon Processor 7041, the size of on-die cache is listed for each core. The total

size of L2 in the physical package in 4 MBytes.
4. In Intel Atom Processor, the size of L1 instruction cache is 32 KBytes, L1 data cache is 24 KBytes.
5. In Intel Atom Processor, the size of L1 instruction cache is 32 KBytes, L1 data cache is 24 KBytes.
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NOTE:
1. The register size and external data bus size are given in bits. Note also that each 32-bit general-

purpose (GP) registers can be addressed as an 8- or a 16-bit data registers in all of the processors.
2. Internal data paths are 2 to 4 times wider than the external data bus for each processor.

Table 2-3.  Key Features of Previous Generations of IA-32 Processors

Intel 
Processor

Date 
Intro-
duced

Max. Clock 
Frequency/
Technology at 
Introduction

Tran-
sistors

Register 
Sizes1

Ext. Data 
Bus 
Size2

Max. 
Extern. 
Addr. 
Space

Caches 

8086 1978 8 MHz 29 K 16 GP 16 1 MB None

Intel 286 1982 12.5 MHz 134 K 16 GP 16 16 MB Note 3

Intel386 DX Processor 1985 20 MHz 275 K 32 GP 32 4 GB Note 3

Intel486 DX Processor 1989 25 MHz 1.2 M 32 GP
80 FPU

32 4 GB L1: 8 KB

Pentium Processor 1993 60 MHz 3.1 M 32 GP
80 FPU

64 4 GB L1:16 KB

Pentium Pro Processor 1995 200 MHz 5.5 M 32 GP
80 FPU

64 64 GB L1: 16 KB
L2: 256 KB or 
512 KB 

Pentium II Processor 1997 266 MHz 7 M 32 GP
80 FPU
64 MMX

64 64 GB L1: 32 KB
L2: 256 KB or 
512 KB

Pentium III Processor 1999 500 MHz 8.2 M 32 GP
80 FPU
64 MMX
128 XMM

64 64 GB L1: 32 KB
L2: 512 KB

Pentium III and Pentium 
III Xeon Processors

1999 700 MHz 28 M 32 GP
80 FPU
64 MMX
128 XMM

64 64 GB L1: 32 KB
L2: 256 KB

Pentium 4 Processor 2000 1.50 GHz, Intel NetBurst 
Microarchitecture

42 M 32 GP
80 FPU
64 MMX
128 XMM

64 64 GB 12K µop 
Execution Trace 
Cache; L1: 8KB
L2: 256 KB

Intel Xeon Processor 2001 1.70 GHz, Intel NetBurst 
Microarchitecture

42 M 32 GP
80 FPU
64 MMX
128 XMM

64 64 GB 12K µop 
Execution Trace 
Cache; L1: 8KB
L2: 512KB

Intel Xeon Processor 2002 2.20 GHz, Intel NetBurst 
Microarchitecture, 
HyperThreading 
Technology

55 M 32 GP
80 FPU
64 MMX
128 XMM

64 64 GB 12K µop 
Execution Trace 
Cache; L1: 8KB
L2: 512KB

Pentium M Processor 2003 1.60 GHz, Intel NetBurst 
Microarchitecture

77 M 32 GP
80 FPU
64 MMX
128 XMM

64 4 GB L1: 64KB
L2: 1 MB

Intel Pentium 4
Processor Supporting 
Hyper-Threading 
Technology at 90 nm 
process

2004 3.40 GHz, Intel NetBurst 
Microarchitecture, 
HyperThreading 
Technology

125 M 32 GP
80 FPU
64 MMX
128 XMM

64 64 GB 12K µop 
Execution Trace 
Cache; L1: 16KB
L2: 1 MB
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CHAPTER 3
BASIC EXECUTION ENVIRONMENT

This chapter describes the basic execution environment of an Intel 64 or IA-32 
processor as seen by assembly-language programmers. It describes how the 
processor executes instructions and how it stores and manipulates data. The execu-
tion environment described here includes memory (the address space), general-
purpose data registers, segment registers, the flag register, and the instruction 
pointer register.

3.1 MODES OF OPERATION
The IA-32 architecture supports three basic operating modes: protected mode, real-
address mode, and system management mode. The operating mode determines 
which instructions and architectural features are accessible:
• Protected mode — This mode is the native state of the processor. Among the 

capabilities of protected mode is the ability to directly execute “real-address 
mode” 8086 software in a protected, multi-tasking environment. This feature is 
called virtual-8086 mode, although it is not actually a processor mode. Virtual-
8086 mode is actually a protected mode attribute that can be enabled for any 
task. 

• Real-address mode — This mode implements the programming environment of 
the Intel 8086 processor with extensions (such as the ability to switch to 
protected or system management mode). The processor is placed in real-address 
mode following power-up or a reset.

• System management mode (SMM) — This mode provides an operating 
system or executive with a transparent mechanism for implementing platform-
specific functions such as power management and system security. The 
processor enters SMM when the external SMM interrupt pin (SMI#) is activated 
or an SMI is received from the advanced programmable interrupt controller 
(APIC). 
In SMM, the processor switches to a separate address space while saving the 
basic context of the currently running program or task. SMM-specific code may 
then be executed transparently. Upon returning from SMM, the processor is 
placed back into its state prior to the system management interrupt. SMM was 
introduced with the Intel386™ SL and Intel486™ SL processors and became a 
standard IA-32 feature with the Pentium processor family. 
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3.1.1 Intel® 64 Architecture
Intel 64 architecture adds IA-32e mode. IA-32e mode has two sub-modes.
These are:
• Compatibility mode (sub-mode of IA-32e mode) — Compatibility mode 

permits most legacy 16-bit and 32-bit applications to run without re-compilation 
under a 64-bit operating system. For brevity, the compatibility sub-mode is 
referred to as compatibility mode in IA-32 architecture. The execution 
environment of compatibility mode is the same as described in Section 3.2. 
Compatibility mode also supports all of the privilege levels that are supported in 
64-bit and protected modes. Legacy applications that run in Virtual 8086 mode or 
use hardware task management will not work in this mode. 
Compatibility mode is enabled by the operating system (OS) on a code segment 
basis. This means that a single 64-bit OS can support 64-bit applications running 
in 64-bit mode and support legacy 32-bit applications (not recompiled for 
64-bits) running in compatibility mode.
Compatibility mode is similar to 32-bit protected mode. Applications access only 
the first 4 GByte of linear-address space. Compatibility mode uses 16-bit and 32-
bit address and operand sizes. Like protected mode, this mode allows applica-
tions to access physical memory greater than 4 GByte using PAE (Physical 
Address Extensions). 

• 64-bit mode (sub-mode of IA-32e mode) — This mode enables a 64-bit 
operating system to run applications written to access 64-bit linear address 
space. For brevity, the 64-bit sub-mode is referred to as 64-bit mode in IA-32 
architecture.
64-bit mode extends the number of general purpose registers and SIMD 
extension registers from 8 to 16. General purpose registers are widened to 64 
bits. The mode also introduces a new opcode prefix (REX) to access the register 
extensions. See Section 3.2.1 for a detailed description.
64-bit mode is enabled by the operating system on a code-segment basis. Its 
default address size is 64 bits and its default operand size is 32 bits. The default 
operand size can be overridden on an instruction-by-instruction basis using a REX 
opcode prefix in conjunction with an operand size override prefix. 
REX prefixes allow a 64-bit operand to be specified when operating in 64-bit 
mode. By using this mechanism, many existing instructions have been promoted 
to allow the use of 64-bit registers and 64-bit addresses.

3.2 OVERVIEW OF THE BASIC EXECUTION 
ENVIRONMENT

Any program or task running on an IA-32 processor is given a set of resources for 
executing instructions and for storing code, data, and state information. These 
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resources (described briefly in the following paragraphs and shown in Figure 3-1) 
make up the basic execution environment for an IA-32 processor. 

An Intel 64 processor supports the basic execution environment of an IA-32 
processor, and a similar environment under IA-32e mode that can execute 64-bit 
programs (64-bit sub-mode) and 32-bit programs (compatibility sub-mode). 

The basic execution environment is used jointly by the application programs and the 
operating system or executive running on the processor.
• Address space — Any task or program running on an IA-32 processor can 

address a linear address space of up to 4 GBytes (232 bytes) and a physical 
address space of up to 64 GBytes (236 bytes). See Section 3.3.6, “Extended 
Physical Addressing in Protected Mode,” for more information about addressing 
an address space greater than 4 GBytes.

• Basic program execution registers — The eight general-purpose registers, 
the six segment registers, the EFLAGS register, and the EIP (instruction pointer) 
register comprise a basic execution environment in which to execute a set of 
general-purpose instructions. These instructions perform basic integer arithmetic 
on byte, word, and doubleword integers, handle program flow control, operate on 
bit and byte strings, and address memory. See Section 3.4, “Basic Program 
Execution Registers,” for more information about these registers.

• x87 FPU registers — The eight x87 FPU data registers, the x87 FPU control 
register, the status register, the x87 FPU instruction pointer register, the x87 FPU 
operand (data) pointer register, the x87 FPU tag register, and the x87 FPU opcode 
register provide an execution environment for operating on single-precision, 
double-precision, and double extended-precision floating-point values, word 
integers, doubleword integers, quadword integers, and binary coded decimal 
(BCD) values. See Section 8.1, “x87 FPU Execution Environment,” for more 
information about these registers.

• MMX registers — The eight MMX registers support execution of single-
instruction, multiple-data (SIMD) operations on 64-bit packed byte, word, and 
doubleword integers. See Section 9.2, “The MMX Technology Programming 
Environment,” for more information about these registers.

• XMM registers — The eight XMM data registers and the MXCSR register support 
execution of SIMD operations on 128-bit packed single-precision and double-
precision floating-point values and on 128-bit packed byte, word, doubleword, 
and quadword integers. See Section 10.2, “SSE Programming Environment,” for 
more information about these registers.
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Figure 3-1.  IA-32 Basic Execution Environment for Non-64-bit Modes
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BASIC EXECUTION ENVIRONMENT
• Stack — To support procedure or subroutine calls and the passing of parameters 
between procedures or subroutines, a stack and stack management resources 
are included in the execution environment. The stack (not shown in Figure 3-1) is 
located in memory. See Section 6.2, “Stacks,” for more information about stack 
structure.

In addition to the resources provided in the basic execution environment, the IA-32 
architecture provides the following resources as part of its system-level architecture. 
They provide extensive support for operating-system and system-development soft-
ware. Except for the I/O ports, the system resources are described in detail in the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 3A & 3B.
• I/O ports — The IA-32 architecture supports a transfers of data to and from 

input/output (I/O) ports. See Chapter 14, “Input/Output,” in this volume.
• Control registers — The five control registers (CR0 through CR4) determine the 

operating mode of the processor and the characteristics of the currently 
executing task. See Chapter 2, “System Architecture Overview,” in the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 3A.

• Memory management registers — The GDTR, IDTR, task register, and LDTR 
specify the locations of data structures used in protected mode memory 
management. See Chapter 2, “System Architecture Overview,” in the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 3A.

• Debug registers — The debug registers (DR0 through DR7) control and allow 
monitoring of the processor’s debugging operations. See in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3B.

• Memory type range registers (MTRRs) — The MTRRs are used to assign 
memory types to regions of memory. See the sections on MTRRs in the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volumes 3A & 3B.

• Machine specific registers (MSRs) — The processor provides a variety of 
machine specific registers that are used to control and report on processor 
performance. Virtually all MSRs handle system related functions and are not 
accessible to an application program. One exception to this rule is the time-
stamp counter. The MSRs are described in Chapter 34, “Model-Specific Registers 
(MSRs),” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3C.

• Machine check registers — The machine check registers consist of a set of 
control, status, and error-reporting MSRs that are used to detect and report on 
hardware (machine) errors. See Chapter 15, “Machine-Check Architecture,” of 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

• Performance monitoring counters — The performance monitoring counters 
allow processor performance events to be monitored. See Chapter 23, “Intro-
duction to Virtual-Machine Extensions,” in the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 3C.

The remainder of this chapter describes the organization of memory and the address 
space, the basic program execution registers, and addressing modes. Refer to the 
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following chapters in this volume for descriptions of the other program execution 
resources shown in Figure 3-1:
• x87 FPU registers — See Chapter 8, “Programming with the x87 FPU.”
• MMX Registers — See Chapter 9, “Programming with Intel® MMX™ 

Technology.”
• XMM registers — See Chapter 10, “Programming with Streaming SIMD 

Extensions (SSE),” Chapter 11, “Programming with Streaming SIMD Extensions 2 
(SSE2),” and Chapter 12, “Programming with SSE3, SSSE3, SSE4 and AESNI.”

• Stack implementation and procedure calls — See Chapter 6, “Procedure 
Calls, Interrupts, and Exceptions.”

3.2.1 64-Bit Mode Execution Environment
The execution environment for 64-bit mode is similar to that described in Section 
3.2. The following paragraphs describe the differences that apply. 
• Address space — A task or program running in 64-bit mode on an IA-32 

processor can address linear address space of up to 264 bytes (subject to the 
canonical addressing requirement described in Section 3.3.7.1) and physical 
address space of up to 240 bytes. Software can query CPUID for the physical 
address size supported by a processor.

• Basic program execution registers — The number of general-purpose 
registers (GPRs) available is 16. GPRs are 64-bits wide and they support 
operations on byte, word, doubleword and quadword integers. Accessing byte 
registers is done uniformly to the lowest 8 bits. The instruction pointer register 
becomes 64 bits. The EFLAGS register is extended to 64 bits wide, and is referred 
to as the RFLAGS register. The upper 32 bits of RFLAGS is reserved. The lower 32 
bits of RFLAGS is the same as EFLAGS. See Figure 3-2.

• XMM registers — There are 16 XMM data registers for SIMD operations. See 
Section 10.2, “SSE Programming Environment,” for more information about 
these registers.

• Stack — The stack pointer size is 64 bits. Stack size is not controlled by a bit in 
the SS descriptor (as it is in non-64-bit modes) nor can the pointer size be 
overridden by an instruction prefix.

• Control registers — Control registers expand to 64 bits. A new control register 
(the task priority register: CR8 or TPR) has been added. See Chapter 2, “Intel® 
64 and IA-32 Architectures,” in this volume.

• Debug registers — Debug registers expand to 64 bits. See Chapter 17, 
“Debugging, Branch Profiles and Time-Stamp Counter,” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3A.

• Descriptor table registers — The global descriptor table register (GDTR) and 
interrupt descriptor table register (IDTR) expand to 10 bytes so that they can 
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hold a full 64-bit base address. The local descriptor table register (LDTR) and the 
task register (TR) also expand to hold a full 64-bit base address.

Figure 3-2.  64-Bit Mode Execution Environment
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3.3 MEMORY ORGANIZATION
The memory that the processor addresses on its bus is called physical memory. 
Physical memory is organized as a sequence of 8-bit bytes. Each byte is assigned a 
unique address, called a physical address. The physical address space ranges 
from zero to a maximum of 236 − 1 (64 GBytes) if the processor does not support 
Intel 64 architecture. Intel 64 architecture introduces a changes in physical and 
linear address space; these are described in Section 3.3.3, Section 3.3.4, and 
Section 3.3.7.

Virtually any operating system or executive designed to work with an IA-32 or Intel 
64 processor will use the processor’s memory management facilities to access 
memory. These facilities provide features such as segmentation and paging, which 
allow memory to be managed efficiently and reliably. Memory management is 
described in detail in Chapter 3, “Protected-Mode Memory Management,” in the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A. The 
following paragraphs describe the basic methods of addressing memory when 
memory management is used.

3.3.1 IA-32 Memory Models
When employing the processor’s memory management facilities, programs do not 
directly address physical memory. Instead, they access memory using one of three 
memory models: flat, segmented, or real address mode:
• Flat memory model — Memory appears to a program as a single, continuous 

address space (Figure 3-3). This space is called a linear address space. Code, 
data, and stacks are all contained in this address space. Linear address space is 
byte addressable, with addresses running contiguously from 0 to 232 - 1 (if not in 
64-bit mode). An address for any byte in linear address space is called a linear 
address.

• Segmented memory model — Memory appears to a program as a group of 
independent address spaces called segments. Code, data, and stacks are 
typically contained in separate segments. To address a byte in a segment, a 
program issues a logical address. This consists of a segment selector and an 
offset (logical addresses are often referred to as far pointers). The segment 
selector identifies the segment to be accessed and the offset identifies a byte in 
the address space of the segment. Programs running on an IA-32 processor can 
address up to 16,383 segments of different sizes and types, and each segment 
can be as large as 232 bytes.
Internally, all the segments that are defined for a system are mapped into the 
processor’s linear address space. To access a memory location, the processor 
thus translates each logical address into a linear address. This translation is 
transparent to the application program.
The primary reason for using segmented memory is to increase the reliability of 
programs and systems. For example, placing a program’s stack in a separate 
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segment prevents the stack from growing into the code or data space and 
overwriting instructions or data, respectively.

• Real-address mode memory model — This is the memory model for the Intel 
8086 processor. It is supported to provide compatibility with existing programs 
written to run on the Intel 8086 processor. The real-address mode uses a specific 
implementation of segmented memory in which the linear address space for the 
program and the operating system/executive consists of an array of segments of 
up to 64 KBytes in size each. The maximum size of the linear address space in 
real-address mode is 220 bytes. 
See also: Chapter 20, “8086 Emulation,” Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 3B.

Figure 3-3.  Three Memory Management Models
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3.3.2 Paging and Virtual Memory
With the flat or the segmented memory model, linear address space is mapped into 
the processor’s physical address space either directly or through paging. When using 
direct mapping (paging disabled), each linear address has a one-to-one correspon-
dence with a physical address. Linear addresses are sent out on the processor’s 
address lines without translation. 

When using the IA-32 architecture’s paging mechanism (paging enabled), linear 
address space is divided into pages which are mapped to virtual memory. The pages 
of virtual memory are then mapped as needed into physical memory. When an oper-
ating system or executive uses paging, the paging mechanism is transparent to an 
application program. All that the application sees is linear address space.

In addition, IA-32 architecture’s paging mechanism includes extensions that 
support:
• Page Address Extensions (PAE) to address physical address space greater than 

4 GBytes.
• Page Size Extensions (PSE) to map linear address to physical address in 

4-MBytes pages.

See also: Chapter 3, “Protected-Mode Memory Management,” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3A.

3.3.3 Memory Organization in 64-Bit Mode
Intel 64 architecture supports physical address space greater than 64 GBytes; the 
actual physical address size of IA-32 processors is implementation specific. In 64-bit 
mode, there is architectural support for 64-bit linear address space. However, 
processors supporting Intel 64 architecture may implement less than 64-bits (see 
Section 3.3.7.1). The linear address space is mapped into the processor physical 
address space through the PAE paging mechanism.

3.3.4 Modes of Operation vs. Memory Model
When writing code for an IA-32 or Intel 64 processor, a programmer needs to know 
the operating mode the processor is going to be in when executing the code and the 
memory model being used. The relationship between operating modes and memory 
models is as follows:
• Protected mode — When in protected mode, the processor can use any of the 

memory models described in this section. (The real-addressing mode memory 
model is ordinarily used only when the processor is in the virtual-8086 mode.) 
The memory model used depends on the design of the operating system or 
executive. When multitasking is implemented, individual tasks can use different 
memory models.
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• Real-address mode — When in real-address mode, the processor only supports 
the real-address mode memory model.

• System management mode — When in SMM, the processor switches to a 
separate address space, called the system management RAM (SMRAM). The 
memory model used to address bytes in this address space is similar to the real-
address mode model. See Chapter 33, “System Management Mode,” in the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C, for 
more information on the memory model used in SMM.

• Compatibility mode — Software that needs to run in compatibility mode should 
observe the same memory model as those targeted to run in 32-bit protected 
mode. The effect of segmentation is the same as it is in 32-bit protected mode 
semantics.

• 64-bit mode — Segmentation is generally (but not completely) disabled, 
creating a flat 64-bit linear-address space. Specifically, the processor treats the 
segment base of CS, DS, ES, and SS as zero in 64-bit mode (this makes a linear 
address equal an effective address). Segmented and real address modes are not 
available in 64-bit mode.

3.3.5 32-Bit and 16-Bit Address and Operand Sizes
IA-32 processors in protected mode can be configured for 32-bit or 16-bit address 
and operand sizes. With 32-bit address and operand sizes, the maximum linear 
address or segment offset is FFFFFFFFH (232-1); operand sizes are typically 8 bits or 
32 bits. With 16-bit address and operand sizes, the maximum linear address or 
segment offset is FFFFH (216-1); operand sizes are typically 8 bits or 16 bits. 

When using 32-bit addressing, a logical address (or far pointer) consists of a 16-bit 
segment selector and a 32-bit offset; when using 16-bit addressing, an address 
consists of a 16-bit segment selector and a 16-bit offset. 

Instruction prefixes allow temporary overrides of the default address and/or operand 
sizes from within a program.

When operating in protected mode, the segment descriptor for the currently 
executing code segment defines the default address and operand size. A segment 
descriptor is a system data structure not normally visible to application code. Assem-
bler directives allow the default addressing and operand size to be chosen for a 
program. The assembler and other tools then set up the segment descriptor for the 
code segment appropriately.

When operating in real-address mode, the default addressing and operand size is 16 
bits. An address-size override can be used in real-address mode to enable 32-bit 
addressing. However, the maximum allowable 32-bit linear address is still 000FFFFFH 
(220-1).
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3.3.6 Extended Physical Addressing in Protected Mode
Beginning with P6 family processors, the IA-32 architecture supports addressing of 
up to 64 GBytes (236 bytes) of physical memory. A program or task could not 
address locations in this address space directly. Instead, it addresses individual linear 
address spaces of up to 4 GBytes that mapped to 64-GByte physical address space 
through a virtual memory management mechanism. Using this mechanism, an oper-
ating system can enable a program to switch 4-GByte linear address spaces within 
64-GByte physical address space.

The use of extended physical addressing requires the processor to operate in 
protected mode and the operating system to provide a virtual memory management 
system. See “36-Bit Physical Addressing Using the PAE Paging Mechanism” in 
Chapter 3, “Protected-Mode Memory Management,” of the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A.

3.3.7 Address Calculations in 64-Bit Mode
In most cases, 64-bit mode uses flat address space for code, data, and stacks. In 
64-bit mode (if there is no address-size override), the size of effective address calcu-
lations is 64 bits. An effective-address calculation uses a 64-bit base and index regis-
ters and sign-extend displacements to 64 bits.

In the flat address space of 64-bit mode, linear addresses are equal to effective 
addresses because the base address is zero. In the event that FS or GS segments are 
used with a non-zero base, this rule does not hold. In 64-bit mode, the effective 
address components are added and the effective address is truncated (See for 
example the instruction LEA) before adding the full 64-bit segment base. The base is 
never truncated, regardless of addressing mode in 64-bit mode.

The instruction pointer is extended to 64 bits to support 64-bit code offsets. The 
64-bit instruction pointer is called the RIP. Table 3-1 shows the relationship between 
RIP, EIP, and IP.

Table 3-1.  Instruction Pointer Sizes

Generally, displacements and immediates in 64-bit mode are not extended to 64 bits. 
They are still limited to 32 bits and sign-extended during effective-address calcula-
tions. In 64-bit mode, however, support is provided for 64-bit displacement and 
immediate forms of the MOV instruction. 

All 16-bit and 32-bit address calculations are zero-extended in IA-32e mode to form 
64-bit addresses. Address calculations are first truncated to the effective address 

Bits 63:32 Bits 31:16 Bits 15:0

16-bit instruction pointer Not Modified IP

32-bit instruction pointer Zero Extension EIP

64-bit instruction pointer RIP
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size of the current mode (64-bit mode or compatibility mode), as overridden by any 
address-size prefix. The result is then zero-extended to the full 64-bit address width. 
Because of this, 16-bit and 32-bit applications running in compatibility mode can 
access only the low 4 GBytes of the 64-bit mode effective addresses. Likewise, a 
32-bit address generated in 64-bit mode can access only the low 4 GBytes of the 
64-bit mode effective addresses.

3.3.7.1  Canonical Addressing
In 64-bit mode, an address is considered to be in canonical form if address bits 63 
through to the most-significant implemented bit by the microarchitecture are set to 
either all ones or all zeros.

Intel 64 architecture defines a 64-bit linear address. Implementations can support 
less. The first implementation of IA-32 processors with Intel 64 architecture supports 
a 48-bit linear address. This means a canonical address must have bits 63 through 48 
set to zeros or ones (depending on whether bit 47 is a zero or one).

Although implementations may not use all 64 bits of the linear address, they should 
check bits 63 through the most-significant implemented bit to see if the address is in 
canonical form. If a linear-memory reference is not in canonical form, the implemen-
tation should generate an exception. In most cases, a general-protection exception 
(#GP) is generated. However, in the case of explicit or implied stack references, a 
stack fault (#SS) is generated. 

Instructions that have implied stack references, by default, use the SS segment 
register. These include PUSH/POP-related instructions and instructions using 
RSP/RBP as base registers. In these cases, the canonical fault is #SF. 

If an instruction uses base registers RSP/RBP and uses a segment override prefix to 
specify a non-SS segment, a canonical fault generates a #GP (instead of an #SF). In 
64-bit mode, only FS and GS segment-overrides are applicable in this situation. 
Other segment override prefixes (CS, DS, ES and SS) are ignored. Note that this also 
means that an SS segment-override applied to a “non-stack” register reference is 
ignored. Such a sequence still produces a #GP for a canonical fault (and not an #SF).

3.4 BASIC PROGRAM EXECUTION REGISTERS
IA-32 architecture provides 16 basic program execution registers for use in general 
system and application programing (see Figure 3-4). These registers can be grouped 
as follows:
• General-purpose registers. These eight registers are available for storing 

operands and pointers.
• Segment registers. These registers hold up to six segment selectors.
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• EFLAGS (program status and control) register. The EFLAGS register report 
on the status of the program being executed and allows limited (application-
program level) control of the processor. 

• EIP (instruction pointer) register. The EIP register contains a 32-bit pointer 
to the next instruction to be executed. 

3.4.1 General-Purpose Registers
The 32-bit general-purpose registers EAX, EBX, ECX, EDX, ESI, EDI, EBP, and ESP 
are provided for holding the following items:
• Operands for logical and arithmetic operations
• Operands for address calculations
• Memory pointers

Although all of these registers are available for general storage of operands, results, 
and pointers, caution should be used when referencing the ESP register. The ESP 
register holds the stack pointer and as a general rule should not be used for another 
purpose. 

Many instructions assign specific registers to hold operands. For example, string 
instructions use the contents of the ECX, ESI, and EDI registers as operands. When 
using a segmented memory model, some instructions assume that pointers in certain 
registers are relative to specific segments. For instance, some instructions assume 
that a pointer in the EBX register points to a memory location in the DS segment. 
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The special uses of general-purpose registers by instructions are described in 
Chapter 5, “Instruction Set Summary,” in this volume. See also: Chapter 3 and 
Chapter 4 of Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volumes 2A & 2B. The following is a summary of special uses:
• EAX — Accumulator for operands and results data
• EBX — Pointer to data in the DS segment
• ECX — Counter for string and loop operations
• EDX — I/O pointer
• ESI — Pointer to data in the segment pointed to by the DS register; source 

pointer for string operations
• EDI — Pointer to data (or destination) in the segment pointed to by the ES 

register; destination pointer for string operations
• ESP — Stack pointer (in the SS segment)

Figure 3-4.  General System and Application Programming Registers

031
EAX
EBX
ECX

EDX
ESI

EDI
EBP

ESP

Segment Registers

CS

DS
SS

ES
FS

GS

015

031
EFLAGS

EIP
31 0

General-Purpose Registers

Program Status and Control Register

Instruction Pointer
Vol. 1 3-15



BASIC EXECUTION ENVIRONMENT
• EBP — Pointer to data on the stack (in the SS segment)

As shown in Figure 3-5, the lower 16 bits of the general-purpose registers map 
directly to the register set found in the 8086 and Intel 286 processors and can be 
referenced with the names AX, BX, CX, DX, BP, SI, DI, and SP. Each of the lower two 
bytes of the EAX, EBX, ECX, and EDX registers can be referenced by the names AH, 
BH, CH, and DH (high bytes) and AL, BL, CL, and DL (low bytes).

3.4.1.1  General-Purpose Registers in 64-Bit Mode
In 64-bit mode, there are 16 general purpose registers and the default operand size 
is 32 bits. However, general-purpose registers are able to work with either 32-bit or 
64-bit operands. If a 32-bit operand size is specified: EAX, EBX, ECX, EDX, EDI, ESI, 
EBP, ESP, R8D - R15D are available. If a 64-bit operand size is specified: RAX, RBX, 
RCX, RDX, RDI, RSI, RBP, RSP, R8-R15 are available. R8D-R15D/R8-R15 represent 
eight new general-purpose registers. All of these registers can be accessed at the 
byte, word, dword, and qword level. REX prefixes are used to generate 64-bit 
operand sizes or to reference registers R8-R15.

Registers only available in 64-bit mode (R8-R15 and XMM8-XMM15) are preserved 
across transitions from 64-bit mode into compatibility mode then back into 64-bit 
mode. However, values of R8-R15 and XMM8-XMM15 are undefined after transitions 
from 64-bit mode through compatibility mode to legacy or real mode and then back 
through compatibility mode to 64-bit mode.

Figure 3-5.  Alternate General-Purpose Register Names

071531 16 8

AH AL

BH BL

CH CL

DH DL

BP

SI

DI

SP

16-bit

AX

DX

CX

BX

32-bit

EAX

EBX

ECX

EDX

EBP

ESI

ESP

General-Purpose Registers

EDI
3-16 Vol. 1



BASIC EXECUTION ENVIRONMENT
In 64-bit mode, there are limitations on accessing byte registers. An instruction 
cannot reference legacy high-bytes (for example: AH, BH, CH, DH) and one of the 
new byte registers at the same time (for example: the low byte of the RAX register). 
However, instructions may reference legacy low-bytes (for example: AL, BL, CL or 
DL) and new byte registers at the same time (for example: the low byte of the R8 
register, or RBP). The architecture enforces this limitation by changing high-byte 
references (AH, BH, CH, DH) to low byte references (BPL, SPL, DIL, SIL: the low 8 
bits for RBP, RSP, RDI and RSI) for instructions using a REX prefix.

When in 64-bit mode, operand size determines the number of valid bits in the desti-
nation general-purpose register: 
• 64-bit operands generate a 64-bit result in the destination general-purpose 

register.
• 32-bit operands generate a 32-bit result, zero-extended to a 64-bit result in the 

destination general-purpose register.
• 8-bit and 16-bit operands generate an 8-bit or 16-bit result. The upper 56 bits or 

48 bits (respectively) of the destination general-purpose register are not 
modified by the operation. If the result of an 8-bit or 16-bit operation is intended 
for 64-bit address calculation, explicitly sign-extend the register to the full 
64-bits. 

Because the upper 32 bits of 64-bit general-purpose registers are undefined in 32-bit 
modes, the upper 32 bits of any general-purpose register are not preserved when 
switching from 64-bit mode to a 32-bit mode (to protected mode or compatibility 
mode). Software must not depend on these bits to maintain a value after a 64-bit to 
32-bit mode switch.

3.4.2 Segment Registers
The segment registers (CS, DS, SS, ES, FS, and GS) hold 16-bit segment selectors. 
A segment selector is a special pointer that identifies a segment in memory. To 
access a particular segment in memory, the segment selector for that segment must 
be present in the appropriate segment register.

Table 3-2.  Addressable General Purpose Registers
Register Type Without REX With REX

Byte Registers AL, BL, CL, DL, AH, BH, CH, 
DH

AL, BL, CL, DL, DIL, SIL, BPL, SPL, 
R8L - R15L

Word Registers AX, BX, CX, DX, DI, SI, BP, SP AX, BX, CX, DX, DI, SI, BP, SP, R8W - 
R15W

Doubleword Registers EAX, EBX, ECX, EDX, EDI, ESI, 
EBP, ESP

EAX, EBX, ECX, EDX, EDI, ESI, EBP, 
ESP, R8D - R15D

Quadword Registers N.A. RAX, RBX, RCX, RDX, RDI, RSI, 
RBP, RSP, R8 - R15
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When writing application code, programmers generally create segment selectors 
with assembler directives and symbols. The assembler and other tools then create 
the actual segment selector values associated with these directives and symbols. If 
writing system code, programmers may need to create segment selectors directly. 
See Chapter 3, “Protected-Mode Memory Management,” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A.

How segment registers are used depends on the type of memory management model 
that the operating system or executive is using. When using the flat (unsegmented) 
memory model, segment registers are loaded with segment selectors that point to 
overlapping segments, each of which begins at address 0 of the linear address space 
(see Figure 3-6). These overlapping segments then comprise the linear address 
space for the program. Typically, two overlapping segments are defined: one for code 
and another for data and stacks. The CS segment register points to the code 
segment and all the other segment registers point to the data and stack segment.

When using the segmented memory model, each segment register is ordinarily 
loaded with a different segment selector so that each segment register points to a 
different segment within the linear address space (see Figure 3-7). At any time, a 
program can thus access up to six segments in the linear address space. To access a 
segment not pointed to by one of the segment registers, a program must first load 
the segment selector for the segment to be accessed into a segment register.

Figure 3-6.  Use of Segment Registers for Flat Memory Model
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Each of the segment registers is associated with one of three types of storage: code, 
data, or stack. For example, the CS register contains the segment selector for the 
code segment, where the instructions being executed are stored. The processor 
fetches instructions from the code segment, using a logical address that consists of 
the segment selector in the CS register and the contents of the EIP register. The EIP 
register contains the offset within the code segment of the next instruction to be 
executed. The CS register cannot be loaded explicitly by an application program. 
Instead, it is loaded implicitly by instructions or internal processor operations that 
change program control (such as, procedure calls, interrupt handling, or task 
switching).

The DS, ES, FS, and GS registers point to four data segments. The availability of 
four data segments permits efficient and secure access to different types of data 
structures. For example, four separate data segments might be created: one for the 
data structures of the current module, another for the data exported from a higher-
level module, a third for a dynamically created data structure, and a fourth for data 
shared with another program. To access additional data segments, the application 
program must load segment selectors for these segments into the DS, ES, FS, and 
GS registers, as needed.

The SS register contains the segment selector for the stack segment, where the 
procedure stack is stored for the program, task, or handler currently being executed. 
All stack operations use the SS register to find the stack segment. Unlike the CS 
register, the SS register can be loaded explicitly, which permits application programs 
to set up multiple stacks and switch among them.

Figure 3-7.  Use of Segment Registers in Segmented Memory Model
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See Section 3.3, “Memory Organization,” for an overview of how the segment regis-
ters are used in real-address mode.

The four segment registers CS, DS, SS, and ES are the same as the segment regis-
ters found in the Intel 8086 and Intel 286 processors and the FS and GS registers 
were introduced into the IA-32 Architecture with the Intel386™ family of processors.

3.4.2.1  Segment Registers in 64-Bit Mode
In 64-bit mode: CS, DS, ES, SS are treated as if each segment base is 0, regardless 
of the value of the associated segment descriptor base. This creates a flat address 
space for code, data, and stack. FS and GS are exceptions. Both segment registers 
may be used as additional base registers in linear address calculations (in the 
addressing of local data and certain operating system data structures). 

Even though segmentation is generally disabled, segment register loads may cause 
the processor to perform segment access assists. During these activities, enabled 
processors will still perform most of the legacy checks on loaded values (even if the 
checks are not applicable in 64-bit mode). Such checks are needed because a 
segment register loaded in 64-bit mode may be used by an application running in 
compatibility mode. 

Limit checks for CS, DS, ES, SS, FS, and GS are disabled in 64-bit mode.

3.4.3 EFLAGS Register
The 32-bit EFLAGS register contains a group of status flags, a control flag, and a 
group of system flags. Figure 3-8 defines the flags within this register. Following 
initialization of the processor (either by asserting the RESET pin or the INIT pin), the 
state of the EFLAGS register is 00000002H. Bits 1, 3, 5, 15, and 22 through 31 of this 
register are reserved. Software should not use or depend on the states of any of 
these bits.

Some of the flags in the EFLAGS register can be modified directly, using special-
purpose instructions (described in the following sections). There are no instructions 
that allow the whole register to be examined or modified directly. 

The following instructions can be used to move groups of flags to and from the proce-
dure stack or the EAX register: LAHF, SAHF, PUSHF, PUSHFD, POPF, and POPFD. After 
the contents of the EFLAGS register have been transferred to the procedure stack or 
EAX register, the flags can be examined and modified using the processor’s bit 
manipulation instructions (BT, BTS, BTR, and BTC).

When suspending a task (using the processor’s multitasking facilities), the processor 
automatically saves the state of the EFLAGS register in the task state segment (TSS) 
for the task being suspended. When binding itself to a new task, the processor loads 
the EFLAGS register with data from the new task’s TSS.

When a call is made to an interrupt or exception handler procedure, the processor 
automatically saves the state of the EFLAGS registers on the procedure stack. When 
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an interrupt or exception is handled with a task switch, the state of the EFLAGS 
register is saved in the TSS for the task being suspended.

As the IA-32 Architecture has evolved, flags have been added to the EFLAGS register, 
but the function and placement of existing flags have remained the same from one 
family of the IA-32 processors to the next. As a result, code that accesses or modifies 
these flags for one family of IA-32 processors works as expected when run on later 
families of processors.

3.4.3.1  Status Flags
The status flags (bits 0, 2, 4, 6, 7, and 11) of the EFLAGS register indicate the results 
of arithmetic instructions, such as the ADD, SUB, MUL, and DIV instructions. The 
status flag functions are:
CF (bit 0) Carry flag — Set if an arithmetic operation generates a carry or 

a borrow out of the most-significant bit of the result; cleared 

Figure 3-8.  EFLAGS Register
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otherwise. This flag indicates an overflow condition for 
unsigned-integer arithmetic. It is also used in multiple-precision 
arithmetic.

PF (bit 2) Parity flag — Set if the least-significant byte of the result 
contains an even number of 1 bits; cleared otherwise.

AF (bit 4) Adjust flag — Set if an arithmetic operation generates a carry 
or a borrow out of bit 3 of the result; cleared otherwise. This flag 
is used in binary-coded decimal (BCD) arithmetic.

ZF (bit 6) Zero flag — Set if the result is zero; cleared otherwise.
SF (bit 7) Sign flag — Set equal to the most-significant bit of the result, 

which is the sign bit of a signed integer. (0 indicates a positive 
value and 1 indicates a negative value.)

OF (bit 11) Overflow flag — Set if the integer result is too large a positive 
number or too small a negative number (excluding the sign-bit) 
to fit in the destination operand; cleared otherwise. This flag 
indicates an overflow condition for signed-integer (two’s 
complement) arithmetic.

Of these status flags, only the CF flag can be modified directly, using the STC, CLC, 
and CMC instructions. Also the bit instructions (BT, BTS, BTR, and BTC) copy a spec-
ified bit into the CF flag.

The status flags allow a single arithmetic operation to produce results for three 
different data types: unsigned integers, signed integers, and BCD integers. If the 
result of an arithmetic operation is treated as an unsigned integer, the CF flag indi-
cates an out-of-range condition (carry or a borrow); if treated as a signed integer 
(two’s complement number), the OF flag indicates a carry or borrow; and if treated 
as a BCD digit, the AF flag indicates a carry or borrow. The SF flag indicates the sign 
of a signed integer. The ZF flag indicates either a signed- or an unsigned-integer 
zero.

When performing multiple-precision arithmetic on integers, the CF flag is used in 
conjunction with the add with carry (ADC) and subtract with borrow (SBB) instruc-
tions to propagate a carry or borrow from one computation to the next. 

The condition instructions Jcc (jump on condition code cc), SETcc (byte set on condi-
tion code cc), LOOPcc, and CMOVcc (conditional move) use one or more of the status 
flags as condition codes and test them for branch, set-byte, or end-loop conditions.

3.4.3.2  DF Flag
The direction flag (DF, located in bit 10 of the EFLAGS register) controls string 
instructions (MOVS, CMPS, SCAS, LODS, and STOS). Setting the DF flag causes the 
string instructions to auto-decrement (to process strings from high addresses to low 
addresses). Clearing the DF flag causes the string instructions to auto-increment 
(process strings from low addresses to high addresses).

The STD and CLD instructions set and clear the DF flag, respectively.
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3.4.3.3  System Flags and IOPL Field
The system flags and IOPL field in the EFLAGS register control operating-system or 
executive operations. They should not be modified by application programs. 
The functions of the system flags are as follows:
TF (bit 8) Trap flag — Set to enable single-step mode for debugging; 

clear to disable single-step mode.
IF (bit 9) Interrupt enable flag — Controls the response of the 

processor to maskable interrupt requests. Set to respond to 
maskable interrupts; cleared to inhibit maskable interrupts.

IOPL (bits 12 and 13)
I/O privilege level field — Indicates the I/O privilege level of 
the currently running program or task. The current privilege 
level (CPL) of the currently running program or task must be 
less than or equal to the I/O privilege level to access the I/O 
address space. This field can only be modified by the POPF and 
IRET instructions when operating at a CPL of 0.

NT (bit 14) Nested task flag — Controls the chaining of interrupted and 
called tasks. Set when the current task is linked to the previ-
ously executed task; cleared when the current task is not linked 
to another task.

RF (bit 16) Resume flag — Controls the processor’s response to debug 
exceptions.

VM (bit 17) Virtual-8086 mode flag — Set to enable virtual-8086 mode; 
clear to return to protected mode without virtual-8086 mode 
semantics.

AC (bit 18) Alignment check flag — Set this flag and the AM bit in the CR0 
register to enable alignment checking of memory references; 
clear the AC flag and/or the AM bit to disable alignment 
checking.

VIF (bit 19) Virtual interrupt flag — Virtual image of the IF flag. Used in 
conjunction with the VIP flag. (To use this flag and the VIP flag 
the virtual mode extensions are enabled by setting the VME flag 
in control register CR4.)

VIP (bit 20) Virtual interrupt pending flag — Set to indicate that an inter-
rupt is pending; clear when no interrupt is pending. (Software 
sets and clears this flag; the processor only reads it.) Used in 
conjunction with the VIF flag.

ID (bit 21) Identification flag — The ability of a program to set or clear 
this flag indicates support for the CPUID instruction.

For a detailed description of these flags: see Chapter 3, “Protected-Mode Memory 
Management,” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3A. 
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3.4.3.4  RFLAGS Register in 64-Bit Mode
In 64-bit mode, EFLAGS is extended to 64 bits and called RFLAGS. The upper 32 bits 
of RFLAGS register is reserved. The lower 32 bits of RFLAGS is the same as EFLAGS.

3.5 INSTRUCTION POINTER
The instruction pointer (EIP) register contains the offset in the current code segment 
for the next instruction to be executed. It is advanced from one instruction boundary 
to the next in straight-line code or it is moved ahead or backwards by a number of 
instructions when executing JMP, Jcc, CALL, RET, and IRET instructions. 

The EIP register cannot be accessed directly by software; it is controlled implicitly by 
control-transfer instructions (such as JMP, Jcc, CALL, and RET), interrupts, and 
exceptions. The only way to read the EIP register is to execute a CALL instruction and 
then read the value of the return instruction pointer from the procedure stack. The 
EIP register can be loaded indirectly by modifying the value of a return instruction 
pointer on the procedure stack and executing a return instruction (RET or IRET). See 
Section 6.2.4.2, “Return Instruction Pointer.”

All IA-32 processors prefetch instructions. Because of instruction prefetching, an 
instruction address read from the bus during an instruction load does not match the 
value in the EIP register. Even though different processor generations use different 
prefetching mechanisms, the function of the EIP register to direct program flow 
remains fully compatible with all software written to run on IA-32 processors.

3.5.1 Instruction Pointer in 64-Bit Mode
In 64-bit mode, the RIP register becomes the instruction pointer. This register holds 
the 64-bit offset of the next instruction to be executed. 64-bit mode also supports a 
technique called RIP-relative addressing. Using this technique, the effective address 
is determined by adding a displacement to the RIP of the next instruction.

3.6 OPERAND-SIZE AND ADDRESS-SIZE ATTRIBUTES
When the processor is executing in protected mode, every code segment has a 
default operand-size attribute and address-size attribute. These attributes are 
selected with the D (default size) flag in the segment descriptor for the code segment 
(see Chapter 3, “Protected-Mode Memory Management,” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A). When the D flag is set, the 
32-bit operand-size and address-size attributes are selected; when the flag is clear, 
the 16-bit size attributes are selected. When the processor is executing in real-
address mode, virtual-8086 mode, or SMM, the default operand-size and address-
size attributes are always 16 bits.
3-24 Vol. 1



BASIC EXECUTION ENVIRONMENT
The operand-size attribute selects the size of operands. When the 16-bit operand-
size attribute is in force, operands can generally be either 8 bits or 16 bits, and when 
the 32-bit operand-size attribute is in force, operands can generally be 8 bits or 32 
bits.

The address-size attribute selects the sizes of addresses used to address memory: 
16 bits or 32 bits. When the 16-bit address-size attribute is in force, segment offsets 
and displacements are 16 bits. This restriction limits the size of a segment to 64 
KBytes. When the 32-bit address-size attribute is in force, segment offsets and 
displacements are 32 bits, allowing up to 4 GBytes to be addressed.

The default operand-size attribute and/or address-size attribute can be overridden 
for a particular instruction by adding an operand-size and/or address-size prefix to 
an instruction. See Chapter 2, “Instruction Format,” in the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2A. The effect of this prefix applies 
only to the targeted instruction.

Table 3-4 shows effective operand size and address size (when executing in 
protected mode or compatibility mode) depending on the settings of the D flag and 
the operand-size and address-size prefixes.

3.6.1 Operand Size and Address Size in 64-Bit Mode
In 64-bit mode, the default address size is 64 bits and the default operand size is 32 
bits. Defaults can be overridden using prefixes. Address-size and operand-size 
prefixes allow mixing of 32/64-bit data and 32/64-bit addresses on an instruction-
by-instruction basis. Table 3-4 shows valid combinations of the 66H instruction prefix 
and the REX.W prefix that may be used to specify operand-size overrides in 64-bit 
mode. Note that 16-bit addresses are not supported in 64-bit mode.

REX prefixes consist of 4-bit fields that form 16 different values. The W-bit field in the 
REX prefixes is referred to as REX.W. If the REX.W field is properly set, the prefix 
specifies an operand size override to 64 bits. Note that software can still use the 
operand-size 66H prefix to toggle to a 16-bit operand size. However, setting REX.W 
takes precedence over the operand-size prefix (66H) when both are used.

Table 3-3.  Effective Operand- and Address-Size Attributes
D Flag in Code Segment Descriptor 0 0 0 0 1 1 1 1 

Operand-Size Prefix 66H N N Y Y N N Y Y 

Address-Size Prefix 67H N Y N Y N Y N Y 

Effective Operand Size 16 16 32 32 32 32 16 16 

Effective Address Size 16 32 16 32 32 16 32 16

NOTES:
Y: Yes - this instruction prefix is present.
N: No - this instruction prefix is not present.
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In the case of SSE/SSE2/SSE3/SSSE3 SIMD instructions: the 66H, F2H, and F3H 
prefixes are mandatory for opcode extensions. In such a case, there is no interaction 
between a valid REX.W prefix and a 66H opcode extension prefix.

See Chapter 2, “Instruction Format,” in the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2A.

3.7 OPERAND ADDRESSING
IA-32 machine-instructions act on zero or more operands. Some operands are spec-
ified explicitly and others are implicit. The data for a source operand can be located 
in:
• the instruction itself (an immediate operand)
• a register
• a memory location
• an I/O port

When an instruction returns data to a destination operand, it can be returned to:
• a register
• a memory location
• an I/O port

Table 3-4.  Effective Operand- and Address-Size Attributes in 64-Bit Mode

L Flag in Code Segment 
Descriptor 1 1 1 1 1 1 1 1 

REX.W Prefix 0 0 0 0 1 1 1 1 

Operand-Size Prefix 66H N N Y Y N N Y Y 

Address-Size Prefix 67H N Y N Y N Y N Y 

Effective Operand Size 32 32 16 16 64 64 64 64

Effective Address Size 64 32 64 32 64 32 64 32

NOTES:
Y: Yes - this instruction prefix is present.
N: No - this instruction prefix is not present.
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3.7.1 Immediate Operands
Some instructions use data encoded in the instruction itself as a source operand. 
These operands are called immediate operands (or simply immediates). For 
example, the following ADD instruction adds an immediate value of 14 to the 
contents of the EAX register:

ADD EAX, 14

All arithmetic instructions (except the DIV and IDIV instructions) allow the source 
operand to be an immediate value. The maximum value allowed for an immediate 
operand varies among instructions, but can never be greater than the maximum 
value of an unsigned doubleword integer (232).

3.7.2 Register Operands
Source and destination operands can be any of the following registers, depending on 
the instruction being executed:
• 32-bit general-purpose registers (EAX, EBX, ECX, EDX, ESI, EDI, ESP, or EBP)
• 16-bit general-purpose registers (AX, BX, CX, DX, SI, DI, SP, or BP)
• 8-bit general-purpose registers (AH, BH, CH, DH, AL, BL, CL, or DL)
• segment registers (CS, DS, SS, ES, FS, and GS)
• EFLAGS register
• x87 FPU registers (ST0 through ST7, status word, control word, tag word, data 

operand pointer, and instruction pointer)
• MMX registers (MM0 through MM7)
• XMM registers (XMM0 through XMM7) and the MXCSR register
• control registers (CR0, CR2, CR3, and CR4) and system table pointer registers 

(GDTR, LDTR, IDTR, and task register)
• debug registers (DR0, DR1, DR2, DR3, DR6, and DR7)
• MSR registers

Some instructions (such as the DIV and MUL instructions) use quadword operands 
contained in a pair of 32-bit registers. Register pairs are represented with a colon 
separating them. For example, in the register pair EDX:EAX, EDX contains the high 
order bits and EAX contains the low order bits of a quadword operand. 

Several instructions (such as the PUSHFD and POPFD instructions) are provided to 
load and store the contents of the EFLAGS register or to set or clear individual flags 
in this register. Other instructions (such as the Jcc instructions) use the state of the 
status flags in the EFLAGS register as condition codes for branching or other decision 
making operations.

The processor contains a selection of system registers that are used to control 
memory management, interrupt and exception handling, task management, 
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processor management, and debugging activities. Some of these system registers 
are accessible by an application program, the operating system, or the executive 
through a set of system instructions. When accessing a system register with a 
system instruction, the register is generally an implied operand of the instruction.

3.7.2.1  Register Operands in 64-Bit Mode
Register operands in 64-bit mode can be any of the following:
• 64-bit general-purpose registers (RAX, RBX, RCX, RDX, RSI, RDI, RSP, RBP, or 

R8-R15)
• 32-bit general-purpose registers (EAX, EBX, ECX, EDX, ESI, EDI, ESP, EBP, or 

R8D-R15D)
• 16-bit general-purpose registers (AX, BX, CX, DX, SI, DI, SP, BP, or R8W-R15W)
• 8-bit general-purpose registers: AL, BL, CL, DL, SIL, DIL, SPL, BPL, and R8L-

R15L are available using REX prefixes; AL, BL, CL, DL, AH, BH, CH, DH are 
available without using REX prefixes.

• Segment registers (CS, DS, SS, ES, FS, and GS)
• RFLAGS register
• x87 FPU registers (ST0 through ST7, status word, control word, tag word, data 

operand pointer, and instruction pointer)
• MMX registers (MM0 through MM7)
• XMM registers (XMM0 through XMM15) and the MXCSR register
• Control registers (CR0, CR2, CR3, CR4, and CR8) and system table pointer 

registers (GDTR, LDTR, IDTR, and task register)
• Debug registers (DR0, DR1, DR2, DR3, DR6, and DR7)
• MSR registers
• RDX:RAX register pair representing a 128-bit operand

3.7.3 Memory Operands
Source and destination operands in memory are referenced by means of a segment 
selector and an offset (see Figure 3-9). Segment selectors specify the segment 
containing the operand. Offsets specify the linear or effective address of the operand. 
Offsets can be 32 bits (represented by the notation m16:32) or 16 bits (represented 
by the notation m16:16).

Figure 3-9.  Memory Operand Address

Offset (or Linear Address)
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3.7.3.1  Memory Operands in 64-Bit Mode
In 64-bit mode, a memory operand can be referenced by a segment selector and an 
offset. The offset can be 16 bits, 32 bits or 64 bits (see Figure 3-10).

3.7.4 Specifying a Segment Selector
The segment selector can be specified either implicitly or explicitly. The most 
common method of specifying a segment selector is to load it in a segment register 
and then allow the processor to select the register implicitly, depending on the type 
of operation being performed. The processor automatically chooses a segment 
according to the rules given in Table 3-5. 

When storing data in memory or loading data from memory, the DS segment default 
can be overridden to allow other segments to be accessed. Within an assembler, the 
segment override is generally handled with a colon “:” operator. For example, the 
following MOV instruction moves a value from register EAX into the segment pointed 
to by the ES register. The offset into the segment is contained in the EBX register:

MOV ES:[EBX], EAX;

At the machine level, a segment override is specified with a segment-override prefix, 
which is a byte placed at the beginning of an instruction. The following default 
segment selections cannot be overridden:
• Instruction fetches must be made from the code segment.

Figure 3-10.  Memory Operand Address in 64-Bit Mode

Table 3-5.  Default Segment Selection Rules

Reference 
Type

Register 
Used

Segment 
Used Default Selection Rule

Instructions CS Code Segment All instruction fetches.

Stack SS Stack Segment All stack pushes and pops.
Any memory reference which uses the ESP or EBP 
register as a base register.

Local Data DS Data Segment All data references, except when relative to stack or 
string destination.

Destination 
Strings

ES Data Segment 
pointed to with 
the ES register

Destination of string instructions.

Offset (or Linear Address)
015

Segment
630

Selector
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• Destination strings in string instructions must be stored in the data segment 
pointed to by the ES register.

• Push and pop operations must always reference the SS segment.

Some instructions require a segment selector to be specified explicitly. In these 
cases, the 16-bit segment selector can be located in a memory location or in a 16-bit 
register. For example, the following MOV instruction moves a segment selector 
located in register BX into segment register DS:

MOV DS, BX

Segment selectors can also be specified explicitly as part of a 48-bit far pointer in 
memory. Here, the first doubleword in memory contains the offset and the next word 
contains the segment selector.

3.7.4.1  Segmentation in 64-Bit Mode
In IA-32e mode, the effects of segmentation depend on whether the processor is 
running in compatibility mode or 64-bit mode. In compatibility mode, segmentation 
functions just as it does in legacy IA-32 mode, using the 16-bit or 32-bit protected 
mode semantics described above.

In 64-bit mode, segmentation is generally (but not completely) disabled, creating a 
flat 64-bit linear-address space. The processor treats the segment base of CS, DS, 
ES, SS as zero, creating a linear address that is equal to the effective address. The 
exceptions are the FS and GS segments, whose segment registers (which hold the 
segment base) can be used as additional base registers in some linear address calcu-
lations.

3.7.5 Specifying an Offset
The offset part of a memory address can be specified directly as a static value (called 
a displacement) or through an address computation made up of one or more of the 
following components:
• Displacement — An 8-, 16-, or 32-bit value.
• Base — The value in a general-purpose register.
• Index — The value in a general-purpose register.
• Scale factor — A value of 2, 4, or 8 that is multiplied by the index value.

The offset which results from adding these components is called an effective 
address. Each of these components can have either a positive or negative (2s 
complement) value, with the exception of the scaling factor. Figure 3-11 shows all 
the possible ways that these components can be combined to create an effective 
address in the selected segment.
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The uses of general-purpose registers as base or index components are restricted in 
the following manner:
• The ESP register cannot be used as an index register.
• When the ESP or EBP register is used as the base, the SS segment is the default 

segment. In all other cases, the DS segment is the default segment.

The base, index, and displacement components can be used in any combination, and 
any of these components can be NULL. A scale factor may be used only when an 
index also is used. Each possible combination is useful for data structures commonly 
used by programmers in high-level languages and assembly language. 

The following addressing modes suggest uses for common combinations of address 
components.
• Displacement ⎯ A displacement alone represents a direct (uncomputed) offset 

to the operand. Because the displacement is encoded in the instruction, this form 
of an address is sometimes called an absolute or static address. It is commonly 
used to access a statically allocated scalar operand.

• Base ⎯ A base alone represents an indirect offset to the operand. Since the 
value in the base register can change, it can be used for dynamic storage of 
variables and data structures.

• Base + Displacement ⎯ A base register and a displacement can be used 
together for two distinct purposes:

— As an index into an array when the element size is not 2, 4, or 8 bytes—The 
displacement component encodes the static offset to the beginning of the 
array. The base register holds the results of a calculation to determine the 
offset to a specific element within the array.

— To access a field of a record: the base register holds the address of the 
beginning of the record, while the displacement is a static offset to the field.

An important special case of this combination is access to parameters in a 
procedure activation record. A procedure activation record is the stack frame 

Figure 3-11.  Offset (or Effective Address) Computation

Offset = Base + (Index * Scale) + Displacement
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created when a procedure is entered. Here, the EBP register is the best choice for 
the base register, because it automatically selects the stack segment. This is a 
compact encoding for this common function.

• (Index ∗ Scale) + Displacement ⎯ This address mode offers an efficient way 
to index into a static array when the element size is 2, 4, or 8 bytes. The 
displacement locates the beginning of the array, the index register holds the 
subscript of the desired array element, and the processor automatically converts 
the subscript into an index by applying the scaling factor.

• Base + Index + Displacement ⎯ Using two registers together supports either 
a two-dimensional array (the displacement holds the address of the beginning of 
the array) or one of several instances of an array of records (the displacement is 
an offset to a field within the record).

• Base + (Index ∗ Scale) + Displacement ⎯ Using all the addressing 
components together allows efficient indexing of a two-dimensional array when 
the elements of the array are 2, 4, or 8 bytes in size.

3.7.5.1  Specifying an Offset in 64-Bit Mode
The offset part of a memory address in 64-bit mode can be specified directly as a 
static value or through an address computation made up of one or more of the 
following components:
• Displacement — An 8-bit, 16-bit, or 32-bit value.
• Base — The value in a 32-bit (or 64-bit if REX.W is set) general-purpose register.
• Index — The value in a 32-bit (or 64-bit if REX.W is set) general-purpose 

register.
• Scale factor — A value of 2, 4, or 8 that is multiplied by the index value.

The base and index value can be specified in one of sixteen available general-purpose 
registers in most cases. See Chapter 2, “Instruction Format,” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 2A.

The following unique combination of address components is also available.
• RIP + Displacement ⎯ In 64-bit mode, RIP-relative addressing uses a signed 

32-bit displacement to calculate the effective address of the next instruction by 
sign-extend the 32-bit value and add to the 64-bit value in RIP.

3.7.6 Assembler and Compiler Addressing Modes
At the machine-code level, the selected combination of displacement, base register, 
index register, and scale factor is encoded in an instruction. All assemblers permit a 
programmer to use any of the allowable combinations of these addressing compo-
nents to address operands. High-level language compilers will select an appropriate 
combination of these components based on the language construct a programmer 
defines.
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3.7.7 I/O Port Addressing
The processor supports an I/O address space that contains up to 65,536 8-bit I/O 
ports. Ports that are 16-bit and 32-bit may also be defined in the I/O address space. 
An I/O port can be addressed with either an immediate operand or a value in the DX 
register. See Chapter 14, “Input/Output,” for more information about I/O port 
addressing.
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CHAPTER 4
DATA TYPES

This chapter introduces data types defined for the Intel 64 and IA-32 architectures. 
A section at the end of this chapter describes the real-number and floating-point 
concepts used in x87 FPU, SSE, SSE2, SSE3, SSSE3, SSE4 and Intel AVX extensions.

4.1 FUNDAMENTAL DATA TYPES
The fundamental data types are bytes, words, doublewords, quadwords, and double 
quadwords (see Figure 4-1). A byte is eight bits, a word is 2 bytes (16 bits), a 
doubleword is 4 bytes (32 bits), a quadword is 8 bytes (64 bits), and a double quad-
word is 16 bytes (128 bits). A subset of the IA-32 architecture instructions operates 
on these fundamental data types without any additional operand typing.

The quadword data type was introduced into the IA-32 architecture in the Intel486 
processor; the double quadword data type was introduced in the Pentium III 
processor with the SSE extensions.

Figure 4-2 shows the byte order of each of the fundamental data types when refer-
enced as operands in memory. The low byte (bits 0 through 7) of each data type 
occupies the lowest address in memory and that address is also the address of the 
operand.

Figure 4-1.  Fundamental Data Types
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4.1.1 Alignment of Words, Doublewords, Quadwords, and Double 
Quadwords

Words, doublewords, and quadwords do not need to be aligned in memory on natural 
boundaries. The natural boundaries for words, double words, and quadwords are 
even-numbered addresses, addresses evenly divisible by four, and addresses evenly 
divisible by eight, respectively. However, to improve the performance of programs, 
data structures (especially stacks) should be aligned on natural boundaries when-
ever possible. The reason for this is that the processor requires two memory 
accesses to make an unaligned memory access; aligned accesses require only one 
memory access. A word or doubleword operand that crosses a 4-byte boundary or a 
quadword operand that crosses an 8-byte boundary is considered unaligned and 
requires two separate memory bus cycles for access.

Some instructions that operate on double quadwords require memory operands to be 
aligned on a natural boundary. These instructions generate a general-protection 
exception (#GP) if an unaligned operand is specified. A natural boundary for a double 
quadword is any address evenly divisible by 16. Other instructions that operate on 
double quadwords permit unaligned access (without generating a general-protection 

Figure 4-2.  Bytes, Words, Doublewords, Quadwords, and Double Quadwords in 
Memory
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exception). However, additional memory bus cycles are required to access unaligned 
data from memory.

4.2 NUMERIC DATA TYPES
Although bytes, words, and doublewords are fundamental data types, some instruc-
tions support additional interpretations of these data types to allow operations to be 
performed on numeric data types (signed and unsigned integers, and floating-point 
numbers). Single-precision (32-bit ) floating-point and double-precision (64-bit) 
floating-point data types are supported across all generations of SSE extensions and 
Intel AVX extensions. Half-precision (16-bit) floating-point data type is supported 
only with F16C extensions (VCVTPH2PS, VCVTPS2PH). See Figure 4-3. 
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4.2.1 Integers
The Intel 64 and IA-32 architectures define two types of integers: unsigned and 
signed. Unsigned integers are ordinary binary values ranging from 0 to the maximum 
positive number that can be encoded in the selected operand size. Signed integers 

Figure 4-3.  Numeric Data Types
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are two’s complement binary values that can be used to represent both positive and 
negative integer values.

Some integer instructions (such as the ADD, SUB, PADDB, and PSUBB instructions) 
operate on either unsigned or signed integer operands. Other integer instructions 
(such as IMUL, MUL, IDIV, DIV, FIADD, and FISUB) operate on only one integer type.

The following sections describe the encodings and ranges of the two types of 
integers.

4.2.1.1  Unsigned Integers
Unsigned integers are unsigned binary numbers contained in a byte, word, double-
word, and quadword. Their values range from 0 to 255 for an unsigned byte integer, 
from 0 to 65,535 for an unsigned word integer, from 0 to 232 – 1 for an unsigned 
doubleword integer, and from 0 to 264 – 1 for an unsigned quadword integer. 
Unsigned integers are sometimes referred to as ordinals.

4.2.1.2  Signed Integers
Signed integers are signed binary numbers held in a byte, word, doubleword, or 
quadword. All operations on signed integers assume a two's complement representa-
tion. The sign bit is located in bit 7 in a byte integer, bit 15 in a word integer, bit 31 in 
a doubleword integer, and bit 63 in a quadword integer (see the signed integer 
encodings in Table 4-1).
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The sign bit is set for negative integers and cleared for positive integers and zero. 
Integer values range from –128 to +127 for a byte integer, from –32,768 to +32,767 
for a word integer, from –231 to +231 – 1 for a doubleword integer, and from –263 to 
+263 – 1 for a quadword integer.

When storing integer values in memory, word integers are stored in 2 consecutive 
bytes; doubleword integers are stored in 4 consecutive bytes; and quadword inte-
gers are stored in 8 consecutive bytes.

The integer indefinite is a special value that is sometimes returned by the x87 FPU 
when operating on integer values. For more information, see Section 8.2.1, “Indefi-
nites.”

4.2.2 Floating-Point Data Types
The IA-32 architecture defines and operates on three floating-point data types: 
single-precision floating-point, double-precision floating-point, and double-extended 
precision floating-point (see Figure 4-3). The data formats for these data types 
correspond directly to formats specified in the IEEE Standard 754 for Binary Floating-
Point Arithmetic. 

Table 4-1.  Signed Integer Encodings
Class Two’s Complement Encoding

Sign

Positive Largest 0 11..11

. .

. .

Smallest 0 00..01

Zero 0 00..00

Negative Smallest 1 11..11

. .

. .

Largest 1 00..00

Integer indefinite 1 00..00

Signed Byte Integer:
Signed Word Integer:
Signed Doubleword Integer:
Signed Quadword Integer:

← 7 bits →
← 15 bits →
← 31 bits →
← 63 bits →
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Half-precision (16-bit) floating-point data type is supported only for conversion oper-
ation with single-precision floating data using F16C extensions (VCVTPH2PS, 
VCVTPS2PH).

Table 4-2 gives the length, precision, and approximate normalized range that can be 
represented by each of these data types. Denormal values are also supported in each 
of these types.

NOTE
Section 4.8, “Real Numbers and Floating-Point Formats,” gives an 
overview of the IEEE Standard 754 floating-point formats and defines 
the terms integer bit, QNaN, SNaN, and denormal value.

Table 4-3 shows the floating-point encodings for zeros, denormalized finite numbers, 
normalized finite numbers, infinites, and NaNs for each of the three floating-point 
data types. It also gives the format for the QNaN floating-point indefinite value. (See 
Section 4.8.3.7, “QNaN Floating-Point Indefinite,” for a discussion of the use of the 
QNaN floating-point indefinite value.)

For the single-precision and double-precision formats, only the fraction part of the 
significand is encoded. The integer is assumed to be 1 for all numbers except 0 and 
denormalized finite numbers. For the double extended-precision format, the integer 
is contained in bit 63, and the most-significant fraction bit is bit 62. Here, the integer 
is explicitly set to 1 for normalized numbers, infinities, and NaNs, and to 0 for zero 
and denormalized numbers.

Table 4-2.  Length, Precision, and Range of Floating-Point Data Types
Data Type Length Precision

(Bits)
Approximate Normalized Range

Binary Decimal

Half Precision 16 11 2–14 to 215 3.1 × 10–5 to 6.50 × 104

Single Precision 32 24 2–126 to 2127 1.18 × 10–38 to 3.40 × 1038

Double Precision 64 53 2–1022 to 21023 2.23 × 10–308 to 1.79 × 10308

Double Extended 
Precision

80 64 2–16382 to 216383 3.37 × 10–4932 to 1.18 × 104932
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The exponent of each floating-point data type is encoded in biased format; see 
Section 4.8.2.2, “Biased Exponent.” The biasing constant is 15 for the half-precision 

Table 4-3.  Floating-Point Number and NaN Encodings

Class Sign Biased Exponent Significand

Integer1 Fraction

Positive +∞ 0 11..11 1 00..00

+Normals 0
.
.
0

11..10
    .
    .

00..01

1
.
.
1

11..11
    .
    .

00..00

+Denormals 0
.
.
0

00..00
    .
    .

00..00

0
.
.
0

11.11
    .
    .

00..01

+Zero 0 00..00 0 00..00

Negative −Zero 1 00..00 0 00..00

−Denormals 1
.
.
1

00..00
    .
    .

00..00

0
.
.
0

00..01
    .
    .

11..11

−Normals 1
.
.
1

00..01
    .
    .

11..10

1
.
.
1

00..00
    .
    .

11..11

-∞ 1 11..11 1 00..00

NaNs SNaN X 11..11 1 0X..XX2

QNaN X 11..11 1 1X..XX

QNaN 
Floating-Point 
Indefinite

1 11..11 1 10..00

Half-Precision

Single-Precision:
Double-Precision:
Double Extended-Precision:

← 5Bits →
← 8 Bits →
← 11 Bits →
← 15 Bits →

← 10 Bits →
← 23 Bits →
← 52 Bits →
← 63 Bits →

NOTES:
1. Integer bit is implied and not stored for single-precision and double-precision formats.
2. The fraction for SNaN encodings must be non-zero with the most-significant bit 0.
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format, 127 for the single-precision format, 1023 for the double-precision format, 
and 16,383 for the double extended-precision format.

When storing floating-point values in memory, half-precision values are stored in 2 
consecutive bytes in memory; single-precision values are stored in 4 consecutive 
bytes in memory; double-precision values are stored in 8 consecutive bytes; and 
double extended-precision values are stored in 10 consecutive bytes.

The single-precision and double-precision floating-point data types are operated on 
by x87 FPU, and SSE/SSE2/SSE3/SSE4.1 and Intel AVX instructions. The double-
extended-precision floating-point format is only operated on by the x87 FPU. See 
Section 11.6.8, “Compatibility of SIMD and x87 FPU Floating-Point Data Types,” for a 
discussion of the compatibility of single-precision and double-precision floating-point 
data types between the x87 FPU and SSE/SSE2/SSE3 extensions.

4.3 POINTER DATA TYPES
Pointers are addresses of locations in memory. 

In non-64-bit modes, the architecture defines two types of pointers: a near pointer 
and a far pointer. A near pointer is a 32-bit (or 16-bit) offset (also called an effec-
tive address) within a segment. Near pointers are used for all memory references in 
a flat memory model or for references in a segmented model where the identity of 
the segment being accessed is implied. 

A far pointer is a logical address, consisting of a 16-bit segment selector and a 32-bit 
(or 16-bit) offset. Far pointers are used for memory references in a segmented 
memory model where the identity of a segment being accessed must be specified 
explicitly. Near and far pointers with 32-bit offsets are shown in Figure 4-4.

4.3.1 Pointer Data Types in 64-Bit Mode
In 64-bit mode (a sub-mode of IA-32e mode), a near pointer is 64 bits. This 
equates to an effective address. Far pointers in 64-bit mode can be one of three 
forms: 
• 16-bit segment selector, 16-bit offset if the operand size is 32 bits 
• 16-bit segment selector, 32-bit offset if the operand size is 32 bits 

Figure 4-4.  Pointer Data Types
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• 16-bit segment selector, 64-bit offset if the operand size is 64 bits

See Figure 4-5.

4.4 BIT FIELD DATA TYPE
A bit field (see Figure 4-6) is a contiguous sequence of bits. It can begin at any bit 
position of any byte in memory and can contain up to 32 bits.

Figure 4-5.  Pointers in 64-Bit Mode

Figure 4-6.  Bit Field Data Type
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4.5 STRING DATA TYPES
Strings are continuous sequences of bits, bytes, words, or doublewords. A bit string 
can begin at any bit position of any byte and can contain up to 232 – 1 bits. A byte 
string can contain bytes, words, or doublewords and can range from zero to 232 – 1 
bytes (4 GBytes).

4.6 PACKED SIMD DATA TYPES
Intel 64 and IA-32 architectures define and operate on a set of 64-bit and 128-bit 
packed data type for use in SIMD operations. These data types consist of funda-
mental data types (packed bytes, words, doublewords, and quadwords) and numeric 
interpretations of fundamental types for use in packed integer and packed floating-
point operations.

4.6.1 64-Bit SIMD Packed Data Types
The 64-bit packed SIMD data types were introduced into the IA-32 architecture in the 
Intel MMX technology. They are operated on in MMX registers. The fundamental 
64-bit packed data types are packed bytes, packed words, and packed doublewords 
(see Figure 4-7). When performing numeric SIMD operations on these data types, 
these data types are interpreted as containing byte, word, or doubleword integer 
values.
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4.6.2 128-Bit Packed SIMD Data Types
The 128-bit packed SIMD data types were introduced into the IA-32 architecture in 
the SSE extensions and used with SSE2, SSE3 and SSSE3 extensions. They are oper-
ated on primarily in the 128-bit XMM registers and memory. The fundamental 128-bit 
packed data types are packed bytes, packed words, packed doublewords, and 
packed quadwords (see Figure 4-8). When performing SIMD operations on these 
fundamental data types in XMM registers, these data types are interpreted as 
containing packed or scalar single-precision floating-point or double-precision 
floating-point values, or as containing packed byte, word, doubleword, or quadword 
integer values.

Figure 4-7.  64-Bit Packed SIMD Data Types
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4.7 BCD AND PACKED BCD INTEGERS
Binary-coded decimal integers (BCD integers) are unsigned 4-bit integers with valid 
values ranging from 0 to 9. IA-32 architecture defines operations on BCD integers 
located in one or more general-purpose registers or in one or more x87 FPU registers 
(see Figure 4-9).

Figure 4-8.  128-Bit Packed SIMD Data Types
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When operating on BCD integers in general-purpose registers, the BCD values can be 
unpacked (one BCD digit per byte) or packed (two BCD digits per byte). The value of 
an unpacked BCD integer is the binary value of the low half-byte (bits 0 through 3). 
The high half-byte (bits 4 through 7) can be any value during addition and subtrac-
tion, but must be zero during multiplication and division. Packed BCD integers allow 
two BCD digits to be contained in one byte. Here, the digit in the high half-byte is 
more significant than the digit in the low half-byte.

When operating on BCD integers in x87 FPU data registers, BCD values are packed in 
an 80-bit format and referred to as decimal integers. In this format, the first 9 bytes 
hold 18 BCD digits, 2 digits per byte. The least-significant digit is contained in the 
lower half-byte of byte 0 and the most-significant digit is contained in the upper half-
byte of byte 9. The most significant bit of byte 10 contains the sign bit (0 = positive 
and 1 = negative; bits 0 through 6 of byte 10 are don’t care bits). Negative decimal 
integers are not stored in two's complement form; they are distinguished from posi-
tive decimal integers only by the sign bit. The range of decimal integers that can be 
encoded in this format is –1018 + 1 to 1018 – 1. 
The decimal integer format exists in memory only. When a decimal integer is loaded 
in an x87 FPU data register, it is automatically converted to the double-extended-
precision floating-point format. All decimal integers are exactly representable in 
double extended-precision format.

Table 4-4 gives the possible encodings of value in the decimal integer data type.

Figure 4-9.  BCD Data Types

Packed BCD Integers

BCDBCD

0

BCD Integers

7

BCDX

34

0

80-Bit Packed BCD Decimal Integers

79

D0

4 Bits = 1 BCD Digit

Sign

D1D2D3D4D5D6D7D8D9D10D11D12D13D14D15D16D17

78 72 71

X

07 34
4-14 Vol. 1



DATA TYPES
The packed BCD integer indefinite encoding (FFFFC000000000000000H) is stored by 
the FBSTP instruction in response to a masked floating-point invalid-operation 
exception. Attempting to load this value with the FBLD instruction produces an unde-
fined result.

4.8 REAL NUMBERS AND FLOATING-POINT FORMATS
This section describes how real numbers are represented in floating-point format in 
x87 FPU and SSE/SSE2/SSE3/SSE4.1 and Intel AVX floating-point instructions. It 
also introduces terms such as normalized numbers, denormalized numbers, biased 
exponents, signed zeros, and NaNs. Readers who are already familiar with floating-
point processing techniques and the IEEE Standard 754 for Binary Floating-Point 
Arithmetic may wish to skip this section.

Table 4-4.  Packed Decimal Integer Encodings

Magnitude

Class Sign digit digit digit digit ... digit

Positive

 Largest 0 0000000 1001 1001 1001 1001 ... 1001

. . .

. . .

 Smallest 0 0000000 0000 0000 0000 0000 ... 0001

 Zero 0 0000000 0000 0000 0000 0000 ... 0000

Negative

 Zero 1 0000000 0000 0000 0000 0000 ... 0000

 Smallest 1 0000000 0000 0000 0000 0000 ... 0001

. . .

. . .

 Largest 1 0000000 1001 1001 1001 1001 ... 1001

Packed 
BCD 
Integer 
Indefinit
e

1 1111111 1111 1111 1100 0000 ... 0000

← 1 byte → ← 9 bytes →
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4.8.1 Real Number System
As shown in Figure 4-10, the real-number system comprises the continuum of real 
numbers from minus infinity (− ∞) to plus infinity (+ ∞).

Because the size and number of registers that any computer can have is limited, only 
a subset of the real-number continuum can be used in real-number (floating-point) 
calculations. As shown at the bottom of Figure 4-10, the subset of real numbers that 
the IA-32 architecture supports represents an approximation of the real number 
system. The range and precision of this real-number subset is determined by the 
IEEE Standard 754 floating-point formats. 

4.8.2 Floating-Point Format
To increase the speed and efficiency of real-number computations, computers and 
microprocessors typically represent real numbers in a binary floating-point format. 
In this format, a real number has three parts: a sign, a significand, and an exponent 
(see Figure 4-11).

The sign is a binary value that indicates whether the number is positive (0) or nega-
tive (1). The significand has two parts: a 1-bit binary integer (also referred to as 
the J-bit) and a binary fraction. The integer-bit is often not represented, but instead 
is an implied value. The exponent is a binary integer that represents the base-2 
power by which the significand is multiplied.

Table 4-5 shows how the real number 178.125 (in ordinary decimal format) is stored 
in IEEE Standard 754 floating-point format. The table lists a progression of real 
number notations that leads to the single-precision, 32-bit floating-point format. In 
this format, the significand is normalized (see Section 4.8.2.1, “Normalized 
Numbers”) and the exponent is biased (see Section 4.8.2.2, “Biased Exponent”). For 
the single-precision floating-point format, the biasing constant is +127.
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Figure 4-10.  Binary Real Number System

Figure 4-11.  Binary Floating-Point Format
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4.8.2.1  Normalized Numbers
In most cases, floating-point numbers are encoded in normalized form. This means 
that except for zero, the significand is always made up of an integer of 1 and the 
following fraction:

1.fff...ff

For values less than 1, leading zeros are eliminated. (For each leading zero elimi-
nated, the exponent is decremented by one.)

Representing numbers in normalized form maximizes the number of significant digits 
that can be accommodated in a significand of a given width. To summarize, a normal-
ized real number consists of a normalized significand that represents a real number 
between 1 and 2 and an exponent that specifies the number’s binary point.

4.8.2.2  Biased Exponent
In the IA-32 architecture, the exponents of floating-point numbers are encoded in a 
biased form. This means that a constant is added to the actual exponent so that the 
biased exponent is always a positive number. The value of the biasing constant 
depends on the number of bits available for representing exponents in the floating-
point format being used. The biasing constant is chosen so that the smallest normal-
ized number can be reciprocated without overflow.

See Section 4.2.2, “Floating-Point Data Types,” for a list of the biasing constants that 
the IA-32 architecture uses for the various sizes of floating-point data-types.

4.8.3 Real Number and Non-number Encodings
A variety of real numbers and special values can be encoded in the IEEE Standard 
754 floating-point format. These numbers and values are generally divided into the 
following classes:

Table 4-5.  Real and Floating-Point Number Notation

Notation Value

Ordinary Decimal 178.125

Scientific Decimal 1.78125E10 2

Scientific Binary 1.0110010001E2111

Scientific Binary
(Biased Exponent)

 1.0110010001E210000110

IEEE Single-Precision 
Format

Sign Biased Exponent Normalized Significand

0 10000110 01100100010000000000000

          1. (Implied)
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• Signed zeros
• Denormalized finite numbers
• Normalized finite numbers
• Signed infinities
• NaNs
• Indefinite numbers

(The term NaN stands for “Not a Number.”)

Figure 4-12 shows how the encodings for these numbers and non-numbers fit into 
the real number continuum. The encodings shown here are for the IEEE single-preci-
sion floating-point format. The term “S” indicates the sign bit, “E” the biased expo-
nent, and “Sig” the significand. The exponent values are given in decimal. The 
integer bit is shown for the significands, even though the integer bit is implied in 
single-precision floating-point format.

An IA-32 processor can operate on and/or return any of these values, depending on 
the type of computation being performed. The following sections describe these 
number and non-number classes.

Figure 4-12.  Real Numbers and NaNs

1 0
S E Sig1

− 0

1 0 − Denormalized
Finite

NaN

1 1...254 − Normalized
Finite

1 255 − ∞

255 SNaN

255 QNaN

NOTES:

3. Sign bit ignored.
2. Fraction must be non-zero.

0 0
S E Sig1

0 0

NaN

0 1...254

0 255

X3 255 1.0XX...2

255 1.1XX...

+ 0

+Denormalized
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+Normalized
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+ ∞

SNaN

QNaN X3

X3

X3

Real Number and NaN Encodings For 32-Bit Floating-Point Format

− Denormalized Finite

− Normalized Finite − 0− ∞ + ∞
+ Denormalized Finite

+ Normalized Finite+ 0

0.XXX...2

0.000...

1.000...

1.XXX...

1.000...

0.000...

0.XXX...2

1.XXX...

1.0XX...2

1.1XX...

1. Integer bit of fraction implied for
single-precision floating-point format.
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4.8.3.1  Signed Zeros
Zero can be represented as a +0 or a −0 depending on the sign bit. Both encodings 
are equal in value. The sign of a zero result depends on the operation being 
performed and the rounding mode being used. Signed zeros have been provided to 
aid in implementing interval arithmetic. The sign of a zero may indicate the direction 
from which underflow occurred, or it may indicate the sign of an ∞ that has been 
reciprocated.

4.8.3.2  Normalized and Denormalized Finite Numbers
Non-zero, finite numbers are divided into two classes: normalized and denormalized. 
The normalized finite numbers comprise all the non-zero finite values that can be 
encoded in a normalized real number format between zero and ∞. In the single-preci-
sion floating-point format shown in Figure 4-12, this group of numbers includes all 
the numbers with biased exponents ranging from 1 to 25410 (unbiased, the exponent 
range is from −12610 to +12710).

When floating-point numbers become very close to zero, the normalized-number 
format can no longer be used to represent the numbers. This is because the range of 
the exponent is not large enough to compensate for shifting the binary point to the 
right to eliminate leading zeros.

When the biased exponent is zero, smaller numbers can only be represented by 
making the integer bit (and perhaps other leading bits) of the significand zero. The 
numbers in this range are called denormalized (or tiny) numbers. The use of 
leading zeros with denormalized numbers allows smaller numbers to be represented. 
However, this denormalization causes a loss of precision (the number of significant 
bits in the fraction is reduced by the leading zeros).

When performing normalized floating-point computations, an IA-32 processor 
normally operates on normalized numbers and produces normalized numbers as 
results. Denormalized numbers represent an underflow condition. The exact condi-
tions are specified in Section 4.9.1.5, “Numeric Underflow Exception (#U).”

A denormalized number is computed through a technique called gradual underflow. 
Table 4-6 gives an example of gradual underflow in the denormalization process. 
Here the single-precision format is being used, so the minimum exponent (unbiased) 
is −12610. The true result in this example requires an exponent of −12910 in order to 
have a normalized number.   Since  −12910 is beyond the allowable exponent range, 
the result is denormalized by inserting leading zeros until the minimum exponent of 
−12610 is reached.
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In the extreme case, all the significant bits are shifted out to the right by leading 
zeros, creating a zero result. 

The Intel 64 and IA-32 architectures deal with denormal values in the following ways:
• It avoids creating denormals by normalizing numbers whenever possible.
• It provides the floating-point underflow exception to permit programmers to 

detect cases when denormals are created.
• It provides the floating-point denormal-operand exception to permit procedures 

or programs to detect when denormals are being used as source operands for 
computations.

4.8.3.3  Signed Infinities
The two infinities, + ∞ and − ∞, represent the maximum positive and negative real 
numbers, respectively, that can be represented in the floating-point format. Infinity 
is always represented by a significand of 1.00...00 (the integer bit may be implied) 
and the maximum biased exponent allowed in the specified format (for example, 
25510 for the single-precision format).

The signs of infinities are observed, and comparisons are possible. Infinities are 
always interpreted in the affine sense; that is, –∞ is less than any finite number and 
+∞ is greater than any finite number. Arithmetic on infinities is always exact. Excep-
tions are generated only when the use of an infinity as a source operand constitutes 
an invalid operation.

Whereas denormalized numbers may represent an underflow condition, the two ∞ 
numbers may represent the result of an overflow condition. Here, the normalized 
result of a computation has a biased exponent greater than the largest allowable 
exponent for the selected result format.

4.8.3.4  NaNs
Since NaNs are non-numbers, they are not part of the real number line. In 
Figure 4-12, the encoding space for NaNs in the floating-point formats is shown 

Table 4-6.  Denormalization Process

Operation Sign Exponent* Significand

True Result 0 −129 1.01011100000...00

Denormalize 0 −128 0.10101110000...00

Denormalize 0 −127 0.01010111000...00

Denormalize 0 −126 0.00101011100...00

Denormal Result 0 −126 0.00101011100...00

* Expressed as an unbiased, decimal number.
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above the ends of the real number line. This space includes any value with the 
maximum allowable biased exponent and a non-zero fraction (the sign bit is ignored 
for NaNs).

The IA-32 architecture defines two classes of NaNs: quiet NaNs (QNaNs) and 
signaling NaNs (SNaNs). A QNaN is a NaN with the most significant fraction bit set; 
an SNaN is a NaN with the most significant fraction bit clear. QNaNs are allowed to 
propagate through most arithmetic operations without signaling an exception. 
SNaNs generally signal a floating-point invalid-operation exception whenever they 
appear as operands in arithmetic operations.

SNaNs are typically used to trap or invoke an exception handler. They must be 
inserted by software; that is, the processor never generates an SNaN as a result of a 
floating-point operation.

4.8.3.5  Operating on SNaNs and QNaNs
When a floating-point operation is performed on an SNaN and/or a QNaN, the result 
of the operation is either a QNaN delivered to the destination operand or the genera-
tion of a floating-point invalid operating exception, depending on the following rules:
• If one of the source operands is an SNaN and the floating-point invalid-operating 

exception is not masked (see Section 4.9.1.1, “Invalid Operation Exception 
(#I)”), the a floating-point invalid-operation exception is signaled and no result is 
stored in the destination operand.

• If either or both of the source operands are NaNs and floating-point invalid-
operation exception is masked, the result is as shown in Table 4-7. When an 
SNaN is converted to a QNaN, the conversion is handled by setting the most-
significant fraction bit of the SNaN to 1. Also, when one of the source operands is 
an SNaN, the floating-point invalid-operation exception flag it set. Note that for 
some combinations of source operands, the result is different for x87 FPU 
operations and for SSE/SSE2/SSE3/SSE4.1 operations. Intel AVX follows the 
same behavior as SSE/SSE2/SSE3/SSE4.1 in this respect.

• When neither of the source operands is a NaN, but the operation generates a 
floating-point invalid-operation exception (see Tables 8-10 and 11-1), the result 
is commonly an SNaN source operand converted to a QNaN or the QNaN floating-
point indefinite value.

Any exceptions to the behavior described in Table 4-7 are described in Section 
8.5.1.2, “Invalid Arithmetic Operand Exception (#IA),” and Section 11.5.2.1, “Invalid 
Operation Exception (#I).”
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4.8.3.6  Using SNaNs and QNaNs in Applications
Except for the rules given at the beginning of Section 4.8.3.4, “NaNs,” for encoding 
SNaNs and QNaNs, software is free to use the bits in the significand of a NaN for any 
purpose. Both SNaNs and QNaNs can be encoded to carry and store data, such as 
diagnostic information.

By unmasking the invalid operation exception, the programmer can use signaling 
NaNs to trap to the exception handler. The generality of this approach and the large 
number of NaN values that are available provide the sophisticated programmer with 
a tool that can be applied to a variety of special situations.

For example, a compiler can use signaling NaNs as references to uninitialized (real) 
array elements. The compiler can preinitialize each array element with a signaling 
NaN whose significand contained the index (relative position) of the element. Then, 
if an application program attempts to access an element that it had not initialized, it 

Table 4-7.  Rules for Handling NaNs 

Source Operands Result1

SNaN and QNaN x87 FPU — QNaN source operand.

SSE/SSE2/SSE3/SSE4.1/AVX — First source 
operand (if this operand is an SNaN, it is converted 
to a QNaN)

Two SNaNs x87 FPU—SNaN source operand with the larger 
significand, converted into a QNaN

SSE/SSE2/SSE3/SSE4.1/AVX — First source 
operand converted to a QNaN

Two QNaNs x87 FPU — QNaN source operand with the larger
significand

SSE/SSE2/SSE3/SSE4.1/AVX — First source 
operand

SNaN and a floating-point value SNaN source operand, converted into a QNaN

QNaN and a floating-point value QNaN source operand

SNaN (for instructions that take only one 
operand)

SNaN source operand, converted into a QNaN

QNaN (for instructions that take only one 
operand)

QNaN source operand

NOTE:
1. For SSE/SSE2/SSE3/SSE4.1 instructions, the first operand is generally a source operand that 

becomes the destination operand. For AVX instructions, the first source operand is usually the 
2nd operand in a non-destructive source syntax. Within the Result column, the x87 FPU nota-
tion also applies to the FISTTP instruction in SSE3; the SSE3 notation applies to the SIMD float-
ing-point instructions.
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can use the NaN placed there by the compiler. If the invalid operation exception is 
unmasked, an interrupt will occur, and the exception handler will be invoked. The 
exception handler can determine which element has been accessed, since the 
operand address field of the exception pointer will point to the NaN, and the NaN will 
contain the index number of the array element.

Quiet NaNs are often used to speed up debugging. In its early testing phase, a 
program often contains multiple errors. An exception handler can be written to save 
diagnostic information in memory whenever it was invoked. After storing the diag-
nostic data, it can supply a quiet NaN as the result of the erroneous instruction, and 
that NaN can point to its associated diagnostic area in memory. The program will 
then continue, creating a different NaN for each error. When the program ends, the 
NaN results can be used to access the diagnostic data saved at the time the errors 
occurred. Many errors can thus be diagnosed and corrected in one test run.

In embedded applications that use computed results in further computations, an 
undetected QNaN can invalidate all subsequent results. Such applications should 
therefore periodically check for QNaNs and provide a recovery mechanism to be used 
if a QNaN result is detected. 

4.8.3.7  QNaN Floating-Point Indefinite
For the floating-point data type encodings (single-precision, double-precision, and 
double-extended-precision), one unique encoding (a QNaN) is reserved for repre-
senting the special value QNaN floating-point indefinite. The x87 FPU and the 
SSE/SSE2/SSE3/SSE4.1/AVX extensions return these indefinite values as responses 
to some masked floating-point exceptions. Table 4-3 shows the encoding used for the 
QNaN floating-point indefinite.

4.8.3.8  Half-Precision Floating-Point Operation
Half-precision floating-point values are not used by the processor directly for arith-
metic operations. Two instructions, VCVTPH2PS, VCVTPS2PH, provide conversion 
only between half-precision and single-precision floating-point values.

The SIMD floating-point exception behavior of VCVTPH2PS and VCVTPS2PH are 
described in Section 13.8.1.

4.8.4 Rounding
When performing floating-point operations, the processor produces an infinitely 
precise floating-point result in the destination format (single-precision, double-preci-
sion, or double extended-precision floating-point) whenever possible. However, 
because only a subset of the numbers in the real number continuum can be repre-
sented in IEEE Standard 754 floating-point formats, it is often the case that an infi-
nitely precise result cannot be encoded exactly in the format of the destination 
operand.
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For example, the following value (a) has a 24-bit fraction. The least-significant bit of 
this fraction (the underlined bit) cannot be encoded exactly in the single-precision 
format (which has only a 23-bit fraction):

(a) 1.0001 0000 1000 0011 1001 0111E2 101

To round this result (a), the processor first selects two representable fractions b and 
c that most closely bracket a in value (b < a < c).

(b) 1.0001 0000 1000 0011 1001 011E2 101

(c) 1.0001 0000 1000 0011 1001 100E2 101

The processor then sets the result to b or to c according to the selected rounding 
mode. Rounding introduces an error in a result that is less than one unit in the last 
place (the least significant bit position of the floating-point value) to which the result 
is rounded.

The IEEE Standard 754 defines four rounding modes (see Table 4-8): round to 
nearest, round up, round down, and round toward zero. The default rounding mode 
(for the Intel 64 and IA-32 architectures) is round to nearest. This mode provides the 
most accurate and statistically unbiased estimate of the true result and is suitable for 
most applications. 

The round up and round down modes are termed directed rounding and can be 
used to implement interval arithmetic. Interval arithmetic is used to determine upper 
and lower bounds for the true result of a multistep computation, when the interme-
diate results of the computation are subject to rounding. 

The round toward zero mode (sometimes called the “chop” mode) is commonly used 
when performing integer arithmetic with the x87 FPU.

The rounded result is called the inexact result. When the processor produces an 
inexact result, the floating-point precision (inexact) flag (PE) is set (see Section 
4.9.1.6, “Inexact-Result (Precision) Exception (#P)”).

Table 4-8.  Rounding Modes and Encoding of Rounding Control (RC) Field

Rounding 
Mode

RC Field 
Setting

Description

Round to 
nearest (even)

00B Rounded result is the closest to the infinitely precise result. If two 
values are equally close, the result is the even value (that is, the 
one with the least-significant bit of zero). Default

Round down 
(toward −∞)

01B Rounded result is closest to but no greater than the infinitely 
precise result.

Round up 
(toward +∞)

10B Rounded result is closest to but no less than the infinitely precise 
result.

Round toward 
zero (Truncate)

11B Rounded result is closest to but no greater in absolute value than 
the infinitely precise result.
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The rounding modes have no effect on comparison operations, operations that 
produce exact results, or operations that produce NaN results.

4.8.4.1  Rounding Control (RC) Fields
In the Intel 64 and IA-32 architectures, the rounding mode is controlled by a 2-bit 
rounding-control (RC) field (Table 4-8 shows the encoding of this field). The RC field 
is implemented in two different locations: 
• x87 FPU control register (bits 10 and 11)
• The MXCSR register (bits 13 and 14)

Although these two RC fields perform the same function, they control rounding for 
different execution environments within the processor. The RC field in the x87 FPU 
control register controls rounding for computations performed with the x87 FPU 
instructions; the RC field in the MXCSR register controls rounding for SIMD floating-
point computations performed with the SSE/SSE2 instructions.

4.8.4.2  Truncation with SSE and SSE2 Conversion Instructions
The following SSE/SSE2 instructions automatically truncate the results of conver-
sions from floating-point values to integers when the result it inexact: CVTTPD2DQ, 
CVTTPS2DQ, CVTTPD2PI, CVTTPS2PI, CVTTSD2SI, CVTTSS2SI. Here, truncation 
means the round toward zero mode described in Table 4-8.

4.9 OVERVIEW OF FLOATING-POINT EXCEPTIONS
The following section provides an overview of floating-point exceptions and their 
handling in the IA-32 architecture. For information specific to the x87 FPU and to the 
SSE/SSE2/SSE3/SSE4.1 extensions, refer to the following sections:
• Section 8.4, “x87 FPU Floating-Point Exception Handling”
• Section 11.5, “SSE, SSE2, and SSE3 Exceptions”

When operating on floating-point operands, the IA-32 architecture recognizes and 
detects six classes of exception conditions:
• Invalid operation (#I)
• Divide-by-zero (#Z)
• Denormalized operand (#D)
• Numeric overflow (#O)
• Numeric underflow (#U)
• Inexact result (precision) (#P)
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The nomenclature of “#” symbol followed by one or two letters (for example, #P) is 
used in this manual to indicate exception conditions. It is merely a short-hand form 
and is not related to assembler mnemonics.

NOTE
All of the exceptions listed above except the denormal-operand 
exception (#D) are defined in IEEE Standard 754.

The invalid-operation, divide-by-zero and denormal-operand exceptions are pre-
computation exceptions (that is, they are detected before any arithmetic operation 
occurs). The numeric-underflow, numeric-overflow and precision exceptions are 
post-computation exceptions.

Each of the six exception classes has a corresponding flag bit (IE, ZE, OE, UE, DE, or 
PE) and mask bit (IM, ZM, OM, UM, DM, or PM). When one or more floating-point 
exception conditions are detected, the processor sets the appropriate flag bits, then 
takes one of two possible courses of action, depending on the settings of the corre-
sponding mask bits:
• Mask bit set. Handles the exception automatically, producing a predefined (and 

often times usable) result, while allowing program execution to continue undis-
turbed.

• Mask bit clear. Invokes a software exception handler to handle the exception.

The masked (default) responses to exceptions have been chosen to deliver a reason-
able result for each exception condition and are generally satisfactory for most 
floating-point applications. By masking or unmasking specific floating-point excep-
tions, programmers can delegate responsibility for most exceptions to the processor 
and reserve the most severe exception conditions for software exception handlers. 

Because the exception flags are “sticky,” they provide a cumulative record of the 
exceptions that have occurred since they were last cleared. A programmer can thus 
mask all exceptions, run a calculation, and then inspect the exception flags to see if 
any exceptions were detected during the calculation.

In the IA-32 architecture, floating-point exception flag and mask bits are imple-
mented in two different locations: 
• x87 FPU status word and control word. The flag bits are located at bits 0 through 

5 of the x87 FPU status word and the mask bits are located at bits 0 through 5 of 
the x87 FPU control word (see Figures 8-4 and 8-6).

• MXCSR register. The flag bits are located at bits 0 through 5 of the MXCSR 
register and the mask bits are located at bits 7 through 12 of the register (see 
Figure 10-3).

Although these two sets of flag and mask bits perform the same function, they report 
on and control exceptions for different execution environments within the processor. 
The flag and mask bits in the x87 FPU status and control words control exception 
reporting and masking for computations performed with the x87 FPU instructions; 
the companion bits in the MXCSR register control exception reporting and masking 
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for SIMD floating-point computations performed with the SSE/SSE2/SSE3 instruc-
tions.

Note that when exceptions are masked, the processor may detect multiple excep-
tions in a single instruction, because it continues executing the instruction after 
performing its masked response. For example, the processor can detect a denormal-
ized operand, perform its masked response to this exception, and then detect 
numeric underflow.

See Section 4.9.2, “Floating-Point Exception Priority,” for a description of the rules for 
exception precedence when more than one floating-point exception condition is 
detected for an instruction.

4.9.1 Floating-Point Exception Conditions
The following sections describe the various conditions that cause a floating-point 
exception to be generated and the masked response of the processor when these 
conditions are detected. The Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volumes 3A & 3B, list the floating-point exceptions that can be signaled for 
each floating-point instruction.

4.9.1.1  Invalid Operation Exception (#I)
The processor reports an invalid operation exception in response to one or more 
invalid arithmetic operands. If the invalid operation exception is masked, the 
processor sets the IE flag and returns an indefinite value or a QNaN. This value over-
writes the destination register specified by the instruction. If the invalid operation 
exception is not masked, the IE flag is set, a software exception handler is invoked, 
and the operands remain unaltered.

See Section 4.8.3.6, “Using SNaNs and QNaNs in Applications,” for information about 
the result returned when an exception is caused by an SNaN.

The processor can detect a variety of invalid arithmetic operations that can be coded 
in a program. These operations generally indicate a programming error, such as 
dividing ∞ by ∞ . See the following sections for information regarding the invalid-
operation exception when detected while executing x87 FPU or SSE/SSE2/SSE3 
instructions:
• x87 FPU; Section 8.5.1, “Invalid Operation Exception”
• SIMD floating-point exceptions; Section 11.5.2.1, “Invalid Operation Exception 

(#I)”

4.9.1.2  Denormal Operand Exception (#D)
The processor reports the denormal-operand exception if an arithmetic instruction 
attempts to operate on a denormal operand (see Section 4.8.3.2, “Normalized and 
Denormalized Finite Numbers”). When the exception is masked, the processor sets 
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the DE flag and proceeds with the instruction. Operating on denormal numbers will 
produce results at least as good as, and often better than, what can be obtained 
when denormal numbers are flushed to zero. Programmers can mask this exception 
so that a computation may proceed, then analyze any loss of accuracy when the final 
result is delivered.

When a denormal-operand exception is not masked, the DE flag is set, a software 
exception handler is invoked, and the operands remain unaltered. When denormal 
operands have reduced significance due to loss of low-order bits, it may be advisable 
to not operate on them. Precluding denormal operands from computations can be 
accomplished by an exception handler that responds to unmasked denormal-
operand exceptions.

See the following sections for information regarding the denormal-operand exception 
when detected while executing x87 FPU or SSE/SSE2/SSE3 instructions:
• x87 FPU; Section 8.5.2, “Denormal Operand Exception (#D)”
• SIMD floating-point exceptions; Section 11.5.2.2, “Denormal-Operand Exception 

(#D)”

4.9.1.3  Divide-By-Zero Exception (#Z)
The processor reports the floating-point divide-by-zero exception whenever an 
instruction attempts to divide a finite non-zero operand by 0. The masked response 
for the divide-by-zero exception is to set the ZE flag and return an infinity signed with 
the exclusive OR of the sign of the operands. If the divide-by-zero exception is not 
masked, the ZE flag is set, a software exception handler is invoked, and the operands 
remain unaltered.

See the following sections for information regarding the divide-by-zero exception 
when detected while executing x87 FPU or SSE/SSE2 instructions:
• x87 FPU; Section 8.5.3, “Divide-By-Zero Exception (#Z)”
• SIMD floating-point exceptions; Section 11.5.2.3, “Divide-By-Zero Exception 

(#Z)”

4.9.1.4  Numeric Overflow Exception (#O)
The processor reports a floating-point numeric overflow exception whenever the 
rounded result of an instruction exceeds the largest allowable finite value that will fit 
into the destination operand. Table 4-9 shows the threshold range for numeric over-
flow for each of the floating-point formats; overflow occurs when a rounded result 
falls at or outside this threshold range.
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When a numeric-overflow exception occurs and the exception is masked, the 
processor sets the OE flag and returns one of the values shown in Table 4-10, 
according to the current rounding mode. See Section 4.8.4, “Rounding.”

When numeric overflow occurs and the numeric-overflow exception is not masked, 
the OE flag is set, a software exception handler is invoked, and the source and desti-
nation operands either remain unchanged or a biased result is stored in the destina-
tion operand (depending whether the overflow exception was generated during an 
SSE/SSE2/SSE3 floating-point operation or an x87 FPU operation).

See the following sections for information regarding the numeric overflow exception 
when detected while executing x87 FPU instructions or while executing 
SSE/SSE2/SSE3 instructions:
• x87 FPU; Section 8.5.4, “Numeric Overflow Exception (#O)”
• SIMD floating-point exceptions; Section 11.5.2.4, “Numeric Overflow Exception 

(#O)”

4.9.1.5  Numeric Underflow Exception (#U)
The processor detects a floating-point numeric underflow condition whenever the 
result of rounding with unbounded exponent (taking into account precision control 
for x87) is tiny; that is, less than the smallest possible normalized, finite value that 
will fit into the destination operand. Table 4-11 shows the threshold range for 

Table 4-9.  Numeric Overflow Thresholds

Floating-Point Format Overflow Thresholds

Single Precision | x | ≥ 1.0 ∗ 2128

Double Precision | x | ≥ 1.0 ∗ 21024

Double Extended Precision | x | ≥ 1.0 ∗ 216384

Table 4-10.  Masked Responses to Numeric Overflow

Rounding Mode Sign of True Result Result

To nearest + +∞

– –∞

Toward –∞ + Largest finite positive number

– –∞

Toward +∞ + +∞

– Largest finite negative number

Toward zero + Largest finite positive number

– Largest finite negative number
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numeric underflow for each of the floating-point formats (assuming normalized 
results); underflow occurs when a rounded result falls strictly within the threshold 
range. The ability to detect and handle underflow is provided to prevent a very small 
result from propagating through a computation and causing another exception (such 
as overflow during division) to be generated at a later time.

How the processor handles an underflow condition, depends on two related condi-
tions:
• creation of a tiny result
• creation of an inexact result; that is, a result that cannot be represented exactly 

in the destination format

Which of these events causes an underflow exception to be reported and how the 
processor responds to the exception condition depends on whether the underflow 
exception is masked:
• Underflow exception masked — The underflow exception is reported (the UE 

flag is set) only when the result is both tiny and inexact. The processor returns a 
denormalized result to the destination operand, regardless of inexactness.

• Underflow exception not masked — The underflow exception is reported 
when the result is tiny, regardless of inexactness. The processor leaves the 
source and destination operands unaltered or stores a biased result in the 
designating operand (depending whether the underflow exception was generated 
during an SSE/SSE2/SSE3 floating-point operation or an x87 FPU operation) and 
invokes a software exception handler.

See the following sections for information regarding the numeric underflow exception 
when detected while executing x87 FPU instructions or while executing 
SSE/SSE2/SSE3 instructions:
• x87 FPU; Section 8.5.5, “Numeric Underflow Exception (#U)”
• SIMD floating-point exceptions; Section 11.5.2.5, “Numeric Underflow Exception 

(#U)”

4.9.1.6  Inexact-Result (Precision) Exception (#P)
The inexact-result exception (also called the precision exception) occurs if the result 
of an operation is not exactly representable in the destination format. For example, 
the fraction 1/3 cannot be precisely represented in binary floating-point form. This 

Table 4-11.  Numeric Underflow (Normalized) Thresholds

Floating-Point Format Underflow Thresholds*

Single Precision | x | < 1.0 ∗ 2−126

Double Precision | x | < 1.0 ∗ 2−1022

Double Extended Precision | x | < 1.0 ∗ 2−16382

* Where ‘x’ is the result rounded to destination precision with an unbounded exponent range.
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exception occurs frequently and indicates that some (normally acceptable) accuracy 
will be lost due to rounding. The exception is supported for applications that need to 
perform exact arithmetic only. Because the rounded result is generally satisfactory 
for most applications, this exception is commonly masked.

If the inexact-result exception is masked when an inexact-result condition occurs and 
a numeric overflow or underflow condition has not occurred, the processor sets the 
PE flag and stores the rounded result in the destination operand. The current 
rounding mode determines the method used to round the result. See Section 4.8.4, 
“Rounding.”

If the inexact-result exception is not masked when an inexact result occurs and 
numeric overflow or underflow has not occurred, the PE flag is set, the rounded result 
is stored in the destination operand, and a software exception handler is invoked.

If an inexact result occurs in conjunction with numeric overflow or underflow, one of 
the following operations is carried out:
• If an inexact result occurs along with masked overflow or underflow, the OE flag 

or UE flag and the PE flag are set and the result is stored as described for the 
overflow or underflow exceptions; see Section 4.9.1.4, “Numeric Overflow 
Exception (#O),” or Section 4.9.1.5, “Numeric Underflow Exception (#U).” If the 
inexact result exception is unmasked, the processor also invokes a software 
exception handler.

• If an inexact result occurs along with unmasked overflow or underflow and the 
destination operand is a register, the OE or UE flag and the PE flag are set, the 
result is stored as described for the overflow or underflow exceptions, and a 
software exception handler is invoked.

If an unmasked numeric overflow or underflow exception occurs and the destination 
operand is a memory location (which can happen only for a floating-point store), the 
inexact-result condition is not reported and the C1 flag is cleared.

See the following sections for information regarding the inexact-result exception 
when detected while executing x87 FPU or SSE/SSE2/SSE3 instructions:
• x87 FPU; Section 8.5.6, “Inexact-Result (Precision) Exception (#P)”
• SIMD floating-point exceptions; Section 11.5.2.3, “Divide-By-Zero Exception 

(#Z)”

4.9.2 Floating-Point Exception Priority
The processor handles exceptions according to a predetermined precedence. When 
an instruction generates two or more exception conditions, the exception precedence 
sometimes results in the higher-priority exception being handled and the lower-
priority exceptions being ignored. For example, dividing an SNaN by zero can poten-
tially signal an invalid-operation exception (due to the SNaN operand) and a divide-
by-zero exception. Here, if both exceptions are masked, the processor handles the 
higher-priority exception only (the invalid-operation exception), returning a QNaN to 
the destination. Alternately, a denormal-operand or inexact-result exception can 
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accompany a numeric underflow or overflow exception with both exceptions being 
handled.

The precedence for floating-point exceptions is as follows:

1. Invalid-operation exception, subdivided as follows:

a. stack underflow (occurs with x87 FPU only)

b. stack overflow (occurs with x87 FPU only)

c. operand of unsupported format (occurs with x87 FPU only when using the 
double extended-precision floating-point format)

d. SNaN operand

2. QNaN operand. Though this is not an exception, the handling of a QNaN operand 
has precedence over lower-priority exceptions. For example, a QNaN divided by 
zero results in a QNaN, not a zero-divide exception.

3. Any other invalid-operation exception not mentioned above or a divide-by-zero 
exception.

4. Denormal-operand exception. If masked, then instruction execution continues 
and a lower-priority exception can occur as well.

5. Numeric overflow and underflow exceptions; possibly in conjunction with the 
inexact-result exception.

6. Inexact-result exception.

Invalid operation, zero divide, and denormal operand exceptions are detected before 
a floating-point operation begins. Overflow, underflow, and precision exceptions are 
not detected until a true result has been computed. When an unmasked pre-opera-
tion exception is detected, the destination operand has not yet been updated, and 
appears as if the offending instruction has not been executed. When an unmasked 
post-operation exception is detected, the destination operand may be updated with 
a result, depending on the nature of the exception (except for SSE/SSE2/SSE3 
instructions, which do not update their destination operands in such cases).

4.9.3 Typical Actions of a Floating-Point Exception Handler
After the floating-point exception handler is invoked, the processor handles the 
exception in the same manner that it handles non-floating-point exceptions. The 
floating-point exception handler is normally part of the operating system or execu-
tive software, and it usually invokes a user-registered floating-point exception 
handle. 

A typical action of the exception handler is to store state information in memory. 
Other typical exception handler actions include:
• Examining the stored state information to determine the nature of the error
• Taking actions to correct the condition that caused the error
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• Clearing the exception flags
• Returning to the interrupted program and resuming normal execution

In lieu of writing recovery procedures, the exception handler can do the following:
• Increment in software an exception counter for later display or printing
• Print or display diagnostic information (such as the state information)
• Halt further program execution
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CHAPTER 5
INSTRUCTION SET SUMMARY

This chapter provides an abridged overview of Intel 64 and IA-32 instructions. 
Instructions are divided into the following groups:
• General purpose
• x87 FPU
• x87 FPU and SIMD state management
• Intel MMX technology
• SSE extensions
• SSE2 extensions
• SSE3 extensions
• SSSE3 extensions
• SSE4 extensions
• AESNI and PCLMULQDQ
• Intel AVX extensions
• F16C, RDRAND, FS/GS base access
• System instructions
• IA-32e mode: 64-bit mode instructions
• VMX instructions
• SMX instructions

Table 5-1 lists the groups and IA-32 processors that support each group. More recent 
instruction set extensions are listed in Table 5-2. Within these groups, most instruc-
tions are collected into functional subgroups.

Table 5-1.  Instruction Groups in Intel 64 and IA-32 Processors

Instruction Set 
Architecture Intel 64 and IA-32 Processor Support

General Purpose All Intel 64 and IA-32 processors

 x87 FPU Intel486, Pentium, Pentium with MMX Technology, Celeron, Pentium 
Pro, Pentium II, Pentium II Xeon, Pentium III, Pentium III Xeon, 
Pentium 4, Intel Xeon processors, Pentium M, Intel Core Solo, Intel Core 
Duo, Intel Core 2 Duo processors, Intel Atom processors

x87 FPU and SIMD State 
Management

Pentium II, Pentium II Xeon, Pentium III, Pentium III Xeon, Pentium 4, 
Intel Xeon processors, Pentium M, Intel Core Solo, Intel Core Duo, Intel 
Core 2 Duo processors, Intel Atom processors
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MMX Technology Pentium with MMX Technology, Celeron, Pentium II, Pentium II Xeon, 
Pentium III, Pentium III Xeon, Pentium 4, Intel Xeon processors, 
Pentium M, Intel Core Solo, Intel Core Duo, Intel Core 2 Duo processors, 
Intel Atom processors 

SSE Extensions Pentium III, Pentium III Xeon, Pentium 4, Intel Xeon processors, 
Pentium M, Intel Core Solo, Intel Core Duo, Intel Core 2 Duo processors, 
Intel Atom processors

SSE2 Extensions Pentium 4, Intel Xeon processors, Pentium M, Intel Core Solo, Intel Core 
Duo, Intel Core 2 Duo processors, Intel Atom processors

SSE3 Extensions Pentium 4 supporting HT Technology (built on 90nm process 
technology), Intel Core Solo, Intel Core Duo, Intel Core 2 Duo processors, 
Intel Xeon processor 3xxxx, 5xxx, 7xxx Series, Intel Atom processors

SSSE3 Extensions Intel Xeon processor 3xxx, 5100, 5200, 5300, 5400, 5500, 5600, 
7300, 7400, 7500 series, Intel Core 2 Extreme processors QX6000 
series, Intel Core 2 Duo, Intel Core 2 Quad processors, Intel Pentium 
Dual-Core processors, Intel Atom processors

IA-32e mode: 64-bit 
mode instructions

Intel 64 processors

System Instructions Intel 64 and IA-32 processors 

VMX Instructions Intel 64 and IA-32 processors supporting Intel Virtualization 
Technology

SMX Instructions Intel Core 2 Duo processor E6x50, E8xxx; Intel Core 2 Quad processor 
Q9xxx

Table 5-2.  Recent Instruction Set Extensions in Intel 64 and IA-32 Processors

Instruction Set 
Architecture Processor Generation Introduction

SSE4.1 Extensions Intel Xeon processor 3100, 3300, 5200, 5400, 7400, 7500 series, 
Intel Core 2 Extreme processors QX9000 series, Intel Core 2 Quad 
processor Q9000 series, Intel Core 2 Duo processors 8000 series, 
T9000 series.

SSE4.2 Extensions Intel Core i7 965 processor, Intel Xeon processors X3400, X3500, 
X5500, X6500, X7500 series.

AESNI, PCLMULQDQ InteL Xeon processor E7 series, Intel Xeon processors X3600, X5600, 
Intel Core i7 980X processor; Use CPUID to verify presence of AESNI 
and PCLMULQDQ across Intel Core processor families.

Table 5-1.  Instruction Groups in Intel 64 and IA-32 Processors (Contd.)

Instruction Set 
Architecture Intel 64 and IA-32 Processor Support
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The following sections list instructions in each major group and subgroup. Given for 
each instruction is its mnemonic and descriptive names. When two or more 
mnemonics are given (for example, CMOVA/CMOVNBE), they represent different 
mnemonics for the same instruction opcode. Assemblers support redundant 
mnemonics for some instructions to make it easier to read code listings. For instance, 
CMOVA (Conditional move if above) and CMOVNBE (Conditional move if not below or 
equal) represent the same condition. For detailed information about specific instruc-
tions, see the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volumes 3A & 3B.

5.1 GENERAL-PURPOSE INSTRUCTIONS
The general-purpose instructions preform basic data movement, arithmetic, logic, 
program flow, and string operations that programmers commonly use to write appli-
cation and system software to run on Intel 64 and IA-32 processors. They operate on 
data contained in memory, in the general-purpose registers (EAX, EBX, ECX, EDX, 
EDI, ESI, EBP, and ESP) and in the EFLAGS register. They also operate on address 
information contained in memory, the general-purpose registers, and the segment 
registers (CS, DS, SS, ES, FS, and GS). 

This group of instructions includes the data transfer, binary integer arithmetic, 
decimal arithmetic, logic operations, shift and rotate, bit and byte operations, 
program control, string, flag control, segment register operations, and miscellaneous 
subgroups. The sections that following introduce each subgroup. 

For more detailed information on general purpose-instructions, see Chapter 7, 
“Programming With General-Purpose Instructions.”

5.1.1 Data Transfer Instructions
The data transfer instructions move data between memory and the general-purpose 
and segment registers. They also perform specific operations such as conditional 
moves, stack access, and data conversion.

Intel AVX Intel Xeon processor E3 series; Intel Core i7, i5, i3 processor 2xxx 
series.

F16C, RDRAND, FS/GS 
base access

Next-Generation, 22 nm Intel Xeon processor and Intel Core processors.

Table 5-2.  Recent Instruction Set Extensions in Intel 64 and IA-32 Processors 

Instruction Set 
Architecture Processor Generation Introduction
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MOV Move data between general-purpose registers; move data 
between memory and general-purpose or segment registers; 
move immediates to general-purpose registers

CMOVE/CMOVZ Conditional move if equal/Conditional move if zero
CMOVNE/CMOVNZ Conditional move if not equal/Conditional move if not zero
CMOVA/CMOVNBE Conditional move if above/Conditional move if not below or 

equal
CMOVAE/CMOVNB Conditional move if above or equal/Conditional move if not 

below
CMOVB/CMOVNAE Conditional move if below/Conditional move if not above or 

equal
CMOVBE/CMOVNA Conditional move if below or equal/Conditional move if not 

above
CMOVG/CMOVNLE Conditional move if greater/Conditional move if not less or equal
CMOVGE/CMOVNL Conditional move if greater or equal/Conditional move if not less
CMOVL/CMOVNGE Conditional move if less/Conditional move if not greater or equal
CMOVLE/CMOVNG Conditional move if less or equal/Conditional move if not greater
CMOVC Conditional move if carry
CMOVNC Conditional move if not carry
CMOVO Conditional move if overflow
CMOVNO Conditional move if not overflow
CMOVS Conditional move if sign (negative)
CMOVNS Conditional move if not sign (non-negative)
CMOVP/CMOVPE Conditional move if parity/Conditional move if parity even
CMOVNP/CMOVPO Conditional move if not parity/Conditional move if parity odd
XCHG Exchange
BSWAP Byte swap
XADD Exchange and add
CMPXCHG Compare and exchange
CMPXCHG8B Compare and exchange 8 bytes
PUSH Push onto stack
POP Pop off of stack
PUSHA/PUSHAD Push general-purpose registers onto stack
POPA/POPAD Pop general-purpose registers from stack
CWD/CDQ Convert word to doubleword/Convert doubleword to quadword
CBW/CWDE Convert byte to word/Convert word to doubleword in EAX 

register
MOVSX Move and sign extend
MOVZX Move and zero extend
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5.1.2 Binary Arithmetic Instructions
The binary arithmetic instructions perform basic binary integer computations on 
byte, word, and doubleword integers located in memory and/or the general purpose 
registers.
ADD Integer add
ADC Add with carry
SUB Subtract
SBB Subtract with borrow
IMUL Signed multiply
MUL Unsigned multiply
IDIV Signed divide
DIV Unsigned divide
INC Increment
DEC Decrement
NEG Negate
CMP Compare

5.1.3 Decimal Arithmetic Instructions
The decimal arithmetic instructions perform decimal arithmetic on binary coded 
decimal (BCD) data.
DAA Decimal adjust after addition
DAS Decimal adjust after subtraction
AAA ASCII adjust after addition
AAS ASCII adjust after subtraction
AAM ASCII adjust after multiplication
AAD ASCII adjust before division

5.1.4 Logical Instructions
The logical instructions perform basic AND, OR, XOR, and NOT logical operations on 
byte, word, and doubleword values.
AND Perform bitwise logical AND
OR Perform bitwise logical OR
XOR Perform bitwise logical exclusive OR
NOT Perform bitwise logical NOT
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5.1.5 Shift and Rotate Instructions
The shift and rotate instructions shift and rotate the bits in word and doubleword 
operands.
SAR Shift arithmetic right
SHR Shift logical right
SAL/SHL Shift arithmetic left/Shift logical left
SHRD Shift right double
SHLD Shift left double
ROR Rotate right
ROL Rotate left
RCR Rotate through carry right
RCL Rotate through carry left

5.1.6 Bit and Byte Instructions
Bit instructions test and modify individual bits in word and doubleword operands. 
Byte instructions set the value of a byte operand to indicate the status of flags in the 
EFLAGS register.
BT Bit test
BTS Bit test and set
BTR Bit test and reset
BTC Bit test and complement
BSF Bit scan forward
BSR Bit scan reverse
SETE/SETZ Set byte if equal/Set byte if zero
SETNE/SETNZ Set byte if not equal/Set byte if not zero
SETA/SETNBE Set byte if above/Set byte if not below or equal
SETAE/SETNB/SETNC Set byte if above or equal/Set byte if not below/Set byte if not 

carry
SETB/SETNAE/SETCSet byte if below/Set byte if not above or equal/Set byte if carry
SETBE/SETNA Set byte if below or equal/Set byte if not above
SETG/SETNLE Set byte if greater/Set byte if not less or equal 
SETGE/SETNL Set byte if greater or equal/Set byte if not less
SETL/SETNGE Set byte if less/Set byte if not greater or equal
SETLE/SETNG Set byte if less or equal/Set byte if not greater
SETS Set byte if sign (negative)
SETNS Set byte if not sign (non-negative)
SETO Set byte if overflow
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SETNO Set byte if not overflow
SETPE/SETP Set byte if parity even/Set byte if parity
SETPO/SETNP Set byte if parity odd/Set byte if not parity
TEST Logical compare

5.1.7 Control Transfer Instructions
The control transfer instructions provide jump, conditional jump, loop, and call and 
return operations to control program flow.
JMP Jump 
JE/JZ Jump if equal/Jump if zero
JNE/JNZ Jump if not equal/Jump if not zero
JA/JNBE Jump if above/Jump if not below or equal
JAE/JNB Jump if above or equal/Jump if not below
JB/JNAE Jump if below/Jump if not above or equal
JBE/JNA Jump if below or equal/Jump if not above
JG/JNLE Jump if greater/Jump if not less or equal
JGE/JNL Jump if greater or equal/Jump if not less
JL/JNGE Jump if less/Jump if not greater or equal
JLE/JNG Jump if less or equal/Jump if not greater
JC Jump if carry
JNC Jump if not carry
JO Jump if overflow
JNO Jump if not overflow
JS Jump if sign (negative)
JNS Jump if not sign (non-negative)
JPO/JNP Jump if parity odd/Jump if not parity
JPE/JP Jump if parity even/Jump if parity
JCXZ/JECXZ Jump register CX zero/Jump register ECX zero
LOOP Loop with ECX counter
LOOPZ/LOOPE Loop with ECX and zero/Loop with ECX and equal
LOOPNZ/LOOPNE Loop with ECX and not zero/Loop with ECX and not equal
CALL Call procedure
RET Return
IRET Return from interrupt
INT Software interrupt
INTO Interrupt on overflow
BOUND Detect value out of range
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ENTER High-level procedure entry
LEAVE High-level procedure exit

5.1.8 String Instructions
The string instructions operate on strings of bytes, allowing them to be moved to and 
from memory.
MOVS/MOVSB Move string/Move byte string
MOVS/MOVSW Move string/Move word string
MOVS/MOVSD Move string/Move doubleword string
CMPS/CMPSB Compare string/Compare byte string
CMPS/CMPSW Compare string/Compare word string
CMPS/CMPSD Compare string/Compare doubleword string
SCAS/SCASB Scan string/Scan byte string
SCAS/SCASW Scan string/Scan word string
SCAS/SCASD Scan string/Scan doubleword string
LODS/LODSB Load string/Load byte string
LODS/LODSW Load string/Load word string
LODS/LODSD Load string/Load doubleword string
STOS/STOSB Store string/Store byte string
STOS/STOSW Store string/Store word string
STOS/STOSD Store string/Store doubleword string
REP Repeat while ECX not zero
REPE/REPZ Repeat while equal/Repeat while zero
REPNE/REPNZ Repeat while not equal/Repeat while not zero

5.1.9 I/O Instructions
These instructions move data between the processor’s I/O ports and a register or 
memory.
IN Read from a port
OUT Write to a port
INS/INSB Input string from port/Input byte string from port
INS/INSW Input string from port/Input word string from port
INS/INSD Input string from port/Input doubleword string from port
OUTS/OUTSB Output string to port/Output byte string to port
OUTS/OUTSW Output string to port/Output word string to port
OUTS/OUTSD Output string to port/Output doubleword string to port
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5.1.10 Enter and Leave Instructions
These instructions provide machine-language support for procedure calls in block-
structured languages.
ENTER High-level procedure entry
LEAVE High-level procedure exit

5.1.11 Flag Control (EFLAG) Instructions
The flag control instructions operate on the flags in the EFLAGS register.
STC Set carry flag
CLC Clear the carry flag
CMC Complement the carry flag
CLD Clear the direction flag
STD Set direction flag
LAHF Load flags into AH register
SAHF Store AH register into flags
PUSHF/PUSHFD Push EFLAGS onto stack
POPF/POPFD Pop EFLAGS from stack
STI Set interrupt flag
CLI Clear the interrupt flag

5.1.12 Segment Register Instructions
The segment register instructions allow far pointers (segment addresses) to be 
loaded into the segment registers.
LDS Load far pointer using DS
LES Load far pointer using ES
LFS Load far pointer using FS
LGS Load far pointer using GS
LSS Load far pointer using SS

5.1.13 Miscellaneous Instructions
The miscellaneous instructions provide such functions as loading an effective 
address, executing a “no-operation,” and retrieving processor identification informa-
tion.
LEA Load effective address
NOP No operation
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UD2 Undefined instruction
XLAT/XLATB Table lookup translation
CPUID Processor identification
MOVBE Move data after swapping data bytes

5.1.14 Random Number Generator Instruction
RDRAND retrieves a random number generated from hardware.

5.2 X87 FPU INSTRUCTIONS
The x87 FPU instructions are executed by the processor’s x87 FPU. These instructions 
operate on floating-point, integer, and binary-coded decimal (BCD) operands. For 
more detail on x87 FPU instructions, see Chapter 8, “Programming with the x87 FPU.”

These instructions are divided into the following subgroups: data transfer, load 
constants, and FPU control instructions. The sections that follow introduce each 
subgroup.

5.2.1 x87 FPU Data Transfer Instructions
The data transfer instructions move floating-point, integer, and BCD values between 
memory and the x87 FPU registers. They also perform conditional move operations 
on floating-point operands.
FLD Load floating-point value
FST Store floating-point value
FSTP Store floating-point value and pop
FILD Load integer
FIST Store integer
FISTP1 Store integer and pop
FBLD Load BCD
FBSTP Store BCD and pop
FXCH Exchange registers
FCMOVE Floating-point conditional move if equal
FCMOVNE Floating-point conditional move if not equal
FCMOVB Floating-point conditional move if below
FCMOVBE Floating-point conditional move if below or equal
FCMOVNB Floating-point conditional move if not below

1. SSE3 provides an instruction FISTTP for integer conversion.
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FCMOVNBE Floating-point conditional move if not below or equal
FCMOVU Floating-point conditional move if unordered
FCMOVNU Floating-point conditional move if not unordered

5.2.2 x87 FPU Basic Arithmetic Instructions
The basic arithmetic instructions perform basic arithmetic operations on floating-
point and integer operands.
FADD Add floating-point
FADDP Add floating-point and pop
FIADD Add integer
FSUB Subtract floating-point
FSUBP Subtract floating-point and pop
FISUB Subtract integer
FSUBR Subtract floating-point reverse
FSUBRP Subtract floating-point reverse and pop
FISUBR Subtract integer reverse
FMUL Multiply floating-point
FMULP Multiply floating-point and pop
FIMUL Multiply integer
FDIV Divide floating-point
FDIVP Divide floating-point and pop
FIDIV Divide integer
FDIVR Divide floating-point reverse
FDIVRP Divide floating-point reverse and pop
FIDIVR Divide integer reverse
FPREM Partial remainder
FPREM1 IEEE Partial remainder
FABS Absolute value
FCHS Change sign
FRNDINT Round to integer
FSCALE Scale by power of two
FSQRT Square root
FXTRACT Extract exponent and significand

5.2.3 x87 FPU Comparison Instructions
The compare instructions examine or compare floating-point or integer operands.
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FCOM Compare floating-point
FCOMP Compare floating-point and pop
FCOMPP Compare floating-point and pop twice
FUCOM Unordered compare floating-point
FUCOMP Unordered compare floating-point and pop
FUCOMPP Unordered compare floating-point and pop twice
FICOM Compare integer
FICOMP Compare integer and pop
FCOMI Compare floating-point and set EFLAGS
FUCOMI Unordered compare floating-point and set EFLAGS
FCOMIP Compare floating-point, set EFLAGS, and pop
FUCOMIP Unordered compare floating-point, set EFLAGS, and pop
FTST Test floating-point (compare with 0.0)
FXAM Examine floating-point

5.2.4 x87 FPU Transcendental Instructions
The transcendental instructions perform basic trigonometric and logarithmic opera-
tions on floating-point operands.
FSIN Sine
FCOS Cosine
FSINCOS Sine and cosine
FPTAN Partial tangent
FPATAN Partial arctangent
F2XM1 2x − 1
FYL2X y∗log2x
FYL2XP1 y∗log2(x+1)

5.2.5 x87 FPU Load Constants Instructions
The load constants instructions load common constants, such as π, into the x87 
floating-point registers.
FLD1 Load +1.0
FLDZ Load +0.0
FLDPI Load π
FLDL2E Load log2e
FLDLN2 Load loge2
FLDL2T Load log210
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FLDLG2 Load log102

5.2.6 x87 FPU Control Instructions
The x87 FPU control instructions operate on the x87 FPU register stack and save and 
restore the x87 FPU state.
FINCSTP Increment FPU register stack pointer
FDECSTP Decrement FPU register stack pointer
FFREE Free floating-point register
FINIT Initialize FPU after checking error conditions
FNINIT Initialize FPU without checking error conditions
FCLEX Clear floating-point exception flags after checking for error 

conditions
FNCLEX Clear floating-point exception flags without checking for error 

conditions
FSTCW Store FPU control word after checking error conditions
FNSTCW Store FPU control word without checking error conditions
FLDCW Load FPU control word
FSTENV Store FPU environment after checking error conditions
FNSTENV Store FPU environment without checking error conditions
FLDENV Load FPU environment
FSAVE Save FPU state after checking error conditions
FNSAVE Save FPU state without checking error conditions
FRSTOR Restore FPU state
FSTSW Store FPU status word after checking error conditions
FNSTSW Store FPU status word without checking error conditions
WAIT/FWAIT Wait for FPU
FNOP FPU no operation

5.3 X87 FPU AND SIMD STATE MANAGEMENT 
INSTRUCTIONS

Two state management instructions were introduced into the IA-32 architecture with 
the Pentium II processor family:
FXSAVE Save x87 FPU and SIMD state
FXRSTOR Restore x87 FPU and SIMD state

Initially, these instructions operated only on the x87 FPU (and MMX) registers to 
perform a fast save and restore, respectively, of the x87 FPU and MMX state. With the 
introduction of SSE extensions in the Pentium III processor family, these instructions 
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were expanded to also save and restore the state of the XMM and MXCSR registers. 
Intel 64 architecture also supports these instructions.

See Section 10.5, “FXSAVE and FXRSTOR Instructions,” for more detail.

5.4 MMX™ INSTRUCTIONS
Four extensions have been introduced into the IA-32 architecture to permit IA-32 
processors to perform single-instruction multiple-data (SIMD) operations. These 
extensions include the MMX technology, SSE extensions, SSE2 extensions, and SSE3 
extensions. For a discussion that puts SIMD instructions in their historical context, 
see Section 2.2.7, “SIMD Instructions.”

MMX instructions operate on packed byte, word, doubleword, or quadword integer 
operands contained in memory, in MMX registers, and/or in general-purpose regis-
ters. For more detail on these instructions, see Chapter 9, “Programming with Intel® 
MMX™ Technology.” 

MMX instructions can only be executed on Intel 64 and IA-32 processors that support 
the MMX technology. Support for these instructions can be detected with the CPUID 
instruction. See the description of the CPUID instruction in Chapter 3, “Instruction 
Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 2A.

MMX instructions are divided into the following subgroups: data transfer, conversion, 
packed arithmetic, comparison, logical, shift and rotate, and state management 
instructions. The sections that follow introduce each subgroup.

5.4.1 MMX Data Transfer Instructions
The data transfer instructions move doubleword and quadword operands between 
MMX registers and between MMX registers and memory.
MOVD Move doubleword
MOVQ Move quadword

5.4.2 MMX Conversion Instructions
The conversion instructions pack and unpack bytes, words, and doublewords
PACKSSWB Pack words into bytes with signed saturation
PACKSSDW Pack doublewords into words with signed saturation
PACKUSWB Pack words into bytes with unsigned saturation.
PUNPCKHBW Unpack high-order bytes
PUNPCKHWD Unpack high-order words
PUNPCKHDQ Unpack high-order doublewords
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PUNPCKLBW Unpack low-order bytes
PUNPCKLWD Unpack low-order words
PUNPCKLDQ Unpack low-order doublewords

5.4.3 MMX Packed Arithmetic Instructions
The packed arithmetic instructions perform packed integer arithmetic on packed 
byte, word, and doubleword integers.
PADDB Add packed byte integers
PADDW Add packed word integers
PADDD Add packed doubleword integers
PADDSB Add packed signed byte integers with signed saturation
PADDSW Add packed signed word integers with signed saturation
PADDUSB Add packed unsigned byte integers with unsigned saturation
PADDUSW Add packed unsigned word integers with unsigned saturation
PSUBB Subtract packed byte integers
PSUBW Subtract packed word integers
PSUBD Subtract packed doubleword integers
PSUBSB Subtract packed signed byte integers with signed saturation
PSUBSW Subtract packed signed word integers with signed saturation
PSUBUSB Subtract packed unsigned byte integers with unsigned saturation
PSUBUSW Subtract packed unsigned word integers with unsigned 

saturation
PMULHW Multiply packed signed word integers and store high result
PMULLW Multiply packed signed word integers and store low result
PMADDWD Multiply and add packed word integers

5.4.4 MMX Comparison Instructions
The compare instructions compare packed bytes, words, or doublewords.
PCMPEQB Compare packed bytes for equal
PCMPEQW Compare packed words for equal
PCMPEQD Compare packed doublewords for equal
PCMPGTB Compare packed signed byte integers for greater than
PCMPGTW Compare packed signed word integers for greater than
PCMPGTD Compare packed signed doubleword integers for greater than
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5.4.5 MMX Logical Instructions
The logical instructions perform AND, AND NOT, OR, and XOR operations on quad-
word operands.
PAND Bitwise logical AND
PANDN Bitwise logical AND NOT
POR Bitwise logical OR
PXOR Bitwise logical exclusive OR

5.4.6 MMX Shift and Rotate Instructions
The shift and rotate instructions shift and rotate packed bytes, words, or double-
words, or quadwords in 64-bit operands.
PSLLW Shift packed words left logical
PSLLD Shift packed doublewords left logical
PSLLQ Shift packed quadword left logical
PSRLW Shift packed words right logical
PSRLD Shift packed doublewords right logical
PSRLQ Shift packed quadword right logical
PSRAW Shift packed words right arithmetic
PSRAD Shift packed doublewords right arithmetic

5.4.7 MMX State Management Instructions
The EMMS instruction clears the MMX state from the MMX registers.
EMMS Empty MMX state

5.5 SSE INSTRUCTIONS
SSE instructions represent an extension of the SIMD execution model introduced 
with the MMX technology. For more detail on these instructions, see Chapter 10, 
“Programming with Streaming SIMD Extensions (SSE).”

SSE instructions can only be executed on Intel 64 and IA-32 processors that support 
SSE extensions. Support for these instructions can be detected with the CPUID 
instruction. See the description of the CPUID instruction in Chapter 3, “Instruction 
Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 2A.

SSE instructions are divided into four subgroups (note that the first subgroup has 
subordinate subgroups of its own):
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• SIMD single-precision floating-point instructions that operate on the XMM 
registers

• MXSCR state management instructions
• 64-bit SIMD integer instructions that operate on the MMX registers
• Cacheability control, prefetch, and instruction ordering instructions

The following sections provide an overview of these groups.

5.5.1 SSE SIMD Single-Precision Floating-Point Instructions
These instructions operate on packed and scalar single-precision floating-point 
values located in XMM registers and/or memory. This subgroup is further divided into 
the following subordinate subgroups: data transfer, packed arithmetic, comparison, 
logical, shuffle and unpack, and conversion instructions.

5.5.1.1  SSE Data Transfer Instructions
SSE data transfer instructions move packed and scalar single-precision floating-point 
operands between XMM registers and between XMM registers and memory.
MOVAPS Move four aligned packed single-precision floating-point values 

between XMM registers or between and XMM register and 
memory

MOVUPS Move four unaligned packed single-precision floating-point 
values between XMM registers or between and XMM register and 
memory

MOVHPS Move two packed single-precision floating-point values to an 
from the high quadword of an XMM register and memory

MOVHLPS Move two packed single-precision floating-point values from the 
high quadword of an XMM register to the low quadword of 
another XMM register

MOVLPS Move two packed single-precision floating-point values to an 
from the low quadword of an XMM register and memory

MOVLHPS Move two packed single-precision floating-point values from the 
low quadword of an XMM register to the high quadword of 
another XMM register

MOVMSKPS Extract sign mask from four packed single-precision floating-
point values

MOVSS Move scalar single-precision floating-point value between XMM 
registers or between an XMM register and memory
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5.5.1.2  SSE Packed Arithmetic Instructions
SSE packed arithmetic instructions perform packed and scalar arithmetic operations 
on packed and scalar single-precision floating-point operands.
ADDPS Add packed single-precision floating-point values
ADDSS Add scalar single-precision floating-point values
SUBPS Subtract packed single-precision floating-point values
SUBSS Subtract scalar single-precision floating-point values
MULPS Multiply packed single-precision floating-point values
MULSS Multiply scalar single-precision floating-point values
DIVPS Divide packed single-precision floating-point values
DIVSS Divide scalar single-precision floating-point values
RCPPS Compute reciprocals of packed single-precision floating-point 

values
RCPSS Compute reciprocal of scalar single-precision floating-point 

values
SQRTPS Compute square roots of packed single-precision floating-point 

values
SQRTSS Compute square root of scalar single-precision floating-point 

values
RSQRTPS Compute reciprocals of square roots of packed single-precision 

floating-point values
RSQRTSS Compute reciprocal of square root of scalar single-precision 

floating-point values
MAXPS Return maximum packed single-precision floating-point values
MAXSS Return maximum scalar single-precision floating-point values
MINPS Return minimum packed single-precision floating-point values
MINSS Return minimum scalar single-precision floating-point values

5.5.1.3  SSE Comparison Instructions
SSE compare instructions compare packed and scalar single-precision floating-point 
operands.
CMPPS Compare packed single-precision floating-point values
CMPSS Compare scalar single-precision floating-point values
COMISS Perform ordered comparison of scalar single-precision floating-

point values and set flags in EFLAGS register
UCOMISS Perform unordered comparison of scalar single-precision 

floating-point values and set flags in EFLAGS register
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5.5.1.4  SSE Logical Instructions
SSE logical instructions perform bitwise AND, AND NOT, OR, and XOR operations on 
packed single-precision floating-point operands.
ANDPS Perform bitwise logical AND of packed single-precision floating-

point values
ANDNPS Perform bitwise logical AND NOT of packed single-precision 

floating-point values
ORPS Perform bitwise logical OR of packed single-precision floating-

point values
XORPS Perform bitwise logical XOR of packed single-precision floating-

point values

5.5.1.5  SSE Shuffle and Unpack Instructions
SSE shuffle and unpack instructions shuffle or interleave single-precision floating-
point values in packed single-precision floating-point operands.
SHUFPS Shuffles values in packed single-precision floating-point 

operands
UNPCKHPS Unpacks and interleaves the two high-order values from two 

single-precision floating-point operands
UNPCKLPS Unpacks and interleaves the two low-order values from two 

single-precision floating-point operands

5.5.1.6  SSE Conversion Instructions
SSE conversion instructions convert packed and individual doubleword integers into 
packed and scalar single-precision floating-point values and vice versa.
CVTPI2PS Convert packed doubleword integers to packed single-precision 

floating-point values
CVTSI2SS Convert doubleword integer to scalar single-precision floating-

point value
CVTPS2PI Convert packed single-precision floating-point values to packed 

doubleword integers
CVTTPS2PI Convert with truncation packed single-precision floating-point 

values to packed doubleword integers
CVTSS2SI Convert a scalar single-precision floating-point value to a 

doubleword integer
CVTTSS2SI Convert with truncation a scalar single-precision floating-point 

value to a scalar doubleword integer
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5.5.2 SSE MXCSR State Management Instructions
MXCSR state management instructions allow saving and restoring the state of the 
MXCSR control and status register.
LDMXCSR Load MXCSR register
STMXCSR Save MXCSR register state

5.5.3 SSE 64-Bit SIMD Integer Instructions
These SSE 64-bit SIMD integer instructions perform additional operations on packed 
bytes, words, or doublewords contained in MMX registers. They represent enhance-
ments to the MMX instruction set described in Section 5.4, “MMX™ Instructions.”
PAVGB Compute average of packed unsigned byte integers
PAVGW Compute average of packed unsigned word integers
PEXTRW Extract word
PINSRW Insert word
PMAXUB Maximum of packed unsigned byte integers
PMAXSW Maximum of packed signed word integers
PMINUB Minimum of packed unsigned byte integers
PMINSW Minimum of packed signed word integers
PMOVMSKB Move byte mask
PMULHUW Multiply packed unsigned integers and store high result
PSADBW Compute sum of absolute differences
PSHUFW Shuffle packed integer word in MMX register

5.5.4 SSE Cacheability Control, Prefetch, and Instruction Ordering 
Instructions

The cacheability control instructions provide control over the caching of non-
temporal data when storing data from the MMX and XMM registers to memory. The 
PREFETCHh allows data to be prefetched to a selected cache level. The SFENCE 
instruction controls instruction ordering on store operations.
MASKMOVQ Non-temporal store of selected bytes from an MMX register into 

memory
MOVNTQ Non-temporal store of quadword from an MMX register into 

memory
MOVNTPS Non-temporal store of four packed single-precision floating-

point values from an XMM register into memory
PREFETCHh Load 32 or more of bytes from memory to a selected level of the 

processor’s cache hierarchy
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SFENCE Serializes store operations

5.6 SSE2 INSTRUCTIONS
SSE2 extensions represent an extension of the SIMD execution model introduced 
with MMX technology and the SSE extensions. SSE2 instructions operate on packed 
double-precision floating-point operands and on packed byte, word, doubleword, and 
quadword operands located in the XMM registers. For more detail on these instruc-
tions, see Chapter 11, “Programming with Streaming SIMD Extensions 2 (SSE2).”

SSE2 instructions can only be executed on Intel 64 and IA-32 processors that 
support the SSE2 extensions. Support for these instructions can be detected with the 
CPUID instruction. See the description of the CPUID instruction in Chapter 3, 
“Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 2A.

These instructions are divided into four subgroups (note that the first subgroup is 
further divided into subordinate subgroups):
• Packed and scalar double-precision floating-point instructions
• Packed single-precision floating-point conversion instructions
• 128-bit SIMD integer instructions
• Cacheability-control and instruction ordering instructions

The following sections give an overview of each subgroup.

5.6.1 SSE2 Packed and Scalar Double-Precision Floating-Point 
Instructions

SSE2 packed and scalar double-precision floating-point instructions are divided into 
the following subordinate subgroups: data movement, arithmetic, comparison, 
conversion, logical, and shuffle operations on double-precision floating-point oper-
ands. These are introduced in the sections that follow.

5.6.1.1  SSE2 Data Movement Instructions
SSE2 data movement instructions move double-precision floating-point data 
between XMM registers and between XMM registers and memory.
MOVAPD Move two aligned packed double-precision floating-point values 

between XMM registers or between and XMM register and 
memory

MOVUPD Move two unaligned packed double-precision floating-point 
values between XMM registers or between and XMM register and 
memory
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MOVHPD Move high packed double-precision floating-point value to an 
from the high quadword of an XMM register and memory

MOVLPD Move low packed single-precision floating-point value to an from 
the low quadword of an XMM register and memory

MOVMSKPD Extract sign mask from two packed double-precision floating-
point values

MOVSD Move scalar double-precision floating-point value between XMM 
registers or between an XMM register and memory

5.6.1.2  SSE2 Packed Arithmetic Instructions
The arithmetic instructions perform addition, subtraction, multiply, divide, square 
root, and maximum/minimum operations on packed and scalar double-precision 
floating-point operands.
ADDPD Add packed double-precision floating-point values
ADDSD Add scalar double precision floating-point values
SUBPD Subtract scalar double-precision floating-point values
SUBSD Subtract scalar double-precision floating-point values
MULPD Multiply packed double-precision floating-point values
MULSD Multiply scalar double-precision floating-point values
DIVPD Divide packed double-precision floating-point values
DIVSD Divide scalar double-precision floating-point values
SQRTPD Compute packed square roots of packed double-precision 

floating-point values
SQRTSD Compute scalar square root of scalar double-precision floating-

point values
MAXPD Return maximum packed double-precision floating-point values
MAXSD Return maximum scalar double-precision floating-point values
MINPD Return minimum packed double-precision floating-point values
MINSD Return minimum scalar double-precision floating-point values

5.6.1.3  SSE2 Logical Instructions
SSE2 logical instructions preform AND, AND NOT, OR, and XOR operations on packed 
double-precision floating-point values.
ANDPD Perform bitwise logical AND of packed double-precision floating-

point values
ANDNPD Perform bitwise logical AND NOT of packed double-precision 

floating-point values
ORPD Perform bitwise logical OR of packed double-precision floating-

point values
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XORPD Perform bitwise logical XOR of packed double-precision floating-
point values

5.6.1.4  SSE2 Compare Instructions
SSE2 compare instructions compare packed and scalar double-precision floating-
point values and return the results of the comparison either to the destination 
operand or to the EFLAGS register.
CMPPD Compare packed double-precision floating-point values
CMPSD Compare scalar double-precision floating-point values
COMISD Perform ordered comparison of scalar double-precision floating-

point values and set flags in EFLAGS register
UCOMISD Perform unordered comparison of scalar double-precision 

floating-point values and set flags in EFLAGS register.

5.6.1.5  SSE2 Shuffle and Unpack Instructions
SSE2 shuffle and unpack instructions shuffle or interleave double-precision floating-
point values in packed double-precision floating-point operands.
SHUFPD Shuffles values in packed double-precision floating-point 

operands
UNPCKHPD Unpacks and interleaves the high values from two packed 

double-precision floating-point operands
UNPCKLPD Unpacks and interleaves the low values from two packed 

double-precision floating-point operands

5.6.1.6  SSE2 Conversion Instructions
SSE2 conversion instructions convert packed and individual doubleword integers into 
packed and scalar double-precision floating-point values and vice versa. They also 
convert between packed and scalar single-precision and double-precision floating-
point values.
CVTPD2PI Convert packed double-precision floating-point values to packed 

doubleword integers.
CVTTPD2PI Convert with truncation packed double-precision floating-point 

values to packed doubleword integers
CVTPI2PD Convert packed doubleword integers to packed double-precision 

floating-point values
CVTPD2DQ Convert packed double-precision floating-point values to packed 

doubleword integers
CVTTPD2DQ Convert with truncation packed double-precision floating-point 

values to packed doubleword integers
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CVTDQ2PD Convert packed doubleword integers to packed double-precision 
floating-point values

CVTPS2PD Convert packed single-precision floating-point values to packed 
double-precision floating-point values

CVTPD2PS Convert packed double-precision floating-point values to packed 
single-precision floating-point values

CVTSS2SD Convert scalar single-precision floating-point values to scalar 
double-precision floating-point values

CVTSD2SS Convert scalar double-precision floating-point values to scalar 
single-precision floating-point values

CVTSD2SI Convert scalar double-precision floating-point values to a 
doubleword integer

CVTTSD2SI Convert with truncation scalar double-precision floating-point 
values to scalar doubleword integers

CVTSI2SD Convert doubleword integer to scalar double-precision floating-
point value

5.6.2 SSE2 Packed Single-Precision Floating-Point Instructions
SSE2 packed single-precision floating-point instructions perform conversion opera-
tions on single-precision floating-point and integer operands. These instructions 
represent enhancements to the SSE single-precision floating-point instructions.
CVTDQ2PS Convert packed doubleword integers to packed single-precision 

floating-point values
CVTPS2DQ Convert packed single-precision floating-point values to packed 

doubleword integers
CVTTPS2DQ Convert with truncation packed single-precision floating-point 

values to packed doubleword integers

5.6.3 SSE2 128-Bit SIMD Integer Instructions
SSE2 SIMD integer instructions perform additional operations on packed words, 
doublewords, and quadwords contained in XMM and MMX registers.
MOVDQA Move aligned double quadword.
MOVDQU Move unaligned double quadword
MOVQ2DQ Move quadword integer from MMX to XMM registers
MOVDQ2Q Move quadword integer from XMM to MMX registers
PMULUDQ Multiply packed unsigned doubleword integers
PADDQ Add packed quadword integers
PSUBQ Subtract packed quadword integers
PSHUFLW Shuffle packed low words
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PSHUFHW Shuffle packed high words
PSHUFD Shuffle packed doublewords
PSLLDQ Shift double quadword left logical
PSRLDQ Shift double quadword right logical
PUNPCKHQDQ Unpack high quadwords
PUNPCKLQDQ Unpack low quadwords

5.6.4 SSE2 Cacheability Control and Ordering Instructions
SSE2 cacheability control instructions provide additional operations for caching of 
non-temporal data when storing data from XMM registers to memory. LFENCE and 
MFENCE provide additional control of instruction ordering on store operations.
CLFLUSH Flushes and invalidates a memory operand and its associated 

cache line from all levels of the processor’s cache hierarchy
LFENCE Serializes load operations
MFENCE Serializes load and store operations
PAUSE Improves the performance of “spin-wait loops”
MASKMOVDQU Non-temporal store of selected bytes from an XMM register into 

memory
MOVNTPD Non-temporal store of two packed double-precision floating-

point values from an XMM register into memory
MOVNTDQ Non-temporal store of double quadword from an XMM register 

into memory
MOVNTI Non-temporal store of a doubleword from a general-purpose 

register into memory

5.7 SSE3 INSTRUCTIONS
The SSE3 extensions offers 13 instructions that accelerate performance of Streaming 
SIMD Extensions technology, Streaming SIMD Extensions 2 technology, and x87-FP 
math capabilities. These instructions can be grouped into the following categories:
• One x87FPU instruction used in integer conversion
• One SIMD integer instruction that addresses unaligned data loads
• Two SIMD floating-point packed ADD/SUB instructions
• Four SIMD floating-point horizontal ADD/SUB instructions
• Three SIMD floating-point LOAD/MOVE/DUPLICATE instructions
• Two thread synchronization instructions

SSE3 instructions can only be executed on Intel 64 and IA-32 processors that 
support SSE3 extensions. Support for these instructions can be detected with the 
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CPUID instruction. See the description of the CPUID instruction in Chapter 3, 
“Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 2A.

The sections that follow describe each subgroup.

5.7.1 SSE3 x87-FP Integer Conversion Instruction
FISTTP Behaves like the FISTP instruction but uses truncation, irrespec-

tive of the rounding mode specified in the floating-point control 
word (FCW)

5.7.2 SSE3 Specialized 128-bit Unaligned Data Load Instruction
LDDQU Special 128-bit unaligned load designed to avoid cache line 

splits

5.7.3 SSE3 SIMD Floating-Point Packed ADD/SUB Instructions
ADDSUBPS Performs single-precision addition on the second and fourth 

pairs of 32-bit data elements within the operands; single-preci-
sion subtraction on the first and third pairs

ADDSUBPD Performs double-precision addition on the second pair of quad-
words, and double-precision subtraction on the first pair

5.7.4 SSE3 SIMD Floating-Point Horizontal ADD/SUB Instructions
HADDPS Performs a single-precision addition on contiguous data 

elements. The first data element of the result is obtained by 
adding the first and second elements of the first operand; the 
second element by adding the third and fourth elements of the 
first operand; the third by adding the first and second elements 
of the second operand; and the fourth by adding the third and 
fourth elements of the second operand.

HSUBPS Performs a single-precision subtraction on contiguous data 
elements. The first data element of the result is obtained by 
subtracting the second element of the first operand from the 
first element of the first operand; the second element by 
subtracting the fourth element of the first operand from the third 
element of the first operand; the third by subtracting the second 
element of the second operand from the first element of the 
second operand; and the fourth by subtracting the fourth 
element of the second operand from the third element of the 
second operand.
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HADDPD Performs a double-precision addition on contiguous data 
elements. The first data element of the result is obtained by 
adding the first and second elements of the first operand; the 
second element by adding the first and second elements of the 
second operand.

HSUBPD Performs a double-precision subtraction on contiguous data 
elements. The first data element of the result is obtained by 
subtracting the second element of the first operand from the 
first element of the first operand; the second element by 
subtracting the second element of the second operand from the 
first element of the second operand.

5.7.5 SSE3 SIMD Floating-Point LOAD/MOVE/DUPLICATE 
Instructions

MOVSHDUP Loads/moves 128 bits; duplicating the second and fourth 32-bit 
data elements

MOVSLDUP Loads/moves 128 bits; duplicating the first and third 32-bit data 
elements

MOVDDUP Loads/moves 64 bits (bits[63:0] if the source is a register) and 
returns the same 64 bits in both the lower and upper halves of 
the 128-bit result register; duplicates the 64 bits from the 
source

5.7.6 SSE3 Agent Synchronization Instructions
MONITOR Sets up an address range used to monitor write-back stores 
MWAIT Enables a logical processor to enter into an optimized state while 

waiting for a write-back store to the address range set up by the 
MONITOR instruction

5.8 SUPPLEMENTAL STREAMING SIMD EXTENSIONS 3 
(SSSE3) INSTRUCTIONS

SSSE3 provide 32 instructions (represented by 14 mnemonics) to accelerate compu-
tations on packed integers. These include:
• Twelve instructions that perform horizontal addition or subtraction operations.
• Six instructions that evaluate absolute values.
• Two instructions that perform multiply and add operations and speed up the 

evaluation of dot products.
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• Two instructions that accelerate packed-integer multiply operations and produce 
integer values with scaling.

• Two instructions that perform a byte-wise, in-place shuffle according to the 
second shuffle control operand.

• Six instructions that negate packed integers in the destination operand if the 
signs of the corresponding element in the source operand is less than zero.

• Two instructions that align data from the composite of two operands.

SSSE3 instructions can only be executed on Intel 64 and IA-32 processors that 
support SSSE3 extensions. Support for these instructions can be detected with the 
CPUID instruction. See the description of the CPUID instruction in Chapter 3, 
“Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 2A.

The sections that follow describe each subgroup.

5.8.1 Horizontal Addition/Subtraction
PHADDW Adds two adjacent, signed 16-bit integers horizontally from the 

source and destination operands and packs the signed 16-bit 
results to the destination operand.

PHADDSW Adds two adjacent, signed 16-bit integers horizontally from the 
source and destination operands and packs the signed, satu-
rated 16-bit results to the destination operand.

PHADDD Adds two adjacent, signed 32-bit integers horizontally from the 
source and destination operands and packs the signed 32-bit 
results to the destination operand.

PHSUBW Performs horizontal subtraction on each adjacent pair of 16-bit 
signed integers by subtracting the most significant word from 
the least significant word of each pair in the source and destina-
tion operands. The signed 16-bit results are packed and written 
to the destination operand.

PHSUBSW Performs horizontal subtraction on each adjacent pair of 16-bit 
signed integers by subtracting the most significant word from 
the least significant word of each pair in the source and destina-
tion operands. The signed, saturated 16-bit results are packed 
and written to the destination operand.

PHSUBD Performs horizontal subtraction on each adjacent pair of 32-bit 
signed integers by subtracting the most significant doubleword 
from the least significant double word of each pair in the source 
and destination operands. The signed 32-bit results are packed 
and written to the destination operand.
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5.8.2 Packed Absolute Values
PABSB Computes the absolute value of each signed byte data element.
PABSW Computes the absolute value of each signed 16-bit data 

element.
PABSD Computes the absolute value of each signed 32-bit data 

element. 

5.8.3 Multiply and Add Packed Signed and Unsigned Bytes
PMADDUBSW Multiplies each unsigned byte value with the corresponding 

signed byte value to produce an intermediate, 16-bit signed 
integer. Each adjacent pair of 16-bit signed values are added 
horizontally. The signed, saturated 16-bit results are packed to 
the destination operand.

5.8.4 Packed Multiply High with Round and Scale
PMULHRSW Multiplies vertically each signed 16-bit integer from the destina-

tion operand with the corresponding signed 16-bit integer of the 
source operand, producing intermediate, signed 32-bit integers. 
Each intermediate 32-bit integer is truncated to the 18 most 
significant bits. Rounding is always performed by adding 1 to the 
least significant bit of the 18-bit intermediate result. The final 
result is obtained by selecting the 16 bits immediately to the 
right of the most significant bit of each 18-bit intermediate 
result and packed to the destination operand.

5.8.5 Packed Shuffle Bytes
PSHUFB Permutes each byte in place, according to a shuffle control 

mask. The least significant three or four bits of each shuffle 
control byte of the control mask form the shuffle index. The 
shuffle mask is unaffected. If the most significant bit (bit 7) of a 
shuffle control byte is set, the constant zero is written in the 
result byte.

5.8.6 Packed Sign
PSIGNB/W/D Negates each signed integer element of the destination operand 

if the sign of the corresponding data element in the source 
operand is less than zero.
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5.8.7 Packed Align Right
PALIGNR Source operand is appended after the destination operand 

forming an intermediate value of twice the width of an operand. 
The result is extracted from the intermediate value into the 
destination operand by selecting the 128 bit or 64 bit value that 
are right-aligned to the byte offset specified by the immediate 
value.

5.9 SSE4 INSTRUCTIONS
Intel® Streaming SIMD Extensions 4 (SSE4) introduces 54 new instructions. 47 of 
the SSE4 instructions are referred to as SSE4.1 in this document, 7 new SSE4 
instructions are referred to as SSE4.2. 

SSE4.1 is targeted to improve the performance of media, imaging, and 3D work-
loads. SSE4.1 adds instructions that improve compiler vectorization and significantly 
increase support for packed dword computation. The technology also provides a hint 
that can improve memory throughput when reading from uncacheable WC memory 
type.

The 47 SSE4.1 instructions include:
• Two instructions perform packed dword multiplies.
• Two instructions perform floating-point dot products with input/output selects.
• One instruction performs a load with a streaming hint.
• Six instructions simplify packed blending.
• Eight instructions expand support for packed integer MIN/MAX.
• Four instructions support floating-point round with selectable rounding mode and 

precision exception override.
• Seven instructions improve data insertion and extractions from XMM registers
• Twelve instructions improve packed integer format conversions (sign and zero 

extensions).
• One instruction improves SAD (sum absolute difference) generation for small 

block sizes.
• One instruction aids horizontal searching operations.
• One instruction improves masked comparisons.
• One instruction adds qword packed equality comparisons.
• One instruction adds dword packing with unsigned saturation.

The seven SSE4.2 instructions include:
• String and text processing that can take advantage of single-instruction multiple-

data programming techniques.
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• Application-targeted accelerator (ATA) instructions.
• A SIMD integer instruction that enhances the capability of the 128-bit integer 

SIMD capability in SSE4.1.

5.10 SSE4.1 INSTRUCTIONS
SSE4.1 instructions can use an XMM register as a source or destination. Program-
ming SSE4.1 is similar to programming 128-bit Integer SIMD and floating-point 
SIMD instructions in SSE/SSE2/SSE3/SSSE3. SSE4.1 does not provide any 64-bit 
integer SIMD instructions operating on MMX registers. The sections that follow 
describe each subgroup.

5.10.1 Dword Multiply Instructions 
PMULLD Returns four lower 32-bits of the 64-bit results of signed 32-bit 

integer multiplies.
PMULDQ Returns two 64-bit signed result of signed 32-bit integer multi-

plies.

5.10.2 Floating-Point Dot Product Instructions
DPPD Perform double-precision dot product for up to 2 elements and 

broadcast.
DPPS Perform single-precision dot products for up to 4 elements and 

broadcast

5.10.3 Streaming Load Hint Instruction
MOVNTDQA Provides a non-temporal hint that can cause adjacent 16-byte 

items within an aligned 64-byte region (a streaming line) to be 
fetched and held in a small set of temporary buffers (“streaming 
load buffers”). Subsequent streaming loads to other aligned 16-
byte items in the same streaming line may be supplied from the 
streaming load buffer and can improve throughput.

5.10.4 Packed Blending Instructions
BLENDPD Conditionally copies specified double-precision floating-point 

data elements in the source operand to the corresponding data 
elements in the destination, using an immediate byte control. 
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BLENDPS Conditionally copies specified single-precision floating-point 
data elements in the source operand to the corresponding data 
elements in the destination, using an immediate byte control.

BLENDVPD Conditionally copies specified double-precision floating-point 
data elements in the source operand to the corresponding data 
elements in the destination, using an implied mask. 

BLENDVPS Conditionally copies specified single-precision floating-point 
data elements in the source operand to the corresponding data 
elements in the destination, using an implied mask. 

PBLENDVB Conditionally copies specified byte elements in the source 
operand to the corresponding elements in the destination, using 
an implied mask.

PBLENDW Conditionally copies specified word elements in the source 
operand to the corresponding elements in the destination, using 
an immediate byte control.

5.10.5 Packed Integer MIN/MAX Instructions 
PMINUW Compare packed unsigned word integers.
PMINUD Compare packed unsigned dword integers.
PMINSB Compare packed signed byte integers.
PMINSD Compare packed signed dword integers.
PMAXUW Compare packed unsigned word integers.
PMAXUD Compare packed unsigned dword integers.
PMAXSB Compare packed signed byte integers.
PMAXSD Compare packed signed dword integers.

5.10.6 Floating-Point Round Instructions with Selectable Rounding 
Mode

ROUNDPS Round packed single precision floating-point values into integer 
values and return rounded floating-point values.

ROUNDPD Round packed double precision floating-point values into integer 
values and return rounded floating-point values. 

ROUNDSS Round the low packed single precision floating-point value into 
an integer value and return a rounded floating-point value.

ROUNDSD Round the low packed double precision floating-point value into 
an integer value and return a rounded floating-point value.
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5.10.7 Insertion and Extractions from XMM Registers
EXTRACTPS Extracts a single-precision floating-point value from a specified 

offset in an XMM register and stores the result to memory or a 
general-purpose register

INSERTPS Inserts a single-precision floating-point value from either a 32-
bit memory location or selected from a specified offset in an 
XMM register to a specified offset in the destination XMM 
register. In addition, INSERTPS allows zeroing out selected data 
elements in the destination, using a mask.

PINSRB Insert a byte value from a register or memory into an XMM 
register 

PINSRD Insert a dword value from 32-bit register or memory into an 
XMM register

PINSRQ Insert a qword value from 64-bit register or memory into an 
XMM register

PEXTRB Extract a byte from an XMM register and insert the value into a 
general-purpose register or memory

PEXTRW Extract a word from an XMM register and insert the value into a 
general-purpose register or memory

PEXTRD Extract a dword from an XMM register and insert the value into a 
general-purpose register or memory

PEXTRQ Extract a qword from an XMM register and insert the value into a 
general-purpose register or memory

5.10.8 Packed Integer Format Conversions
PMOVSXBW Sign extend the lower 8-bit integer of each packed word 

element into packed signed word integers. 
PMOVZXBW Zero extend the lower 8-bit integer of each packed word 

element into packed signed word integers.
PMOVSXBD Sign extend the lower 8-bit integer of each packed dword 

element into packed signed dword integers.
PMOVZXBD Zero extend the lower 8-bit integer of each packed dword 

element into packed signed dword integers.
PMOVSXWD Sign extend the lower 16-bit integer of each packed dword 

element into packed signed dword integers.
PMOVZXWD Zero extend the lower 16-bit integer of each packed dword 

element into packed signed dword integers..

PMOVSXBQ Sign extend the lower 8-bit integer of each packed qword 
element into packed signed qword integers.

PMOVZXBQ Zero extend the lower 8-bit integer of each packed qword 
element into packed signed qword integers.
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PMOVSXWQ Sign extend the lower 16-bit integer of each packed qword 
element into packed signed qword integers.

PMOVZXWQ Zero extend the lower 16-bit integer of each packed qword 
element into packed signed qword integers.

PMOVSXDQ Sign extend the lower 32-bit integer of each packed qword 
element into packed signed qword integers.

PMOVZXDQ Zero extend the lower 32-bit integer of each packed qword 
element into packed signed qword integers.

5.10.9 Improved Sums of Absolute Differences (SAD) for 4-Byte 
Blocks

MPSADBW Performs eight 4-byte wide Sum of Absolute Differences opera-
tions to produce eight word integers. 

5.10.10 Horizontal Search
PHMINPOSUW Finds the value and location of the minimum unsigned word 

from one of 8 horizontally packed unsigned words.  The resulting 
value and location (offset within the source) are packed into the 
low dword of the destination XMM register.

5.10.11 Packed Test
PTEST Performs a logical AND between the destination with this mask 

and sets the ZF flag if the result is zero. The CF flag (zero for 
TEST) is set if the inverted mask AND’d with the destination is all 
zero

5.10.12 Packed Qword Equality Comparisons
PCMPEQQ 128-bit packed qword equality test 

5.10.13 Dword Packing With Unsigned Saturation
PACKUSDW PACKUSDW packs dword to word with unsigned saturation

5.11 SSE4.2 INSTRUCTION SET
Five of the seven SSE4.2 instructions can use an XMM register as a source or desti-
nation. These include four text/string processing instructions and one packed quad-
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word compare SIMD instruction. Programming these five SSE4.2 instructions is 
similar to programming 128-bit Integer SIMD in SSE2/SSSE3. SSE4.2 does not 
provide any 64-bit integer SIMD instructions. 
The remaining two SSE4.2 instructions uses general-purpose registers to perform 
accelerated processing functions in specific application areas.

The sections that follow describe each subgroup.

5.11.1 String and Text Processing Instructions
PCMPESTRI Packed compare explicit-length strings, return index in ECX/RCX
PCMPESTRM Packed compare explicit-length strings, return mask in XMM0
PCMPISTRI Packed compare implicit-length strings, return index in ECX/RCX
PCMPISTRM Packed compare implicit-length strings, return mask in XMM0

5.11.2 Packed Comparison SIMD integer Instruction
PCMPGTQ Performs logical compare of greater-than on packed integer 

quadwords.

5.11.3 Application-Targeted Accelerator Instructions
CRC32 Provides hardware acceleration to calculate cyclic redundancy 

checks for fast and efficient implementation of data integrity 
protocols.

POPCNT This instruction calculates of number of bits set to 1 in the 
second operand (source) and returns the count in the first 
operand (a destination register)

5.12 AESNI AND PCLMULQDQ
Six AESNI instructions operate on XMM registers to provide accelerated primitives for 
block encryption/decryption using Advanced Encryption Standard (FIPS-197). 
PCLMULQDQ instruction perform carry-less multiplication for two binary numbers up 
to 64-bit wide. 
AESDEC Perform an AES decryption round using an 128-bit state and a 

round key
AESDECLAST Perform the last AES decryption round using an 128-bit state 

and a round key
AESENC Perform an AES encryption round using an 128-bit state and a 

round key
Vol. 1 5-35



INSTRUCTION SET SUMMARY
AESENCLAST Perform the last AES encryption round using an 128-bit state 
and a round key

AESIMC Perform an inverse mix column transformation primitive
AESKEYGENASSIST Assist the creation of round keys with a key expansion schedule
PCLMULQDQ Perform carryless multiplication of two 64-bit numbers

5.13 INTEL® ADVANCED VECTOR EXTENSIONS (AVX)
Intel® Advanced Vector Extensions (AVX) promotes legacy 128-bit SIMD instruction 
sets that operate on XMM register set to use a “vector extension“ (VEX) prefix and 
operates on 256-bit vector registers (YMM). Almost all prior generations of 128-bit 
SIMD instructions that operates on XMM (but not on MMX registers) are promoted to 
support three-operand syntax with VEX-128 encoding.

VEX-prefix encoded AVX instructions support 256-bit and 128-bit floating-point oper-
ations by extending the legacy 128-bit SIMD floating-point instructions to support 
three-operand syntax. 

Additional functional enhancements are also provided with VEX-encoded AVX 
instructions.
The list of AVX instructions are listed in the following tables:
• Table 13-2 lists 256-bit and 128-bit floating-point arithmetic instructions 

promoted from legacy 128-bit SIMD instruction sets.
• Table 13-3 lists 256-bit and 128-bit data movement and processing instructions 

promoted from legacy 128-bit SIMD instruction sets.
• Table 13-4 lists functional enhancements of 256-bit AVX instructions not 

available from legacy 128-bit SIMD instruction sets.
• Table 13-5 lists 128-bit integer and floating-point instructions promoted from 

legacy 128-bit SIMD instruction sets.
• Table 13-6 lists functional enhancements of 128-bit AVX instructions not 

available from legacy 128-bit SIMD instruction sets.
• Table 13-7 lists 128-bit data movement and processing instructions promoted 

from legacy instruction sets.

5.14 16-BIT FLOATING-POINT CONVERSION
Conversion between single-precision floating-point (32-bit) and half-precision FP 
(16-bit) data are provided by VCVTPS2PH, VCVTPH2PS:
VCVTPH2PS Convert eight/four data element containing 16-bit floating-point 

data into eight/four single-precision floating-point data.
VCVTPS2PH Convert eight/four data element containing single-precision 

floating-point data into eight/four 16-bit floating-point data.
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5.15 SYSTEM INSTRUCTIONS
The following system instructions are used to control those functions of the processor 
that are provided to support for operating systems and executives.
LGDT Load global descriptor table (GDT) register
SGDT Store global descriptor table (GDT) register
LLDT Load local descriptor table (LDT) register
SLDT Store local descriptor table (LDT) register
LTR Load task register
STR Store task register
LIDT Load interrupt descriptor table (IDT) register
SIDT Store interrupt descriptor table (IDT) register
MOV Load and store control registers
LMSW Load machine status word
SMSW Store machine status word
CLTS Clear the task-switched flag
ARPL Adjust requested privilege level
LAR Load access rights
LSL Load segment limit
VERR Verify segment for reading
VERW Verify segment for writing
MOV Load and store debug registers
INVD Invalidate cache, no writeback
WBINVD Invalidate cache, with writeback
INVLPG Invalidate TLB Entry
INVPCID Invalidate Process-Context Identifier
LOCK (prefix) Lock Bus
HLT Halt processor
RSM Return from system management mode (SMM)
RDMSR Read model-specific register
WRMSR Write model-specific register
RDPMC Read performance monitoring counters
RDTSC Read time stamp counter
RDTSCP Read time stamp counter and processor ID
SYSENTER Fast System Call, transfers to a flat protected mode kernel at 

CPL = 0
SYSEXIT Fast System Call, transfers to a flat protected mode kernel at 

CPL = 3
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XSAVE Save processor extended states to memory
XSAVEOPT Save processor extended states to memory, optimized
XRSTOR Restore processor extended states from memory
XGETBV Reads the state of an extended control register
XSETBV Writes the state of an extended control register
RDFSBASE Reads from FS base address at any privilege level
RDGSBASE Reads from GS base address at any privilege level
WRFSBASE Writes to FS base address at any privilege level
WRGSBASE Writes to GS base address at any privilege level

5.16 64-BIT MODE INSTRUCTIONS
The following instructions are introduced in 64-bit mode. This mode is a sub-mode of 
IA-32e mode.
CDQE Convert doubleword to quadword
CMPSQ Compare string operands
CMPXCHG16B Compare RDX:RAX with m128
LODSQ Load qword at address (R)SI into RAX
MOVSQ Move qword from address (R)SI to (R)DI
MOVZX (64-bits) Move doubleword to quadword, zero-extension
STOSQ Store RAX at address RDI
SWAPGS Exchanges current GS base register value with value in MSR 

address C0000102H
SYSCALL Fast call to privilege level 0 system procedures
SYSRET Return from fast system call

5.17 VIRTUAL-MACHINE EXTENSIONS
The behavior of the VMCS-maintenance instructions is summarized below:
VMPTRLD Takes a single 64-bit source operand in memory. It makes the 

referenced VMCS active and current.
VMPTRST Takes a single 64-bit destination operand that is in memory. 

Current-VMCS pointer is stored into the destination operand.
VMCLEAR Takes a single 64-bit operand in memory. The instruction sets 

the launch state of the VMCS referenced by the operand to 
“clear”, renders that VMCS inactive, and ensures that data for 
the VMCS have been written to the VMCS-data area in the refer-
enced VMCS region.
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VMREAD Reads a component from the VMCS (the encoding of that field is 
given in a register operand) and stores it into a destination 
operand.

VMWRITE Writes a component to the VMCS (the encoding of that field is 
given in a register operand) from a source operand.

The behavior of the VMX management instructions is summarized below:
VMLAUNCH Launches a virtual machine managed by the VMCS. A VM entry 

occurs, transferring control to the VM.
VMRESUME Resumes a virtual machine managed by the VMCS. A VM entry 

occurs, transferring control to the VM.
VMXOFF Causes the processor to leave VMX operation.
VMXON Takes a single 64-bit source operand in memory. It causes a 

logical processor to enter VMX root operation and to use the 
memory referenced by the operand to support VMX operation.

The behavior of the VMX-specific TLB-management instructions is summarized 
below:
INVEPT Invalidate cached Extended Page Table (EPT) mappings in the 

processor to synchronize address translation in virtual machines 
with memory-resident EPT pages.

INVVPID Invalidate cached mappings of address translation based on the 
Virtual Processor ID (VPID).

None of the instructions above can be executed in compatibility mode; they generate 
invalid-opcode exceptions if executed in compatibility mode.

The behavior of the guest-available instructions is summarized below:
VMCALL Allows a guest in VMX non-root operation to call the VMM for 

service. A VM exit occurs, transferring control to the VMM.
VMFUNC This instruction allows software in VMX non-root operation to 

invoke a VM function, which is processor functionality enabled 
and configured by software in VMX root operation. No VM exit 
occurs.

5.18 SAFER MODE EXTENSIONS
The behavior of the GETSEC instruction leaves of the Safer Mode Extensions (SMX) 
are summarized below:
GETSEC[CAPABILITIES]Returns the available leaf functions of the GETSEC instruc-

tion.
GETSEC[ENTERACCS] Loads an authenticated code chipset module and enters 

authenticated code execution mode.
GETSEC[EXITAC] Exits authenticated code execution mode.
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GETSEC[SENTER] Establishes a Measured Launched Environment (MLE) which has 
its dynamic root of trust anchored to a chipset supporting Intel 
Trusted Execution Technology.

GETSEC[SEXIT] Exits the MLE.
GETSEC[PARAMETERS]Returns SMX related parameter information.
GETSEC[SMCRTL] SMX mode control.
GETSEC[WAKEUP] Wakes up sleeping logical processors inside an MLE.
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CHAPTER 6
PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

This chapter describes the facilities in the Intel 64 and IA-32 architectures for 
executing calls to procedures or subroutines. It also describes how interrupts and 
exceptions are handled from the perspective of an application programmer.

6.1 PROCEDURE CALL TYPES
The processor supports procedure calls in the following two different ways:
• CALL and RET instructions.
• ENTER and LEAVE instructions, in conjunction with the CALL and RET 

instructions.

Both of these procedure call mechanisms use the procedure stack, commonly 
referred to simply as “the stack,” to save the state of the calling procedure, pass 
parameters to the called procedure, and store local variables for the currently 
executing procedure.

The processor’s facilities for handling interrupts and exceptions are similar to those 
used by the CALL and RET instructions.

6.2 STACKS
The stack (see Figure 6-1) is a contiguous array of memory locations. It is contained 
in a segment and identified by the segment selector in the SS register. When using 
the flat memory model, the stack can be located anywhere in the linear address 
space for the program. A stack can be up to 4 GBytes long, the maximum size of a 
segment.

Items are placed on the stack using the PUSH instruction and removed from the 
stack using the POP instruction. When an item is pushed onto the stack, the 
processor decrements the ESP register, then writes the item at the new top of stack. 
When an item is popped off the stack, the processor reads the item from the top of 
stack, then increments the ESP register. In this manner, the stack grows down in 
memory (towards lesser addresses) when items are pushed on the stack and shrinks 
up (towards greater addresses) when the items are popped from the stack.

A program or operating system/executive can set up many stacks. For example, in 
multitasking systems, each task can be given its own stack. The number of stacks in 
a system is limited by the maximum number of segments and the available physical 
memory. 
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When a system sets up many stacks, only one stack—the current stack—is avail-
able at a time. The current stack is the one contained in the segment referenced by 
the SS register.

The processor references the SS register automatically for all stack operations. For 
example, when the ESP register is used as a memory address, it automatically points 
to an address in the current stack. Also, the CALL, RET, PUSH, POP, ENTER, and 
LEAVE instructions all perform operations on the current stack.

6.2.1 Setting Up a Stack
To set a stack and establish it as the current stack, the program or operating 
system/executive must do the following:

1. Establish a stack segment.

2. Load the segment selector for the stack segment into the SS register using a 
MOV, POP, or LSS instruction.

Figure 6-1.  Stack Structure
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3. Load the stack pointer for the stack into the ESP register using a MOV, POP, or 
LSS instruction. The LSS instruction can be used to load the SS and ESP registers 
in one operation.

See “Segment Descriptors” in of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3A, for information on how to set up a segment 
descriptor and segment limits for a stack segment.

6.2.2 Stack Alignment
The stack pointer for a stack segment should be aligned on 16-bit (word) or 32-bit 
(double-word) boundaries, depending on the width of the stack segment. The D flag 
in the segment descriptor for the current code segment sets the stack-segment width 
(see “Segment Descriptors” in Chapter 3, “Protected-Mode Memory Management,” of 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A). 
The PUSH and POP instructions use the D flag to determine how much to decrement 
or increment the stack pointer on a push or pop operation, respectively. When the 
stack width is 16 bits, the stack pointer is incremented or decremented in 16-bit 
increments; when the width is 32 bits, the stack pointer is incremented or decre-
mented in 32-bit increments. Pushing a 16-bit value onto a 32-bit wide stack can 
result in stack misaligned (that is, the stack pointer is not aligned on a doubleword 
boundary). One exception to this rule is when the contents of a segment register (a 
16-bit segment selector) are pushed onto a 32-bit wide stack. Here, the processor 
automatically aligns the stack pointer to the next 32-bit boundary.

The processor does not check stack pointer alignment. It is the responsibility of the 
programs, tasks, and system procedures running on the processor to maintain 
proper alignment of stack pointers. Misaligning a stack pointer can cause serious 
performance degradation and in some instances program failures.

6.2.3 Address-Size Attributes for Stack Accesses
Instructions that use the stack implicitly (such as the PUSH and POP instructions) 
have two address-size attributes each of either 16 or 32 bits. This is because they 
always have the implicit address of the top of the stack, and they may also have an 
explicit memory address (for example, PUSH Array1[EBX]). The attribute of the 
explicit address is determined by the D flag of the current code segment and the 
presence or absence of the 67H address-size prefix.

The address-size attribute of the top of the stack determines whether SP or ESP is 
used for the stack access. Stack operations with an address-size attribute of 16 use 
the 16-bit SP stack pointer register and can use a maximum stack address of FFFFH; 
stack operations with an address-size attribute of 32 bits use the 32-bit ESP register 
and can use a maximum address of FFFFFFFFH. The default address-size attribute for 
data segments used as stacks is controlled by the B flag of the segment’s descriptor. 
When this flag is clear, the default address-size attribute is 16; when the flag is set, 
the address-size attribute is 32.
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6.2.4 Procedure Linking Information
The processor provides two pointers for linking of procedures: the stack-frame base 
pointer and the return instruction pointer. When used in conjunction with a standard 
software procedure-call technique, these pointers permit reliable and coherent 
linking of procedures.

6.2.4.1  Stack-Frame Base Pointer
The stack is typically divided into frames. Each stack frame can then contain local 
variables, parameters to be passed to another procedure, and procedure linking 
information. The stack-frame base pointer (contained in the EBP register) identifies a 
fixed reference point within the stack frame for the called procedure. To use the 
stack-frame base pointer, the called procedure typically copies the contents of the 
ESP register into the EBP register prior to pushing any local variables on the stack. 
The stack-frame base pointer then permits easy access to data structures passed on 
the stack, to the return instruction pointer, and to local variables added to the stack 
by the called procedure.

Like the ESP register, the EBP register automatically points to an address in the 
current stack segment (that is, the segment specified by the current contents of the 
SS register). 

6.2.4.2  Return Instruction Pointer
Prior to branching to the first instruction of the called procedure, the CALL instruction 
pushes the address in the EIP register onto the current stack. This address is then 
called the return-instruction pointer and it points to the instruction where execution 
of the calling procedure should resume following a return from the called procedure. 
Upon returning from a called procedure, the RET instruction pops the return-instruc-
tion pointer from the stack back into the EIP register. Execution of the calling proce-
dure then resumes.

The processor does not keep track of the location of the return-instruction pointer. It 
is thus up to the programmer to insure that stack pointer is pointing to the return-
instruction pointer on the stack, prior to issuing a RET instruction. A common way to 
reset the stack pointer to the point to the return-instruction pointer is to move the 
contents of the EBP register into the ESP register. If the EBP register is loaded with 
the stack pointer immediately following a procedure call, it should point to the return 
instruction pointer on the stack.

The processor does not require that the return instruction pointer point back to the 
calling procedure. Prior to executing the RET instruction, the return instruction 
pointer can be manipulated in software to point to any address in the current code 
segment (near return) or another code segment (far return). Performing such an 
operation, however, should be undertaken very cautiously, using only well defined 
code entry points.
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6.2.5 Stack Behavior in 64-Bit Mode
In 64-bit mode, address calculations that reference SS segments are treated as if the 
segment base is zero. Fields (base, limit, and attribute) in segment descriptor regis-
ters are ignored. SS DPL is modified such that it is always equal to CPL. This will be 
true even if it is the only field in the SS descriptor that is modified. 

Registers E(SP), E(IP) and E(BP) are promoted to 64-bits and are re-named RSP, RIP, 
and RBP respectively. Some forms of segment load instructions are invalid (for 
example, LDS, POP ES).

PUSH/POP instructions increment/decrement the stack using a 64-bit width. When 
the contents of a segment register is pushed onto 64-bit stack, the pointer is auto-
matically aligned to 64 bits (as with a stack that has a 32-bit width).

6.3 CALLING PROCEDURES USING CALL AND RET
The CALL instruction allows control transfers to procedures within the current code 
segment (near call) and in a different code segment (far call). Near calls usually 
provide access to local procedures within the currently running program or task. Far 
calls are usually used to access operating system procedures or procedures in a 
different task. See “CALL—Call Procedure” in Chapter 3, “Instruction Set Reference, 
A-L,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
2A, for a detailed description of the CALL instruction.

The RET instruction also allows near and far returns to match the near and far 
versions of the CALL instruction. In addition, the RET instruction allows a program to 
increment the stack pointer on a return to release parameters from the stack. The 
number of bytes released from the stack is determined by an optional argument (n) 
to the RET instruction. See “RET—Return from Procedure” in Chapter 4, “Instruction 
Set Reference, M-Z,” of the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 2B, for a detailed description of the RET instruction.

6.3.1 Near CALL and RET Operation
When executing a near call, the processor does the following (see Figure 6-2):
1. Pushes the current value of the EIP register on the stack.
2. Loads the offset of the called procedure in the EIP register.
3. Begins execution of the called procedure.

When executing a near return, the processor performs these actions:
1. Pops the top-of-stack value (the return instruction pointer) into the EIP register.
2. If the RET instruction has an optional n argument, increments the stack pointer 

by the number of bytes specified with the n operand to release parameters from 
the stack.

3. Resumes execution of the calling procedure.
Vol. 1 6-5



PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS
6.3.2 Far CALL and RET Operation
When executing a far call, the processor performs these actions (see Figure 6-2):

1. Pushes the current value of the CS register on the stack.

2. Pushes the current value of the EIP register on the stack.

3. Loads the segment selector of the segment that contains the called procedure in 
the CS register.

4. Loads the offset of the called procedure in the EIP register.

5. Begins execution of the called procedure.

When executing a far return, the processor does the following:

1. Pops the top-of-stack value (the return instruction pointer) into the EIP register.

2. Pops the top-of-stack value (the segment selector for the code segment being 
returned to) into the CS register.

3. If the RET instruction has an optional n argument, increments the stack pointer 
by the number of bytes specified with the n operand to release parameters from 
the stack.

4. Resumes execution of the calling procedure.
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6.3.3 Parameter Passing
Parameters can be passed between procedures in any of three ways: through 
general-purpose registers, in an argument list, or on the stack.

6.3.3.1  Passing Parameters Through the General-Purpose Registers
The processor does not save the state of the general-purpose registers on procedure 
calls. A calling procedure can thus pass up to six parameters to the called procedure 
by copying the parameters into any of these registers (except the ESP and EBP regis-
ters) prior to executing the CALL instruction. The called procedure can likewise pass 
parameters back to the calling procedure through general-purpose registers.

6.3.3.2  Passing Parameters on the Stack
To pass a large number of parameters to the called procedure, the parameters can be 
placed on the stack, in the stack frame for the calling procedure. Here, it is useful to 

Figure 6-2.  Stack on Near and Far Calls
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use the stack-frame base pointer (in the EBP register) to make a frame boundary for 
easy access to the parameters.

The stack can also be used to pass parameters back from the called procedure to the 
calling procedure.

6.3.3.3  Passing Parameters in an Argument List
An alternate method of passing a larger number of parameters (or a data structure) 
to the called procedure is to place the parameters in an argument list in one of the 
data segments in memory. A pointer to the argument list can then be passed to the 
called procedure through a general-purpose register or the stack. Parameters can 
also be passed back to the calling procedure in this same manner.

6.3.4 Saving Procedure State Information
The processor does not save the contents of the general-purpose registers, segment 
registers, or the EFLAGS register on a procedure call. A calling procedure should 
explicitly save the values in any of the general-purpose registers that it will need 
when it resumes execution after a return. These values can be saved on the stack or 
in memory in one of the data segments.

The PUSHA and POPA instructions facilitate saving and restoring the contents of the 
general-purpose registers. PUSHA pushes the values in all the general-purpose 
registers on the stack in the following order: EAX, ECX, EDX, EBX, ESP (the value 
prior to executing the PUSHA instruction), EBP, ESI, and EDI. The POPA instruction 
pops all the register values saved with a PUSHA instruction (except the ESP value) 
from the stack to their respective registers.

If a called procedure changes the state of any of the segment registers explicitly, it 
should restore them to their former values before executing a return to the calling 
procedure.

If a calling procedure needs to maintain the state of the EFLAGS register, it can save 
and restore all or part of the register using the PUSHF/PUSHFD and POPF/POPFD 
instructions. The PUSHF instruction pushes the lower word of the EFLAGS register on 
the stack, while the PUSHFD instruction pushes the entire register. The POPF instruc-
tion pops a word from the stack into the lower word of the EFLAGS register, while the 
POPFD instruction pops a double word from the stack into the register.

6.3.5 Calls to Other Privilege Levels
The IA-32 architecture’s protection mechanism recognizes four privilege levels, 
numbered from 0 to 3, where a greater number mean less privilege. The reason to 
use privilege levels is to improve the reliability of operating systems. For example, 
Figure 6-3 shows how privilege levels can be interpreted as rings of protection. 
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In this example, the highest privilege level 0 (at the center of the diagram) is used for 
segments that contain the most critical code modules in the system, usually the 
kernel of an operating system. The outer rings (with progressively lower privileges) 
are used for segments that contain code modules for less critical software. 

Code modules in lower privilege segments can only access modules operating at 
higher privilege segments by means of a tightly controlled and protected interface 
called a gate. Attempts to access higher privilege segments without going through a 
protection gate and without having sufficient access rights causes a general-protec-
tion exception (#GP) to be generated.

If an operating system or executive uses this multilevel protection mechanism, a call 
to a procedure that is in a more privileged protection level than the calling procedure 
is handled in a similar manner as a far call (see Section 6.3.2, “Far CALL and RET 
Operation”). The differences are as follows:
• The segment selector provided in the CALL instruction references a special data 

structure called a call gate descriptor. Among other things, the call gate 
descriptor provides the following:

— access rights information

— the segment selector for the code segment of the called procedure

— an offset into the code segment (that is, the instruction pointer for the called 
procedure)

Figure 6-3.  Protection Rings
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• The processor switches to a new stack to execute the called procedure. Each 
privilege level has its own stack. The segment selector and stack pointer for the 
privilege level 3 stack are stored in the SS and ESP registers, respectively, and 
are automatically saved when a call to a more privileged level occurs. The 
segment selectors and stack pointers for the privilege level 2, 1, and 0 stacks are 
stored in a system segment called the task state segment (TSS). 

The use of a call gate and the TSS during a stack switch are transparent to the calling 
procedure, except when a general-protection exception is raised.

6.3.6 CALL and RET Operation Between Privilege Levels
When making a call to a more privileged protection level, the processor does the 
following (see Figure 6-4):

1. Performs an access rights check (privilege check).

2. Temporarily saves (internally) the current contents of the SS, ESP, CS, and EIP 
registers.

Figure 6-4.  Stack Switch on a Call to a Different Privilege Level
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3. Loads the segment selector and stack pointer for the new stack (that is, the stack 
for the privilege level being called) from the TSS into the SS and ESP registers 
and switches to the new stack.

4. Pushes the temporarily saved SS and ESP values for the calling procedure’s stack 
onto the new stack.

5. Copies the parameters from the calling procedure’s stack to the new stack. A 
value in the call gate descriptor determines how many parameters to copy to the 
new stack.

6. Pushes the temporarily saved CS and EIP values for the calling procedure to the 
new stack.

7. Loads the segment selector for the new code segment and the new instruction 
pointer from the call gate into the CS and EIP registers, respectively.

8. Begins execution of the called procedure at the new privilege level.

When executing a return from the privileged procedure, the processor performs 
these actions:

1. Performs a privilege check.

2. Restores the CS and EIP registers to their values prior to the call.

3. If the RET instruction has an optional n argument, increments the stack pointer 
by the number of bytes specified with the n operand to release parameters from 
the stack. If the call gate descriptor specifies that one or more parameters be 
copied from one stack to the other, a RET n instruction must be used to release 
the parameters from both stacks. Here, the n operand specifies the number of 
bytes occupied on each stack by the parameters. On a return, the processor 
increments ESP by n for each stack to step over (effectively remove) these 
parameters from the stacks.

4. Restores the SS and ESP registers to their values prior to the call, which causes a 
switch back to the stack of the calling procedure.

5. If the RET instruction has an optional n argument, increments the stack pointer 
by the number of bytes specified with the n operand to release parameters from 
the stack (see explanation in step 3).

6. Resumes execution of the calling procedure.

See Chapter 5, “Protection,” in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3A, for detailed information on calls to privileged levels 
and the call gate descriptor.

6.3.7 Branch Functions in 64-Bit Mode
The 64-bit extensions expand branching mechanisms to accommodate branches in 
64-bit linear-address space. These are:
• Near-branch semantics are redefined in 64-bit mode
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• In 64-bit mode and compatibility mode, 64-bit call-gate descriptors for far calls 
are available

In 64-bit mode, the operand size for all near branches (CALL, RET, JCC, JCXZ, JMP, 
and LOOP) is forced to 64 bits. These instructions update the 64-bit RIP without the 
need for a REX operand-size prefix. 

The following aspects of near branches are controlled by the effective operand size:
• Truncation of the size of the instruction pointer
• Size of a stack pop or push, due to a CALL or RET
• Size of a stack-pointer increment or decrement, due to a CALL or RET
• Indirect-branch operand size

In 64-bit mode, all of the above actions are forced to 64 bits regardless of operand 
size prefixes (operand size prefixes are silently ignored). However, the displacement 
field for relative branches is still limited to 32 bits and the address size for near 
branches is not forced in 64-bit mode. 

Address sizes affect the size of RCX used for JCXZ and LOOP; they also impact the 
address calculation for memory indirect branches. Such addresses are 64 bits by 
default; but they can be overridden to 32 bits by an address size prefix.

Software typically uses far branches to change privilege levels. The legacy IA-32 
architecture provides the call-gate mechanism to allow software to branch from one 
privilege level to another, although call gates can also be used for branches that do 
not change privilege levels. When call gates are used, the selector portion of the 
direct or indirect pointer references a gate descriptor (the offset in the instruction is 
ignored). The offset to the destination’s code segment is taken from the call-gate 
descriptor. 

64-bit mode redefines the type value of a 32-bit call-gate descriptor type to a 64-bit 
call gate descriptor and expands the size of the 64-bit descriptor to hold a 64-bit 
offset. The 64-bit mode call-gate descriptor allows far branches that reference any 
location in the supported linear-address space. These call gates also hold the target 
code selector (CS), allowing changes to privilege level and default size as a result of 
the gate transition.

Because immediates are generally specified up to 32 bits, the only way to specify a 
full 64-bit absolute RIP in 64-bit mode is with an indirect branch. For this reason, 
direct far branches are eliminated from the instruction set in 64-bit mode.

64-bit mode also expands the semantics of the SYSENTER and SYSEXIT instructions 
so that the instructions operate within a 64-bit memory space. The mode also intro-
duces two new instructions: SYSCALL and SYSRET (which are valid only in 64-bit 
mode). For details, see “SYSENTER—Fast System Call” and “SYSEXIT—Fast Return 
from Fast System Call” in Chapter 4, “Instruction Set Reference, M-Z,” of the Intel® 
64 and IA-32 Architectures Software Developer’s Manual, Volume 2B.
6-12 Vol. 1



PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS
6.4 INTERRUPTS AND EXCEPTIONS
The processor provides two mechanisms for interrupting program execution, inter-
rupts and exceptions:
• An interrupt is an asynchronous event that is typically triggered by an I/O 

device.
• An exception is a synchronous event that is generated when the processor 

detects one or more predefined conditions while executing an instruction. The 
IA-32 architecture specifies three classes of exceptions: faults, traps, and aborts. 

The processor responds to interrupts and exceptions in essentially the same way. 
When an interrupt or exception is signaled, the processor halts execution of the 
current program or task and switches to a handler procedure that has been written 
specifically to handle the interrupt or exception condition. The processor accesses 
the handler procedure through an entry in the interrupt descriptor table (IDT). When 
the handler has completed handling the interrupt or exception, program control is 
returned to the interrupted program or task.

The operating system, executive, and/or device drivers normally handle interrupts 
and exceptions independently from application programs or tasks. Application 
programs can, however, access the interrupt and exception handlers incorporated in 
an operating system or executive through assembly-language calls. The remainder 
of this section gives a brief overview of the processor’s interrupt and exception 
handling mechanism. See Chapter 6, “Interrupt and Exception Handling,” in the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B, for a 
description of this mechanism.

The IA-32 Architecture defines 18 predefined interrupts and exceptions and 224 user 
defined interrupts, which are associated with entries in the IDT. Each interrupt and 
exception in the IDT is identified with a number, called a vector. Table 6-1 lists the 
interrupts and exceptions with entries in the IDT and their respective vector 
numbers. Vectors 0 through 8, 10 through 14, and 16 through 19 are the predefined 
interrupts and exceptions, and vectors 32 through 255 are the user-defined inter-
rupts, called maskable interrupts.

Note that the processor defines several additional interrupts that do not point to 
entries in the IDT; the most notable of these interrupts is the SMI interrupt. See 
Chapter 6, “Interrupt and Exception Handling,” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3B, for more information about the 
interrupts and exceptions.

When the processor detects an interrupt or exception, it does one of the following 
things:
• Executes an implicit call to a handler procedure.
• Executes an implicit call to a handler task.
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6.4.1 Call and Return Operation for Interrupt or Exception 
Handling Procedures

A call to an interrupt or exception handler procedure is similar to a procedure call to 
another protection level (see Section 6.3.6, “CALL and RET Operation Between Privi-
lege Levels”). Here, the interrupt vector references one of two kinds of gates: an 
interrupt gate or a trap gate. Interrupt and trap gates are similar to call gates in 
that they provide the following information:
• Access rights information
• The segment selector for the code segment that contains the handler procedure
• An offset into the code segment to the first instruction of the handler procedure

The difference between an interrupt gate and a trap gate is as follows. If an interrupt 
or exception handler is called through an interrupt gate, the processor clears the 
interrupt enable (IF) flag in the EFLAGS register to prevent subsequent interrupts 
from interfering with the execution of the handler. When a handler is called through 
a trap gate, the state of the IF flag is not changed.

Table 6-1.  Exceptions and Interrupts
Vector No. Mnemonic Description Source

 0 #DE Divide Error DIV and IDIV instructions.

 1 #DB Debug Any code or data reference.

 2 NMI Interrupt Non-maskable external interrupt.

 3 #BP Breakpoint INT 3 instruction.

 4 #OF Overflow INTO instruction.

 5 #BR BOUND Range Exceeded BOUND instruction.

 6 #UD Invalid Opcode (UnDefined 
Opcode)

UD2 instruction or reserved opcode.1

 7 #NM Device Not Available (No Math 
Coprocessor)

Floating-point or WAIT/FWAIT 
instruction.

 8 #DF Double Fault Any instruction that can generate an 
exception, an NMI, or an INTR.

 9 #MF CoProcessor Segment Overrun 
(reserved)

Floating-point instruction.2

10 #TS Invalid TSS Task switch or TSS access.

11 #NP Segment Not Present Loading segment registers or accessing 
system segments.

12 #SS Stack Segment Fault Stack operations and SS register loads.

13 #GP General Protection Any memory reference and other 
protection checks.
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If the code segment for the handler procedure has the same privilege level as the 
currently executing program or task, the handler procedure uses the current stack; if 
the handler executes at a more privileged level, the processor switches to the stack 
for the handler’s privilege level. 

If no stack switch occurs, the processor does the following when calling an interrupt 
or exception handler (see Figure 6-5):

1. Pushes the current contents of the EFLAGS, CS, and EIP registers (in that order) 
on the stack.

2. Pushes an error code (if appropriate) on the stack.

3. Loads the segment selector for the new code segment and the new instruction 
pointer (from the interrupt gate or trap gate) into the CS and EIP registers, 
respectively.

4. If the call is through an interrupt gate, clears the IF flag in the EFLAGS register.

5. Begins execution of the handler procedure.

14 #PF Page Fault Any memory reference.

15 Reserved

16 #MF Floating-Point Error (Math 
Fault)

Floating-point or WAIT/FWAIT 
instruction.

17 #AC Alignment Check Any data reference in memory.3

18 #MC Machine Check Error codes (if any) and source are model 
dependent.4

19 #XM SIMD Floating-Point Exception SIMD Floating-Point Instruction5

20-31 Reserved

32-255 Maskable Interrupts External interrupt from INTR pin or INT n 
instruction.

NOTES:
1. The UD2 instruction was introduced in the Pentium Pro processor.
2. IA-32 processors after the Intel386 processor do not generate this exception.
3. This exception was introduced in the Intel486 processor.
4. This exception was introduced in the Pentium processor and enhanced in the P6 family processors.
5. This exception was introduced in the Pentium III processor.

Table 6-1.  Exceptions and Interrupts (Contd.)
Vector No. Mnemonic Description Source
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If a stack switch does occur, the processor does the following:

1. Temporarily saves (internally) the current contents of the SS, ESP, EFLAGS, CS, 
and EIP registers.

2. Loads the segment selector and stack pointer for the new stack (that is, the stack 
for the privilege level being called) from the TSS into the SS and ESP registers 
and switches to the new stack.

3. Pushes the temporarily saved SS, ESP, EFLAGS, CS, and EIP values for the 
interrupted procedure’s stack onto the new stack.

4. Pushes an error code on the new stack (if appropriate).

5. Loads the segment selector for the new code segment and the new instruction 
pointer (from the interrupt gate or trap gate) into the CS and EIP registers, 
respectively.

6. If the call is through an interrupt gate, clears the IF flag in the EFLAGS register.

7. Begins execution of the handler procedure at the new privilege level.

Figure 6-5.  Stack Usage on Transfers to Interrupt and Exception Handling Routines
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A return from an interrupt or exception handler is initiated with the IRET instruction. 
The IRET instruction is similar to the far RET instruction, except that it also restores 
the contents of the EFLAGS register for the interrupted procedure. When executing a 
return from an interrupt or exception handler from the same privilege level as the 
interrupted procedure, the processor performs these actions:

1. Restores the CS and EIP registers to their values prior to the interrupt or 
exception.

2. Restores the EFLAGS register.

3. Increments the stack pointer appropriately.

4. Resumes execution of the interrupted procedure.

When executing a return from an interrupt or exception handler from a different priv-
ilege level than the interrupted procedure, the processor performs these actions:

1. Performs a privilege check.

2. Restores the CS and EIP registers to their values prior to the interrupt or 
exception.

3. Restores the EFLAGS register.

4. Restores the SS and ESP registers to their values prior to the interrupt or 
exception, resulting in a stack switch back to the stack of the interrupted 
procedure.

5. Resumes execution of the interrupted procedure.

6.4.2 Calls to Interrupt or Exception Handler Tasks
Interrupt and exception handler routines can also be executed in a separate task. 
Here, an interrupt or exception causes a task switch to a handler task. The handler 
task is given its own address space and (optionally) can execute at a higher protec-
tion level than application programs or tasks. 

The switch to the handler task is accomplished with an implicit task call that refer-
ences a task gate descriptor. The task gate provides access to the address space 
for the handler task. As part of the task switch, the processor saves complete state 
information for the interrupted program or task. Upon returning from the handler 
task, the state of the interrupted program or task is restored and execution 
continues. See Chapter 6, “Interrupt and Exception Handling,” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3B, for more information 
on handling interrupts and exceptions through handler tasks.

6.4.3 Interrupt and Exception Handling in Real-Address Mode
When operating in real-address mode, the processor responds to an interrupt or 
exception with an implicit far call to an interrupt or exception handler. The processor 
uses the interrupt or exception vector number as an index into an interrupt table. The 
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interrupt table contains instruction pointers to the interrupt and exception handler 
procedures.

The processor saves the state of the EFLAGS register, the EIP register, the CS 
register, and an optional error code on the stack before switching to the handler 
procedure.

A return from the interrupt or exception handler is carried out with the IRET 
instruction. 

See Chapter 20, “8086 Emulation,” in the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3B, for more information on handling interrupts 
and exceptions in real-address mode.

6.4.4 INT n, INTO, INT 3, and BOUND Instructions
The INT n, INTO, INT 3, and BOUND instructions allow a program or task to explicitly 
call an interrupt or exception handler. The INT n instruction uses an interrupt vector 
as an argument, which allows a program to call any interrupt handler.

The INTO instruction explicitly calls the overflow exception (#OF) handler if the over-
flow flag (OF) in the EFLAGS register is set. The OF flag indicates overflow on arith-
metic instructions, but it does not automatically raise an overflow exception. An 
overflow exception can only be raised explicitly in either of the following ways:
• Execute the INTO instruction.
• Test the OF flag and execute the INT n instruction with an argument of 4 (the 

vector number of the overflow exception) if the flag is set.

Both the methods of dealing with overflow conditions allow a program to test for 
overflow at specific places in the instruction stream.

The INT 3 instruction explicitly calls the breakpoint exception (#BP) handler.

The BOUND instruction explicitly calls the BOUND-range exceeded exception (#BR) 
handler if an operand is found to be not within predefined boundaries in memory. 
This instruction is provided for checking references to arrays and other data struc-
tures. Like the overflow exception, the BOUND-range exceeded exception can only 
be raised explicitly with the BOUND instruction or the INT n instruction with an argu-
ment of 5 (the vector number of the bounds-check exception). The processor does 
not implicitly perform bounds checks and raise the BOUND-range exceeded excep-
tion.

6.4.5 Handling Floating-Point Exceptions
When operating on individual or packed floating-point values, the IA-32 architecture 
supports a set of six floating-point exceptions. These exceptions can be generated 
during operations performed by the x87 FPU instructions or by SSE/SSE2/SSE3 
instructions. When an x87 FPU instruction (including the FISTTP instruction in SSE3) 
generates one or more of these exceptions, it in turn generates floating-point error 
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exception (#MF); when an SSE/SSE2/SSE3 instruction generates a floating-point 
exception, it in turn generates SIMD floating-point exception (#XM). 

See the following sections for further descriptions of the floating-point exceptions, 
how they are generated, and how they are handled:
• Section 4.9.1, “Floating-Point Exception Conditions,” and Section 4.9.3, “Typical 

Actions of a Floating-Point Exception Handler”
• Section 8.4, “x87 FPU Floating-Point Exception Handling,” and Section 8.5, “x87 

FPU Floating-Point Exception Conditions”
• Section 11.5.1, “SIMD Floating-Point Exceptions”
• Interrupt Behavior

6.4.6 Interrupt and Exception Behavior in 64-Bit Mode
64-bit extensions expand the legacy IA-32 interrupt-processing and exception-
processing mechanism to allow support for 64-bit operating systems and applica-
tions. Changes include:
• All interrupt handlers pointed to by the IDT are 64-bit code (does not apply to the 

SMI handler).
• The size of interrupt-stack pushes is fixed at 64 bits. The processor uses 8-byte, 

zero extended stores.
• The stack pointer (SS:RSP) is pushed unconditionally on interrupts. In legacy 

environments, this push is conditional and based on a change in current privilege 
level (CPL).

• The new SS is set to NULL if there is a change in CPL.
• IRET behavior changes.
• There is a new interrupt stack-switch mechanism.
• The alignment of interrupt stack frame is different.

6.5 PROCEDURE CALLS FOR BLOCK-STRUCTURED 
LANGUAGES

The IA-32 architecture supports an alternate method of performing procedure calls 
with the ENTER (enter procedure) and LEAVE (leave procedure) instructions. These 
instructions automatically create and release, respectively, stack frames for called 
procedures. The stack frames have predefined spaces for local variables and the 
necessary pointers to allow coherent returns from called procedures. They also allow 
scope rules to be implemented so that procedures can access their own local vari-
ables and some number of other variables located in other stack frames.
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ENTER and LEAVE offer two benefits:
• They provide machine-language support for implementing block-structured 

languages, such as C and Pascal. 
• They simplify procedure entry and exit in compiler-generated code.

6.5.1 ENTER Instruction
The ENTER instruction creates a stack frame compatible with the scope rules typically 
used in block-structured languages. In block-structured languages, the scope of a 
procedure is the set of variables to which it has access. The rules for scope vary 
among languages. They may be based on the nesting of procedures, the division of 
the program into separately compiled files, or some other modularization scheme.

ENTER has two operands. The first specifies the number of bytes to be reserved on 
the stack for dynamic storage for the procedure being called. Dynamic storage is the 
memory allocated for variables created when the procedure is called, also known as 
automatic variables. The second parameter is the lexical nesting level (from 0 to 31) 
of the procedure. The nesting level is the depth of a procedure in a hierarchy of 
procedure calls. The lexical level is unrelated to either the protection privilege level or 
to the I/O privilege level of the currently running program or task.

ENTER, in the following example, allocates 2 Kbytes of dynamic storage on the stack 
and sets up pointers to two previous stack frames in the stack frame for this proce-
dure:

ENTER 2048,3

The lexical nesting level determines the number of stack frame pointers to copy into 
the new stack frame from the preceding frame. A stack frame pointer is a doubleword 
used to access the variables of a procedure. The set of stack frame pointers used by 
a procedure to access the variables of other procedures is called the display. The first 
doubleword in the display is a pointer to the previous stack frame. This pointer is 
used by a LEAVE instruction to undo the effect of an ENTER instruction by discarding 
the current stack frame.

After the ENTER instruction creates the display for a procedure, it allocates the 
dynamic local variables for the procedure by decrementing the contents of the ESP 
register by the number of bytes specified in the first parameter. This new value in the 
ESP register serves as the initial top-of-stack for all PUSH and POP operations within 
the procedure.

To allow a procedure to address its display, the ENTER instruction leaves the EBP 
register pointing to the first doubleword in the display. Because stacks grow down, 
this is actually the doubleword with the highest address in the display. Data manipu-
lation instructions that specify the EBP register as a base register automatically 
address locations within the stack segment instead of the data segment.

The ENTER instruction can be used in two ways: nested and non-nested. If the lexical 
level is 0, the non-nested form is used. The non-nested form pushes the contents of 
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the EBP register on the stack, copies the contents of the ESP register into the EBP 
register, and subtracts the first operand from the contents of the ESP register to allo-
cate dynamic storage. The non-nested form differs from the nested form in that no 
stack frame pointers are copied. The nested form of the ENTER instruction occurs 
when the second parameter (lexical level) is not zero.

The following pseudo code shows the formal definition of the ENTER instruction. 
STORAGE is the number of bytes of dynamic storage to allocate for local variables, 
and LEVEL is the lexical nesting level.

PUSH EBP;
FRAME_PTR ← ESP;
IF LEVEL > 0 

THEN
DO (LEVEL − 1) times

EBP ← EBP − 4;
PUSH Pointer(EBP); (* doubleword pointed to by EBP *)

OD;
PUSH FRAME_PTR;

FI;
EBP ← FRAME_PTR;
ESP ← ESP − STORAGE;

The main procedure (in which all other procedures are nested) operates at the 
highest lexical level, level 1. The first procedure it calls operates at the next deeper 
lexical level, level 2. A level 2 procedure can access the variables of the main 
program, which are at fixed locations specified by the compiler. In the case of level 1, 
the ENTER instruction allocates only the requested dynamic storage on the stack 
because there is no previous display to copy.

A procedure that calls another procedure at a lower lexical level gives the called 
procedure access to the variables of the caller. The ENTER instruction provides this 
access by placing a pointer to the calling procedure's stack frame in the display.

A procedure that calls another procedure at the same lexical level should not give 
access to its variables. In this case, the ENTER instruction copies only that part of the 
display from the calling procedure which refers to previously nested procedures 
operating at higher lexical levels. The new stack frame does not include the pointer 
for addressing the calling procedure’s stack frame.

The ENTER instruction treats a re-entrant procedure as a call to a procedure at the 
same lexical level. In this case, each succeeding iteration of the re-entrant procedure 
can address only its own variables and the variables of the procedures within which it 
is nested. A re-entrant procedure always can address its own variables; it does not 
require pointers to the stack frames of previous iterations.

By copying only the stack frame pointers of procedures at higher lexical levels, the 
ENTER instruction makes certain that procedures access only those variables of 
higher lexical levels, not those at parallel lexical levels (see Figure 6-6).
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Block-structured languages can use the lexical levels defined by ENTER to control 
access to the variables of nested procedures. In Figure 6-6, for example, if procedure 
A calls procedure B which, in turn, calls procedure C, then procedure C will have 
access to the variables of the MAIN procedure and procedure A, but not those of 
procedure B because they are at the same lexical level. The following definition 
describes the access to variables for the nested procedures in Figure 6-6.

1. MAIN has variables at fixed locations.

2. Procedure A can access only the variables of MAIN.

3. Procedure B can access only the variables of procedure A and MAIN. Procedure B 
cannot access the variables of procedure C or procedure D.

4. Procedure C can access only the variables of procedure A and MAIN. Procedure C 
cannot access the variables of procedure B or procedure D.

5. Procedure D can access the variables of procedure C, procedure A, and MAIN. 
Procedure D cannot access the variables of procedure B.

In Figure 6-7, an ENTER instruction at the beginning of the MAIN procedure creates 
three doublewords of dynamic storage for MAIN, but copies no pointers from other 
stack frames. The first doubleword in the display holds a copy of the last value in the 
EBP register before the ENTER instruction was executed. The second doubleword 
holds a copy of the contents of the EBP register following the ENTER instruction. After 
the instruction is executed, the EBP register points to the first doubleword pushed on 
the stack, and the ESP register points to the last doubleword in the stack frame.

When MAIN calls procedure A, the ENTER instruction creates a new display (see 
Figure 6-8). The first doubleword is the last value held in MAIN's EBP register. The 
second doubleword is a pointer to MAIN's stack frame which is copied from the 
second doubleword in MAIN's display. This happens to be another copy of the last 
value held in MAIN’s EBP register. Procedure A can access variables in MAIN because 
MAIN is at level 1. 

Figure 6-6.  Nested Procedures

Main (Lexical Level 1) 

Procedure A (Lexical Level 2) 

Procedure B (Lexical Level 3) 

Procedure C (Lexical Level 3)

Procedure D (Lexical Level 4) 
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Therefore the base address for the dynamic storage used in MAIN is the current 
address in the EBP register, plus four bytes to account for the saved contents of 
MAIN’s EBP register. All dynamic variables for MAIN are at fixed, positive offsets from 
this value. 

When procedure A calls procedure B, the ENTER instruction creates a new display 
(see Figure 6-9). The first doubleword holds a copy of the last value in procedure A’s 
EBP register. The second and third doublewords are copies of the two stack frame 
pointers in procedure A’s display. Procedure B can access variables in procedure A 
and MAIN by using the stack frame pointers in its display.

Figure 6-7.  Stack Frame After Entering the MAIN Procedure

Figure 6-8.  Stack Frame After Entering Procedure A
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When procedure B calls procedure C, the ENTER instruction creates a new display for 
procedure C (see Figure 6-10). The first doubleword holds a copy of the last value in 
procedure B’s EBP register. This is used by the LEAVE instruction to restore procedure 
B’s stack frame. The second and third doublewords are copies of the two stack frame 
pointers in procedure A’s display. If procedure C were at the next deeper lexical level 
from procedure B, a fourth doubleword would be copied, which would be the stack 
frame pointer to procedure B’s local variables. 

Note that procedure B and procedure C are at the same level, so procedure C is not 
intended to access procedure B’s variables. This does not mean that procedure C is 
completely isolated from procedure B; procedure C is called by procedure B, so the 
pointer to the returning stack frame is a pointer to procedure B’s stack frame. In 
addition, procedure B can pass parameters to procedure C either on the stack or 
through variables global to both procedures (that is, variables in the scope of both 
procedures).

Figure 6-9.  Stack Frame After Entering Procedure B
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6.5.2 LEAVE Instruction
The LEAVE instruction, which does not have any operands, reverses the action of the 
previous ENTER instruction. The LEAVE instruction copies the contents of the EBP 
register into the ESP register to release all stack space allocated to the procedure. 
Then it restores the old value of the EBP register from the stack. This simultaneously 
restores the ESP register to its original value. A subsequent RET instruction then can 
remove any arguments and the return address pushed on the stack by the calling 
program for use by the procedure.

Figure 6-10.  Stack Frame After Entering Procedure C
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CHAPTER 7
PROGRAMMING WITH

GENERAL-PURPOSE INSTRUCTIONS

General-purpose (GP) instructions are a subset of the IA-32 instructions that repre-
sent the fundamental instruction set for the Intel IA-32 processors. These instruc-
tions were introduced into the IA-32 architecture with the first IA-32 processors (the 
Intel 8086 and 8088). Additional instructions were added to the general-purpose 
instruction set in subsequent families of IA-32 processors (the Intel 286, Intel386, 
Intel486, Pentium, Pentium Pro, and Pentium II processors). 

Intel 64 architecture further extends the capability of most general-purpose instruc-
tions so that they are able to handle 64-bit data in 64-bit mode. A small number of 
general-purpose instructions (still supported in non-64-bit modes) are not supported 
in 64-bit mode.

General-purpose instructions perform basic data movement, memory addressing, 
arithmetic and logical, program flow control, input/output, and string operations on a 
set of integer, pointer, and BCD data types. This chapter provides an overview of the 
general-purpose instructions. See Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volumes 3A & 3B, for detailed descriptions of individual instruc-
tions.

7.1 PROGRAMMING ENVIRONMENT FOR GP 
INSTRUCTIONS

The programming environment for the general-purpose instructions consists of the 
set of registers and address space. The environment includes the following items:
• General-purpose registers — Eight 32-bit general-purpose registers (see 

Section 3.4.1, “General-Purpose Registers”) are used in non-64-bit modes to 
address operands in memory. These registers are referenced by the names EAX, 
EBX, ECX, EDX, EBP, ESI EDI, and ESP. 

• Segment registers — The six 16-bit segment registers contain segment 
pointers for use in accessing memory (see Section 3.4.2, “Segment Registers”). 
These registers are referenced by the names CS, DS, SS, ES, FS, and GS.

• EFLAGS register — This 32-bit register (see Section 3.4.3, “EFLAGS Register”) 
is used to provide status and control for basic arithmetic, compare, and system 
operations. 

• EIP register — This 32-bit register contains the current instruction pointer (see 
Section 3.4.3, “EFLAGS Register”). 

General-purpose instructions operate on the following data types. The width of valid 
data types is dependent on processor mode (see Chapter 4):
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• Bytes, words, doublewords
• Signed and unsigned byte, word, doubleword integers
• Near and far pointers
• Bit fields
• BCD integers

7.2 PROGRAMMING ENVIRONMENT FOR GP 
INSTRUCTIONS IN 64-BIT MODE

The programming environment for the general-purpose instructions in 64-bit mode is 
similar to that described in Section 7.1.
• General-purpose registers — In 64-bit mode, sixteen general-purpose 

registers available. These include the eight GPRs described in Section 7.1 and 
eight new GPRs (R8D-R15D). R8D-R15D are available by using a REX prefix. All 
sixteen GPRs can be promoted to 64 bits. The 64-bit registers are referenced as 
RAX, RBX, RCX, RDX, RBP, RSI, RDI, RSP and R8-R15 (see Section 3.4.1.1, 
“General-Purpose Registers in 64-Bit Mode”). Promotion to 64-bit operand 
requires REX prefix encodings.

• Segment registers — In 64-bit mode, segmentation is available but it is set up 
uniquely (see Section 3.4.2.1, “Segment Registers in 64-Bit Mode”).

• Flags and Status register — When the processor is running in 64-bit mode, 
EFLAGS becomes the 64-bit RFLAGS register (see Section 3.4.3, “EFLAGS 
Register”).

• Instruction Pointer register — In 64-bit mode, the EIP register becomes the 
64-bit RIP register (see Section 3.5.1, “Instruction Pointer in 64-Bit Mode”).

General-purpose instructions operate on the following data types in 64-bit mode. The 
width of valid data types is dependent on default operand size, address size, or a 
prefix that overrides the default size:
• Bytes, words, doublewords, quadwords
• Signed and unsigned byte, word, doubleword, quadword integers
• Near and far pointers
• Bit fields

See also: 
• Chapter 3, “Basic Execution Environment,” for more information about IA-32e 

modes.
• Chapter 2, “Instruction Format,” in the Intel® 64 and IA-32 Architectures 

Software Developer’s Manual, Volume 2A, for more detailed information about 
REX prefixes.
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• Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 
2A & 2B for a complete listing of all instructions. This information documents the 
behavior of individual instructions in the 64-bit mode context.

7.3 SUMMARY OF GP INSTRUCTIONS
General purpose instructions are divided into the following subgroups: 
• Data transfer
• Binary arithmetic
• Decimal arithmetic
• Logical
• Shift and rotate
• Bit and byte
• Control transfer
• String
• I/O
• Enter and Leave
• Flag control
• Segment register
• Miscellaneous

Each sub-group of general-purpose instructions is discussed in the context of non-
64-bit mode operation first. Changes in 64-bit mode beyond those affected by the 
use of the REX prefixes are discussed in separate sub-sections within each subgroup. 
For a simple list of general-purpose instructions by subgroup, see Chapter 5.

7.3.1 Data Transfer Instructions
The data transfer instructions move bytes, words, doublewords, or quadwords both 
between memory and the processor’s registers and between registers. For the 
purpose of this discussion, these instructions are divided into subordinate subgroups 
that provide for:
• General data movement
• Exchange
• Stack manipulation
• Type conversion
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7.3.1.1  General Data Movement Instructions
Move instructions — The MOV (move) and CMOVcc (conditional move) instructions 
transfer data between memory and registers or between registers.

The MOV instruction performs basic load data and store data operations between 
memory and the processor’s registers and data movement operations between regis-
ters. It handles data transfers along the paths listed in Table 7-1. (See “MOV—Move 
to/from Control Registers” and “MOV—Move to/from Debug Registers” in Chapter 3, 
“Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 2A, for information on moving data to and from the 
control and debug registers.) 

The MOV instruction cannot move data from one memory location to another or from 
one segment register to another segment register. Memory-to-memory moves are 
performed with the MOVS (string move) instruction (see Section 7.3.9, “String Oper-
ations”). 

Conditional move instructions — The CMOVcc instructions are a group of instruc-
tions that check the state of the status flags in the EFLAGS register and perform a 
move operation if the flags are in a specified state. These instructions can be used to 
move a 16-bit or 32-bit value from memory to a general-purpose register or from 
one general-purpose register to another. The flag state being tested is specified with 
a condition code (cc) associated with the instruction. If the condition is not satisfied, 
a move is not performed and execution continues with the instruction following the 
CMOVcc instruction.

Table 7-1.  Move Instruction Operations

Type of Data Movement Source → Destination

From memory to a register Memory location → General-purpose register

Memory location → Segment register

From a register to memory General-purpose register → Memory location

Segment register → Memory location

Between registers General-purpose register → General-purpose register

General-purpose register → Segment register

Segment register → General-purpose register

General-purpose register → Control register

Control register → General-purpose register

General-purpose register → Debug register

Debug register → General-purpose register

Immediate data to a register Immediate → General-purpose register

Immediate data to memory Immediate → Memory location
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Table 7-2 shows mnemonics for CMOVcc instructions and the conditions being tested 
for each instruction. The condition code mnemonics are appended to the letters 
“CMOV” to form the mnemonics for CMOVcc instructions. The instructions listed in 
Table 7-2 as pairs (for example, CMOVA/CMOVNBE) are alternate names for the 
same instruction. The assembler provides these alternate names to make it easier to 
read program listings.

CMOVcc instructions are useful for optimizing small IF constructions. They also help 
eliminate branching overhead for IF statements and the possibility of branch mispre-
dictions by the processor. 

These conditional move instructions are supported in the P6 family, Pentium 4, and 
Intel Xeon processors. Software can check if CMOVcc instructions are supported by 
checking the processor’s feature information with the CPUID instruction.

7.3.1.2  Exchange Instructions 
The exchange instructions swap the contents of one or more operands and, in some 
cases, perform additional operations such as asserting the LOCK signal or modifying 
flags in the EFLAGS register.

The XCHG (exchange) instruction swaps the contents of two operands. This instruc-
tion takes the place of three MOV instructions and does not require a temporary loca-
tion to save the contents of one operand location while the other is being loaded. 
When a memory operand is used with the XCHG instruction, the processor’s LOCK 
signal is automatically asserted. This instruction is thus useful for implementing 
semaphores or similar data structures for process synchronization. See “Bus 
Locking” in Chapter 8, “Multiple-Processor Management,”of the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A, for more information on bus 
locking.

The BSWAP (byte swap) instruction reverses the byte order in a 32-bit register 
operand. Bit positions 0 through 7 are exchanged with 24 through 31, and bit posi-
tions 8 through 15 are exchanged with 16 through 23. Executing this instruction 
twice in a row leaves the register with the same value as before. The BSWAP instruc-
tion is useful for converting between “big-endian” and “little-endian” data formats. 
This instruction also speeds execution of decimal arithmetic. (The XCHG instruction 
can be used to swap the bytes in a word.)
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The XADD (exchange and add) instruction swaps two operands and then stores the 
sum of the two operands in the destination operand. The status flags in the EFLAGS 
register indicate the result of the addition. This instruction can be combined with the 
LOCK prefix (see “LOCK—Assert LOCK# Signal Prefix” in Chapter 3, “Instruction Set 
Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 2A) in a multiprocessing system to allow multiple processors to 
execute one DO loop.

The CMPXCHG (compare and exchange) and CMPXCHG8B (compare and exchange 
8 bytes) instructions are used to synchronize operations in systems that use 
multiple processors. The CMPXCHG instruction requires three operands: a source 
operand in a register, another source operand in the EAX register, and a destination 
operand. If the values contained in the destination operand and the EAX register are 
equal, the destination operand is replaced with the value of the other source 
operand (the value not in the EAX register). Otherwise, the original value of the 
destination operand is loaded in the EAX register. The status flags in the EFLAGS 

Table 7-2.  Conditional Move Instructions

Instruction Mnemonic Status Flag States Condition Description

Unsigned Conditional Moves

  CMOVA/CMOVNBE (CF or ZF) = 0 Above/not below or equal

  CMOVAE/CMOVNB CF = 0 Above or equal/not below

  CMOVNC CF = 0 Not carry

  CMOVB/CMOVNAE CF = 1 Below/not above or equal

  CMOVC CF = 1 Carry

  CMOVBE/CMOVNA (CF or ZF) = 1 Below or equal/not above

  CMOVE/CMOVZ ZF = 1 Equal/zero

  CMOVNE/CMOVNZ ZF = 0 Not equal/not zero

  CMOVP/CMOVPE PF = 1 Parity/parity even

  CMOVNP/CMOVPO PF = 0 Not parity/parity odd

Signed Conditional Moves

  CMOVGE/CMOVNL (SF xor OF) = 0 Greater or equal/not less

  CMOVL/CMOVNGE (SF xor OF) = 1 Less/not greater or equal

  CMOVLE/CMOVNG ((SF xor OF) or ZF) = 1 Less or equal/not greater

  CMOVO OF = 1 Overflow

  CMOVNO OF = 0 Not overflow

  CMOVS SF = 1 Sign (negative)

  CMOVNS SF = 0 Not sign (non-negative)
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register reflect the result that would have been obtained by subtracting the destina-
tion operand from the value in the EAX register.

The CMPXCHG instruction is commonly used for testing and modifying semaphores. 
It checks to see if a semaphore is free. If the semaphore is free, it is marked allo-
cated; otherwise it gets the ID of the current owner. This is all done in one uninter-
ruptible operation. In a single-processor system, the CMPXCHG instruction 
eliminates the need to switch to protection level 0 (to disable interrupts) before 
executing multiple instructions to test and modify a semaphore. 

For multiple processor systems, CMPXCHG can be combined with the LOCK prefix to 
perform the compare and exchange operation atomically. (See “Locked Atomic Oper-
ations” in Chapter 8, “Multiple-Processor Management,” of the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A, for more information on 
atomic operations.)

The CMPXCHG8B instruction also requires three operands: a 64-bit value in 
EDX:EAX, a 64-bit value in ECX:EBX, and a destination operand in memory. The 
instruction compares the 64-bit value in the EDX:EAX registers with the destination 
operand. If they are equal, the 64-bit value in the ECX:EBX register is stored in the 
destination operand. If the EDX:EAX register and the destination are not equal, the 
destination is loaded in the EDX:EAX register. The CMPXCHG8B instruction can be 
combined with the LOCK prefix to perform the operation atomically.

7.3.1.3  Exchange Instructions in 64-Bit Mode 
The CMPXCHG16B instruction is available in 64-bit mode only. It is an extension of 
the functionality provided by CMPXCHG8B that operates on 128-bits of data.

7.3.1.4  Stack Manipulation Instructions
The PUSH, POP, PUSHA (push all registers), and POPA (pop all registers) instructions 
move data to and from the stack. The PUSH instruction decrements the stack pointer 
(contained in the ESP register), then copies the source operand to the top of stack 
(see Figure 7-1). It operates on memory operands, immediate operands, and 
register operands (including segment registers). The PUSH instruction is commonly 
used to place parameters on the stack before calling a procedure. It can also be used 
to reserve space on the stack for temporary variables.
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The PUSHA instruction saves the contents of the eight general-purpose registers on 
the stack (see Figure 7-2). This instruction simplifies procedure calls by reducing the 
number of instructions required to save the contents of the general-purpose regis-
ters. The registers are pushed on the stack in the following order: EAX, ECX, EDX, 
EBX, the initial value of ESP before EAX was pushed, EBP, ESI, and EDI. 

The POP instruction copies the word or doubleword at the current top of stack (indi-
cated by the ESP register) to the location specified with the destination operand. It 
then increments the ESP register to point to the new top of stack (see Figure 7-3). 
The destination operand may specify a general-purpose register, a segment register, 
or a memory location. 

Figure 7-1.  Operation of the PUSH Instruction

Figure 7-2.  Operation of the PUSHA Instruction
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The POPA instruction reverses the effect of the PUSHA instruction. It pops the top 
eight words or doublewords from the top of the stack into the general-purpose regis-
ters, except for the ESP register (see Figure 7-4). If the operand-size attribute is 32, 
the doublewords on the stack are transferred to the registers in the following order: 
EDI, ESI, EBP, ignore doubleword, EBX, EDX, ECX, and EAX. The ESP register is 
restored by the action of popping the stack. If the operand-size attribute is 16, the 
words on the stack are transferred to the registers in the following order: DI, SI, BP, 
ignore word, BX, DX, CX, and AX.

7.3.1.5  Stack Manipulation Instructions in 64-Bit Mode
In 64-bit mode, the stack pointer size is 64 bits and cannot be overridden by an 
instruction prefix. In implicit stack references, address-size overrides are ignored. 
Pushes and pops of 32-bit values on the stack are not possible in 64-bit mode. 16-bit 

Figure 7-3.  Operation of the POP Instruction

Figure 7-4.  Operation of the POPA Instruction
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pushes and pops are supported by using the 66H operand-size prefix. PUSHA, 
PUSHAD, POPA, and POPAD are not supported.

7.3.1.6  Type Conversion Instructions
The type conversion instructions convert bytes into words, words into doublewords, 
and doublewords into quadwords. These instructions are especially useful for 
converting integers to larger integer formats, because they perform sign extension 
(see Figure 7-5).

Two kinds of type conversion instructions are provided: simple conversion and move 
and convert.
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Simple conversion — The CBW (convert byte to word), CWDE (convert word to 
doubleword extended), CWD (convert word to doubleword), and CDQ (convert 
doubleword to quadword) instructions perform sign extension to double the size of 
the source operand.

The CBW instruction copies the sign (bit 7) of the byte in the AL register into every bit 
position of the upper byte of the AX register. The CWDE instruction copies the sign 
(bit 15) of the word in the AX register into every bit position of the high word of the 
EAX register.

The CWD instruction copies the sign (bit 15) of the word in the AX register into every 
bit position in the DX register. The CDQ instruction copies the sign (bit 31) of the 
doubleword in the EAX register into every bit position in the EDX register. The CWD 
instruction can be used to produce a doubleword dividend from a word before a word 
division, and the CDQ instruction can be used to produce a quadword dividend from 
a doubleword before doubleword division.

Move with sign or zero extension — The MOVSX (move with sign extension) and 
MOVZX (move with zero extension) instructions move the source operand into a 
register then perform the sign extension.

The MOVSX instruction extends an 8-bit value to a 16-bit value or an 8-bit or 16-bit 
value to a 32-bit value by sign extending the source operand, as shown in Figure 7-5. 
The MOVZX instruction extends an 8-bit value to a 16-bit value or an 8-bit or 16-bit 
value to a 32-bit value by zero extending the source operand.

7.3.1.7  Type Conversion Instructions in 64-Bit Mode
The MOVSXD instruction operates on 64-bit data. It sign-extends a 32-bit value to 64 
bits. This instruction is not encodable in non-64-bit modes.

Figure 7-5.  Sign Extension
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7.3.2 Binary Arithmetic Instructions
Binary arithmetic instructions operate on 8-, 16-, and 32-bit numeric data encoded 
as signed or unsigned binary integers. The binary arithmetic instructions may also be 
used in algorithms that operate on decimal (BCD) values.

For the purpose of this discussion, these instructions are divided subordinate 
subgroups of instructions that:
• Add and subtract
• Increment and decrement
• Compare and change signs
• Multiply and divide

7.3.2.1  Addition and Subtraction Instructions
The ADD (add integers), ADC (add integers with carry), SUB (subtract integers), and 
SBB (subtract integers with borrow) instructions perform addition and subtraction 
operations on signed or unsigned integer operands.

The ADD instruction computes the sum of two integer operands. 

The ADC instruction computes the sum of two integer operands, plus 1 if the CF flag 
is set. This instruction is used to propagate a carry when adding numbers in stages. 

The SUB instruction computes the difference of two integer operands. 

The SBB instruction computes the difference of two integer operands, minus 1 if the 
CF flag is set. This instruction is used to propagate a borrow when subtracting 
numbers in stages.

7.3.2.2  Increment and Decrement Instructions
The INC (increment) and DEC (decrement) instructions add 1 to or subtract 1 from 
an unsigned integer operand, respectively. A primary use of these instructions is for 
implementing counters.

7.3.2.3  Increment and Decrement Instructions in 64-Bit Mode
The INC and DEC instructions are supported in 64-bit mode. However, some forms of 
INC and DEC (the register operand being encoded using register extension field in 
the MOD R/M byte) are not encodable in 64-bit mode because the opcodes are 
treated as REX prefixes.

7.3.2.4  Comparison and Sign Change Instruction
The CMP (compare) instruction computes the difference between two integer oper-
ands and updates the OF, SF, ZF, AF, PF, and CF flags according to the result. The 
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source operands are not modified, nor is the result saved. The CMP instruction is 
commonly used in conjunction with a Jcc (jump) or SETcc (byte set on condition) 
instruction, with the latter instructions performing an action based on the result of a 
CMP instruction.

The NEG (negate) instruction subtracts a signed integer operand from zero. The 
effect of the NEG instruction is to change the sign of a two's complement operand 
while keeping its magnitude.

7.3.2.5  Multiplication and Divide Instructions
The processor provides two multiply instructions, MUL (unsigned multiply) and IMUL 
signed multiply), and two divide instructions, DIV (unsigned divide) and IDIV (signed 
divide).

The MUL instruction multiplies two unsigned integer operands. The result is 
computed to twice the size of the source operands (for example, if word operands are 
being multiplied, the result is a doubleword).

The IMUL instruction multiplies two signed integer operands. The result is computed 
to twice the size of the source operands; however, in some cases the result is trun-
cated to the size of the source operands (see “IMUL—Signed Multiply” in Chapter 3, 
“Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 2A).

The DIV instruction divides one unsigned operand by another unsigned operand and 
returns a quotient and a remainder.

The IDIV instruction is identical to the DIV instruction, except that IDIV performs a 
signed division.

7.3.3 Decimal Arithmetic Instructions
Decimal arithmetic can be performed by combining the binary arithmetic instructions 
ADD, SUB, MUL, and DIV (discussed in Section 7.3.2, “Binary Arithmetic Instruc-
tions”) with the decimal arithmetic instructions. The decimal arithmetic instructions 
are provided to carry out the following operations:
• To adjust the results of a previous binary arithmetic operation to produce a valid 

BCD result.
• To adjust the operands of a subsequent binary arithmetic operation so that the 

operation will produce a valid BCD result. 

These instructions operate on both packed and unpacked BCD values. For the 
purpose of this discussion, the decimal arithmetic instructions are divided subordi-
nate subgroups of instructions that provide:
• Packed BCD adjustments
• Unpacked BCD adjustments
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7.3.3.1  Packed BCD Adjustment Instructions
The DAA (decimal adjust after addition) and DAS (decimal adjust after subtraction) 
instructions adjust the results of operations performed on packed BCD integers 
(see Section 4.7, “BCD and Packed BCD Integers”). Adding two packed BCD values 
requires two instructions: an ADD instruction followed by a DAA instruction. The ADD 
instruction adds (binary addition) the two values and stores the result in the AL 
register. The DAA instruction then adjusts the value in the AL register to obtain a 
valid, 2-digit, packed BCD value and sets the CF flag if a decimal carry occurred as 
the result of the addition.

Likewise, subtracting one packed BCD value from another requires a SUB instruction 
followed by a DAS instruction. The SUB instruction subtracts (binary subtraction) one 
BCD value from another and stores the result in the AL register. The DAS instruction 
then adjusts the value in the AL register to obtain a valid, 2-digit, packed BCD value 
and sets the CF flag if a decimal borrow occurred as the result of the subtraction. 

7.3.3.2  Unpacked BCD Adjustment Instructions
The AAA (ASCII adjust after addition), AAS (ASCII adjust after subtraction), AAM 
(ASCII adjust after multiplication), and AAD (ASCII adjust before division) instruc-
tions adjust the results of arithmetic operations performed in unpacked BCD 
values (see Section 4.7, “BCD and Packed BCD Integers”). All these instructions 
assume that the value to be adjusted is stored in the AL register or, in one instance, 
the AL and AH registers. 

The AAA instruction adjusts the contents of the AL register following the addition of 
two unpacked BCD values. It converts the binary value in the AL register into a 
decimal value and stores the result in the AL register in unpacked BCD format (the 
decimal number is stored in the lower 4 bits of the register and the upper 4 bits are 
cleared). If a decimal carry occurred as a result of the addition, the CF flag is set and 
the contents of the AH register are incremented by 1.

The AAS instruction adjusts the contents of the AL register following the subtraction 
of two unpacked BCD values. Here again, a binary value is converted into an 
unpacked BCD value. If a borrow was required to complete the decimal subtract, the 
CF flag is set and the contents of the AH register are decremented by 1.

The AAM instruction adjusts the contents of the AL register following a multiplication 
of two unpacked BCD values. It converts the binary value in the AL register into a 
decimal value and stores the least significant digit of the result in the AL register (in 
unpacked BCD format) and the most significant digit, if there is one, in the AH 
register (also in unpacked BCD format).

The AAD instruction adjusts a two-digit BCD value so that when the value is divided 
with the DIV instruction, a valid unpacked BCD result is obtained. The instruction 
converts the BCD value in registers AH (most significant digit) and AL (least signifi-
cant digit) into a binary value and stores the result in register AL. When the value in 
AL is divided by an unpacked BCD value, the quotient and remainder will be automat-
ically encoded in unpacked BCD format.
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7.3.4 Decimal Arithmetic Instructions in 64-Bit Mode
Decimal arithmetic instructions are not supported in 64-bit mode, They are either 
invalid or not encodable.

7.3.5 Logical Instructions
The logical instructions AND, OR, XOR (exclusive or), and NOT perform the standard 
Boolean operations for which they are named. The AND, OR, and XOR instructions 
require two operands; the NOT instruction operates on a single operand.

7.3.6 Shift and Rotate Instructions
The shift and rotate instructions rearrange the bits within an operand. For the 
purpose of this discussion, these instructions are further divided subordinate 
subgroups of instructions that:
• Shift bits
• Double-shift bits (move them between operands)
• Rotate bits

7.3.6.1  Shift Instructions
The SAL (shift arithmetic left), SHL (shift logical left), SAR (shift arithmetic right), 
SHR (shift logical right) instructions perform an arithmetic or logical shift of the bits 
in a byte, word, or doubleword. 

The SAL and SHL instructions perform the same operation (see Figure 7-6). They 
shift the source operand left by from 1 to 31 bit positions. Empty bit positions are 
cleared. The CF flag is loaded with the last bit shifted out of the operand.
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The SHR instruction shifts the source operand right by from 1 to 31 bit positions (see 
Figure 7-7). As with the SHL/SAL instruction, the empty bit positions are cleared and 
the CF flag is loaded with the last bit shifted out of the operand.

Figure 7-6.  SHL/SAL Instruction Operation

Figure 7-7.  SHR Instruction Operation
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The SAR instruction shifts the source operand right by from 1 to 31 bit positions (see 
Figure 7-8). This instruction differs from the SHR instruction in that it preserves the 
sign of the source operand by clearing empty bit positions if the operand is positive or 
setting the empty bits if the operand is negative. Again, the CF flag is loaded with the 
last bit shifted out of the operand.

The SAR and SHR instructions can also be used to perform division by powers of 
2 (see “SAL/SAR/SHL/SHR—Shift Instructions” in Chapter 4, “Instruction Set Refer-
ence, M-Z,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2B).

7.3.6.2  Double-Shift Instructions
The SHLD (shift left double) and SHRD (shift right double) instructions shift a speci-
fied number of bits from one operand to another (see Figure 7-9). They are provided 
to facilitate operations on unaligned bit strings. They can also be used to implement a 
variety of bit string move operations. 

Figure 7-8.  SAR Instruction Operation
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The SHLD instruction shifts the bits in the destination operand to the left and fills the 
empty bit positions (in the destination operand) with bits shifted out of the source 
operand. The destination and source operands must be the same length (either 
words or doublewords). The shift count can range from 0 to 31 bits. The result of this 
shift operation is stored in the destination operand, and the source operand is not 
modified. The CF flag is loaded with the last bit shifted out of the destination operand.

The SHRD instruction operates the same as the SHLD instruction except bits are 
shifted to the right in the destination operand, with the empty bit positions filled with 
bits shifted out of the source operand.

7.3.6.3  Rotate Instructions
The ROL (rotate left), ROR (rotate right), RCL (rotate through carry left) and RCR 
(rotate through carry right) instructions rotate the bits in the destination operand out 
of one end and back through the other end (see Figure 7-10). Unlike a shift, no bits 
are lost during a rotation. The rotate count can range from 0 to 31.

Figure 7-9.  SHLD and SHRD Instruction Operations
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The ROL instruction rotates the bits in the operand to the left (toward more signifi-
cant bit locations). The ROR instruction rotates the operand right (toward less signif-
icant bit locations).

The RCL instruction rotates the bits in the operand to the left, through the CF flag. 
This instruction treats the CF flag as a one-bit extension on the upper end of the 
operand. Each bit that exits from the most significant bit location of the operand 
moves into the CF flag. At the same time, the bit in the CF flag enters the least signif-
icant bit location of the operand.

The RCR instruction rotates the bits in the operand to the right through the CF flag. 

For all the rotate instructions, the CF flag always contains the value of the last bit 
rotated out of the operand, even if the instruction does not use the CF flag as an 
extension of the operand. The value of this flag can then be tested by a conditional 
jump instruction (JC or JNC).

Figure 7-10.  ROL, ROR, RCL, and RCR Instruction Operations

Destination (Memory or Register)CF

31 0

Destination (Memory or Register) CF

031

Destination (Memory or Register)CF

31 0

Destination (Memory or Register) CF

31 0

ROL Instruction

RCL Instruction

RCR Instruction

ROR Instruction
Vol. 1 7-19



PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS
7.3.7 Bit and Byte Instructions
These instructions operate on bit or byte strings. For the purpose of this discussion, 
they are further divided subordinate subgroups that:
• Test and modify a single bit
• Scan a bit string
• Set a byte given conditions
• Test operands and report results

7.3.7.1  Bit Test and Modify Instructions
The bit test and modify instructions (see Table 7-3) operate on a single bit, which can 
be in an operand. The location of the bit is specified as an offset from the least signif-
icant bit of the operand. When the processor identifies the bit to be tested and modi-
fied, it first loads the CF flag with the current value of the bit. Then it assigns a new 
value to the selected bit, as determined by the modify operation for the instruction. 

7.3.7.2  Bit Scan Instructions
The BSF (bit scan forward) and BSR (bit scan reverse) instructions scan a bit string in 
a source operand for a set bit and store the bit index of the first set bit found in a 
destination register. The bit index is the offset from the least significant bit (bit 0) in 
the bit string to the first set bit. The BSF instruction scans the source operand low-to-
high (from bit 0 of the source operand toward the most significant bit); the BSR 
instruction scans high-to-low (from the most significant bit toward the least signifi-
cant bit).

7.3.7.3  Byte Set on Condition Instructions
The SETcc (set byte on condition) instructions set a destination-operand byte to 0 or 
1, depending on the state of selected status flags (CF, OF, SF, ZF, and PF) in the 
EFLAGS register. The suffix (cc) added to the SET mnemonic determines the condi-
tion being tested for. 

For example, the SETO instruction tests for overflow. If the OF flag is set, the desti-
nation byte is set to 1; if OF is clear, the destination byte is cleared to 0. Appendix B, 

Table 7-3.  Bit Test and Modify Instructions

Instruction Effect on CF Flag Effect on Selected Bit

BT (Bit Test) CF flag ← Selected Bit No effect

BTS (Bit Test and Set) CF flag ← Selected Bit Selected Bit ← 1

BTR (Bit Test and Reset) CF flag ← Selected Bit Selected Bit ← 0

BTC (Bit Test and 
Complement)

CF flag ← Selected Bit Selected Bit ← NOT (Selected Bit)
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“EFLAGS Condition Codes,” lists the conditions it is possible to test for with this 
instruction.

7.3.7.4  Test Instruction
The TEST instruction performs a logical AND of two operands and sets the SF, ZF, and 
PF flags according to the results. The flags can then be tested by the conditional jump 
or loop instructions or the SETcc instructions. The TEST instruction differs from the 
AND instruction in that it does not alter either of the operands.

7.3.8 Control Transfer Instructions
The processor provides both conditional and unconditional control transfer instruc-
tions to direct the flow of program execution. Conditional transfers are taken only for 
specified states of the status flags in the EFLAGS register. Unconditional control 
transfers are always executed.

For the purpose of this discussion, these instructions are further divided subordinate 
subgroups that process:
• Unconditional transfers
• Conditional transfers
• Software interrupts

7.3.8.1  Unconditional Transfer Instructions
The JMP, CALL, RET, INT, and IRET instructions transfer program control to another 
location (destination address) in the instruction stream. The destination can be 
within the same code segment (near transfer) or in a different code segment (far 
transfer).

Jump instruction — The JMP (jump) instruction unconditionally transfers program 
control to a destination instruction. The transfer is one-way; that is, a return address 
is not saved. A destination operand specifies the address (the instruction pointer) of 
the destination instruction. The address can be a relative address or an absolute 
address.

A relative address is a displacement (offset) with respect to the address in the EIP 
register. The destination address (a near pointer) is formed by adding the displace-
ment to the address in the EIP register. The displacement is specified with a signed 
integer, allowing jumps either forward or backward in the instruction stream.

An absolute address is a offset from address 0 of a segment. It can be specified in 
either of the following ways:
• An address in a general-purpose register — This address is treated as a near 

pointer, which is copied into the EIP register. Program execution then continues at 
the new address within the current code segment.
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• An address specified using the standard addressing modes of the 
processor — Here, the address can be a near pointer or a far pointer. If the 
address is for a near pointer, the address is translated into an offset and copied 
into the EIP register. If the address is for a far pointer, the address is translated 
into a segment selector (which is copied into the CS register) and an offset 
(which is copied into the EIP register).

In protected mode, the JMP instruction also allows jumps to a call gate, a task gate, 
and a task-state segment.

Call and return instructions — The CALL (call procedure) and RET (return from 
procedure) instructions allow a jump from one procedure (or subroutine) to another 
and a subsequent jump back (return) to the calling procedure.

The CALL instruction transfers program control from the current (or calling proce-
dure) to another procedure (the called procedure). To allow a subsequent return to 
the calling procedure, the CALL instruction saves the current contents of the EIP 
register on the stack before jumping to the called procedure. The EIP register (prior 
to transferring program control) contains the address of the instruction following the 
CALL instruction. When this address is pushed on the stack, it is referred to as the 
return instruction pointer or return address.

The address of the called procedure (the address of the first instruction in the proce-
dure being jumped to) is specified in a CALL instruction the same way as it is in a JMP 
instruction (see “Jump instruction” on page 7-21). The address can be specified as a 
relative address or an absolute address. If an absolute address is specified, it can be 
either a near or a far pointer.

The RET instruction transfers program control from the procedure currently being 
executed (the called procedure) back to the procedure that called it (the calling 
procedure). Transfer of control is accomplished by copying the return instruction 
pointer from the stack into the EIP register. Program execution then continues with 
the instruction pointed to by the EIP register.

The RET instruction has an optional operand, the value of which is added to the 
contents of the ESP register as part of the return operation. This operand allows the 
stack pointer to be incremented to remove parameters from the stack that were 
pushed on the stack by the calling procedure.

See Section 6.3, “Calling Procedures Using CALL and RET,” for more information on 
the mechanics of making procedure calls with the CALL and RET instructions.

Return from interrupt instruction — When the processor services an interrupt, it 
performs an implicit call to an interrupt-handling procedure. The IRET (return from 
interrupt) instruction returns program control from an interrupt handler to the inter-
rupted procedure (that is, the procedure that was executing when the interrupt 
occurred). The IRET instruction performs a similar operation to the RET instruction 
(see “Call and return instructions” on page 7-22) except that it also restores the 
EFLAGS register from the stack. The contents of the EFLAGS register are automati-
cally stored on the stack along with the return instruction pointer when the processor 
services an interrupt.
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7.3.8.2  Conditional Transfer Instructions
The conditional transfer instructions execute jumps or loops that transfer program 
control to another instruction in the instruction stream if specified conditions are 
met. The conditions for control transfer are specified with a set of condition codes 
that define various states of the status flags (CF, ZF, OF, PF, and SF) in the EFLAGS 
register.

Conditional jump instructions — The Jcc (conditional) jump instructions transfer 
program control to a destination instruction if the conditions specified with the condi-
tion code (cc) associated with the instruction are satisfied (see Table 7-4). If the 
condition is not satisfied, execution continues with the instruction following the Jcc 
instruction. As with the JMP instruction, the transfer is one-way; that is, a return 
address is not saved.

Table 7-4.  Conditional Jump Instructions 
Instruction Mnemonic Condition (Flag States) Description

Unsigned Conditional Jumps

  JA/JNBE (CF or ZF) = 0 Above/not below or equal

  JAE/JNB CF = 0 Above or equal/not below

  JB/JNAE CF = 1 Below/not above or equal

  JBE/JNA (CF or ZF) = 1 Below or equal/not above

  JC CF = 1 Carry

  JE/JZ ZF = 1 Equal/zero

  JNC CF = 0 Not carry

  JNE/JNZ ZF = 0 Not equal/not zero

  JNP/JPO PF = 0 Not parity/parity odd

  JP/JPE PF = 1 Parity/parity even

  JCXZ CX = 0 Register CX is zero

  JECXZ ECX = 0 Register ECX is zero

Signed Conditional Jumps

  JG/JNLE ((SF xor OF) or ZF) = 0 Greater/not less or equal

  JGE/JNL (SF xor OF) = 0 Greater or equal/not less

  JL/JNGE (SF xor OF) = 1 Less/not greater or equal

  JLE/JNG ((SF xor OF) or ZF) = 1 Less or equal/not greater

  JNO OF = 0 Not overflow

  JNS SF = 0 Not sign (non-negative)

  JO OF = 1 Overflow

  JS SF = 1 Sign (negative)
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The destination operand specifies a relative address (a signed offset with respect to 
the address in the EIP register) that points to an instruction in the current code 
segment. The Jcc instructions do not support far transfers; however, far transfers can 
be accomplished with a combination of a Jcc and a JMP instruction (see “Jcc—Jump if 
Condition Is Met” in Chapter 3, “Instruction Set Reference, A-L,” of the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 2A).

Table 7-4 shows the mnemonics for the Jcc instructions and the conditions being 
tested for each instruction. The condition code mnemonics are appended to the letter 
“J” to form the mnemonic for a Jcc instruction. The instructions are divided into two 
groups: unsigned and signed conditional jumps. These groups correspond to the 
results of operations performed on unsigned and signed integers respectively. Those 
instructions listed as pairs (for example, JA/JNBE) are alternate names for the same 
instruction. Assemblers provide alternate names to make it easier to read program 
listings.

The JCXZ and JECXZ instructions test the CX and ECX registers, respectively, instead 
of one or more status flags. See “Jump if zero instructions” on page 7-25 for more 
information about these instructions.

Loop instructions — The LOOP, LOOPE (loop while equal), LOOPZ (loop while zero), 
LOOPNE (loop while not equal), and LOOPNZ (loop while not zero) instructions are 
conditional jump instructions that use the value of the ECX register as a count for the 
number of times to execute a loop. All the loop instructions decrement the count in 
the ECX register each time they are executed and terminate a loop when zero is 
reached. The LOOPE, LOOPZ, LOOPNE, and LOOPNZ instructions also accept the ZF 
flag as a condition for terminating the loop before the count reaches zero.

The LOOP instruction decrements the contents of the ECX register (or the CX register, 
if the address-size attribute is 16), then tests the register for the loop-termination 
condition. If the count in the ECX register is non-zero, program control is transferred 
to the instruction address specified by the destination operand. The destination 
operand is a relative address (that is, an offset relative to the contents of the EIP 
register), and it generally points to the first instruction in the block of code that is to 
be executed in the loop. When the count in the ECX register reaches zero, program 
control is transferred to the instruction immediately following the LOOP instruc-
tion, which terminates the loop. If the count in the ECX register is zero when the 
LOOP instruction is first executed, the register is pre-decremented to FFFFFFFFH, 
causing the loop to be executed 232 times.

The LOOPE and LOOPZ instructions perform the same operation (they are 
mnemonics for the same instruction). These instructions operate the same as the 
LOOP instruction, except that they also test the ZF flag. 

If the count in the ECX register is not zero and the ZF flag is set, program control is 
transferred to the destination operand. When the count reaches zero or the ZF flag is 
clear, the loop is terminated by transferring program control to the instruction imme-
diately following the LOOPE/LOOPZ instruction.
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The LOOPNE and LOOPNZ instructions (mnemonics for the same instruction) operate 
the same as the LOOPE/LOOPPZ instructions, except that they terminate the loop if 
the ZF flag is set. 

Jump if zero instructions — The JECXZ (jump if ECX zero) instruction jumps to the 
location specified in the destination operand if the ECX register contains the value 
zero. This instruction can be used in combination with a loop instruction (LOOP, 
LOOPE, LOOPZ, LOOPNE, or LOOPNZ) to test the ECX register prior to beginning a 
loop. As described in “Loop instructions on page 7-24, the loop instructions decre-
ment the contents of the ECX register before testing for zero. If the value in the ECX 
register is zero initially, it will be decremented to FFFFFFFFH on the first loop instruc-
tion, causing the loop to be executed 232 times. To prevent this problem, a JECXZ 
instruction can be inserted at the beginning of the code block for the loop, causing a 
jump out the loop if the EAX register count is initially zero. When used with repeated 
string scan and compare instructions, the JECXZ instruction can determine whether 
the loop terminated because the count reached zero or because the scan or compare 
conditions were satisfied.

The JCXZ (jump if CX is zero) instruction operates the same as the JECXZ instruction 
when the 16-bit address-size attribute is used. Here, the CX register is tested for 
zero.

7.3.8.3  Control Transfer Instructions in 64-Bit Mode
In 64-bit mode, the operand size for all near branches (CALL, RET, JCC, JCXZ, JMP, 
and LOOP) is forced to 64 bits. The listed instructions update the 64-bit RIP without 
need for a REX operand-size prefix. 

Near branches in the following operations are forced to 64-bits (regardless of 
operand size prefixes):
• Truncation of the size of the instruction pointer
• Size of a stack pop or push, due to CALL or RET
• Size of a stack-pointer increment or decrement, due to CALL or RET
• Indirect-branch operand size

Note that the displacement field for relative branches is still limited to 32 bits and the 
address size for near branches is not forced.

Address size determines the register size (CX/ECX/RCX) used for JCXZ and LOOP. It 
also impacts the address calculation for memory indirect branches. Addresses size is 
64 bits by default, although it can be over-ridden to 32 bits (using a prefix).

7.3.8.4  Software Interrupt Instructions
The INT n (software interrupt), INTO (interrupt on overflow), and BOUND (detect 
value out of range) instructions allow a program to explicitly raise a specified inter-
rupt or exception, which in turn causes the handler routine for the interrupt or excep-
tion to be called.
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The INT n instruction can raise any of the processor’s interrupts or exceptions by 
encoding the vector number or the interrupt or exception in the instruction. This 
instruction can be used to support software generated interrupts or to test the oper-
ation of interrupt and exception handlers.

The IRET (return from interrupt) instruction returns program control from an inter-
rupt handler to the interrupted procedure. The IRET instruction performs a similar 
operation to the RET instruction. 

The CALL (call procedure) and RET (return from procedure) instructions allow a jump 
from one procedure to another and a subsequent return to the calling procedure. 
EFLAGS register contents are automatically stored on the stack along with the return 
instruction pointer when the processor services an interrupt.

The INTO instruction raises the overflow exception if the OF flag is set. If the flag is 
clear, execution continues without raising the exception. This instruction allows soft-
ware to access the overflow exception handler explicitly to check for overflow condi-
tions.

The BOUND instruction compares a signed value against upper and lower bounds, 
and raises the “BOUND range exceeded” exception if the value is less than the lower 
bound or greater than the upper bound. This instruction is useful for operations such 
as checking an array index to make sure it falls within the range defined for the array.

7.3.8.5  Software Interrupt Instructions in 64-bit Mode and Compatibility 
Mode

In 64-bit mode, the stack size is 8 bytes wide. IRET must pop 8-byte items off the 
stack. SS:RSP pops unconditionally. BOUND is not supported.

In compatibility mode, SS:RSP is popped only if the CPL changes.

7.3.9 String Operations
The GP instructions includes a set of string instructions that are designed to access 
large data structures; these are introduced in Section 7.3.9.1. Section 7.3.9.2 
describes how REP prefixes can be used with these instructions to perform more 
complex repeated string operations. Certain processors optimize repeated string 
operations with fast-string operation, as described in Section 7.3.9.3. Section 
7.3.9.4 explains how string operations can be used in 64-bit mode.

7.3.9.1  String Instructions
The MOVS (Move String), CMPS (Compare string), SCAS (Scan string), LODS (Load 
string), and STOS (Store string) instructions permit large data structures, such as 
alphanumeric character strings, to be moved and examined in memory. These 
instructions operate on individual elements in a string, which can be a byte, word, or 
doubleword. The string elements to be operated on are identified with the ESI 
(source string element) and EDI (destination string element) registers. Both of these 
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registers contain absolute addresses (offsets into a segment) that point to a string 
element. 

By default, the ESI register addresses the segment identified with the DS segment 
register. A segment-override prefix allows the ESI register to be associated with the 
CS, SS, ES, FS, or GS segment register. The EDI register addresses the segment 
identified with the ES segment register; no segment override is allowed for the EDI 
register. The use of two different segment registers in the string instructions permits 
operations to be performed on strings located in different segments. Or by associ-
ating the ESI register with the ES segment register, both the source and destination 
strings can be located in the same segment. (This latter condition can also be 
achieved by loading the DS and ES segment registers with the same segment 
selector and allowing the ESI register to default to the DS register.)

The MOVS instruction moves the string element addressed by the ESI register to the 
location addressed by the EDI register. The assembler recognizes three “short forms” 
of this instruction, which specify the size of the string to be moved: MOVSB (move 
byte string), MOVSW (move word string), and MOVSD (move doubleword string).

The CMPS instruction subtracts the destination string element from the source string 
element and updates the status flags (CF, ZF, OF, SF, PF, and AF) in the EFLAGS 
register according to the results. Neither string element is written back to memory. 
The assembler recognizes three “short forms” of the CMPS instruction: CMPSB 
(compare byte strings), CMPSW (compare word strings), and CMPSD (compare 
doubleword strings).

The SCAS instruction subtracts the destination string element from the contents of 
the EAX, AX, or AL register (depending on operand length) and updates the status 
flags according to the results. The string element and register contents are not modi-
fied. The following “short forms” of the SCAS instruction specify the operand length: 
SCASB (scan byte string), SCASW (scan word string), and SCASD (scan doubleword 
string).

The LODS instruction loads the source string element identified by the ESI register 
into the EAX register (for a doubleword string), the AX register (for a word string), or 
the AL register (for a byte string). The “short forms” for this instruction are LODSB 
(load byte string), LODSW (load word string), and LODSD (load doubleword string). 
This instruction is usually used in a loop, where other instructions process each 
element of the string after they are loaded into the target register.

The STOS instruction stores the source string element from the EAX (doubleword 
string), AX (word string), or AL (byte string) register into the memory location iden-
tified with the EDI register. The “short forms” for this instruction are STOSB (store 
byte string), STOSW (store word string), and STOSD (store doubleword string). This 
instruction is also normally used in a loop. Here a string is commonly loaded into 
the register with a LODS instruction, operated on by other instructions, and then 
stored again in memory with a STOS instruction.

The I/O instructions (see Section 7.3.10, “I/O Instructions”) also perform operations 
on strings in memory.
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7.3.9.2  Repeated String Operations
Each of the string instructions described in Section 7.3.9.1 each perform one itera-
tion of a string operation. To operate strings longer than a doubleword, the string 
instructions can be combined with a repeat prefix (REP) to create a repeating instruc-
tion or be placed in a loop.

When used in string instructions, the ESI and EDI registers are automatically incre-
mented or decremented after each iteration of an instruction to point to the next 
element (byte, word, or doubleword) in the string. String operations can thus begin 
at higher addresses and work toward lower ones, or they can begin at lower 
addresses and work toward higher ones. The DF flag in the EFLAGS register controls 
whether the registers are incremented (DF = 0) or decremented (DF = 1). The STD 
and CLD instructions set and clear this flag, respectively.

The following repeat prefixes can be used in conjunction with a count in the ECX 
register to cause a string instruction to repeat:
• REP — Repeat while the ECX register not zero.
• REPE/REPZ — Repeat while the ECX register not zero and the ZF flag is set.
• REPNE/REPNZ — Repeat while the ECX register not zero and the ZF flag is clear.

When a string instruction has a repeat prefix, the operation executes until one of the 
termination conditions specified by the prefix is satisfied. The REPE/REPZ and 
REPNE/REPNZ prefixes are used only with the CMPS and SCAS instructions. Also, 
note that a REP STOS instruction is the fastest way to initialize a large block of 
memory.

7.3.9.3  Fast-String Operation
To improve performance, more recent processors support modifications to the 
processor’s operation during the string store operations initiated with the MOVS, 
MOVSB, STOS, and STOSB instructions. This optimized operation, called fast-string 
operation, is used when the execution of one of those instructions meets certain 
initial conditions (see below). Instructions using fast-string operation effectively 
operate on the string in groups that may include multiple elements of the native data 
size (byte, word, doubleword, or quadword). With fast-string operation, the 
processor recognizes interrupts and data breakpoints only on boundaries between 
these groups. Fast-string operation is used only if the source and destination 
addresses both use either the WB or WC memory types.

The initial conditions for fast-string operation are implementation-specific and may 
vary with the native string size. Examples of parameters that may impact the use of 
fast-string operation include the following:
• the alignment indicated in the EDI and ESI alignment registers;
• the address order of the string operation;
• the value of the initial operation counter (ECX); and
• the difference between the source and destination addresses.
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NOTE
Initial conditions for fast-string operation in future Intel 64 or IA-32 
processor families may differ from above. The Intel® 64 and IA-32 
Architectures Optimization Reference Manual may contain model-
specific information.

Software can disable fast-string operation by clearing the fast-string-enable bit (bit 
0) of IA32_MISC_ENABLE MSR. However, Intel recommends that system software 
always enable fast-string operation. 

When fast-string operation is enabled (because IA32_MISC_ENABLE[0] = 1), some 
processors may further enhance the operation of the REP MOVSB and REP STOSB 
instructions. A processors supports these enhancements if 
CPUID.(EAX=07H, ECX=0H):EBX[bit 9] is 1. The Intel® 64 and IA-32 Architectures 
Optimization Reference Manual may include model-specific recommendations for use 
of these enhancements.

The stores produced by fast-string operation may appear to execute out of order. 
Software dependent upon sequential store ordering should not use string operations 
for the entire data structure to be stored. Data and semaphores should be separated. 
Order-dependent code should write to a discrete semaphore variable after any string 
operations to allow correctly ordered data to be seen by all processors. Atomicity of 
load and store operations is guaranteed only for native data elements of the string 
with native data size, and only if they are included in a single cache line. See Section 
8.2.4, “Fast-String Operation and Out-of-Order Stores” of Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3A.

7.3.9.4  String Operations in 64-Bit Mode
The behavior of MOVS (Move String), CMPS (Compare string), SCAS (Scan string), 
LODS (Load string), and STOS (Store string) instructions in 64-bit mode is similar to 
their behavior in non-64-bit modes, with the following differences:
• The source operand is specified by RSI or DS:ESI, depending on the address size 

attribute of the operation. 
• The destination operand is specified by RDI or DS:EDI, depending on the address 

size attribute of the operation. 
• Operation on 64-bit data is supported by using the REX.W prefix.

When using REP prefixes for string operations in 64-bit mode, the repeat count is 
specified by RCX or ECX (depending on the address size attribute of the operation). 
The default address size is 64 bits.

7.3.10 I/O Instructions
The IN (input from port to register), INS (input from port to string), OUT (output 
from register to port), and OUTS (output string to port) instructions move data 
between the processor’s I/O ports and either a register or memory.
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The register I/O instructions (IN and OUT) move data between an I/O port and the 
EAX register (32-bit I/O), the AX register (16-bit I/O), or the AL (8-bit I/O) register. 
The I/O port being read or written to is specified with an immediate operand or an 
address in the DX register. 

The block I/O instructions (INS and OUTS) instructions move blocks of data (strings) 
between an I/O port and memory. These instructions operate similar to the string 
instructions (see Section 7.3.9, “String Operations”). The ESI and EDI registers are 
used to specify string elements in memory and the repeat prefixes (REP) are used to 
repeat the instructions to implement block moves. The assembler recognizes the 
following alternate mnemonics for these instructions: INSB (input byte), INSW (input 
word), and INSD (input doubleword), and OUTB (output byte), OUTW (output word), 
and OUTD (output doubleword).

The INS and OUTS instructions use an address in the DX register to specify the I/O 
port to be read or written to.

7.3.11 I/O Instructions in 64-Bit Mode
For I/O instructions to and from memory, the differences in 64-bit mode are:
• The source operand is specified by RSI or DS:ESI, depending on the address size 

attribute of the operation. 
• The destination operand is specified by RDI or DS:EDI, depending on the address 

size attribute of the operation. 
• Operation on 64-bit data is not encodable and REX prefixes are silently ignored.

7.3.12 Enter and Leave Instructions
The ENTER and LEAVE instructions provide machine-language support for procedure 
calls in block-structured languages, such as C and Pascal. These instructions and the 
call and return mechanism that they support are described in detail in Section 6.5, 
“Procedure Calls for Block-Structured Languages”.

7.3.13 Flag Control (EFLAG) Instructions
The Flag Control (EFLAG) instructions allow the state of selected flags in the EFLAGS 
register to be read or modified. For the purpose of this discussion, these instructions 
are further divided subordinate subgroups of instructions that manipulate:
• Carry and direction flags
• The EFLAGS register
• Interrupt flags
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7.3.13.1  Carry and Direction Flag Instructions
The STC (set carry flag), CLC (clear carry flag), and CMC (complement carry flag) 
instructions allow the CF flags in the EFLAGS register to be modified directly. They 
are typically used to initialize the CF flag to a known state before an instruction that 
uses the flag in an operation is executed. They are also used in conjunction with the 
rotate-with-carry instructions (RCL and RCR).

The STD (set direction flag) and CLD (clear direction flag) instructions allow the DF 
flag in the EFLAGS register to be modified directly. The DF flag determines the direc-
tion in which index registers ESI and EDI are stepped when executing string 
processing instructions. If the DF flag is clear, the index registers are incremented 
after each iteration of a string instruction; if the DF flag is set, the registers are 
decremented.

7.3.13.2  EFLAGS Transfer Instructions
The EFLAGS transfer instructions allow groups of flags in the EFLAGS register to be 
copied to a register or memory or be loaded from a register or memory. 

The LAHF (load AH from flags) and SAHF (store AH into flags) instructions operate on 
five of the EFLAGS status flags (SF, ZF, AF, PF, and CF). The LAHF instruction copies 
the status flags to bits 7, 6, 4, 2, and 0 of the AH register, respectively. The contents 
of the remaining bits in the register (bits 5, 3, and 1) are unaffected, and the 
contents of the EFLAGS register remain unchanged. The SAHF instruction copies bits 
7, 6, 4, 2, and 0 from the AH register into the SF, ZF, AF, PF, and CF flags, respec-
tively in the EFLAGS register.

The PUSHF (push flags), PUSHFD (push flags double), POPF (pop flags), and POPFD 
(pop flags double) instructions copy the flags in the EFLAGS register to and from the 
stack. The PUSHF instruction pushes the lower word of the EFLAGS register onto the 
stack (see Figure 7-11). The PUSHFD instruction pushes the entire EFLAGS register 
onto the stack (with the RF and VM flags read as clear).

The POPF instruction pops a word from the stack into the EFLAGS register. Only bits 
11, 10, 8, 7, 6, 4, 2, and 0 of the EFLAGS register are affected with all uses of this 
instruction. If the current privilege level (CPL) of the current code segment is 0 (most 

Figure 7-11.  Flags Affected by the PUSHF, POPF, PUSHFD, and POPFD Instructions
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privileged), the IOPL bits (bits 13 and 12) also are affected. If the I/O privilege level 
(IOPL) is greater than or equal to the CPL, numerically, the IF flag (bit 9) also is 
affected. 

The POPFD instruction pops a doubleword into the EFLAGS register. This instruction 
can change the state of the AC bit (bit 18) and the ID bit (bit 21), as well as the bits 
affected by a POPF instruction. The restrictions for changing the IOPL bits and the IF 
flag that were given for the POPF instruction also apply to the POPFD instruction.

7.3.13.3  Interrupt Flag Instructions
The STI (set interrupt flag) and CTI (clear interrupt flag) instructions allow the inter-
rupt IF flag in the EFLAGS register to be modified directly. The IF flag controls the 
servicing of hardware-generated interrupts (those received at the processor’s INTR 
pin). If the IF flag is set, the processor services hardware interrupts; if the IF flag is 
clear, hardware interrupts are masked.

The ability to execute these instructions depends on the operating mode of the 
processor and the current privilege level (CPL) of the program or task attempting to 
execute these instructions.

7.3.14 Flag Control (RFLAG) Instructions in 64-Bit Mode
In 64-bit mode, the LAHF and SAHF instructions are supported if 
CPUID.80000001H:ECX.LAHF-SAHF[bit 0] = 1.

PUSHF and POPF behave the same in 64-bit mode as in non-64-bit mode. PUSHFD 
always pushes 64-bit RFLAGS onto the stack (with the RF and VM flags read as clear). 
POPFD always pops a 64-bit value from the top of the stack and loads the lower 32 
bits into RFLAGS. It then zero extends the upper bits of RFLAGS.

7.3.15 Segment Register Instructions
The processor provides a variety of instructions that address the segment registers 
of the processor directly. These instructions are only used when an operating system 
or executive is using the segmented or the real-address mode memory model. 

For the purpose of this discussion, these instructions are divided subordinate 
subgroups of instructions that allow:
• Segment-register load and store
• Far control transfers
• Software interrupt calls
• Handling of far pointers
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7.3.15.1  Segment-Register Load and Store Instructions
The MOV instruction (introduced in Section 7.3.1.1, “General Data Movement 
Instructions”) and the PUSH and POP instructions (introduced in Section 7.3.1.4, 
“Stack Manipulation Instructions”) can transfer 16-bit segment selectors to and from 
segment registers (DS, ES, FS, GS, and SS). The transfers are always made to or 
from a segment register and a general-purpose register or memory. Transfers 
between segment registers are not supported.

The POP and MOV instructions cannot place a value in the CS register. Only the far 
control-transfer versions of the JMP, CALL, and RET instructions (see Section 
7.3.15.2, “Far Control Transfer Instructions”) affect the CS register directly. 

7.3.15.2  Far Control Transfer Instructions
The JMP and CALL instructions (see Section 7.3.8, “Control Transfer Instructions”) 
both accept a far pointer as a source operand to transfer program control to a 
segment other than the segment currently being pointed to by the CS register. When 
a far call is made with the CALL instruction, the current values of the EIP and CS 
registers are both pushed on the stack.

The RET instruction (see “Call and return instructions” on page 7-22) can be used to 
execute a far return. Here, program control is transferred from a code segment that 
contains a called procedure back to the code segment that contained the calling 
procedure. The RET instruction restores the values of the CS and EIP registers for the 
calling procedure from the stack.

7.3.15.3  Software Interrupt Instructions
The software interrupt instructions INT, INTO, BOUND, and IRET (see Section 
7.3.8.4, “Software Interrupt Instructions”) can also call and return from interrupt 
and exception handler procedures that are located in a code segment other than the 
current code segment. With these instructions, however, the switching of code 
segments is handled transparently from the application program.

7.3.15.4  Load Far Pointer Instructions
The load far pointer instructions LDS (load far pointer using DS), LES (load far 
pointer using ES), LFS (load far pointer using FS), LGS (load far pointer using GS), 
and LSS (load far pointer using SS) load a far pointer from memory into a segment 
register and a general-purpose general register. The segment selector part of the far 
pointer is loaded into the selected segment register and the offset is loaded into the 
selected general-purpose register.
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7.3.16 Miscellaneous Instructions
The following instructions perform operations that are of interest to applications 
programmers. For the purpose of this discussion, these instructions are further 
divided into subordinate subgroups of instructions that provide for:
• Address computations
• Table lookup
• Processor identification
• NOP and undefined instruction entry

7.3.16.1  Address Computation Instruction
The LEA (load effective address) instruction computes the effective address in 
memory (offset within a segment) of a source operand and places it in a general-
purpose register. This instruction can interpret any of the processor’s addressing 
modes and can perform any indexing or scaling that may be needed. It is especially 
useful for initializing the ESI or EDI registers before the execution of string instruc-
tions or for initializing the EBX register before an XLAT instruction. 

7.3.16.2  Table Lookup Instructions
The XLAT and XLATB (table lookup) instructions replace the contents of the AL 
register with a byte read from a translation table in memory. The initial value in the 
AL register is interpreted as an unsigned index into the translation table. This index 
is added to the contents of the EBX register (which contains the base address of the 
table) to calculate the address of the table entry. These instructions are used for 
applications such as converting character codes from one alphabet into another (for 
example, an ASCII code could be used to look up its EBCDIC equivalent in a table).

7.3.16.3  Processor Identification Instruction
The CPUID (processor identification) instruction returns information about the 
processor on which the instruction is executed. 

7.3.16.4  No-Operation and Undefined Instructions
The NOP (no operation) instruction increments the EIP register to point at the next 
instruction, but affects nothing else.

The UD2 (undefined) instruction generates an invalid opcode exception. Intel 
reserves the opcode for this instruction for this function. The instruction is provided 
to allow software to test an invalid opcode exception handler.
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7.3.17 Random Number Generator Instruction
The RDRAND instruction returns a random number. All Intel processors that support 
the RDRAND instruction indicate the availability of the RDRAND instruction via 
reporting CPUID.01H:ECX.RDRAND[bit 30] = 1.
RDRAND returns random numbers that are supplied by a cryptographically secure, 
deterministic random bit generator DRBG. The DRBG is designed to meet the NIST 
SP 800-90 standard. The DRBG is re-seeded frequently from a on-chip non-deter-
ministic entropy source to guarantee data returned by RDRAND is statistically 
uniform, non-periodic and non-deterministic.
In order for the hardware design to meet its security goals, the random number 
generator continuously tests itself and the random data it is generating. Runtime fail-
ures in the random number generator circuitry or statistically anomalous data occur-
ring by chance will be detected by the self test hardware and flag the resulting data 
as being bad. In such extremely rare cases, the RDRAND instruction will return no 
data instead of bad data.
Under heavy load, with multiple cores executing RDRAND in parallel, it is possible, 
though unlikely, for the demand of random numbers by software processes/threads 
to exceed the rate at which the random number generator hardware can supply 
them. This will lead to the RDRAND instruction returning no data transitorily. The 
RDRAND instruction indicates the occurrence of this rare situation by clearing the CF 
flag.
The RDRAND instruction returns with the carry flag set (CF = 1) to indicate valid data 
is returned. It is recommended that software using the RDRAND instruction to get 
random numbers retry for a limited number of iterations while RDRAND returns CF=0 
and complete when valid data is returned, indicated with CF=1. This will deal with 
transitory underflows. A retry limit should be employed to prevent a hard failure in 
the RNG (expected to be extremely rare) leading to a busy loop in software.
The intrinsic primitive for RDRAND is defined to address software’s need for the 
common cases (CF = 1) and the rare situations (CF = 0). The intrinsic primitive 
returns a value that reflects the value of the carry flag returned by the underlying 
RDRAND instruction. The example below illustrates the recommended usage of an 
RDRAND instrinsic in a utility function, a loop to fetch a 64 bit random value with a 
retry count limit of 10. A C implementation might be written as follows:

----------------------------------------------------------------------------------------
#define SUCCESS 1
#define RETRY_LIMIT_EXCEEDED 0
#define RETRY_LIMIT 10

int get_random_64( unsigned __int 64 * arand)
{int i ; 

for ( i = 0; i < RETRY_LIMIT; i ++) {
if(_rdrand64_step(arand) ) return SUCCESS;
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}
return RETRY_LIMIT_EXCEEDED;

}

-------------------------------------------------------------------------------
7-36 Vol. 1



CHAPTER 8
PROGRAMMING WITH THE X87 FPU

The x87 Floating-Point Unit (FPU) provides high-performance floating-point 
processing capabilities for use in graphics processing, scientific, engineering, and 
business applications. It supports the floating-point, integer, and packed BCD integer 
data types and the floating-point processing algorithms and exception handling 
architecture defined in the IEEE Standard 754 for Binary Floating-Point Arithmetic.

This chapter describes the x87 FPU’s execution environment and instruction set. It 
also provides exception handling information that is specific to the x87 FPU. Refer to 
the following chapters or sections of chapters for additional information about x87 
FPU instructions and floating-point operations:
• Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 

2A & 2B, provide detailed descriptions of x87 FPU instructions.
• Section 4.2.2, “Floating-Point Data Types,” Section 4.2.1.2, “Signed Integers,” 

and Section 4.7, “BCD and Packed BCD Integers,” describe the floating-point, 
integer, and BCD data types.

• Section 4.9, “Overview of Floating-Point Exceptions,” Section 4.9.1, “Floating-
Point Exception Conditions,” and Section 4.9.2, “Floating-Point Exception 
Priority,” give an overview of the floating-point exceptions that the x87 FPU can 
detect and report.

8.1 X87 FPU EXECUTION ENVIRONMENT
The x87 FPU represents a separate execution environment within the IA-32 architec-
ture (see Figure 8-1). This execution environment consists of eight data registers 
(called the x87 FPU data registers) and the following special-purpose registers: 
• Status register
• Control register
• Tag word register
• Last instruction pointer register
• Last data (operand) pointer register
• Opcode register

These registers are described in the following sections.

The x87 FPU executes instructions from the processor’s normal instruction stream. 
The state of the x87 FPU is independent from the state of the basic execution envi-
ronment and from the state of SSE/SSE2/SSE3 extensions. 

However, the x87 FPU and Intel MMX technology share state because the MMX regis-
ters are aliased to the x87 FPU data registers. Therefore, when writing code that uses 
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x87 FPU and MMX instructions, the programmer must explicitly manage the x87 FPU 
and MMX state (see Section 9.5, “Compatibility with x87 FPU Architecture”).

8.1.1 x87 FPU in 64-Bit Mode and Compatibility Mode
In compatibility mode and 64-bit mode, x87 FPU instructions function like they do in 
protected mode. Memory operands are specified using the ModR/M, SIB encoding 
that is described in Section 3.7.5, “Specifying an Offset.”

8.1.2 x87 FPU Data Registers
The x87 FPU data registers (shown in Figure 8-1) consist of eight 80-bit registers. 
Values are stored in these registers in the double extended-precision floating-point 
format shown in Figure 4-3. When floating-point, integer, or packed BCD integer 
values are loaded from memory into any of the x87 FPU data registers, the values are 
automatically converted into double extended-precision floating-point format (if they 
are not already in that format). When computation results are subsequently trans-
ferred back into memory from any of the x87 FPU registers, the results can be left in 
the double extended-precision floating-point format or converted back into a shorter 
floating-point format, an integer format, or the packed BCD integer format. (See 
Section 8.2, “x87 FPU Data Types,” for a description of the data types operated on by 
the x87 FPU.)
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The x87 FPU instructions treat the eight x87 FPU data registers as a register stack (see 
Figure 8-2). All addressing of the data registers is relative to the register on the top of 
the stack. The register number of the current top-of-stack register is stored in the 
TOP (stack TOP) field in the x87 FPU status word. Load operations decrement TOP by 
one and load a value into the new top-of-stack register, and store operations store 
the value from the current TOP register in memory and then increment TOP by one. 
(For the x87 FPU, a load operation is equivalent to a push and a store operation is 
equivalent to a pop.) Note that load and store operations are also available that do 
not push and pop the stack.

Figure 8-1.  x87 FPU Execution Environment
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If a load operation is performed when TOP is at 0, register wraparound occurs and 
the new value of TOP is set to 7. The floating-point stack-overflow exception indicates 
when wraparound might cause an unsaved value to be overwritten (see Section 
8.5.1.1, “Stack Overflow or Underflow Exception (#IS)”).

Many floating-point instructions have several addressing modes that permit the 
programmer to implicitly operate on the top of the stack, or to explicitly operate on 
specific registers relative to the TOP. Assemblers support these register addressing 
modes, using the expression ST(0), or simply ST, to represent the current stack top 
and ST(i) to specify the ith register from TOP in the stack (0 ≤ i ≤ 7). For example, if 
TOP contains 011B (register 3 is the top of the stack), the following instruction would 
add the contents of two registers in the stack (registers 3 and 5):

FADD ST, ST(2);

Figure 8-3 shows an example of how the stack structure of the x87 FPU registers and 
instructions are typically used to perform a series of computations. Here, a two-
dimensional dot product is computed, as follows:

1. The first instruction (FLD value1) decrements the stack register pointer (TOP) 
and loads the value 5.6 from memory into ST(0). The result of this operation is 
shown in snap-shot (a). 

2. The second instruction multiplies the value in ST(0) by the value 2.4 from 
memory and stores the result in ST(0), shown in snap-shot (b).

3. The third instruction decrements TOP and loads the value 3.8 in ST(0).

4. The fourth instruction multiplies the value in ST(0) by the value 10.3 from 
memory and stores the result in ST(0), shown in snap-shot (c).

5. The fifth instruction adds the value and the value in ST(1) and stores the result in 
ST(0), shown in snap-shot (d).

Figure 8-2.  x87 FPU Data Register Stack
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The style of programming demonstrated in this example is supported by the floating-
point instruction set. In cases where the stack structure causes computation bottle-
necks, the FXCH (exchange x87 FPU register contents) instruction can be used to 
streamline a computation.

8.1.2.1  Parameter Passing With the x87 FPU Register Stack
Like the general-purpose registers, the contents of the x87 FPU data registers are 
unaffected by procedure calls, or in other words, the values are maintained across 
procedure boundaries. A calling procedure can thus use the x87 FPU data registers 
(as well as the procedure stack) for passing parameter between procedures. The 
called procedure can reference parameters passed through the register stack using 
the current stack register pointer (TOP) and the ST(0) and ST(i) nomenclature. It is 
also common practice for a called procedure to leave a return value or result in 
register ST(0) when returning execution to the calling procedure or program.

When mixing MMX and x87 FPU instructions in the procedures or code sequences, 
the programmer is responsible for maintaining the integrity of parameters being 
passed in the x87 FPU data registers. If an MMX instruction is executed before the 
parameters in the x87 FPU data registers have been passed to another procedure, 
the parameters may be lost (see Section 9.5, “Compatibility with x87 FPU Architec-
ture”).

Figure 8-3.  Example x87 FPU Dot Product Computation
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Dot Product = (5.6 x 2.4) + (3.8 x 10.3)

Code:
FLD  value1 ;(a) value1 = 5.6
FMUL value2 ;(b) value2 = 2.4
FLD  value3 ; value3 = 3.8
FMUL value4 ;(c)value4 = 10.3
FADD ST(1)  ;(d)
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8.1.3 x87 FPU Status Register
The 16-bit x87 FPU status register (see Figure 8-4) indicates the current state of the 
x87 FPU. The flags in the x87 FPU status register include the FPU busy flag, top-of-
stack (TOP) pointer, condition code flags, error summary status flag, stack fault flag, 
and exception flags. The x87 FPU sets the flags in this register to show the results of 
operations. 
 

The contents of the x87 FPU status register (referred to as the x87 FPU status word) 
can be stored in memory using the FSTSW/FNSTSW, FSTENV/FNSTENV, 
FSAVE/FNSAVE, and FXSAVE instructions. It can also be stored in the AX register of 
the integer unit, using the FSTSW/FNSTSW instructions.

8.1.3.1  Top of Stack (TOP) Pointer
A pointer to the x87 FPU data register that is currently at the top of the x87 FPU 
register stack is contained in bits 11 through 13 of the x87 FPU status word. This 
pointer, which is commonly referred to as TOP (for top-of-stack), is a binary value 
from 0 to 7. See Section 8.1.2, “x87 FPU Data Registers,” for more information 
about the TOP pointer.

8.1.3.2  Condition Code Flags
The four condition code flags (C0 through C3) indicate the results of floating-point 
comparison and arithmetic operations. Table 8-1 summarizes the manner in which 
the floating-point instructions set the condition code flags. These condition code bits 

Figure 8-4.  x87 FPU Status Word
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are used principally for conditional branching and for storage of information used in 
exception handling (see Section 8.1.4, “Branching and Conditional Moves on Condi-
tion Codes”).

As shown in Table 8-1, the C1 condition code flag is used for a variety of functions. 
When both the IE and SF flags in the x87 FPU status word are set, indicating a stack 
overflow or underflow exception (#IS), the C1 flag distinguishes between overflow 
(C1 = 1) and underflow (C1 = 0). When the PE flag in the status word is set, indi-
cating an inexact (rounded) result, the C1 flag is set to 1 if the last rounding by the 
instruction was upward. The FXAM instruction sets C1 to the sign of the value being 
examined.

The C2 condition code flag is used by the FPREM and FPREM1 instructions to indicate 
an incomplete reduction (or partial remainder). When a successful reduction has 
been completed, the C0, C3, and C1 condition code flags are set to the three least-
significant bits of the quotient (Q2, Q1, and Q0, respectively). See “FPREM1—Partial 
Remainder” in Chapter 3, “Instruction Set Reference, A-L,” of the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 2A, for more information 
on how these instructions use the condition code flags.

The FPTAN, FSIN, FCOS, and FSINCOS instructions set the C2 flag to 1 to indicate 
that the source operand is beyond the allowable range of ±263 and clear the C2 flag 
if the source operand is within the allowable range.

Where the state of the condition code flags are listed as undefined in Table 8-1, do 
not rely on any specific value in these flags.

8.1.3.3  x87 FPU Floating-Point Exception Flags
The six x87 FPU floating-point exception flags (bits 0 through 5) of the x87 FPU 
status word indicate that one or more floating-point exceptions have been detected 
since the bits were last cleared. The individual exception flags (IE, DE, ZE, OE, UE, 
and PE) are described in detail in Section 8.4, “x87 FPU Floating-Point Exception 
Handling.” Each of the exception flags can be masked by an exception mask bit in the 
x87 FPU control word (see Section 8.1.5, “x87 FPU Control Word”). The exception 
summary status flag (ES, bit 7) is set when any of the unmasked exception flags are 
set. When the ES flag is set, the x87 FPU exception handler is invoked, using one of 
the techniques described in Section 8.7, “Handling x87 FPU Exceptions in Software.” 
(Note that if an exception flag is masked, the x87 FPU will still set the appropriate 
flag if the associated exception occurs, but it will not set the ES flag.) 

The exception flags are “sticky” bits (once set, they remain set until explicitly 
cleared). They can be cleared by executing the FCLEX/FNCLEX (clear exceptions) 
instructions, by reinitializing the x87 FPU with the FINIT/FNINIT or FSAVE/FNSAVE 
instructions, or by overwriting the flags with an FRSTOR or FLDENV instruction.

The B-bit (bit 15) is included for 8087 compatibility only. It reflects the contents of 
the ES flag.
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Table 8-1.  Condition Code Interpretation

Instruction C0 C3 C2 C1

FCOM, FCOMP, FCOMPP, 
FICOM, FICOMP, FTST, 
FUCOM, FUCOMP, FUCOMPP 

Result of Comparison Operands 
are not 
Comparable

0 or #IS

FCOMI, FCOMIP, FUCOMI, 
FUCOMIP

Undefined. (These instructions set the 
status flags in the EFLAGS register.)

#IS

FXAM  Operand class Sign

FPREM, FPREM1 Q2 Q1 0 = reduction 
complete

1 = reduction 
incomplete

Q0 or #IS

F2XM1, FADD, FADDP, 
FBSTP, FCMOVcc, FIADD, 
FDIV, FDIVP, FDIVR, FDIVRP, 
FIDIV, FIDIVR, FIMUL, FIST, 
FISTP, FISUB, FISUBR,FMUL, 
FMULP, FPATAN, FRNDINT, 
FSCALE, FST, FSTP, FSUB, 
FSUBP, FSUBR, 
FSUBRP,FSQRT, FYL2X, 
FYL2XP1

Undefined Roundup or #IS

FCOS, FSIN, FSINCOS, 
FPTAN

Undefined 0 = source 
operand 
within range
1 = source 
operand out 
of range

Roundup or #IS 
(Undefined if 
C2 = 1)

FABS, FBLD, FCHS, 
FDECSTP, FILD, FINCSTP, 
FLD, Load Constants, FSTP 
(ext. prec.), FXCH, FXTRACT 

Undefined 0 or #IS

FLDENV, FRSTOR Each bit loaded from memory

FFREE, FLDCW, 
FCLEX/FNCLEX, FNOP, 
FSTCW/FNSTCW, 
FSTENV/FNSTENV, 
FSTSW/FNSTSW, 

Undefined

FINIT/FNINIT, 
FSAVE/FNSAVE

0 0 0 0
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8.1.3.4  Stack Fault Flag
The stack fault flag (bit 6 of the x87 FPU status word) indicates that stack overflow or 
stack underflow has occurred with data in the x87 FPU data register stack. The x87 
FPU explicitly sets the SF flag when it detects a stack overflow or underflow condi-
tion, but it does not explicitly clear the flag when it detects an invalid-arithmetic-
operand condition. 

When this flag is set, the condition code flag C1 indicates the nature of the fault: 
overflow (C1 = 1) and underflow (C1 = 0). The SF flag is a “sticky” flag, meaning 
that after it is set, the processor does not clear it until it is explicitly instructed to do 
so (for example, by an FINIT/FNINIT, FCLEX/FNCLEX, or FSAVE/FNSAVE instruction). 

See Section 8.1.7, “x87 FPU Tag Word,” for more information on x87 FPU stack faults.

8.1.4 Branching and Conditional Moves on Condition Codes
The x87 FPU (beginning with the P6 family processors) supports two mechanisms for 
branching and performing conditional moves according to comparisons of two 
floating-point values. These mechanism are referred to here as the “old mechanism” 
and the “new mechanism.” 

The old mechanism is available in x87 FPU’s prior to the P6 family processors and in 
P6 family processors. This mechanism uses the floating-point compare instructions 
(FCOM, FCOMP, FCOMPP, FTST, FUCOMPP, FICOM, and FICOMP) to compare two 
floating-point values and set the condition code flags (C0 through C3) according to 
the results. The contents of the condition code flags are then copied into the status 
flags of the EFLAGS register using a two step process (see Figure 8-5):

1. The FSTSW AX instruction moves the x87 FPU status word into the AX register.

2. The SAHF instruction copies the upper 8 bits of the AX register, which includes the 
condition code flags, into the lower 8 bits of the EFLAGS register.

When the condition code flags have been loaded into the EFLAGS register, conditional 
jumps or conditional moves can be performed based on the new settings of the 
status flags in the EFLAGS register.
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The new mechanism is available beginning with the P6 family processors. Using this 
mechanism, the new floating-point compare and set EFLAGS instructions (FCOMI, 
FCOMIP, FUCOMI, and FUCOMIP) compare two floating-point values and set the ZF, 
PF, and CF flags in the EFLAGS register directly. A single instruction thus replaces the 
three instructions required by the old mechanism.

Note also that the FCMOVcc instructions (also new in the P6 family processors) allow 
conditional moves of floating-point values (values in the x87 FPU data registers) 
based on the setting of the status flags (ZF, PF, and CF) in the EFLAGS register. These 
instructions eliminate the need for an IF statement to perform conditional moves of 
floating-point values.

8.1.5 x87 FPU Control Word
The 16-bit x87 FPU control word (see Figure 8-6) controls the precision of the x87 
FPU and rounding method used. It also contains the x87 FPU floating-point exception 
mask bits. The control word is cached in the x87 FPU control register. The contents of 
this register can be loaded with the FLDCW instruction and stored in memory with the 
FSTCW/FNSTCW instructions.

Figure 8-5.  Moving the Condition Codes to the EFLAGS Register
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When the x87 FPU is initialized with either an FINIT/FNINIT or FSAVE/FNSAVE 
instruction, the x87 FPU control word is set to 037FH, which masks all floating-point 
exceptions, sets rounding to nearest, and sets the x87 FPU precision to 64 bits.

8.1.5.1  x87 FPU Floating-Point Exception Mask Bits
The exception-flag mask bits (bits 0 through 5 of the x87 FPU control word) mask the 
6 floating-point exception flags in the x87 FPU status word. When one of these mask 
bits is set, its corresponding x87 FPU floating-point exception is blocked from being 
generated.

8.1.5.2  Precision Control Field
The precision-control (PC) field (bits 8 and 9 of the x87 FPU control word) determines 
the precision (64, 53, or 24 bits) of floating-point calculations made by the x87 FPU 
(see Table 8-2). The default precision is double extended precision, which uses the 
full 64-bit significand available with the double extended-precision floating-point 
format of the x87 FPU data registers. This setting is best suited for most applications, 
because it allows applications to take full advantage of the maximum precision avail-
able with the x87 FPU data registers.

Figure 8-6.  x87 FPU Control Word
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The double precision and single precision settings reduce the size of the significand to 
53 bits and 24 bits, respectively. These settings are provided to support IEEE Stan-
dard 754 and to provide compatibility with the specifications of certain existing 
programming languages. Using these settings nullifies the advantages of the double 
extended-precision floating-point format's 64-bit significand length. When reduced 
precision is specified, the rounding of the significand value clears the unused bits on 
the right to zeros. 

The precision-control bits only affect the results of the following floating-point 
instructions: FADD, FADDP, FIADD, FSUB, FSUBP, FISUB, FSUBR, FSUBRP, FISUBR, 
FMUL, FMULP, FIMUL, FDIV, FDIVP, FIDIV, FDIVR, FDIVRP, FIDIVR, and FSQRT.

8.1.5.3  Rounding Control Field
The rounding-control (RC) field of the x87 FPU control register (bits 10 and 11) 
controls how the results of x87 FPU floating-point instructions are rounded. See 
Section 4.8.4, “Rounding,” for a discussion of rounding of floating-point values; See 
Section 4.8.4.1, “Rounding Control (RC) Fields”, for the encodings of the RC field.

8.1.6 Infinity Control Flag
The infinity control flag (bit 12 of the x87 FPU control word) is provided for compati-
bility with the Intel 287 Math Coprocessor; it is not meaningful for later version x87 
FPU coprocessors or IA-32 processors. See Section 4.8.3.3, “Signed Infinities,” for 
information on how the x87 FPUs handle infinity values.

8.1.7 x87 FPU Tag Word
The 16-bit tag word (see Figure 8-7) indicates the contents of each the 8 registers in 
the x87 FPU data-register stack (one 2-bit tag per register). The tag codes indicate 
whether a register contains a valid number, zero, or a special floating-point number 
(NaN, infinity, denormal, or unsupported format), or whether it is empty. The x87 
FPU tag word is cached in the x87 FPU in the x87 FPU tag word register. When the x87 
FPU is initialized with either an FINIT/FNINIT or FSAVE/FNSAVE instruction, the x87 
FPU tag word is set to FFFFH, which marks all the x87 FPU data registers as empty.

Table 8-2.  Precision Control Field (PC)
Precision PC Field

Single Precision (24 bits) 00B

Reserved 01B

Double Precision (53 bits) 10B

Double Extended Precision (64 bits) 11B
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.

Each tag in the x87 FPU tag word corresponds to a physical register (numbers 0 
through 7). The current top-of-stack (TOP) pointer stored in the x87 FPU status word 
can be used to associate tags with registers relative to ST(0).

The x87 FPU uses the tag values to detect stack overflow and underflow conditions 
(see Section 8.5.1.1, “Stack Overflow or Underflow Exception (#IS)”).

Application programs and exception handlers can use this tag information to check 
the contents of an x87 FPU data register without performing complex decoding of the 
actual data in the register. To read the tag register, it must be stored in memory using 
either the FSTENV/FNSTENV or FSAVE/FNSAVE instructions. The location of the tag 
word in memory after being saved with one of these instructions is shown in Figures 
8-9 through 8-12.

Software cannot directly load or modify the tags in the tag register. The FLDENV and 
FRSTOR instructions load an image of the tag register into the x87 FPU; however, the 
x87 FPU uses those tag values only to determine if the data registers are empty 
(11B) or non-empty (00B, 01B, or 10B). 

If the tag register image indicates that a data register is empty, the tag in the tag 
register for that data register is marked empty (11B); if the tag register image indi-
cates that the data register is non-empty, the x87 FPU reads the actual value in the 
data register and sets the tag for the register accordingly. This action prevents a 
program from setting the values in the tag register to incorrectly represent the actual 
contents of non-empty data registers.

8.1.8 x87 FPU Instruction and Data (Operand) Pointers
The x87 FPU stores pointers to the instruction and data (operand) for the last non-
control instruction executed. These are the x87 FPU instruction pointer and x87 FPU 
operand (data) pointers; software can save these pointers to provide state informa-
tion for exception handlers. The pointers are illustrated in Figure 8-1 (the figure illus-
trates the pointers as used outside 64-bit mode; see below).

Figure 8-7.  x87 FPU Tag Word
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Note that the value in the x87 FPU data pointer register is always a pointer to a 
memory operand, If the last non-control instruction that was executed did not have 
a memory operand, the value in the data pointer register is undefined (reserved).

The contents of the x87 FPU instruction and data pointer registers remain unchanged 
when any of the control instructions (FCLEX/FNCLEX, FLDCW, FSTCW/FNSTCW, 
FSTSW/FNSTSW, FSTENV/FNSTENV, FLDENV, and WAIT/FWAIT) are executed.

For all the x87 FPUs and NPXs except the 8087, the x87 FPU instruction pointer points 
to any prefixes that preceded the instruction. For the 8087, the x87 FPU instruction 
pointer points only to the actual opcode.

The x87 FPU instruction and data pointers each consists of an offset and a segment 
selector. On processors that support IA-32e mode, each offset comprises 64 bits; on 
other processors, each offset comprises 32 bits. Each segment selector comprises 16 
bits.

The pointers are accessed by the FINIT/FNINIT, FLDENV, FRSTOR, FSAVE/FNSAVE, 
FSTENV/FNSTENV, FXRSTOR, FXSAVE, XRSTOR, XSAVE, and XSAVEOPT instructions 
as follows:
• FINIT/FNINIT. Each instruction clears each 64-bit offset and 16-bit segment 

selector.
• FLDENV, FRSTOR. These instructions use the memory formats given in 

Figures 8-9 through 8-12:

— For each 64-bit offset, each instruction loads the lower 32 bits from memory 
and clears the upper 32 bits.

— If CR0.PE = 1, each instruction loads each 16-bit segment selector from 
memory; otherwise, it clears each 16-bit segment selector.

• FSAVE/FNSAVE, FSTENV/FNSTENV. These instructions use the memory formats 
given in Figures 8-9 through 8-12.

— Each instruction saves the lower 32 bits of each 64-bit offset into memory. 
the upper 32 bits are not saved.

— If CR0.PE = 1, each instruction saves each 16-bit segment selector into 
memory.

— After saving these data into memory, FSAVE/FNSAVE clears each 64-bit 
offset and 16-bit segment selector.

• FXRSTOR, XRSTOR. These instructions load data from a memory image whose 
format depend on operating mode and the REX prefix. The memory formats are 
given in Tables 3-53, 3-56, and 3-57 in Chapter 3, “Instruction Set Reference, A-
L,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2A.

— Outside of 64-bit mode or if REX.W = 0, the instructions operate as follows:

• For each 64-bit offset, each instruction loads the lower 32 bits from 
memory and clears the upper 32 bits.
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• Each instruction loads each 16-bit segment selector from memory.

— In 64-bit mode with REX.W = 1, the instructions operate as follows:

• Each instruction loads each 64-bit offset from memory.

• Each instruction clears each 16-bit segment selector.
• FXSAVE, XSAVE, and XSAVEOPT. These instructions store data into a memory 

image whose format depend on operating mode and the REX prefix. The memory 
formats are given in Tables 3-53, 3-56, and 3-57 in Chapter 3, “Instruction Set 
Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 2A.

— Outside of 64-bit mode or if REX.W = 0, the instructions operate as follows:

• Each instruction saves the lower 32 bits of each 64-bit offset into 
memory. The upper 32 bits are not saved.

• Each instruction saves each 16-bit segment selector into memory.

— In 64-bit mode with REX.W = 1, each instruction saves each 64-bit offset into 
memory. The 16-bit segment selectors are not saved.

8.1.9 Last Instruction Opcode
The x87 FPU stores the opcode of the last non-control instruction executed in an 
11-bit x87 FPU opcode register. (This information provides state information for 
exception handlers.) Only the first and second opcode bytes (after all prefixes) are 
stored in the x87 FPU opcode register. Figure 8-8 shows the encoding of these two 
bytes. Since the upper 5 bits of the first opcode byte are the same for all floating-
point opcodes (11011B), only the lower 3 bits of this byte are stored in the opcode 
register.

8.1.9.1  Fopcode Compatibility Sub-mode
Beginning with the Pentium 4 and Intel Xeon processors, the IA-32 architecture 
provides program control over the storing of the last instruction opcode (sometimes 
referred to as the fopcode). Here, bit 2 of the IA32_MISC_ENABLE MSR enables (set) 
or disables (clear) the fopcode compatibility mode. 

If FOP code compatibility mode is enabled, the FOP is defined as it has always been 
in previous IA32 implementations (always defined as the FOP of the last non-trans-
parent FP instruction executed before a FSAVE/FSTENV/FXSAVE). If FOP code 
compatibility mode is disabled (default), FOP is only valid if the last non-transparent 
FP instruction executed before a FSAVE/FSTENV/FXSAVE had an unmasked exception.
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The fopcode compatibility mode should be enabled only when x87 FPU floating-point 
exception handlers are designed to use the fopcode to analyze program performance 
or restart a program after an exception has been handled.

8.1.10 Saving the x87 FPU’s State with FSTENV/FNSTENV and 
FSAVE/FNSAVE

The FSTENV/FNSTENV and FSAVE/FNSAVE instructions store x87 FPU state informa-
tion in memory for use by exception handlers and other system and application soft-
ware. The FSTENV/FNSTENV instruction saves the contents of the status, control, 
tag, x87 FPU instruction pointer, x87 FPU operand pointer, and opcode registers. The 
FSAVE/FNSAVE instruction stores that information plus the contents of the x87 FPU 
data registers. Note that the FSAVE/FNSAVE instruction also initializes the x87 FPU to 
default values (just as the FINIT/FNINIT instruction does) after it has saved the orig-
inal state of the x87 FPU.

The manner in which this information is stored in memory depends on the operating 
mode of the processor (protected mode or real-address mode) and on the operand-
size attribute in effect (32-bit or 16-bit). See Figures 8-9 through 8-12. In virtual-
8086 mode or SMM, the real-address mode formats shown in Figure 8-12 is used. 
See Chapter 33, “System Management Mode,” of the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3C, for information on using the x87 FPU 
while in SMM.

The FLDENV and FRSTOR instructions allow x87 FPU state information to be loaded 
from memory into the x87 FPU. Here, the FLDENV instruction loads only the status, 
control, tag, x87 FPU instruction pointer, x87 FPU operand pointer, and opcode regis-
ters, and the FRSTOR instruction loads all the x87 FPU registers, including the x87 
FPU stack registers. 

Figure 8-8.  Contents of x87 FPU Opcode Registers
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Figure 8-9.  Protected Mode x87 FPU State Image in Memory, 32-Bit Format

Figure 8-10.  Real Mode x87 FPU State Image in Memory, 32-Bit Format
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For instructions that also store x87 FPU data registers, the eight 
80-bit registers (R0-R7) follow the above structure in sequence.

031

0

4

8

12

16

20

24

32-Bit Real-Address Mode Format

Control Word

FPU Operand Pointer 31...16

FPU Instruction Pointer 31...16

Status Word

Tag Word

Opcode 10...00

0 0 0 0 0 0 0 0 0 0 0 0

FPU Operand Pointer 15...00

0 0 0 0

FPU Instruction Pointer 15...00

0 0 0 0

0

16 15

For instructions that also store x87 FPU data registers, the eight 
80-bit registers (R0-R7) follow the above structure in sequence.
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8.1.11 Saving the x87 FPU’s State with FXSAVE
The FXSAVE and FXRSTOR instructions save and restore, respectively, the x87 FPU 
state along with the state of the XMM registers and the MXCSR register. Using the 
FXSAVE instruction to save the x87 FPU state has two benefits: (1) FXSAVE executes 
faster than FSAVE, and (2) FXSAVE saves the entire x87 FPU, MMX, and XMM state in 
one operation. See Section 10.5, “FXSAVE and FXRSTOR Instructions,” for additional 
information about these instructions.

8.2 X87 FPU DATA TYPES
The x87 FPU recognizes and operates on the following seven data types (see Figures 
8-13): single-precision floating point, double-precision floating point, double 

Figure 8-11.  Protected Mode x87 FPU State Image in Memory, 16-Bit Format

Figure 8-12.  Real Mode x87 FPU State Image in Memory, 16-Bit Format
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extended-precision floating point, signed word integer, signed doubleword integer, 
signed quadword integer, and packed BCD decimal integers. 

For detailed information about these data types, see Section 4.2.2, “Floating-Point 
Data Types,” Section 4.2.1.2, “Signed Integers,” and Section 4.7, “BCD and Packed 
BCD Integers.”

With the exception of the 80-bit double extended-precision floating-point format, all 
of these data types exist in memory only. When they are loaded into x87 FPU data 
registers, they are converted into double extended-precision floating-point format 
and operated on in that format.

Denormal values are also supported in each of the floating-point types, as required 
by IEEE Standard 754. When a denormal number in single-precision or double-preci-
sion floating-point format is used as a source operand and the denormal exception is 
masked, the x87 FPU automatically normalizes the number when it is converted to 
double extended-precision format.

When stored in memory, the least significant byte of an x87 FPU data-type value is 
stored at the initial address specified for the value. Successive bytes from the value 
are then stored in successively higher addresses in memory. The floating-point 
instructions load and store memory operands using only the initial address of the 
operand. 
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As a general rule, values should be stored in memory in double-precision format. This 
format provides sufficient range and precision to return correct results with a 
minimum of programmer attention. The single-precision format is useful for debug-
ging algorithms, because rounding problems will manifest themselves more quickly 
in this format. The double extended-precision format is normally reserved for holding 
intermediate results in the x87 FPU registers and constants. Its extra length is 
designed to shield final results from the effects of rounding and overflow/underflow 
in intermediate calculations. However, when an application requires the maximum 
range and precision of the x87 FPU (for data storage, computations, and results), 
values can be stored in memory in double extended-precision format.

8.2.1 Indefinites
For each x87 FPU data type, one unique encoding is reserved for representing the 
special value indefinite. The x87 FPU produces indefinite values as responses to 
some masked floating-point invalid-operation exceptions. See Tables 4-1, 4-3, and 

Figure 8-13.  x87 FPU Data Type Formats

0

Packed BCD Integers

79

D0

0

Quadword Integer

63

4 Bits = 1 BCD Digit

0

Doubleword Integer

31

0

Word Integer

15

Sign

D1D2D3D4D5D6D7D8D9D10D11D12D13D14D15D16D17

78 72 71

X

62

14

30

0

Double Extended-Precision Floating-Point

79

Sign

78 6463

0

Double-Precision Floating-Point

63 62

0

Single-Precision Floating-Point

3130 23 22

FractionExp.Sign

Implied Integer

Implied Integer

Sign Exponent Fraction

52 51

FractionExponent

62 Integer

Sign

Sign

Sign
8-20 Vol. 1



PROGRAMMING WITH THE X87 FPU
4-4 for the encoding of the integer indefinite, QNaN floating-point indefinite, and 
packed BCD integer indefinite, respectively. 

The binary integer encoding 100..00B represents either of two things, depending on 
the circumstances of its use:
• The largest negative number supported by the format (–215, –231, or –263)
• The integer indefinite value

If this encoding is used as a source operand (as in an integer load or integer arith-
metic instruction), the x87 FPU interprets it as the largest negative number repre-
sentable in the format being used. If the x87 FPU detects an invalid operation when 
storing an integer value in memory with an FIST/FISTP instruction and the invalid-
operation exception is masked, the x87 FPU stores the integer indefinite encoding in 
the destination operand as a masked response to the exception. In situations where 
the origin of a value with this encoding may be ambiguous, the invalid-operation 
exception flag can be examined to see if the value was produced as a response to an 
exception.

8.2.2 Unsupported Double Extended-Precision 
Floating-Point Encodings and Pseudo-Denormals

The double extended-precision floating-point format permits many encodings that do 
not fall into any of the categories shown in Table 4-3. Table 8-3 shows these unsup-
ported encodings. Some of these encodings were supported by the Intel 287 math 
coprocessor; however, most of them are not supported by the Intel 387 math copro-
cessor and later IA-32 processors. These encodings are no longer supported due to 
changes made in the final version of IEEE Standard 754 that eliminated these encod-
ings.

Specifically, the categories of encodings formerly known as pseudo-NaNs, pseudo-
infinities, and un-normal numbers are not supported and should not be used as 
operand values. The Intel 387 math coprocessor and later IA-32 processors generate 
an invalid-operation exception when these encodings are encountered as operands.

Beginning with the Intel 387 math coprocessor, the encodings formerly known as 
pseudo-denormal numbers are not generated by IA-32 processors. When encoun-
tered as operands, however, they are handled correctly; that is, they are treated as 
denormals and a denormal exception is generated. Pseudo-denormal numbers 
should not be used as operand values. They are supported by current IA-32 proces-
sors (as described here) to support legacy code.
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8.3 X86 FPU INSTRUCTION SET
The floating-point instructions that the x87 FPU supports can be grouped into six 
functional categories:
• Data transfer instructions
• Basic arithmetic instructions
• Comparison instructions
• Transcendental instructions

Table 8-3.  Unsupported Double Extended-Precision Floating-Point Encodings and 
Pseudo-Denormals

Class Sign Biased Exponent
Significand

Integer Fraction

Positive 
Pseudo-NaNs Quiet

0
.
0

11..11
.

11..11

0 11..11
.

10..00

Signaling

0
.
0

11..11
.

11..11

0  01..11
.

00..01

Positive Floating 
Point

Pseudo-infinity 0 11..11 0 00..00

Unnormals

0
.
0

11..10
.

00..01

0 11..11
.

00..00

Pseudo-denormals 0
.
0

00..00
.

00..00

1 11..11
.

00..00

Negative 
Floating Point

Pseudo-denormals 1
.
1

00..00
.

00..00

1 11..11
.

00..00

Unnormals

1
.
1

11..10
.

00..01

0 11..01
.

00..00

Pseudo-infinity 1 11..11 0 00..00

Negative 
Pseudo-NaNs Signaling

1
.
1

11..11
.

11..11

0 01..11
.

00..01

Quiet

1
.
1

11..11
.

11..11

0 11..11
.

10..00

← 15 bits → ← 63 bits →
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• Load constant instructions
• x87 FPU control instructions

See Section 5.2, “x87 FPU Instructions,” for a list of the floating-point instructions by 
category.

The following section briefly describes the instructions in each category. Detailed 
descriptions of the floating-point instructions are given in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volumes 3A & 3B. 

8.3.1 Escape (ESC) Instructions
All of the instructions in the x87 FPU instruction set fall into a class of instructions 
known as escape (ESC) instructions. All of these instructions have a common opcode 
format, where the first byte of the opcode is one of the numbers from D8H through 
DFH.

8.3.2 x87 FPU Instruction Operands
Most floating-point instructions require one or two operands, located on the x87 FPU 
data-register stack or in memory. (None of the floating-point instructions accept 
immediate operands.) 

When an operand is located in a data register, it is referenced relative to the ST(0) 
register (the register at the top of the register stack), rather than by a physical 
register number. Often the ST(0) register is an implied operand.

Operands in memory can be referenced using the same operand addressing methods 
described in Section 3.7, “Operand Addressing.”

8.3.3 Data Transfer Instructions
The data transfer instructions (see Table 8-4) perform the following operations:
• Load a floating-point, integer, or packed BCD operand from memory into the 

ST(0) register.
• Store the value in an ST(0) register to memory in floating-point, integer, or 

packed BCD format.
• Move values between registers in the x87 FPU register stack.

The FLD (load floating point) instruction pushes a floating-point operand from 
memory onto the top of the x87 FPU data-register stack. If the operand is in single-
precision or double-precision floating-point format, it is automatically converted to 
double extended-precision floating-point format. This instruction can also be used to 
push the value in a selected x87 FPU data register onto the top of the register stack.
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The FILD (load integer) instruction converts an integer operand in memory into 
double extended-precision floating-point format and pushes the value onto the top of 
the register stack. The FBLD (load packed decimal) instruction performs the same 
load operation for a packed BCD operand in memory.

The FST (store floating point) and FIST (store integer) instructions store the value in 
register ST(0) in memory in the destination format (floating point or integer, respec-
tively). Again, the format conversion is carried out automatically.

The FSTP (store floating point and pop), FISTP (store integer and pop), and FBSTP 
(store packed decimal and pop) instructions store the value in the ST(0) registers 
into memory in the destination format (floating point, integer, or packed BCD), then 
performs a pop operation on the register stack. A pop operation causes the ST(0) 
register to be marked empty and the stack pointer (TOP) in the x87 FPU control work 
to be incremented by 1. The FSTP instruction can also be used to copy the value in 
the ST(0) register to another x87 FPU register [ST(i)].

The FXCH (exchange register contents) instruction exchanges the value in a selected 
register in the stack [ST(i)] with the value in ST(0).

The FCMOVcc (conditional move) instructions move the value in a selected register in 
the stack [ST(i)] to register ST(0) if a condition specified with a condition code (cc) is 
satisfied (see Table 8-5). The condition being tested for is represented by the status 
flags in the EFLAGS register. The condition code mnemonics are appended to the 
letters “FCMOV” to form the mnemonic for a FCMOVcc instruction.

Table 8-4.  Data Transfer Instructions

Floating Point Integer Packed Decimal

FLD Load Floating 
Point

FILD Load Integer FBLD Load Packed
Decimal

FST Store Floating 
Point

FIST Store Integer

FSTP Store Floating 
Point and Pop

FISTP Store Integer
and Pop

FBSTP Store Packed
Decimal and Pop

FXCH Exchange Register 
Contents

FCMOVcc Conditional Move

Table 8-5.  Floating-Point Conditional Move Instructions
Instruction Mnemonic Status Flag States Condition Description

FCMOVB CF=1 Below

FCMOVNB CF=0 Not below

FCMOVE ZF=1 Equal

FCMOVNE ZF=0 Not equal
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Like the CMOVcc instructions, the FCMOVcc instructions are useful for optimizing 
small IF constructions. They also help eliminate branching overhead for IF operations 
and the possibility of branch mispredictions by the processor. 

Software can check if the FCMOVcc instructions are supported by checking the 
processor’s feature information with the CPUID instruction.

8.3.4 Load Constant Instructions
The following instructions push commonly used constants onto the top [ST(0)] of the 
x87 FPU register stack:

FLDZ Load +0.0
FLD1 Load +1.0
FLDPI Load π
FLDL2T Load log2 10
FLDL2E Load log2e
FLDLG2 Load log102
FLDLN2 Load loge2

The constant values have full double extended-precision floating-point precision 
(64 bits) and are accurate to approximately 19 decimal digits. They are stored 
internally in a format more precise than double extended-precision floating point. 
When loading the constant, the x87 FPU rounds the more precise internal constant 
according to the RC (rounding control) field of the x87 FPU control word. The 
inexact-result exception (#P) is not generated as a result of this rounding, nor is 
the C1 flag set in the x87 FPU status word if the value is rounded up. See Section 
8.3.8, “Pi,” for information on the π constant.

8.3.5 Basic Arithmetic Instructions
The following floating-point instructions perform basic arithmetic operations on 
floating-point numbers. Where applicable, these instructions match IEEE Standard 
754:
FADD/FADDP Add floating point

Instruction Mnemonic Status Flag States Condition Description

FCMOVBE CF=1 or ZF=1 Below or equal

FCMOVNBE CF=0 or ZF=0 Not below nor equal

FCMOVU PF=1 Unordered

FCMOVNU PF=0 Not unordered

Table 8-5.  Floating-Point Conditional Move Instructions (Contd.)
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FIADD Add integer to floating point
FSUB/FSUBP Subtract floating point
FISUB Subtract integer from floating point
FSUBR/FSUBRP Reverse subtract floating point
FISUBR Reverse subtract floating point from integer
FMUL/FMULP Multiply floating point
FIMUL Multiply integer by floating point
FDIV/FDIVP Divide floating point
FIDIV Divide floating point by integer
FDIVR/FDIVRP Reverse divide
FIDIVR Reverse divide integer by floating point
FABS Absolute value
FCHS Change sign
FSQRT Square root
FPREM Partial remainder
FPREM1 IEEE partial remainder
FRNDINT Round to integral value
FXTRACT Extract exponent and significand

The add, subtract, multiply and divide instructions operate on the following types of 
operands:
• Two x87 FPU data registers
• An x87 FPU data register and a floating-point or integer value in memory

See Section 8.1.2, “x87 FPU Data Registers,” for a description of how operands are 
referenced on the data register stack.

Operands in memory can be in single-precision floating-point, double-precision 
floating-point, word-integer, or doubleword-integer format. They are converted to 
double extended-precision floating-point format automatically.

Reverse versions of the subtract (FSUBR) and divide (FDIVR) instructions enable effi-
cient coding. For example, the following options are available with the FSUB and 
FSUBR instructions for operating on values in a specified x87 FPU data register ST(i) 
and the ST(0) register:

FSUB:
ST(0) ← ST(0) − ST(i)
ST(i) ← ST(i) − ST(0)

FSUBR:
ST(0) ← ST(i) − ST(0)
ST(i) ← ST(0) − ST(i)

These instructions eliminate the need to exchange values between the ST(0) register 
and another x87 FPU register to perform a subtraction or division.
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The pop versions of the add, subtract, multiply, and divide instructions offer the 
option of popping the x87 FPU register stack following the arithmetic operation. 
These instructions operate on values in the ST(i) and ST(0) registers, store the result 
in the ST(i) register, and pop the ST(0) register.

The FPREM instruction computes the remainder from the division of two operands in 
the manner used by the Intel 8087 and Intel 287 math coprocessors; the FPREM1 
instruction computes the remainder in the manner specified in IEEE Standard 754.

The FSQRT instruction computes the square root of the source operand.

The FRNDINT instruction returns a floating-point value that is the integral value 
closest to the source value in the direction of the rounding mode specified in the RC 
field of the x87 FPU control word.

The FABS, FCHS, and FXTRACT instructions perform convenient arithmetic opera-
tions. The FABS instruction produces the absolute value of the source operand. The 
FCHS instruction changes the sign of the source operand. The FXTRACT instruction 
separates the source operand into its exponent and fraction and stores each value in 
a register in floating-point format.

8.3.6 Comparison and Classification Instructions
The following instructions compare or classify floating-point values:

FCOM/FCOMP/FCOMPPCompare floating point and set x87 FPU
condition code flags.

FUCOM/FUCOMP/FUCOMPPUnordered compare floating point and set 
x87 FPU condition code flags.

FICOM/FICOMPCompare integer and set x87 FPU 
condition code flags.

FCOMI/FCOMIPCompare floating point and set EFLAGS 
status flags.

FUCOMI/FUCOMIPUnordered compare floating point and 
set EFLAGS status flags.

FTST Test (compare floating point with 0.0).
FXAMExamine.

Comparison of floating-point values differ from comparison of integers because 
floating-point values have four (rather than three) mutually exclusive relationships: 
less than, equal, greater than, and unordered.

The unordered relationship is true when at least one of the two values being 
compared is a NaN or in an unsupported format. This additional relationship is 
required because, by definition, NaNs are not numbers, so they cannot have less 
than, equal, or greater than relationships with other floating-point values.
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The FCOM, FCOMP, and FCOMPP instructions compare the value in register ST(0) with 
a floating-point source operand and set the condition code flags (C0, C2, and C3) in 
the x87 FPU status word according to the results (see Table 8-6). 

If an unordered condition is detected (one or both of the values are NaNs or in an 
undefined format), a floating-point invalid-operation exception is generated.

The pop versions of the instruction pop the x87 FPU register stack once or twice after 
the comparison operation is complete.

The FUCOM, FUCOMP, and FUCOMPP instructions operate the same as the FCOM, 
FCOMP, and FCOMPP instructions. The only difference is that with the FUCOM, 
FUCOMP, and FUCOMPP instructions, if an unordered condition is detected because 
one or both of the operands are QNaNs, the floating-point invalid-operation excep-
tion is not generated.

The FICOM and FICOMP instructions also operate the same as the FCOM and FCOMP 
instructions, except that the source operand is an integer value in memory. The 
integer value is automatically converted into an double extended-precision floating-
point value prior to making the comparison. The FICOMP instruction pops the x87 
FPU register stack following the comparison operation.

The FTST instruction performs the same operation as the FCOM instruction, except 
that the value in register ST(0) is always compared with the value 0.0.

The FCOMI and FCOMIP instructions were introduced into the IA-32 architecture in 
the P6 family processors. They perform the same comparison as the FCOM and 
FCOMP instructions, except that they set the status flags (ZF, PF, and CF) in the 
EFLAGS register to indicate the results of the comparison (see Table 8-7) instead of 
the x87 FPU condition code flags. The FCOMI and FCOMIP instructions allow condition 
branch instructions (Jcc) to be executed directly from the results of their comparison.

Table 8-6.  Setting of x87 FPU Condition Code Flags for Floating-Point Number 
Comparisons

Condition C3 C2 C0

ST(0) > Source Operand 0 0 0

ST(0) < Source Operand 0 0 1

ST(0) = Source Operand 1 0 0

Unordered 1 1 1
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Software can check if the FCOMI and FCOMIP instructions are supported by checking 
the processor’s feature information with the CPUID instruction.

The FUCOMI and FUCOMIP instructions operate the same as the FCOMI and FCOMIP 
instructions, except that they do not generate a floating-point invalid-operation 
exception if the unordered condition is the result of one or both of the operands being 
a QNaN. The FCOMIP and FUCOMIP instructions pop the x87 FPU register stack 
following the comparison operation.

The FXAM instruction determines the classification of the floating-point value in the 
ST(0) register (that is, whether the value is zero, a denormal number, a normal finite 
number, ∞, a NaN, or an unsupported format) or that the register is empty. It sets the 
x87 FPU condition code flags to indicate the classification (see “FXAM—Examine” in 
Chapter 3, “Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 2A). It also sets the C1 flag to indicate the sign 
of the value.

8.3.6.1  Branching on the x87 FPU Condition Codes
The processor does not offer any control-flow instructions that branch on the setting 
of the condition code flags (C0, C2, and C3) in the x87 FPU status word. To branch on 
the state of these flags, the x87 FPU status word must first be moved to the AX 
register in the integer unit. The FSTSW AX (store status word) instruction can be 
used for this purpose. When these flags are in the AX register, the TEST instruction 
can be used to control conditional branching as follows:

1. Check for an unordered result. Use the TEST instruction to compare the contents 
of the AX register with the constant 0400H (see Table 8-8). This operation will 
clear the ZF flag in the EFLAGS register if the condition code flags indicate an 
unordered result; otherwise, the ZF flag will be set. The JNZ instruction can then 
be used to transfer control (if necessary) to a procedure for handling unordered 
operands.

Table 8-7.  Setting of EFLAGS Status Flags for Floating-Point Number Comparisons
Comparison Results ZF PF CF

ST0 > ST(i) 0 0 0

ST0 < ST(i) 0 0 1

ST0 = ST(i) 1 0 0

Unordered 1 1 1
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2. Check ordered comparison result. Use the constants given in Table 8-8 in the 
TEST instruction to test for a less than, equal to, or greater than result, then use 
the corresponding conditional branch instruction to transfer program control to 
the appropriate procedure or section of code.

If a program or procedure has been thoroughly tested and it incorporates periodic 
checks for QNaN results, then it is not necessary to check for the unordered result 
every time a comparison is made.

See Section 8.1.4, “Branching and Conditional Moves on Condition Codes,” for 
another technique for branching on x87 FPU condition codes.

Some non-comparison x87 FPU instructions update the condition code flags in the 
x87 FPU status word. To ensure that the status word is not altered inadvertently, 
store it immediately following a comparison operation.

8.3.7 Trigonometric Instructions
The following instructions perform four common trigonometric functions:

FSIN Sine
FCOS Cosine
FSINCOS Sine and cosine
FPTAN Tangent
FPATAN Arctangent

These instructions operate on the top one or two registers of the x87 FPU register 
stack and they return their results to the stack. The source operands for the FSIN, 
FCOS, FSINCOS, and FPTAN instructions must be given in radians; the source 
operand for the FPATAN instruction is given in rectangular coordinate units.

The FSINCOS instruction returns both the sine and the cosine of a source operand 
value. It operates faster than executing the FSIN and FCOS instructions in succes-
sion.

The FPATAN instruction computes the arctangent of ST(1) divided by ST(0), 
returning a result in radians. It is useful for converting rectangular coordinates to 
polar coordinates.

Table 8-8.  TEST Instruction Constants for Conditional Branching
Order Constant Branch

ST(0) > Source Operand 4500H JZ

ST(0) < Source Operand 0100H JNZ

ST(0) = Source Operand 4000H JNZ

Unordered 0400H JNZ
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8.3.8 Pi
When the argument (source operand) of a trigonometric function is within the range 
of the function, the argument is automatically reduced by the appropriate multiple of 
2π through the same reduction mechanism used by the FPREM and FPREM1 instruc-
tions. The internal value of π that the x87 FPU uses for argument reduction and other 
computations is as follows:

π = 0.f ∗ 22

where:
f = C90FDAA2  2168C234  C

(The spaces in the fraction above indicate 32-bit boundaries.)

This internal π value has a 66-bit mantissa, which is 2 bits more than is allowed in the 
significand of an double extended-precision floating-point value. (Since 66 bits is not 
an even number of hexadecimal digits, two additional zeros have been added to the 
value so that it can be represented in hexadecimal format. The least-significant 
hexadecimal digit (C) is thus 1100B, where the two least-significant bits represent 
bits 67 and 68 of the mantissa.)

This value of π has been chosen to guarantee no loss of significance in a source 
operand, provided the operand is within the specified range for the instruction.

If the results of computations that explicitly use π are to be used in the FSIN, FCOS, 
FSINCOS, or FPTAN instructions, the full 66-bit fraction of π should be used. This 
insures that the results are consistent with the argument-reduction algorithms that 
these instructions use. Using a rounded version of π can cause inaccuracies in result 
values, which if propagated through several calculations, might result in meaningless 
results.

A common method of representing the full 66-bit fraction of π is to separate the value 
into two numbers (highπ and lowπ) that when added together give the value for π 
shown earlier in this section with the full 66-bit fraction:

π = highπ + lowπ

For example, the following two values (given in scientific notation with the fraction in 
hexadecimal and the exponent in decimal) represent the 33 most-significant and the 
33 least-significant bits of the fraction:

highπ (unnormalized) = 0.C90FDAA20 * 2+2 
lowπ (unnormalized) = 0.42D184698 * 2− 31

These values encoded in the IEEE double-precision floating-point format are as 
follows:

highπ = 400921FB  54400000
lowπ = 3DE0B461  1A600000

(Note that in the IEEE double-precision floating-point format, the exponents are 
biased (by 1023) and the fractions are normalized.)

Similar versions of π can also be written in double extended-precision floating-point 
format.
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When using this two-part π value in an algorithm, parallel computations should be 
performed on each part, with the results kept separate. When all the computations 
are complete, the two results can be added together to form the final result.

The complications of maintaining a consistent value of π for argument reduction can 
be avoided, either by applying the trigonometric functions only to arguments within 
the range of the automatic reduction mechanism, or by performing all argument 
reductions (down to a magnitude less than π/4) explicitly in software.

8.3.9 Logarithmic, Exponential, and Scale
The following instructions provide two different logarithmic functions, an exponential 
function and a scale function:

FYL2X Logarithm
FYL2XP1 Logarithm epsilon
F2XM1 Exponential
FSCALE Scale

The FYL2X and FYL2XP1 instructions perform two different base 2 logarithmic opera-
tions. The FYL2X instruction computes (y ∗ log2x). This operation permits the calcu-
lation of the log of any base using the following equation:

logb x = (1/log2 b) ∗ log2 x

The FYL2XP1 instruction computes (y ∗ log2(x + 1)). This operation provides 
optimum accuracy for values of x that are close to 0.

The F2XM1 instruction computes (2x − 1). This instruction only operates on source 
values in the range −1.0 to +1.0.

The FSCALE instruction multiplies the source operand by a power of 2.

8.3.10 Transcendental Instruction Accuracy
New transcendental instruction algorithms were incorporated into the IA-32 architec-
ture beginning with the Pentium processors. These new algorithms (used in tran-
scendental instructions FSIN, FCOS, FSINCOS, FPTAN, FPATAN, F2XM1, FYL2X, and 
FYL2XP1) allow a higher level of accuracy than was possible in earlier IA-32 proces-
sors and x87 math coprocessors. The accuracy of these instructions is measured in 
terms of units in the last place (ulp). For a given argument x, let f(x) and F(x) be 
the correct and computed (approximate) function values, respectively. The error in 
ulps is defined to be:

error f x( ) F x( )–

2k 63–
---------------------------=
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where k is an integer such that:

With the Pentium processor and later IA-32 processors, the worst case error on 
transcendental functions is less than 1 ulp when rounding to the nearest (even) and 
less than 1.5 ulps when rounding in other modes. The functions are guaranteed to be 
monotonic, with respect to the input operands, throughout the domain supported by 
the instruction.

The instructions FYL2X and FYL2XP1 are two operand instructions and are guaran-
teed to be within 1 ulp only when y equals 1. When y is not equal to 1, the maximum 
ulp error is always within 1.35 ulps in round to nearest mode. (For the two operand 
functions, monotonicity was proved by holding one of the operands constant.)

8.3.11 x87 FPU Control Instructions
The following instructions control the state and modes of operation of the x87 FPU. 
They also allow the status of the x87 FPU to be examined:

FINIT/FNINIT Initialize x87 FPU

FLDCW Load x87 FPU control word

FSTCW/FNSTCWStore x87 FPU control word

FSTSW/FNSTSWStore x87 FPU status word

FCLEX/FNCLEXClear x87 FPU exception flags

FLDENV Load x87 FPU environment

FSTENV/FNSTENVStore x87 FPU environment

FRSTOR Restore x87 FPU state

FSAVE/FNSAVESave x87 FPU state

FINCSTP Increment x87 FPU register stack pointer

FDECSTP Decrement x87 FPU register stack pointer

FFREE Free x87 FPU register

FNOP No operation

WAIT/FWAIT Check for and handle pending unmasked
x87 FPU exceptions

The FINIT/FNINIT instructions initialize the x87 FPU and its internal registers to 
default values.

The FLDCW instructions loads the x87 FPU control word register with a value from 
memory. The FSTCW/FNSTCW and FSTSW/FNSTSW instructions store the x87 FPU 

1 2
k–

f x( ) 2.<≤
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control and status words, respectively, in memory (or for an FSTSW/FNSTSW 
instruction in a general-purpose register).

The FSTENV/FNSTENV and FSAVE/FNSAVE instructions save the x87 FPU environ-
ment and state, respectively, in memory. The x87 FPU environment includes all the 
x87 FPU’s control and status registers; the x87 FPU state includes the x87 FPU envi-
ronment and the data registers in the x87 FPU register stack. (The FSAVE/FNSAVE 
instruction also initializes the x87 FPU to default values, like the FINIT/FNINIT 
instruction, after it saves the original state of the x87 FPU.) 

The FLDENV and FRSTOR instructions load the x87 FPU environment and state, 
respectively, from memory into the x87 FPU. These instructions are commonly used 
when switching tasks or contexts.

The WAIT/FWAIT instructions are synchronization instructions. (They are actually 
mnemonics for the same opcode.) These instructions check the x87 FPU status word 
for pending unmasked x87 FPU exceptions. If any pending unmasked x87 FPU excep-
tions are found, they are handled before the processor resumes execution of the 
instructions (integer, floating-point, or system instruction) in the instruction stream. 
The WAIT/FWAIT instructions are provided to allow synchronization of instruction 
execution between the x87 FPU and the processor’s integer unit. See Section 8.6, 
“x87 FPU Exception Synchronization,” for more information on the use of the 
WAIT/FWAIT instructions.

8.3.12 Waiting vs. Non-waiting Instructions
All of the x87 FPU instructions except a few special control instructions perform a wait 
operation (similar to the WAIT/FWAIT instructions), to check for and handle pending 
unmasked x87 FPU floating-point exceptions, before they perform their primary 
operation (such as adding two floating-point numbers). These instructions are called 
waiting instructions. Some of the x87 FPU control instructions, such as 
FSTSW/FNSTSW, have both a waiting and a non-waiting version. The waiting version 
(with the “F” prefix) executes a wait operation before it performs its primary opera-
tion; whereas, the non-waiting version (with the “FN” prefix) ignores pending 
unmasked exceptions. 

Non-waiting instructions allow software to save the current x87 FPU state without 
first handling pending exceptions or to reset or reinitialize the x87 FPU without 
regard for pending exceptions.

NOTES
When operating a Pentium or Intel486 processor in MS-DOS compat-
ibility mode, it is possible (under unusual circumstances) for a non-
waiting instruction to be interrupted prior to being executed to 
handle a pending x87 FPU exception. The circumstances where this 
can happen and the resulting action of the processor are described in 
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Section D.2.1.3, “No-Wait x87 FPU Instructions Can Get x87 FPU 
Interrupt in Window.” 
When operating a P6 family, Pentium 4, or Intel Xeon processor in 
MS-DOS compatibility mode, non-waiting instructions can not be 
interrupted in this way (see Section D.2.2, “MS-DOS* Compatibility 
Sub-mode in the P6 Family and Pentium® 4 Processors”).

8.3.13 Unsupported x87 FPU Instructions
The Intel 8087 instructions FENI and FDISI and the Intel 287 math coprocessor 
instruction FSETPM perform no function in the Intel 387 math coprocessor and later 
IA-32 processors. If these opcodes are detected in the instruction stream, the x87 
FPU performs no specific operation and no internal x87 FPU states are affected.

8.4 X87 FPU FLOATING-POINT EXCEPTION HANDLING
The x87 FPU detects the six classes of exception conditions described in Section 4.9, 
“Overview of Floating-Point Exceptions”:
• Invalid operation (#I), with two subclasses:

— Stack overflow or underflow (#IS)

— Invalid arithmetic operation (#IA)
• Denormalized operand (#D)
• Divide-by-zero (#Z)
• Numeric overflow (#O)
• Numeric underflow (#U)
• Inexact result (precision) (#P)

Each of the six exception classes has a corresponding flag bit in the x87 FPU status 
word and a mask bit in the x87 FPU control word (see Section 8.1.3, “x87 FPU Status 
Register,” and Section 8.1.5, “x87 FPU Control Word,” respectively). In addition, the 
exception summary (ES) flag in the status word indicates when one or more 
unmasked exceptions has been detected. The stack fault (SF) flag (also in the status 
word) distinguishes between the two types of invalid-operation exceptions.

The mask bits can be set with FLDCW, FRSTOR, or FXRSTOR; they can be read with 
either FSTCW/FNSTCW, FSAVE/FNSAVE, or FXSAVE. The flag bits can be read with 
the FSTSW/FNSTSW, FSAVE/FNSAVE, or FXSAVE instruction.

NOTE
Section 4.9.1, “Floating-Point Exception Conditions,” provides a 
general overview of how the IA-32 processor detects and handles the 
various classes of floating-point exceptions. This information pertains 
to x87 FPU as well as SSE/SSE2/SSE3 extensions. 
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The following sections give specific information about how the x87 FPU handles 
floating-point exceptions that are unique to the x87 FPU.

8.4.1 Arithmetic vs. Non-arithmetic Instructions
When dealing with floating-point exceptions, it is useful to distinguish between 
arithmetic instructions and non-arithmetic instructions. Non-arithmetic 
instructions have no operands or do not make substantial changes to their operands. 
Arithmetic instructions do make significant changes to their operands; in particular, 
they make changes that could result in floating-point exceptions being signaled. 
Table 8-9 lists the non-arithmetic and arithmetic instructions. It should be noted that 
some non-arithmetic instructions can signal a floating-point stack (fault) exception, 
but this exception is not the result of an operation on an operand.

Table 8-9.  Arithmetic and Non-arithmetic Instructions

Non-arithmetic Instructions Arithmetic Instructions

FABS F2XM1

FCHS FADD/FADDP

FCLEX FBLD

FDECSTP FBSTP

FFREE FCOM/FCOMP/FCOMPP

FINCSTP FCOS

FINIT/FNINIT FDIV/FDIVP/FDIVR/FDIVRP

FLD (register-to-register) FIADD

FLD (extended format from memory) FICOM/FICOMP

FLD constant FIDIV/FIDIVR

FLDCW FILD

FLDENV FIMUL

FNOP FIST/FISTP1

FRSTOR FISUB/FISUBR

FSAVE/FNSAVE FLD (single and double)

FST/FSTP (register-to-register) FMUL/FMULP

FSTP (extended format to memory) FPATAN

FSTCW/FNSTCW FPREM/FPREM1

FSTENV/FNSTENV FPTAN

FSTSW/FNSTSW FRNDINT
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8.5 X87 FPU FLOATING-POINT EXCEPTION CONDITIONS
The following sections describe the various conditions that cause a floating-point 
exception to be generated by the x87 FPU and the masked response of the x87 FPU 
when these conditions are detected. Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volumes 2A & 2B, list the floating-point exceptions that can be 
signaled for each floating-point instruction.

See Section 4.9.2, “Floating-Point Exception Priority,” for a description of the rules for 
exception precedence when more than one floating-point exception condition is 
detected for an instruction.

8.5.1 Invalid Operation Exception
The floating-point invalid-operation exception occurs in response to two sub-classes 
of operations:
• Stack overflow or underflow (#IS)
• Invalid arithmetic operand (#IA)

The flag for this exception (IE) is bit 0 of the x87 FPU status word, and the mask bit 
(IM) is bit 0 of the x87 FPU control word. The stack fault flag (SF) of the x87 FPU 
status word indicates the type of operation that caused the exception. When the SF 
flag is set to 1, a stack operation has resulted in stack overflow or underflow; when 
the flag is cleared to 0, an arithmetic instruction has encountered an invalid operand. 
Note that the x87 FPU explicitly sets the SF flag when it detects a stack overflow or 

WAIT/FWAIT FSCALE

FXAM FSIN

FXCH FSINCOS

FSQRT

FST/FSTP (single and double)

FSUB/FSUBP/FSUBR/FSUBRP

FTST

FUCOM/FUCOMP/FUCOMPP

FXTRACT

FYL2X/FYL2XP1

NOTE:
1. The FISTTP instruction in SSE3 is an arithmetic x87 FPU instruction.

Table 8-9.  Arithmetic and Non-arithmetic Instructions (Contd.)

Non-arithmetic Instructions Arithmetic Instructions
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underflow condition, but it does not explicitly clear the flag when it detects an invalid-
arithmetic-operand condition. As a result, the state of the SF flag can be 1 following 
an invalid-arithmetic-operation exception, if it was not cleared from the last time a 
stack overflow or underflow condition occurred. See Section 8.1.3.4, “Stack Fault 
Flag,” for more information about the SF flag.

8.5.1.1  Stack Overflow or Underflow Exception (#IS)
The x87 FPU tag word keeps track of the contents of the registers in the x87 FPU 
register stack (see Section 8.1.7, “x87 FPU Tag Word”). It then uses this information 
to detect two different types of stack faults:
• Stack overflow — An instruction attempts to load a non-empty x87 FPU register 

from memory. A non-empty register is defined as a register containing a zero 
(tag value of 01), a valid value (tag value of 00), or a special value (tag value of 
10).

• Stack underflow — An instruction references an empty x87 FPU register as a 
source operand, including attempting to write the contents of an empty register 
to memory. An empty register has a tag value of 11.

NOTES
The term stack overflow originates from the situation where the 
program has loaded (pushed) eight values from memory onto the 
x87 FPU register stack and the next value pushed on the stack causes 
a stack wraparound to a register that already contains a value.
The term stack underflow originates from the opposite situation. 
Here, a program has stored (popped) eight values from the x87 FPU 
register stack to memory and the next value popped from the stack 
causes stack wraparound to an empty register.

When the x87 FPU detects stack overflow or underflow, it sets the IE flag (bit 0) and 
the SF flag (bit 6) in the x87 FPU status word to 1. It then sets condition-code flag C1 
(bit 9) in the x87 FPU status word to 1 if stack overflow occurred or to 0 if stack 
underflow occurred. 

If the invalid-operation exception is masked, the x87 FPU returns the floating point, 
integer, or packed decimal integer indefinite value to the destination operand, 
depending on the instruction being executed. This value overwrites the destination 
register or memory location specified by the instruction.

If the invalid-operation exception is not masked, a software exception handler is 
invoked (see Section 8.7, “Handling x87 FPU Exceptions in Software”) and the top-
of-stack pointer (TOP) and source operands remain unchanged.
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8.5.1.2  Invalid Arithmetic Operand Exception (#IA)
The x87 FPU is able to detect a variety of invalid arithmetic operations that can be 
coded in a program. These operations are listed in Table 8-10. (This list includes the 
invalid operations defined in IEEE Standard 754.)

When the x87 FPU detects an invalid arithmetic operand, it sets the IE flag (bit 0) in 
the x87 FPU status word to 1. If the invalid-operation exception is masked, the x87 
FPU then returns an indefinite value or QNaN to the destination operand and/or sets 
the floating-point condition codes as shown in Table 8-10. If the invalid-operation 
exception is not masked, a software exception handler is invoked (see Section 8.7, 
“Handling x87 FPU Exceptions in Software”) and the top-of-stack pointer (TOP) and 
source operands remain unchanged.

Table 8-10.  Invalid Arithmetic Operations and the 
Masked Responses to Them

Condition Masked Response

Any arithmetic operation on an operand that is in 
an unsupported format.

Return the QNaN floating-point indefinite 
value to the destination operand.

Any arithmetic operation on a SNaN. Return a QNaN to the destination operand 
(see Table 4-7).

Ordered compare and test operations: one or both 
operands are NaNs.

Set the condition code flags (C0, C2, and C3) in 
the x87 FPU status word or the CF, PF, and ZF 
flags in the EFLAGS register to 111B (not 
comparable).

Addition: operands are opposite-signed infinities.
Subtraction: operands are like-signed infinities.

Return the QNaN floating-point indefinite 
value to the destination operand.

Multiplication: ∞  by 0; 0 by ∞ . Return the QNaN floating-point indefinite 
value to the destination operand.

Division: ∞  by  ∞ ; 0 by 0. Return the QNaN floating-point indefinite 
value to the destination operand.

Remainder instructions FPREM, FPREM1: modulus 
(divisor) is 0 or dividend is ∞ .

Return the QNaN floating-point indefinite; 
clear condition code flag C2 to 0.

Trigonometric instructions FCOS, FPTAN, FSIN, 
FSINCOS: source operand is ∞ .

Return the QNaN floating-point indefinite; 
clear condition code flag C2 to 0.

FSQRT: negative operand (except FSQRT (–0) = –
0); FYL2X: negative operand (except FYL2X (–0) = 
–∞); FYL2XP1: operand more negative than –1.

Return the QNaN floating-point indefinite 
value to the destination operand.

FBSTP: Converted value cannot be represented in 
18 decimal digits, or source value is an SNaN, 
QNaN, ± ∞ , or in an unsupported format.

Store packed BCD integer indefinite value in 
the destination operand.
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Normally, when one or both of the source operands is a QNaN (and neither is an 
SNaN or in an unsupported format), an invalid-operand exception is not generated. 
An exception to this rule is most of the compare instructions (such as the FCOM and 
FCOMI instructions) and the floating-point to integer conversion instructions 
(FIST/FISTP and FBSTP). With these instructions, a QNaN source operand will 
generate an invalid-operand exception.

8.5.2 Denormal Operand Exception (#D)
The x87 FPU signals the denormal-operand exception under the following conditions:
• If an arithmetic instruction attempts to operate on a denormal operand (see 

Section 4.8.3.2, “Normalized and Denormalized Finite Numbers”).
• If an attempt is made to load a denormal single-precision or double-precision 

floating-point value into an x87 FPU register. (If the denormal value being loaded 
is a double extended-precision floating-point value, the denormal-operand 
exception is not reported.)

The flag (DE) for this exception is bit 1 of the x87 FPU status word, and the mask bit 
(DM) is bit 1 of the x87 FPU control word.

When a denormal-operand exception occurs and the exception is masked, the x87 
FPU sets the DE flag, then proceeds with the instruction. The denormal operand in 
single- or double-precision floating-point format is automatically normalized when 
converted to the double extended-precision floating-point format. Subsequent oper-
ations will benefit from the additional precision of the internal double extended-preci-
sion floating-point format.

When a denormal-operand exception occurs and the exception is not masked, the DE 
flag is set and a software exception handler is invoked (see Section 8.7, “Handling 
x87 FPU Exceptions in Software”). The top-of-stack pointer (TOP) and source oper-
ands remain unchanged.

For additional information about the denormal-operation exception, see Section 
4.9.1.2, “Denormal Operand Exception (#D).”

FIST/FISTP: Converted value exceeds 
representable integer range of the destination 
operand, or source value is an SNaN, QNaN, ±∞, or 
in an unsupported format.

Store integer indefinite value in the 
destination operand.

FXCH: one or both registers are tagged empty. Load empty registers with the QNaN floating-
point indefinite value, then perform the 
exchange.

Table 8-10.  Invalid Arithmetic Operations and the 
Masked Responses to Them (Contd.)
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8.5.3 Divide-By-Zero Exception (#Z)
The x87 FPU reports a floating-point divide-by-zero exception whenever an instruc-
tion attempts to divide a finite non-zero operand by 0. The flag (ZE) for this exception 
is bit 2 of the x87 FPU status word, and the mask bit (ZM) is bit 2 of the x87 FPU 
control word. The FDIV, FDIVP, FDIVR, FDIVRP, FIDIV, and FIDIVR instructions and 
the other instructions that perform division internally (FYL2X and FXTRACT) can 
report the divide-by-zero exception. 

When a divide-by-zero exception occurs and the exception is masked, the x87 FPU 
sets the ZE flag and returns the values shown in Table 8-10. If the divide-by-zero 
exception is not masked, the ZE flag is set, a software exception handler is invoked 
(see Section 8.7, “Handling x87 FPU Exceptions in Software”), and the top-of-stack 
pointer (TOP) and source operands remain unchanged.

8.5.4 Numeric Overflow Exception (#O)
The x87 FPU reports a floating-point numeric overflow exception (#O) whenever the 
rounded result of an arithmetic instruction exceeds the largest allowable finite value 
that will fit into the floating-point format of the destination operand. (See Section 
4.9.1.4, “Numeric Overflow Exception (#O),” for additional information about the 
numeric overflow exception.)

When using the x87 FPU, numeric overflow can occur on arithmetic operations where 
the result is stored in an x87 FPU data register. It can also occur on store floating-
point operations (using the FST and FSTP instructions), where a within-range value 
in a data register is stored in memory in a single-precision or double-precision 
floating-point format. The numeric overflow exception cannot occur when storing 
values in an integer or BCD integer format. Instead, the invalid-arithmetic-operand 
exception is signaled.

The flag (OE) for the numeric-overflow exception is bit 3 of the x87 FPU status word, 
and the mask bit (OM) is bit 3 of the x87 FPU control word. 

When a numeric-overflow exception occurs and the exception is masked, the x87 
FPU sets the OE flag and returns one of the values shown in Table 4-10. The value 
returned depends on the current rounding mode of the x87 FPU (see Section 8.1.5.3, 
“Rounding Control Field”).

Table 8-11.  Divide-By-Zero Conditions and the Masked Responses to Them

Condition Masked Response

Divide or reverse divide operation 
with a 0 divisor.

Returns an ∞ signed with the exclusive OR of the sign of the 
two operands to the destination operand.

FYL2X instruction. Returns an ∞ signed with the opposite sign of the non-zero 
operand to the destination operand.

FXTRACT instruction. ST(1) is set to –∞; ST(0) is set to 0 with the same sign as the 
source operand.
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The action that the x87 FPU takes when numeric overflow occurs and the numeric-
overflow exception is not masked, depends on whether the instruction is supposed to 
store the result in memory or on the register stack.
• Destination is a memory location — The OE flag is set and a software 

exception handler is invoked (see Section 8.7, “Handling x87 FPU Exceptions in 
Software”). The top-of-stack pointer (TOP) and source and destination operands 
remain unchanged. Because the data in the stack is in double extended-precision 
format, the exception handler has the option either of re-executing the store 
instruction after proper adjustment of the operand or of rounding the significand 
on the stack to the destination's precision as the standard requires. The 
exception handler should ultimately store a value into the destination location in 
memory if the program is to continue.

• Destination is the register stack — The significand of the result is rounded 
according to current settings of the precision and rounding control bits in the x87 
FPU control word and the exponent of the result is adjusted by dividing it by 
224576. (For instructions not affected by the precision field, the significand is 
rounded to double-extended precision.) The resulting value is stored in the 
destination operand. Condition code bit C1 in the x87 FPU status word (called in 
this situation the “round-up bit”) is set if the significand was rounded upward and 
cleared if the result was rounded toward 0. After the result is stored, the OE flag 
is set and a software exception handler is invoked. The scaling bias value 24,576 
is equal to 3 ∗ 213. Biasing the exponent by 24,576 normally translates the 
number as nearly as possible to the middle of the double extended-precision 
floating-point exponent range so that, if desired, it can be used in subsequent 
scaled operations with less risk of causing further exceptions.
When using the FSCALE instruction, massive overflow can occur, where the result 
is too large to be represented, even with a bias-adjusted exponent. Here, if 
overflow occurs again, after the result has been biased, a properly signed ∞ is 
stored in the destination operand.

8.5.5 Numeric Underflow Exception (#U)
The x87 FPU detects a floating-point numeric underflow condition whenever the 
rounded result of an arithmetic instruction is tiny; that is, less than the smallest 
possible normalized, finite value that will fit into the floating-point format of the 
destination operand. (See Section 4.9.1.5, “Numeric Underflow Exception (#U),” for 
additional information about the numeric underflow exception.)

Like numeric overflow, numeric underflow can occur on arithmetic operations where 
the result is stored in an x87 FPU data register. It can also occur on store floating-
point operations (with the FST and FSTP instructions), where a within-range value in 
a data register is stored in memory in the smaller single-precision or double-preci-
sion floating-point formats. A numeric underflow exception cannot occur when 
storing values in an integer or BCD integer format, because a tiny value is always 
rounded to an integral value of 0 or 1, depending on the rounding mode in effect.
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The flag (UE) for the numeric-underflow exception is bit 4 of the x87 FPU status 
word, and the mask bit (UM) is bit 4 of the x87 FPU control word.

When a numeric-underflow condition occurs and the exception is masked, the x87 
FPU performs the operation described in Section 4.9.1.5, “Numeric Underflow Excep-
tion (#U).”

When the exception is not masked, the action of the x87 FPU depends on whether the 
instruction is supposed to store the result in a memory location or on the x87 FPU 
resister stack.
• Destination is a memory location — (Can occur only with a store instruction.) 

The UE flag is set and a software exception handler is invoked (see Section 8.7, 
“Handling x87 FPU Exceptions in Software”). The top-of-stack pointer (TOP) and 
source and destination operands remain unchanged, and no result is stored in 
memory. 
Because the data in the stack is in double extended-precision format, the 
exception handler has the option either of re-exchanges the store instruction 
after proper adjustment of the operand or of rounding the significand on the 
stack to the destination's precision as the standard requires. The exception 
handler should ultimately store a value into the destination location in memory if 
the program is to continue.

• Destination is the register stack — The significand of the result is rounded 
according to current settings of the precision and rounding control bits in the x87 
FPU control word and the exponent of the result is adjusted by multiplying it by 
224576. (For instructions not affected by the precision field, the significand is 
rounded to double extended precision.) The resulting value is stored in the 
destination operand. Condition code bit C1 in the x87 FPU status register (acting 
here as a “round-up bit”) is set if the significand was rounded upward and cleared 
if the result was rounded toward 0. After the result is stored, the UE flag is set 
and a software exception handler is invoked. The scaling bias value 24,576 is the 
same as is used for the overflow exception and has the same effect, which is to 
translate the result as nearly as possible to the middle of the double extended-
precision floating-point exponent range.
When using the FSCALE instruction, massive underflow can occur, where the 
result is too tiny to be represented, even with a bias-adjusted exponent. Here, if 
underflow occurs again after the result has been biased, a properly signed 0 is 
stored in the destination operand.

8.5.6 Inexact-Result (Precision) Exception (#P)
The inexact-result exception (also called the precision exception) occurs if the result 
of an operation is not exactly representable in the destination format. (See Section 
4.9.1.6, “Inexact-Result (Precision) Exception (#P),” for additional information about 
the numeric overflow exception.) Note that the transcendental instructions (FSIN, 
FCOS, FSINCOS, FPTAN, FPATAN, F2XM1, FYL2X, and FYL2XP1) by nature produce 
inexact results.
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The inexact-result exception flag (PE) is bit 5 of the x87 FPU status word, and the 
mask bit (PM) is bit 5 of the x87 FPU control word. 

If the inexact-result exception is masked when an inexact-result condition occurs and 
a numeric overflow or underflow condition has not occurred, the x87 FPU handles the 
exception as describe in Section 4.9.1.6, “Inexact-Result (Precision) Exception (#P),” 
with one additional action. The C1 (round-up) bit in the x87 FPU status word is set to 
indicate whether the inexact result was rounded up (C1 is set) or “not rounded up” 
(C1 is cleared). In the “not rounded up” case, the least-significant bits of the inexact 
result are truncated so that the result fits in the destination format.

If the inexact-result exception is not masked when an inexact result occurs and 
numeric overflow or underflow has not occurred, the x87 FPU handles the exception 
as described in the previous paragraph and, in addition, invokes a software exception 
handler.

If an inexact result occurs in conjunction with numeric overflow or underflow, the x87 
FPU carries out one of the following operations:
• If an inexact result occurs in conjunction with masked overflow or underflow, the 

OE or UE flag and the PE flag are set and the result is stored as described for the 
overflow or underflow exceptions (see Section 8.5.4, “Numeric Overflow 
Exception (#O),” or Section 8.5.5, “Numeric Underflow Exception (#U)”). If the 
inexact result exception is unmasked, the x87 FPU also invokes a software 
exception handler.

• If an inexact result occurs in conjunction with unmasked overflow or underflow 
and the destination operand is a register, the OE or UE flag and the PE flag are 
set, the result is stored as described for the overflow or underflow exceptions 
(see Section 8.5.4, “Numeric Overflow Exception (#O),” or Section 8.5.5, 
“Numeric Underflow Exception (#U)”) and a software exception handler is 
invoked.

If an unmasked numeric overflow or underflow exception occurs and the destination 
operand is a memory location (which can happen only for a floating-point store), the 
inexact-result condition is not reported and the C1 flag is cleared.

8.6 X87 FPU EXCEPTION SYNCHRONIZATION
Because the integer unit and x87 FPU are separate execution units, it is possible for 
the processor to execute floating-point, integer, and system instructions concur-
rently. No special programming techniques are required to gain the advantages of 
concurrent execution. (Floating-point instructions are placed in the instruction 
stream along with the integer and system instructions.) However, concurrent execu-
tion can cause problems for floating-point exception handlers. 

This problem is related to the way the x87 FPU signals the existence of unmasked 
floating-point exceptions. (Special exception synchronization is not required for 
masked floating-point exceptions, because the x87 FPU always returns a masked 
result to the destination operand.) 
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When a floating-point exception is unmasked and the exception condition occurs, the 
x87 FPU stops further execution of the floating-point instruction and signals the 
exception event. On the next occurrence of a floating-point instruction or a 
WAIT/FWAIT instruction in the instruction stream, the processor checks the ES flag in 
the x87 FPU status word for pending floating-point exceptions. If floating-point 
exceptions are pending, the x87 FPU makes an implicit call (traps) to the floating-
point software exception handler. The exception handler can then execute recovery 
procedures for selected or all floating-point exceptions.

Synchronization problems occur in the time between the moment when the excep-
tion is signaled and when it is actually handled. Because of concurrent execution, 
integer or system instructions can be executed during this time. It is thus possible for 
the source or destination operands for a floating-point instruction that faulted to be 
overwritten in memory, making it impossible for the exception handler to analyze or 
recover from the exception.

To solve this problem, an exception synchronizing instruction (either a floating-point 
instruction or a WAIT/FWAIT instruction) can be placed immediately after any 
floating-point instruction that might present a situation where state information 
pertaining to a floating-point exception might be lost or corrupted. Floating-point 
instructions that store data in memory are prime candidates for synchronization. For 
example, the following three lines of code have the potential for exception synchro-
nization problems:

FILD COUNT ;Floating-point instruction
INC COUNT ;Integer instruction
FSQRT ;Subsequent floating-point instruction

In this example, the INC instruction modifies the source operand of the floating-point 
instruction, FILD. If an exception is signaled during the execution of the FILD instruc-
tion, the INC instruction would be allowed to overwrite the value stored in the COUNT 
memory location before the floating-point exception handler is called. With the 
COUNT variable modified, the floating-point exception handler would not be able to 
recover from the error.

Rearranging the instructions, as follows, so that the FSQRT instruction follows the 
FILD instruction, synchronizes floating-point exception handling and eliminates the 
possibility of the COUNT variable being overwritten before the floating-point excep-
tion handler is invoked.

FILD COUNT ;Floating-point instruction
FSQRT      ;Subsequent floating-point instruction synchronizes

           ;any exceptions generated by the FILD instruction.
INC COUNT  ;Integer instruction

The FSQRT instruction does not require any synchronization, because the results of 
this instruction are stored in the x87 FPU data registers and will remain there, undis-
turbed, until the next floating-point or WAIT/FWAIT instruction is executed. To abso-
lutely insure that any exceptions emanating from the FSQRT instruction are handled 
(for example, prior to a procedure call), a WAIT instruction can be placed directly 
after the FSQRT instruction.
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Note that some floating-point instructions (non-waiting instructions) do not check for 
pending unmasked exceptions (see Section 8.3.11, “x87 FPU Control Instructions”). 
They include the FNINIT, FNSTENV, FNSAVE, FNSTSW, FNSTCW, and FNCLEX instruc-
tions. When an FNINIT, FNSTENV, FNSAVE, or FNCLEX instruction is executed, all 
pending exceptions are essentially lost (either the x87 FPU status register is cleared 
or all exceptions are masked). The FNSTSW and FNSTCW instructions do not check 
for pending interrupts, but they do not modify the x87 FPU status and control regis-
ters. A subsequent “waiting” floating-point instruction can then handle any pending 
exceptions.

8.7 HANDLING X87 FPU EXCEPTIONS IN SOFTWARE
The x87 FPU in Pentium and later IA-32 processors provides two different modes of 
operation for invoking a software exception handler for floating-point exceptions: 
native mode and MS-DOS compatibility mode. The mode of operation is selected by 
CR0.NE[bit 5]. (See Chapter 2, “System Architecture Overview,” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3A, for more information 
about the NE flag.)

8.7.1 Native Mode
The native mode for handling floating-point exceptions is selected by setting 
CR0.NE[bit 5] to 1. In this mode, if the x87 FPU detects an exception condition while 
executing a floating-point instruction and the exception is unmasked (the mask bit 
for the exception is cleared), the x87 FPU sets the flag for the exception and the ES 
flag in the x87 FPU status word. It then invokes the software exception handler 
through the floating-point-error exception (#MF, vector 16), immediately before 
execution of any of the following instructions in the processor’s instruction stream:
• The next floating-point instruction, unless it is one of the non-waiting instructions 

(FNINIT, FNCLEX, FNSTSW, FNSTCW, FNSTENV, and FNSAVE). 
• The next WAIT/FWAIT instruction.
• The next MMX instruction.

If the next floating-point instruction in the instruction stream is a non-waiting 
instruction, the x87 FPU executes the instruction without invoking the software 
exception handler.

8.7.2 MS-DOS* Compatibility Sub-mode
If CR0.NE[bit 5] is 0, the MS-DOS compatibility mode for handling floating-point 
exceptions is selected. In this mode, the software exception handler for floating-
point exceptions is invoked externally using the processor’s FERR#, INTR, and 
IGNNE# pins. This method of reporting floating-point errors and invoking an excep-
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tion handler is provided to support the floating-point exception handling mechanism 
used in PC systems that are running the MS-DOS or Windows* 95 operating system.

Using FERR# and IGNNE# to handle floating-point exception is deprecated by 
modern operating systems, this approach also limits newer processors to operate 
with one logical processor active.

The MS-DOS compatibility mode is typically used as follows to invoke the floating-
point exception handler:

1. If the x87 FPU detects an unmasked floating-point exception, it sets the flag for 
the exception and the ES flag in the x87 FPU status word.

2. If the IGNNE# pin is deasserted, the x87 FPU then asserts the FERR# pin either 
immediately, or else delayed (deferred) until just before the execution of the next 
waiting floating-point instruction or MMX instruction. Whether the FERR# pin is 
asserted immediately or delayed depends on the type of processor, the 
instruction, and the type of exception.

3. If a preceding floating-point instruction has set the exception flag for an 
unmasked x87 FPU exception, the processor freezes just before executing the 
next WAIT instruction, waiting floating-point instruction, or MMX instruction. 
Whether the FERR# pin was asserted at the preceding floating-point instruction 
or is just now being asserted, the freezing of the processor assures that the x87 
FPU exception handler will be invoked before the new floating-point (or MMX) 
instruction gets executed.

4. The FERR# pin is connected through external hardware to IRQ13 of a cascaded, 
programmable interrupt controller (PIC). When the FERR# pin is asserted, the 
PIC is programmed to generate an interrupt 75H.

5. The PIC asserts the INTR pin on the processor to signal the interrupt 75H.

6. The BIOS for the PC system handles the interrupt 75H by branching to the 
interrupt 02H (NMI) interrupt handler.

7. The interrupt 02H handler determines if the interrupt is the result of an NMI 
interrupt or a floating-point exception.

8. If a floating-point exception is detected, the interrupt 02H handler branches to 
the floating-point exception handler.

If the IGNNE# pin is asserted, the processor ignores floating-point error conditions. 
This pin is provided to inhibit floating-point exceptions from being generated while 
the floating-point exception handler is servicing a previously signaled floating-point 
exception.

Appendix D, “Guidelines for Writing x87 FPU Exception Handlers,” describes the 
MS-DOS compatibility mode in much greater detail. This mode is somewhat more 
complicated in the Intel486 and Pentium processor implementations, as described in 
Appendix D.
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8.7.3 Handling x87 FPU Exceptions in Software
Section 4.9.3, “Typical Actions of a Floating-Point Exception Handler,” shows actions 
that may be carried out by a floating-point exception handler. The state of the x87 
FPU can be saved with the FSTENV/FNSTENV or FSAVE/FNSAVE instructions (see 
Section 8.1.10, “Saving the x87 FPU’s State with FSTENV/FNSTENV and 
FSAVE/FNSAVE”). 

If the faulting floating-point instruction is followed by one or more non-floating-point 
instructions, it may not be useful to re-execute the faulting instruction. See Section 
8.6, “x87 FPU Exception Synchronization,” for more information on synchronizing 
floating-point exceptions.

In cases where the handler needs to restart program execution with the faulting 
instruction, the IRET instruction cannot be used directly. The reason for this is that 
because the exception is not generated until the next floating-point or WAIT/FWAIT 
instruction following the faulting floating-point instruction, the return instruction 
pointer on the stack may not point to the faulting instruction. To restart program 
execution at the faulting instruction, the exception handler must obtain a pointer to 
the instruction from the saved x87 FPU state information, load it into the return 
instruction pointer location on the stack, and then execute the IRET instruction.

See Section D.3.4, “x87 FPU Exception Handling Examples,” for general examples of 
floating-point exception handlers and for specific examples of how to write a floating-
point exception handler when using the MS-DOS compatibility mode.
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CHAPTER 9
PROGRAMMING WITH INTEL® MMX™ TECHNOLOGY

The Intel MMX technology was introduced into the IA-32 architecture in the 
Pentium II processor family and Pentium processor with MMX technology. The exten-
sions introduced in MMX technology support a single-instruction, multiple-data 
(SIMD) execution model that is designed to accelerate the performance of advanced 
media and communications applications.

This chapter describes MMX technology.

9.1 OVERVIEW OF MMX TECHNOLOGY
MMX technology defines a simple and flexible SIMD execution model to handle 64-bit 
packed integer data. This model adds the following features to the IA-32 architec-
ture, while maintaining backwards compatibility with all IA-32 applications and 
operating-system code:
• Eight new 64-bit data registers, called MMX registers
• Three new packed data types:

— 64-bit packed byte integers (signed and unsigned)

— 64-bit packed word integers (signed and unsigned)

— 64-bit packed doubleword integers (signed and unsigned)
• Instructions that support the new data types and to handle MMX state 

management
• Extensions to the CPUID instruction

MMX technology is accessible from all the IA32-architecture execution modes 
(protected mode, real address mode, and virtual 8086 mode). It does not add any 
new modes to the architecture.

The following sections of this chapter describe MMX technology’s programming envi-
ronment, including MMX register set, data types, and instruction set. Additional 
instructions that operate on MMX registers have been added to the IA-32 architec-
ture by the SSE/SSE2 extensions.

For more information, see:
• Section 10.4.4, “SSE 64-Bit SIMD Integer Instructions,” describes MMX instruc-

tions added to the IA-32 architecture with the SSE extensions.
• Section 11.4.2, “SSE2 64-Bit and 128-Bit SIMD Integer Instructions,” describes 

MMX instructions added to the IA-32 architecture with SSE2 extensions.
• Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 

2A & 2B, give detailed descriptions of MMX instructions.
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• Chapter 12, “Intel® MMX™ Technology System Programming,” in the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 3B, describes the 
manner in which MMX technology is integrated into the IA-32 system 
programming model.

9.2 THE MMX TECHNOLOGY PROGRAMMING 
ENVIRONMENT 

Figure 9-1 shows the execution environment for MMX technology. All MMX instruc-
tions operate on MMX registers, the general-purpose registers, and/or memory as 
follows: 
• MMX registers — These eight registers (see Figure 9-1) are used to perform 

operations on 64-bit packed integer data. They are named MM0 through MM7.

• General-purpose registers — The eight general-purpose registers (see 
Figure 3-5) are used with existing IA-32 addressing modes to address operands 
in memory. (MMX registers cannot be used to address memory). General-
purpose registers are also used to hold operands for some MMX technology 
operations. They are EAX, EBX, ECX, EDX, EBP, ESI, EDI, and ESP.

9.2.1 MMX Technology in 64-Bit Mode and Compatibility Mode
In compatibility mode and 64-bit mode, MMX instructions function like they do in 
protected mode. Memory operands are specified using the ModR/M, SIB encoding 
described in Section 3.7.5.

Figure 9-1.  MMX Technology Execution Environment
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9.2.2 MMX Registers
The MMX register set consists of eight 64-bit registers (see Figure 9-2), that are used 
to perform calculations on the MMX packed integer data types. Values in MMX regis-
ters have the same format as a 64-bit quantity in memory. 

The MMX registers have two data access modes: 64-bit access mode and 32-bit 
access mode. The 64-bit access mode is used for:
• 64-bit memory accesses
• 64-bit transfers between MMX registers
• All pack, logical, and arithmetic instructions
• Some unpack instructions

The 32-bit access mode is used for:
• 32-bit memory accesses
• 32-bit transfer between general-purpose registers and MMX registers
• Some unpack instructions

Although MMX registers are defined in the IA-32 architecture as separate registers, 
they are aliased to the registers in the FPU data register stack (R0 through R7). 

See also Section 9.5, “Compatibility with x87 FPU Architecture.”

9.2.3 MMX Data Types
MMX technology introduced the following 64-bit data types to the IA-32 architecture 
(see Figure 9-3):
• 64-bit packed byte integers — eight packed bytes

Figure 9-2.  MMX Register Set
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• 64-bit packed word integers — four packed words
• 64-bit packed doubleword integers — two packed doublewords

MMX instructions move 64-bit packed data types (packed bytes, packed words, or 
packed doublewords) and the quadword data type between MMX registers and 
memory or between MMX registers in 64-bit blocks. However, when performing arith-
metic or logical operations on the packed data types, MMX instructions operate in 
parallel on the individual bytes, words, or doublewords contained in MMX registers 
(see Section 9.2.5, “Single Instruction, Multiple Data (SIMD) Execution Model”).

9.2.4 Memory Data Formats
When stored in memory: bytes, words and doublewords in the packed data types are 
stored in consecutive addresses. The least significant byte, word, or doubleword is 
stored at the lowest address and the most significant byte, word, or doubleword is 
stored at the high address. The ordering of bytes, words, or doublewords in memory 
is always little endian. That is, the bytes with the low addresses are less significant 
than the bytes with high addresses.

9.2.5 Single Instruction, Multiple Data (SIMD) Execution Model
MMX technology uses the single instruction, multiple data (SIMD) technique for 
performing arithmetic and logical operations on bytes, words, or doublewords packed 
into MMX registers (see Figure 9-4). For example, the PADDSW instruction adds 4 
signed word integers from one source operand to 4 signed word integers in a second 
source operand and stores 4 word integer results in a destination operand. This SIMD 
technique speeds up software performance by allowing the same operation to be 
carried out on multiple data elements in parallel. MMX technology supports parallel 
operations on byte, word, and doubleword data elements when contained in MMX 
registers.

Figure 9-3.  Data Types Introduced with the MMX Technology
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The SIMD execution model supported in the MMX technology directly addresses the 
needs of modern media, communications, and graphics applications, which often use 
sophisticated algorithms that perform the same operations on a large number of 
small data types (bytes, words, and doublewords). For example, most audio data is 
represented in 16-bit (word) quantities. The MMX instructions can operate on 4 
words simultaneously with one instruction. Video and graphics information is 
commonly represented as palletized 8-bit (byte) quantities. In Figure 9-4, one MMX 
instruction operates on 8 bytes simultaneously.

9.3 SATURATION AND WRAPAROUND MODES
When performing integer arithmetic, an operation may result in an out-of-range 
condition, where the true result cannot be represented in the destination format. For 
example, when performing arithmetic on signed word integers, positive overflow can 
occur when the true signed result is larger than 16 bits.

The MMX technology provides three ways of handling out-of-range conditions:
• Wraparound arithmetic — With wraparound arithmetic, a true out-of-range 

result is truncated (that is, the carry or overflow bit is ignored and only the least 
significant bits of the result are returned to the destination). Wraparound 
arithmetic is suitable for applications that control the range of operands to 
prevent out-of-range results. If the range of operands is not controlled, however, 
wraparound arithmetic can lead to large errors. For example, adding two large 
signed numbers can cause positive overflow and produce a negative result.

• Signed saturation arithmetic — With signed saturation arithmetic, out-of-
range results are limited to the representable range of signed integers for the 
integer size being operated on (see Table 9-1). For example, if positive overflow 
occurs when operating on signed word integers, the result is “saturated” to 
7FFFH, which is the largest positive integer that can be represented in 16 bits; if 
negative overflow occurs, the result is saturated to 8000H.

Figure 9-4.  SIMD Execution Model
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• Unsigned saturation arithmetic — With unsigned saturation arithmetic, out-
of-range results are limited to the representable range of unsigned integers for 
the integer size. So, positive overflow when operating on unsigned byte integers 
results in FFH being returned and negative overflow results in 00H being 
returned.

.

Saturation arithmetic provides an answer for many overflow situations. For example, 
in color calculations, saturation causes a color to remain pure black or pure white 
without allowing inversion. It also prevents wraparound artifacts from entering into 
computations when range checking of source operands it not used.

MMX instructions do not indicate overflow or underflow occurrence by generating 
exceptions or setting flags in the EFLAGS register.

9.4 MMX INSTRUCTIONS
The MMX instruction set consists of 47 instructions, grouped into the following cate-
gories:
• Data transfer
• Arithmetic
• Comparison
• Conversion
• Unpacking
• Logical
• Shift
• Empty MMX state instruction (EMMS)

Table 9-2 gives a summary of the instructions in the MMX instruction set. The 
following sections give a brief overview of the instructions within each group.

Table 9-1.  Data Range Limits for Saturation

Data Type Lower Limit Upper Limit

Hexadecimal Decimal Hexadecimal Decimal

Signed Byte     80H     -128     7FH      127

Signed Word 8000H -32,768 7FFFH 32,767

Unsigned Byte     00H           0     FFH      255

Unsigned Word 0000H           0 FFFFH 65,535
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NOTES
The MMX instructions described in this chapter are those instructions 
that are available in an IA-32 processor when 
CPUID.01H:EDX.MMX[bit 23] = 1. 
Section 10.4.4, “SSE 64-Bit SIMD Integer Instructions,” and Section 
11.4.2, “SSE2 64-Bit and 128-Bit SIMD Integer Instructions,” list 
additional instructions included with SSE/SSE2 extensions that 
operate on the MMX registers but are not considered part of the MMX 
instruction set.

Table 9-2.  MMX Instruction Set Summary

Category Wraparound Signed 
Saturation

Unsigned Saturation

Arithmetic Addition

Subtraction

Multiplication

Multiply and Add

PADDB, PADDW, 
PADDD

PSUBB, PSUBW, 
PSUBD

PMULL, PMULH

PMADD

PADDSB, PADDSW

PSUBSB, PSUBSW

PADDUSB, PADDUSW

PSUBUSB, PSUBUSW

Comparison Compare for Equal

Compare for 
Greater Than

PCMPEQB, 
PCMPEQW, 
PCMPEQD

PCMPGTPB, 
PCMPGTPW, 
PCMPGTPD

Conversion Pack PACKSSWB,
PACKSSDW

PACKUSWB

Unpack Unpack High

Unpack Low

PUNPCKHBW, 
PUNPCKHWD, 
PUNPCKHDQ

PUNPCKLBW, 
PUNPCKLWD, 
PUNPCKLDQ

Packed Full Quadword

Logical And

And Not

Or

Exclusive OR

PAND

PANDN

POR

PXOR
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9.4.1 Data Transfer Instructions
The MOVD (Move 32 Bits) instruction transfers 32 bits of packed data from memory 
to an MMX register and vice versa; or from a general-purpose register to an MMX 
register and vice versa.

The MOVQ (Move 64 Bits) instruction transfers 64 bits of packed data from memory 
to an MMX register and vice versa; or transfers data between MMX registers.

9.4.2 Arithmetic Instructions
The arithmetic instructions perform addition, subtraction, multiplication, and 
multiply/add operations on packed data types.

The PADDB/PADDW/PADDD (add packed integers) instructions and the 
PSUBB/PSUBW/ PSUBD (subtract packed integers) instructions add or subtract the 
corresponding signed or unsigned data elements of the source and destination oper-
ands in wraparound mode. These instructions operate on packed byte, word, and 
doubleword data types.

The PADDSB/PADDSW (add packed signed integers with signed saturation) instruc-
tions and the PSUBSB/PSUBSW (subtract packed signed integers with signed satura-
tion) instructions add or subtract the corresponding signed data elements of the 
source and destination operands and saturate the result to the limits of the signed 
data-type range. These instructions operate on packed byte and word data types.

The PADDUSB/PADDUSW (add packed unsigned integers with unsigned saturation) 
instructions and the PSUBUSB/PSUBUSW (subtract packed unsigned integers with 

Shift Shift Left Logical

Shift Right Logical

Shift Right 
Arithmetic

PSLLW, PSLLD

PSRLW, PSRLD

PSRAW, PSRAD

PSLLQ

PSRLQ

Doubleword Transfers Quadword Transfers

Data 
Transfer

Register to 
Register

Load from 
Memory

Store to Memory

MOVD

MOVD

MOVD

MOVQ

MOVQ

MOVQ

Empty MMX 
State

EMMS

Table 9-2.  MMX Instruction Set Summary (Contd.)

Category Wraparound Signed 
Saturation

Unsigned Saturation
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unsigned saturation) instructions add or subtract the corresponding unsigned data 
elements of the source and destination operands and saturate the result to the limits 
of the unsigned data-type range. These instructions operate on packed byte and 
word data types.

The PMULHW (multiply packed signed integers and store high result) and PMULLW 
(multiply packed signed integers and store low result) instructions perform a signed 
multiply of the corresponding words of the source and destination operands and write 
the high-order or low-order 16 bits of each of the results, respectively, to the desti-
nation operand.

The PMADDWD (multiply and add packed integers) instruction computes the prod-
ucts of the corresponding signed words of the source and destination operands. The 
four intermediate 32-bit doubleword products are summed in pairs (high-order pair 
and low-order pair) to produce two 32-bit doubleword results. 

9.4.3 Comparison Instructions
The PCMPEQB/PCMPEQW/PCMPEQD (compare packed data for equal) instructions 
and the PCMPGTB/PCMPGTW/PCMPGTD (compare packed signed integers for greater 
than) instructions compare the corresponding signed data elements (bytes, words, 
or doublewords) in the source and destination operands for equal to or greater than, 
respectively. 

These instructions generate a mask of ones or zeros which are written to the destina-
tion operand. Logical operations can use the mask to select packed elements. This 
can be used to implement a packed conditional move operation without a branch or a 
set of branch instructions. No flags in the EFLAGS register are affected. 

9.4.4 Conversion Instructions
The PACKSSWB (pack words into bytes with signed saturation) and PACKSSDW (pack 
doublewords into words with signed saturation) instructions convert signed words 
into signed bytes and signed doublewords into signed words, respectively, using 
signed saturation.

PACKUSWB (pack words into bytes with unsigned saturation) converts signed words 
into unsigned bytes, using unsigned saturation.

9.4.5 Unpack Instructions
The PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ (unpack high-order data elements) 
instructions and the PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ (unpack low-order data 
elements) instructions unpack bytes, words, or doublewords from the high- or low-
order data elements of the source and destination operands and interleave them in 
the destination operand. By placing all 0s in the source operand, these instructions 
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can be used to convert byte integers to word integers, word integers to doubleword 
integers, or doubleword integers to quadword integers. 

9.4.6 Logical Instructions
PAND (bitwise logical AND), PANDN (bitwise logical AND NOT), POR (bitwise logical 
OR), and PXOR (bitwise logical exclusive OR) perform bitwise logical operations on 
the quadword source and destination operands.

9.4.7 Shift Instructions
The logical shift left, logical shift right and arithmetic shift right instructions shift each 
element by a specified number of bit positions.

The PSLLW/PSLLD/PSLLQ (shift packed data left logical) instructions and the 
PSRLW/PSRLD/PSRLQ (shift packed data right logical) instructions perform a logical 
left or right shift of the data elements and fill the empty high or low order bit posi-
tions with zeros. These instructions operate on packed words, doublewords, and 
quadwords.

The PSRAW/PSRAD (shift packed data right arithmetic) instructions perform an arith-
metic right shift, copying the sign bit for each data element into empty bit positions 
on the upper end of each data element. This instruction operates on packed words 
and doublewords. 

9.4.8 EMMS Instruction
The EMMS instruction empties the MMX state by setting the tags in x87 FPU tag word 
to 11B, indicating empty registers. This instruction must be executed at the end of an 
MMX routine before calling other routines that can execute floating-point instruc-
tions. See Section 9.6.3, “Using the EMMS Instruction,” for more information on the 
use of this instruction.

9.5 COMPATIBILITY WITH X87 FPU ARCHITECTURE
The MMX state is aliased to the x87 FPU state. No new states or modes have been 
added to IA-32 architecture to support the MMX technology. The same floating-point 
instructions that save and restore the x87 FPU state also handle the MMX state (for 
example, during context switching).

MMX technology uses the same interface techniques between the x87 FPU and the 
operating system (primarily for task switching purposes). For more details, see 
Chapter 12, “Intel® MMX™ Technology System Programming,” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3A.
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9.5.1 MMX Instructions and the x87 FPU Tag Word
After each MMX instruction, the entire x87 FPU tag word is set to valid (00B). The 
EMMS instruction (empty MMX state) sets the entire x87 FPU tag word to empty 
(11B). 

Chapter 12, “Intel® MMX™ Technology System Programming,” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3A, provides additional 
information about the effects of x87 FPU and MMX instructions on the x87 FPU tag 
word. For a description of the tag word, see Section 8.1.7, “x87 FPU Tag Word.”

9.6 WRITING APPLICATIONS WITH MMX CODE
The following sections give guidelines for writing application code that uses MMX 
technology.

9.6.1 Checking for MMX Technology Support
Before an application attempts to use the MMX technology, it should check that it is 
present on the processor. Check by following these steps:

1. Check that the processor supports the CPUID instruction by attempting to 
execute the CPUID instruction. If the processor does not support the CPUID 
instruction, this will generate an invalid-opcode exception (#UD).

2. Check that the processor supports the MMX technology 
(if CPUID.01H:EDX.MMX[bit 23] = 1).

3. Check that emulation of the x87 FPU is disabled (if CR0.EM[bit 2] = 0).

If the processor attempts to execute an unsupported MMX instruction or attempts to 
execute an MMX instruction with CR0.EM[bit 2] set, this generates an invalid-opcode 
exception (#UD).

Example 9-1 illustrates how to use the CPUID instruction to detect the MMX tech-
nology. This example does not represent the entire CPUID sequence, but shows the 
portion used for detection of MMX technology.

Example 9-1.  Partial Routine for Detecting MMX Technology with the CPUID Instruction

... ; identify existence of CPUID instruction

... ; identify Intel processor
mov EAX, 1 ; request for feature flags
CPUID ; 0FH, 0A2H CPUID instruction
test EDX, 00800000H ; Is IA MMX technology bit (Bit 23 of EDX) set?
jnz ; MMX_Technology_Found
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9.6.2 Transitions Between x87 FPU and MMX Code
Applications can contain both x87 FPU floating-point and MMX instructions. However, 
because the MMX registers are aliased to the x87 FPU register stack, care must be 
taken when making transitions between x87 FPU instructions and MMX instructions 
to prevent incoherent or unexpected results.

When an MMX instruction (other than the EMMS instruction) is executed, the 
processor changes the x87 FPU state as follows:
• The TOS (top of stack) value of the x87 FPU status word is set to 0.
• The entire x87 FPU tag word is set to the valid state (00B in all tag fields). 
• When an MMX instruction writes to an MMX register, it writes ones (11B) to the 

exponent part of the corresponding floating-point register (bits 64 through 79).

The net result of these actions is that any x87 FPU state prior to the execution of the 
MMX instruction is essentially lost.

When an x87 FPU instruction is executed, the processor assumes that the current 
state of the x87 FPU register stack and control registers is valid and executes the 
instruction without any preparatory modifications to the x87 FPU state.

If the application contains both x87 FPU floating-point and MMX instructions, the 
following guidelines are recommended:
• When transitioning between x87 FPU and MMX code, save the state of any x87 

FPU data or control registers that need to be preserved for future use. The FSAVE 
and FXSAVE instructions save the entire x87 FPU state.

• When transitioning between MMX and x87 FPU code, do the following:

— Save any data in the MMX registers that needs to be preserved for future use. 
FSAVE and FXSAVE also save the state of MMX registers.

— Execute the EMMS instruction to clear the MMX state from the x87 data and 
control registers.

The following sections describe the use of the EMMS instruction and give additional 
guidelines for mixing x87 FPU and MMX code.

9.6.3 Using the EMMS Instruction
As described in Section 9.6.2, “Transitions Between x87 FPU and MMX Code,” when 
an MMX instruction executes, the x87 FPU tag word is marked valid (00B). In this 
state, the execution of subsequent x87 FPU instructions may produce unexpected 
x87 FPU floating-point exceptions and/or incorrect results because the x87 FPU 
register stack appears to contain valid data. The EMMS instruction is provided to 
prevent this problem by marking the x87 FPU tag word as empty.

The EMMS instruction should be used in each of the following cases: 
• When an application using the x87 FPU instructions calls an MMX technology 

library/DLL (use the EMMS instruction at the end of the MMX code).
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• When an application using MMX instructions calls a x87 FPU floating-point 
library/DLL (use the EMMS instruction before calling the x87 FPU code).

• When a switch is made between MMX code in a task or thread and other tasks or 
threads in cooperative operating systems, unless it is certain that more MMX 
instructions will be executed before any x87 FPU code.

EMMS is not required when mixing MMX technology instructions with 
SSE/SSE2/SSE3 instructions (see Section 11.6.7, “Interaction of SSE/SSE2 Instruc-
tions with x87 FPU and MMX Instructions”).

9.6.4 Mixing MMX and x87 FPU Instructions
An application can contain both x87 FPU floating-point and MMX instructions. 
However, frequent transitions between MMX and x87 FPU instructions are not recom-
mended, because they can degrade performance in some processor implementa-
tions. When mixing MMX code with x87 FPU code, follow these guidelines:
• Keep the code in separate modules, procedures, or routines.
• Do not rely on register contents across transitions between x87 FPU and MMX 

code modules.
• When transitioning between MMX code and x87 FPU code, save the MMX register 

state (if it will be needed in the future) and execute an EMMS instruction to empty 
the MMX state.

• When transitioning between x87 FPU code and MMX code, save the x87 FPU state 
if it will be needed in the future.

9.6.5 Interfacing with MMX Code
MMX technology enables direct access to all the MMX registers. This means that all 
existing interface conventions that apply to the use of the processor’s general-
purpose registers (EAX, EBX, etc.) also apply to the use of MMX registers.

An efficient interface to MMX routines might pass parameters and return values 
through the MMX registers or through a combination of memory locations (via the 
stack) and MMX registers. Do not use the EMMS instruction or mix MMX and x87 FPU 
code when using to the MMX registers to pass parameters.

If a high-level language that does not support the MMX data types directly is used, 
the MMX data types can be defined as a 64-bit structure containing packed data 
types.

When implementing MMX instructions in high-level languages, other approaches can 
be taken, such as: 
• Passing parameters to an MMX routine by passing a pointer to a structure via the 

stack.
• Returning a value from a function by returning a pointer to a structure.
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9.6.6 Using MMX Code in a Multitasking Operating System 
Environment

An application needs to identify the nature of the multitasking operating system on 
which it runs. Each task retains its own state which must be saved when a task switch 
occurs. The processor state (context) consists of the general-purpose registers and 
the floating-point and MMX registers.

Operating systems can be classified into two types:
• Cooperative multitasking operating system
• Preemptive multitasking operating system

Cooperative multitasking operating systems do not save the FPU or MMX state when 
performing a context switch. Therefore, the application needs to save the relevant 
state before relinquishing direct or indirect control to the operating system.

Preemptive multitasking operating systems are responsible for saving and restoring 
the FPU and MMX state when performing a context switch. Therefore, the application 
does not have to save or restore the FPU and MMX state.

9.6.7 Exception Handling in MMX Code
MMX instructions generate the same type of memory-access exceptions as other 
IA-32 instructions (page fault, segment not present, and limit violations). Existing 
exception handlers do not have to be modified to handle these types of exceptions for 
MMX code.

Unless there is a pending floating-point exception, MMX instructions do not generate 
numeric exceptions. Therefore, there is no need to modify existing exception 
handlers or add new ones to handle numeric exceptions. 

If a floating-point exception is pending, the subsequent MMX instruction generates a 
numeric error exception (interrupt 16 and/or assertion of the FERR# pin). The MMX 
instruction resumes execution upon return from the exception handler.

9.6.8 Register Mapping
MMX registers and their tags are mapped to physical locations of the floating-point 
registers and their tags. Register aliasing and mapping is described in more detail in 
Chapter 12, “Intel® MMX™ Technology System Programming,” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3A.

9.6.9 Effect of Instruction Prefixes on MMX Instructions
Table 9-3 describes the effect of instruction prefixes on MMX instructions. Unpredict-
able behavior can range from being treated as a reserved operation on one genera-
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tion of IA-32 processors to generating an invalid opcode exception on another 
generation of processors.

See “Instruction Prefixes” in Chapter 2, “Instruction Format,” of the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 2A, for a description of the 
instruction prefixes.

Table 9-3.  Effect of Prefixes on MMX Instructions 

Prefix Type Effect on MMX Instructions 

Address Size Prefix (67H) Affects instructions with a memory operand.

Reserved for instructions without a memory operand and 
may result in unpredictable behavior.

Operand Size (66H) Reserved and may result in unpredictable behavior.

Segment Override (2EH, 36H, 
3EH, 26H, 64H, 65H)

Affects instructions with a memory operand.

Reserved for instructions without a memory operand and 
may result in unpredictable behavior.

Repeat Prefix (F3H) Reserved and may result in unpredictable behavior.

Repeat NE Prefix(F2H) Reserved and may result in unpredictable behavior.

Lock Prefix (F0H) Reserved; generates invalid opcode exception (#UD).

Branch Hint Prefixes (2EH and 
3EH)

Reserved and may result in unpredictable behavior.
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CHAPTER 10
PROGRAMMING WITH

STREAMING SIMD EXTENSIONS (SSE)

The streaming SIMD extensions (SSE) were introduced into the IA-32 architecture in 
the Pentium III processor family. These extensions enhance the performance of IA-32 
processors for advanced 2-D and 3-D graphics, motion video, image processing, 
speech recognition, audio synthesis, telephony, and video conferencing. 

This chapter describes SSE. Chapter 11, “Programming with Streaming SIMD Exten-
sions 2 (SSE2),” provides information to assist in writing application programs that 
use SSE2 extensions. Chapter 12, “Programming with SSE3, SSSE3, SSE4 and 
AESNI,” provides this information for SSE3 extensions.

10.1 OVERVIEW OF SSE EXTENSIONS
Intel MMX technology introduced single-instruction multiple-data (SIMD) capability 
into the IA-32 architecture, with the 64-bit MMX registers, 64-bit packed integer data 
types, and instructions that allowed SIMD operations to be performed on packed 
integers. SSE extensions expand the SIMD execution model by adding facilities for 
handling packed and scalar single-precision floating-point values contained in 
128-bit registers.

If CPUID.01H:EDX.SSE[bit 25] = 1, SSE extensions are present.

SSE extensions add the following features to the IA-32 architecture, while main-
taining backward compatibility with all existing IA-32 processors, applications and 
operating systems.
• Eight 128-bit data registers (called XMM registers) in non-64-bit modes; sixteen 

XMM registers are available in 64-bit mode.
• The 32-bit MXCSR register, which provides control and status bits for operations 

performed on XMM registers.
• The 128-bit packed single-precision floating-point data type (four IEEE single-

precision floating-point values packed into a double quadword).
• Instructions that perform SIMD operations on single-precision floating-point 

values and that extend SIMD operations that can be performed on integers:

— 128-bit Packed and scalar single-precision floating-point instructions that 
operate on data located in MMX registers

— 64-bit SIMD integer instructions that support additional operations on packed 
integer operands located in MMX registers

• Instructions that save and restore the state of the MXCSR register.
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• Instructions that support explicit prefetching of data, control of the cacheability 
of data, and control the ordering of store operations.

• Extensions to the CPUID instruction. 

These features extend the IA-32 architecture’s SIMD programming model in four 
important ways: 
• The ability to perform SIMD operations on four packed single-precision floating-

point values enhances the performance of IA-32 processors for advanced media 
and communications applications that use computation-intensive algorithms to 
perform repetitive operations on large arrays of simple, native data elements. 

• The ability to perform SIMD single-precision floating-point operations in XMM 
registers and SIMD integer operations in MMX registers provides greater 
flexibility and throughput for executing applications that operate on large arrays 
of floating-point and integer data.

• Cache control instructions provide the ability to stream data in and out of XMM 
registers without polluting the caches and the ability to prefetch data to selected 
cache levels before it is actually used. Applications that require regular access to 
large amounts of data benefit from these prefetching and streaming store 
capabilities. 

• The SFENCE (store fence) instruction provides greater control over the ordering 
of store operations when using weakly-ordered memory types.

SSE extensions are fully compatible with all software written for IA-32 processors. All 
existing software continues to run correctly, without modification, on processors that 
incorporate SSE extensions. Enhancements to CPUID permit detection of SSE exten-
sions. SSE extensions are accessible from all IA-32 execution modes: protected 
mode, real address mode, and virtual-8086 mode.

The following sections of this chapter describe the programming environment for SSE 
extensions, including: XMM registers, the packed single-precision floating-point data 
type, and SSE instructions. For additional information, see:
• Section 11.6, “Writing Applications with SSE/SSE2 Extensions”.
• Section 11.5, “SSE, SSE2, and SSE3 Exceptions,” describes the exceptions that 

can be generated with SSE/SSE2/SSE3 instructions.
• Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 

2A & 2B, provide a detailed description of these instructions.
• Chapter 13, “System Programming for Instruction Set Extensions and Processor 

Extended States,” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3A, gives guidelines for integrating these extensions into an 
operating-system environment.
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10.2 SSE PROGRAMMING ENVIRONMENT
Figure 10-1 shows the execution environment for the SSE extensions. All SSE 
instructions operate on the XMM registers, MMX registers, and/or memory as 
follows: 
• XMM registers — These eight registers (see Figure 10-2 and Section 10.2.2, 

“XMM Registers”) are used to operate on packed or scalar single-precision 
floating-point data. Scalar operations are operations performed on individual 
(unpacked) single-precision floating-point values stored in the low doubleword of 
an XMM register. XMM registers are referenced by the names XMM0 through 
XMM7.

• MXCSR register — This 32-bit register (see Figure 10-3 and Section 10.2.3, 
“MXCSR Control and Status Register”) provides status and control bits used in 
SIMD floating-point operations.

• MMX registers — These eight registers (see Figure 9-2) are used to perform 
operations on 64-bit packed integer data. They are also used to hold operands for 
some operations performed between the MMX and XMM registers. MMX registers 
are referenced by the names MM0 through MM7.

• General-purpose registers — The eight general-purpose registers (see 
Figure 3-5) are used along with the existing IA-32 addressing modes to address 
operands in memory. (MMX and XMM registers cannot be used to address 
memory). The general-purpose registers are also used to hold operands for some 

Figure 10-1.  SSE Execution Environment
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SSE instructions and are referenced as EAX, EBX, ECX, EDX, EBP, ESI, EDI, and 
ESP.

• EFLAGS register — This 32-bit register (see Figure 3-8) is used to record result 
of some compare operations.

10.2.1 SSE in 64-Bit Mode and Compatibility Mode
In compatibility mode, SSE extensions function like they do in protected mode. In 
64-bit mode, eight additional XMM registers are accessible. Registers XMM8-XMM15 
are accessed by using REX prefixes. Memory operands are specified using the 
ModR/M, SIB encoding described in Section 3.7.5.

Some SSE instructions may be used to operate on general-purpose registers. Use the 
REX.W prefix to access 64-bit general-purpose registers. Note that if a REX prefix is 
used when it has no meaning, the prefix is ignored.

10.2.2 XMM Registers
Eight 128-bit XMM data registers were introduced into the IA-32 architecture with 
SSE extensions (see Figure 10-2). These registers can be accessed directly using the 
names XMM0 to XMM7; and they can be accessed independently from the x87 FPU 
and MMX registers and the general-purpose registers (that is, they are not aliased to 
any other of the processor’s registers). 

SSE instructions use the XMM registers only to operate on packed single-precision 
floating-point operands. SSE2 extensions expand the functions of the XMM registers 
to operand on packed or scalar double-precision floating-point operands and packed 

Figure 10-2.  XMM Registers
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integer operands (see Section 11.2, “SSE2 Programming Environment,” and Section 
12.1, “Programming Environment and Data types”).

XMM registers can only be used to perform calculations on data; they cannot be used 
to address memory. Addressing memory is accomplished by using the general-
purpose registers.

Data can be loaded into XMM registers or written from the registers to memory in 
32-bit, 64-bit, and 128-bit increments. When storing the entire contents of an XMM 
register in memory (128-bit store), the data is stored in 16 consecutive bytes, with 
the low-order byte of the register being stored in the first byte in memory.

10.2.3 MXCSR Control and Status Register
The 32-bit MXCSR register (see Figure 10-3) contains control and status information 
for SSE, SSE2, and SSE3 SIMD floating-point operations. This register contains: 
• flag and mask bits for SIMD floating-point exceptions
• rounding control field for SIMD floating-point operations
• flush-to-zero flag that provides a means of controlling underflow conditions on 

SIMD floating-point operations
• denormals-are-zeros flag that controls how SIMD floating-point instructions 

handle denormal source operands

The contents of this register can be loaded from memory with the LDMXCSR and 
FXRSTOR instructions and stored in memory with STMXCSR and FXSAVE.

Bits 16 through 31 of the MXCSR register are reserved and are cleared on a power-
up or reset of the processor; attempting to write a non-zero value to these bits, using 
either the FXRSTOR or LDMXCSR instructions, will result in a general-protection 
exception (#GP) being generated.
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10.2.3.1  SIMD Floating-Point Mask and Flag Bits
Bits 0 through 5 of the MXCSR register indicate whether a SIMD floating-point excep-
tion has been detected. They are “sticky” flags. That is, after a flag is set, it remains 
set until explicitly cleared. To clear these flags, use the LDMXCSR or the FXRSTOR 
instruction to write zeroes to them.

Bits 7 through 12 provide individual mask bits for the SIMD floating-point exceptions. 
An exception type is masked if the corresponding mask bit is set, and it is unmasked 
if the bit is clear. These mask bits are set upon a power-up or reset. This causes all 
SIMD floating-point exceptions to be initially masked.

If LDMXCSR or FXRSTOR clears a mask bit and sets the corresponding exception flag 
bit, a SIMD floating-point exception will not be generated as a result of this change. 
The unmasked exception will be generated only upon the execution of the next 
SSE/SSE2/SSE3 instruction that detects the unmasked exception condition. 

For more information about the use of the SIMD floating-point exception mask and 
flag bits, see Section 11.5, “SSE, SSE2, and SSE3 Exceptions,” and Section 12.8, 
“SSE3/SSSE3 and SSE4 Exceptions.”

Figure 10-3.  MXCSR Control/Status Register 
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* The denormals-are-zeros flag was introduced in the Pentium 4 and Intel Xeon processor.
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10.2.3.2  SIMD Floating-Point Rounding Control Field
Bits 13 and 14 of the MXCSR register (the rounding control [RC] field) control how the 
results of SIMD floating-point instructions are rounded. See Section 4.8.4, 
“Rounding,” for a description of the function and encoding of the rounding control bits.

10.2.3.3  Flush-To-Zero
Bit 15 (FZ) of the MXCSR register enables the flush-to-zero mode, which controls the 
masked response to a SIMD floating-point underflow condition. When the underflow 
exception is masked and the flush-to-zero mode is enabled, the processor performs 
the following operations when it detects a floating-point underflow condition:
• Returns a zero result with the sign of the true result
• Sets the precision and underflow exception flags

If the underflow exception is not masked, the flush-to-zero bit is ignored.

The flush-to-zero mode is not compatible with IEEE Standard 754. The IEEE-
mandated masked response to underflow is to deliver the denormalized result (see 
Section 4.8.3.2, “Normalized and Denormalized Finite Numbers”). The flush-to-zero 
mode is provided primarily for performance reasons. At the cost of a slight precision 
loss, faster execution can be achieved for applications where underflows are common 
and rounding the underflow result to zero can be tolerated.

The flush-to-zero bit is cleared upon a power-up or reset of the processor, disabling 
the flush-to-zero mode.

10.2.3.4  Denormals-Are-Zeros
Bit 6 (DAZ) of the MXCSR register enables the denormals-are-zeros mode, which 
controls the processor’s response to a SIMD floating-point denormal operand condi-
tion. When the denormals-are-zeros flag is set, the processor converts all denormal 
source operands to a zero with the sign of the original operand before performing any 
computations on them. The processor does not set the denormal-operand exception 
flag (DE), regardless of the setting of the denormal-operand exception mask bit 
(DM); and it does not generate a denormal-operand exception if the exception is 
unmasked.

The denormals-are-zeros mode is not compatible with IEEE Standard 754 (see 
Section 4.8.3.2, “Normalized and Denormalized Finite Numbers”). The denormals-
are-zeros mode is provided to improve processor performance for applications such 
as streaming media processing, where rounding a denormal operand to zero does 
not appreciably affect the quality of the processed data.

The denormals-are-zeros flag is cleared upon a power-up or reset of the processor, 
disabling the denormals-are-zeros mode.

The denormals-are-zeros mode was introduced in the Pentium 4 and Intel Xeon 
processor with the SSE2 extensions; however, it is fully compatible with the SSE 
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SIMD floating-point instructions (that is, the denormals-are-zeros flag affects the 
operation of the SSE SIMD floating-point instructions). In earlier IA-32 processors 
and in some models of the Pentium 4 processor, this flag (bit 6) is reserved. See 
Section 11.6.3, “Checking for the DAZ Flag in the MXCSR Register,” for instructions 
for detecting the availability of this feature.

Attempting to set bit 6 of the MXCSR register on processors that do not support the 
DAZ flag will cause a general-protection exception (#GP). See Section 11.6.6, 
“Guidelines for Writing to the MXCSR Register,” for instructions for preventing such 
general-protection exceptions by using the MXCSR_MASK value returned by the 
FXSAVE instruction.

10.2.4 Compatibility of SSE Extensions with SSE2/SSE3/MMX and 
the x87 FPU

The state (XMM registers and MXCSR register) introduced into the IA-32 execution 
environment with the SSE extensions is shared with SSE2 and SSE3 extensions. 
SSE/SSE2/SSE3 instructions are fully compatible; they can be executed together in 
the same instruction stream with no need to save state when switching between 
instruction sets.

XMM registers are independent of the x87 FPU and MMX registers, so 
SSE/SSE2/SSE3 operations performed on the XMM registers can be performed in 
parallel with operations on the x87 FPU and MMX registers (see Section 11.6.7, 
“Interaction of SSE/SSE2 Instructions with x87 FPU and MMX Instructions”).

The FXSAVE and FXRSTOR instructions save and restore the SSE/SSE2/SSE3 states 
along with the x87 FPU and MMX state.

10.3 SSE DATA TYPES
SSE extensions introduced one data type, the 128-bit packed single-precision 
floating-point data type, to the IA-32 architecture (see Figure 10-4). This data type 
consists of four IEEE 32-bit single-precision floating-point values packed into a 
double quadword. (See Figure 4-3 for the layout of a single-precision floating-point 
value; refer to Section 4.2.2, “Floating-Point Data Types,” for a detailed description of 
the single-precision floating-point format.)

Figure 10-4.  128-Bit Packed Single-Precision Floating-Point Data Type

0127

Contains 4 Single-Precision 
Floating-Point Values

64 63 31329596
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This 128-bit packed single-precision floating-point data type is operated on in the 
XMM registers or in memory. Conversion instructions are provided to convert two 
packed single-precision floating-point values into two packed doubleword integers or 
a scalar single-precision floating-point value into a doubleword integer (see 
Figure 11-8).

SSE extensions provide conversion instructions between XMM registers and MMX 
registers, and between XMM registers and general-purpose bit registers. See 
Figure 11-8.

The address of a 128-bit packed memory operand must be aligned on a 16-byte 
boundary, except in the following cases: 
• The MOVUPS instruction supports unaligned accesses.
• Scalar instructions that use a 4-byte memory operand that is not subject to 

alignment requirements.

Figure 4-2 shows the byte order of 128-bit (double quadword) data types in memory.

10.4 SSE INSTRUCTION SET
SSE instructions are divided into four functional groups
• Packed and scalar single-precision floating-point instructions
• 64-bit SIMD integer instructions
• State management instructions
• Cacheability control, prefetch, and memory ordering instructions

The following sections give an overview of each of the instructions in these groups.

10.4.1 SSE Packed and Scalar Floating-Point Instructions
The packed and scalar single-precision floating-point instructions are divided into the 
following subgroups:
• Data movement instructions
• Arithmetic instructions
• Logical instructions
• Comparison instructions
• Shuffle instructions
• Conversion instructions

The packed single-precision floating-point instructions perform SIMD operations on 
packed single-precision floating-point operands (see Figure 10-5). Each source 
operand contains four single-precision floating-point values, and the destination 
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operand contains the results of the operation (OP) performed in parallel on the corre-
sponding values (X0 and Y0, X1 and Y1, X2 and Y2, and X3 and Y3) in each operand.

The scalar single-precision floating-point instructions operate on the low (least 
significant) doublewords of the two source operands (X0 and Y0); see Figure 10-6. 
The three most significant doublewords (X1, X2, and X3) of the first source operand 
are passed through to the destination. The scalar operations are similar to the 
floating-point operations performed in the x87 FPU data registers with the precision 
control field in the x87 FPU control word set for single precision (24-bit significand), 
except that x87 stack operations use a 15-bit exponent range for the result, while 
SSE operations use an 8-bit exponent range.

Figure 10-5.  Packed Single-Precision Floating-Point Operation

Figure 10-6.  Scalar Single-Precision Floating-Point Operation

X3 X2 X1 X0

Y3 Y2 Y1 Y0

X3 OP Y3 X2 OP Y2 X1 OP Y1 X0 OP Y0

OPOPOPOP

X3 X2 X1 X0
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X3 X2 X1 X0 OP Y0
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10.4.1.1  SSE Data Movement Instructions
SSE data movement instructions move single-precision floating-point data between 
XMM registers and between an XMM register and memory.

The MOVAPS (move aligned packed single-precision floating-point values) instruction 
transfers a double quadword operand containing four packed single-precision 
floating-point values from memory to an XMM register and vice versa, or between 
XMM registers. The memory address must be aligned to a 16-byte boundary; other-
wise, a general-protection exception (#GP) is generated.

The MOVUPS (move unaligned packed single-precision, floating-point) instruction 
performs the same operations as the MOVAPS instruction, except that 16-byte align-
ment of a memory address is not required.

The MOVSS (move scalar single-precision floating-point) instruction transfers a 32-
bit single-precision floating-point operand from memory to the low doubleword of an 
XMM register and vice versa, or between XMM registers.

The MOVLPS (move low packed single-precision floating-point) instruction moves 
two packed single-precision floating-point values from memory to the low quadword 
of an XMM register and vice versa. The high quadword of the register is left 
unchanged.

The MOVHPS (move high packed single-precision floating-point) instruction moves 
two packed single-precision floating-point values from memory to the high quadword 
of an XMM register and vice versa. The low quadword of the register is left 
unchanged.

The MOVLHPS (move packed single-precision floating-point low to high) instruction 
moves two packed single-precision floating-point values from the low quadword of 
the source XMM register into the high quadword of the destination XMM register. The 
low quadword of the destination register is left unchanged.

The MOVHLPS (move packed single-precision floating-point high to low) instruction 
moves two packed single-precision floating-point values from the high quadword of 
the source XMM register into the low quadword of the destination XMM register. The 
high quadword of the destination register is left unchanged.

The MOVMSKPS (move packed single-precision floating-point mask) instruction 
transfers the most significant bit of each of the four packed single-precision floating-
point numbers in an XMM register to a general-purpose register. This 4-bit value can 
then be used as a condition to perform branching.

10.4.1.2  SSE Arithmetic Instructions
SSE arithmetic instructions perform addition, subtraction, multiply, divide, recip-
rocal, square root, reciprocal of square root, and maximum/minimum operations on 
packed and scalar single-precision floating-point values.
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The ADDPS (add packed single-precision floating-point values) and SUBPS (subtract 
packed single-precision floating-point values) instructions add and subtract, respec-
tively, two packed single-precision floating-point operands.

The ADDSS (add scalar single-precision floating-point values) and SUBSS (subtract 
scalar single-precision floating-point values) instructions add and subtract, respec-
tively, the low single-precision floating-point values of two operands and store the 
result in the low doubleword of the destination operand.

The MULPS (multiply packed single-precision floating-point values) instruction multi-
plies two packed single-precision floating-point operands.

The MULSS (multiply scalar single-precision floating-point values) instruction multi-
plies the low single-precision floating-point values of two operands and stores the 
result in the low doubleword of the destination operand.

The DIVPS (divide packed, single-precision floating-point values) instruction divides 
two packed single-precision floating-point operands.

The DIVSS (divide scalar single-precision floating-point values) instruction divides 
the low single-precision floating-point values of two operands and stores the result in 
the low doubleword of the destination operand.

The RCPPS (compute reciprocals of packed single-precision floating-point values) 
instruction computes the approximate reciprocals of values in a packed single-preci-
sion floating-point operand.

The RCPSS (compute reciprocal of scalar single-precision floating-point values) 
instruction computes the approximate reciprocal of the low single-precision floating-
point value in the source operand and stores the result in the low doubleword of the 
destination operand.

The SQRTPS (compute square roots of packed single-precision floating-point values) 
instruction computes the square roots of the values in a packed single-precision 
floating-point operand.

The SQRTSS (compute square root of scalar single-precision floating-point values) 
instruction computes the square root of the low single-precision floating-point value 
in the source operand and stores the result in the low doubleword of the destination 
operand.

The RSQRTPS (compute reciprocals of square roots of packed single-precision 
floating-point values) instruction computes the approximate reciprocals of the 
square roots of the values in a packed single-precision floating-point operand.

The RSQRTSS (reciprocal of square root of scalar single-precision floating-point 
value) instruction computes the approximate reciprocal of the square root of the low 
single-precision floating-point value in the source operand and stores the result in 
the low doubleword of the destination operand.

The MAXPS (return maximum of packed single-precision floating-point values) 
instruction compares the corresponding values from two packed single-precision 
floating-point operands and returns the numerically greater value from each compar-
ison to the destination operand.
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The MAXSS (return maximum of scalar single-precision floating-point values) 
instruction compares the low values from two packed single-precision floating-point 
operands and returns the numerically greater value from the comparison to the low 
doubleword of the destination operand.

The MINPS (return minimum of packed single-precision floating-point values) 
instruction compares the corresponding values from two packed single-precision 
floating-point operands and returns the numerically lesser value from each compar-
ison to the destination operand.

The MINSS (return minimum of scalar single-precision floating-point values) instruc-
tion compares the low values from two packed single-precision floating-point oper-
ands and returns the numerically lesser value from the comparison to the low 
doubleword of the destination operand.

10.4.2 SSE Logical Instructions
SSE logical instructions perform AND, AND NOT, OR, and XOR operations on packed 
single-precision floating-point values. 

The ANDPS (bitwise logical AND of packed single-precision floating-point values) 
instruction returns the logical AND of two packed single-precision floating-point 
operands.

The ANDNPS (bitwise logical AND NOT of packed single-precision, floating-point 
values) instruction returns the logical AND NOT of two packed single-precision 
floating-point operands.

The ORPS (bitwise logical OR of packed single-precision, floating-point values) 
instruction returns the logical OR of two packed single-precision floating-point oper-
ands.

The XORPS (bitwise logical XOR of packed single-precision, floating-point values) 
instruction returns the logical XOR of two packed single-precision floating-point oper-
ands.

10.4.2.1  SSE Comparison Instructions
The compare instructions compare packed and scalar single-precision floating-point 
values and return the results of the comparison either to the destination operand or 
to the EFLAGS register.

The CMPPS (compare packed single-precision floating-point values) instruction 
compares the corresponding values from two packed single-precision floating-point 
operands, using an immediate operand as a predicate, and returns a 32-bit mask 
result of all 1s or all 0s for each comparison to the destination operand. The value of 
the immediate operand allows the selection of any of 8 compare conditions: equal, 
less than, less than equal, unordered, not equal, not less than, not less than or equal, 
or ordered.
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The CMPSS (compare scalar single-precision, floating-point values) instruction 
compares the low values from two packed single-precision floating-point operands, 
using an immediate operand as a predicate, and returns a 32-bit mask result of all 1s 
or all 0s for the comparison to the low doubleword of the destination operand. The 
immediate operand selects the compare conditions as with the CMPPS instruction.

The COMISS (compare scalar single-precision floating-point values and set EFLAGS) 
and UCOMISS (unordered compare scalar single-precision floating-point values and 
set EFLAGS) instructions compare the low values of two packed single-precision 
floating-point operands and set the ZF, PF, and CF flags in the EFLAGS register to 
show the result (greater than, less than, equal, or unordered). These two instruc-
tions differ as follows: the COMISS instruction signals a floating-point invalid-opera-
tion (#I) exception when a source operand is either a QNaN or an SNaN; the 
UCOMISS instruction only signals an invalid-operation exception when a source 
operand is an SNaN.

10.4.2.2  SSE Shuffle and Unpack Instructions
SSE shuffle and unpack instructions shuffle or interleave the contents of two packed 
single-precision floating-point values and store the results in the destination 
operand.

The SHUFPS (shuffle packed single-precision floating-point values) instruction places 
any two of the four packed single-precision floating-point values from the destination 
operand into the two low-order doublewords of the destination operand, and places 
any two of the four packed single-precision floating-point values from the source 
operand in the two high-order doublewords of the destination operand (see 
Figure 10-7). By using the same register for the source and destination operands, 
the SHUFPS instruction can shuffle four single-precision floating-point values into 
any order. 

Figure 10-7.  SHUFPS Instruction, Packed Shuffle Operation
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The UNPCKHPS (unpack and interleave high packed single-precision floating-point 
values) instruction performs an interleaved unpack of the high-order single-precision 
floating-point values from the source and destination operands and stores the result 
in the destination operand (see Figure 10-8).

The UNPCKLPS (unpack and interleave low packed single-precision floating-point 
values) instruction performs an interleaved unpack of the low-order single-precision 
floating-point values from the source and destination operands and stores the result 
in the destination operand (see Figure 10-9).

10.4.3 SSE Conversion Instructions
SSE conversion instructions (see Figure 11-8) support packed and scalar conversions 
between single-precision floating-point and doubleword integer formats.

Figure 10-8.  UNPCKHPS Instruction, High Unpack and Interleave Operation

Figure 10-9.  UNPCKLPS Instruction, Low Unpack and Interleave Operation
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The CVTPI2PS (convert packed doubleword integers to packed single-precision 
floating-point values) instruction converts two packed signed doubleword integers 
into two packed single-precision floating-point values. When the conversion is 
inexact, the result is rounded according to the rounding mode selected in the MXCSR 
register. 

The CVTSI2SS (convert doubleword integer to scalar single-precision floating-point 
value) instruction converts a signed doubleword integer into a single-precision 
floating-point value. When the conversion is inexact, the result is rounded according 
to the rounding mode selected in the MXCSR register. 

The CVTPS2PI (convert packed single-precision floating-point values to packed 
doubleword integers) instruction converts two packed single-precision floating-point 
values into two packed signed doubleword integers. When the conversion is inexact, 
the result is rounded according to the rounding mode selected in the MXCSR register. 
The CVTTPS2PI (convert with truncation packed single-precision floating-point 
values to packed doubleword integers) instruction is similar to the CVTPS2PI instruc-
tion, except that truncation is used to round a source value to an integer value (see 
Section 4.8.4.2, “Truncation with SSE and SSE2 Conversion Instructions”).

The CVTSS2SI (convert scalar single-precision floating-point value to doubleword 
integer) instruction converts a single-precision floating-point value into a signed 
doubleword integer. When the conversion is inexact, the result is rounded according 
to the rounding mode selected in the MXCSR register. The CVTTSS2SI (convert with 
truncation scalar single-precision floating-point value to doubleword integer) instruc-
tion is similar to the CVTSS2SI instruction, except that truncation is used to round 
the source value to an integer value (see Section 4.8.4.2, “Truncation with SSE and 
SSE2 Conversion Instructions”).

10.4.4 SSE 64-Bit SIMD Integer Instructions
SSE extensions add the following 64-bit packed integer instructions to the IA-32 
architecture. These instructions operate on data in MMX registers and 64-bit memory 
locations. 

NOTE
When SSE2 extensions are present in an IA-32 processor, these 
instructions are extended to operate on 128-bit operands in XMM 
registers and 128-bit memory locations.

The PAVGB (compute average of packed unsigned byte integers) and PAVGW 
(compute average of packed unsigned word integers) instructions compute a SIMD 
average of two packed unsigned byte or word integer operands, respectively. For 
each corresponding pair of data elements in the packed source operands, the 
elements are added together, a 1 is added to the temporary sum, and that result is 
shifted right one bit position.
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The PEXTRW (extract word) instruction copies a selected word from an MMX register 
into a general-purpose register.

The PINSRW (insert word) instruction copies a word from a general-purpose register 
or from memory into a selected word location in an MMX register.

The PMAXUB (maximum of packed unsigned byte integers) instruction compares the 
corresponding unsigned byte integers in two packed operands and returns the 
greater of each comparison to the destination operand.

The PMINUB (minimum of packed unsigned byte integers) instruction compares the 
corresponding unsigned byte integers in two packed operands and returns the lesser 
of each comparison to the destination operand.

The PMAXSW (maximum of packed signed word integers) instruction compares the 
corresponding signed word integers in two packed operands and returns the greater 
of each comparison to the destination operand.

The PMINSW (minimum of packed signed word integers) instruction compares the 
corresponding signed word integers in two packed operands and returns the lesser of 
each comparison to the destination operand.

The PMOVMSKB (move byte mask) instruction creates an 8-bit mask from the packed 
byte integers in an MMX register and stores the result in the low byte of a general-
purpose register. The mask contains the most significant bit of each byte in the MMX 
register. (When operating on 128-bit operands, a 16-bit mask is created.)

The PMULHUW (multiply packed unsigned word integers and store high result) 
instruction performs a SIMD unsigned multiply of the words in the two source oper-
ands and returns the high word of each result to an MMX register.

The PSADBW (compute sum of absolute differences) instruction computes the SIMD 
absolute differences of the corresponding unsigned byte integers in two source oper-
ands, sums the differences, and stores the sum in the low word of the destination 
operand.

The PSHUFW (shuffle packed word integers) instruction shuffles the words in the 
source operand according to the order specified by an 8-bit immediate operand and 
returns the result to the destination operand.

10.4.5 MXCSR State Management Instructions
The MXCSR state management instructions (LDMXCSR and STMXCSR) load and save 
the state of the MXCSR register, respectively. The LDMXCSR instruction loads the 
MXCSR register from memory, while the STMXCSR instruction stores the contents of 
the register to memory.
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10.4.6 Cacheability Control, Prefetch, and Memory Ordering 
Instructions

SSE extensions introduce several new instructions to give programs more control 
over the caching of data. They also introduces the PREFETCHh instructions, which 
provide the ability to prefetch data to a specified cache level, and the SFENCE 
instruction, which enforces program ordering on stores. These instructions are 
described in the following sections.

10.4.6.1  Cacheability Control Instructions
The following three instructions enable data from the MMX and XMM registers to be 
stored to memory using a non-temporal hint. The non-temporal hint directs the 
processor to when possible store the data to memory without writing the data into 
the cache hierarchy. See Section 10.4.6.2, “Caching of Temporal vs. Non-Temporal 
Data,” for information about non-temporal stores and hints.

The MOVNTQ (store quadword using non-temporal hint) instruction stores packed 
integer data from an MMX register to memory, using a non-temporal hint.

The MOVNTPS (store packed single-precision floating-point values using non-
temporal hint) instruction stores packed floating-point data from an XMM register to 
memory, using a non-temporal hint.

The MASKMOVQ (store selected bytes of quadword) instruction stores selected byte 
integers from an MMX register to memory, using a byte mask to selectively write the 
individual bytes. This instruction also uses a non-temporal hint.

10.4.6.2  Caching of Temporal vs. Non-Temporal Data
Data referenced by a program can be temporal (data will be used again) or non-
temporal (data will be referenced once and not reused in the immediate future). For 
example, program code is generally temporal, whereas, multimedia data, such as the 
display list in a 3-D graphics application, is often non-temporal. To make efficient use 
of the processor’s caches, it is generally desirable to cache temporal data and not 
cache non-temporal data. Overloading the processor’s caches with non-temporal 
data is sometimes referred to as “polluting the caches.” The SSE and SSE2 cache-
ability control instructions enable a program to write non-temporal data to memory 
in a manner that minimizes pollution of caches. 

These SSE and SSE2 non-temporal store instructions minimize cache pollutions by 
treating the memory being accessed as the write combining (WC) type. If a program 
specifies a non-temporal store with one of these instructions and the destination 
region is mapped as cacheable memory (write back [WB], write through [WT] or WC 
memory type), the processor will do the following:
• If the memory location being written to is present in the cache hierarchy, the data 

in the caches is evicted.
• The non-temporal data is written to memory with WC semantics.
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See also: Chapter 11, “Memory Cache Control,” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3A.

Using the WC semantics, the store transaction will be weakly ordered, meaning that 
the data may not be written to memory in program order, and the store will not write 
allocate (that is, the processor will not fetch the corresponding cache line into the 
cache hierarchy, prior to performing the store). Also, different processor implemen-
tations may choose to collapse and combine these stores.

The memory type of the region being written to can override the non-temporal hint, 
if the memory address specified for the non-temporal store is in uncacheable 
memory. Uncacheable as referred to here means that the region being written to has 
been mapped with either an uncacheable (UC) or write protected (WP) memory type.

In general, WC semantics require software to ensure coherence, with respect to 
other processors and other system agents (such as graphics cards). Appropriate use 
of synchronization and fencing must be performed for producer-consumer usage 
models. Fencing ensures that all system agents have global visibility of the stored 
data; for instance, failure to fence may result in a written cache line staying within a 
processor and not being visible to other agents. 

For processors that implement non-temporal stores by updating data in-place that 
already resides in the cache hierarchy, the destination region should also be mapped 
as WC. If mapped as WB or WT, there is the potential for speculative processor reads 
to bring the data into the caches; in this case, non-temporal stores would then 
update in place, and data would not be flushed from the processor by a subsequent 
fencing operation.

The memory type visible on the bus in the presence of memory type aliasing is imple-
mentation specific. As one possible example, the memory type written to the bus 
may reflect the memory type for the first store to this line, as seen in program order; 
other alternatives are possible. This behavior should be considered reserved, and 
dependence on the behavior of any particular implementation risks future incompat-
ibility.

10.4.6.3  PREFETCHh Instructions
The PREFETCHh instructions permit programs to load data into the processor at a 
suggested cache level, so that the data is closer to the processor’s load and store unit 
when it is needed. These instructions fetch 32 aligned bytes (or more, depending on 
the implementation) containing the addressed byte to a location in the cache hier-
archy specified by the temporal locality hint (see Table 10-1). In this table, the first-
level cache is closest to the processor and second-level cache is farther away from 
the processor than the first-level cache. The hints specify a prefetch of either 
temporal or non-temporal data (see Section 10.4.6.2, “Caching of Temporal vs. Non-
Temporal Data”). Subsequent accesses to temporal data are treated like normal 
accesses, while those to non-temporal data will continue to minimize cache pollution. 
If the data is already present at a level of the cache hierarchy that is closer to the 
processor, the PREFETCHh instruction will not result in any data movement. The 
PREFETCHh instructions do not affect functional behavior of the program.
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See Section 11.6.13, “Cacheability Hint Instructions,” for additional information 
about the PREFETCHh instructions.

10.4.6.4  SFENCE Instruction
The SFENCE (Store Fence) instruction controls write ordering by creating a fence for 
memory store operations. This instruction guarantees that the result of every store 
instruction that precedes the store fence in program order is globally visible before 
any store instruction that follows the fence. The SFENCE instruction provides an effi-
cient way of ensuring ordering between procedures that produce weakly-ordered 
data and procedures that consume that data.

10.5 FXSAVE AND FXRSTOR INSTRUCTIONS
The FXSAVE and FXRSTOR instructions were introduced into the IA-32 architecture in 
the Pentium II processor family (prior to the introduction of the SSE extensions). The 
original versions of these instructions performed a fast save and restore, respec-
tively, of the x87 FPU register state. (By saving the state of the x87 FPU data regis-
ters, the FXSAVE and FXRSTOR instructions implicitly save and restore the state of 
the MMX registers.) 

The SSE extensions expanded the scope of these instructions to save and restore the 
states of the XMM registers and the MXCSR register, along with the x87 FPU and MMX 
state. 

Table 10-1.  PREFETCHh Instructions Caching Hints

PREFETCHh 
Instruction Mnemonic Actions

PREFETCHT0 Temporal data—fetch data into all levels of cache hierarchy:

• Pentium III processor—1st-level cache or 2nd-level cache

• Pentium 4 and Intel Xeon processor—2nd-level cache

PREFETCHT1 Temporal data—fetch data into level 2 cache and higher

• Pentium III processor—2nd-level cache

• Pentium 4 and Intel Xeon processor—2nd-level cache

PREFETCHT2 Temporal data—fetch data into level 2 cache and higher

• Pentium III processor—2nd-level cache

• Pentium 4 and Intel Xeon processor—2nd-level cache

PREFETCHNTA Non-temporal data—fetch data into location close to the processor, 
minimizing cache pollution 

• Pentium III processor—1st-level cache 

• Pentium 4 and Intel Xeon processor—2nd-level cache
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The FXSAVE and FXRSTOR instructions can be used in place of the FSAVE/FNSAVE 
and FRSTOR instructions; however, the operation of the FXSAVE and FXRSTOR 
instructions are not identical to the operation of FSAVE/FNSAVE and FRSTOR.

NOTE
The FXSAVE and FXRSTOR instructions are not considered part 
of the SSE instruction group. They have a separate CPUID 
feature bit to indicate whether they are present (if 
CPUID.01H:EDX.FXSR[bit 24] = 1). 

The CPUID feature bit for SSE extensions does not indicate the 
presence of FXSAVE and FXRSTOR.

10.6 HANDLING SSE INSTRUCTION EXCEPTIONS
See Section 11.5, “SSE, SSE2, and SSE3 Exceptions,” for a detailed discussion of the 
general and SIMD floating-point exceptions that can be generated with the SSE 
instructions and for guidelines for handling these exceptions when they occur.

10.7 WRITING APPLICATIONS WITH THE SSE EXTENSIONS
See Section 11.6, “Writing Applications with SSE/SSE2 Extensions,” for additional 
information about writing applications and operating-system code using the SSE 
extensions.
Vol. 1 10-21



CHAPTER 11
PROGRAMMING WITH

STREAMING SIMD EXTENSIONS 2 (SSE2)

The streaming SIMD extensions 2 (SSE2) were introduced into the IA-32 architecture 
in the Pentium 4 and Intel Xeon processors. These extensions enhance the perfor-
mance of IA-32 processors for advanced 3-D graphics, video decoding/encoding, 
speech recognition, E-commerce, Internet, scientific, and engineering applications. 

This chapter describes the SSE2 extensions and provides information to assist in 
writing application programs that use these and the SSE extensions. 

11.1 OVERVIEW OF SSE2 EXTENSIONS
SSE2 extensions use the single instruction multiple data (SIMD) execution model 
that is used with MMX technology and SSE extensions. They extend this model with 
support for packed double-precision floating-point values and for 128-bit packed 
integers.

If CPUID.01H:EDX.SSE2[bit 26] = 1, SSE2 extensions are present.

SSE2 extensions add the following features to the IA-32 architecture, while main-
taining backward compatibility with all existing IA-32 processors, applications and 
operating systems.
• Six data types: 

— 128-bit packed double-precision floating-point (two IEEE Standard 754 
double-precision floating-point values packed into a double quadword)

— 128-bit packed byte integers
— 128-bit packed word integers
— 128-bit packed doubleword integers
— 128-bit packed quadword integers

• Instructions to support the additional data types and extend existing SIMD 
integer operations:
— Packed and scalar double-precision floating-point instructions
— Additional 64-bit and 128-bit SIMD integer instructions
— 128-bit versions of SIMD integer instructions introduced with the MMX 

technology and the SSE extensions
— Additional cacheability-control and instruction-ordering instructions

• Modifications to existing IA-32 instructions to support SSE2 features:
— Extensions and modifications to the CPUID instruction
— Modifications to the RDPMC instruction
Vol. 1 11-1
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These new features extend the IA-32 architecture’s SIMD programming model in 
three important ways:
• They provide the ability to perform SIMD operations on pairs of packed double-

precision floating-point values. This permits higher precision computations to be 
carried out in XMM registers, which enhances processor performance in scientific 
and engineering applications and in applications that use advanced 3-D geometry 
techniques (such as ray tracing). Additional flexibility is provided with instruc-
tions that operate on single (scalar) double-precision floating-point values 
located in the low quadword of an XMM register. 

• They provide the ability to operate on 128-bit packed integers (bytes, words, 
doublewords, and quadwords) in XMM registers. This provides greater flexibility 
and greater throughput when performing SIMD operations on packed integers. 
The capability is particularly useful for applications such as RSA authentication 
and RC5 encryption. Using the full set of SIMD registers, data types, and instruc-
tions provided with the MMX technology and SSE/SSE2 extensions, programmers 
can develop algorithms that finely mix packed single- and double-precision 
floating-point data and 64- and 128-bit packed integer data. 

• SSE2 extensions enhance the support introduced with SSE extensions for 
controlling the cacheability of SIMD data. SSE2 cache control instructions provide 
the ability to stream data in and out of the XMM registers without polluting the 
caches and the ability to prefetch data before it is actually used.

SSE2 extensions are fully compatible with all software written for IA-32 processors. 
All existing software continues to run correctly, without modification, on processors 
that incorporate SSE2 extensions, as well as in the presence of applications that 
incorporate these extensions. Enhancements to the CPUID instruction permit detec-
tion of the SSE2 extensions. Also, because the SSE2 extensions use the same regis-
ters as the SSE extensions, no new operating-system support is required for saving 
and restoring program state during a context switch beyond that provided for the 
SSE extensions.

SSE2 extensions are accessible from all IA-32 execution modes: protected mode, 
real address mode, virtual 8086 mode.

The following sections in this chapter describe the programming environment for 
SSE2 extensions including: the 128-bit XMM floating-point register set, data types, 
and SSE2 instructions. It also describes exceptions that can be generated with the 
SSE and SSE2 instructions and gives guidelines for writing applications with SSE and 
SSE2 extensions.

For additional information about SSE2 extensions, see:
• Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 

2A & 2B, provide a detailed description of individual SSE3 instructions.
• Chapter 13, “System Programming for Instruction Set Extensions and Processor 

Extended States,” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3A, gives guidelines for integrating the SSE and SSE2 extensions 
into an operating-system environment.
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11.2 SSE2 PROGRAMMING ENVIRONMENT
Figure 11-1 shows the programming environment for SSE2 extensions. No new 
registers or other instruction execution state are defined with SSE2 extensions. SSE2 
instructions use the XMM registers, the MMX registers, and/or IA-32 general-purpose 
registers, as follows: 
• XMM registers — These eight registers (see Figure 10-2) are used to operate on 

packed or scalar double-precision floating-point data. Scalar operations are 
operations performed on individual (unpacked) double-precision floating-point 
values stored in the low quadword of an XMM register. XMM registers are also 
used to perform operations on 128-bit packed integer data. They are referenced 
by the names XMM0 through XMM7.

• MXCSR register — This 32-bit register (see Figure 10-3) provides status and 
control bits used in floating-point operations. The denormals-are-zeros and 
flush-to-zero flags in this register provide a higher performance alternative for 
the handling of denormal source operands and denormal (underflow) results. For 
more information on the functions of these flags see Section 10.2.3.4, 
“Denormals-Are-Zeros,” and Section 10.2.3.3, “Flush-To-Zero.”

• MMX registers — These eight registers (see Figure 9-2) are used to perform 
operations on 64-bit packed integer data. They are also used to hold operands for 
some operations performed between MMX and XMM registers. MMX registers are 
referenced by the names MM0 through MM7.

Figure 11-1.  Steaming SIMD Extensions 2 Execution Environment
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• General-purpose registers — The eight general-purpose registers (see 
Figure 3-5) are used along with the existing IA-32 addressing modes to address 
operands in memory. MMX and XMM registers cannot be used to address 
memory. The general-purpose registers are also used to hold operands for some 
SSE2 instructions. These registers are referenced by the names EAX, EBX, ECX, 
EDX, EBP, ESI, EDI, and ESP.

• EFLAGS register — This 32-bit register (see Figure 3-8) is used to record the 
results of some compare operations.

11.2.1 SSE2 in 64-Bit Mode and Compatibility Mode
In compatibility mode, SSE2 extensions function like they do in protected mode. In 
64-bit mode, eight additional XMM registers are accessible. Registers XMM8-XMM15 
are accessed by using REX prefixes. 

Memory operands are specified using the ModR/M, SIB encoding described in Section 
3.7.5.

Some SSE2 instructions may be used to operate on general-purpose registers. Use 
the REX.W prefix to access 64-bit general-purpose registers. Note that if a REX prefix 
is used when it has no meaning, the prefix is ignored.

11.2.2 Compatibility of SSE2 Extensions with SSE, MMX
Technology and x87 FPU Programming Environment

SSE2 extensions do not introduce any new state to the IA-32 execution environment 
beyond that of SSE. SSE2 extensions represent an enhancement of SSE extensions; 
they are fully compatible and share the same state information. SSE and SSE2 
instructions can be executed together in the same instruction stream without the 
need to save state when switching between instruction sets.

XMM registers are independent of the x87 FPU and MMX registers; so SSE and SSE2 
operations performed on XMM registers can be performed in parallel with x87 FPU or 
MMX technology operations (see Section 11.6.7, “Interaction of SSE/SSE2 Instruc-
tions with x87 FPU and MMX Instructions”).

The FXSAVE and FXRSTOR instructions save and restore the SSE and SSE2 states 
along with the x87 FPU and MMX states.

11.2.3 Denormals-Are-Zeros Flag
The denormals-are-zeros flag (bit 6 in the MXCSR register) was introduced into the 
IA-32 architecture with the SSE2 extensions. See Section 10.2.3.4, “Denormals-Are-
Zeros,” for a description of this flag.
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11.3 SSE2 DATA TYPES
SSE2 extensions introduced one 128-bit packed floating-point data type and four 
128-bit SIMD integer data types to the IA-32 architecture (see Figure 11-2). 
• Packed double-precision floating-point — This 128-bit data type consists of 

two IEEE 64-bit double-precision floating-point values packed into a double 
quadword. (See Figure 4-3 for the layout of a 64-bit double-precision floating-
point value; refer to Section 4.2.2, “Floating-Point Data Types,” for a detailed 
description of double-precision floating-point values.)

• 128-bit packed integers — The four 128-bit packed integer data types can 
contain 16 byte integers, 8 word integers, 4 doubleword integers, or 2 quadword 
integers. (Refer to Section 4.6.2, “128-Bit Packed SIMD Data Types,” for a 
detailed description of the 128-bit packed integers.)

All of these data types are operated on in XMM registers or memory. Instructions are 
provided to convert between these 128-bit data types and the 64-bit and 32-bit data 
types.

The address of a 128-bit packed memory operand must be aligned on a 16-byte 
boundary, except in the following cases: 
• a MOVUPD instruction which supports unaligned accesses
• scalar instructions that use an 8-byte memory operand that is not subject to 

alignment requirements

Figure 4-2 shows the byte order of 128-bit (double quadword) and 64-bit (quad-
word) data types in memory.

Figure 11-2.  Data Types Introduced with the SSE2 Extensions
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11.4 SSE2 INSTRUCTIONS
The SSE2 instructions are divided into four functional groups:
• Packed and scalar double-precision floating-point instructions
• 64-bit and 128-bit SIMD integer instructions
• 128-bit extensions of SIMD integer instructions introduced with the MMX 

technology and the SSE extensions
• Cacheability-control and instruction-ordering instructions

The following sections provide more information about each group.

11.4.1 Packed and Scalar Double-Precision Floating-Point 
Instructions

The packed and scalar double-precision floating-point instructions are divided into 
the following sub-groups:
• Data movement instructions
• Arithmetic instructions
• Comparison instructions
• Conversion instructions
• Logical instructions
• Shuffle instructions

The packed double-precision floating-point instructions perform SIMD operations 
similarly to the packed single-precision floating-point instructions (see Figure 11-3). 
Each source operand contains two double-precision floating-point values, and the 
destination operand contains the results of the operation (OP) performed in parallel 
on the corresponding values (X0 and Y0, and X1 and Y1) in each operand.

Figure 11-3.  Packed Double-Precision Floating-Point Operations
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The scalar double-precision floating-point instructions operate on the low (least 
significant) quadwords of two source operands (X0 and Y0), as shown in Figure 11-4. 
The high quadword (X1) of the first source operand is passed through to the destina-
tion. The scalar operations are similar to the floating-point operations performed in 
x87 FPU data registers with the precision control field in the x87 FPU control word set 
for double precision (53-bit significand), except that x87 stack operations use a 
15-bit exponent range for the result while SSE2 operations use an 11-bit exponent 
range. 

See Section 11.6.8, “Compatibility of SIMD and x87 FPU Floating-Point Data Types,” 
for more information about obtaining compatible results when performing both 
scalar double-precision floating-point operations in XMM registers and in x87 FPU 
data registers.

11.4.1.1  Data Movement Instructions
Data movement instructions move double-precision floating-point data between 
XMM registers and between XMM registers and memory.

The MOVAPD (move aligned packed double-precision floating-point) instruction 
transfers a 128-bit packed double-precision floating-point operand from memory to 
an XMM register or vice versa, or between XMM registers. The memory address must 
be aligned to a 16-byte boundary; if not, a general-protection exception (GP#) is 
generated.

The MOVUPD (move unaligned packed double-precision floating-point) instruction 
transfers a 128-bit packed double-precision floating-point operand from memory to 
an XMM register or vice versa, or between XMM registers. Alignment of the memory 
address is not required.

The MOVSD (move scalar double-precision floating-point) instruction transfers a 
64-bit double-precision floating-point operand from memory to the low quadword of 

Figure 11-4.  Scalar Double-Precision Floating-Point Operations
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an XMM register or vice versa, or between XMM registers. Alignment of the memory 
address is not required, unless alignment checking is enabled.

The MOVHPD (move high packed double-precision floating-point) instruction trans-
fers a 64-bit double-precision floating-point operand from memory to the high quad-
word of an XMM register or vice versa. The low quadword of the register is left 
unchanged. Alignment of the memory address is not required, unless alignment 
checking is enabled.

The MOVLPD (move low packed double-precision floating-point) instruction transfers 
a 64-bit double-precision floating-point operand from memory to the low quadword 
of an XMM register or vice versa. The high quadword of the register is left unchanged. 
Alignment of the memory address is not required, unless alignment checking is 
enabled.

The MOVMSKPD (move packed double-precision floating-point mask) instruction 
extracts the sign bit of each of the two packed double-precision floating-point 
numbers in an XMM register and saves them in a general-purpose register. This 2-bit 
value can then be used as a condition to perform branching.

11.4.1.2  SSE2 Arithmetic Instructions
SSE2 arithmetic instructions perform addition, subtraction, multiply, divide, square 
root, and maximum/minimum operations on packed and scalar double-precision 
floating-point values.

The ADDPD (add packed double-precision floating-point values) and SUBPD 
(subtract packed double-precision floating-point values) instructions add and 
subtract, respectively, two packed double-precision floating-point operands.

The ADDSD (add scalar double-precision floating-point values) and SUBSD (subtract 
scalar double-precision floating-point values) instructions add and subtract, respec-
tively, the low double-precision floating-point values of two operands and stores the 
result in the low quadword of the destination operand.

The MULPD (multiply packed double-precision floating-point values) instruction 
multiplies two packed double-precision floating-point operands.

The MULSD (multiply scalar double-precision floating-point values) instruction multi-
plies the low double-precision floating-point values of two operands and stores the 
result in the low quadword of the destination operand.

The DIVPD (divide packed double-precision floating-point values) instruction divides 
two packed double-precision floating-point operands.

The DIVSD (divide scalar double-precision floating-point values) instruction divides 
the low double-precision floating-point values of two operands and stores the result 
in the low quadword of the destination operand.

The SQRTPD (compute square roots of packed double-precision floating-point 
values) instruction computes the square roots of the values in a packed double-preci-
sion floating-point operand.
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The SQRTSD (compute square root of scalar double-precision floating-point values) 
instruction computes the square root of the low double-precision floating-point value 
in the source operand and stores the result in the low quadword of the destination 
operand.

The MAXPD (return maximum of packed double-precision floating-point values) 
instruction compares the corresponding values in two packed double-precision 
floating-point operands and returns the numerically greater value from each compar-
ison to the destination operand.

The MAXSD (return maximum of scalar double-precision floating-point values) 
instruction compares the low double-precision floating-point values from two packed 
double-precision floating-point operands and returns the numerically higher value 
from the comparison to the low quadword of the destination operand.

The MINPD (return minimum of packed double-precision floating-point values) 
instruction compares the corresponding values from two packed double-precision 
floating-point operands and returns the numerically lesser value from each compar-
ison to the destination operand.

The MINSD (return minimum of scalar double-precision floating-point values) 
instruction compares the low values from two packed double-precision floating-point 
operands and returns the numerically lesser value from the comparison to the low 
quadword of the destination operand.

11.4.1.3  SSE2 Logical Instructions
SSE2 logical instructions perform AND, AND NOT, OR, and XOR operations on packed 
double-precision floating-point values. 

The ANDPD (bitwise logical AND of packed double-precision floating-point values) 
instruction returns the logical AND of two packed double-precision floating-point 
operands.

The ANDNPD (bitwise logical AND NOT of packed double-precision floating-point 
values) instruction returns the logical AND NOT of two packed double-precision 
floating-point operands.

The ORPD (bitwise logical OR of packed double-precision floating-point values) 
instruction returns the logical OR of two packed double-precision floating-point oper-
ands.

The XORPD (bitwise logical XOR of packed double-precision floating-point values) 
instruction returns the logical XOR of two packed double-precision floating-point 
operands.

11.4.1.4  SSE2 Comparison Instructions
SSE2 compare instructions compare packed and scalar double-precision floating-
point values and return the results of the comparison either to the destination 
operand or to the EFLAGS register.
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The CMPPD (compare packed double-precision floating-point values) instruction 
compares the corresponding values from two packed double-precision floating-point 
operands, using an immediate operand as a predicate, and returns a 64-bit mask 
result of all 1s or all 0s for each comparison to the destination operand. The value of 
the immediate operand allows the selection of any of eight compare conditions: 
equal, less than, less than equal, unordered, not equal, not less than, not less than 
or equal, or ordered.

The CMPSD (compare scalar double-precision floating-point values) instruction 
compares the low values from two packed double-precision floating-point operands, 
using an immediate operand as a predicate, and returns a 64-bit mask result of all 1s 
or all 0s for the comparison to the low quadword of the destination operand. The 
immediate operand selects the compare condition as with the CMPPD instruction.

The COMISD (compare scalar double-precision floating-point values and set EFLAGS) 
and UCOMISD (unordered compare scalar double-precision floating-point values and 
set EFLAGS) instructions compare the low values of two packed double-precision 
floating-point operands and set the ZF, PF, and CF flags in the EFLAGS register to 
show the result (greater than, less than, equal, or unordered). These two instruc-
tions differ as follows: the COMISD instruction signals a floating-point invalid-opera-
tion (#I) exception when a source operand is either a QNaN or an SNaN; the 
UCOMISD instruction only signals an invalid-operation exception when a source 
operand is an SNaN.

11.4.1.5  SSE2 Shuffle and Unpack Instructions
SSE2 shuffle instructions shuffle the contents of two packed double-precision 
floating-point values and store the results in the destination operand.

The SHUFPD (shuffle packed double-precision floating-point values) instruction 
places either of the two packed double-precision floating-point values from the desti-
nation operand in the low quadword of the destination operand, and places either of 
the two packed double-precision floating-point values from source operand in the 
high quadword of the destination operand (see Figure 11-5). By using the same 
register for the source and destination operands, the SHUFPD instruction can swap 
two packed double-precision floating-point values. 
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The UNPCKHPD (unpack and interleave high packed double-precision floating-point 
values) instruction performs an interleaved unpack of the high values from the 
source and destination operands and stores the result in the destination operand 
(see Figure 11-6).

The UNPCKLPD (unpack and interleave low packed double-precision floating-point 
values) instruction performs an interleaved unpack of the low values from the source 
and destination operands and stores the result in the destination operand (see 
Figure 11-7).

Figure 11-5.  SHUFPD Instruction, Packed Shuffle Operation

Figure 11-6.  UNPCKHPD Instruction, High Unpack and Interleave Operation
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11.4.1.6  SSE2 Conversion Instructions
SSE2 conversion instructions (see Figure 11-8) support packed and scalar conver-
sions between:
• Double-precision and single-precision floating-point formats
• Double-precision floating-point and doubleword integer formats
• Single-precision floating-point and doubleword integer formats

Conversion between double-precision and single-precision floating-points 
values — The following instructions convert operands between double-precision and 
single-precision floating-point formats. The operands being operated on are 
contained in XMM registers or memory (at most, one operand can reside in memory; 
the destination is always an MMX register).

The CVTPS2PD (convert packed single-precision floating-point values to packed 
double-precision floating-point values) instruction converts two packed single-
precision floating-point values to two double-precision floating-point values.

The CVTPD2PS (convert packed double-precision floating-point values to packed 
single-precision floating-point values) instruction converts two packed double-
precision floating-point values to two single-precision floating-point values. When a 
conversion is inexact, the result is rounded according to the rounding mode selected 
in the MXCSR register.

The CVTSS2SD (convert scalar single-precision floating-point value to scalar double-
precision floating-point value) instruction converts a single-precision floating-point 
value to a double-precision floating-point value.

The CVTSD2SS (convert scalar double-precision floating-point value to scalar single-
precision floating-point value) instruction converts a double-precision floating-point 
value to a single-precision floating-point value. When the conversion is inexact, the 
result is rounded according to the rounding mode selected in the MXCSR register.

Figure 11-7.  UNPCKLPD Instruction, Low Unpack and Interleave Operation
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Conversion between double-precision floating-point values and doubleword 
integers — The following instructions convert operands between double-precision 
floating-point and doubleword integer formats. Operands are housed in XMM regis-
ters, MMX registers, general registers or memory (at most one operand can reside in 
memory; the destination is always an XMM, MMX, or general register).

The CVTPD2PI (convert packed double-precision floating-point values to packed 
doubleword integers) instruction converts two packed double-precision floating-point 
numbers to two packed signed doubleword integers, with the result stored in an MMX 
register. When rounding to an integer value, the source value is rounded according to 
the rounding mode in the MXCSR register. The CVTTPD2PI (convert with truncation 
packed double-precision floating-point values to packed doubleword integers) 
instruction is similar to the CVTPD2PI instruction except that truncation is used to 
round a source value to an integer value (see Section 4.8.4.2, “Truncation with SSE 
and SSE2 Conversion Instructions”).

The CVTPI2PD (convert packed doubleword integers to packed double-precision 
floating-point values) instruction converts two packed signed doubleword integers to 
two double-precision floating-point values. 

Figure 11-8.  SSE and SSE2 Conversion Instructions
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The CVTPD2DQ (convert packed double-precision floating-point values to packed 
doubleword integers) instruction converts two packed double-precision floating-point 
numbers to two packed signed doubleword integers, with the result stored in the low 
quadword of an XMM register. When rounding an integer value, the source value is 
rounded according to the rounding mode selected in the MXCSR register. The 
CVTTPD2DQ (convert with truncation packed double-precision floating-point values 
to packed doubleword integers) instruction is similar to the CVTPD2DQ instruction 
except that truncation is used to round a source value to an integer value (see 
Section 4.8.4.2, “Truncation with SSE and SSE2 Conversion Instructions”).

The CVTDQ2PD (convert packed doubleword integers to packed double-precision 
floating-point values) instruction converts two packed signed doubleword integers 
located in the low-order doublewords of an XMM register to two double-precision 
floating-point values. 

The CVTSD2SI (convert scalar double-precision floating-point value to doubleword 
integer) instruction converts a double-precision floating-point value to a doubleword 
integer, and stores the result in a general-purpose register. When rounding an 
integer value, the source value is rounded according to the rounding mode selected 
in the MXCSR register. The CVTTSD2SI (convert with truncation scalar double-preci-
sion floating-point value to doubleword integer) instruction is similar to the 
CVTSD2SI instruction except that truncation is used to round the source value to an 
integer value (see Section 4.8.4.2, “Truncation with SSE and SSE2 Conversion 
Instructions”).

The CVTSI2SD (convert doubleword integer to scalar double-precision floating-point 
value) instruction converts a signed doubleword integer in a general-purpose register 
to a double-precision floating-point number, and stores the result in an XMM register. 

Conversion between single-precision floating-point and doubleword integer 
formats — These instructions convert between packed single-precision floating-
point and packed doubleword integer formats. Operands are housed in XMM regis-
ters, MMX registers, general registers, or memory (the latter for at most one source 
operand). The destination is always an XMM, MMX, or general register. These SSE2 
instructions supplement conversion instructions (CVTPI2PS, CVTPS2PI, CVTTPS2PI, 
CVTSI2SS, CVTSS2SI, and CVTTSS2SI) introduced with SSE extensions.

The CVTPS2DQ (convert packed single-precision floating-point values to packed 
doubleword integers) instruction converts four packed single-precision floating-point 
values to four packed signed doubleword integers, with the source and destination 
operands in XMM registers or memory (the latter for at most one source operand). 
When the conversion is inexact, the rounded value according to the rounding mode 
selected in the MXCSR register is returned. The CVTTPS2DQ (convert with truncation 
packed single-precision floating-point values to packed doubleword integers) 
instruction is similar to the CVTPS2DQ instruction except that truncation is used to 
round a source value to an integer value (see Section 4.8.4.2, “Truncation with SSE 
and SSE2 Conversion Instructions”).

The CVTDQ2PS (convert packed doubleword integers to packed single-precision 
floating-point values) instruction converts four packed signed doubleword integers to 
four packed single-precision floating-point numbers, with the source and destination 
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operands in XMM registers or memory (the latter for at most one source operand). 
When the conversion is inexact, the rounded value according to the rounding mode 
selected in the MXCSR register is returned. 

11.4.2 SSE2 64-Bit and 128-Bit SIMD Integer Instructions
SSE2 extensions add several 128-bit packed integer instructions to the IA-32 archi-
tecture. Where appropriate, a 64-bit version of each of these instructions is also 
provided. The 128-bit versions of instructions operate on data in XMM registers; 
64-bit versions operate on data in MMX registers. The instructions follow.

The MOVDQA (move aligned double quadword) instruction transfers a double quad-
word operand from memory to an XMM register or vice versa; or between XMM regis-
ters. The memory address must be aligned to a 16-byte boundary; otherwise, a 
general-protection exception (#GP) is generated.

The MOVDQU (move unaligned double quadword) instruction performs the same 
operations as the MOVDQA instruction, except that 16-byte alignment of a memory 
address is not required.

The PADDQ (packed quadword add) instruction adds two packed quadword integer 
operands or two single quadword integer operands, and stores the results in an XMM 
or MMX register, respectively. This instruction can operate on either unsigned or 
signed (two’s complement notation) integer operands.

The PSUBQ (packed quadword subtract) instruction subtracts two packed quadword 
integer operands or two single quadword integer operands, and stores the results in 
an XMM or MMX register, respectively. Like the PADDQ instruction, PSUBQ can 
operate on either unsigned or signed (two’s complement notation) integer operands.

The PMULUDQ (multiply packed unsigned doubleword integers) instruction performs 
an unsigned multiply of unsigned doubleword integers and returns a quadword 
result. Both 64-bit and 128-bit versions of this instruction are available. The 64-bit 
version operates on two doubleword integers stored in the low doubleword of each 
source operand, and the quadword result is returned to an MMX register. The 128-bit 
version performs a packed multiply of two pairs of doubleword integers. Here, the 
doublewords are packed in the first and third doublewords of the source operands, 
and the quadword results are stored in the low and high quadwords of an XMM 
register.

The PSHUFLW (shuffle packed low words) instruction shuffles the word integers 
packed into the low quadword of the source operand and stores the shuffled result in 
the low quadword of the destination operand. An 8-bit immediate operand specifies 
the shuffle order.

The PSHUFHW (shuffle packed high words) instruction shuffles the word integers 
packed into the high quadword of the source operand and stores the shuffled result 
in the high quadword of the destination operand. An 8-bit immediate operand speci-
fies the shuffle order.
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The PSHUFD (shuffle packed doubleword integers) instruction shuffles the double-
word integers packed into the source operand and stores the shuffled result in the 
destination operand. An 8-bit immediate operand specifies the shuffle order.

The PSLLDQ (shift double quadword left logical) instruction shifts the contents of the 
source operand to the left by the amount of bytes specified by an immediate 
operand. The empty low-order bytes are cleared (set to 0).

The PSRLDQ (shift double quadword right logical) instruction shifts the contents of 
the source operand to the right by the amount of bytes specified by an immediate 
operand. The empty high-order bytes are cleared (set to 0).

The PUNPCKHQDQ (Unpack high quadwords) instruction interleaves the high quad-
word of the source operand and the high quadword of the destination operand and 
writes them to the destination register.

The PUNPCKLQDQ (Unpack low quadwords) instruction interleaves the low quad-
words of the source operand and the low quadwords of the destination operand and 
writes them to the destination register.

Two additional SSE instructions enable data movement from the MMX registers to the 
XMM registers. 

The MOVQ2DQ (move quadword integer from MMX to XMM registers) instruction 
moves the quadword integer from an MMX source register to an XMM destination 
register.

The MOVDQ2Q (move quadword integer from XMM to MMX registers) instruction 
moves the low quadword integer from an XMM source register to an MMX destination 
register. 

11.4.3 128-Bit SIMD Integer Instruction Extensions
All of 64-bit SIMD integer instructions introduced with MMX technology and SSE 
extensions (with the exception of the PSHUFW instruction) have been extended by 
SSE2 extensions to operate on 128-bit packed integer operands located in XMM 
registers. The 128-bit versions of these instructions follow the same SIMD conven-
tions regarding packed operands as the 64-bit versions. For example, where the 
64-bit version of the PADDB instruction operates on 8 packed bytes, the 128-bit 
version operates on 16 packed bytes. 

11.4.4 Cacheability Control and Memory Ordering Instructions
SSE2 extensions that give programs more control over the caching, loading, and 
storing of data. are described below.
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11.4.4.1  FLUSH Cache Line
The CLFLUSH (flush cache line) instruction writes and invalidates the cache line asso-
ciated with a specified linear address. The invalidation is for all levels of the 
processor’s cache hierarchy, and it is broadcast throughout the cache coherency 
domain.

NOTE
CLFLUSH was introduced with the SSE2 extensions. However, the 
instruction can be implemented in IA-32 processors that do not 
implement the SSE2 extensions. Detect CLFLUSH using the feature 
bit (if CPUID.01H:EDX.CLFSH[bit 19] = 1).

11.4.4.2  Cacheability Control Instructions
The following four instructions enable data from XMM and general-purpose registers 
to be stored to memory using a non-temporal hint. The non-temporal hint directs the 
processor to store data to memory without writing the data into the cache hierarchy 
whenever this is possible. See Section 10.4.6.2, “Caching of Temporal vs. Non-
Temporal Data,” for more information about non-temporal stores and hints.

The MOVNTDQ (store double quadword using non-temporal hint) instruction stores 
packed integer data from an XMM register to memory, using a non-temporal hint.

The MOVNTPD (store packed double-precision floating-point values using non-
temporal hint) instruction stores packed double-precision floating-point data from an 
XMM register to memory, using a non-temporal hint.

The MOVNTI (store doubleword using non-temporal hint) instruction stores integer 
data from a general-purpose register to memory, using a non-temporal hint.

The MASKMOVDQU (store selected bytes of double quadword) instruction stores 
selected byte integers from an XMM register to memory, using a byte mask to selec-
tively write the individual bytes. The memory location does not need to be aligned on 
a natural boundary. This instruction also uses a non-temporal hint. 

11.4.4.3  Memory Ordering Instructions
SSE2 extensions introduce two new fence instructions (LFENCE and MFENCE) as 
companions to the SFENCE instruction introduced with SSE extensions. 

The LFENCE instruction establishes a memory fence for loads. It guarantees ordering 
between two loads and prevents speculative loads from passing the load fence (that 
is, no speculative loads are allowed until all loads specified before the load fence have 
been carried out).

The MFENCE instruction combines the functions of LFENCE and SFENCE by estab-
lishing a memory fence for both loads and stores. It guarantees that all loads and 
stores specified before the fence are globally observable prior to any loads or stores 
being carried out after the fence.
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11.4.4.4  Pause
The PAUSE instruction is provided to improve the performance of “spin-wait loops” 
executed on a Pentium 4 or Intel Xeon processor. On a Pentium 4 processor, it also 
provides the added benefit of reducing processor power consumption while executing 
a spin-wait loop. It is recommended that a PAUSE instruction always be included in 
the code sequence for a spin-wait loop.

11.4.5 Branch Hints
SSE2 extensions designate two instruction prefixes (2EH and 3EH) to provide branch 
hints to the processor (see “Instruction Prefixes” in Chapter 2 of the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 2A). These prefixes can 
only be used with the Jcc instruction and only at the machine code level (that is, 
there are no mnemonics for the branch hints).

11.5 SSE, SSE2, AND SSE3 EXCEPTIONS
SSE/SSE2/SSE3 extensions generate two general types of exceptions:
• Non-numeric exceptions
• SIMD floating-point exceptions1

SSE/SSE2/SSE3 instructions can generate the same type of memory-access and 
non-numeric exceptions as other IA-32 architecture instructions. Existing exception 
handlers can generally handle these exceptions without any code modification. See 
“Providing Non-Numeric Exception Handlers for Exceptions Generated by the SSE, 
SSE2 and SSE3 Instructions” in Chapter 13 of the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 3A, for a list of the non-numeric exceptions 
that can be generated by SSE/SSE2/SSE3 instructions and for guidelines for handling 
these exceptions.

SSE/SSE2/SSE3 instructions do not generate numeric exceptions on packed integer 
operations; however, they can generate numeric (SIMD floating-point) exceptions on 
packed single-precision and double-precision floating-point operations. These SIMD 
floating-point exceptions are defined in the IEEE Standard 754 for Binary Floating-
Point Arithmetic and are the same exceptions that are generated for x87 FPU instruc-
tions. See Section 11.5.1, “SIMD Floating-Point Exceptions,” for a description of 
these exceptions.

1. The FISTTP instruction in SSE3 does not generate SIMD floating-point exceptions, but it can gen-
erate x87 FPU floating-point exceptions.
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11.5.1 SIMD Floating-Point Exceptions
SIMD floating-point exceptions are those exceptions that can be generated by 
SSE/SSE2/SSE3 instructions that operate on packed or scalar floating-point operands.

Six classes of SIMD floating-point exceptions can be generated:
• Invalid operation (#I)
• Divide-by-zero (#Z)
• Denormal operand (#D)
• Numeric overflow (#O)
• Numeric underflow (#U)
• Inexact result (Precision) (#P)

All of these exceptions (except the denormal operand exception) are defined in IEEE 
Standard 754, and they are the same exceptions that are generated with the x87 
floating-point instructions. Section 4.9, “Overview of Floating-Point Exceptions,” 
gives a detailed description of these exceptions and of how and when they are gener-
ated. The following sections discuss the implementation of these exceptions in 
SSE/SSE2/SSE3 extensions.

All SIMD floating-point exceptions are precise and occur as soon as the instruction 
completes execution.

Each of the six exception conditions has a corresponding flag (IE, DE, ZE, OE, UE, 
and PE) and mask bit (IM, DM, ZM, OM, UM, and PM) in the MXCSR register (see 
Figure 10-3). The mask bits can be set with the LDMXCSR or FXRSTOR instruction; 
the mask and flag bits can be read with the STMXCSR or FXSAVE instruction.

The OSXMMEXCEPT flag (bit 10) of control register CR4 provides additional control 
over generation of SIMD floating-point exceptions by allowing the operating system 
to indicate whether or not it supports software exception handlers for SIMD floating-
point exceptions. If an unmasked SIMD floating-point exception is generated and the 
OSXMMEXCEPT flag is set, the processor invokes a software exception handler by 
generating a SIMD floating-point exception (#XM). If the OSXMMEXCEPT bit is clear, 
the processor generates an invalid-opcode exception (#UD) on the first SSE or SSE2 
instruction that detects a SIMD floating-point exception condition. See Section 
11.6.2, “Checking for SSE/SSE2 Support.”

11.5.2 SIMD Floating-Point Exception Conditions
The following sections describe the conditions that cause a SIMD floating-point 
exception to be generated and the masked response of the processor when these 
conditions are detected. 

See Section 4.9.2, “Floating-Point Exception Priority,” for a description of the rules for 
exception precedence when more than one floating-point exception condition is 
detected for an instruction.
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11.5.2.1  Invalid Operation Exception (#I)
The floating-point invalid-operation exception (#I) occurs in response to an invalid 
arithmetic operand. The flag (IE) and mask (IM) bits for the invalid operation excep-
tion are bits 0 and 7, respectively, in the MXCSR register.

If the invalid-operation exception is masked, the processor returns a QNaN, QNaN 
floating-point indefinite, integer indefinite, one of the source operands to the destina-
tion operand, or it sets the EFLAGS, depending on the operation being performed. 
When a value is returned to the destination operand, it overwrites the destination 
register specified by the instruction. Table 11-1 lists the invalid-arithmetic operations 
that the processor detects for instructions and the masked responses to these opera-
tions.

Table 11-1.  Masked Responses of SSE/SSE2/SSE3 Instructions to Invalid Arithmetic 
Operations

Condition Masked Response

ADDPS, ADDSS, ADDPD, ADDSD, SUBPS, SUBSS, 
SUBPD, SUBSD, MULPS, MULSS, MULPD, 
MULSD, DIVPS, DIVSS, DIVPD, DIVSD, 
ADDSUBPD, ADDSUBPD, HADDPD, HADDPS, 
HSUBPD or HSUBPS instruction with an SNaN 
operand

Return the SNaN converted to a QNaN; Refer to 
Table 4-7 for more details

SQRTPS, SQRTSS, SQRTPD, or SQRTSD with 
SNaN operands

Return the SNaN converted to a QNaN

SQRTPS, SQRTSS, SQRTPD, or SQRTSD with 
negative operands (except zero)

Return the QNaN floating-point Indefinite

MAXPS, MAXSS, MAXPD, MAXSD, MINPS, 
MINSS, MINPD, or MINSD instruction with QNaN 
or SNaN operands

Return the source 2 operand value

CMPPS, CMPSS, CMPPD or CMPSD instruction 
with QNaN or SNaN operands

Return a mask of all 0s (except for the 
predicates “not-equal,” “unordered,” “not-less-
than,” or “not-less-than-or-equal,” which returns 
a mask of all 1s)

CVTPD2PS, CVTSD2SS, CVTPS2PD, CVTSS2SD 
with SNaN operands

Return the SNaN converted to a QNaN

COMISS or COMISD with QNaN or SNaN 
operand(s)

Set EFLAGS values to “not comparable”

Addition of opposite signed infinities or 
subtraction of like-signed infinities

Return the QNaN floating-point Indefinite

Multiplication of infinity by zero Return the QNaN floating-point Indefinite

Divide of (0/0) or ( ∞ / ∞ ) Return the QNaN floating-point Indefinite
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If the invalid operation exception is not masked, a software exception handler is 
invoked and the operands remain unchanged. See Section 11.5.4, “Handling SIMD 
Floating-Point Exceptions in Software.”

Normally, when one or more of the source operands are QNaNs (and neither is an 
SNaN or in an unsupported format), an invalid-operation exception is not generated. 
The following instructions are exceptions to this rule: the COMISS and COMISD 
instructions; and the CMPPS, CMPSS, CMPPD, and CMPSD instructions (when the 
predicate is less than, less-than or equal, not less-than, or not less-than or equal). 
With these instructions, a QNaN source operand will generate an invalid-operation 
exception.

The invalid-operation exception is not affected by the flush-to-zero mode or by the 
denormals-are-zeros mode.

11.5.2.2  Denormal-Operand Exception (#D)
The processor signals the denormal-operand exception if an arithmetic instruction 
attempts to operate on a denormal operand. The flag (DE) and mask (DM) bits for 
the denormal-operand exception are bits 1 and 8, respectively, in the MXCSR 
register.

The CVTPI2PD, CVTPD2PI, CVTTPD2PI, CVTDQ2PD, CVTPD2DQ, CVTTPD2DQ, 
CVTSI2SD, CVTSD2SI, CVTTSD2SI, CVTPI2PS, CVTPS2PI, CVTTPS2PI, CVTSS2SI, 
CVTTSS2SI, CVTSI2SS, CVTDQ2PS, CVTPS2DQ, and CVTTPS2DQ conversion instruc-
tions do not signal denormal exceptions. The RCPSS, RCPPS, RSQRTSS, and 
RSQRTPS instructions do not signal any kind of floating-point exception.

The denormals-are-zero flag (bit 6) of the MXCSR register provides an additional 
option for handling denormal-operand exceptions. When this flag is set, denormal 
source operands are automatically converted to zeros with the sign of the source 
operand (see Section 10.2.3.4, “Denormals-Are-Zeros”). The denormal operand 
exception is not affected by the flush-to-zero mode.

See Section 4.9.1.2, “Denormal Operand Exception (#D),” for more information 
about the denormal exception. See Section 11.5.4, “Handling SIMD Floating-Point 
Exceptions in Software,” for information on handling unmasked exceptions.

Conversion to integer when the value in the 
source register is a NaN, ∞, or exceeds the 
representable range for CVTPS2PI, CVTTPS2PI, 
CVTSS2SI, CVTTSS2SI, CVTPD2PI, CVTSD2SI, 
CVTPD2DQ, CVTTPD2PI, CVTTSD2SI, 
CVTTPD2DQ, CVTPS2DQ, or CVTTPS2DQ

Return the integer Indefinite

Table 11-1.  Masked Responses of SSE/SSE2/SSE3 Instructions to Invalid Arithmetic 
Operations (Contd.)

Condition Masked Response
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11.5.2.3  Divide-By-Zero Exception (#Z)
The processor reports a divide-by-zero exception when a DIVPS, DIVSS, DIVPD or 
DIVSD instruction attempts to divide a finite non-zero operand by 0. The flag (ZE) 
and mask (ZM) bits for the divide-by-zero exception are bits 2 and 9, respectively, in 
the MXCSR register.

See Section 4.9.1.3, “Divide-By-Zero Exception (#Z),” for more information about 
the divide-by-zero exception. See Section 11.5.4, “Handling SIMD Floating-Point 
Exceptions in Software,” for information on handling unmasked exceptions.

The divide-by-zero exception is not affected by the flush-to-zero mode or by the 
denormals-are-zeros mode.

11.5.2.4  Numeric Overflow Exception (#O)
The processor reports a numeric overflow exception whenever the rounded result of 
an arithmetic instruction exceeds the largest allowable finite value that fits in the 
destination operand. This exception can be generated with the ADDPS, ADDSS, 
ADDPD, ADDSD, SUBPS, SUBSS, SUBPD, SUBSD, MULPS, MULSS, MULPD, MULSD, 
DIVPS, DIVSS, DIVPD, DIVSD, CVTPD2PS, CVTSD2SS, ADDSUBPD, ADDSUBPS, 
HADDPD, HADDPS, HSUBPD and HSUBPS instructions. The flag (OE) and mask (OM) 
bits for the numeric overflow exception are bits 3 and 10, respectively, in the MXCSR 
register.

See Section 4.9.1.4, “Numeric Overflow Exception (#O),” for more information about 
the numeric-overflow exception. See Section 11.5.4, “Handling SIMD Floating-Point 
Exceptions in Software,” for information on handling unmasked exceptions.

The numeric overflow exception is not affected by the flush-to-zero mode or by the 
denormals-are-zeros mode.

11.5.2.5  Numeric Underflow Exception (#U)
The processor reports a numeric underflow exception whenever the rounded result of 
an arithmetic instruction is less than the smallest possible normalized, finite value 
that will fit in the destination operand and the numeric-underflow exception is not 
masked. If the numeric underflow exception is masked, both underflow and the 
inexact-result condition must be detected before numeric underflow is reported. This 
exception can be generated with the ADDPS, ADDSS, ADDPD, ADDSD, SUBPS, 
SUBSS, SUBPD, SUBSD, MULPS, MULSS, MULPD, MULSD, DIVPS, DIVSS, DIVPD, 
DIVSD, CVTPD2PS, CVTSD2SS, ADDSUBPD, ADDSUBPS, HADDPD, HADDPS, 
HSUBPD, and HSUBPS instructions. The flag (UE) and mask (UM) bits for the numeric 
underflow exception are bits 4 and 11, respectively, in the MXCSR register.

The flush-to-zero flag (bit 15) of the MXCSR register provides an additional option for 
handling numeric underflow exceptions. When this flag is set and the numeric under-
flow exception is masked, tiny results (results that trigger the underflow exception) 
are returned as a zero with the sign of the true result (see Section 10.2.3.3, “Flush-
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To-Zero”). The numeric underflow exception is not affected by the denormals-are-
zero mode.

See Section 4.9.1.5, “Numeric Underflow Exception (#U),” for more information 
about the numeric underflow exception. See Section 11.5.4, “Handling SIMD 
Floating-Point Exceptions in Software,” for information on handling unmasked 
exceptions.

11.5.2.6  Inexact-Result (Precision) Exception (#P)
The inexact-result exception (also called the precision exception) occurs if the result 
of an operation is not exactly representable in the destination format. For example, 
the fraction 1/3 cannot be precisely represented in binary form. This exception 
occurs frequently and indicates that some (normally acceptable) accuracy has been 
lost. The exception is supported for applications that need to perform exact arith-
metic only. Because the rounded result is generally satisfactory for most applica-
tions, this exception is commonly masked.

The flag (PE) and mask (PM) bits for the inexact-result exception are bits 2 and 12, 
respectively, in the MXCSR register.

See Section 4.9.1.6, “Inexact-Result (Precision) Exception (#P),” for more informa-
tion about the inexact-result exception. See Section 11.5.4, “Handling SIMD 
Floating-Point Exceptions in Software,” for information on handling unmasked excep-
tions.

In flush-to-zero mode, the inexact result exception is reported. The inexact result 
exception is not affected by the denormals-are-zero mode.

11.5.3 Generating SIMD Floating-Point Exceptions
When the processor executes a packed or scalar floating-point instruction, it looks for 
and reports on SIMD floating-point exception conditions using two sequential steps:

1. Looks for, reports on, and handles pre-computation exception conditions (invalid-
operand, divide-by-zero, and denormal operand)

2. Looks for, reports on, and handles post-computation exception conditions 
(numeric overflow, numeric underflow, and inexact result)

If both pre- and post-computational exceptions are unmasked, it is possible for the 
processor to generate a SIMD floating-point exception (#XM) twice during the execu-
tion of an SSE, SSE2 or SSE3 instruction: once when it detects and handles a pre-
computational exception and when it detects a post-computational exception.

11.5.3.1  Handling Masked Exceptions
If all exceptions are masked, the processor handles the exceptions it detects by 
placing the masked result (or results for packed operands) in a destination operand 
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and continuing program execution. The masked result may be a rounded normalized 
value, signed infinity, a denormal finite number, zero, a QNaN floating-point indefi-
nite, or a QNaN depending on the exception condition detected. In most cases, the 
corresponding exception flag bit in MXCSR is also set. The one situation where an 
exception flag is not set is when an underflow condition is detected and it is not 
accompanied by an inexact result.

When operating on packed floating-point operands, the processor returns a masked 
result for each of the sub-operand computations and sets a separate set of internal 
exception flags for each computation. It then performs a logical-OR on the internal 
exception flag settings and sets the exception flags in the MXCSR register according 
to the results of OR operations.

For example, Figure 11-9 shows the results of an MULPS instruction. In the example, 
all SIMD floating-point exceptions are masked. Assume that a denormal exception 
condition is detected prior to the multiplication of sub-operands X0 and Y0, no excep-
tion condition is detected for the multiplication of X1 and Y1, a numeric overflow 
exception condition is detected for the multiplication of X2 and Y2, and another 
denormal exception is detected prior to the multiplication of sub-operands X3 and 
Y3. Because denormal exceptions are masked, the processor uses the denormal 
source values in the multiplications of (X0 and Y0) and of (X3 and Y3) passing the 
results of the multiplications through to the destination operand. With the denormal 
operand, the result of the X0 and Y0 computation is a normalized finite value, with no 
exceptions detected. However, the X3 and Y3 computation produces a tiny and 
inexact result. This causes the corresponding internal numeric underflow and 
inexact-result exception flags to be set.

For the multiplication of X2 and Y2, the processor stores the floating-point ∞ in the 
destination operand, and sets the corresponding internal sub-operand numeric over-
flow flag. The result of the X1 and Y1 multiplication is passed through to the destina-
tion operand, with no internal sub-operand exception flags being set. Following the 

Figure 11-9.  Example Masked Response for Packed Operations

X3 X2 X1 X0 (Denormal)

Y3 (Denormal) Y2 Y1 Y0 

Tiny, Inexact, Finite Normalized Finite

MULPS MULPS MULPS MULPS

∞ Normalized Finite
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computations, the individual sub-operand exceptions flags for denormal operand, 
numeric underflow, inexact result, and numeric overflow are OR’d and the corre-
sponding flags are set in the MXCSR register.

The net result of this computation is that:
• Multiplication of X0 and Y0 produces a normalized finite result
• Multiplication of X1 and Y1 produces a normalized finite result
• Multiplication of X2 and Y2 produces a floating-point ∞ result
• Multiplication of X3 and Y3 produces a tiny, inexact, finite result
• Denormal operand, numeric underflow, numeric underflow, and inexact result 

flags are set in the MXCSR register

11.5.3.2  Handling Unmasked Exceptions
If all exceptions are unmasked, the processor:

1. First detects any pre-computation exceptions: it ORs those exceptions, sets the 
appropriate exception flags, leaves the source and destination operands 
unaltered, and goes to step 2. If it does not detect any pre-computation 
exceptions, it goes to step 5.

2. Checks CR4.OSXMMEXCPT[bit 10]. If this flag is set, the processor goes to step 
3; if the flag is clear, it generates an invalid-opcode exception (#UD) and makes 
an implicit call to the invalid-opcode exception handler.

3. Generates a SIMD floating-point exception (#XM) and makes an implicit call to 
the SIMD floating-point exception handler.

4. If the exception handler is able to fix the source operands that generated the pre-
computation exceptions or mask the condition in such a way as to allow the 
processor to continue executing the instruction, the processor resumes 
instruction execution as described in step 5.

5. Upon returning from the exception handler (or if no pre-computation exceptions 
were detected), the processor checks for post-computation exceptions. If the 
processor detects any post-computation exceptions: it ORs those exceptions, 
sets the appropriate exception flags, leaves the source and destination operands 
unaltered, and repeats steps 2, 3, and 4.

6. Upon returning from the exceptions handler in step 4 (or if no post-computation 
exceptions were detected), the processor completes the execution of the 
instruction.

The implication of this procedure is that for unmasked exceptions, the processor can 
generate a SIMD floating-point exception (#XM) twice: once if it detects pre-compu-
tation exception conditions and a second time if it detects post-computation excep-
tion conditions. For example, if SIMD floating-point exceptions are unmasked for the 
computation shown in Figure 11-9, the processor would generate one SIMD floating-
point exception for denormal operand conditions and a second SIMD floating-point 
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exception for overflow and underflow (no inexact result exception would be gener-
ated because the multiplications of X0 and Y0 and of X1 and Y1 are exact).

11.5.3.3  Handling Combinations of Masked and Unmasked Exceptions
In situations where both masked and unmasked exceptions are detected, the 
processor will set exception flags for the masked and the unmasked exceptions. 
However, it will not return masked results until after the processor has detected and 
handled unmasked post-computation exceptions and returned from the exception 
handler (as in step 6 above) to finish executing the instruction.

11.5.4 Handling SIMD Floating-Point Exceptions in Software
Section 4.9.3, “Typical Actions of a Floating-Point Exception Handler,” shows actions 
that may be carried out by a SIMD floating-point exception handler. The 
SSE/SSE2/SSE3 state is saved with the FXSAVE instruction (see Section 11.6.5, 
“Saving and Restoring the SSE/SSE2 State”). 

11.5.5 Interaction of SIMD and x87 FPU Floating-Point Exceptions
SIMD floating-point exceptions are generated independently from x87 FPU floating-
point exceptions. SIMD floating-point exceptions do not cause assertion of the 
FERR# pin (independent of the value of CR0.NE[bit 5]). They ignore the assertion 
and deassertion of the IGNNE# pin.

If applications use SSE/SSE2/SSE3 instructions along with x87 FPU instructions (in 
the same task or program), consider the following:
• SIMD floating-point exceptions are reported independently from the x87 FPU 

floating-point exceptions. SIMD and x87 FPU floating-point exceptions can be 
unmasked independently. Separate x87 FPU and SIMD floating-point exception 
handlers must be provided if the same exception is unmasked for x87 FPU and for 
SSE/SSE2/SSE3 operations.

• The rounding mode specified in the MXCSR register does not affect x87 FPU 
instructions. Likewise, the rounding mode specified in the x87 FPU control word 
does not affect the SSE/SSE2/SSE3 instructions. To use the same rounding 
mode, the rounding control bits in the MXCSR register and in the x87 FPU control 
word must be set explicitly to the same value.

• The flush-to-zero mode set in the MXCSR register for SSE/SSE2/SSE3 instruc-
tions has no counterpart in the x87 FPU. For compatibility with the x87 FPU, set 
the flush-to-zero bit to 0.

• The denormals-are-zeros mode set in the MXCSR register for SSE/SSE2/SSE3 
instructions has no counterpart in the x87 FPU. For compatibility with the x87 
FPU, set the denormals-are-zeros bit to 0.
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• An application that expects to detect x87 FPU exceptions that occur during the 
execution of x87 FPU instructions will not be notified if exceptions occurs during 
the execution of corresponding SSE/SSE2/SSE31 instructions, unless the 
exception masks that are enabled in the x87 FPU control word have also been 
enabled in the MXCSR register and the application is capable of handling SIMD 
floating-point exceptions (#XM).

— Masked exceptions that occur during an SSE/SSE2/SSE3 library call cannot 
be detected by unmasking the exceptions after the call (in an attempt to 
generate the fault based on the fact that an exception flag is set). A SIMD 
floating-point exception flag that is set when the corresponding exception is 
unmasked will not generate a fault; only the next occurrence of that 
unmasked exception will generate a fault.

— An application which checks the x87 FPU status word to determine if any 
masked exception flags were set during an x87 FPU library call will also need 
to check the MXCSR register to detect a similar occurrence of a masked 
exception flag being set during an SSE/SSE2/SSE3 library call.

11.6 WRITING APPLICATIONS WITH SSE/SSE2 
EXTENSIONS

The following sections give some guidelines for writing application programs and 
operating-system code that uses the SSE and SSE2 extensions. Because SSE and 
SSE2 extensions share the same state and perform companion operations, these 
guidelines apply to both sets of extensions.

Chapter 13 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3A, discusses the interface to the processor for context switching as well as 
other operating system considerations when writing code that uses SSE/SSE2/SSE3 
extensions.

11.6.1 General Guidelines for Using SSE/SSE2 Extensions
The following guidelines describe how to take full advantage of the performance 
gains available with the SSE and SSE2 extensions:
• Ensure that the processor supports the SSE and SSE2 extensions.
• Ensure that your operating system supports the SSE and SSE2 extensions. 

(Operating system support for the SSE extensions implies support for SSE2 
extension and vice versa.)

1. SSE3 refers to ADDSUBPD, ADDSUBPS, HADDPD, HADDPS, HSUBPD and HSUBPS; the only other 
SSE3 instruction that can raise floating-point exceptions is FISTTP: it can generate x87 FPU 
invalid operation and inexact result exceptions.
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• Use stack and data alignment techniques to keep data properly aligned for 
efficient memory use.

• Use the non-temporal store instructions offered with the SSE and SSE2 
extensions.

• Employ the optimization and scheduling techniques described in the Intel 
Pentium 4 Optimization Reference Manual (see Section 1.4, “Related Literature,” 
for the order number for this manual).

11.6.2 Checking for SSE/SSE2 Support
Before an application attempts to use the SSE and/or SSE2 extensions, it should 
check that they are present on the processor:

1. Check that the processor supports the CPUID instruction. Bit 21 of the EFLAGS 
register can be used to check processor’s support the CPUID instruction. 

2. Check that the processor supports the SSE and/or SSE2 extensions (true if 
CPUID.01H:EDX.SSE[bit 25] = 1 and/or CPUID.01H:EDX.SSE2[bit 26] = 1).

Operating system must provide system level support for handling SSE state, excep-
tions before an application can use the SSE and/or SSE2 extensions (see Chapter 13 
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A,).

If the processor attempts to execute an unsupported SSE or SSE2 instruction, the 
processor will generate an invalid-opcode exception (#UD). If an operating system 
did not provide adequate system level support for SSE, executing an SSE or SSE2 
instructions can also generate #UD.

11.6.3 Checking for the DAZ Flag in the MXCSR Register
The denormals-are-zero flag in the MXCSR register is available in most of the 
Pentium 4 processors and in the Intel Xeon processor, with the exception of some 
early steppings. To check for the presence of the DAZ flag in the MXCSR register, do 
the following:

1. Establish a 512-byte FXSAVE area in memory.

2. Clear the FXSAVE area to all 0s.

3. Execute the FXSAVE instruction, using the address of the first byte of the cleared 
FXSAVE area as a source operand. See “FXSAVE—Save x87 FPU, MMX, SSE, and 
SSE2 State” in Chapter 3 of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 2A, for a description of the FXSAVE instruction and 
the layout of the FXSAVE image.

4. Check the value in the MXCSR_MASK field in the FXSAVE image (bytes 28 
through 31).

— If the value of the MXCSR_MASK field is 00000000H, the DAZ flag and 
denormals-are-zero mode are not supported.
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— If the value of the MXCSR_MASK field is non-zero and bit 6 is set, the DAZ 
flag and denormals-are-zero mode are supported.

If the DAZ flag is not supported, then it is a reserved bit and attempting to write a 1 
to it will cause a general-protection exception (#GP). See Section 11.6.6, “Guidelines 
for Writing to the MXCSR Register,” for general guidelines for preventing general-
protection exceptions when writing to the MXCSR register.

11.6.4 Initialization of SSE/SSE2 Extensions
The SSE and SSE2 state is contained in the XMM and MXCSR registers. Upon a hard-
ware reset of the processor, this state is initialized as follows (see Table 11-2):
• All SIMD floating-point exceptions are masked (bits 7 through 12 of the MXCSR 

register is set to 1).
• All SIMD floating-point exception flags are cleared (bits 0 through 5 of the MXCSR 

register is set to 0).
• The rounding control is set to round-nearest (bits 13 and 14 of the MXCSR 

register are set to 00B).
• The flush-to-zero mode is disabled (bit 15 of the MXCSR register is set to 0).
• The denormals-are-zeros mode is disabled (bit 6 of the MXCSR register is set to 

0). If the denormals-are-zeros mode is not supported, this bit is reserved and will 
be set to 0 on initialization.

• Each of the XMM registers is cleared (set to all zeros).
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If the processor is reset by asserting the INIT# pin, the SSE and SSE2 state is not 
changed.

11.6.5 Saving and Restoring the SSE/SSE2 State
The FXSAVE instruction saves the x87 FPU, MMX, SSE and SSE2 states (which 
includes the contents of eight XMM registers and the MXCSR registers) in a 512-byte 
block of memory. The FXRSTOR instruction restores the saved SSE and SSE2 state 
from memory. See the FXSAVE instruction in Chapter 3 of the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2A, for the layout of the 
512-byte state block.

In addition to saving and restoring the SSE and SSE2 state, FXSAVE and FXRSTOR 
also save and restore the x87 FPU state (because MMX registers are aliased to the 
x87 FPU data registers this includes saving and restoring the MMX state). For greater 
code efficiency, it is suggested that FXSAVE and FXRSTOR be substituted for the 
FSAVE, FNSAVE and FRSTOR instructions in the following situations:
• When a context switch is being made in a multitasking environment
• During calls and returns from interrupt and exception handlers

In situations where the code is switching between x87 FPU and MMX technology 
computations (without a context switch or a call to an interrupt or exception), the 
FSAVE/FNSAVE and FRSTOR instructions are more efficient than the FXSAVE and 
FXRSTOR instructions.

11.6.6 Guidelines for Writing to the MXCSR Register
The MXCSR has several reserved bits, and attempting to write a 1 to any of these bits 
will cause a general-protection exception (#GP) to be generated. To allow software to 
identify these reserved bits, the MXCSR_MASK value is provided. Software can deter-
mine this mask value as follows:

1. Establish a 512-byte FXSAVE area in memory.

2. Clear the FXSAVE area to all 0s.

3. Execute the FXSAVE instruction, using the address of the first byte of the cleared 
FXSAVE area as a source operand. See “FXSAVE—Save x87 FPU, MMX, SSE, and 
SSE2 State” in Chapter 3 of the Intel® 64 and IA-32 Architectures Software 

Table 11-2.  SSE and SSE2 State Following a Power-up/Reset or INIT

Registers Power-Up or 
Reset

INIT

XMM0 through XMM7 +0.0 Unchanged

MXCSR 1F80H Unchanged
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Developer’s Manual, Volume 2A, for a description of FXSAVE and the layout of the 
FXSAVE image.

4. Check the value in the MXCSR_MASK field in the FXSAVE image (bytes 28 
through 31).

— If the value of the MXCSR_MASK field is 00000000H, then the MXCSR_MASK 
value is the default value of 0000FFBFH. Note that this value indicates that bit 
6 of the MXCSR register is reserved; this setting indicates that the 
denormals-are-zero mode is not supported on the processor.

— If the value of the MXCSR_MASK field is non-zero, the MXCSR_MASK value 
should be used as the MXCSR_MASK.

All bits set to 0 in the MXCSR_MASK value indicate reserved bits in the MXCSR 
register. Thus, if the MXCSR_MASK value is AND’d with a value to be written into the 
MXCSR register, the resulting value will be assured of having all its reserved bits set 
to 0, preventing the possibility of a general-protection exception being generated 
when the value is written to the MXCSR register. 

For example, the default MXCSR_MASK value when 00000000H is returned in the 
FXSAVE image is 0000FFBFH. If software AND’s a value to be written to MXCSR 
register with 0000FFBFH, bit 6 of the result (the DAZ flag) will be ensured of being 
set to 0, which is the required setting to prevent general-protection exceptions on 
processors that do not support the denormals-are-zero mode.

To prevent general-protection exceptions, the MXCSR_MASK value should be AND’d 
with the value to be written into the MXCSR register in the following situations:
• Operating system routines that receive a parameter from an application program 

and then write that value to the MXCSR register (either with an FXRSTOR or 
LDMXCSR instruction)

• Any application program that writes to the MXCSR register and that needs to run 
robustly on several different IA-32 processors

Note that all bits in the MXCSR_MASK value that are set to 1 indicate features that 
are supported by the MXCSR register; they can be treated as feature flags for identi-
fying processor capabilities.

11.6.7 Interaction of SSE/SSE2 Instructions with x87 FPU and MMX 
Instructions

The XMM registers and the x87 FPU and MMX registers represent separate execution 
environments, which has certain ramifications when executing SSE, SSE2, MMX, and 
x87 FPU instructions in the same code module or when mixing code modules that 
contain these instructions:
• Those SSE and SSE2 instructions that operate only on XMM registers (such as the 

packed and scalar floating-point instructions and the 128-bit SIMD integer 
instructions) in the same instruction stream with 64-bit SIMD integer or x87 FPU 
instructions without any restrictions. For example, an application can perform the 
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majority of its floating-point computations in the XMM registers, using the packed 
and scalar floating-point instructions, and at the same time use the x87 FPU to 
perform trigonometric and other transcendental computations. Likewise, an 
application can perform packed 64-bit and 128-bit SIMD integer operations 
together without restrictions.

• Those SSE and SSE2 instructions that operate on MMX registers (such as the 
CVTPS2PI, CVTTPS2PI, CVTPI2PS, CVTPD2PI, CVTTPD2PI, CVTPI2PD, 
MOVDQ2Q, MOVQ2DQ, PADDQ, and PSUBQ instructions) can also be executed in 
the same instruction stream as 64-bit SIMD integer or x87 FPU instructions, 
however, here they are subject to the restrictions on the simultaneous use of 
MMX technology and x87 FPU instructions, which include:

— Transition from x87 FPU to MMX technology instructions or to SSE or SSE2 
instructions that operate on MMX registers should be preceded by saving the 
state of the x87 FPU.

— Transition from MMX technology instructions or from SSE or SSE2 instruc-
tions that operate on MMX registers to x87 FPU instructions should be 
preceded by execution of the EMMS instruction.

11.6.8 Compatibility of SIMD and x87 FPU Floating-Point Data 
Types

SSE and SSE2 extensions operate on the same single-precision and double-precision 
floating-point data types that the x87 FPU operates on. However, when operating on 
these data types, the SSE and SSE2 extensions operate on them in their native 
format (single-precision or double-precision), in contrast to the x87 FPU which 
extends them to double extended-precision floating-point format to perform compu-
tations and then rounds the result back to a single-precision or double-precision 
format before writing results to memory. Because the x87 FPU operates on a higher 
precision format and then rounds the result to a lower precision format, it may return 
a slightly different result when performing the same operation on the same single-
precision or double-precision floating-point values than is returned by the SSE and 
SSE2 extensions. The difference occurs only in the least-significant bits of the signif-
icand.

11.6.9 Mixing Packed and Scalar Floating-Point and 128-Bit SIMD 
Integer Instructions and Data

SSE and SSE2 extensions define typed operations on packed and scalar floating-
point data types and on 128-bit SIMD integer data types, but IA-32 processors do not 
enforce this typing at the architectural level. They only enforce it at the microarchi-
tectural level. Therefore, when a Pentium 4 or Intel Xeon processor loads a packed or 
scalar floating-point operand or a 128-bit packed integer operand from memory into 
an XMM register, it does not check that the actual data being loaded matches the 
data type specified in the instruction. Likewise, when the processor performs an 
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arithmetic operation on the data in an XMM register, it does not check that the data 
being operated on matches the data type specified in the instruction.

As a general rule, because data typing of SIMD floating-point and integer data types 
is not enforced at the architectural level, it is the responsibility of the programmer, 
assembler, or compiler to insure that code enforces data typing. Failure to enforce 
correct data typing can lead to computations that return unexpected results.

For example, in the following code sample, two packed single-precision floating-point 
operands are moved from memory into XMM registers (using MOVAPS instructions); 
then a double-precision packed add operation (using the ADDPD instruction) is 
performed on the operands:

movaps xmm0, [eax] ; EAX register contains pointer to packed 

; single-precision floating-point operand

movaps xmm1, [ebx]

addpd xmm0, xmm1

Pentium 4 and Intel Xeon processors execute these instructions without generating 
an invalid-operand exception (#UD) and will produce the expected results in register 
XMM0 (that is, the high and low 64-bits of each register will be treated as a double-
precision floating-point value and the processor will operate on them accordingly). 
Because the data types operated on and the data type expected by the ADDPD 
instruction were inconsistent, the instruction may result in a SIMD floating-point 
exception (such as numeric overflow [#O] or invalid operation [#I]) being gener-
ated, but the actual source of the problem (inconsistent data types) is not detected.

The ability to operate on an operand that contains a data type that is inconsistent 
with the typing of the instruction being executed, permits some valid operations to be 
performed. For example, the following instructions load a packed double-precision 
floating-point operand from memory to register XMM0, and a mask to register 
XMM1; then they use XORPD to toggle the sign bits of the two packed values in 
register XMM0.

movapd xmm0, [eax] ; EAX register contains pointer to packed 

; double-precision floating-point operand

movaps xmm1, [ebx] ; EBX register contains pointer to packed

; double-precision floating-point mask

xorpd xmm0, xmm1 ; XOR operation toggles sign bits using 

; the mask in xmm1

In this example: XORPS or PXOR can be used in place of XORPD and yield the same 
correct result. However, because of the type mismatch between the operand data 
type and the instruction data type, a latency penalty will be incurred due to imple-
mentations of the instructions at the microarchitecture level. 

Latency penalties can also be incurred by using move instructions of the wrong type. 
For example, MOVAPS and MOVAPD can both be used to move a packed single-preci-
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sion operand from memory to an XMM register. However, if MOVAPD is used, a 
latency penalty will be incurred when a correctly typed instruction attempts to use 
the data in the register.

Note that these latency penalties are not incurred when moving data from XMM 
registers to memory.

11.6.10 Interfacing with SSE/SSE2 Procedures and Functions
SSE and SSE2 extensions allow direct access to XMM registers. This means that all 
existing interface conventions between procedures and functions that apply to the 
use of the general-purpose registers (EAX, EBX, etc.) also apply to XMM register 
usage.

11.6.10.1  Passing Parameters in XMM Registers
The state of XMM registers is preserved across procedure (or function) boundaries. 
Parameters can be passed from one procedure to another using XMM registers.

11.6.10.2  Saving XMM Register State on a Procedure or Function Call
The state of XMM registers can be saved in two ways: using an FXSAVE instruction or 
a move instruction. FXSAVE saves the state of all XMM registers (along with the state 
of MXCSR and the x87 FPU registers). This instruction is typically used for major 
changes in the context of the execution environment, such as a task switch. 
FXRSTOR restores the XMM, MXCSR, and x87 FPU registers stored with FXSAVE.

In cases where only XMM registers must be saved, or where selected XMM registers 
need to be saved, move instructions (MOVAPS, MOVUPS, MOVSS, MOVAPD, 
MOVUPD, MOVSD, MOVDQA, and MOVDQU) can be used. These instructions can also 
be used to restore the contents of XMM registers. To avoid performance degradation 
when saving XMM registers to memory or when loading XMM registers from memory, 
be sure to use the appropriately typed move instructions.

The move instructions can also be used to save the contents of XMM registers on the 
stack. Here, the stack pointer (in the ESP register) can be used as the memory 
address to the next available byte in the stack. Note that the stack pointer is not 
automatically incremented when using a move instruction (as it is with PUSH). 

A move-instruction procedure that saves the contents of an XMM register to the stack 
is responsible for decrementing the value in the ESP register by 16. Likewise, a 
move-instruction procedure that loads an XMM register from the stack needs also to 
increment the ESP register by 16. To avoid performance degradation when moving 
the contents of XMM registers, use the appropriately typed move instructions.

Use the LDMXCSR and STMXCSR instructions to save and restore, respectively, the 
contents of the MXCSR register on a procedure call and return.
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11.6.10.3  Caller-Save Recommendation for Procedure and Function Calls
When making procedure (or function) calls from SSE or SSE2 code, a caller-save 
convention is recommended for saving the state of the calling procedure. Using this 
convention, any register whose content must survive intact across a procedure call 
must be stored in memory by the calling procedure prior to executing the call. 

The primary reason for using the caller-save convention is to prevent performance 
degradation. XMM registers can contain packed or scalar double-precision floating-
point, packed single-precision floating-point, and 128-bit packed integer data types. 
The called procedure has no way of knowing the data types in XMM registers 
following a call; so it is unlikely to use the correctly typed move instruction to store 
the contents of XMM registers in memory or to restore the contents of XMM registers 
from memory. 

As described in Section 11.6.9, “Mixing Packed and Scalar Floating-Point and 128-Bit 
SIMD Integer Instructions and Data,” executing a move instruction that does not 
match the type for the data being moved to/from XMM registers will be carried out 
correctly, but can lead to a greater instruction latency.

11.6.11 Updating Existing MMX Technology Routines
Using 128-Bit SIMD Integer Instructions

SSE2 extensions extend all 64-bit MMX SIMD integer instructions to operate on 128-
bit SIMD integers using XMM registers. The extended 128-bit SIMD integer instruc-
tions operate like the 64-bit SIMD integer instructions; this simplifies the porting of 
MMX technology applications. However, there are considerations:
• To take advantage of wider 128-bit SIMD integer instructions, MMX technology 

code must be recompiled to reference the XMM registers instead of MMX 
registers.

• Computation instructions that reference memory operands that are not aligned 
on 16-byte boundaries should be replaced with an unaligned 128-bit load 
(MOVUDQ instruction) followed by a version of the same computation operation 
that uses register instead of memory operands. Use of 128-bit packed integer 
computation instructions with memory operands that are not 16-byte aligned 
results in a general protection exception (#GP).

• Extension of the PSHUFW instruction (shuffle word across 64-bit integer 
operand) across a full 128-bit operand is emulated by a combination of the 
following instructions: PSHUFHW, PSHUFLW, and PSHUFD.

• Use of the 64-bit shift by bit instructions (PSRLQ, PSLLQ) can be extended to 128 
bits in either of two ways:

— Use of PSRLQ and PSLLQ, along with masking logic operations. 

— Rewriting the code sequence to use PSRLDQ and PSLLDQ (shift double 
quadword operand by bytes)
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• Loop counters need to be updated, since each 128-bit SIMD integer instruction 
operates on twice the amount of data as its 64-bit SIMD integer counterpart.

11.6.12 Branching on Arithmetic Operations
There are no condition codes in SSE or SSE2 states. A packed-data comparison 
instruction generates a mask which can then be transferred to an integer register. 
The following code sequence provides an example of how to perform a conditional 
branch, based on the result of an SSE2 arithmetic operation. 

cmppd XMM0, XMM1 ; generates a mask in XMM0
movmskpd EAX, XMM0 ; moves a 2 bit mask to eax
test EAX, 0 ; compare with desired result
jne BRANCH TARGET

The COMISD and UCOMISD instructions update the EFLAGS as the result of a scalar 
comparison. A conditional branch can then be scheduled immediately following 
COMISD/UCOMISD.

11.6.13 Cacheability Hint Instructions
SSE and SSE2 cacheability control instructions enable the programmer to control 
prefetching, caching, loading and storing of data. When correctly used, these instruc-
tions improve application performance. 

To make efficient use of the processor’s super-scalar microarchitecture, a program 
needs to provide a steady stream of data to the executing program to avoid stalling 
the processor. PREFETCHh instructions minimize the latency of data accesses in 
performance-critical sections of application code by allowing data to be fetched into 
the processor cache hierarchy in advance of actual usage. 

PREFETCHh instructions do not change the user-visible semantics of a program, 
although they may affect performance. The operation of these instructions is imple-
mentation-dependent. Programmers may need to tune code for each IA-32 
processor implementation. Excessive usage of PREFETCHh instructions may waste 
memory bandwidth and reduce performance. For more detailed information on the 
use of prefetch hints, refer to Chapter 7, “Optimizing Cache Usage,”, in the Intel® 64 
and IA-32 Architectures Optimization Reference Manual.

The non-temporal store instructions (MOVNTI, MOVNTPD, MOVNTPS, MOVNTDQ, 
MOVNTQ, MASKMOVQ, and MASKMOVDQU) minimize cache pollution when writing 
non-temporal data to memory (see Section 10.4.6.2, “Caching of Temporal vs. Non-
Temporal Data,” and Section 10.4.6.1, “Cacheability Control Instructions”). They 
prevent non-temporal data from being written into processor caches on a store oper-
ation. These instructions are implementation specific. Programmers may have to 
tune their applications for each IA-32 processor implementation to take advantage of 
these instructions.
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Besides reducing cache pollution, the use of weakly-ordered memory types can be 
important under certain data sharing relationships, such as a producer-consumer 
relationship. The use of weakly ordered memory can make the assembling of data 
more efficient; but care must be taken to ensure that the consumer obtains the data 
that the producer intended. Some common usage models that may be affected in this 
way by weakly-ordered stores are: 
• Library functions that use weakly ordered memory to write results
• Compiler-generated code that writes weakly-ordered results
• Hand-crafted code

The degree to which a consumer of data knows that the data is weakly ordered can 
vary for these cases. As a result, the SFENCE or MFENCE instruction should be used 
to ensure ordering between routines that produce weakly-ordered data and routines 
that consume the data. SFENCE and MFENCE provide a performance-efficient way to 
ensure ordering by guaranteeing that every store instruction that precedes 
SFENCE/MFENCE in program order is globally visible before a store instruction that 
follows the fence. 

11.6.14 Effect of Instruction Prefixes on the SSE/SSE2 Instructions
Table 11-3 describes the effects of instruction prefixes on SSE and SSE2 instructions. 
(Table 11-3 also applies to SIMD integer and SIMD floating-point instructions in 
SSE3.) Unpredictable behavior can range from prefixes being treated as a reserved 
operation on one generation of IA-32 processors to generating an invalid opcode 
exception on another generation of processors.

See also “Instruction Prefixes” in Chapter 2 of the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 2A, for complete description of instruction 
prefixes.

NOTE
Some SSE/SSE2/SSE3 instructions have two-byte opcodes that are 
either 2 bytes or 3 bytes in length. Two-byte opcodes that are 3 bytes 
in length consist of: a mandatory prefix (F2H, F3H, or 66H), 0FH, and 
an opcode byte. See Table 11-3.

Table 11-3.  Effect of Prefixes on SSE, SSE2, and SSE3 Instructions

Prefix Type Effect on SSE, SSE2 and SSE3 Instructions 

Address Size Prefix (67H) Affects instructions with a memory operand.

Reserved for instructions without a memory operand and 
may result in unpredictable behavior.

Operand Size (66H) Reserved and may result in unpredictable behavior.
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Segment Override 
(2EH,36H,3EH,26H,64H,65H)

Affects instructions with a memory operand.

Reserved for instructions without a memory operand and 
may result in unpredictable behavior.

Repeat Prefixes (F2H and F3H) Reserved and may result in unpredictable behavior.

Lock Prefix (F0H) Reserved; generates invalid opcode exception (#UD).

Branch Hint Prefixes(E2H and 
E3H)

Reserved and may result in unpredictable behavior.

Table 11-3.  Effect of Prefixes on SSE, SSE2, and SSE3 Instructions

Prefix Type Effect on SSE, SSE2 and SSE3 Instructions 
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CHAPTER 12
PROGRAMMING WITH SSE3, SSSE3, SSE4 AND AESNI

The Pentium 4 processor supporting Hyper-Threading Technology (HT Technology) 
introduces Streaming SIMD Extensions 3 (SSE3). The Intel Xeon processor 5100 
series, Intel Core 2 processor families introduced Supplemental Streaming SIMD 
Extensions 3 (SSSE3). SSE4 are introduced in Intel processor generations built from 
45nm process technology. This chapter describes SSE3, SSSE3, SSE4, and provides 
information to assist in writing application programs that use these extensions. 

AESNI and PCLMLQDQ are instruction extensions targeted to accelerate high-speed 
block encryption and cryptographic processing. Section 12.13 covers these instruc-
tions and their relationship to the Advanced Encryption Standard (AES).

12.1 PROGRAMMING ENVIRONMENT AND DATA TYPES
The programming environment for using SSE3, SSSE3, and SSE4 is unchanged from 
those shown in Figure 3-1 and Figure 3-2. SSE3, SSSE3, and SSE4 do not introduce 
new data types. XMM registers are used to operate on packed integer data, single-
precision floating-point data, or double-precision floating-point data. 

One SSE3 instruction uses the x87 FPU for x87-style programming. There are two 
SSE3 instructions that use the general registers for thread synchronization. The 
MXCSR register governs SIMD floating-point operations. Note, however, that the 
x87FPU control word does not affect the SSE3 instruction that is executed by the x87 
FPU (FISTTP), other than by unmasking an invalid operand or inexact result excep-
tion.

SSE4 instructions do not use MMX registers. Two of the SSE4.2 instructions operate 
on general-purpose registers; the rest of SSE4.2 instruction and SSE4.1 instructions 
operate on XMM registers.

12.1.1 SSE3, SSSE3, SSE4 in 64-Bit Mode and Compatibility Mode
In compatibility mode, SSE3, SSSE3, and SSE4 function like they do in protected 
mode. In 64-bit mode, eight additional XMM registers are accessible. Registers 
XMM8-XMM15 are accessed by using REX prefixes. 

Memory operands are specified using the ModR/M, SIB encoding described in Section 
3.7.5.

Some SSE3, SSSE3, and SSE4 instructions may be used to operate on general-
purpose registers. Use the REX.W prefix to access 64-bit general-purpose registers. 
Note that if a REX prefix is used when it has no meaning, the prefix is ignored.
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12.1.2 Compatibility of SSE3/SSSE3 with MMX Technology, the x87 
FPU Environment, and SSE/SSE2 Extensions

SSE3, SSSE3, and SSE4 do not introduce any new state to the Intel 64 and IA-32 
execution environments. 

For SIMD and x87 programming, the FXSAVE and FXRSTOR instructions save and 
restore the architectural states of XMM, MXCSR, x87 FPU, and MMX registers. The 
MONITOR and MWAIT instructions use general purpose registers on input, they do 
not modify the content of those registers.

12.1.3 Horizontal and Asymmetric Processing
Many SSE/SSE2/SSE3/SSSE3 instructions accelerate SIMD data processing using a 
model referred to as vertical computation. Using this model, data flow is vertical 
between the data elements of the inputs and the output. 

Figure 12-1 illustrates the asymmetric processing of the SSE3 instruction 
ADDSUBPD. Figure 12-2 illustrates the horizontal data movement of the SSE3 
instruction HADDPD. 

Figure 12-1.  Asymmetric Processing in ADDSUBPD 
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12.2 OVERVIEW OF SSE3 INSTRUCTIONS
SSE3 extensions include 13 instructions. See:
• Section 12.3, “SSE3 Instructions,” provides an introduction to individual SSE3 

instructions. 
• Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 

2A & 2B, provide detailed information on individual instructions.
• Chapter 13, “System Programming for Instruction Set Extensions and Processor 

Extended States,” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3A, gives guidelines for integrating SSE/SSE2/SSE3 extensions 
into an operating-system environment.

12.3 SSE3 INSTRUCTIONS
SSE3 instructions are grouped as follows:
• x87 FPU instruction

— One instruction that improves x87 FPU floating-point to integer conversion
• SIMD integer instruction

— One instruction that provides a specialized 128-bit unaligned data load
• SIMD floating-point instructions

— Three instructions that enhance LOAD/MOVE/DUPLICATE performance

— Two instructions that provide packed addition/subtraction

— Four instructions that provide horizontal addition/subtraction

Figure 12-2.  Horizontal Data Movement in HADDPD
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• Thread synchronization instructions

— Two instructions that improve synchronization between multi-threaded 
agents

The instructions are discussed in more detail in the following paragraphs.

12.3.1 x87 FPU Instruction for Integer Conversion
The FISTTP instruction (x87 FPU Store Integer and Pop with Truncation) behaves like 
FISTP, but uses truncation regardless of what rounding mode is specified in the x87 
FPU control word. The instruction converts the top of stack (ST0) to integer with 
rounding to and pops the stack. 

The FISTTP instruction is available in three precisions: short integer (word or 16-bit), 
integer (double word or 32-bit), and long integer (64-bit). With FISTTP, applications 
no longer need to change the FCW when truncation is required.

12.3.2 SIMD Integer Instruction for Specialized 128-bit Unaligned 
Data Load

The LDDQU instruction is a special 128-bit unaligned load designed to avoid cache 
line splits. If the address of a 16-byte load is on a 16-byte boundary, LDQQU loads 
the bytes requested. If the address of the load is not aligned on a 16-byte boundary, 
LDDQU loads a 32-byte block starting at the 16-byte aligned address immediately 
below the load request. It then extracts the requested 16 bytes.

The instruction provides significant performance improvement on 128-bit unaligned 
memory accesses at the cost of some usage model restrictions.

12.3.3 SIMD Floating-Point Instructions That Enhance 
LOAD/MOVE/DUPLICATE Performance

The MOVSHDUP instruction loads/moves 128-bits, duplicating the second and fourth 
32-bit data elements.
• MOVSHDUP OperandA, OperandB

— OperandA (128 bits, four data elements): 3a, 2a, 1a, 0a

— OperandB (128 bits, four data elements): 3b, 2b, 1b, 0b

— Result (stored in OperandA): 3b, 3b, 1b, 1b

The MOVSLDUP instruction loads/moves 128-bits, duplicating the first and third 
32-bit data elements.
• MOVSLDUP OperandA, OperandB

— OperandA (128 bits, four data elements): 3a, 2a, 1a, 0a
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— OperandB (128 bits, four data elements): 3b, 2b, 1b, 0b

— Result (stored in OperandA): 2b, 2b, 0b, 0b

The MOVDDUP instruction loads/moves 64-bits; duplicating the 64 bits from the 
source.
• MOVDDUP OperandA, OperandB

— OperandA (128 bits, two data elements): 1a, 0a

— OperandB (64 bits, one data element): 0b

— Result (stored in OperandA): 0b, 0b

12.3.4 SIMD Floating-Point Instructions Provide Packed 
Addition/Subtraction

The ADDSUBPS instruction has two 128-bit operands. The instruction performs 
single-precision addition on the second and fourth pairs of 32-bit data elements 
within the operands; and single-precision subtraction on the first and third pairs.
• ADDSUBPS OperandA, OperandB

— OperandA (128 bits, four data elements): 3a, 2a, 1a, 0a

— OperandB (128 bits, four data elements): 3b, 2b, 1b, 0b

— Result (stored in OperandA): 3a+3b, 2a-2b, 1a+1b, 0a-0b

The ADDSUBPD instruction has two 128-bit operands. The instruction performs 
double-precision addition on the second pair of quadwords, and double-precision 
subtraction on the first pair.
• ADDSUBPD OperandA, OperandB

— OperandA (128 bits, two data elements): 1a, 0a

— OperandB (128 bits, two data elements): 1b, 0b

— Result (stored in OperandA): 1a+1b, 0a-0b

12.3.5 SIMD Floating-Point Instructions Provide Horizontal 
Addition/Subtraction

Most SIMD instructions operate vertically. This means that the result in position i is a 
function of the elements in position i of both operands. Horizontal addition/subtrac-
tion operates horizontally. This means that contiguous data elements in the same 
source operand are used to produce a result.

The HADDPS instruction performs a single-precision addition on contiguous data 
elements. The first data element of the result is obtained by adding the first and 
second elements of the first operand; the second element by adding the third and 
fourth elements of the first operand; the third by adding the first and second 
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elements of the second operand; and the fourth by adding the third and fourth 
elements of the second operand.
• HADDPS OperandA, OperandB

— OperandA (128 bits, four data elements): 3a, 2a, 1a, 0a

— OperandB (128 bits, four data elements): 3b, 2b, 1b, 0b

— Result (Stored in OperandA): 3b+2b, 1b+0b, 3a+2a, 1a+0a

The HSUBPS instruction performs a single-precision subtraction on contiguous data 
elements. The first data element of the result is obtained by subtracting the second 
element of the first operand from the first element of the first operand; the second 
element by subtracting the fourth element of the first operand from the third element 
of the first operand; the third by subtracting the second element of the second 
operand from the first element of the second operand; and the fourth by subtracting 
the fourth element of the second operand from the third element of the second 
operand.
• HSUBPS OperandA, OperandB

— OperandA (128 bits, four data elements): 3a, 2a, 1a, 0a

— OperandB (128 bits, four data elements): 3b, 2b, 1b, 0b

— Result (Stored in OperandA): 2b-3b, 0b-1b, 2a-3a, 0a-1a

The HADDPD instruction performs a double-precision addition on contiguous data 
elements. The first data element of the result is obtained by adding the first and 
second elements of the first operand; the second element by adding the first and 
second elements of the second operand.
• HADDPD OperandA, OperandB

— OperandA (128 bits, two data elements): 1a, 0a

— OperandB (128 bits, two data elements): 1b, 0b

— Result (Stored in OperandA): 1b+0b, 1a+0a

The HSUBPD instruction performs a double-precision subtraction on contiguous data 
elements. The first data element of the result is obtained by subtracting the second 
element of the first operand from the first element of the first operand; the second 
element by subtracting the second element of the second operand from the first 
element of the second operand.
• HSUBPD OperandA OperandB

— OperandA (128 bits, two data elements): 1a, 0a

— OperandB (128 bits, two data elements): 1b, 0b

— Result (Stored in OperandA): 0b-1b, 0a-1a
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12.3.6 Two Thread Synchronization Instructions
The MONITOR instruction sets up an address range that is used to monitor write-
back-stores. 

MWAIT enables a logical processor to enter into an optimized state while waiting for 
a write-back-store to the address range set up by MONITOR. MONITOR and MWAIT 
require the use of general purpose registers for its input. The registers used by 
MONITOR and MWAIT must be initialized properly; register content is not modified by 
these instructions.

12.4 WRITING APPLICATIONS WITH SSE3 EXTENSIONS
The following sections give guidelines for writing application programs and oper-
ating-system code that use SSE3 instructions. 

12.4.1 Guidelines for Using SSE3 Extensions
The following guidelines describe how to maximize the benefits of using SSE3 exten-
sions:
• Check that the processor supports SSE3 extensions.

— Application may need to ensure that the target operating system supports 
SSE3. (Operating system support for the SSE extensions implies sufficient 
support for SSE2 extensions and SSE3 extensions.) 

• Ensure your operating system supports MONITOR and MWAIT.
• Employ the optimization and scheduling techniques described in the Intel® 64 

and IA-32 Architectures Optimization Reference Manual (see Section 1.4, 
“Related Literature”).

12.4.2 Checking for SSE3 Support
Before an application attempts to use the SIMD subset of SSE3 extensions, the appli-
cation should follow the steps illustrated in Section 11.6.2, “Checking for SSE/SSE2 
Support.” Next, use the additional step provided below:
• Check that the processor supports the SIMD and x87 SSE3 extensions (if 

CPUID.01H:ECX.SSE3[bit 0] = 1). 

An operating systems that provides application support for SSE, SSE2 also provides 
sufficient application support for SSE3. To use FISTTP, software only needs to check 
support for SSE3.

In the initial implementation of MONITOR and MWAIT, these two instructions are 
available to ring 0 and conditionally available at ring level greater than 0. Before an 
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application attempts to use the MONITOR and MWAIT instructions, the application 
should use the following steps:

1. Check that the processor supports MONITOR and MWAIT. If 
CPUID.01H:ECX.MONITOR[bit 3] = 1, MONITOR and MWAIT are available at 
ring 0. 

2. Query the smallest and largest line size that MONITOR uses. Use 
CPUID.05H:EAX.smallest[bits 15:0];EBX.largest[bits15:0]. Values are returned 
in bytes in EAX and EBX.

3. Ensure the memory address range(s) that will be supplied to MONITOR meets 
memory type requirements.

MONITOR and MWAIT are targeted for system software that supports efficient thread 
synchronization, See Chapter 13 in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3A for details.

12.4.3 Enable FTZ and DAZ for SIMD Floating-Point Computation
Enabling the FTZ and DAZ flags in the MXCSR register is likely to accelerate SIMD 
floating-point computation where strict compliance to the IEEE standard 754-1985 is 
not required. The FTZ flag is available to Intel 64 and IA-32 processors that support 
the SSE; DAZ is available to Intel 64 processors and to most IA-32 processors that 
support SSE/SSE2/SSE3. 

Software can detect the presence of DAZ, modify the MXCSR register, and save and 
restore state information by following the techniques discussed in Section 11.6.3 
through Section 11.6.6.

12.4.4 Programming SSE3 with SSE/SSE2 Extensions
SIMD instructions in SSE3 extensions are intended to complement the use of 
SSE/SSE2 in programming SIMD applications. Application software that intends to 
use SSE3 instructions should also check for the availability of SSE/SSE2 instructions.

The FISTTP instruction in SSE3 is intended to accelerate x87 style programming 
where performance is limited by frequent floating-point conversion to integers; this 
happens when the x87 FPU control word is modified frequently. Use of FISTTP can 
eliminate the need to access the x87 FPU control word.

12.5 OVERVIEW OF SSSE3 INSTRUCTIONS
SSSE3 provides 32 instructions to accelerate a variety of multimedia and signal 
processing applications employing SIMD integer data. See:
• Section 12.6, “SSSE3 Instructions,” provides an introduction to individual SSE3 

instructions. 
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• Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 
2A & 2B, provide detailed information on individual instructions.

• Chapter 13, “System Programming for Instruction Set Extensions and Processor 
Extended States,” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3A, gives guidelines for integrating SSE/SSE2/SSE3/SSSE3 
extensions into an operating-system environment.

12.6 SSSE3 INSTRUCTIONS
SSSE3 instructions include:
• Twelve instructions that perform horizontal addition or subtraction operations.
• Six instructions that evaluate the absolute values.
• Two instructions that perform multiply and add operations and speed up the 

evaluation of dot products.
• Two instructions that accelerate packed-integer multiply operations and produce 

integer values with scaling.
• Two instructions that perform a byte-wise, in-place shuffle according to the 

second shuffle control operand.
• Six instructions that negate packed integers in the destination operand if the 

signs of the corresponding element in the source operand is less than zero.
• Two instructions that align data from the composite of two operands.

The operands of these instructions are packed integers of byte, word, or double word 
sizes. The operands are stored as 64 or 128 bit data in MMX registers, XMM registers, 
or memory.

The instructions are discussed in more detail in the following paragraphs.

12.6.1 Horizontal Addition/Subtraction
In analogy to the packed, floating-point horizontal add and subtract instructions in 
SSE3, SSSE3 offers similar capabilities on packed integer data. Data elements of 
signed words, doublewords are supported. Saturated version for horizontal add and 
subtract on signed words are also supported. The horizontal data movement of 
PHADD is shown in Figure 12-3. 
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There are six horizontal add instructions (represented by three mnemonics); three 
operate on 128-bit operands and three operate on 64-bit operands. The width of 
each data element is either 16 bits or 32 bits. The mnemonics are listed below.
• PHADDW adds two adjacent, signed 16-bit integers horizontally from the source 

and destination operands and packs the signed 16-bit results to the destination 
operand.

• PHADDSW adds two adjacent, signed 16-bit integers horizontally from the source 
and destination operands and packs the signed, saturated 16-bit results to the 
destination operand.

• PHADDD adds two adjacent, signed 32-bit integers horizontally from the source 
and destination operands and packs the signed 32-bit results to the destination 
operand.

There are six horizontal subtract instructions (represented by three mnemonics); 
three operate on 128-bit operands and three operate on 64-bit operands. The width 
of each data element is either 16 bits or 32 bits. These are listed below.
• PHSUBW performs horizontal subtraction on each adjacent pair of 16-bit signed 

integers by subtracting the most significant word from the least significant word 
of each pair in the source and destination operands. The signed 16-bit results are 
packed and written to the destination operand.

• PHSUBSW performs horizontal subtraction on each adjacent pair of 16-bit signed 
integers by subtracting the most significant word from the least significant word 
of each pair in the source and destination operands. The signed, saturated 16-bit 
results are packed and written to the destination operand.

• PHSUBD performs horizontal subtraction on each adjacent pair of 32-bit signed 
integers by subtracting the most significant doubleword from the least significant 

Figure 12-3.  Horizontal Data Movement in PHADDD
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double word of each pair in the source and destination operands. The signed 
32-bit results are packed and written to the destination operand.

12.6.2 Packed Absolute Values
There are six packed-absolute-value instructions (represented by three mnemonics). 
Three operate on 128-bit operands and three operate on 64-bit operands. The widths 
of data elements are 8 bits, 16 bits or 32 bits. The absolute value of each data 
element of the source operand is stored as an UNSIGNED result in the destination 
operand.
• PABSB computes the absolute value of each signed byte data element.
• PABSW computes the absolute value of each signed 16-bit data element.
• PABSD computes the absolute value of each signed 32-bit data element. 

12.6.3 Multiply and Add Packed Signed and Unsigned Bytes
There are two multiply-and-add-packed-signed-unsigned-byte instructions (repre-
sented by one mnemonic). One operates on 128-bit operands and the other operates 
on 64-bit operands. Multiplications are performed on each vertical pair of data 
elements. The data elements in the source operand are signed byte values, the input 
data elements of the destination operand are unsigned byte values.
• PMADDUBSW multiplies each unsigned byte value with the corresponding signed 

byte value to produce an intermediate, 16-bit signed integer. Each adjacent pair 
of 16-bit signed values are added horizontally. The signed, saturated 16-bit 
results are packed to the destination operand.

12.6.4 Packed Multiply High with Round and Scale
There are two packed-multiply-high-with-round-and-scale instructions (represented 
by one mnemonic). One operates on 128-bit operands and the other operates on 
64-bit operands.
• PMULHRSW multiplies vertically each signed 16-bit integer from the destination 

operand with the corresponding signed 16-bit integer of the source operand, 
producing intermediate, signed 32-bit integers. Each intermediate 32-bit integer 
is truncated to the 18 most significant bits. Rounding is always performed by 
adding 1 to the least significant bit of the 18-bit intermediate result. The final 
result is obtained by selecting the 16 bits immediately to the right of the most 
significant bit of each 18-bit intermediate result and packed to the destination 
operand.
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12.6.5 Packed Shuffle Bytes
There are two packed-shuffle-bytes instructions (represented by one mnemonic). 
One operates on 128-bit operands and the other operates on 64-bit operands. The 
shuffle operations are performed bytewise on the destination operand using the 
source operand as a control mask.
• PSHUFB permutes each byte in place, according to a shuffle control mask. The 

least significant three or four bits of each shuffle control byte of the control mask 
form the shuffle index. The shuffle mask is unaffected. If the most significant bit 
(bit 7) of a shuffle control byte is set, the constant zero is written in the result 
byte.

12.6.6 Packed Sign
There are six packed-sign instructions (represented by three mnemonics). Three 
operate on 128-bit operands and three operate on 64-bit operands. The widths of 
each data element for these instructions are 8 bit, 16 bit or 32 bit signed integers.
• PSIGNB/W/D negates each signed integer element of the destination operand if 

the sign of the corresponding data element in the source operand is less than 
zero.

12.6.7 Packed Align Right
There are two packed-align-right instructions (represented by one mnemonic). One 
operates on 128-bit operands and the other operates on 64-bit operands. These 
instructions concatenate the destination and source operand into a composite, and 
extract the result from the composite according to an immediate constant.
• PALIGNR’s source operand is appended after the destination operand forming an 

intermediate value of twice the width of an operand. The result is extracted from 
the intermediate value into the destination operand by selecting the 128-bit or 
64-bit value that are right-aligned to the byte offset specified by the immediate 
value. 

12.7 WRITING APPLICATIONS WITH SSSE3 EXTENSIONS
The following sections give guidelines for writing application programs and oper-
ating-system code that use SSSE3 instructions. 

12.7.1 Guidelines for Using SSSE3 Extensions
The following guidelines describe how to maximize the benefits of using SSSE3 
extensions:
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• Check that the processor supports SSSE3 extensions.
• Ensure that your operating system supports SSE/SSE2/SSE3/SSSE3 extensions. 

(Operating system support for the SSE extensions implies sufficient support for 
SSE2, SSE3, and SSSE3.) 

• Employ the optimization and scheduling techniques described in the Intel® 64 
and IA-32 Architectures Optimization Reference Manual (see Section 1.4, 
“Related Literature”).

12.7.2 Checking for SSSE3 Support
Before an application attempts to use the SSSE3 extensions, the application should 
follow the steps illustrated in Section 11.6.2, “Checking for SSE/SSE2 Support.” 
Next, use the additional step provided below:
• Check that the processor supports SSSE3 (if CPUID.01H:ECX.SSSE3[bit 9] = 1). 

12.8 SSE3/SSSE3 AND SSE4 EXCEPTIONS
SSE3, SSSE3, and SSE4 instructions can generate the same type of memory-access 
and non-numeric exceptions as other Intel 64 or IA-32 instructions. Existing excep-
tion handlers generally handle these exceptions without code modification. 

FISTTP can generate floating-point exceptions. Some SSE3 instructions can also 
generate SIMD floating-point exceptions. 

SSE3 additions and changes are noted in the following sections. See also: Section 
11.5, “SSE, SSE2, and SSE3 Exceptions”.

12.8.1 Device Not Available (DNA) Exceptions
SSE3, SSSE3, and SSE4 will cause a DNA Exception (#NM) if the processor attempts 
to execute an SSE3 instruction while CR0.TS[bit 3] = 1. If 
CPUID.01H:ECX.SSE3[bit 0] = 0, execution of an SSE3 extension will cause an 
invalid opcode fault regardless of the state of CR0.TS[bit 3].

Similarly, an attempt to execute an SSSE3 instruction on a processor that reports 
CPUID.01H:ECX.SSSE3[bit 9] = 0 will cause an invalid opcode fault regardless of the 
state of CR0.TS[bit 3]. An attempt to execute an SSE4.1 instruction on a processor 
that reports CPUID.01H:ECX.SSE4_1[bit 19] = 0 will cause an invalid opcode fault 
regardless of the state of CR0.TS[bit 3].

An attempt to execute PCMPGTQ or any one of the four string processing instructions 
in SSE4.2 on a processor that reports CPUID.01H:ECX.SSSE3[bit 20] = 0 will cause 
an invalid opcode fault regardless of the state of CR0.TS[bit 3]. CRC32 and POPCNT 
do not cause #NM.
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12.8.2 Numeric Error flag and IGNNE#
Most SSE3 instructions ignore CR0.NE[bit 5] (treats it as if it were always set) and 
the IGNNE# pin. With one exception, all use the vector 19 software exception for 
error reporting. The exception is FISTTP; it behaves like other x87-FP instructions.

SSSE3 instructions ignore CR0.NE[bit 5] (treats it as if it were always set) and the 
IGNNE# pin. 

SSSE3 instructions do not cause floating-point errors. Floating-point numeric errors 
for SSE4.1 are described in Section 12.8.4. SSE4.2 instructions do not cause 
floating-point errors.

12.8.3 Emulation
CR0.EM is used by some software to emulate x87 floating-point instructions, 
CR0.EM[bit 2] cannot be used for emulation of SSE, SSE2, SSE3, SSSE3, and SSE4. 
If an SSE3, SSSE3, and SSE4 instruction executes with CR0.EM[bit 2] set, an invalid 
opcode exception (INT 6) is generated instead of a device not available exception 
(INT 7).

12.8.4 IEEE 754 Compliance of SSE4.1 Floating-Point Instructions
The six SSE4.1 instructions that perform floating-point arithmetic are:
• DPPS
• DPPD
• ROUNDPS
• ROUNDPD
• ROUNDSS
• ROUNDSD

Dot Product operations are not specified in IEEE-754.  When neither FTZ nor DAZ are 
enabled, the dot product instructions resemble sequences of IEEE-754 multiplies and 
adds (with rounding at each stage), except that the treatment of input NaN’s is 
implementation specific (there will be at least one NaN in the output).  The input 
select fields (bits imm8[4:7]) force input elements to +0.0f prior to the first multiply 
and will suppress input exceptions that would otherwise have been be generated.

As a convenience to the exception handler, any exceptions signaled from DPPS or 
DPPD leave the destination unmodified. 

Round operations signal invalid and precision only.  
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The other SSE4.1 instructions with floating-point arguments (BLENDPS, BLENDPD, 
BLENDVPS, BLENDVPD, INSERTPS, EXTRACTPS) do not signal any SIMD numeric 
exceptions.

12.9 SSE4 OVERVIEW
SSE4 comprises of two sets of extensions: SSE4.1 and SSE4.2. SSE4.1 is targeted to 
improve the performance of media, imaging, and 3D workloads. SSE4.1 adds 
instructions that improve compiler vectorization and significantly increase support 
for packed dword computation. The technology also provides a hint that can improve 
memory throughput when reading from uncacheable WC memory type.

The 47 SSE4.1 instructions include:
• Two instructions perform packed dword multiplies.
• Two instructions perform floating-point dot products with input/output selects.
• One instruction performs a load with a streaming hint.
• Six instructions simplify packed blending.
• Eight instructions expand support for packed integer MIN/MAX.
• Four instructions support floating-point round with selectable rounding mode and 

precision exception override.
• Seven instructions improve data insertion and extractions from XMM registers
• Twelve instructions improve packed integer format conversions (sign and zero 

extensions).
• One instruction improves SAD (sum absolute difference) generation for small 

block sizes.
• One instruction aids horizontal searching operations.

Table 12-1.  SIMD numeric exceptions signaled by SSE4.1

DPPS DPPD ROUNDPS
ROUNDSS

ROUNDPD
ROUNDSD

Overflow X X

Underflow X X

Invalid X X X (1) X (1)

Inexact Precision X X X (2) X (2)

Denormal X X

NOTE:
1. Invalid is signaled only if Src = SNaN.
2. Precision is ignored (regardless of the MXCSR precision mask) if if imm8[3] = ‘1’.
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• One instruction improves masked comparisons.
• One instruction adds qword packed equality comparisons.
• One instruction adds dword packing with unsigned saturation.

The seven SSE4.2 instructions improve performance in the following areas:
• String and text processing that can take advantage of single-instruction multiple-

data programming techniques.
• Application-targeted accelerator (ATA) instructions.
• A SIMD integer instruction that enhances the capability of the 128-bit integer 

SIMD capability in SSE4.1.

12.10 SSE4.1 INSTRUCTION SET

12.10.1 Dword Multiply Instructions 
SSE4.1 adds two dword multiply instructions that aid vectorization. They allow four 
simultaneous 32 bit by 32 bit multiplies. PMULLD returns a low 32-bits of the result 
and PMULDQ returns a 64-bit signed result. These represent the most common 
integer multiply operation. See Table 12-2.

12.10.2 Floating-Point Dot Product Instructions
SSE4.1 adds two instructions for double-precision (for up to 2 elements; DPPD) and 
single-precision dot products (for up to 4 elements; DPPS).

These dot-product instructions include source select and destination broadcast which 
generally improves the flexibility. For example, a single DPPS instruction can be used 
for a 2, 3, or 4 element dot product.

Table 12-2.  Enhanced 32-bit SIMD Multiply Supported by SSE4.1

32 bit Integer Operation

unsigned x unsigned signed x signed

R
es

ul
t Low 32-bit (not available) PMULLD

High 32-bit (not available) (not available)

64-bit PMULUDQ* PMULDQ

NOTE:
* Available prior to SSE4.1.
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12.10.3 Streaming Load Hint Instruction
Historically, CPU read accesses of WC memory type regions have significantly lower 
throughput than accesses to cacheable memory. 

The streaming load instruction in SSE4.1, MOVNTDQA, provides a non-temporal hint 
that can cause adjacent 16-byte items within an aligned 64-byte region of WC 
memory type (a streaming line) to be fetched and held in a small set of temporary 
buffers (“streaming load buffers”). Subsequent streaming loads to other aligned 16-
byte items in the same streaming line may be satisfied from the streaming load 
buffer and can improve throughput.

Programmers are advised to use the following practices to improve the efficiency of 
MOVNTDQA streaming loads from WC memory:
• Streaming loads must be 16-byte aligned.
• Temporally group streaming loads of the same streaming cache line for effective 

use of the small number of streaming load buffers. If loads to the same streaming 
line are excessively spaced apart, it may cause the streaming line to be re-
fetched from memory.

• Temporally group streaming loads from at most a few streaming lines together. 
The number of streaming load buffers is small; grouping a modest number of 
streams will avoid running out of streaming load buffers and the resultant re-
fetching of streaming lines from memory.

• Avoid writing to a streaming line until all 16-byte-aligned reads from the 
streaming line have occurred. Reading a 16-byte item from a streaming line that 
has been written, may cause the streaming line to be re-fetched.

• Avoid reading a given 16-byte item within a streaming line more than once; 
repeated loads of a particular 16-byte item are likely to cause the streaming line 
to be re-fetched.

• The streaming load buffers, reflecting the WC memory type characteristics, are 
not required to be snooped by operations from other agents. Software should not 
rely upon such coherency actions to provide any data coherency with respect to 
other logical processors or bus agents. Rather, software must insure the 
consistency of WC memory accesses between producers and consumers.

• Streaming loads may be weakly ordered and may appear to software to execute 
out of order with respect to other memory operations. Software must explicitly 
use fences (e.g. MFENCE) if it needs to preserve order among streaming loads or 
between streaming loads and other memory operations.

• Streaming loads must not be used to reference memory addresses that are 
mapped to I/O devices having side effects or when reads to these devices are 
destructive. This is because MOVNTDQA is speculative in nature.

Example 12-1 and Example 12-2 give two sketches of the basic assembly sequences 
that illustrate the principles of using MOVNTDQA in a situation of a pair of producer-
consumer accessing a WC memory region.
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Example 12-1.  Sketch of MOVNTDQA Usage of a Consumer and a PCI Producer 
// P0: producer is a PCI device writing into the WC space
# the PCI device updates status through a UC flag, "u_dev_status" . 
# the protocol for "u_dev_status" : 0: produce; 1: consume; 2: all done

mov eax, $0
mov [u_dev_status], eax

producerStart:
mov eax, [u_dev_status]     # poll status flag to see if consumer is requestion data
cmp eax, $0                           # 
jne done                                # I no longer need to produce                       
commence PCI writes to WC region..

mov eax, $1  # producer ready to notify the consumer via status flag
mov  [u_dev_status], eax     

# now wait for consumer to signal its status
spinloop:

cmp [u_dev_status], $1      # did I get a signal from the consumer ?
jne producerStart                  # yes I did 
jmp spinloop                         # check again

done:
// producer is finished at this point 
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// P1: consumer check PCI status flag to consume WC data
mov eax, $0  # request to the producer 
mov [u_dev_status], eax

consumerStart:
mov; eax, [u_dev_status]  # reads the value of the PCI status 
cmp eax, $1                                 # has producer written
jne consumerStart                       # tight loop; make it more efficient with pause, etc. 
mfence # producer finished device writes to WC, ensure WC region is coherent

ntread:
movntdqa xmm0, [addr]
movntdqa xmm1, [addr + 16]
movntdqa xmm2, [addr + 32]
movntdqa xmm3, [addr + 48]
…  # do any more NT reads as needed
mfence  # ensure PCI device reads the correct value of [u_dev_status]  

# now decide whether we are done or we need the producer to produce more data
# if we are done write a 2 into the variable, otherwise write a 0 into the variable

mov eax, $0/$2            # end or continue producing
mov [u_dev_status], eax

# if I want to consume again I will jump back to consumerStart after storing a 0 into eax
# otherwise I am done

Example 12-1.  Sketch of MOVNTDQA Usage of a Consumer and a PCI Producer  (Contd.)
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Example 12-2.  Sketch of MOVNTDQA Usage of Producer-Consumer Threads 
// P0: producer writes into the WC space
# xchg is an implicitly locked operation. 

producerStart:
# We use a locked operation to prevent any races between the producer and the consumer 
# updating this variable. Assume initial value is 0

mov eax, $0
xchg eax, [signalVariable]    # signalVariable is used for communicating
cmp eax, $0                           # am I supposed to be writing for the consumer
jne done                                # I no longer need to produce                       
movntdq [addr1], xmm0       # producer writes the data
movntdq [addr2], xmm1       # ..

.
# We will again use a locked instruction. Serves 2 purposes. Updated value signals to the consumer 
and 
# the serialization of the lock flushes all the WC stores to memory 

mov eax, $1
xchg [signalVariable], eax     # signal to the consumer

# For simplicity, we show a spin loop, more efficient spin loop can be done using PAUSE
spinloop:

cmp [signalVariable], $1      # did I get a signal from the consumer ?
jne producerStart                  # yes I did 
jmp spinloop                         # check again

done:
// producer is finished at this point
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12.10.4 Packed Blending Instructions
SSE4.1 adds 6 instructions used for blending (BLENDPS, BLENDPD, BLENDVPS, 
BLENDVPD, PBLENDVB, PBLENDW).

Blending conditionally copies a data element in a source operand to the same 
element in the destination. SSE4.1 instructions improve blending operations for most 
field sizes. A single new SSE4.1 instruction can generally replace a sequence of 2 to 
4 operations using previous architectures.

The variable blend instructions (BLENDVPS, PBLENDVPD, PBLENDW) introduce the 
use of control bits stored in an implicit XMM register (XMM0). The most significant bit 
in each field (the sign bit, for 2’s complement integer or floating-point) is used as a 
selector. See Table 12-3.

// P1: consumer reads from write combining space
mov eax, $0

consumerStart:
lock; xadd [signalVariable], eax # reads the value of the signal variable in 
cmp eax, $1                                 # has producer written to signal its state?
jne consumerStart                       # simple loop; replace with PAUSE to make it more efficient. 

# read the data from the WC memory space with MOVNTDQA to achieve higher throughput
ntread: # keep reads from the same cache line as close together as possible

movntdqa xmm0, [addr]
movntdqa xmm1, [addr + 16]
movntdqa xmm2, [addr + 32]
movntdqa xmm3, [addr + 48]

# since a lock prevents younger MOVNTDQA from passing it, the
# above non temporal loads will happen only after the producer has signaled

…  # do any more NT reads as needed

# now decide whether we are done or we need the producer to produce more data
# if we are done write a 2 into the variable, otherwise write a 0 into the variable

mov eax, $0/$2            # end or continue producing
xchg [signalVariable], eax

# if I want to consume again I will jump back to consumerStart after storing a 0 into eax
# otherwise I am done

Example 12-2.  Sketch of MOVNTDQA Usage of Producer-Consumer Threads  (Contd.)
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12.10.5 Packed Integer MIN/MAX Instructions 
SSE4.1 adds 8 packed integer MIN and MAX instructions (PMINUW, PMINUD, 
PMINSB, PMINSD; PMAXUW, PMAXUD, PMAXSB, PMAXSD). 

Four 32-bit integer packed MIN and MAX instructions operate on unsigned and signed 
dwords. Two instructions operate on signed bytes. Two instructions operate on 
unsigned words. See Table 12-4.

Table 12-3.  Blend Field Size and Control Modes Supported by SSE4.1 

Instructions

Packed 
Double 
FP

Packed 
Single 
FP

Packed 
QWord

Packed 
DWord

Packed 
Word

Packed 
Byte

Blend 
Control

BLENDPS X Imm8

BLENDPD X Imm8

BLENDVPS X X(1) XMM0

BLENDVPD X X(1) XMM0

PBLENDVB (2) (2) (2) X XMM0

PBLENDW X X X Imm8

NOTE:
1. Use of floating-point SIMD instructions on integer data types may incur performance penalties. 
2. Byte variable blend can be used for larger sized fields by reformatting (or shuffling) the blend 

control.

Table 12-4.  Enhanced SIMD Integer MIN/MAX Instructions Supported by SSE4.1

Integer Width

Byte Word DWord

Integer 
Format Unsigned

PMINUB*
PMAXUB*

PMINUW
PMAXUW

PMINUD
PMAXUD

Signed
PMINSB
PMAXSB

PMINSW*
PMAXSW*

PMINSD
PMAXSD

NOTE:
* Available prior to SSE4.1.
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12.10.6 Floating-Point Round Instructions with Selectable Rounding 
Mode

High level languages and libraries often expose rounding operations having a variety 
of numeric rounding and exception behaviors. Using SSE/SSE2/SSE3 instructions to 
mitigate the rounding-mode-related problem is sometimes not straight forward.

SSE4.1 introduces four rounding instructions (ROUNDPS, ROUNDPD, ROUNDSS, 
ROUNDSD) that cover scalar and packed single- and double-precision floating-point 
operands. The rounding mode can be selected using an immediate from one of the 
IEEE-754 modes (Nearest, -Inf, +Inf, and Truncate) without changing the current 
rounding mode; or the the instruction can be forced to use the current rounding 
mode. Another bit in the immediate is used to suppress inexact precision exceptions.

Rounding instructions in SSE4.1 generally permit single-instruction solutions to C99 
functions ceil(), floor(), trunc(), rint(), nearbyint(). These instructions simplify the 
implementations of half-way-away-from-zero rounding modes as used by C99 
round() and F90’s nint().

12.10.7 Insertion and Extractions from XMM Registers
SSE4.1 adds 7 instructions (corresponding to 9 assembly instruction mnemonics) 
that simplify data insertion and extraction between general-purpose register (GPR) 
and XMM registers (EXTRACTPS, INSERTPS, PINSRB, PINSRD, PINSRQ, PEXTRB, 
PEXTRW, PEXTRD, and PEXTRQ). When accessing memory, no alignment is required 
for any of these instructions (unless alignment checking is enabled).

EXTRACTPS extracts a single-precision floating-point value from any dword offset in 
an XMM register and stores the result to memory or a general-purpose register. 
INSERTPS inserts a single floating-point value from either a 32-bit memory location 
or from specified element in an XMM register to a selected element in the destination 
XMM register. In addition, INSERTPS allows the insertion of +0.0f into any destina-
tion elements using a mask.

PINSRB, PINSRD, and PINSRQ insert byte, dword, or qword integer values from a 
register or memory into an XMM register. Insertion of integer word values were 
already supported by SSE2 (PINSRW). 

PEXTRB, PEXTRW, PEXTRD, and PEXTRQ extract byte, word, dword, and qword from 
an XMM register and insert the values into a general-purpose register or memory.

12.10.8 Packed Integer Format Conversions
A common type of operation on packed integers is the conversion by zero- or sign-
extension of packed integers into wider data types. SSE4.1 adds 12 instructions that 
convert from a smaller packed integer type to a larger integer type (PMOVSXBW, 
PMOVZXBW, PMOVSXBD, PMOVZXBD, PMOVSXWD, PMOVZXWD, PMOVSXBQ, 
PMOVZXBQ, PMOVSXWQ, PMOVZXWQ, PMOVSXDQ, PMOVZXDQ).
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The source operand is from either an XMM register or memory; the destination is an 
XMM register. See Table 12-5.

When accessing memory, no alignment is required for any of the instructions unless 
alignment checking is enabled. In which case, all conversions must be aligned to the 
width of the memory reference. The number of elements converted (and width of 
memory reference) is illustrated in Table 12-6. The alignment requirement is shown 
in parenthesis.

12.10.9 Improved Sums of Absolute Differences (SAD) for 4-Byte 
Blocks

SSE4.1 adds an instruction (MPSADBW) that performs eight 4-byte wide SAD opera-
tions per instruction to produce eight results. Compared to PSADBW, MPSADBW 
operates on smaller chunks (4-byte instead of 8-byte chunks); this makes the 
instruction better suited to video coding standards such as VC.1 and H.264.  
MPSADBW performs four times the number of absolute difference operations than 
that of PSADBW (per instruction). This can improve performance for dense motion 
searches.

MPSADBW uses a 4-byte wide field from a source operand; the offset of the 4-byte 
field within the 128-bit source operand is specified by two immediate control bits. 
MPSADBW produces eight 16-bit SAD results. Each 16-bit SAD result is formed from 

Table 12-5.  New SIMD Integer conversions supported by SSE4.1 

Source Type

Byte Word Dword

D
es

ti
na

ti
on

Ty
pe

Signed Word
Unsigned Word

PMOVSXBW
PMOVZXBW

Signed Dword
Unsigned Dword

PMOVSXBD
PMOVZXBD

PMOVSXWD
PMOVZXWD

Signed Qword
Unsigned Qword

PMOVSXBQ
PMOVZXBQ

PMOVSXWQ
PMOVZXWQ

PMOVSXDQ
PMOVZXDQ

Table 12-6.  New SIMD Integer Conversions Supported by SSE4.1 

Source Type

Byte Word Dword

D
es

ti
na

ti
on

Ty
pe

Word 8 (64 bits)

Dword 4 (32 bits) 4 (64 bits)

Qword 2 (16 bits) 2 (32 bits) 2 (64 bits)
12-24 Vol. 1



PROGRAMMING WITH SSE3, SSSE3, SSE4 AND AESNI
overlapping pairs of 4 bytes in the destination with the 4-byte field from the source 
operand. MPSADBW uses eleven consecutive bytes in the destination operand, its 
offset is specified by a control bit in the immediate byte (i.e. the offset can be from 
byte 0 or from byte 4). Figure 12-4 illustrates the operation of MPSADBW. MPSADBW 
can simplify coding of dense motion estimation by providing source and destination 
offset control, higher throughput of SAD operations, and the smaller chunk size.

12.10.10 Horizontal Search
SSE4.1 adds a search instruction (PHMINPOSUW) that finds the value and location of 
the minimum unsigned word from one of 8 horizontally packed unsigned words.  The 
resulting value and location (offset within the source) are packed into the low dword 
of the destination XMM register.

Rapid search is often a significant component of motion estimation. MPSADBW and 
PHMINPOSUW can be used together to improve video encode.

12.10.11 Packed Test
The packed test instruction PTEST is similar to a 128-bit equivalent to the legacy 
instruction TEST.  With PTEST, the source argument is typically used like a bit mask. 

PTEST performs a logical AND between the destination with this mask and sets the ZF 
flag if the result is zero. The CF flag (zero for TEST) is set if the inverted mask AND’d 
with the destination is all zero.  Because the destination is not modified, PTEST 
simplifies branching operations (such as branching on signs of packed floating-point 
numbers, or branching on zero fields).

Figure 12-4.  MPSADBW Operation

Abs. Diff.

Sum

Imm[1:0]*32

Imm[2]*32
Source

Destination

0127 16

0127 96 64
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12.10.12 Packed Qword Equality Comparisons
SSE4.1 adds a 128-bit packed qword equality test. The new instruction (PCMPEQQ) 
is identical to PCMPEQD, but has qword granularity.

12.10.13 Dword Packing With Unsigned Saturation
SSE4.1 adds a new instruction PACKUSDW to complete the set of small integer pack 
instructions in the family of SIMD instruction extensions. PACKUSDW packs dword to 
word with unsigned saturation. See Table 12-7 for the complete set of packing 
instructions for small integers.

12.11 SSE4.2 INSTRUCTION SET
Five of the seven SSE4.2 instructions can use an XMM register as a source or desti-
nation. These include four text/string processing instructions and one packed quad-
word compare SIMD instruction. Programming these five SSE4.2 instructions is 
similar to programming 128-bit Integer SIMD in SSE2/SSSE3. SSE4.2 does not 
provide any 64-bit integer SIMD instructions. 

The remaining two SSE4.2 instructions uses general-purpose registers to perform 
accelerated processing functions in specific application areas.

12.11.1 String and Text Processing Instructions
String and text processing instructions in SSE4.2 allocates 4 opcodes to provide a 
rich set of string and text processing capabilities that traditionally required many 
more opcodes. These 4 instructions use XMM registers to process string or text 
elements of up to 128-bits (16 bytes or 8 words). Each instruction uses an immediate 
byte to support a rich set of programmable controls. A string-processing SSE4.2 
instruction returns the result of processing each pair of string elements using either 
an index or a mask. 

The capabilities of the string/text processing instructions include:

Table 12-7.  Enhanced SIMD Pack support by SSE4.1

Pack Type

DWord -> word Word -> Byte

Sa
tu

ra
ti

on
 

Ty
pe

Unsigned PACKUSDW (new!) PACKUSWB

Signed PACKSSDW PACKSSWB
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• Handling string/text fragments consisting of bytes or words, either signed or 
unsigned

• Support for partial string or fragments less than 16 bytes in length, using either 
explicit length or implicit null-termination

• Four types of string compare operations on word/byte elements
• Up to 256 compare operations performed in a single instruction on all string/text 

element pairs 
• Built-in aggregation of intermediate results from comparisons
• Programmable control of processing on intermediate results
• Programmable control of output formats in terms of an index or mask
• Bi-directional support for the index format
• Support for two mask formats: bit or natural element width
• Not requiring 16-byte alignment for memory operand

The four SSE4.2 instructions that process text/string fragments are:
• PCMPESTRI — Packed compare explicit-length strings, return index in ECX/RCX
• PCMPESTRM — Packed compare explicit-length strings, return mask in XMM0
• PCMPISTRI — Packed compare implicit-length strings, return index in ECX/RCX
• PCMPISTRM — Packed compare implicit-length strings, return mask in XMM0

All four require the use of an immediate byte to control operation. The two source 
operands can be XMM registers or a combination of XMM register and memory 
address. The immediate byte provides programmable control with the following 
attributes:
• Input data format
• Compare operation mode
• Intermediate result processing
• Output selection

Depending on the output format associated with the instruction, the text/string 
processing instructions implicitly uses either a general-purpose register (ECX/RCX) 
or an XMM register (XMM0) to return the final result.

Two of the four text-string processing instructions specify string length explicitly. 
They use two general-purpose registers (EDX, EAX) to specify the number of valid 
data elements (either word or byte) in the source operands. The other two instruc-
tions specify valid string elements using null termination. A data element is consid-
ered valid only if it has a lower index than the least significant null data element.

12.11.1.1  Memory Operand Alignment
The text and string processing instructions in SSE4.2 do not perform alignment 
checking on memory operands. This is different from most other 128-bit SIMD 
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instructions accessing the XMM registers. The absence of an alignment check for 
these four instructions does not imply any modification to the existing definitions of 
other instructions.

12.11.2 Packed Comparison SIMD Integer Instruction
SSE4.2 also provides a 128-bit integer SIMD instruction PCMPGTQ that performs 
logical compare of greater-than on packed integer quadwords.

12.11.3 Application-Targeted Accelerator Instructions
There are two application-targeted accelerator instructions in SSE4.2:
• CRC32 — Provides hardware acceleration to calculate cyclic redundancy checks 

for fast and efficient implementation of data integrity protocols.
• POPCNT — Accelerates software performance in the searching of bit patterns.

12.12 WRITING APPLICATIONS WITH SSE4 EXTENSIONS

12.12.1 Guidelines for Using SSE4 Extensions
The following guidelines describe how to maximize the benefits of using SSE4 exten-
sions:
• Check that the processor supports SSE4 extensions.
• Ensure that your operating system supports SSE/SSE2/SSE3/SSSE3 extensions. 

(Operating system support for the SSE extensions implies sufficient support for 
SSE2, SSE3, SSSE3, and SSE4.) 

• Employ the optimization and scheduling techniques described in the Intel® 64 
and IA-32 Architectures Optimization Reference Manual (see Section 1.4, 
“Related Literature”).

12.12.2 Checking for SSE4.1 Support
Before an application attempts to use SSE4.1 instructions, the application should 
follow the steps illustrated in Section 11.6.2, “Checking for SSE/SSE2 Support.” 
Next, use the additional step provided below:

Check that the processor supports SSE4.1 (if CPUID.01H:ECX.SSE4_1[bit 19] = 1), 
SSE3 (if CPUID.01H:ECX.SSE3[bit 0] = 1), and SSSE3 (if CPUID.01H:ECX.SSSE3[bit 
9] = 1). 
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12.12.3 Checking for SSE4.2 Support
Before an application attempts to use the following SSE4.2 instructions: 
PCMPESTRI/PCMPESTRM/PCMPISTRI/PCMPISTRM, PCMPGTQ;the application should 
follow the steps illustrated in Section 11.6.2, “Checking for SSE/SSE2 Support.” 
Next, use the additional step provided below:

Check that the processor supports SSE4.2 (if CPUID.01H:ECX.SSE4_2[bit 20] = 1), 
SSE4.1 (if CPUID.01H:ECX.SSE4_1[bit 19] = 1), and SSSE3 (if 
CPUID.01H:ECX.SSSE3[bit 9] = 1). 

Before an application attempts to use the CRC32 instruction, it must check that the 
processor supports SSE4.2 (if CPUID.01H:ECX.SSE4_2[bit 20] = 1).

Before an application attempts to use the POPCNT instruction, it must check that the 
processor supports SSE4.2 (if CPUID.01H:ECX.SSE4_2[bit 20] = 1) and POPCNT (if 
CPUID.01H:ECX.POPCNT[bit 23] = 1).

12.13 AESNI OVERVIEW
The AESNI extension provides six instructions to accelerate symmetric block encryp-
tion/decryption of 128-bit data blocks using the Advanced Encryption Standard 
(AES) specified by the NIST publication FIPS 197. Specifically, two instructions 
(AESENC, AESENCLAST) target the AES encryption rounds, two instructions 
(AESDEC, AESDECLAST) target AES decryption rounds using the Equivalent Inverse 
Cipher. One instruction (AESIMC) targets the Inverse MixColumn transformation 
primitive and one instruction (AESKEYGEN) targets generation of round keys from 
the cipher key for the AES encryption/decryption rounds.

AES supports encryption/decryption using cipher key lengths of 128, 192, and 256 
bits by processing the data block in 10, 12, 14 rounds of predefined transformations. 
Figure 12-5 depicts the cryptographic processing of a block of 128-bit plain text into 
cipher text. 

Figure 12-5.  AES State Flow

Plain text AES State

RK(0)

XOR Rounds 2.. n-2

Round 1 Last 

RK(1) RK(n-1)

AES State AES State Cipher text

AES-128: n = 10
AES-192: n = 12
AES-256: n = 14

Round 
n-1
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The predefined AES transformation primitives are described in the next few sections, 
they are also referenced in the operation flow of instruction reference page of these 
instructions.

12.13.1 Little-Endian Architecture and Big-Endian Specification (FIPS 
197)

FIPS 197 document defines the Advanced Encryption Standard (AES) and includes a 
set of test vectors for testing all of the steps in the algorithm, and can be used for 
testing and debugging. 
The following observation is important for using the AES instructions offered in Intel 
64 Architecture: FIPS 197 text convention is to write hex strings with the low-
memory byte on the left and the high-memory byte on the right. Intel’s convention is 
the reverse. It is similar to the difference between Big Endian and Little Endian nota-
tions. 
In other words, a 128 bits vector in the FIPS document, when read from left to right, 
is encoded as [7:0, 15:8, 23:16, 31:24, …127:120]. Note that inside the byte, the 
encoding is [7:0], so the first bit from the left is the most significant bit. In practice, 
the test vectors are written in hexadecimal notation, where pairs of hexadecimal 
digits define the different bytes. To translate the FIPS 197 notation to an Intel 64 
architecture compatible (“Little Endian”) format, each test vector needs to be byte-
reflected to [127:120,… 31:24, 23:16, 15:8, 7:0]. 
Example A: 
FIPS Test vector:         0x000102030405060708090a0b0c0d0e0f
Intel AES Hardware:    0x0f0e0d0c0b0a09080706050403020100

It should be pointed out that the only thing at issue is a textual convention, and 
programmers do not need to perform byte-reversal in their code, when using the AES 
instructions.

12.13.1.1  AES Data Structure in Intel 64 Architecture
The AES instructions that are defined in this document operate on one or on two 128 
bits source operands: State and Round Key. From the architectural point of view, the 
state is input in an xmm register and the Round key is input either in an xmm register 
or a 128-bit memory location. 
In AES algorithm, the state (128 bits) can be viewed as 4 32-bit doublewords 
(“Word”s in AES terminology): X3, X2, X1, X0. 
The state may also be viewed as a set of 16 bytes. The 16 bytes can also be viewed 
as a 4x4 matrix of bytes where S(i, j) with i, j = 0, 1, 2, 3 compose the 32-bit “word”s 
as follows:
X0 = S (3, 0) S (2, 0) S (1, 0) S (0, 0)
12-30 Vol. 1



PROGRAMMING WITH SSE3, SSSE3, SSE4 AND AESNI
X1 = S (3, 1) S (2, 1) S (1, 1) S (0, 1)
X2 = S (3, 2) S (2, 2) S (1, 2) S (0, 2)
X3 = S (3, 3) S (2, 3) S (1, 3) S (0, 3)
The following tables, Table 12-8 through Table 12-11, illustrate various representa-
tions of a 128-bit state.

Example: 
FIPS vector: d4 bf 5d 30 e0 b4 52 ae b8 41 11 f1 1e 27 98 e5
This vector has the “least significant” byte d4 and the significant byte e5 (written in 
Big Endian format in the FIPS document). When it is translated to IA notations, the 
encoding is:

Table 12-8.  Byte and 32-bit Word Representation of a 128-bit State

Byte # 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bit 
Position

127
-
120

119
-
112

111
-
103

103
-
96

95 
-88

87 
-80

79 
-72

71 
-64

63 
-56

55 
-48

47 
-40

39 
-32

31 
-24

23 
-16

15 
-8

7 - 
0

127 - 96 95 - 64 64 - 32 31 - 0

State Word X3 X2 X1 X0

State Byte P O N M L K J I H G F E D C B A

Table 12-9.  Matrix Representation of a 128-bit State

A E I M S(0, 0) S(0, 1) S(0, 2) S(0, 3)

B F J N S(1, 0) S(1, 1) S(1, 2) S(1, 3)

C G K O S(2, 0) S(2, 1) S(2, 2) S(2, 3)

D H L P S(3, 0) S(3, 1) S(3, 2) S(3, 3)

Table 12-10.  Little Endian Representation of a 128-bit State

Byte # 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

State Byte P O N M L K J I H G F E D C B A

State Value e5 98 27 1e f1 11 41 b8 ae 52 b4 e0 30 5d bf d4

Table 12-11.  Little Endian Representation of a 4x4 Byte Matrix

A E I M d4 e0 b8 1e

B F J N bf b4 41 27
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12.13.2 AES Transformations and Functions
The following functions and transformations are used in the algorithmic descriptions 
of AES instruction extensions AESDEC, AESDECLAST, AESENC, AESENCLAST, 
AESIMC, AESKEYGENASSIST.
Note that these transformations are expressed here in a Little Endian format (and not 
as in the FIPS 197 document).
• MixColumns(): A byte-oriented 4x4 matrix transformation on the matrix repre-

sentation of a 128-bit AES state. A FIPS-197 defined 4x4 matrix is multiplied to 
each 4x1 column vector of the AES state. The columns are considered 
polynomials with coefficients in the Finite Field that is used in the definition of 
FIPS 197, the operations (“multiplication” and “addition”) are in that Finite Field, 
and the polynomials are reduced modulo x4+1. 
The MixColumns() transformation defines the relationship between each byte of
the result state, represented as S’(i, j) of a 4x4 matrix (see Section 12.13.1), as
a function of input state bytes, S(i, j), as follows
S’(0, j)  FF_MUL( 02H, S(0, j) ) XOR FF_MUL(03H, S(1, j) ) XOR S(2, j) XOR
S(3, j)
S’(1, j)  S(0, j) XOR FF_MUL( 02H, S(1, j) ) XOR FF_MUL(03H, S(2, j) ) XOR
S(3, j) 
S’(2, j)  S(0, j) XOR S(1, j) XOR FF_MUL( 02H, S(2, j) ) XOR FF_MUL(03H,
S(3, j) ) 
S’(3, j)  FF_MUL(03H, S(0, j) ) XOR S(1, j) XOR S(2, j) XOR FF_MUL( 02H,
S(3, j) ) 
where j = 0, 1, 2, 3. FF_MUL(Byte1, Byte2) denotes the result of multiplying
two elements (represented by Byte1 and byte2) in the Finite Field represen-
tation that defines AES. The result of produced bye FF_MUL(Byte1, Byte2) is an
element in the Finite Field (represented as a byte). A Finite Field is a field with a
finite number of elements, and when this number can be represented as a
power of 2 (2n), its elements can be represented as the set of 2n binary strings
of length n. AES uses a finite field with n=8 (having 256 elements). With this
representation, “addition” of two elements in that field is a bit-wise XOR of their
binary-string representation, producing another element in the field. Multipli-
cation of two elements in that field is defined using an irreducible polynomial
(for AES, this polynomial is m(x) = x8 + x4 + x3 + x + 1). In this Finite Field
representation, the bit value of bit position k of a byte represents the coefficient
of a polynomial of order k, e.g., 1010_1101B (ADH) is represented by the
polynomial (x7 + x5 + x3 + x2 + 1). The byte value result of multiplication of
two elements is obtained by a carry-less multiplication of the two corresponding

C G K O 5d 52 11 98

D H L P 30 ae f1 e5

Table 12-11.  Little Endian Representation of a 4x4 Byte Matrix
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polynomials, followed by reduction modulo the polynomial, where the remainder
is calculated using operations defined in the field. For example, FF_MUL(57H,
83H) = C1H, because the carry-less polynomial multiplication of the
polynomials represented by 57H and 83H produces (x13 + x11 + x9 + x8 + x6 +
x5 + x4 + x3 + 1), and the remainder modulo m(x) is (x7 + x6 + 1).

• RotWord(): performs a byte-wise cyclic permutation (rotate right in little-endian 
byte order) on a 32-bit AES word.
The output word X’[j] of RotWord(X[j]) where X[j] represent the four bytes of
column j, S(i, j), in descending order X[j] = ( S(3, j), S(2, j), S(1, j), S(0, j) );
X’[j] = ( S’(3, j), S’(2, j), S’(1, j), S’(0, j) )  ( S(0, j), S(3, j), S(2, j), S(1, j) )

• ShiftRows(): A byte-oriented matrix transformation that processes the matrix 
representation of a 16-byte AES state by cyclically shifting the last three rows of 
the state by different offset to the left, see Table 12-12.

• SubBytes(): A byte-oriented transformation that processes the 128-bit AES state 
by applying a non-linear substitution table (S-BOX) on each byte of the state.
The SubBytes() function defines the relationship between each byte of the
result state S’(i, j) as a function of input state byte S(i, j), by 

S’(i, j)  S-Box (S(i, j)[7:4], S(i, j)[3:0])

where S-BOX( S[7:4], S[3:0]) represents a look-up operation on a 16x16 table 
to return a byte value, see Table 12-13. 

Table 12-12.  The ShiftRows Transformation

Matrix Representation of Input State Output of ShiftRows

A E I M A E I M

B F J N F J N B

C G K O K O C G

D H L P P D H L
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• SubWord(): produces an output AES word (four bytes) from the four bytes of an 
input word using a non-linear substitution table (S-BOX).
X’[j] = ( S’(3, j), S’(2, j), S’(1, j), S’(0, j) )  ( S-Box (S(3, j)), S-Box( S(2, j) ),
S-Box( S(1, j) ), S-Box( S(0, j) ))

• InvMixColumns(): The inverse transformation of MixColumns().
The InvMixColumns() transformation defines the relationship between each byte
of the result state S’(i, j) as a function of input state bytes, S(i, j), by 
S’(0, j)  FF_MUL( 0eH, S(0, j) ) XOR FF_MUL(0bH, S(1, j) ) XOR FF_MUL(0dH,
S(2, j) ) XOR FF_MUL( 09H, S(3, j) )
S’(1, j)  FF_MUL(09H, S(0, j) ) XOR FF_MUL( 0eH, S(1, j) ) XOR FF_MUL(0bH,
S(2, j) ) XOR FF_MUL( 0dH, S(3, j) )
S’(2, j)  FF_MUL(0dH, S(0, j) ) XOR FF_MUL( 09H, S(1, j) ) XOR FF_MUL( 0eH,
S(2, j) ) XOR FF_MUL(0bH, S(3, j) ) 

Table 12-13.  Look-up Table Associated with S-Box Transformation

S[3:0]

0 1 2 3 4 5 6 7 8 9 a b c d e f

S[7:4]

0 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76

1 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0

2 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15

3 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75

4 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84

5 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf

6 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8

7 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2

8 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73

9 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db

a e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79

b e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08

c ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a

d 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e

e e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df

f 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16
12-34 Vol. 1



PROGRAMMING WITH SSE3, SSSE3, SSE4 AND AESNI
S’(3, j)  FF_MUL(0bH, S(0, j) ) XOR FF_MUL(0dH, S(1, j) ) XOR FF_MUL( 09H,
S(2, j) ) XOR FF_MUL( 0eH, S(3, j) ), where j = 0, 1, 2, 3.

• InvShiftRows(): The inverse transformation of InvShiftRows(). The 
InvShiftRows() transforms the matrix representation of a 16-byte AES state by 
cyclically shifting the last three rows of the state by different offset to the right, 
see Table 12-14.

• InvSubBytes(): The inverse transformation of SubBytes().
The InvSubBytes() transformation defines the relationship between each byte of
the result state S’(i, j) as a function of input state byte S(i, j), by 

S’(i, j)  InvS-Box (S(i, j)[7:4], S(i, j)[3:0])

where InvS-BOX( S[7:4], S[3:0]) represents a look-up operation on a 16x16 
table to return a byte value, see Table 12-15. 

Table 12-14.  The InvShiftRows Transformation

Matrix Representation of Input State Output of ShiftRows

A E I M A E I M

B F J N N B F J

C G K O K O C G

D H L P H L P D
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12.13.3 PCLMULQDQ
The PCLMULQDQ instruction performs carry-less multiplication of two 64-bit data 
into a 128-bit result. Carry-less multiplication of two 128-bit data into a 256-bit 
result can use PCLMULQDQ as building blocks.

Carry-less multiplication is a component of many cryptographic systems. It is an 
important piece of implementing Galois Counter Mode (GCM) operation of block 
ciphers. GCM operation can be used in conjunction with AES algorithms to add 
authentication capability. GCM usage models also include IPsec, storage standard, 
and security protocols over fiber channel. Additionally, PCLMULQDQ can be used in 
calculations of hash functions and CRC using arbitrary polynomials.

Table 12-15.  Look-up Table Associated with InvS-Box Transformation

S[3:0]

0 1 2 3 4 5 6 7 8 9 a b c d e f

S[7:4]

0 52 09 6a d5 30 36 a5 38 bf 40 a3 9e 81 f3 d7 fb

1 7c e3 39 82 9b 2f ff 87 34 8e 43 44 c4 de e9 cb

2 54 7b 94 32 a6 c2 23 3d ee 4c 95 0b 42 fa c3 4e

3 08 2e a1 66 28 d9 24 b2 76 5b a2 49 6d 8b d1 25

4 72 f8 f6 64 86 68 98 16 d4 a4 5c cc 5d 65 b6 92

5 6c 70 48 50 fd ed b9 da 5e 15 46 57 a7 8d 9d 84

6 90 d8 ab 00 8c bc d3 0a f7 e4 58 05 b8 b3 45 06

7 d0 2c 1e 8f ca 3f 0f 02 c1 af bd 03 01 13 8a 6b

8 3a 91 11 41 4f 67 dc ea 97 f2 cf ce f0 b4 e6 73

9 96 ac 74 22 e7 ad 35 85 e2 f9 37 e8 1c 75 df 6e

a 47 f1 1a 71 1d 29 c5 89 6f b7 62 0e aa 18 be 1b

b fc 56 3e 4b c6 d2 79 20 9a db c0 fe 78 cd 5a f4

c 1f dd a8 33 88 07 c7 31 b1 12 10 59 27 80 ec 5f

d 60 51 7f a9 19 b5 4a 0d 2d e5 7a 9f 93 c9 9c ef

e a0 e0 3b 4d ae 2a f5 b0 c8 eb bb 3c 83 53 99 61

f 17 2b 04 7e ba 77 d6 26 e1 69 14 63 55 21 0c 7d
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12.13.4 Checking for AESNI Support
Before an application attempts to use AESNI instructions or PCLMULQDQ, the appli-
cation should follow the steps illustrated in Section 11.6.2, “Checking for SSE/SSE2 
Support.” Next, use the additional step provided below:

Check that the processor supports AESNI (if CPUID.01H:ECX.AESNI[bit 25] = 1); 
Check that the processor supports PCLMULQDQ (if CPUID.01H:ECX.PCLMULQDQ[bit 
1] = 1)
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CHAPTER 13
PROGRAMMING WITH AVX

Intel® Advanced Vector Extensions (AVX) introduces 256-bit vector processing 
capability. The Intel AVX instruction set extends 128-bit SIMD instruction sets by 
employing a new instruction encoding scheme via a vector extension prefix (VEX). 
Intel AVX also offers several enhanced features beyond those available in prior 
generations of 128-bit SIMD extensions. This chapter summarizes the key features 
of Intel AVX.

13.1 INTEL AVX OVERVIEW
Intel AVX introduces the following architectural enhancements:
• Support for 256-bit wide vectors with the YMM vector register set. 
• 256-bit floating-point instruction set enhancement with up to 2X performance 

gain relative to 128-bit Streaming SIMD extensions.
• Enhancement of legacy 128-bit SIMD instruction extensions to support three-

operand syntax and to simplify compiler vectorization of high-level language 
expressions.

• VEX prefix-encoded instruction syntax support for generalized three-operand 
syntax to improve instruction programming flexibility and efficient encoding of 
new instruction extensions.

• Most VEX-encoded 128-bit and 256-bit AVX instructions (with both load and 
computational operation semantics) are not restricted to 16-byte or 32-byte 
memory alignment. 

• Support flexible deployment of 256-bit AVX code, 128-bit AVX code, legacy 128-
bit code and scalar code.

With the exception of SIMD instructions operating on MMX registers, almost all 
legacy 128-bit SIMD instructions have AVX equivalents that support three operand 
syntax. 256-bit AVX instructions employ three-operand syntax and some with 4-
operand syntax. 

13.1.1 256-Bit Wide SIMD Register Support
Intel AVX introduces support for 256-bit wide SIMD registers (YMM0-YMM7 in oper-
ating modes that are 32-bit or less, YMM0-YMM15 in 64-bit mode). The lower 128-
bits of the YMM registers are aliased to the respective 128-bit XMM registers. 
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The lower 128 bits of a YMM register is aliased to the corresponding XMM register. 
Legacy SSE instructions (i.e. SIMD instructions operating on XMM state but not using 
the VEX prefix, also referred to non-VEX encoded SIMD instructions) will not access 
the upper bits beyond bit 128 of the YMM registers. AVX instructions with a VEX 
prefix and vector length of 128-bits zeroes the upper bits (above bit 128) of the YMM 
register. 

13.1.2 Instruction Syntax Enhancements
Intel AVX employs an instruction encoding scheme using a new prefix (known as 
“VEX” prefix). Instruction encoding using the VEX prefix can directly encode a 
register operand within the VEX prefix. This support two new instruction syntax in 
Intel 64 architecture: 
• A non-destructive operand (in a three-operand instruction syntax): The non-

destructive source reduces the number of registers, register-register copies and 
explicit load operations required in typical SSE loops, reduces code size, and 
improves micro-fusion opportunities. 

• A third source operand (in a four-operand instruction syntax) via the upper 4 bits 
in an 8-bit immediate field. Support for the third source operand is defined for 
selected instructions (e.g. VBLENDVPD, VBLENDVPS, PBLENDVB).

Two-operand instruction syntax previously expressed in legacy SSE instruction has

ADDPS xmm1, xmm2/m128

128-bit AVX equivalent can be expressed in three-operand syntax as

XMM0YMM0

XMM1YMM1

. . .
XMM15YMM15

Bit#
0127128255
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VADDPS xmm1, xmm2, xmm3/m128

In four-operand syntax, the extra register operand is encoded in the immediate byte.
Note SIMD instructions supporting three-operand syntax but processing only 128-
bits of data are considered part of the 256-bit SIMD instruction set extensions of 
AVX, because bits 255:128 of the destination register are zeroed by the processor. 

13.1.3 VEX Prefix Instruction Encoding Support
Intel AVX introduces a new prefix, referred to as VEX, in the Intel 64 and IA-32 
instruction encoding format. Instruction encoding using the VEX prefix provides the 
following capabilities:
• Direct encoding of a register operand within VEX. This provides instruction syntax 

support for non-destructive source operand. 
• Efficient encoding of instruction syntax operating on 128-bit and 256-bit register 

sets.
• Compaction of REX prefix functionality: The equivalent functionality of the REX 

prefix is encoded within VEX. 
• Compaction of SIMD prefix functionality and escape byte encoding: The function-

ality of SIMD prefix (66H, F2H, F3H) on opcode is equivalent to an opcode 
extension field to introduce new processing primitives. This functionality is 
replaced by a more compact representation of opcode extension within the VEX 
prefix. Similarly, the functionality of the escape opcode byte (0FH) and two-byte 
escape (0F38H, 0F3AH) are also compacted within the VEX prefix encoding. 

• Most VEX-encoded SIMD numeric and data processing instruction semantics with 
memory operand have relaxed memory alignment requirements than instruc-
tions encoded using SIMD prefixes (see Section 13.3).

VEX prefix encoding applies to SIMD instructions operating on YMM registers, XMM 
registers, and in some cases with a general-purpose register as one of the operand. 
VEX prefix is not supported for instructions operating on MMX or x87 registers. 
Details of VEX prefix and instruction encoding are discussed in Chapter 2, “Instruc-
tion Format,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2A.

13.2 FUNCTIONAL OVERVIEW
Intel AVX provide comprehensive functional improvements over previous genera-
tions of SIMD instruction extensions. The functional improvements include:
• 256-bit floating-point arithmetic primitives: AVX enhances existing 128-bit 

floating-point arithmetic instructions with 256-bit capabilities for floating-point 
processing. 
Vol. 1 13-3



PROGRAMMING WITH AVX
• Enhancements for flexible SIMD data movements: AVX provides a number of 
new data movement primitives to enable efficient SIMD programming in relation 
to loading non-unit-strided data into SIMD registers, intra-register SIMD data 
manipulation, conditional expression and branch handling, etc. Enhancements 
for SIMD data movement primitives cover 256-bit and 128-bit vector floating-
point data, and across 128-bit integer SIMD data processing using VEX-encoded 
instructions.

Table 13-1.  Promoted SSE/SSE2/SSE3/SSSE3/SSE4 Instructions
VEX.256 
Encoding

VEX.128 
Encoding

Group Instruction If No, Reason?

yes yes YY 0F 1X MOVUPS

no yes MOVSS scalar

yes yes MOVUPD

no yes MOVSD scalar

no yes MOVLPS Note 1

no yes MOVLPD Note 1

no yes MOVLHPS Redundant with VPERMILPS

yes yes MOVDDUP

yes yes MOVSLDUP

yes yes UNPCKLPS

yes yes UNPCKLPD

yes yes UNPCKHPS

yes yes UNPCKHPD

no yes MOVHPS Note 1

no yes MOVHPD Note 1

no yes MOVHLPS Redundant with VPERMILPS

yes yes MOVAPS

yes yes MOVSHDUP

yes yes MOVAPD

no no CVTPI2PS MMX

no yes CVTSI2SS scalar

no no CVTPI2PD MMX

no yes CVTSI2SD scalar

no yes MOVNTPS

no yes MOVNTPD

no no CVTTPS2PI MMX

no yes CVTTSS2SI scalar

no no CVTTPD2PI MMX
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no yes CVTTSD2SI scalar

no no CVTPS2PI MMX

no yes CVTSS2SI scalar

no no CVTPD2PI MMX

no yes CVTSD2SI scalar

no yes UCOMISS scalar

no yes UCOMISD scalar

no yes COMISS scalar

no yes COMISD scalar

yes yes YY 0F 5X MOVMSKPS

yes yes MOVMSKPD

yes yes SQRTPS

no yes SQRTSS scalar

yes yes SQRTPD

no yes SQRTSD scalar

yes yes RSQRTPS

no yes RSQRTSS scalar

yes yes RCPPS

no yes RCPSS scalar

yes yes ANDPS

yes yes ANDPD

yes yes ANDNPS

yes yes ANDNPD

yes yes ORPS

yes yes ORPD

yes yes XORPS

yes yes XORPD

yes yes ADDPS

no yes ADDSS scalar

yes yes ADDPD

no yes ADDSD scalar

yes yes MULPS

no yes MULSS scalar

yes yes MULPD

no yes MULSD scalar

VEX.256 
Encoding

VEX.128 
Encoding Group Instruction If No, Reason?
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yes yes CVTPS2PD

no yes CVTSS2SD scalar

yes yes CVTPD2PS

no yes CVTSD2SS scalar

yes yes CVTDQ2PS

yes yes CVTPS2DQ

yes yes CVTTPS2DQ

yes yes SUBPS

no yes SUBSS scalar

yes yes SUBPD

no yes SUBSD scalar

yes yes MINPS

no yes MINSS scalar

yes yes MINPD

no yes MINSD scalar

yes yes DIVPS

no yes DIVSS scalar

yes yes DIVPD

no yes DIVSD scalar

yes yes MAXPS

no yes MAXSS scalar

yes yes MAXPD

no yes MAXSD scalar

no yes YY 0F 6X PUNPCKLBW VI

no yes PUNPCKLWD VI

no yes PUNPCKLDQ VI

no yes PACKSSWB VI

no yes PCMPGTB VI

no yes PCMPGTW VI

no yes PCMPGTD VI

no yes PACKUSWB VI

no yes PUNPCKHBW VI

no yes PUNPCKHWD VI

no yes PUNPCKHDQ VI

no yes PACKSSDW VI

VEX.256 
Encoding

VEX.128 
Encoding Group Instruction If No, Reason?
13-6 Vol. 1



PROGRAMMING WITH AVX
no yes PUNPCKLQDQ VI

no yes PUNPCKHQDQ VI

no yes MOVD scalar

no yes MOVQ scalar

yes yes MOVDQA

yes yes MOVDQU

no yes YY 0F 7X PSHUFD VI

no yes PSHUFHW VI

no yes PSHUFLW VI

no yes PCMPEQB VI

no yes PCMPEQW VI

no yes PCMPEQD VI

yes yes HADDPD

yes yes HADDPS

yes yes HSUBPD

yes yes HSUBPS

no yes MOVD VI

no yes MOVQ VI

yes yes MOVDQA

yes yes MOVDQU

no yes YY 0F AX LDMXCSR

no yes STMXCSR

yes yes YY 0F CX CMPPS

no yes CMPSS scalar

yes yes CMPPD

no yes CMPSD scalar

no yes PINSRW VI

no yes PEXTRW VI

yes yes SHUFPS

yes yes SHUFPD

yes yes YY 0F DX ADDSUBPD

yes yes ADDSUBPS

no yes PSRLW VI

no yes PSRLD VI

no yes PSRLQ VI

VEX.256 
Encoding

VEX.128 
Encoding Group Instruction If No, Reason?
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no yes PADDQ VI

no yes PMULLW VI

no no MOVQ2DQ MMX

no no MOVDQ2Q MMX

no yes PMOVMSKB VI

no yes PSUBUSB VI

no yes PSUBUSW VI

no yes PMINUB VI

no yes PAND VI

no yes PADDUSB VI

no yes PADDUSW VI

no yes PMAXUB VI

no yes PANDN VI

no yes YY 0F EX PAVGB VI

no yes PSRAW VI

no yes PSRAD VI

no yes PAVGW VI

no yes PMULHUW VI

no yes PMULHW VI

yes yes CVTPD2DQ

yes yes CVTTPD2DQ

yes yes CVTDQ2PD

no yes MOVNTDQ VI

no yes PSUBSB VI

no yes PSUBSW VI

no yes PMINSW VI

no yes POR VI

no yes PADDSB VI

no yes PADDSW VI

no yes PMAXSW VI

no yes PXOR VI

yes yes YY 0F FX LDDQU VI

no yes PSLLW VI

no yes PSLLD VI

no yes PSLLQ VI

VEX.256 
Encoding

VEX.128 
Encoding Group Instruction If No, Reason?
13-8 Vol. 1



PROGRAMMING WITH AVX
no yes PMULUDQ VI

no yes PMADDWD VI

no yes PSADBW VI

no yes MASKMOVDQU

no yes PSUBB VI

no yes PSUBW VI

no yes PSUBD VI

no yes PSUBQ VI

no yes PADDB VI

no yes PADDW VI

no yes PADDD VI

no yes SSSE3 PHADDW VI

no yes PHADDSW VI

no yes PHADDD VI

no yes PHSUBW VI

no yes PHSUBSW VI

no yes PHSUBD VI

no yes PMADDUBSW VI

no yes PALIGNR VI

no yes PSHUFB VI

no yes PMULHRSW VI

no yes PSIGNB VI

no yes PSIGNW VI

no yes PSIGND VI

no yes PABSB VI

no yes PABSW VI

no yes PABSD VI

yes yes SSE4.1 BLENDPS

yes yes BLENDPD

yes yes BLENDVPS Note 2

yes yes BLENDVPD Note 2

no yes DPPD

yes yes DPPS

no yes EXTRACTPS Note 3

no yes INSERTPS Note 3

VEX.256 
Encoding

VEX.128 
Encoding Group Instruction If No, Reason?
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no yes MOVNTDQA

no yes MPSADBW VI

no yes PACKUSDW VI

no yes PBLENDVB VI

no yes PBLENDW VI

no yes PCMPEQQ VI

no yes PEXTRD VI

no yes PEXTRQ VI

no yes PEXTRB VI

no yes PEXTRW VI

no yes PHMINPOSUW VI

no yes PINSRB VI

no yes PINSRD VI

no yes PINSRQ VI

no yes PMAXSB VI

no yes PMAXSD VI

no yes PMAXUD VI

no yes PMAXUW VI

no yes PMINSB VI

no yes PMINSD VI

no yes PMINUD VI

no yes PMINUW VI

no yes PMOVSXxx VI 

no yes PMOVZXxx VI 

no yes PMULDQ VI

no yes PMULLD VI

yes yes PTEST

yes yes ROUNDPD

yes yes ROUNDPS

no yes ROUNDSD scalar

no yes ROUNDSS scalar

no yes SSE4.2 PCMPGTQ VI

no no SSE4.2 CRC32c integer

no yes PCMPESTRI VI

no yes PCMPESTRM VI

VEX.256 
Encoding

VEX.128 
Encoding Group Instruction If No, Reason?
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13.2.1 256-bit Floating-Point Arithmetic Processing Enhancements
Intel AVX provides 35 256-bit floating-point arithmetic instructions, see Table 13-2. 
The arithmetic operations cover add, subtract, multiply, divide, square-root, 
compare, max, min, round, etc., on single-precision and double-precision floating-
point data. 
The enhancement in AVX on floating-point compare operation provides 32 condi-
tional predicates to improve programming flexibility in evaluating conditional expres-
sions.

13.2.2 256-bit Non-Arithmetic Instruction Enhancements
Intel AVX provides new primitives for handling data movement within 256-bit 
floating-point vectors and promotes many 128-bit floating data processing instruc-
tions to handle 256-bit floating-point vectors. 

no yes PCMPISTRI VI

no yes PCMPISTRM VI

no no SSE4.2 POPCNT integer

Table 13-2.  Promoted 256-Bit and 128-bit Arithmetic AVX Instructions

VEX.256 Encoding VEX.128 Encoding Legacy Instruction Mnemonic

yes yes SQRTPS, SQRTPD, RSQRTPS, RCPPS

yes yes ADDPS, ADDPD, SUBPS, SUBPD

yes yes MULPS, MULPD, DIVPS, DIVPD

yes yes CVTPS2PD, CVTPD2PS

yes yes CVTDQ2PS, CVTPS2DQ

yes yes CVTTPS2DQ, CVTTPD2DQ

yes yes CVTPD2DQ, CVTDQ2PD

yes yes MINPS, MINPD, MAXPS, MAXPD

yes yes HADDPD, HADDPS, HSUBPD, HSUBPS

yes yes CMPPS, CMPPD

yes yes ADDSUBPD, ADDSUBPS, DPPS

yes yes ROUNDPD, ROUNDPS

VEX.256 
Encoding

VEX.128 
Encoding Group Instruction If No, Reason?
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AVX includes 39 256-bit data movement and processing instructions that are 
promoted from previous generations of SIMD instruction extensions, ranging from 
logical, blend, convert, test, unpacking, shuffling, load and stores (see Table 13-3). 

AVX introduces 18 new data processing instructions that operate on 256-bit vectors, 
Table 13-4. These new primitives cover the following operations:
• Non-unit-strided fetching of SIMD data. AVX provides several flexible SIMD 

floating-point data fetching primitives: 

— broadcast of single or multiple data elements into a 256-bit destination,

— masked move primitives to load or store SIMD data elements conditionally,
• Intra-register manipulation of SIMD data elements. AVX provides several flexible 

SIMD floating-point data manipulation primitives: 

— insert/extract multiple SIMD floating-point data elements to/from 256-bit 
SIMD registers

— permute primitives to facilitate efficient manipulation of floating-point data 
elements in 256-bit SIMD registers

• Branch handling. AVX provides several primitives to enable handling of branches 
in SIMD programming:

— new variable blend instructions supports four-operand syntax with non-
destructive source syntax. This is more flexible than the equivalent SSE4 

Table 13-3.  Promoted 256-bit and 128-bit Data Movement AVX Instructions

VEX.256 Encoding VEX.128 Encoding Legacy Instruction Mnemonic

yes yes MOVAPS, MOVAPD, MOVDQA

yes yes MOVUPS, MOVUPD, MOVDQU

yes yes MOVMSKPS, MOVMSKPD

yes yes LDDQU, MOVNTPS, MOVNTPD, MOVNTDQ, 
MOVNTDQA

yes yes MOVSHDUP, MOVSLDUP, MOVDDUP

yes yes UNPCKHPD, UNPCKHPS, UNPCKLPD

yes yes BLENDPS, BLENDPD

yes yes SHUFPD, SHUFPS, UNPCKLPS

yes yes BLENDVPS, BLENDVPD

yes yes PTEST, MOVMSKPD, MOVMSKPS

yes yes XORPS, XORPD, ORPS, ORPD

yes yes ANDNPD, ANDNPS, ANDPD, ANDPS
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instruction syntax which uses the XMM0 register as the implied mask for 
blend selection. 

— Packed TEST instructions for floating-point data.

Table 13-4.  256-bit AVX Instruction Enhancement

Instruction Description

VBROADCASTF128 ymm1, 
m128

Broadcast 128-bit floating-point values in mem to low and high 
128-bits in ymm1.

VBROADCASTSD ymm1, m64 Broadcast double-precision floating-point element in mem to four 
locations in ymm1.

VBROADCASTSS ymm1, m32 Broadcast single-precision floating-point element in mem to eight 
locations in ymm1.

VEXTRACTF128 xmm1/m128, 
ymm2, imm8

Extracts 128-bits of packed floating-point values from ymm2 and 
store results in xmm1/mem.

VINSERTF128 ymm1, ymm2, 
xmm3/m128, imm8

Insert 128-bits of packed floating-point values from xmm3/mem 
and the remaining values from ymm2 into ymm1

VMASKMOVPS ymm1, ymm2, 
m256

Load packed single-precision values from mem using mask in 
ymm2 and store in ymm1

VMASKMOVPD ymm1, ymm2, 
m256

Load packed double-precision values from mem using mask in 
ymm2 and store in ymm1

VMASKMOVPS m256, ymm1, 
ymm2

Store packed single-precision values from ymm2 mask in ymm1

VMASKMOVPD m256, ymm1, 
ymm2

Store packed double-precision values from ymm2 using mask in 
ymm1

VPERMILPD ymm1, ymm2, 
ymm3/m256

Permute Double-Precision Floating-Point values in ymm2 using 
controls from xmm3/mem and store result in ymm1

VPERMILPD ymm1, 
ymm2/m256 imm8

Permute Double-Precision Floating-Point values in ymm2/mem 
using controls from imm8 and store result in ymm1

VPERMILPS ymm1, ymm2, 
ymm/m256

Permute Single-Precision Floating-Point values in ymm2 using 
controls from ymm3/mem and store result in ymm1

VPERMILPS ymm1, 
ymm2/m256, imm8

Permute Single-Precision Floating-Point values in ymm2/mem 
using controls from imm8 and store result in ymm1

VPERM2F128 ymm1, ymm2, 
ymm3/m256, imm8

Permute 128-bit floating-point fields in ymm2 and ymm3/mem 
using controls from imm8 and store result in ymm1

VTESTPS ymm1, ymm2/m256 Set ZF if ymm2/mem AND ymm1 result is all 0s in packed single-
precision sign bits. Set CF if ymm2/mem AND NOT ymm1 result is 
all 0s in packed single-precision sign bits.
Vol. 1 13-13



PROGRAMMING WITH AVX
13.2.3 Arithmetic Primitives for 128-bit Vector and Scalar 
processing

Intel AVX provides a full complement of 128-bit numeric processing instructions that 
employ VEX-prefix encoding. These VEX-encoded instructions generally provide the 
same functionality over instructions operating on XMM register that are encoded 
using SIMD prefixes. The 128-bit numeric processing instructions in AVX cover 
floating-point and integer data processing; across 128-bit vector and scalar 
processing. Table 13-5 lists the state of promotion of legacy SIMD arithmetic ISA to 
VEX-128 encoding. Legacy SIMD floating-point arithmetic ISA promoted to VEX-256 
encoding also support VEX-128 encoding (see Table 13-2).
The enhancement in AVX on 128-bit floating-point compare operation provides 32 
conditional predicates to improve programming flexibility in evaluating conditional 
expressions. This contrasts with floating-point SIMD compare instructions in SSE and 
SSE2 supporting only 8 conditional predicates. 

VTESTPD ymm1, ymm2/m256 Set ZF if ymm2/mem AND ymm1 result is all 0s in packed double-
precision sign bits. Set CF if ymm2/mem AND NOT ymm1 result is 
all 0s in packed double-precision sign bits.

VZEROALL Zero all YMM registers

VZEROUPPER Zero upper 128 bits of all YMM registers

Table 13-5.  Promotion of Legacy SIMD ISA to 128-bit Arithmetic AVX instruction 

VEX.256 
Encoding

VEX.128 
Encoding

Instruction
Reason Not 
Promoted

no no CVTPI2PS, CVTPI2PD, CVTPD2PI MMX

no no CVTTPS2PI, CVTTPD2PI, CVTPS2PI MMX

no yes CVTSI2SS, CVTSI2SD, CVTSD2SI scalar

no yes CVTTSS2SI, CVTTSD2SI, CVTSS2SI scalar

no yes COMISD, RSQRTSS, RCPSS scalar

no yes UCOMISS, UCOMISD, COMISS, scalar

no yes ADDSS, ADDSD, SUBSS, SUBSD scalar

no yes MULSS, MULSD, DIVSS, DIVSD scalar

no yes SQRTSS, SQRTSD scalar

no yes CVTSS2SD, CVTSD2SS scalar

Table 13-4.  256-bit AVX Instruction Enhancement

Instruction Description
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no yes MINSS, MINSD, MAXSS, MAXSD scalar

no yes PAND, PANDN, POR, PXOR VI

no yes PCMPGTB, PCMPGTW, PCMPGTD VI

no yes PMADDWD, PMADDUBSW VI

no yes PAVGB, PAVGW, PMULUDQ VI

no yes PCMPEQB, PCMPEQW, PCMPEQD VI

no yes PMULLW, PMULHUW, PMULHW VI

no yes PSUBSW, PADDSW, PSADBW VI

no yes PADDUSB, PADDUSW, PADDSB VI

no yes PSUBUSB, PSUBUSW, PSUBSB VI

no yes PMINUB, PMINSW VI

no yes PMAXUB, PMAXSW VI

no yes PADDB, PADDW, PADDD, PADDQ VI

no yes PSUBB, PSUBW, PSUBD, PSUBQ VI

no yes PSLLW, PSLLD, PSLLQ, PSRAW VI

no yes PSRLW, PSRLD, PSRLQ, PSRAD VI

CPUID.SSSE3

no yes PHSUBW, PHSUBD, PHSUBSW VI

no yes PHADDW, PHADDD, PHADDSW VI

no yes PMULHRSW VI

no yes PSIGNB, PSIGNW, PSIGND VI

no yes PABSB, PABSW, PABSD VI

CPUID.SSE4_1

no yes DPPD

no yes PHMINPOSUW, MPSADBW VI

no yes PMAXSB, PMAXSD, PMAXUD VI

no yes PMINSB, PMINSD, PMINUD VI

no yes PMAXUW, PMINUW VI

no yes PMOVSXxx, PMOVZXxx VI

no yes PMULDQ, PMULLD VI

Table 13-5.  Promotion of Legacy SIMD ISA to 128-bit Arithmetic AVX instruction 

VEX.256 
Encoding

VEX.128 
Encoding

Instruction Reason Not 
Promoted
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Description of Column “Reason not promoted?”
MMX: Instructions referencing MMX registers do not support VEX
Scalar: Scalar instructions are not promoted to 256-bit
integer: integer instructions are not promoted.
VI: “Vector Integer” instructions are not promoted to 256-bit

13.2.4 Non-Arithmetic Primitives for 128-bit Vector and Scalar 
Processing

Intel AVX provides a full complement of data processing instructions that employ 
VEX-prefix encoding. These VEX-encoded instructions generally provide the same 
functionality over instructions operating on XMM register that are encoded using 
SIMD prefixes. 

A subset of new functionalities listed in Table 13-4 is also extended via VEX.128 
encoding. These enhancements in AVX on 128-bit data processing primitives include 
11 new instructions (see Table 13-6) with the following capabilities:
• Non-unit-strided fetching of SIMD data. AVX provides several flexible SIMD 

floating-point data fetching primitives: 

no yes ROUNDSD, ROUNDSS scalar

CPUID.POPCNT

no yes POPCNT integer

CPUID.SSE4_2

no yes PCMPGTQ VI

no no CRC32 integer

no yes PCMPESTRI, PCMPESTRM VI

no yes PCMPISTRI, PCMPISTRM VI

CPUID.CLMUL

no yes PCLMULQDQ VI

CPUID.AESNI

no yes AESDEC, AESDECLAST VI

no yes AESENC, AESENCLAST VI

no yes AESIMX, AESKEYGENASSIST VI

Table 13-5.  Promotion of Legacy SIMD ISA to 128-bit Arithmetic AVX instruction 

VEX.256 
Encoding

VEX.128 
Encoding

Instruction Reason Not 
Promoted
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— broadcast of single data element into a 128-bit destination,

— masked move primitives to load or store SIMD data elements conditionally,
• Intra-register manipulation of SIMD data elements. AVX provides several flexible 

SIMD floating-point data manipulation primitives: 

— permute primitives to facilitate efficient manipulation of floating-point data 
elements in 128-bit SIMD registers

• Branch handling. AVX provides several primitives to enable handling of branches 
in SIMD programming:

— new variable blend instructions supports four-operand syntax with non-
destructive source syntax. Branching conditions dependent on floating-point 
data or integer data can benefit from Intel AVX. This is more flexible than 
non-VEX encoded instruction syntax that uses the XMM0 register as implied 
mask for blend selection. While variable blend with implied XMM0 syntax is 
supported in SSE4 using SIMD prefix encoding, VEX-encoded 128-bit variable 
blend instructions only support the more flexible four-operand syntax.

— Packed TEST instructions for floating-point data.

Table 13-6.  128-bit AVX Instruction Enhancement

Instruction Description

VBROADCASTSS xmm1, m32 Broadcast single-precision floating-point element in mem to four 
locations in xmm1.

VMASKMOVPS xmm1, xmm2, 
m128

Load packed single-precision values from mem using mask in 
xmm2 and store in xmm1

VMASKMOVPD xmm1, xmm2, 
m128

Load packed double-precision values from mem using mask in 
xmm2 and store in xmm1

VMASKMOVPS m128, xmm1, 
xmm2

Store packed single-precision values from xmm2 using mask in 
xmm1

VMASKMOVPD m128, xmm1, 
xmm2

Store packed double-precision values from xmm2 using mask in 
xmm1

VPERMILPD xmm1, xmm2, 
xmm3/m128

Permute Double-Precision Floating-Point values in xmm2 using 
controls from xmm3/mem and store result in xmm1

VPERMILPD xmm1, 
xmm2/m128, imm8

Permute Double-Precision Floating-Point values in xmm2/mem 
using controls from imm8 and store result in xmm1

VPERMILPS xmm1, xmm2, 
xmm3/m128

Permute Single-Precision Floating-Point values in xmm2 using 
controls from xmm3/mem and store result in xmm1

VPERMILPS xmm1, 
xmm2/m128, imm8

Permute Single-Precision Floating-Point values in xmm2/mem 
using controls from imm8 and store result in xmm1
Vol. 1 13-17



PROGRAMMING WITH AVX
The 128-bit data processing instructions in AVX cover floating-point and integer data 
movement primitives. Legacy SIMD non-arithmetic ISA promoted to VEX-256 
encoding also support VEX-128 encoding (see Table 13-3). Table 13-7 lists the state 
of promotion of the remaining legacy SIMD non-arithmetic ISA to VEX-128 encoding. 

VTESTPS xmm1, xmm2/m128 Set ZF if xmm2/mem AND xmm1 result is all 0s in packed single-
precision sign bits. Set CF if xmm2/mem AND NOT xmm1 result is 
all 0s in packed single-precision sign bits.

VTESTPD xmm1, xmm2/m128 Set ZF if xmm2/mem AND xmm1 result is all 0s in packed single 
precision sign bits. Set CF if xmm2/mem AND NOT xmm1 result is 
all 0s in packed double-precision sign bits.

Table 13-7.  Promotion of Legacy SIMD ISA to 128-bit Non-Arithmetic AVX instruction

VEX.256 
Encoding

VEX.128 
Encoding

Instruction
Reason Not 
Promoted

no no MOVQ2DQ, MOVDQ2Q MMX

no yes LDMXCSR, STMXCSR

no yes MOVSS, MOVSD, CMPSS, CMPSD scalar

no yes MOVHPS, MOVHPD Note 1

no yes MOVLPS, MOVLPD Note 1

no yes MOVLHPS, MOVHLPS Redundant with VPER-
MILPS

no yes MOVQ, MOVD scalar

no yes PACKUSWB, PACKSSDW, PACKSSWB VI

no yes PUNPCKHBW, PUNPCKHWD VI

no yes PUNPCKLBW, PUNPCKLWD VI

no yes PUNPCKHDQ, PUNPCKLDQ VI

no yes PUNPCKLQDQ, PUNPCKHQDQ VI

no yes PSHUFHW, PSHUFLW, PSHUFD VI

no yes PMOVMSKB, MASKMOVDQU VI

no yes PAND, PANDN, POR, PXOR VI

no yes PINSRW, PEXTRW, VI

CPUID.SSSE3

Table 13-6.  128-bit AVX Instruction Enhancement

Instruction Description
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Description of Column “Reason not promoted?”
MMX: Instructions referencing MMX registers do not support VEX
Scalar: Scalar instructions are not promoted to 256-bit
VI: “Vector Integer” instructions are not promoted to 256-bit
Note 1: MOVLPD/PS and MOVHPD/PS are not promoted to 256-bit. The equivalent 
functionality are provided by VINSERTF128 and VEXTRACTF128 instructions as the 
existing instructions have no natural 256b extension
Note 3: It is expected that using 128-bit INSERTPS followed by a VINSERTF128 
would be better than promoting INSERTPS to 256-bit (for example).

13.3 MEMORY ALIGNMENT 
Memory alignment requirements on VEX-encoded instruction differs from non-VEX-
encoded instructions. Memory alignment applies to non-VEX-encoded SIMD instruc-
tions in three categories:
• Explicitly-aligned SIMD load and store instructions accessing 16 bytes of memory 

(e.g. MOVAPD, MOVAPS, MOVDQA, etc.). These instructions always require 
memory address to be aligned on 16-byte boundary.

• Explicitly-unaligned SIMD load and store instructions accessing 16 bytes or less 
of data from memory (e.g. MOVUPD, MOVUPS, MOVDQU, MOVQ, MOVD, etc.). 
These instructions do not require memory address to be aligned on 16-byte 
boundary.

• The vast majority of arithmetic and data processing instructions in legacy SSE 
instructions (non-VEX-encoded SIMD instructions) support memory access 
semantics. When these instructions access 16 bytes of data from memory, the 
memory address must be aligned on 16-byte boundary.

no yes PALIGNR, PSHUFB VI

CPUID.SSE4_1

no yes EXTRACTPS, INSERTPS Note 3

no yes PACKUSDW, PCMPEQQ VI

no yes PBLENDVB, PBLENDW VI

no yes PEXTRW, PEXTRB, PEXTRD, PEXTRQ VI

no yes PINSRB, PINSRD, PINSRQ VI

Table 13-7.  Promotion of Legacy SIMD ISA to 128-bit Non-Arithmetic AVX instruction

VEX.256 
Encoding

VEX.128 
Encoding

Instruction Reason Not 
Promoted
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Most arithmetic and data processing instructions encoded using the VEX prefix and 
performing memory accesses have more flexible memory alignment requirements 
than instructions that are encoded without the VEX prefix. Specifically, 
• With the exception of explicitly aligned 16 or 32 byte SIMD load/store instruc-

tions, most VEX-encoded, arithmetic and data processing instructions operate in 
a flexible environment regarding memory address alignment, i.e. VEX-encoded 
instruction with 32-byte or 16-byte load semantics will support unaligned load 
operation by default. Memory arguments for most instructions with VEX prefix 
operate normally without causing #GP(0) on any byte-granularity alignment 
(unlike Legacy SSE instructions). The instructions that require explicit memory 
alignment requirements are listed in Table 13-9.

Software may see performance penalties when unaligned accesses cross cacheline 
boundaries, so reasonable attempts to align commonly used data sets should 
continue to be pursued.
Atomic memory operation in Intel 64 and IA-32 architecture is guaranteed only for a 
subset of memory operand sizes and alignment scenarios. The list of guaranteed 
atomic operations are described in Section 8.1.1 of IA-32 Intel® Architecture Soft-
ware Developer’s Manual, Volumes 3A. AVX and FMA instructions do not introduce 
any new guaranteed atomic memory operations.
AVX instructions can generate an #AC(0) fault on misaligned 4 or 8-byte memory 
references in Ring-3 when CR0.AM=1. 16 and 32-byte memory references will not 
generate #AC(0) fault. See Table 13-8 for details.
Certain AVX instructions always require 16- or 32-byte alignment (see the complete 
list of such instructions in Table 13-9). These instructions will #GP(0) if not aligned to 
16-byte boundaries (for 16-byte granularity loads and stores) or 32-byte boundaries 
(for 32-byte loads and stores).
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Table 13-8.  Alignment Faulting Conditions when Memory Access is Not Aligned 
EFLAGS.AC==1 && Ring-3 && CR0.AM == 1 0 1

In
st

ru
ct

io
n 

Ty
pe AV

X
, F

M
A

,
16- or 32-byte “explicitly unaligned” loads 
and stores (see Table 13-10)

no fault no fault

VEX op YMM, m256 no fault no fault

VEX op XMM, m128 no fault no fault

“explicitly aligned” loads and stores (see 
Table 13-9)

#GP(0) #GP(0)

2, 4, or 8-byte loads and stores no fault #AC(0)

SS
E

16 byte “explicitly unaligned” loads and 
stores (see Table 13-10)

no fault no fault

op XMM, m128 #GP(0) #GP(0)

“explicitly aligned” loads and stores (see 
Table 13-9)

#GP(0) #GP(0)

2, 4, or 8-byte loads and stores no fault #AC(0)

Table 13-9.  Instructions Requiring Explicitly Aligned Memory

Require 16-byte alignment Require 32-byte alignment

(V)MOVDQA xmm, m128 VMOVDQA ymm, m256

(V)MOVDQA m128, xmm VMOVDQA m256, ymm

(V)MOVAPS xmm, m128 VMOVAPS ymm, m256

(V)MOVAPS m128, xmm VMOVAPS m256, ymm

(V)MOVAPD xmm, m128 VMOVAPD ymm, m256

(V)MOVAPD m128, xmm VMOVAPD m256, ymm

(V)MOVNTPS m128, xmm VMOVNTPS m256, ymm

(V)MOVNTPD m128, xmm VMOVNTPD m256, ymm

(V)MOVNTDQ m128, xmm VMOVNTDQ m256, ymm

(V)MOVNTDQA xmm, m128
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13.4 SIMD FLOATING-POINT EXCEPTIONS
AVX instructions can generate SIMD floating-point exceptions (#XM) and respond to 
exception masks in the same way as Legacy SSE instructions. When CR4.OSXM-
MEXCPT=0 any unmasked FP exceptions generate an Undefined Opcode exception 
(#UD).
AVX FP exceptions are created in a similar fashion (differing only in number of el-
ements) to Legacy SSE and SSE2 instructions capable of generating SIMD floating-
point exceptions.
AVX introduces no new arithmetic operations (AVX floating-point are analogues of
existing Legacy SSE instructions). 
The detailed exception conditions for AVX instructions and legacy SIMD instructions 
(excluding instructions that operates on MMX registers) are described in a number of 
exception class types, depending on the operand syntax and memory operation char-
acteristics. The complete list of SIMD instruction exception class types are defined in 
Chapter 2, “Instruction Format,” of Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 2A.

13.5 DETECTION OF AVX INSTRUCTIONS 
Intel AVX operates on the 256-bit YMM register state. Application detection of new 
instruction extensions operating on the YMM state follows the general procedural flow 
in Figure 13-1.

Table 13-10.  Instructions Not Requiring Explicit Memory Alignment

(V)MOVDQU xmm, m128

(V)MOVDQU m128, m128

(V)MOVUPS xmm, m128

(V)MOVUPS m128, xmm

(V)MOVUPD xmm, m128

(V)MOVUPD m128, xmm

VMOVDQU ymm, m256

VMOVDQU m256, ymm

VMOVUPS ymm, m256

VMOVUPS m256, ymm

VMOVUPD ymm, m256

VMOVUPD m256, ymm
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Prior to using AVX, the application must identify that the operating system supports 
the XGETBV instruction, the YMM register state, in addition to processor’s support for 
YMM state management using XSAVE/XRSTOR and AVX instructions. The following 
simplified sequence accomplishes both and is strongly recommended.
1) Detect CPUID.1:ECX.OSXSAVE[bit 27] = 1 (XGETBV enabled for application use1)
2) Issue XGETBV and verify that XCR0[2:1] = ‘11b’ (XMM state and YMM state are 
enabled by OS).
3) detect CPUID.1:ECX.AVX[bit 28] = 1 (AVX instructions supported).
(Step 3 can be done in any order relative to 1 and 2)

1. If CPUID.01H:ECX.OSXSAVE reports 1, it also indirectly implies the processor supports XSAVE, 
XRSTOR, XGETBV, processor extended state bit vector XCR0. Thus an application may streamline 
the checking of CPUID feature flags for XSAVE and OSXSAVE. XSETBV is a privileged instruc-
tion.

Figure 13-1.  General Procedural Flow of Application Detection of AVX

Implied HW support for

Check enabled state in

XFEM via XGETBV

Check feature flag 
for Instruction set
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XSAVE, XRSTOR, XGETBV, XCR0
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The following pseudocode illustrates this recommended application AVX detection 
process: 

Note: It is unwise for an application to rely exclusively on CPUID.1:ECX.AVX[bit 28] 
or at all on CPUID.1:ECX.XSAVE[bit 26]: These indicate hardware support but not 
operating system support. If YMM state management is not enabled by an operating 
systems, AVX instructions will #UD regardless of CPUID.1:ECX.AVX[bit 28]. 
“CPUID.1:ECX.XSAVE[bit 26] = 1” does not guarantee the OS actually uses the 
XSAVE process for state management.

13.5.1 Detection of VEX-Encoded AES and VPCLMULQDQ
VAESDEC/VAESDECLAST/VAESENC/VAESENCLAST/VAESIMC/VAESKEYGENASSIST 
instructions operate on YMM states. The detection sequence must combine checking 

Example 13-1.  Detection of AVX Instruction 

INT supports_AVX()
{ mov eax, 1

cpuid
and ecx, 018000000H
cmp ecx, 018000000H; check both OSXSAVE and AVX feature flags
 jne not_supported
; processor supports AVX instructions and XGETBV is enabled by OS
mov ecx, 0; specify 0 for XCR0 register
XGETBV ; result in EDX:EAX
and eax, 06H
cmp eax, 06H; check OS has enabled both XMM and YMM state support
jne not_supported
mov eax, 1
jmp done

NOT_SUPPORTED:
mov eax, 0

done:
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for CPUID.1:ECX.AES[bit 25] = 1 and the sequence for detection application support 
for AVX. 

Similarly, the detection sequence for VPCLMULQDQ must combine checking for 
CPUID.1:ECX.PCLMULQDQ[bit 1] = 1 and the sequence for detection application 
support for AVX. 
This is shown in the pseudocode: 

Example 13-2.  Detection of VEX-Encoded AESNI Instructions 

INT supports_VAESNI()
{ mov eax, 1

cpuid
and ecx, 01A000000H
cmp ecx, 01A000000H; check OSXSAVE AVX and AESNI feature flags
 jne not_supported
; processor supports AVX and VEX-encoded AESNI and XGETBV is enabled by OS
mov ecx, 0; specify 0 for XCR0 register
XGETBV ; result in EDX:EAX
and eax, 06H
cmp eax, 06H; check OS has enabled both XMM and YMM state support
jne not_supported
mov eax, 1
jmp done

NOT_SUPPORTED:
mov eax, 0

done:

Example 13-3.  Detection of VEX-Encoded AESNI Instructions 

INT supports_VPCLMULQDQ)
{ mov eax, 1

cpuid
and ecx, 018000002H
cmp ecx, 018000002H; check OSXSAVE AVX and PCLMULQDQ feature flags
 jne not_supported
; processor supports AVX and VEX-encoded PCLMULQDQ and XGETBV is enabled by OS
mov ecx, 0; specify 0 for XCR0 register
XGETBV ; result in EDX:EAX
and eax, 06H
cmp eax, 06H; check OS has enabled both XMM and YMM state support
jne not_supported
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13.6 EMULATION
Setting the CR0.EMbit to 1 provides a technique to emulate Legacy SSE floating-
point instruction sets in software. This technique is not supported with AVX instruc-
tions. 
If an operating system wishes to emulate AVX instructions, set XCR0[2:1] to zero. 
This will cause AVX instructions to #UD.

13.7 WRITING AVX FLOATING-POINT EXCEPTION 
HANDLERS

AVX floating-point exceptions are handled in an entirely analogous way to Legacy 
SSE floating-point exceptions. To handle unmasked SIMD floating-point exceptions, 
the operating system or executive must provide an exception handler. The section 
titled “SSE and SSE2 SIMD Floating-Point Exceptions” in Chapter 11, “Programming 
with Streaming SIMD Extensions 2 (SSE2),” describes the SIMD floating-point excep-
tion classes and gives suggestions for writing an exception handler to handle them.
To indicate that the operating system provides a handler for SIMD floating-point 
exceptions (#XM), the CR4.OSXMMEXCPT flag (bit 10) must be set.

13.8 HALF-PRECISION FLOATING-POINT CONVERSION
VCVTPH2PS and VCVTPS2PH are two instructions supporting half-precision floating-
point data type conversion to and from single-precision floating-point data types. 
Half-precision floating-point values are not used by the processor directly for arith-
metic operations. But the conversion operation are subject to SIMD floating-point 
exceptions. 

Additionally, The conversion operations of VCVTPS2PH allow programmer to specify 
rounding control using control fields in an immediate byte. The effects of the imme-
diate byte are listed in Table 13-11.
Rounding control can use Imm[2] to select an override RC field specified in Imm[1:0] 
or use MXCSR setting. 

mov eax, 1
jmp done

NOT_SUPPORTED:
mov eax, 0

done:

Example 13-3.  Detection of VEX-Encoded AESNI Instructions 
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Specific SIMD floating-point exceptions that can occur in conversion operations are 
shown in Table 13-12 and Table 13-13.

VCVTPS2PH can cause denormal exceptions if the value of the source operand is

Table 13-11.  Immediate Byte Encoding for 16-bit Floating-Point Conversion 
Instructions

Bits Field Name/value Description Comment

Imm[1:0] RC=00B Round to nearest even If Imm[2] = 0

RC=01B Round down

RC=10B Round up

RC=11B Truncate

Imm[2] MS1=0 Use imm[1:0] for round-
ing

Ignore MXCSR.RC 

MS1=1 Use MXCSR.RC for round-
ing

Imm[7:3] Ignored Ignored by processor

Table 13-12.  Non-Numerical Behavior for VCVTPH2PS, VCVTPS2PH

Source Operands Masked Result Unmasked Result

QNaN QNaN11

NOTES:
1. The half precision output QNaN1 is created from the single precision input QNaN as follows:

the sign bit is preserved, the 8-bit exponent FFH is replaced by the 5-bit exponent 1FH, and
the 24-bit significand is truncated to an 11-bit significand by removing its 14 least significant
bits.

QNaN11 (not an exception)

SNaN QNaN12

2. The half precision output QNaN1 is created from the single precision input SNaN as follows:
the sign bit is preserved, the 8-bit exponent FFH is replaced by the 5-bit exponent 1FH, and
the 24-bit significand is truncated to an 11-bit significand by removing its 14 least significant
bits. The second most significant bit of the significand is changed from 0 to 1 to convert the
signaling NaN into a quiet NaN.

None

Table 13-13.  Invalid Operation for VCVTPH2PS, VCVTPS2PH 

Instruction  Condition Masked Result Unmasked Result

VCVTPH2PS SRC = NaN See Table 13-12 #I=1

VCVTPS2PH SRC = NaN SeeTable 13-12 #I=1
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denormal relative to the numerical range represented by the source format (see
Table 13-14).

VCVTPS2PH can cause an underflow exception if the result of the conversion is less
than the underflow threshold for half-precision floating-point data type , i.e. | x | <
1.0 ∗ 2−14. 

Table 13-14.  Denormal Condition for VCVTPS2PH 

Instruction  Condition Masked Result1

NOTES:
1. Masked and unmasked result is shown in Table 13-12.

Unmasked Result

VCVTPH2PS SRC is denormal relative 
to input format1

res = Result rounded to the 
destination precision and using the 
bounded exponent, but only if no 
unmasked post-computation 
exception occurs.
#DE unchanged

Same as masked 
result. 

VCVTPS2PH SRC is denormal relative 
to input format1

res = Result rounded to the 
destination precision and using the 
bounded exponent, but only if no 
unmasked post-computation 
exception occurs.
#DE=1

#DE=1
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VCVTPS2PH can cause an overflow exception if the result of the conversion is great-
er than the maximum representable value for half-precision floating-point data
type, i.e. | x | ≥ 1.0 ∗ 216. 

VCVTPS2PH can cause an inexact exception if the result of the conversion is not
exactly representable in the destination format. 

Table 13-15.  Underflow Condition for VCVTPS2PH 

Instruction  Condition Masked Result1

NOTES:
1. Masked and unmasked result is shown in Table 13-12.

Unmasked Result

VCVTPS2PH Result < smallest 
destination precision 
finial normal value2

2. If FTZ is not set ( MXCSR.FTZ = 1 ), masked and unmasked result is shown in Table 13-12. If FTZ is
set (MXCSR.FTZ = 1), inexact result = +0 or - 0, #PE and #UE are reported.

Result = +0 or -0, denormal, 
normal.
#UE =1. 
#PE = 1 if the result is inexact.

#UE=1,
#PE = 1 if the 
result is inexact.

Table 13-16.  Overflow Condition for VCVTPS2PH 

Instruction  Condition Masked Result Unmasked Result

VCVTPS2PH Result ≥ largest 
destination precision 
finial normal value1

Result = +Inf or -Inf.
#OE=1.

#OE=1.

Table 13-17.  Inexact Condition for VCVTPS2PH 

Instruction  Condition Masked Result1 Unmasked Result

VCVTPS2PH The result is not 
representable in 
the destination 
format

res = Result rounded to the 
destination precision and 
using the bounded 
exponent, but only if no 
unmasked underflow or 
overflow conditions occur 
(this exception can occur in 
the presence of a masked 
underflow or overflow).
#PE=1.

Only if no underflow/overflow 
condition occurred, or if the 
corresponding exceptions are 
masked:
• Set #OE if masked overflow 

and set result as described 
above for masked overflow.

• Set #UE if masked underflow 
and set result as described 
above for masked underflow.

If neither underflow nor 
overflow, result equals the result 
rounded to the destination 
precision and using the bounded 
exponent set #PE = 1.
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13.8.1 Detection of F16C Instructions 
Application using float 16 instruction must follow a detection sequence similar to AVX 
to ensure:
• The OS has enabled YMM state management support,
• The processor support AVX as indicated by the CPUID feature flag, i.e. 

CPUID.01H:ECX.AVX[bit 28] = 1.
• The processor support 16-bit floating-point conversion instructions via a CPUID 

feature flag (CPUID.01H:ECX.F16C[bit 29] = 1).
Application detection of Float-16 conversion instructions follow the general proce-
dural flow in Figure 13-2.

----------------------------------------------------------------------------------------
INT supports_f16c()
{ ; result in eax

mov eax, 1
cpuid
and ecx, 038000000H

NOTES:
1. If a source is denormal relative to input format with DM masked and at least one of PM or UM

unmasked, then an exception will be raised with DE, UE and PE set.

Figure 13-2.  General Procedural Flow of Application Detection of Float-16 
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cmp ecx, 038000000H; check OSXSAVE, AVX, F16C feature flags
 jne not_supported
; processor supports AVX,F16C instructions and XGETBV is enabled by OS
mov ecx, 0; specify 0 for XFEATURE_ENABLED_MASK register
XGETBV; result in EDX:EAX
and eax, 06H
cmp eax, 06H; check OS has enabled both XMM and YMM state support
jne not_supported
mov eax, 1
jmp done
NOT_SUPPORTED:
mov eax, 0
done:

}
-------------------------------------------------------------------------------
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CHAPTER 14
INPUT/OUTPUT

In addition to transferring data to and from external memory, IA-32 processors can 
also transfer data to and from input/output ports (I/O ports). I/O ports are created in 
system hardware by circuity that decodes the control, data, and address pins on the 
processor. These I/O ports are then configured to communicate with peripheral 
devices. An I/O port can be an input port, an output port, or a bidirectional port. 
Some I/O ports are used for transmitting data, such as to and from the transmit and 
receive registers, respectively, of a serial interface device. Other I/O ports are used 
to control peripheral devices, such as the control registers of a disk controller.

This chapter describes the processor’s I/O architecture. The topics discussed include:
• I/O port addressing
• I/O instructions
• I/O protection mechanism

14.1 I/O PORT ADDRESSING
The processor permits applications to access I/O ports in either of two ways:
• Through a separate I/O address space
• Through memory-mapped I/O

Accessing I/O ports through the I/O address space is handled through a set of I/O 
instructions and a special I/O protection mechanism. Accessing I/O ports through 
memory-mapped I/O is handled with the processors general-purpose move and 
string instructions, with protection provided through segmentation or paging. I/O 
ports can be mapped so that they appear in the I/O address space or the physical-
memory address space (memory mapped I/O) or both.

One benefit of using the I/O address space is that writes to I/O ports are guaranteed 
to be completed before the next instruction in the instruction stream is executed. 
Thus, I/O writes to control system hardware cause the hardware to be set to its new 
state before any other instructions are executed. See Section 14.6, “Ordering I/O,” 
for more information on serializing of I/O operations.

14.2 I/O PORT HARDWARE
From a hardware point of view, I/O addressing is handled through the processor’s 
address lines. For the P6 family, Pentium 4, and Intel Xeon processors, the request 
command lines signal whether the address lines are being driven with a memory 
address or an I/O address; for Pentium processors and earlier IA-32 processors, the 
Vol. 1 14-1



INPUT/OUTPUT
M/IO# pin indicates a memory address (1) or an I/O address (0). When the separate 
I/O address space is selected, it is the responsibility of the hardware to decode the 
memory-I/O bus transaction to select I/O ports rather than memory. Data is trans-
mitted between the processor and an I/O device through the data lines.

14.3 I/O ADDRESS SPACE
The processor’s I/O address space is separate and distinct from the physical-memory 
address space. The I/O address space consists of 216 (64K) individually addressable 
8-bit I/O ports, numbered 0 through FFFFH. I/O port addresses 0F8H through 0FFH 
are reserved. Do not assign I/O ports to these addresses. The result of an attempt to 
address beyond the I/O address space limit of FFFFH is implementation-specific; see 
the Developer’s Manuals for specific processors for more details.

Any two consecutive 8-bit ports can be treated as a 16-bit port, and any four consec-
utive ports can be a 32-bit port. In this manner, the processor can transfer 8, 16, or 
32 bits to or from a device in the I/O address space. Like words in memory, 16-bit 
ports should be aligned to even addresses (0, 2, 4, ...) so that all 16 bits can be 
transferred in a single bus cycle. Likewise, 32-bit ports should be aligned to 
addresses that are multiples of four (0, 4, 8, ...). The processor supports data trans-
fers to unaligned ports, but there is a performance penalty because one or more 
extra bus cycle must be used.

The exact order of bus cycles used to access unaligned ports is undefined and is not 
guaranteed to remain the same in future IA-32 processors. If hardware or software 
requires that I/O ports be written to in a particular order, that order must be specified 
explicitly. For example, to load a word-length I/O port at address 2H and then 
another word port at 4H, two word-length writes must be used, rather than a single 
doubleword write at 2H.

Note that the processor does not mask parity errors for bus cycles to the I/O address 
space. Accessing I/O ports through the I/O address space is thus a possible source of 
parity errors.

14.3.1 Memory-Mapped I/O
I/O devices that respond like memory components can be accessed through the 
processor’s physical-memory address space (see Figure 14-1). When using memory-
mapped I/O, any of the processor’s instructions that reference memory can be used 
to access an I/O port located at a physical-memory address. For example, the MOV 
instruction can transfer data between any register and a memory-mapped I/O port. 
The AND, OR, and TEST instructions may be used to manipulate bits in the control 
and status registers of a memory-mapped peripheral devices.

When using memory-mapped I/O, caching of the address space mapped for I/O 
operations must be prevented. With the Pentium 4, Intel Xeon, and P6 family proces-
sors, caching of I/O accesses can be prevented by using memory type range regis-
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ters (MTRRs) to map the address space used for the memory-mapped I/O as 
uncacheable (UC). See Chapter 11, “Memory Cache Control” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3A, for a complete discus-
sion of the MTRRs.

The Pentium and Intel486 processors do not support MTRRs. Instead, they provide 
the KEN# pin, which when held inactive (high) prevents caching of all addresses sent 
out on the system bus. To use this pin, external address decoding logic is required to 
block caching in specific address spaces.

All the IA-32 processors that have on-chip caches also provide the PCD (page-level 
cache disable) flag in page table and page directory entries. This flag allows caching 
to be disabled on a page-by-page basis. See “Page-Directory and Page-Table Entries” 
in Chapter 4 of in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3A.

14.4 I/O INSTRUCTIONS
The processor’s I/O instructions provide access to I/O ports through the I/O address 
space. (These instructions cannot be used to access memory-mapped I/O ports.) 
There are two groups of I/O instructions:
• Those that transfer a single item (byte, word, or doubleword) between an I/O 

port and a general-purpose register

Figure 14-1.  Memory-Mapped I/O
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• Those that transfer strings of items (strings of bytes, words, or doublewords) 
between an I/O port and memory

The register I/O instructions IN (input from I/O port) and OUT (output to I/O port) 
move data between I/O ports and the EAX register (32-bit I/O), the AX register 
(16-bit I/O), or the AL (8-bit I/O) register. The address of the I/O port can be given 
with an immediate value or a value in the DX register. 

The string I/O instructions INS (input string from I/O port) and OUTS (output string 
to I/O port) move data between an I/O port and a memory location. The address of 
the I/O port being accessed is given in the DX register; the source or destination 
memory address is given in the DS:ESI or ES:EDI register, respectively.

When used with one of the repeat prefixes (such as REP), the INS and OUTS instruc-
tions perform string (or block) input or output operations. The repeat prefix REP 
modifies the INS and OUTS instructions to transfer blocks of data between an I/O 
port and memory. Here, the ESI or EDI register is incremented or decremented 
(according to the setting of the DF flag in the EFLAGS register) after each byte, word, 
or doubleword is transferred between the selected I/O port and memory.

See the references for IN, INS, OUT, and OUTS in Chapter 3 and Chapter 4 of the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A & 2B, 
for more information on these instructions.

14.5 PROTECTED-MODE I/O
When the processor is running in protected mode, the following protection mecha-
nisms regulate access to I/O ports:
• When accessing I/O ports through the I/O address space, two protection devices 

control access:

— The I/O privilege level (IOPL) field in the EFLAGS register

— The I/O permission bit map of a task state segment (TSS)
• When accessing memory-mapped I/O ports, the normal segmentation and 

paging protection and the MTRRs (in processors that support them) also affect 
access to I/O ports. See Chapter 5, “Protection” and Chapter 11, “Memory Cache 
Control” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3A, for a complete discussion of memory protection. 

The following sections describe the protection mechanisms available when accessing 
I/O ports in the I/O address space with the I/O instructions.

14.5.1 I/O Privilege Level
In systems where I/O protection is used, the IOPL field in the EFLAGS register 
controls access to the I/O address space by restricting use of selected instructions. 
This protection mechanism permits the operating system or executive to set the priv-
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ilege level needed to perform I/O. In a typical protection ring model, access to the 
I/O address space is restricted to privilege levels 0 and 1. Here, kernel and the device 
drivers are allowed to perform I/O, while less privileged device drivers and applica-
tion programs are denied access to the I/O address space. Application programs 
must then make calls to the operating system to perform I/O.

The following instructions can be executed only if the current privilege level (CPL) of 
the program or task currently executing is less than or equal to the IOPL: IN, INS, 
OUT, OUTS, CLI (clear interrupt-enable flag), and STI (set interrupt-enable flag). 
These instructions are called I/O sensitive instructions, because they are sensitive 
to the IOPL field. Any attempt by a less privileged program or task to use an I/O 
sensitive instruction results in a general-protection exception (#GP) being signaled. 
Because each task has its own copy of the EFLAGS register, each task can have a 
different IOPL.

The I/O permission bit map in the TSS can be used to modify the effect of the IOPL 
on I/O sensitive instructions, allowing access to some I/O ports by less privileged 
programs or tasks (see Section 14.5.2, “I/O Permission Bit Map”).

A program or task can change its IOPL only with the POPF and IRET instructions; 
however, such changes are privileged. No procedure may change the current IOPL 
unless it is running at privilege level 0. An attempt by a less privileged procedure to 
change the IOPL does not result in an exception; the IOPL simply remains 
unchanged.

The POPF instruction also may be used to change the state of the IF flag (as can the 
CLI and STI instructions); however, the POPF instruction in this case is also I/O sensi-
tive. A procedure may use the POPF instruction to change the setting of the IF flag 
only if the CPL is less than or equal to the current IOPL. An attempt by a less privi-
leged procedure to change the IF flag does not result in an exception; the IF flag 
simply remains unchanged.

14.5.2 I/O Permission Bit Map
The I/O permission bit map is a device for permitting limited access to I/O ports by 
less privileged programs or tasks and for tasks operating in virtual-8086 mode. The 
I/O permission bit map is located in the TSS (see Figure 14-2) for the currently 
running task or program. The address of the first byte of the I/O permission bit map 
is given in the I/O map base address field of the TSS. The size of the I/O permission 
bit map and its location in the TSS are variable. 
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Because each task has its own TSS, each task has its own I/O permission bit map. 
Access to individual I/O ports can thus be granted to individual tasks.

If in protected mode and the CPL is less than or equal to the current IOPL, the 
processor allows all I/O operations to proceed. If the CPL is greater than the IOPL or 
if the processor is operating in virtual-8086 mode, the processor checks the I/O 
permission bit map to determine if access to a particular I/O port is allowed. Each bit 
in the map corresponds to an I/O port byte address. For example, the control bit for 
I/O port address 29H in the I/O address space is found at bit position 1 of the sixth 
byte in the bit map. Before granting I/O access, the processor tests all the bits corre-
sponding to the I/O port being addressed. For a doubleword access, for example, the 
processors tests the four bits corresponding to the four adjacent 8-bit port 
addresses. If any tested bit is set, a general-protection exception (#GP) is signaled. 
If all tested bits are clear, the I/O operation is allowed to proceed.

Because I/O port addresses are not necessarily aligned to word and doubleword 
boundaries, the processor reads two bytes from the I/O permission bit map for every 
access to an I/O port. To prevent exceptions from being generated when the ports 
with the highest addresses are accessed, an extra byte needs to included in the TSS 
immediately after the table. This byte must have all of its bits set, and it must be 
within the segment limit.

It is not necessary for the I/O permission bit map to represent all the I/O addresses. 
I/O addresses not spanned by the map are treated as if they had set bits in the map. 
For example, if the TSS segment limit is 10 bytes past the bit-map base address, the 
map has 11 bytes and the first 80 I/O ports are mapped. Higher addresses in the I/O 
address space generate exceptions.

Figure 14-2.  I/O Permission Bit Map
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followed by a 
byte with all 
bits set.
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If the I/O bit map base address is greater than or equal to the TSS segment limit, 
there is no I/O permission map, and all I/O instructions generate exceptions when 
the CPL is greater than the current IOPL.

14.6 ORDERING I/O
When controlling I/O devices it is often important that memory and I/O operations be 
carried out in precisely the order programmed. For example, a program may write a 
command to an I/O port, then read the status of the I/O device from another I/O 
port. It is important that the status returned be the status of the device after it 
receives the command, not before. 

When using memory-mapped I/O, caution should be taken to avoid situations in 
which the programmed order is not preserved by the processor. To optimize perfor-
mance, the processor allows cacheable memory reads to be reordered ahead of buff-
ered writes in most situations. Internally, processor reads (cache hits) can be 
reordered around buffered writes. When using memory-mapped I/O, therefore, is 
possible that an I/O read might be performed before the memory write of a previous 
instruction. The recommended method of enforcing program ordering of memory-
mapped I/O accesses with the Pentium 4, Intel Xeon, and P6 family processors is to 
use the MTRRs to make the memory mapped I/O address space uncacheable; for the 
Pentium and Intel486 processors, either the #KEN pin or the PCD flags can be used 
for this purpose (see Section 14.3.1, “Memory-Mapped I/O”). 

When the target of a read or write is in an uncacheable region of memory, memory 
reordering does not occur externally at the processor’s pins (that is, reads and writes 
appear in-order). Designating a memory mapped I/O region of the address space as 
uncacheable insures that reads and writes of I/O devices are carried out in program 
order. See Chapter 11, “Memory Cache Control” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3A, for more information on using 
MTRRs.

Another method of enforcing program order is to insert one of the serializing instruc-
tions, such as the CPUID instruction, between operations. See Chapter 8, “Multiple-
Processor Management” in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3A, for more information on serialization of instructions.

It should be noted that the chip set being used to support the processor (bus 
controller, memory controller, and/or I/O controller) may post writes to uncacheable 
memory which can lead to out-of-order execution of memory accesses. In situations 
where out-of-order processing of memory accesses by the chip set can potentially 
cause faulty memory-mapped I/O processing, code must be written to force synchro-
nization and ordering of I/O operations. Serializing instructions can often be used for 
this purpose.

When the I/O address space is used instead of memory-mapped I/O, the situation is 
different in two respects:
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• The processor never buffers I/O writes. Therefore, strict ordering of I/O 
operations is enforced by the processor. (As with memory-mapped I/O, it is 
possible for a chip set to post writes in certain I/O ranges.)

• The processor synchronizes I/O instruction execution with external bus activity 
(see Table 14-1). 

Table 14-1.  I/O Instruction Serialization

Instruction Being 
Executed

Processor Delays Execution of … Until Completion of …

Current 
Instruction?

Next 
Instruction? Pending Stores? Current Store?

IN Yes Yes

INS Yes Yes

REP INS Yes Yes

OUT Yes Yes Yes

OUTS Yes Yes Yes

REP OUTS Yes Yes Yes
14-8 Vol. 1



CHAPTER 15
PROCESSOR IDENTIFICATION AND

FEATURE DETERMINATION

When writing software intended to run on IA-32 processors, it is necessary to identify 
the type of processor present in a system and the processor features that are avail-
able to an application.

15.1 USING THE CPUID INSTRUCTION
Use the CPUID instruction for processor identification in the Pentium M processor 
family, Pentium 4 processor family, Intel Xeon processor family, P6 family, Pentium 
processor, and later Intel486 processors. This instruction returns the family, model 
and (for some processors) a brand string for the processor that executes the instruc-
tion. It also indicates the features that are present in the processor and give informa-
tion about the processors caches and TLB.

The ID flag (bit 21) in the EFLAGS register indicates support for the CPUID instruc-
tion. If a software procedure can set and clear this flag, the processor executing the 
procedure supports the CPUID instruction. The CPUID instruction will cause the 
invalid opcode exception (#UD) if executed on a processor that does not support it.

To obtain processor identification information, a source operand value is placed in the 
EAX register to select the type of information to be returned. When the CPUID 
instruction is executed, selected information is returned in the EAX, EBX, ECX, and 
EDX registers. For a complete description of the CPUID instruction, tables indicating 
values returned, and example code, see “CPUID—CPUID Identification” in Chapter 3 
of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A.

15.1.1 Notes on Where to Start
For detailed application notes on the instruction, see AP-485, Intel Processor Identi-
fication and the CPUID Instruction (Order Number 241618). This publication provides 
additional information and example source code for use in identifying IA-32 proces-
sors. It also contains guidelines for using the CPUID instruction to help maintain the 
widest range of software compatibility. The following guidelines are among the most 
important, and should always be followed when using the CPUID instruction to deter-
mine available features:
• Always begin by testing for the “GenuineIntel,” message in the EBX, EDX, and 

ECX registers when the CPUID instruction is executed with EAX equal to 0. If the 
processor is not genuine Intel, the feature identification flags may have different 
meanings than are described in Intel documentation.
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• Test feature identification flags individually and do not make assumptions about 
undefined bits.

15.1.2 Identification of Earlier IA-32 Processors
The CPUID instruction is not available in earlier IA-32 processors up through the 
earlier Intel486 processors. For these processors, several other architectural 
features can be exploited to identify the processor.
The settings of bits 12 and 13 (IOPL), 14 (NT), and 15 (reserved) in the EFLAGS 
register are different for Intel’s 32-bit processors than for the Intel 8086 and Intel 
286 processors. By examining the settings of these bits (with the PUSHF/PUSHFD 
and POP/POPFD instructions), an application program can determine whether the 
processor is an 8086, Intel 286, or one of the Intel 32-bit processors:
• 8086 processor — Bits 12 through 15 of the EFLAGS register are always set.
• Intel 286 processor — Bits 12 through 15 are always clear in real-address mode.
• 32-bit processors — In real-address mode, bit 15 is always clear and bits 12 

through 14 have the last value loaded into them. In protected mode, bit 15 is 
always clear, bit 14 has the last value loaded into it, and the IOPL bits depends on 
the current privilege level (CPL). The IOPL field can be changed only if the CPL 
is 0.

Other EFLAG register bits that can be used to differentiate between the 32-bit 
processors:
• Bit 18 (AC) — Implemented only on the Pentium 4, Intel Xeon, P6 family, 

Pentium, and Intel486 processors. The inability to set or clear this bit distin-
guishes an Intel386 processor from the later IA-32 processors.

• Bit 21 (ID) — Determines if the processor is able to execute the CPUID 
instruction. The ability to set and clear this bit indicates that it is a Pentium 4, 
Intel Xeon, P6 family, Pentium, or later-version Intel486 processor.

To determine whether an x87 FPU or NPX is present in a system, applications can 
write to the x87 FPU status and control registers using the FNINIT instruction and 
then verify that the correct values are read back using the FNSTENV instruction. 
After determining that an x87 FPU or NPX is present, its type can then be deter-
mined. In most cases, the processor type will determine the type of FPU or NPX; 
however, an Intel386 processor is compatible with either an Intel 287 or Intel 387 
math coprocessor. 
The method the coprocessor uses to represent ∞ (after the execution of the FINIT, 
FNINIT, or RESET instruction) indicates which coprocessor is present. The Intel 287 
math coprocessor uses the same bit representation for +∞ and −∞; whereas, the 
Intel 387 math coprocessor uses different representations for +∞ and −∞.
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APPENDIX A
EFLAGS CROSS-REFERENCE

A.1 EFLAGS AND INSTRUCTIONS
Table A-2 summarizes how the instructions affect the flags in the EFLAGS register. 
The following codes describe how the flags are affected.

Table A-1.  Codes Describing Flags

T Instruction tests flag.

M Instruction modifies flag (either sets or resets depending on operands).

0 Instruction resets flag.

1 Instruction sets flag.

— Instruction's effect on flag is undefined.

R Instruction restores prior value of flag.

Blank Instruction does not affect flag.

Table A-2.  EFLAGS Cross-Reference

Instruction OF SF ZF AF PF CF TF IF DF NT RF

AAA — — — TM — M

AAD — M M — M —

AAM — M M — M —

AAS — — — TM — M

ADC M M M M M TM

ADD M M M M M M

AND 0 M M — M 0

ARPL M

BOUND

BSF/BSR — — M — — —

BSWAP

BT/BTS/BTR/BTC — — — — M

CALL
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CBW

CLC 0

CLD 0

CLI 0

CLTS

CMC M

CMOVcc T T T T T

CMP M M M M M M

CMPS M M M M M M T

CMPXCHG M M M M M M

CMPXCHG8B M

COMSID 0 0 M 0 M M

COMISS 0 0 M 0 M M

CPUID

CWD

DAA — M M TM M TM

DAS — M M TM M TM

DEC M M M M M

DIV — — — — — —

ENTER

ESC

FCMOVcc T T T

FCOMI, FCOMIP, FUCOMI, 
FUCOMIP

0 0 M 0 M M

HLT

IDIV — — — — — —

IMUL M — — — — M

IN

INC M M M M M

INS T

INT 0 0

Table A-2.  EFLAGS Cross-Reference (Contd.)

Instruction OF SF ZF AF PF CF TF IF DF NT RF
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INTO T 0 0

INVD

INVLPG

UCOMSID 0 0 M 0 M M

UCOMISS 0 0 M 0 M M

IRET R R R R R R R R R T

Jcc T T T T T

JCXZ

JMP

LAHF

LAR M

LDS/LES/LSS/LFS/LGS

LEA

LEAVE

LGDT/LIDT/LLDT/LMSW

LOCK

LODS T

LOOP

LOOPE/LOOPNE T

LSL M

LTR

MONITOR

MWAIT

MOV

MOV control, debug, test — — — — — —

MOVS T

MOVSX/MOVZX

MUL M — — — — M

NEG M M M M M M

NOP

NOT

Table A-2.  EFLAGS Cross-Reference (Contd.)

Instruction OF SF ZF AF PF CF TF IF DF NT RF
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OR 0 M M — M 0

OUT

OUTS T

POP/POPA

POPF R R R R R R R R R R

PUSH/PUSHA/PUSHF

RCL/RCR 1 M TM

RCL/RCR count — TM

RDMSR

RDPMC

RDTSC

REP/REPE/REPNE

RET

ROL/ROR 1 M M

ROL/ROR count — M

RSM M M M M M M M M M M M

SAHF R R R R R

SAL/SAR/SHL/SHR 1 M M M — M M

SAL/SAR/SHL/SHR 
count

— M M — M M

SBB M M M M M TM

SCAS M M M M M M T

SETcc T T T T T

SGDT/SIDT/SLDT/SMSW

SHLD/SHRD — M M — M M

STC 1

STD 1

STI 1

STOS T

STR

SUB M M M M M M

Table A-2.  EFLAGS Cross-Reference (Contd.)

Instruction OF SF ZF AF PF CF TF IF DF NT RF
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TEST 0 M M — M 0

UD2

VERR/VERRW M

WAIT

WBINVD

WRMSR

XADD M M M M M M

XCHG

XLAT 

XOR 0 M M — M 0

Table A-2.  EFLAGS Cross-Reference (Contd.)

Instruction OF SF ZF AF PF CF TF IF DF NT RF
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APPENDIX B
EFLAGS CONDITION CODES

B.1 CONDITION CODES
Table B-1 lists condition codes that can be queried using CMOVcc, FCMOVcc, Jcc, and 
SETcc. Condition codes refer to the setting of one or more status flags (CF, OF, SF, ZF, 
and PF) in the EFLAGS register. In the table below:
• The “Mnemonic” column provides the suffix (cc) added to the instruction to 

specify a test condition. 
• “Condition Tested For” describes the targeted condition. 
• “Instruction Subcode” provides the opcode suffix added to the main opcode to 

specify the test condition. 
• “Status Flags Setting” describes the flag setting. 

Table B-1.  EFLAGS Condition Codes 

Mnemonic (cc) Condition Tested For
Instruction
Subcode Status Flags Setting

O Overflow 0000 OF = 1

NO No overflow 0001 OF = 0

B
NAE

Below
Neither above nor equal

0010 CF = 1

NB
AE

Not below
Above or equal

0011 CF = 0

E
Z

Equal
Zero

0100 ZF = 1

NE
NZ

Not equal
Not zero

0101 ZF = 0

BE
NA

Below or equal
Not above

0110 (CF OR ZF) = 1

NBE
A

Neither below nor equal
Above

0111 (CF OR ZF) = 0

S Sign 1000 SF = 1

NS No sign 1001 SF = 0

P
PE

Parity
Parity even

1010 PF = 1
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Many of the test conditions are described in two different ways. For example, LE (less 
or equal) and NG (not greater) describe the same test condition. Alternate 
mnemonics are provided to make code more intelligible.

The terms “above” and “below” are associated with the CF flag and refer to the rela-
tion between two unsigned integer values. The terms “greater” and “less” are asso-
ciated with the SF and OF flags and refer to the relation between two signed integer 
values.

NP
PO

No parity
Parity odd

1011 PF = 0

L
NGE

Less
Neither greater nor equal

1100 (SF XOR OF) = 1

NL
GE

Not less
Greater or equal

1101 (SF XOR OF) = 0

LE
NG

Less or equal
Not greater

1110 ((SF XOR OF) OR ZF) = 1

NLE
G

Neither less nor equal
Greater

1111 ((SF XOR OF) OR ZF) = 0

Table B-1.  EFLAGS Condition Codes  (Contd.)

Mnemonic (cc) Condition Tested For
Instruction
Subcode Status Flags Setting
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APPENDIX C
FLOATING-POINT EXCEPTIONS SUMMARY

C.1 OVERVIEW
This appendix shows which of the floating-point exceptions can be generated for: 
• x87 FPU instructions  —  see Table C-2
• SSE instructions  —  see Table C-3
• SSE2 instructions  —  see Table C-4
• SSE3 instructions  —  see Table C-5
• SSE4 instructions  —  see Table C-6

Table C-1 lists types of floating-point exceptions that potentially can be generated by 
the x87 FPU and by SSE/SSE2/SSE3 instructions.

The floating point exceptions shown in Table C-1 (except for #D and #IS) are defined 
in IEEE Standard 754-1985 for Binary Floating-Point Arithmetic. See Section 4.9.1, 
“Floating-Point Exception Conditions,” for a detailed discussion of floating-point 
exceptions.

Table C-1.  x87 FPU and SIMD Floating-Point Exceptions

Floating-
point 
Exception Description

#IS Invalid-operation exception for stack underflow or stack overflow (can only be 
generated for x87 FPU instructions)*

#IA or #I Invalid-operation exception for invalid arithmetic operands and unsupported 
formats*

#D Denormal-operand exception

#Z Divide-by-zero exception

#O Numeric-overflow exception

#U Numeric-underflow exception

#P Inexact-result (precision) exception

NOTE:
* The x87 FPU instruction set generates two types of invalid-operation exceptions: #IS (stack

underflow or stack overflow) and #IA (invalid arithmetic operation due to invalid arithmetic
operands or unsupported formats). SSE/SSE2/SSE3 instructions potentially generate #I (invalid
operation exceptions due to invalid arithmetic operands or unsupported formats).
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C.2 X87 FPU INSTRUCTIONS
Table C-2 lists the x87 FPU instructions in alphabetical order. For each instruction, it 
summarizes the floating-point exceptions that the instruction can generate.

Table C-2.  Exceptions Generated with x87 FPU Floating-Point Instructions

Mnemonic Instruction #IS #IA #D #Z #O #U #P

F2XM1 Exponential Y Y Y Y Y

FABS Absolute value Y

FADD(P) Add floating-point Y Y Y Y Y Y

FBLD BCD load Y

FBSTP BCD store and pop Y Y Y

FCHS Change sign Y

FCLEX Clear exceptions

FCMOVcc Floating-point conditional 
move

Y

FCOM, FCOMP, FCOMPP Compare floating-point Y Y Y

FCOMI, FCOMIP, FUCOMI, 
FUCOMIP

Compare floating-point and 
set EFLAGS

Y Y Y

FCOS Cosine Y Y Y Y

FDECSTP Decrement stack pointer

FDIV(R)(P) Divide floating-point Y Y Y Y Y Y Y

FFREE Free register

FIADD Integer add Y Y Y Y Y Y

FICOM(P) Integer compare Y Y Y

FIDIV Integer divide Y Y Y Y Y Y

FIDIVR Integer divide reversed Y Y Y Y Y Y Y

FILD Integer load Y

FIMUL Integer multiply Y Y Y Y Y Y

FINCSTP Increment stack pointer

FINIT Initialize processor

FIST(P) Integer store Y Y Y

FISTTP Truncate to integer 
(SSE3 instruction)

Y Y Y

FISUB(R) Integer subtract Y Y Y Y Y Y
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FLD extended or stack Load floating-point Y

FLD single or double Load floating-point Y Y Y

FLD1 Load + 1.0 Y

FLDCW Load Control word Y Y Y Y Y Y Y

FLDENV Load environment Y Y Y Y Y Y Y

FLDL2E Load log2e Y

FLDL2T Load log210 Y

FLDLG2 Load log102 Y

FLDLN2 Load loge2 Y

FLDPI Load π Y

FLDZ Load + 0.0 Y

FMUL(P) Multiply floating-point Y Y Y Y Y Y

FNOP No operation

FPATAN Partial arctangent Y Y Y Y Y

FPREM Partial remainder Y Y Y Y

FPREM1 IEEE partial remainder Y Y Y Y

FPTAN Partial tangent Y Y Y Y Y

FRNDINT Round to integer Y Y Y Y

FRSTOR Restore state Y Y Y Y Y Y Y

FSAVE Save state

FSCALE Scale Y Y Y Y Y Y

FSIN Sine Y Y Y Y Y

FSINCOS Sine and cosine Y Y Y Y Y

FSQRT Square root Y Y Y Y

FST(P) stack or extended Store floating-point Y

FST(P) single or double Store floating-point Y Y Y Y Y

FSTCW Store control word

FSTENV Store environment

FSTSW (AX) Store status word

FSUB(R)(P) Subtract floating-point Y Y Y Y Y Y

FTST Test Y Y Y

Table C-2.  Exceptions Generated with x87 FPU Floating-Point Instructions (Contd.)

Mnemonic Instruction #IS #IA #D #Z #O #U #P
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C.3 SSE INSTRUCTIONS
Table C-3 lists SSE instructions with at least one of the following characteristics:
• have floating-point operands
• generate floating-point results
• read or write floating-point status and control information

The table also summarizes the floating-point exceptions that each instruction can 
generate.

FUCOM(P)(P) Unordered compare floating-
point

Y Y Y

FWAIT CPU Wait

FXAM Examine

FXCH Exchange registers Y

FXTRACT Extract Y Y Y Y

FYL2X Logarithm Y Y Y Y Y Y Y

FYL2XP1 Logarithm epsilon Y Y Y Y Y Y

Table C-3.  Exceptions Generated with SSE Instructions

Mnemonic Instruction #I #D #Z #O #U #P

ADDPS Packed add. Y Y Y Y Y

ADDSS Scalar add. Y Y Y Y Y

ANDNPS Packed logical INVERT and 
AND.

ANDPS Packed logical AND.

CMPPS Packed compare. Y Y

CMPSS Scalar compare. Y Y

COMISS Scalar ordered compare lower 
SP FP numbers and set the 
status flags.

Y Y

CVTPI2PS Convert two 32-bit signed 
integers from MM2/Mem to 
two SP FP.

Y

Table C-2.  Exceptions Generated with x87 FPU Floating-Point Instructions (Contd.)

Mnemonic Instruction #IS #IA #D #Z #O #U #P
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CVTPS2PI Convert lower two SP FP from 
XMM/Mem to two 32-bit 
signed integers in MM using 
rounding specified by MXCSR.

Y Y

CVTSI2SS Convert one 32-bit signed 
integer from Integer Reg/Mem 
to one SP FP.

Y

CVTSS2SI Convert one SP FP from 
XMM/Mem to one 32-bit 
signed integer using rounding 
mode specified by MXCSR, and 
move the result to an integer 
register. 

Y Y

CVTTPS2PI Convert two SP FP from 
XMM2/Mem to two 32-bit 
signed integers in MM1 using 
truncate.

Y Y

CVTTSS2SI Convert lowest SP FP from 
XMM/Mem to one 32-bit 
signed integer using truncate, 
and move the result to an 
integer register. 

Y Y

DIVPS Packed divide. Y Y Y Y Y Y

DIVSS Scalar divide. Y Y Y Y Y Y

LDMXCSR Load control/status word.

MAXPS Packed maximum. Y Y

MAXSS Scalar maximum. Y Y

MINPS Packed minimum. Y Y

MINSS Scalar minimum. Y Y

MOVAPS Move four packed SP values.

MOVHLPS Move packed SP high to low.

MOVHPS Move two packed SP values 
between memory and the high 
half of an XMM register.

MOVLHPS Move packed SP low to high.

Table C-3.  Exceptions Generated with SSE Instructions (Contd.)

Mnemonic Instruction #I #D #Z #O #U #P
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MOVLPS Move two packed SP values 
between memory and the low 
half of an XMM register.

MOVMSKPS Move sign mask to r32.

MOVSS Move scalar SP number 
between an XMM register and 
memory or a second XMM 
register.

MOVUPS Move unaligned packed data.

MULPS Packed multiply. Y Y Y Y Y

MULSS Scalar multiply. Y Y Y Y Y

ORPS Packed OR.

RCPPS Packed reciprocal.

RCPSS Scalar reciprocal.

RSQRTPS Packed reciprocal square root.

RSQRTSS Scalar reciprocal square root.

SHUFPS Shuffle.

SQRTPS Square Root of the packed SP 
FP numbers.

Y Y Y

SQRTSS Scalar square root. Y Y Y

STMXCSR Store control/status word.

SUBPS Packed subtract. Y Y Y Y Y

SUBSS Scalar subtract. Y Y Y Y Y

UCOMISS Unordered compare lower SP 
FP numbers and set the status 
flags.

Y Y

UNPCKHPS Interleave SP FP numbers.

UNPCKLPS Interleave SP FP numbers.

XORPS Packed XOR.

Table C-3.  Exceptions Generated with SSE Instructions (Contd.)

Mnemonic Instruction #I #D #Z #O #U #P
C-6 Vol. 1



FLOATING-POINT EXCEPTIONS SUMMARY
C.4 SSE2 INSTRUCTIONS
Table C-4 lists SSE2 instructions with at least one of the following characteristics:
• floating-point operands
• floating point results

For each instruction, the table summarizes the floating-point exceptions that the 
instruction can generate.

Table C-4.  Exceptions Generated with SSE2 Instructions

Instruction Description #I #D #Z #O #U #P

ADDPD Add two packed DP FP 
numbers from XMM2/Mem to 
XMM1.

Y Y Y Y Y

ADDSD Add the lower DP FP number 
from XMM2/Mem to XMM1.

Y Y Y Y Y

ANDNPD Invert the 128 bits in 
XMM1and then AND the result 
with 128 bits from 
XMM2/Mem.

ANDPD Logical And of 128 bits from 
XMM2/Mem to XMM1 register.

CMPPD Compare packed DP FP 
numbers from XMM2/Mem to 
packed DP FP numbers in 
XMM1 register using imm8 as 
predicate.

Y Y

CMPSD Compare lowest DP FP number 
from XMM2/Mem to lowest DP 
FP number in XMM1 register 
using imm8 as predicate.

Y Y

COMISD Compare lower DP FP number 
in XMM1 register with lower 
DP FP number in XMM2/Mem 
and set the status flags 
accordingly

Y Y

CVTDQ2PS Convert four 32-bit signed 
integers from XMM/Mem to 
four SP FP.

Y

CVTPS2DQ Convert four SP FP from 
XMM/Mem to four 32-bit 
signed integers in XMM using 
rounding specified by MXCSR.

Y Y
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CVTTPS2DQ Convert four SP FP from 
XMM/Mem to four 32-bit 
signed integers in XMM using 
truncate.

Y Y

CVTDQ2PD Convert two 32-bit signed 
integers in XMM2/Mem to 2 
DP FP in xmm1 using rounding 
specified by MXCSR.

CVTPD2DQ Convert two DP FP from 
XMM2/Mem to two 32-bit 
signed integers in xmm1 using 
rounding specified by MXCSR.

Y Y

CVTPD2PI Convert lower two DP FP from 
XMM/Mem to two 32-bit 
signed integers in MM using 
rounding specified by MXCSR.

Y Y

CVTPD2PS Convert two DP FP to two SP 
FP.

Y Y Y Y Y

CVTPI2PD Convert two 32-bit signed 
integers from MM2/Mem to 
two DP FP.

 

CVTPS2PD Convert two SP FP to two DP 
FP.

Y Y

CVTSD2SI Convert one DP FP from 
XMM/Mem to one 32 bit 
signed integer using rounding 
mode specified by MXCSR, and 
move the result to an integer 
register. 

Y Y

CVTSD2SS Convert scalar DP FP to scalar 
SP FP.

Y Y Y Y Y

CVTSI2SD Convert one 32-bit signed 
integer from Integer Reg/Mem 
to one DP FP.

 

CVTSS2SD Convert scalar SP FP to scalar 
DP FP.

Y Y

Table C-4.  Exceptions Generated with SSE2 Instructions (Contd.)

Instruction Description #I #D #Z #O #U #P
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CVTTPD2DQ Convert two DP FP from 
XMM2/Mem to two 32-bit 
signed integers in XMM1 using 
truncate.

Y Y

CVTTPD2PI Convert two DP FP from 
XMM2/Mem to two 32-bit 
signed integers in MM1 using 
truncate.

Y Y

CVTTSD2SI Convert lowest DP FP from 
XMM/Mem to one 32 bit 
signed integer using truncate, 
and move the result to an 
integer register. 

Y Y

DIVPD Divide packed DP FP numbers 
in XMM1 by XMM2/Mem

Y Y Y Y Y Y

DIVSD Divide lower DP FP numbers in 
XMM1 by XMM2/Mem

Y Y Y Y Y Y

MAXPD Return the maximum DP FP 
numbers between XMM2/Mem 
and XMM1.

Y Y

MAXSD Return the maximum DP FP 
number between the lower DP 
FP numbers from XMM2/Mem 
and XMM1.

Y Y

MINPD Return the minimum DP 
numbers between XMM2/Mem 
and XMM1.

Y Y

MINSD Return the minimum DP FP 
number between the lowest 
DP FP numbers from 
XMM2/Mem and XMM1.

Y Y

MOVAPD Move 128 bits representing 2 
packed DP data from 
XMM2/Mem to XMM1 register.

Or Move 128 bits representing 
2 packed DP from XMM1 
register to XMM2/Mem.

Table C-4.  Exceptions Generated with SSE2 Instructions (Contd.)

Instruction Description #I #D #Z #O #U #P
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FLOATING-POINT EXCEPTIONS SUMMARY
MOVHPD Move 64 bits representing one 
DP operand from Mem to 
upper field of XMM register.

Or move 64 bits representing 
one DP operand from upper 
field of XMM register to Mem.

MOVLPD Move 64 bits representing one 
DP operand from Mem to 
lower field of XMM register.

Or move 64 bits representing 
one DP operand from lower 
field of XMM register to Mem.

MOVMSKPD Move the sign mask to r32. 

MOVSD Move 64 bits representing one 
scalar DP operand from 
XMM2/Mem to XMM1 register.

Or move 64 bits representing 
one scalar DP operand from 
XMM1 register to XMM2/Mem.

MOVUPD Move 128 bits representing 2 
DP data from XMM2/Mem to 
XMM1 register.

Or move 128 bits representing 
2 DP data from XMM1 register 
to XMM2/Mem.

MULPD  Multiply packed DP FP 
numbers in XMM2/Mem to 
XMM1.

Y Y Y Y Y

MULSD Multiply the lowest DP FP 
number in XMM2/Mem to 
XMM1.

Y Y Y Y Y

ORPD OR 128 bits from XMM2/Mem 
to XMM1 register.

SHUFPD Shuffle Double.

SQRTPD Square Root Packed Double-
Precision 

Y Y Y

SQRTSD Square Root Scaler Double-
Precision

Y Y Y

Table C-4.  Exceptions Generated with SSE2 Instructions (Contd.)

Instruction Description #I #D #Z #O #U #P
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FLOATING-POINT EXCEPTIONS SUMMARY
C.5 SSE3 INSTRUCTIONS 
Table C-5 lists the SSE3 instructions that have at least one of the following 
characteristics:
• have floating-point operands
• generate floating-point results

For each instruction, the table summarizes the floating-point exceptions that the 
instruction can generate.

SUBPD Subtract Packed Double-
Precision.

Y Y Y Y Y

SUBSD Subtract Scaler Double-
Precision.

Y Y Y Y Y

UCOMISD Compare lower DP FP number 
in XMM1 register with lower 
DP FP number in XMM2/Mem 
and set the status flags 
accordingly.

Y Y

UNPCKHPD Interleaves DP FP numbers 
from the high halves of XMM1 
and XMM2/Mem into XMM1 
register.

UNPCKLPD Interleaves DP FP numbers 
from the low halves of XMM1 
and XMM2/Mem into XMM1 
register.

XORPD XOR 128 bits from 
XMM2/Mem to XMM1 register.

Table C-5.  Exceptions Generated with SSE3 Instructions 

Instruction Description #I #D #Z #O #U #P

ADDSUBPD Add /Sub packed DP FP 
numbers from XMM2/Mem to 
XMM1.

Y Y Y Y Y

ADDSUBPS Add /Sub packed SP FP 
numbers from XMM2/Mem to 
XMM1.

Y Y Y Y Y

Table C-4.  Exceptions Generated with SSE2 Instructions (Contd.)

Instruction Description #I #D #Z #O #U #P
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C.6 SSSE3 INSTRUCTIONS 
SSSE3 instructions operate on integer data elements. They do not generate floating-
point exceptions.

C.7 SSE4 INSTRUCTIONS 
Table C-6 lists the SSE4.1 instructions that generate floating-point results.

For each instruction, the table summarizes the floating-point exceptions that the 
instruction can generate.

FISTTP See Table C-2. Y Y

HADDPD Add horizontally packed DP 
FP numbers XMM2/Mem to 
XMM1.

Y Y Y Y Y

HADDPS Add horizontally packed SP 
FP numbers XMM2/Mem to 
XMM1

Y Y Y Y Y

HSUBPD Sub horizontally packed DP 
FP numbers XMM2/Mem to 
XMM1

Y Y Y Y Y

HSUBPS Sub horizontally packed SP 
FP numbers XMM2/Mem to 
XMM1

Y Y Y Y Y

LDDQU Load unaligned integer 128-
bit.

MOVDDUP Move 64 bits representing 
one DP data from 
XMM2/Mem to XMM1 and 
duplicate.

MOVSHDUP Move 128 bits representing 4 
SP data from XMM2/Mem to 
XMM1 and duplicate high.

MOVSLDUP Move 128 bits representing 4 
SP data from XMM2/Mem to 
XMM1 and duplicate low.

Table C-5.  Exceptions Generated with SSE3 Instructions  (Contd.)

Instruction Description #I #D #Z #O #U #P
C-12 Vol. 1



FLOATING-POINT EXCEPTIONS SUMMARY
Other SSE4.1 instructions and SSE4.2 instructions do not generate floating-point 
exceptions.

Table C-6.  Exceptions Generated with SSE4 Instructions 

Instruction Description #I #D #Z #O #U #P

DPPD DP FP dot product. Y Y Y Y Y

DPPS SP FP dot product. Y Y Y Y Y

ROUNDPD Round packed DP FP values 
to integer FP values.

Y Y1

NOTES:
1. If bit 3 of immediate operand is 0

ROUNDPS Round packed SP FP values 
to integer FP values.

Y Y1

ROUNDSD Round scalar DP FP value to 
integer FP value.

Y Y1

ROUNDSS Round scalar SP FP value to 
integer FP value.

Y Y1
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APPENDIX D
GUIDELINES FOR WRITING X87 FPU

EXCEPTION HANDLERS

As described in Chapter 8, “Programming with the x87 FPU,” the IA-32 Architecture 
supports two mechanisms for accessing exception handlers to handle unmasked x87 
FPU exceptions: native mode and MS-DOS compatibility mode. The primary purpose 
of this appendix is to provide detailed information to help software engineers design 
and write x87 FPU exception-handling facilities to run on PC systems that use the 
MS-DOS compatibility mode1 for handling x87 FPU exceptions. Some of the informa-
tion in this appendix will also be of interest to engineers who are writing native-mode 
x87 FPU exception handlers. The information provided is as follows:
• Discussion of the origin of the MS-DOS x87 FPU exception handling mechanism 

and its relationship to the x87 FPU’s native exception handling mechanism.
• Description of the IA-32 flags and processor pins that control the MS-DOS x87 

FPU exception handling mechanism.
• Description of the external hardware typically required to support MS-DOS 

exception handling mechanism.
• Description of the x87 FPU’s exception handling mechanism and the typical 

protocol for x87 FPU exception handlers.
• Code examples that demonstrate various levels of x87 FPU exception handlers.
• Discussion of x87 FPU considerations in multitasking environments.
• Discussion of native mode x87 FPU exception handling.

The information given is oriented toward the most recent generations of IA-32 
processors, starting with the Intel486. It is intended to augment the reference infor-
mation given in Chapter 8, “Programming with the x87 FPU.”

A more extensive version of this appendix is available in the application note AP-578, 
Software and Hardware Considerations for x87 FPU Exception Handlers for Intel 
Architecture Processors (Order Number 243291), which is available from Intel.

D.1 MS-DOS COMPATIBILITY SUB-MODE FOR HANDLING 
X87 FPU EXCEPTIONS

The first generations of IA-32 processors (starting with the Intel 8086 and 8088 
processors and going through the Intel 286 and Intel386 processors) did not have an 

1 Microsoft Windows* 95 and Windows 3.1 (and earlier versions) operating systems use almost 
the same x87 FPU exception handling interface as MS-DOS. The recommendations in this appen-
dix for a MS-DOS compatible exception handler thus apply to all three operating systems.
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on-chip floating-point unit. Instead, floating-point capability was provided on a sepa-
rate numeric coprocessor chip. The first of these numeric coprocessors was the Intel 
8087, which was followed by the Intel 287 and Intel 387 numeric coprocessors. 

To allow the 8087 to signal floating-point exceptions to its companion 8086 or 8088, 
the 8087 has an output pin, INT, which it asserts when an unmasked floating-point 
exception occurs. The designers of the 8087 recommended that the output from this 
pin be routed through a programmable interrupt controller (PIC) such as the Intel 
8259A to the INTR pin of the 8086 or 8088. The accompanying interrupt vector 
number could then be used to access the floating-point exception handler.

However, the original IBM* PC design and MS-DOS operating system used a different 
mechanism for handling the INT output from the 8087. It connected the INT pin 
directly to the NMI input pin of the 8086 or 8088. The NMI interrupt handler then had 
to determine if the interrupt was caused by a floating-point exception or another NMI 
event. This mechanism is the origin of what is now called the “MS-DOS compatibility 
mode.” The decision to use this latter floating-point exception handling mechanism 
came about because when the IBM PC was first designed, the 8087 was not available. 
When the 8087 did become available, other functions had already been assigned to 
the eight inputs to the PIC. One of these functions was a BIOS video interrupt, which 
was assigned to interrupt number 16 for the 8086 and 8088.

The Intel 286 processor created the “native mode” for handling floating-point excep-
tions by providing a dedicated input pin (ERROR#) for receiving floating-point excep-
tion signals and a dedicated interrupt number, 16. Interrupt 16 was used to signal 
floating-point errors (also called math faults). It was intended that the ERROR# pin 
on the Intel 286 be connected to a corresponding ERROR# pin on the Intel 287 
numeric coprocessor. When the Intel 287 signals a floating-point exception using this 
mechanism, the Intel 286 generates an interrupt 16, to invoke the floating-point 
exception handler. 

To maintain compatibility with existing PC software, the native floating-point excep-
tion handling mode of the Intel 286 and 287 was not used in the IBM PC AT system 
design. Instead, the ERROR# pin on the Intel 286 was tied permanently high, and 
the ERROR# pin from the Intel 287 was routed to a second (cascaded) PIC. The 
resulting output of this PIC was routed through an exception handler and eventually 
caused an interrupt 2 (NMI interrupt). Here the NMI interrupt was shared with IBM 
PC AT’s new parity checking feature. Interrupt 16 remained assigned to the BIOS 
video interrupt handler. The external hardware for the MS-DOS compatibility mode 
must prevent the Intel 286 processor from executing past the next x87 FPU instruc-
tion when an unmasked exception has been generated. To do this, it asserts the 
BUSY# signal into the Intel 286 when the ERROR# signal is asserted by the Intel 287.

The Intel386 processor and its companion Intel 387 numeric coprocessor provided 
the same hardware mechanism for signaling and handling floating-point exceptions 
as the Intel 286 and 287 processors. And again, to maintain compatibility with 
existing MS-DOS software, basically the same MS-DOS compatibility floating-point 
exception handling mechanism that was used in the IBM PC AT was used in PCs based 
on the Intel386 processor.
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D.2 IMPLEMENTATION OF THE MS-DOS* COMPATIBILITY 
SUB-MODE IN THE INTEL486™, PENTIUM®, AND P6 
PROCESSOR FAMILY, AND PENTIUM® 4 PROCESSORS

Beginning with the Intel486™ processor, the IA-32 architecture provided a dedicated 
mechanism for enabling the MS-DOS compatibility mode for x87 FPU exceptions and 
for generating external x87 FPU-exception signals while operating in this mode. The 
following sections describe the implementation of the MS-DOS compatibility mode in 
the Intel486 and Pentium processors and in the P6 family and Pentium 4 processors. 
Also described is the recommended external hardware to support this mode of oper-
ation. 

D.2.1  MS-DOS* Compatibility Sub-mode in the Intel486™ and 
Pentium® Processors

In the Intel486 processor, several things were done to enhance and speed up the 
numeric coprocessor, now called the floating-point unit (x87 FPU). The most impor-
tant enhancement was that the x87 FPU was included in the same chip as the 
processor, for increased speed in x87 FPU computations and reduced latency for x87 
FPU exception handling. Also, for the first time, the MS-DOS compatibility mode was 
built into the chip design, with the addition of the NE bit in control register CR0 and 
the addition of the FERR# (Floating-point ERRor) and IGNNE# (IGNore Numeric 
Error) pins. 

The NE bit selects the native x87 FPU exception handling mode (NE = 1) or the 
MS-DOS compatibility mode (NE = 0). When native mode is selected, all signaling of 
floating-point exceptions is handled internally in the Intel486 chip, resulting in the 
generation of an interrupt 16.

When MS-DOS compatibility mode is selected, the FERRR# and IGNNE# pins are 
used to signal floating-point exceptions. The FERR# output pin, which replaces the 
ERROR# pin from the previous generations of IA-32 numeric coprocessors, is 
connected to a PIC. A new input signal, IGNNE#, is provided to allow the x87 FPU 
exception handler to execute x87 FPU instructions, if desired, without first clearing 
the error condition and without triggering the interrupt a second time. This IGNNE# 
feature is needed to replicate the capability that was provided on MS-DOS compat-
ible Intel 286 and Intel 287 and Intel386 and Intel 387 systems by turning off the 
BUSY# signal, when inside the x87 FPU exception handler, before clearing the error 
condition.

Note that Intel, in order to provide Intel486 processors for market segments that had 
no need for an x87 FPU, created the “SX” versions. These Intel486 SX processors did 
not contain the floating-point unit. Intel also produced Intel 487 SX processors for 
end users who later decided to upgrade to a system with an x87 FPU. These Intel 487 
SX processors are similar to standard Intel486 processors with a working x87 FPU on 
board. 
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Thus, the external circuitry necessary to support the MS-DOS compatibility mode for 
Intel 487 SX processors is the same as for standard Intel486 DX processors.

The Pentium, P6 family, and Pentium 4 processors offer the same mechanism (the NE 
bit and the FERR# and IGNNE# pins) as the Intel486 processors for generating x87 
FPU exceptions in MS-DOS compatibility mode. The actions of these mechanisms are 
slightly different and more straightforward for the P6 family and Pentium 4 proces-
sors, as described in Section D.2.2, “MS-DOS* Compatibility Sub-mode in the P6 
Family and Pentium® 4 Processors.”

For Pentium, P6 family, and Pentium 4 processors, it is important to note that the 
special DP (Dual Processing) mode for Pentium processors and also the more general 
Intel MultiProcessor Specification for systems with multiple Pentium, P6 family, or 
Pentium 4 processors support x87 FPU exception handling only in the native mode. 
Intel does not recommend using the MS-DOS compatibility x87 FPU mode for 
systems using more than one processor.

D.2.1.1  Basic Rules: When FERR# Is Generated
When MS-DOS compatibility mode is enabled for the Intel486 or Pentium processors 
(NE bit is set to 0) and the IGNNE# input pin is de-asserted, the FERR# signal is 
generated as follows:

1. When an x87 FPU instruction causes an unmasked x87 FPU exception, the 
processor (in most cases) uses a “deferred” method of reporting the error. This 
means that the processor does not respond immediately, but rather freezes just 
before executing the next WAIT or x87 FPU instruction (except for “no-wait” 
instructions, which the x87 FPU executes regardless of an error condition). 

2. When the processor freezes, it also asserts the FERR# output.

3. The frozen processor waits for an external interrupt, which must be supplied by 
external hardware in response to the FERR# assertion. 

4. In MS-DOS compatibility systems, FERR# is fed to the IRQ13 input in the 
cascaded PIC. The PIC generates interrupt 75H, which then branches to interrupt 
2, as described earlier in this appendix for systems using the Intel 286 and Intel 
287 or Intel386 and Intel 387 processors. 

The deferred method of error reporting is used for all exceptions caused by the basic 
arithmetic instructions (including FADD, FSUB, FMUL, FDIV, FSQRT, FCOM and 
FUCOM), for precision exceptions caused by all types of x87 FPU instructions, and for 
numeric underflow and overflow exceptions caused by all types of x87 FPU instruc-
tions except stores to memory. 

Some x87 FPU instructions with some x87 FPU exceptions use an “immediate” 
method of reporting errors. Here, the FERR# is asserted immediately, at the time 
that the exception occurs. The immediate method of error reporting is used for x87 
FPU stack fault, invalid operation and denormal exceptions caused by all transcen-
dental instructions, FSCALE, FXTRACT, FPREM and others, and all exceptions (except 
precision) when caused by x87 FPU store instructions. Like deferred error reporting, 
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immediate error reporting will cause the processor to freeze just before executing 
the next WAIT or x87 FPU instruction if the error condition has not been cleared by 
that time.

Note that in general, whether deferred or immediate error reporting is used for an 
x87 FPU exception depends both on which exception occurred and which instruction 
caused that exception. A complete specification of these cases, which applies to both 
the Pentium and the Intel486 processors, is given in Section 5.1.21 in the Pentium 
Processor Family Developer’s Manual: Volume 1. 

If NE = 0 but the IGNNE# input is active while an unmasked x87 FPU exception is in 
effect, the processor disregards the exception, does not assert FERR#, and 
continues. If IGNNE# is then de-asserted and the x87 FPU exception has not been 
cleared, the processor will respond as described above. (That is, an immediate 
exception case will assert FERR# immediately. A deferred exception case will assert 
FERR# and freeze just before the next x87 FPU or WAIT instruction.) The assertion of 
IGNNE# is intended for use only inside the x87 FPU exception handler, where it is 
needed if one wants to execute non-control x87 FPU instructions for diagnosis, 
before clearing the exception condition. When IGNNE# is asserted inside the excep-
tion handler, a preceding x87 FPU exception has already caused FERR# to be 
asserted, and the external interrupt hardware has responded, but IGNNE# assertion 
still prevents the freeze at x87 FPU instructions. Note that if IGNNE# is left active 
outside of the x87 FPU exception handler, additional x87 FPU instructions may be 
executed after a given instruction has caused an x87 FPU exception. In this case, if 
the x87 FPU exception handler ever did get invoked, it could not determine which 
instruction caused the exception. 

To properly manage the interface between the processor’s FERR# output, its IGNNE# 
input, and the IRQ13 input of the PIC, additional external hardware is needed. A 
recommended configuration is described in the following section.

D.2.1.2  Recommended External Hardware to Support the MS-DOS* 
Compatibility Sub-mode

Figure D-1 provides an external circuit that will assure proper handling of FERR# and 
IGNNE# when an x87 FPU exception occurs. In particular, it assures that IGNNE# will 
be active only inside the x87 FPU exception handler without depending on the order 
of actions by the exception handler. Some hardware implementations have been less 
robust because they have depended on the exception handler to clear the x87 FPU 
exception interrupt request to the PIC (FP_IRQ signal) before the handler causes 
FERR# to be de-asserted by clearing the exception from the x87 FPU itself. 
Figure D-2 shows the details of how IGNNE# will behave when the circuit in 
Figure D-1 is implemented. The temporal regions within the x87 FPU exception 
handler activity are described as follows:

1. The FERR# signal is activated by an x87 FPU exception and sends an interrupt 
request through the PIC to the processor’s INTR pin.
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2. During the x87 FPU interrupt service routine (exception handler) the processor 
will need to clear the interrupt request latch (Flip Flop #1). It may also want to 
execute non-control x87 FPU instructions before the exception is cleared from the 
x87 FPU. For this purpose the IGNNE# must be driven low. Typically in the PC 
environment an I/O access to Port 0F0H clears the external x87 FPU exception 
interrupt request (FP_IRQ). In the recommended circuit, this access also is used 
to activate IGNNE#. With IGNNE# active, the x87 FPU exception handler may 
execute any x87 FPU instruction without being blocked by an active x87 FPU 
exception.

3. Clearing the exception within the x87 FPU will cause the FERR# signal to be 
deactivated and then there is no further need for IGNNE# to be active. In the 
recommended circuit, the deactivation of FERR# is used to deactivate IGNNE#. If 
another circuit is used, the software and circuit together must assure that 
IGNNE# is deactivated no later than the exit from the x87 FPU exception handler.
D-6 Vol. 1



GUIDELINES FOR WRITING X87 FPU EXCEPTION HANDLERS
In the circuit in Figure D-1, when the x87 FPU exception handler accesses I/O port 
0F0H it clears the IRQ13 interrupt request output from Flip Flop #1 and also clocks 
out the IGNNE# signal (active) from Flip Flop #2. So the handler can activate 
IGNNE#, if needed, by doing this 0F0H access before clearing the x87 FPU exception 
condition (which de-asserts FERR#). 

However, the circuit does not depend on the order of actions by the x87 FPU excep-
tion handler to guarantee the correct hardware state upon exit from the handler. Flip 
Flop #2, which drives IGNNE# to the processor, has its CLEAR input attached to the 
inverted FERR#. This ensures that IGNNE# can never be active when FERR# is inac-

Figure D-1.  Recommended Circuit for MS-DOS Compatibility x87 FPU
Exception Handling
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tive. So if the handler clears the x87 FPU exception condition before the 0F0H 
access, IGNNE# does not get activated and left on after exit from the handler.

D.2.1.3  No-Wait x87 FPU Instructions Can Get x87 FPU Interrupt in 
Window

The Pentium and Intel486 processors implement the “no-wait” floating-point instruc-
tions (FNINIT, FNCLEX, FNSTENV, FNSAVE, FNSTSW, FNSTCW, FNENI, FNDISI or 
FNSETPM) in the MS-DOS compatibility mode in the following manner. (See Section 
8.3.11, “x87 FPU Control Instructions,” and Section 8.3.12, “Waiting vs. Non-waiting 
Instructions,” for a discussion of the no-wait instructions.)

If an unmasked numeric exception is pending from a preceding x87 FPU instruction, 
a member of the no-wait class of instructions will, at the beginning of its execution, 
assert the FERR# pin in response to that exception just like other x87 FPU instruc-
tions, but then, unlike the other x87 FPU instructions, FERR# will be de-asserted. 
This de-assertion was implemented to allow the no-wait class of instructions to 
proceed without an interrupt due to any pending numeric exception. However, the 
brief assertion of FERR# is sufficient to latch the x87 FPU exception request into most 
hardware interface implementations (including Intel’s recommended circuit). 

All the x87 FPU instructions are implemented such that during their execution, there 
is a window in which the processor will sample and accept external interrupts. If 
there is a pending interrupt, the processor services the interrupt first before 
resuming the execution of the instruction. Consequently, it is possible that the no-
wait floating-point instruction may accept the external interrupt caused by it’s own 
assertion of the FERR# pin in the event of a pending unmasked numeric exception, 

Figure D-2.  Behavior of Signals During x87 FPU Exception Handling

0F0H Address
   Decode
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which is not an explicitly documented behavior of a no-wait instruction. This process 
is illustrated in Figure D-3.

Figure D-3 assumes that a floating-point instruction that generates a “deferred” 
error (as defined in the Section D.2.1.1, “Basic Rules: When FERR# Is Generated”), 
which asserts the FERR# pin only on encountering the next floating-point instruction, 
causes an unmasked numeric exception. Assume that the next floating-point instruc-
tion following this instruction is one of the no-wait floating-point instructions. The 
FERR# pin is asserted by the processor to indicate the pending exception on encoun-
tering the no-wait floating-point instruction. After the assertion of the FERR# pin the 
no-wait floating-point instruction opens a window where the pending external inter-
rupts are sampled.

Then there are two cases possible depending on the timing of the receipt of the inter-
rupt via the INTR pin (asserted by the system in response to the FERR# pin) by the 
processor.

Case 1 If the system responds to the assertion of FERR# pin by the no-wait 
floating-point instruction via the INTR pin during this window then 
the interrupt is serviced first, before resuming the execution of the 
no-wait floating-point instruction. 

Case 2 If the system responds via the INTR pin after the window has closed 
then the interrupt is recognized only at the next instruction boundary.

Figure D-3.  Timing of Receipt of External Interrupt
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There are two other ways, in addition to Case 1 above, in which a no-wait floating-
point instruction can service a numeric exception inside its interrupt window. First, 
the first floating-point error condition could be of the “immediate” category (as 
defined in Section D.2.1.1, “Basic Rules: When FERR# Is Generated”) that asserts 
FERR# immediately. If the system delay before asserting INTR is long enough, rela-
tive to the time elapsed before the no-wait floating-point instruction, INTR can be 
asserted inside the interrupt window for the latter. Second, consider two no-wait x87 
FPU instructions in close sequence, and assume that a previous x87 FPU instruction 
has caused an unmasked numeric exception. Then if the INTR timing is too long for 
an FERR# signal triggered by the first no-wait instruction to hit the first instruction’s 
interrupt window, it could catch the interrupt window of the second.

The possible malfunction of a no-wait x87 FPU instruction explained above cannot 
happen if the instruction is being used in the manner for which Intel originally 
designed it. The no-wait instructions were intended to be used inside the x87 FPU 
exception handler, to allow manipulation of the x87 FPU before the error condition is 
cleared, without hanging the processor because of the x87 FPU error condition, and 
without the need to assert IGNNE#. They will perform this function correctly, since 
before the error condition is cleared, the assertion of FERR# that caused the x87 FPU 
error handler to be invoked is still active. Thus the logic that would assert FERR# 
briefly at a no-wait instruction causes no change since FERR# is already asserted. 
The no-wait instructions may also be used without problem in the handler after the 
error condition is cleared, since now they will not cause FERR# to be asserted at all.

If a no-wait instruction is used outside of the x87 FPU exception handler, it may 
malfunction as explained above, depending on the details of the hardware interface 
implementation and which particular processor is involved. The actual interrupt 
inside the window in the no-wait instruction may be blocked by surrounding it with 
the instructions: PUSHFD, CLI, no-wait, then POPFD. (CLI blocks interrupts, and the 
push and pop of flags preserves and restores the original value of the interrupt flag.) 
However, if FERR# was triggered by the no-wait, its latched value and the PIC 
response will still be in effect. Further code can be used to check for and correct such 
a condition, if needed. Section D.3.6, “Considerations When x87 FPU Shared 
Between Tasks,” discusses an important example of this type of problem and gives a 
solution.

D.2.2  MS-DOS* Compatibility Sub-mode in the P6 Family 
and Pentium® 4 Processors

When bit NE = 0 in CR0, the MS-DOS compatibility mode of the P6 family and 
Pentium 4 processors provides FERR# and IGNNE# functionality that is almost iden-
tical to the Intel486 and Pentium processors. The same external hardware described 
in Section D.2.1.2, “Recommended External Hardware to Support the MS-DOS* 
Compatibility Sub-mode,” is recommended for the P6 family and Pentium 4 proces-
sors as well as the two previous generations. The only change to MS-DOS compati-
bility x87 FPU exception handling with the P6 family and Pentium 4 processors is that 
all exceptions for all x87 FPU instructions cause immediate error reporting. That is, 
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FERR# is asserted as soon as the x87 FPU detects an unmasked exception; there are 
no cases in which error reporting is deferred to the next x87 FPU or WAIT instruction. 

(As is discussed in Section D.2.1.1, “Basic Rules: When FERR# Is Generated,” most 
exception cases in the Intel486 and Pentium processors are of the deferred type.)

Although FERR# is asserted immediately upon detection of an unmasked x87 FPU 
error, this certainly does not mean that the requested interrupt will always be 
serviced before the next instruction in the code sequence is executed. To begin with, 
the P6 family and Pentium 4 processors execute several instructions simultaneously. 
There also will be a delay, which depends on the external hardware implementation, 
between the FERR# assertion from the processor and the responding INTR assertion 
to the processor. Further, the interrupt request to the PICs (IRQ13) may be tempo-
rarily blocked by the operating system, or delayed by higher priority interrupts, and 
processor response to INTR itself is blocked if the operating system has cleared the 
IF bit in EFLAGS. Note that Streaming SIMD Extensions numeric exceptions will not 
cause assertion of FERR# (independent of the value of CR0.NE). In addition, they 
ignore the assertion/deassertion of IGNNE#).

However, just as with the Intel486 and Pentium processors, if the IGNNE# input is 
inactive, a floating-point exception which occurred in the previous x87 FPU instruc-
tion and is unmasked causes the processor to freeze immediately when encountering 
the next WAIT or x87 FPU instruction (except for no-wait instructions). This means 
that if the x87 FPU exception handler has not already been invoked due to the earlier 
exception (and therefore, the handler not has cleared that exception state from the 
x87 FPU), the processor is forced to wait for the handler to be invoked and handle the 
exception, before the processor can execute another WAIT or x87 FPU instruction. 

As explained in Section D.2.1.3, “No-Wait x87 FPU Instructions Can Get x87 FPU 
Interrupt in Window,” if a no-wait instruction is used outside of the x87 FPU exception 
handler, in the Intel486 and Pentium processors, it may accept an unmasked excep-
tion from a previous x87 FPU instruction which happens to fall within the external 
interrupt sampling window that is opened near the beginning of execution of all x87 
FPU instructions. This will not happen in the P6 family and Pentium 4 processors, 
because this sampling window has been removed from the no-wait group of x87 FPU 
instructions.

D.3 RECOMMENDED PROTOCOL FOR MS-DOS* 
COMPATIBILITY HANDLERS

The activities of numeric programs can be split into two major areas: program control 
and arithmetic. The program control part performs activities such as deciding what 
functions to perform, calculating addresses of numeric operands, and loop control. 
The arithmetic part simply adds, subtracts, multiplies, and performs other operations 
on the numeric operands. The processor is designed to handle these two parts sepa-
rately and efficiently. An x87 FPU exception handler, if a system chooses to imple-
ment one, is often one of the most complicated parts of the program control code.
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D.3.1  Floating-Point Exceptions and Their Defaults
The x87 FPU can recognize six classes of floating-point exception conditions while 
executing floating-point instructions:

1. #I — Invalid operation
    #IS — Stack fault
    #IA — IEEE standard invalid operation

2. #Z — Divide-by-zero

3. #D — Denormalized operand

4. #O — Numeric overflow

5. #U — Numeric underflow

6. #P — Inexact result (precision)

For complete details on these exceptions and their defaults, see Section 8.4, “x87 
FPU Floating-Point Exception Handling,” and Section 8.5, “x87 FPU Floating-Point 
Exception Conditions.”

D.3.2  Two Options for Handling Numeric Exceptions
Depending on options determined by the software system designer, the processor 
takes one of two possible courses of action when a numeric exception occurs:

1. The x87 FPU can handle selected exceptions itself, producing a default fix-up that 
is reasonable in most situations. This allows the numeric program execution to 
continue undisturbed. Programs can mask individual exception types to indicate 
that the x87 FPU should generate this safe, reasonable result whenever the 
exception occurs. The default exception fix-up activity is treated by the x87 FPU 
as part of the instruction causing the exception; no external indication of the 
exception is given (except that the instruction takes longer to execute when it 
handles a masked exception.) When masked exceptions are detected, a flag is 
set in the numeric status register, but no information is preserved regarding 
where or when it was set.

2. A software exception handler can be invoked to handle the exception. When a 
numeric exception is unmasked and the exception occurs, the x87 FPU stops 
further execution of the numeric instruction and causes a branch to a software 
exception handler. The exception handler can then implement any sort of 
recovery procedures desired for any numeric exception detectable by the x87 
FPU.

D.3.2.1  Automatic Exception Handling: Using Masked Exceptions
Each of the six exception conditions described above has a corresponding flag bit in 
the x87 FPU status word and a mask bit in the x87 FPU control word. If an exception 
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is masked (the corresponding mask bit in the control word = 1), the processor takes 
an appropriate default action and continues with the computation. 

The processor has a default fix-up activity for every possible exception condition it 
may encounter. These masked-exception responses are designed to be safe and are 
generally acceptable for most numeric applications.

For example, if the Inexact result (Precision) exception is masked, the system can 
specify whether the x87 FPU should handle a result that cannot be represented 
exactly by one of four modes of rounding: rounding it normally, chopping it toward 
zero, always rounding it up, or always down. If the Underflow exception is masked, 
the x87 FPU will store a number that is too small to be represented in normalized 
form as a denormal (or zero if it’s smaller than the smallest denormal). Note that 
when exceptions are masked, the x87 FPU may detect multiple exceptions in a single 
instruction, because it continues executing the instruction after performing its 
masked response. For example, the x87 FPU could detect a denormalized operand, 
perform its masked response to this exception, and then detect an underflow.

As an example of how even severe exceptions can be handled safely and automati-
cally using the default exception responses, consider a calculation of the parallel 
resistance of several values using only the standard formula (see Figure D-4). If R1 
becomes zero, the circuit resistance becomes zero. With the divide-by-zero and 
precision exceptions masked, the processor will produce the correct result. FDIV of 
R1 into 1 gives infinity, and then FDIV of (infinity +R2 +R3) into 1 gives zero.

By masking or unmasking specific numeric exceptions in the x87 FPU control word, 
programmers can delegate responsibility for most exceptions to the processor, 
reserving the most severe exceptions for programmed exception handlers. Excep-
tion-handling software is often difficult to write, and the masked responses have 
been tailored to deliver the most reasonable result for each condition. For the 
majority of applications, masking all exceptions yields satisfactory results with the 

Figure D-4.  Arithmetic Example Using Infinity
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least programming effort. Certain exceptions can usefully be left unmasked during 
the debugging phase of software development, and then masked when the clean 
software is actually run. An invalid-operation exception for example, typically indi-
cates a program error that must be corrected.

The exception flags in the x87 FPU status word provide a cumulative record of excep-
tions that have occurred since these flags were last cleared. Once set, these flags can 
be cleared only by executing the FCLEX/FNCLEX (clear exceptions) instruction, by 
reinitializing the x87 FPU with FINIT/FNINIT or FSAVE/FNSAVE, or by overwriting the 
flags with an FRSTOR or FLDENV instruction. This allows a programmer to mask all 
exceptions, run a calculation, and then inspect the status word to see if any excep-
tions were detected at any point in the calculation.

D.3.2.2  Software Exception Handling
If the x87 FPU in or with an IA-32 processor (Intel 286 and onwards) encounters an 
unmasked exception condition, with the system operated in the MS-DOS compati-
bility mode and with IGNNE# not asserted, a software exception handler is invoked 
through a PIC and the processor’s INTR pin. The FERR# (or ERROR#) output from 
the x87 FPU that begins the process of invoking the exception handler may occur 
when the error condition is first detected, or when the processor encounters the next 
WAIT or x87 FPU instruction. Which of these two cases occurs depends on the 
processor generation and also on which exception and which x87 FPU instruction trig-
gered it, as discussed earlier in Section D.1, “MS-DOS Compatibility Sub-mode for 
Handling x87 FPU Exceptions,” and Section D.2, “Implementation of the MS-DOS* 
Compatibility Sub-mode in the Intel486™, Pentium®, and P6 Processor Family, and 
Pentium® 4 Processors.” The elapsed time between the initial error signal and the 
invocation of the x87 FPU exception handler depends of course on the external hard-
ware interface, and also on whether the external interrupt for x87 FPU errors is 
enabled. But the architecture ensures that the handler will be invoked before execu-
tion of the next WAIT or floating-point instruction since an unmasked floating-point 
exception causes the processor to freeze just before executing such an instruction 
(unless the IGNNE# input is active, or it is a no-wait x87 FPU instruction). 

The frozen processor waits for an external interrupt, which must be supplied by 
external hardware in response to the FERR# (or ERROR#) output of the processor 
(or coprocessor), usually through IRQ13 on the “slave” PIC, and then through INTR. 
Then the external interrupt invokes the exception handling routine. Note that if the 
external interrupt for x87 FPU errors is disabled when the processor executes an x87 
FPU instruction, the processor will freeze until some other (enabled) interrupt occurs 
if an unmasked x87 FPU exception condition is in effect. If NE = 0 but the IGNNE# 
input is active, the processor disregards the exception and continues. Error reporting 
via an external interrupt is supported for MS-DOS compatibility. Chapter 22, “IA-32 
Architecture Compatibility,” of the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3B, contains further discussion of compatibility issues.

The references above to the ERROR# output from the x87 FPU apply to the Intel 387 
and Intel 287 math coprocessors (NPX chips). If one of these coprocessors encoun-
ters an unmasked exception condition, it signals the exception to the Intel 286 or 
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Intel386 processor using the ERROR# status line between the processor and the 
coprocessor. See Section D.1, “MS-DOS Compatibility Sub-mode for Handling x87 
FPU Exceptions,” in this appendix, and Chapter 22, “IA-32 Architecture Compati-
bility,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3B, for differences in x87 FPU exception handling.

The exception-handling routine is normally a part of the systems software. The 
routine must clear (or disable) the active exception flags in the x87 FPU status word 
before executing any floating-point instructions that cannot complete execution 
when there is a pending floating-point exception. Otherwise, the floating-point 
instruction will trigger the x87 FPU interrupt again, and the system will be caught in 
an endless loop of nested floating-point exceptions, and hang. In any event, the 
routine must clear (or disable) the active exception flags in the x87 FPU status word 
after handling them, and before IRET(D). Typical exception responses may include:
• Incrementing an exception counter for later display or printing.
• Printing or displaying diagnostic information (e.g., the x87 FPU environment and 

registers).
• Aborting further execution, or using the exception pointers to build an instruction 

that will run without exception and executing it.

Applications programmers should consult their operating system's reference 
manuals for the appropriate system response to numerical exceptions. For systems 
programmers, some details on writing software exception handlers are provided in 
Chapter 6, “Interrupt and Exception Handling,” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3A, as well as in Section D.3.4, “x87 FPU 
Exception Handling Examples,” in this appendix.

As discussed in Section D.2.1.2, “Recommended External Hardware to Support the 
MS-DOS* Compatibility Sub-mode,” some early FERR# to INTR hardware interface 
implementations are less robust than the recommended circuit. This is because they 
depended on the exception handler to clear the x87 FPU exception interrupt request 
to the PIC (by accessing port 0F0H) before the handler causes FERR# to be de-
asserted by clearing the exception from the x87 FPU itself. To eliminate the chance of 
a problem with this early hardware, Intel recommends that x87 FPU exception 
handlers always access port 0F0H before clearing the error condition from the x87 
FPU.

D.3.3  Synchronization Required for Use of x87 FPU Exception 
Handlers

Concurrency or synchronization management requires a check for exceptions before 
letting the processor change a value just used by the x87 FPU. It is important to 
remember that almost any numeric instruction can, under the wrong circumstances, 
produce a numeric exception. 
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D.3.3.1  Exception Synchronization: What, Why, and When
Exception synchronization means that the exception handler inspects and deals with 
the exception in the context in which it occurred. If concurrent execution is allowed, 
the state of the processor when it recognizes the exception is often not in the context 
in which it occurred. The processor may have changed many of its internal registers 
and be executing a totally different program by the time the exception occurs. If the 
exception handler cannot recapture the original context, it cannot reliably determine 
the cause of the exception or recover successfully from the exception. To handle this 
situation, the x87 FPU has special registers updated at the start of each numeric 
instruction to describe the state of the numeric program when the failed instruction 
was attempted. 

This provides tools to help the exception handler recapture the original context, but 
the application code must also be written with synchronization in mind. Overall, 
exception synchronization must ensure that the x87 FPU and other relevant parts of 
the context are in a well defined state when the handler is invoked after an unmasked 
numeric exception occurs. 

When the x87 FPU signals an unmasked exception condition, it is requesting help. 
The fact that the exception was unmasked indicates that further numeric program 
execution under the arithmetic and programming rules of the x87 FPU will probably 
yield invalid results. Thus the exception must be handled, and with proper synchro-
nization, or the program will not operate reliably.

For programmers using higher-level languages, all required synchronization is auto-
matically provided by the appropriate compiler. However, for assembly language 
programmers exception synchronization remains the responsibility of the 
programmer. It is not uncommon for a programmer to expect that their numeric 
program will not cause numeric exceptions after it has been tested and debugged, 
but in a different system or numeric environment, exceptions may occur regularly 
nonetheless. An obvious example would be use of the program with some numbers 
beyond the range for which it was designed and tested. Example D-1 and Example 
D-2 in Section D.3.3.2, “Exception Synchronization Examples,” show a subtle way in 
which unexpected exceptions can occur.

As described in Section D.3.1, “Floating-Point Exceptions and Their Defaults,” 
depending on options determined by the software system designer, the processor 
can perform one of two possible courses of action when a numeric exception occurs.
• The x87 FPU can provide a default fix-up for selected numeric exceptions. If the 

x87 FPU performs its default action for all exceptions, then the need for exception 
synchronization is not manifest. However, code is often ported to contexts and 
operating systems for which it was not originally designed. Example D-1 and 
Example D-2, below, illustrate that it is safest to always consider exception 
synchronization when designing code that uses the x87 FPU.
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• Alternatively, a software exception handler can be invoked to handle the 
exception. When a numeric exception is unmasked and the exception occurs, the 
x87 FPU stops further execution of the numeric instruction and causes a branch 
to a software exception handler. When an x87 FPU exception handler will be 
invoked, synchronization must always be considered to assure reliable perfor-
mance.

Example D-1 and Example D-2, below, illustrate the need to always consider excep-
tion synchronization when writing numeric code, even when the code is initially 
intended for execution with exceptions masked.

D.3.3.2  Exception Synchronization Examples
In the following examples, three instructions are shown to load an integer, calculate 
its square root, then increment the integer. The synchronous execution of the x87 
FPU will allow both of these programs to execute correctly, with INC COUNT being 
executed in parallel in the processor, as long as no exceptions occur on the FILD 
instruction. However, if the code is later moved to an environment where exceptions 
are unmasked, the code in Example D-1 will not work correctly:

Example D-1.  Incorrect Error Synchronization

FILD COUNT ;x87 FPU instruction
INC COUNT ;integer instruction alters operand
FSQRT ;subsequent x87 FPU instruction -- error 

;from previous x87 FPU instruction detected here

Example D-2.  Proper Error Synchronization

FILD COUNT ;x87 FPU instruction
FSQRT ;subsequent x87 FPU instruction -- error from 

;previous x87 FPU instruction detected here
INC COUNT ;integer instruction alters operand

In some operating systems supporting the x87 FPU, the numeric register stack is 
extended to memory. To extend the x87 FPU stack to memory, the invalid exception 
is unmasked. A push to a full register or pop from an empty register sets SF (Stack 
Fault flag) and causes an invalid operation exception. The recovery routine for the 
exception must recognize this situation, fix up the stack, then perform the original 
operation. The recovery routine will not work correctly in Example D-1. The problem 
is that the value of COUNT increments before the exception handler is invoked, so 
that the recovery routine will load an incorrect value of COUNT, causing the program 
to fail or behave unreliably.
Vol. 1 D-17



GUIDELINES FOR WRITING X87 FPU EXCEPTION HANDLERS
D.3.3.3  Proper Exception Synchronization
As explained in Section D.2.1.2, “Recommended External Hardware to Support the 
MS-DOS* Compatibility Sub-mode,” if the x87 FPU encounters an unmasked excep-
tion condition a software exception handler is invoked before execution of the next 
WAIT or floating-point instruction. This is because an unmasked floating-point 
exception causes the processor to freeze immediately before executing such an 
instruction (unless the IGNNE# input is active, or it is a no-wait x87 FPU instruction). 
Exactly when the exception handler will be invoked (in the interval between when the 
exception is detected and the next WAIT or x87 FPU instruction) is dependent on the 
processor generation, the system, and which x87 FPU instruction and exception is 
involved. 

To be safe in exception synchronization, one should assume the handler will be 
invoked at the end of the interval. Thus the program should not change any value 
that might be needed by the handler (such as COUNT in Example D-1 and Example 
D-2) until after the next x87 FPU instruction following an x87 FPU instruction that 
could cause an error. If the program needs to modify such a value before the next 
x87 FPU instruction (or if the next x87 FPU instruction could also cause an error), 
then a WAIT instruction should be inserted before the value is modified. This will 
force the handling of any exception before the value is modified. A WAIT instruction 
should also be placed after the last floating-point instruction in an application so that 
any unmasked exceptions will be serviced before the task completes.

D.3.4  x87 FPU Exception Handling Examples
There are many approaches to writing exception handlers. One useful technique is to 
consider the exception handler procedure as consisting of “prologue,” “body,” and 
“epilogue” sections of code. 

In the transfer of control to the exception handler due to an INTR, NMI, or SMI, 
external interrupts have been disabled by hardware. The prologue performs all func-
tions that must be protected from possible interruption by higher-priority sources. 
Typically, this involves saving registers and transferring diagnostic information from 
the x87 FPU to memory. When the critical processing has been completed, the 
prologue may re-enable interrupts to allow higher-priority interrupt handlers to 
preempt the exception handler. The standard “prologue” not only saves the registers 
and transfers diagnostic information from the x87 FPU to memory but also clears the 
floating-point exception flags in the status word. Alternatively, when it is not neces-
sary for the handler to be re-entrant, another technique may also be used. In this 
technique, the exception flags are not cleared in the “prologue” and the body of the 
handler must not contain any floating-point instructions that cannot complete execu-
tion when there is a pending floating-point exception. (The no-wait instructions are 
discussed in Section 8.3.12, “Waiting vs. Non-waiting Instructions.”) Note that the 
handler must still clear the exception flag(s) before executing the IRET. If the excep-
tion handler uses neither of these techniques, the system will be caught in an endless 
loop of nested floating-point exceptions, and hang.
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The body of the exception handler examines the diagnostic information and makes a 
response that is necessarily application-dependent. This response may range from 
halting execution, to displaying a message, to attempting to repair the problem and 
proceed with normal execution. The epilogue essentially reverses the actions of the 
prologue, restoring the processor so that normal execution can be resumed. The 
epilogue must not load an unmasked exception flag into the x87 FPU or another 
exception will be requested immediately.

The following code examples show the ASM386/486 coding of three skeleton excep-
tion handlers, with the save spaces given as correct for 32-bit protected mode. They 
show how prologues and epilogues can be written for various situations, but the 
application-dependent exception handling body is just indicated by comments 
showing where it should be placed.

The first two are very similar; their only substantial difference is their choice of 
instructions to save and restore the x87 FPU. The trade-off here is between the 
increased diagnostic information provided by FNSAVE and the faster execution of 
FNSTENV. (Also, after saving the original contents, FNSAVE re-initializes the x87 FPU, 
while FNSTENV only masks all x87 FPU exceptions.) For applications that are sensi-
tive to interrupt latency or that do not need to examine register contents, FNSTENV 
reduces the duration of the “critical region,” during which the processor does not 
recognize another interrupt request. (See the Section 8.1.10, “Saving the x87 FPU’s 
State with FSTENV/FNSTENV and FSAVE/FNSAVE,” for a complete description of the 
x87 FPU save image.) If the processor supports Streaming SIMD Extensions and the 
operating system supports it, the FXSAVE instruction should be used instead of 
FNSAVE. If the FXSAVE instruction is used, the save area should be increased to 512 
bytes and aligned to 16 bytes to save the entire state. These steps will ensure that 
the complete context is saved.

After the exception handler body, the epilogues prepare the processor to resume 
execution from the point of interruption (for example, the instruction following the 
one that generated the unmasked exception). Notice that the exception flags in the 
memory image that is loaded into the x87 FPU are cleared to zero prior to reloading 
(in fact, in these examples, the entire status word image is cleared).

Example D-3 and Example D-4 assume that the exception handler itself will not 
cause an unmasked exception. Where this is a possibility, the general approach 
shown in Example D-5 can be employed. The basic technique is to save the full x87 
FPU state and then to load a new control word in the prologue. Note that considerable 
care should be taken when designing an exception handler of this type to prevent the 
handler from being reentered endlessly.

Example D-3.  Full-State Exception Handler

SAVE_ALL PROC
;
;SAVE REGISTERS, ALLOCATE STACK SPACE FOR x87 FPU STATE IMAGE

PUSH EBP
.
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.
MOV EBP, ESP
SUB ESP, 108 ; ALLOCATES 108 BYTES (32-bit PROTECTED MODE SIZE)

;SAVE FULL x87 FPU STATE, RESTORE INTERRUPT ENABLE FLAG (IF)
FNSAVE [EBP-108]
PUSH [EBP + OFFSET_TO_EFLAGS] ; COPY OLD EFLAGS TO STACK TOP
POPFD ;RESTORE IF TO VALUE BEFORE x87 FPU EXCEPTION

;
;APPLICATION-DEPENDENT EXCEPTION HANDLING CODE GOES HERE
;
;CLEAR EXCEPTION FLAGS IN STATUS WORD (WHICH IS IN MEMORY)
;RESTORE MODIFIED STATE IMAGE

MOV BYTE PTR [EBP-104], 0H
FRSTOR [EBP-108]

;DE-ALLOCATE STACK SPACE, RESTORE REGISTERS
MOV ESP, EBP
.
.
POP EBP

;
;RETURN TO INTERRUPTED CALCULATION

IRETD
SAVE_ALL ENDP

Example D-4.  Reduced-Latency Exception Handler

SAVE_ENVIRONMENTPROC
;
;SAVE REGISTERS, ALLOCATE STACK SPACE FOR x87 FPU ENVIRONMENT 

PUSH EBP
.
.
MOV EBP, ESP
SUB ESP, 28  ;ALLOCATES 28 BYTES (32-bit PROTECTED MODE SIZE)

;SAVE ENVIRONMENT, RESTORE INTERRUPT ENABLE FLAG (IF)
FNSTENV [EBP - 28]
PUSH [EBP + OFFSET_TO_EFLAGS]  ; COPY OLD EFLAGS TO STACK TOP
POPFD ;RESTORE IF TO VALUE BEFORE x87 FPU EXCEPTION

;
;APPLICATION-DEPENDENT EXCEPTION HANDLING CODE GOES HERE
;
;CLEAR EXCEPTION FLAGS IN STATUS WORD (WHICH IS IN MEMORY)
;RESTORE MODIFIED ENVIRONMENT IMAGE
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MOV BYTE PTR [EBP-24], 0H
FLDENV [EBP-28]

;DE-ALLOCATE STACK SPACE, RESTORE REGISTERS
MOV ESP, EBP
.
.
POP EBP

;
;RETURN TO INTERRUPTED CALCULATION

IRETD
SAVE_ENVIRONMENT ENDP

Example D-5.  Reentrant Exception Handler

.

.
LOCAL_CONTROL DW ?; ASSUME INITIALIZED

.

.
REENTRANTPROC
;
;SAVE REGISTERS, ALLOCATE STACK SPACE FOR x87 FPU STATE IMAGE

PUSH EBP
.
.
MOV EBP, ESP
SUB ESP, 108  ;ALLOCATES 108 BYTES (32-bit PROTECTED MODE SIZE)

;SAVE STATE, LOAD NEW CONTROL WORD, RESTORE INTERRUPT ENABLE FLAG (IF)
FNSAVE [EBP-108]
FLDCW LOCAL_CONTROL
PUSH [EBP + OFFSET_TO_EFLAGS]  ;COPY OLD EFLAGS TO STACK TOP
POPFD ;RESTORE IF TO VALUE BEFORE x87 FPU EXCEPTION

.

.
;
;APPLICATION-DEPENDENT EXCEPTION HANDLING CODE  
;GOES HERE - AN UNMASKED EXCEPTION
;GENERATED HERE WILL CAUSE THE EXCEPTION HANDLER TO BE REENTERED
;IF LOCAL STORAGE IS NEEDED, IT MUST BE ALLOCATED ON THE STACK

.
;CLEAR EXCEPTION FLAGS IN STATUS WORD (WHICH IS IN MEMORY)
;RESTORE MODIFIED STATE IMAGE
Vol. 1 D-21



GUIDELINES FOR WRITING X87 FPU EXCEPTION HANDLERS
MOV  BYTE PTR [EBP-104], 0H
FRSTOR  [EBP-108]

;DE-ALLOCATE STACK SPACE, RESTORE REGISTERS
MOV ESP, EBP
.
.
POP EBP

;
;RETURN TO POINT OF INTERRUPTION

IRETD
REENTRANT ENDP

D.3.5  Need for Storing State of IGNNE# Circuit If Using x87 FPU 
and SMM

The recommended circuit (see Figure D-1) for MS-DOS compatibility x87 FPU excep-
tion handling for Intel486 processors and beyond contains two flip flops. When the 
x87 FPU exception handler accesses I/O port 0F0H it clears the IRQ13 interrupt 
request output from Flip Flop #1 and also clocks out the IGNNE# signal (active) from 
Flip Flop #2. 

The assertion of IGNNE# may be used by the handler if needed to execute any x87 
FPU instruction while ignoring the pending x87 FPU errors. The problem here is that 
the state of Flip Flop #2 is effectively an additional (but hidden) status bit that can 
affect processor behavior, and so ideally should be saved upon entering SMM, and 
restored before resuming to normal operation. If this is not done, and also the SMM 
code saves the x87 FPU state, AND an x87 FPU error handler is being used which 
relies on IGNNE# assertion, then (very rarely) the x87 FPU handler will nest inside 
itself and malfunction. The following example shows how this can happen.

Suppose that the x87 FPU exception handler includes the following sequence:

FNSTSW save_sw ; save the x87 FPU status word 
; using a no-wait x87 FPU instruction

OUT 0F0H, AL ; clears IRQ13 & activates IGNNE#
 . . . .
FLDCW new_cw ; loads new CW ignoring x87 FPU errors, 

 ; since IGNNE# is assumed active; or any 
; other x87 FPU instruction that is not a no-wait 
; type will cause the same problem

 . . . .
FCLEX ; clear the x87 FPU error conditions & thus 

; turn off FERR# & reset the IGNNE# FF
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The problem will only occur if the processor enters SMM between the OUT and the 
FLDCW instructions. But if that happens, AND the SMM code saves the x87 FPU state 
using FNSAVE, then the IGNNE# Flip Flop will be cleared (because FNSAVE clears the 
x87 FPU errors and thus de-asserts FERR#). When the processor returns from SMM it 
will restore the x87 FPU state with FRSTOR, which will re-assert FERR#, but the 
IGNNE# Flip Flop will not get set. Then when the x87 FPU error handler executes the 
FLDCW instruction, the active error condition will cause the processor to re-enter the 
x87 FPU error handler from the beginning. This may cause the handler to malfunction.

To avoid this problem, Intel recommends two measures:

1. Do not use the x87 FPU for calculations inside SMM code. (The normal power 
management, and sometimes security, functions provided by SMM have no need 
for x87 FPU calculations; if they are needed for some special case, use scaling or 
emulation instead.) This eliminates the need to do FNSAVE/FRSTOR inside SMM 
code, except when going into a 0 V suspend state (in which, in order to save 
power, the CPU is turned off completely, requiring its complete state to be saved).

2. The system should not call upon SMM code to put the processor into 0 V suspend 
while the processor is running x87 FPU calculations, or just after an interrupt has 
occurred. Normal power management protocol avoids this by going into power 
down states only after timed intervals in which no system activity occurs.

D.3.6  Considerations When x87 FPU Shared Between Tasks
The IA-32 architecture allows speculative deferral of floating-point state swaps on 
task switches. This feature allows postponing an x87 FPU state swap until an x87 FPU 
instruction is actually encountered in another task. Since kernel tasks rarely use 
floating-point, and some applications do not use floating-point or use it infrequently, 
the amount of time saved by avoiding unnecessary stores of the floating-point state 
is significant. Speculative deferral of x87 FPU saves does, however, place an extra 
burden on the kernel in three key ways:

1. The kernel must keep track of which thread owns the x87 FPU, which may be 
different from the currently executing thread.

2. The kernel must associate any floating-point exceptions with the generating task. 
This requires special handling since floating-point exceptions are delivered 
asynchronous with other system activity.

3. There are conditions under which spurious floating-point exception interrupts are 
generated, which the kernel must recognize and discard.

D.3.6.1  Speculatively Deferring x87 FPU Saves, General Overview
In order to support multitasking, each thread in the system needs a save area for the 
general-purpose registers, and each task that is allowed to use floating-point needs 
an x87 FPU save area large enough to hold the entire x87 FPU stack and associated 
x87 FPU state such as the control word and status word. (See Section 8.1.10, 
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“Saving the x87 FPU’s State with FSTENV/FNSTENV and FSAVE/FNSAVE,” for a 
complete description of the x87 FPU save image.) If the processor and the operating 
system support Streaming SIMD Extensions, the save area should be large enough 
and aligned correctly to hold x87 FPU and Streaming SIMD Extensions state.

On a task switch, the general-purpose registers are swapped out to their save area 
for the suspending thread, and the registers of the resuming thread are loaded. The 
x87 FPU state does not need to be saved at this point. If the resuming thread does 
not use the x87 FPU before it is itself suspended, then both a save and a load of the 
x87 FPU state has been avoided. It is often the case that several threads may be 
executed without any usage of the x87 FPU.

The processor supports speculative deferral of x87 FPU saves via interrupt 7 “Device 
Not Available” (DNA), used in conjunction with CR0 bit 3, the “Task Switched” bit 
(TS). (See “Control Registers” in Chapter 2 of the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 3A.) Every task switch via the hardware 
supported task switching mechanism (see “Task Switching” in Chapter 7 of the Intel® 
64 and IA-32 Architectures Software Developer’s Manual, Volume 3A) sets TS. Multi-
threaded kernels that use software task switching1 can set the TS bit by reading CR0, 
ORing a “1” into2 bit 3, and writing back CR0. Any subsequent floating-point instruc-
tions (now being executed in a new thread context) will fault via interrupt 7 before 
execution. 

This allows a DNA handler to save the old floating-point context and reload the x87 
FPU state for the current thread. The handler should clear the TS bit before exit using 
the CLTS instruction. On return from the handler the faulting thread will proceed with 
its floating-point computation.

Some operating systems save the x87 FPU context on every task switch, typically 
because they also change the linear address space between tasks. The problem and 
solution discussed in the following sections apply to these operating systems also.

D.3.6.2  Tracking x87 FPU Ownership
Since the contents of the x87 FPU may not belong to the currently executing thread, 
the thread identifier for the last x87 FPU user needs to be tracked separately. This is 
not complicated; the kernel should simply provide a variable to store the thread iden-
tifier of the x87 FPU owner, separate from the variable that stores the identifier for 
the currently executing thread. This variable is updated in the DNA exception 

1 In a software task switch, the operating system uses a sequence of instructions to save the sus-
pending thread’s state and restore the resuming thread’s state, instead of the single long non-
interruptible task switch operation provided by the IA-32 architecture.

2 Although CR0, bit 2, the emulation flag (EM), also causes a DNA exception, do not use the EM bit
as a surrogate for TS. EM means that no x87 FPU is available and that floating-point instructions
must be emulated. Using EM to trap on task switches is not compatible with the MMX technology.
If the EM flag is set, MMX instructions raise the invalid opcode exception.
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handler, and is used by the DNA exception handler to find the x87 FPU save areas of 
the old and new threads. A simplified flow for a DNA exception handler is then:

1. Use the “x87 FPU Owner” variable to find the x87 FPU save area of the last thread 
to use the x87 FPU.

2. Save the x87 FPU contents to the old thread’s save area, typically using an 
FNSAVE or FXSAVE instruction.

3. Set the x87 FPU Owner variable to the identify the currently executing thread.

4. Reload the x87 FPU contents from the new thread’s save area, typically using an 
FRSTOR or FXSTOR instruction.

5. Clear TS using the CLTS instruction and exit the DNA exception handler.

While this flow covers the basic requirements for speculatively deferred x87 FPU 
state swaps, there are some additional subtleties that need to be handled in a robust 
implementation.

D.3.6.3  Interaction of x87 FPU State Saves and Floating-Point Exception 
Association

Recall these key points from earlier in this document: When considering floating-
point exceptions across all implementations of the IA-32 architecture, and across all 
floating-point instructions, a floating-point exception can be initiated from any time 
during the excepting floating-point instruction, up to just before the next floating-
point instruction. The “next” floating-point instruction may be the FNSAVE used to 
save the x87 FPU state for a task switch. In the case of “no-wait:” instructions such 
as FNSAVE, the interrupt from a previously excepting instruction (NE = 0 case) may 
arrive just before the no-wait instruction, during, or shortly thereafter with a system 
dependent delay. 

Note that this implies that an floating-point exception might be registered during the 
state swap process itself, and the kernel and floating-point exception interrupt 
handler must be prepared for this case.

A simple way to handle the case of exceptions arriving during x87 FPU state swaps is 
to allow the kernel to be one of the x87 FPU owning threads. A reserved thread iden-
tifier is used to indicate kernel ownership of the x87 FPU. During an floating-point 
state swap, the “x87 FPU owner” variable should be set to indicate the kernel as the 
current owner. At the completion of the state swap, the variable should be set to indi-
cate the new owning thread. The numeric exception handler needs to check the x87 
FPU owner and discard any numeric exceptions that occur while the kernel is the x87 
FPU owner. A more general flow for a DNA exception handler that handles this case is 
shown in Figure D-5.

Numeric exceptions received while the kernel owns the x87 FPU for a state swap 
must be discarded in the kernel without being dispatched to a handler. A flow for a 
numeric exception dispatch routine is shown in Figure D-6.
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It may at first glance seem that there is a possibility of floating-point exceptions 
being lost because of exceptions that are discarded during state swaps. This is not 
the case, as the exception will be re-issued when the floating-point state is reloaded. 
Walking through state swaps both with and without pending numeric exceptions will 
clarify the operation of these two handlers.

Figure D-5.  General Program Flow for DNA Exception Handler
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Case #1: x87 FPU State Swap Without Numeric Exception
Assume two threads A and B, both using the floating-point unit. Let A be the thread 
to have most recently executed a floating-point instruction, with no pending numeric 
exceptions. Let B be the currently executing thread. CR0.TS was set when thread A 
was suspended. 

When B starts to execute a floating-point instruction the instruction will fault with the 
DNA exception because TS is set.

At this point the handler is entered, and eventually it finds that the current x87 FPU 
Owner is not the currently executing thread. To guard the x87 FPU state swap from 
extraneous numeric exceptions, the x87 FPU Owner is set to be the kernel. The old 
owner’s x87 FPU state is saved with FNSAVE, and the current thread’s x87 FPU state 
is restored with FRSTOR. Before exiting, the x87 FPU owner is set to thread B, and 
the TS bit is cleared.

On exit, thread B resumes execution of the faulting floating-point instruction and 
continues.

Case #2: x87 FPU State Swap with Discarded Numeric Exception
Again, assume two threads A and B, both using the floating-point unit. Let A be the 
thread to have most recently executed a floating-point instruction, but this time let 
there be a pending numeric exception. Let B be the currently executing thread. When 
B starts to execute a floating-point instruction the instruction will fault with the DNA 
exception and enter the DNA handler. (If both numeric and DNA exceptions are 
pending, the DNA exception takes precedence, in order to support handling the 
numeric exception in its own context.)

When the FNSAVE starts, it will trigger an interrupt via FERR# because of the 
pending numeric exception. After some system dependent delay, the numeric excep-
tion handler is entered. It may be entered before the FNSAVE starts to execute, or it 
may be entered shortly after execution of the FNSAVE. Since the x87 FPU Owner is 
the kernel, the numeric exception handler simply exits, discarding the exception. The 

Figure D-6.  Program Flow for a Numeric Exception Dispatch Routine
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DNA handler resumes execution, completing the FNSAVE of the old floating-point 
context of thread A and the FRSTOR of the floating-point context for thread B.

Thread A eventually gets an opportunity to handle the exception that was discarded 
during the task switch. After some time, thread B is suspended, and thread A 
resumes execution. When thread A starts to execute an floating-point instruction, 
once again the DNA exception handler is entered. B’s x87 FPU state is saved with 
FNSAVE, and A’s x87 FPU state is restored with FRSTOR. Note that in restoring the 
x87 FPU state from A’s save area, the pending numeric exception flags are reloaded 
into the floating-point status word. Now when the DNA exception handler returns, 
thread A resumes execution of the faulting floating-point instruction just long enough 
to immediately generate a numeric exception, which now gets handled in the normal 
way. The net result is that the task switch and resulting x87 FPU state swap via the 
DNA exception handler causes an extra numeric exception which can be safely 
discarded.

D.3.6.4  Interrupt Routing From the Kernel
In MS-DOS, an application that wishes to handle numeric exceptions hooks interrupt 
16 by placing its handler address in the interrupt vector table, and exiting via a jump 
to the previous interrupt 16 handler. Protected mode systems that run MS-DOS 
programs under a subsystem can emulate this exception delivery mechanism. For 
example, assume a protected mode OS. that runs with CR0.NE[bit 5] = 1, and that 
runs MS-DOS programs in a virtual machine subsystem. The MS-DOS program is 
set up in a virtual machine that provides a virtualized interrupt table. The MS-DOS 
application hooks interrupt 16 in the virtual machine in the normal way. A numeric 
exception will trap to the kernel via the real INT 16 residing in the kernel at ring 0. 

The INT 16 handler in the kernel then locates the correct MS-DOS virtual machine, 
and reflects the interrupt to the virtual machine monitor. The virtual machine monitor 
then emulates an interrupt by jumping through the address in the virtualized inter-
rupt table, eventually reaching the application’s numeric exception handler.

D.3.6.5  Special Considerations for Operating Systems that Support 
Streaming SIMD Extensions

Operating systems that support Streaming SIMD Extensions instructions introduced 
with the Pentium III processor should use the FXSAVE and FXRSTOR instructions to 
save and restore the new SIMD floating-point instruction register state as well as the 
floating-point state. Such operating systems must consider the following issues:

1. Enlarged state save area — FNSAVE/FRSTOR instructions operate on a 
94-byte or 108-byte memory region, depending on whether they are executed in 
16-bit or 32-bit mode. The FXSAVE/FXRSTOR instructions operate on a 512-byte 
memory region.

2. Alignment requirements — FXSAVE/FXRSTOR instructions require the 
memory region on which they operate to be 16-byte aligned (refer to the 
individual instruction instructions descriptions in Chapter 3 of the Intel® 64 and 
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IA-32 Architectures Software Developer’s Manual, Volume 2A, for information 
about exceptions generated if the memory region is not aligned).

3. Maintaining compatibility with legacy applications/libraries — The 
operating system changes to support Streaming SIMD Extensions must be 
invisible to legacy applications or libraries that deal only with floating-point 
instructions. The layout of the memory region operated on by the 
FXSAVE/FXRSTOR instructions is different from the layout for the 
FNSAVE/FRSTOR instructions. Specifically, the format of the x87 FPU tag word 
and the length of the various fields in the memory region is different. Care must 
be taken to return the x87 FPU state to a legacy application (e.g., when reporting 
FP exceptions) in the format it expects.

4. Instruction semantic differences — There are some semantic differences 
between the way the FXSAVE and FSAVE/FNSAVE instructions operate. The 
FSAVE/FNSAVE instructions clear the x87 FPU after they save the state while the 
FXSAVE instruction saves the x87 FPU/Streaming SIMD Extensions state but 
does not clear it. Operating systems that use FXSAVE to save the x87 FPU state 
before making it available for another thread (e.g., during thread switch time) 
should take precautions not to pass a “dirty” x87 FPU to another application.

D.4 DIFFERENCES FOR HANDLERS USING NATIVE MODE
The 8087 has an INT pin which it asserts when an unmasked exception occurs. But 
there is no interrupt input pin in the 8086 or 8088 dedicated to its attachment, nor an 
interrupt vector number in the 8086 or 8088 specific for an x87 FPU error assertion. 
Beginning with the Intel 286 and Intel 287 hardware, a connection was dedicated to 
support the x87 FPU exception and interrupt vector 16 was assigned to it.

D.4.1  Origin with the Intel 286 and Intel 287, and Intel386 
and Intel 387 Processors

The Intel 286 and Intel 287, and Intel386 and Intel 387 processor/coprocessor pairs 
are each provided with ERROR# pins that are recommended to be connected 
between the processor and x87 FPU. If this is done, when an unmasked x87 FPU 
exception occurs, the x87 FPU records the exception, and asserts its ERROR# pin. 
The processor recognizes this active condition of the ERROR# status line immediately 
before execution of the next WAIT or x87 FPU instruction (except for the no-wait 
type) in its instruction stream, and branches to the routine at interrupt vector 16. 
Thus an x87 FPU exception will be handled before any other x87 FPU instruction 
(after the one causing the error) is executed (except for no-wait instructions, which 
will be executed without triggering the x87 FPU exception interrupt, but it will remain 
pending).
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Using the dedicated INT 16 for x87 FPU exception handling is referred to as the 
native mode. It is the simplest approach, and the one recommended most highly by 
Intel.

D.4.2  Changes with Intel486, Pentium and Pentium Pro 
Processors with CR0.NE[bit 5] = 1

With these three generations of the IA-32 architecture, more enhancements and 
speedup features have been added to the corresponding x87 FPUs. Also, the x87 FPU 
is now built into the same chip as the processor, which allows further increases in the 
speed at which the x87 FPU can operate as part of the integrated system. This also 
means that the native mode of x87 FPU exception handling, selected by setting bit 
NE of register CR0 to 1, is now entirely internal.

If an unmasked exception occurs during an x87 FPU instruction, the x87 FPU records 
the exception internally, and triggers the exception handler through interrupt 16 
immediately before execution of the next WAIT or x87 FPU instruction (except for 
no-wait instructions, which will be executed as described in Section D.4.1, “Origin 
with the Intel 286 and Intel 287, and Intel386 and Intel 387 Processors”).

An unmasked numerical exception causes the FERR# output to be activated even 
with NE = 1, and at exactly the same point in the program flow as it would have been 
asserted if NE were zero. However, the system would not connect FERR# to a PIC to 
generate INTR when operating in the native, internal mode. (If the hardware of a 
system has FERR# connected to trigger IRQ13 in order to support MS-DOS, but an 
operating system using the native mode is actually running the system, it is the oper-
ating system’s responsibility to make sure that IRQ13 is not enabled in the slave 
PIC.) With this configuration a system is immune to the problem discussed in Section 
D.2.1.3, “No-Wait x87 FPU Instructions Can Get x87 FPU Interrupt in Window,” where 
for Intel486 and Pentium processors a no-wait x87 FPU instruction can get an x87 
FPU exception.

D.4.3  Considerations When x87 FPU Shared Between Tasks Using 
Native Mode

The protocols recommended in Section D.3.6, “Considerations When x87 FPU Shared 
Between Tasks,” for MS-DOS compatibility x87 FPU exception handlers that are 
shared between tasks may be used without change with the native mode. However, 
the protocols for a handler written specifically for native mode can be simplified, 
because the problem of a spurious floating-point exception interrupt occurring while 
the kernel is executing cannot happen in native mode. 

The problem as actually found in practical code in a MS-DOS compatibility system 
happens when the DNA handler uses FNSAVE to switch x87 FPU contexts. If an x87 
FPU exception is active, then FNSAVE triggers FERR# briefly, which usually will cause 
the x87 FPU exception handler to be invoked inside the DNA handler. In native mode, 
neither FNSAVE nor any other no-wait instructions can trigger interrupt 16. (As 
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discussed above, FERR# gets asserted independent of the value of the NE bit, but 
when NE = 1, the operating system should not enable its path through the PIC.) 
Another possible (very rare) way a floating-point exception interrupt could occur 
while the kernel is executing is by an x87 FPU immediate exception case having its 
interrupt delayed by the external hardware until execution has switched to the 
kernel. This also cannot happen in native mode because there is no delay through 
external hardware.

Thus the native mode x87 FPU exception handler can omit the test to see if the kernel 
is the x87 FPU owner, and the DNA handler for a native mode system can omit the 
step of setting the kernel as the x87 FPU owner at the handler’s beginning. Since 
however these simplifications are minor and save little code, it would be a reasonable 
and conservative habit (as long as the MS-DOS compatibility mode is widely used) to 
include these steps in all systems.

Note that the special DP (Dual Processing) mode for Pentium processors, and also 
the more general Intel MultiProcessor Specification for systems with multiple 
Pentium, P6 family, or Pentium 4 processors, support x87 FPU exception handling 
only in the native mode. Intel does not recommend using the MS-DOS compatibility 
mode for systems using more than one processor.
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APPENDIX E
GUIDELINES FOR WRITING SIMD FLOATING-POINT

EXCEPTION HANDLERS

See Section 11.5, “SSE, SSE2, and SSE3 Exceptions,” for a detailed discussion of 
SIMD floating-point exceptions.

This appendix considers only SSE/SSE2/SSE3 instructions that can generate numeric 
(SIMD floating-point) exceptions, and gives an overview of the necessary support for 
handling such exceptions. This appendix does not address instructions that do not 
generate floating-point exceptions (such as RSQRTSS, RSQRTPS, RCPSS, or RCPPS), 
any x87 instructions, or any unlisted instruction. 

For detailed information on which instructions generate numeric exceptions, and a 
listing of those exceptions, refer to Appendix C, “Floating-Point Exceptions 
Summary.” Non-numeric exceptions are handled in a way similar to that for the stan-
dard IA-32 instructions.

E.1 TWO OPTIONS FOR HANDLING FLOATING-POINT 
EXCEPTIONS

Just as for x87 FPU floating-point exceptions, the processor takes one of two possible 
courses of action when an SSE/SSE2/SSE3 instruction raises a floating-point excep-
tion: 
• If the exception being raised is masked (by setting the corresponding mask bit in 

the MXCSR to 1), then a default result is produced which is acceptable in most 
situations. No external indication of the exception is given, but the corresponding 
exception flags in the MXCSR are set and may be examined later. Note though 
that for packed operations, an exception flag that is set in the MXCSR will not tell 
which of the sub-operands caused the event to occur.

• If the exception being raised is not masked (by setting the corresponding mask 
bit in the MXCSR to 0), a software exception handler previously registered by the 
user with operating system support will be invoked through the SIMD floating-
point exception (#XM, vector 19). This case is discussed below in Section E.2, 
“Software Exception Handling.”

E.2 SOFTWARE EXCEPTION HANDLING
The exception handling routine reached via interrupt vector 19 is usually part of the 
system software (the operating system kernel). Note that an interrupt descriptor 
table (IDT) entry must have been previously set up for this vector (refer to Chapter 
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6, “Interrupt and Exception Handling,” in the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3A). Some compilers use specific run-time 
libraries to assist in floating-point exception handling. If any x87 FPU floating-point 
operations are going to be performed that might raise floating-point exceptions, then 
the exception handling routine must either disable all floating-point exceptions (for 
example, loading a local control word with FLDCW), or it must be implemented as re-
entrant (for the case of x87 FPU exceptions, refer to Example D-1 in Appendix D, 
“Guidelines for Writing x87 FPU Exception Handlers”). If this is not the case, the 
routine has to clear the status flags for x87 FPU exceptions or to mask all x87 FPU 
floating-point exceptions. For SIMD floating-point exceptions though, the exception 
flags in MXCSR do not have to be cleared, even if they remain unmasked (but they 
may still be cleared). Exceptions are in this case precise and occur immediately, and 
a SIMD floating-point exception status flag that is set when the corresponding excep-
tion is unmasked will not generate an exception.

Typical actions performed by this low-level exception handling routine are:
• Incrementing an exception counter for later display or printing
• Printing or displaying diagnostic information (e.g. the MXCSR and XMM registers)
• Aborting further execution, or using the exception pointers to build an instruction 

that will run without exception and executing it
• Storing information about the exception in a data structure that will be passed to 

a higher level user exception handler

In most cases (and this applies also to SSE/SSE2/SSE3 instructions), there will be 
three main components of a low-level floating-point exception handler: a prologue, a 
body, and an epilogue.

The prologue performs functions that must be protected from possible interruption 
by higher-priority sources - typically saving registers and transferring diagnostic 
information from the processor to memory. When the critical processing has been 
completed, the prologue may re-enable interrupts to allow higher-priority interrupt 
handlers to preempt the exception handler (assuming that the interrupt handler was 
called through an interrupt gate, meaning that the processor cleared the interrupt 
enable (IF) flag in the EFLAGS register - refer to Section 6.4.1, “Call and Return 
Operation for Interrupt or Exception Handling Procedures”).

The body of the exception handler examines the diagnostic information and makes a 
response that is application-dependent. It may range from halting execution, to 
displaying a message, to attempting to fix the problem and then proceeding with 
normal execution, to setting up a data structure, calling a higher-level user exception 
handler and continuing execution upon return from it. This latter case will be 
assumed in Section E.4, “SIMD Floating-Point Exceptions and the IEEE Standard 
754” below.

Finally, the epilogue essentially reverses the actions of the prologue, restoring the 
processor state so that normal execution can be resumed.

The following example represents a typical exception handler. To link it with Example 
E-2 that will follow in Section E.4.3, “Example SIMD Floating-Point Emulation Imple-
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mentation,” assume that the body of the handler (not shown here in detail) passes 
the saved state to a routine that will examine in turn all the sub-operands of the 
excepting instruction, invoking a user floating-point exception handler if a particular 
set of sub-operands raises an unmasked (enabled) exception, or emulating the 
instruction otherwise.

Example E-1.  SIMD Floating-Point Exception Handler

SIMD_FP_EXC_HANDLER PROC

;PROLOGUE
;SAVE REGISTERS THAT MIGHT BE USED BY THE EXCEPTION HANDLER
    PUSH EBP ;SAVE EBP
    PUSH EAX ;SAVE EAX
    ...
    MOV EBP, ESP ;SAVE ESP in EBP
    SUB ESP, 512 ;ALLOCATE 512 BYTES
    AND ESP, 0fffffff0h ;MAKE THE ADDRESS 16-BYTE ALIGNED
    FXSAVE [ESP] ;SAVE FP, MMX, AND SIMD FP STATE
    PUSH [EBP+EFLAGS_OFFSET] ;COPY OLD EFLAGS TO STACK TOP
    POPFD ;RESTORE THE INTERRUPT ENABLE FLAG IF

;TO VALUE BEFORE SIMD FP EXCEPTION

;BODY
;APPLICATION-DEPENDENT EXCEPTION HANDLING CODE GOES HERE
    LDMXCSR LOCAL_MXCSR ;LOAD LOCAL MXCSR VALUE IF NEEDED
    ...
    ...
;EPILOGUE
    FXRSTOR [ESP] ;RESTORE MODIFIED STATE IMAGE
    MOV ESP, EBP ;DE-ALLOCATE STACK SPACE
    ...
    POP EAX ;RESTORE EAX
    POP EBP ;RESTORE EBP
    IRET ;RETURN TO INTERRUPTED CALCULATION
SIMD_FP_EXC_HANDLER ENDP

E.3 EXCEPTION SYNCHRONIZATION
An SSE/SSE2/SSE3 instruction can execute in parallel with other similar instructions, 
with integer instructions, and with floating-point or MMX instructions. Unlike for x87 
instructions, special precaution for exception synchronization is not necessary in 
this case. This is because floating-point exceptions for SSE/SSE2/SSE3 instructions 
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occur immediately and are not delayed until a subsequent floating-point instruction 
is executed. However, floating-point emulation may be necessary when unmasked 
floating-point exceptions are generated.

E.4 SIMD FLOATING-POINT EXCEPTIONS AND THE IEEE 
STANDARD 754

SSE/SSE2/SSE3 extensions are 100% compatible with the IEEE Standard 754 for 
Binary Floating-Point Arithmetic, satisfying all of its mandatory requirements (when 
the flush-to-zero or denormals-are-zeros modes are not enabled). But a program-
ming environment that includes SSE/SSE2/SSE3 instructions will comply with both 
the obligatory and the strongly recommended requirements of the IEEE Standard 
754 regarding floating-point exception handling, only as a combination of hardware 
and software (which is acceptable). The standard states that a user should be able to 
request a trap on any of the five floating-point exceptions (note that the denormal 
exception is an IA-32 addition), and it also specifies the values (operands or result) 
to be delivered to the exception handler. 

The main issue is that for SSE/SSE2/SSE3 instructions that raise post-computation 
exceptions (traps: overflow, underflow, or inexact), unlike for x87 FPU instructions, 
the processor does not provide the result recommended by IEEE Standard 754 to the 
user handler. If a user program needs the result of an instruction that generated a 
post-computation exception, it is the responsibility of the software to produce this 
result by emulating the faulting SSE/SSE2/SSE3 instruction. Another issue is that the 
standard does not specify explicitly how to handle multiple floating-point exceptions 
that occur simultaneously. For packed operations, a logical OR of the flags that would 
be set by each sub-operation is used to set the exception flags in the MXCSR. The 
following subsections present one possible way to solve these problems.

E.4.1  Floating-Point Emulation
Every operating system must provide a kernel level floating-point exception handler 
(a template was presented in Section E.2, “Software Exception Handling” above). In 
the following discussion, assume that a user mode floating-point exception filter is 
supplied for SIMD floating-point exceptions (for example as part of a library of C 
functions), that a user program can invoke in order to handle unmasked exceptions. 
The user mode floating-point exception filter (not shown here) has to be able to 
emulate the subset of SSE/SSE2/SSE3 instructions that can generate numeric 
exceptions, and has to be able to invoke a user provided floating-point exception 
handler for floating-point exceptions. When a floating-point exception that is not 
masked is raised by an SSE/SSE2/SSE3 instruction, the low-level floating-point 
exception handler will be called. This low-level handler may in turn call the user mode 
floating-point exception filter. The filter function receives the original operands of the 
excepting instruction as no results are provided by the hardware, whether a pre-
computation or a post-computation exception has occurred. The filter will unpack the 
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operands into up to four sets of sub-operands, and will submit them one set at a time 
to an emulation function (See Example E-2 in Section E.4.3, “Example SIMD 
Floating-Point Emulation Implementation”). The emulation function will examine the 
sub-operands, and will possibly redo the necessary calculation. 

Two cases are possible:
• If an unmasked (enabled) exception would occur in this process, the emulation 

function will return to its caller (the filter function) with the appropriate infor-
mation. The filter will invoke a (previously registered) user floating-point 
exception handler for this set of sub-operands, and will record the result upon 
return from the user handler (provided the user handler allows continuation of 
the execution). 

• If no unmasked (enabled) exception would occur, the emulation function will 
determine and will return to its caller the result of the operation for the current 
set of sub-operands (it has to be IEEE Standard 754 compliant). The filter 
function will record the result (plus any new flag settings).

The user level filter function will then call the emulation function for the next set of 
sub-operands (if any). When done with all the operand sets, the partial results will be 
packed (if the excepting instruction has a packed floating-point result, which is true 
for most SSE/SSE2/SSE3 numeric instructions) and the filter will return to the low-
level exception handler, which in turn will return from the interruption, allowing 
execution to continue. Note that the instruction pointer (EIP) has to be altered to 
point to the instruction following the excepting instruction, in order to continue 
execution correctly.

If a user mode floating-point exception filter is not provided, then all the work for 
decoding the excepting instruction, reading its operands, emulating the instruction 
for the components of the result that do not correspond to unmasked floating-point 
exceptions, and providing the compounded result will have to be performed by the 
user-provided floating-point exception handler.

Actual emulation might have to take place for one operand or pair of operands for 
scalar operations, and for all sub-operands or pairs of sub-operands for packed oper-
ations. The steps to perform are the following:
• The excepting instruction has to be decoded and the operands have to be read 

from the saved context.
• The instruction has to be emulated for each (pair of) sub-operand(s); if no 

floating-point exception occurs, the partial result has to be saved; if a masked 
floating-point exception occurs, the masked result has to be produced through 
emulation and saved, and the appropriate status flags have to be set; if an 
unmasked floating-point exception occurs, the result has to be generated by the 
user provided floating-point exception handler, and the appropriate status flags 
have to be set.

• The partial results have to be combined and written to the context that will be 
restored upon application program resumption.
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A diagram of the control flow in handling an unmasked floating-point exception is 
presented below.

From the user-level floating-point filter, Example E-2 in Section E.4.3, “Example 
SIMD Floating-Point Emulation Implementation,” will present only the floating-point 
emulation part. In order to understand the actions involved, the expected response 
to exceptions has to be known for all SSE/SSE2/SSE3 numeric instructions in two 
situations: with exceptions enabled (unmasked result), and with exceptions disabled 
(masked result). The latter can be found in Section 6.4, “Interrupts and Exceptions.” 
The response to NaN operands that do not raise an exception is specified in Section 
4.8.3.4, “NaNs.” Operations on NaNs are explained in the same source. This response 
is also discussed in more detail in the next subsection, along with the unmasked and 
masked responses to floating-point exceptions.

E.4.2  SSE/SSE2/SSE3 Response To Floating-Point Exceptions
This subsection specifies the unmasked response expected from the SSE/SSE2/SSE3 
instructions that raise floating-point exceptions. The masked response is given in 
parallel, as it is necessary in the emulation process of the instructions that raise 
unmasked floating-point exceptions. The response to NaN operands is also included 
in more detail than in Section 4.8.3.4, “NaNs.” For floating-point exception priority, 
refer to “Priority Among Simultaneous Exceptions and Interrupts” in Chapter 6, 

Figure E-1.  Control Flow for Handling Unmasked Floating-Point Exceptions

User Application

User Level Floating-Point Exception Filter 

Low-Level Floating-Point Exception Handler

User Floating-Point Exception Handler
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“Interrupt and Exception Handling,” of Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3A.

E.4.2.1  Numeric Exceptions
There are six classes of numeric (floating-point) exception conditions that can occur: 
Invalid operation (#I), Divide-by-Zero (#Z), Denormal Operand (#D), Numeric 
Overflow (#O), Numeric Underflow (#U), and Inexact Result (precision) (#P). #I, 
#Z, #D are pre-computation exceptions (floating-point faults), detected before the 
arithmetic operation. #O, #U, #P are post-computation exceptions (floating-point 
traps). 

Users can control how the SSE/SSE2/SSE3 floating-point exceptions are handled by 
setting the mask/unmask bits in MXCSR. Masked exceptions are handled by the 
processor, or by software if they are combined with unmasked exceptions occurring 
in the same instruction. Unmasked exceptions are usually handled by the low-level 
exception handler, in conjunction with user-level software.

E.4.2.2  Results of Operations with NaN Operands or a NaN Result for 
SSE/SSE2/SSE3 Numeric Instructions

The tables below (E-1 through E-10) specify the response of SSE/SSE2/SSE3 
instructions to NaN inputs, or to other inputs that lead to NaN results.

These results will be referenced by subsequent tables (e.g., E-10). Most operations 
do not raise an invalid exception for quiet NaN operands, but even so, they will have 
higher precedence over raising floating-point exceptions other than invalid opera-
tion. 

Note that the single precision QNaN Indefinite value is 0xffc00000, the double preci-
sion QNaN Indefinite value is 0xfff8000000000000, and the Integer Indefinite value 
is 0x80000000 (not a floating-point number, but it can be the result of a conversion 
instruction from floating-point to integer).

For an unmasked exception, no result will be provided by the hardware to the user 
handler. If a user registered floating-point exception handler is invoked, it may 
provide a result for the excepting instruction, that will be used if execution of the 
application code is continued after returning from the interruption.

In Tables E-1 through Table E-12, the specified operands cause an invalid exception, 
unless the unmasked result is marked with “not an exception”. In this latter case, the 
unmasked and masked results are the same. 
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Table E-1.  ADDPS, ADDSS, SUBPS, SUBSS, MULPS, MULSS, DIVPS, DIVSS, ADDPD, 
ADDSD, SUBPD, SUBSD, MULPD, MULSD, DIVPD, DIVSD, ADDSUBPS, ADDSUBPD, 

HADDPS, HADDPD, HSUBPS, HSUBPD

Source Operands Masked Result Unmasked Result

SNaN1 op1 SNaN2 SNaN1 | 00400000H or 
SNaN1 | 
0008000000000000H2

None

SNaN1 op QNaN2 SNaN1 | 00400000H or
SNaN1 | 
0008000000000000H2

None

QNaN1 op SNaN2 QNaN1 None

QNaN1 op QNaN2 QNaN1 QNaN1 (not an exception)

SNaN op real value SNaN | 00400000H or
SNaN1 | 
0008000000000000H2

None

Real value op SNaN SNaN | 00400000H or
SNaN1 | 
0008000000000000H2

None

QNaN op real value QNaN QNaN (not an exception)

Real value op QNaN QNaN QNaN (not an exception)

Neither source operand is 
SNaN,
but #I is signaled (e.g. for Inf - 
Inf, 
Inf ∗ 0, Inf / Inf, 0/0) 

Single precision or double 
precision QNaN Indefinite

None

NOTES:
1. For Tables E-1 to E-12: op denotes the operation to be performed.
2. SNaN | 0x00400000 is a quiet NaN in single precision format (if SNaN is in single precision) and

SNaN | 0008000000000000H is a quiet NaN in double precision format (if SNaN is in double
precision), obtained from the signaling NaN given as input.

3. Operations involving only quiet NaNs do not raise floating-point exceptions.
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Table E-2.  CMPPS.EQ, CMPSS.EQ, CMPPS.ORD, CMPSS.ORD, 
CMPPD.EQ, CMPSD.EQ, CMPPD.ORD, CMPSD.ORD

Source Operands Masked Result Unmasked Result

NaN op Opd2 (any Opd2) 00000000H or 
0000000000000000H1

00000000H or 
0000000000000000H1 (not 
an exception)

Opd1 op NaN (any Opd1) 00000000H or 
0000000000000000H1

00000000H or 
0000000000000000H1 (not 
an exception)

NOTE:
1. 32-bit results are for single, and 64-bit results for double precision operations.

Table E-3.  CMPPS.NEQ, CMPSS.NEQ, CMPPS.UNORD, CMPSS.UNORD, CMPPD.NEQ, 
CMPSD.NEQ, CMPPD.UNORD, CMPSD.UNORD

Source Operands Masked Result Unmasked Result

NaN op Opd2 (any Opd2) FFFFFFFFH or 
FFFFFFFFFFFFFFFFH1

FFFFFFFFH or 
FFFFFFFFFFFFFFFFH1 (not an 
exception)

Opd1 op NaN (any Opd1) FFFFFFFFH or 
FFFFFFFFFFFFFFFFH1

FFFFFFFFH or 
FFFFFFFFFFFFFFFFH1 (not an 
exception)

NOTE: 
1. 32-bit results are for single, and 64-bit results for double precision operations.

Table E-4.  CMPPS.LT, CMPSS.LT, CMPPS.LE, CMPSS.LE, CMPPD.LT, CMPSD.LT, 
CMPPD.LE, CMPSD.LE

Source Operands Masked Result Unmasked Result

NaN op Opd2 (any Opd2) 00000000H or 
0000000000000000H1 

None

Opd1 op NaN (any Opd1) 00000000H or 
0000000000000000H1 

None

NOTE:
1. 32-bit results are for single, and 64-bit results for double precision operations.
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Table E-5.  CMPPS.NLT, CMPSS.NLT, CMPPS.NLE, CMPSS.NLE, CMPPD.NLT, CMPSD.NLT, 
CMPPD.NLE, CMPSD.NLE

Source Operands Masked Result Unmasked Result

NaN op Opd2 (any Opd2) FFFFFFFFH or 
FFFFFFFFFFFFFFFFH1

None

Opd1 op NaN (any Opd1) FFFFFFFFH or 
FFFFFFFFFFFFFFFFH1

None

NOTE:
1. 32-bit results are for single, and 64-bit results for double precision operations.

Table E-6.  COMISS, COMISD

Source Operands Masked Result Unmasked Result

SNaN op Opd2 (any Opd2) OF, SF, AF = 000  
ZF, PF, CF = 111

None

Opd1 op SNaN (any Opd1) OF, SF, AF = 000  
ZF, PF, CF = 111

None

QNaN op Opd2 (any Opd2) OF, SF, AF = 000 
ZF, PF, CF = 111

None

Opd1 op QNaN (any Opd1) OF, SF, AF = 000 
ZF, PF, CF = 111

None

Table E-7.  UCOMISS, UCOMISD

Source Operands Masked Result Unmasked Result

SNaN op Opd2 (any Opd2) OF, SF, AF = 000  
ZF, PF, CF = 111

None

Opd1 op SNaN (any Opd1) OF, SF, AF = 000  
ZF, PF, CF = 111

None

QNaN op Opd2 
(any Opd2 ≠ SNaN)

OF, SF, AF = 000  
ZF, PF, CF = 111

OF, SF, AF = 000  
ZF, PF, CF = 111 (not an 
exception)

Opd1 op QNaN 
(any Opd1 ≠ SNaN)

OF, SF, AF = 000  
ZF, PF, CF = 111

OF, SF, AF = 000  
ZF, PF, CF = 111 (not an 
exception)
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Table E-8.  CVTPS2PI, CVTSS2SI, CVTTPS2PI, CVTTSS2SI, CVTPD2PI, CVTSD2SI, 
CVTTPD2PI, CVTTSD2SI, CVTPS2DQ, CVTTPS2DQ, CVTPD2DQ, CVTTPD2DQ

Source Operand Masked Result Unmasked Result

SNaN 80000000H or 
80000000000000001 
(Integer Indefinite)

None

QNaN 80000000H or 
80000000000000001 
(Integer Indefinite)

None

NOTE: 
1. 32-bit results are for single, and 64-bit results for double precision operations.

Table E-9.  MAXPS, MAXSS, MINPS, MINSS, MAXPD, MAXSD, MINPD, MINSD

Source Operands Masked Result Unmasked Result

Opd1 op NaN2 (any Opd1) NaN2 None

NaN1 op Opd2 (any Opd2) Opd2 None

NOTE:
1. SNaN and QNaN operands raise an Invalid Operation fault.

Table E-10.  SQRTPS, SQRTSS, SQRTPD, SQRTSD

Source Operand Masked Result Unmasked Result

QNaN QNaN QNaN (not an exception)

SNaN SNaN | 00400000H or
SNaN | 
0008000000000000H1

None

Source operand is not SNaN;
but #I is signaled (e.g. for 
sqrt (-1.0))

Single precision or 
double precision QNaN 
Indefinite

None

NOTE:
1. SNaN | 00400000H is a quiet NaN in single precision format (if SNaN is in single precision) and 

SNaN | 0008000000000000H is a quiet NaN in double precision format (if SNaN is in double 
precision), obtained from the signaling NaN given as input.
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E.4.2.3  Condition Codes, Exception Flags, and Response for Masked and 
Unmasked Numeric Exceptions

In the following, the masked response is what the processor provides when a masked 
exception is raised by an SSE/SSE2/SSE3 numeric instruction. The same response is 
provided by the floating-point emulator for SSE/SSE2/SSE3 numeric instructions, 
when certain components of the quadruple input operands generate exceptions that 
are masked (the emulator also generates the correct answer, as specified by IEEE 
Standard 754 wherever applicable, in the case when no floating-point exception 
occurs). The unmasked response is what the emulator provides to the user handler 
for those components of the packed operands of SSE/SSE2/SSE3 instructions that 
raise unmasked exceptions. Note that for pre-computation exceptions (floating-point 

Table E-11.  CVTPS2PD, CVTSS2SD

Source Operands Masked Result Unmasked Result

QNaN QNaN11 QNaN11 (not an exception)

SNaN QNaN12 None

NOTES:
1. The double precision output QNaN1 is created from the single precision input QNaN as follows: 

the sign bit is preserved, the 8-bit exponent FFH is replaced by the 11-bit exponent 7FFH, and 
the 24-bit significand is extended to a 53-bit significand by appending 29 bits equal to 0.

2. The double precision output QNaN1 is created from the single precision input SNaN as follows:
the sign bit is preserved, the 8-bit exponent FFH is replaced by the 11-bit exponent 7FFH, and
the 24-bit significand is extended to a 53-bit significand by pending 29 bits equal to 0. The sec-
ond most significant bit of the significand is changed from 0 to 1 to convert the signaling NaN
into a quiet NaN.

Table E-12.  CVTPD2PS, CVTSD2SS

Source Operands Masked Result Unmasked Result

QNaN QNaN11 QNaN11 (not an exception)

SNaN QNaN12 None

NOTES:
1. The single precision output QNaN1 is created from the double precision input QNaN as follows: 

the sign bit is preserved, the 11-bit exponent 7FFH is replaced by the 8-bit exponent FFH, and 
the 53-bit significand is truncated to a 24-bit significand by removing its 29 least significant 
bits.

2. The single precision output QNaN1 is created from the double precision input SNaN as follows:
the sign bit is preserved, the 11-bit exponent 7FFH is replaced by the 8-bit exponent FFH, and
the 53-bit significand is truncated to a 24-bit significand by removing its 29 least significant
bits. The second most significant bit of the significand is changed from 0 to 1 to convert the sig-
naling NaN into a quiet NaN.
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faults), no result is provided to the user handler. For post-computation exceptions 
(floating-point traps), a result is provided to the user handler, as specified below.

In the following tables, the result is denoted by 'res', with the understanding that for 
the actual instruction, the destination coincides with the first source operand (except 
for COMISS, UCOMISS, COMISD, and UCOMISD, whose destination is the EFLAGS 
register).

Table E-13.  #I - Invalid Operations 

Instruction Condition Masked Response

Unmasked 
Response and 
Exception Code

ADDPS
ADDPD
ADDSS 
ADDSD
HADDPS
HADDPD

src1 or src21 = SNaN Refer to Table E-1 for 
NaN operands, #IA = 1

src1, src2 
unchanged; #IA = 
1

ADDSUBPS (the 
addition 
component)
ADDSUBPD (the 
addition 
component)

src1 = +Inf, src2 = -Inf or
src1 = -Inf, src2 = +Inf

res1 = QNaN Indefinite,
#IA = 1

SUBPS
SUBPD
SUBSS 
SUBSD
HSUBPS
HSUBPD

src1 or src2 = SNaN Refer to Table E-1 for NaN 
operands, #IA = 1

src1, src2 
unchanged; #IA = 
1

ADDSUBPS (the 
subtraction 
component)
ADDSUBPD (the 
subtraction 
component)

src1 = +Inf, src2 = +Inf or
src1 = -Inf, src2 = -Inf

res = QNaN Indefinite, 
#IA = 1

MULPS
MULPD

src1 or src2 = SNaN Refer to Table E-1 for 
NaN operands, #IA = 1

src1, src2 
unchanged; 
#IA = 1MULSS 

MULSD
src1 = ±Inf, src2 = ±0 or
src1 = ±0, src2 = ±Inf

res = QNaN Indefinite,
#IA = 1

DIVPS
DIVPD

src1 or src2 = SNaN Refer to Table E-1 for 
NaN operands, #IA = 1

src1, src2 
unchanged; 
#IA = 1DIVSS 

DIVSD
src1 = ±Inf, src2 = ±Inf or
src1 = ±0, src2 = ±0

res = QNaN Indefinite, 
#IA = 1
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SQRTPS
SQRTPD
SQRTSS 
SQRTSD

src = SNaN Refer to Table E-10 for 
NaN operands, #IA = 1

src unchanged, 
#IA = 1

src < 0 
(note that -0 < 0 is false)

res = QNaN Indefinite, 
#IA = 1

MAXPS
MAXSS
MAXPD
MAXSD

src1 = NaN or src2 = NaN res = src2, #IA = 1 src1, src2 
unchanged; #IA = 
1

MINPS
MINSS 
MINPD
MINSD

src1 = NaN or src2 = NaN res = src2, #IA = 1 src1, src2 
unchanged; #IA = 
1

Table E-13.  #I - Invalid Operations  (Contd.)

Instruction Condition Masked Response

Unmasked 
Response and 
Exception Code
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CMPPS.LT
CMPPS.LE
CMPPS.NLT
CMPPS.NLE
CMPSS.LT
CMPSS.LE
CMPSS.NLT
CMPSS.NLE
CMPPD.LT
CMPPD.LE
CMPPD.NLT
CMPPD.NLE
CMPSD.LT
CMPSD.LE
CMPSD.NLT
CMPSD.NLE

src1 = NaN or src2 = NaN Refer to Table E-4 and 
Table E-5 for NaN 
operands; #IA = 1

src1, src2 
unchanged; #IA = 
1

COMISS     
COMISD

src1 = NaN or src2 = NaN Refer to Table E-6 for NaN 
operands

src1, src2, EFLAGS 
unchanged; #IA = 
1

UCOMISS   
UCOMISD

src1 = SNaN or src2 = SNaN Refer to Table E-7 for NaN 
operands

src1, src2, EFLAGS 
unchanged; #IA = 
1

CVTPS2PI
CVTSS2SI 
CVTPD2PI
CVTSD2SI
CVTPS2DQ
CVTPD2DQ

src = NaN, ±Inf, or
|(src)rnd | > 7FFFFFFFH and 
(src)rnd ≠ 80000000H

See Note2 for information 
on rnd.

res = Integer Indefinite, 
#IA = 1

src unchanged, 
#IA = 1

CVTTPS2PI
CVTTSS2SI 
CVTTPD2PI
CVTTSD2SI
CVTTPS2DQ
CVTTPD2DQ

src = NaN, ±Inf, or
|(src)rz | > 7FFFFFFFH and 
(src)rz ≠ 80000000H

See Note2 for information
on rz.

res = Integer Indefinite, 
#IA = 1

src unchanged,
#IA = 1

CVTPS2PD
CVTSS2SD

src = NAN Refer to Table E-11 for 
NaN operands

src unchanged, 
#IA = 1

CVTPD2PS
CVTSD2SS

src = NAN Refer to Table E-12 for 
NaN operands

src unchanged, 
#IA = 1

Table E-13.  #I - Invalid Operations  (Contd.)

Instruction Condition Masked Response

Unmasked 
Response and 
Exception Code
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NOTES:
1. For Tables E-13 to E-18:

- src denotes the single source operand of a unary operation.
- src1, src2 denote the first and second source operand of a binary operation.
- res denotes the numerical result of an operation.

2. rnd signifies the user rounding mode from MXCSR, and rz signifies the rounding mode toward
zero. (truncate), when rounding a floating-point value to an integer. For more information, refer
to Table 4-8.

3. For NAN encodings, see Table 4-3.

Table E-14.  #Z - Divide-by-Zero

Instruction Condition Masked Response

Unmasked 
Response and 
Exception Code

DIVPS
DIVSS
DIVPD
DIVPS

src1 = finite non-zero (normal, 
or denormal)
src2 = ±0

res = ±Inf,
#ZE = 1

src1, src2 
unchanged; 
#ZE = 1

Table E-13.  #I - Invalid Operations  (Contd.)

Instruction Condition Masked Response

Unmasked 
Response and 
Exception Code
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Table E-15.  #D - Denormal Operand

Instruction Condition Masked Response
Unmasked Response 
and Exception Code

ADDPS
ADDPD
ADDSUBPS
ADDSUBPD
HADDPS
HADDPD
SUBPS
SUBPD
HSUBPS
HSUBPD
MULPS
MULPD
DIVPS
DIVPD
SQRTPS
SQRTPD
MAXPS
MAXPD
MINPS
MINPD
CMPPS
CMPPD
ADDSS
ADDSD
SUBSS
SUBSD
MULSS
MULSD
DIVSS
DIVSD
SQRTSS
SQRTSD
MAXSS
MAXSD
MINSS
MINSD
CMPSS
CMPSD
COMISS
COMISD
UCOMISS
UCOMISD
CVTPS2PD

src1 = denormal1 or 
src2 = denormal (and 
the DAZ bit in MXCSR 
is 0)

res = Result rounded to 
the destination precision 
and using the bounded 
exponent, but only if no 
unmasked post-
computation exception 
occurs.

src1, src2 unchanged; 
#DE = 1

Note that SQRT, 
CVTPS2PD, CVTSS2SD, 
CVTPD2PS, CVTSD2SS 
have only 1 src.
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CVTSS2SD
CVTPD2PS
CVTSD2SS

NOTE: 
1. For denormal encodings, see Section 4.8.3.2, “Normalized and Denormalized Finite Numbers.”

Table E-16.  #O - Numeric Overflow

Instruction Condition Masked Response
Unmasked Response 
and Exception Code

ADDPS
ADDSUBPS
HADDPS
SUBPS
HSUBPS
MULPS
DIVPS
ADDSS
SUBSS
MULSS
DIVSS
CVTPD2PS
CVTSD2SS

Rounded result 
> largest single 
precision finite 
normal value 

Roundi
ng 

Sign Result & Status 
Flags

res = (result calculated 
with unbounded 
exponent and rounded to 
the destination precision) 
/ 2192

#OE = 1
#PE = 1 if the result is 
inexact

To 
nearest +

-

#OE = 1, #PE = 1
res = 
res = 

Toward 
+
-

#OE = 1, #PE = 1
res = 1.11…1 * 2127

res = 

Toward 
+
-

#OE = 1, #PE = 1
res = 
res = -1.11…1 * 2127

Toward 
0 +

-

#OE = 1, #PE = 1
res = 1.11…1 * 2127

res = -1.11…1 * 2127

Table E-15.  #D - Denormal Operand (Contd.)

Instruction Condition Masked Response
Unmasked Response 
and Exception Code

∞+
∞–

∞–
∞–

∞+ ∞+
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ADDPD
ADDSUBPD
HADDPD
SUBPD
HSUBPD
MULPD
DIVPD
ADDSD
SUBSD
MULSD
DIVSD

Rounded result 
> largest double 
precision finite 
normal value 

Roundi
ng 

Sign Result & Status 
Flags

res = (result calculated 
with unbounded 
exponent and rounded to 
the destination precision) 
/ 21536

• #OE = 1
• #PE = 1 if the result is 

inexact

To 
nearest +

-

#OE = 1, #PE = 1
res = 
res = 

Toward 
+
-

#OE = 1, #PE = 1
res = 1.11…1 * 
21023

res = 

Toward 
+
-

#OE = 1, #PE = 1
res = 
res = -1.11…1 * 
21023

Toward 
0 +

-

#OE = 1, #PE = 1
res = 1.11…1 * 
21023

res = -1.11…1 * 
21023

Table E-16.  #O - Numeric Overflow (Contd.)

Instruction Condition Masked Response
Unmasked Response 
and Exception Code

∞+
∞–

∞–

∞–

∞+ ∞+
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Table E-17.  #U - Numeric Underflow

Instruction Condition Masked Response
Unmasked Response 
and Exception Code

ADDPS
ADDSUBPS
HADDPS
SUBPS
HSUBPS
MULPS
DIVPS
ADDSS
SUBSS
MULSS
DIVSS
CVTPD2PS
CVTSD2SS

Result calculated with 
unbounded exponent and 
rounded to the 
destination precision < 
smallest single precision 
finite normal value.

res = ±0, denormal, or 
normal

#UE = 1 and #PE = 1,
but only if the result is
inexact

res = (result calculated 
with unbounded 
exponent and rounded to 
the destination precision) 
* 2192

• #UE = 1
• #PE = 1 if the result is 

inexact

ADDPD
ADDSUBPD
HADDPD
SUBPD
HSUBPD
MULPD
DIVPD
ADDSD
SUBSD
MULSD
DIVSD

Result calculated with 
unbounded exponent and 
rounded to the 
destination precision < 
smallest double precision 
finite normal value.

res = ±0, denormal or 
normal

#UE = 1 and #PE = 1,
but only if the result is
inexact

res = (result calculated 
with unbounded 
exponent and rounded to 
the destination precision) 
* 21536

• #UE = 1
• #PE = 1 if the result is 

inexact
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Table E-18.  #P - Inexact Result (Precision)

Instruction Condition Masked Response
Unmasked Response and Exception 
Code

ADDPS
ADDPD
ADDSUBPS
ADDSUBPD
HADDPS
HADDPD
SUBPS
SUBPD
HSUBPS
HSUBPD
MULPS
MULPD
DIVPS
DIVPD
SQRTPS
SQRTPD
CVTDQ2PS
CVTPI2PS
CVTPS2PI
CVTPS2DQ
CVTPD2PI
CVTPD2DQ
CVTPD2PS
CVTTPS2PI
CVTTPD2PI
CVTTPD2DQ
CVTTPS2DQ
ADDSS
ADDSD
SUBSS
SUBSD
MULSS
MULSD
DIVSS
DIVSD
SQRTSS
SQRTSD
CVTSI2SS
CVTSS2SI
CVTSD2SI
CVTSD2SS
CVTTSS2SI
CVTTSD2SI

The result is not 
exactly 
representable in 
the destination 
format.

res = Result rounded 
to the destination 
precision and using 
the bounded 
exponent, but only if 
no unmasked 
underflow or 
overflow conditions 
occur (this exception 
can occur in the 
presence of a 
masked underflow 
or overflow); #PE = 
1.

Only if no underflow/overflow 
condition occurred, or if the 
corresponding exceptions are masked:
• Set #OE if masked overflow and set 

result as described above for 
masked overflow. 

• Set #UE if masked underflow and 
set result as described above for 
masked underflow.

If neither underflow nor overflow, res 
equals the result rounded to the 
destination precision and using the 
bounded exponent set #PE = 1.
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E.4.3  Example SIMD Floating-Point Emulation Implementation
The sample code listed below may be considered as being part of a user-level 
floating-point exception filter for the SSE/SSE2/SSE3 numeric instructions. It is 
assumed that the filter function is invoked by a low-level exception handler (reached 
via interrupt vector 19 when an unmasked floating-point exception occurs), and that 
it operates as explained in Section E.4.1, “Floating-Point Emulation.” The sample 
code does the emulation only for the SSE instructions for addition, subtraction, multi-
plication, and division. For this, it uses C code and x87 FPU operations. Operations 
corresponding to other SSE/SSE2/SSE3 numeric instructions can be emulated simi-
larly. The example assumes that the emulation function receives a pointer to a data 
structure specifying a number of input parameters: the operation that caused the 
exception, a set of sub-operands (unpacked, of type float), the rounding mode (the 
precision is always single), exception masks (having the same relative bit positions 
as in the MXCSR but starting from bit 0 in an unsigned integer), and flush-to-zero 
and denormals-are-zeros indicators. 

The output parameters are a floating-point result (of type float), the cause of the 
exception (identified by constants not explicitly defined below), and the exception 
status flags. The corresponding C definition is:

typedef struct {
unsigned int operation; //SSE or SSE2 operation: ADDPS, ADDSS, ...

  unsigned int operand1_uint32; //first operand value
unsigned int operand2_uint32; //second operand value (if any)

  float result_fval; // result value (if any)
  unsigned int rounding_mode; //rounding mode
  unsigned int exc_masks; //exception masks, in the order P,U,O,Z,D,I
  unsigned int exception_cause; //exception cause
  unsigned int status_flag_inexact; //inexact status flag
  unsigned int status_flag_underflow; //underflow status flag
  unsigned int status_flag_overflow; //overflow status flag
  unsigned int status_flag_divide_by_zero; 

//divide by zero status flag
  unsigned int status_flag_denormal_operand; 

//denormal operand status flag
  unsigned int status_flag_invalid_operation; 

//invalid operation status flag
  unsigned int ftz; // flush-to-zero flag
unsigned int daz; // denormals-are-zeros flag

} EXC_ENV;

The arithmetic operations exemplified are emulated as follows:
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1. If the denormals-are-zeros mode is enabled (the DAZ bit in MXCSR is set to 1), 
replace all the denormal inputs with zeroes of the same sign (the denormal flag is 
not affected by this change).

2. Perform the operation using x87 FPU instructions, with exceptions disabled, the 
original user rounding mode, and single precision. This reveals invalid, denormal, 
or divide-by-zero exceptions (if there are any) and stores the result in memory as 
a double precision value (whose exponent range is large enough to look like 
“unbounded” to the result of the single precision computation).

3. If no unmasked exceptions were detected, determine if the result is less than the 
smallest normal number (tiny) that can be represented in single precision 
format, or greater than the largest normal number that can be represented in 
single precision format (huge). If an unmasked overflow or underflow occurs, 
calculate the scaled result that will be handed to the user exception handler, as 
specified by IEEE Standard 754.

4. If no exception was raised, calculate the result with a “bounded” exponent. If the 
result is tiny, it requires denormalization (shifting the significand right while 
incrementing the exponent to bring it into the admissible range of [-126,+127] 
for single precision floating-point numbers).

The result obtained in step 2 cannot be used because it might incur a double 
rounding error (it was rounded to 24 bits in step 2, and might have to be rounded 
again in the denormalization process). To overcome this is, calculate the result as 
a double precision value, and store it to memory in single precision format. 

Rounding first to 53 bits in the significand, and then to 24 never causes a double 
rounding error (exact properties exist that state when double-rounding error 
occurs, but for the elementary arithmetic operations, the rule of thumb is that if 
an infinitely precise result is rounded to 2p+1 bits and then again to p bits, the 
result is the same as when rounding directly to p bits, which means that no 
double-rounding error occurs).

5. If the result is inexact and the inexact exceptions are unmasked, the calculated 
result will be delivered to the user floating-point exception handler.

6. The flush-to-zero case is dealt with if the result is tiny.

7. The emulation function returns RAISE_EXCEPTION to the filter function if an 
exception has to be raised (the exception_cause field indicates the cause). 
Otherwise, the emulation function returns DO_NOT_ RAISE_EXCEPTION. In the 
first case, the result is provided by the user exception handler called by the filter 
function. In the second case, it is provided by the emulation function. The filter 
function has to collect all the partial results, and to assemble the scalar or packed 
result that is used if execution is to continue.
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Example E-2.  SIMD Floating-Point Emulation

// masks for individual status word bits
#define PRECISION_MASK 0x20
#define UNDERFLOW_MASK 0x10
#define OVERFLOW_MASK 0x08
#define ZERODIVIDE_MASK 0x04
#define DENORMAL_MASK 0x02
#define INVALID_MASK 0x01

// 32-bit constants
static unsigned ZEROF_ARRAY[] = {0x00000000};
#define  ZEROF *(float *) ZEROF_ARRAY
    // +0.0
static unsigned NZEROF_ARRAY[] = {0x80000000};
#define  NZEROF *(float *) NZEROF_ARRAY
    // -0.0
static unsigned POSINFF_ARRAY[] = {0x7f800000};
#define POSINFF *(float *)POSINFF_ARRAY
    // +Inf
static unsigned NEGINFF_ARRAY[] = {0xff800000};
#define NEGINFF *(float *)NEGINFF_ARRAY
    // -Inf

// 64-bit constants
static unsigned MIN_SINGLE_NORMAL_ARRAY [] = {0x00000000, 0x38100000}; 
#define MIN_SINGLE_NORMAL *(double *)MIN_SINGLE_NORMAL_ARRAY
    // +1.0 * 2^-126
static unsigned MAX_SINGLE_NORMAL_ARRAY [] = {0x70000000, 0x47efffff}; 
#define MAX_SINGLE_NORMAL *(double *)MAX_SINGLE_NORMAL_ARRAY
    // +1.1...1*2^127
static unsigned TWO_TO_192_ARRAY[] = {0x00000000, 0x4bf00000};
#define TWO_TO_192 *(double *)TWO_TO_192_ARRAY
    // +1.0 * 2^192
static unsigned TWO_TO_M192_ARRAY[] = {0x00000000, 0x33f00000};
#define TWO_TO_M192 *(double *)TWO_TO_M192_ARRAY
    // +1.0 * 2^-192

// auxiliary functions
static int isnanf (unsigned int ); // returns 1 if f is a NaN, and 0 otherwise
static float quietf (unsigned int ); // converts a signaling NaN to a quiet 

// NaN, and leaves a quiet NaN unchanged
static unsigned int check_for_daz (unsigned int ); // converts denormals 

// to zeros of the same sign; 
// does not affect any status flags

// emulation of SSE and SSE2 instructions using
// C code and x87 FPU instructions

unsigned int
simd_fp_emulate (EXC_ENV *exc_env)

{
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  int uiopd1; // first operand of the add, subtract, multiply, or divide
  int uiopd2; // second operand of the add, subtract, multiply, or divide
  float res; // result of the add, subtract, multiply, or divide
  double dbl_res24; // result with 24-bit significand, but "unbounded" exponent
      // (needed to check tininess, to provide a scaled result to
      // an underflow/overflow trap handler, and in flush-to-zero mode)
  double dbl_res;  // result in double precision format (needed to avoid a
     // double rounding error when denormalizing)
  unsigned int result_tiny;
  unsigned int result_huge;
  unsigned short int sw; // 16 bits
  unsigned short int cw; // 16 bits

  // have to check first for faults (V, D, Z), and then for traps (O, U, I)

  // initialize x87 FPU (floating-point exceptions are masked)
  _asm {
    fninit;
  }

  result_tiny = 0;
  result_huge = 0;

  switch (exc_env->operation) {

    case ADDPS:
    case ADDSS:
    case SUBPS:
    case SUBSS:
    case MULPS:
    case MULSS:
    case DIVPS:
    case DIVSS:

      uiopd1 = exc_env->operand1_uint32; // copy as unsigned int
// do not copy as float to avoid conversion 
// of SNaN to QNaN by compiled code

      uiopd2 = exc_env->operand2_uint32;
// do not copy as float to avoid conversion of SNaN 
// to QNaN by compiled code

uiopd1 = check_for_daz (uiopd1); // operand1 = +0.0 * operand1 if it is 
// denormal and DAZ=1

      uiopd2 = check_for_daz (uiopd2); // operand2 = +0.0 * operand2 if it is 
// denormal and DAZ=1

      // execute the operation and check whether the invalid, denormal, or 
      // divide by zero flags are set and the respective exceptions enabled

      // set control word with rounding mode set to exc_env->rounding_mode, 
      // single precision, and all exceptions disabled
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      switch (exc_env->rounding_mode) {
        case ROUND_TO_NEAREST:
          cw = 0x003f; // round to nearest, single precision, exceptions masked
          break;
        case ROUND_DOWN:
          cw = 0x043f; // round down, single precision, exceptions masked
          break;
        case ROUND_UP:
          cw = 0x083f; // round up, single precision, exceptions masked
          break;
        case ROUND_TO_ZERO:
          cw = 0x0c3f; // round to zero, single precision, exceptions masked
          break;
        default:
          ; 
      }
      __asm {
        fldcw WORD PTR cw;
      }

      // compute result and round to the destination precision, with
      // "unbounded" exponent (first IEEE rounding)
      switch (exc_env->operation) {

        case ADDPS:
        case ADDSS:
          // perform the addition
          __asm {
            fnclex; 
            // load input operands
            fld DWORD PTR uiopd1; // may set denormal or invalid status flags
            fld DWORD PTR uiopd2; // may set denormal or invalid status flags
            faddp st(1), st(0); // may set inexact or invalid status flags
            // store result
            fstp  QWORD PTR dbl_res24; // exact
          }
          break;

        case SUBPS:
        case SUBSS:
          // perform the subtraction
          __asm {
            fnclex; 
            // load input operands
            fld DWORD PTR uiopd1; // may set denormal or invalid status flags
            fld DWORD PTR uiopd2; // may set denormal or invalid status flags
            fsubp st(1), st(0); // may set the inexact or invalid status flags
            

// store result
            fstp  QWORD PTR dbl_res24; // exact
          }
          break;
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        case MULPS:
        case MULSS:
          // perform the multiplication
          __asm {
            fnclex; 
            // load input operands
            fld DWORD PTR uiopd1; // may set denormal or invalid status flags
            fld DWORD PTR uiopd2; // may set denormal or invalid status flags
            fmulp st(1), st(0); // may set inexact or invalid status flags
            

// store result
            fstp  QWORD PTR dbl_res24; // exact
          }
          break;

        case DIVPS:
        case DIVSS:
          // perform the division
          __asm {
            fnclex; 
            // load input operands
            fld DWORD PTR uiopd1; // may set denormal or invalid status flags
            fld DWORD PTR uiopd2; // may set denormal or invalid status flags
            fdivp st(1), st(0); // may set the inexact, divide by zero, or 
                                // invalid status flags
            // store result
            fstp  QWORD PTR dbl_res24; // exact
          }
          break;

        default:
          ; // will never occur

      }

      // read status word
      __asm {
        fstsw WORD PTR sw;
}

if (sw & ZERODIVIDE_MASK)
sw = sw & ~DENORMAL_MASK; // clear D flag for (denormal / 0)

      // if invalid flag is set, and invalid exceptions are enabled, take trap
      if (!(exc_env->exc_masks & INVALID_MASK) && (sw & INVALID_MASK)) {
        exc_env->status_flag_invalid_operation = 1;
        exc_env->exception_cause = INVALID_OPERATION;
        return (RAISE_EXCEPTION);
      }

// checking for NaN operands has priority over denormal exceptions; 
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// also fix for the SSE and SSE2 
// differences in treating two NaN inputs between the
// instructions and other IA-32 instructions
if (isnanf (uiopd1) || isnanf (uiopd2)) {

        if (isnanf (uiopd1) && isnanf (uiopd2))
            exc_env->result_fval = quietf (uiopd1);
        else
            exc_env->result_fval = (float)dbl_res24; // exact
 
        if (sw & INVALID_MASK) exc_env->status_flag_invalid_operation = 1;
        return (DO_NOT_RAISE_EXCEPTION);
      }

      // if denormal flag set, and denormal exceptions are enabled, take trap
      if (!(exc_env->exc_masks & DENORMAL_MASK) && (sw & DENORMAL_MASK)) {
        exc_env->status_flag_denormal_operand = 1;
        exc_env->exception_cause = DENORMAL_OPERAND;
        return (RAISE_EXCEPTION);
      }

      // if divide by zero flag set, and divide by zero exceptions are 
      // enabled, take trap (for divide only)
      if (!(exc_env->exc_masks & ZERODIVIDE_MASK) && (sw & ZERODIVIDE_MASK)) {
        exc_env->status_flag_divide_by_zero = 1;
        exc_env->exception_cause = DIVIDE_BY_ZERO;
        return (RAISE_EXCEPTION);
      }

      // done if the result is a NaN (QNaN Indefinite)
      res = (float)dbl_res24;
      if (isnanf (*(unsigned int *)&res)) {
        exc_env->result_fval = res; // exact
        exc_env->status_flag_invalid_operation = 1;
        return (DO_NOT_RAISE_EXCEPTION);
      }

      // dbl_res24 is not a NaN at this point

      if (sw & DENORMAL_MASK) exc_env->status_flag_denormal_operand = 1;

      // Note: (dbl_res24 == 0.0 && sw & PRECISION_MASK) cannot occur
      if (-MIN_SINGLE_NORMAL < dbl_res24 && dbl_res24 < 0.0 ||
            0.0 < dbl_res24 && dbl_res24 < MIN_SINGLE_NORMAL) {
        result_tiny = 1;
      }

      // check if the result is huge
      if (NEGINFF < dbl_res24 && dbl_res24 < -MAX_SINGLE_NORMAL || 
          MAX_SINGLE_NORMAL < dbl_res24 && dbl_res24 < POSINFF) { 
        result_huge = 1;
      }
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      // at this point, there are no enabled I,D, or Z exceptions 
 // to take; the instr.

      // might lead to an enabled underflow, enabled underflow and inexact, 
      // enabled overflow, enabled overflow and inexact, enabled inexact, or
      // none of these; if there are no U or O enabled exceptions, re-execute
      // the instruction using IA-32 double precision format, and the 
      // user's rounding mode; exceptions must have 

// been disabled before calling
      // this function; an inexact exception may be reported on the 53-bit
      // fsubp, fmulp, or on both the 53-bit and 24-bit conversions, while an 
      // overflow or underflow (with traps disabled) may be reported on the 
      // conversion from dbl_res to res

// check whether there is an underflow, overflow,
 // or inexact trap to be taken

// if the underflow traps are enabled and the result is 
// tiny, take underflow trap

      if (!(exc_env->exc_masks & UNDERFLOW_MASK) && result_tiny) {
        dbl_res24 = TWO_TO_192 * dbl_res24; // exact
        exc_env->status_flag_underflow = 1;
        exc_env->exception_cause = UNDERFLOW;
        exc_env->result_fval = (float)dbl_res24; // exact
        if (sw & PRECISION_MASK) exc_env->status_flag_inexact = 1;
        return (RAISE_EXCEPTION);
      } 

      // if overflow traps are enabled and the result is huge, take
      // overflow trap
      if (!(exc_env->exc_masks & OVERFLOW_MASK) &&  result_huge) {
        dbl_res24 = TWO_TO_M192 * dbl_res24; // exact
        exc_env->status_flag_overflow = 1;
        exc_env->exception_cause = OVERFLOW;
        exc_env->result_fval = (float)dbl_res24; // exact 
        if (sw & PRECISION_MASK) exc_env->status_flag_inexact = 1;
        return (RAISE_EXCEPTION);
      } 

      // set control word with rounding mode set to exc_env->rounding_mode, 
      // double precision, and all exceptions disabled
      cw = cw | 0x0200; // set precision to double
      __asm {
        fldcw WORD PTR cw;
      }

      switch (exc_env->operation) {

        case ADDPS:
        case ADDSS:
          // perform the addition
          __asm {
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            // load input operands
            fld DWORD PTR uiopd1; // may set the denormal status flag
            fld DWORD PTR uiopd2; // may set the denormal status flag
            faddp st(1), st(0); // rounded to 53 bits, may set the inexact 
                                // status flag
            // store result
            fstp  QWORD PTR dbl_res; // exact, will not set any flag
          }
          break;

        case SUBPS:
        case SUBSS:
          // perform the subtraction
          __asm {
            // load input operands
            fld DWORD PTR uiopd1; // may set the denormal status flag
            fld DWORD PTR uiopd2; // may set the denormal status flag
            fsubp st(1), st(0); // rounded to 53 bits, may set the inexact
                                // status flag
            // store result
            fstp  QWORD PTR dbl_res; // exact, will not set any flag
          }
          break;

        case MULPS:
        case MULSS:
          // perform the multiplication
          __asm {
            // load input operands
            fld DWORD PTR uiopd1; // may set the denormal status flag
            fld DWORD PTR uiopd2; // may set the denormal status flag
            fmulp st(1), st(0); // rounded to 53 bits, exact

// store result
            fstp  QWORD PTR dbl_res; // exact, will not set any flag
          }
          break;

        case DIVPS:
        case DIVSS:
          // perform the division
          __asm {
            // load input operands
            fld DWORD PTR uiopd1; // may set the denormal status flag
            fld DWORD PTR uiopd2; // may set the denormal status flag
            fdivp st(1), st(0); // rounded to 53 bits, may set the inexact

// status flag
            // store result
            fstp  QWORD PTR dbl_res; // exact, will not set any flag
          }
          break;

        default:
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          ; // will never occur

      }

      // calculate result for the case an inexact trap has to be taken, or
      // when no trap occurs (second IEEE rounding)
      res = (float)dbl_res; 
          // may set P, U or O; may also involve denormalizing the result

      // read status word
      __asm {
        fstsw WORD PTR sw;
      }

      // if inexact traps are enabled and result is inexact, take inexact trap
      if (!(exc_env->exc_masks & PRECISION_MASK) && 
          ((sw & PRECISION_MASK) || (exc_env->ftz && result_tiny))) {
        exc_env->status_flag_inexact = 1;
        exc_env->exception_cause = INEXACT;
        if (result_tiny) {
          exc_env->status_flag_underflow = 1;

          // if ftz = 1 and result is tiny, result = 0.0
          // (no need to check for underflow traps disabled: result tiny and
          // underflow traps enabled would have caused taking an underflow
          // trap above)
          if (exc_env->ftz) {
            if (res > 0.0)
              res = ZEROF;
            else if (res < 0.0)
              res = NZEROF;
            // else leave res unchanged
          }
        }
        if (result_huge) exc_env->status_flag_overflow = 1;
        exc_env->result_fval = res; 
        return (RAISE_EXCEPTION);
      } 

      // if it got here, then there is no trap to be taken; the following must
      // hold: ((the MXCSR U exceptions are disabled  or
      //
      // the MXCSR underflow exceptions are enabled and the underflow flag is
      // clear and (the inexact flag is set or the inexact flag is clear and
      // the 24-bit result with unbounded exponent is not tiny)))
      // and (the MXCSR overflow traps are disabled or the overflow flag is
      // clear) and (the MXCSR inexact traps are disabled or the inexact flag
      // is clear)
      //
      // in this case, the result has to be delivered (the status flags are 
      // sticky, so they are all set correctly already)
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      // read status word to see if result is inexact
      __asm {
        fstsw WORD PTR sw;
      }
 
      if (sw & UNDERFLOW_MASK) exc_env->status_flag_underflow = 1;
      if (sw & OVERFLOW_MASK) exc_env->status_flag_overflow = 1;
      if (sw & PRECISION_MASK) exc_env->status_flag_inexact = 1;

      // if ftz = 1, and result is tiny (underflow traps must be disabled),
      // result = 0.0
      if (exc_env->ftz && result_tiny) {
        if (res > 0.0)
          res = ZEROF;
        else if (res < 0.0)
          res = NZEROF;
        // else leave res unchanged

        exc_env->status_flag_inexact = 1;
        exc_env->status_flag_underflow = 1;
      }

      exc_env->result_fval = res; 
      if (sw & ZERODIVIDE_MASK) exc_env->status_flag_divide_by_zero = 1;
      if (sw & DENORMAL_MASK) exc_env->status_flag_denormal= 1;
      if (sw & INVALID_MASK) exc_env->status_flag_invalid_operation = 1;
      return (DO_NOT_RAISE_EXCEPTION);

      break;

    case CMPPS:
    case CMPSS:

      ...

      break;

    case COMISS:
    case UCOMISS:

      ...

      break;

    case CVTPI2PS:
    case CVTSI2SS:

      ...

      break;

    case CVTPS2PI:
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    case CVTSS2SI:
    case CVTTPS2PI:
    case CVTTSS2SI:

      ...

      break;

    case MAXPS:
    case MAXSS:
    case MINPS:
    case MINSS:

      ...

      break;

    case SQRTPS:
    case SQRTSS:

      ...

      break;

...

case UNSPEC:

      ...

      break;

    default:
      ...

  }

}
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CHAPTER 1
ABOUT THIS MANUAL

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 
2B & 2C: Instruction Set Reference (order numbers 253666, 253667 and 326018) 
are part of a set that describes the architecture and programming environment of all 
Intel 64 and IA-32 architecture processors. Other volumes in this set are:
• The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: 

Basic Architecture (Order Number 253665).
• The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 

3A, 3B & 3C: System Programming Guide (order numbers 253668, 253669 and 
326019).

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, 
describes the basic architecture and programming environment of Intel 64 and IA-32 
processors. The Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volumes 2A, 2B & 2C, describe the instruction set of the processor and the opcode 
structure. These volumes apply to application programmers and to programmers 
who write operating systems or executives. The Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volumes 3A, 3B & 3C, describe the operating-system 
support environment of Intel 64 and IA-32 processors. These volumes target oper-
ating-system and BIOS designers. In addition, the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 3B, addresses the programming environment 
for classes of software that host operating systems.

1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN 
THIS MANUAL

This manual set includes information pertaining primarily to the most recent Intel 64 
and IA-32 processors, which include: 
• Pentium® processors
• P6 family processors
• Pentium® 4 processors
• Pentium® M processors
• Intel® Xeon® processors
• Pentium® D processors
• Pentium® processor Extreme Editions
• 64-bit Intel® Xeon® processors
• Intel® Core™ Duo processor
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• Intel® Core™ Solo processor
• Dual-Core Intel® Xeon® processor LV
• Intel® Core™2 Duo processor
• Intel® Core™2 Quad processor Q6000 series
• Intel® Xeon® processor 3000, 3200 series
• Intel® Xeon® processor 5000 series
• Intel® Xeon® processor 5100, 5300 series
• Intel® Core™2 Extreme processor X7000 and X6800 series
• Intel® Core™2 Extreme QX6000 series
• Intel® Xeon® processor 7100 series
• Intel® Pentium® Dual-Core processor
• Intel® Xeon® processor 7200, 7300 series
• Intel® Xeon® processor 5200, 5400, 7400 series
• Intel® CoreTM2 Extreme processor QX9000 and X9000 series
• Intel® CoreTM2 Quad processor Q9000 series
• Intel® CoreTM2 Duo processor E8000, T9000 series
• Intel® AtomTM processor family
• Intel® CoreTM i7 processor
• Intel® CoreTM i5 processor
• Intel® Xeon® processor E7-8800/4800/2800 product families
• Intel® Xeon® processor E5 family
• Intel® Xeon® processor E3 family
• Intel® CoreTM i7-3930K processor
• 2nd generation Intel® CoreTM i7-2xxx, Intel® CoreTM i5-2xxx, Intel® CoreTM i3-

2xxx processor series

P6 family processors are IA-32 processors based on the P6 family microarchitecture. 
This includes the Pentium® Pro, Pentium® II, Pentium® III, and Pentium® III Xeon® 
processors. 

The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based 
on the Intel NetBurst® microarchitecture. Most early Intel® Xeon® processors are 
based on the Intel NetBurst® microarchitecture. Intel Xeon processor 5000, 7100 
series are based on the Intel NetBurst® microarchitecture.

The Intel® Core™ Duo, Intel® Core™ Solo and dual-core Intel® Xeon® processor LV 
are based on an improved Pentium® M processor microarchitecture. 

The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200, and 7300 series, Intel® 
Pentium® dual-core, Intel® Core™2 Duo, Intel® Core™2 Quad, and Intel® Core™2 
Extreme processors are based on Intel® Core™ microarchitecture.
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The Intel® Xeon® processor 5200, 5400, 7400 series, Intel® CoreTM2 Quad processor 
Q9000 series, and Intel® CoreTM2 Extreme processors QX9000, X9000 series, Intel® 
CoreTM2 processor E8000 series are based on Enhanced Intel® CoreTM microarchitec-
ture.

The Intel® AtomTM processor family is based on the Intel® AtomTM microarchitecture 
and supports Intel 64 architecture.

The Intel® CoreTM i7 processor and the Intel® CoreTM i5 processor are based on the 
Intel® microarchitecture code name Nehalem and support Intel 64 architecture.

Processors based on Intel® microarchitecture code name Westmere support Intel 64 
architecture.

P6 family, Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo processors, dual-core 
Intel® Xeon® processor LV, and early generations of Pentium 4 and Intel Xeon 
processors support IA-32 architecture. The Intel® AtomTM processor Z5xx series 
support IA-32 architecture.

The Intel® Xeon® processor E5 family, Intel® Xeon® processor E3 family, Intel® 
CoreTM i7-3930K processor, 2nd generation Intel® CoreTM i7-2xxx, Intel® CoreTM i5-
2xxx, Intel® CoreTM i3-2xxx processor series, Intel® Xeon® processor E7-
8800/4800/2800 product families, Intel® Xeon® processor 3000, 3200, 5000, 5100, 
5200, 5300, 5400, 7100, 7200, 7300, 7400 series, Intel® Core™2 Duo, Intel® 
Core™2 Extreme, Intel® Core™2 Quad processors, Pentium® D processors, 
Pentium® Dual-Core processor, newer generations of Pentium 4 and Intel Xeon 
processor family support Intel® 64 architecture.

IA-32 architecture is the instruction set architecture and programming environment 
for Intel's 32-bit microprocessors. 

Intel® 64 architecture is the instruction set architecture and programming environ-
ment which is the superset of Intel’s 32-bit and 64-bit architectures. It is compatible 
with the IA-32 architecture.

1.2 OVERVIEW OF VOLUME 2A, 2B AND 2C: 
INSTRUCTION SET REFERENCE

A description of Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volumes 2A, 2B & 2C, content follows:

Chapter 1 — About This Manual. Gives an overview of all seven volumes of the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual. It also describes 
the notational conventions in these manuals and lists related Intel® manuals and 
documentation of interest to programmers and hardware designers.

Chapter 2 — Instruction Format. Describes the machine-level instruction format 
used for all IA-32 instructions and gives the allowable encodings of prefixes, the 
operand-identifier byte (ModR/M byte), the addressing-mode specifier byte (SIB 
byte), and the displacement and immediate bytes.
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Chapter 3 — Instruction Set Reference, A-L. Describes Intel 64 and IA-32 
instructions in detail, including an algorithmic description of operations, the effect on 
flags, the effect of operand- and address-size attributes, and the exceptions that 
may be generated. The instructions are arranged in alphabetical order. General-
purpose, x87 FPU, Intel MMX™ technology, SSE/SSE2/SSE3/SSSE3/SSE4 exten-
sions, and system instructions are included.

Chapter 4 — Instruction Set Reference, M-Z. Continues the description of Intel 
64 and IA-32 instructions started in Chapter 3. It provides the balance of the alpha-
betized list of instructions and starts Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 2B.

Chapter 5— Safer Mode Extensions Reference. Describes the safer mode exten-
sions (SMX). SMX is intended for a system executive to support launching a 
measured environment in a platform where the identity of the software controlling 
the platform hardware can be measured for the purpose of making trust decisions. 
This chapter starts Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2C.

Appendix A — Opcode Map. Gives an opcode map for the IA-32 instruction set.

Appendix B — Instruction Formats and Encodings. Gives the binary encoding of 
each form of each IA-32 instruction.

Appendix C — Intel® C/C++ Compiler Intrinsics and Functional Equivalents. 
Lists the Intel® C/C++ compiler intrinsics and their assembly code equivalents for 
each of the IA-32 MMX and SSE/SSE2/SSE3 instructions.

1.3 NOTATIONAL CONVENTIONS
This manual uses specific notation for data-structure formats, for symbolic represen-
tation of instructions, and for hexadecimal and binary numbers. A review of this 
notation makes the manual easier to read.

1.3.1 Bit and Byte Order
In illustrations of data structures in memory, smaller addresses appear toward the 
bottom of the figure; addresses increase toward the top. Bit positions are numbered 
from right to left. The numerical value of a set bit is equal to two raised to the power 
of the bit position. IA-32 processors are “little endian” machines; this means the 
bytes of a word are numbered starting from the least significant byte. Figure 1-1 
illustrates these conventions.
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1.3.2 Reserved Bits and Software Compatibility
In many register and memory layout descriptions, certain bits are marked as 
reserved. When bits are marked as reserved, it is essential for compatibility with 
future processors that software treat these bits as having a future, though unknown, 
effect. The behavior of reserved bits should be regarded as not only undefined, but 
unpredictable. Software should follow these guidelines in dealing with reserved bits:
• Do not depend on the states of any reserved bits when testing the values of 

registers which contain such bits. Mask out the reserved bits before testing.
• Do not depend on the states of any reserved bits when storing to memory or to a 

register.
• Do not depend on the ability to retain information written into any reserved bits.
• When loading a register, always load the reserved bits with the values indicated 

in the documentation, if any, or reload them with values previously read from the 
same register.

NOTE
Avoid any software dependence upon the state of reserved bits in 
IA-32 registers. Depending upon the values of reserved register bits 
will make software dependent upon the unspecified manner in which 
the processor handles these bits. Programs that depend upon 
reserved values risk incompatibility with future processors.

Figure 1-1.  Bit and Byte Order
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1.3.3 Instruction Operands
When instructions are represented symbolically, a subset of the IA-32 assembly 
language is used. In this subset, an instruction has the following format:

label: mnemonic argument1, argument2, argument3

where:
• A label is an identifier which is followed by a colon.
• A mnemonic is a reserved name for a class of instruction opcodes which have 

the same function.
• The operands argument1, argument2, and argument3 are optional. There may 

be from zero to three operands, depending on the opcode. When present, they 
take the form of either literals or identifiers for data items. Operand identifiers 
are either reserved names of registers or are assumed to be assigned to data 
items declared in another part of the program (which may not be shown in the 
example).

When two operands are present in an arithmetic or logical instruction, the right 
operand is the source and the left operand is the destination. 

For example:

LOADREG: MOV EAX, SUBTOTAL

In this example, LOADREG is a label, MOV is the mnemonic identifier of an opcode, 
EAX is the destination operand, and SUBTOTAL is the source operand. Some 
assembly languages put the source and destination in reverse order.

1.3.4 Hexadecimal and Binary Numbers
Base 16 (hexadecimal) numbers are represented by a string of hexadecimal digits 
followed by the character H (for example, F82EH). A hexadecimal digit is a character 
from the following set: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F.

Base 2 (binary) numbers are represented by a string of 1s and 0s, sometimes 
followed by the character B (for example, 1010B). The “B” designation is only used in 
situations where confusion as to the type of number might arise.

1.3.5 Segmented Addressing
The processor uses byte addressing. This means memory is organized and accessed 
as a sequence of bytes. Whether one or more bytes are being accessed, a byte 
address is used to locate the byte or bytes in memory. The range of memory that can 
be addressed is called an address space.

The processor also supports segmented addressing. This is a form of addressing 
where a program may have many independent address spaces, called segments. 
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For example, a program can keep its code (instructions) and stack in separate 
segments. Code addresses would always refer to the code space, and stack 
addresses would always refer to the stack space. The following notation is used to 
specify a byte address within a segment:

Segment-register:Byte-address

For example, the following segment address identifies the byte at address FF79H in 
the segment pointed by the DS register:

DS:FF79H

The following segment address identifies an instruction address in the code segment. 
The CS register points to the code segment and the EIP register contains the address 
of the instruction.

CS:EIP

1.3.6 Exceptions
An exception is an event that typically occurs when an instruction causes an error. 
For example, an attempt to divide by zero generates an exception. However, some 
exceptions, such as breakpoints, occur under other conditions. Some types of excep-
tions may provide error codes. An error code reports additional information about the 
error. An example of the notation used to show an exception and error code is shown 
below:

#PF(fault code)

This example refers to a page-fault exception under conditions where an error code 
naming a type of fault is reported. Under some conditions, exceptions which produce 
error codes may not be able to report an accurate code. In this case, the error code 
is zero, as shown below for a general-protection exception:

#GP(0)

1.3.7 A New Syntax for CPUID, CR, and MSR Values
Obtain feature flags, status, and system information by using the CPUID instruction, 
by checking control register bits, and by reading model-specific registers. We are 
moving toward a new syntax to represent this information. See Figure 1-2.
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1.4 RELATED LITERATURE
Literature related to Intel 64 and IA-32 processors is listed on-line at: 
http://www.intel.com/content/www/us/en/processors/architectures-software-
developer-manuals.html.html

Figure 1-2.  Syntax for CPUID, CR, and MSR Data Presentation
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Some of the documents listed at this web site can be viewed on-line; others can be 
ordered. The literature available is listed by Intel processor and then by the following 
literature types: applications notes, data sheets, manuals, papers, and specification 
updates. 

See also: 
• The data sheet for a particular Intel 64 or IA-32 processor
• The specification update for a particular Intel 64 or IA-32 processor
• Intel® C++ Compiler documentation and online help:

http://software.intel.com/en-us/articles/intel-compilers/
• Intel® Fortran Compiler documentation and online help:

http://software.intel.com/en-us/articles/intel-compilers/
• Intel® VTune™ Performance Analyzer documentation and online help:

http://www.intel.com/cd/software/products/asmo-na/eng/index.htm 
• Intel® 64 and IA-32 Architectures Software Developer’s Manual (in three or five 

volumes):
http://www.intel.com/content/www/us/en/processors/architectures-software-
developer-manuals.html.html

• Intel® 64 and IA-32 Architectures Optimization Reference Manual: 
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-
32-architectures-optimization-manual.html

• Intel® Processor Identification with the CPUID Instruction, AP-485:
http://www.intel.com/Assets/PDF/appnote/241618.pdf

• Intel 64 Architecture x2APIC Specification:
http://www.intel.com/content/www/us/en/architecture-and-technology/64-
architecture-x2apic-specification.html

• Intel 64 Architecture Processor Topology Enumeration:
http://softwarecommunity.intel.com/articles/eng/3887.htm

• Intel® Trusted Execution Technology Measured Launched Environment 
Programming Guide:

http://www.intel.com/content/www/us/en/software-developers/intel-txt-
software-development-guide.html

• Intel® SSE4 Programming Reference: 
http://edc.intel.com/Link.aspx?id=1630&wapkw=intel® sse4 programming 
reference

• Developing Multi-threaded Applications: A Platform Consistent Approach:
http://cache-
www.intel.com/cd/00/00/05/15/51534_developing_multithreaded_applications.
pdf

• Using Spin-Loops on Intel® Pentium® 4 Processor and Intel® Xeon® Processor:
http://software.intel.com/en-us/articles/ap949-using-spin-loops-on-intel-
pentiumr-4-processor-and-intel-xeonr-processor/
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• Performance Monitoring Unit Sharing Guide
http://software.intel.com/file/30388

More relevant links are:
• Software network link:

http://softwarecommunity.intel.com/isn/home/
• Developer centers:

http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/index.htm
• Processor support general link:

http://www.intel.com/support/processors/
• Software products and packages:

http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
• Intel 64 and IA-32 processor manuals (printed or PDF downloads):

http://www.intel.com/content/www/us/en/processors/architectures-software-
developer-manuals.html.html

• Intel® Multi-Core Technology:
http://software.intel.com/partner/multicore

• Intel® Hyper-Threading Technology (Intel® HT Technology):
http://www.intel.com/technology/platform-technology/hyper-
threading/index.htm
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CHAPTER 2
INSTRUCTION FORMAT

This chapter describes the instruction format for all Intel 64 and IA-32 processors. 
The instruction format for protected mode, real-address mode and virtual-8086 
mode is described in Section 2.1. Increments provided for IA-32e mode and its sub-
modes are described in Section 2.2.

2.1 INSTRUCTION FORMAT FOR PROTECTED MODE, 
REAL-ADDRESS MODE, AND VIRTUAL-8086 MODE

The Intel 64 and IA-32 architectures instruction encodings are subsets of the format 
shown in Figure 2-1. Instructions consist of optional instruction prefixes (in any 
order), primary opcode bytes (up to three bytes), an addressing-form specifier (if 
required) consisting of the ModR/M byte and sometimes the SIB (Scale-Index-Base) 
byte, a displacement (if required), and an immediate data field (if required).

2.1.1 Instruction Prefixes
Instruction prefixes are divided into four groups, each with a set of allowable prefix 
codes. For each instruction, it is only useful to include up to one prefix code from 
each of the four groups (Groups 1, 2, 3, 4). Groups 1 through 4 may be placed in any 
order relative to each other.
• Group 1

— Lock and repeat prefixes:

Figure 2-1.  Intel 64 and IA-32 Architectures Instruction Format

Instruction
Prefixes Opcode ModR/M SIB Displacement Immediate

Mod R/MReg/
Opcode

027 6 5 3

Scale Base

027 6 5 3

Index

Immediate
data of
1, 2, or 4
bytes or none

Address
displacement
of 1, 2, or 4
bytes or none

1 byte
(if required)

1 byte
(if required)

1-, 2-, or 3-byte
opcode

Up to four
prefixes of
1 byte each
(optional)
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• LOCK prefix is encoded using F0H

• REPNE/REPNZ prefix is encoded using F2H. Repeat-Not-Zero prefix 
applies only to string and input/output instructions. (F2H is also used as a 
mandatory prefix for some instructions)

• REP or REPE/REPZ is encoded using F3H. Repeat prefix applies only to 
string and input/output instructions.(F3H is also used as a mandatory 
prefix for some instructions)

• Group 2

— Segment override prefixes:

• 2EH—CS segment override (use with any branch instruction is reserved)

• 36H—SS segment override prefix (use with any branch instruction is 
reserved)

• 3EH—DS segment override prefix (use with any branch instruction is 
reserved)

• 26H—ES segment override prefix (use with any branch instruction is 
reserved)

• 64H—FS segment override prefix (use with any branch instruction is 
reserved)

• 65H—GS segment override prefix (use with any branch instruction is 
reserved)

— Branch hints:

• 2EH—Branch not taken (used only with Jcc instructions)

• 3EH—Branch taken (used only with Jcc instructions)
• Group 3

• Operand-size override prefix is encoded using 66H (66H is also used as a 
mandatory prefix for some instructions).

• Group 4

• 67H—Address-size override prefix

The LOCK prefix (F0H) forces an operation that ensures exclusive use of shared 
memory in a multiprocessor environment. See “LOCK—Assert LOCK# Signal Prefix” 
in Chapter 3, “Instruction Set Reference, A-L,” for a description of this prefix. 

Repeat prefixes (F2H, F3H) cause an instruction to be repeated for each element of a 
string. Use these prefixes only with string and I/O instructions (MOVS, CMPS, SCAS, 
LODS, STOS, INS, and OUTS). Use of repeat prefixes and/or undefined opcodes with 
other Intel 64 or IA-32 instructions is reserved; such use may cause unpredictable 
behavior.

Some instructions may use F2H,F3H as a mandatory prefix to express distinct func-
tionality. A mandatory prefix generally should be placed after other optional prefixes 
(exception to this is discussed in Section 2.2.1, “REX Prefixes”)
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Branch hint prefixes (2EH, 3EH) allow a program to give a hint to the processor about 
the most likely code path for a branch. Use these prefixes only with conditional 
branch instructions (Jcc). Other use of branch hint prefixes and/or other undefined 
opcodes with Intel 64 or IA-32 instructions is reserved; such use may cause unpre-
dictable behavior.

The operand-size override prefix allows a program to switch between 16- and 32-bit 
operand sizes. Either size can be the default; use of the prefix selects the non-default 
size. 

Some SSE2/SSE3/SSSE3/SSE4 instructions and instructions using a three-byte 
sequence of primary opcode bytes may use 66H as a mandatory prefix to express 
distinct functionality. A mandatory prefix generally should be placed after other 
optional prefixes (exception to this is discussed in Section 2.2.1, “REX Prefixes”)

Other use of the 66H prefix is reserved; such use may cause unpredictable behavior.

The address-size override prefix (67H) allows programs to switch between 16- and 
32-bit addressing. Either size can be the default; the prefix selects the non-default 
size. Using this prefix and/or other undefined opcodes when operands for the instruc-
tion do not reside in memory is reserved; such use may cause unpredictable 
behavior.

2.1.2 Opcodes
A primary opcode can be 1, 2, or 3 bytes in length. An additional 3-bit opcode field is 
sometimes encoded in the ModR/M byte. Smaller fields can be defined within the 
primary opcode. Such fields define the direction of operation, size of displacements, 
register encoding, condition codes, or sign extension. Encoding fields used by an 
opcode vary depending on the class of operation.

Two-byte opcode formats for general-purpose and SIMD instructions consist of: 
• An escape opcode byte 0FH as the primary opcode and a second opcode byte, or
• A mandatory prefix (66H, F2H, or F3H), an escape opcode byte, and a second 

opcode byte (same as previous bullet)

For example, CVTDQ2PD consists of the following sequence: F3 0F E6. The first byte 
is a mandatory prefix (it is not considered as a repeat prefix). 

Three-byte opcode formats for general-purpose and SIMD instructions consist of: 
• An escape opcode byte 0FH as the primary opcode, plus two additional opcode 

bytes, or
• A mandatory prefix (66H, F2H, or F3H), an escape opcode byte, plus two 

additional opcode bytes (same as previous bullet)

For example, PHADDW for XMM registers consists of the following sequence: 66 0F 
38 01. The first byte is the mandatory prefix.

Valid opcode expressions are defined in Appendix A and Appendix B.
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2.1.3 ModR/M and SIB Bytes
Many instructions that refer to an operand in memory have an addressing-form spec-
ifier byte (called the ModR/M byte) following the primary opcode. The ModR/M byte 
contains three fields of information:
• The mod field combines with the r/m field to form 32 possible values: eight 

registers and 24 addressing modes.
• The reg/opcode field specifies either a register number or three more bits of 

opcode information. The purpose of the reg/opcode field is specified in the 
primary opcode.

• The r/m field can specify a register as an operand or it can be combined with the 
mod field to encode an addressing mode. Sometimes, certain combinations of 
the mod field and the r/m field is used to express opcode information for some 
instructions.

Certain encodings of the ModR/M byte require a second addressing byte (the SIB 
byte). The base-plus-index and scale-plus-index forms of 32-bit addressing require 
the SIB byte. The SIB byte includes the following fields:
• The scale field specifies the scale factor.
• The index field specifies the register number of the index register.
• The base field specifies the register number of the base register.

See Section 2.1.5 for the encodings of the ModR/M and SIB bytes.

2.1.4 Displacement and Immediate Bytes
Some addressing forms include a displacement immediately following the ModR/M 
byte (or the SIB byte if one is present). If a displacement is required; it be 1, 2, or 4 
bytes.

If an instruction specifies an immediate operand, the operand always follows any 
displacement bytes. An immediate operand can be 1, 2 or 4 bytes.

2.1.5 Addressing-Mode Encoding of ModR/M and SIB Bytes
The values and corresponding addressing forms of the ModR/M and SIB bytes are 
shown in Table 2-1 through Table 2-3: 16-bit addressing forms specified by the 
ModR/M byte are in Table 2-1 and 32-bit addressing forms are in Table 2-2. Table 2-3 
shows 32-bit addressing forms specified by the SIB byte. In cases where the 
reg/opcode field in the ModR/M byte represents an extended opcode, valid encodings 
are shown in Appendix B.

In Table 2-1 and Table 2-2, the Effective Address column lists 32 effective addresses 
that can be assigned to the first operand of an instruction by using the Mod and R/M 
fields of the ModR/M byte. The first 24 options provide ways of specifying a memory 
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location; the last eight (Mod = 11B) provide ways of specifying general-purpose, 
MMX technology and XMM registers. 

The Mod and R/M columns in Table 2-1 and Table 2-2 give the binary encodings of the 
Mod and R/M fields required to obtain the effective address listed in the first column. 
For example: see the row indicated by Mod = 11B, R/M = 000B. The row identifies 
the general-purpose registers EAX, AX or AL; MMX technology register MM0; or XMM 
register XMM0. The register used is determined by the opcode byte and the operand-
size attribute.

Now look at the seventh row in either table (labeled “REG =”). This row specifies the 
use of the 3-bit Reg/Opcode field when the field is used to give the location of a 
second operand. The second operand must be a general-purpose, MMX technology, 
or XMM register. Rows one through five list the registers that may correspond to the 
value in the table. Again, the register used is determined by the opcode byte along 
with the operand-size attribute. 

If the instruction does not require a second operand, then the Reg/Opcode field may 
be used as an opcode extension. This use is represented by the sixth row in the 
tables (labeled “/digit (Opcode)”). Note that values in row six are represented in 
decimal form.

The body of Table 2-1 and Table 2-2 (under the label “Value of ModR/M Byte (in Hexa-
decimal)”) contains a 32 by 8 array that presents all of 256 values of the ModR/M 
byte (in hexadecimal). Bits 3, 4 and 5 are specified by the column of the table in 
which a byte resides. The row specifies bits 0, 1 and 2; and bits 6 and 7. The figure 
below demonstrates interpretation of one table value.

Figure 2-2.  Table Interpretation of ModR/M Byte (C8H)

Mod 11
RM 000
REG = 001
C8H 11001000

/digit (Opcode);
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NOTES:
1. The default segment register is SS for the effective addresses containing a BP index, DS for other

effective addresses.
2. The disp16 nomenclature denotes a 16-bit displacement that follows the ModR/M byte and that is

added to the index. 
3. The disp8 nomenclature denotes an 8-bit displacement that follows the ModR/M byte and that is

sign-extended and added to the index. 

Table 2-1.  16-Bit Addressing Forms with the ModR/M Byte
r8(/r)
r16(/r)
r32(/r)
mm(/r)
xmm(/r)
(In decimal) /digit (Opcode)
(In binary) REG =

AL
AX
EAX
MM0
XMM0
0
000

CL
CX
ECX
MM1
XMM1
1
001

DL
DX
EDX
MM2
XMM2
2
010

BL
BX
EBX
MM3
XMM3
3
011

AH
SP
ESP
MM4
XMM4
4
100

CH
BP1
EBP
MM5
XMM5
5
101

DH
SI
ESI
MM6
XMM6
6
110

BH
DI
EDI
MM7
XMM7
7
111

Effective Address Mod R/M Value of ModR/M Byte (in Hexadecimal)

[BX+SI]
[BX+DI]
[BP+SI]
[BP+DI]
[SI]
[DI]
disp162

[BX]

00 000
001
010
011
100
101
110
111

00
01
02
03
04
05
06
07

08
09
0A
0B
0C
0D
0E
0F

10
11
12
13
14
15
16
17

18
19
1A
1B
1C
1D
1E
1F

20
21
22
23
24
25
26
27

28
29
2A
2B
2C
2D
2E
2F

30
31
32
33
34
35
36
37

38
39
3A
3B
3C
3D
3E
3F

[BX+SI]+disp83

[BX+DI]+disp8
[BP+SI]+disp8
[BP+DI]+disp8
[SI]+disp8
[DI]+disp8
[BP]+disp8
[BX]+disp8

01 000
001
010
011
100
101
110
111

40
41
42
43
44
45
46
47

48
49
4A
4B
4C
4D
4E
4F

50
51
52
53
54
55
56
57

58
59
5A
5B
5C
5D
5E
5F

60
61
62
63
64
65
66
67

68
69
6A
6B
6C
6D
6E
6F

70
71
72
73
74
75
76
77

78
79
7A
7B
7C
7D
7E
7F

[BX+SI]+disp16
[BX+DI]+disp16
[BP+SI]+disp16
[BP+DI]+disp16
[SI]+disp16
[DI]+disp16
[BP]+disp16
[BX]+disp16

10 000
001
010
011
100
101
110
111

80
81
82
83
84
85
86
87

88
89
8A
8B
8C
8D
8E
8F

90
91
92
93
94
95
96
97

98
99
9A
9B
9C
9D
9E
9F

A0
A1
A2
A3
A4
A5
A6
A7

A8
A9
AA
AB
AC
AD
AE
AF

B0
B1
B2
B3
B4
B5
B6
B7

B8
B9
BA
BB
BC
BD
BE
BF

EAX/AX/AL/MM0/XMM0
ECX/CX/CL/MM1/XMM1
EDX/DX/DL/MM2/XMM2
EBX/BX/BL/MM3/XMM3
ESP/SP/AHMM4/XMM4
EBP/BP/CH/MM5/XMM5
ESI/SI/DH/MM6/XMM6
EDI/DI/BH/MM7/XMM7

11 000
001
010
011
100
101
110
111

C0
C1
C2
C3
C4
C5
C6
C7

C8
C9
CA
CB
CC
CD
CE
CF

D0
D1
D2
D3
D4
D5
D6
D7

D8
D9
DA
DB
DC
DD
DE
DF

E0
EQ
E2
E3
E4
E5
E6
E7

E8
E9
EA
EB
EC
ED
EE
EF

F0
F1
F2
F3
F4
F5
F6
F7

F8
F9
FA
FB
FC
FD
FE
FF
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NOTES:
1. The [--][--] nomenclature means a SIB follows the ModR/M byte.
2. The disp32 nomenclature denotes a 32-bit displacement that follows the ModR/M byte (or the SIB

byte if one is present) and that is added to the index.
3. The disp8 nomenclature denotes an 8-bit displacement that follows the ModR/M byte (or the SIB

byte if one is present) and that is sign-extended and added to the index.

Table 2-3 is organized to give 256 possible values of the SIB byte (in hexadecimal). 
General purpose registers used as a base are indicated across the top of the table, 
along with corresponding values for the SIB byte’s base field. Table rows in the body 

Table 2-2.  32-Bit Addressing Forms with the ModR/M Byte
r8(/r)
r16(/r)
r32(/r)
mm(/r)
xmm(/r)
(In decimal) /digit (Opcode)
(In binary) REG =

AL
AX
EAX
MM0
XMM0
0
000

CL
CX
ECX
MM1
XMM1
1
001

DL
DX
EDX
MM2
XMM2
2
010

BL
BX
EBX
MM3
XMM3
3
011

AH
SP
ESP
MM4
XMM4
4
100

CH
BP
EBP
MM5
XMM5
5
101

DH
SI
ESI
MM6
XMM6
6
110

BH
DI
EDI
MM7
XMM7
7
111

Effective Address Mod R/M Value of ModR/M Byte (in Hexadecimal)

[EAX]
[ECX]
[EDX]
[EBX]
[--][--]1
disp322

[ESI]
[EDI]

00 000
001
010
011
100
101
110
111

00
01
02
03
04
05
06
07

08
09
0A
0B
0C
0D
0E
0F

10
11
12
13
14
15
16
17

18
19
1A
1B
1C
1D
1E
1F

20
21
22
23
24
25
26
27

28
29
2A
2B
2C
2D
2E
2F

30
31
32
33
34
35
36
37

38
39
3A
3B
3C
3D
3E
3F

[EAX]+disp83

[ECX]+disp8
[EDX]+disp8
[EBX]+disp8
[--][--]+disp8
[EBP]+disp8
[ESI]+disp8
[EDI]+disp8

01 000
001
010
011
100
101
110
111

40
41
42
43
44
45
46
47

48
49
4A
4B
4C
4D
4E
4F

50
51
52
53
54
55
56
57

58
59
5A
5B
5C
5D
5E
5F

60
61
62
63
64
65
66
67

68
69
6A
6B
6C
6D
6E
6F

70
71
72
73
74
75
76
77

78
79
7A
7B
7C
7D
7E
7F

[EAX]+disp32
[ECX]+disp32
[EDX]+disp32
[EBX]+disp32
[--][--]+disp32
[EBP]+disp32
[ESI]+disp32
[EDI]+disp32

10 000
001
010
011
100
101
110
111

80
81
82
83
84
85
86
87

88
89
8A
8B
8C
8D
8E
8F

90
91
92
93
94
95
96
97

98
99
9A
9B
9C
9D
9E
9F

A0
A1
A2
A3
A4
A5
A6
A7

A8
A9
AA
AB
AC
AD
AE
AF

B0
B1
B2
B3
B4
B5
B6
B7

B8
B9
BA
BB
BC
BD
BE
BF

EAX/AX/AL/MM0/XMM0
ECX/CX/CL/MM/XMM1
EDX/DX/DL/MM2/XMM2
EBX/BX/BL/MM3/XMM3
ESP/SP/AH/MM4/XMM4
EBP/BP/CH/MM5/XMM5
ESI/SI/DH/MM6/XMM6
EDI/DI/BH/MM7/XMM7

11 000
001
010
011
100
101
110
111

C0
C1
C2
C3
C4
C5
C6
C7

C8
C9
CA
CB
CC
CD
CE
CF

D0
D1
D2
D3
D4
D5
D6
D7

D8
D9
DA
DB
DC
DD
DE
DF

E0
E1
E2
E3
E4
E5
E6
E7

E8
E9
EA
EB
EC
ED
EE
EF

F0
F1
F2
F3
F4
F5
F6
F7

F8
F9
FA
FB
FC
FD
FE
FF
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of the table indicate the register used as the index (SIB byte bits 3, 4 and 5) and the 
scaling factor (determined by SIB byte bits 6 and 7).

NOTES:
1. The [*] nomenclature means a disp32 with no base if the MOD is 00B. Otherwise, [*] means disp8

or disp32 + [EBP]. This provides the following address modes:
MOD bits Effective Address
00 [scaled index] + disp32 
01 [scaled index] + disp8 + [EBP]
10  [scaled index] + disp32 + [EBP]

Table 2-3.  32-Bit Addressing Forms with the SIB Byte
r32
(In decimal) Base =
(In binary) Base =

EAX
0
000

ECX
1
001

EDX
2
010

EBX
3
011

ESP
4
100

[*]
5
101

ESI
6
110

EDI
7
111

Scaled Index SS Index Value of SIB Byte (in Hexadecimal)

[EAX]
[ECX]
[EDX]
[EBX]
none
[EBP]
[ESI]
[EDI]

00 000
001
010
011
100
101
110
111

00
08
10
18
20
28
30
38

01
09
11
19
21
29
31
39

02
0A
12
1A
22
2A
32
3A

03
0B
13
1B
23
2B
33
3B

04
0C
14
1C
24
2C
34
3C

05
0D
15
1D
25
2D
35
3D

06
0E
16
1E
26
2E
36
3E

07
0F
17
1F
27
2F
37
3F

[EAX*2]
[ECX*2]
[EDX*2]
[EBX*2]
none
[EBP*2]
[ESI*2]
[EDI*2]

01 000
001
010
011
100
101
110
111

40
48
50
58
60
68
70
78

41
49
51
59
61
69
71
79

42
4A
52
5A
62
6A
72
7A

43
4B
53
5B
63
6B
73
7B

44
4C
54
5C
64
6C
74
7C

45
4D
55
5D
65
6D
75
7D

46
4E
56
5E
66
6E
76
7E

47
4F
57
5F
67
6F
77
7F

[EAX*4]
[ECX*4]
[EDX*4]
[EBX*4]
none
[EBP*4]
[ESI*4]
[EDI*4]

10 000
001
010
011
100
101
110
111

80
88
90
98
A0
A8
B0
B8

81
89
91
89
A1
A9
B1
B9

82
8A
92
9A
A2
AA
B2
BA

83
8B
93
9B
A3
AB
B3
BB

84
8C
94
9C
A4
AC
B4
BC

85
8D
95
9D
A5
AD
B5
BD

86
8E
96
9E
A6
AE
B6
BE

87
8F
97
9F
A7
AF
B7
BF

[EAX*8]
[ECX*8]
[EDX*8]
[EBX*8]
none
[EBP*8]
[ESI*8]
[EDI*8]

11 000
001
010
011
100
101
110
111

C0
C8
D0
D8
E0
E8
F0
F8

C1
C9
D1
D9
E1
E9
F1
F9

C2
CA
D2
DA
E2
EA
F2
FA

C3
CB
D3
DB
E3
EB
F3
FB

C4
CC
D4
DC
E4
EC
F4
FC

C5
CD
D5
DD
E5
ED
F5
FD

C6
CE
D6
DE
E6
EE
F6
FE

C7
CF
D7
DF
E7
EF
F7
FF
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2.2 IA-32E MODE
IA-32e mode has two sub-modes. These are: 
• Compatibility Mode. Enables a 64-bit operating system to run most legacy 

protected mode software unmodified. 
• 64-Bit Mode. Enables a 64-bit operating system to run applications written to 

access 64-bit address space. 

2.2.1 REX Prefixes
REX prefixes are instruction-prefix bytes used in 64-bit mode. They do the following:
• Specify GPRs and SSE registers.
• Specify 64-bit operand size.
• Specify extended control registers.

Not all instructions require a REX prefix in 64-bit mode. A prefix is necessary only if 
an instruction references one of the extended registers or uses a 64-bit operand. If a 
REX prefix is used when it has no meaning, it is ignored.

Only one REX prefix is allowed per instruction. If used, the REX prefix byte must 
immediately precede the opcode byte or the escape opcode byte (0FH). When a REX 
prefix is used in conjunction with an instruction containing a mandatory prefix, the 
mandatory prefix must come before the REX so the REX prefix can be immediately 
preceding the opcode or the escape byte.  For example, CVTDQ2PD with a REX prefix 
should have REX placed between F3 and 0F E6. Other placements are ignored. The 
instruction-size limit of 15 bytes still applies to instructions with a REX prefix. See 
Figure 2-3.

Figure 2-3.  Prefix Ordering in 64-bit Mode

REX

Immediate data 
of 1, 2, or 4 
bytes or none

Address 
displacement of 
1, 2, or 4 bytes 

1 byte
(if required)

1 byte
(if required)

1-, 2-, or 
3-byte 
opcode

(optional)Grp 1, Grp 
2, Grp 3, 
Grp 4
(optional)

Legacy
Prefix Opcode ModR/M SIB Displacement Immediate

Prefixes
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2.2.1.1  Encoding
Intel 64 and IA-32 instruction formats specify up to three registers by using 3-bit 
fields in the encoding, depending on the format:
• ModR/M: the reg and r/m fields of the ModR/M byte
• ModR/M with SIB: the reg field of the ModR/M byte, the base and index fields of 

the SIB (scale, index, base) byte
• Instructions without ModR/M: the reg field of the opcode

In 64-bit mode, these formats do not change. Bits needed to define fields in the 
64-bit context are provided by the addition of REX prefixes.

2.2.1.2  More on REX Prefix Fields 
REX prefixes are a set of 16 opcodes that span one row of the opcode map and 
occupy entries 40H to 4FH. These opcodes represent valid instructions (INC or DEC) 
in IA-32 operating modes and in compatibility mode. In 64-bit mode, the same 
opcodes represent the instruction prefix REX and are not treated as individual 
instructions. 

The single-byte-opcode form of INC/DEC instruction not available in 64-bit mode. 
INC/DEC functionality is still available using ModR/M forms of the same instructions 
(opcodes FF/0 and FF/1). 

See Table 2-4 for a summary of the REX prefix format. Figure 2-4 though Figure 2-7 
show examples of REX prefix fields in use. Some combinations of REX prefix fields are 
invalid. In such cases, the prefix is ignored. Some additional information follows:
• Setting REX.W can be used to determine the operand size but does not solely 

determine operand width. Like the 66H size prefix, 64-bit operand size override 
has no effect on byte-specific operations. 

• For non-byte operations: if a 66H prefix is used with prefix (REX.W = 1), 66H is 
ignored. 

• If a 66H override is used with REX and REX.W = 0, the operand size is 16 bits.
• REX.R modifies the ModR/M reg field when that field encodes a GPR, SSE, control 

or debug register. REX.R is ignored when ModR/M specifies other registers or 
defines an extended opcode.

• REX.X bit modifies the SIB index field.
• REX.B either modifies the base in the ModR/M r/m field or SIB base field; or it 

modifies the opcode reg field used for accessing GPRs.
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Table 2-4.  REX Prefix Fields [BITS: 0100WRXB]
Field Name Bit Position Definition

- 7:4 0100

W 3 0 = Operand size determined by CS.D

1 = 64 Bit Operand Size

R 2 Extension of the ModR/M reg field

X 1 Extension of the SIB index field

B 0 Extension of the ModR/M r/m field, SIB base field, or 
Opcode reg field

Figure 2-4.  Memory Addressing Without an SIB Byte; REX.X Not Used

Figure 2-5.  Register-Register Addressing (No Memory Operand); REX.X Not Used
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In the IA-32 architecture, byte registers (AH, AL, BH, BL, CH, CL, DH, and DL) are 
encoded in the ModR/M byte’s reg field, the r/m field or the opcode reg field as regis-
ters 0 through 7. REX prefixes provide an additional addressing capability for byte-
registers that makes the least-significant byte of GPRs available for byte operations.

Certain combinations of the fields of the ModR/M byte and the SIB byte have special 
meaning for register encodings. For some combinations, fields expanded by the REX 
prefix are not decoded. Table 2-5 describes how each case behaves.

Figure 2-6.  Memory Addressing With a SIB Byte

Figure 2-7.  Register Operand Coded in Opcode Byte; REX.X & REX.R Not Used
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2.2.1.3  Displacement 
Addressing in 64-bit mode uses existing 32-bit ModR/M and SIB encodings. The 
ModR/M and SIB displacement sizes do not change. They remain 8 bits or 32 bits and 
are sign-extended to 64 bits.

2.2.1.4  Direct Memory-Offset MOVs
In 64-bit mode, direct memory-offset forms of the MOV instruction are extended to 
specify a 64-bit immediate absolute address. This address is called a moffset. No 
prefix is needed to specify this 64-bit memory offset. For these MOV instructions, the 

Table 2-5.  Special Cases of REX Encodings 
ModR/M or 
SIB 

Sub-field
Encodings

Compatibility 
Mode Operation

Compatibility 
Mode Implications Additional Implications

ModR/M Byte mod != 11 SIB byte present. SIB byte required 
for ESP-based 
addressing.

REX prefix adds a fourth 
bit (b) which is not 
decoded (don't care).

SIB byte also required for 
R12-based addressing.

r/m = 
b*100(ESP)

ModR/M Byte mod = 0 Base register not 
used.

EBP without a 
displacement must 
be done using 

mod = 01 with 
displacement of 0.

REX prefix adds a fourth 
bit (b) which is not 
decoded (don't care).

Using RBP or R13 without 
displacement must be 
done using mod = 01 with 
a displacement of 0.

r/m = 
b*101(EBP)

SIB Byte index = 
0100(ESP)

Index register not 
used.

ESP cannot be used 
as an index 
register.

REX prefix adds a fourth 
bit (b) which is decoded.

There are no additional 
implications. The 
expanded index field 
allows distinguishing RSP 
from R12, therefore R12 
can be used as an index.

SIB Byte base = 
0101(EBP)

Base register is 
unused if 
mod = 0.

Base register 
depends on mod 
encoding.

REX prefix adds a fourth 
bit (b) which is not 
decoded.

This requires explicit 
displacement to be used 
with EBP/RBP or R13.

NOTES:
* Don’t care about value of REX.B
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size of the memory offset follows the address-size default (64 bits in 64-bit mode). 
See Table 2-6.

2.2.1.5  Immediates 
In 64-bit mode, the typical size of immediate operands remains 32 bits. When the 
operand size is 64 bits, the processor sign-extends all immediates to 64 bits prior to 
their use. 

Support for 64-bit immediate operands is accomplished by expanding the semantics 
of the existing move (MOV reg, imm16/32) instructions. These instructions (opcodes 
B8H – BFH) move 16-bits or 32-bits of immediate data (depending on the effective 
operand size) into a GPR. When the effective operand size is 64 bits, these instruc-
tions can be used to load an immediate into a GPR. A REX prefix is needed to override 
the 32-bit default operand size to a 64-bit operand size. 

For example:

48 B8 8877665544332211 MOV RAX,1122334455667788H

2.2.1.6  RIP-Relative Addressing
A new addressing form, RIP-relative (relative instruction-pointer) addressing, is 
implemented in 64-bit mode. An effective address is formed by adding displacement 
to the 64-bit RIP of the next instruction.

In IA-32 architecture and compatibility mode, addressing relative to the instruction 
pointer is available only with control-transfer instructions. In 64-bit mode, instruc-
tions that use ModR/M addressing can use RIP-relative addressing. Without RIP-rela-
tive addressing, all ModR/M instruction modes address memory relative to zero. 

RIP-relative addressing allows specific ModR/M modes to address memory relative to 
the 64-bit RIP using a signed 32-bit displacement. This provides an offset range of 
±2GB from the RIP. Table 2-7 shows the ModR/M and SIB encodings for RIP-relative 
addressing. Redundant forms of 32-bit displacement-addressing exist in the current 
ModR/M and SIB encodings. There is one ModR/M encoding and there are several SIB 
encodings. RIP-relative addressing is encoded using a redundant form. 

In 64-bit mode, the ModR/M Disp32 (32-bit displacement) encoding is re-defined to 
be RIP+Disp32 rather than displacement-only. See Table 2-7.

Table 2-6.  Direct Memory Offset Form of MOV
Opcode Instruction

A0 MOV AL, moffset

A1 MOV EAX, moffset

A2 MOV moffset, AL

A3 MOV moffset, EAX
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The ModR/M encoding for RIP-relative addressing does not depend on using prefix. 
Specifically, the r/m bit field encoding of 101B (used to select RIP-relative 
addressing) is not affected by the REX prefix. For example, selecting R13 (REX.B = 1, 
r/m = 101B) with mod = 00B still results in RIP-relative addressing. The 4-bit r/m 
field of REX.B combined with ModR/M is not fully decoded. In order to address R13 
with no displacement, software must encode R13 + 0 using a 1-byte displacement of 
zero. 

RIP-relative addressing is enabled by 64-bit mode, not by a 64-bit address-size. The 
use of the address-size prefix does not disable RIP-relative addressing. The effect of 
the address-size prefix is to truncate and zero-extend the computed effective 
address to 32 bits. 

2.2.1.7  Default 64-Bit Operand Size
In 64-bit mode, two groups of instructions have a default operand size of 64 bits (do 
not need a REX prefix for this operand size). These are:
• Near branches
• All instructions, except far branches, that implicitly reference the RSP

2.2.2 Additional Encodings for Control and Debug Registers
In 64-bit mode, more encodings for control and debug registers are available. The 
REX.R bit is used to modify the ModR/M reg field when that field encodes a control or 
debug register (see Table 2-4). These encodings enable the processor to address 
CR8-CR15 and DR8- DR15. An additional control register (CR8) is defined in 64-bit 
mode. CR8 becomes the Task Priority Register (TPR). 

In the first implementation of IA-32e mode, CR9-CR15 and DR8-DR15 are not imple-
mented. Any attempt to access unimplemented registers results in an invalid-opcode 
exception (#UD).

Table 2-7.  RIP-Relative Addressing
ModR/M and SIB Sub-field 
Encodings

Compatibility 
Mode Operation

64-bit Mode 
Operation

Additional Implications 
in 64-bit mode

ModR/M 
Byte

mod = 00 Disp32 RIP + Disp32 Must use SIB form with 
normal (zero-based) 
displacement addressing 

r/m = 101 (none)

SIB Byte base = 101 (none) if mod = 00, 
Disp32

Same as 
legacy

None

index = 100 (none)

scale = 0, 1, 2, 4
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2.3 INTEL® ADVANCED VECTOR EXTENSIONS (INTEL® 
AVX)

Intel AVX instructions are encoded using an encoding scheme that combines prefix 
bytes, opcode extension field, operand encoding fields, and vector length encoding 
capability into a new prefix, referred to as VEX. In the VEX encoding scheme, the VEX 
prefix may be two or three bytes long, depending on the instruction semantics. 
Despite the two-byte or three-byte length of the VEX prefix, the VEX encoding format 
provides a more compact representation/packing of the components of encoding an 
instruction in Intel 64 architecture. The VEX encoding scheme also allows more head-
room for future growth of Intel 64 architecture.

2.3.1 Instruction Format
Instruction encoding using VEX prefix provides several advantages:
• Instruction syntax support for three operands and up-to four operands when 

necessary. For example, the third source register used by VBLENDVPD is encoded 
using bits 7:4 of the immediate byte.

• Encoding support for vector length of 128 bits (using XMM registers) and 256 bits 
(using YMM registers)

• Encoding support for instruction syntax of non-destructive source operands.
• Elimination of escape opcode byte (0FH), SIMD prefix byte (66H, F2H, F3H) via a 

compact bit field representation within the VEX prefix.
• Elimination of the need to use REX prefix to encode the extended half of general-

purpose register sets (R8-R15) for direct register access, memory addressing, or 
accessing XMM8-XMM15 (including YMM8-YMM15).

• Flexible and more compact bit fields are provided in the VEX prefix to retain the 
full functionality provided by REX prefix. REX.W, REX.X, REX.B functionalities are 
provided in the three-byte VEX prefix only because only a subset of SIMD instruc-
tions need them. 

• Extensibility for future instruction extensions without significant instruction 
length increase.

Figure 2-8 shows the Intel 64 instruction encoding format with VEX prefix support. 
Legacy instruction without a VEX prefix is fully supported and unchanged. The use of 
VEX prefix in an Intel 64 instruction is optional, but a VEX prefix is required for Intel 
64 instructions that operate on YMM registers or support three and four operand 
syntax. VEX prefix is not a constant-valued, “single-purpose” byte like 0FH, 66H, 
F2H, F3H in legacy SSE instructions. VEX prefix provides substantially richer capa-
bility than the REX prefix. 
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Figure 2-8.  Instruction Encoding Format with VEX Prefix

2.3.2 VEX and the LOCK prefix
Any VEX-encoded instruction with a LOCK prefix preceding VEX will #UD.

2.3.3 VEX and the 66H, F2H, and F3H prefixes
Any VEX-encoded instruction with a 66H, F2H, or F3H prefix preceding VEX will #UD.

2.3.4 VEX and the REX prefix
Any VEX-encoded instruction with a REX prefix proceeding VEX will #UD. 

2.3.5 The VEX Prefix 
The VEX prefix is encoded in either the two-byte form (the first byte must be C5H) or 
in the three-byte form (the first byte must be C4H). The two-byte VEX is used mainly 
for 128-bit, scalar, and the most common 256-bit AVX instructions; while the three-
byte VEX provides a compact replacement of REX and 3-byte opcode instructions 
(including AVX and FMA instructions). Beyond the first byte of the VEX prefix, it 
consists of a number of bit fields providing specific capability, they are shown in 
Figure 2-9. 
The bit fields of the VEX prefix can be summarized by its functional purposes:
• Non-destructive source register encoding (applicable to three and four operand 

syntax): This is the first source operand in the instruction syntax. It is 
represented by the notation, VEX.vvvv. This field is encoded using 1’s 
complement form (inverted form), i.e. XMM0/YMM0/R0 is encoded as 1111B, 
XMM15/YMM15/R15 is encoded as 0000B.

• Vector length encoding: This 1-bit field represented by the notation VEX.L. L= 0 
means vector length is 128 bits wide, L=1 means 256 bit vector. The value of this 
field is written as VEX.128 or VEX.256 in this document to distinguish encoded 
values of other VEX bit fields. 

ModR/M

1

[Prefixes] [VEX] OPCODE [SIB] [DISP] [IMM]

2,3 1 0,1 0,1,2,4 0,1# Bytes
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• REX prefix functionality: Full REX prefix functionality is provided in the three-byte 
form of VEX prefix. However the VEX bit fields providing REX functionality are 
encoded using 1’s complement form, i.e. XMM0/YMM0/R0 is encoded as 1111B, 
XMM15/YMM15/R15 is encoded as 0000B. 

— Two-byte form of the VEX prefix only provides the equivalent functionality of 
REX.R, using 1’s complement encoding. This is represented as VEX.R.

— Three-byte form of the VEX prefix provides REX.R, REX.X, REX.B functionality 
using 1’s complement encoding and three dedicated bit fields represented as 
VEX.R, VEX.X, VEX.B.

— Three-byte form of the VEX prefix provides the functionality of REX.W only to 
specific instructions that need to override default 32-bit operand size for a 
general purpose register to 64-bit size in 64-bit mode. For those applicable 
instructions, VEX.W field provides the same functionality as REX.W. VEX.W 
field can provide completely different functionality for other instructions.

Consequently, the use of REX prefix with VEX encoded instructions is not
allowed. However, the intent of the REX prefix for expanding register set is
reserved for future instruction set extensions using VEX prefix encoding format.

• Compaction of SIMD prefix: Legacy SSE instructions effectively use SIMD 
prefixes (66H, F2H, F3H) as an opcode extension field. VEX prefix encoding 
allows the functional capability of such legacy SSE instructions (operating on 
XMM registers, bits 255:128 of corresponding YMM unmodified) to be encoded 
using the VEX.pp field without the presence of any SIMD prefix. The VEX-encoded 
128-bit instruction will zero-out bits 255:128 of the destination register. VEX-
encoded instruction may have 128 bit vector length or 256 bits length.

• Compaction of two-byte and three-byte opcode: More recently introduced legacy 
SSE instructions employ two and three-byte opcode. The one or two leading 
bytes are: 0FH, and 0FH 3AH/0FH 38H. The one-byte escape (0FH) and two-byte 
escape (0FH 3AH, 0FH 38H) can also be interpreted as an opcode extension field. 
The VEX.mmmmm field provides compaction to allow many legacy instruction to 
be encoded without the constant byte sequence, 0FH, 0FH 3AH, 0FH 38H. These 
VEX-encoded instruction may have 128 bit vector length or 256 bits length.

The VEX prefix is required to be the last prefix and immediately precedes the opcode 
bytes. It must follow any other prefixes. If VEX prefix is present a REX prefix is not 
supported. 
The 3-byte VEX leaves room for future expansion with 3 reserved bits. REX and the 
66h/F2h/F3h prefixes are reclaimed for future use.
VEX prefix has a two-byte form and a three byte form. If an instruction syntax can be 
encoded using the two-byte form, it can also be encoded using the three byte form of 
VEX. The latter increases the length of the instruction by one byte. This may be 
helpful in some situations for code alignment. 
The VEX prefix supports 256-bit versions of floating-point SSE, SSE2, SSE3, and 
SSE4 instructions. Note, certain new instruction functionality can only be encoded 
with the VEX prefix.
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The VEX prefix will #UD on any instruction containing MMX register sources or desti-
nations. 

Figure 2-9.  VEX bitfields

11000100 1

670

 

vvvv

1 03 2

L  

7

R: REX.R in 1’s complement (inverted) form

00000: Reserved for future use (will #UD)
00001: implied 0F leading opcode byte
00010: implied 0F 38 leading opcode bytes
00011: implied 0F 3A leading opcode bytes
00100-11111: Reserved for future use (will #UD)

Byte 0 Byte 2

(Bit Position)

vvvv: a register specifier (in 1’s complement form) or 1111 if unused.

67 0

R X B

Byte 1

pp: opcode extension providing equivalent functionality of a SIMD prefix

W: opcode specific (use like REX.W, or used for opcode

m-mmmm

5

m-mmmm: 

W

L: Vector Length

0: Same as REX.R=1 (64-bit mode only)
1: Same as REX.R=0 (must be 1 in 32-bit mode)

4

pp 3-byte VEX

11000101 1

670

vvvv

1 03 2

L 

7

R pp 2-byte VEX

B: REX.B in 1’s complement (inverted) form

0: Same as REX.B=1 (64-bit mode only)
1: Same as REX.B=0 (Ignored in 32-bit mode).

 extension, or ignored, depending on the opcode byte)

0: scalar or 128-bit vector
1: 256-bit vector

00: None
01: 66
10: F3
11: F2

0: Same as REX.X=1 (64-bit mode only)
1: Same as REX.X=0 (must be 1 in 32-bit mode)

X: REX.X in 1’s complement (inverted) form
Vol. 2A 2-19



INSTRUCTION FORMAT
The following subsections describe the various fields in two or three-byte VEX prefix:

2.3.5.1  VEX Byte 0, bits[7:0] 
VEX Byte 0, bits [7:0] must contain the value 11000101b (C5h) or 11000100b 
(C4h). The 3-byte VEX uses the C4h first byte, while the 2-byte VEX uses the C5h 
first byte.

2.3.5.2  VEX Byte 1, bit [7] - ‘R’
VEX Byte 1, bit [7] contains a bit analogous to a bit inverted REX.R. In protected and 
compatibility modes the bit must be set to ‘1’ otherwise the instruction is LES or LDS.
This bit is present in both 2- and 3-byte VEX prefixes.
The usage of WRXB bits for legacy instructions is explained in detail section 2.2.1.2 
of Intel 64 and IA-32 Architectures Software developer’s manual, Volume 2A.
This bit is stored in bit inverted format.

2.3.5.3  3-byte VEX byte 1, bit[6] - ‘X’ 
Bit[6] of the 3-byte VEX byte 1 encodes a bit analogous to a bit inverted REX.X. It is 
an extension of the SIB Index field in 64-bit modes. In 32-bit modes, this bit must be 
set to ‘1’ otherwise the instruction is LES or LDS.
This bit is available only in the 3-byte VEX prefix.
This bit is stored in bit inverted format.

2.3.5.4  3-byte VEX byte 1, bit[5] - ‘B’ 
Bit[5] of the 3-byte VEX byte 1 encodes a bit analogous to a bit inverted REX.B. In 
64-bit modes, it is an extension of the ModR/M r/m field, or the SIB base field. In 32-
bit modes, this bit is ignored.
This bit is available only in the 3-byte VEX prefix.
This bit is stored in bit inverted format.

2.3.5.5  3-byte VEX byte 2, bit[7] - ‘W’ 
Bit[7] of the 3-byte VEX byte 2 is represented by the notation VEX.W. It can provide 
following functions, depending on the specific opcode. 
• For AVX instructions that have equivalent legacy SSE instructions (typically 

these SSE instructions have a general-purpose register operand with its oper-
and size attribute promotable by REX.W), if REX.W promotes the operand size 
attribute of the general-purpose register operand in legacy SSE instruction, 
VEX.W has same meaning in the corresponding AVX equivalent form. In 32-bit 
modes, VEX.W is silently ignored.
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• For AVX instructions that have equivalent legacy SSE instructions (typically 
these SSE instructions have operands with their operand size attribute fixed and 
not promotable by REX.W), if REX.W is don’t care in legacy SSE instruction, 
VEX.W is ignored in the corresponding AVX equivalent form irrespective of 
mode.

• For new AVX instructions where VEX.W has no defined function (typically these 
meant the combination of the opcode byte and VEX.mmmmm did not have any 
equivalent SSE functions), VEX.W is reserved as zero and setting to other than 
zero will cause instruction to #UD.

2.3.5.6  2-byte VEX Byte 1, bits[6:3] and 3-byte VEX Byte 2, bits [6:3]- 
‘vvvv’ the Source or dest Register Specifier

In 32-bit mode the VEX first byte C4 and C5 alias onto the LES and LDS instructions. 
To maintain compatibility with existing programs the VEX 2nd byte, bits [7:6] must 
be 11b. To achieve this, the VEX payload bits are selected to place only inverted, 64-
bit valid fields (extended register selectors) in these upper bits. 
The 2-byte VEX Byte 1, bits [6:3] and the 3-byte VEX, Byte 2, bits [6:3] encode a 
field (shorthand VEX.vvvv) that for instructions with 2 or more source registers and 
an XMM or YMM or memory destination encodes the first source register specifier 
stored in inverted (1’s complement) form. 
VEX.vvvv is not used by the instructions with one source (except certain shifts, see 
below) or on instructions with no XMM or YMM or memory destination. If an instruc-
tion does not use VEX.vvvv then it should be set to 1111b otherwise instruction will 
#UD.
In 64-bit mode all 4 bits may be used. See Table 2-8 for the encoding of the XMM or 
YMM registers. In 32-bit and 16-bit modes bit 6 must be 1 (if bit 6 is not 1, the 2-byte 
VEX version will generate LDS instruction and the 3-byte VEX version will ignore this 
bit).
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Table 2-8.  VEX.vvvv to register name mapping

The VEX.vvvv field is encoded in bit inverted format for accessing a register oper-
and.

2.3.6 Instruction Operand Encoding and VEX.vvvv, ModR/M
VEX-encoded instructions support three-operand and four-operand instruction 
syntax. Some VEX-encoded instructions have syntax with less than three operands, 
e.g. VEX-encoded pack shift instructions support one source operand and one desti-
nation operand). 
The roles of VEX.vvvv, reg field of ModR/M byte (ModR/M.reg), r/m field of ModR/M 
byte (ModR/M.r/m) with respect to encoding destination and source operands vary 
with different type of instruction syntax.
The role of VEX.vvvv can be summarized to three situations:
• VEX.vvvv encodes the first source register operand, specified in inverted (1’s 

complement) form and is valid for instructions with 2 or more source operands. 
• VEX.vvvv encodes the destination register operand, specified in 1’s complement 

form for certain vector shifts. The instructions where VEX.vvvv is used as a 
destination are listed in Table 2-9. The notation in the “Opcode” column in 
Table 2-9 is described in detail in section 3.1.1.

VEX.vvvv Dest Register
Valid in Legacy/Compatibility 

32-bit modes?

1111B XMM0/YMM0 Valid

1110B XMM1/YMM1 Valid

1101B XMM2/YMM2 Valid

1100B XMM3/YMM3 Valid

1011B XMM4/YMM4 Valid

1010B XMM5/YMM5 Valid

1001B XMM6/YMM6 Valid

1000B XMM7/YMM7 Valid

0111B XMM8/YMM8 Invalid

0110B XMM9/YMM9 Invalid

0101B XMM10/YMM10 Invalid

0100B XMM11/YMM11 Invalid

0011B XMM12/YMM12 Invalid

0010B XMM13/YMM13 Invalid

0001B XMM14/YMM14 Invalid

0000B XMM15/YMM15 Invalid
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• VEX.vvvv does not encode any operand, the field is reserved and should contain 
1111b. 

Table 2-9.  Instructions with a VEX.vvvv destination 

The role of ModR/M.r/m field can be summarized to two situations:
• ModR/M.r/m encodes the instruction operand that references a memory address.
• For some instructions that do not support memory addressing semantics, 

ModR/M.r/m encodes either the destination register operand or a source register 
operand.

The role of ModR/M.reg field can be summarized to two situations:
• ModR/M.reg encodes either the destination register operand or a source register 

operand.
• For some instructions, ModR/M.reg is treated as an opcode extension and not 

used to encode any instruction operand.
For instruction syntax that support four operands, VEX.vvvv, ModR/M.r/m, 
ModR/M.reg encodes three of the four operands. The role of bits 7:4 of the imme-
diate byte serves the following situation:
• Imm8[7:4] encodes the third source register operand.

2.3.6.1  3-byte VEX byte 1, bits[4:0] - “m-mmmm” 
Bits[4:0] of the 3-byte VEX byte 1 encode an implied leading opcode byte (0F, 0F 38, 
or 0F 3A). Several bits are reserved for future use and will #UD unless 0. 

Opcode Instruction mnemonic

VEX.NDD.128.66.0F 73 /7 ib VPSLLDQ xmm1, xmm2, imm8

VEX.NDD.128.66.0F 73 /3 ib VPSRLDQ xmm1, xmm2, imm8

VEX.NDD.128.66.0F 71 /2 ib VPSRLW xmm1, xmm2, imm8

VEX.NDD.128.66.0F 72 /2 ib VPSRLD xmm1, xmm2, imm8

VEX.NDD.128.66.0F 73 /2 ib VPSRLQ xmm1, xmm2, imm8

VEX.NDD.128.66.0F 71 /4 ib VPSRAW xmm1, xmm2, imm8

VEX.NDD.128.66.0F 72 /4 ib VPSRAD xmm1, xmm2, imm8

VEX.NDD.128.66.0F 71 /6 ib VPSLLW xmm1, xmm2, imm8

VEX.NDD.128.66.0F 72 /6 ib VPSLLD xmm1, xmm2, imm8

VEX.NDD.128.66.0F 73 /6 ib VPSLLQ xmm1, xmm2, imm8
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Table 2-10.   VEX.m-mmmm interpretation

VEX.m-mmmm is only available on the 3-byte VEX. The 2-byte VEX implies a leading 
0Fh opcode byte.

2.3.6.2  2-byte VEX byte 1, bit[2], and 3-byte VEX byte 2, bit [2]- “L”
The vector length field, VEX.L, is encoded in bit[2] of either the second byte of 2-byte 
VEX, or the third byte of 3-byte VEX. If “VEX.L = 1”, it indicates 256-bit vector oper-
ation. “VEX.L = 0” indicates scalar and 128-bit vector operations.
The instruction VZEROUPPER is a special case that is encoded with VEX.L = 0, 
although its operation zero’s bits 255:128 of all YMM registers accessible in the 
current operating mode.
See the following table.

Table 2-11.  VEX.L interpretation

2.3.6.3  2-byte VEX byte 1, bits[1:0], and 3-byte VEX byte 2, bits [1:0]- 
“pp”

Up to one implied prefix is encoded by bits[1:0] of either the 2-byte VEX byte 1 or the 
3-byte VEX byte 2. The prefix behaves as if it was encoded prior to VEX, but after all 
other encoded prefixes.
See the following table.

VEX.m-mmmm
Implied Leading 
Opcode Bytes

00000B Reserved

00001B 0F

00010B 0F 38

00011B 0F 3A

00100-11111B Reserved

(2-byte VEX) 0F

VEX.L Vector Length

0 128-bit (or 32/64-bit scalar)

1 256-bit
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Table 2-12.  VEX.pp interpretation

2.3.7 The Opcode Byte
One (and only one) opcode byte follows the 2 or 3 byte VEX. Legal opcodes are spec-
ified in Appendix B, in color. Any instruction that uses illegal opcode will #UD.

2.3.8 The MODRM, SIB, and Displacement Bytes
The encodings are unchanged but the interpretation of reg_field or rm_field differs 
(see above).

2.3.9 The Third Source Operand (Immediate Byte)
VEX-encoded instructions can support instruction with a four operand syntax. 
VBLENDVPD, VBLENDVPS, and PBLENDVB use imm8[7:4] to encode one of the 
source registers. 

2.3.10 AVX Instructions and the Upper 128-bits of YMM registers

If an instruction with a destination XMM register is encoded with a VEX prefix, the 
processor zeroes the upper bits (above bit 128) of the equivalent YMM register . 
Legacy SSE instructions without VEX preserve the upper bits.

2.3.10.1  Vector Length Transition and Programming Considerations 
An instruction encoded with a VEX.128 prefix that loads a YMM register operand 
operates as follows:
• Data is loaded into bits 127:0 of the register
• Bits above bit 127 in the register are cleared.
Thus, such an instruction clears bits 255:128 of a destination YMM register on 
processors with a maximum vector-register width of 256 bits. In the event that 
future processors extend the vector registers to greater widths, an instruction 
encoded with a VEX.128 or VEX.256 prefix will also clear any bits beyond bit 255. 

pp
Implies this prefix after other 

prefixes but before VEX

00B None

01B 66

10B F3

11B F2
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(This is in contrast with legacy SSE instructions, which have no VEX prefix; these 
modify only bits 127:0 of any destination register operand.)
Programmers should bear in mind that instructions encoded with VEX.128 and 
VEX.256 prefixes will clear any future extensions to the vector registers. A calling 
function that uses such extensions should save their state before calling legacy func-
tions. This is not possible for involuntary calls (e.g., into an interrupt-service 
routine). It is recommended that software handling involuntary calls accommodate 
this by not executing instructions encoded with VEX.128 and VEX.256 prefixes. In 
the event that it is not possible or desirable to restrict these instructions, then soft-
ware must take special care to avoid actions that would, on future processors, zero 
the upper bits of vector registers. 
Processors that support further vector-register extensions (defining bits beyond bit 
255) will also extend the XSAVE and XRSTOR instructions to save and restore these 
extensions. To ensure forward compatibility, software that handles involuntary calls 
and that uses instructions encoded with VEX.128 and VEX.256 prefixes should first 
save and then restore the vector registers (with any extensions) using the XSAVE 
and XRSTOR instructions with save/restore masks that set bits that correspond to all 
vector-register extensions.  Ideally, software should rely on a mechanism that is 
cognizant of which bits to set.  (E.g., an OS mechanism that sets the save/restore 
mask bits for all vector-register extensions that are enabled in XCR0.)  Saving and 
restoring state with instructions other than XSAVE and XRSTOR will, on future 
processors with wider vector registers, corrupt the extended state of the vector 
registers - even if doing so functions correctly on processors supporting 256-bit 
vector registers.  (The same is true if XSAVE and XRSTOR are used with a 
save/restore mask that does not set bits corresponding to all supported extensions to 
the vector registers.)

2.3.11 AVX Instruction Length
The AVX instructions described in this document (including VEX and ignoring other 
prefixes) do not exceed 11 bytes in length, but may increase in the future. The 
maximum length of an Intel 64 and IA-32 instruction remains 15 bytes.

2.4 INSTRUCTION EXCEPTION SPECIFICATION
To look up the exceptions of legacy 128-bit SIMD instruction, 128-bit VEX-encoded 
instructions, and 256-bit VEX-encoded instruction, Table 2-13 summarizes the 
exception behavior into separate classes, with detailed exception conditions defined 
in sub-sections 2.4.1 through 2.4.8. For example, ADDPS contains the entry:
“See Exceptions Type 2”
In this entry, “Type2” can be looked up in Table 2-13. 
The instruction’s corresponding CPUID feature flag can be identified in the fourth 
column of the Instruction summary table. 
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Note: #UD on CPUID feature flags=0 is not guaranteed in a virtualized environment 
if the hardware supports the feature flag.

NOTE
Instructions that operate only with MMX, X87, or general-purpose 
registers are not covered by the exception classes defined in this 
section. For instructions that operate on MMX registers, see Section 
22.25.3, “Exception Conditions of Legacy SIMD Instructions 
Operating on MMX Registers” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3B.

Table 2-13.  Exception class description

See Table 2-14 for lists of instructions in each exception class.

Exception Class Instruction set Mem arg
Floating-Point 

Exceptions 
(#XM)

Type 1
AVX,

Legacy SSE
16/32 byte 

explicitly aligned
none

Type 2
AVX,

Legacy SSE
16/32 byte not 
explicitly aligned

yes

Type 3
AVX,

Legacy SSE
< 16 byte yes

Type 4
AVX,

Legacy SSE
16/32 byte not 
explicitly aligned

no

Type 5
AVX, 

Legacy SSE
< 16 byte no

Type 6
AVX (no Legacy 

SSE)
Varies

(At present, 
none do)

Type 7
AVX, 

Legacy SSE
none none

Type 8 AVX none none
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Table 2-14.  Instructions in each Exception Class
Exception Class Instruction

Type 1
(V)MOVAPD, (V)MOVAPS, (V)MOVDQA, (V)MOVNTDQ, (V)MOVNTDQA, 
(V)MOVNTPD, (V)MOVNTPS

Type 2

(V)ADDPD, (V)ADDPS, (V)ADDSUBPD, (V)ADDSUBPS, (V)CMPPD, (V)CMPPS, 
(V)CVTDQ2PS, (V)CVTPD2DQ, (V)CVTPD2PS, (V)CVTPS2DQ, (V)CVTTPD2DQ, 
(V)CVTTPS2DQ, (V)DIVPD, (V)DIVPS, (V)DPPD*, (V)DPPS*, (V)HADDPD, 
(V)HADDPS, (V)HSUBPD, (V)HSUBPS, (V)MAXPD, (V)MAXPS, (V)MINPD, 
(V)MINPS, (V)MULPD, (V)MULPS, (V)ROUNDPD, (V)ROUNDPS, (V)SQRTPD, 
(V)SQRTPS, (V)SUBPD, (V)SUBPS

Type 3

(V)ADDSD, (V)ADDSS, (V)CMPSD, (V)CMPSS, (V)COMISD, (V)COMISS, 
(V)CVTPS2PD, (V)CVTSD2SI, (V)CVTSD2SS, (V)CVTSI2SD, (V)CVTSI2SS, 
(V)CVTSS2SD, (V)CVTSS2SI, (V)CVTTSD2SI, (V)CVTTSS2SI, (V)DIVSD, 
(V)DIVSS, (V)MAXSD, (V)MAXSS, (V)MINSD, (V)MINSS, (V)MULSD, (V)MULSS, 
(V)ROUNDSD, (V)ROUNDSS, (V)SQRTSD, (V)SQRTSS, (V)SUBSD, (V)SUBSS, 
(V)UCOMISD, (V)UCOMISS

Type 4

(V)AESDEC, (V)AESDECLAST, (V)AESENC, (V)AESENCLAST, (V)AESIMC, 
(V)AESKEYGENASSIST, (V)ANDPD, (V)ANDPS, (V)ANDNPD, (V)ANDNPS, 
(V)BLENDPD, (V)BLENDPS, VBLENDVPD, VBLENDVPS, (V)LDDQU, 
(V)MASKMOVDQU, (V)PTEST, VTESTPS, VTESTPD, (V)MOVDQU*, 
(V)MOVSHDUP, (V)MOVSLDUP, (V)MOVUPD*, (V)MOVUPS*, (V)MPSADBW, 
(V)ORPD, (V)ORPS, (V)PABSB, (V)PABSW, (V)PABSD, (V)PACKSSWB, 
(V)PACKSSDW, (V)PACKUSWB, (V)PACKUSDW, (V)PADDB, (V)PADDW, 
(V)PADDD, (V)PADDQ, (V)PADDSB, (V)PADDSW, (V)PADDUSB, (V)PADDUSW, 
(V)PALIGNR, (V)PAND, (V)PANDN, (V)PAVGB, (V)PAVGW, (V)PBLENDVB, 
(V)PBLENDW, (V)PCMP(E/I)STRI/M, (V)PCMPEQB, (V)PCMPEQW, (V)PCMPEQD, 
(V)PCMPEQQ, (V)PCMPGTB, (V)PCMPGTW, (V)PCMPGTD, (V)PCMPGTQ, 
(V)PCLMULQDQ, (V)PHADDW, (V)PHADDD, (V)PHADDSW, (V)PHMINPOSUW, 
(V)PHSUBD, (V)PHSUBW, (V)PHSUBSW, (V)PMADDWD, (V)PMADDUBSW, 

(V)PMAXSB, (V)PMAXSW, (V)PMAXSD, (V)PMAXUB, (V)PMAXUW, 
(V)PMAXUD, (V)PMINSB, (V)PMINSW, (V)PMINSD, (V)PMINUB, (V)PMINUW, 
(V)PMINUD, (V)PMULHUW, (V)PMULHRSW, (V)PMULHW, (V)PMULLW, 
(V)PMULLD, (V)PMULUDQ, (V)PMULDQ, (V)POR, (V)PSADBW, (V)PSHUFB, 
(V)PSHUFD, (V)PSHUFHW, (V)PSHUFLW, (V)PSIGNB, (V)PSIGNW, (V)PSIGND, 
(V)PSLLW, (V)PSLLD, (V)PSLLQ, (V)PSRAW, (V)PSRAD, (V)PSRLW, (V)PSRLD, 
(V)PSRLQ, (V)PSUBB, (V)PSUBW, (V)PSUBD, (V)PSUBQ, (V)PSUBSB, 
(V)PSUBSW, (V)PUNPCKHBW, (V)PUNPCKHWD, (V)PUNPCKHDQ, 
(V)PUNPCKHQDQ, (V)PUNPCKLBW, (V)PUNPCKLWD, (V)PUNPCKLDQ, 
(V)PUNPCKLQDQ, (V)PXOR, (V)RCPPS, (V)RSQRTPS, (V)SHUFPD, (V)SHUFPS, 
(V)UNPCKHPD, (V)UNPCKHPS, (V)UNPCKLPD, (V)UNPCKLPS, (V)XORPD, 
(V)XORPS
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(*) - Additional exception restrictions are present - see the Instruction description
for details

(**) - Instruction behavior on alignment check reporting with mask bits of less than
all 1s are the same as with mask bits of all 1s, i.e. no alignment checks are per-
formed.

Table 2-14 classifies exception behaviors for AVX instructions. Within each class of 
exception conditions that are listed in Table 2-17 through Table 2-24, certain subsets 
of AVX instructions may be subject to #UD exception depending on the encoded 
value of the VEX.L field. Table 2-16 provides supplemental information of AVX 
instructions that may be subject to #UD exception if encoded with incorrect values in 
the VEX.W or VEX.L field.

Table 2-15.  #UD Exception and VEX.W=1 Encoding

Type 5

(V)CVTDQ2PD, (V)EXTRACTPS, (V)INSERTPS, (V)MOVD, (V)MOVQ, 
(V)MOVDDUP, (V)MOVLPD, (V)MOVLPS, (V)MOVHPD, (V)MOVHPS, (V)MOVSD, 
(V)MOVSS, (V)PEXTRB, (V)PEXTRD, (V)PEXTRW, (V)PEXTRQ, (V)PINSRB, 
(V)PINSRD, (V)PINSRW, (V)PINSRQ, (V)RCPSS, (V)RSQRTSS, (V)PMOVSX/ZX, 
VLDMXCSR*, VSTMXCSR

Type 6
VEXTRACTF128, VPERMILPD, VPERMILPS, VPERM2F128, VBROADCASTSS, 
VBROADCASTSD, VBROADCASTF128, VINSERTF128, VMASKMOVPS**, 
VMASKMOVPD**

Type 7
(V)MOVLHPS, (V)MOVHLPS, (V)MOVMSKPD, (V)MOVMSKPS, (V)PMOVMSKB, 
(V)PSLLDQ, (V)PSRLDQ, (V)PSLLW, (V)PSLLD, (V)PSLLQ, (V)PSRAW, 
(V)PSRAD, (V)PSRLW, (V)PSRLD, (V)PSRLQ

Type 8 VZEROALL, VZEROUPPER

Exception Class #UD If VEX.W = 1 in all modes
#UD If VEX.W = 1 in 
non-64-bit modes

Type 1

Type 2

Type 3

Type 4
VBLENDVPD, VBLENDVPS, VPBLENDVB, 
VTESTPD, VTESTPS

Type 5 VPEXTRQ, VPINSRQ,

Type 6

VEXTRACTF128, VPERMILPD, VPERMILPS, 
VPERM2F128, VBROADCASTSS, VBROADCASTSD, 
VBROADCASTF128, VINSERTF128, 
VMASKMOVPS, VMASKMOVPD

Type 7

Type 8

Exception Class Instruction
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Table 2-16.  #UD Exception and VEX.L Field Encoding
Exception Class #UD If VEX.L = 0 #UD If VEX.L = 1

Type 1 VMOVNTDQA

Type 2
VDPPD

Type 3

Type 4

VMASKMOVDQU, VMPSADBW, VPABSB/W/D, 
VPACKSSWB/DW, VPACKUSWB/DW, 
VPADDB/W/D, VPADDQ, VPADDSB/W, 
VPADDUSB/W, VPALIGNR, VPAND, VPANDN, 
VPAVGB/W, VPBLENDVB, VPBLENDW, 
VPCMP(E/I)STRI/M, VPCMPEQB/W/D/Q, 
VPCMPGTB/W/D/Q, VPHADDW/D, VPHADDSW, 
VPHMINPOSUW, VPHSUBD/W, VPHSUBSW, 
VPMADDWD, VPMADDUBSW, VPMAXSB/W/D, 
VPMAXUB/W/D, VPMINSB/W/D, VPMINUB/W/D, 
VPMULHUW, VPMULHRSW, VPMULHW/LW, 
VPMULLD, VPMULUDQ, VPMULDQ, VPOR, 
VPSADBW, VPSHUFB/D, VPSHUFHW/LW, 
VPSIGNB/W/D, VPSLLW/D/Q, VPSRAW/D, 
VPSRLW/D/Q, VPSUBB/W/D/Q, VPSUBSB/W, 
VPUNPCKHBW/WD/DQ, VPUNPCKHQDQ, 
VPUNPCKLBW/WD/DQ, VPUNPCKLQDQ, VPXOR

Type 5

VEXTRACTPS, VINSERTPS, VMOVD, VMOVQ, 
VMOVLPD, VMOVLPS, VMOVHPD, VMOVHPS, 
VPEXTRB, VPEXTRD, VPEXTRW, VPEXTRQ, 
VPINSRB, VPINSRD, VPINSRW, VPINSRQ, 
VPMOVSX/ZX, VLDMXCSR, VSTMXCSR

Type 6

VEXTRACTF128, 
VPERM2F128, 
VBROADCASTSD, 
VBROADCASTF128, 
VINSERTF128, 

Type 7
VMOVLHPS, VMOVHLPS, VPMOVMSKB, 
VPSLLDQ, VPSRLDQ, VPSLLW, VPSLLD, VPSLLQ, 
VPSRAW, VPSRAD, VPSRLW, VPSRLD, VPSRLQ

Type 8
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2.4.1 Exceptions Type 1 (Aligned memory reference) 

Table 2-17.  Type 1 Class Exception Conditions
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Cause of Exception

Invalid Opcode, 
#UD

X X VEX prefix.

X X
VEX prefix:
If XCR0[2:1] != ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X
Legacy SSE instruction:
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H).

X X
If any REX, F2, F3, or 66 prefixes precede a VEX 
prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Avail-
able, #NM

X X X X If CR0.TS[bit 3]=1.

Stack, SS(0)
X For an illegal address in the SS segment.

X
If a memory address referencing the SS segment 
is in a non-canonical form.

General Protec-
tion, #GP(0)

X X

VEX.256: Memory operand is not 32-byte 
aligned.
VEX.128: Memory operand is not 16-byte 
aligned.

X X X X
Legacy SSE: Memory operand is not 16-byte 
aligned.

X
For an illegal memory operand effective address 
in the CS, DS, ES, FS or GS segments.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effec-
tive address space from 0 to FFFFH.

Page Fault 
#PF(fault-code)

X X X For a page fault.
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2.4.2 Exceptions Type 2 (>=16 Byte Memory Reference, 
Unaligned) 

Table 2-18.  Type 2 Class Exception Conditions

Exception
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Cause of Exception

Invalid Opcode, 
#UD

X X VEX prefix.

X X X X
If an unmasked SIMD floating-point exception and 
CR4.OSXMMEXCPT[bit 10] = 0. 

X X
VEX prefix:
If XCR0[2:1] != ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X
Legacy SSE instruction:
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H).

X X
If any REX, F2, F3, or 66 prefixes precede a VEX 
prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Avail-
able, #NM

X X X X If CR0.TS[bit 3]=1.

Stack, SS(0)
X For an illegal address in the SS segment.

X
If a memory address referencing the SS segment is 
in a non-canonical form.

General Protec-
tion, #GP(0)

X X X X
Legacy SSE: Memory operand is not 16-byte 
aligned.

X
For an illegal memory operand effective address in 
the CS, DS, ES, FS or GS segments.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effective 
address space from 0 to FFFFH.

Page Fault 
#PF(fault-code)

X X X For a page fault.

SIMD Floating-
point Exception, 
#XM

X X X X
If an unmasked SIMD floating-point exception and 
CR4.OSXMMEXCPT[bit 10] = 1.
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2.4.3 Exceptions Type 3 (<16 Byte memory argument) 

Table 2-19.  Type 3 Class Exception Conditions
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Cause of Exception

Invalid Opcode, #UD

X X VEX prefix.

X X X X
If an unmasked SIMD floating-point exception 
and CR4.OSXMMEXCPT[bit 10] = 0. 

X X
VEX prefix:
If XCR0[2:1] != ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X
Legacy SSE instruction:
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H).

X X
If any REX, F2, F3, or 66 prefixes precede a 
VEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available, 
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, SS(0)
X For an illegal address in the SS segment.

X
If a memory address referencing the SS seg-
ment is in a non-canonical form.

General Protection, 
#GP(0)

X
For an illegal memory operand effective 
address in the CS, DS, ES, FS or GS segments.

X
If the memory address is in a non-canonical 
form.

X X
If any part of the operand lies outside the 
effective address space from 0 to FFFFH.

Page Fault 
#PF(fault-code)

X X X For a page fault.

Alignment Check 
#AC(0)

X X X
If alignment checking is enabled and an 
unaligned memory reference is made while 
the current privilege level is 3.

SIMD Floating-point 
Exception, #XM

X X X X
If an unmasked SIMD floating-point exception 
and CR4.OSXMMEXCPT[bit 10] = 1.
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2.4.4 Exceptions Type 4 (>=16 Byte mem arg no alignment, no 
floating-point exceptions)

Table 2-20.  Type 4 Class Exception Conditions
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Cause of Exception

Invalid Opcode, #UD

X X VEX prefix.

X X
VEX prefix:
If XCR0[2:1] != ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X
Legacy SSE instruction:
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H).

X X
If any REX, F2, F3, or 66 prefixes precede a 
VEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available, 
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, SS(0)
X For an illegal address in the SS segment.

X
If a memory address referencing the SS seg-
ment is in a non-canonical form.

General Protection, 
#GP(0)

X X X X
Legacy SSE: Memory operand is not 16-byte 
aligned.

X
For an illegal memory operand effective 
address in the CS, DS, ES, FS or GS segments.

X
If the memory address is in a non-canonical 
form.

X X
If any part of the operand lies outside the 
effective address space from 0 to FFFFH.

Page Fault 
#PF(fault-code)

X X X For a page fault.
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2.4.5 Exceptions Type 5 (<16 Byte mem arg and no FP exceptions)

Table 2-21.  Type 5 Class Exception Conditions
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Cause of Exception

Invalid Opcode, #UD

X X VEX prefix.

X X
VEX prefix:
If XCR0[2:1] != ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X
Legacy SSE instruction:
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H).

X X
If any REX, F2, F3, or 66 prefixes precede a 
VEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available, 
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, SS(0)
X For an illegal address in the SS segment.

X
If a memory address referencing the SS seg-
ment is in a non-canonical form.

General Protection, 
#GP(0)

X
For an illegal memory operand effective 
address in the CS, DS, ES, FS or GS segments.

X
If the memory address is in a non-canonical 
form.

X X
If any part of the operand lies outside the 
effective address space from 0 to FFFFH.

Page Fault 
#PF(fault-code)

X X X For a page fault.

Alignment Check 
#AC(0)

X X X
If alignment checking is enabled and an 
unaligned memory reference is made while 
the current privilege level is 3.
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2.4.6 Exceptions Type 6 (VEX-Encoded Instructions Without 
Legacy SSE Analogues)

Note: At present, the AVX instructions in this category do not generate floating-point 
exceptions.

Table 2-22.  Type 6 Class Exception Conditions
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Cause of Exception

Invalid Opcode, #UD

X X VEX prefix.

X X
If XCR0[2:1] != ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X If preceded by a LOCK prefix (F0H).

X X
If any REX, F2, F3, or 66 prefixes precede a 
VEX prefix.

X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available, 
#NM

X X If CR0.TS[bit 3]=1.

Stack, SS(0)
X For an illegal address in the SS segment.

X
If a memory address referencing the SS seg-
ment is in a non-canonical form.

General Protection, 
#GP(0)

X
For an illegal memory operand effective 
address in the CS, DS, ES, FS or GS segments.

X
If the memory address is in a non-canonical 
form.

Page Fault 
#PF(fault-code)

X X For a page fault.

Alignment Check 
#AC(0)

X X

For 4 or 8 byte memory references if align-
ment checking is enabled and an unaligned 
memory reference is made while the current 
privilege level is 3.
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2.4.7 Exceptions Type 7 (No FP exceptions, no memory arg)

Table 2-23.  Type 7 Class Exception Conditions

Exception
R
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Cause of Exception

Invalid Opcode, #UD

X X VEX prefix.

X X
VEX prefix:
If XCR0[2:1] != ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X
Legacy SSE instruction:
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H).

X X
If any REX, F2, F3, or 66 prefixes precede a 
VEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available, 
#NM

X X If CR0.TS[bit 3]=1.
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2.4.8 Exceptions Type 8 (AVX and no memory argument)

Table 2-24.  Type 8 Class Exception Conditions

Exception
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Cause of Exception

Invalid Opcode, #UD X X Always in Real or Virtual 80x86 mode.

X X If XCR0[2:1] != ‘11b’.
If CR4.OSXSAVE[bit 18]=0.
If CPUID.01H.ECX.AVX[bit 28]=0.
If VEX.vvvv != 1111B.

X X X X If proceeded by a LOCK prefix (F0H).

Device Not Available, 
#NM

X X If CR0.TS[bit 3]=1.
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CHAPTER 3
INSTRUCTION SET REFERENCE, A-L

This chapter describes the instruction set for the Intel 64 and IA-32 architectures 
(A-L) in IA-32e, protected, virtual-8086, and real-address modes of operation. The 
set includes general-purpose, x87 FPU, MMX, SSE/SSE2/SSE3/SSSE3/SSE4, 
AESNI/PCLMULQDQ, AVX and system instructions. See also Chapter 4, “Instruction 
Set Reference, M-Z,” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 2B.

For each instruction, each operand combination is described. A description of the 
instruction and its operand, an operational description, a description of the effect of 
the instructions on flags in the EFLAGS register, and a summary of exceptions that 
can be generated are also provided.

3.1 INTERPRETING THE INSTRUCTION REFERENCE 
PAGES

This section describes the format of information contained in the instruction refer-
ence pages in this chapter. It explains notational conventions and abbreviations used 
in these sections.

3.1.1 Instruction Format
The following is an example of the format used for each instruction description in this 
chapter. The heading below introduces the example. The table below provides an 
example summary table.

CMC—Complement Carry Flag [this is an example]

Instruction Operand Encoding

Opcode Instruction Op/En 64/32-bit 
Mode

CPUID 
Feature Flag

Description

F5 CMC A V/V NP Complement carry flag.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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3.1.1.1  Opcode Column in the Instruction Summary Table (Instructions 
without VEX prefix)

The “Opcode” column in the table above shows the object code produced for each 
form of the instruction. When possible, codes are given as hexadecimal bytes in the 
same order in which they appear in memory. Definitions of entries other than hexa-
decimal bytes are as follows:
• REX.W — Indicates the use of a REX prefix that affects operand size or 

instruction semantics. The ordering of the REX prefix and other 
optional/mandatory instruction prefixes are discussed Chapter 2. Note that REX 
prefixes that promote legacy instructions to 64-bit behavior are not listed 
explicitly in the opcode column.

• /digit — A digit between 0 and 7 indicates that the ModR/M byte of the 
instruction uses only the r/m (register or memory) operand. The reg field 
contains the digit that provides an extension to the instruction's opcode.

• /r — Indicates that the ModR/M byte of the instruction contains a register 
operand and an r/m operand.

• cb, cw, cd, cp, co, ct — A 1-byte (cb), 2-byte (cw), 4-byte (cd), 6-byte (cp), 
8-byte (co) or 10-byte (ct) value following the opcode. This value is used to 
specify a code offset and possibly a new value for the code segment register.

• ib, iw, id, io — A 1-byte (ib), 2-byte (iw), 4-byte (id) or 8-byte (io) immediate 
operand to the instruction that follows the opcode, ModR/M bytes or scale-
indexing bytes. The opcode determines if the operand is a signed value. All 
words, doublewords and quadwords are given with the low-order byte first.

• +rb, +rw, +rd, +ro — A register code, from 0 through 7, added to the 
hexadecimal byte given at the left of the plus sign to form a single opcode byte. 
See Table 3-1 for the codes. The +ro columns in the table are applicable only in 
64-bit mode.

• +i — A number used in floating-point instructions when one of the operands is 
ST(i) from the FPU register stack. The number i (which can range from 0 to 7) is 
added to the hexadecimal byte given at the left of the plus sign to form a single 
opcode byte.
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Table 3-1.  Register Codes Associated With +rb, +rw, +rd, +ro

byte register word register dword register quadword register 
(64-Bit Mode only)
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AL None 0 AX None 0 EAX None 0 RAX None 0

CL None 1 CX None 1 ECX None 1 RCX None 1

DL None 2 DX None 2 EDX None 2 RDX None 2

BL None 3 BX None 3 EBX None 3 RBX None 3

AH Not 
encod
able 
(N.E.)

4 SP None 4 ESP None 4 N/A N/A N/A

CH N.E. 5 BP None 5 EBP None 5 N/A N/A N/A

DH N.E. 6 SI None 6 ESI None 6 N/A N/A N/A

BH N.E. 7 DI None 7 EDI None 7 N/A N/A N/A

SPL Yes 4 SP None 4 ESP None 4 RSP None 4

BPL Yes 5 BP None 5 EBP None 5 RBP None 5

SIL Yes 6 SI None 6 ESI None 6 RSI None 6

DIL Yes 7 DI None 7 EDI None 7 RDI None 7

Registers R8 - R15 (see below): Available in 64-Bit Mode Only
R8L Yes 0 R8W Yes 0 R8D Yes 0 R8 Yes 0

R9L Yes 1 R9W Yes 1 R9D Yes 1 R9 Yes 1

R10L Yes 2 R10W Yes 2 R10D Yes 2 R10 Yes 2

R11L Yes 3 R11W Yes 3 R11D Yes 3 R11 Yes 3

R12L Yes 4 R12W Yes 4 R12D Yes 4 R12 Yes 4

R13L Yes 5 R13W Yes 5 R13D Yes 5 R13 Yes 5

R14L Yes 6 R14W Yes 6 R14D Yes 6 R14 Yes 6

R15L Yes 7 R15W Yes 7 R15D Yes 7 R15 Yes 7
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3.1.1.2  Opcode Column in the Instruction Summary Table (Instructions 
with VEX prefix)

In the Instruction Summary Table, the Opcode column presents each instruction 
encoded using the VEX prefix in following form (including the modR/M byte if appli-
cable, the immediate byte if applicable):
VEX.[NDS].[128,256].[66,F2,F3].0F/0F3A/0F38.[W0,W1] opcode [/r] 
[/ib,/is4]
• VEX: indicates the presence of the VEX prefix is required. The VEX prefix can be 

encoded using the three-byte form (the first byte is C4H), or using the two-byte 
form (the first byte is C5H). The two-byte form of VEX only applies to those 
instructions that do not require the following fields to be encoded: 
VEX.mmmmm, VEX.W, VEX.X, VEX.B. Refer to Section 2.3 for more detail on the 
VEX prefix.
The encoding of various sub-fields of the VEX prefix is described using the
following notations:

— NDS, NDD, DDS: specifies that VEX.vvvv field is valid for the encoding of a 
register operand: 

• VEX.NDS: VEX.vvvv encodes the first source register in an instruction 
syntax where the content of source registers will be preserved.

• VEX.NDD: VEX.vvvv encodes the destination register that cannot be 
encoded by ModR/M:reg field.

• VEX.DDS: VEX.vvvv encodes the second source register in a three-
operand instruction syntax where the content of first source register will 
be overwritten by the result. 

• If none of NDS, NDD, and DDS is present, VEX.vvvv must be 1111b (i.e. 
VEX.vvvv does not encode an operand). The VEX.vvvv field can be 
encoded using either the 2-byte or 3-byte form of the VEX prefix.

— 128,256: VEX.L field can be 0 (denoted by VEX.128 or VEX.LZ) or 1 
(denoted by VEX.256). The VEX.L field can be encoded using either the 2-
byte or 3-byte form of the VEX prefix. The presence of the notation VEX.256 
or VEX.128 in the opcode column should be interpreted as follows:

• If VEX.256 is present in the opcode column: The semantics of the 
instruction must be encoded with VEX.L = 1. An attempt to encode this 
instruction with VEX.L= 0 can result in one of two situations: (a) if 
VEX.128 version is defined, the processor will behave according to the 
defined VEX.128 behavior; (b) an #UD occurs if there is no VEX.128 
version defined.

• If VEX.128 is present in the opcode column but there is no VEX.256 
version defined for the same opcode byte: Two situations apply: (a) For 
VEX-encoded, 128-bit SIMD integer instructions, software must encode 
the instruction with VEX.L = 0. The processor will treat the opcode byte 
encoded with VEX.L= 1 by causing an #UD exception; (b) For VEX-
3-4 Vol. 2A



INSTRUCTION SET REFERENCE, A-L
encoded, 128-bit packed floating-point instructions, software must 
encode the instruction with VEX.L = 0. The processor will treat the opcode 
byte encoded with VEX.L= 1 by causing an #UD exception (e.g. 
VMOVLPS).

• If VEX.LIG is present in the opcode column: The VEX.L value is ignored. 
This generally applies to VEX-encoded scalar SIMD floating-point instruc-
tions. Scalar SIMD floating-point instruction can be distinguished from 
the mnemonic of the instruction. Generally, the last two letters of the 
instruction mnemonic would be either “SS“, “SD“, or “SI“ for SIMD 
floating-point conversion instructions.

• If VEX.LZ is present in the opcode column: The VEX.L must be encoded to 
be 0B, an #UD occurs if VEX.L is not zero.

— 66,F2,F3: The presence or absence of these values map to the VEX.pp field 
encodings. If absent, this corresponds to VEX.pp=00B. If present, the corre-
sponding VEX.pp value affects the “opcode” byte in the same way as if a 
SIMD prefix (66H, F2H or F3H) does to the ensuing opcode byte. Thus a non-
zero encoding of VEX.pp may be considered as an implied 66H/F2H/F3H 
prefix. The VEX.pp field may be encoded using either the 2-byte or 3-byte 
form of the VEX prefix.

— 0F,0F3A,0F38: The presence maps to a valid encoding of the VEX.mmmmm 
field. Only three encoded values of VEX.mmmmm are defined as valid, corre-
sponding to the escape byte sequence of 0FH, 0F3AH and 0F38H. The effect 
of a valid VEX.mmmmm encoding on the ensuing opcode byte is same as if 
the corresponding escape byte sequence on the ensuing opcode byte for non-
VEX encoded instructions. Thus a valid encoding of VEX.mmmmm may be 
consider as an implies escape byte sequence of either 0FH, 0F3AH or 0F38H. 
The VEX.mmmmm field must be encoded using the 3-byte form of VEX 
prefix. 

— 0F,0F3A,0F38 and 2-byte/3-byte VEX. The presence of 0F3A and 0F38 in 
the opcode column implies that opcode can only be encoded by the three-
byte form of VEX. The presence of 0F in the opcode column does not preclude 
the opcode to be encoded by the two-byte of VEX if the semantics of the 
opcode does not require any subfield of VEX not present in the two-byte form 
of the VEX prefix.

— W0: VEX.W=0. 

— W1: VEX.W=1.

— The presence of W0/W1 in the opcode column applies to two situations: (a) it 
is treated as an extended opcode bit, (b) the instruction semantics support an 
operand size promotion to 64-bit of a general-purpose register operand or a 
32-bit memory operand. The presence of W1 in the opcode column implies 
the opcode must be encoded using the 3-byte form of the VEX prefix. The 
presence of W0 in the opcode column does not preclude the opcode to be 
encoded using the C5H form of the VEX prefix, if the semantics of the opcode 
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does not require other VEX subfields not present in the two-byte form of the 
VEX prefix. Please see Section 2.3 on the subfield definitions within VEX.

— WIG: can use C5H form (if not requiring VEX.mmmmm) or VEX.W value is 
ignored in the C4H form of VEX prefix.

— If WIG is present, the instruction may be encoded using either the two-byte 
form or the three-byte form of VEX. When encoding the instruction using the 
three-byte form of VEX, the value of VEX.W is ignored. 

• opcode: Instruction opcode.
• /is4: An 8-bit immediate byte is present containing a source register specifier in 

imm[7:4] and instruction-specific payload in imm[3:0].
• In general, the encoding o f VEX.R, VEX.X, VEX.B field are not shown explicitly in 

the opcode column. The encoding scheme of VEX.R, VEX.X, VEX.B fields must 
follow the rules defined in Section 2.3.

3.1.1.3  Instruction Column in the Opcode Summary Table
The “Instruction” column gives the syntax of the instruction statement as it would 
appear in an ASM386 program. The following is a list of the symbols used to repre-
sent operands in the instruction statements:
• rel8 — A relative address in the range from 128 bytes before the end of the 

instruction to 127 bytes after the end of the instruction.
• rel16, rel32 — A relative address within the same code segment as the 

instruction assembled. The rel16 symbol applies to instructions with an operand-
size attribute of 16 bits; the rel32 symbol applies to instructions with an 
operand-size attribute of 32 bits.

• ptr16:16, ptr16:32 — A far pointer, typically to a code segment different from 
that of the instruction. The notation 16:16 indicates that the value of the pointer 
has two parts. The value to the left of the colon is a 16-bit selector or value 
destined for the code segment register. The value to the right corresponds to the 
offset within the destination segment. The ptr16:16 symbol is used when the 
instruction's operand-size attribute is 16 bits; the ptr16:32 symbol is used when 
the operand-size attribute is 32 bits.

• r8 — One of the byte general-purpose registers: AL, CL, DL, BL, AH, CH, DH, BH, 
BPL, SPL, DIL and SIL; or one of the byte registers (R8L - R15L) available when 
using REX.R and 64-bit mode. 

• r16 — One of the word general-purpose registers: AX, CX, DX, BX, SP, BP, SI, DI; 
or one of the word registers (R8-R15) available when using REX.R and 64-bit 
mode.

• r32 — One of the doubleword general-purpose registers: EAX, ECX, EDX, EBX, 
ESP, EBP, ESI, EDI; or one of the doubleword registers (R8D - R15D) available 
when using REX.R in 64-bit mode.
3-6 Vol. 2A



INSTRUCTION SET REFERENCE, A-L
• r64 — One of the quadword general-purpose registers: RAX, RBX, RCX, RDX, 
RDI, RSI, RBP, RSP, R8–R15. These are available when using REX.R and 64-bit 
mode.

• imm8 — An immediate byte value. The imm8 symbol is a signed number 
between –128 and +127 inclusive. For instructions in which imm8 is combined 
with a word or doubleword operand, the immediate value is sign-extended to 
form a word or doubleword. The upper byte of the word is filled with the topmost 
bit of the immediate value.

• imm16 — An immediate word value used for instructions whose operand-size 
attribute is 16 bits. This is a number between –32,768 and +32,767 inclusive.

• imm32 — An immediate doubleword value used for instructions whose 
operand-size attribute is 32 bits. It allows the use of a number between 
+2,147,483,647 and –2,147,483,648 inclusive.

• imm64 — An immediate quadword value used for instructions whose 
operand-size attribute is 64 bits. The value allows the use of a number 
between +9,223,372,036,854,775,807 and –9,223,372,036,854,775,808 
inclusive.

• r/m8 — A byte operand that is either the contents of a byte general-purpose 
register (AL, CL, DL, BL, AH, CH, DH, BH, BPL, SPL, DIL and SIL) or a byte from 
memory. Byte registers R8L - R15L are available using REX.R in 64-bit mode.

• r/m16 — A word general-purpose register or memory operand used for instruc-
tions whose operand-size attribute is 16 bits. The word general-purpose registers 
are: AX, CX, DX, BX, SP, BP, SI, DI. The contents of memory are found at the 
address provided by the effective address computation. Word registers R8W - 
R15W are available using REX.R in 64-bit mode.

• r/m32 — A doubleword general-purpose register or memory operand used for 
instructions whose operand-size attribute is 32 bits. The doubleword general-
purpose registers are: EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI. The contents of 
memory are found at the address provided by the effective address computation. 
Doubleword registers R8D - R15D are available when using REX.R in 64-bit 
mode.

• r/m64 — A quadword general-purpose register or memory operand used for 
instructions whose operand-size attribute is 64 bits when using REX.W. 
Quadword general-purpose registers are: RAX, RBX, RCX, RDX, RDI, RSI, RBP, 
RSP, R8–R15; these are available only in 64-bit mode. The contents of memory 
are found at the address provided by the effective address computation.

• m — A 16-, 32- or 64-bit operand in memory.
• m8 — A byte operand in memory, usually expressed as a variable or array name, 

but pointed to by the DS:(E)SI or ES:(E)DI registers. In 64-bit mode, it is pointed 
to by the RSI or RDI registers.

• m16 — A word operand in memory, usually expressed as a variable or array 
name, but pointed to by the DS:(E)SI or ES:(E)DI registers. This nomenclature is 
used only with the string instructions.
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• m32 — A doubleword operand in memory, usually expressed as a variable or 
array name, but pointed to by the DS:(E)SI or ES:(E)DI registers. This nomen-
clature is used only with the string instructions.

• m64 — A memory quadword operand in memory. 
• m128 — A memory double quadword operand in memory. 
• m16:16, m16:32 & m16:64 — A memory operand containing a far pointer 

composed of two numbers. The number to the left of the colon corresponds to the 
pointer's segment selector. The number to the right corresponds to its offset.

• m16&32, m16&16, m32&32, m16&64 — A memory operand consisting of 
data item pairs whose sizes are indicated on the left and the right side of the 
ampersand. All memory addressing modes are allowed. The m16&16 and 
m32&32 operands are used by the BOUND instruction to provide an operand 
containing an upper and lower bounds for array indices. The m16&32 operand is 
used by LIDT and LGDT to provide a word with which to load the limit field, and a 
doubleword with which to load the base field of the corresponding GDTR and 
IDTR registers. The m16&64 operand is used by LIDT and LGDT in 64-bit mode to 
provide a word with which to load the limit field, and a quadword with which to 
load the base field of the corresponding GDTR and IDTR registers.

• moffs8, moffs16, moffs32, moffs64 — A simple memory variable (memory 
offset) of type byte, word, or doubleword used by some variants of the MOV 
instruction. The actual address is given by a simple offset relative to the segment 
base. No ModR/M byte is used in the instruction. The number shown with moffs 
indicates its size, which is determined by the address-size attribute of the 
instruction. 

• Sreg — A segment register. The segment register bit assignments are ES = 0, 
CS = 1, SS = 2, DS = 3, FS = 4, and GS = 5.

• m32fp, m64fp, m80fp — A single-precision, double-precision, and double 
extended-precision (respectively) floating-point operand in memory. These 
symbols designate floating-point values that are used as operands for x87 FPU 
floating-point instructions.

• m16int, m32int, m64int — A word, doubleword, and quadword integer 
(respectively) operand in memory. These symbols designate integers that are 
used as operands for x87 FPU integer instructions.

• ST or ST(0) — The top element of the FPU register stack.
• ST(i) — The ith element from the top of the FPU register stack (i ← 0 through 7).
• mm — An MMX register. The 64-bit MMX registers are: MM0 through MM7.
• mm/m32 — The low order 32 bits of an MMX register or a 32-bit memory 

operand. The 64-bit MMX registers are: MM0 through MM7. The contents of 
memory are found at the address provided by the effective address computation.

• mm/m64 — An MMX register or a 64-bit memory operand. The 64-bit MMX 
registers are: MM0 through MM7. The contents of memory are found at the 
address provided by the effective address computation.
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• xmm — An XMM register. The 128-bit XMM registers are: XMM0 through XMM7; 
XMM8 through XMM15 are available using REX.R in 64-bit mode.

• xmm/m32— An XMM register or a 32-bit memory operand. The 128-bit XMM 
registers are XMM0 through XMM7; XMM8 through XMM15 are available using 
REX.R in 64-bit mode. The contents of memory are found at the address provided 
by the effective address computation.

• xmm/m64 — An XMM register or a 64-bit memory operand. The 128-bit SIMD 
floating-point registers are XMM0 through XMM7; XMM8 through XMM15 are 
available using REX.R in 64-bit mode. The contents of memory are found at the 
address provided by the effective address computation.

• xmm/m128 — An XMM register or a 128-bit memory operand. The 128-bit XMM 
registers are XMM0 through XMM7; XMM8 through XMM15 are available using 
REX.R in 64-bit mode. The contents of memory are found at the address provided 
by the effective address computation.

• <XMM0>— indicates implied use of the XMM0 register.
When there is ambiguity, xmm1 indicates the first source operand using an XMM 
register and xmm2 the second source operand using an XMM register. 
Some instructions use the XMM0 register as the third source operand, indicated 
by <XMM0>. The use of the third XMM register operand is implicit in the instruc-
tion encoding and does not affect the ModR/M encoding.

• ymm — a YMM register. The 256-bit YMM registers are: YMM0 through YMM7; 
YMM8 through YMM15 are available in 64-bit mode. 

• m256 — A 32-byte operand in memory. This nomenclature is used only with AVX 
instructions.

• ymm/m256 — a YMM register or 256-bit memory operand. 
• <YMM0>— indicates use of the YMM0 register as an implicit argument.
• SRC1 — Denotes the first source operand in the instruction syntax of an 

instruction encoded with the VEX prefix and having two or more source operands.
• SRC2 — Denotes the second source operand in the instruction syntax of an 

instruction encoded with the VEX prefix and having two or more source operands.
• SRC3 — Denotes the third source operand in the instruction syntax of an 

instruction encoded with the VEX prefix and having three source operands.
• SRC — The source in a AVX single-source instruction or the source in a Legacy 

SSE instruction.
• DST — the destination in a AVX instruction. In Legacy SSE instructions can be 

either the destination, first source, or both. This field is encoded by reg_field.

3.1.1.4  Operand Encoding Column in the Instruction Summary Table
The “operand encoding” column is abbreviated as Op/En in the Instruction Summary 
table heading. Instruction operand encoding information is provided for each 
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assembly instruction syntax using a letter to cross reference to a row entry in the 
operand encoding definition table that follows the instruction summary table. The 
operand encoding table in each instruction reference page lists each instruction 
operand (according to each instruction syntax and operand ordering shown in the 
instruction column) relative to the ModRM byte, VEX.vvvv field or additional operand 
encoding placement. 

NOTES
• The letters in the Op/En column of an instruction apply ONLY to 

the encoding definition table immediately following the 
instruction summary table.

• In the encoding definition table, the letter ‘r’ within a pair of 
parenthesis denotes the content of the operand will be read by 
the processor. The letter ‘w’ within a pair of parenthesis denotes 
the content of the operand will be updated by the processor.

3.1.1.5  64/32-bit Mode Column in the Instruction Summary Table
The “64/32-bit Mode” column indicates whether the opcode sequence is supported in 
(a) 64-bit mode or (b) the Compatibility mode and other IA-32 modes that apply in 
conjunction with the CPUID feature flag associated specific instruction extensions. 

The 64-bit mode support is to the left of the ‘slash’ and has the following notation:
• V — Supported.
• I — Not supported.
• N.E. — Indicates an instruction syntax is not encodable in 64-bit mode (it may 

represent part of a sequence of valid instructions in other modes).
• N.P. — Indicates the REX prefix does not affect the legacy instruction in 64-bit 

mode.
• N.I. — Indicates the opcode is treated as a new instruction in 64-bit mode.
• N.S. — Indicates an instruction syntax that requires an address override prefix in 

64-bit mode and is not supported. Using an address override prefix in 64-bit 
mode may result in model-specific execution behavior.

The Compatibility/Legacy Mode support is to the right of the ‘slash’ and has the fol-
lowing notation:
• V — Supported.
• I — Not supported.
• N.E. — Indicates an Intel 64 instruction mnemonics/syntax that is not encodable;
the opcode sequence is not applicable as an individual instruction in compatibility
mode or IA-32 mode. The opcode may represent a valid sequence of legacy IA-32
instructions.
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3.1.1.6  CPUID Support Column in the Instruction Summary Table
The fourth column holds abbreviated CPUID feature flags (e.g. appropriate bit in
CPUID.1.ECX, CPUID.1.EDX for SSE/SSE2/SSE3/SSSE3/SSE4.1/SSE4.2/AES-
NI/PCLMULQDQ/AVX/RDRAND support) that indicate processor support for the in-
struction. If the corresponding flag is ‘0’, the instruction will #UD.

3.1.1.7  Description Column in the Instruction Summary Table
The “Description” column briefly explains forms of the instruction. 

3.1.1.8  Description Section 
Each instruction is then described by number of information sections. The “Descrip-
tion” section describes the purpose of the instructions and required operands in more 
detail.

Summary of terms that may be used in the description section:
• Legacy SSE: Refers to SSE, SSE2, SSE3, SSSE3, SSE4, AESNI, PCLMULQDQ and 

any future instruction sets referencing XMM registers and encoded without a VEX 
prefix.

• VEX.vvvv. The VEX bitfield specifying a source or destination register (in 1’s 
complement form).

• rm_field: shorthand for the ModR/M r/m field and any REX.B
• reg_field: shorthand for the ModR/M reg field and any REX.R

3.1.1.9  Operation Section
The “Operation” section contains an algorithm description (frequently written in 
pseudo-code) for the instruction. Algorithms are composed of the following 
elements:
• Comments are enclosed within the symbol pairs “(*” and “*)”. 
• Compound statements are enclosed in keywords, such as: IF, THEN, ELSE and FI 

for an if statement; DO and OD for a do statement; or CASE... OF for a case 
statement.

• A register name implies the contents of the register. A register name enclosed in 
brackets implies the contents of the location whose address is contained in that 
register. For example, ES:[DI] indicates the contents of the location whose ES 
segment relative address is in register DI. [SI] indicates the contents of the 
address contained in register SI relative to the SI register’s default segment (DS) 
or the overridden segment.

• Parentheses around the “E” in a general-purpose register name, such as (E)SI, 
indicates that the offset is read from the SI register if the address-size attribute 
is 16, from the ESI register if the address-size attribute is 32. Parentheses 
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around the “R” in a general-purpose register name, (R)SI, in the presence of a 
64-bit register definition such as (R)SI, indicates that the offset is read from the 
64-bit RSI register if the address-size attribute is 64.

• Brackets are used for memory operands where they mean that the contents of 
the memory location is a segment-relative offset. For example, [SRC] indicates 
that the content of the source operand is a segment-relative offset.

• A ← B indicates that the value of B is assigned to A.
• The symbols =, ≠, >, <, ≥, and ≤ are relational operators used to compare two 

values: meaning equal, not equal, greater or equal, less or equal, respectively. A 
relational expression such as A ← B is TRUE if the value of A is equal to B; 
otherwise it is FALSE.

• The expression “« COUNT” and “» COUNT” indicates that the destination operand 
should be shifted left or right by the number of bits indicated by the count 
operand.

The following identifiers are used in the algorithmic descriptions:
• OperandSize and AddressSize — The OperandSize identifier represents the 

operand-size attribute of the instruction, which is 16, 32 or 64-bits. The 
AddressSize identifier represents the address-size attribute, which is 16, 32 or 
64-bits. For example, the following pseudo-code indicates that the operand-size 
attribute depends on the form of the MOV instruction used.

IF Instruction ← MOVW
THEN OperandSize = 16;

ELSE
IF Instruction ← MOVD

THEN OperandSize = 32;
ELSE

IF Instruction ← MOVQ
THEN OperandSize = 64; 

FI;
FI;

FI;

See “Operand-Size and Address-Size Attributes” in Chapter 3 of the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 1, for guidelines 
on how these attributes are determined.

• StackAddrSize — Represents the stack address-size attribute associated with 
the instruction, which has a value of 16, 32 or 64-bits. See “Address-Size 
Attribute for Stack” in Chapter 6, “Procedure Calls, Interrupts, and Exceptions,” of 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.

• SRC — Represents the source operand.
• DEST — Represents the destination operand.
• VLMAX — The maximum vector register width pertaining to the instruction. This 

is not the vector-length encoding in the instruction's prefix but is instead 
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determined by the current value of XCR0. For existing processors, VLMAX is 256 
whenever XCR0.YMM[bit 2] is 1.  Future processors may defined new bits in XCR0 
whose setting may imply other values for VLMAX.

VLMAX Definition

The following functions are used in the algorithmic descriptions:
• ZeroExtend(value) — Returns a value zero-extended to the operand-size 

attribute of the instruction. For example, if the operand-size attribute is 32, zero 
extending a byte value of –10 converts the byte from F6H to a doubleword value 
of 000000F6H. If the value passed to the ZeroExtend function and the operand-
size attribute are the same size, ZeroExtend returns the value unaltered.

• SignExtend(value) — Returns a value sign-extended to the operand-size 
attribute of the instruction. For example, if the operand-size attribute is 32, sign 
extending a byte containing the value –10 converts the byte from F6H to a 
doubleword value of FFFFFFF6H. If the value passed to the SignExtend function 
and the operand-size attribute are the same size, SignExtend returns the value 
unaltered.

• SaturateSignedWordToSignedByte — Converts a signed 16-bit value to a 
signed 8-bit value. If the signed 16-bit value is less than –128, it is represented 
by the saturated value -128 (80H); if it is greater than 127, it is represented by 
the saturated value 127 (7FH).

• SaturateSignedDwordToSignedWord — Converts a signed 32-bit value to a 
signed 16-bit value. If the signed 32-bit value is less than –32768, it is 
represented by the saturated value –32768 (8000H); if it is greater than 32767, 
it is represented by the saturated value 32767 (7FFFH).

• SaturateSignedWordToUnsignedByte — Converts a signed 16-bit value to an 
unsigned 8-bit value. If the signed 16-bit value is less than zero, it is represented 
by the saturated value zero (00H); if it is greater than 255, it is represented by 
the saturated value 255 (FFH).

• SaturateToSignedByte — Represents the result of an operation as a signed 
8-bit value. If the result is less than –128, it is represented by the saturated value 
–128 (80H); if it is greater than 127, it is represented by the saturated value 127 
(7FH).

• SaturateToSignedWord — Represents the result of an operation as a signed 
16-bit value. If the result is less than –32768, it is represented by the saturated 
value –32768 (8000H); if it is greater than 32767, it is represented by the 
saturated value 32767 (7FFFH).

• SaturateToUnsignedByte — Represents the result of an operation as a signed 
8-bit value. If the result is less than zero it is represented by the saturated value 

XCR0 Component VLMAX

XCR0.YMM 256
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zero (00H); if it is greater than 255, it is represented by the saturated value 255 
(FFH).

• SaturateToUnsignedWord — Represents the result of an operation as a signed 
16-bit value. If the result is less than zero it is represented by the saturated value 
zero (00H); if it is greater than 65535, it is represented by the saturated value 
65535 (FFFFH).

• LowOrderWord(DEST * SRC) — Multiplies a word operand by a word operand 
and stores the least significant word of the doubleword result in the destination 
operand.

• HighOrderWord(DEST * SRC) — Multiplies a word operand by a word operand 
and stores the most significant word of the doubleword result in the destination 
operand.

• Push(value) — Pushes a value onto the stack. The number of bytes pushed is 
determined by the operand-size attribute of the instruction. See the “Operation” 
subsection of the “PUSH—Push Word, Doubleword or Quadword Onto the Stack” 
section in Chapter 4 of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 2B.

• Pop() removes the value from the top of the stack and returns it. The statement 
EAX ← Pop(); assigns to EAX the 32-bit value from the top of the stack. Pop will 
return either a word, a doubleword or a quadword depending on the operand-size 
attribute. See the “Operation” subsection in the “POP—Pop a Value from the 
Stack” section of Chapter 4 of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 2B.

• PopRegisterStack — Marks the FPU ST(0) register as empty and increments 
the FPU register stack pointer (TOP) by 1.

• Switch-Tasks — Performs a task switch.
• Bit(BitBase, BitOffset) — Returns the value of a bit within a bit string. The bit 

string is a sequence of bits in memory or a register. Bits are numbered from low-
order to high-order within registers and within memory bytes. If the BitBase is a 
register, the BitOffset can be in the range 0 to [15, 31, 63] depending on the 
mode and register size. See Figure 3-1: the function Bit[RAX, 21] is illustrated.

Figure 3-1.  Bit Offset for BIT[RAX, 21]

02131

Bit Offset ← 21

63
3-14 Vol. 2A



INSTRUCTION SET REFERENCE, A-L
If BitBase is a memory address, the BitOffset can range has different ranges 
depending on the operand size (see Table 3-2). 

The addressed bit is numbered (Offset MOD 8) within the byte at address 
(BitBase + (BitOffset DIV 8)) where DIV is signed division with rounding towards 
negative infinity and MOD returns a positive number (see Figure 3-2).

3.1.1.10  Intel® C/C++ Compiler Intrinsics Equivalents Section
The Intel C/C++ compiler intrinsics equivalents are special C/C++ coding extensions 
that allow using the syntax of C function calls and C variables instead of hardware 
registers. Using these intrinsics frees programmers from having to manage registers 
and assembly programming. Further, the compiler optimizes the instruction sched-
uling so that executable run faster.

The following sections discuss the intrinsics API and the MMX technology and SIMD 
floating-point intrinsics. Each intrinsic equivalent is listed with the instruction 
description. There may be additional intrinsics that do not have an instruction equiv-

Table 3-2.  Range of Bit Positions Specified by Bit Offset Operands

Operand Size Immediate BitOffset Register BitOffset

16 0 to 15 − 215 to 215 − 1 

32 0 to 31 − 231 to 231 − 1 

64 0 to 63 − 263 to 263 − 1 

Figure 3-2.  Memory Bit Indexing

BitBase + 

0777 5 0 0

BitBase − 

0777 50 0

BitBase BitBase − 

BitOffset ← +13

BitOffset ← −

BitBase − BitBase
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alent. It is strongly recommended that the reader reference the compiler documen-
tation for the complete list of supported intrinsics. 

See Appendix C, “Intel® C/C++ Compiler Intrinsics and Functional Equivalents,” in 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2C, for 
more information on using intrinsics.

Intrinsics API

The benefit of coding with MMX technology intrinsics and the SSE/SSE2/SSE3 intrin-
sics is that you can use the syntax of C function calls and C variables instead of hard-
ware registers. This frees you from managing registers and programming assembly. 
Further, the compiler optimizes the instruction scheduling so that your executable 
runs faster. For each computational and data manipulation instruction in the new 
instruction set, there is a corresponding C intrinsic that implements it directly. The 
intrinsics allow you to specify the underlying implementation (instruction selection) 
of an algorithm yet leave instruction scheduling and register allocation to the 
compiler.

MMX™ Technology Intrinsics

The MMX technology intrinsics are based on a __m64 data type that represents the 
specific contents of an MMX technology register. You can specify values in bytes, 
short integers, 32-bit values, or a 64-bit object. The __m64 data type, however, is 
not a basic ANSI C data type, and therefore you must observe the following usage 
restrictions: 
• Use __m64 data only on the left-hand side of an assignment, as a return value, 

or as a parameter. You cannot use it with other arithmetic expressions (“+”, “>>”, 
and so on).

• Use __m64 objects in aggregates, such as unions to access the byte elements 
and structures; the address of an __m64 object may be taken.

• Use __m64 data only with the MMX technology intrinsics described in this manual 
and Intel® C/C++ compiler documentation. 

• See: 

— http://www.intel.com/support/performancetools/

— Appendix C, “Intel® C/C++ Compiler Intrinsics and Functional Equivalents,” 
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2C, for more information on using intrinsics.

— SSE/SSE2/SSE3 Intrinsics

— SSE/SSE2/SSE3 intrinsics all make use of the XMM registers of the Pentium 
III, Pentium 4, and Intel Xeon processors. There are three data types 
supported by these intrinsics: __m128, __m128d, and __m128i.
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• The __m128 data type is used to represent the contents of an XMM register used 
by an SSE intrinsic. This is either four packed single-precision floating-point 
values or a scalar single-precision floating-point value.

• The __m128d data type holds two packed double-precision floating-point values 
or a scalar double-precision floating-point value.

• The __m128i data type can hold sixteen byte, eight word, or four doubleword, or 
two quadword integer values.

The compiler aligns __m128, __m128d, and __m128i local and global data to 
16-byte boundaries on the stack. To align integer, float, or double arrays, use the 
declspec statement as described in Intel C/C++ compiler documentation. See 
http://www.intel.com/support/performancetools/.

The __m128, __m128d, and __m128i data types are not basic ANSI C data types 
and therefore some restrictions are placed on its usage:
• Use __m128, __m128d, and __m128i only on the left-hand side of an 

assignment, as a return value, or as a parameter. Do not use it in other arithmetic 
expressions such as “+” and “>>.”

• Do not initialize __m128, __m128d, and __m128i with literals; there is no way to 
express 128-bit constants.

• Use __m128, __m128d, and __m128i objects in aggregates, such as unions (for 
example, to access the float elements) and structures. The address of these 
objects may be taken.

• Use __m128, __m128d, and __m128i data only with the intrinsics described in 
this user’s guide. See Appendix C, “Intel® C/C++ Compiler Intrinsics and 
Functional Equivalents,” in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 2C, for more information on using intrinsics.

The compiler aligns __m128, __m128d, and __m128i local data to 16-byte bound-
aries on the stack. Global __m128 data is also aligned on 16-byte boundaries. (To 
align float arrays, you can use the alignment declspec described in the following 
section.) Because the new instruction set treats the SIMD floating-point registers in 
the same way whether you are using packed or scalar data, there is no __m32 data 
type to represent scalar data as you might expect. For scalar operations, you should 
use the __m128 objects and the “scalar” forms of the intrinsics; the compiler and the 
processor implement these operations with 32-bit memory references.

The suffixes ps and ss are used to denote “packed single” and “scalar single” preci-
sion operations. The packed floats are represented in right-to-left order, with the 
lowest word (right-most) being used for scalar operations: [z, y, x, w]. To explain 
how memory storage reflects this, consider the following example. 

The operation:

float a[4] ← { 1.0, 2.0, 3.0, 4.0 };
__m128 t ← _mm_load_ps(a);

Produces the same result as follows:
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__m128 t ← _mm_set_ps(4.0, 3.0, 2.0, 1.0);

In other words:

t ← [ 4.0, 3.0, 2.0, 1.0 ]

Where the “scalar” element is 1.0.

Some intrinsics are “composites” because they require more than one instruction to 
implement them. You should be familiar with the hardware features provided by the 
SSE, SSE2, SSE3, and MMX technology when writing programs with the intrinsics. 

Keep the following important issues in mind:
• Certain intrinsics, such as _mm_loadr_ps and _mm_cmpgt_ss, are not directly 

supported by the instruction set. While these intrinsics are convenient 
programming aids, be mindful of their implementation cost.

• Data loaded or stored as __m128 objects must generally be 16-byte-aligned.
• Some intrinsics require that their argument be immediates, that is, constant 

integers (literals), due to the nature of the instruction.
• The result of arithmetic operations acting on two NaN (Not a Number) arguments 

is undefined. Therefore, floating-point operations using NaN arguments may not 
match the expected behavior of the corresponding assembly instructions.

For a more detailed description of each intrinsic and additional information related to 
its usage, refer to Intel C/C++ compiler documentation. See:

— http://www.intel.com/support/performancetools/

— Appendix C, “Intel® C/C++ Compiler Intrinsics and Functional Equivalents,” 
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2C, for more information on using intrinsics.

3.1.1.11  Flags Affected Section 
The “Flags Affected” section lists the flags in the EFLAGS register that are affected by 
the instruction. When a flag is cleared, it is equal to 0; when it is set, it is equal to 1. 
The arithmetic and logical instructions usually assign values to the status flags in a 
uniform manner (see Appendix A, “EFLAGS Cross-Reference,” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 1). Non-conventional 
assignments are described in the “Operation” section. The values of flags listed as 
undefined may be changed by the instruction in an indeterminate manner. Flags 
that are not listed are unchanged by the instruction.

3.1.1.12  FPU Flags Affected Section 
The floating-point instructions have an “FPU Flags Affected” section that describes 
how each instruction can affect the four condition code flags of the FPU status word.
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3.1.1.13  Protected Mode Exceptions Section
The “Protected Mode Exceptions” section lists the exceptions that can occur when the 
instruction is executed in protected mode and the reasons for the exceptions. Each 
exception is given a mnemonic that consists of a pound sign (#) followed by two 
letters and an optional error code in parentheses. For example, #GP(0) denotes a 
general protection exception with an error code of 0. Table 3-3 associates each two-
letter mnemonic with the corresponding interrupt vector number and exception 
name. See Chapter 6, “Interrupt and Exception Handling,” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A, for a detailed description of 
the exceptions. 

Application programmers should consult the documentation provided with their oper-
ating systems to determine the actions taken when exceptions occur.

Table 3-3.  Intel 64 and IA-32 General Exceptions 

Vector 
No.

Name Source Protected 
Mode1

Real 
Address 
Mode

Virtual 
8086 
Mode

 0 #DE—Divide Error DIV and IDIV instructions. Yes Yes Yes

 1 #DB—Debug Any code or data reference. Yes Yes Yes

 3 #BP—Breakpoint INT 3 instruction. Yes Yes Yes

 4 #OF—Overflow INTO instruction. Yes Yes Yes

 5 #BR—BOUND Range 
Exceeded

BOUND instruction. Yes Yes Yes

 6 #UD—Invalid 
Opcode (Undefined 
Opcode)

UD2 instruction or reserved 
opcode.

Yes Yes Yes

 7 #NM—Device Not 
Available (No Math 
Coprocessor)

Floating-point or WAIT/FWAIT 
instruction.

Yes Yes Yes

 8 #DF—Double Fault Any instruction that can 
generate an exception, an 
NMI, or an INTR.

Yes Yes Yes

10 #TS—Invalid TSS Task switch or TSS access. Yes Reserved Yes

11 #NP—Segment Not 
Present

Loading segment registers or 
accessing system segments.

Yes Reserved Yes

12 #SS—Stack 
Segment Fault

Stack operations and SS 
register loads.

Yes Yes Yes

13 #GP—General 
Protection2

Any memory reference and 
other protection checks.

Yes Yes Yes
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3.1.1.14  Real-Address Mode Exceptions Section
The “Real-Address Mode Exceptions” section lists the exceptions that can occur when 
the instruction is executed in real-address mode (see Table 3-3).

3.1.1.15  Virtual-8086 Mode Exceptions Section
The “Virtual-8086 Mode Exceptions” section lists the exceptions that can occur when 
the instruction is executed in virtual-8086 mode (see Table 3-3).

3.1.1.16  Floating-Point Exceptions Section
The “Floating-Point Exceptions” section lists exceptions that can occur when an x87 
FPU floating-point instruction is executed. All of these exception conditions result in 
a floating-point error exception (#MF, vector number 16) being generated. Table 3-4 
associates a one- or two-letter mnemonic with the corresponding exception name. 
See “Floating-Point Exception Conditions” in Chapter 8 of the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 1, for a detailed description of 
these exceptions.

14 #PF—Page Fault Any memory reference. Yes Reserved Yes

16 #MF—Floating-Point 
Error (Math Fault)

Floating-point or WAIT/FWAIT 
instruction.

Yes Yes Yes

17 #AC—Alignment 
Check

Any data reference in 
memory.

Yes Reserved Yes

18 #MC—Machine 
Check

Model dependent machine 
check errors.

Yes Yes Yes

19 #XM—SIMD 
Floating-Point 
Numeric Error

SSE/SSE2/SSE3 floating-point 
instructions.

Yes Yes Yes

NOTES:
1. Apply to protected mode, compatibility mode, and 64-bit mode.
2. In the real-address mode, vector 13 is the segment overrun exception.

Table 3-3.  Intel 64 and IA-32 General Exceptions  (Contd.)

Vector 
No.

Name Source Protected 
Mode1

Real 
Address 
Mode

Virtual 
8086 
Mode
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3.1.1.17  SIMD Floating-Point Exceptions Section
The “SIMD Floating-Point Exceptions” section lists exceptions that can occur when an 
SSE/SSE2/SSE3 floating-point instruction is executed. All of these exception condi-
tions result in a SIMD floating-point error exception (#XM, vector number 19) being 
generated. Table 3-5 associates a one-letter mnemonic with the corresponding 
exception name. For a detailed description of these exceptions, refer to ”SSE and 
SSE2 Exceptions”, in Chapter 11 of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1.

3.1.1.18  Compatibility Mode Exceptions Section
This section lists exceptions that occur within compatibility mode.

3.1.1.19  64-Bit Mode Exceptions Section
This section lists exceptions that occur within 64-bit mode.

Table 3-4.  x87 FPU Floating-Point Exceptions

Mnemonic Name Source

#IS
#IA

Floating-point invalid operation:

- Stack overflow or underflow

- Invalid arithmetic operation

- x87 FPU stack overflow or underflow

- Invalid FPU arithmetic operation

#Z Floating-point divide-by-zero Divide-by-zero

#D Floating-point denormal operand Source operand that is a denormal number

#O Floating-point numeric overflow Overflow in result

#U Floating-point numeric underflow Underflow in result

#P Floating-point inexact result 
(precision)

Inexact result (precision)

Table 3-5.  SIMD Floating-Point Exceptions

Mnemonic Name Source

#I Floating-point invalid operation Invalid arithmetic operation or source operand

#Z Floating-point divide-by-zero Divide-by-zero

#D Floating-point denormal operand Source operand that is a denormal number

#O Floating-point numeric overflow Overflow in result

#U Floating-point numeric underflow Underflow in result

#P Floating-point inexact result Inexact result (precision)
Vol. 2A 3-21



INSTRUCTION SET REFERENCE, A-L
3.2 INSTRUCTIONS (A-L)
The remainder of this chapter provides descriptions of Intel 64 and IA-32 instructions 
(A-L). See also: Chapter 4, “Instruction Set Reference, M-Z,” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 2B.
3-22 Vol. 2A



INSTRUCTION SET REFERENCE, A-L
AAA—ASCII Adjust After Addition

Instruction Operand Encoding

Description

Adjusts the sum of two unpacked BCD values to create an unpacked BCD result. The 
AL register is the implied source and destination operand for this instruction. The AAA 
instruction is only useful when it follows an ADD instruction that adds (binary addi-
tion) two unpacked BCD values and stores a byte result in the AL register. The AAA 
instruction then adjusts the contents of the AL register to contain the correct 1-digit 
unpacked BCD result. 

If the addition produces a decimal carry, the AH register increments by 1, and the CF 
and AF flags are set. If there was no decimal carry, the CF and AF flags are cleared 
and the AH register is unchanged. In either case, bits 4 through 7 of the AL register 
are set to 0.

This instruction executes as described in compatibility mode and legacy mode. It is 
not valid in 64-bit mode.

Operation

IF 64-Bit Mode
THEN

#UD;
ELSE

IF ((AL AND 0FH) > 9) or (AF = 1)
THEN

AL ← AL + 6;
AH ← AH + 1;
AF ← 1;
CF ← 1;
AL ← AL AND 0FH;

ELSE
AF ← 0;
CF ← 0;
AL ← AL AND 0FH;

FI;

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

37 AAA NP Invalid Valid ASCII adjust AL after 
addition.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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FI;

Flags Affected

The AF and CF flags are set to 1 if the adjustment results in a decimal carry; other-
wise they are set to 0. The OF, SF, ZF, and PF flags are undefined.

Protected Mode Exceptions
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as protected mode.

Compatibility Mode Exceptions
Same exceptions as protected mode.

64-Bit Mode Exceptions
#UD If in 64-bit mode.
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AAD—ASCII Adjust AX Before Division

Instruction Operand Encoding

Description

Adjusts two unpacked BCD digits (the least-significant digit in the AL register and the 
most-significant digit in the AH register) so that a division operation performed on 
the result will yield a correct unpacked BCD value. The AAD instruction is only useful 
when it precedes a DIV instruction that divides (binary division) the adjusted value in 
the AX register by an unpacked BCD value.

The AAD instruction sets the value in the AL register to (AL + (10 * AH)), and then 
clears the AH register to 00H. The value in the AX register is then equal to the binary 
equivalent of the original unpacked two-digit (base 10) number in registers AH 
and AL.

The generalized version of this instruction allows adjustment of two unpacked digits 
of any number base (see the “Operation” section below), by setting the imm8 byte to 
the selected number base (for example, 08H for octal, 0AH for decimal, or 0CH for 
base 12 numbers). The AAD mnemonic is interpreted by all assemblers to mean 
adjust ASCII (base 10) values. To adjust values in another number base, the instruc-
tion must be hand coded in machine code (D5 imm8).

This instruction executes as described in compatibility mode and legacy mode. It is 
not valid in 64-bit mode.

Operation

IF 64-Bit Mode
THEN

#UD;
ELSE

tempAL ← AL;
tempAH ← AH;
AL ← (tempAL + (tempAH ∗ imm8)) AND FFH; 
(* imm8 is set to 0AH for the AAD mnemonic.*)

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

D5 0A AAD NP Invalid Valid ASCII adjust AX before 
division.

D5 ib (No mnemonic) NP Invalid Valid Adjust AX before division to 
number base imm8.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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AH ← 0;
FI;

The immediate value (imm8) is taken from the second byte of the instruction.

Flags Affected

The SF, ZF, and PF flags are set according to the resulting binary value in the AL 
register; the OF, AF, and CF flags are undefined.

Protected Mode Exceptions
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as protected mode.

Compatibility Mode Exceptions
Same exceptions as protected mode.

64-Bit Mode Exceptions
#UD If in 64-bit mode.
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AAM—ASCII Adjust AX After Multiply

Instruction Operand Encoding

Description

Adjusts the result of the multiplication of two unpacked BCD values to create a pair 
of unpacked (base 10) BCD values. The AX register is the implied source and desti-
nation operand for this instruction. The AAM instruction is only useful when it follows 
an MUL instruction that multiplies (binary multiplication) two unpacked BCD values 
and stores a word result in the AX register. The AAM instruction then adjusts the 
contents of the AX register to contain the correct 2-digit unpacked (base 10) BCD 
result. 

The generalized version of this instruction allows adjustment of the contents of the 
AX to create two unpacked digits of any number base (see the “Operation” section 
below). Here, the imm8 byte is set to the selected number base (for example, 08H 
for octal, 0AH for decimal, or 0CH for base 12 numbers). The AAM mnemonic is inter-
preted by all assemblers to mean adjust to ASCII (base 10) values. To adjust to 
values in another number base, the instruction must be hand coded in machine code 
(D4 imm8).

This instruction executes as described in compatibility mode and legacy mode. It is 
not valid in 64-bit mode.

Operation

IF 64-Bit Mode
THEN

#UD;
ELSE

tempAL ← AL;
AH ← tempAL / imm8; (* imm8 is set to 0AH for the AAM mnemonic *)
AL ← tempAL MOD imm8;

FI;

The immediate value (imm8) is taken from the second byte of the instruction.

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

D4 0A AAM NP Invalid Valid ASCII adjust AX after 
multiply.

D4 ib (No mnemonic) NP Invalid Valid Adjust AX after multiply to 
number base imm8.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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Flags Affected

The SF, ZF, and PF flags are set according to the resulting binary value in the AL 
register. The OF, AF, and CF flags are undefined.

Protected Mode Exceptions
#DE If an immediate value of 0 is used.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as protected mode.

Compatibility Mode Exceptions
Same exceptions as protected mode.

64-Bit Mode Exceptions
#UD If in 64-bit mode.
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AAS—ASCII Adjust AL After Subtraction

Instruction Operand Encoding

Description

Adjusts the result of the subtraction of two unpacked BCD values to create a 
unpacked BCD result. The AL register is the implied source and destination operand 
for this instruction. The AAS instruction is only useful when it follows a SUB instruc-
tion that subtracts (binary subtraction) one unpacked BCD value from another and 
stores a byte result in the AL register. The AAA instruction then adjusts the contents 
of the AL register to contain the correct 1-digit unpacked BCD result. 

If the subtraction produced a decimal carry, the AH register decrements by 1, and the 
CF and AF flags are set. If no decimal carry occurred, the CF and AF flags are cleared, 
and the AH register is unchanged. In either case, the AL register is left with its top 
four bits set to 0.

This instruction executes as described in compatibility mode and legacy mode. It is 
not valid in 64-bit mode.

Operation

IF 64-bit mode
THEN

#UD;
ELSE

IF ((AL AND 0FH) > 9) or (AF = 1)
THEN

AX ← AX – 6;
AH ← AH – 1;
AF ← 1;
CF ← 1;
AL ← AL AND 0FH;

ELSE
CF ← 0;
AF ← 0;
AL ← AL AND 0FH;

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

3F AAS NP Invalid Valid ASCII adjust AL after 
subtraction.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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FI;
FI;

Flags Affected

The AF and CF flags are set to 1 if there is a decimal borrow; otherwise, they are 
cleared to 0. The OF, SF, ZF, and PF flags are undefined.

Protected Mode Exceptions
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as protected mode.

Compatibility Mode Exceptions
Same exceptions as protected mode.

64-Bit Mode Exceptions
#UD If in 64-bit mode.
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ADC—Add with Carry
Opcode Instruction Op/ 

En
64-bit 
Mode

Compat/
Leg Mode

Description

14 ib ADC AL, imm8 I Valid Valid Add with carry imm8 to AL.

15 iw ADC AX, imm16 I Valid Valid Add with carry imm16 to 
AX.

15 id ADC EAX, imm32 I Valid Valid Add with carry imm32 to 
EAX.

REX.W + 15 id ADC RAX, imm32 I Valid N.E. Add with carry imm32 sign 
extended to 64-bits to RAX.

80 /2 ib ADC r/m8, imm8 MI Valid Valid Add with carry imm8 to 
r/m8.

REX + 80 /2 ib ADC r/m8*, imm8 MI Valid N.E. Add with carry imm8 to 
r/m8.

81 /2 iw ADC r/m16, 
imm16

MI Valid Valid Add with carry imm16 to 
r/m16.

81 /2 id ADC r/m32, 
imm32

MI Valid Valid Add with CF imm32 to 
r/m32.

REX.W + 81 /2 
id

ADC r/m64, 
imm32

MI Valid N.E. Add with CF imm32 sign 
extended to 64-bits to 
r/m64.

83 /2 ib ADC r/m16, imm8 MI Valid Valid Add with CF sign-extended 
imm8 to r/m16.

83 /2 ib ADC r/m32, imm8 MI Valid Valid Add with CF sign-extended 
imm8 into r/m32.

REX.W + 83 /2 
ib

ADC r/m64, imm8 MI Valid N.E. Add with CF sign-extended 
imm8 into r/m64.

10 /r ADC r/m8, r8 MR Valid Valid Add with carry byte register 
to r/m8.

REX + 10 /r ADC r/m8*, r8* MR Valid N.E. Add with carry byte register 
to r/m64.

11 /r ADC r/m16, r16 MR Valid Valid Add with carry r16 to 
r/m16.

11 /r ADC r/m32, r32 MR Valid Valid Add with CF r32 to r/m32.

REX.W + 11 /r ADC r/m64, r64 MR Valid N.E. Add with CF r64 to r/m64.

12 /r ADC r8, r/m8 RM Valid Valid Add with carry r/m8 to byte 
register.

REX + 12 /r ADC r8*, r/m8* RM Valid N.E. Add with carry r/m64 to 
byte register.
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Instruction Operand Encoding

Description

Adds the destination operand (first operand), the source operand (second operand), 
and the carry (CF) flag and stores the result in the destination operand. The destina-
tion operand can be a register or a memory location; the source operand can be an 
immediate, a register, or a memory location. (However, two memory operands 
cannot be used in one instruction.) The state of the CF flag represents a carry from a 
previous addition. When an immediate value is used as an operand, it is sign-
extended to the length of the destination operand format.

The ADC instruction does not distinguish between signed or unsigned operands. 
Instead, the processor evaluates the result for both data types and sets the OF and 
CF flags to indicate a carry in the signed or unsigned result, respectively. The SF flag 
indicates the sign of the signed result.

The ADC instruction is usually executed as part of a multibyte or multiword addition 
in which an ADD instruction is followed by an ADC instruction.

This instruction can be used with a LOCK prefix to allow the instruction to be 
executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix 
in the form of REX.R permits access to additional registers (R8-R15). Using a REX 
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at 
the beginning of this section for encoding data and limits.

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

13 /r ADC r16, r/m16 RM Valid Valid Add with carry r/m16 to 
r16.

13 /r ADC r32, r/m32 RM Valid Valid Add with CF r/m32 to r32.

REX.W + 13 /r ADC r64, r/m64 RM Valid N.E. Add with CF r/m64 to r64.

NOTES:
*In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is 
used: AH, BH, CH, DH.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

MR ModRM:r/m (r, w) ModRM:reg (r) NA NA

MI ModRM:r/m (r, w) imm8 NA NA

I AL/AX/EAX/RAX imm8 NA NA
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Operation

DEST ← DEST + SRC + CF;

Flags Affected

The OF, SF, ZF, AF, CF, and PF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, 
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it 
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory 

operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS 

segment limit.
#UD If the LOCK prefix is used but the destination is not a memory 

operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made.
#UD If the LOCK prefix is used but the destination is not a memory 

operand.
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Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory 

operand.
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ADD—Add
Opcode Instruction Op/ 

En
64-bit 
Mode

Compat/
Leg Mode

Description

04 ib ADD AL, imm8 I Valid Valid Add imm8 to AL.

05 iw ADD AX, imm16 I Valid Valid Add imm16 to AX.

05 id ADD EAX, imm32 I Valid Valid Add imm32 to EAX.

REX.W + 05 id ADD RAX, imm32 I Valid N.E. Add imm32 sign-extended 
to 64-bits to RAX.

80 /0 ib ADD r/m8, imm8 MI Valid Valid Add imm8 to r/m8.

REX + 80 /0 ib ADD r/m8*, imm8 MI Valid N.E. Add sign-extended imm8 to 
r/m64.

81 /0 iw ADD r/m16, 
imm16

MI Valid Valid Add imm16 to r/m16.

81 /0 id ADD r/m32, 
imm32

MI Valid Valid Add imm32 to r/m32.

REX.W + 81 /0 
id

ADD r/m64, 
imm32

MI Valid N.E. Add imm32 sign-extended 
to 64-bits to r/m64.

83 /0 ib ADD r/m16, imm8 MI Valid Valid Add sign-extended imm8 to 
r/m16.

83 /0 ib ADD r/m32, imm8 MI Valid Valid Add sign-extended imm8 to 
r/m32.

REX.W + 83 /0 
ib

ADD r/m64, imm8 MI Valid N.E. Add sign-extended imm8 to 
r/m64.

00 /r ADD r/m8, r8 MR Valid Valid Add r8 to r/m8.

REX + 00 /r ADD r/m8*, r8* MR Valid N.E. Add r8 to r/m8.

01 /r ADD r/m16, r16 MR Valid Valid Add r16 to r/m16.

01 /r ADD r/m32, r32 MR Valid Valid Add r32 to r/m32.

REX.W + 01 /r ADD r/m64, r64 MR Valid N.E. Add r64 to r/m64.

02 /r ADD r8, r/m8 RM Valid Valid Add r/m8 to r8.

REX + 02 /r ADD r8*, r/m8* RM Valid N.E. Add r/m8 to r8.

03 /r ADD r16, r/m16 RM Valid Valid Add r/m16 to r16.

03 /r ADD r32, r/m32 RM Valid Valid Add r/m32 to r32.

REX.W + 03 /r ADD r64, r/m64 RM Valid N.E. Add r/m64 to r64.

NOTES:
*In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is 
used: AH, BH, CH, DH. 
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Instruction Operand Encoding

Description

Adds the destination operand (first operand) and the source operand (second 
operand) and then stores the result in the destination operand. The destination 
operand can be a register or a memory location; the source operand can be an imme-
diate, a register, or a memory location. (However, two memory operands cannot be 
used in one instruction.) When an immediate value is used as an operand, it is sign-
extended to the length of the destination operand format.

The ADD instruction performs integer addition. It evaluates the result for both signed 
and unsigned integer operands and sets the OF and CF flags to indicate a carry (over-
flow) in the signed or unsigned result, respectively. The SF flag indicates the sign of 
the signed result.

This instruction can be used with a LOCK prefix to allow the instruction to be 
executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix 
in the form of REX.R permits access to additional registers (R8-R15). Using a REX a 
REX prefix in the form of REX.W promotes operation to 64 bits. See the summary 
chart at the beginning of this section for encoding data and limits.

Operation

DEST ← DEST + SRC;

Flags Affected

The OF, SF, ZF, AF, CF, and PF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, 
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it 
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

MR ModRM:r/m (r, w) ModRM:reg (r) NA NA

MI ModRM:r/m (r, w) imm8 NA NA

I AL/AX/EAX/RAX imm8 NA NA
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#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory 

operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS 

segment limit.
#UD If the LOCK prefix is used but the destination is not a memory 

operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made.
#UD If the LOCK prefix is used but the destination is not a memory 

operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory 

operand.
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ADDPD—Add Packed Double-Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a SIMD add of the two packed double-precision floating-point values from 
the source operand (second operand) and the destination operand (first operand), 
and stores the packed double-precision floating-point results in the destination 
operand. 

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit 
memory location. The destination is not distinct from the first source XMM register 
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
unmodified. See Chapter 11 in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1, for an overview of SIMD double-precision floating-
point operation.

VEX.128 encoded version: the first source operand is an XMM register or 128-bit 
memory location. The destination operand is an XMM register. The upper bits 
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.

VEX.256 encoded version: The first source operand is a YMM register. The second 
source operand can be a YMM register or a 256-bit memory location. The destination 
operand is a YMM register. 

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 58 /r

ADDPD xmm1, xmm2/m128

RM V/V SSE2 Add packed double-precision 
floating-point values from 
xmm2/m128 to xmm1.

VEX.NDS.128.66.0F.WIG 58 /r

VADDPD xmm1,xmm2, xmm3/m128

RVM V/V AVX Add packed double-precision 
floating-point values from 
xmm3/mem to xmm2 and 
stores result in xmm1.

VEX.NDS.256.66.0F.WIG 58 /r

VADDPD ymm1, ymm2, 
ymm3/m256

RVM V/V AVX Add packed double-precision 
floating-point values from 
ymm3/mem to ymm2 and 
stores result in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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Operation

ADDPD (128-bit Legacy SSE version)
DEST[63:0] ← DEST[63:0] + SRC[63:0];
DEST[127:64] ← DEST[127:64] + SRC[127:64];
DEST[VLMAX-1:128] (Unmodified)

VADDPD (VEX.128 encoded version)
DEST[63:0]  SRC1[63:0] + SRC2[63:0]
DEST[127:64]  SRC1[127:64] + SRC2[127:64]
DEST[VLMAX-1:128]  0

VADDPD (VEX.256 encoded version)
DEST[63:0]  SRC1[63:0] + SRC2[63:0]
DEST[127:64]  SRC1[127:64] + SRC2[127:64]
DEST[191:128]  SRC1[191:128] + SRC2[191:128]
DEST[255:192]  SRC1[255:192] + SRC2[255:192]

Intel C/C++ Compiler Intrinsic Equivalent

ADDPD:  __m128d _mm_add_pd (__m128d a, __m128d b)

VADDPD:  __m256d _mm256_add_pd (__m256d a, __m256d b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
See Exceptions Type 2.
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ADDPS—Add Packed Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a SIMD add of the four packed single-precision floating-point values from 
the source operand (second operand) and the destination operand (first operand), 
and stores the packed single-precision floating-point results in the destination 
operand. 

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit 
memory location. The destination is not distinct from the first source XMM register 
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
unmodified. See Chapter 10 in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1, for an overview of SIMD single-precision floating-
point operation.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit 
memory location. The destination operand is an XMM register. The upper bits 
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second 
source operand can be a YMM register or a 256-bit memory location. The destination 
operand is a YMM register. 

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

0F 58 /r

ADDPS xmm1, xmm2/m128

RM V/V SSE Add packed single-precision 
floating-point values from 
xmm2/m128 to xmm1 and 
stores result in xmm1.

VEX.NDS.128.0F.WIG 58 /r

VADDPS xmm1,xmm2, xmm3/m128

RVM V/V AVX Add packed single-precision 
floating-point values from 
xmm3/mem to xmm2 and 
stores result in xmm1.

VEX.NDS.256.0F.WIG 58 /r

VADDPS ymm1, ymm2, ymm3/m256

RVM V/V AVX Add packed single-precision 
floating-point values from 
ymm3/mem to ymm2 and 
stores result in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r)) NA
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Operation

ADDPS (128-bit Legacy SSE version)
DEST[31:0] ← DEST[31:0] + SRC[31:0];
DEST[63:32] ← DEST[63:32] + SRC[63:32];
DEST[95:64] ← DEST[95:64] + SRC[95:64];
DEST[127:96] ← DEST[127:96] + SRC[127:96];
DEST[VLMAX-1:128] (Unmodified)

VADDPS (VEX.128 encoded version)
DEST[31:0]  SRC1[31:0] + SRC2[31:0]
DEST[63:32]  SRC1[63:32] + SRC2[63:32]
DEST[95:64]  SRC1[95:64] + SRC2[95:64]
DEST[127:96]  SRC1[127:96] + SRC2[127:96]
DEST[VLMAX-1:128]  0

VADDPS (VEX.256 encoded version)
DEST[31:0]  SRC1[31:0] + SRC2[31:0]
DEST[63:32]  SRC1[63:32] + SRC2[63:32]
DEST[95:64]  SRC1[95:64] + SRC2[95:64]
DEST[127:96]  SRC1[127:96] + SRC2[127:96]
DEST[159:128]  SRC1[159:128] + SRC2[159:128]
DEST[191:160] SRC1[191:160] + SRC2[191:160]
DEST[223:192]  SRC1[223:192] + SRC2[223:192]
DEST[255:224]  SRC1[255:224] + SRC2[255:224]

Intel C/C++ Compiler Intrinsic Equivalent

ADDPS: __m128 _mm_add_ps(__m128 a, __m128 b)

VADDPS: __m256 _mm256_add_ps (__m256 a, __m256 b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
See Exceptions Type 2.
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ADDSD—Add Scalar Double-Precision Floating-Point Values

Instruction Operand Encoding

Description

Adds the low double-precision floating-point values from the source operand (second 
operand) and the destination operand (first operand), and stores the double-preci-
sion floating-point result in the destination operand. 

The source operand can be an XMM register or a 64-bit memory location. The desti-
nation operand is an XMM register. See Chapter 11 in the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 1, for an overview of a scalar double-
precision floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:64) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (127:64) of the XMM register destination are copied 
from corresponding bits in the first source operand. Bits (VLMAX-1:128) of the desti-
nation YMM register are zeroed. 

Operation

ADDSD (128-bit Legacy SSE version)
DEST[63:0]  DEST[63:0] + SRC[63:0]
DEST[VLMAX-1:64] (Unmodified)

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F2 0F 58 /r

ADDSD xmm1, xmm2/m64

RM V/V SSE2 Add the low double-
precision floating-point 
value from xmm2/m64 to 
xmm1.

VEX.NDS.LIG.F2.0F.WIG 58 /r

VADDSD xmm1, xmm2, xmm3/m64

RVM V/V AVX Add the low double-
precision floating-point 
value from xmm3/mem to 
xmm2 and store the result 
in xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r)) NA
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VADDSD (VEX.128 encoded version)
DEST[63:0]  SRC1[63:0] + SRC2[63:0]
DEST[127:64]  SRC1[127:64]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

ADDSD: __m128d _mm_add_sd (m128d a, m128d b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
See Exceptions Type 3.
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ADDSS—Add Scalar Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

Adds the low single-precision floating-point values from the source operand (second 
operand) and the destination operand (first operand), and stores the single-precision 
floating-point result in the destination operand. 

The source operand can be an XMM register or a 32-bit memory location. The desti-
nation operand is an XMM register. See Chapter 10 in the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 1, for an overview of a scalar single-
precision floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:32) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (127:32) of the XMM register destination are copied 
from corresponding bits in the first source operand. Bits (VLMAX-1:128) of the desti-
nation YMM register are zeroed.

Operation

ADDSS DEST, SRC (128-bit Legacy SSE version)
DEST[31:0]  DEST[31:0] + SRC[31:0];
DEST[VLMAX-1:32] (Unmodified)

VADDSS DEST, SRC1, SRC2 (VEX.128 encoded version)

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F3 0F 58 /r

ADDSS xmm1, xmm2/m32

RM V/V SSE Add the low single-precision 
floating-point value from 
xmm2/m32 to xmm1.

VEX.NDS.LIG.F3.0F.WIG 58 /r

VADDSS xmm1,xmm2, xmm3/m32

RVM V/V AVX Add the low single-precision 
floating-point value from 
xmm3/mem to xmm2 and 
store the result in xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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DEST[31:0]  SRC1[31:0] + SRC2[31:0]
DEST[127:32]  SRC1[127:32]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

ADDSS: __m128 _mm_add_ss(__m128 a, __m128 b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
See Exceptions Type 3.
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ADDSUBPD—Packed Double-FP Add/Subtract

Instruction Operand Encoding

Description

Adds odd-numbered double-precision floating-point values of the first source 
operand (second operand) with the corresponding double-precision floating-point 
values from the second source operand (third operand); stores the result in the odd-
numbered values of the destination operand (first operand). Subtracts the even-
numbered double-precision floating-point values from the second source operand 
from the corresponding double-precision floating values in the first source operand; 
stores the result into the even-numbered values of the destination operand. 

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit 
memory location. The destination is not distinct from the first source XMM register 
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
unmodified. See Figure 3-3.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit 
memory location. The destination operand is an XMM register. The upper bits 
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F D0 /r

ADDSUBPD xmm1, xmm2/m128

RM V/V SSE3 Add/subtract double-
precision floating-point 
values from xmm2/m128 to 
xmm1.

VEX.NDS.128.66.0F.WIG D0 /r

VADDSUBPD xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Add/subtract packed 
double-precision floating-
point values from 
xmm3/mem to xmm2 and 
stores result in xmm1.

VEX.NDS.256.66.0F.WIG D0 /r

VADDSUBPD ymm1, ymm2, 
ymm3/m256

RVM V/V AVX Add / subtract packed 
double-precision floating-
point values from 
ymm3/mem to ymm2 and 
stores result in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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VEX.256 encoded version: The first source operand is a YMM register. The second 
source operand can be a YMM register or a 256-bit memory location. The destination 
operand is a YMM register. 

Operation

ADDSUBPD (128-bit Legacy SSE version)
DEST[63:0]  DEST[63:0] - SRC[63:0]
DEST[127:64]  DEST[127:64] + SRC[127:64]
DEST[VLMAX-1:128] (Unmodified)

VADDSUBPD (VEX.128 encoded version)
DEST[63:0]  SRC1[63:0] - SRC2[63:0]
DEST[127:64]  SRC1[127:64] + SRC2[127:64]
DEST[VLMAX-1:128]  0

VADDSUBPD (VEX.256 encoded version)
DEST[63:0]  SRC1[63:0] - SRC2[63:0]
DEST[127:64]  SRC1[127:64] + SRC2[127:64]
DEST[191:128]  SRC1[191:128] - SRC2[191:128]
DEST[255:192]  SRC1[255:192] + SRC2[255:192]

Figure 3-3.  ADDSUBPD—Packed Double-FP Add/Subtract
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Intel C/C++ Compiler Intrinsic Equivalent

ADDSUBPD: __m128d _mm_addsub_pd(__m128d a, __m128d b)

VADDSUBPD: __m256d _mm256_addsub_pd (__m256d a, __m256d b)

Exceptions

When the source operand is a memory operand, it must be aligned on a 16-byte 
boundary or a general-protection exception (#GP) will be generated.

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
See Exceptions Type 2.
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ADDSUBPS—Packed Single-FP Add/Subtract

Instruction Operand Encoding

Description

Adds odd-numbered single-precision floating-point values of the first source operand 
(second operand) with the corresponding single-precision floating-point values from 
the second source operand (third operand); stores the result in the odd-numbered 
values of the destination operand (first operand). Subtracts the even-numbered 
single-precision floating-point values from the second source operand from the 
corresponding single-precision floating values in the first source operand; stores the 
result into the even-numbered values of the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit 
memory location. The destination is not distinct from the first source XMM register 
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
unmodified. See Figure 3-4.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit 
memory location. The destination operand is an XMM register. The upper bits 
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F2 0F D0 /r

ADDSUBPS xmm1, xmm2/m128

RM V/V SSE3 Add/subtract single-
precision floating-point 
values from xmm2/m128 to 
xmm1.

VEX.NDS.128.F2.0F.WIG D0 /r

VADDSUBPS xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Add/subtract single-
precision floating-point 
values from xmm3/mem to 
xmm2 and stores result in 
xmm1.

VEX.NDS.256.F2.0F.WIG D0 /r

VADDSUBPS ymm1, ymm2, 
ymm3/m256

RVM V/V AVX Add / subtract single-
precision floating-point 
values from ymm3/mem to 
ymm2 and stores result in 
ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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VEX.256 encoded version: The first source operand is a YMM register. The second 
source operand can be a YMM register or a 256-bit memory location. The destination 
operand is a YMM register. 

Operation

ADDSUBPS (128-bit Legacy SSE version)
DEST[31:0]  DEST[31:0] - SRC[31:0]
DEST[63:32]  DEST[63:32] + SRC[63:32]
DEST[95:64]  DEST[95:64] - SRC[95:64]
DEST[127:96]  DEST[127:96] + SRC[127:96]
DEST[VLMAX-1:128] (Unmodified)

VADDSUBPS (VEX.128 encoded version)
DEST[31:0]  SRC1[31:0] - SRC2[31:0]
DEST[63:32]  SRC1[63:32] + SRC2[63:32]
DEST[95:64]  SRC1[95:64] - SRC2[95:64]
DEST[127:96]  SRC1[127:96] + SRC2[127:96]
DEST[VLMAX-1:128]  0

VADDSUBPS (VEX.256 encoded version)
DEST[31:0]  SRC1[31:0] - SRC2[31:0]
DEST[63:32]  SRC1[63:32] + SRC2[63:32]
DEST[95:64]  SRC1[95:64] - SRC2[95:64]

Figure 3-4.  ADDSUBPS—Packed Single-FP Add/Subtract
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DEST[127:96]  SRC1[127:96] + SRC2[127:96]
DEST[159:128]  SRC1[159:128] - SRC2[159:128]
DEST[191:160] SRC1[191:160] + SRC2[191:160]
DEST[223:192]  SRC1[223:192] - SRC2[223:192]
DEST[255:224]  SRC1[255:224] + SRC2[255:224].

Intel C/C++ Compiler Intrinsic Equivalent

ADDSUBPS: __m128 _mm_addsub_ps(__m128 a, __m128 b)

VADDSUBPS: __m256 _mm256_addsub_ps (__m256 a, __m256 b)

Exceptions

When the source operand is a memory operand, the operand must be aligned on a 
16-byte boundary or a general-protection exception (#GP) will be generated.

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
See Exceptions Type 2.
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AESDEC—Perform One Round of an AES Decryption Flow

Instruction Operand Encoding

Description

This instruction performs a single round of the AES decryption flow using the Equiva-
lent Inverse Cipher, with the round key from the second source operand, operating 
on a 128-bit data (state) from the first source operand, and store the result in the 
destination operand. 
Use the AESDEC instruction for all but the last decryption round. For the last decryp-
tion round, use the AESDECCLAST instruction.
128-bit Legacy SSE version: The first source operand and the destination operand 
are the same and must be an XMM register. The second source operand can be an 
XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the corre-
sponding YMM destination register remain unchanged.
VEX.128 encoded version: The first source operand and the destination operand are 
XMM registers. The second source operand can be an XMM register or a 128-bit 
memory location. Bits (VLMAX-1:128) of the destination YMM register are zeroed.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 38 DE /r 
AESDEC xmm1, xmm2/m128

RM V/V AES Perform one round of an 
AES decryption flow, using 
the Equivalent Inverse 
Cipher, operating on a 128-
bit data (state) from xmm1 
with a 128-bit round key 
from xmm2/m128.

VEX.NDS.128.66.0F38.WIG DE /r
VAESDEC xmm1, xmm2, 
xmm3/m128

RVM V/V Both AES 
and
AVX flags

Perform one round of an 
AES decryption flow, using 
the Equivalent Inverse 
Cipher, operating on a 128-
bit data (state) from xmm2 
with a 128-bit round key 
from xmm3/m128; store 
the result in xmm1.

Op/En Operand 1 Operand2 Operand3 Operand4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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Operation

AESDEC 
STATE ← SRC1;
RoundKey ← SRC2;
STATE ← InvShiftRows( STATE );
STATE ← InvSubBytes( STATE );
STATE ← InvMixColumns( STATE );
DEST[127:0] ← STATE XOR RoundKey;
DEST[VLMAX-1:128] (Unmodified)

VAESDEC 
STATE ← SRC1;
RoundKey ← SRC2;
STATE ← InvShiftRows( STATE );
STATE ← InvSubBytes( STATE );
STATE ← InvMixColumns( STATE );
DEST[127:0] ← STATE XOR RoundKey;
DEST[VLMAX-1:128] ← 0

Intel C/C++ Compiler Intrinsic Equivalent

(V)AESDEC: __m128i _mm_aesdec (__m128i, __m128i)

SIMD Floating-Point Exceptions

None

Other Exceptions
See Exceptions Type 4.
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AESDECLAST—Perform Last Round of an AES Decryption Flow

Instruction Operand Encoding

Description

This instruction performs the last round of the AES decryption flow using the Equiva-
lent Inverse Cipher, with the round key from the second source operand, operating 
on a 128-bit data (state) from the first source operand, and store the result in the 
destination operand. 
128-bit Legacy SSE version: The first source operand and the destination operand 
are the same and must be an XMM register. The second source operand can be an 
XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the corre-
sponding YMM destination register remain unchanged.
VEX.128 encoded version: The first source operand and the destination operand are 
XMM registers. The second source operand can be an XMM register or a 128-bit 
memory location. Bits (VLMAX-1:128) of the destination YMM register are zeroed.

Operation

AESDECLAST 

Opcode Instruction Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 38 DF /r
AESDECLAST xmm1, xmm2/m128

RM V/V AES Perform the last round of an 
AES decryption flow, using 
the Equivalent Inverse 
Cipher, operating on a 128-
bit data (state) from xmm1 
with a 128-bit round key 
from xmm2/m128.

VEX.NDS.128.66.0F38.WIG DF /r
VAESDECLAST xmm1, xmm2, 
xmm3/m128

RVM V/V Both AES 
and
AVX flags

Perform the last round of an 
AES decryption flow, using 
the Equivalent Inverse 
Cipher, operating on a 128-
bit data (state) from xmm2 
with a 128-bit round key 
from xmm3/m128; store 
the result in xmm1.

Op/En Operand 1 Operand2 Operand3 Operand4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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STATE ← SRC1;
RoundKey ← SRC2;
STATE ← InvShiftRows( STATE );
STATE ← InvSubBytes( STATE );
DEST[127:0] ← STATE XOR RoundKey;
DEST[VLMAX-1:128] (Unmodified)

VAESDECLAST 
STATE ← SRC1;
RoundKey ← SRC2;
STATE ← InvShiftRows( STATE );
STATE ← InvSubBytes( STATE );
DEST[127:0] ← STATE XOR RoundKey;
DEST[VLMAX-1:128] ← 0

Intel C/C++ Compiler Intrinsic Equivalent

(V)AESDECLAST: __m128i _mm_aesdeclast (__m128i, __m128i)

SIMD Floating-Point Exceptions

None

Other Exceptions
See Exceptions Type 4.
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AESENC—Perform One Round of an AES Encryption Flow

Instruction Operand Encoding

Description

This instruction performs a single round of an AES encryption flow using a round key 
from the second source operand, operating on 128-bit data (state) from the first 
source operand, and store the result in the destination operand. 
Use the AESENC instruction for all but the last encryption rounds. For the last encryp-
tion round, use the AESENCCLAST instruction.
128-bit Legacy SSE version: The first source operand and the destination operand 
are the same and must be an XMM register. The second source operand can be an 
XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the corre-
sponding YMM destination register remain unchanged.
VEX.128 encoded version: The first source operand and the destination operand are 
XMM registers. The second source operand can be an XMM register or a 128-bit 
memory location. Bits (VLMAX-1:128) of the destination YMM register are zeroed.

Operation

AESENC 

Opcode Instruction Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 38 DC /r 
AESENC xmm1, xmm2/m128

RM V/V AES Perform one round of an 
AES encryption flow, operat-
ing on a 128-bit data (state) 
from xmm1 with a 128-bit 
round key from 
xmm2/m128.

VEX.NDS.128.66.0F38.WIG DC /r
VAESENC xmm1, xmm2, 
xmm3/m128

RVM V/V Both AES 
and
AVX flags

Perform one round of an 
AES encryption flow, operat-
ing on a 128-bit data (state) 
from xmm2 with a 128-bit 
round key from the 
xmm3/m128; store the 
result in xmm1.

Op/En Operand 1 Operand2 Operand3 Operand4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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STATE ← SRC1;
RoundKey ← SRC2;
STATE ← ShiftRows( STATE );
STATE ← SubBytes( STATE );
STATE ← MixColumns( STATE );
DEST[127:0] ← STATE XOR RoundKey;
DEST[VLMAX-1:128] (Unmodified)

VAESENC 
STATE  SRC1;
RoundKey  SRC2;
STATE  ShiftRows( STATE );
STATE  SubBytes( STATE );
STATE  MixColumns( STATE );
DEST[127:0]  STATE XOR RoundKey;
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

(V)AESENC: __m128i _mm_aesenc (__m128i, __m128i)

SIMD Floating-Point Exceptions

None

Other Exceptions
See Exceptions Type 4.
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AESENCLAST—Perform Last Round of an AES Encryption Flow

Instruction Operand Encoding

Description

This instruction performs the last round of an AES encryption flow using a round key 
from the second source operand, operating on 128-bit data (state) from the first 
source operand, and store the result in the destination operand. 
128-bit Legacy SSE version: The first source operand and the destination operand 
are the same and must be an XMM register. The second source operand can be an 
XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the corre-
sponding YMM destination register remain unchanged.
VEX.128 encoded version: The first source operand and the destination operand are 
XMM registers. The second source operand can be an XMM register or a 128-bit 
memory location. Bits (VLMAX-1:128) of the destination YMM register are zeroed.

Operation

AESENCLAST 
STATE ← SRC1;
RoundKey ← SRC2;

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 38 DD /r
AESENCLAST xmm1, xmm2/m128

RM V/V AES Perform the last round of an 
AES encryption flow, operat-
ing on a 128-bit data (state) 
from xmm1 with a 128-bit 
round key from 
xmm2/m128.

VEX.NDS.128.66.0F38.WIG DD /r
VAESENCLAST xmm1, xmm2, 
xmm3/m128

RVM V/V Both AES 
and
AVX flags

Perform the last round of an 
AES encryption flow, operat-
ing on a 128-bit data (state) 
from xmm2 with a 128 bit 
round key from 
xmm3/m128; store the 
result in xmm1.

Op/En Operand 1 Operand2 Operand3 Operand4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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STATE ← ShiftRows( STATE );
STATE ← SubBytes( STATE );
DEST[127:0] ← STATE XOR RoundKey;
DEST[VLMAX-1:128] (Unmodified)

VAESENCLAST 
STATE  SRC1;
RoundKey  SRC2;
STATE  ShiftRows( STATE );
STATE  SubBytes( STATE );
DEST[127:0]  STATE XOR RoundKey;
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

(V)AESENCLAST: __m128i _mm_aesenclast (__m128i, __m128i)

SIMD Floating-Point Exceptions

None

Other Exceptions
See Exceptions Type 4.
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AESIMC—Perform the AES InvMixColumn Transformation

Instruction Operand Encoding

Description

Perform the InvMixColumns transformation on the source operand and store the 
result in the destination operand. The destination operand is an XMM register. The 
source operand can be an XMM register or a 128-bit memory location. 
Note: the AESIMC instruction should be applied to the expanded AES round keys 
(except for the first and last round key) in order to prepare them for decryption using 
the “Equivalent Inverse Cipher” (defined in FIPS 197). 

128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed.

Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise 
instructions will #UD.

Operation

AESIMC
DEST[127:0] ← InvMixColumns( SRC );
DEST[VLMAX-1:128] (Unmodified)

VAESIMC 
DEST[127:0]  InvMixColumns( SRC );

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 38 DB /r
AESIMC xmm1, xmm2/m128

RM V/V AES Perform the InvMixColumn 
transformation on a 128-bit 
round key from 
xmm2/m128 and store the 
result in xmm1.

VEX.128.66.0F38.WIG DB /r
VAESIMC xmm1, xmm2/m128

RM V/V Both AES 
and
AVX flags

Perform the InvMixColumn 
transformation on a 128-bit 
round key from 
xmm2/m128 and store the 
result in xmm1.

Op/En Operand 1 Operand2 Operand3 Operand4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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DEST[VLMAX-1:128]  0;

Intel C/C++ Compiler Intrinsic Equivalent

(V)AESIMC: __m128i _mm_aesimc (__m128i)

SIMD Floating-Point Exceptions

None

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.vvvv != 1111B.
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AESKEYGENASSIST—AES Round Key Generation Assist

Instruction Operand Encoding

Description

Assist in expanding the AES cipher key, by computing steps towards generating a 
round key for encryption, using 128-bit data specified in the source operand and an 
8-bit round constant specified as an immediate, store the result in the destination 
operand.
The destination operand is an XMM register. The source operand can be an XMM 
register or a 128-bit memory location.

128-bit Legacy SSE version:Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed.

Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise 
instructions will #UD.

Operation

AESKEYGENASSIST

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 3A DF /r ib
AESKEYGENASSIST xmm1, 
xmm2/m128, imm8

RMI V/V AES Assist in AES round key gen-
eration using an 8 bits 
Round Constant (RCON) 
specified in the immediate 
byte, operating on 128 bits 
of data specified in 
xmm2/m128 and stores the 
result in xmm1.

VEX.128.66.0F3A.WIG DF /r ib
VAESKEYGENASSIST xmm1, 
xmm2/m128, imm8

RMI V/V Both AES 
and
AVX flags

Assist in AES round key gen-
eration using 8 bits Round 
Constant (RCON) specified in 
the immediate byte, operat-
ing on 128 bits of data spec-
ified in xmm2/m128 and 
stores the result in xmm1.

Op/En Operand 1 Operand2 Operand3 Operand4

RMI ModRM:reg (w) ModRM:r/m (r) imm8 NA
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X3[31:0] ← SRC [127: 96];
X2[31:0] ← SRC [95: 64];
X1[31:0] ← SRC [63: 32];
X0[31:0] ← SRC [31: 0];
RCON[31:0] ← ZeroExtend(Imm8[7:0]);
DEST[31:0] ← SubWord(X1);
DEST[63:32 ] ← RotWord( SubWord(X1) ) XOR RCON;
DEST[95:64] ← SubWord(X3);
DEST[127:96] ← RotWord( SubWord(X3) ) XOR RCON;
DEST[VLMAX-1:128] (Unmodified)

VAESKEYGENASSIST 
X3[31:0]  SRC [127: 96];
X2[31:0]  SRC [95: 64];
X1[31:0]  SRC [63: 32];
X0[31:0]  SRC [31: 0];
RCON[31:0]  ZeroExtend(Imm8[7:0]);
DEST[31:0]  SubWord(X1);
DEST[63:32 ]  RotWord( SubWord(X1) ) XOR RCON;
DEST[95:64]  SubWord(X3);
DEST[127:96]  RotWord( SubWord(X3) ) XOR RCON;
DEST[VLMAX-1:128]  0;

Intel C/C++ Compiler Intrinsic Equivalent

(V)AESKEYGENASSIST: __m128i _mm_aesimc (__m128i, const int)

SIMD Floating-Point Exceptions

None

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.vvvv != 1111B.
Vol. 2A 3-63AESKEYGENASSIST—AES Round Key Generation Assist



INSTRUCTION SET REFERENCE, A-L
AND—Logical AND
Opcode Instruction Op/ 

En
64-bit 
Mode

Compat/
Leg Mode

Description

24 ib AND AL, imm8 RM Valid Valid AL AND imm8.

25 iw AND AX, imm16 RM Valid Valid AX AND imm16.

25 id AND EAX, imm32 RM Valid Valid EAX AND imm32.

REX.W + 25 id AND RAX, imm32 RM Valid N.E. RAX AND imm32 sign-
extended to 64-bits.

80 /4 ib AND r/m8, imm8 MR Valid Valid r/m8 AND imm8.

REX + 80 /4 ib AND r/m8*, imm8 MR Valid N.E. r/m8 AND imm8.

81 /4 iw AND r/m16, 
imm16

MR Valid Valid r/m16 AND imm16.

81 /4 id AND r/m32, 
imm32

MR Valid Valid r/m32 AND imm32.

REX.W + 81 /4 
id

AND r/m64, 
imm32

MR Valid N.E. r/m64 AND imm32 sign 
extended to 64-bits.

83 /4 ib AND r/m16, imm8 MR Valid Valid r/m16 AND imm8 (sign-
extended).

83 /4 ib AND r/m32, imm8 MR Valid Valid r/m32 AND imm8 (sign-
extended).

REX.W + 83 /4 
ib

AND r/m64, imm8 MR Valid N.E. r/m64 AND imm8 (sign-
extended).

20 /r AND r/m8, r8 MI Valid Valid r/m8 AND r8.

REX + 20 /r AND r/m8*, r8* MI Valid N.E. r/m64 AND r8 (sign-
extended).

21 /r AND r/m16, r16 MI Valid Valid r/m16 AND r16.

21 /r AND r/m32, r32 MI Valid Valid r/m32 AND r32.

REX.W + 21 /r AND r/m64, r64 MI Valid N.E. r/m64 AND r32.

22 /r AND r8, r/m8 I Valid Valid r8 AND r/m8.

REX + 22 /r AND r8*, r/m8* I Valid N.E. r/m64 AND r8 (sign-
extended).

23 /r AND r16, r/m16 I Valid Valid r16 AND r/m16.

23 /r AND r32, r/m32 I Valid Valid r32 AND r/m32.

REX.W + 23 /r AND r64, r/m64 I Valid N.E. r64 AND r/m64.

NOTES:

*In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is 
used: AH, BH, CH, DH.
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Instruction Operand Encoding

Description

Performs a bitwise AND operation on the destination (first) and source (second) 
operands and stores the result in the destination operand location. The source 
operand can be an immediate, a register, or a memory location; the destination 
operand can be a register or a memory location. (However, two memory operands 
cannot be used in one instruction.) Each bit of the result is set to 1 if both corre-
sponding bits of the first and second operands are 1; otherwise, it is set to 0.

This instruction can be used with a LOCK prefix to allow the it to be executed atomi-
cally.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix 
in the form of REX.R permits access to additional registers (R8-R15). Using a REX 
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at 
the beginning of this section for encoding data and limits.

Operation

DEST ← DEST AND SRC;

Flags Affected

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the 
result. The state of the AF flag is undefined.

Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS, 
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

MR ModRM:r/m (r, w) ModRM:reg (r) NA NA

MI ModRM:r/m (r, w) imm8 NA NA

I AL/AX/EAX/RAX imm8 NA NA
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#UD If the LOCK prefix is used but the destination is not a memory 
operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS 

segment limit.
#UD If the LOCK prefix is used but the destination is not a memory 

operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made.
#UD If the LOCK prefix is used but the destination is not a memory 

operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory 

operand.
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ANDPD—Bitwise Logical AND of Packed Double-Precision Floating-
Point Values

Instruction Operand Encoding

Description

Performs a bitwise logical AND of the two packed double-precision floating-point 
values from the source operand (second operand) and the destination operand (first 
operand), and stores the result in the destination operand. 

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit 
memory location. The destination is not distinct from the first source XMM register 
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit 
memory location. The destination operand is an XMM register. The upper bits 
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 54 /r

ANDPD xmm1, xmm2/m128

RM V/V SSE2 Return the bitwise logical 
AND of packed double-
precision floating-point 
values in xmm1 and 
xmm2/m128.

VEX.NDS.128.66.0F.WIG 54 /r

VANDPD xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Return the bitwise logical 
AND of packed double-
precision floating-point 
values in xmm2 and 
xmm3/mem.

VEX.NDS.256.66.0F.WIG 54 /r

VANDPD ymm1, ymm2, 
ymm3/m256

RVM V/V AVX Return the bitwise logical 
AND of packed double-
precision floating-point 
values in ymm2 and 
ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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VEX.256 encoded version: The first source operand is a YMM register. The second 
source operand can be a YMM register or a 256-bit memory location. The destination 
operand is a YMM register. 

Operation

ANDPD (128-bit Legacy SSE version)
DEST[63:0]  DEST[63:0] BITWISE AND SRC[63:0]
DEST[127:64]  DEST[127:64] BITWISE AND SRC[127:64]
DEST[VLMAX-1:128] (Unmodified)

VANDPD (VEX.128 encoded version)
DEST[63:0]  SRC1[63:0] BITWISE AND SRC2[63:0]
DEST[127:64]  SRC1[127:64] BITWISE AND SRC2[127:64]
DEST[VLMAX-1:128]  0

VANDPD (VEX.256 encoded version)
DEST[63:0]  SRC1[63:0] BITWISE AND SRC2[63:0]
DEST[127:64]  SRC1[127:64] BITWISE AND SRC2[127:64]
DEST[191:128]  SRC1[191:128] BITWISE AND SRC2[191:128]
DEST[255:192]  SRC1[255:192] BITWISE AND SRC2[255:192]

Intel C/C++ Compiler Intrinsic Equivalent

ANDPD: __m128d _mm_and_pd(__m128d a, __m128d b)

VANDPD: __m256d _mm256_and_pd (__m256d a, __m256d b)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4.
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ANDPS—Bitwise Logical AND of Packed Single-Precision Floating-Point 
Values

Instruction Operand Encoding

Description

Performs a bitwise logical AND of the four or eight packed single-precision floating-
point values from the first source operand and the second source operand, and stores 
the result in the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit 
memory location. The destination is not distinct from the first source XMM register 
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit 
memory location. The destination operand is an XMM register. The upper bits 
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second 
source operand can be a YMM register or a 256-bit memory location. The destination 
operand is a YMM register. 

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

0F 54 /r

ANDPS xmm1, xmm2/m128

RM V/V SSE Bitwise logical AND of 
xmm2/m128 and xmm1.

VEX.NDS.128.0F.WIG 54 /r

VANDPS xmm1,xmm2, xmm3/m128

RVM V/V AVX Return the bitwise logical 
AND of packed single-
precision floating-point 
values in xmm2 and 
xmm3/mem.

VEX.NDS.256.0F.WIG 54 /r

VANDPS ymm1, ymm2, ymm3/m256

RVM V/V AVX Return the bitwise logical 
AND of packed single-
precision floating-point 
values in ymm2 and 
ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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Operation

ANDPS (128-bit Legacy SSE version)
DEST[31:0]  DEST[31:0] BITWISE AND SRC[31:0]
DEST[63:32]  DEST[63:32] BITWISE AND SRC[63:32]
DEST[95:64]  DEST[95:64] BITWISE AND SRC[95:64]
DEST[127:96]  DEST[127:96] BITWISE AND SRC[127:96]
DEST[VLMAX-1:128] (Unmodified)

VANDPS (VEX.128 encoded version)
DEST[31:0]  SRC1[31:0] BITWISE AND SRC2[31:0]
DEST[63:32]  SRC1[63:32] BITWISE AND SRC2[63:32]
DEST[95:64]  SRC1[95:64] BITWISE AND SRC2[95:64]
DEST[127:96]  SRC1[127:96] BITWISE AND SRC2[127:96]
DEST[VLMAX-1:128]  0

VANDPS (VEX.256 encoded version)
DEST[31:0]  SRC1[31:0] BITWISE AND SRC2[31:0]
DEST[63:32]  SRC1[63:32] BITWISE AND SRC2[63:32]
DEST[95:64]  SRC1[95:64] BITWISE AND SRC2[95:64]
DEST[127:96]  SRC1[127:96] BITWISE AND SRC2[127:96]
DEST[159:128]  SRC1[159:128] BITWISE AND SRC2[159:128]
DEST[191:160] SRC1[191:160] BITWISE AND SRC2[191:160]
DEST[223:192]  SRC1[223:192] BITWISE AND SRC2[223:192]
DEST[255:224]  SRC1[255:224] BITWISE AND SRC2[255:224].

Intel C/C++ Compiler Intrinsic Equivalent

ANDPS: __m128 _mm_and_ps(__m128 a, __m128 b)

VANDPS: __m256 _mm256_and_ps (__m256 a, __m256 b)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4.
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ANDNPD—Bitwise Logical AND NOT of Packed Double-Precision 
Floating-Point Values

Instruction Operand Encoding

Description

Performs a bitwise logical AND NOT of the two or four packed double-precision 
floating-point values from the first source operand and the second source operand, 
and stores the result in the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit 
memory location. The destination is not distinct from the first source XMM register 
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit 
memory location. The destination operand is an XMM register. The upper bits 
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second 
source operand can be a YMM register or a 256-bit memory location. The destination 
operand is a YMM register. 

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 55 /r

ANDNPD xmm1, xmm2/m128

RM V/V SSE2 Bitwise logical AND NOT of 
xmm2/m128 and xmm1.

VEX.NDS.128.66.0F.WIG 55 /r

VANDNPD xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Return the bitwise logical 
AND NOT of packed double-
precision floating-point 
values in xmm2 and 
xmm3/mem.

VEX.NDS.256.66.0F.WIG 55/r

VANDNPD ymm1, ymm2, 
ymm3/m256

RVM V/V AVX Return the bitwise logical 
AND NOT of packed double-
precision floating-point 
values in ymm2 and 
ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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Operation

ANDNPD (128-bit Legacy SSE version)
DEST[63:0]  (NOT(DEST[63:0])) BITWISE AND SRC[63:0]
DEST[127:64]  (NOT(DEST[127:64])) BITWISE AND SRC[127:64]
DEST[VLMAX-1:128] (Unmodified)

VANDNPD (VEX.128 encoded version)
DEST[63:0]  (NOT(SRC1[63:0])) BITWISE AND SRC2[63:0]
DEST[127:64]  (NOT(SRC1[127:64])) BITWISE AND SRC2[127:64]
DEST[VLMAX-1:128]  0

VANDNPD (VEX.256 encoded version)
DEST[63:0]  (NOT(SRC1[63:0])) BITWISE AND SRC2[63:0]
DEST[127:64]  (NOT(SRC1[127:64])) BITWISE AND SRC2[127:64]
DEST[191:128]  (NOT(SRC1[191:128])) BITWISE AND SRC2[191:128]
DEST[255:192]  (NOT(SRC1[255:192])) BITWISE AND SRC2[255:192]

Intel C/C++ Compiler Intrinsic Equivalent

ANDNPD: __m128d _mm_andnot_pd(__m128d a, __m128d b)

VANDNPD: __m256d _mm256_andnot_pd (__m256d a, __m256d b)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4.
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ANDNPS—Bitwise Logical AND NOT of Packed Single-Precision 
Floating-Point Values

Instruction Operand Encoding

Description

Inverts the bits of the four packed single-precision floating-point values in the desti-
nation operand (first operand), performs a bitwise logical AND of the four packed 
single-precision floating-point values in the source operand (second operand) and 
the temporary inverted result, and stores the result in the destination operand. 

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit 
memory location. The destination is not distinct from the first source XMM register 
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit 
memory location. The destination operand is an XMM register. The upper bits 
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second 
source operand can be a YMM register or a 256-bit memory location. The destination 
operand is a YMM register. 

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

0F 55 /r

ANDNPS xmm1, xmm2/m128

RM V/V SSE Bitwise logical AND NOT of 
xmm2/m128 and xmm1.

VEX.NDS.128.0F.WIG 55 /r

VANDNPS xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Return the bitwise logical 
AND NOT of packed single-
precision floating-point 
values in xmm2 and 
xmm3/mem.

VEX.NDS.256.0F.WIG 55 /r

VANDNPS ymm1, ymm2, 
ymm3/m256

RVM V/V AVX Return the bitwise logical 
AND NOT of packed single-
precision floating-point 
values in ymm2 and 
ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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Operation

ANDNPS (128-bit Legacy SSE version)
DEST[31:0]  (NOT(DEST[31:0])) BITWISE AND SRC[31:0]
DEST[63:32]  (NOT(DEST[63:32])) BITWISE AND SRC[63:32]
DEST[95:64]  (NOT(DEST[95:64])) BITWISE AND SRC[95:64]
DEST[127:96]  (NOT(DEST[127:96])) BITWISE AND SRC[127:96]
DEST[VLMAX-1:128] (Unmodified)

VANDNPS (VEX.128 encoded version)
DEST[31:0]  (NOT(SRC1[31:0])) BITWISE AND SRC2[31:0]
DEST[63:32]  (NOT(SRC1[63:32])) BITWISE AND SRC2[63:32]
DEST[95:64]  (NOT(SRC1[95:64])) BITWISE AND SRC2[95:64]
DEST[127:96]  (NOT(SRC1[127:96])) BITWISE AND SRC2[127:96]
DEST[VLMAX-1:128]  0

VANDNPS (VEX.256 encoded version)
DEST[31:0]  (NOT(SRC1[31:0])) BITWISE AND SRC2[31:0]
DEST[63:32]  (NOT(SRC1[63:32])) BITWISE AND SRC2[63:32]
DEST[95:64]  (NOT(SRC1[95:64])) BITWISE AND SRC2[95:64]
DEST[127:96]  (NOT(SRC1[127:96])) BITWISE AND SRC2[127:96]
DEST[159:128]  (NOT(SRC1[159:128])) BITWISE AND SRC2[159:128]
DEST[191:160] (NOT(SRC1[191:160])) BITWISE AND SRC2[191:160]
DEST[223:192]  (NOT(SRC1[223:192])) BITWISE AND SRC2[223:192]
DEST[255:224]  (NOT(SRC1[255:224])) BITWISE AND SRC2[255:224].

Intel C/C++ Compiler Intrinsic Equivalent

ANDNPS: __m128 _mm_andnot_ps(__m128 a, __m128 b)

VANDNPS: __m256 _mm256_andnot_ps (__m256 a, __m256 b)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4.
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ARPL—Adjust RPL Field of Segment Selector

Instruction Operand Encoding

Description

Compares the RPL fields of two segment selectors. The first operand (the destination 
operand) contains one segment selector and the second operand (source operand) 
contains the other. (The RPL field is located in bits 0 and 1 of each operand.) If the 
RPL field of the destination operand is less than the RPL field of the source operand, 
the ZF flag is set and the RPL field of the destination operand is increased to match 
that of the source operand. Otherwise, the ZF flag is cleared and no change is made 
to the destination operand. (The destination operand can be a word register or a 
memory location; the source operand must be a word register.)

The ARPL instruction is provided for use by operating-system procedures (however, it 
can also be used by applications). It is generally used to adjust the RPL of a segment 
selector that has been passed to the operating system by an application program to 
match the privilege level of the application program. Here the segment selector 
passed to the operating system is placed in the destination operand and segment 
selector for the application program’s code segment is placed in the source operand. 
(The RPL field in the source operand represents the privilege level of the application 
program.) Execution of the ARPL instruction then ensures that the RPL of the 
segment selector received by the operating system is no lower (does not have a 
higher privilege) than the privilege level of the application program (the segment 
selector for the application program’s code segment can be read from the stack 
following a procedure call).

This instruction executes as described in compatibility mode and legacy mode. It is 
not encodable in 64-bit mode. 

See “Checking Caller Access Privileges” in Chapter 3, “Protected-Mode Memory 
Management,” of the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3A, for more information about the use of this instruction.

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

63 /r ARPL r/m16, r16 NP N. E. Valid Adjust RPL of r/m16 to not 
less than RPL of r16.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP ModRM:r/m (w) ModRM:reg (r) NA NA
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Operation

IF 64-BIT MODE
THEN

See MOVSXD;
ELSE

IF DEST[RPL) < SRC[RPL)
THEN

ZF ← 1;
DEST[RPL) ← SRC[RPL);

ELSE
ZF ← 0;

FI;
FI;

Flags Affected

The ZF flag is set to 1 if the RPL field of the destination operand is less than that of 
the source operand; otherwise, it is set to 0.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, 
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it 
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD The ARPL instruction is not recognized in real-address mode.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#UD The ARPL instruction is not recognized in virtual-8086 mode.

If the LOCK prefix is used.
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Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Not applicable.
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BLENDPD — Blend Packed Double Precision Floating-Point Values

Instruction Operand Encoding

Description

Double-precision floating-point values from the second source operand (third 
operand) are conditionally merged with values from the first source operand (second 
operand) and written to the destination operand (first operand). The immediate bits 
[3:0] determine whether the corresponding double-precision floating-point value in 
the destination is copied from the second source or first source. If a bit in the mask, 
corresponding to a word, is “1", then the double-precision floating-point value in the 
second source operand is copied, else the value in the first source operand is copied.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit 
memory location. The destination is not distinct from the first source XMM register 
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
unmodified.
VEX.128 encoded version: the first source operand is an XMM register. The second 
source operand is an XMM register or 128-bit memory location. The destination 

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 3A 0D /r ib

BLENDPD xmm1, xmm2/m128, 
imm8

RMI V/V SSE4_1 Select packed DP-FP values 
from xmm1 and 
xmm2/m128 from mask 
specified in imm8 and store 
the values into xmm1.

VEX.NDS.128.66.0F3A.WIG 0D /r ib

VBLENDPD xmm1, xmm2, 
xmm3/m128, imm8

RVMI V/V AVX Select packed double-
precision floating-point 
Values from xmm2 and 
xmm3/m128 from mask in 
imm8 and store the values 
in xmm1.

VEX.NDS.256.66.0F3A.WIG 0D /r ib

VBLENDPD ymm1, ymm2, 
ymm3/m256, imm8

RVMI V/V AVX Select packed double-
precision floating-point 
Values from ymm2 and 
ymm3/m256 from mask in 
imm8 and store the values 
in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8[3:0]
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operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM 
register destination are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second 
source operand can be a YMM register or a 256-bit memory location. The destination 
operand is a YMM register. 

Operation

BLENDPD (128-bit Legacy SSE version)
IF (IMM8[0] = 0)THEN DEST[63:0]  DEST[63:0]

ELSE DEST [63:0]  SRC[63:0] FI
IF (IMM8[1] = 0) THEN DEST[127:64]  DEST[127:64]

ELSE DEST [127:64]  SRC[127:64] FI
DEST[VLMAX-1:128] (Unmodified)

VBLENDPD (VEX.128 encoded version)
IF (IMM8[0] = 0)THEN DEST[63:0]  SRC1[63:0]

ELSE DEST [63:0]  SRC2[63:0] FI
IF (IMM8[1] = 0) THEN DEST[127:64]  SRC1[127:64]

ELSE DEST [127:64]  SRC2[127:64] FI
DEST[VLMAX-1:128]  0

VBLENDPD (VEX.256 encoded version)
IF (IMM8[0] = 0)THEN DEST[63:0]  SRC1[63:0]

ELSE DEST [63:0]  SRC2[63:0] FI
IF (IMM8[1] = 0) THEN DEST[127:64]  SRC1[127:64]

ELSE DEST [127:64]  SRC2[127:64] FI
IF (IMM8[2] = 0) THEN DEST[191:128]  SRC1[191:128]

ELSE DEST [191:128]  SRC2[191:128] FI
IF (IMM8[3] = 0) THEN DEST[255:192]  SRC1[255:192]

ELSE DEST [255:192]  SRC2[255:192] FI

Intel C/C++ Compiler Intrinsic Equivalent

BLENDPD: __m128d _mm_blend_pd (__m128d v1, __m128d v2, const int mask);

VBLENDPD: __m256d _mm256_blend_pd (__m256d a, __m256d b, const int mask);

SIMD Floating-Point Exceptions

None

Other Exceptions
See Exceptions Type 4.
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BLENDPS — Blend Packed Single Precision Floating-Point Values

Instruction Operand Encoding

Description

Packed single-precision floating-point values from the second source operand (third 
operand) are conditionally merged with values from the first source operand (second 
operand) and written to the destination operand (first operand). The immediate bits 
[7:0] determine whether the corresponding single precision floating-point value in 
the destination is copied from the second source or first source. If a bit in the mask, 
corresponding to a word, is “1", then the single-precision floating-point value in the 
second source operand is copied, else the value in the first source operand is copied.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit 
memory location. The destination is not distinct from the first source XMM register 
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
unmodified.
VEX.128 encoded version: The first source operand an XMM register. The second 
source operand is an XMM register or 128-bit memory location. The destination 

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 3A 0C /r ib

BLENDPS xmm1, xmm2/m128, 
imm8

RMI V/V SSE4_1 Select packed single 
precision floating-point 
values from xmm1 and 
xmm2/m128 from mask 
specified in imm8 and store 
the values into xmm1.

VEX.NDS.128.66.0F3A.WIG 0C /r ib

VBLENDPS xmm1, xmm2, 
xmm3/m128, imm8

RVMI V/V AVX Select packed single-
precision floating-point 
values from xmm2 and 
xmm3/m128 from mask in 
imm8 and store the values 
in xmm1.

VEX.NDS.256.66.0F3A.WIG 0C /r ib

VBLENDPS ymm1, ymm2, 
ymm3/m256, imm8

RVMI V/V AVX Select packed single-
precision floating-point 
values from ymm2 and 
ymm3/m256 from mask in 
imm8 and store the values 
in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
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operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM 
register destination are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second 
source operand can be a YMM register or a 256-bit memory location. The destination 
operand is a YMM register. 

Operation

BLENDPS (128-bit Legacy SSE version)
IF (IMM8[0] = 0) THEN DEST[31:0] DEST[31:0]

ELSE DEST [31:0]  SRC[31:0] FI
IF (IMM8[1] = 0) THEN DEST[63:32]  DEST[63:32]

ELSE DEST [63:32]  SRC[63:32] FI
IF (IMM8[2] = 0) THEN DEST[95:64]  DEST[95:64]

ELSE DEST [95:64]  SRC[95:64] FI
IF (IMM8[3] = 0) THEN DEST[127:96]  DEST[127:96]

ELSE DEST [127:96]  SRC[127:96] FI
DEST[VLMAX-1:128] (Unmodified)

VBLENDPS (VEX.128 encoded version)
IF (IMM8[0] = 0) THEN DEST[31:0] SRC1[31:0]

ELSE DEST [31:0]  SRC2[31:0] FI
IF (IMM8[1] = 0) THEN DEST[63:32]  SRC1[63:32]

ELSE DEST [63:32]  SRC2[63:32] FI
IF (IMM8[2] = 0) THEN DEST[95:64]  SRC1[95:64]

ELSE DEST [95:64]  SRC2[95:64] FI
IF (IMM8[3] = 0) THEN DEST[127:96]  SRC1[127:96]

ELSE DEST [127:96]  SRC2[127:96] FI
DEST[VLMAX-1:128]  0

VBLENDPS (VEX.256 encoded version)
IF (IMM8[0] = 0) THEN DEST[31:0] SRC1[31:0]

ELSE DEST [31:0]  SRC2[31:0] FI
IF (IMM8[1] = 0) THEN DEST[63:32]  SRC1[63:32]

ELSE DEST [63:32]  SRC2[63:32] FI
IF (IMM8[2] = 0) THEN DEST[95:64]  SRC1[95:64]

ELSE DEST [95:64]  SRC2[95:64] FI
IF (IMM8[3] = 0) THEN DEST[127:96]  SRC1[127:96]

ELSE DEST [127:96]  SRC2[127:96] FI
IF (IMM8[4] = 0) THEN DEST[159:128]  SRC1[159:128]

ELSE DEST [159:128]  SRC2[159:128] FI
IF (IMM8[5] = 0) THEN DEST[191:160]  SRC1[191:160]

ELSE DEST [191:160]  SRC2[191:160] FI
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IF (IMM8[6] = 0) THEN DEST[223:192]  SRC1[223:192]
ELSE DEST [223:192]  SRC2[223:192] FI

IF (IMM8[7] = 0) THEN DEST[255:224]  SRC1[255:224]
ELSE DEST [255:224]  SRC2[255:224] FI.

Intel C/C++ Compiler Intrinsic Equivalent

BLENDPS: __m128 _mm_blend_ps (__m128 v1, __m128 v2, const int mask);

VBLENDPS: __m256 _mm256_blend_ps (__m256 a, __m256 b, const int mask);

SIMD Floating-Point Exceptions

None

Other Exceptions
See Exceptions Type 4.
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BLENDVPD — Variable Blend Packed Double Precision Floating-Point 
Values

Instruction Operand Encoding

Description

Conditionally copy each quadword data element of double-precision floating-point 
value from the second source operand and the first source operand depending on 
mask bits defined in the mask register operand. The mask bits are the most signifi-
cant bit in each quadword element of the mask register.
Each quadword element of the destination operand is copied from:
• the corresponding quadword element in the second source operand, If a mask bit 

is “1"; or
• the corresponding quadword element in the first source operand, If a mask bit is 

“0"
The register assignment of the implicit mask operand for BLENDVPD is defined to be 
the architectural register XMM0.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 38 15 /r

BLENDVPD xmm1, xmm2/m128 , 
<XMM0>

RM0 V/V SSE4_1 Select packed DP FP values 
from xmm1 and xmm2 from 
mask specified in XMM0 and 
store the values in xmm1.

VEX.NDS.128.66.0F3A.W0 4B /r /is4

VBLENDVPD xmm1, xmm2, 
xmm3/m128, xmm4

RVMR V/V AVX Conditionally copy double-
precision floating-point 
values from xmm2 or 
xmm3/m128 to xmm1, 
based on mask bits in the 
mask operand, xmm4.

VEX.NDS.256.66.0F3A.W0 4B /r /is4

VBLENDVPD ymm1, ymm2, 
ymm3/m256, ymm4

RVMR V/V AVX Conditionally copy double-
precision floating-point 
values from ymm2 or 
ymm3/m256 to ymm1, 
based on mask bits in the 
mask operand, ymm4.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM0 ModRM:reg (r, w) ModRM:r/m (r) implicit XMM0 NA

RVMR ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8[7:4]
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128-bit Legacy SSE version: The first source operand and the destination operand is 
the same. Bits (VLMAX-1:128) of the corresponding YMM destination register remain 
unchanged. The mask register operand is implicitly defined to be the architectural 
register XMM0. An attempt to execute BLENDVPD with a VEX prefix will cause #UD.
VEX.128 encoded version: The first source operand and the destination operand are 
XMM registers. The second source operand is an XMM register or 128-bit memory 
location. The mask operand is the third source register, and encoded in bits[7:4] of 
the immediate byte(imm8). The bits[3:0] of imm8 are ignored. In 32-bit mode, 
imm8[7] is ignored. The upper bits (VLMAX-1:128) of the corresponding YMM 
register (destination register) are zeroed. VEX.W must be 0, otherwise, the instruc-
tion will #UD.
VEX.256 encoded version: The first source operand and destination operand are YMM 
registers. The second source operand can be a YMM register or a 256-bit memory 
location. The mask operand is the third source register, and encoded in bits[7:4] of 
the immediate byte(imm8). The bits[3:0] of imm8 are ignored. In 32-bit mode, 
imm8[7] is ignored. VEX.W must be 0, otherwise, the instruction will #UD.
VBLENDVPD permits the mask to be any XMM or YMM register. In contrast, 
BLENDVPD treats XMM0 implicitly as the mask and do not support non-destructive 
destination operation. 

Operation

BLENDVPD (128-bit Legacy SSE version)
MASK  XMM0
IF (MASK[63] = 0) THEN DEST[63:0]  DEST[63:0]

ELSE DEST [63:0]  SRC[63:0] FI
IF (MASK[127] = 0) THEN DEST[127:64]  DEST[127:64]

ELSE DEST [127:64]  SRC[127:64] FI
DEST[VLMAX-1:128] (Unmodified)

VBLENDVPD (VEX.128 encoded version)
MASK  SRC3
IF (MASK[63] = 0) THEN DEST[63:0]  SRC1[63:0]

ELSE DEST [63:0]  SRC2[63:0] FI
IF (MASK[127] = 0) THEN DEST[127:64]  SRC1[127:64]

ELSE DEST [127:64]  SRC2[127:64] FI
DEST[VLMAX-1:128]  0

VBLENDVPD (VEX.256 encoded version)
MASK  SRC3
IF (MASK[63] = 0) THEN DEST[63:0]  SRC1[63:0]

ELSE DEST [63:0]  SRC2[63:0] FI
IF (MASK[127] = 0) THEN DEST[127:64]  SRC1[127:64]

ELSE DEST [127:64]  SRC2[127:64] FI
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IF (MASK[191] = 0) THEN DEST[191:128]  SRC1[191:128]
ELSE DEST [191:128]  SRC2[191:128] FI

IF (MASK[255] = 0) THEN DEST[255:192]  SRC1[255:192]
ELSE DEST [255:192]  SRC2[255:192] FI

Intel C/C++ Compiler Intrinsic Equivalent

BLENDVPD: __m128d _mm_blendv_pd(__m128d v1, __m128d v2, __m128d v3);

VBLENDVPD: __m128 _mm_blendv_pd (__m128d a, __m128d b, __m128d mask);

VBLENDVPD: __m256 _mm256_blendv_pd (__m256d a, __m256d b, __m256d mask);

SIMD Floating-Point Exceptions

None

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.W = 1.
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BLENDVPS — Variable Blend Packed Single Precision Floating-Point 
Values

Instruction Operand Encoding

Description

Conditionally copy each dword data element of single-precision floating-point value 
from the second source operand and the first source operand depending on mask bits 
defined in the mask register operand. The mask bits are the most significant bit in 
each dword element of the mask register.
Each quadword element of the destination operand is copied from:
• the corresponding dword element in the second source operand, If a mask bit is 

“1"; or
• the corresponding dword element in the first source operand, If a mask bit is “0"

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 38 14 /r

BLENDVPS xmm1, xmm2/m128, 
<XMM0>

RM0 V/V SSE4_1 Select packed single 
precision floating-point 
values from xmm1 and 
xmm2/m128 from mask 
specified in XMM0 and store 
the values into xmm1.

VEX.NDS.128.66.0F3A.W0 4A /r /is4

VBLENDVPS xmm1, xmm2, 
xmm3/m128, xmm4

RVMR V/V AVX Conditionally copy single-
precision floating-point 
values from xmm2 or 
xmm3/m128 to xmm1, 
based on mask bits in the 
specified mask operand, 
xmm4.

VEX.NDS.256.66.0F3A.W0 4A /r /is4

VBLENDVPS ymm1, ymm2, 
ymm3/m256, ymm4

RVMR V/V AVX Conditionally copy single-
precision floating-point 
values from ymm2 or 
ymm3/m256 to ymm1, 
based on mask bits in the 
specified mask register, 
ymm4.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM0 ModRM:reg (r, w) ModRM:r/m (r) implicit XMM0 NA

RVMR ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8[7:4]
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The register assignment of the implicit mask operand for BLENDVPS is defined to be 
the architectural register XMM0.
128-bit Legacy SSE version: The first source operand and the destination operand is 
the same. Bits (VLMAX-1:128) of the corresponding YMM destination register remain 
unchanged. The mask register operand is implicitly defined to be the architectural 
register XMM0. An attempt to execute BLENDVPS with a VEX prefix will cause #UD.
VEX.128 encoded version: The first source operand and the destination operand are 
XMM registers. The second source operand is an XMM register or 128-bit memory 
location. The mask operand is the third source register, and encoded in bits[7:4] of 
the immediate byte(imm8). The bits[3:0] of imm8 are ignored. In 32-bit mode, 
imm8[7] is ignored. The upper bits (VLMAX-1:128) of the corresponding YMM 
register (destination register) are zeroed. VEX.W must be 0, otherwise, the instruc-
tion will #UD.
VEX.256 encoded version: The first source operand and destination operand are YMM 
registers. The second source operand can be a YMM register or a 256-bit memory 
location. The mask operand is the third source register, and encoded in bits[7:4] of 
the immediate byte(imm8). The bits[3:0] of imm8 are ignored. In 32-bit mode, 
imm8[7] is ignored. VEX.W must be 0, otherwise, the instruction will #UD.
VBLENDVPS permits the mask to be any XMM or YMM register. In contrast, 
BLENDVPS treats XMM0 implicitly as the mask and do not support non-destructive 
destination operation. 

Operation

BLENDVPS (128-bit Legacy SSE version)
MASK  XMM0
IF (MASK[31] = 0) THEN DEST[31:0]  DEST[31:0]

ELSE DEST [31:0]  SRC[31:0] FI
IF (MASK[63] = 0) THEN DEST[63:32]  DEST[63:32]

ELSE DEST [63:32]  SRC[63:32] FI
IF (MASK[95] = 0) THEN DEST[95:64]  DEST[95:64]

ELSE DEST [95:64]  SRC[95:64] FI
IF (MASK[127] = 0) THEN DEST[127:96]  DEST[127:96]

ELSE DEST [127:96]  SRC[127:96] FI
DEST[VLMAX-1:128] (Unmodified)

VBLENDVPS (VEX.128 encoded version)
MASK  SRC3
IF (MASK[31] = 0) THEN DEST[31:0]  SRC1[31:0]

ELSE DEST [31:0]  SRC2[31:0] FI
IF (MASK[63] = 0) THEN DEST[63:32]  SRC1[63:32]

ELSE DEST [63:32]  SRC2[63:32] FI
IF (MASK[95] = 0) THEN DEST[95:64]  SRC1[95:64]

ELSE DEST [95:64]  SRC2[95:64] FI
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IF (MASK[127] = 0) THEN DEST[127:96]  SRC1[127:96]
ELSE DEST [127:96]  SRC2[127:96] FI

DEST[VLMAX-1:128]  0

VBLENDVPS (VEX.256 encoded version)
MASK  SRC3
IF (MASK[31] = 0) THEN DEST[31:0]  SRC1[31:0]

ELSE DEST [31:0]  SRC2[31:0] FI
IF (MASK[63] = 0) THEN DEST[63:32]  SRC1[63:32]

ELSE DEST [63:32]  SRC2[63:32] FI
IF (MASK[95] = 0) THEN DEST[95:64]  SRC1[95:64]

ELSE DEST [95:64]  SRC2[95:64] FI
IF (MASK[127] = 0) THEN DEST[127:96]  SRC1[127:96]

ELSE DEST [127:96]  SRC2[127:96] FI
IF (MASK[159] = 0) THEN DEST[159:128]  SRC1[159:128]

ELSE DEST [159:128]  SRC2[159:128] FI
IF (MASK[191] = 0) THEN DEST[191:160]  SRC1[191:160]

ELSE DEST [191:160]  SRC2[191:160] FI
IF (MASK[223] = 0) THEN DEST[223:192]  SRC1[223:192]

ELSE DEST [223:192]  SRC2[223:192] FI
IF (MASK[255] = 0) THEN DEST[255:224]  SRC1[255:224]

ELSE DEST [255:224]  SRC2[255:224] FI

Intel C/C++ Compiler Intrinsic Equivalent

BLENDVPS: __m128 _mm_blendv_ps(__m128 v1, __m128 v2, __m128 v3);

VBLENDVPS: __m128 _mm_blendv_ps (__m128 a, __m128 b, __m128 mask);

VBLENDVPS: __m256 _mm256_blendv_ps (__m256 a, __m256 b, __m256 mask);

SIMD Floating-Point Exceptions

None

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.W = 1.
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BOUND—Check Array Index Against Bounds

Instruction Operand Encoding

Description

BOUND determines if the first operand (array index) is within the bounds of an array 
specified the second operand (bounds operand). The array index is a signed integer 
located in a register. The bounds operand is a memory location that contains a pair of 
signed doubleword-integers (when the operand-size attribute is 32) or a pair of 
signed word-integers (when the operand-size attribute is 16). The first doubleword 
(or word) is the lower bound of the array and the second doubleword (or word) is the 
upper bound of the array. The array index must be greater than or equal to the lower 
bound and less than or equal to the upper bound plus the operand size in bytes. If the 
index is not within bounds, a BOUND range exceeded exception (#BR) is signaled. 
When this exception is generated, the saved return instruction pointer points to the 
BOUND instruction.

The bounds limit data structure (two words or doublewords containing the lower and 
upper limits of the array) is usually placed just before the array itself, making the 
limits addressable via a constant offset from the beginning of the array. Because the 
address of the array already will be present in a register, this practice avoids extra 
bus cycles to obtain the effective address of the array bounds.

This instruction executes as described in compatibility mode and legacy mode. It is 
not valid in 64-bit mode.

Operation

IF 64bit Mode
THEN

#UD;
ELSE

IF (ArrayIndex < LowerBound OR ArrayIndex > UpperBound)
(* Below lower bound or above upper bound *)

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

62 /r BOUND r16, 
m16&16

RM Invalid Valid Check if r16 (array index) is 
within bounds specified by 
m16&16.

62 /r BOUND r32, 
m32&32

RM Invalid Valid Check if r32 (array index) is 
within bounds specified by 
m16&16.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) NA NA
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THEN #BR; FI;
FI;

Flags Affected

None.

Protected Mode Exceptions
#BR If the bounds test fails.
#UD If second operand is not a memory location.

If the LOCK prefix is used.
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.

Real-Address Mode Exceptions
#BR If the bounds test fails.
#UD If second operand is not a memory location.

If the LOCK prefix is used.
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS 

segment limit.

Virtual-8086 Mode Exceptions
#BR If the bounds test fails.
#UD If second operand is not a memory location.

If the LOCK prefix is used.
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made.
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Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#UD If in 64-bit mode.
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BSF—Bit Scan Forward

Instruction Operand Encoding

Description

Searches the source operand (second operand) for the least significant set bit (1 bit). 
If a least significant 1 bit is found, its bit index is stored in the destination operand 
(first operand). The source operand can be a register or a memory location; the 
destination operand is a register. The bit index is an unsigned offset from bit 0 of the 
source operand. If the content of the source operand is 0, the content of the destina-
tion operand is undefined.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix 
in the form of REX.R permits access to additional registers (R8-R15). Using a REX 
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at 
the beginning of this section for encoding data and limits.

Operation

IF SRC = 0
THEN

ZF ← 1;
DEST is undefined;

ELSE
ZF ← 0;
temp ← 0;
WHILE Bit(SRC, temp) = 0
DO

temp ← temp + 1;
DEST ← temp;

OD;
FI;

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

0F BC /r BSF r16, r/m16 RM Valid Valid Bit scan forward on r/m16.

0F BC /r BSF r32, r/m32 RM Valid Valid Bit scan forward on r/m32.

REX.W + 0F BC BSF r64, r/m64 RM Valid N.E. Bit scan forward on r/m64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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Flags Affected

The ZF flag is set to 1 if all the source operand is 0; otherwise, the ZF flag is cleared. 
The CF, OF, SF, AF, and PF, flags are undefined.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS 

segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
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#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
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BSR—Bit Scan Reverse

Instruction Operand Encoding

Description

Searches the source operand (second operand) for the most significant set bit (1 bit). 
If a most significant 1 bit is found, its bit index is stored in the destination operand 
(first operand). The source operand can be a register or a memory location; the 
destination operand is a register. The bit index is an unsigned offset from bit 0 of the 
source operand. If the content source operand is 0, the content of the destination 
operand is undefined.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix 
in the form of REX.R permits access to additional registers (R8-R15). Using a REX 
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at 
the beginning of this section for encoding data and limits.

Operation

IF SRC = 0
THEN

ZF ← 1;
DEST is undefined;

ELSE
ZF ← 0;
temp ← OperandSize – 1;
WHILE Bit(SRC, temp) = 0
DO

temp ← temp - 1;
DEST ← temp;

OD;
FI;

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

0F BD /r BSR r16, r/m16 RM Valid Valid Bit scan reverse on r/m16.

0F BD /r BSR r32, r/m32 RM Valid Valid Bit scan reverse on r/m32.

REX.W + 0F BD BSR r64, r/m64 RM Valid N.E. Bit scan reverse on r/m64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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Flags Affected

The ZF flag is set to 1 if all the source operand is 0; otherwise, the ZF flag is cleared. 
The CF, OF, SF, AF, and PF, flags are undefined.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS 

segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
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#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
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BSWAP—Byte Swap

Instruction Operand Encoding

Description

Reverses the byte order of a 32-bit or 64-bit (destination) register. This instruction is 
provided for converting little-endian values to big-endian format and vice versa. To 
swap bytes in a word value (16-bit register), use the XCHG instruction. When the 
BSWAP instruction references a 16-bit register, the result is undefined.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix 
in the form of REX.R permits access to additional registers (R8-R15). Using a REX 
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at 
the beginning of this section for encoding data and limits.

IA-32 Architecture Legacy Compatibility

The BSWAP instruction is not supported on IA-32 processors earlier than the 
Intel486™ processor family. For compatibility with this instruction, software 
should include functionally equivalent code for execution on Intel processors earlier 
than the Intel486 processor family.

Operation

TEMP ← DEST
IF 64-bit mode AND OperandSize = 64

THEN
DEST[7:0] ← TEMP[63:56];
DEST[15:8] ← TEMP[55:48];
DEST[23:16] ← TEMP[47:40];
DEST[31:24] ← TEMP[39:32];
DEST[39:32] ← TEMP[31:24];

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

0F C8+rd BSWAP r32 O Valid* Valid Reverses the byte order of 
a 32-bit register.

REX.W + 0F 
C8+rd

BSWAP r64 O Valid N.E. Reverses the byte order of 
a 64-bit register.

NOTES:
* See IA-32 Architecture Compatibility section below.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

O opcode + rd (r, w) NA NA NA
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DEST[47:40] ← TEMP[23:16];
DEST[55:48] ← TEMP[15:8];
DEST[63:56] ← TEMP[7:0];

ELSE
DEST[7:0] ← TEMP[31:24];
DEST[15:8] ← TEMP[23:16];
DEST[23:16] ← TEMP[15:8];
DEST[31:24] ← TEMP[7:0];

FI;

Flags Affected

None.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.
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BT—Bit Test

Instruction Operand Encoding

Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at 
the bit-position designated by the bit offset (specified by the second operand) and 
stores the value of the bit in the CF flag. The bit base operand can be a register or a 
memory location; the bit offset operand can be a register or an immediate value:
• If the bit base operand specifies a register, the instruction takes the modulo 16, 

32, or 64 of the bit offset operand (modulo size depends on the mode and 
register size; 64-bit operands are available only in 64-bit mode). 

• If the bit base operand specifies a memory location, the operand represents the 
address of the byte in memory that contains the bit base (bit 0 of the specified 
byte) of the bit string. The range of the bit position that can be referenced by the 
offset operand depends on the operand size.

See also: Bit(BitBase, BitOffset) on page 3-14. 

Some assemblers support immediate bit offsets larger than 31 by using the imme-
diate bit offset field in combination with the displacement field of the memory 
operand. In this case, the low-order 3 or 5 bits (3 for 16-bit operands, 5 for 32-bit 
operands) of the immediate bit offset are stored in the immediate bit offset field, and 
the high-order bits are shifted and combined with the byte displacement in the 
addressing mode by the assembler. The processor will ignore the high order bits if 
they are not zero.

When accessing a bit in memory, the processor may access 4 bytes starting from the 
memory address for a 32-bit operand size, using by the following relationship:

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

0F A3 BT r/m16, r16 MR Valid Valid Store selected bit in CF flag.

0F A3 BT r/m32, r32 MR Valid Valid Store selected bit in CF flag.

REX.W + 0F A3 BT r/m64, r64 MR Valid N.E. Store selected bit in CF flag.

0F BA /4 ib BT r/m16, imm8 MI Valid Valid Store selected bit in CF flag.

0F BA /4 ib BT r/m32, imm8 MI Valid Valid Store selected bit in CF flag.

REX.W + 0F BA 
/4 ib

BT r/m64, imm8 MI Valid N.E. Store selected bit in CF flag.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (r) ModRM:reg (r) NA NA

MI ModRM:r/m (r) imm8 NA NA
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Effective Address + (4 ∗ (BitOffset DIV 32))

Or, it may access 2 bytes starting from the memory address for a 16-bit operand, 
using this relationship:

Effective Address + (2 ∗ (BitOffset DIV 16))

It may do so even when only a single byte needs to be accessed to reach the given 
bit. When using this bit addressing mechanism, software should avoid referencing 
areas of memory close to address space holes. In particular, it should avoid refer-
ences to memory-mapped I/O registers. Instead, software should use the MOV 
instructions to load from or store to these addresses, and use the register form of 
these instructions to manipulate the data.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix 
in the form of REX.R permits access to additional registers (R8-R15). Using a REX 
prefix in the form of REX.W promotes operation to 64 bit operands. See the summary 
chart at the beginning of this section for encoding data and limits.

Operation

CF ← Bit(BitBase, BitOffset);

Flags Affected

The CF flag contains the value of the selected bit. The ZF flag is unaffected. The OF, 
SF, AF, and PF flags are undefined.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS 

segment limit.
#UD If the LOCK prefix is used.
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Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
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BTC—Bit Test and Complement

Instruction Operand Encoding

Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at 
the bit-position designated by the bit offset operand (second operand), stores the 
value of the bit in the CF flag, and complements the selected bit in the bit string. The 
bit base operand can be a register or a memory location; the bit offset operand can 
be a register or an immediate value:
• If the bit base operand specifies a register, the instruction takes the modulo 16, 

32, or 64 of the bit offset operand (modulo size depends on the mode and 
register size; 64-bit operands are available only in 64-bit mode). This allows any 
bit position to be selected. 

• If the bit base operand specifies a memory location, the operand represents the 
address of the byte in memory that contains the bit base (bit 0 of the specified 
byte) of the bit string. The range of the bit position that can be referenced by the 
offset operand depends on the operand size.

See also: Bit(BitBase, BitOffset) on page 3-14. 

Some assemblers support immediate bit offsets larger than 31 by using the imme-
diate bit offset field in combination with the displacement field of the memory 
operand. See “BT—Bit Test” in this chapter for more information on this addressing 
mechanism.

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

0F BB BTC r/m16, r16 MR Valid Valid Store selected bit in CF flag 
and complement.

0F BB BTC r/m32, r32 MR Valid Valid Store selected bit in CF flag 
and complement.

REX.W + 0F BB BTC r/m64, r64 MR Valid N.E. Store selected bit in CF flag 
and complement.

0F BA /7 ib BTC r/m16, imm8 MI Valid Valid Store selected bit in CF flag 
and complement.

0F BA /7 ib BTC r/m32, imm8 MI Valid Valid Store selected bit in CF flag 
and complement.

REX.W + 0F BA 
/7 ib

BTC r/m64, imm8 MI Valid N.E. Store selected bit in CF flag 
and complement.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (r, w) ModRM:reg (r) NA NA

MI ModRM:r/m (r, w) imm8 NA NA
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This instruction can be used with a LOCK prefix to allow the instruction to be 
executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix 
in the form of REX.R permits access to additional registers (R8-R15). Using a REX 
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at 
the beginning of this section for encoding data and limits.

Operation

CF ← Bit(BitBase, BitOffset);
Bit(BitBase, BitOffset) ← NOT Bit(BitBase, BitOffset);

Flags Affected

The CF flag contains the value of the selected bit before it is complemented. The ZF 
flag is unaffected. The OF, SF, AF, and PF flags are undefined.

Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS, 
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory 

operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS 

segment limit.
#UD If the LOCK prefix is used but the destination is not a memory 

operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
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#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made.
#UD If the LOCK prefix is used but the destination is not a memory 

operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory 

operand.
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BTR—Bit Test and Reset

Instruction Operand Encoding

Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at 
the bit-position designated by the bit offset operand (second operand), stores the 
value of the bit in the CF flag, and clears the selected bit in the bit string to 0. The bit 
base operand can be a register or a memory location; the bit offset operand can be a 
register or an immediate value:
• If the bit base operand specifies a register, the instruction takes the modulo 16, 

32, or 64 of the bit offset operand (modulo size depends on the mode and 
register size; 64-bit operands are available only in 64-bit mode). This allows any 
bit position to be selected. 

• If the bit base operand specifies a memory location, the operand represents the 
address of the byte in memory that contains the bit base (bit 0 of the specified 
byte) of the bit string. The range of the bit position that can be referenced by the 
offset operand depends on the operand size.

See also: Bit(BitBase, BitOffset) on page 3-14. 

Some assemblers support immediate bit offsets larger than 31 by using the imme-
diate bit offset field in combination with the displacement field of the memory 
operand. See “BT—Bit Test” in this chapter for more information on this addressing 
mechanism.

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

0F B3 BTR r/m16, r16 MR Valid Valid Store selected bit in CF flag 
and clear.

0F B3 BTR r/m32, r32 MR Valid Valid Store selected bit in CF flag 
and clear.

REX.W + 0F B3 BTR r/m64, r64 MR Valid N.E. Store selected bit in CF flag 
and clear.

0F BA /6 ib BTR r/m16, imm8 MI Valid Valid Store selected bit in CF flag 
and clear.

0F BA /6 ib BTR r/m32, imm8 MI Valid Valid Store selected bit in CF flag 
and clear.

REX.W + 0F BA 
/6 ib

BTR r/m64, imm8 MI Valid N.E. Store selected bit in CF flag 
and clear.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (r, w) ModRM:reg (r) NA NA

MI ModRM:r/m (r, w) imm8 NA NA
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This instruction can be used with a LOCK prefix to allow the instruction to be 
executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix 
in the form of REX.R permits access to additional registers (R8-R15). Using a REX 
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at 
the beginning of this section for encoding data and limits.

Operation

CF ← Bit(BitBase, BitOffset);
Bit(BitBase, BitOffset) ← 0;

Flags Affected

The CF flag contains the value of the selected bit before it is cleared. The ZF flag is 
unaffected. The OF, SF, AF, and PF flags are undefined.

Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS, 
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory 

operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS 

segment limit.
#UD If the LOCK prefix is used but the destination is not a memory 

operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
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#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made.
#UD If the LOCK prefix is used but the destination is not a memory 

operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory 

operand.
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BTS—Bit Test and Set

Instruction Operand Encoding

Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at 
the bit-position designated by the bit offset operand (second operand), stores the 
value of the bit in the CF flag, and sets the selected bit in the bit string to 1. The bit 
base operand can be a register or a memory location; the bit offset operand can be a 
register or an immediate value: 
• If the bit base operand specifies a register, the instruction takes the modulo 16, 

32, or 64 of the bit offset operand (modulo size depends on the mode and 
register size; 64-bit operands are available only in 64-bit mode). This allows any 
bit position to be selected.

• If the bit base operand specifies a memory location, the operand represents the 
address of the byte in memory that contains the bit base (bit 0 of the specified 
byte) of the bit string. The range of the bit position that can be referenced by the 
offset operand depends on the operand size.

See also: Bit(BitBase, BitOffset) on page 3-14. 

Some assemblers support immediate bit offsets larger than 31 by using the imme-
diate bit offset field in combination with the displacement field of the memory 
operand. See “BT—Bit Test” in this chapter for more information on this addressing 
mechanism.

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

0F AB BTS r/m16, r16 MR Valid Valid Store selected bit in CF flag 
and set.

0F AB BTS r/m32, r32 MR Valid Valid Store selected bit in CF flag 
and set.

REX.W + 0F AB BTS r/m64, r64 MR Valid N.E. Store selected bit in CF flag 
and set.

0F BA /5 ib BTS r/m16, imm8 MI Valid Valid Store selected bit in CF flag 
and set.

0F BA /5 ib BTS r/m32, imm8 MI Valid Valid Store selected bit in CF flag 
and set.

REX.W + 0F BA 
/5 ib

BTS r/m64, imm8 MI Valid N.E. Store selected bit in CF flag 
and set.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (r, w) ModRM:reg (r) NA NA

MI ModRM:r/m (r, w) imm8 NA NA
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This instruction can be used with a LOCK prefix to allow the instruction to be 
executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix 
in the form of REX.R permits access to additional registers (R8-R15). Using a REX 
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at 
the beginning of this section for encoding data and limits.

Operation

CF ← Bit(BitBase, BitOffset);
Bit(BitBase, BitOffset) ← 1;

Flags Affected

The CF flag contains the value of the selected bit before it is set. The ZF flag is unaf-
fected. The OF, SF, AF, and PF flags are undefined.

Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS, 
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory 

operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS 

segment limit.
#UD If the LOCK prefix is used but the destination is not a memory 

operand.

Virtual-8086 Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
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#SS If a memory operand effective address is outside the SS 
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made.
#UD If the LOCK prefix is used but the destination is not a memory 

operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory 

operand.
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CALL—Call Procedure
Opcode Instruction Op/ 

En
64-bit 
Mode

Compat/
Leg Mode

Description

E8 cw CALL rel16 M N.S. Valid Call near, relative, 
displacement relative to 
next instruction.

E8 cd CALL rel32 M Valid Valid Call near, relative, 
displacement relative to 
next instruction. 32-bit 
displacement sign extended 
to 64-bits in 64-bit mode.

FF /2 CALL r/m16 M N.E. Valid Call near, absolute indirect, 
address given in r/m16. 

FF /2 CALL r/m32 M N.E. Valid Call near, absolute indirect, 
address given in r/m32. 

FF /2 CALL r/m64 M Valid N.E. Call near, absolute indirect, 
address given in r/m64.

9A cd CALL ptr16:16 D Invalid Valid Call far, absolute, address 
given in operand.

9A cp CALL ptr16:32 D Invalid Valid Call far, absolute, address 
given in operand.

FF /3 CALL m16:16 M Valid Valid Call far, absolute indirect 
address given in m16:16.

In 32-bit mode: if selector 
points to a gate, then RIP = 
32-bit zero extended 
displacement taken from 
gate; else RIP = zero 
extended 16-bit offset from 
far pointer referenced in 
the instruction.

FF /3 CALL m16:32 M Valid Valid In 64-bit mode: If selector 
points to a gate, then RIP = 
64-bit displacement taken 
from gate; else RIP = zero 
extended 32-bit offset from 
far pointer referenced in 
the instruction. 
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Instruction Operand Encoding

Description

Saves procedure linking information on the stack and branches to the called proce-
dure specified using the target operand. The target operand specifies the address of 
the first instruction in the called procedure. The operand can be an immediate value, 
a general-purpose register, or a memory location.

This instruction can be used to execute four types of calls:
• Near Call —  A call to a procedure in the current code segment (the segment 

currently pointed to by the CS register), sometimes referred to as an intra-
segment call.

• Far Call — A call to a procedure located in a different segment than the current 
code segment, sometimes referred to as an inter-segment call.

• Inter-privilege-level far call — A far call to a procedure in a segment at a 
different privilege level than that of the currently executing program or 
procedure.

• Task switch — A call to a procedure located in a different task.

The latter two call types (inter-privilege-level call and task switch) can only be 
executed in protected mode. See “Calling Procedures Using Call and RET” in Chapter 
6 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, 
for additional information on near, far, and inter-privilege-level calls. See Chapter 7, 
“Task Management,” in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3A, for information on performing task switches with the 
CALL instruction.

Near Call. When executing a near call, the processor pushes the value of the EIP 
register (which contains the offset of the instruction following the CALL instruction) 
on the stack (for use later as a return-instruction pointer). The processor then 

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

REX.W + FF /3 CALL m16:64 M Valid N.E. In 64-bit mode: If selector 
points to a gate, then RIP = 
64-bit displacement taken 
from gate; else RIP = 64-bit 
offset from far pointer 
referenced in the 
instruction. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

D Offset NA NA NA

M ModRM:r/m (r) NA NA NA
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branches to the address in the current code segment specified by the target operand. 
The target operand specifies either an absolute offset in the code segment (an offset 
from the base of the code segment) or a relative offset (a signed displacement rela-
tive to the current value of the instruction pointer in the EIP register; this value 
points to the instruction following the CALL instruction). The CS register is not 
changed on near calls.

For a near call absolute, an absolute offset is specified indirectly in a general-purpose 
register or a memory location (r/m16, r/m32, or r/m64). The operand-size attribute 
determines the size of the target operand (16, 32 or 64 bits). When in 64-bit mode, 
the operand size for near call (and all near branches) is forced to 64-bits. Absolute 
offsets are loaded directly into the EIP(RIP) register. If the operand size attribute is 
16, the upper two bytes of the EIP register are cleared, resulting in a maximum 
instruction pointer size of 16 bits. When accessing an absolute offset indirectly using 
the stack pointer [ESP] as the base register, the base value used is the value of the 
ESP before the instruction executes.

A relative offset (rel16 or rel32) is generally specified as a label in assembly code. But 
at the machine code level, it is encoded as a signed, 16- or 32-bit immediate value. 
This value is added to the value in the EIP(RIP) register. In 64-bit mode the relative 
offset is always a 32-bit immediate value which is sign extended to 64-bits before it 
is added to the value in the RIP register for the target calculation. As with absolute 
offsets, the operand-size attribute determines the size of the target operand (16, 32, 
or 64 bits). In 64-bit mode the target operand will always be 64-bits because the 
operand size is forced to 64-bits for near branches.

Far Calls in Real-Address or Virtual-8086 Mode. When executing a far call in real- 
address or virtual-8086 mode, the processor pushes the current value of both the CS 
and EIP registers on the stack for use as a return-instruction pointer. The processor 
then performs a “far branch” to the code segment and offset specified with the target 
operand for the called procedure. The target operand specifies an absolute far 
address either directly with a pointer (ptr16:16 or ptr16:32) or indirectly with a 
memory location (m16:16 or m16:32). With the pointer method, the segment and 
offset of the called procedure is encoded in the instruction using a 4-byte (16-bit 
operand size) or 6-byte (32-bit operand size) far address immediate. With the indi-
rect method, the target operand specifies a memory location that contains a 4-byte 
(16-bit operand size) or 6-byte (32-bit operand size) far address. The operand-size 
attribute determines the size of the offset (16 or 32 bits) in the far address. The far 
address is loaded directly into the CS and EIP registers. If the operand-size attribute 
is 16, the upper two bytes of the EIP register are cleared.

Far Calls in Protected Mode. When the processor is operating in protected mode, the 
CALL instruction can be used to perform the following types of far calls:
• Far call to the same privilege level
• Far call to a different privilege level (inter-privilege level call)
• Task switch (far call to another task)

In protected mode, the processor always uses the segment selector part of the far 
address to access the corresponding descriptor in the GDT or LDT. The descriptor 
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type (code segment, call gate, task gate, or TSS) and access rights determine the 
type of call operation to be performed.

If the selected descriptor is for a code segment, a far call to a code segment at the 
same privilege level is performed. (If the selected code segment is at a different priv-
ilege level and the code segment is non-conforming, a general-protection exception 
is generated.) A far call to the same privilege level in protected mode is very similar 
to one carried out in real-address or virtual-8086 mode. The target operand specifies 
an absolute far address either directly with a pointer (ptr16:16 or ptr16:32) or indi-
rectly with a memory location (m16:16 or m16:32). The operand- size attribute 
determines the size of the offset (16 or 32 bits) in the far address. The new code 
segment selector and its descriptor are loaded into CS register; the offset from the 
instruction is loaded into the EIP register. 

A call gate (described in the next paragraph) can also be used to perform a far call to 
a code segment at the same privilege level. Using this mechanism provides an extra 
level of indirection and is the preferred method of making calls between 16-bit and 
32-bit code segments.

When executing an inter-privilege-level far call, the code segment for the procedure 
being called must be accessed through a call gate. The segment selector specified by 
the target operand identifies the call gate. The target operand can specify the call 
gate segment selector either directly with a pointer (ptr16:16 or ptr16:32) or indi-
rectly with a memory location (m16:16 or m16:32). The processor obtains the 
segment selector for the new code segment and the new instruction pointer (offset) 
from the call gate descriptor. (The offset from the target operand is ignored when a 
call gate is used.) 

On inter-privilege-level calls, the processor switches to the stack for the privilege 
level of the called procedure. The segment selector for the new stack segment is 
specified in the TSS for the currently running task. The branch to the new code 
segment occurs after the stack switch. (Note that when using a call gate to perform 
a far call to a segment at the same privilege level, no stack switch occurs.) On the 
new stack, the processor pushes the segment selector and stack pointer for the 
calling procedure’s stack, an optional set of parameters from the calling procedures 
stack, and the segment selector and instruction pointer for the calling procedure’s 
code segment. (A value in the call gate descriptor determines how many parameters 
to copy to the new stack.) Finally, the processor branches to the address of the 
procedure being called within the new code segment.

Executing a task switch with the CALL instruction is similar to executing a call 
through a call gate. The target operand specifies the segment selector of the task 
gate for the new task activated by the switch (the offset in the target operand is 
ignored). The task gate in turn points to the TSS for the new task, which contains the 
segment selectors for the task’s code and stack segments. Note that the TSS also 
contains the EIP value for the next instruction that was to be executed before the 
calling task was suspended. This instruction pointer value is loaded into the EIP 
register to re-start the calling task. 

The CALL instruction can also specify the segment selector of the TSS directly, which 
eliminates the indirection of the task gate. See Chapter 7, “Task Management,” in the 
Vol. 2A 3-115CALL—Call Procedure



INSTRUCTION SET REFERENCE, A-L
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for 
information on the mechanics of a task switch.

When you execute at task switch with a CALL instruction, the nested task flag (NT) is 
set in the EFLAGS register and the new TSS’s previous task link field is loaded with 
the old task’s TSS selector. Code is expected to suspend this nested task by executing 
an IRET instruction which, because the NT flag is set, automatically uses the previous 
task link to return to the calling task. (See “Task Linking” in Chapter 7 of the Intel® 
64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for information 
on nested tasks.) Switching tasks with the CALL instruction differs in this regard from 
JMP instruction. JMP does not set the NT flag and therefore does not expect an IRET 
instruction to suspend the task.

Mixing 16-Bit and 32-Bit Calls. When making far calls between 16-bit and 32-bit code 
segments, use a call gate. If the far call is from a 32-bit code segment to a 16-bit 
code segment, the call should be made from the first 64 KBytes of the 32-bit code 
segment. This is because the operand-size attribute of the instruction is set to 16, so 
only a 16-bit return address offset can be saved. Also, the call should be made using 
a 16-bit call gate so that 16-bit values can be pushed on the stack. See Chapter 21, 
“Mixing 16-Bit and 32-Bit Code,” in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3B, for more information.

Far Calls in Compatibility Mode. When the processor is operating in compatibility 
mode, the CALL instruction can be used to perform the following types of far calls:
• Far call to the same privilege level, remaining in compatibility mode
• Far call to the same privilege level, transitioning to 64-bit mode
• Far call to a different privilege level (inter-privilege level call), transitioning to 64-

bit mode

Note that a CALL instruction can not be used to cause a task switch in compatibility 
mode since task switches are not supported in IA-32e mode.

In compatibility mode, the processor always uses the segment selector part of the far 
address to access the corresponding descriptor in the GDT or LDT. The descriptor 
type (code segment, call gate) and access rights determine the type of call operation 
to be performed.

If the selected descriptor is for a code segment, a far call to a code segment at the 
same privilege level is performed. (If the selected code segment is at a different priv-
ilege level and the code segment is non-conforming, a general-protection exception 
is generated.) A far call to the same privilege level in compatibility mode is very 
similar to one carried out in protected mode. The target operand specifies an abso-
lute far address either directly with a pointer (ptr16:16 or ptr16:32) or indirectly with 
a memory location (m16:16 or m16:32). The operand-size attribute determines the 
size of the offset (16 or 32 bits) in the far address. The new code segment selector 
and its descriptor are loaded into CS register and the offset from the instruction is 
loaded into the EIP register. The difference is that 64-bit mode may be entered. This 
specified by the L bit in the new code segment descriptor.
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Note that a 64-bit call gate (described in the next paragraph) can also be used to 
perform a far call to a code segment at the same privilege level. However, using this 
mechanism requires that the target code segment descriptor have the L bit set, 
causing an entry to 64-bit mode.

When executing an inter-privilege-level far call, the code segment for the procedure 
being called must be accessed through a 64-bit call gate. The segment selector spec-
ified by the target operand identifies the call gate. The target operand can specify the 
call gate segment selector either directly with a pointer (ptr16:16 or ptr16:32) or 
indirectly with a memory location (m16:16 or m16:32). The processor obtains the 
segment selector for the new code segment and the new instruction pointer (offset) 
from the 16-byte call gate descriptor. (The offset from the target operand is ignored 
when a call gate is used.) 

On inter-privilege-level calls, the processor switches to the stack for the privilege 
level of the called procedure. The segment selector for the new stack segment is set 
to NULL. The new stack pointer is specified in the TSS for the currently running task. 
The branch to the new code segment occurs after the stack switch. (Note that when 
using a call gate to perform a far call to a segment at the same privilege level, an 
implicit stack switch occurs as a result of entering 64-bit mode. The SS selector is 
unchanged, but stack segment accesses use a segment base of 0x0, the limit is 
ignored, and the default stack size is 64-bits. The full value of RSP is used for the 
offset, of which the upper 32-bits are undefined.) On the new stack, the processor 
pushes the segment selector and stack pointer for the calling procedure’s stack and 
the segment selector and instruction pointer for the calling procedure’s code 
segment. (Parameter copy is not supported in IA-32e mode.) Finally, the processor 
branches to the address of the procedure being called within the new code segment.

Near/(Far) Calls in 64-bit Mode. When the processor is operating in 64-bit mode, the 
CALL instruction can be used to perform the following types of far calls:
• Far call to the same privilege level, transitioning to compatibility mode
• Far call to the same privilege level, remaining in 64-bit mode
• Far call to a different privilege level (inter-privilege level call), remaining in 64-bit 

mode

Note that in this mode the CALL instruction can not be used to cause a task switch in 
64-bit mode since task switches are not supported in IA-32e mode.

In 64-bit mode, the processor always uses the segment selector part of the far 
address to access the corresponding descriptor in the GDT or LDT. The descriptor 
type (code segment, call gate) and access rights determine the type of call operation 
to be performed.

If the selected descriptor is for a code segment, a far call to a code segment at the 
same privilege level is performed. (If the selected code segment is at a different priv-
ilege level and the code segment is non-conforming, a general-protection exception 
is generated.) A far call to the same privilege level in 64-bit mode is very similar to 
one carried out in compatibility mode. The target operand specifies an absolute far 
address indirectly with a memory location (m16:16, m16:32 or m16:64). The form 
of CALL with a direct specification of absolute far address is not defined in 64-bit 
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mode. The operand-size attribute determines the size of the offset (16, 32, or 64 
bits) in the far address. The new code segment selector and its descriptor are loaded 
into the CS register; the offset from the instruction is loaded into the EIP register. The 
new code segment may specify entry either into compatibility or 64-bit mode, based 
on the L bit value.

A 64-bit call gate (described in the next paragraph) can also be used to perform a far 
call to a code segment at the same privilege level. However, using this mechanism 
requires that the target code segment descriptor have the L bit set.

When executing an inter-privilege-level far call, the code segment for the procedure 
being called must be accessed through a 64-bit call gate. The segment selector spec-
ified by the target operand identifies the call gate. The target operand can only 
specify the call gate segment selector indirectly with a memory location (m16:16, 
m16:32 or m16:64). The processor obtains the segment selector for the new code 
segment and the new instruction pointer (offset) from the 16-byte call gate 
descriptor. (The offset from the target operand is ignored when a call gate is used.)

On inter-privilege-level calls, the processor switches to the stack for the privilege 
level of the called procedure. The segment selector for the new stack segment is set 
to NULL. The new stack pointer is specified in the TSS for the currently running task. 
The branch to the new code segment occurs after the stack switch. 

Note that when using a call gate to perform a far call to a segment at the same priv-
ilege level, an implicit stack switch occurs as a result of entering 64-bit mode. The SS 
selector is unchanged, but stack segment accesses use a segment base of 0x0, the 
limit is ignored, and the default stack size is 64-bits. (The full value of RSP is used for 
the offset.) On the new stack, the processor pushes the segment selector and stack 
pointer for the calling procedure’s stack and the segment selector and instruction 
pointer for the calling procedure’s code segment. (Parameter copy is not supported in 
IA-32e mode.) Finally, the processor branches to the address of the procedure being 
called within the new code segment.

Operation

IF near call
THEN IF near relative call

THEN 
IF OperandSize = 64

THEN
tempDEST ← SignExtend(DEST); (* DEST is rel32 *) 
tempRIP ← RIP + tempDEST;
IF stack not large enough for a 8-byte return address

THEN #SS(0); FI;
Push(RIP);
RIP ← tempRIP;

FI;
IF OperandSize = 32
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THEN
tempEIP ← EIP + DEST; (* DEST is rel32 *)
IF tempEIP is not within code segment limit THEN #GP(0); FI;
IF stack not large enough for a 4-byte return address

THEN #SS(0); FI;
Push(EIP);
EIP ← tempEIP;

FI;
IF OperandSize = 16

THEN
tempEIP ← (EIP + DEST) AND 0000FFFFH; (* DEST is rel16 *)
IF tempEIP is not within code segment limit THEN #GP(0); FI;
IF stack not large enough for a 2-byte return address 

THEN #SS(0); FI;
Push(IP);
EIP ← tempEIP;

FI;
ELSE (* Near absolute call *)

IF OperandSize = 64
THEN

tempRIP ← DEST; (* DEST is r/m64 *)
IF stack not large enough for a 8-byte return address 

THEN #SS(0); FI;
Push(RIP); 
RIP ← tempRIP;

FI;
IF OperandSize = 32

THEN
tempEIP ← DEST; (* DEST is r/m32 *)
IF tempEIP is not within code segment limit THEN #GP(0); FI;
IF stack not large enough for a 4-byte return address 

THEN #SS(0); FI;
Push(EIP); 
EIP ← tempEIP;

FI;
IF OperandSize = 16

THEN
tempEIP ← DEST AND 0000FFFFH; (* DEST is r/m16 *)
IF tempEIP is not within code segment limit THEN #GP(0); FI;
IF stack not large enough for a 2-byte return address 

THEN #SS(0); FI;
Push(IP);
EIP ← tempEIP;
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FI;
FI;rel/abs

FI; near

IF far call and (PE = 0 or (PE = 1 and VM = 1)) (* Real-address or virtual-8086 mode *)
THEN

IF OperandSize = 32
THEN

IF stack not large enough for a 6-byte return address 
THEN #SS(0); FI;

IF DEST[31:16] is not zero THEN #GP(0); FI;
Push(CS); (* Padded with 16 high-order bits *)
Push(EIP);
CS ← DEST[47:32]; (* DEST is ptr16:32 or [m16:32] *)
EIP ← DEST[31:0]; (* DEST is ptr16:32 or [m16:32] *)

ELSE (* OperandSize = 16 *)
IF stack not large enough for a 4-byte return address 

THEN #SS(0); FI;
Push(CS);
Push(IP);
CS ← DEST[31:16]; (* DEST is ptr16:16 or [m16:16] *)
EIP ← DEST[15:0]; (* DEST is ptr16:16 or [m16:16]; clear upper 16 bits *)

FI;
FI;

IF far call and (PE = 1 and VM = 0) (* Protected mode or IA-32e Mode, not virtual-8086 mode*)
THEN

IF segment selector in target operand NULL 
THEN #GP(0); FI;

IF segment selector index not within descriptor table limits
THEN #GP(new code segment selector); FI;

Read type and access rights of selected segment descriptor;
IF IA32_EFER.LMA = 0

THEN
IF segment type is not a conforming or nonconforming code segment, call 
gate, task gate, or TSS 

THEN #GP(segment selector); FI;
ELSE 

IF segment type is not a conforming or nonconforming code segment or 
64-bit call gate, 

THEN #GP(segment selector); FI;
FI;
Depending on type and access rights:
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GO TO CONFORMING-CODE-SEGMENT;
GO TO NONCONFORMING-CODE-SEGMENT;
GO TO CALL-GATE;
GO TO TASK-GATE;
GO TO TASK-STATE-SEGMENT;

FI;

CONFORMING-CODE-SEGMENT:
IF L bit = 1 and D bit = 1 and IA32_EFER.LMA = 1 

THEN GP(new code segment selector); FI;
IF DPL > CPL 

THEN #GP(new code segment selector); FI;
IF segment not present 

THEN #NP(new code segment selector); FI;
IF stack not large enough for return address

THEN #SS(0); FI;
tempEIP ← DEST(Offset);
IF OperandSize = 16

THEN
tempEIP ← tempEIP AND 0000FFFFH; FI; (* Clear upper 16 bits *)

IF (EFER.LMA = 0 or target mode = Compatibility mode) and (tempEIP outside new code
segment limit) 

THEN #GP(0); FI;
IF tempEIP is non-canonical 

THEN #GP(0); FI;
IF OperandSize = 32

THEN
Push(CS); (* Padded with 16 high-order bits *)
Push(EIP);
CS ← DEST(CodeSegmentSelector); 
(* Segment descriptor information also loaded *)
CS(RPL) ← CPL;
EIP ← tempEIP;

ELSE
IF OperandSize = 16

THEN
Push(CS);
Push(IP);
CS ← DEST(CodeSegmentSelector); 
(* Segment descriptor information also loaded *)
CS(RPL) ← CPL;
EIP ← tempEIP;

ELSE (* OperandSize = 64 *)
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Push(CS); (* Padded with 48 high-order bits *)
Push(RIP);
CS ← DEST(CodeSegmentSelector); 
(* Segment descriptor information also loaded *)
CS(RPL) ← CPL;
RIP ← tempEIP;

FI;
FI;

END;

NONCONFORMING-CODE-SEGMENT:
IF L-Bit = 1 and D-BIT = 1 and IA32_EFER.LMA = 1 

THEN GP(new code segment selector); FI;
IF (RPL > CPL) or (DPL ≠ CPL) 

THEN #GP(new code segment selector); FI;
IF segment not present 

THEN #NP(new code segment selector); FI;
IF stack not large enough for return address 

THEN #SS(0); FI;
tempEIP ← DEST(Offset);
IF OperandSize = 16

THEN tempEIP ← tempEIP AND 0000FFFFH; FI; (* Clear upper 16 bits *)
IF (EFER.LMA = 0 or target mode = Compatibility mode) and (tempEIP outside new code
segment limit)

THEN #GP(0); FI;
IF tempEIP is non-canonical 

THEN #GP(0); FI;
IF OperandSize = 32

THEN
Push(CS); (* Padded with 16 high-order bits *)
Push(EIP);
CS ← DEST(CodeSegmentSelector); 
(* Segment descriptor information also loaded *)
CS(RPL) ← CPL;
EIP ← tempEIP;

ELSE
IF OperandSize = 16

THEN
Push(CS);
Push(IP);
CS ← DEST(CodeSegmentSelector); 
(* Segment descriptor information also loaded *)
CS(RPL) ← CPL;
EIP ← tempEIP;
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ELSE (* OperandSize = 64 *)
Push(CS); (* Padded with 48 high-order bits *)
Push(RIP);
CS ← DEST(CodeSegmentSelector); 
(* Segment descriptor information also loaded *)
CS(RPL) ← CPL;
RIP ← tempEIP;

FI;
FI;

END;

CALL-GATE:
IF call gate (DPL < CPL) or (RPL > DPL)

THEN #GP(call-gate selector); FI;
IF call gate not present 

THEN #NP(call-gate selector); FI;
IF call-gate code-segment selector is NULL

THEN #GP(0); FI;
IF call-gate code-segment selector index is outside descriptor table limits

THEN #GP(call-gate code-segment selector); FI;
Read call-gate code-segment descriptor;
IF call-gate code-segment descriptor does not indicate a code segment
or call-gate code-segment descriptor DPL > CPL 

THEN #GP(call-gate code-segment selector); FI;
IF IA32_EFER.LMA = 1 AND (call-gate code-segment descriptor is 
not a 64-bit code segment or call-gate code-segment descriptor has both L-bit and D-bit set)

THEN #GP(call-gate code-segment selector); FI;
IF call-gate code segment not present 

THEN #NP(call-gate code-segment selector); FI;
IF call-gate code segment is non-conforming and DPL < CPL

THEN go to MORE-PRIVILEGE;
ELSE go to SAME-PRIVILEGE;

FI;
END;

MORE-PRIVILEGE:
IF current TSS is 32-bit

THEN 
TSSstackAddress ← (new code-segment DPL ∗ 8) + 4;
IF (TSSstackAddress + 5) > current TSS limit

THEN #TS(current TSS selector); FI;
NewSS ← 2 bytes loaded from (TSS base + TSSstackAddress + 4);
NewESP ← 4 bytes loaded from (TSS base + TSSstackAddress);

ELSE 
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IF current TSS is 16-bit
THEN

TSSstackAddress ← (new code-segment DPL ∗ 4) + 2
IF (TSSstackAddress + 3) > current TSS limit

THEN #TS(current TSS selector); FI;
NewSS ← 2 bytes loaded from (TSS base + TSSstackAddress + 2);
NewESP ← 2 bytes loaded from (TSS base + TSSstackAddress);

ELSE (* current TSS is 64-bit *)
TSSstackAddress ← (new code-segment DPL ∗ 8) + 4;
IF (TSSstackAddress + 7) > current TSS limit

THEN #TS(current TSS selector); FI;
NewSS ← new code-segment DPL; (* NULL selector with RPL = new CPL *)
NewRSP ← 8 bytes loaded from (current TSS base + TSSstackAddress);

FI;
FI;
IF IA32_EFER.LMA = 0 and NewSS is NULL

THEN #TS(NewSS); FI;
Read new code-segment descriptor and new stack-segment descriptor; 
IF IA32_EFER.LMA = 0 and (NewSS RPL ≠ new code-segment DPL
or new stack-segment DPL ≠ new code-segment DPL or new stack segment is not a
writable data segment)

THEN #TS(NewSS); FI
IF IA32_EFER.LMA = 0 and new stack segment not present 

THEN #SS(NewSS); FI;
IF CallGateSize = 32

THEN
IF new stack does not have room for parameters plus 16 bytes

THEN #SS(NewSS); FI;
IF CallGate(InstructionPointer) not within new code-segment limit 

THEN #GP(0); FI;
SS ← newSS; (* Segment descriptor information also loaded *)
ESP ← newESP; 
CS:EIP ← CallGate(CS:InstructionPointer); 
(* Segment descriptor information also loaded *)
Push(oldSS:oldESP); (* From calling procedure *)
temp ← parameter count from call gate, masked to 5 bits;
Push(parameters from calling procedure’s stack, temp)
Push(oldCS:oldEIP); (* Return address to calling procedure *)

ELSE 
IF CallGateSize = 16

THEN
IF new stack does not have room for parameters plus 8 bytes

THEN #SS(NewSS); FI;
IF (CallGate(InstructionPointer) AND FFFFH) not in new code-segment limit
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THEN #GP(0); FI;
SS ← newSS; (* Segment descriptor information also loaded *)
ESP ← newESP; 
CS:IP ← CallGate(CS:InstructionPointer);
(* Segment descriptor information also loaded *)
Push(oldSS:oldESP); (* From calling procedure *)
temp ← parameter count from call gate, masked to 5 bits;
Push(parameters from calling procedure’s stack, temp)
Push(oldCS:oldEIP); (* Return address to calling procedure *)

ELSE (* CallGateSize = 64 *)
IF pushing 32 bytes on the stack would use a non-canonical address

THEN #SS(NewSS); FI;
IF (CallGate(InstructionPointer) is non-canonical) 

THEN #GP(0); FI;
SS ← NewSS; (* NewSS is NULL)
RSP ← NewESP; 
CS:IP ← CallGate(CS:InstructionPointer);
(* Segment descriptor information also loaded *)
Push(oldSS:oldESP); (* From calling procedure *)
Push(oldCS:oldEIP); (* Return address to calling procedure *)

FI;
FI;
CPL ← CodeSegment(DPL)
CS(RPL) ← CPL

END;

SAME-PRIVILEGE:
IF CallGateSize = 32

THEN
IF stack does not have room for 8 bytes

THEN #SS(0); FI;
IF CallGate(InstructionPointer) not within code segment limit 

THEN #GP(0); FI;
CS:EIP ← CallGate(CS:EIP) (* Segment descriptor information also loaded *)
Push(oldCS:oldEIP); (* Return address to calling procedure *)

ELSE 
If CallGateSize = 16

THEN
IF stack does not have room for 4 bytes

THEN #SS(0); FI;
IF CallGate(InstructionPointer) not within code segment limit 

THEN #GP(0); FI;
CS:IP ← CallGate(CS:instruction pointer); 
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(* Segment descriptor information also loaded *)
Push(oldCS:oldIP); (* Return address to calling procedure *)

ELSE (* CallGateSize = 64)
IF pushing 16 bytes on the stack touches non-canonical addresses

THEN #SS(0); FI;
IF RIP non-canonical 

THEN #GP(0); FI;
CS:IP ← CallGate(CS:instruction pointer); 
(* Segment descriptor information also loaded *)
Push(oldCS:oldIP); (* Return address to calling procedure *)

FI;
FI;
CS(RPL) ← CPL

END;

TASK-GATE:
IF task gate DPL < CPL or RPL 

THEN #GP(task gate selector); FI;
IF task gate not present 

THEN #NP(task gate selector); FI;
Read the TSS segment selector in the task-gate descriptor;
IF TSS segment selector local/global bit is set to local
or index not within GDT limits

THEN #GP(TSS selector); FI;
Access TSS descriptor in GDT;
IF TSS descriptor specifies that the TSS is busy (low-order 5 bits set to 00001)

THEN #GP(TSS selector); FI;
IF TSS not present 

THEN #NP(TSS selector); FI;
SWITCH-TASKS (with nesting) to TSS;
IF EIP not within code segment limit 

THEN #GP(0); FI;
END;

TASK-STATE-SEGMENT:
IF TSS DPL < CPL or RPL
or TSS descriptor indicates TSS not available

THEN #GP(TSS selector); FI;
IF TSS is not present 

THEN #NP(TSS selector); FI;
SWITCH-TASKS (with nesting) to TSS;
IF EIP not within code segment limit 

THEN #GP(0); FI;
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END;

Flags Affected

All flags are affected if a task switch occurs; no flags are affected if a task switch does 
not occur.

Protected Mode Exceptions
#GP(0) If the target offset in destination operand is beyond the new 

code segment limit.
If the segment selector in the destination operand is NULL.
If the code segment selector in the gate is NULL.
If a memory operand effective address is outside the CS, DS, 
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it 
contains a NULL segment selector.

#GP(selector) If a code segment or gate or TSS selector index is outside 
descriptor table limits. 
If the segment descriptor pointed to by the segment selector in 
the destination operand is not for a conforming-code segment, 
nonconforming-code segment, call gate, task gate, or task state 
segment.
If the DPL for a nonconforming-code segment is not equal to the 
CPL or the RPL for the segment’s segment selector is greater 
than the CPL.
If the DPL for a conforming-code segment is greater than the 
CPL.
If the DPL from a call-gate, task-gate, or TSS segment 
descriptor is less than the CPL or than the RPL of the call-gate, 
task-gate, or TSS’s segment selector.
If the segment descriptor for a segment selector from a call gate 
does not indicate it is a code segment.
If the segment selector from a call gate is beyond the descriptor 
table limits.
If the DPL for a code-segment obtained from a call gate is 
greater than the CPL.
If the segment selector for a TSS has its local/global bit set for 
local.
If a TSS segment descriptor specifies that the TSS is busy or not 
available.
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#SS(0) If pushing the return address, parameters, or stack segment 
pointer onto the stack exceeds the bounds of the stack segment, 
when no stack switch occurs.
If a memory operand effective address is outside the SS 
segment limit.

#SS(selector) If pushing the return address, parameters, or stack segment 
pointer onto the stack exceeds the bounds of the stack segment, 
when a stack switch occurs.
If the SS register is being loaded as part of a stack switch and 
the segment pointed to is marked not present.
If stack segment does not have room for the return address, 
parameters, or stack segment pointer, when stack switch 
occurs.

#NP(selector) If a code segment, data segment, stack segment, call gate, task 
gate, or TSS is not present.

#TS(selector) If the new stack segment selector and ESP are beyond the end 
of the TSS.
If the new stack segment selector is NULL.
If the RPL of the new stack segment selector in the TSS is not 
equal to the DPL of the code segment being accessed.
If DPL of the stack segment descriptor for the new stack 
segment is not equal to the DPL of the code segment descriptor.
If the new stack segment is not a writable data segment.
If segment-selector index for stack segment is outside 
descriptor table limits. 

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
If the target offset is beyond the code segment limit.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
If the target offset is beyond the code segment limit.

#PF(fault-code) If a page fault occurs.
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#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.
#GP(selector) If a memory address accessed by the selector is in non-canon-

ical space.
#GP(0) If the target offset in the destination operand is non-canonical.

64-Bit Mode Exceptions
#GP(0) If a memory address is non-canonical.

If target offset in destination operand is non-canonical.
If the segment selector in the destination operand is NULL.
If the code segment selector in the 64-bit gate is NULL.

#GP(selector) If code segment or 64-bit call gate is outside descriptor table 
limits. 
If code segment or 64-bit call gate overlaps non-canonical 
space. 
If the segment descriptor pointed to by the segment selector in 
the destination operand is not for a conforming-code segment, 
nonconforming-code segment, or 64-bit call gate.
If the segment descriptor pointed to by the segment selector in 
the destination operand is a code segment and has both the D-
bit and the L- bit set.
If the DPL for a nonconforming-code segment is not equal to the 
CPL, or the RPL for the segment’s segment selector is greater 
than the CPL.
If the DPL for a conforming-code segment is greater than the 
CPL.
If the DPL from a 64-bit call-gate is less than the CPL or than the 
RPL of the 64-bit call-gate.
If the upper type field of a 64-bit call gate is not 0x0.
If the segment selector from a 64-bit call gate is beyond the 
descriptor table limits.
If the DPL for a code-segment obtained from a 64-bit call gate is 
greater than the CPL.
If the code segment descriptor pointed to by the selector in the 
64-bit gate doesn't have the L-bit set and the D-bit clear.
If the segment descriptor for a segment selector from the 64-bit 
call gate does not indicate it is a code segment. 
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#SS(0) If pushing the return offset or CS selector onto the stack 
exceeds the bounds of the stack segment when no stack switch 
occurs.
If a memory operand effective address is outside the SS 
segment limit.
If the stack address is in a non-canonical form.

#SS(selector) If pushing the old values of SS selector, stack pointer, EFLAGS, 
CS selector, offset, or error code onto the stack violates the 
canonical boundary when a stack switch occurs.

#NP(selector) If a code segment or 64-bit call gate is not present.
#TS(selector) If the load of the new RSP exceeds the limit of the TSS.
#UD (64-bit mode only) If a far call is direct to an absolute address in 

memory.
If the LOCK prefix is used.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
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CBW/CWDE/CDQE—Convert Byte to Word/Convert Word to 
Doubleword/Convert Doubleword to Quadword

Instruction Operand Encoding

Description

Double the size of the source operand by means of sign extension. The CBW (convert 
byte to word) instruction copies the sign (bit 7) in the source operand into every bit 
in the AH register. The CWDE (convert word to doubleword) instruction copies the 
sign (bit 15) of the word in the AX register into the high 16 bits of the EAX register. 

CBW and CWDE reference the same opcode. The CBW instruction is intended for use 
when the operand-size attribute is 16; CWDE is intended for use when the operand-
size attribute is 32. Some assemblers may force the operand size. Others may treat 
these two mnemonics as synonyms (CBW/CWDE) and use the setting of the 
operand-size attribute to determine the size of values to be converted.

In 64-bit mode, the default operation size is the size of the destination register. Use 
of the REX.W prefix promotes this instruction (CDQE when promoted) to operate on 
64-bit operands. In which case, CDQE copies the sign (bit 31) of the doubleword in 
the EAX register into the high 32 bits of RAX.

Operation

IF OperandSize = 16 (* Instruction = CBW *)
THEN 

AX ← SignExtend(AL);
ELSE IF (OperandSize = 32, Instruction = CWDE)

EAX ← SignExtend(AX); FI;
ELSE (* 64-Bit Mode, OperandSize = 64, Instruction = CDQE*)

RAX ← SignExtend(EAX);
FI;

Flags Affected

None.

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

98 CBW NP Valid Valid AX ← sign-extend of AL.

98 CWDE NP Valid Valid EAX ← sign-extend of AX.

REX.W + 98 CDQE NP Valid N.E. RAX ← sign-extend of EAX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.
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CLC—Clear Carry Flag

Instruction Operand Encoding

Description

Clears the CF flag in the EFLAGS register. Operation is the same in all non-64-bit 
modes and 64-bit mode.

Operation

CF ← 0;

Flags Affected

The CF flag is set to 0. The OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

F8 CLC NP Valid Valid Clear CF flag.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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CLD—Clear Direction Flag

Instruction Operand Encoding

Description

Clears the DF flag in the EFLAGS register. When the DF flag is set to 0, string opera-
tions increment the index registers (ESI and/or EDI). Operation is the same in all 
non-64-bit modes and 64-bit mode.

Operation

DF ← 0;

Flags Affected

The DF flag is set to 0. The CF, OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

FC CLD NP Valid Valid Clear DF flag.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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CLFLUSH—Flush Cache Line

Instruction Operand Encoding

Description

Invalidates the cache line that contains the linear address specified with the source 
operand from all levels of the processor cache hierarchy (data and instruction). The 
invalidation is broadcast throughout the cache coherence domain. If, at any level of 
the cache hierarchy, the line is inconsistent with memory (dirty) it is written to 
memory before invalidation. The source operand is a byte memory location.

The availability of CLFLUSH is indicated by the presence of the CPUID feature flag 
CLFSH (bit 19 of the EDX register, see “CPUID—CPU Identification” in this chapter). 
The aligned cache line size affected is also indicated with the CPUID instruction (bits 
8 through 15 of the EBX register when the initial value in the EAX register is 1).

The memory attribute of the page containing the affected line has no effect on the 
behavior of this instruction. It should be noted that processors are free to specula-
tively fetch and cache data from system memory regions assigned a memory-type 
allowing for speculative reads (such as, the WB, WC, and WT memory types). 
PREFETCHh instructions can be used to provide the processor with hints for this spec-
ulative behavior. Because this speculative fetching can occur at any time and is not 
tied to instruction execution, the CLFLUSH instruction is not ordered with respect to 
PREFETCHh instructions or any of the speculative fetching mechanisms (that is, data 
can be speculatively loaded into a cache line just before, during, or after the execu-
tion of a CLFLUSH instruction that references the cache line).

CLFLUSH is only ordered by the MFENCE instruction. It is not guaranteed to be 
ordered by any other fencing or serializing instructions or by another CLFLUSH 
instruction. For example, software can use an MFENCE instruction to ensure that 
previous stores are included in the write-back.

The CLFLUSH instruction can be used at all privilege levels and is subject to all 
permission checking and faults associated with a byte load (and in addition, a 
CLFLUSH instruction is allowed to flush a linear address in an execute-only segment). 
Like a load, the CLFLUSH instruction sets the A bit but not the D bit in the page 
tables.
The CLFLUSH instruction was introduced with the SSE2 extensions; however, 
because it has its own CPUID feature flag, it can be implemented in IA-32 processors 

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

0F AE /7 CLFLUSH m8 M Valid Valid Flushes cache line 
containing m8.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA
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that do not include the SSE2 extensions. Also, detecting the presence of the SSE2 
extensions with the CPUID instruction does not guarantee that the CLFLUSH instruc-
tion is implemented in the processor.

CLFLUSH operation is the same in non-64-bit modes and 64-bit mode.

Operation

Flush_Cache_Line(SRC);

Intel C/C++ Compiler Intrinsic Equivalents

CLFLUSH: void _mm_clflush(void const *p)

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, 

ES, FS or GS segments.
#SS(0) For an illegal address in the SS segment. 
#PF(fault-code) For a page fault.
#UD If CPUID.01H:EDX.CLFSH[bit 19] = 0.

If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If any part of the operand lies outside the effective address 

space from 0 to FFFFH.
#UD If CPUID.01H:EDX.CLFSH[bit 19] = 0.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) For a page fault.
#UD If CPUID.01H:EDX.CLFSH[bit 19] = 0.

If the LOCK prefix is used.
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CLI — Clear Interrupt Flag

Instruction Operand Encoding

Description

If protected-mode virtual interrupts are not enabled, CLI clears the IF flag in the 
EFLAGS register. No other flags are affected. Clearing the IF flag causes the 
processor to ignore maskable external interrupts. The IF flag and the CLI and STI 
instruction have no affect on the generation of exceptions and NMI interrupts.

When protected-mode virtual interrupts are enabled, CPL is 3, and IOPL is less than 
3; CLI clears the VIF flag in the EFLAGS register, leaving IF unaffected. Table 3-6 indi-
cates the action of the CLI instruction depending on the processor operating mode 
and the CPL/IOPL of the running program or procedure. 

CLI operation is the same in non-64-bit modes and 64-bit mode.

Operation

IF PE = 0

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

FA CLI NP Valid Valid Clear interrupt flag; 
interrupts disabled when 
interrupt flag cleared.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

Table 3-6.  Decision Table for CLI Results
PE VM IOPL CPL PVI VIP VME CLI Result

0 X X X X X X IF = 0

1 0 ≥ CPL X X X X IF = 0

1 0 < CPL 3 1 X X VIF = 0

1 0 < CPL < 3 X X X GP Fault

1 0 < CPL X 0 X X GP Fault

1 1 3 X X X X IF = 0

1 1 < 3 X X X 1 VIF = 0

1 1 < 3 X X X 0 GP Fault

NOTES:
* X = This setting has no impact.
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THEN
IF ← 0; (* Reset Interrupt Flag *)

ELSE
IF VM = 0;

THEN
IF IOPL ≥ CPL

THEN
IF ← 0; (* Reset Interrupt Flag *)

ELSE
IF ((IOPL < CPL) and (CPL = 3) and (PVI = 1))

THEN
VIF ← 0; (* Reset Virtual Interrupt Flag *)

ELSE
#GP(0);

FI;
FI;

ELSE (* VM = 1 *)
IF IOPL = 3

THEN
IF ← 0; (* Reset Interrupt Flag *)

ELSE 
IF (IOPL < 3) AND (VME = 1)

THEN
VIF ← 0; (* Reset Virtual Interrupt Flag *)

ELSE
#GP(0);

FI;
FI;

FI;
FI;

Flags Affected

If protected-mode virtual interrupts are not enabled, IF is set to 0 if the CPL is equal 
to or less than the IOPL; otherwise, it is not affected. The other flags in the EFLAGS 
register are unaffected.

When protected-mode virtual interrupts are enabled, CPL is 3, and IOPL is less than 
3; CLI clears the VIF flag in the EFLAGS register, leaving IF unaffected.

Protected Mode Exceptions
#GP(0) If the CPL is greater (has less privilege) than the IOPL of the 

current program or procedure. 
#UD If the LOCK prefix is used.
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Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If the CPL is greater (has less privilege) than the IOPL of the 

current program or procedure. 
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the CPL is greater (has less privilege) than the IOPL of the 

current program or procedure. 
#UD If the LOCK prefix is used.
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CLTS—Clear Task-Switched Flag in CR0

Instruction Operand Encoding

Description

Clears the task-switched (TS) flag in the CR0 register. This instruction is intended for 
use in operating-system procedures. It is a privileged instruction that can only be 
executed at a CPL of 0. It is allowed to be executed in real-address mode to allow 
initialization for protected mode.

The processor sets the TS flag every time a task switch occurs. The flag is used to 
synchronize the saving of FPU context in multitasking applications. See the descrip-
tion of the TS flag in the section titled “Control Registers” in Chapter 2 of the Intel® 
64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for more infor-
mation about this flag. 

CLTS operation is the same in non-64-bit modes and 64-bit mode.

See Chapter 25, “VMX Non-Root Operation,” of the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 3C, for more information about the behavior 
of this instruction in VMX non-root operation.

Operation

CR0.TS[bit 3] ← 0;

Flags Affected

The TS flag in CR0 register is cleared.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

0F 06 CLTS NP Valid Valid Clears TS flag in CR0.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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Virtual-8086 Mode Exceptions
#GP(0) CLTS is not recognized in virtual-8086 mode.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the CPL is greater than 0.
#UD If the LOCK prefix is used.
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CMC—Complement Carry Flag

Instruction Operand Encoding

Description

Complements the CF flag in the EFLAGS register. CMC operation is the same in non-
64-bit modes and 64-bit mode.

Operation

EFLAGS.CF[bit 0]← NOT EFLAGS.CF[bit 0];

Flags Affected

The CF flag contains the complement of its original value. The OF, ZF, SF, AF, and PF 
flags are unaffected.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

F5 CMC NP Valid Valid Complement CF flag.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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CMOVcc—Conditional Move
Opcode Instruction Op/ 

En
64-Bit 
Mode

Compat/
Leg Mode

Description

0F 47 /r CMOVA r16, r/m16 RM Valid Valid Move if above (CF=0 and 
ZF=0).

0F 47 /r CMOVA r32, r/m32 RM Valid Valid Move if above (CF=0 and 
ZF=0).

REX.W + 0F 47 
/r

CMOVA r64, r/m64 RM Valid N.E. Move if above (CF=0 and 
ZF=0).

0F 43 /r CMOVAE r16, r/m16 RM Valid Valid Move if above or equal 
(CF=0).

0F 43 /r CMOVAE r32, r/m32 RM Valid Valid Move if above or equal 
(CF=0).

REX.W + 0F 43 
/r

CMOVAE r64, r/m64 RM Valid N.E. Move if above or equal 
(CF=0).

0F 42 /r CMOVB r16, r/m16 RM Valid Valid Move if below (CF=1).

0F 42 /r CMOVB r32, r/m32 RM Valid Valid Move if below (CF=1).

REX.W + 0F 42 
/r

CMOVB r64, r/m64 RM Valid N.E. Move if below (CF=1).

0F 46 /r CMOVBE r16, r/m16 RM Valid Valid Move if below or equal 
(CF=1 or ZF=1).

0F 46 /r CMOVBE r32, r/m32 RM Valid Valid Move if below or equal 
(CF=1 or ZF=1).

REX.W + 0F 46 
/r

CMOVBE r64, r/m64 RM Valid N.E. Move if below or equal 
(CF=1 or ZF=1).

0F 42 /r CMOVC r16, r/m16 RM Valid Valid Move if carry (CF=1).

0F 42 /r CMOVC r32, r/m32 RM Valid Valid Move if carry (CF=1).

REX.W + 0F 42 
/r

CMOVC r64, r/m64 RM Valid N.E. Move if carry (CF=1).

0F 44 /r CMOVE r16, r/m16 RM Valid Valid Move if equal (ZF=1).

0F 44 /r CMOVE r32, r/m32 RM Valid Valid Move if equal (ZF=1).

REX.W + 0F 44 
/r

CMOVE r64, r/m64 RM Valid N.E. Move if equal (ZF=1).

0F 4F /r CMOVG r16, r/m16 RM Valid Valid Move if greater (ZF=0 and 
SF=OF).

0F 4F /r CMOVG r32, r/m32 RM Valid Valid Move if greater (ZF=0 and 
SF=OF).

REX.W + 0F 4F 
/r

CMOVG r64, r/m64 RM V/N.E. NA Move if greater (ZF=0 and 
SF=OF).
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Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 4D /r CMOVGE r16, r/m16 RM Valid Valid Move if greater or equal 
(SF=OF).

0F 4D /r CMOVGE r32, r/m32 RM Valid Valid Move if greater or equal 
(SF=OF).

REX.W + 0F 4D 
/r

CMOVGE r64, r/m64 RM Valid N.E. Move if greater or equal 
(SF=OF).

0F 4C /r CMOVL r16, r/m16 RM Valid Valid Move if less (SF≠ OF).

0F 4C /r CMOVL r32, r/m32 RM Valid Valid Move if less (SF≠ OF).

REX.W + 0F 4C 
/r

CMOVL r64, r/m64 RM Valid N.E. Move if less (SF≠ OF).

0F 4E /r CMOVLE r16, r/m16 RM Valid Valid Move if less or equal (ZF=1 
or SF≠ OF).

0F 4E /r CMOVLE r32, r/m32 RM Valid Valid Move if less or equal (ZF=1 
or SF≠ OF).

REX.W + 0F 4E 
/r

CMOVLE r64, r/m64 RM Valid N.E. Move if less or equal (ZF=1 
or SF≠ OF).

0F 46 /r CMOVNA r16, r/m16 RM Valid Valid Move if not above (CF=1 or 
ZF=1).

0F 46 /r CMOVNA r32, r/m32 RM Valid Valid Move if not above (CF=1 or 
ZF=1).

REX.W + 0F 46 
/r

CMOVNA r64, r/m64 RM Valid N.E. Move if not above (CF=1 or 
ZF=1).

0F 42 /r CMOVNAE r16, 
r/m16

RM Valid Valid Move if not above or equal 
(CF=1).

0F 42 /r CMOVNAE r32, 
r/m32

RM Valid Valid Move if not above or equal 
(CF=1).

REX.W + 0F 42 
/r

CMOVNAE r64, 
r/m64

RM Valid N.E. Move if not above or equal 
(CF=1).

0F 43 /r CMOVNB r16, r/m16 RM Valid Valid Move if not below (CF=0).

0F 43 /r CMOVNB r32, r/m32 RM Valid Valid Move if not below (CF=0).

REX.W + 0F 43 
/r

CMOVNB r64, r/m64 RM Valid N.E. Move if not below (CF=0).

0F 47 /r CMOVNBE r16, 
r/m16

RM Valid Valid Move if not below or equal 
(CF=0 and ZF=0).

0F 47 /r CMOVNBE r32, 
r/m32

RM Valid Valid Move if not below or equal 
(CF=0 and ZF=0).
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Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

REX.W + 0F 47 
/r

CMOVNBE r64, 
r/m64

RM Valid N.E. Move if not below or equal 
(CF=0 and ZF=0).

0F 43 /r CMOVNC r16, r/m16 RM Valid Valid Move if not carry (CF=0).

0F 43 /r CMOVNC r32, r/m32 RM Valid Valid Move if not carry (CF=0).

REX.W + 0F 43 
/r

CMOVNC r64, r/m64 RM Valid N.E. Move if not carry (CF=0).

0F 45 /r CMOVNE r16, r/m16 RM Valid Valid Move if not equal (ZF=0).

0F 45 /r CMOVNE r32, r/m32 RM Valid Valid Move if not equal (ZF=0).

REX.W + 0F 45 
/r

CMOVNE r64, r/m64 RM Valid N.E. Move if not equal (ZF=0).

0F 4E /r CMOVNG r16, r/m16 RM Valid Valid Move if not greater (ZF=1 
or SF≠ OF).

0F 4E /r CMOVNG r32, r/m32 RM Valid Valid Move if not greater (ZF=1 
or SF≠ OF).

REX.W + 0F 4E 
/r

CMOVNG r64, r/m64 RM Valid N.E. Move if not greater (ZF=1 
or SF≠ OF).

0F 4C /r CMOVNGE r16, 
r/m16

RM Valid Valid Move if not greater or equal 
(SF≠ OF).

0F 4C /r CMOVNGE r32, 
r/m32

RM Valid Valid Move if not greater or equal 
(SF≠ OF).

REX.W + 0F 4C 
/r

CMOVNGE r64, 
r/m64

RM Valid N.E. Move if not greater or equal 
(SF≠ OF).

0F 4D /r CMOVNL r16, r/m16 RM Valid Valid Move if not less (SF=OF).

0F 4D /r CMOVNL r32, r/m32 RM Valid Valid Move if not less (SF=OF).

REX.W + 0F 4D 
/r

CMOVNL r64, r/m64 RM Valid N.E. Move if not less (SF=OF).

0F 4F /r CMOVNLE r16, 
r/m16

RM Valid Valid Move if not less or equal 
(ZF=0 and SF=OF).

0F 4F /r CMOVNLE r32, 
r/m32

RM Valid Valid Move if not less or equal 
(ZF=0 and SF=OF).

REX.W + 0F 4F 
/r

CMOVNLE r64, 
r/m64

RM Valid N.E. Move if not less or equal 
(ZF=0 and SF=OF).

0F 41 /r CMOVNO r16, r/m16 RM Valid Valid Move if not overflow 
(OF=0).

0F 41 /r CMOVNO r32, r/m32 RM Valid Valid Move if not overflow 
(OF=0).
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Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

REX.W + 0F 41 
/r

CMOVNO r64, r/m64 RM Valid N.E. Move if not overflow 
(OF=0).

0F 4B /r CMOVNP r16, r/m16 RM Valid Valid Move if not parity (PF=0).

0F 4B /r CMOVNP r32, r/m32 RM Valid Valid Move if not parity (PF=0).

REX.W + 0F 4B 
/r

CMOVNP r64, r/m64 RM Valid N.E. Move if not parity (PF=0).

0F 49 /r CMOVNS r16, r/m16 RM Valid Valid Move if not sign (SF=0).

0F 49 /r CMOVNS r32, r/m32 RM Valid Valid Move if not sign (SF=0).

REX.W + 0F 49 
/r

CMOVNS r64, r/m64 RM Valid N.E. Move if not sign (SF=0).

0F 45 /r CMOVNZ r16, r/m16 RM Valid Valid Move if not zero (ZF=0).

0F 45 /r CMOVNZ r32, r/m32 RM Valid Valid Move if not zero (ZF=0).

REX.W + 0F 45 
/r

CMOVNZ r64, r/m64 RM Valid N.E. Move if not zero (ZF=0).

0F 40 /r CMOVO r16, r/m16 RM Valid Valid Move if overflow (OF=1).

0F 40 /r CMOVO r32, r/m32 RM Valid Valid Move if overflow (OF=1).

REX.W + 0F 40 
/r

CMOVO r64, r/m64 RM Valid N.E. Move if overflow (OF=1).

0F 4A /r CMOVP r16, r/m16 RM Valid Valid Move if parity (PF=1).

0F 4A /r CMOVP r32, r/m32 RM Valid Valid Move if parity (PF=1).

REX.W + 0F 4A 
/r

CMOVP r64, r/m64 RM Valid N.E. Move if parity (PF=1).

0F 4A /r CMOVPE r16, r/m16 RM Valid Valid Move if parity even (PF=1).

0F 4A /r CMOVPE r32, r/m32 RM Valid Valid Move if parity even (PF=1).

REX.W + 0F 4A 
/r

CMOVPE r64, r/m64 RM Valid N.E. Move if parity even (PF=1).

0F 4B /r CMOVPO r16, r/m16 RM Valid Valid Move if parity odd (PF=0).

0F 4B /r CMOVPO r32, r/m32 RM Valid Valid Move if parity odd (PF=0).

REX.W + 0F 4B 
/r

CMOVPO r64, r/m64 RM Valid N.E. Move if parity odd (PF=0).

0F 48 /r CMOVS r16, r/m16 RM Valid Valid Move if sign (SF=1).

0F 48 /r CMOVS r32, r/m32 RM Valid Valid Move if sign (SF=1).

REX.W + 0F 48 
/r

CMOVS r64, r/m64 RM Valid N.E. Move if sign (SF=1).

0F 44 /r CMOVZ r16, r/m16 RM Valid Valid Move if zero (ZF=1).
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Instruction Operand Encoding

Description

The CMOVcc instructions check the state of one or more of the status flags in the 
EFLAGS register (CF, OF, PF, SF, and ZF) and perform a move operation if the flags are 
in a specified state (or condition). A condition code (cc) is associated with each 
instruction to indicate the condition being tested for. If the condition is not satisfied, 
a move is not performed and execution continues with the instruction following the 
CMOVcc instruction.

These instructions can move 16-bit, 32-bit or 64-bit values from memory to a 
general-purpose register or from one general-purpose register to another. Condi-
tional moves of 8-bit register operands are not supported.

The condition for each CMOVcc mnemonic is given in the description column of the 
above table. The terms “less” and “greater” are used for comparisons of signed inte-
gers and the terms “above” and “below” are used for unsigned integers.

Because a particular state of the status flags can sometimes be interpreted in two 
ways, two mnemonics are defined for some opcodes. For example, the CMOVA 
(conditional move if above) instruction and the CMOVNBE (conditional move if not 
below or equal) instruction are alternate mnemonics for the opcode 0F 47H. 

The CMOVcc instructions were introduced in P6 family processors; however, these 
instructions may not be supported by all IA-32 processors. Software can determine if 
the CMOVcc instructions are supported by checking the processor’s feature informa-
tion with the CPUID instruction (see “CPUID—CPU Identification” in this chapter).

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R 
prefix permits access to additional registers (R8-R15). Use of the REX.W prefix 
promotes operation to 64 bits. See the summary chart at the beginning of this 
section for encoding data and limits.

Operation

temp ← SRC

IF condition TRUE

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 44 /r CMOVZ r32, r/m32 RM Valid Valid Move if zero (ZF=1).

REX.W + 0F 44 
/r

CMOVZ r64, r/m64 RM Valid N.E. Move if zero (ZF=1).

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
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THEN 
DEST ← temp;

FI;
ELSE

IF (OperandSize = 32 and IA-32e mode active)
THEN

DEST[63:32] ← 0;
FI;

FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS 

segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made.
#UD If the LOCK prefix is used.
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Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
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CMP—Compare Two Operands
Opcode Instruction Op/ 

En
64-Bit 
Mode

Compat/
Leg Mode

Description

3C ib CMP AL, imm8 I Valid Valid Compare imm8 with AL.

3D iw CMP AX, imm16 I Valid Valid Compare imm16 with AX.

3D id CMP EAX, imm32 I Valid Valid Compare imm32 with EAX.

REX.W + 3D id CMP RAX, imm32 I Valid N.E. Compare imm32 sign-
extended to 64-bits with 
RAX.

80 /7 ib CMP r/m8, imm8 MI Valid Valid Compare imm8 with r/m8.

REX + 80 /7 ib CMP r/m8*, imm8 MI Valid N.E. Compare imm8 with r/m8.

81 /7 iw CMP r/m16, 
imm16

MI Valid Valid Compare imm16 with 
r/m16.

81 /7 id CMP r/m32, 
imm32

MI Valid Valid Compare imm32 with 
r/m32.

REX.W + 81 /7 
id

CMP r/m64, 
imm32

MI Valid N.E. Compare imm32 sign-
extended to 64-bits with 
r/m64.

83 /7 ib CMP r/m16, imm8 MI Valid Valid Compare imm8 with r/m16.

83 /7 ib CMP r/m32, imm8 MI Valid Valid Compare imm8 with r/m32.

REX.W + 83 /7 
ib

CMP r/m64, imm8 MI Valid N.E. Compare imm8 with r/m64.

38 /r CMP r/m8, r8 MR Valid Valid Compare r8 with r/m8.

REX + 38 /r CMP r/m8*, r8* MR Valid N.E. Compare r8 with r/m8.

39 /r CMP r/m16, r16 MR Valid Valid Compare r16 with r/m16.

39 /r CMP r/m32, r32 MR Valid Valid Compare r32 with r/m32.

REX.W + 39 /r CMP r/m64,r64 MR Valid N.E. Compare r64 with r/m64.

3A /r CMP r8, r/m8 RM Valid Valid Compare r/m8 with r8.

REX + 3A /r CMP r8*, r/m8* RM Valid N.E. Compare r/m8 with r8.

3B /r CMP r16, r/m16 RM Valid Valid Compare r/m16 with r16.

3B /r CMP r32, r/m32 RM Valid Valid Compare r/m32 with r32.

REX.W + 3B /r CMP r64, r/m64 RM Valid N.E. Compare r/m64 with r64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is 

used: AH, BH, CH, DH. 
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Instruction Operand Encoding

Description

Compares the first source operand with the second source operand and sets the 
status flags in the EFLAGS register according to the results. The comparison is 
performed by subtracting the second operand from the first operand and then setting 
the status flags in the same manner as the SUB instruction. When an immediate 
value is used as an operand, it is sign-extended to the length of the first operand.

The condition codes used by the Jcc, CMOVcc, and SETcc instructions are based on 
the results of a CMP instruction. Appendix B, “EFLAGS Condition Codes,” in the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, shows 
the relationship of the status flags and the condition codes.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R 
prefix permits access to additional registers (R8-R15). Use of the REX.W prefix 
promotes operation to 64 bits. See the summary chart at the beginning of this 
section for encoding data and limits.

Operation

temp ← SRC1 − SignExtend(SRC2); 
ModifyStatusFlags; (* Modify status flags in the same manner as the SUB instruction*)

Flags Affected

The CF, OF, SF, ZF, AF, and PF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

MR ModRM:r/m (r, w) ModRM:reg (w) NA NA

MI ModRM:r/m (r, w) imm8 NA NA

I AL/AX/EAX/RAX imm8 NA NA
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#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS 

segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
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CMPPD—Compare Packed Double-Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a SIMD compare of the packed double-precision floating-point values in the 
source operand (second operand) and the destination operand (first operand) and 
returns the results of the comparison to the destination operand. The comparison 
predicate operand (third operand) specifies the type of comparison performed on 
each of the pairs of packed values. The result of each comparison is a quadword 
mask of all 1s (comparison true) or all 0s (comparison false). 
128-bit Legacy SSE version: The first source and destination operand (first operand) 
is an XMM register. The second source operand (second operand) can be an XMM 
register or 128-bit memory location. The comparison predicate operand is an 8-bit 
immediate, bits 2:0 of the immediate define the type of comparison to be performed 
(see Table 3-7). Bits 7:3 of the immediate is reserved. Bits (VLMAX-1:128) of the 
corresponding YMM destination register remain unchanged. Two comparisons are 
performed with results written to bits 127:0 of the destination operand.

Opcode/
Instruction

Op/ 
En

64/32-
bit Mode

CPUID 
Feature 
Flag

Description

66 0F C2 /r ib

CMPPD xmm1, xmm2/m128, imm8

RMI V/V SSE2 Compare packed double-
precision floating-point 
values in xmm2/m128 and 
xmm1 using imm8 as 
comparison predicate.

VEX.NDS.128.66.0F.WIG C2 /r ib

VCMPPD xmm1, xmm2, xmm3/m128, 
imm8

RVMI V/V AVX Compare packed double-
precision floating-point 
values in xmm3/m128 and 
xmm2 using bits 4:0 of 
imm8 as a comparison 
predicate.

VEX.NDS.256.66.0F.WIG C2 /r ib

VCMPPD ymm1, ymm2, ymm3/m256, 
imm8

RVMI V/V AVX Compare packed double-
precision floating-point 
values in ymm3/m256 and 
ymm2 using bits 4:0 of 
imm8 as a comparison 
predicate.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
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The unordered relationship is true when at least one of the two source operands 
being compared is a NaN; the ordered relationship is true when neither source 
operand is a NaN.

A subsequent computational instruction that uses the mask result in the destination 
operand as an input operand will not generate an exception, because a mask of all 0s 
corresponds to a floating-point value of +0.0 and a mask of all 1s corresponds to a 
QNaN.

Note that the processors with “CPUID.1H:ECX.AVX =0” do not implement the 
greater-than, greater-than-or-equal, not-greater-than, and not-greater-than-or-
equal relations. These comparisons can be made either by using the inverse relation-
ship (that is, use the “not-less-than-or-equal” to make a “greater-than” comparison) 
or by using software emulation. When using software emulation, the program must 

Table 3-7.  Comparison Predicate for CMPPD and CMPPS Instructions 

Predi-
cate

imm8 
Encod-
ing

Description Relation where:
A Is 1st Operand
B Is 2nd 
Operand

Emulation Result if 
NaN 
Operand

QNaN 
Oper-and 
Signals 
Invalid

EQ 000B Equal A = B False No

LT 001B Less-than A < B False Yes

LE 010B Less-than-or-equal A ≤ B False Yes

Greater than A > B Swap 
Operands, 
Use LT

False Yes

Greater-than-or-
equal

A ≥ B Swap 
Operands, 
Use LE

False Yes

UNORD 011B Unordered A, B = Unordered True No

NEQ 100B Not-equal A ≠ B True No

NLT 101B Not-less-than NOT(A < B) True Yes

NLE 110B Not-less-than-or-
equal

NOT(A ≤ B) True Yes

Not-greater-than NOT(A > B) Swap 
Operands, 
Use NLT

True Yes

Not-greater-than-
or-equal

NOT(A ≥ B) Swap 
Operands, 
Use NLE

True Yes

ORD 111B Ordered A , B = Ordered False No
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swap the operands (copying registers when necessary to protect the data that will 
now be in the destination), and then perform the compare using a different predi-
cate. The predicate to be used for these emulations is listed in Table 3-7 under the 
heading Emulation. 

Compilers and assemblers may implement the following two-operand pseudo-ops in 
addition to the three-operand CMPPD instruction, for processors with 
“CPUID.1H:ECX.AVX =0”. See Table 3-8. Compiler should treat reserved Imm8 
values as illegal syntax.
:

The greater-than relations that the processor does not implement, require more than 
one instruction to emulate in software and therefore should not be implemented as 
pseudo-ops. (For these, the programmer should reverse the operands of the corre-
sponding less than relations and use move instructions to ensure that the mask is 
moved to the correct destination register and that the source operand is left intact.)

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional 
registers (XMM8-XMM15).

Enhanced Comparison Predicate for VEX-Encoded VCMPPD
VEX.128 encoded version: The first source operand (second operand) is an XMM 
register. The second source operand (third operand) can be an XMM register or a 
128-bit memory location. Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. Two comparisons are performed with results written to bits 127:0 of the 
destination operand.
VEX.256 encoded version: The first source operand (second operand) is a YMM 
register. The second source operand (third operand) can be a YMM register or a 256-
bit memory location. The destination operand (first operand) is a YMM register. Four 
comparisons are performed with results written to the destination operand.
The comparison predicate operand is an 8-bit immediate:
• For instructions encoded using the VEX prefix, bits 4:0 define the type of 

comparison to be performed (see Table 3-9). Bits 5 through 7 of the immediate 
are reserved. 

Table 3-8.  Pseudo-Op and CMPPD Implementation

Pseudo-Op CMPPD Implementation

CMPEQPD xmm1, xmm2 CMPPD xmm1, xmm2, 0

CMPLTPD xmm1, xmm2 CMPPD xmm1, xmm2, 1

CMPLEPD xmm1, xmm2 CMPPD xmm1, xmm2, 2

CMPUNORDPD xmm1, xmm2 CMPPD xmm1, xmm2, 3

CMPNEQPD xmm1, xmm2 CMPPD xmm1, xmm2, 4

CMPNLTPD xmm1, xmm2 CMPPD xmm1, xmm2, 5

CMPNLEPD xmm1, xmm2 CMPPD xmm1, xmm2, 6

CMPORDPD xmm1, xmm2 CMPPD xmm1, xmm2, 7
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Table 3-9.  Comparison Predicate for VCMPPD and VCMPPS Instructions 

Predicate imm8 
Value

Description Result: A Is 1st Operand, B Is 2nd Operand Signals 
#IA on 
QNANA >B A < B A = B Unordered1

EQ_OQ 
(EQ)

0H Equal (ordered, non-
signaling)

False False True False No

LT_OS 
(LT)

1H Less-than (ordered, 
signaling)

False True False False Yes

LE_OS 
(LE)

2H Less-than-or-equal 
(ordered, signaling)

False True True False Yes

UNORD_
Q 
(UNORD)

3H Unordered (non-
signaling)

False False False True No

NEQ_UQ 
(NEQ)

4H Not-equal 
(unordered, non-
signaling)

True True False True No

NLT_US 
(NLT)

5H Not-less-than 
(unordered, 
signaling)

True False True True Yes

NLE_US 
(NLE)

6H Not-less-than-or-
equal (unordered, 
signaling)

True False False True Yes

ORD_Q 
(ORD)

7H Ordered (non-
signaling)

True True True False No

EQ_UQ 8H Equal (unordered, 
non-signaling)

False False True True No

NGE_US 
(NGE)

9H Not-greater-than-or-
equal (unordered, 
signaling)

False True False True Yes

NGT_US 
(NGT)

AH Not-greater-than 
(unordered, signal-
ing)

False True True True Yes

FALSE_O
Q(FALSE)

BH False (ordered, non-
signaling)

False False False False No

NEQ_OQ CH Not-equal (ordered, 
non-signaling)

True True False False No

GE_OS 
(GE)

DH Greater-than-or-
equal (ordered, sig-
naling)

True False True False Yes
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GT_OS 
(GT)

EH Greater-than 
(ordered, signaling)

True False False False Yes

TRUE_U
Q(TRUE)

FH True (unordered, 
non-signaling)

True True True True No

EQ_OS 10H Equal (ordered, sig-
naling)

False False True False Yes

LT_OQ 11H Less-than (ordered, 
nonsignaling)

False True False False No

LE_OQ 12H Less-than-or-equal 
(ordered, nonsignal-
ing)

False True True False No

UNORD_
S

13H Unordered (signal-
ing)

False False False True Yes

NEQ_US 14H Not-equal (unor-
dered, signaling)

True True False True Yes

NLT_UQ 15H Not-less-than (unor-
dered, nonsignaling)

True False True True No

NLE_UQ 16H Not-less-than-or-
equal (unordered, 
nonsignaling)

True False False True No

ORD_S 17H Ordered (signaling) True True True False Yes

EQ_US 18H Equal (unordered, 
signaling)

False False True True Yes

NGE_UQ 19H Not-greater-than-or-
equal (unordered, 
nonsignaling)

False True False True No

NGT_UQ 1AH Not-greater-than 
(unordered, nonsig-
naling)

False True True True No

FALSE_O
S

1BH False (ordered, sig-
naling)

False False False False Yes

NEQ_OS 1CH Not-equal (ordered, 
signaling)

True True False False Yes

Table 3-9.  Comparison Predicate for VCMPPD and VCMPPS Instructions  (Contd.)

Predicate imm8 
Value

Description Result: A Is 1st Operand, B Is 2nd Operand Signals 
#IA on 
QNANA >B A < B A = B Unordered1
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Processors with “CPUID.1H:ECX.AVX =1” implement the full complement of 32 pred-
icates shown in Table 3-9, software emulation is no longer needed. Compilers and 
assemblers may implement the following three-operand pseudo-ops in addition to 
the four-operand VCMPPD instruction. See Table 3-10, where the notations of reg1 
reg2, and reg3 represent either XMM registers or YMM registers. Compiler should 
treat reserved Imm8 values as illegal syntax. Alternately, intrinsics can map the 
pseudo-ops to pre-defined constants to support a simpler intrinsic interface.
:

GE_OQ 1DH Greater-than-or-
equal (ordered, non-
signaling)

True False True False No

GT_OQ 1EH Greater-than 
(ordered, nonsignal-
ing)

True False False False No

TRUE_US 1FH True (unordered, sig-
naling)

True True True True Yes

NOTES:
1. If either operand A or B is a NAN.

Table 3-10.  Pseudo-Op and VCMPPD Implementation

Pseudo-Op CMPPD Implementation

VCMPEQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 0

VCMPLTPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 1

VCMPLEPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 2

VCMPUNORDPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 3

VCMPNEQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 4

VCMPNLTPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 5

VCMPNLEPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 6

VCMPORDPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 7

VCMPEQ_UQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 8

VCMPNGEPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 9

VCMPNGTPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 0AH

VCMPFALSEPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 0BH

VCMPNEQ_OQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 0CH

Table 3-9.  Comparison Predicate for VCMPPD and VCMPPS Instructions  (Contd.)

Predicate imm8 
Value

Description Result: A Is 1st Operand, B Is 2nd Operand Signals 
#IA on 
QNANA >B A < B A = B Unordered1
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Operation

CASE (COMPARISON PREDICATE) OF
0: OP3  EQ_OQ; OP5  EQ_OQ;
1: OP3  LT_OS; OP5  LT_OS;
2: OP3  LE_OS; OP5  LE_OS;
3: OP3  UNORD_Q; OP5  UNORD_Q;
4: OP3  NEQ_UQ; OP5  NEQ_UQ;
5: OP3  NLT_US; OP5  NLT_US;
6: OP3  NLE_US; OP5  NLE_US;
7: OP3  ORD_Q; OP5  ORD_Q;
8: OP5  EQ_UQ;
9: OP5  NGE_US;

VCMPGEPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 0DH

VCMPGTPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 0EH

VCMPTRUEPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 0FH

VCMPEQ_OSPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 10H

VCMPLT_OQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 11H

VCMPLE_OQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 12H

VCMPUNORD_SPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 13H

VCMPNEQ_USPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 14H

VCMPNLT_UQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 15H

VCMPNLE_UQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 16H

VCMPORD_SPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 17H

VCMPEQ_USPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 18H

VCMPNGE_UQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 19H

VCMPNGT_UQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 1AH

VCMPFALSE_OSPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 1BH

VCMPNEQ_OSPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 1CH

VCMPGE_OQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 1DH

VCMPGT_OQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 1EH

VCMPTRUE_USPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 1FH

Table 3-10.  Pseudo-Op and VCMPPD Implementation

Pseudo-Op CMPPD Implementation
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10: OP5  NGT_US;
11: OP5  FALSE_OQ;
12: OP5  NEQ_OQ;
13: OP5  GE_OS;
14: OP5  GT_OS;
15: OP5  TRUE_UQ;
16: OP5  EQ_OS;
17: OP5  LT_OQ;
18: OP5  LE_OQ;
19: OP5  UNORD_S;
20: OP5  NEQ_US;
21: OP5  NLT_UQ;
22: OP5  NLE_UQ;
23: OP5  ORD_S;
24: OP5  EQ_US;
25: OP5  NGE_UQ;
26: OP5  NGT_UQ;
27: OP5  FALSE_OS;
28: OP5  NEQ_OS;
29: OP5  GE_OQ;
30: OP5  GT_OQ;
31: OP5  TRUE_US;
DEFAULT: Reserved;

CMPPD (128-bit Legacy SSE version)
CMP0  SRC1[63:0] OP3 SRC2[63:0];
CMP1  SRC1[127:64] OP3 SRC2[127:64];
IF CMP0 = TRUE

THEN DEST[63:0]  FFFFFFFFFFFFFFFFH;
ELSE DEST[63:0]  0000000000000000H; FI;

IF CMP1 = TRUE
THEN DEST[127:64]  FFFFFFFFFFFFFFFFH;
ELSE DEST[127:64]  0000000000000000H; FI;

DEST[VLMAX-1:128] (Unmodified)

VCMPPD (VEX.128 encoded version)
CMP0  SRC1[63:0] OP5 SRC2[63:0];
CMP1  SRC1[127:64] OP5 SRC2[127:64];
IF CMP0 = TRUE

THEN DEST[63:0]  FFFFFFFFFFFFFFFFH;
ELSE DEST[63:0]  0000000000000000H; FI;

IF CMP1 = TRUE
THEN DEST[127:64]  FFFFFFFFFFFFFFFFH;
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ELSE DEST[127:64]  0000000000000000H; FI;
DEST[VLMAX-1:128]  0

VCMPPD (VEX.256 encoded version)
CMP0  SRC1[63:0] OP5 SRC2[63:0];
CMP1  SRC1[127:64] OP5 SRC2[127:64];
CMP2  SRC1[191:128] OP5 SRC2[191:128];
CMP3  SRC1[255:192] OP5 SRC2[255:192];
IF CMP0 = TRUE

THEN DEST[63:0]  FFFFFFFFFFFFFFFFH;
ELSE DEST[63:0]  0000000000000000H; FI;

IF CMP1 = TRUE
THEN DEST[127:64]  FFFFFFFFFFFFFFFFH;
ELSE DEST[127:64]  0000000000000000H; FI;

IF CMP2 = TRUE
THEN DEST[191:128]  FFFFFFFFFFFFFFFFH;
ELSE DEST[191:128]  0000000000000000H; FI;

IF CMP3 = TRUE
THEN DEST[255:192]  FFFFFFFFFFFFFFFFH;
ELSE DEST[255:192]  0000000000000000H; FI;

Intel C/C++ Compiler Intrinsic Equivalents

CMPPD for equality: __m128d _mm_cmpeq_pd(__m128d a, __m128d b)

CMPPD for less-than: __m128d _mm_cmplt_pd(__m128d a, __m128d b) 

CMPPD for less-than-or-equal: __m128d _mm_cmple_pd(__m128d a, __m128d b) 

CMPPD for greater-than: __m128d _mm_cmpgt_pd(__m128d a, __m128d b) 

CMPPD for greater-than-or-equal: __m128d _mm_cmpge_pd(__m128d a, __m128d b) 

CMPPD for inequality:  __m128d _mm_cmpneq_pd(__m128d a, __m128d b) 

CMPPD for not-less-than:  __m128d _mm_cmpnlt_pd(__m128d a, __m128d b) 

CMPPD for not-greater-than: __m128d _mm_cmpngt_pd(__m128d a, __m128d b) 

CMPPD for not-greater-than-or-equal: __m128d _mm_cmpnge_pd(__m128d a, __m128d b) 

CMPPD for ordered: __m128d _mm_cmpord_pd(__m128d a, __m128d b) 

CMPPD for unordered: __m128d _mm_cmpunord_pd(__m128d a, __m128d b) 

CMPPD for not-less-than-or-equal: __m128d _mm_cmpnle_pd(__m128d a, __m128d b) 

VCMPPD: __m256 _mm256_cmp_pd(__m256 a, __m256 b, const int imm)

VCMPPD: __m128 _mm_cmp_pd(__m128 a, __m128 b, const int imm)
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SIMD Floating-Point Exceptions

Invalid if SNaN operand and invalid if QNaN and predicate as listed in above table, 
Denormal.

Other Exceptions
See Exceptions Type 2.
3-162 Vol. 2A CMPPD—Compare Packed Double-Precision Floating-Point Values



INSTRUCTION SET REFERENCE, A-L
CMPPS—Compare Packed Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a SIMD compare of the packed single-precision floating-point values in the 
source operand (second operand) and the destination operand (first operand) and 
returns the results of the comparison to the destination operand. The comparison 
predicate operand (third operand) specifies the type of comparison performed on 
each of the pairs of packed values. The result of each comparison is a doubleword 
mask of all 1s (comparison true) or all 0s (comparison false). 
128-bit Legacy SSE version: The first source and destination operand (first operand) 
is an XMM register. The second source operand (second operand) can be an XMM 
register or 128-bit memory location. The comparison predicate operand is an 8-bit 
immediate, bits 2:0 of the immediate define the type of comparison to be performed 
(see Table 3-7). Bits 7:3 of the immediate is reserved. Bits (VLMAX-1:128) of the 
corresponding YMM destination register remain unchanged. Four comparisons are 
performed with results written to bits 127:0 of the destination operand.

Opcode/
Instruction

Op/ 
En

64/32-
bit Mode

CPUID 
Feature 
Flag

Description

0F C2 /r ib

CMPPS xmm1, xmm2/m128, imm8

RMI V/V SSE Compare packed single-
precision floating-point 
values in xmm2/mem and 
xmm1 using imm8 as 
comparison predicate.

VEX.NDS.128.0F.WIG C2 /r ib

VCMPPS xmm1, xmm2, xmm3/m128, 
imm8

RVMI V/V AVX Compare packed single-
precision floating-point 
values in xmm3/m128 and 
xmm2 using bits 4:0 of 
imm8 as a comparison 
predicate.

VEX.NDS.256.0F.WIG C2 /r ib

VCMPPS ymm1, ymm2, ymm3/m256, 
imm8

RVMI V/V AVX Compare packed single-
precision floating-point 
values in ymm3/m256 and 
ymm2 using bits 4:0 of 
imm8 as a comparison 
predicate.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
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The unordered relationship is true when at least one of the two source operands 
being compared is a NaN; the ordered relationship is true when neither source 
operand is a NaN.

A subsequent computational instruction that uses the mask result in the destination 
operand as an input operand will not generate a fault, because a mask of all 0s corre-
sponds to a floating-point value of +0.0 and a mask of all 1s corresponds to a QNaN.

Note that processors with “CPUID.1H:ECX.AVX =0” do not implement the “greater-
than”, “greater-than-or-equal”, “not-greater than”, and “not-greater-than-or-equal 
relations” predicates. These comparisons can be made either by using the inverse 
relationship (that is, use the “not-less-than-or-equal” to make a “greater-than” 
comparison) or by using software emulation. When using software emulation, the 
program must swap the operands (copying registers when necessary to protect the 
data that will now be in the destination), and then perform the compare using a 
different predicate. The predicate to be used for these emulations is listed in Table 
3-7 under the heading Emulation. 

Compilers and assemblers may implement the following two-operand pseudo-ops in 
addition to the three-operand CMPPS instruction, for processors with 
“CPUID.1H:ECX.AVX =0”. See Table 3-11. Compiler should treat reserved Imm8 
values as illegal syntax.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional 
registers (XMM8-XMM15).

The greater-than relations not implemented by processor require more than one 
instruction to emulate in software and therefore should not be implemented as 
pseudo-ops. (For these, the programmer should reverse the operands of the corre-
sponding less than relations and use move instructions to ensure that the mask is 
moved to the correct destination register and that the source operand is left intact.)

Enhanced Comparison Predicate for VEX-Encoded VCMPPS

Table 3-11.  Pseudo-Ops and CMPPS

Pseudo-Op Implementation

CMPEQPS xmm1, xmm2 CMPPS xmm1, xmm2, 0

CMPLTPS xmm1, xmm2 CMPPS xmm1, xmm2, 1

CMPLEPS xmm1, xmm2 CMPPS xmm1, xmm2, 2

CMPUNORDPS xmm1, xmm2 CMPPS xmm1, xmm2, 3

CMPNEQPS xmm1, xmm2 CMPPS xmm1, xmm2, 4

CMPNLTPS xmm1, xmm2 CMPPS xmm1, xmm2, 5

CMPNLEPS xmm1, xmm2 CMPPS xmm1, xmm2, 6

CMPORDPS xmm1, xmm2 CMPPS xmm1, xmm2, 7
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VEX.128 encoded version: The first source operand (second operand) is an XMM 
register. The second source operand (third operand) can be an XMM register or a 
128-bit memory location. Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. Four comparisons are performed with results written to bits 127:0 of the 
destination operand.
VEX.256 encoded version: The first source operand (second operand) is a YMM 
register. The second source operand (third operand) can be a YMM register or a 256-
bit memory location. The destination operand (first operand) is a YMM register. Eight 
comparisons are performed with results written to the destination operand.
The comparison predicate operand is an 8-bit immediate:
• For instructions encoded using the VEX prefix, bits 4:0 define the type of 

comparison to be performed (see Table 3-9). Bits 5 through 7 of the immediate 
are reserved. 

Processors with “CPUID.1H:ECX.AVX =1” implement the full complement of 32 pred-
icates shown in Table 3-9, software emulation is no longer needed. Compilers and 
assemblers may implement the following three-operand pseudo-ops in addition to 
the four-operand VCMPPS instruction. See Table 3-12, where the notation of reg1 
and reg2 represent either XMM registers or YMM registers. Compiler should treat 
reserved Imm8 values as illegal syntax. Alternately, intrinsics can map the pseudo-
ops to pre-defined constants to support a simpler intrinsic interface.
:

Table 3-12.  Pseudo-Op and VCMPPS Implementation

Pseudo-Op CMPPS Implementation

VCMPEQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 0

VCMPLTPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 1

VCMPLEPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 2

VCMPUNORDPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 3

VCMPNEQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 4

VCMPNLTPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 5

VCMPNLEPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 6

VCMPORDPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 7

VCMPEQ_UQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 8

VCMPNGEPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 9

VCMPNGTPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 0AH

VCMPFALSEPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 0BH

VCMPNEQ_OQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 0CH

VCMPGEPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 0DH

VCMPGTPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 0EH
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Operation

CASE (COMPARISON PREDICATE) OF
0: OP3  EQ_OQ; OP5  EQ_OQ;
1: OP3  LT_OS; OP5  LT_OS;
2: OP3  LE_OS; OP5  LE_OS;
3: OP3  UNORD_Q; OP5  UNORD_Q;
4: OP3  NEQ_UQ; OP5  NEQ_UQ;
5: OP3  NLT_US; OP5  NLT_US;
6: OP3  NLE_US; OP5  NLE_US;
7: OP3  ORD_Q; OP5  ORD_Q;
8: OP5  EQ_UQ;
9: OP5  NGE_US;
10: OP5  NGT_US;
11: OP5  FALSE_OQ;
12: OP5  NEQ_OQ;
13: OP5  GE_OS;
14: OP5  GT_OS;

VCMPTRUEPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 0FH

VCMPEQ_OSPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 10H

VCMPLT_OQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 11H

VCMPLE_OQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 12H

VCMPUNORD_SPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 13H

VCMPNEQ_USPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 14H

VCMPNLT_UQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 15H

VCMPNLE_UQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 16H

VCMPORD_SPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 17H

VCMPEQ_USPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 18H

VCMPNGE_UQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 19H

VCMPNGT_UQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 1AH

VCMPFALSE_OSPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 1BH

VCMPNEQ_OSPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 1CH

VCMPGE_OQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 1DH

VCMPGT_OQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 1EH

VCMPTRUE_USPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 1FH

Table 3-12.  Pseudo-Op and VCMPPS Implementation

Pseudo-Op CMPPS Implementation
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15: OP5  TRUE_UQ;
16: OP5  EQ_OS;
17: OP5  LT_OQ;
18: OP5  LE_OQ;
19: OP5  UNORD_S;
20: OP5  NEQ_US;
21: OP5  NLT_UQ;
22: OP5  NLE_UQ;
23: OP5  ORD_S;
24: OP5  EQ_US;
25: OP5  NGE_UQ;
26: OP5  NGT_UQ;
27: OP5  FALSE_OS;
28: OP5  NEQ_OS;
29: OP5  GE_OQ;
30: OP5  GT_OQ;
31: OP5  TRUE_US;
DEFAULT: Reserved

EASC;

CMPPS (128-bit Legacy SSE version)
CMP0  SRC1[31:0] OP3 SRC2[31:0];
CMP1  SRC1[63:32] OP3 SRC2[63:32];
CMP2  SRC1[95:64] OP3 SRC2[95:64];
CMP3  SRC1[127:96] OP3 SRC2[127:96];
IF CMP0 = TRUE

THEN DEST[31:0] FFFFFFFFH;
ELSE DEST[31:0]  000000000H; FI;

IF CMP1 = TRUE
THEN DEST[63:32]  FFFFFFFFH;
ELSE DEST[63:32]  000000000H; FI;

IF CMP2 = TRUE
THEN DEST[95:64]  FFFFFFFFH;
ELSE DEST[95:64]  000000000H; FI;

IF CMP3 = TRUE
THEN DEST[127:96]  FFFFFFFFH;
ELSE DEST[127:96] 000000000H; FI;

DEST[VLMAX-1:128] (Unmodified)

VCMPPS (VEX.128 encoded version)
CMP0  SRC1[31:0] OP5 SRC2[31:0];
CMP1  SRC1[63:32] OP5 SRC2[63:32];
CMP2  SRC1[95:64] OP5 SRC2[95:64];
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CMP3  SRC1[127:96] OP5 SRC2[127:96];
IF CMP0 = TRUE

THEN DEST[31:0] FFFFFFFFH;
ELSE DEST[31:0]  000000000H; FI;

IF CMP1 = TRUE
THEN DEST[63:32]  FFFFFFFFH;
ELSE DEST[63:32]  000000000H; FI;

IF CMP2 = TRUE
THEN DEST[95:64]  FFFFFFFFH;
ELSE DEST[95:64]  000000000H; FI;

IF CMP3 = TRUE
THEN DEST[127:96]  FFFFFFFFH;
ELSE DEST[127:96] 000000000H; FI;

DEST[VLMAX-1:128]  0

VCMPPS (VEX.256 encoded version)
CMP0  SRC1[31:0] OP5 SRC2[31:0];
CMP1  SRC1[63:32] OP5 SRC2[63:32];
CMP2  SRC1[95:64] OP5 SRC2[95:64];
CMP3  SRC1[127:96] OP5 SRC2[127:96];
CMP4  SRC1[159:128] OP5 SRC2[159:128];
CMP5  SRC1[191:160] OP5 SRC2[191:160];
CMP6  SRC1[223:192] OP5 SRC2[223:192];
CMP7  SRC1[255:224] OP5 SRC2[255:224];
IF CMP0 = TRUE

THEN DEST[31:0] FFFFFFFFH;
ELSE DEST[31:0]  000000000H; FI;

IF CMP1 = TRUE
THEN DEST[63:32]  FFFFFFFFH;
ELSE DEST[63:32] 000000000H; FI;

IF CMP2 = TRUE
THEN DEST[95:64]  FFFFFFFFH;
ELSE DEST[95:64]  000000000H; FI;

IF CMP3 = TRUE
THEN DEST[127:96]  FFFFFFFFH;
ELSE DEST[127:96]  000000000H; FI;

IF CMP4 = TRUE
THEN DEST[159:128]  FFFFFFFFH;
ELSE DEST[159:128]  000000000H; FI;

IF CMP5 = TRUE
THEN DEST[191:160]  FFFFFFFFH;
ELSE DEST[191:160]  000000000H; FI;

IF CMP6 = TRUE
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THEN DEST[223:192]  FFFFFFFFH;
ELSE DEST[223:192] 000000000H; FI;

IF CMP7 = TRUE
THEN DEST[255:224]  FFFFFFFFH;
ELSE DEST[255:224]  000000000H; FI;

Intel C/C++ Compiler Intrinsic Equivalents

CMPPS for equality:  __m128 _mm_cmpeq_ps(__m128 a, __m128 b)

CMPPS for less-than: __m128 _mm_cmplt_ps(__m128 a, __m128 b) 

CMPPS for less-than-or-equal: __m128 _mm_cmple_ps(__m128 a, __m128 b) 

CMPPS for greater-than: __m128 _mm_cmpgt_ps(__m128 a, __m128 b) 

CMPPS for greater-than-or-equal: __m128 _mm_cmpge_ps(__m128 a, __m128 b) 

CMPPS for inequality: __m128 _mm_cmpneq_ps(__m128 a, __m128 b) 

CMPPS for not-less-than: __m128 _mm_cmpnlt_ps(__m128 a, __m128 b) 

CMPPS for not-greater-than: __m128 _mm_cmpngt_ps(__m128 a, __m128 b) 

CMPPS for not-greater-than-or-equal: __m128 _mm_cmpnge_ps(__m128 a, __m128 b) 

CMPPS for ordered: __m128 _mm_cmpord_ps(__m128 a, __m128 b) 

CMPPS for unordered: __m128 _mm_cmpunord_ps(__m128 a, __m128 b) 

CMPPS for not-less-than-or-equal: __m128 _mm_cmpnle_ps(__m128 a, __m128 b) 

VCMPPS: __m256 _mm256_cmp_ps(__m256 a, __m256 b, const int imm)

VCMPPS: __m128 _mm_cmp_ps(__m128 a, __m128 b, const int imm)

SIMD Floating-Point Exceptions

Invalid if SNaN operand and invalid if QNaN and predicate as listed in above table, 
Denormal.

Other Exceptions
See Exceptions Type 2.
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CMPS/CMPSB/CMPSW/CMPSD/CMPSQ—Compare String Operands
Opcode Instruction Op/ 

En
64-Bit 
Mode

Compat/
Leg Mode

Description

A6 CMPS m8, m8 NP Valid Valid For legacy mode, compare 
byte at address DS:(E)SI 
with byte at address 
ES:(E)DI; For 64-bit mode 
compare byte at address 
(R|E)SI to byte at address 
(R|E)DI. The status flags are 
set accordingly.

A7 CMPS m16, m16 NP Valid Valid For legacy mode, compare 
word at address DS:(E)SI 
with word at address 
ES:(E)DI; For 64-bit mode 
compare word at address 
(R|E)SI with word at address 
(R|E)DI. The status flags are 
set accordingly.

A7 CMPS m32, m32 NP Valid Valid For legacy mode, compare 
dword at address DS:(E)SI at 
dword at address ES:(E)DI; 
For 64-bit mode compare 
dword at address (R|E)SI at 
dword at address (R|E)DI. 
The status flags are set 
accordingly.

REX.W + A7 CMPS m64, m64 NP Valid N.E. Compares quadword at 
address (R|E)SI with 
quadword at address (R|E)DI 
and sets the status flags 
accordingly.

A6 CMPSB NP Valid Valid For legacy mode, compare 
byte at address DS:(E)SI 
with byte at address 
ES:(E)DI; For 64-bit mode 
compare byte at address 
(R|E)SI with byte at address 
(R|E)DI. The status flags are 
set accordingly.
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Instruction Operand Encoding

Description

Compares the byte, word, doubleword, or quadword specified with the first source 
operand with the byte, word, doubleword, or quadword specified with the second 
source operand and sets the status flags in the EFLAGS register according to the 
results.

Both source operands are located in memory. The address of the first source operand 
is read from DS:SI, DS:ESI or RSI (depending on the address-size attribute of the 
instruction is 16, 32, or 64, respectively). The address of the second source operand 
is read from ES:DI, ES:EDI or RDI (again depending on the address-size attribute of 
the instruction is 16, 32, or 64). The DS segment may be overridden with a segment 
override prefix, but the ES segment cannot be overridden.

At the assembly-code level, two forms of this instruction are allowed: the “explicit-
operands” form and the “no-operands” form. The explicit-operands form (specified 
with the CMPS mnemonic) allows the two source operands to be specified explicitly. 

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

A7 CMPSW NP Valid Valid For legacy mode, compare 
word at address DS:(E)SI 
with word at address 
ES:(E)DI; For 64-bit mode 
compare word at address 
(R|E)SI with word at address 
(R|E)DI. The status flags are 
set accordingly.

A7 CMPSD NP Valid Valid For legacy mode, compare 
dword at address DS:(E)SI 
with dword at address 
ES:(E)DI; For 64-bit mode 
compare dword at address 
(R|E)SI with dword at 
address (R|E)DI. The status 
flags are set accordingly.

REX.W + A7 CMPSQ NP Valid N.E. Compares quadword at 
address (R|E)SI with 
quadword at address (R|E)DI 
and sets the status flags 
accordingly.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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Here, the source operands should be symbols that indicate the size and location of 
the source values. This explicit-operand form is provided to allow documentation. 
However, note that the documentation provided by this form can be misleading. That 
is, the source operand symbols must specify the correct type (size) of the operands 
(bytes, words, or doublewords, quadwords), but they do not have to specify the 
correct location. Locations of the source operands are always specified by the 
DS:(E)SI (or RSI) and ES:(E)DI (or RDI) registers, which must be loaded correctly 
before the compare string instruction is executed.

The no-operands form provides “short forms” of the byte, word, and doubleword 
versions of the CMPS instructions. Here also the DS:(E)SI (or RSI) and ES:(E)DI (or 
RDI) registers are assumed by the processor to specify the location of the source 
operands. The size of the source operands is selected with the mnemonic: CMPSB 
(byte comparison), CMPSW (word comparison), CMPSD (doubleword comparison), 
or CMPSQ (quadword comparison using REX.W).

After the comparison, the (E/R)SI and (E/R)DI registers increment or decrement 
automatically according to the setting of the DF flag in the EFLAGS register. (If the DF 
flag is 0, the (E/R)SI and (E/R)DI register increment; if the DF flag is 1, the registers 
decrement.) The registers increment or decrement by 1 for byte operations, by 2 for 
word operations, 4 for doubleword operations. If operand size is 64, RSI and RDI 
registers increment by 8 for quadword operations.

The CMPS, CMPSB, CMPSW, CMPSD, and CMPSQ instructions can be preceded by the 
REP prefix for block comparisons. More often, however, these instructions will be 
used in a LOOP construct that takes some action based on the setting of the status 
flags before the next comparison is made. See “REP/REPE/REPZ 
/REPNE/REPNZ—Repeat String Operation Prefix” in Chapter 4 of the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 2B, for a description of the 
REP prefix.

In 64-bit mode, the instruction’s default address size is 64 bits, 32 bit address size is 
supported using the prefix 67H. Use of the REX.W prefix promotes doubleword oper-
ation to 64 bits (see CMPSQ). See the summary chart at the beginning of this section 
for encoding data and limits.

Operation

temp ← SRC1 - SRC2;
SetStatusFlags(temp);

IF (64-Bit Mode)
THEN

IF (Byte comparison)
THEN IF DF = 0

THEN 
(R|E)SI ← (R|E)SI + 1; 
(R|E)DI ← (R|E)DI + 1; 

ELSE 
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(R|E)SI ← (R|E)SI – 1; 
(R|E)DI ← (R|E)DI – 1; 

FI;
ELSE IF (Word comparison)

THEN IF DF = 0
THEN 

(R|E)SI ← (R|E)SI + 2; 
(R|E)DI ← (R|E)DI + 2; 

ELSE 
(R|E)SI ← (R|E)SI – 2; 
(R|E)DI ← (R|E)DI – 2; 

FI;
ELSE IF (Doubleword comparison)

THEN IF DF = 0
THEN 

(R|E)SI ← (R|E)SI + 4; 
(R|E)DI ← (R|E)DI + 4; 

ELSE 
(R|E)SI ← (R|E)SI – 4; 
(R|E)DI ← (R|E)DI – 4; 

FI;
ELSE (* Quadword comparison *)

THEN IF DF = 0
(R|E)SI ← (R|E)SI + 8; 
(R|E)DI ← (R|E)DI + 8; 

ELSE 
(R|E)SI ← (R|E)SI – 8; 
(R|E)DI ← (R|E)DI – 8; 

FI;
FI;

ELSE (* Non-64-bit Mode *)
IF (byte comparison)
THEN IF DF = 0

THEN 
(E)SI ← (E)SI + 1; 
(E)DI ← (E)DI + 1; 

ELSE 
(E)SI ← (E)SI – 1; 
(E)DI ← (E)DI – 1; 

FI;
ELSE IF (Word comparison)

THEN IF DF = 0
(E)SI ← (E)SI + 2; 
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(E)DI ← (E)DI + 2; 
ELSE 

(E)SI ← (E)SI – 2; 
(E)DI ← (E)DI – 2; 

FI;
ELSE (* Doubleword comparison *)

THEN IF DF = 0
(E)SI ← (E)SI + 4; 
(E)DI ← (E)DI + 4; 

ELSE 
(E)SI ← (E)SI – 4; 
(E)DI ← (E)DI – 4; 

FI;
FI;

FI;

Flags Affected

The CF, OF, SF, ZF, AF, and PF flags are set according to the temporary result of the 
comparison.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS 

segment limit.
#UD If the LOCK prefix is used.
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Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
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CMPSD—Compare Scalar Double-Precision Floating-Point Values

Instruction Operand Encoding

Description

Compares the low double-precision floating-point values in the source operand 
(second operand) and the destination operand (first operand) and returns the results 
of the comparison to the destination operand. The comparison predicate operand 
(third operand) specifies the type of comparison performed. The comparison result is 
a quadword mask of all 1s (comparison true) or all 0s (comparison false). 
128-bit Legacy SSE version: The first source and destination operand (first operand) 
is an XMM register. The second source operand (second operand) can be an XMM 
register or 64-bit memory location. The comparison predicate operand is an 8-bit 
immediate, bits 2:0 of the immediate define the type of comparison to be performed 
(see Table 3-7). Bits 7:3 of the immediate is reserved. Bits (VLMAX-1:64) of the 
corresponding YMM destination register remain unchanged. 

The unordered relationship is true when at least one of the two source operands 
being compared is a NaN; the ordered relationship is true when neither source 
operand is a NaN.

A subsequent computational instruction that uses the mask result in the destination 
operand as an input operand will not generate a fault, because a mask of all 0s corre-
sponds to a floating-point value of +0.0 and a mask of all 1s corresponds to a QNaN.

Note that processors with “CPUID.1H:ECX.AVX =0” do not implement the “greater-
than”, “greater-than-or-equal”, “not-greater than”, and “not-greater-than-or-equal 

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F2 0F C2 /r ib

CMPSD xmm1, xmm2/m64, imm8

RMI V/V SSE2 Compare low double-
precision floating-point 
value in xmm2/m64 and 
xmm1 using imm8 as 
comparison predicate.

VEX.NDS.LIG.F2.0F.WIG C2 /r ib

VCMPSD xmm1, xmm2, xmm3/m64, 
imm8

RVMI V/V AVX Compare low double 
precision floating-point 
value in xmm3/m64 and 
xmm2 using bits 4:0 of 
imm8 as comparison 
predicate.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
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relations” predicates. These comparisons can be made either by using the inverse 
relationship (that is, use the “not-less-than-or-equal” to make a “greater-than” 
comparison) or by using software emulation. When using software emulation, the 
program must swap the operands (copying registers when necessary to protect the 
data that will now be in the destination operand), and then perform the compare 
using a different predicate. The predicate to be used for these emulations is listed in 
Table 3-7 under the heading Emulation.

Compilers and assemblers may implement the following two-operand pseudo-ops in 
addition to the three-operand CMPSD instruction, for processors with 
“CPUID.1H:ECX.AVX =0”. See Table 3-13. Compiler should treat reserved Imm8 
values as illegal syntax.

The greater-than relations not implemented in the processor require more than one 
instruction to emulate in software and therefore should not be implemented as 
pseudo-ops. (For these, the programmer should reverse the operands of the corre-
sponding less than relations and use move instructions to ensure that the mask is 
moved to the correct destination register and that the source operand is left intact.)

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional 
registers (XMM8-XMM15).

Enhanced Comparison Predicate for VEX-Encoded VCMPSD
VEX.128 encoded version: The first source operand (second operand) is an XMM 
register. The second source operand (third operand) can be an XMM register or a 64-
bit memory location. Bits (VLMAX-1:128) of the destination YMM register are zeroed. 
The comparison predicate operand is an 8-bit immediate: 
• For instructions encoded using the VEX prefix, bits 4:0 define the type of 

comparison to be performed (see Table 3-9). Bits 5 through 7 of the immediate 
are reserved. 

Processors with “CPUID.1H:ECX.AVX =1” implement the full complement of 32 pred-
icates shown in Table 3-9, software emulation is no longer needed. Compilers and 

Table 3-13.  Pseudo-Ops and CMPSD 

Pseudo-Op Implementation

CMPEQSD xmm1, xmm2 CMPSD xmm1,xmm2, 0

CMPLTSD xmm1, xmm2 CMPSD xmm1,xmm2, 1

CMPLESD xmm1, xmm2 CMPSD xmm1,xmm2, 2

CMPUNORDSD xmm1, xmm2 CMPSD xmm1,xmm2, 3

CMPNEQSD xmm1, xmm2 CMPSD xmm1,xmm2, 4

CMPNLTSD xmm1, xmm2 CMPSD xmm1,xmm2, 5

CMPNLESD xmm1, xmm2 CMPSD xmm1,xmm2, 6

CMPORDSD xmm1, xmm2 CMPSD xmm1,xmm2, 7
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assemblers may implement the following three-operand pseudo-ops in addition to 
the four-operand VCMPSD instruction. See Table 3-14, where the notations of reg1 
reg2, and reg3 represent either XMM registers or YMM registers. Compiler should 
treat reserved Imm8 values as illegal syntax. Alternately, intrinsics can map the 
pseudo-ops to pre-defined constants to support a simpler intrinsic interface.
:

Table 3-14.  Pseudo-Op and VCMPSD Implementation

Pseudo-Op CMPSD Implementation

VCMPEQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 0

VCMPLTSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 1

VCMPLESD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 2

VCMPUNORDSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 3

VCMPNEQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 4

VCMPNLTSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 5

VCMPNLESD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 6

VCMPORDSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 7

VCMPEQ_UQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 8

VCMPNGESD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 9

VCMPNGTSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 0AH

VCMPFALSESD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 0BH

VCMPNEQ_OQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 0CH

VCMPGESD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 0DH

VCMPGTSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 0EH

VCMPTRUESD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 0FH

VCMPEQ_OSSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 10H

VCMPLT_OQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 11H

VCMPLE_OQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 12H

VCMPUNORD_SSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 13H

VCMPNEQ_USSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 14H

VCMPNLT_UQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 15H

VCMPNLE_UQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 16H

VCMPORD_SSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 17H

VCMPEQ_USSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 18H

VCMPNGE_UQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 19H

VCMPNGT_UQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 1AH
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Operation

CASE (COMPARISON PREDICATE) OF
0: OP3  EQ_OQ; OP5  EQ_OQ;
1: OP3  LT_OS; OP5  LT_OS;
2: OP3  LE_OS; OP5  LE_OS;
3: OP3  UNORD_Q; OP5  UNORD_Q;
4: OP3  NEQ_UQ; OP5  NEQ_UQ;
5: OP3  NLT_US; OP5  NLT_US;
6: OP3  NLE_US; OP5  NLE_US;
7: OP3  ORD_Q; OP5  ORD_Q;
8: OP5  EQ_UQ;
9: OP5  NGE_US;
10: OP5  NGT_US;
11: OP5  FALSE_OQ;
12: OP5  NEQ_OQ;
13: OP5  GE_OS;
14: OP5  GT_OS;
15: OP5  TRUE_UQ;
16: OP5  EQ_OS;
17: OP5  LT_OQ;
18: OP5  LE_OQ;
19: OP5  UNORD_S;
20: OP5  NEQ_US;
21: OP5  NLT_UQ;
22: OP5  NLE_UQ;
23: OP5  ORD_S;
24: OP5  EQ_US;
25: OP5  NGE_UQ;
26: OP5  NGT_UQ;
27: OP5  FALSE_OS;
28: OP5  NEQ_OS;

VCMPFALSE_OSSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 1BH

VCMPNEQ_OSSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 1CH

VCMPGE_OQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 1DH

VCMPGT_OQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 1EH

VCMPTRUE_USSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 1FH

Table 3-14.  Pseudo-Op and VCMPSD Implementation

Pseudo-Op CMPSD Implementation
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29: OP5  GE_OQ;
30: OP5  GT_OQ;
31: OP5  TRUE_US;
DEFAULT: Reserved

ESAC;

CMPSD (128-bit Legacy SSE version)
CMP0  DEST[63:0] OP3 SRC[63:0];
IF CMP0 = TRUE
THEN DEST[63:0]  FFFFFFFFFFFFFFFFH;
ELSE DEST[63:0]  0000000000000000H; FI;
DEST[VLMAX-1:64] (Unmodified)

VCMPSD (VEX.128 encoded version)
CMP0  SRC1[63:0] OP5 SRC2[63:0];
IF CMP0 = TRUE
THEN DEST[63:0]  FFFFFFFFFFFFFFFFH;
ELSE DEST[63:0]  0000000000000000H; FI;
DEST[127:64]  SRC1[127:64]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalents

CMPSD for equality: __m128d _mm_cmpeq_sd(__m128d a, __m128d b)

CMPSD for less-than: __m128d _mm_cmplt_sd(__m128d a, __m128d b) 

CMPSD for less-than-or-equal: __m128d _mm_cmple_sd(__m128d a, __m128d b) 

CMPSD for greater-than: __m128d _mm_cmpgt_sd(__m128d a, __m128d b) 

CMPSD for greater-than-or-equal: __m128d _mm_cmpge_sd(__m128d a, __m128d b) 

CMPSD for inequality: __m128d _mm_cmpneq_sd(__m128d a, __m128d b) 

CMPSD for not-less-than: __m128d _mm_cmpnlt_sd(__m128d a, __m128d b) 

CMPSD for not-greater-than: __m128d _mm_cmpngt_sd(__m128d a, __m128d b) 

CMPSD for not-greater-than-or-equal: __m128d _mm_cmpnge_sd(__m128d a, __m128d b) 

CMPSD for ordered: __m128d _mm_cmpord_sd(__m128d a, __m128d b) 

CMPSD for unordered: __m128d _mm_cmpunord_sd(__m128d a, __m128d b) 

CMPSD for not-less-than-or-equal: __m128d _mm_cmpnle_sd(__m128d a, __m128d b) 

VCMPSD: __m128 _mm_cmp_sd(__m128 a, __m128 b, const int imm)

SIMD Floating-Point Exceptions

Invalid if SNaN operand, Invalid if QNaN and predicate as listed in above table, 
Denormal.
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Other Exceptions
See Exceptions Type 3.
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CMPSS—Compare Scalar Single-Precision Floating-Point Values 

Instruction Operand Encoding

Description

Compares the low single-precision floating-point values in the source operand 
(second operand) and the destination operand (first operand) and returns the results 
of the comparison to the destination operand. The comparison predicate operand 
(third operand) specifies the type of comparison performed. The comparison result is 
a doubleword mask of all 1s (comparison true) or all 0s (comparison false). 
128-bit Legacy SSE version: The first source and destination operand (first operand) 
is an XMM register. The second source operand (second operand) can be an XMM 
register or 64-bit memory location. The comparison predicate operand is an 8-bit 
immediate, bits 2:0 of the immediate define the type of comparison to be performed 
(see Table 3-7). Bits 7:3 of the immediate is reserved. Bits (VLMAX-1:32) of the 
corresponding YMM destination register remain unchanged. 

The unordered relationship is true when at least one of the two source operands 
being compared is a NaN; the ordered relationship is true when neither source 
operand is a NaN

A subsequent computational instruction that uses the mask result in the destination 
operand as an input operand will not generate a fault, since a mask of all 0s corre-
sponds to a floating-point value of +0.0 and a mask of all 1s corresponds to a QNaN.

Note that processors with “CPUID.1H:ECX.AVX =0” do not implement the “greater-
than”, “greater-than-or-equal”, “not-greater than”, and “not-greater-than-or-equal 

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F3 0F C2 /r ib

CMPSS xmm1, xmm2/m32, imm8

RMI V/V SSE Compare low single-
precision floating-point 
value in xmm2/m32 and 
xmm1 using imm8 as 
comparison predicate.

VEX.NDS.LIG.F3.0F.WIG C2 /r ib

VCMPSS xmm1, xmm2, xmm3/m32, 
imm8

RVMI V/V AVX Compare low single 
precision floating-point 
value in xmm3/m32 and 
xmm2 using bits 4:0 of 
imm8 as comparison 
predicate.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
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relations” predicates. These comparisons can be made either by using the inverse 
relationship (that is, use the “not-less-than-or-equal” to make a “greater-than” 
comparison) or by using software emulation. When using software emulation, the 
program must swap the operands (copying registers when necessary to protect the 
data that will now be in the destination operand), and then perform the compare 
using a different predicate. The predicate to be used for these emulations is listed in 
Table 3-7 under the heading Emulation.

Compilers and assemblers may implement the following two-operand pseudo-ops in 
addition to the three-operand CMPSS instruction, for processors with 
“CPUID.1H:ECX.AVX =0”. See Table 3-15. Compiler should treat reserved Imm8 
values as illegal syntax.

The greater-than relations not implemented in the processor require more than one 
instruction to emulate in software and therefore should not be implemented as 
pseudo-ops. (For these, the programmer should reverse the operands of the corre-
sponding less than relations and use move instructions to ensure that the mask is 
moved to the correct destination register and that the source operand is left intact.)

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional 
registers (XMM8-XMM15).

Enhanced Comparison Predicate for VEX-Encoded VCMPSD
VEX.128 encoded version: The first source operand (second operand) is an XMM 
register. The second source operand (third operand) can be an XMM register or a 32-
bit memory location. Bits (VLMAX-1:128) of the destination YMM register are zeroed. 
The comparison predicate operand is an 8-bit immediate: 
• For instructions encoded using the VEX prefix, bits 4:0 define the type of 

comparison to be performed (see Table 3-9). Bits 5 through 7 of the immediate 
are reserved. 

Processors with “CPUID.1H:ECX.AVX =1” implement the full complement of 32 pred-
icates shown in Table 3-9, software emulation is no longer needed. Compilers and 

Table 3-15.  Pseudo-Ops and CMPSS 

Pseudo-Op CMPSS Implementation

CMPEQSS xmm1, xmm2 CMPSS xmm1, xmm2, 0

CMPLTSS xmm1, xmm2 CMPSS xmm1, xmm2, 1

CMPLESS xmm1, xmm2 CMPSS xmm1, xmm2, 2

CMPUNORDSS xmm1, xmm2 CMPSS xmm1, xmm2, 3

CMPNEQSS xmm1, xmm2 CMPSS xmm1, xmm2, 4

CMPNLTSS xmm1, xmm2 CMPSS xmm1, xmm2, 5

CMPNLESS xmm1, xmm2 CMPSS xmm1, xmm2, 6

CMPORDSS xmm1, xmm2 CMPSS xmm1, xmm2, 7
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assemblers may implement the following three-operand pseudo-ops in addition to 
the four-operand VCMPSS instruction. See Table 3-16, where the notations of reg1 
reg2, and reg3 represent either XMM registers or YMM registers. Compiler should 
treat reserved Imm8 values as illegal syntax. Alternately, intrinsics can map the 
pseudo-ops to pre-defined constants to support a simpler intrinsic interface.
:

Table 3-16.  Pseudo-Op and VCMPSS Implementation

Pseudo-Op CMPSS Implementation

VCMPEQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 0

VCMPLTSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 1

VCMPLESS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 2

VCMPUNORDSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 3

VCMPNEQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 4

VCMPNLTSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 5

VCMPNLESS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 6

VCMPORDSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 7

VCMPEQ_UQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 8

VCMPNGESS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 9

VCMPNGTSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 0AH

VCMPFALSESS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 0BH

VCMPNEQ_OQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 0CH

VCMPGESS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 0DH

VCMPGTSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 0EH

VCMPTRUESS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 0FH

VCMPEQ_OSSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 10H

VCMPLT_OQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 11H

VCMPLE_OQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 12H

VCMPUNORD_SSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 13H

VCMPNEQ_USSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 14H

VCMPNLT_UQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 15H

VCMPNLE_UQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 16H

VCMPORD_SSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 17H

VCMPEQ_USSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 18H

VCMPNGE_UQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 19H

VCMPNGT_UQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 1AH
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Operation

CASE (COMPARISON PREDICATE) OF
0: OP3  EQ_OQ; OP5  EQ_OQ;
1: OP3  LT_OS; OP5  LT_OS;
2: OP3  LE_OS; OP5  LE_OS;
3: OP3  UNORD_Q; OP5  UNORD_Q;
4: OP3  NEQ_UQ; OP5  NEQ_UQ;
5: OP3  NLT_US; OP5  NLT_US;
6: OP3  NLE_US; OP5  NLE_US;
7: OP3  ORD_Q; OP5  ORD_Q;
8: OP5  EQ_UQ;
9: OP5  NGE_US;
10: OP5  NGT_US;
11: OP5  FALSE_OQ;
12: OP5  NEQ_OQ;
13: OP5  GE_OS;
14: OP5  GT_OS;
15: OP5  TRUE_UQ;
16: OP5  EQ_OS;
17: OP5  LT_OQ;
18: OP5  LE_OQ;
19: OP5  UNORD_S;
20: OP5  NEQ_US;
21: OP5  NLT_UQ;
22: OP5  NLE_UQ;
23: OP5  ORD_S;
24: OP5  EQ_US;
25: OP5  NGE_UQ;
26: OP5  NGT_UQ;
27: OP5  FALSE_OS;
28: OP5  NEQ_OS;
29: OP5  GE_OQ;
30: OP5  GT_OQ;

VCMPFALSE_OSSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 1BH

VCMPNEQ_OSSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 1CH

VCMPGE_OQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 1DH

VCMPGT_OQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 1EH

VCMPTRUE_USSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 1FH

Table 3-16.  Pseudo-Op and VCMPSS Implementation

Pseudo-Op CMPSS Implementation
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31: OP5  TRUE_US;
DEFAULT: Reserved

ESAC;

CMPSS (128-bit Legacy SSE version)
CMP0  DEST[31:0] OP3 SRC[31:0];
IF CMP0 = TRUE
THEN DEST[31:0]  FFFFFFFFH;
ELSE DEST[31:0]  00000000H; FI;
DEST[VLMAX-1:32] (Unmodified)

VCMPSS (VEX.128 encoded version)
CMP0  SRC1[31:0] OP5 SRC2[31:0];
IF CMP0 = TRUE
THEN DEST[31:0]  FFFFFFFFH;
ELSE DEST[31:0]  00000000H; FI;
DEST[127:32]  SRC1[127:32]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalents

CMPSS for equality: __m128 _mm_cmpeq_ss(__m128 a, __m128 b)

CMPSS for less-than: __m128 _mm_cmplt_ss(__m128 a, __m128 b) 

CMPSS for less-than-or-equal: __m128 _mm_cmple_ss(__m128 a, __m128 b) 

CMPSS for greater-than: __m128 _mm_cmpgt_ss(__m128 a, __m128 b) 

CMPSS for greater-than-or-equal: __m128 _mm_cmpge_ss(__m128 a, __m128 b) 

CMPSS for inequality: __m128 _mm_cmpneq_ss(__m128 a, __m128 b) 

CMPSS for not-less-than: __m128 _mm_cmpnlt_ss(__m128 a, __m128 b) 

CMPSS for not-greater-than: __m128 _mm_cmpngt_ss(__m128 a, __m128 b) 

CMPSS for not-greater-than-or-equal: __m128 _mm_cmpnge_ss(__m128 a, __m128 b) 

CMPSS for ordered: __m128 _mm_cmpord_ss(__m128 a, __m128 b) 

CMPSS for unordered: __m128 _mm_cmpunord_ss(__m128 a, __m128 b) 

CMPSS for not-less-than-or-equal: __m128 _mm_cmpnle_ss(__m128 a, __m128 b) 

VCMPSS: __m128 _mm_cmp_ss(__m128 a, __m128 b, const int imm)

SIMD Floating-Point Exceptions

Invalid if SNaN operand, Invalid if QNaN and predicate as listed in above table, 
Denormal.
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Other Exceptions
See Exceptions Type 3.
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CMPXCHG—Compare and Exchange

Instruction Operand Encoding

Description

Compares the value in the AL, AX, EAX, or RAX register with the first operand (desti-
nation operand). If the two values are equal, the second operand (source operand) is 
loaded into the destination operand. Otherwise, the destination operand is loaded 
into the AL, AX, EAX or RAX register. RAX register is available only in 64-bit mode.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F B0/r CMPXCHG r/m8, r8 MR Valid Valid* Compare AL with r/m8. If 
equal, ZF is set and r8 is 
loaded into r/m8. Else, clear 
ZF and load r/m8 into AL.

REX + 0F B0/r CMPXCHG 
r/m8**,r8

MR Valid N.E. Compare AL with r/m8. If 
equal, ZF is set and r8 is 
loaded into r/m8. Else, clear 
ZF and load r/m8 into AL.

0F B1/r CMPXCHG r/m16, 
r16

MR Valid Valid* Compare AX with r/m16. If 
equal, ZF is set and r16 is 
loaded into r/m16. Else, 
clear ZF and load r/m16 into 
AX.

0F B1/r CMPXCHG r/m32, 
r32

MR Valid Valid* Compare EAX with r/m32. If 
equal, ZF is set and r32 is 
loaded into r/m32. Else, 
clear ZF and load r/m32 into 
EAX.

REX.W + 0F 
B1/r

CMPXCHG r/m64, 
r64

MR Valid N.E. Compare RAX with r/m64. If 
equal, ZF is set and r64 is 
loaded into r/m64. Else, 
clear ZF and load r/m64 into 
RAX.

NOTES:
* See the IA-32 Architecture Compatibility section below. 
** In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is 

used: AH, BH, CH, DH. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (r, w) ModRM:reg (r) NA NA
3-188 Vol. 2A CMPXCHG—Compare and Exchange



INSTRUCTION SET REFERENCE, A-L
This instruction can be used with a LOCK prefix to allow the instruction to be 
executed atomically. To simplify the interface to the processor’s bus, the destination 
operand receives a write cycle without regard to the result of the comparison. The 
destination operand is written back if the comparison fails; otherwise, the source 
operand is written into the destination. (The processor never produces a locked read 
without also producing a locked write.)

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R 
prefix permits access to additional registers (R8-R15). Use of the REX.W prefix 
promotes operation to 64 bits. See the summary chart at the beginning of this 
section for encoding data and limits.

IA-32 Architecture Compatibility

This instruction is not supported on Intel processors earlier than the Intel486 proces-
sors.

Operation

(* Accumulator = AL, AX, EAX, or RAX depending on whether a byte, word, doubleword, or 
quadword comparison is being performed *)

IF accumulator = DEST
THEN

ZF ← 1;
DEST ← SRC;

ELSE
ZF ← 0;
accumulator ← DEST;

FI;

Flags Affected

The ZF flag is set if the values in the destination operand and register AL, AX, or EAX 
are equal; otherwise it is cleared. The CF, PF, AF, SF, and OF flags are set according to 
the results of the comparison operation.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, 
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#PF(fault-code) If a page fault occurs.
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#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory 
operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS 

segment limit.
#UD If the LOCK prefix is used but the destination is not a memory 

operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made.
#UD If the LOCK prefix is used but the destination is not a memory 

operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory 

operand.
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CMPXCHG8B/CMPXCHG16B—Compare and Exchange Bytes

Instruction Operand Encoding

Description

Compares the 64-bit value in EDX:EAX (or 128-bit value in RDX:RAX if operand size 
is 128 bits) with the operand (destination operand). If the values are equal, the 
64-bit value in ECX:EBX (or 128-bit value in RCX:RBX) is stored in the destination 
operand. Otherwise, the value in the destination operand is loaded into EDX:EAX (or 
RDX:RAX). The destination operand is an 8-byte memory location (or 16-byte 
memory location if operand size is 128 bits). For the EDX:EAX and ECX:EBX register 
pairs, EDX and ECX contain the high-order 32 bits and EAX and EBX contain the low-
order 32 bits of a 64-bit value. For the RDX:RAX and RCX:RBX register pairs, RDX 
and RCX contain the high-order 64 bits and RAX and RBX contain the low-order 
64bits of a 128-bit value. 

This instruction can be used with a LOCK prefix to allow the instruction to be 
executed atomically. To simplify the interface to the processor’s bus, the destination 
operand receives a write cycle without regard to the result of the comparison. The 
destination operand is written back if the comparison fails; otherwise, the source 
operand is written into the destination. (The processor never produces a locked read 
without also producing a locked write.)

In 64-bit mode, default operation size is 64 bits. Use of the REX.W prefix promotes 
operation to 128 bits. Note that CMPXCHG16B requires that the destination 
(memory) operand be 16-byte aligned. See the summary chart at the beginning of 
this section for encoding data and limits. For information on the CPUID flag that indi-
cates CMPXCHG16B, see page 3-214.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F C7 /1 m64 CMPXCHG8B m64 M Valid Valid* Compare EDX:EAX with 
m64. If equal, set ZF and 
load ECX:EBX into m64. Else, 
clear ZF and load m64 into 
EDX:EAX.

REX.W + 0F C7 
/1 m128

CMPXCHG16B 
m128

M Valid N.E. Compare RDX:RAX with 
m128. If equal, set ZF and 
load RCX:RBX into m128. 
Else, clear ZF and load m128 
into RDX:RAX.

NOTES:
*See IA-32 Architecture Compatibility section below.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r, w) NA NA NA
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IA-32 Architecture Compatibility

This instruction encoding is not supported on Intel processors earlier than the 
Pentium processors.

Operation

IF (64-Bit Mode and OperandSize = 64)
THEN

IF (RDX:RAX = DEST)
ZF ← 1;

DEST ← RCX:RBX;
ELSE

ZF ← 0;
RDX:RAX ← DEST;

FI
ELSE

IF (EDX:EAX = DEST)
ZF ← 1;
DEST ← ECX:EBX;

ELSE
ZF ← 0;
EDX:EAX ← DEST;

FI;
FI;

Flags Affected

The ZF flag is set if the destination operand and EDX:EAX are equal; otherwise it is 
cleared. The CF, PF, AF, SF, and OF flags are unaffected.

Protected Mode Exceptions
#UD If the destination is not a memory operand.
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, 
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
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Real-Address Mode Exceptions
#UD If the destination operand is not a memory location.
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS 

segment limit.

Virtual-8086 Mode Exceptions
#UD If the destination operand is not a memory location.
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.

If memory operand for CMPXCHG16B is not aligned on a 16-byte 
boundary.
If CPUID.01H:ECX.CMPXCHG16B[bit 13] = 0.

#UD If the destination operand is not a memory location.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
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COMISD—Compare Scalar Ordered Double-Precision Floating-Point 
Values and Set EFLAGS

Instruction Operand Encoding

Description

Compares the double-precision floating-point values in the low quadwords of 
operand 1 (first operand) and operand 2 (second operand), and sets the ZF, PF, and 
CF flags in the EFLAGS register according to the result (unordered, greater than, less 
than, or equal). The OF, SF and AF flags in the EFLAGS register are set to 0. The unor-
dered result is returned if either source operand is a NaN (QNaN or SNaN).

Operand 1 is an XMM register; operand 2 can be an XMM register or a 64 bit memory 
location. 

The COMISD instruction differs from the UCOMISD instruction in that it signals a 
SIMD floating-point invalid operation exception (#I) when a source operand is either 
a QNaN or SNaN. The UCOMISD instruction signals an invalid numeric exception only 
if a source operand is an SNaN.

The EFLAGS register is not updated if an unmasked SIMD floating-point exception is 
generated.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional 
registers (XMM8-XMM15).
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise 
instructions will #UD.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 2F /r

COMISD xmm1, xmm2/m64

RM V/V SSE2 Compare low double-
precision floating-point 
values in xmm1 and 
xmm2/mem64 and set the 
EFLAGS flags accordingly.

VEX.LIG.66.0F.WIG 2F /r

VCOMISD xmm1, xmm2/m64

RM V/V AVX Compare low double 
precision floating-point 
values in xmm1 and 
xmm2/mem64 and set the 
EFLAGS flags accordingly.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) NA NA
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Operation

RESULT ← OrderedCompare(DEST[63:0] <> SRC[63:0]) {
(* Set EFLAGS *) CASE (RESULT) OF

UNORDERED: ZF,PF,CF ← 111;
GREATER_THAN: ZF,PF,CF ← 000;
LESS_THAN: ZF,PF,CF ← 001;
EQUAL: ZF,PF,CF ← 100;

ESAC;
OF, AF, SF ← 0; }

Intel C/C++ Compiler Intrinsic Equivalents

int _mm_comieq_sd (__m128d a, __m128d b)

int _mm_comilt_sd (__m128d a, __m128d b)

int _mm_comile_sd (__m128d a, __m128d b)

int _mm_comigt_sd (__m128d a, __m128d b)

int _mm_comige_sd (__m128d a, __m128d b)

int _mm_comineq_sd (__m128d a, __m128d b)

SIMD Floating-Point Exceptions

Invalid (if SNaN or QNaN operands), Denormal.

Other Exceptions
See Exceptions Type 3; additionally
#UD If VEX.vvvv != 1111B.
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COMISS—Compare Scalar Ordered Single-Precision Floating-Point 
Values and Set EFLAGS

Instruction Operand Encoding

Description

Compares the single-precision floating-point values in the low doublewords of 
operand 1 (first operand) and operand 2 (second operand), and sets the ZF, PF, and 
CF flags in the EFLAGS register according to the result (unordered, greater than, less 
than, or equal). The OF, SF, and AF flags in the EFLAGS register are set to 0. The 
unordered result is returned if either source operand is a NaN (QNaN or SNaN).

Operand 1 is an XMM register; Operand 2 can be an XMM register or a 32 bit memory 
location.

The COMISS instruction differs from the UCOMISS instruction in that it signals a 
SIMD floating-point invalid operation exception (#I) when a source operand is either 
a QNaN or SNaN. The UCOMISS instruction signals an invalid numeric exception only 
if a source operand is an SNaN.

The EFLAGS register is not updated if an unmasked SIMD floating-point exception is 
generated.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional 
registers (XMM8-XMM15).
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise 
instructions will #UD.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

0F 2F /r

COMISS xmm1, xmm2/m32

RM V/V SSE Compare low single-
precision floating-point 
values in xmm1 and 
xmm2/mem32 and set the 
EFLAGS flags accordingly.

VEX.LIG.0F 2F.WIG /r

VCOMISS xmm1, xmm2/m32

RM V/V AVX Compare low single 
precision floating-point 
values in xmm1 and 
xmm2/mem32 and set the 
EFLAGS flags accordingly.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) NA NA
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Operation

RESULT ← OrderedCompare(SRC1[31:0] <> SRC2[31:0]) {
(* Set EFLAGS *) CASE (RESULT) OF

UNORDERED: ZF,PF,CF ← 111;
GREATER_THAN: ZF,PF,CF ← 000;
LESS_THAN: ZF,PF,CF ← 001;
EQUAL: ZF,PF,CF ← 100;

ESAC;
OF,AF,SF ← 0; }

Intel C/C++ Compiler Intrinsic Equivalents

int _mm_comieq_ss (__m128 a, __m128 b)

int _mm_comilt_ss (__m128 a, __m128 b)

int _mm_comile_ss (__m128 a, __m128 b)

int _mm_comigt_ss (__m128 a, __m128 b)

int _mm_comige_ss (__m128 a, __m128 b)

int _mm_comineq_ss (__m128 a, __m128 b)

SIMD Floating-Point Exceptions

Invalid (if SNaN or QNaN operands), Denormal.

Other Exceptions
See Exceptions Type 3; additionally
#UD If VEX.vvvv != 1111B.
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CPUID—CPU Identification

Instruction Operand Encoding

Description

The ID flag (bit 21) in the EFLAGS register indicates support for the CPUID instruc-
tion. If a software procedure can set and clear this flag, the processor executing the 
procedure supports the CPUID instruction. This instruction operates the same in non-
64-bit modes and 64-bit mode.

CPUID returns processor identification and feature information in the EAX, EBX, ECX, 
and EDX registers.1 The instruction’s output is dependent on the contents of the EAX 
register upon execution (in some cases, ECX as well). For example, the following 
pseudocode loads EAX with 00H and causes CPUID to return a Maximum Return 
Value and the Vendor Identification String in the appropriate registers:

MOV EAX, 00H
CPUID

Table 3-17 shows information returned, depending on the initial value loaded into the 
EAX register. Table 3-18 shows the maximum CPUID input value recognized for each 
family of IA-32 processors on which CPUID is implemented. 

Two types of information are returned: basic and extended function information. If a 
value entered for CPUID.EAX is higher than the maximum input value for basic or 
extended function for that processor then the data for the highest basic information 
leaf is returned. For example, using the Intel Core i7 processor, the following is true:

CPUID.EAX = 05H (* Returns MONITOR/MWAIT leaf. *) 
CPUID.EAX = 0AH (* Returns Architectural Performance Monitoring leaf. *) 
CPUID.EAX = 0BH (* Returns Extended Topology Enumeration leaf. *) 

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F A2 CPUID NP Valid Valid Returns processor 
identification and feature 
information to the EAX, 
EBX, ECX, and EDX 
registers, as determined by 
input entered in EAX (in 
some cases, ECX as well).

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

1. On Intel 64 processors, CPUID clears the high 32 bits of the RAX/RBX/RCX/RDX registers in all 
modes.
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CPUID.EAX = 0CH (* INVALID: Returns the same information as CPUID.EAX = 0BH. *) 
CPUID.EAX = 80000008H (* Returns linear/physical address size data. *)
CPUID.EAX = 8000000AH (* INVALID: Returns same information as CPUID.EAX = 0BH. *)

If a value entered for CPUID.EAX is less than or equal to the maximum input value 
and the leaf is not supported on that processor then 0 is returned in all the registers. 
For example, using the Intel Core i7 processor, the following is true:

CPUID.EAX = 07H (*Returns EAX=EBX=ECX=EDX=0. *)

When CPUID returns the highest basic leaf information as a result of an invalid input 
EAX value, any dependence on input ECX value in the basic leaf is honored.

CPUID can be executed at any privilege level to serialize instruction execution. Seri-
alizing instruction execution guarantees that any modifications to flags, registers, 
and memory for previous instructions are completed before the next instruction is 
fetched and executed.

See also: 

“Serializing Instructions” in Chapter 8, “Multiple-Processor Management,” in the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

“Caching Translation Information” in Chapter 4, “Paging,” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A.

Table 3-17.  Information Returned by CPUID Instruction

Initial EAX 
Value Information Provided about the Processor

Basic CPUID Information

0H EAX
EBX
ECX
EDX

Maximum Input Value for Basic CPUID Information (see Table 3-18)
“Genu”
“ntel”
“ineI”

01H EAX

EBX

ECX
EDX

Version Information: Type, Family, Model, and Stepping ID (see 
Figure 3-5)

Bits 07-00: Brand Index
Bits 15-08: CLFLUSH line size (Value ∗ 8 = cache line size in bytes)
Bits 23-16: Maximum number of addressable IDs for logical processors 
in this physical package*. 
Bits 31-24: Initial APIC ID

Feature Information (see Figure 3-6 and Table 3-20)
Feature Information (see Figure 3-7 and Table 3-21)
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NOTES: 
* The nearest power-of-2 integer that is not smaller than EBX[23:16]

is the number of unique initial APIC IDs reserved for addressing dif-
ferent logical processors in a physical package. This field is only valid
if CPUID.1.EDX.HTT[bit 28]= 1.

02H EAX
EBX
ECX
EDX

Cache and TLB Information (see Table 3-22)
Cache and TLB Information
Cache and TLB Information
Cache and TLB Information

03H EAX
EBX

ECX

EDX

Reserved.
Reserved.

Bits 00-31 of 96 bit processor serial number. (Available in Pentium III 
processor only; otherwise, the value in this register is reserved.)

Bits 32-63 of 96 bit processor serial number. (Available in Pentium III 
processor only; otherwise, the value in this register is reserved.)

NOTES: 
Processor serial number (PSN) is not supported in the Pentium 4 pro-
cessor or later. On all models, use the PSN flag (returned using
CPUID) to check for PSN support before accessing the feature. 

See AP-485, Intel Processor Identification and the CPUID Instruc-
tion (Order Number 241618) for more information on PSN.

CPUID leaves > 3 < 80000000 are visible only when 
IA32_MISC_ENABLE.BOOT_NT4[bit 22] = 0 (default).

Deterministic Cache Parameters Leaf 

04H NOTES:
Leaf 04H output depends on the initial value in ECX. 
See also: “INPUT EAX = 4: Returns Deterministic Cache Parameters 
for each level on page 3-224.

EAX Bits 04-00: Cache Type Field
0 = Null - No more caches
1 = Data Cache 
2 = Instruction Cache
3 = Unified Cache
4-31 = Reserved

Table 3-17.  Information Returned by CPUID Instruction (Contd.)

Initial EAX 
Value Information Provided about the Processor
3-200 Vol. 2A CPUID—CPU Identification



INSTRUCTION SET REFERENCE, A-L
Bits 07-05: Cache Level (starts at 1) 
Bit 08: Self Initializing cache level (does not need SW initialization)
Bit 09: Fully Associative cache

Bits 13-10: Reserved
Bits 25-14: Maximum number of addressable IDs for logical processors 
sharing this cache*, ** 
Bits 31-26: Maximum number of addressable IDs for processor cores in 
the physical package*, ***, ****

EBX Bits 11-00: L = System Coherency Line Size*
Bits 21-12: P = Physical Line partitions*
Bits 31-22: W = Ways of associativity*

ECX Bits 31-00: S = Number of Sets*

EDX Bit 0: Write-Back Invalidate/Invalidate
0 = WBINVD/INVD from threads sharing this cache acts upon lower 
level caches for threads sharing this cache.
1 = WBINVD/INVD is not guaranteed to act upon lower level caches 
of non-originating threads sharing this cache.

Bit 1: Cache Inclusiveness
0 = Cache is not inclusive of lower cache levels.
1 = Cache is inclusive of lower cache levels.

Bit 2: Complex Cache Indexing
0 = Direct mapped cache.
1 = A complex function is used to index the cache, potentially using 

all address bits.
Bits 31-03: Reserved = 0

NOTES:
* Add one to the return value to get the result. 
** The nearest power-of-2 integer that is not smaller than (1 + 

EAX[25:14]) is the number of unique initial APIC IDs reserved for 
addressing different logical processors sharing this cache

*** The nearest power-of-2 integer that is not smaller than (1 + 
EAX[31:26]) is the number of unique Core_IDs reserved for address-
ing different processor cores in a physical package. Core ID is a sub-
set of bits of the initial APIC ID. 

****The returned value is constant for valid initial values in ECX. Valid 
ECX values start from 0. 

MONITOR/MWAIT Leaf 

Table 3-17.  Information Returned by CPUID Instruction (Contd.)

Initial EAX 
Value Information Provided about the Processor
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05H EAX Bits 15-00: Smallest monitor-line size in bytes (default is processor's 
monitor granularity) 
Bits 31-16: Reserved = 0

EBX Bits 15-00: Largest monitor-line size in bytes (default is processor's 
monitor granularity) 
Bits 31-16: Reserved = 0

ECX Bit 00: Enumeration of Monitor-Mwait extensions (beyond EAX and 
EBX registers) supported

Bit 01: Supports treating interrupts as break-event for MWAIT, even 
when interrupts disabled

Bits 31 - 02: Reserved 

EDX Bits 03 - 00: Number of C0* sub C-states supported using MWAIT
Bits 07 - 04: Number of C1* sub C-states supported using MWAIT
Bits 11 - 08: Number of C2* sub C-states supported using MWAIT
Bits 15 - 12: Number of C3* sub C-states supported using MWAIT
Bits 19 - 16: Number of C4* sub C-states supported using MWAIT
Bits 31 - 20: Reserved = 0
NOTE:
* The definition of C0 through C4 states for MWAIT extension are pro-

cessor-specific C-states, not ACPI C-states.

Thermal and Power Management Leaf 

06H EAX

EBX

Bit 00: Digital temperature sensor is supported if set
Bit 01: Intel Turbo Boost Technology Available (see description of 
IA32_MISC_ENABLE[38]).
Bit 02: ARAT. APIC-Timer-always-running feature is supported if set.
Bit 03: Reserved 
Bit 04: PLN. Power limit notification controls are supported if set.
Bit 05: ECMD. Clock modulation duty cycle extension is supported if set.
Bit 06: PTM. Package thermal management is supported if set.
Bits 31 - 07: Reserved 
Bits 03 - 00: Number of Interrupt Thresholds in Digital Thermal Sensor
Bits 31 - 04: Reserved 

Table 3-17.  Information Returned by CPUID Instruction (Contd.)

Initial EAX 
Value Information Provided about the Processor
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ECX Bit 00: Hardware Coordination Feedback Capability (Presence of 
IA32_MPERF and IA32_APERF). The capability to provide a measure of 
delivered processor performance (since last reset of the counters), as 
a percentage of expected processor performance at frequency speci-
fied in CPUID Brand String
Bits 02 - 01: Reserved = 0
Bit 03: The processor supports performance-energy bias preference if 
CPUID.06H:ECX.SETBH[bit 3] is set and it also implies the presence of a 
new architectural MSR called IA32_ENERGY_PERF_BIAS (1B0H)
Bits 31 - 04: Reserved = 0

EDX Reserved = 0

Structured Extended Feature Flags Enumeration Leaf (Output depends on ECX 
input value)

07H Sub leaf 0 (Input ECX = 0). 

EAX Bits 31-00: Reports the maximum number of supported leaf 7 sub-
leaves.

EBX Bit 00: FSGSBASE. Supports RDFSBASE/RDGSBASE/WRFSBASE/WRGS-
BASE if 1.
Bit 06: Reserved
Bit 07: SMEP. Supports Supervisor Mode Execution Protection if 1.
Bit 08: Reserved
Bit 09: Supports Enhanced REP MOVSB/STOSB if 1.
Bit 10: INVPCID. If 1, supports INVPCID instruction for system software 
that manages process-context identifiers.
Bit 31:11: Reserved

ECX Reserved 

EDX Reserved.

Direct Cache Access Information Leaf 

09H EAX

EBX

ECX

EDX

Value of bits [31:0] of IA32_PLATFORM_DCA_CAP MSR (address 
1F8H)

Reserved 

Reserved 

Reserved 

Architectural Performance Monitoring Leaf 

Table 3-17.  Information Returned by CPUID Instruction (Contd.)

Initial EAX 
Value Information Provided about the Processor
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0AH EAX Bits 07 - 00: Version ID of architectural performance monitoring
Bits 15- 08: Number of general-purpose performance monitoring 
counter per logical processor
Bits 23 - 16: Bit width of general-purpose, performance monitoring 
counter 
Bits 31 - 24: Length of EBX bit vector to enumerate architectural per-
formance monitoring events

EBX Bit 00: Core cycle event not available if 1
Bit 01: Instruction retired event not available if 1
Bit 02: Reference cycles event not available if 1
Bit 03: Last-level cache reference event not available if 1
Bit 04: Last-level cache misses event not available if 1
Bit 05: Branch instruction retired event not available if 1
Bit 06: Branch mispredict retired event not available if 1
Bits 31- 07: Reserved = 0

ECX Reserved = 0

EDX Bits 04 - 00: Number of fixed-function performance counters (if Ver-
sion ID > 1)
Bits 12- 05: Bit width of fixed-function performance counters (if Ver-
sion ID > 1)
Reserved = 0

Extended Topology Enumeration Leaf 

0BH NOTES:
Most of Leaf 0BH output depends on the initial value in ECX. 
EDX output do not vary with initial value in ECX.
ECX[7:0] output always reflect initial value in ECX.
All other output value for an invalid initial value in ECX are 0.
Leaf 0BH exists if EBX[15:0] is not zero.

EAX Bits 04-00: Number of bits to shift right on x2APIC ID to get a unique 
topology ID of the next level type*. All logical processors with the 
same next level ID share current level.
Bits 31-05: Reserved.

EBX Bits 15 - 00: Number of logical processors at this level type. The num-
ber reflects configuration as shipped by Intel**.
Bits 31- 16: Reserved.

ECX Bits 07 - 00: Level number. Same value in ECX input
Bits 15 - 08: Level type***.
Bits 31 - 16:: Reserved.

Table 3-17.  Information Returned by CPUID Instruction (Contd.)

Initial EAX 
Value Information Provided about the Processor
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EDX Bits 31- 00: x2APIC ID the current logical processor.

NOTES:
* Software should use this field (EAX[4:0]) to enumerate processor 
topology of the system.

** Software must not use EBX[15:0] to enumerate processor topology 
of the system. This value in this field (EBX[15:0]) is only intended for 
display/diagnostic purposes. The actual number of logical processors 
available to BIOS/OS/Applications may be different from the value of 
EBX[15:0], depending on software and platform hardware configura-
tions. 

*** The value of the “level type” field is not related to level numbers in 
any way, higher “level type” values do not mean higher levels. Level 
type field has the following encoding:
0 : invalid
1 : SMT
2 : Core
3-255 : Reserved

Processor Extended State Enumeration Main Leaf (EAX = 0DH, ECX = 0)

0DH NOTES:
Leaf 0DH main leaf (ECX = 0). 

EAX Bits 31-00: Reports the valid bit fields of the lower 32 bits of XCR0. If 
a bit is 0, the corresponding bit field in XCR0 is reserved.
Bit 00: legacy x87 
Bit 01: 128-bit SSE
Bit 02: 256-bit AVX
Bits 31- 03: Reserved

EBX Bits 31-00: Maximum size (bytes, from the beginning of the 
XSAVE/XRSTOR save area) required by enabled features in XCR0. May 
be different than ECX if some features at the end of the XSAVE save 
area are not enabled.

ECX Bit 31-00: Maximum size (bytes, from the beginning of the 
XSAVE/XRSTOR save area) of the XSAVE/XRSTOR save area required 
by all supported features in the processor, i.e all the valid bit fields in 
XCR0. 

EDX Bit 31-00: Reports the valid bit fields of the upper 32 bits of XCR0. If a 
bit is 0, the corresponding bit field in XCR0 is reserved.

Processor Extended State Enumeration Sub-leaf (EAX = 0DH, ECX = 1)

Table 3-17.  Information Returned by CPUID Instruction (Contd.)

Initial EAX 
Value Information Provided about the Processor
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EAX

EBX

ECX

EDX

Bits 31-01: Reserved

Bit 00: XSAVEOPT is available;

Reserved

Reserved

Reserved

Processor Extended State Enumeration Sub-leaves (EAX = 0DH, ECX = n, n > 1)

0DH NOTES:
Leaf 0DH output depends on the initial value in ECX. 
If ECX contains an invalid sub leaf index, EAX/EBX/ECX/EDX return 0.
Each valid sub-leaf index maps to a valid bit in the XCR0 register 
starting at bit position 2

EAX Bits 31-0: The size in bytes (from the offset specified in EBX) of the 
save area for an extended state feature associated with a valid sub-
leaf index, n. This field reports 0 if the sub-leaf index, n, is invalid*.

EBX Bits 31-0: The offset in bytes of this extended state component’s save 
area from the beginning of the XSAVE/XRSTOR area.
This field reports 0 if the sub-leaf index, n, is invalid*.

ECX This field reports 0 if the sub-leaf index, n, is invalid*; otherwise it is 
reserved.

EDX This field reports 0 if the sub-leaf index, n, is invalid*; otherwise it is 
reserved.

Unimplemented CPUID Leaf Functions

40000000H 
-

4FFFFFFFH

Invalid. No existing or future CPU will return processor identification or 
feature information if the initial EAX value is in the range 40000000H 
to 4FFFFFFFH.

Extended Function CPUID Information

80000000H EAX Maximum Input Value for Extended Function CPUID Information (see 
Table 3-18).

EBX
ECX
EDX

Reserved
Reserved
Reserved

Table 3-17.  Information Returned by CPUID Instruction (Contd.)

Initial EAX 
Value Information Provided about the Processor
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80000001H EAX

EBX

ECX

Extended Processor Signature and Feature Bits.

Reserved

Bit 00: LAHF/SAHF available in 64-bit mode
Bits 31-01 Reserved

EDX Bits 10-00: Reserved
Bit 11: SYSCALL/SYSRET available (when in 64-bit mode)
Bits 19-12: Reserved = 0
Bit 20: Execute Disable Bit available
Bits 25-21: Reserved = 0
Bit 26: 1-GByte pages are available if 1
Bit 27: RDTSCP and IA32_TSC_AUX are available if 1
Bits 28: Reserved = 0
Bit 29: Intel® 64 Architecture available if 1
Bits 31-30: Reserved = 0

80000002H EAX
EBX
ECX
EDX

Processor Brand String
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

80000003H EAX
EBX
ECX
EDX

Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

80000004H EAX
EBX
ECX
EDX

Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

80000005H EAX
EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0
Reserved = 0

80000006H EAX
EBX

Reserved = 0
Reserved = 0

ECX

EDX

Bits 07-00: Cache Line size in bytes
Bits 11-08: Reserved
Bits 15-12: L2 Associativity field *
Bits 31-16: Cache size in 1K units
Reserved = 0

Table 3-17.  Information Returned by CPUID Instruction (Contd.)

Initial EAX 
Value Information Provided about the Processor
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INPUT EAX = 0: Returns CPUID’s Highest Value for Basic Processor Information and 
the Vendor Identification String

When CPUID executes with EAX set to 0, the processor returns the highest value the 
CPUID recognizes for returning basic processor information. The value is returned in 
the EAX register (see Table 3-18) and is processor specific.

A vendor identification string is also returned in EBX, EDX, and ECX. For Intel 
processors, the string is “GenuineIntel” and is expressed:

EBX ← 756e6547h (* "Genu", with G in the low eight bits of BL *)
EDX ← 49656e69h (* "ineI", with i in the low eight bits of DL *)
ECX ← 6c65746eh (* "ntel", with n in the low eight bits of CL *)

NOTES:
* L2 associativity field encodings:

00H - Disabled
01H - Direct mapped
02H - 2-way
04H - 4-way
06H - 8-way
08H - 16-way
0FH - Fully associative

80000007H EAX
EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0
Bits 07-00: Reserved = 0
Bit 08: Invariant TSC available if 1
Bits 31-09: Reserved = 0

80000008H EAX Linear/Physical Address size 
Bits 07-00: #Physical Address Bits*
Bits 15-8: #Linear Address Bits
Bits 31-16: Reserved = 0

EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0

NOTES:
* If CPUID.80000008H:EAX[7:0] is supported, the maximum physical 

address number supported should come from this field.

Table 3-17.  Information Returned by CPUID Instruction (Contd.)

Initial EAX 
Value Information Provided about the Processor
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INPUT EAX = 80000000H: Returns CPUID’s Highest Value for Extended Processor 
Information

When CPUID executes with EAX set to 80000000H, the processor returns the highest 
value the processor recognizes for returning extended processor information. The 
value is returned in the EAX register (see Table 3-18) and is processor specific.

Table 3-18.  Highest CPUID Source Operand for Intel 64 and IA-32 Processors 

Intel 64 or IA-32 Processors
Highest Value in EAX

Basic Information Extended Function 
Information

Earlier Intel486 Processors CPUID Not Implemented CPUID Not Implemented

Later Intel486 Processors and 
Pentium Processors

01H Not Implemented

Pentium Pro and Pentium II 
Processors, Intel® Celeron® 
Processors

02H Not Implemented

Pentium III Processors 03H Not Implemented

Pentium 4 Processors 02H 80000004H

Intel Xeon Processors 02H 80000004H

Pentium M Processor 02H 80000004H

Pentium 4 Processor 
supporting Hyper-Threading 
Technology

05H 80000008H

Pentium D Processor (8xx) 05H 80000008H

Pentium D Processor (9xx) 06H 80000008H

Intel Core Duo Processor 0AH 80000008H

Intel Core 2 Duo Processor 0AH 80000008H

Intel Xeon Processor 3000, 
5100, 5200, 5300, 5400 
Series

0AH 80000008H

Intel Core 2 Duo Processor 
8000 Series

0DH 80000008H

Intel Xeon Processor 5200, 
5400 Series

0AH 80000008H

Intel Atom Processor 0AH 80000008H

Intel Core i7 Processor 0BH 80000008H
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IA32_BIOS_SIGN_ID Returns Microcode Update Signature

For processors that support the microcode update facility, the IA32_BIOS_SIGN_ID 
MSR is loaded with the update signature whenever CPUID executes. The signature is 
returned in the upper DWORD. For details, see Chapter 9 in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A. 

INPUT EAX = 1: Returns Model, Family, Stepping Information

When CPUID executes with EAX set to 1, version information is returned in EAX (see 
Figure 3-5). For example: model, family, and processor type for the Intel Xeon 
processor 5100 series is as follows:
• Model — 1111B
• Family — 0101B
• Processor Type — 00B

See Table 3-19 for available processor type values. Stepping IDs are provided as 
needed.

Figure 3-5.  Version Information Returned by CPUID in EAX

OM16525

Processor Type 

034781112131415161920272831

EAX

Family (0FH for the Pentium 4 Processor Family)

Model 

Extended
Family ID

Extended
Model ID

Family
ID

Model
Stepping

ID

Extended Family ID (0)

Extended Model ID (0)

Reserved
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NOTE
See Chapter 14 in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1, for information on identifying earlier 
IA-32 processors.

The Extended Family ID needs to be examined only when the Family ID is 0FH. Inte-
grate the fields into a display using the following rule:

IF Family_ID ≠ 0FH
THEN DisplayFamily = Family_ID;
ELSE DisplayFamily = Extended_Family_ID + Family_ID;
(* Right justify and zero-extend 4-bit field. *)

FI;
(* Show DisplayFamily as HEX field. *)

The Extended Model ID needs to be examined only when the Family ID is 06H or 0FH. 
Integrate the field into a display using the following rule:

IF (Family_ID = 06H or Family_ID = 0FH)
THEN DisplayModel = (Extended_Model_ID « 4) + Model_ID;
(* Right justify and zero-extend 4-bit field; display Model_ID as HEX field.*)
ELSE DisplayModel = Model_ID;

FI;
(* Show DisplayModel as HEX field. *)

INPUT EAX = 1: Returns Additional Information in EBX

When CPUID executes with EAX set to 1, additional information is returned to the 
EBX register: 
• Brand index (low byte of EBX) — this number provides an entry into a brand 

string table that contains brand strings for IA-32 processors. More information 
about this field is provided later in this section. 

• CLFLUSH instruction cache line size (second byte of EBX) — this number 
indicates the size of the cache line flushed with CLFLUSH instruction in 8-byte 
increments. This field was introduced in the Pentium 4 processor.

Table 3-19.  Processor Type Field
Type Encoding

Original OEM Processor 00B

Intel OverDrive® Processor 01B

Dual processor (not applicable to Intel486 
processors)

10B

Intel reserved 11B
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• Local APIC ID (high byte of EBX) — this number is the 8-bit ID that is assigned to 
the local APIC on the processor during power up. This field was introduced in the 
Pentium 4 processor.

INPUT EAX = 1: Returns Feature Information in ECX and EDX

When CPUID executes with EAX set to 1, feature information is returned in ECX and 
EDX.
• Figure 3-6 and Table 3-20 show encodings for ECX.
• Figure 3-7 and Table 3-21 show encodings for EDX.

For all feature flags, a 1 indicates that the feature is supported. Use Intel to properly 
interpret feature flags.

NOTE
Software must confirm that a processor feature is present using 
feature flags returned by CPUID prior to using the feature. Software 
should not depend on future offerings retaining all features.
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Figure 3-6.  Feature Information Returned in the ECX Register
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Table 3-20.  Feature Information Returned in the ECX Register 

Bit # Mnemonic Description

0 SSE3 Streaming SIMD Extensions 3 (SSE3). A value of 1 indicates the 
processor supports this technology.

1 PCLMULQDQ PCLMULQDQ. A value of 1 indicates the processor supports the 
PCLMULQDQ instruction

2 DTES64 64-bit DS Area. A value of 1 indicates the processor supports DS 
area using 64-bit layout

3 MONITOR MONITOR/MWAIT. A value of 1 indicates the processor supports 
this feature. 

4 DS-CPL CPL Qualified Debug Store. A value of 1 indicates the processor 
supports the extensions to the Debug Store feature to allow for 
branch message storage qualified by CPL.

5 VMX Virtual Machine Extensions. A value of 1 indicates that the 
processor supports this technology

6 SMX Safer Mode Extensions. A value of 1 indicates that the 
processor supports this technology. See Chapter 5, “Safer Mode 
Extensions Reference”.

7 EIST Enhanced Intel SpeedStep® technology. A value of 1 indicates 
that the processor supports this technology.

8 TM2 Thermal Monitor 2. A value of 1 indicates whether the processor 
supports this technology. 

9 SSSE3 A value of 1 indicates the presence of the Supplemental 
Streaming SIMD Extensions 3 (SSSE3). A value of 0 indicates the 
instruction extensions are not present in the processor

10 CNXT-ID L1 Context ID. A value of 1 indicates the L1 data cache mode can 
be set to either adaptive mode or shared mode. A value of 0 
indicates this feature is not supported. See definition of the 
IA32_MISC_ENABLE MSR Bit 24 (L1 Data Cache Context Mode) 
for details.

11 Reserved Reserved

12 FMA A value of 1 indicates the processor supports FMA extensions 
using YMM state.

13 CMPXCHG16B CMPXCHG16B Available. A value of 1 indicates that the feature 
is available. See the “CMPXCHG8B/CMPXCHG16B—Compare and 
Exchange Bytes” section in this chapter for a description.

14 xTPR Update 
Control

xTPR Update Control. A value of 1 indicates that the processor 
supports changing IA32_MISC_ENABLE[bit 23]. 

15 PDCM Perfmon and Debug Capability: A value of 1 indicates the 
processor supports the performance and debug feature indication 
MSR IA32_PERF_CAPABILITIES.
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16 Reserved Reserved

17 PCID Process-context identifiers. A value of 1 indicates that the 
processor supports PCIDs and that software may set CR4.PCIDE 
to 1.

18 DCA  A value of 1 indicates the processor supports the ability to 
prefetch data from a memory mapped device.

19 SSE4.1 A value of 1 indicates that the processor supports SSE4.1. 

20 SSE4.2 A value of 1 indicates that the processor supports SSE4.2. 

21 x2APIC A value of 1 indicates that the processor supports x2APIC 
feature.

22 MOVBE A value of 1 indicates that the processor supports MOVBE 
instruction.

23 POPCNT A value of 1 indicates that the processor supports the POPCNT 
instruction.

24 TSC-Deadline A value of 1 indicates that the processor’s local APIC timer 
supports one-shot operation using a TSC deadline value.

25 AESNI A value of 1 indicates that the processor supports the AESNI 
instruction extensions.

26 XSAVE A value of 1 indicates that the processor supports the 
XSAVE/XRSTOR processor extended states feature, the 
XSETBV/XGETBV instructions, and XCR0.

27 OSXSAVE A value of 1 indicates that the OS has enabled XSETBV/XGETBV 
instructions to access XCR0, and support for processor extended 
state management using XSAVE/XRSTOR.

28 AVX A value of 1 indicates the processor supports the AVX instruction 
extensions.

29 F16C A value of 1 indicates that processor supports 16-bit floating-
point conversion instructions.

30
RDRAND

A value of 1 indicates that processor supports RDRAND 
instruction.

31 Not Used Always returns 0.

Table 3-20.  Feature Information Returned in the ECX Register  (Contd.)

Bit # Mnemonic Description
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Figure 3-7.  Feature Information Returned in the EDX Register
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Table 3-21.  More on Feature Information Returned in the EDX Register

Bit # Mnemonic Description

0 FPU Floating Point Unit On-Chip. The processor contains an x87 FPU.

1 VME Virtual 8086 Mode Enhancements. Virtual 8086 mode enhancements, 
including CR4.VME for controlling the feature, CR4.PVI for protected mode 
virtual interrupts, software interrupt indirection, expansion of the TSS with 
the software indirection bitmap, and EFLAGS.VIF and EFLAGS.VIP flags. 

2 DE Debugging Extensions. Support for I/O breakpoints, including CR4.DE for 
controlling the feature, and optional trapping of accesses to DR4 and DR5. 

3 PSE Page Size Extension. Large pages of size 4 MByte are supported, including 
CR4.PSE for controlling the feature, the defined dirty bit in PDE (Page 
Directory Entries), optional reserved bit trapping in CR3, PDEs, and PTEs. 

4 TSC Time Stamp Counter. The RDTSC instruction is supported, including 
CR4.TSD for controlling privilege.

5 MSR Model Specific Registers RDMSR and WRMSR Instructions. The RDMSR 
and WRMSR instructions are supported. Some of the MSRs are 
implementation dependent.

6 PAE Physical Address Extension. Physical addresses greater than 32 bits are 
supported: extended page table entry formats, an extra level in the page 
translation tables is defined, 2-MByte pages are supported instead of 4 
Mbyte pages if PAE bit is 1. 

7 MCE Machine Check Exception. Exception 18 is defined for Machine Checks, 
including CR4.MCE for controlling the feature. This feature does not define 
the model-specific implementations of machine-check error logging, 
reporting, and processor shutdowns. Machine Check exception handlers may 
have to depend on processor version to do model specific processing of the 
exception, or test for the presence of the Machine Check feature.

8 CX8 CMPXCHG8B Instruction. The compare-and-exchange 8 bytes (64 bits) 
instruction is supported (implicitly locked and atomic). 

9 APIC APIC On-Chip. The processor contains an Advanced Programmable Interrupt 
Controller (APIC), responding to memory mapped commands in the physical 
address range FFFE0000H to FFFE0FFFH (by default - some processors 
permit the APIC to be relocated). 

10 Reserved Reserved 

11 SEP SYSENTER and SYSEXIT Instructions. The SYSENTER and SYSEXIT and 
associated MSRs are supported. 

12 MTRR Memory Type Range Registers. MTRRs are supported. The MTRRcap MSR 
contains feature bits that describe what memory types are supported, how 
many variable MTRRs are supported, and whether fixed MTRRs are 
supported. 
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13 PGE Page Global Bit. The global bit is supported in paging-structure entries that 
map a page, indicating TLB entries that are common to different processes 
and need not be flushed. The CR4.PGE bit controls this feature. 

14 MCA Machine Check Architecture. The Machine Check Architecture, which 
provides a compatible mechanism for error reporting in P6 family, Pentium 
4, Intel Xeon processors, and future processors, is supported. The MCG_CAP 
MSR contains feature bits describing how many banks of error reporting 
MSRs are supported. 

15 CMOV Conditional Move Instructions. The conditional move instruction CMOV is 
supported. In addition, if x87 FPU is present as indicated by the CPUID.FPU 
feature bit, then the FCOMI and FCMOV instructions are supported 

16 PAT Page Attribute Table. Page Attribute Table is supported. This feature 
augments the Memory Type Range Registers (MTRRs), allowing an 
operating system to specify attributes of memory accessed through a linear 
address on a 4KB granularity.

17 PSE-36 36-Bit Page Size Extension. 4-MByte pages addressing physical memory 
beyond 4 GBytes are supported with 32-bit paging. This feature indicates 
that upper bits of the physical address of a 4-MByte page are encoded in 
bits 20:13 of the page-directory entry. Such physical addresses are limited 
by MAXPHYADDR and may be up to 40 bits in size.

18 PSN Processor Serial Number. The processor supports the 96-bit processor 
identification number feature and the feature is enabled.

19 CLFSH CLFLUSH Instruction. CLFLUSH Instruction is supported.

20 Reserved Reserved

21 DS Debug Store. The processor supports the ability to write debug information 
into a memory resident buffer. This feature is used by the branch trace 
store (BTS) and precise event-based sampling (PEBS) facilities (see Chapter 
23, “Introduction to Virtual-Machine Extensions,” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3C).

22 ACPI Thermal Monitor and Software Controlled Clock Facilities. The processor 
implements internal MSRs that allow processor temperature to be 
monitored and processor performance to be modulated in predefined duty 
cycles under software control.

23 MMX Intel MMX Technology. The processor supports the Intel MMX technology.

24 FXSR FXSAVE and FXRSTOR Instructions. The FXSAVE and FXRSTOR 
instructions are supported for fast save and restore of the floating point 
context. Presence of this bit also indicates that CR4.OSFXSR is available for 
an operating system to indicate that it supports the FXSAVE and FXRSTOR 
instructions.

Table 3-21.  More on Feature Information Returned in the EDX Register (Contd.)

Bit # Mnemonic Description
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INPUT EAX = 2: TLB/Cache/Prefetch Information Returned in EAX, EBX, ECX, EDX

When CPUID executes with EAX set to 2, the processor returns information about the 
processor’s internal TLBs, cache and prefetch hardware in the EAX, EBX, ECX, and 
EDX registers. The information is reported in encoded form and fall into the following 
categories:
• The least-significant byte in register EAX (register AL) indicates the number of 

times the CPUID instruction must be executed with an input value of 2 to get a 
complete description of the processor’s TLB/Cache/Prefetch hardware. The Intel 
Xeon processor 7400 series will return a 1.

• The most significant bit (bit 31) of each register indicates whether the register 
contains valid information (set to 0) or is reserved (set to 1).

• If a register contains valid information, the information is contained in 1 byte 
descriptors. There are four types of encoding values for the byte descriptor, the 
encoding type is noted in the second column of Table 3-22. Table 3-22 lists the 
encoding of these descriptors. Note that the order of descriptors in the EAX, EBX, 
ECX, and EDX registers is not defined; that is, specific bytes are not designated 
to contain descriptors for specific cache, prefetch, or TLB types. The descriptors 
may appear in any order. Note also a processor may report a general descriptor 
type (FFH) and not report any byte descriptor of “cache type“ via CPUID leaf 2.

25 SSE SSE. The processor supports the SSE extensions.

26 SSE2 SSE2. The processor supports the SSE2 extensions.

27 SS Self Snoop. The processor supports the management of conflicting memory 
types by performing a snoop of its own cache structure for transactions 
issued to the bus.

28 HTT Max APIC IDs reserved field is Valid. A value of 0 for HTT indicates there is 
only a single logical processor in the package and software should assume 
only a single APIC ID is reserved.  A value of 1 for HTT indicates the value in 
CPUID.1.EBX[23:16] (the Maximum number of addressable IDs for logical 
processors in this package) is valid for the package.

29 TM Thermal Monitor. The processor implements the thermal monitor 
automatic thermal control circuitry (TCC).

30 Reserved Reserved

31 PBE Pending Break Enable. The processor supports the use of the 
FERR#/PBE# pin when the processor is in the stop-clock state (STPCLK# is 
asserted) to signal the processor that an interrupt is pending and that the 
processor should return to normal operation to handle the interrupt. Bit 10 
(PBE enable) in the IA32_MISC_ENABLE MSR enables this capability.

Table 3-21.  More on Feature Information Returned in the EDX Register (Contd.)

Bit # Mnemonic Description
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Table 3-22.  Encoding of CPUID Leaf 2 Descriptors 
 Value Type Description

00H General Null descriptor, this byte contains no information

01H TLB Instruction TLB: 4 KByte pages, 4-way set associative, 32 entries

02H TLB Instruction TLB: 4 MByte pages, fully associative, 2 entries

03H TLB Data TLB: 4 KByte pages, 4-way set associative, 64 entries

04H TLB Data TLB: 4 MByte pages, 4-way set associative, 8 entries

05H TLB Data TLB1: 4 MByte pages, 4-way set associative, 32 entries

06H Cache 1st-level instruction cache: 8 KBytes, 4-way set associative, 32 byte line size

08H Cache 1st-level instruction cache: 16 KBytes, 4-way set associative, 32 byte line 
size

09H Cache 1st-level instruction cache: 32KBytes, 4-way set associative, 64 byte line size

0AH Cache 1st-level data cache: 8 KBytes, 2-way set associative, 32 byte line size

0BH TLB Instruction TLB: 4 MByte pages, 4-way set associative, 4 entries

0CH Cache 1st-level data cache: 16 KBytes, 4-way set associative, 32 byte line size

0DH Cache 1st-level data cache: 16 KBytes, 4-way set associative, 64 byte line size

0EH Cache 1st-level data cache: 24 KBytes, 6-way set associative, 64 byte line size

21H Cache 2nd-level cache: 256 KBytes, 8-way set associative, 64 byte line size

22H Cache 3rd-level cache: 512 KBytes, 4-way set associative, 64 byte line size, 2 lines 
per sector

23H Cache 3rd-level cache: 1 MBytes, 8-way set associative, 64 byte line size, 2 lines per 
sector

25H Cache 3rd-level cache: 2 MBytes, 8-way set associative, 64 byte line size, 2 lines per 
sector

29H Cache 3rd-level cache: 4 MBytes, 8-way set associative, 64 byte line size, 2 lines per 
sector

2CH Cache 1st-level data cache: 32 KBytes, 8-way set associative, 64 byte line size

30H Cache 1st-level instruction cache: 32 KBytes, 8-way set associative, 64 byte line 
size

40H Cache No 2nd-level cache or, if processor contains a valid 2nd-level cache, no 3rd-
level cache

41H Cache 2nd-level cache: 128 KBytes, 4-way set associative, 32 byte line size

42H Cache 2nd-level cache: 256 KBytes, 4-way set associative, 32 byte line size

43H Cache 2nd-level cache: 512 KBytes, 4-way set associative, 32 byte line size

44H Cache 2nd-level cache: 1 MByte, 4-way set associative, 32 byte line size

45H Cache 2nd-level cache: 2 MByte, 4-way set associative, 32 byte line size
3-220 Vol. 2A CPUID—CPU Identification



INSTRUCTION SET REFERENCE, A-L
46H Cache 3rd-level cache: 4 MByte, 4-way set associative, 64 byte line size

47H Cache 3rd-level cache: 8 MByte, 8-way set associative, 64 byte line size

48H Cache 2nd-level cache: 3MByte, 12-way set associative, 64 byte line size

49H Cache 3rd-level cache: 4MB, 16-way set associative, 64-byte line size (Intel Xeon 
processor MP, Family 0FH, Model 06H);

2nd-level cache: 4 MByte, 16-way set associative, 64 byte line size

4AH Cache 3rd-level cache: 6MByte, 12-way set associative, 64 byte line size

4BH Cache 3rd-level cache: 8MByte, 16-way set associative, 64 byte line size

4CH Cache 3rd-level cache: 12MByte, 12-way set associative, 64 byte line size

4DH Cache 3rd-level cache: 16MByte, 16-way set associative, 64 byte line size

4EH Cache 2nd-level cache: 6MByte, 24-way set associative, 64 byte line size

4FH TLB Instruction TLB: 4 KByte pages, 32 entries

50H TLB Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 64 entries

51H TLB Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 128 entries

52H TLB Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 256 entries

55H TLB Instruction TLB: 2-MByte or 4-MByte pages, fully associative, 7 entries

56H TLB Data TLB0: 4 MByte pages, 4-way set associative, 16 entries

57H TLB Data TLB0: 4 KByte pages, 4-way associative, 16 entries

59H TLB Data TLB0: 4 KByte pages, fully associative, 16 entries

5AH TLB Data TLB0: 2-MByte or 4 MByte pages, 4-way set associative, 32 entries

5BH TLB Data TLB: 4 KByte and 4 MByte pages, 64 entries

5CH TLB Data TLB: 4 KByte and 4 MByte pages,128 entries

5DH TLB Data TLB: 4 KByte and 4 MByte pages,256 entries

60H Cache 1st-level data cache: 16 KByte, 8-way set associative, 64 byte line size

66H Cache 1st-level data cache: 8 KByte, 4-way set associative, 64 byte line size

67H Cache 1st-level data cache: 16 KByte, 4-way set associative, 64 byte line size

68H Cache 1st-level data cache: 32 KByte, 4-way set associative, 64 byte line size

70H Cache Trace cache: 12 K-μop, 8-way set associative

71H Cache Trace cache: 16 K-μop, 8-way set associative

72H Cache Trace cache: 32 K-μop, 8-way set associative

76H TLB Instruction TLB: 2M/4M pages, fully associative, 8 entries 

78H Cache 2nd-level cache: 1 MByte, 4-way set associative, 64byte line size

Table 3-22.  Encoding of CPUID Leaf 2 Descriptors  (Contd.)
 Value Type Description
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79H Cache 2nd-level cache: 128 KByte, 8-way set associative, 64 byte line size, 2 lines 
per sector

7AH Cache 2nd-level cache: 256 KByte, 8-way set associative, 64 byte line size, 2 lines 
per sector

7BH Cache 2nd-level cache: 512 KByte, 8-way set associative, 64 byte line size, 2 lines 
per sector

7CH Cache 2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size, 2 lines per 
sector

7DH Cache 2nd-level cache: 2 MByte, 8-way set associative, 64byte line size

7FH Cache 2nd-level cache: 512 KByte, 2-way set associative, 64-byte line size

80H Cache 2nd-level cache: 512 KByte, 8-way set associative, 64-byte line size

82H Cache 2nd-level cache: 256 KByte, 8-way set associative, 32 byte line size

83H Cache 2nd-level cache: 512 KByte, 8-way set associative, 32 byte line size

84H Cache 2nd-level cache: 1 MByte, 8-way set associative, 32 byte line size

85H Cache 2nd-level cache: 2 MByte, 8-way set associative, 32 byte line size

86H Cache 2nd-level cache: 512 KByte, 4-way set associative, 64 byte line size

87H Cache 2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size

B0H TLB Instruction TLB: 4 KByte pages, 4-way set associative, 128 entries

B1H TLB Instruction TLB: 2M pages, 4-way, 8 entries or 4M pages, 4-way, 4 entries

B2H TLB Instruction TLB: 4KByte pages, 4-way set associative, 64 entries

B3H TLB Data TLB: 4 KByte pages, 4-way set associative, 128 entries

B4H TLB Data TLB1: 4 KByte pages, 4-way associative, 256 entries

BAH TLB Data TLB1: 4 KByte pages, 4-way associative, 64 entries

C0H TLB Data TLB: 4 KByte and 4 MByte pages, 4-way associative, 8 entries

CAH STLB Shared 2nd-Level TLB: 4 KByte pages, 4-way associative, 512 entries

D0H Cache 3rd-level cache: 512 KByte, 4-way set associative, 64 byte line size

D1H Cache 3rd-level cache: 1 MByte, 4-way set associative, 64 byte line size

D2H Cache 3rd-level cache: 2 MByte, 4-way set associative, 64 byte line size

D6H Cache 3rd-level cache: 1 MByte, 8-way set associative, 64 byte line size

D7H Cache 3rd-level cache: 2 MByte, 8-way set associative, 64 byte line size

D8H Cache 3rd-level cache: 4 MByte, 8-way set associative, 64 byte line size

DCH Cache 3rd-level cache: 1.5 MByte, 12-way set associative, 64 byte line size

DDH Cache 3rd-level cache: 3 MByte, 12-way set associative, 64 byte line size

DEH Cache 3rd-level cache: 6 MByte, 12-way set associative, 64 byte line size

Table 3-22.  Encoding of CPUID Leaf 2 Descriptors  (Contd.)
 Value Type Description
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Example 3-1.  Example of Cache and TLB Interpretation

The first member of the family of Pentium 4 processors returns the following informa-
tion about caches and TLBs when the CPUID executes with an input value of 2:

EAX 66 5B 50 01H
EBX 0H
ECX 0H
EDX 00 7A 70 00H

Which means:
• The least-significant byte (byte 0) of register EAX is set to 01H. This indicates 

that CPUID needs to be executed once with an input value of 2 to retrieve 
complete information about caches and TLBs.

• The most-significant bit of all four registers (EAX, EBX, ECX, and EDX) is set to 0, 
indicating that each register contains valid 1-byte descriptors.

• Bytes 1, 2, and 3 of register EAX indicate that the processor has:

— 50H - a 64-entry instruction TLB, for mapping 4-KByte and 2-MByte or 4-
MByte pages.

— 5BH - a 64-entry data TLB, for mapping 4-KByte and 4-MByte pages.

— 66H - an 8-KByte 1st level data cache, 4-way set associative, with a 64-Byte 
cache line size.

• The descriptors in registers EBX and ECX are valid, but contain NULL descriptors.
• Bytes 0, 1, 2, and 3 of register EDX indicate that the processor has:

— 00H - NULL descriptor.

— 70H - Trace cache: 12 K-μop, 8-way set associative.

E2H Cache 3rd-level cache: 2 MByte, 16-way set associative, 64 byte line size

E3H Cache 3rd-level cache: 4 MByte, 16-way set associative, 64 byte line size

E4H Cache 3rd-level cache: 8 MByte, 16-way set associative, 64 byte line size

EAH Cache 3rd-level cache: 12MByte, 24-way set associative, 64 byte line size

EBH Cache 3rd-level cache: 18MByte, 24-way set associative, 64 byte line size

ECH Cache 3rd-level cache: 24MByte, 24-way set associative, 64 byte line size

F0H Prefetch 64-Byte prefetching

F1H Prefetch 128-Byte prefetching

FFH General CPUID leaf 2 does not report cache descriptor information, use CPUID leaf 4 to 
query cache parameters

Table 3-22.  Encoding of CPUID Leaf 2 Descriptors  (Contd.)
 Value Type Description
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— 7AH - a 256-KByte 2nd level cache, 8-way set associative, with a sectored, 
64-byte cache line size.

— 00H - NULL descriptor.

INPUT EAX = 04H: Returns Deterministic Cache Parameters for Each Level

When CPUID executes with EAX set to 04H and ECX contains an index value, the 
processor returns encoded data that describe a set of deterministic cache parame-
ters (for the cache level associated with the input in ECX). Valid index values start 
from 0.

Software can enumerate the deterministic cache parameters for each level of the 
cache hierarchy starting with an index value of 0, until the parameters report the 
value associated with the cache type field is 0. The architecturally defined fields 
reported by deterministic cache parameters are documented in Table 3-17.

This Cache Size in Bytes

= (Ways + 1) * (Partitions + 1) * (Line_Size + 1) * (Sets + 1)

= (EBX[31:22] + 1) * (EBX[21:12] + 1) * (EBX[11:0] + 1) * (ECX + 1)

The CPUID leaf 04H also reports data that can be used to derive the topology of 
processor cores in a physical package. This information is constant for all valid index 
values. Software can query the raw data reported by executing CPUID with EAX=04H 
and ECX=0 and use it as part of the topology enumeration algorithm described in 
Chapter 8, “Multiple-Processor Management,” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3A.

INPUT EAX = 05H: Returns MONITOR and MWAIT Features

When CPUID executes with EAX set to 05H, the processor returns information about 
features available to MONITOR/MWAIT instructions. The MONITOR instruction is used 
for address-range monitoring in conjunction with MWAIT instruction. The MWAIT 
instruction optionally provides additional extensions for advanced power manage-
ment. See Table 3-17. 

INPUT EAX = 06H: Returns Thermal and Power Management Features

When CPUID executes with EAX set to 06H, the processor returns information about 
thermal and power management features. See Table 3-17. 

INPUT EAX = 07H: Returns Structured Extended Feature Enumeration Information

When CPUID executes with EAX set to 7 and ECX = 0, the processor returns informa-
tion about the maximum number of sub-leaves that contain extended feature flags. 
See Table 3-17. 

When CPUID executes with EAX set to 7 and ECX = n (n > 1 and less than the num-
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ber of non-zero bits in CPUID.(EAX=07H, ECX= 0H).EAX, the processor returns 
information about extended feature flags. See Table 3-17. In subleaf 0, only EAX 
has the number of sub-leaves.  In subleaf 0, EBX, ECX & EDX all contain extended 
feature flags.

INPUT EAX = 09H: Returns Direct Cache Access Information

When CPUID executes with EAX set to 09H, the processor returns information about 
Direct Cache Access capabilities. See Table 3-17. 

INPUT EAX = 0AH: Returns Architectural Performance Monitoring Features

When CPUID executes with EAX set to 0AH, the processor returns information about 
support for architectural performance monitoring capabilities. Architectural perfor-
mance monitoring is supported if the version ID (see Table 3-17) is greater than 
Pn 0. See Table 3-17.

For each version of architectural performance monitoring capability, software must 
enumerate this leaf to discover the programming facilities and the architectural 
performance events available in the processor. The details are described in Chapter 
23, “Introduction to Virtual-Machine Extensions,” in the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3C.

INPUT EAX = 0BH: Returns Extended Topology Information

When CPUID executes with EAX set to 0BH, the processor returns information about 
extended topology enumeration data. Software must detect the presence of CPUID 
leaf 0BH by verifying (a) the highest leaf index supported by CPUID is >= 0BH, and 
(b) CPUID.0BH:EBX[15:0] reports a non-zero value. See Table 3-17.

INPUT EAX = 0DH: Returns Processor Extended States Enumeration Information

When CPUID executes with EAX set to 0DH and ECX = 0, the processor returns infor-
mation about the bit-vector representation of all processor state extensions that are 
supported in the processor and storage size requirements of the XSAVE/XRSTOR 
area. See Table 3-17. 

When CPUID executes with EAX set to 0DH and ECX = n (n > 1, and is a valid sub-
leaf index), the processor returns information about the size and offset of each 
processor extended state save area within the XSAVE/XRSTOR area. See Table 3-17. 
Software can use the forward-extendable technique depicted below to query the 
valid sub-leaves and obtain size and offset information for each processor extended 
state save area:

For i = 2 to 62 // sub-leaf 1 is reserved
IF (CPUID.(EAX=0DH, ECX=0):VECTOR[i] = 1 ) // VECTOR is the 64-bit value of EDX:EAX

Execute CPUID.(EAX=0DH, ECX = i) to examine size and offset for sub-leaf i; 
FI;
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METHODS FOR RETURNING BRANDING INFORMATION

Use the following techniques to access branding information:

1. Processor brand string method; this method also returns the processor’s
maximum operating frequency

2. Processor brand index; this method uses a software supplied brand string table.

These two methods are discussed in the following sections. For methods that are 
available in early processors, see Section: “Identification of Earlier IA-32 Processors” 
in Chapter 14 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 1.

The Processor Brand String Method

Figure 3-8 describes the algorithm used for detection of the brand string. Processor 
brand identification software should execute this algorithm on all Intel 64 and IA-32 
processors. 

This method (introduced with Pentium 4 processors) returns an ASCII brand identifi-
cation string and the maximum operating frequency of the processor to the EAX, 
EBX, ECX, and EDX registers.
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How Brand Strings Work

To use the brand string method, execute CPUID with EAX input of 8000002H through 
80000004H. For each input value, CPUID returns 16 ASCII characters using EAX, 
EBX, ECX, and EDX. The returned string will be NULL-terminated.

Table 3-23 shows the brand string that is returned by the first processor in the 
Pentium 4 processor family.

Figure 3-8.  Determination of Support for the Processor Brand String

OM15194

IF (EAX & 0x80000000)

CPUID

IF (EAX Return Value 
≥ 0x80000004)

CPUID 
Function

Supported

True ≥
Extended

EAX Return Value =
Max. Extended CPUID

Function Index

Input: EAX= 
0x80000000

Processor Brand
String Not
Supported

False

Processor Brand
String Supported

True
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Extracting the Maximum Processor Frequency from Brand Strings

Figure 3-9 provides an algorithm which software can use to extract the maximum 
processor operating frequency from the processor brand string.

NOTE
When a frequency is given in a brand string, it is the maximum 
qualified frequency of the processor, not the frequency at which the 
processor is currently running.

Table 3-23.  Processor Brand String Returned with Pentium 4 Processor 

EAX Input Value Return Values ASCII Equivalent

80000002H EAX = 20202020H

EBX = 20202020H

ECX = 20202020H

EDX = 6E492020H

“  ” 

“ ”

“ ”

“nI  ”

80000003H EAX = 286C6574H

EBX = 50202952H

ECX = 69746E65H

EDX = 52286D75H

“(let”

“P )R”

“itne”

“R(mu”

80000004H EAX = 20342029H

EBX = 20555043H

ECX = 30303531H

EDX = 007A484DH

“ 4 )”

“ UPC”

“0051”

“\0zHM”
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The Processor Brand Index Method

The brand index method (introduced with Pentium® III Xeon® processors) provides 
an entry point into a brand identification table that is maintained in memory by 
system software and is accessible from system- and user-level code. In this table, 
each brand index is associate with an ASCII brand identification string that identifies 
the official Intel family and model number of a processor.

When CPUID executes with EAX set to 1, the processor returns a brand index to the 
low byte in EBX. Software can then use this index to locate the brand identification 
string for the processor in the brand identification table. The first entry (brand index 
0) in this table is reserved, allowing for backward compatibility with processors that 

Figure 3-9.  Algorithm for Extracting Maximum Processor Frequency
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do not support the brand identification feature. Starting with processor signature 
family ID = 0FH, model = 03H, brand index method is no longer supported. Use 
brand string method instead.

Table 3-24 shows brand indices that have identification strings associated with them.

Table 3-24.  Mapping of Brand Indices; and 
Intel 64 and IA-32 Processor Brand Strings

Brand Index Brand String

00H This processor does not support the brand identification feature

01H Intel(R) Celeron(R) processor1

02H Intel(R) Pentium(R) III processor1

03H Intel(R) Pentium(R) III Xeon(R) processor; If processor signature = 
000006B1h, then Intel(R) Celeron(R) processor

04H Intel(R) Pentium(R) III processor

06H Mobile Intel(R) Pentium(R) III processor-M

07H Mobile Intel(R) Celeron(R) processor1

08H Intel(R) Pentium(R) 4 processor

09H Intel(R) Pentium(R) 4 processor

0AH Intel(R) Celeron(R) processor1

0BH Intel(R) Xeon(R) processor; If processor signature = 00000F13h, then Intel(R) 
Xeon(R) processor MP

0CH Intel(R) Xeon(R) processor MP

0EH Mobile Intel(R) Pentium(R) 4 processor-M; If processor signature = 
00000F13h, then Intel(R) Xeon(R) processor

0FH Mobile Intel(R) Celeron(R) processor1

11H Mobile Genuine Intel(R) processor

12H Intel(R) Celeron(R) M processor

13H Mobile Intel(R) Celeron(R) processor1

14H Intel(R) Celeron(R) processor

15H Mobile Genuine Intel(R) processor

16H Intel(R) Pentium(R) M processor

17H Mobile Intel(R) Celeron(R) processor1

18H – 0FFH RESERVED

NOTES:
1. Indicates versions of these processors that were introduced after the Pentium III 
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IA-32 Architecture Compatibility

CPUID is not supported in early models of the Intel486 processor or in any IA-32 
processor earlier than the Intel486 processor.

Operation

IA32_BIOS_SIGN_ID MSR ← Update with installed microcode revision number;

CASE (EAX) OF
EAX = 0:

EAX ← Highest basic function input value understood by CPUID;
EBX ← Vendor identification string;
EDX ← Vendor identification string;
ECX ← Vendor identification string;

BREAK;
EAX = 1H:

EAX[3:0] ← Stepping ID; 
EAX[7:4] ← Model; 
EAX[11:8] ← Family; 
EAX[13:12] ← Processor type; 
EAX[15:14] ← Reserved;
EAX[19:16] ← Extended Model;
EAX[27:20] ← Extended Family;
EAX[31:28] ← Reserved;
EBX[7:0] ← Brand Index; (* Reserved if the value is zero. *)
EBX[15:8] ← CLFLUSH Line Size;
EBX[16:23] ← Reserved; (* Number of threads enabled = 2 if MT enable fuse set. *)
EBX[24:31] ← Initial APIC ID;
ECX ← Feature flags; (* See Figure 3-6. *)
EDX ← Feature flags; (* See Figure 3-7. *)

BREAK;
EAX = 2H:

EAX ← Cache and TLB information; 
 EBX ← Cache and TLB information; 
 ECX ← Cache and TLB information; 

EDX ← Cache and TLB information; 
BREAK;
EAX = 3H:

EAX ← Reserved; 
 EBX ← Reserved; 
 ECX ← ProcessorSerialNumber[31:0]; 

(* Pentium III processors only, otherwise reserved. *)
EDX ← ProcessorSerialNumber[63:32]; 
(* Pentium III processors only, otherwise reserved. *
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BREAK
EAX = 4H:

EAX ← Deterministic Cache Parameters Leaf; (* See Table 3-17. *)
EBX ← Deterministic Cache Parameters Leaf; 

 ECX ← Deterministic Cache Parameters Leaf; 
EDX ← Deterministic Cache Parameters Leaf; 

BREAK;
EAX = 5H:

EAX ← MONITOR/MWAIT Leaf; (* See Table 3-17. *)
 EBX ← MONITOR/MWAIT Leaf; 
 ECX ← MONITOR/MWAIT Leaf; 

EDX ← MONITOR/MWAIT Leaf; 
BREAK;
EAX = 6H:

EAX ← Thermal and Power Management Leaf; (* See Table 3-17. *)
 EBX ← Thermal and Power Management Leaf; 
 ECX ← Thermal and Power Management Leaf; 

EDX ← Thermal and Power Management Leaf; 
BREAK;
EAX = 7H:

EAX ← Structured Extended Feature Flags Enumeration Leaf; (* See Table 3-17. *)
EBX ← Structured Extended Feature Flags Enumeration Leaf; 

 ECX ← Structured Extended Feature Flags Enumeration Leaf; 
EDX ← Structured Extended Feature Flags Enumeration Leaf; 

BREAK;
EAX = 8H:

EAX ← Reserved = 0;
 EBX ← Reserved = 0; 
 ECX ← Reserved = 0; 

EDX ← Reserved = 0; 
BREAK;
EAX = 9H:

EAX ← Direct Cache Access Information Leaf; (* See Table 3-17. *)
 EBX ← Direct Cache Access Information Leaf; 
 ECX ← Direct Cache Access Information Leaf; 

EDX ← Direct Cache Access Information Leaf; 
BREAK;
EAX = AH:

EAX ← Architectural Performance Monitoring Leaf; (* See Table 3-17. *)
 EBX ← Architectural Performance Monitoring Leaf; 
 ECX ← Architectural Performance Monitoring Leaf; 

EDX ← Architectural Performance Monitoring Leaf; 
BREAK
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EAX = BH:
EAX ← Extended Topology Enumeration Leaf; (* See Table 3-17. *)
EBX ← Extended Topology Enumeration Leaf; 

 ECX ← Extended Topology Enumeration Leaf; 
EDX ← Extended Topology Enumeration Leaf; 

BREAK;
EAX = CH:

EAX ← Reserved = 0;
 EBX ← Reserved = 0; 
 ECX ← Reserved = 0; 

EDX ← Reserved = 0; 
BREAK;
EAX = DH:

EAX ← Processor Extended State Enumeration Leaf; (* See Table 3-17. *)
 EBX ← Processor Extended State Enumeration Leaf; 
 ECX ← Processor Extended State Enumeration Leaf; 

EDX ← Processor Extended State Enumeration Leaf; 
BREAK;

BREAK;
EAX = 80000000H:

EAX ← Highest extended function input value understood by CPUID;
EBX ← Reserved; 
ECX ← Reserved; 
EDX ← Reserved; 

BREAK;
EAX = 80000001H:

EAX ← Reserved; 
EBX ← Reserved; 
ECX ← Extended Feature Bits (* See Table 3-17.*); 
EDX ← Extended Feature Bits (* See Table 3-17. *); 

BREAK;
EAX = 80000002H:

EAX ← Processor Brand String; 
EBX ← Processor Brand String, continued;
ECX ← Processor Brand String, continued; 
EDX ← Processor Brand String, continued; 

BREAK;
EAX = 80000003H:

EAX ← Processor Brand String, continued; 
EBX ← Processor Brand String, continued; 
ECX ← Processor Brand String, continued; 
EDX ← Processor Brand String, continued; 

BREAK;
Vol. 2A 3-233CPUID—CPU Identification



INSTRUCTION SET REFERENCE, A-L
EAX = 80000004H:
EAX ← Processor Brand String, continued; 
EBX ← Processor Brand String, continued; 
ECX ← Processor Brand String, continued; 
EDX ← Processor Brand String, continued;

BREAK;
EAX = 80000005H:

EAX ← Reserved = 0; 
EBX ← Reserved = 0; 
ECX ← Reserved = 0; 
EDX ← Reserved = 0; 

BREAK;
EAX = 80000006H:

EAX ← Reserved = 0; 
EBX ← Reserved = 0; 
ECX ← Cache information; 
EDX ← Reserved = 0; 

BREAK;
EAX = 80000007H:

EAX ← Reserved = 0; 
EBX ← Reserved = 0; 
ECX ← Reserved = 0; 
EDX ← Reserved = Misc Feature Flags; 

BREAK;
EAX = 80000008H:

EAX ← Reserved = Physical Address Size Information; 
EBX ← Reserved = Virtual Address Size Information; 
ECX ← Reserved = 0; 
EDX ← Reserved = 0; 

BREAK;
EAX >= 40000000H and EAX <= 4FFFFFFFH:
DEFAULT: (* EAX = Value outside of recognized range for CPUID. *)

(* If the highest basic information leaf data depend on ECX input value, ECX is honored.*)
EAX ← Reserved; (* Information returned for highest basic information leaf. *)
EBX ← Reserved; (* Information returned for highest basic information leaf. *)
ECX ← Reserved; (* Information returned for highest basic information leaf. *)
EDX ← Reserved; (* Information returned for highest basic information leaf. *)

BREAK;
ESAC;

Flags Affected

None.
3-234 Vol. 2A CPUID—CPU Identification



INSTRUCTION SET REFERENCE, A-L
Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

In earlier IA-32 processors that do not support the CPUID 
instruction, execution of the instruction results in an invalid 
opcode (#UD) exception being generated.
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CRC32 — Accumulate CRC32 Value

Instruction Operand Encoding

Description

Starting with an initial value in the first operand (destination operand), accumulates 
a CRC32 (polynomial 0x11EDC6F41) value for the second operand (source operand) 
and stores the result in the destination operand. The source operand can be a 
register or a memory location. The destination operand must be an r32 or r64 
register. If the destination is an r64 register, then the 32-bit result is stored in the 
least significant double word and 00000000H is stored in the most significant double 
word of the r64 register.

The initial value supplied in the destination operand is a double word integer stored 
in the r32 register or the least significant double word of the r64 register. To incre-
mentally accumulate a CRC32 value, software retains the result of the previous 
CRC32 operation in the destination operand, then executes the CRC32 instruction 
again with new input data in the source operand. Data contained in the source 
operand is processed in reflected bit order. This means that the most significant bit of 
the source operand is treated as the least significant bit of the quotient, and so on, 
for all the bits of the source operand. Likewise, the result of the CRC operation is 
stored in the destination operand in reflected bit order. This means that the most 
significant bit of the resulting CRC (bit 31) is stored in the least significant bit of the 
destination operand (bit 0), and so on, for all the bits of the CRC.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

F2 0F 38 F0 /r CRC32 r32, r/m8 RM Valid Valid Accumulate CRC32 on r/m8.

F2 REX 0F 38 
F0 /r

CRC32 r32, r/m8* RM Valid N.E. Accumulate CRC32 on r/m8.

F2 0F 38 F1 /r CRC32 r32, r/m16 RM Valid Valid Accumulate CRC32 on 
r/m16.

F2 0F 38 F1 /r CRC32 r32, r/m32 RM Valid Valid Accumulate CRC32 on 
r/m32.

F2 REX.W 0F 38 
F0 /r

CRC32 r64, r/m8 RM Valid N.E. Accumulate CRC32 on r/m8.

F2 REX.W 0F 38 
F1 /r

CRC32 r64, r/m64 RM Valid N.E. Accumulate CRC32 on 
r/m64.

NOTES:
*In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is 
used: AH, BH, CH, DH. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
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Operation

Notes:

BIT_REFLECT64: DST[63-0] = SRC[0-63]
BIT_REFLECT32: DST[31-0] = SRC[0-31]
BIT_REFLECT16: DST[15-0] = SRC[0-15]
BIT_REFLECT8: DST[7-0] = SRC[0-7]
MOD2: Remainder from Polynomial division modulus 2

CRC32 instruction for 64-bit source operand and 64-bit destination operand:

TEMP1[63-0]  BIT_REFLECT64 (SRC[63-0])
TEMP2[31-0]  BIT_REFLECT32 (DEST[31-0])
TEMP3[95-0]  TEMP1[63-0] « 32
TEMP4[95-0]  TEMP2[31-0] « 64
TEMP5[95-0]  TEMP3[95-0] XOR TEMP4[95-0]
TEMP6[31-0]  TEMP5[95-0] MOD2 11EDC6F41H
DEST[31-0]  BIT_REFLECT (TEMP6[31-0])
DEST[63-32]  00000000H

CRC32 instruction for 32-bit source operand and 32-bit destination operand:

TEMP1[31-0]  BIT_REFLECT32 (SRC[31-0])
TEMP2[31-0]  BIT_REFLECT32 (DEST[31-0])
TEMP3[63-0]  TEMP1[31-0] « 32
TEMP4[63-0]  TEMP2[31-0] « 32
TEMP5[63-0]  TEMP3[63-0] XOR TEMP4[63-0]
TEMP6[31-0]  TEMP5[63-0] MOD2 11EDC6F41H
DEST[31-0]  BIT_REFLECT (TEMP6[31-0])

CRC32 instruction for 16-bit source operand and 32-bit destination operand:

TEMP1[15-0]  BIT_REFLECT16 (SRC[15-0])
TEMP2[31-0]  BIT_REFLECT32 (DEST[31-0])
TEMP3[47-0]  TEMP1[15-0] « 32
TEMP4[47-0]  TEMP2[31-0] « 16
TEMP5[47-0]  TEMP3[47-0] XOR TEMP4[47-0]
TEMP6[31-0]  TEMP5[47-0] MOD2 11EDC6F41H
DEST[31-0]  BIT_REFLECT (TEMP6[31-0])

CRC32 instruction for 8-bit source operand and 64-bit destination operand:

TEMP1[7-0]  BIT_REFLECT8(SRC[7-0])
TEMP2[31-0]  BIT_REFLECT32 (DEST[31-0])
TEMP3[39-0]  TEMP1[7-0] « 32
TEMP4[39-0]  TEMP2[31-0] « 8
TEMP5[39-0]  TEMP3[39-0] XOR TEMP4[39-0]
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TEMP6[31-0]  TEMP5[39-0] MOD2 11EDC6F41H
DEST[31-0]  BIT_REFLECT (TEMP6[31-0])
DEST[63-32]  00000000H

CRC32 instruction for 8-bit source operand and 32-bit destination operand:

TEMP1[7-0]  BIT_REFLECT8(SRC[7-0])
TEMP2[31-0]  BIT_REFLECT32 (DEST[31-0])
TEMP3[39-0]  TEMP1[7-0] « 32
TEMP4[39-0]  TEMP2[31-0] « 8
TEMP5[39-0]  TEMP3[39-0] XOR TEMP4[39-0]
TEMP6[31-0]  TEMP5[39-0] MOD2 11EDC6F41H
DEST[31-0]  BIT_REFLECT (TEMP6[31-0])

Flags Affected

None

Intel C/C++ Compiler Intrinsic Equivalent
unsigned int _mm_crc32_u8( unsigned int crc, unsigned char data )
unsigned int _mm_crc32_u16( unsigned int crc, unsigned short data )
unsigned int _mm_crc32_u32( unsigned int crc, unsigned int data )
unsinged __int64 _mm_crc32_u64( unsinged __int64 crc, unsigned __int64 data )

SIMD Floating Point Exceptions

None

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS or GS segments.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
#PF (fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If CPUID.01H:ECX.SSE4_2 [Bit 20] = 0.

If LOCK prefix is used.

Real Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address 

space from 0 to 0FFFFH.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
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#UD If CPUID.01H:ECX.SSE4_2 [Bit 20] = 0.
If LOCK prefix is used.

Virtual 8086 Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address 

space from 0 to 0FFFFH.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
#PF (fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made.
#UD If CPUID.01H:ECX.SSE4_2 [Bit 20] = 0.

If LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#PF (fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If CPUID.01H:ECX.SSE4_2 [Bit 20] = 0.

If LOCK prefix is used.
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CVTDQ2PD—Convert Packed Dword Integers to Packed Double-
Precision FP Values

Instruction Operand Encoding

Description

Converts two packed signed doubleword integers in the source operand (second 
operand) to two packed double-precision floating-point values in the destination 
operand (first operand). 

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional 
registers (XMM8-XMM15).
128-bit Legacy SSE version: The source operand is an XMM register or 64- bit 
memory location. The destination operation is an XMM register. The upper bits 
(VLMAX-1:128) of the corresponding XMM register destination are unmodified.
VEX.128 encoded version: The source operand is an XMM register or 64- bit memory 
location. The destination operation is an XMM register. The upper bits (VLMAX-1:128) 
of the corresponding YMM register destination are zeroed.
VEX.256 encoded version: The source operand is a YMM register or 128- bit memory 
location. The destination operation is a YMM register. 
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise 
instructions will #UD.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F3 0F E6

CVTDQ2PD xmm1, xmm2/m64

RM V/V SSE2 Convert two packed signed 
doubleword integers from 
xmm2/m128 to two packed 
double-precision floating-
point values in xmm1.

VEX.128.F3.0F.WIG E6 /r

VCVTDQ2PD xmm1, xmm2/m64

RM V/V AVX Convert two packed signed 
doubleword integers from 
xmm2/mem to two packed 
double-precision floating-
point values in xmm1.

VEX.256.F3.0F.WIG E6 /r

VCVTDQ2PD ymm1, ymm2/m128

RM V/V AVX Convert four packed signed 
doubleword integers from 
ymm2/mem to four packed 
double-precision floating-
point values in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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Figure 3-10.  CVTDQ2PD (VEX.256 encoded version)

Operation

CVTDQ2PD (128-bit Legacy SSE version)
DEST[63:0]  Convert_Integer_To_Double_Precision_Floating_Point(SRC[31:0])
DEST[127:64]  Convert_Integer_To_Double_Precision_Floating_Point(SRC[63:32])
DEST[VLMAX-1:128] (unmodified)

VCVTDQ2PD (VEX.128 encoded version)
DEST[63:0]  Convert_Integer_To_Double_Precision_Floating_Point(SRC[31:0])
DEST[127:64]  Convert_Integer_To_Double_Precision_Floating_Point(SRC[63:32])
DEST[VLMAX-1:128]  0

VCVTDQ2PD (VEX.256 encoded version)
DEST[63:0]  Convert_Integer_To_Double_Precision_Floating_Point(SRC[31:0])
DEST[127:64]  Convert_Integer_To_Double_Precision_Floating_Point(SRC[63:32])
DEST[191:128]  Convert_Integer_To_Double_Precision_Floating_Point(SRC[95:64])
DEST[255:192]  Convert_Integer_To_Double_Precision_Floating_Point(SRC[127:96)

Intel C/C++ Compiler Intrinsic Equivalent

CVTDQ2PD: __m128d _mm_cvtepi32_pd(__m128i a)

VCVTDQ2PD: __m256d _mm256_cvtepi32_pd (__m128i src)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 5; additionally

DEST

SRC X0X1X2X3

X3 X2 X1 X0
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#UD If VEX.vvvv != 1111B.
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CVTDQ2PS—Convert Packed Dword Integers to Packed Single-
Precision FP Values

Instruction Operand Encoding

Description

Converts four packed signed doubleword integers in the source operand (second 
operand) to four packed single-precision floating-point values in the destination 
operand (first operand). 

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional 
registers (XMM8-XMM15).
128-bit Legacy SSE version: The source operand is an XMM register or 128- bit 
memory location. The destination operation is an XMM register. The upper bits 
(VLMAX-1:128) of the corresponding XMM register destination are unmodified.
VEX.128 encoded version: The source operand is an XMM register or 128- bit 
memory location. The destination operation is an XMM register. The upper bits 
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.
VEX.256 encoded version: The source operand is a YMM register or 256- bit memory 
location. The destination operation is a YMM register. 
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise 
instructions will #UD.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

0F 5B /r

CVTDQ2PS xmm1, xmm2/m128

RM V/V SSE2 Convert four packed signed 
doubleword integers from 
xmm2/m128 to four packed 
single-precision floating-
point values in xmm1.

VEX.128.0F.WIG 5B /r

VCVTDQ2PS xmm1, xmm2/m128

RM V/V AVX Convert four packed signed 
doubleword integers from 
xmm2/mem to four packed 
single-precision floating-
point values in xmm1.

VEX.256.0F.WIG 5B /r

VCVTDQ2PS ymm1, ymm2/m256

RM V/V AVX Convert eight packed signed 
doubleword integers from 
ymm2/mem to eight packed 
single-precision floating-
point values in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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Operation

CVTDQ2PS (128-bit Legacy SSE version)
DEST[31:0]  Convert_Integer_To_Single_Precision_Floating_Point(SRC[31:0])
DEST[63:32]  Convert_Integer_To_Single_Precision_Floating_Point(SRC[63:32])
DEST[95:64]  Convert_Integer_To_Single_Precision_Floating_Point(SRC[95:64])
DEST[127:96]  Convert_Integer_To_Single_Precision_Floating_Point(SRC[127z:96)
DEST[VLMAX-1:128] (unmodified)

VCVTDQ2PS (VEX.128 encoded version)
DEST[31:0]  Convert_Integer_To_Single_Precision_Floating_Point(SRC[31:0])
DEST[63:32]  Convert_Integer_To_Single_Precision_Floating_Point(SRC[63:32])
DEST[95:64]  Convert_Integer_To_Single_Precision_Floating_Point(SRC[95:64])
DEST[127:96]  Convert_Integer_To_Single_Precision_Floating_Point(SRC[127z:96)
DEST[VLMAX-1:128]  0

VCVTDQ2PS (VEX.256 encoded version)
DEST[31:0]  Convert_Integer_To_Single_Precision_Floating_Point(SRC[31:0])
DEST[63:32]  Convert_Integer_To_Single_Precision_Floating_Point(SRC[63:32])
DEST[95:64]  Convert_Integer_To_Single_Precision_Floating_Point(SRC[95:64])
DEST[127:96]  Convert_Integer_To_Single_Precision_Floating_Point(SRC[127z:96)
DEST[159:128]  Convert_Integer_To_Single_Precision_Floating_Point(SRC[159:128])
DEST[191:160]  Convert_Integer_To_Single_Precision_Floating_Point(SRC[191:160])
DEST[223:192]  Convert_Integer_To_Single_Precision_Floating_Point(SRC[223:192])
DEST[255:224]  Convert_Integer_To_Single_Precision_Floating_Point(SRC[255:224)

Intel C/C++ Compiler Intrinsic Equivalent

CVTDQ2PS: __m128 _mm_cvtepi32_ps(__m128i a)

VCVTDQ2PS: __m256 _mm256_cvtepi32_ps (__m256i src)

SIMD Floating-Point Exceptions

Precision.

Other Exceptions
See Exceptions Type 2; additionally
#UD If VEX.vvvv != 1111B.
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CVTPD2DQ—Convert Packed Double-Precision FP Values to Packed 
Dword Integers

Instruction Operand Encoding

Description

Converts two packed double-precision floating-point values in the source operand 
(second operand) to two packed signed doubleword integers in the destination 
operand (first operand).

The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register. The result is stored in the low quadword of the 
destination operand and the high quadword is cleared to all 0s. 

When a conversion is inexact, the value returned is rounded according to the 
rounding control bits in the MXCSR register. If a converted result is larger than the 
maximum signed doubleword integer, the floating-point invalid exception is raised, 
and if this exception is masked, the indefinite integer value (80000000H) is returned.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional 
registers (XMM8-XMM15).
128-bit Legacy SSE version: The source operand is an XMM register or 128- bit 
memory location. The destination operation is an XMM register. Bits[127:64] of the 

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F2 0F E6

CVTPD2DQ xmm1, xmm2/m128

RM V/V SSE2 Convert two packed double-
precision floating-point 
values from xmm2/m128 to 
two packed signed 
doubleword integers in 
xmm1.

VEX.128.F2.0F.WIG E6 /r

VCVTPD2DQ xmm1, xmm2/m128

RM V/V AVX Convert two packed double-
precision floating-point 
values in xmm2/mem to two 
signed doubleword integers 
in xmm1.

VEX.256.F2.0F.WIG E6 /r

VCVTPD2DQ xmm1, ymm2/m256

RM V/V AVX Convert four packed double-
precision floating-point 
values in ymm2/mem to 
four signed doubleword 
integers in xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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destination XMM register are zeroed. However, the upper bits (VLMAX-1:128) of the 
corresponding YMM register destination are unmodified. 
VEX.128 encoded version: The source operand is an XMM register or 128- bit 
memory location. The destination operation is a YMM register. The upper bits 
(VLMAX-1:64) of the corresponding YMM register destination are zeroed.
VEX.256 encoded version: The source operand is a YMM register or 256- bit memory 
location. The destination operation is an XMM register. The upper bits (255:128) of 
the corresponding YMM register destination are zeroed.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise 
instructions will #UD.

Figure 3-11.  VCVTPD2DQ (VEX.256 encoded version)

Operation

CVTPD2DQ (128-bit Legacy SSE version)
DEST[31:0]  Convert_Double_Precision_Floating_Point_To_Integer(SRC[63:0])
DEST[63:32]  Convert_Double_Precision_Floating_Point_To_Integer(SRC[127:64])
DEST[127:64]  0
DEST[VLMAX-1:128] (unmodified)

VCVTPD2DQ (VEX.128 encoded version)
DEST[31:0]  Convert_Double_Precision_Floating_Point_To_Integer(SRC[63:0])
DEST[63:32]  Convert_Double_Precision_Floating_Point_To_Integer(SRC[127:64])
DEST[VLMAX-1:64]  0

VCVTPD2DQ (VEX.256 encoded version)
DEST[31:0]  Convert_Double_Precision_Floating_Point_To_Integer(SRC[63:0])
DEST[63:32]  Convert_Double_Precision_Floating_Point_To_Integer(SRC[127:64])

DEST

SRC

X0X1X2X3

X3 X2 X1 X0

0
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DEST[95:64]  Convert_Double_Precision_Floating_Point_To_Integer(SRC[191:128])
DEST[127:96]  Convert_Double_Precision_Floating_Point_To_Integer(SRC[255:192)
DEST[255:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

CVTPD2DQ: __m128i _mm_cvtpd_epi32 (__m128d src)

CVTPD2DQ: __m128i _mm256_cvtpd_epi32 (__m256d src)

SIMD Floating-Point Exceptions

Invalid, Precision.

Other Exceptions
See Exceptions Type 2; additionally
#UD If VEX.vvvv != 1111B.
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CVTPD2PI—Convert Packed Double-Precision FP Values to Packed 
Dword Integers

Instruction Operand Encoding

Description

Converts two packed double-precision floating-point values in the source operand 
(second operand) to two packed signed doubleword integers in the destination 
operand (first operand).

The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an MMX technology register. 

When a conversion is inexact, the value returned is rounded according to the 
rounding control bits in the MXCSR register. If a converted result is larger than the 
maximum signed doubleword integer, the floating-point invalid exception is raised, 
and if this exception is masked, the indefinite integer value (80000000H) is returned.

This instruction causes a transition from x87 FPU to MMX technology operation (that 
is, the x87 FPU top-of-stack pointer is set to 0 and the x87 FPU tag word is set to all 
0s [valid]). If this instruction is executed while an x87 FPU floating-point exception is 
pending, the exception is handled before the CVTPD2PI instruction is executed.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional 
registers (XMM8-XMM15).

Operation

DEST[31:0] ← Convert_Double_Precision_Floating_Point_To_Integer32(SRC[63:0]);
DEST[63:32] ← Convert_Double_Precision_Floating_Point_To_Integer32(SRC[127:64]);

Intel C/C++ Compiler Intrinsic Equivalent

CVTPD1PI: __m64 _mm_cvtpd_pi32(__m128d a)

Opcode/
Instruction

Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

66 0F 2D /r

CVTPD2PI mm, xmm/m128

RM Valid Valid Convert two packed double-
precision floating-point 
values from xmm/m128 to 
two packed signed 
doubleword integers in mm.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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SIMD Floating-Point Exceptions

Invalid, Precision.

Other Exceptions
See Table 22-4, “Exception Conditions for Legacy SIMD/MMX Instructions with FP 
Exception and 16-Byte Alignment,” in the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3B.
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CVTPD2PS—Convert Packed Double-Precision FP Values to Packed 
Single-Precision FP Values

Instruction Operand Encoding

Description

Converts two packed double-precision floating-point values in the source operand 
(second operand) to two packed single-precision floating-point values in the destina-
tion operand (first operand). 
When a conversion is inexact, the value returned is rounded according to the 
rounding control bits in the MXCSR register. 

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional 
registers (XMM8-XMM15).
128-bit Legacy SSE version: The source operand is an XMM register or 128- bit 
memory location. The destination operation is an XMM register. Bits[127:64] of the 
destination XMM register are zeroed. However, the upper bits (VLMAX-1:128) of the 
corresponding YMM register destination are unmodified.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 5A /r

CVTPD2PS xmm1, xmm2/m128

RM V/V SSE2 Convert two packed double-
precision floating-point 
values in xmm2/m128 to 
two packed single-precision 
floating-point values in 
xmm1.

VEX.128.66.0F.WIG 5A /r

VCVTPD2PS xmm1, xmm2/m128

RM V/V AVX Convert two packed double-
precision floating-point 
values in xmm2/mem to two 
single-precision floating-
point values in xmm1.

VEX.256.66.0F.WIG 5A /r

VCVTPD2PS xmm1, ymm2/m256

RM V/V AVX Convert four packed double-
precision floating-point 
values in ymm2/mem to 
four single-precision 
floating-point values in 
xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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VEX.128 encoded version: The source operand is an XMM register or 128- bit 
memory location. The destination operation is a YMM register. The upper bits 
(VLMAX-1:64) of the corresponding YMM register destination are zeroed.
VEX.256 encoded version: The source operand is a YMM register or 256- bit memory 
location. The destination operation is an XMM register. The upper bits (255:128) of 
the corresponding YMM register destination are zeroed.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise 
instructions will #UD.

Figure 3-12.  VCVTPD2PS (VEX.256 encoded version)

Operation

CVTPD2PS (128-bit Legacy SSE version)
DEST[31:0]  Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[63:0])
DEST[63:32]  Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[127:64])
DEST[127:64]  0
DEST[VLMAX-1:128] (unmodified)

VCVTPD2PS (VEX.128 encoded version)
DEST[31:0]  Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[63:0])
DEST[63:32]  Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[127:64])
DEST[VLMAX-1:64]  0

VCVTPD2PS (VEX.256 encoded version)
DEST[31:0]  Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[63:0])
DEST[63:32]  Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[127:64])
DEST[95:64]  Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[191:128])
DEST[127:96]  Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[255:192)

DEST

SRC

X0X1X2X3

X3 X2 X1 X0

0
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DEST[255:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

CVTPD2PS: __m128 _mm_cvtpd_ps(__m128d a)

CVTPD2PS: __m256 _mm256_cvtpd_ps (__m256d a)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
See Exceptions Type 2; additionally
#UD If VEX.vvvv != 1111B.
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CVTPI2PD—Convert Packed Dword Integers to Packed Double-
Precision FP Values

Instruction Operand Encoding

Description

Converts two packed signed doubleword integers in the source operand (second 
operand) to two packed double-precision floating-point values in the destination 
operand (first operand). 

The source operand can be an MMX technology register or a 64-bit memory location. 
The destination operand is an XMM register. In addition, depending on the operand 
configuration:
• For operands xmm, mm: the instruction causes a transition from x87 FPU to 

MMX technology operation (that is, the x87 FPU top-of-stack pointer is set to 0 
and the x87 FPU tag word is set to all 0s [valid]). If this instruction is executed 
while an x87 FPU floating-point exception is pending, the exception is handled 
before the CVTPI2PD instruction is executed.

• For operands xmm, m64: the instruction does not cause a transition to MMX 
technology and does not take x87 FPU exceptions.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional 
registers (XMM8-XMM15).

Operation

DEST[63:0] ← Convert_Integer_To_Double_Precision_Floating_Point(SRC[31:0]);
DEST[127:64] ← Convert_Integer_To_Double_Precision_Floating_Point(SRC[63:32]);

Intel C/C++ Compiler Intrinsic Equivalent

CVTPI2PD: __m128d _mm_cvtpi32_pd(__m64 a)

Opcode/
Instruction

Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

66 0F 2A /r

CVTPI2PD xmm, mm/m64*

RM Valid Valid Convert two packed signed 
doubleword integers from 
mm/mem64 to two packed 
double-precision floating-
point values in xmm.

NOTES:
*Operation is different for different operand sets; see the Description section.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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SIMD Floating-Point Exceptions

Precision.

Other Exceptions
See Table 22-6, “Exception Conditions for Legacy SIMD/MMX Instructions with XMM 
and without FP Exception,” in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3B.
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CVTPI2PS—Convert Packed Dword Integers to Packed Single-Precision 
FP Values

Instruction Operand Encoding

Description

Converts two packed signed doubleword integers in the source operand (second 
operand) to two packed single-precision floating-point values in the destination 
operand (first operand). 

The source operand can be an MMX technology register or a 64-bit memory location. 
The destination operand is an XMM register. The results are stored in the low quad-
word of the destination operand, and the high quadword remains unchanged. When 
a conversion is inexact, the value returned is rounded according to the rounding 
control bits in the MXCSR register. 

This instruction causes a transition from x87 FPU to MMX technology operation (that 
is, the x87 FPU top-of-stack pointer is set to 0 and the x87 FPU tag word is set to all 
0s [valid]). If this instruction is executed while an x87 FPU floating-point exception is 
pending, the exception is handled before the CVTPI2PS instruction is executed.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional 
registers (XMM8-XMM15).

Operation

DEST[31:0] ← Convert_Integer_To_Single_Precision_Floating_Point(SRC[31:0]);
DEST[63:32] ← Convert_Integer_To_Single_Precision_Floating_Point(SRC[63:32]);
(* High quadword of destination unchanged *)

Intel C/C++ Compiler Intrinsic Equivalent

CVTPI2PS: __m128 _mm_cvtpi32_ps(__m128 a, __m64 b)

Opcode/
Instruction

Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 2A /r

CVTPI2PS xmm, mm/m64

RM Valid Valid Convert two signed 
doubleword integers from 
mm/m64 to two single-
precision floating-point 
values in xmm.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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SIMD Floating-Point Exceptions

Precision.

Other Exceptions
See Table 22-5, “Exception Conditions for Legacy SIMD/MMX Instructions with XMM 
and FP Exception,” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3B.
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CVTPS2DQ—Convert Packed Single-Precision FP Values to Packed 
Dword Integers

Instruction Operand Encoding

Description

Converts four or eight packed single-precision floating-point values in the source 
operand to four or eight signed doubleword integers in the destination operand.

When a conversion is inexact, the value returned is rounded according to the 
rounding control bits in the MXCSR register. If a converted result is larger than the 
maximum signed doubleword integer, the floating-point invalid exception is raised, 
and if this exception is masked, the indefinite integer value (80000000H) is returned.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional 
registers (XMM8-XMM15).
128-bit Legacy SSE version: The source operand is an XMM register or 128- bit 
memory location. The destination operation is an XMM register. The upper bits 
(VLMAX-1:128) of the corresponding YMM register destination are unmodified.
VEX.128 encoded version: The source operand is an XMM register or 128- bit 
memory location. The destination operation is a YMM register. The upper bits 
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 5B /r

CVTPS2DQ xmm1, xmm2/m128

RM V/V SSE2 Convert four packed single-
precision floating-point 
values from xmm2/m128 to 
four packed signed 
doubleword integers in 
xmm1.

VEX.128.66.0F.WIG 5B /r

VCVTPS2DQ xmm1, xmm2/m128

RM V/V AVX Convert four packed single 
precision floating-point 
values from xmm2/mem to 
four packed signed 
doubleword values in xmm1.

VEX.256.66.0F.WIG 5B /r

VCVTPS2DQ ymm1, ymm2/m256

RM V/V AVX Convert eight packed single 
precision floating-point 
values from ymm2/mem to 
eight packed signed 
doubleword values in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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VEX.256 encoded version: The source operand is a YMM register or 256- bit memory 
location. The destination operation is a YMM register. 
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise 
instructions will #UD.

Operation

CVTPS2DQ (128-bit Legacy SSE version)
DEST[31:0]  Convert_Single_Precision_Floating_Point_To_Integer(SRC[31:0])
DEST[63:32]  Convert_Single_Precision_Floating_Point_To_Integer(SRC[63:32])
DEST[95:64]  Convert_Single_Precision_Floating_Point_To_Integer(SRC[95:64])
DEST[127:96]  Convert_Single_Precision_Floating_Point_To_Integer(SRC[127:96])
DEST[VLMAX-1:128] (unmodified)

VCVTPS2DQ (VEX.128 encoded version)
DEST[31:0]  Convert_Single_Precision_Floating_Point_To_Integer(SRC[31:0])
DEST[63:32]  Convert_Single_Precision_Floating_Point_To_Integer(SRC[63:32])
DEST[95:64]  Convert_Single_Precision_Floating_Point_To_Integer(SRC[95:64])
DEST[127:96]  Convert_Single_Precision_Floating_Point_To_Integer(SRC[127:96])
DEST[VLMAX-1:128]  0

VCVTPS2DQ (VEX.256 encoded version)
DEST[31:0]  Convert_Single_Precision_Floating_Point_To_Integer(SRC[31:0])
DEST[63:32]  Convert_Single_Precision_Floating_Point_To_Integer(SRC[63:32])
DEST[95:64]  Convert_Single_Precision_Floating_Point_To_Integer(SRC[95:64])
DEST[127:96]  Convert_Single_Precision_Floating_Point_To_Integer(SRC[127:96)
DEST[159:128]  Convert_Single_Precision_Floating_Point_To_Integer(SRC[159:128])
DEST[191:160]  Convert_Single_Precision_Floating_Point_To_Integer(SRC[191:160])
DEST[223:192]  Convert_Single_Precision_Floating_Point_To_Integer(SRC[223:192])
DEST[255:224]  Convert_Single_Precision_Floating_Point_To_Integer(SRC[255:224])

Intel C/C++ Compiler Intrinsic Equivalent

CVTPS2DQ: __m128i _mm_cvtps_epi32(__m128 a)

VCVTPS2DQ: __ m256i _mm256_cvtps_epi32 (__m256 a)

SIMD Floating-Point Exceptions

Invalid, Precision.

Other Exceptions
See Exceptions Type 2; additionally
#UD If VEX.vvvv != 1111B.
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CVTPS2PD—Convert Packed Single-Precision FP Values to Packed 
Double-Precision FP Values

Instruction Operand Encoding

Description

Converts two or four packed single-precision floating-point values in the source 
operand (second operand) to two or four packed double-precision floating-point 
values in the destination operand (first operand). 

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional 
registers (XMM8-XMM15).
128-bit Legacy SSE version: The source operand is an XMM register or 64- bit 
memory location. The destination operation is an XMM register. The upper bits 
(VLMAX-1:128) of the corresponding YMM register destination are unmodified.
VEX.128 encoded version: The source operand is an XMM register or 64- bit memory 
location. The destination operation is a YMM register. The upper bits (VLMAX-1:128) 
of the corresponding YMM register destination are zeroed.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

0F 5A /r

CVTPS2PD xmm1, xmm2/m64

RM V/V SSE2 Convert two packed single-
precision floating-point 
values in xmm2/m64 to two 
packed double-precision 
floating-point values in 
xmm1.

VEX.128.0F.WIG 5A /r

VCVTPS2PD xmm1, xmm2/m64

RM V/V AVX Convert two packed single-
precision floating-point 
values in xmm2/mem to two 
packed double-precision 
floating-point values in 
xmm1.

VEX.256.0F.WIG 5A /r

VCVTPS2PD ymm1, xmm2/m128

RM V/V AVX Convert four packed single-
precision floating-point 
values in xmm2/mem to 
four packed double-
precision floating-point 
values in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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VEX.256 encoded version: The source operand is an XMM register or 128- bit 
memory location. The destination operation is a YMM register. 
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise 
instructions will #UD.

Figure 3-13.  CVTPS2PD (VEX.256 encoded version)

Operation

CVTPS2PD (128-bit Legacy SSE version)
DEST[63:0]  Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[31:0])
DEST[127:64]  Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[63:32])
DEST[VLMAX-1:128] (unmodified)

VCVTPS2PD (VEX.128 encoded version)
DEST[63:0]  Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[31:0])
DEST[127:64]  Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[63:32])
DEST[VLMAX-1:128]  0

VCVTPS2PD (VEX.256 encoded version)
DEST[63:0]  Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[31:0])
DEST[127:64]  Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[63:32])
DEST[191:128]  Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[95:64])
DEST[255:192]  Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[127:96)

Intel C/C++ Compiler Intrinsic Equivalent

CVTPS2PD: __m128d _mm_cvtps_pd(__m128 a)

VCVTPS2PD: __m256d _mm256_cvtps_pd (__m128 a)

DEST

SRC X0X1X2X3

X3 X2 X1 X0
3-260 Vol. 2A CVTPS2PD—Convert Packed Single-Precision FP Values to Packed Double-Precision FP
Values



INSTRUCTION SET REFERENCE, A-L
SIMD Floating-Point Exceptions

Invalid, Denormal.

Other Exceptions

See Exceptions Type 3; additionally

#UDIf VEX.vvvv != 1111B.
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CVTPS2PI—Convert Packed Single-Precision FP Values to Packed 
Dword Integers

Instruction Operand Encoding

Description

Converts two packed single-precision floating-point values in the source operand 
(second operand) to two packed signed doubleword integers in the destination 
operand (first operand).

The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an MMX technology register. When the source operand is an XMM 
register, the two single-precision floating-point values are contained in the low quad-
word of the register. When a conversion is inexact, the value returned is rounded 
according to the rounding control bits in the MXCSR register. If a converted result is 
larger than the maximum signed doubleword integer, the floating-point invalid 
exception is raised, and if this exception is masked, the indefinite integer value 
(80000000H) is returned.

CVTPS2PI causes a transition from x87 FPU to MMX technology operation (that is, the 
x87 FPU top-of-stack pointer is set to 0 and the x87 FPU tag word is set to all 0s 
[valid]). If this instruction is executed while an x87 FPU floating-point exception is 
pending, the exception is handled before the CVTPS2PI instruction is executed.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional 
registers (XMM8-XMM15).

Operation

DEST[31:0] ← Convert_Single_Precision_Floating_Point_To_Integer(SRC[31:0]);
DEST[63:32] ← Convert_Single_Precision_Floating_Point_To_Integer(SRC[63:32]);

Intel C/C++ Compiler Intrinsic Equivalent

CVTPS2PI: __m64 _mm_cvtps_pi32(__m128 a)

Opcode/
Instruction

Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 2D /r

CVTPS2PI mm, xmm/m64

RM Valid Valid Convert two packed single-
precision floating-point 
values from xmm/m64 to 
two packed signed 
doubleword integers in mm.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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SIMD Floating-Point Exceptions

Invalid, Precision.

Other Exceptions
See Table 22-5, “Exception Conditions for Legacy SIMD/MMX Instructions with XMM 
and FP Exception,” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3B.
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CVTSD2SI—Convert Scalar Double-Precision FP Value to Integer

Instruction Operand Encoding

Description

Converts a double-precision floating-point value in the source operand (second 
operand) to a signed doubleword integer in the destination operand (first operand). 
The source operand can be an XMM register or a 64-bit memory location. The desti-
nation operand is a general-purpose register. When the source operand is an XMM 
register, the double-precision floating-point value is contained in the low quadword of 
the register.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F2 0F 2D /r 

CVTSD2SI r32, xmm/m64

RM V/V SSE2 Convert one double-
precision floating-point 
value from xmm/m64 to 
one signed doubleword 
integer r32. 

 F2 REX.W 0F 2D /r

CVTSD2SI r64, xmm/m64

RM V/N.E. SSE2 Convert one double-
precision floating-point 
value from xmm/m64 to 
one signed quadword 
integer sign-extended into 
r64. 

VEX.LIG.F2.0F.W0 2D /r

VCVTSD2SI r32, xmm1/m64

RM V/V AVX Convert one double 
precision floating-point 
value from xmm1/m64 to 
one signed doubleword 
integer r32.

VEX.LIG.F2.0F.W1 2D /r

VCVTSD2SI r64, xmm1/m64

RM V/N.E.1

NOTES:
1. Encoding the VEX prefix with VEX.W=1 in non-64-bit mode is ignored.

AVX Convert one double 
precision floating-point 
value from xmm1/m64 to 
one signed quadword 
integer sign-extended into 
r64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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When a conversion is inexact, the value returned is rounded according to the 
rounding control bits in the MXCSR register. If a converted result is larger than the 
maximum signed doubleword integer, the floating-point invalid exception is raised, 
and if this exception is masked, the indefinite integer value (80000000H) is returned.

In 64-bit mode, the instruction can access additional registers (XMM8-XMM15, 
R8-R15) when used with a REX.R prefix. Use of the REX.W prefix promotes the 
instruction to 64-bit operation. See the summary chart at the beginning of this 
section for encoding data and limits.
Legacy SSE instructions: Use of the REX.W prefix promotes the instruction to 64-bit 
operation. See the summary chart at the beginning of this section for encoding data 
and limits.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise 
instructions will #UD.

Operation

IF 64-Bit Mode and OperandSize = 64
THEN

DEST[63:0] ← Convert_Double_Precision_Floating_Point_To_Integer64(SRC[63:0]);
ELSE

DEST[31:0] ← Convert_Double_Precision_Floating_Point_To_Integer32(SRC[63:0]);
FI;

Intel C/C++ Compiler Intrinsic Equivalent

int _mm_cvtsd_si32(__m128d a)

__int64 _mm_cvtsd_si64(__m128d a)

SIMD Floating-Point Exceptions

Invalid, Precision.

Other Exceptions
See Exceptions Type 3; additionally
#UD If VEX.vvvv != 1111B.
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CVTSD2SS—Convert Scalar Double-Precision FP Value to Scalar Single-
Precision FP Value

Instruction Operand Encoding

Description

Converts a double-precision floating-point value in the source operand (second 
operand) to a single-precision floating-point value in the destination operand (first 
operand). 

The source operand can be an XMM register or a 64-bit memory location. The desti-
nation operand is an XMM register. When the source operand is an XMM register, the 
double-precision floating-point value is contained in the low quadword of the register. 
The result is stored in the low doubleword of the destination operand, and the upper 
3 doublewords are left unchanged. When the conversion is inexact, the value 
returned is rounded according to the rounding control bits in the MXCSR register.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional 
registers (XMM8-XMM15).
128-bit Legacy SSE version: The destination and first source operand are the same. 
Bits (VLMAX-1:32) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: Bits (127:64) of the XMM register destination are copied 
from corresponding bits in the first source operand. Bits (VLMAX-1:128) of the desti-
nation YMM register are zeroed.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F2 0F 5A /r

CVTSD2SS xmm1, xmm2/m64

RM V/V SSE2 Convert one double-
precision floating-point 
value in xmm2/m64 to one 
single-precision floating-
point value in xmm1.

VEX.NDS.LIG.F2.0F.WIG 5A /r

VCVTSD2SS xmm1,xmm2, 
xmm3/m64

RVM V/V AVX Convert one double-
precision floating-point 
value in xmm3/m64 to one 
single-precision floating-
point value and merge with 
high bits in xmm2.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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Operation

CVTSD2SS (128-bit Legacy SSE version)
DEST[31:0]  Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[63:0]);
(* DEST[VLMAX-1:32] Unmodified *)

VCVTSD2SS (VEX.128 encoded version)
DEST[31:0]  Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC2[63:0]);
DEST[127:32]  SRC1[127:32]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

CVTSD2SS: __m128 _mm_cvtsd_ss(__m128 a, __m128d b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
See Exceptions Type 3.
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CVTSI2SD—Convert Dword Integer to Scalar Double-Precision FP Value

Instruction Operand Encoding

Description

Converts a signed doubleword integer (or signed quadword integer if operand size is 
64 bits) in the second source operand to a double-precision floating-point value in 
the destination operand. The result is stored in the low quadword of the destination 
operand, and the high quadword left unchanged. When conversion is inexact, the 
value returned is rounded according to the rounding control bits in the MXCSR 
register.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F2 0F 2A /r

CVTSI2SD xmm, r/m32

RM V/V SSE2 Convert one signed 
doubleword integer from 
r/m32 to one double-
precision floating-point 
value in xmm.

F2 REX.W 0F 2A /r

CVTSI2SD xmm, r/m64

RM V/N.E. SSE2 Convert one signed 
quadword integer from 
r/m64 to one double-
precision floating-point 
value in xmm.

VEX.NDS.LIG.F2.0F.W0 2A /r

VCVTSI2SD xmm1, xmm2, r/m32

RVM V/V AVX Convert one signed 
doubleword integer from 
r/m32 to one double-
precision floating-point 
value in xmm1.

VEX.NDS.LIG.F2.0F.W1 2A /r

VCVTSI2SD xmm1, xmm2, r/m64

RVM V/N.E.1

NOTES:
1. Encoding the VEX prefix with VEX.W=1 in non-64-bit mode is ignored.

AVX Convert one signed 
quadword integer from 
r/m64 to one double-
precision floating-point 
value in xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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Legacy SSE instructions: Use of the REX.W prefix promotes the instruction to 64-bit 
operands. See the summary chart at the beginning of this section for encoding data 
and limits.
The second source operand can be a general-purpose register or a 32/64-bit memory 
location. The first source and destination operands are XMM registers. 
128-bit Legacy SSE version: The destination and first source operand are the same. 
Bits (VLMAX-1:64) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: Bits (127:64) of the XMM register destination are copied 
from corresponding bits in the first source operand. Bits (VLMAX-1:128) of the desti-
nation YMM register are zeroed.

Operation

CVTSI2SD 
IF 64-Bit Mode And OperandSize = 64
THEN

DEST[63:0]  Convert_Integer_To_Double_Precision_Floating_Point(SRC[63:0]);
ELSE

DEST[63:0]  Convert_Integer_To_Double_Precision_Floating_Point(SRC[31:0]);
FI;
DEST[VLMAX-1:64] (Unmodified)

VCVTSI2SD 
IF 64-Bit Mode And OperandSize = 64
THEN

DEST[63:0]  Convert_Integer_To_Double_Precision_Floating_Point(SRC2[63:0]);
ELSE

DEST[63:0]  Convert_Integer_To_Double_Precision_Floating_Point(SRC2[31:0]);
FI;
DEST[127:64]  SRC1[127:64]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

CVTSI2SD: __m128d _mm_cvtsi32_sd(__m128d a, int b)

CVTSI2SD: __m128d _mm_cvtsi64_sd(__m128d a, __int64 b)

SIMD Floating-Point Exceptions

Precision.

Other Exceptions
See Exceptions Type 3.
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CVTSI2SS—Convert Dword Integer to Scalar Single-Precision FP Value

Instruction Operand Encoding

Description

Converts a signed doubleword integer (or signed quadword integer if operand size is 
64 bits) in the source operand (second operand) to a single-precision floating-point 
value in the destination operand (first operand). The source operand can be a 
general-purpose register or a memory location. The destination operand is an XMM 
register. The result is stored in the low doubleword of the destination operand, and 
the upper three doublewords are left unchanged. When a conversion is inexact, the 
value returned is rounded according to the rounding control bits in the MXCSR 
register.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F3 0F 2A /r

CVTSI2SS xmm, r/m32

RM V/V SSE Convert one signed 
doubleword integer from 
r/m32 to one single-
precision floating-point 
value in xmm.

F3 REX.W 0F 2A /r

CVTSI2SS xmm, r/m64

RM V/N.E. SSE Convert one signed 
quadword integer from 
r/m64 to one single-
precision floating-point 
value in xmm.

VEX.NDS.LIG.F3.0F.W0 2A /r

VCVTSI2SS xmm1, xmm2, r/m32

RVM V/V AVX Convert one signed 
doubleword integer from 
r/m32 to one single-
precision floating-point 
value in xmm1.

VEX.NDS.LIG.F3.0F.W1 2A /r

VCVTSI2SS xmm1, xmm2, r/m64

RVM V/N.E.1

NOTES:
1. Encoding the VEX prefix with VEX.W=1 in non-64-bit mode is ignored.

AVX Convert one signed 
quadword integer from 
r/m64 to one single-
precision floating-point 
value in xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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Legacy SSE instructions: In 64-bit mode, the instruction can access additional regis-
ters (XMM8-XMM15, R8-R15) when used with a REX.R prefix. Use of the REX.W 
prefix promotes the instruction to 64-bit operands. See the summary chart at the 
beginning of this section for encoding data and limits.

128-bit Legacy SSE version: The destination and first source operand are the same. 
Bits (VLMAX-1:32) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: Bits (127:32) of the XMM register destination are copied 
from corresponding bits in the first source operand. Bits (VLMAX-1:128) of the desti-
nation YMM register are zeroed.

Operation

CVTSI2SS (128-bit Legacy SSE version)
IF 64-Bit Mode And OperandSize = 64
THEN

DEST[31:0]  Convert_Integer_To_Single_Precision_Floating_Point(SRC[63:0]);
ELSE

DEST[31:0]  Convert_Integer_To_Single_Precision_Floating_Point(SRC[31:0]);
FI;
DEST[VLMAX-1:32] (Unmodified)

VCVTSI2SS (VEX.128 encoded version)
IF 64-Bit Mode And OperandSize = 64
THEN

DEST[31:0]  Convert_Integer_To_Single_Precision_Floating_Point(SRC[63:0]);
ELSE

DEST[31:0]  Convert_Integer_To_Single_Precision_Floating_Point(SRC[31:0]);
FI;
DEST[127:32]  SRC1[127:32]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

CVTSI2SS: __m128  _mm_cvtsi32_ss(__m128  a, int b)

CVTSI2SS: __m128  _mm_cvtsi64_ss(__m128  a, __int64 b)

SIMD Floating-Point Exceptions

Precision.

Other Exceptions
See Exceptions Type 3.
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CVTSS2SD—Convert Scalar Single-Precision FP Value to Scalar Double-
Precision FP Value

Instruction Operand Encoding

Description

Converts a single-precision floating-point value in the source operand (second 
operand) to a double-precision floating-point value in the destination operand (first 
operand). The source operand can be an XMM register or a 32-bit memory location. 
The destination operand is an XMM register. When the source operand is an XMM 
register, the single-precision floating-point value is contained in the low doubleword 
of the register. The result is stored in the low quadword of the destination operand, 
and the high quadword is left unchanged.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional 
registers (XMM8-XMM15).
128-bit Legacy SSE version: The destination and first source operand are the same. 
Bits (VLMAX-1:64) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: Bits (127:64) of the XMM register destination are copied 
from corresponding bits in the first source operand. Bits (VLMAX-1:128) of the desti-
nation YMM register are zeroed.

Operation

CVTSS2SD (128-bit Legacy SSE version)

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F3 0F 5A /r

CVTSS2SD xmm1, xmm2/m32

RM V/V SSE2 Convert one single-precision 
floating-point value in 
xmm2/m32 to one double-
precision floating-point 
value in xmm1.

VEX.NDS.LIG.F3.0F.WIG 5A /r

VCVTSS2SD xmm1, xmm2, 
xmm3/m32

RVM V/V AVX Convert one single-precision 
floating-point value in 
xmm3/m32 to one double-
precision floating-point 
value and merge with high 
bits of xmm2.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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DEST[63:0]  Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[31:0]);
DEST[VLMAX-1:64] (Unmodified)

VCVTSS2SD (VEX.128 encoded version)
DEST[63:0]  Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC2[31:0])
DEST[127:64]  SRC1[127:64]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

CVTSS2SD: __m128d _mm_cvtss_sd(__m128d a, __m128 b)

SIMD Floating-Point Exceptions

Invalid, Denormal.

Other Exceptions
See Exceptions Type 3.
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CVTSS2SI—Convert Scalar Single-Precision FP Value to Dword Integer

Instruction Operand Encoding

Description

Converts a single-precision floating-point value in the source operand (second 
operand) to a signed doubleword integer (or signed quadword integer if operand size 
is 64 bits) in the destination operand (first operand). The source operand can be an 
XMM register or a memory location. The destination operand is a general-purpose 
register. When the source operand is an XMM register, the single-precision floating-
point value is contained in the low doubleword of the register.

When a conversion is inexact, the value returned is rounded according to the 
rounding control bits in the MXCSR register. If a converted result is larger than the 
maximum signed doubleword integer, the floating-point invalid exception is raised, 
and if this exception is masked, the indefinite integer value (80000000H) is returned.

In 64-bit mode, the instruction can access additional registers (XMM8-XMM15, 
R8-R15) when used with a REX.R prefix. Use of the REX.W prefix promotes the 

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F3 0F 2D /r

CVTSS2SI r32, xmm/m32

RM V/V SSE Convert one single-precision 
floating-point value from 
xmm/m32 to one signed 
doubleword integer in r32. 

F3 REX.W 0F 2D /r

CVTSS2SI r64, xmm/m32

RM V/N.E. SSE Convert one single-precision 
floating-point value from 
xmm/m32 to one signed 
quadword integer in r64. 

VEX.LIG.F3.0F.W0 2D /r

VCVTSS2SI r32, xmm1/m32

RM V/V AVX Convert one single-precision 
floating-point value from 
xmm1/m32 to one signed 
doubleword integer in r32.

VEX.LIG.F3.0F.W1 2D /r

VCVTSS2SI r64, xmm1/m32

RM V/N.E.1

NOTES:
1. Encoding the VEX prefix with VEX.W=1 in non-64-bit mode is ignored.

AVX Convert one single-precision 
floating-point value from 
xmm1/m32 to one signed 
quadword integer in r64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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instruction to 64-bit operands. See the summary chart at the beginning of this 
section for encoding data and limits.
Legacy SSE instructions: In 64-bit mode, Use of the REX.W prefix promotes the 
instruction to 64-bit operands. See the summary chart at the beginning of this 
section for encoding data and limits.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise 
instructions will #UD.

Operation

IF 64-bit Mode and OperandSize = 64
THEN

DEST[64:0] ← Convert_Single_Precision_Floating_Point_To_Integer(SRC[31:0]);
ELSE

DEST[31:0] ← Convert_Single_Precision_Floating_Point_To_Integer(SRC[31:0]);
FI;

Intel C/C++ Compiler Intrinsic Equivalent

int _mm_cvtss_si32(__m128d a)

__int64 _mm_cvtss_si64(__m128d a)

SIMD Floating-Point Exceptions

Invalid, Precision.

Other Exceptions
See Exceptions Type 3; additionally
#UD If VEX.vvvv != 1111B.
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CVTTPD2DQ—Convert with Truncation Packed Double-Precision FP 
Values to Packed Dword Integers

Instruction Operand Encoding

Description

Converts two or four packed double-precision floating-point values in the source 
operand (second operand) to two or four packed signed doubleword integers in the 
destination operand (first operand). 
When a conversion is inexact, a truncated (round toward zero) value is returned.If a 
converted result is larger than the maximum signed doubleword integer, the floating-
point invalid exception is raised, and if this exception is masked, the indefinite 
integer value (80000000H) is returned.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional 
registers (XMM8-XMM15).
128-bit Legacy SSE version: The source operand is an XMM register or 128- bit 
memory location. The destination operation is an XMM register. The upper bits 
(VLMAX-1:128) of the corresponding YMM register destination are unmodified.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F E6

CVTTPD2DQ xmm1, xmm2/m128

RM V/V SSE2 Convert two packed double-
precision floating-point 
values from xmm2/m128 to 
two packed signed 
doubleword integers in 
xmm1 using truncation.

VEX.128.66.0F.WIG E6 /r

VCVTTPD2DQ xmm1, xmm2/m128

RM V/V AVX Convert two packed double-
precision floating-point 
values in xmm2/mem to two 
signed doubleword integers 
in xmm1 using truncation.

VEX.256.66.0F.WIG E6 /r

VCVTTPD2DQ xmm1, ymm2/m256

RM V/V AVX Convert four packed double-
precision floating-point 
values in ymm2/mem to 
four signed doubleword 
integers in xmm1 using 
truncation.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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VEX.128 encoded version: The source operand is an XMM register or 128- bit 
memory location. The destination operation is a YMM register. The upper bits 
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.
VEX.256 encoded version: The source operand is a YMM register or 256- bit memory 
location. The destination operation is an XMM register. The upper bits (255:128) of 
the corresponding YMM register destination are zeroed.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise 
instructions will #UD.

Figure 3-14.  VCVTTPD2DQ (VEX.256 encoded version)

Operation

CVTTPD2DQ (128-bit Legacy SSE version)
DEST[31:0]  Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[63:0])
DEST[63:32]  Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[127:64])
DEST[127:64]  0
DEST[VLMAX-1:128] (unmodified)

VCVTTPD2DQ (VEX.128 encoded version)
DEST[31:0]  Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[63:0])
DEST[63:32]  Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[127:64])
DEST[VLMAX-1:64]  0

VCVTTPD2DQ (VEX.256 encoded version)
DEST[31:0]  Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[63:0])
DEST[63:32]  Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[127:64])
DEST[95:64]  Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[191:128])
DEST[127:96]  Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[255:192)

DEST

SRC

X0X1X2X3

X3 X2 X1 X0

0
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DEST[255:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

CVTTPD2DQ:  __m128i _mm_cvttpd_epi32(__m128d a)

VCVTTPD2DQ: __m128i _mm256_cvttpd_epi32 (__m256d src)

SIMD Floating-Point Exceptions

Invalid, Precision.

Other Exceptions
See Exceptions Type 2; additionally
#UD If VEX.vvvv != 1111B.
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CVTTPD2PI—Convert with Truncation Packed Double-Precision FP 
Values to Packed Dword Integers

Instruction Operand Encoding

Description

Converts two packed double-precision floating-point values in the source operand 
(second operand) to two packed signed doubleword integers in the destination 
operand (first operand). The source operand can be an XMM register or a 128-bit 
memory location. The destination operand is an MMX technology register. 

When a conversion is inexact, a truncated (round toward zero) result is returned. If a 
converted result is larger than the maximum signed doubleword integer, the floating-
point invalid exception is raised, and if this exception is masked, the indefinite 
integer value (80000000H) is returned.

This instruction causes a transition from x87 FPU to MMX technology operation (that 
is, the x87 FPU top-of-stack pointer is set to 0 and the x87 FPU tag word is set to all 
0s [valid]). If this instruction is executed while an x87 FPU floating-point exception is 
pending, the exception is handled before the CVTTPD2PI instruction is executed.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional 
registers (XMM8-XMM15).

Operation

DEST[31:0] ← Convert_Double_Precision_Floating_Point_To_Integer32_Truncate(SRC[63:0]);
DEST[63:32] ← Convert_Double_Precision_Floating_Point_To_Integer32_

Truncate(SRC[127:64]);

Intel C/C++ Compiler Intrinsic Equivalent

CVTTPD1PI:  __m64 _mm_cvttpd_pi32(__m128d a)

Opcode/
Instruction

Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

66 0F 2C /r

CVTTPD2PI mm, xmm/m128

RM Valid Valid Convert two packer double-
precision floating-point 
values from xmm/m128 to 
two packed signed 
doubleword integers in mm 
using truncation.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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SIMD Floating-Point Exceptions

Invalid, Precision.

Other Mode Exceptions
See Table 22-4, “Exception Conditions for Legacy SIMD/MMX Instructions with FP 
Exception and 16-Byte Alignment,” in the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3B.
3-280 Vol. 2A CVTTPD2PI—Convert with Truncation Packed Double-Precision FP Values to Packed
Dword Integers



INSTRUCTION SET REFERENCE, A-L
CVTTPS2DQ—Convert with Truncation Packed Single-Precision FP 
Values to Packed Dword Integers

Instruction Operand Encoding

Description

Converts four or eight packed single-precision floating-point values in the source 
operand to four or eight signed doubleword integers in the destination operand.
When a conversion is inexact, a truncated (round toward zero) value is returned.If a 
converted result is larger than the maximum signed doubleword integer, the floating-
point invalid exception is raised, and if this exception is masked, the indefinite 
integer value (80000000H) is returned.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional 
registers (XMM8-XMM15).
128-bit Legacy SSE version: The source operand is an XMM register or 128- bit 
memory location. The destination operation is an XMM register. The upper bits 
(VLMAX-1:128) of the corresponding YMM register destination are unmodified.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F3 0F 5B /r

CVTTPS2DQ xmm1, xmm2/m128

RM V/V SSE2 Convert four single-
precision floating-point 
values from xmm2/m128 to 
four signed doubleword 
integers in xmm1 using 
truncation.

VEX.128.F3.0F.WIG 5B /r

VCVTTPS2DQ xmm1, xmm2/m128

RM V/V AVX Convert four packed single 
precision floating-point 
values from xmm2/mem to 
four packed signed 
doubleword values in xmm1 
using truncation.

VEX.256.F3.0F.WIG 5B /r

VCVTTPS2DQ ymm1, ymm2/m256

RM V/V AVX Convert eight packed single 
precision floating-point 
values from ymm2/mem to 
eight packed signed 
doubleword values in ymm1 
using truncation.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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VEX.128 encoded version: The source operand is an XMM register or 128- bit 
memory location. The destination operation is a YMM register. The upper bits 
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.
VEX.256 encoded version: The source operand is a YMM register or 256- bit memory 
location. The destination operation is a YMM register. 
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise 
instructions will #UD.

Operation

CVTTPS2DQ (128-bit Legacy SSE version)
DEST[31:0]  Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[31:0])
DEST[63:32]  Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[63:32])
DEST[95:64]  Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[95:64])
DEST[127:96]  Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[127:96])
DEST[VLMAX-1:128] (unmodified)

VCVTTPS2DQ (VEX.128 encoded version)
DEST[31:0]  Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[31:0])
DEST[63:32]  Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[63:32])
DEST[95:64]  Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[95:64])
DEST[127:96]  Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[127:96])
DEST[VLMAX-1:128]  0

VCVTTPS2DQ (VEX.256 encoded version)
DEST[31:0]  Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[31:0])
DEST[63:32]  Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[63:32])
DEST[95:64]  Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[95:64])
DEST[127:96]  Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[127:96)
DEST[159:128]  Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[159:128])
DEST[191:160]  Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[191:160])
DEST[223:192]  Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[223:192])
DEST[255:224]  Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[255:224])

Intel C/C++ Compiler Intrinsic Equivalent

CVTTPS2DQ: __m128i _mm_cvttps_epi32(__m128 a)

VCVTTPS2DQ: __m256i _mm256_cvttps_epi32 (__m256 a)

SIMD Floating-Point Exceptions

Invalid, Precision.
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Other Exceptions
See Exceptions Type 2; additionally
#UD If VEX.vvvv != 1111B.
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CVTTPS2PI—Convert with Truncation Packed Single-Precision FP 
Values to Packed Dword Integers

Instruction Operand Encoding

Description

Converts two packed single-precision floating-point values in the source operand 
(second operand) to two packed signed doubleword integers in the destination 
operand (first operand). The source operand can be an XMM register or a 64-bit 
memory location. The destination operand is an MMX technology register. When the 
source operand is an XMM register, the two single-precision floating-point values are 
contained in the low quadword of the register.

When a conversion is inexact, a truncated (round toward zero) result is returned. If a 
converted result is larger than the maximum signed doubleword integer, the floating-
point invalid exception is raised, and if this exception is masked, the indefinite 
integer value (80000000H) is returned.

This instruction causes a transition from x87 FPU to MMX technology operation (that 
is, the x87 FPU top-of-stack pointer is set to 0 and the x87 FPU tag word is set to all 
0s [valid]). If this instruction is executed while an x87 FPU floating-point exception is 
pending, the exception is handled before the CVTTPS2PI instruction is executed.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional 
registers (XMM8-XMM15).

Operation

DEST[31:0] ← Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[31:0]);
DEST[63:32] ← Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[63:32]);

Intel C/C++ Compiler Intrinsic Equivalent

CVTTPS2PI: __m64 _mm_cvttps_pi32(__m128 a)

Opcode/
Instruction

Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 2C /r

CVTTPS2PI mm, xmm/m64

RM Valid Valid Convert two single-
precision floating-point 
values from xmm/m64 to 
two signed doubleword 
signed integers in mm using 
truncation.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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SIMD Floating-Point Exceptions

Invalid, Precision.

Other Exceptions
See Table 22-5, “Exception Conditions for Legacy SIMD/MMX Instructions with XMM 
and FP Exception,” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3B.
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CVTTSD2SI—Convert with Truncation Scalar Double-Precision FP Value 
to Signed Integer

Instruction Operand Encoding

Description

Converts a double-precision floating-point value in the source operand (second 
operand) to a signed doubleword integer (or signed quadword integer if operand size 
is 64 bits) in the destination operand (first operand). The source operand can be an 
XMM register or a 64-bit memory location. The destination operand is a general 

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F2 0F 2C /r

CVTTSD2SI r32, xmm/m64

RM V/V SSE2 Convert one double-
precision floating-point 
value from xmm/m64 to 
one signed doubleword 
integer in r32 using 
truncation. 

F2 REX.W 0F 2C /r

CVTTSD2SI r64, xmm/m64

RM V/N.E. SSE2 Convert one double 
precision floating-point 
value from xmm/m64 to 
one signedquadword 
integer in r64 using 
truncation.

VEX.LIG.F2.0F.W0 2C /r

VCVTTSD2SI r32, xmm1/m64

RM V/V AVX Convert one double-
precision floating-point 
value from xmm1/m64 to 
one signed doubleword 
integer in r32 using 
truncation.

VEX.LIG.F2.0F.W1 2C /r

VCVTTSD2SI r64, xmm1/m64

RM V/N.E.1

NOTES:
1. Encoding the VEX prefix with VEX.W=1 in non-64-bit mode is ignored.

AVX Convert one double 
precision floating-point 
value from xmm1/m64 to 
one signed quadword 
integer in r64 using 
truncation.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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purpose register. When the source operand is an XMM register, the double-precision 
floating-point value is contained in the low quadword of the register. 
When a conversion is inexact, a truncated (round toward zero) result is returned. If a 
converted result is larger than the maximum signed doubleword integer, the floating 
point invalid exception is raised. If this exception is masked, the indefinite integer 
value (80000000H) is returned.
Legacy SSE instructions: In 64-bit mode, Use of the REX.W prefix promotes the 
instruction to 64-bit operation. See the summary chart at the beginning of this 
section for encoding data and limits.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise 
instructions will #UD.

Operation

IF 64-Bit Mode and OperandSize = 64
THEN

DEST[63:0] ← Convert_Double_Precision_Floating_Point_To_
Integer64_Truncate(SRC[63:0]);

ELSE
DEST[31:0] ← Convert_Double_Precision_Floating_Point_To_

Integer32_Truncate(SRC[63:0]);
FI;

Intel C/C++ Compiler Intrinsic Equivalent

int _mm_cvttsd_si32(__m128d a)

__int64 _mm_cvttsd_si64(__m128d a)

SIMD Floating-Point Exceptions

Invalid, Precision.

Other Exceptions
See Exceptions Type 3; additionally
#UD If VEX.vvvv != 1111B.
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CVTTSS2SI—Convert with Truncation Scalar Single-Precision FP Value 
to Dword Integer

Instruction Operand Encoding

Description

Converts a single-precision floating-point value in the source operand (second 
operand) to a signed doubleword integer (or signed quadword integer if operand size 
is 64 bits) in the destination operand (first operand). The source operand can be an 
XMM register or a 32-bit memory location. The destination operand is a general-
purpose register. When the source operand is an XMM register, the single-precision 
floating-point value is contained in the low doubleword of the register.

When a conversion is inexact, a truncated (round toward zero) result is returned. If a 
converted result is larger than the maximum signed doubleword integer, the floating-

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F3 0F 2C /r

CVTTSS2SI r32, xmm/m32

RM V/V SSE Convert one single-precision 
floating-point value from 
xmm/m32 to one signed 
doubleword integer in r32 
using truncation.

F3 REX.W 0F 2C /r

CVTTSS2SI r64, xmm/m32

RM V/N.E. SSE Convert one single-precision 
floating-point value from 
xmm/m32 to one signed 
quadword integer in r64 
using truncation.

VEX.LIG.F3.0F.W0 2C /r

VCVTTSS2SI r32, xmm1/m32

RM V/V AVX Convert one single-precision 
floating-point value from 
xmm1/m32 to one signed 
doubleword integer in r32 
using truncation.

VEX.LIG.F3.0F.W1 2C /r

VCVTTSS2SI r64, xmm1/m32

RM V/N.E.1

NOTES:
1. Encoding the VEX prefix with VEX.W=1 in non-64-bit mode is ignored.

AVX Convert one single-precision 
floating-point value from 
xmm1/m32 to one signed 
quadword integer in r64 
using truncation.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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point invalid exception is raised. If this exception is masked, the indefinite integer 
value (80000000H) is returned.

Legacy SSE instructions: In 64-bit mode, the instruction can access additional regis-
ters (XMM8-XMM15, R8-R15) when used with a REX.R prefix. Use of the REX.W 
prefix promotes the instruction to 64-bit operation. See the summary chart at the 
beginning of this section for encoding data and limits.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise 
instructions will #UD.

Operation

IF 64-Bit Mode and OperandSize = 64
THEN

DEST[63:0] ← Convert_Single_Precision_Floating_Point_To_
 Integer_Truncate(SRC[31:0]);

ELSE
DEST[31:0] ← Convert_Single_Precision_Floating_Point_To_

Integer_Truncate(SRC[31:0]);
FI;

Intel C/C++ Compiler Intrinsic Equivalent

int _mm_cvttss_si32(__m128d a)

__int64 _mm_cvttss_si64(__m128d a)

SIMD Floating-Point Exceptions

Invalid, Precision.

Other Exceptions
See Exceptions Type 3; additionally
#UD If VEX.vvvv != 1111B.
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CWD/CDQ/CQO—Convert Word to Doubleword/Convert Doubleword to 
Quadword

Instruction Operand Encoding

Description

Doubles the size of the operand in register AX, EAX, or RAX (depending on the 
operand size) by means of sign extension and stores the result in registers DX:AX, 
EDX:EAX, or RDX:RAX, respectively. The CWD instruction copies the sign (bit 15) of 
the value in the AX register into every bit position in the DX register. The CDQ 
instruction copies the sign (bit 31) of the value in the EAX register into every bit posi-
tion in the EDX register. The CQO instruction (available in 64-bit mode only) copies 
the sign (bit 63) of the value in the RAX register into every bit position in the RDX 
register.

The CWD instruction can be used to produce a doubleword dividend from a word 
before word division. The CDQ instruction can be used to produce a quadword divi-
dend from a doubleword before doubleword division. The CQO instruction can be 
used to produce a double quadword dividend from a quadword before a quadword 
division.

The CWD and CDQ mnemonics reference the same opcode. The CWD instruction is 
intended for use when the operand-size attribute is 16 and the CDQ instruction for 
when the operand-size attribute is 32. Some assemblers may force the operand size 
to 16 when CWD is used and to 32 when CDQ is used. Others may treat these 
mnemonics as synonyms (CWD/CDQ) and use the current setting of the operand-
size attribute to determine the size of values to be converted, regardless of the 
mnemonic used.

In 64-bit mode, use of the REX.W prefix promotes operation to 64 bits. The CQO 
mnemonics reference the same opcode as CWD/CDQ. See the summary chart at the 
beginning of this section for encoding data and limits.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

99 CWD NP Valid Valid DX:AX ← sign-extend of AX.

99 CDQ NP Valid Valid EDX:EAX ← sign-extend of 
EAX.

REX.W + 99 CQO NP Valid N.E. RDX:RAX← sign-extend of 
RAX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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Operation

IF OperandSize = 16 (* CWD instruction *)
THEN 

DX ← SignExtend(AX);
ELSE IF OperandSize = 32 (* CDQ instruction *)

EDX ← SignExtend(EAX); FI;
ELSE IF 64-Bit Mode and OperandSize = 64 (* CQO instruction*)

RDX ← SignExtend(RAX); FI;
FI;

Flags Affected

None.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.
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DAA—Decimal Adjust AL after Addition

Instruction Operand Encoding

Description

Adjusts the sum of two packed BCD values to create a packed BCD result. The AL 
register is the implied source and destination operand. The DAA instruction is only 
useful when it follows an ADD instruction that adds (binary addition) two 2-digit, 
packed BCD values and stores a byte result in the AL register. The DAA instruction 
then adjusts the contents of the AL register to contain the correct 2-digit, packed 
BCD result. If a decimal carry is detected, the CF and AF flags are set accordingly.

This instruction executes as described above in compatibility mode and legacy mode. 
It is not valid in 64-bit mode.

Operation

IF 64-Bit Mode
THEN

#UD;
ELSE

old_AL ← AL;
old_CF ← CF;
CF ← 0;
IF (((AL AND 0FH) > 9) or AF = 1)

 THEN
 AL ← AL + 6;
 CF ← old_CF or (Carry from AL ← AL + 6);
 AF ← 1;

  ELSE
  AF ← 0;

FI;
IF ((old_AL > 99H) or (old_CF = 1))

 THEN
 AL ← AL + 60H;

  CF ← 1;

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

27 DAA NP Invalid Valid Decimal adjust AL after 
addition.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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ELSE
 CF ← 0;

FI;
FI;

Example

ADD AL, BL Before: AL=79H BL=35H EFLAGS(OSZAPC)=XXXXXX
After: AL=AEH BL=35H EFLAGS(0SZAPC)=110000

DAA Before: AL=AEH BL=35H EFLAGS(OSZAPC)=110000
After: AL=14H BL=35H EFLAGS(0SZAPC)=X00111

DAA Before: AL=2EH BL=35H EFLAGS(OSZAPC)=110000
After: AL=34H BL=35H EFLAGS(0SZAPC)=X00101

Flags Affected

The CF and AF flags are set if the adjustment of the value results in a decimal carry 
in either digit of the result (see the “Operation” section above). The SF, ZF, and PF 
flags are set according to the result. The OF flag is undefined.

Protected Mode Exceptions
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
#UD If the LOCK prefix is used.

64-Bit Mode Exceptions
#UD If in 64-bit mode.
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DAS—Decimal Adjust AL after Subtraction

Instruction Operand Encoding

Description

Adjusts the result of the subtraction of two packed BCD values to create a packed 
BCD result. The AL register is the implied source and destination operand. The DAS 
instruction is only useful when it follows a SUB instruction that subtracts (binary 
subtraction) one 2-digit, packed BCD value from another and stores a byte result in 
the AL register. The DAS instruction then adjusts the contents of the AL register to 
contain the correct 2-digit, packed BCD result. If a decimal borrow is detected, the CF 
and AF flags are set accordingly.

This instruction executes as described above in compatibility mode and legacy mode. 
It is not valid in 64-bit mode.

Operation

IF 64-Bit Mode
THEN

#UD;
ELSE

old_AL ← AL;
old_CF ← CF;
CF ← 0;
IF (((AL AND 0FH) > 9) or AF = 1)
 THEN
 AL ← AL - 6;

CF ← old_CF or (Borrow from AL ← AL − 6);
AF ← 1;

ELSE
AF ← 0;

FI;
IF ((old_AL > 99H) or (old_CF = 1))

 THEN
AL ← AL − 60H;

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

2F DAS NP Invalid Valid Decimal adjust AL after 
subtraction.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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CF ← 1;
FI;

FI;

Example

SUB AL, BL Before: AL = 35H, BL = 47H, EFLAGS(OSZAPC) = XXXXXX
After: AL = EEH, BL = 47H, EFLAGS(0SZAPC) = 010111

DAA Before: AL = EEH, BL = 47H, EFLAGS(OSZAPC) = 010111
After: AL = 88H, BL = 47H, EFLAGS(0SZAPC) = X10111

Flags Affected

The CF and AF flags are set if the adjustment of the value results in a decimal borrow 
in either digit of the result (see the “Operation” section above). The SF, ZF, and PF 
flags are set according to the result. The OF flag is undefined.

Protected Mode Exceptions
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
#UD If the LOCK prefix is used.

64-Bit Mode Exceptions
#UD If in 64-bit mode.
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DEC—Decrement by 1

Instruction Operand Encoding

Description

Subtracts 1 from the destination operand, while preserving the state of the CF flag. 
The destination operand can be a register or a memory location. This instruction 
allows a loop counter to be updated without disturbing the CF flag. (To perform a 
decrement operation that updates the CF flag, use a SUB instruction with an imme-
diate operand of 1.)

This instruction can be used with a LOCK prefix to allow the instruction to be 
executed atomically.

In 64-bit mode, DEC r16 and DEC r32 are not encodable (because opcodes 48H 
through 4FH are REX prefixes). Otherwise, the instruction’s 64-bit mode default 
operation size is 32 bits. Use of the REX.R prefix permits access to additional regis-
ters (R8-R15). Use of the REX.W prefix promotes operation to 64 bits. 

See the summary chart at the beginning of this section for encoding data and limits.

Operation

DEST ← DEST – 1;

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

FE /1 DEC r/m8 M Valid Valid Decrement r/m8 by 1.

REX + FE /1 DEC r/m8* M Valid N.E. Decrement r/m8 by 1.

FF /1 DEC r/m16 M Valid Valid Decrement r/m16 by 1.

FF /1 DEC r/m32 M Valid Valid Decrement r/m32 by 1.

REX.W + FF /1 DEC r/m64 M Valid N.E. Decrement r/m64 by 1.

48+rw DEC r16 O N.E. Valid Decrement r16 by 1.

48+rd DEC r32 O N.E. Valid Decrement r32 by 1.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is 

used: AH, BH, CH, DH. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r, w) NA NA NA

O opcode + rd (r, w) NA NA NA
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Flags Affected

The CF flag is not affected. The OF, SF, ZF, AF, and PF flags are set according to the 
result.

Protected Mode Exceptions
#GP(0) If the destination operand is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, 
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory 

operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS 

segment limit.
#UD If the LOCK prefix is used but the destination is not a memory 

operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made.
#UD If the LOCK prefix is used but the destination is not a memory 

operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.
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64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory 

operand.
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DIV—Unsigned Divide

Instruction Operand Encoding

Description

Divides unsigned the value in the AX, DX:AX, EDX:EAX, or RDX:RAX registers (divi-
dend) by the source operand (divisor) and stores the result in the AX (AH:AL), 
DX:AX, EDX:EAX, or RDX:RAX registers. The source operand can be a general-
purpose register or a memory location. The action of this instruction depends on the 
operand size (dividend/divisor). Division using 64-bit operand is available only in 
64-bit mode.

Non-integral results are truncated (chopped) towards 0. The remainder is always less 
than the divisor in magnitude. Overflow is indicated with the #DE (divide error) 
exception rather than with the CF flag.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

F6 /6 DIV r/m8 M Valid Valid Unsigned divide AX by r/m8, 
with result stored in AL ← 
Quotient, AH ← Remainder.

REX + F6 /6 DIV r/m8* M Valid N.E. Unsigned divide AX by r/m8, 
with result stored in AL ← 
Quotient, AH ← Remainder.

F7 /6 DIV r/m16 M Valid Valid Unsigned divide DX:AX by 
r/m16, with result stored in 
AX ← Quotient, DX ← 
Remainder.

F7 /6 DIV r/m32 M Valid Valid Unsigned divide EDX:EAX by 
r/m32, with result stored in 
EAX ← Quotient, EDX ← 
Remainder.

REX.W + F7 /6 DIV r/m64 M Valid N.E. Unsigned divide RDX:RAX 
by r/m64, with result stored 
in RAX ← Quotient, RDX ← 
Remainder.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is 

used: AH, BH, CH, DH.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA
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In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R 
prefix permits access to additional registers (R8-R15). Use of the REX.W prefix 
promotes operation to 64 bits. In 64-bit mode when REX.W is applied, the instruction 
divides the unsigned value in RDX:RAX by the source operand and stores the 
quotient in RAX, the remainder in RDX. 

See the summary chart at the beginning of this section for encoding data and limits. 
See Table 3-25.

Operation

IF SRC = 0
THEN #DE; FI; (* Divide Error *) 

IF OperandSize = 8 (* Word/Byte Operation *)
THEN

temp ← AX / SRC;
IF temp > FFH

THEN #DE; (* Divide error *) 
ELSE

AL ← temp;
AH ← AX MOD SRC;

FI;
ELSE IF OperandSize = 16 (* Doubleword/word operation *)

THEN
temp ← DX:AX / SRC;
IF temp > FFFFH

THEN #DE; (* Divide error *) 
ELSE

AX ← temp;
DX ← DX:AX MOD SRC;

FI;
FI;

ELSE IF Operandsize = 32 (* Quadword/doubleword operation *)
THEN

temp ← EDX:EAX / SRC;

Table 3-25.  DIV Action 

Operand Size Dividend Divisor Quotient Remainder
Maximum 
Quotient

Word/byte AX r/m8 AL AH 255

Doubleword/word DX:AX r/m16 AX DX 65,535

Quadword/doubleword EDX:EAX r/m32 EAX EDX 232 − 1

Doublequadword/

quadword

RDX:RAX r/m64 RAX RDX 264 − 1
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IF temp > FFFFFFFFH
THEN #DE; (* Divide error *) 

ELSE
EAX ← temp;
EDX ← EDX:EAX MOD SRC;

FI;
FI;

ELSE IF 64-Bit Mode and Operandsize = 64 (* Doublequadword/quadword operation *)
THEN

temp ← RDX:RAX / SRC;
IF temp > FFFFFFFFFFFFFFFFH

THEN #DE; (* Divide error *) 
ELSE

RAX ← temp;
RDX ← RDX:RAX MOD SRC;

FI;
FI;

FI;

Flags Affected

The CF, OF, SF, ZF, AF, and PF flags are undefined.

Protected Mode Exceptions
#DE If the source operand (divisor) is 0

If the quotient is too large for the designated register.
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#DE If the source operand (divisor) is 0.

If the quotient is too large for the designated register.
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
Vol. 2A 3-301DIV—Unsigned Divide



INSTRUCTION SET REFERENCE, A-L
If the DS, ES, FS, or GS register contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#DE If the source operand (divisor) is 0.

If the quotient is too large for the designated register.
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS 

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#DE If the source operand (divisor) is 0

If the quotient is too large for the designated register.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
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DIVPD—Divide Packed Double-Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs an SIMD divide of the two or four packed double-precision floating-point 
values in the first source operand by the two or four packed double-precision 
floating-point values in the second source operand. See Chapter 11 in the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 1, for an overview of 
a SIMD double-precision floating-point operation.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional 
registers (XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit 
memory location. The destination is not distinct from the first source XMM register 
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit 
memory location. The destination operand is an XMM register. The upper bits 
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 5E /r

DIVPD xmm1, xmm2/m128

RM V/V SSE2 Divide packed double-
precision floating-point 
values in xmm1 by packed 
double-precision floating-
point values xmm2/m128.

VEX.NDS.128.66.0F.WIG 5E /r

VDIVPD xmm1, xmm2, xmm3/m128

RVM V/V AVX Divide packed double-
precision floating-point 
values in xmm2 by packed 
double-precision floating-
point values in xmm3/mem.

VEX.NDS.256.66.0F.WIG 5E /r

VDIVPD ymm1, ymm2, ymm3/m256

RVM V/V AVX Divide packed double-
precision floating-point 
values in ymm2 by packed 
double-precision floating-
point values in ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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VEX.256 encoded version: The first source operand is a YMM register. The second 
source operand can be a YMM register or a 256-bit memory location. The destination 
operand is a YMM register. 

Operation

DIVPD (128-bit Legacy SSE version)
DEST[63:0]  SRC1[63:0] / SRC2[63:0]
DEST[127:64]  SRC1[127:64] / SRC2[127:64]
DEST[VLMAX-1:128] (Unmodified)

VDIVPD (VEX.128 encoded version)
DEST[63:0]  SRC1[63:0] / SRC2[63:0]
DEST[127:64]  SRC1[127:64] / SRC2[127:64]
DEST[VLMAX-1:128]  0

VDIVPD (VEX.256 encoded version)
DEST[63:0]  SRC1[63:0] / SRC2[63:0]
DEST[127:64]  SRC1[127:64] / SRC2[127:64]
DEST[191:128]  SRC1[191:128] / SRC2[191:128]
DEST[255:192]  SRC1[255:192] / SRC2[255:192]

Intel C/C++ Compiler Intrinsic Equivalent

DIVPD: __m128d _mm_div_pd(__m128d a, __m128d b)

VDIVPD: __m256d _mm256_div_pd (__m256d a, __m256d b);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Divide-by-Zero, Precision, Denormal.

Other Exceptions
See Exceptions Type 2.
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DIVPS—Divide Packed Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs an SIMD divide of the four or eight packed single-precision floating-point 
values in the first source operand by the four or eight packed single-precision 
floating-point values in the second source operand. See Chapter 10 in the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 1, for an overview of 
a SIMD single-precision floating-point operation.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional 
registers (XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit 
memory location. The destination is not distinct from the first source XMM register 
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit 
memory location. The destination operand is an XMM register. The upper bits 
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

0F 5E /r

DIVPS xmm1, xmm2/m128

RM V/V SSE Divide packed single-
precision floating-point 
values in xmm1 by packed 
single-precision floating-
point values xmm2/m128.

VEX.NDS.128.0F.WIG 5E /r

VDIVPS xmm1, xmm2, xmm3/m128

RVM V/V AVX Divide packed single-
precision floating-point 
values in xmm2 by packed 
double-precision floating-
point values in xmm3/mem.

VEX.NDS.256.0F.WIG 5E /r

VDIVPS ymm1, ymm2, ymm3/m256

RVM V/V AVX Divide packed single-
precision floating-point 
values in ymm2 by packed 
double-precision floating-
point values in ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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VEX.256 encoded version: The first source operand is a YMM register. The second 
source operand can be a YMM register or a 256-bit memory location. The destination 
operand is a YMM register. 

Operation

DIVPS (128-bit Legacy SSE version)
DEST[31:0]  SRC1[31:0] / SRC2[31:0]
DEST[63:32]  SRC1[63:32] / SRC2[63:32]
DEST[95:64]  SRC1[95:64] / SRC2[95:64]
DEST[127:96]  SRC1[127:96] / SRC2[127:96]
DEST[VLMAX-1:128] (Unmodified)

VDIVPS (VEX.128 encoded version)
DEST[31:0]  SRC1[31:0] / SRC2[31:0]
DEST[63:32]  SRC1[63:32] / SRC2[63:32]
DEST[95:64]  SRC1[95:64] / SRC2[95:64]
DEST[127:96]  SRC1[127:96] / SRC2[127:96]
DEST[VLMAX-1:128]  0

VDIVPS (VEX.256 encoded version)
DEST[31:0]  SRC1[31:0] / SRC2[31:0]
DEST[63:32]  SRC1[63:32] / SRC2[63:32]
DEST[95:64]  SRC1[95:64] / SRC2[95:64]
DEST[127:96]  SRC1[127:96] / SRC2[127:96]
DEST[159:128]  SRC1[159:128] / SRC2[159:128]
DEST[191:160] SRC1[191:160] / SRC2[191:160]
DEST[223:192]  SRC1[223:192] / SRC2[223:192]
DEST[255:224]  SRC1[255:224] / SRC2[255:224].

Intel C/C++ Compiler Intrinsic Equivalent

DIVPS: __m128 _mm_div_ps(__m128 a, __m128 b)

VDIVPS: __m256 _mm256_div_ps (__m256 a, __m256 b);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Divide-by-Zero, Precision, Denormal.

Other Exceptions
See Exceptions Type 2.
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DIVSD—Divide Scalar Double-Precision Floating-Point Values

Instruction Operand Encoding

Description

Divides the low double-precision floating-point value in the first source operand by 
the low double-precision floating-point value in the second source operand, and 
stores the double-precision floating-point result in the destination operand. The 
second source operand can be an XMM register or a 64-bit memory location. The first 
source and destination hyperons are XMM registers. The high quadword of the desti-
nation operand is copied from the high quadword of the first source operand. See 
Chapter 11 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 1, for an overview of a scalar double-precision floating-point operation.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional 
registers (XMM8-XMM15).
128-bit Legacy SSE version: The first source operand and the destination operand 
are the same. Bits (VLMAX-1:64) of the corresponding YMM destination register 
remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed.

Operation

DIVSD (128-bit Legacy SSE version)
DEST[63:0]  DEST[63:0] / SRC[63:0]

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F2 0F 5E /r

DIVSD xmm1, xmm2/m64

RM V/V SSE2 Divide low double-precision 
floating-point value in 
xmm1 by low double-
precision floating-point 
value in xmm2/mem64.

VEX.NDS.LIG.F2.0F.WIG 5E /r

VDIVSD xmm1, xmm2, xmm3/m64

RVM V/V AVX Divide low double-precision 
floating point values in 
xmm2 by low double 
precision floating-point 
value in xmm3/mem64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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DEST[VLMAX-1:64] (Unmodified)

VDIVSD (VEX.128 encoded version)
DEST[63:0]  SRC1[63:0] / SRC2[63:0]
DEST[127:64]  SRC1[127:64]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

DIVSD: __m128d _mm_div_sd (m128d a, m128d b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Divide-by-Zero, Precision, Denormal.

Other Exceptions
See Exceptions Type 3.
3-308 Vol. 2A DIVSD—Divide Scalar Double-Precision Floating-Point Values



INSTRUCTION SET REFERENCE, A-L
DIVSS—Divide Scalar Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

Divides the low single-precision floating-point value in the first source operand by the 
low single-precision floating-point value in the second source operand, and stores 
the single-precision floating-point result in the destination operand. The second 
source operand can be an XMM register or a 32-bit memory location. The first source 
and destination operands are XMM registers. The three high-order doublewords of 
the destination are copied from the same dwords of the first source operand. See 
Chapter 10 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 1, for an overview of a scalar single-precision floating-point operation.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional 
registers (XMM8-XMM15).
128-bit Legacy SSE version: The first source operand and the destination operand 
are the same. Bits (VLMAX-1:32) of the corresponding YMM destination register 
remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed.

Operation

DIVSS (128-bit Legacy SSE version)
DEST[31:0]  DEST[31:0] / SRC[31:0]

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F3 0F 5E /r

DIVSS xmm1, xmm2/m32

RM V/V SSE Divide low single-precision 
floating-point value in 
xmm1 by low single-
precision floating-point 
value in xmm2/m32.

VEX.NDS.LIG.F3.0F.WIG 5E /r

VDIVSS xmm1, xmm2, xmm3/m32

RVM V/V AVX Divide low single-precision 
floating point value in xmm2 
by low single precision 
floating-point value in 
xmm3/m32.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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DEST[VLMAX-1:32] (Unmodified)

VDIVSS (VEX.128 encoded version)
DEST[31:0]  SRC1[31:0] / SRC2[31:0]
DEST[127:32]  SRC1[127:32]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

DIVSS: __m128 _mm_div_ss(__m128 a, __m128 b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Divide-by-Zero, Precision, Denormal.

Other Exceptions
See Exceptions Type 3.
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DPPD — Dot Product of Packed Double Precision Floating-Point Values

Instruction Operand Encoding

Description

Conditionally multiplies the packed double-precision floating-point values in the 
destination operand (first operand) with the packed double-precision floating-point 
values in the source (second operand) depending on a mask extracted from bits 
[5:4] of the immediate operand (third operand). If a condition mask bit is zero, the 
corresponding multiplication is replaced by a value of 0.0.

The two resulting double-precision values are summed into an intermediate result. 
The intermediate result is conditionally broadcasted to the destination using a broad-
cast mask specified by bits [1:0] of the immediate byte. 

If a broadcast mask bit is "1", the intermediate result is copied to the corresponding 
qword element in the destination operand. If a broadcast mask bit is zero, the corre-
sponding element in the destination is set to zero.
DPPS follows the NaN forwarding rules stated in the Software Developer’s Manual, 
vol. 1, table 4.7. These rules do not cover horizontal prioritization of NaNs. Horizontal 
propagation of NaNs to the destination and the positioning of those NaNs in the desti-

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 3A 41 /r ib

DPPD xmm1, xmm2/m128, imm8

RMI V/V SSE4_1 Selectively multiply packed 
DP floating-point values 
from xmm1 with packed DP 
floating-point values from 
xmm2, add and selectively 
store the packed DP 
floating-point values to 
xmm1.

VEX.NDS.128.66.0F3A.WIG 41 /r ib

VDPPD xmm1,xmm2, xmm3/m128, 
imm8

RVMI V/V AVX Selectively multiply packed 
DP floating-point values 
from xmm2 with packed DP 
floating-point values from 
xmm3, add and selectively 
store the packed DP 
floating-point values to 
xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
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nation is implementation dependent. NaNs on the input sources or computationally 
generated NaNs will have at least one NaN propagated to the destination.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit 
memory location. The destination is not distinct from the first source XMM register 
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit 
memory location. The destination operand is an XMM register. The upper bits 
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.
If VDPPD is encoded with VEX.L= 1, an attempt to execute the instruction encoded 
with VEX.L= 1 will cause an #UD exception.

Operation

DP_primitive (SRC1, SRC2)
IF (imm8[4] = 1) 

THEN Temp1[63:0]  DEST[63:0] * SRC[63:0];
ELSE Temp1[63:0]  +0.0; FI;

IF (imm8[5] = 1) 
THEN Temp1[127:64]  DEST[127:64] * SRC[127:64];
ELSE Temp1[127:64]  +0.0; FI;

Temp2[63:0]  Temp1[63:0] + Temp1[127:64];

IF (imm8[0] = 1) 
THEN DEST[63:0]  Temp2[63:0];
ELSE DEST[63:0]  +0.0; FI;

IF (imm8[1] = 1) 
THEN DEST[127:64]  Temp2[63:0];
ELSE DEST[127:64]  +0.0; FI;

DPPD (128-bit Legacy SSE version)
DEST[127:0]DP_Primitive(SRC1[127:0], SRC2[127:0]);
DEST[VLMAX-1:128] (Unmodified)

VDPPD (VEX.128 encoded version)
DEST[127:0]DP_Primitive(SRC1[127:0], SRC2[127:0]);
DEST[VLMAX-1:128]  0

Flags Affected

None
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Intel C/C++ Compiler Intrinsic Equivalent

DPPD: __m128d _mm_dp_pd ( __m128d a, __m128d b, const int mask);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal
Exceptions are determined separately for each add and multiply operation. 
Unmasked exceptions will leave the destination untouched.

Other Exceptions
See Exceptions Type 2; additionally
#UD If VEX.L= 1.
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DPPS — Dot Product of Packed Single Precision Floating-Point Values

Instruction Operand Encoding

Description

Conditionally multiplies the packed single precision floating-point values in the desti-
nation operand (first operand) with the packed single-precision floats in the source 
(second operand) depending on a mask extracted from the high 4 bits of the imme-
diate byte (third operand). If a condition mask bit in Imm8[7:4] is zero, the corre-
sponding multiplication is replaced by a value of 0.0.

The four resulting single-precision values are summed into an intermediate result. 
The intermediate result is conditionally broadcasted to the destination using a broad-
cast mask specified by bits [3:0] of the immediate byte.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 3A 40 /r ib

DPPS xmm1, xmm2/m128, imm8

RMI V/V SSE4_1 Selectively multiply packed 
SP floating-point values 
from xmm1 with packed SP 
floating-point values from 
xmm2, add and selectively 
store the packed SP 
floating-point values or zero 
values to xmm1.

VEX.NDS.128.66.0F3A.WIG 40 /r ib

VDPPS xmm1,xmm2, xmm3/m128, 
imm8

RVMI V/V AVX Multiply packed SP floating 
point values from xmm1 
with packed SP floating 
point values from 
xmm2/mem selectively add 
and store to xmm1.

VEX.NDS.256.66.0F3A.WIG 40 /r ib

VDPPS ymm1, ymm2, ymm3/m256, 
imm8

RVMI V/V AVX Multiply packed single-
precision floating-point 
values from ymm2 with 
packed SP floating point 
values from ymm3/mem, 
selectively add pairs of 
elements and store to 
ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
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If a broadcast mask bit is "1", the intermediate result is copied to the corresponding 
dword element in the destination operand. If a broadcast mask bit is zero, the corre-
sponding element in the destination is set to zero.
DPPS follows the NaN forwarding rules stated in the Software Developer’s Manual, 
vol. 1, table 4.7. These rules do not cover horizontal prioritization of NaNs. Horizontal 
propagation of NaNs to the destination and the positioning of those NaNs in the desti-
nation is implementation dependent. NaNs on the input sources or computationally 
generated NaNs will have at least one NaN propagated to the destination.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit 
memory location. The destination is not distinct from the first source XMM register 
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit 
memory location. The destination operand is an XMM register. The upper bits 
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.

VEX.256 encoded version: The first source operand is a YMM register. The second 
source operand can be a YMM register or a 256-bit memory location. The destination 
operand is a YMM register.

Operation

DP_primitive (SRC1, SRC2)
IF (imm8[4] = 1) 

THEN Temp1[31:0]  DEST[31:0] * SRC[31:0];
ELSE Temp1[31:0]  +0.0; FI;

IF (imm8[5] = 1) 
THEN Temp1[63:32]  DEST[63:32] * SRC[63:32];
ELSE Temp1[63:32]  +0.0; FI;

IF (imm8[6] = 1) 
THEN Temp1[95:64]  DEST[95:64] * SRC[95:64];
ELSE Temp1[95:64]  +0.0; FI;

IF (imm8[7] = 1) 
THEN Temp1[127:96]  DEST[127:96] * SRC[127:96];
ELSE Temp1[127:96]  +0.0; FI;

Temp2[31:0]  Temp1[31:0] + Temp1[63:32];
Temp3[31:0]  Temp1[95:64] + Temp1[127:96];
Temp4[31:0]  Temp2[31:0] + Temp3[31:0];

IF (imm8[0] = 1) 
THEN DEST[31:0]  Temp4[31:0];
ELSE DEST[31:0]  +0.0; FI;

IF (imm8[1] = 1) 
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THEN DEST[63:32]  Temp4[31:0];
ELSE DEST[63:32]  +0.0; FI;

IF (imm8[2] = 1) 
THEN DEST[95:64]  Temp4[31:0];
ELSE DEST[95:64]  +0.0; FI;

IF (imm8[3] = 1) 
THEN DEST[127:96]  Temp4[31:0];
ELSE DEST[127:96]  +0.0; FI;

DPPS (128-bit Legacy SSE version)
DEST[127:0]DP_Primitive(SRC1[127:0], SRC2[127:0]);
DEST[VLMAX-1:128] (Unmodified)

VDPPS (VEX.128 encoded version)
DEST[127:0]DP_Primitive(SRC1[127:0], SRC2[127:0]);
DEST[VLMAX-1:128]  0

VDPPS (VEX.256 encoded version)
DEST[127:0]DP_Primitive(SRC1[127:0], SRC2[127:0]);
DEST[255:128]DP_Primitive(SRC1[255:128], SRC2[255:128]);

Intel C/C++ Compiler Intrinsic Equivalent

(V)DPPS: __m128 _mm_dp_ps ( __m128 a, __m128 b, const int mask);

VDPPS: __m256 _mm256_dp_ps ( __m256 a, __m256 b, const int mask);

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal
Exceptions are determined separately for each add and multiply operation, in the 
order of their execution. Unmasked exceptions will leave the destination operands 
unchanged.

Other Exceptions
See Exceptions Type 2.
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EMMS—Empty MMX Technology State

Instruction Operand Encoding

Description 

Sets the values of all the tags in the x87 FPU tag word to empty (all 1s). This opera-
tion marks the x87 FPU data registers (which are aliased to the MMX technology 
registers) as available for use by x87 FPU floating-point instructions. (See Figure 8-7 
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for 
the format of the x87 FPU tag word.) All other MMX instructions (other than the 
EMMS instruction) set all the tags in x87 FPU tag word to valid (all 0s).

The EMMS instruction must be used to clear the MMX technology state at the end of 
all MMX technology procedures or subroutines and before calling other procedures or 
subroutines that may execute x87 floating-point instructions. If a floating-point 
instruction loads one of the registers in the x87 FPU data register stack before the 
x87 FPU tag word has been reset by the EMMS instruction, an x87 floating-point 
register stack overflow can occur that will result in an x87 floating-point exception or 
incorrect result.

EMMS operation is the same in non-64-bit modes and 64-bit mode.

Operation

x87FPUTagWord ← FFFFH;

Intel C/C++ Compiler Intrinsic Equivalent

void _mm_empty()

Flags Affected

None.

Protected Mode Exceptions
#UD If CR0.EM[bit 2] = 1.
#NM If CR0.TS[bit 3] = 1.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 77 EMMS NP Valid Valid Set the x87 FPU tag word 
to empty.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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#MF If there is a pending FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions 

Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions

Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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ENTER—Make Stack Frame for Procedure Parameters

Instruction Operand Encoding

Description

Creates a stack frame for a procedure. The first operand (size operand) specifies the 
size of the stack frame (that is, the number of bytes of dynamic storage allocated on 
the stack for the procedure). The second operand (nesting level operand) gives the 
lexical nesting level (0 to 31) of the procedure. The nesting level determines the 
number of stack frame pointers that are copied into the “display area” of the new 
stack frame from the preceding frame. Both of these operands are immediate values.

The stack-size attribute determines whether the BP (16 bits), EBP (32 bits), or RBP 
(64 bits) register specifies the current frame pointer and whether SP (16 bits), ESP 
(32 bits), or RSP (64 bits) specifies the stack pointer. In 64-bit mode, stack-size 
attribute is always 64-bits.

The ENTER and companion LEAVE instructions are provided to support block struc-
tured languages. The ENTER instruction (when used) is typically the first instruction 
in a procedure and is used to set up a new stack frame for a procedure. The LEAVE 
instruction is then used at the end of the procedure (just before the RET instruction) 
to release the stack frame.

If the nesting level is 0, the processor pushes the frame pointer from the BP/EBP/RBP 
register onto the stack, copies the current stack pointer from the SP/ESP/RSP 
register into the BP/EBP/RBP register, and loads the SP/ESP/RSP register with the 
current stack-pointer value minus the value in the size operand. For nesting levels of 
1 or greater, the processor pushes additional frame pointers on the stack before 
adjusting the stack pointer. These additional frame pointers provide the called proce-
dure with access points to other nested frames on the stack. See “Procedure Calls for 
Block-Structured Languages” in Chapter 6 of the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 1, for more information about the actions of 
the ENTER instruction.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

C8 iw 00 ENTER imm16, 0 II Valid Valid Create a stack frame for a 
procedure.

C8 iw 01 ENTER imm16,1 II Valid Valid Create a nested stack frame 
for a procedure.

C8 iw ib ENTER imm16, 
imm8

II Valid Valid Create a nested stack frame 
for a procedure.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

II iw imm8 NA NA
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The ENTER instruction causes a page fault whenever a write using the final value of 
the stack pointer (within the current stack segment) would do so.

In 64-bit mode, default operation size is 64 bits; 32-bit operation size cannot be 
encoded.

Operation

NestingLevel ← NestingLevel MOD 32
IF 64-Bit Mode (StackSize = 64)

THEN 
Push(RBP);
FrameTemp ← RSP; 

ELSE IF StackSize = 32
THEN 

Push(EBP);
FrameTemp ← ESP; FI;

ELSE (* StackSize = 16 *)
Push(BP); 
FrameTemp ← SP; 

FI;
IF NestingLevel = 0

THEN GOTO CONTINUE;
FI;

IF (NestingLevel > 1) 
THEN FOR i ← 1 to (NestingLevel - 1)

DO 
IF 64-Bit Mode (StackSize = 64)

THEN
RBP ← RBP - 8;
Push([RBP]); (* Quadword push *)

ELSE IF OperandSize = 32
THEN

IF StackSize = 32
EBP ← EBP - 4;
Push([EBP]); (* Doubleword push *)

ELSE (* StackSize = 16 *)
BP ← BP - 4;
Push([BP]); (* Doubleword push *)

FI;
FI;

ELSE (* OperandSize = 16 *)
IF StackSize = 32

THEN
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EBP ← EBP - 2;
Push([EBP]); (* Word push *)

ELSE (* StackSize = 16 *)
BP ← BP - 2;
Push([BP]); (* Word push *)

FI;
FI;

OD;
FI;

IF 64-Bit Mode (StackSize = 64)
THEN

Push(FrameTemp); (* Quadword push *)
ELSE IF OperandSize = 32

THEN 
Push(FrameTemp); FI; (* Doubleword push *)

ELSE (* OperandSize = 16 *)
Push(FrameTemp); (* Word push *)

FI;

CONTINUE:
IF 64-Bit Mode (StackSize = 64)

THEN
RBP ← FrameTemp;
RSP ← RSP − Size;

ELSE IF StackSize = 32 
THEN

EBP ← FrameTemp;
ESP ← ESP − Size; FI;

ELSE (* StackSize = 16 *)
BP ← FrameTemp;
SP ← SP − Size;

FI;

END;

Flags Affected

None.

Protected Mode Exceptions
#SS(0) If the new value of the SP or ESP register is outside the stack 

segment limit.
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#PF(fault-code) If a page fault occurs or if a write using the final value of the 
stack pointer (within the current stack segment) would cause a 
page fault.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#SS If the new value of the SP or ESP register is outside the stack 

segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#SS(0) If the new value of the SP or ESP register is outside the stack 

segment limit.
#PF(fault-code) If a page fault occurs or if a write using the final value of the 

stack pointer (within the current stack segment) would cause a 
page fault.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If the stack address is in a non-canonical form.
#PF(fault-code) If a page fault occurs or if a write using the final value of the 

stack pointer (within the current stack segment) would cause a 
page fault.

#UD If the LOCK prefix is used.
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EXTRACTPS — Extract Packed Single Precision Floating-Point Value

Instruction Operand Encoding

Description

Extracts a single-precision floating-point value from the source operand (second 
operand) at the 32-bit offset specified from imm8. Immediate bits higher than the 
most significant offset for the vector length are ignored.
The extracted single-precision floating-point value is stored in the low 32-bits of the 
destination operand
In 64-bit mode, destination register operand has default operand size of 64 bits. The 
upper 32-bits of the register are filled with zero. REX.W is ignored.
128-bit Legacy SSE version: When a REX.W prefix is used in 64-bit mode with a 
general purpose register (GPR) as a destination operand, the packed single quantity 
is zero extended to 64 bits.
VEX.128 encoded version: When VEX.128.66.0F3A.W1 17 form is used in 64-bit 
mode with a general purpose register (GPR) as a destination operand, the packed 
single quantity is zero extended to 64 bits. VEX.vvvv is reserved and must be 1111b 
otherwise instructions will #UD.
The source register is an XMM register. Imm8[1:0] determine the starting DWORD 
offset from which to extract the 32-bit floating-point value.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 3A 17

/r ib

EXTRACTPS reg/m32, xmm2, imm8

MRI V/V SSE4_1 Extract a single-precision 
floating-point value from 
xmm2 at the source offset 
specified by imm8 and store 
the result to reg or m32. 
The upper 32 bits of r64 is 
zeroed if reg is r64.

VEX.128.66.0F3A.WIG 17 /r ib

VEXTRACTPS r/m32, xmm1, imm8

MRI V/V AVX Extract one single-precision 
floating-point value from 
xmm1 at the offset 
specified by imm8 and store 
the result in reg or m32. 
Zero extend the results in 
64-bit register if applicable.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MRI ModRM:r/m (w) ModRM:reg (r) imm8 NA
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If VEXTRACTPS is encoded with VEX.L= 1, an attempt to execute the instruction 
encoded with VEX.L= 1 will cause an #UD exception.

Operation

EXTRACTPS (128-bit Legacy SSE version)
SRC_OFFSET  IMM8[1:0]
IF ( 64-Bit Mode and DEST is register)

DEST[31:0]  (SRC[127:0] » (SRC_OFFET*32)) AND 0FFFFFFFFh
DEST[63:32]  0

ELSE
DEST[31:0]  (SRC[127:0] » (SRC_OFFET*32)) AND 0FFFFFFFFh

FI

VEXTRACTPS (VEX.128 encoded version)
SRC_OFFSET  IMM8[1:0]
IF ( 64-Bit Mode and DEST is register)

DEST[31:0]  (SRC[127:0] » (SRC_OFFET*32)) AND 0FFFFFFFFh
DEST[63:32]  0

ELSE
DEST[31:0]  (SRC[127:0] » (SRC_OFFET*32)) AND 0FFFFFFFFh

FI

Intel C/C++ Compiler Intrinsic Equivalent

EXTRACTPS:  _mm_extractmem_ps (float *dest, __m128 a, const int nidx);

EXTRACTPS:  __m128 _mm_extract_ps (__m128 a, const int nidx);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 5; additionally
#UD If VEX.L= 1.
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F2XM1—Compute 2x–1

Description

Computes the exponential value of 2 to the power of the source operand minus 1. 
The source operand is located in register ST(0) and the result is also stored in ST(0). 
The value of the source operand must lie in the range –1.0 to +1.0. If the source 
value is outside this range, the result is undefined.

The following table shows the results obtained when computing the exponential 
value of various classes of numbers, assuming that neither overflow nor underflow 
occurs.

Values other than 2 can be exponentiated using the following formula:

xy ← 2(y ∗ log
2
x)

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

ST(0) ← (2ST(0) − 1);

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.
C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA Source operand is an SNaN value or unsupported format.
#D Source is a denormal value.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 F0 F2XM1 Valid Valid Replace ST(0) with (2ST(0) – 1).

Table 3-26.  Results Obtained from F2XM1
ST(0) SRC ST(0) DEST

− 1.0 to −0 − 0.5 to − 0

− 0 − 0

+ 0 + 0

+ 0 to +1.0 + 0 to 1.0 
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#U Result is too small for destination format.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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FABS—Absolute Value

Description

Clears the sign bit of ST(0) to create the absolute value of the operand. The following 
table shows the results obtained when creating the absolute value of various classes 
of numbers.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

ST(0) ← |ST(0)|;

FPU Flags Affected
C1 Set to 0.
C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 E1 FABS Valid Valid Replace ST with its absolute value.

Table 3-27.  Results Obtained from FABS 
ST(0) SRC ST(0) DEST

− ∞ + ∞
− F + F

− 0 + 0

+ 0 + 0

+ F + F

+ ∞ + ∞
NaN NaN 

NOTES:
F Means finite floating-point value.
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Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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FADD/FADDP/FIADD—Add

Description

Adds the destination and source operands and stores the sum in the destination loca-
tion. The destination operand is always an FPU register; the source operand can be a 
register or a memory location. Source operands in memory can be in single-precision 
or double-precision floating-point format or in word or doubleword integer format.

The no-operand version of the instruction adds the contents of the ST(0) register to 
the ST(1) register. The one-operand version adds the contents of a memory location 
(either a floating-point or an integer value) to the contents of the ST(0) register. The 
two-operand version, adds the contents of the ST(0) register to the ST(i) register or 
vice versa. The value in ST(0) can be doubled by coding:

FADD ST(0), ST(0);

The FADDP instructions perform the additional operation of popping the FPU register 
stack after storing the result. To pop the register stack, the processor marks the 
ST(0) register as empty and increments the stack pointer (TOP) by 1. (The no-
operand version of the floating-point add instructions always results in the register 
stack being popped. In some assemblers, the mnemonic for this instruction is FADD 
rather than FADDP.)

The FIADD instructions convert an integer source operand to double extended-preci-
sion floating-point format before performing the addition.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D8 /0 FADD m32fp Valid Valid Add m32fp to ST(0) and store result 
in ST(0).

DC /0 FADD m64fp Valid Valid Add m64fp to ST(0) and store result 
in ST(0).

D8 C0+i FADD ST(0), ST(i) Valid Valid Add ST(0) to ST(i) and store result in 
ST(0).

DC C0+i FADD ST(i), ST(0) Valid Valid Add ST(i) to ST(0) and store result in 
ST(i).

DE C0+i FADDP ST(i), ST(0) Valid Valid Add ST(0) to ST(i), store result in 
ST(i), and pop the register stack.

DE C1 FADDP Valid Valid Add ST(0) to ST(1), store result in 
ST(1), and pop the register stack.

DA /0 FIADD m32int Valid Valid Add m32int to ST(0) and store 
result in ST(0).

DE /0 FIADD m16int Valid Valid Add m16int to ST(0) and store 
result in ST(0).
Vol. 2A 3-329FADD/FADDP/FIADD—Add



INSTRUCTION SET REFERENCE, A-L
The table on the following page shows the results obtained when adding various 
classes of numbers, assuming that neither overflow nor underflow occurs.

When the sum of two operands with opposite signs is 0, the result is +0, except for 
the round toward −∞ mode, in which case the result is −0. When the source operand 
is an integer 0, it is treated as a +0.

When both operand are infinities of the same sign, the result is ∞ of the expected 
sign. If both operands are infinities of opposite signs, an invalid-operation exception 
is generated. See Table 3-28.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

IF Instruction = FIADD
THEN

DEST ← DEST + ConvertToDoubleExtendedPrecisionFP(SRC);
ELSE (* Source operand is floating-point value *)

DEST ← DEST + SRC;
FI;

IF Instruction = FADDP 
THEN 

PopRegisterStack;
FI;

Table 3-28.  FADD/FADDP/FIADD Results

DEST

− ∞ − F − 0 + 0 + F + ∞ NaN

− ∞ − ∞ − ∞ − ∞ − ∞ − ∞ * NaN

− F or − I − ∞ − F SRC SRC ± F or ± 0 + ∞ NaN

SRC −0 − ∞ DEST − 0 ± 0 DEST + ∞ NaN

+ 0 − ∞ DEST ± 0 + 0 DEST + ∞ NaN

+ F or + I − ∞ ± F or ± 0 SRC SRC + F + ∞ NaN

+ ∞ * + ∞ + ∞ + ∞ + ∞ + ∞ NaN

NaN NaN NaN NaN NaN NaN NaN NaN

NOTES:
F Means finite floating-point value.
I Means integer.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
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FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.
C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA Operand is an SNaN value or unsupported format.

Operands are infinities of unlike sign.
#D Source operand is a denormal value.
#U Result is too small for destination format.
#O Result is too large for destination format.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS 

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
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#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
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FBLD—Load Binary Coded Decimal

Description

Converts the BCD source operand into double extended-precision floating-point 
format and pushes the value onto the FPU stack. The source operand is loaded 
without rounding errors. The sign of the source operand is preserved, including that 
of −0.

The packed BCD digits are assumed to be in the range 0 through 9; the instruction 
does not check for invalid digits (AH through FH). Attempting to load an invalid 
encoding produces an undefined result.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

TOP ← TOP − 1;
ST(0) ← ConvertToDoubleExtendedPrecisionFP(SRC); 

FPU Flags Affected
C1 Set to 1 if stack overflow occurred; otherwise, set to 0.
C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack overflow occurred.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

DF /4 FBLD m80 dec Valid Valid Convert BCD value to floating-point and 
push onto the FPU stack.
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Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS 

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
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FBSTP—Store BCD Integer and Pop

Description

Converts the value in the ST(0) register to an 18-digit packed BCD integer, stores the 
result in the destination operand, and pops the register stack. If the source value is a 
non-integral value, it is rounded to an integer value, according to rounding mode 
specified by the RC field of the FPU control word. To pop the register stack, the 
processor marks the ST(0) register as empty and increments the stack pointer (TOP) 
by 1.

The destination operand specifies the address where the first byte destination value 
is to be stored. The BCD value (including its sign bit) requires 10 bytes of space in 
memory. 

The following table shows the results obtained when storing various classes of 
numbers in packed BCD format.

If the converted value is too large for the destination format, or if the source operand 
is an ∞, SNaN, QNAN, or is in an unsupported format, an invalid-arithmetic-operand 
condition is signaled. If the invalid-operation exception is not masked, an invalid-
arithmetic-operand exception (#IA) is generated and no value is stored in the desti-

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

DF /6 FBSTP m80bcd Valid Valid Store ST(0) in m80bcd and pop ST(0).

Table 3-29.  FBSTP Results
ST(0) DEST

− ∞ or Value Too Large for DEST Format *

F ≤ − 1 − D

−1 < F < -0 **

− 0 − 0

+ 0 + 0

+ 0 < F < +1 **

F ≥ +1 + D

+ ∞ or Value Too Large for DEST Format *

NaN *

NOTES:
F Means finite floating-point value.
D Means packed-BCD number.
* Indicates floating-point invalid-operation (#IA) exception.
** ±0 or ±1, depending on the rounding mode.
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nation operand. If the invalid-operation exception is masked, the packed BCD indef-
inite value is stored in memory.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

DEST ← BCD(ST(0));
PopRegisterStack;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.
C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA Converted value that exceeds 18 BCD digits in length.

Source operand is an SNaN, QNaN, ±∞, or in an unsupported 
format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#GP(0) If a segment register is being loaded with a segment selector 

that points to a non-writable segment.
If a memory operand effective address is outside the CS, DS, 
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS 

segment limit.
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#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
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FCHS—Change Sign

Description

Complements the sign bit of ST(0). This operation changes a positive value into a 
negative value of equal magnitude or vice versa. The following table shows the 
results obtained when changing the sign of various classes of numbers.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

SignBit(ST(0)) ← NOT (SignBit(ST(0)));

FPU Flags Affected
C1 Set to 0.
C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 E0 FCHS Valid Valid Complements sign of ST(0).

Table 3-30.  FCHS Results
ST(0) SRC ST(0) DEST

− ∞ + ∞
− F + F

− 0 + 0

+ 0 − 0

+ F − F

+ ∞ − ∞
NaN NaN 

NOTES:
* F means finite floating-point value.
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Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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FCLEX/FNCLEX—Clear Exceptions

Description

Clears the floating-point exception flags (PE, UE, OE, ZE, DE, and IE), the exception 
summary status flag (ES), the stack fault flag (SF), and the busy flag (B) in the FPU 
status word. The FCLEX instruction checks for and handles any pending unmasked 
floating-point exceptions before clearing the exception flags; the FNCLEX instruction 
does not.

The assembler issues two instructions for the FCLEX instruction (an FWAIT instruc-
tion followed by an FNCLEX instruction), and the processor executes each of these 
instructions separately. If an exception is generated for either of these instructions, 
the save EIP points to the instruction that caused the exception.

IA-32 Architecture Compatibility

When operating a Pentium or Intel486 processor in MS-DOS* compatibility mode, it 
is possible (under unusual circumstances) for an FNCLEX instruction to be inter-
rupted prior to being executed to handle a pending FPU exception. See the section 
titled “No-Wait FPU Instructions Can Get FPU Interrupt in Window” in Appendix D of 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for a 
description of these circumstances. An FNCLEX instruction cannot be interrupted in 
this way on a Pentium 4, Intel Xeon, or P6 family processor.

This instruction affects only the x87 FPU floating-point exception flags. It does not 
affect the SIMD floating-point exception flags in the MXCRS register.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

FPUStatusWord[0:7] ← 0;
FPUStatusWord[15] ← 0;

Opcode* Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

9B DB E2 FCLEX Valid Valid Clear floating-point exception flags after 
checking for pending unmasked floating-
point exceptions.

DB E2 FNCLEX* Valid Valid Clear floating-point exception flags 
without checking for pending unmasked 
floating-point exceptions.

NOTES:
* See IA-32 Architecture Compatibility section below.
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FPU Flags Affected

The PE, UE, OE, ZE, DE, IE, ES, SF, and B flags in the FPU status word are cleared. 
The C0, C1, C2, and C3 flags are undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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FCMOVcc—Floating-Point Conditional Move

Description

Tests the status flags in the EFLAGS register and moves the source operand (second 
operand) to the destination operand (first operand) if the given test condition is true. 
The condition for each mnemonic os given in the Description column above and in 
Chapter 8 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 1. The source operand is always in the ST(i) register and the destination 
operand is always ST(0).

The FCMOVcc instructions are useful for optimizing small IF constructions. They also 
help eliminate branching overhead for IF operations and the possibility of branch 
mispredictions by the processor. 

A processor may not support the FCMOVcc instructions. Software can check if the 
FCMOVcc instructions are supported by checking the processor’s feature information 
with the CPUID instruction (see “COMISS—Compare Scalar Ordered Single-Precision 
Floating-Point Values and Set EFLAGS” in this chapter). If both the CMOV and FPU 
feature bits are set, the FCMOVcc instructions are supported.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

The FCMOVcc instructions were introduced to the IA-32 Architecture in the P6 family 
processors and are not available in earlier IA-32 processors.

Opcode* Instruction 64-Bit 
Mode

Compat/
Leg Mode*

Description

DA C0+i FCMOVB ST(0), ST(i) Valid Valid Move if below (CF=1).

DA C8+i FCMOVE ST(0), ST(i) Valid Valid Move if equal (ZF=1).

DA D0+i FCMOVBE ST(0), ST(i) Valid Valid Move if below or equal (CF=1 or 
ZF=1).

DA D8+i FCMOVU ST(0), ST(i) Valid Valid Move if unordered (PF=1).

DB C0+i FCMOVNB ST(0), ST(i) Valid Valid Move if not below (CF=0).

DB C8+i FCMOVNE ST(0), ST(i) Valid Valid Move if not equal (ZF=0).

DB D0+i FCMOVNBE ST(0), ST(i) Valid Valid Move if not below or equal (CF=0 
and ZF=0).

DB D8+i FCMOVNU ST(0), ST(i) Valid Valid Move if not unordered (PF=0).

NOTES:
* See IA-32 Architecture Compatibility section below.
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Operation

IF condition TRUE
THEN ST(0) ← ST(i);

FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.
C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

Integer Flags Affected

None.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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FCOM/FCOMP/FCOMPP—Compare Floating Point Values

Description

Compares the contents of register ST(0) and source value and sets condition code 
flags C0, C2, and C3 in the FPU status word according to the results (see the table 
below). The source operand can be a data register or a memory location. If no source 
operand is given, the value in ST(0) is compared with the value in ST(1). The sign of 
zero is ignored, so that –0.0 is equal to +0.0. 

This instruction checks the class of the numbers being compared (see 
“FXAM—Examine ModR/M” in this chapter). If either operand is a NaN or is in an 
unsupported format, an invalid-arithmetic-operand exception (#IA) is raised and, if 
the exception is masked, the condition flags are set to “unordered.” If the invalid-
arithmetic-operand exception is unmasked, the condition code flags are not set.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D8 /2 FCOM m32fp Valid Valid Compare ST(0) with m32fp.

DC /2 FCOM m64fp Valid Valid Compare ST(0) with m64fp.

D8 D0+i FCOM ST(i) Valid Valid Compare ST(0) with ST(i).

D8 D1 FCOM Valid Valid Compare ST(0) with ST(1).

D8 /3 FCOMP m32fp Valid Valid Compare ST(0) with m32fp and 
pop register stack.

DC /3 FCOMP m64fp Valid Valid Compare ST(0) with m64fp and 
pop register stack.

D8 D8+i FCOMP ST(i) Valid Valid Compare ST(0) with ST(i) and pop 
register stack.

D8 D9 FCOMP Valid Valid Compare ST(0) with ST(1) and pop 
register stack.

DE D9 FCOMPP Valid Valid Compare ST(0) with ST(1) and pop 
register stack twice.

Table 3-31.  FCOM/FCOMP/FCOMPP Results
Condition C3 C2 C0

ST(0) > SRC 0 0 0

ST(0) < SRC 0 0 1

ST(0) = SRC 1 0 0

Unordered* 1 1 1

NOTES:
* Flags not set if unmasked invalid-arithmetic-operand (#IA) exception is generated.
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The FCOMP instruction pops the register stack following the comparison operation 
and the FCOMPP instruction pops the register stack twice following the comparison 
operation. To pop the register stack, the processor marks the ST(0) register as 
empty and increments the stack pointer (TOP) by 1.

The FCOM instructions perform the same operation as the FUCOM instructions. The 
only difference is how they handle QNaN operands. The FCOM instructions raise an 
invalid-arithmetic-operand exception (#IA) when either or both of the operands is a 
NaN value or is in an unsupported format. The FUCOM instructions perform the same 
operation as the FCOM instructions, except that they do not generate an invalid-
arithmetic-operand exception for QNaNs.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

CASE (relation of operands) OF
ST > SRC: C3, C2, C0 ← 000;
ST < SRC: C3, C2, C0 ← 001;
ST = SRC: C3, C2, C0 ← 100;

ESAC;

IF ST(0) or SRC = NaN or unsupported format
THEN 

#IA
IF FPUControlWord.IM = 1

THEN 
C3, C2, C0 ← 111;

FI;
FI;

IF Instruction = FCOMP 
THEN 

PopRegisterStack;
FI;

IF Instruction = FCOMPP 
THEN 

PopRegisterStack;
PopRegisterStack;

FI;

FPU Flags Affected
C1 Set to 0.
C0, C2, C3 See table on previous page.
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Floating-Point Exceptions
#IS Stack underflow occurred.
#IA One or both operands are NaN values or have unsupported 

formats.
Register is marked empty.

#D One or both operands are denormal values.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS 

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made.
#UD If the LOCK prefix is used.
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Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
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FCOMI/FCOMIP/ FUCOMI/FUCOMIP—Compare Floating Point Values and 
Set EFLAGS

Description

Performs an unordered comparison of the contents of registers ST(0) and ST(i) and 
sets the status flags ZF, PF, and CF in the EFLAGS register according to the results 
(see the table below). The sign of zero is ignored for comparisons, so that –0.0 is 
equal to +0.0. 

An unordered comparison checks the class of the numbers being compared (see 
“FXAM—Examine ModR/M” in this chapter). The FUCOMI/FUCOMIP instructions 
perform the same operations as the FCOMI/FCOMIP instructions. The only difference 
is that the FUCOMI/FUCOMIP instructions raise the invalid-arithmetic-operand 
exception (#IA) only when either or both operands are an SNaN or are in an unsup-
ported format; QNaNs cause the condition code flags to be set to unordered, but do 
not cause an exception to be generated. The FCOMI/FCOMIP instructions raise an 
invalid-operation exception when either or both of the operands are a NaN value of 
any kind or are in an unsupported format.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

DB F0+i FCOMI ST, ST(i) Valid Valid Compare ST(0) with ST(i) and set status 
flags accordingly.

DF F0+i FCOMIP ST, ST(i) Valid Valid Compare ST(0) with ST(i), set status flags 
accordingly, and pop register stack.

DB E8+i FUCOMI ST, ST(i) Valid Valid Compare ST(0) with ST(i), check for 
ordered values, and set status flags 
accordingly.

DF E8+i FUCOMIP ST, ST(i) Valid Valid Compare ST(0) with ST(i), check for 
ordered values, set status flags 
accordingly, and pop register stack.

Table 3-32.  FCOMI/FCOMIP/ FUCOMI/FUCOMIP Results
Comparison Results* ZF PF CF

ST0 > ST(i) 0 0 0

ST0 < ST(i) 0 0 1

ST0 = ST(i) 1 0 0

Unordered** 1 1 1

NOTES:
* See the IA-32 Architecture Compatibility section below.
** Flags not set if unmasked invalid-arithmetic-operand (#IA) exception is generated.
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If the operation results in an invalid-arithmetic-operand exception being raised, the 
status flags in the EFLAGS register are set only if the exception is masked. 

The FCOMI/FCOMIP and FUCOMI/FUCOMIP instructions set the OF, SF and AF flags to 
zero in the EFLAGS register (regardless of whether an invalid-operation exception is 
detected).

The FCOMIP and FUCOMIP instructions also pop the register stack following the 
comparison operation. To pop the register stack, the processor marks the ST(0) 
register as empty and increments the stack pointer (TOP) by 1.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

The FCOMI/FCOMIP/FUCOMI/FUCOMIP instructions were introduced to the IA-32 
Architecture in the P6 family processors and are not available in earlier IA-32 proces-
sors. 

Operation

CASE (relation of operands) OF
ST(0) > ST(i): ZF, PF, CF ← 000;
ST(0) < ST(i): ZF, PF, CF ← 001;
ST(0) = ST(i): ZF, PF, CF ← 100;

ESAC;

IF Instruction is FCOMI or FCOMIP
THEN

IF ST(0) or ST(i) = NaN or unsupported format
THEN 

#IA
IF FPUControlWord.IM = 1

THEN 
ZF, PF, CF ← 111;

FI;
FI;

FI;

IF Instruction is FUCOMI or FUCOMIP
THEN

IF ST(0) or ST(i) = QNaN, but not SNaN or unsupported format
THEN 

ZF, PF, CF ← 111;
ELSE (* ST(0) or ST(i) is SNaN or unsupported format *)

 #IA;
IF FPUControlWord.IM = 1
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THEN 
ZF, PF, CF ← 111;

FI;
FI;

FI;

IF Instruction is FCOMIP or FUCOMIP 
THEN 

PopRegisterStack;
FI;

FPU Flags Affected
C1 Set to 0.
C0, C2, C3 Not affected.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA (FCOMI or FCOMIP instruction) One or both operands are NaN 

values or have unsupported formats.
(FUCOMI or FUCOMIP instruction) One or both operands are 
SNaN values (but not QNaNs) or have undefined formats. 
Detection of a QNaN value does not raise an invalid-operand 
exception.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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FCOS—Cosine

Description

Computes the cosine of the source operand in register ST(0) and stores the result in 
ST(0). The source operand must be given in radians and must be within the range −
263 to +263. The following table shows the results obtained when taking the cosine of 
various classes of numbers.

If the source operand is outside the acceptable range, the C2 flag in the FPU status 
word is set, and the value in register ST(0) remains unchanged. The instruction does 
not raise an exception when the source operand is out of range. It is up to the 
program to check the C2 flag for out-of-range conditions. Source values outside the 
range −263 to +263 can be reduced to the range of the instruction by subtracting an 
appropriate integer multiple of 2π or by using the FPREM instruction with a divisor of 
2π. See the section titled “Pi” in Chapter 8 of the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 1, for a discussion of the proper value to use 
for π in performing such reductions.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

IF |ST(0)| < 263

THEN
C2 ← 0;

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 FF FCOS Valid Valid Replace ST(0) with its cosine.

Table 3-33.  FCOS Results
ST(0) SRC ST(0) DEST

− ∞ *

− F −1 to +1

− 0 + 1

+ 0 + 1

+ F − 1 to + 1

+ ∞ *

NaN NaN 

NOTES:
F Means finite floating-point value.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
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ST(0) ← cosine(ST(0));
ELSE (* Source operand is out-of-range *)

C2 ← 1;
FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.
Undefined if C2 is 1.

C2 Set to 1 if outside range (−263 < source operand < +263); other-
wise, set to 0.

C0, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA Source operand is an SNaN value, ∞, or unsupported format.
#D Source is a denormal value.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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FDECSTP—Decrement Stack-Top Pointer

Description

Subtracts one from the TOP field of the FPU status word (decrements the top-of-
stack pointer). If the TOP field contains a 0, it is set to 7. The effect of this instruction 
is to rotate the stack by one position. The contents of the FPU data registers and tag 
register are not affected. 

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

IF TOP = 0
THEN TOP ← 7;
ELSE TOP ← TOP – 1;

FI;

FPU Flags Affected

The C1 flag is set to 0. The C0, C2, and C3 flags are undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 F6 FDECSTP Valid Valid Decrement TOP field in FPU status 
word.
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Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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FDIV/FDIVP/FIDIV—Divide

Description

Divides the destination operand by the source operand and stores the result in the 
destination location. The destination operand (dividend) is always in an FPU register; 
the source operand (divisor) can be a register or a memory location. Source oper-
ands in memory can be in single-precision or double-precision floating-point format, 
word or doubleword integer format.

The no-operand version of the instruction divides the contents of the ST(1) register 
by the contents of the ST(0) register. The one-operand version divides the contents 
of the ST(0) register by the contents of a memory location (either a floating-point or 
an integer value). The two-operand version, divides the contents of the ST(0) 
register by the contents of the ST(i) register or vice versa.

The FDIVP instructions perform the additional operation of popping the FPU register 
stack after storing the result. To pop the register stack, the processor marks the 
ST(0) register as empty and increments the stack pointer (TOP) by 1. The no-
operand version of the floating-point divide instructions always results in the register 
stack being popped. In some assemblers, the mnemonic for this instruction is FDIV 
rather than FDIVP.

The FIDIV instructions convert an integer source operand to double extended-preci-
sion floating-point format before performing the division. When the source operand 
is an integer 0, it is treated as a +0.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D8 /6 FDIV m32fp Valid Valid Divide ST(0) by m32fp and store 
result in ST(0).

DC /6 FDIV m64fp Valid Valid Divide ST(0) by m64fp and store 
result in ST(0).

D8 F0+i FDIV ST(0), ST(i) Valid Valid Divide ST(0) by ST(i) and store result 
in ST(0).

DC F8+i FDIV ST(i), ST(0) Valid Valid Divide ST(i) by ST(0) and store result 
in ST(i).

DE F8+i FDIVP ST(i), ST(0) Valid Valid Divide ST(i) by ST(0), store result in 
ST(i), and pop the register stack.

DE F9 FDIVP Valid Valid Divide ST(1) by ST(0), store result in 
ST(1), and pop the register stack.

DA /6 FIDIV m32int Valid Valid Divide ST(0) by m32int and store 
result in ST(0).

DE /6 FIDIV m16int Valid Valid Divide ST(0) by m64int and store 
result in ST(0).
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If an unmasked divide-by-zero exception (#Z) is generated, no result is stored; if the 
exception is masked, an ∞ of the appropriate sign is stored in the destination 
operand.

The following table shows the results obtained when dividing various classes of 
numbers, assuming that neither overflow nor underflow occurs.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

IF SRC = 0
THEN

#Z;
ELSE

IF Instruction is FIDIV
THEN

DEST ← DEST / ConvertToDoubleExtendedPrecisionFP(SRC);
ELSE (* Source operand is floating-point value *)

DEST ← DEST / SRC;
FI;

FI;

Table 3-34.  FDIV/FDIVP/FIDIV Results

DEST

− ∞ − F − 0 + 0 + F + ∞ NaN

− ∞ * + 0 + 0 − 0 − 0 * NaN

− F + ∞ + F + 0 − 0 − F − ∞ NaN

− I + ∞ + F + 0 − 0 − F − ∞ NaN

SRC − 0 + ∞ ** * * ** − ∞ NaN

+ 0 − ∞ ** * * ** + ∞ NaN

+ I − ∞ − F − 0 + 0 + F + ∞ NaN

+ F − ∞ − F − 0 + 0 + F + ∞ NaN

+ ∞ * − 0 − 0 + 0 + 0 * NaN

NaN NaN NaN NaN NaN NaN NaN NaN

NOTES:
F Means finite floating-point value.
I Means integer.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
** Indicates floating-point zero-divide (#Z) exception.
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IF Instruction = FDIVP 
THEN 

PopRegisterStack;
FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.
C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA Operand is an SNaN value or unsupported format.

±∞ / ±∞; ±0 / ±0
#D Source is a denormal value.
#Z DEST / ±0, where DEST is not equal to ±0.
#U Result is too small for destination format.
#O Result is too large for destination format.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS 

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.
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Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
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FDIVR/FDIVRP/FIDIVR—Reverse Divide

Description

Divides the source operand by the destination operand and stores the result in the 
destination location. The destination operand (divisor) is always in an FPU register; 
the source operand (dividend) can be a register or a memory location. Source oper-
ands in memory can be in single-precision or double-precision floating-point format, 
word or doubleword integer format.

These instructions perform the reverse operations of the FDIV, FDIVP, and FIDIV 
instructions. They are provided to support more efficient coding.

The no-operand version of the instruction divides the contents of the ST(0) register 
by the contents of the ST(1) register. The one-operand version divides the contents 
of a memory location (either a floating-point or an integer value) by the contents of 
the ST(0) register. The two-operand version, divides the contents of the ST(i) 
register by the contents of the ST(0) register or vice versa.

The FDIVRP instructions perform the additional operation of popping the FPU register 
stack after storing the result. To pop the register stack, the processor marks the 
ST(0) register as empty and increments the stack pointer (TOP) by 1. The no-
operand version of the floating-point divide instructions always results in the register 
stack being popped. In some assemblers, the mnemonic for this instruction is FDIVR 
rather than FDIVRP.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D8 /7 FDIVR m32fp Valid Valid Divide m32fp by ST(0) and store result 
in ST(0).

DC /7 FDIVR m64fp Valid Valid Divide m64fp by ST(0) and store result 
in ST(0).

D8 F8+i FDIVR ST(0), ST(i) Valid Valid Divide ST(i) by ST(0) and store result in 
ST(0).

DC F0+i FDIVR ST(i), ST(0) Valid Valid Divide ST(0) by ST(i) and store result in 
ST(i).

DE F0+i FDIVRP ST(i), ST(0) Valid Valid Divide ST(0) by ST(i), store result in 
ST(i), and pop the register stack.

DE F1 FDIVRP Valid Valid Divide ST(0) by ST(1), store result in 
ST(1), and pop the register stack.

DA /7 FIDIVR m32int Valid Valid Divide m32int by ST(0) and store result 
in ST(0).

DE /7 FIDIVR m16int Valid Valid Divide m16int by ST(0) and store result 
in ST(0).
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The FIDIVR instructions convert an integer source operand to double extended-preci-
sion floating-point format before performing the division.

If an unmasked divide-by-zero exception (#Z) is generated, no result is stored; if the 
exception is masked, an ∞ of the appropriate sign is stored in the destination 
operand.

The following table shows the results obtained when dividing various classes of 
numbers, assuming that neither overflow nor underflow occurs.

When the source operand is an integer 0, it is treated as a +0. This instruction’s oper-
ation is the same in non-64-bit modes and 64-bit mode.

Operation

IF DEST = 0
THEN

#Z;
ELSE

IF Instruction = FIDIVR
THEN

DEST ← ConvertToDoubleExtendedPrecisionFP(SRC) / DEST;
ELSE (* Source operand is floating-point value *)

Table 3-35.  FDIVR/FDIVRP/FIDIVR Results

DEST

− ∞ − F − 0 + 0 + F + ∞ NaN

− ∞ * + ∞ + ∞ − ∞ − ∞ * NaN

SRC − F + 0 + F ** ** − F − 0 NaN

− I + 0 + F ** ** − F − 0 NaN

− 0 + 0 + 0 * * − 0 − 0 NaN

+ 0 − 0 − 0 * * + 0 + 0 NaN

+ I − 0 − F ** ** + F + 0 NaN

+ F − 0 − F ** ** + F + 0 NaN

+ ∞ * − ∞ − ∞ + ∞ + ∞ * NaN

NaN NaN NaN NaN NaN NaN NaN NaN

NOTES:
F Means finite floating-point value.
I Means integer.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
** Indicates floating-point zero-divide (#Z) exception.
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DEST ← SRC / DEST;
FI;

FI;

IF Instruction = FDIVRP 
THEN 

PopRegisterStack;
FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.
C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA Operand is an SNaN value or unsupported format.

±∞ / ±∞; ±0 / ±0
#D Source is a denormal value.
#Z SRC / ±0, where SRC is not equal to ±0.
#U Result is too small for destination format.
#O Result is too large for destination format.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
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#SS If a memory operand effective address is outside the SS 
segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
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FFREE—Free Floating-Point Register

Description

Sets the tag in the FPU tag register associated with register ST(i) to empty (11B). 
The contents of ST(i) and the FPU stack-top pointer (TOP) are not affected.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

TAG(i) ← 11B;

FPU Flags Affected

C0, C1, C2, C3 undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

DD C0+i FFREE ST(i) Valid Valid Sets tag for ST(i) to empty.
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FICOM/FICOMP—Compare Integer

Description

Compares the value in ST(0) with an integer source operand and sets the condition 
code flags C0, C2, and C3 in the FPU status word according to the results (see table 
below). The integer value is converted to double extended-precision floating-point 
format before the comparison is made.

These instructions perform an “unordered comparison.” An unordered comparison 
also checks the class of the numbers being compared (see “FXAM—Examine 
ModR/M” in this chapter). If either operand is a NaN or is in an undefined format, the 
condition flags are set to “unordered.”

The sign of zero is ignored, so that –0.0 ← +0.0.

The FICOMP instructions pop the register stack following the comparison. To pop the 
register stack, the processor marks the ST(0) register empty and increments the 
stack pointer (TOP) by 1.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

CASE (relation of operands) OF
ST(0) > SRC: C3, C2, C0 ← 000;
ST(0) < SRC: C3, C2, C0 ← 001;
ST(0) = SRC: C3, C2, C0 ← 100;
Unordered: C3, C2, C0 ← 111;

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

DE /2 FICOM m16int Valid Valid Compare ST(0) with m16int.

DA /2 FICOM m32int Valid Valid Compare ST(0) with m32int.

DE /3 FICOMP m16int Valid Valid Compare ST(0) with m16int and pop 
stack register.

DA /3 FICOMP m32int Valid Valid Compare ST(0) with m32int and pop 
stack register.

Table 3-36.  FICOM/FICOMP Results
Condition C3 C2 C0

ST(0) > SRC 0 0 0

ST(0) < SRC 0 0 1

ST(0) = SRC 1 0 0

Unordered 1 1 1
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ESAC;

IF Instruction = FICOMP 
THEN 

PopRegisterStack; 
FI;

FPU Flags Affected
C1 Set to 0.
C0, C2, C3 See table on previous page.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA One or both operands are NaN values or have unsupported 

formats.
#D One or both operands are denormal values.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS 

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
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#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
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FILD—Load Integer

Description

Converts the signed-integer source operand into double extended-precision floating-
point format and pushes the value onto the FPU register stack. The source operand 
can be a word, doubleword, or quadword integer. It is loaded without rounding 
errors. The sign of the source operand is preserved.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

TOP ← TOP − 1;
ST(0) ← ConvertToDoubleExtendedPrecisionFP(SRC);

FPU Flags Affected
C1 Set to 1 if stack overflow occurred; set to 0 otherwise.
C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack overflow occurred.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

DF /0 FILD m16int Valid Valid Push m16int onto the FPU register 
stack.

DB /0 FILD m32int Valid Valid Push m32int onto the FPU register 
stack.

DF /5 FILD m64int Valid Valid Push m64int onto the FPU register 
stack.
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#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS 

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
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FINCSTP—Increment Stack-Top Pointer

Description

Adds one to the TOP field of the FPU status word (increments the top-of-stack 
pointer). If the TOP field contains a 7, it is set to 0. The effect of this instruction is to 
rotate the stack by one position. The contents of the FPU data registers and tag 
register are not affected. This operation is not equivalent to popping the stack, 
because the tag for the previous top-of-stack register is not marked empty.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

IF TOP = 7
THEN TOP ← 0;
ELSE TOP ← TOP + 1;

FI;

FPU Flags Affected

The C1 flag is set to 0. The C0, C2, and C3 flags are undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 F7 FINCSTP Valid Valid Increment the TOP field in the FPU 
status register.
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Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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FINIT/FNINIT—Initialize Floating-Point Unit

Description

Sets the FPU control, status, tag, instruction pointer, and data pointer registers to 
their default states. The FPU control word is set to 037FH (round to nearest, all 
exceptions masked, 64-bit precision). The status word is cleared (no exception flags 
set, TOP is set to 0). The data registers in the register stack are left unchanged, but 
they are all tagged as empty (11B). Both the instruction and data pointers are 
cleared.

The FINIT instruction checks for and handles any pending unmasked floating-point 
exceptions before performing the initialization; the FNINIT instruction does not.

The assembler issues two instructions for the FINIT instruction (an FWAIT instruction 
followed by an FNINIT instruction), and the processor executes each of these instruc-
tions in separately. If an exception is generated for either of these instructions, the 
save EIP points to the instruction that caused the exception.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

When operating a Pentium or Intel486 processor in MS-DOS compatibility mode, it is 
possible (under unusual circumstances) for an FNINIT instruction to be interrupted 
prior to being executed to handle a pending FPU exception. See the section titled 
“No-Wait FPU Instructions Can Get FPU Interrupt in Window” in Appendix D of the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for a 
description of these circumstances. An FNINIT instruction cannot be interrupted in 
this way on a Pentium 4, Intel Xeon, or P6 family processor.

In the Intel387 math coprocessor, the FINIT/FNINIT instruction does not clear the 
instruction and data pointers.

This instruction affects only the x87 FPU. It does not affect the XMM and MXCSR 
registers.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

9B DB E3 FINIT Valid Valid Initialize FPU after checking for pending 
unmasked floating-point exceptions.

DB E3 FNINIT* Valid Valid Initialize FPU without checking for 
pending unmasked floating-point 
exceptions.

NOTES:
* See IA-32 Architecture Compatibility section below.
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Operation

FPUControlWord ← 037FH;
FPUStatusWord ← 0;
FPUTagWord ← FFFFH;
FPUDataPointer ← 0;
FPUInstructionPointer ← 0;
FPULastInstructionOpcode ← 0;

FPU Flags Affected

C0, C1, C2, C3 set to 0.

Floating-Point Exceptions

None.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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FIST/FISTP—Store Integer

Description

The FIST instruction converts the value in the ST(0) register to a signed integer and 
stores the result in the destination operand. Values can be stored in word or double-
word integer format. The destination operand specifies the address where the first 
byte of the destination value is to be stored.

The FISTP instruction performs the same operation as the FIST instruction and then 
pops the register stack. To pop the register stack, the processor marks the ST(0) 
register as empty and increments the stack pointer (TOP) by 1. The FISTP instruction 
also stores values in quadword integer format.

The following table shows the results obtained when storing various classes of 
numbers in integer format.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

DF /2 FIST m16int Valid Valid Store ST(0) in m16int.

DB /2 FIST m32int Valid Valid Store ST(0) in m32int.

DF /3 FISTP m16int Valid Valid Store ST(0) in m16int and pop 
register stack.

DB /3 FISTP m32int Valid Valid Store ST(0) in m32int and pop 
register stack.

DF /7 FISTP m64int Valid Valid Store ST(0) in m64int and pop 
register stack.

Table 3-37.  FIST/FISTP Results 
ST(0) DEST

− ∞ or Value Too Large for DEST Format *

F ≤ −1 − I

−1 < F < −0 **

− 0 0

+ 0 0

+ 0 < F < + 1 **

F ≥ + 1 + I

+ ∞ or Value Too Large for DEST Format *
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If the source value is a non-integral value, it is rounded to an integer value, according 
to the rounding mode specified by the RC field of the FPU control word. 

If the converted value is too large for the destination format, or if the source operand 
is an ∞, SNaN, QNAN, or is in an unsupported format, an invalid-arithmetic-operand 
condition is signaled. If the invalid-operation exception is not masked, an invalid-
arithmetic-operand exception (#IA) is generated and no value is stored in the desti-
nation operand. If the invalid-operation exception is masked, the integer indefinite 
value is stored in memory.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

DEST ← Integer(ST(0));

IF Instruction = FISTP 
THEN 

PopRegisterStack;
FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Indicates rounding direction of if the inexact exception (#P) is 
generated: 0 ← not roundup; 1 ← roundup.
Set to 0 otherwise.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA Converted value is too large for the destination format.

Source operand is an SNaN, QNaN, ±∞, or unsupported format.
#P Value cannot be represented exactly in destination format.

NaN *

NOTES:
F Means finite floating-point value.
I Means integer.
* Indicates floating-point invalid-operation (#IA) exception.
** 0 or ±1, depending on the rounding mode.

Table 3-37.  FIST/FISTP Results  (Contd.)
ST(0) DEST
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Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, 
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it 
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS 

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
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#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
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FISTTP—Store Integer with Truncation

Description

FISTTP converts the value in ST into a signed integer using truncation (chop) as 
rounding mode, transfers the result to the destination, and pop ST. FISTTP accepts 
word, short integer, and long integer destinations.

The following table shows the results obtained when storing various classes of 
numbers in integer format.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

DEST ← ST;
pop ST;

Flags Affected

C1 is cleared; C0, C2, C3 undefined.

Opcode Instruction 64-Bit Mode Compat/
Leg Mode

Description

DF /1 FISTTP m16int Valid Valid Store ST(0) in m16int with 
truncation.

DB /1 FISTTP m32int Valid Valid Store ST(0) in m32int with 
truncation.

DD /1 FISTTP m64int Valid Valid Store ST(0) in m64int with 
truncation.

Table 3-38.  FISTTP Results
ST(0) DEST

− ∞ or  Value Too Large for DEST Format *

F ≤ − 1 − I

− 1 < F < + 1 0

F Š + 1 + I

+ ∞  or Value Too Large for DEST Format *

NaN *

NOTES:
F Means finite floating-point value.
Ι Means integer.
∗ Indicates floating-point invalid-operation (#IA) exception.
Vol. 2A 3-377FISTTP—Store Integer with Truncation



INSTRUCTION SET REFERENCE, A-L
Numeric Exceptions

Invalid, Stack Invalid (stack underflow), Precision.

Protected Mode Exceptions
#GP(0) If the destination is in a nonwritable segment.

For an illegal memory operand effective address in the CS, DS, 
ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#NM If CR0.EM[bit 2] = 1.

If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.SSE3[bit 0] = 0.

If the LOCK prefix is used.

Real Address Mode Exceptions
GP(0) If any part of the operand would lie outside of the effective 

address space from 0 to 0FFFFH.
#NM If CR0.EM[bit 2] = 1.

If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.SSE3[bit 0] = 0.

If the LOCK prefix is used.

Virtual 8086 Mode Exceptions
GP(0) If any part of the operand would lie outside of the effective 

address space from 0 to 0FFFFH.
#NM If CR0.EM[bit 2] = 1.

If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.SSE3[bit 0] = 0.

If the LOCK prefix is used.
#PF(fault-code) For a page fault.
#AC(0) For unaligned memory reference if the current privilege is 3.

Compatibility Mode Exceptions
Same exceptions as in protected mode.
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64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
If the LOCK prefix is used.
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FLD—Load Floating Point Value

Description

Pushes the source operand onto the FPU register stack. The source operand can be in 
single-precision, double-precision, or double extended-precision floating-point 
format. If the source operand is in single-precision or double-precision floating-point 
format, it is automatically converted to the double extended-precision floating-point 
format before being pushed on the stack.

The FLD instruction can also push the value in a selected FPU register [ST(i)] onto the 
stack. Here, pushing register ST(0) duplicates the stack top.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

IF SRC is ST(i)
THEN

temp ← ST(i);
FI;

TOP ← TOP − 1;

IF SRC is memory-operand
THEN

ST(0) ← ConvertToDoubleExtendedPrecisionFP(SRC);
ELSE (* SRC is ST(i) *)

ST(0) ← temp;
FI;

FPU Flags Affected
C1 Set to 1 if stack overflow occurred; otherwise, set to 0.
C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow or overflow occurred.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 /0 FLD m32fp Valid Valid Push m32fp onto the FPU register stack.

DD /0 FLD m64fp Valid Valid Push m64fp onto the FPU register stack.

DB /5 FLD m80fp Valid Valid Push m80fp onto the FPU register stack.

D9 C0+i FLD ST(i) Valid Valid Push ST(i) onto the FPU register stack.
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#IA Source operand is an SNaN. Does not occur if the source 
operand is in double extended-precision floating-point format 
(FLD m80fp or FLD ST(i)).

#D Source operand is a denormal value. Does not occur if the 
source operand is in double extended-precision floating-point 
format.

Protected Mode Exceptions
#GP(0) If destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, 
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it 
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS 

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made.
#UD If the LOCK prefix is used.
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Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
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FLD1/FLDL2T/FLDL2E/FLDPI/FLDLG2/FLDLN2/FLDZ—Load Constant

Description

Push one of seven commonly used constants (in double extended-precision floating-
point format) onto the FPU register stack. The constants that can be loaded with 
these instructions include +1.0, +0.0, log210, log2e, π, log102, and loge2. For each 
constant, an internal 66-bit constant is rounded (as specified by the RC field in the 
FPU control word) to double extended-precision floating-point format. The inexact-
result exception (#P) is not generated as a result of the rounding, nor is the C1 flag 
set in the x87 FPU status word if the value is rounded up. 

See the section titled “Pi” in Chapter 8 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1, for a description of the π constant.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

When the RC field is set to round-to-nearest, the FPU produces the same constants 
that is produced by the Intel 8087 and Intel 287 math coprocessors.

Operation

TOP ← TOP − 1;
ST(0) ← CONSTANT;

FPU Flags Affected
C1 Set to 1 if stack overflow occurred; otherwise, set to 0.
C0, C2, C3 Undefined.

Opcode* Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 E8 FLD1 Valid Valid Push +1.0 onto the FPU register stack.

D9 E9 FLDL2T Valid Valid Push log210 onto the FPU register stack.

D9 EA FLDL2E Valid Valid Push log2e onto the FPU register stack.

D9 EB FLDPI Valid Valid Push π onto the FPU register stack.

D9 EC FLDLG2 Valid Valid Push log102 onto the FPU register stack.

D9 ED FLDLN2 Valid Valid Push loge2 onto the FPU register stack.

D9 EE FLDZ Valid Valid Push +0.0 onto the FPU register stack.

NOTES:
* See IA-32 Architecture Compatibility section below.
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Floating-Point Exceptions
#IS Stack overflow occurred.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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FLDCW—Load x87 FPU Control Word

Description

Loads the 16-bit source operand into the FPU control word. The source operand is a 
memory location. This instruction is typically used to establish or change the FPU’s 
mode of operation.

If one or more exception flags are set in the FPU status word prior to loading a new 
FPU control word and the new control word unmasks one or more of those excep-
tions, a floating-point exception will be generated upon execution of the next 
floating-point instruction (except for the no-wait floating-point instructions, see the 
section titled “Software Exception Handling” in Chapter 8 of the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 1). To avoid raising exceptions 
when changing FPU operating modes, clear any pending exceptions (using the FCLEX 
or FNCLEX instruction) before loading the new control word.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

FPUControlWord ← SRC;

FPU Flags Affected

C0, C1, C2, C3 undefined.

Floating-Point Exceptions

None; however, this operation might unmask a pending exception in the FPU status 
word. That exception is then generated upon execution of the next “waiting” floating-
point instruction.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it 
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 /5 FLDCW m2byte Valid Valid Load FPU control word from m2byte.
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#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS 

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
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FLDENV—Load x87 FPU Environment

Description

Loads the complete x87 FPU operating environment from memory into the FPU regis-
ters. The source operand specifies the first byte of the operating-environment data in 
memory. This data is typically written to the specified memory location by a FSTENV 
or FNSTENV instruction.

The FPU operating environment consists of the FPU control word, status word, tag 
word, instruction pointer, data pointer, and last opcode. Figures 8-9 through 8-12 in 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, show 
the layout in memory of the loaded environment, depending on the operating mode 
of the processor (protected or real) and the current operand-size attribute (16-bit or 
32-bit). In virtual-8086 mode, the real mode layouts are used.

The FLDENV instruction should be executed in the same operating mode as the corre-
sponding FSTENV/FNSTENV instruction.

If one or more unmasked exception flags are set in the new FPU status word, a 
floating-point exception will be generated upon execution of the next floating-point 
instruction (except for the no-wait floating-point instructions, see the section titled 
“Software Exception Handling” in Chapter 8 of the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 1). To avoid generating exceptions when 
loading a new environment, clear all the exception flags in the FPU status word that 
is being loaded.

If a page or limit fault occurs during the execution of this instruction, the state of the 
x87 FPU registers as seen by the fault handler may be different than the state being 
loaded from memory. In such situations, the fault handler should ignore the status of 
the x87 FPU registers, handle the fault, and return. The FLDENV instruction will then 
complete the loading of the x87 FPU registers with no resulting context inconsis-
tency.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

FPUControlWord ← SRC[FPUControlWord];
FPUStatusWord ← SRC[FPUStatusWord];
FPUTagWord ← SRC[FPUTagWord];
FPUDataPointer ← SRC[FPUDataPointer];
FPUInstructionPointer ← SRC[FPUInstructionPointer];
FPULastInstructionOpcode ← SRC[FPULastInstructionOpcode];

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 /4 FLDENV m14/28byte Valid Valid Load FPU environment from 
m14byte or m28byte.
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FPU Flags Affected

The C0, C1, C2, C3 flags are loaded.

Floating-Point Exceptions

None; however, if an unmasked exception is loaded in the status word, it is generated 
upon execution of the next “waiting” floating-point instruction.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it 
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS 

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made.
#UD If the LOCK prefix is used.
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Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
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FMUL/FMULP/FIMUL—Multiply

Description

Multiplies the destination and source operands and stores the product in the destina-
tion location. The destination operand is always an FPU data register; the source 
operand can be an FPU data register or a memory location. Source operands in 
memory can be in single-precision or double-precision floating-point format or in 
word or doubleword integer format.

The no-operand version of the instruction multiplies the contents of the ST(1) 
register by the contents of the ST(0) register and stores the product in the ST(1) 
register. The one-operand version multiplies the contents of the ST(0) register by the 
contents of a memory location (either a floating point or an integer value) and stores 
the product in the ST(0) register. The two-operand version, multiplies the contents of 
the ST(0) register by the contents of the ST(i) register, or vice versa, with the result 
being stored in the register specified with the first operand (the destination 
operand). 

The FMULP instructions perform the additional operation of popping the FPU register 
stack after storing the product. To pop the register stack, the processor marks the 
ST(0) register as empty and increments the stack pointer (TOP) by 1. The no-
operand version of the floating-point multiply instructions always results in the 
register stack being popped. In some assemblers, the mnemonic for this instruction 
is FMUL rather than FMULP.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D8 /1 FMUL m32fp Valid Valid Multiply ST(0) by m32fp and store 
result in ST(0).

DC /1 FMUL m64fp Valid Valid Multiply ST(0) by m64fp and store 
result in ST(0).

D8 C8+i FMUL ST(0), ST(i) Valid Valid Multiply ST(0) by ST(i) and store result 
in ST(0).

DC C8+i FMUL ST(i), ST(0) Valid Valid Multiply ST(i) by ST(0) and store result 
in ST(i).

DE C8+i FMULP ST(i), ST(0) Valid Valid Multiply ST(i) by ST(0), store result in 
ST(i), and pop the register stack.

DE C9 FMULP Valid Valid Multiply ST(1) by ST(0), store result in 
ST(1), and pop the register stack.

DA /1 FIMUL m32int Valid Valid Multiply ST(0) by m32int and store 
result in ST(0).

DE /1 FIMUL m16int Valid Valid Multiply ST(0) by m16int and store 
result in ST(0).
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The FIMUL instructions convert an integer source operand to double extended-
precision floating-point format before performing the multiplication.

The sign of the result is always the exclusive-OR of the source signs, even if one or 
more of the values being multiplied is 0 or ∞. When the source operand is an integer 
0, it is treated as a +0.

The following table shows the results obtained when multiplying various classes of 
numbers, assuming that neither overflow nor underflow occurs.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

IF Instruction = FIMUL
THEN

DEST ← DEST ∗ ConvertToDoubleExtendedPrecisionFP(SRC);
ELSE (* Source operand is floating-point value *)

DEST ← DEST ∗ SRC;
FI;

IF Instruction = FMULP 
THEN 

PopRegisterStack;
FI;

Table 3-39.  FMUL/FMULP/FIMUL Results

DEST

− ∞ − F − 0 + 0 + F + ∞ NaN

− ∞ + ∞ + ∞ * * − ∞ − ∞ NaN

− F + ∞ + F + 0 − 0 − F − ∞ NaN

− I + ∞ + F + 0 − 0 − F − ∞ NaN

SRC − 0 * + 0 + 0 − 0 − 0 * NaN

+ 0 * − 0 − 0 + 0 + 0 * NaN

+ I − ∞ − F − 0 + 0 + F + ∞ NaN

+ F − ∞ − F − 0 + 0 + F + ∞ NaN

+ ∞ − ∞ − ∞ * * + ∞ + ∞ NaN

NaN NaN NaN NaN NaN NaN NaN NaN

NOTES:
F Means finite floating-point value.
I Means Integer.
* Indicates invalid-arithmetic-operand (#IA) exception.
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FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.
C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA Operand is an SNaN value or unsupported format.

One operand is ±0 and the other is ±∞.
#D Source operand is a denormal value.
#U Result is too small for destination format.
#O Result is too large for destination format.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it 
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS 

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
3-392 Vol. 2A FMUL/FMULP/FIMUL—Multiply



INSTRUCTION SET REFERENCE, A-L
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
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FNOP—No Operation

Description

Performs no FPU operation. This instruction takes up space in the instruction stream 
but does not affect the FPU or machine context, except the EIP register.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

FPU Flags Affected

C0, C1, C2, C3 undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 D0 FNOP Valid Valid No operation is performed.
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FPATAN—Partial Arctangent

Description

Computes the arctangent of the source operand in register ST(1) divided by the 
source operand in register ST(0), stores the result in ST(1), and pops the FPU 
register stack. The result in register ST(0) has the same sign as the source operand 
ST(1) and a magnitude less than +π.

The FPATAN instruction returns the angle between the X axis and the line from the 
origin to the point (X,Y), where Y (the ordinate) is ST(1) and X (the abscissa) is 
ST(0). The angle depends on the sign of X and Y independently, not just on the sign 
of the ratio Y/X. This is because a point (−X,Y) is in the second quadrant, resulting in 
an angle between π/2 and π, while a point (X,−Y) is in the fourth quadrant, resulting 
in an angle between 0 and −π/2. A point (−X,−Y) is in the third quadrant, giving an 
angle between −π/2 and −π.

The following table shows the results obtained when computing the arctangent of 
various classes of numbers, assuming that underflow does not occur.

Opcode* Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 F3 FPATAN Valid Valid Replace ST(1) with arctan(ST(1)/ST(0)) and pop 
the register stack.

NOTES:
* See IA-32 Architecture Compatibility section below.
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There is no restriction on the range of source operands that FPATAN can accept.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

The source operands for this instruction are restricted for the 80287 math copro-
cessor to the following range:

0 ≤ |ST(1)| < |ST(0)| < +∞

Operation

ST(1) ← arctan(ST(1) / ST(0));
PopRegisterStack;

Table 3-40.  FPATAN Results

ST(0)

− ∞ − F − 0 + 0 + F + ∞ NaN

− ∞ − 3π/4* − π/2 − π/2 − π/2 − π/2 − π/4* NaN

ST(1) − F -p −π to −π/2 −π/2 −π/2 −π/2 to −
0

- 0 NaN

− 0 -p -p -p* − 0* − 0 − 0 NaN

+ 0 +p + p + π* + 0* + 0 + 0 NaN

+ F +p +π to +π/2 + π/2 +π/2 +π/2 to 
+0

+ 0 NaN

+ ∞ +3π/4* +π/2 +π/2 +π/2 + π/2 + π/4* NaN

NaN NaN NaN NaN NaN NaN NaN NaN

NOTES:
F Means finite floating-point value.
* Table 8-10 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, 

specifies that the ratios 0/0 and ∞/∞ generate the floating-point invalid arithmetic-operation 
exception and, if this exception is masked, the floating-point QNaN indefinite value is returned. 
With the FPATAN instruction, the 0/0 or ∞/∞ value is actually not calculated using division. 
Instead, the arctangent of the two variables is derived from a standard mathematical formula-
tion that is generalized to allow complex numbers as arguments. In this complex variable formu-
lation, arctangent(0,0) etc. has well defined values. These values are needed to develop a library 
to compute transcendental functions with complex arguments, based on the FPU functions that 
only allow floating-point values as arguments.
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FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.
C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA Source operand is an SNaN value or unsupported format.
#D Source operand is a denormal value.
#U Result is too small for destination format.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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FPREM—Partial Remainder

Description

Computes the remainder obtained from dividing the value in the ST(0) register (the 
dividend) by the value in the ST(1) register (the divisor or modulus), and stores the 
result in ST(0). The remainder represents the following value:

Remainder ← ST(0) − (Q ∗ ST(1))

Here, Q is an integer value that is obtained by truncating the floating-point number 
quotient of [ST(0) / ST(1)] toward zero. The sign of the remainder is the same as the 
sign of the dividend. The magnitude of the remainder is less than that of the 
modulus, unless a partial remainder was computed (as described below).

This instruction produces an exact result; the inexact-result exception does not occur 
and the rounding control has no effect. The following table shows the results 
obtained when computing the remainder of various classes of numbers, assuming 
that underflow does not occur.

When the result is 0, its sign is the same as that of the dividend. When the modulus 
is ∞, the result is equal to the value in ST(0). 

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 F8 FPREM Valid Valid Replace ST(0) with the remainder obtained 
from dividing ST(0) by ST(1).

Table 3-41.  FPREM Results

ST(1)

-∞ -F -0 +0 +F +∞ NaN

-∞ * * * * * * NaN

ST(0) -F ST(0) -F or -0 ** ** -F or -0 ST(0) NaN

-0 -0 -0 * * -0 -0 NaN

+0 +0 +0 * * +0 +0 NaN

+F ST(0) +F or +0 ** ** +F or +0 ST(0) NaN

+∞ * * * * * * NaN

NaN NaN NaN NaN NaN NaN NaN NaN

NOTES:
F Means finite floating-point value.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
** Indicates floating-point zero-divide (#Z) exception.
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The FPREM instruction does not compute the remainder specified in IEEE Std 754. 
The IEEE specified remainder can be computed with the FPREM1 instruction. The 
FPREM instruction is provided for compatibility with the Intel 8087 and Intel287 math 
coprocessors.

The FPREM instruction gets its name “partial remainder” because of the way it 
computes the remainder. This instruction arrives at a remainder through iterative 
subtraction. It can, however, reduce the exponent of ST(0) by no more than 63 in one 
execution of the instruction. If the instruction succeeds in producing a remainder that 
is less than the modulus, the operation is complete and the C2 flag in the FPU status 
word is cleared. Otherwise, C2 is set, and the result in ST(0) is called the partial 
remainder. The exponent of the partial remainder will be less than the exponent of 
the original dividend by at least 32. Software can re-execute the instruction (using 
the partial remainder in ST(0) as the dividend) until C2 is cleared. (Note that while 
executing such a remainder-computation loop, a higher-priority interrupting routine 
that needs the FPU can force a context switch in-between the instructions in the 
loop.)

An important use of the FPREM instruction is to reduce the arguments of periodic 
functions. When reduction is complete, the instruction stores the three least-signifi-
cant bits of the quotient in the C3, C1, and C0 flags of the FPU status word. This infor-
mation is important in argument reduction for the tangent function (using a modulus 
of π/4), because it locates the original angle in the correct one of eight sectors of the 
unit circle.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

D ← exponent(ST(0)) – exponent(ST(1));

IF D < 64
THEN

Q ← Integer(TruncateTowardZero(ST(0) / ST(1)));
ST(0) ← ST(0) – (ST(1) ∗ Q);
C2 ← 0;
C0, C3, C1 ← LeastSignificantBits(Q); (* Q2, Q1, Q0 *)

ELSE
C2 ← 1;
N ← An implementation-dependent number between 32 and 63;
QQ ← Integer(TruncateTowardZero((ST(0)  / ST(1)) / 2(D − N)));
ST(0) ← ST(0) – (ST(1) ∗ QQ ∗ 2(D − N)); 

FI;
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FPU Flags Affected
C0 Set to bit 2 (Q2) of the quotient.
C1 Set to 0 if stack underflow occurred; otherwise, set to least 

significant bit of quotient (Q0).
C2 Set to 0 if reduction complete; set to 1 if incomplete.
C3 Set to bit 1 (Q1) of the quotient.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA Source operand is an SNaN value, modulus is 0, dividend is ∞, or 

unsupported format.
#D Source operand is a denormal value.
#U Result is too small for destination format.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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FPREM1—Partial Remainder

Description

Computes the IEEE remainder obtained from dividing the value in the ST(0) register 
(the dividend) by the value in the ST(1) register (the divisor or modulus), and stores 
the result in ST(0). The remainder represents the following value:

Remainder ← ST(0) − (Q ∗ ST(1))

Here, Q is an integer value that is obtained by rounding the floating-point number 
quotient of [ST(0) / ST(1)] toward the nearest integer value. The magnitude of the 
remainder is less than or equal to half the magnitude of the modulus, unless a partial 
remainder was computed (as described below).

This instruction produces an exact result; the precision (inexact) exception does not 
occur and the rounding control has no effect. The following table shows the results 
obtained when computing the remainder of various classes of numbers, assuming 
that underflow does not occur.

When the result is 0, its sign is the same as that of the dividend. When the modulus 
is ∞, the result is equal to the value in ST(0). 

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 F5 FPREM1 Valid Valid Replace ST(0) with the IEEE remainder 
obtained from dividing ST(0) by ST(1).

Table 3-42.  FPREM1 Results

ST(1)

− ∞ − F − 0 + 0 + F + ∞ NaN

− ∞ * * * * * * NaN

ST(0) − F ST(0) ±F or −0 ** ** ± F or − 
0

ST(0) NaN

− 0 − 0 − 0 * * − 0 -0 NaN

+ 0 + 0 + 0 * * + 0 +0 NaN

+ F ST(0) ± F or + 0 ** ** ± F or + 
0

ST(0) NaN

+ ∞ * * * * * * NaN

NaN NaN NaN NaN NaN NaN NaN NaN

NOTES:
F Means finite floating-point value.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
** Indicates floating-point zero-divide (#Z) exception.
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The FPREM1 instruction computes the remainder specified in IEEE Standard 754. 
This instruction operates differently from the FPREM instruction in the way that it 
rounds the quotient of ST(0) divided by ST(1) to an integer (see the “Operation” 
section below).

Like the FPREM instruction, FPREM1 computes the remainder through iterative 
subtraction, but can reduce the exponent of ST(0) by no more than 63 in one execu-
tion of the instruction. If the instruction succeeds in producing a remainder that is 
less than one half the modulus, the operation is complete and the C2 flag in the FPU 
status word is cleared. Otherwise, C2 is set, and the result in ST(0) is called the 
partial remainder. The exponent of the partial remainder will be less than the expo-
nent of the original dividend by at least 32. Software can re-execute the instruction 
(using the partial remainder in ST(0) as the dividend) until C2 is cleared. (Note that 
while executing such a remainder-computation loop, a higher-priority interrupting 
routine that needs the FPU can force a context switch in-between the instructions in 
the loop.)

An important use of the FPREM1 instruction is to reduce the arguments of periodic 
functions. When reduction is complete, the instruction stores the three least-signifi-
cant bits of the quotient in the C3, C1, and C0 flags of the FPU status word. This infor-
mation is important in argument reduction for the tangent function (using a modulus 
of π/4), because it locates the original angle in the correct one of eight sectors of the 
unit circle.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation 

D ← exponent(ST(0)) – exponent(ST(1));

IF D < 64
THEN

Q ← Integer(RoundTowardNearestInteger(ST(0) / ST(1)));
ST(0) ← ST(0) – (ST(1) ∗ Q);
C2 ← 0;
C0, C3, C1 ← LeastSignificantBits(Q); (* Q2, Q1, Q0 *)

ELSE
C2 ← 1;
N ← An implementation-dependent number between 32 and 63;
QQ ← Integer(TruncateTowardZero((ST(0)  / ST(1)) / 2(D − N)));
ST(0) ← ST(0) – (ST(1) ∗ QQ ∗ 2(D − N)); 

FI;

FPU Flags Affected
C0 Set to bit 2 (Q2) of the quotient.
C1 Set to 0 if stack underflow occurred; otherwise, set to least 

significant bit of quotient (Q0).
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C2 Set to 0 if reduction complete; set to 1 if incomplete.
C3 Set to bit 1 (Q1) of the quotient.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA Source operand is an SNaN value, modulus (divisor) is 0, divi-

dend is ∞, or unsupported format.
#D Source operand is a denormal value.
#U Result is too small for destination format.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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FPTAN—Partial Tangent

Description

Computes the tangent of the source operand in register ST(0), stores the result in 
ST(0), and pushes a 1.0 onto the FPU register stack. The source operand must be 
given in radians and must be less than ±263. The following table shows the 
unmasked results obtained when computing the partial tangent of various classes of 
numbers, assuming that underflow does not occur.

If the source operand is outside the acceptable range, the C2 flag in the FPU status 
word is set, and the value in register ST(0) remains unchanged. The instruction does 
not raise an exception when the source operand is out of range. It is up to the 
program to check the C2 flag for out-of-range conditions. Source values outside the 
range −263 to +263 can be reduced to the range of the instruction by subtracting an 
appropriate integer multiple of 2π or by using the FPREM instruction with a divisor of 
2π. See the section titled “Pi” in Chapter 8 of the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 1, for a discussion of the proper value to use 
for π in performing such reductions.

The value 1.0 is pushed onto the register stack after the tangent has been computed 
to maintain compatibility with the Intel 8087 and Intel287 math coprocessors. This 
operation also simplifies the calculation of other trigonometric functions. For 
instance, the cotangent (which is the reciprocal of the tangent) can be computed by 
executing a FDIVR instruction after the FPTAN instruction.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 F2 FPTAN Valid Valid Replace ST(0) with its tangent and 
push 1 onto the FPU stack.

Table 3-43.  FPTAN Results
ST(0) SRC ST(0) DEST

− ∞ *

− F − F to + F

− 0 - 0

+ 0 + 0

+ F − F to + F

+ ∞ *

NaN NaN 

NOTES:
F Means finite floating-point value.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
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This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

IF ST(0) < 263

THEN
C2 ← 0;
ST(0) ← tan(ST(0));
TOP ← TOP − 1;
ST(0) ← 1.0;

ELSE (* Source operand is out-of-range *)
C2 ← 1;

FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred; set to 1 if stack overflow 

occurred.
Set if result was rounded up; cleared otherwise.

C2 Set to 1 if outside range (−263 < source operand < +263); other-
wise, set to 0.

C0, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow or overflow occurred.
#IA Source operand is an SNaN value, ∞, or unsupported format.
#D Source operand is a denormal value.
#U Result is too small for destination format.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.
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Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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FRNDINT—Round to Integer

Description

Rounds the source value in the ST(0) register to the nearest integral value, 
depending on the current rounding mode (setting of the RC field of the FPU control 
word), and stores the result in ST(0).

If the source value is ∞, the value is not changed. If the source value is not an integral 
value, the floating-point inexact-result exception (#P) is generated.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

ST(0) ← RoundToIntegralValue(ST(0));

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.
C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA Source operand is an SNaN value or unsupported format.
#D Source operand is a denormal value.
#P Source operand is not an integral value.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 FC FRNDINT Valid Valid Round ST(0) to an integer.
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Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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FRSTOR—Restore x87 FPU State

Description

Loads the FPU state (operating environment and register stack) from the memory 
area specified with the source operand. This state data is typically written to the 
specified memory location by a previous FSAVE/FNSAVE instruction.

The FPU operating environment consists of the FPU control word, status word, tag 
word, instruction pointer, data pointer, and last opcode. Figures 8-9 through 8-12 in 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, show 
the layout in memory of the stored environment, depending on the operating mode 
of the processor (protected or real) and the current operand-size attribute (16-bit or 
32-bit). In virtual-8086 mode, the real mode layouts are used. The contents of the 
FPU register stack are stored in the 80 bytes immediately following the operating 
environment image.

The FRSTOR instruction should be executed in the same operating mode as the 
corresponding FSAVE/FNSAVE instruction.

If one or more unmasked exception bits are set in the new FPU status word, a 
floating-point exception will be generated. To avoid raising exceptions when loading 
a new operating environment, clear all the exception flags in the FPU status word 
that is being loaded.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

FPUControlWord ← SRC[FPUControlWord];
FPUStatusWord ← SRC[FPUStatusWord];
FPUTagWord ← SRC[FPUTagWord];
FPUDataPointer ← SRC[FPUDataPointer];
FPUInstructionPointer ← SRC[FPUInstructionPointer];
FPULastInstructionOpcode ← SRC[FPULastInstructionOpcode];

ST(0) ← SRC[ST(0)];
ST(1) ← SRC[ST(1)];
ST(2) ← SRC[ST(2)];
ST(3) ← SRC[ST(3)];
ST(4) ← SRC[ST(4)];
ST(5) ← SRC[ST(5)];
ST(6) ← SRC[ST(6)];

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

DD /4 FRSTOR m94/108byte Valid Valid Load FPU state from 
m94byte or m108byte.
Vol. 2A 3-409FRSTOR—Restore x87 FPU State



INSTRUCTION SET REFERENCE, A-L
ST(7) ← SRC[ST(7)];

FPU Flags Affected

The C0, C1, C2, C3 flags are loaded.

Floating-Point Exceptions

None; however, this operation might unmask an existing exception that has been 
detected but not generated, because it was masked. Here, the exception is gener-
ated at the completion of the instruction.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it 
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS 

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
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#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
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FSAVE/FNSAVE—Store x87 FPU State

Description

Stores the current FPU state (operating environment and register stack) at the spec-
ified destination in memory, and then re-initializes the FPU. The FSAVE instruction 
checks for and handles pending unmasked floating-point exceptions before storing 
the FPU state; the FNSAVE instruction does not.

The FPU operating environment consists of the FPU control word, status word, tag 
word, instruction pointer, data pointer, and last opcode. Figures 8-9 through 8-12 in 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, show 
the layout in memory of the stored environment, depending on the operating mode 
of the processor (protected or real) and the current operand-size attribute (16-bit or 
32-bit). In virtual-8086 mode, the real mode layouts are used. The contents of the 
FPU register stack are stored in the 80 bytes immediately follow the operating envi-
ronment image.

The saved image reflects the state of the FPU after all floating-point instructions 
preceding the FSAVE/FNSAVE instruction in the instruction stream have been 
executed.

After the FPU state has been saved, the FPU is reset to the same default values it is 
set to with the FINIT/FNINIT instructions (see “FINIT/FNINIT—Initialize Floating-
Point Unit” in this chapter).

The FSAVE/FNSAVE instructions are typically used when the operating system needs 
to perform a context switch, an exception handler needs to use the FPU, or an appli-
cation program needs to pass a “clean” FPU to a procedure.

The assembler issues two instructions for the FSAVE instruction (an FWAIT instruc-
tion followed by an FNSAVE instruction), and the processor executes each of these 

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

9B DD /6 FSAVE m94/108byte Valid Valid Store FPU state to m94byte or 
m108byte after checking for 
pending unmasked floating-
point exceptions. Then re-
initialize the FPU.

DD /6 FNSAVE* m94/108byte Valid Valid Store FPU environment to 
m94byte or m108byte without 
checking for pending unmasked 
floating-point exceptions. Then 
re-initialize the FPU.

NOTES:
* See IA-32 Architecture Compatibility section below.
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instructions separately. If an exception is generated for either of these instructions, 
the save EIP points to the instruction that caused the exception.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

For Intel math coprocessors and FPUs prior to the Intel Pentium processor, an FWAIT 
instruction should be executed before attempting to read from the memory image 
stored with a prior FSAVE/FNSAVE instruction. This FWAIT instruction helps ensure 
that the storage operation has been completed.

When operating a Pentium or Intel486 processor in MS-DOS compatibility mode, it is 
possible (under unusual circumstances) for an FNSAVE instruction to be interrupted 
prior to being executed to handle a pending FPU exception. See the section titled 
“No-Wait FPU Instructions Can Get FPU Interrupt in Window” in Appendix D of the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for a 
description of these circumstances. An FNSAVE instruction cannot be interrupted in 
this way on a Pentium 4, Intel Xeon, or P6 family processor.

Operation

(* Save FPU State and Registers *)

DEST[FPUControlWord] ← FPUControlWord;
DEST[FPUStatusWord] ← FPUStatusWord;
DEST[FPUTagWord] ← FPUTagWord;
DEST[FPUDataPointer] ← FPUDataPointer;
DEST[FPUInstructionPointer] ← FPUInstructionPointer;
DEST[FPULastInstructionOpcode] ← FPULastInstructionOpcode;

DEST[ST(0)] ← ST(0);
DEST[ST(1)] ← ST(1);
DEST[ST(2)] ← ST(2);
DEST[ST(3)] ← ST(3);
DEST[ST(4)]← ST(4);
DEST[ST(5)] ← ST(5);
DEST[ST(6)] ← ST(6);
DEST[ST(7)] ← ST(7);

(* Initialize FPU *)

FPUControlWord ← 037FH;
FPUStatusWord ← 0;
FPUTagWord ← FFFFH;
FPUDataPointer ← 0;
FPUInstructionPointer ← 0;
FPULastInstructionOpcode ← 0;
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FPU Flags Affected

The C0, C1, C2, and C3 flags are saved and then cleared.

Floating-Point Exceptions

None.

Protected Mode Exceptions
#GP(0) If destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, 
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it 
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS 

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made.
#UD If the LOCK prefix is used.
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Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
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FSCALE—Scale

Description

Truncates the value in the source operand (toward 0) to an integral value and adds 
that value to the exponent of the destination operand. The destination and source 
operands are floating-point values located in registers ST(0) and ST(1), respectively. 
This instruction provides rapid multiplication or division by integral powers of 2. The 
following table shows the results obtained when scaling various classes of numbers, 
assuming that neither overflow nor underflow occurs.

In most cases, only the exponent is changed and the mantissa (significand) remains 
unchanged. However, when the value being scaled in ST(0) is a denormal value, the 
mantissa is also changed and the result may turn out to be a normalized number. 
Similarly, if overflow or underflow results from a scale operation, the resulting 
mantissa will differ from the source’s mantissa.

The FSCALE instruction can also be used to reverse the action of the FXTRACT 
instruction, as shown in the following example:

FXTRACT;
FSCALE;
FSTP ST(1);

In this example, the FXTRACT instruction extracts the significand and exponent from 
the value in ST(0) and stores them in ST(0) and ST(1) respectively. The FSCALE then 
scales the significand in ST(0) by the exponent in ST(1), recreating the original value 

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 FD FSCALE Valid Valid Scale ST(0) by ST(1).

Table 3-44.  FSCALE Results
ST(1)

− ∞ − F − 0 + 0 + F + ∞ NaN

− ∞ NaN − ∞ − ∞ − ∞ − ∞ − ∞ NaN

ST(0) − F − 0 − F − F − F − F − ∞ NaN

− 0 − 0 − 0 − 0 − 0 − 0 NaN NaN

+ 0 + 0 + 0 + 0 + 0 + 0 NaN NaN

+ F + 0 + F + F + F + F + ∞ NaN

+ ∞ NaN + ∞ + ∞ + ∞ + ∞ + ∞ NaN

NaN NaN NaN NaN NaN NaN NaN NaN

NOTES:
F Means finite floating-point value.
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before the FXTRACT operation was performed. The FSTP ST(1) instruction overwrites 
the exponent (extracted by the FXTRACT instruction) with the recreated value, which 
returns the stack to its original state with only one register [ST(0)] occupied.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

ST(0) ← ST(0) ∗ 2RoundTowardZero(ST(1));

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.
C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA Source operand is an SNaN value or unsupported format.
#D Source operand is a denormal value.
#U Result is too small for destination format.
#O Result is too large for destination format.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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FSIN—Sine

Description

Computes the sine of the source operand in register ST(0) and stores the result in 
ST(0). The source operand must be given in radians and must be within the range −
263 to +263. The following table shows the results obtained when taking the sine of 
various classes of numbers, assuming that underflow does not occur.

If the source operand is outside the acceptable range, the C2 flag in the FPU status 
word is set, and the value in register ST(0) remains unchanged. The instruction does 
not raise an exception when the source operand is out of range. It is up to the 
program to check the C2 flag for out-of-range conditions. Source values outside the 
range −263 to +263 can be reduced to the range of the instruction by subtracting an 
appropriate integer multiple of 2π or by using the FPREM instruction with a divisor of 
2π. See the section titled “Pi” in Chapter 8 of the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 1, for a discussion of the proper value to use 
for π in performing such reductions.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

IF ST(0) < 263

THEN
C2 ← 0;

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 FE FSIN Valid Valid Replace ST(0) with its sine.

Table 3-45.  FSIN Results
SRC (ST(0)) DEST (ST(0))

− ∞ *

− F − 1 to + 1

− 0 −0

+ 0 + 0

+ F − 1 to +1

+ ∞ *

NaN NaN 

NOTES:
F Means finite floating-point value.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
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ST(0) ← sin(ST(0));
ELSE (* Source operand out of range *)

C2 ← 1;
FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.
C2 Set to 1 if outside range (−263 < source operand < +263); other-

wise, set to 0.
C0, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA Source operand is an SNaN value, ∞, or unsupported format.
#D Source operand is a denormal value.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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FSINCOS—Sine and Cosine

Description

Computes both the sine and the cosine of the source operand in register ST(0), 
stores the sine in ST(0), and pushes the cosine onto the top of the FPU register stack. 
(This instruction is faster than executing the FSIN and FCOS instructions in succes-
sion.)

The source operand must be given in radians and must be within the range −263 to 
+263. The following table shows the results obtained when taking the sine and cosine 
of various classes of numbers, assuming that underflow does not occur.

If the source operand is outside the acceptable range, the C2 flag in the FPU status 
word is set, and the value in register ST(0) remains unchanged. The instruction does 
not raise an exception when the source operand is out of range. It is up to the 
program to check the C2 flag for out-of-range conditions. Source values outside the 
range −263 to +263 can be reduced to the range of the instruction by subtracting an 
appropriate integer multiple of 2π or by using the FPREM instruction with a divisor of 
2π. See the section titled “Pi” in Chapter 8 of the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 1, for a discussion of the proper value to use 
for π in performing such reductions.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 FB FSINCOS Valid Valid Compute the sine and cosine of ST(0); 
replace ST(0) with the sine, and push the 
cosine onto the register stack.

Table 3-46.  FSINCOS Results
SRC DEST

ST(0) ST(1) Cosine ST(0) Sine

− ∞ * *

− F − 1 to + 1 − 1 to + 1

− 0 + 1 − 0

+ 0 + 1 + 0

+ F − 1 to + 1 − 1 to + 1

+ ∞ * *

NaN NaN NaN

NOTES:
F Means finite floating-point value.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
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Operation

IF ST(0) < 263

THEN
C2 ← 0;
TEMP ← cosine(ST(0));
ST(0) ← sine(ST(0));
TOP ← TOP − 1;
ST(0) ← TEMP;

ELSE (* Source operand out of range *)
C2 ← 1;

FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred; set to 1 of stack overflow 

occurs.
Set if result was rounded up; cleared otherwise.

C2 Set to 1 if outside range (−263 < source operand < +263); other-
wise, set to 0.

C0, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow or overflow occurred.
#IA Source operand is an SNaN value, ∞, or unsupported format.
#D Source operand is a denormal value.
#U Result is too small for destination format.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.
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Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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FSQRT—Square Root

Description

Computes the square root of the source value in the ST(0) register and stores the 
result in ST(0).

The following table shows the results obtained when taking the square root of various 
classes of numbers, assuming that neither overflow nor underflow occurs.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

ST(0) ← SquareRoot(ST(0));

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.
C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA Source operand is an SNaN value or unsupported format.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 FA FSQRT Valid Valid Computes square root of ST(0) and stores 
the result in ST(0).

Table 3-47.  FSQRT Results
SRC (ST(0)) DEST (ST(0))

− ∞ *

− F *

− 0 − 0

+ 0 + 0

+ F + F

+ ∞ + ∞
NaN NaN 

NOTES:
F Means finite floating-point value.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
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Source operand is a negative value (except for −0).
#D Source operand is a denormal value.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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FST/FSTP—Store Floating Point Value

Description

The FST instruction copies the value in the ST(0) register to the destination operand, 
which can be a memory location or another register in the FPU register stack. When 
storing the value in memory, the value is converted to single-precision or double-
precision floating-point format. 

The FSTP instruction performs the same operation as the FST instruction and then 
pops the register stack. To pop the register stack, the processor marks the ST(0) 
register as empty and increments the stack pointer (TOP) by 1. The FSTP instruction 
can also store values in memory in double extended-precision floating-point format.

If the destination operand is a memory location, the operand specifies the address 
where the first byte of the destination value is to be stored. If the destination 
operand is a register, the operand specifies a register in the register stack relative to 
the top of the stack.

If the destination size is single-precision or double-precision, the significand of the 
value being stored is rounded to the width of the destination (according to the 
rounding mode specified by the RC field of the FPU control word), and the exponent 
is converted to the width and bias of the destination format. If the value being stored 
is too large for the destination format, a numeric overflow exception (#O) is gener-
ated and, if the exception is unmasked, no value is stored in the destination operand. 
If the value being stored is a denormal value, the denormal exception (#D) is not 
generated. This condition is simply signaled as a numeric underflow exception (#U) 
condition.

If the value being stored is ±0, ±∞, or a NaN, the least-significant bits of the signifi-
cand and the exponent are truncated to fit the destination format. This operation 
preserves the value’s identity as a 0, ∞, or NaN.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 /2 FST m32fp Valid Valid Copy ST(0) to m32fp.

DD /2 FST m64fp Valid Valid Copy ST(0) to m64fp.

DD D0+i FST ST(i) Valid Valid Copy ST(0) to ST(i).

D9 /3 FSTP m32fp Valid Valid Copy ST(0) to m32fp and pop register 
stack.

DD /3 FSTP m64fp Valid Valid Copy ST(0) to m64fp and pop register 
stack.

DB /7 FSTP m80fp Valid Valid Copy ST(0) to m80fp and pop register 
stack.

DD D8+i FSTP ST(i) Valid Valid Copy ST(0) to ST(i) and pop register 
stack.
Vol. 2A 3-425FST/FSTP—Store Floating Point Value



INSTRUCTION SET REFERENCE, A-L
If the destination operand is a non-empty register, the invalid-operation exception is 
not generated.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

DEST ← ST(0);

IF Instruction = FSTP 
THEN 

PopRegisterStack; 
FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Indicates rounding direction of if the floating-point inexact 
exception (#P) is generated: 0 ← not roundup; 1 ← roundup.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA Source operand is an SNaN value or unsupported format. Does 

not occur if the source operand is in double extended-precision 
floating-point format.

#U Result is too small for the destination format.
#O Result is too large for the destination format.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, 
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it 
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
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Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS 

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
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FSTCW/FNSTCW—Store x87 FPU Control Word

Description

Stores the current value of the FPU control word at the specified destination in 
memory. The FSTCW instruction checks for and handles pending unmasked floating-
point exceptions before storing the control word; the FNSTCW instruction does not.

The assembler issues two instructions for the FSTCW instruction (an FWAIT instruc-
tion followed by an FNSTCW instruction), and the processor executes each of these 
instructions in separately. If an exception is generated for either of these instruc-
tions, the save EIP points to the instruction that caused the exception.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

When operating a Pentium or Intel486 processor in MS-DOS compatibility mode, it is 
possible (under unusual circumstances) for an FNSTCW instruction to be interrupted 
prior to being executed to handle a pending FPU exception. See the section titled 
“No-Wait FPU Instructions Can Get FPU Interrupt in Window” in Appendix D of the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for a 
description of these circumstances. An FNSTCW instruction cannot be interrupted in 
this way on a Pentium 4, Intel Xeon, or P6 family processor.

Operation

DEST ← FPUControlWord;

FPU Flags Affected

The C0, C1, C2, and C3 flags are undefined.

Floating-Point Exceptions

None.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

9B D9 /7 FSTCW m2byte Valid Valid Store FPU control word to m2byte 
after checking for pending unmasked 
floating-point exceptions.

D9 /7 FNSTCW* m2byte Valid Valid Store FPU control word to m2byte 
without checking for pending 
unmasked floating-point exceptions.

NOTES:
* See IA-32 Architecture Compatibility section below.
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Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, 
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it 
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS 

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
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#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
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FSTENV/FNSTENV—Store x87 FPU Environment

Description

Saves the current FPU operating environment at the memory location specified with 
the destination operand, and then masks all floating-point exceptions. The FPU oper-
ating environment consists of the FPU control word, status word, tag word, instruc-
tion pointer, data pointer, and last opcode. Figures 8-9 through 8-12 in the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 1, show the layout in 
memory of the stored environment, depending on the operating mode of the 
processor (protected or real) and the current operand-size attribute (16-bit or 
32-bit). In virtual-8086 mode, the real mode layouts are used.

The FSTENV instruction checks for and handles any pending unmasked floating-point 
exceptions before storing the FPU environment; the FNSTENV instruction does 
not. The saved image reflects the state of the FPU after all floating-point instructions 
preceding the FSTENV/FNSTENV instruction in the instruction stream have been 
executed.

These instructions are often used by exception handlers because they provide access 
to the FPU instruction and data pointers. The environment is typically saved in the 
stack. Masking all exceptions after saving the environment prevents floating-point 
exceptions from interrupting the exception handler.

The assembler issues two instructions for the FSTENV instruction (an FWAIT instruc-
tion followed by an FNSTENV instruction), and the processor executes each of these 
instructions separately. If an exception is generated for either of these instructions, 
the save EIP points to the instruction that caused the exception.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

9B D9 /6 FSTENV m14/28byte Valid Valid Store FPU environment to m14byte 
or m28byte after checking for 
pending unmasked floating-point 
exceptions. Then mask all floating-
point exceptions.

D9 /6 FNSTENV* 
m14/28byte

Valid Valid Store FPU environment to m14byte 
or m28byte without checking for 
pending unmasked floating-point 
exceptions. Then mask all floating-
point exceptions.

NOTES:
* See IA-32 Architecture Compatibility section below.
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IA-32 Architecture Compatibility

When operating a Pentium or Intel486 processor in MS-DOS compatibility mode, it is 
possible (under unusual circumstances) for an FNSTENV instruction to be interrupted 
prior to being executed to handle a pending FPU exception. See the section titled 
“No-Wait FPU Instructions Can Get FPU Interrupt in Window” in Appendix D of the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for a 
description of these circumstances. An FNSTENV instruction cannot be interrupted in 
this way on a Pentium 4, Intel Xeon, or P6 family processor.

Operation

DEST[FPUControlWord] ← FPUControlWord;
DEST[FPUStatusWord] ← FPUStatusWord;
DEST[FPUTagWord] ← FPUTagWord;
DEST[FPUDataPointer] ← FPUDataPointer;
DEST[FPUInstructionPointer] ← FPUInstructionPointer;
DEST[FPULastInstructionOpcode] ← FPULastInstructionOpcode;

FPU Flags Affected

The C0, C1, C2, and C3 are undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, 
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it 
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
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#SS If a memory operand effective address is outside the SS 
segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
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FSTSW/FNSTSW—Store x87 FPU Status Word

Description

Stores the current value of the x87 FPU status word in the destination location. The 
destination operand can be either a two-byte memory location or the AX register. The 
FSTSW instruction checks for and handles pending unmasked floating-point excep-
tions before storing the status word; the FNSTSW instruction does not.

The FNSTSW AX form of the instruction is used primarily in conditional branching (for 
instance, after an FPU comparison instruction or an FPREM, FPREM1, or FXAM 
instruction), where the direction of the branch depends on the state of the FPU condi-
tion code flags. (See the section titled “Branching and Conditional Moves on FPU 
Condition Codes” in Chapter 8 of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1.) This instruction can also be used to invoke exception 
handlers (by examining the exception flags) in environments that do not use inter-
rupts. When the FNSTSW AX instruction is executed, the AX register is updated 
before the processor executes any further instructions. The status stored in the AX 
register is thus guaranteed to be from the completion of the prior FPU instruction. 

The assembler issues two instructions for the FSTSW instruction (an FWAIT instruc-
tion followed by an FNSTSW instruction), and the processor executes each of these 
instructions separately. If an exception is generated for either of these instructions, 
the save EIP points to the instruction that caused the exception.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

9B DD /7 FSTSW m2byte Valid Valid Store FPU status word at 
m2byte after checking for 
pending unmasked floating-
point exceptions.

9B DF E0 FSTSW AX Valid Valid Store FPU status word in AX 
register after checking for 
pending unmasked floating-
point exceptions.

DD /7 FNSTSW* m2byte Valid Valid Store FPU status word at 
m2byte without checking for 
pending unmasked floating-
point exceptions.

DF E0 FNSTSW* AX Valid Valid Store FPU status word in AX 
register without checking for 
pending unmasked floating-
point exceptions.

NOTES:
* See IA-32 Architecture Compatibility section below.
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IA-32 Architecture Compatibility

When operating a Pentium or Intel486 processor in MS-DOS compatibility mode, it is 
possible (under unusual circumstances) for an FNSTSW instruction to be interrupted 
prior to being executed to handle a pending FPU exception. See the section titled 
“No-Wait FPU Instructions Can Get FPU Interrupt in Window” in Appendix D of the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for a 
description of these circumstances. An FNSTSW instruction cannot be interrupted in 
this way on a Pentium 4, Intel Xeon, or P6 family processor.

Operation

DEST ← FPUStatusWord;

FPU Flags Affected

The C0, C1, C2, and C3 are undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, 
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it 
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS 

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
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Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
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FSUB/FSUBP/FISUB—Subtract

Description

Subtracts the source operand from the destination operand and stores the difference 
in the destination location. The destination operand is always an FPU data register; 
the source operand can be a register or a memory location. Source operands in 
memory can be in single-precision or double-precision floating-point format or in 
word or doubleword integer format.

The no-operand version of the instruction subtracts the contents of the ST(0) register 
from the ST(1) register and stores the result in ST(1). The one-operand version 
subtracts the contents of a memory location (either a floating-point or an integer 
value) from the contents of the ST(0) register and stores the result in ST(0). The 
two-operand version, subtracts the contents of the ST(0) register from the ST(i) 
register or vice versa.

The FSUBP instructions perform the additional operation of popping the FPU register 
stack following the subtraction. To pop the register stack, the processor marks the 
ST(0) register as empty and increments the stack pointer (TOP) by 1. The no-
operand version of the floating-point subtract instructions always results in the 
register stack being popped. In some assemblers, the mnemonic for this instruction 
is FSUB rather than FSUBP.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D8 /4 FSUB m32fp Valid Valid Subtract m32fp from ST(0) 
and store result in ST(0).

DC /4 FSUB m64fp Valid Valid Subtract m64fp from ST(0) 
and store result in ST(0).

D8 E0+i FSUB ST(0), ST(i) Valid Valid Subtract ST(i) from ST(0) and 
store result in ST(0).

DC E8+i FSUB ST(i), ST(0) Valid Valid Subtract ST(0) from ST(i) and 
store result in ST(i).

DE E8+i FSUBP ST(i), ST(0) Valid Valid Subtract ST(0) from ST(i), 
store result in ST(i), and pop 
register stack.

DE E9 FSUBP Valid Valid Subtract ST(0) from ST(1), 
store result in ST(1), and pop 
register stack.

DA /4 FISUB m32int Valid Valid Subtract m32int from ST(0) 
and store result in ST(0).

DE /4 FISUB m16int Valid Valid Subtract m16int from ST(0) 
and store result in ST(0).
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The FISUB instructions convert an integer source operand to double extended-preci-
sion floating-point format before performing the subtraction.

Table 3-48 shows the results obtained when subtracting various classes of numbers 
from one another, assuming that neither overflow nor underflow occurs. Here, the 
SRC value is subtracted from the DEST value (DEST − SRC = result).

When the difference between two operands of like sign is 0, the result is +0, except 
for the round toward −∞ mode, in which case the result is −0. This instruction also 
guarantees that +0 − (−0) = +0, and that −0 − (+0) = −0. When the source operand is 
an integer 0, it is treated as a +0.

When one operand is ∞, the result is ∞ of the expected sign. If both operands are ∞ of 
the same sign, an invalid-operation exception is generated.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

IF Instruction = FISUB
THEN

DEST ← DEST − ConvertToDoubleExtendedPrecisionFP(SRC);
ELSE (* Source operand is floating-point value *)

DEST ← DEST − SRC;
FI;

Table 3-48.  FSUB/FSUBP/FISUB Results

SRC

− ∞ − F or − I − 0 + 0 + F or + I + ∞ NaN

− ∞ * − ∞ − ∞ − ∞ − ∞ − ∞ NaN

− F + ∞ ±F or ±0 DEST DEST − F − ∞ NaN

DEST − 0 + ∞ −SRC ±0 − 0 − SRC − ∞ NaN

+ 0 + ∞ −SRC + 0 ±0 − SRC − ∞ NaN

+ F + ∞ + F DEST DEST ±F or ±0 − ∞ NaN

+ ∞ + ∞ + ∞ + ∞ + ∞ + ∞ * NaN

NaN NaN NaN NaN NaN NaN NaN NaN

NOTES:
F Means finite floating-point value.
I Means integer.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
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IF Instruction = FSUBP 
THEN 

PopRegisterStack;
FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.
C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA Operand is an SNaN value or unsupported format.

Operands are infinities of like sign.
#D Source operand is a denormal value.
#U Result is too small for destination format.
#O Result is too large for destination format.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it 
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS 

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.
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Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
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FSUBR/FSUBRP/FISUBR—Reverse Subtract

Description

Subtracts the destination operand from the source operand and stores the difference 
in the destination location. The destination operand is always an FPU register; the 
source operand can be a register or a memory location. Source operands in memory 
can be in single-precision or double-precision floating-point format or in word or 
doubleword integer format.

These instructions perform the reverse operations of the FSUB, FSUBP, and FISUB 
instructions. They are provided to support more efficient coding.

The no-operand version of the instruction subtracts the contents of the ST(1) register 
from the ST(0) register and stores the result in ST(1). The one-operand version 
subtracts the contents of the ST(0) register from the contents of a memory location 
(either a floating-point or an integer value) and stores the result in ST(0). The two-
operand version, subtracts the contents of the ST(i) register from the ST(0) register 
or vice versa.

The FSUBRP instructions perform the additional operation of popping the FPU register 
stack following the subtraction. To pop the register stack, the processor marks the 
ST(0) register as empty and increments the stack pointer (TOP) by 1. The no-
operand version of the floating-point reverse subtract instructions always results in 

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D8 /5 FSUBR m32fp Valid Valid Subtract ST(0) from m32fp and 
store result in ST(0).

DC /5 FSUBR m64fp Valid Valid Subtract ST(0) from m64fp and 
store result in ST(0).

D8 E8+i FSUBR ST(0), ST(i) Valid Valid Subtract ST(0) from ST(i) and 
store result in ST(0).

DC E0+i FSUBR ST(i), ST(0) Valid Valid Subtract ST(i) from ST(0) and 
store result in ST(i).

DE E0+i FSUBRP ST(i), ST(0) Valid Valid Subtract ST(i) from ST(0), store 
result in ST(i), and pop register 
stack.

DE E1 FSUBRP Valid Valid Subtract ST(1) from ST(0), 
store result in ST(1), and pop 
register stack.

DA /5 FISUBR m32int Valid Valid Subtract ST(0) from m32int and 
store result in ST(0).

DE /5 FISUBR m16int Valid Valid Subtract ST(0) from m16int and 
store result in ST(0).
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the register stack being popped. In some assemblers, the mnemonic for this instruc-
tion is FSUBR rather than FSUBRP.

The FISUBR instructions convert an integer source operand to double extended-
precision floating-point format before performing the subtraction.

The following table shows the results obtained when subtracting various classes of 
numbers from one another, assuming that neither overflow nor underflow occurs. 
Here, the DEST value is subtracted from the SRC value (SRC − DEST = result).

When the difference between two operands of like sign is 0, the result is +0, except 
for the round toward −∞ mode, in which case the result is −0. This instruction also 
guarantees that +0 − (−0) = +0, and that −0 − (+0) = −0. When the source operand is 
an integer 0, it is treated as a +0.

When one operand is ∞, the result is ∞ of the expected sign. If both operands are ∞ of 
the same sign, an invalid-operation exception is generated.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

IF Instruction = FISUBR
THEN

DEST ← ConvertToDoubleExtendedPrecisionFP(SRC) − DEST;
ELSE (* Source operand is floating-point value *)

DEST ← SRC − DEST; FI;

Table 3-49.  FSUBR/FSUBRP/FISUBR Results

SRC

− ∞ −F or −I −0 +0 +F or +I + ∞ NaN

− ∞ * + ∞ + ∞ + ∞ + ∞ + ∞ NaN

− F − ∞ ±F or ±0 −DEST −DEST + F + ∞ NaN

DEST − 0 − ∞ SRC ±0 + 0 SRC + ∞ NaN

+ 0 − ∞ SRC − 0 ±0 SRC + ∞ NaN

+ F − ∞ − F −DEST −DEST ±F or ±0 + ∞ NaN

+ ∞ − ∞ − ∞ − ∞ − ∞ − ∞ * NaN

NaN NaN NaN NaN NaN NaN NaN NaN

NOTES:
F Means finite floating-point value.
I Means integer.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
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IF Instruction = FSUBRP 
THEN 

PopRegisterStack; FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.
C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA Operand is an SNaN value or unsupported format.

Operands are infinities of like sign.
#D Source operand is a denormal value.
#U Result is too small for destination format.
#O Result is too large for destination format.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it 
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS 

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.
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Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
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FTST—TEST

Description

Compares the value in the ST(0) register with 0.0 and sets the condition code flags 
C0, C2, and C3 in the FPU status word according to the results (see table below).

This instruction performs an “unordered comparison.” An unordered comparison also 
checks the class of the numbers being compared (see “FXAM—Examine ModR/M” in 
this chapter). If the value in register ST(0) is a NaN or is in an undefined format, the 
condition flags are set to “unordered” and the invalid operation exception is gener-
ated.

The sign of zero is ignored, so that (– 0.0 ← +0.0).

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

CASE (relation of operands) OF
Not comparable: C3, C2, C0 ← 111;
ST(0) > 0.0: C3, C2, C0 ← 000;
ST(0) < 0.0: C3, C2, C0 ← 001;
ST(0) = 0.0: C3, C2, C0 ← 100;

ESAC;

FPU Flags Affected
C1 Set to 0.
C0, C2, C3 See Table 3-50.

Floating-Point Exceptions
#IS Stack underflow occurred.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 E4 FTST Valid Valid Compare ST(0) with 0.0.

Table 3-50.  FTST Results
Condition C3 C2 C0

ST(0) > 0.0 0 0 0

ST(0) < 0.0 0 0 1

ST(0) = 0.0 1 0 0

Unordered 1 1 1
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#IA The source operand is a NaN value or is in an unsupported 
format.

#D The source operand is a denormal value.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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FUCOM/FUCOMP/FUCOMPP—Unordered Compare Floating Point Values

Description

Performs an unordered comparison of the contents of register ST(0) and ST(i) and 
sets condition code flags C0, C2, and C3 in the FPU status word according to the 
results (see the table below). If no operand is specified, the contents of registers 
ST(0) and ST(1) are compared. The sign of zero is ignored, so that –0.0 is equal to 
+0.0.

An unordered comparison checks the class of the numbers being compared (see 
“FXAM—Examine ModR/M” in this chapter). The FUCOM/FUCOMP/FUCOMPP instruc-
tions perform the same operations as the FCOM/FCOMP/FCOMPP instructions. The 
only difference is that the FUCOM/FUCOMP/FUCOMPP instructions raise the invalid-
arithmetic-operand exception (#IA) only when either or both operands are an SNaN 
or are in an unsupported format; QNaNs cause the condition code flags to be set to 
unordered, but do not cause an exception to be generated. The 
FCOM/FCOMP/FCOMPP instructions raise an invalid-operation exception when either 
or both of the operands are a NaN value of any kind or are in an unsupported format.

As with the FCOM/FCOMP/FCOMPP instructions, if the operation results in an invalid-
arithmetic-operand exception being raised, the condition code flags are set only if the 
exception is masked.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

DD E0+i FUCOM ST(i) Valid Valid Compare ST(0) with ST(i).

DD E1 FUCOM Valid Valid Compare ST(0) with ST(1).

DD E8+i FUCOMP ST(i) Valid Valid Compare ST(0) with ST(i) and pop 
register stack.

DD E9 FUCOMP Valid Valid Compare ST(0) with ST(1) and pop 
register stack.

DA E9 FUCOMPP Valid Valid Compare ST(0) with ST(1) and pop 
register stack twice.

Table 3-51.  FUCOM/FUCOMP/FUCOMPP Results
Comparison Results* C3 C2 C0

ST0 > ST(i) 0 0 0

ST0 < ST(i) 0 0 1

ST0 = ST(i) 1 0 0

Unordered 1 1 1

NOTES:
* Flags not set if unmasked invalid-arithmetic-operand (#IA) exception is generated.
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The FUCOMP instruction pops the register stack following the comparison operation 
and the FUCOMPP instruction pops the register stack twice following the comparison 
operation. To pop the register stack, the processor marks the ST(0) register as 
empty and increments the stack pointer (TOP) by 1.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

CASE (relation of operands) OF
ST > SRC: C3, C2, C0 ← 000;
ST < SRC: C3, C2, C0 ← 001;
ST = SRC: C3, C2, C0 ← 100;

ESAC;

IF ST(0) or SRC = QNaN, but not SNaN or unsupported format
THEN 

C3, C2, C0 ← 111;
ELSE (* ST(0) or SRC is SNaN or unsupported format *)

 #IA;
IF FPUControlWord.IM = 1

THEN 
C3, C2, C0 ← 111;

FI;
FI;

IF Instruction = FUCOMP 
THEN 

PopRegisterStack;
FI;

IF Instruction = FUCOMPP 
THEN 

PopRegisterStack; 
FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.
C0, C2, C3 See Table 3-51.

Floating-Point Exceptions
#IS Stack underflow occurred.
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#IA One or both operands are SNaN values or have unsupported 
formats. Detection of a QNaN value in and of itself does not raise 
an invalid-operand exception.

#D One or both operands are denormal values.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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FXAM—Examine ModR/M

Description

Examines the contents of the ST(0) register and sets the condition code flags C0, C2, 
and C3 in the FPU status word to indicate the class of value or number in the register 
(see the table below).
.

The C1 flag is set to the sign of the value in ST(0), regardless of whether the register 
is empty or full.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

C1 ← sign bit of ST; (* 0 for positive, 1 for negative *)

CASE (class of value or number in ST(0)) OF
Unsupported:C3, C2, C0 ← 000;
NaN: C3, C2, C0 ← 001;
Normal: C3, C2, C0 ← 010;
Infinity: C3, C2, C0 ← 011;
Zero: C3, C2, C0 ← 100;
Empty: C3, C2, C0 ← 101;
Denormal: C3, C2, C0 ← 110;

ESAC;

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 E5 FXAM Valid Valid Classify value or number in ST(0).

Table 3-52.  FXAM Results
Class C3 C2 C0

Unsupported 0 0 0

NaN 0 0 1

Normal finite number 0 1 0

Infinity 0 1 1

Zero 1 0 0

Empty 1 0 1

Denormal number 1 1 0
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FPU Flags Affected
C1 Sign of value in ST(0).
C0, C2, C3 See Table 3-52.

Floating-Point Exceptions

None.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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FXCH—Exchange Register Contents

Description

Exchanges the contents of registers ST(0) and ST(i). If no source operand is speci-
fied, the contents of ST(0) and ST(1) are exchanged.

This instruction provides a simple means of moving values in the FPU register stack 
to the top of the stack [ST(0)], so that they can be operated on by those floating-
point instructions that can only operate on values in ST(0). For example, the 
following instruction sequence takes the square root of the third register from the top 
of the register stack:

FXCH ST(3);
FSQRT;
FXCH ST(3);

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

IF (Number-of-operands) is 1
THEN

temp ← ST(0);
ST(0) ← SRC;
SRC ← temp;

ELSE
temp ← ST(0);
ST(0) ← ST(1);
ST(1) ← temp;

FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred; otherwise, set to 1.
C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 C8+i FXCH ST(i) Valid Valid Exchange the contents of ST(0) and 
ST(i).

D9 C9 FXCH Valid Valid Exchange the contents of ST(0) and 
ST(1).
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Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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FXRSTOR—Restore x87 FPU, MMX , XMM, and MXCSR State

Instruction Operand Encoding

Description

Reloads the x87 FPU, MMX technology, XMM, and MXCSR registers from the 512-byte 
memory image specified in the source operand. This data should have been written 
to memory previously using the FXSAVE instruction, and in the same format as 
required by the operating modes. The first byte of the data should be located on a 
16-byte boundary. There are three distinct layouts of the FXSAVE state map: one for 
legacy and compatibility mode, a second format for 64-bit mode FXSAVE/FXRSTOR 
with REX.W=0, and the third format is for 64-bit mode with FXSAVE64/FXRSTOR64. 
Table 3-53 shows the layout of the legacy/compatibility mode state information in 
memory and describes the fields in the memory image for the FXRSTOR and FXSAVE 
instructions. Table 3-56 shows the layout of the 64-bit mode state information when 
REX.W is set (FXSAVE64/FXRSTOR64). Table 3-57 shows the layout of the 64-bit 
mode state information when REX.W is clear (FXSAVE/FXRSTOR).

The state image referenced with an FXRSTOR instruction must have been saved 
using an FXSAVE instruction or be in the same format as required by Table 3-53, 
Table 3-56, or Table 3-57. Referencing a state image saved with an FSAVE, FNSAVE 
instruction or incompatible field layout will result in an incorrect state restoration.

The FXRSTOR instruction does not flush pending x87 FPU exceptions. To check and 
raise exceptions when loading x87 FPU state information with the FXRSTOR instruc-
tion, use an FWAIT instruction after the FXRSTOR instruction.

If the OSFXSR bit in control register CR4 is not set, the FXRSTOR instruction may not 
restore the states of the XMM and MXCSR registers. This behavior is implementation 
dependent.

If the MXCSR state contains an unmasked exception with a corresponding status flag 
also set, loading the register with the FXRSTOR instruction will not result in a SIMD 
floating-point error condition being generated. Only the next occurrence of this 
unmasked exception will result in the exception being generated.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F AE /1 FXRSTOR 
m512byte

M Valid Valid Restore the x87 FPU, MMX, 
XMM, and MXCSR register 
state from m512byte.

REX.W+ 0F AE 
/1

FXRSTOR64 
m512byte

M Valid N.E. Restore the x87 FPU, MMX, 
XMM, and MXCSR register 
state from m512byte.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA
3-454 Vol. 2A FXRSTOR—Restore x87 FPU, MMX , XMM, and MXCSR State



INSTRUCTION SET REFERENCE, A-L
Bits 16 through 32 of the MXCSR register are defined as reserved and should be set 
to 0. Attempting to write a 1 in any of these bits from the saved state image will 
result in a general protection exception (#GP) being generated.

Bytes 464:511 of an FXSAVE image are available for software use. FXRSTOR ignores 
the content of bytes 464:511 in an FXSAVE state image.

Operation

(x87 FPU, MMX, XMM7-XMM0, MXCSR) ← Load(SRC);

x87 FPU and SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, 

ES, FS or GS segments.
If a memory operand is not aligned on a 16-byte boundary, 
regardless of segment. (See alignment check exception [#AC] 
below.)
For an attempt to set reserved bits in MXCSR.

#SS(0) For an illegal address in the SS segment. 
#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3] = 1. 

If CR0.EM[bit 2] = 1.
#UD If CPUID.01H:EDX.FXSR[bit 24] = 0.

If instruction is preceded by a LOCK prefix.
#AC If this exception is disabled a general protection exception 

(#GP) is signaled if the memory operand is not aligned on a 16-
byte boundary, as described above. If the alignment check 
exception (#AC) is enabled (and the CPL is 3), signaling of #AC 
is not guaranteed and may vary with implementation, as 
follows. In all implementations where #AC is not signaled, a 
general protection exception is signaled in its place. In addition, 
the width of the alignment check may also vary with implemen-
tation. For instance, for a given implementation, an alignment 
check exception might be signaled for a 2-byte misalignment, 
whereas a general protection exception might be signaled for all 
other misalignments (4-, 8-, or 16-byte misalignments).

#UD If the LOCK prefix is used.
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Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 16-byte boundary, 

regardless of segment.
If any part of the operand lies outside the effective address 
space from 0 to FFFFH.
For an attempt to set reserved bits in MXCSR.

#NM If CR0.TS[bit 3] = 1. 
If CR0.EM[bit 2] = 1.

#UD If CPUID.01H:EDX.FXSR[bit 24] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.
#AC For unaligned memory reference.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, 
regardless of segment.
For an attempt to set reserved bits in MXCSR.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3] = 1. 

If CR0.EM[bit 2] = 1.
#UD If CPUID.01H:EDX.FXSR[bit 24] = 0.

If instruction is preceded by a LOCK prefix.
#AC If this exception is disabled a general protection exception 

(#GP) is signaled if the memory operand is not aligned on a 
16-byte boundary, as described above. If the alignment check 
exception (#AC) is enabled (and the CPL is 3), signaling of #AC 
is not guaranteed and may vary with implementation, as 
follows. In all implementations where #AC is not signaled, a 
general protection exception is signaled in its place. In addition, 
the width of the alignment check may also vary with implemen-
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tation. For instance, for a given implementation, an alignment 
check exception might be signaled for a 2-byte misalignment, 
whereas a general protection exception might be signaled for all 
other misalignments (4-, 8-, or 16-byte misalignments).
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FXSAVE—Save x87 FPU, MMX Technology, and SSE State

Instruction Operand Encoding

Description

Saves the current state of the x87 FPU, MMX technology, XMM, and MXCSR registers 
to a 512-byte memory location specified in the destination operand. The content 
layout of the 512 byte region depends on whether the processor is operating in non-
64-bit operating modes or 64-bit sub-mode of IA-32e mode. 

Bytes 464:511 are available to software use. The processor does not write to bytes 
464:511 of an FXSAVE area. 

The operation of FXSAVE in non-64-bit modes is described first.

Non-64-Bit Mode Operation

Table 3-53 shows the layout of the state information in memory when the processor 
is operating in legacy modes.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F AE /0 FXSAVE 
m512byte

M Valid Valid Save the x87 FPU, MMX, 
XMM, and MXCSR register 
state to m512byte.

REX.W+ 0F AE 
/0

FXSAVE64 
m512byte

M Valid N.E. Save the x87 FPU, MMX, 
XMM, and MXCSR register 
state to m512byte.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA

Table 3-53.  Non-64-bit-Mode Layout of FXSAVE and FXRSTOR 
Memory Region

15 14 13  12 11 10 9  8 7 6 5 4 3 2 1 0

Rsrvd CS FPU IP FOP Rs
rvd

FTW FSW FCW 0

MXCSR_MASK MXCSR Rsrvd DS FPU DP 16

Reserved ST0/MM0 32

Reserved ST1/MM1 48

Reserved ST2/MM2 64

Reserved ST3/MM3 80

Reserved ST4/MM4 96
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The destination operand contains the first byte of the memory image, and it must be 
aligned on a 16-byte boundary. A misaligned destination operand will result in a 
general-protection (#GP) exception being generated (or in some cases, an alignment 
check exception [#AC]).

Reserved ST5/MM5 112

Reserved ST6/MM6 128

Reserved ST7/MM7 144

XMM0 160

XMM1 176

XMM2 192

XMM3 208

XMM4 224

XMM5 240

XMM6 256

XMM7 272

Reserved 288

Reserved 304

Reserved 320

Reserved 336

Reserved 352

Reserved 368

Reserved 384

Reserved 400

Reserved 416

Reserved 432

Reserved 448

Available 464

Available 480

Available 496

Table 3-53.  Non-64-bit-Mode Layout of FXSAVE and FXRSTOR 
Memory Region (Contd.)

15 14 13  12 11 10 9  8 7 6 5 4 3 2 1 0
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The FXSAVE instruction is used when an operating system needs to perform a 
context switch or when an exception handler needs to save and examine the current 
state of the x87 FPU, MMX technology, and/or XMM and MXCSR registers.

The fields in Table 3-53 are defined in Table 3-54.

Table 3-54.  Field Definitions 

Field Definition

FCW x87 FPU Control Word (16 bits). See Figure 8-6 in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 1, for the layout of 
the x87 FPU control word.

FSW x87 FPU Status Word (16 bits). See Figure 8-4 in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 1, for the layout of 
the x87 FPU status word.

Abridged FTW x87 FPU Tag Word (8 bits). The tag information saved here is abridged, as 
described in the following paragraphs.

FOP x87 FPU Opcode (16 bits). The lower 11 bits of this field contain the 
opcode, upper 5 bits are reserved. See Figure 8-8 in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 1, for the layout of 
the x87 FPU opcode field.

FPU IP x87 FPU Instruction Pointer Offset (32 bits). The contents of this field 
differ depending on the current addressing mode (32-bit or 16-bit) of the 
processor when the FXSAVE instruction was executed:

32-bit mode — 32-bit IP offset.

16-bit mode — low 16 bits are IP offset; high 16 bits are reserved.

See “x87 FPU Instruction and Operand (Data) Pointers” in Chapter 8 of the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, 
for a description of the x87 FPU instruction pointer.

CS x87 FPU Instruction Pointer Selector (16 bits).

FPU DP x87 FPU Instruction Operand (Data) Pointer Offset (32 bits). The contents 
of this field differ depending on the current addressing mode (32-bit or 16-
bit) of the processor when the FXSAVE instruction was executed:

32-bit mode — 32-bit DP offset.

16-bit mode — low 16 bits are DP offset; high 16 bits are reserved.

See “x87 FPU Instruction and Operand (Data) Pointers” in Chapter 8 of the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, 
for a description of the x87 FPU operand pointer.

DS x87 FPU Instruction Operand (Data) Pointer Selector (16 bits).
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The FXSAVE instruction saves an abridged version of the x87 FPU tag word in the 
FTW field (unlike the FSAVE instruction, which saves the complete tag word). The tag 
information is saved in physical register order (R0 through R7), rather than in top-of-
stack (TOS) order. With the FXSAVE instruction, however, only a single bit (1 for valid 
or 0 for empty) is saved for each tag. For example, assume that the tag word is 
currently set as follows:

R7 R6 R5 R4 R3 R2 R1 R0
11 xx xx xx 11 11 11 11

Here, 11B indicates empty stack elements and “xx” indicates valid (00B), zero (01B), 
or special (10B). 

For this example, the FXSAVE instruction saves only the following 8 bits of informa-
tion:

R7 R6 R5 R4 R3 R2 R1 R0
0 1 1 1 0 0 0 0

MXCSR MXCSR Register State (32 bits). See Figure 10-3 in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 1, for the layout of 
the MXCSR register. If the OSFXSR bit in control register CR4 is not set, the 
FXSAVE instruction may not save this register. This behavior is 
implementation dependent.

MXCSR_
MASK

MXCSR_MASK (32 bits). This mask can be used to adjust values written to 
the MXCSR register, ensuring that reserved bits are set to 0. Set the mask 
bits and flags in MXCSR to the mode of operation desired for SSE and SSE2 
SIMD floating-point instructions. See “Guidelines for Writing to the MXCSR 
Register” in Chapter 11 of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1, for instructions for how to determine and 
use the MXCSR_MASK value.

ST0/MM0 through 
ST7/MM7

x87 FPU or MMX technology registers. These 80-bit fields contain the x87 
FPU data registers or the MMX technology registers, depending on the 
state of the processor prior to the execution of the FXSAVE instruction. If 
the processor had been executing x87 FPU instruction prior to the FXSAVE 
instruction, the x87 FPU data registers are saved; if it had been executing 
MMX instructions (or SSE or SSE2 instructions that operated on the MMX 
technology registers), the MMX technology registers are saved. When the 
MMX technology registers are saved, the high 16 bits of the field are 
reserved.

XMM0 through 
XMM7

XMM registers (128 bits per field). If the OSFXSR bit in control register CR4 
is not set, the FXSAVE instruction may not save these registers. This 
behavior is implementation dependent.

Table 3-54.  Field Definitions  (Contd.)

Field Definition
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Here, a 1 is saved for any valid, zero, or special tag, and a 0 is saved for any empty 
tag.

The operation of the FXSAVE instruction differs from that of the FSAVE instruction, 
the as follows:
• FXSAVE instruction does not check for pending unmasked floating-point 

exceptions. (The FXSAVE operation in this regard is similar to the operation of the 
FNSAVE instruction). 

• After the FXSAVE instruction has saved the state of the x87 FPU, MMX 
technology, XMM, and MXCSR registers, the processor retains the contents of the 
registers. Because of this behavior, the FXSAVE instruction cannot be used by an 
application program to pass a “clean” x87 FPU state to a procedure, since it 
retains the current state. To clean the x87 FPU state, an application must 
explicitly execute an FINIT instruction after an FXSAVE instruction to reinitialize 
the x87 FPU state.

• The format of the memory image saved with the FXSAVE instruction is the same 
regardless of the current addressing mode (32-bit or 16-bit) and operating mode 
(protected, real address, or system management). This behavior differs from the 
FSAVE instructions, where the memory image format is different depending on 
the addressing mode and operating mode. Because of the different image 
formats, the memory image saved with the FXSAVE instruction cannot be 
restored correctly with the FRSTOR instruction, and likewise the state saved with 
the FSAVE instruction cannot be restored correctly with the FXRSTOR instruction.

The FSAVE format for FTW can be recreated from the FTW valid bits and the stored 
80-bit FP data (assuming the stored data was not the contents of MMX technology 
registers) using Table 3-55.

Table 3-55.  Recreating FSAVE Format 

Exponent
all 1’s

Exponent
all 0’s

Fraction
all 0’s

J and M
bits

FTW valid 
bit x87 FTW

0 0 0 0x 1 Special 10

0 0 0 1x 1 Valid 00

0 0 1 00 1 Special 10

0 0 1 10 1 Valid 00

0 1 0 0x 1 Special 10

0 1 0 1x 1 Special 10

0 1 1 00 1 Zero 01

0 1 1 10 1 Special 10

1 0 0 1x 1 Special 10

1 0 0 1x 1 Special 10
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The J-bit is defined to be the 1-bit binary integer to the left of the decimal place in the 
significand. The M-bit is defined to be the most significant bit of the fractional portion 
of the significand (i.e., the bit immediately to the right of the decimal place).

When the M-bit is the most significant bit of the fractional portion of the significand, 
it must be 0 if the fraction is all 0’s.

IA-32e Mode Operation

In compatibility sub-mode of IA-32e mode, legacy SSE registers, XMM0 through 
XMM7, are saved according to the legacy FXSAVE map. In 64-bit mode, all of the SSE 
registers, XMM0 through XMM15, are saved. Additionally, there are two different 
layouts of the FXSAVE map in 64-bit mode, corresponding to FXSAVE64 (which 
requires REX.W=1) and FXSAVE (REX.W=0). In the FXSAVE64 map (Table 3-56), the 
FPU IP and FPU DP pointers are 64-bit wide. In the FXSAVE map for 64-bit mode 
(Table 3-57), the FPU IP and FPU DP pointers are 32-bits.

1 0 1 00 1 Special 10

1 0 1 10 1 Special 10

For all legal combinations above. 0 Empty 11

Table 3-56.  Layout of the 64-bit-mode FXSAVE64 Map 
(requires REX.W = 1)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FPU IP FOP Re-
served

FTW FSW FCW 0

MXCSR_MASK MXCSR FPU DP 16

Reserved ST0/MM0 32

Reserved ST1/MM1 48

Reserved ST2/MM2 64

Reserved ST3/MM3 80

Reserved ST4/MM4 96

Reserved ST5/MM5 112

Reserved ST6/MM6 128

Reserved ST7/MM7 144

XMM0 160

XMM1 176

Table 3-55.  Recreating FSAVE Format  (Contd.)

Exponent
all 1’s

Exponent
all 0’s

Fraction
all 0’s

J and M
bits

FTW valid 
bit x87 FTW
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XMM2 192

XMM3 208

XMM4 224

XMM5 240

XMM6 256

XMM7 272

XMM8 288

XMM9 304

XMM10 320

XMM11 336

XMM12 352

XMM13 368

XMM14 384

XMM15 400

Reserved 416

Reserved 432

Reserved 448

Available 464

Available 480

Available 496

Table 3-57.  Layout of the 64-bit-mode FXSAVE Map (REX.W = 0)
15 14 13  12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved CS FPU IP FOP Re-
served

FTW FSW FCW 0

MXCSR_MASK MXCSR Re-
served

DS FPU DP 16

Reserved ST0/MM0 32

Reserved ST1/MM1 48

Reserved ST2/MM2 64

Reserved ST3/MM3 80

Table 3-56.  Layout of the 64-bit-mode FXSAVE64 Map 
(requires REX.W = 1) (Contd.)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
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Operation

IF 64-Bit Mode
THEN

IF REX.W = 1
THEN

Reserved ST4/MM4 96

Reserved ST5/MM5 112

Reserved ST6/MM6 128

Reserved ST7/MM7 144

XMM0 160

XMM1 176

XMM2 192

XMM3 208

XMM4 224

XMM5 240

XMM6 256

XMM7 272

XMM8 288

XMM9 304

XMM10 320

XMM11 336

XMM12 352

XMM13 368

XMM14 384

XMM15 400

Reserved 416

Reserved 432

Reserved 448

Available 464

Available 480

Available 496

Table 3-57.  Layout of the 64-bit-mode FXSAVE Map (REX.W = 0) (Contd.) (Contd.)
15 14 13  12 11 10 9 8 7 6 5 4 3 2 1 0
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DEST ← Save64BitPromotedFxsave(x87 FPU, MMX, XMM7-XMM0,
MXCSR);

ELSE
DEST ← Save64BitDefaultFxsave(x87 FPU, MMX, XMM7-XMM0, MXCSR);

FI;
ELSE

DEST ← SaveLegacyFxsave(x87 FPU, MMX, XMM7-XMM0, MXCSR);
FI;

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, 

ES, FS or GS segments.
If a memory operand is not aligned on a 16-byte boundary, 
regardless of segment. (See the description of the alignment 
check exception [#AC] below.)

#SS(0) For an illegal address in the SS segment. 
#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3] = 1. 

If CR0.EM[bit 2] = 1.
#UD If CPUID.01H:EDX.FXSR[bit 24] = 0.
#UD If the LOCK prefix is used.
#AC If this exception is disabled a general protection exception 

(#GP) is signaled if the memory operand is not aligned on a 
16-byte boundary, as described above. If the alignment check 
exception (#AC) is enabled (and the CPL is 3), signaling of #AC 
is not guaranteed and may vary with implementation, as 
follows. In all implementations where #AC is not signaled, a 
general protection exception is signaled in its place. In addition, 
the width of the alignment check may also vary with implemen-
tation. For instance, for a given implementation, an alignment 
check exception might be signaled for a 2-byte misalignment, 
whereas a general protection exception might be signaled for all 
other misalignments (4-, 8-, or 16-byte misalignments).

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 16-byte boundary, 

regardless of segment.
If any part of the operand lies outside the effective address 
space from 0 to FFFFH.

#NM If CR0.TS[bit 3] = 1. 
If CR0.EM[bit 2] = 1.
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#UD If CPUID.01H:EDX.FXSR[bit 24] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.
#AC For unaligned memory reference.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, 
regardless of segment.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3] = 1. 

If CR0.EM[bit 2] = 1.
#UD If CPUID.01H:EDX.FXSR[bit 24] = 0.

If the LOCK prefix is used.
#AC If this exception is disabled a general protection exception 

(#GP) is signaled if the memory operand is not aligned on a 
16-byte boundary, as described above. If the alignment check 
exception (#AC) is enabled (and the CPL is 3), signaling of #AC 
is not guaranteed and may vary with implementation, as 
follows. In all implementations where #AC is not signaled, a 
general protection exception is signaled in its place. In addition, 
the width of the alignment check may also vary with implemen-
tation. For instance, for a given implementation, an alignment 
check exception might be signaled for a 2-byte misalignment, 
whereas a general protection exception might be signaled for all 
other misalignments (4-, 8-, or 16-byte misalignments).

Implementation Note

The order in which the processor signals general-protection (#GP) and page-fault 
(#PF) exceptions when they both occur on an instruction boundary is given in Table 
5-2 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
3B. This order vary for FXSAVE for different processor implementations.
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FXTRACT—Extract Exponent and Significand

Description

Separates the source value in the ST(0) register into its exponent and significand, 
stores the exponent in ST(0), and pushes the significand onto the register stack. 
Following this operation, the new top-of-stack register ST(0) contains the value of 
the original significand expressed as a floating-point value. The sign and significand 
of this value are the same as those found in the source operand, and the exponent is 
3FFFH (biased value for a true exponent of zero). The ST(1) register contains the 
value of the original operand’s true (unbiased) exponent expressed as a floating-
point value. (The operation performed by this instruction is a superset of the IEEE-
recommended logb(x) function.)

This instruction and the F2XM1 instruction are useful for performing power and range 
scaling operations. The FXTRACT instruction is also useful for converting numbers in 
double extended-precision floating-point format to decimal representations (e.g., for 
printing or displaying).

If the floating-point zero-divide exception (#Z) is masked and the source operand is 
zero, an exponent value of –∞ is stored in register ST(1) and 0 with the sign of the 
source operand is stored in register ST(0).

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

TEMP ← Significand(ST(0));
ST(0) ← Exponent(ST(0));
TOP← TOP − 1;
ST(0) ← TEMP;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred; set to 1 if stack overflow 

occurred.
C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow or overflow occurred.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 F4 FXTRACT Valid Valid Separate value in ST(0) into exponent and 
significand, store exponent in ST(0), and 
push the significand onto the register 
stack.
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#IA Source operand is an SNaN value or unsupported format.
#Z ST(0) operand is ±0.
#D Source operand is a denormal value.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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FYL2X—Compute y ∗ log2x

Description

Computes (ST(1) ∗ log2 (ST(0))), stores the result in resister ST(1), and pops the 
FPU register stack. The source operand in ST(0) must be a non-zero positive number.

The following table shows the results obtained when taking the log of various classes 
of numbers, assuming that neither overflow nor underflow occurs.

If the divide-by-zero exception is masked and register ST(0) contains ±0, the instruc-
tion returns ∞ with a sign that is the opposite of the sign of the source operand in 
register ST(1).

The FYL2X instruction is designed with a built-in multiplication to optimize the calcu-
lation of logarithms with an arbitrary positive base (b):

logbx ← (log2b)–1 ∗ log2x

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 F1 FYL2X Valid Valid Replace ST(1) with (ST(1) ∗ log2ST(0)) 
and pop the register stack.

Table 3-58.  FYL2X Results

ST(0)

− ∞ − F ±0 +0<+F<+1 + 1 + F > + 
1

+ ∞ NaN

− ∞ * * + ∞ + ∞ * − ∞ − ∞ NaN

ST(1) − F * * ** + F − 0 − F − ∞ NaN

− 0 * * * + 0 − 0 − 0 * NaN

+ 0 * * * − 0 + 0 + 0 * NaN

+ F * * ** − F + 0 + F + ∞ NaN

+ ∞ * * − ∞ − ∞ * + ∞ + ∞ NaN

NaN NaN NaN NaN NaN NaN NaN NaN NaN

NOTES:
F Means finite floating-point value.
* Indicates floating-point invalid-operation (#IA) exception.
** Indicates floating-point zero-divide (#Z) exception.
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Operation

ST(1) ← ST(1) ∗ log2ST(0);
PopRegisterStack;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.
C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA Either operand is an SNaN or unsupported format.

Source operand in register ST(0) is a negative finite value 
(not -0).

#Z Source operand in register ST(0) is ±0.
#D Source operand is a denormal value.
#U Result is too small for destination format.
#O Result is too large for destination format.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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FYL2XP1—Compute y ∗ log2(x +1)

Description

Computes (ST(1) ∗ log2(ST(0) + 1.0)), stores the result in register ST(1), and pops 
the FPU register stack. The source operand in ST(0) must be in the range:

The source operand in ST(1) can range from −∞ to +∞. If the ST(0) operand is outside 
of its acceptable range, the result is undefined and software should not rely on an 
exception being generated. Under some circumstances exceptions may be generated 
when ST(0) is out of range, but this behavior is implementation specific and not 
guaranteed.

The following table shows the results obtained when taking the log epsilon of various 
classes of numbers, assuming that underflow does not occur.

This instruction provides optimal accuracy for values of epsilon [the value in register 
ST(0)] that are close to 0. For small epsilon (ε) values, more significant digits can be 
retained by using the FYL2XP1 instruction than by using (ε+1) as an argument to the 
FYL2X instruction. The (ε+1) expression is commonly found in compound interest and 
annuity calculations. The result can be simply converted into a value in another loga-
rithm base by including a scale factor in the ST(1) source operand. The following 

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 F9 FYL2XP1 Valid Valid Replace ST(1) with ST(1) ∗ log2(ST(0) + 
1.0) and pop the register stack.

Table 3-59.  FYL2XP1 Results

ST(0)

−(1 − ( )) to −0 -0 +0 +0 to +(1 - ( )) NaN

− ∞ +∞ * * − ∞ NaN

ST(1) − F +F +0 -0 − F NaN

− 0 +0 +0 -0 − 0 NaN

+0 − 0 − 0 +0 +0 NaN

+F − F − 0 +0 +F NaN

+∞ − ∞ * * +∞ NaN

NaN NaN NaN NaN NaN NaN

NOTES:
F Means finite floating-point value.
* Indicates floating-point invalid-operation (#IA) exception.

1 2 2⁄–( ) )to 1 2 2⁄–( )–

2 2⁄ 2 2⁄
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equation is used to calculate the scale factor for a particular logarithm base, where n 
is the logarithm base desired for the result of the FYL2XP1 instruction:

scale factor ← logn 2

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

ST(1) ← ST(1) ∗ log2(ST(0) + 1.0);
PopRegisterStack;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.
C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA Either operand is an SNaN value or unsupported format.
#D Source operand is a denormal value.
#U Result is too small for destination format.
#O Result is too large for destination format.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
Vol. 2A 3-473FYL2XP1—Compute y * log2(x +1)



INSTRUCTION SET REFERENCE, A-L
HADDPD—Packed Double-FP Horizontal Add

Instruction Operand Encoding

Description

Adds the double-precision floating-point values in the high and low quadwords of the 
destination operand and stores the result in the low quadword of the destination 
operand. 

Adds the double-precision floating-point values in the high and low quadwords of the 
source operand and stores the result in the high quadword of the destination operand. 

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional 
registers (XMM8-XMM15).

See Figure 3-15 for HADDPD; see Figure 3-16 for VHADDPD.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 7C /r

HADDPD xmm1, xmm2/m128

RM V/V SSE3 Horizontal add packed 
double-precision floating-
point values from 
xmm2/m128 to xmm1.

VEX.NDS.128.66.0F.WIG 7C /r

VHADDPD xmm1,xmm2, 
xmm3/m128

RVM V/V AVX Horizontal add packed 
double-precision floating-
point values from xmm2 and 
xmm3/mem.

VEX.NDS.256.66.0F.WIG 7C /r

VHADDPD ymm1, ymm2, 
ymm3/m256

RVM V/V AVX Horizontal add packed 
double-precision floating-
point values from ymm2 and 
ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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Figure 3-16.  VHADDPD operation

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit 
memory location. The destination is not distinct from the first source XMM register 
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
unmodified.

Figure 3-15.  HADDPD—Packed Double-FP Horizontal Add

Y2 + Y3 X2 + X3 Y0 + Y1 X0 + X1DEST

X3 X2SRC1 X1 X0

Y3 Y2 Y1 Y0SRC2
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VEX.128 encoded version: the first source operand is an XMM register or 128-bit 
memory location. The destination operand is an XMM register. The upper bits 
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second 
source operand can be a YMM register or a 256-bit memory location. The destination 
operand is a YMM register. 

Operation

HADDPD (128-bit Legacy SSE version)
DEST[63:0]  SRC1[127:64] + SRC1[63:0]
DEST[127:64]  SRC2[127:64] + SRC2[63:0]
DEST[VLMAX-1:128] (Unmodified)

VHADDPD (VEX.128 encoded version)
DEST[63:0]  SRC1[127:64] + SRC1[63:0]
DEST[127:64]  SRC2[127:64] + SRC2[63:0]
DEST[VLMAX-1:128]  0

VHADDPD (VEX.256 encoded version)
DEST[63:0]  SRC1[127:64] + SRC1[63:0]
DEST[127:64]  SRC2[127:64] + SRC2[63:0]
DEST[191:128]  SRC1[255:192] + SRC1[191:128]
DEST[255:192]  SRC2[255:192] + SRC2[191:128]

Intel C/C++ Compiler Intrinsic Equivalent

VHADDPD: __m256d _mm256_hadd_pd (__m256d a, __m256d b);

HADDPD: __m128d _mm_hadd_pd (__m128d a, __m128d b);

Exceptions

When the source operand is a memory operand, the operand must be aligned on a 
16-byte boundary or a general-protection exception (#GP) will be generated. 

Numeric Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
See Exceptions Type 2.
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HADDPS—Packed Single-FP Horizontal Add

Instruction Operand Encoding

Description

Adds the single-precision floating-point values in the first and second dwords of the 
destination operand and stores the result in the first dword of the destination 
operand.

Adds single-precision floating-point values in the third and fourth dword of the desti-
nation operand and stores the result in the second dword of the destination operand.

Adds single-precision floating-point values in the first and second dword of the 
source operand and stores the result in the third dword of the destination operand.

Adds single-precision floating-point values in the third and fourth dword of the source 
operand and stores the result in the fourth dword of the destination operand. 

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional 
registers (XMM8-XMM15).

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F2 0F 7C /r

HADDPS xmm1, xmm2/m128

RM V/V SSE3 Horizontal add packed 
single-precision floating-
point values from 
xmm2/m128 to xmm1.

VEX.NDS.128.F2.0F.WIG 7C /r

VHADDPS xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Horizontal add packed 
single-precision floating-
point values from xmm2 and 
xmm3/mem.

VEX.NDS.256.F2.0F.WIG 7C /r

VHADDPS ymm1, ymm2, 
ymm3/m256

RVM V/V AVX Horizontal add packed 
single-precision floating-
point values from ymm2 and 
ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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See Figure 3-17 for HADDPS; see Figure 3-18 for VHADDPS.

Figure 3-18.  VHADDPS operation

Figure 3-17.  HADDPS—Packed Single-FP Horizontal Add

Y6+Y7 X6+X7 Y2+Y3 X2+X3DEST

SRC1 X0

SRC2

X1X2X3X4X5X6X7

Y0Y1Y2Y3Y4Y5Y6Y7

X0+X1Y4+Y5 X4+X5 Y0+Y1
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128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit 
memory location. The destination is not distinct from the first source XMM register 
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit 
memory location. The destination operand is an XMM register. The upper bits 
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.

VEX.256 encoded version: The first source operand is a YMM register. The second 
source operand can be a YMM register or a 256-bit memory location. The destination 
operand is a YMM register.

Operation

HADDPS (128-bit Legacy SSE version)
DEST[31:0]  SRC1[63:32] + SRC1[31:0]
DEST[63:32]  SRC1[127:96] + SRC1[95:64]
DEST[95:64]  SRC2[63:32] + SRC2[31:0]
DEST[127:96]  SRC2[127:96] + SRC2[95:64] 
DEST[VLMAX-1:128] (Unmodified)

VHADDPS (VEX.128 encoded version)
DEST[31:0]  SRC1[63:32] + SRC1[31:0]
DEST[63:32]  SRC1[127:96] + SRC1[95:64]
DEST[95:64]  SRC2[63:32] + SRC2[31:0]
DEST[127:96]  SRC2[127:96] + SRC2[95:64] 
DEST[VLMAX-1:128]  0

VHADDPS (VEX.256 encoded version)
DEST[31:0]  SRC1[63:32] + SRC1[31:0]
DEST[63:32]  SRC1[127:96] + SRC1[95:64]
DEST[95:64]  SRC2[63:32] + SRC2[31:0]
DEST[127:96]  SRC2[127:96] + SRC2[95:64] 
DEST[159:128]  SRC1[191:160] + SRC1[159:128]
DEST[191:160]  SRC1[255:224] + SRC1[223:192]
DEST[223:192]  SRC2[191:160] + SRC2[159:128]
DEST[255:224]  SRC2[255:224] + SRC2[223:192]

Intel C/C++ Compiler Intrinsic Equivalent

HADDPS: __m128 _mm_hadd_ps (__m128 a, __m128 b);

VHADDPS: __m256 _mm256_hadd_ps (__m256 a, __m256 b);
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Exceptions

When the source operand is a memory operand, the operand must be aligned on a 
16-byte boundary or a general-protection exception (#GP) will be generated.

Numeric Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
See Exceptions Type 2.
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HLT—Halt

Instruction Operand Encoding

Description

Stops instruction execution and places the processor in a HALT state. An enabled 
interrupt (including NMI and SMI), a debug exception, the BINIT# signal, the INIT# 
signal, or the RESET# signal will resume execution. If an interrupt (including NMI) is 
used to resume execution after a HLT instruction, the saved instruction pointer 
(CS:EIP) points to the instruction following the HLT instruction.

When a HLT instruction is executed on an Intel 64 or IA-32 processor supporting Intel 
Hyper-Threading Technology, only the logical processor that executes the instruction 
is halted. The other logical processors in the physical processor remain active, unless 
they are each individually halted by executing a HLT instruction.

The HLT instruction is a privileged instruction. When the processor is running in 
protected or virtual-8086 mode, the privilege level of a program or procedure must 
be 0 to execute the HLT instruction.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

Enter Halt state;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

None.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

F4 HLT NP Valid Valid Halt

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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HSUBPD—Packed Double-FP Horizontal Subtract

Instruction Operand Encoding

Description

The HSUBPD instruction subtracts horizontally the packed DP FP numbers of both 
operands. 

Subtracts the double-precision floating-point value in the high quadword of the desti-
nation operand from the low quadword of the destination operand and stores the 
result in the low quadword of the destination operand. 

Subtracts the double-precision floating-point value in the high quadword of the 
source operand from the low quadword of the source operand and stores the result in 
the high quadword of the destination operand. 

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional 
registers (XMM8-XMM15).

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 7D /r

HSUBPD xmm1, xmm2/m128

RM V/V SSE3 Horizontal subtract packed 
double-precision floating-
point values from 
xmm2/m128 to xmm1.

VEX.NDS.128.66.0F.WIG 7D /r
VHSUBPD xmm1,xmm2, 
xmm3/m128

RVM V/V AVX Horizontal subtract packed 
double-precision floating-
point values from xmm2 and 
xmm3/mem.

VEX.NDS.256.66.0F.WIG 7D /r
VHSUBPD ymm1, ymm2, 
ymm3/m256

RVM V/V AVX Horizontal subtract packed 
double-precision floating-
point values from ymm2 and 
ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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See Figure 3-19 for HSUBPD; see Figure 3-20 for VHSUBPD.

Figure 3-20.  VHSUBPD operation

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit 
memory location. The destination is not distinct from the first source XMM register 
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
unmodified.

Figure 3-19.  HSUBPD—Packed Double-FP Horizontal Subtract

Y2 - Y3 X2 - X3 Y0 - Y1 X0 - X1DEST

X3 X2SRC1 X1 X0

Y3 Y2 Y1 Y0SRC2
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VEX.128 encoded version: the first source operand is an XMM register or 128-bit 
memory location. The destination operand is an XMM register. The upper bits 
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second 
source operand can be a YMM register or a 256-bit memory location. The destination 
operand is a YMM register. 

Operation

HSUBPD (128-bit Legacy SSE version)
DEST[63:0]  SRC1[63:0] - SRC1[127:64] 
DEST[127:64]  SRC2[63:0] - SRC2[127:64] 
DEST[VLMAX-1:128] (Unmodified)

VHSUBPD (VEX.128 encoded version)
DEST[63:0]  SRC1[63:0] - SRC1[127:64] 
DEST[127:64]  SRC2[63:0] - SRC2[127:64] 
DEST[VLMAX-1:128]  0

VHSUBPD (VEX.256 encoded version)
DEST[63:0]  SRC1[63:0] - SRC1[127:64] 
DEST[127:64]  SRC2[63:0] - SRC2[127:64] 
DEST[191:128]  SRC1[191:128] - SRC1[255:192]
DEST[255:192]  SRC2[191:128] - SRC2[255:192]

Intel C/C++ Compiler Intrinsic Equivalent

HSUBPD: __m128d _mm_hsub_pd(__m128d a, __m128d b)

VHSUBPD: __m256d _mm256_hsub_pd (__m256d a, __m256d b);

Exceptions

When the source operand is a memory operand, the operand must be aligned on a 
16-byte boundary or a general-protection exception (#GP) will be generated.

Numeric Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
See Exceptions Type 2.
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HSUBPS—Packed Single-FP Horizontal Subtract

Instruction Operand Encoding

Description

Subtracts the single-precision floating-point value in the second dword of the desti-
nation operand from the first dword of the destination operand and stores the result 
in the first dword of the destination operand. 

Subtracts the single-precision floating-point value in the fourth dword of the destina-
tion operand from the third dword of the destination operand and stores the result in 
the second dword of the destination operand. 

Subtracts the single-precision floating-point value in the second dword of the source 
operand from the first dword of the source operand and stores the result in the third 
dword of the destination operand. 

Subtracts the single-precision floating-point value in the fourth dword of the source 
operand from the third dword of the source operand and stores the result in the 
fourth dword of the destination operand. 

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional 
registers (XMM8-XMM15).

See Figure 3-21 for HSUBPS; see Figure 3-22 for VHSUBPS.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F2 0F 7D /r

HSUBPS xmm1, xmm2/m128

RM V/V SSE3 Horizontal subtract packed 
single-precision floating-
point values from 
xmm2/m128 to xmm1.

VEX.NDS.128.F2.0F.WIG 7D /r

VHSUBPS xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Horizontal subtract packed 
single-precision floating-
point values from xmm2 and 
xmm3/mem.

VEX.NDS.256.F2.0F.WIG 7D /r
VHSUBPS ymm1, ymm2, 
ymm3/m256

RVM V/V AVX Horizontal subtract packed 
single-precision floating-
point values from ymm2 and 
ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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Figure 3-22.  VHSUBPS operation

Figure 3-21.  HSUBPS—Packed Single-FP Horizontal Subtract

Y6-Y7 X6-X7 Y2-Y3 X2-X3DEST

SRC1 X0

SRC2

X1X2X3X4X5X6X7

Y0Y1Y2Y3Y4Y5Y6Y7

X0-X1Y4-Y5 X4-X5 Y0-Y1
Vol. 2A 3-487HSUBPS—Packed Single-FP Horizontal Subtract



INSTRUCTION SET REFERENCE, A-L
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit 
memory location. The destination is not distinct from the first source XMM register 
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit 
memory location. The destination operand is an XMM register. The upper bits 
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second 
source operand can be a YMM register or a 256-bit memory location. The destination 
operand is a YMM register. 

Operation

HSUBPS (128-bit Legacy SSE version)
DEST[31:0]  SRC1[31:0] - SRC1[63:32]
DEST[63:32]  SRC1[95:64] - SRC1[127:96]
DEST[95:64]  SRC2[31:0] - SRC2[63:32]
DEST[127:96]  SRC2[95:64] - SRC2[127:96] 
DEST[VLMAX-1:128] (Unmodified)

VHSUBPS (VEX.128 encoded version)
DEST[31:0]  SRC1[31:0] - SRC1[63:32]
DEST[63:32]  SRC1[95:64] - SRC1[127:96]
DEST[95:64]  SRC2[31:0] - SRC2[63:32]
DEST[127:96]  SRC2[95:64] - SRC2[127:96] 
DEST[VLMAX-1:128]  0

VHSUBPS (VEX.256 encoded version)
DEST[31:0]  SRC1[31:0] - SRC1[63:32]
DEST[63:32]  SRC1[95:64] - SRC1[127:96]
DEST[95:64]  SRC2[31:0] - SRC2[63:32]
DEST[127:96]  SRC2[95:64] - SRC2[127:96] 
DEST[159:128]  SRC1[159:128] - SRC1[191:160]
DEST[191:160]  SRC1[223:192] - SRC1[255:224]
DEST[223:192]  SRC2[159:128] - SRC2[191:160]
DEST[255:224]  SRC2[223:192] - SRC2[255:224]

Intel C/C++ Compiler Intrinsic Equivalent

HSUBPS: __m128 _mm_hsub_ps(__m128 a, __m128 b);

VHSUBPS: __m256 _mm256_hsub_ps (__m256 a, __m256 b);
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Exceptions

When the source operand is a memory operand, the operand must be aligned on a 
16-byte boundary or a general-protection exception (#GP) will be generated.

Numeric Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
See Exceptions Type 2.
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IDIV—Signed Divide

Instruction Operand Encoding

Description

Divides the (signed) value in the AX, DX:AX, or EDX:EAX (dividend) by the source 
operand (divisor) and stores the result in the AX (AH:AL), DX:AX, or EDX:EAX regis-
ters. The source operand can be a general-purpose register or a memory location. 
The action of this instruction depends on the operand size (dividend/divisor).

Non-integral results are truncated (chopped) towards 0. The remainder is always less 
than the divisor in magnitude. Overflow is indicated with the #DE (divide error) 
exception rather than with the CF flag.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R 
prefix permits access to additional registers (R8-R15). Use of the REX.W prefix 
promotes operation to 64 bits. In 64-bit mode when REX.W is applied, the instruction 

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

F6 /7 IDIV r/m8 M Valid Valid Signed divide AX by r/m8, 
with result stored in: AL ← 
Quotient, AH ← Remainder.

REX + F6 /7 IDIV r/m8* M Valid N.E. Signed divide AX by r/m8, 
with result stored in AL ← 
Quotient, AH ← Remainder.

F7 /7 IDIV r/m16 M Valid Valid Signed divide DX:AX by 
r/m16, with result stored in 
AX ← Quotient, DX ← 
Remainder.

F7 /7 IDIV r/m32 M Valid Valid Signed divide EDX:EAX by 
r/m32, with result stored in 
EAX ← Quotient, EDX ← 
Remainder.

REX.W + F7 /7 IDIV r/m64 M Valid N.E. Signed divide RDX:RAX by 
r/m64, with result stored in 
RAX ← Quotient, RDX ← 
Remainder.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is 

used: AH, BH, CH, DH. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA
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divides the signed value in RDX:RAX by the source operand. RAX contains a 64-bit 
quotient; RDX contains a 64-bit remainder. 

See the summary chart at the beginning of this section for encoding data and limits. 
See Table 3-60.

Operation

IF SRC = 0
THEN #DE; (* Divide error *) 

FI;

IF OperandSize = 8 (* Word/byte operation *)
THEN

temp ← AX / SRC; (* Signed division *)
IF (temp > 7FH) or (temp < 80H) 
(* If a positive result is greater than 7FH or a negative result is less than 80H *)

THEN #DE; (* Divide error *) 
ELSE

AL ← temp;
AH ← AX SignedModulus SRC;

FI;
ELSE IF OperandSize = 16 (* Doubleword/word operation *)

THEN
temp ← DX:AX / SRC; (* Signed division *)
IF (temp > 7FFFH) or (temp < 8000H) 
(* If a positive result is greater than 7FFFH 
or a negative result is less than 8000H *)

THEN
#DE; (* Divide error *) 

ELSE
AX ← temp;
DX ← DX:AX SignedModulus SRC;

FI;
FI;

Table 3-60.  IDIV Results

Operand Size Dividend Divisor Quotient Remainder Quotient Range

Word/byte AX r/m8 AL AH −128 to +127

Doubleword/word DX:AX r/m16 AX DX −32,768 to 
+32,767

Quadword/doubleword EDX:EAX r/m32 EAX EDX −231 to 232 − 1

Doublequadword/ 
quadword

RDX:RAX r/m64 RAX RDX −263 to 264 − 1
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ELSE IF OperandSize = 32 (* Quadword/doubleword operation *)
temp ← EDX:EAX / SRC; (* Signed division *)
IF (temp > 7FFFFFFFH) or (temp < 80000000H) 
(* If a positive result is greater than 7FFFFFFFH 
or a negative result is less than 80000000H *)

THEN 
#DE; (* Divide error *) 

ELSE
EAX ← temp;
EDX ← EDXE:AX SignedModulus SRC;

FI;
FI;

ELSE IF OperandSize = 64 (* Doublequadword/quadword operation *)
temp ← RDX:RAX / SRC; (* Signed division *)
IF (temp > 7FFFFFFFFFFFFFFFH) or (temp < 8000000000000000H) 
(* If a positive result is greater than 7FFFFFFFFFFFFFFFH 
or a negative result is less than 8000000000000000H *)

THEN 
#DE; (* Divide error *) 

ELSE
RAX ← temp;
RDX ← RDE:RAX SignedModulus SRC;

FI;
FI;

FI;

Flags Affected

The CF, OF, SF, ZF, AF, and PF flags are undefined.

Protected Mode Exceptions
#DE If the source operand (divisor) is 0.

The signed result (quotient) is too large for the destination.
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it 
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
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Real-Address Mode Exceptions
#DE If the source operand (divisor) is 0.

The signed result (quotient) is too large for the destination.
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS 

segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#DE If the source operand (divisor) is 0.

The signed result (quotient) is too large for the destination.
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#DE If the source operand (divisor) is 0

If the quotient is too large for the designated register.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
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IMUL—Signed Multiply

Instruction Operand Encoding

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

F6 /5 IMUL r/m8* M Valid Valid AX← AL ∗ r/m byte.

F7 /5 IMUL r/m16 M Valid Valid DX:AX ← AX ∗ r/m word.

F7 /5 IMUL r/m32 M Valid Valid EDX:EAX ← EAX ∗ r/m32.

REX.W + F7 /5 IMUL r/m64 M Valid N.E. RDX:RAX ← RAX ∗ r/m64.

0F AF /r IMUL r16, r/m16 RM Valid Valid word register ← word 
register ∗ r/m16.

0F AF /r IMUL r32, r/m32 RM Valid Valid doubleword register ← 
doubleword register ∗ 
r/m32.

REX.W + 0F AF 
/r

IMUL r64, r/m64 RM Valid N.E. Quadword register ← 
Quadword register ∗ r/m64.

6B /r ib IMUL r16, r/m16, 
imm8

RMI Valid Valid word register ← r/m16 ∗ 
sign-extended immediate 
byte.

6B /r ib IMUL r32, r/m32, 
imm8

RMI Valid Valid doubleword register ← 
r/m32 ∗ sign-extended 
immediate byte.

REX.W + 6B /r ib IMUL r64, r/m64, 
imm8

RMI Valid N.E. Quadword register ← r/m64 
∗ sign-extended immediate 
byte.

69 /r iw IMUL r16, r/m16, 
imm16

RMI Valid Valid word register ← r/m16 ∗ 
immediate word.

69 /r id IMUL r32, r/m32, 
imm32

RMI Valid Valid doubleword register ← 
r/m32 ∗ immediate 
doubleword.

REX.W + 69 /r id IMUL r64, r/m64, 
imm32

RMI Valid N.E. Quadword register ← r/m64 
∗ immediate doubleword.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is 

used: AH, BH, CH, DH.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r, w) NA NA NA

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
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Description

Performs a signed multiplication of two operands. This instruction has three forms, 
depending on the number of operands. 
• One-operand form — This form is identical to that used by the MUL instruction. 

Here, the source operand (in a general-purpose register or memory location) is 
multiplied by the value in the AL, AX, EAX, or RAX register (depending on the 
operand size) and the product is stored in the AX, DX:AX, EDX:EAX, or RDX:RAX 
registers, respectively.

• Two-operand form — With this form the destination operand (the first 
operand) is multiplied by the source operand (second operand). The destination 
operand is a general-purpose register and the source operand is an immediate 
value, a general-purpose register, or a memory location. The product is then 
stored in the destination operand location.

• Three-operand form — This form requires a destination operand (the first 
operand) and two source operands (the second and the third operands). Here, 
the first source operand (which can be a general-purpose register or a memory 
location) is multiplied by the second source operand (an immediate value). The 
product is then stored in the destination operand (a general-purpose register).

When an immediate value is used as an operand, it is sign-extended to the length of 
the destination operand format.

The CF and OF flags are set when significant bit (including the sign bit) are carried 
into the upper half of the result. The CF and OF flags are cleared when the result 
(including the sign bit) fits exactly in the lower half of the result.

The three forms of the IMUL instruction are similar in that the length of the product 
is calculated to twice the length of the operands. With the one-operand form, the 
product is stored exactly in the destination. With the two- and three- operand forms, 
however, the result is truncated to the length of the destination before it is stored in 
the destination register. Because of this truncation, the CF or OF flag should be tested 
to ensure that no significant bits are lost. 

The two- and three-operand forms may also be used with unsigned operands 
because the lower half of the product is the same regardless if the operands are 
signed or unsigned. The CF and OF flags, however, cannot be used to determine if the 
upper half of the result is non-zero.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R 
prefix permits access to additional registers (R8-R15). Use of the REX.W prefix 
promotes operation to 64 bits. Use of REX.W modifies the three forms of the instruc-
tion as follows.

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8/16/32 NA

Op/En Operand 1 Operand 2 Operand 3 Operand 4
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• One-operand form —The source operand (in a 64-bit general-purpose register or 
memory location) is multiplied by the value in the RAX register and the product is 
stored in the RDX:RAX registers.

• Two-operand form — The source operand is promoted to 64 bits if it is a 
register or a memory location. If the source operand is an immediate, it is sign 
extended to 64 bits. The destination operand is promoted to 64 bits.

• Three-operand form — The first source operand (either a register or a memory 
location) and destination operand are promoted to 64 bits.

Operation

IF (NumberOfOperands = 1)
THEN IF (OperandSize = 8)

THEN
AX ← AL ∗ SRC (* Signed multiplication *)
IF AL = AX

THEN CF ← 0; OF ← 0;
ELSE CF ← 1; OF ← 1; FI;

ELSE IF OperandSize = 16
THEN 

DX:AX ← AX ∗ SRC (* Signed multiplication *)
IF sign_extend_to_32 (AX) = DX:AX

THEN CF ← 0; OF ← 0;
ELSE CF ← 1; OF ← 1; FI;

ELSE IF OperandSize = 32 
THEN 

EDX:EAX ← EAX ∗ SRC (* Signed multiplication *)
IF EAX = EDX:EAX

THEN CF ← 0; OF ← 0;
ELSE CF ← 1; OF ← 1; FI;

ELSE (* OperandSize = 64 *)
RDX:RAX ← RAX ∗ SRC (* Signed multiplication *)
IF RAX = RDX:RAX

THEN CF ← 0; OF ← 0;
ELSE CF ← 1; OF ← 1; FI;

FI;
FI;

ELSE IF (NumberOfOperands = 2)
THEN 

temp ← DEST ∗ SRC (* Signed multiplication; temp is double DEST size *)
DEST ← DEST ∗ SRC (* Signed multiplication *)
IF temp ≠ DEST

THEN CF ← 1; OF ← 1;
ELSE CF ← 0; OF ← 0; FI;
3-496 Vol. 2A IMUL—Signed Multiply



INSTRUCTION SET REFERENCE, A-L
ELSE (* NumberOfOperands = 3 *)
DEST ← SRC1 ∗ SRC2 (* Signed multiplication *)
temp ← SRC1 ∗ SRC2 (* Signed multiplication; temp is double SRC1 size *)
IF temp ≠ DEST

THEN CF ← 1; OF ← 1;
ELSE CF ← 0; OF ← 0; FI;

FI;
FI;

Flags Affected

For the one operand form of the instruction, the CF and OF flags are set when signif-
icant bits are carried into the upper half of the result and cleared when the result fits 
exactly in the lower half of the result. For the two- and three-operand forms of the 
instruction, the CF and OF flags are set when the result must be truncated to fit in the 
destination operand size and cleared when the result fits exactly in the destination 
operand size. The SF, ZF, AF, and PF flags are undefined.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it 
contains a NULL NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS 

segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
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#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
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IN—Input from Port

Instruction Operand Encoding

Description

Copies the value from the I/O port specified with the second operand (source 
operand) to the destination operand (first operand). The source operand can be a 
byte-immediate or the DX register; the destination operand can be register AL, AX, 
or EAX, depending on the size of the port being accessed (8, 16, or 32 bits, respec-
tively). Using the DX register as a source operand allows I/O port addresses from 0 
to 65,535 to be accessed; using a byte immediate allows I/O port addresses 0 to 255 
to be accessed.

When accessing an 8-bit I/O port, the opcode determines the port size; when 
accessing a 16- and 32-bit I/O port, the operand-size attribute determines the port 
size. At the machine code level, I/O instructions are shorter when accessing 8-bit I/O 
ports. Here, the upper eight bits of the port address will be 0.

This instruction is only useful for accessing I/O ports located in the processor’s I/O 
address space. See Chapter 13, “Input/Output,” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 1, for more information on accessing I/O 
ports in the I/O address space.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

E4 ib IN AL, imm8 I Valid Valid Input byte from imm8 I/O 
port address into AL.

E5 ib IN AX, imm8 I Valid Valid Input word from imm8 I/O 
port address into AX.

E5 ib IN EAX, imm8 I Valid Valid Input dword from imm8 I/O 
port address into EAX.

EC IN AL,DX NP Valid Valid Input byte from I/O port in 
DX into AL.

ED IN AX,DX NP Valid Valid Input word from I/O port in 
DX into AX.

ED IN EAX,DX NP Valid Valid Input doubleword from I/O 
port in DX into EAX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

I imm8 NA NA NA

NP NA NA NA NA
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Operation

IF ((PE = 1) and ((CPL > IOPL) or (VM = 1)))
THEN (* Protected mode with CPL > IOPL or virtual-8086 mode *)

IF (Any I/O Permission Bit for I/O port being accessed = 1)
THEN (* I/O operation is not allowed *)

#GP(0);
ELSE ( * I/O operation is allowed *) 

DEST ← SRC; (* Read from selected I/O port *)
FI;

ELSE (Real Mode or Protected Mode with CPL ≤ IOPL *)
DEST ← SRC; (* Read from selected I/O port *)

FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the CPL is greater than (has less privilege) the I/O privilege 

level (IOPL) and any of the corresponding I/O permission bits in 
TSS for the I/O port being accessed is 1.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If any of the I/O permission bits in the TSS for the I/O port being 

accessed is 1.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the CPL is greater than (has less privilege) the I/O privilege 

level (IOPL) and any of the corresponding I/O permission bits in 
TSS for the I/O port being accessed is 1.

#UD If the LOCK prefix is used.
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INC—Increment by 1

Instruction Operand Encoding

Description

Adds 1 to the destination operand, while preserving the state of the CF flag. The 
destination operand can be a register or a memory location. This instruction allows a 
loop counter to be updated without disturbing the CF flag. (Use a ADD instruction 
with an immediate operand of 1 to perform an increment operation that does updates 
the CF flag.)

This instruction can be used with a LOCK prefix to allow the instruction to be 
executed atomically.

In 64-bit mode, INC r16 and INC r32 are not encodable (because opcodes 40H 
through 47H are REX prefixes). Otherwise, the instruction’s 64-bit mode default 
operation size is 32 bits. Use of the REX.R prefix permits access to additional regis-
ters (R8-R15). Use of the REX.W prefix promotes operation to 64 bits.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

FE /0 INC r/m8 M Valid Valid Increment r/m byte by 1.

REX + FE /0 INC r/m8* M Valid N.E. Increment r/m byte by 1.

FF /0 INC r/m16 M Valid Valid Increment r/m word by 1.

FF /0 INC r/m32 M Valid Valid Increment r/m doubleword 
by 1.

REX.W + FF /0 INC r/m64 M Valid N.E. Increment r/m quadword by 
1.

40+ rw** INC r16 O N.E. Valid Increment word register by 
1.

40+ rd INC r32 O N.E. Valid Increment doubleword 
register by 1.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is 

used: AH, BH, CH, DH.
** 40H through 47H are REX prefixes in 64-bit mode.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r, w) NA NA NA

O opcode + rd (r, w) NA NA NA
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Operation

DEST ← DEST + 1;

AFlags Affected

The CF flag is not affected. The OF, SF, ZF, AF, and PF flags are set according to the 
result.

Protected Mode Exceptions
#GP(0) If the destination operand is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, 
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it 
contains a NULLsegment selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory 

operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS 

segment limit.
#UD If the LOCK prefix is used but the destination is not a memory 

operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made.
#UD If the LOCK prefix is used but the destination is not a memory 

operand.
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Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory 

operand.
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INS/INSB/INSW/INSD—Input from Port to String

Instruction Operand Encoding

Description

Copies the data from the I/O port specified with the source operand (second 
operand) to the destination operand (first operand). The source operand is an I/O 
port address (from 0 to 65,535) that is read from the DX register. The destination 
operand is a memory location, the address of which is read from either the ES:DI, 
ES:EDI or the RDI registers (depending on the address-size attribute of the instruc-

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

6C INS m8, DX NP Valid Valid Input byte from I/O port 
specified in DX into memory 
location specified in ES:(E)DI 
or RDI.*

6D INS m16, DX NP Valid Valid Input word from I/O port 
specified in DX into memory 
location specified in ES:(E)DI 
or RDI.1

6D INS m32, DX NP Valid Valid Input doubleword from I/O 
port specified in DX into 
memory location specified in 
ES:(E)DI or RDI.1

6C INSB NP Valid Valid Input byte from I/O port 
specified in DX into memory 
location specified with 
ES:(E)DI or RDI.1

6D INSW NP Valid Valid Input word from I/O port 
specified in DX into memory 
location specified in ES:(E)DI 
or RDI.1

6D INSD NP Valid Valid Input doubleword from I/O 
port specified in DX into 
memory location specified in 
ES:(E)DI or RDI.1

NOTES:
* In 64-bit mode, only 64-bit (RDI) and 32-bit (EDI) address sizes are supported. In non-64-bit 

mode, only 32-bit (EDI) and 16-bit (DI) address sizes are supported.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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tion, 16, 32 or 64, respectively). (The ES segment cannot be overridden with a 
segment override prefix.) The size of the I/O port being accessed (that is, the size of 
the source and destination operands) is determined by the opcode for an 8-bit I/O 
port or by the operand-size attribute of the instruction for a 16- or 32-bit I/O port.

At the assembly-code level, two forms of this instruction are allowed: the “explicit-
operands” form and the “no-operands” form. The explicit-operands form (specified 
with the INS mnemonic) allows the source and destination operands to be specified 
explicitly. Here, the source operand must be “DX,” and the destination operand 
should be a symbol that indicates the size of the I/O port and the destination 
address. This explicit-operands form is provided to allow documentation; however, 
note that the documentation provided by this form can be misleading. That is, the 
destination operand symbol must specify the correct type (size) of the operand 
(byte, word, or doubleword), but it does not have to specify the correct location. 
The location is always specified by the ES:(E)DI registers, which must be loaded 
correctly before the INS instruction is executed.

The no-operands form provides “short forms” of the byte, word, and doubleword 
versions of the INS instructions. Here also DX is assumed by the processor to be the 
source operand and ES:(E)DI is assumed to be the destination operand. The size of 
the I/O port is specified with the choice of mnemonic: INSB (byte), INSW (word), or 
INSD (doubleword).

After the byte, word, or doubleword is transfer from the I/O port to the memory loca-
tion, the DI/EDI/RDI register is incremented or decremented automatically according 
to the setting of the DF flag in the EFLAGS register. (If the DF flag is 0, the (E)DI 
register is incremented; if the DF flag is 1, the (E)DI register is decremented.) The 
(E)DI register is incremented or decremented by 1 for byte operations, by 2 for word 
operations, or by 4 for doubleword operations.

The INS, INSB, INSW, and INSD instructions can be preceded by the REP prefix for 
block input of ECX bytes, words, or doublewords. See “REP/REPE/REPZ 
/REPNE/REPNZ—Repeat String Operation Prefix” in Chapter 4 of the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 2B, for a description of the 
REP prefix.

These instructions are only useful for accessing I/O ports located in the processor’s 
I/O address space. See Chapter 13, “Input/Output,” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 1, for more information on 
accessing I/O ports in the I/O address space.

In 64-bit mode, default address size is 64 bits, 32 bit address size is supported using 
the prefix 67H. The address of the memory destination is specified by RDI or EDI. 
16-bit address size is not supported in 64-bit mode. The operand size is not 
promoted.

Operation

IF ((PE = 1) and ((CPL > IOPL) or (VM = 1)))
THEN (* Protected mode with CPL > IOPL or virtual-8086 mode *)
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IF (Any I/O Permission Bit for I/O port being accessed = 1)
THEN (* I/O operation is not allowed *)

#GP(0);
ELSE (* I/O operation is allowed *) 

DEST ← SRC; (* Read from I/O port *)
FI;

ELSE (Real Mode or Protected Mode with CPL IOPL *)
DEST ← SRC; (* Read from I/O port *)

FI;

Non-64-bit Mode:

IF (Byte transfer)
THEN IF DF = 0

THEN (E)DI ← (E)DI + 1; 
ELSE (E)DI ← (E)DI – 1; FI;

ELSE IF (Word transfer)
THEN IF DF = 0

THEN (E)DI ← (E)DI + 2; 
ELSE (E)DI ← (E)DI – 2; FI;

ELSE (* Doubleword transfer *)
THEN IF DF = 0

THEN (E)DI ← (E)DI + 4; 
ELSE (E)DI ← (E)DI – 4; FI;

FI;
FI;

FI64-bit Mode:

IF (Byte transfer)
THEN IF DF = 0

THEN (E|R)DI ← (E|R)DI + 1; 
ELSE (E|R)DI ← (E|R)DI – 1; FI;

ELSE IF (Word transfer)
THEN IF DF = 0

THEN (E)DI ← (E)DI + 2; 
ELSE (E)DI ← (E)DI – 2; FI;

ELSE (* Doubleword transfer *)
THEN IF DF = 0

THEN (E|R)DI ← (E|R)DI + 4; 
ELSE (E|R)DI ← (E|R)DI – 4; FI;

FI;
FI;
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Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the CPL is greater than (has less privilege) the I/O privilege 

level (IOPL) and any of the corresponding I/O permission bits in 
TSS for the I/O port being accessed is 1.
If the destination is located in a non-writable segment.
If an illegal memory operand effective address in the ES 
segments is given.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS 

segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If any of the I/O permission bits in the TSS for the I/O port being 

accessed is 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the CPL is greater than (has less privilege) the I/O privilege 

level (IOPL) and any of the corresponding I/O permission bits in 
TSS for the I/O port being accessed is 1.
If the memory address is in a non-canonical form.
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#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
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INSERTPS — Insert Packed Single Precision Floating-Point Value

Instruction Operand Encoding

Description

(register source form)
Select a single precision floating-point element from second source as indicated by 
Count_S bits of the immediate operand and insert it into the first source at the loca-
tion indicated by the Count_D bits of the immediate operand. Store in the destination 
and zero out destination elements based on the ZMask bits of the immediate 
operand. 

(memory source form)
Load a floating-point element from a 32-bit memory location and insert it into the 
first source at the location indicated by the Count_D bits of the immediate operand. 
Store in the destination and zero out destination elements based on the ZMask bits 
of the immediate operand. 

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 3A 21 /r ib

INSERTPS xmm1, xmm2/m32, imm8

RMI V/V SSE4_1 Insert a single precision 
floating-point value 
selected by imm8 from 
xmm2/m32 into xmm1 at 
the specified destination 
element specified by imm8 
and zero out destination 
elements in xmm1 as 
indicated in imm8.

VEX.NDS.128.66.0F3A.WIG 21 /r ib

VINSERTPS xmm1, xmm2, 
xmm3/m32, imm8

RVMI V/V AVX Insert a single precision 
floating point value selected 
by imm8 from xmm3/m32 
and merge into xmm2 at the 
specified destination 
element specified by imm8 
and zero out destination 
elements in xmm1 as 
indicated in imm8.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
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128-bit Legacy SSE version: The first source register is an XMM register. The second 
source operand is either an XMM register or a 32-bit memory location. The destina-
tion is not distinct from the first source XMM register and the upper bits (VLMAX-
1:128) of the corresponding YMM register destination are unmodified.
VEX.128 encoded version. The destination and first source register is an XMM 
register. The second source operand is either an XMM register or a 32-bit memory 
location. The upper bits (VLMAX-1:128) of the corresponding YMM register destina-
tion are zeroed.
If VINSERTPS is encoded with VEX.L= 1, an attempt to execute the instruction 
encoded with VEX.L= 1 will cause an #UD exception.

Operation

INSERTPS (128-bit Legacy SSE version)
IF (SRC = REG) THEN COUNT_S  imm8[7:6]

ELSE COUNT_S  0
COUNT_D  imm8[5:4]
ZMASK  imm8[3:0]
CASE (COUNT_S) OF

0: TMP  SRC[31:0]
1: TMP  SRC[63:32]
2: TMP  SRC[95:64]
3: TMP  SRC[127:96]

ESAC;

CASE (COUNT_D) OF
0: TMP2[31:0]  TMP

TMP2[127:32]  DEST[127:32]
1: TMP2[63:32]  TMP

TMP2[31:0]  DEST[31:0]
TMP2[127:64]  DEST[127:64]

2: TMP2[95:64]  TMP
TMP2[63:0]  DEST[63:0]
TMP2[127:96]  DEST[127:96]

3: TMP2[127:96]  TMP
TMP2[95:0]  DEST[95:0]

ESAC;

IF (ZMASK[0] = 1) THEN DEST[31:0]  00000000H
ELSE DEST[31:0]  TMP2[31:0]

IF (ZMASK[1] = 1) THEN DEST[63:32]  00000000H
ELSE DEST[63:32]  TMP2[63:32]
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IF (ZMASK[2] = 1) THEN DEST[95:64]  00000000H
ELSE DEST[95:64]  TMP2[95:64]

IF (ZMASK[3] = 1) THEN DEST[127:96]  00000000H
ELSE DEST[127:96]  TMP2[127:96]

DEST[VLMAX-1:128] (Unmodified)

VINSERTPS (VEX.128 encoded version)
IF (SRC = REG) THEN COUNT_S  imm8[7:6]

ELSE COUNT_S  0
COUNT_D  imm8[5:4]
ZMASK  imm8[3:0]
CASE (COUNT_S) OF

0: TMP  SRC2[31:0]
1: TMP  SRC2[63:32]
2: TMP  SRC2[95:64]
3: TMP  SRC2[127:96]

ESAC;
CASE (COUNT_D) OF

0: TMP2[31:0]  TMP
TMP2[127:32]  SRC1[127:32]

1: TMP2[63:32]  TMP
TMP2[31:0]  SRC1[31:0]
TMP2[127:64]  SRC1[127:64]

2: TMP2[95:64]  TMP
TMP2[63:0]  SRC1[63:0]
TMP2[127:96]  SRC1[127:96]

3: TMP2[127:96]  TMP
TMP2[95:0]  SRC1[95:0]

ESAC;

IF (ZMASK[0] = 1) THEN DEST[31:0]  00000000H
ELSE DEST[31:0]  TMP2[31:0]

IF (ZMASK[1] = 1) THEN DEST[63:32]  00000000H
ELSE DEST[63:32]  TMP2[63:32]

IF (ZMASK[2] = 1) THEN DEST[95:64]  00000000H
ELSE DEST[95:64]  TMP2[95:64]

IF (ZMASK[3] = 1) THEN DEST[127:96]  00000000H
ELSE DEST[127:96]  TMP2[127:96]

DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

INSERTPS:  __m128 _mm_insert_ps(__m128 dst, __m128 src, const int ndx);
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SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 5.
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INT n/INTO/INT 3—Call to Interrupt Procedure

Instruction Operand Encoding

Description

The INT n instruction generates a call to the interrupt or exception handler specified 
with the destination operand (see the section titled “Interrupts and Exceptions” in 
Chapter 6 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 1). The destination operand specifies an interrupt vector number from 0 to 
255, encoded as an 8-bit unsigned intermediate value. Each interrupt vector number 
provides an index to a gate descriptor in the IDT. The first 32 interrupt vector 
numbers are reserved by Intel for system use. Some of these interrupts are used for 
internally generated exceptions.

The INT n instruction is the general mnemonic for executing a software-generated 
call to an interrupt handler. The INTO instruction is a special mnemonic for calling 
overflow exception (#OF), interrupt vector number 4. The overflow interrupt checks 
the OF flag in the EFLAGS register and calls the overflow interrupt handler if the OF 
flag is set to 1. (The INTO instruction cannot be used in 64-bit mode.)

The INT 3 instruction generates a special one byte opcode (CC) that is intended for 
calling the debug exception handler. (This one byte form is valuable because it can be 
used to replace the first byte of any instruction with a breakpoint, including other one 
byte instructions, without over-writing other code). To further support its function as 
a debug breakpoint, the interrupt generated with the CC opcode also differs from the 
regular software interrupts as follows: 
• Interrupt redirection does not happen when in VME mode; the interrupt is 

handled by a protected-mode handler.
• The virtual-8086 mode IOPL checks do not occur. The interrupt is taken without 

faulting at any IOPL level.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

CC INT 3 NP Valid Valid Interrupt 3—trap to 
debugger.

CD ib INT imm8 I Valid Valid Interrupt vector number 
specified by immediate 
byte.

CE INTO NP Invalid Valid Interrupt 4—if overflow flag 
is 1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

I imm8 NA NA NA
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Note that the “normal” 2-byte opcode for INT 3 (CD03) does not have these special 
features. Intel and Microsoft assemblers will not generate the CD03 opcode from any 
mnemonic, but this opcode can be created by direct numeric code definition or by 
self-modifying code.

The action of the INT n instruction (including the INTO and INT 3 instructions) is 
similar to that of a far call made with the CALL instruction. The primary difference is 
that with the INT n instruction, the EFLAGS register is pushed onto the stack before 
the return address. (The return address is a far address consisting of the current 
values of the CS and EIP registers.) Returns from interrupt procedures are handled 
with the IRET instruction, which pops the EFLAGS information and return address 
from the stack.

The interrupt vector number specifies an interrupt descriptor in the interrupt 
descriptor table (IDT); that is, it provides index into the IDT. The selected interrupt 
descriptor in turn contains a pointer to an interrupt or exception handler procedure. 
In protected mode, the IDT contains an array of 8-byte descriptors, each of which 
is an interrupt gate, trap gate, or task gate. In real-address mode, the IDT is an 
array of 4-byte far pointers (2-byte code segment selector and a 2-byte instruction 
pointer), each of which point directly to a procedure in the selected segment. (Note 
that in real-address mode, the IDT is called the interrupt vector table, and its 
pointers are called interrupt vectors.) 

The following decision table indicates which action in the lower portion of the table is 
taken given the conditions in the upper portion of the table. Each Y in the lower 
section of the decision table represents a procedure defined in the “Operation” 
section for this instruction (except #GP).

Table 3-61.  Decision Table
PE 0 1 1 1 1 1 1 1

VM – – – – – 0 1 1

IOPL – – – – – – <3 =3

DPL/CPL 
RELATIONSHIP

– DPL<
CPL

– DPL>
CPL

DPL=
CPL or C

DPL<
CPL & NC

– –

INTERRUPT TYPE – S/W – – – – – –

GATE TYPE – – Task Trap or 
Interrupt

Trap or 
Interrupt

Trap or 
Interrupt

Trap or 
Interrupt

Trap or 
Interrupt

REAL-ADDRESS-
MODE

Y

PROTECTED-MODE Y Y Y Y Y Y Y

TRAP-OR-
INTERRUPT-GATE

Y Y Y Y Y

INTER-PRIVILEGE-
LEVEL-INTERRUPT

Y

INTRA-PRIVILEGE-
LEVEL-INTERRUPT

Y

3-514 Vol. 2A INT n/INTO/INT 3—Call to Interrupt Procedure



INSTRUCTION SET REFERENCE, A-L
When the processor is executing in virtual-8086 mode, the IOPL determines the 
action of the INT n instruction. If the IOPL is less than 3, the processor generates a 
#GP(selector) exception; if the IOPL is 3, the processor executes a protected mode 
interrupt to privilege level 0. The interrupt gate's DPL must be set to 3 and the target 
CPL of the interrupt handler procedure must be 0 to execute the protected mode 
interrupt to privilege level 0.

The interrupt descriptor table register (IDTR) specifies the base linear address and 
limit of the IDT. The initial base address value of the IDTR after the processor is 
powered up or reset is 0.

Operation

The following operational description applies not only to the INT n and INTO instruc-
tions, but also to external interrupts, nonmaskable interrupts (NMIs), and excep-
tions. Some of these events push onto the stack an error code.

The operational description specifies numerous checks whose failure may result in 
delivery of a nested exception. In these cases, the original event is not delivered.

The operational description specifies the error code delivered by any nested excep-
tion. In some cases, the error code is specified with a pseudofunction 
error_code(num,idt,ext), where idt and ext are bit values. The pseudofunction 
produces an error code as follows: (1) if idt is 0, the error code is (num & FCH) | ext; 
(2) if idt is 1, the error code is (num « 3) | 2 | ext.

In many cases, the pseudofunction error_code is invoked with a pseudovariable EXT. 
The value of EXT depends on the nature of the event whose delivery encountered a 
nested exception: if that event is a software interrupt, EXT is 0; otherwise, EXT is 1.

IF PE = 0
THEN 

GOTO REAL-ADDRESS-MODE;
ELSE (* PE = 1 *)

IF (VM = 1 and IOPL < 3 AND INT n) 
THEN 

 #GP(0); (* Bit 0 of error code is 0 because INT n *)

INTERRUPT-FROM-
VIRTUAL-8086-MODE

Y

TASK-GATE Y

#GP Y Y Y

NOTES:
− Don't Care.
Y Yes, action taken.

Blank Action not taken.

Table 3-61.  Decision Table (Contd.)
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ELSE (* Protected mode, IA-32e mode, or virtual-8086 mode interrupt *)
IF (IA32_EFER.LMA = 0)

THEN (* Protected mode, or virtual-8086 mode interrupt *)
GOTO PROTECTED-MODE;

ELSE (* IA-32e mode interrupt *)
GOTO IA-32e-MODE;

FI;
FI;

FI;
REAL-ADDRESS-MODE:

IF ((vector_number « 2) + 3) is not within IDT limit 
THEN #GP; FI;

IF stack not large enough for a 6-byte return information 
THEN #SS; FI;

Push (EFLAGS[15:0]);
IF ← 0; (* Clear interrupt flag *)
TF ← 0; (* Clear trap flag *)
AC ← 0; (* Clear AC flag *)
Push(CS);
Push(IP);
(* No error codes are pushed in real-address mode*)
CS ← IDT(Descriptor (vector_number « 2), selector));
EIP ← IDT(Descriptor (vector_number « 2), offset)); (* 16 bit offset AND 0000FFFFH *)

END;
PROTECTED-MODE:

IF ((vector_number « 3) + 7) is not within IDT limits
or selected IDT descriptor is not an interrupt-, trap-, or task-gate type

THEN #GP(error_code(vector_number,1,EXT)); FI;
(* idt operand to error_code set because vector is used *)

IF software interrupt (* Generated by INT n, INT3, or INTO *)
THEN

IF gate DPL < CPL (* PE = 1, DPL < CPL, software interrupt *)
THEN #GP(error_code(vector_number,1,0)); FI;
(* idt operand to error_code set because vector is used *)
(* ext operand to error_code is 0 because INT n, INT3, or INTO*)

FI;
IF gate not present 

THEN #NP(error_code(vector_number,1,EXT)); FI;
(* idt operand to error_code set because vector is used *)

IF task gate (* Specified in the selected interrupt table descriptor *)
THEN GOTO TASK-GATE;
ELSE GOTO TRAP-OR-INTERRUPT-GATE; (* PE = 1, trap/interrupt gate *)

FI;
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END;
IA-32e-MODE:

IF INTO and CS.L = 1 (64-bit mode)
THEN #UD;

FI;
IF ((vector_number « 4) + 15) is not in IDT limits
or selected IDT descriptor is not an interrupt-, or trap-gate type

THEN #GP(error_code(vector_number,1,EXT));
(* idt operand to error_code set because vector is used *)

FI;
IF software interrupt (* Generated by INT n, INT 3, or INTO *)

THEN
IF gate DPL < CPL (* PE = 1, DPL < CPL, software interrupt *)

THEN #GP(error_code(vector_number,1,0));
(* idt operand to error_code set because vector is used *)
(* ext operand to error_code is 0 because INT n, INT3, or INTO*)

FI;
FI;
IF gate not present 

THEN #NP(error_code(vector_number,1,EXT));
(* idt operand to error_code set because vector is used *)

FI;
GOTO TRAP-OR-INTERRUPT-GATE; (* Trap/interrupt gate *)

END;
TASK-GATE: (* PE = 1, task gate *)

Read TSS selector in task gate (IDT descriptor);
IF local/global bit is set to local or index not within GDT limits

THEN #GP(error_code(TSS selector,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

Access TSS descriptor in GDT;
IF TSS descriptor specifies that the TSS is busy (low-order 5 bits set to 00001)

THEN #GP(TSS selector,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

IF TSS not present 
THEN #NP(TSS selector,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

SWITCH-TASKS (with nesting) to TSS;
IF interrupt caused by fault with error code

THEN
IF stack limit does not allow push of error code

THEN #SS(EXT); FI;
Push(error code);

FI;
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IF EIP not within code segment limit 
THEN #GP(EXT); FI;

END;
TRAP-OR-INTERRUPT-GATE:

Read new code-segment selector for trap or interrupt gate (IDT descriptor);
IF new code-segment selector is NULL

THEN #GP(EXT); FI; (* Error code contains NULL selector *)
IF new code-segment selector is not within its descriptor table limits 

THEN #GP(error_code(new code-segment selector,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

Read descriptor referenced by new code-segment selector;
IF descriptor does not indicate a code segment or new code-segment DPL > CPL

THEN #GP(error_code(new code-segment selector,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

IF new code-segment descriptor is not present, 
THEN #NP(error_code(new code-segment selector,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

IF new code segment is non-conforming with DPL < CPL
THEN 

IF VM = 0
THEN 

GOTO INTER-PRIVILEGE-LEVEL-INTERRUPT; 
(* PE = 1, VM = 0, interrupt or trap gate, nonconforming code segment,
DPL < CPL *)

ELSE (* VM = 1 *)
IF new code-segment DPL ≠ 0 

THEN #GP(error_code(new code-segment selector,0,EXT));
(* idt operand to error_code is 0 because selector is used *)

GOTO INTERRUPT-FROM-VIRTUAL-8086-MODE; FI;
(* PE = 1, interrupt or trap gate, DPL < CPL, VM = 1 *)

FI;
ELSE (* PE = 1, interrupt or trap gate, DPL ≥ CPL *)

IF VM = 1 
THEN #GP(error_code(new code-segment selector,0,EXT));
(* idt operand to error_code is 0 because selector is used *)

IF new code segment is conforming or new code-segment DPL = CPL
THEN 

GOTO INTRA-PRIVILEGE-LEVEL-INTERRUPT; 
ELSE (* PE = 1, interrupt or trap gate, nonconforming code segment, DPL > CPL *)

#GP(error_code(new code-segment selector,0,EXT));
(* idt operand to error_code is 0 because selector is used *)

FI;
FI;
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END;
INTER-PRIVILEGE-LEVEL-INTERRUPT:

(* PE = 1, interrupt or trap gate, non-conforming code segment, DPL < CPL *)
IF (IA32_EFER.LMA = 0) (* Not IA-32e mode *)

THEN
(* Identify stack-segment selector for new privilege level in current TSS *)

IF current TSS is 32-bit
THEN 

TSSstackAddress ← (new code-segment DPL « 3) + 4;
IF (TSSstackAddress + 5) > current TSS limit

THEN #TS(error_code(current TSS selector,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

NewSS ← 2 bytes loaded from (TSS base + TSSstackAddress + 4);
NewESP ← 4 bytes loaded from (TSS base + TSSstackAddress);

ELSE (* current TSS is 16-bit *)
TSSstackAddress ← (new code-segment DPL « 2) + 2
IF (TSSstackAddress + 3) > current TSS limit

THEN #TS(error_code(current TSS selector,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

NewSS ← 2 bytes loaded from (TSS base + TSSstackAddress + 2);
NewESP ← 2 bytes loaded from (TSS base + TSSstackAddress);

FI;
IF NewSS is NULL

THEN #TS(EXT); FI; 
IF NewSS index is not within its descriptor-table limits
or NewSS RPL ≠ new code-segment DPL 

THEN #TS(error_code(NewSS,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

Read new stack-segment descriptor for NewSS in GDT or LDT;
IF new stack-segment DPL ≠ new code-segment DPL
or new stack-segment Type does not indicate writable data segment

THEN #TS(error_code(NewSS,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

IF NewSS is not present 
THEN #SS(error_code(NewSS,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

ELSE (* IA-32e mode *)
IF IDT-gate IST = 0

THEN TSSstackAddress ← (new code-segment DPL « 3) + 4;
ELSE TSSstackAddress ← (IDT gate IST « 3) + 28;

FI;
IF (TSSstackAddress + 7) > current TSS limit

THEN #TS(error_code(current TSS selector,0,EXT); FI;
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(* idt operand to error_code is 0 because selector is used *)
NewRSP ← 8 bytes loaded from (current TSS base + TSSstackAddress);
NewSS ← new code-segment DPL; (* NULL selector with RPL = new CPL *)

FI;
IF IDT gate is 32-bit 

THEN
IF new stack does not have room for 24 bytes (error code pushed) 
or 20 bytes (no error code pushed)

THEN #SS(error_code(NewSS,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

FI
ELSE 

IF IDT gate is 16-bit 
THEN

IF new stack does not have room for 12 bytes (error code pushed) 
or 10 bytes (no error code pushed);

THEN #SS(error_code(NewSS,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

ELSE (* 64-bit IDT gate*)
IF StackAddress is non-canonical

THEN #SS(EXT); FI; (* Error code contains NULL selector *)
FI;

FI;
IF (IA32_EFER.LMA = 0) (* Not IA-32e mode *)

THEN
IF instruction pointer from IDT gate is not within new code-segment limits 

THEN #GP(EXT); FI; (* Error code contains NULL selector *)
ESP ← NewESP;
SS ← NewSS; (* Segment descriptor information also loaded *)

ELSE (* IA-32e mode *)
IF instruction pointer from IDT gate contains a non-canonical address

THEN #GP(EXT); FI; (* Error code contains NULL selector *)
RSP ← NewRSP & FFFFFFFFFFFFFFF0H;
SS ← NewSS;

FI;
IF IDT gate is 32-bit

THEN 
CS:EIP ← Gate(CS:EIP); (* Segment descriptor information also loaded *)

ELSE 
IF IDT gate 16-bit

THEN 
CS:IP ← Gate(CS:IP); 
(* Segment descriptor information also loaded *)
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ELSE (* 64-bit IDT gate *)
CS:RIP ← Gate(CS:RIP); 
(* Segment descriptor information also loaded *)

FI;
FI;
IF IDT gate is 32-bit

THEN
Push(far pointer to old stack); 
(* Old SS and ESP, 3 words padded to 4 *)
Push(EFLAGS);
Push(far pointer to return instruction); 
(* Old CS and EIP, 3 words padded to 4 *)
Push(ErrorCode); (* If needed, 4 bytes *)

ELSE
IF IDT gate 16-bit

THEN
Push(far pointer to old stack); 
(* Old SS and SP, 2 words *)
Push(EFLAGS(15-0]);
Push(far pointer to return instruction); 
(* Old CS and IP, 2 words *)
Push(ErrorCode); (* If needed, 2 bytes *)

ELSE (* 64-bit IDT gate *)
Push(far pointer to old stack); 
(* Old SS and SP, each an 8-byte push *)
Push(RFLAGS); (* 8-byte push *)
Push(far pointer to return instruction); 
(* Old CS and RIP, each an 8-byte push *)
Push(ErrorCode); (* If needed, 8-bytes *)

FI;
FI;
CPL ← new code-segment DPL;
CS(RPL) ← CPL;
IF IDT gate is interrupt gate

THEN IF ← 0 (* Interrupt flag set to 0, interrupts disabled *); FI;
TF ← 0;
VM ← 0;
RF ← 0;
NT ← 0;

END;
INTERRUPT-FROM-VIRTUAL-8086-MODE:

(* Identify stack-segment selector for privilege level 0 in current TSS *)
IF current TSS is 32-bit
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THEN 
IF TSS limit < 9

THEN #TS(error_code(current TSS selector,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

NewSS ← 2 bytes loaded from (current TSS base + 8);
NewESP ← 4 bytes loaded from (current TSS base + 4);

ELSE (* current TSS is 16-bit *)
IF TSS limit < 5

THEN #TS(error_code(current TSS selector,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

NewSS ← 2 bytes loaded from (current TSS base + 4);
NewESP ← 2 bytes loaded from (current TSS base + 2);

FI;
IF NewSS is NULL

THEN #TS(EXT); FI; (* Error code contains NULL selector *)
IF NewSS index is not within its descriptor table limits
or NewSS RPL ≠ 0

THEN #TS(error_code(NewSS,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

Read new stack-segment descriptor for NewSS in GDT or LDT;
IF new stack-segment DPL ≠ 0 or stack segment does not indicate writable data segment

THEN #TS(error_code(NewSS,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

IF new stack segment not present 
THEN #SS(error_code(NewSS,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

IF IDT gate is 32-bit
THEN

IF new stack does not have room for 40 bytes (error code pushed) 
or 36 bytes (no error code pushed)

THEN #SS(error_code(NewSS,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

ELSE (* IDT gate is 16-bit) 
IF new stack does not have room for 20 bytes (error code pushed) 
or 18 bytes (no error code pushed)

THEN #SS(error_code(NewSS,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

FI;
IF instruction pointer from IDT gate is not within new code-segment limits 

THEN #GP(EXT); FI; (* Error code contains NULL selector *)
tempEFLAGS ← EFLAGS;
VM ← 0;
TF ← 0;
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RF ← 0;
NT ← 0;
IF service through interrupt gate 

THEN IF = 0; FI;
TempSS ← SS;
TempESP ← ESP;
SS ← NewSS;
ESP ← NewESP;
(* Following pushes are 16 bits for 16-bit IDT gates and 32 bits for 32-bit IDT gates; 
Segment selector pushes in 32-bit mode are padded to two words *)
Push(GS);
Push(FS);
Push(DS);
Push(ES);
Push(TempSS);
Push(TempESP);
Push(TempEFlags);
Push(CS);
Push(EIP);
GS ← 0; (* Segment registers made NULL, invalid for use in protected mode *)
FS ← 0;
DS ← 0;
ES ← 0;
CS:IP ← Gate(CS); (* Segment descriptor information also loaded *)
IF OperandSize = 32

THEN
EIP ← Gate(instruction pointer);

ELSE (* OperandSize is 16 *)
EIP ← Gate(instruction pointer) AND 0000FFFFH;

FI;
(* Start execution of new routine in Protected Mode *)

END;
INTRA-PRIVILEGE-LEVEL-INTERRUPT:

(* PE = 1, DPL = CPL or conforming segment *)
IF IA32_EFER.LMA = 1 (* IA-32e mode *)

IF IDT-descriptor IST ≠ 0
THEN

TSSstackAddress ← (IDT-descriptor IST « 3) + 28;
IF (TSSstackAddress + 7) > TSS limit

THEN #TS(error_code(current TSS selector,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

NewRSP ← 8 bytes loaded from (current TSS base + TSSstackAddress);
FI;
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IF 32-bit gate (* implies IA32_EFER.LMA = 0 *)
THEN

IF current stack does not have room for 16 bytes (error code pushed) 
or 12 bytes (no error code pushed)

THEN #SS(EXT); FI; (* Error code contains NULL selector *)
ELSE IF 16-bit gate (* implies IA32_EFER.LMA = 0 *) 

IF current stack does not have room for 8 bytes (error code pushed) 
or 6 bytes (no error code pushed)

THEN #SS(EXT); FI; (* Error code contains NULL selector *)
ELSE (* IA32_EFER.LMA = 1, 64-bit gate*)

IF NewRSP contains a non-canonical address
THEN #SS(EXT); (* Error code contains NULL selector *)

FI;
FI;
IF (IA32_EFER.LMA = 0) (* Not IA-32e mode *)

THEN
IF instruction pointer from IDT gate is not within new code-segment limit 

THEN #GP(EXT); FI; (* Error code contains NULL selector *)
ELSE

IF instruction pointer from IDT gate contains a non-canonical address
THEN #GP(EXT); FI; (* Error code contains NULL selector *)

RSP ← NewRSP & FFFFFFFFFFFFFFF0H;
FI;
IF IDT gate is 32-bit (* implies IA32_EFER.LMA = 0 *)

THEN
Push (EFLAGS);
Push (far pointer to return instruction); (* 3 words padded to 4 *)
CS:EIP ← Gate(CS:EIP); (* Segment descriptor information also loaded *)
Push (ErrorCode); (* If any *)

ELSE
IF IDT gate is 16-bit (* implies IA32_EFER.LMA = 0 *) 

THEN
Push (FLAGS);
Push (far pointer to return location); (* 2 words *)
CS:IP ← Gate(CS:IP); 
(* Segment descriptor information also loaded *)
Push (ErrorCode); (* If any *)

ELSE (* IA32_EFER.LMA = 1, 64-bit gate*)
Push(far pointer to old stack); 
(* Old SS and SP, each an 8-byte push *)
Push(RFLAGS); (* 8-byte push *)
Push(far pointer to return instruction); 
(* Old CS and RIP, each an 8-byte push *)
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Push(ErrorCode); (* If needed, 8 bytes *)
CS:RIP ← GATE(CS:RIP); 
(* Segment descriptor information also loaded *)

FI;
FI;
CS(RPL) ← CPL;
IF IDT gate is interrupt gate 

THEN IF ← 0; FI; (* Interrupt flag set to 0; interrupts disabled *)
TF ← 0;
NT ← 0;
VM ← 0;
RF ← 0;

END;

Flags Affected

The EFLAGS register is pushed onto the stack. The IF, TF, NT, AC, RF, and VM flags 
may be cleared, depending on the mode of operation of the processor when the INT 
instruction is executed (see the “Operation” section). If the interrupt uses a task 
gate, any flags may be set or cleared, controlled by the EFLAGS image in the new 
task’s TSS.

Protected Mode Exceptions
#GP(error_code) If the instruction pointer in the IDT or in the interrupt-, trap-, or 

task gate is beyond the code segment limits.
If the segment selector in the interrupt-, trap-, or task gate is 
NULL.
If an interrupt-, trap-, or task gate, code segment, or TSS 
segment selector index is outside its descriptor table limits.
If the interrupt vector number is outside the IDT limits.
If an IDT descriptor is not an interrupt-, trap-, or task-descriptor.
If an interrupt is generated by the INT n, INT 3, or INTO instruc-
tion and the DPL of an interrupt-, trap-, or task-descriptor is less 
than the CPL.
If the segment selector in an interrupt- or trap-gate does not 
point to a segment descriptor for a code segment.
If the segment selector for a TSS has its local/global bit set for 
local.
If a TSS segment descriptor specifies that the TSS is busy or not 
available.

#SS(error_code) If pushing the return address, flags, or error code onto the stack 
exceeds the bounds of the stack segment and no stack switch 
occurs.
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If the SS register is being loaded and the segment pointed to is 
marked not present.
If pushing the return address, flags, error code, or stack 
segment pointer exceeds the bounds of the new stack segment 
when a stack switch occurs.

#NP(error_code) If code segment, interrupt-, trap-, or task gate, or TSS is not 
present.

#TS(error_code) If the RPL of the stack segment selector in the TSS is not equal 
to the DPL of the code segment being accessed by the interrupt 
or trap gate.
If DPL of the stack segment descriptor pointed to by the stack 
segment selector in the TSS is not equal to the DPL of the code 
segment descriptor for the interrupt or trap gate.
If the stack segment selector in the TSS is NULL.
If the stack segment for the TSS is not a writable data segment.
If segment-selector index for stack segment is outside 
descriptor table limits. 

#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.
#AC(EXT) If alignment checking is enabled, the gate DPL is 3, and a stack 

push is unaligned.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
If the interrupt vector number is outside the IDT limits.

#SS If stack limit violation on push.
If pushing the return address, flags, or error code onto the stack 
exceeds the bounds of the stack segment.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(error_code) (For INT n, INTO, or BOUND instruction) If the IOPL is less than 

3 or the DPL of the interrupt-, trap-, or task-gate descriptor is 
not equal to 3.
If the instruction pointer in the IDT or in the interrupt-, trap-, or 
task gate is beyond the code segment limits.
If the segment selector in the interrupt-, trap-, or task gate is 
NULL.
If a interrupt-, trap-, or task gate, code segment, or TSS 
segment selector index is outside its descriptor table limits.
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If the interrupt vector number is outside the IDT limits.
If an IDT descriptor is not an interrupt-, trap-, or task-descriptor.
If an interrupt is generated by the INT n instruction and the DPL 
of an interrupt-, trap-, or task-descriptor is less than the CPL.
If the segment selector in an interrupt- or trap-gate does not 
point to a segment descriptor for a code segment.
If the segment selector for a TSS has its local/global bit set for 
local.

#SS(error_code) If the SS register is being loaded and the segment pointed to is 
marked not present.
If pushing the return address, flags, error code, stack segment 
pointer, or data segments exceeds the bounds of the stack 
segment.

#NP(error_code) If code segment, interrupt-, trap-, or task gate, or TSS is not 
present.

#TS(error_code) If the RPL of the stack segment selector in the TSS is not equal 
to the DPL of the code segment being accessed by the interrupt 
or trap gate.
If DPL of the stack segment descriptor for the TSS’s stack 
segment is not equal to the DPL of the code segment descriptor 
for the interrupt or trap gate.
If the stack segment selector in the TSS is NULL.
If the stack segment for the TSS is not a writable data segment.
If segment-selector index for stack segment is outside 
descriptor table limits. 

#PF(fault-code) If a page fault occurs.
#BP If the INT 3 instruction is executed.
#OF If the INTO instruction is executed and the OF flag is set.
#UD If the LOCK prefix is used.
#AC(EXT) If alignment checking is enabled, the gate DPL is 3, and a stack 

push is unaligned.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(error_code) If the instruction pointer in the 64-bit interrupt gate or 64-bit 

trap gate is non-canonical.
If the segment selector in the 64-bit interrupt or trap gate is 
NULL.
If the interrupt vector number is outside the IDT limits.
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If the interrupt vector number points to a gate which is in non-
canonical space.
If the interrupt vector number points to a descriptor which is not 
a 64-bit interrupt gate or 64-bit trap gate.
If the descriptor pointed to by the gate selector is outside the 
descriptor table limit.
If the descriptor pointed to by the gate selector is in non-canon-
ical space.
If the descriptor pointed to by the gate selector is not a code 
segment.
If the descriptor pointed to by the gate selector doesn’t have the 
L-bit set, or has both the L-bit and D-bit set.
If the descriptor pointed to by the gate selector has DPL > CPL.

#SS(error_code) If a push of the old EFLAGS, CS selector, EIP, or error code is in 
non-canonical space with no stack switch.
If a push of the old SS selector, ESP, EFLAGS, CS selector, EIP, or 
error code is in non-canonical space on a stack switch (either 
CPL change or no-CPL with IST).

#NP(error_code) If the 64-bit interrupt-gate, 64-bit trap-gate, or code segment is 
not present.

#TS(error_code) If an attempt to load RSP from the TSS causes an access to non-
canonical space.
If the RSP from the TSS is outside descriptor table limits. 

#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.
#AC(EXT) If alignment checking is enabled, the gate DPL is 3, and a stack 

push is unaligned.
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INVD—Invalidate Internal Caches

Instruction Operand Encoding

Description

Invalidates (flushes) the processor’s internal caches and issues a special-function 
bus cycle that directs external caches to also flush themselves. Data held in internal 
caches is not written back to main memory. 

After executing this instruction, the processor does not wait for the external caches 
to complete their flushing operation before proceeding with instruction execution. It 
is the responsibility of hardware to respond to the cache flush signal.

The INVD instruction is a privileged instruction. When the processor is running in 
protected mode, the CPL of a program or procedure must be 0 to execute this 
instruction. 

Use this instruction with care. Data cached internally and not written back to main 
memory will be lost. Unless there is a specific requirement or benefit to flushing 
caches without writing back modified cache lines (for example, testing or fault 
recovery where cache coherency with main memory is not a concern), software 
should use the WBINVD instruction.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

The INVD instruction is implementation dependent; it may be implemented differ-
ently on different families of Intel 64 or IA-32 processors. This instruction is not 
supported on IA-32 processors earlier than the Intel486 processor.

Operation

Flush(InternalCaches);
SignalFlush(ExternalCaches);
Continue (* Continue execution *)

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 08 INVD NP Valid Valid Flush internal caches; 
initiate flushing of external 
caches.

NOTES:
* See the IA-32 Architecture Compatibility section below.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) The INVD instruction cannot be executed in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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INVLPG—Invalidate TLB Entry

Instruction Operand Encoding

Description

Invalidates (flushes) the translation lookaside buffer (TLB) entry specified with the 
source operand. The source operand is a memory address. The processor determines 
the page that contains that address and flushes the TLB entry for that page.

The INVLPG instruction is a privileged instruction. When the processor is running in 
protected mode, the CPL of a program or procedure must be 0 to execute this 
instruction.

The INVLPG instruction normally flushes the TLB entry only for the specified page; 
however, in some cases, it flushes the entire TLB. See “MOV—Move to/from Control 
Registers” in this chapter for further information on operations that flush the TLB.

This instruction’s operation is the same in all non-64-bit modes. It also operates the 
same in 64-bit mode, except if the memory address is in non-canonical form. In this 
case, INVLPG is the same as a NOP.

IA-32 Architecture Compatibility

The INVLPG instruction is implementation dependent, and its function may be imple-
mented differently on different families of Intel 64 or IA-32 processors. This instruc-
tion is not supported on IA-32 processors earlier than the Intel486 processor.

Operation

Flush(RelevantTLBEntries);
Continue; (* Continue execution *)

Flags Affected

None.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 01/7 INVLPG m M Valid Valid Invalidate TLB Entry for 
page that contains m.

NOTES:
* See the IA-32 Architecture Compatibility section below.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA
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Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.
#UD Operand is a register.

If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD Operand is a register.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) The INVLPG instruction cannot be executed at the virtual-8086 

mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.
#UD Operand is a register.

If the LOCK prefix is used.
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INVPCID—Invalidate Process-Context Identifier

Instruction Operand Encoding

Description

Invalidates mappings in the translation lookaside buffers (TLBs) and paging-struc-
ture caches based on process-context identifier (PCID). (See Section 4.10, “Caching 
Translation Information,” in Intel 64 and IA-32 Architecture Software Developer’s 
Manual, Volume 3A.) Invalidation is based on the INVPCID type specified in the 
register operand and the INVPCID descriptor specified in the memory operand.

Outside 64-bit mode, the register operand is always 32 bits, regardless of the value 
of CS.D. In 64-bit mode the register operand has 64 bits.

There are four INVPCID types currently defined:
• Individual-address invalidation: If the INVPCID type is 0, the logical processor 

invalidates mappings—except global translations—for the linear address and 
PCID specified in the INVPCID descriptor. In some cases, the instruction may 
invalidate global translations or mappings for other linear addresses (or other 
PCIDs) as well.

• Single-context invalidation: If the INVPCID type is 1, the logical processor 
invalidates all mappings—except global translations—associated with the PCID 
specified in the INVPCID descriptor. In some cases, the instruction may invalidate 
global translations or mappings for other PCIDs as well.

• All-context invalidation, including global translations: If the INVPCID type is 2, 
the logical processor invalidates all mappings—including global transla-
tions—associated with any PCID. 

Opcode/
Instruction

Op/ 
En

64/32
-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 38 82 /r RM NE/V INVPCID Invalidates entries in the TLBs and 
paging-structure caches based on 
invalidation type in r32 and 
descriptor in m128.

INVPCID r32, m128

66 0F 38 82 /r RM V/NE INVPCID Invalidates entries in the TLBs and 
paging-structure caches based on 
invalidation type in r64 and 
descriptor in m128.

INVPCID r64, m128

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (R) ModRM:r/m (R) NA NA
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• All-context invalidation: If the INVPCID type is 3, the logical processor invalidates 
all mappings—except global translations—associated with any PCID. In some 
case, the instruction may invalidate global translations as well. 

The INVPCID descriptor comprises 128 bits and consists of a PCID and a linear 
address as shown in Figure 3-23. For INVPCID type 0, the processor uses the full 64 
bits of the linear address even outside 64-bit mode; the linear address is not used for 
other INVPCID types.

If CR4.PCIDE = 0, a logical processor does not cache information for any PCID other 
than 000H. In this case, executions with INVPCID types 0 and 1 are allowed only if 
the PCID specified in the INVPCID descriptor is 000H; executions with INVPCID types 
2 and 3 invalidate mappings only for PCID 000H. Note that CR4.PCIDE must be 0 
outside 64-bit mode (see Chapter 4.10.1, “Process-Context Identifiers (PCIDs)‚” of 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A).

Operation

INVPCID_TYPE ← value of register operand; // must be in the range of 0–3
INVPCID_DESC ← value of memory operand;
CASE INVPCID_TYPE OF

0: // individual-address invalidation
PCID ← INVPCID_DESC[11:0];
L_ADDR ← INVPCID_DESC[127:64];
Invalidate mappings for L_ADDR associated with PCID except global translations;
BREAK;

1: // single PCID invalidation
PCID ← INVPCID_DESC[11:0];
Invalidate all mappings associated with PCID except global translations;
BREAK;

2: // all PCID invalidation including global translations
Invalidate all mappings for all PCIDs, including global translations;
BREAK;

3: // all PCID invalidation retaining global translations
Invalidate all mappings for all PCIDs except global translations;

Figure 3-23.  INVPCID Descriptor

127 64 63 01112

Reserved (must be zero)Linear Address PCID
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BREAK;
ESAC;

Intel C/C++ Compiler Intrinsic Equivalent

INVPCID: void _invpcid(unsigned __int32 type, void * descriptor);

SIMD Floating-Point Exceptions

None

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory operand effective address is outside the CS, DS, 
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains an unusable segment.
If the source operand is located in an execute-only code 
segment.
If an invalid type is specified in the register operand, i.e., 
INVPCID_TYPE > 3.
If bits 63:12 of INVPCID_DESC are not all zero.
If INVPCID_TYPE is either 0 or 1 and INVPCID_DESC[11:0] is 
not zero.
If INVPCID_TYPE is 0 and the linear address in 
INVPCID_DESC[127:64] is not canonical.

#PF(fault-code) If a page fault occurs in accessing the memory operand.
#SS(0) If the memory operand effective address is outside the SS 

segment limit.
If the SS register contains an unusable segment.

#UD If if CPUID.(EAX=07H, ECX=0H):EBX.INVPCID (bit 10) = 0.
If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If an invalid type is specified in the register operand, i.e., 

INVPCID_TYPE > 3.
If bits 63:12 of INVPCID_DESC are not all zero.
If INVPCID_TYPE is either 0 or 1 and INVPCID_DESC[11:0] is 
not zero.
If INVPCID_TYPE is 0 and the linear address in 
INVPCID_DESC[127:64] is not canonical.

#UD If CPUID.(EAX=07H, ECX=0H):EBX.INVPCID (bit 10) = 0.
Vol. 2A 3-535INVPCID—Invalidate Process-Context Identifier



INSTRUCTION SET REFERENCE, A-L
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) The INVPCID instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory operand is in the CS, DS, ES, FS, or GS segments 
and the memory address is in a non-canonical form.
If an invalid type is specified in the register operand, i.e., 
INVPCID_TYPE > 3.
If bits 63:12 of INVPCID_DESC are not all zero.
If CR4.PCIDE=0, INVPCID_TYPE is either 0 or 1, and 
INVPCID_DESC[11:0] is not zero.
If INVPCID_TYPE is 0 and the linear address in 
INVPCID_DESC[127:64] is not canonical.

#PF(fault-code) If a page fault occurs in accessing the memory operand.
#SS(0) If the memory destination operand is in the SS segment and the 

memory address is in a non-canonical form.
#UD If the LOCK prefix is used.

If CPUID.(EAX=07H, ECX=0H):EBX.INVPCID (bit 10) = 0.
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IRET/IRETD—Interrupt Return

Instruction Operand Encoding

Description

Returns program control from an exception or interrupt handler to a program or 
procedure that was interrupted by an exception, an external interrupt, or a software-
generated interrupt. These instructions are also used to perform a return from a 
nested task. (A nested task is created when a CALL instruction is used to initiate a 
task switch or when an interrupt or exception causes a task switch to an interrupt or 
exception handler.) See the section titled “Task Linking” in Chapter 7 of the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 3A.

IRET and IRETD are mnemonics for the same opcode. The IRETD mnemonic (inter-
rupt return double) is intended for use when returning from an interrupt when using 
the 32-bit operand size; however, most assemblers use the IRET mnemonic inter-
changeably for both operand sizes.

In Real-Address Mode, the IRET instruction preforms a far return to the interrupted 
program or procedure. During this operation, the processor pops the return instruc-
tion pointer, return code segment selector, and EFLAGS image from the stack to the 
EIP, CS, and EFLAGS registers, respectively, and then resumes execution of the inter-
rupted program or procedure.

In Protected Mode, the action of the IRET instruction depends on the settings of the 
NT (nested task) and VM flags in the EFLAGS register and the VM flag in the EFLAGS 
image stored on the current stack. Depending on the setting of these flags, the 
processor performs the following types of interrupt returns:
• Return from virtual-8086 mode.
• Return to virtual-8086 mode.
• Intra-privilege level return.
• Inter-privilege level return.
• Return from nested task (task switch).

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

CF IRET NP Valid Valid Interrupt return (16-bit 
operand size).

CF IRETD NP Valid Valid Interrupt return (32-bit 
operand size).

REX.W + CF IRETQ NP Valid N.E. Interrupt return (64-bit 
operand size).

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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If the NT flag (EFLAGS register) is cleared, the IRET instruction performs a far return 
from the interrupt procedure, without a task switch. The code segment being 
returned to must be equally or less privileged than the interrupt handler routine (as 
indicated by the RPL field of the code segment selector popped from the stack). 

As with a real-address mode interrupt return, the IRET instruction pops the return 
instruction pointer, return code segment selector, and EFLAGS image from the stack 
to the EIP, CS, and EFLAGS registers, respectively, and then resumes execution of 
the interrupted program or procedure. If the return is to another privilege level, the 
IRET instruction also pops the stack pointer and SS from the stack, before resuming 
program execution. If the return is to virtual-8086 mode, the processor also pops the 
data segment registers from the stack.

If the NT flag is set, the IRET instruction performs a task switch (return) from a 
nested task (a task called with a CALL instruction, an interrupt, or an exception) back 
to the calling or interrupted task. The updated state of the task executing the IRET 
instruction is saved in its TSS. If the task is re-entered later, the code that follows the 
IRET instruction is executed.

If the NT flag is set and the processor is in IA-32e mode, the IRET instruction causes 
a general protection exception.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.W 
prefix promotes operation to 64 bits (IRETQ). See the summary chart at the begin-
ning of this section for encoding data and limits. 

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 25 of 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C, for 
more information about the behavior of this instruction in VMX non-root operation.

Operation

IF PE = 0
THEN 

GOTO REAL-ADDRESS-MODE;
ELSE 

IF (IA32_EFER.LMA = 0)
THEN (* Protected mode *)

GOTO PROTECTED-MODE;
ELSE (* IA-32e mode *)

GOTO IA-32e-MODE;
FI;

FI;
REAL-ADDRESS-MODE;

IF OperandSize = 32
THEN

IF top 12 bytes of stack not within stack limits 
THEN #SS; FI;
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tempEIP ← 4 bytes at end of stack
IF tempEIP[31:16] is not zero THEN #GP(0); FI;
EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded *)
tempEFLAGS ← Pop();
EFLAGS ← (tempEFLAGS AND 257FD5H) OR (EFLAGS AND 1A0000H);

ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack are not within stack limits 

THEN #SS; FI;
EIP ← Pop(); (* 16-bit pop; clear upper 16 bits *)
CS ← Pop(); (* 16-bit pop *)
EFLAGS[15:0] ← Pop();

FI;
END;

PROTECTED-MODE:
IF VM = 1 (* Virtual-8086 mode: PE = 1, VM = 1 *)

THEN 
GOTO RETURN-FROM-VIRTUAL-8086-MODE; (* PE = 1, VM = 1 *)

FI;
IF NT = 1

THEN 
GOTO TASK-RETURN; (* PE = 1, VM = 0, NT = 1 *)

FI;
IF OperandSize = 32

THEN
IF top 12 bytes of stack not within stack limits

THEN #SS(0); FI;
tempEIP ← Pop();
tempCS ← Pop();
tempEFLAGS ← Pop();

ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack are not within stack limits

THEN #SS(0); FI;
tempEIP ← Pop();
tempCS ← Pop();
tempEFLAGS ← Pop();
tempEIP ← tempEIP AND FFFFH;
tempEFLAGS ← tempEFLAGS AND FFFFH;

FI;
IF tempEFLAGS(VM) = 1 and CPL = 0

THEN 
GOTO RETURN-TO-VIRTUAL-8086-MODE; 

ELSE 
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GOTO PROTECTED-MODE-RETURN;
FI;

IA-32e-MODE:
IF NT = 1

THEN #GP(0);
ELSE IF OperandSize = 32

THEN
IF top 12 bytes of stack not within stack limits

THEN #SS(0); FI;
tempEIP ← Pop();
tempCS ← Pop();
tempEFLAGS ← Pop();

ELSE IF OperandSize = 16 
THEN

IF top 6 bytes of stack are not within stack limits
THEN #SS(0); FI;

tempEIP ← Pop();
tempCS ← Pop();
tempEFLAGS ← Pop();
tempEIP ← tempEIP AND FFFFH;
tempEFLAGS ← tempEFLAGS AND FFFFH;

FI;
ELSE (* OperandSize = 64 *)

THEN
tempRIP ← Pop();
tempCS ← Pop();
tempEFLAGS ← Pop();
tempRSP ← Pop();
tempSS ← Pop();

FI;
GOTO IA-32e-MODE-RETURN;

RETURN-FROM-VIRTUAL-8086-MODE: 
(* Processor is in virtual-8086 mode when IRET is executed and stays in virtual-8086 mode *)

IF IOPL = 3 (* Virtual mode: PE = 1, VM = 1, IOPL = 3 *)
THEN IF OperandSize = 32

THEN
IF top 12 bytes of stack not within stack limits 

THEN #SS(0); FI;
IF instruction pointer not within code segment limits 

THEN #GP(0); FI;
EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded *)
EFLAGS ← Pop();
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(* VM, IOPL,VIP and VIF EFLAG bits not modified by pop *)
ELSE (* OperandSize = 16 *)

IF top 6 bytes of stack are not within stack limits 
THEN #SS(0); FI;

IF instruction pointer not within code segment limits 
THEN #GP(0); FI;

EIP ← Pop();
EIP ← EIP AND 0000FFFFH;
CS ← Pop(); (* 16-bit pop *)
EFLAGS[15:0] ← Pop(); (* IOPL in EFLAGS not modified by pop *)

FI;
ELSE 

#GP(0); (* Trap to virtual-8086 monitor: PE = 1, VM = 1, IOPL < 3 *)
FI;

END;

RETURN-TO-VIRTUAL-8086-MODE: 
(* Interrupted procedure was in virtual-8086 mode: PE = 1, CPL=0, VM = 1 in flag image *)
IF top 24 bytes of stack are not within stack segment limits

THEN #SS(0); FI;
IF instruction pointer not within code segment limits

THEN #GP(0); FI;
CS ← tempCS;
EIP ← tempEIP & FFFFH;
EFLAGS ← tempEFLAGS;
TempESP ← Pop();
TempSS ← Pop();
ES ← Pop(); (* Pop 2 words; throw away high-order word *)
DS ← Pop(); (* Pop 2 words; throw away high-order word *)
FS ← Pop(); (* Pop 2 words; throw away high-order word *)
GS ← Pop(); (* Pop 2 words; throw away high-order word *)
SS:ESP ← TempSS:TempESP;
CPL ← 3;
(* Resume execution in Virtual-8086 mode *)

END;

TASK-RETURN: (* PE = 1, VM = 0, NT = 1 *)
Read segment selector in link field of current TSS;
IF local/global bit is set to local
or index not within GDT limits

THEN #TS (TSS selector); FI;
Access TSS for task specified in link field of current TSS;
IF TSS descriptor type is not TSS or if the TSS is marked not busy
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THEN #TS (TSS selector); FI;
IF TSS not present 

THEN #NP(TSS selector); FI;
SWITCH-TASKS (without nesting) to TSS specified in link field of current TSS;
Mark the task just abandoned as NOT BUSY;
IF EIP is not within code segment limit 

THEN #GP(0); FI;
END;

PROTECTED-MODE-RETURN: (* PE = 1 *)
IF return code segment selector is NULL

THEN GP(0); FI;
IF return code segment selector addresses descriptor beyond descriptor table limit 

THEN GP(selector); FI;
Read segment descriptor pointed to by the return code segment selector;
IF return code segment descriptor is not a code segment

THEN #GP(selector); FI;
IF return code segment selector RPL < CPL 

THEN #GP(selector); FI;
IF return code segment descriptor is conforming
and return code segment DPL > return code segment selector RPL

THEN #GP(selector); FI;
IF return code segment descriptor is not present 

THEN #NP(selector); FI;
IF return code segment selector RPL > CPL 

THEN GOTO RETURN-OUTER-PRIVILEGE-LEVEL;
ELSE GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL; FI;

END;

RETURN-TO-SAME-PRIVILEGE-LEVEL: (* PE = 1, RPL = CPL *)
IF new mode ≠ 64-Bit Mode

THEN
IF tempEIP is not within code segment limits 

THEN #GP(0); FI;
EIP ← tempEIP;

ELSE (* new mode = 64-bit mode *)
IF tempRIP is non-canonical

THEN #GP(0); FI;
RIP ← tempRIP;

FI;
CS ← tempCS; (* Segment descriptor information also loaded *)
EFLAGS (CF, PF, AF, ZF, SF, TF, DF, OF, NT) ← tempEFLAGS;
IF OperandSize = 32 or OperandSize = 64
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THEN EFLAGS(RF, AC, ID) ← tempEFLAGS; FI;
IF CPL ≤ IOPL

THEN EFLAGS(IF) ← tempEFLAGS; FI;
IF CPL = 0 

  THEN (* VM = 0 in flags image *)
 EFLAGS(IOPL) ← tempEFLAGS;
 IF OperandSize = 32 or OperandSize = 64

THEN EFLAGS(VIF, VIP) ← tempEFLAGS; FI;
 FI;
END;

RETURN-TO-OUTER-PRIVILEGE-LEVEL:
IF OperandSize = 32

THEN
IF top 8 bytes on stack are not within limits 

THEN #SS(0); FI;
ELSE (* OperandSize = 16 *)

IF top 4 bytes on stack are not within limits 
THEN #SS(0); FI;

FI;
Read return segment selector;
IF stack segment selector is NULL

THEN #GP(0); FI;
IF return stack segment selector index is not within its descriptor table limits

THEN #GP(SSselector); FI;
Read segment descriptor pointed to by return segment selector;
IF stack segment selector RPL ≠ RPL of the return code segment selector
or the stack segment descriptor does not indicate a a writable data segment;
or the stack segment DPL ≠ RPL of the return code segment selector

THEN #GP(SS selector); FI;
IF stack segment is not present 

THEN #SS(SS selector); FI;
IF new mode ≠ 64-Bit Mode

THEN
IF tempEIP is not within code segment limits 

THEN #GP(0); FI;
EIP ← tempEIP;

ELSE (* new mode = 64-bit mode *)
IF tempRIP is non-canonical

THEN #GP(0); FI;
RIP ← tempRIP;

FI;
CS ← tempCS;
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EFLAGS (CF, PF, AF, ZF, SF, TF, DF, OF, NT) ← tempEFLAGS;
IF OperandSize = 32

THEN EFLAGS(RF, AC, ID) ← tempEFLAGS; FI;
IF CPL ≤ IOPL 

THEN EFLAGS(IF) ← tempEFLAGS; FI;
IF CPL = 0

THEN
EFLAGS(IOPL) ← tempEFLAGS;
IF OperandSize = 32

THEN EFLAGS(VM, VIF, VIP) ← tempEFLAGS; FI;
IF OperandSize = 64

THEN EFLAGS(VIF, VIP) ← tempEFLAGS; FI;
FI;
CPL ← RPL of the return code segment selector;
FOR each of segment register (ES, FS, GS, and DS)

DO
IF segment register points to data or non-conforming code segment
and CPL > segment descriptor DPL (* Stored in hidden part of segment register *)

THEN (* Segment register invalid *)
SegmentSelector ← 0; (* NULL segment selector *)

FI;
OD;

END;

IA-32e-MODE-RETURN: (* IA32_EFER.LMA = 1, PE = 1 *)
IF ( (return code segment selector is NULL) or (return RIP is non-canonical) or 

(SS selector is NULL going back to compatibility mode) or
(SS selector is NULL going back to CPL3 64-bit mode) or
(RPL <> CPL going back to non-CPL3 64-bit mode for a NULL SS selector) )

THEN GP(0); FI;
IF return code segment selector addresses descriptor beyond descriptor table limit 

THEN GP(selector); FI;
Read segment descriptor pointed to by the return code segment selector;
IF return code segment descriptor is not a code segment

THEN #GP(selector); FI;
IF return code segment selector RPL < CPL 

THEN #GP(selector); FI;
IF return code segment descriptor is conforming
and return code segment DPL > return code segment selector RPL

THEN #GP(selector); FI;
IF return code segment descriptor is not present 

THEN #NP(selector); FI;
IF return code segment selector RPL > CPL 
3-544 Vol. 2A IRET/IRETD—Interrupt Return



INSTRUCTION SET REFERENCE, A-L
THEN GOTO RETURN-OUTER-PRIVILEGE-LEVEL;
ELSE GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL; FI;

END;

Flags Affected

All the flags and fields in the EFLAGS register are potentially modified, depending on 
the mode of operation of the processor. If performing a return from a nested task to 
a previous task, the EFLAGS register will be modified according to the EFLAGS image 
stored in the previous task’s TSS.

Protected Mode Exceptions
#GP(0) If the return code or stack segment selector is NULL.

If the return instruction pointer is not within the return code 
segment limit.

#GP(selector) If a segment selector index is outside its descriptor table limits.
If the return code segment selector RPL is greater than the CPL.
If the DPL of a conforming-code segment is greater than the 
return code segment selector RPL.
If the DPL for a nonconforming-code segment is not equal to the 
RPL of the code segment selector.
If the stack segment descriptor DPL is not equal to the RPL of 
the return code segment selector.
If the stack segment is not a writable data segment.
If the stack segment selector RPL is not equal to the RPL of the 
return code segment selector.
If the segment descriptor for a code segment does not indicate 
it is a code segment.
If the segment selector for a TSS has its local/global bit set for 
local.
If a TSS segment descriptor specifies that the TSS is not busy.
If a TSS segment descriptor specifies that the TSS is not avail-
able.

#SS(0) If the top bytes of stack are not within stack limits.
#NP(selector) If the return code or stack segment is not present.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference occurs when the CPL is 3 and 

alignment checking is enabled.
#UD If the LOCK prefix is used.
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Real-Address Mode Exceptions
#GP If the return instruction pointer is not within the return code 

segment limit.
#SS If the top bytes of stack are not within stack limits.

Virtual-8086 Mode Exceptions
#GP(0) If the return instruction pointer is not within the return code 

segment limit.
IF IOPL not equal to 3.

#PF(fault-code) If a page fault occurs.
#SS(0) If the top bytes of stack are not within stack limits.
#AC(0) If an unaligned memory reference occurs and alignment 

checking is enabled.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
#GP(0) If EFLAGS.NT[bit 14] = 1.
Other exceptions same as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If EFLAGS.NT[bit 14] = 1.

If the return code segment selector is NULL.
If the stack segment selector is NULL going back to compatibility 
mode.
If the stack segment selector is NULL going back to CPL3 64-bit 
mode.
If a NULL stack segment selector RPL is not equal to CPL going 
back to non-CPL3 64-bit mode.
If the return instruction pointer is not within the return code 
segment limit.
If the return instruction pointer is non-canonical.

#GP(Selector) If a segment selector index is outside its descriptor table limits.
If a segment descriptor memory address is non-canonical.
If the segment descriptor for a code segment does not indicate 
it is a code segment.
If the proposed new code segment descriptor has both the D-bit 
and L-bit set.
If the DPL for a nonconforming-code segment is not equal to the 
RPL of the code segment selector.
If CPL is greater than the RPL of the code segment selector.
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If the DPL of a conforming-code segment is greater than the 
return code segment selector RPL.
If the stack segment is not a writable data segment.
If the stack segment descriptor DPL is not equal to the RPL of 
the return code segment selector.
If the stack segment selector RPL is not equal to the RPL of the 
return code segment selector.

#SS(0) If an attempt to pop a value off the stack violates the SS limit.
If an attempt to pop a value off the stack causes a non-canonical 
address to be referenced.

#NP(selector) If the return code or stack segment is not present.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference occurs when the CPL is 3 and 

alignment checking is enabled.
#UD If the LOCK prefix is used.
Vol. 2A 3-547IRET/IRETD—Interrupt Return



INSTRUCTION SET REFERENCE, A-L
Jcc—Jump if Condition Is Met

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

77 cb JA rel8 D Valid Valid Jump short if above (CF=0 
and ZF=0).

73 cb JAE rel8 D Valid Valid Jump short if above or equal 
(CF=0).

72 cb JB rel8 D Valid Valid Jump short if below (CF=1).

76 cb JBE rel8 D Valid Valid Jump short if below or equal 
(CF=1 or ZF=1).

72 cb JC rel8 D Valid Valid Jump short if carry (CF=1).

E3 cb JCXZ rel8 D N.E. Valid Jump short if CX register is 
0.

E3 cb JECXZ rel8 D Valid Valid Jump short if ECX register is 
0.

E3 cb JRCXZ rel8 D Valid N.E. Jump short if RCX register is 
0.

74 cb JE rel8 D Valid Valid Jump short if equal (ZF=1).

7F cb JG rel8 D Valid Valid Jump short if greater (ZF=0 
and SF=OF).

7D cb JGE rel8 D Valid Valid Jump short if greater or 
equal (SF=OF).

7C cb JL rel8 D Valid Valid Jump short if less (SF≠ OF).

7E cb JLE rel8 D Valid Valid Jump short if less or equal 
(ZF=1 or SF≠ OF).

76 cb JNA rel8 D Valid Valid Jump short if not above 
(CF=1 or ZF=1).

72 cb JNAE rel8 D Valid Valid Jump short if not above or 
equal (CF=1).

73 cb JNB rel8 D Valid Valid Jump short if not below 
(CF=0).

77 cb JNBE rel8 D Valid Valid Jump short if not below or 
equal (CF=0 and ZF=0).

73 cb JNC rel8 D Valid Valid Jump short if not carry 
(CF=0).

75 cb JNE rel8 D Valid Valid Jump short if not equal 
(ZF=0).

7E cb JNG rel8 D Valid Valid Jump short if not greater 
(ZF=1 or SF≠ OF).
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7C cb JNGE rel8 D Valid Valid Jump short if not greater or 
equal (SF≠ OF).

7D cb JNL rel8 D Valid Valid Jump short if not less 
(SF=OF).

7F cb JNLE rel8 D Valid Valid Jump short if not less or 
equal (ZF=0 and SF=OF).

71 cb JNO rel8 D Valid Valid Jump short if not overflow 
(OF=0).

7B cb JNP rel8 D Valid Valid Jump short if not parity 
(PF=0).

79 cb JNS rel8 D Valid Valid Jump short if not sign 
(SF=0).

75 cb JNZ rel8 D Valid Valid Jump short if not zero 
(ZF=0).

70 cb JO rel8 D Valid Valid Jump short if overflow 
(OF=1).

7A cb JP rel8 D Valid Valid Jump short if parity (PF=1).

7A cb JPE rel8 D Valid Valid Jump short if parity even 
(PF=1).

7B cb JPO rel8 D Valid Valid Jump short if parity odd 
(PF=0).

78 cb JS rel8 D Valid Valid Jump short if sign (SF=1).

74 cb JZ rel8 D Valid Valid Jump short if zero (ZF ← 1).

0F 87 cw JA rel16 D N.S. Valid Jump near if above (CF=0 
and ZF=0). Not supported in 
64-bit mode.

0F 87 cd JA rel32 D Valid Valid Jump near if above (CF=0 
and ZF=0).

0F 83 cw JAE rel16 D N.S. Valid Jump near if above or equal 
(CF=0). Not supported in 64-
bit mode.

0F 83 cd JAE rel32 D Valid Valid Jump near if above or equal 
(CF=0).

0F 82 cw JB rel16 D N.S. Valid Jump near if below (CF=1). 
Not supported in 64-bit 
mode.

0F 82 cd JB rel32 D Valid Valid Jump near if below (CF=1).

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description
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0F 86 cw JBE rel16 D N.S. Valid Jump near if below or equal 
(CF=1 or ZF=1). Not 
supported in 64-bit mode.

0F 86 cd JBE rel32 D Valid Valid Jump near if below or equal 
(CF=1 or ZF=1).

0F 82 cw JC rel16 D N.S. Valid Jump near if carry (CF=1). 
Not supported in 64-bit 
mode.

0F 82 cd JC rel32 D Valid Valid Jump near if carry (CF=1).

0F 84 cw JE rel16 D N.S. Valid Jump near if equal (ZF=1). 
Not supported in 64-bit 
mode.

0F 84 cd JE rel32 D Valid Valid Jump near if equal (ZF=1).

0F 84 cw JZ rel16 D N.S. Valid Jump near if 0 (ZF=1). Not 
supported in 64-bit mode.

0F 84 cd JZ rel32 D Valid Valid Jump near if 0 (ZF=1).

0F 8F cw JG rel16 D N.S. Valid Jump near if greater (ZF=0 
and SF=OF). Not supported 
in 64-bit mode.

0F 8F cd JG rel32 D Valid Valid Jump near if greater (ZF=0 
and SF=OF).

0F 8D cw JGE rel16 D N.S. Valid Jump near if greater or 
equal (SF=OF). Not 
supported in 64-bit mode.

0F 8D cd JGE rel32 D Valid Valid Jump near if greater or 
equal (SF=OF).

0F 8C cw JL rel16 D N.S. Valid Jump near if less (SF≠ OF). 
Not supported in 64-bit 
mode.

0F 8C cd JL rel32 D Valid Valid Jump near if less (SF≠ OF).

0F 8E cw JLE rel16 D N.S. Valid Jump near if less or equal 
(ZF=1 or SF≠ OF). Not 
supported in 64-bit mode.

0F 8E cd JLE rel32 D Valid Valid Jump near if less or equal 
(ZF=1 or SF≠ OF).

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description
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0F 86 cw JNA rel16 D N.S. Valid Jump near if not above 
(CF=1 or ZF=1). Not 
supported in 64-bit mode.

0F 86 cd JNA rel32 D Valid Valid Jump near if not above 
(CF=1 or ZF=1).

0F 82 cw JNAE rel16 D N.S. Valid Jump near if not above or 
equal (CF=1). Not supported 
in 64-bit mode.

0F 82 cd JNAE rel32 D Valid Valid Jump near if not above or 
equal (CF=1).

0F 83 cw JNB rel16 D N.S. Valid Jump near if not below 
(CF=0). Not supported in 64-
bit mode.

0F 83 cd JNB rel32 D Valid Valid Jump near if not below 
(CF=0).

0F 87 cw JNBE rel16 D N.S. Valid Jump near if not below or 
equal (CF=0 and ZF=0). Not 
supported in 64-bit mode.

0F 87 cd JNBE rel32 D Valid Valid Jump near if not below or 
equal (CF=0 and ZF=0).

0F 83 cw JNC rel16 D N.S. Valid Jump near if not carry 
(CF=0). Not supported in 64-
bit mode.

0F 83 cd JNC rel32 D Valid Valid Jump near if not carry 
(CF=0).

0F 85 cw JNE rel16 D N.S. Valid Jump near if not equal 
(ZF=0). Not supported in 
64-bit mode.

0F 85 cd JNE rel32 D Valid Valid Jump near if not equal 
(ZF=0).

0F 8E cw JNG rel16 D N.S. Valid Jump near if not greater 
(ZF=1 or SF≠ OF). Not 
supported in 64-bit mode.

0F 8E cd JNG rel32 D Valid Valid Jump near if not greater 
(ZF=1 or SF≠ OF).

0F 8C cw JNGE rel16 D N.S. Valid Jump near if not greater or 
equal (SF≠ OF). Not 
supported in 64-bit mode.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description
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0F 8C cd JNGE rel32 D Valid Valid Jump near if not greater or 
equal (SF≠ OF).

0F 8D cw JNL rel16 D N.S. Valid Jump near if not less 
(SF=OF). Not supported in 
64-bit mode.

0F 8D cd JNL rel32 D Valid Valid Jump near if not less 
(SF=OF).

0F 8F cw JNLE rel16 D N.S. Valid Jump near if not less or 
equal (ZF=0 and SF=OF). 
Not supported in 64-bit 
mode.

0F 8F cd JNLE rel32 D Valid Valid Jump near if not less or 
equal (ZF=0 and SF=OF).

0F 81 cw JNO rel16 D N.S. Valid Jump near if not overflow 
(OF=0). Not supported in 
64-bit mode.

0F 81 cd JNO rel32 D Valid Valid Jump near if not overflow 
(OF=0).

0F 8B cw JNP rel16 D N.S. Valid Jump near if not parity 
(PF=0). Not supported in 64-
bit mode.

0F 8B cd JNP rel32 D Valid Valid Jump near if not parity 
(PF=0).

0F 89 cw JNS rel16 D N.S. Valid Jump near if not sign (SF=0). 
Not supported in 64-bit 
mode.

0F 89 cd JNS rel32 D Valid Valid Jump near if not sign (SF=0).

0F 85 cw JNZ rel16 D N.S. Valid Jump near if not zero 
(ZF=0). Not supported in 
64-bit mode.

0F 85 cd JNZ rel32 D Valid Valid Jump near if not zero 
(ZF=0).

0F 80 cw JO rel16 D N.S. Valid Jump near if overflow 
(OF=1). Not supported in 
64-bit mode.

0F 80 cd JO rel32 D Valid Valid Jump near if overflow 
(OF=1).

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description
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Instruction Operand Encoding

Description

Checks the state of one or more of the status flags in the EFLAGS register (CF, OF, PF, 
SF, and ZF) and, if the flags are in the specified state (condition), performs a jump to 
the target instruction specified by the destination operand. A condition code (cc) is 
associated with each instruction to indicate the condition being tested for. If the 
condition is not satisfied, the jump is not performed and execution continues with the 
instruction following the Jcc instruction. 

The target instruction is specified with a relative offset (a signed offset relative to the 
current value of the instruction pointer in the EIP register). A relative offset (rel8, 
rel16, or rel32) is generally specified as a label in assembly code, but at the machine 
code level, it is encoded as a signed, 8-bit or 32-bit immediate value, which is added 
to the instruction pointer. Instruction coding is most efficient for offsets of –128 to 

0F 8A cw JP rel16 D N.S. Valid Jump near if parity (PF=1). 
Not supported in 64-bit 
mode.

0F 8A cd JP rel32 D Valid Valid Jump near if parity (PF=1).

0F 8A cw JPE rel16 D N.S. Valid Jump near if parity even 
(PF=1). Not supported in 64-
bit mode.

0F 8A cd JPE rel32 D Valid Valid Jump near if parity even 
(PF=1).

0F 8B cw JPO rel16 D N.S. Valid Jump near if parity odd 
(PF=0). Not supported in 64-
bit mode.

0F 8B cd JPO rel32 D Valid Valid Jump near if parity odd 
(PF=0).

0F 88 cw JS rel16 D N.S. Valid Jump near if sign (SF=1). Not 
supported in 64-bit mode.

0F 88 cd JS rel32 D Valid Valid Jump near if sign (SF=1).

0F 84 cw JZ rel16 D N.S. Valid Jump near if 0 (ZF=1). Not 
supported in 64-bit mode.

0F 84 cd JZ rel32 D Valid Valid Jump near if 0 (ZF=1).

Op/En Operand 1 Operand 2 Operand 3 Operand 4

D Offset NA NA NA

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description
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+127. If the operand-size attribute is 16, the upper two bytes of the EIP register are 
cleared, resulting in a maximum instruction pointer size of 16 bits. 

The conditions for each Jcc mnemonic are given in the “Description” column of the 
table on the preceding page. The terms “less” and “greater” are used for compari-
sons of signed integers and the terms “above” and “below” are used for unsigned 
integers.

Because a particular state of the status flags can sometimes be interpreted in two 
ways, two mnemonics are defined for some opcodes. For example, the JA (jump if 
above) instruction and the JNBE (jump if not below or equal) instruction are alternate 
mnemonics for the opcode 77H.

The Jcc instruction does not support far jumps (jumps to other code segments). 
When the target for the conditional jump is in a different segment, use the opposite 
condition from the condition being tested for the Jcc instruction, and then access the 
target with an unconditional far jump (JMP instruction) to the other segment. For 
example, the following conditional far jump is illegal:

JZ FARLABEL;

To accomplish this far jump, use the following two instructions:
JNZ BEYOND;
JMP FARLABEL;
BEYOND:

The JRCXZ, JECXZ and JCXZ instructions differ from other Jcc instructions because 
they do not check status flags. Instead, they check RCX, ECX or CX for 0. The register 
checked is determined by the address-size attribute. These instructions are useful 
when used at the beginning of a loop that terminates with a conditional loop instruc-
tion (such as LOOPNE). They can be used to prevent an instruction sequence from 
entering a loop when RCX, ECX or CX is 0. This would cause the loop to execute 264, 
232 or 64K times (not zero times).

All conditional jumps are converted to code fetches of one or two cache lines, regard-
less of jump address or cacheability.

In 64-bit mode, operand size is fixed at 64 bits. JMP Short is RIP = RIP + 8-bit offset 
sign extended to 64 bits. JMP Near is RIP = RIP + 32-bit offset sign extended to 
64-bits.

Operation

IF condition
THEN

 tempEIP ← EIP + SignExtend(DEST);
 IF OperandSize = 16

THEN tempEIP ← tempEIP AND 0000FFFFH;
 FI;

IF tempEIP is not within code segment limit
THEN #GP(0);
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 ELSE EIP ← tempEIP
 FI;
FI;

Protected Mode Exceptions
#GP(0) If the offset being jumped to is beyond the limits of the CS 

segment.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If the offset being jumped to is beyond the limits of the CS 

segment or is outside of the effective address space from 0 to 
FFFFH. This condition can occur if a 32-bit address size override 
prefix is used.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
#UD If the LOCK prefix is used.
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JMP—Jump

Instruction Operand Encoding

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

EB cb JMP rel8 D Valid Valid Jump short, RIP = RIP + 8-bit 
displacement sign extended 
to 64-bits

E9 cw JMP rel16 D N.S. Valid Jump near, relative, 
displacement relative to 
next instruction. Not 
supported in 64-bit mode.

E9 cd JMP rel32 D Valid Valid Jump near, relative, RIP = 
RIP + 32-bit displacement 
sign extended to 64-bits

FF /4 JMP r/m16 M N.S. Valid Jump near, absolute indirect, 
address = zero-extended 
r/m16. Not supported in 64-
bit mode.

FF /4 JMP r/m32 M N.S. Valid Jump near, absolute indirect, 
address given in r/m32. Not 
supported in 64-bit mode.

FF /4 JMP r/m64 M Valid N.E. Jump near, absolute indirect, 
RIP = 64-Bit offset from 
register or memory

EA cd JMP ptr16:16 D Inv. Valid Jump far, absolute, address 
given in operand

EA cp JMP ptr16:32 D Inv. Valid Jump far, absolute, address 
given in operand

FF /5 JMP m16:16 D Valid Valid Jump far, absolute indirect, 
address given in m16:16

FF /5 JMP m16:32 D Valid Valid Jump far, absolute indirect, 
address given in m16:32.

REX.W + FF /5 JMP m16:64 D Valid N.E. Jump far, absolute indirect, 
address given in m16:64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

D Offset NA NA NA

M ModRM:r/m (r) NA NA NA
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Description

Transfers program control to a different point in the instruction stream without 
recording return information. The destination (target) operand specifies the address 
of the instruction being jumped to. This operand can be an immediate value, a 
general-purpose register, or a memory location.

This instruction can be used to execute four different types of jumps:
• Near jump—A jump to an instruction within the current code segment (the 

segment currently pointed to by the CS register), sometimes referred to as an 
intrasegment jump.

• Short jump—A near jump where the jump range is limited to –128 to +127 from 
the current EIP value.

• Far jump—A jump to an instruction located in a different segment than the 
current code segment but at the same privilege level, sometimes referred to as 
an intersegment jump.

• Task switch—A jump to an instruction located in a different task. 

A task switch can only be executed in protected mode (see Chapter 7, in the Intel® 
64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for information 
on performing task switches with the JMP instruction).

Near and Short Jumps. When executing a near jump, the processor jumps to the 
address (within the current code segment) that is specified with the target operand. 
The target operand specifies either an absolute offset (that is an offset from the base 
of the code segment) or a relative offset (a signed displacement relative to the 
current value of the instruction pointer in the EIP register). A near jump to a relative 
offset of 8-bits (rel8) is referred to as a short jump. The CS register is not changed on 
near and short jumps.

An absolute offset is specified indirectly in a general-purpose register or a memory 
location (r/m16 or r/m32). The operand-size attribute determines the size of the 
target operand (16 or 32 bits). Absolute offsets are loaded directly into the EIP 
register. If the operand-size attribute is 16, the upper two bytes of the EIP register 
are cleared, resulting in a maximum instruction pointer size of 16 bits.

A relative offset (rel8, rel16, or rel32) is generally specified as a label in assembly 
code, but at the machine code level, it is encoded as a signed 8-, 16-, or 32-bit 
immediate value. This value is added to the value in the EIP register. (Here, the EIP 
register contains the address of the instruction following the JMP instruction). When 
using relative offsets, the opcode (for short vs. near jumps) and the operand-size 
attribute (for near relative jumps) determines the size of the target operand (8, 16, 
or 32 bits).

Far Jumps in Real-Address or Virtual-8086 Mode. When executing a far jump in real-
address or virtual-8086 mode, the processor jumps to the code segment and offset 
specified with the target operand. Here the target operand specifies an absolute far 
address either directly with a pointer (ptr16:16 or ptr16:32) or indirectly with a 
memory location (m16:16 or m16:32). With the pointer method, the segment and 
address of the called procedure is encoded in the instruction, using a 4-byte (16-bit 
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operand size) or 6-byte (32-bit operand size) far address immediate. With the indi-
rect method, the target operand specifies a memory location that contains a 4-byte 
(16-bit operand size) or 6-byte (32-bit operand size) far address. The far address is 
loaded directly into the CS and EIP registers. If the operand-size attribute is 16, the 
upper two bytes of the EIP register are cleared.

Far Jumps in Protected Mode. When the processor is operating in protected mode, the 
JMP instruction can be used to perform the following three types of far jumps:
• A far jump to a conforming or non-conforming code segment.
• A far jump through a call gate.
• A task switch.

(The JMP instruction cannot be used to perform inter-privilege-level far jumps.)

In protected mode, the processor always uses the segment selector part of the far 
address to access the corresponding descriptor in the GDT or LDT. The descriptor 
type (code segment, call gate, task gate, or TSS) and access rights determine the 
type of jump to be performed.

If the selected descriptor is for a code segment, a far jump to a code segment at the 
same privilege level is performed. (If the selected code segment is at a different priv-
ilege level and the code segment is non-conforming, a general-protection exception 
is generated.) A far jump to the same privilege level in protected mode is very similar 
to one carried out in real-address or virtual-8086 mode. The target operand specifies 
an absolute far address either directly with a pointer (ptr16:16 or ptr16:32) or indi-
rectly with a memory location (m16:16 or m16:32). The operand-size attribute 
determines the size of the offset (16 or 32 bits) in the far address. The new code 
segment selector and its descriptor are loaded into CS register, and the offset from 
the instruction is loaded into the EIP register. Note that a call gate (described in the 
next paragraph) can also be used to perform far call to a code segment at the same 
privilege level. Using this mechanism provides an extra level of indirection and is the 
preferred method of making jumps between 16-bit and 32-bit code segments.

When executing a far jump through a call gate, the segment selector specified by the 
target operand identifies the call gate. (The offset part of the target operand is 
ignored.) The processor then jumps to the code segment specified in the call gate 
descriptor and begins executing the instruction at the offset specified in the call gate. 
No stack switch occurs. Here again, the target operand can specify the far address of 
the call gate either directly with a pointer (ptr16:16 or ptr16:32) or indirectly with a 
memory location (m16:16 or m16:32).

Executing a task switch with the JMP instruction is somewhat similar to executing a 
jump through a call gate. Here the target operand specifies the segment selector of 
the task gate for the task being switched to (and the offset part of the target operand 
is ignored). The task gate in turn points to the TSS for the task, which contains the 
segment selectors for the task’s code and stack segments. The TSS also contains the 
EIP value for the next instruction that was to be executed before the task was 
suspended. This instruction pointer value is loaded into the EIP register so that the 
task begins executing again at this next instruction. 
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The JMP instruction can also specify the segment selector of the TSS directly, which 
eliminates the indirection of the task gate. See Chapter 7 in Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A, for detailed information on 
the mechanics of a task switch.

Note that when you execute at task switch with a JMP instruction, the nested task 
flag (NT) is not set in the EFLAGS register and the new TSS’s previous task link field 
is not loaded with the old task’s TSS selector. A return to the previous task can thus 
not be carried out by executing the IRET instruction. Switching tasks with the JMP 
instruction differs in this regard from the CALL instruction which does set the NT flag 
and save the previous task link information, allowing a return to the calling task with 
an IRET instruction.

In 64-Bit Mode — The instruction’s operation size is fixed at 64 bits. If a selector 
points to a gate, then RIP equals the 64-bit displacement taken from gate; else RIP 
equals the zero-extended offset from the far pointer referenced in the instruction. 

See the summary chart at the beginning of this section for encoding data and limits. 

Operation

IF near jump
IF 64-bit Mode
 THEN 

IF near relative jump
 THEN

tempRIP ← RIP + DEST; (* RIP is instruction following JMP instruction*)
 ELSE (* Near absolute jump *)

tempRIP ← DEST;
FI;

ELSE
IF near relative jump
 THEN

tempEIP ← EIP + DEST; (* EIP is instruction following JMP instruction*)
 ELSE (* Near absolute jump *)

tempEIP ← DEST;
FI;

FI;
IF (IA32_EFER.LMA = 0 or target mode = Compatibility mode) 
and tempEIP outside code segment limit 

THEN #GP(0); FI
IF 64-bit mode and tempRIP is not canonical

THEN #GP(0);
FI;
IF OperandSize = 32

 THEN 
EIP ← tempEIP; 
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 ELSE 
IF OperandSize = 16

THEN (* OperandSize = 16 *)
EIP ← tempEIP AND 0000FFFFH;

 ELSE (* OperandSize = 64)
 RIP ← tempRIP;

FI;
 FI;

FI;
IF far jump and (PE = 0 or (PE = 1 AND VM = 1)) (* Real-address or virtual-8086 mode *)

 THEN
 tempEIP ← DEST(Offset); (* DEST is ptr16:32 or [m16:32] *)
 IF tempEIP is beyond code segment limit 

THEN #GP(0); FI;
 CS ← DEST(segment selector); (* DEST is ptr16:32 or [m16:32] *)
 IF OperandSize = 32

 THEN
EIP ← tempEIP; (* DEST is ptr16:32 or [m16:32] *)

 ELSE (* OperandSize = 16 *)
EIP ← tempEIP AND 0000FFFFH; (* Clear upper 16 bits *)

 FI;
FI;
IF far jump and (PE = 1 and VM = 0) 
(* IA-32e mode or protected mode, not virtual-8086 mode *)

 THEN
 IF effective address in the CS, DS, ES, FS, GS, or SS segment is illegal
or segment selector in target operand NULL

THEN #GP(0); FI;
 IF segment selector index not within descriptor table limits

THEN #GP(new selector); FI;
Read type and access rights of segment descriptor;
IF (EFER.LMA = 0) 

THEN
IF segment type is not a conforming or nonconforming code 
segment, call gate, task gate, or TSS 

THEN #GP(segment selector); FI; 
ELSE

IF segment type is not a conforming or nonconforming code segment
call gate

THEN #GP(segment selector); FI; 
FI;
Depending on type and access rights:

GO TO CONFORMING-CODE-SEGMENT;
GO TO NONCONFORMING-CODE-SEGMENT;
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GO TO CALL-GATE;
GO TO TASK-GATE;
GO TO TASK-STATE-SEGMENT;

 ELSE 
 #GP(segment selector);

FI;
CONFORMING-CODE-SEGMENT:

IF L-Bit = 1 and D-BIT = 1 and IA32_EFER.LMA = 1
THEN GP(new code segment selector); FI;

 IF DPL > CPL 
THEN #GP(segment selector); FI;

 IF segment not present
THEN #NP(segment selector); FI;

tempEIP ← DEST(Offset);
IF OperandSize = 16 

 THEN tempEIP ← tempEIP AND 0000FFFFH; 
FI;
IF (IA32_EFER.LMA = 0 or target mode = Compatibility mode) and 
tempEIP outside code segment limit 

THEN #GP(0); FI
IF tempEIP is non-canonical

THEN #GP(0); FI;
CS ← DEST[segment selector]; (* Segment descriptor information also loaded *)
CS(RPL) ← CPL
EIP ← tempEIP;

END;
NONCONFORMING-CODE-SEGMENT:

IF L-Bit = 1 and D-BIT = 1 and IA32_EFER.LMA = 1
THEN GP(new code segment selector); FI;

IF (RPL > CPL) OR (DPL ≠ CPL)
THEN #GP(code segment selector); FI;

IF segment not present 
THEN #NP(segment selector); FI;

tempEIP ← DEST(Offset);
IF OperandSize = 16 

 THEN tempEIP ← tempEIP AND 0000FFFFH; FI;
IF (IA32_EFER.LMA = 0 OR target mode = Compatibility mode) 
and tempEIP outside code segment limit 

THEN #GP(0); FI
IF tempEIP is non-canonical THEN #GP(0); FI;
CS ← DEST[segment selector]; (* Segment descriptor information also loaded *)
CS(RPL) ← CPL;
EIP ← tempEIP;

END;
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CALL-GATE:
IF call gate DPL < CPL 
or call gate DPL < call gate segment-selector RPL 

THEN #GP(call gate selector); FI;
IF call gate not present

THEN #NP(call gate selector); FI;
IF call gate code-segment selector is NULL

THEN #GP(0); FI;
IF call gate code-segment selector index outside descriptor table limits

THEN #GP(code segment selector); FI;
Read code segment descriptor;
IF code-segment segment descriptor does not indicate a code segment
or code-segment segment descriptor is conforming and DPL > CPL
or code-segment segment descriptor is non-conforming and DPL ≠ CPL

THEN #GP(code segment selector); FI;
IF IA32_EFER.LMA = 1 and (code-segment descriptor is not a 64-bit code segment 
or code-segment segment descriptor has both L-Bit and D-bit set)

THEN #GP(code segment selector); FI;
IF code segment is not present

THEN #NP(code-segment selector); FI;
 IF instruction pointer is not within code-segment limit 

THEN #GP(0); FI;
 tempEIP ← DEST(Offset);
 IF GateSize = 16 

 THEN tempEIP ← tempEIP AND 0000FFFFH; FI;
IF (IA32_EFER.LMA = 0 OR target mode = Compatibility mode) AND tempEIP 
outside code segment limit 

THEN #GP(0); FI
CS ← DEST[SegmentSelector); (* Segment descriptor information also loaded *)
CS(RPL) ← CPL;
EIP ← tempEIP;

END;
TASK-GATE:

IF task gate DPL < CPL 
or task gate DPL < task gate segment-selector RPL 

THEN #GP(task gate selector); FI;
IF task gate not present 

THEN #NP(gate selector); FI;
Read the TSS segment selector in the task-gate descriptor;
IF TSS segment selector local/global bit is set to local
or index not within GDT limits
or TSS descriptor specifies that the TSS is busy

THEN #GP(TSS selector); FI;
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 IF TSS not present 
THEN #NP(TSS selector); FI;

 SWITCH-TASKS to TSS;
 IF EIP not within code segment limit 

THEN #GP(0); FI;
END;
TASK-STATE-SEGMENT:

IF TSS DPL < CPL
or TSS DPL < TSS segment-selector RPL
or TSS descriptor indicates TSS not available

THEN #GP(TSS selector); FI;
IF TSS is not present

THEN #NP(TSS selector); FI;
SWITCH-TASKS to TSS;
IF EIP not within code segment limit 

THEN #GP(0); FI;
END;

Flags Affected

All flags are affected if a task switch occurs; no flags are affected if a task switch does 
not occur.

Protected Mode Exceptions
#GP(0) If offset in target operand, call gate, or TSS is beyond the code 

segment limits.
If the segment selector in the destination operand, call gate, 
task gate, or TSS is NULL.
If a memory operand effective address is outside the CS, DS, 
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it 
contains a NULL segment selector.

#GP(selector) If the segment selector index is outside descriptor table limits. 
If the segment descriptor pointed to by the segment selector in 
the destination operand is not for a conforming-code segment, 
nonconforming-code segment, call gate, task gate, or task state 
segment.
If the DPL for a nonconforming-code segment is not equal to the 
CPL
(When not using a call gate.) If the RPL for the segment’s 
segment selector is greater than the CPL.
If the DPL for a conforming-code segment is greater than the 
CPL.
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If the DPL from a call-gate, task-gate, or TSS segment 
descriptor is less than the CPL or than the RPL of the call-gate, 
task-gate, or TSS’s segment selector.
If the segment descriptor for selector in a call gate does not indi-
cate it is a code segment.
If the segment descriptor for the segment selector in a task gate 
does not indicate an available TSS.
If the segment selector for a TSS has its local/global bit set for 
local.
If a TSS segment descriptor specifies that the TSS is busy or not 
available.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#NP (selector) If the code segment being accessed is not present.
If call gate, task gate, or TSS not present.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3. (Only 
occurs when fetching target from memory.)

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
If a memory operand effective address is outside the CS, DS, 
ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS 
segment limit.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If the target operand is beyond the code segment limits.

If a memory operand effective address is outside the CS, DS, 
ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made. (Only occurs when fetching target from 
memory.)

#UD If the LOCK prefix is used.
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Compatibility Mode Exceptions
Same as 64-bit mode exceptions.

64-Bit Mode Exceptions
#GP(0) If a memory address is non-canonical.

If target offset in destination operand is non-canonical.
If target offset in destination operand is beyond the new code 
segment limit.
If the segment selector in the destination operand is NULL.
If the code segment selector in the 64-bit gate is NULL.

#GP(selector) If the code segment or 64-bit call gate is outside descriptor table 
limits. 
If the code segment or 64-bit call gate overlaps non-canonical 
space. 
If the segment descriptor from a 64-bit call gate is in non-
canonical space. 
If the segment descriptor pointed to by the segment selector in 
the destination operand is not for a conforming-code segment, 
nonconforming-code segment, 64-bit call gate.
If the segment descriptor pointed to by the segment selector in 
the destination operand is a code segment, and has both the 
D-bit and the L-bit set.
If the DPL for a nonconforming-code segment is not equal to the 
CPL, or the RPL for the segment’s segment selector is greater 
than the CPL.
If the DPL for a conforming-code segment is greater than the 
CPL.
If the DPL from a 64-bit call-gate is less than the CPL or than the 
RPL of the 64-bit call-gate.
If the upper type field of a 64-bit call gate is not 0x0.
If the segment selector from a 64-bit call gate is beyond the 
descriptor table limits.
If the code segment descriptor pointed to by the selector in the 
64-bit gate doesn't have the L-bit set and the D-bit clear.
If the segment descriptor for a segment selector from the 64-bit 
call gate does not indicate it is a code segment. 
If the code segment is non-confirming and CPL ≠ DPL.
If the code segment is confirming and CPL < DPL.

#NP(selector) If a code segment or 64-bit call gate is not present.
#UD (64-bit mode only) If a far jump is direct to an absolute address 

in memory.
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If the LOCK prefix is used.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
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LAHF—Load Status Flags into AH Register

Instruction Operand Encoding

Description

This instruction executes as described above in compatibility mode and legacy mode. 
It is valid in 64-bit mode only if CPUID.80000001H:ECX.LAHF-SAHF[bit 0] = 1. 

Operation

IF 64-Bit Mode
THEN

IF CPUID.80000001H:ECX.LAHF-SAHF[bit 0] = 1;
THEN AH ← RFLAGS(SF:ZF:0:AF:0:PF:1:CF);
ELSE #UD; 

FI;
ELSE

AH ← EFLAGS(SF:ZF:0:AF:0:PF:1:CF);
FI;

Flags Affected

None. The state of the flags in the EFLAGS register is not affected.

Protected Mode Exceptions
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

9F LAHF NP Invalid* Valid Load: AH ← 
EFLAGS(SF:ZF:0:AF:0:PF:1:CF).

NOTES:
*Valid in specific steppings. See Description section.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#UD If CPUID.80000001H:ECX.LAHF-SAHF[bit 0] = 0.

If the LOCK prefix is used.
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LAR—Load Access Rights Byte

Instruction Operand Encoding

Description

Loads the access rights from the segment descriptor specified by the second operand 
(source operand) into the first operand (destination operand) and sets the ZF flag in 
the flag register. The source operand (which can be a register or a memory location) 
contains the segment selector for the segment descriptor being accessed. If the 
source operand is a memory address, only 16 bits of data are accessed. The destina-
tion operand is a general-purpose register.

The processor performs access checks as part of the loading process. Once loaded in 
the destination register, software can perform additional checks on the access rights 
information. 

The access rights for a segment descriptor include fields located in the second 
doubleword (bytes 4–7) of the segment descriptor. The following fields are loaded by 
the LAR instruction:
• Bits 7:0 are returned as 0
• Bits 11:8 return the segment type.
• Bit 12 returns the S flag.
• Bits 14:13 return the DPL.
• Bit 15 returns the P flag.
• The following fields are returned only if the operand size is greater than 16 bits:

— Bits 19:16 are undefined.

— Bit 20 returns the software-available bit in the descriptor.

— Bit 21 returns the L flag.

— Bit 22 returns the D/B flag.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 02 /r LAR r16, r16/m16 RM Valid Valid r16 ← access rights 
referenced by r16/m16

0F 02 /r LAR reg, 
r32/m161

RM Valid Valid reg ← access rights 
referenced by r32/m16

NOTES:
1. For all loads (regardless of source or destination sizing) only bits 16-0 are used. Other bits are 
ignored.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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— Bit 23 returns the G flag.

— Bits 31:24 are returned as 0.

This instruction performs the following checks before it loads the access rights in the 
destination register: 
• Checks that the segment selector is not NULL.
• Checks that the segment selector points to a descriptor that is within the limits of 

the GDT or LDT being accessed
• Checks that the descriptor type is valid for this instruction. All code and data 

segment descriptors are valid for (can be accessed with) the LAR instruction. The 
valid system segment and gate descriptor types are given in Table 3-62. 

• If the segment is not a conforming code segment, it checks that the specified 
segment descriptor is visible at the CPL (that is, if the CPL and the RPL of the 
segment selector are less than or equal to the DPL of the segment selector).

If the segment descriptor cannot be accessed or is an invalid type for the instruction, 
the ZF flag is cleared and no access rights are loaded in the destination operand.

The LAR instruction can only be executed in protected mode and IA-32e mode.

Table 3-62.  Segment and Gate Types

Type Protected Mode IA-32e Mode

Name Valid Name Valid

0 Reserved No Reserved No

1 Available 16-bit TSS Yes Reserved No

2 LDT Yes LDT No

3 Busy 16-bit TSS Yes Reserved No

4 16-bit call gate Yes Reserved No

5 16-bit/32-bit task gate Yes Reserved No

6 16-bit interrupt gate No Reserved No

7 16-bit trap gate No Reserved No

8 Reserved No Reserved No

9 Available 32-bit TSS Yes Available 64-bit TSS Yes

A Reserved No Reserved No

B Busy 32-bit TSS Yes Busy 64-bit TSS Yes

C 32-bit call gate Yes 64-bit call gate Yes

D Reserved No Reserved No

E 32-bit interrupt gate No 64-bit interrupt gate No

F 32-bit trap gate No 64-bit trap gate No
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Operation

IF Offset(SRC) > descriptor table limit
THEN 

ZF ← 0; 
ELSE

SegmentDescriptor ← descriptor referenced by SRC;
IF SegmentDescriptor(Type) ≠ conforming code segment
and (CPL > DPL) or (RPL > DPL)
or SegmentDescriptor(Type) is not valid for instruction

THEN
ZF ← 0;

ELSE
DEST ← access rights from SegmentDescriptor as given in Description section;
ZF ← 1;

FI;
FI;

Flags Affected

The ZF flag is set to 1 if the access rights are loaded successfully; otherwise, it is 
cleared to 0.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it 
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and the memory operand effec-

tive address is unaligned while the current privilege level is 3. 
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD The LAR instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The LAR instruction cannot be executed in virtual-8086 mode.
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Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If the memory operand effective address referencing the SS 

segment is in a non-canonical form.
#GP(0) If the memory operand effective address is in a non-canonical 

form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and the memory operand effec-

tive address is unaligned while the current privilege level is 3.
#UD If the LOCK prefix is used.
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LDDQU—Load Unaligned Integer 128 Bits

Instruction Operand Encoding

Description

The instruction is functionally similar to (V)MOVDQU ymm/xmm, m256/m128 for 
loading from memory. That is: 32/16 bytes of data starting at an address specified by 
the source memory operand (second operand) are fetched from memory and placed 
in a destination register (first operand). The source operand need not be aligned on 
a 32/16-byte boundary. Up to 64/32 bytes may be loaded from memory; this is 
implementation dependent.

This instruction may improve performance relative to (V)MOVDQU if the source 
operand crosses a cache line boundary. In situations that require the data loaded by 
(V)LDDQU be modified and stored to the same location, use (V)MOVDQU or 
(V)MOVDQA instead of (V)LDDQU. To move a double quadword to or from memory 
locations that are known to be aligned on 16-byte boundaries, use the (V)MOVDQA 
instruction.

Implementation Notes

• If the source is aligned to a 32/16-byte boundary, based on the implementation, 
the 32/16 bytes may be loaded more than once. For that reason, the usage of 
(V)LDDQU should be avoided when using uncached or write-combining (WC) 
memory regions. For uncached or WC memory regions, keep using (V)MOVDQU.

• This instruction is a replacement for (V)MOVDQU (load) in situations where cache 
line splits significantly affect performance. It should not be used in situations 
where store-load forwarding is performance critical. If performance of store-load 
forwarding is critical to the application, use (V)MOVDQA store-load pairs when 

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F2 0F F0 /r

LDDQU xmm1, mem

RM V/V SSE3 Load unaligned data from 
mem and return double 
quadword in xmm1.

VEX.128.F2.0F.WIG F0 /r

VLDDQU xmm1, m128

RM V/V AVX Load unaligned packed 
integer values from mem to 
xmm1.

VEX.256.F2.0F.WIG F0 /r

VLDDQU ymm1, m256

RM V/V AVX Load unaligned packed 
integer values from mem to 
ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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data is 256/128-bit aligned or (V)MOVDQU store-load pairs when data is 
256/128-bit unaligned.

• If the memory address is not aligned on 32/16-byte boundary, some implemen-
tations may load up to 64/32 bytes and return 32/16 bytes in the destination. 
Some processor implementations may issue multiple loads to access the 
appropriate 32/16 bytes. Developers of multi-threaded or multi-processor 
software should be aware that on these processors the loads will be performed in 
a non-atomic way.

• If alignment checking is enabled (CR0.AM = 1, RFLAGS.AC = 1, and CPL = 3), an 
alignment-check exception (#AC) may or may not be generated (depending on 
processor implementation) when the memory address is not aligned on an 8-byte 
boundary.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional 
registers (XMM8-XMM15).
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise 
instructions will #UD.

Operation

LDDQU (128-bit Legacy SSE version)
DEST[127:0]  SRC[127:0]
DEST[VLMAX-1:128] (Unmodified)

VLDDQU (VEX.128 encoded version)
DEST[127:0]  SRC[127:0]
DEST[VLMAX-1:128]  0

VLDDQU (VEX.256 encoded version)
DEST[255:0]  SRC[255:0]

Intel C/C++ Compiler Intrinsic Equivalent

LDDQU: __m128i _mm_lddqu_si128 (__m128i * p);

LDDQU: __m256i _mm256_lddqu_si256 (__m256i * p);

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4;
Note treatment of #AC varies.
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LDMXCSR—Load MXCSR Register

Instruction Operand Encoding

Description

Loads the source operand into the MXCSR control/status register. The source 
operand is a 32-bit memory location. See “MXCSR Control and Status Register” in 
Chapter 10, of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 1, for a description of the MXCSR register and its contents.

The LDMXCSR instruction is typically used in conjunction with the (V)STMXCSR 
instruction, which stores the contents of the MXCSR register in memory.

The default MXCSR value at reset is 1F80H.

If a (V)LDMXCSR instruction clears a SIMD floating-point exception mask bit and sets 
the corresponding exception flag bit, a SIMD floating-point exception will not be 
immediately generated. The exception will be generated only upon the execution of 
the next instruction that meets both conditions below:
• the instruction must operate on an XMM or YMM register operand,
• the instruction causes that particular SIMD floating-point exception to be 

reported. 

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
If VLDMXCSR is encoded with VEX.L= 1, an attempt to execute the instruction 
encoded with VEX.L= 1 will cause an #UD exception.

Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise 
instructions will #UD.

Operation

MXCSR ← m32;

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

0F,AE,/2

LDMXCSR m32

M V/V SSE Load MXCSR register from 
m32.

VEX.LZ.0F.WIG AE /2

VLDMXCSR m32

M V/V AVX Load MXCSR register from 
m32.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA
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C/C++ Compiler Intrinsic Equivalent

_mm_setcsr(unsigned int i)

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 5; additionally
#GP For an attempt to set reserved bits in MXCSR.
#UD If VEX.vvvv != 1111B.
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LDS/LES/LFS/LGS/LSS—Load Far Pointer

Instruction Operand Encoding

Description

Loads a far pointer (segment selector and offset) from the second operand (source 
operand) into a segment register and the first operand (destination operand). The 
source operand specifies a 48-bit or a 32-bit pointer in memory depending on the 
current setting of the operand-size attribute (32 bits or 16 bits, respectively). The 

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

C5 /r LDS r16,m16:16 RM Invalid Valid Load DS:r16 with far pointer 
from memory.

C5 /r LDS r32,m16:32 RM Invalid Valid Load DS:r32 with far pointer 
from memory.

0F B2 /r LSS r16,m16:16 RM Valid Valid Load SS:r16 with far pointer 
from memory.

0F B2 /r LSS r32,m16:32 RM Valid Valid Load SS:r32 with far pointer 
from memory.

REX + 0F B2 /r LSS r64,m16:64 RM Valid N.E. Load SS:r64 with far pointer 
from memory.

C4 /r LES r16,m16:16 RM Invalid Valid Load ES:r16 with far pointer 
from memory.

C4 /r LES r32,m16:32 RM Invalid Valid Load ES:r32 with far pointer 
from memory.

0F B4 /r LFS r16,m16:16 RM Valid Valid Load FS:r16 with far pointer 
from memory.

0F B4 /r LFS r32,m16:32 RM Valid Valid Load FS:r32 with far pointer 
from memory.

REX + 0F B4 /r LFS r64,m16:64 RM Valid N.E. Load FS:r64 with far pointer 
from memory.

0F B5 /r LGS r16,m16:16 RM Valid Valid Load GS:r16 with far pointer 
from memory.

0F B5 /r LGS r32,m16:32 RM Valid Valid Load GS:r32 with far pointer 
from memory.

REX + 0F B5 /r LGS r64,m16:64 RM Valid N.E. Load GS:r64 with far pointer 
from memory.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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instruction opcode and the destination operand specify a segment register/general-
purpose register pair. The 16-bit segment selector from the source operand is loaded 
into the segment register specified with the opcode (DS, SS, ES, FS, or GS). The 
32-bit or 16-bit offset is loaded into the register specified with the destination 
operand.

If one of these instructions is executed in protected mode, additional information 
from the segment descriptor pointed to by the segment selector in the source 
operand is loaded in the hidden part of the selected segment register.

Also in protected mode, a NULL selector (values 0000 through 0003) can be loaded 
into DS, ES, FS, or GS registers without causing a protection exception. (Any subse-
quent reference to a segment whose corresponding segment register is loaded with 
a NULL selector, causes a general-protection exception (#GP) and no memory refer-
ence to the segment occurs.)

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix 
in the form of REX.W promotes operation to specify a source operand referencing an 
80-bit pointer (16-bit selector, 64-bit offset) in memory. Using a REX prefix in the 
form of REX.R permits access to additional registers (R8-R15). See the summary 
chart at the beginning of this section for encoding data and limits.

Operation

64-BIT_MODE
IF SS is loaded 

THEN 
IF SegmentSelector = NULL and ( (RPL = 3) or 

(RPL ≠ 3 and RPL ≠ CPL) )
THEN #GP(0);

ELSE IF descriptor is in non-canonical space
THEN #GP(0); FI;

ELSE IF Segment selector index is not within descriptor table limits
or segment selector RPL ≠ CPL
or access rights indicate nonwritable data segment
or DPL ≠ CPL

THEN #GP(selector); FI;
ELSE IF Segment marked not present

THEN #SS(selector); FI;
FI;
SS ← SegmentSelector(SRC);
SS ← SegmentDescriptor([SRC]);

ELSE IF attempt to load DS, or ES 
THEN #UD;

ELSE IF FS, or GS is loaded with non-NULL segment selector
THEN IF Segment selector index is not within descriptor table limits

or access rights indicate segment neither data nor readable code segment
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or segment is data or nonconforming-code segment 
and ( RPL > DPL or CPL > DPL)

THEN #GP(selector); FI;
ELSE IF Segment marked not present

THEN #NP(selector); FI;
FI;
SegmentRegister ← SegmentSelector(SRC) ;
SegmentRegister ← SegmentDescriptor([SRC]);

FI;
ELSE IF FS, or GS is loaded with a NULL selector:

THEN
SegmentRegister ← NULLSelector;
SegmentRegister(DescriptorValidBit) ← 0; FI; (* Hidden flag; 

not accessible by software *)
FI;
DEST ← Offset(SRC);

PREOTECTED MODE OR COMPATIBILITY MODE;
IF SS is loaded 

THEN 
IF SegementSelector = NULL 

THEN #GP(0);
ELSE IF Segment selector index is not within descriptor table limits

or segment selector RPL ≠ CPL
or access rights indicate nonwritable data segment
or DPL ≠ CPL

THEN #GP(selector); FI;
ELSE IF Segment marked not present

THEN #SS(selector); FI;
FI;
SS ← SegmentSelector(SRC);
SS ← SegmentDescriptor([SRC]);

ELSE IF DS, ES, FS, or GS is loaded with non-NULL segment selector
THEN IF Segment selector index is not within descriptor table limits

or access rights indicate segment neither data nor readable code segment
or segment is data or nonconforming-code segment 
and (RPL > DPL or CPL > DPL) 

THEN #GP(selector); FI;
ELSE IF Segment marked not present

THEN #NP(selector); FI;
FI;
SegmentRegister ← SegmentSelector(SRC) AND RPL;
SegmentRegister ← SegmentDescriptor([SRC]);

FI;
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ELSE IF DS, ES, FS, or GS is loaded with a NULL selector:
THEN

SegmentRegister ← NULLSelector;
SegmentRegister(DescriptorValidBit) ← 0; FI; (* Hidden flag; 

not accessible by software *)
FI;
DEST ← Offset(SRC);

Real-Address or Virtual-8086 Mode
SegmentRegister ← SegmentSelector(SRC); FI;
DEST ← Offset(SRC);

Flags Affected

None.

Protected Mode Exceptions
#UD If source operand is not a memory location.

If the LOCK prefix is used.
#GP(0) If a NULL selector is loaded into the SS register.

If a memory operand effective address is outside the CS, DS, 
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it 
contains a NULL segment selector.

#GP(selector) If the SS register is being loaded and any of the following is true: 
the segment selector index is not within the descriptor table 
limits, the segment selector RPL is not equal to CPL, the 
segment is a non-writable data segment, or DPL is not equal to 
CPL.
If the DS, ES, FS, or GS register is being loaded with a non-NULL 
segment selector and any of the following is true: the segment 
selector index is not within descriptor table limits, the segment 
is neither a data nor a readable code segment, or the segment is 
a data or nonconforming-code segment and both RPL and CPL 
are greater than DPL.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#SS(selector) If the SS register is being loaded and the segment is marked not 
present.

#NP(selector) If DS, ES, FS, or GS register is being loaded with a non-NULL 
segment selector and the segment is marked not present.

#PF(fault-code) If a page fault occurs.
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#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS 

segment limit.
#UD If source operand is not a memory location.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#UD If source operand is not a memory location.

If the LOCK prefix is used.
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a NULL selector is attempted to be loaded into the SS register 
in compatibility mode.
If a NULL selector is attempted to be loaded into the SS register 
in CPL3 and 64-bit mode.
If a NULL selector is attempted to be loaded into the SS register 
in non-CPL3 and 64-bit mode where its RPL is not equal to CPL.

#GP(Selector) If the FS, or GS register is being loaded with a non-NULL 
segment selector and any of the following is true: the segment 
selector index is not within descriptor table limits, the memory 
address of the descriptor is non-canonical, the segment is 
neither a data nor a readable code segment, or the segment is a 
data or nonconforming-code segment and both RPL and CPL are 
greater than DPL.
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If the SS register is being loaded and any of the following is true: 
the segment selector index is not within the descriptor table 
limits, the memory address of the descriptor is non-canonical, 
the segment selector RPL is not equal to CPL, the segment is a 
nonwritable data segment, or DPL is not equal to CPL.

#SS(0) If a memory operand effective address is non-canonical
#SS(Selector) If the SS register is being loaded and the segment is marked not 

present.
#NP(selector) If FS, or GS register is being loaded with a non-NULL segment 

selector and the segment is marked not present.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If source operand is not a memory location.

If the LOCK prefix is used.
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LEA—Load Effective Address

Instruction Operand Encoding

Description

Computes the effective address of the second operand (the source operand) and 
stores it in the first operand (destination operand). The source operand is a memory 
address (offset part) specified with one of the processors addressing modes; the 
destination operand is a general-purpose register. The address-size and operand-size 
attributes affect the action performed by this instruction, as shown in the following 
table. The operand-size attribute of the instruction is determined by the chosen 
register; the address-size attribute is determined by the attribute of the code 
segment.

Different assemblers may use different algorithms based on the size attribute and 
symbolic reference of the source operand.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

8D /r LEA r16,m RM Valid Valid Store effective address for 
m in register r16.

8D /r LEA r32,m RM Valid Valid Store effective address for 
m in register r32.

REX.W + 8D /r LEA r64,m RM Valid N.E. Store effective address for 
m in register r64. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

Table 3-63.  Non-64-bit Mode LEA Operation with Address and Operand Size 
Attributes

Operand Size Address Size Action Performed

16 16 16-bit effective address is calculated and stored in 
requested 16-bit register destination.

16 32 32-bit effective address is calculated. The lower 16 bits of 
the address are stored in the requested 16-bit register 
destination.

32 16 16-bit effective address is calculated. The 16-bit address is 
zero-extended and stored in the requested 32-bit register 
destination.

32 32 32-bit effective address is calculated and stored in the 
requested 32-bit register destination.
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In 64-bit mode, the instruction’s destination operand is governed by operand size 
attribute, the default operand size is 32 bits. Address calculation is governed by 
address size attribute, the default address size is 64-bits. In 64-bit mode, address 
size of 16 bits is not encodable. See Table 3-64.

Operation

IF OperandSize = 16 and AddressSize = 16
THEN 

DEST ← EffectiveAddress(SRC); (* 16-bit address *)
ELSE IF OperandSize = 16 and AddressSize = 32

THEN
temp ← EffectiveAddress(SRC); (* 32-bit address *)
DEST ← temp[0:15]; (* 16-bit address *)

FI;
ELSE IF OperandSize = 32 and AddressSize = 16

THEN
temp ← EffectiveAddress(SRC); (* 16-bit address *)
DEST ← ZeroExtend(temp); (* 32-bit address *)

FI;
ELSE IF OperandSize = 32 and AddressSize = 32

THEN 
DEST ← EffectiveAddress(SRC); (* 32-bit address *)

Table 3-64.  64-bit Mode LEA Operation with Address and Operand Size Attributes

Operand Size Address Size Action Performed

16 32 32-bit effective address is calculated (using 67H prefix). The 
lower 16 bits of the address are stored in the requested 
16-bit register destination (using 66H prefix).

16 64 64-bit effective address is calculated (default address size). 
The lower 16 bits of the address are stored in the requested 
16-bit register destination (using 66H prefix).

32 32 32-bit effective address is calculated (using 67H prefix) and 
stored in the requested 32-bit register destination.

32 64 64-bit effective address is calculated (default address size) 
and the lower 32 bits of the address are stored in the 
requested 32-bit register destination.

64 32 32-bit effective address is calculated (using 67H prefix), 
zero-extended to 64-bits, and stored in the requested 64-
bit register destination (using REX.W).

64 64 64-bit effective address is calculated (default address size) 
and all 64-bits of the address are stored in the requested 
64-bit register destination (using REX.W).
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FI;
ELSE IF OperandSize = 16 and AddressSize = 64

THEN 
temp ← EffectiveAddress(SRC); (* 64-bit address *)
DEST ← temp[0:15]; (* 16-bit address *)

FI;
ELSE IF OperandSize = 32 and AddressSize = 64

THEN 
temp ← EffectiveAddress(SRC); (* 64-bit address *)
DEST ← temp[0:31]; (* 16-bit address *)

FI;
ELSE IF OperandSize = 64 and AddressSize = 64

THEN 
DEST ← EffectiveAddress(SRC); (* 64-bit address *)

FI;
FI;

Flags Affected

None.

Protected Mode Exceptions
#UD If source operand is not a memory location.

If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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LEAVE—High Level Procedure Exit

Instruction Operand Encoding

Description

Releases the stack frame set up by an earlier ENTER instruction. The LEAVE instruc-
tion copies the frame pointer (in the EBP register) into the stack pointer register 
(ESP), which releases the stack space allocated to the stack frame. The old frame 
pointer (the frame pointer for the calling procedure that was saved by the ENTER 
instruction) is then popped from the stack into the EBP register, restoring the calling 
procedure’s stack frame. 

A RET instruction is commonly executed following a LEAVE instruction to return 
program control to the calling procedure.

See “Procedure Calls for Block-Structured Languages” in Chapter 7 of the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 1, for detailed infor-
mation on the use of the ENTER and LEAVE instructions.

In 64-bit mode, the instruction’s default operation size is 64 bits; 32-bit operation 
cannot be encoded. See the summary chart at the beginning of this section for 
encoding data and limits.

Operation

IF StackAddressSize = 32
THEN

ESP ← EBP;
ELSE IF StackAddressSize = 64

THEN RSP ← RBP; FI;
ELSE IF StackAddressSize = 16

THEN SP ← BP; FI;
FI;

IF OperandSize = 32

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

C9 LEAVE NP Valid Valid Set SP to BP, then pop BP.

C9 LEAVE NP N.E. Valid Set ESP to EBP, then pop 
EBP.

C9 LEAVE NP Valid N.E. Set RSP to RBP, then pop 
RBP.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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THEN EBP ← Pop();
ELSE IF OperandSize = 64

THEN RBP ← Pop(); FI;
ELSE IF OperandSize = 16

THEN BP ← Pop(); FI;
FI;

Flags Affected

None.

Protected Mode Exceptions
#SS(0) If the EBP register points to a location that is not within the 

limits of the current stack segment.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If the EBP register points to a location outside of the effective 

address space from 0 to FFFFH.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If the EBP register points to a location outside of the effective 

address space from 0 to FFFFH.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If the stack address is in a non-canonical form.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
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LFENCE—Load Fence

Instruction Operand Encoding

Description

Performs a serializing operation on all load-from-memory instructions that were 
issued prior the LFENCE instruction. Specifically, LFENCE does not execute until all 
prior instructions have completed locally, and no later instruction begins execution 
until LFENCE completes. In particular, an instruction that loads from memory and 
that precedes an LFENCE receives data from memory prior to completion of the 
LFENCE. (An LFENCE that follows an instruction that stores to memory might 
complete before the data being stored have become globally visible.) Instructions 
following an LFENCE may be fetched from memory before the LFENCE, but they will 
not execute until the LFENCE completes. 

Weakly ordered memory types can be used to achieve higher processor performance 
through such techniques as out-of-order issue and speculative reads. The degree to 
which a consumer of data recognizes or knows that the data is weakly ordered varies 
among applications and may be unknown to the producer of this data. The LFENCE 
instruction provides a performance-efficient way of ensuring load ordering between 
routines that produce weakly-ordered results and routines that consume that data.

Processors are free to fetch and cache data speculatively from regions of system 
memory that use the WB, WC, and WT memory types. This speculative fetching can 
occur at any time and is not tied to instruction execution. Thus, it is not ordered with 
respect to executions of the LFENCE instruction; data can be brought into the caches 
speculatively just before, during, or after the execution of an LFENCE instruction.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

Wait_On_Following_Instructions_Until(preceding_instructions_complete);

Intel C/C++ Compiler Intrinsic Equivalent

void _mm_lfence(void)

Exceptions (All Modes of Operation)
#UD If CPUID.01H:EDX.SSE2[bit 26] = 0.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F AE /5 LFENCE NP Valid Valid Serializes load operations.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
3-588 Vol. 2A LFENCE—Load Fence



INSTRUCTION SET REFERENCE, A-L
If the LOCK prefix is used.
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LGDT/LIDT—Load Global/Interrupt Descriptor Table Register

Instruction Operand Encoding

Description

Loads the values in the source operand into the global descriptor table register 
(GDTR) or the interrupt descriptor table register (IDTR). The source operand speci-
fies a 6-byte memory location that contains the base address (a linear address) and 
the limit (size of table in bytes) of the global descriptor table (GDT) or the interrupt 
descriptor table (IDT). If operand-size attribute is 32 bits, a 16-bit limit (lower 2 
bytes of the 6-byte data operand) and a 32-bit base address (upper 4 bytes of the 
data operand) are loaded into the register. If the operand-size attribute is 16 bits, 
a 16-bit limit (lower 2 bytes) and a 24-bit base address (third, fourth, and fifth byte) 
are loaded. Here, the high-order byte of the operand is not used and the high-order 
byte of the base address in the GDTR or IDTR is filled with zeros.

The LGDT and LIDT instructions are used only in operating-system software; they are 
not used in application programs. They are the only instructions that directly load a 
linear address (that is, not a segment-relative address) and a limit in protected 
mode. They are commonly executed in real-address mode to allow processor initial-
ization prior to switching to protected mode.

In 64-bit mode, the instruction’s operand size is fixed at 8+2 bytes (an 8-byte base 
and a 2-byte limit). See the summary chart at the beginning of this section for 
encoding data and limits.

See “SGDT—Store Global Descriptor Table Register” in Chapter 4, Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 2B, for information on 
storing the contents of the GDTR and IDTR.

Operation

IF Instruction is LIDT
THEN

IF OperandSize = 16
THEN 

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 01 /2 LGDT m16&32 M N.E. Valid Load m into GDTR.

0F 01 /3 LIDT m16&32 M N.E. Valid Load m into IDTR.

0F 01 /2 LGDT m16&64 M Valid N.E. Load m into GDTR.

0F 01 /3 LIDT m16&64 M Valid N.E. Load m into IDTR.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA
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IDTR(Limit) ← SRC[0:15];
IDTR(Base) ← SRC[16:47] AND 00FFFFFFH; 

ELSE IF 32-bit Operand Size
THEN

IDTR(Limit) ← SRC[0:15];
IDTR(Base) ← SRC[16:47]; 

FI;
ELSE IF 64-bit Operand Size (* In 64-Bit Mode *)

THEN
IDTR(Limit) ← SRC[0:15];
IDTR(Base) ← SRC[16:79]; 

FI;
FI;

ELSE (* Instruction is LGDT *)
IF OperandSize = 16

THEN 
GDTR(Limit) ← SRC[0:15];
GDTR(Base) ← SRC[16:47] AND 00FFFFFFH; 

ELSE IF 32-bit Operand Size
THEN

GDTR(Limit) ← SRC[0:15];
GDTR(Base) ← SRC[16:47]; 

FI;
ELSE IF 64-bit Operand Size (* In 64-Bit Mode *)

THEN
GDTR(Limit) ← SRC[0:15];
GDTR(Base) ← SRC[16:79]; 

FI;
FI; 

FI;

Flags Affected

None.

Protected Mode Exceptions
#UD If source operand is not a memory location.

If the LOCK prefix is used.
#GP(0) If the current privilege level is not 0.

If a memory operand effective address is outside the CS, DS, 
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it 
contains a NULL segment selector.
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#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#PF(fault-code) If a page fault occurs.

Real-Address Mode Exceptions
#UD If source operand is not a memory location.

If the LOCK prefix is used.
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS 

segment limit.

Virtual-8086 Mode Exceptions
#UD If source operand is not a memory location.

If the LOCK prefix is used.
#GP(0) The LGDT and LIDT instructions are not recognized in virtual-

8086 mode.
#GP If the current privilege level is not 0.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the current privilege level is not 0.

If the memory address is in a non-canonical form.
#UD If source operand is not a memory location.

If the LOCK prefix is used.
#PF(fault-code) If a page fault occurs.
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LLDT—Load Local Descriptor Table Register

Instruction Operand Encoding

Description

Loads the source operand into the segment selector field of the local descriptor table 
register (LDTR). The source operand (a general-purpose register or a memory loca-
tion) contains a segment selector that points to a local descriptor table (LDT). After 
the segment selector is loaded in the LDTR, the processor uses the segment selector 
to locate the segment descriptor for the LDT in the global descriptor table (GDT). It 
then loads the segment limit and base address for the LDT from the segment 
descriptor into the LDTR. The segment registers DS, ES, SS, FS, GS, and CS are not 
affected by this instruction, nor is the LDTR field in the task state segment (TSS) for 
the current task.

If bits 2-15 of the source operand are 0, LDTR is marked invalid and the LLDT instruc-
tion completes silently. However, all subsequent references to descriptors in the LDT 
(except by the LAR, VERR, VERW or LSL instructions) cause a general protection 
exception (#GP).

The operand-size attribute has no effect on this instruction. 

The LLDT instruction is provided for use in operating-system software; it should not 
be used in application programs. This instruction can only be executed in protected 
mode or 64-bit mode.

In 64-bit mode, the operand size is fixed at 16 bits.

Operation

IF SRC(Offset) > descriptor table limit 
THEN #GP(segment selector); FI;

IF segment selector is valid

Read segment descriptor;

IF SegmentDescriptor(Type) ≠ LDT 
THEN #GP(segment selector); FI;

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 00 /2 LLDT r/m16 M Valid Valid Load segment selector 
r/m16 into LDTR.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA
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IF segment descriptor is not present 
THEN #NP(segment selector); FI;

LDTR(SegmentSelector) ← SRC;
LDTR(SegmentDescriptor) ← GDTSegmentDescriptor;

ELSE LDTR ← INVALID
FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If a memory operand effective address is outside the CS, DS, 
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment 
selector.

#GP(selector) If the selector operand does not point into the Global Descriptor 
Table or if the entry in the GDT is not a Local Descriptor Table.
Segment selector is beyond GDT limit.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#NP(selector) If the LDT descriptor is not present.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD The LLDT instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The LLDT instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the current privilege level is not 0.

If the memory address is in a non-canonical form.
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#GP(selector) If the selector operand does not point into the Global Descriptor 
Table or if the entry in the GDT is not a Local Descriptor Table.
Segment selector is beyond GDT limit.

#NP(selector) If the LDT descriptor is not present.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.
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LMSW—Load Machine Status Word

Instruction Operand Encoding

Description

Loads the source operand into the machine status word, bits 0 through 15 of register 
CR0. The source operand can be a 16-bit general-purpose register or a memory loca-
tion. Only the low-order 4 bits of the source operand (which contains the PE, MP, EM, 
and TS flags) are loaded into CR0. The PG, CD, NW, AM, WP, NE, and ET flags of CR0 
are not affected. The operand-size attribute has no effect on this instruction.

If the PE flag of the source operand (bit 0) is set to 1, the instruction causes the 
processor to switch to protected mode. While in protected mode, the LMSW instruc-
tion cannot be used to clear the PE flag and force a switch back to real-address mode.

The LMSW instruction is provided for use in operating-system software; it should not 
be used in application programs. In protected or virtual-8086 mode, it can only be 
executed at CPL 0.

This instruction is provided for compatibility with the Intel 286 processor; programs 
and procedures intended to run on the Pentium 4, Intel Xeon, P6 family, Pentium, 
Intel486, and Intel386 processors should use the MOV (control registers) instruction 
to load the whole CR0 register. The MOV CR0 instruction can be used to set and clear 
the PE flag in CR0, allowing a procedure or program to switch between protected and 
real-address modes.

This instruction is a serializing instruction.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode. Note 
that the operand size is fixed at 16 bits.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 25 of 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C, for 
more information about the behavior of this instruction in VMX non-root operation.

Operation

CR0[0:3] ← SRC[0:3];

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 01 /6 LMSW r/m16 M Valid Valid Loads r/m16 in machine 
status word of CR0.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA
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Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If a memory operand effective address is outside the CS, DS, 
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it 
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the current privilege level is not 0.

If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.
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LOCK—Assert LOCK# Signal Prefix

Instruction Operand Encoding

Description

Causes the processor’s LOCK# signal to be asserted during execution of the accom-
panying instruction (turns the instruction into an atomic instruction). In a multipro-
cessor environment, the LOCK# signal ensures that the processor has exclusive use 
of any shared memory while the signal is asserted.

Note that, in later Intel 64 and IA-32 processors (including the Pentium 4, Intel Xeon, 
and P6 family processors), locking may occur without the LOCK# signal being 
asserted. See the “IA-32 Architecture Compatibility” section below.

The LOCK prefix can be prepended only to the following instructions and only to those 
forms of the instructions where the destination operand is a memory operand: ADD, 
ADC, AND, BTC, BTR, BTS, CMPXCHG, CMPXCH8B, CMPXCHG16B, DEC, INC, NEG, 
NOT, OR, SBB, SUB, XOR, XADD, and XCHG. If the LOCK prefix is used with one of 
these instructions and the source operand is a memory operand, an undefined 
opcode exception (#UD) may be generated. An undefined opcode exception will also 
be generated if the LOCK prefix is used with any instruction not in the above list. The 
XCHG instruction always asserts the LOCK# signal regardless of the presence or 
absence of the LOCK prefix.

The LOCK prefix is typically used with the BTS instruction to perform a read-modify-
write operation on a memory location in shared memory environment.

The integrity of the LOCK prefix is not affected by the alignment of the memory field. 
Memory locking is observed for arbitrarily misaligned fields.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

Beginning with the P6 family processors, when the LOCK prefix is prefixed to an 
instruction and the memory area being accessed is cached internally in the 
processor, the LOCK# signal is generally not asserted. Instead, only the processor’s 

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

F0 LOCK NP Valid Valid Asserts LOCK# signal for 
duration of the 
accompanying instruction.

NOTES:
* See IA-32 Architecture Compatibility section below.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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cache is locked. Here, the processor’s cache coherency mechanism ensures that the 
operation is carried out atomically with regards to memory. See “Effects of a Locked 
Operation on Internal Processor Caches” in Chapter 8 of Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3A, the for more information on 
locking of caches.

Operation

AssertLOCK#(DurationOfAccompaningInstruction);

Flags Affected

None.

Protected Mode Exceptions
#UD If the LOCK prefix is used with an instruction not listed: ADD, 

ADC, AND, BTC, BTR, BTS, CMPXCHG, CMPXCH8B, 
CMPXCHG16B, DEC, INC, NEG, NOT, OR, SBB, SUB, XOR, XADD, 
XCHG.
Other exceptions can be generated by the instruction when the 
LOCK prefix is applied.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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LODS/LODSB/LODSW/LODSD/LODSQ—Load String

Instruction Operand Encoding

Description

Loads a byte, word, or doubleword from the source operand into the AL, AX, or EAX 
register, respectively. The source operand is a memory location, the address of which 

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

AC LODS m8 NP Valid Valid For legacy mode, Load byte 
at address DS:(E)SI into AL. 
For 64-bit mode load byte 
at address (R)SI into AL.

AD LODS m16 NP Valid Valid For legacy mode, Load word 
at address DS:(E)SI into AX. 
For 64-bit mode load word 
at address (R)SI into AX.

AD LODS m32 NP Valid Valid For legacy mode, Load 
dword at address DS:(E)SI 
into EAX. For 64-bit mode 
load dword at address (R)SI 
into EAX.

REX.W + AD LODS m64 NP Valid N.E. Load qword at address (R)SI 
into RAX.

AC LODSB NP Valid Valid For legacy mode, Load byte 
at address DS:(E)SI into AL. 
For 64-bit mode load byte 
at address (R)SI into AL.

AD LODSW NP Valid Valid For legacy mode, Load word 
at address DS:(E)SI into AX. 
For 64-bit mode load word 
at address (R)SI into AX.

AD LODSD NP Valid Valid For legacy mode, Load 
dword at address DS:(E)SI 
into EAX. For 64-bit mode 
load dword at address (R)SI 
into EAX.

REX.W + AD LODSQ NP Valid N.E. Load qword at address (R)SI 
into RAX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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is read from the DS:ESI or the DS:SI registers (depending on the address-size 
attribute of the instruction, 32 or 16, respectively). The DS segment may be over-
ridden with a segment override prefix.

At the assembly-code level, two forms of this instruction are allowed: the “explicit-
operands” form and the “no-operands” form. The explicit-operands form (specified 
with the LODS mnemonic) allows the source operand to be specified explicitly. Here, 
the source operand should be a symbol that indicates the size and location of the 
source value. The destination operand is then automatically selected to match the 
size of the source operand (the AL register for byte operands, AX for word operands, 
and EAX for doubleword operands). This explicit-operands form is provided to allow 
documentation; however, note that the documentation provided by this form can be 
misleading. That is, the source operand symbol must specify the correct type (size) 
of the operand (byte, word, or doubleword), but it does not have to specify the 
correct location. The location is always specified by the DS:(E)SI registers, which 
must be loaded correctly before the load string instruction is executed.

The no-operands form provides “short forms” of the byte, word, and doubleword 
versions of the LODS instructions. Here also DS:(E)SI is assumed to be the source 
operand and the AL, AX, or EAX register is assumed to be the destination operand. 
The size of the source and destination operands is selected with the mnemonic: 
LODSB (byte loaded into register AL), LODSW (word loaded into AX), or LODSD 
(doubleword loaded into EAX).

After the byte, word, or doubleword is transferred from the memory location into the 
AL, AX, or EAX register, the (E)SI register is incremented or decremented automati-
cally according to the setting of the DF flag in the EFLAGS register. (If the DF flag is 
0, the (E)SI register is incremented; if the DF flag is 1, the ESI register is decre-
mented.) The (E)SI register is incremented or decremented by 1 for byte operations, 
by 2 for word operations, or by 4 for doubleword operations.

In 64-bit mode, use of the REX.W prefix promotes operation to 64 bits. LODS/LODSQ 
load the quadword at address (R)SI into RAX. The (R)SI register is then incremented 
or decremented automatically according to the setting of the DF flag in the EFLAGS 
register. 

The LODS, LODSB, LODSW, and LODSD instructions can be preceded by the REP 
prefix for block loads of ECX bytes, words, or doublewords. More often, however, 
these instructions are used within a LOOP construct because further processing of 
the data moved into the register is  usually necessary before the next transfer can be 
made. See “REP/REPE/REPZ /REPNE/REPNZ—Repeat String Operation Prefix” in 
Chapter 4 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2B, for a description of the REP prefix.

Operation

IF AL ← SRC; (* Byte load *)
THEN AL ← SRC; (* Byte load *)

IF DF = 0
THEN (E)SI ← (E)SI + 1; 
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ELSE (E)SI ← (E)SI – 1; 
FI;

ELSE IF AX ← SRC; (* Word load *)
THEN IF DF = 0

THEN (E)SI ← (E)SI + 2; 
ELSE (E)SI ← (E)SI – 2; 

IF;
FI;

ELSE IF EAX ← SRC; (* Doubleword load *)
THEN IF DF = 0

THEN (E)SI ← (E)SI + 4; 
ELSE (E)SI ← (E)SI – 4; 

FI;
FI;

ELSE IF RAX ← SRC; (* Quadword load *)
THEN IF DF = 0

THEN (R)SI ← (R)SI + 8; 
ELSE (R)SI ← (R)SI – 8; 

FI;
FI;

FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS 

segment limit.
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#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
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LOOP/LOOPcc—Loop According to ECX Counter

Instruction Operand Encoding

Description

Performs a loop operation using the RCX, ECX or CX register as a counter (depending 
on whether address size is 64 bits, 32 bits, or 16 bits). Note that the LOOP instruction 
ignores REX.W; but 64-bit address size can be over-ridden using a 67H prefix.

Each time the LOOP instruction is executed, the count register is decremented, then 
checked for 0. If the count is 0, the loop is terminated and program execution 
continues with the instruction following the LOOP instruction. If the count is not zero, 
a near jump is performed to the destination (target) operand, which is presumably 
the instruction at the beginning of the loop.

The target instruction is specified with a relative offset (a signed offset relative to the 
current value of the instruction pointer in the IP/EIP/RIP register). This offset is 
generally specified as a label in assembly code, but at the machine code level, it is 
encoded as a signed, 8-bit immediate value, which is added to the instruction pointer. 
Offsets of –128 to +127 are allowed with this instruction.

Some forms of the loop instruction (LOOPcc) also accept the ZF flag as a condition for 
terminating the loop before the count reaches zero. With these forms of the instruc-
tion, a condition code (cc) is associated with each instruction to indicate the condition 
being tested for. Here, the LOOPcc instruction itself does not affect the state of the ZF 
flag; the ZF flag is changed by other instructions in the loop.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

E2 cb LOOP rel8 D Valid Valid Decrement count; jump 
short if count ≠ 0.

E1 cb LOOPE rel8 D Valid Valid Decrement count; jump 
short if count ≠ 0 and ZF = 
1.

E0 cb LOOPNE rel8 D Valid Valid Decrement count; jump 
short if count ≠ 0 and ZF = 
0.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

D Offset NA NA NA
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Operation

IF (AddressSize = 32)
THEN Count is ECX;

ELSE IF (AddressSize = 64)
Count is RCX;

ELSE Count is CX; 
FI;

Count ← Count – 1;

IF Instruction is not LOOP
THEN

IF (Instruction ← LOOPE) or (Instruction ← LOOPZ)
THEN IF (ZF = 1) and (Count ≠ 0)

THEN BranchCond ← 1;
ELSE BranchCond ← 0;

FI;
ELSE (Instruction = LOOPNE) or (Instruction = LOOPNZ)

IF (ZF = 0 ) and (Count ≠ 0)
THEN BranchCond ← 1;
ELSE BranchCond ← 0;

FI;
FI;

ELSE (* Instruction = LOOP *)
IF (Count ≠ 0)

THEN BranchCond ← 1;
ELSE BranchCond ← 0;

FI;
FI;

IF BranchCond = 1
THEN

IF OperandSize = 32
THEN EIP ← EIP + SignExtend(DEST);
ELSE IF OperandSize = 64

THEN RIP ← RIP + SignExtend(DEST);
FI;

ELSE IF OperandSize = 16
THEN EIP ← EIP AND 0000FFFFH;
FI;

ELSE IF OperandSize = (32 or 64)
THEN IF (R/E)IP < CS.Base or (R/E)IP > CS.Limit

#GP; FI;
FI;
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FI;
ELSE

Terminate loop and continue program execution at (R/E)IP;
FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the offset being jumped to is beyond the limits of the CS 

segment.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If the offset being jumped to is beyond the limits of the CS 

segment or is outside of the effective address space from 0 to 
FFFFH. This condition can occur if a 32-bit address size override 
prefix is used.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the offset being jumped to is in a non-canonical form.
#UD If the LOCK prefix is used.
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LSL—Load Segment Limit

Instruction Operand Encoding

Description

Loads the unscrambled segment limit from the segment descriptor specified with the 
second operand (source operand) into the first operand (destination operand) and 
sets the ZF flag in the EFLAGS register. The source operand (which can be a register 
or a memory location) contains the segment selector for the segment descriptor 
being accessed. The destination operand is a general-purpose register.

The processor performs access checks as part of the loading process. Once loaded in 
the destination register, software can compare the segment limit with the offset of a 
pointer. 

The segment limit is a 20-bit value contained in bytes 0 and 1 and in the first 4 bits 
of byte 6 of the segment descriptor. If the descriptor has a byte granular segment 
limit (the granularity flag is set to 0), the destination operand is loaded with a byte 
granular value (byte limit). If the descriptor has a page granular segment limit (the 
granularity flag is set to 1), the LSL instruction will translate the page granular limit 
(page limit) into a byte limit before loading it into the destination operand. The trans-
lation is performed by shifting the 20-bit “raw” limit left 12 bits and filling the low-
order 12 bits with 1s.

When the operand size is 32 bits, the 32-bit byte limit is stored in the destination 
operand. When the operand size is 16 bits, a valid 32-bit limit is computed; however, 
the upper 16 bits are truncated and only the low-order 16 bits are loaded into the 
destination operand.

This instruction performs the following checks before it loads the segment limit into 
the destination register: 
• Checks that the segment selector is not NULL.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 03 /r LSL r16, r16/m16 RM Valid Valid Load: r16 ← segment limit, 
selector r16/m16.

0F 03 /r LSL r32, r32/m16* RM Valid Valid Load: r32 ← segment limit, 
selector r32/m16.

REX.W + 0F 03 
/r

LSL r64, r32/m16* RM Valid Valid Load: r64 ← segment limit, 
selector r32/m16

NOTES:
* For all loads (regardless of destination sizing), only bits 16-0 are used. Other bits are ignored.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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• Checks that the segment selector points to a descriptor that is within the limits of 
the GDT or LDT being accessed

• Checks that the descriptor type is valid for this instruction. All code and data 
segment descriptors are valid for (can be accessed with) the LSL instruction. The 
valid special segment and gate descriptor types are given in the following table. 

• If the segment is not a conforming code segment, the instruction checks that the 
specified segment descriptor is visible at the CPL (that is, if the CPL and the RPL 
of the segment selector are less than or equal to the DPL of the segment 
selector).

If the segment descriptor cannot be accessed or is an invalid type for the instruction, 
the ZF flag is cleared and no value is loaded in the destination operand.

Table 3-65.  Segment and Gate Descriptor Types

Type Protected Mode IA-32e Mode

Name Valid Name Valid

0 Reserved No Upper 8 byte of a 16-
Byte descriptor

Yes

1 Available 16-bit TSS Yes Reserved No

2 LDT Yes LDT Yes

3 Busy 16-bit TSS Yes Reserved No

4 16-bit call gate No Reserved No

5 16-bit/32-bit task 
gate

No Reserved No

6 16-bit interrupt gate No Reserved No

7 16-bit trap gate No Reserved No

8 Reserved No Reserved No

9 Available 32-bit TSS Yes 64-bit TSS Yes

A Reserved No Reserved No

B Busy 32-bit TSS Yes Busy 64-bit TSS Yes

C 32-bit call gate No 64-bit call gate No

D Reserved No Reserved No

E 32-bit interrupt gate No 64-bit interrupt gate No

F 32-bit trap gate No 64-bit trap gate No
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Operation

IF SRC(Offset) > descriptor table limit
THEN ZF ← 0; FI;

Read segment descriptor;

IF SegmentDescriptor(Type) ≠ conforming code segment
and (CPL > DPL) OR (RPL > DPL)
or Segment type is not valid for instruction

THEN
ZF ← 0;

ELSE
temp ← SegmentLimit([SRC]);
IF (G ← 1)

THEN temp ← ShiftLeft(12, temp) OR 00000FFFH;
ELSE IF OperandSize = 32 

THEN DEST ← temp; FI;
ELSE IF OperandSize = 64 (* REX.W used *)

THEN DEST (* Zero-extended *) ← temp; FI;
ELSE (* OperandSize = 16 *)

DEST ← temp AND FFFFH;
FI;

FI;

Flags Affected

The ZF flag is set to 1 if the segment limit is loaded successfully; otherwise, it is set 
to 0.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it 
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and the memory operand effec-

tive address is unaligned while the current privilege level is 3. 
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD The LSL instruction cannot be executed in real-address mode.
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Virtual-8086 Mode Exceptions
#UD The LSL instruction cannot be executed in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If the memory operand effective address referencing the SS 

segment is in a non-canonical form.
#GP(0) If the memory operand effective address is in a non-canonical 

form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and the memory operand effec-

tive address is unaligned while the current privilege level is 3.
#UD If the LOCK prefix is used.
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LTR—Load Task Register

Instruction Operand Encoding

Description

Loads the source operand into the segment selector field of the task register. The 
source operand (a general-purpose register or a memory location) contains a 
segment selector that points to a task state segment (TSS). After the segment 
selector is loaded in the task register, the processor uses the segment selector to 
locate the segment descriptor for the TSS in the global descriptor table (GDT). It then 
loads the segment limit and base address for the TSS from the segment descriptor 
into the task register. The task pointed to by the task register is marked busy, but a 
switch to the task does not occur.

The LTR instruction is provided for use in operating-system software; it should not be 
used in application programs. It can only be executed in protected mode when the 
CPL is 0. It is commonly used in initialization code to establish the first task to be 
executed.

The operand-size attribute has no effect on this instruction. 

In 64-bit mode, the operand size is still fixed at 16 bits. The instruction references a 
16-byte descriptor to load the 64-bit base.

Operation

IF SRC is a NULL selector
THEN #GP(0);

IF SRC(Offset) > descriptor table limit OR IF SRC(type) ≠ global
THEN #GP(segment selector); FI;

Read segment descriptor;

IF segment descriptor is not for an available TSS 
THEN #GP(segment selector); FI;

IF segment descriptor is not present 
THEN #NP(segment selector); FI;

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 00 /3 LTR r/m16 M Valid Valid Load r/m16 into task 
register.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA
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TSSsegmentDescriptor(busy) ← 1; 
(* Locked read-modify-write operation on the entire descriptor when setting busy flag *)

TaskRegister(SegmentSelector) ← SRC;
TaskRegister(SegmentDescriptor) ← TSSSegmentDescriptor;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If a memory operand effective address is outside the CS, DS, 
ES, FS, or GS segment limit.
If the source operand contains a NULL segment selector.
If the DS, ES, FS, or GS register is used to access memory and it 
contains a NULL segment selector.

#GP(selector) If the source selector points to a segment that is not a TSS or to 
one for a task that is already busy.
If the selector points to LDT or is beyond the GDT limit.

#NP(selector) If the TSS is marked not present.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD The LTR instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD  The LTR instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the current privilege level is not 0.

If the memory address is in a non-canonical form.
If the source operand contains a NULL segment selector.
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#GP(selector) If the source selector points to a segment that is not a TSS or to 
one for a task that is already busy.
If the selector points to LDT or is beyond the GDT limit.
If the descriptor type of the upper 8-byte of the 16-byte 
descriptor is non-zero.

#NP(selector) If the TSS is marked not present.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.
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CHAPTER 4
INSTRUCTION SET REFERENCE, M-Z

4.1 IMM8 CONTROL BYTE OPERATION FOR PCMPESTRI / 
PCMPESTRM / PCMPISTRI / PCMPISTRM

The notations introduced in this section are referenced in the reference pages of 
PCMPESTRI, PCMPESTRM, PCMPISTRI, PCMPISTRM. The operation of the immediate 
control byte is common to these four string text processing instructions of SSE4.2. 
This section describes the common operations. 

4.1.1 General Description
The operation of PCMPESTRI, PCMPESTRM, PCMPISTRI, PCMPISTRM is defined by 
the combination of the respective opcode and the interpretation of an immediate 
control byte that is part of the instruction encoding.

The opcode controls the relationship of input bytes/words to each other (determines 
whether the inputs terminated strings or whether lengths are expressed explicitly) as 
well as the desired output (index or mask).

The Imm8 Control Byte for PCMPESTRM/PCMPESTRI/PCMPISTRM/PCMPISTRI 
encodes a significant amount of programmable control over the functionality of those 
instructions.  Some functionality is unique to each instruction while some is common 
across some or all of the four instructions. This section describes functionality which 
is common across the four instructions.

The arithmetic flags (ZF, CF, SF, OF, AF, PF) are set as a result of these instructions. 
However, the meanings of the flags have been overloaded from their typical mean-
ings in order to provide additional information regarding the relationships of the two 
inputs.

PCMPxSTRx instructions perform arithmetic comparisons between all possible pairs 
of bytes or words, one from each packed input source operand. The boolean results 
of those comparisons are then aggregated in order to produce meaningful results.  
The Imm8 Control Byte is used to affect the interpretation of individual input 
elements as well as control the arithmetic comparisons used and the specific aggre-
gation scheme. 

Specifically, the Imm8 Control Byte consists of bit fields that control the following 
attributes:
• Source data format — Byte/word data element granularity, signed or unsigned 

elements
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• Aggregation operation — Encodes the mode of per-element comparison 
operation and the aggregation of per-element comparisons into an intermediate 
result

• Polarity — Specifies intermediate processing to be performed on the interme-
diate result

• Output selection — Specifies final operation to produce the output (depending 
on index or mask) from the intermediate result

4.1.2 Source Data Format

If the Imm8 Control Byte has bit[0] cleared, each source contains 16 packed bytes.  
If the bit is set each source contains 8 packed words.  If the Imm8 Control Byte has 
bit[1] cleared, each input contains unsigned data.  If the bit is set each source 
contains signed data. 

Table 4-1.  Source Data Format

Imm8[1:0] Meaning Description

00b Unsigned bytes Both 128-bit sources are treated as packed, unsigned 
bytes.

01b Unsigned words Both 128-bit sources are treated as packed, unsigned 
words.

10b Signed bytes Both 128-bit sources are treated as packed, signed bytes.

11b Signed words Both 128-bit sources are treated as packed, signed words.
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4.1.3 Aggregation Operation

All 256 (64) possible comparisons are always performed.  The individual Boolean 
results of those comparisons are referred by “BoolRes[Reg/Mem element index,  Reg 
element index].” Comparisons evaluating to “True” are represented with a 1, False 
with a 0 (positive logic).  The initial results are then aggregated into a 16-bit (8-bit)  
intermediate result (IntRes1) using one of the modes described in the table below, as 
determined by Imm8 Control Byte bit[3:2]. 

Table 4-2.  Aggregation Operation

Imm8[3:2] Mode Comparison

00b Equal any The arithmetic comparison is “equal.”

01b Ranges Arithmetic comparison is “greater than or equal” between 
even indexed bytes/words of reg and each byte/word of 
reg/mem. 

Arithmetic comparison is “less than or equal” between odd 
indexed bytes/words of reg and each byte/word of reg/mem.

(reg/mem[m] >= reg[n] for n = even, reg/mem[m] <= reg[n] 
for n = odd) 

10b Equal each The arithmetic comparison is “equal.”

11b Equal ordered The arithmetic comparison is “equal.”
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See Section 4.1.6 for a description of the overrideIfDataInvalid() function used in 
Table 4-3.

4.1.4 Polarity
IntRes1 may then be further modified by performing a 1’s complement, according to 
the value of the Imm8 Control Byte bit[4]. Optionally, a mask may be used such that 
only those IntRes1 bits which correspond to “valid” reg/mem input elements are 
complemented (note that the definition of a valid input element is dependant on the 
specific opcode and is defined in each opcode’s description). The result of the 
possible negation is referred to as IntRes2.

Table 4-3.  Aggregation Operation 

Mode Pseudocode

Equal any

(find characters from a set)

UpperBound = imm8[0] ? 7 : 15;

IntRes1 = 0;

For j = 0 to UpperBound, j++

For i = 0 to UpperBound, i++

IntRes1[j] OR= overrideIfDataInvalid(BoolRes[j,i])

Ranges

(find characters from ranges)

UpperBound = imm8[0] ? 7 : 15;

IntRes1 = 0;

For j = 0 to UpperBound, j++

For i = 0 to UpperBound, i+=2

IntRes1[j] OR= (overrideIfDataInvalid(BoolRes[j,i]) AND 
overrideIfDataInvalid(BoolRes[j,i+1]))

Equal each

(string compare)

UpperBound = imm8[0] ? 7 : 15;

IntRes1 = 0;

For i = 0 to UpperBound, i++

IntRes1[i] = overrideIfDataInvalid(BoolRes[i,i])

Equal ordered

(substring search)

UpperBound = imm8[0] ? 7 :15;

IntRes1 = imm8[0] ? 0xFF : 0xFFFF

For j = 0 to UpperBound, j++

For i = 0 to UpperBound-j, k=j to UpperBound, k++, i++

IntRes1[j] AND= overrideIfDataInvalid(BoolRes[k,i])
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4.1.5 Output Selection

For PCMPESTRI/PCMPISTRI, the Imm8 Control Byte bit[6] is used to determine if the 
index is of the least significant or most significant bit of IntRes2.

Specifically for PCMPESTRM/PCMPISTRM, the Imm8 Control Byte bit[6] is used  to 
determine if the mask is a 16 (8) bit mask or a 128 bit byte/word mask.

Table 4-4.  Polarity

Imm8[5:4] Operation Description

00b Positive Polarity (+) IntRes2 = IntRes1

01b Negative Polarity (-) IntRes2 = -1 XOR IntRes1

10b Masked (+) IntRes2 = IntRes1

11b Masked (-) IntRes2[i] = IntRes1[i] if reg/mem[i] invalid, else = 
~IntRes1[i]

Table 4-5.  Ouput Selection

Imm8[6] Operation Description

0b Least significant index The index returned to ECX is of the least significant set bit in 
IntRes2.

1b Most significant index The index returned to ECX is of the most significant set bit in 
IntRes2.

Table 4-6.  Output Selection

Imm8[6] Operation Description

0b Bit mask IntRes2 is returned as the mask to the least significant bits of 
XMM0 with zero extension to 128 bits.

1b Byte/word mask IntRes2 is expanded into a byte/word mask (based on imm8[1]) 
and placed in XMM0.  The expansion is performed by replicating 
each bit into all of the bits of the byte/word of the same index.
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4.1.6 Valid/Invalid Override of Comparisons
PCMPxSTRx instructions allow for the possibility that an end-of-string (EOS) situation 
may occur within the 128-bit packed data value (see the instruction descriptions 
below for details). Any data elements on either source that are determined to be past 
the EOS are considered to be invalid, and the treatment of invalid data within a 
comparison pair varies depending on the aggregation function being performed.

In general, the individual comparison result for each element pair BoolRes[i.j] can be 
forced true or false if one or more elements in the pair are invalid. See Table 4-7.

Table 4-7.  Comparison Result for Each Element Pair BoolRes[i.j]

xmm1 
byte/ word

xmm2/ 
m128 
byte/word

Imm8[3:2] = 
00b
(equal any)

Imm8[3:2] = 
01b 
(ranges)

Imm8[3:2] = 
10b 
(equal each)

Imm8[3:2] = 11b 
(equal ordered)

Invalid Invalid Force false Force false Force true Force true

Invalid Valid Force false Force false Force false Force true

Valid Invalid Force false Force false Force false Force false

Valid Valid Do not force Do not force Do not force Do not force
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4.1.7 Summary of Im8 Control byte

Table 4-8.  Summary of Imm8 Control Byte 

Imm8 Description

-------0b 128-bit sources treated as 16 packed bytes.

-------1b 128-bit sources treated as 8 packed words.

------0-b Packed bytes/words are unsigned.

------1-b Packed bytes/words are signed.

----00--b Mode is equal any.

----01--b Mode is ranges.

----10--b Mode is equal each.

----11--b Mode is equal ordered.

---0----b IntRes1 is unmodified.

---1----b IntRes1 is negated (1’s complement).

--0-----b Negation of IntRes1 is for all 16 (8) bits.

--1-----b Negation of IntRes1 is masked by reg/mem validity.

-0------b Index of the least significant, set, bit is used (regardless of corresponding 
input element validity).  

IntRes2 is returned in least significant bits of XMM0.

-1------b Index of the most significant, set, bit is used (regardless of corresponding 
input element validity).

Each bit of IntRes2 is expanded to byte/word.

0-------b This bit currently has no defined effect, should be 0.

1-------b This bit currently has no defined effect, should be 0.
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4.1.8 Diagram Comparison and Aggregation Process

4.2 INSTRUCTIONS (M-Z)
Chapter 4 continues an alphabetical discussion of Intel® 64 and IA-32 instructions 
(M-Z). See also: Chapter 3, “Instruction Set Reference, A-L,” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 2A.

Figure 4-1.  Operation of PCMPSTRx and PCMPESTRx
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MASKMOVDQU—Store Selected Bytes of Double Quadword

Instruction Operand Encoding1

Description

Stores selected bytes from the source operand (first operand) into an 128-bit 
memory location. The mask operand (second operand) selects which bytes from the 
source operand are written to memory. The source and mask operands are XMM 
registers. The memory location specified by the effective address in the DI/EDI/RDI 
register (the default segment register is DS, but this may be overridden with a 
segment-override prefix). The memory location does not need to be aligned on a 
natural boundary. (The size of the store address depends on the address-size 
attribute.)

The most significant bit in each byte of the mask operand determines whether the 
corresponding byte in the source operand is written to the corresponding byte loca-
tion in memory: 0 indicates no write and 1 indicates write. 

The MASKMOVDQU instruction generates a non-temporal hint to the processor to 
minimize cache pollution. The non-temporal hint is implemented by using a write 
combining (WC) memory type protocol (see “Caching of Temporal vs. Non-Temporal 
Data” in Chapter 10, of the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 1). Because the WC protocol uses a weakly-ordered memory consis-
tency model, a fencing operation implemented with the SFENCE or MFENCE instruc-
tion should be used in conjunction with MASKMOVDQU instructions if multiple 

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F F7 /r

MASKMOVDQU xmm1, xmm2

RM V/V SSE2 Selectively write bytes from 
xmm1 to memory location 
using the byte mask in 
xmm2. The default memory 
location is specified by 
DS:DI/EDI/RDI.

VEX.128.66.0F.WIG F7 /r

VMASKMOVDQU xmm1, xmm2

RM V/V AVX Selectively write bytes from 
xmm1 to memory location 
using the byte mask in 
xmm2. The default memory 
location is specified by 
DS:DI/EDI/RDI.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) NA NA

1.ModRM.MOD = 011B required
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processors might use different memory types to read/write the destination memory 
locations.

Behavior with a mask of all 0s is as follows:
• No data will be written to memory. 
• Signaling of breakpoints (code or data) is not guaranteed; different processor 

implementations may signal or not signal these breakpoints.
• Exceptions associated with addressing memory and page faults may still be 

signaled (implementation dependent).
• If the destination memory region is mapped as UC or WP, enforcement of 

associated semantics for these memory types is not guaranteed (that is, is 
reserved) and is implementation-specific. 

The MASKMOVDQU instruction can be used to improve performance of algorithms 
that need to merge data on a byte-by-byte basis. MASKMOVDQU should not cause a 
read for ownership; doing so generates unnecessary bandwidth since data is to be 
written directly using the byte-mask without allocating old data prior to the store. 

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional 
registers (XMM8-XMM15).
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise 
instructions will #UD.
If VMASKMOVDQU is encoded with VEX.L= 1, an attempt to execute the instruction 
encoded with VEX.L= 1 will cause an #UD exception.

Operation

IF (MASK[7] = 1)
THEN DEST[DI/EDI] ← SRC[7:0] ELSE (* Memory location unchanged *); FI;

IF (MASK[15] = 1) 
THEN DEST[DI/EDI +1] ← SRC[15:8] ELSE (* Memory location unchanged *); FI;
(* Repeat operation for 3rd through 14th bytes in source operand *)

IF (MASK[127] = 1) 
THEN DEST[DI/EDI +15] ← SRC[127:120] ELSE (* Memory location unchanged *); FI;

Intel C/C++ Compiler Intrinsic Equivalent

void _mm_maskmoveu_si128(__m128i d, __m128i n, char * p)

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L= 1

If VEX.vvvv != 1111B.
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MASKMOVQ—Store Selected Bytes of Quadword

Instruction Operand Encoding

Description

Stores selected bytes from the source operand (first operand) into a 64-bit memory 
location. The mask operand (second operand) selects which bytes from the source 
operand are written to memory. The source and mask operands are MMX technology 
registers. The memory location specified by the effective address in the DI/EDI/RDI 
register (the default segment register is DS, but this may be overridden with a 
segment-override prefix). The memory location does not need to be aligned on a 
natural boundary. (The size of the store address depends on the address-size 
attribute.)

The most significant bit in each byte of the mask operand determines whether the 
corresponding byte in the source operand is written to the corresponding byte loca-
tion in memory: 0 indicates no write and 1 indicates write. 

The MASKMOVQ instruction generates a non-temporal hint to the processor to mini-
mize cache pollution. The non-temporal hint is implemented by using a write 
combining (WC) memory type protocol (see “Caching of Temporal vs. Non-Temporal 
Data” in Chapter 10, of the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 1). Because the WC protocol uses a weakly-ordered memory consis-
tency model, a fencing operation implemented with the SFENCE or MFENCE instruc-
tion should be used in conjunction with MASKMOVQ instructions if multiple 
processors might use different memory types to read/write the destination memory 
locations.

This instruction causes a transition from x87 FPU to MMX technology state (that is, 
the x87 FPU top-of-stack pointer is set to 0 and the x87 FPU tag word is set to all 0s 
[valid]).

The behavior of the MASKMOVQ instruction with a mask of all 0s is as follows:
• No data will be written to memory. 
• Transition from x87 FPU to MMX technology state will occur.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F F7 /r MASKMOVQ mm1, 
mm2

RM Valid Valid Selectively write bytes from 
mm1 to memory location 
using the byte mask in mm2. 
The default memory 
location is specified by 
DS:DI/EDI/RDI.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) NA NA
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• Exceptions associated with addressing memory and page faults may still be 
signaled (implementation dependent).

• Signaling of breakpoints (code or data) is not guaranteed (implementation 
dependent).

• If the destination memory region is mapped as UC or WP, enforcement of 
associated semantics for these memory types is not guaranteed (that is, is 
reserved) and is implementation-specific. 

The MASKMOVQ instruction can be used to improve performance for algorithms that 
need to merge data on a byte-by-byte basis. It should not cause a read for owner-
ship; doing so generates unnecessary bandwidth since data is to be written directly 
using the byte-mask without allocating old data prior to the store. 
In 64-bit mode, the memory address is specified by DS:RDI.

Operation

IF (MASK[7] = 1)
THEN DEST[DI/EDI] ← SRC[7:0] ELSE (* Memory location unchanged *); FI;

IF (MASK[15] = 1) 
THEN DEST[DI/EDI +1] ← SRC[15:8] ELSE (* Memory location unchanged *); FI;
(* Repeat operation for 3rd through 6th bytes in source operand *)

IF (MASK[63] = 1) 
THEN DEST[DI/EDI +15] ← SRC[63:56] ELSE (* Memory location unchanged *); FI;

Intel C/C++ Compiler Intrinsic Equivalent

void _mm_maskmove_si64(__m64d, __m64n, char * p)

Other Exceptions
See Table 22-8, “Exception Conditions for Legacy SIMD/MMX Instructions without FP 
Exception,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3A.
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MAXPD—Return Maximum Packed Double-Precision Floating-Point 
Values

Instruction Operand Encoding

Description

Performs an SIMD compare of the packed double-precision floating-point values in 
the first source operand and the second source operand and returns the maximum 
value for each pair of values to the destination operand. 
If the values being compared are both 0.0s (of either sign), the value in the second 
operand (source operand) is returned. If a value in the second operand is an SNaN, 
that SNaN is forwarded unchanged to the destination (that is, a QNaN version of the 
SNaN is not returned). 
If only one value is a NaN (SNaN or QNaN) for this instruction, the second operand 
(source operand), either a NaN or a valid floating-point value, is written to the result. 
If instead of this behavior, it is required that the NaN source operand (from either the 
first or second operand) be returned, the action of MAXPD can be emulated using a 
sequence of instructions, such as, a comparison followed by AND, ANDN and OR. 

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional 
registers (XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit 
memory location. The destination is not distinct from the first source XMM register 

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 5F /r

MAXPD xmm1, xmm2/m128

RM V/V SSE2 Return the maximum 
double-precision floating-
point values between 
xmm2/m128 and xmm1.

VEX.NDS.128.66.0F.WIG 5F /r

VMAXPD xmm1,xmm2, 
xmm3/m128

RVM V/V AVX Return the maximum 
double-precision floating-
point values between xmm2 
and xmm3/mem.

VEX.NDS.256.66.0F.WIG 5F /r

VMAXPD ymm1, ymm2, 
ymm3/m256

RVM V/V AVX Return the maximum 
packed double-precision 
floating-point values 
between ymm2 and 
ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit 
memory location. The destination operand is an XMM register. The upper bits 
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second 
source operand can be a YMM register or a 256-bit memory location. The destination 
operand is a YMM register. 

Operation

MAX(SRC1, SRC2)
{

IF ((SRC1 = 0.0) and (SRC2 = 0.0)) THEN DEST  SRC2;
ELSE IF (SRC1 = SNaN) THEN DEST  SRC2; FI;
ELSE IF (SRC2 = SNaN) THEN DEST  SRC2; FI;
ELSE IF (SRC1 > SRC2) THEN DEST  SRC1;
ELSE DEST  SRC2; 

FI; 
}

MAXPD (128-bit Legacy SSE version)
DEST[63:0]  MAX(DEST[63:0], SRC[63:0])
DEST[127:64]  MAX(DEST[127:64], SRC[127:64])
DEST[VLMAX-1:128] (Unmodified)

VMAXPD (VEX.128 encoded version)
DEST[63:0]  MAX(SRC1[63:0], SRC2[63:0])
DEST[127:64]  MAX(SRC1[127:64], SRC2[127:64])
DEST[VLMAX-1:128]  0

VMAXPD (VEX.256 encoded version)
DEST[63:0]  MAX(SRC1[63:0], SRC2[63:0])
DEST[127:64]  MAX(SRC1[127:64], SRC2[127:64])
DEST[191:128]  MAX(SRC1[191:128], SRC2[191:128])
DEST[255:192]  MAX(SRC1[255:192], SRC2[255:192])

Intel C/C++ Compiler Intrinsic Equivalent

MAXPD:  __m128d _mm_max_pd(__m128d a, __m128d b);

VMAXPD:  __m256d _mm256_max_pd (__m256d a, __m256d b);
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SIMD Floating-Point Exceptions

Invalid (including QNaN source operand), Denormal.

Other Exceptions
See Exceptions Type 2.
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MAXPS—Return Maximum Packed Single-Precision Floating-Point 
Values

Instruction Operand Encoding

Description

Performs an SIMD compare of the packed single-precision floating-point values in the 
first source operand and the second source operand and returns the maximum value 
for each pair of values to the destination operand. 
If the values being compared are both 0.0s (of either sign), the value in the second 
operand (source operand) is returned. If a value in the second operand is an SNaN, 
that SNaN is forwarded unchanged to the destination (that is, a QNaN version of the 
SNaN is not returned). 
If only one value is a NaN (SNaN or QNaN) for this instruction, the second operand 
(source operand), either a NaN or a valid floating-point value, is written to the result. 
If instead of this behavior, it is required that the NaN source operand (from either the 
first or second operand) be returned, the action of MAXPS can be emulated using a 
sequence of instructions, such as, a comparison followed by AND, ANDN and OR. 

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional 
registers (XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit 
memory location. The destination is not distinct from the first source XMM register 

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

0F 5F /r

MAXPS xmm1, xmm2/m128

RM V/V SSE Return the maximum single-
precision floating-point 
values between 
xmm2/m128 and xmm1.

VEX.NDS.128.0F.WIG 5F /r

VMAXPS xmm1,xmm2, xmm3/m128

RVM V/V AVX Return the maximum single-
precision floating-point 
values between xmm2 and 
xmm3/mem.

VEX.NDS.256.0F.WIG 5F /r

VMAXPS ymm1, ymm2, 
ymm3/m256

RVM V/V AVX Return the maximum single 
double-precision floating-
point values between ymm2 
and ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit 
memory location. The destination operand is an XMM register. The upper bits 
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second 
source operand can be a YMM register or a 256-bit memory location. The destination 
operand is a YMM register. 

Operation

MAX(SRC1, SRC2)
{

IF ((SRC1 = 0.0) and (SRC2 = 0.0)) THEN DEST  SRC2;
ELSE IF (SRC1 = SNaN) THEN DEST  SRC2; FI;
ELSE IF SRC2 = SNaN) THEN DEST  SRC2; FI;
ELSE IF (SRC1 > SRC2) THEN DEST  SRC1;
ELSE DEST  SRC2; 

FI; 
}

MAXPS (128-bit Legacy SSE version)
DEST[31:0]  MAX(DEST[31:0], SRC[31:0])
DEST[63:32]  MAX(DEST[63:32], SRC[63:32])
DEST[95:64]  MAX(DEST[95:64], SRC[95:64])
DEST[127:96]  MAX(DEST[127:96], SRC[127:96])
DEST[VLMAX-1:128] (Unmodified)

VMAXPS (VEX.128 encoded version)
DEST[31:0]  MAX(SRC1[31:0], SRC2[31:0])
DEST[63:32]  MAX(SRC1[63:32], SRC2[63:32])
DEST[95:64]  MAX(SRC1[95:64], SRC2[95:64])
DEST[127:96]  MAX(SRC1[127:96], SRC2[127:96])
DEST[VLMAX-1:128]  0

VMAXPS (VEX.256 encoded version)
DEST[31:0]  MAX(SRC1[31:0], SRC2[31:0])
DEST[63:32]  MAX(SRC1[63:32], SRC2[63:32])
DEST[95:64]  MAX(SRC1[95:64], SRC2[95:64])
DEST[127:96]  MAX(SRC1[127:96], SRC2[127:96])
DEST[159:128]  MAX(SRC1[159:128], SRC2[159:128])
DEST[191:160]  MAX(SRC1[191:160], SRC2[191:160])
DEST[223:192]  MAX(SRC1[223:192], SRC2[223:192])
Vol. 2B 4-17MAXPS—Return Maximum Packed Single-Precision Floating-Point Values



INSTRUCTION SET REFERENCE, M-Z
DEST[255:224]  MAX(SRC1[255:224], SRC2[255:224])

Intel C/C++ Compiler Intrinsic Equivalent

MAXPS:  __m128 _mm_max_ps (__m128 a, __m128 b);

VMAXPS:  __m256 _mm256_max_ps (__m256 a, __m256 b);

SIMD Floating-Point Exceptions

Invalid (including QNaN source operand), Denormal.

Other Exceptions
See Exceptions Type 2.
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MAXSD—Return Maximum Scalar Double-Precision Floating-Point 
Value

Instruction Operand Encoding

Description

Compares the low double-precision floating-point values in the first source operand 
and second the source operand, and returns the maximum value to the low quad-
word of the destination operand. The second source operand can be an XMM register 
or a 64-bit memory location. The first source and destination operands are XMM 
registers. When the second source operand is a memory operand, only 64 bits are 
accessed. The high quadword of the destination operand is copied from the same bits 
of first source operand. 
If the values being compared are both 0.0s (of either sign), the value in the second 
source operand is returned. If a value in the second source operand is an SNaN, that 
SNaN is returned unchanged to the destination (that is, a QNaN version of the SNaN 
is not returned).
If only one value is a NaN (SNaN or QNaN) for this instruction, the second source 
operand, either a NaN or a valid floating-point value, is written to the result. If 
instead of this behavior, it is required that the NaN of either source operand be 
returned, the action of MAXSD can be emulated using a sequence of instructions, 
such as, a comparison followed by AND, ANDN and OR. 
The second source operand can be an XMM register or a 64-bit memory location. The 
first source and destination operands are XMM registers. 

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional 
registers (XMM8-XMM15).

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F2 0F 5F /r

MAXSD xmm1, xmm2/m64

RM V/V SSE2 Return the maximum scalar 
double-precision floating-
point value between 
xmm2/mem64 and xmm1.

VEX.NDS.LIG.F2.0F.WIG 5F /r

VMAXSD xmm1, xmm2, xmm3/m64

RVM V/V AVX Return the maximum scalar 
double-precision floating-
point value between 
xmm3/mem64 and xmm2.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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128-bit Legacy SSE version: The destination and first source operand are the same. 
Bits (VLMAX-1:64) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: Bits (127:64) of the XMM register destination are copied 
from corresponding bits in the first source operand. Bits (VLMAX-1:128) of the desti-
nation YMM register are zeroed.

Operation

MAX(SRC1, SRC2)
{

IF ((SRC1 = 0.0) and (SRC2 = 0.0)) THEN DEST  SRC2;
ELSE IF (SRC1 = SNaN) THEN DEST  SRC2; FI;
ELSE IF SRC2 = SNaN) THEN DEST  SRC2; FI;
ELSE IF (SRC1 > SRC2) THEN DEST  SRC1;
ELSE DEST  SRC2; 

FI; 
}

MAXSD (128-bit Legacy SSE version)
DEST[63:0] MAX(DEST[63:0], SRC[63:0])
DEST[VLMAX-1:64] (Unmodified)

VMAXSD (VEX.128 encoded version)
DEST[63:0] MAX(SRC1[63:0], SRC2[63:0])
DEST[127:64] SRC1[127:64]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

MAXSD:  __m128d _mm_max_sd(__m128d a, __m128d b)

SIMD Floating-Point Exceptions

Invalid (including QNaN source operand), Denormal.

Other Exceptions
See Exceptions Type 3.
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MAXSS—Return Maximum Scalar Single-Precision Floating-Point Value 

Instruction Operand Encoding

Description

Compares the low single-precision floating-point values in the first source operand 
and the second source operand, and returns the maximum value to the low double-
word of the destination operand. 
If the values being compared are both 0.0s (of either sign), the value in the second 
source operand is returned. If a value in the second source operand is an SNaN, that 
SNaN is returned unchanged to the destination (that is, a QNaN version of the SNaN 
is not returned).
If only one value is a NaN (SNaN or QNaN) for this instruction, the second source 
operand, either a NaN or a valid floating-point value, is written to the result. If 
instead of this behavior, it is required that the NaN from either source operand be 
returned, the action of MAXSS can be emulated using a sequence of instructions, 
such as, a comparison followed by AND, ANDN and OR. 
The second source operand can be an XMM register or a 32-bit memory location. The 
first source and destination operands are XMM registers. 

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional 
registers (XMM8-XMM15).
128-bit Legacy SSE version: The destination and first source operand are the same. 
Bits (VLMAX-1:32) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: Bits (127:32) of the XMM register destination are copied 
from corresponding bits in the first source operand. Bits (VLMAX-1:128) of the desti-
nation YMM register are zeroed.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F3 0F 5F /r

MAXSS xmm1, xmm2/m32

RM V/V SSE Return the maximum scalar 
single-precision floating-
point value between 
xmm2/mem32 and xmm1.

VEX.NDS.LIG.F3.0F.WIG 5F /r

VMAXSS xmm1, xmm2, xmm3/m32

RVM V/V AVX Return the maximum scalar 
single-precision floating-
point value between 
xmm3/mem32 and xmm2.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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Operation

MAX(SRC1, SRC2)
{

IF ((SRC1 = 0.0) and (SRC2 = 0.0)) THEN DEST  SRC2;
ELSE IF (SRC1 = SNaN) THEN DEST  SRC2; FI;
ELSE IF SRC2 = SNaN) THEN DEST  SRC2; FI;
ELSE IF (SRC1 > SRC2) THEN DEST  SRC1;
ELSE DEST  SRC2; 

FI; 
}

MAXSS (128-bit Legacy SSE version)
DEST[31:0] MAX(DEST[31:0], SRC[31:0])
DEST[VLMAX-1:32] (Unmodified)

VMAXSS (VEX.128 encoded version)
DEST[31:0] MAX(SRC1[31:0], SRC2[31:0])
DEST[127:32] SRC1[127:32]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

__m128d _mm_max_ss(__m128d a, __m128d b)

SIMD Floating-Point Exceptions

Invalid (including QNaN source operand), Denormal.

Other Exceptions
See Exceptions Type 3.
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MFENCE—Memory Fence

Instruction Operand Encoding

Description

Performs a serializing operation on all load-from-memory and store-to-memory 
instructions that were issued prior the MFENCE instruction. This serializing operation 
guarantees that every load and store instruction that precedes the MFENCE instruc-
tion in program order becomes globally visible before any load or store instruction 
that follows the MFENCE instruction.1 The MFENCE instruction is ordered with respect 
to all load and store instructions, other MFENCE instructions, any LFENCE and 
SFENCE instructions, and any serializing instructions (such as the CPUID instruc-
tion). MFENCE does not serialize the instruction stream.

Weakly ordered memory types can be used to achieve higher processor performance 
through such techniques as out-of-order issue, speculative reads, write-combining, 
and write-collapsing. The degree to which a consumer of data recognizes or knows 
that the data is weakly ordered varies among applications and may be unknown to 
the producer of this data. The MFENCE instruction provides a performance-efficient 
way of ensuring load and store ordering between routines that produce weakly-
ordered results and routines that consume that data.

Processors are free to fetch and cache data speculatively from regions of system 
memory that use the WB, WC, and WT memory types. This speculative fetching can 
occur at any time and is not tied to instruction execution. Thus, it is not ordered with 
respect to executions of the MFENCE instruction; data can be brought into the caches 
speculatively just before, during, or after the execution of an MFENCE instruction.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

Wait_On_Following_Loads_And_Stores_Until(preceding_loads_and_stores_globally_visible);

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F AE /6 MFENCE NP Valid Valid Serializes load and store 
operations.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

1. A load instruction is considered to become globally visible when the value to be loaded into its 
destination register is determined.
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Intel C/C++ Compiler Intrinsic Equivalent

void _mm_mfence(void)

Exceptions (All Modes of Operation)
#UD If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.
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MINPD—Return Minimum Packed Double-Precision Floating-Point 
Values

Instruction Operand Encoding

Description

Performs an SIMD compare of the packed double-precision floating-point values in 
the first source operand and the second source operand and returns the minimum 
value for each pair of values to the destination operand. 
If the values being compared are both 0.0s (of either sign), the value in the second 
operand (source operand) is returned. If a value in the second operand is an SNaN, 
that SNaN is forwarded unchanged to the destination (that is, a QNaN version of the 
SNaN is not returned). 
If only one value is a NaN (SNaN or QNaN) for this instruction, the second operand 
(source operand), either a NaN or a valid floating-point value, is written to the result. 
If instead of this behavior, it is required that the NaN source operand (from either the 
first or second operand) be returned, the action of MINPD can be emulated using a 
sequence of instructions, such as, a comparison followed by AND, ANDN and OR. 

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional 
registers (XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit 
memory location. The destination is not distinct from the first source XMM register 

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 5D /r

MINPD xmm1, xmm2/m128

RM V/V SSE2 Return the minimum double-
precision floating-point 
values between 
xmm2/m128 and xmm1.

VEX.NDS.128.66.0F.WIG 5D /r

VMINPD xmm1,xmm2, xmm3/m128

RVM V/V AVX Return the minimum double-
precision floating-point 
values between xmm2 and 
xmm3/mem.

VEX.NDS.256.66.0F.WIG 5D /r

VMINPD ymm1, ymm2, ymm3/m256

RVM V/V AVX Return the minimum packed 
double-precision floating-
point values between ymm2 
and ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit 
memory location. The destination operand is an XMM register. The upper bits 
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.

Operation

MIN(SRC1, SRC2)
{

IF ((SRC1 = 0.0) and (SRC2 = 0.0)) THEN DEST  SRC2;
ELSE IF (SRC1 = SNaN) THEN DEST  SRC2; FI;
ELSE IF (SRC2 = SNaN) THEN DEST  SRC2; FI;
ELSE IF (SRC1 < SRC2) THEN DEST  SRC1;
ELSE DEST  SRC2; 

FI; 
}

MINPD (128-bit Legacy SSE version)
DEST[63:0]  MIN(SRC1[63:0], SRC2[63:0])
DEST[127:64]  MIN(SRC1[127:64], SRC2[127:64])
DEST[VLMAX-1:128] (Unmodified)

VMINPD (VEX.128 encoded version)
DEST[63:0]  MIN(SRC1[63:0], SRC2[63:0])
DEST[127:64]  MIN(SRC1[127:64], SRC2[127:64])
DEST[VLMAX-1:128]  0

VMINPD (VEX.256 encoded version)
DEST[63:0]  MIN(SRC1[63:0], SRC2[63:0])
DEST[127:64]  MIN(SRC1[127:64], SRC2[127:64])
DEST[191:128]  MIN(SRC1[191:128], SRC2[191:128])
DEST[255:192]  MIN(SRC1[255:192], SRC2[255:192])

Intel C/C++ Compiler Intrinsic Equivalent

MINPD:  __m128d _mm_min_pd(__m128d a, __m128d b);

VMINPD:  __m256d _mm256_min_pd (__m256d a, __m256d b);

SIMD Floating-Point Exceptions

Invalid (including QNaN source operand), Denormal.
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Other Exceptions
See Exceptions Type 2.
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MINPS—Return Minimum Packed Single-Precision Floating-Point 
Values

Instruction Operand Encoding

Description

Performs an SIMD compare of the packed single-precision floating-point values in the 
first source operand and the second source operand and returns the minimum value 
for each pair of values to the destination operand. 
If the values being compared are both 0.0s (of either sign), the value in the second 
operand (source operand) is returned. If a value in the second operand is an SNaN, 
that SNaN is forwarded unchanged to the destination (that is, a QNaN version of the 
SNaN is not returned). 
If only one value is a NaN (SNaN or QNaN) for this instruction, the second operand 
(source operand), either a NaN or a valid floating-point value, is written to the result. 
If instead of this behavior, it is required that the NaN source operand (from either the 
first or second operand) be returned, the action of MINPS can be emulated using a 
sequence of instructions, such as, a comparison followed by AND, ANDN and OR. 

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional 
registers (XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit 
memory location. The destination is not distinct from the first source XMM register 

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

0F 5D /r

MINPS xmm1, xmm2/m128

RM V/V SSE Return the minimum single-
precision floating-point 
values between 
xmm2/m128 and xmm1.

VEX.NDS.128.0F.WIG 5D /r

VMINPS xmm1,xmm2, xmm3/m128

RVM V/V AVX Return the minimum single-
precision floating-point 
values between xmm2 and 
xmm3/mem.

VEX.NDS.256.0F.WIG 5D /r

VMINPS ymm1, ymm2, ymm3/m256

RVM V/V AVX Return the minimum single 
double-precision floating-
point values between ymm2 
and ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit 
memory location. The destination operand is an XMM register. The upper bits 
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second 
source operand can be a YMM register or a 256-bit memory location. The destination 
operand is a YMM register. 

Operation

MIN(SRC1, SRC2)
{

IF ((SRC1 = 0.0) and (SRC2 = 0.0)) THEN DEST  SRC2;
ELSE IF (SRC1 = SNaN) THEN DEST  SRC2; FI;
ELSE IF (SRC2 = SNaN) THEN DEST  SRC2; FI;
ELSE IF (SRC1 < SRC2) THEN DEST  SRC1;
ELSE DEST  SRC2; 

FI; 
}

MINPS (128-bit Legacy SSE version)
DEST[31:0]  MIN(SRC1[31:0], SRC2[31:0])
DEST[63:32]  MIN(SRC1[63:32], SRC2[63:32])
DEST[95:64]  MIN(SRC1[95:64], SRC2[95:64])
DEST[127:96]  MIN(SRC1[127:96], SRC2[127:96])
DEST[VLMAX-1:128] (Unmodified)

VMINPS (VEX.128 encoded version)
DEST[31:0]  MIN(SRC1[31:0], SRC2[31:0])
DEST[63:32]  MIN(SRC1[63:32], SRC2[63:32])
DEST[95:64]  MIN(SRC1[95:64], SRC2[95:64])
DEST[127:96]  MIN(SRC1[127:96], SRC2[127:96])
DEST[VLMAX-1:128]  0

VMINPS (VEX.256 encoded version)
DEST[31:0]  MIN(SRC1[31:0], SRC2[31:0])
DEST[63:32]  MIN(SRC1[63:32], SRC2[63:32])
DEST[95:64]  MIN(SRC1[95:64], SRC2[95:64])
DEST[127:96]  MIN(SRC1[127:96], SRC2[127:96])
DEST[159:128]  MIN(SRC1[159:128], SRC2[159:128])
DEST[191:160]  MIN(SRC1[191:160], SRC2[191:160])
DEST[223:192]  MIN(SRC1[223:192], SRC2[223:192])
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DEST[255:224]  MIN(SRC1[255:224], SRC2[255:224])

Intel C/C++ Compiler Intrinsic Equivalent

MINPS:  __m128d _mm_min_ps(__m128d a, __m128d b);

VMINPS:  __m256 _mm256_min_ps (__m256 a, __m256 b);

SIMD Floating-Point Exceptions

Invalid (including QNaN source operand), Denormal.

Other Exceptions
See Exceptions Type 2.
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MINSD—Return Minimum Scalar Double-Precision Floating-Point Value

Instruction Operand Encoding

Description

Compares the low double-precision floating-point values in the first source operand 
and the second source operand, and returns the minimum value to the low quadword 
of the destination operand. When the source operand is a memory operand, only the 
64 bits are accessed. The high quadword of the destination operand is copied from 
the same bits in the first source operand. 
If the values being compared are both 0.0s (of either sign), the value in the second 
source operand is returned. If a value in the second source operand is an SNaN, that 
SNaN is returned unchanged to the destination (that is, a QNaN version of the SNaN 
is not returned).
If only one value is a NaN (SNaN or QNaN) for this instruction, the second source 
operand, either a NaN or a valid floating-point value, is written to the result. If 
instead of this behavior, it is required that the NaN source operand (from either the 
first or second source) be returned, the action of MINSD can be emulated using a 
sequence of instructions, such as, a comparison followed by AND, ANDN and OR. 
The second source operand can be an XMM register or a 64-bit memory location. The 
first source and destination operands are XMM registers. 

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional 
registers (XMM8-XMM15).
128-bit Legacy SSE version: The destination and first source operand are the same. 
Bits (VLMAX-1:64) of the corresponding YMM destination register remain unchanged.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F2 0F 5D /r

MINSD xmm1, xmm2/m64

RM V/V SSE2 Return the minimum scalar 
double-precision floating-
point value between 
xmm2/mem64 and xmm1.

VEX.NDS.LIG.F2.0F.WIG 5D /r

VMINSD xmm1, xmm2, xmm3/m64

RVM V/V AVX Return the minimum scalar 
double precision floating-
point value between 
xmm3/mem64 and xmm2.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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VEX.128 encoded version: Bits (127:64) of the XMM register destination are copied 
from corresponding bits in the first source operand. Bits (VLMAX-1:128) of the desti-
nation YMM register are zeroed.

Operation

MIN(SRC1, SRC2)
{

IF ((SRC1 = 0.0) and (SRC2 = 0.0)) THEN DEST  SRC2;
ELSE IF (SRC1 = SNaN) THEN DEST  SRC2; FI;
ELSE IF SRC2 = SNaN) THEN DEST  SRC2; FI;
ELSE IF (SRC1 < SRC2) THEN DEST  SRC1;
ELSE DEST  SRC2; 

FI; 
}

MINSD (128-bit Legacy SSE version)
DEST[63:0]  MIN(SRC1[63:0], SRC2[63:0])
DEST[VLMAX-1:64] (Unmodified)

MINSD (VEX.128 encoded version)
DEST[63:0]  MIN(SRC1[63:0], SRC2[63:0])
DEST[127:64]  SRC1[127:64]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

MINSD:  __m128d _mm_min_sd(__m128d a, __m128d b)

SIMD Floating-Point Exceptions

Invalid (including QNaN source operand), Denormal.

Other Exceptions
See Exceptions Type 3.
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MINSS—Return Minimum Scalar Single-Precision Floating-Point Value 

Instruction Operand Encoding

Description

Compares the low single-precision floating-point values in the first source operand 
and the second source operand and returns the minimum value to the low double-
word of the destination operand.
If the values being compared are both 0.0s (of either sign), the value in the second 
source operand is returned. If a value in the second operand is an SNaN, that SNaN 
is returned unchanged to the destination (that is, a QNaN version of the SNaN is not 
returned).
If only one value is a NaN (SNaN or QNaN) for this instruction, the second source 
operand, either a NaN or a valid floating-point value, is written to the result. If 
instead of this behavior, it is required that the NaN in either source operand be 
returned, the action of MINSD can be emulated using a sequence of instructions, 
such as, a comparison followed by AND, ANDN and OR. 
The second source operand can be an XMM register or a 32-bit memory location. The 
first source and destination operands are XMM registers. 

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional 
registers (XMM8-XMM15).
128-bit Legacy SSE version: The destination and first source operand are the same. 
Bits (VLMAX-1:32) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: Bits (127:32) of the XMM register destination are copied 
from corresponding bits in the first source operand. Bits (VLMAX-1:128) of the desti-
nation YMM register are zeroed.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F3 0F 5D /r

MINSS xmm1, xmm2/m32

RM V/V SSE Return the minimum scalar 
single-precision floating-
point value between 
xmm2/mem32 and xmm1.

VEX.NDS.LIG.F3.0F.WIG 5D /r

VMINSS xmm1,xmm2, xmm3/m32

RVM V/V AVX Return the minimum scalar 
single precision floating-
point value between 
xmm3/mem32 and xmm2.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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Operation

MIN(SRC1, SRC2)
{

IF ((SRC1 = 0.0) and (SRC2 = 0.0)) THEN DEST  SRC2;
ELSE IF (SRC1 = SNaN) THEN DEST  SRC2; FI;
ELSE IF SRC2 = SNaN) THEN DEST  SRC2; FI;
ELSE IF (SRC1 < SRC2) THEN DEST  SRC1;
ELSE DEST  SRC2; 

FI; 
}

MINSS (128-bit Legacy SSE version)
DEST[31:0]  MIN(SRC1[31:0], SRC2[31:0])
DEST[VLMAX-1:32] (Unmodified)

VMINSS (VEX.128 encoded version)
DEST[31:0]  MIN(SRC1[31:0], SRC2[31:0])
DEST[127:32]  SRC1[127:32]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

MINSS:  __m128d _mm_min_ss(__m128d a, __m128d b)

SIMD Floating-Point Exceptions

Invalid (including QNaN source operand), Denormal.

Other Exceptions
See Exceptions Type 3.
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MONITOR—Set Up Monitor Address

Instruction Operand Encoding

Description

The MONITOR instruction arms address monitoring hardware using an address spec-
ified in EAX (the address range that the monitoring hardware checks for store opera-
tions can be determined by using CPUID). A store to an address within the specified 
address range triggers the monitoring hardware. The state of monitor hardware is 
used by MWAIT. 

The content of EAX is an effective address (in 64-bit mode, RAX is used). By default, 
the DS segment is used to create a linear address that is monitored. Segment over-
rides can be used.

ECX and EDX are also used. They communicate other information to MONITOR. ECX 
specifies optional extensions. EDX specifies optional hints; it does not change the 
architectural behavior of the instruction. For the Pentium 4 processor (family 15, 
model 3), no extensions or hints are defined. Undefined hints in EDX are ignored by 
the processor; undefined extensions in ECX raises a general protection fault.

The address range must use memory of the write-back type. Only write-back 
memory will correctly trigger the monitoring hardware. Additional information on 
determining what address range to use in order to prevent false wake-ups is 
described in Chapter 8, “Multiple-Processor Management” of the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A.

The MONITOR instruction is ordered as a load operation with respect to other 
memory transactions. The instruction is subject to the permission checking and faults 
associated with a byte load. Like a load, MONITOR sets the A-bit but not the D-bit in 
page tables. 

CPUID.01H:ECX.MONITOR[bit 3] indicates the availability of MONITOR and MWAIT in 
the processor. When set, MONITOR may be executed only at privilege level 0 (use at 

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 01 C8 MONITOR NP Valid Valid Sets up a linear address 
range to be monitored by 
hardware and activates the 
monitor. The address range 
should be a write-back 
memory caching type. The 
address is DS:EAX (DS:RAX 
in 64-bit mode).

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
Vol. 2B 4-35MONITOR—Set Up Monitor Address



INSTRUCTION SET REFERENCE, M-Z
any other privilege level results in an invalid-opcode exception). The operating 
system or system BIOS may disable this instruction by using the 
IA32_MISC_ENABLE MSR; disabling MONITOR clears the CPUID feature flag and 
causes execution to generate an invalid-opcode exception. 

The instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

MONITOR sets up an address range for the monitor hardware using the content of 
EAX (RAX in 64-bit mode) as an effective address and puts the monitor hardware in 
armed state. Always use memory of the write-back caching type. A store to the spec-
ified address range will trigger the monitor hardware. The content of ECX and EDX 
are used to communicate other information to the monitor hardware.

Intel C/C++ Compiler Intrinsic Equivalent

MONITOR: void _mm_monitor(void const *p, unsigned extensions,unsigned hints)

Numeric Exceptions

None

Protected Mode Exceptions
#GP(0) If the value in EAX is outside the CS, DS, ES, FS, or GS segment 

limit.
If the DS, ES, FS, or GS register is used to access memory and it 
contains a NULL segment selector.
If ECX ≠ 0.

#SS(0) If the value in EAX is outside the SS segment limit.
#PF(fault-code) For a page fault.
#UD If CPUID.01H:ECX.MONITOR[bit 3] = 0.

If current privilege level is not 0.

Real Address Mode Exceptions
#GP If the CS, DS, ES, FS, or GS register is used to access memory 

and the value in EAX is outside of the effective address space 
from 0 to FFFFH.
If ECX ≠ 0.

#SS If the SS register is used to access memory and the value in EAX 
is outside of the effective address space from 0 to FFFFH.

#UD If CPUID.01H:ECX.MONITOR[bit 3] = 0.
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Virtual 8086 Mode Exceptions
#UD The MONITOR instruction is not recognized in virtual-8086 mode 

(even if CPUID.01H:ECX.MONITOR[bit 3] = 1).

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the linear address of the operand in the CS, DS, ES, FS, or GS 

segment is in a non-canonical form.
If RCX ≠ 0.

#SS(0) If the SS register is used to access memory and the value in EAX 
is in a non-canonical form.

#PF(fault-code) For a page fault.
#UD If the current privilege level is not 0.

If CPUID.01H:ECX.MONITOR[bit 3] = 0.
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MOV—Move
Opcode Instruction Op/ 

En
64-Bit 
Mode

Compat/
Leg Mode

Description

88 /r MOV r/m8,r8 MR Valid Valid Move r8 to r/m8.

REX + 88 /r MOV r/m8***,r8*** MR Valid N.E. Move r8 to r/m8.

89 /r MOV r/m16,r16 MR Valid Valid Move r16 to r/m16.

89 /r MOV r/m32,r32 MR Valid Valid Move r32 to r/m32.

REX.W + 89 /r MOV r/m64,r64 MR Valid N.E. Move r64 to r/m64.

8A /r MOV r8,r/m8 RM Valid Valid Move r/m8 to r8.

REX + 8A /r MOV 
r8***,r/m8***

RM Valid N.E. Move r/m8 to r8.

8B /r MOV r16,r/m16 RM Valid Valid Move r/m16 to r16.

8B /r MOV r32,r/m32 RM Valid Valid Move r/m32 to r32.

REX.W + 8B /r MOV r64,r/m64 RM Valid N.E. Move r/m64 to r64.

8C /r MOV r/m16,Sreg** MR Valid Valid Move segment register to 
r/m16.

REX.W + 8C /r MOV r/m64,Sreg** MR Valid Valid Move zero extended 16-bit 
segment register to r/m64.

8E /r MOV Sreg,r/m16** RM Valid Valid Move r/m16 to segment 
register.

REX.W + 8E /r MOV Sreg,r/m64** RM Valid Valid Move lower 16 bits of 
r/m64 to segment register.

A0 MOV AL,moffs8* FD Valid Valid Move byte at (seg:offset) to 
AL.

REX.W + A0 MOV AL,moffs8* FD  Valid N.E. Move byte at (offset) to AL.

A1 MOV AX,moffs16* FD Valid Valid Move word at (seg:offset) to 
AX.

A1 MOV 
EAX,moffs32*

FD Valid Valid Move doubleword at 
(seg:offset) to EAX.

REX.W + A1 MOV 
RAX,moffs64*

FD Valid N.E. Move quadword at (offset) 
to RAX.

A2 MOV moffs8,AL TD  Valid Valid Move AL to (seg:offset).

REX.W + A2 MOV moffs8***,AL TD Valid N.E. Move AL to (offset).

A3 MOV moffs16*,AX TD Valid Valid Move AX to (seg:offset).

A3 MOV 
moffs32*,EAX

TD Valid Valid Move EAX to (seg:offset).
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Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

REX.W + A3 MOV 
moffs64*,RAX

TD Valid N.E. Move RAX to (offset).

B0+ rb MOV r8, imm8 OI Valid Valid Move imm8 to r8.

REX + B0+ rb MOV r8***, imm8 OI Valid N.E. Move imm8 to r8.

B8+ rw MOV r16, imm16 OI Valid Valid Move imm16 to r16.

B8+ rd MOV r32, imm32 OI Valid Valid Move imm32 to r32.

REX.W + B8+ rd MOV r64, imm64 OI Valid N.E. Move imm64 to r64.

C6 /0 MOV r/m8, imm8 MI Valid Valid Move imm8 to r/m8.

REX + C6 /0 MOV r/m8***, 
imm8

MI Valid N.E. Move imm8 to r/m8.

C7 /0 MOV r/m16, 
imm16

MI Valid Valid Move imm16 to r/m16.

C7 /0 MOV r/m32, 
imm32

MI Valid Valid Move imm32 to r/m32.

REX.W + C7 /0 MOV r/m64, 
imm32

MI Valid N.E. Move imm32 sign extended 
to 64-bits to r/m64.

NOTES:
* The moffs8, moffs16, moffs32 and moffs64 operands specify a simple offset relative to the 

segment base, where 8, 16, 32 and 64 refer to the size of the data. The address-size attribute 
of the instruction determines the size of the offset, either 16, 32 or 64 bits.

** In 32-bit mode, the assembler may insert the 16-bit operand-size prefix with this instruction 
(see the following “Description” section for further information).

***In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix 
is used: AH, BH, CH, DH. 
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Instruction Operand Encoding

Description

Copies the second operand (source operand) to the first operand (destination 
operand). The source operand can be an immediate value, general-purpose register, 
segment register, or memory location; the destination register can be a general-
purpose register, segment register, or memory location. Both operands must be the 
same size, which can be a byte, a word, a doubleword, or a quadword.

The MOV instruction cannot be used to load the CS register. Attempting to do so 
results in an invalid opcode exception (#UD). To load the CS register, use the far JMP, 
CALL, or RET instruction.

If the destination operand is a segment register (DS, ES, FS, GS, or SS), the source 
operand must be a valid segment selector. In protected mode, moving a segment 
selector into a segment register automatically causes the segment descriptor infor-
mation associated with that segment selector to be loaded into the hidden (shadow) 
part of the segment register. While loading this information, the segment selector 
and segment descriptor information is validated (see the “Operation” algorithm 
below). The segment descriptor data is obtained from the GDT or LDT entry for the 
specified segment selector. 

A NULL segment selector (values 0000-0003) can be loaded into the DS, ES, FS, and 
GS registers without causing a protection exception. However, any subsequent 
attempt to reference a segment whose corresponding segment register is loaded 
with a NULL value causes a general protection exception (#GP) and no memory 
reference occurs.

Loading the SS register with a MOV instruction inhibits all interrupts until after the 
execution of the next instruction. This operation allows a stack pointer to be loaded 
into the ESP register with the next instruction (MOV ESP, stack-pointer value) 
before an interrupt occurs1. Be aware that the LSS instruction offers a more efficient 
method of loading the SS and ESP registers.

When operating in 32-bit mode and moving data between a segment register and a 
general-purpose register, the 32-bit IA-32 processors do not require the use of the 
16-bit operand-size prefix (a byte with the value 66H) with this instruction, but most 
assemblers will insert it if the standard form of the instruction is used (for example, 
MOV DS, AX). The processor will execute this instruction correctly, but it will usually 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (w) ModRM:reg (r) NA NA

RM ModRM:reg (w) ModRM:r/m (r) NA NA

FD AL/AX/EAX/RAX Moffs NA NA

TD Moffs (w) AL/AX/EAX/RAX NA NA

OI opcode + rd (w) imm8/16/32/64 NA NA

MI ModRM:r/m (w) imm8/16/32/64 NA NA
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require an extra clock. With most assemblers, using the instruction form MOV DS, 
EAX will avoid this unneeded 66H prefix. When the processor executes the instruc-
tion with a 32-bit general-purpose register, it assumes that the 16 least-significant 
bits of the general-purpose register are the destination or source operand. If the 
register is a destination operand, the resulting value in the two high-order bytes of 
the register is implementation dependent. For the Pentium 4, Intel Xeon, and P6 
family processors, the two high-order bytes are filled with zeros; for earlier 32-bit 
IA-32 processors, the two high order bytes are undefined.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R 
prefix permits access to additional registers (R8-R15). Use of the REX.W prefix 
promotes operation to 64 bits. See the summary chart at the beginning of this 
section for encoding data and limits.

Operation

DEST ← SRC;

Loading a segment register while in protected mode results in special checks and 
actions, as described in the following listing. These checks are performed on the 
segment selector and the segment descriptor to which it points.

IF SS is loaded
THEN

IF segment selector is NULL
THEN #GP(0); FI;

IF segment selector index is outside descriptor table limits 
or segment selector's RPL ≠ CPL
or segment is not a writable data segment
or DPL ≠ CPL

THEN #GP(selector); FI;
IF segment not marked present 

THEN #SS(selector); 
ELSE

SS ← segment selector;
SS ← segment descriptor; FI;

1. If a code instruction breakpoint (for debug) is placed on an instruction located immediately after 
a MOV SS instruction, the breakpoint may not be triggered. However, in a sequence of instruc-
tions that load the SS register, only the first instruction in the sequence is guaranteed to delay 
an interrupt.

In the following sequence, interrupts may be recognized before MOV ESP, EBP executes:

MOV SS, EDX
MOV SS, EAX
MOV ESP, EBP
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FI;

IF DS, ES, FS, or GS is loaded with non-NULL selector
THEN

IF segment selector index is outside descriptor table limits
or segment is not a data or readable code segment
or ((segment is a data or nonconforming code segment)
and (both RPL and CPL > DPL))

THEN #GP(selector); FI;
IF segment not marked present

THEN #NP(selector);
ELSE

SegmentRegister ← segment selector;
SegmentRegister ← segment descriptor; FI;

FI;

IF DS, ES, FS, or GS is loaded with NULL selector
THEN

SegmentRegister ← segment selector;
SegmentRegister ← segment descriptor;

FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If attempt is made to load SS register with NULL segment 

selector.
If the destination operand is in a non-writable segment.
If a memory operand effective address is outside the CS, DS, 
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment 
selector.

#GP(selector) If segment selector index is outside descriptor table limits. 
If the SS register is being loaded and the segment selector's RPL 
and the segment descriptor’s DPL are not equal to the CPL. 
If the SS register is being loaded and the segment pointed to is a 
non-writable data segment.
If the DS, ES, FS, or GS register is being loaded and the 
segment pointed to is not a data or readable code segment.
If the DS, ES, FS, or GS register is being loaded and the 
segment pointed to is a data or nonconforming code segment, 
but both the RPL and the CPL are greater than the DPL.
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#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#SS(selector) If the SS register is being loaded and the segment pointed to is 
marked not present.

#NP If the DS, ES, FS, or GS register is being loaded and the 
segment pointed to is marked not present.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If attempt is made to load the CS register.

If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS 

segment limit.
#UD If attempt is made to load the CS register.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made.
#UD If attempt is made to load the CS register.

If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If an attempt is made to load SS register with NULL segment 
selector when CPL = 3.
If an attempt is made to load SS register with NULL segment 
selector when CPL < 3 and CPL ≠ RPL.
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#GP(selector) If segment selector index is outside descriptor table limits. 
If the memory access to the descriptor table is non-canonical.
If the SS register is being loaded and the segment selector's RPL 
and the segment descriptor’s DPL are not equal to the CPL.
If the SS register is being loaded and the segment pointed to is 
a nonwritable data segment.
If the DS, ES, FS, or GS register is being loaded and the 
segment pointed to is not a data or readable code segment.
If the DS, ES, FS, or GS register is being loaded and the 
segment pointed to is a data or nonconforming code segment, 
but both the RPL and the CPL are greater than the DPL.

#SS(0) If the stack address is in a non-canonical form.
#SS(selector) If the SS register is being loaded and the segment pointed to is 

marked not present.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If attempt is made to load the CS register.

If the LOCK prefix is used.
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MOV—Move to/from Control Registers

Instruction Operand Encoding

Description

Moves the contents of a control register (CR0, CR2, CR3, CR4, or CR8) to a general-
purpose register or the contents of a general purpose register to a control register. 
The operand size for these instructions is always 32 bits in non-64-bit modes, 
regardless of the operand-size attribute. (See “Control Registers” in Chapter 2 of the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for a 
detailed description of the flags and fields in the control registers.) This instruction 
can be executed only when the current privilege level is 0.

At the opcode level, the reg field within the ModR/M byte specifies which of the 
control registers is loaded or read. The 2 bits in the mod field are ignored. The r/m 
field specifies the general-purpose register loaded or read. Attempts to reference 
CR1, CR5, CR6, CR7, and CR9–CR15 result in undefined opcode (#UD) exceptions.

Opcode/
Instruction

Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 20/r

MOV r32, CR0–CR7

MR N.E. Valid Move control register to 
r32.

0F 20/r

MOV r64, CR0–CR7

MR Valid N.E. Move extended control 
register to r64. 

REX.R + 0F 20 /0

MOV r64, CR8

MR Valid N.E. Move extended CR8 to 
r64.1

0F 22 /r

MOV CR0–CR7, r32

RM N.E. Valid Move r32 to control 
register.

0F 22 /r

MOV CR0–CR7, r64

RM Valid N.E. Move r64 to extended 
control register.

REX.R + 0F 22 /0

MOV CR8, r64

RM Valid N.E. Move r64 to extended 
CR8.1

NOTE:

1. MOV CR* instructions, except for MOV CR8, are serializing instructions. MOV CR8 is not 
architecturally defined as a serializing instruction. For more information, see Chapter 8 in Intel® 
64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (w) ModRM:reg (r) NA NA

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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When loading control registers, programs should not attempt to change the reserved 
bits; that is, always set reserved bits to the value previously read. An attempt to 
change CR4's reserved bits will cause a general protection fault. Reserved bits in CR0 
and CR3 remain clear after any load of those registers; attempts to set them have no 
impact. On Pentium 4, Intel Xeon and P6 family processors, CR0.ET remains set after 
any load of CR0; attempts to clear this bit have no impact.

In certain cases, these instructions have the side effect of invalidating entries in the 
TLBs and the paging-structure caches. See Section 4.10.4.1, “Operations that Inval-
idate TLBs and Paging-Structure Caches,” in the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 3A for details.

The following side effects are implementation-specific for the Pentium 4, Intel Xeon, 
and P6 processor family: when modifying PE or PG in register CR0, or PSE or PAE in 
register CR4, all TLB entries are flushed, including global entries. Software should not 
depend on this functionality in all Intel 64 or IA-32 processors.

In 64-bit mode, the instruction’s default operation size is 64 bits. The REX.R prefix 
must be used to access CR8. Use of REX.B permits access to additional registers (R8-
R15). Use of the REX.W prefix or 66H prefix is ignored. Use of the REX.R prefix to 
specify a register other than CR8 causes an invalid-opcode exception. See the 
summary chart at the beginning of this section for encoding data and limits.

If CR4.PCIDE = 1, bit 63 of the source operand to MOV to CR3 determines whether 
the instruction invalidates entries in the TLBs and the paging-structure caches (see 
Section 4.10.4.1, “Operations that Invalidate TLBs and Paging-Structure Caches,” in 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A). 
The instruction does not modify bit 63 of CR3, which is reserved and always 0.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 25 of 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C, for 
more information about the behavior of this instruction in VMX non-root operation.

Operation

DEST ← SRC;

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are undefined.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If an attempt is made to write invalid bit combinations in CR0 
(such as setting the PG flag to 1 when the PE flag is set to 0, or 
setting the CD flag to 0 when the NW flag is set to 1).
If an attempt is made to write a 1 to any reserved bit in CR4.
If an attempt is made to write 1 to CR4.PCIDE.
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If any of the reserved bits are set in the page-directory pointers 
table (PDPT) and the loading of a control register causes the 
PDPT to be loaded into the processor.

#UD If the LOCK prefix is used.
If an attempt is made to access CR1, CR5, CR6, or CR7.

Real-Address Mode Exceptions
#GP If an attempt is made to write a 1 to any reserved bit in CR4.

If an attempt is made to write 1 to CR4.PCIDE.
If an attempt is made to write invalid bit combinations in CR0 
(such as setting the PG flag to 1 when the PE flag is set to 0).

#UD If the LOCK prefix is used.
If an attempt is made to access CR1, CR5, CR6, or CR7.

Virtual-8086 Mode Exceptions
#GP(0) These instructions cannot be executed in virtual-8086 mode.

Compatibility Mode Exceptions
#GP(0) If the current privilege level is not 0.

If an attempt is made to write invalid bit combinations in CR0 
(such as setting the PG flag to 1 when the PE flag is set to 0, or 
setting the CD flag to 0 when the NW flag is set to 1).
If an attempt is made to change CR4.PCIDE from 0 to 1 while 
CR3[11:0] ≠ 000H.
If an attempt is made to clear CR0.PG[bit 31] while 
CR4.PCIDE = 1.
If an attempt is made to write a 1 to any reserved bit in CR3.
If an attempt is made to leave IA-32e mode by clearing 
CR4.PAE[bit 5].

#UD If the LOCK prefix is used.
If an attempt is made to access CR1, CR5, CR6, or CR7.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If an attempt is made to write invalid bit combinations in CR0 
(such as setting the PG flag to 1 when the PE flag is set to 0, or 
setting the CD flag to 0 when the NW flag is set to 1).
If an attempt is made to change CR4.PCIDE from 0 to 1 while 
CR3[11:0] ≠ 000H.
If an attempt is made to clear CR0.PG[bit 31].
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If an attempt is made to write a 1 to any reserved bit in CR4.
If an attempt is made to write a 1 to any reserved bit in CR8.
If an attempt is made to write a 1 to any reserved bit in CR3.
If an attempt is made to leave IA-32e mode by clearing 
CR4.PAE[bit 5].

#UD If the LOCK prefix is used.
If an attempt is made to access CR1, CR5, CR6, or CR7.
If the REX.R prefix is used to specify a register other than CR8.
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MOV—Move to/from Debug Registers

Instruction Operand Encoding

Description

Moves the contents of a debug register (DR0, DR1, DR2, DR3, DR4, DR5, DR6, or 
DR7) to a general-purpose register or vice versa. The operand size for these instruc-
tions is always 32 bits in non-64-bit modes, regardless of the operand-size attribute. 
(See Section 17.2, “Debug Registers”, of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3A, for a detailed description of the flags and fields 
in the debug registers.)

The instructions must be executed at privilege level 0 or in real-address mode.

When the debug extension (DE) flag in register CR4 is clear, these instructions 
operate on debug registers in a manner that is compatible with Intel386 and Intel486 
processors. In this mode, references to DR4 and DR5 refer to DR6 and DR7, respec-
tively. When the DE flag in CR4 is set, attempts to reference DR4 and DR5 result in 
an undefined opcode (#UD) exception. (The CR4 register was added to the IA-32 
Architecture beginning with the Pentium processor.)

At the opcode level, the reg field within the ModR/M byte specifies which of the debug 
registers is loaded or read. The two bits in the mod field are ignored. The r/m field 
specifies the general-purpose register loaded or read.

In 64-bit mode, the instruction’s default operation size is 64 bits. Use of the REX.B 
prefix permits access to additional registers (R8–R15). Use of the REX.W or 66H 
prefix is ignored. Use of the REX.R prefix causes an invalid-opcode exception. See 
the summary chart at the beginning of this section for encoding data and limits. 

Opcode/
Instruction

Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 21/r

MOV r32, DR0–DR7

MR N.E. Valid Move debug register to r32.

0F 21/r

MOV r64, DR0–DR7

MR Valid N.E. Move extended debug 
register to r64. 

0F 23 /r

MOV DR0–DR7, r32

RM N.E. Valid Move r32 to debug register.

0F 23 /r

MOV DR0–DR7, r64

RM Valid N.E. Move r64 to extended 
debug register. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (w) ModRM:reg (r) NA NA

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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Operation

IF ((DE = 1) and (SRC or DEST = DR4 or DR5))
THEN

#UD;
ELSE 

DEST ← SRC;

FI;

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are undefined.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.
#UD If CR4.DE[bit 3] = 1 (debug extensions) and a MOV instruction 

is executed involving DR4 or DR5.
If the LOCK prefix is used.

#DB If any debug register is accessed while the DR7.GD[bit 13] = 1.

Real-Address Mode Exceptions
#UD If CR4.DE[bit 3] = 1 (debug extensions) and a MOV instruction 

is executed involving DR4 or DR5. 
If the LOCK prefix is used.

#DB If any debug register is accessed while the DR7.GD[bit 13] = 1.

Virtual-8086 Mode Exceptions
#GP(0) The debug registers cannot be loaded or read when in virtual-

8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If an attempt is made to write a 1 to any of bits 63:32 in DR6.
If an attempt is made to write a 1 to any of bits 63:32 in DR7.

#UD If CR4.DE[bit 3] = 1 (debug extensions) and a MOV instruction 
is executed involving DR4 or DR5.
If the LOCK prefix is used.
If the REX.R prefix is used.
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#DB If any debug register is accessed while the DR7.GD[bit 13] = 1.
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MOVAPD—Move Aligned Packed Double-Precision Floating-Point 
Values

Instruction Operand Encoding

Description

Moves 2 or 4 double-precision floating-point values from the source operand (second 
operand) to the destination operand (first operand). This instruction can be used to 
load an XMM or YMM register from an 128-bit or 256-bit memory location, to store 
the contents of an XMM or YMM register into a 128-bit or 256-bit memory location, or 
to move data between two XMM or two YMM registers. When the source or destina-

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 28 /r

MOVAPD xmm1, xmm2/m128

RM V/V SSE2 Move packed double-
precision floating-point 
values from xmm2/m128 to 
xmm1.

66 0F 29 /r

MOVAPD xmm2/m128, xmm1

MR V/V SSE2 Move packed double-
precision floating-point 
values from xmm1 to 
xmm2/m128.

VEX.128.66.0F.WIG 28 /r

VMOVAPD xmm1, xmm2/m128

RM V/V AVX Move aligned packed 
double-precision floating-
point values from 
xmm2/mem to xmm1.

VEX.128.66.0F.WIG 29 /r

VMOVAPD xmm2/m128, xmm1

MR V/V AVX Move aligned packed 
double-precision floating-
point values from xmm1 to 
xmm2/mem.

VEX.256.66.0F.WIG 28 /r

VMOVAPD ymm1, ymm2/m256

RM V/V AVX Move aligned packed 
double-precision floating-
point values from 
ymm2/mem to ymm1.

VEX.256.66.0F.WIG 29 /r

VMOVAPD ymm2/m256, ymm1

MR V/V AVX Move aligned packed 
double-precision floating-
point values from ymm1 to 
ymm2/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA
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tion operand is a memory operand, the operand must be aligned on a 16-byte (128-
bit version) or 32-byte (VEX.256 encoded version) boundary or a general-protection 
exception (#GP) will be generated. 

To move double-precision floating-point values to and from unaligned memory loca-
tions, use the (V)MOVUPD instruction.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional 
registers (XMM8-XMM15).
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise 
instructions will #UD.
128-bit versions:
Moves 128 bits of packed double-precision floating-point values from the source 
operand (second operand) to the destination operand (first operand). This instruction 
can be used to load an XMM register from a 128-bit memory location, to store the 
contents of an XMM register into a 128-bit memory location, or to move data 
between two XMM registers. When the source or destination operand is a memory 
operand, the operand must be aligned on a 16-byte boundary or a general-protection 
exception (#GP) will be generated. To move single-precision floating-point values to 
and from unaligned memory locations, use the VMOVUPD instruction.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged. 
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register desti-
nation are zeroed. 
VEX.256 encoded version:
Moves 256 bits of packed double-precision floating-point values from the source 
operand (second operand) to the destination operand (first operand). This instruction 
can be used to load a YMM register from a 256-bit memory location, to store the 
contents of a YMM register into a 256-bit memory location, or to move data between 
two YMM registers. When the source or destination operand is a memory operand, 
the operand must be aligned on a 32-byte boundary or a general-protection excep-
tion (#GP) will be generated. To move single-precision floating-point values to and 
from unaligned memory locations, use the VMOVUPD instruction.

Operation

MOVAPD (128-bit load- and register-copy- form Legacy SSE version)
DEST[127:0]  SRC[127:0]
DEST[VLMAX-1:128] (Unmodified)

(V)MOVAPD (128-bit store-form version)
DEST[127:0]  SRC[127:0]

VMOVAPD (VEX.128 encoded version)
DEST[127:0]  SRC[127:0]
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DEST[VLMAX-1:128]  0

VMOVAPD (VEX.256 encoded version)
DEST[255:0]  SRC[255:0]

Intel C/C++ Compiler Intrinsic Equivalent

MOVAPD:  __m128d _mm_load_pd (double const * p);

MOVAPD:  _mm_store_pd(double * p, __m128d a);

VMOVAPD:  __m256d _mm256_load_pd (double const * p);

VMOVAPD:  _mm256_store_pd(double * p, __m256d a);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 1.SSE2; additionally
#UD If VEX.vvvv != 1111B.
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MOVAPS—Move Aligned Packed Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

Moves 4 or8 single-precision floating-point values from the source operand (second 
operand) to the destination operand (first operand). This instruction can be used to 
load an XMM or YMM register from an 128-bit or 256-bit memory location, to store 
the contents of an XMM or YMM register into a 128-bit or 256-bit memory location, or 
to move data between two XMM or two YMM registers. When the source or destina-
tion operand is a memory operand, the operand must be aligned on a 16-byte (128-

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

0F 28 /r

MOVAPS xmm1, xmm2/m128

RM V/V SSE Move packed single-
precision floating-point 
values from xmm2/m128 to 
xmm1.

0F 29 /r

MOVAPS xmm2/m128, xmm1

MR V/V SSE Move packed single-
precision floating-point 
values from xmm1 to 
xmm2/m128.

VEX.128.0F.WIG 28 /r

VMOVAPS xmm1, xmm2/m128

RM V/V AVX Move aligned packed single-
precision floating-point 
values from xmm2/mem to 
xmm1.

VEX.128.0F.WIG 29 /r

VMOVAPS xmm2/m128, xmm1

MR V/V AVX Move aligned packed single-
precision floating-point 
values from xmm1 to 
xmm2/mem.

VEX.256.0F.WIG 28 /r

VMOVAPS ymm1, ymm2/m256

RM V/V AVX Move aligned packed single-
precision floating-point 
values from ymm2/mem to 
ymm1.

VEX.256.0F.WIG 29 /r

VMOVAPS ymm2/m256, ymm1

MR V/V AVX Move aligned packed single-
precision floating-point 
values from ymm1 to 
ymm2/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA
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bit version) or 32-byte (VEX.256 encoded version) boundary or a general-protection 
exception (#GP) will be generated. 

To move single-precision floating-point values to and from unaligned memory loca-
tions, use the (V)MOVUPS instruction.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional 
registers (XMM8-XMM15).
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise 
instructions will #UD.
128-bit versions:
Moves 128 bits of packed single-precision floating-point values from the source 
operand (second operand) to the destination operand (first operand). This instruction 
can be used to load an XMM register from a 128-bit memory location, to store the 
contents of an XMM register into a 128-bit memory location, or to move data 
between two XMM registers. When the source or destination operand is a memory 
operand, the operand must be aligned on a 16-byte boundary or a general-protection 
exception (#GP) will be generated. To move single-precision floating-point values to 
and from unaligned memory locations, use the VMOVUPS instruction.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed.
VEX.256 encoded version:
Moves 256 bits of packed single-precision floating-point values from the source 
operand (second operand) to the destination operand (first operand). This instruction 
can be used to load a YMM register from a 256-bit memory location, to store the 
contents of a YMM register into a 256-bit memory location, or to move data between 
two YMM registers. 

Operation

MOVAPS (128-bit load- and register-copy- form Legacy SSE version)
DEST[127:0]  SRC[127:0]
DEST[VLMAX-1:128] (Unmodified)

(V)MOVAPS (128-bit store form)
DEST[127:0]  SRC[127:0]

VMOVAPS (VEX.128 encoded version)
DEST[127:0]  SRC[127:0]
DEST[VLMAX-1:128]  0

VMOVAPS (VEX.256 encoded version)
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DEST[255:0]  SRC[255:0]

Intel C/C++ Compiler Intrinsic Equivalent

MOVAPS:  __m128 _mm_load_ps (float const * p);

MOVAPS:  _mm_store_ps(float * p, __m128 a);

VMOVAPS:  __m256 _mm256_load_ps (float const * p);

VMOVAPS:  _mm256_store_ps(float * p, __m256 a);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 1.SSE; additionally
#UD If VEX.vvvv != 1111B.
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MOVBE—Move Data After Swapping Bytes

Instruction Operand Encoding

Description

Performs a byte swap operation on the data copied from the second operand (source 
operand) and store the result in the first operand (destination operand). The source 
operand can be a general-purpose register, or memory location; the destination 
register can be a general-purpose register, or a memory location; however, both 
operands can not be registers, and only one operand can be a memory location. Both 
operands must be the same size, which can be a word, a doubleword or quadword. 

The MOVBE instruction is provided for swapping the bytes on a read from memory or 
on a write to memory; thus providing support for converting little-endian values to 
big-endian format and vice versa.

In 64-bit mode, the instruction's default operation size is 32 bits. Use of the REX.R 
prefix permits access to additional registers (R8-R15). Use of the REX.W prefix 
promotes operation to 64 bits. See the summary chart at the beginning of this 
section for encoding data and limits.

Operation

TEMP ← SRC

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 38 F0 /r MOVBE r16, m16 RM Valid Valid Reverse byte order in m16 
and move to r16

0F 38 F0 /r MOVBE r32, m32 RM Valid Valid Reverse byte order in m32 
and move to r32

REX.W + 0F 38 
F0 /r

MOVBE r64, m64 RM Valid N.E. Reverse byte order in m64 
and move to r64. 

0F 38 F1 /r MOVBE m16, r16 MR Valid Valid Reverse byte order in r16 
and move to m16

0F 38 F1 /r MOVBE m32, r32 MR Valid Valid Reverse byte order in r32 
and move to m32

REX.W + 0F 38 
F1 /r

MOVBE m64, r64 MR Valid N.E. Reverse byte order in r64 
and move to m64. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA
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IF ( OperandSize = 16)
THEN

DEST[7:0] ← TEMP[15:8];
DEST[15:8] ← TEMP[7:0];

ELES IF ( OperandSize = 32) 
DEST[7:0] ← TEMP[31:24];
DEST[15:8] ← TEMP[23:16];
DEST[23:16] ← TEMP[15:8];
DEST[31:23] ← TEMP[7:0];

ELSE IF ( OperandSize = 64) 
DEST[7:0] ← TEMP[63:56];
DEST[15:8] ← TEMP[55:48];
DEST[23:16] ← TEMP[47:40];
DEST[31:24] ← TEMP[39:32];
DEST[39:32] ← TEMP[31:24];
DEST[47:40] ← TEMP[23:16];
DEST[55:48] ← TEMP[15:8];
DEST[63:56] ← TEMP[7:0];

FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the destination operand is in a non-writable segment.

If a memory operand effective address is outside the CS, DS, 
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If CPUID.01H:ECX.MOVBE[bit 22] = 0 .

If the LOCK prefix is used.
If REP (F3H) prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
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#SS If a memory operand effective address is outside the SS 
segment limit.

#UD If CPUID.01H:ECX.MOVBE[bit 22] = 0 .
If the LOCK prefix is used.
If REP (F3H) prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
#PF(fault-code) If a page fault occurs.
#UD If CPUID.01H:ECX.MOVBE[bit 22] = 0 .

If the LOCK prefix is used.
If REP (F3H) prefix is used.
If REPNE (F2H) prefix is used and CPUID.01H:ECX.SSE4_2[bit 
20] = 0.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
#SS(0) If the stack address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If CPUID.01H:ECX.MOVBE[bit 22] = 0 .

If the LOCK prefix is used.
If REP (F3H) prefix is used.
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MOVD/MOVQ—Move Doubleword/Move Quadword

Instruction Operand Encoding

Description

Copies a doubleword from the source operand (second operand) to the destination 

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

0F 6E /r

MOVD mm, r/m32

RM V/V MMX Move doubleword from 
r/m32 to mm.

REX.W + 0F 6E /r

MOVQ mm, r/m64

RM V/N.E. MMX Move quadword from r/m64 
to mm.

0F 7E /r

MOVD r/m32, mm

MR V/V MMX Move doubleword from mm 
to r/m32.

REX.W + 0F 7E /r

MOVQ r/m64, mm

MR V/N.E. MMX Move quadword from mm to 
r/m64.

VEX.128.66.0F.W0 6E /

VMOVD xmm1, r32/m32

RM V/V AVX Move doubleword from 
r/m32 to xmm1.

VEX.128.66.0F.W1 6E /r

VMOVQ xmm1, r64/m64

RM V/N.E. AVX Move quadword from r/m64 
to xmm1.

66 0F 6E /r

MOVD xmm, r/m32

RM V/V SSE2 Move doubleword from 
r/m32 to xmm.

66 REX.W 0F 6E /r

MOVQ xmm, r/m64

RM V/N.E. SSE2 Move quadword from r/m64 
to xmm.

66 0F 7E /r

MOVD r/m32, xmm

MR V/V SSE2 Move doubleword from 
xmm register to r/m32.

 66 REX.W 0F 7E /r

MOVQ r/m64, xmm

MR V/N.E. SSE2 Move quadword from xmm 
register to r/m64.

VEX.128.66.0F.W0 7E /r

VMOVD r32/m32, xmm1

MR V/V AVX Move doubleword from 
xmm1 register to r/m32.

VEX.128.66.0F.W1 7E /r

VMOVQ r64/m64, xmm1

MR V/N.E. AVX Move quadword from xmm1 
register to r/m64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA
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operand (first operand). The source and destination operands can be general-
purpose registers, MMX technology registers, XMM registers, or 32-bit memory loca-
tions. This instruction can be used to move a doubleword to and from the low double-
word of an MMX technology register and a general-purpose register or a 32-bit 
memory location, or to and from the low doubleword of an XMM register and a 
general-purpose register or a 32-bit memory location. The instruction cannot be 
used to transfer data between MMX technology registers, between XMM registers, 
between general-purpose registers, or between memory locations.

When the destination operand is an MMX technology register, the source operand is 
written to the low doubleword of the register, and the register is zero-extended to 64 
bits. When the destination operand is an XMM register, the source operand is written 
to the low doubleword of the register, and the register is zero-extended to 128 bits.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R 
prefix permits access to additional registers (R8-R15). Use of the REX.W prefix 
promotes operation to 64 bits. See the summary chart at the beginning of this 
section for encoding data and limits.

Operation

MOVD (when destination operand is MMX technology register)
DEST[31:0] ← SRC;
DEST[63:32] ← 00000000H;

MOVD (when destination operand is XMM register)
DEST[31:0] ← SRC;
DEST[127:32] ← 000000000000000000000000H;
DEST[VLMAX-1:128] (Unmodified)

MOVD (when source operand is MMX technology or XMM register)
DEST ← SRC[31:0];

VMOVD (VEX-encoded version when destination is an XMM register)
DEST[31:0]  SRC[31:0]
DEST[VLMAX-1:32]  0

MOVQ (when destination operand is XMM register)
DEST[63:0] ← SRC[63:0];
DEST[127:64] ← 0000000000000000H;
DEST[VLMAX-1:128] (Unmodified)

MOVQ (when destination operand is r/m64)
DEST[63:0] ← SRC[63:0];

MOVQ (when source operand is XMM register or r/m64)
DEST ← SRC[63:0];
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VMOVQ (VEX-encoded version when destination is an XMM register)
DEST[63:0]  SRC[63:0]
DEST[VLMAX-1:64]  0

Intel C/C++ Compiler Intrinsic Equivalent

MOVD: __m64 _mm_cvtsi32_si64 (int i )

MOVD: int _mm_cvtsi64_si32 ( __m64m ) 

MOVD: __m128i _mm_cvtsi32_si128 (int a) 

MOVD: int _mm_cvtsi128_si32 ( __m128i a)

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 5; additionally
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
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MOVDDUP—Move One Double-FP and Duplicate

Instruction Operand Encoding

Description

The linear address corresponds to the address of the least-significant byte of the 
referenced memory data. When a memory address is indicated, the 8 bytes of data 
at memory location m64 are loaded. When the register-register form of this opera-
tion is used, the lower half of the 128-bit source register is duplicated and copied into 
the 128-bit destination register. See Figure 4-2.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F2 0F 12 /r

MOVDDUP xmm1, xmm2/m64

RM V/V SSE3 Move one double-precision 
floating-point value from 
the lower 64-bit operand in 
xmm2/m64 to xmm1 and 
duplicate.

VEX.128.F2.0F.WIG 12 /r

VMOVDDUP xmm1, xmm2/m64

RM V/V AVX Move double-precision 
floating-point values from 
xmm2/mem and duplicate 
into xmm1.

VEX.256.F2.0F.WIG 12 /r

VMOVDDUP ymm1, ymm2/m256

RM V/V AVX Move even index double-
precision floating-point 
values from ymm2/mem and 
duplicate each element into 
ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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In 64-bit mode, use of the REX.R prefix permits this instruction to access additional 
registers (XMM8-XMM15).

Operation

IF (Source = m64) 
THEN 

(* Load instruction *)
xmm1[63:0] = m64;
xmm1[127:64] = m64; 

ELSE 
(* Move instruction *)
xmm1[63:0] = xmm2[63:0];
xmm1[127:64] = xmm2[63:0];

FI;

MOVDDUP (128-bit Legacy SSE version)
DEST[63:0]  SRC[63:0]
DEST[127:64]  SRC[63:0]
DEST[VLMAX-1:128] (Unmodified)

VMOVDDUP (VEX.128 encoded version)
DEST[63:0]  SRC[63:0]
DEST[127:64]  SRC[63:0]

Figure 4-2.  MOVDDUP—Move One Double-FP and Duplicate
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DEST[VLMAX-1:128]  0

VMOVDDUP (VEX.256 encoded version)
DEST[63:0]  SRC[63:0]
DEST[127:64]  SRC[63:0]
DEST[191:128]  SRC[191:128]
DEST[255:192]  SRC[191:128]

Intel C/C++ Compiler Intrinsic Equivalent

MOVDDUP: __m128d _mm_movedup_pd(__m128d a)

MOVDDUP: __m128d _mm_loaddup_pd(double const * dp)

SIMD Floating-Point Exceptions

None

Other Exceptions
See Exceptions Type 5; additionally
#UD If VEX.vvvv != 1111B.
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MOVDQA—Move Aligned Double Quadword

Instruction Operand Encoding

Description

128-bit versions:
Moves 128 bits of packed integer values from the source operand (second operand) 
to the destination operand (first operand). This instruction can be used to load an 
XMM register from a 128-bit memory location, to store the contents of an XMM 
register into a 128-bit memory location, or to move data between two XMM registers. 
When the source or destination operand is a memory operand, the operand must be 
aligned on a 16-byte boundary or a general-protection exception (#GP) will be 
generated. To move integer data to and from unaligned memory locations, use the 
VMOVDQU instruction.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional 
registers (XMM8-XMM15).

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 6F /r

MOVDQA xmm1, xmm2/m128

RM V/V SSE2 Move aligned double 
quadword from 
xmm2/m128 to xmm1.

66 0F 7F /r

MOVDQA xmm2/m128, xmm1

MR V/V SSE2 Move aligned double 
quadword from xmm1 to 
xmm2/m128.

VEX.128.66.0F.WIG 6F /r

VMOVDQA xmm1, xmm2/m128

RM V/V AVX Move aligned packed integer 
values from xmm2/mem to 
xmm1.

VEX.128.66.0F.WIG 7F /r

VMOVDQA xmm2/m128, xmm1

MR V/V AVX Move aligned packed integer 
values from xmm1 to 
xmm2/mem.

VEX.256.66.0F.WIG 6F /r

VMOVDQA ymm1, ymm2/m256

RM V/V AVX Move aligned packed integer 
values from ymm2/mem to 
ymm1.

VEX.256.66.0F.WIG 7F /r

VMOVDQA ymm2/m256, ymm1

MR V/V AVX Move aligned packed integer 
values from ymm1 to 
ymm2/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA
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128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed.
VEX.256 encoded version:
Moves 256 bits of packed integer values from the source operand (second operand) 
to the destination operand (first operand). This instruction can be used to load a YMM 
register from a 256-bit memory location, to store the contents of a YMM register into 
a 256-bit memory location, or to move data between two YMM registers. 
When the source or destination operand is a memory operand, the operand must be 
aligned on a 32-byte boundary or a general-protection exception (#GP) will be 
generated. To move integer data to and from unaligned memory locations, use the 
VMOVDQU instruction.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise 
instructions will #UD.

Operation

MOVDQA (128-bit load- and register- form Legacy SSE version)
DEST[127:0]  SRC[127:0]
DEST[VLMAX-1:128] (Unmodified)
(* #GP if SRC or DEST unaligned memory operand *)

(V)MOVDQA (128-bit store forms)
DEST[127:0]  SRC[127:0]

VMOVDQA (VEX.128 encoded version)
DEST[127:0]  SRC[127:0]
DEST[VLMAX-1:128]  0

VMOVDQA (VEX.256 encoded version)
DEST[255:0]  SRC[255:0]

Intel C/C++ Compiler Intrinsic Equivalent

MOVDQA: __m128i _mm_load_si128 ( __m128i *p)

MOVDQA: void _mm_store_si128 ( __m128i *p, __m128i a)

VMOVDQA: __m256i _mm256_load_si256 (__m256i * p);

VMOVDQA:  _mm256_store_si256(_m256i *p, __m256i a);
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SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 1.SSE2; additionally
#UD If VEX.vvvv != 1111B.
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MOVDQU—Move Unaligned Double Quadword

Instruction Operand Encoding

Description

128-bit versions:

Moves 128 bits of packed integer values from the source operand (second operand) 
to the destination operand (first operand). This instruction can be used to load an 
XMM register from a 128-bit memory location, to store the contents of an XMM 
register into a 128-bit memory location, or to move data between two XMM registers. 
When the source or destination operand is a memory operand, the operand may be 
unaligned on a 16-byte boundary without causing a general-protection exception 
(#GP) to be generated.1

To move a double quadword to or from memory locations that are known to be 
aligned on 16-byte boundaries, use the MOVDQA instruction.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F3 0F 6F /r

MOVDQU xmm1, xmm2/m128

RM V/V SSE2 Move unaligned double 
quadword from 
xmm2/m128 to xmm1.

F3 0F 7F /r

MOVDQU xmm2/m128, xmm1

MR V/V SSE2 Move unaligned double 
quadword from xmm1 to 
xmm2/m128.

VEX.128.F3.0F.WIG 6F /r

VMOVDQU xmm1, xmm2/m128

RM V/V AVX Move unaligned packed 
integer values from 
xmm2/mem to xmm1.

VEX.128.F3.0F.WIG 7F /r

VMOVDQU xmm2/m128, xmm1

MR V/V AVX Move unaligned packed 
integer values from xmm1 
to xmm2/mem.

VEX.256.F3.0F.WIG 6F /r

VMOVDQU ymm1, ymm2/m256

RM V/V AVX Move unaligned packed 
integer values from 
ymm2/mem to ymm1.

VEX.256.F3.0F.WIG 7F /r

VMOVDQU ymm2/m256, ymm1

MR V/V AVX Move unaligned packed 
integer values from ymm1 
to ymm2/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA
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While executing in 16-bit addressing mode, a linear address for a 128-bit data access 
that overlaps the end of a 16-bit segment is not allowed and is defined as reserved 
behavior. A specific processor implementation may or may not generate a general-
protection exception (#GP) in this situation, and the address that spans the end of 
the segment may or may not wrap around to the beginning of the segment.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional 
registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM desti-
nation register remain unchanged.
When the source or destination operand is a memory operand, the operand may be 
unaligned to any alignment without causing a general-protection exception (#GP) to 
be generated
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register 
are zeroed.
VEX.256 encoded version:
Moves 256 bits of packed integer values from the source operand (second operand) 
to the destination operand (first operand). This instruction can be used to load a YMM 
register from a 256-bit memory location, to store the contents of a YMM register into 
a 256-bit memory location, or to move data between two YMM registers. 
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise 
instructions will #UD.

Operation

MOVDQU load and register copy (128-bit Legacy SSE version)
DEST[127:0]  SRC[127:0]
DEST[VLMAX-1:128] (Unmodified)

(V)MOVDQU 128-bit store-form versions
DEST[127:0]  SRC[127:0]

VMOVDQU (VEX.128 encoded version)
DEST[127:0]  SRC[127:0]
DEST[VLMAX-1:128]  0

VMOVDQU (VEX.256 encoded version)
DEST[255:0]  SRC[255:0]

1. If alignment checking is enabled (CR0.AM = 1, RFLAGS.AC = 1, and CPL = 3), an alignment-check 
exception (#AC) may or may not be generated (depending on processor implementation) when 
the operand is not aligned on an 8-byte boundary.
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Intel C/C++ Compiler Intrinsic Equivalent

MOVDQU: void _mm_storeu_si128 ( __m128i *p, __m128i a)

MOVDQU: __m128i _mm_loadu_si128 ( __m128i *p)

VMOVDQU:  __m256i _mm256_loadu_si256 (__m256i * p);

VMOVDQU:  _mm256_storeu_si256(_m256i *p, __m256i a);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.vvvv != 1111B.
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MOVDQ2Q—Move Quadword from XMM to MMX Technology Register

Instruction Operand Encoding

Description

Moves the low quadword from the source operand (second operand) to the destina-
tion operand (first operand). The source operand is an XMM register and the destina-
tion operand is an MMX technology register.

This instruction causes a transition from x87 FPU to MMX technology operation (that 
is, the x87 FPU top-of-stack pointer is set to 0 and the x87 FPU tag word is set to all 
0s [valid]). If this instruction is executed while an x87 FPU floating-point exception is 
pending, the exception is handled before the MOVDQ2Q instruction is executed.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional 
registers (XMM8-XMM15).

Operation

DEST ← SRC[63:0];

Intel C/C++ Compiler Intrinsic Equivalent

MOVDQ2Q: __m64 _mm_movepi64_pi64 ( __m128i a)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions
#NM If CR0.TS[bit 3] = 1. 
#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

#MF If there is a pending x87 FPU exception.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

F2 0F D6 MOVDQ2Q mm, 
xmm

RM Valid Valid Move low quadword from 
xmm to mmx register.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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MOVHLPS— Move Packed Single-Precision Floating-Point Values High 
to Low

Instruction Operand Encoding

Description

This instruction cannot be used for memory to register moves.
128-bit two-argument form:
Moves two packed single-precision floating-point values from the high quadword of 
the second XMM argument (second operand) to the low quadword of the first XMM 
register (first argument). The high quadword of the destination operand is left 
unchanged. Bits (VLMAX-1:64) of the corresponding YMM destination register are 
unmodified.
128-bit three-argument form
Moves two packed single-precision floating-point values from the high quadword of 
the third XMM argument (third operand) to the low quadword of the destination (first 
operand). Copies the high quadword from the second XMM argument (second 
operand) to the high quadword of the destination (first operand). Bits (VLMAX-
1:128) of the destination YMM register are zeroed.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional 
registers (XMM8-XMM15).
If VMOVHLPS is encoded with VEX.L= 1, an attempt to execute the instruction 
encoded with VEX.L= 1 will cause an #UD exception.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

0F 12 /r

MOVHLPS xmm1, xmm2

RM V/V SSE Move two packed single-
precision floating-point 
values from high quadword 
of xmm2 to low quadword 
of xmm1.

VEX.NDS.128.0F.WIG 12 /r

VMOVHLPS xmm1, xmm2, xmm3

RVM V/V AVX Merge two packed single-
precision floating-point 
values from high quadword 
of xmm3 and low quadword 
of xmm2.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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Operation

MOVHLPS (128-bit two-argument form)
DEST[63:0]  SRC[127:64]
DEST[VLMAX-1:64] (Unmodified)

VMOVHLPS (128-bit three-argument form)
DEST[63:0]  SRC2[127:64]
DEST[127:64]  SRC1[127:64]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

MOVHLPS: __m128 _mm_movehl_ps(__m128 a, __m128 b)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 7; additionally
#UD If VEX.L= 1.
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MOVHPD—Move High Packed Double-Precision Floating-Point Value

Instruction Operand Encoding

Description

This instruction cannot be used for register to register or memory to memory moves.
128-bit Legacy SSE load:
Moves a double-precision floating-point value from the source 64-bit memory 
operand and stores it in the high 64-bits of the destination XMM register. The lower 
64bits of the XMM register are preserved. The upper 128-bits of the corresponding 
YMM destination register are preserved.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional 
registers (XMM8-XMM15).
VEX.128 encoded load:
Loads a double-precision floating-point value from the source 64-bit memory 
operand (third operand) and stores it in the upper 64-bits of the destination XMM 
register (first operand). The low 64-bits from second XMM register (second operand) 

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 16 /r

MOVHPD xmm, m64

RM V/V SSE2 Move double-precision 
floating-point value from 
m64 to high quadword of 
xmm.

66 0F 17 /r

MOVHPD m64, xmm

MR V/V SSE2 Move double-precision 
floating-point value from 
high quadword of xmm to 
m64.

VEX.NDS.128.66.0F.WIG 16 /r

VMOVHPD xmm2, xmm1, m64

RVM V/V AVX Merge double-precision 
floating-point value from 
m64 and the low quadword 
of xmm1.

VEX128.66.0F.WIG 17/r

VMOVHPD m64, xmm1

MR V/V AVX Move double-precision 
floating-point values from 
high quadword of xmm1 to 
m64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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are stored in the lower 64-bits of the destination. The upper 128-bits of the destina-
tion YMM register are zeroed.
128-bit store:
Stores a double-precision floating-point value from the high 64-bits of the XMM 
register source (second operand) to the 64-bit memory location (first operand).
Note: VMOVHPD (store) (VEX.128.66.0F 17 /r) is legal and has the same behavior as 
the existing 66 0F 17 store. For VMOVHPD (store) (VEX.128.66.0F 17 /r) instruction 
version, VEX.vvvv is reserved and must be 1111b otherwise instruction will #UD.
If VMOVHPD is encoded with VEX.L= 1, an attempt to execute the instruction 
encoded with VEX.L= 1 will cause an #UD exception.

Operation

MOVHPD (128-bit Legacy SSE load)
DEST[63:0] (Unmodified)
DEST[127:64]  SRC[63:0]
DEST[VLMAX-1:128] (Unmodified)

VMOVHPD (VEX.128 encoded load)
DEST[63:0]  SRC1[63:0]
DEST[127:64]  SRC2[63:0]
DEST[VLMAX-1:128]  0

VMOVHPD (store)
DEST[63:0]  SRC[127:64]

Intel C/C++ Compiler Intrinsic Equivalent

MOVHPD: __m128d _mm_loadh_pd ( __m128d a, double *p)

MOVHPD: void _mm_storeh_pd (double *p, __m128d a) 

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 5; additionally
#UD If VEX.L= 1.
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MOVHPS—Move High Packed Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

This instruction cannot be used for register to register or memory to memory moves.
128-bit Legacy SSE load:
Moves two packed single-precision floating-point values from the source 64-bit 
memory operand and stores them in the high 64-bits of the destination XMM register. 
The lower 64bits of the XMM register are preserved. The upper 128-bits of the corre-
sponding YMM destination register are preserved.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional 
registers (XMM8-XMM15).
VEX.128 encoded load:
Loads two single-precision floating-point values from the source 64-bit memory 
operand (third operand) and stores it in the upper 64-bits of the destination XMM 
register (first operand). The low 64-bits from second XMM register (second operand) 

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

0F 16 /r

MOVHPS xmm, m64

RM V/V SSE Move two packed single-
precision floating-point 
values from m64 to high 
quadword of xmm.

0F 17 /r

MOVHPS m64, xmm

MR V/V SSE Move two packed single-
precision floating-point 
values from high quadword 
of xmm to m64.

VEX.NDS.128.0F.WIG 16 /r

VMOVHPS xmm2, xmm1, m64

RVM V/V AVX Merge two packed single-
precision floating-point 
values from m64 and the 
low quadword of xmm1.

VEX.128.0F.WIG 17/r

VMOVHPS m64, xmm1

MR V/V AVX Move two packed single-
precision floating-point 
values from high quadword 
of xmm1to m64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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are stored in the lower 64-bits of the destination. The upper 128-bits of the destina-
tion YMM register are zeroed.
128-bit store:
Stores two packed single-precision floating-point values from the high 64-bits of the 
XMM register source (second operand) to the 64-bit memory location (first operand).
Note: VMOVHPS (store) (VEX.NDS.128.0F 17 /r) is legal and has the same behavior 
as the existing 0F 17 store. For VMOVHPS (store) (VEX.NDS.128.0F 17 /r) instruc-
tion version, VEX.vvvv is reserved and must be 1111b otherwise instruction will 
#UD.
If VMOVHPS is encoded with VEX.L= 1, an attempt to execute the instruction 
encoded with VEX.L= 1 will cause an #UD exception.

Operation

MOVHPS (128-bit Legacy SSE load)
DEST[63:0] (Unmodified)
DEST[127:64]  SRC[63:0]
DEST[VLMAX-1:128] (Unmodified)

VMOVHPS (VEX.128 encoded load)
DEST[63:0]  SRC1[63:0]
DEST[127:64]  SRC2[63:0]
DEST[VLMAX-1:128]  0

VMOVHPS (store)
DEST[63:0]  SRC[127:64]

Intel C/C++ Compiler Intrinsic Equivalent

MOVHPS: __m128d _mm_loadh_pi ( __m128d a, __m64 *p)

MOVHPS: void _mm_storeh_pi (__m64 *p, __m128d a) 

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 5; additionally
#UD If VEX.L= 1.
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MOVLHPS—Move Packed Single-Precision Floating-Point Values Low to 
High

Instruction Operand Encoding

Description

This instruction cannot be used for memory to register moves.
128-bit two-argument form:
Moves two packed single-precision floating-point values from the low quadword of 
the second XMM argument (second operand) to the high quadword of the first XMM 
register (first argument). The low quadword of the destination operand is left 
unchanged. The upper 128 bits of the corresponding YMM destination register are 
unmodified.
128-bit three-argument form
Moves two packed single-precision floating-point values from the low quadword of 
the third XMM argument (third operand) to the high quadword of the destination 
(first operand). Copies the low quadword from the second XMM argument (second 
operand) to the low quadword of the destination (first operand). The upper 128-bits 
of the destination YMM register are zeroed.
If VMOVLHPS is encoded with VEX.L= 1, an attempt to execute the instruction 
encoded with VEX.L= 1 will cause an #UD exception.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional 
registers (XMM8-XMM15).

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

0F 16 /r

MOVLHPS xmm1, xmm2

RM V/V SSE Move two packed single-
precision floating-point 
values from low quadword 
of xmm2 to high quadword 
of xmm1.

VEX.NDS.128.0F.WIG 16 /r

VMOVLHPS xmm1, xmm2, xmm3

RVM V/V AVX Merge two packed single-
precision floating-point 
values from low quadword 
of xmm3 and low quadword 
of xmm2.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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Operation

MOVLHPS (128-bit two-argument form)
DEST[63:0] (Unmodified)
DEST[127:64]  SRC[63:0]
DEST[VLMAX-1:128] (Unmodified)

VMOVLHPS (128-bit three-argument form)
DEST[63:0]  SRC1[63:0]
DEST[127:64]  SRC2[63:0]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

MOVHLPS: __m128 _mm_movelh_ps(__m128 a, __m128 b)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 7; additionally
#UD If VEX.L= 1.
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MOVLPD—Move Low Packed Double-Precision Floating-Point Value

Instruction Operand Encoding

Description

This instruction cannot be used for register to register or memory to memory moves.
128-bit Legacy SSE load:
Moves a double-precision floating-point value from the source 64-bit memory 
operand and stores it in the low 64-bits of the destination XMM register. The upper 
64bits of the XMM register are preserved. The upper 128-bits of the corresponding 
YMM destination register are preserved.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional 
registers (XMM8-XMM15).
VEX.128 encoded load:
Loads a double-precision floating-point value from the source 64-bit memory 
operand (third operand), merges it with the upper 64-bits of the first source XMM 
register (second operand), and stores it in the low 128-bits of the destination XMM 

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 12 /r

MOVLPD xmm, m64

RM V/V SSE2 Move double-precision 
floating-point value from 
m64 to low quadword of 
xmm register.

66 0F 13 /r

MOVLPD m64, xmm

MR V/V SSE2 Move double-precision 
floating-point nvalue from 
low quadword of xmm 
register to m64.

VEX.NDS.128.66.0F.WIG 12 /r

VMOVLPD xmm2, xmm1, m64

RVM V/V AVX Merge double-precision 
floating-point value from 
m64 and the high quadword 
of xmm1.

VEX.128.66.0F.WIG 13/r

VMOVLPD m64, xmm1

MR V/V AVX Move double-precision 
floating-point values from 
low quadword of xmm1 to 
m64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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register (first operand). The upper 128-bits of the destination YMM register are 
zeroed.
128-bit store:
Stores a double-precision floating-point value from the low 64-bits of the XMM 
register source (second operand) to the 64-bit memory location (first operand).
Note: VMOVLPD (store) (VEX.128.66.0F 13 /r) is legal and has the same behavior as 
the existing 66 0F 13 store. For VMOVLPD (store) (VEX.128.66.0F 13 /r) instruction 
version, VEX.vvvv is reserved and must be 1111b otherwise instruction will #UD.
If VMOVLPD is encoded with VEX.L= 1, an attempt to execute the instruction 
encoded with VEX.L= 1 will cause an #UD exception.

Operation

MOVLPD (128-bit Legacy SSE load)
DEST[63:0]  SRC[63:0]
DEST[VLMAX-1:64] (Unmodified)

VMOVLPD (VEX.128 encoded load)
DEST[63:0]  SRC2[63:0]
DEST[127:64]  SRC1[127:64]
DEST[VLMAX-1:128]  0

VMOVLPD (store)
DEST[63:0]  SRC[63:0]

Intel C/C++ Compiler Intrinsic Equivalent

MOVLPD: __m128d _mm_loadl_pd ( __m128d a, double *p)

MOVLPD: void _mm_storel_pd (double *p, __m128d a) 

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 5; additionally
#UD If VEX.L= 1.

If VEX.vvvv != 1111B.
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MOVLPS—Move Low Packed Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

This instruction cannot be used for register to register or memory to memory moves.
128-bit Legacy SSE load:
Moves two packed single-precision floating-point values from the source 64-bit 
memory operand and stores them in the low 64-bits of the destination XMM register. 
The upper 64bits of the XMM register are preserved. The upper 128-bits of the corre-
sponding YMM destination register are preserved.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional 
registers (XMM8-XMM15).
VEX.128 encoded load:
Loads two packed single-precision floating-point values from the source 64-bit 
memory operand (third operand), merges them with the upper 64-bits of the first 
source XMM register (second operand), and stores them in the low 128-bits of the 

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

0F 12 /r

MOVLPS xmm, m64

RM V/V SSE Move two packed single-
precision floating-point 
values from m64 to low 
quadword of xmm.

0F 13 /r

MOVLPS m64, xmm

MR V/V SSE Move two packed single-
precision floating-point 
values from low quadword 
of xmm to m64.

VEX.NDS.128.0F.WIG 12 /r

VMOVLPS xmm2, xmm1, m64

RVM V/V AVX Merge two packed single-
precision floating-point 
values from m64 and the 
high quadword of xmm1.

VEX.128.0F.WIG 13/r

VMOVLPS m64, xmm1

MR V/V AVX Move two packed single-
precision floating-point 
values from low quadword 
of xmm1 to m64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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destination XMM register (first operand). The upper 128-bits of the destination YMM 
register are zeroed.
128-bit store:
Loads two packed single-precision floating-point values from the low 64-bits of the 
XMM register source (second operand) to the 64-bit memory location (first operand).
Note: VMOVLPS (store) (VEX.128.0F 13 /r) is legal and has the same behavior as the 
existing 0F 13 store. For VMOVLPS (store) (VEX.128.0F 13 /r) instruction version, 
VEX.vvvv is reserved and must be 1111b otherwise instruction will #UD.

If VMOVLPS is encoded with VEX.L= 1, an attempt to execute the instruction encoded 
with VEX.L= 1 will cause an #UD exception.

Operation

MOVLPS (128-bit Legacy SSE load)
DEST[63:0]  SRC[63:0]
DEST[VLMAX-1:64] (Unmodified)

VMOVLPS (VEX.128 encoded load)
DEST[63:0]  SRC2[63:0]
DEST[127:64]  SRC1[127:64]
DEST[VLMAX-1:128]  0

VMOVLPS (store)
DEST[63:0]  SRC[63:0]

Intel C/C++ Compiler Intrinsic Equivalent

MOVLPS: __m128 _mm_loadl_pi ( __m128 a, __m64 *p)

MOVLPS: void _mm_storel_pi (__m64 *p, __m128 a) 

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 5; additionally
#UD If VEX.L= 1.

If VEX.vvvv != 1111B.
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MOVMSKPD—Extract Packed Double-Precision Floating-Point Sign 
Mask

Instruction Operand Encoding

Description

Extracts the sign bits from the packed double-precision floating-point values in the 
source operand (second operand), formats them into a 2-bit mask, and stores the 
mask in the destination operand (first operand). The source operand is an XMM 
register, and the destination operand is a general-purpose register. The mask is 
stored in the 2 low-order bits of the destination operand. Zero-extend the upper bits 
of the destination.

In 64-bit mode, the instruction can access additional registers (XMM8-XMM15, 
R8-R15) when used with a REX.R prefix. The default operand size is 64-bit in 64-bit 
mode.
128-bit versions: The source operand is a YMM register. The destination operand is a 
general purpose register.
VEX.256 encoded version: The source operand is a YMM register. The destination 
operand is a general purpose register. 
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise 
instructions will #UD.

Operation

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 50 /r

MOVMSKPD reg, xmm

RM V/V SSE2 Extract 2-bit sign mask from 
xmm and store in reg. The 
upper bits of r32 or r64 are 
filled with zeros.

VEX.128.66.0F.WIG 50 /r

VMOVMSKPD reg, xmm2

RM V/V AVX Extract 2-bit sign mask from 
xmm2 and store in reg. The 
upper bits of r32 or r64 are 
zeroed.

VEX.256.66.0F.WIG 50 /r

VMOVMSKPD reg, ymm2

RM V/V AVX Extract 4-bit sign mask from 
ymm2 and store in reg. The 
upper bits of r32 or r64 are 
zeroed.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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(V)MOVMSKPD (128-bit versions)
DEST[0]  SRC[63]
DEST[1]  SRC[127]
IF DEST = r32

THEN DEST[31:2]  0;
ELSE DEST[63:2]  0;

FI

VMOVMSKPD (VEX.256 encoded version)
DEST[0]  SRC[63]
DEST[1]  SRC[127]
DEST[2]  SRC[191]
DEST[3]  SRC[255]
IF DEST = r32

THEN DEST[31:4]  0;
ELSE DEST[63:4]  0;

FI

Intel C/C++ Compiler Intrinsic Equivalent

MOVMSKPD: int _mm_movemask_pd ( __m128d a)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 7; additionally
#UD If VEX.vvvv != 1111B.
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MOVMSKPS—Extract Packed Single-Precision Floating-Point Sign Mask

Instruction Operand Encoding1

Description

Extracts the sign bits from the packed single-precision floating-point values in the 
source operand (second operand), formats them into a 4- or 8-bit mask, and stores 
the mask in the destination operand (first operand). The source operand is an XMM 
or YMM register, and the destination operand is a general-purpose register. The mask 
is stored in the 4 or 8 low-order bits of the destination operand. The upper bits of the 
destination operand beyond the mask are filled with zeros.

In 64-bit mode, the instruction can access additional registers (XMM8-XMM15, 
R8-R15) when used with a REX.R prefix. The default operand size is 64-bit in 64-bit 
mode.

128-bit versions: The source operand is a YMM register. The destination operand is a 
general purpose register. 
VEX.256 encoded version: The source operand is a YMM register. The destination 
operand is a general purpose register. 
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise 
instructions will #UD.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

0F 50 /r

MOVMSKPS reg, xmm

RM V/V SSE Extract 4-bit sign mask from 
xmm and store in reg. The 
upper bits of r32 or r64 are 
filled with zeros.

VEX.128.0F.WIG 50 /r

VMOVMSKPS reg, xmm2

RM V/V AVX Extract 4-bit sign mask from 
xmm2 and store in reg. The 
upper bits of r32 or r64 are 
zeroed.

VEX.256.0F.WIG 50 /r

VMOVMSKPS reg, ymm2

RM V/V AVX Extract 8-bit sign mask from 
ymm2 and store in reg. The 
upper bits of r32 or r64 are 
zeroed.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

1. ModRM.MOD = 011B required
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Operation

DEST[0] ← SRC[31]; 
DEST[1] ← SRC[63]; 
DEST[2] ← SRC[95]; 
DEST[3] ← SRC[127]; 

IF DEST = r32
THEN DEST[31:4] ← ZeroExtend;
ELSE DEST[63:4] ← ZeroExtend;

FI;

(V)MOVMSKPS (128-bit version)
DEST[0]  SRC[31]
DEST[1]  SRC[63]
DEST[2]  SRC[95]
DEST[3]  SRC[127]
IF DEST = r32

THEN DEST[31:4]  0;
ELSE DEST[63:4]  0;

FI

VMOVMSKPS (VEX.256 encoded version)
DEST[0]  SRC[31]
DEST[1]  SRC[63]
DEST[2]  SRC[95]
DEST[3]  SRC[127]
DEST[4]  SRC[159]
DEST[5]  SRC[191]
DEST[6]  SRC[223]
DEST[7]  SRC[255]
IF DEST = r32

THEN DEST[31:8]  0;
ELSE DEST[63:8]  0;

FI

Intel C/C++ Compiler Intrinsic Equivalent

int _mm_movemask_ps(__m128 a)

int _mm256_movemask_ps(__m256 a)

SIMD Floating-Point Exceptions

None.
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Other Exceptions
See Exceptions Type 7; additionally
#UD If VEX.vvvv != 1111B.
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MOVNTDQA — Load Double Quadword Non-Temporal Aligned Hint

Instruction Operand Encoding

Description

MOVNTDQA loads a double quadword from the source operand (second operand) to 
the destination operand (first operand) using a non-temporal hint. A processor 
implementation may make use of the non-temporal hint associated with this instruc-
tion if the memory source is WC (write combining) memory type. An implementation 
may also make use of the non-temporal hint associated with this instruction if the 
memory source is WB (write back) memory type.
A processor’s implementation of the non-temporal hint does not override the effec-
tive memory type semantics, but the implementation of the hint is processor depen-
dent. For example, a processor implementation may choose to ignore the hint and 
process the instruction as a normal MOVDQA for any memory type. Another imple-
mentation of the hint for WC memory type may optimize data transfer throughput of 
WC reads. A third implementation may optimize cache reads generated by 
MOVNTDQA on WB memory type to reduce cache evictions.

WC Streaming Load Hint

For WC memory type in particular, the processor never appears to read the data into 
the cache hierarchy. Instead, the non-temporal hint may be implemented by loading 
a temporary internal buffer with the equivalent of an aligned cache line without filling 
this data to the cache. Any memory-type aliased lines in the cache will be snooped 
and flushed. Subsequent MOVNTDQA reads to unread portions of the WC cache line 
will receive data from the temporary internal buffer if data is available. The tempo-
rary internal buffer may be flushed by the processor at any time for any reason, for 
example:
• A load operation other than a MOVNTDQA which references memory already 

resident in a temporary internal buffer.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 38 2A /r

MOVNTDQA xmm1, m128

RM V/V SSE4_1 Move double quadword 
from m128 to xmm using 
non-temporal hint if WC 
memory type.

VEX.128.66.0F38.WIG 2A /r

VMOVNTDQA xmm1, m128

RM V/V AVX Move double quadword from 
m128 to xmm using non-
temporal hint if WC memory 
type.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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• A non-WC reference to memory already resident in a temporary internal buffer.
• Interleaving of reads and writes to memory currently residing in a single 

temporary internal buffer.
• Repeated (V)MOVNTDQA loads of a particular 16-byte item in a streaming line.
• Certain micro-architectural conditions including resource shortages, detection of 

a mis-speculation condition, and various fault conditions
The memory type of the region being read can override the non-temporal hint, if the 
memory address specified for the non-temporal read is not a WC memory region. 
Information on non-temporal reads and writes can be found in Chapter 11, “Memory 
Cache Control” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3A. 
Because the WC protocol uses a weakly-ordered memory consistency model, an 
MFENCE or locked instruction should be used in conjunction with MOVNTDQA instruc-
tions if multiple processors might reference the same WC memory locations or in 
order to synchronize reads of a processor with writes by other agents in the system. 
Because of the speculative nature of fetching due to MOVNTDQA, Streaming loads 
must not be used to reference memory addresses that are mapped to I/O devices 
having side effects or when reads to these devices are destructive. For additional 
information on MOVNTDQA usages, see Section 12.10.3 in Chapter 12, “Program-
ming with SSE3, SSSE3 and SSE4” of Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1.
The 128-bit (V)MOVNTDQA addresses must be 16-byte aligned or the instruction will 
cause a #GP.
Note: In VEX-128 encoded versions, VEX.vvvv is reserved and must be 1111b, VEX.L 
must be 0; otherwise instructions will #UD.

Operation

MOVNTDQA (128bit- Legacy SSE form)
DEST  SRC
DEST[VLMAX-1:128] (Unmodified)

VMOVNTDQA (VEX.128 encoded form)
DEST  SRC
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

MOVNTDQA: __m128i _mm_stream_load_si128 (__m128i *p);

Flags Affected

None
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Other Exceptions
See Exceptions Type 1.SSE4.1; additionally
#UD If VEX.L= 1.

If VEX.vvvv != 1111B.
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MOVNTDQ—Store Double Quadword Using Non-Temporal Hint

Instruction Operand Encoding1

Description

Moves the packed integers in the source operand (second operand) to the destination 
operand (first operand) using a non-temporal hint to prevent caching of the data 
during the write to memory. The source operand is an XMM register or YMM register, 
which is assumed to contain integer data (packed bytes, words, doublewords, or 
quadwords). The destination operand is a 128-bit or 256-bit memory location. The 
memory operand must be aligned on a 16-byte (128-bit version) or 32-byte 
(VEX.256 encoded version) boundary otherwise a general-protection exception 
(#GP) will be generated. 

The non-temporal hint is implemented by using a write combining (WC) memory 
type protocol when writing the data to memory. Using this protocol, the processor 
does not write the data into the cache hierarchy, nor does it fetch the corresponding 
cache line from memory into the cache hierarchy. The memory type of the region 
being written to can override the non-temporal hint, if the memory address specified 
for the non-temporal store is in an uncacheable (UC) or write protected (WP) 
memory region. For more information on non-temporal stores, see “Caching of 
Temporal vs. Non-Temporal Data” in Chapter 10 in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 1.

Because the WC protocol uses a weakly-ordered memory consistency model, a 
fencing operation implemented with the SFENCE or MFENCE instruction should be 
used in conjunction with MOVNTDQ instructions if multiple processors might use 
different memory types to read/write the destination memory locations.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F E7 /r

MOVNTDQ m128, xmm

MR V/V SSE2 Move double quadword 
from xmm to m128 using 
non-temporal hint.

VEX.128.66.0F.WIG E7 /r

VMOVNTDQ m128, xmm1

MR V/V AVX Move packed integer values 
in xmm1 to m128 using 
non-temporal hint.

VEX.256.66.0F.WIG E7 /r

VMOVNTDQ m256, ymm1

MR V/V AVX Move packed integer values 
in ymm1 to m256 using 
non-temporal hint.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (w) ModRM:reg (r) NA NA

1. ModRM.MOD = 011B is not permitted
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In 64-bit mode, use of the REX.R prefix permits this instruction to access additional 
registers (XMM8-XMM15).
Note: In VEX-128 encoded versions, VEX.vvvv is reserved and must be 1111b, VEX.L 
must be 0; otherwise instructions will #UD.

Operation

DEST ← SRC;

Intel C/C++ Compiler Intrinsic Equivalent

MOVNTDQ:  void _mm_stream_si128( __m128i *p, __m128i a);

VMOVNTDQ:  void _mm256_stream_si256 (__m256i * p, __m256i a);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 1.SSE2; additionally
#UD If VEX.vvvv != 1111B.
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MOVNTI—Store Doubleword Using Non-Temporal Hint

Instruction Operand Encoding

Description

Moves the doubleword integer in the source operand (second operand) to the desti-
nation operand (first operand) using a non-temporal hint to minimize cache pollution 
during the write to memory. The source operand is a general-purpose register. The 
destination operand is a 32-bit memory location.

The non-temporal hint is implemented by using a write combining (WC) memory 
type protocol when writing the data to memory. Using this protocol, the processor 
does not write the data into the cache hierarchy, nor does it fetch the corresponding 
cache line from memory into the cache hierarchy. The memory type of the region 
being written to can override the non-temporal hint, if the memory address specified 
for the non-temporal store is in an uncacheable (UC) or write protected (WP) 
memory region. For more information on non-temporal stores, see “Caching of 
Temporal vs. Non-Temporal Data” in Chapter 10 in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 1.

Because the WC protocol uses a weakly-ordered memory consistency model, a 
fencing operation implemented with the SFENCE or MFENCE instruction should be 
used in conjunction with MOVNTI instructions if multiple processors might use 
different memory types to read/write the destination memory locations.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R 
prefix permits access to additional registers (R8-R15). Use of the REX.W prefix 
promotes operation to 64 bits. See the summary chart at the beginning of this 
section for encoding data and limits.

Operation

DEST ← SRC;

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F C3 /r MOVNTI m32, r32 MR Valid Valid Move doubleword from r32 
to m32 using non-temporal 
hint.

REX.W + 0F C3 
/r

MOVNTI m64, r64 MR Valid N.E. Move quadword from r64 to 
m64 using non-temporal 
hint.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (w) ModRM:reg (r) NA NA
Vol. 2B 4-97MOVNTI—Store Doubleword Using Non-Temporal Hint



INSTRUCTION SET REFERENCE, M-Z
Intel C/C++ Compiler Intrinsic Equivalent

MOVNTI: void _mm_stream_si32 (int *p, int a)

MOVNTI: void _mm_stream_si64(__int64 *p, __int64 a)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, 

ES, FS or GS segments.
#SS(0) For an illegal address in the SS segment. 
#PF(fault-code) For a page fault.
#UD If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 16-byte boundary, 

regardless of segment.
If any part of the operand lies outside the effective address 
space from 0 to FFFFH.

#UD If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) For a page fault.
#UD If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
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MOVNTPD—Store Packed Double-Precision Floating-Point Values Using 
Non-Temporal Hint

Instruction Operand Encoding1

Description

Moves the packed double-precision floating-point values in the source operand 
(second operand) to the destination operand (first operand) using a non-temporal 
hint to prevent caching of the data during the write to memory. The source operand 
is an XMM register or YMM register, which is assumed to contain packed double-preci-
sion, floating-pointing data. The destination operand is a 128-bit or 256-bit memory 
location. The memory operand must be aligned on a 16-byte (128-bit version) or 32-
byte (VEX.256 encoded version) boundary otherwise a general-protection exception 
(#GP) will be generated. 

The non-temporal hint is implemented by using a write combining (WC) memory 
type protocol when writing the data to memory. Using this protocol, the processor 
does not write the data into the cache hierarchy, nor does it fetch the corresponding 
cache line from memory into the cache hierarchy. The memory type of the region 
being written to can override the non-temporal hint, if the memory address specified 
for the non-temporal store is in an uncacheable (UC) or write protected (WP) 
memory region. For more information on non-temporal stores, see “Caching of 
Temporal vs. Non-Temporal Data” in Chapter 10 in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 1.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 2B /r

MOVNTPD m128, xmm

MR V/V SSE2 Move packed double-
precision floating-point 
values from xmm to m128 
using non-temporal hint.

VEX.128.66.0F.WIG 2B /r

VMOVNTPD m128, xmm1

MR V/V AVX Move packed double-
precision values in xmm1 to 
m128 using non-temporal 
hint.

VEX.256.66.0F.WIG 2B /r

VMOVNTPD m256, ymm1

MR V/V AVX Move packed double-
precision values in ymm1 to 
m256 using non-temporal 
hint.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (w) ModRM:reg (r) NA NA

1. ModRM.MOD = 011B is not permitted
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Because the WC protocol uses a weakly-ordered memory consistency model, a 
fencing operation implemented with the SFENCE or MFENCE instruction should be 
used in conjunction with MOVNTPD instructions if multiple processors might use 
different memory types to read/write the destination memory locations.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional 
registers (XMM8-XMM15).
Note: In VEX-128 encoded versions, VEX.vvvv is reserved and must be 1111b, VEX.L 
must be 0; otherwise instructions will #UD.

Operation

DEST ← SRC;

Intel C/C++ Compiler Intrinsic Equivalent

MOVNTPD:  void _mm_stream_pd(double *p, __m128d a)

VMOVNTPD:  void _mm256_stream_pd (double * p, __m256d a);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 1.SSE2; additionally
#UD If VEX.vvvv != 1111B.
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MOVNTPS—Store Packed Single-Precision Floating-Point Values Using 
Non-Temporal Hint

Instruction Operand Encoding1

Description

Moves the packed single-precision floating-point values in the source operand 
(second operand) to the destination operand (first operand) using a non-temporal 
hint to prevent caching of the data during the write to memory. The source operand 
is an XMM register or YMM register, which is assumed to contain packed single-preci-
sion, floating-pointing. The destination operand is a 128-bit or 256-bitmemory loca-
tion. The memory operand must be aligned on a 16-byte (128-bit version) or 32-byte 
(VEX.256 encoded version) boundary otherwise a general-protection exception 
(#GP) will be generated. 

The non-temporal hint is implemented by using a write combining (WC) memory 
type protocol when writing the data to memory. Using this protocol, the processor 
does not write the data into the cache hierarchy, nor does it fetch the corresponding 
cache line from memory into the cache hierarchy. The memory type of the region 
being written to can override the non-temporal hint, if the memory address specified 
for the non-temporal store is in an uncacheable (UC) or write protected (WP) 
memory region. For more information on non-temporal stores, see “Caching of 
Temporal vs. Non-Temporal Data” in Chapter 10 in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 1.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

0F 2B /r

MOVNTPS m128, xmm

MR V/V SSE Move packed single-
precision floating-point 
values from xmm to m128 
using non-temporal hint.

VEX.128.0F.WIG 2B /r

VMOVNTPS m128, xmm1

MR V/V AVX Move packed single-
precision values xmm1 to 
mem using non-temporal 
hint.

VEX.256.0F.WIG 2B /r

VMOVNTPS m256, ymm1

MR V/V AVX Move packed single-
precision values ymm1 to 
mem using non-temporal 
hint.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (w) ModRM:reg (r) NA NA

1. ModRM.MOD = 011B is not permitted
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Because the WC protocol uses a weakly-ordered memory consistency model, a 
fencing operation implemented with the SFENCE or MFENCE instruction should be 
used in conjunction with MOVNTPS instructions if multiple processors might use 
different memory types to read/write the destination memory locations.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional 
registers (XMM8-XMM15).
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise 
instructions will #UD.

Operation

DEST ← SRC;

Intel C/C++ Compiler Intrinsic Equivalent

MOVNTDQ: void _mm_stream_ps(float * p, __m128 a)

VMOVNTPS:  void _mm256_stream_ps (float * p, __m256 a);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 1.SSE; additionally
#UD If VEX.vvvv != 1111B.
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MOVNTQ—Store of Quadword Using Non-Temporal Hint

Instruction Operand Encoding

Description

Moves the quadword in the source operand (second operand) to the destination 
operand (first operand) using a non-temporal hint to minimize cache pollution during 
the write to memory. The source operand is an MMX technology register, which is 
assumed to contain packed integer data (packed bytes, words, or doublewords). The 
destination operand is a 64-bit memory location.

The non-temporal hint is implemented by using a write combining (WC) memory 
type protocol when writing the data to memory. Using this protocol, the processor 
does not write the data into the cache hierarchy, nor does it fetch the corresponding 
cache line from memory into the cache hierarchy. The memory type of the region 
being written to can override the non-temporal hint, if the memory address specified 
for the non-temporal store is in an uncacheable (UC) or write protected (WP) 
memory region. For more information on non-temporal stores, see “Caching of 
Temporal vs. Non-Temporal Data” in Chapter 10 in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 1.

Because the WC protocol uses a weakly-ordered memory consistency model, a 
fencing operation implemented with the SFENCE or MFENCE instruction should be 
used in conjunction with MOVNTQ instructions if multiple processors might use 
different memory types to read/write the destination memory locations.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

DEST ← SRC;

Intel C/C++ Compiler Intrinsic Equivalent

MOVNTQ: void _mm_stream_pi(__m64 * p, __m64 a)

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F E7 /r MOVNTQ m64, 
mm

MR Valid Valid Move quadword from mm to 
m64 using non-temporal 
hint.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (w) ModRM:reg (r) NA NA
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SIMD Floating-Point Exceptions

None.

Other Exceptions
See Table 22-8, “Exception Conditions for Legacy SIMD/MMX Instructions without FP 
Exception,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3A.
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MOVQ—Move Quadword

Instruction Operand Encoding

Description

Copies a quadword from the source operand (second operand) to the destination 
operand (first operand). The source and destination operands can be MMX tech-
nology registers, XMM registers, or 64-bit memory locations. This instruction can be 
used to move a quadword between two MMX technology registers or between an 
MMX technology register and a 64-bit memory location, or to move data between two 
XMM registers or between an XMM register and a 64-bit memory location. The 
instruction cannot be used to transfer data between memory locations. 

When the source operand is an XMM register, the low quadword is moved; when the 
destination operand is an XMM register, the quadword is stored to the low quadword 
of the register, and the high quadword is cleared to all 0s.

In 64-bit mode, use of the REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).

Operation

MOVQ instruction when operating on MMX technology registers and memory locations:
DEST ← SRC;

MOVQ instruction when source and destination operands are XMM registers:
DEST[63:0] ← SRC[63:0];
DEST[127:64] ← 0000000000000000H;

Opcode Instruction Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

0F 6F /r MOVQ mm, 
mm/m64

RM V/V MMX Move quadword from 
mm/m64 to mm.

0F 7F /r MOVQ mm/m64, 
mm

MR V/V MMX Move quadword from mm to 
mm/m64.

F3 0F 7E MOVQ xmm1, 
xmm2/m64

RM V/V SSE2 Move quadword from 
xmm2/mem64 to xmm1.

66 0F D6 MOVQ 
xmm2/m64, 
xmm1

MR V/V SSE2 Move quadword from xmm1 
to xmm2/mem64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA
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MOVQ instruction when source operand is XMM register and destination
operand is memory location:

DEST ← SRC[63:0];

MOVQ instruction when source operand is memory location and destination
operand is XMM register:

DEST[63:0] ← SRC;
DEST[127:64] ← 0000000000000000H;

Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

MOVQ: m128i _mm_mov_epi64(__m128i a)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Table 22-8, “Exception Conditions for Legacy SIMD/MMX Instructions without FP 
Exception,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3A.
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MOVQ2DQ—Move Quadword from MMX Technology to XMM Register

Instruction Operand Encoding

Description

Moves the quadword from the source operand (second operand) to the low quadword 
of the destination operand (first operand). The source operand is an MMX technology 
register and the destination operand is an XMM register. 

This instruction causes a transition from x87 FPU to MMX technology operation (that 
is, the x87 FPU top-of-stack pointer is set to 0 and the x87 FPU tag word is set to all 
0s [valid]). If this instruction is executed while an x87 FPU floating-point exception is 
pending, the exception is handled before the MOVQ2DQ instruction is executed.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional 
registers (XMM8-XMM15).

Operation

DEST[63:0] ← SRC[63:0];
DEST[127:64] ← 00000000000000000H;

Intel C/C++ Compiler Intrinsic Equivalent

MOVQ2DQ: __128i _mm_movpi64_pi64 ( __m64 a)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions
#NM If CR0.TS[bit 3] = 1. 
#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

#MF If there is a pending x87 FPU exception.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

F3 0F D6 MOVQ2DQ xmm, 
mm

RM Valid Valid Move quadword from mmx 
to low quadword of xmm.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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MOVS/MOVSB/MOVSW/MOVSD/MOVSQ—Move Data from 
String to String
\

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

A4 MOVS m8, m8 NP Valid Valid For legacy mode, Move byte 
from address DS:(E)SI to 
ES:(E)DI. For 64-bit mode 
move byte from address 
(R|E)SI to (R|E)DI.

A5 MOVS m16, m16 NP Valid Valid For legacy mode, move 
word from address DS:(E)SI 
to ES:(E)DI. For 64-bit mode 
move word at address 
(R|E)SI to (R|E)DI.

A5 MOVS m32, m32 NP Valid Valid For legacy mode, move 
dword from address DS:(E)SI 
to ES:(E)DI. For 64-bit mode 
move dword from address 
(R|E)SI to (R|E)DI.

REX.W + A5 MOVS m64, m64 NP Valid N.E. Move qword from address 
(R|E)SI to (R|E)DI.

A4 MOVSB NP Valid Valid For legacy mode, Move byte 
from address DS:(E)SI to 
ES:(E)DI. For 64-bit mode 
move byte from address 
(R|E)SI to (R|E)DI.

A5 MOVSW NP Valid Valid For legacy mode, move 
word from address DS:(E)SI 
to ES:(E)DI. For 64-bit mode 
move word at address 
(R|E)SI to (R|E)DI.

A5 MOVSD NP Valid Valid For legacy mode, move 
dword from address DS:(E)SI 
to ES:(E)DI. For 64-bit mode 
move dword from address 
(R|E)SI to (R|E)DI.

REX.W + A5 MOVSQ NP Valid N.E. Move qword from address 
(R|E)SI to (R|E)DI.
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Instruction Operand Encoding

Description

Moves the byte, word, or doubleword specified with the second operand (source 
operand) to the location specified with the first operand (destination operand). Both 
the source and destination operands are located in memory. The address of the 
source operand is read from the DS:ESI or the DS:SI registers (depending on the 
address-size attribute of the instruction, 32 or 16, respectively). The address of the 
destination operand is read from the ES:EDI or the ES:DI registers (again depending 
on the address-size attribute of the instruction). The DS segment may be overridden 
with a segment override prefix, but the ES segment cannot be overridden.

At the assembly-code level, two forms of this instruction are allowed: the “explicit-
operands” form and the “no-operands” form. The explicit-operands form (specified 
with the MOVS mnemonic) allows the source and destination operands to be speci-
fied explicitly. Here, the source and destination operands should be symbols that 
indicate the size and location of the source value and the destination, respectively. 
This explicit-operands form is provided to allow documentation; however, note that 
the documentation provided by this form can be misleading. That is, the source and 
destination operand symbols must specify the correct type (size) of the operands 
(bytes, words, or doublewords), but they do not have to specify the correct location. 
The locations of the source and destination operands are always specified by the 
DS:(E)SI and ES:(E)DI registers, which must be loaded correctly before the move 
string instruction is executed.

The no-operands form provides “short forms” of the byte, word, and doubleword 
versions of the MOVS instructions. Here also DS:(E)SI and ES:(E)DI are assumed to 
be the source and destination operands, respectively. The size of the source and 
destination operands is selected with the mnemonic: MOVSB (byte move), MOVSW 
(word move), or MOVSD (doubleword move).

After the move operation, the (E)SI and (E)DI registers are incremented or decre-
mented automatically according to the setting of the DF flag in the EFLAGS register. 
(If the DF flag is 0, the (E)SI and (E)DI register are incremented; if the DF flag is 1, 
the (E)SI and (E)DI registers are decremented.) The registers are incremented or 
decremented by 1 for byte operations, by 2 for word operations, or by 4 for double-
word operations.

The MOVS, MOVSB, MOVSW, and MOVSD instructions can be preceded by the REP 
prefix (see “REP/REPE/REPZ /REPNE/REPNZ—Repeat String Operation Prefix” in 
Chapter 4 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2B, for a description of the REP prefix) for block moves of ECX bytes, words, 
or doublewords.

In 64-bit mode, the instruction’s default address size is 64 bits, 32-bit address size is 
supported using the prefix 67H. The 64-bit addresses are specified by RSI and RDI; 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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32-bit address are specified by ESI and EDI. Use of the REX.W prefix promotes 
doubleword operation to 64 bits. See the summary chart at the beginning of this 
section for encoding data and limits.

Operation

DEST ← SRC;

Non-64-bit Mode:

IF (Byte move)
THEN IF DF = 0

THEN 
(E)SI ← (E)SI + 1; 
(E)DI ← (E)DI + 1; 

ELSE 
(E)SI ← (E)SI – 1; 
(E)DI ← (E)DI – 1; 

FI;
ELSE IF (Word move)

THEN IF DF = 0
(E)SI ← (E)SI + 2; 
(E)DI ← (E)DI + 2; 
FI;

ELSE 
(E)SI ← (E)SI – 2; 
(E)DI ← (E)DI – 2; 

FI;
ELSE IF (Doubleword move)

THEN IF DF = 0
(E)SI ← (E)SI + 4; 
(E)DI ← (E)DI + 4; 
FI;

ELSE 
(E)SI ← (E)SI – 4; 
(E)DI ← (E)DI – 4; 

FI;
FI;
64-bit Mode:

IF (Byte move)
THEN IF DF = 0

THEN 
(R|E)SI ← (R|E)SI + 1; 
(R|E)DI ← (R|E)DI + 1; 
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ELSE 
(R|E)SI ← (R|E)SI – 1; 
(R|E)DI ← (R|E)DI – 1; 

FI;
ELSE IF (Word move)

THEN IF DF = 0
(R|E)SI ← (R|E)SI + 2; 
(R|E)DI ← (R|E)DI + 2; 
FI;

ELSE 
(R|E)SI ← (R|E)SI – 2; 
(R|E)DI ← (R|E)DI – 2; 

FI;
ELSE IF (Doubleword move)

THEN IF DF = 0
(R|E)SI ← (R|E)SI + 4; 
(R|E)DI ← (R|E)DI + 4; 
FI;

ELSE 
(R|E)SI ← (R|E)SI – 4; 
(R|E)DI ← (R|E)DI – 4; 

FI;
ELSE IF (Quadword move)

THEN IF DF = 0
(R|E)SI ← (R|E)SI + 8; 
(R|E)DI ← (R|E)DI + 8;
FI;

ELSE 
(R|E)SI ← (R|E)SI – 8; 
(R|E)DI ← (R|E)DI – 8; 

FI;
FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, 
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment 
selector.
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#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS 

segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
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MOVSD—Move Scalar Double-Precision Floating-Point Value

Instruction Operand Encoding

Description

MOVSD moves a scalar double-precision floating-point value from the source 
operand (second operand) to the destination operand (first operand). The source and 
destination operands can be XMM registers or 64-bit memory locations. This instruc-

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F2 0F 10 /r

MOVSD xmm1, xmm2/m64

RM V/V SSE2 Move scalar double-
precision floating-point 
value from xmm2/m64 to 
xmm1 register.

VEX.NDS.LIG.F2.0F.WIG 10 /r

VMOVSD xmm1, xmm2, xmm3

RVM V/V AVX Merge scalar double-
precision floating-point 
value from xmm2 and 
xmm3 to xmm1 register.

VEX.LIG.F2.0F.WIG 10 /r

VMOVSD xmm1, m64

XM V/V AVX Load scalar double-precision 
floating-point value from 
m64 to xmm1 register.

F2 0F 11 /r

MOVSD xmm2/m64, xmm1

MR V/V SSE2 Move scalar double-
precision floating-point 
value from xmm1 register 
to xmm2/m64.

VEX.NDS.LIG.F2.0F.WIG 11 /r

VMOVSD xmm1, xmm2, xmm3

MVR V/V AVX Merge scalar double-
precision floating-point 
value from xmm2 and 
xmm3 registers to xmm1.

VEX.LIG.F2.0F.WIG 11 /r

VMOVSD m64, xmm1

MR V/V AVX Move scalar double-
precision floating-point 
value from xmm1 register 
to m64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA

XM ModRM:reg (w) ModRM:r/m (r) NA NA

MVR ModRM:r/m (w) VEX.vvvv (r) ModRM:reg (r) NA
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tion can be used to move a double-precision floating-point value to and from the low 
quadword of an XMM register and a 64-bit memory location, or to move a double-
precision floating-point value between the low quadwords of two XMM registers. The 
instruction cannot be used to transfer data between memory locations.
For non-VEX encoded instruction syntax and when the source and destination oper-
ands are XMM registers, the high quadword of the destination operand remains 
unchanged. When the source operand is a memory location and destination operand 
is an XMM registers, the high quadword of the destination operand is cleared to all 0s.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional 
registers (XMM8-XMM15).
Note: For the “VMOVSD m64, xmm1” (memory store form) instruction version, 
VEX.vvvv is reserved and must be 1111b, otherwise instruction will #UD.
Note: For the “VMOVSD xmm1, m64” (memory load form) instruction version, 
VEX.vvvv is reserved and must be 1111b otherwise instruction will #UD.
VEX encoded instruction syntax supports two source operands and a destination 
operand if ModR/M.mod field is 11B. VEX.vvvv is used to encode the first source 
operand (the second operand). The low 128 bits of the destination operand stores the 
result of merging the low quadword of the second source operand with the quad word 
in bits 127:64 of the first source operand. The upper bits of the destination operand 
are cleared.

Operation

MOVSD (128-bit Legacy SSE version: MOVSD XMM1, XMM2)
DEST[63:0]  SRC[63:0]
DEST[VLMAX-1:64] (Unmodified)

MOVSD/VMOVSD (128-bit versions: MOVSD m64, xmm1 or VMOVSD m64, xmm1)
DEST[63:0]  SRC[63:0]

MOVSD (128-bit Legacy SSE version: MOVSD XMM1, m64)
DEST[63:0]  SRC[63:0]
DEST[127:64]  0
DEST[VLMAX-1:128] (Unmodified)

VMOVSD (VEX.NDS.128.F2.0F 11 /r: VMOVSD xmm1, xmm2, xmm3)
DEST[63:0]  SRC2[63:0]
DEST[127:64]  SRC1[127:64]
DEST[VLMAX-1:128]  0

VMOVSD (VEX.NDS.128.F2.0F 10 /r: VMOVSD xmm1, xmm2, xmm3)
DEST[63:0]  SRC2[63:0]
DEST[127:64]  SRC1[127:64]
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DEST[VLMAX-1:128]  0

VMOVSD (VEX.NDS.128.F2.0F 10 /r: VMOVSD xmm1, m64)
DEST[63:0]  SRC[63:0]
DEST[VLMAX-1:64]  0

Intel C/C++ Compiler Intrinsic Equivalent

MOVSD: __m128d _mm_load_sd (double *p)

MOVSD: void _mm_store_sd (double *p, __m128d a)

MOVSD: __m128d _mm_store_sd (__m128d a, __m128d b) 

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 5; additionally
#UD If VEX.vvvv != 1111B.
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MOVSHDUP—Move Packed Single-FP High and Duplicate

Instruction Operand Encoding

Description

The linear address corresponds to the address of the least-significant byte of the 
referenced memory data. When a memory address is indicated, the 16 bytes of data 
at memory location m128 are loaded and the single-precision elements in positions 1 
and 3 are duplicated. When the register-register form of this operation is used, the 
same operation is performed but with data coming from the 128-bit source register. 
See Figure 4-3.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F3 0F 16 /r

MOVSHDUP xmm1, xmm2/m128

RM V/V SSE3 Move two single-precision 
floating-point values from 
the higher 32-bit operand of 
each qword in xmm2/m128 
to xmm1 and duplicate each 
32-bit operand to the lower 
32-bits of each qword.

VEX.128.F3.0F.WIG 16 /r

VMOVSHDUP xmm1, xmm2/m128

RM V/V AVX Move odd index single-
precision floating-point 
values from xmm2/mem 
and duplicate each element 
into xmm1.

VEX.256.F3.0F.WIG 16 /r

VMOVSHDUP ymm1, ymm2/m256

RM V/V AVX Move odd index single-
precision floating-point 
values from ymm2/mem and 
duplicate each element into 
ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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In 64-bit mode, use of the REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise 
instructions will #UD.

Operation

MOVSHDUP (128-bit Legacy SSE version)
DEST[31:0]  SRC[63:32]
DEST[63:32]  SRC[63:32]
DEST[95:64]  SRC[127:96]
DEST[127:96]  SRC[127:96]
DEST[VLMAX-1:128] (Unmodified)

VMOVSHDUP (VEX.128 encoded version)
DEST[31:0]  SRC[63:32]
DEST[63:32]  SRC[63:32]
DEST[95:64]  SRC[127:96]
DEST[127:96]  SRC[127:96]

Figure 4-3.  MOVSHDUP—Move Packed Single-FP High and Duplicate
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DEST[VLMAX-1:128]  0

VMOVSHDUP (VEX.256 encoded version)
DEST[31:0]  SRC[63:32]
DEST[63:32]  SRC[63:32]
DEST[95:64]  SRC[127:96]
DEST[127:96]  SRC[127:96]
DEST[159:128]  SRC[191:160]
DEST[191:160]  SRC[191:160]
DEST[223:192]  SRC[255:224]
DEST[255:224]  SRC[255:224]

Intel C/C++ Compiler Intrinsic Equivalent

(V)MOVSHDUP: __m128 _mm_movehdup_ps(__m128 a)

VMOVSHDUP:  __m256 _mm256_movehdup_ps (__m256 a);

Exceptions

General protection exception if not aligned on 16-byte boundary, regardless of 
segment.

Numeric Exceptions

None

Other Exceptions
See Exceptions Type 2.
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MOVSLDUP—Move Packed Single-FP Low and Duplicate

Instruction Operand Encoding

Description

The linear address corresponds to the address of the least-significant byte of the 
referenced memory data. When a memory address is indicated, the 16 bytes of data 
at memory location m128 are loaded and the single-precision elements in positions 0 
and 2 are duplicated. When the register-register form of this operation is used, the 
same operation is performed but with data coming from the 128-bit source register. 

See Figure 4-4.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F3 0F 12 /r

MOVSLDUP xmm1, xmm2/m128

RM V/V SSE3 Move two single-precision 
floating-point values from 
the lower 32-bit operand of 
each qword in xmm2/m128 
to xmm1 and duplicate each 
32-bit operand to the higher 
32-bits of each qword.

VEX.128.F3.0F.WIG 12 /r

VMOVSLDUP xmm1, xmm2/m128

RM V/V AVX Move even index single-
precision floating-point 
values from xmm2/mem 
and duplicate each element 
into xmm1.

VEX.256.F3.0F.WIG 12 /r
VMOVSLDUP ymm1, ymm2/m256

RM V/V AVX Move even index single-
precision floating-point 
values from ymm2/mem and 
duplicate each element into 
ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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In 64-bit mode, use of the REX.R prefix permits this instruction to access additional 
registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise 
instructions will #UD.

Operation

MOVSLDUP (128-bit Legacy SSE version)
DEST[31:0]  SRC[31:0]
DEST[63:32]  SRC[31:0]
DEST[95:64]  SRC[95:64]
DEST[127:96]  SRC[95:64]
DEST[VLMAX-1:128] (Unmodified)

VMOVSLDUP (VEX.128 encoded version)
DEST[31:0]  SRC[31:0]
DEST[63:32]  SRC[31:0]
DEST[95:64]  SRC[95:64]
DEST[127:96]  SRC[95:64]

Figure 4-4.  MOVSLDUP—Move Packed Single-FP Low and Duplicate
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DEST[VLMAX-1:128]  0

VMOVSLDUP (VEX.256 encoded version)
DEST[31:0]  SRC[31:0]
DEST[63:32]  SRC[31:0]
DEST[95:64]  SRC[95:64]
DEST[127:96]  SRC[95:64]
DEST[159:128]  SRC[159:128]
DEST[191:160]  SRC[159:128]
DEST[223:192]  SRC[223:192]
DEST[255:224]  SRC[223:192]

Intel C/C++ Compiler Intrinsic Equivalent

(V)MOVSLDUP: __m128 _mm_moveldup_ps(__m128 a)

VMOVSLDUP:  __m256 _mm256_moveldup_ps (__m256 a);

Exceptions

General protection exception if not aligned on 16-byte boundary, regardless of 
segment.

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.vvvv != 1111B.
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MOVSS—Move Scalar Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

Moves a scalar single-precision floating-point value from the source operand (second 
operand) to the destination operand (first operand). The source and destination 
operands can be XMM registers or 32-bit memory locations. This instruction can be 
used to move a single-precision floating-point value to and from the low doubleword 

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F3 0F 10 /r

MOVSS xmm1, xmm2/m32

RM V/V SSE Move scalar single-precision 
floating-point value from 
xmm2/m32 to xmm1 
register.

VEX.NDS.LIG.F3.0F.WIG 10 /r

VMOVSS xmm1, xmm2, xmm3

RVM V/V AVX Merge scalar single-
precision floating-point 
value from xmm2 and 
xmm3 to xmm1 register.

VEX.LIG.F3.0F.WIG 10 /r

VMOVSS xmm1, m32

XM V/V AVX Load scalar single-precision 
floating-point value from 
m32 to xmm1 register.

F3 0F 11 /r

MOVSS xmm2/m32, xmm

MR V/V SSE Move scalar single-precision 
floating-point value from 
xmm1 register to 
xmm2/m32.

VEX.NDS.LIG.F3.0F.WIG 11 /r

VMOVSS xmm1, xmm2, xmm3

MVR V/V AVX Move scalar single-precision 
floating-point value from 
xmm2 and xmm3 to xmm1 
register.

VEX.LIG.F3.0F.WIG 11 /r

VMOVSS m32, xmm1

MR V/V AVX Move scalar single-precision 
floating-point value from 
xmm1 register to m32.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA

XM ModRM:reg (w) ModRM:r/m (r) NA NA

MVR ModRM:r/m (w) VEX.vvvv (r) ModRM:reg (r) NA
Vol. 2B 4-123MOVSS—Move Scalar Single-Precision Floating-Point Values



INSTRUCTION SET REFERENCE, M-Z
of an XMM register and a 32-bit memory location, or to move a single-precision 
floating-point value between the low doublewords of two XMM registers. The instruc-
tion cannot be used to transfer data between memory locations. 
For non-VEX encoded syntax and when the source and destination operands are XMM 
registers, the high doublewords of the destination operand remains unchanged. 
When the source operand is a memory location and destination operand is an XMM 
registers, the high doublewords of the destination operand is cleared to all 0s.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional 
registers (XMM8-XMM15).
VEX encoded instruction syntax supports two source operands and a destination 
operand if ModR/M.mod field is 11B. VEX.vvvv is used to encode the first source 
operand (the second operand). The low 128 bits of the destination operand stores the 
result of merging the low dword of the second source operand with three dwords in 
bits 127:32 of the first source operand. The upper bits of the destination operand are 
cleared.
Note: For the “VMOVSS m32, xmm1” (memory store form) instruction version, 
VEX.vvvv is reserved and must be 1111b otherwise instruction will #UD.
Note: For the “VMOVSS xmm1, m32” (memory load form) instruction version, 
VEX.vvvv is reserved and must be 1111b otherwise instruction will #UD.

Operation

MOVSS (Legacy SSE version when the source and destination operands are both XMM 
registers)
DEST[31:0]  SRC[31:0]
DEST[VLMAX-1:32] (Unmodified)

MOVSS/VMOVSS (when the source operand is an XMM register and the destination is 
memory)
DEST[31:0]  SRC[31:0]

MOVSS (Legacy SSE version when the source operand is memory and the destination is an 
XMM register)
DEST[31:0]  SRC[31:0]
DEST[127:32]  0
DEST[VLMAX-1:128] (Unmodified)

VMOVSS (VEX.NDS.128.F3.0F 11 /r where the destination is an XMM register)
DEST[31:0]  SRC2[31:0]
DEST[127:32]  SRC1[127:32]
DEST[VLMAX-1:128]  0

VMOVSS (VEX.NDS.128.F3.0F 10 /r where the source and destination are XMM registers)
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DEST[31:0]  SRC2[31:0]
DEST[127:32]  SRC1[127:32]
DEST[VLMAX-1:128]  0

VMOVSS (VEX.NDS.128.F3.0F 10 /r when the source operand is memory and the destination 
is an XMM register)
DEST[31:0]  SRC[31:0]
DEST[VLMAX-1:32]  0

Intel C/C++ Compiler Intrinsic Equivalent

MOVSS: __m128 _mm_load_ss(float * p)

MOVSS: void _mm_store_ss(float * p, __m128 a)

MOVSS: __m128 _mm_move_ss(__m128 a, __m128 b) 

SIMD Floating-Point Exceptions 

None.

Other Exceptions
See Exceptions Type 5; additionally
#UD If VEX.vvvv != 1111B.
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MOVSX/MOVSXD—Move with Sign-Extension

Instruction Operand Encoding

Description

Copies the contents of the source operand (register or memory location) to the desti-
nation operand (register) and sign extends the value to 16 or 32 bits (see Figure 7-6 
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1). 
The size of the converted value depends on the operand-size attribute.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R 
prefix permits access to additional registers (R8-R15). Use of the REX.W prefix 
promotes operation to 64 bits. See the summary chart at the beginning of this 
section for encoding data and limits.

Operation

DEST ← SignExtend(SRC);

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F BE /r MOVSX r16, r/m8 RM Valid Valid Move byte to word with 
sign-extension.

0F BE /r MOVSX r32, r/m8 RM Valid Valid Move byte to doubleword 
with sign-extension.

REX + 0F BE /r MOVSX r64, r/m8* RM Valid N.E. Move byte to quadword 
with sign-extension.

0F BF /r MOVSX r32, 
r/m16

RM Valid Valid Move word to doubleword, 
with sign-extension.

REX.W + 0F BF 
/r

MOVSX r64, 
r/m16

RM Valid N.E. Move word to quadword 
with sign-extension.

REX.W** + 63 /r MOVSXD r64, 
r/m32

RM Valid N.E. Move doubleword to 
quadword with sign-
extension.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is 

used: AH, BH, CH, DH.
** The use of MOVSXD without REX.W in 64-bit mode is discouraged, Regular MOV should be used 

instead of using MOVSXD without REX.W. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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Flags Affected

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS 

segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
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#UD If the LOCK prefix is used.
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MOVUPD—Move Unaligned Packed Double-Precision Floating-Point 
Values

Instruction Operand Encoding

Description

128-bit versions:

Moves a double quadword containing two packed double-precision floating-point 
values from the source operand (second operand) to the destination operand (first 
operand). This instruction can be used to load an XMM register from a 128-bit 

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 10 /r

MOVUPD xmm1, xmm2/m128

RM V/V SSE2 Move packed double-
precision floating-point 
values from xmm2/m128 to 
xmm1.

VEX.128.66.0F.WIG 10 /r

VMOVUPD xmm1, xmm2/m128

RM V/V AVX Move unaligned packed 
double-precision floating-
point from xmm2/mem to 
xmm1.

VEX.256.66.0F.WIG 10 /r

VMOVUPD ymm1, ymm2/m256

RM V/V AVX Move unaligned packed 
double-precision floating-
point from ymm2/mem to 
ymm1.

66 0F 11 /r

MOVUPD xmm2/m128, xmm

MR V/V SSE2 Move packed double-
precision floating-point 
values from xmm1 to 
xmm2/m128.

VEX.128.66.0F.WIG 11 /r

VMOVUPD xmm2/m128, xmm1

MR V/V AVX Move unaligned packed 
double-precision floating-
point from xmm1 to 
xmm2/mem.

VEX.256.66.0F.WIG 11 /r

VMOVUPD ymm2/m256, ymm1

MR V/V AVX Move unaligned packed 
double-precision floating-
point from ymm1 to 
ymm2/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA
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memory location, store the contents of an XMM register into a 128-bit memory loca-
tion, or move data between two XMM registers. 
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destination 
register remain unchanged.

When the source or destination operand is a memory operand, the operand may be 
unaligned on a 16-byte boundary without causing a general-protection exception 
(#GP) to be generated.1

To move double-precision floating-point values to and from memory locations that 
are known to be aligned on 16-byte boundaries, use the MOVAPD instruction.

While executing in 16-bit addressing mode, a linear address for a 128-bit data access 
that overlaps the end of a 16-bit segment is not allowed and is defined as reserved 
behavior. A specific processor implementation may or may not generate a general-
protection exception (#GP) in this situation, and the address that spans the end of 
the segment may or may not wrap around to the beginning of the segment.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional 
registers (XMM8-XMM15).
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed.

VEX.256 encoded version:

Moves 256 bits of packed double-precision floating-point values from the source 
operand (second operand) to the destination operand (first operand). This instruction 
can be used to load a YMM register from a 256-bit memory location, to store the 
contents of a YMM register into a 256-bit memory location, or to move data between 
two YMM registers. 
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise 
instructions will #UD.

Operation

MOVUPD (128-bit load and register-copy form Legacy SSE version)
DEST[127:0]  SRC[127:0]
DEST[VLMAX-1:128] (Unmodified)

(V)MOVUPD (128-bit store form)
DEST[127:0]  SRC[127:0]

1. If alignment checking is enabled (CR0.AM = 1, RFLAGS.AC = 1, and CPL = 3), an alignment-check 
exception (#AC) may or may not be generated (depending on processor implementation) when 
the operand is not aligned on an 8-byte boundary.
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VMOVUPD (VEX.128 encoded version)
DEST[127:0]  SRC[127:0]
DEST[VLMAX-1:128]  0

VMOVUPD (VEX.256 encoded version)
DEST[255:0]  SRC[255:0]

Intel C/C++ Compiler Intrinsic Equivalent

MOVUPD: __m128 _mm_loadu_pd(double * p)

MOVUPD: void _mm_storeu_pd(double *p, __m128 a)

VMOVUPD:  __m256d _mm256_loadu_pd (__m256d * p);

VMOVUPD:  _mm256_storeu_pd(_m256d *p, __m256d a);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4 
Note treatment of #AC varies; additionally
#UD If VEX.vvvv != 1111B.
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MOVUPS—Move Unaligned Packed Single-Precision Floating-Point 
Values

Instruction Operand Encoding

Description

128-bit versions: Moves a double quadword containing four packed single-precision 
floating-point values from the source operand (second operand) to the destination 
operand (first operand). This instruction can be used to load an XMM register from a 
128-bit memory location, store the contents of an XMM register into a 128-bit 
memory location, or move data between two XMM registers. 

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

0F 10 /r

MOVUPS xmm1, xmm2/m128

RM V/V SSE Move packed single-
precision floating-point 
values from xmm2/m128 to 
xmm1.

VEX.128.0F.WIG 10 /r

VMOVUPS xmm1, xmm2/m128

RM V/V AVX Move unaligned packed 
single-precision floating-
point from xmm2/mem to 
xmm1.

VEX.256.0F.WIG 10 /r

VMOVUPS ymm1, ymm2/m256

RM V/V AVX Move unaligned packed 
single-precision floating-
point from ymm2/mem to 
ymm1.

0F 11 /r

MOVUPS xmm2/m128, xmm1

MR V/V SSE Move packed single-
precision floating-point 
values from xmm1 to 
xmm2/m128.

VEX.128.0F.WIG 11 /r

VMOVUPS xmm2/m128, xmm1

MR V/V AVX Move unaligned packed 
single-precision floating-
point from xmm1 to 
xmm2/mem.

VEX.256.0F.WIG 11 /r

VMOVUPS ymm2/m256, ymm1

MR V/V AVX Move unaligned packed 
single-precision floating-
point from ymm1 to 
ymm2/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA
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128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destination 
register remain unchanged.

When the source or destination operand is a memory operand, the operand may be 
unaligned on a 16-byte boundary without causing a general-protection exception 
(#GP) to be generated.1

To move packed single-precision floating-point values to and from memory locations 
that are known to be aligned on 16-byte boundaries, use the MOVAPS instruction.

While executing in 16-bit addressing mode, a linear address for a 128-bit data access 
that overlaps the end of a 16-bit segment is not allowed and is defined as reserved 
behavior. A specific processor implementation may or may not generate a general-
protection exception (#GP) in this situation, and the address that spans the end of 
the segment may or may not wrap around to the beginning of the segment.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional 
registers (XMM8-XMM15).
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed.

VEX.256 encoded version: Moves 256 bits of packed single-precision floating-point 
values from the source operand (second operand) to the destination operand (first 
operand). This instruction can be used to load a YMM register from a 256-bit memory 
location, to store the contents of a YMM register into a 256-bit memory location, or 
to move data between two YMM registers. 
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise 
instructions will #UD.

Operation

MOVUPS (128-bit load and register-copy form Legacy SSE version)
DEST[127:0]  SRC[127:0]
DEST[VLMAX-1:128] (Unmodified)

(V)MOVUPS (128-bit store form)
DEST[127:0]  SRC[127:0]

VMOVUPS (VEX.128 encoded load-form)
DEST[127:0]  SRC[127:0]
DEST[VLMAX-1:128]  0

VMOVUPS (VEX.256 encoded version)

1. If alignment checking is enabled (CR0.AM = 1, RFLAGS.AC = 1, and CPL = 3), an alignment-check 
exception (#AC) may or may not be generated (depending on processor implementation) when 
the operand is not aligned on an 8-byte boundary.
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DEST[255:0]  SRC[255:0]

Intel C/C++ Compiler Intrinsic Equivalent

MOVUPS: __m128 _mm_loadu_ps(double * p)

MOVUPS: void _mm_storeu_ps(double *p, __m128 a)

VMOVUPS:  __m256 _mm256_loadu_ps (__m256 * p);

VMOVUPS:  _mm256_storeu_ps(_m256 *p, __m256 a);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4 
Note treatment of #AC varies; additionally
#UD If VEX.vvvv != 1111B.
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MOVZX—Move with Zero-Extend

Instruction Operand Encoding

Description

Copies the contents of the source operand (register or memory location) to the desti-
nation operand (register) and zero extends the value. The size of the converted value 
depends on the operand-size attribute.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R 
prefix permits access to additional registers (R8-R15). Use of the REX.W prefix 
promotes operation to 64 bit operands. See the summary chart at the beginning of 
this section for encoding data and limits.

Operation

DEST ← ZeroExtend(SRC);

Flags Affected

None.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F B6 /r MOVZX r16, r/m8 RM Valid Valid Move byte to word with 
zero-extension.

0F B6 /r MOVZX r32, r/m8 RM Valid Valid Move byte to doubleword, 
zero-extension.

REX.W + 0F B6 
/r

MOVZX r64, r/m8* RM Valid N.E. Move byte to quadword, 
zero-extension.

0F B7 /r MOVZX r32, 
r/m16

RM Valid Valid Move word to doubleword, 
zero-extension.

REX.W + 0F B7 
/r

MOVZX r64, 
r/m16

RM Valid N.E. Move word to quadword, 
zero-extension.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if the REX prefix 

is used: AH, BH, CH, DH. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS 

segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
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MPSADBW — Compute Multiple Packed Sums of Absolute Difference

Instruction Operand Encoding

Description

MPSADBW sums the absolute difference (SAD) of a pair of unsigned bytes for a group 
of 4 byte pairs, and produces 8 SAD results (one for each 4 byte-pairs) stored as 8 
word integers in the destination operand (first operand). Each 4 byte pairs are 
selected from the source operand (first operand) and the destination according to the 
bit fields specified in the immediate byte (third operand). 

The immediate byte provides two bit fields:

SRC_OFFSET: the value of Imm8[1:0]*32 specifies the offset of the 4 sequential 
source bytes in the source operand.

DEST_OFFSET: the value of Imm8[2]*32 specifies the offset of the first of 8 groups 
of 4 sequential destination bytes in the destination operand. The next four destina-
tion bytes starts at DEST_OFFSET + 8, etc.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 3A 42 /r ib

MPSADBW xmm1, xmm2/m128, 
imm8

RMI V/V SSE4_1 Sums absolute 8-bit integer 
difference of adjacent 
groups of 4 byte integers in 
xmm1 and xmm2/m128 
and writes the results in 
xmm1. Starting offsets 
within xmm1 and 
xmm2/m128 are 
determined by imm8.

VEX.NDS.128.66.0F3A.WIG 42 /r ib

VMPSADBW xmm1, xmm2, 
xmm3/m128, imm8

RVMI V/V AVX Sums absolute 8-bit integer 
difference of adjacent 
groups of 4 byte integers in 
xmm2 and xmm3/m128 and 
writes the results in xmm1. 
Starting offsets within 
xmm2 and xmm3/m128 are 
determined by imm8.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
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The SAD operation is repeated 8 times, each time using the same 4 source bytes but 
selecting the next group of 4 destination bytes starting at the next higher byte in the 
destination. Each 16-bit sum is written to destination.
128-bit Legacy SSE version: The first source and destination are the same. Bits 
(VLMAX-1:128) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed.
If VMPSADBW is encoded with VEX.L= 1, an attempt to execute the instruction 
encoded with VEX.L= 1 will cause an #UD exception.

Operation

MPSADBW (128-bit Legacy SSE version)
SRC_OFFSET  imm8[1:0]*32
DEST_OFFSET  imm8[2]*32
DEST_BYTE0  DEST[DEST_OFFSET+7:DEST_OFFSET]
DEST_BYTE1  DEST[DEST_OFFSET+15:DEST_OFFSET+8]
DEST_BYTE2  DEST[DEST_OFFSET+23:DEST_OFFSET+16]
DEST_BYTE3  DEST[DEST_OFFSET+31:DEST_OFFSET+24]
DEST_BYTE4  DEST[DEST_OFFSET+39:DEST_OFFSET+32]
DEST_BYTE5  DEST[DEST_OFFSET+47:DEST_OFFSET+40]
DEST_BYTE6  DEST[DEST_OFFSET+55:DEST_OFFSET+48]
DEST_BYTE7  DEST[DEST_OFFSET+63:DEST_OFFSET+56]
DEST_BYTE8  DEST[DEST_OFFSET+71:DEST_OFFSET+64]
DEST_BYTE9  DEST[DEST_OFFSET+79:DEST_OFFSET+72]
DEST_BYTE10  DEST[DEST_OFFSET+87:DEST_OFFSET+80]

SRC_BYTE0  SRC[SRC_OFFSET+7:SRC_OFFSET]
SRC_BYTE1  SRC[SRC_OFFSET+15:SRC_OFFSET+8]
SRC_BYTE2  SRC[SRC_OFFSET+23:SRC_OFFSET+16]
SRC_BYTE3  SRC[SRC_OFFSET+31:SRC_OFFSET+24]

TEMP0  ABS( DEST_BYTE0 - SRC_BYTE0) 
TEMP1  ABS( DEST_BYTE1 - SRC_BYTE1) 
TEMP2  ABS( DEST_BYTE2 - SRC_BYTE2) 
TEMP3  ABS( DEST_BYTE3 - SRC_BYTE3) 
DEST[15:0]  TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0  ABS( DEST_BYTE1 - SRC_BYTE0) 
TEMP1  ABS( DEST_BYTE2 - SRC_BYTE1) 
TEMP2  ABS( DEST_BYTE3 - SRC_BYTE2) 
TEMP3  ABS( DEST_BYTE4 - SRC_BYTE3) 
DEST[31:16]  TEMP0 + TEMP1 + TEMP2 + TEMP3
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TEMP0  ABS( DEST_BYTE2 - SRC_BYTE0) 
TEMP1  ABS( DEST_BYTE3 - SRC_BYTE1) 
TEMP2  ABS( DEST_BYTE4 - SRC_BYTE2) 
TEMP3  ABS( DEST_BYTE5 - SRC_BYTE3) 
DEST[47:32]  TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0  ABS( DEST_BYTE3 - SRC_BYTE0) 
TEMP1  ABS( DEST_BYTE4 - SRC_BYTE1) 
TEMP2  ABS( DEST_BYTE5 - SRC_BYTE2) 
TEMP3  ABS( DEST_BYTE6 - SRC_BYTE3) 
DEST[63:48]  TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0  ABS( DEST_BYTE4 - SRC_BYTE0) 
TEMP1  ABS( DEST_BYTE5 - SRC_BYTE1) 
TEMP2  ABS( DEST_BYTE6 - SRC_BYTE2) 
TEMP3  ABS( DEST_BYTE7 - SRC_BYTE3) 
DEST[79:64]  TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0  ABS( DEST_BYTE5 - SRC_BYTE0) 
TEMP1  ABS( DEST_BYTE6 - SRC_BYTE1) 
TEMP2  ABS( DEST_BYTE7 - SRC_BYTE2) 
TEMP3  ABS( DEST_BYTE8 - SRC_BYTE3) 
DEST[95:80]  TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0  ABS( DEST_BYTE6 - SRC_BYTE0) 
TEMP1  ABS( DEST_BYTE7 - SRC_BYTE1) 
TEMP2  ABS( DEST_BYTE8 - SRC_BYTE2) 
TEMP3  ABS( DEST_BYTE9 - SRC_BYTE3) 
DEST[111:96]  TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0  ABS( DEST_BYTE7 - SRC_BYTE0) 
TEMP1  ABS( DEST_BYTE8 - SRC_BYTE1) 
TEMP2  ABS( DEST_BYTE9 - SRC_BYTE2) 
TEMP3  ABS( DEST_BYTE10 - SRC_BYTE3) 
DEST[127:112]  TEMP0 + TEMP1 + TEMP2 + TEMP3
DEST[VLMAX-1:128] (Unmodified)

VMPSADBW (VEX.128 encoded version)
SRC2_OFFSET  imm8[1:0]*32
SRC1_OFFSET  imm8[2]*32
SRC1_BYTE0  SRC1[SRC1_OFFSET+7:SRC1_OFFSET]
SRC1_BYTE1  SRC1[SRC1_OFFSET+15:SRC1_OFFSET+8]
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SRC1_BYTE2  SRC1[SRC1_OFFSET+23:SRC1_OFFSET+16]
SRC1_BYTE3  SRC1[SRC1_OFFSET+31:SRC1_OFFSET+24]
SRC1_BYTE4  SRC1[SRC1_OFFSET+39:SRC1_OFFSET+32]
SRC1_BYTE5  SRC1[SRC1_OFFSET+47:SRC1_OFFSET+40]
SRC1_BYTE6  SRC1[SRC1_OFFSET+55:SRC1_OFFSET+48]
SRC1_BYTE7  SRC1[SRC1_OFFSET+63:SRC1_OFFSET+56]
SRC1_BYTE8  SRC1[SRC1_OFFSET+71:SRC1_OFFSET+64]
SRC1_BYTE9  SRC1[SRC1_OFFSET+79:SRC1_OFFSET+72]
SRC1_BYTE10  SRC1[SRC1_OFFSET+87:SRC1_OFFSET+80]

SRC2_BYTE0 SRC2[SRC2_OFFSET+7:SRC2_OFFSET]
SRC2_BYTE1  SRC2[SRC2_OFFSET+15:SRC2_OFFSET+8]
SRC2_BYTE2  SRC2[SRC2_OFFSET+23:SRC2_OFFSET+16]
SRC2_BYTE3  SRC2[SRC2_OFFSET+31:SRC2_OFFSET+24]

TEMP0  ABS(SRC1_BYTE0 - SRC2_BYTE0)
TEMP1  ABS(SRC1_BYTE1 - SRC2_BYTE1)
TEMP2  ABS(SRC1_BYTE2 - SRC2_BYTE2)
TEMP3  ABS(SRC1_BYTE3 - SRC2_BYTE3)
DEST[15:0]  TEMP0 + TEMP1 + TEMP2 + TEMP3
TEMP0  ABS(SRC1_BYTE1 - SRC2_BYTE0)
TEMP1  ABS(SRC1_BYTE2 - SRC2_BYTE1)
TEMP2  ABS(SRC1_BYTE3 - SRC2_BYTE2)
TEMP3  ABS(SRC1_BYTE4 - SRC2_BYTE3)
DEST[31:16]  TEMP0 + TEMP1 + TEMP2 + TEMP3
TEMP0  ABS(SRC1_BYTE2 - SRC2_BYTE0)
TEMP1  ABS(SRC1_BYTE3 - SRC2_BYTE1)
TEMP2  ABS(SRC1_BYTE4 - SRC2_BYTE2)
TEMP3  ABS(SRC1_BYTE5 - SRC2_BYTE3)
DEST[47:32]  TEMP0 + TEMP1 + TEMP2 + TEMP3
TEMP0  ABS(SRC1_BYTE3 - SRC2_BYTE0)
TEMP1  ABS(SRC1_BYTE4 - SRC2_BYTE1)
TEMP2  ABS(SRC1_BYTE5 - SRC2_BYTE2)
TEMP3  ABS(SRC1_BYTE6 - SRC2_BYTE3)
DEST[63:48]  TEMP0 + TEMP1 + TEMP2 + TEMP3
TEMP0  ABS(SRC1_BYTE4 - SRC2_BYTE0)
TEMP1  ABS(SRC1_BYTE5 - SRC2_BYTE1)
TEMP2  ABS(SRC1_BYTE6 - SRC2_BYTE2)
TEMP3  ABS(SRC1_BYTE7 - SRC2_BYTE3)
DEST[79:64]  TEMP0 + TEMP1 + TEMP2 + TEMP3
TEMP0  ABS(SRC1_BYTE5 - SRC2_BYTE0)
TEMP1  ABS(SRC1_BYTE6 - SRC2_BYTE1)
TEMP2  ABS(SRC1_BYTE7 - SRC2_BYTE2)
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TEMP3  ABS(SRC1_BYTE8 - SRC2_BYTE3)
DEST[95:80]  TEMP0 + TEMP1 + TEMP2 + TEMP3
TEMP0  ABS(SRC1_BYTE6 - SRC2_BYTE0)
TEMP1  ABS(SRC1_BYTE7 - SRC2_BYTE1)
TEMP2  ABS(SRC1_BYTE8 - SRC2_BYTE2)
TEMP3  ABS(SRC1_BYTE9 - SRC2_BYTE3)
DEST[111:96]  TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0  ABS(SRC1_BYTE7 - SRC2_BYTE0)
TEMP1  ABS(SRC1_BYTE8 - SRC2_BYTE1)
TEMP2  ABS(SRC1_BYTE9 - SRC2_BYTE2)
TEMP3  ABS(SRC1_BYTE10 - SRC2_BYTE3)
DEST[127:112]  TEMP0 + TEMP1 + TEMP2 + TEMP3
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

MPSADBW:  __m128i _mm_mpsadbw_epu8 (__m128i s1, __m128i s2, const int mask);

Flags Affected

None

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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MUL—Unsigned Multiply

Instruction Operand Encoding

Description

Performs an unsigned multiplication of the first operand (destination operand) and 
the second operand (source operand) and stores the result in the destination 
operand. The destination operand is an implied operand located in register AL, AX or 
EAX (depending on the size of the operand); the source operand is located in a 
general-purpose register or a memory location. The action of this instruction and the 
location of the result depends on the opcode and the operand size as shown in Table 
4-9.

The result is stored in register AX, register pair DX:AX, or register pair EDX:EAX 
(depending on the operand size), with the high-order bits of the product contained in 
register AH, DX, or EDX, respectively. If the high-order bits of the product are 0, the 
CF and OF flags are cleared; otherwise, the flags are set.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R 
prefix permits access to additional registers (R8-R15). Use of the REX.W prefix 
promotes operation to 64 bits. 

See the summary chart at the beginning of this section for encoding data and limits.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

F6 /4 MUL r/m8 M Valid Valid Unsigned multiply (AX ← AL 
∗ r/m8).

REX + F6 /4 MUL r/m8* M Valid N.E. Unsigned multiply (AX ← AL 
∗ r/m8).

F7 /4 MUL r/m16 M Valid Valid Unsigned multiply (DX:AX ← 
AX ∗ r/m16).

F7 /4 MUL r/m32 M Valid Valid Unsigned multiply (EDX:EAX 
← EAX ∗ r/m32).

REX.W + F7 /4 MUL r/m64 M Valid N.E. Unsigned multiply (RDX:RAX 
← RAX ∗ r/m64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is 

used: AH, BH, CH, DH. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA
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Operation

IF (Byte operation)
THEN 

AX ← AL ∗ SRC;
ELSE (* Word or doubleword operation *)

IF OperandSize = 16
THEN 

DX:AX ← AX ∗ SRC;
ELSE IF OperandSize = 32

THEN EDX:EAX ← EAX ∗ SRC; FI;
ELSE (* OperandSize = 64 *)

RDX:RAX ← RAX ∗ SRC;
FI;

FI;

Flags Affected

The OF and CF flags are set to 0 if the upper half of the result is 0; otherwise, they 
are set to 1. The SF, ZF, AF, and PF flags are undefined.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Table 4-9.  MUL Results
Operand Size Source 1 Source 2 Destination

Byte AL r/m8 AX

Word AX r/m16 DX:AX

Doubleword EAX r/m32 EDX:EAX

Quadword RAX r/m64 RDX:RAX
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Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS 

segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
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MULPD—Multiply Packed Double-Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a SIMD multiply of the two or four packed double-precision floating-point 
values from the source operand (second operand) and the destination operand (first 
operand), and stores the packed double-precision floating-point results in the desti-
nation operand. The source operand can be an XMM register or a 128-bit memory 
location. The destination operand is an XMM register. See Figure 11-3 in the Intel® 
64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for an illustra-
tion of a SIMD double-precision floating-point operation.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional 
registers (XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit 
memory location. The destination is not distinct from the first source XMM register 
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit 
memory location. The destination operand is an XMM register. The upper bits 
(VLMAX-1:128) of the destination YMM register destination are zeroed.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 59 /r

MULPD xmm1, xmm2/m128

RM V/V SSE2 Multiply packed double-
precision floating-point 
values in xmm2/m128 by 
xmm1.

VEX.NDS.128.66.0F.WIG 59 /r

VMULPD xmm1,xmm2, xmm3/m128

RVM V/V AVX Multiply packed double-
precision floating-point 
values from xmm3/mem to 
xmm2 and stores result in 
xmm1.

VEX.NDS.256.66.0F.WIG 59 /r
VMULPD ymm1, ymm2, 
ymm3/m256

RVM V/V AVX Multiply packed double-
precision floating-point 
values from ymm3/mem to 
ymm2 and stores result in 
ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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VEX.256 encoded version: The first source operand is a YMM register. The second 
source operand can be a YMM register or a 256-bit memory location. The destination 
operand is a YMM register. 

Operation

MULPD (128-bit Legacy SSE version)
DEST[63:0]  DEST[63:0] * SRC[63:0]
DEST[127:64]  DEST[127:64] * SRC[127:64]
DEST[VLMAX-1:128] (Unmodified)

VMULPD (VEX.128 encoded version)
DEST[63:0]  SRC1[63:0] * SRC2[63:0]
DEST[127:64]  SRC1[127:64] * SRC2[127:64]
DEST[VLMAX-1:128]  0

VMULPD (VEX.256 encoded version)
DEST[63:0]  SRC1[63:0] * SRC2[63:0]
DEST[127:64]  SRC1[127:64] * SRC2[127:64]
DEST[191:128]  SRC1[191:128] * SRC2[191:128]
DEST[255:192]  SRC1[255:192] * SRC2[255:192]

Intel C/C++ Compiler Intrinsic Equivalent

MULPD: __m128d _mm_mul_pd (m128d a, m128d b)

VMULPD:  __m256d _mm256_mul_pd (__m256d a, __m256d b);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
See Exceptions Type 2 
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MULPS—Multiply Packed Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a SIMD multiply of the four packed single-precision floating-point values 
from the source operand (second operand) and the destination operand (first 
operand), and stores the packed single-precision floating-point results in the desti-
nation operand. See Figure 10-5 in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1, for an illustration of a SIMD single-precision floating-
point operation.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional 
registers (XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit 
memory location. The destination is not distinct from the first source XMM register 
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit 
memory location. The destination operand is an XMM register. The upper bits 
(VLMAX-1:128) of the destination YMM register destination are zeroed.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

0F 59 /r

MULPS xmm1, xmm2/m128

RM V/V SSE Multiply packed single-
precision floating-point 
values in xmm2/mem by 
xmm1.

VEX.NDS.128.0F.WIG 59 /r

VMULPS xmm1,xmm2, xmm3/m128

RVM V/V AVX Multiply packed single-
precision floating-point 
values from xmm3/mem to 
xmm2 and stores result in 
xmm1.

VEX.NDS.256.0F.WIG 59 /r

VMULPS ymm1, ymm2, ymm3/m256

RVM V/V AVX Multiply packed single-
precision floating-point 
values from ymm3/mem to 
ymm2 and stores result in 
ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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VEX.256 encoded version: The first source operand is a YMM register. The second 
source operand can be a YMM register or a 256-bit memory location. The destination 
operand is a YMM register. 

Operation

MULPS (128-bit Legacy SSE version)
DEST[31:0]  SRC1[31:0] * SRC2[31:0]
DEST[63:32]  SRC1[63:32] * SRC2[63:32]
DEST[95:64]  SRC1[95:64] * SRC2[95:64]
DEST[127:96]  SRC1[127:96] * SRC2[127:96]
DEST[VLMAX-1:128] (Unmodified)

VMULPS (VEX.128 encoded version)
DEST[31:0]  SRC1[31:0] * SRC2[31:0]
DEST[63:32]  SRC1[63:32] * SRC2[63:32]
DEST[95:64]  SRC1[95:64] * SRC2[95:64]
DEST[127:96]  SRC1[127:96] * SRC2[127:96]
DEST[VLMAX-1:128]  0

VMULPS (VEX.256 encoded version)
DEST[31:0]  SRC1[31:0] * SRC2[31:0]
DEST[63:32]  SRC1[63:32] * SRC2[63:32]
DEST[95:64]  SRC1[95:64] * SRC2[95:64]
DEST[127:96]  SRC1[127:96] * SRC2[127:96]
DEST[159:128]  SRC1[159:128] * SRC2[159:128]
DEST[191:160] SRC1[191:160] * SRC2[191:160]
DEST[223:192]  SRC1[223:192] * SRC2[223:192]
DEST[255:224]  SRC1[255:224] * SRC2[255:224].

Intel C/C++ Compiler Intrinsic Equivalent

MULPS: __m128 _mm_mul_ps(__m128 a, __m128 b)

VMULPS:  __m256 _mm256_mul_ps (__m256 a, __m256 b);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
See Exceptions Type 2 
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MULSD—Multiply Scalar Double-Precision Floating-Point Values

Instruction Operand Encoding

Description

Multiplies the low double-precision floating-point value in the source operand 
(second operand) by the low double-precision floating-point value in the destination 
operand (first operand), and stores the double-precision floating-point result in the 
destination operand. The source operand can be an XMM register or a 64-bit memory 
location. The destination operand is an XMM register. The high quadword of the desti-
nation operand remains unchanged. See Figure 11-4 in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 1, for an illustration of a scalar 
double-precision floating-point operation.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional 
registers (XMM8-XMM15).
128-bit Legacy SSE version: The first source operand and the destination operand 
are the same. Bits (VLMAX-1:64) of the corresponding YMM destination register 
remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed.

Operation

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F2 0F 59 /r

MULSD xmm1, xmm2/m64

RM V/V SSE2 Multiply the low double-
precision floating-point 
value in xmm2/mem64 by 
low double-precision 
floating-point value in 
xmm1.

VEX.NDS.LIG.F2.0F.WIG 59/r

VMULSD xmm1,xmm2, xmm3/m64

RVM V/V AVX Multiply the low double-
precision floating-point 
value in xmm3/mem64 by 
low double precision 
floating-point value in 
xmm2.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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MULSD (128-bit Legacy SSE version)
DEST[63:0]  DEST[63:0] * SRC[63:0]
DEST[VLMAX-1:64] (Unmodified)

VMULSD (VEX.128 encoded version)
DEST[63:0]  SRC1[63:0] * SRC2[63:0]
DEST[127:64]  SRC1[127:64]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

MULSD: __m128d _mm_mul_sd (m128d a, m128d b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
See Exceptions Type 3 
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MULSS—Multiply Scalar Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

Multiplies the low single-precision floating-point value from the source operand 
(second operand) by the low single-precision floating-point value in the destination 
operand (first operand), and stores the single-precision floating-point result in the 
destination operand. The source operand can be an XMM register or a 32-bit memory 
location. The destination operand is an XMM register. The three high-order double-
words of the destination operand remain unchanged. See Figure 10-6 in the Intel® 
64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for an illustra-
tion of a scalar single-precision floating-point operation.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional 
registers (XMM8-XMM15).
128-bit Legacy SSE version: The first source operand and the destination operand 
are the same. Bits (VLMAX-1:32) of the corresponding YMM destination register 
remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed.

Operation

MULSS (128-bit Legacy SSE version)

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F3 0F 59 /r

MULSS xmm1, xmm2/m32

RM V/V SSE Multiply the low single-
precision floating-point 
value in xmm2/mem by the 
low single-precision 
floating-point value in 
xmm1.

VEX.NDS.LIG.F3.0F.WIG 59 /r

VMULSS xmm1,xmm2, xmm3/m32

RVM V/V AVX Multiply the low single-
precision floating-point 
value in xmm3/mem by the 
low single-precision floating-
point value in xmm2.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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DEST[31:0]  DEST[31:0] * SRC[31:0]
DEST[VLMAX-1:32] (Unmodified)

VMULSS (VEX.128 encoded version)
DEST[31:0]  SRC1[31:0] * SRC2[31:0]
DEST[127:32]  SRC1[127:32]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

MULSS: __m128 _mm_mul_ss(__m128 a, __m128 b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
See Exceptions Type 3 
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MWAIT—Monitor Wait

Instruction Operand Encoding

Description

MWAIT instruction provides hints to allow the processor to enter an implementation-
dependent optimized state. There are two principal targeted usages: address-range 
monitor and advanced power management. Both usages of MWAIT require the use of 
the MONITOR instruction.

CPUID.01H:ECX.MONITOR[bit 3] indicates the availability of MONITOR and MWAIT in 
the processor. When set, MWAIT may be executed only at privilege level 0 (use at any 
other privilege level results in an invalid-opcode exception). The operating system or 
system BIOS may disable this instruction by using the IA32_MISC_ENABLE MSR; 
disabling MWAIT clears the CPUID feature flag and causes execution to generate an 
invalid-opcode exception. 

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

ECX specifies optional extensions for the MWAIT instruction. EAX may contain hints 
such as the preferred optimized state the processor should enter. The first processors 
to implement MWAIT supported only the zero value for EAX and ECX. Later proces-
sors allowed setting ECX[0] to enable masked interrupts as break events for MWAIT 
(see below). Software can use the CPUID instruction to determine the extensions and 
hints supported by the processor.

MWAIT for Address Range Monitoring

For address-range monitoring, the MWAIT instruction operates with the MONITOR 
instruction. The two instructions allow the definition of an address at which to wait 
(MONITOR) and a implementation-dependent-optimized operation to commence at 
the wait address (MWAIT). The execution of MWAIT is a hint to the processor that it 
can enter an implementation-dependent-optimized state while waiting for an event 
or a store operation to the address range armed by MONITOR.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 01 C9 MWAIT NP Valid Valid A hint that allow the 
processor to stop 
instruction execution and 
enter an implementation-
dependent optimized state 
until occurrence of a class of 
events.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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The following cause the processor to exit the implementation-dependent-optimized 
state: a store to the address range armed by the MONITOR instruction, an NMI or 
SMI, a debug exception, a machine check exception, the BINIT# signal, the INIT# 
signal, and the RESET# signal. Other implementation-dependent events may also 
cause the processor to exit the implementation-dependent-optimized state.

In addition, an external interrupt causes the processor to exit the implementation-
dependent-optimized state either (1) if the interrupt would be delivered to software 
(e.g., as it would be if HLT had been executed instead of MWAIT); or (2) if ECX[0] = 
1. Software can execute MWAIT with ECX[0] = 1 only if CPUID.05H:ECX[bit 1] = 1. 
(Implementation-specific conditions may result in an interrupt causing the processor 
to exit the implementation-dependent-optimized state even if interrupts are masked 
and ECX[0] = 0.)

Following exit from the implementation-dependent-optimized state, control passes 
to the instruction following the MWAIT instruction. A pending interrupt that is not 
masked (including an NMI or an SMI) may be delivered before execution of that 
instruction. Unlike the HLT instruction, the MWAIT instruction does not support a 
restart at the MWAIT instruction following the handling of an SMI. 

If the preceding MONITOR instruction did not successfully arm an address range or if 
the MONITOR instruction has not been executed prior to executing MWAIT, then the 
processor will not enter the implementation-dependent-optimized state. Execution 
will resume at the instruction following the MWAIT.

MWAIT for Power Management

MWAIT accepts a hint and optional extension to the processor that it can enter a 
specified target C state while waiting for an event or a store operation to the address 
range armed by MONITOR. Support for MWAIT extensions for power management is 
indicated by CPUID.05H:ECX[bit 0] reporting 1. 

EAX and ECX are used to communicate the additional information to the MWAIT 
instruction, such as the kind of optimized state the processor should enter. ECX spec-
ifies optional extensions for the MWAIT instruction. EAX may contain hints such as 
the preferred optimized state the processor should enter. Implementation-specific 
conditions may cause a processor to ignore the hint and enter a different optimized 
state. Future processor implementations may implement several optimized “waiting” 
states and will select among those states based on the hint argument.

Table 4-10 describes the meaning of ECX and EAX registers for MWAIT extensions.

Table 4-10.  MWAIT Extension Register (ECX)
Bits Description

0 Treat interrupts as break events even if masked (e.g., even if EFLAGS.IF=0). 
May be set only if CPUID.05H:ECX[bit 1] = 1.

31: 1 Reserved
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Note that if MWAIT is used to enter any of the C-states that are numerically higher 
than C1, a store to the address range armed by the MONITOR instruction will cause 
the processor to exit MWAIT only if the store was originated by other processor 
agents. A store from non-processor agent might not cause the processor to exit 
MWAIT in such cases.

For additional details of MWAIT extensions, see Chapter 14, “Power and Thermal 
Management,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3A.

Operation

(* MWAIT takes the argument in EAX as a hint extension and is architected to take the argument in 
ECX as an instruction extension MWAIT EAX, ECX *)
{
WHILE ( ("Monitor Hardware is in armed state")) {

implementation_dependent_optimized_state(EAX, ECX); }
Set the state of Monitor Hardware as triggered;
}

Intel C/C++ Compiler Intrinsic Equivalent

MWAIT: void _mm_mwait(unsigned extensions, unsigned hints)

Example

MONITOR/MWAIT instruction pair must be coded in the same loop because execution 
of the MWAIT instruction will trigger the monitor hardware. It is not a proper usage 
to execute MONITOR once and then execute MWAIT in a loop. Setting up MONITOR 
without executing MWAIT has no adverse effects.

Typically the MONITOR/MWAIT pair is used in a sequence, such as:

EAX = Logical Address(Trigger)

Table 4-11.  MWAIT Hints Register (EAX)
Bits Description

3 : 0 Sub C-state within a C-state, indicated by bits [7:4]

7 : 4 Target C-state*

Value of 0 means C1; 1 means C2 and so on

Value of 01111B means C0

Note: Target C states for MWAIT extensions are processor-specific C-
states, not ACPI C-states

31: 8 Reserved
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ECX = 0 (*Hints *)
EDX = 0 (* Hints *)

IF ( !trigger_store_happened) {
MONITOR EAX, ECX, EDX
IF ( !trigger_store_happened ) {

MWAIT EAX, ECX
}

}

The above code sequence makes sure that a triggering store does not happen 
between the first check of the trigger and the execution of the monitor instruction. 
Without the second check that triggering store would go un-noticed. Typical usage of 
MONITOR and MWAIT would have the above code sequence within a loop.

Numeric Exceptions
None

Protected Mode Exceptions
#GP(0) If ECX[31:1] ≠ 0.

If ECX[0] = 1 and CPUID.05H:ECX[bit 1] = 0.
#UD If CPUID.01H:ECX.MONITOR[bit 3] = 0.

If current privilege level is not 0.

Real Address Mode Exceptions
#GP If ECX[31:1] ≠ 0.

If ECX[0] = 1 and CPUID.05H:ECX[bit 1] = 0.
#UD If CPUID.01H:ECX.MONITOR[bit 3] = 0.

Virtual 8086 Mode Exceptions
#UD The MWAIT instruction is not recognized in virtual-8086 mode 

(even if CPUID.01H:ECX.MONITOR[bit 3] = 1).

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If RCX[63:1] ≠ 0.

If RCX[0] = 1 and CPUID.05H:ECX[bit 1] = 0.
#UD If the current privilege level is not 0.

If CPUID.01H:ECX.MONITOR[bit 3] = 0.
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NEG—Two's Complement Negation

Instruction Operand Encoding

Description

Replaces the value of operand (the destination operand) with its two's complement. 
(This operation is equivalent to subtracting the operand from 0.) The destination 
operand is located in a general-purpose register or a memory location.

This instruction can be used with a LOCK prefix to allow the instruction to be 
executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix 
in the form of REX.R permits access to additional registers (R8-R15). Using a REX 
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at 
the beginning of this section for encoding data and limits.

Operation

IF DEST = 0 
THEN CF ← 0;
ELSE CF ← 1; 

FI;
DEST ← [– (DEST)]

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

F6 /3 NEG r/m8 M Valid Valid Two's complement negate 
r/m8.

REX + F6 /3 NEG r/m8* M Valid N.E. Two's complement negate 
r/m8.

F7 /3 NEG r/m16 M Valid Valid Two's complement negate 
r/m16.

F7 /3 NEG r/m32 M Valid Valid Two's complement negate 
r/m32.

REX.W + F7 /3 NEG r/m64 M Valid N.E. Two's complement negate 
r/m64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is 

used: AH, BH, CH, DH. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r, w) NA NA NA
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Flags Affected

The CF flag set to 0 if the source operand is 0; otherwise it is set to 1. The OF, SF, ZF, 
AF, and PF flags are set according to the result. 

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, 
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory 

operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS 

segment limit.
#UD If the LOCK prefix is used but the destination is not a memory 

operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made.
#UD If the LOCK prefix is used but the destination is not a memory 

operand.

Compatibility Mode Exceptions
Same as for protected mode exceptions.
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64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory 

operand.
Vol. 2B 4-159NEG—Two's Complement Negation



INSTRUCTION SET REFERENCE, M-Z
NOP—No Operation

Instruction Operand Encoding

Description

This instruction performs no operation. It is a one-byte or multi-byte NOP that takes 
up space in the instruction stream but does not impact machine context, except for 
the EIP register.

The multi-byte form of NOP is available on processors with model encoding:
• CPUID.01H.EAX[Bytes 11:8] = 0110B or 1111B

The multi-byte NOP instruction does not alter the content of a register and will not 
issue a memory operation. The instruction’s operation is the same in non-64-bit 
modes and 64-bit mode.

Operation

The one-byte NOP instruction is an alias mnemonic for the XCHG (E)AX, (E)AX 
instruction.

The multi-byte NOP instruction performs no operation on supported processors and 
generates undefined opcode exception on processors that do not support the multi-
byte NOP instruction.

The memory operand form of the instruction allows software to create a byte 
sequence of “no operation” as one instruction. For situations where multiple-byte 
NOPs are needed, the recommended operations (32-bit mode and 64-bit mode) are: 

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

90 NOP NP Valid Valid One byte no-operation 
instruction.

0F 1F /0 NOP r/m16 M Valid Valid Multi-byte no-operation 
instruction.

0F 1F /0 NOP r/m32 M Valid Valid Multi-byte no-operation 
instruction.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

M ModRM:r/m (r) NA NA NA
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Flags Affected

None.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

Table 4-12.  Recommended Multi-Byte Sequence of NOP Instruction

Length Assembly Byte Sequence

2 bytes 66 NOP 66 90H

3 bytes NOP DWORD ptr [EAX] 0F 1F 00H

4 bytes NOP DWORD ptr [EAX + 00H] 0F 1F 40 00H

5 bytes NOP DWORD ptr [EAX + EAX*1 + 00H] 0F 1F 44 00 00H

6 bytes 66 NOP DWORD ptr [EAX + EAX*1 + 00H] 66 0F 1F 44 00 00H

7 bytes NOP DWORD ptr [EAX + 00000000H] 0F 1F 80 00 00 00 00H

8 bytes NOP DWORD ptr [EAX + EAX*1 + 00000000H] 0F 1F 84 00 00 00 00 00H

9 bytes 66 NOP DWORD ptr [EAX + EAX*1 + 
00000000H]

66 0F 1F 84 00 00 00 00 
00H
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NOT—One's Complement Negation

Instruction Operand Encoding

Description

Performs a bitwise NOT operation (each 1 is set to 0, and each 0 is set to 1) on the 
destination operand and stores the result in the destination operand location. The 
destination operand can be a register or a memory location.

This instruction can be used with a LOCK prefix to allow the instruction to be 
executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix 
in the form of REX.R permits access to additional registers (R8-R15). Using a REX 
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at 
the beginning of this section for encoding data and limits.

Operation

DEST ← NOT DEST;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS, 
ES, FS, or GS segment limit.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

F6 /2 NOT r/m8 M Valid Valid Reverse each bit of r/m8.

REX + F6 /2 NOT r/m8* M Valid N.E. Reverse each bit of r/m8.

F7 /2 NOT r/m16 M Valid Valid Reverse each bit of r/m16.

F7 /2 NOT r/m32 M Valid Valid Reverse each bit of r/m32.

REX.W + F7 /2 NOT r/m64 M Valid N.E. Reverse each bit of r/m64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is 

used: AH, BH, CH, DH. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r, w) NA NA NA
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If the DS, ES, FS, or GS register contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory 

operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS 

segment limit.
#UD If the LOCK prefix is used but the destination is not a memory 

operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made.
#UD If the LOCK prefix is used but the destination is not a memory 

operand.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory 

operand.
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OR—Logical Inclusive OR
Opcode Instruction Op/ 

En
64-Bit 
Mode

Compat/
Leg Mode

Description

0C ib OR AL, imm8 I Valid Valid AL OR imm8.

0D iw OR AX, imm16 I Valid Valid AX OR imm16.

0D id OR EAX, imm32 I Valid Valid EAX OR imm32.

REX.W + 0D id OR RAX, imm32 I Valid N.E. RAX OR imm32 (sign-
extended).

80 /1 ib OR r/m8, imm8 MI Valid Valid r/m8 OR imm8.

REX + 80 /1 ib OR r/m8*, imm8 MI Valid N.E. r/m8 OR imm8.

81 /1 iw OR r/m16, imm16 MI Valid Valid  r/m16 OR imm16.

81 /1 id OR r/m32, imm32 MI Valid Valid  r/m32 OR imm32.

REX.W + 81 /1 
id

OR r/m64, imm32 MI Valid N.E.  r/m64 OR imm32 (sign-
extended).

83 /1 ib OR r/m16, imm8 MI Valid Valid r/m16 OR imm8 (sign-
extended).

83 /1 ib OR r/m32, imm8 MI Valid Valid r/m32 OR imm8 (sign-
extended).

REX.W + 83 /1 
ib

OR r/m64, imm8 MI Valid N.E. r/m64 OR imm8 (sign-
extended).

08 /r OR r/m8, r8 MR Valid Valid r/m8 OR r8.

REX + 08 /r OR r/m8*, r8* MR Valid N.E. r/m8 OR r8.

09 /r OR r/m16, r16 MR Valid Valid r/m16 OR r16.

09 /r OR r/m32, r32 MR Valid Valid r/m32 OR r32.

REX.W + 09 /r OR r/m64, r64 MR Valid N.E. r/m64 OR r64.

0A /r OR r8, r/m8 RM Valid Valid r8 OR r/m8.

REX + 0A /r OR r8*, r/m8* RM Valid N.E. r8 OR r/m8.

0B /r OR r16, r/m16 RM Valid Valid r16 OR r/m16.

0B /r OR r32, r/m32 RM Valid Valid r32 OR r/m32.

REX.W + 0B /r OR r64, r/m64 RM Valid N.E. r64 OR r/m64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is 

used: AH, BH, CH, DH. 
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Instruction Operand Encoding

Description

Performs a bitwise inclusive OR operation between the destination (first) and source 
(second) operands and stores the result in the destination operand location. The 
source operand can be an immediate, a register, or a memory location; the destina-
tion operand can be a register or a memory location. (However, two memory oper-
ands cannot be used in one instruction.) Each bit of the result of the OR instruction is 
set to 0 if both corresponding bits of the first and second operands are 0; otherwise, 
each bit is set to 1.

This instruction can be used with a LOCK prefix to allow the instruction to be 
executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix 
in the form of REX.R permits access to additional registers (R8-R15). Using a REX 
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at 
the beginning of this section for encoding data and limits.

Operation

DEST ← DEST OR SRC;

Flags Affected

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the 
result. The state of the AF flag is undefined.

Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS, 
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#PF(fault-code) If a page fault occurs.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

I AL/AX/EAX/RAX imm8/16/32 NA NA

MI ModRM:r/m (r, w) imm8/16/32 NA NA

MR ModRM:r/m (r, w) ModRM:reg (r) NA NA

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
Vol. 2B 4-165OR—Logical Inclusive OR



INSTRUCTION SET REFERENCE, M-Z
#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory 
operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS 

segment limit.
#UD If the LOCK prefix is used but the destination is not a memory 

operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made.
#UD If the LOCK prefix is used but the destination is not a memory 

operand.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory 

operand.
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ORPD—Bitwise Logical OR of Double-Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a bitwise logical OR of the two or four packed double-precision floating-
point values from the first source operand and the second source operand, and stores 
the result in the destination operand

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit 
memory location. The destination is not distinct from the first source XMM register 
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit 
memory location. The destination operand is an XMM register. The upper bits 
(VLMAX-1:128) of the destination YMM register destination are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second 
source operand can be a YMM register or a 256-bit memory location. The destination 
operand is a YMM register. 
If VORPD is encoded with VEX.L= 1, an attempt to execute the instruction encoded 
with VEX.L= 1 will cause an #UD exception.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 56 /r

ORPD xmm1, xmm2/m128

RM V/V SSE2 Bitwise OR of xmm2/m128 
and xmm1.

VEX.NDS.128.66.0F.WIG 56 /r
VORPD xmm1,xmm2, xmm3/m128

RVM V/V AVX Return the bitwise logical 
OR of packed double-
precision floating-point 
values in xmm2 and 
xmm3/mem.

VEX.NDS.256.66.0F.WIG 56 /r

VORPD ymm1, ymm2, ymm3/m256

RVM V/V AVX Return the bitwise logical 
OR of packed double-
precision floating-point 
values in ymm2 and 
ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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Operation

ORPD (128-bit Legacy SSE version)
DEST[63:0]  DEST[63:0] BITWISE OR SRC[63:0]
DEST[127:64]  DEST[127:64] BITWISE OR SRC[127:64]
DEST[VLMAX-1:128] (Unmodified)

VORPD (VEX.128 encoded version)
DEST[63:0]  SRC1[63:0] BITWISE OR SRC2[63:0]
DEST[127:64]  SRC1[127:64] BITWISE OR SRC2[127:64]
DEST[VLMAX-1:128]  0

VORPD (VEX.256 encoded version)
DEST[63:0]  SRC1[63:0] BITWISE OR SRC2[63:0]
DEST[127:64]  SRC1[127:64] BITWISE OR SRC2[127:64]
DEST[191:128]  SRC1[191:128] BITWISE OR SRC2[191:128]
DEST[255:192]  SRC1[255:192] BITWISE OR SRC2[255:192]

Intel® C/C++ Compiler Intrinsic Equivalent

ORPD:  __m128d _mm_or_pd(__m128d a, __m128d b);

VORPD:  __m256d _mm256_or_pd (__m256d a, __m256d b);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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ORPS—Bitwise Logical OR of Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a bitwise logical OR of the four or eight packed single-precision floating-
point values from the first source operand and the second source operand, and stores 
the result in the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit 
memory location. The destination is not distinct from the first source XMM register 
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit 
memory location. The destination operand is an XMM register. The upper bits 
(VLMAX-1:128) of the destination YMM register destination are zeroed.
VEX.256 Encoded version: The first source operand is a YMM register. The second 
source operand can be a YMM register or a 256-bit memory location. The destination 
operand is a YMM register. 
If VORPS is encoded with VEX.L= 1, an attempt to execute the instruction encoded 
with VEX.L= 1 will cause an #UD exception.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F 56 /r

ORPS xmm1, xmm2/m128

RM V/V SSE Bitwise OR of xmm1 and 
xmm2/m128.

VEX.NDS.128.0F.WIG 56 /r

VORPS xmm1, xmm2, xmm3/m128

RVM V/V AVX Return the bitwise logical 
OR of packed single-
precision floating-point 
values in xmm2 and 
xmm3/mem.

VEX.NDS.256.0F.WIG 56 /r

VORPS ymm1, ymm2, ymm3/m256

RVM V/V AVX Return the bitwise logical 
OR of packed single-
precision floating-point 
values in ymm2 and 
ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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Operation

ORPS (128-bit Legacy SSE version)
DEST[31:0]  SRC1[31:0] BITWISE OR SRC2[31:0]
DEST[63:32]  SRC1[63:32] BITWISE OR SRC2[63:32]
DEST[95:64]  SRC1[95:64] BITWISE OR SRC2[95:64]
DEST[127:96]  SRC1[127:96] BITWISE OR SRC2[127:96]
DEST[VLMAX-1:128] (Unmodified)

VORPS (VEX.128 encoded version)
DEST[31:0]  SRC1[31:0] BITWISE OR SRC2[31:0]
DEST[63:32]  SRC1[63:32] BITWISE OR SRC2[63:32]
DEST[95:64]  SRC1[95:64] BITWISE OR SRC2[95:64]
DEST[127:96]  SRC1[127:96] BITWISE OR SRC2[127:96]
DEST[VLMAX-1:128]  0

VORPS (VEX.256 encoded version)
DEST[31:0]  SRC1[31:0] BITWISE OR SRC2[31:0]
DEST[63:32]  SRC1[63:32] BITWISE OR SRC2[63:32]
DEST[95:64]  SRC1[95:64] BITWISE OR SRC2[95:64]
DEST[127:96]  SRC1[127:96] BITWISE OR SRC2[127:96]
DEST[159:128]  SRC1[159:128] BITWISE OR SRC2[159:128]
DEST[191:160] SRC1[191:160] BITWISE OR SRC2[191:160]
DEST[223:192]  SRC1[223:192] BITWISE OR SRC2[223:192]
DEST[255:224]  SRC1[255:224] BITWISE OR SRC2[255:224].

Intel C/C++ Compiler Intrinsic Equivalent

ORPS:  __m128 _mm_or_ps (__m128 a, __m128 b);

VORPS:  __m256 _mm256_or_ps (__m256 a, __m256 b);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4.
4-170 Vol. 2B ORPS—Bitwise Logical OR of Single-Precision Floating-Point Values



INSTRUCTION SET REFERENCE, M-Z
OUT—Output to Port

Instruction Operand Encoding

Description

Copies the value from the second operand (source operand) to the I/O port specified 
with the destination operand (first operand). The source operand can be register AL, 
AX, or EAX, depending on the size of the port being accessed (8, 16, or 32 bits, 
respectively); the destination operand can be a byte-immediate or the DX register. 
Using a byte immediate allows I/O port addresses 0 to 255 to be accessed; using the 
DX register as a source operand allows I/O ports from 0 to 65,535 to be accessed.

The size of the I/O port being accessed is determined by the opcode for an 8-bit I/O 
port or by the operand-size attribute of the instruction for a 16- or 32-bit I/O port.

At the machine code level, I/O instructions are shorter when accessing 8-bit I/O 
ports. Here, the upper eight bits of the port address will be 0.

This instruction is only useful for accessing I/O ports located in the processor’s I/O 
address space. See Chapter 13, “Input/Output,” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 1, for more information on accessing I/O 
ports in the I/O address space.

Opcode* Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

E6 ib OUT imm8, AL I Valid Valid Output byte in AL to I/O port 
address imm8.

E7 ib OUT imm8, AX I Valid Valid Output word in AX to I/O 
port address imm8. 

E7 ib OUT imm8, EAX I Valid Valid Output doubleword in EAX 
to I/O port address imm8.

EE OUT DX, AL NP Valid Valid Output byte in AL to I/O port 
address in DX.

EF OUT DX, AX NP Valid Valid Output word in AX to I/O 
port address in DX.

EF OUT DX, EAX NP Valid Valid Output doubleword in EAX 
to I/O port address in DX.

NOTES:
* See IA-32 Architecture Compatibility section below.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

I imm8 NA NA NA

NP NA NA NA NA
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This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

After executing an OUT instruction, the Pentium® processor ensures that the EWBE# 
pin has been sampled active before it begins to execute the next instruction. (Note 
that the instruction can be prefetched if EWBE# is not active, but it will not be 
executed until the EWBE# pin is sampled active.) Only the Pentium processor family 
has the EWBE# pin.

Operation

IF ((PE = 1) and ((CPL > IOPL) or (VM = 1)))
THEN (* Protected mode with CPL > IOPL or virtual-8086 mode *)

IF (Any I/O Permission Bit for I/O port being accessed = 1)
THEN (* I/O operation is not allowed *)

#GP(0);
ELSE ( * I/O operation is allowed *) 

DEST ← SRC; (* Writes to selected I/O port *)
FI;

ELSE (Real Mode or Protected Mode with CPL ≤ IOPL *)
DEST ← SRC; (* Writes to selected I/O port *)

FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the CPL is greater than (has less privilege) the I/O privilege 

level (IOPL) and any of the corresponding I/O permission bits in 
TSS for the I/O port being accessed is 1.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If any of the I/O permission bits in the TSS for the I/O port being 

accessed is 1.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.
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Compatibility Mode Exceptions
Same as protected mode exceptions.

64-Bit Mode Exceptions
Same as protected mode exceptions.
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OUTS/OUTSB/OUTSW/OUTSD—Output String to Port

Instruction Operand Encoding

Description

Copies data from the source operand (second operand) to the I/O port specified with 
the destination operand (first operand). The source operand is a memory location, 
the address of which is read from either the DS:SI, DS:ESI or the RSI registers 
(depending on the address-size attribute of the instruction, 16, 32 or 64, respec-

Opcode* Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

6E OUTS DX, m8 NP Valid Valid Output byte from memory 
location specified in DS:(E)SI 
or RSI to I/O port specified in 
DX**.

6F OUTS DX, m16 NP Valid Valid Output word from memory 
location specified in DS:(E)SI 
or RSI to I/O port specified in 
DX**.

6F OUTS DX, m32 NP Valid Valid Output doubleword from 
memory location specified in 
DS:(E)SI or RSI to I/O port 
specified in DX**.

6E OUTSB NP Valid Valid Output byte from memory 
location specified in DS:(E)SI 
or RSI to I/O port specified in 
DX**.

6F OUTSW NP Valid Valid Output word from memory 
location specified in DS:(E)SI 
or RSI to I/O port specified in 
DX**.

6F OUTSD NP Valid Valid Output doubleword from 
memory location specified in 
DS:(E)SI or RSI to I/O port 
specified in DX**.

NOTES:
* See IA-32 Architecture Compatibility section below.
** In 64-bit mode, only 64-bit (RSI) and 32-bit (ESI) address sizes are supported. In non-64-bit 

mode, only 32-bit (ESI) and 16-bit (SI) address sizes are supported.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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tively). (The DS segment may be overridden with a segment override prefix.) The 
destination operand is an I/O port address (from 0 to 65,535) that is read from the 
DX register. The size of the I/O port being accessed (that is, the size of the source 
and destination operands) is determined by the opcode for an 8-bit I/O port or by the 
operand-size attribute of the instruction for a 16- or 32-bit I/O port.

At the assembly-code level, two forms of this instruction are allowed: the “explicit-
operands” form and the “no-operands” form. The explicit-operands form (specified 
with the OUTS mnemonic) allows the source and destination operands to be specified 
explicitly. Here, the source operand should be a symbol that indicates the size of the 
I/O port and the source address, and the destination operand must be DX. This 
explicit-operands form is provided to allow documentation; however, note that the 
documentation provided by this form can be misleading. That is, the source operand 
symbol must specify the correct type (size) of the operand (byte, word, or double-
word), but it does not have to specify the correct location. The location is always 
specified by the DS:(E)SI or RSI registers, which must be loaded correctly before the 
OUTS instruction is executed.

The no-operands form provides “short forms” of the byte, word, and doubleword 
versions of the OUTS instructions. Here also DS:(E)SI is assumed to be the source 
operand and DX is assumed to be the destination operand. The size of the I/O port is 
specified with the choice of mnemonic: OUTSB (byte), OUTSW (word), or OUTSD 
(doubleword).

After the byte, word, or doubleword is transferred from the memory location to the 
I/O port, the SI/ESI/RSI register is incremented or decremented automatically 
according to the setting of the DF flag in the EFLAGS register. (If the DF flag is 0, the 
(E)SI register is incremented; if the DF flag is 1, the SI/ESI/RSI register is decre-
mented.) The SI/ESI/RSI register is incremented or decremented by 1 for byte oper-
ations, by 2 for word operations, and by 4 for doubleword operations.

The OUTS, OUTSB, OUTSW, and OUTSD instructions can be preceded by the REP 
prefix for block input of ECX bytes, words, or doublewords. See “REP/REPE/REPZ 
/REPNE/REPNZ—Repeat String Operation Prefix” in this chapter for a description of 
the REP prefix. This instruction is only useful for accessing I/O ports located in the 
processor’s I/O address space. See Chapter 13, “Input/Output,” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 1, for more information on 
accessing I/O ports in the I/O address space.

In 64-bit mode, the default operand size is 32 bits; operand size is not promoted by 
the use of REX.W. In 64-bit mode, the default address size is 64 bits, and 64-bit 
address is specified using RSI by default. 32-bit address using ESI is support using 
the prefix 67H, but 16-bit address is not supported in 64-bit mode.

IA-32 Architecture Compatibility

After executing an OUTS, OUTSB, OUTSW, or OUTSD instruction, the Pentium 
processor ensures that the EWBE# pin has been sampled active before it begins to 
execute the next instruction. (Note that the instruction can be prefetched if EWBE# 
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is not active, but it will not be executed until the EWBE# pin is sampled active.) Only 
the Pentium processor family has the EWBE# pin.

For the Pentium 4, Intel® Xeon®, and P6 processor family, upon execution of an 
OUTS, OUTSB, OUTSW, or OUTSD instruction, the processor will not execute the next 
instruction until the data phase of the transaction is complete.

Operation

IF ((PE = 1) and ((CPL > IOPL) or (VM = 1)))
THEN (* Protected mode with CPL > IOPL or virtual-8086 mode *)

IF (Any I/O Permission Bit for I/O port being accessed = 1)
THEN (* I/O operation is not allowed *)

#GP(0);
ELSE (* I/O operation is allowed *) 

DEST ← SRC; (* Writes to I/O port *)
FI;

ELSE (Real Mode or Protected Mode or 64-Bit Mode with CPL ≤ IOPL *)
DEST ← SRC; (* Writes to I/O port *)

FI;

Byte transfer:
IF 64-bit mode

Then
IF 64-Bit Address Size 

THEN 
IF DF = 0

THEN RSI ← RSI RSI + 1; 
ELSE RSI ← RSI or – 1; 

FI;
ELSE (* 32-Bit Address Size *)

IF DF = 0
THEN ESI ← ESI + 1; 
ELSE ESI ← ESI – 1; 

FI;
FI;

ELSE 
IF DF = 0

THEN (E)SI ← (E)SI + 1; 
ELSE (E)SI ← (E)SI – 1; 

FI;
FI;

Word transfer:
IF 64-bit mode

Then
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IF 64-Bit Address Size 
THEN 

IF DF = 0
THEN RSI ← RSI RSI + 2; 
ELSE RSI ← RSI or – 2; 

FI;
ELSE (* 32-Bit Address Size *)

IF DF = 0
THEN ESI ← ESI + 2; 
ELSE ESI ← ESI – 2; 

FI;
FI;

ELSE 
IF DF = 0

THEN (E)SI ← (E)SI + 2; 
ELSE (E)SI ← (E)SI – 2; 

FI;
FI;

Doubleword transfer:
IF 64-bit mode

Then
IF 64-Bit Address Size 

THEN 
IF DF = 0

THEN RSI ← RSI RSI + 4; 
ELSE RSI ← RSI or – 4; 

FI;
ELSE (* 32-Bit Address Size *)

IF DF = 0
THEN ESI ← ESI + 4; 
ELSE ESI ← ESI – 4; 

FI;
FI;

ELSE 
IF DF = 0

THEN (E)SI ← (E)SI + 4; 
ELSE (E)SI ← (E)SI – 4; 

FI;
FI;

Flags Affected

None.
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Protected Mode Exceptions
#GP(0) If the CPL is greater than (has less privilege) the I/O privilege 

level (IOPL) and any of the corresponding I/O permission bits in 
TSS for the I/O port being accessed is 1.
If a memory operand effective address is outside the limit of the 
CS, DS, ES, FS, or GS segment.
If the segment register contains a NULL segment selector.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS 

segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If any of the I/O permission bits in the TSS for the I/O port being 

accessed is 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the CPL is greater than (has less privilege) the I/O privilege 

level (IOPL) and any of the corresponding I/O permission bits in 
TSS for the I/O port being accessed is 1.
If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
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#UD If the LOCK prefix is used.
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PABSB/PABSW/PABSD — Packed Absolute Value 
Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F 38 1C /r1

PABSB mm1, mm2/m64 

RM V/V SSSE3 Compute the absolute value 
of bytes in mm2/m64 and 
store UNSIGNED result in 
mm1.

66 0F 38 1C /r 

PABSB xmm1, xmm2/m128 

RM V/V SSSE3 Compute the absolute value 
of bytes in xmm2/m128 and 
store UNSIGNED result in 
xmm1. 

0F 38 1D /r1

PABSW mm1, mm2/m64 

RM V/V SSSE3 Compute the absolute value 
of 16-bit integers in 
mm2/m64 and store 
UNSIGNED result in mm1.

66 0F 38 1D /r

PABSW xmm1, xmm2/m128

RM V/V SSSE3 Compute the absolute value 
of 16-bit integers in 
xmm2/m128 and store 
UNSIGNED result in xmm1.

0F 38 1E /r1 

PABSD mm1, mm2/m64 

RM V/V SSSE3 Compute the absolute value 
of 32-bit integers in 
mm2/m64 and store 
UNSIGNED result in mm1. 

66 0F 38 1E /r 

PABSD xmm1, xmm2/m128 

RM V/V SSSE3 Compute the absolute value 
of 32-bit integers in 
xmm2/m128 and store 
UNSIGNED result in xmm1. 

VEX.128.66.0F38.WIG 1C /r

VPABSB xmm1, xmm2/m128

RM V/V AVX Compute the absolute value 
of bytes in xmm2/m128 and 
store UNSIGNED result in 
xmm1.

VEX.128.66.0F38.WIG 1D /r

VPABSW xmm1, xmm2/m128

RM V/V AVX Compute the absolute value 
of 16- bit integers in 
xmm2/m128 and store 
UNSIGNED result in xmm1.
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Instruction Operand Encoding

Description 

PABSB/W/D computes the absolute value of each data element of the source operand 
(the second operand) and stores the UNSIGNED results in the destination operand 
(the first operand). PABSB operates on signed bytes, PABSW operates on 16-bit 
words, and PABSD operates on signed 32-bit integers. The source operand can be an 
MMX register or a 64-bit memory location, or it can be an XMM register or a 128-bit 
memory location. The destination operand can be an MMX or an XMM register. Both 
operands can be MMX register or XMM registers. When the source operand is a 
128-bit memory operand, the operand must be aligned on a 16byte boundary or a 
general-protection exception (#GP) will be generated. 

In 64-bit mode, use the REX prefix to access additional registers.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. VEX.vvvv is reserved and must be 1111b, VEX.L must be 0; otherwise 
instructions will #UD.

Operation

PABSB (with 64 bit operands)
Unsigned DEST[7:0] ← ABS(SRC[7:0]) 
Repeat operation for 2nd through 7th bytes 
Unsigned DEST[63:56] ← ABS(SRC[63:56]) 

PABSB (with 128 bit operands)
Unsigned DEST[7:0] ← ABS(SRC[7:.0]) 
Repeat operation for 2nd through 15th bytes 

VEX.128.66.0F38.WIG 1E /r

VPABSD xmm1, xmm2/m128

RM V/V AVX Compute the absolute value 
of 32- bit integers in 
xmm2/m128 and store 
UNSIGNED result in xmm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception 
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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Unsigned DEST[127:120] ← ABS(SRC[127:120]) 

PABSW (with 64 bit operands)
Unsigned DEST[15:0] ← ABS(SRC[15:0]) 
Repeat operation for 2nd through 3rd 16-bit words 
Unsigned DEST[63:48] ← ABS(SRC[63:48]) 

PABSW (with 128 bit operands)
Unsigned DEST[15:0] ← ABS(SRC[15:0]) 
Repeat operation for 2nd through 7th 16-bit words 
Unsigned DEST[127:112] ← ABS(SRC[127:112]) 

PABSD (with 64 bit operands)
Unsigned DEST[31:0] ← ABS(SRC[31:0]) 
Unsigned DEST[63:32] ← ABS(SRC[63:32]) 

PABSD (with 128 bit operands)
Unsigned DEST[31:0] ← ABS(SRC[31:0]) 
Repeat operation for 2nd through 3rd 32-bit double words 
Unsigned DEST[127:96] ← ABS(SRC[127:96]) 

PABSB (128-bit Legacy SSE version)
DEST[127:0]  BYTE_ABS(SRC)
DEST[VLMAX-1:128] (Unmodified)

VPABSB (VEX.128 encoded version)
DEST[127:0]  BYTE_ABS(SRC)
DEST[VLMAX-1:128]  0

PABSW (128-bit Legacy SSE version)
DEST[127:0]  WORD_ABS(SRC)
DEST[VLMAX-1:128] (Unmodified)

VPABSW (VEX.128 encoded version)
DEST[127:0]  WORD_ABS(SRC)
DEST[VLMAX-1:128]  0

PABSD (128-bit Legacy SSE version)
DEST[127:0]  DWORD_ABS(SRC)
DEST[VLMAX-1:128] (Unmodified)

VPABSD (VEX.128 encoded version)
DEST[127:0]  DWORD_ABS(SRC)
DEST[VLMAX-1:128]  0
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Intel C/C++ Compiler Intrinsic Equivalents

PABSB:  __m64 _mm_abs_pi8 (__m64 a)

PABSB:  __m128i _mm_abs_epi8 (__m128i a)

PABSW:  __m64 _mm_abs_pi16 (__m64 a)

PABSW:  __m128i _mm_abs_epi16 (__m128i a)

PABSD:  __m64 _mm_abs_pi32 (__m64 a)

PABSD:  __m128i _mm_abs_epi32 (__m128i a)

SIMD Floating-Point Exceptions 
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
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PACKSSWB/PACKSSDW—Pack with Signed Saturation
Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F 63 /r1

PACKSSWB mm1, mm2/m64

RM V/V MMX Converts 4 packed signed 
word integers from mm1 
and from mm2/m64 into 8 
packed signed byte integers 
in mm1 using signed 
saturation.

66 0F 63 /r

PACKSSWB xmm1, xmm2/m128

RM V/V SSE2 Converts 8 packed signed 
word integers from xmm1 
and from xxm2/m128 into 
16 packed signed byte 
integers in xxm1 using 
signed saturation.

0F 6B /r1

PACKSSDW mm1, mm2/m64

RM V/V MMX Converts 2 packed signed 
doubleword integers from 
mm1 and from mm2/m64 
into 4 packed signed word 
integers in mm1 using 
signed saturation.

66 0F 6B /r

PACKSSDW xmm1, xmm2/m128

RM V/V SSE2 Converts 4 packed signed 
doubleword integers from 
xmm1 and from 
xxm2/m128 into 8 packed 
signed word integers in 
xxm1 using signed 
saturation.

VEX.NDS.128.66.0F.WIG 63 /r

VPACKSSWB xmm1,xmm2, 
xmm3/m128

RVM V/V AVX Converts 8 packed signed 
word integers from xmm2 
and from xmm3/m128 into 
16 packed signed byte 
integers in xmm1 using 
signed saturation.
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Instruction Operand Encoding

Description

Converts packed signed word integers into packed signed byte integers (PACKSSWB) 
or converts packed signed doubleword integers into packed signed word integers 
(PACKSSDW), using saturation to handle overflow conditions. See Figure 4-5 for an 
example of the packing operation.

The PACKSSWB instruction converts 4 or 8 signed word integers from the destination 
operand (first operand) and 4 or 8 signed word integers from the source operand 
(second operand) into 8 or 16 signed byte integers and stores the result in the desti-
nation operand. If a signed word integer value is beyond the range of a signed byte 
integer (that is, greater than 7FH for a positive integer or greater than 80H for a 
negative integer), the saturated signed byte integer value of 7FH or 80H, respec-
tively, is stored in the destination.

VEX.NDS.128.66.0F.WIG 6B /r

VPACKSSDW xmm1,xmm2, 
xmm3/m128

RVM V/V AVX Converts 4 packed signed 
doubleword integers from 
xmm2 and from 
xmm3/m128 into 8 packed 
signed word integers in 
xmm1 using signed 
saturation.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception 
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

Figure 4-5.  Operation of the PACKSSDW Instruction Using 64-bit Operands

D C

64-Bit SRC

64-Bit DEST

D’ C’ B’ A’

64-Bit DEST

B A
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The PACKSSDW instruction packs 2 or 4 signed doublewords from the destination 
operand (first operand) and 2 or 4 signed doublewords from the source operand 
(second operand) into 4 or 8 signed words in the destination operand (see 
Figure 4-5). If a signed doubleword integer value is beyond the range of a signed 
word (that is, greater than 7FFFH for a positive integer or greater than 8000H for a 
negative integer), the saturated signed word integer value of 7FFFH or 8000H, 
respectively, is stored into the destination.

The PACKSSWB and PACKSSDW instructions operate on either 64-bit or 128-bit 
operands. When operating on 64-bit operands, the destination operand must be an 
MMX technology register and the source operand can be either an MMX technology 
register or a 64-bit memory location. When operating on 128-bit operands, the desti-
nation operand must be an XMM register and the source operand can be either an 
XMM register or a 128-bit memory location.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PACKSSWB (with 64-bit operands)
DEST[7:0] ← SaturateSignedWordToSignedByte DEST[15:0]; 
DEST[15:8] ← SaturateSignedWordToSignedByte DEST[31:16];
DEST[23:16] ← SaturateSignedWordToSignedByte DEST[47:32];
DEST[31:24] ← SaturateSignedWordToSignedByte DEST[63:48];
DEST[39:32] ← SaturateSignedWordToSignedByte SRC[15:0];
DEST[47:40] ← SaturateSignedWordToSignedByte SRC[31:16];
DEST[55:48] ← SaturateSignedWordToSignedByte SRC[47:32];
DEST[63:56] ← SaturateSignedWordToSignedByte SRC[63:48];

PACKSSDW (with 64-bit operands)
DEST[15:0] ← SaturateSignedDoublewordToSignedWord DEST[31:0];
DEST[31:16] ← SaturateSignedDoublewordToSignedWord DEST[63:32];
DEST[47:32] ← SaturateSignedDoublewordToSignedWord SRC[31:0];
DEST[63:48] ← SaturateSignedDoublewordToSignedWord SRC[63:32];

PACKSSWB (with 128-bit operands)
DEST[7:0]← SaturateSignedWordToSignedByte (DEST[15:0]);
DEST[15:8]  ← SaturateSignedWordToSignedByte (DEST[31:16]); 
DEST[23:16] ← SaturateSignedWordToSignedByte (DEST[47:32]);
DEST[31:24] ← SaturateSignedWordToSignedByte (DEST[63:48]);
DEST[39:32] ← SaturateSignedWordToSignedByte (DEST[79:64]);
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DEST[47:40] ← SaturateSignedWordToSignedByte (DEST[95:80]);
DEST[55:48] ← SaturateSignedWordToSignedByte (DEST[111:96]);
DEST[63:56] ← SaturateSignedWordToSignedByte (DEST[127:112]);
DEST[71:64] ← SaturateSignedWordToSignedByte (SRC[15:0]);
DEST[79:72] ← SaturateSignedWordToSignedByte (SRC[31:16]);
DEST[87:80] ← SaturateSignedWordToSignedByte (SRC[47:32]);
DEST[95:88] ← SaturateSignedWordToSignedByte (SRC[63:48]);
DEST[103:96]  ← SaturateSignedWordToSignedByte (SRC[79:64]);
DEST[111:104] ← SaturateSignedWordToSignedByte (SRC[95:80]);
DEST[119:112] ← SaturateSignedWordToSignedByte (SRC[111:96]);
DEST[127:120] ← SaturateSignedWordToSignedByte (SRC[127:112]);

PACKSSDW (with 128-bit operands)
DEST[15:0]  ← SaturateSignedDwordToSignedWord (DEST[31:0]);
DEST[31:16] ← SaturateSignedDwordToSignedWord (DEST[63:32]);
DEST[47:32] ← SaturateSignedDwordToSignedWord (DEST[95:64]);
DEST[63:48] ← SaturateSignedDwordToSignedWord (DEST[127:96]);
DEST[79:64] ← SaturateSignedDwordToSignedWord (SRC[31:0]);
DEST[95:80] ← SaturateSignedDwordToSignedWord (SRC[63:32]);
DEST[111:96]  ← SaturateSignedDwordToSignedWord (SRC[95:64]);
DEST[127:112] ← SaturateSignedDwordToSignedWord (SRC[127:96]);

PACKSSDW
DEST[127:0]  SATURATING_PACK_DW(DEST, SRC)
DEST[VLMAX-1:128] (Unmodified)

VPACKSSDW
DEST[127:0]  SATURATING_PACK_DW(DEST, SRC)
DEST[VLMAX-1:128]  0

PACKSSWB
DEST[127:0]  SATURATING_PACK_WB(DEST, SRC)
DEST[VLMAX-1:128] (Unmodified)

VPACKSSWB
DEST[127:0]  SATURATING_PACK_WB(DEST, SRC)
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalents

PACKSSWB:  __m64 _mm_packs_pi16(__m64 m1, __m64 m2)

PACKSSWB:  __m128i _mm_packs_epi16(__m128i m1, __m128i m2)

PACKSSDW: __m64 _mm_packs_pi32 (__m64 m1, __m64 m2)
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PACKSSDW:  __m128i _mm_packs_epi32(__m128i m1, __m128i m2)

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PACKUSDW — Pack with Unsigned Saturation

Instruction Operand Encoding

Description

Converts packed signed doubleword integers into packed unsigned word integers 
using unsigned saturation to handle overflow conditions.  If the signed doubleword 
value is beyond the range of an unsigned word (that is, greater than FFFFH or less 
than 0000H), the saturated unsigned word integer value of FFFFH or 0000H, respec-
tively, is stored in the destination.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

TMP[15:0]  (DEST[31:0] < 0) ? 0 : DEST[15:0];
DEST[15:0]  (DEST[31:0] > FFFFH) ? FFFFH : TMP[15:0] ;

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 38 2B /r
PACKUSDW xmm1, xmm2/m128

RM V/V SSE4_1 Convert 4 packed signed 
doubleword integers from 
xmm1 and 4 packed signed 
doubleword integers from 
xmm2/m128 into 8 packed 
unsigned word integers in 
xmm1 using unsigned 
saturation.

VEX.NDS.128.66.0F38.WIG 2B /r
VPACKUSDW xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Convert 4 packed signed 
doubleword integers from 
xmm2 and 4 packed signed 
doubleword integers from 
xmm3/m128 into 8 packed 
unsigned word integers in 
xmm1 using unsigned 
saturation.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-189PACKUSDW — Pack with Unsigned Saturation



INSTRUCTION SET REFERENCE, M-Z
TMP[31:16]  (DEST[63:32] < 0) ? 0 : DEST[47:32];
DEST[31:16]  (DEST[63:32] > FFFFH) ? FFFFH : TMP[31:16] ;
TMP[47:32]  (DEST[95:64] < 0) ? 0 : DEST[79:64];
DEST[47:32]  (DEST[95:64] > FFFFH) ? FFFFH : TMP[47:32] ;
TMP[63:48]  (DEST[127:96] < 0) ? 0 : DEST[111:96];
DEST[63:48]  (DEST[127:96] > FFFFH) ? FFFFH : TMP[63:48] ;
TMP[63:48]  (DEST[127:96] < 0) ? 0 : DEST[111:96];
DEST[63:48]  (DEST[127:96] > FFFFH) ? FFFFH : TMP[63:48] ;
TMP[79:64]  (SRC[31:0] < 0) ? 0 : SRC[15:0];
DEST[63:48]  (SRC[31:0] > FFFFH) ? FFFFH : TMP[79:64] ;
TMP[95:80]  (SRC[63:32] < 0) ? 0 : SRC[47:32];
DEST[95:80]  (SRC[63:32] > FFFFH) ? FFFFH : TMP[95:80] ;
TMP[111:96]  (SRC[95:64] < 0) ? 0 : SRC[79:64];
DEST[111:96]  (SRC[95:64] > FFFFH) ? FFFFH : TMP[111:96] ;
TMP[127:112]  (SRC[127:96] < 0) ? 0 : SRC[111:96];
DEST[128:112]  (SRC[127:96] > FFFFH) ? FFFFH : TMP[127:112] ;

PACKUSDW (128-bit Legacy SSE version)
DEST[127:0]  UNSIGNED_SATURATING_PACK_DW(DEST, SRC)
DEST[VLMAX-1:128] (Unmodified)

VPACKUSDW (VEX.128 encoded version)
DEST[127:0]  UNSIGNED_SATURATING_PACK_DW(SRC1, SRC2)
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PACKUSDW:  __m128i _mm_packus_epi32(__m128i m1, __m128i m2);

Flags Affected

None.

SIMD Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PACKUSWB—Pack with Unsigned Saturation

Instruction Operand Encoding

Description

Converts 4 or 8 signed word integers from the destination operand (first operand) 
and 4 or 8 signed word integers from the source operand (second operand) into 8 or 
16 unsigned byte integers and stores the result in the destination operand. (See 
Figure 4-5 for an example of the packing operation.) If a signed word integer value is 
beyond the range of an unsigned byte integer (that is, greater than FFH or less than 

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F 67 /r1

PACKUSWB mm, mm/m64

RM V/V MMX Converts 4 signed word 
integers from mm and 4 
signed word integers from 
mm/m64 into 8 unsigned 
byte integers in mm using 
unsigned saturation.

66 0F 67 /r

PACKUSWB xmm1, xmm2/m128

RM V/V SSE2 Converts 8 signed word 
integers from xmm1 and 8 
signed word integers from 
xmm2/m128 into 16 
unsigned byte integers in 
xmm1 using unsigned 
saturation.

VEX.NDS.128.66.0F.WIG 67 /r

VPACKUSWB xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Converts 8 signed word 
integers from xmm2 and 8 
signed word integers from 
xmm3/m128 into 16 
unsigned byte integers in 
xmm1 using unsigned 
saturation.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception 
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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00H), the saturated unsigned byte integer value of FFH or 00H, respectively, is stored 
in the destination.

The PACKUSWB instruction operates on either 64-bit or 128-bit operands. When 
operating on 64-bit operands, the destination operand must be an MMX technology 
register and the source operand can be either an MMX technology register or a 64-bit 
memory location. When operating on 128-bit operands, the destination operand 
must be an XMM register and the source operand can be either an XMM register or a 
128-bit memory location.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).

Operation

PACKUSWB (with 64-bit operands)
DEST[7:0] ← SaturateSignedWordToUnsignedByte DEST[15:0]; 
DEST[15:8] ← SaturateSignedWordToUnsignedByte DEST[31:16];
DEST[23:16] ← SaturateSignedWordToUnsignedByte DEST[47:32];
DEST[31:24] ← SaturateSignedWordToUnsignedByte DEST[63:48];
DEST[39:32] ← SaturateSignedWordToUnsignedByte SRC[15:0];
DEST[47:40] ← SaturateSignedWordToUnsignedByte SRC[31:16];
DEST[55:48] ← SaturateSignedWordToUnsignedByte SRC[47:32];
DEST[63:56] ← SaturateSignedWordToUnsignedByte SRC[63:48];

PACKUSWB (with 128-bit operands)
DEST[7:0]← SaturateSignedWordToUnsignedByte (DEST[15:0]);
DEST[15:8]  ← SaturateSignedWordToUnsignedByte (DEST[31:16]);
DEST[23:16] ← SaturateSignedWordToUnsignedByte (DEST[47:32]);
DEST[31:24] ← SaturateSignedWordToUnsignedByte (DEST[63:48]);
DEST[39:32] ← SaturateSignedWordToUnsignedByte (DEST[79:64]);
DEST[47:40] ← SaturateSignedWordToUnsignedByte (DEST[95:80]);
DEST[55:48] ← SaturateSignedWordToUnsignedByte (DEST[111:96]);
DEST[63:56] ← SaturateSignedWordToUnsignedByte (DEST[127:112]);
DEST[71:64] ← SaturateSignedWordToUnsignedByte (SRC[15:0]);
DEST[79:72] ← SaturateSignedWordToUnsignedByte (SRC[31:16]);
DEST[87:80] ← SaturateSignedWordToUnsignedByte (SRC[47:32]);
DEST[95:88] ← SaturateSignedWordToUnsignedByte (SRC[63:48]);
DEST[103:96]  ← SaturateSignedWordToUnsignedByte (SRC[79:64]);
DEST[111:104] ← SaturateSignedWordToUnsignedByte (SRC[95:80]);
DEST[119:112] ← SaturateSignedWordToUnsignedByte (SRC[111:96]);
DEST[127:120] ← SaturateSignedWordToUnsignedByte (SRC[127:112]);

PACKUSWB (128-bit Legacy SSE version)
DEST[127:0]  UNSIGNED_SATURATING_PACK_WB(DEST, SRC)
DEST[VLMAX-1:128] (Unmodified)
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VPACKUSWB (VEX.128 encoded version)
DEST[127:0]  UNSIGNED_SATURATING_PACK_WB(SRC1, SRC2)
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PACKUSWB: __m64 _mm_packs_pu16(__m64 m1, __m64 m2)

PACKUSWB: __m128i _mm_packus_epi16(__m128i m1, __m128i m2)

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PADDB/PADDW/PADDD—Add Packed Integers

Instruction Operand Encoding

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F FC /r1

PADDB mm, mm/m64

RM V/V MMX Add packed byte integers 
from mm/m64 and mm.

66 0F FC /r

PADDB xmm1, xmm2/m128

RM V/V SSE2 Add packed byte integers 
from xmm2/m128 and 
xmm1.

0F FD /r1

PADDW mm, mm/m64

RM V/V MMX Add packed word integers 
from mm/m64 and mm.

66 0F FD /r

PADDW xmm1, xmm2/m128

RM V/V SSE2 Add packed word integers 
from xmm2/m128 and 
xmm1.

0F FE /r1

PADDD mm, mm/m64

RM V/V MMX Add packed doubleword 
integers from mm/m64 and 
mm.

66 0F FE /r

PADDD xmm1, xmm2/m128

RM V/V SSE2 Add packed doubleword 
integers from xmm2/m128 
and xmm1.

VEX.NDS.128.66.0F.WIG FC /r

VPADDB xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Add packed byte integers 
from xmm3/m128 and 
xmm2.

VEX.NDS.128.66.0F.WIG FD /r

VPADDW xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Add packed word integers 
from xmm3/m128 and 
xmm2.

VEX.NDS.128.66.0F.WIG FE /r

VPADDD xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Add packed doubleword 
integers from xmm3/m128 
and xmm2.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception 
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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Description

Performs a SIMD add of the packed integers from the source operand (second 
operand) and the destination operand (first operand), and stores the packed integer 
results in the destination operand. See Figure 9-4 in the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 1, for an illustration of a SIMD opera-
tion. Overflow is handled with wraparound, as described in the following paragraphs.

These instructions can operate on either 64-bit or 128-bit operands. When operating 
on 64-bit operands, the destination operand must be an MMX technology register 
and the source operand can be either an MMX technology register or a 64-bit 
memory location. When operating on 128-bit operands, the destination operand 
must be an XMM register and the source operand can be either an XMM register or a 
128-bit memory location.
Adds the packed byte, word, doubleword, or quadword integers in the first source 
operand to the second source operand and stores the result in the destination 
operand. When a result is too large to be represented in the 8/16/32 integer (over-
flow), the result is wrapped around and the low bits are written to the destination 
element (that is, the carry is ignored).

Note that these instructions can operate on either unsigned or signed (two’s comple-
ment notation) integers; however, it does not set bits in the EFLAGS register to indi-
cate overflow and/or a carry. To prevent undetected overflow conditions, software 
must control the ranges of the values operated on. 

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PADDB (with 64-bit operands)
DEST[7:0] ← DEST[7:0] + SRC[7:0]; 
(* Repeat add operation for 2nd through 7th byte *)
DEST[63:56] ← DEST[63:56] + SRC[63:56];

PADDB (with 128-bit operands)
DEST[7:0] ← DEST[7:0] + SRC[7:0]; 
(* Repeat add operation for 2nd through 14th byte *)
DEST[127:120] ← DEST[111:120] + SRC[127:120];

PADDW (with 64-bit operands)
DEST[15:0] ← DEST[15:0] + SRC[15:0];
(* Repeat add operation for 2nd and 3th word *)
DEST[63:48] ← DEST[63:48] + SRC[63:48];
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PADDW (with 128-bit operands)
DEST[15:0]  ← DEST[15:0] + SRC[15:0];
(* Repeat add operation for 2nd through 7th word *)
DEST[127:112] ← DEST[127:112] + SRC[127:112];

PADDD (with 64-bit operands)
DEST[31:0] ← DEST[31:0] + SRC[31:0];
DEST[63:32] ← DEST[63:32] + SRC[63:32];

PADDD (with 128-bit operands)
DEST[31:0] ← DEST[31:0]  + SRC[31:0];
(* Repeat add operation for 2nd and 3th doubleword *)
DEST[127:96] ← DEST[127:96] + SRC[127:96];

VPADDB (VEX.128 encoded version)
DEST[7:0]  SRC1[7:0]+SRC2[7:0]
DEST[15:8]  SRC1[15:8]+SRC2[15:8]
DEST[23:16]  SRC1[23:16]+SRC2[23:16]
DEST[31:24]  SRC1[31:24]+SRC2[31:24]
DEST[39:32]  SRC1[39:32]+SRC2[39:32]
DEST[47:40]  SRC1[47:40]+SRC2[47:40]
DEST[55:48]  SRC1[55:48]+SRC2[55:48]
DEST[63:56]  SRC1[63:56]+SRC2[63:56]
DEST[71:64]  SRC1[71:64]+SRC2[71:64]
DEST[79:72]  SRC1[79:72]+SRC2[79:72]
DEST[87:80]  SRC1[87:80]+SRC2[87:80]
DEST[95:88]  SRC1[95:88]+SRC2[95:88]
DEST[103:96]  SRC1[103:96]+SRC2[103:96]
DEST[111:104]  SRC1[111:104]+SRC2[111:104]
DEST[119:112]  SRC1[119:112]+SRC2[119:112]
DEST[127:120]  SRC1[127:120]+SRC2[127:120]
DEST[VLMAX-1:128]  0

VPADDW (VEX.128 encoded version)
DEST[15:0]  SRC1[15:0]+SRC2[15:0]
DEST[31:16]  SRC1[31:16]+SRC2[31:16]
DEST[47:32]  SRC1[47:32]+SRC2[47:32]
DEST[63:48]  SRC1[63:48]+SRC2[63:48]
DEST[79:64]  SRC1[79:64]+SRC2[79:64]
DEST[95:80]  SRC1[95:80]+SRC2[95:80]
DEST[111:96]  SRC1[111:96]+SRC2[111:96]
DEST[127:112]  SRC1[127:112]+SRC2[127:112]
DEST[VLMAX-1:128]  0
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VPADDD (VEX.128 encoded version)
DEST[31:0]  SRC1[31:0]+SRC2[31:0]
DEST[63:32]  SRC1[63:32]+SRC2[63:32]
DEST[95:64]  SRC1[95:64]+SRC2[95:64]
DEST[127:96]  SRC1[127:96]+SRC2[127:96]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalents

PADDB:  __m64 _mm_add_pi8(__m64 m1, __m64 m2)

PADDB:  __m128i _mm_add_epi8 (__m128ia,__m128ib )

PADDW:  __m64 _mm_add_pi16(__m64 m1, __m64 m2)

PADDW:  __m128i _mm_add_epi16 ( __m128i a, __m128i b)

PADDD:  __m64 _mm_add_pi32(__m64 m1, __m64 m2)

PADDD:  __m128i _mm_add_epi32 ( __m128i a, __m128i b)

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PADDQ—Add Packed Quadword Integers

Instruction Operand Encoding

Description

Adds the first operand (destination operand) to the second operand (source operand) 
and stores the result in the destination operand. The source operand can be a quad-
word integer stored in an MMX technology register or a 64-bit memory location, or it 
can be two packed quadword integers stored in an XMM register or an 128-bit 
memory location. The destination operand can be a quadword integer stored in an 
MMX technology register or two packed quadword integers stored in an XMM register. 
When packed quadword operands are used, a SIMD add is performed. When a quad-
word result is too large to be represented in 64 bits (overflow), the result is wrapped 
around and the low 64 bits are written to the destination element (that is, the carry 
is ignored).

Note that the PADDQ instruction can operate on either unsigned or signed (two’s 
complement notation) integers; however, it does not set bits in the EFLAGS register 
to indicate overflow and/or a carry. To prevent undetected overflow conditions, soft-
ware must control the ranges of the values operated on.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F D4 /r1

PADDQ mm1, mm2/m64

RM V/V SSE2 Add quadword integer 
mm2/m64 to mm1.

66 0F D4 /r

PADDQ xmm1, xmm2/m128

RM V/V SSE2 Add packed quadword 
integers xmm2/m128 to 
xmm1.

VEX.NDS.128.66.0F.WIG D4 /r

VPADDQ xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Add packed quadword 
integers xmm3/m128 and 
xmm2.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception 
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PADDQ (with 64-Bit operands)
DEST[63:0] ← DEST[63:0] + SRC[63:0];

PADDQ (with 128-Bit operands)
DEST[63:0] ← DEST[63:0] + SRC[63:0];
DEST[127:64] ← DEST[127:64] + SRC[127:64];

VPADDQ (VEX.128 encoded version)
DEST[63:0]  SRC1[63:0]+SRC2[63:0]
DEST[127:64]  SRC1[127:64]+SRC2[127:64]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalents

PADDQ:  __m64 _mm_add_si64 (__m64 a, __m64 b)

PADDQ:  __m128i _mm_add_epi64 ( __m128i a, __m128i b)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PADDSB/PADDSW—Add Packed Signed Integers with Signed 
Saturation
Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F EC /r1

PADDSB mm, mm/m64

RM V/V MMX Add packed signed byte 
integers from mm/m64 and 
mm and saturate the 
results.

66 0F EC /r

PADDSB xmm1, xmm2/m128

RM V/V SSE2 Add packed signed byte 
integers from xmm2/m128 
and xmm1 saturate the 
results.

0F ED /r1

PADDSW mm, mm/m64

RM V/V MMX Add packed signed word 
integers from mm/m64 and 
mm and saturate the 
results.

66 0F ED /r

PADDSW xmm1, xmm2/m128

RM V/V SSE2 Add packed signed word 
integers from xmm2/m128 
and xmm1 and saturate the 
results.

VEX.NDS.128.66.0F.WIG EC /r
VPADDSB xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Add packed signed byte 
integers from xmm3/m128 
and xmm2 saturate the 
results.

VEX.NDS.128.66.0F.WIG ED /r

VPADDSW xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Add packed signed word 
integers from xmm3/m128 
and xmm2 and saturate the 
results.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception 
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A.
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Instruction Operand Encoding

Description

Performs a SIMD add of the packed signed integers from the source operand (second 
operand) and the destination operand (first operand), and stores the packed integer 
results in the destination operand. See Figure 9-4 in the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 1, for an illustration of a SIMD opera-
tion. Overflow is handled with signed saturation, as described in the following 
paragraphs.

These instructions can operate on either 64-bit or 128-bit operands. When operating 
on 64-bit operands, the destination operand must be an MMX technology register 
and the source operand can be either an MMX technology register or a 64-bit 
memory location. When operating on 128-bit operands, the destination operand 
must be an XMM register and the source operand can be either an XMM register or a 
128-bit memory location.

The PADDSB instruction adds packed signed byte integers. When an individual byte 
result is beyond the range of a signed byte integer (that is, greater than 7FH or less 
than 80H), the saturated value of 7FH or 80H, respectively, is written to the destina-
tion operand.

The PADDSW instruction adds packed signed word integers. When an individual word 
result is beyond the range of a signed word integer (that is, greater than 7FFFH or 
less than 8000H), the saturated value of 7FFFH or 8000H, respectively, is written to 
the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PADDSB (with 64-bit operands)
DEST[7:0] ← SaturateToSignedByte(DEST[7:0] + SRC (7:0]);
(* Repeat add operation for 2nd through 7th bytes *)
DEST[63:56] ← SaturateToSignedByte(DEST[63:56] + SRC[63:56] );

PADDSB (with 128-bit operands)
DEST[7:0] ←SaturateToSignedByte (DEST[7:0] + SRC[7:0]);

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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(* Repeat add operation for 2nd through 14th bytes *)
DEST[127:120] ← SaturateToSignedByte (DEST[111:120] + SRC[127:120]);

VPADDSB 
DEST[7:0]  SaturateToSignedByte (SRC1[7:0] + SRC2[7:0]);
(* Repeat subtract operation for 2nd through 14th bytes *)
DEST[127:120]  SaturateToSignedByte (SRC1[111:120] + SRC2[127:120]);
DEST[VLMAX-1:128]  0

PADDSW (with 64-bit operands)
DEST[15:0] ← SaturateToSignedWord(DEST[15:0] + SRC[15:0] );
(* Repeat add operation for 2nd and 7th words *)
DEST[63:48] ← SaturateToSignedWord(DEST[63:48] + SRC[63:48] );

PADDSW (with 128-bit operands)
DEST[15:0]  ← SaturateToSignedWord (DEST[15:0] + SRC[15:0]);
(* Repeat add operation for 2nd through 7th words *)
DEST[127:112] ← SaturateToSignedWord (DEST[127:112] + SRC[127:112]);

VPADDSW
DEST[15:0]  SaturateToSignedWord (SRC1[15:0] + SRC2[15:0]);
(* Repeat subtract operation for 2nd through 7th words *)
DEST[127:112]  SaturateToSignedWord (SRC1[127:112] + SRC2[127:112]);
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalents

PADDSB:  __m64 _mm_adds_pi8(__m64 m1, __m64 m2)

PADDSB:  __m128i _mm_adds_epi8 ( __m128i a, __m128i b)

PADDSW:  __m64 _mm_adds_pi16(__m64 m1, __m64 m2)

PADDSW:  __m128i _mm_adds_epi16 ( __m128i a, __m128i b)

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PADDUSB/PADDUSW—Add Packed Unsigned Integers with Unsigned 
Saturation

Instruction Operand Encoding

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F DC /r1

PADDUSB mm, mm/m64

RM V/V MMX Add packed unsigned byte 
integers from mm/m64 and 
mm and saturate the 
results.

66 0F DC /r

PADDUSB xmm1, xmm2/m128

RM V/V SSE2 Add packed unsigned byte 
integers from xmm2/m128 
and xmm1 saturate the 
results.

0F DD /r1

PADDUSW mm, mm/m64

RM V/V MMX Add packed unsigned word 
integers from mm/m64 and 
mm and saturate the 
results.

66 0F DD /r

PADDUSW xmm1, xmm2/m128

RM V/V SSE2 Add packed unsigned word 
integers from xmm2/m128 
to xmm1 and saturate the 
results.

VEX.NDS.128.660F.WIG DC /r

VPADDUSB xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Add packed unsigned byte 
integers from xmm3/m128 
to xmm2 and saturate the 
results.

VEX.NDS.128.66.0F.WIG DD /r

VPADDUSW xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Add packed unsigned word 
integers from xmm3/m128 
to xmm2 and saturate the 
results.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception 
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-203PADDUSB/PADDUSW—Add Packed Unsigned Integers with Unsigned Saturation



INSTRUCTION SET REFERENCE, M-Z
Description

Performs a SIMD add of the packed unsigned integers from the source operand 
(second operand) and the destination operand (first operand), and stores the packed 
integer results in the destination operand. See Figure 9-4 in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 1, for an illustration of a SIMD 
operation. Overflow is handled with unsigned saturation, as described in the 
following paragraphs.

These instructions can operate on either 64-bit or 128-bit operands. When operating 
on 64-bit operands, the destination operand must be an MMX technology register 
and the source operand can be either an MMX technology register or a 64-bit 
memory location. When operating on 128-bit operands, the destination operand 
must be an XMM register and the source operand can be either an XMM register or a 
128-bit memory location.

The PADDUSB instruction adds packed unsigned byte integers. When an individual 
byte result is beyond the range of an unsigned byte integer (that is, greater than 
FFH), the saturated value of FFH is written to the destination operand.

The PADDUSW instruction adds packed unsigned word integers. When an individual 
word result is beyond the range of an unsigned word integer (that is, greater than 
FFFFH), the saturated value of FFFFH is written to the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PADDUSB (with 64-bit operands)
DEST[7:0] ← SaturateToUnsignedByte(DEST[7:0] + SRC (7:0] );
(* Repeat add operation for 2nd through 7th bytes *)
DEST[63:56] ← SaturateToUnsignedByte(DEST[63:56] + SRC[63:56] 

PADDUSB (with 128-bit operands)
DEST[7:0] ← SaturateToUnsignedByte (DEST[7:0] + SRC[7:0]);
(* Repeat add operation for 2nd through 14th bytes *)
DEST[127:120] ← SaturateToUnSignedByte (DEST[127:120] + SRC[127:120]);

VPADDUSB 
DEST[7:0]  SaturateToUnsignedByte (SRC1[7:0] + SRC2[7:0]);
(* Repeat subtract operation for 2nd through 14th bytes *)
DEST[127:120]  SaturateToUnsignedByte (SRC1[111:120] + SRC2[127:120]);
DEST[VLMAX-1:128]  0
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PADDUSW (with 64-bit operands)
DEST[15:0] ← SaturateToUnsignedWord(DEST[15:0] + SRC[15:0] );
(* Repeat add operation for 2nd and 3rd words *)
DEST[63:48] ← SaturateToUnsignedWord(DEST[63:48] + SRC[63:48] );

PADDUSW (with 128-bit operands)
DEST[15:0] ← SaturateToUnsignedWord (DEST[15:0] + SRC[15:0]);
(* Repeat add operation for 2nd through 7th words *)
DEST[127:112] ← SaturateToUnSignedWord (DEST[127:112] + SRC[127:112]);

VPADDUSW
DEST[15:0]  SaturateToUnsignedWord (SRC1[15:0] + SRC2[15:0]);
(* Repeat subtract operation for 2nd through 7th words *)
DEST[127:112]  SaturateToUnsignedWord (SRC1[127:112] + SRC2[127:112]);
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalents

PADDUSB: __m64 _mm_adds_pu8(__m64 m1, __m64 m2)

PADDUSW:  __m64 _mm_adds_pu16(__m64 m1, __m64 m2)

PADDUSB: __m128i _mm_adds_epu8 ( __m128i a, __m128i b)

PADDUSW:  __m128i _mm_adds_epu16 ( __m128i a, __m128i b)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PALIGNR — Packed Align Right 

Instruction Operand Encoding

Description 

PALIGNR concatenates the destination operand (the first operand) and the source 
operand (the second operand) into an intermediate composite, shifts the composite 
at byte granularity to the right by a constant immediate, and extracts the right-
aligned result into the destination. The first and the second operands can be an MMX 
or an XMM register. The immediate value is considered unsigned. Immediate shift 
counts larger than the 2L (i.e. 32 for 128-bit operands, or 16 for 64-bit operands) 
produce a zero result. Both operands can be MMX register or XMM registers. When 
the source operand is a 128-bit memory operand, the operand must be aligned on a 
16-byte boundary or a general-protection exception (#GP) will be generated. 

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F 3A 0F1

PALIGNR mm1, mm2/m64, imm8

RMI V/V SSSE3 Concatenate destination and 
source operands, extract 
byte-aligned result shifted 
to the right by constant 
value in imm8 into mm1. 

66 0F 3A 0F

PALIGNR xmm1, xmm2/m128, imm8

RMI V/V SSSE3 Concatenate destination and 
source operands, extract 
byte-aligned result shifted 
to the right by constant 
value in imm8 into xmm1

VEX.NDS.128.66.0F3A.WIG 0F /r ib

VPALIGNR xmm1, xmm2, 
xmm3/m128, imm8

RVMI V/V AVX Concatenate xmm2 and 
xmm3/m128, extract byte 
aligned result shifted to the 
right by constant value in 
imm8 and result is stored in 
xmm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception Conditions 
of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) imm8 NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
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In 64-bit mode, use the REX prefix to access additional registers.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PALIGNR (with 64-bit operands)
temp1[127:0] = CONCATENATE(DEST,SRC)>>(imm8*8) 
DEST[63:0] = temp1[63:0] 

PALIGNR (with 128-bit operands)
temp1[255:0] = CONCATENATE(DEST,SRC)>>(imm8*8) 
DEST[127:0] = temp1[127:0] 

VPALIGNR
temp1[255:0]  CONCATENATE(SRC1,SRC2)>>(imm8*8)
DEST[127:0]  temp1[127:0]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalents

PALIGNR:  __m64 _mm_alignr_pi8 (__m64 a, __m64 b, int n)

PALIGNR:  __m128i _mm_alignr_epi8 (__m128i a, __m128i b, int n)

SIMD Floating-Point Exceptions 
None. 

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PAND—Logical AND

Instruction Operand Encoding

Description

Performs a bitwise logical AND operation on the source operand (second operand) 
and the destination operand (first operand) and stores the result in the destination 
operand. The source operand can be an MMX technology register or a 64-bit memory 
location or it can be an XMM register or a 128-bit memory location. The destination 
operand can be an MMX technology register or an XMM register. Each bit of the result 
is set to 1 if the corresponding bits of the first and second operands are 1; otherwise, 
it is set to 0.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PAND (128-bit Legacy SSE version)

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F DB /r1

PAND mm, mm/m64

RM V/V MMX Bitwise AND mm/m64 and 
mm.

66 0F DB /r

PAND xmm1, xmm2/m128

RM V/V SSE2 Bitwise AND of 
xmm2/m128 and xmm1.

VEX.NDS.128.66.0F.WIG DB /r

VPAND xmm1, xmm2, xmm3/m128

RVM V/V AVX Bitwise AND of 
xmm3/m128 and xmm.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception 
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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DEST  DEST AND SRC
DEST[VLMAX-1:1288] (Unmodified)

VPAND (VEX.128 encoded version)
DEST  SRC1 AND SRC2
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PAND:  __m64 _mm_and_si64 (__m64 m1, __m64 m2)

PAND:  __m128i _mm_and_si128 ( __m128i a, __m128i b)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PANDN—Logical AND NOT

Instruction Operand Encoding

Description

Performs a bitwise logical NOT of the destination operand (first operand), then 
performs a bitwise logical AND of the source operand (second operand) and the 
inverted destination operand. The result is stored in the destination operand. The 
source operand can be an MMX technology register or a 64-bit memory location or it 
can be an XMM register or a 128-bit memory location. The destination operand can 
be an MMX technology register or an XMM register. Each bit of the result is set to 1 if 
the corresponding bit in the first operand is 0 and the corresponding bit in the second 
operand is 1; otherwise, it is set to 0.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:1288) of the destination YMM register are 
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F DF /r1

PANDN mm, mm/m64

RM V/V MMX Bitwise AND NOT of 
mm/m64 and mm.

66 0F DF /r

PANDN xmm1, xmm2/m128

RM V/V SSE2 Bitwise AND NOT of 
xmm2/m128 and xmm1.

VEX.NDS.128.66.0F.WIG DF /r

VPANDN xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Bitwise AND NOT of 
xmm3/m128 and xmm2.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception 
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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Operation

PANDN(128-bit Legacy SSE version)
DEST  NOT(DEST) AND SRC
DEST[VLMAX-1:128] (Unmodified)

VPANDN (VEX.128 encoded version)
DEST  NOT(SRC1) AND SRC2
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PANDN:  __m64 _mm_andnot_si64 (__m64 m1, __m64 m2)

PANDN:  _m128i _mm_andnot_si128 ( __m128i a, __m128i b)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PAUSE—Spin Loop Hint

Instruction Operand Encoding

Description

Improves the performance of spin-wait loops. When executing a “spin-wait loop,” 
processors will suffer a severe performance penalty when exiting the loop because it 
detects a possible memory order violation. The PAUSE instruction provides a hint to 
the processor that the code sequence is a spin-wait loop. The processor uses this hint 
to avoid the memory order violation in most situations, which greatly improves 
processor performance. For this reason, it is recommended that a PAUSE instruction 
be placed in all spin-wait loops.

An additional function of the PAUSE instruction is to reduce the power consumed by 
a processor while executing a spin loop. A processor can execute a spin-wait loop 
extremely quickly, causing the processor to consume a lot of power while it waits for 
the resource it is spinning on to become available. Inserting a pause instruction in a 
spin-wait loop greatly reduces the processor’s power consumption.

This instruction was introduced in the Pentium 4 processors, but is backward compat-
ible with all IA-32 processors. In earlier IA-32 processors, the PAUSE instruction 
operates like a NOP instruction. The Pentium 4 and Intel Xeon processors implement 
the PAUSE instruction as a delay. The delay is finite and can be zero for some proces-
sors. This instruction does not change the architectural state of the processor (that 
is, it performs essentially a delaying no-op operation).

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

Execute_Next_Instruction(DELAY);

Numeric Exceptions

None.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

F3 90 PAUSE NP Valid Valid Gives hint to processor that 
improves performance of 
spin-wait loops.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.
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PAVGB/PAVGW—Average Packed Integers

Instruction Operand Encoding

Description

Performs a SIMD average of the packed unsigned integers from the source operand 

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F E0 /r1

PAVGB mm1, mm2/m64

RM V/V SSE Average packed unsigned 
byte integers from 
mm2/m64 and mm1 with 
rounding.

66 0F E0, /r

PAVGB xmm1, xmm2/m128

RM V/V SSE2 Average packed unsigned 
byte integers from 
xmm2/m128 and xmm1 
with rounding.

0F E3 /r1

PAVGW mm1, mm2/m64

RM V/V SSE Average packed unsigned 
word integers from 
mm2/m64 and mm1 with 
rounding.

66 0F E3 /r

PAVGW xmm1, xmm2/m128

RM V/V SSE2 Average packed unsigned 
word integers from 
xmm2/m128 and xmm1 
with rounding.

VEX.NDS.128.66.0F.WIG E0 /r

VPAVGB xmm1, xmm2, xmm3/m128

RVM V/V AVX Average packed unsigned 
byte integers from 
xmm3/m128 and xmm2 
with rounding.

VEX.NDS.128.66.0F.WIG E3 /r

VPAVGW xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Average packed unsigned 
word integers from 
xmm3/m128 and xmm2 
with rounding.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception 
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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(second operand) and the destination operand (first operand), and stores the results 
in the destination operand. For each corresponding pair of data elements in the first 
and second operands, the elements are added together, a 1 is added to the tempo-
rary sum, and that result is shifted right one bit position. The source operand can be 
an MMX technology register or a 64-bit memory location or it can be an XMM register 
or a 128-bit memory location. The destination operand can be an MMX technology 
register or an XMM register.

The PAVGB instruction operates on packed unsigned bytes and the PAVGW instruc-
tion operates on packed unsigned words.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PAVGB (with 64-bit operands)
DEST[7:0] ← (SRC[7:0] + DEST[7:0] + 1) >> 1; (* Temp sum before shifting is 9 bits *)
(* Repeat operation performed for bytes 2 through 6 *)
DEST[63:56] ← (SRC[63:56] + DEST[63:56] + 1) >> 1;

PAVGW (with 64-bit operands)
DEST[15:0] ← (SRC[15:0] + DEST[15:0] + 1) >> 1; (* Temp sum before shifting is 17 bits *)
(* Repeat operation performed for words 2 and 3 *)
DEST[63:48] ← (SRC[63:48] + DEST[63:48] + 1) >> 1;

PAVGB (with 128-bit operands)
DEST[7:0] ← (SRC[7:0] + DEST[7:0] + 1) >> 1; (* Temp sum before shifting is 9 bits *)
(* Repeat operation performed for bytes 2 through 14 *)
DEST[127:120] ← (SRC[127:120] + DEST[127:120] + 1) >> 1;

PAVGW (with 128-bit operands)
DEST[15:0] ← (SRC[15:0] + DEST[15:0] + 1) >> 1; (* Temp sum before shifting is 17 bits *)
(* Repeat operation performed for words 2 through 6 *)
DEST[127:112] ← (SRC[127:112] + DEST[127:112] + 1) >> 1;

VPAVGB (VEX.128 encoded version)
DEST[7:0]  (SRC1[7:0] + SRC2[7:0] + 1) >> 1; 
(* Repeat operation performed for bytes 2 through 15 *)
DEST[127:120]  (SRC1[127:120] + SRC2[127:120] + 1) >> 1
DEST[VLMAX-1:128]  0
Vol. 2B 4-215PAVGB/PAVGW—Average Packed Integers



INSTRUCTION SET REFERENCE, M-Z
VPAVGW (VEX.128 encoded version)
DEST[15:0]  (SRC1[15:0] + SRC2[15:0] + 1) >> 1; 
(* Repeat operation performed for 16-bit words 2 through 7 *)
DEST[127:112]  (SRC1[127:112] + SRC2[127:112] + 1) >> 1
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PAVGB:  __m64 _mm_avg_pu8 (__m64 a, __m64 b)

PAVGW:  __m64 _mm_avg_pu16 (__m64 a, __m64 b)

PAVGB:  __m128i _mm_avg_epu8 ( __m128i a, __m128i b)

PAVGW:  __m128i _mm_avg_epu16 ( __m128i a, __m128i b)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PBLENDVB — Variable Blend Packed Bytes

Instruction Operand Encoding

Description

Conditionally copies byte elements from the source operand (second operand) to the 
destination operand (first operand) depending on mask bits defined in the implicit 
third register argument, XMM0. The mask bits are the most significant bit in each 
byte element of the XMM0 register.
If a mask bit is “1", then the corresponding byte element in the source operand is 
copied to the destination, else the byte element in the destination operand is left 
unchanged.
The register assignment of the implicit third operand is defined to be the architectural 
register XMM0.
128-bit Legacy SSE version: The first source operand and the destination operand is 
the same. Bits (VLMAX-1:128) of the corresponding YMM destination register remain 
unchanged. The mask register operand is implicitly defined to be the architectural 
register XMM0. An attempt to execute PBLENDVB with a VEX prefix will cause #UD.
VEX.128 encoded version: The first source operand and the destination operand are 
XMM registers. The second source operand is an XMM register or 128-bit memory 
location. The mask operand is the third source register, and encoded in bits[7:4] of 
the immediate byte(imm8). The bits[3:0] of imm8 are ignored. In 32-bit mode, 
imm8[7] is ignored. The upper bits (VLMAX-1:128) of the corresponding YMM 

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 38 10 /r
PBLENDVB xmm1, xmm2/m128, 
<XMM0>

RM V/V SSE4_1 Select byte values from 
xmm1 and xmm2/m128 
from mask specified in the 
high bit of each byte in 
XMM0 and store the values 
into xmm1.

VEX.NDS.128.66.0F3A.W0 4C /r /is4
VPBLENDVB xmm1, xmm2, 
xmm3/m128, xmm4

RVMR V/V AVX Select byte values from 
xmm2 and xmm3/m128 
using mask bits in the 
specified mask register, 
xmm4, and store the 
values into xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) <XMM0> NA

RVMR ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) ModRM:reg (r)
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register (destination register) are zeroed. VEX.L must be 0, otherwise the instruction 
will #UD. VEX.W must be 0, otherwise, the instruction will #UD.
VPBLENDVB permits the mask to be any XMM or YMM register. In contrast, 
PBLENDVB treats XMM0 implicitly as the mask and do not support non-destructive 
destination operation. An attempt to execute PBLENDVB encoded with a VEX prefix 
will cause a #UD exception.

Operation

PBLENDVB (128-bit Legacy SSE version)
MASK  XMM0
IF (MASK[7] = 1) THEN DEST[7:0]  SRC[7:0];
ELSE DEST[7:0]  DEST[7:0];
IF (MASK[15] = 1) THEN DEST[15:8]  SRC[15:8];
ELSE DEST[15:8]  DEST[15:8];
IF (MASK[23] = 1) THEN DEST[23:16]  SRC[23:16]
ELSE DEST[23:16]  DEST[23:16];
IF (MASK[31] = 1) THEN DEST[31:24]  SRC[31:24]
ELSE DEST[31:24]  DEST[31:24];
IF (MASK[39] = 1) THEN DEST[39:32]  SRC[39:32]
ELSE DEST[39:32]  DEST[39:32];
IF (MASK[47] = 1) THEN DEST[47:40]  SRC[47:40]
ELSE DEST[47:40]  DEST[47:40];
IF (MASK[55] = 1) THEN DEST[55:48]  SRC[55:48]
ELSE DEST[55:48]  DEST[55:48];
IF (MASK[63] = 1) THEN DEST[63:56]  SRC[63:56]
ELSE DEST[63:56]  DEST[63:56];
IF (MASK[71] = 1) THEN DEST[71:64]  SRC[71:64]
ELSE DEST[71:64]  DEST[71:64];
IF (MASK[79] = 1) THEN DEST[79:72]  SRC[79:72]
ELSE DEST[79:72]  DEST[79:72];
IF (MASK[87] = 1) THEN DEST[87:80]  SRC[87:80]
ELSE DEST[87:80]  DEST[87:80];
IF (MASK[95] = 1) THEN DEST[95:88]  SRC[95:88]
ELSE DEST[95:88] DEST[95:88];
IF (MASK[103] = 1) THEN DEST[103:96]  SRC[103:96]
ELSE DEST[103:96] DEST[103:96];
IF (MASK[111] = 1) THEN DEST[111:104]  SRC[111:104]
ELSE DEST[111:104]  DEST[111:104];
IF (MASK[119] = 1) THEN DEST[119:112]  SRC[119:112]
ELSE DEST[119:112]  DEST[119:112];
IF (MASK[127] = 1) THEN DEST[127:120]  SRC[127:120]
ELSE DEST[127:120]  DEST[127:120])
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DEST[VLMAX-1:128] (Unmodified)

VPBLENDVB (VEX.128 encoded version)
MASK  SRC3
IF (MASK[7] = 1) THEN DEST[7:0]  SRC2[7:0];
ELSE DEST[7:0]  SRC1[7:0];
IF (MASK[15] = 1) THEN DEST[15:8]  SRC2[15:8];
ELSE DEST[15:8]  SRC1[15:8];
IF (MASK[23] = 1) THEN DEST[23:16]  SRC2[23:16]
ELSE DEST[23:16]  SRC1[23:16];
IF (MASK[31] = 1) THEN DEST[31:24]  SRC2[31:24]
ELSE DEST[31:24]  SRC1[31:24];
IF (MASK[39] = 1) THEN DEST[39:32]  SRC2[39:32]
ELSE DEST[39:32]  SRC1[39:32];
IF (MASK[47] = 1) THEN DEST[47:40]  SRC2[47:40]
ELSE DEST[47:40]  SRC1[47:40];
IF (MASK[55] = 1) THEN DEST[55:48]  SRC2[55:48]
ELSE DEST[55:48]  SRC1[55:48];
IF (MASK[63] = 1) THEN DEST[63:56]  SRC2[63:56]
ELSE DEST[63:56]  SRC1[63:56];
IF (MASK[71] = 1) THEN DEST[71:64]  SRC2[71:64]
ELSE DEST[71:64]  SRC1[71:64];
IF (MASK[79] = 1) THEN DEST[79:72]  SRC2[79:72]
ELSE DEST[79:72]  SRC1[79:72];
IF (MASK[87] = 1) THEN DEST[87:80]  SRC2[87:80]
ELSE DEST[87:80]  SRC1[87:80];
IF (MASK[95] = 1) THEN DEST[95:88]  SRC2[95:88]
ELSE DEST[95:88] SRC1[95:88];
IF (MASK[103] = 1) THEN DEST[103:96]  SRC2[103:96]
ELSE DEST[103:96] SRC1[103:96];
IF (MASK[111] = 1) THEN DEST[111:104]  SRC2[111:104]
ELSE DEST[111:104]  SRC1[111:104];
IF (MASK[119] = 1) THEN DEST[119:112]  SRC2[119:112]
ELSE DEST[119:112]  SRC1[119:112];
IF (MASK[127] = 1) THEN DEST[127:120]  SRC2[127:120]
ELSE DEST[127:120]  SRC1[127:120])
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PBLENDVB: __m128i _mm_blendv_epi8 (__m128i v1, __m128i v2, __m128i mask);
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Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.

If VEX.W = 1.
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PBLENDW — Blend Packed Words

Instruction Operand Encoding

Description

Conditionally copies word elements from the source operand (second operand) to the 
destination operand (first operand) depending on the immediate byte (third 
operand). Each bit of Imm8 correspond to a word element.
If a bit is “1", then the corresponding word element in the source operand is copied 
to the destination, else the word element in the destination operand is left 
unchanged.
128-bit Legacy SSE version: Bits (VLMAX-1:1288) of the corresponding YMM desti-
nation register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PBLENDW (128-bit Legacy SSE version)
IF (imm8[0] = 1) THEN DEST[15:0]  SRC[15:0]
ELSE DEST[15:0]  DEST[15:0]
IF (imm8[1] = 1) THEN DEST[31:16]  SRC[31:16]
ELSE DEST[31:16]  DEST[31:16]
IF (imm8[2] = 1) THEN DEST[47:32]  SRC[47:32]
ELSE DEST[47:32]  DEST[47:32]
IF (imm8[3] = 1) THEN DEST[63:48]  SRC[63:48]

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 3A 0E /r ib
PBLENDW xmm1, xmm2/m128, 
imm8

RMI V/V SSE4_1 Select words from xmm1 
and xmm2/m128 from mask 
specified in imm8 and store 
the values into xmm1.

VEX.NDS.128.6
6.0F3A.WIG 0E 
/r ib

VPBLENDW 
xmm1, xmm2, 
xmm3/m128, 
imm8

RVMI V/V AVX Select words from xmm2 
and xmm3/m128 from mask 
specified in imm8 and store 
the values into xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
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ELSE DEST[63:48]  DEST[63:48]
IF (imm8[4] = 1) THEN DEST[79:64]  SRC[79:64]
ELSE DEST[79:64]  DEST[79:64]
IF (imm8[5] = 1) THEN DEST[95:80]  SRC[95:80]
ELSE DEST[95:80]  DEST[95:80]
IF (imm8[6] = 1) THEN DEST[111:96]  SRC[111:96]
ELSE DEST[111:96]  DEST[111:96]
IF (imm8[7] = 1) THEN DEST[127:112]  SRC[127:112]
ELSE DEST[127:112]  DEST[127:112]

VPBLENDW (VEX.128 encoded version)
IF (imm8[0] = 1) THEN DEST[15:0]  SRC2[15:0]
ELSE DEST[15:0]  SRC1[15:0]
IF (imm8[1] = 1) THEN DEST[31:16]  SRC2[31:16]
ELSE DEST[31:16]  SRC1[31:16]
IF (imm8[2] = 1) THEN DEST[47:32]  SRC2[47:32]
ELSE DEST[47:32]  SRC1[47:32]
IF (imm8[3] = 1) THEN DEST[63:48]  SRC2[63:48]
ELSE DEST[63:48]  SRC1[63:48]
IF (imm8[4] = 1) THEN DEST[79:64]  SRC2[79:64]
ELSE DEST[79:64]  SRC1[79:64]
IF (imm8[5] = 1) THEN DEST[95:80]  SRC2[95:80]
ELSE DEST[95:80]  SRC1[95:80]
IF (imm8[6] = 1) THEN DEST[111:96]  SRC2[111:96]
ELSE DEST[111:96]  SRC1[111:96]
IF (imm8[7] = 1) THEN DEST[127:112]  SRC2[127:112]
ELSE DEST[127:112]  SRC1[127:112]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PBLENDW:  __m128i _mm_blend_epi16 (__m128i v1, __m128i v2, const int mask);

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PCLMULQDQ - Carry-Less Multiplication Quadword

Instruction Operand Encoding

Description

Performs a carry-less multiplication of two quadwords, selected from the first source 
and second source operand according to the value of the immediate byte. Bits 4 and 
0 are used to select which 64-bit half of each operand to use according to Table 4-13, 
other bits of the immediate byte are ignored. 

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 3A 44 /r ib
PCLMULQDQ xmm1, xmm2/m128, 
imm8

RMI V/V CLMUL Carry-less multiplication of 
one quadword of xmm1 by 
one quadword of 
xmm2/m128, stores the 
128-bit result in xmm1. The 
immediate is used to deter-
mine which quadwords of 
xmm1 and xmm2/m128 
should be used.

VEX.NDS.128.66.0F3A.WIG 44 /r ib
VPCLMULQDQ xmm1, xmm2, 
xmm3/m128, imm8

RVMI V/V Both 
CLMUL 
and AVX 
flags

Carry-less multiplication of 
one quadword of xmm2 by 
one quadword of 
xmm3/m128, stores the 
128-bit result in xmm1. The 
immediate is used to deter-
mine which quadwords of 
xmm2 and xmm3/m128 
should be used.

Op/En Operand 1 Operand2 Operand3 Operand4

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8

Table 4-13.  PCLMULQDQ Quadword Selection of Immediate Byte

Imm[4] Imm[0] PCLMULQDQ Operation

0 0 CL_MUL( SRC21[63:0], SRC1[63:0] )

0 1 CL_MUL( SRC2[63:0], SRC1[127:64] )

1 0 CL_MUL( SRC2[127:64], SRC1[63:0] )

1 1 CL_MUL( SRC2[127:64], SRC1[127:64] )
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 The first source operand and the destination operand are the same and must be an 
XMM register. The second source operand can be an XMM register or a 128-bit 
memory location. Bits (VLMAX-1:128) of the corresponding YMM destination register 
remain unchanged.

Compilers and assemblers may implement the following pseudo-op syntax to simply 
programming and emit the required encoding for Imm8.

Operation

PCLMULQDQ
IF (Imm8[0] = 0 ) 

THEN
TEMP1  SRC1 [63:0];

ELSE
TEMP1  SRC1 [127:64];

FI
IF (Imm8[4] = 0 ) 

THEN
TEMP2  SRC2 [63:0];

ELSE
TEMP2  SRC2 [127:64];

FI
For i = 0 to 63 {

TmpB [ i ]  (TEMP1[ 0 ] and TEMP2[ i ]);
For j = 1 to i {

TmpB [ i ]  TmpB [ i ] xor (TEMP1[ j ] and TEMP2[ i - j ])
}
DEST[ i ]  TmpB[ i ];

}
For i = 64 to 126 {

NOTES:
1. SRC2 denotes the second source operand, which can be a register or memory; SRC1

denotes the first source and destination operand.

Table 4-14.  Pseudo-Op and PCLMULQDQ Implementation

Pseudo-Op Imm8 Encoding

PCLMULLQLQDQ xmm1, xmm2 0000_0000B

PCLMULHQLQDQ xmm1, xmm2 0000_0001B

PCLMULLQHDQ xmm1, xmm2 0001_0000B

PCLMULHQHDQ xmm1, xmm2 0001_0001B
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TmpB [ i ]  0;
For j = i - 63 to 63 {

TmpB [ i ]  TmpB [ i ] xor (TEMP1[ j ] and TEMP2[ i - j ])
}
DEST[ i ]  TmpB[ i ];

}
DEST[127]  0;
DEST[VLMAX-1:128] (Unmodified)

VPCLMULQDQ 
IF (Imm8[0] = 0 ) 

THEN
TEMP1  SRC1 [63:0];

ELSE
TEMP1  SRC1 [127:64];

FI
IF (Imm8[4] = 0 ) 

THEN
TEMP2  SRC2 [63:0];

ELSE
TEMP2  SRC2 [127:64];

FI
For i = 0 to 63 {

TmpB [ i ]  (TEMP1[ 0 ] and TEMP2[ i ]);
For j = 1 to i {

TmpB [i]  TmpB [i] xor (TEMP1[ j ] and TEMP2[ i - j ])
}
DEST[i]  TmpB[i];

}
For i = 64 to 126 {

TmpB [ i ]  0;
For j = i - 63 to 63 {

TmpB [i]  TmpB [i] xor (TEMP1[ j ] and TEMP2[ i - j ])
}
DEST[i]  TmpB[i];

}
DEST[VLMAX-1:127]  0;

Intel C/C++ Compiler Intrinsic Equivalent

(V)PCLMULQDQ:  __m128i  _mm_clmulepi64_si128 (__m128i, __m128i, const int)
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SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4.
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PCMPEQB/PCMPEQW/PCMPEQD— Compare Packed Data for Equal
Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F 74 /r1

PCMPEQB mm, mm/m64

RM V/V MMX Compare packed bytes in 
mm/m64 and mm for 
equality.

66 0F 74 /r

PCMPEQB xmm1, xmm2/m128

RM V/V SSE2 Compare packed bytes in 
xmm2/m128 and xmm1 for 
equality.

0F 75 /r1

PCMPEQW mm, mm/m64

RM V/V MMX Compare packed words in 
mm/m64 and mm for 
equality.

66 0F 75 /r

PCMPEQW xmm1, xmm2/m128

RM V/V SSE2 Compare packed words in 
xmm2/m128 and xmm1 for 
equality.

0F 76 /r1

PCMPEQD mm, mm/m64

RM V/V MMX Compare packed 
doublewords in mm/m64 
and mm for equality.

66 0F 76 /r

PCMPEQD xmm1, xmm2/m128

RM V/V SSE2 Compare packed 
doublewords in 
xmm2/m128 and xmm1 for 
equality.

VEX.NDS.128.66.0F.WIG 74 /r

VPCMPEQB xmm1, xmm2, xmm3 
/m128

RVM V/V AVX Compare packed bytes in 
xmm3/m128 and xmm2 for 
equality.

VEX.NDS.128.66.0F.WIG 75 /r

VPCMPEQW xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Compare packed words in 
xmm3/m128 and xmm2 for 
equality.

VEX.NDS.128.66.0F.WIG 76 /r

VPCMPEQD xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Compare packed 
doublewords in 
xmm3/m128 and xmm2 for 
equality.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception 
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A.
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Instruction Operand Encoding

Description

Performs a SIMD compare for equality of the packed bytes, words, or doublewords in 
the destination operand (first operand) and the source operand (second operand). If 
a pair of data elements is equal, the corresponding data element in the destination 
operand is set to all 1s; otherwise, it is set to all 0s. The source operand can be an 
MMX technology register or a 64-bit memory location, or it can be an XMM register or 
a 128-bit memory location. The destination operand can be an MMX technology 
register or an XMM register. 

The PCMPEQB instruction compares the corresponding bytes in the destination and 
source operands; the PCMPEQW instruction compares the corresponding words in 
the destination and source operands; and the PCMPEQD instruction compares the 
corresponding doublewords in the destination and source operands.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PCMPEQB (with 64-bit operands)
IF DEST[7:0] = SRC[7:0]

THEN DEST[7:0) ← FFH; 
ELSE DEST[7:0] ← 0; FI;

(* Continue comparison of 2nd through 7th bytes in DEST and SRC *)
IF DEST[63:56] = SRC[63:56]

THEN DEST[63:56] ← FFH;
ELSE DEST[63:56] ← 0; FI;

PCMPEQB (with 128-bit operands)
IF DEST[7:0] = SRC[7:0]

THEN DEST[7:0) ← FFH; 
ELSE DEST[7:0] ← 0; FI;

(* Continue comparison of 2nd through 15th bytes in DEST and SRC *)
IF DEST[127:120] = SRC[127:120]

THEN DEST[127:120] ← FFH;

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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ELSE DEST[127:120] ← 0; FI;

PCMPEQW (with 64-bit operands)
IF DEST[15:0] = SRC[15:0] 

THEN DEST[15:0] ← FFFFH;
ELSE DEST[15:0] ← 0; FI;

(* Continue comparison of 2nd and 3rd words in DEST and SRC *)
IF DEST[63:48] = SRC[63:48]

THEN DEST[63:48] ← FFFFH;
ELSE DEST[63:48] ← 0; FI;

PCMPEQW (with 128-bit operands)
IF DEST[15:0] = SRC[15:0] 

THEN DEST[15:0] ← FFFFH;
ELSE DEST[15:0] ← 0; FI;

(* Continue comparison of 2nd through 7th words in DEST and SRC *)
IF DEST[127:112] = SRC[127:112]

THEN DEST[127:112] ← FFFFH;
ELSE DEST[127:112] ← 0; FI;

PCMPEQD (with 64-bit operands)
IF DEST[31:0] = SRC[31:0]

THEN DEST[31:0] ← FFFFFFFFH; 
ELSE DEST[31:0] ← 0; FI;

IF DEST[63:32] = SRC[63:32]
THEN DEST[63:32] ← FFFFFFFFH;
ELSE DEST[63:32] ← 0; FI;

PCMPEQD (with 128-bit operands)
IF DEST[31:0] = SRC[31:0]

THEN DEST[31:0] ← FFFFFFFFH; 
ELSE DEST[31:0] ← 0; FI;

(* Continue comparison of 2nd and 3rd doublewords in DEST and SRC *)
IF DEST[127:96] = SRC[127:96]

THEN DEST[127:96] ← FFFFFFFFH;
ELSE DEST[127:96] ← 0; FI;

VPCMPEQB (VEX.128 encoded version)
DEST[127:0] COMPARE_BYTES_EQUAL(SRC1,SRC2)
DEST[VLMAX-1:128]  0

VPCMPEQW (VEX.128 encoded version)
DEST[127:0] COMPARE_WORDS_EQUAL(SRC1,SRC2)
DEST[VLMAX-1:128]  0
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VPCMPEQD (VEX.128 encoded version)
DEST[127:0] COMPARE_DWORDS_EQUAL(SRC1,SRC2)
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalents

PCMPEQB:  __m64 _mm_cmpeq_pi8 (__m64 m1, __m64 m2)

PCMPEQW:  __m64 _mm_cmpeq_pi16 (__m64 m1, __m64 m2)

PCMPEQD:  __m64 _mm_cmpeq_pi32 (__m64 m1, __m64 m2)

PCMPEQB:  __m128i _mm_cmpeq_epi8 ( __m128i a, __m128i b)

PCMPEQW:  __m128i _mm_cmpeq_epi16 ( __m128i a, __m128i b)

PCMPEQD:  __m128i _mm_cmpeq_epi32 ( __m128i a, __m128i b)

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PCMPEQQ — Compare Packed Qword Data for Equal

Instruction Operand Encoding

Description

Performs an SIMD compare for equality of the packed quadwords in the destination 
operand (first operand) and the source operand (second operand).  If a pair of data 
elements is equal, the corresponding data element in the destination is set to all 1s; 
otherwise, it is set to 0s.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

IF (DEST[63:0] = SRC[63:0]) 
THEN DEST[63:0]  FFFFFFFFFFFFFFFFH;
ELSE DEST[63:0]  0; FI;

IF (DEST[127:64] = SRC[127:64]) 
THEN DEST[127:64]  FFFFFFFFFFFFFFFFH;
ELSE DEST[127:64]  0; FI;

VPCMPEQQ (VEX.128 encoded version)
DEST[127:0] COMPARE_QWORDS_EQUAL(SRC1,SRC2)
DEST[VLMAX-1:128]  0

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 38 29 /r
PCMPEQQ xmm1, xmm2/m128

RM V/V SSE4_1 Compare packed qwords in 
xmm2/m128 and xmm1 for 
equality.

VEX.NDS.128.66.0F38.WIG 29 /r
VPCMPEQQ xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Compare packed quadwords 
in xmm3/m128 and xmm2 
for equality.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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Intel C/C++ Compiler Intrinsic Equivalent

PCMPEQQ: __m128i _mm_cmpeq_epi64(__m128i a, __m128i b);

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PCMPESTRI — Packed Compare Explicit Length Strings, Return Index

Instruction Operand Encoding

Description

The instruction compares and processes data from two string fragments based on the 
encoded value in the Imm8 Control Byte (see Section 4.1, “Imm8 Control Byte Oper-
ation for PCMPESTRI / PCMPESTRM / PCMPISTRI / PCMPISTRM”), and generates an 
index stored to the count register (ECX/RCX).

Each string fragment is represented by two values. The first value is an xmm (or 
possibly m128 for the second operand) which contains the data elements of the 
string (byte or word data).  The second value is stored in an input length register. The 
input length register is EAX/RAX (for xmm1) or EDX/RDX (for xmm2/m128). The 
length represents the number of bytes/words which are valid for the respective 
xmm/m128 data. 

The length of each input is interpreted as being the absolute-value of the value in the 
length register. The absolute-value computation saturates to 16 (for bytes) and 8 (for 
words), based on the value of imm8[bit3] when the value in the length register is 
greater than 16 (8) or less than -16 (-8).

The comparison and aggregation operations are performed according to the encoded 
value of Imm8 bit fields (see Section 4.1). The index of the first (or last, according to 
imm8[6]) set bit of IntRes2 (see Section 4.1.4) is returned in ECX. If no bits are set 
in IntRes2, ECX is set to 16 (8).

Note that the Arithmetic Flags are written in a non-standard manner in order to 
supply the most relevant information:

CFlag – Reset if IntRes2 is equal to zero, set otherwise

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 3A 61 /r imm8
PCMPESTRI xmm1, xmm2/m128, 
imm8

RMI V/V SSE4_2 Perform a packed 
comparison of string data 
with explicit lengths, 
generating an index, and 
storing the result in ECX.

VEX.128.66.0F3A.WIG 61 /r ib
VPCMPESTRI xmm1, xmm2/m128, 
imm8

RMI V/V AVX Perform a packed 
comparison of string data 
with explicit lengths, 
generating an index, and 
storing the result in ECX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r) ModRM:r/m (r) imm8 NA
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ZFlag – Set if absolute-value of EDX is < 16 (8), reset otherwise
SFlag – Set if absolute-value of EAX is < 16 (8), reset otherwise
OFlag – IntRes2[0]
AFlag – Reset
PFlag – Reset

Effective Operand Size

Intel C/C++ Compiler Intrinsic Equivalent For Returning Index 

int     _mm_cmpestri (__m128i a, int la, __m128i b, int lb, const int mode);

Intel C/C++ Compiler Intrinsics For Reading EFlag Results

int     _mm_cmpestra (__m128i a, int la, __m128i b, int lb, const int mode);
int     _mm_cmpestrc (__m128i a, int la, __m128i b, int lb, const int mode);
int     _mm_cmpestro (__m128i a, int la, __m128i b, int lb, const int mode);
int     _mm_cmpestrs (__m128i a, int la, __m128i b, int lb, const int mode);
int     _mm_cmpestrz (__m128i a, int la, __m128i b, int lb, const int mode);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.

Operating 
mode/size

Operand 1 Operand 2 Length 1 Length 2 Result

16 bit xmm xmm/m128 EAX EDX ECX

32 bit xmm xmm/m128 EAX EDX ECX

64 bit xmm xmm/m128 EAX EDX ECX

64 bit + REX.W xmm xmm/m128 RAX RDX RCX
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PCMPESTRM — Packed Compare Explicit Length Strings, Return Mask

Instruction Operand Encoding

Description

The instruction compares data from two string fragments based on the encoded 
value in the imm8 contol byte (see Section 4.1, “Imm8 Control Byte Operation for 
PCMPESTRI / PCMPESTRM / PCMPISTRI / PCMPISTRM”), and generates a mask 
stored to XMM0.

Each string fragment is represented by two values. The first value is an xmm (or 
possibly m128 for the second operand) which contains the data elements of the 
string (byte or word data). The second value is stored in an input length register. The 
input length register is EAX/RAX (for xmm1) or EDX/RDX (for xmm2/m128). The 
length represents the number of bytes/words which are valid for the respective 
xmm/m128 data.  

The length of each input is interpreted as being the absolute-value of the value in the 
length register. The absolute-value computation saturates to 16 (for bytes) and 8 (for 
words), based on the value of imm8[bit3] when the value in the length register is 
greater than 16 (8) or less than -16 (-8).

The comparison and aggregation operations are performed according to the encoded 
value of Imm8 bit fields (see Section 4.1). As defined by imm8[6], IntRes2 is then 
either stored to the least significant bits of XMM0 (zero extended to 128 bits) or 
expanded into a byte/word-mask and then stored to XMM0.

Note that the Arithmetic Flags are written in a non-standard manner in order to 
supply the most relevant information:

CFlag – Reset if IntRes2 is equal to zero, set otherwise

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 3A 60 /r imm8
PCMPESTRM xmm1, xmm2/m128, 
imm8

RMI V/V SSE4_2 Perform a packed 
comparison of string data 
with explicit lengths, 
generating a mask, and 
storing the result in XMM0

VEX.128.66.0F3A.WIG 60 /r ib
VPCMPESTRM xmm1, xmm2/m128, 
imm8

RMI V/V AVX Perform a packed 
comparison of string data 
with explicit lengths, 
generating a mask, and 
storing the result in XMM0.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r) ModRM:r/m (r) imm8 NA
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ZFlag – Set if absolute-value of EDX is < 16 (8), reset otherwise
SFlag – Set if absolute-value of EAX is < 16 (8), reset otherwise
OFlag –IntRes2[0]
AFlag – Reset
PFlag – Reset

Note: In VEX.128 encoded versions, bits (VLMAX-1:128) of XMM0 are zeroed. 
VEX.vvvv is reserved and must be 1111b, VEX.L must be 0, otherwise the instruction 
will #UD.

Effective Operand Size

Intel C/C++ Compiler Intrinsic Equivalent For Returning Mask

__m128i _mm_cmpestrm (__m128i a, int la, __m128i b, int lb, const int mode);

Intel C/C++ Compiler Intrinsics For Reading EFlag Results

int     _mm_cmpestra (__m128i a, int la, __m128i b, int lb, const int mode);
int     _mm_cmpestrc (__m128i a, int la, __m128i b, int lb, const int mode);
int     _mm_cmpestro (__m128i a, int la, __m128i b, int lb, const int mode);
int     _mm_cmpestrs (__m128i a, int la, __m128i b, int lb, const int mode);
int     _mm_cmpestrz (__m128i a, int la, __m128i b, int lb, const int mode);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.

Operating 
mode/size

Operand1 Operand 2 Length1 Length2 Result

16 bit xmm xmm/m128 EAX EDX XMM0

32 bit xmm xmm/m128 EAX EDX XMM0

64 bit xmm xmm/m128 EAX EDX XMM0

64 bit + REX.W xmm xmm/m128 RAX RDX XMM0
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PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers for 
Greater Than
Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F 64 /r1

PCMPGTB mm, mm/m64

RM V/V MMX Compare packed signed byte 
integers in mm and 
mm/m64 for greater than.

66 0F 64 /r

PCMPGTB xmm1, xmm2/m128

RM V/V SSE2 Compare packed signed byte 
integers in xmm1 and 
xmm2/m128 for greater 
than.

0F 65 /r1

PCMPGTW mm, mm/m64

RM V/V MMX Compare packed signed 
word integers in mm and 
mm/m64 for greater than.

66 0F 65 /r

PCMPGTW xmm1, xmm2/m128

RM V/V SSE2 Compare packed signed 
word integers in xmm1 and 
xmm2/m128 for greater 
than.

0F 66 /r1

PCMPGTD mm, mm/m64

RM V/V MMX Compare packed signed 
doubleword integers in mm 
and mm/m64 for greater 
than.

66 0F 66 /r

PCMPGTD xmm1, xmm2/m128

RM V/V SSE2 Compare packed signed 
doubleword integers in 
xmm1 and xmm2/m128 for 
greater than.

VEX.NDS.128.66.0F.WIG 64 /r

VPCMPGTB xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Compare packed signed byte 
integers in xmm2 and 
xmm3/m128 for greater 
than.

VEX.NDS.128.66.0F.WIG 65 /r

VPCMPGTW xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Compare packed signed 
word integers in xmm2 and 
xmm3/m128 for greater 
than.
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Instruction Operand Encoding

Description

Performs an SIMD signed compare for the greater value of the packed byte, word, or 
doubleword integers in the destination operand (first operand) and the source 
operand (second operand). If a data element in the destination operand is greater 
than the corresponding date element in the source operand, the corresponding data 
element in the destination operand is set to all 1s; otherwise, it is set to all 0s. The 
source operand can be an MMX technology register or a 64-bit memory location, or it 
can be an XMM register or a 128-bit memory location. The destination operand can 
be an MMX technology register or an XMM register. 

The PCMPGTB instruction compares the corresponding signed byte integers in the 
destination and source operands; the PCMPGTW instruction compares the corre-
sponding signed word integers in the destination and source operands; and the 
PCMPGTD instruction compares the corresponding signed doubleword integers in the 
destination and source operands.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PCMPGTB (with 64-bit operands)
IF DEST[7:0] > SRC[7:0]

THEN DEST[7:0) ← FFH; 

VEX.NDS.128.66.0F.WIG 66 /r

VPCMPGTD xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Compare packed signed 
doubleword integers in 
xmm2 and xmm3/m128 for 
greater than.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception 
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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ELSE DEST[7:0] ← 0; FI;
(* Continue comparison of 2nd through 7th bytes in DEST and SRC *)
IF DEST[63:56] > SRC[63:56]

THEN DEST[63:56] ← FFH;
ELSE DEST[63:56] ← 0; FI;

PCMPGTB (with 128-bit operands)
IF DEST[7:0] > SRC[7:0]

THEN DEST[7:0) ← FFH; 
ELSE DEST[7:0] ← 0; FI;

(* Continue comparison of 2nd through 15th bytes in DEST and SRC *)
IF DEST[127:120] > SRC[127:120]

THEN DEST[127:120] ← FFH;
ELSE DEST[127:120] ← 0; FI;

PCMPGTW (with 64-bit operands)
IF DEST[15:0] > SRC[15:0] 

THEN DEST[15:0] ← FFFFH;
ELSE DEST[15:0] ← 0; FI;

(* Continue comparison of 2nd and 3rd words in DEST and SRC *)
IF DEST[63:48] > SRC[63:48]

THEN DEST[63:48] ← FFFFH;
ELSE DEST[63:48] ← 0; FI;

PCMPGTW (with 128-bit operands)
IF DEST[15:0] > SRC[15:0] 

THEN DEST[15:0] ← FFFFH;
ELSE DEST[15:0] ← 0; FI;

(* Continue comparison of 2nd through 7th words in DEST and SRC *)
IF DEST[63:48] > SRC[127:112]

THEN DEST[127:112] ← FFFFH;
ELSE DEST[127:112] ← 0; FI;

PCMPGTD (with 64-bit operands)
IF DEST[31:0] > SRC[31:0]

THEN DEST[31:0] ← FFFFFFFFH; 
ELSE DEST[31:0] ← 0; FI;

IF DEST[63:32] > SRC[63:32]
THEN DEST[63:32] ← FFFFFFFFH;
ELSE DEST[63:32] ← 0; FI;

PCMPGTD (with 128-bit operands)
IF DEST[31:0] > SRC[31:0]

THEN DEST[31:0] ← FFFFFFFFH; 
ELSE DEST[31:0] ← 0; FI;
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(* Continue comparison of 2nd and 3rd doublewords in DEST and SRC *)
IF DEST[127:96] > SRC[127:96]

THEN DEST[127:96] ← FFFFFFFFH;
ELSE DEST[127:96] ← 0; FI;

VPCMPGTB (VEX.128 encoded version)
DEST[127:0] COMPARE_BYTES_GREATER(SRC1,SRC2)
DEST[VLMAX-1:128]  0

VPCMPGTW (VEX.128 encoded version)
DEST[127:0] COMPARE_WORDS_GREATER(SRC1,SRC2)
DEST[VLMAX-1:128]  0

VPCMPGTD (VEX.128 encoded version)
DEST[127:0] COMPARE_DWORDS_GREATER(SRC1,SRC2)
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalents

PCMPGTB: __m64 _mm_cmpgt_pi8 (__m64 m1, __m64 m2)

PCMPGTW: __m64 _mm_pcmpgt_pi16 (__m64 m1, __m64 m2)

DCMPGTD: __m64 _mm_pcmpgt_pi32 (__m64 m1, __m64 m2)

PCMPGTB: __m128i _mm_cmpgt_epi8 ( __m128i a, __m128i b)

PCMPGTW: __m128i _mm_cmpgt_epi16 ( __m128i a, __m128i b)

DCMPGTD: __m128i _mm_cmpgt_epi32 ( __m128i a, __m128i b)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PCMPGTQ — Compare Packed Data for Greater Than

Instruction Operand Encoding

Description

Performs an SIMD signed compare for the packed quadwords in the destination 
operand (first operand) and the source operand (second operand). If the data 
element in the first (destination) operand is greater than the corresponding element 
in the second (source) operand, the corresponding data element in the destination 
is set to all 1s; otherwise, it is set to 0s.

128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

IF (DEST[63-0] > SRC[63-0]) 
THEN DEST[63-0]  FFFFFFFFFFFFFFFFH;
ELSE DEST[63-0]  0; FI

IF (DEST[127-64] > SRC[127-64]) 
THEN DEST[127-64]  FFFFFFFFFFFFFFFFH;
ELSE DEST[127-64]  0; FI

VPCMPGTQ (VEX.128 encoded version)
DEST[127:0] COMPARE_QWORDS_GREATER(SRC1,SRC2)
DEST[VLMAX-1:128]  0

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 38 37 /r
PCMPGTQ xmm1,xmm2/m128

RM V/V SSE4_2 Compare packed signed 
qwords in  xmm2/m128 and 
xmm1 for greater than.

VEX.NDS.128.66.0F38.WIG 37 /r
VPCMPGTQ xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Compare packed signed 
qwords in xmm2 and 
xmm3/m128 for greater 
than.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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Intel C/C++ Compiler Intrinsic Equivalent

PCMPGTQ:  __m128i _mm_cmpgt_epi64(__m128i a, __m128i b)

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PCMPISTRI — Packed Compare Implicit Length Strings, Return Index 

Instruction Operand Encoding

Description

The instruction compares data from two strings based on the encoded value in the 
Imm8 Control Byte (see Section 4.1, “Imm8 Control Byte Operation for PCMPESTRI / 
PCMPESTRM / PCMPISTRI / PCMPISTRM”), and generates an index stored to ECX.

Each string is represented by a single value.  The value is an xmm (or possibly m128 
for the second operand) which contains the data elements of the string (byte or word 
data).  Each input byte/word is augmented with a valid/invalid tag.  A byte/word is 
considered valid only if it has a lower index than the least significant null byte/word.  
(The least significant null byte/word is also considered invalid.)  

The comparison and aggregation operations are performed according to the encoded 
value of Imm8 bit fields (see Section 4.1). The index of the first (or last, according to 
imm8[6]) set bit of IntRes2 is returned in ECX. If no bits are set in IntRes2, ECX is set 
to 16 (8).

Note that the Arithmetic Flags are written in a non-standard manner in order to 
supply the most relevant information:

CFlag – Reset if IntRes2 is equal to zero, set otherwise
ZFlag – Set if any byte/word of xmm2/mem128 is null, reset otherwise
SFlag – Set if any byte/word of xmm1 is null, reset otherwise
OFlag –IntRes2[0]
AFlag – Reset
PFlag – Reset

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 3A 63 /r imm8
PCMPISTRI xmm1, xmm2/m128, 
imm8

RM V/V SSE4_2 Perform a packed 
comparison of string data 
with implicit lengths, 
generating an index, and 
storing the result in ECX.

VEX.128.66.0F3A.WIG 63 /r ib
VPCMPISTRI xmm1, xmm2/m128, 
imm8

RM V/V AVX Perform a packed 
comparison of string data 
with implicit lengths, 
generating an index, and 
storing the result in ECX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) imm8 NA
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Note: In VEX.128 encoded version, VEX.vvvv is reserved and must be 1111b, VEX.L 
must be 0, otherwise the instruction will #UD.

Effective Operand Size

Intel C/C++ Compiler Intrinsic Equivalent For Returning Index

int     _mm_cmpistri (__m128i a, __m128i b, const int mode);

Intel C/C++ Compiler Intrinsics For Reading EFlag Results

int     _mm_cmpistra (__m128i a, __m128i b, const int mode);
int     _mm_cmpistrc (__m128i a, __m128i b, const int mode);
int     _mm_cmpistro (__m128i a, __m128i b, const int mode);
int     _mm_cmpistrs (__m128i a, __m128i b, const int mode);
int     _mm_cmpistrz (__m128i a, __m128i b, const int mode);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.

Operating mode/size Operand1 Operand 2 Result

16 bit xmm xmm/m128 ECX

32 bit xmm xmm/m128 ECX

64 bit xmm xmm/m128 ECX

64 bit + REX.W xmm xmm/m128 RCX
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PCMPISTRM — Packed Compare Implicit Length Strings, Return Mask

Instruction Operand Encoding

Description

The instruction compares data from two strings based on the encoded value in the 
imm8 byte (see Section 4.1, “Imm8 Control Byte Operation for PCMPESTRI / 
PCMPESTRM / PCMPISTRI / PCMPISTRM”) generating a mask stored to XMM0.

Each string is represented by a single value. The value is an xmm (or possibly m128 
for the second operand) which contains the data elements of the string (byte or word 
data).  Each input byte/word is augmented with a valid/invalid tag.  A byte/word is 
considered valid only if it has a lower index than the least significant null byte/word.  
(The least significant null byte/word is also considered invalid.)  

The comparison and aggregation operation are performed according to the encoded 
value of Imm8 bit fields (see Section 4.1). As defined by imm8[6], IntRes2 is then 
either stored to the least significant bits of XMM0 (zero extended to 128 bits) or 
expanded into a byte/word-mask and then stored to XMM0.

Note that the Arithmetic Flags are written in a non-standard manner in order to 
supply the most relevant information:

CFlag – Reset if IntRes2 is equal to zero, set otherwise
ZFlag – Set if any byte/word of xmm2/mem128 is null, reset otherwise
SFlag – Set if any byte/word of xmm1 is null, reset otherwise
OFlag – IntRes2[0]
AFlag – Reset
PFlag – Reset

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 3A 62 /r imm8
PCMPISTRM xmm1, xmm2/m128, 
imm8

RM V/V SSE4_2 Perform a packed 
comparison of string data 
with implicit lengths, 
generating a mask, and 
storing the result in XMM0.

VEX.128.66.0F3A.WIG 62 /r ib
VPCMPISTRM xmm1, xmm2/m128, 
imm8

RM V/V AVX Perform a packed 
comparison of string data 
with implicit lengths, 
generating a Mask, and 
storing the result in XMM0.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) imm8 NA
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Note: In VEX.128 encoded versions, bits (VLMAX-1:128) of XMM0 are zeroed. 
VEX.vvvv is reserved and must be 1111b, VEX.L must be 0, otherwise the instruction 
will #UD.

Effective Operand Size

Intel C/C++ Compiler Intrinsic Equivalent For Returning Mask

__m128i _mm_cmpistrm (__m128i a, __m128i b, const int mode);

Intel C/C++ Compiler Intrinsics For Reading EFlag Results

int     _mm_cmpistra (__m128i a, __m128i b, const int mode);
int     _mm_cmpistrc (__m128i a, __m128i b, const int mode);
int     _mm_cmpistro (__m128i a, __m128i b, const int mode);
int     _mm_cmpistrs (__m128i a, __m128i b, const int mode);
int     _mm_cmpistrz (__m128i a, __m128i b, const int mode);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.

Operating mode/size Operand1 Operand 2 Result

16 bit xmm xmm/m128 XMM0

32 bit xmm xmm/m128 XMM0

64 bit xmm xmm/m128 XMM0

64 bit + REX.W xmm xmm/m128 XMM0
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PEXTRB/PEXTRD/PEXTRQ — Extract Byte/Dword/Qword

Instruction Operand Encoding

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 3A 14
/r ib
PEXTRB reg/m8, xmm2, imm8

MRI V/V SSE4_1 Extract a byte integer value 
from xmm2 at the source 
byte offset specified by 
imm8 into rreg or m8. The 
upper bits of r32 or r64 are 
zeroed.

66 0F 3A 16
/r ib
PEXTRD r/m32, xmm2, imm8

MRI V/V SSE4_1 Extract a dword integer 
value from xmm2 at the 
source dword offset 
specified by imm8 into 
r/m32.

66 REX.W 0F 3A 16
/r ib
PEXTRQ r/m64, xmm2, imm8

MRI V/N.E. SSE4_1 Extract a qword integer 
value from xmm2 at the 
source qword offset 
specified by imm8 into 
r/m64.

VEX.128.66.0F3A.W0 14 /r ib
VPEXTRB reg/m8, xmm2, imm8

MRI V1/V AVX Extract a byte integer value 
from xmm2 at the source 
byte offset specified by 
imm8 into reg or m8. The 
upper bits of r64/r32 is 
filled with zeros.

VEX.128.66.0F3A.W0 16 /r ib
VPEXTRD r32/m32, xmm2, imm8

MRI V/V AVX Extract a dword integer 
value from xmm2 at the 
source dword offset 
specified by imm8 into 
r32/m32.

VEX.128.66.0F3A.W1 16 /r ib
VPEXTRQ r64/m64, xmm2, imm8

MRI V/i AVX Extract a qword integer 
value from xmm2 at the 
source dword offset 
specified by imm8 into 
r64/m64.

NOTES:

1. In 64-bit mode, VEX.W1 is ignored for VPEXTRB (similar to legacy REX.W=1 prefix in PEXTRB).

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MRI ModRM:r/m (w) ModRM:reg (r) imm8 NA
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Description

Extract a byte/dword/qword integer value from the source XMM register at a 
byte/dword/qword offset determined from imm8[3:0]. The destination can be a 
register or byte/dword/qword memory location. If the destination is a register, the 
upper bits of the register are zero extended.
In legacy non-VEX encoded version and if the destination operand is a register, the 
default operand size in 64-bit mode for PEXTRB/PEXTRD is 64 bits, the bits above the 
least significant byte/dword data are filled with zeros. PEXTRQ is not encodable in 
non-64-bit modes and requires REX.W in 64-bit mode.
Note: In VEX.128 encoded versions, VEX.vvvv is reserved and must be 1111b, VEX.L 
must be 0, otherwise the instruction will #UD. If the destination operand is a register, 
the default operand size in 64-bit mode for VPEXTRB/VPEXTRD is 64 bits, the bits 
above the least significant byte/word/dword data are filled with zeros. Attempt to 
execute VPEXTRQ in non-64-bit mode will cause #UD.

Operation

CASE of
PEXTRB: SEL  COUNT[3:0];

TEMP  (Src >> SEL*8) AND FFH;
IF (DEST = Mem8)

THEN
Mem8  TEMP[7:0];

ELSE IF (64-Bit Mode and 64-bit register selected)
THEN

R64[7:0]  TEMP[7:0];
r64[63:8] ← ZERO_FILL; };

ELSE
R32[7:0]  TEMP[7:0];
r32[31:8] ← ZERO_FILL; };

FI;
PEXTRD:SEL  COUNT[1:0];

TEMP  (Src >> SEL*32) AND FFFF_FFFFH;
DEST  TEMP;

PEXTRQ: SEL  COUNT[0];
TEMP  (Src >> SEL*64);
DEST  TEMP;

EASC:

(V)PEXTRTD/(V)PEXTRQ
IF (64-Bit Mode and 64-bit dest operand)
THEN

Src_Offset  Imm8[0]
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r64/m64 (Src >> Src_Offset * 64)
ELSE

Src_Offset  Imm8[1:0]
r32/m32  ((Src >> Src_Offset *32) AND 0FFFFFFFFh);

FI

(V)PEXTRB ( dest=m8)
SRC_Offset  Imm8[3:0]
Mem8  (Src >> Src_Offset*8)

(V)PEXTRB ( dest=reg)
IF (64-Bit Mode )
THEN

SRC_Offset  Imm8[3:0] 
DEST[7:0]  ((Src >> Src_Offset*8) AND 0FFh)
DEST[63:8] ZERO_FILL;

ELSE
SRC_Offset . Imm8[3:0];
DEST[7:0]  ((Src >> Src_Offset*8) AND 0FFh);
DEST[31:8] ZERO_FILL;

FI

Intel C/C++ Compiler Intrinsic Equivalent

PEXTRB: int _mm_extract_epi8 (__m128i src, const int ndx);

PEXTRD: int _mm_extract_epi32 (__m128i src, const int ndx);
PEXTRQ: __int64 _mm_extract_epi64 (__m128i src, const int ndx);

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 5; additionally
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
If VPEXTRQ in non-64-bit mode, VEX.W=1.
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PEXTRW—Extract Word

Instruction Operand Encoding

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F C5 /r ib1

PEXTRW reg, mm, imm8 

RMI V/V SSE Extract the word specified 
by imm8 from mm and move 
it to reg, bits 15-0. The 
upper bits of r32 or r64 is 
zeroed.

66 0F C5 /r ib

PEXTRW reg, xmm, imm8 

RMI V/V SSE2 Extract the word specified 
by imm8 from xmm and 
move it to reg, bits 15-0. 
The upper bits of r32 or r64 
is zeroed.

66 0F 3A 15
/r ib
PEXTRW reg/m16, xmm, imm8

MRI V/V SSE4_1 Extract the word specified 
by imm8 from xmm and 
copy it to lowest 16 bits of 
reg or m16. Zero-extend 
the result in the destination, 
r32 or r64.

VEX.128.66.0F.W0 C5 /r ib
VPEXTRW reg, xmm1, imm8

RMI V2/V AVX Extract the word specified 
by imm8 from xmm1 and 
move it to reg, bits 15:0. 
Zero-extend the result. The 
upper bits of r64/r32 is 
filled with zeros.

VEX.128.66.0F3A.W0 15 /r ib
VPEXTRW reg/m16, xmm2, imm8

MRI V/V AVX Extract a word integer value 
from xmm2 at the source 
word offset specified by 
imm8 into reg or m16. The 
upper bits of r64/r32 is 
filled with zeros.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception 
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A.

2. In 64-bit mode, VEX.W1 is ignored for VPEXTRW (similar to legacy REX.W=1 prefix in PEXTRW).

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (w) ModRM:r/m (r) imm8 NA
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Description

Copies the word in the source operand (second operand) specified by the count 
operand (third operand) to the destination operand (first operand). The source 
operand can be an MMX technology register or an XMM register. The destination 
operand can be the low word of a general-purpose register or a 16-bit memory 
address. The count operand is an 8-bit immediate. When specifying a word location 
in an MMX technology register, the 2 least-significant bits of the count operand 
specify the location; for an XMM register, the 3 least-significant bits specify the loca-
tion. The content of the destination register above bit 16 is cleared (set to all 0s).

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15, R8-15). If the destination operand is a 
general-purpose register, the default operand size is 64-bits in 64-bit mode. 
Note: In VEX.128 encoded versions, VEX.vvvv is reserved and must be 1111b, VEX.L 
must be 0, otherwise the instruction will #UD. If the destination operand is a register, 
the default operand size in 64-bit mode for VPEXTRW is 64 bits, the bits above the 
least significant byte/word/dword data are filled with zeros.

Operation

IF (DEST = Mem16)
THEN

SEL  COUNT[2:0];
TEMP  (Src >> SEL*16) AND FFFFH;
Mem16  TEMP[15:0];

ELSE IF (64-Bit Mode and destination is a general-purpose register)
THEN

FOR (PEXTRW instruction with 64-bit source operand)
{ SEL ← COUNT[1:0];

TEMP ← (SRC >> (SEL ∗ 16)) AND FFFFH;
r64[15:0] ← TEMP[15:0];
r64[63:16] ← ZERO_FILL; };

FOR (PEXTRW instruction with 128-bit source operand)
 { SEL ← COUNT[2:0];

TEMP ← (SRC >> (SEL ∗ 16)) AND FFFFH;
r64[15:0] ← TEMP[15:0];
r64[63:16] ← ZERO_FILL; }

ELSE
FOR (PEXTRW instruction with 64-bit source operand)

{ SEL ← COUNT[1:0];
TEMP ← (SRC >> (SEL ∗ 16)) AND FFFFH;

MRI ModRM:r/m (w) ModRM:reg (r) imm8 NA

Op/En Operand 1 Operand 2 Operand 3 Operand 4
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r32[15:0] ← TEMP[15:0];
r32[31:16] ← ZERO_FILL; };

FOR (PEXTRW instruction with 128-bit source operand)
{ SEL ← COUNT[2:0];

TEMP ← (SRC >> (SEL ∗ 16)) AND FFFFH;
r32[15:0] ← TEMP[15:0];
r32[31:16] ← ZERO_FILL; };

FI;
FI;

(V)PEXTRW ( dest=m16)
SRC_Offset  Imm8[2:0]
Mem16  (Src >> Src_Offset*16)

(V)PEXTRW ( dest=reg)
IF (64-Bit Mode )
THEN

SRC_Offset  Imm8[2:0]
DEST[15:0]  ((Src >> Src_Offset*16) AND 0FFFFh)
DEST[63:16] ZERO_FILL;

ELSE
SRC_Offset  Imm8[2:0]
DEST[15:0]  ((Src >> Src_Offset*16) AND 0FFFFh)
DEST[31:16] ZERO_FILL;

FI

Intel C/C++ Compiler Intrinsic Equivalent

PEXTRW: int _mm_extract_pi16 (__m64 a, int n)

PEXTRW: int _mm_extract_epi16 ( __m128i a, int imm) 

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 5; additionally
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
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PHADDW/PHADDD — Packed Horizontal Add

Instruction Operand Encoding

Description 

PHADDW adds two adjacent 16-bit signed integers horizontally from the source and 
destination operands and packs the 16-bit signed results to the destination operand 
(first operand). PHADDD adds two adjacent 32-bit signed integers horizontally from 
the source and destination operands and packs the 32-bit signed results to the desti-
nation operand (first operand). Both operands can be MMX or XMM registers. When 
the source operand is a 128-bit memory operand, the operand must be aligned on a 
16-byte boundary or a general-protection exception (#GP) will be generated. 

Note that these instructions can operate on either unsigned or signed (two’s comple-
ment notation) integers; however, it does not set bits in the EFLAGS register to indi-

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F 38 01 /r1 

PHADDW mm1, mm2/m64

RM V/V SSSE3 Add 16-bit integers 
horizontally, pack to MM1. 

66 0F 38 01 /r

PHADDW xmm1, xmm2/m128

RM V/V SSSE3 Add 16-bit integers 
horizontally, pack to XMM1.

0F 38 02 /r 

PHADDD mm1, mm2/m64

RM V/V SSSE3 Add 32-bit integers 
horizontally, pack to MM1. 

66 0F 38 02 /r

PHADDD xmm1, xmm2/m128

RM V/V SSSE3 Add 32-bit integers 
horizontally, pack to XMM1. 

VEX.NDS.128.66.0F38.WIG 01 /r

VPHADDW xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Add 16-bit integers 
horizontally, pack to xmm1.

VEX.NDS.128.66.0F38.WIG 02 /r

VPHADDD xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Add 32-bit integers 
horizontally, pack to xmm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception 
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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cate overflow and/or a carry. To prevent undetected overflow conditions, software 
must control the ranges of the values operated on. 

In 64-bit mode, use the REX prefix to access additional registers. 
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation 

PHADDW (with 64-bit operands)
mm1[15-0]  = mm1[31-16] + mm1[15-0]; 
mm1[31-16] = mm1[63-48] + mm1[47-32]; 
mm1[47-32] = mm2/m64[31-16] + mm2/m64[15-0]; 
mm1[63-48] = mm2/m64[63-48] + mm2/m64[47-32]; 

PHADDW (with 128-bit operands)
xmm1[15-0] = xmm1[31-16] + xmm1[15-0]; 
xmm1[31-16] = xmm1[63-48] + xmm1[47-32]; 
xmm1[47-32] = xmm1[95-80] + xmm1[79-64]; 
xmm1[63-48] = xmm1[127-112] + xmm1[111-96]; 
xmm1[79-64] = xmm2/m128[31-16] + xmm2/m128[15-0]; 
xmm1[95-80] = xmm2/m128[63-48] + xmm2/m128[47-32]; 
xmm1[111-96] = xmm2/m128[95-80] + xmm2/m128[79-64]; 
xmm1[127-112] = xmm2/m128[127-112] + xmm2/m128[111-96]; 

PHADDD (with 64-bit operands)
mm1[31-0]  = mm1[63-32] + mm1[31-0]; 
mm1[63-32] = mm2/m64[63-32] + mm2/m64[31-0]; 

PHADDD (with 128-bit operands)
xmm1[31-0] = xmm1[63-32] + xmm1[31-0]; 
xmm1[63-32] = xmm1[127-96] + xmm1[95-64]; 
xmm1[95-64] = xmm2/m128[63-32] + xmm2/m128[31-0]; 
xmm1[127-96] = xmm2/m128[127-96] + xmm2/m128[95-64]; 

VPHADDW (VEX.128 encoded version)
DEST[15:0]  SRC1[31:16] + SRC1[15:0]
DEST[31:16]  SRC1[63:48] + SRC1[47:32]
DEST[47:32]  SRC1[95:80] + SRC1[79:64]
DEST[63:48]  SRC1[127:112] + SRC1[111:96]
DEST[79:64]  SRC2[31:16] + SRC2[15:0]
DEST[95:80]  SRC2[63:48] + SRC2[47:32]
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DEST[111:96]  SRC2[95:80] + SRC2[79:64]
DEST[127:112]  SRC2[127:112] + SRC2[111:96]
DEST[VLMAX-1:128]  0

VPHADDD (VEX.128 encoded version)
DEST[31-0]  SRC1[63-32] + SRC1[31-0]
DEST[63-32]  SRC1[127-96] + SRC1[95-64]
DEST[95-64]  SRC2[63-32] + SRC2[31-0]
DEST[127-96]  SRC2[127-96] + SRC2[95-64]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalents

PHADDW: __m64 _mm_hadd_pi16 (__m64 a, __m64 b)

PHADDW: __m128i _mm_hadd_epi16 (__m128i a, __m128i b)

PHADDD: __m64 _mm_hadd_pi32 (__m64 a, __m64 b)

PHADDD: __m128i _mm_hadd_epi32 (__m128i a, __m128i b)

SIMD Floating-Point Exceptions 
None. 

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PHADDSW — Packed Horizontal Add and Saturate

Instruction Operand Encoding

Description 

PHADDSW adds two adjacent signed 16-bit integers horizontally from the source and 
destination operands and saturates the signed results; packs the signed, saturated 
16-bit results to the destination operand (first operand) Both operands can be MMX 
or XMM registers. When the source operand is a 128-bit memory operand, the 
operand must be aligned on a 16-byte boundary or a general-protection exception 
(#GP) will be generated. 

In 64-bit mode, use the REX prefix to access additional registers.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged. 
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation 

PHADDSW (with 64-bit operands)

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F 38 03 /r1 

PHADDSW mm1, mm2/m64 

RM V/V SSSE3 Add 16-bit signed integers 
horizontally, pack saturated 
integers to MM1.

66 0F 38 03 /r

PHADDSW xmm1, xmm2/m128

RM V/V SSSE3 Add 16-bit signed integers 
horizontally, pack saturated 
integers to XMM1.

VEX.NDS.128.66.0F38.WIG 03 /r

VPHADDSW xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Add 16-bit signed integers 
horizontally, pack saturated 
integers to xmm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception 
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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mm1[15-0]  = SaturateToSignedWord((mm1[31-16] + mm1[15-0]); 
mm1[31-16] = SaturateToSignedWord(mm1[63-48] + mm1[47-32]);
mm1[47-32] = SaturateToSignedWord(mm2/m64[31-16] + mm2/m64[15-0]); 
mm1[63-48] = SaturateToSignedWord(mm2/m64[63-48] + mm2/m64[47-32]); 

PHADDSW (with 128-bit operands)
xmm1[15-0]= SaturateToSignedWord(xmm1[31-16] + xmm1[15-0]);
xmm1[31-16] = SaturateToSignedWord(xmm1[63-48] + xmm1[47-32]);
xmm1[47-32] = SaturateToSignedWord(xmm1[95-80] + xmm1[79-64]);
xmm1[63-48] = SaturateToSignedWord(xmm1[127-112] + xmm1[111-96]); 
xmm1[79-64] = SaturateToSignedWord(xmm2/m128[31-16] + xmm2/m128[15-0]);
xmm1[95-80] = SaturateToSignedWord(xmm2/m128[63-48] + xmm2/m128[47-32]);
xmm1[111-96] = SaturateToSignedWord(xmm2/m128[95-80] + xmm2/m128[79-64]);
xmm1[127-112] = SaturateToSignedWord(xmm2/m128[127-112] + xmm2/m128[111-96]); 

VPHADDSW (VEX.128 encoded version)
DEST[15:0]= SaturateToSignedWord(SRC1[31:16] + SRC1[15:0])
DEST[31:16] = SaturateToSignedWord(SRC1[63:48] + SRC1[47:32])
DEST[47:32] = SaturateToSignedWord(SRC1[95:80] + SRC1[79:64])
DEST[63:48] = SaturateToSignedWord(SRC1[127:112] + SRC1[111:96])
DEST[79:64] = SaturateToSignedWord(SRC2[31:16] + SRC2[15:0])
DEST[95:80] = SaturateToSignedWord(SRC2[63:48] + SRC2[47:32])
DEST[111:96] = SaturateToSignedWord(SRC2[95:80] + SRC2[79:64])
DEST[127:112] = SaturateToSignedWord(SRC2[127:112] + SRC2[111:96])
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PHADDSW:  __m64 _mm_hadds_pi16 (__m64 a, __m64 b)

PHADDSW:  __m128i _mm_hadds_epi16 (__m128i a, __m128i b)

SIMD Floating-Point Exceptions 
None. 

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PHMINPOSUW — Packed Horizontal Word Minimum

Instruction Operand Encoding

Description

Determine the minimum unsigned word value in the source operand (second 
operand) and place the unsigned word in the low word (bits 0-15) of the destination 
operand (first operand).  The word index of the minimum value is stored in bits 16-
18 of the destination operand.  The remaining upper bits of the destination are set to 
zero. 
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. VEX.vvvv is reserved and must be 1111b, VEX.L must be 0, otherwise the 
instruction will #UD.

Operation

PHMINPOSUW (128-bit Legacy SSE version)
INDEX  0;
MIN  SRC[15:0]
IF (SRC[31:16] < MIN) 

THEN INDEX  1;  MIN  SRC[31:16]; FI;
IF (SRC[47:32] < MIN) 

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 38 41 /r
PHMINPOSUW xmm1, xmm2/m128

RM V/V SSE4_1 Find the minimum unsigned 
word in xmm2/m128 and 
place its value in the low 
word of xmm1 and its index 
in the second-lowest word 
of xmm1.

VEX.128.66.0F38.WIG 41 /r
VPHMINPOSUW xmm1, xmm2/m128

RM V/V AVX Find the minimum unsigned 
word in xmm2/m128 and 
place its value in the low 
word of xmm1 and its index 
in the second-lowest word 
of xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
4-258 Vol. 2B PHMINPOSUW — Packed Horizontal Word Minimum



INSTRUCTION SET REFERENCE, M-Z
THEN INDEX  2;  MIN  SRC[47:32]; FI;
* Repeat operation for words 3 through 6
IF (SRC[127:112] < MIN) 

THEN INDEX  7;  MIN  SRC[127:112]; FI;
DEST[15:0]  MIN;
DEST[18:16]  INDEX;
DEST[127:19]  0000000000000000000000000000H;

VPHMINPOSUW (VEX.128 encoded version)
INDEX  0
MIN  SRC[15:0]
IF (SRC[31:16] < MIN) THEN INDEX  1; MIN  SRC[31:16]
IF (SRC[47:32] < MIN) THEN INDEX  2; MIN  SRC[47:32]
* Repeat operation for words 3 through 6
IF (SRC[127:112] < MIN) THEN INDEX  7; MIN  SRC[127:112]
DEST[15:0]  MIN
DEST[18:16]  INDEX
DEST[127:19]  0000000000000000000000000000H
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PHMINPOSUW: __m128i _mm_minpos_epu16( __m128i packed_words);

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
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PHSUBW/PHSUBD — Packed Horizontal Subtract

Instruction Operand Encoding

Description 

PHSUBW performs horizontal subtraction on each adjacent pair of 16-bit signed inte-
gers by subtracting the most significant word from the least significant word of each 
pair in the source and destination operands, and packs the signed 16-bit results to 
the destination operand (first operand). PHSUBD performs horizontal subtraction on 
each adjacent pair of 32-bit signed integers by subtracting the most significant 
doubleword from the least significant doubleword of each pair, and packs the signed 

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F 38 05 /r1

PHSUBW mm1, mm2/m64

RM V/V SSSE3 Subtract 16-bit signed 
integers horizontally, pack 
to MM1. 

66 0F 38 05 /r 

PHSUBW xmm1, xmm2/m128

RM V/V SSSE3 Subtract 16-bit signed 
integers horizontally, pack 
to XMM1. 

0F 38 06 /r 

PHSUBD mm1, mm2/m64

RM V/V SSSE3 Subtract 32-bit signed 
integers horizontally, pack 
to MM1. 

66 0F 38 06 /r

PHSUBD xmm1, xmm2/m128 

RM V/V SSSE3 Subtract 32-bit signed 
integers horizontally, pack 
to XMM1. 

VEX.NDS.128.66.0F38.WIG 05 /r

VPHSUBW xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Subtract 16-bit signed 
integers horizontally, pack 
to xmm1.

VEX.NDS.128.66.0F38.WIG 06 /r

VPHSUBD xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Subtract 32-bit signed 
integers horizontally, pack 
to xmm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception 
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) NA
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32-bit result to the destination operand. Both operands can be MMX or XMM regis-
ters. When the source operand is a 128-bit memory operand, the operand must be 
aligned on a 16-byte boundary or a general-protection exception (#GP) will be 
generated. 

In 64-bit mode, use the REX prefix to access additional registers.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PHSUBW (with 64-bit operands) 
mm1[15-0] = mm1[15-0] - mm1[31-16]; 
mm1[31-16] = mm1[47-32] - mm1[63-48]; 
mm1[47-32] = mm2/m64[15-0] - mm2/m64[31-16];
mm1[63-48] = mm2/m64[47-32] - mm2/m64[63-48]; 

PHSUBW (with 128-bit operands)
xmm1[15-0] = xmm1[15-0] - xmm1[31-16]; 
xmm1[31-16] = xmm1[47-32] - xmm1[63-48]; 
xmm1[47-32] = xmm1[79-64] - xmm1[95-80]; 
xmm1[63-48] = xmm1[111-96] - xmm1[127-112]; 
xmm1[79-64] = xmm2/m128[15-0] - xmm2/m128[31-16]; 
xmm1[95-80] = xmm2/m128[47-32] - xmm2/m128[63-48]; 
xmm1[111-96] = xmm2/m128[79-64] - xmm2/m128[95-80]; 
xmm1[127-112] = xmm2/m128[111-96] - xmm2/m128[127-112];

PHSUBD (with 64-bit operands)
mm1[31-0] = mm1[31-0] - mm1[63-32];
mm1[63-32] = mm2/m64[31-0] - mm2/m64[63-32];

PHSUBD (with 128-bit operands)
xmm1[31-0] = xmm1[31-0] - xmm1[63-32]; 
xmm1[63-32] = xmm1[95-64] - xmm1[127-96]; 
xmm1[95-64] = xmm2/m128[31-0] - xmm2/m128[63-32]; 
xmm1[127-96] = xmm2/m128[95-64] - xmm2/m128[127-96]; 

VPHSUBW (VEX.128 encoded version)
DEST[15:0]  SRC1[15:0] - SRC1[31:16]
DEST[31:16]  SRC1[47:32] - SRC1[63:48]
DEST[47:32]  SRC1[79:64] - SRC1[95:80]
DEST[63:48]  SRC1[111:96] - SRC1[127:112]
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DEST[79:64]  SRC2[15:0] - SRC2[31:16]
DEST[95:80]  SRC2[47:32] - SRC2[63:48]
DEST[111:96]  SRC2[79:64] - SRC2[95:80]
DEST[127:112]  SRC2[111:96] - SRC2[127:112]
DEST[VLMAX-1:128]  0
VPHSUBD (VEX.128 encoded version)
DEST[31-0]  SRC1[31-0] - SRC1[63-32]
DEST[63-32]  SRC1[95-64] - SRC1[127-96]
DEST[95-64]  SRC2[31-0] - SRC2[63-32]
DEST[127-96]  SRC2[95-64] - SRC2[127-96]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalents

PHSUBW:  __m64 _mm_hsub_pi16 (__m64 a, __m64 b)

PHSUBW:  __m128i _mm_hsub_epi16 (__m128i a, __m128i b)

PHSUBD:  __m64 _mm_hsub_pi32 (__m64 a, __m64 b)

PHSUBD:  __m128i _mm_hsub_epi32 (__m128i a, __m128i b)

SIMD Floating-Point Exceptions 
None. 

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PHSUBSW — Packed Horizontal Subtract and Saturate

Instruction Operand Encoding

Description 

PHSUBSW performs horizontal subtraction on each adjacent pair of 16-bit signed 
integers by subtracting the most significant word from the least significant word of 
each pair in the source and destination operands. The signed, saturated 16-bit 
results are packed to the destination operand (first operand). Both operands can be 
MMX or XMM register. When the source operand is a 128-bit memory operand, the 
operand must be aligned on a 16-byte boundary or a general-protection exception 
(#GP) will be generated. 

In 64-bit mode, use the REX prefix to access additional registers. 
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged. 
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F 38 07 /r1 

PHSUBSW mm1, mm2/m64 

RM V/V SSSE3 Subtract 16-bit signed 
integer horizontally, pack 
saturated integers to MM1.

66 0F 38 07 /r

PHSUBSW xmm1, xmm2/m128 

RM V/V SSSE3 Subtract 16-bit signed 
integer horizontally, pack 
saturated integers to XMM1

VEX.NDS.128.66.0F38.WIG 07 /r

VPHSUBSW xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Subtract 16-bit signed 
integer horizontally, pack 
saturated integers to xmm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception 
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) NA
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Operation

PHSUBSW (with 64-bit operands)
mm1[15-0] = SaturateToSignedWord(mm1[15-0] - mm1[31-16]); 
mm1[31-16] = SaturateToSignedWord(mm1[47-32] - mm1[63-48]);
mm1[47-32] = SaturateToSignedWord(mm2/m64[15-0] - mm2/m64[31-16]); 
mm1[63-48] = SaturateToSignedWord(mm2/m64[47-32] - mm2/m64[63-48]);

PHSUBSW (with 128-bit operands)
xmm1[15-0] = SaturateToSignedWord(xmm1[15-0] - xmm1[31-16]); 
xmm1[31-16] = SaturateToSignedWord(xmm1[47-32] - xmm1[63-48]);
xmm1[47-32] = SaturateToSignedWord(xmm1[79-64] - xmm1[95-80]);
xmm1[63-48] = SaturateToSignedWord(xmm1[111-96] - xmm1[127-112]);
xmm1[79-64] = SaturateToSignedWord(xmm2/m128[15-0] - xmm2/m128[31-16]); 
xmm1[95-80] =SaturateToSignedWord(xmm2/m128[47-32] - xmm2/m128[63-48]); 
xmm1[111-96] =SaturateToSignedWord(xmm2/m128[79-64] - xmm2/m128[95-80]);
xmm1[127-112]= SaturateToSignedWord(xmm2/m128[111-96] - xmm2/m128[127-112]);

VPHSUBSW (VEX.128 encoded version)
DEST[15:0]= SaturateToSignedWord(SRC1[15:0] - SRC1[31:16])
DEST[31:16] = SaturateToSignedWord(SRC1[47:32] - SRC1[63:48])
DEST[47:32] = SaturateToSignedWord(SRC1[79:64] - SRC1[95:80])
DEST[63:48] = SaturateToSignedWord(SRC1[111:96] - SRC1[127:112])
DEST[79:64] = SaturateToSignedWord(SRC2[15:0] - SRC2[31:16])
DEST[95:80] = SaturateToSignedWord(SRC2[47:32] - SRC2[63:48])
DEST[111:96] = SaturateToSignedWord(SRC2[79:64] - SRC2[95:80])
DEST[127:112] = SaturateToSignedWord(SRC2[111:96] - SRC2[127:112])
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PHSUBSW: __m64 _mm_hsubs_pi16 (__m64 a, __m64 b)

PHSUBSW: __m128i _mm_hsubs_epi16 (__m128i a, __m128i b)

SIMD Floating-Point Exceptions 
None. 

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PINSRB/PINSRD/PINSRQ — Insert Byte/Dword/Qword

Instruction Operand Encoding

Description

Copies a byte/dword/qword from the source operand (second operand) and inserts it 
in the destination operand (first operand) at the location specified with the count 
operand (third operand). (The other elements in the destination register are left 
untouched.) The source operand can be a general-purpose register or a memory 

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 3A 20 /r ib
PINSRB xmm1, r32/m8, imm8

RMI V/V SSE4_1 Insert a byte integer value 
from r32/m8 into xmm1 at 
the destination element in 
xmm1 specified by imm8.

66 0F 3A 22 /r ib
PINSRD xmm1, r/m32, imm8

RMI V/V SSE4_1 Insert a dword integer value 
from r/m32 into the xmm1 
at the destination element 
specified by imm8.

66 REX.W 0F 3A 22 /r ib
PINSRQ xmm1, r/m64, imm8

RMI N. E./V SSE4_1 Insert a qword integer value 
from r/m32 into the xmm1 
at the destination element 
specified by imm8.

VEX.NDS.128.66.0F3A.W0 20 /r ib
VPINSRB xmm1, xmm2, r32/m8, 
imm8

RVMI V1/V AVX Merge a byte integer value 
from r32/m8 and rest from 
xmm2 into xmm1 at the 
byte offset in imm8.

VEX.NDS.128.66.0F3A.W0 22 /r ib
VPINSRD xmm1, xmm2, r32/m32, 
imm8

RVMI V/V AVX Insert a dword integer value 
from r32/m32 and rest from 
xmm2 into xmm1 at the 
dword offset in imm8.

VEX.NDS.128.66.0F3A.W1 22 /r ib
VPINSRQ xmm1, xmm2, r64/m64, 
imm8

RVMI V/I AVX Insert a qword integer value 
from r64/m64 and rest from 
xmm2 into xmm1 at the 
qword offset in imm8.

NOTES:

1. In 64-bit mode, VEX.W1 is ignored for VPINSRB (similar to legacy REX.W=1 prefix with PINSRB).

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
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location. (When the source operand is a general-purpose register, PINSRB copies the 
low byte of the register.) The destination operand is an XMM register. The count 
operand is an 8-bit immediate. When specifying a qword[dword, byte] location in an 
an XMM register, the [2, 4] least-significant bit(s) of the count operand specify the 
location.
In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15, R8-15). Use of REX.W permits the use of 
64 bit general purpose registers.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. VEX.L must be 0, otherwise the instruction will #UD. Attempt to execute 
VPINSRQ in non-64-bit mode will cause #UD.

Operation
CASE OF

PINSRB: SEL  COUNT[3:0];
MASK  (0FFH << (SEL * 8)); 
TEMP  (((SRC[7:0] << (SEL *8)) AND MASK);

PINSRD: SEL  COUNT[1:0];
MASK  (0FFFFFFFFH << (SEL * 32)); 
TEMP  (((SRC << (SEL *32)) AND MASK) ;

PINSRQ: SEL  COUNT[0]
MASK  (0FFFFFFFFFFFFFFFFH << (SEL * 64)); 
TEMP  (((SRC << (SEL *32)) AND MASK) ;

ESAC;
DEST  ((DEST AND NOT MASK) OR TEMP); 

VPINSRB (VEX.128 encoded version)
SEL  imm8[3:0]
DEST[127:0]  write_b_element(SEL, SRC2, SRC1)
DEST[VLMAX-1:128]  0

VPINSRD (VEX.128 encoded version)
SEL  imm8[1:0]
DEST[127:0]  write_d_element(SEL, SRC2, SRC1)
DEST[VLMAX-1:128]  0

VPINSRQ (VEX.128 encoded version)
SEL  imm8[0]
DEST[127:0]  write_q_element(SEL, SRC2, SRC1)
DEST[VLMAX-1:128]  0
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Intel C/C++ Compiler Intrinsic Equivalent

PINSRB: __m128i _mm_insert_epi8 (__m128i s1, int s2, const int ndx);

PINSRD:  __m128i _mm_insert_epi32 (__m128i s2, int s, const int ndx);
PINSRQ:  __m128i _mm_insert_epi64(__m128i s2, __int64 s, const int ndx);

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 5; additionally
#UD If VEX.L = 1.

If VPINSRQ in non-64-bit mode with VEX.W=1.
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PINSRW—Insert Word

Instruction Operand Encoding

Description

Copies a word from the source operand (second operand) and inserts it in the desti-
nation operand (first operand) at the location specified with the count operand (third 
operand). (The other words in the destination register are left untouched.) The 
source operand can be a general-purpose register or a 16-bit memory location. 
(When the source operand is a general-purpose register, the low word of the register 
is copied.) The destination operand can be an MMX technology register or an XMM 
register. The count operand is an 8-bit immediate. When specifying a word location in 
an MMX technology register, the 2 least-significant bits of the count operand specify 
the location; for an XMM register, the 3 least-significant bits specify the location.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15, R8-15). 

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F C4 /r ib1

PINSRW mm, r32/m16, imm8

RMI V/V SSE Insert the low word from 
r32 or from m16 into mm at 
the word position specified 
by imm8

66 0F C4 /r ib

PINSRW xmm, r32/m16, imm8

RMI V/V SSE2 Move the low word of r32 or 
from m16 into xmm at the 
word position specified by 
imm8.

VEX.NDS.128.66.0F.W0 C4 /r ib

VPINSRW xmm1, xmm2, r32/m16, 
imm8

RVMI V2/V AVX Insert a word integer value 
from r32/m16 and rest from 
xmm2 into xmm1 at the 
word offset in imm8.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception Conditions 
of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 3A.

2. In 64-bit mode, VEX.W1 is ignored for VPINSRW (similar to legacy REX.W=1 prefix in PINSRW).

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
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128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PINSRW (with 64-bit source operand)
SEL ← COUNT AND 3H;

CASE (Determine word position) OF
SEL ← 0: MASK ← 000000000000FFFFH;
SEL ← 1: MASK ← 00000000FFFF0000H;
SEL ← 2: MASK ← 0000FFFF00000000H;
SEL ← 3: MASK ← FFFF000000000000H;

DEST ← (DEST AND NOT MASK) OR (((SRC << (SEL ∗ 16)) AND MASK);

PINSRW (with 128-bit source operand)
SEL ← COUNT AND 7H;

CASE (Determine word position) OF
SEL ← 0: MASK ← 0000000000000000000000000000FFFFH;
SEL ← 1: MASK ← 000000000000000000000000FFFF0000H;
SEL ← 2: MASK ← 00000000000000000000FFFF00000000H;
SEL ← 3: MASK ← 0000000000000000FFFF000000000000H;
SEL ← 4: MASK ← 000000000000FFFF0000000000000000H;
SEL ← 5: MASK ← 00000000FFFF00000000000000000000H;
SEL ← 6: MASK ← 0000FFFF000000000000000000000000H;
SEL ← 7: MASK ← FFFF0000000000000000000000000000H;

DEST ← (DEST AND NOT MASK) OR (((SRC << (SEL ∗ 16)) AND MASK);

VPINSRW (VEX.128 encoded version)
SEL  imm8[2:0]
DEST[127:0]  write_w_element(SEL, SRC2, SRC1)
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PINSRW:  __m64 _mm_insert_pi16 (__m64 a, int d, int n)

PINSRW:  __m128i _mm_insert_epi16 ( __m128i a, int b, int imm)

Flags Affected

None.
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Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 5; additionally
#UD If VEX.L = 1.

If VPINSRW in non-64-bit mode with VEX.W=1.
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PMADDUBSW — Multiply and Add Packed Signed and Unsigned Bytes

Instruction Operand Encoding

Description 

PMADDUBSW multiplies vertically each unsigned byte of the destination operand 
(first operand) with the corresponding signed byte of the source operand (second 
operand), producing intermediate signed 16-bit integers. Each adjacent pair of 
signed words is added and the saturated result is packed to the destination operand. 
For example, the lowest-order bytes (bits 7-0) in the source and destination oper-
ands are multiplied and the intermediate signed word result is added with the corre-
sponding intermediate result from the 2nd lowest-order bytes (bits 15-8) of the 
operands; the sign-saturated result is stored in the lowest word of the destination 
register (15-0). The same operation is performed on the other pairs of adjacent 
bytes. Both operands can be MMX register or XMM registers. When the source 

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F 38 04 /r1 

PMADDUBSW mm1, mm2/m64

RM V/V MMX Multiply signed and 
unsigned bytes, add 
horizontal pair of signed 
words, pack saturated 
signed-words to MM1. 

66 0F 38 04 /r 

PMADDUBSW xmm1, xmm2/m128 

RM V/V SSSE3 Multiply signed and 
unsigned bytes, add 
horizontal pair of signed 
words, pack saturated 
signed-words to XMM1.

VEX.NDS.128.66.0F38.WIG 04 /r

VPMADDUBSW xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Multiply signed and 
unsigned bytes, add 
horizontal pair of signed 
words, pack saturated 
signed-words to xmm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception 
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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operand is a 128-bit memory operand, the operand must be aligned on a 16-byte 
boundary or a general-protection exception (#GP) will be generated. 

In 64-bit mode, use the REX prefix to access additional registers. 
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PMADDUBSW (with 64 bit operands)
DEST[15-0] = SaturateToSignedWord(SRC[15-8]*DEST[15-8]+SRC[7-0]*DEST[7-0]);
DEST[31-16] = SaturateToSignedWord(SRC[31-24]*DEST[31-24]+SRC[23-16]*DEST[23-16]);
DEST[47-32] = SaturateToSignedWord(SRC[47-40]*DEST[47-40]+SRC[39-32]*DEST[39-32]);
DEST[63-48] = SaturateToSignedWord(SRC[63-56]*DEST[63-56]+SRC[55-48]*DEST[55-48]);

PMADDUBSW (with 128 bit operands)
DEST[15-0] = SaturateToSignedWord(SRC[15-8]* DEST[15-8]+SRC[7-0]*DEST[7-0]);
// Repeat operation for 2nd through 7th word 
SRC1/DEST[127-112] = SaturateToSignedWord(SRC[127-120]*DEST[127-120]+ SRC[119-

112]* DEST[119-112]);

VPMADDUBSW (VEX.128 encoded version)
DEST[15:0]  SaturateToSignedWord(SRC2[15:8]* SRC1[15:8]+SRC2[7:0]*SRC1[7:0])
// Repeat operation for 2nd through 7th word 
DEST[127:112]  SaturateToSignedWord(SRC2[127:120]*SRC1[127:120]+ SRC2[119:112]* 
SRC1[119:112])
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalents

PMADDUBSW:  __m64 _mm_maddubs_pi16 (__m64 a, __m64 b)

PMADDUBSW:  __m128i _mm_maddubs_epi16 (__m128i a, __m128i b)

SIMD Floating-Point Exceptions 
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PMADDWD—Multiply and Add Packed Integers

Instruction Operand Encoding

Description

Multiplies the individual signed words of the destination operand (first operand) by 
the corresponding signed words of the source operand (second operand), producing 
temporary signed, doubleword results. The adjacent doubleword results are then 
summed and stored in the destination operand. For example, the corresponding low-
order words (15-0) and (31-16) in the source and destination operands are multi-
plied by one another and the doubleword results are added together and stored in 
the low doubleword of the destination register (31-0). The same operation is 
performed on the other pairs of adjacent words. (Figure 4-6 shows this operation 
when using 64-bit operands.) The source operand can be an MMX technology register 

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F F5 /r1

PMADDWD mm, mm/m64

RM V/V MMX Multiply the packed words in 
mm by the packed words in 
mm/m64, add adjacent 
doubleword results, and 
store in mm.

66 0F F5 /r

PMADDWD xmm1, xmm2/m128

RM V/V SSE2 Multiply the packed word 
integers in xmm1 by the 
packed word integers in 
xmm2/m128, add adjacent 
doubleword results, and 
store in xmm1.

VEX.NDS.128.66.0F.WIG F5 /r

VPMADDWD xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Multiply the packed word 
integers in xmm2 by the 
packed word integers in 
xmm3/m128, add adjacent 
doubleword results, and 
store in xmm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception 
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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or a 64-bit memory location, or it can be an XMM register or a 128-bit memory loca-
tion. The destination operand can be an MMX technology register or an XMM register.

The PMADDWD instruction wraps around only in one situation: when the 2 pairs of 
words being operated on in a group are all 8000H. In this case, the result wraps 
around to 80000000H.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PMADDWD (with 64-bit operands)
DEST[31:0] ← (DEST[15:0] ∗ SRC[15:0]) + (DEST[31:16] ∗ SRC[31:16]);
DEST[63:32] ← (DEST[47:32] ∗ SRC[47:32]) + (DEST[63:48] ∗ SRC[63:48]);

PMADDWD (with 128-bit operands)
DEST[31:0] ← (DEST[15:0] ∗ SRC[15:0]) + (DEST[31:16] ∗ SRC[31:16]);
DEST[63:32] ← (DEST[47:32] ∗ SRC[47:32]) + (DEST[63:48] ∗ SRC[63:48]);
DEST[95:64] ← (DEST[79:64] ∗ SRC[79:64]) + (DEST[95:80] ∗ SRC[95:80]);
DEST[127:96] ← (DEST[111:96] ∗ SRC[111:96]) + (DEST[127:112] ∗ SRC[127:112]);

VPMADDWD (VEX.128 encoded version)
DEST[31:0]  (SRC1[15:0] * SRC2[15:0]) + (SRC1[31:16] * SRC2[31:16])
DEST[63:32]  (SRC1[47:32] * SRC2[47:32]) + (SRC1[63:48] * SRC2[63:48])
DEST[95:64]  (SRC1[79:64] * SRC2[79:64]) + (SRC1[95:80] * SRC2[95:80])
DEST[127:96]  (SRC1[111:96] * SRC2[111:96]) + (SRC1[127:112] * SRC2[127:112])
DEST[VLMAX-1:128]  0

Figure 4-6.  PMADDWD Execution Model Using 64-bit Operands

X3 X2 X1 X0

X3 ∗ Y3 X2 ∗ Y2 X1 ∗ Y1 X0 ∗ Y0

SRC

DEST

DEST

Y3 Y2 Y1 Y0

(X1∗Y1) + (X0∗Y0)(X3∗Y3) + (X2∗Y2) 

TEMP
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Intel C/C++ Compiler Intrinsic Equivalent

PMADDWD: __m64 _mm_madd_pi16(__m64 m1, __m64 m2)

PMADDWD: __m128i _mm_madd_epi16 ( __m128i a, __m128i b)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PMAXSB — Maximum of Packed Signed Byte Integers

Instruction Operand Encoding

Description

Compares packed signed byte integers in the destination operand (first operand) and 
the source operand (second operand), and returns the maximum for each packed 
value in the destination operand. 
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:1288) of the destination YMM register are 
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

IF (DEST[7:0] > SRC[7:0]) 
THEN DEST[7:0]  DEST[7:0];
ELSE DEST[7:0]  SRC[7:0]; FI;

IF (DEST[15:8] > SRC[15:8]) 
THEN DEST[15:8]  DEST[15:8];
ELSE DEST[15:8]  SRC[15:8]; FI;

IF (DEST[23:16] > SRC[23:16]) 
THEN DEST[23:16]  DEST[23:16];
ELSE DEST[23:16]  SRC[23:16]; FI;

IF (DEST[31:24] > SRC[31:24]) 

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 38 3C /r
PMAXSB xmm1, xmm2/m128

RM V/V SSE4_1 Compare packed signed byte 
integers in xmm1 and 
xmm2/m128 and store 
packed maximum values in 
xmm1.

VEX.NDS.128.66.0F38.WIG 3C /r
VPMAXSB xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Compare packed signed byte 
integers in xmm2 and 
xmm3/m128 and store 
packed maximum values in 
xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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THEN DEST[31:24]  DEST[31:24];
ELSE DEST[31:24]  SRC[31:24]; FI;

IF (DEST[39:32] > SRC[39:32]) 
THEN DEST[39:32]  DEST[39:32];
ELSE DEST[39:32]  SRC[39:32]; FI;

IF (DEST[47:40] > SRC[47:40]) 
THEN DEST[47:40]  DEST[47:40];
ELSE DEST[47:40]  SRC[47:40]; FI;

IF (DEST[55:48] > SRC[55:48]) 
THEN DEST[55:48]  DEST[55:48];
ELSE DEST[55:48]  SRC[55:48]; FI;

IF (DEST[63:56] > SRC[63:56]) 
THEN DEST[63:56]  DEST[63:56];
ELSE DEST[63:56]  SRC[63:56]; FI;

IF (DEST[71:64] > SRC[71:64]) 
THEN DEST[71:64]  DEST[71:64];
ELSE DEST[71:64]  SRC[71:64]; FI;

IF (DEST[79:72] > SRC[79:72]) 
THEN DEST[79:72]  DEST[79:72];
ELSE DEST[79:72]  SRC[79:72]; FI;

IF (DEST[87:80] > SRC[87:80]) 
THEN DEST[87:80]  DEST[87:80];
ELSE DEST[87:80]  SRC[87:80]; FI;

IF (DEST[95:88] > SRC[95:88]) 
THEN DEST[95:88]  DEST[95:88];
ELSE DEST[95:88]  SRC[95:88]; FI;

IF (DEST[103:96] > SRC[103:96]) 
THEN DEST[103:96]  DEST[103:96];
ELSE DEST[103:96]  SRC[103:96]; FI;

IF (DEST[111:104] > SRC[111:104]) 
THEN DEST[111:104]  DEST[111:104];
ELSE DEST[111:104]  SRC[111:104]; FI;

IF (DEST[119:112] > SRC[119:112]) 
THEN DEST[119:112]  DEST[119:112]; 
ELSE DEST[119:112]  SRC[119:112]; FI;

IF (DEST[127:120] > SRC[127:120]) 
THEN DEST[127:120]  DEST[127:120];
ELSE DEST[127:120]  SRC[127:120]; FI;

VPMAXSB (VEX.128 encoded version)
IF SRC1[7:0] >SRC2[7:0] THEN

DEST[7:0]  SRC1[7:0];
ELSE
Vol. 2B 4-277PMAXSB — Maximum of Packed Signed Byte Integers



INSTRUCTION SET REFERENCE, M-Z
DEST[7:0]  SRC2[7:0]; FI;
(* Repeat operation for 2nd through 15th bytes in source and destination operands *)
IF SRC1[127:120] >SRC2[127:120] THEN

DEST[127:120]  SRC1[127:120];
ELSE

DEST[127:120]  SRC2[127:120]; FI;
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PMAXSB:  __m128i _mm_max_epi8 ( __m128i a, __m128i b);

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PMAXSD — Maximum of Packed Signed Dword Integers

Instruction Operand Encoding

Description

Compares packed signed dword integers in the destination operand (first operand) 
and the source operand (second operand), and returns the maximum for each 
packed value in the destination operand. 
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:1288) of the destination YMM register are 
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

IF (DEST[31:0] > SRC[31:0]) 
THEN DEST[31:0]  DEST[31:0]; 
ELSE DEST[31:0]  SRC[31:0]; FI;

IF (DEST[63:32] > SRC[63:32]) 
THEN DEST[63:32]  DEST[63:32]; 
ELSE DEST[63:32]  SRC[63:32]; FI;

IF (DEST[95:64] > SRC[95:64]) 
THEN DEST[95:64]  DEST[95:64];
ELSE DEST[95:64]  SRC[95:64]; FI;

IF (DEST[127:96] > SRC[127:96]) 

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 38 3D /r
PMAXSD xmm1, xmm2/m128

RM V/V SSE4_1 Compare packed signed 
dword integers in xmm1 and 
xmm2/m128 and store 
packed maximum values in 
xmm1.

VEX.NDS.128.66.0F38.WIG 3D /r
VPMAXSD xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Compare packed signed 
dword integers in xmm2 and 
xmm3/m128 and store 
packed maximum values in 
xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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THEN DEST[127:96]  DEST[127:96];
ELSE DEST[127:96]  SRC[127:96]; FI;

VPMAXSD (VEX.128 encoded version)
IF SRC1[31:0] > SRC2[31:0] THEN

DEST[31:0]  SRC1[31:0];
ELSE

DEST[31:0]  SRC2[31:0]; FI;
(* Repeat operation for 2nd through 3rd dwords in source and destination operands *)
IF SRC1[127:95] > SRC2[127:95] THEN

DEST[127:95]  SRC1[127:95];
ELSE

DEST[127:95]  SRC2[127:95]; FI;
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PMAXSD:  __m128i _mm_max_epi32 ( __m128i a, __m128i b);

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PMAXSW—Maximum of Packed Signed Word Integers 

Instruction Operand Encoding

Description

Performs a SIMD compare of the packed signed word integers in the destination 
operand (first operand) and the source operand (second operand), and returns the 
maximum value for each pair of word integers to the destination operand. The source 
operand can be an MMX technology register or a 64-bit memory location, or it can be 
an XMM register or a 128-bit memory location. The destination operand can be an 
MMX technology register or an XMM register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F EE /r1

PMAXSW mm1, mm2/m64

RM V/V SSE Compare signed word 
integers in mm2/m64 and 
mm1 and return maximum 
values.

66 0F EE /r

PMAXSW xmm1, xmm2/m128

RM V/V SSE2 Compare signed word 
integers in xmm2/m128 and 
xmm1 and return maximum 
values.

VEX.NDS.128.66.0F.WIG EE /r

VPMAXSW xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Compare packed signed 
word integers in 
xmm3/m128 and xmm2 and 
store packed maximum 
values in xmm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception 
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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Operation

PMAXSW (64-bit operands)
IF DEST[15:0] > SRC[15:0]) THEN

DEST[15:0] ← DEST[15:0];
ELSE

DEST[15:0] ← SRC[15:0]; FI;
(* Repeat operation for 2nd and 3rd words in source and destination operands *)
IF DEST[63:48] > SRC[63:48]) THEN

DEST[63:48] ← DEST[63:48];
ELSE

DEST[63:48] ← SRC[63:48]; FI;

PMAXSW (128-bit operands)
IF DEST[15:0] > SRC[15:0]) THEN

DEST[15:0] ← DEST[15:0];
ELSE

DEST[15:0] ← SRC[15:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF DEST[127:112] > SRC[127:112]) THEN

DEST[127:112] ← DEST[127:112];
ELSE

DEST[127:112] ← SRC[127:112]; FI;

VPMAXSW (VEX.128 encoded version)
IF SRC1[15:0] > SRC2[15:0] THEN

DEST[15:0]  SRC1[15:0];
ELSE

DEST[15:0]  SRC2[15:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF SRC1[127:112] >SRC2[127:112] THEN

DEST[127:112]  SRC1[127:112];
ELSE

DEST[127:112]  SRC2[127:112]; FI;
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PMAXSW: __m64 _mm_max_pi16(__m64 a, __m64 b)

PMAXSW: __m128i _mm_max_epi16 ( __m128i a, __m128i b)

Flags Affected

None.
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Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PMAXUB—Maximum of Packed Unsigned Byte Integers

Instruction Operand Encoding

Description

Performs a SIMD compare of the packed unsigned byte integers in the destination 
operand (first operand) and the source operand (second operand), and returns the 
maximum value for each pair of byte integers to the destination operand. The source 
operand can be an MMX technology register or a 64-bit memory location, or it can be 
an XMM register or a 128-bit memory location. The destination operand can be an 
MMX technology register or an XMM register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F DE /r1

PMAXUB mm1, mm2/m64

RM V/V  SSE Compare unsigned byte 
integers in mm2/m64 and 
mm1 and returns maximum 
values.

66 0F DE /r

PMAXUB xmm1, xmm2/m128

RM V/V SSE2 Compare unsigned byte 
integers in xmm2/m128 and 
xmm1 and returns 
maximum values.

VEX.NDS.128.66.0F.WIG DE /r

VPMAXUB xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Compare packed unsigned 
byte integers in xmm2 and 
xmm3/m128 and store 
packed maximum values in 
xmm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception 
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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Operation

PMAXUB (64-bit operands)
IF DEST[7:0] > SRC[17:0]) THEN

DEST[7:0] ← DEST[7:0];
ELSE

DEST[7:0] ← SRC[7:0]; FI;
(* Repeat operation for 2nd through 7th bytes in source and destination operands *)
IF DEST[63:56] > SRC[63:56]) THEN

DEST[63:56] ← DEST[63:56];
ELSE

DEST[63:56] ← SRC[63:56]; FI;

PMAXUB (128-bit operands)
IF DEST[7:0] > SRC[17:0]) THEN

DEST[7:0] ← DEST[7:0];
ELSE

DEST[7:0] ← SRC[7:0]; FI;
(* Repeat operation for 2nd through 15th bytes in source and destination operands *)
IF DEST[127:120] > SRC[127:120]) THEN

DEST[127:120] ← DEST[127:120];
ELSE

DEST[127:120] ← SRC[127:120]; FI;

VPMAXUB (VEX.128 encoded version)
IF SRC1[7:0] >SRC2[7:0] THEN

DEST[7:0]  SRC1[7:0];
ELSE

DEST[7:0]  SRC2[7:0]; FI;
(* Repeat operation for 2nd through 15th bytes in source and destination operands *)
IF SRC1[127:120] >SRC2[127:120] THEN

DEST[127:120]  SRC1[127:120];
ELSE

DEST[127:120]  SRC2[127:120]; FI;
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PMAXUB:  __m64 _mm_max_pu8(__m64 a, __m64 b)

PMAXUB:  __m128i _mm_max_epu8 ( __m128i a, __m128i b)

Flags Affected

None.
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Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PMAXUD — Maximum of Packed Unsigned Dword Integers

Instruction Operand Encoding

Description

Compares packed unsigned dword integers in the destination operand (first operand) 
and the source operand (second operand), and returns the maximum for each 
packed value in the destination operand.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

IF (DEST[31:0] > SRC[31:0]) 
THEN DEST[31:0]  DEST[31:0];
ELSE DEST[31:0]  SRC[31:0]; FI;

IF (DEST[63:32] > SRC[63:32]) 
THEN DEST[63:32]  DEST[63:32];
ELSE DEST[63:32]  SRC[63:32]; FI;

IF (DEST[95:64] > SRC[95:64]) 
THEN DEST[95:64]  DEST[95:64];
ELSE DEST[95:64]  SRC[95:64]; FI;

IF (DEST[127:96] > SRC[127:96]) 

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 38 3F /r
PMAXUD xmm1, xmm2/m128

RM V/V SSE4_1 Compare packed unsigned 
dword integers in xmm1 and 
xmm2/m128 and store 
packed maximum values in 
xmm1.

VEX.NDS.128.66.0F38.WIG 3F /r
VPMAXUD xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Compare packed unsigned 
dword integers in xmm2 and 
xmm3/m128 and store 
packed maximum values in 
xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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THEN DEST[127:96]  DEST[127:96];
ELSE DEST[127:96]  SRC[127:96]; FI;

VPMAXUD (VEX.128 encoded version)
IF SRC1[31:0] > SRC2[31:0] THEN

DEST[31:0]  SRC1[31:0];
ELSE

DEST[31:0]  SRC2[31:0]; FI;
(* Repeat operation for 2nd through 3rd dwords in source and destination operands *)
IF SRC1[127:95] > SRC2[127:95] THEN

DEST[127:95]  SRC1[127:95];
ELSE

DEST[127:95]  SRC2[127:95]; FI;
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PMAXUD:  __m128i _mm_max_epu32 ( __m128i a, __m128i b);

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PMAXUW — Maximum of Packed Word Integers

Instruction Operand Encoding

Description

Compares packed unsigned word integers in the destination operand (first operand) 
and the source operand (second operand), and returns the maximum for each 
packed value in the destination operand. 
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

IF (DEST[15:0] > SRC[15:0]) 
THEN DEST[15:0]  DEST[15:0];
ELSE DEST[15:0]  SRC[15:0]; FI;

IF (DEST[31:16] > SRC[31:16]) 
THEN DEST[31:16]  DEST[31:16];
ELSE DEST[31:16]  SRC[31:16]; FI;

IF (DEST[47:32] > SRC[47:32]) 
THEN DEST[47:32]  DEST[47:32];
ELSE DEST[47:32]  SRC[47:32]; FI;

IF (DEST[63:48] > SRC[63:48]) 

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 38 3E /r
PMAXUW xmm1, xmm2/m128

RM V/V SSE4_1 Compare packed unsigned 
word integers in xmm1 and 
xmm2/m128 and store 
packed maximum values in 
xmm1.

VEX.NDS.128.66.0F38.WIG 3E/r
VPMAXUW xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Compare packed unsigned 
word integers in 
xmm3/m128 and xmm2 and 
store maximum packed 
values in xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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THEN DEST[63:48]  DEST[63:48];
ELSE DEST[63:48]  SRC[63:48]; FI;

IF (DEST[79:64] > SRC[79:64]) 
THEN DEST[79:64]  DEST[79:64];
ELSE DEST[79:64]  SRC[79:64]; FI;

IF (DEST[95:80] > SRC[95:80]) 
THEN DEST[95:80]  DEST[95:80];
ELSE DEST[95:80]  SRC[95:80]; FI;

IF (DEST[111:96] > SRC[111:96]) 
THEN DEST[111:96]  DEST[111:96];
ELSE DEST[111:96]  SRC[111:96]; FI;

IF (DEST[127:112] > SRC[127:112]) 
THEN DEST[127:112]  DEST[127:112];
ELSE DEST[127:112]  SRC[127:112]; FI;

VPMAXUW (VEX.128 encoded version)
IF SRC1[15:0] > SRC2[15:0] THEN

DEST[15:0]  SRC1[15:0];
ELSE

DEST[15:0]  SRC2[15:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF SRC1[127:112] >SRC2[127:112] THEN

DEST[127:112]  SRC1[127:112];
ELSE

DEST[127:112]  SRC2[127:112]; FI;
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PMAXUW: __m128i _mm_max_epu16 ( __m128i a, __m128i b);

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PMINSB — Minimum of Packed Signed Byte Integers

Instruction Operand Encoding

Description

Compares packed signed byte integers in the destination operand (first operand) and 
the source operand (second operand), and returns the minimum for each packed 
value in the destination operand.
128-bit Legacy SSE version: Bits (VLMAX-1:1288) of the corresponding YMM desti-
nation register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

IF (DEST[7:0] < SRC[7:0]) 
THEN DEST[7:0]  DEST[7:0];
ELSE DEST[7:0]  SRC[7:0]; FI;

IF (DEST[15:8] < SRC[15:8]) 
THEN DEST[15:8]  DEST[15:8];
ELSE DEST[15:8]  SRC[15:8]; FI;

IF (DEST[23:16] < SRC[23:16]) 
THEN DEST[23:16]  DEST[23:16];
ELSE DEST[23:16]  SRC[23:16]; FI;

IF (DEST[31:24] < SRC[31:24]) 

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 38 38 /r
PMINSB xmm1, xmm2/m128

RM V/V SSE4_1 Compare packed signed byte 
integers in xmm1 and 
xmm2/m128 and store 
packed minimum values in 
xmm1.

VEX.NDS.128.66.0F38.WIG 38 /r
VPMINSB xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Compare packed signed byte 
integers in xmm2 and 
xmm3/m128 and store 
packed minimum values in 
xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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THEN DEST[31:24]  DEST[31:24];
ELSE DEST[31:24]  SRC[31:24]; FI;

IF (DEST[39:32] < SRC[39:32]) 
THEN DEST[39:32]  DEST[39:32];
ELSE DEST[39:32]  SRC[39:32]; FI;

IF (DEST[47:40] < SRC[47:40]) 
THEN DEST[47:40]  DEST[47:40];
ELSE DEST[47:40]  SRC[47:40]; FI;

IF (DEST[55:48] < SRC[55:48]) 
THEN DEST[55:48]  DEST[55:48];
ELSE DEST[55:48]  SRC[55:48]; FI;

IF (DEST[63:56] < SRC[63:56]) 
THEN DEST[63:56]  DEST[63:56];
ELSE DEST[63:56]  SRC[63:56]; FI;

IF (DEST[71:64] < SRC[71:64]) 
THEN DEST[71:64]  DEST[71:64];
ELSE DEST[71:64]  SRC[71:64]; FI;

IF (DEST[79:72] < SRC[79:72]) 
THEN DEST[79:72]  DEST[79:72];
ELSE DEST[79:72]  SRC[79:72]; FI;

IF (DEST[87:80] < SRC[87:80]) 
THEN DEST[87:80]  DEST[87:80];
ELSE DEST[87:80]  SRC[87:80]; FI;

IF (DEST[95:88] < SRC[95:88]) 
THEN DEST[95:88]  DEST[95:88];
ELSE DEST[95:88]  SRC[95:88]; FI;

IF (DEST[103:96] < SRC[103:96]) 
THEN DEST[103:96]  DEST[103:96];
ELSE DEST[103:96]  SRC[103:96]; FI;

IF (DEST[111:104] < SRC[111:104]) 
THEN DEST[111:104]  DEST[111:104];
ELSE DEST[111:104]  SRC[111:104]; FI;

IF (DEST[119:112] < SRC[119:112]) 
THEN DEST[119:112]  DEST[119:112];
ELSE DEST[119:112]  SRC[119:112]; FI;

IF (DEST[127:120] < SRC[127:120]) 
THEN DEST[127:120]  DEST[127:120];
ELSE DEST[127:120]  SRC[127:120]; FI;

VPMINSB (VEX.128 encoded version)
IF SRC1[7:0] < SRC2[7:0] THEN

DEST[7:0]  SRC1[7:0];
ELSE
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DEST[7:0]  SRC2[7:0]; FI;
(* Repeat operation for 2nd through 15th bytes in source and destination operands *)
IF SRC1[127:120] < SRC2[127:120] THEN

DEST[127:120]  SRC1[127:120];
ELSE

DEST[127:120]  SRC2[127:120]; FI;
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PMINSB: __m128i _mm_min_epi8 ( __m128i a, __m128i b);

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PMINSD — Minimum of Packed Dword Integers

Instruction Operand Encoding

Description

Compares packed signed dword integers in the destination operand (first operand) 
and the source operand (second operand), and returns the minimum for each packed 
value in the destination operand.
128-bit Legacy SSE version: Bits (VLMAX-1:1288) of the corresponding YMM desti-
nation register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

IF (DEST[31:0] < SRC[31:0]) 
THEN DEST[31:0]  DEST[31:0];
ELSE DEST[31:0]  SRC[31:0]; FI;

IF (DEST[63:32] < SRC[63:32]) 
THEN DEST[63:32]  DEST[63:32];
ELSE DEST[63:32]  SRC[63:32]; FI;

IF (DEST[95:64] < SRC[95:64]) 
THEN DEST[95:64]  DEST[95:64];
ELSE DEST[95:64]  SRC[95:64]; FI;

IF (DEST[127:96] < SRC[127:96]) 

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 38 39 /r
PMINSD xmm1, xmm2/m128

RM V/V SSE4_1 Compare packed signed 
dword integers in xmm1 and 
xmm2/m128 and store 
packed minimum values in 
xmm1.

VEX.NDS.128.66.0F38.WIG 39 /r
VPMINSD xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Compare packed signed 
dword integers in xmm2 and 
xmm3/m128 and store 
packed minimum values in 
xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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THEN DEST[127:96]  DEST[127:96];
ELSE DEST[127:96]  SRC[127:96]; FI;

VPMINSD (VEX.128 encoded version)
IF SRC1[31:0] < SRC2[31:0] THEN

DEST[31:0]  SRC1[31:0];
ELSE

DEST[31:0]  SRC2[31:0]; FI;
(* Repeat operation for 2nd through 3rd dwords in source and destination operands *)
IF SRC1[127:95] < SRC2[127:95] THEN

DEST[127:95]  SRC1[127:95];
ELSE

DEST[127:95]  SRC2[127:95]; FI;
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PMINSD: __m128i _mm_min_epi32 ( __m128i a, __m128i b);

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PMINSW—Minimum of Packed Signed Word Integers

Instruction Operand Encoding

Description

Performs a SIMD compare of the packed signed word integers in the destination 
operand (first operand) and the source operand (second operand), and returns the 
minimum value for each pair of word integers to the destination operand. The source 
operand can be an MMX technology register or a 64-bit memory location, or it can be 
an XMM register or a 128-bit memory location. The destination operand can be an 
MMX technology register or an XMM register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:1288) of the corresponding YMM desti-
nation register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F EA /r1

PMINSW mm1, mm2/m64

RM V/V SSE Compare signed word 
integers in mm2/m64 and 
mm1 and return minimum 
values.

66 0F EA /r

PMINSW xmm1, xmm2/m128

RM V/V SSE2 Compare signed word 
integers in xmm2/m128 and 
xmm1 and return minimum 
values.

VEX.NDS.128.66.0F.WIG EA /r

VPMINSW xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Compare packed signed 
word integers in 
xmm3/m128 and xmm2 and 
return packed minimum 
values in xmm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception 
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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Operation

PMINSW (64-bit operands)
IF DEST[15:0] < SRC[15:0] THEN

DEST[15:0] ← DEST[15:0];
ELSE

DEST[15:0] ← SRC[15:0]; FI;
(* Repeat operation for 2nd and 3rd words in source and destination operands *)
IF DEST[63:48] < SRC[63:48] THEN

DEST[63:48] ← DEST[63:48];
ELSE

DEST[63:48] ← SRC[63:48]; FI;

PMINSW (128-bit operands)
IF DEST[15:0] < SRC[15:0] THEN

DEST[15:0] ← DEST[15:0];
ELSE

DEST[15:0] ← SRC[15:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF DEST[127:112] < SRC/m64[127:112] THEN

DEST[127:112] ← DEST[127:112];
ELSE

DEST[127:112] ← SRC[127:112]; FI;

VPMINSW (VEX.128 encoded version)
IF SRC1[15:0] < SRC2[15:0] THEN

DEST[15:0]  SRC1[15:0];
ELSE

DEST[15:0]  SRC2[15:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF SRC1[127:112] < SRC2[127:112] THEN

DEST[127:112]  SRC1[127:112];
ELSE

DEST[127:112]  SRC2[127:112]; FI;
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PMINSW:  __m64 _mm_min_pi16 (__m64 a, __m64 b)

PMINSW:  __m128i _mm_min_epi16 ( __m128i a, __m128i b)

Flags Affected

None.
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Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.
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PMINUB—Minimum of Packed Unsigned Byte Integers

Instruction Operand Encoding

Description

Performs a SIMD compare of the packed unsigned byte integers in the destination 
operand (first operand) and the source operand (second operand), and returns the 
minimum value for each pair of byte integers to the destination operand. The source 
operand can be an MMX technology register or a 64-bit memory location, or it can be 
an XMM register or a 128-bit memory location. The destination operand can be an 
MMX technology register or an XMM register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F DA /r1

PMINUB mm1, mm2/m64

RM V/V SSE Compare unsigned byte 
integers in mm2/m64 and 
mm1 and returns minimum 
values.

66 0F DA /r

PMINUB xmm1, xmm2/m128

RM V/V SSE2 Compare unsigned byte 
integers in xmm2/m128 and 
xmm1 and returns minimum 
values.

VEX.NDS.128.66.0F.WIG DA /r

VPMINUB xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Compare packed unsigned 
byte integers in xmm2 and 
xmm3/m128 and store 
packed minimum values in 
xmm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception 
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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Operation

PMINUB (for 64-bit operands)
IF DEST[7:0] < SRC[17:0] THEN

DEST[7:0] ← DEST[7:0];
ELSE

DEST[7:0] ← SRC[7:0]; FI;
(* Repeat operation for 2nd through 7th bytes in source and destination operands *)
IF DEST[63:56] < SRC[63:56] THEN

DEST[63:56] ← DEST[63:56];
ELSE

DEST[63:56] ← SRC[63:56]; FI;

PMINUB (for 128-bit operands)
IF DEST[7:0] < SRC[17:0] THEN

DEST[7:0] ← DEST[7:0];
ELSE

DEST[7:0] ← SRC[7:0]; FI;
(* Repeat operation for 2nd through 15th bytes in source and destination operands *)
IF DEST[127:120] < SRC[127:120] THEN

DEST[127:120] ← DEST[127:120];
ELSE

DEST[127:120] ← SRC[127:120]; FI;

VPMINUB (VEX.128 encoded version)
VPMINUB instruction for 128-bit operands:

IF SRC1[7:0] < SRC2[7:0] THEN
DEST[7:0]  SRC1[7:0];

ELSE
DEST[7:0]  SRC2[7:0]; FI;

(* Repeat operation for 2nd through 15th bytes in source and destination operands *)
IF SRC1[127:120] < SRC2[127:120] THEN

DEST[127:120]  SRC1[127:120];
ELSE

DEST[127:120]  SRC2[127:120]; FI;
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PMINUB:  __m64 _m_min_pu8 (__m64 a, __m64 b)

PMINUB:  __m128i _mm_min_epu8 ( __m128i a, __m128i b)

Flags Affected

None.
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Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PMINUD — Minimum of Packed Dword Integers

Instruction Operand Encoding

Description

Compares packed unsigned dword integers in the destination operand (first operand) 
and the source operand (second operand), and returns the minimum for each packed 
value in the destination operand.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

IF (DEST[31:0] < SRC[31:0]) 
THEN DEST[31:0]  DEST[31:0];
ELSE DEST[31:0]  SRC[31:0]; FI;

IF (DEST[63:32] < SRC[63:32]) 
THEN DEST[63:32]  DEST[63:32];
ELSE DEST[63:32]  SRC[63:32]; FI;

IF (DEST[95:64] < SRC[95:64]) 
THEN DEST[95:64]  DEST[95:64];
ELSE DEST[95:64]  SRC[95:64]; FI;

IF (DEST[127:96] < SRC[127:96]) 

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 38 3B /r 
PMINUD xmm1, xmm2/m128

RM V/V SSE4_1 Compare packed unsigned 
dword integers in xmm1 
and xmm2/m128 and store 
packed minimum values in 
xmm1.

VEX.NDS.128.66.0F38.WIG 3B /r
VPMINUD xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Compare packed unsigned 
dword integers in xmm2 and 
xmm3/m128 and store 
packed minimum values in 
xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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THEN DEST[127:96]  DEST[127:96];
ELSE DEST[127:96]  SRC[127:96]; FI;

VPMINUD (VEX.128 encoded version)
VPMINUD instruction for 128-bit operands:

IF SRC1[31:0] < SRC2[31:0] THEN
DEST[31:0]  SRC1[31:0];

ELSE
DEST[31:0]  SRC2[31:0]; FI;

(* Repeat operation for 2nd through 3rd dwords in source and destination operands *)
IF SRC1[127:95] < SRC2[127:95] THEN

DEST[127:95]  SRC1[127:95];
ELSE

DEST[127:95]  SRC2[127:95]; FI;
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PMINUD: __m128i _mm_min_epu32 ( __m128i a, __m128i b);

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PMINUW — Minimum of Packed Word Integers

Instruction Operand Encoding

Description

Compares packed unsigned word integers in the destination operand (first operand) 
and the source operand (second operand), and returns the minimum for each packed 
value in the destination operand.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

IF (DEST[15:0] < SRC[15:0]) 
THEN DEST[15:0]  DEST[15:0];
ELSE DEST[15:0]  SRC[15:0]; FI;

IF (DEST[31:16] < SRC[31:16]) 
THEN DEST[31:16]  DEST[31:16];
ELSE DEST[31:16]  SRC[31:16]; FI;

IF (DEST[47:32] < SRC[47:32]) 
THEN DEST[47:32]  DEST[47:32];
ELSE DEST[47:32]  SRC[47:32]; FI;

IF (DEST[63:48] < SRC[63:48]) 

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 38 3A /r
PMINUW xmm1, xmm2/m128

RM V/V SSE4_1 Compare packed unsigned 
word integers in xmm1 and 
xmm2/m128 and store 
packed minimum values in 
xmm1.

VEX.NDS.128.66.0F38.WIG 3A/r
VPMINUW xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Compare packed unsigned 
word integers in 
xmm3/m128 and xmm2 and 
return packed minimum 
values in xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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THEN DEST[63:48]  DEST[63:48];
ELSE DEST[63:48]  SRC[63:48]; FI;

IF (DEST[79:64] < SRC[79:64]) 
THEN DEST[79:64]  DEST[79:64];
ELSE DEST[79:64]  SRC[79:64]; FI;

IF (DEST[95:80] < SRC[95:80]) 
THEN DEST[95:80]  DEST[95:80];
ELSE DEST[95:80]  SRC[95:80]; FI;

IF (DEST[111:96] < SRC[111:96]) 
THEN DEST[111:96]  DEST[111:96];
ELSE DEST[111:96]  SRC[111:96]; FI;

IF (DEST[127:112] < SRC[127:112]) 
THEN DEST[127:112]  DEST[127:112];
ELSE DEST[127:112]  SRC[127:112]; FI;

VPMINUW (VEX.128 encoded version)
VPMINUW instruction for 128-bit operands:

IF SRC1[15:0] < SRC2[15:0] THEN
DEST[15:0]  SRC1[15:0];

ELSE
DEST[15:0]  SRC2[15:0]; FI;

(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF SRC1[127:112] < SRC2[127:112] THEN

DEST[127:112]  SRC1[127:112];
ELSE

DEST[127:112]  SRC2[127:112]; FI;
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PMINUW: __m128i _mm_min_epu16 ( __m128i a, __m128i b);

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PMOVMSKB—Move Byte Mask

Instruction Operand Encoding

Description

Creates a mask made up of the most significant bit of each byte of the source 
operand (second operand) and stores the result in the low byte or word of the desti-
nation operand (first operand). The source operand is an MMX technology register or 
an XMM register; the destination operand is a general-purpose register. When oper-
ating on 64-bit operands, the byte mask is 8 bits; when operating on 128-bit oper-
ands, the byte mask is 16-bits. 

In 64-bit mode, the instruction can access additional registers (XMM8-XMM15, 
R8-R15) when used with a REX.R prefix. The default operand size is 64-bit in 64-bit 
mode.
VEX.128 encodings are valid but identical in function. VEX.vvvv is reserved and must 
be 1111b, VEX.L must be 0, otherwise the instruction will #UD. 

Operation

PMOVMSKB (with 64-bit source operand and r32)
r32[0] ← SRC[7];
r32[1] ← SRC[15];

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F D7 /r1

PMOVMSKB reg, mm

RM V/V SSE Move a byte mask of mm to 
reg. The upper bits of r32 or 
r64 are zeroed

66 0F D7 /r

PMOVMSKB reg, xmm

RM V/V SSE2 Move a byte mask of xmm 
to reg. The upper bits of r32 
or r64 are zeroed

VEX.128.66.0F.WIG D7 /r

VPMOVMSKB reg, xmm1

RM V/V AVX Move a byte mask of xmm1 
to reg. The upper bits of r32 
or r64 are filled with zeros.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception 
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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(* Repeat operation for bytes 2 through 6 *)
r32[7] ← SRC[63]; 
r32[31:8] ← ZERO_FILL;

(V)PMOVMSKB (with 128-bit source operand and r32)
r32[0] ← SRC[7];
r32[1] ← SRC[15];
(* Repeat operation for bytes 2 through 14 *)
r32[15] ← SRC[127]; 
r32[31:16] ← ZERO_FILL;

PMOVMSKB (with 64-bit source operand and r64)
r64[0] ← SRC[7];
r64[1] ← SRC[15];
(* Repeat operation for bytes 2 through 6 *)
r64[7] ← SRC[63]; 
r64[63:8] ← ZERO_FILL;

(V)PMOVMSKB (with 128-bit source operand and r64)
r64[0] ← SRC[7];
r64[1] ← SRC[15];
(* Repeat operation for bytes 2 through 14 *)
r64[15] ← SRC[127]; 
r64[63:16] ← ZERO_FILL;

Intel C/C++ Compiler Intrinsic Equivalent

PMOVMSKB: int _mm_movemask_pi8(__m64 a)

PMOVMSKB: int _mm_movemask_epi8 ( __m128i a)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 7; additionally
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
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PMOVSX — Packed Move with Sign Extend
Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0f 38 20 /r
PMOVSXBW xmm1, xmm2/m64

RM V/V SSE4_1 Sign extend 8 packed signed 
8-bit integers in the low 8 
bytes of xmm2/m64 to 8 
packed signed 16-bit 
integers in xmm1.

66 0f 38 21 /r
PMOVSXBD xmm1, xmm2/m32

RM V/V SSE4_1 Sign extend 4 packed signed 
8-bit integers in the low 4 
bytes of xmm2/m32 to 4 
packed signed 32-bit 
integers in xmm1.

66 0f 38 22 /r

PMOVSXBQ xmm1, xmm2/m16

RM V/V SSE4_1 Sign extend 2 packed signed 
8-bit integers in the low 2 
bytes of xmm2/m16 to 2 
packed signed 64-bit 
integers in xmm1.

66 0f 38 23 /r
PMOVSXWD xmm1, xmm2/m64

RM V/V SSE4_1 Sign extend 4 packed signed 
16-bit integers in the low 8 
bytes of xmm2/m64 to 4 
packed signed 32-bit 
integers in xmm1.

66 0f 38 24 /r
PMOVSXWQ xmm1, xmm2/m32

RM V/V SSE4_1 Sign extend 2 packed signed 
16-bit integers in the low 4 
bytes of xmm2/m32 to 2 
packed signed 64-bit 
integers in xmm1.

66 0f 38 25 /r
PMOVSXDQ xmm1, xmm2/m64

RM V/V SSE4_1 Sign extend 2 packed signed 
32-bit integers in the low 8 
bytes of xmm2/m64 to 2 
packed signed 64-bit 
integers in xmm1.

VEX.128.66.0F38.WIG 20 /r
VPMOVSXBW xmm1, xmm2/m64

RM V/V AVX Sign extend 8 packed 8-bit 
integers in the low 8 bytes 
of xmm2/m64 to 8 packed 
16-bit integers in xmm1.

VEX.128.66.0F38.WIG 21 /r
VPMOVSXBD xmm1, xmm2/m32

RM V/V AVX Sign extend 4 packed 8-bit 
integers in the low 4 bytes 
of xmm2/m32 to 4 packed 
32-bit integers in xmm1.
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Instruction Operand Encoding

Description

Sign-extend the low byte/word/dword values in each word/dword/qword element of 
the source operand (second operand) to word/dword/qword integers and stored as 
packed data in the destination operand (first operand). 
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.

VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. VEX.vvvv is reserved and must be 1111b, VEX.L must be 0, otherwise the 
instruction will #UD.

Operation

PMOVSXBW
DEST[15:0]  SignExtend(SRC[7:0]);
DEST[31:16]  SignExtend(SRC[15:8]);
DEST[47:32]  SignExtend(SRC[23:16]);
DEST[63:48]  SignExtend(SRC[31:24]);

VEX.128.66.0F38.WIG 22 /r
VPMOVSXBQ xmm1, xmm2/m16

RM V/V AVX Sign extend 2 packed 8-bit 
integers in the low 2 bytes 
of xmm2/m16 to 2 packed 
64-bit integers in xmm1.

VEX.128.66.0F38.WIG 23 /r
VPMOVSXWD xmm1, xmm2/m64

RM V/V AVX Sign extend 4 packed 16-bit 
integers in the low 8 bytes 
of xmm2/m64 to 4 packed 
32-bit integers in xmm1.

VEX.128.66.0F38.WIG 24 /r
VPMOVSXWQ xmm1, xmm2/m32

RM V/V AVX Sign extend 2 packed 16-bit 
integers in the low 4 bytes 
of xmm2/m32 to 2 packed 
64-bit integers in xmm1.

VEX.128.66.0F38.WIG 25 /r
VPMOVSXDQ xmm1, xmm2/m64

RM V/V AVX Sign extend 2 packed 32-bit 
integers in the low 8 bytes 
of xmm2/m64 to 2 packed 
64-bit integers in xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description
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DEST[79:64]  SignExtend(SRC[39:32]);
DEST[95:80]  SignExtend(SRC[47:40]);
DEST[111:96]  SignExtend(SRC[55:48]);
DEST[127:112]  SignExtend(SRC[63:56]);

PMOVSXBD
DEST[31:0]  SignExtend(SRC[7:0]);
DEST[63:32]  SignExtend(SRC[15:8]);
DEST[95:64]  SignExtend(SRC[23:16]);
DEST[127:96]  SignExtend(SRC[31:24]);

PMOVSXBQ
DEST[63:0]  SignExtend(SRC[7:0]);
DEST[127:64]  SignExtend(SRC[15:8]);

PMOVSXWD
DEST[31:0]  SignExtend(SRC[15:0]);
DEST[63:32]  SignExtend(SRC[31:16]);
DEST[95:64]  SignExtend(SRC[47:32]);
DEST[127:96]  SignExtend(SRC[63:48]);

PMOVSXWQ
DEST[63:0]  SignExtend(SRC[15:0]);
DEST[127:64]  SignExtend(SRC[31:16]);

PMOVSXDQ
DEST[63:0]  SignExtend(SRC[31:0]);
DEST[127:64]  SignExtend(SRC[63:32]);

VPMOVSXBW
Packed_Sign_Extend_BYTE_to_WORD()
DEST[VLMAX-1:128]  0

VPMOVSXBD
Packed_Sign_Extend_BYTE_to_DWORD()
DEST[VLMAX-1:128]  0

VPMOVSXBQ
Packed_Sign_Extend_BYTE_to_QWORD()
DEST[VLMAX-1:128]  0

VPMOVSXWD
Packed_Sign_Extend_WORD_to_DWORD()
DEST[VLMAX-1:128]  0
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VPMOVSXWQ
Packed_Sign_Extend_WORD_to_QWORD()
DEST[VLMAX-1:128]  0

VPMOVSXDQ
Packed_Sign_Extend_DWORD_to_QWORD()
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PMOVSXBW: __m128i _mm_ cvtepi8_epi16 ( __m128i a);
PMOVSXBD: __m128i _mm_ cvtepi8_epi32 ( __m128i a);
PMOVSXBQ: __m128i _mm_ cvtepi8_epi64 ( __m128i a);
PMOVSXWD: __m128i _mm_ cvtepi16_epi32 ( __m128i a);
PMOVSXWQ: __m128i _mm_ cvtepi16_epi64 ( __m128i a);
PMOVSXDQ: __m128i _mm_ cvtepi32_epi64 ( __m128i a);

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 5; additionally
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
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PMOVZX — Packed Move with Zero Extend
Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0f 38 30 /r
PMOVZXBW xmm1, xmm2/m64

RM V/V SSE4_1 Zero extend 8 packed 8-bit 
integers in the low 8 bytes 
of xmm2/m64 to 8 packed 
16-bit integers in xmm1.

66 0f 38 31 /r
PMOVZXBD xmm1, xmm2/m32

RM V/V SSE4_1 Zero extend 4 packed 8-bit 
integers in the low 4 bytes 
of xmm2/m32 to 4 packed 
32-bit integers in xmm1.

66 0f 38 32 /r
PMOVZXBQ xmm1, xmm2/m16

RM V/V SSE4_1 Zero extend 2 packed 8-bit 
integers in the low 2 bytes 
of xmm2/m16 to 2 packed 
64-bit integers in xmm1.

66 0f 38 33 /r
PMOVZXWD xmm1, xmm2/m64

RM V/V SSE4_1 Zero extend 4 packed 16-bit 
integers in the low 8 bytes 
of xmm2/m64 to 4 packed 
32-bit integers in xmm1.

66 0f 38 34 /r
PMOVZXWQ xmm1, xmm2/m32

RM V/V SSE4_1 Zero extend 2 packed 16-bit 
integers in the low 4 bytes 
of xmm2/m32 to 2 packed 
64-bit integers in xmm1.

66 0f 38 35 /r
PMOVZXDQ xmm1, xmm2/m64

RM V/V SSE4_1 Zero extend 2 packed 32-bit 
integers in the low 8 bytes 
of xmm2/m64 to 2 packed 
64-bit integers in xmm1.

VEX.128.66.0F38.WIG 30 /r
VPMOVZXBW xmm1, xmm2/m64

RM V/V AVX Zero extend 8 packed 8-bit 
integers in the low 8 bytes 
of xmm2/m64 to 8 packed 
16-bit integers in xmm1.

VEX.128.66.0F38.WIG 31 /r
VPMOVZXBD xmm1, xmm2/m32

RM V/V AVX Zero extend 4 packed 8-bit 
integers in the low 4 bytes 
of xmm2/m32 to 4 packed 
32-bit integers in xmm1.

VEX.128.66.0F38.WIG 32 /r
VPMOVZXBQ xmm1, xmm2/m16

RM V/V AVX Zero extend 2 packed 8-bit 
integers in the low 2 bytes 
of xmm2/m16 to 2 packed 
64-bit integers in xmm1.
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Instruction Operand Encoding

Description

Zero-extend the low byte/word/dword values in each word/dword/qword element of 
the source operand (second operand) to word/dword/qword integers and stored as 
packed data in the destination operand (first operand). 
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. VEX.vvvv is reserved and must be 1111b, VEX.L must be 0, otherwise the 
instruction will #UD.

Operation

PMOVZXBW
DEST[15:0]  ZeroExtend(SRC[7:0]);
DEST[31:16]  ZeroExtend(SRC[15:8]);
DEST[47:32]  ZeroExtend(SRC[23:16]);
DEST[63:48]  ZeroExtend(SRC[31:24]);
DEST[79:64]  ZeroExtend(SRC[39:32]);
DEST[95:80]  ZeroExtend(SRC[47:40]);
DEST[111:96]  ZeroExtend(SRC[55:48]);
DEST[127:112]  ZeroExtend(SRC[63:56]);

VEX.128.66.0F38.WIG 33 /r
VPMOVZXWD xmm1, xmm2/m64

RM V/V AVX Zero extend 4 packed 16-bit 
integers in the low 8 bytes 
of xmm2/m64 to 4 packed 
32-bit integers in xmm1.

VEX.128.66.0F38.WIG 34 /r
VPMOVZXWQ xmm1, xmm2/m32

RM V/V AVX Zero extend 2 packed 16-bit 
integers in the low 4 bytes 
of xmm2/m32 to 2 packed 
64-bit integers in xmm1.

VEX.128.66.0F38.WIG 35 /r
VPMOVZXDQ xmm1, xmm2/m64

RM V/V AVX Zero extend 2 packed 32-bit 
integers in the low 8 bytes 
of xmm2/m64 to 2 packed 
64-bit integers in xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description
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PMOVZXBD
DEST[31:0]  ZeroExtend(SRC[7:0]);
DEST[63:32]  ZeroExtend(SRC[15:8]);
DEST[95:64]  ZeroExtend(SRC[23:16]);
DEST[127:96]  ZeroExtend(SRC[31:24]);

PMOVZXQB
DEST[63:0]  ZeroExtend(SRC[7:0]);
DEST[127:64]  ZeroExtend(SRC[15:8]);

PMOVZXWD
DEST[31:0]  ZeroExtend(SRC[15:0]);
DEST[63:32]  ZeroExtend(SRC[31:16]);
DEST[95:64]  ZeroExtend(SRC[47:32]);
DEST[127:96]  ZeroExtend(SRC[63:48]);

PMOVZXWQ
DEST[63:0]  ZeroExtend(SRC[15:0]);
DEST[127:64]  ZeroExtend(SRC[31:16]);

PMOVZXDQ
DEST[63:0]  ZeroExtend(SRC[31:0]);
DEST[127:64]  ZeroExtend(SRC[63:32]);

VPMOVZXBW
Packed_Zero_Extend_BYTE_to_WORD()
DEST[VLMAX-1:128]  0

VPMOVZXBD
Packed_Zero_Extend_BYTE_to_DWORD()
DEST[VLMAX-1:128]  0

VPMOVZXBQ
Packed_Zero_Extend_BYTE_to_QWORD()
DEST[VLMAX-1:128]  0

VPMOVZXWD
Packed_Zero_Extend_WORD_to_DWORD()
DEST[VLMAX-1:128]  0

VPMOVZXWQ
Packed_Zero_Extend_WORD_to_QWORD()
DEST[VLMAX-1:128]  0

VPMOVZXDQ
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Packed_Zero_Extend_DWORD_to_QWORD()
DEST[VLMAX-1:128]  0

Flags Affected

None

Intel C/C++ Compiler Intrinsic Equivalent

PMOVZXBW: __m128i _mm_ cvtepu8_epi16 ( __m128i a);
PMOVZXBD: __m128i _mm_ cvtepu8_epi32 ( __m128i a);
PMOVZXBQ: __m128i _mm_ cvtepu8_epi64 ( __m128i a);
PMOVZXWD: __m128i _mm_ cvtepu16_epi32 ( __m128i a);
PMOVZXWQ: __m128i _mm_ cvtepu16_epi64 ( __m128i a);
PMOVZXDQ: __m128i _mm_ cvtepu32_epi64 ( __m128i a);

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 5; additionally
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
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PMULDQ — Multiply Packed Signed Dword Integers

Instruction Operand Encoding

Description

Performs two signed multiplications from two pairs of signed dword integers and 
stores two 64-bit products in the destination operand (first operand). The 64-bit 
product from the first/third dword element in the destination operand and the 
first/third dword element of the source operand (second operand) is stored to the 
low/high qword element of the destination.
If the source is a memory operand then all 128 bits will be fetched from memory but 
the second and fourth dwords will not be used in the computation.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PMULDQ (128-bit Legacy SSE version)
DEST[63:0]  DEST[31:0] * SRC[31:0]
DEST[127:64]  DEST[95:64] * SRC[95:64]
DEST[VLMAX-1:128] (Unmodified)

VPMULDQ (VEX.128 encoded version)

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 38 28 /r
PMULDQ xmm1, xmm2/m128

RM V/V SSE4_1 Multiply the packed signed 
dword integers in xmm1 and 
xmm2/m128 and store the 
quadword product in xmm1.

VEX.NDS.128.66.0F38.WIG 28 /r
VPMULDQ xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Multiply packed signed 
doubleword integers in 
xmm2 by packed signed 
doubleword integers in 
xmm3/m128, and store the 
quadword results in xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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DEST[63:0]  SRC1[31:0] * SRC2[31:0]
DEST[127:64]  SRC1[95:64] * SRC2[95:64]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PMULDQ:  __m128i _mm_mul_epi32( __m128i a, __m128i b);

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 5; additionally
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
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PMULHRSW — Packed Multiply High with Round and Scale 

Instruction Operand Encoding

Description 

PMULHRSW multiplies vertically each signed 16-bit integer from the destination 
operand (first operand) with the corresponding signed 16-bit integer of the source 
operand (second operand), producing intermediate, signed 32-bit integers. Each 
intermediate 32-bit integer is truncated to the 18 most significant bits. Rounding is 
always performed by adding 1 to the least significant bit of the 18-bit intermediate 
result. The final result is obtained by selecting the 16 bits immediately to the right of 
the most significant bit of each 18-bit intermediate result and packed to the destina-
tion operand. Both operands can be MMX register or XMM registers. 

When the source operand is a 128-bit memory operand, the operand must be aligned 
on a 16-byte boundary or a general-protection exception (#GP) will be generated. 

In 64-bit mode, use the REX prefix to access additional registers. 

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F 38 0B /r1 

PMULHRSW mm1, mm2/m64

RM V/V SSSE3 Multiply 16-bit signed 
words, scale and round 
signed doublewords, pack 
high 16 bits to MM1.

66 0F 38 0B /r

PMULHRSW xmm1, xmm2/m128 

RM V/V SSSE3 Multiply 16-bit signed 
words, scale and round 
signed doublewords, pack 
high 16 bits to XMM1.

VEX.NDS.128.66.0F38.WIG 0B /r

VPMULHRSW xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Multiply 16-bit signed 
words, scale and round 
signed doublewords, pack 
high 16 bits to xmm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception 
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PMULHRSW (with 64-bit operands)
temp0[31:0] = INT32 ((DEST[15:0] * SRC[15:0]) >>14) + 1;
temp1[31:0] = INT32 ((DEST[31:16] * SRC[31:16]) >>14) + 1;
temp2[31:0] = INT32 ((DEST[47:32] * SRC[47:32]) >> 14) + 1;
temp3[31:0] = INT32 ((DEST[63:48] * SRc[63:48]) >> 14) + 1;
DEST[15:0] = temp0[16:1];
DEST[31:16] = temp1[16:1];
DEST[47:32] = temp2[16:1];
DEST[63:48] = temp3[16:1];

PMULHRSW (with 128-bit operand)
temp0[31:0] = INT32 ((DEST[15:0] * SRC[15:0]) >>14) + 1;
temp1[31:0] = INT32 ((DEST[31:16] * SRC[31:16]) >>14) + 1;
temp2[31:0] = INT32 ((DEST[47:32] * SRC[47:32]) >>14) + 1;
temp3[31:0] = INT32 ((DEST[63:48] * SRC[63:48]) >>14) + 1;
temp4[31:0] = INT32 ((DEST[79:64] * SRC[79:64]) >>14) + 1;
temp5[31:0] = INT32 ((DEST[95:80] * SRC[95:80]) >>14) + 1;
temp6[31:0] = INT32 ((DEST[111:96] * SRC[111:96]) >>14) + 1;
temp7[31:0] = INT32 ((DEST[127:112] * SRC[127:112) >>14) + 1;
DEST[15:0] = temp0[16:1];
DEST[31:16] = temp1[16:1];
DEST[47:32] = temp2[16:1];
DEST[63:48] = temp3[16:1];
DEST[79:64] = temp4[16:1];
DEST[95:80] = temp5[16:1];
DEST[111:96] = temp6[16:1];
DEST[127:112] = temp7[16:1];

VPMULHRSW (VEX.128 encoded version)
temp0[31:0]  INT32 ((SRC1[15:0] * SRC2[15:0]) >>14) + 1
temp1[31:0]  INT32 ((SRC1[31:16] * SRC2[31:16]) >>14) + 1
temp2[31:0]  INT32 ((SRC1[47:32] * SRC2[47:32]) >>14) + 1
temp3[31:0]  INT32 ((SRC1[63:48] * SRC2[63:48]) >>14) + 1
temp4[31:0]  INT32 ((SRC1[79:64] * SRC2[79:64]) >>14) + 1
temp5[31:0]  INT32 ((SRC1[95:80] * SRC2[95:80]) >>14) + 1
temp6[31:0]  INT32 ((SRC1[111:96] * SRC2[111:96]) >>14) + 1
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temp7[31:0]  INT32 ((SRC1[127:112] * SRC2[127:112) >>14) + 1
DEST[15:0]  temp0[16:1]
DEST[31:16]  temp1[16:1]
DEST[47:32]  temp2[16:1]
DEST[63:48]  temp3[16:1]
DEST[79:64]  temp4[16:1]
DEST[95:80]  temp5[16:1]
DEST[111:96]  temp6[16:1]
DEST[127:112]  temp7[16:1]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalents

PMULHRSW:  __m64 _mm_mulhrs_pi16 (__m64 a, __m64 b)

PMULHRSW:  __m128i _mm_mulhrs_epi16 (__m128i a, __m128i b)

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PMULHUW—Multiply Packed Unsigned Integers and Store High Result

Instruction Operand Encoding

Description

Performs a SIMD unsigned multiply of the packed unsigned word integers in the 
destination operand (first operand) and the source operand (second operand), and 
stores the high 16 bits of each 32-bit intermediate results in the destination operand. 
(Figure 4-7 shows this operation when using 64-bit operands.) The source operand 
can be an MMX technology register or a 64-bit memory location, or it can be an XMM 
register or a 128-bit memory location. The destination operand can be an MMX tech-
nology register or an XMM register. 

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F E4 /r1

PMULHUW mm1, mm2/m64

RM V/V SSE Multiply the packed 
unsigned word integers in 
mm1 register and 
mm2/m64, and store the 
high 16 bits of the results in 
mm1. 

66 0F E4 /r

PMULHUW xmm1, xmm2/m128

RM V/V SSE2 Multiply the packed 
unsigned word integers in 
xmm1 and xmm2/m128, 
and store the high 16 bits of 
the results in xmm1.

VEX.NDS.128.66.0F.WIG E4 /r

VPMULHUW xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Multiply the packed 
unsigned word integers in 
xmm2 and xmm3/m128, 
and store the high 16 bits of 
the results in xmm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception 
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PMULHUW (with 64-bit operands)
TEMP0[31:0] ← DEST[15:0] ∗ SRC[15:0]; (* Unsigned multiplication *)
TEMP1[31:0] ← DEST[31:16] ∗ SRC[31:16];
TEMP2[31:0] ← DEST[47:32] ∗ SRC[47:32];
TEMP3[31:0] ← DEST[63:48] ∗ SRC[63:48];
DEST[15:0] ← TEMP0[31:16];
DEST[31:16] ← TEMP1[31:16];
DEST[47:32] ← TEMP2[31:16];
DEST[63:48] ← TEMP3[31:16];

PMULHUW (with 128-bit operands)
TEMP0[31:0] ← DEST[15:0] ∗ SRC[15:0]; (* Unsigned multiplication *)
TEMP1[31:0] ← DEST[31:16] ∗ SRC[31:16];
TEMP2[31:0] ← DEST[47:32] ∗ SRC[47:32];
TEMP3[31:0] ← DEST[63:48] ∗ SRC[63:48];
TEMP4[31:0] ← DEST[79:64] ∗ SRC[79:64];
TEMP5[31:0] ← DEST[95:80] ∗ SRC[95:80];
TEMP6[31:0] ← DEST[111:96] ∗ SRC[111:96];
TEMP7[31:0] ← DEST[127:112] ∗ SRC[127:112];
DEST[15:0] ← TEMP0[31:16];
DEST[31:16] ← TEMP1[31:16];
DEST[47:32] ← TEMP2[31:16];
DEST[63:48] ← TEMP3[31:16];
DEST[79:64] ← TEMP4[31:16];

Figure 4-7.  PMULHUW and PMULHW Instruction Operation Using 64-bit Operands

X3 X2 X1 X0

Z3 = X3 ∗ Y3 Z2 = X2 ∗ Y2 Z1 = X1 ∗ Y1 Z0 = X0 ∗ Y0

SRC

DEST

DEST

Y3 Y2 Y1 Y0

TEMP

Z3[31:16] Z2[31:16] Z1[31:16] Z0[31:16]
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DEST[95:80] ← TEMP5[31:16];
DEST[111:96] ← TEMP6[31:16];
DEST[127:112] ← TEMP7[31:16];

VPMULHUW (VEX.128 encoded version)
TEMP0[31:0]  SRC1[15:0] * SRC2[15:0]
TEMP1[31:0]  SRC1[31:16] * SRC2[31:16]
TEMP2[31:0]  SRC1[47:32] * SRC2[47:32]
TEMP3[31:0]  SRC1[63:48] * SRC2[63:48]
TEMP4[31:0]  SRC1[79:64] * SRC2[79:64]
TEMP5[31:0]  SRC1[95:80] * SRC2[95:80]
TEMP6[31:0]  SRC1[111:96] * SRC2[111:96]
TEMP7[31:0]  SRC1[127:112] * SRC2[127:112]
DEST[15:0]  TEMP0[31:16]
DEST[31:16]  TEMP1[31:16]
DEST[47:32]  TEMP2[31:16]
DEST[63:48]  TEMP3[31:16]
DEST[79:64]  TEMP4[31:16]
DEST[95:80]  TEMP5[31:16]
DEST[111:96]  TEMP6[31:16]
DEST[127:112]  TEMP7[31:16]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PMULHUW: __m64 _mm_mulhi_pu16(__m64 a, __m64 b)

PMULHUW: __m128i _mm_mulhi_epu16 ( __m128i a, __m128i b)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PMULHW—Multiply Packed Signed Integers and Store High Result

Instruction Operand Encoding

Description

Performs a SIMD signed multiply of the packed signed word integers in the destina-
tion operand (first operand) and the source operand (second operand), and stores 
the high 16 bits of each intermediate 32-bit result in the destination operand. 
(Figure 4-7 shows this operation when using 64-bit operands.) The source operand 
can be an MMX technology register or a 64-bit memory location, or it can be an XMM 
register or a 128-bit memory location. The destination operand can be an MMX tech-
nology register or an XMM register.

n 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F E5 /r1

PMULHW mm, mm/m64

RM V/V MMX Multiply the packed signed 
word integers in mm1 
register and mm2/m64, and 
store the high 16 bits of the 
results in mm1. 

66 0F E5 /r

PMULHW xmm1, xmm2/m128

RM V/V SSE2 Multiply the packed signed 
word integers in xmm1 and 
xmm2/m128, and store the 
high 16 bits of the results in 
xmm1. 

VEX.NDS.128.66.0F.WIG E5 /r

VPMULHW xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Multiply the packed signed 
word integers in xmm2 and 
xmm3/m128, and store the 
high 16 bits of the results in 
xmm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception 
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PMULHW (with 64-bit operands)
TEMP0[31:0] ← DEST[15:0] ∗ SRC[15:0]; (* Signed multiplication *)
TEMP1[31:0] ← DEST[31:16] ∗ SRC[31:16];
TEMP2[31:0] ← DEST[47:32] ∗ SRC[47:32];
TEMP3[31:0] ← DEST[63:48] ∗ SRC[63:48];
DEST[15:0] ← TEMP0[31:16];
DEST[31:16] ← TEMP1[31:16];
DEST[47:32] ← TEMP2[31:16];
DEST[63:48] ← TEMP3[31:16];

PMULHW (with 128-bit operands)
TEMP0[31:0] ← DEST[15:0] ∗ SRC[15:0]; (* Signed multiplication *)
TEMP1[31:0] ← DEST[31:16] ∗ SRC[31:16];
TEMP2[31:0] ← DEST[47:32] ∗ SRC[47:32];
TEMP3[31:0] ← DEST[63:48] ∗ SRC[63:48];
TEMP4[31:0] ← DEST[79:64] ∗ SRC[79:64];
TEMP5[31:0] ← DEST[95:80] ∗ SRC[95:80];
TEMP6[31:0] ← DEST[111:96] ∗ SRC[111:96];
TEMP7[31:0] ← DEST[127:112] ∗ SRC[127:112];
DEST[15:0] ← TEMP0[31:16];
DEST[31:16] ← TEMP1[31:16];
DEST[47:32] ← TEMP2[31:16];
DEST[63:48] ← TEMP3[31:16];
DEST[79:64] ← TEMP4[31:16];
DEST[95:80] ← TEMP5[31:16];
DEST[111:96] ← TEMP6[31:16];
DEST[127:112] ← TEMP7[31:16];

VPMULHW (VEX.128 encoded version)
TEMP0[31:0]  SRC1[15:0] * SRC2[15:0] (*Signed Multiplication*)
TEMP1[31:0]  SRC1[31:16] * SRC2[31:16]
TEMP2[31:0]  SRC1[47:32] * SRC2[47:32]
TEMP3[31:0]  SRC1[63:48] * SRC2[63:48]
TEMP4[31:0]  SRC1[79:64] * SRC2[79:64]
TEMP5[31:0]  SRC1[95:80] * SRC2[95:80]
TEMP6[31:0]  SRC1[111:96] * SRC2[111:96]
TEMP7[31:0]  SRC1[127:112] * SRC2[127:112]
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DEST[15:0]  TEMP0[31:16]
DEST[31:16]  TEMP1[31:16]
DEST[47:32]  TEMP2[31:16]
DEST[63:48]  TEMP3[31:16]
DEST[79:64]  TEMP4[31:16]
DEST[95:80]  TEMP5[31:16]
DEST[111:96]  TEMP6[31:16]
DEST[127:112]  TEMP7[31:16]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PMULHW: __m64 _mm_mulhi_pi16 (__m64 m1, __m64 m2)

PMULHW: __m128i _mm_mulhi_epi16 ( __m128i a, __m128i b)

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PMULLD — Multiply Packed Signed Dword Integers and Store Low 
Result

Instruction Operand Encoding

Description

Performs four signed multiplications from four pairs of signed dword integers and 
stores the lower 32 bits of the four 64-bit products in the destination operand (first 
operand). Each dword element in the destination operand is multiplied with the 
corresponding dword element of the source operand (second operand) to obtain a 
64-bit intermediate product.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

Temp0[63:0]  DEST[31:0] * SRC[31:0];
Temp1[63:0]  DEST[63:32] * SRC[63:32];
Temp2[63:0]  DEST[95:64] * SRC[95:64];
Temp3[63:0]  DEST[127:96] * SRC[127:96];
DEST[31:0]  Temp0[31:0];
DEST[63:32]  Temp1[31:0];
DEST[95:64]  Temp2[31:0];

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 38 40 /r
PMULLD xmm1, xmm2/m128

RM V/V SSE4_1 Multiply the packed dword 
signed integers in xmm1 
and xmm2/m128 and store 
the low 32 bits of each 
product in xmm1.

VEX.NDS.128.66.0F38.WIG 40 /r
VPMULLD xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Multiply the packed dword 
signed integers in xmm2 
and xmm3/m128 and store 
the low 32 bits of each 
product in xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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DEST[127:96]  Temp3[31:0];

VPMULLD (VEX.128 encoded version)
Temp0[63:0]  SRC1[31:0] * SRC2[31:0]
Temp1[63:0]  SRC1[63:32] * SRC2[63:32]
Temp2[63:0]  SRC1[95:64] * SRC2[95:64]
Temp3[63:0]  SRC1[127:96] * SRC2[127:96]
DEST[31:0]  Temp0[31:0]
DEST[63:32]  Temp1[31:0]
DEST[95:64]  Temp2[31:0]
DEST[127:96]  Temp3[31:0]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PMULLUD:  __m128i _mm_mullo_epi32(__m128i a, __m128i b);

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PMULLW—Multiply Packed Signed Integers and Store Low Result

Instruction Operand Encoding

Description

Performs a SIMD signed multiply of the packed signed word integers in the destina-
tion operand (first operand) and the source operand (second operand), and stores 
the low 16 bits of each intermediate 32-bit result in the destination operand. 
(Figure 4-7 shows this operation when using 64-bit operands.) The source operand 
can be an MMX technology register or a 64-bit memory location, or it can be an XMM 
register or a 128-bit memory location. The destination operand can be an MMX tech-
nology register or an XMM register. 

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F D5 /r1

PMULLW mm, mm/m64

RM V/V MMX Multiply the packed signed 
word integers in mm1 
register and mm2/m64, and 
store the low 16 bits of the 
results in mm1. 

66 0F D5 /r

PMULLW xmm1, xmm2/m128

RM V/V SSE2 Multiply the packed signed 
word integers in xmm1 and 
xmm2/m128, and store the 
low 16 bits of the results in 
xmm1. 

VEX.NDS.128.66.0F.WIG D5 /r

VPMULLW xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Multiply the packed dword 
signed integers in xmm2 
and xmm3/m128 and store 
the low 32 bits of each 
product in xmm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception 
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PMULLW (with 64-bit operands)
TEMP0[31:0] ← DEST[15:0] ∗ SRC[15:0]; (* Signed multiplication *)
TEMP1[31:0] ← DEST[31:16] ∗ SRC[31:16];
TEMP2[31:0] ← DEST[47:32] ∗ SRC[47:32];
TEMP3[31:0] ← DEST[63:48] ∗ SRC[63:48];
DEST[15:0] ← TEMP0[15:0];
DEST[31:16] ← TEMP1[15:0];
DEST[47:32] ← TEMP2[15:0];
DEST[63:48] ← TEMP3[15:0];

PMULLW (with 128-bit operands)
TEMP0[31:0] ← DEST[15:0] ∗ SRC[15:0]; (* Signed multiplication *)
TEMP1[31:0] ← DEST[31:16] ∗ SRC[31:16];
TEMP2[31:0] ← DEST[47:32] ∗ SRC[47:32];
TEMP3[31:0] ← DEST[63:48] ∗ SRC[63:48];
TEMP4[31:0] ← DEST[79:64] ∗ SRC[79:64];
TEMP5[31:0] ← DEST[95:80] ∗ SRC[95:80];
TEMP6[31:0] ← DEST[111:96] ∗ SRC[111:96];
TEMP7[31:0] ← DEST[127:112] ∗ SRC[127:112];
DEST[15:0] ← TEMP0[15:0];
DEST[31:16] ← TEMP1[15:0];
DEST[47:32] ← TEMP2[15:0];
DEST[63:48] ← TEMP3[15:0];
DEST[79:64] ← TEMP4[15:0];

Figure 4-8.  PMULLU Instruction Operation Using 64-bit Operands

X3 X2 X1 X0

Z3 = X3 ∗ Y3 Z2 = X2 ∗ Y2 Z1 = X1 ∗ Y1 Z0 = X0 ∗ Y0

SRC

DEST

DEST

Y3 Y2 Y1 Y0

TEMP

Z3[15:0] Z2[15:0] Z1[15:0] Z0[15:0]
4-330 Vol. 2B PMULLW—Multiply Packed Signed Integers and Store Low Result



INSTRUCTION SET REFERENCE, M-Z
DEST[95:80] ← TEMP5[15:0];
DEST[111:96] ← TEMP6[15:0];
DEST[127:112] ← TEMP7[15:0];

VPMULLW (VEX.128 encoded version)
Temp0[31:0]  SRC1[15:0] * SRC2[15:0]
Temp1[31:0]  SRC1[31:16] * SRC2[31:16]
Temp2[31:0]  SRC1[47:32] * SRC2[47:32]
Temp3[31:0]  SRC1[63:48] * SRC2[63:48]
Temp4[31:0]  SRC1[79:64] * SRC2[79:64]
Temp5[31:0]  SRC1[95:80] * SRC2[95:80]
Temp6[31:0]  SRC1[111:96] * SRC2[111:96]
Temp7[31:0]  SRC1[127:112] * SRC2[127:112]
DEST[15:0]  Temp0[15:0]
DEST[31:16]  Temp1[15:0]
DEST[47:32]  Temp2[15:0]
DEST[63:48]  Temp3[15:0]
DEST[79:64]  Temp4[15:0]
DEST[95:80]  Temp5[15:0]
DEST[111:96]  Temp6[15:0]
DEST[127:112]  Temp7[15:0]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PMULLW:  __m64 _mm_mullo_pi16(__m64 m1, __m64 m2)

PMULLW:  __m128i _mm_mullo_epi16 ( __m128i a, __m128i b)

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
Vol. 2B 4-331PMULLW—Multiply Packed Signed Integers and Store Low Result



INSTRUCTION SET REFERENCE, M-Z
PMULUDQ—Multiply Packed Unsigned Doubleword Integers

Instruction Operand Encoding

Description

Multiplies the first operand (destination operand) by the second operand (source 
operand) and stores the result in the destination operand. The source operand can be 
an unsigned doubleword integer stored in the low doubleword of an MMX technology 
register or a 64-bit memory location, or it can be two packed unsigned doubleword 
integers stored in the first (low) and third doublewords of an XMM register or an 
128-bit memory location. The destination operand can be an unsigned doubleword 
integer stored in the low doubleword an MMX technology register or two packed 
doubleword integers stored in the first and third doublewords of an XMM register. The 

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F F4 /r1

PMULUDQ mm1, mm2/m64

RM V/V SSE2 Multiply unsigned 
doubleword integer in mm1 
by unsigned doubleword 
integer in mm2/m64, and 
store the quadword result in 
mm1. 

66 0F F4 /r

PMULUDQ xmm1, xmm2/m128

RM V/V SSE2 Multiply packed unsigned 
doubleword integers in 
xmm1 by packed unsigned 
doubleword integers in 
xmm2/m128, and store the 
quadword results in xmm1. 

VEX.NDS.128.66.0F.WIG F4 /r

VPMULUDQ xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Multiply packed unsigned 
doubleword integers in 
xmm2 by packed unsigned 
doubleword integers in 
xmm3/m128, and store the 
quadword results in xmm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception 
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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result is an unsigned quadword integer stored in the destination an MMX technology 
register or two packed unsigned quadword integers stored in an XMM register. When 
a quadword result is too large to be represented in 64 bits (overflow), the result is 
wrapped around and the low 64 bits are written to the destination element (that is, 
the carry is ignored).

For 64-bit memory operands, 64 bits are fetched from memory, but only the low 
doubleword is used in the computation; for 128-bit memory operands, 128 bits are 
fetched from memory, but only the first and third doublewords are used in the 
computation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PMULUDQ (with 64-Bit operands)
DEST[63:0] ← DEST[31:0] ∗ SRC[31:0];

PMULUDQ (with 128-Bit operands)
DEST[63:0] ← DEST[31:0] ∗ SRC[31:0];
DEST[127:64] ← DEST[95:64] ∗ SRC[95:64];

VPMULUDQ (VEX.128 encoded version)
DEST[63:0]  SRC1[31:0] * SRC2[31:0]
DEST[127:64]  SRC1[95:64] * SRC2[95:64]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PMULUDQ: __m64 _mm_mul_su32 (__m64 a, __m64 b)

PMULUDQ: __m128i _mm_mul_epu32 ( __m128i a, __m128i b)

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
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#UD If VEX.L = 1.
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POP—Pop a Value from the Stack
Opcode Instruction Op/ 

En
64-Bit 
Mode

Compat/
Leg Mode

Description

8F /0 POP r/m16 M Valid Valid Pop top of stack into m16; 
increment stack pointer.

8F /0 POP r/m32 M N.E. Valid Pop top of stack into m32; 
increment stack pointer.

8F /0 POP r/m64 M Valid N.E. Pop top of stack into m64; 
increment stack pointer. 
Cannot encode 32-bit 
operand size.

58+ rw POP r16 O Valid Valid Pop top of stack into r16; 
increment stack pointer.

58+ rd POP r32 O N.E. Valid Pop top of stack into r32; 
increment stack pointer.

58+ rd POP r64 O Valid N.E. Pop top of stack into r64; 
increment stack pointer. 
Cannot encode 32-bit 
operand size.

1F POP DS NP Invalid Valid Pop top of stack into DS; 
increment stack pointer.

07 POP ES NP Invalid Valid Pop top of stack into ES; 
increment stack pointer.

17 POP SS NP Invalid Valid Pop top of stack into SS; 
increment stack pointer.

0F A1 POP FS NP Valid Valid Pop top of stack into FS; 
increment stack pointer by 
16 bits. 

0F A1 POP FS NP N.E. Valid Pop top of stack into FS; 
increment stack pointer by 
32 bits. 

0F A1 POP FS NP Valid N.E. Pop top of stack into FS; 
increment stack pointer by 
64 bits. 

0F A9 POP GS NP Valid Valid Pop top of stack into GS; 
increment stack pointer by 
16 bits. 

0F A9 POP GS NP N.E. Valid Pop top of stack into GS; 
increment stack pointer by 
32 bits. 
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Instruction Operand Encoding

Description

Loads the value from the top of the stack to the location specified with the destina-
tion operand (or explicit opcode) and then increments the stack pointer. The destina-
tion operand can be a general-purpose register, memory location, or segment 
register.

Address and operand sizes are determined and used as follows:
• Address size. The D flag in the current code-segment descriptor determines the 

default address size; it may be overridden by an instruction prefix (67H).
The address size is used only when writing to a destination operand in memory.

• Operand size. The D flag in the current code-segment descriptor determines the 
default operand size; it may be overridden by instruction prefixes (66H or 
REX.W).
The operand size (16, 32, or 64 bits) determines the amount by which the stack
pointer is incremented (2, 4 or 8).

• Stack-address size. Outside of 64-bit mode, the B flag in the current stack-
segment descriptor determines the size of the stack pointer (16 or 32 bits); in 
64-bit mode, the size of the stack pointer is always 64 bits.
The stack-address size determines the width of the stack pointer when reading
from the stack in memory and when incrementing the stack pointer. (As stated
above, the amount by which the stack pointer is incremented is determined by
the operand size.)

If the destination operand is one of the segment registers DS, ES, FS, GS, or SS, the 
value loaded into the register must be a valid segment selector. In protected mode, 
popping a segment selector into a segment register automatically causes the 
descriptor information associated with that segment selector to be loaded into the 
hidden (shadow) part of the segment register and causes the selector and the 
descriptor information to be validated (see the “Operation” section below).

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F A9 POP GS NP Valid N.E. Pop top of stack into GS; 
increment stack pointer by 
64 bits. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA

O opcode + rd (w) NA NA NA

NP NA NA NA NA
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A NULL value (0000-0003) may be popped into the DS, ES, FS, or GS register without 
causing a general protection fault. However, any subsequent attempt to reference a 
segment whose corresponding segment register is loaded with a NULL value causes 
a general protection exception (#GP). In this situation, no memory reference occurs 
and the saved value of the segment register is NULL.

The POP instruction cannot pop a value into the CS register. To load the CS register 
from the stack, use the RET instruction.

If the ESP register is used as a base register for addressing a destination operand in 
memory, the POP instruction computes the effective address of the operand after it 
increments the ESP register. For the case of a 16-bit stack where ESP wraps to 0H as 
a result of the POP instruction, the resulting location of the memory write is 
processor-family-specific.

The POP ESP instruction increments the stack pointer (ESP) before data at the old top 
of stack is written into the destination.

A POP SS instruction inhibits all interrupts, including the NMI interrupt, until after 
execution of the next instruction. This action allows sequential execution of POP SS 
and MOV ESP, EBP instructions without the danger of having an invalid stack during 
an interrupt1. However, use of the LSS instruction is the preferred method of loading 
the SS and ESP registers.

In 64-bit mode, using a REX prefix in the form of REX.R permits access to additional 
registers (R8-R15). When in 64-bit mode, POPs using 32-bit operands are not encod-
able and POPs to DS, ES, SS are not valid. See the summary chart at the beginning 
of this section for encoding data and limits.

Operation

IF StackAddrSize = 32
THEN

IF OperandSize = 32
THEN

DEST ← SS:ESP; (* Copy a doubleword *)
ESP ← ESP + 4;

ELSE (* OperandSize = 16*)
DEST ← SS:ESP; (* Copy a word *)

1. If a code instruction breakpoint (for debug) is placed on an instruction located immediately after 
a POP SS instruction, the breakpoint may not be triggered. However, in a sequence of instruc-
tions that POP the SS register, only the first instruction in the sequence is guaranteed to delay 
an interrupt.

In the following sequence, interrupts may be recognized before POP ESP executes:

POP SS
POP SS
POP ESP
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ESP ← ESP + 2;
FI;

ELSE IF StackAddrSize = 64
THEN

IF OperandSize = 64
THEN

DEST ← SS:RSP; (* Copy quadword *)
RSP ← RSP + 8;

ELSE (* OperandSize = 16*)
DEST ← SS:RSP; (* Copy a word *)
RSP ← RSP + 2;

FI;
FI;

ELSE StackAddrSize = 16
THEN

IF OperandSize = 16
THEN

DEST ← SS:SP; (* Copy a word *)
SP ← SP + 2;

ELSE (* OperandSize = 32 *)
DEST ← SS:SP; (* Copy a doubleword *)
SP ← SP + 4;

FI;

FI;

Loading a segment register while in protected mode results in special actions, as 
described in the following listing. These checks are performed on the segment 
selector and the segment descriptor it points to.

64-BIT_MODE
IF FS, or GS is loaded with non-NULL selector;

THEN
IF segment selector index is outside descriptor table limits

OR segment is not a data or readable code segment
OR ((segment is a data or nonconforming code segment)

AND (both RPL and CPL > DPL))
THEN #GP(selector);

IF segment not marked present
THEN #NP(selector);

ELSE
SegmentRegister ← segment selector;
SegmentRegister ← segment descriptor;

FI;
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FI;
IF FS, or GS is loaded with a NULL selector;

THEN
SegmentRegister ← segment selector;
SegmentRegister ← segment descriptor;

FI;

PREOTECTED MODE OR COMPATIBILITY MODE;

IF SS is loaded;
THEN

IF segment selector is NULL
THEN #GP(0); 

FI;
IF segment selector index is outside descriptor table limits 

or segment selector's RPL ≠ CPL
or segment is not a writable data segment
or DPL ≠ CPL

THEN #GP(selector); 
FI;
IF segment not marked present 

THEN #SS(selector); 
ELSE

SS ← segment selector;
SS ← segment descriptor; 

FI;
FI;

IF DS, ES, FS, or GS is loaded with non-NULL selector;
THEN

IF segment selector index is outside descriptor table limits
or segment is not a data or readable code segment
or ((segment is a data or nonconforming code segment)
and (both RPL and CPL > DPL))

THEN #GP(selector); 
FI;
IF segment not marked present

THEN #NP(selector);
ELSE

SegmentRegister ← segment selector;
SegmentRegister ← segment descriptor;

 FI;
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FI;

IF DS, ES, FS, or GS is loaded with a NULL selector
THEN

SegmentRegister ← segment selector;
SegmentRegister ← segment descriptor;

FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If attempt is made to load SS register with NULL segment 

selector.
If the destination operand is in a non-writable segment.
If a memory operand effective address is outside the CS, DS, 
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it 
contains a NULL segment selector.

#GP(selector) If segment selector index is outside descriptor table limits. 
If the SS register is being loaded and the segment selector's RPL 
and the segment descriptor’s DPL are not equal to the CPL. 
If the SS register is being loaded and the segment pointed to is a
non-writable data segment.
If the DS, ES, FS, or GS register is being loaded and the 
segment pointed to is not a data or readable code segment.
If the DS, ES, FS, or GS register is being loaded and the 
segment pointed to is a data or nonconforming code segment, 
but both the RPL and the CPL are greater than the DPL.

#SS(0) If the current top of stack is not within the stack segment.
If a memory operand effective address is outside the SS 
segment limit.

#SS(selector) If the SS register is being loaded and the segment pointed to is 
marked not present.

#NP If the DS, ES, FS, or GS register is being loaded and the 
segment pointed to is marked not present.

#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference is made while the current 

privilege level is 3 and alignment checking is enabled.
#UD If the LOCK prefix is used.
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Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference is made while alignment 

checking is enabled.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
#SS(U) If the stack address is in a non-canonical form.
#GP(selector) If the descriptor is outside the descriptor table limit.

If the FS or GS register is being loaded and the segment pointed 
to is not a data or readable code segment.
If the FS or GS register is being loaded and the segment pointed 
to is a data or nonconforming code segment, but both the RPL 
and the CPL are greater than the DPL.

#AC(0) If an unaligned memory reference is made while alignment 
checking is enabled.

#PF(fault-code) If a page fault occurs.
#NP If the FS or GS register is being loaded and the segment pointed 

to is marked not present.
#UD If the LOCK prefix is used.
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POPA/POPAD—Pop All General-Purpose Registers

Instruction Operand Encoding

Description

Pops doublewords (POPAD) or words (POPA) from the stack into the general-purpose 
registers. The registers are loaded in the following order: EDI, ESI, EBP, EBX, EDX, 
ECX, and EAX (if the operand-size attribute is 32) and DI, SI, BP, BX, DX, CX, and AX 
(if the operand-size attribute is 16). (These instructions reverse the operation of the 
PUSHA/PUSHAD instructions.) The value on the stack for the ESP or SP register is 
ignored. Instead, the ESP or SP register is incremented after each register is loaded.

The POPA (pop all) and POPAD (pop all double) mnemonics reference the same 
opcode. The POPA instruction is intended for use when the operand-size attribute is 
16 and the POPAD instruction for when the operand-size attribute is 32. Some 
assemblers may force the operand size to 16 when POPA is used and to 32 when 
POPAD is used (using the operand-size override prefix [66H] if necessary). Others 
may treat these mnemonics as synonyms (POPA/POPAD) and use the current setting 
of the operand-size attribute to determine the size of values to be popped from the 
stack, regardless of the mnemonic used. (The D flag in the current code segment’s 
segment descriptor determines the operand-size attribute.)

This instruction executes as described in non-64-bit modes. It is not valid in 64-bit 
mode.

Operation

IF 64-Bit Mode
THEN

#UD;
ELSE

IF OperandSize = 32 (* Instruction = POPAD *)
THEN

EDI ← Pop();
ESI ← Pop();
EBP ← Pop();

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

61 POPA NP Invalid Valid Pop DI, SI, BP, BX, DX, CX, 
and AX.

61 POPAD NP Invalid Valid Pop EDI, ESI, EBP, EBX, EDX, 
ECX, and EAX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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Increment ESP by 4; (* Skip next 4 bytes of stack *)
EBX ← Pop();
EDX ← Pop();
ECX ← Pop();
EAX ← Pop();

ELSE (* OperandSize = 16, instruction = POPA *)
DI ← Pop();
SI ← Pop();
BP ← Pop();
Increment ESP by 2; (* Skip next 2 bytes of stack *)
BX ← Pop();
DX ← Pop();
CX ← Pop();
AX ← Pop();

FI;
FI;

Flags Affected

None.

Protected Mode Exceptions
#SS(0) If the starting or ending stack address is not within the stack 

segment. 
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference is made while the current 

privilege level is 3 and alignment checking is enabled.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#SS If the starting or ending stack address is not within the stack 

segment.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#SS(0) If the starting or ending stack address is not within the stack 

segment.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference is made while alignment 

checking is enabled.
#UD If the LOCK prefix is used.
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Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#UD If in 64-bit mode.
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POPCNT — Return the Count of Number of Bits Set to 1

Instruction Operand Encoding

Description

This instruction calculates of number of bits set to 1 in the second operand (source) 
and returns the count in the first operand (a destination register).

Operation

Count = 0;
For (i=0; i < OperandSize; i++) 
{  IF (SRC[ i] = 1) // i’th bit

THEN Count++; FI;
}
DEST  Count;

Flags Affected

OF, SF, ZF, AF, CF, PF are all cleared. ZF is set if SRC = 0, otherwise ZF is cleared

Intel C/C++ Compiler Intrinsic Equivalent

POPCNT:  int _mm_popcnt_u32(unsigned int a);

POPCNT:  int64_t _mm_popcnt_u64(unsigned __int64 a);

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS or GS segments.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

F3  0F B8 /r POPCNT r16, 
r/m16

RM Valid Valid POPCNT on r/m16

F3  0F B8 /r POPCNT r32, 
r/m32

RM Valid Valid POPCNT on r/m32

F3 REX.W 0F B8 
/r

POPCNT r64, 
r/m64

RM Valid N.E. POPCNT on r/m64

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#PF (fault-code) For a page fault.
#AC(0) If an unaligned memory reference is made while the current 

privilege level is 3 and alignment checking is enabled.
#UD If CPUID.01H:ECX.POPCNT [Bit 23] = 0.

If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address 

space from 0 to 0FFFFH.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
#UD If CPUID.01H:ECX.POPCNT [Bit 23] = 0.

If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address 

space from 0 to 0FFFFH.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
#PF (fault-code) For a page fault.
#AC(0) If an unaligned memory reference is made while alignment 

checking is enabled.
#UD If CPUID.01H:ECX.POPCNT [Bit 23] = 0.

If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#PF (fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
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#UD If CPUID.01H:ECX.POPCNT [Bit 23] = 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.
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POPF/POPFD/POPFQ—Pop Stack into EFLAGS Register

Instruction Operand Encoding

Description

Pops a doubleword (POPFD) from the top of the stack (if the current operand-size 
attribute is 32) and stores the value in the EFLAGS register, or pops a word from the 
top of the stack (if the operand-size attribute is 16) and stores it in the lower 16 bits 
of the EFLAGS register (that is, the FLAGS register). These instructions reverse the 
operation of the PUSHF/PUSHFD instructions. 

The POPF (pop flags) and POPFD (pop flags double) mnemonics reference the same 
opcode. The POPF instruction is intended for use when the operand-size attribute is 
16; the POPFD instruction is intended for use when the operand-size attribute is 32. 
Some assemblers may force the operand size to 16 for POPF and to 32 for POPFD. 
Others may treat the mnemonics as synonyms (POPF/POPFD) and use the setting of 
the operand-size attribute to determine the size of values to pop from the stack.

The effect of POPF/POPFD on the EFLAGS register changes, depending on the mode 
of operation. When the processor is operating in protected mode at privilege level 0 
(or in real-address mode, the equivalent to privilege level 0), all non-reserved flags 
in the EFLAGS register except RF1, VIP, VIF, and VM may be modified. VIP, VIF and 
VM remain unaffected.

When operating in protected mode with a privilege level greater than 0, but less than 
or equal to IOPL, all flags can be modified except the IOPL field and VIP, VIF, and VM. 
Here, the IOPL flags are unaffected, the VIP and VIF flags are cleared, and the VM 
flag is unaffected. The interrupt flag (IF) is altered only when executing at a level at 
least as privileged as the IOPL. If a POPF/POPFD instruction is executed with insuffi-
cient privilege, an exception does not occur but privileged bits do not change.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

9D POPF NP Valid Valid Pop top of stack into lower 
16 bits of EFLAGS.

9D POPFD NP N.E. Valid Pop top of stack into 
EFLAGS.

REX.W + 9D POPFQ NP Valid N.E. Pop top of stack and zero-
extend into RFLAGS. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

1. RF is always zero after the execution of POPF. This is because POPF, like all instructions, clears 
RF as it begins to execute.
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When operating in virtual-8086 mode, the IOPL must be equal to 3 to use 
POPF/POPFD instructions; VM, RF, IOPL, VIP, and VIF are unaffected. If the IOPL is 
less than 3, POPF/POPFD causes a general-protection exception (#GP).

In 64-bit mode, use REX.W to pop the top of stack to RFLAGS. The mnemonic 
assigned is POPFQ (note that the 32-bit operand is not encodable). POPFQ pops 64 
bits from the stack, loads the lower 32 bits into RFLAGS, and zero extends the upper 
bits of RFLAGS.

See Chapter 3 of the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 1, for more information about the EFLAGS registers.

Operation

IF VM = 0 (* Not in Virtual-8086 Mode *)
THEN IF CPL = 0

THEN
IF OperandSize = 32;

THEN 
EFLAGS ← Pop(); (* 32-bit pop *)
(* All non-reserved flags except RF, VIP, VIF, and VM can be modified; 
VIP and VIF are cleared; RF, VM, and all reserved bits are unaffected. *)

ELSE IF (Operandsize = 64)
RFLAGS = Pop(); (* 64-bit pop *)
(* All non-reserved flags except RF, VIP, VIF, and VM can be modified; VIP
and VIF are cleared; RF, VM, and all reserved bits are unaffected.*)

ELSE (* OperandSize = 16 *)
EFLAGS[15:0] ← Pop(); (* 16-bit pop *)
(* All non-reserved flags can be modified. *)

FI;
ELSE (* CPL > 0 *)

IF OperandSize = 32
THEN 

IF CPL > IOPL
THEN

EFLAGS ← Pop(); (* 32-bit pop *)
(* All non-reserved bits except IF, IOPL, RF, VIP, and
VIF can be modified; IF, IOPL, RF, VM, and all reserved
bits are unaffected; VIP and VIF are cleared. *)

ELSE
EFLAGS ← Pop(); (* 32-bit pop *)
(* All non-reserved bits except IOPL, RF, VIP, and VIF can be

   modified; IOPL, RF, VM, and all reserved bits are
   unaffected; VIP and VIF are cleared. *)

FI;
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ELSE IF (Operandsize = 64)
IF CPL > IOPL

THEN
RFLAGS ← Pop(); (* 64-bit pop *)
(* All non-reserved bits except IF, IOPL, RF, VIP, and
VIF can be modified; IF, IOPL, RF, VM, and all reserved

  bits are unaffected; VIP and VIF are cleared. *)
ELSE

RFLAGS ← Pop(); (* 64-bit pop *)
(* All non-reserved bits except IOPL, RF, VIP, and VIF can be
modified; IOPL, RF, VM, and all reserved bits are

  unaffected; VIP and VIF are cleared. *)
FI;

ELSE (* OperandSize = 16 *)
EFLAGS[15:0] ← Pop(); (* 16-bit pop *)
(* All non-reserved bits except IOPL can be modified; IOPL and all
reserved bits are unaffected. *)

FI;
FI;

ELSE  (* In Virtual-8086 Mode *)
IF IOPL = 3 

THEN IF OperandSize = 32 
THEN 

EFLAGS ← Pop();
(* All non-reserved bits except VM, RF, IOPL, VIP, and VIF can be
modified; VM, RF, IOPL, VIP, VIF, and all reserved bits are unaffected. *)

ELSE 
EFLAGS[15:0] ← Pop(); FI;
(* All non-reserved bits except IOPL can be modified; 
IOPL and all reserved bits are unaffected. *)

ELSE (* IOPL < 3 *)
#GP(0);  (* Trap to virtual-8086 monitor. *)

FI;
FI;

FI;

Flags Affected

All flags may be affected; see the Operation section for details.

Protected Mode Exceptions
#SS(0) If the top of stack is not within the stack segment.
#PF(fault-code) If a page fault occurs.
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#AC(0) If an unaligned memory reference is made while the current 
privilege level is 3 and alignment checking is enabled.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#SS If the top of stack is not within the stack segment.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If the I/O privilege level is less than 3.

If an attempt is made to execute the POPF/POPFD instruction 
with an operand-size override prefix.

#SS(0) If the top of stack is not within the stack segment.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference is made while alignment 

checking is enabled.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
#SS(0) If the stack address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
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POR—Bitwise Logical OR

Instruction Operand Encoding

Description

Performs a bitwise logical OR operation on the source operand (second operand) and 
the destination operand (first operand) and stores the result in the destination 
operand. The source operand can be an MMX technology register or a 64-bit memory 
location or it can be an XMM register or a 128-bit memory location. The destination 
operand can be an MMX technology register or an XMM register. Each bit of the result 
is set to 1 if either or both of the corresponding bits of the first and second operands 
are 1; otherwise, it is set to 0.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

POR (128-bit Legacy SSE version)

Opcode Instruction Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F EB /r1

POR mm, mm/m64

RM V/V MMX Bitwise OR of mm/m64 and 
mm.

66 0F EB /r

POR xmm1, xmm2/m128

RM V/V SSE2 Bitwise OR of xmm2/m128 
and xmm1.

VEX.NDS.128.66.0F.WIG EB /r

VPOR xmm1, xmm2, xmm3/m128

RVM V/V AVX Bitwise OR of xmm2/m128 
and xmm3.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception 
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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DEST  DEST OR SRC
DEST[VLMAX-1:128] (Unmodified)

VPOR (VEX.128 encoded version)
DEST  SRC1 OR SRC2
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

POR: __m64 _mm_or_si64(__m64 m1, __m64 m2)

POR: __m128i _mm_or_si128(__m128i m1, __m128i m2)

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PREFETCHh—Prefetch Data Into Caches

Instruction Operand Encoding

Description

Fetches the line of data from memory that contains the byte specified with the source 
operand to a location in the cache hierarchy specified by a locality hint:
• T0 (temporal data)—prefetch data into all levels of the cache hierarchy.

— Pentium III processor—1st- or 2nd-level cache.

— Pentium 4 and Intel Xeon processors—2nd-level cache.
• T1 (temporal data with respect to first level cache)—prefetch data into level 2 

cache and higher.

— Pentium III processor—2nd-level cache.

— Pentium 4 and Intel Xeon processors—2nd-level cache.
• T2 (temporal data with respect to second level cache)—prefetch data into level 2 

cache and higher.

— Pentium III processor—2nd-level cache.

— Pentium 4 and Intel Xeon processors—2nd-level cache.
• NTA (non-temporal data with respect to all cache levels)—prefetch data into non-

temporal cache structure and into a location close to the processor, minimizing 
cache pollution.

— Pentium III processor—1st-level cache 

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 18 /1 PREFETCHT0 m8 M Valid Valid Move data from m8 closer 
to the processor using T0 
hint.

0F 18 /2 PREFETCHT1 m8 M Valid Valid Move data from m8 closer 
to the processor using T1 
hint.

0F 18 /3 PREFETCHT2 m8 M Valid Valid Move data from m8 closer 
to the processor using T2 
hint.

0F 18 /0 PREFETCHNTA m8 M Valid Valid Move data from m8 closer 
to the processor using NTA 
hint.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA
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— Pentium 4 and Intel Xeon processors—2nd-level cache

The source operand is a byte memory location. (The locality hints are encoded into 
the machine level instruction using bits 3 through 5 of the ModR/M byte. Use of any 
ModR/M value other than the specified ones will lead to unpredictable behavior.)

If the line selected is already present in the cache hierarchy at a level closer to the 
processor, no data movement occurs. Prefetches from uncacheable or WC memory 
are ignored.

The PREFETCHh instruction is merely a hint and does not affect program behavior. If 
executed, this instruction moves data closer to the processor in anticipation of future 
use.

The implementation of prefetch locality hints is implementation-dependent, and can 
be overloaded or ignored by a processor implementation. The amount of data 
prefetched is also processor implementation-dependent. It will, however, be a 
minimum of 32 bytes.

It should be noted that processors are free to speculatively fetch and cache data from 
system memory regions that are assigned a memory-type that permits speculative 
reads (that is, the WB, WC, and WT memory types). A PREFETCHh instruction is 
considered a hint to this speculative behavior. Because this speculative fetching can 
occur at any time and is not tied to instruction execution, a PREFETCHh instruction is 
not ordered with respect to the fence instructions (MFENCE, SFENCE, and LFENCE) or 
locked memory references. A PREFETCHh instruction is also unordered with respect 
to CLFLUSH instructions, other PREFETCHh instructions, or any other general instruc-
tion. It is ordered with respect to serializing instructions such as CPUID, WRMSR, 
OUT, and MOV CR.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

FETCH (m8);

Intel C/C++ Compiler Intrinsic Equivalent

void _mm_prefetch(char *p, int i)

The argument “*p” gives the address of the byte (and corresponding cache line) to 
be prefetched. The value “i” gives a constant (_MM_HINT_T0, _MM_HINT_T1, 
_MM_HINT_T2, or _MM_HINT_NTA) that specifies the type of prefetch operation to 
be performed.

Numeric Exceptions

None.
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Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.
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PSADBW—Compute Sum of Absolute Differences

Instruction Operand Encoding

Description

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F F6 /r1

PSADBW mm1, mm2/m64

RM V/V SSE Computes the absolute 
differences of the packed 
unsigned byte integers from 
mm2 /m64 and mm1; 
differences are then 
summed to produce an 
unsigned word integer 
result.

66 0F F6 /r

PSADBW xmm1, xmm2/m128

RM V/V SSE2 Computes the absolute 
differences of the packed 
unsigned byte integers from 
xmm2 /m128 and xmm1; 
the 8 low differences and 8 
high differences are then 
summed separately to 
produce two unsigned word 
integer results.

VEX.NDS.128.66.0F.WIG F6 /r

VPSADBW xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Computes the absolute 
differences of the packed 
unsigned byte integers from 
xmm3 /m128 and xmm2; 
the 8 low differences and 8 
high differences are then 
summed separately to 
produce two unsigned word 
integer results.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception 
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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Computes the absolute value of the difference of 8 unsigned byte integers from the 
source operand (second operand) and from the destination operand (first operand). 
These 8 differences are then summed to produce an unsigned word integer result 
that is stored in the destination operand. The source operand can be an MMX tech-
nology register or a 64-bit memory location or it can be an XMM register or a 128-bit 
memory location. The destination operand can be an MMX technology register or an 
XMM register. Figure 4-9 shows the operation of the PSADBW instruction when using 
64-bit operands.

When operating on 64-bit operands, the word integer result is stored in the low word 
of the destination operand, and the remaining bytes in the destination operand are 
cleared to all 0s.

When operating on 128-bit operands, two packed results are computed. Here, the 8 
low-order bytes of the source and destination operands are operated on to produce a 
word result that is stored in the low word of the destination operand, and the 8 high-
order bytes are operated on to produce a word result that is stored in bits 64 through 
79 of the destination operand. The remaining bytes of the destination operand are 
cleared.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PSADBW (when using 64-bit operands)
TEMP0 ← ABS(DEST[7:0] − SRC[7:0]);
(* Repeat operation for bytes 2 through 6 *)
TEMP7 ← ABS(DEST[63:56] − SRC[63:56]);

Figure 4-9.  PSADBW Instruction Operation Using 64-bit Operands

X3 X2 X1 X0SRC

DEST

TEMP

X4X5X6X7

Y3 Y2 Y1 Y0Y4Y5Y6Y7

ABS(X0:Y0)ABS(X7:Y7) ABS(X6:Y6) ABS(X5:Y5) ABS(X4:Y4) ABS(X3:Y3) ABS(X2:Y2) ABS(X1:Y1)

DEST 00H 00H00H00H00H00H SUM(TEMP7...TEMP0)
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DEST[15:0] ← SUM(TEMP0:TEMP7);
DEST[63:16] ← 000000000000H;

PSADBW (when using 128-bit operands)
TEMP0 ← ABS(DEST[7:0] − SRC[7:0]);
(* Repeat operation for bytes 2 through 14 *)
TEMP15 ← ABS(DEST[127:120] − SRC[127:120]);
DEST[15:0] ← SUM(TEMP0:TEMP7);
DEST[63:16] ← 000000000000H;
DEST[79:64] ← SUM(TEMP8:TEMP15);
DEST[127:80] ← 000000000000H;

DEST[VLMAX-1:128] (Unmodified)

VPSADBW (VEX.128 encoded version)
TEMP0  ABS(SRC1[7:0] - SRC2[7:0])
(* Repeat operation for bytes 2 through 14 *)
TEMP15  ABS(SRC1[127:120] - SRC2[127:120])
DEST[15:0] SUM(TEMP0:TEMP7)
DEST[63:16]  000000000000H
DEST[79:64]  SUM(TEMP8:TEMP15)
DEST[127:80]  00000000000
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PSADBW: __m64 _mm_sad_pu8(__m64 a,__m64 b)

PSADBW: __m128i _mm_sad_epu8(__m128i a, __m128i b)

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PSHUFB — Packed Shuffle Bytes

Instruction Operand Encoding

Description 

PSHUFB performs in-place shuffles of bytes in the destination operand (the first 
operand) according to the shuffle control mask in the source operand (the second 
operand). The instruction permutes the data in the destination operand, leaving the 
shuffle mask unaffected. If the most significant bit (bit[7]) of each byte of the shuffle 
control mask is set, then constant zero is written in the result byte. Each byte in the 
shuffle control mask forms an index to permute the corresponding byte in the desti-
nation operand. The value of each index is the least significant 4 bits (128-bit opera-
tion) or 3 bits (64-bit operation) of the shuffle control byte. Both operands can be 
MMX register or XMM registers. When the source operand is a 128-bit memory 
operand, the operand must be aligned on a 16-byte boundary or a general-protection 
exception (#GP) will be generated. 

In 64-bit mode, use the REX prefix to access additional registers. 
128-bit Legacy SSE version: The first source operand and the destination operand 
are the same. Bits (VLMAX-1:128) of the corresponding YMM destination register 
remain unchanged.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F 38 00 /r1 

PSHUFB mm1, mm2/m64

RM V/V SSSE3 Shuffle bytes in mm1 
according to contents of 
mm2/m64. 

66 0F 38 00 /r 

PSHUFB xmm1, xmm2/m128

RM V/V SSSE3 Shuffle bytes in xmm1 
according to contents of 
xmm2/m128.

VEX.NDS.128.66.0F38.WIG 00 /r

VPSHUFB xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Shuffle bytes in xmm2 
according to contents of 
xmm3/m128.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception 
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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VEX.128 encoded version: The destination operand is the first operand, the first 
source operand is the second operand, the second source operand is the third 
operand. Bits (VLMAX-1:128) of the destination YMM register are zeroed. VEX.L must 
be 0, otherwise the instruction will #UD.

Operation 

PSHUFB (with 64 bit operands)

for i = 0 to 7 { 
if (SRC[(i * 8)+7] = 1 ) then

DEST[(i*8)+7...(i*8)+0] ← 0;
else 

index[2..0] ← SRC[(i*8)+2 .. (i*8)+0];
DEST[(i*8)+7...(i*8)+0] ← DEST[(index*8+7)..(index*8+0)];

endif;
}

PSHUFB (with 128 bit operands)

for i = 0 to 15 { 
if (SRC[(i * 8)+7] = 1 ) then

DEST[(i*8)+7..(i*8)+0] ← 0;
 else 

index[3..0] ← SRC[(i*8)+3 .. (i*8)+0];
DEST[(i*8)+7..(i*8)+0] ← DEST[(index*8+7)..(index*8+0)];

endif
}

DEST[VLMAX-1:128]  0

VPSHUFB (VEX.128 encoded version)
for i = 0 to 15 {

if (SRC2[(i * 8)+7] = 1) then
DEST[(i*8)+7..(i*8)+0]  0;
else
index[3..0]  SRC2[(i*8)+3 .. (i*8)+0];
DEST[(i*8)+7..(i*8)+0]  SRC1[(index*8+7)..(index*8+0)];

endif
}
DEST[VLMAX-1:128]  0
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Intel C/C++ Compiler Intrinsic Equivalent

PSHUFB:  __m64 _mm_shuffle_pi8 (__m64 a, __m64 b)

PSHUFB:  __m128i _mm_shuffle_epi8 (__m128i a, __m128i b)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.

Figure 4-10.  PSHUB with 64-Bit Operands
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PSHUFD—Shuffle Packed Doublewords

Instruction Operand Encoding

Description

Copies doublewords from source operand (second operand) and inserts them in the 
destination operand (first operand) at the locations selected with the order operand 
(third operand). Figure 4-11 shows the operation of the PSHUFD instruction and the 
encoding of the order operand. Each 2-bit field in the order operand selects the 
contents of one doubleword location in the destination operand. For example, bits 0 
and 1 of the order operand select the contents of doubleword 0 of the destination 
operand. The encoding of bits 0 and 1 of the order operand (see the field encoding in 
Figure 4-11) determines which doubleword from the source operand will be copied to 
doubleword 0 of the destination operand.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 70 /r ib

PSHUFD xmm1, xmm2/m128, imm8

RMI V/V  SSE2 Shuffle the doublewords in 
xmm2/m128 based on the 
encoding in imm8 and store 
the result in xmm1.

VEX.128.66.0F.WIG 70 /r ib

VPSHUFD xmm1, xmm2/m128, 
imm8

RMI V/V AVX Shuffle the doublewords in 
xmm2/m128 based on the 
encoding in imm8 and store 
the result in xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (w) ModRM:r/m (r) imm8 NA

Figure 4-11.  PSHUFD Instruction Operation

X3 X2 X1 X0SRC

DEST Y3 Y2 Y1 Y0

ORDER
00B - X0
01B - X1
10B - X2
11B - X3

Encoding
of Fields in

ORDER01234567
Operand
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The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register. The order operand is an 8-bit immediate. Note 
that this instruction permits a doubleword in the source operand to be copied to more 
than one doubleword location in the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:1288) of the destination YMM register are 
zeroed. VEX.vvvv is reserved and must be 1111b, VEX.L must be 0, otherwise the 
instruction will #UD.

Operation

PSHUFD (128-bit Legacy SSE version)
DEST[31:0]  (SRC >> (ORDER[1:0] * 32))[31:0];
DEST[63:32]  (SRC >> (ORDER[3:2] * 32))[31:0];
DEST[95:64]  (SRC >> (ORDER[5:4] * 32))[31:0];
DEST[127:96]  (SRC >> (ORDER[7:6] * 32))[31:0];
DEST[VLMAX-1:128] (Unmodified)

VPSHUFD (VEX.128 encoded version)
DEST[31:0]  (SRC >> (ORDER[1:0] * 32))[31:0];
DEST[63:32]  (SRC >> (ORDER[3:2] * 32))[31:0];
DEST[95:64]  (SRC >> (ORDER[5:4] * 32))[31:0];
DEST[127:96]  (SRC >> (ORDER[7:6] * 32))[31:0];
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PSHUFD: __m128i _mm_shuffle_epi32(__m128i a, int n)

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
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PSHUFHW—Shuffle Packed High Words

Instruction Operand Encoding

Description

Copies words from the high quadword of the source operand (second operand) and 
inserts them in the high quadword of the destination operand (first operand) at word 
locations selected with the order operand (third operand). This operation is similar to 
the operation used by the PSHUFD instruction, which is illustrated in Figure 4-11. For 
the PSHUFHW instruction, each 2-bit field in the order operand selects the contents 
of one word location in the high quadword of the destination operand. The binary 
encodings of the order operand fields select words (0, 1, 2 or 3, 4) from the high 
quadword of the source operand to be copied to the destination operand. The low 
quadword of the source operand is copied to the low quadword of the destination 
operand.

The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register. The order operand is an 8-bit immediate. Note 
that this instruction permits a word in the high quadword of the source operand to be 
copied to more than one word location in the high quadword of the destination 
operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. VEX.vvvv is reserved and must be 1111b, VEX.L must be 0, otherwise the 
instruction will #UD.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

F3 0F 70 /r ib

PSHUFHW xmm1, xmm2/ m128, 
imm8

RMI V/V SSE2 Shuffle the high words in 
xmm2/m128 based on the 
encoding in imm8 and store 
the result in xmm1.

VEX.128.F3.0F.WIG 70 /r ib

VPSHUFHW xmm1, xmm2/m128, 
imm8

RMI V/V AVX Shuffle the high words in 
xmm2/m128 based on the 
encoding in imm8 and store 
the result in xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (w) ModRM:r/m (r) imm8 NA
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Operation

PSHUFHW (128-bit Legacy SSE version)
DEST[63:0]  SRC[63:0]
DEST[79:64]  (SRC >> (imm[1:0] *16))[79:64]
DEST[95:80]  (SRC >> (imm[3:2] * 16))[79:64]
DEST[111:96]  (SRC >> (imm[5:4] * 16))[79:64]
DEST[127:112]  (SRC >> (imm[7:6] * 16))[79:64]
DEST[VLMAX-1:128] (Unmodified)

VPSHUFHW (VEX.128 encoded version)
DEST[63:0]  SRC1[63:0]
DEST[79:64]  (SRC1 >> (imm[1:0] *16))[79:64]
DEST[95:80]  (SRC1 >> (imm[3:2] * 16))[79:64]
DEST[111:96]  (SRC1 >> (imm[5:4] * 16))[79:64]
DEST[127:112]  (SRC1 >> (imm[7:6] * 16))[79:64]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PSHUFHW: __m128i _mm_shufflehi_epi16(__m128i a, int n)

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
4-366 Vol. 2B PSHUFHW—Shuffle Packed High Words



INSTRUCTION SET REFERENCE, M-Z
PSHUFLW—Shuffle Packed Low Words

Instruction Operand Encoding

Description

Copies words from the low quadword of the source operand (second operand) and 
inserts them in the low quadword of the destination operand (first operand) at word 
locations selected with the order operand (third operand). This operation is similar to 
the operation used by the PSHUFD instruction, which is illustrated in Figure 4-11. For 
the PSHUFLW instruction, each 2-bit field in the order operand selects the contents of 
one word location in the low quadword of the destination operand. The binary encod-
ings of the order operand fields select words (0, 1, 2, or 3) from the low quadword of 
the source operand to be copied to the destination operand. The high quadword of 
the source operand is copied to the high quadword of the destination operand.

The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register. The order operand is an 8-bit immediate. Note 
that this instruction permits a word in the low quadword of the source operand to be 
copied to more than one word location in the low quadword of the destination 
operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. VEX.vvvv is reserved and must be 1111b, VEX.L must be 0, otherwise 
instructions will #UD.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

F2 0F 70 /r ib

PSHUFLW xmm1, xmm2/m128, 
imm8

RMI V/V SSE2 Shuffle the low words in 
xmm2/m128 based on the 
encoding in imm8 and store 
the result in xmm1.

VEX.128.F2.0F.WIG 70 /r ib

VPSHUFLW xmm1, xmm2/m128, 
imm8

RMI V/V AVX Shuffle the low words in 
xmm2/m128 based on the 
encoding in imm8 and store 
the result in xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (w) ModRM:r/m (r) imm8 NA
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Operation

PSHUFLW (128-bit Legacy SSE version)
DEST[15:0]  (SRC >> (imm[1:0] *16))[15:0]
DEST[31:16]  (SRC >> (imm[3:2] * 16))[15:0]
DEST[47:32]  (SRC >> (imm[5:4] * 16))[15:0]
DEST[63:48]  (SRC >> (imm[7:6] * 16))[15:0]
DEST[127:64]  SRC[127:64]
DEST[VLMAX-1:128] (Unmodified)

VPSHUFLW (VEX.128 encoded version)
DEST[15:0]  (SRC1 >> (imm[1:0] *16))[15:0]
DEST[31:16]  (SRC1 >> (imm[3:2] * 16))[15:0]
DEST[47:32]  (SRC1 >> (imm[5:4] * 16))[15:0]
DEST[63:48]  (SRC1 >> (imm[7:6] * 16))[15:0]
DEST[127:64]  SRC[127:64]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PSHUFLW: __m128i _mm_shufflelo_epi16(__m128i a, int n)

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
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PSHUFW—Shuffle Packed Words

Instruction Operand Encoding

Description

Copies words from the source operand (second operand) and inserts them in the 
destination operand (first operand) at word locations selected with the order operand 
(third operand). This operation is similar to the operation used by the PSHUFD 
instruction, which is illustrated in Figure 4-11. For the PSHUFW instruction, each 2-
bit field in the order operand selects the contents of one word location in the destina-
tion operand. The encodings of the order operand fields select words from the source 
operand to be copied to the destination operand.

The source operand can be an MMX technology register or a 64-bit memory location. 
The destination operand is an MMX technology register. The order operand is an 8-bit 
immediate. Note that this instruction permits a word in the source operand to be 
copied to more than one word location in the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).

Operation

DEST[15:0] ← (SRC >> (ORDER[1:0] * 16))[15:0];
DEST[31:16] ← (SRC >> (ORDER[3:2] * 16))[15:0];
DEST[47:32] ← (SRC >> (ORDER[5:4] * 16))[15:0];
DEST[63:48] ← (SRC >> (ORDER[7:6] * 16))[15:0];

Intel C/C++ Compiler Intrinsic Equivalent

PSHUFW: __m64 _mm_shuffle_pi16(__m64 a, int n)

Flags Affected

None.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 70 /r ib PSHUFW mm1, 
mm2/m64, imm8

RMI Valid Valid Shuffle the words in 
mm2/m64 based on the 
encoding in imm8 and store 
the result in mm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (w) ModRM:r/m (r) imm8 NA
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Numeric Exceptions

None.

Other Exceptions
See Table 22-7, “Exception Conditions for SIMD/MMX Instructions with Memory 
Reference,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3A.
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PSIGNB/PSIGNW/PSIGND — Packed SIGN 
Opcode Instruction Op/ 

En
64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F 38 08 /r1 

PSIGNB mm1, mm2/m64

RM V/V SSSE3 Negate/zero/preserve 
packed byte integers in 
mm1 depending on the 
corresponding sign in 
mm2/m64

66 0F 38 08 /r 

PSIGNB xmm1, xmm2/m128

RM V/V SSSE3 Negate/zero/preserve 
packed byte integers in 
xmm1 depending on the 
corresponding sign in 
xmm2/m128.

0F 38 09 /r1 

PSIGNW mm1, mm2/m64

RM V/V SSSE3 Negate/zero/preserve 
packed word integers in 
mm1 depending on the 
corresponding sign in 
mm2/m128.

66 0F 38 09 /r 

PSIGNW xmm1, xmm2/m128

RM V/V SSSE3 Negate/zero/preserve 
packed word integers in 
xmm1 depending on the 
corresponding sign in 
xmm2/m128.

0F 38 0A /r1

PSIGND mm1, mm2/m64

RM V/V SSSE3 Negate/zero/preserve 
packed doubleword integers 
in mm1 depending on the 
corresponding sign in 
mm2/m128.

66 0F 38 0A /r 

PSIGND xmm1, xmm2/m128 

RM V/V SSSE3 Negate/zero/preserve 
packed doubleword integers 
in xmm1 depending on the 
corresponding sign in 
xmm2/m128. 

VEX.NDS.128.66.0F38.WIG 08 /r

VPSIGNB xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Negate/zero/preserve 
packed byte integers in 
xmm2 depending on the 
corresponding sign in 
xmm3/m128.
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Instruction Operand Encoding

Description 

PSIGNB/PSIGNW/PSIGND negates each data element of the destination operand 
(the first operand) if the signed integer value of the corresponding data element in 
the source operand (the second operand) is less than zero. If the signed integer 
value of a data element in the source operand is positive, the corresponding data 
element in the destination operand is unchanged. If a data element in the source 
operand is zero, the corresponding data element in the destination operand is set to 
zero.

PSIGNB operates on signed bytes. PSIGNW operates on 16-bit signed words. 
PSIGND operates on signed 32-bit integers. Both operands can be MMX register or 
XMM registers. When the source operand is a 128bit memory operand, the operand 
must be aligned on a 16-byte boundary or a general-protection exception (#GP) will 
be generated. 

In 64-bit mode, use the REX prefix to access additional registers. 
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.

VEX.NDS.128.66.0F38.WIG 09 /r

VPSIGNW xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Negate/zero/preserve 
packed word integers in 
xmm2 depending on the 
corresponding sign in 
xmm3/m128.

VEX.NDS.128.66.0F38.WIG 0A /r

VPSIGND xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Negate/zero/preserve 
packed doubleword integers 
in xmm2 depending on the 
corresponding sign in 
xmm3/m128.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception 
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

Opcode Instruction Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description
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VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. VEX.L must be 0, otherwise instructions will #UD.

Operation 

PSIGNB (with 64 bit operands)

IF (SRC[7:0] < 0 ) 
DEST[7:0] ← Neg(DEST[7:0]) 

ELSEIF (SRC[7:0] = 0 ) 
DEST[7:0] ← 0 

ELSEIF (SRC[7:0] > 0 ) 
DEST[7:0] ← DEST[7:0] 

Repeat operation for 2nd through 7th bytes 

IF (SRC[63:56] < 0 )
DEST[63:56] ← Neg(DEST[63:56]) 

ELSEIF (SRC[63:56] = 0 ) 
DEST[63:56] ← 0 

ELSEIF (SRC[63:56] > 0 ) 
DEST[63:56] ← DEST[63:56] 

PSIGNB (with 128 bit operands)

IF (SRC[7:0] < 0 ) 
DEST[7:0] ← Neg(DEST[7:0]) 

ELSEIF (SRC[7:0] = 0 )
DEST[7:0] ← 0 

ELSEIF (SRC[7:0] > 0 ) 
DEST[7:0] ← DEST[7:0] 

Repeat operation for 2nd through 15th bytes 
IF (SRC[127:120] < 0 ) 

DEST[127:120] ← Neg(DEST[127:120]) 
ELSEIF (SRC[127:120] = 0 ) 

DEST[127:120] ← 0 
ELSEIF (SRC[127:120] > 0 ) 

DEST[127:120] ← DEST[127:120] 

PSIGNW (with 64 bit operands)

IF (SRC[15:0] < 0 ) 
DEST[15:0] ← Neg(DEST[15:0]) 

ELSEIF (SRC[15:0] = 0 ) 
DEST[15:0] ← 0 

ELSEIF (SRC[15:0] > 0 ) 
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DEST[15:0] ← DEST[15:0] 
Repeat operation for 2nd through 3rd words 

IF (SRC[63:48] < 0 ) 
DEST[63:48] ← Neg(DEST[63:48]) 

ELSEIF (SRC[63:48] = 0 ) 
DEST[63:48] ← 0 

ELSEIF (SRC[63:48] > 0 ) 
DEST[63:48] ← DEST[63:48] 

PSIGNW (with 128 bit operands)

IF (SRC[15:0] < 0 ) 
DEST[15:0] ← Neg(DEST[15:0])

ELSEIF (SRC[15:0] = 0 ) 
DEST[15:0] ← 0 

ELSEIF (SRC[15:0] > 0 ) 
DEST[15:0] ← DEST[15:0] 

Repeat operation for 2nd through 7th words 
IF (SRC[127:112] < 0 ) 

DEST[127:112] ← Neg(DEST[127:112]) 
ELSEIF (SRC[127:112] = 0 ) 

DEST[127:112] ← 0 
ELSEIF (SRC[127:112] > 0 ) 

DEST[127:112] ← DEST[127:112] 

PSIGND (with 64 bit operands)

IF (SRC[31:0] < 0 ) 
DEST[31:0] ← Neg(DEST[31:0]) 

ELSEIF (SRC[31:0] = 0 ) 
DEST[31:0] ← 0 

ELSEIF (SRC[31:0] > 0 ) 
DEST[31:0] ← DEST[31:0]

IF (SRC[63:32] < 0 ) 
DEST[63:32] ← Neg(DEST[63:32]) 

ELSEIF (SRC[63:32] = 0 ) 
DEST[63:32] ← 0 

ELSEIF (SRC[63:32] > 0 ) 
DEST[63:32] ← DEST[63:32] 

PSIGND (with 128 bit operands)

IF (SRC[31:0] < 0 ) 
DEST[31:0] ← Neg(DEST[31:0]) 

ELSEIF (SRC[31:0] = 0 ) 
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DEST[31:0] ← 0 
ELSEIF (SRC[31:0] > 0 ) 

DEST[31:0] ← DEST[31:0] 
Repeat operation for 2nd through 3rd double words 
IF (SRC[127:96] < 0 ) 

DEST[127:96] ← Neg(DEST[127:96]) 
ELSEIF (SRC[127:96] = 0 ) 

DEST[127:96] ← 0 
ELSEIF (SRC[127:96] > 0 ) 

DEST[127:96] ← DEST[127:96] 

VPSIGNB (VEX.128 encoded version)
DEST[127:0] BYTE_SIGN(SRC1, SRC2)
DEST[VLMAX-1:128]  0

VPSIGNW (VEX.128 encoded version)
DEST[127:0] WORD_SIGN(SRC1, SRC2)
DEST[VLMAX-1:128]  0

VPSIGND (VEX.128 encoded version)
DEST[127:0] DWORD_SIGN(SRC1, SRC2)
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PSIGNB:  __m64 _mm_sign_pi8 (__m64 a, __m64 b)

PSIGNB:  __m128i _mm_sign_epi8 (__m128i a, __m128i b)

PSIGNW:  __m64 _mm_sign_pi16 (__m64 a, __m64 b)

PSIGNW:  __m128i _mm_sign_epi16 (__m128i a, __m128i b)

PSIGND:  __m64 _mm_sign_pi32 (__m64 a, __m64 b)

PSIGND:  __m128i _mm_sign_epi32 (__m128i a, __m128i b)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PSLLDQ—Shift Double Quadword Left Logical

Instruction Operand Encoding

Description

Shifts the destination operand (first operand) to the left by the number of bytes spec-
ified in the count operand (second operand). The empty low-order bytes are cleared 
(set to all 0s). If the value specified by the count operand is greater than 15, the 
destination operand is set to all 0s. The destination operand is an XMM register. The 
count operand is an 8-bit immediate.
128-bit Legacy SSE version: The source and destination operands are the same. Bits 
(VLMAX-1:128) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. VEX.vvvv encodes the destination register, and VEX.B + ModRM.r/m encodes 
the source register. VEX.L must be 0, otherwise instructions will #UD.

Operation

PSLLDQ(128-bit Legacy SSE version)
TEMP  COUNT
IF (TEMP > 15) THEN TEMP  16; FI
DEST  DEST << (TEMP * 8)
DEST[VLMAX-1:128] (Unmodified)

VPSLLDQ (VEX.128 encoded version)
TEMP  COUNT
IF (TEMP > 15) THEN TEMP  16; FI
DEST  SRC << (TEMP * 8)
DEST[VLMAX-1:128]  0

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 73 /7 ib

PSLLDQ xmm1, imm8 

MI V/V SSE2 Shift xmm1 left by imm8 
bytes while shifting in 0s.

VEX.NDD.128.66.0F.WIG 73 /7 ib

VPSLLDQ xmm1, xmm2, imm8

VMI V/V AVX Shift xmm2 left by imm8 
bytes while shifting in 0s 
and store result in xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MI ModRM:r/m (r, w) imm8 NA NA

VMI VEX.vvvv (w) ModRM:r/m (r) imm8 NA
4-376 Vol. 2B PSLLDQ—Shift Double Quadword Left Logical



INSTRUCTION SET REFERENCE, M-Z
Intel C/C++ Compiler Intrinsic Equivalent

PSLLDQ: __m128i _mm_slli_si128 ( __m128i a, int imm)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 7; additionally
#UD If VEX.L = 1.
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PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F F1 /r1

PSLLW mm, mm/m64

RM V/V MMX Shift words in mm left 
mm/m64 while shifting in 
0s.

66 0F F1 /r

PSLLW xmm1, xmm2/m128

RM V/V SSE2 Shift words in xmm1 left by 
xmm2/m128 while shifting 
in 0s.

0F 71 /6 ib

PSLLW xmm1, imm8

MI V/V MMX Shift words in mm left by 
imm8 while shifting in 0s.

66 0F 71 /6 ib

PSLLW xmm1, imm8

MI V/V SSE2 Shift words in xmm1 left by 
imm8 while shifting in 0s.

0F F2 /r1

PSLLD mm, mm/m64

RM V/V MMX Shift doublewords in mm 
left by mm/m64 while 
shifting in 0s.

66 0F F2 /r

PSLLD xmm1, xmm2/m128

RM V/V SSE2 Shift doublewords in xmm1 
left by xmm2/m128 while 
shifting in 0s.

0F 72 /6 ib1

PSLLD mm, imm8

MI V/V MMX Shift doublewords in mm 
left by imm8 while shifting 
in 0s.

66 0F 72 /6 ib

PSLLD xmm1, imm8

MI V/V SSE2 Shift doublewords in xmm1 
left by imm8 while shifting 
in 0s.

0F F3 /r1

PSLLQ mm, mm/m64

RM V/V MMX Shift quadword in mm left 
by mm/m64 while shifting 
in 0s.

66 0F F3 /r

PSLLQ xmm1, xmm2/m128

RM V/V SSE2 Shift quadwords in xmm1 
left by xmm2/m128 while 
shifting in 0s.

0F 73 /6 ib1

PSLLQ mm, imm8

MI V/V MMX Shift quadword in mm left 
by imm8 while shifting in 0s.

66 0F 73 /6 ib

PSLLQ xmm1, imm8

MI V/V SSE2 Shift quadwords in xmm1 
left by imm8 while shifting 
in 0s.
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Instruction Operand Encoding

Description

Shifts the bits in the individual data elements (words, doublewords, or quadword) in 
the destination operand (first operand) to the left by the number of bits specified in 
the count operand (second operand). As the bits in the data elements are shifted left, 

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

VEX.NDS.128.66.0F.WIG F1 /r

VPSLLW xmm1, xmm2, xmm3/m128

RVM V/V AVX Shift words in xmm2 left by 
amount specified in 
xmm3/m128 while shifting 
in 0s.

VEX.NDD.128.66.0F.WIG 71 /6 ib

VPSLLW xmm1, xmm2, imm8

VMI V/V AVX Shift words in xmm2 left by 
imm8 while shifting in 0s.

VEX.NDS.128.66.0F.WIG F2 /r

VPSLLD xmm1, xmm2, xmm3/m128

RVM V/V AVX Shift doublewords in xmm2 
left by amount specified in 
xmm3/m128 while shifting 
in 0s.

VEX.NDD.128.66.0F.WIG 72 /6 ib

VPSLLD xmm1, xmm2, imm8

VMI V/V AVX Shift doublewords in xmm2 
left by imm8 while shifting 
in 0s.

VEX.NDS.128.66.0F.WIG F3 /r

VPSLLQ xmm1, xmm2, xmm3/m128

RVM V/V AVX Shift quadwords in xmm2 
left by amount specified in 
xmm3/m128 while shifting 
in 0s.

VEX.NDD.128.66.0F.WIG 73 /6 ib

VPSLLQ xmm1, xmm2, imm8

VMI V/V AVX Shift quadwords in xmm2 
left by imm8 while shifting 
in 0s.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception 
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

MI ModRM:r/m (r, w) imm8 NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

VMI VEX.vvvv (w) ModRM:r/m (r) imm8 NA
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the empty low-order bits are cleared (set to 0). If the value specified by the count 
operand is greater than 15 (for words), 31 (for doublewords), or 63 (for a quad-
word), then the destination operand is set to all 0s. Figure 4-12 gives an example of 
shifting words in a 64-bit operand. 

The destination operand may be an MMX technology register or an XMM register; the 
count operand can be either an MMX technology register or an 64-bit memory loca-
tion, an XMM register or a 128-bit memory location, or an 8-bit immediate. Note that 
only the first 64-bits of a 128-bit count operand are checked to compute the count.

The PSLLW instruction shifts each of the words in the destination operand to the left 
by the number of bits specified in the count operand; the PSLLD instruction shifts 
each of the doublewords in the destination operand; and the PSLLQ instruction shifts 
the quadword (or quadwords) in the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged. If the count operand is a memory address, 128 bits 
are loaded but the upper 64 bits are ignored.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. For shifts with an immediate count (VEX.128.66.0F 71-73 /6), VEX.vvvv 
encodes the destination register, and VEX.B + ModRM.r/m encodes the source 
register. VEX.L must be 0, otherwise instructions will #UD. If the count operand is a 
memory address, 128 bits are loaded but the upper 64 bits are ignored.

Operation

PSLLW (with 64-bit operand)
IF (COUNT > 15)
THEN 

DEST[64:0] ← 0000000000000000H;
ELSE

DEST[15:0] ← ZeroExtend(DEST[15:0] << COUNT);
(* Repeat shift operation for 2nd and 3rd words *)
DEST[63:48] ← ZeroExtend(DEST[63:48] << COUNT);

Figure 4-12.  PSLLW, PSLLD, and PSLLQ Instruction Operation Using 64-bit Operand
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FI;

PSLLD (with 64-bit operand)
IF (COUNT > 31)
THEN 

DEST[64:0] ← 0000000000000000H;
ELSE

DEST[31:0] ← ZeroExtend(DEST[31:0] << COUNT);
DEST[63:32] ← ZeroExtend(DEST[63:32] << COUNT);

FI;

PSLLQ (with 64-bit operand)
IF (COUNT > 63)
THEN 

DEST[64:0] ← 0000000000000000H;
ELSE

DEST ← ZeroExtend(DEST << COUNT);
FI;

PSLLW (with 128-bit operand)
COUNT ← COUNT_SOURCE[63:0];
IF (COUNT > 15)
THEN 

DEST[128:0] ← 00000000000000000000000000000000H;
ELSE

DEST[15:0]  ← ZeroExtend(DEST[15:0] << COUNT);
(* Repeat shift operation for 2nd through 7th words *)
DEST[127:112] ← ZeroExtend(DEST[127:112] << COUNT);

FI;

PSLLD (with 128-bit operand)
COUNT ← COUNT_SOURCE[63:0];
IF (COUNT > 31)
THEN 

DEST[128:0] ← 00000000000000000000000000000000H;
ELSE

DEST[31:0]  ← ZeroExtend(DEST[31:0] << COUNT);
(* Repeat shift operation for 2nd and 3rd doublewords *)
DEST[127:96] ← ZeroExtend(DEST[127:96] << COUNT);

FI;

PSLLQ (with 128-bit operand)
COUNT ← COUNT_SOURCE[63:0];
IF (COUNT > 63)
THEN 
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DEST[128:0] ← 00000000000000000000000000000000H;
ELSE

DEST[63:0]  ← ZeroExtend(DEST[63:0] << COUNT);
DEST[127:64] ← ZeroExtend(DEST[127:64] << COUNT);

FI;

PSLLW (xmm, xmm, xmm/m128)
DEST[127:0]  LOGICAL_LEFT_SHIFT_WORDS(DEST, SRC)
DEST[VLMAX-1:128] (Unmodified)

PSLLW (xmm, imm8)
DEST[127:0]  LOGICAL_LEFT_SHIFT_WORDS(DEST, imm8)
DEST[VLMAX-1:128] (Unmodified)

VPSLLD (xmm, xmm, xmm/m128)
DEST[127:0]  LOGICAL_LEFT_SHIFT_DWORDS(SRC1, SRC2)
DEST[VLMAX-1:128]  0

VPSLLD (xmm, imm8)
DEST[127:0]  LOGICAL_LEFT_SHIFT_DWORDS(SRC1, imm8)
DEST[VLMAX-1:128]  0

PSLLD (xmm, xmm, xmm/m128)
DEST[127:0]  LOGICAL_LEFT_SHIFT_DWORDS(DEST, SRC)
DEST[VLMAX-1:128] (Unmodified)

PSLLD (xmm, imm8)
DEST[127:0]  LOGICAL_LEFT_SHIFT_DWORDS(DEST, imm8)
DEST[VLMAX-1:128] (Unmodified)

VPSLLQ (xmm, xmm, xmm/m128)
DEST[127:0]  LOGICAL_LEFT_SHIFT_QWORDS(SRC1, SRC2)
DEST[VLMAX-1:128]  0

VPSLLQ (xmm, imm8)
DEST[127:0]  LOGICAL_LEFT_SHIFT_QWORDS(SRC1, imm8)
DEST[VLMAX-1:128]  0

PSLLQ (xmm, xmm, xmm/m128)
DEST[127:0]  LOGICAL_LEFT_SHIFT_QWORDS(DEST, SRC)
DEST[VLMAX-1:128] (Unmodified)

PSLLQ (xmm, imm8)
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DEST[127:0]  LOGICAL_LEFT_SHIFT_QWORDS(DEST, imm8)
DEST[VLMAX-1:128] (Unmodified)

VPSLLW (xmm, xmm, xmm/m128)
DEST[127:0]  LOGICAL_LEFT_SHIFT_WORDS(SRC1, SRC2)
DEST[VLMAX-1:128]  0

VPSLLW (xmm, imm8)
DEST[127:0]  LOGICAL_LEFT_SHIFT_WORDS(SRC1, imm8)
DEST[VLMAX-1:128]  0

PSLLW (xmm, xmm, xmm/m128)
DEST[127:0]  LOGICAL_LEFT_SHIFT_WORDS(DEST, SRC)
DEST[VLMAX-1:128] (Unmodified)

PSLLW (xmm, imm8)
DEST[127:0]  LOGICAL_LEFT_SHIFT_WORDS(DEST, imm8)
DEST[VLMAX-1:128] (Unmodified)

VPSLLD (xmm, xmm, xmm/m128)
DEST[127:0]  LOGICAL_LEFT_SHIFT_DWORDS(SRC1, SRC2)
DEST[VLMAX-1:128]  0

VPSLLD (xmm, imm8)
DEST[127:0]  LOGICAL_LEFT_SHIFT_DWORDS(SRC1, imm8)
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalents

PSLLW: __m64 _mm_slli_pi16 (__m64 m, int count)

PSLLW: __m64 _mm_sll_pi16(__m64 m, __m64 count)

PSLLW: __m128i _mm_slli_pi16(__m64 m, int count)

PSLLW: __m128i _mm_slli_pi16(__m128i m, __m128i count)

PSLLD: __m64 _mm_slli_pi32(__m64 m, int  count)

PSLLD: __m64 _mm_sll_pi32(__m64 m, __m64 count)

PSLLD: __m128i _mm_slli_epi32(__m128i m, int  count)

PSLLD: __m128i _mm_sll_epi32(__m128i m, __m128i count)

PSLLQ: __m64 _mm_slli_si64(__m64 m, int  count)

PSLLQ: __m64 _mm_sll_si64(__m64 m, __m64 count)

PSLLQ: __m128i _mm_slli_epi64(__m128i m, int  count)

PSLLQ: __m128i _mm_sll_epi64(__m128i m, __m128i count)
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Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4 and 7 for non-VEX-encoded instructions.
#UD If VEX.L = 1.
4-384 Vol. 2B PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical



INSTRUCTION SET REFERENCE, M-Z
PSRAW/PSRAD—Shift Packed Data Right Arithmetic
Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F E1 /r1

PSRAW mm, mm/m64

RM V/V MMX Shift words in mm right by 
mm/m64 while shifting in 
sign bits.

66 0F E1 /r

PSRAW xmm1, xmm2/m128

RM V/V SSE2 Shift words in xmm1 right 
by xmm2/m128 while 
shifting in sign bits.

0F 71 /4 ib1

PSRAW mm, imm8

MI V/V MMX Shift words in mm right by 
imm8 while shifting in sign 
bits

66 0F 71 /4 ib

PSRAW xmm1, imm8

MI V/V SSE2 Shift words in xmm1 right 
by imm8 while shifting in 
sign bits

0F E2 /r1

PSRAD mm, mm/m64

RM V/V MMX Shift doublewords in mm 
right by mm/m64 while 
shifting in sign bits.

66 0F E2 /r

PSRAD xmm1, xmm2/m128

RM V/V SSE2 Shift doubleword in xmm1 
right by xmm2 /m128 while 
shifting in sign bits.

0F 72 /4 ib1

PSRAD mm, imm8

MI V/V MMX Shift doublewords in mm 
right by imm8 while shifting 
in sign bits.

66 0F 72 /4 ib

PSRAD xmm1, imm8

MI V/V SSE2 Shift doublewords in xmm1 
right by imm8 while shifting 
in sign bits.

VEX.NDS.128.66.0F.WIG E1 /r

VPSRAW xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Shift words in xmm2 right 
by amount specified in 
xmm3/m128 while shifting 
in sign bits.

VEX.NDD.128.66.0F.WIG 71 /4 ib

VPSRAW xmm1, xmm2, imm8

VMI V/V AVX Shift words in xmm2 right 
by imm8 while shifting in 
sign bits.

VEX.NDS.128.66.0F.WIG E2 /r

VPSRAD xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Shift doublewords in xmm2 
right by amount specified in 
xmm3/m128 while shifting 
in sign bits.
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Instruction Operand Encoding

Description

Shifts the bits in the individual data elements (words or doublewords) in the destina-
tion operand (first operand) to the right by the number of bits specified in the count 
operand (second operand). As the bits in the data elements are shifted right, the 
empty high-order bits are filled with the initial value of the sign bit of the data 
element. If the value specified by the count operand is greater than 15 (for words) or 
31 (for doublewords), each destination data element is filled with the initial value of 
the sign bit of the element. (Figure 4-13 gives an example of shifting words in a 64-
bit operand.)

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

VEX.NDD.128.66.0F.WIG 72 /4 ib

VPSRAD xmm1, xmm2, imm8

VMI V/V AVX Shift doublewords in xmm2 
right by imm8 while shifting 
in sign bits.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception 
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

MI ModRM:r/m (r, w) imm8 NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

VMI VEX.vvvv (w) ModRM:r/m (r) imm8 NA

Figure 4-13.  PSRAW and PSRAD Instruction Operation Using a 64-bit Operand
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The destination operand may be an MMX technology register or an XMM register; the 
count operand can be either an MMX technology register or an 64-bit memory loca-
tion, an XMM register or a 128-bit memory location, or an 8-bit immediate. Note that 
only the first 64-bits of a 128-bit count operand are checked to compute the count.

The PSRAW instruction shifts each of the words in the destination operand to the 
right by the number of bits specified in the count operand, and the PSRAD instruction 
shifts each of the doublewords in the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged. If the count operand is a memory address, 128 bits 
are loaded but the upper 64 bits are ignored.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. For shifts with an immediate count (VEX.128.66.0F 71-73 /4), VEX.vvvv 
encodes the destination register, and VEX.B + ModRM.r/m encodes the source 
register. VEX.L must be 0, otherwise instructions will #UD. : Bits (255:128) of the 
corresponding YMM destination register remain unchanged. If the count operand is a 
memory address, 128 bits are loaded but the upper 64 bits are ignored.

Operation

PSRAW (with 64-bit operand)
IF (COUNT > 15)

THEN COUNT ← 16;
FI;
DEST[15:0] ← SignExtend(DEST[15:0] >> COUNT);
(* Repeat shift operation for 2nd and 3rd words *)
DEST[63:48] ← SignExtend(DEST[63:48] >> COUNT);

PSRAD (with 64-bit operand)
IF (COUNT > 31)

THEN COUNT ← 32;
FI;
DEST[31:0] ← SignExtend(DEST[31:0] >> COUNT);
DEST[63:32] ← SignExtend(DEST[63:32] >> COUNT);

PSRAW (with 128-bit operand)
COUNT ← COUNT_SOURCE[63:0];
IF (COUNT > 15)

THEN COUNT ← 16;
FI;
DEST[15:0]  ← SignExtend(DEST[15:0] >> COUNT);
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(* Repeat shift operation for 2nd through 7th words *)
DEST[127:112] ← SignExtend(DEST[127:112] >> COUNT);

PSRAD (with 128-bit operand)
COUNT ← COUNT_SOURCE[63:0];
IF (COUNT > 31)

THEN COUNT ← 32;
FI;
DEST[31:0]  ← SignExtend(DEST[31:0] >> COUNT);
(* Repeat shift operation for 2nd and 3rd doublewords *)
DEST[127:96] ← SignExtend(DEST[127:96] >>COUNT);

PSRAW (xmm, xmm, xmm/m128)
DEST[127:0]  ARITHMETIC_RIGHT_SHIFT_WORDS(DEST, SRC)
DEST[VLMAX-1:128] (Unmodified)

PSRAW (xmm, imm8)
DEST[127:0]  ARITHMETIC_RIGHT_SHIFT_WORDS(DEST, imm8)
DEST[VLMAX-1:128] (Unmodified)

VPSRAW (xmm, xmm, xmm/m128)
DEST[127:0]  ARITHMETIC_RIGHT_SHIFT_WORDS(SRC1, SRC2)
DEST[VLMAX-1:128]  0

VPSRAW (xmm, imm8)
DEST[127:0]  ARITHMETIC_RIGHT_SHIFT_WORDS(SRC1, imm8)
DEST[VLMAX-1:128]  0

PSRAD (xmm, xmm, xmm/m128)
DEST[127:0]  ARITHMETIC_RIGHT_SHIFT_DWORDS(DEST, SRC)
DEST[VLMAX-1:128] (Unmodified)

PSRAD (xmm, imm8)
DEST[127:0]  ARITHMETIC_RIGHT_SHIFT_DWORDS(DEST, imm8)
DEST[VLMAX-1:128] (Unmodified)

VPSRAD (xmm, xmm, xmm/m128)
DEST[127:0]  ARITHMETIC_RIGHT_SHIFT_DWORDS(SRC1, SRC2)
DEST[VLMAX-1:128]  0

VPSRAD (xmm, imm8)
DEST[127:0]  ARITHMETIC_RIGHT_SHIFT_DWORDS(SRC1, imm8)
DEST[VLMAX-1:128]  0
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Intel C/C++ Compiler Intrinsic Equivalents

PSRAW: __m64 _mm_srai_pi16 (__m64 m, int count)

PSRAW: __m64 _mm_sra_pi16 (__m64 m, __m64 count)

PSRAD: __m64 _mm_srai_pi32 (__m64 m, int count)

PSRAD: __m64 _mm_sra_pi32 (__m64 m, __m64 count)

PSRAW: __m128i _mm_srai_epi16(__m128i m, int  count)

PSRAW: __m128i _mm_sra_epi16(__m128i m, __m128i count))

PSRAD: __m128i _mm_srai_epi32 (__m128i m, int  count)

PSRAD: __m128i _mm_sra_epi32 (__m128i m, __m128i count)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4 and 7 for non-VEX-encoded instructions.
#UD If VEX.L = 1.
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PSRLDQ—Shift Double Quadword Right Logical

Instruction Operand Encoding

Description

Shifts the destination operand (first operand) to the right by the number of bytes 
specified in the count operand (second operand). The empty high-order bytes are 
cleared (set to all 0s). If the value specified by the count operand is greater than 15, 
the destination operand is set to all 0s. The destination operand is an XMM register. 
The count operand is an 8-bit immediate.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The source and destination operands are the same. Bits 
(VLMAX-1:128) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. VEX.vvvv encodes the destination register, and VEX.B + ModRM.r/m encodes 
the source register. VEX.L must be 0, otherwise instructions will #UD.

Operation

PSRLDQ(128-bit Legacy SSE version)
TEMP  COUNT
IF (TEMP > 15) THEN TEMP  16; FI
DEST  DEST >> (TEMP * 8)
DEST[VLMAX-1:128] (Unmodified)

VPSRLDQ (VEX.128 encoded version)
TEMP  COUNT
IF (TEMP > 15) THEN TEMP  16; FI
DEST  SRC >> (TEMP * 8)

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 73 /3 ib

PSRLDQ xmm1, imm8

MI V/V SSE2 Shift xmm1 right by imm8 
while shifting in 0s.

VEX.NDD.128.66.0F.WIG 73 /3 ib

VPSRLDQ xmm1, xmm2, imm8

VMI V/V AVX Shift xmm2 right by imm8 
bytes while shifting in 0s.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MI ModRM:r/m (r, w) imm8 NA NA

VMI VEX.vvvv (w) ModRM:r/m (r) imm8 NA
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DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalents

PSRLDQ: __m128i _mm_srli_si128 ( __m128i a, int imm)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 7; additionally
#UD If VEX.L = 1.
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PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical
Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F D1 /r1

PSRLW mm, mm/m64

RM V/V MMX Shift words in mm right by 
amount specified in 
mm/m64 while shifting in 
0s.

66 0F D1 /r

PSRLW xmm1, xmm2/m128

RM V/V SSE2 Shift words in xmm1 right 
by amount specified in 
xmm2/m128 while shifting 
in 0s.

0F 71 /2 ib1

PSRLW mm, imm8

MI V/V MMX Shift words in mm right by 
imm8 while shifting in 0s.

66 0F 71 /2 ib

PSRLW xmm1, imm8

MI V/V SSE2 Shift words in xmm1 right 
by imm8 while shifting in 0s.

0F D2 /r1

PSRLD mm, mm/m64

RM V/V MMX Shift doublewords in mm 
right by amount specified in 
mm/m64 while shifting in 
0s.

66 0F D2 /r

PSRLD xmm1, xmm2/m128

RM V/V SSE2 Shift doublewords in xmm1 
right by amount specified in 
xmm2 /m128 while shifting 
in 0s.

0F 72 /2 ib1

PSRLD mm, imm8

MI V/V MMX Shift doublewords in mm 
right by imm8 while shifting 
in 0s.

66 0F 72 /2 ib

PSRLD xmm1, imm8

MI V/V SSE2 Shift doublewords in xmm1 
right by imm8 while shifting 
in 0s.

0F D3 /r1

PSRLQ mm, mm/m64

RM V/V MMX Shift mm right by amount 
specified in mm/m64 while 
shifting in 0s.

66 0F D3 /r

PSRLQ xmm1, xmm2/m128

RM V/V SSE2 Shift quadwords in xmm1 
right by amount specified in 
xmm2/m128 while shifting 
in 0s.

0F 73 /2 ib1

PSRLQ mm, imm8

MI V/V MMX Shift mm right by imm8 
while shifting in 0s.
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Instruction Operand Encoding

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 73 /2 ib

PSRLQ xmm1, imm8

MI V/V SSE2 Shift quadwords in xmm1 
right by imm8 while shifting 
in 0s.

VEX.NDS.128.66.0F.WIG D1 /r

VPSRLW xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Shift words in xmm2 right 
by amount specified in 
xmm3/m128 while shifting 
in 0s.

VEX.NDD.128.66.0F.WIG 71 /2 ib

VPSRLW xmm1, xmm2, imm8

VMI V/V AVX Shift words in xmm2 right 
by imm8 while shifting in 0s.

VEX.NDS.128.66.0F.WIG D2 /r

VPSRLD xmm1, xmm2, xmm3/m128

RVM V/V AVX Shift doublewords in xmm2 
right by amount specified in 
xmm3/m128 while shifting 
in 0s.

VEX.NDD.128.66.0F.WIG 72 /2 ib

VPSRLD xmm1, xmm2, imm8

VMI V/V AVX Shift doublewords in xmm2 
right by imm8 while shifting 
in 0s.

VEX.NDS.128.66.0F.WIG D3 /r

VPSRLQ xmm1, xmm2, xmm3/m128

RVM V/V AVX Shift quadwords in xmm2 
right by amount specified in 
xmm3/m128 while shifting 
in 0s.

VEX.NDD.128.66.0F.WIG 73 /2 ib

VPSRLQ xmm1, xmm2, imm8

VMI V/V AVX Shift quadwords in xmm2 
right by imm8 while shifting 
in 0s.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception 
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

MI ModRM:r/m (r, w) imm8 NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

VMI VEX.vvvv (w) ModRM:r/m (r) imm8 NA
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Description

Shifts the bits in the individual data elements (words, doublewords, or quadword) in 
the destination operand (first operand) to the right by the number of bits specified in 
the count operand (second operand). As the bits in the data elements are shifted 
right, the empty high-order bits are cleared (set to 0). If the value specified by the 
count operand is greater than 15 (for words), 31 (for doublewords), or 63 (for a 
quadword), then the destination operand is set to all 0s. Figure 4-14 gives an 
example of shifting words in a 64-bit operand. 

The destination operand may be an MMX technology register or an XMM register; the 
count operand can be either an MMX technology register or an 64-bit memory loca-
tion, an XMM register or a 128-bit memory location, or an 8-bit immediate. Note that 
only the first 64-bits of a 128-bit count operand are checked to compute the count.

The PSRLW instruction shifts each of the words in the destination operand to the right 
by the number of bits specified in the count operand; the PSRLD instruction shifts 
each of the doublewords in the destination operand; and the PSRLQ instruction shifts 
the quadword (or quadwords) in the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged. If the count operand is a memory address, 128 bits 
are loaded but the upper 64 bits are ignored.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. For shifts with an immediate count (VEX.128.66.0F 71-73 /2), VEX.vvvv 
encodes the destination register, and VEX.B + ModRM.r/m encodes the source 
register. VEX.L must be 0, otherwise instructions will #UD. If the count operand is a 
memory address, 128 bits are loaded but the upper 64 bits are ignored.

Operation

PSRLW (with 64-bit operand)
IF (COUNT > 15)
THEN 

Figure 4-14.  PSRLW, PSRLD, and PSRLQ Instruction Operation Using 64-bit Operand

DEST

DEST
Pre-Shift

Post-Shift

Shift Right

X0

X0 >> COUNT

X3 X2 X1

X1 >> COUNTX2 >> COUNTX3 >> COUNT

with Zero
Extension
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DEST[64:0] ← 0000000000000000H
ELSE

DEST[15:0] ← ZeroExtend(DEST[15:0] >> COUNT);
(* Repeat shift operation for 2nd and 3rd words *)
DEST[63:48] ← ZeroExtend(DEST[63:48] >> COUNT);

FI;

PSRLD (with 64-bit operand)
IF (COUNT > 31)
THEN 

DEST[64:0] ← 0000000000000000H
ELSE

DEST[31:0] ← ZeroExtend(DEST[31:0] >> COUNT);
DEST[63:32] ← ZeroExtend(DEST[63:32] >> COUNT);

FI;

PSRLQ (with 64-bit operand)
IF (COUNT > 63)
THEN 

DEST[64:0] ← 0000000000000000H
ELSE

DEST ← ZeroExtend(DEST >> COUNT);
FI;

PSRLW (with 128-bit operand)
COUNT ← COUNT_SOURCE[63:0];
IF (COUNT > 15)
THEN 

DEST[128:0] ← 00000000000000000000000000000000H
ELSE

DEST[15:0]  ← ZeroExtend(DEST[15:0] >> COUNT);
(* Repeat shift operation for 2nd through 7th words *)
DEST[127:112] ← ZeroExtend(DEST[127:112] >> COUNT);

FI;

PSRLD (with 128-bit operand)
COUNT ← COUNT_SOURCE[63:0];
IF (COUNT > 31)
THEN 

DEST[128:0] ← 00000000000000000000000000000000H
ELSE

DEST[31:0]  ← ZeroExtend(DEST[31:0] >> COUNT);
(* Repeat shift operation for 2nd and 3rd doublewords *)
DEST[127:96] ← ZeroExtend(DEST[127:96] >> COUNT);

FI;
Vol. 2B 4-395PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical



INSTRUCTION SET REFERENCE, M-Z
PSRLQ (with 128-bit operand)
COUNT ← COUNT_SOURCE[63:0];
IF (COUNT > 15)
THEN 

DEST[128:0] ← 00000000000000000000000000000000H
ELSE

DEST[63:0]  ← ZeroExtend(DEST[63:0] >> COUNT);
DEST[127:64] ← ZeroExtend(DEST[127:64] >> COUNT);

FI;

PSRLW (xmm, xmm, xmm/m128)
DEST[127:0]  LOGICAL_RIGHT_SHIFT_WORDS(DEST, SRC)
DEST[VLMAX-1:128] (Unmodified)

PSRLW (xmm, imm8)
DEST[127:0]  LOGICAL_RIGHT_SHIFT_WORDS(DEST, imm8)
DEST[VLMAX-1:128] (Unmodified)

VPSRLW (xmm, xmm, xmm/m128)
DEST[127:0]  LOGICAL_RIGHT_SHIFT_WORDS(SRC1, SRC2)
DEST[VLMAX-1:128]  0

VPSRLW (xmm, imm8)
DEST[127:0]  LOGICAL_RIGHT_SHIFT_WORDS(SRC1, imm8)
DEST[VLMAX-1:128]  0

PSRLD (xmm, xmm, xmm/m128)
DEST[127:0]  LOGICAL_RIGHT_SHIFT_DWORDS(DEST, SRC)
DEST[VLMAX-1:128] (Unmodified)

PSRLD (xmm, imm8)
DEST[127:0]  LOGICAL_RIGHT_SHIFT_DWORDS(DEST, imm8)
DEST[VLMAX-1:128] (Unmodified)

VPSRLD (xmm, xmm, xmm/m128)
DEST[127:0]  LOGICAL_RIGHT_SHIFT_DWORDS(SRC1, SRC2)
DEST[VLMAX-1:128]  0

VPSRLD (xmm, imm8)
DEST[127:0]  LOGICAL_RIGHT_SHIFT_DWORDS(SRC1, imm8)
DEST[VLMAX-1:128]  0

PSRLQ (xmm, xmm, xmm/m128)
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DEST[127:0]  LOGICAL_RIGHT_SHIFT_QWORDS(DEST, SRC)
DEST[VLMAX-1:128] (Unmodified)

PSRLQ (xmm, imm8)
DEST[127:0]  LOGICAL_RIGHT_SHIFT_QWORDS(DEST, imm8)
DEST[VLMAX-1:128] (Unmodified)

VPSRLQ (xmm, xmm, xmm/m128)
DEST[127:0]  LOGICAL_RIGHT_SHIFT_QWORDS(SRC1, SRC2)
DEST[VLMAX-1:128]  0

VPSRLQ (xmm, imm8)
DEST[127:0]  LOGICAL_RIGHT_SHIFT_QWORDS(SRC1, imm8)
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalents

PSRLW: __m64 _mm_srli_pi16(__m64 m, int  count)

PSRLW: __m64 _mm_srl_pi16 (__m64 m, __m64 count)

PSRLW: __m128i _mm_srli_epi16 (__m128i m, int count)

PSRLW: __m128i _mm_srl_epi16 (__m128i m, __m128i count)

PSRLD: __m64 _mm_srli_pi32 (__m64 m, int  count)

PSRLD: __m64 _mm_srl_pi32 (__m64 m, __m64 count)

PSRLD: __m128i _mm_srli_epi32 (__m128i m, int  count)

PSRLD: __m128i _mm_srl_epi32 (__m128i m, __m128i count)

PSRLQ: __m64 _mm_srli_si64 (__m64 m, int  count)

PSRLQ: __m64 _mm_srl_si64 (__m64 m, __m64 count)

PSRLQ: __m128i _mm_srli_epi64 (__m128i m, int  count)

PSRLQ: __m128i _mm_srl_epi64 (__m128i m, __m128i count)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4 and 7 for non-VEX-encoded instructions.
#UD If VEX.L = 1.
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PSUBB/PSUBW/PSUBD—Subtract Packed Integers
Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F F8 /r1

PSUBB mm, mm/m64

RM V/V MMX Subtract packed byte 
integers in mm/m64 from 
packed byte integers in mm.

66 0F F8 /r

PSUBB xmm1, xmm2/m128

RM V/V SSE2 Subtract packed byte 
integers in xmm2/m128 
from packed byte integers 
in xmm1.

0F F9 /r1

PSUBW mm, mm/m64

RM V/V MMX Subtract packed word 
integers in mm/m64 from 
packed word integers in mm.

66 0F F9 /r

PSUBW xmm1, xmm2/m128

RM V/V SSE2 Subtract packed word 
integers in xmm2/m128 
from packed word integers 
in xmm1.

0F FA /r1

PSUBD mm, mm/m64

RM V/V MMX Subtract packed doubleword 
integers in mm/m64 from 
packed doubleword integers 
in mm.

66 0F FA /r

PSUBD xmm1, xmm2/m128

RM V/V SSE2 Subtract packed doubleword 
integers in xmm2/mem128 
from packed doubleword 
integers in xmm1.

VEX.NDS.128.66.0F.WIG F8 /r
VPSUBB xmm1, xmm2, xmm3/m128

RVM V/V AVX Subtract packed byte 
integers in xmm3/m128 
from xmm2.

VEX.NDS.128.66.0F.WIG F9 /r

VPSUBW xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Subtract packed word 
integers in xmm3/m128 
from xmm2.

VEX.NDS.128.66.0F.WIG FA /r
VPSUBD xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Subtract packed doubleword 
integers in xmm3/m128 
from xmm2.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception 
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A.
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Instruction Operand Encoding

Description

Performs a SIMD subtract of the packed integers of the source operand (second 
operand) from the packed integers of the destination operand (first operand), and 
stores the packed integer results in the destination operand. See Figure 9-4 in the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for an 
illustration of a SIMD operation. Overflow is handled with wraparound, as described 
in the following paragraphs.

These instructions can operate on either 64-bit or 128-bit operands. When operating 
on 64-bit operands, the destination operand must be an MMX technology register 
and the source operand can be either an MMX technology register or a 64-bit 
memory location. When operating on 128-bit operands, the destination operand 
must be an XMM register and the source operand can be either an XMM register or a 
128-bit memory location.

The PSUBB instruction subtracts packed byte integers. When an individual result is 
too large or too small to be represented in a byte, the result is wrapped around and 
the low 8 bits are written to the destination element.

The PSUBW instruction subtracts packed word integers. When an individual result is 
too large or too small to be represented in a word, the result is wrapped around and 
the low 16 bits are written to the destination element.

The PSUBD instruction subtracts packed doubleword integers. When an individual 
result is too large or too small to be represented in a doubleword, the result is 
wrapped around and the low 32 bits are written to the destination element.

Note that the PSUBB, PSUBW, and PSUBD instructions can operate on either 
unsigned or signed (two's complement notation) packed integers; however, it does 
not set bits in the EFLAGS register to indicate overflow and/or a carry. To prevent 
undetected overflow conditions, software must control the ranges of values upon 
which it operates.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. VEX.L must be 0, otherwise instructions will #UD.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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Operation

PSUBB (with 64-bit operands)
DEST[7:0] ← DEST[7:0] − SRC[7:0]; 
(* Repeat subtract operation for 2nd through 7th byte *)
DEST[63:56] ← DEST[63:56] − SRC[63:56];

PSUBB (with 128-bit operands)
DEST[7:0] ← DEST[7:0] − SRC[7:0]; 
(* Repeat subtract operation for 2nd through 14th byte *)
DEST[127:120] ← DEST[111:120] − SRC[127:120];

PSUBW (with 64-bit operands)
DEST[15:0] ← DEST[15:0] − SRC[15:0];
(* Repeat subtract operation for 2nd and 3rd word *)
DEST[63:48] ← DEST[63:48] − SRC[63:48];

PSUBW (with 128-bit operands)
DEST[15:0]  ← DEST[15:0] − SRC[15:0];
(* Repeat subtract operation for 2nd through 7th word *)
DEST[127:112] ← DEST[127:112] − SRC[127:112];

PSUBD (with 64-bit operands)
DEST[31:0] ← DEST[31:0] − SRC[31:0];
DEST[63:32] ← DEST[63:32] − SRC[63:32];

PSUBD (with 128-bit operands)
DEST[31:0]  ← DEST[31:0] − SRC[31:0];
(* Repeat subtract operation for 2nd and 3rd doubleword *)
DEST[127:96] ← DEST[127:96] − SRC[127:96];

VPSUBB (VEX.128 encoded version)
DEST[7:0]  SRC1[7:0]-SRC2[7:0]
DEST[15:8]  SRC1[15:8]-SRC2[15:8]
DEST[23:16]  SRC1[23:16]-SRC2[23:16]
DEST[31:24]  SRC1[31:24]-SRC2[31:24]
DEST[39:32]  SRC1[39:32]-SRC2[39:32]
DEST[47:40]  SRC1[47:40]-SRC2[47:40]
DEST[55:48]  SRC1[55:48]-SRC2[55:48]
DEST[63:56]  SRC1[63:56]-SRC2[63:56]
DEST[71:64]  SRC1[71:64]-SRC2[71:64]
DEST[79:72]  SRC1[79:72]-SRC2[79:72]
DEST[87:80]  SRC1[87:80]-SRC2[87:80]
DEST[95:88]  SRC1[95:88]-SRC2[95:88]
DEST[103:96]  SRC1[103:96]-SRC2[103:96]
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DEST[111:104]  SRC1[111:104]-SRC2[111:104]
DEST[119:112]  SRC1[119:112]-SRC2[119:112]
DEST[127:120]  SRC1[127:120]-SRC2[127:120]
DEST[VLMAX-1:128]  00

VPSUBW (VEX.128 encoded version)
DEST[15:0]  SRC1[15:0]-SRC2[15:0]
DEST[31:16]  SRC1[31:16]-SRC2[31:16]
DEST[47:32]  SRC1[47:32]-SRC2[47:32]
DEST[63:48]  SRC1[63:48]-SRC2[63:48]
DEST[79:64]  SRC1[79:64]-SRC2[79:64]
DEST[95:80]  SRC1[95:80]-SRC2[95:80]
DEST[111:96]  SRC1[111:96]-SRC2[111:96]
DEST[127:112]  SRC1[127:112]-SRC2[127:112]
DEST[VLMAX-1:128]  0

VPSUBD (VEX.128 encoded version)
DEST[31:0]  SRC1[31:0]-SRC2[31:0]
DEST[63:32]  SRC1[63:32]-SRC2[63:32]
DEST[95:64]  SRC1[95:64]-SRC2[95:64]
DEST[127:96]  SRC1[127:96]-SRC2[127:96]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalents

PSUBB: __m64 _mm_sub_pi8(__m64 m1, __m64 m2)

PSUBW: __m64 _mm_sub_pi16(__m64 m1, __m64 m2)

PSUBD: __m64 _mm_sub_pi32(__m64 m1, __m64 m2)

PSUBB: __m128i _mm_sub_epi8 ( __m128i a, __m128i b)

PSUBW: __m128i _mm_sub_epi16 ( __m128i a, __m128i b)

PSUBD: __m128i _mm_sub_epi32 ( __m128i a, __m128i b)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PSUBQ—Subtract Packed Quadword Integers 

Instruction Operand Encoding

Description

Subtracts the second operand (source operand) from the first operand (destination 
operand) and stores the result in the destination operand. The source operand can be 
a quadword integer stored in an MMX technology register or a 64-bit memory loca-
tion, or it can be two packed quadword integers stored in an XMM register or an 
128-bit memory location. The destination operand can be a quadword integer stored 
in an MMX technology register or two packed quadword integers stored in an XMM 
register. When packed quadword operands are used, a SIMD subtract is performed. 
When a quadword result is too large to be represented in 64 bits (overflow), the 
result is wrapped around and the low 64 bits are written to the destination element 
(that is, the carry is ignored).

Note that the PSUBQ instruction can operate on either unsigned or signed (two’s 
complement notation) integers; however, it does not set bits in the EFLAGS register 
to indicate overflow and/or a carry. To prevent undetected overflow conditions, soft-
ware must control the ranges of the values upon which it operates.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F FB /r1

PSUBQ mm1, mm2/m64

RM V/V SSE2 Subtract quadword integer 
in mm1 from mm2 /m64.

66 0F FB /r

PSUBQ xmm1, xmm2/m128

RM V/V SSE2 Subtract packed quadword 
integers in xmm1 from 
xmm2 /m128.

VEX.NDS.128.66.0F.WIG FB/r

VPSUBQ xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Subtract packed quadword 
integers in xmm3/m128 
from xmm2.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception 
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. VEX.L must be 0, otherwise instructions will #UD.

Operation

PSUBQ (with 64-Bit operands)
DEST[63:0] ← DEST[63:0] − SRC[63:0];

PSUBQ (with 128-Bit operands)
DEST[63:0] ← DEST[63:0] − SRC[63:0];
DEST[127:64] ← DEST[127:64] − SRC[127:64];

VPSUBQ (VEX.128 encoded version)
DEST[63:0]  SRC1[63:0]-SRC2[63:0]
DEST[127:64]  SRC1[127:64]-SRC2[127:64]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalents

PSUBQ: __m64 _mm_sub_si64(__m64 m1, __m64 m2)

PSUBQ: __m128i _mm_sub_epi64(__m128i m1, __m128i m2)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PSUBSB/PSUBSW—Subtract Packed Signed Integers with Signed 
Saturation
Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F E8 /r1

PSUBSB mm, mm/m64

RM V/V MMX Subtract signed packed 
bytes in mm/m64 from 
signed packed bytes in mm 
and saturate results.

66 0F E8 /r

PSUBSB xmm1, xmm2/m128

RM V/V SSE2 Subtract packed signed byte 
integers in xmm2/m128 
from packed signed byte 
integers in xmm1 and 
saturate results.

0F E9 /r1

PSUBSW mm, mm/m64

RM V/V MMX Subtract signed packed 
words in mm/m64 from 
signed packed words in mm 
and saturate results.

66 0F E9 /r

PSUBSW xmm1, xmm2/m128

RM V/V SSE2 Subtract packed signed 
word integers in 
xmm2/m128 from packed 
signed word integers in 
xmm1 and saturate results.

VEX.NDS.128.66.0F.WIG E8 /r

VPSUBSB xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Subtract packed signed byte 
integers in xmm3/m128 
from packed signed byte 
integers in xmm2 and 
saturate results.

VEX.NDS.128.66.0F.WIG E9 /r

VPSUBSW xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Subtract packed signed 
word integers in 
xmm3/m128 from packed 
signed word integers in 
xmm2 and saturate results.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception 
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A.
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Instruction Operand Encoding

Description

Performs a SIMD subtract of the packed signed integers of the source operand 
(second operand) from the packed signed integers of the destination operand (first 
operand), and stores the packed integer results in the destination operand. See 
Figure 9-4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 1, for an illustration of a SIMD operation. Overflow is handled with signed 
saturation, as described in the following paragraphs.

These instructions can operate on either 64-bit or 128-bit operands. When operating 
on 64-bit operands, the destination operand must be an MMX technology register 
and the source operand can be either an MMX technology register or a 64-bit 
memory location. When operating on 128-bit operands, the destination operand 
must be an XMM register and the source operand can be either an XMM register or a 
128-bit memory location.

The PSUBSB instruction subtracts packed signed byte integers. When an individual 
byte result is beyond the range of a signed byte integer (that is, greater than 7FH or 
less than 80H), the saturated value of 7FH or 80H, respectively, is written to the 
destination operand.

The PSUBSW instruction subtracts packed signed word integers. When an individual 
word result is beyond the range of a signed word integer (that is, greater than 7FFFH 
or less than 8000H), the saturated value of 7FFFH or 8000H, respectively, is written 
to the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. VEX.L must be 0, otherwise instructions will #UD.

Operation

PSUBSB (with 64-bit operands)
DEST[7:0] ← SaturateToSignedByte (DEST[7:0] − SRC (7:0]);
(* Repeat subtract operation for 2nd through 7th bytes *)
DEST[63:56] ← SaturateToSignedByte (DEST[63:56] − SRC[63:56] );

PSUBSB (with 128-bit operands)
DEST[7:0] ← SaturateToSignedByte (DEST[7:0] − SRC[7:0]);

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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(* Repeat subtract operation for 2nd through 14th bytes *)
DEST[127:120] ← SaturateToSignedByte (DEST[127:120] − SRC[127:120]);

PSUBSW (with 64-bit operands)
DEST[15:0] ← SaturateToSignedWord (DEST[15:0] − SRC[15:0] );
(* Repeat subtract operation for 2nd and 7th words *)
DEST[63:48] ← SaturateToSignedWord (DEST[63:48] − SRC[63:48] );

PSUBSW (with 128-bit operands)
DEST[15:0]  ← SaturateToSignedWord (DEST[15:0] − SRC[15:0]);
(* Repeat subtract operation for 2nd through 7th words *)
DEST[127:112] ← SaturateToSignedWord (DEST[127:112] − SRC[127:112]);

VPSUBSB 
DEST[7:0]  SaturateToSignedByte (SRC1[7:0] - SRC2[7:0]);
(* Repeat subtract operation for 2nd through 14th bytes *)
DEST[127:120]  SaturateToSignedByte (SRC1[127:120] - SRC2[127:120]);
DEST[VLMAX-1:128]  0

VPSUBSW
DEST[15:0]  SaturateToSignedWord (SRC1[15:0] - SRC2[15:0]);
(* Repeat subtract operation for 2nd through 7th words *)
DEST[127:112]  SaturateToSignedWord (SRC1[127:112] - SRC2[127:112]);
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalents

PSUBSB: __m64 _mm_subs_pi8(__m64 m1, __m64 m2)

PSUBSB: __m128i _mm_subs_epi8(__m128i m1, __m128i m2)

PSUBSW: __m64 _mm_subs_pi16(__m64 m1, __m64 m2)

PSUBSW: __m128i _mm_subs_epi16(__m128i m1, __m128i m2)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PSUBUSB/PSUBUSW—Subtract Packed Unsigned Integers with 
Unsigned Saturation
Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F D8 /r1

PSUBUSB mm, mm/m64

RM V/V MMX Subtract unsigned packed 
bytes in mm/m64 from 
unsigned packed bytes in 
mm and saturate result.

66 0F D8 /r

PSUBUSB xmm1, xmm2/m128

RM V/V SSE2 Subtract packed unsigned 
byte integers in 
xmm2/m128 from packed 
unsigned byte integers in 
xmm1 and saturate result.

0F D9 /r1

PSUBUSW mm, mm/m64

RM V/V MMX Subtract unsigned packed 
words in mm/m64 from 
unsigned packed words in 
mm and saturate result.

66 0F D9 /r

PSUBUSW xmm1, xmm2/m128

RM V/V SSE2 Subtract packed unsigned 
word integers in 
xmm2/m128 from packed 
unsigned word integers in 
xmm1 and saturate result.

VEX.NDS.128.66.0F.WIG D8 /r

VPSUBUSB xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Subtract packed unsigned 
byte integers in 
xmm3/m128 from packed 
unsigned byte integers in 
xmm2 and saturate result.

VEX.NDS.128.66.0F.WIG D9 /r

VPSUBUSW xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Subtract packed unsigned 
word integers in 
xmm3/m128 from packed 
unsigned word integers in 
xmm2 and saturate result.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception 
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A.
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Instruction Operand Encoding

Description

Performs a SIMD subtract of the packed unsigned integers of the source operand 
(second operand) from the packed unsigned integers of the destination operand (first 
operand), and stores the packed unsigned integer results in the destination operand. 
See Figure 9-4 in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 1, for an illustration of a SIMD operation. Overflow is handled with 
unsigned saturation, as described in the following paragraphs.

These instructions can operate on either 64-bit or 128-bit operands. When operating 
on 64-bit operands, the destination operand must be an MMX technology register 
and the source operand can be either an MMX technology register or a 64-bit 
memory location. When operating on 128-bit operands, the destination operand 
must be an XMM register and the source operand can be either an XMM register or a 
128-bit memory location.

The PSUBUSB instruction subtracts packed unsigned byte integers. When an indi-
vidual byte result is less than zero, the saturated value of 00H is written to the desti-
nation operand.

The PSUBUSW instruction subtracts packed unsigned word integers. When an indi-
vidual word result is less than zero, the saturated value of 0000H is written to the 
destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. VEX.L must be 0, otherwise instructions will #UD.

Operation

PSUBUSB (with 64-bit operands)
DEST[7:0] ← SaturateToUnsignedByte (DEST[7:0] − SRC (7:0] );
(* Repeat add operation for 2nd through 7th bytes *)
DEST[63:56] ← SaturateToUnsignedByte (DEST[63:56] − SRC[63:56]; 

PSUBUSB (with 128-bit operands)
DEST[7:0] ← SaturateToUnsignedByte (DEST[7:0] − SRC[7:0]);
(* Repeat add operation for 2nd through 14th bytes *)
DEST[127:120] ← SaturateToUnSignedByte (DEST[127:120] − SRC[127:120]);

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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PSUBUSW (with 64-bit operands)
DEST[15:0] ← SaturateToUnsignedWord (DEST[15:0] − SRC[15:0] );
(* Repeat add operation for 2nd and 3rd words *)
DEST[63:48] ← SaturateToUnsignedWord (DEST[63:48] − SRC[63:48] );

PSUBUSW (with 128-bit operands)
DEST[15:0]  ← SaturateToUnsignedWord (DEST[15:0] − SRC[15:0]);
(* Repeat add operation for 2nd through 7th words *)
DEST[127:112] ← SaturateToUnSignedWord (DEST[127:112] − SRC[127:112]);

VPSUBUSB 
DEST[7:0]  SaturateToUnsignedByte (SRC1[7:0] - SRC2[7:0]);
(* Repeat subtract operation for 2nd through 14th bytes *)
DEST[127:120]  SaturateToUnsignedByte (SRC1[127:120] - SRC2[127:120]);
DEST[VLMAX-1:128]  0

VPSUBUSW
DEST[15:0]  SaturateToUnsignedWord (SRC1[15:0] - SRC2[15:0]);
(* Repeat subtract operation for 2nd through 7th words *)
DEST[127:112]  SaturateToUnsignedWord (SRC1[127:112] - SRC2[127:112]);
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalents

PSUBUSB: __m64 _mm_subs_pu8(__m64 m1, __m64 m2)

PSUBUSB: __m128i _mm_subs_epu8(__m128i m1, __m128i m2)

PSUBUSW: __m64 _mm_subs_pu16(__m64 m1, __m64 m2)

PSUBUSW: __m128i _mm_subs_epu16(__m128i m1, __m128i m2)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PTEST- Logical Compare

Instruction Operand Encoding

Description

PTEST and VPTEST set the ZF flag if all bits in the result are 0 of the bitwise AND of 
the first source operand (first operand) and the second source operand (second 
operand). VPTEST sets the CF flag if all bits in the result are 0 of the bitwise AND of 
the second source operand (second operand) and the logical NOT of the destination 
operand.
The first source register is specified by the ModR/M reg field.
128-bit versions: The first source register is an XMM register. The second source 
register can be an XMM register or a 128-bit memory location. The destination 
register is not modified.
VEX.256 encoded version: The first source register is a YMM register. The second 
source register can be a YMM register or a 256-bit memory location. The destination 
register is not modified.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise 
instructions will #UD.

Operation

(V)PTEST (128-bit version)
IF (SRC[127:0] BITWISE AND DEST[127:0] = 0) 

THEN ZF  1;
ELSE ZF  0;

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 38 17 /r
PTEST xmm1, xmm2/m128

RM V/V SSE4_1 Set ZF if xmm2/m128 AND 
xmm1 result is all 0s. Set CF 
if xmm2/m128 AND NOT 
xmm1 result is all 0s.

VEX.128.66.0F38.WIG 17 /r
VPTEST xmm1, xmm2/m128

RM V/V AVX Set ZF and CF depending on 
bitwise AND and ANDN of 
sources.

VEX.256.66.0F38.WIG 17 /r
VPTEST ymm1, ymm2/m256

RM V/V AVX Set ZF and CF depending on 
bitwise AND and ANDN of 
sources.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) NA NA
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IF (SRC[127:0] BITWISE AND NOT DEST[127:0] = 0) 
THEN CF  1;
ELSE CF  0;

DEST (unmodified)
AF  OF  PF  SF  0;

VPTEST (VEX.256 encoded version)
IF (SRC[255:0] BITWISE AND DEST[255:0] = 0) THEN ZF  1;

ELSE ZF  0;
IF (SRC[255:0] BITWISE AND NOT DEST[255:0] = 0) THEN CF  1;

ELSE CF  0;
DEST (unmodified)
AF  OF  PF  SF  0;

Intel C/C++ Compiler Intrinsic Equivalent

PTEST int _mm_testz_si128 (__m128i s1, __m128i s2);
int _mm_testc_si128 (__m128i s1, __m128i s2);
int _mm_testnzc_si128 (__m128i s1, __m128i s2);

VPTEST 

int _mm256_testz_si256 (__m256i s1, __m256i s2);

int _mm256_testc_si256 (__m256i s1, __m256i s2);

int _mm256_testnzc_si256 (__m256i s1, __m256i s2);

int _mm_testz_si128 (__m128i s1, __m128i s2);

int _mm_testc_si128 (__m128i s1, __m128i s2);

int _mm_testnzc_si128 (__m128i s1, __m128i s2);

Flags Affected

The 0F, AF, PF, SF flags are cleared and the ZF, CF flags are set according to the oper-
ation.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.vvvv != 1111B.
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PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ— Unpack 
High Data
Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F 68 /r1

PUNPCKHBW mm, mm/m64

RM V/V MMX Unpack and interleave high-
order bytes from mm and 
mm/m64 into mm.

66 0F 68 /r

PUNPCKHBW xmm1, xmm2/m128

RM V/V SSE2 Unpack and interleave high-
order bytes from xmm1 and 
xmm2/m128 into xmm1.

0F 69 /r1

PUNPCKHWD mm, mm/m64

RM V/V MMX Unpack and interleave high-
order words from mm and 
mm/m64 into mm.

66 0F 69 /r

PUNPCKHWD xmm1, xmm2/m128

RM V/V SSE2 Unpack and interleave high-
order words from xmm1 and 
xmm2/m128 into xmm1.

0F 6A /r1

PUNPCKHDQ mm, mm/m64

RM V/V MMX Unpack and interleave high-
order doublewords from mm 
and mm/m64 into mm.

66 0F 6A /r

PUNPCKHDQ xmm1, xmm2/m128

RM V/V SSE2 Unpack and interleave high-
order doublewords from 
xmm1 and xmm2/m128 
into xmm1.

66 0F 6D /r

PUNPCKHQDQ xmm1, xmm2/m128

RM V/V SSE2 Unpack and interleave high-
order quadwords from 
xmm1 and xmm2/m128 
into xmm1.

VEX.NDS.128.66.0F.WIG 68/r

VPUNPCKHBW xmm1,xmm2, 
xmm3/m128

RVM V/V AVX Interleave high-order bytes 
from xmm2 and 
xmm3/m128 into xmm1.

VEX.NDS.128.66.0F.WIG 69/r

VPUNPCKHWD xmm1,xmm2, 
xmm3/m128

RVM V/V AVX Interleave high-order words 
from xmm2 and 
xmm3/m128 into xmm1.

VEX.NDS.128.66.0F.WIG 6A/r

VPUNPCKHDQ xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Interleave high-order 
doublewords from xmm2 
and xmm3/m128 into 
xmm1.
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Instruction Operand Encoding

Description

Unpacks and interleaves the high-order data elements (bytes, words, doublewords, 
or quadwords) of the destination operand (first operand) and source operand 
(second operand) into the destination operand. Figure 4-15 shows the unpack oper-
ation for bytes in 64-bit operands. The low-order data elements are ignored. 

The source operand can be an MMX technology register or a 64-bit memory location, 
or it can be an XMM register or a 128-bit memory location. The destination operand 
can be an MMX technology register or an XMM register. When the source data comes 
from a 64-bit memory operand, the full 64-bit operand is accessed from memory, but 
the instruction uses only the high-order 32 bits. When the source data comes from a 

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

VEX.NDS.128.66.0F.WIG 6D/r
VPUNPCKHQDQ xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Interleave high-order 
quadword from xmm2 and 
xmm3/m128 into xmm1 
register.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception 
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

Figure 4-15.  PUNPCKHBW Instruction Operation Using 64-bit Operands

X4X7 X6 X5 Y4Y7 Y6 Y5

X0X3 X2 X1Y0Y3 Y2 Y1 X4X7 X6 X5Y4Y7 Y6 Y5SRC DEST

DEST
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128-bit memory operand, an implementation may fetch only the appropriate 64 bits; 
however, alignment to a 16-byte boundary and normal segment checking will still be 
enforced.

The PUNPCKHBW instruction interleaves the high-order bytes of the source and 
destination operands, the PUNPCKHWD instruction interleaves the high-order words 
of the source and destination operands, the PUNPCKHDQ instruction interleaves the 
high-order doubleword (or doublewords) of the source and destination operands, 
and the PUNPCKHQDQ instruction interleaves the high-order quadwords of the 
source and destination operands.

These instructions can be used to convert bytes to words, words to doublewords, 
doublewords to quadwords, and quadwords to double quadwords, respectively, by 
placing all 0s in the source operand. Here, if the source operand contains all 0s, the 
result (stored in the destination operand) contains zero extensions of the high-order 
data elements from the original value in the destination operand. For example, with 
the PUNPCKHBW instruction the high-order bytes are zero extended (that is, 
unpacked into unsigned word integers), and with the PUNPCKHWD instruction, the 
high-order words are zero extended (unpacked into unsigned doubleword integers).

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).
128-bit Legacy SSE versions: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded versions: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. VEX.L must be 0, otherwise instructions will #UD.

Operation

PUNPCKHBW instruction with 64-bit operands:
DEST[7:0] ← DEST[39:32];
DEST[15:8] ← SRC[39:32];
DEST[23:16] ← DEST[47:40];
DEST[31:24] ← SRC[47:40];
DEST[39:32] ← DEST[55:48];
DEST[47:40] ← SRC[55:48];
DEST[55:48] ← DEST[63:56];
DEST[63:56] ← SRC[63:56];

PUNPCKHW instruction with 64-bit operands:
DEST[15:0] ← DEST[47:32]; 
DEST[31:16] ← SRC[47:32];
DEST[47:32] ← DEST[63:48];
DEST[63:48] ← SRC[63:48];

PUNPCKHDQ instruction with 64-bit operands:
DEST[31:0] ← DEST[63:32];
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DEST[63:32] ← SRC[63:32];
PUNPCKHBW instruction with 128-bit operands:

DEST[7:0]← DEST[71:64];
DEST[15:8]  ← SRC[71:64];
DEST[23:16] ← DEST[79:72];
DEST[31:24] ← SRC[79:72];
DEST[39:32] ← DEST[87:80];
DEST[47:40] ← SRC[87:80];
DEST[55:48] ← DEST[95:88];
DEST[63:56] ← SRC[95:88];
DEST[71:64] ← DEST[103:96];
DEST[79:72] ← SRC[103:96];
DEST[87:80] ← DEST[111:104];
DEST[95:88] ← SRC[111:104];
DEST[103:96]  ← DEST[119:112];
DEST[111:104] ← SRC[119:112];
DEST[119:112] ← DEST[127:120];
DEST[127:120] ← SRC[127:120];

PUNPCKHWD instruction with 128-bit operands:
DEST[15:0]  ← DEST[79:64];
DEST[31:16] ← SRC[79:64];
DEST[47:32] ← DEST[95:80];
DEST[63:48] ← SRC[95:80];
DEST[79:64] ← DEST[111:96];
DEST[95:80] ← SRC[111:96];
DEST[111:96]  ← DEST[127:112];
DEST[127:112] ← SRC[127:112];

PUNPCKHDQ instruction with 128-bit operands:
DEST[31:0] ← DEST[95:64];
DEST[63:32]  ← SRC[95:64];
DEST[95:64]  ← DEST[127:96];
DEST[127:96] ← SRC[127:96];

PUNPCKHQDQ instruction:
DEST[63:0] ← DEST[127:64];
DEST[127:64] ← SRC[127:64];

PUNPCKHBW
DEST[127:0]  INTERLEAVE_HIGH_BYTES(DEST, SRC)
DEST[VLMAX-1:128] (Unmodified)

VPUNPCKHBW
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DEST[127:0]  INTERLEAVE_HIGH_BYTES(SRC1, SRC2)
DEST[VLMAX-1:128]  0

PUNPCKHWD
DEST[127:0]  INTERLEAVE_HIGH_WORDS(DEST, SRC)
DEST[VLMAX-1:128] (Unmodified)

VPUNPCKHWD
DEST[127:0]  INTERLEAVE_HIGH_WORDS(SRC1, SRC2)
DEST[VLMAX-1:128]  0

PUNPCKHDQ
DEST[127:0]  INTERLEAVE_HIGH_DWORDS(DEST, SRC)
DEST[VLMAX-1:128] (Unmodified)

VPUNPCKHDQ
DEST[127:0]  INTERLEAVE_HIGH_DWORDS(SRC1, SRC2)
DEST[VLMAX-1:128]  0

PUNPCKHQDQ
DEST[127:0]  INTERLEAVE_HIGH_QWORDS(DEST, SRC)
DEST[VLMAX-1:128] (Unmodified)

VPUNPCKHQDQ
DEST[127:0]  INTERLEAVE_HIGH_QWORDS(SRC1, SRC2)

DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalents

PUNPCKHBW: __m64 _mm_unpackhi_pi8(__m64 m1, __m64 m2)

PUNPCKHBW: __m128i _mm_unpackhi_epi8(__m128i m1, __m128i m2)

PUNPCKHWD: __m64 _mm_unpackhi_pi16(__m64 m1,__m64 m2)

PUNPCKHWD: __m128i _mm_unpackhi_epi16(__m128i m1,__m128i m2)

PUNPCKHDQ: __m64 _mm_unpackhi_pi32(__m64 m1, __m64 m2)

PUNPCKHDQ: __m128i _mm_unpackhi_epi32(__m128i m1, __m128i m2)

PUNPCKHQDQ: __m128i _mm_unpackhi_epi64 ( __m128i a, __m128i b)

Flags Affected

None.
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Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ—
Unpack Low Data
Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F 60 /r1

PUNPCKLBW mm, mm/m32

RM V/V MMX Interleave low-order bytes 
from mm and mm/m32 into 
mm.

66 0F 60 /r

PUNPCKLBW xmm1, xmm2/m128

RM V/V SSE2 Interleave low-order bytes 
from xmm1 and 
xmm2/m128 into xmm1.

0F 61 /r1

PUNPCKLWD mm, mm/m32

RM V/V MMX Interleave low-order words 
from mm and mm/m32 into 
mm.

66 0F 61 /r

PUNPCKLWD xmm1, xmm2/m128

RM V/V SSE2 Interleave low-order words 
from xmm1 and 
xmm2/m128 into xmm1.

0F 62 /r1

PUNPCKLDQ mm, mm/m32

RM V/V MMX Interleave low-order 
doublewords from mm and 
mm/m32 into mm.

66 0F 62 /r

PUNPCKLDQ xmm1, xmm2/m128

RM V/V SSE2 Interleave low-order 
doublewords from xmm1 
and xmm2/m128 into 
xmm1.

66 0F 6C /r

PUNPCKLQDQ xmm1, xmm2/m128

RM V/V SSE2 Interleave low-order 
quadword from xmm1 and 
xmm2/m128 into xmm1 
register.

VEX.NDS.128.66.0F.WIG 60/r

VPUNPCKLBW xmm1,xmm2, 
xmm3/m128

RVM V/V AVX Interleave low-order bytes 
from xmm2 and 
xmm3/m128 into xmm1.

VEX.NDS.128.66.0F.WIG 61/r

VPUNPCKLWD xmm1,xmm2, 
xmm3/m128

RVM V/V AVX Interleave low-order words 
from xmm2 and 
xmm3/m128 into xmm1.

VEX.NDS.128.66.0F.WIG 62/r

VPUNPCKLDQ xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Interleave low-order 
doublewords from xmm2 
and xmm3/m128 into 
xmm1.
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Instruction Operand Encoding

Description

Unpacks and interleaves the low-order data elements (bytes, words, doublewords, 
and quadwords) of the destination operand (first operand) and source operand 
(second operand) into the destination operand. (Figure 4-16 shows the unpack oper-
ation for bytes in 64-bit operands.). The high-order data elements are ignored.

The source operand can be an MMX technology register or a 32-bit memory location, 
or it can be an XMM register or a 128-bit memory location. The destination operand 
can be an MMX technology register or an XMM register. When the source data comes 
from a 128-bit memory operand, an implementation may fetch only the appropriate 
64 bits; however, alignment to a 16-byte boundary and normal segment checking 
will still be enforced.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

VEX.NDS.128.66.0F.WIG 6C/r

VPUNPCKLQDQ xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Interleave low-order 
quadword from xmm2 and 
xmm3/m128 into xmm1 
register.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception 
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

Figure 4-16.  PUNPCKLBW Instruction Operation Using 64-bit Operands

X0X3 X2 X1 Y0Y3 Y2 Y1

X0X3 X2 X1Y0Y3 Y2 Y1 X4X7 X6 X5Y4Y7 Y6 Y5SRC DEST

DEST
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The PUNPCKLBW instruction interleaves the low-order bytes of the source and desti-
nation operands, the PUNPCKLWD instruction interleaves the low-order words of the 
source and destination operands, the PUNPCKLDQ instruction interleaves the low-
order doubleword (or doublewords) of the source and destination operands, and the 
PUNPCKLQDQ instruction interleaves the low-order quadwords of the source and 
destination operands.

These instructions can be used to convert bytes to words, words to doublewords, 
doublewords to quadwords, and quadwords to double quadwords, respectively, by 
placing all 0s in the source operand. Here, if the source operand contains all 0s, the 
result (stored in the destination operand) contains zero extensions of the high-order 
data elements from the original value in the destination operand. For example, with 
the PUNPCKLBW instruction the high-order bytes are zero extended (that is, 
unpacked into unsigned word integers), and with the PUNPCKLWD instruction, the 
high-order words are zero extended (unpacked into unsigned doubleword integers).

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).
128-bit Legacy SSE versions: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded versions: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. VEX.L must be 0, otherwise instructions will #UD.

Operation

PUNPCKLBW instruction with 64-bit operands:
DEST[63:56] ← SRC[31:24];
DEST[55:48] ← DEST[31:24];
DEST[47:40] ← SRC[23:16];
DEST[39:32] ← DEST[23:16];
DEST[31:24] ← SRC[15:8];
DEST[23:16] ← DEST[15:8];
DEST[15:8] ← SRC[7:0];
DEST[7:0] ← DEST[7:0];

PUNPCKLWD instruction with 64-bit operands:
DEST[63:48] ← SRC[31:16];
DEST[47:32] ← DEST[31:16];
DEST[31:16] ← SRC[15:0];
DEST[15:0] ← DEST[15:0];

PUNPCKLDQ instruction with 64-bit operands:
DEST[63:32] ← SRC[31:0];
DEST[31:0] ← DEST[31:0];

PUNPCKLBW instruction with 128-bit operands:
DEST[7:0]← DEST[7:0];
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DEST[15:8]  ← SRC[7:0];
DEST[23:16] ← DEST[15:8];
DEST[31:24] ← SRC[15:8];
DEST[39:32] ← DEST[23:16];
DEST[47:40] ← SRC[23:16];
DEST[55:48] ← DEST[31:24];
DEST[63:56] ← SRC[31:24];
DEST[71:64] ← DEST[39:32];
DEST[79:72] ← SRC[39:32];
DEST[87:80] ← DEST[47:40];
DEST[95:88] ← SRC[47:40];
DEST[103:96]  ← DEST[55:48];
DEST[111:104] ← SRC[55:48];
DEST[119:112] ← DEST[63:56];
DEST[127:120] ← SRC[63:56];

PUNPCKLWD instruction with 128-bit operands:
DEST[15:0]  ← DEST[15:0];
DEST[31:16] ← SRC[15:0];
DEST[47:32] ← DEST[31:16];
DEST[63:48] ← SRC[31:16];
DEST[79:64] ← DEST[47:32];
DEST[95:80] ← SRC[47:32];
DEST[111:96]  ← DEST[63:48];
DEST[127:112] ← SRC[63:48];

PUNPCKLDQ instruction with 128-bit operands:
DEST[31:0] ← DEST[31:0];
DEST[63:32]  ← SRC[31:0];
DEST[95:64]  ← DEST[63:32];
DEST[127:96] ← SRC[63:32];

PUNPCKLQDQ
DEST[63:0] ← DEST[63:0];
DEST[127:64] ← SRC[63:0];

VPUNPCKLBW
DEST[127:0]  INTERLEAVE_BYTES(SRC1, SRC2)
DEST[VLMAX-1:128]  0

VPUNPCKLWD
DEST[127:0]  INTERLEAVE_WORDS(SRC1, SRC2)
DEST[VLMAX-1:128]  0
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VPUNPCKLDQ
DEST[127:0]  INTERLEAVE_DWORDS(SRC1, SRC2)
DEST[VLMAX-1:128]  0

VPUNPCKLQDQ
DEST[127:0]  INTERLEAVE_QWORDS(SRC1, SRC2)
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalents

PUNPCKLBW: __m64 _mm_unpacklo_pi8 (__m64 m1, __m64 m2)

PUNPCKLBW: __m128i _mm_unpacklo_epi8 (__m128i m1, __m128i m2)

PUNPCKLWD: __m64 _mm_unpacklo_pi16 (__m64 m1, __m64 m2)

PUNPCKLWD: __m128i _mm_unpacklo_epi16 (__m128i m1, __m128i m2)

PUNPCKLDQ: __m64 _mm_unpacklo_pi32 (__m64 m1, __m64 m2)

PUNPCKLDQ: __m128i _mm_unpacklo_epi32 (__m128i m1, __m128i m2)

PUNPCKLQDQ: __m128i _mm_unpacklo_epi64 (__m128i m1, __m128i m2)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PUSH—Push Word, Doubleword or Quadword Onto the Stack

Instruction Operand Encoding

Description

Decrements the stack pointer and then stores the source operand on the top of the 
stack. Address and operand sizes are determined and used as follows:
• Address size. The D flag in the current code-segment descriptor determines the 

default address size; it may be overridden by an instruction prefix (67H).
The address size is used only when referencing a source operand in memory.

Opcode* Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

FF /6 PUSH r/m16 M Valid Valid Push r/m16.

FF /6 PUSH r/m32 M N.E. Valid Push r/m32.

FF /6 PUSH r/m64 M Valid N.E. Push r/m64. 

50+rw PUSH r16 O Valid Valid Push r16.

50+rd PUSH r32 O N.E. Valid Push r32.

50+rd PUSH r64 O Valid N.E. Push r64.

6A PUSH imm8 I Valid Valid Push imm8.

68 PUSH imm16 I Valid Valid Push imm16.

68 PUSH imm32 I Valid Valid Push imm32.

0E PUSH CS NP Invalid Valid Push CS.

16 PUSH SS NP Invalid Valid Push SS.

1E PUSH DS NP Invalid Valid Push DS.

06 PUSH ES NP Invalid Valid Push ES.

0F A0 PUSH FS NP Valid Valid Push FS.

0F A8 PUSH GS NP Valid Valid Push GS.

NOTES:
* See IA-32 Architecture Compatibility section below.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA

O opcode + rd (w) NA NA NA

I imm8/16/32 NA NA NA

NP NA NA NA NA
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• Operand size. The D flag in the current code-segment descriptor determines the 
default operand size; it may be overridden by instruction prefixes (66H or 
REX.W).
The operand size (16, 32, or 64 bits) determines the amount by which the stack
pointer is decremented (2, 4 or 8).
If the source operand is an immediate and its size is less than the operand size,
a sign-extended value is pushed on the stack. If the source operand is a
segment register (16 bits) and the operand size is greater than 16 bits, a zero-
extended value is pushed on the stack.

• Stack-address size. Outside of 64-bit mode, the B flag in the current stack-
segment descriptor determines the size of the stack pointer (16 or 32 bits); in 
64-bit mode, the size of the stack pointer is always 64 bits.
The stack-address size determines the width of the stack pointer when writing
to the stack in memory and when decrementing the stack pointer. (As stated
above, the amount by which the stack pointer is decremented is determined by
the operand size.)
If the operand size is less than the stack-address size, the PUSH instruction may
result in a misaligned stack pointer (a stack pointer that is not aligned on a
doubleword or quadword boundary).

The PUSH ESP instruction pushes the value of the ESP register as it existed before 
the instruction was executed. If a PUSH instruction uses a memory operand in which 
the ESP register is used for computing the operand address, the address of the 
operand is computed before the ESP register is decremented. 

If the ESP or SP register is 1 when the PUSH instruction is executed in real-address 
mode, a stack-fault exception (#SS) is generated (because the limit of the stack 
segment is violated). Its delivery encounters a second stack-fault exception (for the 
same reason), causing generation of a double-fault exception (#DF). Delivery of the 
double-fault exception encounters a third stack-fault exception, and the logical 
processor enters shutdown mode. See the discussion of the double-fault exception in 
Chapter 6 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3A.

IA-32 Architecture Compatibility

For IA-32 processors from the Intel 286 on, the PUSH ESP instruction pushes the 
value of the ESP register as it existed before the instruction was executed. (This is 
also true for Intel 64 architecture, real-address and virtual-8086 modes of IA-32 
architecture.) For the Intel® 8086 processor, the PUSH SP instruction pushes the new 
value of the SP register (that is the value after it has been decremented by 2).

Operation

IF SRC is a segment register
THEN
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IF operand size = 16
THEN TEMP ← SRC;
ELSE TEMP ← ZeroExtend(SRC); (* extend to operand size *)

FI;
ELSE IF SRC is immediate byte

THEN TEMP ← SignExtend(SRC); (* extend to operand size *)
ELSE IF SRC is immediate word (* operand size is 16 *)

THEN TEMP ← SRC;
ELSE IF SRC is immediate doubleword (* operand size is 32 or 64 *)

THEN
IF operand size = 32

THEN TEMP ← SRC;
ELSE TEMP ← SignExtend(SRC); (* extend to operand size of 64 *)

FI;
ELSE IF SRC is in memory

THEN TEMP ← SRC; (* use address and operand sizes *)
ELSE TEMP ← SRC; (* SRC is register; use operand size *)

FI;
IF in 64-bit mode (* stack-address size = 64 *)

THEN
IF operand size = 64

THEN
RSP ← RSP − 8;
Memory[RSP] ← TEMP; (* Push quadword *)

ELSE (* operand size = 16 *)
RSP ← RSP − 2;
Memory[RSP] ← TEMP; (* Push word *)

FI;
ELSE IF stack-address size = 32

THEN
IF operand size = 32

THEN
ESP ← ESP − 4;
Memory[SS:ESP] ← TEMP; (* Push doubleword *)

ELSE (* operand size = 16 *)
ESP ← ESP − 2;
Memory[SS:ESP] ← TEMP; (* Push word *)

FI;
ELSE (* stack-address size = 16 *)

IF operand size = 32
THEN

SP ← SP − 4;
Memory[SS:SP] ← TEMP; (* Push doubleword *)
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ELSE (* operand size = 16 *)
SP ← SP − 2;
Memory[SS:SP] ← TEMP; (* Push word *)

FI;
FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it 
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS 

segment limit.
If the new value of the SP or ESP register is outside the stack 
segment limit.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made.
#UD If the LOCK prefix is used.
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Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
#SS(0) If the stack address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
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PUSHA/PUSHAD—Push All General-Purpose Registers

Instruction Operand Encoding

Description

Pushes the contents of the general-purpose registers onto the stack. The registers 
are stored on the stack in the following order: EAX, ECX, EDX, EBX, ESP (original 
value), EBP, ESI, and EDI (if the current operand-size attribute is 32) and AX, CX, DX, 
BX, SP (original value), BP, SI, and DI (if the operand-size attribute is 16). These 
instructions perform the reverse operation of the POPA/POPAD instructions. The 
value pushed for the ESP or SP register is its value before prior to pushing the first 
register (see the “Operation” section below).

The PUSHA (push all) and PUSHAD (push all double) mnemonics reference the same 
opcode. The PUSHA instruction is intended for use when the operand-size attribute is 
16 and the PUSHAD instruction for when the operand-size attribute is 32. Some 
assemblers may force the operand size to 16 when PUSHA is used and to 32 when 
PUSHAD is used. Others may treat these mnemonics as synonyms (PUSHA/PUSHAD) 
and use the current setting of the operand-size attribute to determine the size of 
values to be pushed from the stack, regardless of the mnemonic used.

In the real-address mode, if the ESP or SP register is 1, 3, or 5 when PUSHA/PUSHAD 
executes: an #SS exception is generated but not delivered (the stack error reported 
prevents #SS delivery). Next, the processor generates a #DF exception and enters a 
shutdown state as described in the #DF discussion in Chapter 6 of the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3A.

This instruction executes as described in compatibility mode and legacy mode. It is 
not valid in 64-bit mode.

Operation

IF 64-bit Mode 

THEN #UD

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

60 PUSHA NP Invalid Valid Push AX, CX, DX, BX, original 
SP, BP, SI, and DI.

60 PUSHAD NP Invalid Valid Push EAX, ECX, EDX, EBX, 
original ESP, EBP, ESI, and 
EDI.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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FI;

IF OperandSize = 32 (* PUSHAD instruction *)
THEN

Temp ← (ESP);
Push(EAX);
Push(ECX);
Push(EDX);
Push(EBX);
Push(Temp);
Push(EBP);
Push(ESI);
Push(EDI);

ELSE (* OperandSize = 16, PUSHA instruction *)
Temp ← (SP);
Push(AX);
Push(CX);
Push(DX);
Push(BX);
Push(Temp);
Push(BP);
Push(SI);
Push(DI);

FI;

Flags Affected

None.

Protected Mode Exceptions
#SS(0) If the starting or ending stack address is outside the stack 

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference is made while the current 

privilege level is 3 and alignment checking is enabled.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If the ESP or SP register contains 7, 9, 11, 13, or 15.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If the ESP or SP register contains 7, 9, 11, 13, or 15.
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#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference is made while alignment 

checking is enabled.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#UD If in 64-bit mode.
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PUSHF/PUSHFD—Push EFLAGS Register onto the Stack

Instruction Operand Encoding

Description

Decrements the stack pointer by 4 (if the current operand-size attribute is 32) and 
pushes the entire contents of the EFLAGS register onto the stack, or decrements the 
stack pointer by 2 (if the operand-size attribute is 16) and pushes the lower 16 bits 
of the EFLAGS register (that is, the FLAGS register) onto the stack. These instruc-
tions reverse the operation of the POPF/POPFD instructions. 

When copying the entire EFLAGS register to the stack, the VM and RF flags (bits 16 
and 17) are not copied; instead, the values for these flags are cleared in the EFLAGS 
image stored on the stack. See Chapter 3 of the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 1, for more information about the EFLAGS 
register. 

The PUSHF (push flags) and PUSHFD (push flags double) mnemonics reference the 
same opcode. The PUSHF instruction is intended for use when the operand-size 
attribute is 16 and the PUSHFD instruction for when the operand-size attribute is 32. 
Some assemblers may force the operand size to 16 when PUSHF is used and to 32 
when PUSHFD is used. Others may treat these mnemonics as synonyms 
(PUSHF/PUSHFD) and use the current setting of the operand-size attribute to deter-
mine the size of values to be pushed from the stack, regardless of the mnemonic 
used.

In 64-bit mode, the instruction’s default operation is to decrement the stack pointer 
(RSP) by 8 and pushes RFLAGS on the stack. 16-bit operation is supported using the 
operand size override prefix 66H. 32-bit operand size cannot be encoded in this 
mode. When copying RFLAGS to the stack, the VM and RF flags (bits 16 and 17) are 
not copied; instead, values for these flags are cleared in the RFLAGS image stored on 
the stack.

When in virtual-8086 mode and the I/O privilege level (IOPL) is less than 3, the 
PUSHF/PUSHFD instruction causes a general protection exception (#GP).

Opcode* Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

9C PUSHF NP Valid Valid Push lower 16 bits of 
EFLAGS.

9C PUSHFD NP N.E. Valid Push EFLAGS.

9C PUSHFQ NP Valid N.E. Push RFLAGS.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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In the real-address mode, if the ESP or SP register is 1 when PUSHF/PUSHFD instruc-
tion executes: an #SS exception is generated but not delivered (the stack error 
reported prevents #SS delivery). Next, the processor generates a #DF exception and 
enters a shutdown state as described in the #DF discussion in Chapter 6 of the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

Operation

IF (PE = 0) or (PE = 1 and ((VM = 0) or (VM = 1 and IOPL = 3)))
(* Real-Address Mode, Protected mode, or Virtual-8086 mode with IOPL equal to 3 *)

THEN
IF OperandSize = 32

THEN 
push (EFLAGS AND 00FCFFFFH);
(* VM and RF EFLAG bits are cleared in image stored on the stack *)

ELSE 
push (EFLAGS); (* Lower 16 bits only *)

FI;

ELSE IF 64-bit MODE (* In 64-bit Mode *)
IF OperandSize = 64

THEN 
push (RFLAGS AND 00000000_00FCFFFFH);
(* VM and RF RFLAG bits are cleared in image stored on the stack; *)

ELSE 
push (EFLAGS); (* Lower 16 bits only *)

FI;

ELSE (* In Virtual-8086 Mode with IOPL less than 3 *)
#GP(0); (* Trap to virtual-8086 monitor *)

FI;

Flags Affected

None.

Protected Mode Exceptions
#SS(0) If the new value of the ESP register is outside the stack segment 

boundary. 
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference is made while the current 

privilege level is 3 and alignment checking is enabled.
#UD If the LOCK prefix is used.
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Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If the I/O privilege level is less than 3.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference is made while alignment 

checking is enabled.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
#SS(0) If the stack address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference is made while the current 

privilege level is 3 and alignment checking is enabled.
#UD If the LOCK prefix is used.
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PXOR—Logical Exclusive OR

Instruction Operand Encoding

Description

Performs a bitwise logical exclusive-OR (XOR) operation on the source operand 
(second operand) and the destination operand (first operand) and stores the result in 
the destination operand. The source operand can be an MMX technology register or a 
64-bit memory location or it can be an XMM register or a 128-bit memory location. 
The destination operand can be an MMX technology register or an XMM register. Each 
bit of the result is 1 if the corresponding bits of the two operands are different; each 
bit is 0 if the corresponding bits of the operands are the same.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. VEX.L must be 0, otherwise instructions will #UD.

Operation

PXOR (128-bit Legacy SSE version)

Opcode*/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F EF /r1

PXOR mm, mm/m64

RM V/V MMX Bitwise XOR of mm/m64 
and mm.

66 0F EF /r

PXOR xmm1, xmm2/m128

RM V/V SSE2 Bitwise XOR of 
xmm2/m128 and xmm1.

VEX.NDS.128.66.0F.WIG EF /r
VPXOR xmm1, xmm2, xmm3/m128

RVM V/V AVX Bitwise XOR of 
xmm3/m128 and xmm2.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception 
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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DEST  DEST XOR SRC
DEST[VLMAX-1:128] (Unmodified)

VPXOR (VEX.128 encoded version)
DEST  SRC1 XOR SRC2
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PXOR: __m64 _mm_xor_si64 (__m64 m1, __m64 m2)

PXOR: __m128i _mm_xor_si128 ( __m128i a, __m128i b)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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RCL/RCR/ROL/ROR-—Rotate

Opcode** Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

D0 /2 RCL r/m8, 1 M1 Valid Valid Rotate 9 bits (CF, r/m8) left 
once.

REX + D0 /2 RCL r/m8*, 1 M1 Valid N.E. Rotate 9 bits (CF, r/m8) left 
once. 

D2 /2 RCL r/m8, CL MC Valid Valid Rotate 9 bits (CF, r/m8) left 
CL times. 

REX + D2 /2 RCL r/m8*, CL MC Valid N.E. Rotate 9 bits (CF, r/m8) left 
CL times. 

C0 /2 ib RCL r/m8, imm8 MI Valid Valid Rotate 9 bits (CF, r/m8) left 
imm8 times.

REX + C0 /2 ib RCL r/m8*, imm8 MI Valid N.E. Rotate 9 bits (CF, r/m8) left 
imm8 times.

D1 /2 RCL r/m16, 1 M1 Valid Valid Rotate 17 bits (CF, r/m16) 
left once.

D3 /2 RCL r/m16, CL MC Valid Valid Rotate 17 bits (CF, r/m16) 
left CL times.

C1 /2 ib RCL r/m16, imm8 MI Valid Valid Rotate 17 bits (CF, r/m16) 
left imm8 times.

D1 /2 RCL r/m32, 1 M1 Valid Valid Rotate 33 bits (CF, r/m32) 
left once.

REX.W + D1 /2 RCL r/m64, 1 M1 Valid N.E. Rotate 65 bits (CF, r/m64) 
left once. Uses a 6 bit count.

D3 /2 RCL r/m32, CL MC Valid Valid Rotate 33 bits (CF, r/m32) 
left CL times.

REX.W + D3 /2 RCL r/m64, CL MC Valid N.E. Rotate 65 bits (CF, r/m64) 
left CL times. Uses a 6 bit 
count.

C1 /2 ib RCL r/m32, imm8 MI Valid Valid Rotate 33 bits (CF, r/m32) 
left imm8 times.

REX.W + C1 /2 
ib

RCL r/m64, imm8 MI Valid N.E. Rotate 65 bits (CF, r/m64) 
left imm8 times. Uses a 6 bit 
count.

D0 /3 RCR r/m8, 1 M1 Valid Valid Rotate 9 bits (CF, r/m8) right 
once. 

REX + D0 /3 RCR r/m8*, 1 M1 Valid N.E. Rotate 9 bits (CF, r/m8) right 
once. 
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Opcode** Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

D2 /3 RCR r/m8, CL MC Valid Valid Rotate 9 bits (CF, r/m8) right 
CL times. 

REX + D2 /3 RCR r/m8*, CL MC Valid N.E. Rotate 9 bits (CF, r/m8) right 
CL times. 

C0 /3 ib RCR r/m8, imm8 MI Valid Valid Rotate 9 bits (CF, r/m8) right 
imm8 times. 

REX + C0 /3 ib RCR r/m8*, imm8 MI Valid N.E. Rotate 9 bits (CF, r/m8) right 
imm8 times. 

D1 /3 RCR r/m16, 1 M1 Valid Valid Rotate 17 bits (CF, r/m16) 
right once.

D3 /3 RCR r/m16, CL MC Valid Valid Rotate 17 bits (CF, r/m16) 
right CL times.

C1 /3 ib RCR r/m16, imm8 MI Valid Valid Rotate 17 bits (CF, r/m16) 
right imm8 times.

D1 /3 RCR r/m32, 1 M1 Valid Valid Rotate 33 bits (CF, r/m32) 
right once. Uses a 6 bit 
count.

REX.W + D1 /3 RCR r/m64, 1 M1 Valid N.E. Rotate 65 bits (CF, r/m64) 
right once. Uses a 6 bit 
count.

D3 /3 RCR r/m32, CL MC Valid Valid Rotate 33 bits (CF, r/m32) 
right CL times.

REX.W + D3 /3 RCR r/m64, CL MC Valid N.E. Rotate 65 bits (CF, r/m64) 
right CL times. Uses a 6 bit 
count.

C1 /3 ib RCR r/m32, imm8 MI Valid Valid Rotate 33 bits (CF, r/m32) 
right imm8 times.

REX.W + C1 /3 
ib

RCR r/m64, imm8 MI Valid N.E. Rotate 65 bits (CF, r/m64) 
right imm8 times. Uses a 6 
bit count.

D0 /0 ROL r/m8, 1 M1 Valid Valid Rotate 8 bits r/m8 left once.

REX + D0 /0 ROL r/m8*, 1 M1 Valid N.E. Rotate 8 bits r/m8 left once

D2 /0 ROL r/m8, CL MC Valid Valid Rotate 8 bits r/m8 left CL 
times.

REX + D2 /0 ROL r/m8*, CL MC Valid N.E. Rotate 8 bits r/m8 left CL 
times.

C0 /0 ib ROL r/m8, imm8 MI Valid Valid Rotate 8 bits r/m8 left imm8 
times.
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Opcode** Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

REX + C0 /0 ib ROL r/m8*, imm8 MI Valid N.E. Rotate 8 bits r/m8 left imm8 
times.

D1 /0 ROL r/m16, 1 M1 Valid Valid Rotate 16 bits r/m16 left 
once.

D3 /0 ROL r/m16, CL MC Valid Valid Rotate 16 bits r/m16 left CL 
times.

C1 /0 ib ROL r/m16, imm8 MI Valid Valid Rotate 16 bits r/m16 left 
imm8 times.

D1 /0 ROL r/m32, 1 M1 Valid Valid Rotate 32 bits r/m32 left 
once.

REX.W + D1 /0 ROL r/m64, 1 M1 Valid N.E. Rotate 64 bits r/m64 left 
once. Uses a 6 bit count.

D3 /0 ROL r/m32, CL MC Valid Valid Rotate 32 bits r/m32 left CL 
times.

REX.W + D3 /0 ROL r/m64, CL MC Valid N.E. Rotate 64 bits r/m64 left CL 
times. Uses a 6 bit count.

C1 /0 ib ROL r/m32, imm8 MI Valid Valid Rotate 32 bits r/m32 left 
imm8 times.

C1 /0 ib ROL r/m64, imm8 MI Valid N.E. Rotate 64 bits r/m64 left 
imm8 times. Uses a 6 bit 
count.

D0 /1 ROR r/m8, 1 M1 Valid Valid Rotate 8 bits r/m8 right 
once.

REX + D0 /1 ROR r/m8*, 1 M1 Valid N.E. Rotate 8 bits r/m8 right 
once.

D2 /1 ROR r/m8, CL MC Valid Valid Rotate 8 bits r/m8 right CL 
times.

REX + D2 /1 ROR r/m8*, CL MC Valid N.E. Rotate 8 bits r/m8 right CL 
times.

C0 /1 ib ROR r/m8, imm8 MI Valid Valid Rotate 8 bits r/m16 right 
imm8 times.

REX + C0 /1 ib ROR r/m8*, imm8 MI Valid N.E. Rotate 8 bits r/m16 right 
imm8 times.

D1 /1 ROR r/m16, 1 M1 Valid Valid Rotate 16 bits r/m16 right 
once.

D3 /1 ROR r/m16, CL MC Valid Valid Rotate 16 bits r/m16 right 
CL times.
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Instruction Operand Encoding

Description

Shifts (rotates) the bits of the first operand (destination operand) the number of bit 
positions specified in the second operand (count operand) and stores the result in the 
destination operand. The destination operand can be a register or a memory loca-
tion; the count operand is an unsigned integer that can be an immediate or a value in 
the CL register. In legacy and compatibility mode, the processor restricts the count to 
a number between 0 and 31 by masking all the bits in the count operand except the 
5 least-significant bits.

The rotate left (ROL) and rotate through carry left (RCL) instructions shift all the bits 
toward more-significant bit positions, except for the most-significant bit, which is 
rotated to the least-significant bit location. The rotate right (ROR) and rotate through 

Opcode** Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

C1 /1 ib ROR r/m16, imm8 MI Valid Valid Rotate 16 bits r/m16 right 
imm8 times.

D1 /1 ROR r/m32, 1 M1 Valid Valid Rotate 32 bits r/m32 right 
once.

REX.W + D1 /1 ROR r/m64, 1 M1 Valid N.E. Rotate 64 bits r/m64 right 
once. Uses a 6 bit count.

D3 /1 ROR r/m32, CL MC Valid Valid Rotate 32 bits r/m32 right 
CL times.

REX.W + D3 /1 ROR r/m64, CL MC Valid N.E. Rotate 64 bits r/m64 right 
CL times. Uses a 6 bit count.

C1 /1 ib ROR r/m32, imm8 MI Valid Valid Rotate 32 bits r/m32 right 
imm8 times.

REX.W + C1 /1 
ib

ROR r/m64, imm8 MI Valid N.E. Rotate 64 bits r/m64 right 
imm8 times. Uses a 6 bit 
count.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is 

used: AH, BH, CH, DH.
** See IA-32 Architecture Compatibility section below.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M1 ModRM:r/m (w) 1 NA NA

MC ModRM:r/m (w) CL NA NA

MI ModRM:r/m (w) imm8 NA NA
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carry right (RCR) instructions shift all the bits toward less significant bit positions, 
except for the least-significant bit, which is rotated to the most-significant bit loca-
tion.

The RCL and RCR instructions include the CF flag in the rotation. The RCL instruction 
shifts the CF flag into the least-significant bit and shifts the most-significant bit into 
the CF flag. The RCR instruction shifts the CF flag into the most-significant bit and 
shifts the least-significant bit into the CF flag. For the ROL and ROR instructions, the 
original value of the CF flag is not a part of the result, but the CF flag receives a copy 
of the bit that was shifted from one end to the other.

The OF flag is defined only for the 1-bit rotates; it is undefined in all other cases 
(except RCL and RCR instructions only: a zero-bit rotate does nothing, that is affects 
no flags). For left rotates, the OF flag is set to the exclusive OR of the CF bit (after the 
rotate) and the most-significant bit of the result. For right rotates, the OF flag is set 
to the exclusive OR of the two most-significant bits of the result.

In 64-bit mode, using a REX prefix in the form of REX.R permits access to additional 
registers (R8-R15). Use of REX.W promotes the first operand to 64 bits and causes 
the count operand to become a 6-bit counter.

IA-32 Architecture Compatibility

The 8086 does not mask the rotation count. However, all other IA-32 processors 
(starting with the Intel 286 processor) do mask the rotation count to 5 bits, resulting 
in a maximum count of 31. This masking is done in all operating modes (including the 
virtual-8086 mode) to reduce the maximum execution time of the instructions.

Operation

(* RCL and RCR instructions *)
SIZE ← OperandSize;
CASE (determine count) OF

SIZE ← 8: tempCOUNT ← (COUNT AND 1FH) MOD 9;
SIZE ← 16: tempCOUNT ← (COUNT AND 1FH) MOD 17;
SIZE ← 32: tempCOUNT ← COUNT AND 1FH;
SIZE ← 64: tempCOUNT ← COUNT AND 3FH;

ESAC;

(* RCL instruction operation *)
WHILE (tempCOUNT ≠ 0)

DO
tempCF ← MSB(DEST);
DEST ← (DEST ∗ 2) + CF;
CF ← tempCF;
tempCOUNT ← tempCOUNT – 1;

OD;
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ELIHW;
IF COUNT = 1

THEN OF ← MSB(DEST) XOR CF;
ELSE OF is undefined;

FI;

(* RCR instruction operation *)
IF COUNT = 1

THEN OF ← MSB(DEST) XOR CF;
ELSE OF is undefined;

FI;
WHILE (tempCOUNT ≠ 0)

DO
tempCF ← LSB(SRC);
DEST ← (DEST / 2) + (CF * 2SIZE);
CF ← tempCF;
tempCOUNT ← tempCOUNT – 1;

OD;

(* ROL and ROR instructions *)
IF OperandSize = 64

THEN COUNTMASK = 3FH;
ELSE COUNTMASK = 1FH;

FI;

(* ROL instruction operation *)
tempCOUNT ← (COUNT & COUNTMASK) MOD SIZE

WHILE (tempCOUNT ≠ 0)
DO

tempCF ← MSB(DEST);
DEST ← (DEST ∗ 2) + tempCF;
tempCOUNT ← tempCOUNT – 1;

OD;
ELIHW;
CF ← LSB(DEST);
IF (COUNT & COUNTMASK) = 1

THEN OF ← MSB(DEST) XOR CF;
ELSE OF is undefined;

FI;

(* ROR instruction operation *)
tempCOUNT ← (COUNT & COUNTMASK) MOD SIZE
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WHILE (tempCOUNT ≠ 0)
DO

tempCF ← LSB(SRC);
DEST ← (DEST / 2) + (tempCF ∗ 2SIZE);
tempCOUNT ← tempCOUNT – 1;

OD;
ELIHW;
CF ← MSB(DEST);
IF (COUNT & COUNTMASK) = 1

THEN OF ← MSB(DEST) XOR MSB − 1(DEST);
ELSE OF is undefined;

FI;

Flags Affected

The CF flag contains the value of the bit shifted into it. The OF flag is affected only for 
single-bit rotates (see “Description” above); it is undefined for multi-bit rotates. The 
SF, ZF, AF, and PF flags are not affected.

Protected Mode Exceptions
#GP(0) If the source operand is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, 
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS 

segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
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#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the source operand is located in a nonwritable segment.

If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
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RCPPS—Compute Reciprocals of Packed Single-Precision Floating-
Point Values

Instruction Operand Encoding

Description

Performs a SIMD computation of the approximate reciprocals of the four packed 
single-precision floating-point values in the source operand (second operand) stores 
the packed single-precision floating-point results in the destination operand. The 
source operand can be an XMM register or a 128-bit memory location. The destina-
tion operand is an XMM register. See Figure 10-5 in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 1, for an illustration of a SIMD single-
precision floating-point operation.

The relative error for this approximation is:

|Relative Error| ≤ 1.5 ∗ 2−12 

The RCPPS instruction is not affected by the rounding control bits in the MXCSR 
register. When a source value is a 0.0, an ∞ of the sign of the source value is 
returned. A denormal source value is treated as a 0.0 (of the same sign). Tiny results 
are always flushed to 0.0, with the sign of the operand. (Input values greater than or 
equal to |1.11111111110100000000000B∗2125| are guaranteed to not produce tiny 

Opcode*/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F 53 /r

RCPPS xmm1, xmm2/m128

RM V/V SSE Computes the approximate 
reciprocals of the packed 
single-precision floating-
point values in xmm2/m128 
and stores the results in 
xmm1.

VEX.128.0F.WIG 53 /r

VRCPPS xmm1, xmm2/m128

RM V/V AVX Computes the approximate 
reciprocals of packed single-
precision values in 
xmm2/mem and stores the 
results in xmm1.

VEX.256.0F.WIG 53 /r

VRCPPS ymm1, ymm2/m256

RM V/V AVX Computes the approximate 
reciprocals of packed single-
precision values in 
ymm2/mem and stores the 
results in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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results; input values less than or equal to |1.00000000000110000000001B*2126| 
are guaranteed to produce tiny results, which are in turn flushed to 0.0; and input 
values in between this range may or may not produce tiny results, depending on the 
implementation.) When a source value is an SNaN or QNaN, the SNaN is converted to 
a QNaN or the source QNaN is returned.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).
VEX.256 encoded version: The first source operand is a YMM register. The second 
source operand can be a YMM register or a 256-bit memory location. The destination 
operand is a YMM register. 
VEX.128 encoded version: the first source operand is an XMM register or 128-bit 
memory location. The destination operand is an XMM register. The upper bits 
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit 
memory location. The destination is not distinct from the first source XMM register 
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
unmodified.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise 
instructions will #UD.

Operation

RCPPS (128-bit Legacy SSE version)
DEST[31:0]  APPROXIMATE(1/SRC[31:0])
DEST[63:32]  APPROXIMATE(1/SRC[63:32])
DEST[95:64]  APPROXIMATE(1/SRC[95:64])
DEST[127:96]  APPROXIMATE(1/SRC[127:96])
DEST[VLMAX-1:128] (Unmodified)

VRCPPS (VEX.128 encoded version)
DEST[31:0]  APPROXIMATE(1/SRC[31:0])
DEST[63:32]  APPROXIMATE(1/SRC[63:32])
DEST[95:64]  APPROXIMATE(1/SRC[95:64])
DEST[127:96]  APPROXIMATE(1/SRC[127:96])
DEST[VLMAX-1:128]  0

VRCPPS (VEX.256 encoded version)
DEST[31:0]  APPROXIMATE(1/SRC[31:0])
DEST[63:32]  APPROXIMATE(1/SRC[63:32])
DEST[95:64]  APPROXIMATE(1/SRC[95:64])
DEST[127:96]  APPROXIMATE(1/SRC[127:96])
DEST[159:128]  APPROXIMATE(1/SRC[159:128])
DEST[191:160]  APPROXIMATE(1/SRC[191:160])
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DEST[223:192]  APPROXIMATE(1/SRC[223:192])
DEST[255:224]  APPROXIMATE(1/SRC[255:224])

Intel C/C++ Compiler Intrinsic Equivalent

RCCPS: __m128 _mm_rcp_ps(__m128 a)

RCPPS:  __m256 _mm256_rcp_ps (__m256 a);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.vvvv != 1111B.
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RCPSS—Compute Reciprocal of Scalar Single-Precision Floating-Point 
Values 

Instruction Operand Encoding

Description

Computes of an approximate reciprocal of the low single-precision floating-point 
value in the source operand (second operand) and stores the single-precision 
floating-point result in the destination operand. The source operand can be an XMM 
register or a 32-bit memory location. The destination operand is an XMM register. 
The three high-order doublewords of the destination operand remain unchanged. 
See Figure 10-6 in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 1, for an illustration of a scalar single-precision floating-point oper-
ation.

The relative error for this approximation is:

|Relative Error| ≤ 1.5 ∗ 2−12 

The RCPSS instruction is not affected by the rounding control bits in the MXCSR 
register. When a source value is a 0.0, an ∞ of the sign of the source value is 
returned. A denormal source value is treated as a 0.0 (of the same sign). Tiny results 

Opcode*/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

F3 0F 53 /r

RCPSS xmm1, xmm2/m32

RM V/V SSE Computes the approximate 
reciprocal of the scalar 
single-precision floating-
point value in xmm2/m32 
and stores the result in 
xmm1.

VEX.NDS.LIG.F3.0F.WIG 53 /r

VRCPSS xmm1, xmm2, xmm3/m32

RVM V/V AVX Computes the approximate 
reciprocal of the scalar 
single-precision floating-
point value in xmm3/m32 
and stores the result in 
xmm1. Also, upper single 
precision floating-point 
values (bits[127:32]) from 
xmm2 are copied to 
xmm1[127:32].

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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are always flushed to 0.0, with the sign of the operand. (Input values greater than or 
equal to |1.11111111110100000000000B∗2125| are guaranteed to not produce tiny 
results; input values less than or equal to |1.00000000000110000000001B*2126| 
are guaranteed to produce tiny results, which are in turn flushed to 0.0; and input 
values in between this range may or may not produce tiny results, depending on the 
implementation.) When a source value is an SNaN or QNaN, the SNaN is converted to 
a QNaN or the source QNaN is returned.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The first source operand and the destination operand 
are the same. Bits (VLMAX-1:32) of the corresponding YMM destination register 
remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed.

Operation

RCPSS (128-bit Legacy SSE version)
DEST[31:0]  APPROXIMATE(1/SRC[31:0])
DEST[VLMAX-1:32] (Unmodified)

VRCPSS (VEX.128 encoded version)
DEST[31:0]  APPROXIMATE(1/SRC2[31:0])
DEST[127:32]  SRC1[127:32]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

RCPSS: __m128 _mm_rcp_ss(__m128 a)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 5.
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RDFSBASE/RDGSBASE—Read FS/GS Segment Base

Instruction Operand Encoding

Description

Loads the general-purpose register indicated by the modR/M:r/m field with the FS or 
GS segment base address.

The destination operand may be either a 32-bit or a 64-bit general-purpose register. 
The REX.W prefix indicates the operand size is 64 bits. If no REX.W prefix is used, the 
operand size is 32 bits; the upper 32 bits of the source base address (for FS or GS) 
are ignored and upper 32 bits of the destination register are cleared. 
This instruction is supported only in 64-bit mode.

Operation

DEST ← FS/GS segment base address;

Flags Affected

None

C/C++ Compiler Intrinsic Equivalent

RDFSBASE: unsigned int _readfsbase_u32(void );

RDFSBASE: unsigned __int64 _readfsbase_u64(void );

RDGSBASE: unsigned int _readgsbase_u32(void );

RDGSBASE: unsigned __int64 _readgsbase_u64(void );

Opcode/
Instruction

Op/ 
En

64/32
-bit 
Mode

CPUID 
Feature 
Flag

Description

F3 0F AE /0
RDFSBASE r32

M V/I FSGSBASE Load the 32-bit destination reg-
ister with the FS base address.

REX.W + F3 0F AE /0
RDFSBASE r64

M V/I FSGSBASE Load the 64-bit destination reg-
ister with the FS base address.

F3 0F AE /1
RDGSBASE r32

M V/I FSGSBASE Load the 32-bit destination reg-
ister with the GS base address.

REX.W + F3 0F AE /1
RDGSBASE r64

M V/I FSGSBASE Load the 64-bit destination reg-
ister with the GS base address.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA
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Protected Mode Exceptions
#UD The RDFSBASE and RDGSBASE instructions are not recognized 

in protected mode.

Real-Address Mode Exceptions
#UD The RDFSBASE and RDGSBASE instructions are not recognized 

in real-address mode.

Virtual-8086 Mode Exceptions
#UD The RDFSBASE and RDGSBASE instructions are not recognized 

in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The RDFSBASE and RDGSBASE instructions are not recognized 

in compatibility mode.

64-Bit Mode Exceptions
#UD If the LOCK prefix is used.

If CR4.FSGSBASE[bit 16] = 0.
If CPUID.07H.0H:EBX.FSGSBASE[bit 0] = 0.
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RDMSR—Read from Model Specific Register

Instruction Operand Encoding

Description

Reads the contents of a 64-bit model specific register (MSR) specified in the ECX 
register into registers EDX:EAX. (On processors that support the Intel 64 architec-
ture, the high-order 32 bits of RCX are ignored.) The EDX register is loaded with the 
high-order 32 bits of the MSR and the EAX register is loaded with the low-order 32 
bits. (On processors that support the Intel 64 architecture, the high-order 32 bits of 
each of RAX and RDX are cleared.) If fewer than 64 bits are implemented in the MSR 
being read, the values returned to EDX:EAX in unimplemented bit locations are 
undefined.

This instruction must be executed at privilege level 0 or in real-address mode; other-
wise, a general protection exception #GP(0) will be generated. Specifying a reserved 
or unimplemented MSR address in ECX will also cause a general protection excep-
tion.

The MSRs control functions for testability, execution tracing, performance-moni-
toring, and machine check errors. Chapter 34, “Model-Specific Registers (MSRs),” in 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C, lists 
all the MSRs that can be read with this instruction and their addresses. Note that 
each processor family has its own set of MSRs.

The CPUID instruction should be used to determine whether MSRs are supported 
(CPUID.01H:EDX[5] = 1) before using this instruction.

IA-32 Architecture Compatibility

The MSRs and the ability to read them with the RDMSR instruction were introduced 
into the IA-32 Architecture with the Pentium processor. Execution of this instruction 
by an IA-32 processor earlier than the Pentium processor results in an invalid opcode 
exception #UD.

Opcode* Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 32 RDMSR NP Valid Valid Read MSR specified by ECX 
into EDX:EAX.

NOTES:
* See IA-32 Architecture Compatibility section below.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 25 of 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C, for 
more information about the behavior of this instruction in VMX non-root operation.

Operation

EDX:EAX ← MSR[ECX];

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the value in ECX specifies a reserved or unimplemented MSR 
address.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If the value in ECX specifies a reserved or unimplemented MSR 

address.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0)  The RDMSR instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the value in ECX or RCX specifies a reserved or unimple-
mented MSR address.

#UD If the LOCK prefix is used.
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RDPMC—Read Performance-Monitoring Counters

Instruction Operand Encoding

Description

The EAX register is loaded with the low-order 32 bits. The EDX register is loaded with 
the supported high-order bits of the counter. The number of high-order bits loaded 
into EDX is implementation specific on processors that do no support architectural 
performance monitoring. The width of fixed-function and general-purpose perfor-
mance counters on processors supporting architectural performance monitoring are 
reported by CPUID 0AH leaf. See below for the treatment of the EDX register for 
“fast” reads.

The ECX register selects one of two type of performance counters, specifies the index 
relative to the base of each counter type, and selects “fast” read mode if supported. 
The two counter types are : 
• General-purpose or special-purpose performance counters: The number of 

general-purpose counters is model specific if the processor does not support 
architectural performance monitoring, see Chapter 30 of Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3B. Special-purpose 
counters are available only in selected processor members, see Section 30.13, 
30.14 of Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3B. This counter type is selected if ECX[30] is clear.

• Fixed-function performance counter. The number fixed-function performance 
counters is enumerated by CPUID 0AH leaf. See Chapter 30 of Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3B. This counter type 
is selected if ECX[30] is set.

ECX[29:0] specifies the index. The width of general-purpose performance counters 
are 40-bits for processors that do not support architectural performance monitoring 
counters.The width of special-purpose performance counters are implementation 
specific. The width of fixed-function performance counters and general-purpose 
performance counters on processor supporting architectural performance monitoring 
are reported by CPUID 0AH leaf. 

Opcode* Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 33 RDPMC NP Valid Valid Read performance-
monitoring counter 
specified by ECX into 
EDX:EAX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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Table 4-15 lists valid indices of the general-purpose and special-purpose perfor-
mance counters according to the derived DisplayFamily_DisplayModel values of 
CPUID encoding for each processor family (see CPUID instruction in Chapter 3, 
“Instruction Set Reference, A-L” in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 2A). 

The Pentium 4 and Intel Xeon processors also support “fast” (32-bit) and “slow” 
(40-bit) reads on the first 18 performance counters. Selected this option using 

Table 4-15.  Valid General and Special Purpose Performance Counter Index Range for 
RDPMC

Processor Family DisplayFamily_Display
Model/ Other 
Signatures

Valid PMC 
Index Range

General-
purpose 
Counters

P6 06H_01H, 06H_03H, 
06H_05H, 06H_06H, 
06H_07H, 06H_08H, 
06H_0AH, 06H_0BH

0, 1 0, 1

Pentium® 4, Intel® Xeon 
processors

0FH_00H, 0FH_01H, 
0FH_02H

≥ 0 and ≤ 17 ≥ 0 and ≤ 17

Pentium 4, Intel Xeon processors (0FH_03H, 0FH_04H, 
0FH_06H) and (L3 is 
absent)

≥ 0 and ≤ 17 ≥ 0 and ≤ 17

Pentium M processors 06H_09H, 06H_0DH 0, 1 0, 1

64-bit Intel Xeon processors 
with L3

0FH_03H, 0FH_04H) 
and (L3 is present)

≥ 0 and ≤ 25 ≥ 0 and ≤ 17

Intel® Core™ Solo and Intel® 
Core™ Duo processors, Dual-core 
Intel® Xeon® processor LV

06H_0EH 0, 1 0, 1

Intel® Core™2 Duo processor, 
Intel Xeon processor 3000, 
5100, 5300, 7300 Series - 
general-purpose PMC

06H_0FH 0, 1 0, 1

Intel Xeon processors 7100 
series with L3

(0FH_06H) and (L3 is 
present)

≥ 0 and ≤ 25 ≥ 0 and ≤ 17

Intel® Core™2 Duo processor 
family, Intel Xeon processor 
family - general-purpose PMC

06H_17H 0, 1 0, 1

Intel Xeon processors 7400 
series 

(06H_1DH) ≥ 0 and ≤ 9 0, 1

Intel® Atom™ processor family 06H_1CH 0, 1 0, 1

Intel® Core™i7 processor, Intel 
Xeon processors 5500 series 

06H_1AH, 06H_1EH, 
06H_1FH, 06H_2EH

0-3 0, 1, 2, 3
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ECX[31]. If bit 31 is set, RDPMC reads only the low 32 bits of the selected perfor-
mance counter. If bit 31 is clear, all 40 bits are read. A 32-bit result is returned in EAX 
and EDX is set to 0. A 32-bit read executes faster on Pentium 4 processors and Intel 
Xeon processors than a full 40-bit read.

On 64-bit Intel Xeon processors with L3, performance counters with indices 18-25 
are 32-bit counters. EDX is cleared after executing RDPMC for these counters. On 
Intel Xeon processor 7100 series with L3, performance counters with indices 18-25 
are also 32-bit counters.

In Intel Core 2 processor family, Intel Xeon processor 3000, 5100, 5300 and 7400 
series, the fixed-function performance counters are 40-bits wide; they can be 
accessed by RDMPC with ECX between from 4000_0000H and 4000_0002H.

On Intel Xeon processor 7400 series, there are eight 32-bit special-purpose counters 
addressable with indices 2-9, ECX[30]=0. 

When in protected or virtual 8086 mode, the performance-monitoring counters 
enabled (PCE) flag in register CR4 restricts the use of the RDPMC instruction as 
follows. When the PCE flag is set, the RDPMC instruction can be executed at any priv-
ilege level; when the flag is clear, the instruction can only be executed at privilege 
level 0. (When in real-address mode, the RDPMC instruction is always enabled.)

The performance-monitoring counters can also be read with the RDMSR instruction, 
when executing at privilege level 0.

The performance-monitoring counters are event counters that can be programmed 
to count events such as the number of instructions decoded, number of interrupts 
received, or number of cache loads. Chapter 19, “Performance Monitoring Events,” in 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B, lists 
the events that can be counted for various processors in the Intel 64 and IA-32 
architecture families.

The RDPMC instruction is not a serializing instruction; that is, it does not imply that 
all the events caused by the preceding instructions have been completed or that 
events caused by subsequent instructions have not begun. If an exact event count is 
desired, software must insert a serializing instruction (such as the CPUID instruction) 
before and/or after the RDPMC instruction.

In the Pentium 4 and Intel Xeon processors, performing back-to-back fast reads are 
not guaranteed to be monotonic. To guarantee monotonicity on back-to-back reads, 
a serializing instruction must be placed between the two RDPMC instructions.

The RDPMC instruction can execute in 16-bit addressing mode or virtual-8086 mode; 
however, the full contents of the ECX register are used to select the counter, and the 
event count is stored in the full EAX and EDX registers. The RDPMC instruction was 
introduced into the IA-32 Architecture in the Pentium Pro processor and the Pentium 
processor with MMX technology. The earlier Pentium processors have performance-
monitoring counters, but they must be read with the RDMSR instruction.
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Operation

(* Intel Core i7 processor family and Intel Xeon processor 3400, 5500 series*)

Most significant counter bit (MSCB) = 47

IF ((CR4.PCE = 1) or (CPL = 0) or (CR0.PE = 0))
THEN IF (ECX[30] = 1 and ECX[29:0] in valid fixed-counter range)

EAX ← IA32_FIXED_CTR(ECX)[30:0];
EDX ← IA32_FIXED_CTR(ECX)[MSCB:32];

ELSE IF (ECX[30] = 0 and ECX[29:0] in valid general-purpose counter range)
EAX ← PMC(ECX[30:0])[31:0];
EDX ← PMC(ECX[30:0])[MSCB:32];

ELSE (* ECX is not valid or CR4.PCE is 0 and CPL is 1, 2, or 3 and CR0.PE is 1 *)
#GP(0); 

FI;

(* Intel Core 2 Duo processor family and Intel Xeon processor 3000, 5100, 5300, 7400 series*)

Most significant counter bit (MSCB) = 39

IF ((CR4.PCE = 1) or (CPL = 0) or (CR0.PE = 0))
THEN IF (ECX[30] = 1 and ECX[29:0] in valid fixed-counter range)

EAX ← IA32_FIXED_CTR(ECX)[30:0];
EDX ← IA32_FIXED_CTR(ECX)[MSCB:32];

ELSE IF (ECX[30] = 0 and ECX[29:0] in valid general-purpose counter range)
EAX ← PMC(ECX[30:0])[31:0];
EDX ← PMC(ECX[30:0])[MSCB:32];

ELSE IF (ECX[30] = 0 and ECX[29:0] in valid special-purpose counter range)
EAX ← PMC(ECX[30:0])[31:0]; (* 32-bit read *)

ELSE (* ECX is not valid or CR4.PCE is 0 and CPL is 1, 2, or 3 and CR0.PE is 1 *)
#GP(0); 

FI;

(* P6 family processors and Pentium processor with MMX technology *)

IF (ECX = 0 or 1) and ((CR4.PCE = 1) or (CPL = 0) or (CR0.PE = 0))
THEN 

EAX ← PMC(ECX)[31:0];
EDX ← PMC(ECX)[39:32];

ELSE (* ECX is not 0 or 1 or CR4.PCE is 0 and CPL is 1, 2, or 3 and CR0.PE is 1 *)
#GP(0); 

FI;
(* Processors with CPUID family 15 *)
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IF ((CR4.PCE = 1) or (CPL = 0) or (CR0.PE = 0))
THEN IF (ECX[30:0] = 0:17)

THEN IF ECX[31] = 0
THEN

EAX ← PMC(ECX[30:0])[31:0]; (* 40-bit read *)
EDX ← PMC(ECX[30:0])[39:32];

ELSE (* ECX[31] = 1*)
THEN

EAX ← PMC(ECX[30:0])[31:0]; (* 32-bit read *)
EDX ← 0;

FI;
ELSE IF (*64-bit Intel Xeon processor with L3 *)

THEN IF (ECX[30:0] = 18:25 )
EAX ← PMC(ECX[30:0])[31:0]; (* 32-bit read *)
EDX ← 0;

FI;
ELSE IF (*Intel Xeon processor 7100 series with L3 *)

THEN IF (ECX[30:0] = 18:25 )
EAX ← PMC(ECX[30:0])[31:0]; (* 32-bit read *)
EDX ← 0;

FI;
ELSE (* Invalid PMC index in ECX[30:0], see Table 4-18. *)

GP(0); 
FI;

ELSE  (* CR4.PCE = 0 and (CPL = 1, 2, or 3) and CR0.PE = 1 *)
#GP(0); 

FI; 

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0 and the PCE flag in the CR4 

register is clear.
If an invalid performance counter index is specified (see 
Table 4-15).
(Pentium 4 and Intel Xeon processors) If the value in ECX[30:0] 
is not within the valid range.

#UD If the LOCK prefix is used.
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Real-Address Mode Exceptions
#GP If an invalid performance counter index is specified (see 

Table 4-15).
(Pentium 4 and Intel Xeon processors) If the value in ECX[30:0] 
is not within the valid range.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If the PCE flag in the CR4 register is clear.

If an invalid performance counter index is specified (see 
Table 4-15).
(Pentium 4 and Intel Xeon processors) If the value in ECX[30:0] 
is not within the valid range.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0 and the PCE flag in the CR4 

register is clear.
If an invalid performance counter index is specified in ECX[30:0] 
(see Table 4-15).

#UD If the LOCK prefix is used.
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RDRAND—Read Random Number

Instruction Operand Encoding

Description

Loads a hardware generated random value and store it in the destination register.  
The size of the random value is determined by the destination register size and oper-
ating mode.  The Carry Flag indicates whether  a random value is available at the 
time the instruction is executed.  CF=1 indicates that the data in the destination is 
valid.  Otherwise CF=0 and the data in the destination operand will be returned as 
zeros for the specified width.  All other flags are forced to 0 in either situation.  Soft-
ware must check the state of CF=1 for determining if a valid random value has been 
returned, otherwise it is expected to loop and retry execution of RDRAND (see Intel® 
64 and IA-32 Architectures Software Developer’s Manual, Volume 1, Section 7.3.17, 
“Random Number Generator Instruction”).
This instruction is available at all privilege levels.
In 64-bit mode, the instruction's default operation size is 32 bits. Using a REX prefix 
in the form of REX.B permits access to additional registers (R8-R15). Using a REX 
prefix in the form of REX.W promotes operation to 64 bit operands. See the summary 
chart at the beginning of this section for encoding data and limits.

Operation

IF HW_RND_GEN.ready = 1
THEN 

CASE of
osize is 64: DEST[63:0] ← HW_RND_GEN.data;
osize is 32: DEST[31:0] ← HW_RND_GEN.data;

Opcode*/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F C7 /6

RDRAND r16

M V/V RDRAND Read a 16-bit random 
number and store in the 
destination register.

0F C7 /6

RDRAND r32

M V/V RDRAND Read a 32-bit random 
number and store in the 
destination register.

REX.W + 0F C7 /6

RDRAND r64

M V/I RDRAND Read a 64-bit random 
number and store in the 
destination register.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA
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osize is 16: DEST[15:0] ← HW_RND_GEN.data;
ESAC
CF ← 1;

ELSE
CASE of

osize is 64: DEST[63:0] ← 0;
osize is 32: DEST[31:0] ← 0;
osize is 16: DEST[15:0] ← 0;

ESAC
CF ← 0;

FI
OF, SF, ZF, AF, PF ← 0;

Flags Affected

All flags are affected.

Intel C/C++ Compiler Intrinsic Equivalent

RDRAND:  int _rdrand16_step( unsigned short * );

RDRAND:  int _rdrand32_step( unsigned int * );

RDRAND:  int _rdrand64_step( unsigned __int64 *);

Protected Mode Exceptions
#UD If the LOCK prefix is used.

If the F2H or F3H prefix is used.
If CPUID.01H:ECX.RDRAND[bit 30] = 0.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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RDTSC—Read Time-Stamp Counter

Instruction Operand Encoding

Description

Loads the current value of the processor’s time-stamp counter (a 64-bit MSR) into 
the EDX:EAX registers. The EDX register is loaded with the high-order 32 bits of the 
MSR and the EAX register is loaded with the low-order 32 bits. (On processors that 
support the Intel 64 architecture, the high-order 32 bits of each of RAX and RDX are 
cleared.)

The processor monotonically increments the time-stamp counter MSR every clock 
cycle and resets it to 0 whenever the processor is reset. See “Time Stamp Counter” 
in Chapter 17 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3B, for specific details of the time stamp counter behavior.

When in protected or virtual 8086 mode, the time stamp disable (TSD) flag in 
register CR4 restricts the use of the RDTSC instruction as follows. When the TSD flag 
is clear, the RDTSC instruction can be executed at any privilege level; when the flag 
is set, the instruction can only be executed at privilege level 0. (When in real-address 
mode, the RDTSC instruction is always enabled.)

The time-stamp counter can also be read with the RDMSR instruction, when 
executing at privilege level 0.

The RDTSC instruction is not a serializing instruction. It does not necessarily wait 
until all previous instructions have been executed before reading the counter. Simi-
larly, subsequent instructions may begin execution before the read operation is 
performed. If software requires RDTSC to be executed only after all previous instruc-
tions have completed locally, it can either use RDTSCP (if the processor supports that 
instruction) or execute the sequence LFENCE;RDTSC.

This instruction was introduced by the Pentium processor.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 25 of 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C, for 
more information about the behavior of this instruction in VMX non-root operation.

Operation

IF (CR4.TSD = 0) or (CPL = 0) or (CR0.PE = 0) 

Opcode* Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 31 RDTSC NP Valid Valid Read time-stamp counter 
into EDX:EAX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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THEN EDX:EAX ← TimeStampCounter;
ELSE (* CR4.TSD = 1 and (CPL = 1, 2, or 3) and CR0.PE = 1 *)

#GP(0);
FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the TSD flag in register CR4 is set and the CPL is greater than 

0.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If the TSD flag in register CR4 is set.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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RDTSCP—Read Time-Stamp Counter and Processor ID

Instruction Operand Encoding

Description

Loads the current value of the processor’s time-stamp counter (a 64-bit MSR) into 
the EDX:EAX registers and also loads the IA32_TSC_AUX MSR (address 
C000_0103H) into the ECX register. The EDX register is loaded with the high-order 
32 bits of the IA32_TSC MSR; the EAX register is loaded with the low-order 32 bits of 
the IA32_TSC MSR; and the ECX register is loaded with the low-order 32-bits of 
IA32_TSC_AUX MSR. On processors that support the Intel 64 architecture, the high-
order 32 bits of each of RAX, RDX, and RCX are cleared.

The processor monotonically increments the time-stamp counter MSR every clock 
cycle and resets it to 0 whenever the processor is reset. See “Time Stamp Counter” 
in Chapter 17 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3B, for specific details of the time stamp counter behavior.

When in protected or virtual 8086 mode, the time stamp disable (TSD) flag in 
register CR4 restricts the use of the RDTSCP instruction as follows. When the TSD 
flag is clear, the RDTSCP instruction can be executed at any privilege level; when the 
flag is set, the instruction can only be executed at privilege level 0. (When in real-
address mode, the RDTSCP instruction is always enabled.)

The RDTSCP instruction waits until all previous instructions have been executed 
before reading the counter. However,  subsequent instructions may begin execution 
before the read operation is performed.

The presence of the RDTSCP instruction is indicated by CPUID leaf 80000001H, EDX 
bit 27. If the bit is set to 1 then RDTSCP is present on the processor. 

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 25 of 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C, for 
more information about the behavior of this instruction in VMX non-root operation.

Operation

IF (CR4.TSD = 0) or (CPL = 0) or (CR0.PE = 0) 

Opcode* Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 01 F9 RDTSCP NP Valid Valid Read 64-bit time-stamp 
counter and 32-bit 
IA32_TSC_AUX value into 
EDX:EAX and ECX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
Vol. 2B 4-463RDTSCP—Read Time-Stamp Counter and Processor ID



INSTRUCTION SET REFERENCE, M-Z
THEN 
EDX:EAX ← TimeStampCounter;
ECX ← IA32_TSC_AUX[31:0];

ELSE (* CR4.TSD = 1 and (CPL = 1, 2, or 3) and CR0.PE = 1 *)
#GP(0);

FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the TSD flag in register CR4 is set and the CPL is greater than 

0.
#UD If the LOCK prefix is used.

If CPUID.80000001H:EDX.RDTSCP[bit 27] = 0.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

If CPUID.80000001H:EDX.RDTSCP[bit 27] = 0.

Virtual-8086 Mode Exceptions
#GP(0) If the TSD flag in register CR4 is set.
#UD If the LOCK prefix is used.

If CPUID.80000001H:EDX.RDTSCP[bit 27] = 0.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix
Opcode Instruction Op/ 

En
64-Bit 
Mode

Compat/
Leg Mode

Description

F3 6C REP INS m8, DX NP Valid Valid Input (E)CX bytes from port 
DX into ES:[(E)DI].

F3 6C REP INS m8, DX NP Valid N.E. Input RCX bytes from port 
DX into [RDI].

F3 6D REP INS m16, DX NP Valid Valid Input (E)CX words from port 
DX into ES:[(E)DI.]

F3 6D REP INS m32, DX NP Valid Valid Input (E)CX doublewords 
from port DX into ES:[(E)DI].

F3 6D REP INS r/m32, DX NP Valid N.E. Input RCX default size from 
port DX into [RDI].

F3 A4 REP MOVS m8, m8 NP Valid Valid Move (E)CX bytes from 
DS:[(E)SI] to ES:[(E)DI].

F3 REX.W A4 REP MOVS m8, m8 NP Valid N.E. Move RCX bytes from [RSI] 
to [RDI].

F3 A5 REP MOVS m16, 
m16

NP Valid Valid Move (E)CX words from 
DS:[(E)SI] to ES:[(E)DI].

F3 A5 REP MOVS m32, 
m32

NP Valid Valid Move (E)CX doublewords 
from DS:[(E)SI] to ES:[(E)DI].

F3 REX.W A5 REP MOVS m64, 
m64

NP Valid N.E. Move RCX quadwords from 
[RSI] to [RDI].

F3 6E REP OUTS DX, 
r/m8

NP Valid Valid Output (E)CX bytes from 
DS:[(E)SI] to port DX.

F3 REX.W 6E REP OUTS DX, 
r/m8*

NP Valid N.E. Output RCX bytes from [RSI] 
to port DX.

F3 6F REP OUTS DX, 
r/m16

NP Valid Valid Output (E)CX words from 
DS:[(E)SI] to port DX.

F3 6F REP OUTS DX, 
r/m32

NP Valid Valid Output (E)CX doublewords 
from DS:[(E)SI] to port DX.

F3 REX.W 6F REP OUTS DX, 
r/m32

NP Valid N.E. Output RCX default size 
from [RSI] to port DX.

F3 AC REP LODS AL NP Valid Valid Load (E)CX bytes from 
DS:[(E)SI] to AL.

F3 REX.W AC REP LODS AL NP Valid N.E. Load RCX bytes from [RSI] 
to AL.

F3 AD REP LODS AX NP Valid Valid Load (E)CX words from 
DS:[(E)SI] to AX.
Vol. 2B 4-465REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix



INSTRUCTION SET REFERENCE, M-Z
F3 AD REP LODS EAX NP Valid Valid Load (E)CX doublewords 
from DS:[(E)SI] to EAX.

F3 REX.W AD REP LODS RAX NP Valid N.E. Load RCX quadwords from 
[RSI] to RAX.

F3 AA REP STOS m8 NP Valid Valid Fill (E)CX bytes at ES:[(E)DI] 
with AL.

F3 REX.W AA REP STOS m8 NP Valid N.E. Fill RCX bytes at [RDI] with 
AL.

F3 AB REP STOS m16 NP Valid Valid Fill (E)CX words at ES:[(E)DI] 
with AX.

F3 AB REP STOS m32 NP Valid Valid Fill (E)CX doublewords at 
ES:[(E)DI] with EAX.

F3 REX.W AB REP STOS m64 NP Valid N.E. Fill RCX quadwords at [RDI] 
with RAX.

F3 A6 REPE CMPS m8, 
m8

NP Valid Valid Find nonmatching bytes in 
ES:[(E)DI] and DS:[(E)SI].

F3 REX.W A6 REPE CMPS m8, 
m8

NP Valid N.E. Find non-matching bytes in 
[RDI] and [RSI].

F3 A7 REPE CMPS m16, 
m16

NP Valid Valid Find nonmatching words in 
ES:[(E)DI] and DS:[(E)SI].

F3 A7 REPE CMPS m32, 
m32

NP Valid Valid Find nonmatching 
doublewords in ES:[(E)DI] 
and DS:[(E)SI].

F3 REX.W A7 REPE CMPS m64, 
m64

NP Valid N.E. Find non-matching 
quadwords in [RDI] and 
[RSI].

F3 AE REPE SCAS m8 NP Valid Valid Find non-AL byte starting at 
ES:[(E)DI].

F3 REX.W AE REPE SCAS m8 NP Valid N.E. Find non-AL byte starting at 
[RDI].

F3 AF REPE SCAS m16 NP Valid Valid Find non-AX word starting 
at ES:[(E)DI].

F3 AF REPE SCAS m32 NP Valid Valid Find non-EAX doubleword 
starting at ES:[(E)DI].

F3 REX.W AF REPE SCAS m64 NP Valid N.E. Find non-RAX quadword 
starting at [RDI].

F2 A6 REPNE CMPS m8, 
m8

NP Valid Valid Find matching bytes in 
ES:[(E)DI] and DS:[(E)SI].

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description
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Instruction Operand Encoding

Description

Repeats a string instruction the number of times specified in the count register or 
until the indicated condition of the ZF flag is no longer met. The REP (repeat), REPE 
(repeat while equal), REPNE (repeat while not equal), REPZ (repeat while zero), and 
REPNZ (repeat while not zero) mnemonics are prefixes that can be added to one of 
the string instructions. The REP prefix can be added to the INS, OUTS, MOVS, LODS, 
and STOS instructions, and the REPE, REPNE, REPZ, and REPNZ prefixes can be 
added to the CMPS and SCAS instructions. (The REPZ and REPNZ prefixes are synon-
ymous forms of the REPE and REPNE prefixes, respectively.) The behavior of the REP 
prefix is undefined when used with non-string instructions.

The REP prefixes apply only to one string instruction at a time. To repeat a block of 
instructions, use the LOOP instruction or another looping construct. All of these 
repeat prefixes cause the associated instruction to be repeated until the count in 
register is decremented to 0. See Table 4-16.

F2 REX.W A6 REPNE CMPS m8, 
m8

NP Valid N.E. Find matching bytes in [RDI] 
and [RSI].

F2 A7 REPNE CMPS m16, 
m16

NP Valid Valid Find matching words in 
ES:[(E)DI] and DS:[(E)SI].

F2 A7 REPNE CMPS m32, 
m32

NP Valid Valid Find matching doublewords 
in ES:[(E)DI] and DS:[(E)SI].

F2 REX.W A7 REPNE CMPS m64, 
m64

NP Valid N.E. Find matching doublewords 
in [RDI] and [RSI].

F2 AE REPNE SCAS m8 NP Valid Valid Find AL, starting at 
ES:[(E)DI].

F2 REX.W AE REPNE SCAS m8 NP Valid N.E. Find AL, starting at [RDI].

F2 AF REPNE SCAS m16 NP Valid Valid Find AX, starting at 
ES:[(E)DI].

F2 AF REPNE SCAS m32 NP Valid Valid Find EAX, starting at 
ES:[(E)DI].

F2 REX.W AF REPNE SCAS m64 NP Valid N.E. Find RAX, starting at [RDI].

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is 

used: AH, BH, CH, DH.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description
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The REPE, REPNE, REPZ, and REPNZ prefixes also check the state of the ZF flag after 
each iteration and terminate the repeat loop if the ZF flag is not in the specified state. 
When both termination conditions are tested, the cause of a repeat termination can 
be determined either by testing the count register with a JECXZ instruction or by 
testing the ZF flag (with a JZ, JNZ, or JNE instruction).

When the REPE/REPZ and REPNE/REPNZ prefixes are used, the ZF flag does not 
require initialization because both the CMPS and SCAS instructions affect the ZF flag 
according to the results of the comparisons they make.

A repeating string operation can be suspended by an exception or interrupt. When 
this happens, the state of the registers is preserved to allow the string operation to 
be resumed upon a return from the exception or interrupt handler. The source and 
destination registers point to the next string elements to be operated on, the EIP 
register points to the string instruction, and the ECX register has the value it held 
following the last successful iteration of the instruction. This mechanism allows long 
string operations to proceed without affecting the interrupt response time of the 
system.

When a fault occurs during the execution of a CMPS or SCAS instruction that is 
prefixed with REPE or REPNE, the EFLAGS value is restored to the state prior to the 
execution of the instruction. Since the SCAS and CMPS instructions do not use 
EFLAGS as an input, the processor can resume the instruction after the page fault 
handler.

Use the REP INS and REP OUTS instructions with caution. Not all I/O ports can handle 
the rate at which these instructions execute. Note that a REP STOS instruction is the 
fastest way to initialize a large block of memory.

In 64-bit mode, the operand size of the count register is associated with the address 
size attribute. Thus the default count register is RCX; REX.W has no effect on the 
address size and the count register. In 64-bit mode, if 67H is used to override 
address size attribute, the count register is ECX and any implicit source/destination 
operand will use the corresponding 32-bit index register. See the summary chart at 
the beginning of this section for encoding data and limits.

Table 4-16.  Repeat Prefixes

Repeat Prefix Termination Condition 1* Termination Condition 2

REP RCX or (E)CX = 0 None

REPE/REPZ RCX or (E)CX = 0 ZF = 0

REPNE/REPNZ RCX or (E)CX = 0 ZF = 1

NOTES:
* Count register is CX, ECX or RCX by default, depending on attributes of the operating modes.
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Operation
IF AddressSize = 16
    THEN
        Use CX for CountReg;
        Implicit Source/Dest operand for memory use of SI/DI;
    ELSE IF AddressSize = 64
        THEN Use RCX for CountReg; 
        Implicit Source/Dest operand for memory use of RSI/RDI;
    ELSE
        Use ECX for CountReg;
        Implicit Source/Dest operand for memory use of ESI/EDI;
FI;
WHILE CountReg ≠ 0

DO
Service pending interrupts (if any);
Execute associated string instruction;
CountReg ← (CountReg – 1);
IF CountReg = 0

THEN exit WHILE loop; FI;
IF (Repeat prefix is REPZ or REPE) and (ZF = 0)
or (Repeat prefix is REPNZ or REPNE) and (ZF = 1)

THEN exit WHILE loop; FI;
OD;

Flags Affected

None; however, the CMPS and SCAS instructions do set the status flags in the 
EFLAGS register.

Exceptions (All Operating Modes)

Exceptions may be generated by an instruction associated with the prefix.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
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RET—Return from Procedure

Instruction Operand Encoding

Description

Transfers program control to a return address located on the top of the stack. The 
address is usually placed on the stack by a CALL instruction, and the return is made 
to the instruction that follows the CALL instruction.

The optional source operand specifies the number of stack bytes to be released after 
the return address is popped; the default is none. This operand can be used to 
release parameters from the stack that were passed to the called procedure and are 
no longer needed. It must be used when the CALL instruction used to switch to a new 
procedure uses a call gate with a non-zero word count to access the new procedure. 
Here, the source operand for the RET instruction must specify the same number of 
bytes as is specified in the word count field of the call gate.

The RET instruction can be used to execute three different types of returns:
• Near return — A return to a calling procedure within the current code segment 

(the segment currently pointed to by the CS register), sometimes referred to as 
an intrasegment return.

• Far return — A return to a calling procedure located in a different segment than 
the current code segment, sometimes referred to as an intersegment return.

• Inter-privilege-level far return — A far return to a different privilege level 
than that of the currently executing program or procedure.

Opcode* Instruction Op/
En

64-Bit 
Mode

Compat/
Leg Mode

Description

C3 RET NP Valid Valid Near return to calling 
procedure.

CB RET NP Valid Valid Far return to calling 
procedure.

C2 iw RET imm16 I Valid Valid Near return to calling 
procedure and pop imm16 
bytes from stack.

CA iw RET imm16 I Valid Valid Far return to calling 
procedure and pop imm16 
bytes from stack.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

I imm16 NA NA NA
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The inter-privilege-level return type can only be executed in protected mode. See the 
section titled “Calling Procedures Using Call and RET” in Chapter 6 of the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 1, for detailed infor-
mation on near, far, and inter-privilege-level returns.

When executing a near return, the processor pops the return instruction pointer 
(offset) from the top of the stack into the EIP register and begins program execution 
at the new instruction pointer. The CS register is unchanged. 

When executing a far return, the processor pops the return instruction pointer from 
the top of the stack into the EIP register, then pops the segment selector from the top 
of the stack into the CS register. The processor then begins program execution in the 
new code segment at the new instruction pointer.

The mechanics of an inter-privilege-level far return are similar to an intersegment 
return, except that the processor examines the privilege levels and access rights of 
the code and stack segments being returned to determine if the control transfer is 
allowed to be made. The DS, ES, FS, and GS segment registers are cleared by the 
RET instruction during an inter-privilege-level return if they refer to segments that 
are not allowed to be accessed at the new privilege level. Since a stack switch also 
occurs on an inter-privilege level return, the ESP and SS registers are loaded from 
the stack. 

If parameters are passed to the called procedure during an inter-privilege level call, 
the optional source operand must be used with the RET instruction to release the 
parameters on the return. Here, the parameters are released both from the called 
procedure’s stack and the calling procedure’s stack (that is, the stack being returned 
to).

In 64-bit mode, the default operation size of this instruction is the stack-address size, 
i.e. 64 bits.

Operation

(* Near return *)
IF instruction = near return 

THEN;
IF OperandSize = 32

THEN
IF top 4 bytes of stack not within stack limits

THEN #SS(0); FI;
EIP ← Pop();

ELSE
IF OperandSize = 64

THEN
IF top 8 bytes of stack not within stack limits

THEN #SS(0); FI;
RIP ← Pop();

ELSE (* OperandSize = 16 *)
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IF top 2 bytes of stack not within stack limits
THEN #SS(0); FI;

tempEIP ← Pop();
tempEIP ← tempEIP AND 0000FFFFH;
IF tempEIP not within code segment limits

THEN #GP(0); FI;
EIP ← tempEIP;

FI;
FI;

IF instruction has immediate operand
THEN (* Release parameters from stack *)

IF StackAddressSize = 32
THEN 

ESP ← ESP + SRC;
ELSE

IF StackAddressSize = 64
THEN 

RSP ← RSP + SRC;
ELSE (* StackAddressSize = 16 *)

SP ← SP + SRC;
FI;

FI;
FI;

FI;

(* Real-address mode or virtual-8086 mode *)
IF ((PE = 0) or (PE = 1 AND VM = 1)) and instruction = far return

THEN
IF OperandSize = 32

THEN
IF top 8 bytes of stack not within stack limits

THEN #SS(0); FI;
EIP ← Pop(); 
CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded *)

ELSE (* OperandSize = 16 *)
IF top 4 bytes of stack not within stack limits

THEN #SS(0); FI;
tempEIP ← Pop(); 
tempEIP ← tempEIP AND 0000FFFFH;
IF tempEIP not within code segment limits

THEN #GP(0); FI;
EIP ← tempEIP;
CS ← Pop(); (* 16-bit pop *)
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FI;
IF instruction has immediate operand 

THEN (* Release parameters from stack *)
SP ← SP + (SRC AND FFFFH);

FI;
FI;

(* Protected mode, not virtual-8086 mode *)
IF (PE = 1 and VM = 0 and IA32_EFER.LMA = 0) and instruction = far return

THEN
IF OperandSize = 32

THEN 
IF second doubleword on stack is not within stack limits

THEN #SS(0); FI;
ELSE (* OperandSize = 16 *)

IF second word on stack is not within stack limits
THEN #SS(0); FI;

FI;
IF return code segment selector is NULL

THEN #GP(0); FI;
IF return code segment selector addresses descriptor beyond descriptor table limit 

THEN #GP(selector); FI;
Obtain descriptor to which return code segment selector points from descriptor table;
IF return code segment descriptor is not a code segment

THEN #GP(selector); FI;
IF return code segment selector RPL < CPL

THEN #GP(selector); FI;
IF return code segment descriptor is conforming
and return code segment DPL > return code segment selector RPL

THEN #GP(selector); FI;
IF return code segment descriptor is non-conforming and return code 
segment DPL ≠ return code segment selector RPL

THEN #GP(selector); FI;
IF return code segment descriptor is not present

THEN #NP(selector); FI:
IF return code segment selector RPL > CPL 

THEN GOTO RETURN-OUTER-PRIVILEGE-LEVEL;
ELSE GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL;

FI;
FI; 

RETURN-SAME-PRIVILEGE-LEVEL:
IF the return instruction pointer is not within the return code segment limit 

THEN #GP(0); FI;
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IF OperandSize = 32
THEN

EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded *)

ELSE (* OperandSize = 16 *)
EIP ← Pop();
EIP ← EIP AND 0000FFFFH;
CS ← Pop(); (* 16-bit pop *)

FI;
IF instruction has immediate operand

THEN (* Release parameters from stack *)
IF StackAddressSize = 32

THEN 
ESP ← ESP + SRC;

ELSE (* StackAddressSize = 16 *)
SP ← SP + SRC;

FI;
FI;

RETURN-OUTER-PRIVILEGE-LEVEL:
IF top (16 + SRC) bytes of stack are not within stack limits (OperandSize = 32) 
or top (8 + SRC) bytes of stack are not within stack limits (OperandSize = 16)

THEN #SS(0); FI;
Read return segment selector;
IF stack segment selector is NULL

THEN #GP(0); FI;
IF return stack segment selector index is not within its descriptor table limits

THEN #GP(selector); FI;
Read segment descriptor pointed to by return segment selector;
IF stack segment selector RPL ≠ RPL of the return code segment selector
or stack segment is not a writable data segment
or stack segment descriptor DPL ≠ RPL of the return code segment selector

THEN #GP(selector); FI;
IF stack segment not present

THEN #SS(StackSegmentSelector); FI;
IF the return instruction pointer is not within the return code segment limit

THEN #GP(0); FI;
CPL ← ReturnCodeSegmentSelector(RPL);
IF OperandSize = 32

THEN
EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded; segment descriptor loaded *)
CS(RPL) ← CPL;
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IF instruction has immediate operand
THEN (* Release parameters from called procedure’s stack *)

IF StackAddressSize = 32
THEN 

ESP ← ESP + SRC;
ELSE (* StackAddressSize = 16 *)

SP ← SP + SRC;
FI;

FI;
tempESP ← Pop();
tempSS ← Pop(); (* 32-bit pop, high-order 16 bits discarded; seg. descriptor loaded *)
ESP ← tempESP;
SS ← tempSS;

ELSE (* OperandSize = 16 *)
EIP ← Pop();
EIP ← EIP AND 0000FFFFH;
CS ← Pop(); (* 16-bit pop; segment descriptor loaded *)
CS(RPL) ← CPL;
IF instruction has immediate operand

THEN (* Release parameters from called procedure’s stack *)
IF StackAddressSize = 32

THEN 
ESP ← ESP + SRC;

ELSE (* StackAddressSize = 16 *)
SP ← SP + SRC;

FI;
FI;
tempESP ← Pop();
tempSS ← Pop(); (* 16-bit pop; segment descriptor loaded *)
ESP ← tempESP;
SS ← tempSS;

FI;

FOR each of segment register (ES, FS, GS, and DS)
DO

IF segment register points to data or non-conforming code segment 
and CPL > segment descriptor DPL (* DPL in hidden part of segment register *)

THEN SegmentSelector ← 0; (* Segment selector invalid *)
FI;

OD;

IF instruction has immediate operand
THEN (* Release parameters from calling procedure’s stack *)
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IF StackAddressSize = 32
THEN 

ESP ← ESP + SRC;
ELSE (* StackAddressSize = 16 *)

SP ← SP + SRC;
FI;

FI;

(* IA-32e Mode *)
IF (PE = 1 and VM = 0 and IA32_EFER.LMA = 1) and instruction = far return

THEN
IF OperandSize = 32

THEN 
IF second doubleword on stack is not within stack limits

THEN #SS(0); FI;
IF first or second doubleword on stack is not in canonical space

THEN #SS(0); FI;
ELSE 

IF OperandSize = 16
THEN

IF second word on stack is not within stack limits
THEN #SS(0); FI;

IF first or second word on stack is not in canonical space
THEN #SS(0); FI;

ELSE (* OperandSize = 64 *)
IF first or second quadword on stack is not in canonical space 

THEN #SS(0); FI;
FI

FI;
IF return code segment selector is NULL

THEN GP(0); FI;
IF return code segment selector addresses descriptor beyond descriptor table limit 

THEN GP(selector); FI;
IF return code segment selector addresses descriptor in non-canonical space

THEN GP(selector); FI;
Obtain descriptor to which return code segment selector points from descriptor table;
IF return code segment descriptor is not a code segment 

THEN #GP(selector); FI;
IF return code segment descriptor has L-bit = 1 and D-bit = 1 

THEN #GP(selector); FI;
IF return code segment selector RPL < CPL 

THEN #GP(selector); FI;
IF return code segment descriptor is conforming
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and return code segment DPL > return code segment selector RPL
THEN #GP(selector); FI;

IF return code segment descriptor is non-conforming
and return code segment DPL ≠ return code segment selector RPL

THEN #GP(selector); FI;
IF return code segment descriptor is not present 

THEN #NP(selector); FI:
IF return code segment selector RPL > CPL 

THEN GOTO IA-32E-MODE-RETURN-OUTER-PRIVILEGE-LEVEL;
ELSE GOTO IA-32E-MODE-RETURN-SAME-PRIVILEGE-LEVEL;

FI; 
FI;

IA-32E-MODE-RETURN-SAME-PRIVILEGE-LEVEL:
IF the return instruction pointer is not within the return code segment limit 

THEN #GP(0); FI;
IF the return instruction pointer is not within canonical address space

THEN #GP(0); FI;
IF OperandSize = 32

THEN
EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded *)

ELSE 
IF OperandSize = 16

THEN
EIP ← Pop();
EIP ← EIP AND 0000FFFFH;
CS ← Pop(); (* 16-bit pop *)

ELSE (* OperandSize = 64 *)
RIP ← Pop();
CS ← Pop(); (* 64-bit pop, high-order 48 bits discarded *)

FI;
FI; 
IF instruction has immediate operand

THEN (* Release parameters from stack *)
IF StackAddressSize = 32

THEN 
ESP ← ESP + SRC;

ELSE
IF StackAddressSize = 16

THEN
SP ← SP + SRC;

ELSE (* StackAddressSize = 64 *)
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RSP ← RSP + SRC;
FI;

FI;
FI;

IA-32E-MODE-RETURN-OUTER-PRIVILEGE-LEVEL:
IF top (16 + SRC) bytes of stack are not within stack limits (OperandSize = 32) 
or top (8 + SRC) bytes of stack are not within stack limits (OperandSize = 16)

THEN #SS(0); FI;
IF top (16 + SRC) bytes of stack are not in canonical address space (OperandSize = 32) 
or top (8 + SRC) bytes of stack are not in canonical address space (OperandSize = 16)
or top (32 + SRC) bytes of stack are not in canonical address space (OperandSize = 64)

THEN #SS(0); FI;
Read return stack segment selector;
IF stack segment selector is NULL

THEN
IF new CS descriptor L-bit = 0 

THEN #GP(selector);
IF stack segment selector RPL = 3

THEN #GP(selector);
FI;
IF return stack segment descriptor is not within descriptor table limits

THEN #GP(selector); FI;
IF return stack segment descriptor is in non-canonical address space

THEN #GP(selector); FI;
Read segment descriptor pointed to by return segment selector;
IF stack segment selector RPL ≠ RPL of the return code segment selector
or stack segment is not a writable data segment
or stack segment descriptor DPL ≠ RPL of the return code segment selector

THEN #GP(selector); FI;
IF stack segment not present 

THEN #SS(StackSegmentSelector); FI;
IF the return instruction pointer is not within the return code segment limit 

THEN #GP(0); FI:
IF the return instruction pointer is not within canonical address space 

THEN #GP(0); FI;
CPL ← ReturnCodeSegmentSelector(RPL);
IF OperandSize = 32

THEN
EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded, segment descriptor loaded *)
CS(RPL) ← CPL;
IF instruction has immediate operand
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THEN (* Release parameters from called procedure’s stack *)
IF StackAddressSize = 32

THEN 
ESP ← ESP + SRC;

ELSE
IF StackAddressSize = 16

THEN
SP ← SP + SRC;

ELSE (* StackAddressSize = 64 *)
RSP ← RSP + SRC;

FI;
FI;

FI;
tempESP ← Pop();
tempSS ← Pop(); (* 32-bit pop, high-order 16 bits discarded, segment descriptor loaded *)
ESP ← tempESP;
SS ← tempSS;

ELSE 
IF OperandSize = 16

THEN
EIP ← Pop();
EIP ← EIP AND 0000FFFFH;
CS ← Pop(); (* 16-bit pop; segment descriptor loaded *)
CS(RPL) ← CPL;
IF instruction has immediate operand

THEN (* Release parameters from called procedure’s stack *)
IF StackAddressSize = 32

THEN 
ESP ← ESP + SRC;

ELSE
IF StackAddressSize = 16

THEN
SP ← SP + SRC;

ELSE (* StackAddressSize = 64 *)
RSP ← RSP + SRC;

FI;
FI;

FI;
tempESP ← Pop();
tempSS ← Pop(); (* 16-bit pop; segment descriptor loaded *)
ESP ← tempESP;
SS ← tempSS;

ELSE (* OperandSize = 64 *)
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RIP ← Pop();
CS ← Pop(); (* 64-bit pop; high-order 48 bits discarded; seg. descriptor loaded *)
CS(RPL) ← CPL;
IF instruction has immediate operand

THEN (* Release parameters from called procedure’s stack *)
RSP ← RSP + SRC;

FI;
tempESP ← Pop();
tempSS ← Pop(); (* 64-bit pop; high-order 48 bits discarded; seg. desc. loaded *)
ESP ← tempESP;
SS ← tempSS;

FI;
FI;

FOR each of segment register (ES, FS, GS, and DS)
DO

IF segment register points to data or non-conforming code segment
and CPL > segment descriptor DPL; (* DPL in hidden part of segment register *)

THEN SegmentSelector ← 0; (* SegmentSelector invalid *)
FI;

OD;

IF instruction has immediate operand
THEN (* Release parameters from calling procedure’s stack *)

IF StackAddressSize = 32
THEN 

ESP ← ESP + SRC;
ELSE

IF StackAddressSize = 16
THEN

SP ← SP + SRC;
ELSE (* StackAddressSize = 64 *)

RSP ← RSP + SRC;
FI;

FI;
FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the return code or stack segment selector NULL.
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If the return instruction pointer is not within the return code 
segment limit 

#GP(selector) If the RPL of the return code segment selector is less then the 
CPL.
If the return code or stack segment selector index is not within 
its descriptor table limits.
If the return code segment descriptor does not indicate a code 
segment.
If the return code segment is non-conforming and the segment 
selector’s DPL is not equal to the RPL of the code segment’s 
segment selector
If the return code segment is conforming and the segment 
selector’s DPL greater than the RPL of the code segment’s 
segment selector
If the stack segment is not a writable data segment.
If the stack segment selector RPL is not equal to the RPL of the 
return code segment selector.
If the stack segment descriptor DPL is not equal to the RPL of 
the return code segment selector.

#SS(0) If the top bytes of stack are not within stack limits.
If the return stack segment is not present.

#NP(selector) If the return code segment is not present.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory access occurs when the CPL is 3 and 

alignment checking is enabled.

Real-Address Mode Exceptions
#GP If the return instruction pointer is not within the return code 

segment limit 
#SS If the top bytes of stack are not within stack limits.

Virtual-8086 Mode Exceptions
#GP(0) If the return instruction pointer is not within the return code 

segment limit 
#SS(0) If the top bytes of stack are not within stack limits.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory access occurs when alignment checking 

is enabled.

Compatibility Mode Exceptions
Same as 64-bit mode exceptions.
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64-Bit Mode Exceptions
#GP(0) If the return instruction pointer is non-canonical.

If the return instruction pointer is not within the return code 
segment limit.
If the stack segment selector is NULL going back to compatibility 
mode.
If the stack segment selector is NULL going back to CPL3 64-bit 
mode.
If a NULL stack segment selector RPL is not equal to CPL going 
back to non-CPL3 64-bit mode.
If the return code segment selector is NULL.

#GP(selector) If the proposed segment descriptor for a code segment does not 
indicate it is a code segment. 
If the proposed new code segment descriptor has both the D-bit 
and L-bit set.
If the DPL for a nonconforming-code segment is not equal to the 
RPL of the code segment selector.
If CPL is greater than the RPL of the code segment selector.
If the DPL of a conforming-code segment is greater than the 
return code segment selector RPL.
If a segment selector index is outside its descriptor table limits.
If a segment descriptor memory address is non-canonical.
If the stack segment is not a writable data segment.
If the stack segment descriptor DPL is not equal to the RPL of 
the return code segment selector.
If the stack segment selector RPL is not equal to the RPL of the 
return code segment selector. 

#SS(0) If an attempt to pop a value off the stack violates the SS limit.
If an attempt to pop a value off the stack causes a non-canonical 
address to be referenced.

#NP(selector) If the return code or stack segment is not present.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
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ROUNDPD — Round Packed Double Precision Floating-Point Values

Instruction Operand Encoding

Description

Round the 2 double-precision floating-point values in the source operand (second 
operand) using the rounding mode specified in the immediate operand (third 
operand) and place the results in the destination operand (first operand). The 
rounding process rounds each input floating-point value to an integer value and 
returns the integer result as a single-precision floating-point value. 

The immediate operand specifies control fields for the rounding operation, three bit 
fields are defined and shown in Figure 4-17. Bit 3 of the immediate byte controls 
processor behavior for a precision exception, bit 2 selects the source of rounding 
mode control. Bits 1:0 specify a non-sticky rounding-mode value (Table 4-17 lists the 
encoded values for rounding-mode field). 

The Precision Floating-Point Exception is signaled according to the immediate 
operand. If any source operand is an SNaN then it will be converted to a QNaN. If 
DAZ is set to ‘1 then denormals will be converted to zero before rounding.

Opcode*/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 3A 09 /r ib
ROUNDPD xmm1, xmm2/m128, 
imm8

RMI V/V SSE4_1 Round packed double 
precision floating-point 
values in xmm2/m128 and 
place the result in xmm1.  
The rounding mode is 
determined by imm8.

VEX.128.66.0F3A.WIG 09 /r ib
VROUNDPD xmm1, xmm2/m128, 
imm8

RMI V/V AVX Round packed double-
precision floating-point 
values in xmm2/m128 and 
place the result in xmm1. 
The rounding mode is 
determined by imm8.

VEX.256.66.0F3A.WIG 09 /r ib
VROUNDPD ymm1, ymm2/m256, 
imm8

RMI V/V AVX Round packed double-
precision floating-point 
values in ymm2/m256 and 
place the result in ymm1. 
The rounding mode is 
determined by imm8.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (w) ModRM:r/m (r) imm8 NA
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128-bit Legacy SSE version: The second source can be an XMM register or 128-bit 
memory location. The destination is not distinct from the first source XMM register 
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
unmodified.
VEX.128 encoded version: the source operand second source operand or a 128-bit 
memory location. The destination operand is an XMM register. The upper bits 
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.
VEX.256 encoded version: The source operand is a YMM register or a 256-bit 
memory location. The destination operand is a YMM register. 
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise 
instructions will #UD.

Operation

IF (imm[2] = ‘1) 
THEN // rounding mode is determined by MXCSR.RC 

DEST[63:0]  ConvertDPFPToInteger_M(SRC[63:0]);
DEST[127:64]  ConvertDPFPToInteger_M(SRC[127:64]);

Figure 4-17.  Bit Control Fields of Immediate Byte for ROUNDxx Instruction

Table 4-17.  Rounding Modes and Encoding of Rounding Control (RC) Field

Rounding 
Mode

RC Field 
Setting

Description

Round to 
nearest (even)

00B Rounded result is the closest to the infinitely precise result. If two 
values are equally close, the result is the even value (i.e., the integer 
value with the least-significant bit of zero). 

Round down 
(toward −∞)

01B Rounded result is closest to but no greater than the infinitely precise 
result.

Round up 
(toward +∞)

10B Rounded result is closest to but no less than the infinitely precise 
result.

Round toward 
zero (Truncate)

11B Rounded result is closest to but no greater in absolute value than the 
infinitely precise result.

8

RS — Rounding select; 1: MXCSR.RC, 0: Imm8.RC
RC — Rounding mode

3 2 1 0

P — Precision Mask; 0: normal, 1: inexact

Reserved
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ELSE // rounding mode is determined by IMM8.RC
DEST[63:0]  ConvertDPFPToInteger_Imm(SRC[63:0]);
DEST[127:64]  ConvertDPFPToInteger_Imm(SRC[127:64]);

FI

ROUNDPD (128-bit Legacy SSE version)
DEST[63:0]  RoundToInteger(SRC[63:0]], ROUND_CONTROL)
DEST[127:64]  RoundToInteger(SRC[127:64]], ROUND_CONTROL)
DEST[VLMAX-1:128] (Unmodified)

VROUNDPD (VEX.128 encoded version)
DEST[63:0]  RoundToInteger(SRC[63:0]], ROUND_CONTROL)
DEST[127:64]  RoundToInteger(SRC[127:64]], ROUND_CONTROL)
DEST[VLMAX-1:128]  0

VROUNDPD (VEX.256 encoded version)
DEST[63:0]  RoundToInteger(SRC[63:0], ROUND_CONTROL)
DEST[127:64]  RoundToInteger(SRC[127:64]], ROUND_CONTROL)
DEST[191:128]  RoundToInteger(SRC[191:128]], ROUND_CONTROL)
DEST[255:192]  RoundToInteger(SRC[255:192] ], ROUND_CONTROL)

Intel C/C++ Compiler Intrinsic Equivalent

__m128 _mm_round_pd(__m128d s1, int iRoundMode);

__m128 _mm_floor_pd(__m128d s1);

__m128 _mm_ceil_pd(__m128d s1)

__m256 _mm256_round_pd(__m256d s1, int iRoundMode);

__m256 _mm256_floor_pd(__m256d s1);

__m256 _mm256_ceil_pd(__m256d s1)

SIMD Floating-Point Exceptions

Invalid (signaled only if SRC = SNaN)
Precision (signaled only if imm[3] = ‘0; if imm[3] = ‘1, then the Precision Mask in the 
MXSCSR is ignored and precision exception is not signaled.)
Note that Denormal is not signaled by ROUNDPD.

Other Exceptions
See Exceptions Type 2; additionally
#UD If VEX.vvvv != 1111B.
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ROUNDPS — Round Packed Single Precision Floating-Point Values

Instruction Operand Encoding

Description

Round the 4 single-precision floating-point values in the source operand (second 
operand) using the rounding mode specified in the immediate operand (third 
operand) and place the results in the destination operand (first operand). The 
rounding process rounds each input floating-point value to an integer value and 
returns the integer result as a single-precision floating-point value. 

The immediate operand specifies control fields for the rounding operation, three bit 
fields are defined and shown in Figure 4-17. Bit 3 of the immediate byte controls 
processor behavior for a precision exception, bit 2 selects the source of rounding 
mode control. Bits 1:0 specify a non-sticky rounding-mode value (Table 4-17 lists the 
encoded values for rounding-mode field). 

The Precision Floating-Point Exception is signaled according to the immediate 
operand. If any source operand is an SNaN then it will be converted to a QNaN. If 
DAZ is set to ‘1 then denormals will be converted to zero before rounding.

Opcode*/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 3A 08
/r ib
ROUNDPS xmm1, xmm2/m128, 
imm8

RMI V/V SSE4_1 Round packed single 
precision floating-point 
values in xmm2/m128 and 
place the result in xmm1.  
The rounding mode is 
determined by imm8.

VEX.128.66.0F3A.WIG 08 /r ib
VROUNDPS xmm1, xmm2/m128, 
imm8

RMI V/V AVX Round packed single-
precision floating-point 
values in xmm2/m128 and 
place the result in xmm1. 
The rounding mode is 
determined by imm8.

VEX.256.66.0F3A.WIG 08 /r ib
VROUNDPS ymm1, ymm2/m256, 
imm8

RMI V/V AVX Round packed single-
precision floating-point 
values in ymm2/m256 and 
place the result in ymm1. 
The rounding mode is 
determined by imm8.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (w) ModRM:r/m (r) imm8 NA
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128-bit Legacy SSE version: The second source can be an XMM register or 128-bit 
memory location. The destination is not distinct from the first source XMM register 
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
unmodified.
VEX.128 encoded version: the source operand second source operand or a 128-bit 
memory location. The destination operand is an XMM register. The upper bits 
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.
VEX.256 encoded version: The source operand is a YMM register or a 256-bit 
memory location. The destination operand is a YMM register. 
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise 
instructions will #UD.

Operation

IF (imm[2] = ‘1) 
THEN // rounding mode is determined by MXCSR.RC 

DEST[31:0]  ConvertSPFPToInteger_M(SRC[31:0]);
DEST[63:32]  ConvertSPFPToInteger_M(SRC[63:32]);
DEST[95:64]  ConvertSPFPToInteger_M(SRC[95:64]);
DEST[127:96]  ConvertSPFPToInteger_M(SRC[127:96]);

ELSE // rounding mode is determined by IMM8.RC
DEST[31:0]  ConvertSPFPToInteger_Imm(SRC[31:0]);
DEST[63:32]  ConvertSPFPToInteger_Imm(SRC[63:32]);
DEST[95:64]  ConvertSPFPToInteger_Imm(SRC[95:64]);
DEST[127:96]  ConvertSPFPToInteger_Imm(SRC[127:96]);

FI;

ROUNDPS(128-bit Legacy SSE version)
DEST[31:0]  RoundToInteger(SRC[31:0], ROUND_CONTROL)
DEST[63:32]  RoundToInteger(SRC[63:32], ROUND_CONTROL)
DEST[95:64]  RoundToInteger(SRC[95:64]], ROUND_CONTROL)
DEST[127:96]  RoundToInteger(SRC[127:96]], ROUND_CONTROL)
DEST[VLMAX-1:128] (Unmodified)

VROUNDPS (VEX.128 encoded version)
DEST[31:0]  RoundToInteger(SRC[31:0], ROUND_CONTROL)
DEST[63:32]  RoundToInteger(SRC[63:32], ROUND_CONTROL)
DEST[95:64]  RoundToInteger(SRC[95:64]], ROUND_CONTROL)
DEST[127:96]  RoundToInteger(SRC[127:96]], ROUND_CONTROL)
DEST[VLMAX-1:128]  0

VROUNDPS (VEX.256 encoded version)
DEST[31:0]  RoundToInteger(SRC[31:0], ROUND_CONTROL)
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DEST[63:32]  RoundToInteger(SRC[63:32], ROUND_CONTROL)
DEST[95:64]  RoundToInteger(SRC[95:64]], ROUND_CONTROL)
DEST[127:96]  RoundToInteger(SRC[127:96]], ROUND_CONTROL)
DEST[159:128]  RoundToInteger(SRC[159:128]], ROUND_CONTROL)
DEST[191:160]  RoundToInteger(SRC[191:160]], ROUND_CONTROL)
DEST[223:192]  RoundToInteger(SRC[223:192] ], ROUND_CONTROL)
DEST[255:224]  RoundToInteger(SRC[255:224] ], ROUND_CONTROL)

Intel C/C++ Compiler Intrinsic Equivalent

__m128 _mm_round_ps(__m128 s1, int iRoundMode);

__m128 _mm_floor_ps(__m128 s1);

__m128 _mm_ceil_ps(__m128 s1)

__m256 _mm256_round_ps(__m256 s1, int iRoundMode);

__m256 _mm256_floor_ps(__m256 s1);

__m256 _mm256_ceil_ps(__m256 s1)

SIMD Floating-Point Exceptions

Invalid (signaled only if SRC = SNaN) 
Precision (signaled only if imm[3] = ‘0; if imm[3] = ‘1, then the Precision Mask in the 
MXSCSR is ignored and precision exception is not signaled.)
Note that Denormal is not signaled by ROUNDPS.

Other Exceptions
See Exceptions Type 2; additionally
#UD If VEX.vvvv != 1111B.
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ROUNDSD — Round Scalar Double Precision Floating-Point Values

Instruction Operand Encoding

Description

Round the DP FP value in the lower qword of the source operand (second operand) 
using the rounding mode specified in the immediate operand (third operand) and 
place the result in the destination operand (first operand). The rounding process 
rounds a double-precision floating-point input to an integer value and returns the 
integer result as a double precision floating-point value in the lowest position. The 
upper double precision floating-point value in the destination is retained. 

The immediate operand specifies control fields for the rounding operation, three bit 
fields are defined and shown in Figure 4-17. Bit 3 of the immediate byte controls 
processor behavior for a precision exception, bit 2 selects the source of rounding 
mode control. Bits 1:0 specify a non-sticky rounding-mode value (Table 4-17 lists the 
encoded values for rounding-mode field). 

The Precision Floating-Point Exception is signaled according to the immediate 
operand. If any source operand is an SNaN then it will be converted to a QNaN. If 
DAZ is set to ‘1 then denormals will be converted to zero before rounding.

Opcode*/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 3A 0B /r ib
ROUNDSD xmm1, xmm2/m64, imm8

RMI V/V SSE4_1 Round the low packed 
double precision floating-
point value in xmm2/m64 
and place the result in 
xmm1. The rounding mode 
is determined by imm8.

VEX.NDS.LIG.66.0F3A.WIG 0B /r ib
VROUNDSD xmm1, xmm2, 
xmm3/m64, imm8

RVMI V/V AVX Round the low packed 
double precision floating-
point value in xmm3/m64 
and place the result in 
xmm1. The rounding mode 
is determined by imm8. 
Upper packed double 
precision floating-point 
value (bits[127:64]) from 
xmm2 is copied to 
xmm1[127:64].

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
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128-bit Legacy SSE version: The first source operand and the destination operand 
are the same. Bits (VLMAX-1:64) of the corresponding YMM destination register 
remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed.

Operation

IF (imm[2] = ‘1) 
THEN // rounding mode is determined by MXCSR.RC 

DEST[63:0]  ConvertDPFPToInteger_M(SRC[63:0]);
ELSE // rounding mode is determined by IMM8.RC

DEST[63:0]  ConvertDPFPToInteger_Imm(SRC[63:0]);
FI;
DEST[127:63] remains unchanged ;

ROUNDSD (128-bit Legacy SSE version)
DEST[63:0]  RoundToInteger(SRC[63:0], ROUND_CONTROL)
DEST[VLMAX-1:64] (Unmodified)

VROUNDSD (VEX.128 encoded version)
DEST[63:0]  RoundToInteger(SRC2[63:0], ROUND_CONTROL)
DEST[127:64]  SRC1[127:64]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

ROUNDSD: __m128d mm_round_sd(__m128d dst, __m128d s1, int iRoundMode);
__m128d mm_floor_sd(__m128d dst, __m128d s1);
__m128d mm_ceil_sd(__m128d dst, __m128d s1);

SIMD Floating-Point Exceptions

Invalid (signaled only if SRC = SNaN)
Precision (signaled only if imm[3] = ‘0; if imm[3] = ‘1, then the Precision Mask in the 
MXSCSR is ignored and precision exception is not signaled.)
Note that Denormal is not signaled by ROUNDSD.

Other Exceptions
See Exceptions Type 3.
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ROUNDSS — Round Scalar Single Precision Floating-Point Values

Instruction Operand Encoding

Description

Round the single-precision floating-point value in the lowest dword of the source 
operand (second operand) using the rounding mode specified in the immediate 
operand (third operand) and place the result in the destination operand (first 
operand). The rounding process rounds a single-precision floating-point input to an 
integer value and returns the result as a single-precision floating-point value in the 
lowest position. The upper three single-precision floating-point values in the destina-
tion are retained. 

The immediate operand specifies control fields for the rounding operation, three bit 
fields are defined and shown in Figure 4-17. Bit 3 of the immediate byte controls 
processor behavior for a precision exception, bit 2 selects the source of rounding 
mode control. Bits 1:0 specify a non-sticky rounding-mode value (Table 4-17 lists the 
encoded values for rounding-mode field). 

Opcode*/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 3A 0A /r ib
ROUNDSS xmm1, xmm2/m32, imm8

RMI V/V SSE4_1 Round the low packed single 
precision floating-point 
value in xmm2/m32 and 
place the result in xmm1.  
The rounding mode is 
determined by imm8.

VEX.NDS.LIG.66.0F3A.WIG 0A ib
VROUNDSS xmm1, xmm2, 
xmm3/m32, imm8

RVMI V/V AVX Round the low packed single 
precision floating-point 
value in xmm3/m32 and 
place the result in xmm1. 
The rounding mode is 
determined by imm8. Also, 
upper packed single 
precision floating-point 
values (bits[127:32]) from 
xmm2 are copied to 
xmm1[127:32].

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
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The Precision Floating-Point Exception is signaled according to the immediate 
operand. If any source operand is an SNaN then it will be converted to a QNaN. If 
DAZ is set to ‘1 then denormals will be converted to zero before rounding.
128-bit Legacy SSE version: The first source operand and the destination operand 
are the same. Bits (VLMAX-1:32) of the corresponding YMM destination register 
remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed.

Operation

IF (imm[2] = ‘1) 
THEN // rounding mode is determined by MXCSR.RC 

DEST[31:0]  ConvertSPFPToInteger_M(SRC[31:0]);
ELSE // rounding mode is determined by IMM8.RC

DEST[31:0]  ConvertSPFPToInteger_Imm(SRC[31:0]);
FI;
DEST[127:32] remains unchanged ;

ROUNDSS (128-bit Legacy SSE version)
DEST[31:0]  RoundToInteger(SRC[31:0], ROUND_CONTROL)
DEST[VLMAX-1:32] (Unmodified)

VROUNDSS (VEX.128 encoded version)
DEST[31:0]  RoundToInteger(SRC2[31:0], ROUND_CONTROL)
DEST[127:32]  SRC1[127:32]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

ROUNDSS: __m128 mm_round_ss(__m128 dst, __m128 s1, int iRoundMode);
__m128 mm_floor_ss(__m128 dst, __m128 s1);
__m128 mm_ceil_ss(__m128 dst, __m128 s1);

SIMD Floating-Point Exceptions

Invalid (signaled only if SRC = SNaN) 
Precision (signaled only if imm[3] = ‘0; if imm[3] = ‘1, then the Precision Mask in the 
MXSCSR is ignored and precision exception is not signaled.)
Note that Denormal is not signaled by ROUNDSS.

Other Exceptions
See Exceptions Type 3.
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RSM—Resume from System Management Mode

Instruction Operand Encoding

Description

Returns program control from system management mode (SMM) to the application 
program or operating-system procedure that was interrupted when the processor 
received an SMM interrupt. The processor’s state is restored from the dump created 
upon entering SMM. If the processor detects invalid state information during state 
restoration, it enters the shutdown state. The following invalid information can cause 
a shutdown:
• Any reserved bit of CR4 is set to 1.
• Any illegal combination of bits in CR0, such as (PG=1 and PE=0) or (NW=1 and 

CD=0).
• (Intel Pentium and Intel486™ processors only.) The value stored in the state 

dump base field is not a 32-KByte aligned address.

The contents of the model-specific registers are not affected by a return from SMM.

The SMM state map used by RSM supports resuming processor context for non-
64-bit modes and 64-bit mode. 

See Chapter 33, “System Management Mode,” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3C, for more information about SMM and 
the behavior of the RSM instruction.

Operation

ReturnFromSMM;
IF (IA-32e mode supported) or (CPUID DisplayFamily_DisplayModel = 06H_0CH )

THEN
ProcessorState ← Restore(SMMDump(IA-32e SMM STATE MAP));

Else
ProcessorState ← Restore(SMMDump(Non-32-Bit-Mode SMM STATE MAP));

FI

Opcode* Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F AA RSM NP Invalid Valid Resume operation of 
interrupted program.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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Flags Affected

All.

Protected Mode Exceptions
#UD If an attempt is made to execute this instruction when the 

processor is not in SMM.
If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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RSQRTPS—Compute Reciprocals of Square Roots of Packed Single-
Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a SIMD computation of the approximate reciprocals of the square roots of 
the four packed single-precision floating-point values in the source operand (second 
operand) and stores the packed single-precision floating-point results in the destina-
tion operand. The source operand can be an XMM register or a 128-bit memory loca-
tion. The destination operand is an XMM register. See Figure 10-5 in the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 1, for an illustration of 
a SIMD single-precision floating-point operation.

The relative error for this approximation is:

|Relative Error| ≤ 1.5 ∗ 2−12 

The RSQRTPS instruction is not affected by the rounding control bits in the MXCSR 
register. When a source value is a 0.0, an ∞ of the sign of the source value is 
returned. A denormal source value is treated as a 0.0 (of the same sign). When a 

Opcode*/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F 52 /r

RSQRTPS xmm1, xmm2/m128

RM V/V SSE Computes the approximate 
reciprocals of the square 
roots of the packed single-
precision floating-point 
values in xmm2/m128 and 
stores the results in xmm1.

VEX.128.0F.WIG 52 /r

VRSQRTPS xmm1, xmm2/m128

RM V/V AVX Computes the approximate 
reciprocals of the square 
roots of packed single-
precision values in 
xmm2/mem and stores the 
results in xmm1.

VEX.256.0F.WIG 52 /r

VRSQRTPS ymm1, ymm2/m256

RM V/V AVX Computes the approximate 
reciprocals of the square 
roots of packed single-
precision values in 
ymm2/mem and stores the 
results in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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source value is a negative value (other than −0.0), a floating-point indefinite is 
returned. When a source value is an SNaN or QNaN, the SNaN is converted to a QNaN 
or the source QNaN is returned. 

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).
VEX.256 encoded version: The first source operand is a YMM register. The second 
source operand can be a YMM register or a 256-bit memory location. The destination 
operand is a YMM register. 
VEX.128 encoded version: the first source operand is an XMM register or 128-bit 
memory location. The destination operand is an XMM register. The upper bits 
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit 
memory location. The destination is not distinct from the first source XMM register 
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
unmodified.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise 
instructions will #UD.

Operation

RSQRTPS (128-bit Legacy SSE version)
DEST[31:0]  APPROXIMATE(1/SQRT(SRC[31:0]))
DEST[63:32]  APPROXIMATE(1/SQRT(SRC1[63:32]))
DEST[95:64]  APPROXIMATE(1/SQRT(SRC1[95:64]))
DEST[127:96]  APPROXIMATE(1/SQRT(SRC2[127:96]))
DEST[VLMAX-1:128] (Unmodified)

VRSQRTPS (VEX.128 encoded version)
DEST[31:0]  APPROXIMATE(1/SQRT(SRC[31:0]))
DEST[63:32]  APPROXIMATE(1/SQRT(SRC1[63:32]))
DEST[95:64]  APPROXIMATE(1/SQRT(SRC1[95:64]))
DEST[127:96]  APPROXIMATE(1/SQRT(SRC2[127:96]))
DEST[VLMAX-1:128]  0

VRSQRTPS (VEX.256 encoded version)
DEST[31:0]  APPROXIMATE(1/SQRT(SRC[31:0]))
DEST[63:32]  APPROXIMATE(1/SQRT(SRC1[63:32]))
DEST[95:64]  APPROXIMATE(1/SQRT(SRC1[95:64]))
DEST[127:96]  APPROXIMATE(1/SQRT(SRC2[127:96]))
DEST[159:128]  APPROXIMATE(1/SQRT(SRC2[159:128]))
DEST[191:160]  APPROXIMATE(1/SQRT(SRC2[191:160]))
DEST[223:192]  APPROXIMATE(1/SQRT(SRC2[223:192]))
DEST[255:224]  APPROXIMATE(1/SQRT(SRC2[255:224]))
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Intel C/C++ Compiler Intrinsic Equivalent

RSQRTPS: __m128 _mm_rsqrt_ps(__m128 a)
RSQRTPS:  __m256 _mm256_rsqrt_ps (__m256 a);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.vvvv != 1111B.
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RSQRTSS—Compute Reciprocal of Square Root of Scalar Single-
Precision Floating-Point Value

Instruction Operand Encoding

Description

Computes an approximate reciprocal of the square root of the low single-precision 
floating-point value in the source operand (second operand) stores the single-preci-
sion floating-point result in the destination operand. The source operand can be an 
XMM register or a 32-bit memory location. The destination operand is an XMM 
register. The three high-order doublewords of the destination operand remain 
unchanged. See Figure 10-6 in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1, for an illustration of a scalar single-precision floating-
point operation.

The relative error for this approximation is:

|Relative Error| ≤ 1.5 ∗ 2−12 

The RSQRTSS instruction is not affected by the rounding control bits in the MXCSR 
register. When a source value is a 0.0, an ∞ of the sign of the source value is 
returned. A denormal source value is treated as a 0.0 (of the same sign). When a 

Opcode*/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

F3 0F 52 /r

RSQRTSS xmm1, xmm2/m32

RM V/V SSE Computes the approximate 
reciprocal of the square root 
of the low single-precision 
floating-point value in 
xmm2/m32 and stores the 
results in xmm1.

VEX.NDS.LIG.F3.0F.WIG 52 /r
VRSQRTSS xmm1, xmm2, 
xmm3/m32

RVM V/V AVX Computes the approximate 
reciprocal of the square root 
of the low single precision 
floating-point value in 
xmm3/m32 and stores the 
results in xmm1. Also, upper 
single precision floating-
point values (bits[127:32]) 
from xmm2 are copied to 
xmm1[127:32].

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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source value is a negative value (other than −0.0), a floating-point indefinite is 
returned. When a source value is an SNaN or QNaN, the SNaN is converted to a QNaN 
or the source QNaN is returned. 

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The first source operand and the destination operand 
are the same. Bits (VLMAX-1:32) of the corresponding YMM destination register 
remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed.

Operation

RSQRTSS (128-bit Legacy SSE version)
DEST[31:0]  APPROXIMATE(1/SQRT(SRC2[31:0]))
DEST[VLMAX-1:32] (Unmodified)

VRSQRTSS (VEX.128 encoded version)
DEST[31:0]  APPROXIMATE(1/SQRT(SRC2[31:0]))
DEST[127:32]  SRC1[31:0]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

RSQRTSS: __m128 _mm_rsqrt_ss(__m128 a)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 5.
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SAHF—Store AH into Flags

Instruction Operand Encoding

Description

Loads the SF, ZF, AF, PF, and CF flags of the EFLAGS register with values from the 
corresponding bits in the AH register (bits 7, 6, 4, 2, and 0, respectively). Bits 1, 3, 
and 5 of register AH are ignored; the corresponding reserved bits (1, 3, and 5) in the 
EFLAGS register remain as shown in the “Operation” section below.

This instruction executes as described above in compatibility mode and legacy mode. 
It is valid in 64-bit mode only if CPUID.80000001H:ECX.LAHF-SAHF[bit 0] = 1.

Operation

IF IA-64 Mode
THEN

IF CPUID.80000001H.ECX[0] = 1;
THEN

RFLAGS(SF:ZF:0:AF:0:PF:1:CF) ← AH;
ELSE

#UD;
FI

ELSE
EFLAGS(SF:ZF:0:AF:0:PF:1:CF) ← AH;

FI;

Flags Affected

The SF, ZF, AF, PF, and CF flags are loaded with values from the AH register. Bits 1, 3, 
and 5 of the EFLAGS register are unaffected, with the values remaining 1, 0, and 0, 
respectively.

Opcode* Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

9E SAHF NP Invalid* Valid Loads SF, ZF, AF, PF, and CF 
from AH into EFLAGS 
register.

NOTES:
* Valid in specific steppings. See Description section.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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Protected Mode Exceptions
None.

Real-Address Mode Exceptions
None.

Virtual-8086 Mode Exceptions
None.

Compatibility Mode Exceptions
None.

64-Bit Mode Exceptions
#UD If CPUID.80000001H.ECX[0] = 0.

If the LOCK prefix is used.
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SAL/SAR/SHL/SHR—Shift
Opcode*** Instruction Op/ 

En
64-Bit 
Mode

Compat/
Leg Mode

Description

D0 /4 SAL r/m8, 1 M1 Valid Valid Multiply r/m8 by 2, once. 

REX + D0 /4 SAL r/m8**, 1 M1 Valid N.E. Multiply r/m8 by 2, once. 

D2 /4 SAL r/m8, CL MC Valid Valid Multiply r/m8 by 2, CL times.

REX + D2 /4 SAL r/m8**, CL MC Valid N.E. Multiply r/m8 by 2, CL times.

C0 /4 ib SAL r/m8, imm8 MI Valid Valid Multiply r/m8 by 2, imm8 
times.

REX + C0 /4 ib SAL r/m8**, imm8 MI Valid N.E. Multiply r/m8 by 2, imm8 
times.

D1 /4 SAL r/m16, 1 M1 Valid Valid Multiply r/m16 by 2, once.

D3 /4 SAL r/m16, CL MC Valid Valid Multiply r/m16 by 2, CL 
times.

C1 /4 ib SAL r/m16, imm8 MI Valid Valid Multiply r/m16 by 2, imm8 
times.

D1 /4 SAL r/m32, 1 M1 Valid Valid Multiply r/m32 by 2, once.

REX.W + D1 /4 SAL r/m64, 1 M1 Valid N.E. Multiply r/m64 by 2, once.

D3 /4 SAL r/m32, CL MC Valid Valid Multiply r/m32 by 2, CL 
times.

REX.W + D3 /4 SAL r/m64, CL MC Valid N.E. Multiply r/m64 by 2, CL 
times.

C1 /4 ib SAL r/m32, imm8 MI Valid Valid Multiply r/m32 by 2, imm8 
times.

REX.W + C1 /4 
ib

SAL r/m64, imm8 MI Valid N.E. Multiply r/m64 by 2, imm8 
times.

D0 /7 SAR r/m8, 1 M1 Valid Valid Signed divide* r/m8 by 2, 
once.

REX + D0 /7 SAR r/m8**, 1 M1 Valid N.E. Signed divide* r/m8 by 2, 
once.

D2 /7 SAR r/m8, CL MC Valid Valid Signed divide* r/m8 by 2, CL 
times.

REX + D2 /7 SAR r/m8**, CL MC Valid N.E. Signed divide* r/m8 by 2, CL 
times.

C0 /7 ib SAR r/m8, imm8 MI Valid Valid Signed divide* r/m8 by 2, 
imm8 time.

REX + C0 /7 ib SAR r/m8**, imm8 MI Valid N.E. Signed divide* r/m8 by 2, 
imm8 times.
4-502 Vol. 2B SAL/SAR/SHL/SHR—Shift



INSTRUCTION SET REFERENCE, M-Z
Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

D1 /7 SAR r/m16,1 M1 Valid Valid Signed divide* r/m16 by 2, 
once.

D3 /7 SAR r/m16, CL MC Valid Valid Signed divide* r/m16 by 2, 
CL times.

C1 /7 ib SAR r/m16, imm8 MI Valid Valid Signed divide* r/m16 by 2, 
imm8 times.

D1 /7 SAR r/m32, 1 M1 Valid Valid Signed divide* r/m32 by 2, 
once.

REX.W + D1 /7 SAR r/m64, 1 M1 Valid N.E. Signed divide* r/m64 by 2, 
once.

D3 /7 SAR r/m32, CL MC Valid Valid Signed divide* r/m32 by 2, 
CL times.

REX.W + D3 /7 SAR r/m64, CL MC Valid N.E. Signed divide* r/m64 by 2, 
CL times.

C1 /7 ib SAR r/m32, imm8 MI Valid Valid Signed divide* r/m32 by 2, 
imm8 times.

REX.W + C1 /7 
ib

SAR r/m64, imm8 MI Valid N.E. Signed divide* r/m64 by 2, 
imm8 times

D0 /4 SHL r/m8, 1 M1 Valid Valid Multiply r/m8 by 2, once.

REX + D0 /4 SHL r/m8**, 1 M1 Valid N.E. Multiply r/m8 by 2, once.

D2 /4 SHL r/m8, CL MC Valid Valid Multiply r/m8 by 2, CL times.

REX + D2 /4 SHL r/m8**, CL MC Valid N.E. Multiply r/m8 by 2, CL times.

C0 /4 ib SHL r/m8, imm8 MI Valid Valid Multiply r/m8 by 2, imm8 
times.

REX + C0 /4 ib SHL r/m8**, imm8 MI Valid N.E. Multiply r/m8 by 2, imm8 
times.

D1 /4 SHL r/m16,1 M1 Valid Valid Multiply r/m16 by 2, once.

D3 /4 SHL r/m16, CL MC Valid Valid Multiply r/m16 by 2, CL 
times.

C1 /4 ib SHL r/m16, imm8 MI Valid Valid Multiply r/m16 by 2, imm8 
times.

D1 /4 SHL r/m32,1 M1 Valid Valid Multiply r/m32 by 2, once.

REX.W + D1 /4 SHL r/m64,1 M1 Valid N.E. Multiply r/m64 by 2, once.

D3 /4 SHL r/m32, CL MC Valid Valid Multiply r/m32 by 2, CL 
times.

REX.W + D3 /4 SHL r/m64, CL MC Valid N.E. Multiply r/m64 by 2, CL 
times.
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Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

C1 /4 ib SHL r/m32, imm8 MI Valid Valid Multiply r/m32 by 2, imm8 
times.

REX.W + C1 /4 
ib

SHL r/m64, imm8 MI Valid N.E. Multiply r/m64 by 2, imm8 
times.

D0 /5 SHR r/m8,1 M1 Valid Valid Unsigned divide r/m8 by 2, 
once.

REX + D0 /5 SHR r/m8**, 1 M1 Valid N.E. Unsigned divide r/m8 by 2, 
once.

D2 /5 SHR r/m8, CL MC Valid Valid Unsigned divide r/m8 by 2, 
CL times.

REX + D2 /5 SHR r/m8**, CL MC Valid N.E. Unsigned divide r/m8 by 2, 
CL times.

C0 /5 ib SHR r/m8, imm8 MI Valid Valid Unsigned divide r/m8 by 2, 
imm8 times.

REX + C0 /5 ib SHR r/m8**, imm8 MI Valid N.E. Unsigned divide r/m8 by 2, 
imm8 times.

D1 /5 SHR r/m16, 1 M1 Valid Valid Unsigned divide r/m16 by 2, 
once.

D3 /5 SHR r/m16, CL MC Valid Valid Unsigned divide r/m16 by 2, 
CL times

C1 /5 ib SHR r/m16, imm8 MI Valid Valid Unsigned divide r/m16 by 2, 
imm8 times.

D1 /5 SHR r/m32, 1 M1 Valid Valid Unsigned divide r/m32 by 2, 
once.

REX.W + D1 /5 SHR r/m64, 1 M1 Valid N.E. Unsigned divide r/m64 by 2, 
once.

D3 /5 SHR r/m32, CL MC Valid Valid Unsigned divide r/m32 by 2, 
CL times.

REX.W + D3 /5 SHR r/m64, CL MC Valid N.E. Unsigned divide r/m64 by 2, 
CL times.

C1 /5 ib SHR r/m32, imm8 MI Valid Valid Unsigned divide r/m32 by 2, 
imm8 times.

REX.W + C1 /5 
ib

SHR r/m64, imm8 MI Valid N.E. Unsigned divide r/m64 by 2, 
imm8 times.
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Instruction Operand Encoding

Description

Shifts the bits in the first operand (destination operand) to the left or right by the 
number of bits specified in the second operand (count operand). Bits shifted beyond 
the destination operand boundary are first shifted into the CF flag, then discarded. At 
the end of the shift operation, the CF flag contains the last bit shifted out of the desti-
nation operand. 

The destination operand can be a register or a memory location. The count operand 
can be an immediate value or the CL register. The count is masked to 5 bits (or 6 bits 
if in 64-bit mode and REX.W is used). The count range is limited to 0 to 31 (or 63 if 
64-bit mode and REX.W is used). A special opcode encoding is provided for a count 
of 1.

The shift arithmetic left (SAL) and shift logical left (SHL) instructions perform the 
same operation; they shift the bits in the destination operand to the left (toward 
more significant bit locations). For each shift count, the most significant bit of the 
destination operand is shifted into the CF flag, and the least significant bit is cleared 
(see Figure 7-7 in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 1).

The shift arithmetic right (SAR) and shift logical right (SHR) instructions shift the bits 
of the destination operand to the right (toward less significant bit locations). For each 
shift count, the least significant bit of the destination operand is shifted into the CF 
flag, and the most significant bit is either set or cleared depending on the instruction 
type. The SHR instruction clears the most significant bit (see Figure 7-8 in the Intel® 
64 and IA-32 Architectures Software Developer’s Manual, Volume 1); the SAR 
instruction sets or clears the most significant bit to correspond to the sign (most 
significant bit) of the original value in the destination operand. In effect, the SAR 
instruction fills the empty bit position’s shifted value with the sign of the unshifted 
value (see Figure 7-9 in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 1).

NOTES:
* Not the same form of division as IDIV; rounding is toward negative infinity.
** In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is 

used: AH, BH, CH, DH.
***See IA-32 Architecture Compatibility section below.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M1 ModRM:r/m (r, w) 1 NA NA

MC ModRM:r/m (r, w) CL NA NA

MI ModRM:r/m (r, w) imm8 NA NA
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The SAR and SHR instructions can be used to perform signed or unsigned division, 
respectively, of the destination operand by powers of 2. For example, using the SAR 
instruction to shift a signed integer 1 bit to the right divides the value by 2.

Using the SAR instruction to perform a division operation does not produce the same 
result as the IDIV instruction. The quotient from the IDIV instruction is rounded 
toward zero, whereas the “quotient” of the SAR instruction is rounded toward nega-
tive infinity. This difference is apparent only for negative numbers. For example, 
when the IDIV instruction is used to divide -9 by 4, the result is -2 with a remainder 
of -1. If the SAR instruction is used to shift -9 right by two bits, the result is -3 and 
the “remainder” is +3; however, the SAR instruction stores only the most significant 
bit of the remainder (in the CF flag). 

The OF flag is affected only on 1-bit shifts. For left shifts, the OF flag is set to 0 if the 
most-significant bit of the result is the same as the CF flag (that is, the top two bits 
of the original operand were the same); otherwise, it is set to 1. For the SAR instruc-
tion, the OF flag is cleared for all 1-bit shifts. For the SHR instruction, the OF flag is 
set to the most-significant bit of the original operand.

In 64-bit mode, the instruction’s default operation size is 32 bits and the mask width 
for CL is 5 bits. Using a REX prefix in the form of REX.R permits access to additional 
registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 
64-bits and sets the mask width for CL to 6 bits. See the summary chart at the begin-
ning of this section for encoding data and limits.

IA-32 Architecture Compatibility

The 8086 does not mask the shift count. However, all other IA-32 processors 
(starting with the Intel 286 processor) do mask the shift count to 5 bits, resulting in 
a maximum count of 31. This masking is done in all operating modes (including the 
virtual-8086 mode) to reduce the maximum execution time of the instructions.

Operation

IF 64-Bit Mode and using REX.W
THEN

countMASK ← 3FH;
ELSE

countMASK ← 1FH;
FI

tempCOUNT ← (COUNT AND countMASK);
tempDEST ← DEST;
WHILE (tempCOUNT ≠ 0)
DO

IF instruction is SAL or SHL
THEN 

CF ← MSB(DEST);
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ELSE (* Instruction is SAR or SHR *)
CF ← LSB(DEST);

FI;
IF instruction is SAL or SHL

THEN 
DEST ← DEST ∗ 2;

ELSE 
IF instruction is SAR

THEN 
DEST ← DEST / 2; (* Signed divide, rounding toward negative infinity *)

ELSE (* Instruction is SHR *)
DEST ← DEST / 2 ; (* Unsigned divide *)

FI;
FI;
tempCOUNT ← tempCOUNT – 1;

OD;

(* Determine overflow for the various instructions *)
IF (COUNT and countMASK) = 1

THEN
IF instruction is SAL or SHL

THEN 
OF ← MSB(DEST) XOR CF;

ELSE 
IF instruction is SAR

THEN 
OF ← 0;

ELSE (* Instruction is SHR *)
OF ← MSB(tempDEST);

FI;
FI;

ELSE IF (COUNT AND countMASK) = 0
THEN

All flags unchanged;
ELSE (* COUNT not 1 or 0 *)

OF ← undefined;
FI;

FI;

Flags Affected

The CF flag contains the value of the last bit shifted out of the destination operand; it 
is undefined for SHL and SHR instructions where the count is greater than or equal to 
the size (in bits) of the destination operand. The OF flag is affected only for 1-bit 
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shifts (see “Description” above); otherwise, it is undefined. The SF, ZF, and PF flags 
are set according to the result. If the count is 0, the flags are not affected. For a non-
zero count, the AF flag is undefined.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, 
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS 

segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
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#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
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SBB—Integer Subtraction with Borrow

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

1C ib SBB AL, imm8 I Valid Valid Subtract with borrow imm8 
from AL.

1D iw SBB AX, imm16 I Valid Valid Subtract with borrow 
imm16 from AX.

1D id SBB EAX, imm32 I Valid Valid Subtract with borrow 
imm32 from EAX.

REX.W + 1D id SBB RAX, imm32 I Valid N.E. Subtract with borrow sign-
extended imm.32 to 64-bits 
from RAX.

80 /3 ib SBB r/m8, imm8 MI Valid Valid Subtract with borrow imm8 
from r/m8.

REX + 80 /3 ib SBB r/m8*, imm8 MI Valid N.E. Subtract with borrow imm8 
from r/m8.

81 /3 iw SBB r/m16, 
imm16

MI Valid Valid Subtract with borrow 
imm16 from r/m16.

81 /3 id SBB r/m32, 
imm32

MI Valid Valid Subtract with borrow 
imm32 from r/m32.

REX.W + 81 /3 
id

SBB r/m64, 
imm32

MI Valid N.E. Subtract with borrow sign-
extended imm32 to 64-bits 
from r/m64.

83 /3 ib SBB r/m16, imm8 MI Valid Valid Subtract with borrow sign-
extended imm8 from r/m16.

83 /3 ib SBB r/m32, imm8 MI Valid Valid Subtract with borrow sign-
extended imm8 from r/m32.

REX.W + 83 /3 
ib

SBB r/m64, imm8 MI Valid N.E. Subtract with borrow sign-
extended imm8 from r/m64.

18 /r SBB r/m8, r8 MR Valid Valid Subtract with borrow r8 
from r/m8.

REX + 18 /r SBB r/m8*, r8 MR Valid N.E. Subtract with borrow r8 
from r/m8.

19 /r SBB r/m16, r16 MR Valid Valid Subtract with borrow r16 
from r/m16.

19 /r SBB r/m32, r32 MR Valid Valid Subtract with borrow r32 
from r/m32.

REX.W + 19 /r SBB r/m64, r64 MR Valid N.E. Subtract with borrow r64 
from r/m64.
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Instruction Operand Encoding

Description

Adds the source operand (second operand) and the carry (CF) flag, and subtracts the 
result from the destination operand (first operand). The result of the subtraction is 
stored in the destination operand. The destination operand can be a register or a 
memory location; the source operand can be an immediate, a register, or a memory 
location. (However, two memory operands cannot be used in one instruction.) The 
state of the CF flag represents a borrow from a previous subtraction.

When an immediate value is used as an operand, it is sign-extended to the length of 
the destination operand format.

The SBB instruction does not distinguish between signed or unsigned operands. 
Instead, the processor evaluates the result for both data types and sets the OF and 
CF flags to indicate a borrow in the signed or unsigned result, respectively. The SF 
flag indicates the sign of the signed result.

The SBB instruction is usually executed as part of a multibyte or multiword subtrac-
tion in which a SUB instruction is followed by a SBB instruction.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

1A /r SBB r8, r/m8 RM Valid Valid Subtract with borrow r/m8 
from r8.

REX + 1A /r SBB r8*, r/m8* RM Valid N.E. Subtract with borrow r/m8 
from r8.

1B /r SBB r16, r/m16 RM Valid Valid Subtract with borrow r/m16 
from r16.

1B /r SBB r32, r/m32 RM Valid Valid Subtract with borrow r/m32 
from r32.

REX.W + 1B /r SBB r64, r/m64 RM Valid N.E. Subtract with borrow r/m64 
from r64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is 

used: AH, BH, CH, DH. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

I AL/AX/EAX/RAX imm8/16/32 NA NA

MI ModRM:r/m (w) imm8/16/32 NA NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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This instruction can be used with a LOCK prefix to allow the instruction to be 
executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix 
in the form of REX.R permits access to additional registers (R8-R15). Using a REX 
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at 
the beginning of this section for encoding data and limits.

Operation

DEST ← (DEST – (SRC + CF));

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, 
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory 

operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS 

segment limit.
#UD If the LOCK prefix is used but the destination is not a memory 

operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
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#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made.
#UD If the LOCK prefix is used but the destination is not a memory 

operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory 

operand.
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SCAS/SCASB/SCASW/SCASD—Scan String 

Instruction Operand Encoding

Description

In non-64-bit modes and in default 64-bit mode: this instruction compares a byte, 
word, doubleword or quadword specified using a memory operand with the value in 
AL, AX, or EAX. It then sets status flags in EFLAGS recording the results. The memory 
operand address is read from ES:(E)DI register (depending on the address-size 

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

AE SCAS m8 NP Valid Valid Compare AL with byte at 
ES:(E)DI or RDI, then set 
status flags.*

AF SCAS m16 NP Valid Valid Compare AX with word at 
ES:(E)DI or RDI, then set 
status flags.*

AF SCAS m32 NP Valid Valid Compare EAX with 
doubleword at ES(E)DI or 
RDI then set status flags.*

REX.W + AF SCAS m64 NP Valid N.E. Compare RAX with 
quadword at RDI or EDI then 
set status flags.

AE SCASB NP Valid Valid Compare AL with byte at 
ES:(E)DI or RDI then set 
status flags.*

AF SCASW NP Valid Valid Compare AX with word at 
ES:(E)DI or RDI then set 
status flags.*

AF SCASD NP Valid Valid Compare EAX with 
doubleword at ES:(E)DI or 
RDI then set status flags.*

REX.W + AF SCASQ NP Valid N.E. Compare RAX with 
quadword at RDI or EDI then 
set status flags.

NOTES:
* In 64-bit mode, only 64-bit (RDI) and 32-bit (EDI) address sizes are supported. In non-64-bit 

mode, only 32-bit (EDI) and 16-bit (DI) address sizes are supported.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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attribute of the instruction and the current operational mode). Note that ES cannot 
be overridden with a segment override prefix.

At the assembly-code level, two forms of this instruction are allowed. The explicit-
operand form and the no-operands form. The explicit-operand form (specified using 
the SCAS mnemonic) allows a memory operand to be specified explicitly. The 
memory operand must be a symbol that indicates the size and location of the 
operand value. The register operand is then automatically selected to match the size 
of the memory operand (AL register for byte comparisons, AX for word comparisons, 
EAX for doubleword comparisons). The explicit-operand form is provided to allow 
documentation. Note that the documentation provided by this form can be 
misleading. That is, the memory operand symbol must specify the correct type (size) 
of the operand (byte, word, or doubleword) but it does not have to specify the correct 
location. The location is always specified by ES:(E)DI.

The no-operands form of the instruction uses a short form of SCAS. Again, ES:(E)DI 
is assumed to be the memory operand and AL, AX, or EAX is assumed to be the 
register operand. The size of operands is selected by the mnemonic: SCASB (byte 
comparison), SCASW (word comparison), or SCASD (doubleword comparison).

After the comparison, the (E)DI register is incremented or decremented automati-
cally according to the setting of the DF flag in the EFLAGS register. If the DF flag is 0, 
the (E)DI register is incremented; if the DF flag is 1, the (E)DI register is decre-
mented. The register is incremented or decremented by 1 for byte operations, by 2 
for word operations, and by 4 for doubleword operations.

SCAS, SCASB, SCASW, SCASD, and SCASQ can be preceded by the REP prefix for 
block comparisons of ECX bytes, words, doublewords, or quadwords. Often, however, 
these instructions will be used in a LOOP construct that takes some action based on 
the setting of status flags. See “REP/REPE/REPZ /REPNE/REPNZ—Repeat String 
Operation Prefix” in this chapter for a description of the REP prefix.

In 64-bit mode, the instruction’s default address size is 64-bits, 32-bit address size is 
supported using the prefix 67H. Using a REX prefix in the form of REX.W promotes 
operation on doubleword operand to 64 bits. The 64-bit no-operand mnemonic is 
SCASQ. Address of the memory operand is specified in either RDI or EDI, and 
AL/AX/EAX/RAX may be used as the register operand. After a comparison, the desti-
nation register is incremented or decremented by the current operand size 
(depending on the value of the DF flag). See the summary chart at the beginning of 
this section for encoding data and limits.

Operation

Non-64-bit Mode:

IF (Byte cmparison)
THEN

temp ← AL − SRC;
SetStatusFlags(temp);

THEN IF DF = 0 
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THEN (E)DI ← (E)DI + 1; 
ELSE (E)DI ← (E)DI – 1; FI;

ELSE IF (Word comparison)
THEN

temp ← AX − SRC;
SetStatusFlags(temp);
IF DF = 0

THEN (E)DI ← (E)DI + 2; 
ELSE (E)DI ← (E)DI – 2; FI;

FI;
ELSE IF (Doubleword comparison)

THEN
temp ← EAX – SRC;
SetStatusFlags(temp);
IF DF = 0

THEN (E)DI ← (E)DI + 4; 
ELSE (E)DI ← (E)DI – 4; FI;

FI;
FI;

64-bit Mode:

IF (Byte cmparison)
THEN

temp ← AL − SRC;
SetStatusFlags(temp);

THEN IF DF = 0 
THEN (R|E)DI ← (R|E)DI + 1; 
ELSE (R|E)DI ← (R|E)DI – 1; FI;

ELSE IF (Word comparison)
THEN

temp ← AX − SRC;
SetStatusFlags(temp);
IF DF = 0

THEN (R|E)DI ← (R|E)DI + 2; 
ELSE (R|E)DI ← (R|E)DI – 2; FI;

FI;
ELSE IF (Doubleword comparison)

THEN
temp ← EAX – SRC;
SetStatusFlags(temp);
IF DF = 0

THEN (R|E)DI ← (R|E)DI + 4; 
ELSE (R|E)DI ← (R|E)DI – 4; FI;
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FI;
ELSE IF (Quadword comparison using REX.W )

THEN
temp ← RAX − SRC;
SetStatusFlags(temp);
IF DF = 0

THEN (R|E)DI ← (R|E)DI + 8; 
ELSE (R|E)DI ← (R|E)DI – 8; 

FI;
FI;

F

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are set according to the temporary result of the 
comparison.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the limit of the 

ES segment.
If the ES register contains a NULL segment selector.
If an illegal memory operand effective address in the ES 
segment is given.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS 

segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
#PF(fault-code) If a page fault occurs.
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#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
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SETcc—Set Byte on Condition
Opcode Instruction Op/ 

En
64-Bit 
Mode

Compat/
Leg Mode

Description

0F 97 SETA r/m8 M Valid Valid Set byte if above (CF=0 and 
ZF=0).

REX + 0F 97 SETA r/m8* M Valid N.E. Set byte if above (CF=0 and 
ZF=0).

0F 93 SETAE r/m8 M Valid Valid Set byte if above or equal 
(CF=0).

REX + 0F 93 SETAE r/m8* M Valid N.E. Set byte if above or equal 
(CF=0).

0F 92 SETB r/m8 M Valid Valid Set byte if below (CF=1).

REX + 0F 92 SETB r/m8* M Valid N.E. Set byte if below (CF=1).

0F 96 SETBE r/m8 M Valid Valid Set byte if below or equal 
(CF=1 or ZF=1).

REX + 0F 96 SETBE r/m8* M Valid N.E. Set byte if below or equal 
(CF=1 or ZF=1).

0F 92 SETC r/m8 M Valid Valid Set byte if carry (CF=1).

REX + 0F 92 SETC r/m8* M Valid N.E. Set byte if carry (CF=1).

0F 94 SETE r/m8 M Valid Valid Set byte if equal (ZF=1).

REX + 0F 94 SETE r/m8* M Valid N.E. Set byte if equal (ZF=1).

0F 9F SETG r/m8 M Valid Valid Set byte if greater (ZF=0 
and SF=OF).

REX + 0F 9F SETG r/m8* M Valid N.E. Set byte if greater (ZF=0 
and SF=OF).

0F 9D SETGE r/m8 M Valid Valid Set byte if greater or equal 
(SF=OF).

REX + 0F 9D SETGE r/m8* M Valid N.E. Set byte if greater or equal 
(SF=OF).

0F 9C SETL r/m8 M Valid Valid Set byte if less (SF≠ OF).

REX + 0F 9C SETL r/m8* M Valid N.E. Set byte if less (SF≠ OF).

0F 9E SETLE r/m8 M Valid Valid Set byte if less or equal 
(ZF=1 or SF≠ OF).

REX + 0F 9E SETLE r/m8* M Valid N.E. Set byte if less or equal 
(ZF=1 or SF≠ OF).

0F 96 SETNA r/m8 M Valid Valid Set byte if not above (CF=1 
or ZF=1).
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REX + 0F 96 SETNA r/m8* M Valid N.E. Set byte if not above (CF=1 
or ZF=1).

0F 92 SETNAE r/m8 M Valid Valid Set byte if not above or 
equal (CF=1).

REX + 0F 92 SETNAE r/m8* M Valid N.E. Set byte if not above or 
equal (CF=1).

0F 93 SETNB r/m8 M Valid Valid Set byte if not below (CF=0).

REX + 0F 93 SETNB r/m8* M Valid N.E. Set byte if not below (CF=0).

0F 97 SETNBE r/m8 M Valid Valid Set byte if not below or 
equal (CF=0 and ZF=0).

REX + 0F 97 SETNBE r/m8* M Valid N.E. Set byte if not below or 
equal (CF=0 and ZF=0).

0F 93 SETNC r/m8 M Valid Valid Set byte if not carry (CF=0).

REX + 0F 93 SETNC r/m8* M Valid N.E. Set byte if not carry (CF=0).

0F 95 SETNE r/m8 M Valid Valid Set byte if not equal (ZF=0).

REX + 0F 95 SETNE r/m8* M Valid N.E. Set byte if not equal (ZF=0).

0F 9E SETNG r/m8 M Valid Valid Set byte if not greater 
(ZF=1 or SF≠ OF)

REX + 0F 9E SETNG r/m8* M Valid N.E. Set byte if not greater 
(ZF=1 or SF≠ OF).

0F 9C SETNGE r/m8 M Valid Valid Set byte if not greater or 
equal (SF≠ OF).

REX + 0F 9C SETNGE r/m8* M Valid N.E. Set byte if not greater or 
equal (SF≠ OF).

0F 9D SETNL r/m8 M Valid Valid Set byte if not less (SF=OF).

REX + 0F 9D SETNL r/m8* M Valid N.E. Set byte if not less (SF=OF).

0F 9F SETNLE r/m8 M Valid Valid Set byte if not less or equal 
(ZF=0 and SF=OF).

REX + 0F 9F SETNLE r/m8* M Valid N.E. Set byte if not less or equal 
(ZF=0 and SF=OF).

0F 91 SETNO r/m8 M Valid Valid Set byte if not overflow 
(OF=0).

REX + 0F 91 SETNO r/m8* M Valid N.E. Set byte if not overflow 
(OF=0).

0F 9B SETNP r/m8 M Valid Valid Set byte if not parity (PF=0).

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description
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Instruction Operand Encoding

Description

Sets the destination operand to 0 or 1 depending on the settings of the status flags 
(CF, SF, OF, ZF, and PF) in the EFLAGS register. The destination operand points to a 
byte register or a byte in memory. The condition code suffix (cc) indicates the condi-
tion being tested for. 

REX + 0F 9B SETNP r/m8* M Valid N.E. Set byte if not parity (PF=0).

0F 99 SETNS r/m8 M Valid Valid Set byte if not sign (SF=0).

REX + 0F 99 SETNS r/m8* M Valid N.E. Set byte if not sign (SF=0).

0F 95 SETNZ r/m8 M Valid Valid Set byte if not zero (ZF=0).

REX + 0F 95 SETNZ r/m8* M Valid N.E. Set byte if not zero (ZF=0).

0F 90 SETO r/m8 M Valid Valid Set byte if overflow (OF=1)

REX + 0F 90 SETO r/m8* M Valid N.E. Set byte if overflow (OF=1).

0F 9A SETP r/m8 M Valid Valid Set byte if parity (PF=1).

REX + 0F 9A SETP r/m8* M Valid N.E. Set byte if parity (PF=1).

0F 9A SETPE r/m8 M Valid Valid Set byte if parity even 
(PF=1).

REX + 0F 9A SETPE r/m8* M Valid N.E. Set byte if parity even 
(PF=1).

0F 9B SETPO r/m8 M Valid Valid Set byte if parity odd 
(PF=0).

REX + 0F 9B SETPO r/m8* M Valid N.E. Set byte if parity odd 
(PF=0).

0F 98 SETS r/m8 M Valid Valid Set byte if sign (SF=1).

REX + 0F 98 SETS r/m8* M Valid N.E. Set byte if sign (SF=1).

0F 94 SETZ r/m8 M Valid Valid Set byte if zero (ZF=1).

REX + 0F 94 SETZ r/m8* M Valid N.E. Set byte if zero (ZF=1).

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is 

used: AH, BH, CH, DH. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description
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The terms “above” and “below” are associated with the CF flag and refer to the rela-
tionship between two unsigned integer values. The terms “greater” and “less” are 
associated with the SF and OF flags and refer to the relationship between two signed 
integer values.

Many of the SETcc instruction opcodes have alternate mnemonics. For example, 
SETG (set byte if greater) and SETNLE (set if not less or equal) have the same 
opcode and test for the same condition: ZF equals 0 and SF equals OF. These alter-
nate mnemonics are provided to make code more intelligible. Appendix B, “EFLAGS 
Condition Codes,” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 1, shows the alternate mnemonics for various test conditions.

Some languages represent a logical one as an integer with all bits set. This represen-
tation can be obtained by choosing the logically opposite condition for the SETcc 
instruction, then decrementing the result. For example, to test for overflow, use the 
SETNO instruction, then decrement the result.

In IA-64 mode, the operand size is fixed at 8 bits. Use of REX prefix enable uniform 
addressing to additional byte registers. Otherwise, this instruction’s operation is the 
same as in legacy mode and compatibility mode. 

Operation

IF condition
THEN DEST ← 1; 
ELSE DEST ← 0; 

FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, 
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
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#SS If a memory operand effective address is outside the SS 
segment limit.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.
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SFENCE—Store Fence

Instruction Operand Encoding

Description

Performs a serializing operation on all store-to-memory instructions that were issued 
prior the SFENCE instruction. This serializing operation guarantees that every store 
instruction that precedes the SFENCE instruction in program order becomes globally 
visible before any store instruction that follows the SFENCE instruction. The SFENCE 
instruction is ordered with respect to store instructions, other SFENCE instructions, 
any LFENCE and MFENCE instructions, and any serializing instructions (such as the 
CPUID instruction). It is not ordered with respect to load instructions. 

Weakly ordered memory types can be used to achieve higher processor performance 
through such techniques as out-of-order issue, write-combining, and write-
collapsing. The degree to which a consumer of data recognizes or knows that the 
data is weakly ordered varies among applications and may be unknown to the 
producer of this data. The SFENCE instruction provides a performance-efficient way 
of ensuring store ordering between routines that produce weakly-ordered results and 
routines that consume this data.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

Wait_On_Following_Stores_Until(preceding_stores_globally_visible);

Intel C/C++ Compiler Intrinsic Equivalent

void _mm_sfence(void)

Exceptions (All Operating Modes)
#UD If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

Opcode* Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F AE /7 SFENCE NP Valid Valid Serializes store operations.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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SGDT—Store Global Descriptor Table Register

Instruction Operand Encoding

Description

Stores the content of the global descriptor table register (GDTR) in the destination 
operand. The destination operand specifies a memory location. 

In legacy or compatibility mode, the destination operand is a 6-byte memory loca-
tion. If the operand-size attribute is 16 bits, the limit is stored in the low 2 bytes and 
the 24-bit base address is stored in bytes 3-5, and byte 6 is zero-filled. If the 
operand-size attribute is 32 bits, the 16-bit limit field of the register is stored in the 
low 2 bytes of the memory location and the 32-bit base address is stored in the high 
4 bytes.

In IA-32e mode, the operand size is fixed at 8+2 bytes. The instruction stores an 8-
byte base and a 2-byte limit.

SGDT is useful only by operating-system software. However, it can be used in appli-
cation programs without causing an exception to be generated. See 
“LGDT/LIDT—Load Global/Interrupt Descriptor Table Register” in Chapter 3, Intel® 
64 and IA-32 Architectures Software Developer’s Manual, Volume 2A, for information 
on loading the GDTR and IDTR.

IA-32 Architecture Compatibility

The 16-bit form of the SGDT is compatible with the Intel 286 processor if the upper 8 
bits are not referenced. The Intel 286 processor fills these bits with 1s; the Pentium 
4, Intel Xeon, P6 processor family, Pentium, Intel486, and Intel386™ processors fill 
these bits with 0s.

Operation

IF instruction is SGDT
IF OperandSize = 16

THEN 
DEST[0:15] ← GDTR(Limit);

Opcode* Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 01 /0 SGDT m M Valid Valid Store GDTR to m.

NOTES:
* See IA-32 Architecture Compatibility section below.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA
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DEST[16:39] ← GDTR(Base); (* 24 bits of base address stored *)
DEST[40:47] ← 0;

ELSE IF (32-bit Operand Size)
DEST[0:15] ← GDTR(Limit);
DEST[16:47] ← GDTR(Base); (* Full 32-bit base address stored *)
FI;

ELSE (* 64-bit Operand Size *)
DEST[0:15] ← GDTR(Limit);
DEST[16:79] ← GDTR(Base); (* Full 64-bit base address stored *)

FI; 
FI;

Flags Affected

None.

Protected Mode Exceptions
#UD If the destination operand is a register.

If the LOCK prefix is used.
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, 
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it 
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.

Real-Address Mode Exceptions
#UD If the destination operand is a register.

If the LOCK prefix is used.
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS 

segment limit.

Virtual-8086 Mode Exceptions
#UD If the destination operand is a register.

If the LOCK prefix is used.
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#GP(0) If a memory operand effective address is outside the CS, DS, 
ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#UD If the destination operand is a register.

If the LOCK prefix is used.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
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SHLD—Double Precision Shift Left

Instruction Operand Encoding

Description

The SHLD instruction is used for multi-precision shifts of 64 bits or more.

The instruction shifts the first operand (destination operand) to the left the number 
of bits specified by the third operand (count operand). The second operand (source 
operand) provides bits to shift in from the right (starting with bit 0 of the destination 
operand). 

The destination operand can be a register or a memory location; the source operand 
is a register. The count operand is an unsigned integer that can be stored in an imme-
diate byte or in the CL register. If the count operand is CL, the shift count is the 
logical AND of CL and a count mask. In non-64-bit modes and default 64-bit mode; 
only bits 0 through 4 of the count are used. This masks the count to a value between 
0 and 31. If a count is greater than the operand size, the result is undefined.

Opcode* Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F A4 SHLD r/m16, r16, 
imm8

MRI Valid Valid Shift r/m16 to left imm8 
places while shifting bits 
from r16 in from the right.

0F A5 SHLD r/m16, r16, 
CL

MRC Valid Valid Shift r/m16 to left CL places 
while shifting bits from r16 
in from the right.

0F A4 SHLD r/m32, r32, 
imm8

MRI Valid Valid Shift r/m32 to left imm8 
places while shifting bits 
from r32 in from the right.

REX.W + 0F A4 SHLD r/m64, r64, 
imm8

MRI Valid N.E. Shift r/m64 to left imm8 
places while shifting bits 
from r64 in from the right.

0F A5 SHLD r/m32, r32, 
CL

MRC Valid Valid Shift r/m32 to left CL places 
while shifting bits from r32 
in from the right.

REX.W + 0F A5 SHLD r/m64, r64, 
CL

MRC Valid N.E. Shift r/m64 to left CL places 
while shifting bits from r64 
in from the right.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MRI ModRM:r/m (w) ModRM:reg (r) imm8 NA

MRC ModRM:r/m (w) ModRM:reg (r) CL NA
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If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the desti-
nation operand. For a 1-bit shift, the OF flag is set if a sign change occurred; other-
wise, it is cleared. If the count operand is 0, flags are not affected.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix 
in the form of REX.R permits access to additional registers (R8-R15). Using a REX 
prefix in the form of REX.W promotes operation to 64 bits (upgrading the count mask 
to 6 bits). See the summary chart at the beginning of this section for encoding data 
and limits.

Operation

IF (In 64-Bit Mode and REX.W = 1) 
THEN COUNT ← COUNT MOD 64;
ELSE COUNT ← COUNT MOD 32;

FI
SIZE ← OperandSize;
IF COUNT = 0

THEN 
No operation;

ELSE
IF COUNT > SIZE

THEN (* Bad parameters *)
DEST is undefined;
CF, OF, SF, ZF, AF, PF are undefined;

ELSE (* Perform the shift *)
CF ← BIT[DEST, SIZE – COUNT];
(* Last bit shifted out on exit *)
FOR i ← SIZE – 1 DOWN TO COUNT

DO
Bit(DEST, i) ← Bit(DEST, i – COUNT);

OD;
FOR i ← COUNT – 1 DOWN TO 0

DO
BIT[DEST, i] ← BIT[SRC, i – COUNT + SIZE];

OD;
FI;

FI;

Flags Affected

If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the desti-
nation operand and the SF, ZF, and PF flags are set according to the value of the 
result. For a 1-bit shift, the OF flag is set if a sign change occurred; otherwise, it is 
cleared. For shifts greater than 1 bit, the OF flag is undefined. If a shift occurs, the AF 
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flag is undefined. If the count operand is 0, the flags are not affected. If the count is 
greater than the operand size, the flags are undefined.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, 
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS 

segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
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#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
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SHRD—Double Precision Shift Right

Instruction Operand Encoding

Description

The SHRD instruction is useful for multi-precision shifts of 64 bits or more.

The instruction shifts the first operand (destination operand) to the right the number 
of bits specified by the third operand (count operand). The second operand (source 
operand) provides bits to shift in from the left (starting with the most significant bit 
of the destination operand). 

The destination operand can be a register or a memory location; the source operand 
is a register. The count operand is an unsigned integer that can be stored in an imme-
diate byte or the CL register. If the count operand is CL, the shift count is the logical 
AND of CL and a count mask. In non-64-bit modes and default 64-bit mode, the 
width of the count mask is 5 bits. Only bits 0 through 4 of the count register are used 
(masking the count to a value between 0 and 31). If the count is greater than the 
operand size, the result is undefined.

Opcode* Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F AC SHRD r/m16, r16, 
imm8

MRI Valid Valid Shift r/m16 to right imm8 
places while shifting bits 
from r16 in from the left.

0F AD SHRD r/m16, r16, 
CL

MRC Valid Valid Shift r/m16 to right CL 
places while shifting bits 
from r16 in from the left.

0F AC SHRD r/m32, r32, 
imm8

MRI Valid Valid Shift r/m32 to right imm8 
places while shifting bits 
from r32 in from the left.

REX.W + 0F AC SHRD r/m64, r64, 
imm8

MRI Valid N.E. Shift r/m64 to right imm8 
places while shifting bits 
from r64 in from the left.

0F AD SHRD r/m32, r32, 
CL

MRC Valid Valid Shift r/m32 to right CL 
places while shifting bits 
from r32 in from the left.

REX.W + 0F AD SHRD r/m64, r64, 
CL

MRC Valid N.E. Shift r/m64 to right CL 
places while shifting bits 
from r64 in from the left.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MRI ModRM:r/m (w) ModRM:reg (r) imm8 NA

MRC ModRM:r/m (w) ModRM:reg (r) CL NA
4-532 Vol. 2B SHRD—Double Precision Shift Right



INSTRUCTION SET REFERENCE, M-Z
If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the desti-
nation operand. For a 1-bit shift, the OF flag is set if a sign change occurred; other-
wise, it is cleared. If the count operand is 0, flags are not affected.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix 
in the form of REX.R permits access to additional registers (R8-R15). Using a REX 
prefix in the form of REX.W promotes operation to 64 bits (upgrading the count mask 
to 6 bits). See the summary chart at the beginning of this section for encoding data 
and limits.

Operation

IF (In 64-Bit Mode and REX.W = 1) 
THEN COUNT ← COUNT MOD 64;
ELSE COUNT ← COUNT MOD 32;

FI
SIZE ← OperandSize;
IF COUNT = 0

THEN 
No operation;

ELSE
IF COUNT > SIZE

THEN (* Bad parameters *)
DEST is undefined;
CF, OF, SF, ZF, AF, PF are undefined;

ELSE (* Perform the shift *)
CF ← BIT[DEST, COUNT – 1]; (* Last bit shifted out on exit *)
FOR i ← 0 TO SIZE – 1 – COUNT

DO
BIT[DEST, i] ← BIT[DEST, i + COUNT];

OD;
FOR i ← SIZE – COUNT TO SIZE – 1

DO
BIT[DEST,i] ← BIT[SRC, i + COUNT – SIZE];

OD;
FI;

FI;

Flags Affected

If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the desti-
nation operand and the SF, ZF, and PF flags are set according to the value of the 
result. For a 1-bit shift, the OF flag is set if a sign change occurred; otherwise, it is 
cleared. For shifts greater than 1 bit, the OF flag is undefined. If a shift occurs, the AF 
flag is undefined. If the count operand is 0, the flags are not affected. If the count is 
greater than the operand size, the flags are undefined.
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Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, 
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS 

segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
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#UD If the LOCK prefix is used.
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SHUFPD—Shuffle Packed Double-Precision Floating-Point Values

Instruction Operand Encoding

Description

Moves either of the two packed double-precision floating-point values from destina-
tion operand (first operand) into the low quadword of the destination operand; 
moves either of the two packed double-precision floating-point values from the 
source operand into to the high quadword of the destination operand (see 
Figure 4-18). The select operand (third operand) determines which values are 
moved to the destination operand.
128-bit Legacy SSE version: The source can be an XMM register or an 128-bit 
memory location. The destination is not distinct from the first source XMM register 
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit 
memory location. The destination operand is an XMM register. The upper bits 
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.

Opcode*/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F C6 /r ib

SHUFPD xmm1, xmm2/m128, imm8

RMI V/V SSE2 Shuffle packed double-
precision floating-point 
values selected by imm8 
from xmm1 and 
xmm2/m128 to xmm1.

VEX.NDS.128.66.0F.WIG C6 /r ib

VSHUFPD xmm1, xmm2, 
xmm3/m128, imm8

RVMI V/V AVX Shuffle Packed double-
precision floating-point 
values selected by imm8 
from xmm2 and 
xmm3/mem.

VEX.NDS.256.66.0F.WIG C6 /r ib

VSHUFPD ymm1, ymm2, 
ymm3/m256, imm8

RVMI V/V AVX Shuffle Packed double-
precision floating-point 
values selected by imm8 
from ymm2 and 
ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
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VEX.256 encoded version: The first source operand is a YMM register. The second 
source operand can be a YMM register or a 256-bit memory location. The destination 
operand is a YMM register. 

The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register. The select operand is an 8-bit immediate: bit 0 
selects which value is moved from the destination operand to the result (where 0 
selects the low quadword and 1 selects the high quadword) and bit 1 selects which 
value is moved from the source operand to the result. Bits 2 through 7 of the select 
operand are reserved and must be set to 0.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).

Operation

IF SELECT[0] = 0
THEN DEST[63:0]  ← DEST[63:0];
ELSE DEST[63:0]  ← DEST[127:64]; FI;

IF SELECT[1] = 0
THEN DEST[127:64]  ← SRC[63:0];
ELSE DEST[127:64]  ← SRC[127:64]; FI;

SHUFPD (128-bit Legacy SSE version)
IF IMM0[0] = 0

THEN DEST[63:0]  SRC1[63:0]
ELSE DEST[63:0]  SRC1[127:64] FI;

IF IMM0[1] = 0
THEN DEST[127:64]  SRC2[63:0]

Figure 4-18.  SHUFPD Shuffle Operation

X1 X0

Y1 Y0

Y1 or Y0 X1 or X0

SRC

DEST

DEST
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ELSE DEST[127:64]  SRC2[127:64] FI;
DEST[VLMAX-1:128] (Unmodified)

VSHUFPD (VEX.128 encoded version)
IF IMM0[0] = 0

THEN DEST[63:0]  SRC1[63:0]
ELSE DEST[63:0]  SRC1[127:64] FI;

IF IMM0[1] = 0
THEN DEST[127:64]  SRC2[63:0]
ELSE DEST[127:64]  SRC2[127:64] FI;

DEST[VLMAX-1:128]  0

VSHUFPD (VEX.256 encoded version)
IF IMM0[0] = 0

THEN DEST[63:0]  SRC1[63:0]
ELSE DEST[63:0]  SRC1[127:64] FI;

IF IMM0[1] = 0
THEN DEST[127:64]  SRC2[63:0]
ELSE DEST[127:64]  SRC2[127:64] FI;

IF IMM0[2] = 0
THEN DEST[191:128]  SRC1[191:128]
ELSE DEST[191:128]  SRC1[255:192] FI;

IF IMM0[3] = 0
THEN DEST[255:192]  SRC2[191:128]
ELSE DEST[255:192]  SRC2[255:192] FI;

Intel C/C++ Compiler Intrinsic Equivalent

SHUFPD: __m128d _mm_shuffle_pd(__m128d a, __m128d b, unsigned int imm8)
VSHUFPD:  __m256d _mm256_shuffle_pd (__m256d a, __m256d b, const int select);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4.
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SHUFPS—Shuffle Packed Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

Moves two of the four packed single-precision floating-point values from the destina-
tion operand (first operand) into the low quadword of the destination operand; 
moves two of the four packed single-precision floating-point values from the source 
operand (second operand) into to the high quadword of the destination operand (see 
Figure 4-19). The select operand (third operand) determines which values are 
moved to the destination operand.
128-bit Legacy SSE version: The source can be an XMM register or an 128-bit 
memory location. The destination is not distinct from the first source XMM register 
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit 
memory location. The destination operand is an XMM register. The upper bits 
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.
determines which values are moved to the destination operand.

Opcode*/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F C6 /r ib

SHUFPS xmm1, xmm2/m128, imm8

RMI V/V SSE Shuffle packed single-
precision floating-point 
values selected by imm8 
from xmm1 and 
xmm1/m128 to xmm1.

VEX.NDS.128.0F.WIG C6 /r ib

VSHUFPS xmm1, xmm2, 
xmm3/m128, imm8

RVMI V/V AVX Shuffle Packed single-
precision floating-point 
values selected by imm8 
from xmm2 and 
xmm3/mem.

VEX.NDS.256.0F.WIG C6 /r ib

VSHUFPS ymm1, ymm2, 
ymm3/m256, imm8

RVMI V/V AVX Shuffle Packed single-
precision floating-point 
values selected by imm8 
from ymm2 and 
ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
Vol. 2B 4-539SHUFPS—Shuffle Packed Single-Precision Floating-Point Values



INSTRUCTION SET REFERENCE, M-Z
VEX.256 encoded version: The first source operand is a YMM register. The second 
source operand can be a YMM register or a 256-bit memory location. The destination 
operand is a YMM register. 

The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register. The select operand is an 8-bit immediate: bits 0 
and 1 select the value to be moved from the destination operand to the low double-
word of the result, bits 2 and 3 select the value to be moved from the destination 
operand to the second doubleword of the result, bits 4 and 5 select the value to be 
moved from the source operand to the third doubleword of the result, and bits 6 and 
7 select the value to be moved from the source operand to the high doubleword of 
the result.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).

Operation

CASE (SELECT[1:0]) OF
0: DEST[31:0]  ← DEST[31:0];
1: DEST[31:0]  ← DEST[63:32];
2: DEST[31:0]  ← DEST[95:64];
3: DEST[31:0]  ← DEST[127:96];

ESAC;

CASE (SELECT[3:2]) OF
0: DEST[63:32]  ← DEST[31:0];
1: DEST[63:32]  ← DEST[63:32];
2: DEST[63:32]  ← DEST[95:64];
3: DEST[63:32]  ← DEST[127:96];

Figure 4-19.  SHUFPS Shuffle Operation

X3 X2 X1 X0

Y3 Y2 Y1 Y0

Y3 ... Y0 Y3 ... Y0 X3 ... X0 X3 ... X0

DEST

SRC

DEST
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ESAC;

CASE (SELECT[5:4]) OF
0: DEST[95:64]  ← SRC[31:0];
1: DEST[95:64]  ← SRC[63:32];
2: DEST[95:64]  ← SRC[95:64];
3: DEST[95:64]  ← SRC[127:96];

ESAC;

CASE (SELECT[7:6]) OF
0: DEST[127:96]  ← SRC[31:0];
1: DEST[127:96]  ← SRC[63:32];
2: DEST[127:96]  ← SRC[95:64];
3: DEST[127:96]  ← SRC[127:96];

ESAC;

SHUFPS (128-bit Legacy SSE version)
DEST[31:0]  Select4(SRC1[127:0], imm8[1:0]);
DEST[63:32]  Select4(SRC1[127:0], imm8[3:2]);
DEST[95:64]  Select4(SRC2[127:0], imm8[5:4]);
DEST[127:96]  Select4(SRC2[127:0], imm8[7:6]);
DEST[VLMAX-1:128] (Unmodified)

VSHUFPS (VEX.128 encoded version)
DEST[31:0]  Select4(SRC1[127:0], imm8[1:0]);
DEST[63:32]  Select4(SRC1[127:0], imm8[3:2]);
DEST[95:64]  Select4(SRC2[127:0], imm8[5:4]);
DEST[127:96]  Select4(SRC2[127:0], imm8[7:6]);
DEST[VLMAX-1:128]  0

VSHUFPS (VEX.256 encoded version)
DEST[31:0]  Select4(SRC1[127:0], imm8[1:0]);
DEST[63:32]  Select4(SRC1[127:0], imm8[3:2]);
DEST[95:64]  Select4(SRC2[127:0], imm8[5:4]);
DEST[127:96]  Select4(SRC2[127:0], imm8[7:6]);
DEST[159:128]  Select4(SRC1[255:128], imm8[1:0]);
DEST[191:160]  Select4(SRC1[255:128], imm8[3:2]);
DEST[223:192]  Select4(SRC2[255:128], imm8[5:4]);
DEST[255:224]  Select4(SRC2[255:128], imm8[7:6]);

Intel C/C++ Compiler Intrinsic Equivalent

SHUFPS: __m128 _mm_shuffle_ps(__m128 a, __m128 b, unsigned int imm8)
VSHUFPS:  __m256 _mm256_shuffle_ps (__m256 a, __m256 b, const int select);
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SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4.
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SIDT—Store Interrupt Descriptor Table Register

Instruction Operand Encoding

Description

Stores the content the interrupt descriptor table register (IDTR) in the destination 
operand. The destination operand specifies a 6-byte memory location. 

In non-64-bit modes, if the operand-size attribute is 32 bits, the 16-bit limit field of 
the register is stored in the low 2 bytes of the memory location and the 32-bit base 
address is stored in the high 4 bytes. If the operand-size attribute is 16 bits, the limit 
is stored in the low 2 bytes and the 24-bit base address is stored in the third, fourth, 
and fifth byte, with the sixth byte filled with 0s.

In 64-bit mode, the operand size fixed at 8+2 bytes. The instruction stores 8-byte 
base and 2-byte limit values.

SIDT is only useful in operating-system software; however, it can be used in applica-
tion programs without causing an exception to be generated. See “LGDT/LIDT—Load 
Global/Interrupt Descriptor Table Register” in Chapter 3, Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2A, for information on loading the 
GDTR and IDTR.

IA-32 Architecture Compatibility

The 16-bit form of SIDT is compatible with the Intel 286 processor if the upper 8 bits 
are not referenced. The Intel 286 processor fills these bits with 1s; the Pentium 4, 
Intel Xeon, P6 processor family, Pentium, Intel486, and Intel386 processors fill these 
bits with 0s.

Operation

IF instruction is SIDT
THEN

IF OperandSize = 16
THEN 

DEST[0:15] ← IDTR(Limit);
DEST[16:39] ← IDTR(Base); (* 24 bits of base address stored; *)
DEST[40:47] ← 0;

Opcode* Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 01 /1 SIDT m M Valid Valid Store IDTR to m.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA
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ELSE IF (32-bit Operand Size)
DEST[0:15] ← IDTR(Limit);
DEST[16:47] ← IDTR(Base); FI; (* Full 32-bit base address stored *)

ELSE (* 64-bit Operand Size *)
DEST[0:15] ← IDTR(Limit);
DEST[16:79] ← IDTR(Base); (* Full 64-bit base address stored *)

FI;
FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, 
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it 
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS 

segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made.
#UD If the LOCK prefix is used.
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Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#UD If the destination operand is a register.

If the LOCK prefix is used.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
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SLDT—Store Local Descriptor Table Register

Instruction Operand Encoding

Description

Stores the segment selector from the local descriptor table register (LDTR) in the 
destination operand. The destination operand can be a general-purpose register or a 
memory location. The segment selector stored with this instruction points to the 
segment descriptor (located in the GDT) for the current LDT. This instruction can only 
be executed in protected mode.

Outside IA-32e mode, when the destination operand is a 32-bit register, the 16-bit 
segment selector is copied into the low-order 16 bits of the register. The high-order 
16 bits of the register are cleared for the Pentium 4, Intel Xeon, and P6 family proces-
sors. They are undefined for Pentium, Intel486, and Intel386 processors. When the 
destination operand is a memory location, the segment selector is written to memory 
as a 16-bit quantity, regardless of the operand size.

In compatibility mode, when the destination operand is a 32-bit register, the 16-bit 
segment selector is copied into the low-order 16 bits of the register. The high-order 
16 bits of the register are cleared. When the destination operand is a memory loca-
tion, the segment selector is written to memory as a 16-bit quantity, regardless of 
the operand size.

In 64-bit mode, using a REX prefix in the form of REX.R permits access to additional 
registers (R8-R15). The behavior of SLDT with a 64-bit register is to zero-extend the 
16-bit selector and store it in the register. If the destination is memory and operand 
size is 64, SLDT will write the 16-bit selector to memory as a 16-bit quantity, regard-
less of the operand size

Operation

DEST ← LDTR(SegmentSelector);

Flags Affected

None.

Opcode* Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 00 /0 SLDT r/m16 M Valid Valid Stores segment selector 
from LDTR in r/m16.

REX.W + 0F 00 
/0

SLDT r64/m16 M Valid Valid Stores segment selector 
from LDTR in r64/m16.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) LDTR NA NA
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Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, 
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it 
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD The SLDT instruction is not recognized in real-address mode.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#UD The SLDT instruction is not recognized in virtual-8086 mode.

If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
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SMSW—Store Machine Status Word

Instruction Operand Encoding

Description

Stores the machine status word (bits 0 through 15 of control register CR0) into the 
destination operand. The destination operand can be a general-purpose register or a 
memory location.

In non-64-bit modes, when the destination operand is a 32-bit register, the low-order 
16 bits of register CR0 are copied into the low-order 16 bits of the register and the 
high-order 16 bits are undefined. When the destination operand is a memory loca-
tion, the low-order 16 bits of register CR0 are written to memory as a 16-bit quantity, 
regardless of the operand size.

In 64-bit mode, the behavior of the SMSW instruction is defined by the following 
examples:
• SMSW r16 operand size 16, store CR0[15:0] in r16
• SMSW r32 operand size 32, zero-extend CR0[31:0], and store in r32
• SMSW r64 operand size 64, zero-extend CR0[63:0], and store in r64
• SMSW m16 operand size 16, store CR0[15:0] in m16
• SMSW m16 operand size 32, store CR0[15:0] in m16 (not m32)
• SMSW m16 operands size 64, store CR0[15:0] in m16 (not m64)

SMSW is only useful in operating-system software. However, it is not a privileged 
instruction and can be used in application programs. The is provided for compatibility 
with the Intel 286 processor. Programs and procedures intended to run on the 

Opcode* Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 01 /4 SMSW r/m16 M Valid Valid Store machine status word 
to r/m16.

0F 01 /4 SMSW r32/m16 M Valid Valid Store machine status word 
in low-order 16 bits of 
r32/m16; high-order 16 bits 
of r32 are undefined.

REX.W + 0F 01 
/4

SMSW r64/m16 M Valid Valid Store machine status word 
in low-order 16 bits of 
r64/m16; high-order 16 bits 
of r32 are undefined.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA
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Pentium 4, Intel Xeon, P6 family, Pentium, Intel486, and Intel386 processors should 
use the MOV (control registers) instruction to load the machine status word.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 25 of 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C, for 
more information about the behavior of this instruction in VMX non-root operation.

Operation

DEST ← CR0[15:0]; 
(* Machine status word *)

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, 
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it 
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
#PF(fault-code) If a page fault occurs.
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#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
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SQRTPD—Compute Square Roots of Packed Double-Precision Floating-
Point Values

Instruction Operand Encoding

Description

Performs a SIMD computation of the square roots of the two packed double-precision 
floating-point values in the source operand (second operand) stores the packed 
double-precision floating-point results in the destination operand. The source 
operand can be an XMM register or a 128-bit memory location. The destination 
operand is an XMM register. See Figure 11-3 in the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 1, for an illustration of a SIMD double-preci-
sion floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or 128-bit 
memory location. The destination is not distinct from the first source XMM register 
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
unmodified.

Opcode*/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 51 /r

SQRTPD xmm1, xmm2/m128

RM V/V SSE2 Computes square roots of 
the packed double-precision 
floating-point values in 
xmm2/m128 and stores the 
results in xmm1.

VEX.128.66.0F.WIG 51 /r

VSQRTPD xmm1, xmm2/m128

RM V/V AVX Computes Square Roots of 
the packed double-precision 
floating-point values in 
xmm2/m128 and stores the 
result in xmm1.

VEX.256.66.0F.WIG 51/r

VSQRTPD ymm1, ymm2/m256

RM V/V AVX Computes Square Roots of 
the packed double-precision 
floating-point values in 
ymm2/m256 and stores the 
result in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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VEX.128 encoded version: the source operand second source operand or a 128-bit 
memory location. The destination operand is an XMM register. The upper bits 
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.
VEX.256 encoded version: The source operand is a YMM register or a 256-bit 
memory location. The destination operand is a YMM register. 
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise 
instructions will #UD.

Operation

SQRTPD (128-bit Legacy SSE version)
DEST[63:0]  SQRT(SRC[63:0])
DEST[127:64]  SQRT(SRC[127:64])
DEST[VLMAX-1:128] (Unmodified)

VSQRTPD (VEX.128 encoded version)
DEST[63:0]  SQRT(SRC[63:0])
DEST[127:64]  SQRT(SRC[127:64])
DEST[VLMAX-1:128]  0

VSQRTPD (VEX.256 encoded version)
DEST[63:0]  SQRT(SRC[63:0])
DEST[127:64]  SQRT(SRC[127:64])
DEST[191:128]  SQRT(SRC[191:128])
DEST[255:192]  SQRT(SRC[255:192])

Intel C/C++ Compiler Intrinsic Equivalent

SQRTPD: __m128d _mm_sqrt_pd (m128d a)

SQRTPD:  __m256d _mm256_sqrt_pd (__m256d a);

SIMD Floating-Point Exceptions

Invalid, Precision, Denormal.

Other Exceptions
See Exceptions Type 2; additionally
#UD If VEX.vvvv != 1111B.
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SQRTPS—Compute Square Roots of Packed Single-Precision Floating-
Point Values 

Instruction Operand Encoding

Description

Performs a SIMD computation of the square roots of the four packed single-precision 
floating-point values in the source operand (second operand) stores the packed 
single-precision floating-point results in the destination operand. The source operand 
can be an XMM register or a 128-bit memory location. The destination operand is an 
XMM register. See Figure 10-5 in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1, for an illustration of a SIMD single-precision floating-
point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or 128-bit 
memory location. The destination is not distinct from the first source XMM register 
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
unmodified.

Opcode*/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F 51 /r

SQRTPS xmm1, xmm2/m128

RM V/V SSE Computes square roots of 
the packed single-precision 
floating-point values in 
xmm2/m128 and stores the 
results in xmm1.

VEX.128.0F.WIG 51 /r

VSQRTPS xmm1, xmm2/m128

RM V/V AVX Computes Square Roots of 
the packed single-precision 
floating-point values in 
xmm2/m128 and stores the 
result in xmm1.

VEX.256.0F.WIG 51/r

VSQRTPS ymm1, ymm2/m256

RM V/V AVX Computes Square Roots of 
the packed single-precision 
floating-point values in 
ymm2/m256 and stores the 
result in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
Vol. 2B 4-553SQRTPS—Compute Square Roots of Packed Single-Precision Floating-Point Values



INSTRUCTION SET REFERENCE, M-Z
VEX.128 encoded version: the source operand second source operand or a 128-bit 
memory location. The destination operand is an XMM register. The upper bits 
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.
VEX.256 encoded version: The source operand is a YMM register or a 256-bit 
memory location. The destination operand is a YMM register. 
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise 
instructions will #UD.

Operation

SQRTPS (128-bit Legacy SSE version)
DEST[31:0]  SQRT(SRC[31:0])
DEST[63:32]  SQRT(SRC[63:32])
DEST[95:64]  SQRT(SRC[95:64])
DEST[127:96]  SQRT(SRC[127:96])
DEST[VLMAX-1:128] (Unmodified)

VSQRTPS (VEX.128 encoded version)
DEST[31:0]  SQRT(SRC[31:0])
DEST[63:32]  SQRT(SRC[63:32])
DEST[95:64]  SQRT(SRC[95:64])
DEST[127:96]  SQRT(SRC[127:96])
DEST[VLMAX-1:128]  0

VSQRTPS (VEX.256 encoded version)
DEST[31:0]  SQRT(SRC[31:0])
DEST[63:32]  SQRT(SRC[63:32])
DEST[95:64]  SQRT(SRC[95:64])
DEST[127:96]  SQRT(SRC[127:96])
DEST[159:128]  SQRT(SRC[159:128])
DEST[191:160]  SQRT(SRC[191:160])
DEST[223:192]  SQRT(SRC[223:192])
DEST[255:224]  SQRT(SRC[255:224])

Intel C/C++ Compiler Intrinsic Equivalent

SQRTPS: __m128 _mm_sqrt_ps(__m128 a)

SQRTPS: __m256 _mm256_sqrt_ps (__m256 a);

SIMD Floating-Point Exceptions

Invalid, Precision, Denormal.
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Other Exceptions
See Exceptions Type 2; additionally
#UD If VEX.vvvv != 1111B.
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SQRTSD—Compute Square Root of Scalar Double-Precision Floating-
Point Value

Instruction Operand Encoding

Description

Computes the square root of the low double-precision floating-point value in the 
source operand (second operand) and stores the double-precision floating-point 
result in the destination operand. The source operand can be an XMM register or a 
64-bit memory location. The destination operand is an XMM register. The high quad-
word of the destination operand remains unchanged. See Figure 11-4 in the Intel® 
64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for an illustra-
tion of a scalar double-precision floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The first source operand and the destination operand 
are the same. Bits (VLMAX-1:64) of the corresponding YMM destination register 
remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed.

Opcode*/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

F2 0F 51 /r

SQRTSD xmm1, xmm2/m64

RM V/V SSE2 Computes square root of 
the low double-precision 
floating-point value in 
xmm2/m64 and stores the 
results in xmm1.

VEX.NDS.LIG.F2.0F.WIG 51/

VSQRTSD xmm1,xmm2, xmm3/m64

RVM V/V AVX Computes square root of 
the low double-precision 
floating point value in 
xmm3/m64 and stores the 
results in xmm2. Also, upper 
double precision floating-
point value (bits[127:64]) 
from xmm2 is copied to 
xmm1[127:64].

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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Operation

SQRTSD (128-bit Legacy SSE version)
DEST[63:0]  SQRT(SRC[63:0])
DEST[VLMAX-1:64] (Unmodified)

VSQRTSD (VEX.128 encoded version)
DEST[63:0]  SQRT(SRC2[63:0])
DEST[127:64]  SRC1[127:64]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

SQRTSD: __m128d _mm_sqrt_sd (m128d a, m128d b)

SIMD Floating-Point Exceptions

Invalid, Precision, Denormal.

Other Exceptions
See Exceptions Type 3.
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SQRTSS—Compute Square Root of Scalar Single-Precision Floating-
Point Value

Instruction Operand Encoding

Description

Computes the square root of the low single-precision floating-point value in the 
source operand (second operand) and stores the single-precision floating-point 
result in the destination operand. The source operand can be an XMM register or a 
32-bit memory location. The destination operand is an XMM register. The three high-
order doublewords of the destination operand remain unchanged. See Figure 10-6 in 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for 
an illustration of a scalar single-precision floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The first source operand and the destination operand 
are the same. Bits (VLMAX-1:32) of the corresponding YMM destination register 
remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are 
zeroed.

Opcode*/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

F3 0F 51 /r

SQRTSS xmm1, xmm2/m32

RM V/V SSE Computes square root of 
the low single-precision 
floating-point value in 
xmm2/m32 and stores the 
results in xmm1.

VEX.NDS.LIG.F3.0F.WIG 51

VSQRTSS xmm1, xmm2, xmm3/m32

RVM V/V AVX Computes square root of 
the low single-precision 
floating-point value in 
xmm3/m32 and stores the 
results in xmm1. Also, upper 
single precision floating-
point values (bits[127:32]) 
from xmm2 are copied to 
xmm1[127:32].

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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Operation

SQRTSS (128-bit Legacy SSE version)
DEST[31:0]  SQRT(SRC2[31:0])
DEST[VLMAX-1:32] (Unmodified)

VSQRTSS (VEX.128 encoded version)
DEST[31:0]  SQRT(SRC2[31:0])
DEST[127:32]  SRC1[127:32]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

SQRTSS: __m128 _mm_sqrt_ss(__m128 a)

SIMD Floating-Point Exceptions

Invalid, Precision, Denormal.

Other Exceptions
See Exceptions Type 3.
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STC—Set Carry Flag

Instruction Operand Encoding

Description

Sets the CF flag in the EFLAGS register.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

CF ← 1;

Flags Affected

The CF flag is set. The OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

Opcode* Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

F9 STC NP Valid Valid Set CF flag.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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STD—Set Direction Flag

Instruction Operand Encoding

Description

Sets the DF flag in the EFLAGS register. When the DF flag is set to 1, string operations 
decrement the index registers (ESI and/or EDI).

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

DF ← 1;

Flags Affected

The DF flag is set. The CF, OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

Opcode* Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

FD STD NP Valid Valid Set DF flag.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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STI—Set Interrupt Flag

Instruction Operand Encoding

Description

If protected-mode virtual interrupts are not enabled, STI sets the interrupt flag (IF) 
in the EFLAGS register. After the IF flag is set, the processor begins responding to 
external, maskable interrupts after the next instruction is executed. The delayed 
effect of this instruction is provided to allow interrupts to be enabled just before 
returning from a procedure (or subroutine). For instance, if an STI instruction is 
followed by an RET instruction, the RET instruction is allowed to execute before 
external interrupts are recognized1. If the STI instruction is followed by a CLI instruc-
tion (which clears the IF flag), the effect of the STI instruction is negated. 

The IF flag and the STI and CLI instructions do not prohibit the generation of excep-
tions and NMI interrupts. NMI interrupts (and SMIs) may be blocked for one macro-
instruction following an STI.

When protected-mode virtual interrupts are enabled, CPL is 3, and IOPL is less than 
3; STI sets the VIF flag in the EFLAGS register, leaving IF unaffected.

Table 4-18 indicates the action of the STI instruction depending on the processor’s 
mode of operation and the CPL/IOPL settings of the running program or procedure.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Opcode* Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

FB STI NP Valid Valid Set interrupt flag; external, 
maskable interrupts enabled 
at the end of the next 
instruction.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

1. The STI instruction delays recognition of interrupts only if it is executed with EFLAGS.IF = 0. In a 
sequence of STI instructions, only the first instruction in the sequence is guaranteed to delay 
interrupts.

In the following instruction sequence, interrupts may be recognized before RET executes:
STI
STI
RET
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Operation

IF PE = 0  (* Executing in real-address mode *)
THEN 

IF ← 1; (* Set Interrupt Flag *)
ELSE  (* Executing in protected mode or virtual-8086 mode *)

IF VM = 0  (* Executing in protected mode*)
THEN

IF IOPL ≥ CPL
THEN

IF ← 1;  (* Set Interrupt Flag *)
ELSE

IF (IOPL < CPL) and (CPL = 3) and (VIP = 0)
THEN 

VIF ← 1;  (* Set Virtual Interrupt Flag *)
ELSE 

#GP(0);
FI;

FI;
ELSE  (* Executing in Virtual-8086 mode *)

IF IOPL = 3
THEN

IF ← 1;  (* Set Interrupt Flag *)
ELSE 

IF ((IOPL < 3) and (VIP = 0) and (VME = 1))
THEN

Table 4-18.  Decision Table for STI Results 
PE VM IOPL CPL PVI VIP VME STI Result

0 X X X X X X IF = 1
1 0 ≥ CPL X X X X IF = 1

1 0 < CPL 3 1 0 X VIF = 1

1 0 < CPL < 3 X X X GP Fault

1 0 < CPL X 0 X X GP Fault

1 0 < CPL X X 1 X GP Fault

1 1 3 X X X X IF = 1
1 1 < 3 X X 0 1 VIF = 1

1 1 < 3 X X 1 X GP Fault

1 1 < 3 X X X 0 GP Fault

NOTES:
X = This setting has no impact.
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VIF ← 1;  (* Set Virtual Interrupt Flag *)
ELSE

#GP(0); (* Trap to virtual-8086 monitor *)
FI;)

FI;
FI; 

FI;

Flags Affected

The IF flag is set to 1; or the VIF flag is set to 1.

Protected Mode Exceptions
#GP(0) If the CPL is greater (has less privilege) than the IOPL of the 

current program or procedure. 
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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STMXCSR—Store MXCSR Register State

Instruction Operand Encoding

Description

Stores the contents of the MXCSR control and status register to the destination 
operand. The destination operand is a 32-bit memory location. The reserved bits in 
the MXCSR register are stored as 0s.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
VEX.L must be 0, otherwise instructions will #UD.

Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise 
instructions will #UD.

Operation

m32 ← MXCSR;

Intel C/C++ Compiler Intrinsic Equivalent

_mm_getcsr(void)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 5; additionally
#UD If VEX.L= 1,

If VEX.vvvv != 1111B.

Opcode*/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F AE /3

STMXCSR m32

M V/V SSE Store contents of MXCSR 
register to m32.

VEX.LZ.0F.WIG AE /3

VSTMXCSR m32

M V/V AVX Store contents of MXCSR 
register to m32.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA
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STOS/STOSB/STOSW/STOSD/STOSQ—Store String

Instruction Operand Encoding

Description

In non-64-bit and default 64-bit mode; stores a byte, word, or doubleword from the 
AL, AX, or EAX register (respectively) into the destination operand. The destination 
operand is a memory location, the address of which is read from either the ES:EDI or 
ES:DI register (depending on the address-size attribute of the instruction and the 

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

AA STOS m8 NA Valid Valid For legacy mode, store AL at 
address ES:(E)DI; For 64-bit 
mode store AL at address 
RDI or EDI.

AB STOS m16 NA Valid Valid For legacy mode, store AX 
at address ES:(E)DI; For 64-
bit mode store AX at 
address RDI or EDI.

AB STOS m32 NA Valid Valid For legacy mode, store EAX 
at address ES:(E)DI; For 64-
bit mode store EAX at 
address RDI or EDI.

REX.W + AB STOS m64 NA Valid N.E. Store RAX at address RDI or 
EDI.

AA STOSB NA Valid Valid For legacy mode, store AL at 
address ES:(E)DI; For 64-bit 
mode store AL at address 
RDI or EDI.

AB STOSW NA Valid Valid For legacy mode, store AX 
at address ES:(E)DI; For 64-
bit mode store AX at 
address RDI or EDI.

AB STOSD NA Valid Valid For legacy mode, store EAX 
at address ES:(E)DI; For 64-
bit mode store EAX at 
address RDI or EDI.

REX.W + AB STOSQ NA Valid N.E. Store RAX at address RDI or 
EDI.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NA NA NA NA NA
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mode of operation). The ES segment cannot be overridden with a segment override 
prefix.

At the assembly-code level, two forms of the instruction are allowed: the “explicit-
operands” form and the “no-operands” form. The explicit-operands form (specified 
with the STOS mnemonic) allows the destination operand to be specified explicitly. 
Here, the destination operand should be a symbol that indicates the size and location 
of the destination value. The source operand is then automatically selected to match 
the size of the destination operand (the AL register for byte operands, AX for word 
operands, EAX for doubleword operands). The explicit-operands form is provided to 
allow documentation; however, note that the documentation provided by this form 
can be misleading. That is, the destination operand symbol must specify the correct 
type (size) of the operand (byte, word, or doubleword), but it does not have to 
specify the correct location. The location is always specified by the ES:(E)DI 
register. These must be loaded correctly before the store string instruction is 
executed.

The no-operands form provides “short forms” of the byte, word, doubleword, and 
quadword versions of the STOS instructions. Here also ES:(E)DI is assumed to be the 
destination operand and AL, AX, or EAX is assumed to be the source operand. The 
size of the destination and source operands is selected by the mnemonic: STOSB 
(byte read from register AL), STOSW (word from AX), STOSD (doubleword from 
EAX).

After the byte, word, or doubleword is transferred from the register to the memory 
location, the (E)DI register is incremented or decremented according to the setting of 
the DF flag in the EFLAGS register. If the DF flag is 0, the register is incremented; if 
the DF flag is 1, the register is decremented (the register is incremented or decre-
mented by 1 for byte operations, by 2 for word operations, by 4 for doubleword oper-
ations).

In 64-bit mode, the default address size is 64 bits, 32-bit address size is supported 
using the prefix 67H. Using a REX prefix in the form of REX.W promotes operation on 
doubleword operand to 64 bits. The promoted no-operand mnemonic is STOSQ. 
STOSQ (and its explicit operands variant) store a quadword from the RAX register 
into the destination addressed by RDI or EDI. See the summary chart at the begin-
ning of this section for encoding data and limits.

The STOS, STOSB, STOSW, STOSD, STOSQ instructions can be preceded by the REP 
prefix for block loads of ECX bytes, words, or doublewords. More often, however, 
these instructions are used within a LOOP construct because data needs to be moved 
into the AL, AX, or EAX register before it can be stored. See “REP/REPE/REPZ 
/REPNE/REPNZ—Repeat String Operation Prefix” in this chapter for a description of 
the REP prefix.

Operation

Non-64-bit Mode:

IF (Byte store)
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THEN
DEST ← AL;

THEN IF DF = 0
THEN (E)DI ← (E)DI + 1; 
ELSE (E)DI ← (E)DI – 1; 

FI;
ELSE IF (Word store)

THEN
DEST ← AX;

THEN IF DF = 0
THEN (E)DI ← (E)DI + 2; 
ELSE (E)DI ← (E)DI – 2; 

FI;
FI;

ELSE IF (Doubleword store)
THEN

DEST ← EAX;
THEN IF DF = 0

THEN (E)DI ← (E)DI + 4; 
ELSE (E)DI ← (E)DI – 4; 

FI;
FI;

FI;

64-bit Mode:

IF (Byte store)
THEN

DEST ← AL;
THEN IF DF = 0

THEN (R|E)DI ← (R|E)DI + 1; 
ELSE (R|E)DI ← (R|E)DI – 1; 

FI;
ELSE IF (Word store)

THEN
DEST ← AX;

THEN IF DF = 0
THEN (R|E)DI ← (R|E)DI + 2; 
ELSE (R|E)DI ← (R|E)DI – 2; 

FI;
FI;

ELSE IF (Doubleword store)
THEN

DEST ← EAX;
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THEN IF DF = 0
THEN (R|E)DI ← (R|E)DI + 4; 
ELSE (R|E)DI ← (R|E)DI – 4; 

FI;
FI;

ELSE IF (Quadword store using REX.W )
THEN

DEST ← RAX;
THEN IF DF = 0

THEN (R|E)DI ← (R|E)DI + 8; 
ELSE (R|E)DI ← (R|E)DI – 8; 

FI;
FI;

FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the limit of the 
ES segment.
If the ES register contains a NULL segment selector.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the ES 

segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the ES 

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made.
#UD If the LOCK prefix is used.
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Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
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STR—Store Task Register

Instruction Operand Encoding

Description

Stores the segment selector from the task register (TR) in the destination operand. 
The destination operand can be a general-purpose register or a memory location. 
The segment selector stored with this instruction points to the task state segment 
(TSS) for the currently running task.

When the destination operand is a 32-bit register, the 16-bit segment selector is 
copied into the lower 16 bits of the register and the upper 16 bits of the register are 
cleared. When the destination operand is a memory location, the segment selector is 
written to memory as a 16-bit quantity, regardless of operand size.

In 64-bit mode, operation is the same. The size of the memory operand is fixed at 16 
bits. In register stores, the 2-byte TR is zero extended if stored to a 64-bit register.

The STR instruction is useful only in operating-system software. It can only be 
executed in protected mode.

Operation

DEST ← TR(SegmentSelector);

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the destination is a memory operand that is located in a non-

writable segment or if the effective address is outside the CS, 
DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it 
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#PF(fault-code) If a page fault occurs.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 00 /1 STR r/m16 M Valid Valid Stores segment selector 
from TR in r/m16.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA
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#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD The STR instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The STR instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
#SS(U) If the stack address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
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SUB—Subtract
Opcode Instruction Op/ 

En
64-Bit 
Mode

Compat/
Leg Mode

Description

2C ib SUB AL, imm8 I Valid Valid Subtract imm8 from AL.

2D iw SUB AX, imm16 I Valid Valid Subtract imm16 from AX.

2D id SUB EAX, imm32 I Valid Valid Subtract imm32 from EAX.

REX.W + 2D id SUB RAX, imm32 I Valid N.E. Subtract imm32 sign-
extended to 64-bits from 
RAX.

80 /5 ib SUB r/m8, imm8 MI Valid Valid Subtract imm8 from r/m8.

REX + 80 /5 ib SUB r/m8*, imm8 MI Valid N.E. Subtract imm8 from r/m8.

81 /5 iw SUB r/m16, 
imm16

MI Valid Valid Subtract imm16 from 
r/m16.

81 /5 id SUB r/m32, 
imm32

MI Valid Valid Subtract imm32 from 
r/m32.

REX.W + 81 /5 
id

SUB r/m64, 
imm32

MI Valid N.E. Subtract imm32 sign-
extended to 64-bits from 
r/m64.

83 /5 ib SUB r/m16, imm8 MI Valid Valid Subtract sign-extended 
imm8 from r/m16.

83 /5 ib SUB r/m32, imm8 MI Valid Valid Subtract sign-extended 
imm8 from r/m32.

REX.W + 83 /5 
ib

SUB r/m64, imm8 MI Valid N.E. Subtract sign-extended 
imm8 from r/m64.

28 /r SUB r/m8, r8 MR Valid Valid Subtract r8 from r/m8.

REX + 28 /r SUB r/m8*, r8* MR Valid N.E. Subtract r8 from r/m8.

29 /r SUB r/m16, r16 MR Valid Valid Subtract r16 from r/m16.

29 /r SUB r/m32, r32 MR Valid Valid Subtract r32 from r/m32.

REX.W + 29 /r SUB r/m64, r32 MR Valid N.E. Subtract r64 from r/m64.

2A /r SUB r8, r/m8 RM Valid Valid Subtract r/m8 from r8.

REX + 2A /r SUB r8*, r/m8* RM Valid N.E. Subtract r/m8 from r8.

2B /r SUB r16, r/m16 RM Valid Valid Subtract r/m16 from r16.

2B /r SUB r32, r/m32 RM Valid Valid Subtract r/m32 from r32.

REX.W + 2B /r SUB r64, r/m64 RM Valid N.E. Subtract r/m64 from r64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is 

used: AH, BH, CH, DH. 
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Instruction Operand Encoding

Description

Subtracts the second operand (source operand) from the first operand (destination 
operand) and stores the result in the destination operand. The destination operand 
can be a register or a memory location; the source operand can be an immediate, 
register, or memory location. (However, two memory operands cannot be used in one 
instruction.) When an immediate value is used as an operand, it is sign-extended to 
the length of the destination operand format.

The SUB instruction performs integer subtraction. It evaluates the result for both 
signed and unsigned integer operands and sets the OF and CF flags to indicate an 
overflow in the signed or unsigned result, respectively. The SF flag indicates the sign 
of the signed result.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix 
in the form of REX.R permits access to additional registers (R8-R15). Using a REX 
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at 
the beginning of this section for encoding data and limits.

This instruction can be used with a LOCK prefix to allow the instruction to be 
executed atomically.

Operation

DEST ← (DEST – SRC);

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, 
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

I AL/AX/EAX/RAX imm8/26/32 NA NA

MI ModRM:r/m (r, w) imm8/26/32 NA NA

MR ModRM:r/m (r, w) ModRM:reg (r) NA NA

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
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#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory 

operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS 

segment limit.
#UD If the LOCK prefix is used but the destination is not a memory 

operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made.
#UD If the LOCK prefix is used but the destination is not a memory 

operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory 

operand.
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SUBPD—Subtract Packed Double-Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a SIMD subtract of the two packed double-precision floating-point values in 
the source operand (second operand) from the two packed double-precision floating-
point values in the destination operand (first operand), and stores the packed 
double-precision floating-point results in the destination operand. The source 
operand can be an XMM register or a 128-bit memory location. The destination 
operand is an XMM register. See Figure 11-3 in the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 1, for an illustration of a SIMD double-preci-
sion floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: T second source can be an XMM register or an 128-bit 
memory location. The destination is not distinct from the first source XMM register 
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
unmodified.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 5C /r

SUBPD xmm1, xmm2/m128

RM V/V SSE2 Subtract packed double-
precision floating-point 
values in xmm2/m128 from 
xmm1.

VEX.NDS.128.66.0F.WIG 5C /r

VSUBPD xmm1,xmm2, xmm3/m128

RVM V/V AVX Subtract packed double-
precision floating-point 
values in xmm3/mem from 
xmm2 and stores result in 
xmm1.

VEX.NDS.256.66.0F.WIG 5C /r

VSUBPD ymm1, ymm2, ymm3/m256

RVM V/V AVX Subtract packed double-
precision floating-point 
values in ymm3/mem from 
ymm2 and stores result in 
ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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VEX.128 encoded version: the first source operand is an XMM register or 128-bit 
memory location. The destination operand is an XMM register. The upper bits 
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.

VEX.256 encoded version: The first source operand is a YMM register. The second 
source operand can be a YMM register or a 256-bit memory location. The destination 
operand is a YMM register. 

Operation

SUBPD (128-bit Legacy SSE version)
DEST[63:0]  DEST[63:0] - SRC[63:0]
DEST[127:64]  DEST[127:64] - SRC[127:64]
DEST[VLMAX-1:128] (Unmodified)

VSUBPD (VEX.128 encoded version)
DEST[63:0]  SRC1[63:0] - SRC2[63:0]
DEST[127:64]  SRC1[127:64] - SRC2[127:64]
DEST[VLMAX-1:128]  0

VSUBPD (VEX.256 encoded version)
DEST[63:0]  SRC1[63:0] - SRC2[63:0]
DEST[127:64]  SRC1[127:64] - SRC2[127:64]
DEST[191:128]  SRC1[191:128] - SRC2[191:128]
DEST[255:192]  SRC1[255:192] - SRC2[255:192]

Intel C/C++ Compiler Intrinsic Equivalent

SUBPD: __m128d _mm_sub_pd (m128d a, m128d b)

VSUBPD: __m256d _mm256_sub_pd (__m256d a, __m256d b);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
See Exceptions Type 2.
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SUBPS—Subtract Packed Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a SIMD subtract of the four packed single-precision floating-point values in 
the source operand (second operand) from the four packed single-precision floating-
point values in the destination operand (first operand), and stores the packed single-
precision floating-point results in the destination operand. The source operand can 
be an XMM register or a 128-bit memory location. The destination operand is an XMM 
register. See Figure 10-5 in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 1, for an illustration of a SIMD double-precision floating-point 
operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit 
memory location. The destination is not distinct from the first source XMM register 
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
unmodified.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F 5C /r

SUBPS xmm1 xmm2/m128

RM V/V SSE Subtract packed single-
precision floating-point 
values in xmm2/mem from 
xmm1.

VEX.NDS.128.0F.WIG 5C /r

VSUBPS xmm1,xmm2, xmm3/m128

RVM V/V AVX Subtract packed single-
precision floating-point 
values in xmm3/mem from 
xmm2 and stores result in 
xmm1.

VEX.NDS.256.0F.WIG 5C /r

VSUBPS ymm1, ymm2, ymm3/m256

RVM V/V AVX Subtract packed single-
precision floating-point 
values in ymm3/mem from 
ymm2 and stores result in 
ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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VEX.128 encoded version: the first source operand is an XMM register or 128-bit 
memory location. The destination operand is an XMM register. The upper bits 
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.

VEX.256 encoded version: The first source operand is a YMM register. The second 
source operand can be a YMM register or a 256-bit memory location. The destination 
operand is a YMM register. 

Operation

SUBPS (128-bit Legacy SSE version)
DEST[31:0]  SRC1[31:0] - SRC2[31:0]
DEST[63:32]  SRC1[63:32] - SRC2[63:32]
DEST[95:64]  SRC1[95:64] - SRC2[95:64]
DEST[127:96]  SRC1[127:96] - SRC2[127:96]
DEST[VLMAX-1:128] (Unmodified)

VSUBPS (VEX.128 encoded version)
DEST[31:0]  SRC1[31:0] - SRC2[31:0]
DEST[63:32]  SRC1[63:32] - SRC2[63:32]
DEST[95:64]  SRC1[95:64] - SRC2[95:64]
DEST[127:96]  SRC1[127:96] - SRC2[127:96]
DEST[VLMAX-1:128]  0

VSUBPS (VEX.256 encoded version)
DEST[31:0]  SRC1[31:0] - SRC2[31:0]
DEST[63:32]  SRC1[63:32] - SRC2[63:32]
DEST[95:64]  SRC1[95:64] - SRC2[95:64]
DEST[127:96]  SRC1[127:96] - SRC2[127:96]
DEST[159:128]  SRC1[159:128] - SRC2[159:128]
DEST[191:160] SRC1[191:160] - SRC2[191:160]
DEST[223:192]  SRC1[223:192] - SRC2[223:192]
DEST[255:224]  SRC1[255:224] - SRC2[255:224].

Intel C/C++ Compiler Intrinsic Equivalent

SUBPS: __m128 _mm_sub_ps(__m128 a, __m128 b)

VSUBPS: __m256 _mm256_sub_ps (__m256 a, __m256 b);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.
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Other Exceptions
See Exceptions Type 2.
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SUBSD—Subtract Scalar Double-Precision Floating-Point Values

Instruction Operand Encoding

Description

Subtracts the low double-precision floating-point value in the source operand 
(second operand) from the low double-precision floating-point value in the destina-
tion operand (first operand), and stores the double-precision floating-point result in 
the destination operand. The source operand can be an XMM register or a 64-bit 
memory location. The destination operand is an XMM register. The high quadword of 
the destination operand remains unchanged. See Figure 11-4 in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 1, for an illustration of a 
scalar double-precision floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The destination and first source operand are the same. 
Bits (VLMAX-1:64) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: Bits (127:64) of the XMM register destination are copied 
from corresponding bits in the first source operand. Bits (VLMAX-1:128) of the desti-
nation YMM register are zeroed.

Operation

SUBSD (128-bit Legacy SSE version)
DEST[63:0]  DEST[63:0] - SRC[63:0]
DEST[VLMAX-1:64] (Unmodified)

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

F2 0F 5C /r

SUBSD xmm1, xmm2/m64

RM V/V SSE2 Subtracts the low double-
precision floating-point 
values in xmm2/mem64 
from xmm1.

VEX.NDS.LIG.F2.0F.WIG 5C /r
VSUBSD xmm1,xmm2, xmm3/m64

RVM V/V AVX Subtract the low double-
precision floating-point 
value in xmm3/mem from 
xmm2 and store the result 
in xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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VSUBSD (VEX.128 encoded version)
DEST[63:0]  SRC1[63:0] - SRC2[63:0]
DEST[127:64]  SRC1[127:64]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

SUBSD: __m128d _mm_sub_sd (m128d a, m128d b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
See Exceptions Type 3.
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SUBSS—Subtract Scalar Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

Subtracts the low single-precision floating-point value in the source operand (second 
operand) from the low single-precision floating-point value in the destination 
operand (first operand), and stores the single-precision floating-point result in the 
destination operand. The source operand can be an XMM register or a 32-bit memory 
location. The destination operand is an XMM register. The three high-order double-
words of the destination operand remain unchanged. See Figure 10-6 in the Intel® 
64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for an illustra-
tion of a scalar single-precision floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The destination and first source operand are the same. 
Bits (VLMAX-1:32) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: Bits (127:32) of the XMM register destination are copied 
from corresponding bits in the first source operand. Bits (VLMAX-1:128) of the desti-
nation YMM register are zeroed.

Operation

SUBSS (128-bit Legacy SSE version)
DEST[31:0]  DEST[31:0] - SRC[31:0]
DEST[VLMAX-1:32] (Unmodified)

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

F3 0F 5C /r

SUBSS xmm1, xmm2/m32

RM V/V SSE Subtract the lower single-
precision floating-point 
values in xmm2/m32 from 
xmm1.

VEX.NDS.LIG.F3.0F.WIG 5C /r

VSUBSS xmm1,xmm2, xmm3/m32

RVM V/V AVX Subtract the low single-
precision floating-point 
value in xmm3/mem from 
xmm2 and store the result 
in xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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VSUBSS (VEX.128 encoded version)
DEST[31:0]  SRC1[31:0] - SRC2[31:0]
DEST[127:32]  SRC1[127:32]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

SUBSS: __m128 _mm_sub_ss(__m128 a, __m128 b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
See Exceptions Type 3.
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SWAPGS—Swap GS Base Register

Instruction Operand Encoding

Description

SWAPGS exchanges the current GS base register value with the value contained in 
MSR address C0000102H (MSR_KERNELGSbase). KernelGSbase is guaranteed to be 
canonical; so SWAPGS does not perform a canonical check. The SWAPGS instruction 
is a privileged instruction intended for use by system software. 

When using SYSCALL to implement system calls, there is no kernel stack at the OS 
entry point. Neither is there a straightforward method to obtain a pointer to kernel 
structures from which the kernel stack pointer could be read. Thus, the kernel can't 
save general purpose registers or reference memory. 

By design, SWAPGS does not require any general purpose registers or memory oper-
ands. No registers need to be saved before using the instruction. SWAPGS exchanges 
the CPL 0 data pointer from the KernelGSbase MSR with the GS base register. The 
kernel can then use the GS prefix on normal memory references to access kernel 
data structures. Similarly, when the OS kernel is entered using an interrupt or excep-
tion (where the kernel stack is already set up), SWAPGS can be used to quickly get a 
pointer to the kernel data structures.

The KernelGSbase MSR itself is only accessible using RDMSR/WRMSR instructions. 
Those instructions are only accessible at privilege level 0. WRMSR will cause a 
#GP(0) if the value to be written to KernelGSbase MSR is non-canonical. 

See Table 4-19.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 01 /7 SWAPGS NP Valid Invalid Exchanges the current GS 
base register value with the 
value contained in MSR 
address C0000102H.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

Table 4-19.  SWAPGS Operation Parameters 

Opcode ModR/M Byte Instruction

MOD REG R/M Not 64-bit 
Mode

64-bit Mode

OF 01 MOD ≠ 11 111 xxx INVLPG INVLPG

11 111 000 #UD SWAPGS

11 111 ≠ 000 #UD #UD
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Operation

IF CS.L ≠ 1 (* Not in 64-Bit Mode *)
THEN

#UD; FI;

IF CPL ≠ 0
THEN #GP(0); FI;

tmp ← GS(BASE);
GS(BASE) ← KERNELGSbase;
KERNELGSbase ← tmp;

Flags Affected

None

Protected Mode Exceptions
#UD If Mode ≠ 64-Bit.

Real-Address Mode Exceptions
#UD If Mode ≠ 64-Bit.

Virtual-8086 Mode Exceptions
#UD If Mode ≠ 64-Bit.

Compatibility Mode Exceptions
#UD If Mode ≠ 64-Bit.

64-Bit Mode Exceptions
#GP(0) If CPL ≠ 0.

If the LOCK prefix is used.
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SYSCALL—Fast System Call

Instruction Operand Encoding

Description

SYSCALL saves the RIP of the instruction following SYSCALL to RCX and loads a new 
RIP from the IA32_LSTAR (64-bit mode). Upon return, SYSRET copies the value 
saved in RCX to the RIP. 

SYSCALL saves RFLAGS (lower 32 bit only) in R11. It then masks RFLAGS with an 
OS-defined value using the IA32_FMASK (MSR C000_0084). The actual mask value 
used by the OS is the complement of the value written to the IA32_FMASK MSR. 
None of the bits in RFLAGS are automatically cleared (except for RF). SYSRET 
restores RFLAGS from R11 (the lower 32 bits only).

Software should not alter the CS or SS descriptors in a manner that violates the 
following assumptions made by SYSCALL/SYSRET:
• The CS and SS base and limit remain the same for all processes, including the 

operating system (the base is 0H and the limit is 0FFFFFFFFH).
• The CS of the SYSCALL target has a privilege level of 0.
• The CS of the SYSRET target has a privilege level of 3.

SYSCALL/SYSRET do not check for violations of these assumptions.

Operation

IF (CS.L ≠ 1 ) or (IA32_EFER.LMA ≠ 1) or (IA32_EFER.SCE ≠ 1)
(* Not in 64-Bit Mode or SYSCALL/SYSRET not enabled in IA32_EFER *)

THEN #UD; FI;
RCX ← RIP;
RIP ← LSTAR_MSR;
R11 ← EFLAGS;
EFLAGS ← (EFLAGS MASKED BY IA32_FMASK);
CPL ← 0;
CS(SEL) ← IA32_STAR_MSR[47:32];
CS(DPL) ← 0;
CS(BASE) ← 0;

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 05 SYSCALL NP Valid Invalid Fast call to privilege level 0 
system procedures.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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CS(LIMIT) ← 0xFFFFF;
CS(GRANULAR) ← 1;
SS(SEL) ← IA32_STAR_MSR[47:32] + 8;
SS(DPL) ← 0;
SS(BASE) ← 0;
SS(LIMIT) ← 0xFFFFF;
SS(GRANULAR) ← 1;

Flags Affected

All.

Protected Mode Exceptions
#UD If Mode ≠ 64-bit.

Real-Address Mode Exceptions
#UD If Mode ≠ 64-bit.

Virtual-8086 Mode Exceptions
#UD If Mode ≠ 64-bit.

Compatibility Mode Exceptions
#UD If Mode ≠ 64-bit.

64-Bit Mode Exceptions
#UD If IA32_EFER.SCE = 0.

If the LOCK prefix is used.
4-588 Vol. 2B SYSCALL—Fast System Call



INSTRUCTION SET REFERENCE, M-Z
SYSENTER—Fast System Call

Instruction Operand Encoding

Description

Executes a fast call to a level 0 system procedure or routine. SYSENTER is a 
companion instruction to SYSEXIT. The instruction is optimized to provide the 
maximum performance for system calls from user code running at privilege level 3 to 
operating system or executive procedures running at privilege level 0.

Prior to executing the SYSENTER instruction, software must specify the privilege 
level 0 code segment and code entry point, and the privilege level 0 stack segment 
and stack pointer by writing values to the following MSRs:
• IA32_SYSENTER_CS — Contains a 32-bit value, of which the lower 16 bits are 

the segment selector for the privilege level 0 code segment. This value is also 
used to compute the segment selector of the privilege level 0 stack segment.

• IA32_SYSENTER_EIP — Contains the 32-bit offset into the privilege level 0 code 
segment to the first instruction of the selected operating procedure or routine.

• IA32_SYSENTER_ESP — Contains the 32-bit stack pointer for the privilege level 
0 stack.

These MSRs can be read from and written to using RDMSR/WRMSR. Register 
addresses are listed in Table 4-20. The addresses are defined to remain fixed for 
future Intel 64 and IA-32 processors.

When SYSENTER is executed, the processor:

1. Loads the segment selector from the IA32_SYSENTER_CS into the CS register.

2. Loads the instruction pointer from the IA32_SYSENTER_EIP into the EIP register.

3. Adds 8 to the value in IA32_SYSENTER_CS and loads it into the SS register.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 34 SYSENTER NP Valid Valid Fast call to privilege level 0 
system procedures.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

Table 4-20.  MSRs Used By the SYSENTER and SYSEXIT Instructions

MSR Address

IA32_SYSENTER_CS 174H

IA32_SYSENTER_ESP 175H

IA32_SYSENTER_EIP 176H
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4. Loads the stack pointer from the IA32_SYSENTER_ESP into the ESP register.

5. Switches to privilege level 0.

6. Clears the VM flag in the EFLAGS register, if the flag is set.

7. Begins executing the selected system procedure.

The processor does not save a return IP or other state information for the calling 
procedure.

The SYSENTER instruction always transfers program control to a protected-mode 
code segment with a DPL of 0. The instruction requires that the following conditions 
are met by the operating system:
• The segment descriptor for the selected system code segment selects a flat, 

32-bit code segment of up to 4 GBytes, with execute, read, accessed, and non-
conforming permissions.

• The segment descriptor for selected system stack segment selects a flat 32-bit 
stack segment of up to 4 GBytes, with read, write, accessed, and expand-up 
permissions.

The SYSENTER instruction can be invoked from all operating modes except real-
address mode. 

The SYSENTER and SYSEXIT instructions are companion instructions, but they do not 
constitute a call/return pair. When executing a SYSENTER instruction, the processor 
does not save state information for the user code, and neither the SYSENTER nor the 
SYSEXIT instruction supports passing parameters on the stack.

To use the SYSENTER and SYSEXIT instructions as companion instructions for transi-
tions between privilege level 3 code and privilege level 0 operating system proce-
dures, the following conventions must be followed:
• The segment descriptors for the privilege level 0 code and stack segments and 

for the privilege level 3 code and stack segments must be contiguous in the 
global descriptor table. This convention allows the processor to compute the 
segment selectors from the value entered in the SYSENTER_CS_MSR MSR.

• The fast system call “stub” routines executed by user code (typically in shared 
libraries or DLLs) must save the required return IP and processor state 
information if a return to the calling procedure is required. Likewise, the 
operating system or executive procedures called with SYSENTER instructions 
must have access to and use this saved return and state information when 
returning to the user code.

The SYSENTER and SYSEXIT instructions were introduced into the IA-32 architecture 
in the Pentium II processor. The availability of these instructions on a processor is 
indicated with the SYSENTER/SYSEXIT present (SEP) feature flag returned to the 
EDX register by the CPUID instruction. An operating system that qualifies the SEP 
flag must also qualify the processor family and model to ensure that the 
SYSENTER/SYSEXIT instructions are actually present. For example:

IF CPUID SEP bit is set
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THEN IF (Family = 6) and (Model < 3) and (Stepping < 3) 
THEN

SYSENTER/SYSEXIT_Not_Supported; FI;
ELSE 

SYSENTER/SYSEXIT_Supported; FI;
FI;

When the CPUID instruction is executed on the Pentium Pro processor (model 1), the 
processor returns a the SEP flag as set, but does not support the SYSENTER/SYSEXIT 
instructions.

Operation

IF CR0.PE = 0 THEN #GP(0); FI;
IF SYSENTER_CS_MSR[15:2] = 0 THEN #GP(0); FI;
EFLAGS.VM ← 0; (* ensures protected mode execution *)
EFLAGS.IF ← 0; (* Mask interrupts *)
EFLAGS.RF ← 0;

CS.SEL ← SYSENTER_CS_MSR (* Operating system provides CS *)
(* Set rest of CS to a fixed value *)
CS.SEL.RPL ← 0;
CS.BASE ← 0; (* Flat segment *)
CS.ARbyte.G ← 1; (* 4-KByte granularity *)
CS.ARbyte.S ← 1;
CS.ARbyte.TYPE ← 1011B; (* Execute + Read, Accessed *)
CS.ARbyte.D ← 1; (* 32-bit code segment*)
CS.ARbyte.DPL ← 0;
CS.ARbyte.P ← 1;
CS.LIMIT ← FFFFFH; (* with 4-KByte granularity, implies a 4-GByte limit *)
CPL ← 0;

SS.SEL ← CS.SEL + 8;
(* Set rest of SS to a fixed value *)
SS.SEL.RPL ← 0;
SS.BASE ← 0; (* Flat segment *)
SS.ARbyte.G ← 1; (* 4-KByte granularity *)
SS.ARbyte.S ← 1; 
SS.ARbyte.TYPE ← 0011B; (* Read/Write, Accessed *)
SS.ARbyte.D ← 1; (* 32-bit stack segment*)
SS.ARbyte.DPL ← 0;
SS.ARbyte.P ← 1;
SS.LIMIT ← FFFFFH; (* with 4-KByte granularity, implies a 4-GByte limit *)

ESP ← SYSENTER_ESP_MSR;
Vol. 2B 4-591SYSENTER—Fast System Call



INSTRUCTION SET REFERENCE, M-Z
EIP ← SYSENTER_EIP_MSR;

IA-32e Mode Operation

In IA-32e mode, SYSENTER executes a fast system calls from user code running at 
privilege level 3 (in compatibility mode or 64-bit mode) to 64-bit executive proce-
dures running at privilege level 0. This instruction is a companion instruction to the 
SYSEXIT instruction.

In IA-32e mode, the IA32_SYSENTER_EIP and IA32_SYSENTER_ESP MSRs hold 
64-bit addresses and must be in canonical form; IA32_SYSENTER_CS must not 
contain a NULL selector. 

When SYSENTER transfers control, the following fields are generated and bits set:
• Target code segment — Reads non-NULL selector from IA32_SYSENTER_CS.
• New CS attributes — L-bit = 1 (go to 64-bit mode); CS base = 0, CS limit = 

FFFFFFFFH.
• Target instruction — Reads 64-bit canonical address from 

IA32_SYSENTER_EIP.
• Stack segment — Computed by adding 8 to the value from 

IA32_SYSENTER_CS.
• Stack pointer — Reads 64-bit canonical address from IA32_SYSENTER_ESP.
• New SS attributes — SS base = 0, SS limit = FFFFFFFFH.

Flags Affected

VM, IF, RF (see Operation above)

Protected Mode Exceptions
#GP(0) If IA32_SYSENTER_CS[15:2] = 0.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If protected mode is not enabled.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.
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64-Bit Mode Exceptions
Same exceptions as in protected mode.
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SYSEXIT—Fast Return from Fast System Call

Instruction Operand Encoding

Description

Executes a fast return to privilege level 3 user code. SYSEXIT is a companion instruc-
tion to the SYSENTER instruction. The instruction is optimized to provide the 
maximum performance for returns from system procedures executing at protections 
levels 0 to user procedures executing at protection level 3. It must be executed from 
code executing at privilege level 0. 

Prior to executing SYSEXIT, software must specify the privilege level 3 code segment 
and code entry point, and the privilege level 3 stack segment and stack pointer by 
writing values into the following MSR and general-purpose registers:
• IA32_SYSENTER_CS — Contains a 32-bit value, of which the lower 16 bits are 

the segment selector for the privilege level 0 code segment in which the 
processor is currently executing. This value is used to compute the segment 
selectors for the privilege level 3 code and stack segments.

• EDX — Contains the 32-bit offset into the privilege level 3 code segment to the 
first instruction to be executed in the user code.

• ECX — Contains the 32-bit stack pointer for the privilege level 3 stack.

The IA32_SYSENTER_CS MSR can be read from and written to using 
RDMSR/WRMSR. The register address is listed in Table 4-20. This address is defined 
to remain fixed for future Intel 64 and IA-32 processors.

When SYSEXIT is executed, the processor:

1. Adds 16 to the value in IA32_SYSENTER_CS and loads the sum into the CS
selector register.

2. Loads the instruction pointer from the EDX register into the EIP register.

3. Adds 24 to the value in IA32_SYSENTER_CS and loads the sum into the SS 
selector register.

4. Loads the stack pointer from the ECX register into the ESP register.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 35 SYSEXIT NP Valid Valid Fast return to privilege level 
3 user code.

REX.W + 0F 35 SYSEXIT NP Valid Valid Fast return to 64-bit mode 
privilege level 3 user code.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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5. Switches to privilege level 3.

6. Begins executing the user code at the EIP address.

See “SWAPGS—Swap GS Base Register” in this chapter for information about using 
the SYSENTER and SYSEXIT instructions as companion call and return instructions.

The SYSEXIT instruction always transfers program control to a protected-mode code 
segment with a DPL of 3. The instruction requires that the following conditions are 
met by the operating system:
• The segment descriptor for the selected user code segment selects a flat, 32-bit 

code segment of up to 4 GBytes, with execute, read, accessed, and non-
conforming permissions.

• The segment descriptor for selected user stack segment selects a flat, 32-bit 
stack segment of up to 4 GBytes, with expand-up, read, write, and accessed 
permissions.

The SYSEXIT instruction can be invoked from all operating modes except real-
address mode and virtual 8086 mode. 

The SYSENTER and SYSEXIT instructions were introduced into the IA-32 architecture 
in the Pentium II processor. The availability of these instructions on a processor is 
indicated with the SYSENTER/SYSEXIT present (SEP) feature flag returned to the 
EDX register by the CPUID instruction. An operating system that qualifies the SEP 
flag must also qualify the processor family and model to ensure that the 
SYSENTER/SYSEXIT instructions are actually present. For example:

IF CPUID SEP bit is set
THEN IF (Family = 6) and (Model < 3) and (Stepping < 3) 

THEN
SYSENTER/SYSEXIT_Not_Supported; FI;

ELSE 
SYSENTER/SYSEXIT_Supported; FI;

FI;

When the CPUID instruction is executed on the Pentium Pro processor (model 1), the 
processor returns a the SEP flag as set, but does not support the SYSENTER/SYSEXIT 
instructions.

Operation

IF SYSENTER_CS_MSR[15:2] = 0 THEN #GP(0); FI;
IF CR0.PE = 0 THEN #GP(0); FI;
IF CPL ≠ 0 THEN #GP(0); FI;

CS.SEL ← (SYSENTER_CS_MSR + 16); (* Segment selector for return CS *)
(* Set rest of CS to a fixed value *)
CS.SEL.RPL ← 3;
CS.BASE ← 0; (* Flat segment *)
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CS.ARbyte.G ← 1; (* 4-KByte granularity *)
CS.ARbyte.S ← 1;
CS.ARbyte.TYPE ← 1011B; (* Execute, Read, Non-Conforming Code *)
CS.ARbyte.D ← 1; (* 32-bit code segment*)
CS.ARbyte.DPL ← 3;
CS.ARbyte.P ← 1;
CS.LIMIT ← FFFFFH; (* with 4-KByte granularity, implies a 4-GByte limit *)
CPL ← 3;

SS.SEL ← (SYSENTER_CS_MSR + 24); (* Segment selector for return SS *)
(* Set rest of SS to a fixed value *);
SS.SEL.RPL ← 3;
SS.BASE ← 0; (* Flat segment *)
SS.ARbyte.G ←1; (* 4-KByte granularity *)
SS.ARbyte.S ← 1;
SS.ARbyte.TYPE ← 0011B; (* Expand Up, Read/Write, Data *)
SS.ARbyte.D ← 1; (* 32-bit stack segment*)
SS.ARbyte.DPL ← 3;
SS.ARbyte.P ← 1;
SS.LIMIT ← FFFFFH; (* with 4-KByte granularity, implies a 4-GByte limit *)

ESP ← ECX;
EIP ← EDX;

IA-32e Mode Operation

In IA-32e mode, SYSEXIT executes a fast system calls from a 64-bit executive proce-
dures running at privilege level 0 to user code running at privilege level 3 (in compat-
ibility mode or 64-bit mode). This instruction is a companion instruction to the 
SYSENTER instruction.

In IA-32e mode, the IA32_SYSENTER_EIP and IA32_SYSENTER_ESP MSRs hold 
64-bit addresses and must be in canonical form; IA32_SYSENTER_CS must not 
contain a NULL selector. 

When the SYSEXIT instruction transfers control to 64-bit mode user code using 
REX.W, the following fields are generated and bits set:
• Target code segment — Computed by adding 32 to the value in the 

IA32_SYSENTER_CS.
• New CS attributes — L-bit = 1 (go to 64-bit mode).
• Target instruction — Reads 64-bit canonical address in RDX.
• Stack segment — Computed by adding 8 to the value of CS selector.
• Stack pointer — Update RSP using 64-bit canonical address in RCX.

When SYSEXIT transfers control to compatibility mode user code when the operand 
size attribute is 32 bits, the following fields are generated and bits set:
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• Target code segment — Computed by adding 16 to the value in 
IA32_SYSENTER_CS.

• New CS attributes — L-bit = 0 (go to compatibility mode).
• Target instruction — Fetch the target instruction from 32-bit address in EDX.
• Stack segment — Computed by adding 24 to the value in IA32_SYSENTER_CS.
• Stack pointer — Update ESP from 32-bit address in ECX.

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If IA32_SYSENTER_CS[15:2] = 0.

If CPL ≠ 0.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If protected mode is not enabled.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) Always.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If IA32_SYSENTER_CS = 0.

If CPL ≠ 0.
If ECX or EDX contains a non-canonical address.

#UD If the LOCK prefix is used.
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SYSRET—Return From Fast System Call

Instruction Operand Encoding

Description

SYSCALL saves the RIP of the instruction following the SYSCALL into RCX and loads 
the new RIP from the LSTAR (64-bit mode only). Upon return, SYSRET copies the 
value saved in RCX to the RIP.

In a return to 64-bit mode using Osize 64, SYSRET sets the CS selector value to MSR 
IA32_STAR[63:48] +16. The SS is set to IA32_STAR[63:48] + 8. 

SYSRET transfer control to compatibility mode using Osize 32. The CS selector value 
is set to MSR IA32_STAR[63:48]. The SS is set to IA32_STAR[63:48] + 8.

It is the responsibility of the OS to keep descriptors in the GDT/LDT that correspond 
to selectors loaded by SYSCALL/SYSRET consistent with the base, limit and attribute 
values forced by the these instructions.

Software should not alter the CS or SS descriptors in a manner that violates the 
following assumptions made by SYSCALL/SYSRET:
• CS and SS base and limit remain the same for all processes, including the 

operating system.
• CS of the SYSCALL target has a privilege level of 0.
• CS of the SYSRET target has a privilege level of 3.

SYSCALL/SYSRET do not check for violations of these assumptions.

Operation

IF (CS.L ≠ 1 ) or (IA32_EFER.LMA ≠ 1) or (IA32_EFER.SCE ≠ 1)
(* Not in 64-Bit Mode or SYSCALL/SYSRET not enabled in IA32_EFER *)

THEN #UD; FI;
IF (CPL ≠ 0) 

THEN #GP(0); FI;
IF (RCX ≠ CANONICAL_ADDRESS)

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 07 SYSRET NP Valid Invalid Return to compatibility 
mode from fast system call 

REX.W + 0F 07 SYSRET NP Valid Invalid Return to 64-bit mode from 
fast system call 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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THEN #GP(0); FI;
IF (OPERAND_SIZE = 64) 

THEN (* Return to 64-Bit Mode *)
EFLAGS ← R11;
CPL ← 0x3;
CS(SEL) ← IA32_STAR[63:48] + 16;
CS(PL) ← 0x3;
SS(SEL) ← IA32_STAR[63:48] + 8;
SS(PL) ← 0x3;
RIP ← RCX;

ELSE (* Return to Compatibility Mode *)
EFLAGS ← R11;
CPL ← 0x3;
CS(SEL) ← IA32_STAR[63:48] ;
CS(PL) ← 0x3;
SS(SEL) ← IA32_STAR[63:48] + 8;
SS(PL) ← 0x3;
EIP ← ECX;

FI;

Flags Affected

VM, IF, RF.

Protected Mode Exceptions
#UD If Mode ≠ 64-Bit.

Real-Address Mode Exceptions
#UD If Mode ≠ 64-Bit.

Virtual-8086 Mode Exceptions
#UD If Mode ≠ 64-Bit.

Compatibility Mode Exceptions
#UD If Mode ≠ 64-Bit.

64-Bit Mode Exceptions
#UD If IA32_EFER.SCE bit = 0.

If the LOCK prefix is used.
#GP(0) If CPL ≠ 0.

If ECX contains a non-canonical address.
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TEST—Logical Compare
Opcode Instruction Op/ 

En
64-Bit 
Mode

Compat/
Leg Mode

Description

A8 ib TEST AL, imm8 I Valid Valid AND imm8 with AL; set SF, 
ZF, PF according to result.

A9 iw TEST AX, imm16 I Valid Valid AND imm16 with AX; set SF, 
ZF, PF according to result.

A9 id TEST EAX, imm32 I Valid Valid AND imm32 with EAX; set 
SF, ZF, PF according to 
result.

REX.W + A9 id TEST RAX, imm32 I Valid N.E. AND imm32 sign-extended 
to 64-bits with RAX; set SF, 
ZF, PF according to result.

F6 /0 ib TEST r/m8, imm8 MI Valid Valid AND imm8 with r/m8; set 
SF, ZF, PF according to 
result.

REX + F6 /0 ib TEST r/m8*, imm8 MI Valid N.E. AND imm8 with r/m8; set 
SF, ZF, PF according to 
result.

F7 /0 iw TEST r/m16, 
imm16

MI Valid Valid AND imm16 with r/m16; set 
SF, ZF, PF according to 
result.

F7 /0 id TEST r/m32, 
imm32

MI Valid Valid AND imm32 with r/m32; set 
SF, ZF, PF according to 
result.

REX.W + F7 /0 
id

TEST r/m64, 
imm32

MI Valid N.E. AND imm32 sign-extended 
to 64-bits with r/m64; set 
SF, ZF, PF according to 
result.

84 /r TEST r/m8, r8 MR Valid Valid AND r8 with r/m8; set SF, 
ZF, PF according to result.

REX + 84 /r TEST r/m8*, r8* MR Valid N.E. AND r8 with r/m8; set SF, 
ZF, PF according to result.

85 /r TEST r/m16, r16 MR Valid Valid AND r16 with r/m16; set SF, 
ZF, PF according to result.

85 /r TEST r/m32, r32 MR Valid Valid AND r32 with r/m32; set SF, 
ZF, PF according to result.

REX.W + 85 /r TEST r/m64, r64 MR Valid N.E. AND r64 with r/m64; set SF, 
ZF, PF according to result.
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Instruction Operand Encoding

Description

Computes the bit-wise logical AND of first operand (source 1 operand) and the 
second operand (source 2 operand) and sets the SF, ZF, and PF status flags according 
to the result. The result is then discarded.

In 64-bit mode, using a REX prefix in the form of REX.R permits access to additional 
registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 
64 bits. See the summary chart at the beginning of this section for encoding data and 
limits.

Operation

TEMP ← SRC1 AND SRC2;
SF ← MSB(TEMP);

IF TEMP = 0
THEN ZF ← 1;
ELSE ZF ← 0;

FI:

PF ← BitwiseXNOR(TEMP[0:7]);
CF ← 0;
OF ← 0;
(* AF is undefined *)

Flags Affected

The OF and CF flags are set to 0. The SF, ZF, and PF flags are set according to the 
result (see the “Operation” section above). The state of the AF flag is undefined.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is 

used: AH, BH, CH, DH. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

I AL/AX/EAX/RAX imm8/16/32 NA NA

MI ModRM:r/m (r) imm8/16/32 NA NA

MR ModRM:r/m (r) ModRM:reg (r) NA NA
Vol. 2B 4-601TEST—Logical Compare



INSTRUCTION SET REFERENCE, M-Z
If the DS, ES, FS, or GS register contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS 

segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
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UCOMISD—Unordered Compare Scalar Double-Precision Floating-Point 
Values and Set EFLAGS

Instruction Operand Encoding

Description

Performs and unordered compare of the double-precision floating-point values in the 
low quadwords of source operand 1 (first operand) and source operand 2 (second 
operand), and sets the ZF, PF, and CF flags in the EFLAGS register according to the 
result (unordered, greater than, less than, or equal). The OF, SF and AF flags in the 
EFLAGS register are set to 0. The unordered result is returned if either source 
operand is a NaN (QNaN or SNaN).

Source operand 1 is an XMM register; source operand 2 can be an XMM register or a 
64 bit memory location.

The UCOMISD instruction differs from the COMISD instruction in that it signals a 
SIMD floating-point invalid operation exception (#I) only when a source operand is 
an SNaN. The COMISD instruction signals an invalid operation exception if a source 
operand is either a QNaN or an SNaN.

The EFLAGS register is not updated if an unmasked SIMD floating-point exception is 
generated.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise 
instructions will #UD.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 2E /r

UCOMISD xmm1, xmm2/m64

RM V/V SSE2 Compares (unordered) the 
low double-precision 
floating-point values in 
xmm1 and xmm2/m64 and 
set the EFLAGS accordingly.

VEX.LIG.66.0F.WIG 2E /r

VUCOMISD xmm1, xmm2/m64

RM V/V AVX Compare low double 
precision floating-point 
values in xmm1 and 
xmm2/mem64 and set the 
EFLAGS flags accordingly.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) NA NA
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Operation

RESULT ← UnorderedCompare(SRC1[63:0] < > SRC2[63:0]) {
(* Set EFLAGS *) 
CASE (RESULT) OF

UNORDERED: ZF, PF, CF ← 111;
GREATER_THAN: ZF, PF, CF ← 000;
LESS_THAN: ZF, PF, CF ← 001;
EQUAL: ZF, PF, CF ← 100;

ESAC;
OF, AF, SF ← 0;

Intel C/C++ Compiler Intrinsic Equivalent

int _mm_ucomieq_sd(__m128d a, __m128d b)

int _mm_ucomilt_sd(__m128d a, __m128d b)

int _mm_ucomile_sd(__m128d a, __m128d b)

int _mm_ucomigt_sd(__m128d a, __m128d b)

int _mm_ucomige_sd(__m128d a, __m128d b)

int _mm_ucomineq_sd(__m128d a, __m128d b)

SIMD Floating-Point Exceptions

Invalid (if SNaN operands), Denormal. 

Other Exceptions
See Exceptions Type 3; additionally
#UD If VEX.vvvv != 1111B.
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UCOMISS—Unordered Compare Scalar Single-Precision Floating-Point 
Values and Set EFLAGS

Instruction Operand Encoding

Description

Performs and unordered compare of the single-precision floating-point values in the 
low doublewords of the source operand 1 (first operand) and the source operand 2 
(second operand), and sets the ZF, PF, and CF flags in the EFLAGS register according 
to the result (unordered, greater than, less than, or equal). In The OF, SF and AF 
flags in the EFLAGS register are set to 0. The unordered result is returned if either 
source operand is a NaN (QNaN or SNaN).

Source operand 1 is an XMM register; source operand 2 can be an XMM register or a 
32 bit memory location.

The UCOMISS instruction differs from the COMISS instruction in that it signals a 
SIMD floating-point invalid operation exception (#I) only when a source operand is 
an SNaN. The COMISS instruction signals an invalid operation exception if a source 
operand is either a QNaN or an SNaN.

The EFLAGS register is not updated if an unmasked SIMD floating-point exception is 
generated.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise 
instructions will #UD.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F 2E /r

UCOMISS xmm1, xmm2/m32

RM V/V SSE Compare lower single-
precision floating-point 
value in xmm1 register with 
lower single-precision 
floating-point value in 
xmm2/mem and set the 
status flags accordingly.

VEX.LIG.0F.WIG 2E /r

VUCOMISS xmm1, xmm2/m32

RM V/V AVX Compare low single 
precision floating-point 
values in xmm1 and 
xmm2/mem32 and set the 
EFLAGS flags accordingly.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) NA NA
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Operation

RESULT ← UnorderedCompare(SRC1[31:0] <> SRC2[31:0]) {
(* Set EFLAGS *) 
CASE (RESULT) OF

UNORDERED: ZF,PF,CF ← 111;
GREATER_THAN: ZF,PF,CF ← 000;
LESS_THAN: ZF,PF,CF ← 001;
EQUAL: ZF,PF,CF ← 100;

ESAC;
OF,AF,SF ← 0;

Intel C/C++ Compiler Intrinsic Equivalent

int _mm_ucomieq_ss(__m128 a, __m128 b)

int _mm_ucomilt_ss(__m128 a, __m128 b)

int _mm_ucomile_ss(__m128 a, __m128 b)

int _mm_ucomigt_ss(__m128 a, __m128 b)

int _mm_ucomige_ss(__m128 a, __m128 b)

int _mm_ucomineq_ss(__m128 a, __m128 b)

SIMD Floating-Point Exceptions

Invalid (if SNaN operands), Denormal. 

Other Exceptions
See Exceptions Type 3; additionally
#UD If VEX.vvvv != 1111B.
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UD2—Undefined Instruction

Instruction Operand Encoding

Description

Generates an invalid opcode exception. This instruction is provided for software 
testing to explicitly generate an invalid opcode exception. The opcode for this 
instruction is reserved for this purpose.

Other than raising the invalid opcode exception, this instruction has no effect on 
processor state or memory.

Even though it is the execution of the UD2 instruction that causes the invalid opcode 
exception, the instruction pointer saved by delivery of the exception references the 
UD2 instruction (and not the following instruction).

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

#UD (* Generates invalid opcode exception *);

Flags Affected

None.

Exceptions (All Operating Modes)
#UD Raises an invalid opcode exception in all operating modes.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 0B UD2 NP Valid Valid Raise invalid opcode 
exception.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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UNPCKHPD—Unpack and Interleave High Packed Double-Precision 
Floating-Point Values

Instruction Operand Encoding

Description

Performs an interleaved unpack of the high double-precision floating-point values 
from the source operand (second operand) and the destination operand (first 
operand). See Figure 4-20. 

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 15 /r

UNPCKHPD xmm1, xmm2/m128

RM V/V SSE2 Unpacks and Interleaves 
double-precision floating-
point values from high 
quadwords of xmm1 and 
xmm2/m128.

VEX.NDS.128.66.0F.WIG 15 /r

VUNPCKHPD xmm1,xmm2, 
xmm3/m128

RVM V/V AVX Unpacks and Interleaves 
double precision floating-
point values from high 
quadwords of xmm2 and 
xmm3/m128.

VEX.NDS.256.66.0F.WIG 15 /r

VUNPCKHPD ymm1,ymm2, 
ymm3/m256

RVM V/V AVX Unpacks and Interleaves 
double precision floating-
point values from high 
quadwords of ymm2 and 
ymm3/m256.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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When unpacking from a memory operand, an implementation may fetch only the 
appropriate 64 bits; however, alignment to 16-byte boundary and normal segment 
checking will still be enforced.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit 
memory location. The destination is not distinct from the first source XMM register 
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit 
memory location. The destination operand is an XMM register. The upper bits 
(VLMAX-1:128) of the corresponding YMM register destination are zeroed. 

Operation

UNPCKHPD (128-bit Legacy SSE version)
DEST[63:0]  SRC1[127:64]
DEST[127:64]  SRC2[127:64]
DEST[VLMAX-1:128] (Unmodified)

VUNPCKHPD (VEX.128 encoded version)
DEST[63:0]  SRC1[127:64]
DEST[127:64]  SRC2[127:64]
DEST[VLMAX-1:128]  0

VUNPCKHPD (VEX.256 encoded version)
DEST[63:0]  SRC1[127:64]

Figure 4-20.  UNPCKHPD Instruction High Unpack and Interleave Operation
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DEST[127:64]  SRC2[127:64]
DEST[191:128]SRC1[255:192]
DEST[255:192]SRC2[255:192]

Intel C/C++ Compiler Intrinsic Equivalent

UNPCKHPD: __m128d _mm_unpackhi_pd(__m128d a, __m128d b)

UNPCKHPD: __m256d _mm256_unpackhi_pd(__m256d a, __m256d b)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4.
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UNPCKHPS—Unpack and Interleave High Packed Single-Precision 
Floating-Point Values

Instruction Operand Encoding

Description

Performs an interleaved unpack of the high-order single-precision floating-point 
values from the source operand (second operand) and the destination operand (first 
operand). See Figure 4-21. The source operand can be an XMM register or a 128-bit 
memory location; the destination operand is an XMM register.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F 15 /r

UNPCKHPS xmm1, xmm2/m128

RM V/V SSE Unpacks and Interleaves 
single-precision floating-
point values from high 
quadwords of xmm1 and 
xmm2/mem into xmm1.

VEX.NDS.128.0F.WIG 15 /r

VUNPCKHPS xmm1,xmm2, 
xmm3/m128

RVM V/V AVX Unpacks and Interleaves 
single-precision floating-
point values from high 
quadwords of xmm2 and 
xmm3/m128.

VEX.NDS.256.0F.WIG 15 /r

VUNPCKHPS 
ymm1,ymm2,ymm3/m256

RVM V/V AVX Unpacks and Interleaves 
single-precision floating-
point values from high 
quadwords of ymm2 and 
ymm3/m256.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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When unpacking from a memory operand, an implementation may fetch only the 
appropriate 64 bits; however, alignment to 16-byte boundary and normal segment 
checking will still be enforced.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: T second source can be an XMM register or an 128-bit 
memory location. The destination is not distinct from the first source XMM register 
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit 
memory location. The destination operand is an XMM register. The upper bits 
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.

Operation

UNPCKHPS (128-bit Legacy SSE version)
DEST[31:0]  SRC1[95:64]
DEST[63:32]  SRC2[95:64]
DEST[95:64]  SRC1[127:96]
DEST[127:96]  SRC2[127:96]
DEST[VLMAX-1:128] (Unmodified)

VUNPCKHPS (VEX.128 encoded version)
DEST[31:0]  SRC1[95:64]
DEST[63:32]  SRC2[95:64]
DEST[95:64]  SRC1[127:96]
DEST[127:96]  SRC2[127:96]
DEST[VLMAX-1:128]  0

Figure 4-21.  UNPCKHPS Instruction High Unpack and Interleave Operation
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VUNPCKHPS (VEX.256 encoded version)
DEST[31:0]  SRC1[95:64]
DEST[63:32]  SRC2[95:64]
DEST[95:64]  SRC1[127:96]
DEST[127:96]  SRC2[127:96]
DEST[159:128]  SRC1[223:192]
DEST[191:160]  SRC2[223:192]
DEST[223:192]  SRC1[255:224]
DEST[255:224]  SRC2[255:224]

Intel C/C++ Compiler Intrinsic Equivalent

UNPCKHPS: __m128 _mm_unpackhi_ps(__m128 a, __m128 b)

UNPCKHPS: __m256 _mm256_unpackhi_ps (__m256 a, __m256 b);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4.
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UNPCKLPD—Unpack and Interleave Low Packed Double-Precision 
Floating-Point Values

Instruction Operand Encoding

Description

Performs an interleaved unpack of the low double-precision floating-point values 
from the source operand (second operand) and the destination operand (first 
operand). See Figure 4-22. The source operand can be an XMM register or a 128-bit 
memory location; the destination operand is an XMM register.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 14 /r

UNPCKLPD xmm1, xmm2/m128

RM V/V SSE2 Unpacks and Interleaves 
double-precision floating-
point values from low 
quadwords of xmm1 and 
xmm2/m128.

VEX.NDS.128.66.0F.WIG 14 /r

VUNPCKLPD xmm1,xmm2, 
xmm3/m128

RVM V/V AVX Unpacks and Interleaves 
double precision floating-
point values low high 
quadwords of xmm2 and 
xmm3/m128.

VEX.NDS.256.66.0F.WIG 14 /r

VUNPCKLPD ymm1,ymm2, 
ymm3/m256

RVM V/V AVX Unpacks and Interleaves 
double precision floating-
point values low high 
quadwords of ymm2 and 
ymm3/m256.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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When unpacking from a memory operand, an implementation may fetch only the 
appropriate 64 bits; however, alignment to 16-byte boundary and normal segment 
checking will still be enforced.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: T second source can be an XMM register or an 128-bit 
memory location. The destination is not distinct from the first source XMM register 
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit 
memory location. The destination operand is an XMM register. The upper bits 
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.

Operation

UNPCKLPD (128-bit Legacy SSE version)
DEST[63:0]  SRC1[63:0]
DEST[127:64]  SRC2[63:0]
DEST[VLMAX-1:128] (Unmodified)

VUNPCKLPD (VEX.128 encoded version)
DEST[63:0]  SRC1[63:0]
DEST[127:64]  SRC2[63:0]
DEST[VLMAX-1:128]  0

VUNPCKLPD (VEX.256 encoded version)
DEST[63:0]  SRC1[63:0]

Figure 4-22.  UNPCKLPD Instruction Low Unpack and Interleave Operation
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DEST[127:64]  SRC2[63:0]
DEST[191:128]  SRC1[191:128]
DEST[255:192]  SRC2[191:128]

Intel C/C++ Compiler Intrinsic Equivalent

UNPCKHPD: __m128d _mm_unpacklo_pd(__m128d a, __m128d b)

UNPCKLPD: __m256d _mm256_unpacklo_pd(__m256d a, __m256d b)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4.
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UNPCKLPS—Unpack and Interleave Low Packed Single-Precision 
Floating-Point Values 

Instruction Operand Encoding

Description

Performs an interleaved unpack of the low-order single-precision floating-point 
values from the source operand (second operand) and the destination operand (first 
operand). See Figure 4-23. The source operand can be an XMM register or a 128-bit 
memory location; the destination operand is an XMM register.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F 14 /r

UNPCKLPS xmm1, xmm2/m128

RM V/V SSE Unpacks and Interleaves 
single-precision floating-
point values from low 
quadwords of xmm1 and 
xmm2/mem into xmm1.

VEX.NDS.128.0F.WIG 14 /r

VUNPCKLPS xmm1,xmm2, 
xmm3/m128

RVM V/V AVX Unpacks and Interleaves 
single-precision floating-
point values from low 
quadwords of xmm2 and 
xmm3/m128.

VEX.NDS.256.0F.WIG 14 /r

VUNPCKLPS 
ymm1,ymm2,ymm3/m256

RVM V/V AVX Unpacks and Interleaves 
single-precision floating-
point values from low 
quadwords of ymm2 and 
ymm3/m256.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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When unpacking from a memory operand, an implementation may fetch only the 
appropriate 64 bits; however, alignment to 16-byte boundary and normal segment 
checking will still be enforced.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: T second source can be an XMM register or an 128-bit 
memory location. The destination is not distinct from the first source XMM register 
and the upper bits (255:128) of the corresponding YMM register destination are 
unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit 
memory location. The destination operand is an XMM register. The upper bits 
(255:128) of the corresponding YMM register destination are zeroed.

Operation

UNPCKLPS (128-bit Legacy SSE version)
DEST[31:0]  SRC1[31:0]
DEST[63:32]  SRC2[31:0]
DEST[95:64]  SRC1[63:32]
DEST[127:96]  SRC2[63:32]
DEST[VLMAX-1:128] (Unmodified)

VUNPCKLPS (VEX.128 encoded version)
DEST[31:0]  SRC1[31:0]
DEST[63:32]  SRC2[31:0]
DEST[95:64]  SRC1[63:32]
DEST[127:96]  SRC2[63:32]

Figure 4-23.  UNPCKLPS Instruction Low Unpack and Interleave Operation
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DEST[VLMAX-1:128]  0
UNPCKLPS (VEX.256 encoded version)
DEST[31:0]  SRC1[31:0]
DEST[63:32]  SRC2[31:0]
DEST[95:64]  SRC1[63:32]
DEST[127:96]  SRC2[63:32]
DEST[159:128]  SRC1[159:128]
DEST[191:160]  SRC2[159:128]
DEST[223:192]  SRC1[191:160]
DEST[255:224]  SRC2[191:160]

Intel C/C++ Compiler Intrinsic Equivalent

UNPCKLPS: __m128 _mm_unpacklo_ps(__m128 a, __m128 b)

UNPCKLPS: __m256 _mm256_unpacklo_ps (__m256 a, __m256 b);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4.
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VBROADCAST—Load with Broadcast

Instruction Operand Encoding

Description

Load floating point values from the source operand (second operand) and broadcast 
to all elements of the destination operand (first operand).
The destination operand is a YMM register. The source operand is either a 32-bit, 64-
bit, or 128-bit memory location. Register source encodings are reserved and will 
#UD.
VBROADCASTSD and VBROADCASTF128 are only supported as 256-bit wide 
versions. VBROADCASTSS is supported in both 128-bit and 256-bit wide versions. 
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise 
instructions will #UD.
If VBROADCASTSD or VBROADCASTF128 is encoded with VEX.L= 0, an attempt to 
execute the instruction encoded with VEX.L= 0 will cause an #UD exception.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.128.66.0F38.W0 18 /r

VBROADCASTSS xmm1, m32

RM I/V AVX Broadcast single-precision 
floating-point element in 
mem to four locations in 
xmm1.

VEX.256.66.0F38.W0 18 /r

VBROADCASTSS ymm1, m32

RM V/V AVX Broadcast single-precision 
floating-point element in 
mem to eight locations in 
ymm1.

VEX.256.66.0F38.W0 19 /r

VBROADCASTSD ymm1, m64

RM V/V AVX Broadcast double-precision 
floating-point element in 
mem to four locations in 
ymm1.

VEX.256.66.0F38.W0 1A /r

VBROADCASTF128 ymm1, m128

RM V/V AVX Broadcast 128 bits of 
floating-point data in mem 
to low and high 128-bits in 
ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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Figure 4-24.  VBROADCASTSS Operation (VEX.256 encoded version)

Figure 4-25.  VBROADCASTSS Operation (128-bit version)
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Operation

VBROADCASTSS (128 bit version)
temp  SRC[31:0]
DEST[31:0]  temp
DEST[63:32]  temp
DEST[95:64]  temp
DEST[127:96]  temp
DEST[VLMAX-1:128]  0

VBROADCASTSS (VEX.256 encoded version)

Figure 4-26.  VBROADCASTSD Operation

Figure 4-27.  VBROADCASTF128 Operation
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temp  SRC[31:0]
DEST[31:0]  temp
DEST[63:32]  temp
DEST[95:64]  temp
DEST[127:96]  temp
DEST[159:128]  temp
DEST[191:160]  temp
DEST[223:192]  temp
DEST[255:224]  temp

VBROADCASTSD (VEX.256 encoded version)
temp  SRC[63:0]
DEST[63:0]  temp
DEST[127:64]  temp
DEST[191:128]  temp
DEST[255:192]  temp

VBROADCASTF128
temp  SRC[127:0]
DEST[127:0]  temp
DEST[VLMAX-1:128]  temp

Intel C/C++ Compiler Intrinsic Equivalent

VBROADCASTSS:  __m128 _mm_broadcast_ss(float *a);

VBROADCASTSS:  __m256 _mm256_broadcast_ss(float *a);

VBROADCASTSD:  __m256d _mm256_broadcast_sd(double *a);

VBROADCASTF128:  __m256 _mm256_broadcast_ps(__m128 * a);

VBROADCASTF128:  __m256d _mm256_broadcast_pd(__m128d * a);

Flags Affected

None.

Other Exceptions
See Exceptions Type 6; additionally
#UD If VEX.L = 0 for VBROADCASTSD

If VEX.L = 0 for VBROADCASTF128
If VEX.W = 1.
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VCVTPH2PS—Convert 16-bit FP Values to Single-Precision FP Values

Instruction Operand Encoding

Description

Converts four/eight packed half precision (16-bits) floating-point values in the low-
order 64/128 bits of an XMM/YMM register or 64/128-bit memory location to 
four/eight packed single-precision floating-point values and writes the converted 
values into the destination XMM/YMM register.
If case of a denormal operand, the correct normal result is returned. MXCSR.DAZ is 
ignored and is treated as if it 0. No denormal exception is reported on MXCSR.
128-bit version: The source operand is a XMM register or 64-bit memory location. 
The destination operand is a XMM register. The upper bits (255:128) of the corre-
sponding destination YMM register are zeroed.
256-bit version: The source operand is a XMM register or 128-bit memory location. 
The destination operand is a YMM register.
 The diagram below illustrates how data is converted from four packed half precision 
(in 64 bits) to four single precision (in 128 bits) FP values.
Note: VEX.vvvv is reserved (must be 1111b).

Opcode/
Instruction

Op/ 
En

64/32
-bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.256.66.0F38.W0 13 /r RM V/V F16C Convert eight packed half 
precision (16-bit) floating-
point values in xmm2/m128 
to packed single-precision 
floating-point value in 
ymm1. 

VCVTPH2PS ymm1, xmm2/m128

VEX.128.66.0F38.W0 13 /r RM V/V F16C Convert four packed half 
precision (16-bit) floating-
point values in xmm2/m64 
to packed single-precision 
floating-point value in 
xmm1. 

VCVTPH2PS xmm1, xmm2/m64

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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Figure 4-28.  VCVTPH2PS (128-bit Version)

Operation
vCvt_h2s(SRC1[15:0])
{
RETURN Cvt_Half_Precision_To_Single_Precision(SRC1[15:0]);
}

VCVTPH2PS (VEX.256 encoded version)
DEST[31:0] vCvt_h2s(SRC1[15:0]);
DEST[63:32] vCvt_h2s(SRC1[31:16]);
DEST[95:64] vCvt_h2s(SRC1[47:32]);
DEST[127:96] vCvt_h2s(SRC1[63:48]);
DEST[159:128] vCvt_h2s(SRC1[79:64]);
DEST[191:160] vCvt_h2s(SRC1[95:80]);
DEST[223:192] vCvt_h2s(SRC1[111:96]);

DEST[255:224] vCvt_h2s(SRC1[127:112]);

VCVTPH2PS (VEX.128 encoded version) 
DEST[31:0] vCvt_h2s(SRC1[15:0]);
DEST[63:32] vCvt_h2s(SRC1[31:16]);
DEST[95:64] vCvt_h2s(SRC1[47:32]);
DEST[127:96] vCvt_h2s(SRC1[63:48]);
DEST[VLMAX-1:128] 0

Flags Affected

None

VH0VH1VH2VH3

15             031           1647           3263           4895                                64127                              96

VS0VS1VS2VS3

31                                  063                                3295                                64127                              96

convert convert

convertconvert

xmm2/mem64

xmm1

VCVTPH2PS xmm1, xmm2/mem64,  imm8
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Intel C/C++ Compiler Intrinsic Equivalent

__m128 _mm_cvtph_ps ( __m128i m1);

__m256 _mm256_cvtph_ps ( __m128i m1)

SIMD Floating-Point Exceptions
Invalid

Other Exceptions
Exceptions Type 11 (do not report #AC); additionally
#UD If VEX.W=1.
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VCVTPS2PH—Convert Single-Precision FP value to 16-bit FP value

Instruction Operand Encoding

Description

Convert four or eight packed single-precision floating values in first source operand 
to four or eight packed half-precision (16-bit) floating-point values. The rounding 
mode is specified using the immediate field (imm8).
Underflow results (i.e. tiny results) are converted to denormals. MXCSR.FTZ is 
ignored. If a source element is denormal relative to input format with DM masked 
and at least one of PM or UM unmasked; a SIMD exception will be raised with DE, UE 
and PE set.
128-bit version: The source operand is a XMM register. The destination operand is a 
XMM register or 64-bit memory location. If destination operand is a register then the 
upper bits (255:64) of corresponding YMM register are zeroed.
256-bit version: The source operand is a YMM register. The destination operand is a 
XMM register or 128-bit memory location. If the destination operand is a register, the 
upper bits (255:128) of the corresponding YMM register are zeroed.
Note: VEX.vvvv is reserved (must be 1111b).

Opcode/
Instruction

Op/ 
En

64/32
-bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.256.66.0F3A.W0 1D /r ib MR V/V F16C Convert eight packed 
single-precision float-
ing-point value in ymm2 
to packed half-preci-
sion (16-bit) floating-
point value in 
xmm1/mem. Imm8 pro-
vides rounding controls.

VCVTPS2PH xmm1/m128, ymm2,  imm8

VEX.128.66.0F3A.W0.1D /r ib MR V/V F16C Convert four packed 
single-precision float-
ing-point value in xmm2 
to packed half-preci-
sion (16-bit) floating-
point value in 
xmm1/mem. Imm8 pro-
vides rounding controls.

VCVTPS2PH xmm1/m64, xmm2,  imm8

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (w) ModRM:reg (r) NA NA
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The diagram below illustrates how data is converted from four packed single preci-
sion (in 128 bits) to four half precision (in 64 bits) FP values.

Figure 4-29.  VCVTPS2PH (128-bit Version)

The immediate byte defines several bit fields that controls rounding operation. The
effect and encoding of RC field are listed in Table 4-21.

Operation
vCvt_s2h(SRC1[31:0])
{
IF Imm[2] = 0
THEN // using Imm[1:0] for rounding control, see Table 4-21

RETURN Cvt_Single_Precision_To_Half_Precision_FP_Imm(SRC1[31:0]);
ELSE // using MXCSR.RC for rounding control

RETURN Cvt_Single_Precision_To_Half_Precision_FP_Mxcsr(SRC1[31:0]);
FI;

Table 4-21.  Immediate Byte Encoding for 16-bit Floating-Point Conversion 
Instructions

Bits Field Name/value Description Comment

Imm[1:0] RC=00B Round to nearest even If Imm[2] = 0

RC=01B Round down

RC=10B Round up

RC=11B Truncate

Imm[2] MS1=0 Use imm[1:0] for round-
ing

Ignore MXCSR.RC 

MS1=1 Use MXCSR.RC for round-
ing

Imm[7:3] Ignored Ignored by processor

VH0VH1VH2VH3

15             031           1647           3263           4895                                64127                              96

VS0VS1VS2VS3

31                                  063                                3295                                64127                              96

xmm1/mem64

xmm2

VCVTPS2PH xmm1/mem64, xmm2,  imm8

convertconvert convertconvert
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}

VCVTPS2PH (VEX.256 encoded version)
DEST[15:0]  vCvt_s2h(SRC1[31:0]);
DEST[31:16]  vCvt_s2h(SRC1[63:32]);
DEST[47:32]  vCvt_s2h(SRC1[95:64]);
DEST[63:48]  vCvt_s2h(SRC1[127:96]);
DEST[79:64]  vCvt_s2h(SRC1[159:128]);
DEST[95:80]  vCvt_s2h(SRC1[191:160]);
DEST[111:96]  vCvt_s2h(SRC1[223:192]);
DEST[127:112]  vCvt_s2h(SRC1[255:224]);
DEST[255:128]  0

VCVTPS2PH (VEX.128 encoded version) 
DEST[15:0]  vCvt_s2h(SRC1[31:0]);
DEST[31:16]  vCvt_s2h(SRC1[63:32]);
DEST[47:32]  vCvt_s2h(SRC1[95:64]);
DEST[63:48]  vCvt_s2h(SRC1[127:96]);
DEST[VLMAX-1:64] 0

Flags Affected

None

Intel C/C++ Compiler Intrinsic Equivalent

__m128i _mm_cvtps_ph ( __m128 m1, const int imm);

__m128i _mm256_cvtps_ph(__m256 m1, const int imm);

SIMD Floating-Point Exceptions
Invalid, Underflow, Overflow, Precision, Denormal (if MXCSR.DAZ=0);

Other Exceptions
Exceptions Type 11 (do not report #AC); additionally
#UD If VEX.W=1.
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VERR/VERW—Verify a Segment for Reading or Writing

Instruction Operand Encoding

Description

Verifies whether the code or data segment specified with the source operand is read-
able (VERR) or writable (VERW) from the current privilege level (CPL). The source 
operand is a 16-bit register or a memory location that contains the segment selector 
for the segment to be verified. If the segment is accessible and readable (VERR) or 
writable (VERW), the ZF flag is set; otherwise, the ZF flag is cleared. Code segments 
are never verified as writable. This check cannot be performed on system segments. 

To set the ZF flag, the following conditions must be met:
• The segment selector is not NULL.
• The selector must denote a descriptor within the bounds of the descriptor table 

(GDT or LDT).
• The selector must denote the descriptor of a code or data segment (not that of a 

system segment or gate).
• For the VERR instruction, the segment must be readable.
• For the VERW instruction, the segment must be a writable data segment.
• If the segment is not a conforming code segment, the segment’s DPL must be 

greater than or equal to (have less or the same privilege as) both the CPL and the 
segment selector's RPL.

The validation performed is the same as is performed when a segment selector is 
loaded into the DS, ES, FS, or GS register, and the indicated access (read or write) is 
performed. The segment selector's value cannot result in a protection exception, 
enabling the software to anticipate possible segment access problems.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode. The 
operand size is fixed at 16 bits.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 00 /4 VERR r/m16 M Valid Valid Set ZF=1 if segment 
specified with r/m16 can be 
read.

0F 00 /5 VERW r/m16 M Valid Valid Set ZF=1 if segment 
specified with r/m16 can be 
written.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA
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Operation

IF SRC(Offset) > (GDTR(Limit) or (LDTR(Limit))
THEN ZF ← 0; FI;

Read segment descriptor;

IF SegmentDescriptor(DescriptorType) = 0 (* System segment *)
or (SegmentDescriptor(Type) ≠ conforming code segment) 
and (CPL > DPL) or (RPL > DPL)

THEN
ZF ← 0;

ELSE
IF ((Instruction = VERR) and (Segment readable))
or ((Instruction = VERW) and (Segment writable))

THEN 
ZF ← 1;

FI;
FI;

Flags Affected

The ZF flag is set to 1 if the segment is accessible and readable (VERR) or writable 
(VERW); otherwise, it is set to 0.

Protected Mode Exceptions

The only exceptions generated for these instructions are those related to illegal 
addressing of the source operand.
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it 
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD The VERR and VERW instructions are not recognized in real-

address mode.
If the LOCK prefix is used.
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Virtual-8086 Mode Exceptions
#UD The VERR and VERW instructions are not recognized in virtual-

8086 mode.
If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
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VEXTRACTF128 — Extract Packed Floating-Point Values

Instruction Operand Encoding

Description

Extracts 128-bits of packed floating-point values from the source operand (second 
operand) at an 128-bit offset from imm8[0] into the destination operand (first 
operand). The destination may be either an XMM register or an 128-bit memory loca-
tion.
VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
The high 7 bits of the immediate are ignored.
If VEXTRACTF128 is encoded with VEX.L= 0, an attempt to execute the instruction 
encoded with VEX.L= 0 will cause an #UD exception.

Operation

VEXTRACTF128 (memory destination form)
CASE (imm8[0]) OF

0: DEST[127:0]  SRC1[127:0]
1: DEST[127:0]  SRC1[255:128]

ESAC.

VEXTRACTF128 (register destination form)
CASE (imm8[0]) OF

0: DEST[127:0]  SRC1[127:0]
1: DEST[127:0]  SRC1[255:128]

ESAC.
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

VEXTRACTF128:  __m128 _mm256_extractf128_ps (__m256 a, int offset);

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.256.66.0F3A.W0 19 /r ib

VEXTRACTF128 xmm1/m128, 
ymm2, imm8

MR V/V AVX Extract 128 bits of packed 
floating-point values from 
ymm2 and store results in 
xmm1/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (w) ModRM:reg (r) NA NA
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VEXTRACTF128:  __m128d _mm256_extractf128_pd (__m256d a, int offset);

VEXTRACTF128:  __m128i_mm256_extractf128_si256(__m256i a, int offset);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 6; additionally
#UD If VEX.L= 0

If VEX.W=1.
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VINSERTF128 — Insert Packed Floating-Point Values

Instruction Operand Encoding

Description

Performs an insertion of 128-bits of packed floating-point values from the second 
source operand (third operand) into an the destination operand (first operand) at an 
128-bit offset from imm8[0]. The remaining portions of the destination are written 
by the corresponding fields of the first source operand (second operand). The second 
source operand can be either an XMM register or a 128-bit memory location.
The high 7 bits of the immediate are ignored.

Operation

TEMP[255:0]  SRC1[255:0]
CASE (imm8[0]) OF

0: TEMP[127:0]  SRC2[127:0]
1: TEMP[255:128]  SRC2[127:0]

ESAC
DEST TEMP

Intel C/C++ Compiler Intrinsic Equivalent

INSERTF128:  __m256 _mm256_insertf128_ps (__m256 a, __m128 b, int offset);

INSERTF128:  __m256d _mm256_insertf128_pd (__m256d a, __m128d b, int offset);

INSERTF128:  __m256i _mm256_insertf128_si256 (__m256i a, __m128i b, int offset);

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.NDS.256.66.0F3A.W0 18 /r ib

VINSERTF128 ymm1, ymm2, 
xmm3/m128, imm8

RVM V/V AVX Insert a single precision 
floating-point value 
selected by imm8 from 
xmm2/m32 into xmm1 at 
the specified destination 
element specified by imm8 
and zero out destination 
elements in xmm1 as 
indicated in imm8.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 6; additionally
#UD If VEX.W = 1.
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VMASKMOV—Conditional SIMD Packed Loads and Stores

Instruction Operand Encoding

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.NDS.128.66.0F38.W0 2C /r

VMASKMOVPS xmm1, xmm2, m128

RVM V/V AVX Conditionally load packed 
single-precision values from 
m128 using mask in xmm2 
and store in xmm1.

VEX.NDS.256.66.0F38.W0 2C /r

VMASKMOVPS ymm1, ymm2, m256

RVM V/V AVX Conditionally load packed 
single-precision values from 
m256 using mask in ymm2 
and store in ymm1.

VEX.NDS.128.66.0F38.W0 2D /r

VMASKMOVPD xmm1, xmm2, m128

RVM V/V AVX Conditionally load packed 
double-precision values 
from m128 using mask in 
xmm2 and store in xmm1.

VEX.NDS.256.66.0F38.W0 2D /r

VMASKMOVPD ymm1, ymm2, m256

RVM V/V AVX Conditionally load packed 
double-precision values 
from m256 using mask in 
ymm2 and store in ymm1.

VEX.NDS.128.66.0F38.W0 2E /r

VMASKMOVPS m128, xmm1, xmm2

MVR V/V AVX Conditionally store packed 
single-precision values from 
xmm2 using mask in xmm1.

VEX.NDS.256.66.0F38.W0 2E /r

VMASKMOVPS m256, ymm1, ymm2

MVR V/V AVX Conditionally store packed 
single-precision values from 
ymm2 using mask in ymm1.

VEX.NDS.128.66.0F38.W0 2F /r

VMASKMOVPD m128, xmm1, xmm2

MVR V/V AVX Conditionally store packed 
double-precision values 
from xmm2 using mask in 
xmm1.

VEX.NDS.256.66.0F38.W0 2F /r

VMASKMOVPD m256, ymm1, ymm2

MVR V/V AVX Conditionally store packed 
double-precision values 
from ymm2 using mask in 
ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

MVR ModRM:r/m (w) VEX.vvvv (r) ModRM:reg (r) NA
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Description

Conditionally moves packed data elements from the second source operand into the 
corresponding data element of the destination operand, depending on the mask bits 
associated with each data element. The mask bits are specified in the first source 
operand. 
The mask bit for each data element is the most significant bit of that element in the 
first source operand. If a mask is 1, the corresponding data element is copied from 
the second source operand to the destination operand. If the mask is 0, the corre-
sponding data element is set to zero in the load form of these instructions, and 
unmodified in the store form. 
The second source operand is a memory address for the load form of these instruc-
tion. The destination operand is a memory address for the store form of these 
instructions. The other operands are both XMM registers (for VEX.128 version) or 
YMM registers (for VEX.256 version).
Faults occur only due to mask-bit required memory accesses that caused the faults. 
Faults will not occur due to referencing any memory location if the corresponding 
mask bit for that memory location is 0. For example, no faults will be detected if the 
mask bits are all zero.
Unlike previous MASKMOV instructions (MASKMOVQ and MASKMOVDQU), a nontem-
poral hint is not applied to these instructions.
Instruction behavior on alignment check reporting with mask bits of less than all 1s 
are the same as with mask bits of all 1s.
VMASKMOV should not be used to access memory mapped I/O and un-cached 
memory as the access and the ordering of the individual loads or stores it does is 
implementation specific. 
In cases where mask bits indicate data should not be loaded or stored paging A and 
D bits will be set in an implementation dependent way. However, A and D bits are 
always set for pages where data is actually loaded/stored.
Note: for load forms, the first source (the mask) is encoded in VEX.vvvv; the second 
source is encoded in rm_field, and the destination register is encoded in reg_field.
Note: for store forms, the first source (the mask) is encoded in VEX.vvvv; the second 
source register is encoded in reg_field, and the destination memory location is 
encoded in rm_field.

Operation

VMASKMOVPS -128-bit load 
DEST[31:0]  IF (SRC1[31]) Load_32(mem) ELSE 0 
DEST[63:32]  IF (SRC1[63]) Load_32(mem + 4) ELSE 0 
DEST[95:64]  IF (SRC1[95]) Load_32(mem + 8) ELSE 0 
DEST[127:97]  IF (SRC1[127]) Load_32(mem + 12) ELSE 0 
DEST[VLMAX-1:128]  0
DEST[31:0]  IF (SRC1[31]) Load_32(mem) ELSE 0 
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DEST[63:32]  IF (SRC1[63]) Load_32(mem + 4) ELSE 0 
DEST[95:64]  IF (SRC1[95]) Load_32(mem + 8) ELSE 0 
DEST[127:96]  IF (SRC1[127]) Load_32(mem + 12) ELSE 0 
DEST[159:128]  IF (SRC1[159]) Load_32(mem + 16) ELSE 0 
DEST[191:160]  IF (SRC1[191]) Load_32(mem + 20) ELSE 0 
DEST[223:192]  IF (SRC1[223]) Load_32(mem + 24) ELSE 0 
DEST[255:224]  IF (SRC1[255]) Load_32(mem + 28) ELSE 0 

VMASKMOVPD - 128-bit load 
DEST[63:0]  IF (SRC1[63]) Load_64(mem) ELSE 0 
DEST[127:64]  IF (SRC1[127]) Load_64(mem + 16) ELSE 0
DEST[VLMAX-1:128]  0

VMASKMOVPD - 256-bit load
DEST[63:0]  IF (SRC1[63]) Load_64(mem) ELSE 0 
DEST[127:64]  IF (SRC1[127]) Load_64(mem + 8) ELSE 0 
DEST[195:128]  IF (SRC1[191]) Load_64(mem + 16) ELSE 0 
DEST[255:196]  IF (SRC1[255]) Load_64(mem + 24) ELSE 0 

VMASKMOVPS - 128-bit store
IF (SRC1[31]) DEST[31:0]  SRC2[31:0] 
IF (SRC1[63]) DEST[63:32]  SRC2[63:32] 
IF (SRC1[95]) DEST[95:64]  SRC2[95:64] 
IF (SRC1[127]) DEST[127:96]  SRC2[127:96] 

VMASKMOVPS - 256-bit store
IF (SRC1[31]) DEST[31:0]  SRC2[31:0] 
IF (SRC1[63]) DEST[63:32]  SRC2[63:32] 
IF (SRC1[95]) DEST[95:64]  SRC2[95:64] 
IF (SRC1[127]) DEST[127:96]  SRC2[127:96] 
IF (SRC1[159]) DEST[159:128] SRC2[159:128] 
IF (SRC1[191]) DEST[191:160]  SRC2[191:160] 
IF (SRC1[223]) DEST[223:192]  SRC2[223:192] 
IF (SRC1[255]) DEST[255:224]  SRC2[255:224] 

VMASKMOVPD - 128-bit store
IF (SRC1[63]) DEST[63:0]  SRC2[63:0] 
IF (SRC1[127]) DEST[127:64] SRC2[127:64] 

VMASKMOVPD - 256-bit store
IF (SRC1[63]) DEST[63:0]  SRC2[63:0] 
IF (SRC1[127]) DEST[127:64] SRC2[127:64] 
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VMASKMOVPS - 256-bit load
IF (SRC1[191]) DEST[191:128]  SRC2[191:128] 
IF (SRC1[255]) DEST[255:192]  SRC2[255:192] 

Intel C/C++ Compiler Intrinsic Equivalent

__m256  _mm256_maskload_ps(float const *a, __m256i mask)

void    _mm256_maskstore_ps(float *a, __m256i mask, __m256 b)

__m256d _mm256_maskload_pd(double *a, __m256i mask);

void    _mm256_maskstore_pd(double *a, __m256i mask, __m256d b);

__m128 _mm128_maskload_ps(float const *a, __m128i mask)

void    _mm128_maskstore_ps(float *a, __m128i mask, __m128 b)

__m128d _mm128_maskload_pd(double *a, __m128i mask);

void    _mm128_maskstore_pd(double *a, __m128i mask, __m128d b);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 6 (No AC# reported for any mask bit combinations);
additionally
#UD If VEX.W = 1.
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VPERMILPD — Permute Double-Precision Floating-Point Values

Instruction Operand Encoding

Description

Permute double-precision floating-point values in the first source operand (second 
operand) using 8-bit control fields in the low bytes of the second source operand 
(third operand) and store results in the destination operand (first operand). The first 
source operand is a YMM register, the second source operand is a YMM register or a 
256-bit memory location, and the destination operand is a YMM register.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

VEX.NDS.128.66.0F38.W0 0D /r
VPERMILPD xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Permute double-precision 
floating-point values in 
xmm2 using controls from 
xmm3/mem and store result 
in xmm1.

VEX.NDS.256.66.0F38.W0 0D /r
VPERMILPD ymm1, ymm2, 
ymm3/m256

RVM V/V AVX Permute double-precision 
floating-point values in 
ymm2 using controls from 
ymm3/mem and store result 
in ymm1.

VEX.128.66.0F3A.W0 05 /r ib
VPERMILPD xmm1, xmm2/m128, 
imm8

RMI V/V AVX Permute double-precision 
floating-point values in 
xmm2/mem using controls 
from imm8.

VEX.256.66.0F3A.W0 05 /r ib
VPERMILPD ymm1, ymm2/m256, 
imm8

RMI V/V AVX Permute double-precision 
floating-point values in 
ymm2/mem using controls 
from imm8.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

RMI ModRM:reg (w) ModRM:r/m (r) imm8 NA
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Figure 4-30.  VPERMILPD operation

There is one control byte per destination double-precision element. Each control byte 
is aligned with the low 8 bits of the corresponding double-precision destination 
element. Each control byte contains a 1-bit select field (see Figure 4-31) that deter-
mines which of the source elements are selected. Source elements are restricted to 
lie in the same source 128-bit region as the destination.

Figure 4-31.  VPERMILPD Shuffle Control

(immediate control version)
Permute double-precision floating-point values in the first source operand (second 
operand) using two, 1-bit control fields in the low 2 bits of the 8-bit immediate and 
store results in the destination operand (first operand). The source operand is a YMM 
register or 256-bit memory location and the destination operand is a YMM register. 
Note: For the VEX.128.66.0F3A 05 instruction version, VEX.vvvv is reserved and 
must be 1111b otherwise instruction will #UD.
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Note: For the VEX.256.66.0F3A 05 instruction version, VEX.vvvv is reserved and 
must be 1111b otherwise instruction will #UD.

Operation

VPERMILPD (256-bit immediate version)
IF (imm8[0] = 0) THEN DEST[63:0]SRC1[63:0]
IF (imm8[0] = 1) THEN DEST[63:0]SRC1[127:64]
IF (imm8[1] = 0) THEN DEST[127:64]SRC1[63:0]
IF (imm8[1] = 1) THEN DEST[127:64]SRC1[127:64]
IF (imm8[2] = 0) THEN DEST[191:128]SRC1[191:128]
IF (imm8[2] = 1) THEN DEST[191:128]SRC1[255:192]
IF (imm8[3] = 0) THEN DEST[255:192]SRC1[191:128]
IF (imm8[3] = 1) THEN DEST[255:192]SRC1[255:192]

VPERMILPD (128-bit immediate version)
IF (imm8[0] = 0) THEN DEST[63:0]SRC1[63:0]
IF (imm8[0] = 1) THEN DEST[63:0]SRC1[127:64]
IF (imm8[1] = 0) THEN DEST[127:64]SRC1[63:0]
IF (imm8[1] = 1) THEN DEST[127:64]SRC1[127:64]
DEST[VLMAX-1:128]  0

VPERMILPD (256-bit variable version)
IF (SRC2[1] = 0) THEN DEST[63:0]SRC1[63:0]
IF (SRC2[1] = 1) THEN DEST[63:0]SRC1[127:64]
IF (SRC2[65] = 0) THEN DEST[127:64]SRC1[63:0]
IF (SRC2[65] = 1) THEN DEST[127:64]SRC1[127:64]
IF (SRC2[129] = 0) THEN DEST[191:128]SRC1[191:128]
IF (SRC2[129] = 1) THEN DEST[191:128]SRC1[255:192]
IF (SRC2[193] = 0) THEN DEST[255:192]SRC1[191:128]
IF (SRC2[193] = 1) THEN DEST[255:192]SRC1[255:192]

VPERMILPD (128-bit variable version)
IF (SRC2[1] = 0) THEN DEST[63:0]SRC1[63:0]
IF (SRC2[1] = 1) THEN DEST[63:0]SRC1[127:64]
IF (SRC2[65] = 0) THEN DEST[127:64]SRC1[63:0]
IF (SRC2[65] = 1) THEN DEST[127:64]SRC1[127:64]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

VPERMILPD:  __m128d _mm_permute_pd (__m128d a, int control)

VPERMILPD:  __m256d _mm256_permute_pd (__m256d a, int control)
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VPERMILPD:  __m128d _mm_permutevar_pd (__m128d a, __m128i control);

VPERMILPD:  __m256d _mm256_permutevar_pd (__m256d a, __m256i control);

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 6; additionally
#UD If VEX.W = 1
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VPERMILPS — Permute Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

(variable control version)
Permute single-precision floating-point values in the first source operand (second 
operand) using 8-bit control fields in the low bytes of corresponding elements the 
shuffle control (third operand) and store results in the destination operand (first 
operand). The first source operand is a YMM register, the second source operand is a 
YMM register or a 256-bit memory location, and the destination operand is a YMM 
register.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

VEX.NDS.128.66.0F38.W0 0C /r
VPERMILPS xmm1, xmm2, 
xmm3/m128

RVM V/V AVX Permute single-precision 
floating-point values in 
xmm2 using controls from 
xmm3/mem and store result 
in xmm1.

VEX.128.66.0F3A.W0 04 /r ib
VPERMILPS xmm1, xmm2/m128, 
imm8

RMI V/V AVX Permute single-precision 
floating-point values in 
xmm2/mem using controls 
from imm8 and store result 
in xmm1.

VEX.NDS.256.66.0F38.W0 0C /r 
VPERMILPS ymm1, ymm2, 
ymm3/m256

RVM V/V AVX Permute single-precision 
floating-point values in 
ymm2 using controls from 
ymm3/mem and store result 
in ymm1.

VEX.256.66.0F3A.W0 04 /r ib
VPERMILPS ymm1, ymm2/m256, 
imm8

RMI V/V AVX Permute single-precision 
floating-point values in 
ymm2/mem using controls 
from imm8 and store result 
in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

RMI ModRM:reg (w) ModRM:r/m (r) imm8 NA
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Figure 4-32.  VPERMILPS Operation

There is one control byte per destination single-precision element. Each control byte 
is aligned with the low 8 bits of the corresponding single-precision destination 
element. Each control byte contains a 2-bit select field (see Figure 4-33) that deter-
mines which of the source elements are selected. Source elements are restricted to 
lie in the same source 128-bit region as the destination.

Figure 4-33.  VPERMILPS Shuffle Control

(immediate control version)
Permute single-precision floating-point values in the first source operand (second 
operand) using four 2-bit control fields in the 8-bit immediate and store results in the 
destination operand (first operand). The source operand is a YMM register or 256-bit 
memory location and the destination operand is a YMM register. This is similar to a 
wider version of PSHUFD, just operating on single-precision floating-point values.
Note: For the VEX.128.66.0F3A 04 instruction version, VEX.vvvv is reserved and 
must be 1111b otherwise instruction will #UD.

X7 .. X4 X7 .. X4 X3 ..X0 X3 .. X0DEST

SRC1 X0X1X2X3X4X5X6X7

X3 .. X0X7 .. X4 X7 .. X4 X3 ..X0

sel 

Bit
34 33 32

sel . . .

226 225 224

sel ignored

Control Field 1Control Field 2Control Field 7

1 0255

ignored ignored

63 31
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Note: For the VEX.256.66.0F3A 04 instruction version, VEX.vvvv is reserved and 
must be 1111b otherwise instruction will #UD.

Operation

Select4(SRC, control) {
CASE (control[1:0]) OF

0: TMP  SRC[31:0];
1: TMP  SRC[63:32];
2: TMP  SRC[95:64];
3: TMP  SRC[127:96];

ESAC;
RETURN TMP
}

VPERMILPS (256-bit immediate version)
DEST[31:0]  Select4(SRC1[127:0], imm8[1:0]);
DEST[63:32]  Select4(SRC1[127:0], imm8[3:2]);
DEST[95:64]  Select4(SRC1[127:0], imm8[5:4]);
DEST[127:96]  Select4(SRC1[127:0], imm8[7:6]);
DEST[159:128]  Select4(SRC1[255:128], imm8[1:0]);
DEST[191:160]  Select4(SRC1[255:128], imm8[3:2]);
DEST[223:192]  Select4(SRC1[255:128], imm8[5:4]);
DEST[255:224]  Select4(SRC1[255:128], imm8[7:6]);

VPERMILPS (128-bit immediate version)
DEST[31:0]  Select4(SRC1[127:0], imm8[1:0]);
DEST[63:32]  Select4(SRC1[127:0], imm8[3:2]);
DEST[95:64]  Select4(SRC1[127:0], imm8[5:4]);
DEST[127:96]  Select4(SRC1[127:0], imm8[7:6]);
DEST[VLMAX-1:128]  0

VPERMILPS (256-bit variable version)
DEST[31:0]  Select4(SRC1[127:0], SRC2[1:0]);
DEST[63:32]  Select4(SRC1[127:0], SRC2[33:32]);
DEST[95:64]  Select4(SRC1[127:0], SRC2[65:64]);
DEST[127:96]  Select4(SRC1[127:0], SRC2[97:96]);
DEST[159:128]  Select4(SRC1[255:128], SRC2[129:128]);
DEST[191:160]  Select4(SRC1[255:128], SRC2[161:160]);
DEST[223:192]  Select4(SRC1[255:128], SRC2[193:192]);
DEST[255:224]  Select4(SRC1[255:128], SRC2[225:224]);

VPERMILPS (128-bit variable version)
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DEST[31:0]  Select4(SRC1[127:0], SRC2[1:0]);
DEST[63:32]  Select4(SRC1[127:0], SRC2[33:32]);
DEST[95:64]  Select4(SRC1[127:0], SRC2[65:64]);
DEST[127:96]  Select4(SRC1[127:0], SRC2[97:96]);
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

VPERM1LPS:  __m128 _mm_permute_ps (__m128 a, int control);

VPERM1LPS:  __m256 _mm256_permute_ps (__m256 a, int control);

VPERM1LPS:  __m128 _mm_permutevar_ps (__m128 a, __m128i control);

VPERM1LPS:  __m256 _mm256_permutevar_ps (__m256 a, __m256i control);

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 6; additionally
#UD If VEX.W = 1.
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VPERM2F128 — Permute Floating-Point Values

Instruction Operand Encoding

Description

Permute 128 bit floating-point-containing fields from the first source operand 
(second operand) and second source operand (third operand) using bits in the 8-bit 
immediate and store results in the destination operand (first operand). The first 
source operand is a YMM register, the second source operand is a YMM register or a 
256-bit memory location, and the destination operand is a YMM register.

Figure 4-34.  VPERM2F128 Operation

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

VEX.NDS.256.66.0F3A.W0 06 /r ib
VPERM2F128 ymm1, ymm2, 
ymm3/m256, imm8

RVMI V/V AVX Permute 128-bit floating-
point fields in ymm2 and 
ymm3/mem using controls 
from imm8 and store result 
in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8

DEST

SRC1 X0X1

X0, X1, Y0, or Y1

Y0Y1

X0, X1, Y0, or Y1

SRC2
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Imm8[1:0] select the source for the first destination 128-bit field, imm8[5:4] select 
the source for the second destination field. If imm8[3] is set, the low 128-bit field is 
zeroed. If imm8[7] is set, the high 128-bit field is zeroed.
VEX.L must be 1, otherwise the instruction will #UD.

Operation

VPERM2F128
CASE IMM8[1:0] of 
0: DEST[127:0]  SRC1[127:0]
1: DEST[127:0]  SRC1[255:128]
2: DEST[127:0]  SRC2[127:0]
3: DEST[127:0]  SRC2[255:128]
ESAC

CASE IMM8[5:4] of 
0: DEST[255:128]  SRC1[127:0]
1: DEST[255:128]  SRC1[255:128]
2: DEST[255:128]  SRC2[127:0]
3: DEST[255:128]  SRC2[255:128]
ESAC
IF (imm8[3])
DEST[127:0]  0
FI

IF (imm8[7])
DEST[VLMAX-1:128]  0
FI

Intel C/C++ Compiler Intrinsic Equivalent

VPERM2F128:  __m256 _mm256_permute2f128_ps (__m256 a, __m256 b, int control)

VPERM2F128:  __m256d _mm256_permute2f128_pd (__m256d a, __m256d b, int control)

VPERM2F128:  __m256i _mm256_permute2f128_si256 (__m256i a, __m256i b, int control)

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 6; additionally
#UD If VEX.L = 0
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If VEX.W = 1.
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VTESTPD/VTESTPS—Packed Bit Test

Instruction Operand Encoding

Description

VTESTPS performs a bitwise comparison of all the sign bits of the packed single-
precision elements in the first source operation and corresponding sign bits in the 
second source operand. If the AND of the source sign bits with the dest sign bits 
produces all zeros, the ZF is set else the ZF is clear. If the AND of the source sign bits 
with the inverted dest sign bits produces all zeros the CF is set else the CF is clear. An 
attempt to execute VTESTPS with VEX.W=1 will cause #UD.
VTESTPD performs a bitwise comparison of all the sign bits of the double-precision 
elements in the first source operation and corresponding sign bits in the second 
source operand. If the AND of the source sign bits with the dest sign bits produces all 
zeros, the ZF is set else the ZF is clear. If the AND the source sign bits with the 
inverted dest sign bits produces all zeros the CF is set else the CF is clear. An attempt 
to execute VTESTPS with VEX.W=1 will cause #UD.
The first source register is specified by the ModR/M reg field.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

VEX.128.66.0F38.W0 0E /r
VTESTPS xmm1, xmm2/m128

RM V/V AVX Set ZF and CF depending on 
sign bit AND and ANDN of 
packed single-precision 
floating-point sources.

VEX.256.66.0F38.W0 0E /r
VTESTPS ymm1, ymm2/m256

RM V/V AVX Set ZF and CF depending on 
sign bit AND and ANDN of 
packed single-precision 
floating-point sources.

VEX.128.66.0F38.W0 0F /r
VTESTPD xmm1, xmm2/m128

RM V/V AVX Set ZF and CF depending on 
sign bit AND and ANDN of 
packed double-precision 
floating-point sources.

VEX.256.66.0F38.W0 0F /r
VTESTPD ymm1, ymm2/m256

RM V/V AVX Set ZF and CF depending on 
sign bit AND and ANDN of 
packed double-precision 
floating-point sources.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) NA NA
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128-bit version: The first source register is an XMM register. The second source 
register can be an XMM register or a 128-bit memory location. The destination 
register is not modified.
VEX.256 encoded version: The first source register is a YMM register. The second 
source register can be a YMM register or a 256-bit memory location. The destination 
register is not modified.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise 
instructions will #UD.

Operation

VTESTPS (128-bit version)
TEMP[127:0]  SRC[127:0] AND DEST[127:0]
IF (TEMP[31] = TEMP[63] = TEMP[95] = TEMP[127] = 0)

THEN ZF 1;
ELSE ZF  0;

TEMP[127:0]  SRC[127:0] AND NOT DEST[127:0]
IF (TEMP[31] = TEMP[63] = TEMP[95] = TEMP[127] = 0)

THEN CF 1;
ELSE CF  0;

DEST (unmodified)
AF  OF  PF  SF  0;

VTESTPS (VEX.256 encoded version)
TEMP[255:0]  SRC[255:0] AND DEST[255:0]
IF (TEMP[31] = TEMP[63] = TEMP[95] = TEMP[127]= TEMP[160] =TEMP[191] = TEMP[224] = 
TEMP[255] = 0)

THEN ZF 1;
ELSE ZF  0;

TEMP[255:0]  SRC[255:0] AND NOT DEST[255:0]
IF (TEMP[31] = TEMP[63] = TEMP[95] = TEMP[127]= TEMP[160] =TEMP[191] = TEMP[224] = 
TEMP[255] = 0)

THEN CF 1;
ELSE CF  0;

DEST (unmodified)
AF  OF  PF  SF  0;

VTESTPD (128-bit version)
TEMP[127:0]  SRC[127:0] AND DEST[127:0]
IF ( TEMP[63] = TEMP[127] = 0)

THEN ZF 1;
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ELSE ZF  0;

TEMP[127:0]  SRC[127:0] AND NOT DEST[127:0]
IF ( TEMP[63] = TEMP[127] = 0)

THEN CF 1;
ELSE CF  0;

DEST (unmodified)
AF  OF  PF  SF  0;

VTESTPD (VEX.256 encoded version)
TEMP[255:0]  SRC[255:0] AND DEST[255:0]
IF (TEMP[63] = TEMP[127] = TEMP[191] = TEMP[255] = 0)

THEN ZF 1;
ELSE ZF  0;

TEMP[255:0]  SRC[255:0] AND NOT DEST[255:0]
IF (TEMP[63] = TEMP[127] = TEMP[191] = TEMP[255] = 0)

THEN CF 1;
ELSE CF  0;

DEST (unmodified)
AF  OF  PF  SF  0;

Intel C/C++ Compiler Intrinsic Equivalent

VTESTPS

int _mm256_testz_ps (__m256 s1, __m256 s2);

int _mm256_testc_ps (__m256 s1, __m256 s2);

int _mm256_testnzc_ps (__m256 s1, __m128 s2);

int _mm_testz_ps (__m128 s1, __m128 s2);

int _mm_testc_ps (__m128 s1, __m128 s2);

int _mm_testnzc_ps (__m128 s1, __m128 s2);

VTESTPD

int _mm256_testz_pd (__m256d s1, __m256d s2);

int _mm256_testc_pd (__m256d s1, __m256d s2);

int _mm256_testnzc_pd (__m256d s1, __m256d s2);
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int _mm_testz_pd (__m128d s1, __m128d s2);

int _mm_testc_pd (__m128d s1, __m128d s2);

int _mm_testnzc_pd (__m128d s1, __m128d s2);

Flags Affected

The 0F, AF, PF, SF flags are cleared and the ZF, CF flags are set according to the oper-
ation.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.vvvv != 1111B.

If VEX.W = 1 for VTESTPS or VTESTPD.
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VZEROALL—Zero All YMM Registers

Instruction Operand Encoding

Description

The instruction zeros contents of all XMM or YMM registers.
Note: VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD. In 
Compatibility and legacy 32-bit mode only the lower 8 registers are modified.

Operation

VZEROALL (VEX.256 encoded version)
IF (64-bit mode)

YMM0[VLMAX-1:0]  0
YMM1[VLMAX-1:0]  0
YMM2[VLMAX-1:0]  0
YMM3[VLMAX-1:0]  0
YMM4[VLMAX-1:0]  0
YMM5[VLMAX-1:0]  0
YMM6[VLMAX-1:0]  0
YMM7[VLMAX-1:0]  0
YMM8[VLMAX-1:0]  0
YMM9[VLMAX-1:0]  0
YMM10[VLMAX-1:0]  0
YMM11[VLMAX-1:0]  0
YMM12[VLMAX-1:0]  0
YMM13[VLMAX-1:0]  0
YMM14[VLMAX-1:0]  0
YMM15[VLMAX-1:0]  0

ELSE
YMM0[VLMAX-1:0]  0
YMM1[VLMAX-1:0]  0
YMM2[VLMAX-1:0]  0

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

VEX.256.0F.WIG 77

VZEROALL

NP V/V AVX Zero all YMM registers.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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YMM3[VLMAX-1:0]  0
YMM4[VLMAX-1:0]  0
YMM5[VLMAX-1:0]  0
YMM6[VLMAX-1:0]  0
YMM7[VLMAX-1:0]  0
YMM8-15: Unmodified

FI

Intel C/C++ Compiler Intrinsic Equivalent

VZEROALL:  _mm256_zeroall()

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 8.
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VZEROUPPER—Zero Upper Bits of YMM Registers

Instruction Operand Encoding

Description

The instruction zeros the bits in position 128 and higher of all YMM registers. The 
lower 128-bits of the registers (the corresponding XMM registers) are unmodified.
This instruction is recommended when transitioning between AVX and legacy SSE 
code - it will eliminate performance penalties caused by false dependencies.
Note: VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD. In 
Compatibility and legacy 32-bit mode only the lower 8 registers are modified.

Operation

VZEROUPPER 
IF (64-bit mode)

YMM0[VLMAX-1:128]  0
YMM1[VLMAX-1:128]  0
YMM2[VLMAX-1:128]  0
YMM3[VLMAX-1:128]  0
YMM4[VLMAX-1:128]  0
YMM5[VLMAX-1:128]  0
YMM6[VLMAX-1:128]  0
YMM7[VLMAX-1:128]  0
YMM8[VLMAX-1:128]  0
YMM9[VLMAX-1:128]  0
YMM10[VLMAX-1:128]  0
YMM11[VLMAX-1:128]  0
YMM12[VLMAX-1:128]  0
YMM13[VLMAX-1:128]  0
YMM14[VLMAX-1:128]  0
YMM15[VLMAX-1:128]  0

ELSE

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

VEX.128.0F.WIG 77

VZEROUPPER

NP V/V AVX Zero upper 128 bits of all 
YMM registers.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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YMM0[VLMAX-1:128]  0
YMM1[VLMAX-1:128]  0
YMM2[VLMAX-1:128]  0
YMM3[VLMAX-1:128]  0
YMM4[VLMAX-1:128]  0
YMM5[VLMAX-1:128]  0
YMM6[VLMAX-1:128]  0
YMM7[VLMAX-1:128]  0
YMM8-15: unmodified

FI

Intel C/C++ Compiler Intrinsic Equivalent

VZEROUPPER:  _mm256_zeroupper()

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 8.
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WAIT/FWAIT—Wait

Instruction Operand Encoding

Description

Causes the processor to check for and handle pending, unmasked, floating-point 
exceptions before proceeding. (FWAIT is an alternate mnemonic for WAIT.)

This instruction is useful for synchronizing exceptions in critical sections of code. 
Coding a WAIT instruction after a floating-point instruction ensures that any 
unmasked floating-point exceptions the instruction may raise are handled before the 
processor can modify the instruction’s results. See the section titled “Floating-Point 
Exception Synchronization” in Chapter 8 of the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 1, for more information on using the 
WAIT/FWAIT instruction.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

CheckForPendingUnmaskedFloatingPointExceptions;

FPU Flags Affected

The C0, C1, C2, and C3 flags are undefined.

Floating-Point Exceptions

None. 

Protected Mode Exceptions
#NM If CR0.MP[bit 1] = 1 and CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

9B WAIT NP Valid Valid Check pending unmasked 
floating-point exceptions.

9B FWAIT NP Valid Valid Check pending unmasked 
floating-point exceptions.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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WBINVD—Write Back and Invalidate Cache

Instruction Operand Encoding

Description

Writes back all modified cache lines in the processor’s internal cache to main memory 
and invalidates (flushes) the internal caches. The instruction then issues a special-
function bus cycle that directs external caches to also write back modified data and 
another bus cycle to indicate that the external caches should be invalidated.

After executing this instruction, the processor does not wait for the external caches 
to complete their write-back and flushing operations before proceeding with instruc-
tion execution. It is the responsibility of hardware to respond to the cache write-back 
and flush signals. The amount of time or cycles for WBINVD to complete will vary due 
to size and other factors of different cache hierarchies. As a consequence, the use of 
the WBINVD instruction can have an impact on logical processor interrupt/event 
response time.

The WBINVD instruction is a privileged instruction. When the processor is running in 
protected mode, the CPL of a program or procedure must be 0 to execute this 
instruction. This instruction is also a serializing instruction (see “Serializing Instruc-
tions” in Chapter 8 of the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3A).

In situations where cache coherency with main memory is not a concern, software 
can use the INVD instruction. 

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

The WBINVD instruction is implementation dependent, and its function may be 
implemented differently on future Intel 64 and IA-32 processors. The instruction is 
not supported on IA-32 processors earlier than the Intel486 processor.

Operation

WriteBack(InternalCaches);

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 09 WBINVD NP Valid Valid Write back and flush Internal 
caches; initiate writing-back 
and flushing of external 
caches.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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Flush(InternalCaches);
SignalWriteBack(ExternalCaches);
SignalFlush(ExternalCaches);
Continue; (* Continue execution *)

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) WBINVD cannot be executed at the virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
Vol. 2B 4-663WBINVD—Write Back and Invalidate Cache



INSTRUCTION SET REFERENCE, M-Z
WRFSBASE/WRGSBASE—Write FS/GS Segment Base

Instruction Operand Encoding

Description

Loads the FS or GS segment base address with the general-purpose register indi-
cated by the modR/M:r/m field.

The source operand may be either a 32-bit or a 64-bit general-purpose register. The 
REX.W prefix indicates the operand size is 64 bits. If no REX.W prefix is used, the 
operand size is 32 bits; the upper 32 bits of the source register are ignored and upper 
32 bits of the base address (for FS or GS) are cleared. 
This instruction is supported only in 64-bit mode.

Operation

FS/GS segment base address ← SRC;

Flags Affected

None

C/C++ Compiler Intrinsic Equivalent

WRFSBASE:  void _writefsbase_u32( unsigned int );

Opcode/
Instruction

Op/ 
En

64/32
-bit 
Mode

CPUID 
Feature 
Flag

Description

F3 0F AE /2
WRFSBASE r32

M V/I FSGSBASE Load the FS base address with 
the 32-bit value in the source 
register.

REX.W + F3 0F AE /2
WRFSBASE r64

M V/I FSGSBASE Load the FS base address with 
the 64-bit value in the source 
register.

F3 0F AE /3
WRGSBASE 
r32

M V/I FSGSBASE Load the GS base address with 
the 32-bit value in the source 
register.

REX.W + F3 0F AE /3
WRGSBASE r64

M V/I FSGSBASE Load the GS base address with 
the 64-bit value in the source 
register.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA
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WRFSBASE:  _writefsbase_u64( unsigned __int64 );

WRGSBASE:  void _writegsbase_u32( unsigned int );

WRGSBASE:  _writegsbase_u64( unsigned __int64 );

Protected Mode Exceptions
#UD The WRFSBASE and WRGSBASE instructions are not recognized 

in protected mode.

Real-Address Mode Exceptions
#UD The WRFSBASE and WRGSBASE instructions are not recognized 

in real-address mode.

Virtual-8086 Mode Exceptions
#UD The WRFSBASE and WRGSBASE instructions are not recognized 

in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The WRFSBASE and WRGSBASE instructions are not recognized 

in compatibility mode.

64-Bit Mode Exceptions
#UD If the LOCK prefix is used.

If CR4.FSGSBASE[bit 16] = 0.
If CPUID.07H.0H:EBX.FSGSBASE[bit 0] = 0

#GP(0) If the source register contains a non-canonical address.
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WRMSR—Write to Model Specific Register

Instruction Operand Encoding

Description

Writes the contents of registers EDX:EAX into the 64-bit model specific register 
(MSR) specified in the ECX register. (On processors that support the Intel 64 archi-
tecture, the high-order 32 bits of RCX are ignored.) The contents of the EDX register 
are copied to high-order 32 bits of the selected MSR and the contents of the EAX 
register are copied to low-order 32 bits of the MSR. (On processors that support the 
Intel 64 architecture, the high-order 32 bits of each of RAX and RDX are ignored.) 
Undefined or reserved bits in an MSR should be set to values previously read.

This instruction must be executed at privilege level 0 or in real-address mode; other-
wise, a general protection exception #GP(0) is generated. Specifying a reserved or 
unimplemented MSR address in ECX will also cause a general protection exception. 
The processor will also generate a general protection exception if software attempts 
to write to bits in a reserved MSR.

When the WRMSR instruction is used to write to an MTRR, the TLBs are invalidated. 
This includes global entries (see “Translation Lookaside Buffers (TLBs)” in Chapter 3 
of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A).

MSRs control functions for testability, execution tracing, performance-monitoring 
and machine check errors. Chapter 34, “Model-Specific Registers (MSRs)”, in the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C, lists all 
MSRs that can be written with this instruction and their addresses. Note that each 
processor family has its own set of MSRs.

The WRMSR instruction is a serializing instruction (see “Serializing Instructions” in 
Chapter 8 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3A). Note that WRMSR to the IA32_TSC_DEADLINE MSR (MSR index 6E0H) 
and the X2APIC MSRs (MSR indices 802H to 83FH) are not serializing.

The CPUID instruction should be used to determine whether MSRs are supported 
(CPUID.01H:EDX[5] = 1) before using this instruction.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 30 WRMSR NP Valid Valid Write the value in EDX:EAX 
to MSR specified by ECX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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IA-32 Architecture Compatibility

The MSRs and the ability to read them with the WRMSR instruction were introduced 
into the IA-32 architecture with the Pentium processor. Execution of this instruction 
by an IA-32 processor earlier than the Pentium processor results in an invalid opcode 
exception #UD.

Operation

MSR[ECX] ← EDX:EAX;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the value in ECX specifies a reserved or unimplemented MSR 
address.
If the value in EDX:EAX sets bits that are reserved in the MSR 
specified by ECX.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If the value in ECX specifies a reserved or unimplemented MSR 

address.
If the value in EDX:EAX sets bits that are reserved in the MSR 
specified by ECX.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0)  The WRMSR instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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XADD—Exchange and Add

Instruction Operand Encoding

Description

Exchanges the first operand (destination operand) with the second operand (source 
operand), then loads the sum of the two values into the destination operand. The 
destination operand can be a register or a memory location; the source operand is a 
register.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix 
in the form of REX.R permits access to additional registers (R8-R15). Using a REX 
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at 
the beginning of this section for encoding data and limits.

This instruction can be used with a LOCK prefix to allow the instruction to be 
executed atomically.

IA-32 Architecture Compatibility

IA-32 processors earlier than the Intel486 processor do not recognize this instruc-
tion. If this instruction is used, you should provide an equivalent code sequence that 
runs on earlier processors.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F C0 /r XADD r/m8, r8 MR Valid Valid Exchange r8 and r/m8; load 
sum into r/m8.

REX + 0F C0 /r XADD r/m8*, r8* MR Valid N.E. Exchange r8 and r/m8; load 
sum into r/m8.

0F C1 /r XADD r/m16, r16 MR Valid Valid Exchange r16 and r/m16; 
load sum into r/m16.

0F C1 /r XADD r/m32, r32 MR Valid Valid Exchange r32 and r/m32; 
load sum into r/m32.

REX.W + 0F C1 
/r

XADD r/m64, r64 MR Valid N.E. Exchange r64 and r/m64; 
load sum into r/m64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is 

used: AH, BH, CH, DH. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (r, w) ModRM:reg (W) NA NA
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Operation

TEMP ← SRC + DEST;
SRC ← DEST;
DEST ← TEMP;

Flags Affected

The CF, PF, AF, SF, ZF, and OF flags are set according to the result of the addition, 
which is stored in the destination operand. 

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, 
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory 

operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS 

segment limit.
#UD If the LOCK prefix is used but the destination is not a memory 

operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made.
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#UD If the LOCK prefix is used but the destination is not a memory 
operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory 

operand.
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XCHG—Exchange Register/Memory with Register
Opcode Instruction Op/ 

En
64-Bit 
Mode

Compat/
Leg Mode

Description

90+rw XCHG AX, r16 O Valid Valid Exchange r16 with AX.

90+rw XCHG r16, AX O Valid Valid Exchange AX with r16.

90+rd XCHG EAX, r32 O Valid Valid Exchange r32 with EAX.

REX.W + 90+rd XCHG RAX, r64 O Valid N.E. Exchange r64 with RAX.

90+rd XCHG r32, EAX O Valid Valid Exchange EAX with r32.

REX.W + 90+rd XCHG r64, RAX O Valid N.E. Exchange RAX with r64.

86 /r XCHG r/m8, r8 MR Valid Valid Exchange r8 (byte register) 
with byte from r/m8.

REX + 86 /r XCHG r/m8*, r8* MR Valid N.E. Exchange r8 (byte register) 
with byte from r/m8.

86 /r XCHG r8, r/m8 RM Valid Valid Exchange byte from r/m8 
with r8 (byte register).

REX + 86 /r XCHG r8*, r/m8* RM Valid N.E. Exchange byte from r/m8 
with r8 (byte register).

87 /r XCHG r/m16, r16 MR Valid Valid Exchange r16 with word 
from r/m16.

87 /r XCHG r16, r/m16 RM Valid Valid Exchange word from r/m16 
with r16.

87 /r XCHG r/m32, r32 MR Valid Valid Exchange r32 with 
doubleword from r/m32.

REX.W + 87 /r XCHG r/m64, r64 MR Valid N.E. Exchange r64 with 
quadword from r/m64.

87 /r XCHG r32, r/m32 RM Valid Valid Exchange doubleword from 
r/m32 with r32.

REX.W + 87 /r XCHG r64, r/m64 RM Valid N.E. Exchange quadword from 
r/m64 with r64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is 

used: AH, BH, CH, DH. 
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Instruction Operand Encoding

Description

Exchanges the contents of the destination (first) and source (second) operands. The 
operands can be two general-purpose registers or a register and a memory location. 
If a memory operand is referenced, the processor’s locking protocol is automatically 
implemented for the duration of the exchange operation, regardless of the presence 
or absence of the LOCK prefix or of the value of the IOPL. (See the LOCK prefix 
description in this chapter for more information on the locking protocol.)

This instruction is useful for implementing semaphores or similar data structures for 
process synchronization. (See “Bus Locking” in Chapter 8 of the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A, for more information on bus 
locking.) 

The XCHG instruction can also be used instead of the BSWAP instruction for 16-bit 
operands.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix 
in the form of REX.R permits access to additional registers (R8-R15). Using a REX 
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at 
the beginning of this section for encoding data and limits.

Operation

TEMP ← DEST;
DEST ← SRC;
SRC ← TEMP;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If either operand is in a non-writable segment.

If a memory operand effective address is outside the CS, DS, 
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment 
selector.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

O AX/EAX/RAX (r, w) opcode + rd (r, w) NA NA

O opcode + rd (r, w) AX/EAX/RAX (r, w) NA NA

MR ModRM:r/m (r, w) ModRM:reg (r) NA NA

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory 

operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS 

segment limit.
#UD If the LOCK prefix is used but the destination is not a memory 

operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made.
#UD If the LOCK prefix is used but the destination is not a memory 

operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory 

operand.
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XGETBV—Get Value of Extended Control Register

Instruction Operand Encoding

Description

Reads the contents of the extended control register (XCR) specified in the ECX 
register into registers EDX:EAX. (On processors that support the Intel 64 architec-
ture, the high-order 32 bits of RCX are ignored.) The EDX register is loaded with the 
high-order 32 bits of the XCR and the EAX register is loaded with the low-order 32 
bits. (On processors that support the Intel 64 architecture, the high-order 32 bits of 
each of RAX and RDX are cleared.) If fewer than 64 bits are implemented in the XCR 
being read, the values returned to EDX:EAX in unimplemented bit locations are 
undefined.

Specifying a reserved or unimplemented XCR in ECX causes a general protection 
exception.

Currently, only XCR0 (the XFEATURE_ENABLED_MASK register) is supported. Thus, 
all other values of ECX are reserved and will cause a #GP(0).

Operation

EDX:EAX ← XCR[ECX];

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If an invalid XCR is specified in ECX.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 01 D0 XGETBV NP Valid Valid Reads an XCR specified by 
ECX into EDX:EAX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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Real-Address Mode Exceptions
#GP If an invalid XCR is specified in ECX.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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XLAT/XLATB—Table Look-up Translation

Instruction Operand Encoding

Description

Locates a byte entry in a table in memory, using the contents of the AL register as a 
table index, then copies the contents of the table entry back into the AL register. The 
index in the AL register is treated as an unsigned integer. The XLAT and XLATB 
instructions get the base address of the table in memory from either the DS:EBX or 
the DS:BX registers (depending on the address-size attribute of the instruction, 32 or 
16, respectively). (The DS segment may be overridden with a segment override 
prefix.)

At the assembly-code level, two forms of this instruction are allowed: the “explicit-
operand” form and the “no-operand” form. The explicit-operand form (specified with 
the XLAT mnemonic) allows the base address of the table to be specified explicitly 
with a symbol. This explicit-operands form is provided to allow documentation; 
however, note that the documentation provided by this form can be misleading. That 
is, the symbol does not have to specify the correct base address. The base address is 
always specified by the DS:(E)BX registers, which must be loaded correctly before 
the XLAT instruction is executed.

The no-operands form (XLATB) provides a “short form” of the XLAT instructions. Here 
also the processor assumes that the DS:(E)BX registers contain the base address of 
the table.

In 64-bit mode, operation is similar to that in legacy or compatibility mode. AL is 
used to specify the table index (the operand size is fixed at 8 bits). RBX, however, is 
used to specify the table’s base address. See the summary chart at the beginning of 
this section for encoding data and limits.

Operation

IF AddressSize = 16

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

D7 XLAT m8 NP Valid Valid Set AL to memory byte 
DS:[(E)BX + unsigned AL].

D7 XLATB NP Valid Valid Set AL to memory byte 
DS:[(E)BX + unsigned AL].

REX.W + D7 XLATB NP Valid N.E. Set AL to memory byte 
[RBX + unsigned AL].

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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THEN
AL ← (DS:BX + ZeroExtend(AL));

ELSE IF (AddressSize = 32)
AL ← (DS:EBX + ZeroExtend(AL)); FI;

ELSE (AddressSize = 64)
AL ← (RBX + ZeroExtend(AL));

FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS 

segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.
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64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.
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XOR—Logical Exclusive OR
Opcode Instruction Op/ 

En
64-Bit 
Mode

Compat/
Leg Mode

Description

34 ib XOR AL, imm8 I Valid Valid AL XOR imm8.

35 iw XOR AX, imm16 I Valid Valid AX XOR imm16.

35 id XOR EAX, imm32 I Valid Valid EAX XOR imm32.

REX.W + 35 id XOR RAX, imm32 I Valid N.E. RAX XOR imm32 (sign-
extended).

80 /6 ib XOR r/m8, imm8 MI Valid Valid r/m8 XOR imm8.

REX + 80 /6 ib XOR r/m8*, imm8 MI Valid N.E. r/m8 XOR imm8.

81 /6 iw XOR r/m16, 
imm16

MI Valid Valid r/m16 XOR imm16.

81 /6 id XOR r/m32, 
imm32

MI Valid Valid r/m32 XOR imm32.

REX.W + 81 /6 
id

XOR r/m64, 
imm32

MI Valid N.E. r/m64 XOR imm32 (sign-
extended).

83 /6 ib XOR r/m16, imm8 MI Valid Valid r/m16 XOR imm8 (sign-
extended).

83 /6 ib XOR r/m32, imm8 MI Valid Valid r/m32 XOR imm8 (sign-
extended).

REX.W + 83 /6 
ib

XOR r/m64, imm8 MI Valid N.E. r/m64 XOR imm8 (sign-
extended).

30 /r XOR r/m8, r8 MR Valid Valid r/m8 XOR r8.

REX + 30 /r XOR r/m8*, r8* MR Valid N.E. r/m8 XOR r8.

31 /r XOR r/m16, r16 MR Valid Valid r/m16 XOR r16.

31 /r XOR r/m32, r32 MR Valid Valid r/m32 XOR r32.

REX.W + 31 /r XOR r/m64, r64 MR Valid N.E. r/m64 XOR r64.

32 /r XOR r8, r/m8 RM Valid Valid r8 XOR r/m8.

REX + 32 /r XOR r8*, r/m8* RM Valid N.E. r8 XOR r/m8.

33 /r XOR r16, r/m16 RM Valid Valid r16 XOR r/m16.

33 /r XOR r32, r/m32 RM Valid Valid r32 XOR r/m32.

REX.W + 33 /r XOR r64, r/m64 RM Valid N.E. r64 XOR r/m64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is 

used: AH, BH, CH, DH. 
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Instruction Operand Encoding

Description

Performs a bitwise exclusive OR (XOR) operation on the destination (first) and source 
(second) operands and stores the result in the destination operand location. The 
source operand can be an immediate, a register, or a memory location; the destina-
tion operand can be a register or a memory location. (However, two memory oper-
ands cannot be used in one instruction.) Each bit of the result is 1 if the 
corresponding bits of the operands are different; each bit is 0 if the corresponding 
bits are the same.

This instruction can be used with a LOCK prefix to allow the instruction to be 
executed atomically.

In 64-bit mode, using a REX prefix in the form of REX.R permits access to additional 
registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 
64 bits. See the summary chart at the beginning of this section for encoding data and 
limits.

Operation

DEST ← DEST XOR SRC;

Flags Affected

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the 
result. The state of the AF flag is undefined.

Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS, 
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#PF(fault-code) If a page fault occurs.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

I AL/AX/EAX/RAX imm8/16/32 NA NA

MI ModRM:r/m (r, w) imm8/16/32 NA NA

MR ModRM:r/m (r, w) ModRM:reg (r) NA NA

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
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#AC(0) If alignment checking is enabled and an unaligned memory 
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory 
operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS 

segment limit.
#UD If the LOCK prefix is used but the destination is not a memory 

operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS 

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made.
#UD If the LOCK prefix is used but the destination is not a memory 

operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory 

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory 

operand.
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XORPD—Bitwise Logical XOR for Double-Precision Floating-Point 
Values

Instruction Operand Encoding

Description

Performs a bitwise logical exclusive-OR of the two packed double-precision floating-
point values from the source operand (second operand) and the destination operand 
(first operand), and stores the result in the destination operand. The source operand 
can be an XMM register or a 128-bit memory location. The destination operand is an 
XMM register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit 
memory location. The destination is not distinct from the first source XMM register 
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit 
memory location. The destination operand is an XMM register. The upper bits 
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 57 /r

XORPD xmm1, xmm2/m128

RM V/V SSE2 Bitwise exclusive-OR of 
xmm2/m128 and xmm1. 

VEX.NDS.128.66.0F.WIG 57 /r

VXORPD xmm1,xmm2, xmm3/m128

RVM V/V AVX Return the bitwise logical 
XOR of packed double-
precision floating-point 
values in xmm2 and 
xmm3/mem.

VEX.NDS.256.66.0F.WIG 57 /r

VXORPD ymm1, ymm2, 
ymm3/m256

RVM V/V AVX Return the bitwise logical 
XOR of packed double-
precision floating-point 
values in ymm2 and 
ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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VEX.256 encoded version: The first source operand is a YMM register. The second 
source operand can be a YMM register or a 256-bit memory location. The destination 
operand is a YMM register. 

Operation

XORPD (128-bit Legacy SSE version)
DEST[63:0]  DEST[63:0] BITWISE XOR SRC[63:0]
DEST[127:64]  DEST[127:64] BITWISE XOR SRC[127:64]
DEST[VLMAX-1:128] (Unmodified)

VXORPD (VEX.128 encoded version)
DEST[63:0]  SRC1[63:0] BITWISE XOR SRC2[63:0]
DEST[127:64]  SRC1[127:64] BITWISE XOR SRC2[127:64]
DEST[VLMAX-1:128]  0

VXORPD (VEX.256 encoded version)
DEST[63:0]  SRC1[63:0] BITWISE XOR SRC2[63:0]
DEST[127:64]  SRC1[127:64] BITWISE XOR SRC2[127:64]
DEST[191:128]  SRC1[191:128] BITWISE XOR SRC2[191:128]
DEST[255:192]  SRC1[255:192] BITWISE XOR SRC2[255:192]

Intel C/C++ Compiler Intrinsic Equivalent

XORPD: __m128d _mm_xor_pd(__m128d a, __m128d b)

VXORPD: __m256d _mm256_xor_pd (__m256d a, __m256d b);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4.
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XORPS—Bitwise Logical XOR for Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a bitwise logical exclusive-OR of the four packed single-precision floating-
point values from the source operand (second operand) and the destination operand 
(first operand), and stores the result in the destination operand. The source operand 
can be an XMM register or a 128-bit memory location. The destination operand is an 
XMM register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to 
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit 
memory location. The destination is not distinct from the first source XMM register 
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit 
memory location. The destination operand is an XMM register. The upper bits 
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second 
source operand can be a YMM register or a 256-bit memory location. The destination 
operand is a YMM register. 

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F 57 /r

XORPS xmm1, xmm2/m128

RM V/V SSE Bitwise exclusive-OR of 
xmm2/m128 and xmm1.

VEX.NDS.128.0F.WIG 57 /r

VXORPS xmm1,xmm2, xmm3/m128

RVM V/V AVX Return the bitwise logical 
XOR of packed single-
precision floating-point 
values in xmm2 and 
xmm3/mem.

VEX.NDS.256.0F.WIG 57 /r

VXORPS ymm1, ymm2, ymm3/m256

RVM V/V AVX Return the bitwise logical 
XOR of packed single-
precision floating-point 
values in ymm2 and 
ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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Operation

XORPS (128-bit Legacy SSE version)
DEST[31:0]  SRC1[31:0] BITWISE XOR SRC2[31:0]
DEST[63:32]  SRC1[63:32] BITWISE XOR SRC2[63:32]
DEST[95:64]  SRC1[95:64] BITWISE XOR SRC2[95:64]
DEST[127:96]  SRC1[127:96] BITWISE XOR SRC2[127:96]
DEST[VLMAX-1:128] (Unmodified)

VXORPS (VEX.128 encoded version)
DEST[31:0]  SRC1[31:0] BITWISE XOR SRC2[31:0]
DEST[63:32]  SRC1[63:32] BITWISE XOR SRC2[63:32]
DEST[95:64]  SRC1[95:64] BITWISE XOR SRC2[95:64]
DEST[127:96]  SRC1[127:96] BITWISE XOR SRC2[127:96]
DEST[VLMAX-1:128]  0

VXORPS (VEX.256 encoded version)
DEST[31:0]  SRC1[31:0] BITWISE XOR SRC2[31:0]
DEST[63:32]  SRC1[63:32] BITWISE XOR SRC2[63:32]
DEST[95:64]  SRC1[95:64] BITWISE XOR SRC2[95:64]
DEST[127:96]  SRC1[127:96] BITWISE XOR SRC2[127:96]
DEST[159:128]  SRC1[159:128] BITWISE XOR SRC2[159:128]
DEST[191:160] SRC1[191:160] BITWISE XOR SRC2[191:160]
DEST[223:192]  SRC1[223:192] BITWISE XOR SRC2[223:192]
DEST[255:224]  SRC1[255:224] BITWISE XOR SRC2[255:224].

Intel C/C++ Compiler Intrinsic Equivalent

XORPS: __m128 _mm_xor_ps(__m128 a, __m128 b)

VXORPS: __m256 _mm256_xor_ps (__m256 a, __m256 b);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4.
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XRSTOR—Restore Processor Extended States

Instruction Operand Encoding

Description

Performs a full or partial restore of the enabled processor states using the state infor-
mation stored in the memory address specified by the source operand. The implicit 
EDX:EAX register pair specifies a 64-bit restore mask.

The format of the XSAVE/XRSTOR area is shown in Table 4-22. The memory layout of 
the XSAVE/XRSTOR area may have holes between save areas written by the 
processor as a result of the processor not supporting certain processor extended 
states or system software not supporting certain processor extended states. There is 
no relationship between the order of XCR0 bits and the order of the state layout. 
States corresponding to higher and lower XCR0 bits may be intermingled in the 
layout.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F AE /5 XRSTOR mem M Valid Valid Restore processor extended 
states from memory. The 
states are specified by 
EDX:EAX

REX.W+ 0F AE 
/5

XRSTOR64 mem M Valid N.E. Restore processor extended 
states from memory. The 
states are specified by 
EDX:EAX

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA
4-686 Vol. 2B XRSTOR—Restore Processor Extended States



INSTRUCTION SET REFERENCE, M-Z
XRSTOR operates on each subset of the processor state or a processor extended 
state in one of three ways (depending on the corresponding bit in XCR0 
(XFEATURE_ENABLED_MASK register), the restore mask EDX:EAX, and the save 
mask XSAVE.HEADER.XSTATE_BV in memory):
• Updates the processor state component using the state information stored in the 

respective save area (see Table 4-22) of the source operand, if the corresponding 
bit in XCR0, EDX:EAX, and XSAVE.HEADER.XSTATE_BV are all 1.

• Writes certain registers in the processor state component using processor-
supplied values (see Table 4-24) without using state information stored in 
respective save area of the memory region, if the corresponding bit in XCR0 and 
EDX:EAX are both 1, but the corresponding bit in XSAVE.HEADER.XSTATE_BV is 
0.

• The processor state component is unchanged, if the corresponding bit in XCR0 or 
EDX:EAX is 0.

The format of the header section (XSAVE.HEADER) of the XSAVE/XRSTOR area is 
shown in Table 4-23. 

Table 4-22.   General Layout of XSAVE/XRSTOR Save Area

Save Areas Offset (Byte) Size (Bytes)

FPU/SSE SaveArea1

NOTES:
1. Bytes 464:511 are available for software use. XRSTOR ignores the value contained in bytes 

464:511 of an XSAVE SAVE image.

0 512

Header 512 64

Reserved 
(Ext_Save_Area_2)

CPUID.(EAX=0DH, ECX=2):EBX CPUID.(EAX=0DH, ECX=2):EAX

Reserved(Ext_Save_A
rea_4)2

2. State corresponding to higher and lower XCR0 bits may be intermingled in layout.

CPUID.(EAX=0DH, ECX=4):EBX CPUID.(EAX=0DH, ECX=4):EAX

Reserved(Ext_Save_A
rea_3)

CPUID.(EAX=0DH, ECX=3):EBX CPUID.(EAX=0DH, ECX=3):EAX

Reserved(...) ... ...
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If a processor state component is not enabled in XCR0 but the corresponding save 
mask bit in XSAVE.HEADER.XSTATE_BV is 1, an attempt to execute XRSTOR will 
cause a #GP(0) exception. Software may specify all 1’s in the implicit restore mask 
EDX:EAX, so that all the enabled processors states in XCR0 are restored from state 
information stored in memory or from processor supplied values. When using all 1's 
as the restore mask, software is required to determine the total size of the 
XSAVE/XRSTOR save area (specified as source operand) to fit all enabled processor 
states by using the value enumerated in CPUID.(EAX=0D, ECX=0):EBX. While it's 
legal to set any bit in the EDX:EAX mask to 1, it is strongly recommended to set only 
the bits that are required to save/restore specific states.

An attempt to restore processor states with writing 1s to reserved bits in certain 
registers (see Table 4-25) will cause a #GP(0) exception. 

Because bit 63 of XCR0 is reserved for future bit vector expansion, it will not be used 
for any future processor state feature, and XRSTOR will ignore bit 63 of EDX:EAX 
(EDX[31]).

Table 4-23.  XSAVE.HEADER Layout

15 8 7 0 Byte Offset 
from Header

Byte Offset from 
XSAVE/XRSTOR Area

Rsrvd (Must be 0) XSTATE_BV 0 512

Reserved Rsrvd (Must be 0) 16 528

Reserved Reserved 32 544

Reserved Reserved 48 560

Table 4-24.   Processor Supplied Init Values XRSTOR May Use

Processor State Component Processor Supplied Register Values

x87 FPU State FCW ← 037FH; FTW ← 0FFFFH; FSW ← 0H; FPU CS ← 0H; 
FPU DS ← 0H; FPU IP ← 0H; FPU DP ← 0; ST0-ST7 ← 0;

SSE State1

NOTES:
1. MXCSR state is not updated by processor supplied values. MXCSR state can only be updated by 

XRSTOR from state information stored in XSAVE/XRSTOR area.

If 64-bit Mode: XMM0-XMM15 ← 0H;

Else XMM0-XMM7 ← 0H
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A source operand not aligned to 64-byte boundary (for 64-bit and 32-bit modes) will 
result in a general-protection (#GP) exception. In 64-bit mode, the upper 32 bits of 
RDX and RAX are ignored.

Operation

/* The alignment of the x87 and SSE fields in the XSAVE area is the same as in FXSAVE area*/

RS_TMP_MASK[62:0] ← (EDX[30:0] << 32 ) OR EAX[31:0];
ST_TMP_MASK[62:0] ← SRCMEM.HEADER.XSTATE_BV[62:0];
IF ( ( (XCR0[62:0] XOR 7FFFFFFF_FFFFFFFFH ) AND ST_TMP_MASK[62:0] ) ) 

THEN
#GP(0)

ELSE
FOR i = 0, 62 STEP 1 

IF ( RS_TMP_MASK[i] and XCR0[i] )
THEN

IF ( ST_TMP_MASK[i] )
CASE ( i ) OF
0: Processor state[x87 FPU] ← SRCMEM. FPUSSESave_Area[FPU];
1: Processor state[SSE] ← SRCMEM. FPUSSESave_Area[SSE];

// MXCSR is loaded as part of the SSE state
DEFAULT:  // i corresponds to a valid sub-leaf index of CPUID leaf 0DH

Processor state[i] ← SRCMEM. Ext_Save_Area[ i ];
ESAC;

ELSE
Processor extended state[i] ← Processor supplied values; (see Table 4-24) 
CASE ( i ) OF
1: MXCSR ← SRCMEM. FPUSSESave_Area[SSE];
ESAC;

FI;
FI;

NEXT;
FI;

Table 4-25.  Reserved Bit Checking and XRSTOR

Processor State Component Reserved Bit Checking

X87 FPU State None

SSE State Reserved bits of MXCSR
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Flags Affected

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
If a memory operand is not aligned on a 64-byte boundary, 
regardless of segment.
If a bit in XCR0 is 0 and the corresponding bit in 
HEADER.XSTATE_BV field of the source operand is 1.
If bytes 23:8 of HEADER is not zero.
If attempting to write any reserved bits of the MXCSR register 
with 1.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

#AC If this exception is disabled a general protection exception 
(#GP) is signaled if the memory operand is not aligned on a 16-
byte boundary, as described above. If the alignment check 
exception (#AC) is enabled (and the CPL is 3), signaling of #AC 
is not guaranteed and may vary with implementation, as 
follows. In all implementations where #AC is not signaled, a 
general protection exception is signaled in its place. In addition, 
the width of the alignment check may also vary with implemen-
tation. For instance, for a given implementation, an alignment 
check exception might be signaled for a 2-byte misalignment, 
whereas a general protection exception might be signaled for all 
other misalignments (4-, 8-, or 16-byte misalignments).

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 64-byte boundary, 

regardless of segment.
If any part of the operand lies outside the effective address 
space from 0 to FFFFH.
If a bit in XCR0 is 0 and the corresponding bit in 
HEADER.XSTATE_BV field of the source operand is 1.
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If bytes 23:8 of HEADER is not zero.
If attempting to write any reserved bits of the MXCSR register 
with 1.

#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in Protected Mode

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 64-byte boundary, 
regardless of segment.
If a bit in XCR0 is 0 and the corresponding bit in 
XSAVE.HEADER.XSTATE_BV is 1.
If bytes 23:8 of HEADER is not zero.
If attempting to write any reserved bits of the MXCSR register 
with 1.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

#AC If this exception is disabled a general protection exception 
(#GP) is signaled if the memory operand is not aligned on a 
16-byte boundary, as described above. If the alignment check 
exception (#AC) is enabled (and the CPL is 3), signaling of #AC 
is not guaranteed and may vary with implementation, as 
follows. In all implementations where #AC is not signaled, a 
general protection exception is signaled in its place. In addition, 
the width of the alignment check may also vary with implemen-
tation. For instance, for a given implementation, an alignment 
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check exception might be signaled for a 2-byte misalignment, 
whereas a general protection exception might be signaled for all 
other misalignments (4-, 8-, or 16-byte misalignments).
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XSAVE—Save Processor Extended States

Instruction Operand Encoding

Description

Performs a full or partial save of the enabled processor state components to a 
memory address specified in the destination operand. A full or partial save of the 
processor states is specified by an implicit mask operand via the register pair, 
EDX:EAX. The destination operand is a memory location that must be 64-byte 
aligned.

The implicit 64-bit mask operand in EDX:EAX specifies the subset of enabled 
processor state components to save into the XSAVE/XRSTOR save area. The 
XSAVE/XRSTOR save area comprises of individual save area for each processor state 
components and a header section, see Table 4-22. Each component save area is 
written if both the corresponding bits in the save mask operand and in XCR0 (the 
XFEATURE_ENABLED_MASK register) are 1. A processor state component save area 
is not updated if either one of the corresponding bits in the mask operand or in XCR0 
is 0. If the mask operand (EDX:EAX) contains all 1's, all enabled processor state 
components in XCR0 are written to the respective component save area. 

The bit assignment used for the EDX:EAX register pair matches XCR0 (see chapter 2 
of Vol. 3B). For the XSAVE instruction, software can specify "1" in any bit position of 
EDX:EAX, irrespective of whether the corresponding bit position in XCR0 is valid for 
the processor. The bit vector in EDX:EAX is "anded" with XCR0 to determine which 
save area will be written. While it's legal to set any bit in the EDX:EAX mask to 1, it is 
strongly recommended to set only the bits that are required to save/restore specific 
states. When specifying 1 in any bit position of EDX:EAX mask, software is required 
to determine the total size of the XSAVE/XRSTOR save area (specified as destination 
operand) to fit all enabled processor states by using the value enumerated in 
CPUID.(EAX=0D, ECX=0):EBX.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F AE /4 XSAVE mem M Valid Valid Save processor extended 
states to memory. The 
states are specified by 
EDX:EAX

REX.W+ 0F AE 
/4

XSAVE64 mem M Valid N.E. Save processor extended 
states to memory. The 
states are specified by 
EDX:EAX

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA
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The content layout of the XSAVE/XRSTOR save area is architecturally defined to be 
extendable and enumerated via the sub-leaves of CPUID.0DH leaf. The extendable 
framework of the XSAVE/XRSTOR layout is depicted by Table 4-22. The layout of the 
XSAVE/XRSTOR save area is fixed and may contain non-contiguous individual save 
areas. The XSAVE/XRSTOR save area is not compacted if some features are not 
saved or are not supported by the processor and/or by system software.

The layout of the register fields of first 512 bytes of the XSAVE/XRSTOR is the same 
as the FXSAVE/FXRSTOR area (refer to “FXSAVE—Save x87 FPU, MMX Technology, 
and SSE State” on page 458). But XSAVE/XRSTOR organizes the 512 byte area as 
x87 FPU states (including FPU operation states, x87/MMX data registers), MXCSR 
(including MXCSR_MASK), and XMM registers. 

Bytes 464:511 are available for software use. The processor does not write to bytes 
464:511 when executing XSAVE.

The processor writes 1 or 0 to each HEADER.XSTATE_BV[i] bit field of an enabled 
processor state component in a manner that is consistent to XRSTOR's interaction 
with HEADER.XSTATE_BV (see the operation section of XRSTOR instruction). If a 
processor implementation discern that a processor state component is in its initial-
ized state (according to Table 4-24) it may modify the corresponding bit in the 
HEADER.XSTATE_BV as ‘0’.

A destination operand not aligned to 64-byte boundary (in either 64-bit or 32-bit 
modes) will result in a general-protection (#GP) exception being generated. In 64-bit 
mode, the upper 32 bits of RDX and RAX are ignored.

Operation

TMP_MASK[62:0] ← ( (EDX[30:0] << 32 ) OR EAX[31:0] ) AND XCR0[62:0];
FOR i = 0, 62 STEP 1

IF ( TMP_MASK[i] = 1) THEN
THEN

CASE ( i ) of
0: DEST.FPUSSESAVE_Area[x87 FPU] ← processor state[x87 FPU];
1: DEST.FPUSSESAVE_Area[SSE] ← processor state[SSE];

// SSE state include MXCSR
DEFAULT: // i corresponds to a valid sub-leaf index of CPUID leaf 0DH

DEST.Ext_Save_Area[ i ] ← processor state[i] ;
ESAC:
DEST.HEADER.XSTATE_BV[i] ← INIT_FUNCTION[i];

FI;
NEXT;

Flags Affected

None.
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Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
If a memory operand is not aligned on a 64-byte boundary, 
regardless of segment.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

#AC If this exception is disabled a general protection exception 
(#GP) is signaled if the memory operand is not aligned on a 
16-byte boundary, as described above. If the alignment check 
exception (#AC) is enabled (and the CPL is 3), signaling of #AC 
is not guaranteed and may vary with implementation, as 
follows. In all implementations where #AC is not signaled, a 
general protection exception is signaled in its place. In addition, 
the width of the alignment check may also vary with implemen-
tation. For instance, for a given implementation, an alignment 
check exception might be signaled for a 2-byte misalignment, 
whereas a general protection exception might be signaled for all 
other misalignments (4-, 8-, or 16-byte misalignments).

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 64-byte boundary, 

regardless of segment.
If any part of the operand lies outside the effective address 
space from 0 to FFFFH.

#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.
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Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 64-byte boundary, 
regardless of segment.

#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

#AC If this exception is disabled a general protection exception 
(#GP) is signaled if the memory operand is not aligned on a 
16-byte boundary, as described above. If the alignment check 
exception (#AC) is enabled (and the CPL is 3), signaling of #AC 
is not guaranteed and may vary with implementation, as 
follows. In all implementations where #AC is not signaled, a 
general protection exception is signaled in its place. In addition, 
the width of the alignment check may also vary with implemen-
tation. For instance, for a given implementation, an alignment 
check exception might be signaled for a 2-byte misalignment, 
whereas a general protection exception might be signaled for all 
other misalignments (4-, 8-, or 16-byte misalignments).
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XSAVEOPT—Save Processor Extended States Optimized

Instruction Operand Encoding

Description

XSAVEOPT performs a full or partial save of the enabled processor state components 
to a memory address specified in the destination operand. A full or partial save of the 
processor states is specified by an implicit mask operand via the register pair, 
EDX:EAX. The destination operand is a memory location that must be 64-byte 
aligned. The hardware may optimize the manner in which data is saved.  The perfor-
mance of this instruction will be equal or better than using the XSAVE instruction.

The implicit 64-bit mask operand in EDX:EAX specifies the subset of enabled 
processor state components to save into the XSAVE/XRSTOR save area. The 
XSAVE/XRSTOR save area comprises of individual save area for each processor state 
components and a header section, see Table 4-22. 

The bit assignment used for the EDX:EAX register pair matches XCR0 (the 
XFEATURE_ENABLED_MASK register). For the XSAVEOPT instruction, software can 
specify "1" in any bit position of EDX:EAX, irrespective of whether the corresponding 
bit position in XCR0 is valid for the processor. The bit vector in EDX:EAX is "anded" 
with XCR0 to determine which save area will be written. While it's legal to set any bit 
in the EDX:EAX mask to 1, it is strongly recommended to set only the bits that are 
required to save/restore specific states. When specifying 1 in any bit position of 
EDX:EAX mask, software is required to determine the total size of the 
XSAVE/XRSTOR save area (specified as destination operand) to fit all enabled 
processor states by using the value enumerated in CPUID.(EAX=0D, ECX=0):EBX.

The content layout of the XSAVE/XRSTOR save area is architecturally defined to be 
extendable and enumerated via the sub-leaves of CPUID.0DH leaf. The extendable 

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F AE /6

XSAVEOPT mem

M V/V XSAVEOPT Save processor extended 
states specified in EDX:EAX 
to memory, optimizing the 
state save operation if 
possible.

REX.W + 0F AE /6

XSAVEOPT64 mem

M V/V XSAVEOPT Save processor extended 
states specified in EDX:EAX 
to memory, optimizing the 
state save operation if 
possible.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA
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framework of the XSAVE/XRSTOR layout is depicted by Table 4-22. The layout of the 
XSAVE/XRSTOR save area is fixed and may contain non-contiguous individual save 
areas. The XSAVE/XRSTOR save area is not compacted if some features are not 
saved or are not supported by the processor and/or by system software.

The layout of the register fields of first 512 bytes of the XSAVE/XRSTOR is the same 
as the FXSAVE/FXRSTOR area. But XSAVE/XRSTOR organizes the 512 byte area as 
x87 FPU states (including FPU operation states, x87/MMX data registers), MXCSR 
(including MXCSR_MASK), and XMM registers. 
The processor writes 1 or 0 to each.HEADER.XSTATE_BV[i] bit field of an enabled 
processor state component in a manner that is consistent to XRSTOR's interaction 
with HEADER.XSTATE_BV. 
The state updated to the XSAVE/XRSTOR area may be optimized as follows:
• If the state is in its initialized form, the corresponding XSTATE_BV bit may be set 

to 0, and the corresponding processor state component that is indicated as 
initialized will not be saved to memory. 

A processor state component save area is not updated if either one of the corre-
sponding bits in the mask operand or in XCR0 is 0. The processor state component 
that is updated to the save area is computed by bit-wise AND of the mask operand 
(EDX:EAX) with XCR0.
HEADER.XSTATE_BV is updated to reflect the data that is actually written to the save 
area. A "1" bit in the header indicates the contents of the save area corresponding to 
that bit are valid.  A "0" bit in the header indicates that the state corresponding to 
that bit is in its initialized form.  The memory image corresponding to a "0" bit may 
or may not contain the correct (initialized) value since only the header bit (and not 
the save area contents) is updated when the header bit value is 0. XRSTOR will 
ensure the correct value is placed in the register state regardless of the value of the 
save area when the header bit is zero.

XSAVEOPT Usage Guidelines

When using the XSAVEOPT facility, software must be aware of the following guide-
lines:

1. The processor uses a tracking mechanism to determine which state components 
will be written to memory by the XSAVEOPT instruction. The mechanism includes 
three sub-conditions that are recorded internally each time XRSTOR is executed 
and evaluated on the invocation of the next XSAVEOPT. If a change is detected in 
any one of these sub-conditions, XSAVEOPT will behave exactly as XSAVE. The 
three sub-conditions are:

— current CPL of the logical processor

— indication whether or not the logical processor is in VMX non-root operation

— linear address of the XSAVE/XRSTOR area
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2. Upon allocation of a new XSAVE/XRSTOR area and before an XSAVE or XSAVEOPT 
instruction is used, the save area header (HEADER.XSTATE) must be initialized to 
zeroes for proper operation.

3. XSAVEOPT is designed primarily for use in context switch operations.  The values 
stored by the XSAVEOPT instruction depend on the values previously stored in a 
given XSAVE area.

4. Manual modifications to the XSAVE area between an XRSTOR instruction and the 
matching XSAVEOPT may result in data corruption.

5. For optimization to be performed properly, the XRSTOR XSAVEOPT pair must use 
the same segment when referencing the XSAVE area and the base of that 
segment must be unchanged between the two operations.

6. Software should avoid executing XSAVEOPT into a buffer from which it hadn’t 
previously executed a XRSTOR. For newly allocated buffers, software can execute 
XRSTOR with the linear address of the buffer and a restore mask of EDX:EAX = 0. 
Executing XRSTOR(0:0) doesn’t restore any state, but ensures expected 
operation of the XSAVEOPT instruction.

7. The XSAVE area can be moved or even paged, but the contents at the linear 
address of the save area at an XSAVEOPT must be the same as that when the 
previous XRSTOR was performed.

A destination operand not aligned to 64-byte boundary (in either 64-bit or 32-bit 
modes) will result in a general-protection (#GP) exception being generated. In 64-bit 
mode, the upper 32 bits of RDX and RAX are ignored.

Operation
TMP_MASK[62:0]     (EDX[30:0] << 32 ) OR EAX[31:0] ) AND XCR0[62:0];
FOR i = 0, 62 STEP 1
      IF (TMP_MASK[i] = 1)
      THEN
              If not HW_CAN_OPTIMIZE_SAVE
              THEN
                      CASE ( i ) of
                              0: DEST.FPUSSESAVE_Area[x87 FPU]   processor state[x87 FPU];
                              1: DEST.FPUSSESAVE_Area[SSE]   processor state[SSE];
                                      // SSE state include MXCSR
                              2: DEST.EXT_SAVE_Area2[YMM]   processor state[YMM];
                              DEFAULT: // i corresponds to a valid sub-leaf index of CPUID leaf 0DH
                                      DEST.Ext_Save_Area[ i ]   processor state[i] ;
                      ESAC:
              FI;
              DEST.HEADER.XSTATE_BV[i]   INIT_FUNCTION[i];
      FI;
NEXT;
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Flags Affected

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, 

ES, FS, or GS segment limit.
If a memory operand is not aligned on a 64-byte boundary, 
regardless of segment.

#SS(0) If a memory operand effective address is outside the SS 
segment limit.

#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CPUID.(EAX=0DH, ECX=01H):EAX.XSAVEOPT[bit 0] = 0.
If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 64-byte boundary, 

regardless of segment.
If any part of the operand lies outside the effective address 
space from 0 to FFFFH.

#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CPUID.(EAX=0DH, ECX=01H):EAX.XSAVEOPT[bit 0] = 0.
If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
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#GP(0) If the memory address is in a non-canonical form.
If a memory operand is not aligned on a 64-byte boundary, 
regardless of segment.

#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CPUID.(EAX=0DH, ECX=01H):EAX.XSAVEOPT[bit 0] = 0.
If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.
Vol. 2B 4-701XSAVEOPT—Save Processor Extended States Optimized



INSTRUCTION SET REFERENCE, M-Z
XSETBV—Set Extended Control Register

Instruction Operand Encoding

Description

Writes the contents of registers EDX:EAX into the 64-bit extended control register 
(XCR) specified in the ECX register. (On processors that support the Intel 64 archi-
tecture, the high-order 32 bits of RCX are ignored.) The contents of the EDX register 
are copied to high-order 32 bits of the selected XCR and the contents of the EAX 
register are copied to low-order 32 bits of the XCR. (On processors that support the 
Intel 64 architecture, the high-order 32 bits of each of RAX and RDX are ignored.) 
Undefined or reserved bits in an XCR should be set to values previously read.

This instruction must be executed at privilege level 0 or in real-address mode; other-
wise, a general protection exception #GP(0) is generated. Specifying a reserved or 
unimplemented XCR in ECX will also cause a general protection exception. The 
processor will also generate a general protection exception if software attempts to 
write to reserved bits in an XCR.

Currently, only XCR0 (the XFEATURE_ENABLED_MASK register) is supported. Thus, 
all other values of ECX are reserved and will cause a #GP(0). Note that bit 0 of XCR0 
(corresponding to x87 state) must be set to 1; the instruction will cause a #GP(0) if 
an attempt is made to clear this bit. Additionally, bit 1 of XCR0 (corresponding to AVX 
state) and bit 2 of XCR0 (corresponding to SSE state) must be set to 1 when using 
AVX registers; the instruction will cause a #GP(0) if an attempt is made to set 
XCR0[2:1] = 10.

Operation

XCR[ECX] ← EDX:EAX;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If an invalid XCR is specified in ECX.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 01 D1 XSETBV NP Valid Valid Write the value in EDX:EAX 
to the XCR specified by ECX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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If the value in EDX:EAX sets bits that are reserved in the XCR 
specified by ECX.
If an attempt is made to clear bit 0 of XCR0.
If an attempt is made to set XCR0[2:1] = 10.

#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.
If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

Real-Address Mode Exceptions
#GP If an invalid XCR is specified in ECX.

If the value in EDX:EAX sets bits that are reserved in the XCR 
specified by ECX.
If an attempt is made to clear bit 0 of XCR0.
If an attempt is made to set XCR0[2:1] = 10.

#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.
If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) The XSETBV instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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CHAPTER 5
SAFER MODE EXTENSIONS REFERENCE

5.1 OVERVIEW
This chapter describes the Safer Mode Extensions (SMX) for the Intel 64 and IA-32 
architectures. Safer Mode Extensions (SMX) provide a programming interface for 
system software to establish a measured environment within the platform to support 
trust decisions by end users. The measured environment includes:
• Measured launch of a system executive, referred to as a Measured Launched 

Environment (MLE)1. The system executive may be based on a Virtual Machine 
Monitor (VMM), a measured VMM is referred to as MVMM2.

• Mechanisms to ensure the above measurement is protected and stored in a 
secure location in the platform.

• Protection mechanisms that allow the VMM to control attempts to modify the 
VMM

The measurement and protection mechanisms used by a measured environment are 
supported by the capabilities of an Intel® Trusted Execution Technology (Intel® 
TXT) platform: 
• The SMX are the processor’s programming interface in an Intel TXT platform; 
• The chipset in an Intel TXT platform provides enforcement of the protection 

mechanisms; 
• Trusted Platform Module (TPM) 1.2 in the platform provides platform configu-

ration registers (PCRs) to store software measurement values.

5.2 SMX FUNCTIONALITY
SMX functionality is provided in an Intel 64 processor through the GETSEC instruc-
tion via leaf functions. The GETSEC instruction supports multiple leaf functions. Leaf 
functions are selected by the value in EAX at the time GETSEC is executed. Each 
GETSEC leaf function is documented separately in the reference pages with a unique 
mnemonic (even though these mnemonics share the same opcode, 0F 37).

1. See Intel® Trusted Execution Technology Measured Launched Environment Programming Guide.

2. An MVMM is sometimes referred to as a measured launched environment (MLE). See Intel® 
Trusted Execution Technology Measured Launched Environment Programming Guide 
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5.2.1 Detecting and Enabling SMX
Software can detect support for SMX operation using the CPUID instruction. If soft-
ware executes CPUID with 1 in EAX, a value of 1 in bit 6 of ECX indicates support for 
SMX operation (GETSEC is available), see CPUID instruction for the layout of feature 
flags of reported by CPUID.01H:ECX.

System software enables SMX operation by setting CR4.SMXE[Bit 14] = 1 before 
attempting to execute GETSEC. Otherwise, execution of GETSEC results in the 
processor signaling an invalid opcode exception (#UD). 

If the CPUID SMX feature flag is clear (CPUID.01H.ECX[Bit 6] = 0), attempting to set 
CR4.SMXE[Bit 14] results in a general protection exception. 

The IA32_FEATURE_CONTROL MSR (at address 03AH) provides feature control bits 
that configure operation of VMX and SMX. These bits are documented in Table 5-1.

• Bit 0 is a lock bit. If the lock bit is clear, an attempt to execute VMXON will cause 
a general-protection exception. Attempting to execute GETSEC[SENTER] when 
the lock bit is clear will also cause a general-protection exception. If the lock bit 
is set, WRMSR to the IA32_FEATURE_CONTROL MSR will cause a general-
protection exception. Once the lock bit is set, the MSR cannot be modified until a 
power-on reset. System BIOS can use this bit to provide a setup option for BIOS 
to disable support for VMX, SMX or both VMX and SMX. 

• Bit 1 enables VMX in SMX operation (between executing the SENTER and SEXIT 
leaves of GETSEC). If this bit is clear, an attempt to execute VMXON in SMX will 
cause a general-protection exception if executed in SMX operation. Attempts to 
set this bit on logical processors that do not support both VMX operation (Chapter 
5, “Safer Mode Extensions Reference”) and SMX operation cause general-
protection exceptions.

Table 5-1.  Layout of IA32_FEATURE_CONTROL

Bit Position Description

0 Lock bit (0 = unlocked, 1 = locked). When set to '1' further writes to this MSR 
are blocked.

1 Enable VMX in SMX operation

2 Enable VMX outside SMX operation

7:3 Reserved

14:8 SENTER Local Function Enables: When set, each bit in the field represents an 
enable control for a corresponding SENTER function.

15 SENTER Global Enable: Must be set to ‘1’ to enable operation of 
GETSEC[SENTER]

63:16 Reserved
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• Bit 2 enables VMX outside SMX operation. If this bit is clear, an attempt to 
execute VMXON will cause a general-protection exception if executed outside 
SMX operation. Attempts to set this bit on logical processors that do not support 
VMX operation cause general-protection exceptions.

• Bits 8 through 14 specify enabled functionality of the SENTER leaf function. Each 
bit in the field represents an enable control for a corresponding SENTER function. 
Only enabled SENTER leaf functionality can be used when executing SENTER. 

• Bits 15 specify global enable of all SENTER functionalities. 

5.2.2 SMX Instruction Summary
System software must first query for available GETSEC leaf functions by executing 
GETSEC[CAPABILITIES]. The CAPABILITIES leaf function returns a bit map of avail-
able GETSEC leaves. An attempt to execute an unsupported leaf index results in an 
undefined opcode (#UD) exception. 

5.2.2.1  GETSEC[CAPABILITIES]
The SMX functionality provides an architectural interface for newer processor gener-
ations to extend SMX capabilities. Specifically, the GETSEC instruction provides a 
capability leaf function for system software to discover the available GETSEC leaf 
functions that are supported in a processor. Table 5-2 lists the currently available 
GETSEC leaf functions.
.

Table 5-2.  GETSEC Leaf Functions 

Index (EAX) Leaf function Description

0 CAPABILITIES Returns the available leaf functions of the GETSEC 
instruction

1 Undefined Reserved

2 ENTERACCS Enter 

3 EXITAC Exit 

4 SENTER Launch an MLE

5 SEXIT Exit the MLE

6 PARAMETERS Return SMX related parameter information

7 SMCTRL SMX mode control

8 WAKEUP Wake up sleeping processors in safer mode

9 - (4G-1) Undefined Reserved
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5.2.2.2  GETSEC[ENTERACCS]
The GETSEC[ENTERACCS] leaf enables authenticated code execution mode. The 
ENTERACCS leaf function performs an authenticated code module load using the 
chipset public key as the signature verification. ENTERACCS requires the existence of 
an Intel® Trusted Execution Technology capable chipset since it unlocks the chipset 
private configuration register space after successful authentication of the loaded 
module. The physical base address and size of the authenticated code module are 
specified as input register values in EBX and ECX, respectively. 

While in the authenticated code execution mode, certain processor state properties 
change. For this reason, the time in which the processor operates in authenticated 
code execution mode should be limited to minimize impact on external system 
events. 

Upon entry into , the previous paging context is disabled (since the authenticated 
code module image is specified with physical addresses and can no longer rely upon 
external memory-based page-table structures).

Prior to executing the GETSEC[ENTERACCS] leaf, system software must ensure the 
logical processor issuing GETSEC[ENTERACCS] is the boot-strap processor (BSP), as 
indicated by IA32_APIC_BASE.BSP = 1. System software must ensure other logical 
processors are in a suitable idle state and not marked as BSP.

The GETSEC[ENTERACCS] leaf may be used by different agents to load different 
authenticated code modules to perform functions related to different aspects of a 
measured environment, for example system software and Intel® TXT enabled BIOS 
may use more than one authenticated code modules.

5.2.2.3  GETSEC[EXITAC]
GETSEC[EXITAC] takes the processor out of . When this instruction leaf is executed, 
the contents of the authenticated code execution area are scrubbed and control is 
transferred to the non-authenticated context defined by a near pointer passed with 
the GETSEC[EXITAC] instruction. 

The authenticated code execution area is no longer accessible after completion of 
GETSEC[EXITAC]. RBX (or EBX) holds the address of the near absolute indirect 
target to be taken. 

5.2.2.4  GETSEC[SENTER]
The GETSEC[SENTER] leaf function is used by the initiating logical processor (ILP) to 
launch an MLE. GETSEC[SENTER] can be considered a superset of the ENTERACCS 
leaf, because it enters  as part of the measured environment launch. 

Measured environment startup consists of the following steps:
• the ILP rendezvous the responding logical processors (RLPs) in the platform into 

a controlled state (At the completion of this handshake, all the RLPs except for 
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the ILP initiating the measured environment launch are placed in a newly defined 
SENTER sleep state).

• Load and authenticate the authenticated code module required by the measured 
environment, and enter authenticated code execution mode.

• Verify and lock certain system configuration parameters.
• Measure the dynamic root of trust and store into the PCRs in TPM. 
• Transfer control to the MLE with interrupts disabled.

Prior to executing the GETSEC[SENTER] leaf, system software must ensure the plat-
form’s TPM is ready for access and the ILP is the boot-strap processor (BSP), as indi-
cated by IA32_APIC_BASE.BSP. System software must ensure other logical 
processors (RLPs) are in a suitable idle state and not marked as BSP.

System software launching a measurement environment is responsible for providing 
a proper authenticate code module address when executing GETSEC[SENTER]. The 
AC module responsible for the launch of a measured environment and loaded by 
GETSEC[SENTER] is referred to as SINIT. See Intel® Trusted Execution Technology 
Measured Launched Environment Programming Guide for additional information on 
system software requirements prior to executing GETSEC[SENTER].

5.2.2.5  GETSEC[SEXIT]
System software exits the measured environment by executing the instruction 
GETSEC[SEXIT] on the ILP. This instruction rendezvous the responding logical 
processors in the platform for exiting from the measured environment. External 
events (if left masked) are unmasked and Intel® TXT-capable chipset’s private 
configuration space is re-locked. 

5.2.2.6  GETSEC[PARAMETERS]
The GETSEC[PARAMETERS] leaf function is used to report attributes, options and 
limitations of SMX operation. Software uses this leaf to identify operating limits or 
additional options. 

The information reported by GETSEC[PARAMETERS] may require executing the leaf 
multiple times using EBX as an index. If the GETSEC[PARAMETERS] instruction leaf 
or if a specific parameter field is not available, then SMX operation should be inter-
preted to use the default limits of respective GETSEC leaves or parameter fields 
defined in the GETSEC[PARAMETERS] leaf.

5.2.2.7  GETSEC[SMCTRL]
The GETSEC[SMCTRL] leaf function is used for providing additional control over 
specific conditions associated with the SMX architecture. An input register is 
supported for selecting the control operation to be performed. See the specific leaf 
description for details on the type of control provided.
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5.2.2.8  GETSEC[WAKEUP]
Responding logical processors (RLPs) are placed in the SENTER sleep state after the 
initiating logical processor executes GETSEC[SENTER]. The ILP can wake up RLPs to 
join the measured environment by using GETSEC[WAKEUP].When the RLPs in 
SENTER sleep state wake up, these logical processors begin execution at the entry 
point defined in a data structure held in system memory (pointed to by an chipset 
register LT.MLE.JOIN) in TXT configuration space.

5.2.3 Measured Environment and SMX
This section gives a simplified view of a representative life cycle of a measured envi-
ronment that is launched by a system executive using SMX leaf functions. Intel® 
Trusted Execution Technology Measured Launched Environment Programming Guide 
provides more detailed examples of using SMX and chipset resources (including 
chipset registers, Trusted Platform Module) to launch an MVMM.

The life cycle starts with the system executive (an OS, an OS loader, and so forth) 
loading the MLE and SINIT AC module into available system memory. The system 
executive must validate and parpare the platform for the measured launch. When the 
platform is properly configured, the system executive executes GETSEC[SENTER] on 
the initiating logical processor (ILP) to rendezvous the responding logical processors 
into an SENTER sleep state, the ILP then enters into  using the SINIT AC module. In 
a multi-threaded or multi-processing environment, the system executive must 
ensure that other logical processors are already in an idle loop, or asleep (such as 
after executing HLT) before executing GETSEC[SENTER].

After the GETSEC[SENTER] rendezvous handshake is performed between all logical 
processors in the platform, the ILP loads the chipset authenticated code module 
(SINIT) and performs an authentication check. If the check passes, the processor 
hashes the SINIT AC module and stores the result into TPM PCR 17. It then switches 
execution context to the SINIT AC module. The SINIT AC module will perform a 
number of platfom operations, including: verifying the system configuration, 
protecting the system memory used by the MLE from I/O devices capable of DMA, 
producing a hash of the MLE, storing the hash value in TPM PCR 18, and various other 
operations. When SINIT completes execution, it executes the GETSEC[EXITAC] 
instruction and transfers control the MLE at the designated entry point. 

Upon receiving control from the SINIT AC module, the MLE must establish its protec-
tion and isolation controls before enabling DMA and interrupts and transferring 
control to other software modules.  It must also wakeup the RLPs from their SENTER 
sleep state using the GETSEC[WAKEUP] instruction and bring them into its protection 
and isolation environment.

While executing in a measured environment, the MVMM can access the Trusted Plat-
form Module (TPM) in locality 2. The MVMM has complete access to all TPM 
commands and may use the TPM to report current measurement values or use the 
measurement values to protect information such that only when the platform config-
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uration registers (PCRs) contain the same value is the information released from the 
TPM. This protection mechanism is known as sealing. 

A measured environment shutdown is ultimately completed by executing 
GETSEC[SEXIT]. Prior to this step system software is responsible for scrubbing 
sensitive information left in the processor caches, system memory.

5.3 GETSEC LEAF FUNCTIONS
This section provides detailed descriptions of each leaf function of the GETSEC 
instruction. GETSEC is available only if CPUID.01H:ECX[Bit 6] = 1. This indicates the 
availability of SMX and the GETSEC instruction. Before GETSEC can be executed, 
SMX must be enabled by setting CR4.SMXE[Bit 14] = 1.

A GETSEC leaf can only be used if it is shown to be available as reported by the 
GETSEC[CAPABILITIES] function. Attempts to access a GETSEC leaf index not 
supported by the processor, or if CR4.SMXE is 0, results in the signaling of an unde-
fined opcode exception.

All GETSEC leaf functions are available in protected mode, including the compatibility 
sub-mode of IA-32e mode and the 64-bit sub-mode of IA-32e mode. Unless other-
wise noted, the behavior of all GETSEC functions and interactions related to the 
measured environment are independent of IA-32e mode. This also applies to the 
interpretation of register widths1 passed as input parameters to GETSEC functions 
and to register results returned as output parameters.

The GETSEC functions ENTERACCS, SENTER, SEXIT, and WAKEUP require a Intel® 
TXT capable-chipset to be present in the platform. The GETSEC[CAPABILITIES] 
returned bit vector in position 0 indicates an Intel® TXT-capable chipset has been 
sampled present2 by the processor.

The processor's operating mode also affects the execution of the following GETSEC 
leaf functions: SMCTRL, ENTERACCS, EXITAC, SENTER, SEXIT, and WAKEUP. These 
functions are only allowed in protected mode at CPL = 0. They are not allowed while 
in SMM in order to prevent potential intra-mode conflicts. Further execution qualifica-
tions exist to prevent potential architectural conflicts (for example: nesting of the 
measured environment or authenticated code execution mode). See the definitions 
of the GETSEC leaf functions for specific requirements.

1.  This chapter uses the 64-bit notation RAX, RIP, RSP, RFLAGS, etc. for processor registers 
because processors that support SMX also support Intel 64 Architecture. The MVMM can be 
launched in IA-32e mode or outside IA-32e mode. The 64-bit notation of processor registers also 
refer to its 32-bit forms if SMX is used in 32-bit environment. In some places, notation such as 
EAX is used to refer specifically to lower 32 bits of the indicated register

2. Sampled present means that the processor sent a message to the chipset and the chipset 
responded that it (a) knows about the message and (b) is capable of executing SENTER. This 
means that the chipset CAN support Intel® TXT, and is configured and WILLING to support it.
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For the purpose of performance monitor counting, the execution of GETSEC functions 
is counted as a single instruction with respect to retired instructions. The response by 
a responding logical processor (RLP) to messages associated with GETSEC[SENTER] 
or GTSEC[SEXIT] is transparent to the retired instruction count on the ILP.
5-8 Vol. 2C



SAFER MODE EXTENSIONS REFERENCE
GETSEC[CAPABILITIES] - Report the SMX Capabilities

Description

The GETSEC[CAPABILITIES] function returns a bit vector of supported GETSEC leaf 
functions. The CAPABILITIES leaf of GETSEC is selected with EAX set to 0 at entry. 
EBX is used as the selector for returning the bit vector field in EAX. GETSEC[CAPABIL-
ITIES] may be executed at all privilege levels, but the CR4.SMXE bit must be set or an 
undefined opcode exception (#UD) is returned.

With EBX = 0 upon execution of GETSEC[CAPABILITIES], EAX returns the a bit vector 
representing status on the presence of a Intel® TXT-capable chipset and the first 30 
available GETSEC leaf functions. The format of the returned bit vector is provided in 
Table 5-3. 

If bit 0 is set to 1, then an Intel® TXT-capable chipset has been sampled present by 
the processor. If bits in the range of 1-30 are set, then the corresponding GETSEC leaf 
function is available. If the bit value at a given bit index is 0, then the GETSEC leaf 
function corresponding to that index is unsupported and attempted execution results 
in a #UD. 

Bit 31 of EAX indicates if further leaf indexes are supported. If the Extended Leafs bit 
31 is set, then additional leaf functions are accessed by repeating GETSEC[CAPABILI-
TIES] with EBX incremented by one. When the most significant bit of EAX is not set, 
then additional GETSEC leaf functions are not supported; indexing EBX to a higher 
value results in EAX returning zero.

Opcode Instruction Description

0F 37 

(EAX = 0)

GETSEC[CAPA
BILITIES]

Report the SMX capabilities. 

The capabilities index is input in EBX with the result returned in 
EAX.

Table 5-3.  Getsec Capability Result Encoding (EBX = 0) 

Field Bit position Description

Chipset Present 0 Intel® TXT-capable chipset is present

Undefined 1 Reserved

ENTERACCS 2 GETSEC[ENTERACCS] is available

EXITAC 3 GETSEC[EXITAC] is available

SENTER 4 GETSEC[SENTER] is available

SEXIT 5 GETSEC[SEXIT] is available
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Operation
IF (CR4.SMXE=0)

THEN #UD;
ELSIF (in VMX non-root operation)

THEN VM Exit (reason=”GETSEC instruction”);
IF (EBX=0) THEN

BitVector← 0;
IF (TXT chipset present)

BitVector[Chipset present]← 1;
IF (ENTERACCS Available)

THEN BitVector[ENTERACCS]← 1;
IF (EXITAC Available)

THEN BitVector[EXITAC]← 1;
IF (SENTER Available)

THEN BitVector[SENTER]← 1;
IF (SEXIT Available)

THEN BitVector[SEXIT]← 1;
IF (PARAMETERS Available)

THEN BitVector[PARAMETERS]← 1;
IF (SMCTRL Available)

THEN BitVector[SMCTRL]← 1;
IF (WAKEUP Available)

THEN BitVector[WAKEUP]← 1;
EAX← BitVector;

ELSE
EAX← 0;

END;;

Flags Affected
None

PARAMETERS 6 GETSEC[PARAMETERS] is available

SMCTRL 7 GETSEC[SMCTRL] is available

WAKEUP 8 GETSEC[WAKEUP] is available

Undefined 30:9 Reserved

Extended Leafs 31 Reserved for extended information reporting of 
GETSEC capabilities

Table 5-3.  Getsec Capability Result Encoding (EBX = 0)  (Contd.)

Field Bit position Description
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Use of Prefixes
LOCK Causes #UD
REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ)
Operand size Causes #UD
Segment overrides Ignored
Address size Ignored
REX Ignored

Protected Mode Exceptions
#UD IF CR4.SMXE = 0.

Real-Address Mode Exceptions
#UD IF CR4.SMXE = 0.

Virtual-8086 Mode Exceptions
#UD IF CR4.SMXE = 0.

Compatibility Mode Exceptions
#UD IF CR4.SMXE = 0.

64-Bit Mode Exceptions
#UD IF CR4.SMXE = 0.

VM-exit Condition
Reason (GETSEC) IF in VMX non-root operation.
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GETSEC[ENTERACCS] - Execute Authenticated Chipset Code

Description

The GETSEC[ENTERACCS] function loads, authenticates and executes an authenti-
cated code module using an Intel® TXT platform chipset's public key. The ENTER-
ACCS leaf of GETSEC is selected with EAX set to 2 at entry.

There are certain restrictions enforced by the processor for the execution of the 
GETSEC[ENTERACCS] instruction: 
• Execution is not allowed unless the processor is in protected mode or IA-32e 

mode with CPL = 0 and EFLAGS.VM = 0. 
• Processor cache must be available and not disabled, that is, CR0.CD and CR0.NW 

bits must be 0. 
• For processor packages containing more than one logical processor, CR0.CD is 

checked to ensure consistency between enabled logical processors. 
• For enforcing consistency of operation with numeric exception reporting using 

Interrupt 16, CR0.NE must be set. 
• An Intel TXT-capable chipset must be present as communicated to the processor 

by sampling of the power-on configuration capability field after reset. 
• The processor can not already be in authenticated code execution mode as 

launched by a previous GETSEC[ENTERACCS] or GETSEC[SENTER] instruction 
without a subsequent exiting using GETSEC[EXITAC]). 

• To avoid potential operability conflicts between modes, the processor is not 
allowed to execute this instruction if it currently is in SMM or VMX operation. 

• To insure consistent handling of SIPI messages, the processor executing the 
GETSEC[ENTERACCS] instruction must also be designated the BSP (boot-strap 
processor) as defined by A32_APIC_BASE.BSP (Bit 8). 

Failure to conform to the above conditions results in the processor signaling a general 
protection exception.

Prior to execution of the ENTERACCS leaf, other logical processors, i.e. RLPs, in the 
platform must be:
• idle in a wait-for-SIPI state (as initiated by an INIT assertion or through reset for 

non-BSP designated processors), or 
• in the SENTER sleep state as initiated by a GETSEC[SENTER] from the initiating 

logical processor (ILP). 

Opcode Instruction Description

0F 37 

(EAX = 2)

GETSEC[ENTERACCS] Enter authenticated code execution mode.

EBX holds the authenticated code module physical base 
address. ECX holds the authenticated code module size 
(bytes).
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If other logical processor(s) in the same package are not idle in one of these states, 
execution of ENTERACCS signals a general protection exception. The same require-
ment and action applies if the other logical processor(s) of the same package do not 
have CR0.CD = 0. 

A successful execution of ENTERACCS results in the ILP entering an authenticated 
code execution mode. Prior to reaching this point, the processor performs several 
checks. These include: 
• Establish and check the location and size of the specified authenticated code 

module to be executed by the processor.
• Inhibit the ILP’s response to the external events: INIT, A20M, NMI and SMI.
• Broadcast a message to enable protection of memory and I/O from other 

processor agents.
• Load the designated code module into an authenticated code execution area.
• Isolate the contents of the authenticated code execution area from further state 

modification by external agents.
• Authenticate the authenticated code module.
• Initialize the initiating logical processor state based on information contained in 

the authenticated code module header.
• Unlock the Intel® TXT-capable chipset private configuration space and TPM 

locality 3 space.
• Begin execution in the authenticated code module at the defined entry point.

The GETSEC[ENTERACCS] function requires two additional input parameters in the 
general purpose registers EBX and ECX. EBX holds the authenticated code (AC) 
module physical base address (the AC module must reside below 4 GBytes in phys-
ical address space) and ECX holds the AC module size (in bytes). The physical base 
address and size are used to retrieve the code module from system memory and load 
it into the internal authenticated code execution area. The base physical address is 
checked to verify it is on a modulo-4096 byte boundary. The size is verified to be a 
multiple of 64, that it does not exceed the internal authenticated code execution area 
capacity (as reported by GETSEC[CAPABILITIES]), and that the top address of the AC 
module does not exceed 32 bits. An error condition results in an abort of the authen-
ticated code execution launch and the signaling of a general protection exception.

As an integrity check for proper processor hardware operation, execution of 
GETSEC[ENTERACCS] will also check the contents of all the machine check status 
registers (as reported by the MSRs IA32_MCi_STATUS) for any valid uncorrectable 
error condition. In addition, the global machine check status register 
IA32_MCG_STATUS MCIP bit must be cleared and the IERR processor package pin 
(or its equivalent) must not be asserted, indicating that no machine check exception 
processing is currently in progress. These checks are performed prior to initiating the 
load of the authenticated code module. Any outstanding valid uncorrectable machine 
check error condition present in these status registers at this point will result in the 
processor signaling a general protection violation.
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The ILP masks the response to the assertion of the external signals INIT#, A20M, 
NMI#,and SMI#. This masking remains active until optionally unmasked by 
GETSEC[EXITAC] (this defined unmasking behavior assumes GETSEC[ENTERACCS] 
was not executed by a prior GETSEC[SENTER]). The purpose of this masking control 
is to prevent exposure to existing external event handlers that may not be under the 
control of the authenticated code module.. 

The ILP sets an internal flag to indicate it has entered authenticated code execution 
mode. The state of the A20M pin is likewise masked and forced internally to a de-
asserted state so that any external assertion is not recognized during authenticated 
code execution mode. 

To prevent other (logical) processors from interfering with the ILP operating in 
authenticated code execution mode, memory (excluding implicit write-back transac-
tions) access and I/O originating from other processor agents are blocked. This 
protection starts when the ILP enters into authenticated code execution mode. Only 
memory and I/O transactions initiated from the ILP are allowed to proceed. Exiting 
authenticated code execution mode is done by executing GETSEC[EXITAC]. The 
protection of memory and I/O activities remains in effect until the ILP executes 
GETSEC[EXITAC].

Prior to launching the authenticated execution module using GETSEC[ENTERACCS] 
or GETSEC[SENTER], the processor’s MTRRs (Memory Type Range Registers) must 
first be initialized to map out the authenticated RAM addresses as WB (writeback). 
Failure to do so may affect the ability for the processor to maintain isolation of the 
loaded authenticated code module. If the processor detected this requirement is not 
met, it will signal an Intel® TXT reset condition with an error code during the loading 
of the authenticated code module.

While physical addresses within the load module must be mapped as WB, the 
memory type for locations outside of the module boundaries must be mapped to one 
of the supported memory types as returned by GETSEC[PARAMETERS] (or UC as 
default).

To conform to the minimum granularity of MTRR MSRs for specifying the memory 
type, authenticated code RAM (ACRAM) is allocated to the processor in 4096 byte 
granular blocks. If an AC module size as specified in ECX is not a multiple of 4096 
then the processor will allocate up to the next 4096 byte boundary for mapping as 
ACRAM with indeterminate data. This pad area will not be visible to the authenticated 
code module as external memory nor can it depend on the value of the data used to 
fill the pad area.

At the successful completion of GETSEC[ENTERACCS], the architectural state of the 
processor is partially initialized from contents held in the header of the authenticated 
code module. The processor GDTR, CS, and DS selectors are initialized from fields 
within the authenticated code module. Since the authenticated code module must be 
relocatable, all address references must be relative to the authenticated code module 
base address in EBX. The processor GDTR base value is initialized to the AC module 
header field GDTBasePtr + module base address held in EBX and the GDTR limit is set 
to the value in the GDTLimit field. The CS selector is initialized to the AC module 
header SegSel field, while the DS selector is initialized to CS + 8. The segment 
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descriptor fields are implicitly initialized to BASE=0, LIMIT=FFFFFh, G=1, D=1, P=1, 
S=1, read/write access for DS, and execute/read access for CS. The processor 
begins the authenticated code module execution with the EIP set to the AC module 
header EntryPoint field + module base address (EBX). The AC module based fields 
used for initializing the processor state are checked for consistency and any failure 
results in a shutdown condition.

A summary of the register state initialization after successful completion of 
GETSEC[ENTERACCS] is given for the processor in Table 5-4. The paging is disabled 
upon entry into authenticated code execution mode. The authenticated code module 
is loaded and initially executed using physical addresses. It is up to the system soft-
ware after execution of GETSEC[ENTERACCS] to establish a new (or restore its 
previous) paging environment with an appropriate mapping to meet new protection 
requirements. EBP is initialized to the authenticated code module base physical 
address for initial execution in the authenticated environment. As a result, the 
authenticated code can reference EBP for relative address based references, given 
that the authenticated code module must be position independent.

Table 5-4.  Register State Initialization after GETSEC[ENTERACCS] 

Register State Initialization Status Comment

CR0 PG←0, AM←0, WP←0: Others 
unchanged

Paging, Alignment Check, Write-
protection are disabled

CR4 MCE←0: Others unchanged Machine Check Exceptions Disabled

EFLAGS 00000002H

IA32_EFER 0H IA-32e mode disabled

EIP AC.base + EntryPoint AC.base is in EBX as input to 
GETSEC[ENTERACCS]

[E|R]BX Pre-ENTERACCS state: Next [E|R]IP 
prior to GETSEC[ENTERACCS]

Carry forward 64-bit processor 
state across GETSEC[ENTERACCS] 

ECX Pre-ENTERACCS state: 
[31:16]=GDTR.limit; [15:0]=CS.sel

Carry forward processor state 
across GETSEC[ENTERACCS]

[E|R]DX Pre-ENTERACCS state: 
GDTR base

Carry forward 64-bit processor 
state across GETSEC[ENTERACCS]

EBP AC.base

CS Sel=[SegSel], base=0, limit=FFFFFh, 
G=1, D=1, AR=9BH

DS Sel=[SegSel] +8, base=0, 
limit=FFFFFh, G=1, D=1, AR=93H
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The segmentation related processor state that has not been initialized by 
GETSEC[ENTERACCS] requires appropriate initialization before use. Since a new GDT 
context has been established, the previous state of the segment selector values held 
in ES, SS, FS, GS, TR, and LDTR might not be valid. 

The MSR IA32_EFER is also unconditionally cleared as part of the processor state 
initialized by ENTERACCS. Since paging is disabled upon entering authenticated code 
execution mode, a new paging environment will have to be reestablished in order to 
establish IA-32e mode while operating in authenticated code execution mode.

Debug exception and trap related signaling is also disabled as part of 
GETSEC[ENTERACCS]. This is achieved by resetting DR7, TF in EFLAGs, and the MSR 
IA32_DEBUGCTL. These debug functions are free to be re-enabled once supporting 
exception handler(s), descriptor tables, and debug registers have been properly 
initialized following entry into authenticated code execution mode. Also, any pending 
single-step trap condition will have been cleared upon entry into this mode.

The IA32_MISC_ENABLE MSR is initialized upon entry into authenticated execution 
mode. Certain bits of this MSR are preserved because preserving these bits may be 
important to maintain previously established platform settings (See the footnote for 
Table 5-5.). The remaining bits are cleared for the purpose of establishing a more 
consistent environment for the execution of authenticated code modules. One of the 
impacts of initializing this MSR is any previous condition established by the MONITOR 
instruction will be cleared. 

To support the possible return to the processor architectural state prior to execution 
of GETSEC[ENTERACCS], certain critical processor state is captured and stored in the 
general- purpose registers at instruction completion. [E|R]BX holds effective address 
([E|R]IP) of the instruction that would execute next after GETSEC[ENTERACCS], 
ECX[15:0] holds the CS selector value, ECX[31:16] holds the GDTR limit field, and 
[E|R]DX holds the GDTR base field. The subsequent authenticated code can preserve 
the contents of these registers so that this state can be manually restored if needed, 
prior to exiting authenticated code execution mode with GETSEC[EXITAC]. For the 
processor state after exiting authenticated code execution mode, see the description 
of GETSEC[SEXIT].

GDTR Base= AC.base (EBX) + [GDTBasePtr], 
Limit=[GDTLimit]

DR7 00000400H

IA32_DEBUGCTL 0H

IA32_MISC_ENA
BLE

see Table 5-5 for example The number of initialized fields may 
change due.to processor 
implementation 

Table 5-4.  Register State Initialization after GETSEC[ENTERACCS]  (Contd.)

Register State Initialization Status Comment
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The IDTR will also require reloading with a new IDT context after entering authenti-
cated code execution mode, before any exceptions or the external interrupts INTR 
and NMI can be handled. Since external interrupts are re-enabled at the completion 
of authenticated code execution mode (as terminated with EXITAC), it is recom-
mended that a new IDT context be established before this point. Until such a new IDT 
context is established, the programmer must take care in not executing an INT n 
instruction or any other operation that would result in an exception or trap signaling.

Prior to completion of the GETSEC[ENTERACCS] instruction and after successful 
authentication of the AC module, the private configuration space of the Intel TXT 
chipset is unlocked. The authenticated code module alone can gain access to this 
normally restricted chipset state for the purpose of securing the platform. 

Table 5-5.  IA32_MISC_ENALBES MSR Initialization1 by ENTERACCS and SENTER

NOTES:
1. The number of IA32_MISC_ENABLE fields that are initialized may vary due to processor imple-

mentations.

Field Bit position Description

Fast strings enable 0 Clear to 0

FOPCODE compatibility 
mode enable

2 Clear to 0

Thermal monitor 
enable

3 Set to 1 if other thermal monitor capability is not 
enabled.2

2. ENTERACCS (and SENTER) initialize the state of processor thermal throttling such that at least a 
minimum level is enabled. If thermal throttling is already enabled when executing one of these 
GETSEC leaves, then no change in the thermal throttling control settings will occur. If thermal 
throttling is disabled, then it will be enabled via setting of the thermal throttle control bit 3 as a 
result of executing these GETSEC leaves.

Split-lock disable 4 Clear to 0

Bus lock on cache line 
splits disable

8 Clear to 0

Hardware prefetch 
disable

9 Clear to 0

GV1/2 legacy enable 15 Clear to 0

MONITOR/MWAIT s/m 
enable

18 Clear to 0

Adjacent sector 
prefetch disable

19 Clear to 0
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Once the authenticated code module is launched at the completion of 
GETSEC[ENTERACCS], it is free to enable interrupts by setting EFLAGS.IF and enable 
NMI by execution of IRET. This presumes that it has re-established interrupt handling 
support through initialization of the IDT, GDT, and corresponding interrupt handling 
code.

Operation in a Uni-Processor Platform
(* The state of the internal flag ACMODEFLAG persists across instruction boundary *)
IF (CR4.SMXE=0)

THEN #UD;
ELSIF (in VMX non-root operation)

THEN VM Exit (reason=”GETSEC instruction”);
ELSIF (GETSEC leaf unsupported)

THEN #UD;
ELSIF ((in VMX operation) or

(CR0.PE=0) or (CR0.CD=1) or (CR0.NW=1) or (CR0.NE=0) or
(CPL>0) or (EFLAGS.VM=1) or
(IA32_APIC_BASE.BSP=0) or
(TXT chipset not present) or
(ACMODEFLAG=1) or (IN_SMM=1))

THEN #GP(0);
IF (GETSEC[PARAMETERS].Parameter_Type = 5, MCA_Handling (bit 6) = 0)

FOR I = 0 to IA32_MCG_CAP.COUNT-1 DO
IF (IA32_MC[I]_STATUS = uncorrectable error)

THEN #GP(0);
OD;

FI;
IF (IA32_MCG_STATUS.MCIP=1) or (IERR pin is asserted)

THEN #GP(0);
ACBASE← EBX;
ACSIZE← ECX;
IF (((ACBASE MOD 4096) != 0) or ((ACSIZE MOD 64 )!= 0 ) or (ACSIZE < minimum module size) OR 
(ACSIZE > authenticated RAM capacity)) or ((ACBASE+ACSIZE) > (2^32 -1)))

THEN #GP(0);
IF (secondary thread(s) CR0.CD = 1) or ((secondary thread(s) NOT(wait-for-SIPI)) and

(secondary thread(s) not in SENTER sleep state)
THEN #GP(0);

Mask SMI, INIT, A20M, and NMI external pin events;
IA32_MISC_ENABLE← (IA32_MISC_ENABLE & MASK_CONST*)
(* The hexadecimal value of MASK_CONST may vary due to processor implementations *)
A20M← 0;
IA32_DEBUGCTL← 0;
Invalidate processor TLB(s);
Drain Outgoing Transactions;
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ACMODEFLAG← 1;
SignalTXTMessage(ProcessorHold);
Load the internal ACRAM based on the AC module size;
(* Ensure that all ACRAM loads hit Write Back memory space *)
IF (ACRAM memory type != WB)

THEN TXT-SHUTDOWN(#BadACMMType);
IF (AC module header version isnot supported) OR (ACRAM[ModuleType] <> 2)

THEN TXT-SHUTDOWN(#UnsupportedACM);
 (* Authenticate the AC Module and shutdown with an error if it fails *)
KEY← GETKEY(ACRAM, ACBASE);
KEYHASH← HASH(KEY);
CSKEYHASH← READ(TXT.PUBLIC.KEY);
IF (KEYHASH <> CSKEYHASH)

THEN TXT-SHUTDOWN(#AuthenticateFail);
SIGNATURE← DECRYPT(ACRAM, ACBASE, KEY);
(* The value of SIGNATURE_LEN_CONST is implementation-specific*)
FOR I=0 to SIGNATURE_LEN_CONST - 1 DO

ACRAM[SCRATCH.I]← SIGNATURE[I];
COMPUTEDSIGNATURE← HASH(ACRAM, ACBASE, ACSIZE);
FOR I=0 to SIGNATURE_LEN_CONST - 1 DO

ACRAM[SCRATCH.SIGNATURE_LEN_CONST+I]← COMPUTEDSIGNATURE[I];
IF (SIGNATURE<>COMPUTEDSIGNATURE)

THEN TXT-SHUTDOWN(#AuthenticateFail);
ACMCONTROL← ACRAM[CodeControl];
IF ((ACMCONTROL.0 = 0) and (ACMCONTROL.1 = 1) and (snoop hit to modified line detected on 
ACRAM load))

THEN TXT-SHUTDOWN(#UnexpectedHITM);
IF (ACMCONTROL reserved bits are set)

THEN TXT-SHUTDOWN(#BadACMFormat);
IF ((ACRAM[GDTBasePtr] < (ACRAM[HeaderLen] * 4 + Scratch_size)) OR

((ACRAM[GDTBasePtr] + ACRAM[GDTLimit]) >= ACSIZE))
THEN TXT-SHUTDOWN(#BadACMFormat);

IF ((ACMCONTROL.0 = 1) and (ACMCONTROL.1 = 1) and (snoop hit to modified line detected on 
ACRAM load))

THEN ACEntryPoint← ACBASE+ACRAM[ErrorEntryPoint];
ELSE

ACEntryPoint← ACBASE+ACRAM[EntryPoint];
IF ((ACEntryPoint >= ACSIZE) OR (ACEntryPoint < (ACRAM[HeaderLen] * 4 + Scratch_size)))THEN 
TXT-SHUTDOWN(#BadACMFormat);
IF (ACRAM[GDTLimit] & FFFF0000h)

THEN TXT-SHUTDOWN(#BadACMFormat);
IF ((ACRAM[SegSel] > (ACRAM[GDTLimit] - 15)) OR (ACRAM[SegSel] < 8))

THEN TXT-SHUTDOWN(#BadACMFormat);
IF ((ACRAM[SegSel].TI=1) OR (ACRAM[SegSel].RPL!=0))
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THEN TXT-SHUTDOWN(#BadACMFormat);
CR0.[PG.AM.WP]← 0;
CR4.MCE← 0;
EFLAGS← 00000002h;
IA32_EFER← 0h;
[E|R]BX← [E|R]IP of the instruction after GETSEC[ENTERACCS];
ECX← Pre-GETSEC[ENTERACCS] GDT.limit:CS.sel;
[E|R]DX← Pre-GETSEC[ENTERACCS] GDT.base;
EBP← ACBASE;
GDTR.BASE← ACBASE+ACRAM[GDTBasePtr];
GDTR.LIMIT← ACRAM[GDTLimit];
CS.SEL← ACRAM[SegSel];
CS.BASE← 0;
CS.LIMIT← FFFFFh;
CS.G← 1;
CS.D← 1;
CS.AR← 9Bh;
DS.SEL← ACRAM[SegSel]+8;
DS.BASE← 0;
DS.LIMIT← FFFFFh;
DS.G← 1;
DS.D← 1;
DS.AR← 93h;
DR7← 00000400h;
IA32_DEBUGCTL← 0;
SignalTXTMsg(OpenPrivate);
SignalTXTMsg(OpenLocality3);
EIP← ACEntryPoint;
END;

Flags Affected
All flags are cleared.

Use of Prefixes
LOCK Causes #UD
REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ)
Operand size Causes #UD
Segment overrides Ignored
Address size Ignored
REX Ignored
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Protected Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[ENTERACCS] is not reported as supported by 
GETSEC[CAPABILITIES].

#GP(0) If CR0.CD = 1 or CR0.NW = 1 or CR0.NE = 0 or CR0.PE = 0 or 
CPL > 0 or EFLAGS.VM = 1.
If a Intel® TXT-capable chipset is not present.
If in VMX root operation.
If the initiating processor is not designated as the bootstrap 
processor via the MSR bit IA32_APIC_BASE.BSP.
If the processor is already in authenticated code execution 
mode.
If the processor is in SMM.
If a valid uncorrectable machine check error is logged in 
IA32_MC[I]_STATUS.
If the authenticated code base is not on a 4096 byte boundary.
If the authenticated code size > processor internal authenti-
cated code area capacity.
If the authenticated code size is not modulo 64.
If other enabled logical processor(s) of the same package 
CR0.CD = 1.
If other enabled logical processor(s) of the same package are 
not in the wait-for-SIPI or SENTER sleep state.

Real-Address Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[ENTERACCS] is not reported as supported by 
GETSEC[CAPABILITIES].

#GP(0) GETSEC[ENTERACCS] is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[ENTERACCS] is not reported as supported by 
GETSEC[CAPABILITIES].

#GP(0) GETSEC[ENTERACCS] is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
All protected mode exceptions apply.
#GP  IF AC code module does not reside in physical address below 

2^32 -1.
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64-Bit Mode Exceptions
All protected mode exceptions apply.
#GP  IF AC code module does not reside in physical address below 

2^32 -1.

VM-exit Condition
Reason (GETSEC) IF in VMX non-root operation.
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GETSEC[EXITAC]—Exit Authenticated Code Execution Mode

Description

The GETSEC[EXITAC] leaf function exits the ILP out of authenticated code execution 
mode established by GETSEC[ENTERACCS] or GETSEC[SENTER]. The EXITAC leaf of 
GETSEC is selected with EAX set to 3 at entry. EBX (or RBX, if in 64-bit mode) holds 
the near jump target offset for where the processor execution resumes upon exiting 
authenticated code execution mode. EDX contains additional parameter control 
information. Currently only an input value of 0 in EDX is supported. All other EDX 
settings are considered reserved and result in a general protection violation.

GETSEC[EXITAC] can only be executed if the processor is in protected mode with CPL 
= 0 and EFLAGS.VM = 0. The processor must also be in authenticated code execution 
mode. To avoid potential operability conflicts between modes, the processor is not 
allowed to execute this instruction if it is in SMM or in VMX operation. A violation of 
these conditions results in a general protection violation.

Upon completion of the GETSEC[EXITAC] operation, the processor unmasks 
responses to external event signals INIT#, NMI#, and SMI#. This unmasking is 
performed conditionally, based on whether the authenticated code execution mode 
was entered via execution of GETSEC[SENTER] or GETSEC[ENTERACCS]. If the 
processor is in authenticated code execution mode due to the execution of 
GETSEC[SENTER], then these external event signals will remain masked. In this 
case, A20M is kept disabled in the measured environment until the measured envi-
ronment executes GETSEC[SEXIT]. INIT# is unconditionally unmasked by EXITAC. 
Note that any events that are pending, but have been blocked while in authenticated 
code execution mode, will be recognized at the completion of the GETSEC[EXITAC] 
instruction if the pin event is unmasked.

The intent of providing the ability to optionally leave the pin events SMI#, and NMI# 
masked is to support the completion of a measured environment bring-up that 
makes use of VMX. In this envisioned security usage scenario, these events will 
remain masked until an appropriate virtual machine has been established in order to 
field servicing of these events in a safer manner. Details on when and how events are 
masked and unmasked in VMX operation are described in Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3C. It should be cautioned that if no 
VMX environment is to be activated following GETSEC[EXITAC], that these events 
will remain masked until the measured environment is exited with GETSEC[SEXIT]. 
If this is not desired then the GETSEC function SMCTRL(0) can be used for 
unmasking SMI# in this context. NMI# can be correspondingly unmasked by execu-
tion of IRET.

Opcode Instruction Description

0F 37

(EAX=3)

GETSEC[EXITA
C]

Exit authenticated code execution mode.

RBX holds the Near Absolute Indirect jump target and EDX hold 
the exit parameter flags
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A successful exit of the authenticated code execution mode requires the ILP to 
perform additional steps as outlined below:
• Invalidate the contents of the internal authenticated code execution area. 
• Invalidate processor TLBs. 
• Clear the internal processor AC Mode indicator flag. 
• Re-lock the TPM locality 3 space. 
• Unlock the Intel® TXT-capable chipset memory and I/O protections to allow 

memory and I/O activity by other processor agents. 
• Perform a near absolute indirect jump to the designated instruction location.

The content of the authenticated code execution area is invalidated by hardware in 
order to protect it from further use or visibility. This internal processor storage area 
can no longer be used or relied upon after GETSEC[EXITAC]. Data structures need to 
be re-established outside of the authenticated code execution area if they are to be 
referenced after EXITAC. Since addressed memory content formerly mapped to the 
authenticated code execution area may no longer be coherent with external system 
memory after EXITAC, processor TLBs in support of linear to physical address trans-
lation are also invalidated.

Upon completion of GETSEC[EXITAC] a near absolute indirect transfer is performed 
with EIP loaded with the contents of EBX (based on the current operating mode size). 
In 64-bit mode, all 64 bits of RBX are loaded into RIP if REX.W precedes 
GETSEC[EXITAC]. Otherwise RBX is treated as 32 bits even while in 64-bit mode. 
Conventional CS limit checking is performed as part of this control transfer. Any 
exception conditions generated as part of this control transfer will be directed to the 
existing IDT; thus it is recommended that an IDTR should also be established prior to 
execution of the EXITAC function if there is a need for fault handling. In addition, any 
segmentation related (and paging) data structures to be used after EXITAC should be 
re-established or validated by the authenticated code prior to EXITAC. 

In addition, any segmentation related (and paging) data structures to be used after 
EXITAC need to be re-established and mapped outside of the authenticated RAM 
designated area by the authenticated code prior to EXITAC. Any data structure held 
within the authenticated RAM allocated area will no longer be accessible after 
completion by EXITAC.

Operation
(* The state of the internal flag ACMODEFLAG and SENTERFLAG persist across instruction 
boundary *)
IF (CR4.SMXE=0)

THEN #UD;
ELSIF ( in VMX non-root operation)

THEN VM Exit (reason=”GETSEC instruction”);
ELSIF (GETSEC leaf unsupported)

THEN #UD;
ELSIF ((in VMX operation) or ( (in 64-bit mode) and ( RBX is non-canonical) )
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(CR0.PE=0) or (CPL>0) or (EFLAGS.VM=1) or
(ACMODEFLAG=0) or (IN_SMM=1)) or (EDX != 0))
THEN #GP(0);

IF (OperandSize = 32)
THEN tempEIP← EBX;

ELSIF (OperandSize = 64)
THEN tempEIP← RBX;

ELSE
tempEIP← EBX AND 0000FFFFH;

IF (tempEIP > code segment limit)
THEN #GP(0);

Invalidate ACRAM contents;
Invalidate processor TLB(s);
Drain outgoing messages;
SignalTXTMsg(CloseLocality3);
SignalTXTMsg(LockSMRAM);
SignalTXTMsg(ProcessorRelease);
Unmask INIT;
IF (SENTERFLAG=0)

THEN Unmask SMI, INIT, NMI, and A20M pin event;
ELSEIF (IA32_SMM_MONITOR_CTL[0] = 0)

THEN Unmask SMI pin event;
ACMODEFLAG← 0;
EIP← tempEIP;
END;

Flags Affected

None.

Use of Prefixes
LOCK Causes #UD
REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ)
Operand size Causes #UD
Segment overrides Ignored
Address size Ignored
REX.W Sets 64-bit mode Operand size attribute

Protected Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[EXITAC] is not reported as supported by 
GETSEC[CAPABILITIES].
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#GP(0) If CR0.PE = 0 or CPL>0 or EFLAGS.VM =1.
If in VMX root operation.
If the processor is not currently in authenticated code execution 
mode.
If the processor is in SMM.
If any reserved bit position is set in the EDX parameter register.

Real-Address Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[EXITAC] is not reported as supported by 
GETSEC[CAPABILITIES].

#GP(0) GETSEC[EXITAC] is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[EXITAC] is not reported as supported by 
GETSEC[CAPABILITIES].

#GP(0) GETSEC[EXITAC] is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
All protected mode exceptions apply.

64-Bit Mode Exceptions
All protected mode exceptions apply.
#GP(0) If the target address in RBX is not in a canonical form.

VM-Exit Condition
Reason (GETSEC) IF in VMX non-root operation.
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GETSEC[SENTER]—Enter a Measured Environment

Description

The GETSEC[SENTER] instruction initiates the launch of a measured environment 
and places the initiating logical processor (ILP) into the authenticated code execution 
mode. The SENTER leaf of GETSEC is selected with EAX set to 4 at execution. The 
physical base address of the AC module to be loaded and authenticated is specified in 
EBX. The size of the module in bytes is specified in ECX. EDX controls the level of 
functionality supported by the measured environment launch. To enable the full func-
tionality of the protected environment launch, EDX must be initialized to zero.

The authenticated code base address and size parameters (in bytes) are passed to 
the GETSEC[SENTER] instruction using EBX and ECX respectively. The ILP evaluates 
the contents of these registers according to the rules for the AC module address in 
GETSEC[ENTERACCS]. AC module execution follows the same rules, as set by 
GETSEC[ENTERACCS].

The launching software must ensure that the TPM.ACCESS_0.activeLocality bit is 
clear before executing the GETSEC[SENTER] instruction.

There are restrictions enforced by the processor for execution of the 
GETSEC[SENTER] instruction: 
• Execution is not allowed unless the processor is in protected mode or IA-32e 

mode with CPL = 0 and EFLAGS.VM = 0. 
• Processor cache must be available and not disabled using the CR0.CD and NW 

bits. 
• For enforcing consistency of operation with numeric exception reporting using 

Interrupt 16, CR0.NE must be set. 
• An Intel TXT-capable chipset must be present as communicated to the processor 

by sampling of the power-on configuration capability field after reset. 
• The processor can not be in authenticated code execution mode or already in a 

measured environment (as launched by a previous GETSEC[ENTERACCS] or 
GETSEC[SENTER] instruction). 

• To avoid potential operability conflicts between modes, the processor is not 
allowed to execute this instruction if it currently is in SMM or VMX operation. 

Opcode Instruction Description

0F 37

(EAX=4)

GETSEC[SENTER] Launch a measured environment

EBX holds the SINIT authenticated code module physical 
base address.

ECX holds the SINIT authenticated code module size 
(bytes).

EDX controls the level of functionality supported by the 
measured environment launch.
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• To insure consistent handling of SIPI messages, the processor executing the 
GETSEC[SENTER] instruction must also be designated the BSP (boot-strap 
processor) as defined by A32_APIC_BASE.BSP (Bit 8). 

• EDX must be initialized to a setting supportable by the processor. Unless 
enumeration by the GETSEC[PARAMETERS] leaf reports otherwise, only a value 
of zero is supported.

Failure to abide by the above conditions results in the processor signaling a general 
protection violation.

This instruction leaf starts the launch of a measured environment by initiating a 
rendezvous sequence for all logical processors in the platform. The rendezvous 
sequence involves the initiating logical processor sending a message (by executing 
GETSEC[SENTER]) and other responding logical processors (RLPs) acknowledging 
the message, thus synchronizing the RLP(s) with the ILP.

In response to a message signaling the completion of rendezvous, RLPs clear the 
bootstrap processor indicator flag (IA32_APIC_BASE.BSP) and enter an SENTER 
sleep state. In this sleep state, RLPs enter an idle processor condition while waiting 
to be activated after a measured environment has been established by the system 
executive. RLPs in the SENTER sleep state can only be activated by the GETSEC leaf 
function WAKEUP in a measured environment.

A successful launch of the measured environment results in the initiating logical 
processor entering the authenticated code execution mode. Prior to reaching this 
point, the ILP performs the following steps internally: 
• Inhibit processor response to the external events: INIT, A20M, NMI, and SMI. 
• Establish and check the location and size of the authenticated code module to be 

executed by the ILP. 
• Check for the existence of an Intel® TXT-capable chipset. 
• Verify the current power management configuration is acceptable. 
• Broadcast a message to enable protection of memory and I/O from activities 

from other processor agents. 
• Load the designated AC module into authenticated code execution area. 
• Isolate the content of authenticated code execution area from further state 

modification by external agents.
• Authenticate the AC module.
• Updated the Trusted Platform Module (TPM) with the authenticated code 

module's hash. 
• Initialize processor state based on the authenticated code module header infor-

mation. 
• Unlock the Intel® TXT-capable chipset private configuration register space and 

TPM locality 3 space. 
• Begin execution in the authenticated code module at the defined entry point.
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As an integrity check for proper processor hardware operation, execution of 
GETSEC[SENTER] will also check the contents of all the machine check status regis-
ters (as reported by the MSRs IA32_MCi_STATUS) for any valid uncorrectable error 
condition. In addition, the global machine check status register IA32_MCG_STATUS 
MCIP bit must be cleared and the IERR processor package pin (or its equivalent) 
must be not asserted, indicating that no machine check exception processing is 
currently in-progress. These checks are performed twice: once by the ILP prior to the 
broadcast of the rendezvous message to RLPs, and later in response to RLPs 
acknowledging the rendezvous message. Any outstanding valid uncorrectable 
machine check error condition present in the machine check status registers at the 
first check point will result in the ILP signaling a general protection violation. If an 
outstanding valid uncorrectable machine check error condition is present at the 
second check point, then this will result in the corresponding logical processor 
signaling the more severe TXT-shutdown condition with an error code of 12.

Before loading and authentication of the target code module is performed, the 
processor also checks that the current voltage and bus ratio encodings correspond to 
known good values supportable by the processor. The MSR IA32_PERF_STATUS 
values are compared against either the processor supported maximum operating 
target setting, system reset setting, or the thermal monitor operating target. If the 
current settings do not meet any of these criteria then the SENTER function will 
attempt to change the voltage and bus ratio select controls in a processor-specific 
manner. This adjustment may be to the thermal monitor, minimum (if different), or 
maximum operating target depending on the processor.

This implies that some thermal operating target parameters configured by BIOS may 
be overridden by SENTER. The measured environment software may need to take 
responsibility for restoring such settings that are deemed to be safe, but not neces-
sarily recognized by SENTER. If an adjustment is not possible when an out of range 
setting is discovered, then the processor will abort the measured launch. This may be 
the case for chipset controlled settings of these values or if the controllability is not 
enabled on the processor. In this case it is the responsibility of the external software 
to program the chipset voltage ID and/or bus ratio select settings to known good 
values recognized by the processor, prior to executing SENTER.

NOTE
For a mobile processor, an adjustment can be made according to the 
thermal monitor operating target. For a quad-core processor the 
SENTER adjustment mechanism may result in a more conservative 
but non-uniform voltage setting, depending on the pre-SENTER 
settings per core.

The ILP and RLPs mask the response to the assertion of the external signals INIT#, 
A20M, NMI#, and SMI#. The purpose of this masking control is to prevent exposure 
to existing external event handlers until a protected handler has been put in place to 
directly handle these events. Masked external pin events may be unmasked condi-
tionally or unconditionally via the GETSEC[EXITAC], GETSEC[SEXIT], 
GETSEC[SMCTRL] or for specific VMX related operations such as a VM entry or the 
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VMXOFF instruction (see respective GETSEC leaves and Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3C for more details).The state of the 
A20M pin is masked and forced internally to a de-asserted state so that external 
assertion is not recognized. A20M masking as set by GETSEC[SENTER] is undone 
only after taking down the measured environment with the GETSEC[SEXIT] instruc-
tion or processor reset. INTR is masked by simply clearing the EFLAGS.IF bit. It is the 
responsibility of system software to control the processor response to INTR through 
appropriate management of EFLAGS.

To prevent other (logical) processors from interfering with the ILP operating in 
authenticated code execution mode, memory (excluding implicit write-back transac-
tions) and I/O activities originating from other processor agents are blocked. This 
protection starts when the ILP enters into authenticated code execution mode. Only 
memory and I/O transactions initiated from the ILP are allowed to proceed. Exiting 
authenticated code execution mode is done by executing GETSEC[EXITAC]. The 
protection of memory and I/O activities remains in effect until the ILP executes 
GETSEC[EXITAC].

Once the authenticated code module has been loaded into the authenticated code 
execution area, it is protected against further modification from external bus snoops. 
There is also a requirement that the memory type for the authenticated code module 
address range be WB (via initialization of the MTRRs prior to execution of this instruc-
tion). If this condition is not satisfied, it is a violation of security and the processor 
will force a TXT system reset (after writing an error code to the chipset LT.ERROR-
CODE register). This action is referred to as a Intel® TXT reset condition. It is 
performed when it is considered unreliable to signal an error through the conven-
tional exception reporting mechanism. 

To conform to the minimum granularity of MTRR MSRs for specifying the memory 
type, authenticated code RAM (ACRAM) is allocated to the processor in 4096 byte 
granular blocks. If an AC module size as specified in ECX is not a multiple of 4096 
then the processor will allocate up to the next 4096 byte boundary for mapping as 
ACRAM with indeterminate data. This pad area will not be visible to the authenticated 
code module as external memory nor can it depend on the value of the data used to 
fill the pad area.

Once successful authentication has been completed by the ILP, the computed hash is 
stored in the TPM at PCR17 after this register is implicitly reset. PCR17 is a dedicated 
register for holding the computed hash of the authenticated code module loaded and 
subsequently executed by the GETSEC[SENTER]. As part of this process, the 
dynamic PCRs 18-22 are reset so they can be utilized by subsequently software for 
registration of code and data modules. After successful execution of SENTER, PCR17 
contains the measurement of AC code and the SENTER launching parameters. 

After authentication is completed successfully, the private configuration space of the 
Intel® TXT-capable chipset is unlocked so that the authenticated code module and 
measured environment software can gain access to this normally restricted chipset 
state. The Intel® TXT-capable chipset private configuration space can be locked later 
by software writing to the chipset LT.CMD.CLOSE-PRIVATE register or unconditionally 
using the GETSEC[SEXIT] instruction.
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The SENTER leaf function also initializes some processor architecture state for the ILP 
from contents held in the header of the authenticated code module. Since the 
authenticated code module is relocatable, all address references are relative to the 
base address passed in via EBX. The ILP GDTR base value is initialized to EBX + 
[GDTBasePtr] and GDTR limit set to [GDTLimit]. The CS selector is initialized to the 
value held in the AC module header field SegSel, while the DS, SS, and ES selectors 
are initialized to CS+8. The segment descriptor fields are initialized implicitly with 
BASE=0, LIMIT=FFFFFh, G=1, D=1, P=1, S=1, read/write/accessed for DS, SS, and 
ES, while execute/read/accessed for CS. Execution in the authenticated code module 
for the ILP begins with the EIP set to EBX + [EntryPoint]. AC module defined fields 
used for initializing processor state are consistency checked with a failure resulting in 
an TXT-shutdown condition.

Table 5-6 provides a summary of processor state initialization for the ILP and RLP(s) 
after successful completion of GETSEC[SENTER]. For both ILP and RLP(s), paging is 
disabled upon entry to the measured environment. It is up to the ILP to establish a 
trusted paging environment, with appropriate mappings, to meet protection require-
ments established during the launch of the measured environment. RLP state initial-
ization is not completed until a subsequent wake-up has been signaled by execution 
of the GETSEC[WAKEUP] function by the ILP.

Table 5-6.  Register State Initialization after GETSEC[SENTER] and GETSEC[WAKEUP]

Register State ILP after GETSEC[SENTER] RLP after GETSEC[WAKEUP]

CR0 PG←0, AM←0, WP←0; Others 
unchanged

PG←0, CD←0, NW←0, AM←0, WP←0; 
PE←1, NE←1

CR4 00004000H 00004000H

EFLAGS 00000002H 00000002H

IA32_EFER 0H 0

EIP [EntryPoint from MLE header1] [LT.MLE.JOIN + 12]

EBX Unchanged [SINIT.BASE] Unchanged

EDX SENTER control flags Unchanged

EBP SINIT.BASE Unchanged

CS Sel=[SINIT SegSel], base=0, 
limit=FFFFFh, G=1, D=1, AR=9BH

Sel = [LT.MLE.JOIN + 8], base = 0, limit 
= FFFFFH, G = 1, D = 1, AR = 9BH

DS, ES, SS Sel=[SINIT SegSel] +8, base=0, 
limit=FFFFFh, G=1, D=1, AR=93H

Sel = [LT.MLE.JOIN + 8] +8, base = 0, 
limit = FFFFFH, G = 1, D = 1, AR = 93H
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Segmentation related processor state that has not been initialized by 
GETSEC[SENTER] requires appropriate initialization before use. Since a new GDT 
context has been established, the previous state of the segment selector values held 
in FS, GS, TR, and LDTR may no longer be valid. The IDTR will also require reloading 
with a new IDT context after launching the measured environment before exceptions 
or the external interrupts INTR and NMI can be handled. In the meantime, the 
programmer must take care in not executing an INT n instruction or any other condi-
tion that would result in an exception or trap signaling.

Debug exception and trap related signaling is also disabled as part of execution of 
GETSEC[SENTER]. This is achieved by clearing DR7, TF in EFLAGs, and the MSR 
IA32_DEBUGCTL as defined in Table 5-6. These can be re-enabled once supporting 
exception handler(s), descriptor tables, and debug registers have been properly re-
initialized following SENTER. Also, any pending single-step trap condition will be 
cleared at the completion of SENTER for both the ILP and RLP(s).

Performance related counters and counter control registers are cleared as part of 
execution of SENTER on both the ILP and RLP. This implies any active performance 
counters at the time of SENTER execution will be disabled. To reactive the processor 
performance counters, this state must be re-initialized and re-enabled.

Since MCE along with all other state bits (with the exception of SMXE) are cleared in 
CR4 upon execution of SENTER processing, any enabled machine check error condi-
tion that occurs will result in the processor performing the TXT-shutdown action. This 
also applies to an RLP while in the SENTER sleep state. For each logical processor 

GDTR Base= SINIT.base (EBX) + 
[SINIT.GDTBasePtr], 
Limit=[SINIT.GDTLimit]

Base = [LT.MLE.JOIN + 4], Limit = 
[LT.MLE.JOIN]

DR7 00000400H 00000400H

IA32_DEBUGC
TL

0H 0H

Performance 
counters and 
counter control 
registers

0H 0H

IA32_MISC_EN
ABLE

See Table 5-5 See Table 5-5

IA32_SMM_MO
NITOR_CTL

Bit 2←0 Bit 2←0

NOTES:
1. See Intel® Trusted Execution Technology Measured Launched Environment Pro-

gramming Guide for MLE header format.

Table 5-6.  Register State Initialization after GETSEC[SENTER] and GETSEC[WAKEUP]
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CR4.MCE must be reestablished with a valid machine check exception handler to 
otherwise avoid an TXT-shutdown under such conditions.

The MSR IA32_EFER is also unconditionally cleared as part of the processor state 
initialized by SENTER for both the ILP and RLP. Since paging is disabled upon entering 
authenticated code execution mode, a new paging environment will have to be re-
established if it is desired to enable IA-32e mode while operating in authenticated 
code execution mode. 

The miscellaneous feature control MSR, IA32_MISC_ENABLE, is initialized as part of 
the measured environment launch. Certain bits of this MSR are preserved because 
preserving these bits may be important to maintain previously established platform 
settings. See the footnote for Table 5-5 The remaining bits are cleared for the 
purpose of establishing a more consistent environment for the execution of authenti-
cated code modules. Among the impact of initializing this MSR, any previous condi-
tion established by the MONITOR instruction will be cleared. 

Effect of MSR IA32_FEATURE_CONTROL MSR

Bits 15:8 of the IA32_FEATURE_CONTROL MSR affect the execution of 
GETSEC[SENTER]. These bits consist of two fields: 
• Bit 15: a global enable control for execution of SENTER.
• Bits 14:8: a parameter control field providing the ability to qualify SENTER 

execution based on the level of functionality specified with corresponding EDX 
parameter bits 6:0. 

The layout of these fields in the IA32_FEATURE_CONTROL MSR is shown in Table 5-1. 

Prior to the execution of GETSEC[SENTER], the lock bit of IA32_FEATURE_CONTROL 
MSR must be bit set to affirm the settings to be used. Once the lock bit is set, only a 
power-up reset condition will clear this MSR. The IA32_FEATURE_CONTROL MSR 
must be configured in accordance to the intended usage at platform initialization. 
Note that this MSR is only available on SMX or VMX enabled processors. Otherwise, 
IA32_FEATURE_CONTROL is treated as reserved.

The Intel® Trusted Execution Technology Measured Launched Environment Programming Guide 
provides additional details and requirements for programming measured environ-
ment software to launch in an Intel TXT platform.

Operation in a Uni-Processor Platform
(* The state of the internal flag ACMODEFLAG and SENTERFLAG persist across instruction 
boundary *)
GETSEC[SENTER] (ILP only):
IF (CR4.SMXE=0)

THEN #UD;
ELSE IF (in VMX non-root operation)

THEN VM Exit (reason=”GETSEC instruction”);
ELSE IF (GETSEC leaf unsupported)

THEN #UD;
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ELSE IF ((in VMX root operation) or
(CR0.PE=0) or (CR0.CD=1) or (CR0.NW=1) or (CR0.NE=0) or
(CPL>0) or (EFLAGS.VM=1) or
(IA32_APIC_BASE.BSP=0) or (TXT chipset not present) or
(SENTERFLAG=1) or (ACMODEFLAG=1) or (IN_SMM=1) or
(TPM interface is not present) or
(EDX != (SENTER_EDX_support_mask & EDX)) or
(IA32_CR_FEATURE_CONTROL[0]=0) or (IA32_CR_FEATURE_CONTROL[15]=0) or
((IA32_CR_FEATURE_CONTROL[14:8] & EDX[6:0]) != EDX[6:0]))

THEN #GP(0);
IF (GETSEC[PARAMETERS].Parameter_Type = 5, MCA_Handling (bit 6) = 0)

FOR I = 0 to IA32_MCG_CAP.COUNT-1 DO
IF IA32_MC[I]_STATUS = uncorrectable error

THEN #GP(0);
FI;

OD;
FI;
IF (IA32_MCG_STATUS.MCIP=1) or (IERR pin is asserted)

THEN #GP(0);
ACBASE← EBX;
ACSIZE← ECX;
IF (((ACBASE MOD 4096) != 0) or ((ACSIZE MOD 64) != 0 ) or (ACSIZE < minimum 

module size) or (ACSIZE > AC RAM capacity) or ((ACBASE+ACSIZE) > (2^32 -1)))
THEN #GP(0);

Mask SMI, INIT, A20M, and NMI external pin events;
SignalTXTMsg(SENTER);
DO
WHILE (no SignalSENTER message);

TXT_SENTER__MSG_EVENT (ILP & RLP):
Mask and clear SignalSENTER event;
Unmask SignalSEXIT event;
IF (in VMX operation)

THEN TXT-SHUTDOWN(#IllegalEvent);
FOR I = 0 to IA32_MCG_CAP.COUNT-1 DO

IF IA32_MC[I]_STATUS = uncorrectable error
THEN TXT-SHUTDOWN(#UnrecovMCError);

FI;
OD;
IF (IA32_MCG_STATUS.MCIP=1) or (IERR pin is asserted)

THEN TXT-SHUTDOWN(#UnrecovMCError);
IF (Voltage or bus ratio status are NOT at a known good state)

THEN IF (Voltage select and bus ratio are internally adjustable)
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THEN 
Make product-specific adjustment on operating parameters;

ELSE
TXT-SHUTDOWN(#IIlegalVIDBRatio);

FI;

IA32_MISC_ENABLE← (IA32_MISC_ENABLE & MASK_CONST*)
(* The hexadecimal value of MASK_CONST may vary due to processor implementations *)
A20M← 0;
IA32_DEBUGCTL← 0;
Invalidate processor TLB(s);
Drain outgoing transactions;
Clear performance monitor counters and control;
SENTERFLAG← 1;
SignalTXTMsg(SENTERAck);
IF (logical processor is not ILP)

THEN GOTO RLP_SENTER_ROUTINE;
(* ILP waits for all logical processors to ACK *)
DO

DONE← TXT.READ(LT.STS);
WHILE (not DONE);
SignalTXTMsg(SENTERContinue);
SignalTXTMsg(ProcessorHold);
FOR I=ACBASE to ACBASE+ACSIZE-1 DO

ACRAM[I-ACBASE].ADDR← I;
ACRAM[I-ACBASE].DATA← LOAD(I);

OD;
IF (ACRAM memory type != WB)

THEN TXT-SHUTDOWN(#BadACMMType);
IF (AC module header version is not supported) OR (ACRAM[ModuleType] <> 2)

THEN TXT-SHUTDOWN(#UnsupportedACM);
KEY← GETKEY(ACRAM, ACBASE);
KEYHASH← HASH(KEY);
CSKEYHASH← LT.READ(LT.PUBLIC.KEY);
IF (KEYHASH <> CSKEYHASH)

THEN TXT-SHUTDOWN(#AuthenticateFail);
SIGNATURE← DECRYPT(ACRAM, ACBASE, KEY);
(* The value of SIGNATURE_LEN_CONST is implementation-specific*)
FOR I=0 to SIGNATURE_LEN_CONST - 1 DO

ACRAM[SCRATCH.I]← SIGNATURE[I];
COMPUTEDSIGNATURE← HASH(ACRAM, ACBASE, ACSIZE);
FOR I=0 to SIGNATURE_LEN_CONST - 1 DO

ACRAM[SCRATCH.SIGNATURE_LEN_CONST+I]← COMPUTEDSIGNATURE[I];
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IF (SIGNATURE != COMPUTEDSIGNATURE)
THEN TXT-SHUTDOWN(#AuthenticateFail);

ACMCONTROL← ACRAM[CodeControl];
IF ((ACMCONTROL.0 = 0) and (ACMCONTROL.1 = 1) and (snoop hit to modified line detected on 
ACRAM load))

THEN TXT-SHUTDOWN(#UnexpectedHITM);
IF (ACMCONTROL reserved bits are set)

THEN TXT-SHUTDOWN(#BadACMFormat);
IF ((ACRAM[GDTBasePtr] < (ACRAM[HeaderLen] * 4 + Scratch_size)) OR 

((ACRAM[GDTBasePtr] + ACRAM[GDTLimit]) >= ACSIZE))
THEN TXT-SHUTDOWN(#BadACMFormat);

IF ((ACMCONTROL.0 = 1) and (ACMCONTROL.1 = 1) and (snoop hit to modified 
line detected on ACRAM load)) 
THEN ACEntryPoint← ACBASE+ACRAM[ErrorEntryPoint];

ELSE
ACEntryPoint← ACBASE+ACRAM[EntryPoint];

IF ((ACEntryPoint >= ACSIZE) or (ACEntryPoint < (ACRAM[HeaderLen] * 4 + Scratch_size)))
THEN TXT-SHUTDOWN(#BadACMFormat);

IF ((ACRAM[SegSel] > (ACRAM[GDTLimit] - 15)) or (ACRAM[SegSel] < 8))
THEN TXT-SHUTDOWN(#BadACMFormat);

IF ((ACRAM[SegSel].TI=1) or (ACRAM[SegSel].RPL!=0))
THEN TXT-SHUTDOWN(#BadACMFormat);

ACRAM[SCRATCH.SIGNATURE_LEN_CONST]← EDX;
WRITE(TPM.HASH.START)← 0;
FOR I=0 to SIGNATURE_LEN_CONST + 3 DO

WRITE(TPM.HASH.DATA)← ACRAM[SCRATCH.I];
WRITE(TPM.HASH.END)← 0;
ACMODEFLAG← 1;
CR0.[PG.AM.WP]← 0;
CR4← 00004000h;
EFLAGS← 00000002h;
IA32_EFER← 0;
EBP← ACBASE;
GDTR.BASE← ACBASE+ACRAM[GDTBasePtr];
GDTR.LIMIT← ACRAM[GDTLimit];
CS.SEL← ACRAM[SegSel];
CS.BASE← 0;
CS.LIMIT← FFFFFh;
CS.G← 1;
CS.D← 1;
CS.AR← 9Bh;
DS.SEL← ACRAM[SegSel]+8;
DS.BASE← 0;
DS.LIMIT← FFFFFh;
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DS.G← 1;
DS.D← 1;
DS.AR← 93h;
SS← DS;
ES← DS;
DR7← 00000400h;
IA32_DEBUGCTL← 0;
SignalTXTMsg(UnlockSMRAM);
SignalTXTMsg(OpenPrivate);
SignalTXTMsg(OpenLocality3);
EIP← ACEntryPoint;
END;

RLP_SENTER_ROUTINE: (RLP only)
Mask SMI, INIT, A20M, and NMI external pin events
Unmask SignalWAKEUP event;
Wait for SignalSENTERContinue message;
IA32_APIC_BASE.BSP← 0;
GOTO SENTER sleep state;
END;

Flags Affected

All flags are cleared.

Use of Prefixes
LOCK Causes #UD
REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ)
Operand size Causes #UD
Segment overrides Ignored
Address size Ignored
REX Ignored

Protected Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[SENTER] is not reported as supported by 
GETSEC[CAPABILITIES].

#GP(0) If CR0.CD = 1 or CR0.NW = 1 or CR0.NE = 0 or CR0.PE = 0 or 
CPL > 0 or EFLAGS.VM = 1.
If in VMX root operation.
If the initiating processor is not designated as the bootstrap 
processor via the MSR bit IA32_APIC_BASE.BSP.
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If an Intel® TXT-capable chipset is not present.
If an Intel® TXT-capable chipset interface to TPM is not detected 
as present.
If a protected partition is already active or the processor is 
already in authenticated code mode.
If the processor is in SMM.
If a valid uncorrectable machine check error is logged in 
IA32_MC[I]_STATUS.
If the authenticated code base is not on a 4096 byte boundary.
If the authenticated code size > processor's authenticated code 
execution area storage capacity.
If the authenticated code size is not modulo 64.

Real-Address Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[SENTER] is not reported as supported by 
GETSEC[CAPABILITIES].

#GP(0) GETSEC[SENTER] is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[SENTER] is not reported as supported by 
GETSEC[CAPABILITIES].

#GP(0) GETSEC[SENTER] is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
All protected mode exceptions apply.
#GP  IF AC code module does not reside in physical address below 

2^32 -1.

64-Bit Mode Exceptions
All protected mode exceptions apply.
#GP  IF AC code module does not reside in physical address below 

2^32 -1.

VM-Exit Condition
Reason (GETSEC) IF in VMX non-root operation.
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GETSEC[SEXIT]—Exit Measured Environment

Description

The GETSEC[SEXIT] instruction initiates an exit of a measured environment estab-
lished by GETSEC[SENTER]. The SEXIT leaf of GETSEC is selected with EAX set to 5 
at execution. This instruction leaf sends a message to all logical processors in the 
platform to signal the measured environment exit. 

There are restrictions enforced by the processor for the execution of the 
GETSEC[SEXIT] instruction: 
• Execution is not allowed unless the processor is in protected mode (CR0.PE = 1) 

with CPL = 0 and EFLAGS.VM = 0. 
• The processor must be in a measured environment as launched by a previous 

GETSEC[SENTER] instruction, but not still in authenticated code execution mode. 
• To avoid potential inter-operability conflicts between modes, the processor is not 

allowed to execute this instruction if it currently is in SMM or in VMX operation. 
• To insure consistent handling of SIPI messages, the processor executing the 

GETSEC[SEXIT] instruction must also be designated the BSP (bootstrap 
processor) as defined by the register bit IA32_APIC_BASE.BSP (bit 8). 

Failure to abide by the above conditions results in the processor signaling a general 
protection violation.

This instruction initiates a sequence to rendezvous the RLPs with the ILP. It then 
clears the internal processor flag indicating the processor is operating in a measured 
environment.

In response to a message signaling the completion of rendezvous, all RLPs restart 
execution with the instruction that was to be executed at the time GETSEC[SEXIT] 
was recognized. This applies to all processor conditions, with the following excep-
tions: 
• If an RLP executed HLT and was in this halt state at the time of the message 

initiated by GETSEC[SEXIT], then execution resumes in the halt state. 
• If an RLP was executing MWAIT, then a message initiated by GETSEC[SEXIT] 

causes an exit of the MWAIT state, falling through to the next instruction. 
• If an RLP was executing an intermediate iteration of a string instruction, then the 

processor resumes execution of the string instruction at the point which the 
message initiated by GETSEC[SEXIT] was recognized. 

• If an RLP is still in the SENTER sleep state (never awakened with 
GETSEC[WAKEUP]), it will be sent to the wait-for-SIPI state after first clearing 

Opcode Instruction Description

0F 37

(EAX=5)

GETSEC[SEXIT] Exit measured environment
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the bootstrap processor indicator flag (IA32_APIC_BASE.BSP) and any pending 
SIPI state. In this case, such RLPs are initialized to an architectural state 
consistent with having taken a soft reset using the INIT# pin. 

Prior to completion of the GETSEC[SEXIT] operation, both the ILP and any active 
RLPs unmask the response of the external event signals INIT#, A20M, NMI#, and 
SMI#. This unmasking is performed unconditionally to recognize pin events which 
are masked after a GETSEC[SENTER]. The state of A20M is unmasked, as the A20M 
pin is not recognized while the measured environment is active.

On a successful exit of the measured environment, the ILP re-locks the Intel® TXT-
capable chipset private configuration space. GETSEC[SEXIT] does not affect the 
content of any PCR.

At completion of GETSEC[SEXIT] by the ILP, execution proceeds to the next instruc-
tion. Since EFLAGS and the debug register state are not modified by this instruction, 
a pending trap condition is free to be signaled if previously enabled.

Operation in a Uni-Processor Platform
(* The state of the internal flag ACMODEFLAG and SENTERFLAG persist across instruction 
boundary *)
GETSEC[SEXIT] (ILP only):
IF (CR4.SMXE=0)

THEN #UD;
ELSE IF (in VMX non-root operation)

THEN VM Exit (reason=”GETSEC instruction”);
ELSE IF (GETSEC leaf unsupported)

THEN #UD;
ELSE IF ((in VMX root operation) or

(CR0.PE=0) or (CPL>0) or (EFLAGS.VM=1) or
(IA32_APIC_BASE.BSP=0) or
(TXT chipset not present) or
(SENTERFLAG=0) or (ACMODEFLAG=1) or (IN_SMM=1))

THEN #GP(0);
SignalTXTMsg(SEXIT);
DO
WHILE (no SignalSEXIT message);

TXT_SEXIT_MSG_EVENT (ILP & RLP):
Mask and clear SignalSEXIT event;
Clear MONITOR FSM;
Unmask SignalSENTER event;
IF (in VMX operation)

THEN TXT-SHUTDOWN(#IllegalEvent);
SignalTXTMsg(SEXITAck);
IF (logical processor is not ILP)
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THEN GOTO RLP_SEXIT_ROUTINE;
(* ILP waits for all logical processors to ACK *)
DO

DONE← READ(LT.STS);
WHILE (NOT DONE);
SignalTXTMsg(SEXITContinue);
SignalTXTMsg(ClosePrivate);
SENTERFLAG← 0;
Unmask SMI, INIT, A20M, and NMI external pin events;
END;

RLP_SEXIT_ROUTINE (RLPs only):
Wait for SignalSEXITContinue message;
Unmask SMI, INIT, A20M, and NMI external pin events;
IF (prior execution state = HLT)

THEN reenter HLT state;
IF (prior execution state = SENTER sleep)

THEN
IA32_APIC_BASE.BSP← 0;
Clear pending SIPI state;
Call INIT_PROCESSOR_STATE;
Unmask SIPI event;
GOTO WAIT-FOR-SIPI;

FI;
END;

Flags Affected
ILP: None. 
RLPs: all flags are modified for an RLP. returning to wait-for-SIPI state, none other-

wise 

Use of Prefixes
LOCK Causes #UD
REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ)
Operand size Causes #UD
Segment overrides Ignored
Address size Ignored
REX Ignored

Protected Mode Exceptions
#UD If CR4.SMXE = 0.
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If GETSEC[SEXIT] is not reported as supported by 
GETSEC[CAPABILITIES].

#GP(0) If CR0.PE = 0 or CPL > 0 or EFLAGS.VM = 1.
If in VMX root operation.
If the initiating processor is not designated as the  via the MSR 
bit IA32_APIC_BASE.BSP.
If an Intel® TXT-capable chipset is not present.
If a protected partition is not already active or the processor is 
already in authenticated code mode.
If the processor is in SMM.

Real-Address Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[SEXIT] is not reported as supported by 
GETSEC[CAPABILITIES].

#GP(0) GETSEC[SEXIT] is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[SEXIT] is not reported as supported by 
GETSEC[CAPABILITIES].

#GP(0) GETSEC[SEXIT] is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
All protected mode exceptions apply.

64-Bit Mode Exceptions
All protected mode exceptions apply.

VM-Exit Condition
Reason (GETSEC) IF in VMX non-root operation.
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GETSEC[PARAMETERS]—Report the SMX Parameters

Description

The GETSEC[PARAMETERS] instruction returns specific parameter information for 
SMX features supported by the processor. Parameter information is returned in EAX, 
EBX, and ECX, with the input parameter selected using EBX.

Software retrieves parameter information by searching with an input index for EBX 
starting at 0, and then reading the returned results in EAX, EBX, and ECX. EAX[4:0] 
is designated to return a parameter type field indicating if a parameter is available 
and what type it is. If EAX[4:0] is returned with 0, this designates a null parameter 
and indicates no more parameters are available. 

Table 5-7 defines the parameter types supported in current and future implementa-
tions.

Opcode Instruction Description

0F 37

(EAX=6)

GETSEC[PARAMETERS] Report the SMX Parameters

The parameters index is input in EBX with the result 
returned in EAX, EBX, and ECX.

Table 5-7.  SMX Reporting Parameters Format 

Parameter 
Type EAX[4:0]

Parameter 
Description EAX[31:5] EBX[31:0] ECX[31:0]

0 NULL Reserved (0 
returned)

Reserved 
(unmodified)

Reserved 
(unmodified)

1 Supported AC 
module versions

Reserved (0 
returned)

version 
comparison 
mask

version 
numbers 
supported

2 Max size of 
authenticated 
code execution 
area

Multiply by 32 for 
size in bytes

Reserved 
(unmodified)

Reserved 
(unmodified)

3 External memory 
types supported 
during AC mode

Memory type bit 
mask

Reserved 
(unmodified)

Reserved 
(unmodified)
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Table 5-8.  TXT Feature Extensions Flags

Supported AC module versions (as defined by the AC module HeaderVersion field) 
can be determined for a particular SMX capable processor by the type 1 parameter. 
Using EBX to index through the available parameters reported by GETSEC[PARAME-
TERS] for each unique parameter set returned for type 1, software can determine the 
complete list of AC module version(s) supported. 

4 Selective SENTER 
functionality 
control

EAX[14:8] 
correspond to 
available SENTER 
function disable 
controls

Reserved 
(unmodified)

Reserved 
(unmodified)

5 TXT extensions 
support

TXT Feature 
Extensions Flags 
(see Table 5-8)

Reserved Reserved 

6-31 Undefined Reserved 
(unmodified)

Reserved 
(unmodified)

Reserved 
(unmodified)

Bit Definition Description

5 Processor based 
S-CRTM support

Returns 1 if this processor implements a processor-
rooted S-CRTM capability and 0 if not (S-CRTM is rooted in 
BIOS).
This flag cannot be used to infer whether the chipset 
supports TXT or whether the processor support SMX.

6 Machine Check 
Handling

Returns 1 if it machine check status registers can be 
preserved through ENTERACCS and SENTER. If this bit is 
1, the caller of ENTERACCS and SENTER is not required to 
clear machine check error status bits before invoking 
these GETSEC leaves.

If this bit returns 0, the caller of ENTERACCS and SENTER 
must clear all machine check error status bits before 
invoking these GETSEC leaves.

31:7 Reserved Reserved for future use. Will return 0.

Table 5-7.  SMX Reporting Parameters Format  (Contd.)

Parameter 
Type EAX[4:0]

Parameter 
Description EAX[31:5] EBX[31:0] ECX[31:0]
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For each parameter set, EBX returns the comparison mask and ECX returns the avail-
able HeaderVersion field values supported, after AND'ing the target HeaderVersion 
with the comparison mask. Software can then determine if a particular AC module 
version is supported by following the pseudo-code search routine given below:

parameter_search_index= 0
do {

EBX= parameter_search_index++
EAX= 6
GETSEC
if (EAX[4:0] = 1) {

if ((version_query & EBX) = ECX) {
version_is_supported= 1
break

}
}

} while (EAX[4:0]!= 0)

If only AC modules with a HeaderVersion of 0 are supported by the processor, then 
only one parameter set of type 1 will be returned, as follows: EAX = 00000001H, 

EBX = FFFFFFFFH and ECX = 00000000H.

The maximum capacity for an authenticated code execution area supported by the 
processor is reported with the parameter type of 2. The maximum supported size in 
bytes is determined by multiplying the returned size in EAX[31:5] by 32. Thus, for a 
maximum supported authenticated RAM size of 32KBytes, EAX returns with 
00008002H. 

Supportable memory types for memory mapped outside of the authenticated code 
execution area are reported with the parameter type of 3. While  is active, as initiated 
by the GETSEC functions SENTER and ENTERACCS and terminated by EXITAC, there 
are restrictions on what memory types are allowed for the rest of system memory. It 
is the responsibility of the system software to initialize the memory type range 
register (MTRR) MSRs and/or the page attribute table (PAT) to only map memory 
types consistent with the reporting of this parameter. The reporting of supportable 
memory types of external memory is indicated using a bit map returned in 
EAX[31:8]. These bit positions correspond to the memory type encodings defined for 
the MTRR MSR and PAT programming. See Table 5-9.

The parameter type of 4 is used for enumerating the availability of selective 
GETSEC[SENTER] function disable controls. If a 1 is reported in bits 14:8 of the 
returned parameter EAX, then this indicates a disable control capability exists with 
SENTER for a particular function. The enumerated field in bits 14:8 corresponds to 
use of the EDX input parameter bits 6:0 for SENTER. If an enumerated field bit is set 
to 1, then the corresponding EDX input parameter bit of EDX may be set to 1 to 
disable that designated function. If the enumerated field bit is 0 or this parameter is 
not reported, then no disable capability exists with the corresponding EDX input 
parameter for SENTER, and EDX bit(s) must be cleared to 0 to enable execution of 
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SENTER. If no selective disable capability for SENTER exists as enumerated, then the 
corresponding bits in the IA32_FEATURE_CONTROL MSR bits 14:8 must also be 
programmed to 1 if the SENTER global enable bit 15 of the MSR is set. This is 
required to enable future extensibility of SENTER selective disable capability with 
respect to potentially separate software initialization of the MSR.

If the GETSEC[PARAMETERS] leaf or specific parameter is not present for a given 
SMX capable processor, then default parameter values should be assumed. These are 
defined in Table 5-10.

Operation
(* example of a processor supporting only a 0.0 HeaderVersion, 32K ACRAM size, memory types UC 
and WC *)
IF (CR4.SMXE=0)

THEN #UD;
ELSE IF (in VMX non-root operation)

Table 5-9.  External Memory Types Using Parameter 3

EAX Bit Position Parameter Description

8 Uncacheable (UC)

9 Write Combining (WC)

11:10 Reserved

12 Write-through (WT)

13 Write-protected (WP)

14 Write-back (WB)

31:15 Reserved

Table 5-10.  Default Parameter Values

Parameter Type 
EAX[4:0]

Default 
Setting Parameter Description

1 0.0 only Supported AC module versions 

2 32 KBytes Authenticated code execution area size

3 UC only External memory types supported during AC 
execution mode

4 None Available SENTER selective disable controls
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THEN VM Exit (reason=”GETSEC instruction”);
ELSE IF (GETSEC leaf unsupported)

THEN #UD;
(* example of a processor supporting a 0.0 HeaderVersion *)

IF (EBX=0) THEN
EAX← 00000001h;
EBX← FFFFFFFFh;
ECX← 00000000h;

ELSE IF (EBX=1)
(* example of a processor supporting a 32K ACRAM size *)
THEN EAX← 00008002h;

ESE IF (EBX= 2)
(* example of a processor supporting external memory types of UC and WC *)
THEN EAX← 00000303h;

ESE IF (EBX= other value(s) less than unsupported index value)
(* EAX value varies. Consult Table 5-7 and Table 5-8*)

ELSE (* unsupported index*)
EAX¨ 00000000h;

END;

Flags Affected

None.

Use of Prefixes
LOCK Causes #UD
REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ)
Operand size Causes #UD
Segment overrides Ignored
Address size Ignored
REX Ignored

Protected Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[PARAMETERS] is not reported as supported by 
GETSEC[CAPABILITIES].

Real-Address Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[PARAMETERS] is not reported as supported by 
GETSEC[CAPABILITIES].
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Virtual-8086 Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[PARAMETERS] is not reported as supported by 
GETSEC[CAPABILITIES].

Compatibility Mode Exceptions
All protected mode exceptions apply.

64-Bit Mode Exceptions
All protected mode exceptions apply.

VM-Exit Condition
Reason (GETSEC) IF in VMX non-root operation.
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GETSEC[SMCTRL]—SMX Mode Control

Description

The GETSEC[SMCTRL] instruction is available for performing certain SMX specific 
mode control operations. The operation to be performed is selected through the input 
register EBX. Currently only an input value in EBX of 0 is supported. All other EBX 
settings will result in the signaling of a general protection violation. 

If EBX is set to 0, then the SMCTRL leaf is used to re-enable SMI events. SMI is 
masked by the ILP executing the GETSEC[SENTER] instruction (SMI is also masked 
in the responding logical processors in response to SENTER rendezvous messages.). 
The determination of when this instruction is allowed and the events that are 
unmasked is dependent on the processor context (See Table 5-11). For brevity, the 
usage of SMCTRL where EBX=0 will be referred to as GETSEC[SMCTRL(0)].

As part of support for launching a measured environment, the SMI, NMI and INIT 
events are masked after GETSEC[SENTER], and remain masked after exiting authen-
ticated execution mode. Unmasking these events should be accompanied by securely 
enabling these event handlers. These security concerns can be addressed in VMX 
operation by a MVMM. 

The VM monitor can choose two approaches:
• In a dual monitor approach, the executive software will set up an SMM monitor in 

parallel to the executive VMM (i.e. the MVMM), see Chapter 33, “System 
Management Mode” of Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3C. The SMM monitor is dedicated to handling SMI events 
without compromising the security of the MVMM. This usage model of handling 
SMI while a measured environment is active does not require the use of 
GETSEC[SMCTRL(0)] as event re-enabling after the VMX environment launch is 
handled implicitly and through separate VMX based controls. 

• If a dedicated SMM monitor will not be established and SMIs are to be handled 
within the measured environment, then GETSEC[SMCTRL(0)] can be used by the 
executive software to re-enable SMI that has been masked as a result of SENTER.

Table 5-11 defines the processor context in which GETSEC[SMCTRL(0)] can be used 
and which events will be unmasked. Note that the events that are unmasked are 
dependent upon the currently operating processor context.

Opcode Instruction Description

0F 37 (EAX = 7) GETSEC[SMCTRL] Perform specified SMX mode control as selected 
with the input EBX.
Vol. 2C 5-49GETSEC[SMCTRL]—SMX Mode Control



SAFER MODE EXTENSIONS REFERENCE
Operation
(* The state of the internal flag ACMODEFLAG and SENTERFLAG persist across instruction 
boundary *)
IF (CR4.SMXE=0)

THEN #UD;
ELSE IF (in VMX non-root operation)

THEN VM Exit (reason=”GETSEC instruction”);
ELSE IF (GETSEC leaf unsupported)

THEN #UD;
ELSE IF ((CR0.PE=0) or (CPL>0) OR (EFLAGS.VM=1))

THEN #GP(0);
ELSE IF((EBX=0) and (SENTERFLAG=1) and (ACMODEFLAG=0) and (IN_SMM=0) and

 (((in VMX root operation) and (SMM monitor not configured)) or (not in VMX operation)) )
THEN unmask SMI;

ELSE
#GP(0);

END

Flags Affected
None.

Use of Prefixes
LOCK Causes #UD

Table 5-11.  Supported Actions for GETSEC[SMCTRL(0)]

ILP Mode of Operation SMCTRL execution action

In VMX non-root operation VM exit

SENTERFLAG = 0 #GP(0), illegal context

In authenticated code execution 
mode (ACMODEFLAG = 1)

#GP(0), illegal context

SENTERFLAG = 1, not in VMX 
operation, not in SMM 

Unmask SMI 

SENTERFLAG = 1, in VMX root 
operation, not in SMM 

Unmask SMI if SMM monitor is not configured, 
otherwise #GP(0)

SENTERFLAG = 1, In VMX root 
operation, in SMM

#GP(0), illegal context
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REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ)
Operand size Causes #UD
Segment overrides Ignored
Address size Ignored
REX Ignored

Protected Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[SMCTRL] is not reported as supported by 
GETSEC[CAPABILITIES].

#GP(0) If CR0.PE = 0 or CPL > 0 or EFLAGS.VM = 1.
If in VMX root operation.
If a protected partition is not already active or the processor is 
currently in authenticated code mode.
If the processor is in SMM.
If the SMM monitor is not configured

Real-Address Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[SMCTRL] is not reported as supported by 
GETSEC[CAPABILITIES].

#GP(0) GETSEC[SMCTRL] is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[SMCTRL] is not reported as supported by 
GETSEC[CAPABILITIES].

#GP(0) GETSEC[SMCTRL] is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
All protected mode exceptions apply.

64-Bit Mode Exceptions
All protected mode exceptions apply.

VM-exit Condition
Reason (GETSEC) IF in VMX non-root operation.
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GETSEC[WAKEUP]—Wake up sleeping processors in measured 
environment

Description

The GETSEC[WAKEUP] leaf function broadcasts a wake-up message to all logical 
processors currently in the SENTER sleep state. This GETSEC leaf must be executed 
only by the ILP, in order to wake-up the RLPs. Responding logical processors (RLPs) 
enter the SENTER sleep state after completion of the SENTER rendezvous sequence. 

The GETSEC[WAKEUP] instruction may only be executed: 
• In a measured environment as initiated by execution of GETSEC[SENTER]. 
• Outside of authenticated code execution mode. 
• Execution is not allowed unless the processor is in protected mode with CPL = 0 

and EFLAGS.VM = 0. 
• In addition, the logical processor must be designated as the boot-strap processor 

as configured by setting IA32_APIC_BASE.BSP = 1. 

If these conditions are not met, attempts to execute GETSEC[WAKEUP] result in a 
general protection violation.

An RLP exits the SENTER sleep state and start execution in response to a WAKEUP 
signal initiated by ILP’s execution of GETSEC[WAKEUP]. The RLP retrieves a pointer 
to a data structure that contains information to enable execution from a defined 
entry point. This data structure is located using a physical address held in the Intel® 
TXT-capable chipset configuration register LT.MLE.JOIN. The register is publicly writ-
able in the chipset by all processors and is not restricted by the Intel® TXT-capable 
chipset configuration register lock status. The format of this data structure is defined 
in Table 5-12.

Opcode Instruction Description

0F 37

(EAX=8)

GETSEC[WAKE
UP]

Wake up the responding logical processors from the SENTER 
sleep state.

Table 5-12.  RLP MVMM JOIN Data Structure

Offset Field

0 GDT limit

4 GDT base pointer

8 Segment selector initializer

12 EIP
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The MLE JOIN data structure contains the information necessary to initialize RLP 
processor state and permit the processor to join the measured environment. The 
GDTR, LIP, and CS, DS, SS, and ES selector values are initialized using this data 
structure. The CS selector index is derived directly from the segment selector initial-
izer field; DS, SS, and ES selectors are initialized to CS+8. The segment descriptor 
fields are initialized implicitly with BASE = 0, LIMIT = FFFFFH, G = 1, D = 1, P = 1, S 
= 1; read/write/access for DS, SS, and ES; and execute/read/access for CS. It is the 
responsibility of external software to establish a GDT pointed to by the MLE JOIN data 
structure that contains descriptor entries consistent with the implicit settings initial-
ized by the processor (see Table 5-6). Certain states from the content of Table 5-12 
are checked for consistency by the processor prior to execution. A failure of any 
consistency check results in the RLP aborting entry into the protected environment 
and signaling an Intel® TXT shutdown condition. The specific checks performed are 
documented later in this section. After successful completion of processor consis-
tency checks and subsequent initialization, RLP execution in the measured environ-
ment begins from the entry point at offset 12 (as indicated in Table 5-12).

Operation
(* The state of the internal flag ACMODEFLAG and SENTERFLAG persist across instruction 
boundary *)
IF (CR4.SMXE=0)

THEN #UD;
ELSE IF (in VMX non-root operation)

THEN VM Exit (reason=”GETSEC instruction”);
ELSE IF (GETSEC leaf unsupported)

THEN #UD;
ELSE IF ((CR0.PE=0) or (CPL>0) or (EFLAGS.VM=1) or (SENTERFLAG=0) or (ACMODEFLAG=1) or 
(IN_SMM=0) or (in VMX operation) or (IA32_APIC_BASE.BSP=0) or (TXT chipset not present))

THEN #GP(0);
ELSE

SignalTXTMsg(WAKEUP);
END;

RLP_SIPI_WAKEUP_FROM_SENTER_ROUTINE: (RLP only)
WHILE (no SignalWAKEUP event);
IF (IA32_SMM_MONITOR_CTL[0] != ILP.IA32_SMM_MONITOR_CTL[0])

THEN TXT-SHUTDOWN(#IllegalEvent)
IF (IA32_SMM_MONITOR_CTL[0] = 0)

THEN Unmask SMI pin event;
ELSE

Mask SMI pin event;
Mask A20M, and NMI external pin events (unmask INIT);
Mask SignalWAKEUP event;
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Invalidate processor TLB(s);
Drain outgoing transactions;
TempGDTRLIMIT← LOAD(LT.MLE.JOIN);
TempGDTRBASE← LOAD(LT.MLE.JOIN+4);
TempSegSel← LOAD(LT.MLE.JOIN+8);
TempEIP← LOAD(LT.MLE.JOIN+12);
IF (TempGDTLimit & FFFF0000h)

THEN TXT-SHUTDOWN(#BadJOINFormat);
IF ((TempSegSel > TempGDTRLIMIT-15) or (TempSegSel < 8))

THEN TXT-SHUTDOWN(#BadJOINFormat);
IF ((TempSegSel.TI=1) or (TempSegSel.RPL!=0))

THEN TXT-SHUTDOWN(#BadJOINFormat);
CR0.[PG,CD,NW,AM,WP]← 0;
CR0.[NE,PE]← 1;
CR4← 00004000h;
EFLAGS← 00000002h;
IA32_EFER← 0;
GDTR.BASE← TempGDTRBASE;
GDTR.LIMIT← TempGDTRLIMIT;
CS.SEL← TempSegSel;
CS.BASE← 0;
CS.LIMIT← FFFFFh;
CS.G← 1;
CS.D← 1;
CS.AR← 9Bh;
DS.SEL← TempSegSel+8;
DS.BASE← 0;
DS.LIMIT← FFFFFh;
DS.G← 1;
DS.D← 1;
DS.AR← 93h;
SS← DS;
ES← DS;
DR7← 00000400h;
IA32_DEBUGCTL← 0;
EIP← TempEIP;
END;

Flags Affected

None.

Use of Prefixes
LOCK Causes #UD
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REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ)
Operand size Causes #UD
Segment overrides Ignored
Address size Ignored
REX Ignored

Protected Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[WAKEUP] is not reported as supported by 
GETSEC[CAPABILITIES].

#GP(0) If CR0.PE = 0 or CPL > 0 or EFLAGS.VM = 1.
If in VMX operation.
If a protected partition is not already active or the processor is 
currently in authenticated code mode.
If the processor is in SMM.

#UD If CR4.SMXE = 0.
If GETSEC[WAKEUP] is not reported as supported by 
GETSEC[CAPABILITIES].

#GP(0) GETSEC[WAKEUP] is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[WAKEUP] is not reported as supported by 
GETSEC[CAPABILITIES].

#GP(0) GETSEC[WAKEUP] is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
All protected mode exceptions apply.

64-Bit Mode Exceptions
All protected mode exceptions apply.

VM-exit Condition
Reason (GETSEC) IF in VMX non-root operation.
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Use the opcode tables in this chapter to interpret IA-32 and Intel 64 architecture 
object code. Instructions are divided into encoding groups:
• 1-byte, 2-byte and 3-byte opcode encodings are used to encode integer, system, 

MMX technology, SSE/SSE2/SSE3/SSSE3/SSE4, and VMX instructions. Maps for 
these instructions are given in Table A-2 through Table A-6. 

• Escape opcodes (in the format: ESC character, opcode, ModR/M byte) are used 
for floating-point instructions. The maps for these instructions are provided in 
Table A-7 through Table A-22.

NOTE

All blanks in opcode maps are reserved and must not be used. Do not 
depend on the operation of undefined or blank opcodes.

A.1 USING OPCODE TABLES
Tables in this appendix list opcodes of instructions (including required instruction 
prefixes, opcode extensions in associated ModR/M byte). Blank cells in the tables 
indicate opcodes that are reserved or undefined.

The opcode map tables are organized by hex values of the upper and lower 4 bits of 
an opcode byte. For 1-byte encodings (Table A-2), use the four high-order bits of an 
opcode to index a row of the opcode table; use the four low-order bits to index a 
column of the table. For 2-byte opcodes beginning with 0FH (Table A-3), skip any 
instruction prefixes, the 0FH byte (0FH may be preceded by 66H, F2H, or F3H) and 
use the upper and lower 4-bit values of the next opcode byte to index table rows and 
columns. Similarly, for 3-byte opcodes beginning with 0F38H or 0F3AH (Table A-4), 
skip any instruction prefixes, 0F38H or 0F3AH and use the upper and lower 4-bit 
values of the third opcode byte to index table rows and columns. See Section A.2.4, 
“Opcode Look-up Examples for One, Two, and Three-Byte Opcodes.”

When a ModR/M byte provides opcode extensions, this information qualifies opcode 
execution. For information on how an opcode extension in the ModR/M byte modifies 
the opcode map in Table A-2 and Table A-3, see Section A.4. 

The escape (ESC) opcode tables for floating point instructions identify the eight high 
order bits of opcodes at the top of each page. See Section A.5. If the accompanying 
ModR/M byte is in the range of 00H-BFH, bits 3-5 (the top row of the third table on 
each page) along with the reg bits of ModR/M determine the opcode. ModR/M bytes 
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outside the range of 00H-BFH are mapped by the bottom two tables on each page of 
the section.

A.2 KEY TO ABBREVIATIONS
Operands are identified by a two-character code of the form Zz. The first character, 
an uppercase letter, specifies the addressing method; the second character, a lower-
case letter, specifies the type of operand.

A.2.1  Codes for Addressing Method
The following abbreviations are used to document addressing methods:

A Direct address: the instruction has no ModR/M byte; the address of the 
operand is encoded in the instruction. No base register, index register, or 
scaling factor can be applied (for example, far JMP (EA)).

B The VEX.vvvv field of the VEX prefix selects a general purpose register.

C The reg field of the ModR/M byte selects a control register (for example, MOV 
(0F20, 0F22)).

D The reg field of the ModR/M byte selects a debug register (for example, 
MOV (0F21,0F23)).

E A ModR/M byte follows the opcode and specifies the operand. The operand is 
either a general-purpose register or a memory address. If it is a memory 
address, the address is computed from a segment register and any of the 
following values: a base register, an index register, a scaling factor, a 
displacement.

F EFLAGS/RFLAGS Register.

G The reg field of the ModR/M byte selects a general register (for example, AX 
(000)).

H The VEX.vvvv field of the VEX prefix selects a 128-bit XMM register or a 256-
bit YMM register, determined by operand type. For legacy SSE encodings this 
operand does not exist, changing the instruction to destructive form.

I Immediate data: the operand value is encoded in subsequent bytes of the 
instruction.

J The instruction contains a relative offset to be added to the instruction 
pointer register (for example, JMP (0E9), LOOP).

L The upper 4 bits of the 8-bit immediate selects a 128-bit XMM register or a 
256-bit YMM register, determined by operand type. (the MSB is ignored in 
32-bit mode)
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M The ModR/M byte may refer only to memory (for example, BOUND, LES, 
LDS, LSS, LFS, LGS, CMPXCHG8B).

N The R/M field of the ModR/M byte selects a packed-quadword, MMX tech-
nology register.

O The instruction has no ModR/M byte. The offset of the operand is coded as a 
word or double word (depending on address size attribute) in the instruction. 
No base register, index register, or scaling factor can be applied (for example, 
MOV (A0–A3)).

P The reg field of the ModR/M byte selects a packed quadword MMX technology 
register.

Q A ModR/M byte follows the opcode and specifies the operand. The operand is 
either an MMX technology register or a memory address. If it is a memory 
address, the address is computed from a segment register and any of the 
following values: a base register, an index register, a scaling factor, and a 
displacement.

R The R/M field of the ModR/M byte may refer only to a general register (for 
example, MOV (0F20-0F23)).

S The reg field of the ModR/M byte selects a segment register (for example, 
MOV (8C,8E)).

U The R/M field of the ModR/M byte selects a 128-bit XMM register or a 256-bit 
YMM register, determined by operand type.

V The reg field of the ModR/M byte selects a 128-bit XMM register or a 256-bit 
YMM register, determined by operand type.

W A ModR/M byte follows the opcode and specifies the operand. The operand is 
either a 128-bit XMM register, a 256-bit YMM register (determined by 
operand type), or a memory address. If it is a memory address, the address 
is computed from a segment register and any of the following values: a base 
register, an index register, a scaling factor, and a displacement.

X Memory addressed by the DS:rSI register pair (for example, MOVS, CMPS, 
OUTS, or LODS).

Y Memory addressed by the ES:rDI register pair (for example, MOVS, CMPS, 
INS, STOS, or SCAS).

A.2.2  Codes for Operand Type
The following abbreviations are used to document operand types:

a Two one-word operands in memory or two double-word operands in memory, 
depending on operand-size attribute (used only by the BOUND instruction).

b Byte, regardless of operand-size attribute.

c Byte or word, depending on operand-size attribute.

d Doubleword, regardless of operand-size attribute.
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dq Double-quadword, regardless of operand-size attribute.

p 32-bit, 48-bit, or 80-bit pointer, depending on operand-size attribute.

pd 128-bit or 256-bit packed double-precision floating-point data.

pi Quadword MMX technology register (for example: mm0).

ps 128-bit or 256-bit packed single-precision floating-point data.

q Quadword, regardless of operand-size attribute.

qq Quad-Quadword (256-bits), regardless of operand-size attribute.

s 6-byte or 10-byte pseudo-descriptor.

sd Scalar element of a 128-bit double-precision floating data.

ss Scalar element of a 128-bit single-precision floating data.

si Doubleword integer register (for example: eax).

v Word, doubleword or quadword (in 64-bit mode), depending on operand-size 
attribute.

w Word, regardless of operand-size attribute.

x dq or qq based on the operand-size attribute.

y Doubleword or quadword (in 64-bit mode), depending on operand-size 
attribute.

z Word for 16-bit operand-size or doubleword for 32 or 64-bit operand-size.

A.2.3  Register Codes
When an opcode requires a specific register as an operand, the register is identified 
by name (for example, AX, CL, or ESI). The name indicates whether the register is 
64, 32, 16, or 8 bits wide.

A register identifier of the form eXX or rXX is used when register width depends on 
the operand-size attribute. eXX is used when 16 or 32-bit sizes are possible; rXX is 
used when 16, 32, or 64-bit sizes are possible. For example: eAX indicates that the 
AX register is used when the operand-size attribute is 16 and the EAX register is used 
when the operand-size attribute is 32. rAX can indicate AX, EAX or RAX.

When the REX.B bit is used to modify the register specified in the reg field of the 
opcode, this fact is indicated by adding “/x” to the register name to indicate the addi-
tional possibility. For example, rCX/r9 is used to indicate that the register could either 
be rCX or r9. Note that the size of r9 in this case is determined by the operand size 
attribute (just as for rCX).
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A.2.4  Opcode Look-up Examples for One, Two, 
and Three-Byte Opcodes

This section provides examples that demonstrate how opcode maps are used. 

A.2.4.1  One-Byte Opcode Instructions
The opcode map for 1-byte opcodes is shown in Table A-2. The opcode map for 1-
byte opcodes is arranged by row (the least-significant 4 bits of the hexadecimal 
value) and column (the most-significant 4 bits of the hexadecimal value). Each entry 
in the table lists one of the following types of opcodes:
• Instruction mnemonics and operand types using the notations listed in Section 

A.2
• Opcodes used as an instruction prefix

For each entry in the opcode map that corresponds to an instruction, the rules for 
interpreting the byte following the primary opcode fall into one of the following 
cases:
• A ModR/M byte is required and is interpreted according to the abbreviations listed 

in Section A.1 and Chapter 2, “Instruction Format,” of the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2A. Operand types are listed 
according to notations listed in Section A.2.

• A ModR/M byte is required and includes an opcode extension in the reg field in 
the ModR/M byte. Use Table A-6 when interpreting the ModR/M byte.

• Use of the ModR/M byte is reserved or undefined. This applies to entries that 
represent an instruction prefix or entries for instructions without operands that 
use ModR/M (for example: 60H, PUSHA; 06H, PUSH ES).

Example A-1.  Look-up Example for 1-Byte Opcodes

Opcode 030500000000H for an ADD instruction is interpreted using the 1-byte 
opcode map (Table A-2) as follows:
• The first digit (0) of the opcode indicates the table row and the second digit (3) 

indicates the table column. This locates an opcode for ADD with two operands. 
• The first operand (type Gv) indicates a general register that is a word or 

doubleword depending on the operand-size attribute. The second operand (type 
Ev) indicates a ModR/M byte follows that specifies whether the operand is a word 
or doubleword general-purpose register or a memory address.

• The ModR/M byte for this instruction is 05H, indicating that a 32-bit displacement 
follows (00000000H). The reg/opcode portion of the ModR/M byte (bits 3-5) is 
000, indicating the EAX register. 

The instruction for this opcode is ADD EAX, mem_op, and the offset of mem_op is 
00000000H.
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Some 1- and 2-byte opcodes point to group numbers (shaded entries in the opcode 
map table). Group numbers indicate that the instruction uses the reg/opcode bits in 
the ModR/M byte as an opcode extension (refer to Section A.4).

A.2.4.2  Two-Byte Opcode Instructions
The two-byte opcode map shown in Table A-3 includes primary opcodes that are 
either two bytes or three bytes in length. Primary opcodes that are 2 bytes in length 
begin with an escape opcode 0FH. The upper and lower four bits of the second 
opcode byte are used to index a particular row and column in Table A-3. 

Two-byte opcodes that are 3 bytes in length begin with a mandatory prefix (66H, 
F2H, or F3H) and the escape opcode (0FH). The upper and lower four bits of the third 
byte are used to index a particular row and column in Table A-3 (except when the 
second opcode byte is the 3-byte escape opcodes 38H or 3AH; in this situation refer 
to Section A.2.4.3). 

For each entry in the opcode map, the rules for interpreting the byte following the 
primary opcode fall into one of the following cases:
• A ModR/M byte is required and is interpreted according to the abbreviations listed 

in Section A.1 and Chapter 2, “Instruction Format,” of the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2A. The operand types are 
listed according to notations listed in Section A.2.

• A ModR/M byte is required and includes an opcode extension in the reg field in 
the ModR/M byte. Use Table A-6 when interpreting the ModR/M byte.

• Use of the ModR/M byte is reserved or undefined. This applies to entries that 
represent an instruction without operands that are encoded using ModR/M (for 
example: 0F77H, EMMS).

Example A-2.  Look-up Example for 2-Byte Opcodes

Look-up opcode 0FA4050000000003H for a SHLD instruction using Table A-3.
• The opcode is located in row A, column 4. The location indicates a SHLD 

instruction with operands Ev, Gv, and Ib. Interpret the operands as follows:

— Ev: The ModR/M byte follows the opcode to specify a word or doubleword 
operand.

— Gv: The reg field of the ModR/M byte selects a general-purpose register.

— Ib: Immediate data is encoded in the subsequent byte of the instruction.
• The third byte is the ModR/M byte (05H). The mod and opcode/reg fields of 

ModR/M indicate that a 32-bit displacement is used to locate the first operand in 
memory and eAX as the second operand.

• The next part of the opcode is the 32-bit displacement for the destination 
memory operand (00000000H). The last byte stores immediate byte that 
provides the count of the shift (03H).
A-6 Vol. 2C



OPCODE MAP
Vol. 2C A-7

• By this breakdown, it has been shown that this opcode represents the 
instruction: SHLD DS:00000000H, EAX, 3.

A.2.4.3  Three-Byte Opcode Instructions
The three-byte opcode maps shown in Table A-4 and Table A-5 includes primary 
opcodes that are either 3 or 4 bytes in length. Primary opcodes that are 3 bytes in 
length begin with two escape bytes 0F38H or 0F3A. The upper and lower four bits of 
the third opcode byte are used to index a particular row and column in Table A-4 or 
Table A-5. 

Three-byte opcodes that are 4 bytes in length begin with a mandatory prefix (66H, 
F2H, or F3H) and two escape bytes (0F38H or 0F3AH). The upper and lower four bits 
of the fourth byte are used to index a particular row and column in Table A-4 or Table 
A-5. 

For each entry in the opcode map, the rules for interpreting the byte following the 
primary opcode fall into the following case:
• A ModR/M byte is required and is interpreted according to the abbreviations listed 

in A.1 and Chapter 2, “Instruction Format,” of the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 2A. The operand types are listed 
according to notations listed in Section A.2.

Example A-3.  Look-up Example for 3-Byte Opcodes

Look-up opcode 660F3A0FC108H for a PALIGNR instruction using Table A-5.
• 66H is a prefix and 0F3AH indicate to use Table A-5. The opcode is located in row 

0, column F indicating a PALIGNR instruction with operands Vdq, Wdq, and Ib. 
Interpret the operands as follows:

— Vdq: The reg field of the ModR/M byte selects a 128-bit XMM register.

— Wdq: The R/M field of the ModR/M byte selects either a 128-bit XMM register 
or memory location.

— Ib: Immediate data is encoded in the subsequent byte of the instruction.
• The next byte is the ModR/M byte (C1H). The reg field indicates that the first 

operand is XMM0. The mod shows that the R/M field specifies a register and the 
R/M indicates that the second operand is XMM1.

• The last byte is the immediate byte (08H).
• By this breakdown, it has been shown that this opcode represents the 

instruction: PALIGNR XMM0, XMM1, 8.

A.2.4.4  VEX Prefix Instructions
Instructions that include a VEX prefix are organized relative to the 2-byte and 3-byte 
opcode maps, based on the VEX.mmmmm field encoding of implied 0F, 0F38H, 
0F3AH, respectively. Each entry in the opcode map of a VEX-encoded instruction is 
based on the value of the opcode byte, similar to non-VEX-encoded instructions. 
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A VEX prefix includes several bit fields that encode implied 66H, F2H, F3H prefix 
functionality (VEX.pp) and operand size/opcode information (VEX.L). See chapter 4 
for details. 

Opcode tables A2-A6 include both instructions with a VEX prefix and instructions 
without a VEX prefix. Many entries are only made once, but represent both the VEX 
and non-VEX forms of the instruction. If the VEX prefix is present all the operands are 
valid and the mnemonic is usually prefixed with a “v”. If the VEX prefix is not present 
the VEX.vvvv operand is not available and the prefix “v” is dropped from the 
mnemonic. 

A few instructions exist only in VEX form and these are marked with a superscript “v”.

Operand size of VEX prefix instructions can be determined by the operand type code. 
128-bit vectors are indicated by 'dq', 256-bit vectors are indicated by 'qq', and 
instructions with operands supporting either 128 or 256-bit, determined by VEX.L, 
are indicated by 'x'. For example, the entry "VMOVUPD Vx,Wx" indicates both 
VEX.L=0 and VEX.L=1 are supported. 

A.2.5  Superscripts Utilized in Opcode Tables
Table A-1 contains notes on particular encodings. These notes are indicated in the 
following opcode maps by superscripts. Gray cells indicate instruction groupings.

Table A-1.  Superscripts Utilized in Opcode Tables
Superscript
Symbol

Meaning of Symbol

1A Bits 5, 4, and 3 of ModR/M byte used as an opcode extension (refer to Section 
A.4, “Opcode Extensions For One-Byte And Two-byte Opcodes”).

1B Use the 0F0B opcode (UD2 instruction) or the 0FB9H opcode when deliberately 
trying to generate an invalid opcode exception (#UD).

1C Some instructions use the same two-byte opcode. If the instruction has 
variations, or the opcode represents different instructions, the ModR/M byte 
will be used to differentiate the instruction. For the value of the ModR/M byte 
needed to decode the instruction, see Table A-6. 

i64 The instruction is invalid or not encodable in 64-bit mode. 40 through 4F (single-
byte INC and DEC) are REX prefix combinations when in 64-bit mode (use FE/FF 
Grp 4 and 5 for INC and DEC).

o64 Instruction is only available when in 64-bit mode.

d64 When in 64-bit mode, instruction defaults to 64-bit operand size and cannot 
encode 32-bit operand size. 

f64 The operand size is forced to a 64-bit operand size when in 64-bit mode 
(prefixes that change operand size are ignored for this instruction in 64-bit 
mode).
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A.3 ONE, TWO, AND THREE-BYTE OPCODE MAPS
See Table A-2 through Table A-5 below. The tables are multiple page presentations. 
Rows and columns with sequential relationships are placed on facing pages to make 
look-up tasks easier. Note that table footnotes are not presented on each page. Table 
footnotes for each table are presented on the last page of the table.

v VEX form only exists. There is no legacy SSE form of the instruction. For Integer 
GPR instructions it means VEX prefix required.

v1 VEX128 & SSE forms only exist (no VEX256), when can’t be inferred from the 
data size.

Table A-1.  Superscripts Utilized in Opcode Tables
Superscript
Symbol

Meaning of Symbol
Vol. 2C A-9



OPCODE MAP
Table A-2.  One-byte Opcode Map: (00H — F7H) *

0 1 2 3 4 5 6 7

0 ADD PUSH
ESi64

POP
ESi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

1 ADC PUSH
SSi64

POP
SSi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

2 AND SEG=ES
(Prefix)

DAAi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

3 XOR SEG=SS
(Prefix)

AAAi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

4 INCi64 general register / REXo64 Prefixes

eAX
REX

eCX
REX.B

eDX
REX.X

eBX
REX.XB

eSP
REX.R

eBP
REX.RB

eSI
REX.RX

eDI
REX.RXB

5 PUSHd64 general register

rAX/r8 rCX/r9 rDX/r10 rBX/r11 rSP/r12 rBP/r13 rSI/r14 rDI/r15 

6 PUSHAi64/
PUSHADi64

POPAi64/
POPADi64

BOUNDi64

Gv, Ma
ARPLi64

Ew, Gw
MOVSXDo64

Gv, Ev

SEG=FS
(Prefix)

SEG=GS
(Prefix)

Operand
Size

(Prefix)

Address
Size

(Prefix)

7 Jccf64, Jb - Short-displacement jump on condition

O NO B/NAE/C NB/AE/NC Z/E NZ/NE BE/NA NBE/A

8 Immediate Grp 11A TEST XCHG 

Eb, Ib Ev, Iz  Eb, Ibi64 Ev, Ib Eb, Gb Ev, Gv Eb, Gb Ev, Gv 

9 NOP 
PAUSE(F3)

XCHG r8, rAX

XCHG word, double-word or quad-word register with rAX

rCX/r9 rDX/r10 rBX/r11 rSP/r12 rBP/r13 rSI/r14 rDI/r15

A MOV MOVS/B
Yb, Xb

MOVS/W/D/Q
Yv, Xv 

CMPS/B
Xb, Yb 

CMPS/W/D
Xv, Yv

AL, Ob rAX, Ov Ob, AL Ov, rAX 

B MOV immediate byte into byte register

AL/R8L, Ib CL/R9L, Ib DL/R10L, Ib BL/R11L, Ib AH/R12L, Ib CH/R13L, Ib DH/R14L, Ib BH/R15L, Ib

C Shift Grp 21A RETNf64

Iw
RETNf64 LESi64

Gz, Mp 
VEX+2byte

LDSi64

Gz, Mp 
VEX+1byte

Grp 111A - MOV

Eb, Ib Ev, Ib Eb, Ib Ev, Iz

D Shift Grp 21A AAMi64

Ib
AADi64

Ib
XLAT/
XLATB 

Eb, 1 Ev, 1 Eb, CL Ev, CL 

E LOOPNEf64/
LOOPNZf64

Jb 

LOOPEf64/
LOOPZf64

Jb 

LOOPf64

Jb 
JrCXZf64/

Jb 
IN OUT

AL, Ib eAX, Ib Ib, AL Ib, eAX

F LOCK
(Prefix)

REPNE
XACQUIRE 

(Prefix) 

REP/REPE 
XRELEASE 

(Prefix)

HLT CMC Unary Grp 31A

Eb Ev
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OPCODE MAP
Table A-2. One-byte Opcode Map: (08H — FFH) *

8 9 A B C D E F

0 OR PUSH
CSi64

2-byte
escape

(Table A-3) Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

1 SBB PUSH
DSi64

POP
DSi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

2 SUB SEG=CS 
(Prefix)

DASi64 

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

3 CMP SEG=DS 
(Prefix)

AASi64 

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

4 DECi64 general register / REXo64 Prefixes

eAX
REX.W

eCX
REX.WB

eDX
REX.WX

eBX
REX.WXB

eSP
REX.WR

eBP
REX.WRB

eSI
REX.WRX

eDI 
REX.WRXB

5 POPd64 into general register

rAX/r8 rCX/r9 rDX/r10 rBX/r11 rSP/r12 rBP/r13 rSI/r14 rDI/r15 

6 PUSHd64

Iz
IMUL

Gv, Ev, Iz
PUSHd64

Ib
IMUL

Gv, Ev, Ib
INS/
INSB

Yb, DX

INS/
INSW/
INSD

Yz, DX

OUTS/
OUTSB
DX, Xb

OUTS/
OUTSW/
OUTSD
DX, Xz

7 Jccf64, Jb- Short displacement jump on condition

S NS P/PE NP/PO L/NGE NL/GE LE/NG NLE/G 

8 MOV MOV
Ev, Sw

LEA
Gv, M 

MOV
Sw, Ew

Grp 1A1A 
POPd64 Ev

Eb, Gb Ev, Gv Gb, Eb Gv, Ev 

9 CBW/
CWDE/
CDQE

CWD/
CDQ/
CQO

CALLFi64

Ap
FWAIT/
WAIT

PUSHF/D/Q 
d64/
Fv

POPF/D/Q 
d64/
Fv

SAHF LAHF

A TEST STOS/B
Yb, AL 

STOS/W/D/Q
Yv, rAX 

LODS/B
AL, Xb 

LODS/W/D/Q
rAX, Xv

SCAS/B
AL, Yb

SCAS/W/D/Q
rAX, Xv

AL, Ib rAX, Iz

B MOV immediate word or double into word, double, or quad register

rAX/r8, Iv rCX/r9, Iv rDX/r10, Iv rBX/r11, Iv rSP/r12, Iv rBP/r13, Iv rSI/r14, Iv rDI/r15 , Iv

C ENTER LEAVEd64 RETF RETF INT 3 INT INTOi64 IRET/D/Q 

Iw, Ib Iw Ib

D ESC (Escape to coprocessor instruction set)

E CALLf64 JMP IN OUT

Jz nearf64

Jz
fari64

Ap
shortf64

Jb
AL, DX eAX, DX DX, AL DX, eAX 

F CLC STC CLI STI CLD STD INC/DEC INC/DEC

Grp 41A Grp 51A

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of 
undefined or reserved locations.
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Table A-3.  Two-byte Opcode Map: 00H — 77H (First Byte is 0FH) *

pfx 0 1 2 3 4 5 6 7

0
Grp 61A Grp 71A LAR

Gv, Ew 
LSL

Gv, Ew 
 SYSCALLo64 CLTS SYSRETo64

1

vmovups vmovups vmovlps
Vq, Hq, Mq
vmovhlps

Vq, Hq, Uq

vmovlps
Mq, Vq

vunpcklps
Vx, Hx, Wx

vunpckhps
Vx, Hx, Wx

vmovhpsv1

Vdq, Hq, Mq 
vmovlhps

Vdq, Hq, Uq

vmovhpsv1

Mq, Vq

66
vmovupd vmovupd

Wpd,Vpd
vmovlpd

Vq, Hq, Mq
vmovlpd
Mq, Vq

vunpcklpd
Vx,Hx,Wx

vunpckhpd
Vx,Hx,Wx

vmovhpdv1

Vdq, Hq, Mq
vmovhpdv1

Mq, Vq

F3
vmovss

Vx, Hx, Wss
vmovss

Wss, Hx, Vss
vmovsldup 

Vx, Wx
vmovshdup 

Vx, Wx

F2
vmovsd

Vx, Hx, Wsd
vmovsd

Wsd, Hx, Vsd
vmovddup

Vx, Wx

2

MOV
Rd, Cd

MOV
Rd, Dd

MOV
Cd, Rd

MOV
Dd, Rd

3
WRMSR RDTSC  RDMSR RDPMC SYSENTER SYSEXIT GETSEC

4

CMOVcc, (Gv, Ev) - Conditional Move

O NO B/C/NAE AE/NB/NC E/Z NE/NZ BE/NA A/NBE

5

vmovmskps
Gy, Ups

vsqrtps
Vps, Wps

vrsqrtps
Vps, Wps

vrcpps
Vps, Wps

vandps
Vps, Hps, Wps

vandnps
Vps, Hps, Wps

vorps
Vps, Hps, Wps

vxorps
Vps, Hps, Wps

66
vmovmskpd 

Gy,Upd
vsqrtpd

Vpd, Wpd
vandpd

Vpd, Hpd, Wpd
vandnpd

Vpd, Hpd, Wpd
vorpd

Vpd, Hpd, Wpd
vxorpd

Vpd, Hpd, Wpd

F3
vsqrtss

Vss, Hss, Wss
vrsqrtss

Vss, Hss, Wss
vrcpss

Vss, Hss, Wss

F2
vsqrtsd

Vsd, Hsd, Wsd 

6

punpcklbw
Pq, Qd

punpcklwd
Pq, Qd

punpckldq
Pq, Qd

packsswb
Pq, Qq

pcmpgtb
Pq, Qq

pcmpgtw
Pq, Qq

pcmpgtd
Pq, Qq

packuswb
Pq, Qq

66
vpunpcklbw
Vx, Hx, Wx

vpunpcklwd
Vx, Hx, Wx

vpunpckldq
Vx, Hx, Wx

vpacksswb
Vx, Hx, Wx

vpcmpgtb
Vx, Hx, Wx

vpcmpgtw
Vx, Hx, Wx

vpcmpgtd
Vx, Hx, Wx

vpackuswb
Vx, Hx, Wx

F3

7

pshufw
Pq, Qq, Ib

(Grp 121A) (Grp 131A) (Grp 141A) pcmpeqb
Pq, Qq

pcmpeqw
Pq, Qq

pcmpeqd
Pq, Qq

emms 
vzeroupperv 

vzeroallv

66
vpshufd

Vx, Wx, Ib
vpcmpeqb
Vx, Hx, Wx

vpcmpeqw
Vx, Hx, Wx

vpcmpeqd
Vx, Hx, Wx

F3
vpshufhw
Vx, Wx, Ib

F2
vpshuflw

Vx, Wx, Ib
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Table A-3. Two-byte Opcode Map: 08H — 7FH (First Byte is 0FH) *

pfx 8 9 A B C D E F

0 
INVD WBINVD 2-byte Illegal 

Opcodes
UD21B

 NOP Ev

1

Prefetch1C

(Grp 161A)
NOP Ev

2 

vmovaps
Vps, Wps

vmovaps
Wps, Vps

cvtpi2ps
Vps, Qpi

vmovntps
Mps, Vps 

cvttps2pi
Ppi, Wps

cvtps2pi
Ppi, Wps

vucomiss
Vss, Wss

vcomiss
Vss, Wss

66
vmovapd
Vpd, Wpd

vmovapd
Wpd,Vpd

cvtpi2pd
Vpd, Qpi

vmovntpd
Mpd, Vpd

cvttpd2pi
Ppi, Wpd

cvtpd2pi
Qpi, Wpd

vucomisd
Vsd, Wsd

vcomisd
Vsd, Wsd

F3
vcvtsi2ss

Vss, Hss, Ey
vcvttss2si
Gy, Wss

vcvtss2si
Gy, Wss

F2
vcvtsi2sd

Vsd, Hsd, Ey 
vcvttsd2si
Gy, Wsd 

vcvtsd2si
Gy, Wsd 

3  
3-byte escape

(Table A-4) 
3-byte escape

(Table A-5) 

4  

CMOVcc(Gv, Ev) - Conditional Move 

S NS P/PE NP/PO L/NGE NL/GE LE/NG NLE/G

5

vaddps
Vps, Hps, Wps

vmulps
Vps, Hps, Wps

vcvtps2pd
Vpd, Wps

vcvtdq2ps
Vps, Wdq

vsubps 
Vps, Hps, Wps

vminps
Vps, Hps, Wps

vdivps
Vps, Hps, Wps

vmaxps
Vps, Hps, Wps

66
vaddpd

Vpd, Hpd, Wpd
vmulpd

Vpd, Hpd, Wpd
vcvtpd2ps
Vps, Wpd

vcvtps2dq
Vdq, Wps

vsubpd
Vpd, Hpd, Wpd

vminpd
Vpd, Hpd, Wpd

vdivpd
Vpd, Hpd, Wpd

vmaxpd
Vpd, Hpd, Wpd

F3
vaddss

Vss, Hss, Wss
vmulss

Vss, Hss, Wss
vcvtss2sd

Vsd, Hx, Wss
vcvttps2dq
Vdq, Wps

vsubss
Vss, Hss, Wss

vminss
Vss, Hss, Wss

vdivss
Vss, Hss, Wss

vmaxss
Vss, Hss, Wss

F2
vaddsd

Vsd, Hsd, Wsd 
vmulsd

Vsd, Hsd, Wsd 
vcvtsd2ss

Vss, Hx, Wsd 
vsubsd

Vsd, Hsd, Wsd 
vminsd

Vsd, Hsd, Wsd 
vdivsd

Vsd, Hsd, Wsd 
vmaxsd

Vsd, Hsd, Wsd 

6

punpckhbw
Pq, Qd

punpckhwd
Pq, Qd

punpckhdq
Pq, Qd

packssdw
Pq, Qd

movd/q
Pd, Ey

movq
Pq, Qq

66
vpunpckhbw
Vx, Hx, Wx

vpunpckhwd
Vx, Hx, Wx

vpunpckhdq
Vx, Hx, Wx

vpackssdw
Vx, Hx, Wx

vpunpcklqdq
Vx, Hx, Wx

vpunpckhqdq
Vx, Hx, Wx

vmovd/q
Vy, Ey

vmovdqa
Vx, Wx

F3 vmovdqu
Vx, Wx

7

VMREAD
Ey, Gy

VMWRITE
Gy, Ey

movd/q
Ey, Pd

movq
Qq, Pq

66
vhaddpd

Vpd, Hpd, Wpd
vhsubpd

Vpd, Hpd, Wpd
vmovd/q
Ey, Vy

vmovdqa
Wx,Vx

F3
vmovq
Vq, Wq

vmovdqu
Wx,Vx

F2
vhaddps

Vps, Hps, Wps
vhsubps

Vps, Hps, Wps
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Table A-3. Two-byte Opcode Map: 80H — F7H (First Byte is 0FH) *

pfx 0 1 2 3 4 5 6 7

8

Jccf64, Jz - Long-displacement jump on condition

O NO B/CNAE AE/NB/NC E/Z NE/NZ BE/NA A/NBE

9

SETcc, Eb - Byte Set on condition

O NO B/C/NAE AE/NB/NC E/Z NE/NZ BE/NA A/NBE

A
PUSHd64

FS
POPd64

FS
CPUID BT

Ev, Gv 
SHLD

Ev, Gv, Ib 
SHLD

Ev, Gv, CL 
 

B
CMPXCHG LSS

Gv, Mp 
BTR

Ev, Gv 
LFS

Gv, Mp 
LGS

Gv, Mp 
MOVZX

Eb, Gb Ev, Gv Gv, Eb Gv, Ew 

C

XADD
Eb, Gb

XADD
Ev, Gv

vcmpps
Vps,Hps,Wps,Ib

movnti
My, Gy

pinsrw
Pq,Ry/Mw,Ib

pextrw
Gd, Nq, Ib

vshufps
Vps,Hps,Wps,Ib

Grp 91A

66
vcmppd

Vpd,Hpd,Wpd,Ib
vpinsrw

Vdq,Hdq,Ry/Mw,Ib
vpextrw

Gd, Udq, Ib
vshufpd

Vpd,Hpd,Wpd,Ib

F3
vcmpss

Vss,Hss,Wss,Ib

F2
vcmpsd

Vsd,Hsd,Wsd,Ib

D

psrlw
Pq, Qq

psrld
Pq, Qq

psrlq
Pq, Qq

paddq
Pq, Qq

pmullw
Pq, Qq

pmovmskb
Gd, Nq

66
vaddsubpd

Vpd, Hpd, Wpd
vpsrlw

Vx, Hx, Wx
vpsrld

Vx, Hx, Wx
vpsrlq

Vx, Hx, Wx
vpaddq

Vx, Hx, Wx
vpmullw

Vx, Hx, Wx
vmovq
Wq, Vq

vpmovmskb 
Gd, Ux

F3
movq2dq
Vdq, Nq

F2
vaddsubps

Vps, Hps, Wps
movdq2q
Pq, Uq

E

pavgb
Pq, Qq

psraw
Pq, Qq

psrad
Pq, Qq

pavgw
Pq, Qq

pmulhuw
Pq, Qq

pmulhw
Pq, Qq

movntq
Mq, Pq

66
vpavgb

Vx, Hx, Wx
vpsraw

Vx, Hx, Wx
vpsrad

Vx, Hx, Wx
vpavgw

Vx, Hx, Wx
vpmulhuw
Vx, Hx, Wx

vpmulhw
Vx, Hx, Wx

vcvttpd2dq
Vx, Wpd

vmovntdq
Mx, Vx

F3
vcvtdq2pd
Vx, Wpd

F2
vcvtpd2dq
Vx, Wpd

F

psllw
Pq, Qq

pslld
Pq, Qq

psllq
Pq, Qq

pmuludq
Pq, Qq

pmaddwd
Pq, Qq

psadbw
Pq, Qq

maskmovq
Pq, Nq

66
vpsllw

Vx, Hx, Wx
vpslld

Vx, Hx, Wx
vpsllq

Vx, Hx, Wx
vpmuludq

Vx, Hx, Wx
vpmaddwd 
Vx, Hx, Wx

vpsadbw
Vx, Hx, Wx

vmaskmovdqu
Vdq, Udq

F2
vlddqu
Vx, Mx
A-14 Vol. 2C



OPCODE MAP
Table A-3. Two-byte Opcode Map: 88H — FFH (First Byte is 0FH) * 

pfx 8 9 A B C D E F

8  
Jccf64, Jz - Long-displacement jump on condition

S NS P/PE NP/PO L/NGE NL/GE LE/NG NLE/G

9 

SETcc, Eb - Byte Set on condition

S NS P/PE NP/PO L/NGE NL/GE LE/NG NLE/G

A 
PUSHd64

GS
POPd64

GS
RSM BTS

Ev, Gv 
SHRD

Ev, Gv, Ib 
SHRD

Ev, Gv, CL 
(Grp 151A)1C IMUL

Gv, Ev 

B 

 
JMPE

(reserved for 
emulator on IPF)

Grp 101A

Invalid 
Opcode1B

Grp 81A

Ev, Ib
BTC

Ev, Gv
BSF

Gv, Ev
BSR

Gv, Ev
MOVSX

Gv, Eb Gv, Ew

F3
POPCNT Gv, 

Ev
TZCNT 
Gv, Ev

LZCNT 
Gv, Ev

C  

BSWAP

RAX/EAX/
R8/R8D

RCX/ECX/ 
R9/R9D

RDX/EDX/ 
R10/R10D

RBX/EBX/ 
R11/R11D

RSP/ESP/ 
R12/R12D

RBP/EBP/ 
R13/R13D

RSI/ESI/ 
R14/R14D

RDI/EDI/ 
R15/R15D

D

psubusb
Pq, Qq

psubusw
Pq, Qq

pminub
Pq, Qq

pand
Pq, Qq

paddusb
Pq, Qq

paddusw
Pq, Qq

pmaxub
Pq, Qq

pandn
Pq, Qq

66
vpsubusb

Vx, Hx, Wx
vpsubusw
Vx, Hx, Wx

vpminub
Vx, Hx, Wx

vpand
Vx, Hx, Wx

vpaddusb
Vx, Hx, Wx

vpaddusw
Vx, Hx, Wx

vpmaxub
Vx, Hx, Wx

vpandn
Vx, Hx, Wx

F3

F2

E

psubsb
Pq, Qq

psubsw
Pq, Qq

pminsw
Pq, Qq

por
Pq, Qq

paddsb
Pq, Qq

paddsw
Pq, Qq

pmaxsw
Pq, Qq

pxor
Pq, Qq

66
vpsubsb

Vx, Hx, Wx
vpsubsw

Vx, Hx, Wx
vpminsw

Vx, Hx, Wx
vpor

Vx, Hx, Wx
vpaddsb

Vx, Hx, Wx
vpaddsw

Vx, Hx, Wx
vpmaxsw

Vx, Hx, Wx
vpxor

Vx, Hx, Wx

F3

F2

F

psubb
Pq, Qq

psubw
Pq, Qq

psubd
Pq, Qq

psubq
Pq, Qq

paddb
Pq, Qq

paddw
Pq, Qq

paddd
Pq, Qq

66
vpsubb

Vx, Hx, Wx
vpsubw

Vx, Hx, Wx 
vpsubd

Vx, Hx, Wx
vpsubq

Vx, Hx, Wx
vpaddb

Vx, Hx, Wx
vpaddw

Vx, Hx, Wx 
vpaddd

Vx, Hx, Wx

F2

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of unde-
fined or reserved locations.
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Table A-4.  Three-byte Opcode Map: 00H — F7H (First Two Bytes are 0F 38H) *

pfx 0 1 2 3 4 5 6 7

0

pshufb
Pq, Qq

phaddw
Pq, Qq

phaddd
Pq, Qq

phaddsw
Pq, Qq

pmaddubsw
Pq, Qq

phsubw
Pq, Qq

phsubd
Pq, Qq

phsubsw
Pq, Qq

66
vpshufb

Vx, Hx, Wx
vphaddw

Vx, Hx, Wx
vphaddd

Vx, Hx, Wx
vphaddsw
Vx, Hx, Wx

vpmaddubsw
Vx, Hx, Wx

vphsubw
Vx, Hx, Wx

vphsubd
Vx, Hx, Wx

vphsubsw
Vx, Hx, Wx

1 66
pblendvb
Vdq, Wdq

vcvtph2psv

Vx, Wx, Ib
blendvps
Vdq, Wdq

blendvpd
Vdq, Wdq

vpermpsv

Vqq, Hqq, Wqq
vptest
Vx, Wx

2 66
vpmovsxbw
Vx, Ux/Mq

vpmovsxbd
Vx, Ux/Md

vpmovsxbq
Vx, Ux/Mw

vpmovsxwd
Vx, Ux/Mq

vpmovsxwq
Vx, Ux/Md

vpmovsxdq
Vx, Ux/Mq

3 66
vpmovzxbw
Vx, Ux/Mq

vpmovzxbd
Vx, Ux/Md

vpmovzxbq
Vx, Ux/Mw

vpmovzxwd
Vx, Ux/Mq

vpmovzxwq
Vx, Ux/Md

vpmovzxdq
Vx, Ux/Mq

vpermdv

Vqq, Hqq, Wqq
vpcmpgtq

Vx, Hx, Wx

4 66
vpmulld

Vx, Hx, Wx
vphminposuw 

Vdq, Wdq
vpsrlvd/qv

Vx, Hx, Wx
vpsravdv

Vx, Hx, Wx
vpsllvd/qv

Vx, Hx, Wx

5

6

7

8 66
INVEPT 
Gy, Mdq

INVVPID 
Gy, Mdq

INVPCID 
Gy, Mdq

9 66
vgatherdd/qv 

Vx,Hx,Wx
vgatherqd/qv 

Vx,Hx,Wx
vgatherdps/dv 

Vx,Hx,Wx
vgatherqps/dv 

Vx,Hx,Wx
vfmaddsub132ps/d

v Vx,Hx,Wx
vfmsubadd132ps/d

v Vx,Hx,Wx

A 66
vfmaddsub213ps/d

v Vx,Hx,Wx
vfmsubadd213ps/d

v Vx,Hx,Wx

B 66
vfmaddsub231ps/d

v Vx,Hx,Wx
vfmsubadd231ps/d

v Vx,Hx,Wx

C

D

E

F

MOVBE 
Gy, My

MOVBE 
My, Gy

ANDNv

Gy, By, Ey

Grp 171A

BZHIv

Gy, Ey, By
BEXTRv

Gy, Ey, By

66
MOVBE 
Gw, Mw

MOVBE 
Mw, Gw

SHLXv

Gy, Ey, By

F3
PEXTv

Gy, By, Ey
SARXv

Gy, Ey, By

F2
CRC32 
Gd, Eb

CRC32 
Gd, Ey

PDEPv

Gy, By, Ey
MULXv

By,Gy,rDX,Ey
SHRXv

Gy, Ey, By

66 & 
F2

CRC32 
Gd, Eb

CRC32 
Gd, Ew
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Table A-4. Three-byte Opcode Map: 08H — FFH (First Two Bytes are 0F 38H) *

pfx 8 9 A B C D E F

0

psignb
Pq, Qq

psignw
Pq, Qq

psignd
Pq, Qq

pmulhrsw
Pq, Qq

66
vpsignb

Vx, Hx, Wx
vpsignw

Vx, Hx, Wx
vpsignd

Vx, Hx, Wx
vpmulhrsw 
Vx, Hx, Wx

vpermilpsv 
Vx,Hx,Wx

vpermilpdv 
Vx,Hx,Wx

vtestpsv 
Vx, Wx

vtestpdv 
Vx, Wx

1

pabsb
Pq, Qq

pabsw
Pq, Qq

pabsd
Pq, Qq

66
vbroadcastssv 

Vx, Wd
vbroadcastsdv 

Vqq, Wq
vbroadcastf128v 

Vqq, Mdq
vpabsb
Vx, Wx

vpabsw
Vx, Wx

vpabsd
Vx, Wx

2 66
vpmuldq

Vx, Hx, Wx
vpcmpeqq
Vx, Hx, Wx

vmovntdqa
Vx, Mx

vpackusdw
Vx, Hx, Wx

vmaskmovpsv 
Vx,Hx,Mx

vmaskmovpdv 
Vx,Hx,Mx

vmaskmovpsv 
Mx,Hx,Vx

vmaskmovpdv 
Mx,Hx,Vx

3 66
vpminsb

Vx, Hx, Wx
vpminsd

Vx, Hx, Wx
vpminuw

Vx, Hx, Wx
vpminud

Vx, Hx, Wx
vpmaxsb

Vx, Hx, Wx
vpmaxsd

Vx, Hx, Wx
vpmaxuw

Vx, Hx, Wx
vpmaxud

Vx, Hx, Wx

4

5 66
vpbroadcastdv 

Vx, Wx
vpbroadcastqv 

Vx, Wx
vbroadcasti128v 

Vqq, Mdq

6

7 66
vpbroadcastbv 

Vx, Wx
vpbroadcastwv 

Vx, Wx

8 66
vpmaskmovd/qv 

Vx,Hx,Mx
vpmaskmovd/qv 

Mx,Vx,Hx

9 66
vfmadd132ps/dv 

Vx, Hx, Wx
vfmadd132ss/dv 

Vx, Hx, Wx
vfmsub132ps/dv 

Vx, Hx, Wx
vfmsub132ss/dv 

Vx, Hx, Wx
vfnmadd132ps/dv 

Vx, Hx, Wx
vfnmadd132ss/dv 

Vx, Hx, Wx
vfnmsub132ps/dv 

Vx, Hx, Wx
vfnmsub132ss/dv

Vx, Hx, Wx

A 66
vfmadd213ps/dv 

Vx, Hx, Wx
vfmadd213ss/dv 

Vx, Hx, Wx
vfmsub213ps/dv 

Vx, Hx, Wx
vfmsub213ss/dv 

Vx, Hx, Wx
vfnmadd213ps/dv 

Vx, Hx, Wx
vfnmadd213ss/dv 

Vx, Hx, W
vfnmsub213ps/dv 

Vx, Hx, Wx
vfnmsub213ss/dv

Vx, Hx, Wx

B 66
vfmadd231ps/dv 

Vx, Hx, Wx
vfmadd231ss/dv 

Vx, Hx, Wx
vfmsub231ps/dv 

Vx, Hx, Wx
vfmsub231ss/dv 

Vx, Hx, Wx
vfnmadd231ps/dv 

Vx, Hx, Wx
vfnmadd231ss/dv 

Vx, Hx, Wx
vfnmsub231ps/dv 

Vx, Hx, Wx
vfnmsub231ss/dv

Vx, Hx, Wx

C

D 66
VAESIMC 
Vdq, Wdq

VAESENC 
Vdq,Hdq,Wdq

VAESENCLAST 
Vdq,Hdq,Wdq

VAESDEC 
Vdq,Hdq,Wdq

VAESDECLAST 
Vdq,Hdq,Wdq

E

F

66

F3

F2

66 & 
F2

OTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of unde-
fined or reserved locations. 
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Table A-5.  Three-byte Opcode Map: 00H — F7H (First two bytes are 0F 3AH) *

pfx 0 1 2 3 4 5 6 7

0 66

vpermqv

Vqq, Wqq, Ib
vpermpdv

Vqq, Wqq, Ib
vpblenddv

Vx,Hx,Wx,Ib
vpermilpsv 
Vx, Wx, Ib

vpermilpdv 
Vx, Wx, Ib

vperm2f128v 
Vqq,Hqq,Wqq,Ib

1 66
vpextrb

Rd/Mb, Vdq, Ib
vpextrw

Rd/Mw, Vdq, Ib
vpextrd/q 

Ey, Vdq, Ib 
vextractps 
Ed, Vdq, Ib

2 66
vpinsrb

Vdq,Hdq, 
Ry/Mb,Ib

vinsertps
Vdq,Hdq, 
Udq/Md,Ib

vpinsrd/q
Vdq,Hdq,Ey,Ib 

3

4 66
vdpps

Vx,Hx,Wx,Ib
vdppd

Vdq,Hdq,Wdq,Ib
vmpsadbw

Vx,Hx,Wx,Ib
vpclmulqdq

Vdq,Hdq,Wdq,Ib
vperm2i128v

Vqq,Hqq,Wqq,Ib

5

6 66
vpcmpestrm
Vdq, Wdq, Ib 

vpcmpestri 
Vdq, Wdq, Ib 

vpcmpistrm 
Vdq, Wdq, Ib 

vpcmpistri
Vdq, Wdq, Ib 

7

8

9

A

B

C

D

E

F
F2

RORXv

Gy, Ey, Ib
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Table A-5. Three-byte Opcode Map: 08H — FFH (First Two Bytes are 0F 3AH) *

pfx 8 9 A B C D E F

0

palignr
Pq, Qq, Ib

66
vroundps
Vx,Wx,Ib

vroundpd
Vx,Wx,Ib

vroundss
Vss,Wss,Ib

vroundsd
Vsd,Wsd,Ib

vblendps
Vx,Hx,Wx,Ib

vblendpd
Vx,Hx,Wx,Ib

vpblendw
Vx,Hx,Wx,Ib

vpalignr
Vx,Hx,Wx,Ib

1 66
vinsertf128v 

Vqq,Hqq,Wqq,Ib
vextractf128v 
Wdq,Vqq,Ib

vcvtps2phv

Wx, Vx, Ib

2

3 66
vinserti128v 

Vqq,Hqq,Wqq,Ib
vextracti128v 
Wdq,Vqq,Ib

4 66
vblendvpsv

 Vx,Hx,Wx,Lx
vblendvpdv 

Vx,Hx,Wx,Lx
vpblendvbv

Vx,Hx,Wx,Lx

5

6

7

8

9

A

B

C

D 66
VAESKEYGEN 
Vdq, Wdq, Ib

E

F

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of 
undefined or reserved locations.
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A.4 OPCODE EXTENSIONS FOR ONE-BYTE AND TWO-
BYTE OPCODES

Some 1-byte and 2-byte opcodes use bits 3-5 of the ModR/M byte (the nnn field in 
Figure A-1) as an extension of the opcode.

Opcodes that have opcode extensions are indicated in Table A-6 and organized by 
group number. Group numbers (from 1 to 16, second column) provide a table entry 
point. The encoding for the r/m field for each instruction can be established using the 
third column of the table.

A.4.1  Opcode Look-up Examples Using Opcode Extensions
An Example is provided below.

Example A-4.  Interpreting an ADD Instruction

An ADD instruction with a 1-byte opcode of 80H is a Group 1 instruction:
• Table A-6 indicates that the opcode extension field encoded in the ModR/M byte 

for this instruction is 000B. 
• The r/m field can be encoded to access a register (11B) or a memory address 

using a specified addressing mode (for example: mem = 00B, 01B, 10B).

Example A-5.  Looking Up 0F01C3H

Look up opcode 0F01C3 for a VMRESUME instruction by using Table A-2, Table A-3 
and Table A-6:
• 0F tells us that this instruction is in the 2-byte opcode map.
• 01 (row 0, column 1 in Table A-3) reveals that this opcode is in Group 7 of Table 

A-6.
• C3 is the ModR/M byte. The first two bits of C3 are 11B. This tells us to look at the 

second of the Group 7 rows in Table A-6.
• The Op/Reg bits [5,4,3] are 000B. This tells us to look in the 000 column for 

Group 7.
• Finally, the R/M bits [2,1,0] are 011B. This identifies the opcode as the 

VMRESUME instruction.

mod nnn R/M

Figure A-1.  ModR/M Byte nnn Field (Bits 5, 4, and 3)
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is)

1
P

R

V
AX

PG
b

GS
00)
 (001)

C

RST
q 

RST
q 

RT 
) Ib

 (000) 
A.4.2  Opcode Extension Tables
See Table A-6 below.

Table A-6.  Opcode Extensions for One- and Two-byte Opcodes by Group Number *

Opcode Group Mod 7,6 pfx

Encoding of Bits 5,4,3 of the ModR/M Byte (bits 2,1,0 in parenthes
000 001 010 011 100 101 110 11

80-83 1
mem, 
11B

ADD OR ADC SBB AND SUB XOR CM

8F 1A
mem, 
11B

POP

C0,C1 reg, imm
D0, D1 reg, 1

D2, D3 reg, CL
2

mem, 
11B

ROL ROR RCL RCR SHL/SAL SHR SA

F6, F7 3
mem, 
11B

TEST 
Ib/Iz

NOT NEG MUL
AL/rAX

IMUL
AL/rAX

DIV
AL/rAX

IDI
AL/r

FE 4
mem, 
11B

INC
Eb

DEC
Eb

FF 5
mem, 
11B

INC
Ev

DEC
Ev

CALLNf64

Ev
CALLF

Ep 
JMPNf64

Ev
JMPF

Mp
PUSHd64

Ev

0F 00 6
mem, 
11B

SLDT
Rv/Mw

STR
Rv/Mw

LLDT
Ew

LTR
Ew 

VERR
Ew

VERW
Ew

0F 01 7

mem SGDT
Ms

SIDT
Ms

LGDT
Ms

LIDT
Ms 

SMSW
Mw/Rv

LMSW
Ew

INVL
M

11B VMCALL (001) 
VMLAUNCH 

(010) 
VMRESUME 

(011) 
VMXOFF 

(100) 

MONITOR 
(000)

MWAIT (001)

XGETBV 
(000)

XSETBV 
(001)

VMFUNC 
(100)

XEND (101)
XTEST (110)

SWAP
o64(0

RDTSCP

0F BA 8
mem, 
11B

BT BTS BTR BT

0F C7 9

mem

CMPXCH8B 
Mq

CMPXCHG16B
 Mdq

VMPTRLD
Mq

VMPT
M

66 VMCLEAR
Mq 

F3 VMXON
Mq 

VMPT
M

11B
RDRAND

Rv

0F B9 10
mem

11B

C6

11

mem MOV
Eb, Ib

11B
XABO
(000

C7

mem MOV
Ev, Iz

11B
XBEGIN

Jz
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is)

1

ldq
x,Ib

sh

ce

fined 
Opcode Group Mod 7,6 pfx

Encoding of Bits 5,4,3 of the ModR/M Byte (bits 2,1,0 in parenthes
000 001 010 011 100 101 110 11

0F 71 12

mem

11B

psrlw
Nq, Ib

psraw
Nq, Ib

psllw
Nq, Ib

66 vpsrlw
Hx,Ux,Ib

vpsraw
Hx,Ux,Ib

vpsllw
Hx,Ux,Ib

0F 72 13

mem

11B

psrld
Nq, Ib

psrad
Nq, Ib

pslld
Nq, Ib

66 vpsrld
Hx,Ux,Ib

vpsrad
Hx,Ux,Ib

vpslld
Hx,Ux,Ib

0F 73 14

mem

11B

psrlq
Nq, Ib

psllq
Nq, Ib

66 vpsrlq
Hx,Ux,Ib

vpsrldq
Hx,Ux,Ib

vpsllq
Hx,Ux,Ib

vpsl
Hx,U

0F AE 15

mem fxsave fxrstor ldmxcsr stmxcsr XSAVE XRSTOR XSAVEOPT clflu

11B

lfence mfence sfen

F3 RDFSBASE  
Ry

RDGSBASE  
Ry

WRFSBASE  
Ry

WRGSBASE  
Ry

0F 18 16
mem

prefetch
NTA

prefetch
T0

prefetch
T1

prefetch
T2

11B

VEX.0F38 F3 17
mem BLSRv

By, Ey
BLSMSKv

By, Ey
BLSIv

By, Ey
11B

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of unde
or reserved locations.

Table A-6.  Opcode Extensions for One- and Two-byte Opcodes by Group Number *
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A.5 ESCAPE OPCODE INSTRUCTIONS
Opcode maps for coprocessor escape instruction opcodes (x87 floating-point 
instruction opcodes) are in Table A-7 through Table A-22. These maps are grouped 
by the first byte of the opcode, from D8-DF. Each of these opcodes has a ModR/M 
byte. If the ModR/M byte is within the range of 00H-BFH, bits 3-5 of the ModR/M byte 
are used as an opcode extension, similar to the technique used for 1-and 2-byte 
opcodes (see A.4). If the ModR/M byte is outside the range of 00H through BFH, the 
entire ModR/M byte is used as an opcode extension.

A.5.1  Opcode Look-up Examples for Escape Instruction Opcodes
Examples are provided below.

Example A-6.  Opcode with ModR/M Byte in the 00H through BFH Range

DD0504000000H can be interpreted as follows:
• The instruction encoded with this opcode can be located in Section . Since the 

ModR/M byte (05H) is within the 00H through BFH range, bits 3 through 5 (000) 
of this byte indicate the opcode for an FLD double-real instruction (see Table 
A-9). 

• The double-real value to be loaded is at 00000004H (the 32-bit displacement 
that follows and belongs to this opcode).

Example A-7.  Opcode with ModR/M Byte outside the 00H through BFH Range

D8C1H can be interpreted as follows:
• This example illustrates an opcode with a ModR/M byte outside the range of 00H 

through BFH. The instruction can be located in Section A.4. 
• In Table A-8, the ModR/M byte C1H indicates row C, column 1 (the FADD 

instruction using ST(0), ST(1) as operands).

A.5.2  Escape Opcode Instruction Tables
Tables are listed below.
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A.5.2.1  Escape Opcodes with D8 as First Byte
Table A-7 and A-8 contain maps for the escape instruction opcodes that begin with D8H. Table 
A-7 shows the map if the ModR/M byte is in the range of 00H-BFH. Here, the value of bits 3-5 
(the nnn field in Figure A-1) selects the instruction.

Table A-8 shows the map if the ModR/M byte is outside the range of 00H-BFH. Here, the first 
digit of the ModR/M byte selects the table row and the second digit selects the column.

Table A-7.  D8 Opcode Map When ModR/M Byte is Within 00H to BFH *

nnn Field of ModR/M Byte (refer to Figure A.4)

000B 001B 010B 011B 100B 101B 110B 111B

FADD single-
real

FMUL single-
real

FCOM single-
real

FCOMP single-
real

FSUB single-
real

FSUBR single-
real

FDIV single-real FDIVR single-
real

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of 
undefined or reserved locations.

Table A-8.  D8 Opcode Map When ModR/M Byte is Outside 00H to BFH *
0 1 2 3 4 5 6 7

C FADD

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D FCOM

ST(0),ST(0) ST(0),ST(1) ST(0),T(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

E FSUB

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

F FDIV

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

8 9 A B C D E F

C FMUL

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D FCOMP

ST(0),ST(0) ST(0),ST(1) ST(0),T(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

E FSUBR

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

F FDIVR

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of 
undefined or reserved locations.
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A.5.2.2  Escape Opcodes with D9 as First Byte
Table A-9 and A-10 contain maps for escape instruction opcodes that begin with D9H. Table A-9 
shows the map if the ModR/M byte is in the range of 00H-BFH. Here, the value of bits 3-5 (the 
nnn field in Figure A-1) selects the instruction.
.

Table A-10 shows the map if the ModR/M byte is outside the range of 00H-BFH. Here, the first 
digit of the ModR/M byte selects the table row and the second digit selects the column.

Table A-9.  D9 Opcode Map When ModR/M Byte is Within 00H to BFH *
nnn Field of ModR/M Byte 

000B 001B 010B 011B 100B 101B 110B 111B

FLD
single-real

FST
single-real

FSTP
single-real

FLDENV
14/28 bytes

FLDCW
2 bytes

FSTENV
14/28 bytes

FSTCW
2 bytes

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of 
undefined or reserved locations.

Table A-10.  D9 Opcode Map When ModR/M Byte is Outside 00H to BFH *
0 1 2 3 4 5 6 7

C FLD

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D FNOP

E FCHS FABS FTST FXAM

F F2XM1 FYL2X FPTAN FPATAN FXTRACT FPREM1 FDECSTP FINCSTP

8 9 A B C D E F

C FXCH

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D

E FLD1 FLDL2T FLDL2E FLDPI FLDLG2 FLDLN2 FLDZ

F FPREM FYL2XP1 FSQRT FSINCOS FRNDINT FSCALE FSIN FCOS

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of 
undefined or reserved locations.
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A.5.2.3  Escape Opcodes with DA as First Byte
Table A-11 and A-12 contain maps for escape instruction opcodes that begin with DAH. Table 
A-11 shows the map if the ModR/M byte is in the range of 00H-BFH. Here, the value of bits 3-5 
(the nnn field in Figure A-1) selects the instruction.

Table A-11 shows the map if the ModR/M byte is outside the range of 00H-BFH. Here, the first 
digit of the ModR/M byte selects the table row and the second digit selects the column.

Table A-11.  DA Opcode Map When ModR/M Byte is Within 00H to BFH *
nnn Field of ModR/M Byte 

000B 001B 010B 011B 100B 101B 110B 111B

FIADD
dword-integer

FIMUL
dword-integer

FICOM
dword-integer

FICOMP
dword-integer

FISUB
dword-integer

FISUBR
dword-integer

FIDIV
dword-integer

FIDIVR
dword-integer

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of 
undefined or reserved locations.

Table A-12.  DA Opcode Map When ModR/M Byte is Outside 00H to BFH *
0 1 2 3 4 5 6 7

C FCMOVB

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D FCMOVBE

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

E

F

8 9 A B C D E F

C FCMOVE

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D FCMOVU

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

E FUCOMPP

F

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of 
undefined or reserved locations.
A-26 Vol. 2C



OPCODE MAP
A.5.2.4  Escape Opcodes with DB as First Byte
Table A-13 and A-14 contain maps for escape instruction opcodes that begin with DBH. Table 
A-13 shows the map if the ModR/M byte is in the range of 00H-BFH. Here, the value of bits 3-5 
(the nnn field in Figure A-1) selects the instruction.

Table A-14 shows the map if the ModR/M byte is outside the range of 00H-BFH. Here, the first 
digit of the ModR/M byte selects the table row and the second digit selects the column.

Table A-13.  DB Opcode Map When ModR/M Byte is Within 00H to BFH *
nnn Field of ModR/M Byte 

000B 001B 010B 011B 100B 101B 110B 111B

FILD
dword-integer

FISTTP 
dword-integer

FIST
dword-integer

FISTP
dword-integer

FLD
extended-real

FSTP
extended-real

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of 
undefined or reserved locations.

Table A-14.  DB Opcode Map When ModR/M Byte is Outside 00H to BFH *
0 1 2 3 4 5 6 7

C FCMOVNB

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D FCMOVNBE

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

E FCLEX FINIT

F FCOMI

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

8 9 A B C D E F

C FCMOVNE

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D FCMOVNU

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

E FUCOMI

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

F

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of 
undefined or reserved locations.
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OPCODE MAP
A.5.2.5  Escape Opcodes with DC as First Byte
Table A-15 and A-16 contain maps for escape instruction opcodes that begin with DCH. Table 
A-15 shows the map if the ModR/M byte is in the range of 00H-BFH. Here, the value of bits 3-5 
(the nnn field in Figure A-1) selects the instruction.

Table A-16 shows the map if the ModR/M byte is outside the range of 00H-BFH. In this case the 
first digit of the ModR/M byte selects the table row and the second digit selects the column.

Table A-15.  DC Opcode Map When ModR/M Byte is Within 00H to BFH *
nnn Field of ModR/M Byte (refer to Figure A-1)

000B 001B 010B 011B 100B 101B 110B 111B

FADD 
double-real

FMUL 
double-real

FCOM 
double-real

FCOMP 
double-real

FSUB 
double-real

FSUBR 
double-real

FDIV 
double-real

FDIVR 
double-real

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of 
undefined or reserved locations.

Table A-16.  DC Opcode Map When ModR/M Byte is Outside 00H to BFH *
0 1 2 3 4 5 6 7

C FADD

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

D

E FSUBR

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

F FDIVR

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

8 9 A B C D E F

C FMUL

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

D

E FSUB

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

F FDIV

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of 
undefined or reserved locations.
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OPCODE MAP
A.5.2.6  Escape Opcodes with DD as First Byte
Table A-17 and A-18 contain maps for escape instruction opcodes that begin with DDH. Table 
A-17 shows the map if the ModR/M byte is in the range of 00H-BFH. Here, the value of bits 3-5 
(the nnn field in Figure A-1) selects the instruction.

Table A-18 shows the map if the ModR/M byte is outside the range of 00H-BFH. The first digit of 
the ModR/M byte selects the table row and the second digit selects the column.

Table A-17.  DD Opcode Map When ModR/M Byte is Within 00H to BFH *

nnn Field of ModR/M Byte

000B 001B 010B 011B 100B 101B 110B 111B

FLD 
double-real

FISTTP 
integer64

FST 
double-real

FSTP 
double-real

FRSTOR 
98/108bytes

FSAVE 
98/108bytes

FSTSW 
2 bytes

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of 
undefined or reserved locations.

Table A-18.  DD Opcode Map When ModR/M Byte is Outside 00H to BFH *
0 1 2 3 4 5 6 7

C FFREE

ST(0) ST(1) ST(2) ST(3) ST(4) ST(5) ST(6) ST(7)

D FST

ST(0) ST(1) ST(2) ST(3) ST(4) ST(5) ST(6) ST(7)

E FUCOM

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

F

8 9 A B C D E F

C

D FSTP

ST(0) ST(1) ST(2) ST(3) ST(4) ST(5) ST(6) ST(7)

E FUCOMP

ST(0) ST(1) ST(2) ST(3) ST(4) ST(5) ST(6) ST(7)

F

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of 
undefined or reserved locations.
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OPCODE MAP
A.5.2.7  Escape Opcodes with DE as First Byte
Table A-19 and A-20 contain opcode maps for escape instruction opcodes that begin with DEH. 
Table A-19 shows the opcode map if the ModR/M byte is in the range of 00H-BFH. In this case, 
the value of bits 3-5 (the nnn field in Figure A-1) selects the instruction.

Table A-20 shows the opcode map if the ModR/M byte is outside the range of 00H-BFH. The first 
digit of the ModR/M byte selects the table row and the second digit selects the column.

Table A-19.  DE Opcode Map When ModR/M Byte is Within 00H to BFH *
nnn Field of ModR/M Byte 

000B 001B 010B 011B 100B 101B 110B 111B

FIADD 
word-integer

FIMUL 
word-integer

FICOM 
word-integer

FICOMP 
word-integer

FISUB 
word-integer

FISUBR 
word-integer

FIDIV 
word-integer

FIDIVR 
word-integer

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of 
undefined or reserved locations.

Table A-20.  DE Opcode Map When ModR/M Byte is Outside 00H to BFH *
0 1 2 3 4 5 6 7

C FADDP

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

D

E FSUBRP

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

F FDIVRP

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

8 9 A B C D E F

C FMULP

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

D FCOMPP

E FSUBP

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

F FDIVP

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0). ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of 
undefined or reserved locations.
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OPCODE MAP
A.5.2.8  Escape Opcodes with DF As First Byte
Table A-21 and A-22 contain the opcode maps for escape instruction opcodes that begin with 
DFH. Table A-21 shows the opcode map if the ModR/M byte is in the range of 00H-BFH. Here, 
the value of bits 3-5 (the nnn field in Figure A-1) selects the instruction.

Table A-22 shows the opcode map if the ModR/M byte is outside the range of 00H-BFH. The first 
digit of the ModR/M byte selects the table row and the second digit selects the column.

Table A-21.  DF Opcode Map When ModR/M Byte is Within 00H to BFH *
nnn Field of ModR/M Byte

000B 001B 010B 011B 100B 101B 110B 111B

FILD
word-integer

FISTTP
word-integer

FIST 
word-integer

FISTP 
word-integer

FBLD 
packed-BCD

FILD 
qword-integer

FBSTP 
packed-BCD

FISTP 
qword-integer

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of 
undefined or reserved locations.

Table A-22.  DF Opcode Map When ModR/M Byte is Outside 00H to BFH *

0 1 2 3 4 5 6 7

C

D

E FSTSW
AX

F FCOMIP

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

8 9 A B C D E F

C

D

E FUCOMIP

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

F

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of 
undefined or reserved locations.
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APPENDIX B
INSTRUCTION FORMATS AND ENCODINGS

This appendix provides machine instruction formats and encodings of IA-32 instruc-
tions. The first section describes the IA-32 architecture’s machine instruction format. 
The remaining sections show the formats and encoding of general-purpose, MMX, P6 
family, SSE/SSE2/SSE3, x87 FPU instructions, and VMX instructions. Those instruc-
tion formats also apply to Intel 64 architecture. Instruction formats used in 64-bit 
mode are provided as supersets of the above.

B.1 MACHINE INSTRUCTION FORMAT
All Intel Architecture instructions are encoded using subsets of the general machine 
instruction format shown in Figure B-1. Each instruction consists of:
• an opcode
• a register and/or address mode specifier consisting of the ModR/M byte and 

sometimes the scale-index-base (SIB) byte (if required) 
• a displacement and an immediate data field (if required) 

The following sections discuss this format.

Figure B-1.  General Machine Instruction Format

ModR/M Byte

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

7-6     5-3     2-07-6     5-3     2-0

T T T T T T T T T T T T T T T T

Mod   Reg*  R/M Scale Index Base d32 | 16 | 8 | Noned32 | 16 | 8 | None

SIB Byte Address Displacement
(4, 2, 1 Bytes or None)

Immediate Data
(4,2,1 Bytes or None)

Register and/or Address
Mode Specifier

Legacy Prefixes REX Prefixes

7 6 5 4 3 2 1 0

T T T T T T T T

(optional)Grp 1, Grp 2, 
Grp 3, Grp 4 

NOTE:

*  The Reg Field may be used as an 

1, 2, or 3 Byte Opcodes (T = Opcode 
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INSTRUCTION FORMATS AND ENCODINGS
B.1.1  Legacy Prefixes
The legacy prefixes noted in Figure B-1 include 66H, 67H, F2H and F3H. They are 
optional, except when F2H, F3H and 66H are used in new instruction extensions. 
Legacy prefixes must be placed before REX prefixes.

Refer to Chapter 2, “Instruction Format,” in the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 2A, for more information on legacy prefixes.

B.1.2  REX Prefixes
REX prefixes are a set of 16 opcodes that span one row of the opcode map and 
occupy entries 40H to 4FH. These opcodes represent valid instructions (INC or DEC) 
in IA-32 operating modes and in compatibility mode. In 64-bit mode, the same 
opcodes represent the instruction prefix REX and are not treated as individual 
instructions.

Refer to Chapter 2, “Instruction Format,” in the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 2A, for more information on REX prefixes.

B.1.3  Opcode Fields
The primary opcode for an instruction is encoded in one to three bytes of the instruc-
tion. Within the primary opcode, smaller encoding fields may be defined. These fields 
vary according to the class of operation being performed.

Almost all instructions that refer to a register and/or memory operand have a 
register and/or address mode byte following the opcode. This byte, the ModR/M byte, 
consists of the mod field (2 bits), the reg field (3 bits; this field is sometimes an 
opcode extension), and the R/M field (3 bits). Certain encodings of the ModR/M byte 
indicate that a second address mode byte, the SIB byte, must be used.

If the addressing mode specifies a displacement, the displacement value is placed 
immediately following the ModR/M byte or SIB byte. Possible sizes are 8, 16, or 32 
bits. If the instruction specifies an immediate value, the immediate value follows any 
displacement bytes. The immediate, if specified, is always the last field of the instruc-
tion.

Refer to Chapter 2, “Instruction Format,” in the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 2A, for more information on opcodes.

B.1.4  Special Fields
Table B-1 lists bit fields that appear in certain instructions, sometimes within the 
opcode bytes. All of these fields (except the d bit) occur in the general-purpose 
instruction formats in Table B-13.
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INSTRUCTION FORMATS AND ENCODINGS
B.1.4.1  Reg Field (reg) for Non-64-Bit Modes
The reg field in the ModR/M byte specifies a general-purpose register operand. The 
group of registers specified is modified by the presence and state of the w bit in an 
encoding (refer to Section B.1.4.3). Table B-2 shows the encoding of the reg field 
when the w bit is not present in an encoding; Table B-3 shows the encoding of the reg 
field when the w bit is present.

Table B-1.  Special Fields Within Instruction Encodings

Field Name Description
Number of 

Bits

reg General-register specifier (see Table B-4 or B-5) 3

w Specifies if data is byte or full-sized, where full-sized is 16 or 32 
bits (see Table B-6)

1

s Specifies sign extension of an immediate field (see Table B-7) 1

sreg2 Segment register specifier for CS, SS, DS, ES (see Table B-8) 2

sreg3 Segment register specifier for CS, SS, DS, ES, FS, GS (see Table B-8) 3

eee Specifies a special-purpose (control or debug) register (see 
Table B-9)

3

tttn For conditional instructions, specifies a condition asserted or 
negated (see Table B-12)

4

d Specifies direction of data operation (see Table B-11) 1

Table B-2.  Encoding of reg Field When w Field is Not Present in Instruction

reg Field
Register Selected during
16-Bit Data Operations

Register Selected during
32-Bit Data Operations

000 AX EAX

001 CX ECX

010 DX EDX

011 BX EBX

100 SP ESP

101 BP EBP

110 SI ESI

111 DI EDI
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INSTRUCTION FORMATS AND ENCODINGS
B.1.4.2  Reg Field (reg) for 64-Bit Mode
Just like in non-64-bit modes, the reg field in the ModR/M byte specifies a general-
purpose register operand. The group of registers specified is modified by the pres-
ence of and state of the w bit in an encoding (refer to Section B.1.4.3). Table B-4 
shows the encoding of the reg field when the w bit is not present in an encoding; 
Table B-5 shows the encoding of the reg field when the w bit is present.

Table B-3.  Encoding of reg Field When w Field is Present in Instruction

Register Specified by reg Field
During 16-Bit Data Operations

Register Specified by reg Field
During 32-Bit Data Operations

Function of w Field Function of w Field

reg When w = 0 When w = 1 reg When w = 0 When w = 1

000 AL AX 000 AL EAX

001 CL CX 001 CL ECX

010 DL DX 010 DL EDX

011 BL BX 011 BL EBX

100 AH SP 100 AH ESP

101 CH BP 101 CH EBP

110 DH SI 110 DH ESI

111 BH DI 111 BH EDI

Table B-4.  Encoding of reg Field When w Field is Not Present in Instruction

reg Field
Register Selected 

during
16-Bit Data Operations

Register Selected 
during

32-Bit Data Operations

Register Selected 
during

64-Bit Data Operations

000 AX EAX RAX

001 CX ECX RCX

010 DX EDX RDX

011 BX EBX RBX

100 SP ESP RSP

101 BP EBP RBP

110 SI ESI RSI

111 DI EDI RDI
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INSTRUCTION FORMATS AND ENCODINGS
B.1.4.3  Encoding of Operand Size (w) Bit 
The current operand-size attribute determines whether the processor is performing 
16-bit, 32-bit or 64-bit operations. Within the constraints of the current operand-size 
attribute, the operand-size bit (w) can be used to indicate operations on 8-bit oper-
ands or the full operand size specified with the operand-size attribute. Table B-6 
shows the encoding of the w bit depending on the current operand-size attribute.

B.1.4.4  Sign-Extend (s) Bit 
The sign-extend (s) bit occurs in instructions with immediate data fields that are 
being extended from 8 bits to 16 or 32 bits. See Table B-7.

Table B-5.  Encoding of reg Field When w Field is Present in Instruction 

Register Specified by reg Field
During 16-Bit Data Operations

Register Specified by reg Field
During 32-Bit Data Operations

Function of w Field Function of w Field

reg When w = 0 When w = 1 reg When w = 0 When w = 1

000 AL AX 000 AL EAX

001 CL CX 001 CL ECX

010 DL DX 010 DL EDX

011 BL BX 011 BL EBX

100 AH1 SP 100 AH* ESP

101 CH1 BP 101 CH* EBP

110 DH1 SI 110 DH* ESI

111 BH1 DI 111 BH* EDI

NOTES:
1. AH, CH, DH, BH can not be encoded when REX prefix is used. Such an expression defaults to the 

low byte.

Table B-6.  Encoding of Operand Size (w) Bit 

w Bit
Operand Size When 

Operand-Size Attribute is 16 Bits
Operand Size When 

Operand-Size Attribute is 32 Bits

0 8 Bits 8 Bits

1 16 Bits 32 Bits
Vol. 2C B-5



INSTRUCTION FORMATS AND ENCODINGS
B.1.4.5  Segment Register (sreg) Field 
When an instruction operates on a segment register, the reg field in the ModR/M byte 
is called the sreg field and is used to specify the segment register. Table B-8 shows 
the encoding of the sreg field. This field is sometimes a 2-bit field (sreg2) and other 
times a 3-bit field (sreg3). 

B.1.4.6  Special-Purpose Register (eee) Field 
When control or debug registers are referenced in an instruction they are encoded in 
the eee field, located in bits 5 though 3 of the ModR/M byte (an alternate encoding of 
the sreg field). See Table B-9.

Table B-7.  Encoding of Sign-Extend (s) Bit 

s
Effect on 8-Bit

Immediate Data
Effect on 16- or 32-Bit

Immediate Data

0 None None

1 Sign-extend to fill 16-bit or 32-bit destination None

Table B-8.  Encoding of the Segment Register (sreg) Field 

2-Bit sreg2 Field
Segment Register 

Selected 3-Bit sreg3 Field
Segment Register 

Selected

00 ES 000 ES

01 CS 001 CS

10 SS 010 SS

11 DS 011 DS

100 FS

101 GS

110 Reserved1

111 Reserved

NOTES:
1. Do not use reserved encodings.
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INSTRUCTION FORMATS AND ENCODINGS
B.1.4.7  Condition Test (tttn) Field 
For conditional instructions (such as conditional jumps and set on condition), the 
condition test field (tttn) is encoded for the condition being tested. The ttt part of the 
field gives the condition to test and the n part indicates whether to use the condition 
(n = 0) or its negation (n = 1).
• For 1-byte primary opcodes, the tttn field is located in bits 3, 2, 1, and 0 of the 

opcode byte. 
• For 2-byte primary opcodes, the tttn field is located in bits 3, 2, 1, and 0 of the 

second opcode byte.

Table B-10 shows the encoding of the tttn field.

Table B-9.  Encoding of Special-Purpose Register (eee) Field  

eee Control Register Debug Register

000 CR0 DR0

001 Reserved1 DR1

010 CR2 DR2

011 CR3 DR3

100 CR4 Reserved

101 Reserved Reserved

110 Reserved DR6

111 Reserved DR7

NOTES:
1. Do not use reserved encodings.
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INSTRUCTION FORMATS AND ENCODINGS
B.1.4.8  Direction (d) Bit 
In many two-operand instructions, a direction bit (d) indicates which operand is 
considered the source and which is the destination. See Table B-11. 
• When used for integer instructions, the d bit is located at bit 1 of a 1-byte primary 

opcode. Note that this bit does not appear as the symbol “d” in Table B-13; the 
actual encoding of the bit as 1 or 0 is given. 

• When used for floating-point instructions (in Table B-16), the d bit is shown as bit 
2 of the first byte of the primary opcode.

Table B-10.  Encoding of Conditional Test (tttn) Field
t t t n Mnemonic Condition

0000 O Overflow

0001 NO No overflow

0010 B, NAE Below, Not above or equal

0011 NB, AE Not below, Above or equal

0100 E, Z Equal, Zero

0101 NE, NZ Not equal, Not zero

0110 BE, NA Below or equal, Not above

0111 NBE, A Not below or equal, Above

1000 S Sign

1001 NS Not sign

1010 P, PE Parity, Parity Even

1011 NP, PO Not parity, Parity Odd

1100 L, NGE Less than, Not greater than or equal to

1101 NL, GE Not less than, Greater than or equal to

1110 LE, NG Less than or equal to, Not greater than

1111 NLE, G Not less than or equal to, Greater than

Table B-11.  Encoding of Operation Direction (d) Bit 

d Source Destination

0 reg Field ModR/M or SIB Byte

1 ModR/M or SIB Byte reg Field
B-8 Vol. 2C



INSTRUCTION FORMATS AND ENCODINGS
B.1.5  Other Notes
Table B-12 contains notes on particular encodings. These notes are indicated in the 
tables shown in the following sections by superscripts.

B.2 GENERAL-PURPOSE INSTRUCTION FORMATS AND 
ENCODINGS FOR NON-64-BIT MODES

Table B-13 shows machine instruction formats and encodings for general purpose 
instructions in non-64-bit modes.

Table B-12.  Notes on Instruction Encoding
Symbol Note

A A value of 11B in bits 7 and 6 of the ModR/M byte is reserved.

B A value of 01B (or 10B) in bits 7 and 6 of the ModR/M byte is reserved.

Table B-13.  General Purpose Instruction Formats and Encodings 
for Non-64-Bit Modes

Instruction and Format Encoding

AAA – ASCII Adjust after Addition 0011 0111

AAD – ASCII Adjust AX before Division 1101 0101 : 0000 1010

AAM – ASCII Adjust AX after Multiply 1101 0100 : 0000 1010

AAS – ASCII Adjust AL after Subtraction 0011 1111

ADC – ADD with Carry

register1 to register2 0001 000w : 11 reg1 reg2

register2 to register1 0001 001w : 11 reg1 reg2 

memory to register 0001 001w : mod reg r/m

register to memory 0001 000w : mod reg r/m

immediate to register 1000 00sw : 11 010 reg : immediate data

immediate to AL, AX, or EAX 0001 010w : immediate data

immediate to memory 1000 00sw : mod 010 r/m : immediate data

ADD – Add

register1 to register2 0000 000w : 11 reg1 reg2

register2 to register1 0000 001w : 11 reg1 reg2 

memory to register 0000 001w : mod reg r/m

register to memory 0000 000w : mod reg r/m
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immediate to register 1000 00sw : 11 000 reg : immediate data

immediate to AL, AX, or EAX 0000 010w : immediate data

immediate to memory 1000 00sw : mod 000 r/m : immediate data

AND – Logical AND

register1 to register2 0010 000w : 11 reg1 reg2

register2 to register1 0010 001w : 11 reg1 reg2 

memory to register 0010 001w : mod reg r/m

register to memory 0010 000w : mod reg r/m

immediate to register 1000 00sw : 11 100 reg : immediate data

immediate to AL, AX, or EAX 0010 010w : immediate data

immediate to memory 1000 00sw : mod 100 r/m : immediate data

ARPL – Adjust RPL Field of Selector

from register 0110 0011 : 11 reg1 reg2

from memory 0110 0011 : mod reg r/m

BOUND – Check Array Against Bounds 0110 0010 : modA reg r/m

BSF – Bit Scan Forward

register1, register2 0000 1111 : 1011 1100 : 11 reg1 reg2

memory, register 0000 1111 : 1011 1100 : mod reg r/m

BSR – Bit Scan Reverse

register1, register2 0000 1111 : 1011 1101 : 11 reg1 reg2

memory, register 0000 1111 : 1011 1101 : mod reg r/m

BSWAP – Byte Swap 0000 1111 : 1100 1 reg

BT – Bit Test

register, immediate 0000 1111 : 1011 1010 : 11 100 reg: imm8 
data

memory, immediate 0000 1111 : 1011 1010 : mod 100 r/m : imm8 
data

register1, register2 0000 1111 : 1010 0011 : 11 reg2 reg1

memory, reg 0000 1111 : 1010 0011 : mod reg r/m

BTC – Bit Test and Complement

Table B-13.  General Purpose Instruction Formats and Encodings 
for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding
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register, immediate 0000 1111 : 1011 1010 : 11 111 reg: imm8 
data

memory, immediate 0000 1111 : 1011 1010 : mod 111 r/m : imm8 
data

register1, register2 0000 1111 : 1011 1011 : 11 reg2 reg1

memory, reg 0000 1111 : 1011 1011 : mod reg r/m

BTR – Bit Test and Reset

register, immediate 0000 1111 : 1011 1010 : 11 110 reg: imm8 
data

memory, immediate 0000 1111 : 1011 1010 : mod 110 r/m : imm8 
data

register1, register2 0000 1111 : 1011 0011 : 11 reg2 reg1

memory, reg 0000 1111 : 1011 0011 : mod reg r/m

BTS – Bit Test and Set

register, immediate 0000 1111 : 1011 1010 : 11 101 reg: imm8 
data

memory, immediate 0000 1111 : 1011 1010 : mod 101 r/m : imm8 
data

register1, register2 0000 1111 : 1010 1011 : 11 reg2 reg1

memory, reg 0000 1111 : 1010 1011 : mod reg r/m

CALL – Call Procedure (in same segment)

direct 1110 1000 : full displacement

register indirect 1111 1111 : 11 010 reg

memory indirect 1111 1111 : mod 010 r/m

CALL – Call Procedure (in other segment)

direct 1001 1010 : unsigned full offset, selector

indirect 1111 1111 : mod 011 r/m

CBW – Convert Byte to Word 1001 1000

CDQ – Convert Doubleword to Qword 1001 1001

CLC – Clear Carry Flag 1111 1000

CLD – Clear Direction Flag 1111 1100

Table B-13.  General Purpose Instruction Formats and Encodings 
for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding
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CLI – Clear Interrupt Flag 1111 1010

CLTS – Clear Task-Switched Flag in CR0 0000 1111 : 0000 0110

CMC – Complement Carry Flag 1111 0101

CMP – Compare Two Operands

register1 with register2 0011 100w : 11 reg1 reg2

register2 with register1 0011 101w : 11 reg1 reg2

memory with register 0011 100w : mod reg r/m

register with memory 0011 101w : mod reg r/m

immediate with register 1000 00sw : 11 111 reg : immediate data

immediate with AL, AX, or EAX 0011 110w : immediate data

immediate with memory 1000 00sw : mod 111 r/m : immediate data

CMPS/CMPSB/CMPSW/CMPSD – Compare 
String Operands

1010 011w

CMPXCHG – Compare and Exchange 

register1, register2 0000 1111 : 1011 000w : 11 reg2 reg1

memory, register 0000 1111 : 1011 000w : mod reg r/m

CPUID – CPU Identification 0000 1111 : 1010 0010

CWD – Convert Word to Doubleword 1001 1001

CWDE – Convert Word to Doubleword 1001 1000

DAA – Decimal Adjust AL after Addition 0010 0111

DAS – Decimal Adjust AL after Subtraction 0010 1111

DEC – Decrement by 1

register 1111 111w : 11 001 reg

register (alternate encoding) 0100 1 reg

memory 1111 111w : mod 001 r/m

DIV – Unsigned Divide

AL, AX, or EAX by register 1111 011w : 11 110 reg

AL, AX, or EAX by memory 1111 011w : mod 110 r/m

HLT – Halt 1111 0100

Table B-13.  General Purpose Instruction Formats and Encodings 
for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding
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IDIV – Signed Divide

AL, AX, or EAX by register 1111 011w : 11 111 reg

AL, AX, or EAX by memory 1111 011w : mod 111 r/m

IMUL – Signed Multiply

AL, AX, or EAX with register 1111 011w : 11 101 reg

AL, AX, or EAX with memory 1111 011w : mod 101 reg

register1 with register2 0000 1111 : 1010 1111 : 11 : reg1 reg2

register with memory 0000 1111 : 1010 1111 : mod reg r/m

register1 with immediate to register2 0110 10s1 : 11 reg1 reg2 : immediate data

memory with immediate to register 0110 10s1 : mod reg r/m : immediate data

IN – Input From Port

fixed port 1110 010w : port number

variable port 1110 110w

INC – Increment by 1

reg 1111 111w : 11 000 reg

reg (alternate encoding) 0100 0 reg

memory 1111 111w : mod 000 r/m

INS – Input from DX Port 0110 110w

INT n – Interrupt Type n 1100 1101 : type

INT – Single-Step Interrupt 3 1100 1100

INTO – Interrupt 4 on Overflow 1100 1110

INVD – Invalidate Cache 0000 1111 : 0000 1000

INVLPG – Invalidate TLB Entry 0000 1111 : 0000 0001 : mod 111 r/m

INVPCID – Invalidate Process-Context 
Identifier

0110 0110:0000 1111:0011 1000:1000 
0010: mod reg r/m

IRET/IRETD – Interrupt Return 1100 1111

Jcc – Jump if Condition is Met

8-bit displacement 0111 tttn : 8-bit displacement

full displacement 0000 1111 : 1000 tttn : full displacement

Table B-13.  General Purpose Instruction Formats and Encodings 
for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding
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JCXZ/JECXZ – Jump on CX/ECX Zero
   Address-size prefix differentiates JCXZ 

   and JECXZ
1110 0011 : 8-bit displacement

JMP – Unconditional Jump (to same segment)

short 1110 1011 : 8-bit displacement

direct 1110 1001 : full displacement

register indirect 1111 1111 : 11 100 reg

memory indirect 1111 1111 : mod 100 r/m

JMP – Unconditional Jump (to other segment)

direct intersegment 1110 1010 : unsigned full offset, selector

indirect intersegment 1111 1111 : mod 101 r/m

LAHF – Load Flags into AHRegister 1001 1111

LAR – Load Access Rights Byte

from register 0000 1111 : 0000 0010 : 11 reg1 reg2

from memory 0000 1111 : 0000 0010 : mod reg r/m

LDS – Load Pointer to DS 1100 0101 : modA,B reg r/m

LEA – Load Effective Address 1000 1101 : modA reg r/m

LEAVE – High Level Procedure Exit 1100 1001

LES – Load Pointer to ES 1100 0100 : modA,B reg r/m

LFS – Load Pointer to FS 0000 1111 : 1011 0100 : modA reg r/m

LGDT – Load Global Descriptor Table Register 0000 1111 : 0000 0001 : modA 010 r/m

LGS – Load Pointer to GS 0000 1111 : 1011 0101 : modA reg r/m

LIDT – Load Interrupt Descriptor Table 
Register

0000 1111 : 0000 0001 : modA 011 r/m

LLDT – Load Local Descriptor Table Register

LDTR from register 0000 1111 : 0000 0000 : 11 010 reg

LDTR from memory 0000 1111 : 0000 0000 : mod 010 r/m

LMSW – Load Machine Status Word

from register 0000 1111 : 0000 0001 : 11 110 reg

from memory 0000 1111 : 0000 0001 : mod 110 r/m

LOCK – Assert LOCK# Signal Prefix 1111 0000

Table B-13.  General Purpose Instruction Formats and Encodings 
for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding
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LODS/LODSB/LODSW/LODSD – Load String 
Operand

1010 110w

LOOP – Loop Count 1110 0010 : 8-bit displacement

LOOPZ/LOOPE – Loop Count while Zero/Equal 1110 0001 : 8-bit displacement

LOOPNZ/LOOPNE – Loop Count while not 
Zero/Equal

1110 0000 : 8-bit displacement

LSL – Load Segment Limit

from register 0000 1111 : 0000 0011 : 11 reg1 reg2

from memory 0000 1111 : 0000 0011 : mod reg r/m

LSS – Load Pointer to SS 0000 1111 : 1011 0010 : modA reg r/m

LTR – Load Task Register

from register 0000 1111 : 0000 0000 : 11 011 reg

from memory 0000 1111 : 0000 0000 : mod 011 r/m

MOV – Move Data

register1 to register2 1000 100w : 11 reg1 reg2

register2 to register1 1000 101w : 11 reg1 reg2

memory to reg 1000 101w : mod reg r/m

reg to memory 1000 100w : mod reg r/m

immediate to register 1100 011w : 11 000 reg : immediate data

immediate to register (alternate encoding) 1011 w reg : immediate data

immediate to memory 1100 011w : mod 000 r/m : immediate data

memory to AL, AX, or EAX 1010 000w : full displacement

AL, AX, or EAX to memory 1010 001w : full displacement

MOV – Move to/from Control Registers

CR0 from register 0000 1111 : 0010 0010 : -- 000 reg

CR2 from register 0000 1111 : 0010 0010 : -- 010reg

CR3 from register 0000 1111 : 0010 0010 : -- 011 reg

CR4 from register 0000 1111 : 0010 0010 : -- 100 reg

register from CR0-CR4 0000 1111 : 0010 0000 : -- eee reg

MOV – Move to/from Debug Registers

Table B-13.  General Purpose Instruction Formats and Encodings 
for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding
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DR0-DR3 from register 0000 1111 : 0010 0011 : -- eee reg

DR4-DR5 from register 0000 1111 : 0010 0011 : -- eee reg

DR6-DR7 from register 0000 1111 : 0010 0011 : -- eee reg

register from DR6-DR7 0000 1111 : 0010 0001 : -- eee reg

register from DR4-DR5 0000 1111 : 0010 0001 : -- eee reg

register from DR0-DR3 0000 1111 : 0010 0001 : -- eee reg

MOV – Move to/from Segment Registers

register to segment register 1000 1110 : 11 sreg3 reg

register to SS 1000 1110 : 11 sreg3 reg

memory to segment reg 1000 1110 : mod sreg3 r/m

memory to SS 1000 1110 : mod sreg3 r/m

segment register to register 1000 1100 : 11 sreg3 reg

segment register to memory 1000 1100 : mod sreg3 r/m

MOVBE – Move data after swapping bytes

memory to register 0000 1111 : 0011 1000:1111 0000 : mod reg 
r/m

register to memory 0000 1111 : 0011 1000:1111 0001 : mod reg 
r/m

MOVS/MOVSB/MOVSW/MOVSD – Move Data 
from String to String

1010 010w

MOVSX – Move with Sign-Extend

memory to reg 0000 1111 : 1011 111w : mod reg r/m

MOVZX – Move with Zero-Extend

register2 to register1 0000 1111 : 1011 011w : 11 reg1 reg2

memory to register 0000 1111 : 1011 011w : mod reg r/m

MUL – Unsigned Multiply

AL, AX, or EAX with register 1111 011w : 11 100 reg

AL, AX, or EAX with memory 1111 011w : mod 100 r/m

NEG – Two's Complement Negation

register 1111 011w : 11 011 reg

memory 1111 011w : mod 011 r/m

Table B-13.  General Purpose Instruction Formats and Encodings 
for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding
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NOP – No Operation 1001 0000

NOP – Multi-byte No Operation1

register 0000 1111 0001 1111 : 11 000 reg

memory 0000 1111 0001 1111 : mod 000 r/m

NOT – One's Complement Negation

register 1111 011w : 11 010 reg

memory 1111 011w : mod 010 r/m

OR – Logical Inclusive OR

register1 to register2 0000 100w : 11 reg1 reg2

register2 to register1 0000 101w : 11 reg1 reg2 

memory to register 0000 101w : mod reg r/m

register to memory 0000 100w : mod reg r/m

immediate to register 1000 00sw : 11 001 reg : immediate data

immediate to AL, AX, or EAX 0000 110w : immediate data

immediate to memory 1000 00sw : mod 001 r/m : immediate data

OUT – Output to Port

fixed port 1110 011w : port number

variable port 1110 111w

OUTS – Output to DX Port 0110 111w

POP – Pop a Word from the Stack

register 1000 1111 : 11 000 reg

register (alternate encoding) 0101 1 reg

memory 1000 1111 : mod 000 r/m

POP – Pop a Segment Register from the Stack
(Note: CS cannot be sreg2 in this usage.)

segment register  DS, ES 000 sreg2 111

segment register  SS 000 sreg2 111

segment register  FS, GS 0000 1111: 10 sreg3 001

POPA/POPAD – Pop All General Registers 0110 0001

Table B-13.  General Purpose Instruction Formats and Encodings 
for Non-64-Bit Modes (Contd.)
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POPF/POPFD – Pop Stack into FLAGS or 
EFLAGS Register

1001 1101

PUSH – Push Operand onto the Stack

register 1111 1111 : 11 110 reg

register (alternate encoding) 0101 0 reg

memory 1111 1111 : mod 110 r/m

immediate 0110 10s0 : immediate data

PUSH – Push Segment Register onto the 
Stack

segment register CS,DS,ES,SS 000 sreg2 110

segment register FS,GS 0000 1111: 10 sreg3 000

PUSHA/PUSHAD – Push All General Registers 0110 0000

PUSHF/PUSHFD – Push Flags Register onto 
the Stack

1001 1100

RCL – Rotate thru Carry Left

register by 1 1101 000w : 11 010 reg

memory by 1 1101 000w : mod 010 r/m

register by CL 1101 001w : 11 010 reg

memory by CL 1101 001w : mod 010 r/m

register by immediate count 1100 000w : 11 010 reg : imm8 data

memory by immediate count 1100 000w : mod 010 r/m : imm8 data

RCR – Rotate thru Carry Right

register by 1 1101 000w : 11 011 reg

memory by 1 1101 000w : mod 011 r/m

register by CL 1101 001w : 11 011 reg

memory by CL 1101 001w : mod 011 r/m

register by immediate count 1100 000w : 11 011 reg : imm8 data

memory by immediate count 1100 000w : mod 011 r/m : imm8 data

RDMSR – Read from Model-Specific Register 0000 1111 : 0011 0010

Table B-13.  General Purpose Instruction Formats and Encodings 
for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding
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RDPMC – Read Performance Monitoring 
Counters

0000 1111 : 0011 0011

RDTSC – Read Time-Stamp Counter 0000 1111 : 0011 0001

RDTSCP – Read Time-Stamp Counter and 
Processor ID

0000 1111 : 0000 0001: 1111 1001

REP INS – Input String 1111 0011 : 0110 110w

REP LODS – Load String 1111 0011 : 1010 110w

REP MOVS – Move String 1111 0011 : 1010 010w

REP OUTS – Output String 1111 0011 : 0110 111w

REP STOS – Store String 1111 0011 : 1010 101w

REPE CMPS – Compare String 1111 0011 : 1010 011w

REPE SCAS – Scan String 1111 0011 : 1010 111w

REPNE CMPS – Compare String 1111 0010 : 1010 011w

REPNE SCAS – Scan String 1111 0010 : 1010 111w

RET – Return from Procedure (to same 
segment)

no argument 1100 0011

adding immediate to SP 1100 0010 : 16-bit displacement

RET – Return from Procedure (to other 
segment)

intersegment 1100 1011

adding immediate to SP 1100 1010 : 16-bit displacement

ROL – Rotate Left

register by 1 1101 000w : 11 000 reg

memory by 1 1101 000w : mod 000 r/m

register by CL 1101 001w : 11 000 reg

memory by CL 1101 001w : mod 000 r/m

register by immediate count 1100 000w : 11 000 reg : imm8 data

memory by immediate count 1100 000w : mod 000 r/m : imm8 data

ROR – Rotate Right

register by 1 1101 000w : 11 001 reg

Table B-13.  General Purpose Instruction Formats and Encodings 
for Non-64-Bit Modes (Contd.)
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memory by 1 1101 000w : mod 001 r/m

register by CL 1101 001w : 11 001 reg

memory by CL 1101 001w : mod 001 r/m

register by immediate count 1100 000w : 11 001 reg : imm8 data

memory by immediate count 1100 000w : mod 001 r/m : imm8 data

RSM – Resume from System Management 
Mode

0000 1111 : 1010 1010

SAHF – Store AH into Flags 1001 1110

SAL – Shift Arithmetic Left same instruction as SHL

SAR – Shift Arithmetic Right

register by 1 1101 000w : 11 111 reg

memory by 1 1101 000w : mod 111 r/m

register by CL 1101 001w : 11 111 reg

memory by CL 1101 001w : mod 111 r/m

register by immediate count 1100 000w : 11 111 reg : imm8 data

memory by immediate count 1100 000w : mod 111 r/m : imm8 data

SBB – Integer Subtraction with Borrow

register1 to register2 0001 100w : 11 reg1 reg2

register2 to register1 0001 101w : 11 reg1 reg2 

memory to register 0001 101w : mod reg r/m

register to memory 0001 100w : mod reg r/m

immediate to register 1000 00sw : 11 011 reg : immediate data

immediate to AL, AX, or EAX 0001 110w : immediate data

immediate to memory 1000 00sw : mod 011 r/m : immediate data

SCAS/SCASB/SCASW/SCASD – Scan String 1010 111w

SETcc – Byte Set on Condition

register 0000 1111 : 1001 tttn : 11 000 reg

memory 0000 1111 : 1001 tttn : mod 000 r/m

SGDT – Store Global Descriptor Table Register 0000 1111 : 0000 0001 : modA 000 r/m

Table B-13.  General Purpose Instruction Formats and Encodings 
for Non-64-Bit Modes (Contd.)
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SHL – Shift Left

register by 1 1101 000w : 11 100 reg

memory by 1 1101 000w : mod 100 r/m

register by CL 1101 001w : 11 100 reg

memory by CL 1101 001w : mod 100 r/m

register by immediate count 1100 000w : 11 100 reg : imm8 data

memory by immediate count 1100 000w : mod 100 r/m : imm8 data

SHLD – Double Precision Shift Left

register by immediate count 0000 1111 : 1010 0100 : 11 reg2 reg1 : imm8

memory by immediate count 0000 1111 : 1010 0100 : mod reg r/m : imm8

register by CL 0000 1111 : 1010 0101 : 11 reg2 reg1

memory by CL 0000 1111 : 1010 0101 : mod reg r/m

SHR – Shift Right

register by 1 1101 000w : 11 101 reg

memory by 1 1101 000w : mod 101 r/m

register by CL 1101 001w : 11 101 reg

memory by CL 1101 001w : mod 101 r/m

register by immediate count 1100 000w : 11 101 reg : imm8 data

memory by immediate count 1100 000w : mod 101 r/m : imm8 data

SHRD – Double Precision Shift Right

register by immediate count 0000 1111 : 1010 1100 : 11 reg2 reg1 : imm8

memory by immediate count 0000 1111 : 1010 1100 : mod reg r/m : imm8

register by CL 0000 1111 : 1010 1101 : 11 reg2 reg1

memory by CL 0000 1111 : 1010 1101 : mod reg r/m

SIDT – Store Interrupt Descriptor Table 
Register

0000 1111 : 0000 0001 : modA 001 r/m

SLDT – Store Local Descriptor Table Register

to register 0000 1111 : 0000 0000 : 11 000 reg

to memory 0000 1111 : 0000 0000 : mod 000 r/m

SMSW – Store Machine Status Word

Table B-13.  General Purpose Instruction Formats and Encodings 
for Non-64-Bit Modes (Contd.)
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to register 0000 1111 : 0000 0001 : 11 100 reg

to memory 0000 1111 : 0000 0001 : mod 100 r/m

STC – Set Carry Flag 1111 1001

STD – Set Direction Flag 1111 1101

STI – Set Interrupt Flag 1111 1011

STOS/STOSB/STOSW/STOSD – Store String 
Data

1010 101w

STR – Store Task Register

to register 0000 1111 : 0000 0000 : 11 001 reg

to memory 0000 1111 : 0000 0000 : mod 001 r/m

SUB – Integer Subtraction

register1 to register2 0010 100w : 11 reg1 reg2

register2 to register1 0010 101w : 11 reg1 reg2 

memory to register 0010 101w : mod reg r/m

register to memory 0010 100w : mod reg r/m

immediate to register 1000 00sw : 11 101 reg : immediate data

immediate to AL, AX, or EAX 0010 110w : immediate data

immediate to memory 1000 00sw : mod 101 r/m : immediate data

TEST – Logical Compare

register1 and register2 1000 010w : 11 reg1 reg2

memory and register 1000 010w : mod reg r/m

immediate and register 1111 011w : 11 000 reg : immediate data

immediate and AL, AX, or EAX 1010 100w : immediate data

immediate and memory 1111 011w : mod 000 r/m : immediate data

UD2 – Undefined instruction 0000 FFFF : 0000 1011

VERR – Verify a Segment for Reading 

register 0000 1111 : 0000 0000 : 11 100 reg

memory 0000 1111 : 0000 0000 : mod 100 r/m

VERW – Verify a Segment for Writing

register 0000 1111 : 0000 0000 : 11 101 reg

Table B-13.  General Purpose Instruction Formats and Encodings 
for Non-64-Bit Modes (Contd.)
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memory 0000 1111 : 0000 0000 : mod 101 r/m

WAIT – Wait 1001 1011

WBINVD – Writeback and Invalidate Data 
Cache

0000 1111 : 0000 1001

WRMSR – Write to Model-Specific Register 0000 1111 : 0011 0000

XADD – Exchange and Add

register1, register2 0000 1111 : 1100 000w : 11 reg2 reg1

memory, reg 0000 1111 : 1100 000w : mod reg r/m

XCHG – Exchange Register/Memory with 
Register

register1 with register2 1000 011w : 11 reg1 reg2

AX or EAX with reg 1001 0 reg

memory with reg 1000 011w : mod reg r/m

XLAT/XLATB – Table Look-up Translation 1101 0111

XOR – Logical Exclusive OR

register1 to register2 0011 000w : 11 reg1 reg2

register2 to register1 0011 001w : 11 reg1 reg2 

memory to register 0011 001w : mod reg r/m

register to memory 0011 000w : mod reg r/m

immediate to register 1000 00sw : 11 110 reg : immediate data

immediate to AL, AX, or EAX 0011 010w : immediate data

immediate to memory 1000 00sw : mod 110 r/m : immediate data

Prefix Bytes

address size 0110 0111

LOCK 1111 0000

operand size 0110 0110

CS segment override 0010 1110

DS segment override 0011 1110

ES segment override 0010 0110

FS segment override 0110 0100

Table B-13.  General Purpose Instruction Formats and Encodings 
for Non-64-Bit Modes (Contd.)
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B.2.1  General Purpose Instruction Formats and Encodings for 
64-Bit Mode

Table B-15 shows machine instruction formats and encodings for general purpose 
instructions in 64-bit mode.

GS segment override 0110 0101

SS segment override 0011 0110

NOTES:
1. The multi-byte NOP instruction does not alter the content of the register and will not issue a 

memory operation. 

Table B-14.  Special Symbols
Symbol Application

S If the value of REX.W. is 1, it overrides the presence of 66H.

w The value of bit W. in REX is has no effect.

Table B-15.  General Purpose Instruction Formats and Encodings 
for 64-Bit Mode

Instruction and Format Encoding

ADC – ADD with Carry

register1 to register2 0100 0R0B : 0001 000w : 11 reg1 reg2

qwordregister1 to qwordregister2 0100 1R0B : 0001 0001 : 11 qwordreg1 
qwordreg2

register2 to register1 0100 0R0B : 0001 001w : 11 reg1 reg2 

qwordregister1 to qwordregister2 0100 1R0B : 0001 0011 : 11 qwordreg1 
qwordreg2 

memory to register 0100 0RXB : 0001 001w : mod reg r/m

memory to qwordregister 0100 1RXB : 0001 0011 : mod qwordreg r/m

register to memory 0100 0RXB : 0001 000w : mod reg r/m

qwordregister to memory 0100 1RXB : 0001 0001 : mod qwordreg r/m

immediate to register 0100 000B : 1000 00sw : 11 010 reg : 
immediate
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immediate to qwordregister 0100 100B : 1000 0001 : 11 010 qwordreg : 
imm32

immediate to qwordregister 0100 1R0B : 1000 0011 : 11 010 qwordreg : 
imm8

immediate to AL, AX, or EAX 0001 010w : immediate data

immediate to RAX 0100 1000 : 0000 0101 : imm32

immediate to memory 0100 00XB : 1000 00sw : mod 010 r/m : 
immediate 

immediate32 to memory64 0100 10XB : 1000 0001 : mod 010 r/m : 
imm32

immediate8 to memory64 0100 10XB : 1000 0031 : mod 010 r/m : imm8

ADD – Add

register1 to register2 0100 0R0B : 0000 000w : 11 reg1 reg2

qwordregister1 to qwordregister2 0100 1R0B 0000 0000 : 11 qwordreg1 
qwordreg2

register2 to register1 0100 0R0B : 0000 001w : 11 reg1 reg2 

qwordregister1 to qwordregister2 0100 1R0B 0000 0010 : 11 qwordreg1 
qwordreg2

memory to register 0100 0RXB : 0000 001w : mod reg r/m

memory64 to qwordregister 0100 1RXB : 0000 0000 : mod qwordreg r/m

register to memory 0100 0RXB : 0000 000w : mod reg r/m

qwordregister to memory64 0100 1RXB : 0000 0011 : mod qwordreg r/m

immediate to register 0100 0000B : 1000 00sw : 11 000 reg : 
immediate data

immediate32 to qwordregister 0100 100B : 1000 0001 : 11 010 qwordreg : 
imm

immediate to AL, AX, or EAX 0000 010w : immediate8

immediate to RAX 0100 1000 : 0000 0101 : imm32

immediate to memory 0100 00XB : 1000 00sw : mod 000 r/m : 
immediate

immediate32 to memory64 0100 10XB : 1000 0001 : mod 010 r/m : 
imm32

immediate8 to memory64 0100 10XB : 1000 0011 : mod 010 r/m : imm8
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AND – Logical AND

register1 to register2 0100 0R0B 0010 000w : 11 reg1 reg2

qwordregister1 to qwordregister2 0100 1R0B 0010 0001 : 11 qwordreg1 
qwordreg2

register2 to register1 0100 0R0B 0010 001w : 11 reg1 reg2 

register1 to register2 0100 1R0B 0010 0011 : 11 qwordreg1 
qwordreg2

memory to register 0100 0RXB 0010 001w : mod reg r/m

memory64 to qwordregister 0100 1RXB : 0010 0011 : mod qwordreg r/m

register to memory 0100 0RXB : 0010 000w : mod reg r/m

qwordregister to memory64 0100 1RXB : 0010 0001 : mod qwordreg r/m

immediate to register 0100 000B : 1000 00sw : 11 100 reg : 
immediate 

immediate32 to qwordregister 0100 100B 1000 0001 : 11 100 qwordreg : 
imm32

immediate to AL, AX, or EAX 0010 010w : immediate

immediate32 to RAX 0100 1000 0010 1001 : imm32

immediate to memory 0100 00XB : 1000 00sw : mod 100 r/m : 
immediate 

immediate32 to memory64 0100 10XB : 1000 0001 : mod 100 r/m : 
immediate32

immediate8 to memory64 0100 10XB : 1000 0011 : mod 100 r/m : 
imm8

BSF – Bit Scan Forward

register1, register2 0100 0R0B 0000 1111 : 1011 1100 : 11 reg1 
reg2

qwordregister1, qwordregister2 0100 1R0B 0000 1111 : 1011 1100 : 11 
qwordreg1 qwordreg2

memory, register 0100 0RXB 0000 1111 : 1011 1100 : mod reg 
r/m

memory64, qwordregister 0100 1RXB 0000 1111 : 1011 1100 : mod 
qwordreg r/m

BSR – Bit Scan Reverse
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register1, register2 0100 0R0B 0000 1111 : 1011 1101 : 11 reg1 
reg2

qwordregister1, qwordregister2 0100 1R0B 0000 1111 : 1011 1101 : 11 
qwordreg1 qwordreg2

memory, register 0100 0RXB 0000 1111 : 1011 1101 : mod reg 
r/m

memory64, qwordregister 0100 1RXB 0000 1111 : 1011 1101 : mod 
qwordreg r/m

BSWAP – Byte Swap 0000 1111 : 1100 1 reg

BSWAP – Byte Swap 0100 100B 0000 1111 : 1100 1 qwordreg

BT – Bit Test

register, immediate 0100 000B 0000 1111 : 1011 1010 : 11 100 
reg: imm8 

qwordregister, immediate8 0100 100B 1111 : 1011 1010 : 11 100 
qwordreg: imm8 data

memory, immediate 0100 00XB 0000 1111 : 1011 1010 : mod 
100 r/m : imm8 

memory64, immediate8 0100 10XB 0000 1111 : 1011 1010 : mod 
100 r/m : imm8 data

register1, register2 0100 0R0B 0000 1111 : 1010 0011 : 11 reg2 
reg1

qwordregister1, qwordregister2 0100 1R0B 0000 1111 : 1010 0011 : 11 
qwordreg2 qwordreg1

memory, reg 0100 0RXB 0000 1111 : 1010 0011 : mod reg 
r/m

memory, qwordreg 0100 1RXB 0000 1111 : 1010 0011 : mod 
qwordreg r/m

BTC – Bit Test and Complement

register, immediate 0100 000B 0000 1111 : 1011 1010 : 11 111 
reg: imm8 

qwordregister, immediate8 0100 100B 0000 1111 : 1011 1010 : 11 111 
qwordreg: imm8 
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memory, immediate 0100 00XB 0000 1111 : 1011 1010 : mod 
111 r/m : imm8 

memory64, immediate8 0100 10XB 0000 1111 : 1011 1010 : mod 
111 r/m : imm8 

register1, register2 0100 0R0B 0000 1111 : 1011 1011 : 11 reg2 
reg1

qwordregister1, qwordregister2 0100 1R0B 0000 1111 : 1011 1011 : 11 
qwordreg2 qwordreg1

memory, register 0100 0RXB 0000 1111 : 1011 1011 : mod reg 
r/m

memory, qwordreg 0100 1RXB 0000 1111 : 1011 1011 : mod 
qwordreg r/m

BTR – Bit Test and Reset

register, immediate 0100 000B 0000 1111 : 1011 1010 : 11 110 
reg: imm8 

qwordregister, immediate8 0100 100B 0000 1111 : 1011 1010 : 11 110 
qwordreg: imm8 

memory, immediate 0100 00XB 0000 1111 : 1011 1010 : mod 
110 r/m : imm8 

memory64, immediate8 0100 10XB 0000 1111 : 1011 1010 : mod 
110 r/m : imm8 

register1, register2 0100 0R0B 0000 1111 : 1011 0011 : 11 reg2 
reg1

qwordregister1, qwordregister2 0100 1R0B 0000 1111 : 1011 0011 : 11 
qwordreg2 qwordreg1

memory, register 0100 0RXB 0000 1111 : 1011 0011 : mod reg 
r/m

memory64, qwordreg 0100 1RXB 0000 1111 : 1011 0011 : mod 
qwordreg r/m

BTS – Bit Test and Set

register, immediate 0100 000B 0000 1111 : 1011 1010 : 11 101 
reg: imm8
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qwordregister, immediate8 0100 100B 0000 1111 : 1011 1010 : 11 101 
qwordreg: imm8 

memory, immediate 0100 00XB 0000 1111 : 1011 1010 : mod 
101 r/m : imm8

memory64, immediate8 0100 10XB 0000 1111 : 1011 1010 : mod 
101 r/m : imm8 

register1, register2 0100 0R0B 0000 1111 : 1010 1011 : 11 reg2 
reg1

qwordregister1, qwordregister2 0100 1R0B 0000 1111 : 1010 1011 : 11 
qwordreg2 qwordreg1

memory, register 0100 0RXB 0000 1111 : 1010 1011 : mod reg 
r/m

memory64, qwordreg 0100 1RXB 0000 1111 : 1010 1011 : mod 
qwordreg r/m

CALL – Call Procedure (in same segment)

direct 1110 1000 : displacement32

 register indirect 0100 WR00w 1111 1111 : 11 010 reg

memory indirect 0100 W0XBw 1111 1111 : mod 010 r/m

CALL – Call Procedure (in other segment)

indirect 1111 1111 : mod 011 r/m

indirect 0100 10XB 0100 1000 1111 1111 : mod 011 
r/m

CBW – Convert Byte to Word 1001 1000

CDQ – Convert Doubleword to Qword+ 1001 1001

CDQE – RAX, Sign-Extend of EAX 0100 1000 1001 1001

CLC – Clear Carry Flag 1111 1000

CLD – Clear Direction Flag 1111 1100

CLI – Clear Interrupt Flag 1111 1010

CLTS – Clear Task-Switched Flag in CR0 0000 1111 : 0000 0110

CMC – Complement Carry Flag 1111 0101

CMP – Compare Two Operands

register1 with register2 0100 0R0B 0011 100w : 11 reg1 reg2
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qwordregister1 with qwordregister2 0100 1R0B 0011 1001 : 11 qwordreg1 
qwordreg2

register2 with register1 0100 0R0B 0011 101w : 11 reg1 reg2

qwordregister2 with qwordregister1 0100 1R0B 0011 101w : 11 qwordreg1 
qwordreg2

memory with register 0100 0RXB 0011 100w : mod reg r/m

memory64 with qwordregister 0100 1RXB 0011 1001 : mod qwordreg r/m

register with memory 0100 0RXB 0011 101w : mod reg r/m

qwordregister with memory64 0100 1RXB 0011 101w1 : mod qwordreg r/m

immediate with register 0100 000B 1000 00sw : 11 111 reg : imm

immediate32 with qwordregister 0100 100B 1000 0001 : 11 111 qwordreg : 
imm64

immediate with AL, AX, or EAX 0011 110w : imm

immediate32 with RAX 0100 1000 0011 1101 : imm32

immediate with memory 0100 00XB 1000 00sw : mod 111 r/m : imm

immediate32 with memory64 0100 1RXB 1000 0001 : mod 111 r/m : imm64

immediate8 with memory64 0100 1RXB 1000 0011 : mod 111 r/m : imm8

CMPS/CMPSB/CMPSW/CMPSD/CMPSQ – 
Compare String Operands

compare string operands [ X at DS:(E)SI with Y 
at ES:(E)DI ]

1010 011w

qword at address RSI with qword at address 
RDI

0100 1000 1010 0111

CMPXCHG – Compare and Exchange 

register1, register2 0000 1111 : 1011 000w : 11 reg2 reg1

byteregister1, byteregister2 0100 000B 0000 1111 : 1011 0000 : 11 
bytereg2 reg1

qwordregister1, qwordregister2 0100 100B 0000 1111 : 1011 0001 : 11 
qwordreg2 reg1

memory, register 0000 1111 : 1011 000w : mod reg r/m

memory8, byteregister 0100 00XB 0000 1111 : 1011 0000 : mod 
bytereg r/m
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memory64, qwordregister 0100 10XB 0000 1111 : 1011 0001 : mod 
qwordreg r/m

CPUID – CPU Identification 0000 1111 : 1010 0010

CQO – Sign-Extend RAX 0100 1000 1001 1001

CWD – Convert Word to Doubleword 1001 1001

CWDE – Convert Word to Doubleword 1001 1000

DEC – Decrement by 1

register 0100 000B 1111 111w : 11 001 reg

qwordregister 0100 100B 1111 1111 : 11 001 qwordreg

memory 0100 00XB 1111 111w : mod 001 r/m

memory64 0100 10XB 1111 1111 : mod 001 r/m

DIV – Unsigned Divide

AL, AX, or EAX by register 0100 000B 1111 011w : 11 110 reg

Divide RDX:RAX by qwordregister 0100 100B 1111 0111 : 11 110 qwordreg

AL, AX, or EAX by memory 0100 00XB 1111 011w : mod 110 r/m

Divide RDX:RAX by memory64 0100 10XB 1111 0111 : mod 110 r/m

ENTER – Make Stack Frame for High Level 
Procedure

1100 1000 : 16-bit displacement : 8-bit level 
(L)

HLT – Halt 1111 0100

IDIV – Signed Divide

AL, AX, or EAX by register 0100 000B 1111 011w : 11 111 reg

RDX:RAX by qwordregister 0100 100B 1111 0111 : 11 111 qwordreg

AL, AX, or EAX by memory 0100 00XB 1111 011w : mod 111 r/m

RDX:RAX by memory64 0100 10XB 1111 0111 : mod 111 r/m

IMUL – Signed Multiply

AL, AX, or EAX with register 0100 000B 1111 011w : 11 101 reg

RDX:RAX <- RAX with qwordregister 0100 100B 1111 0111 : 11 101 qwordreg

AL, AX, or EAX with memory 0100 00XB 1111 011w : mod 101 r/m

RDX:RAX <- RAX with memory64 0100 10XB 1111 0111 : mod 101 r/m

register1 with register2 0000 1111 : 1010 1111 : 11 : reg1 reg2
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qwordregister1 <- qwordregister1 with 
qwordregister2

0100 1R0B 0000 1111 : 1010 1111 : 11 : 
qwordreg1 qwordreg2

register with memory 0100 0RXB 0000 1111 : 1010 1111 : mod reg 
r/m

qwordregister <- qwordregister 
withmemory64

0100 1RXB 0000 1111 : 1010 1111 : mod 
qwordreg r/m

register1 with immediate to register2 0100 0R0B 0110 10s1 : 11 reg1 reg2 : imm

qwordregister1 <- qwordregister2 with sign-
extended immediate8

0100 1R0B 0110 1011 : 11 qwordreg1 
qwordreg2 : imm8

qwordregister1 <- qwordregister2 with 
immediate32

0100 1R0B 0110 1001 : 11 qwordreg1 
qwordreg2 : imm32

memory with immediate to register 0100 0RXB 0110 10s1 : mod reg r/m : imm

qwordregister <- memory64 with sign-
extended immediate8

0100 1RXB 0110 1011 : mod qwordreg r/m : 
imm8

qwordregister <- memory64 with 
immediate32

0100 1RXB 0110 1001 : mod qwordreg r/m : 
imm32

IN – Input From Port

fixed port 1110 010w : port number

variable port 1110 110w

INC – Increment by 1

reg 0100 000B 1111 111w : 11 000 reg

qwordreg 0100 100B 1111 1111 : 11 000 qwordreg

memory 0100 00XB 1111 111w : mod 000 r/m

memory64 0100 10XB 1111 1111 : mod 000 r/m

INS – Input from DX Port 0110 110w

INT n – Interrupt Type n 1100 1101 : type

INT – Single-Step Interrupt 3 1100 1100

INTO – Interrupt 4 on Overflow 1100 1110

INVD – Invalidate Cache 0000 1111 : 0000 1000

INVLPG – Invalidate TLB Entry 0000 1111 : 0000 0001 : mod 111 r/m

INVPCID – Invalidate Process-Context 
Identifier

0110 0110:0000 1111:0011 1000:1000 
0010: mod reg r/m
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IRETO – Interrupt Return 1100 1111

Jcc – Jump if Condition is Met

8-bit displacement 0111 tttn : 8-bit displacement

displacements (excluding 16-bit relative 
offsets)

0000 1111 : 1000 tttn : displacement32 

JCXZ/JECXZ – Jump on CX/ECX Zero

Address-size prefix differentiates JCXZ and 
JECXZ

1110 0011 : 8-bit displacement

JMP – Unconditional Jump (to same segment)

short 1110 1011 : 8-bit displacement

direct 1110 1001 : displacement32

register indirect 0100 W00Bw : 1111 1111 : 11 100 reg

memory indirect 0100 W0XBw : 1111 1111 : mod 100 r/m

JMP – Unconditional Jump (to other segment)

indirect intersegment 0100 00XB : 1111 1111 : mod 101 r/m

64-bit indirect intersegment 0100 10XB : 1111 1111 : mod 101 r/m

LAR – Load Access Rights Byte

from register 0100 0R0B : 0000 1111 : 0000 0010 : 11 
reg1 reg2

from dwordregister to qwordregister, masked 
by 00FxFF00H

0100 WR0B : 0000 1111 : 0000 0010 : 11 
qwordreg1 dwordreg2

from memory 0100 0RXB : 0000 1111 : 0000 0010 : mod 
reg r/m

from memory32 to qwordregister, masked by 
00FxFF00H

0100 WRXB 0000 1111 : 0000 0010 : mod 
r/m

LEA – Load Effective Address

in wordregister/dwordregister 0100 0RXB : 1000 1101 : modA reg r/m

in qwordregister 0100 1RXB : 1000 1101 : modA qwordreg r/m

LEAVE – High Level Procedure Exit 1100 1001

LFS – Load Pointer to FS
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FS:r16/r32 with far pointer from memory 0100 0RXB : 0000 1111 : 1011 0100 : modA 
reg r/m

FS:r64 with far pointer from memory 0100 1RXB : 0000 1111 : 1011 0100 : modA 
qwordreg r/m

LGDT – Load Global Descriptor Table Register 0100 10XB : 0000 1111 : 0000 0001 : modA 
010 r/m

LGS – Load Pointer to GS

GS:r16/r32 with far pointer from memory 0100 0RXB : 0000 1111 : 1011 0101 : modA 
reg r/m

GS:r64 with far pointer from memory 0100 1RXB : 0000 1111 : 1011 0101 : modA 
qwordreg r/m

LIDT – Load Interrupt Descriptor Table 
Register

0100 10XB : 0000 1111 : 0000 0001 : modA 
011 r/m

LLDT – Load Local Descriptor Table Register

LDTR from register 0100 000B : 0000 1111 : 0000 0000 : 11 010 
reg

LDTR from memory 0100 00XB :0000 1111 : 0000 0000 : mod 
010 r/m

LMSW – Load Machine Status Word

from register 0100 000B : 0000 1111 : 0000 0001 : 11 110 
reg

from memory 0100 00XB :0000 1111 : 0000 0001 : mod 
110 r/m

LOCK – Assert LOCK# Signal Prefix 1111 0000

LODS/LODSB/LODSW/LODSD/LODSQ – Load 
String Operand

at DS:(E)SI to AL/EAX/EAX 1010 110w

at (R)SI to RAX 0100 1000 1010 1101

LOOP – Loop Count

if count != 0, 8-bit displacement 1110 0010 

if count !=0, RIP + 8-bit displacement sign-
extended to 64-bits

0100 1000 1110 0010 

LOOPE – Loop Count while Zero/Equal

if count != 0 & ZF =1, 8-bit displacement 1110 0001 
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if count !=0 & ZF = 1, RIP + 8-bit displacement 
sign-extended to 64-bits

0100 1000 1110 0001 

LOOPNE/LOOPNZ – Loop Count while not 
Zero/Equal

if count != 0 & ZF = 0, 8-bit displacement 1110 0000 

if count !=0 & ZF = 0, RIP + 8-bit displacement 
sign-extended to 64-bits

0100 1000 1110 0000 

LSL – Load Segment Limit

from register 0000 1111 : 0000 0011 : 11 reg1 reg2

from qwordregister 0100 1R00 0000 1111 : 0000 0011 : 11 
qwordreg1 reg2

from memory16 0000 1111 : 0000 0011 : mod reg r/m

from memory64 0100 1RXB 0000 1111 : 0000 0011 : mod 
qwordreg r/m

LSS – Load Pointer to SS

SS:r16/r32 with far pointer from memory 0100 0RXB : 0000 1111 : 1011 0010 : modA 
reg r/m

SS:r64 with far pointer from memory 0100 1WXB : 0000 1111 : 1011 0010 : modA 
qwordreg r/m

LTR – Load Task Register

from register 0100 0R00 : 0000 1111 : 0000 0000 : 11 011 
reg

from memory 0100 00XB : 0000 1111 : 0000 0000 : mod 
011 r/m

MOV – Move Data

register1 to register2 0100 0R0B : 1000 100w : 11 reg1 reg2

qwordregister1 to qwordregister2 0100 1R0B 1000 1001 : 11 qwordeg1 
qwordreg2

register2 to register1 0100 0R0B : 1000 101w : 11 reg1 reg2

qwordregister2 to qwordregister1 0100 1R0B 1000 1011 : 11 qwordreg1 
qwordreg2

memory to reg 0100 0RXB : 1000 101w : mod reg r/m

memory64 to qwordregister 0100 1RXB 1000 1011 : mod qwordreg r/m
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reg to memory 0100 0RXB : 1000 100w : mod reg r/m

qwordregister to memory64 0100 1RXB 1000 1001 : mod qwordreg r/m

immediate to register 0100 000B : 1100 011w : 11 000 reg : imm

immediate32 to qwordregister (zero extend) 0100 100B 1100 0111 : 11 000 qwordreg : 
imm32

immediate to register (alternate encoding) 0100 000B : 1011 w reg : imm

immediate64 to qwordregister (alternate 
encoding)

0100 100B 1011 1000 reg : imm64

immediate to memory 0100 00XB : 1100 011w : mod 000 r/m : imm

immediate32 to memory64 (zero extend) 0100 10XB 1100 0111 : mod 000 r/m : imm32

memory to AL, AX, or EAX 0100 0000 : 1010 000w : displacement

memory64 to RAX 0100 1000 1010 0001 : displacement64

AL, AX, or EAX to memory 0100 0000 : 1010 001w : displacement

RAX to memory64 0100 1000 1010 0011 : displacement64

MOV – Move to/from Control Registers

CR0-CR4 from register 0100 0R0B : 0000 1111 : 0010 0010 : 11 eee 
reg (eee = CR#)

CRx from qwordregister 0100 1R0B : 0000 1111 : 0010 0010 : 11 eee 
qwordreg (Reee = CR#)

register from CR0-CR4 0100 0R0B : 0000 1111 : 0010 0000 : 11 eee 
reg (eee = CR#)

qwordregister from CRx 0100 1R0B 0000 1111 : 0010 0000 : 11 eee 
qwordreg (Reee = CR#)

MOV – Move to/from Debug Registers

DR0-DR7 from register 0000 1111 : 0010 0011 : 11 eee reg (eee = 
DR#)

DR0-DR7 from quadregister 0100 10OB 0000 1111 : 0010 0011 : 11 eee 
reg (eee = DR#)

register from DR0-DR7 0000 1111 : 0010 0001 : 11 eee reg (eee = 
DR#)

quadregister from DR0-DR7 0100 10OB 0000 1111 : 0010 0001 : 11 eee 
quadreg (eee = DR#)

MOV – Move to/from Segment Registers
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register to segment register 0100 W00Bw : 1000 1110 : 11 sreg reg

register to SS 0100 000B : 1000 1110 : 11 sreg reg

memory to segment register 0100 00XB : 1000 1110 : mod sreg r/m

memory64 to segment register (lower 16 bits) 0100 10XB 1000 1110 : mod sreg r/m

memory to SS 0100 00XB : 1000 1110 : mod sreg r/m

segment register to register 0100 000B : 1000 1100 : 11 sreg reg

segment register to qwordregister (zero 
extended)

0100 100B 1000 1100 : 11 sreg qwordreg

segment register to memory 0100 00XB : 1000 1100 : mod sreg r/m

segment register to memory64 (zero 
extended)

0100 10XB 1000 1100 : mod sreg3 r/m

MOVBE – Move data after swapping bytes

memory to register 0100 0RXB : 0000 1111 : 0011 1000:1111 
0000 : mod reg r/m

memory64 to qwordregister 0100 1RXB : 0000 1111 : 0011 1000:1111 
0000 : mod reg r/m

register to memory 0100 0RXB :0000 1111 : 0011 1000:1111 
0001 : mod reg r/m

qwordregister to memory64 0100 1RXB :0000 1111 : 0011 1000:1111 
0001 : mod reg r/m

MOVS/MOVSB/MOVSW/MOVSD/MOVSQ – 
Move Data from String to String

Move data from string to string 1010 010w

Move data from string to string (qword) 0100 1000 1010 0101

MOVSX/MOVSXD – Move with Sign-Extend

register2 to register1 0100 0R0B : 0000 1111 : 1011 111w : 11 
reg1 reg2

byteregister2 to qwordregister1 (sign-
extend)

0100 1R0B 0000 1111 : 1011 1110 : 11 
quadreg1 bytereg2

wordregister2 to qwordregister1 0100 1R0B 0000 1111  : 1011 1111 : 11 
quadreg1 wordreg2

dwordregister2 to qwordregister1 0100 1R0B 0110 0011 : 11 quadreg1 
dwordreg2
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memory to register 0100 0RXB : 0000 1111 : 1011 111w : mod 
reg r/m

memory8 to qwordregister (sign-extend) 0100 1RXB 0000 1111 : 1011 1110 : mod 
qwordreg r/m

memory16 to qwordregister 0100 1RXB 0000 1111 : 1011 1111 : mod 
qwordreg r/m

memory32 to qwordregister 0100 1RXB 0110 0011 : mod qwordreg r/m

MOVZX – Move with Zero-Extend

register2 to register1 0100 0R0B : 0000 1111 : 1011 011w : 11 
reg1 reg2

dwordregister2 to qwordregister1 0100 1R0B 0000 1111 : 1011 0111 : 11 
qwordreg1 dwordreg2

memory to register 0100 0RXB : 0000 1111 : 1011 011w : mod 
reg r/m

memory32 to qwordregister 0100 1RXB 0000 1111 : 1011 0111 : mod 
qwordreg r/m

MUL – Unsigned Multiply

AL, AX, or EAX with register 0100 000B : 1111 011w : 11 100 reg

RAX with qwordregister (to RDX:RAX) 0100 100B 1111 0111 : 11 100 qwordreg

AL, AX, or EAX with memory 0100 00XB 1111 011w : mod 100 r/m

RAX with memory64 (to RDX:RAX) 0100 10XB 1111 0111 : mod 100 r/m

NEG – Two's Complement Negation

register 0100 000B : 1111 011w : 11 011 reg

qwordregister 0100 100B 1111 0111 : 11 011 qwordreg

memory 0100 00XB : 1111 011w : mod 011 r/m

memory64 0100 10XB 1111 0111 : mod 011 r/m

NOP – No Operation 1001 0000

NOT – One's Complement Negation

register 0100 000B : 1111 011w : 11 010 reg

qwordregister 0100 000B 1111 0111 : 11 010 qwordreg

memory 0100 00XB : 1111 011w : mod 010 r/m

memory64 0100 1RXB 1111 0111 : mod 010 r/m
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OR – Logical Inclusive OR

register1 to register2 0000 100w : 11 reg1 reg2

byteregister1 to byteregister2 0100 0R0B 0000 1000 : 11 bytereg1 
bytereg2

qwordregister1 to qwordregister2 0100 1R0B 0000 1001 : 11 qwordreg1 
qwordreg2

register2 to register1 0000 101w : 11 reg1 reg2 

byteregister2 to byteregister1 0100 0R0B 0000 1010 : 11 bytereg1 
bytereg2 

qwordregister2 to qwordregister1 0100 0R0B 0000 1011 : 11 qwordreg1 
qwordreg2 

memory to register 0000 101w : mod reg r/m

memory8 to byteregister 0100 0RXB 0000 1010 : mod bytereg r/m

memory8 to qwordregister 0100 0RXB 0000 1011 : mod qwordreg r/m

register to memory 0000 100w : mod reg r/m

byteregister to memory8 0100 0RXB 0000 1000 : mod bytereg r/m

qwordregister to memory64 0100 1RXB 0000 1001 : mod qwordreg r/m

immediate to register 1000 00sw : 11 001 reg : imm

immediate8 to byteregister 0100 000B 1000 0000 : 11 001 bytereg : 
imm8

immediate32 to qwordregister 0100 000B 1000 0001 : 11 001 qwordreg : 
imm32

immediate8 to qwordregister 0100 000B 1000 0011 : 11 001 qwordreg : 
imm8

immediate to AL, AX, or EAX 0000 110w : imm

immediate64 to RAX 0100 1000 0000 1101 : imm64

immediate to memory 1000 00sw : mod 001 r/m : imm

immediate8 to memory8 0100 00XB 1000 0000 : mod 001 r/m : imm8

immediate32 to memory64 0100 00XB 1000 0001 : mod 001 r/m : imm32

immediate8 to memory64 0100 00XB 1000 0011 : mod 001 r/m : imm8

OUT – Output to Port

fixed port 1110 011w : port number
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variable port 1110 111w

OUTS – Output to DX Port

output to DX Port 0110 111w

POP – Pop a Value from the Stack

wordregister 0101 0101 : 0100 000B : 1000 1111 : 11 000 
reg16

qwordregister 0100 W00BS : 1000 1111 : 11 000 reg64

wordregister (alternate encoding) 0101 0101 : 0100 000B : 0101 1 reg16

qwordregister (alternate encoding) 0100 W00B : 0101 1 reg64

memory64 0100 W0XBS : 1000 1111 : mod 000 r/m

memory16 0101 0101 : 0100 00XB 1000 1111 : mod 
000 r/m

POP – Pop a Segment Register from the Stack
(Note: CS cannot be sreg2 in this usage.)

segment register  FS, GS 0000 1111: 10 sreg3 001

POPF/POPFQ – Pop Stack into FLAGS/RFLAGS 
Register

pop stack to FLAGS register 0101 0101 : 1001 1101

pop Stack to RFLAGS register 0100 1000 1001 1101

PUSH – Push Operand onto the Stack

wordregister 0101 0101 : 0100 000B : 1111 1111 : 11 110 
reg16

qwordregister 0100 W00BS : 1111 1111 : 11 110 reg64

wordregister (alternate encoding) 0101 0101 : 0100 000B : 0101 0 reg16

qwordregister (alternate encoding) 0100 W00BS : 0101 0 reg64

memory16 0101 0101 : 0100 000B : 1111 1111 : mod 
110 r/m

memory64 0100 W00BS : 1111 1111 : mod 110 r/m

immediate8 0110 1010 : imm8

immediate16 0101 0101 : 0110 1000 : imm16

immediate64 0110 1000 : imm64
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PUSH – Push Segment Register onto the 
Stack

segment register FS,GS 0000 1111: 10 sreg3 000

PUSHF/PUSHFD – Push Flags Register onto 
the Stack

1001 1100

RCL – Rotate thru Carry Left

register by 1 0100 000B : 1101 000w : 11 010 reg

qwordregister by 1 0100 100B 1101 0001 : 11 010 qwordreg

memory by 1 0100 00XB : 1101 000w : mod 010 r/m

memory64 by 1 0100 10XB 1101 0001 : mod 010 r/m

register by CL 0100 000B : 1101 001w : 11 010 reg

qwordregister by CL 0100 100B 1101 0011 : 11 010 qwordreg

memory by CL 0100 00XB : 1101 001w : mod 010 r/m

memory64 by CL 0100 10XB 1101 0011 : mod 010 r/m

register by immediate count 0100 000B : 1100 000w : 11 010 reg : imm 

qwordregister by immediate count 0100 100B 1100 0001 : 11 010 qwordreg : 
imm8

memory by immediate count 0100 00XB : 1100 000w : mod 010 r/m : imm 

memory64 by immediate count 0100 10XB 1100 0001 : mod 010 r/m : imm8

RCR – Rotate thru Carry Right

register by 1 0100 000B : 1101 000w : 11 011 reg

qwordregister by 1 0100 100B 1101 0001 : 11 011 qwordreg

memory by 1 0100 00XB : 1101 000w : mod 011 r/m

memory64 by 1 0100 10XB 1101 0001 : mod 011 r/m

register by CL 0100 000B : 1101 001w : 11 011 reg

qwordregister by CL 0100 000B 1101 0010 : 11 011 qwordreg

memory by CL 0100 00XB : 1101 001w : mod 011 r/m

memory64 by CL 0100 10XB 1101 0011 : mod 011 r/m

register by immediate count 0100 000B : 1100 000w : 11 011 reg : imm8

qwordregister by immediate count 0100 100B 1100 0001 : 11 011 qwordreg : 
imm8
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memory by immediate count 0100 00XB : 1100 000w : mod 011 r/m : imm8

memory64 by immediate count 0100 10XB 1100 0001 : mod 011 r/m : imm8

RDMSR – Read from Model-Specific Register

load ECX-specified register into EDX:EAX 0000 1111 : 0011 0010

RDPMC – Read Performance Monitoring 
Counters

load ECX-specified performance counter into 
EDX:EAX

0000 1111 : 0011 0011

RDTSC – Read Time-Stamp Counter

read time-stamp counter into EDX:EAX 0000 1111 : 0011 0001

RDTSCP – Read Time-Stamp Counter and 
Processor ID

0000 1111 : 0000 0001: 1111 1001

REP INS – Input String

REP LODS – Load String

REP MOVS – Move String

REP OUTS – Output String

REP STOS – Store String

REPE CMPS – Compare String

REPE SCAS – Scan String

REPNE CMPS – Compare String

REPNE SCAS – Scan String

RET – Return from Procedure (to same 
segment)

no argument 1100 0011

adding immediate to SP 1100 0010 : 16-bit displacement

RET – Return from Procedure (to other 
segment)

intersegment 1100 1011

adding immediate to SP 1100 1010 : 16-bit displacement

ROL – Rotate Left

register by 1 0100 000B 1101 000w : 11 000 reg
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byteregister by 1 0100 000B 1101 0000 : 11 000 bytereg

qwordregister by 1 0100 100B 1101 0001 : 11 000 qwordreg

memory by 1 0100 00XB 1101 000w : mod 000 r/m

memory8 by 1 0100 00XB 1101 0000 : mod 000 r/m

memory64 by 1 0100 10XB 1101 0001 : mod 000 r/m

register by CL 0100 000B 1101 001w : 11 000 reg

byteregister by CL 0100 000B 1101 0010 : 11 000 bytereg

qwordregister by CL 0100 100B 1101 0011 : 11 000 qwordreg

memory by CL 0100 00XB 1101 001w : mod 000 r/m

memory8 by CL 0100 00XB 1101 0010 : mod 000 r/m

memory64 by CL 0100 10XB 1101 0011 : mod 000 r/m

register by immediate count 1100 000w : 11 000 reg : imm8

byteregister by immediate count 0100 000B 1100 0000 : 11 000 bytereg : 
imm8

qwordregister by immediate count 0100 100B 1100 0001 : 11 000 bytereg : 
imm8

memory by immediate count 1100 000w : mod 000 r/m : imm8

memory8 by immediate count 0100 00XB 1100 0000 : mod 000 r/m : imm8

memory64 by immediate count 0100 10XB 1100 0001 : mod 000 r/m : imm8

ROR – Rotate Right

register by 1 0100 000B 1101 000w : 11 001 reg

byteregister by 1 0100 000B 1101 0000 : 11 001 bytereg

qwordregister by 1 0100 100B 1101 0001 : 11 001 qwordreg

memory by 1 0100 00XB 1101 000w : mod 001 r/m

memory8 by 1 0100 00XB 1101 0000 : mod 001 r/m

memory64 by 1 0100 10XB 1101 0001 : mod 001 r/m

register by CL 0100 000B 1101 001w : 11 001 reg

byteregister by CL 0100 000B 1101 0010 : 11 001 bytereg

qwordregister by CL 0100 100B 1101 0011 : 11 001 qwordreg
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memory by CL 0100 00XB 1101 001w : mod 001 r/m

memory8 by CL 0100 00XB 1101 0010 : mod 001 r/m

memory64 by CL 0100 10XB 1101 0011 : mod 001 r/m

register by immediate count 0100 000B 1100 000w : 11 001 reg : imm8 

byteregister by immediate count 0100 000B 1100 0000 : 11 001 reg : imm8

qwordregister by immediate count 0100 100B 1100 0001 : 11 001 qwordreg : 
imm8

memory by immediate count 0100 00XB 1100 000w : mod 001 r/m : imm8 

memory8 by immediate count 0100 00XB 1100 0000 : mod 001 r/m : imm8

memory64 by immediate count 0100 10XB 1100 0001 : mod 001 r/m : imm8

RSM – Resume from System Management 
Mode

0000 1111 : 1010 1010

SAL – Shift Arithmetic Left same instruction as SHL

SAR – Shift Arithmetic Right

register by 1 0100 000B 1101 000w : 11 111 reg

byteregister by 1 0100 000B 1101 0000 : 11 111 bytereg

qwordregister by 1 0100 100B 1101 0001 : 11 111 qwordreg

memory by 1 0100 00XB 1101 000w : mod 111 r/m

memory8 by 1 0100 00XB 1101 0000 : mod 111 r/m

memory64 by 1 0100 10XB 1101 0001 : mod 111 r/m

register by CL 0100 000B 1101 001w : 11 111 reg

byteregister by CL 0100 000B 1101 0010 : 11 111 bytereg

qwordregister by CL 0100 100B 1101 0011 : 11 111 qwordreg

memory by CL 0100 00XB 1101 001w : mod 111 r/m

memory8 by CL 0100 00XB 1101 0010 : mod 111 r/m

memory64 by CL 0100 10XB 1101 0011 : mod 111 r/m

register by immediate count 0100 000B 1100 000w : 11 111 reg : imm8 

byteregister by immediate count 0100 000B 1100 0000 : 11 111 bytereg : 
imm8 

qwordregister by immediate count 0100 100B 1100 0001 : 11 111 qwordreg : 
imm8 
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memory by immediate count 0100 00XB 1100 000w : mod 111 r/m : imm8 

memory8 by immediate count 0100 00XB 1100 0000 : mod 111 r/m : imm8 

memory64 by immediate count 0100 10XB 1100 0001 : mod 111 r/m : imm8 

SBB – Integer Subtraction with Borrow

register1 to register2 0100 0R0B 0001 100w : 11 reg1 reg2

byteregister1 to byteregister2 0100 0R0B 0001 1000 : 11 bytereg1 
bytereg2

quadregister1 to quadregister2 0100 1R0B 0001 1001 : 11 quadreg1 
quadreg2

register2 to register1 0100 0R0B 0001 101w : 11 reg1 reg2 

byteregister2 to byteregister1 0100 0R0B 0001 1010 : 11 reg1 bytereg2 

byteregister2 to byteregister1 0100 1R0B 0001 1011 : 11 reg1 bytereg2 

memory to register 0100 0RXB 0001 101w : mod reg r/m

memory8 to byteregister 0100 0RXB 0001 1010 : mod bytereg r/m

memory64 to byteregister 0100 1RXB 0001 1011 : mod quadreg r/m

register to memory 0100 0RXB 0001 100w : mod reg r/m

byteregister to memory8 0100 0RXB 0001 1000 : mod reg r/m

quadregister to memory64 0100 1RXB 0001 1001 : mod reg r/m

immediate to register 0100 000B 1000 00sw : 11 011 reg : imm

immediate8 to byteregister 0100 000B 1000 0000 : 11 011 bytereg : 
imm8

immediate32 to qwordregister 0100 100B 1000 0001 : 11 011 qwordreg : 
imm32

immediate8 to qwordregister 0100 100B 1000 0011 : 11 011 qwordreg : 
imm8

immediate to AL, AX, or EAX 0100 000B 0001 110w : imm

immediate32 to RAL 0100 1000 0001 1101 : imm32

immediate to memory 0100 00XB 1000 00sw : mod 011 r/m : imm

immediate8 to memory8 0100 00XB 1000 0000 : mod 011 r/m : imm8

immediate32 to memory64 0100 10XB 1000 0001 : mod 011 r/m : imm32

immediate8 to memory64 0100 10XB 1000 0011 : mod 011 r/m : imm8
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SCAS/SCASB/SCASW/SCASD – Scan String

scan string 1010 111w

scan string (compare AL with byte at RDI) 0100 1000 1010 1110

scan string (compare RAX with qword at RDI) 0100 1000 1010 1111

SETcc – Byte Set on Condition

register 0100 000B 0000 1111 : 1001 tttn : 11 000 
reg

register 0100 0000 0000 1111 : 1001 tttn : 11 000 
reg

memory 0100 00XB 0000 1111 : 1001 tttn : mod 000 
r/m

memory 0100 0000 0000 1111 : 1001 tttn : mod 000 
r/m

SGDT – Store Global Descriptor Table Register 0000 1111 : 0000 0001 : modA 000 r/m

SHL – Shift Left

register by 1 0100 000B 1101 000w : 11 100 reg

byteregister by 1 0100 000B 1101 0000 : 11 100 bytereg

qwordregister by 1 0100 100B 1101 0001 : 11 100 qwordreg

memory by 1 0100 00XB 1101 000w : mod 100 r/m

memory8 by 1 0100 00XB 1101 0000 : mod 100 r/m

memory64 by 1 0100 10XB 1101 0001 : mod 100 r/m

register by CL 0100 000B 1101 001w : 11 100 reg

byteregister by CL 0100 000B 1101 0010 : 11 100 bytereg

qwordregister by CL 0100 100B 1101 0011 : 11 100 qwordreg

memory by CL 0100 00XB 1101 001w : mod 100 r/m

memory8 by CL 0100 00XB 1101 0010 : mod 100 r/m

memory64 by CL 0100 10XB 1101 0011 : mod 100 r/m

register by immediate count 0100 000B 1100 000w : 11 100 reg : imm8

byteregister by immediate count 0100 000B 1100 0000 : 11 100 bytereg : 
imm8

quadregister by immediate count 0100 100B 1100 0001 : 11 100 quadreg : 
imm8
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memory by immediate count 0100 00XB 1100 000w : mod 100 r/m : imm8

memory8 by immediate count 0100 00XB 1100 0000 : mod 100 r/m : imm8

memory64 by immediate count 0100 10XB 1100 0001 : mod 100 r/m : imm8

SHLD – Double Precision Shift Left

register by immediate count 0100 0R0B 0000 1111 : 1010 0100 : 11 reg2 
reg1 : imm8

qwordregister by immediate8 0100 1R0B 0000 1111 : 1010 0100 : 11 
qworddreg2 qwordreg1 : imm8

memory by immediate count 0100 0RXB 0000 1111 : 1010 0100 : mod reg 
r/m : imm8

memory64 by immediate8 0100 1RXB 0000 1111 : 1010 0100 : mod 
qwordreg r/m : imm8

register by CL 0100 0R0B 0000 1111 : 1010 0101 : 11 reg2 
reg1

quadregister by CL 0100 1R0B 0000 1111 : 1010 0101 : 11 
quadreg2 quadreg1

memory by CL 0100 00XB 0000 1111 : 1010 0101 : mod reg 
r/m

memory64 by CL 0100 1RXB 0000 1111 : 1010 0101 : mod 
quadreg r/m

SHR – Shift Right

register by 1 0100 000B 1101 000w : 11 101 reg

byteregister by 1 0100 000B 1101 0000 : 11 101 bytereg

qwordregister by 1 0100 100B 1101 0001 : 11 101 qwordreg

memory by 1 0100 00XB 1101 000w : mod 101 r/m

memory8 by 1 0100 00XB 1101 0000 : mod 101 r/m

memory64 by 1 0100 10XB 1101 0001 : mod 101 r/m

register by CL 0100 000B 1101 001w : 11 101 reg

byteregister by CL 0100 000B 1101 0010 : 11 101 bytereg

qwordregister by CL 0100 100B 1101 0011 : 11 101 qwordreg
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memory by CL 0100 00XB 1101 001w : mod 101 r/m

memory8 by CL 0100 00XB 1101 0010 : mod 101 r/m

memory64 by CL 0100 10XB 1101 0011 : mod 101 r/m

register by immediate count 0100 000B 1100 000w : 11 101 reg : imm8 

byteregister by immediate count 0100 000B 1100 0000 : 11 101 reg : imm8 

qwordregister by immediate count 0100 100B 1100 0001 : 11 101 reg : imm8 

memory by immediate count 0100 00XB 1100 000w : mod 101 r/m : imm8 

memory8 by immediate count 0100 00XB 1100 0000 : mod 101 r/m : imm8 

memory64 by immediate count 0100 10XB 1100 0001 : mod 101 r/m : imm8 

SHRD – Double Precision Shift Right

register by immediate count 0100 0R0B 0000 1111 : 1010 1100 : 11 reg2 
reg1 : imm8

qwordregister by immediate8 0100 1R0B 0000 1111 : 1010 1100 : 11 
qwordreg2 qwordreg1 : imm8

memory by immediate count 0100 00XB 0000 1111 : 1010 1100 : mod reg 
r/m : imm8

memory64 by immediate8 0100 1RXB 0000 1111 : 1010 1100 : mod 
qwordreg r/m : imm8

register by CL 0100 000B 0000 1111 : 1010 1101 : 11 reg2 
reg1

qwordregister by CL 0100 1R0B 0000 1111 : 1010 1101 : 11 
qwordreg2 qwordreg1

memory by CL 0000 1111 : 1010 1101 : mod reg r/m

memory64 by CL 0100 1RXB 0000 1111 : 1010 1101 : mod 
qwordreg r/m

SIDT – Store Interrupt Descriptor Table 
Register

0000 1111 : 0000 0001 : modA 001 r/m

SLDT – Store Local Descriptor Table Register

to register 0100 000B 0000 1111 : 0000 0000 : 11 000 
reg

to memory 0100 00XB 0000 1111 : 0000 0000 : mod 
000 r/m
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SMSW – Store Machine Status Word

to register 0100 000B 0000 1111 : 0000 0001 : 11 100 
reg

to memory 0100 00XB 0000 1111 : 0000 0001 : mod 
100 r/m

STC – Set Carry Flag 1111 1001

STD – Set Direction Flag 1111 1101

STI – Set Interrupt Flag 1111 1011

STOS/STOSB/STOSW/STOSD/STOSQ – Store 
String Data

store string data 1010 101w

store string data (RAX at address RDI) 0100 1000 1010 1011

STR – Store Task Register

to register 0100 000B 0000 1111 : 0000 0000 : 11 001 
reg

to memory 0100 00XB 0000 1111 : 0000 0000 : mod 
001 r/m

SUB – Integer Subtraction

register1 from register2 0100 0R0B 0010 100w : 11 reg1 reg2

byteregister1 from byteregister2 0100 0R0B 0010 1000 : 11 bytereg1 
bytereg2

qwordregister1 from qwordregister2 0100 1R0B 0010 1000 : 11 qwordreg1 
qwordreg2

register2 from register1 0100 0R0B 0010 101w : 11 reg1 reg2 

byteregister2 from byteregister1 0100 0R0B 0010 1010 : 11 bytereg1 
bytereg2 

qwordregister2 from qwordregister1 0100 1R0B 0010 1011 : 11 qwordreg1 
qwordreg2 

memory from register 0100 00XB 0010 101w : mod reg r/m

memory8 from byteregister 0100 0RXB 0010 1010 : mod bytereg r/m

memory64 from qwordregister 0100 1RXB 0010 1011 : mod qwordreg r/m

register from memory 0100 0RXB 0010 100w : mod reg r/m
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byteregister from memory8 0100 0RXB 0010 1000 : mod bytereg r/m

qwordregister from memory8 0100 1RXB 0010 1000 : mod qwordreg r/m

immediate from register 0100 000B 1000 00sw : 11 101 reg : imm

immediate8 from byteregister 0100 000B 1000 0000 : 11 101 bytereg : 
imm8

immediate32 from qwordregister 0100 100B 1000 0001 : 11 101 qwordreg : 
imm32

immediate8 from qwordregister 0100 100B 1000 0011 : 11 101 qwordreg : 
imm8

immediate from AL, AX, or EAX 0100 000B 0010 110w : imm

immediate32 from RAX 0100 1000 0010 1101 : imm32

immediate from memory 0100 00XB 1000 00sw : mod 101 r/m : imm

immediate8 from memory8 0100 00XB 1000 0000 : mod 101 r/m : imm8

immediate32 from memory64 0100 10XB 1000 0001 : mod 101 r/m : imm32

immediate8 from memory64 0100 10XB 1000 0011 : mod 101 r/m : imm8

SWAPGS – Swap GS Base Register

GS base register value for value in MSR 
C0000102H

0000 1111 0000 0001 [this one 
incomplete]

SYSCALL – Fast System Call

fast call to privilege level 0 system 
procedures

0000 1111 0000 0101

SYSRET – Return From Fast System Call

return from fast system call 0000 1111 0000 0111

TEST – Logical Compare

register1 and register2 0100 0R0B 1000 010w : 11 reg1 reg2

byteregister1 and byteregister2 0100 0R0B 1000 0100 : 11 bytereg1 
bytereg2

qwordregister1 and qwordregister2 0100 1R0B 1000 0101 : 11 qwordreg1 
qwordreg2

memory and register 0100 0R0B 1000 010w : mod reg r/m

memory8 and byteregister 0100 0RXB 1000 0100 : mod bytereg r/m
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memory64 and qwordregister 0100 1RXB 1000 0101 : mod qwordreg r/m

immediate and register 0100 000B 1111 011w : 11 000 reg : imm

immediate8 and byteregister 0100 000B 1111 0110 : 11 000 bytereg : 
imm8

immediate32 and qwordregister 0100 100B 1111 0111 : 11 000 bytereg : 
imm8

immediate and AL, AX, or EAX 0100 000B 1010 100w : imm

immediate32 and RAX 0100 1000 1010 1001 : imm32

immediate and memory 0100 00XB 1111 011w : mod 000 r/m : imm

immediate8 and memory8 0100 1000 1111 0110 : mod 000 r/m : imm8

immediate32 and memory64 0100 1000 1111 0111 : mod 000 r/m : imm32

UD2 – Undefined instruction 0000 FFFF : 0000 1011

VERR – Verify a Segment for Reading 

register 0100 000B 0000 1111 : 0000 0000 : 11 100 
reg

memory 0100 00XB 0000 1111 : 0000 0000 : mod 
100 r/m

VERW – Verify a Segment for Writing

register 0100 000B 0000 1111 : 0000 0000 : 11 101 
reg

memory 0100 00XB 0000 1111 : 0000 0000 : mod 
101 r/m

WAIT – Wait 1001 1011

WBINVD – Writeback and Invalidate Data 
Cache

0000 1111 : 0000 1001

WRMSR – Write to Model-Specific Register

write EDX:EAX to ECX specified MSR 0000 1111 : 0011 0000

write RDX[31:0]:RAX[31:0] to RCX specified 
MSR

0100 1000 0000 1111 : 0011 0000

XADD – Exchange and Add
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register1, register2 0100 0R0B 0000 1111 : 1100 000w : 11 reg2 
reg1

byteregister1, byteregister2 0100 0R0B 0000 1111 : 1100 0000 : 11 
bytereg2 bytereg1

qwordregister1, qwordregister2 0100 0R0B 0000 1111 : 1100 0001 : 11 
qwordreg2 qwordreg1

memory, register 0100 0RXB 0000 1111 : 1100 000w : mod 
reg r/m

memory8, bytereg 0100 1RXB 0000 1111 : 1100 0000 : mod 
bytereg r/m

memory64, qwordreg 0100 1RXB 0000 1111 : 1100 0001 : mod 
qwordreg r/m

XCHG – Exchange Register/Memory with 
Register

register1 with register2 1000 011w : 11 reg1 reg2

AX or EAX with register 1001 0 reg

memory with register 1000 011w : mod reg r/m

XLAT/XLATB – Table Look-up Translation

AL to byte DS:[(E)BX + unsigned AL] 1101 0111

AL to byte DS:[RBX + unsigned AL] 0100 1000 1101 0111

XOR – Logical Exclusive OR

register1 to register2 0100 0RXB 0011 000w : 11 reg1 reg2

byteregister1 to byteregister2 0100 0R0B 0011 0000 : 11 bytereg1 
bytereg2

qwordregister1 to qwordregister2 0100 1R0B 0011 0001 : 11 qwordreg1 
qwordreg2

register2 to register1 0100 0R0B 0011 001w : 11 reg1 reg2 

byteregister2 to byteregister1 0100 0R0B 0011 0010 : 11 bytereg1 
bytereg2 

qwordregister2 to qwordregister1 0100 1R0B 0011 0011 : 11 qwordreg1 
qwordreg2 

memory to register 0100 0RXB 0011 001w : mod reg r/m

memory8 to byteregister 0100 0RXB 0011 0010 : mod bytereg r/m

Table B-15.  General Purpose Instruction Formats and Encodings 
for 64-Bit Mode (Contd.)

Instruction and Format Encoding
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memory64 to qwordregister 0100 1RXB 0011 0011 : mod qwordreg r/m

register to memory 0100 0RXB 0011 000w : mod reg r/m

byteregister to memory8 0100 0RXB 0011 0000 : mod bytereg r/m

qwordregister to memory8 0100 1RXB 0011 0001 : mod qwordreg r/m

immediate to register 0100 000B 1000 00sw : 11 110 reg : imm

immediate8 to byteregister 0100 000B 1000 0000 : 11 110 bytereg : 
imm8

immediate32 to qwordregister 0100 100B 1000 0001 : 11 110 qwordreg : 
imm32

immediate8 to qwordregister 0100 100B 1000 0011 : 11 110 qwordreg : 
imm8

immediate to AL, AX, or EAX 0100 000B 0011 010w : imm

immediate to RAX 0100 1000 0011 0101 : immediate data

immediate to memory 0100 00XB 1000 00sw : mod 110 r/m : imm

immediate8 to memory8 0100 00XB 1000 0000 : mod 110 r/m : imm8

immediate32 to memory64 0100 10XB 1000 0001 : mod 110 r/m : imm32

immediate8 to memory64 0100 10XB 1000 0011 : mod 110 r/m : imm8

Prefix Bytes

address size 0110 0111

LOCK 1111 0000

operand size 0110 0110

CS segment override 0010 1110

DS segment override 0011 1110

ES segment override 0010 0110

FS segment override 0110 0100

GS segment override 0110 0101

SS segment override 0011 0110

Table B-15.  General Purpose Instruction Formats and Encodings 
for 64-Bit Mode (Contd.)

Instruction and Format Encoding
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B.3 PENTIUM® PROCESSOR FAMILY INSTRUCTION 
FORMATS AND ENCODINGS

The following table shows formats and encodings introduced by the Pentium 
processor family.

B.4 64-BIT MODE INSTRUCTION ENCODINGS FOR SIMD 
INSTRUCTION EXTENSIONS

Non-64-bit mode instruction encodings for MMX Technology, SSE, SSE2, and SSE3 
are covered by applying these rules to Table B-19 through Table B-31. Table B-34 
lists special encodings (instructions that do not follow the rules below).

1. The REX instruction has no effect:

• On immediates

• If both operands are MMX registers

• On MMX registers and XMM registers

• If an MMX register is encoded in the reg field of the ModR/M byte

2. If a memory operand is encoded in the r/m field of the ModR/M byte, REX.X and 
REX.B may be used for encoding the memory operand.

Table B-16.  Pentium Processor Family Instruction Formats and Encodings, 
Non-64-Bit Modes

Instruction and Format Encoding

CMPXCHG8B – Compare and Exchange 8 
Bytes 

EDX:EAX with memory64 0000 1111 : 1100 0111 : mod 001 r/m

Table B-17.  Pentium Processor Family Instruction Formats and Encodings, 64-Bit 
Mode

Instruction and Format Encoding

CMPXCHG8B/CMPXCHG16B – Compare and 
Exchange Bytes 

EDX:EAX with memory64 0000 1111 : 1100 0111 : mod 001 r/m

RDX:RAX with memory128 0100 10XB 0000 1111 : 1100 0111 : mod 
001 r/m
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3. If a general-purpose register is encoded in the r/m field of the ModR/M byte, 
REX.B may be used for register encoding and REX.W may be used to encode the 
64-bit operand size.

4. If an XMM register operand is encoded in the reg field of the ModR/M byte, REX.R 
may be used for register encoding. If an XMM register operand is encoded in the 
r/m field of the ModR/M byte, REX.B may be used for register encoding.

B.5 MMX INSTRUCTION FORMATS AND ENCODINGS
MMX instructions, except the EMMS instruction, use a format similar to the 2-byte 
Intel Architecture integer format. Details of subfield encodings within these formats 
are presented below.

B.5.1  Granularity Field (gg)
The granularity field (gg) indicates the size of the packed operands that the instruc-
tion is operating on. When this field is used, it is located in bits 1 and 0 of the second 
opcode byte. Table B-18 shows the encoding of the gg field.

B.5.2  MMX Technology and General-Purpose Register Fields 
(mmxreg and reg)

When MMX technology registers (mmxreg) are used as operands, they are encoded 
in the ModR/M byte in the reg field (bits 5, 4, and 3) and/or the R/M field (bits 2, 1, 
and 0).

If an MMX instruction operates on a general-purpose register (reg), the register is 
encoded in the R/M field of the ModR/M byte.

B.5.3  MMX Instruction Formats and Encodings Table
Table B-19 shows the formats and encodings of the integer instructions.

Table B-18.  Encoding of Granularity of Data Field (gg)

gg Granularity of Data

00 Packed Bytes

01 Packed Words

10 Packed Doublewords

11 Quadword
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Table B-19.  MMX Instruction Formats and Encodings

Instruction and Format Encoding

EMMS – Empty MMX technology state 0000 1111:01110111

MOVD – Move doubleword

reg to mmxreg 0000 1111:0110 1110: 11 mmxreg reg

reg from mmxreg 0000 1111:0111 1110: 11 mmxreg reg

mem to mmxreg 0000 1111:0110 1110: mod mmxreg r/m

mem from mmxreg 0000 1111:0111 1110: mod mmxreg r/m

MOVQ – Move quadword

mmxreg2 to mmxreg1 0000 1111:0110 1111: 11 mmxreg1 mmxreg2

mmxreg2 from mmxreg1 0000 1111:0111 1111: 11 mmxreg1 mmxreg2

mem to mmxreg 0000 1111:0110 1111: mod mmxreg r/m

mem from mmxreg 0000 1111:0111 1111: mod mmxreg r/m

PACKSSDW1 – Pack dword to word data 
(signed with saturation)

mmxreg2 to mmxreg1 0000 1111:0110 1011: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:0110 1011: mod mmxreg r/m

PACKSSWB1 – Pack word to byte data 
(signed with saturation)

mmxreg2 to mmxreg1 0000 1111:0110 0011: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:0110 0011: mod mmxreg r/m

PACKUSWB1 – Pack word to byte data 
(unsigned with saturation)

mmxreg2 to mmxreg1 0000 1111:0110 0111: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:0110 0111: mod mmxreg r/m

PADD – Add with wrap-around

mmxreg2 to mmxreg1 0000 1111: 1111 11gg: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111: 1111 11gg: mod mmxreg r/m

PADDS – Add signed with saturation

mmxreg2 to mmxreg1 0000 1111: 1110 11gg: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111: 1110 11gg: mod mmxreg r/m

PADDUS – Add unsigned with saturation

mmxreg2 to mmxreg1 0000 1111: 1101 11gg: 11 mmxreg1 mmxreg2
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memory to mmxreg 0000 1111: 1101 11gg: mod mmxreg r/m

PAND – Bitwise And

mmxreg2 to mmxreg1 0000 1111:1101 1011: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:1101 1011: mod mmxreg r/m

PANDN – Bitwise AndNot

mmxreg2 to mmxreg1 0000 1111:1101 1111: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:1101 1111: mod mmxreg r/m

PCMPEQ – Packed compare for equality

 mmxreg1 with mmxreg2 0000 1111:0111 01gg: 11 mmxreg1 mmxreg2

  mmxreg with memory 0000 1111:0111 01gg: mod mmxreg r/m

PCMPGT – Packed compare greater 
(signed)

mmxreg1 with mmxreg2 0000 1111:0110 01gg: 11 mmxreg1 mmxreg2

mmxreg with memory 0000 1111:0110 01gg: mod mmxreg r/m

PMADDWD – Packed multiply add

mmxreg2 to mmxreg1 0000 1111:1111 0101: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:1111 0101: mod mmxreg r/m

PMULHUW – Packed multiplication, store 
high word (unsigned)

   mmxreg2 to mmxreg1 0000 1111: 1110 0100: 11 mmxreg1 mmxreg2

   memory to mmxreg 0000 1111: 1110 0100: mod mmxreg r/m

PMULHW – Packed multiplication, store 
high word

mmxreg2 to mmxreg1 0000 1111:1110 0101: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:1110 0101: mod mmxreg r/m

PMULLW – Packed multiplication, store low 
word

mmxreg2 to mmxreg1 0000 1111:1101 0101: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:1101 0101: mod mmxreg r/m

POR – Bitwise Or

mmxreg2 to mmxreg1 0000 1111:1110 1011: 11 mmxreg1 mmxreg2

Table B-19.  MMX Instruction Formats and Encodings (Contd.)

Instruction and Format Encoding
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memory to mmxreg 0000 1111:1110 1011: mod mmxreg r/m

PSLL2 – Packed shift left logical

mmxreg1 by mmxreg2 0000 1111:1111 00gg: 11 mmxreg1 mmxreg2

mmxreg by memory 0000 1111:1111 00gg: mod mmxreg r/m

mmxreg by immediate 0000 1111:0111 00gg: 11 110 mmxreg: imm8 
data

PSRA2 – Packed shift right arithmetic

mmxreg1 by mmxreg2 0000 1111:1110 00gg: 11 mmxreg1 mmxreg2

mmxreg by memory 0000 1111:1110 00gg: mod mmxreg r/m

mmxreg by immediate 0000 1111:0111 00gg: 11 100 mmxreg: imm8 
data

PSRL2 – Packed shift right logical

mmxreg1 by mmxreg2 0000 1111:1101 00gg: 11 mmxreg1 mmxreg2

   mmxreg by memory 0000 1111:1101 00gg: mod mmxreg r/m

mmxreg by immediate 0000 1111:0111 00gg: 11 010 mmxreg: imm8 
data

PSUB – Subtract with wrap-around

mmxreg2 from mmxreg1 0000 1111:1111 10gg: 11 mmxreg1 mmxreg2

memory from mmxreg 0000 1111:1111 10gg: mod mmxreg r/m

PSUBS – Subtract signed with saturation

mmxreg2 from mmxreg1 0000 1111:1110 10gg: 11 mmxreg1 mmxreg2

memory from mmxreg 0000 1111:1110 10gg: mod mmxreg r/m

PSUBUS – Subtract unsigned with 
saturation

mmxreg2 from mmxreg1 0000 1111:1101 10gg: 11 mmxreg1 mmxreg2

memory from mmxreg 0000 1111:1101 10gg: mod mmxreg r/m

PUNPCKH – Unpack high data to next larger 
type

mmxreg2 to mmxreg1 0000 1111:0110 10gg: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:0110 10gg: mod mmxreg r/m

PUNPCKL – Unpack low data to next larger 
type

mmxreg2 to mmxreg1 0000 1111:0110 00gg: 11 mmxreg1 mmxreg2

Table B-19.  MMX Instruction Formats and Encodings (Contd.)

Instruction and Format Encoding
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B.6 PROCESSOR EXTENDED STATE INSTRUCTION 
FORMATS AND ENCODINGS 

Table B-20 shows the formats and encodings for several instructions that relate to 
processor extended state management.

  

B.7 P6 FAMILY INSTRUCTION FORMATS AND 
ENCODINGS 

Table B-20 shows the formats and encodings for several instructions that were intro-
duced into the IA-32 architecture in the P6 family processors.

memory to mmxreg 0000 1111:0110 00gg: mod mmxreg r/m

PXOR – Bitwise Xor

mmxreg2 to mmxreg1 0000 1111:1110 1111: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:1110 1111: mod mmxreg r/m

NOTES:
1. The pack instructions perform saturation from signed packed data of one type to signed or 

unsigned data of the next smaller type.
2. The format of the shift instructions has one additional format to support shifting by immediate 

shift-counts. The shift operations are not supported equally for all data types.

Table B-20.  Formats and Encodings of XSAVE/XRSTOR/XGETBV/XSETBV Instructions

Instruction and Format Encoding

XGETBV – Get Value of Extended Control 
Register

0000 1111:0000 0001: 1101 0000

XRSTOR – Restore Processor Extended 
States1

0000 1111:1010 1110: modA 101 r/m

XSAVE – Save Processor Extended States1 0000 1111:1010 1110: modA 100 r/m

XSETBV – Set Extended Control Register 0000 1111:0000 0001: 1101 0001

NOTES:
1.   For XSAVE and XRSTOR, “mod = 11” is reserved.

Table B-19.  MMX Instruction Formats and Encodings (Contd.)

Instruction and Format Encoding
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B.8 SSE INSTRUCTION FORMATS AND ENCODINGS 
The SSE instructions use the ModR/M format and are preceded by the 0FH prefix 
byte. In general, operations are not duplicated to provide two directions (that is, 
separate load and store variants).

The following three tables (Tables B-22, B-23, and B-24) show the formats and 
encodings for the SSE SIMD floating-point, SIMD integer, and cacheability and 
memory ordering instructions, respectively. Some SSE instructions require a manda-
tory prefix (66H, F2H, F3H) as part of the two-byte opcode. Mandatory prefixes are 
included in the tables.

Table B-21.  Formats and Encodings of P6 Family Instructions 

Instruction and Format Encoding

CMOVcc – Conditional Move

register2 to  register1 0000 1111: 0100 tttn : 11 reg1 reg2

memory to register  0000 1111 : 0100 tttn : mod reg r/m

FCMOVcc – Conditional Move on EFLAG 
Register Condition Codes

move if below (B) 11011 010 : 11 000 ST(i)

move if equal (E) 11011 010 : 11 001 ST(i)

move if below or equal (BE) 11011 010 : 11 010 ST(i)

move if unordered (U) 11011 010 : 11 011 ST(i)

move if not below (NB) 11011 011 : 11 000 ST(i)

move if not equal (NE) 11011 011 : 11 001 ST(i)

move if not below or equal (NBE) 11011 011 : 11 010 ST(i)

move if not unordered (NU) 11011 011 : 11 011 ST(i)

FCOMI – Compare Real and Set EFLAGS 11011 011 : 11 110 ST(i)

FXRSTOR – Restore x87 FPU, MMX, SSE, 
and SSE2 State1

0000 1111:1010 1110: modA 001 r/m

FXSAVE – Save x87 FPU, MMX, SSE, and 
SSE2 State1

0000 1111:1010 1110: modA 000 r/m

SYSENTER – Fast System Call 0000 1111:0011 0100

SYSEXIT – Fast Return from Fast System 
Call

0000 1111:0011 0101

NOTES:
1.   For  FXSAVE and FXRSTOR, “mod = 11” is reserved.
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Table B-22.  Formats and Encodings of SSE Floating-Point Instructions 

Instruction and Format Encoding

ADDPS—Add Packed Single-Precision 
Floating-Point Values

   xmmreg2 to xmmreg1 0000 1111:0101 1000:11 xmmreg1 xmmreg2 

   mem to xmmreg 0000 1111:0101 1000:  mod xmmreg r/m

ADDSS—Add Scalar Single-Precision 
Floating-Point Values

   xmmreg2 to xmmreg1 1111 0011:0000 1111:01011000:11 xmmreg1 
xmmreg2

   mem to xmmreg 1111 0011:0000 1111:01011000: mod xmmreg r/m

ANDNPS—Bitwise Logical AND NOT of 
Packed Single-Precision Floating-Point 
Values

  xmmreg2 to xmmreg1 0000 1111:0101 0101:11 xmmreg1 xmmreg2

   mem to xmmreg 0000 1111:0101 0101:  mod xmmreg r/m

ANDPS—Bitwise Logical AND of Packed 
Single-Precision Floating-Point Values

  xmmreg2 to xmmreg1 0000 1111:0101 0100:11 xmmreg1 xmmreg2

  mem to xmmreg 0000 1111:0101 0100:  mod xmmreg r/m

CMPPS—Compare Packed Single-
Precision Floating-Point Values

   xmmreg2 to xmmreg1, imm8 0000 1111:1100 0010:11 xmmreg1 xmmreg2: 
imm8

   mem to xmmreg, imm8 0000 1111:1100 0010:  mod xmmreg r/m: imm8

CMPSS—Compare Scalar Single-
Precision Floating-Point Values

   xmmreg2 to xmmreg1, imm8 1111 0011:0000 1111:1100 0010:11 xmmreg1 
xmmreg2: imm8

   mem to xmmreg, imm8 1111 0011:0000 1111:1100 0010: mod xmmreg 
r/m: imm8

COMISS—Compare Scalar Ordered 
Single-Precision Floating-Point Values 
and Set EFLAGS

   xmmreg2 to xmmreg1 0000 1111:0010 1111:11 xmmreg1 xmmreg2

   mem to xmmreg 0000 1111:0010 1111:  mod xmmreg r/m
Vol. 2C B-61



INSTRUCTION FORMATS AND ENCODINGS
CVTPI2PS—Convert Packed 
Doubleword Integers to Packed Single-
Precision Floating-Point Values

  mmreg to xmmreg 0000 1111:0010 1010:11 xmmreg1 mmreg1

  mem to xmmreg 0000 1111:0010 1010:  mod xmmreg r/m

CVTPS2PI—Convert Packed Single-
Precision Floating-Point Values to 
Packed Doubleword Integers

  xmmreg to mmreg 0000 1111:0010 1101:11 mmreg1 xmmreg1

  mem to mmreg 0000 1111:0010 1101:  mod mmreg r/m

CVTSI2SS—Convert Doubleword 
Integer to Scalar Single-Precision 
Floating-Point Value

  r32 to xmmreg1 1111 0011:0000 1111:00101010:11 xmmreg1 r32

  mem to xmmreg 1111 0011:0000 1111:00101010: mod xmmreg r/m

CVTSS2SI—Convert Scalar Single-
Precision Floating-Point Value to 
Doubleword Integer

  xmmreg to r32 1111 0011:0000 1111:0010 1101:11 r32 xmmreg

  mem to r32 1111 0011:0000 1111:0010 1101: mod r32 r/m

CVTTPS2PI—Convert with Truncation 
Packed Single-Precision Floating-Point 
Values to Packed Doubleword Integers

  xmmreg to mmreg 0000 1111:0010 1100:11 mmreg1 xmmreg1

  mem to mmreg 0000 1111:0010 1100:  mod mmreg r/m

CVTTSS2SI—Convert with Truncation 
Scalar Single-Precision Floating-Point 
Value to Doubleword Integer

  xmmreg to r32 1111 0011:0000 1111:0010 1100:11 r32 xmmreg1

  mem to r32 1111 0011:0000 1111:0010 1100: mod r32 r/m

DIVPS—Divide Packed Single-Precision 
Floating-Point Values

  xmmreg2 to xmmreg1 0000 1111:0101 1110:11 xmmreg1 xmmreg2

  mem to xmmreg 0000 1111:0101 1110:  mod xmmreg r/m

DIVSS—Divide Scalar Single-Precision 
Floating-Point Values

Table B-22.  Formats and Encodings of SSE Floating-Point Instructions  (Contd.)

Instruction and Format Encoding
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  xmmreg2 to xmmreg1 1111 0011:0000 1111:0101 1110:11 xmmreg1 
xmmreg2

  mem to xmmreg 1111 0011:0000 1111:0101 1110: mod xmmreg 
r/m

LDMXCSR—Load  MXCSR Register State

  m32 to MXCSR 0000 1111:1010 1110:modA 010 mem

MAXPS—Return Maximum Packed 
Single-Precision Floating-Point Values

  xmmreg2 to xmmreg1 0000 1111:0101 1111:11 xmmreg1 xmmreg2

  mem to xmmreg 0000 1111:0101 1111: mod xmmreg r/m

MAXSS—Return Maximum Scalar 
Double-Precision Floating-Point Value

  xmmreg2 to xmmreg1 1111 0011:0000 1111:0101 1111:11 xmmreg1 
xmmreg2

  mem to xmmreg 1111 0011:0000 1111:0101 1111: mod xmmreg 
r/m

MINPS—Return Minimum Packed 
Double-Precision Floating-Point 
Values

  xmmreg2 to xmmreg1 0000 1111:0101 1101:11 xmmreg1 xmmreg2

  mem to xmmreg 0000 1111:0101 1101: mod xmmreg r/m

MINSS—Return Minimum Scalar Double-
Precision Floating-Point Value

  xmmreg2 to xmmreg1 1111 0011:0000 1111:0101 1101:11 xmmreg1 
xmmreg2

  mem to xmmreg 1111 0011:0000 1111:0101 1101: mod xmmreg 
r/m

MOVAPS—Move Aligned Packed 
Single-Precision Floating-Point Values

  xmmreg2 to xmmreg1 0000 1111:0010 1000:11 xmmreg2 xmmreg1

  mem to xmmreg1 0000 1111:0010 1000: mod xmmreg r/m

  xmmreg1 to xmmreg2 0000 1111:0010 1001:11 xmmreg1 xmmreg2

  xmmreg1 to mem 0000 1111:0010 1001: mod xmmreg r/m

Table B-22.  Formats and Encodings of SSE Floating-Point Instructions  (Contd.)
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MOVHLPS—Move Packed Single-
Precision Floating-Point Values High to 
Low

  xmmreg2 to xmmreg1 0000 1111:0001 0010:11 xmmreg1 xmmreg2

MOVHPS—Move High Packed Single-
Precision Floating-Point Values

  mem to xmmreg 0000 1111:0001 0110: mod xmmreg r/m

  xmmreg to mem 0000 1111:0001 0111: mod xmmreg r/m

MOVLHPS—Move Packed Single-
Precision Floating-Point Values Low to 
High

  xmmreg2 to xmmreg1 0000 1111:00010110:11 xmmreg1 xmmreg2

MOVLPS—Move Low Packed Single-
Precision Floating-Point Values

  mem to xmmreg 0000 1111:0001 0010: mod xmmreg r/m

  xmmreg to mem 0000 1111:0001 0011: mod xmmreg r/m

MOVMSKPS—Extract Packed Single-
Precision Floating-Point Sign Mask

  xmmreg to r32 0000 1111:0101 0000:11 r32 xmmreg

MOVSS—Move Scalar Single-Precision 
Floating-Point Values

  xmmreg2 to xmmreg1 1111 0011:0000 1111:0001 0000:11 xmmreg2 
xmmreg1

  mem to xmmreg1 1111 0011:0000 1111:0001 0000: mod xmmreg 
r/m

  xmmreg1 to xmmreg2 1111 0011:0000 1111:0001 0001:11 xmmreg1 
xmmreg2

  xmmreg1 to mem 1111 0011:0000 1111:0001 0001: mod xmmreg 
r/m

MOVUPS—Move Unaligned Packed 
Single-Precision Floating-Point Values

   xmmreg2 to xmmreg1 0000 1111:0001 0000:11 xmmreg2 xmmreg1

  mem to xmmreg1 0000 1111:0001 0000: mod xmmreg r/m

   xmmreg1 to xmmreg2 0000 1111:0001 0001:11 xmmreg1 xmmreg2

  xmmreg1 to mem 0000 1111:0001 0001: mod xmmreg r/m

Table B-22.  Formats and Encodings of SSE Floating-Point Instructions  (Contd.)
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MULPS—Multiply Packed Single-
Precision Floating-Point Values

   xmmreg2 to xmmreg1 0000 1111:0101 1001:11 xmmreg1 xmmreg2

   mem to xmmreg 0000 1111:0101 1001: mod xmmreg r/m

MULSS—Multiply Scalar Single-Precision 
Floating-Point Values

  xmmreg2 to xmmreg1 1111 0011:0000 1111:0101 1001:11 xmmreg1 
xmmreg2

  mem to xmmreg 1111 0011:0000 1111:0101 1001: mod xmmreg 
r/m

ORPS—Bitwise Logical OR of Single-
Precision Floating-Point Values

  xmmreg2 to xmmreg1 0000 1111:0101 0110:11 xmmreg1 xmmreg2

   mem to xmmreg 0000 1111:0101 0110: mod xmmreg r/m

RCPPS—Compute Reciprocals of Packed 
Single-Precision Floating-Point Values

  xmmreg2 to xmmreg1 0000 1111:0101 0011:11 xmmreg1 xmmreg2

  mem to xmmreg 0000 1111:0101 0011: mod xmmreg r/m

RCPSS—Compute Reciprocals of Scalar 
Single-Precision Floating-Point Value

  xmmreg2 to xmmreg1 1111 0011:0000 1111:01010011:11 xmmreg1 
xmmreg2

   mem to xmmreg 1111 0011:0000 1111:01010011: mod xmmreg r/m

RSQRTPS—Compute Reciprocals of 
Square Roots of Packed Single-
Precision Floating-Point Values

  xmmreg2 to xmmreg1 0000 1111:0101 0010:11 xmmreg1 xmmreg2

  mem to xmmreg 0000 1111:0101 0010: mode xmmreg r/m

RSQRTSS—Compute Reciprocals of 
Square Roots of Scalar Single-Precision 
Floating-Point Value

   xmmreg2 to xmmreg1 1111 0011:0000 1111:0101 0010:11 xmmreg1 
xmmreg2

   mem to xmmreg 1111 0011:0000 1111:0101 0010: mod xmmreg 
r/m

Table B-22.  Formats and Encodings of SSE Floating-Point Instructions  (Contd.)
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SHUFPS—Shuffle Packed Single-
Precision Floating-Point Values

  xmmreg2 to xmmreg1, imm8 0000 1111:1100 0110:11 xmmreg1 xmmreg2: 
imm8

  mem to xmmreg, imm8 0000 1111:1100 0110: mod xmmreg r/m: imm8

SQRTPS—Compute Square Roots of 
Packed Single-Precision Floating-Point 
Values

  xmmreg2 to xmmreg1 0000 1111:0101 0001:11 xmmreg1 xmmreg2

  mem to xmmreg 0000 1111:0101 0001: mod xmmreg r/m

SQRTSS—Compute Square Root of 
Scalar Single-Precision Floating-Point 
Value

  xmmreg2 to xmmreg1 1111 0011:0000 1111:0101 0001:11 xmmreg1 
xmmreg2

  mem to xmmreg 1111 0011:0000 1111:0101 0001:mod xmmreg r/m

STMXCSR—Store MXCSR Register State

   MXCSR to mem 0000 1111:1010 1110:modA 011 mem

SUBPS—Subtract Packed Single-
Precision Floating-Point Values

  xmmreg2 to xmmreg1 0000 1111:0101 1100:11 xmmreg1 xmmreg2

  mem to xmmreg 0000 1111:0101 1100:mod xmmreg r/m

SUBSS—Subtract Scalar Single-
Precision Floating-Point Values

  xmmreg2 to xmmreg1 1111 0011:0000 1111:0101 1100:11 xmmreg1 
xmmreg2

  mem to xmmreg 1111 0011:0000 1111:0101 1100:mod xmmreg r/m

UCOMISS—Unordered Compare Scalar 
Ordered Single-Precision Floating-Point 
Values and Set EFLAGS

  xmmreg2 to xmmreg1 0000 1111:0010 1110:11 xmmreg1 xmmreg2

  mem to xmmreg 0000 1111:0010 1110: mod xmmreg r/m

UNPCKHPS—Unpack and Interleave 
High Packed Single-Precision Floating-
Point Values

Table B-22.  Formats and Encodings of SSE Floating-Point Instructions  (Contd.)
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  xmmreg2 to xmmreg1 0000 1111:0001 0101:11 xmmreg1 xmmreg2

  mem to xmmreg 0000 1111:0001 0101: mod xmmreg r/m

UNPCKLPS—Unpack and Interleave Low 
Packed Single-Precision Floating-Point 
Values

  xmmreg2 to xmmreg1 0000 1111:0001 0100:11 xmmreg1 xmmreg2

  mem to xmmreg 0000 1111:0001 0100: mod xmmreg r/m

XORPS—Bitwise Logical XOR of Single-
Precision Floating-Point Values

   xmmreg2 to xmmreg1 0000 1111:0101 0111:11 xmmreg1 xmmreg2

   mem to xmmreg 0000 1111:0101 0111: mod xmmreg r/m

Table B-23.  Formats and Encodings of SSE Integer Instructions

Instruction and Format Encoding

PAVGB/PAVGW—Average Packed Integers

   mmreg2 to mmreg1 0000 1111:1110 0000:11 mmreg1 mmreg2

0000 1111:1110 0011:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:1110 0000: mod mmreg r/m

0000 1111:1110 0011: mod mmreg r/m

PEXTRW—Extract Word

  mmreg to reg32, imm8 0000 1111:1100 0101:11 r32 mmreg: imm8

PINSRW—Insert Word

  reg32 to mmreg, imm8 0000 1111:1100 0100:11 mmreg r32: imm8

  m16 to mmreg, imm8 0000 1111:1100 0100: mod mmreg r/m: 
imm8

PMAXSW—Maximum of Packed Signed Word 
Integers

  mmreg2 to mmreg1 0000 1111:1110 1110:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:1110 1110: mod mmreg r/m

PMAXUB—Maximum of Packed Unsigned Byte 
Integers

  mmreg2 to mmreg1 0000 1111:1101 1110:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:1101 1110: mod mmreg r/m

Table B-22.  Formats and Encodings of SSE Floating-Point Instructions  (Contd.)

Instruction and Format Encoding
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PMINSW—Minimum of Packed Signed Word 
Integers

   mmreg2 to mmreg1 0000 1111:1110 1010:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:1110 1010: mod mmreg r/m

PMINUB—Minimum of Packed Unsigned Byte 
Integers

   mmreg2 to mmreg1 0000 1111:1101 1010:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:1101 1010: mod mmreg r/m

PMOVMSKB—Move Byte Mask To Integer

   mmreg to reg32 0000 1111:1101 0111:11 r32 mmreg

PMULHUW—Multiply Packed Unsigned Integers 
and Store High Result

  mmreg2 to mmreg1 0000 1111:1110 0100:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:1110 0100: mod mmreg r/m

PSADBW—Compute Sum of Absolute 
Differences

  mmreg2 to mmreg1 0000 1111:1111 0110:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:1111 0110: mod mmreg r/m

PSHUFW—Shuffle Packed Words

   mmreg2 to mmreg1, imm8 0000 1111:0111 0000:11 mmreg1 mmreg2: 
imm8

   mem to mmreg, imm8 0000 1111:0111 0000: mod mmreg r/m: 
imm8

Table B-24.  Format and Encoding of SSE Cacheability & Memory Ordering 
Instructions  

Instruction and Format Encoding

MASKMOVQ—Store Selected Bytes of Quadword

   mmreg2 to mmreg1 0000 1111:1111 0111:11 mmreg1 
mmreg2

MOVNTPS—Store Packed Single-Precision Floating-
Point Values Using Non-Temporal Hint

   xmmreg to mem 0000 1111:0010 1011: mod xmmreg 
r/m

Table B-23.  Formats and Encodings of SSE Integer Instructions (Contd.)

Instruction and Format Encoding
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B.9 SSE2 INSTRUCTION FORMATS AND ENCODINGS 
The SSE2 instructions use the ModR/M format and are preceded by the 0FH prefix 
byte. In general, operations are not duplicated to provide two directions (that is, 
separate load and store variants).

The following three tables show the formats and encodings for the SSE2 SIMD 
floating-point, SIMD integer, and cacheability instructions, respectively. Some SSE2 
instructions require a mandatory prefix (66H, F2H, F3H) as part of the two-byte 
opcode. These prefixes are included in the tables.

B.9.1  Granularity Field (gg)
The granularity field (gg) indicates the size of the packed operands that the instruc-
tion is operating on. When this field is used, it is located in bits 1 and 0 of the second 
opcode byte. Table B-25 shows the encoding of this gg field.

MOVNTQ—Store Quadword Using Non-Temporal 
Hint

   mmreg to mem 0000 1111:1110 0111: mod mmreg r/m

PREFETCHT0—Prefetch Temporal to All Cache 
Levels

0000 1111:0001 1000:modA 001 mem

PREFETCHT1—Prefetch Temporal to First Level 
Cache

0000 1111:0001 1000:modA 010 mem

PREFETCHT2—Prefetch Temporal to Second Level 
Cache

0000 1111:0001 1000:modA 011 mem

PREFETCHNTA—Prefetch Non-Temporal to All 
Cache Levels

0000 1111:0001 1000:modA 000 mem

SFENCE—Store Fence 0000 1111:1010 1110:11 111 000

Table B-25.  Encoding of Granularity of Data Field (gg)

gg Granularity of Data

00 Packed Bytes

01 Packed Words

10 Packed Doublewords

11 Quadword

Table B-24.  Format and Encoding of SSE Cacheability & Memory Ordering 
Instructions (Contd.) 

Instruction and Format Encoding
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Table B-26.  Formats and Encodings of SSE2 Floating-Point Instructions

Instruction and Format Encoding

ADDPD—Add Packed Double-
Precision Floating-Point Values

   xmmreg2 to xmmreg1 0110 0110:0000 1111:0101 1000:11 xmmreg1 
xmmreg2 

  mem to xmmreg 0110 0110:0000 1111:0101 1000:  mod xmmreg r/m

ADDSD—Add Scalar Double-Precision 
Floating-Point Values

  xmmreg2 to xmmreg1 1111 0010:0000 1111:0101 1000:11 xmmreg1 
xmmreg2

  mem to xmmreg 1111 0010:0000 1111:0101 1000: mod xmmreg r/m

ANDNPD—Bitwise Logical AND NOT 
of Packed Double-Precision Floating-
Point Values

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0101 0101:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0101 0101:  mod xmmreg r/m

ANDPD—Bitwise Logical AND of 
Packed Double-Precision Floating-
Point Values

   xmmreg2 to xmmreg1 0110 0110:0000 1111:0101 0100:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0101 0100:  mod xmmreg r/m

CMPPD—Compare Packed Double-
Precision Floating-Point Values

  xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:1100 0010:11 xmmreg1 
xmmreg2: imm8

  mem to xmmreg, imm8 0110 0110:0000 1111:1100 0010:  mod xmmreg r/m: 
imm8

CMPSD—Compare Scalar Double-
Precision Floating-Point Values

  xmmreg2 to xmmreg1, imm8 1111 0010:0000 1111:1100 0010:11 xmmreg1 
xmmreg2: imm8

  mem to xmmreg, imm8 11110 010:0000 1111:1100 0010: mod xmmreg r/m: 
imm8
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COMISD—Compare Scalar Ordered 
Double-Precision Floating-Point 
Values and Set EFLAGS

   xmmreg2 to xmmreg1 0110 0110:0000 1111:0010 1111:11 xmmreg1 
xmmreg2

   mem to xmmreg 0110 0110:0000 1111:0010 1111:  mod xmmreg r/m

CVTPI2PD—Convert Packed 
Doubleword Integers to Packed 
Double-Precision Floating-Point 
Values

   mmreg to xmmreg 0110 0110:0000 1111:0010 1010:11 xmmreg1 
mmreg1

   mem to xmmreg 0110 0110:0000 1111:0010 1010:  mod xmmreg r/m

CVTPD2PI—Convert Packed Double-
Precision Floating-Point Values to 
Packed Doubleword Integers

  xmmreg to mmreg 0110 0110:0000 1111:0010 1101:11 mmreg1 
xmmreg1

  mem to mmreg 0110 0110:0000 1111:0010 1101:  mod mmreg r/m

CVTSI2SD—Convert Doubleword 
Integer to Scalar Double-Precision 
Floating-Point Value

  r32 to xmmreg1 1111 0010:0000 1111:0010 1010:11 xmmreg r32

  mem to xmmreg 1111 0010:0000 1111:0010 1010: mod xmmreg r/m

CVTSD2SI—Convert Scalar Double-
Precision Floating-Point Value to 
Doubleword Integer

  xmmreg to r32 1111 0010:0000 1111:0010 1101:11 r32 xmmreg

  mem to r32 1111 0010:0000 1111:0010 1101: mod r32 r/m

CVTTPD2PI—Convert with Truncation 
Packed Double-Precision Floating-
Point Values to Packed Doubleword 
Integers

  xmmreg to mmreg 0110 0110:0000 1111:0010 1100:11 mmreg xmmreg

   mem to mmreg 0110 0110:0000 1111:0010 1100:  mod mmreg r/m

Table B-26.  Formats and Encodings of SSE2 Floating-Point Instructions (Contd.)

Instruction and Format Encoding
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CVTTSD2SI—Convert with 
Truncation Scalar Double-Precision 
Floating-Point Value to Doubleword 
Integer

  xmmreg to r32 1111 0010:0000 1111:0010 1100:11 r32 xmmreg

  mem to r32 1111 0010:0000 1111:0010 1100: mod r32 r/m

CVTPD2PS—Covert Packed Double-
Precision Floating-Point Values to 
Packed Single-Precision Floating-
Point Values

   xmmreg2 to xmmreg1 0110 0110:0000 1111:0101 1010:11 xmmreg1 
xmmreg2

   mem to xmmreg 0110 0110:0000 1111:0101 1010:  mod xmmreg r/m

CVTPS2PD—Covert Packed Single-
Precision Floating-Point Values to 
Packed Double-Precision Floating-
Point Values

   xmmreg2 to xmmreg1 0000 1111:0101 1010:11 xmmreg1 xmmreg2

   mem to xmmreg 0000 1111:0101 1010:  mod xmmreg r/m

CVTSD2SS—Covert Scalar Double-
Precision Floating-Point Value to 
Scalar Single-Precision Floating-Point 
Value

   xmmreg2 to xmmreg1 1111 0010:0000 1111:0101 1010:11 xmmreg1 
xmmreg2

   mem to xmmreg 1111 0010:0000 1111:0101 1010:  mod xmmreg r/m

CVTSS2SD—Covert Scalar Single-
Precision Floating-Point Value to 
Scalar Double-Precision Floating-
Point Value

   xmmreg2 to xmmreg1 1111 0011:0000 1111:0101 1010:11 xmmreg1 
xmmreg2

   mem to xmmreg 1111 0011:00001 111:0101 1010:  mod xmmreg r/m

Table B-26.  Formats and Encodings of SSE2 Floating-Point Instructions (Contd.)

Instruction and Format Encoding
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CVTPD2DQ—Convert Packed Double-
Precision Floating-Point Values to 
Packed Doubleword Integers

   xmmreg2 to xmmreg1 1111 0010:0000 1111:1110 0110:11 xmmreg1 
xmmreg2

   mem to xmmreg 1111 0010:0000 1111:1110 0110:  mod xmmreg r/m

CVTTPD2DQ—Convert With 
Truncation Packed Double-Precision 
Floating-Point Values to Packed 
Doubleword Integers

   xmmreg2 to xmmreg1 0110 0110:0000 1111:1110 0110:11 xmmreg1 
xmmreg2

   mem to xmmreg 0110 0110:0000 1111:1110 0110:  mod xmmreg r/m

CVTDQ2PD—Convert  Packed 
Doubleword Integers to Packed 
Single-Precision Floating-Point 
Values

   xmmreg2 to xmmreg1 1111 0011:0000 1111:1110 0110:11 xmmreg1 
xmmreg2

   mem to xmmreg 1111 0011:0000 1111:1110 0110:  mod xmmreg r/m

CVTPS2DQ—Convert Packed Single-
Precision Floating-Point Values to 
Packed Doubleword Integers

   xmmreg2 to xmmreg1 0110 0110:0000 1111:0101 1011:11 xmmreg1 
xmmreg2

   mem to xmmreg 0110 0110:0000 1111:0101 1011:  mod xmmreg r/m

CVTTPS2DQ—Convert With 
Truncation Packed Single-Precision 
Floating-Point Values to Packed 
Doubleword Integers

   xmmreg2 to xmmreg1 1111 0011:0000 1111:0101 1011:11 xmmreg1 
xmmreg2

   mem to xmmreg 1111 0011:0000 1111:0101 1011:  mod xmmreg r/m

CVTDQ2PS—Convert  Packed 
Doubleword Integers to Packed 
Double-Precision Floating-Point 
Values

   xmmreg2 to xmmreg1 0000 1111:0101 1011:11 xmmreg1 xmmreg2

Table B-26.  Formats and Encodings of SSE2 Floating-Point Instructions (Contd.)

Instruction and Format Encoding
Vol. 2C B-73



INSTRUCTION FORMATS AND ENCODINGS
   mem to xmmreg 0000 1111:0101 1011:  mod xmmreg r/m

DIVPD—Divide Packed Double-
Precision Floating-Point Values

   xmmreg2 to xmmreg1 0110 0110:0000 1111:0101 1110:11 xmmreg1 
xmmreg2

   mem to xmmreg 0110 0110:0000 1111:0101 1110:  mod xmmreg r/m

DIVSD—Divide Scalar Double-
Precision Floating-Point Values

   xmmreg2 to xmmreg1 1111 0010:0000 1111:0101 1110:11 xmmreg1 
xmmreg2

   mem to xmmreg 1111 0010:0000 1111:0101 1110: mod xmmreg r/m

MAXPD—Return Maximum Packed 
Double-Precision Floating-Point 
Values

   xmmreg2 to xmmreg1 0110 0110:0000 1111:0101 1111:11 xmmreg1 
xmmreg2

   mem to xmmreg 0110 0110:0000 1111:0101 1111: mod xmmreg r/m

MAXSD—Return Maximum Scalar 
Double-Precision Floating-Point 
Value

   xmmreg2 to xmmreg1 1111 0010:0000 1111:0101 1111:11 xmmreg1 
xmmreg2

   mem to xmmreg 1111 0010:0000 1111:0101 1111: mod xmmreg r/m

MINPD—Return Minimum Packed 
Double-Precision Floating-Point 
Values

   xmmreg2 to xmmreg1 0110 0110:0000 1111:0101 1101:11 xmmreg1 
xmmreg2

   mem to xmmreg 0110 0110:0000 1111:0101 1101: mod xmmreg r/m

MINSD—Return Minimum Scalar 
Double-Precision Floating-Point 
Value

   xmmreg2 to xmmreg1 1111 0010:0000 1111:0101 1101:11 xmmreg1 
xmmreg2

   mem to xmmreg 1111 0010:0000 1111:0101 1101: mod xmmreg r/m

Table B-26.  Formats and Encodings of SSE2 Floating-Point Instructions (Contd.)
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MOVAPD—Move Aligned Packed 
Double-Precision Floating-Point 
Values

   xmmreg1 to xmmreg2 0110 0110:0000 1111:0010 1001:11 xmmreg2 
xmmreg1

   xmmreg1 to mem 0110 0110:0000 1111:0010 1001: mod xmmreg r/m

   xmmreg2 to xmmreg1 0110 0110:0000 1111:0010 1000:11 xmmreg1 
xmmreg2

   mem to xmmreg1 0110 0110:0000 1111:0010 1000: mod xmmreg r/m

MOVHPD—Move High Packed Double-
Precision Floating-Point Values

   xmmreg to mem 0110 0110:0000 1111:0001 0111: mod xmmreg r/m

   mem to xmmreg 0110 0110:0000 1111:0001 0110: mod xmmreg r/m

MOVLPD—Move Low Packed Double-
Precision Floating-Point Values

   xmmreg to mem 0110 0110:0000 1111:0001 0011: mod xmmreg r/m

   mem to xmmreg 0110 0110:0000 1111:0001 0010: mod xmmreg r/m

MOVMSKPD—Extract Packed Double-
Precision Floating-Point Sign Mask

   xmmreg to r32 0110 0110:0000 1111:0101 0000:11 r32 xmmreg

MOVSD—Move Scalar Double-
Precision Floating-Point Values

   xmmreg1 to xmmreg2 1111 0010:0000 1111:0001 0001:11 xmmreg2 
xmmreg1

   xmmreg1 to mem 1111 0010:0000 1111:0001 0001: mod xmmreg r/m

   xmmreg2 to xmmreg1 1111 0010:0000 1111:0001 0000:11 xmmreg1 
xmmreg2

   mem to xmmreg1 1111 0010:0000 1111:0001 0000: mod xmmreg r/m

MOVUPD—Move Unaligned Packed 
Double-Precision Floating-Point 
Values

   xmmreg2 to xmmreg1 0110 0110:0000 1111:0001 0001:11 xmmreg2 
xmmreg1

  mem to xmmreg1 0110 0110:0000 1111:0001 0001: mod xmmreg r/m

Table B-26.  Formats and Encodings of SSE2 Floating-Point Instructions (Contd.)
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  xmmreg1 to xmmreg2 0110 0110:0000 1111:0001 0000:11 xmmreg1 
xmmreg2

   xmmreg1 to mem 0110 0110:0000 1111:0001 0000: mod xmmreg r/m

MULPD—Multiply Packed Double-
Precision Floating-Point Values

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0101 1001:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0101 1001: mod xmmreg r/m

MULSD—Multiply Scalar Double-
Precision Floating-Point Values

   xmmreg2 to xmmreg1 1111 0010:00001111:01011001:11 xmmreg1 
xmmreg2

   mem to xmmreg 1111 0010:00001111:01011001: mod xmmreg r/m

ORPD—Bitwise Logical OR of 
Double-Precision Floating-Point 
Values

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0101 0110:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0101 0110: mod xmmreg r/m

SHUFPD—Shuffle Packed Double-
Precision Floating-Point Values

  xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:1100 0110:11 xmmreg1 
xmmreg2: imm8

  mem to xmmreg, imm8 0110 0110:0000 1111:1100 0110: mod xmmreg r/m: 
imm8

SQRTPD—Compute Square Roots of 
Packed Double-Precision Floating-
Point Values

   xmmreg2 to xmmreg1 0110 0110:0000 1111:0101 0001:11 xmmreg1 
xmmreg2

   mem to xmmreg 0110 0110:0000 1111:0101 0001: mod xmmreg r/m

SQRTSD—Compute Square Root of 
Scalar Double-Precision Floating-
Point Value

  xmmreg2 to xmmreg1 1111 0010:0000 1111:0101 0001:11 xmmreg1 
xmmreg2

Table B-26.  Formats and Encodings of SSE2 Floating-Point Instructions (Contd.)
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  mem to xmmreg 1111 0010:0000 1111:0101 0001: mod xmmreg r/m

SUBPD—Subtract Packed Double-
Precision Floating-Point Values

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0101 1100:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0101 1100: mod xmmreg r/m

SUBSD—Subtract Scalar Double-
Precision Floating-Point Values

  xmmreg2 to xmmreg1 1111 0010:0000 1111:0101 1100:11 xmmreg1 
xmmreg2

  mem to xmmreg 1111 0010:0000 1111:0101 1100: mod xmmreg r/m

UCOMISD—Unordered Compare 
Scalar Ordered Double-Precision 
Floating-Point Values and Set 
EFLAGS

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0010 1110:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0010 1110: mod xmmreg r/m

UNPCKHPD—Unpack and Interleave 
High Packed Double-Precision 
Floating-Point Values

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0001 0101:11 xmmreg1 
xmmreg2

   mem to xmmreg 0110 0110:0000 1111:0001 0101: mod xmmreg r/m

UNPCKLPD—Unpack and Interleave 
Low Packed Double-Precision 
Floating-Point Values

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0001 0100:11 xmmreg1 
xmmreg2

   mem to xmmreg 0110 0110:0000 1111:0001 0100: mod xmmreg r/m

XORPD—Bitwise Logical OR of 
Double-Precision Floating-Point 
Values

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0101 0111:11 xmmreg1 
xmmreg2

Table B-26.  Formats and Encodings of SSE2 Floating-Point Instructions (Contd.)
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  mem to xmmreg 0110 0110:0000 1111:0101 0111: mod xmmreg r/m

Table B-26.  Formats and Encodings of SSE2 Floating-Point Instructions (Contd.)

Instruction and Format Encoding
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Table B-27.  Formats and Encodings of SSE2 Integer Instructions

Instruction and Format Encoding

MOVD—Move Doubleword

   reg to xmmreg 0110 0110:0000 1111:0110 1110: 11 xmmreg reg

reg from xmmreg 0110 0110:0000 1111:0111 1110: 11 xmmreg reg

mem to xmmreg 0110 0110:0000 1111:0110 1110: mod xmmreg r/m

mem from xmmreg 0110 0110:0000 1111:0111 1110: mod xmmreg r/m

MOVDQA—Move Aligned Double 
Quadword

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0110 1111:11 xmmreg1 
xmmreg2

  xmmreg2 from xmmreg1 0110 0110:0000 1111:0111 1111:11 xmmreg1 
xmmreg2

   mem to xmmreg 0110 0110:0000 1111:0110 1111: mod xmmreg r/m

   mem from xmmreg 0110 0110:0000 1111:0111 1111: mod xmmreg r/m

MOVDQU—Move Unaligned Double 
Quadword

  xmmreg2 to xmmreg1 1111 0011:0000 1111:0110 1111:11 xmmreg1 
xmmreg2

xmmreg2 from xmmreg1 1111 0011:0000 1111:0111 1111:11 xmmreg1 
xmmreg2

  mem to xmmreg 1111 0011:0000 1111:0110 1111: mod xmmreg r/m

   mem from xmmreg 1111 0011:0000 1111:0111 1111: mod xmmreg r/m

MOVQ2DQ—Move Quadword from 
MMX to XMM Register

   mmreg to xmmreg 1111 0011:0000 1111:1101 0110:11 mmreg1 
mmreg2

MOVDQ2Q—Move Quadword from 
XMM to MMX Register

   xmmreg to mmreg 1111 0010:0000 1111:1101 0110:11 mmreg1 
mmreg2

MOVQ—Move Quadword

xmmreg2 to xmmreg1 1111 0011:0000 1111:0111 1110: 11 xmmreg1 
xmmreg2

xmmreg2 from xmmreg1 0110 0110:0000 1111:1101 0110: 11 xmmreg1 
xmmreg2

mem to xmmreg 1111 0011:0000 1111:0111 1110: mod xmmreg r/m
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mem from xmmreg 0110 0110:0000 1111:1101 0110: mod xmmreg r/m

PACKSSDW1—Pack Dword To Word 
Data (signed with saturation)

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0110 1011: 11 xmmreg1 
xmmreg2

  memory to xmmreg 0110 0110:0000 1111:0110 1011: mod xmmreg r/m

PACKSSWB—Pack  Word To Byte Data 
(signed with saturation)

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0110 0011: 11 xmmreg1 
xmmreg2

   memory to xmmreg 0110 0110:0000 1111:0110 0011: mod xmmreg r/m

PACKUSWB—Pack Word To Byte Data 
(unsigned with saturation)

   xmmreg2 to xmmreg1 0110 0110:0000 1111:0110 0111: 11 xmmreg1 
xmmreg2

  memory to xmmreg 0110 0110:0000 1111:0110 0111: mod xmmreg r/m

PADDQ—Add Packed Quadword 
Integers

   mmreg2 to mmreg1 0000 1111:1101 0100:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:1101 0100: mod mmreg r/m

  xmmreg2 to xmmreg1 0110 0110:0000 1111:1101 0100:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:1101 0100: mod xmmreg r/m

PADD—Add With Wrap-around

  xmmreg2 to xmmreg1 0110 0110:0000 1111: 1111 11gg: 11 xmmreg1 
xmmreg2

  memory to xmmreg 0110 0110:0000 1111: 1111 11gg: mod xmmreg r/m

PADDS—Add Signed With Saturation

  xmmreg2 to xmmreg1 0110 0110:0000 1111: 1110 11gg: 11 xmmreg1 
xmmreg2

  memory to xmmreg 0110 0110:0000 1111: 1110 11gg: mod xmmreg r/m

PADDUS—Add Unsigned With 
Saturation

  xmmreg2 to xmmreg1 0110 0110:0000 1111: 1101 11gg: 11 xmmreg1 
xmmreg2

Table B-27.  Formats and Encodings of SSE2 Integer Instructions (Contd.)
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  memory to xmmreg 0110 0110:0000 1111: 1101 11gg: mod xmmreg r/m

PAND—Bitwise And

  xmmreg2 to xmmreg1 0110 0110:0000 1111:1101 1011: 11 xmmreg1 
xmmreg2

  memory to xmmreg 0110 0110:0000 1111:1101 1011: mod xmmreg r/m

PANDN—Bitwise AndNot

  xmmreg2 to xmmreg1 0110 0110:0000 1111:1101 1111: 11 xmmreg1 
xmmreg2

  memory to xmmreg 0110 0110:0000 1111:1101 1111: mod xmmreg r/m

PAVGB—Average Packed Integers

  xmmreg2 to xmmreg1 0110 0110:0000 1111:11100 000:11 xmmreg1 
xmmreg2

  mem to xmmreg 01100110:00001111:11100000 mod xmmreg r/m

PAVGW—Average Packed Integers

   xmmreg2 to xmmreg1 0110 0110:0000 1111:1110 0011:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:1110 0011 mod xmmreg r/m

PCMPEQ—Packed Compare For 
Equality

  xmmreg1 with xmmreg2 0110 0110:0000 1111:0111 01gg: 11 xmmreg1 
xmmreg2

  xmmreg with memory 0110 0110:0000 1111:0111 01gg: mod xmmreg r/m

PCMPGT—Packed Compare Greater 
(signed)

  xmmreg1 with xmmreg2 0110 0110:0000 1111:0110 01gg: 11 xmmreg1 
xmmreg2

  xmmreg with memory 0110 0110:0000 1111:0110 01gg: mod xmmreg r/m

PEXTRW—Extract Word

  xmmreg to reg32, imm8 0110 0110:0000 1111:1100 0101:11 r32 xmmreg: 
imm8

PINSRW—Insert Word

  reg32 to xmmreg, imm8 0110 0110:0000 1111:1100 0100:11 xmmreg r32: 
imm8

Table B-27.  Formats and Encodings of SSE2 Integer Instructions (Contd.)
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   m16 to xmmreg, imm8 0110 0110:0000 1111:1100 0100: mod xmmreg r/m: 
imm8

PMADDWD—Packed Multiply Add

  xmmreg2 to xmmreg1 0110 0110:0000 1111:1111 0101: 11 xmmreg1 
xmmreg2

  memory to xmmreg 0110 0110:0000 1111:1111 0101: mod xmmreg r/m

PMAXSW—Maximum of Packed 
Signed Word Integers

  xmmreg2 to xmmreg1 0110 0110:0000 1111:1110 1110:11 xmmreg1 
xmmreg2

  mem to xmmreg 01100110:00001111:11101110: mod xmmreg r/m

PMAXUB—Maximum of Packed 
Unsigned Byte Integers

  xmmreg2 to xmmreg1 0110 0110:0000 1111:1101 1110:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:1101 1110: mod xmmreg r/m

PMINSW—Minimum of Packed Signed 
Word Integers

  xmmreg2 to xmmreg1 0110 0110:0000 1111:1110 1010:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:1110 1010: mod xmmreg r/m

PMINUB—Minimum of Packed 
Unsigned Byte Integers

  xmmreg2 to xmmreg1 0110 0110:0000 1111:1101 1010:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:1101 1010 mod xmmreg r/m

PMOVMSKB—Move Byte Mask To 
Integer

  xmmreg to reg32 0110 0110:0000 1111:1101 0111:11 r32 xmmreg

PMULHUW—Packed multiplication, 
store high word (unsigned)

   xmmreg2 to xmmreg1 0110 0110:0000 1111:1110 0100: 11 xmmreg1 
xmmreg2

   memory to xmmreg 0110 0110:0000 1111:1110 0100: mod xmmreg r/m

Table B-27.  Formats and Encodings of SSE2 Integer Instructions (Contd.)

Instruction and Format Encoding
B-82 Vol. 2C



INSTRUCTION FORMATS AND ENCODINGS
PMULHW—Packed Multiplication, 
store high word

  xmmreg2 to xmmreg1 0110 0110:0000 1111:1110 0101: 11 xmmreg1 
xmmreg2

  memory to xmmreg 0110 0110:0000 1111:1110 0101: mod xmmreg r/m

PMULLW—Packed Multiplication, 
store low word

  xmmreg2 to xmmreg1 0110 0110:0000 1111:1101 0101: 11 xmmreg1 
xmmreg2

  memory to xmmreg 0110 0110:0000 1111:1101 0101: mod xmmreg r/m

PMULUDQ—Multiply Packed 
Unsigned Doubleword Integers

  mmreg2 to mmreg1 0000 1111:1111 0100:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:1111 0100: mod mmreg r/m

  xmmreg2 to xmmreg1 0110 0110:00001111:1111 0100:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:00001111:1111 0100: mod xmmreg r/m

POR—Bitwise Or

   xmmreg2 to xmmreg1 0110 0110:0000 1111:1110 1011: 11 xmmreg1 
xmmreg2

 memory to xmmreg 0110 0110:0000 1111:1110 1011: mod xmmreg r/m

PSADBW—Compute Sum of Absolute 
Differences

  xmmreg2 to xmmreg1 0110 0110:0000 1111:1111 0110:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:1111 0110: mod xmmreg r/m

PSHUFLW—Shuffle Packed Low 
Words

  xmmreg2 to xmmreg1, imm8 1111 0010:0000 1111:0111 0000:11 xmmreg1 
xmmreg2: imm8

  mem to xmmreg, imm8 1111 0010:0000 1111:0111 0000:11 mod xmmreg 
r/m: imm8

Table B-27.  Formats and Encodings of SSE2 Integer Instructions (Contd.)
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PSHUFHW—Shuffle Packed High 
Words

  xmmreg2 to xmmreg1, imm8 1111 0011:0000 1111:0111 0000:11 xmmreg1 
xmmreg2: imm8

  mem to xmmreg, imm8 1111 0011:0000 1111:0111 0000: mod xmmreg r/m: 
imm8

PSHUFD—Shuffle Packed 
Doublewords

  xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0111 0000:11 xmmreg1 
xmmreg2: imm8

  mem to xmmreg, imm8 0110 0110:0000 1111:0111 0000: mod xmmreg r/m: 
imm8

PSLLDQ—Shift Double Quadword Left 
Logical

  xmmreg, imm8 0110 0110:0000 1111:0111 0011:11 111 xmmreg: 
imm8

PSLL—Packed Shift Left Logical

  xmmreg1 by xmmreg2 0110 0110:0000 1111:1111 00gg: 11 xmmreg1 
xmmreg2

  xmmreg by memory 0110 0110:0000 1111:1111 00gg: mod xmmreg r/m

  xmmreg by immediate 0110 0110:0000 1111:0111 00gg: 11 110 xmmreg: 
imm8 

PSRA—Packed Shift Right Arithmetic

  xmmreg1 by xmmreg2 0110 0110:0000 1111:1110 00gg: 11 xmmreg1 
xmmreg2

  xmmreg by memory 0110 0110:0000 1111:1110 00gg: mod xmmreg r/m

  xmmreg by immediate 0110 0110:0000 1111:0111 00gg: 11 100 xmmreg: 
imm8 

PSRLDQ—Shift Double Quadword 
Right Logical

  xmmreg, imm8 0110 0110:00001111:01110011:11 011 xmmreg: 
imm8

PSRL—Packed Shift Right Logical

  xmmreg1 by xmmreg2 0110 0110:0000 1111:1101 00gg: 11 xmmreg1 
xmmreg2

  xmmreg by memory 0110 0110:0000 1111:1101 00gg: mod xmmreg r/m

Table B-27.  Formats and Encodings of SSE2 Integer Instructions (Contd.)
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  xmmreg by immediate 0110 0110:0000 1111:0111 00gg: 11 010 xmmreg: 
imm8 

PSUBQ—Subtract Packed Quadword 
Integers

  mmreg2 to mmreg1 0000 1111:11111 011:11 mmreg1 mmreg2

   mem to mmreg 0000 1111:1111 1011: mod mmreg r/m

  xmmreg2 to xmmreg1 0110 0110:0000 1111:1111 1011:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:1111 1011: mod xmmreg r/m

PSUB—Subtract With Wrap-around

  xmmreg2 from xmmreg1 0110 0110:0000 1111:1111 10gg: 11 xmmreg1 
xmmreg2

  memory from xmmreg 0110 0110:0000 1111:1111 10gg: mod xmmreg r/m

PSUBS—Subtract Signed With 
Saturation

  xmmreg2 from xmmreg1 0110 0110:0000 1111:1110 10gg: 11 xmmreg1 
xmmreg2

  memory from xmmreg 0110 0110:0000 1111:1110 10gg: mod xmmreg r/m

PSUBUS—Subtract Unsigned With 
Saturation

  xmmreg2 from xmmreg1 0000 1111:1101 10gg: 11 xmmreg1 xmmreg2

  memory from xmmreg 0000 1111:1101 10gg: mod xmmreg r/m

PUNPCKH—Unpack High Data To 
Next Larger Type

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0110 10gg:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0110 10gg: mod xmmreg r/m

PUNPCKHQDQ—Unpack High Data

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0110 1101:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0110 1101: mod xmmreg r/m

PUNPCKL—Unpack Low Data To Next 
Larger Type

   xmmreg2 to xmmreg1 0110 0110:0000 1111:0110 00gg:11 xmmreg1 
xmmreg2

Table B-27.  Formats and Encodings of SSE2 Integer Instructions (Contd.)
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  mem to xmmreg 0110 0110:0000 1111:0110 00gg: mod xmmreg r/m

PUNPCKLQDQ—Unpack Low Data

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0110 1100:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0110 1100: mod xmmreg r/m

PXOR—Bitwise Xor

xmmreg2 to xmmreg1 0110 0110:0000 1111:1110 1111: 11 xmmreg1 
xmmreg2

memory to xmmreg 0110 0110:0000 1111:1110 1111: mod xmmreg r/m

Table B-28.  Format and Encoding of SSE2 Cacheability Instructions

Instruction and Format Encoding

MASKMOVDQU—Store Selected 
Bytes of Double Quadword

  xmmreg2 to xmmreg1 0110 0110:0000 1111:1111 0111:11 xmmreg1 
xmmreg2

CLFLUSH—Flush Cache Line

  mem 0000 1111:1010 1110: mod 111 r/m

MOVNTPD—Store Packed Double-
Precision Floating-Point Values Using 
Non-Temporal Hint

  xmmreg to mem 0110 0110:0000 1111:0010 1011: mod xmmreg r/m

MOVNTDQ—Store Double Quadword 
Using Non-Temporal Hint

  xmmreg to mem 0110 0110:0000 1111:1110 0111: mod xmmreg r/m

MOVNTI—Store Doubleword Using 
Non-Temporal Hint

  reg to mem 0000 1111:1100 0011: mod reg r/m

PAUSE—Spin Loop Hint 1111 0011:1001 0000

LFENCE—Load Fence 0000 1111:1010 1110: 11 101 000

MFENCE—Memory Fence 0000 1111:1010 1110: 11 110 000

Table B-27.  Formats and Encodings of SSE2 Integer Instructions (Contd.)
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B.10 SSE3 FORMATS AND ENCODINGS TABLE
The tables in this section provide SSE3 formats and encodings. Some SSE3 instruc-
tions require a mandatory prefix (66H, F2H, F3H) as part of the two-byte opcode. 
These prefixes are included in the tables.

When in IA-32e mode, use of the REX.R prefix permits instructions that use general 
purpose and XMM registers to access additional registers. Some instructions require 
the REX.W prefix to promote the instruction to 64-bit operation. Instructions that 
require the REX.W prefix are listed (with their opcodes) in Section B.13.

Table B-29.  Formats and Encodings of SSE3 Floating-Point Instructions

Instruction and Format Encoding

ADDSUBPD—Add /Sub packed DP FP 
numbers from XMM2/Mem to XMM1

xmmreg2 to xmmreg1 01100110:00001111:11010000:11 xmmreg1 
xmmreg2

mem to xmmreg 01100110:00001111:11010000: mod xmmreg 
r/m

ADDSUBPS—Add /Sub packed SP FP 
numbers from XMM2/Mem to XMM1

xmmreg2 to xmmreg1 11110010:00001111:11010000:11 xmmreg1 
xmmreg2

mem to xmmreg 11110010:00001111:11010000: mod xmmreg 
r/m

HADDPD—Add horizontally packed DP FP 
numbers XMM2/Mem to XMM1

xmmreg2 to xmmreg1 01100110:00001111:01111100:11 xmmreg1 
xmmreg2

mem to xmmreg 01100110:00001111:01111100: mod xmmreg 
r/m

HADDPS—Add horizontally packed SP FP 
numbers XMM2/Mem to XMM1

xmmreg2 to xmmreg1 11110010:00001111:01111100:11 xmmreg1 
xmmreg2

mem to xmmreg 11110010:00001111:01111100: mod xmmreg 
r/m

HSUBPD—Sub horizontally packed DP FP 
numbers XMM2/Mem to XMM1 

xmmreg2 to xmmreg1 01100110:00001111:01111101:11 xmmreg1 
xmmreg2
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mem to xmmreg 01100110:00001111:01111101: mod xmmreg 
r/m

HSUBPS—Sub horizontally packed SP FP 
numbers XMM2/Mem to XMM1

xmmreg2 to xmmreg1 11110010:00001111:01111101:11 xmmreg1 
xmmreg2

mem to xmmreg 11110010:00001111:01111101: mod xmmreg 
r/m

Table B-30.  Formats and Encodings for SSE3 Event Management Instructions 

Instruction and Format Encoding

MONITOR—Set up a linear address range to 
be monitored by hardware

eax, ecx, edx 0000 1111 : 0000 0001:11 001 000

MWAIT—Wait until write-back store 
performed within the range specified by 
the instruction MONITOR

eax, ecx 0000 1111 : 0000 0001:11 001 001

Table B-31.  Formats and Encodings for SSE3 Integer and Move Instructions 

Instruction and Format Encoding

FISTTP—Store ST in int16 (chop) and pop

m16int 11011 111 : modA 001 r/m

FISTTP—Store ST in int32 (chop) and pop

m32int 11011 011 : modA 001 r/m

FISTTP—Store ST in int64 (chop) and pop

m64int 11011 101 : modA 001 r/m

LDDQU—Load unaligned integer 128-bit

xmm, m128 11110010:00001111:11110000: modA xmmreg 
r/m

MOVDDUP—Move 64 bits representing one 
DP data from XMM2/Mem to XMM1 and 
duplicate

xmmreg2 to xmmreg1 11110010:00001111:00010010:11 xmmreg1 
xmmreg2

Table B-29.  Formats and Encodings of SSE3 Floating-Point Instructions (Contd.)
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B.11 SSSE3 FORMATS AND ENCODING TABLE
The tables in this section provide SSSE3 formats and encodings. Some SSSE3 
instructions require a mandatory prefix (66H) as part of the three-byte opcode. 
These prefixes are included in the table below.

 

mem to xmmreg 11110010:00001111:00010010: mod xmmreg 
r/m

MOVSHDUP—Move 128 bits representing 4 
SP data from XMM2/Mem to XMM1 and 
duplicate high

xmmreg2 to xmmreg1 11110011:00001111:00010110:11 xmmreg1 
xmmreg2

mem to xmmreg 11110011:00001111:00010110: mod xmmreg 
r/m

MOVSLDUP—Move 128 bits representing 4 
SP data from XMM2/Mem to XMM1 and 
duplicate low

xmmreg2 to xmmreg1 11110011:00001111:00010010:11 xmmreg1 
xmmreg2

mem to xmmreg 11110011:00001111:00010010: mod xmmreg 
r/m

Table B-32.  Formats and Encodings for SSSE3 Instructions

Instruction and Format Encoding

PABSB—Packed Absolute 
Value Bytes

   mmreg2 to mmreg1 0000 1111:0011 1000: 0001 1100:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:0011 1000: 0001 1100: mod mmreg r/m

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0001 1100:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0001 1100: mod xmmreg r/m

PABSD—Packed 
Absolute Value Double 
Words

   mmreg2 to mmreg1 0000 1111:0011 1000: 0001 1110:11 mmreg1 mmreg2

Table B-31.  Formats and Encodings for SSE3 Integer and Move Instructions  (Contd.)
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  mem to mmreg 0000 1111:0011 1000: 0001 1110: mod mmreg r/m

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0001 1110:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0001 1110: mod xmmreg r/m

PABSW—Packed 
Absolute Value Words

   mmreg2 to mmreg1 0000 1111:0011 1000: 0001 1101:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:0011 1000: 0001 1101: mod mmreg r/m

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0001 1101:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0001 1101: mod xmmreg r/m

PALIGNR—Packed Align 
Right

   mmreg2 to mmreg1, 
imm8

0000 1111:0011 1010: 0000 1111:11 mmreg1 mmreg2: imm8

  mem to mmreg, imm8 0000 1111:0011 1010: 0000 1111: mod mmreg r/m: imm8

  xmmreg2 to xmmreg1, 
imm8

0110 0110:0000 1111:0011 1010: 0000 1111:11 xmmreg1 
xmmreg2: imm8

  mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0000 1111: mod xmmreg r/m: 
imm8

PHADDD—Packed 
Horizontal Add Double 
Words

   mmreg2 to mmreg1 0000 1111:0011 1000: 0000 0010:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:0011 1000: 0000 0010: mod mmreg r/m

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0000 0010:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 0010: mod xmmreg r/m

PHADDSW—Packed 
Horizontal Add and 
Saturate

   mmreg2 to mmreg1 0000 1111:0011 1000: 0000 0011:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:0011 1000: 0000 0011: mod mmreg r/m

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0000 0011:11 xmmreg1 
xmmreg2

Table B-32.  Formats and Encodings for SSSE3 Instructions (Contd.)
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  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 0011: mod xmmreg r/m

PHADDW—Packed 
Horizontal Add Words

   mmreg2 to mmreg1 0000 1111:0011 1000: 0000 0001:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:0011 1000: 0000 0001: mod mmreg r/m

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0000 0001:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 0001: mod xmmreg r/m

PHSUBD—Packed 
Horizontal Subtract 
Double Words

   mmreg2 to mmreg1 0000 1111:0011 1000: 0000 0110:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:0011 1000: 0000 0110: mod mmreg r/m

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0000 0110:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 0110: mod xmmreg r/m

PHSUBSW—Packed 
Horizontal Subtract and 
Saturate

   mmreg2 to mmreg1 0000 1111:0011 1000: 0000 0111:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:0011 1000: 0000 0111: mod mmreg r/m

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0000 0111:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 0111: mod xmmreg r/m

PHSUBW—Packed 
Horizontal Subtract 
Words

   mmreg2 to mmreg1 0000 1111:0011 1000: 0000 0101:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:0011 1000: 0000 0101: mod mmreg r/m

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0000 0101:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 0101: mod xmmreg r/m

Table B-32.  Formats and Encodings for SSSE3 Instructions (Contd.)
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PMADDUBSW—Multiply 
and Add Packed Signed 
and Unsigned Bytes

   mmreg2 to mmreg1 0000 1111:0011 1000: 0000 0100:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:0011 1000: 0000 0100: mod mmreg r/m

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0000 0100:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 0100: mod xmmreg r/m

PMULHRSW—Packed 
Multiply HIgn with Round 
and Scale

   mmreg2 to mmreg1 0000 1111:0011 1000: 0000 1011:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:0011 1000: 0000 1011: mod mmreg r/m

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0000 1011:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 1011: mod xmmreg r/m

PSHUFB—Packed Shuffle 
Bytes

   mmreg2 to mmreg1 0000 1111:0011 1000: 0000 0000:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:0011 1000: 0000 0000: mod mmreg r/m

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0000 0000:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 0000: mod xmmreg r/m

PSIGNB—Packed Sign 
Bytes

   mmreg2 to mmreg1 0000 1111:0011 1000: 0000 1000:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:0011 1000: 0000 1000: mod mmreg r/m

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0000 1000:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 1000: mod xmmreg r/m

PSIGND—Packed Sign 
Double Words

   mmreg2 to mmreg1 0000 1111:0011 1000: 0000 1010:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:0011 1000: 0000 1010: mod mmreg r/m

Table B-32.  Formats and Encodings for SSSE3 Instructions (Contd.)
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B.12 AESNI AND PCLMULQDQ INSTRUCTION FORMATS 
AND ENCODINGS 

Table B-33 shows the formats and encodings for AESNI and PCLMULQDQ instruc-
tions.

  

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0000 1010:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 1010: mod xmmreg r/m

PSIGNW—Packed Sign 
Words

   mmreg2 to mmreg1 0000 1111:0011 1000: 0000 1001:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:0011 1000: 0000 1001: mod mmreg r/m

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0000 1001:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 1001: mod xmmreg r/m

Table B-33.  Formats and Encodings of AESNI and PCLMULQDQ Instructions

Instruction and Format Encoding

AESDEC—Perform One Round of an AES 
Decryption Flow

   xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000:1101 
1110:11 xmmreg1 xmmreg2 

   mem to xmmreg 0110 0110:0000 1111:0011 1000:1101 1110: 
mod xmmreg r/m

AESDECLAST—Perform Last Round of an 
AES Decryption Flow

   xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000:1101 
1111:11 xmmreg1 xmmreg2 

   mem to xmmreg 0110 0110:0000 1111:0011 1000:1101 1111:  
mod xmmreg r/m

AESENC—Perform One Round of an AES 
Encryption Flow

   xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000:1101 
1100:11 xmmreg1 xmmreg2 

Table B-32.  Formats and Encodings for SSSE3 Instructions (Contd.)
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B.13 SPECIAL ENCODINGS FOR 64-BIT MODE
The following Pentium, P6, MMX, SSE, SSE2, SSE3 instructions are promoted to 
64-bit operation in IA-32e mode by using REX.W. However, these entries are special 
cases that do not follow the general rules (specified in Section B.4).

   mem to xmmreg 0110 0110:0000 1111:0011 1000:1101 1100:  
mod xmmreg r/m

AESENCLAST—Perform Last Round of an 
AES Encryption Flow

   xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000:1101 
1101:11 xmmreg1 xmmreg2 

   mem to xmmreg 0110 0110:0000 1111:0011 1000:1101 1101:  
mod xmmreg r/m

AESIMC—Perform the AES InvMixColumn 
Transformation

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000:1101 
1011:11 xmmreg1 xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000:1101 1011: 
mod xmmreg r/m

AESKEYGENASSIST—AES Round Key 
Generation Assist

   xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010:1101 
1111:11 xmmreg1 xmmreg2: imm8

   mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010:1101 1111: 
mod xmmreg r/m: imm8

PCLMULQDQ—Carry-Less Multiplication 
Quadword

   xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010:0100 
0100:11 xmmreg1 xmmreg2: imm8 

   mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010:0100 0100:  
mod xmmreg r/m: imm8

Table B-33.  Formats and Encodings of AESNI and PCLMULQDQ Instructions

Instruction and Format Encoding
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Table B-34.  Special Case Instructions Promoted Using REX.W

Instruction and Format Encoding

CMOVcc—Conditional Move

register2 to  register1 0100 0R0B 0000 1111: 0100 tttn : 11 reg1 
reg2

qwordregister2 to qwordregister1 0100 1R0B 0000 1111: 0100 tttn : 11 
qwordreg1 qwordreg2

memory to register  0100 0RXB 0000 1111 : 0100 tttn : mod reg 
r/m

memory64 to qwordregister 0100 1RXB 0000 1111 : 0100 tttn : mod 
qwordreg r/m

CVTSD2SI—Convert Scalar Double-Precision 
Floating-Point Value to Doubleword Integer

  xmmreg to r32 0100 0R0B 1111 0010:0000 1111:0010 
1101:11 r32 xmmreg

  xmmreg to r64 0100 1R0B 1111 0010:0000 1111:0010 
1101:11 r64 xmmreg

  mem64 to r32 0100 0R0XB 1111 0010:0000 1111:0010 
1101: mod r32 r/m

  mem64 to r64 0100 1RXB 1111 0010:0000 1111:0010 
1101: mod r64 r/m

CVTSI2SS—Convert Doubleword Integer to 
Scalar Single-Precision Floating-Point Value

  r32 to xmmreg1 0100 0R0B 1111 0011:0000 1111:0010 
1010:11 xmmreg r32

  r64 to xmmreg1 0100 1R0B 1111 0011:0000 1111:0010 
1010:11 xmmreg r64

  mem to xmmreg 0100 0RXB 1111 0011:0000 1111:0010 
1010: mod xmmreg r/m

  mem64 to xmmreg 0100 1RXB 1111 0011:0000 1111:0010 
1010: mod xmmreg r/m

CVTSI2SD—Convert Doubleword Integer to 
Scalar Double-Precision Floating-Point Value

  r32 to xmmreg1 0100 0R0B 1111 0010:0000 1111:0010 
1010:11 xmmreg r32

  r64 to xmmreg1 0100 1R0B 1111 0010:0000 1111:0010 
1010:11 xmmreg r64
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  mem to xmmreg 0100 0RXB 1111 0010:0000 1111:00101 
010: mod xmmreg r/m

  mem64 to xmmreg 0100 1RXB 1111 0010:0000 1111:0010 
1010: mod xmmreg r/m

CVTSS2SI—Convert Scalar Single-Precision 
Floating-Point Value to Doubleword Integer

  xmmreg to r32 0100 0R0B 1111 0011:0000 1111:0010 
1101:11 r32 xmmreg

  xmmreg to r64 0100 1R0B 1111 0011:0000 1111:0010 
1101:11 r64 xmmreg

  mem to r32 0100 0RXB 11110011:00001111:00101101: 
mod r32 r/m

  mem32 to r64 0100 1RXB 1111 0011:0000 1111:0010 
1101: mod r64 r/m

CVTTSD2SI—Convert with Truncation Scalar 
Double-Precision Floating-Point Value to 
Doubleword Integer

  xmmreg to r32 0100 0R0B 
11110010:00001111:00101100:11 r32 
xmmreg

  xmmreg to r64 0100 1R0B 1111 0010:0000 1111:0010 
1100:11 r64 xmmreg

  mem64 to r32 0100 0RXB 1111 0010:0000 1111:0010 
1100: mod r32 r/m

  mem64 to r64 0100 1RXB 1111 0010:0000 1111:0010 
1100: mod r64 r/m

CVTTSS2SI—Convert with Truncation Scalar 
Single-Precision Floating-Point Value to 
Doubleword Integer

  xmmreg to r32 0100 0R0B 1111 0011:0000 1111:0010 
1100:11 r32 xmmreg1

  xmmreg to r64 0100 1R0B 1111 0011:0000 1111:0010 
1100:11 r64 xmmreg1

  mem to r32 0100 0RXB 1111 0011:0000 1111:0010 
1100: mod r32 r/m

Table B-34.  Special Case Instructions Promoted Using REX.W (Contd.)

Instruction and Format Encoding
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  mem32 to r64 0100 1RXB 1111 0011:0000 1111:0010 
1100: mod r64 r/m

MOVD/MOVQ—Move doubleword

reg to mmxreg 0100 0R0B 0000 1111:0110 1110: 11 
mmxreg reg

qwordreg to mmxreg 0100 1R0B 0000 1111:0110 1110: 11 
mmxreg qwordreg

reg from mmxreg 0100 0R0B 0000 1111:0111 1110: 11 
mmxreg reg

qwordreg from mmxreg 0100 1R0B 0000 1111:0111 1110: 11 
mmxreg qwordreg

mem to mmxreg 0100 0RXB 0000 1111:0110 1110: mod 
mmxreg r/m

mem64 to mmxreg 0100 1RXB 0000 1111:0110 1110: mod 
mmxreg r/m

mem from mmxreg 0100 0RXB 0000 1111:0111 1110: mod 
mmxreg r/m

mem64 from mmxreg 0100 1RXB 0000 1111:0111 1110: mod 
mmxreg r/m

mmxreg with memory 0100 0RXB 0000 1111:0110 01gg: mod 
mmxreg r/m

MOVMSKPS—Extract Packed Single-Precision 
Floating-Point Sign Mask

  xmmreg to r32 0100 0R0B 0000 1111:0101 0000:11 r32 
xmmreg

  xmmreg to r64 0100 1R0B 00001111:01010000:11 r64 
xmmreg

PEXTRW—Extract Word

  mmreg to reg32, imm8 0100 0R0B 0000 1111:1100 0101:11 r32 
mmreg: imm8

  mmreg to reg64, imm8 0100 1R0B 0000 1111:1100 0101:11 r64 
mmreg: imm8

  xmmreg to reg32, imm8 0100 0R0B 0110 0110 0000 1111:1100 
0101:11 r32 xmmreg: imm8

  xmmreg to reg64, imm8 0100 1R0B 0110 0110 0000 1111:1100 
0101:11 r64 xmmreg: imm8

Table B-34.  Special Case Instructions Promoted Using REX.W (Contd.)

Instruction and Format Encoding
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B.14 SSE4.1 FORMATS AND ENCODING TABLE
The tables in this section provide SSE4.1 formats and encodings. Some SSE4.1 
instructions require a mandatory prefix (66H, F2H, F3H) as part of the three-byte 
opcode. These prefixes are included in the tables. 
In 64-bit mode, some instructions requires REX.W, the byte sequence of REX.W 
prefix in the opcode sequence is shown.

PINSRW—Insert Word

  reg32 to mmreg, imm8 0100 0R0B 0000 1111:1100 0100:11 mmreg 
r32: imm8

  reg64 to mmreg, imm8 0100 1R0B 0000 1111:1100 0100:11 mmreg 
r64: imm8

  m16 to mmreg, imm8 0100 0R0B 0000 1111:1100 0100 mod 
mmreg r/m: imm8

  m16 to mmreg, imm8 0100 1RXB 0000 1111:11000100 mod 
mmreg r/m: imm8

  reg32 to xmmreg, imm8 0100 0RXB 0110 0110 0000 1111:1100 
0100:11 xmmreg r32: imm8

  reg64 to xmmreg, imm8 0100 0RXB 0110 0110 0000 1111:1100 
0100:11 xmmreg r64: imm8

  m16 to xmmreg, imm8 0100 0RXB 0110 0110 0000 1111:1100 
0100 mod xmmreg r/m: imm8

  m16 to xmmreg, imm8 0100 1RXB 0110 0110 0000 1111:1100 
0100 mod xmmreg r/m: imm8

PMOVMSKB—Move Byte Mask To Integer

   mmreg to reg32 0100 0RXB 0000 1111:1101 0111:11 r32 
mmreg

   mmreg to reg64 0100 1R0B 0000 1111:1101 0111:11 r64 
mmreg

   xmmreg to reg32 0100 0RXB 0110 0110 0000 1111:1101 
0111:11 r32 mmreg

   xmmreg to reg64 0110 0110 0000 1111:1101 0111:11 r64 
xmmreg

Table B-34.  Special Case Instructions Promoted Using REX.W (Contd.)

Instruction and Format Encoding
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Table B-35.  Encodings of SSE4.1 instructions

Instruction and Format Encoding

BLENDPD — Blend Packed Double-
Precision Floats

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1010: 0000 1101:11 
xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1010: 0000 1101: mod 
xmmreg r/m

BLENDPS — Blend Packed Single-
Precision Floats

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1010: 0000 1100:11 
xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1010: 0000 1100: mod 
xmmreg r/m

BLENDVPD — Variable Blend Packed 
Double-Precision Floats

 xmmreg2 to xmmreg1 <xmm0> 0110 0110:0000 1111:0011 1000: 0001 0101:11 
xmmreg1 xmmreg2

 mem to xmmreg <xmm0> 0110 0110:0000 1111:0011 1000: 0001 0101: mod 
xmmreg r/m

BLENDVPS — Variable Blend Packed 
Single-Precision Floats

 xmmreg2 to xmmreg1 <xmm0> 0110 0110:0000 1111:0011 1000: 0001 0100:11 
xmmreg1 xmmreg2

 mem to xmmreg <xmm0> 0110 0110:0000 1111:0011 1000: 0001 0100: mod 
xmmreg r/m

DPPD — Packed Double-Precision Dot 
Products

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0100 0001:11 
xmmreg1 xmmreg2: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0100 0001: mod 
xmmreg r/m: imm8

DPPS — Packed Single-Precision Dot 
Products

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0100 0000:11 
xmmreg1 xmmreg2: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0100 0000: mod 
xmmreg r/m: imm8
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EXTRACTPS — Extract From Packed 
Single-Precision Floats

  reg from xmmreg , imm8 0110 0110:0000 1111:0011 1010: 0001 0111:11 
xmmreg reg: imm8

 mem from xmmreg , imm8 0110 0110:0000 1111:0011 1010: 0001 0111: mod 
xmmreg r/m: imm8

INSERTPS — Insert Into Packed 
Single-
Precision Floats

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0010 0001:11 
xmmreg1 xmmreg2: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0010 0001: mod 
xmmreg r/m: imm8

MOVNTDQA — Load Double 
Quadword Non-temporal Aligned

 m128 to xmmreg 0110 0110:0000 1111:0011 1000: 0010 1010:11 r/m 
xmmreg2

MPSADBW — Multiple Packed Sums 
of 
Absolute Difference

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0100 0010:11 
xmmreg1 xmmreg2: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0100 0010: mod 
xmmreg r/m: imm8

PACKUSDW — Pack with Unsigned 
Saturation

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0010 1011:11 
xmmreg1 xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0010 1011: mod 
xmmreg r/m

PBLENDVB — Variable Blend Packed 
Bytes

 xmmreg2 to xmmreg1 <xmm0> 0110 0110:0000 1111:0011 1000: 0001 0000:11 
xmmreg1 xmmreg2

 mem to xmmreg <xmm0> 0110 0110:0000 1111:0011 1000: 0001 0000: mod 
xmmreg r/m

PBLENDW — Blend Packed Words

Table B-35.  Encodings of SSE4.1 instructions

Instruction and Format Encoding
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 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0001 1110:11 
xmmreg1 xmmreg2: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0000 1110: mod 
xmmreg r/m: imm8

PCMPEQQ — Compare Packed Qword 
Data of Equal

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0010 1001:11 
xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0010 1001: mod 
xmmreg r/m

PEXTRB — Extract Byte

 reg from xmmreg , imm8 0110 0110:0000 1111:0011 1010: 0001 0100:11 
xmmreg reg: imm8

 xmmreg to mem, imm8 0110 0110:0000 1111:0011 1010: 0001 0100: mod 
xmmreg r/m: imm8

PEXTRD — Extract DWord

 reg from xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0001 0110:11 
xmmreg reg: imm8

 xmmreg to mem, imm8 0110 0110:0000 1111:0011 1010: 0001 0110: mod 
xmmreg r/m: imm8

PEXTRQ — Extract QWord

 r64 from xmmreg, imm8 0110 0110:REX.W:0000 1111:0011 1010: 0001 
0110:11 xmmreg reg: imm8

 m64 from xmmreg, imm8 0110 0110:REX.W:0000 1111:0011 1010: 0001 
0110: mod xmmreg r/m: imm8

PEXTRW — Extract Word

 reg from xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0001 0101:11 reg 
xmmreg: imm8

  mem from xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0001 0101: mod 
xmmreg r/m: imm8

PHMINPOSUW — Packed Horizontal 
Word Minimum

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0100 0001:11 
xmmreg1 xmmreg2

Table B-35.  Encodings of SSE4.1 instructions

Instruction and Format Encoding
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 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0100 0001: mod 
xmmreg r/m

PINSRB — Extract Byte

  reg to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0010 0000:11 
xmmreg reg: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0010 0000: mod 
xmmreg r/m: imm8

PINSRD — Extract DWord

 reg to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0010 0010:11 
xmmreg reg: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0010 0010: mod 
xmmreg r/m: imm8

PINSRQ — Extract QWord

 r64 to xmmreg, imm8 0110 0110:REX.W:0000 1111:0011 1010: 0010 
0010:11 xmmreg reg: imm8

 m64 to xmmreg, imm8 0110 0110:REX.W:0000 1111:0011 1010: 0010 
0010: mod xmmreg r/m: imm8

PMAXSB — Maximum of Packed 
Signed Byte Integers

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 1100:11 
xmmreg1 xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1100: mod 
xmmreg r/m

PMAXSD — Maximum of Packed 
Signed Dword Integers

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 1101:11 
xmmreg1 xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1101: mod 
xmmreg r/m

PMAXUD — Maximum of Packed 
Unsigned Dword Integers

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 1111:11 
xmmreg1 xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1111: mod 
xmmreg r/m

Table B-35.  Encodings of SSE4.1 instructions

Instruction and Format Encoding
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PMAXUW — Maximum of Packed 
Unsigned Word Integers

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 1110:11 
xmmreg1 xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1110: mod 
xmmreg r/m

PMINSB — Minimum of Packed Signed 
Byte Integers

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 1000:11 
xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1000: mod 
xmmreg r/m

PMINSD — Minimum of Packed Signed 
Dword Integers

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 1001:11 
xmmreg1 xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1001: mod 
xmmreg r/m

PMINUD — Minimum of Packed 
Unsigned Dword Integers

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 1011:11 
xmmreg1 xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1011: mod 
xmmreg r/m

PMINUW — Minimum of Packed 
Unsigned Word Integers

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 1010:11 
xmmreg1 xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1010: mod 
xmmreg r/m

PMOVSXBD — Packed Move Sign 
Extend - Byte to Dword

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0010 0001:11 
xmmreg1 xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0010 0001: mod 
xmmreg r/m

Table B-35.  Encodings of SSE4.1 instructions

Instruction and Format Encoding
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PMOVSXBQ — Packed Move Sign 
Extend - Byte to Qword

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0010 0010:11 
xmmreg1 xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0010 0010: mod 
xmmreg r/m

PMOVSXBW — Packed Move Sign 
Extend - Byte to Word

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0010 0000:11 
xmmreg1 xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0010 0000: mod 
xmmreg r/m

PMOVSXWD — Packed Move Sign 
Extend - Word to Dword

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0010 0011:11 
xmmreg1 xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0010 0011: mod 
xmmreg r/m

PMOVSXWQ — Packed Move Sign 
Extend - Word to Qword

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0010 0100:11 
xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0010 0100: mod 
xmmreg r/m

PMOVSXDQ — Packed Move Sign 
Extend - Dword to Qword

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0010 0101:11 
xmmreg1 xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0010 0101: mod 
xmmreg r/m

PMOVZXBD — Packed Move Zero 
Extend - Byte to Dword

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 0001:11 
xmmreg1 xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0001: mod 
xmmreg r/m

Table B-35.  Encodings of SSE4.1 instructions

Instruction and Format Encoding
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PMOVZXBQ — Packed Move Zero 
Extend - Byte to Qword

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 0010:11 
xmmreg1 xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0010: mod 
xmmreg r/m

PMOVZXBW — Packed Move Zero 
Extend - Byte to Word

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 0000:11 
xmmreg1 xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0000: mod 
xmmreg r/m

PMOVZXWD — Packed Move Zero 
Extend - Word to Dword

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 0011:11 
xmmreg1 xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0011: mod 
xmmreg r/m

PMOVZXWQ — Packed Move Zero 
Extend - Word to Qword

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 0100:11 
xmmreg1 xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0100: mod 
xmmreg r/m

PMOVZXDQ — Packed Move Zero 
Extend - Dword to Qword

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 0101:11 
xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0101: mod 
xmmreg r/m

PMULDQ — Multiply Packed Signed 
Dword Integers

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0010 1000:11 
xmmreg1 xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0010 1000: mod 
xmmreg r/m

Table B-35.  Encodings of SSE4.1 instructions

Instruction and Format Encoding
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PMULLD — Multiply Packed Signed 
Dword Integers, Store low Result

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0100 0000:11 
xmmreg1 xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0100 0000: mod 
xmmreg r/m

PTEST — Logical Compare

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0001 0111:11 
xmmreg1 xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0001 0111: mod 
xmmreg r/m

ROUNDPD — Round Packed Double-
Precision Values

  xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0000 1001:11 
xmmreg1 xmmreg2: imm8

  mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0000 1001: mod 
xmmreg r/m: imm8

ROUNDPS — Round Packed Single-
Precision Values

  xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0000 1000:11 
xmmreg1 xmmreg2: imm8

  mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0000 1000: mod 
xmmreg r/m: imm8

ROUNDSD — Round Scalar Double-
Precision Value

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0000 1011:11 
xmmreg1 xmmreg2: imm8

  mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0000 1011: mod 
xmmreg r/m: imm8

ROUNDSS — Round Scalar Single-
Precision Value

  xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0000 1010:11 
xmmreg1 xmmreg2: imm8

  mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0000 1010: mod 
xmmreg r/m: imm8

Table B-35.  Encodings of SSE4.1 instructions

Instruction and Format Encoding
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B.15 SSE4.2 FORMATS AND ENCODING TABLE

The tables in this section provide SSE4.2 formats and encodings. Some SSE4.2 
instructions require a mandatory prefix (66H, F2H, F3H) as part of the three-byte 
opcode. These prefixes are included in the tables. In 64-bit mode, some instructions 
requires REX.W, the byte sequence of REX.W prefix in the opcode sequence is shown.

Table B-36.  Encodings of SSE4.2 instructions

Instruction and Format Encoding

CRC32 — Accumulate CRC32

 reg2 to reg1 1111 0010:0000 1111:0011 1000: 1111 000w :11 
reg1 reg2

 mem to reg 1111 0010:0000 1111:0011 1000: 1111 000w : mod 
reg r/m

 bytereg2 to reg1 1111 0010:0100 WR0B:0000 1111:0011 1000: 1111 
0000 :11 reg1 bytereg2

 m8 to reg 1111 0010:0100 WR0B:0000 1111:0011 1000: 1111 
0000 : mod reg r/m

 qwreg2 to qwreg1 1111 0010:0100 1R0B:0000 1111:0011 1000: 1111 
0000 :11 qwreg1 qwreg2

 mem64 to qwreg 1111 0010:0100 1R0B:0000 1111:0011 1000: 1111 
0000 : mod qwreg r/m

PCMPESTRI— Packed Compare 
Explicit-Length Strings To Index

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0110 0001:11 
xmmreg1 xmmreg2: imm8

 mem to xmmreg 0110 0110:0000 1111:0011 1010: 0110 0001: mod 
xmmreg r/m

PCMPESTRM— Packed Compare 
Explicit-Length Strings To Mask

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0110 0000:11 
xmmreg1 xmmreg2: imm8

 mem to xmmreg 0110 0110:0000 1111:0011 1010: 0110 0000: mod 
xmmreg r/m

PCMPISTRI— Packed Compare 
Implicit-Length String To Index

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0110 0011:11 
xmmreg1 xmmreg2: imm8
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B.16 AVX FORMATS AND ENCODING TABLE
The tables in this section provide AVX formats and encodings. A mixed form of 
bit/hex/symbolic forms are used to express the various bytes:

The C4/C5 and opcode bytes are expressed in hex notation; the first and second 
payload byte of VEX, the modR/M byte is expressed in combination of bit/symbolic 
form. The first payload byte of C4 is expressed as combination of bits and hex form, 
with the hex value preceded by an underscore. The VEX bit field to encode upper 
register 8-15 uses 1’s complement form, each of those bit field is expressed as lower 
case notation rxb, instead of RXB.

The hybrid bit-nibble-byte form is depicted below:

 mem to xmmreg 0110 0110:0000 1111:0011 1010: 0110 0011: mod 
xmmreg r/m

PCMPISTRM— Packed Compare 
Implicit-Length Strings To Mask

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0110 0010:11 
xmmreg1 xmmreg2: imm8

 mem to xmmreg 0110 0110:0000 1111:0011 1010: 0110 0010: mod 
xmmreg r/m

PCMPGTQ— Packed Compare Greater 
Than

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0111:11 
xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0111: mod 
xmmreg r/m

POPCNT— Return Number of Bits Set 
to 
1

 reg2 to reg1 1111 0011:0000 1111:1011 1000:11 reg1 reg2

 mem to reg1 1111 0011:0000 1111:1011 1000:mod reg1 r/m

 qwreg2 to qwreg1 1111 0011:0100 1R0B:0000 1111:1011 1000:11 
reg1 reg2

 mem64 to qwreg1 1111 0011:0100 1R0B:0000 1111:1011 1000:mod 
reg1 r/m

Table B-36.  Encodings of SSE4.2 instructions
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Table B-37.  Encodings of AVX instructions

Figure B-2.  Hybrid Notation of VEX-Encoded Key Instruction Bytes

Instruction and Format Encoding

VBLENDPD — Blend Packed Double-
Precision Floats

 xmmreg2 with xmmreg3 into 
xmmreg1

C4: rxb0_3: w xmmreg2 001:0D:11 xmmreg1 xmmreg3: 
imm

 xmmreg2 with mem to xmmreg1 C4: rxb0_3: w xmmreg2 001:0D:mod xmmreg1 r/m: 
imm

 ymmreg2 with ymmreg3 into 
ymmreg1

C4: rxb0_3: w ymmreg2 101:0D:11 ymmreg1 ymmreg3: 
imm

 ymmreg2 with mem to ymmreg1 C4: rxb0_3: w ymmreg2 101:0D:mod ymmreg1 r/m: 
imm

VBLENDPS — Blend Packed Single-
Precision Floats

 xmmreg2 with xmmreg3 into 
xmmreg1

C4: rxb0_3: w xmmreg2 001:0C:11 xmmreg1 xmmreg3: 
imm

 xmmreg2 with mem to xmmreg1 C4: rxb0_3: w xmmreg2 001:0C:mod xmmreg1 r/m: imm

 ymmreg2 with ymmreg3 into 
ymmreg1

C4: rxb0_3: w ymmreg2 101:0C:11 ymmreg1 ymmreg3: 
imm

 ymmreg2 with mem to ymmreg1 C4: rxb0_3: w ymmreg2 101:0C:mod ymmreg1 r/m: imm

VBLENDVPD — Variable Blend Packed 
Double-Precision Floats

7 6 ----3 2 1 0 hex notation 7-6     5-3     2-0
R srcreg Lp p Opcode byte Mod   Reg*  R/MC5

7 6 ----3 2 1 0

W srcreg L pp

Two-Byte VEX

hex notation

7 6 5 hex notation 7-6     5-3     2-0

R X B Opcode byte Mod   Reg R/MC4

4 ----- 0

0_hex 

mmmmm

Three-Byte VEX
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 xmmreg2 with xmmreg3 into 
xmmreg1 using xmmreg4 as mask

C4: rxb0_3: 0 xmmreg2 001:4B:11 xmmreg1 xmmreg3: 
xmmreg4

 xmmreg2 with mem to xmmreg1 
using xmmreg4 as mask

C4: rxb0_3: 0 xmmreg2 001:4B:mod xmmreg1 r/m: 
xmmreg4

 ymmreg2 with ymmreg3 into 
ymmreg1 using ymmreg4 as mask

C4: rxb0_3: 0 ymmreg2 101:4B:11 ymmreg1 ymmreg3: 
ymmreg4

 ymmreg2 with mem to ymmreg1 
using ymmreg4 as mask

C4: rxb0_3: 0 ymmreg2 101:4B:mod ymmreg1 r/m: 
ymmreg4

VBLENDVPS — Variable Blend Packed 
Single-Precision Floats

 xmmreg2 with xmmreg3 into 
xmmreg1 using xmmreg4 as mask

C4: rxb0_3: 0 xmmreg2 001:4A:11 xmmreg1 xmmreg3: 
xmmreg4

 xmmreg2 with mem to xmmreg1 
using xmmreg4 as mask

C4: rxb0_3: 0 xmmreg2 001:4A:mod xmmreg1 r/m: 
xmmreg4

 ymmreg2 with ymmreg3 into 
ymmreg1 using ymmreg4 as mask

C4: rxb0_3: 0 ymmreg2 101:4A:11 ymmreg1 ymmreg3: 
ymmreg4

 ymmreg2 with mem to ymmreg1 
using ymmreg4 as mask

C4: rxb0_3: 0 ymmreg2 101:4A:mod ymmreg1 r/m: 
ymmreg4

VDPPD — Packed Double-Precision 
Dot Products

 xmmreg2 with xmmreg3 into 
xmmreg1

C4: rxb0_3: w xmmreg2 001:41:11 xmmreg1 xmmreg3: 
imm

 xmmreg2 with mem to xmmreg1 C4: rxb0_3: w xmmreg2 001:41:mod xmmreg1 r/m: 
imm

VDPPS — Packed Single-Precision Dot 
Products

 xmmreg2 with xmmreg3 into 
xmmreg1

C4: rxb0_3: w xmmreg2 001:40:11 xmmreg1 xmmreg3: 
imm

 xmmreg2 with mem to xmmreg1 C4: rxb0_3: w xmmreg2 001:40:mod xmmreg1 r/m: 
imm

 ymmreg2 with ymmreg3 into 
ymmreg1

C4: rxb0_3: w ymmreg2 101:40:11 ymmreg1 ymmreg3: 
imm

 ymmreg2 with mem to ymmreg1 C4: rxb0_3: w ymmreg2 101:40:mod ymmreg1 r/m: 
imm

VEXTRACTPS — Extract From Packed 
Single-Precision Floats

 reg from xmmreg1 using imm C4: rxb0_3: w_F 001:17:11 xmmreg1 reg: imm
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 mem from xmmreg1 using imm C4: rxb0_3: w_F 001:17:mod xmmreg1 r/m: imm

VINSERTPS — Insert Into Packed 
Single-
Precision Floats

 use imm to merge xmmreg3 with 
xmmreg2 into xmmreg1

C4: rxb0_3: w xmmreg2 001:21:11 xmmreg1 xmmreg3: 
imm

 use imm to merge mem with 
xmmreg2 into xmmreg1

C4: rxb0_3: w xmmreg2 001:21:mod xmmreg1 r/m: 
imm

VMOVNTDQA — Load Double 
Quadword Non-temporal Aligned

 m128 to xmmreg1 C4: rxb0_2: w_F 001:2A:11 xmmreg1 r/m

VMPSADBW — Multiple Packed Sums 
of 
Absolute Difference

  xmmreg3 with xmmreg2 into 
xmmreg1

C4: rxb0_3: w xmmreg2 001:42:11 xmmreg1 xmmreg3: 
imm

  m128 with xmmreg2 into xmmreg1 C4: rxb0_3: w xmmreg2 001:42:mod xmmreg1 r/m: 
imm

VPACKUSDW — Pack with Unsigned 
Saturation

 xmmreg3 and xmmreg2 to xmmreg1 C4: rxb0_2: w xmmreg2 001:2B:11 xmmreg1 xmmreg3: 
imm

  m128 and xmmreg2 to xmmreg1 C4: rxb0_2: w xmmreg2 001:2B:mod xmmreg1 r/m: 
imm

VPBLENDVB — Variable Blend Packed 
Bytes

 xmmreg2 with xmmreg3 into 
xmmreg1 using xmmreg4 as mask

C4: rxb0_3: w xmmreg2 001:4C:11 xmmreg1 xmmreg3: 
xmmreg4

 xmmreg2 with mem to xmmreg1 
using xmmreg4 as mask

C4: rxb0_3: w xmmreg2 001:4C:mod xmmreg1 r/m: 
xmmreg4

VPBLENDW — Blend Packed Words

 xmmreg2 with xmmreg3 into 
xmmreg1

C4: rxb0_3: w xmmreg2 001:0E:11 xmmreg1 xmmreg3: 
imm

 xmmreg2 with mem to xmmreg1 C4: rxb0_3: w xmmreg2 001:0E:mod xmmreg1 r/m: imm

VPCMPEQQ — Compare Packed 
Qword 
Data of Equal
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 xmmreg2 with xmmreg3 into 
xmmreg1

C4: rxb0_2: w xmmreg2 001:29:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:29:mod xmmreg1 r/m:

VPEXTRB — Extract Byte

 reg from xmmreg1 using imm C4: rxb0_3: 0_F 001:14:11 xmmreg1 reg: imm

 mem from xmmreg1 using imm C4: rxb0_3: 0_F 001:14:mod xmmreg1 r/m: imm

VPEXTRD — Extract DWord

 reg from xmmreg1 using imm C4: rxb0_3: 0_F 001:16:11 xmmreg1 reg: imm

 mem from xmmreg1 using imm C4: rxb0_3: 0_F 001:16:mod xmmreg1 r/m: imm

VPEXTRQ — Extract QWord

 reg from xmmreg1 using imm C4: rxb0_3: 1_F 001:16:11 xmmreg1 reg: imm

 mem from xmmreg1 using imm C4: rxb0_3: 1_F 001:16:mod xmmreg1 r/m: imm

VPEXTRW — Extract Word

 reg from xmmreg1 using imm C4: rxb0_3: 0_F 001:15:11 xmmreg1 reg: imm

 mem from xmmreg1 using imm C4: rxb0_3: 0_F 001:15:mod xmmreg1 r/m: imm

VPHMINPOSUW — Packed Horizontal 
Word Minimum

 xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:41:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_2: w_F 001:41:mod xmmreg1 r/m

VPINSRB — Insert Byte

  reg with xmmreg2 to xmmreg1, imm8 C4: rxb0_3: 0 xmmreg2 001:20:11 xmmreg1 reg: imm

 mem with xmmreg2 to xmmreg1, 
imm8

C4: rxb0_3: 0 xmmreg2 001:20:mod xmmreg1 r/m: imm

VPINSRD — Insert DWord

 reg with xmmreg2 to xmmreg1, imm8 C4: rxb0_3: 0 xmmreg2 001:22:11 xmmreg1 reg: imm

 mem with xmmreg2 to xmmreg1, 
imm8

C4: rxb0_3: 0 xmmreg2 001:22:mod xmmreg1 r/m: imm

VPINSRQ — Insert QWord

 r64 with xmmreg2 to xmmreg1, imm8 C4: rxb0_3: 1 xmmreg2 001:22:11 xmmreg1 reg: imm

 m64 with xmmreg2 to xmmreg1, 
imm8

C4: rxb0_3: 1 xmmreg2 001:22:mod xmmreg1 r/m: imm

VPMAXSB — Maximum of Packed 
Signed Byte Integers
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 xmmreg2 with xmmreg3 into 
xmmreg1

C4: rxb0_2: w xmmreg2 001:3C:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:3C:mod xmmreg1 r/m

VPMAXSD — Maximum of Packed 
Signed Dword Integers

 xmmreg2 with xmmreg3 into 
xmmreg1

C4: rxb0_2: w xmmreg2 001:3D:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:3D:mod xmmreg1 r/m

VPMAXUD — Maximum of Packed 
Unsigned Dword Integers

 xmmreg2 with xmmreg3 into 
xmmreg1

C4: rxb0_2: w xmmreg2 001:3F:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:3F:mod xmmreg1 r/m

VPMAXUW — Maximum of Packed 
Unsigned Word Integers

 xmmreg2 with xmmreg3 into 
xmmreg1

C4: rxb0_2: w xmmreg2 001:3E:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:3E:mod xmmreg1 r/m

VPMINSB — Minimum of Packed 
Signed Byte Integers

 xmmreg2 with xmmreg3 into 
xmmreg1

C4: rxb0_2: w xmmreg2 001:38:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:38:mod xmmreg1 r/m

VPMINSD — Minimum of Packed 
Signed Dword Integers

 xmmreg2 with xmmreg3 into 
xmmreg1

C4: rxb0_2: w xmmreg2 001:39:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:39:mod xmmreg1 r/m

VPMINUD — Minimum of Packed 
Unsigned Dword Integers

 xmmreg2 with xmmreg3 into 
xmmreg1

C4: rxb0_2: w xmmreg2 001:3B:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:3B:mod xmmreg1 r/m

VPMINUW — Minimum of Packed 
Unsigned Word Integers
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 xmmreg2 with xmmreg3 into 
xmmreg1

C4: rxb0_2: w xmmreg2 001:3A:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:3A:mod xmmreg1 r/m

VPMOVSXBD — Packed Move Sign 
Extend - Byte to Dword

  xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:21:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_2: w_F 001:21:mod xmmreg1 r/m

VPMOVSXBQ — Packed Move Sign 
Extend - Byte to Qword

  xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:22:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_2: w_F 001:22:mod xmmreg1 r/m

VPMOVSXBW — Packed Move Sign 
Extend - Byte to Word

  xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:20:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_2: w_F 001:20:mod xmmreg1 r/m

VPMOVSXWD — Packed Move Sign 
Extend - Word to Dword

 xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:23:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_2: w_F 001:23:mod xmmreg1 r/m

VPMOVSXWQ — Packed Move Sign 
Extend - Word to Qword

 xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:24:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_2: w_F 001:24:mod xmmreg1 r/m

VPMOVSXDQ — Packed Move Sign 
Extend - Dword to Qword

  xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:25:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_2: w_F 001:25:mod xmmreg1 r/m

VPMOVZXBD — Packed Move Zero 
Extend - Byte to Dword

  xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:31:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_2: w_F 001:31:mod xmmreg1 r/m

VPMOVZXBQ — Packed Move Zero 
Extend - Byte to Qword

  xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:32:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_2: w_F 001:32:mod xmmreg1 r/m
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VPMOVZXBW — Packed Move Zero 
Extend - Byte to Word

  xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:30:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_2: w_F 001:30:mod xmmreg1 r/m

VPMOVZXWD — Packed Move Zero 
Extend - Word to Dword

  xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:33:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_2: w_F 001:33:mod xmmreg1 r/m

VPMOVZXWQ — Packed Move Zero 
Extend - Word to Qword

  xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:34:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_2: w_F 001:34:mod xmmreg1 r/m

VPMOVZXDQ — Packed Move Zero 
Extend - Dword to Qword

  xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:35:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_2: w_F 001:35:mod xmmreg1 r/m

VPMULDQ — Multiply Packed Signed 
Dword Integers

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:28:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:28:mod xmmreg1 r/m

VPMULLD — Multiply Packed Signed 
Dword Integers, Store low Result

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:40:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:40:mod xmmreg1 r/m

VPTEST — Logical Compare

  xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:17:11 xmmreg1 xmmreg2

  mem to xmmreg C4: rxb0_2: w_F 001:17:mod xmmreg1 r/m

  ymmreg2 to ymmreg1 C4: rxb0_2: w_F 101:17:11 ymmreg1 ymmreg2

  mem to ymmreg C4: rxb0_2: w_F 101:17:mod ymmreg1 r/m

VROUNDPD — Round Packed Double-
Precision Values

  xmmreg2 to xmmreg1, imm8 C4: rxb0_3: w_F 001:09:11 xmmreg1 xmmreg2: imm

  mem to xmmreg1, imm8 C4: rxb0_3: w_F 001:09:mod xmmreg1 r/m: imm

  ymmreg2 to ymmreg1, imm8 C4: rxb0_3: w_F 101:09:11 ymmreg1 ymmreg2: imm
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  mem to ymmreg1, imm8 C4: rxb0_3: w_F 101:09:mod ymmreg1 r/m: imm

VROUNDPS — Round Packed Single-
Precision Values

  xmmreg2 to xmmreg1, imm8 C4: rxb0_3: w_F 001:08:11 xmmreg1 xmmreg2: imm

  mem to xmmreg1, imm8 C4: rxb0_3: w_F 001:08:mod xmmreg1 r/m: imm

  ymmreg2 to ymmreg1, imm8 C4: rxb0_3: w_F 101:08:11 ymmreg1 ymmreg2: imm

  mem to ymmreg1, imm8 C4: rxb0_3: w_F 101:08:mod ymmreg1 r/m: imm

VROUNDSD — Round Scalar Double-
Precision Value

 xmmreg2 and xmmreg3 to xmmreg1, 
imm8

C4: rxb0_3: w xmmreg2 001:0B:11 xmmreg1 xmmreg3: 
imm

  xmmreg2 and mem to xmmreg1, 
imm8

C4: rxb0_3: w xmmreg2 001:0B:mod xmmreg1 r/m: 
imm

VROUNDSS — Round Scalar Single-
Precision Value

 xmmreg2 and xmmreg3 to xmmreg1, 
imm8

C4: rxb0_3: w xmmreg2 001:0A:11 xmmreg1 xmmreg3: 
imm

  xmmreg2 and mem to xmmreg1, 
imm8

C4: rxb0_3: w xmmreg2 001:0A:mod xmmreg1 r/m: 
imm

VPCMPESTRI — Packed Compare 
Explicit Length Strings, Return Index

  xmmreg2 with xmmreg1, imm8 C4: rxb0_3: w_F 001:61:11 xmmreg1 xmmreg2: imm

  mem with xmmreg1, imm8 C4: rxb0_3: w_F 001:61:mod xmmreg1 r/m: imm

VPCMPESTRM — Packed Compare 
Explicit Length Strings, Return Mask

  xmmreg2 with xmmreg1, imm8 C4: rxb0_3: w_F 001:60:11 xmmreg1 xmmreg2: imm

  mem with xmmreg1, imm8 C4: rxb0_3: w_F 001:60:mod xmmreg1 r/m: imm

VPCMPGTQ — Compare Packed Data 
for Greater Than

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:28:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:28:mod xmmreg1 r/m

VPCMPISTRI — Packed Compare 
Implicit Length Strings, Return Index

  xmmreg2 with xmmreg1, imm8 C4: rxb0_3: w_F 001:63:11 xmmreg1 xmmreg2: imm

  mem with xmmreg1, imm8 C4: rxb0_3: w_F 001:63:mod xmmreg1 r/m: imm
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VPCMPISTRM — Packed Compare 
Implicit Length Strings, Return Mask

  xmmreg2 with xmmreg1, imm8 C4: rxb0_3: w_F 001:62:11 xmmreg1 xmmreg2: imm

  mem with xmmreg, imm8 C4: rxb0_3: w_F 001:62:mod xmmreg1 r/m: imm

VAESDEC — Perform One Round of an 
AES Decryption Flow

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:DE:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:DE:mod xmmreg1 r/m

VAESDECLAST — Perform Last Round 
of an AES Decryption Flow

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:DF:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:DF:mod xmmreg1 r/m

VAESENC — Perform One Round of an 
AES Encryption Flow

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:DC:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:DC:mod xmmreg1 r/m

VAESENCLAST — Perform Last Round 
of an AES Encryption Flow

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:DD:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:DD:mod xmmreg1 r/m

VAESIMC — Perform the AES 
InvMixColumn Transformation

  xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:DB:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_2: w_F 001:DB:mod xmmreg1 r/m

VAESKEYGENASSIST — AES Round 
Key Generation Assist

  xmmreg2 to xmmreg1, imm8 C4: rxb0_3: w_F 001:DF:11 xmmreg1 xmmreg2: imm

  mem to xmmreg, imm8 C4: rxb0_3: w_F 001:DF:mod xmmreg1 r/m: imm

VPABSB — Packed Absolute Value

  xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:1C:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_2: w_F 001:1C:mod xmmreg1 r/m

VPABSD — Packed Absolute Value

  xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:1E:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_2: w_F 001:1E:mod xmmreg1 r/m
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VPABSW — Packed Absolute Value

  xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:1D:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_2: w_F 001:1D:mod xmmreg1 r/m

VPALIGNR — Packed Align Right

  xmmreg2 with xmmreg3 to 
xmmreg1, imm8

C4: rxb0_3: w xmmreg2 001:DD:11 xmmreg1 
xmmreg3: imm

  xmmreg2 with mem to xmmreg1, 
imm8

C4: rxb0_3: w xmmreg2 001:DD:mod xmmreg1 r/m: 
imm

VPHADDD — Packed Horizontal Add

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:02:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:02:mod xmmreg1 r/m

VPHADDW — Packed Horizontal Add

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:01:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:01:mod xmmreg1 r/m

VPHADDSW — Packed Horizontal Add 
and Saturate

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:03:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:03:mod xmmreg1 r/m

VPHSUBD — Packed Horizontal 
Subtract

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:06:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:06:mod xmmreg1 r/m

VPHSUBW — Packed Horizontal 
Subtract

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:05:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:05:mod xmmreg1 r/m

VPHSUBSW — Packed Horizontal 
Subtract and Saturate

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:07:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:07:mod xmmreg1 r/m

VPMADDUBSW — Multiply and Add 
Packed Signed and Unsigned Bytes

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:04:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:04:mod xmmreg1 r/m
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VPMULHRSW — Packed Multiply High 
with Round and Scale

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:0B:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:0B:mod xmmreg1 r/m

VPSHUFB — Packed Shuffle Bytes

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:00:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:00:mod xmmreg1 r/m

VPSIGNB — Packed SIGN

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:08:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:08:mod xmmreg1 r/m

VPSIGND — Packed SIGN

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:0A:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:0A:mod xmmreg1 r/m

VPSIGNW — Packed SIGN

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:09:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:09:mod xmmreg1 r/m

VADDSUBPD — Packed Double-FP 
Add/Subtract

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:D0:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:D0:mod xmmreg1 r/m

  xmmreglo21 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:D0:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:D0:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:D0:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:D0:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to 
ymmreg1

C5: r_ymmreglo2 101:D0:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:D0:mod ymmreg1 r/m

VADDSUBPS — Packed Single-FP 
Add/Subtract

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:D0:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:D0:mod xmmreg1 r/m
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  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 011:D0:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 011:D0:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 111:D0:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 111:D0:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to 
ymmreg1

C5: r_ymmreglo2 111:D0:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 111:D0:mod ymmreg1 r/m

VHADDPD — Packed Double-FP 
Horizontal Add

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:7C:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:7C:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:7C:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:7C:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:7C:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:7C:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to 
ymmreg1

C5: r_ymmreglo2 101:7C:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:7C:mod ymmreg1 r/m

VHADDPS — Packed Single-FP 
Horizontal Add

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:7C:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:7C:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 011:7C:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 011:7C:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 111:7C:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 111:7C:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to 
ymmreg1

C5: r_ymmreglo2 111:7C:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 111:7C:mod ymmreg1 r/m

VHSUBPD — Packed Double-FP 
Horizontal Subtract
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  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:7D:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:7D:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:7D:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:7D:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:7D:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:7D:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to 
ymmreg1

C5: r_ymmreglo2 101:7D:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:7D:mod ymmreg1 r/m

VHSUBPS — Packed Single-FP 
Horizontal Subtract

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:7D:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:7D:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 011:7D:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 011:7D:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 111:7D:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 111:7D:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to 
ymmreg1

C5: r_ymmreglo2 111:7D:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 111:7D:mod ymmreg1 r/m

VLDDQU — Load Unaligned Integer 
128 Bits

  mem to xmmreg1 C4: rxb0_1: w_F 011:F0:mod xmmreg1 r/m

  mem to xmmreg1 C5: r_F 011:F0:mod xmmreg1 r/m

  mem to ymmreg1 C4: rxb0_1: w_F 111:F0:mod ymmreg1 r/m

  mem to ymmreg1 C5: r_F 111:F0:mod ymmreg1 r/m

VMOVDDUP — Move One Double-FP 
and Duplicate

  xmmreg2 to xmmreg1 C4: rxb0_1: w_F 011:12:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_1: w_F 011:12:mod xmmreg1 r/m

  xmmreglo to xmmreg1 C5: r_F 011:12:11 xmmreg1 xmmreglo
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  mem to xmmreg1 C5: r_F 011:12:mod xmmreg1 r/m

  ymmreg2 to ymmreg1 C4: rxb0_1: w_F 111:12:11 ymmreg1 ymmreg2

  mem to ymmreg1 C4: rxb0_1: w_F 111:12:mod ymmreg1 r/m

  ymmreglo to ymmreg1 C5: r_ F 111:12:11 ymmreg1 ymmreglo

  mem to ymmreg1 C5: r_F 111:12:mod ymmreg1 r/m

VMOVHLPS — Move Packed Single-
Precision Floating-Point Values High 
to Low

  xmmreg2 and xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:12:11 xmmreg1 xmmreg3

  xmmreglo2 and xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 000:12:11 xmmreg1 xmmreglo3

VMOVSHDUP — Move Packed Single-
FP High and Duplicate

  xmmreg2 to xmmreg1 C4: rxb0_1: w_F 010:16:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_1: w_F 010:16:mod xmmreg1 r/m

  xmmreglo to xmmreg1 C5: r_F 010:16:11 xmmreg1 xmmreglo

  mem to xmmreg1 C5: r_F 010:16:mod xmmreg1 r/m

  ymmreg2 to ymmreg1 C4: rxb0_1: w_F 110:16:11 ymmreg1 ymmreg2

  mem to ymmreg1 C4: rxb0_1: w_F 110:16:mod ymmreg1 r/m

  ymmreglo to ymmreg1 C5: r_F 110:16:11 ymmreg1 ymmreglo

  mem to ymmreg1 C5: r_F 110:16:mod ymmreg1 r/m

VMOVSLDUP — Move Packed Single-
FP Low and Duplicate

  xmmreg2 to xmmreg1 C4: rxb0_1: w_F 010:12:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_1: w_F 010:12:mod xmmreg1 r/m

  xmmreglo to xmmreg1 C5: r_F 010:12:11 xmmreg1 xmmreglo

  mem to xmmreg1 C5: r_F 010:12:mod xmmreg1 r/m

  ymmreg2 to ymmreg1 C4: rxb0_1: w_F 110:12:11 ymmreg1 ymmreg2

  mem to ymmreg1 C4: rxb0_1: w_F 110:12:mod ymmreg1 r/m

  ymmreglo to ymmreg1 C5: r_F 110:12:11 ymmreg1 ymmreglo

  mem to ymmreg1 C5: r_F 110:12:mod ymmreg1 r/m

VADDPD — Add Packed Double-
Precision Floating-Point Values
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  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:58:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:58:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:58:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:58:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:58:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:58:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to 
ymmreg1

C5: r_ymmreglo2 101:58:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:58:mod ymmreg1 r/m

VADDSD — Add Scalar Double-
Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:58:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:58:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 011:58:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5 r_xmmreglo2 011:58:mod xmmreg1 r/m

VANDPD — Bitwise Logical AND of 
Packed Double-Precision Floating-
Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:54:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:54:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:54:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:54:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:54:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:54:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to 
ymmreg1

C5: r_ymmreglo2 101:54:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:54:mod ymmreg1 r/m

VANDNPD — Bitwise Logical AND NOT 
of Packed Double-Precision Floating-
Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:55:11 xmmreg1 xmmreg3
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  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:55:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:55:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:55:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:55:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:55:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to 
ymmreg1

C5: r_ymmreglo2 101:55:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:55:mod ymmreg1 r/m

VCMPPD — Compare Packed Double-
Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:C2:11 xmmreg1 xmmreg3: 
imm

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:C2:mod xmmreg1 r/m: imm

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:C2:11 xmmreg1 xmmreglo3: imm

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:C2:mod xmmreg1 r/m: imm

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:C2:11 ymmreg1 ymmreg3: 
imm

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:C2:mod ymmreg1 r/m: imm

  ymmreglo2 with ymmreglo3 to 
ymmreg1

C5: r_ymmreglo2 101:C2:11 ymmreg1 ymmreglo3: imm

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:C2:mod ymmreg1 r/m: imm

VCMPSD — Compare Scalar Double-
Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:C2:11 xmmreg1 xmmreg3: 
imm

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:C2:mod xmmreg1 r/m: imm

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 011:C2:11 xmmreg1 xmmreglo3: imm

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 011:C2:mod xmmreg1 r/m: imm

VCOMISD — Compare Scalar Ordered 
Double-Precision Floating-Point 
Values and Set EFLAGS

  xmmreg2 to xmmreg1 C4: rxb0_1: w_F 001:2F:11 xmmreg1 xmmreg2
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  mem to xmmreg1 C4: rxb0_1: w_F 001:2F:mod xmmreg1 r/m

  xmmreglo to xmmreg1 C5: r_F 001:2F:11 xmmreg1 xmmreglo

  mem to xmmreg1 C5: r_F 001:2F:mod xmmreg1 r/m

VCVTDQ2PD— Convert Packed Dword 
Integers to Packed Double-Precision 
FP Values

  xmmreg2 to xmmreg1 C4: rxb0_1: w_F 010:E6:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_1: w_F 010:E6:mod xmmreg1 r/m

  xmmreglo to xmmreg1 C5: r_F 010:E6:11 xmmreg1 xmmreglo

  mem to xmmreg1 C5: r_F 010:E6:mod xmmreg1 r/m

  ymmreg2 to ymmreg1 C4: rxb0_1: w_F 110:E6:11 ymmreg1 ymmreg2

  mem to ymmreg1 C4: rxb0_1: w_F 110:E6:mod ymmreg1 r/m

  ymmreglo to ymmreg1 C5: r_F 110:E6:11 ymmreg1 ymmreglo

  mem to ymmreg1 C5: r_F 110:E6:mod ymmreg1 r/m

VCVTDQ2PS— Convert Packed Dword 
Integers to Packed Single-Precision 
FP Values

  xmmreg2 to xmmreg1 C4: rxb0_1: w_F 000:5B:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_1: w_F 000:5B:mod xmmreg1 r/m

  xmmreglo to xmmreg1 C5: r_F 000:5B:11 xmmreg1 xmmreglo

  mem to xmmreg1 C5: r_F 000:5B:mod xmmreg1 r/m

  ymmreg2 to ymmreg1 C4: rxb0_1: w_F 100:5B:11 ymmreg1 ymmreg2

  mem to ymmreg1 C4: rxb0_1: w_F 100:5B:mod ymmreg1 r/m

  ymmreglo to ymmreg1 C5: r_F 100:5B:11 ymmreg1 ymmreglo

  mem to ymmreg1 C5: r_F 100:5B:mod ymmreg1 r/m

VCVTPD2DQ— Convert Packed 
Double-Precision FP Values to Packed 
Dword Integers

  xmmreg2 to xmmreg1 C4: rxb0_1: w_F 011:E6:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_1: w_F 011:E6:mod xmmreg1 r/m

  xmmreglo to xmmreg1 C5: r_F 011:E6:11 xmmreg1 xmmreglo

  mem to xmmreg1 C5: r_F 011:E6:mod xmmreg1 r/m

  ymmreg2 to ymmreg1 C4: rxb0_1: w_F 111:E6:11 ymmreg1 ymmreg2
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  mem to ymmreg1 C4: rxb0_1: w_F 111:E6:mod ymmreg1 r/m

  ymmreglo to ymmreg1 C5: r_F 111:E6:11 ymmreg1 ymmreglo

  mem to ymmreg1 C5: r_F 111:E6:mod ymmreg1 r/m

VCVTPD2PS— Convert Packed 
Double-Precision FP Values to Packed 
Single-Precision FP Values

  xmmreg2 to xmmreg1 C4: rxb0_1: w_F 001:5A:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_1: w_F 001:5A:mod xmmreg1 r/m

  xmmreglo to xmmreg1 C5: r_F 001:5A:11 xmmreg1 xmmreglo

  mem to xmmreg1 C5: r_F 001:5A:mod xmmreg1 r/m

  ymmreg2 to ymmreg1 C4: rxb0_1: w_F 101:5A:11 ymmreg1 ymmreg2

  mem to ymmreg1 C4: rxb0_1: w_F 101:5A:mod ymmreg1 r/m

  ymmreglo to ymmreg1 C5: r_F 101:5A:11 ymmreg1 ymmreglo

  mem to ymmreg1 C5: r_F 101:5A:mod ymmreg1 r/m

VCVTPS2DQ— Convert Packed Single-
Precision FP Values to Packed Dword 
Integers

  xmmreg2 to xmmreg1 C4: rxb0_1: w_F 001:5B:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_1: w_F 001:5B:mod xmmreg1 r/m

  xmmreglo to xmmreg1 C5: r_F 001:5B:11 xmmreg1 xmmreglo

  mem to xmmreg1 C5: r_F 001:5B:mod xmmreg1 r/m

  ymmreg2 to ymmreg1 C4: rxb0_1: w_F 101:5B:11 ymmreg1 ymmreg2

  mem to ymmreg1 C4: rxb0_1: w_F 101:5B:mod ymmreg1 r/m

  ymmreglo to ymmreg1 C5: r_F 101:5B:11 ymmreg1 ymmreglo

  mem to ymmreg1 C5: r_F 101:5B:mod ymmreg1 r/m

VCVTPS2PD— Convert Packed Single-
Precision FP Values to Packed 
Double-Precision FP Values

  xmmreg2 to xmmreg1 C4: rxb0_1: w_F 000:5A:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_1: w_F 000:5A:mod xmmreg1 r/m

  xmmreglo to xmmreg1 C5: r_F 000:5A:11 xmmreg1 xmmreglo

  mem to xmmreg1 C5: r_F 000:5A:mod xmmreg1 r/m

  ymmreg2 to ymmreg1 C4: rxb0_1: w_F 100:5A:11 ymmreg1 ymmreg2
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  mem to ymmreg1 C4: rxb0_1: w_F 100:5A:mod ymmreg1 r/m

  ymmreglo to ymmreg1 C5: r_F 100:5A:11 ymmreg1 ymmreglo

  mem to ymmreg1 C5: r_F 100:5A:mod ymmreg1 r/m

VCVTSD2SI— Convert Scalar Double-
Precision FP Value to Integer

  xmmreg1 to reg32 C4: rxb0_1: 0_F 011:2D:11 reg xmmreg1

  mem to reg32 C4: rxb0_1: 0_F 011:2D:mod reg r/m

  xmmreglo to reg32 C5: r_F 011:2D:11 reg xmmreglo

  mem to reg32 C5: r_F 011:2D:mod reg r/m

  ymmreg1 to reg64 C4: rxb0_1: 1_F 111:2D:11 reg ymmreg1

  mem to reg64 C4: rxb0_1: 1_F 111:2D:mod reg r/m

VCVTSD2SS — Convert Scalar Double-
Precision FP Value to Scalar Single-
Precision FP Value

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:5A:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:5A:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 011:5A:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 011:5A:mod xmmreg1 r/m

VCVTSI2SD— Convert Dword Integer 
to Scalar Double-Precision FP Value

  xmmreg2 with reg to xmmreg1 C4: rxb0_1: 0 xmmreg2 011:2A:11 xmmreg1 reg

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: 0 xmmreg2 011:2A:mod xmmreg1 r/m

  xmmreglo2 with reglo to xmmreg1 C5: r_xmmreglo2 011:2A:11 xmmreg1 reglo

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 011:2A:mod xmmreg1 r/m

  ymmreg2 with reg to ymmreg1 C4: rxb0_1: 1 ymmreg2 111:2A:11 ymmreg1 reg

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: 1 ymmreg2 111:2A:mod ymmreg1 r/m

VCVTSS2SD — Convert Scalar Single-
Precision FP Value to Scalar Double-
Precision FP Value

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:5A:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 010:5A:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 010:5A:11 xmmreg1 xmmreglo3
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  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 010:5A:mod xmmreg1 r/m

VCVTTPD2DQ— Convert with 
Truncation Packed Double-Precision 
FP Values to Packed Dword Integers

  xmmreg2 to xmmreg1 C4: rxb0_1: w_F 001:E6:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_1: w_F 001:E6:mod xmmreg1 r/m

  xmmreglo to xmmreg1 C5: r_F 001:E6:11 xmmreg1 xmmreglo

  mem to xmmreg1 C5: r_F 001:E6:mod xmmreg1 r/m

  ymmreg2 to ymmreg1 C4: rxb0_1: w_F 101:E6:11 ymmreg1 ymmreg2

  mem to ymmreg1 C4: rxb0_1: w_F 101:E6:mod ymmreg1 r/m

  ymmreglo to ymmreg1 C5: r_F 101:E6:11 ymmreg1 ymmreglo

  mem to ymmreg1 C5: r_F 101:E6:mod ymmreg1 r/m

VCVTTPS2DQ— Convert with 
Truncation Packed Single-Precision 
FP Values to Packed Dword Integers

  xmmreg2 to xmmreg1 C4: rxb0_1: w_F 010:5B:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_1: w_F 010:5B:mod xmmreg1 r/m

  xmmreglo to xmmreg1 C5: r_F 010:5B:11 xmmreg1 xmmreglo

  mem to xmmreg1 C5: r_F 010:5B:mod xmmreg1 r/m

  ymmreg2 to ymmreg1 C4: rxb0_1: w_F 110:5B:11 ymmreg1 ymmreg2

  mem to ymmreg1 C4: rxb0_1: w_F 110:5B:mod ymmreg1 r/m

  ymmreglo to ymmreg1 C5: r_F 110:5B:11 ymmreg1 ymmreglo

  mem to ymmreg1 C5: r_F 110:5B:mod ymmreg1 r/m

VCVTTSD2SI— Convert with 
Truncation Scalar Double-Precision 
FP Value to Signed Integer

  xmmreg1 to reg32 C4: rxb0_1: 0_F 011:2C:11 reg xmmreg1

  mem to reg32 C4: rxb0_1: 0_F 011:2C:mod reg r/m

  xmmreglo to reg32 C5: r_F 011:2C:11 reg xmmreglo

  mem to reg32 C5: r_F 011:2C:mod reg r/m

  xmmreg1 to reg64 C4: rxb0_1: 1_F 011:2C:11 reg xmmreg1

  mem to reg64 C4: rxb0_1: 1_F 011:2C:mod reg r/m
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VDIVPD — Divide Packed Double-
Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:5E:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:5E:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:5E:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:5E:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:5E:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:5E:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to 
ymmreg1

C5: r_ymmreglo2 101:5E:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:5E:mod ymmreg1 r/m

VDIVSD — Divide Scalar Double-
Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:5E:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:5E:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 011:5E:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 011:5E:mod xmmreg1 r/m

VMASKMOVDQU— Store Selected 
Bytes of Double Quadword

  xmmreg1 to mem; xmmreg2 as mask C4: rxb0_1: w_F 001:F7:11 r/m xmmreg1: xmmreg2

  xmmreg1 to mem; xmmreg2 as mask C5: r_F 001:F7:11 r/m xmmreg1: xmmreg2

VMAXPD — Return Maximum Packed 
Double-Precision Floating-Point 
Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:5F:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:5F:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:5F:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:5F:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:5F:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:5F:mod ymmreg1 r/m
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  ymmreglo2 with ymmreglo3 to 
ymmreg1

C5: r_ymmreglo2 101:5F:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:5F:mod ymmreg1 r/m

VMAXSD — Return Maximum Scalar 
Double-Precision Floating-Point Value

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:5F:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:5F:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 011:5F:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 011:5F:mod xmmreg1 r/m

VMINPD — Return Minimum Packed 
Double-Precision Floating-Point 
Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:5D:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:5D:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:5D:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:5D:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:5D:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:5D:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to 
ymmreg1

C5: r_ymmreglo2 101:5D:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:5D:mod ymmreg1 r/m

VMINSD — Return Minimum Scalar 
Double-Precision Floating-Point Value

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:5D:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:5D:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 011:5D:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 011:5D:mod xmmreg1 r/m

VMOVAPD — Move Aligned Packed 
Double-Precision Floating-Point 
Values

  xmmreg2 to xmmreg1 C4: rxb0_1: w_F 001:28:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_1: w_F 001:28:mod xmmreg1 r/m
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  xmmreglo to xmmreg1 C5: r_F 001:28:11 xmmreg1 xmmreglo

  mem to xmmreg1 C5: r_F 001:28:mod xmmreg1 r/m

  xmmreg1 to xmmreg2 C4: rxb0_1: w_F 001:29:11 xmmreg2 xmmreg1

  xmmreg1 to mem C4: rxb0_1: w_F 001:29:mod r/m xmmreg1

  xmmreg1 to xmmreglo C5: r_F 001:29:11 xmmreglo xmmreg1

  xmmreg1 to mem C5: r_F 001:29:mod r/m xmmreg1

  ymmreg2 to ymmreg1 C4: rxb0_1: w_F 101:28:11 ymmreg1 ymmreg2

  mem to ymmreg1 C4: rxb0_1: w_F 101:28:mod ymmreg1 r/m

  ymmreglo to ymmreg1 C5: r_F 101:28:11 ymmreg1 ymmreglo

  mem to ymmreg1 C5: r_F 101:28:mod ymmreg1 r/m

  ymmreg1 to ymmreg2 C4: rxb0_1: w_F 101:29:11 ymmreg2 ymmreg1

  ymmreg1 to mem C4: rxb0_1: w_F 101:29:mod r/m ymmreg1

  ymmreg1 to ymmreglo C5: r_F 101:29:11 ymmreglo ymmreg1

  ymmreg1 to mem C5: r_F 101:29:mod r/m ymmreg1

VMOVD — Move Doubleword

  reg32 to xmmreg1 C4: rxb0_1: 0_F 001:6E:11 xmmreg1 reg32

  mem32 to xmmreg1 C4: rxb0_1: 0_F 001:6E:mod xmmreg1 r/m

  reg32 to xmmreg1 C5: r_F 001:6E:11 xmmreg1 reg32

  mem32 to xmmreg1 C5: r_F 001:6E:mod xmmreg1 r/m

  xmmreg1 to reg32 C4: rxb0_1: 0_F 001:7E:11 reg32 xmmreg1

  xmmreg1 to mem32 C4: rxb0_1: 0_F 001:7E:mod mem32 xmmreg1

  xmmreglo to reg32 C5: r_F 001:7E:11 reg32 xmmreglo

  xmmreglo to mem32 C5: r_F 001:7E:mod mem32 xmmreglo

VMOVQ — Move Quadword

  reg64 to xmmreg1 C4: rxb0_1: 1_F 001:6E:11 xmmreg1 reg64

  mem64 to xmmreg1 C4: rxb0_1: 1_F 001:6E:mod xmmreg1 r/m

  xmmreg1 to reg64 C4: rxb0_1: 1_F 001:7E:11 reg64 xmmreg1

  xmmreg1 to mem64 C4: rxb0_1: 1_F 001:7E:mod r/m xmmreg1

VMOVDQA — Move Aligned Double 
Quadword

  xmmreg2 to xmmreg1 C4: rxb0_1: w_F 001:6F:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_1: w_F 001:6F:mod xmmreg1 r/m
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  xmmreglo to xmmreg1 C5: r_F 001:6F:11 xmmreg1 xmmreglo

  mem to xmmreg1 C5: r_F 001:6F:mod xmmreg1 r/m

  xmmreg1 to xmmreg2 C4: rxb0_1: w_F 001:7F:11 xmmreg2 xmmreg1

  xmmreg1 to mem C4: rxb0_1: w_F 001:7F:mod r/m xmmreg1

  xmmreg1 to xmmreglo C5: r_F 001:7F:11 xmmreglo xmmreg1

  xmmreg1 to mem C5: r_F 001:7F:mod r/m xmmreg1

  ymmreg2 to ymmreg1 C4: rxb0_1: w_F 101:6F:11 ymmreg1 ymmreg2

  mem to ymmreg1 C4: rxb0_1: w_F 101:6F:mod ymmreg1 r/m

  ymmreglo to ymmreg1 C5: r_F 101:6F:11 ymmreg1 ymmreglo

  mem to ymmreg1 C5: r_F 101:6F:mod ymmreg1 r/m

  ymmreg1 to ymmreg2 C4: rxb0_1: w_F 101:7F:11 ymmreg2 ymmreg1

  ymmreg1 to mem C4: rxb0_1: w_F 101:7F:mod r/m ymmreg1

  ymmreg1 to ymmreglo C5: r_F 101:7F:11 ymmreglo ymmreg1

  ymmreg1 to mem C5: r_F 101:7F:mod r/m ymmreg1

VMOVDQU — Move Unaligned Double 
Quadword

  xmmreg2 to xmmreg1 C4: rxb0_1: w_F 010:6F:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_1: w_F 010:6F:mod xmmreg1 r/m

  xmmreglo to xmmreg1 C5: r_F 010:6F:11 xmmreg1 xmmreglo

  mem to xmmreg1 C5: r_F 010:6F:mod xmmreg1 r/m

  xmmreg1 to xmmreg2 C4: rxb0_1: w_F 010:7F:11 xmmreg2 xmmreg1

  xmmreg1 to mem C4: rxb0_1: w_F 010:7F:mod r/m xmmreg1

  xmmreg1 to xmmreglo C5: r_F 010:7F:11 xmmreglo xmmreg1

  xmmreg1 to mem C5: r_F 010:7F:mod r/m xmmreg1

  ymmreg2 to ymmreg1 C4: rxb0_1: w_F 110:6F:11 ymmreg1 ymmreg2

  mem to ymmreg1 C4: rxb0_1: w_F 110:6F:mod ymmreg1 r/m

  ymmreglo to ymmreg1 C5: r_F 110:6F:11 ymmreg1 ymmreglo

  mem to ymmreg1 C5: r_F 110:6F:mod ymmreg1 r/m

  ymmreg1 to ymmreg2 C4: rxb0_1: w_F 110:7F:11 ymmreg2 ymmreg1

  ymmreg1 to mem C4: rxb0_1: w_F 110:7F:mod r/m ymmreg1

  ymmreg1 to ymmreglo C5: r_F 110:7F:11 ymmreglo ymmreg1

  ymmreg1 to mem C5: r_F 110:7F:mod r/m ymmreg1
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VMOVHPD — Move High Packed 
Double-Precision Floating-Point Value

  xmmreg1 and mem to xmmreg2 C4: rxb0_1: w xmmreg1 001:16:11 xmmreg2 r/m

  xmmreg1 and mem to xmmreglo2 C5: r_xmmreg1 001:16:11 xmmreglo2 r/m

  xmmreg1 to mem C4: rxb0_1: w_F 001:17:mod r/m xmmreg1

  xmmreglo to mem C5: r_F 001:17:mod r/m xmmreglo

VMOVLPD — Move Low Packed 
Double-Precision Floating-Point Value

  xmmreg1 and mem to xmmreg2 C4: rxb0_1: w xmmreg1 001:12:11 xmmreg2 r/m

  xmmreg1 and mem to xmmreglo2 C5: r_xmmreg1 001:12:11 xmmreglo2 r/m

  xmmreg1 to mem C4: rxb0_1: w_F 001:13:mod r/m xmmreg1

  xmmreglo to mem C5: r_F 001:13:mod r/m xmmreglo

VMOVMSKPD — Extract Packed 
Double-Precision Floating-Point Sign 
Mask

  xmmreg2 to reg C4: rxb0_1: w_F 001:50:11 reg xmmreg1

  xmmreglo to reg C5: r_F 001:50:11 reg xmmreglo

  ymmreg2 to reg C4: rxb0_1: w_F 101:50:11 reg ymmreg1

  ymmreglo to reg C5: r_F 101:50:11 reg ymmreglo

VMOVNTDQ — Store Double 
Quadword Using Non-Temporal Hint

  xmmreg1 to mem C4: rxb0_1: w_F 001:E7:11 r/m xmmreg1

  xmmreglo to mem C5: r_F 001:E7:11 r/m xmmreglo

  ymmreg1 to mem C4: rxb0_1: w_F 101:E7:11 r/m ymmreg1

  ymmreglo to mem C5: r_F 101:E7:11 r/m ymmreglo

VMOVNTPD — Store Packed Double-
Precision Floating-Point Values Using 
Non-Temporal Hint

  xmmreg1 to mem C4: rxb0_1: w_F 001:2B:11 r/m xmmreg1

  xmmreglo to mem C5: r_F 001:2B:11 r/m xmmreglo

  ymmreg1 to mem C4: rxb0_1: w_F 101:2B:11r/m ymmreg1

  ymmreglo to mem C5: r_F 101:2B:11r/m ymmreglo

VMOVSD — Move Scalar Double-
Precision Floating-Point Value
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  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:10:11 xmmreg1 xmmreg3

  mem to xmmreg1 C4: rxb0_1: w_F 011:10:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 011:10:11 xmmreg1 xmmreglo3

  mem to xmmreg1 C5: r_F 011:10:mod xmmreg1 r/m

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:11:11 xmmreg1 xmmreg3

  xmmreg1 to mem C4: rxb0_1: w_F 011:11:mod r/m xmmreg1

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 011:11:11 xmmreg1 xmmreglo3

  xmmreglo to mem C5: r_F 011:11:mod r/m xmmreglo

VMOVUPD — Move Unaligned Packed 
Double-Precision Floating-Point 
Values

  xmmreg2 to xmmreg1 C4: rxb0_1: w_F 001:10:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_1: w_F 001:10:mod xmmreg1 r/m

  xmmreglo to xmmreg1 C5: r_F 001:10:11 xmmreg1 xmmreglo

  mem to xmmreg1 C5: r_F 001:10:mod xmmreg1 r/m

  ymmreg2 to ymmreg1 C4: rxb0_1: w_F 101:10:11 ymmreg1 ymmreg2

  mem to ymmreg1 C4: rxb0_1: w_F 101:10:mod ymmreg1 r/m 

  ymmreglo to ymmreg1 C5: r_F 101:10:11 ymmreg1 ymmreglo

  mem to ymmreg1 C5: r_F 101:10:mod ymmreg1 r/m 

  xmmreg1 to xmmreg2 C4: rxb0_1: w_F 001:11:11 xmmreg2 xmmreg1

  xmmreg1 to mem C4: rxb0_1: w_F 001:11:mod r/m xmmreg1

  xmmreg1 to xmmreglo C5: r_F 001:11:11 xmmreglo xmmreg1

  xmmreg1 to mem C5: r_F 001:11:mod r/m xmmreg1

  ymmreg1 to ymmreg2 C4: rxb0_1: w_F 101:11:11 ymmreg2 ymmreg1

  ymmreg1 to mem C4: rxb0_1: w_F 101:11:mod r/m ymmreg1

  ymmreg1 to ymmreglo C5: r_F 101:11:11 ymmreglo ymmreg1

  ymmreg1 to mem C5: r_F 101:11:mod r/m ymmreg1

VMULPD — Multiply Packed Double-
Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:59:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:59:mod xmmreg1 r/m
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  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:59:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:59:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:59:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:59:mod ymmreg1 r/m 

  ymmreglo2 with ymmreglo3 to 
ymmreg1

C5: r_ymmreglo2 101:59:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:59:mod ymmreg1 r/m 

VMULSD — Multiply Scalar Double-
Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:59:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:59:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 011:59:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 011:59:mod xmmreg1 r/m

VORPD — Bitwise Logical OR of 
Double-Precision Floating-Point 
Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:56:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:56:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:56:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:56:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:56:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:56:mod ymmreg1 r/m 

  ymmreglo2 with ymmreglo3 to 
ymmreg1

C5: r_ymmreglo2 101:56:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:56:mod ymmreg1 r/m 

VPACKSSWB— Pack with Signed 
Saturation

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:63:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:63:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:63:11 xmmreg1 xmmreglo3
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  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:63:mod xmmreg1 r/m

VPACKSSDW— Pack with Signed 
Saturation

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:6B:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:6B:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:6B:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:6B:mod xmmreg1 r/m

VPACKUSWB— Pack with Unsigned 
Saturation

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:67:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:67:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:67:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:67:mod xmmreg1 r/m

VPADDB — Add Packed Integers

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:FC:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:FC:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:FC:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:FC:mod xmmreg1 r/m

VPADDW — Add Packed Integers

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:FD:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:FD:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:FD:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:FD:mod xmmreg1 r/m

VPADDD — Add Packed Integers

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:FE:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:FE:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:FE:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:FE:mod xmmreg1 r/m
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VPADDQ — Add Packed Quadword 
Integers

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:D4:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:D4:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:D4:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:D4:mod xmmreg1 r/m

VPADDSB — Add Packed Signed 
Integers with Signed Saturation

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:EC:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:EC:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:EC:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:EC:mod xmmreg1 r/m

VPADDSW — Add Packed Signed 
Integers with Signed Saturation

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:ED:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:ED:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:ED:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:ED:mod xmmreg1 r/m

VPADDUSB — Add Packed Unsigned 
Integers with Unsigned Saturation

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:DC:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:DC:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:DC:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:DC:mod xmmreg1 r/m

VPADDUSW — Add Packed Unsigned 
Integers with Unsigned Saturation

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:DD:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:DD:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:DD:11 xmmreg1 xmmreglo3
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  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:DD:mod xmmreg1 r/m

VPAND — Logical AND

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:DB:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:DB:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:DB:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:DB:mod xmmreg1 r/m

VPANDN — Logical AND NOT

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:DF:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:DF:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:DF:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:DF:mod xmmreg1 r/m

VPAVGB — Average Packed Integers

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:E0:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:E0:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:E0:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:E0:mod xmmreg1 r/m

VPAVGW — Average Packed Integers

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:E3:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:E3:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:E3:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:E3:mod xmmreg1 r/m

VPCMPEQB — Compare Packed Data 
for Equal

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:74:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:74:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:74:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:74:mod xmmreg1 r/m
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VPCMPEQW — Compare Packed Data 
for Equal

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:75:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:75:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:75:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:75:mod xmmreg1 r/m

VPCMPEQD — Compare Packed Data 
for Equal

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:76:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:76:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:76:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:76:mod xmmreg1 r/m

VPCMPGTB — Compare Packed 
Signed Integers for Greater Than

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:64:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:64:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:64:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:64:mod xmmreg1 r/m

VPCMPGTW — Compare Packed 
Signed Integers for Greater Than

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:65:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:65:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:65:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:65:mod xmmreg1 r/m

VPCMPGTD — Compare Packed 
Signed Integers for Greater Than

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:66:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:66:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:66:11 xmmreg1 xmmreglo3
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  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:66:mod xmmreg1 r/m

VPEXTRW — Extract Word

  xmmreg1 to reg using imm C4: rxb0_1: 0_F 001:C5:11 reg xmmreg1: imm

  xmmreg1 to reg using imm C5: r_F 001:C5:11 reg xmmreg1: imm

VPINSRW — Insert Word

  xmmreg2 with reg to xmmreg1 C4: rxb0_1: 0 xmmreg2 001:C4:11 xmmreg1 reg: imm

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: 0 xmmreg2 001:C4:mod xmmreg1 r/m: imm

  xmmreglo2 with reglo to xmmreg1 C5: r_xmmreglo2 001:C4:11 xmmreg1 reglo: imm

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:C4:mod xmmreg1 r/m: imm

VPMADDWD — Multiply and Add 
Packed Integers

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:F5:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:F5:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:F5:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:F5:mod xmmreg1 r/m

VPMAXSW — Maximum of Packed 
Signed Word Integers

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:EE:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:EE:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:EE:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:EE:mod xmmreg1 r/m

VPMAXUB — Maximum of Packed 
Unsigned Byte Integers

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:DE:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:DE:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:DE:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:DE:mod xmmreg1 r/m

VPMINSW — Minimum of Packed 
Signed Word Integers

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:EA:11 xmmreg1 xmmreg3
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  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:EA:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:EA:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:EA:mod xmmreg1 r/m

VPMINUB — Minimum of Packed 
Unsigned Byte Integers

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:DA:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:DA:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:DA:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:DA:mod xmmreg1 r/m

VPMOVMSKB — Move Byte Mask

  xmmreg1 to reg C4: rxb0_1: w_F 001:D7:11 reg xmmreg1

  xmmreg1 to reg C5: r_F 001:D7:11 reg xmmreg1

VPMULHUW — Multiply Packed 
Unsigned Integers and Store High 
Result

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:E4:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:E4:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:E4:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:E4:mod xmmreg1 r/m

VPMULHW — Multiply Packed Signed 
Integers and Store High Result

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:E5:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:E5:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:E5:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:E5:mod xmmreg1 r/m

VPMULLW — Multiply Packed Signed 
Integers and Store Low Result

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:D5:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:D5:mod xmmreg1 r/m
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  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:D5:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:D5:mod xmmreg1 r/m

VPMULUDQ — Multiply Packed 
Unsigned Doubleword Integers

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:F4:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:F4:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:F4:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:F4:mod xmmreg1 r/m

VPOR — Bitwise Logical OR

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:EB:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:EB:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:EB:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:EB:mod xmmreg1 r/m

VPSADBW — Compute Sum of 
Absolute Differences

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:F6:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:F6:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:F6:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:F6:mod xmmreg1 r/m

VPSHUFD — Shuffle Packed 
Doublewords

  xmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 001:70:11 xmmreg1 xmmreg2: imm

  mem to xmmreg1 using imm C4: rxb0_1: w_F 001:70:mod xmmreg1 r/m: imm

  xmmreglo to xmmreg1 using imm C5: r_F 001:70:11 xmmreg1 xmmreglo: imm

  mem to xmmreg1 using imm C5: r_F 001:70:mod xmmreg1 r/m: imm

VPSHUFHW — Shuffle Packed High 
Words

  xmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 010:70:11 xmmreg1 xmmreg2: imm

  mem to xmmreg1 using imm C4: rxb0_1: w_F 010:70:mod xmmreg1 r/m: imm

  xmmreglo to xmmreg1 using imm C5: r_F 010:70:11 xmmreg1 xmmreglo: imm
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  mem to xmmreg1 using imm C5: r_F 010:70:mod xmmreg1 r/m: imm

VPSHUFLW — Shuffle Packed Low 
Words

  xmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 011:70:11 xmmreg1 xmmreg2: imm

  mem to xmmreg1 using imm C4: rxb0_1: w_F 011:70:mod xmmreg1 r/m: imm

  xmmreglo to xmmreg1 using imm C5: r_F 011:70:11 xmmreg1 xmmreglo: imm

  mem to xmmreg1 using imm C5: r_F 011:70:mod xmmreg1 r/m: imm

VPSLLDQ — Shift Double Quadword 
Left Logical

  xmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 001:73:11 xmmreg1 xmmreg2: imm

  xmmreglo to xmmreg1 using imm C5: r_F 001:73:11 xmmreg1 xmmreglo: imm

VPSLLW — Shift Packed Data Left 
Logical

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:F1:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:F1:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:F1:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:F1:mod xmmreg1 r/m

  xmmreg2 to xmmreg1 using imm8 C4: rxb0_1: w_F 001:71:11 xmmreg1 xmmreg2: imm

  xmmreglo to xmmreg1 using imm8 C5: r_F 001:71:11 xmmreg1 xmmreglo: imm

VPSLLD — Shift Packed Data Left 
Logical

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:F2:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:F2:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:F2:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:F2:mod xmmreg1 r/m

  xmmreg2 to xmmreg1 using imm8 C4: rxb0_1: w_F 001:72:11 xmmreg1 xmmreg2: imm

  xmmreglo to xmmreg1 using imm8 C5: r_F 001:72:11 xmmreg1 xmmreglo: imm

VPSLLQ — Shift Packed Data Left 
Logical

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:F3:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:F3:mod xmmreg1 r/m
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  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:F3:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:F3:mod xmmreg1 r/m

  xmmreg2 to xmmreg1 using imm8 C4: rxb0_1: w_F 001:73:11 xmmreg1 xmmreg2: imm

  xmmreglo to xmmreg1 using imm8 C5: r_F 001:73:11 xmmreg1 xmmreglo: imm

VPSRAW — Shift Packed Data Right 
Arithmetic

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:E1:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:E1:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:E1:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:E1:mod xmmreg1 r/m

  xmmreg2 to xmmreg1 using imm8 C4: rxb0_1: w_F 001:71:11 xmmreg1 xmmreg2: imm

  xmmreglo to xmmreg1 using imm8 C5: r_F 001:71:11 xmmreg1 xmmreglo: imm

VPSRAD — Shift Packed Data Right 
Arithmetic

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:E2:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:E2:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:E2:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:E2:mod xmmreg1 r/m

  xmmreg2 to xmmreg1 using imm8 C4: rxb0_1: w_F 001:72:11 xmmreg1 xmmreg2: imm

  xmmreglo to xmmreg1 using imm8 C5: r_F 001:72:11 xmmreg1 xmmreglo: imm

VPSRLDQ — Shift Double Quadword 
Right Logical

  xmmreg2 to xmmreg1 using imm8 C4: rxb0_1: w_F 001:73:11 xmmreg1 xmmreg2: imm

  xmmreglo to xmmreg1 using imm8 C5: r_F 001:73:11 xmmreg1 xmmreglo: imm

VPSRLW — Shift Packed Data Right 
Logical

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:D1:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:D1:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:D1:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:D1:mod xmmreg1 r/m
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  xmmreg2 to xmmreg1 using imm8 C4: rxb0_1: w_F 001:71:11 xmmreg1 xmmreg2: imm

  xmmreglo to xmmreg1 using imm8 C5: r_F 001:71:11 xmmreg1 xmmreglo: imm

VPSRLD — Shift Packed Data Right 
Logical

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:D2:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:D2:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:D2:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:D2:mod xmmreg1 r/m

  xmmreg2 to xmmreg1 using imm8 C4: rxb0_1: w_F 001:72:11 xmmreg1 xmmreg2: imm

  xmmreglo to xmmreg1 using imm8 C5: r_F 001:72:11 xmmreg1 xmmreglo: imm

VPSRLQ — Shift Packed Data Right 
Logical

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:D3:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:D3:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:D3:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:D3:mod xmmreg1 r/m

  xmmreg2 to xmmreg1 using imm8 C4: rxb0_1: w_F 001:73:11 xmmreg1 xmmreg2: imm

  xmmreglo to xmmreg1 using imm8 C5: r_F 001:73:11 xmmreg1 xmmreglo: imm

VPSUBB — Subtract Packed Integers

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:F8:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:F8:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:F8:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:F8:mod xmmreg1 r/m

VPSUBW — Subtract Packed Integers

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:F9:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:F9:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:F9:11 xmmreg1 xmmreglo3

  xmmrelog2 with mem to xmmreg1 C5: r_xmmreglo2 001:F9:mod xmmreg1 r/m

VPSUBD — Subtract Packed Integers
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  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:FA:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:FA:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:FA:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:FA:mod xmmreg1 r/m

VPSUBQ — Subtract Packed 
Quadword Integers

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:FB:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:FB:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:FB:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:FB:mod xmmreg1 r/m

VPSUBSB — Subtract Packed Signed 
Integers with Signed Saturation

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:E8:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:E8:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:E8:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:E8:mod xmmreg1 r/m

VPSUBSW — Subtract Packed Signed 
Integers with Signed Saturation

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:E9:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:E9:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:E9:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:E9:mod xmmreg1 r/m

VPSUBUSB — Subtract Packed 
Unsigned Integers with Unsigned 
Saturation

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:D8:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:D8:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:D8:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:D8:mod xmmreg1 r/m
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VPSUBUSW — Subtract Packed 
Unsigned Integers with Unsigned 
Saturation

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:D9:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:D9:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:D9:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:D9:mod xmmreg1 r/m

VPUNPCKHBW — Unpack High Data

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:68:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:68:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:68:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:68:mod xmmreg1 r/m

VPUNPCKHWD — Unpack High Data

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:69:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:69:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:69:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:69:mod xmmreg1 r/m

VPUNPCKHDQ — Unpack High Data

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:6A:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:6A:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:6A:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:6A:mod xmmreg1 r/m

VPUNPCKHQDQ — Unpack High Data

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:6D:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:6D:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:6D:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:6D:mod xmmreg1 r/m

VPUNPCKLBW — Unpack Low Data

Instruction and Format Encoding
Vol. 2C B-147



INSTRUCTION FORMATS AND ENCODINGS
  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:60:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:60:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:60:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:60:mod xmmreg1 r/m

VPUNPCKLWD — Unpack Low Data

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:61:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:61:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:61:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:61:mod xmmreg1 r/m

VPUNPCKLDQ — Unpack Low Data

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:62:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:62:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:62:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:62:mod xmmreg1 r/m

VPUNPCKLQDQ — Unpack Low Data

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:6C:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:6C:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:6C:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:6C:mod xmmreg1 r/m

VPXOR — Logical Exclusive OR

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:EF:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:EF:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:EF:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:EF:mod xmmreg1 r/m

VSHUFPD — Shuffle Packed Double-
Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 
using imm8

C4: rxb0_1: w xmmreg2 001:C6:11 xmmreg1 xmmreg3: 
imm
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  xmmreg2 with mem to xmmreg1 
using imm8

C4: rxb0_1: w xmmreg2 001:C6:mod xmmreg1 r/m: imm

  xmmreglo2 with xmmreglo3 to 
xmmreg1 using imm8

C5: r_xmmreglo2 001:C6:11 xmmreg1 xmmreglo3: imm

  xmmreglo2 with mem to xmmreg1 
using imm8

C5: r_xmmreglo2 001:C6:mod xmmreg1 r/m: imm

  ymmreg2 with ymmreg3 to ymmreg1 
using imm8

C4: rxb0_1: w ymmreg2 101:C6:11 ymmreg1 ymmreg3: 
imm

  ymmreg2 with mem to ymmreg1 
using imm8

C4: rxb0_1: w ymmreg2 101:C6:mod ymmreg1 r/m: imm

  ymmreglo2 with ymmreglo3 to 
ymmreg1 using imm8

C5: r_ymmreglo2 101:C6:11 ymmreg1 ymmreglo3: imm

  ymmreglo2 with mem to ymmreg1 
using imm8

C5: r_ymmreglo2 101:C6:mod ymmreg1 r/m: imm

VSQRTPD — Compute Square Roots 
of Packed Double-Precision Floating-
Point Values

  xmmreg2 to xmmreg1 C4: rxb0_1: w_F 001:51:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_1: w_F 001:51:mod xmmreg1 r/m

  xmmreglo to xmmreg1 C5: r_F 001:51:11 xmmreg1 xmmreglo

  mem to xmmreg1 C5: r_F 001:51:mod xmmreg1 r/m

  ymmreg2 to ymmreg1 C4: rxb0_1: w_F 101:51:11 ymmreg1 ymmreg2

  mem to ymmreg1 C4: rxb0_1: w_F 101:51:mod ymmreg1 r/m

  ymmreglo to ymmreg1 C5: r_F 101:51:11 ymmreg1 ymmreglo

  mem to ymmreg1 C5: r_F 101:51:mod ymmreg1 r/m

VSQRTSD — Compute Square Root of 
Scalar Double-Precision Floating-
Point Value

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:51:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:51:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 011:51:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 011:51:mod xmmreg1 r/m

VSUBPD — Subtract Packed Double-
Precision Floating-Point Values
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  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:5C:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:5C:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:5C:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:5C:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:5C:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:5C:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to 
ymmreg1

C5: r_ymmreglo2 101:5C:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:5C:mod ymmreg1 r/m

VSUBSD — Subtract Scalar Double-
Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:5C:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:5C:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 011:5C:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 011:5C:mod xmmreg1 r/m

VUCOMISD — Unordered Compare 
Scalar Double-Precision Floating-
Point Values and Set EFLAGS

  xmmreg2 with xmmreg1, set EFLAGS C4: rxb0_1: w_F xmmreg1 001:2E:11 xmmreg2

  mem with xmmreg1, set EFLAGS C4: rxb0_1: w_F xmmreg1 001:2E:mod r/m

  xmmreglo with xmmreg1, set EFLAGS C5: r_F xmmreg1 001:2E:11 xmmreglo

  mem with xmmreg1, set EFLAGS C5: r_F xmmreg1 001:2E:mod r/m

VUNPCKHPD — Unpack and 
Interleave High Packed Double-
Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:15:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:15:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:15:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:15:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:15:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:15:mod ymmreg1 r/m
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  ymmreglo2 with ymmreglo3 to 
ymmreg1

C5: r_ymmreglo2 101:15:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:15:mod ymmreg1 r/m

VUNPCKHPS — Unpack and 
Interleave High Packed Single-
Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:15:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:15:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 000:15:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 000:15:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:15:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:15:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to 
ymmreg1

C5: r_ymmreglo2 100:15:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 100:15:mod ymmreg1 r/m

VUNPCKLPD — Unpack and Interleave 
Low Packed Double-Precision 
Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:14:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:14:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:14:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:14:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:14:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:14:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to 
ymmreg1

C5: r_ymmreglo2 101:14:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:14:mod ymmreg1 r/m

VUNPCKLPS — Unpack and Interleave 
Low Packed Single-Precision Floating-
Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:14:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:14:mod xmmreg1 r/m
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  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 000:14:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 000:14:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:14:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:14:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to 
ymmreg1

C5: r_ymmreglo2 100:14:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 100:14:mod ymmreg1 r/m

VXORPD — Bitwise Logical XOR for 
Double-Precision Floating-Point 
Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:57:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:57:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 001:57:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:57:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:57:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:57:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to 
ymmreg1

C5: r_ymmreglo2 101:57:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:57:mod ymmreg1 r/m

VADDPS — Add Packed Single-
Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:58:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:58:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 000:58:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 000:58:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:58:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:58:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to 
ymmreg1

C5: r_ymmreglo2 100:58:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 100:58:mod ymmreg1 r/m
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VADDSS — Add Scalar Single-
Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:58:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 010:58:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 010:58:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 010:58:mod xmmreg1 r/m

VANDPS — Bitwise Logical AND of 
Packed Single-Precision Floating-
Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:54:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:54:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 000:54:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 000:54:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:54:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:54:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to 
ymmreg1

C5: r_ymmreglo2 100:54:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 100:54:mod ymmreg1 r/m

VANDNPS — Bitwise Logical AND NOT 
of Packed Single-Precision Floating-
Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:55:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:55:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 000:55:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 000:55:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:55:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:55:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to 
ymmreg1

C5: r_ymmreglo2 100:55:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 100:55:mod ymmreg1 r/m

VCMPPS — Compare Packed Single-
Precision Floating-Point Values
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  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:C2:11 xmmreg1 xmmreg3: 
imm

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:C2:mod xmmreg1 r/m: imm

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 000:C2:11 xmmreg1 xmmreglo3: imm

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 000:C2:mod xmmreg1 r/m: imm

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:C2:11 ymmreg1 ymmreg3: 
imm

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:C2:mod ymmreg1 r/m: imm

  ymmreglo2 with ymmreglo3 to 
ymmreg1

C5: r_ymmreglo2 100:C2:11 ymmreg1 ymmreglo3: imm

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 100:C2:mod ymmreg1 r/m: imm

VCMPSS — Compare Scalar Single-
Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:C2:11 xmmreg1 xmmreg3: 
imm

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 010:C2:mod xmmreg1 r/m: imm

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 010:C2:11 xmmreg1 xmmreglo3: imm

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 010:C2:mod xmmreg1 r/m: imm

VCOMISS — Compare Scalar Ordered 
Single-Precision Floating-Point 
Values and Set EFLAGS

  xmmreg2 with xmmreg1 C4: rxb0_1: w_F 000:2F:11 xmmreg1 xmmreg2

  mem with xmmreg1 C4: rxb0_1: w_F 000:2F:mod xmmreg1 r/m

  xmmreglo with xmmreg1 C5: r_F 000:2F:11 xmmreg1 xmmreglo

  mem with xmmreg1 C5: r_F 000:2F:mod xmmreg1 r/m

VCVTSI2SS — Convert Dword Integer 
to Scalar Single-Precision FP Value

  xmmreg2 with reg to xmmreg1 C4: rxb0_1: 0 xmmreg2 010:2A:11 xmmreg1 reg

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: 0 xmmreg2 010:2A:mod xmmreg1 r/m

  xmmreglo2 with reglo to xmmreg1 C5: r_xmmreglo2 010:2A:11 xmmreg1 reglo

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 010:2A:mod xmmreg1 r/m

  xmmreg2 with reg to xmmreg1 C4: rxb0_1: 1 xmmreg2 010:2A:11 xmmreg1 reg
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  xmmreg2 with mem to xmmreg1 C4: rxb0_1: 1 xmmreg2 010:2A:mod xmmreg1 r/m

VCVTSS2SI — Convert Scalar Single-
Precision FP Value to Dword Integer

  xmmreg1 to reg C4: rxb0_1: 0_F 010:2D:11 reg xmmreg1

  mem to reg C4: rxb0_1: 0_F 010:2D:mod reg r/m

  xmmreglo to reg C5: r_F 010:2D:11 reg xmmreglo

  mem to reg C5: r_F 010:2D:mod reg r/m

  xmmreg1 to reg C4: rxb0_1: 1_F 010:2D:11 reg xmmreg1

  mem to reg C4: rxb0_1: 1_F 010:2D:mod reg r/m

VCVTTSS2SI — Convert with 
Truncation Scalar Single-Precision FP 
Value to Dword Integer

  xmmreg1 to reg C4: rxb0_1: 0_F 010:2C:11 reg xmmreg1

  mem to reg C4: rxb0_1: 0_F 010:2C:mod reg r/m

  xmmreglo to reg C5: r_F 010:2C:11 reg xmmreglo

  mem to reg C5: r_F 010:2C:mod reg r/m

  xmmreg1 to reg C4: rxb0_1: 1_F 010:2C:11 reg xmmreg1

  mem to reg C4: rxb0_1: 1_F 010:2C:mod reg r/m

VDIVPS — Divide Packed Single-
Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:5E:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:5E:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 000:5E:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 000:5E:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:5E:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:5E:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to 
ymmreg1

C5: r_ymmreglo2 100:5E:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 100:5E:mod ymmreg1 r/m

VDIVSS — Divide Scalar Single-
Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:5E:11 xmmreg1 xmmreg3
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  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 010:5E:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 010:5E:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 010:5E:mod xmmreg1 r/m

VLDMXCSR — Load MXCSR Register

  mem to MXCSR reg C4: rxb0_1: w_F 000:AEmod 011 r/m

  mem to MXCSR reg C5: r_F 000:AEmod 011 r/m

VMAXPS — Return Maximum Packed 
Single-Precision Floating-Point 
Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:5F:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:5F:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 000:5F:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 000:5F:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:5F:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:5F:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to 
ymmreg1

C5: r_ymmreglo2 100:5F:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 100:5F:mod ymmreg1 r/m

VMAXSS — Return Maximum Scalar 
Single-Precision Floating-Point Value

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:5F:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 010:5F:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 010:5F:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 010:5F:mod xmmreg1 r/m

VMINPS — Return Minimum Packed 
Single-Precision Floating-Point 
Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:5D:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:5D:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 000:5D:11 xmmreg1 xmmreglo3
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  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 000:5D:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:5D:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:5D:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to 
ymmreg1

C5: r_ymmreglo2 100:5D:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 100:5D:mod ymmreg1 r/m

VMINSS — Return Minimum Scalar 
Single-Precision Floating-Point Value

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:5D:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 010:5D:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 010:5D:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 010:5D:mod xmmreg1 r/m

VMOVAPS— Move Aligned Packed 
Single-Precision Floating-Point 
Values

  xmmreg2 to xmmreg1 C4: rxb0_1: w_F 000:28:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_1: w_F 000:28:mod xmmreg1 r/m

  xmmreglo to xmmreg1 C5: r_F 000:28:11 xmmreg1 xmmreglo

  mem to xmmreg1 C5: r_F 000:28:mod xmmreg1 r/m

  xmmreg1 to xmmreg2 C4: rxb0_1: w_F 000:29:11 xmmreg2 xmmreg1

  xmmreg1 to mem C4: rxb0_1: w_F 000:29:mod r/m xmmreg1

  xmmreg1 to xmmreglo C5: r_F 000:29:11 xmmreglo xmmreg1

  xmmreg1 to mem C5: r_F 000:29:mod r/m xmmreg1

  ymmreg2 to ymmreg1 C4: rxb0_1: w_F 100:28:11 ymmreg1 ymmreg2

  mem to ymmreg1 C4: rxb0_1: w_F 100:28:mod ymmreg1 r/m

  ymmreglo to ymmreg1 C5: r_F 100:28:11 ymmreg1 ymmreglo

  mem to ymmreg1 C5: r_F 100:28:mod ymmreg1 r/m

  ymmreg1 to ymmreg2 C4: rxb0_1: w_F 100:29:11 ymmreg2 ymmreg1

  ymmreg1 to mem C4: rxb0_1: w_F 100:29:mod r/m ymmreg1

  ymmreg1 to ymmreglo C5: r_F 100:29:11 ymmreglo ymmreg1

  ymmreg1 to mem C5: r_F 100:29:mod r/m ymmreg1
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VMOVHPS — Move High Packed 
Single-Precision Floating-Point 
Values

  xmmreg1 with mem to xmmreg2 C4: rxb0_1: w xmmreg1 000:16:mod xmmreg2 r/m

  xmmreg1 with mem to xmmreglo2 C5: r_xmmreg1 000:16:mod xmmreglo2 r/m

  xmmreg1 to mem C4: rxb0_1: w_F 000:17:mod r/m xmmreg1

  xmmreglo to mem C5: r_F 000:17:mod r/m xmmreglo

VMOVLHPS — Move Packed Single-
Precision Floating-Point Values Low 
to High

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:16:11 xmmreg1 xmmreg3

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 000:16:11 xmmreg1 xmmreglo3

VMOVLPS — Move Low Packed Single-
Precision Floating-Point Values

  xmmreg1 with mem to xmmreg2 C4: rxb0_1: w xmmreg1 000:12:mod xmmreg2 r/m

  xmmreg1 with mem to xmmreglo2 C5: r_xmmreg1 000:12:mod xmmreglo2 r/m

  xmmreg1 to mem C4: rxb0_1: w_F 000:13:mod r/m xmmreg1

  xmmreglo to mem C5: r_F 000:13:mod r/m xmmreglo

VMOVMSKPS — Extract Packed 
Single-Precision Floating-Point Sign 
Mask

  xmmreg2 to reg C4: rxb0_1: w_F 000:50:11 reg xmmreg2

  xmmreglo to reg C5: r_F 000:50:11 reg xmmreglo

  ymmreg2 to reg C4: rxb0_1: w_F 100:50:11 reg ymmreg2

  ymmreglo to reg C5: r_F 100:50:11 reg ymmreglo

VMOVNTPS — Store Packed Single-
Precision Floating-Point Values Using 
Non-Temporal Hint

  xmmreg1 to mem C4: rxb0_1: w_F 000:2B:mod r/m xmmreg1

  xmmreglo to mem C5: r_F 000:2B:mod r/m xmmreglo

  ymmreg1 to mem C4: rxb0_1: w_F 100:2B:mod r/m ymmreg1

  ymmreglo to mem C5: r_F 100:2B:mod r/m ymmreglo

VMOVSS — Move Scalar Single-
Precision Floating-Point Values
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  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:10:11 xmmreg1 xmmreg3

  mem to xmmreg1 C4: rxb0_1: w_F 010:10:mod xmmreg1 r/m

  xmmreg2 with xmmreg3 to xmmreg1 C5: r_xmmreg2 010:10:11 xmmreg1 xmmreg3

  mem to xmmreg1 C5: r_F 010:10:mod xmmreg1 r/m

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:11:11 xmmreg1 xmmreg3

  xmmreg1 to mem C4: rxb0_1: w_F 010:11:mod r/m xmmreg1

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 010:11:11 xmmreg1 xmmreglo3

  xmmreglo to mem C5: r_F 010:11:mod r/m xmmreglo

VMOVUPS— Move Unaligned Packed 
Single-Precision Floating-Point 
Values

  xmmreg2 to xmmreg1 C4: rxb0_1: w_F 000:10:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_1: w_F 000:10:mod xmmreg1 r/m

  xmmreglo to xmmreg1 C5: r_F 000:10:11 xmmreg1 xmmreglo

  mem to xmmreg1 C5: r_F 000:10:mod xmmreg1 r/m

  ymmreg2 to ymmreg1 C4: rxb0_1: w_F 100:10:11 ymmreg1 ymmreg2

  mem to ymmreg1 C4: rxb0_1: w_F 100:10:mod ymmreg1 r/m

  ymmreglo to ymmreg1 C5: r_F 100:10:11 ymmreg1 ymmreglo

  mem to ymmreg1 C5: r_F 100:10:mod ymmreg1 r/m

  xmmreg1 to xmmreg2 C4: rxb0_1: w_F 000:11:11 xmmreg2 xmmreg1

  xmmreg1 to mem C4: rxb0_1: w_F 000:11:mod r/m xmmreg1

  xmmreg1 to xmmreglo C5: r_F 000:11:11 xmmreglo xmmreg1

  xmmreg1 to mem C5: r_F 000:11:mod r/m xmmreg1

  ymmreg1 to ymmreg2 C4: rxb0_1: w_F 100:11:11 ymmreg2 ymmreg1

  ymmreg1 to mem C4: rxb0_1: w_F 100:11:mod r/m ymmreg1

  ymmreg1 to ymmreglo C5: r_F 100:11:11 ymmreglo ymmreg1

  ymmreg1 to mem C5: r_F 100:11:mod r/m ymmreg1

VMULPS — Multiply Packed Single-
Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:59:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:59:mod xmmreg1 r/m
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  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 000:59:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 000:59:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:59:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:59:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to 
ymmreg1

C5: r_ymmreglo2 100:59:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 100:59:mod ymmreg1 r/m

VMULSS — Multiply Scalar Single-
Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:59:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 010:59:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 010:59:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 010:59:mod xmmreg1 r/m

VORPS — Bitwise Logical OR of 
Single-Precision Floating-Point 
Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:56:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:56:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 000:56:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 000:56:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:56:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:56:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to 
ymmreg1

C5: r_ymmreglo2 100:56:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 100:56:mod ymmreg1 r/m

VRCPPS — Compute Reciprocals of 
Packed Single-Precision Floating-
Point Values

  xmmreg2 to xmmreg1 C4: rxb0_1: w_F 000:53:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_1: w_F 000:53:mod xmmreg1 r/m

  xmmreglo to xmmreg1 C5: r_F 000:53:11 xmmreg1 xmmreglo
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  mem to xmmreg1 C5: r_F 000:53:mod xmmreg1 r/m

  ymmreg2 to ymmreg1 C4: rxb0_1: w_F 100:53:11 ymmreg1 ymmreg2

  mem to ymmreg1 C4: rxb0_1: w_F 100:53:mod ymmreg1 r/m

  ymmreglo to ymmreg1 C5: r_F 100:53:11 ymmreg1 ymmreglo

  mem to ymmreg1 C5: r_F 100:53:mod ymmreg1 r/m

VRCPSS — Compute Reciprocal of 
Scalar Single-Precision Floating-Point 
Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:53:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 010:53:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 010:53:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 010:53:mod xmmreg1 r/m

VRSQRTPS — Compute Reciprocals of 
Square Roots of Packed Single-
Precision Floating-Point Values

  xmmreg2 to xmmreg1 C4: rxb0_1: w_F 000:52:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_1: w_F 000:52:mod xmmreg1 r/m

  xmmreglo to xmmreg1 C5: r_F 000:52:11 xmmreg1 xmmreglo

  mem to xmmreg1 C5: r_F 000:52:mod xmmreg1 r/m

  ymmreg2 to ymmreg1 C4: rxb0_1: w_F 100:52:11 ymmreg1 ymmreg2

  mem to ymmreg1 C4: rxb0_1: w_F 100:52:mod ymmreg1 r/m

  ymmreglo to ymmreg1 C5: r_F 100:52:11 ymmreg1 ymmreglo

  mem to ymmreg1 C5: r_F 100:52:mod ymmreg1 r/m

VRSQRTSS — Compute Reciprocal of 
Square Root of Scalar Single-
Precision Floating-Point Value

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:52:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 010:52:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 010:52:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 010:52:mod xmmreg1 r/m

VSHUFPS — Shuffle Packed Single-
Precision Floating-Point Values
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  xmmreg2 with xmmreg3 to 
xmmreg1, imm8

C4: rxb0_1: w xmmreg2 000:C6:11 xmmreg1 xmmreg3: 
imm

  xmmreg2 with mem to xmmreg1, 
imm8

C4: rxb0_1: w xmmreg2 000:C6:mod xmmreg1 r/m: imm

  xmmreglo2 with xmmreglo3 to 
xmmreg1, imm8

C5: r_xmmreglo2 000:C6:11 xmmreg1 xmmreglo3: imm

  xmmreglo2 with mem to xmmreg1, 
imm8

C5: r_xmmreglo2 000:C6:mod xmmreg1 r/m: imm

  ymmreg2 with ymmreg3 to 
ymmreg1, imm8

C4: rxb0_1: w ymmreg2 100:C6:11 ymmreg1 ymmreg3: 
imm

  ymmreg2 with mem to ymmreg1, 
imm8

C4: rxb0_1: w ymmreg2 100:C6:mod ymmreg1 r/m: imm

  ymmreglo2 with ymmreglo3 to 
ymmreg1, imm8

C5: r_ymmreglo2 100:C6:11 ymmreg1 ymmreglo3: imm

  ymmreglo2 with mem to ymmreg1, 
imm8

C5: r_ymmreglo2 100:C6:mod ymmreg1 r/m: imm

VSQRTPS — Compute Square Roots of 
Packed Single-Precision Floating-
Point Values

  xmmreg2 to xmmreg1 C4: rxb0_1: w_F 000:51:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_1: w_F 000:51:mod xmmreg1 r/m

  xmmreglo to xmmreg1 C5: r_F 000:51:11 xmmreg1 xmmreglo

  mem to xmmreg1 C5: r_F 000:51:mod xmmreg1 r/m

  ymmreg2 to ymmreg1 C4: rxb0_1: w_F 100:51:11 ymmreg1 ymmreg2

  mem to ymmreg1 C4: rxb0_1: w_F 100:51:mod ymmreg1 r/m

  ymmreglo to ymmreg1 C5: r_F 100:51:11 ymmreg1 ymmreglo

  mem to ymmreg1 C5: r_F 100:51:mod ymmreg1 r/m

VSQRTSS — Compute Square Root of 
Scalar Single-Precision Floating-Point 
Value

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:51:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 010:51:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 010:51:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 010:51:mod xmmreg1 r/m
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VSTMXCSR — Store MXCSR Register 
State

  MXCSR to mem C4: rxb0_1: w_F 000:AE:mod 011 r/m

  MXCSR to mem C5: r_F 000:AE:mod 011 r/m

VSUBPS — Subtract Packed Single-
Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:5C:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:5C:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 000:5C:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 000:5C:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:5C:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:5C:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to 
ymmreg1

C5: r_ymmreglo2 100:5C:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 100:5C:mod ymmreg1 r/m

VSUBSS — Subtract Scalar Single-
Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:5C:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 010:5C:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 010:5C:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 010:5C:mod xmmreg1 r/m

VUCOMISS — Unordered Compare 
Scalar Single-Precision Floating-Point 
Values and Set EFLAGS

  xmmreg2 with xmmreg1 C4: rxb0_1: w_F 000:2E:11 xmmreg1 xmmreg2

  mem with xmmreg1 C4: rxb0_1: w_F 000:2E:mod xmmreg1 r/m

  xmmreglo with xmmreg1 C5: r_F 000:2E:11 xmmreg1 xmmreglo

  mem with xmmreg1 C5: r_F 000:2E:mod xmmreg1 r/m

UNPCKHPS — Unpack and Interleave 
High Packed Single-Precision 
Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:15:11 xmmreg1 xmmreg3
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  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:15mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:15:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:15mod ymmreg1 r/m

UNPCKLPS — Unpack and Interleave 
Low Packed Single-Precision Floating-
Point Value

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:14:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:14mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:14:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:14mod ymmreg1 r/m

VXORPS — Bitwise Logical XOR for 
Single-Precision Floating-Point 
Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:57:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:57:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to 
xmmreg1

C5: r_xmmreglo2 000:57:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 000:57:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:57:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:57:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to 
ymmreg1

C5: r_ymmreglo2 100:57:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 100:57:mod ymmreg1 r/m

VBROADCAST —Load with Broadcast

  mem to xmmreg1 C4: rxb0_2: 0_F 001:18:mod xmmreg1 r/m

  mem to ymmreg1 C4: rxb0_2: 0_F 101:18:mod ymmreg1 r/m

  mem to ymmreg1 C4: rxb0_2: 0_F 101:19:mod ymmreg1 r/m

  mem to ymmreg1 C4: rxb0_2: 0_F 101:1A:mod ymmreg1 r/m

VEXTRACTF128 — Extract Packed 
Floating-Point Values

 ymmreg2 to xmmreg1, imm8 C4: rxb0_3: 0_F 001:19:11 xmmreg1 ymmreg2: imm

  ymmreg2 to mem, imm8 C4: rxb0_3: 0_F 001:19:mod r/m ymmreg2: imm

VINSERTF128 — Insert Packed 
Floating-Point Values
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 xmmreg3 and merge with ymmreg2 
to ymmreg1, imm8

C4: rxb0_3: 0 ymmreg2101:18:11 ymmreg1 xmmreg3: 
imm

  mem and merge with ymmreg2 to 
ymmreg1, imm8

C4: rxb0_3: 0 ymmreg2 101:18:mod ymmreg1 r/m: imm

VPERMILPD — Permute Double-
Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: 0 xmmreg2 001:0D:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_2: 0 xmmreg2 001:0D:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_2: 0 ymmreg2 101:0D:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_2: 0 ymmreg2 101:0D:mod ymmreg1 r/m

  xmmreg2 to xmmreg1, imm C4: rxb0_3: 0_F 001:05:11 xmmreg1 xmmreg2: imm

  mem to xmmreg1, imm C4: rxb0_3: 0_F 001:05:mod xmmreg1 r/m: imm

  ymmreg2 to ymmreg1, imm C4: rxb0_3: 0_F 101:05:11 ymmreg1 ymmreg2: imm

  mem to ymmreg1, imm C4: rxb0_3: 0_F 101:05:mod ymmreg1 r/m: imm

VPERMILPS — Permute Single-
Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: 0 xmmreg2 001:0C:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_2: 0 xmmreg2 001:0C:mod xmmreg1 r/m

  xmmreg2 to xmmreg1, imm C4: rxb0_3: 0_F 001:04:11 xmmreg1 xmmreg2: imm

  mem to xmmreg1, imm C4: rxb0_3: 0_F 001:04:mod xmmreg1 r/m: imm

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_2: 0 ymmreg2 101:0C:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_2: 0 ymmreg2 101:0C:mod ymmreg1 r/m

  ymmreg2 to ymmreg1, imm C4: rxb0_3: 0_F 101:04:11 ymmreg1 ymmreg2: imm

  mem to ymmreg1, imm C4: rxb0_3: 0_F 101:04:mod ymmreg1 r/m: imm

VPERM2F128 — Permute Floating-
Point Values

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_3: 0 ymmreg2 101:06:11 ymmreg1 ymmreg3: 
imm

  ymmreg2 with mem to ymmreg1 C4: rxb0_3: 0 ymmreg2 101:06:mod ymmreg1 r/m: imm

VTESTPD/VTESTPS — Packed Bit Test

  xmmreg2 to xmmreg1 C4: rxb0_2: 0_F 001:0E:11 xmmreg2 xmmreg1

  mem to xmmreg1 C4: rxb0_2: 0_F 001:0E:mod xmmreg2 r/m

  ymmreg2 to ymmreg1 C4: rxb0_2: 0_F 101:0E:11 ymmreg2 ymmreg1
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  mem to ymmreg1 C4: rxb0_2: 0_F 101:0E:mod ymmreg2 r/m

  xmmreg2 to xmmreg1 C4: rxb0_2: 0_F 001:0F:11 xmmreg1 xmmreg2: imm

  mem to xmmreg1 C4: rxb0_2: 0_F 001:0F:mod xmmreg1 r/m: imm

  ymmreg2 to ymmreg1 C4: rxb0_2: 0_F 101:0F:11 ymmreg1 ymmreg2: imm

  mem to ymmreg1 C4: rxb0_2: 0_F 101:0F:mod ymmreg1 r/m: imm

NOTES:
1. The term “lo” refers to the lower eight registers, 0-7
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B.17 FLOATING-POINT INSTRUCTION FORMATS AND 
ENCODINGS

Table B-35 shows the five different formats used for floating-point instructions. In all 
cases, instructions are at least two bytes long and begin with the bit pattern 11011.

The Mod and R/M fields of the ModR/M byte have the same interpretation as the 
corresponding fields of the integer instructions. The SIB byte and disp (displace-
ment) are optionally present in instructions that have Mod and R/M fields. Their pres-
ence depends on the values of Mod and R/M, as for integer instructions.

Table B-36 shows the formats and encodings of the floating-point instructions.

Table B-38.  General Floating-Point Instruction Formats

Instruction

First Byte Second Byte Optional Fields

1 11011 OPA 1 mod 1 OPB r/m s-i-b disp

2 11011 MF OPA mod OPB r/m s-i-b disp

3 11011 d P OPA 1 1 OPB R ST(i)

4 11011 0 0 1 1 1 1 OP

5 11011 0 1 1 1 1 1 OP

15–11 10 9 8 7 6 5 4 3 2 1 0

MF = Memory Format
00 — 32-bit real
01 — 32-bit integer
10 — 64-bit real
11 — 16-bit integer

P = Pop
0 — Do not pop stack
1 — Pop stack after operation

d = Destination
0 — Destination is ST(0)
1 — Destination is ST(i)

R XOR d = 0 — Destination OP Source
R XOR d = 1 — Source OP Destination

ST(i) = Register stack element i
000 = Stack Top
001 = Second stack element
 ⋅
 ⋅
 ⋅
111 = Eighth stack element

Table B-39.  Floating-Point Instruction Formats and Encodings

Instruction and Format Encoding

F2XM1 – Compute 2ST(0) – 1 11011 001 : 1111 0000

FABS – Absolute Value 11011 001 : 1110 0001

FADD – Add
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   ST(0) ← ST(0) + 32-bit memory 11011 000 : mod 000 r/m

ST(0) ← ST(0) + 64-bit memory 11011 100 : mod 000 r/m

ST(d) ← ST(0) + ST(i) 11011 d00 : 11 000 ST(i)

FADDP – Add and Pop

ST(0) ← ST(0) + ST(i) 11011 110 : 11 000 ST(i)

FBLD – Load Binary Coded Decimal 11011 111 : mod 100 r/m 

FBSTP – Store Binary Coded Decimal and Pop 11011 111 : mod 110 r/m

FCHS – Change Sign 11011 001 : 1110 0000

FCLEX – Clear Exceptions 11011 011 : 1110 0010

FCOM – Compare Real

32-bit memory 11011 000 : mod 010 r/m

64-bit memory 11011 100 : mod 010 r/m

ST(i) 11011 000 : 11 010 ST(i)

FCOMP – Compare Real and Pop

32-bit memory 11011 000 : mod 011 r/m

64-bit memory 11011 100 : mod 011 r/m

ST(i) 11011 000 : 11 011 ST(i)

FCOMPP – Compare Real and Pop Twice 11011 110 : 11 011 001

FCOMIP – Compare Real, Set EFLAGS, and Pop 11011 111 : 11 110 ST(i)

FCOS – Cosine of ST(0) 11011 001 : 1111 1111

FDECSTP – Decrement Stack-Top Pointer  11011 001 : 1111 0110

FDIV – Divide

ST(0) ← ST(0) ÷ 32-bit memory 11011 000 : mod 110 r/m

ST(0) ← ST(0) ÷ 64-bit memory 11011 100 : mod 110 r/m

ST(d) ← ST(0) ÷ ST(i) 11011 d00 : 1111 R ST(i)

FDIVP – Divide and Pop

ST(0) ← ST(0) ÷ ST(i) 11011 110 : 1111 1 ST(i)

FDIVR – Reverse Divide

ST(0) ← 32-bit memory ÷ ST(0) 11011 000 : mod 111 r/m

ST(0) ← 64-bit memory ÷ ST(0) 11011 100 : mod 111 r/m

Table B-39.  Floating-Point Instruction Formats and Encodings (Contd.)
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ST(d) ← ST(i) ÷ ST(0) 11011 d00 : 1111 R ST(i)

FDIVRP – Reverse Divide and Pop

ST(0) ¨ ST(i) ÷ ST(0) 11011 110 : 1111 0 ST(i)

FFREE – Free ST(i) Register 11011 101 : 1100 0 ST(i)

FIADD – Add Integer

ST(0) ← ST(0) + 16-bit memory 11011 110 : mod 000 r/m

ST(0) ← ST(0) + 32-bit memory 11011 010 : mod 000 r/m

FICOM – Compare Integer

16-bit memory 11011 110 : mod 010 r/m

32-bit memory 11011 010 : mod 010 r/m

FICOMP – Compare Integer and Pop

16-bit memory 11011 110 : mod 011 r/m

32-bit memory 11011 010 : mod 011 r/m

FIDIV

ST(0) ← ST(0) ÷ 16-bit memory 11011 110 : mod 110 r/m

ST(0) ← ST(0) ÷ 32-bit memory 11011 010 : mod 110 r/m

FIDIVR

ST(0) ← 16-bit memory ÷ ST(0) 11011 110 : mod 111 r/m

ST(0) ← 32-bit memory ÷ ST(0) 11011 010 : mod 111 r/m

FILD – Load Integer

16-bit memory 11011 111 : mod 000 r/m

32-bit memory 11011 011 : mod 000 r/m

64-bit memory 11011 111 : mod 101 r/m

FIMUL

ST(0) ← ST(0) × 16-bit memory 11011 110 : mod 001 r/m

ST(0) ← ST(0) ×  32-bit memory 11011 010 : mod 001 r/m

FINCSTP – Increment Stack Pointer 11011 001 : 1111 0111

FINIT – Initialize Floating-Point Unit

FIST – Store Integer

16-bit memory 11011 111 : mod 010 r/m

Table B-39.  Floating-Point Instruction Formats and Encodings (Contd.)
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32-bit memory 11011 011 : mod 010 r/m

FISTP – Store Integer and Pop

16-bit memory 11011 111 : mod 011 r/m

32-bit memory 11011 011 : mod 011 r/m

64-bit memory 11011 111 : mod 111 r/m

FISUB

ST(0) ← ST(0) - 16-bit memory 11011 110 : mod 100 r/m

ST(0) ← ST(0) - 32-bit memory 11011 010 : mod 100 r/m

FISUBR

ST(0) ← 16-bit memory − ST(0) 11011 110 : mod 101 r/m

ST(0) ←  32-bit memory − ST(0) 11011 010 : mod 101 r/m

FLD – Load Real

32-bit memory 11011 001 : mod 000 r/m

64-bit memory 11011 101 : mod 000 r/m

80-bit memory 11011 011 : mod 101 r/m

ST(i) 11011 001 : 11 000 ST(i)

FLD1 – Load +1.0 into ST(0) 11011 001 : 1110 1000

FLDCW – Load Control Word 11011 001 : mod 101 r/m

FLDENV – Load FPU Environment 11011 001 : mod 100 r/m

FLDL2E – Load log2(ε) into ST(0) 11011 001 : 1110 1010

FLDL2T – Load log2(10) into ST(0) 11011 001 : 1110 1001

FLDLG2 – Load log10(2) into ST(0) 11011 001 : 1110 1100

FLDLN2 – Load logε(2) into ST(0) 11011 001 : 1110 1101

FLDPI – Load π into ST(0) 11011 001 : 1110 1011

FLDZ – Load +0.0 into ST(0) 11011 001 : 1110 1110

FMUL – Multiply

ST(0) ← ST(0) × 32-bit memory 11011 000 : mod 001 r/m

ST(0) ← ST(0) × 64-bit memory 11011 100 : mod 001 r/m

ST(d) ← ST(0) × ST(i) 11011 d00 : 1100 1 ST(i)

FMULP – Multiply

ST(i) ← ST(0) × ST(i) 11011 110 : 1100 1 ST(i)

Table B-39.  Floating-Point Instruction Formats and Encodings (Contd.)
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FNOP – No Operation 11011 001 : 1101 0000

FPATAN – Partial Arctangent 11011 001 : 1111 0011

FPREM – Partial Remainder 11011 001 : 1111 1000

FPREM1 – Partial Remainder (IEEE) 11011 001 : 1111 0101

FPTAN – Partial Tangent 11011 001 : 1111 0010

FRNDINT – Round to Integer 11011 001 : 1111 1100

FRSTOR – Restore FPU State 11011 101 : mod 100 r/m

FSAVE – Store FPU State 11011 101 : mod 110 r/m

FSCALE – Scale 11011 001 : 1111 1101

FSIN – Sine 11011 001 : 1111 1110

FSINCOS – Sine and Cosine 11011 001 : 1111 1011

FSQRT – Square Root 11011 001 : 1111 1010

FST – Store Real

32-bit memory 11011 001 : mod 010 r/m

64-bit memory 11011 101 : mod 010 r/m

ST(i) 11011 101 : 11 010 ST(i)

FSTCW – Store Control Word 11011 001 : mod 111 r/m

FSTENV – Store FPU Environment 11011 001 : mod 110 r/m

FSTP – Store Real and Pop

32-bit memory 11011 001 : mod 011 r/m

64-bit memory 11011 101 : mod 011 r/m

80-bit memory 11011 011 : mod 111 r/m

ST(i) 11011 101 : 11 011 ST(i)

FSTSW – Store Status Word into AX 11011 111 : 1110 0000

FSTSW – Store Status Word into Memory 11011 101 : mod 111 r/m

FSUB – Subtract

ST(0) ← ST(0) – 32-bit memory 11011 000 : mod 100 r/m

ST(0) ← ST(0) – 64-bit memory 11011 100 : mod 100 r/m

ST(d) ← ST(0) – ST(i) 11011 d00 : 1110 R ST(i)

FSUBP – Subtract and Pop

ST(0) ← ST(0) – ST(i) 11011 110 : 1110 1 ST(i)

Table B-39.  Floating-Point Instruction Formats and Encodings (Contd.)
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FSUBR – Reverse Subtract

ST(0) ← 32-bit memory – ST(0) 11011 000 : mod 101 r/m

ST(0) ← 64-bit memory – ST(0) 11011 100 : mod 101 r/m

ST(d) ← ST(i) – ST(0) 11011 d00 : 1110 R ST(i)

FSUBRP – Reverse Subtract and Pop

ST(i) ← ST(i) – ST(0) 11011 110 : 1110 0 ST(i)

FTST – Test 11011 001 : 1110 0100

FUCOM – Unordered Compare Real 11011 101 : 1110 0 ST(i)

FUCOMP – Unordered Compare Real and Pop 11011 101 : 1110 1 ST(i)

FUCOMPP – Unordered Compare Real and Pop 
Twice

11011 010 : 1110 1001

FUCOMI – Unorderd Compare Real and Set 
EFLAGS

11011 011 : 11 101 ST(i)

FUCOMIP – Unorderd Compare Real, Set 
EFLAGS, and Pop

11011 111 : 11 101 ST(i)

FXAM – Examine 11011 001 : 1110 0101

FXCH – Exchange ST(0) and ST(i) 11011 001 : 1100 1 ST(i)

FXTRACT – Extract Exponent and Significand 11011 001 : 1111 0100

FYL2X – ST(1) × log2(ST(0)) 11011 001 : 1111 0001

FYL2XP1 – ST(1) × log2(ST(0) + 1.0) 11011 001 : 1111 1001

FWAIT – Wait until FPU Ready 1001 1011

Table B-39.  Floating-Point Instruction Formats and Encodings (Contd.)

Instruction and Format Encoding
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B.18 VMX INSTRUCTIONS
Table B-40 describes virtual-machine extensions (VMX).

Table B-40.  Encodings for VMX Instructions
Instruction and Format Encoding

INVEPT—Invalidate Cached EPT Mappings

Descriptor m128 according to reg 01100110 00001111 00111000 10000000: mod 
reg r/m

INVVPID—Invalidate Cached VPID 
Mappings

Descriptor m128 according to reg 01100110 00001111 00111000 10000001: mod 
reg r/m

VMCALL—Call to VM Monitor

Call VMM: causes VM exit. 00001111 00000001 11000001

VMCLEAR—Clear Virtual-Machine Control 
Structure

mem32:VMCS_data_ptr 01100110 00001111 11000111: mod 110 r/m

mem64:VMCS_data_ptr 01100110 00001111 11000111: mod 110 r/m

VMFUNC—Invoke VM Function

Invoke VM function specified in EAX 00001111 00000001 11010100

VMLAUNCH—Launch Virtual Machine

Launch VM managed by Current_VMCS 00001111 00000001 11000010

VMRESUME—Resume Virtual Machine

Resume VM managed by Current_VMCS 00001111 00000001 11000011

VMPTRLD—Load Pointer to Virtual-
Machine Control Structure

mem32 to Current_VMCS_ptr 00001111 11000111: mod 110 r/m

mem64 to Current_VMCS_ptr 00001111 11000111: mod 110 r/m

VMPTRST—Store Pointer to Virtual-
Machine Control Structure

Current_VMCS_ptr to mem32 00001111 11000111: mod 111 r/m

Current_VMCS_ptr to mem64 00001111 11000111: mod 111 r/m

VMREAD—Read Field from Virtual-
Machine Control Structure
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r32 (VMCS_fieldn) to r32

r32 (VMCS_fieldn) to mem32

r64 (VMCS_fieldn) to r64

r64 (VMCS_fieldn) to mem64

00001111 01111000: 11 reg2 reg1

00001111 01111000: mod r32 r/m

00001111 01111000: 11 reg2 reg1

00001111 01111000: mod r64 r/m

VMWRITE—Write Field to Virtual-Machine 
Control Structure

r32 to r32 (VMCS_fieldn)

mem32 to r32 (VMCS_fieldn)

r64 to r64 (VMCS_fieldn)

mem64 to r64 (VMCS_fieldn)

00001111 01111001: 11 reg1 reg2

00001111 01111001: mod r32 r/m

00001111 01111001: 11 reg1 reg2

00001111 01111001: mod r64 r/m

VMXOFF—Leave VMX Operation

Leave VMX. 00001111 00000001 11000100

VMXON—Enter VMX Operation

Enter VMX. 11110011 000011111 11000111: mod 110 r/m

Table B-40.  Encodings for VMX Instructions
Instruction and Format Encoding
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B.19 SMX INSTRUCTIONS
Table B-38 describes Safer Mode extensions (VMX). GETSEC leaf functions are selected 
by a valid value in EAX on input.

Table B-41.  Encodings for SMX Instructions
Instruction and Format Encoding

GETSEC—GETSEC leaf functions are 
selected by the value in EAX on input

GETSEC[CAPABILITIES]. 00001111 00110111 (EAX= 0)

GETSEC[ENTERACCS]. 00001111 00110111 (EAX= 2)

GETSEC[EXITAC]. 00001111 00110111 (EAX= 3)

GETSEC[SENTER]. 00001111 00110111 (EAX= 4)

GETSEC[SEXIT]. 00001111 00110111 (EAX= 5)

GETSEC[PARAMETERS]. 00001111 00110111 (EAX= 6)

GETSEC[SMCTRL]. 00001111 00110111 (EAX= 7)

GETSEC[WAKEUP]. 00001111 00110111 (EAX= 8)
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APPENDIX C
INTEL® C/C++ COMPILER INTRINSICS AND

FUNCTIONAL EQUIVALENTS

The two tables in this appendix itemize the Intel C/C++ compiler intrinsics and 
functional equivalents for the Intel MMX technology, SSE, SSE2, SSE3, and SSSE3 
instructions.

There may be additional intrinsics that do not have an instruction equivalent. It is 
strongly recommended that the reader reference the compiler documentation for the 
complete list of supported intrinsics. Please refer to 
http://www.intel.com/support/performancetools/. 

Table C-1 presents simple intrinsics and Table C-2 presents composite intrinsics. 
Some intrinsics are “composites” because they require more than one instruction to 
implement them.

Intel C/C++ Compiler intrinsic names reflect the following naming conventions:
_mm_<intrin_op>_<suffix>

where:
<intrin_op> Indicates the intrinsics basic operation; for example, add for 

addition and sub for subtraction
<suffix> Denotes the type of data operated on by the instruction. The 

first one or two letters of each suffix denotes whether the 
data is packed (p), extended packed (ep), or scalar (s). 

The remaining letters denote the type:
s single-precision floating point
d double-precision floating point
i128 signed 128-bit integer
i64 signed 64-bit integer
u64 unsigned 64-bit integer
i32 signed 32-bit integer
u32 unsigned 32-bit integer
i16 signed 16-bit integer
u16 unsigned 16-bit integer
i8 signed 8-bit integer
u8 unsigned 8-bit integer

The variable r is generally used for the intrinsic's return value. A number appended to 
a variable name indicates the element of a packed object. For example, r0 is the 
lowest word of r.
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The packed values are represented in right-to-left order, with the lowest value being 
used for scalar operations. Consider the following example operation:

double a[2] = {1.0, 2.0};
__m128d t = _mm_load_pd(a);

The result is the same as either of the following:

__m128d t = _mm_set_pd(2.0, 1.0);
__m128d t = _mm_setr_pd(1.0, 2.0);

In other words, the XMM register that holds the value t will look as follows:

The “scalar” element is 1.0. Due to the nature of the instruction, some intrinsics 
require their arguments to be immediates (constant integer literals).

To use an intrinsic in your code, insert a line with the following syntax:

data_type intrinsic_name (parameters)

Where:
data_type Is the return data type, which can be either void, int, 

__m64, __m128, __m128d, or __m128i. Only the 
_mm_empty intrinsic returns void.

intrinsic_name Is the name of the intrinsic, which behaves like a function 
that you can use in your C/C++ code instead of in-lining the 
actual instruction.

parameters Represents the parameters required by each intrinsic.

C.1 SIMPLE INTRINSICS

NOTE
For detailed descriptions of the intrinsics in Table C-1, see the corre-
sponding mnemonic in Chapter 3 in the “Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2A”, or Chapter 4, 
“Instruction Set Reference, M-Z” in the “Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2B”. 

0127 64 63

2.0 1.0
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Table C-1.  Simple Intrinsics
Mnemonic Intrinsic

ADDPD __m128d _mm_add_pd(__m128d a, __m128d b)

ADDPS __m128 _mm_add_ps(__m128 a, __m128 b)

ADDSD __m128d _mm_add_sd(__m128d a, __m128d b)

ADDSS __m128 _mm_add_ss(__m128 a, __m128 b)

ADDSUBPD __m128d _mm_addsub_pd(__m128d a, __m128d b)

ADDSUBPS __m128 _mm_addsub_ps(__m128 a, __m128 b)

AESDEC  __m128i  _mm_aesdec (__m128i, __m128i)

AESDECLAST  __m128i  _mm_aesdeclast (__m128i, __m128i)

AESENC  __m128i  _mm_aesenc (__m128i, __m128i)

AESENCLAST __m128i  _mm_aesenclast (__m128i, __m128i)

AESIMC __m128i  _mm_aesimc (__m128i)

AESKEYGENASSIST __m128i  _mm_aesimc (__m128i, const int)

ANDNPD __m128d _mm_andnot_pd(__m128d a, __m128d b)

ANDNPS __m128 _mm_andnot_ps(__m128 a, __m128 b)

ANDPD __m128d _mm_and_pd(__m128d a, __m128d b)

ANDPS __m128 _mm_and_ps(__m128 a, __m128 b)

BLENDPD __m128d _mm_blend_pd(__m128d v1, __m128d v2, const int mask)

BLENDPS __m128 _mm_blend_ps(__m128 v1, __m128 v2, const int mask)

BLENDVPD __m128d _mm_blendv_pd(__m128d v1, __m128d v2, __m128d v3)

BLENDVPS __m128 _mm_blendv_ps(__m128 v1, __m128 v2, __m128 v3)

CLFLUSH void _mm_clflush(void const *p)

CMPPD __m128d _mm_cmpeq_pd(__m128d a, __m128d b)

__m128d _mm_cmplt_pd(__m128d a, __m128d b)

__m128d _mm_cmple_pd(__m128d a, __m128d b)

__m128d _mm_cmpgt_pd(__m128d a, __m128d b)

__m128d _mm_cmpge_pd(__m128d a, __m128d b)

__m128d _mm_cmpneq_pd(__m128d a, __m128d b)

__m128d _mm_cmpnlt_pd(__m128d a, __m128d b)

__m128d _mm_cmpngt_pd(__m128d a, __m128d b)

__m128d _mm_cmpnge_pd(__m128d a, __m128d b)

__m128d _mm_cmpord_pd(__m128d a, __m128d b)

__m128d _mm_cmpunord_pd(__m128d a, __m128d b)

__m128d _mm_cmpnle_pd(__m128d a, __m128d b)

CMPPS __m128 _mm_cmpeq_ps(__m128 a, __m128 b)

__m128 _mm_cmplt_ps(__m128 a, __m128 b)
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__m128 _mm_cmple_ps(__m128 a, __m128 b)

__m128 _mm_cmpgt_ps(__m128 a, __m128 b)

__m128 _mm_cmpge_ps(__m128 a, __m128 b)

__m128 _mm_cmpneq_ps(__m128 a, __m128 b)

__m128 _mm_cmpnlt_ps(__m128 a, __m128 b)

__m128 _mm_cmpngt_ps(__m128 a, __m128 b)

__m128 _mm_cmpnge_ps(__m128 a, __m128 b)

__m128 _mm_cmpord_ps(__m128 a, __m128 b)

__m128 _mm_cmpunord_ps(__m128 a, __m128 b)

__m128 _mm_cmpnle_ps(__m128 a, __m128 b)

CMPSD __m128d _mm_cmpeq_sd(__m128d a, __m128d b)

__m128d _mm_cmplt_sd(__m128d a, __m128d b)

__m128d _mm_cmple_sd(__m128d a, __m128d b)

__m128d _mm_cmpgt_sd(__m128d a, __m128d b)

__m128d _mm_cmpge_sd(__m128d a, __m128d b)

__m128 _mm_cmpneq_sd(__m128d a, __m128d b)

__m128 _mm_cmpnlt_sd(__m128d a, __m128d b)

__m128d _mm_cmpnle_sd(__m128d a, __m128d b)

__m128d _mm_cmpngt_sd(__m128d a, __m128d b)

__m128d _mm_cmpnge_sd(__m128d a, __m128d b)

__m128d _mm_cmpord_sd(__m128d a, __m128d b)

__m128d _mm_cmpunord_sd(__m128d a, __m128d b)

CMPSS __m128 _mm_cmpeq_ss(__m128 a, __m128 b)

__m128 _mm_cmplt_ss(__m128 a, __m128 b)

__m128 _mm_cmple_ss(__m128 a, __m128 b)

__m128 _mm_cmpgt_ss(__m128 a, __m128 b)

__m128 _mm_cmpge_ss(__m128 a, __m128 b)

__m128 _mm_cmpneq_ss(__m128 a, __m128 b)

__m128 _mm_cmpnlt_ss(__m128 a, __m128 b)

__m128 _mm_cmpnle_ss(__m128 a, __m128 b)

__m128 _mm_cmpngt_ss(__m128 a, __m128 b)

__m128 _mm_cmpnge_ss(__m128 a, __m128 b)

__m128 _mm_cmpord_ss(__m128 a, __m128 b)

__m128 _mm_cmpunord_ss(__m128 a, __m128 b)

COMISD int _mm_comieq_sd(__m128d a, __m128d b)

Table C-1.  Simple Intrinsics (Contd.)
Mnemonic Intrinsic
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int _mm_comilt_sd(__m128d a, __m128d b)

int _mm_comile_sd(__m128d a, __m128d b)

int _mm_comigt_sd(__m128d a, __m128d b)

int _mm_comige_sd(__m128d a, __m128d b)

int _mm_comineq_sd(__m128d a, __m128d b)

COMISS int _mm_comieq_ss(__m128 a, __m128 b)

int _mm_comilt_ss(__m128 a, __m128 b)

int _mm_comile_ss(__m128 a, __m128 b)

int _mm_comigt_ss(__m128 a, __m128 b)

int _mm_comige_ss(__m128 a, __m128 b)

int _mm_comineq_ss(__m128 a, __m128 b)

CRC32 unsigned int _mm_crc32_u8(unsigned int crc, unsigned char data)

unsigned int _mm_crc32_u16(unsigned int crc, unsigned short data)

unsigned int _mm_crc32_u32(unsigned int crc, unsigned int data)

unsigned __int64 _mm_crc32_u64(unsinged __int64 crc, unsigned __int64 data)

CVTDQ2PD __m128d _mm_cvtepi32_pd(__m128i a)

CVTDQ2PS __m128 _mm_cvtepi32_ps(__m128i a)

CVTPD2DQ __m128i _mm_cvtpd_epi32(__m128d a)

CVTPD2PI __m64 _mm_cvtpd_pi32(__m128d a)

CVTPD2PS __m128 _mm_cvtpd_ps(__m128d a)

CVTPI2PD __m128d _mm_cvtpi32_pd(__m64 a)

CVTPI2PS __m128 _mm_cvt_pi2ps(__m128 a, __m64 b)
__m128 _mm_cvtpi32_ps(__m128 a, __m64 b)

CVTPS2DQ __m128i _mm_cvtps_epi32(__m128 a)

CVTPS2PD __m128d _mm_cvtps_pd(__m128 a)

CVTPS2PI __m64 _mm_cvt_ps2pi(__m128 a)
__m64 _mm_cvtps_pi32(__m128 a)

CVTSD2SI int _mm_cvtsd_si32(__m128d a)

CVTSD2SS __m128 _mm_cvtsd_ss(__m128 a, __m128d b)

CVTSI2SD __m128d _mm_cvtsi32_sd(__m128d a, int b)

CVTSI2SS __m128 _mm_cvt_si2ss(__m128 a, int b)
__m128 _mm_cvtsi32_ss(__m128 a, int b)
__m128  _mm_cvtsi64_ss(__m128  a, __int64 b)

CVTSS2SD __m128d _mm_cvtss_sd(__m128d a, __m128 b)

CVTSS2SI int _mm_cvt_ss2si(__m128 a)
int _mm_cvtss_si32(__m128 a)

CVTTPD2DQ __m128i _mm_cvttpd_epi32(__m128d a)

Table C-1.  Simple Intrinsics (Contd.)
Mnemonic Intrinsic
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CVTTPD2PI __m64 _mm_cvttpd_pi32(__m128d a)

CVTTPS2DQ __m128i _mm_cvttps_epi32(__m128 a)

CVTTPS2PI __m64 _mm_cvtt_ps2pi(__m128 a)
__m64 _mm_cvttps_pi32(__m128 a)

CVTTSD2SI int _mm_cvttsd_si32(__m128d a)

CVTTSS2SI int _mm_cvtt_ss2si(__m128 a)
int _mm_cvttss_si32(__m128 a)

__m64 _mm_cvtsi32_si64(int i)

int _mm_cvtsi64_si32(__m64 m)

DIVPD __m128d _mm_div_pd(__m128d a, __m128d b)

DIVPS __m128 _mm_div_ps(__m128 a, __m128 b)

DIVSD __m128d _mm_div_sd(__m128d a, __m128d b)

DIVSS __m128 _mm_div_ss(__m128 a, __m128 b)

DPPD __m128d _mm_dp_pd(__m128d a, __m128d b, const int mask)

DPPS __m128 _mm_dp_ps(__m128 a, __m128 b, const int mask)

EMMS void _mm_empty()

EXTRACTPS int _mm_extract_ps(__m128 src, const int ndx)

HADDPD __m128d _mm_hadd_pd(__m128d a, __m128d b)

HADDPS __m128 _mm_hadd_ps(__m128 a, __m128 b)

HSUBPD __m128d _mm_hsub_pd(__m128d a, __m128d b)

HSUBPS __m128 _mm_hsub_ps(__m128 a, __m128 b)

INSERTPS __m128 _mm_insert_ps(__m128 dst, __m128 src, const int ndx)

LDDQU __m128i _mm_lddqu_si128(__m128i const *p)

LDMXCSR __mm_setcsr(unsigned int i)

LFENCE void _mm_lfence(void)

MASKMOVDQU void _mm_maskmoveu_si128(__m128i d, __m128i n, char *p)

MASKMOVQ void _mm_maskmove_si64(__m64 d, __m64 n, char *p)

MAXPD __m128d _mm_max_pd(__m128d a, __m128d b)

MAXPS __m128 _mm_max_ps(__m128 a, __m128 b)

MAXSD __m128d _mm_max_sd(__m128d a, __m128d b)

MAXSS __m128 _mm_max_ss(__m128 a, __m128 b)

MFENCE void _mm_mfence(void)

MINPD __m128d _mm_min_pd(__m128d a, __m128d b)

MINPS __m128 _mm_min_ps(__m128 a, __m128 b)

MINSD __m128d _mm_min_sd(__m128d a, __m128d b)

MINSS __m128 _mm_min_ss(__m128 a, __m128 b)

Table C-1.  Simple Intrinsics (Contd.)
Mnemonic Intrinsic
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MONITOR void _mm_monitor(void const *p, unsigned extensions, unsigned hints)

MOVAPD __m128d _mm_load_pd(double * p)

void_mm_store_pd(double *p, __m128d a)

MOVAPS __m128 _mm_load_ps(float * p)

void_mm_store_ps(float *p, __m128 a)

MOVD __m128i _mm_cvtsi32_si128(int a)

int _mm_cvtsi128_si32(__m128i a)

__m64 _mm_cvtsi32_si64(int a)

int _mm_cvtsi64_si32(__m64 a)

MOVDDUP __m128d _mm_movedup_pd(__m128d a)

__m128d _mm_loaddup_pd(double const * dp)

MOVDQA __m128i _mm_load_si128(__m128i * p)

void_mm_store_si128(__m128i *p, __m128i a)

MOVDQU __m128i _mm_loadu_si128(__m128i * p)

void_mm_storeu_si128(__m128i *p, __m128i a)

MOVDQ2Q __m64 _mm_movepi64_pi64(__m128i a)

MOVHLPS __m128 _mm_movehl_ps(__m128 a, __m128 b)

MOVHPD __m128d _mm_loadh_pd(__m128d a, double * p)

void _mm_storeh_pd(double * p, __m128d a)

MOVHPS __m128 _mm_loadh_pi(__m128 a, __m64 * p)

void _mm_storeh_pi(__m64 * p, __m128 a)

MOVLPD __m128d _mm_loadl_pd(__m128d a, double * p)

void _mm_storel_pd(double * p, __m128d a)

MOVLPS __m128 _mm_loadl_pi(__m128 a, __m64 *p)

void_mm_storel_pi(__m64 * p, __m128 a)

MOVLHPS __m128 _mm_movelh_ps(__m128 a, __m128 b)

MOVMSKPD int _mm_movemask_pd(__m128d a)

MOVMSKPS int _mm_movemask_ps(__m128 a)

MOVNTDQA __m128i _mm_stream_load_si128(__m128i *p)

MOVNTDQ void_mm_stream_si128(__m128i * p, __m128i a)

MOVNTPD void_mm_stream_pd(double * p, __m128d a)

MOVNTPS void_mm_stream_ps(float * p, __m128 a)

MOVNTI void_mm_stream_si32(int * p, int a)

MOVNTQ void_mm_stream_pi(__m64 * p, __m64 a)

MOVQ __m128i _mm_loadl_epi64(__m128i * p)

Table C-1.  Simple Intrinsics (Contd.)
Mnemonic Intrinsic
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void_mm_storel_epi64(_m128i * p, __m128i a)

__m128i _mm_move_epi64(__m128i a)

MOVQ2DQ __m128i _mm_movpi64_epi64(__m64 a)

MOVSD __m128d _mm_load_sd(double * p)

void_mm_store_sd(double * p, __m128d a)

__m128d _mm_move_sd(__m128d a, __m128d b)

MOVSHDUP __m128 _mm_movehdup_ps(__m128 a)

MOVSLDUP __m128 _mm_moveldup_ps(__m128 a)

MOVSS __m128 _mm_load_ss(float * p)

void_mm_store_ss(float * p, __m128 a)

__m128 _mm_move_ss(__m128 a, __m128 b)

MOVUPD __m128d _mm_loadu_pd(double * p)

void_mm_storeu_pd(double *p, __m128d a) 

MOVUPS __m128 _mm_loadu_ps(float * p)

void_mm_storeu_ps(float *p, __m128 a) 

MPSADBW __m128i _mm_mpsadbw_epu8(__m128i s1, __m128i s2, const int mask)

MULPD __m128d _mm_mul_pd(__m128d a, __m128d b)

MULPS __m128 _mm_mul_ss(__m128 a, __m128 b)

MULSD __m128d _mm_mul_sd(__m128d a, __m128d b)

MULSS __m128 _mm_mul_ss(__m128 a, __m128 b)

MWAIT void _mm_mwait(unsigned extensions, unsigned hints)

ORPD __m128d _mm_or_pd(__m128d a, __m128d b)

ORPS __m128 _mm_or_ps(__m128 a, __m128 b)

PABSB  __m64 _mm_abs_pi8 (__m64 a)

 __m128i _mm_abs_epi8 (__m128i a)

PABSD  __m64 _mm_abs_pi32 (__m64 a)

 __m128i _mm_abs_epi32 (__m128i a)

PABSW  __m64 _mm_abs_pi16 (__m64 a)

 __m128i _mm_abs_epi16 (__m128i a)

PACKSSWB __m128i _mm_packs_epi16(__m128i m1, __m128i m2)

PACKSSWB __m64 _mm_packs_pi16(__m64 m1, __m64 m2)

PACKSSDW __m128i _mm_packs_epi32 (__m128i m1, __m128i m2)

PACKSSDW __m64 _mm_packs_pi32 (__m64 m1, __m64 m2)

PACKUSDW __m128i _mm_packus_epi32(__m128i m1, __m128i m2)

PACKUSWB __m128i _mm_packus_epi16(__m128i m1, __m128i m2)

Table C-1.  Simple Intrinsics (Contd.)
Mnemonic Intrinsic
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PACKUSWB __m64 _mm_packs_pu16(__m64 m1, __m64 m2)

PADDB __m128i _mm_add_epi8(__m128i m1, __m128i m2)

PADDB __m64 _mm_add_pi8(__m64 m1, __m64 m2)

PADDW __m128i _mm_add_epi16(__m128i m1, __m128i m2)

PADDW __m64 _mm_add_pi16(__m64 m1, __m64 m2)

PADDD __m128i _mm_add_epi32(__m128i m1, __m128i m2)

PADDD __m64 _mm_add_pi32(__m64 m1, __m64 m2)

PADDQ __m128i _mm_add_epi64(__m128i m1, __m128i m2)

PADDQ __m64 _mm_add_si64(__m64 m1, __m64 m2)

PADDSB __m128i _mm_adds_epi8(__m128i m1, __m128i m2)

PADDSB __m64 _mm_adds_pi8(__m64 m1, __m64 m2)

PADDSW __m128i _mm_adds_epi16(__m128i m1, __m128i m2)

PADDSW __m64 _mm_adds_pi16(__m64 m1, __m64 m2)

PADDUSB __m128i _mm_adds_epu8(__m128i m1, __m128i m2)

PADDUSB __m64 _mm_adds_pu8(__m64 m1, __m64 m2)

PADDUSW __m128i _mm_adds_epu16(__m128i m1, __m128i m2)

PADDUSW __m64 _mm_adds_pu16(__m64 m1, __m64 m2)

PALIGNR  __m64 _mm_alignr_pi8 (__m64 a, __m64 b, int n)

 __m128i _mm_alignr_epi8 (__m128i a, __m128i b, int n)

PAND __m128i _mm_and_si128(__m128i m1, __m128i m2)

PAND __m64 _mm_and_si64(__m64 m1, __m64 m2)

PANDN __m128i _mm_andnot_si128(__m128i m1, __m128i m2)

PANDN __m64 _mm_andnot_si64(__m64 m1, __m64 m2)

PAUSE void _mm_pause(void)

PAVGB __m128i _mm_avg_epu8(__m128i a, __m128i b)

PAVGB __m64 _mm_avg_pu8(__m64 a, __m64 b)

PAVGW __m128i _mm_avg_epu16(__m128i a, __m128i b)

PAVGW __m64 _mm_avg_pu16(__m64 a, __m64 b)

PBLENDVB __m128i _mm_blendv_epi (__m128i v1, __m128i v2, __m128i mask)

PBLENDW __m128i _mm_blend_epi16(__m128i v1, __m128i v2, const int mask)

PCLMULQDQ __m128i  _mm_clmulepi64_si128 (__m128i, __m128i, const int)

PCMPEQB __m128i _mm_cmpeq_epi8(__m128i m1, __m128i m2)

PCMPEQB __m64 _mm_cmpeq_pi8(__m64 m1, __m64 m2)

PCMPEQQ __m128i _mm_cmpeq_epi64(__m128i a, __m128i b)

PCMPEQW __m128i _mm_cmpeq_epi16 (__m128i m1, __m128i m2)
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PCMPEQW __m64 _mm_cmpeq_pi16 (__m64 m1, __m64 m2)

PCMPEQD __m128i _mm_cmpeq_epi32(__m128i m1, __m128i m2)

PCMPEQD __m64 _mm_cmpeq_pi32(__m64 m1, __m64 m2)

PCMPESTRI int _mm_cmpestri (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestra (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestrc (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestro (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestrs (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestrz (__m128i a, int la, __m128i b, int lb, const int mode)

PCMPESTRM __m128i _mm_cmpestrm (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestra (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestrc (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestro (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestrs (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestrz (__m128i a, int la, __m128i b, int lb, const int mode)

PCMPGTB __m128i _mm_cmpgt_epi8 (__m128i m1, __m128i m2)

PCMPGTB __m64 _mm_cmpgt_pi8 (__m64 m1, __m64 m2)

PCMPGTW __m128i _mm_cmpgt_epi16(__m128i m1, __m128i m2)

PCMPGTW __m64 _mm_cmpgt_pi16 (__m64 m1, __m64 m2)

PCMPGTD __m128i _mm_cmpgt_epi32(__m128i m1, __m128i m2)

PCMPGTD __m64 _mm_cmpgt_pi32(__m64 m1, __m64 m2)

PCMPISTRI __m128i _mm_cmpestrm (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestra (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestrc (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestro (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestrs (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpistrz (__m128i a, __m128i b, const int mode)

PCMPISTRM __m128i _mm_cmpistrm (__m128i a, __m128i b, const int mode)

int _mm_cmpistra (__m128i a, __m128i b, const int mode)

int _mm_cmpistrc (__m128i a, __m128i b, const int mode)

int _mm_cmpistro (__m128i a, __m128i b, const int mode)

int _mm_cmpistrs (__m128i a, __m128i b, const int mode)

int _mm_cmpistrz (__m128i a, __m128i b, const int mode)

PCMPGTQ __m128i _mm_cmpgt_epi64(__m128i a, __m128i b)

PEXTRB int _mm_extract_epi8 (__m128i src, const int ndx)
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PEXTRD int _mm_extract_epi32 (__m128i src, const int ndx)

PEXTRQ __int64 _mm_extract_epi64 (__m128i src, const int ndx)

PEXTRW int _mm_extract_epi16(__m128i a, int n)

PEXTRW int _mm_extract_pi16(__m64 a, int n)

int _mm_extract_epi16 (__m128i src, int ndx)

PHADDD  __m64 _mm_hadd_pi32 (__m64 a, __m64 b)

 __m128i _mm_hadd_epi32 (__m128i a, __m128i b)

PHADDSW  __m64 _mm_hadds_pi16 (__m64 a, __m64 b)

 __m128i _mm_hadds_epi16 (__m128i a, __m128i b)

PHADDW __m64 _mm_hadd_pi16 (__m64 a, __m64 b)

__m128i _mm_hadd_epi16 (__m128i a, __m128i b)

PHMINPOSUW __m128i _mm_minpos_epu16( __m128i packed_words)

PHSUBD  __m64 _mm_hsub_pi32 (__m64 a, __m64 b)

 __m128i _mm_hsub_epi32 (__m128i a, __m128i b)

PHSUBSW  __m64 _mm_hsubs_pi16 (__m64 a, __m64 b)

 __m128i _mm_hsubs_epi16 (__m128i a, __m128i b)

PHSUBW  __m64 _mm_hsub_pi16 (__m64 a, __m64 b)

 __m128i _mm_hsub_epi16 (__m128i a, __m128i b)

PINSRB __m128i _mm_insert_epi8(__m128i s1, int s2, const int ndx)

PINSRD __m128i _mm_insert_epi32(__m128i s2, int s, const int ndx)

PINSRQ __m128i _mm_insert_epi64(__m128i s2, __int64 s, const int ndx)

PINSRW __m128i _mm_insert_epi16(__m128i a, int d, int n)

PINSRW __m64 _mm_insert_pi16(__m64 a, int d, int n)

PMADDUBSW  __m64 _mm_maddubs_pi16 (__m64 a, __m64 b)

 __m128i _mm_maddubs_epi16 (__m128i a, __m128i b)

PMADDWD __m128i _mm_madd_epi16(__m128i m1 __m128i m2)

PMADDWD __m64 _mm_madd_pi16(__m64 m1, __m64 m2)

PMAXSB __m128i _mm_max_epi8( __m128i a, __m128i b)

PMAXSD __m128i _mm_max_epi32( __m128i a, __m128i b)

PMAXSW __m128i _mm_max_epi16(__m128i a, __m128i b)

PMAXSW __m64 _mm_max_pi16(__m64 a, __m64 b)

PMAXUB __m128i _mm_max_epu8(__m128i a, __m128i b)

PMAXUB __m64 _mm_max_pu8(__m64 a, __m64 b)

PMAXUD __m128i _mm_max_epu32( __m128i a, __m128i b)

PMAXUW __m128i _mm_max_epu16( __m128i a, __m128i b)
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PMINSB _m128i _mm_min_epi8( __m128i a, __m128i b)

PMINSD __m128i _mm_min_epi32( __m128i a, __m128i b)

PMINSW __m128i _mm_min_epi16(__m128i a, __m128i b)

PMINSW __m64 _mm_min_pi16(__m64 a, __m64 b)

PMINUB __m128i _mm_min_epu8(__m128i a, __m128i b)

PMINUB __m64 _mm_min_pu8(__m64 a, __m64 b)

PMINUD __m128i _mm_min_epu32 ( __m128i a, __m128i b)

PMINUW __m128i _mm_min_epu16 ( __m128i a, __m128i b)

PMOVMSKB int _mm_movemask_epi8(__m128i a)

PMOVMSKB int _mm_movemask_pi8(__m64 a)

PMOVSXBW __m128i _mm_ cvtepi8_epi16( __m128i a)

PMOVSXBD __m128i _mm_ cvtepi8_epi32( __m128i a)

PMOVSXBQ __m128i _mm_ cvtepi8_epi64( __m128i a)

PMOVSXWD __m128i _mm_ cvtepi16_epi32( __m128i a)

PMOVSXWQ __m128i _mm_ cvtepi16_epi64( __m128i a)

PMOVSXDQ __m128i _mm_ cvtepi32_epi64( __m128i a)

PMOVZXBW __m128i _mm_ cvtepu8_epi16( __m128i a)

PMOVZXBD __m128i _mm_ cvtepu8_epi32( __m128i a)

PMOVZXBQ __m128i _mm_ cvtepu8_epi64( __m128i a)

PMOVZXWD __m128i _mm_ cvtepu16_epi32( __m128i a)

PMOVZXWQ __m128i _mm_ cvtepu16_epi64( __m128i a)

PMOVZXDQ __m128i _mm_ cvtepu32_epi64( __m128i a)

PMULDQ __m128i _mm_mul_epi32( __m128i a, __m128i b)

PMULHRSW __m64 _mm_mulhrs_pi16 (__m64 a, __m64 b)

__m128i _mm_mulhrs_epi16 (__m128i a, __m128i b)

PMULHUW __m128i _mm_mulhi_epu16(__m128i a, __m128i b)

PMULHUW __m64 _mm_mulhi_pu16(__m64 a, __m64 b)

PMULHW __m128i _mm_mulhi_epi16(__m128i m1, __m128i m2)

PMULHW __m64 _mm_mulhi_pi16(__m64 m1, __m64 m2)

PMULLUD __m128i _mm_mullo_epi32(__m128i a, __m128i b)

PMULLW __m128i _mm_mullo_epi16(__m128i m1, __m128i m2)

PMULLW __m64 _mm_mullo_pi16(__m64 m1, __m64 m2)

PMULUDQ __m64 _mm_mul_su32(__m64 m1, __m64 m2)

__m128i _mm_mul_epu32(__m128i m1, __m128i m2)
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POPCNT int _mm_popcnt_u32(unsigned int a)

int64_t _mm_popcnt_u64(unsigned __int64 a)

POR __m64 _mm_or_si64(__m64 m1, __m64 m2)

POR __m128i _mm_or_si128(__m128i m1, __m128i m2)

PREFETCHh void _mm_prefetch(char *a, int sel)

PSADBW __m128i _mm_sad_epu8(__m128i a, __m128i b)

PSADBW __m64 _mm_sad_pu8(__m64 a, __m64 b)

PSHUFB  __m64 _mm_shuffle_pi8 (__m64 a, __m64 b)

 __m128i _mm_shuffle_epi8 (__m128i a, __m128i b)

PSHUFD __m128i _mm_shuffle_epi32(__m128i a, int n)

PSHUFHW __m128i _mm_shufflehi_epi16(__m128i a, int n)

PSHUFLW __m128i _mm_shufflelo_epi16(__m128i a, int n)

PSHUFW __m64 _mm_shuffle_pi16(__m64 a, int n)

PSIGNB  __m64 _mm_sign_pi8 (__m64 a, __m64 b)

 __m128i _mm_sign_epi8 (__m128i a, __m128i b)

PSIGND  __m64 _mm_sign_pi32 (__m64 a, __m64 b)

 __m128i _mm_sign_epi32 (__m128i a, __m128i b)

PSIGNW  __m64 _mm_sign_pi16 (__m64 a, __m64 b)

 __m128i _mm_sign_epi16 (__m128i a, __m128i b)

PSLLW __m128i _mm_sll_epi16(__m128i m, __m128i count)

PSLLW __m128i _mm_slli_epi16(__m128i m, int count)

PSLLW __m64 _mm_sll_pi16(__m64 m, __m64 count)

__m64 _mm_slli_pi16(__m64 m, int count)

PSLLD __m128i _mm_slli_epi32(__m128i m, int count)

__m128i _mm_sll_epi32(__m128i m, __m128i count)

PSLLD __m64 _mm_slli_pi32(__m64 m, int count)

__m64 _mm_sll_pi32(__m64 m, __m64 count)

PSLLQ __m64 _mm_sll_si64(__m64 m, __m64 count)

__m64 _mm_slli_si64(__m64 m, int count)

PSLLQ __m128i _mm_sll_epi64(__m128i m, __m128i count)

__m128i _mm_slli_epi64(__m128i m, int count)

PSLLDQ __m128i _mm_slli_si128(__m128i m, int imm)

PSRAW __m128i _mm_sra_epi16(__m128i m, __m128i count)

__m128i _mm_srai_epi16(__m128i m, int count)
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PSRAW __m64 _mm_sra_pi16(__m64 m, __m64 count)

__m64 _mm_srai_pi16(__m64 m, int count)

PSRAD __m128i _mm_sra_epi32 (__m128i m, __m128i count)

__m128i _mm_srai_epi32 (__m128i m, int count)

PSRAD __m64 _mm_sra_pi32 (__m64 m, __m64 count)

__m64 _mm_srai_pi32 (__m64 m, int count)

PSRLW _m128i _mm_srl_epi16 (__m128i m, __m128i count)

__m128i _mm_srli_epi16 (__m128i m, int count)

__m64 _mm_srl_pi16 (__m64 m, __m64 count)

__m64 _mm_srli_pi16(__m64 m, int count)

PSRLD __m128i _mm_srl_epi32 (__m128i m, __m128i count)

__m128i _mm_srli_epi32 (__m128i m, int count)

PSRLD __m64 _mm_srl_pi32 (__m64 m, __m64 count)

__m64 _mm_srli_pi32 (__m64 m, int count)

PSRLQ __m128i _mm_srl_epi64 (__m128i m, __m128i count)

__m128i _mm_srli_epi64 (__m128i m, int count)

PSRLQ __m64 _mm_srl_si64 (__m64 m, __m64 count)

__m64 _mm_srli_si64 (__m64 m, int count)

PSRLDQ __m128i _mm_srli_si128(__m128i m, int imm)

PSUBB __m128i _mm_sub_epi8(__m128i m1, __m128i m2)

PSUBB __m64 _mm_sub_pi8(__m64 m1, __m64 m2)

PSUBW __m128i _mm_sub_epi16(__m128i m1, __m128i m2)

PSUBW __m64 _mm_sub_pi16(__m64 m1, __m64 m2)

PSUBD __m128i _mm_sub_epi32(__m128i m1, __m128i m2)

PSUBD __m64 _mm_sub_pi32(__m64 m1, __m64 m2)

PSUBQ __m128i _mm_sub_epi64(__m128i m1, __m128i m2)

PSUBQ __m64 _mm_sub_si64(__m64 m1, __m64 m2)

PSUBSB __m128i _mm_subs_epi8(__m128i m1, __m128i m2)

PSUBSB __m64 _mm_subs_pi8(__m64 m1, __m64 m2)

PSUBSW __m128i _mm_subs_epi16(__m128i m1, __m128i m2)

PSUBSW __m64 _mm_subs_pi16(__m64 m1, __m64 m2)

PSUBUSB __m128i _mm_subs_epu8(__m128i m1, __m128i m2)

PSUBUSB __m64 _mm_subs_pu8(__m64 m1, __m64 m2)

PSUBUSW __m128i _mm_subs_epu16(__m128i m1, __m128i m2)

PSUBUSW __m64 _mm_subs_pu16(__m64 m1, __m64 m2)
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PTEST int _mm_testz_si128(__m128i s1, __m128i s2)

int _mm_testc_si128(__m128i s1, __m128i s2)

int _mm_testnzc_si128(__m128i s1, __m128i s2)

PUNPCKHBW __m64 _mm_unpackhi_pi8(__m64 m1, __m64 m2)

PUNPCKHBW __m128i _mm_unpackhi_epi8(__m128i m1, __m128i m2)

PUNPCKHWD __m64 _mm_unpackhi_pi16(__m64 m1,__m64 m2)

PUNPCKHWD __m128i _mm_unpackhi_epi16(__m128i m1, __m128i m2)

PUNPCKHDQ ___m64 _mm_unpackhi_pi32(__m64 m1, __m64 m2)

PUNPCKHDQ __m128i _mm_unpackhi_epi32(__m128i m1, __m128i m2)

PUNPCKHQDQ __m128i _mm_unpackhi_epi64(__m128i m1, __m128i m2)

PUNPCKLBW __m64 _mm_unpacklo_pi8 (__m64 m1, __m64 m2)

PUNPCKLBW __m128i _mm_unpacklo_epi8 (__m128i m1, __m128i m2)

PUNPCKLWD __m64 _mm_unpacklo_pi16(__m64 m1, __m64 m2)

PUNPCKLWD __m128i _mm_unpacklo_epi16(__m128i m1, __m128i m2)

PUNPCKLDQ __m64 _mm_unpacklo_pi32(__m64 m1, __m64 m2)

PUNPCKLDQ __m128i _mm_unpacklo_epi32(__m128i m1, __m128i m2)

PUNPCKLQDQ __m128i _mm_unpacklo_epi64(__m128i m1, __m128i m2)

PXOR __m64 _mm_xor_si64(__m64 m1, __m64 m2)

PXOR __m128i _mm_xor_si128(__m128i m1, __m128i m2)

RCPPS __m128 _mm_rcp_ps(__m128 a)

RCPSS __m128 _mm_rcp_ss(__m128 a)

ROUNDPD __m128 mm_round_pd(__m128d s1, int iRoundMode)

__m128 mm_floor_pd(__m128d s1)

__m128 mm_ceil_pd(__m128d s1)

ROUNDPS __m128 mm_round_ps(__m128 s1, int iRoundMode)

__m128 mm_floor_ps(__m128 s1)

__m128 mm_ceil_ps(__m128 s1)

ROUNDSD __m128d mm_round_sd(__m128d dst, __m128d s1, int iRoundMode)

__m128d mm_floor_sd(__m128d dst, __m128d s1)

__m128d mm_ceil_sd(__m128d dst, __m128d s1)

ROUNDSS __m128 mm_round_ss(__m128 dst, __m128 s1, int iRoundMode)

__m128 mm_floor_ss(__m128 dst, __m128 s1)

__m128 mm_ceil_ss(__m128 dst, __m128 s1)

RSQRTPS __m128 _mm_rsqrt_ps(__m128 a)

RSQRTSS __m128 _mm_rsqrt_ss(__m128 a)
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SFENCE void_mm_sfence(void)

SHUFPD __m128d _mm_shuffle_pd(__m128d a, __m128d b, unsigned int imm8)

SHUFPS __m128 _mm_shuffle_ps(__m128 a, __m128 b, unsigned int imm8)

SQRTPD __m128d _mm_sqrt_pd(__m128d a)

SQRTPS __m128 _mm_sqrt_ps(__m128 a)

SQRTSD __m128d _mm_sqrt_sd(__m128d a)

SQRTSS __m128 _mm_sqrt_ss(__m128 a)

STMXCSR _mm_getcsr(void)

SUBPD __m128d _mm_sub_pd(__m128d a, __m128d b)

SUBPS __m128 _mm_sub_ps(__m128 a, __m128 b)

SUBSD __m128d _mm_sub_sd(__m128d a, __m128d b)

SUBSS __m128 _mm_sub_ss(__m128 a, __m128 b)

UCOMISD int _mm_ucomieq_sd(__m128d a, __m128d b)

int _mm_ucomilt_sd(__m128d a, __m128d b)

int _mm_ucomile_sd(__m128d a, __m128d b)

int _mm_ucomigt_sd(__m128d a, __m128d b)

int _mm_ucomige_sd(__m128d a, __m128d b)

int _mm_ucomineq_sd(__m128d a, __m128d b)

UCOMISS int _mm_ucomieq_ss(__m128 a, __m128 b)

int _mm_ucomilt_ss(__m128 a, __m128 b)

int _mm_ucomile_ss(__m128 a, __m128 b)

int _mm_ucomigt_ss(__m128 a, __m128 b)

int _mm_ucomige_ss(__m128 a, __m128 b)

int _mm_ucomineq_ss(__m128 a, __m128 b)

UNPCKHPD __m128d _mm_unpackhi_pd(__m128d a, __m128d b)

UNPCKHPS __m128 _mm_unpackhi_ps(__m128 a, __m128 b)

UNPCKLPD __m128d _mm_unpacklo_pd(__m128d a, __m128d b)

UNPCKLPS __m128 _mm_unpacklo_ps(__m128 a, __m128 b)

XORPD __m128d _mm_xor_pd(__m128d a, __m128d b)

XORPS __m128 _mm_xor_ps(__m128 a, __m128 b)
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C.2 COMPOSITE INTRINSICS

Table C-2.  Composite Intrinsics
Mnemonic Intrinsic

(composite) __m128i _mm_set_epi64(__m64 q1, __m64 q0)

(composite) __m128i _mm_set_epi32(int i3, int i2, int i1, int i0)

(composite) __m128i _mm_set_epi16(short w7,short w6, short w5, short w4, short w3, short w2, 
 short w1,short w0)

(composite) __m128i _mm_set_epi8(char w15,char w14, char w13, char w12, char w11, char w10,
 char w9, char w8, char w7,char w6, char w5, char w4, char w3, char w2,char w1, char w0)

(composite) __m128i _mm_set1_epi64(__m64 q)

(composite) __m128i _mm_set1_epi32(int a)

(composite) __m128i _mm_set1_epi16(short a)

(composite) __m128i _mm_set1_epi8(char a)

(composite) __m128i _mm_setr_epi64(__m64 q1, __m64 q0)

(composite) __m128i _mm_setr_epi32(int i3, int i2, int i1, int i0)

(composite) __m128i _mm_setr_epi16(short w7,short w6, short w5, short w4, short w3, short w2, short w,
short w0)

(composite) __m128i _mm_setr_epi8(char w15,char w14, char w13, char w12, char w11, char w10,
char w9, char w8,char w7, char w6,char w5, char w4, char w3, char w2,char w1,char w0)

(composite) __m128i _mm_setzero_si128()

(composite) __m128 _mm_set_ps1(float w)
__m128 _mm_set1_ps(float w)

(composite) __m128cmm_set1_pd(double w)

(composite) __m128d _mm_set_sd(double w)

(composite) __m128d _mm_set_pd(double z, double y)

(composite) __m128 _mm_set_ps(float z, float y, float x, float w)

(composite) __m128d _mm_setr_pd(double z, double y)

(composite) __m128 _mm_setr_ps(float z, float y, float x, float w)

(composite) __m128d _mm_setzero_pd(void)

(composite) __m128 _mm_setzero_ps(void)

MOVSD + 
shuffle

__m128d _mm_load_pd(double * p)
__m128d _mm_load1_pd(double *p)

MOVSS + 
shuffle

__m128 _mm_load_ps1(float * p)
__m128 _mm_load1_ps(float *p)

MOVAPD + 
shuffle

__m128d _mm_loadr_pd(double * p)

MOVAPS + 
shuffle

__m128 _mm_loadr_ps(float * p)

MOVSD + 
shuffle

void _mm_store1_pd(double *p, __m128d a)
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MOVSS + 
shuffle

void _mm_store_ps1(float * p, __m128 a)
void _mm_store1_ps(float *p, __m128 a)

MOVAPD + 
shuffle

_mm_storer_pd(double * p, __m128d a)

MOVAPS + 
shuffle

_mm_storer_ps(float * p, __m128 a)

Table C-2.  Composite Intrinsics (Contd.)
Mnemonic Intrinsic
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CHAPTER 1
ABOUT THIS MANUAL

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A: 
System Programming Guide, Part 1 (order number 253668), the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3B: System Programming 
Guide, Part 2 (order number 253669) and the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 3C: System Programming Guide, Part 3 (order 
number 326019) are part of a set that describes the architecture and programming 
environment of Intel 64 and IA-32 Architecture processors. The other volumes in this 
set are:
• Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: Basic 

Architecture (order number 253665).
• Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B 

& 2C: Instruction Set Reference (order numbers 253666, 253667 and 326018).

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, 
describes the basic architecture and programming environment of Intel 64 and IA-32 
processors. The Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volumes 2A, 2B & 2C, describe the instruction set of the processor and the opcode 
structure. These volumes apply to application programmers and to programmers 
who write operating systems or executives. The Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volumes 3A, 3B & 3C, describe the operating-system 
support environment of Intel 64 and IA-32 processors. These volumes target oper-
ating-system and BIOS designers. In addition, Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 3B, and Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 3C address the programming environment for 
classes of software that host operating systems. 

1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN 
THIS MANUAL

This manual set includes information pertaining primarily to the most recent Intel 64 
and IA-32 processors, which include: 
• Pentium® processors
• P6 family processors
• Pentium® 4 processors
• Pentium® M processors
• Intel® Xeon® processors
• Pentium® D processors
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• Pentium® processor Extreme Editions
• 64-bit Intel® Xeon® processors
• Intel® Core™ Duo processor
• Intel® Core™ Solo processor
• Dual-Core Intel® Xeon® processor LV
• Intel® Core™2 Duo processor
• Intel® Core™2 Quad processor Q6000 series
• Intel® Xeon® processor 3000, 3200 series
• Intel® Xeon® processor 5000 series
• Intel® Xeon® processor 5100, 5300 series
• Intel® Core™2 Extreme processor X7000 and X6800 series
• Intel® Core™2 Extreme QX6000 series
• Intel® Xeon® processor 7100 series
• Intel® Pentium® Dual-Core processor
• Intel® Xeon® processor 7200, 7300 series
• Intel® Core™2 Extreme QX9000 series
• Intel® Xeon® processor 5200, 5400, 7400 series
• Intel® CoreTM2 Extreme processor QX9000 and X9000 series
• Intel® CoreTM2 Quad processor Q9000 series
• Intel® CoreTM2 Duo processor E8000, T9000 series
• Intel® AtomTM processor family
• Intel® CoreTM i7 processor 
• Intel® CoreTM i5 processor 
• Intel® Xeon® processor E7-8800/4800/2800 product families 
• Intel® Xeon® processor E5 family
• Intel® Xeon® processor E3 family
• Intel® CoreTM i7-3930K processor
• 2nd generation Intel® CoreTM i7-2xxx, Intel® CoreTM i5-2xxx, Intel® CoreTM i3-

2xxx processor series

P6 family processors are IA-32 processors based on the P6 family microarchitecture. 
This includes the Pentium® Pro, Pentium® II, Pentium® III, and Pentium® III Xeon® 
processors. 

The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based 
on the Intel NetBurst® microarchitecture. Most early Intel® Xeon® processors are 
based on the Intel NetBurst® microarchitecture. Intel Xeon processor 5000, 7100 
series are based on the Intel NetBurst® microarchitecture.
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The Intel® Core™ Duo, Intel® Core™ Solo and dual-core Intel® Xeon® processor LV 
are based on an improved Pentium® M processor microarchitecture. 

The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200, and 7300 series, Intel® 
Pentium® dual-core, Intel® Core™2 Duo, Intel® Core™2 Quad and Intel® Core™2 
Extreme processors are based on Intel® Core™ microarchitecture.

The Intel® Xeon® processor 5200, 5400, 7400 series, Intel® CoreTM2 Quad processor 
Q9000 series, and Intel® CoreTM2 Extreme processors QX9000, X9000 series, Intel® 
CoreTM2 processor E8000 series are based on Enhanced Intel® CoreTM microarchitec-
ture.

The Intel® AtomTM processor family is based on the Intel® AtomTM microarchitecture 
and supports Intel 64 architecture.

The Intel® CoreTM i7 processor and the Intel® CoreTM i5 processor are based on the 
Intel® microarchitecture code name Nehalem and support Intel 64 architecture.

Processors based on Intel® microarchitecture code name Westmere support Intel 64 
architecture.

P6 family, Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo processors, dual-core 
Intel® Xeon® processor LV, and early generations of Pentium 4 and Intel Xeon 
processors support IA-32 architecture. The Intel® Atom™ processor Z5xx series 
support IA-32 architecture.

The Intel® Xeon® processor E5 family, Intel® Xeon® processor E3 family, Intel® 
CoreTM i7-3930K processor, 2nd generation Intel® CoreTM i7-2xxx, Intel® CoreTM i5-
2xxx, Intel® CoreTM i3-2xxx processor series, Intel® Xeon® processor E7-
8800/4800/2800 product families, Intel® Xeon® processor 3000, 3200, 5000, 5100, 
5200, 5300, 5400, 7100, 7200, 7300, 7400 series, Intel® Core™2 Duo, Intel® 
Core™2 Extreme processors, Intel Core 2 Quad processors, Pentium® D processors, 
Pentium® Dual-Core processor, newer generations of Pentium 4 and Intel Xeon 
processor family support Intel® 64 architecture.

IA-32 architecture is the instruction set architecture and programming environment 
for Intel's 32-bit microprocessors. Intel® 64 architecture is the instruction set archi-
tecture and programming environment which is a superset of and compatible with 
IA-32 architecture.

1.2 OVERVIEW OF THE SYSTEM PROGRAMMING GUIDE
A description of this manual’s content follows:

Chapter 1 — About This Manual. Gives an overview of all seven volumes of the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual. It also describes 
the notational conventions in these manuals and lists related Intel manuals and 
documentation of interest to programmers and hardware designers.

Chapter 2 — System Architecture Overview. Describes the modes of operation 
used by Intel 64 and IA-32 processors and the mechanisms provided by the architec-
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tures to support operating systems and executives, including the system-oriented 
registers and data structures and the system-oriented instructions. The steps neces-
sary for switching between real-address and protected modes are also identified.

Chapter 3 — Protected-Mode Memory Management. Describes the data struc-
tures, registers, and instructions that support segmentation and paging. The chapter 
explains how they can be used to implement a “flat” (unsegmented) memory model 
or a segmented memory model.

Chapter 4 — Paging. Describes the paging modes supported by Intel 64 and IA-32 
processors.

Chapter 5 — Protection. Describes the support for page and segment protection 
provided in the Intel 64 and IA-32 architectures. This chapter also explains the 
implementation of privilege rules, stack switching, pointer validation, user and 
supervisor modes.

Chapter 6 — Interrupt and Exception Handling. Describes the basic interrupt 
mechanisms defined in the Intel 64 and IA-32 architectures, shows how interrupts 
and exceptions relate to protection, and describes how the architecture handles each 
exception type. Reference information for each exception is given in this chapter. 
Includes programming the LINT0 and LINT1 inputs and gives an example of how to 
program the LINT0 and LINT1 pins for specific interrupt vectors.

Chapter 7 — Task Management. Describes mechanisms the Intel 64 and IA-32 
architectures provide to support multitasking and inter-task protection.

Chapter 8 — Multiple-Processor Management. Describes the instructions and 
flags that support multiple processors with shared memory, memory ordering, and 
Intel® Hyper-Threading Technology. Includes MP initialization for P6 family proces-
sors and gives an example of how to use of the MP protocol to boot P6 family proces-
sors in an MP system.

Chapter 9 — Processor Management and Initialization. Defines the state of an 
Intel 64 or IA-32 processor after reset initialization. This chapter also explains how to 
set up an Intel 64 or IA-32 processor for real-address mode operation and protected- 
mode operation, and how to switch between modes.

Chapter 10 — Advanced Programmable Interrupt Controller (APIC). 
Describes the programming interface to the local APIC and gives an overview of the 
interface between the local APIC and the I/O APIC. Includes APIC bus message 
formats and describes the message formats for messages transmitted on the APIC 
bus for P6 family and Pentium processors.

Chapter 11 — Memory Cache Control. Describes the general concept of caching 
and the caching mechanisms supported by the Intel 64 or IA-32 architectures. This 
chapter also describes the memory type range registers (MTRRs) and how they can 
be used to map memory types of physical memory. Information on using the new 
cache control and memory streaming instructions introduced with the Pentium III, 
Pentium 4, and Intel Xeon processors is also given.

Chapter 12 — Intel® MMX™ Technology System Programming. Describes 
those aspects of the Intel® MMX™ technology that must be handled and considered 
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at the system programming level, including: task switching, exception handling, and 
compatibility with existing system environments.

Chapter 13 — System Programming For Instruction Set Extensions And 
Processor Extended States. Describes the operating system requirements to 
support SSE/SSE2/SSE3/SSSE3/SSE4 extensions, including task switching, excep-
tion handling, and compatibility with existing system environments. The latter part of 
this chapter describes the extensible framework of operating system requirements to 
support processor extended states. Processor extended state may be required by 
instruction set extensions beyond those of SSE/SSE2/SSE3/SSSE3/SSE4 extensions.

Chapter 14 — Power and Thermal Management. Describes facilities of Intel 64 
and IA-32 architecture used for power management and thermal monitoring.

Chapter 15 — Machine-Check Architecture. Describes the machine-check 
architecture and machine-check exception mechanism found in the Pentium 
4, Intel Xeon, and P6 family processors. Additionally, a signaling mechanism 
for software to respond to hardware corrected machine check error is 
covered.
Chapter 16 — Interpreting Machine-Check Error Codes. Gives an example of 
how to interpret the error codes for a machine-check error that occurred on a P6 
family processor.

Chapter 17 — Debugging, Branch Profiles and Time-Stamp Counter. 
Describes the debugging registers and other debug mechanism provided in Intel 64 
or IA-32 processors. This chapter also describes the time-stamp counter. 

Chapter 18 — Performance Monitoring. Describes the Intel 64 and IA-32 archi-
tectures’ facilities for monitoring performance.

Chapter 19 — Performance-Monitoring Events. Lists architectural performance 
events. Non-architectural performance events (i.e. model-specific events) are listed 
for each generation of microarchitecture.

Chapter 20 — 8086 Emulation. Describes the real-address and virtual-8086 
modes of the IA-32 architecture.

Chapter 21 — Mixing 16-Bit and 32-Bit Code. Describes how to mix 16-bit and 
32-bit code modules within the same program or task.

Chapter 22 — IA-32 Architecture Compatibility. Describes architectural 
compatibility among IA-32 processors.

Chapter 23 — Introduction to Virtual-Machine Extensions. Describes the basic 
elements of virtual machine architecture and the virtual-machine extensions for 
Intel 64 and IA-32 Architectures.

Chapter 24 — Virtual-Machine Control Structures. Describes components that 
manage VMX operation. These include the working-VMCS pointer and the control-
ling-VMCS pointer.

Chapter 25 — VMX Non-Root Operation. Describes the operation of a VMX non-
root operation. Processor operation in VMX non-root mode can be restricted 
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programmatically such that certain operations, events or conditions can cause the 
processor to transfer control from the guest (running in VMX non-root mode) to the 
monitor software (running in VMX root mode).

Chapter 26 — VM Entries. Describes VM entries. VM entry transitions the processor 
from the VMM running in VMX root-mode to a VM running in VMX non-root mode. 
VM-Entry is performed by the execution of VMLAUNCH or VMRESUME instructions.

Chapter 27 — VM Exits. Describes VM exits. Certain events, operations or situa-
tions while the processor is in VMX non-root operation may cause VM-exit transitions. 
In addition, VM exits can also occur on failed VM entries.

Chapter 28 — VMX Support for Address Translation. Describes virtual-machine 
extensions that support address translation and the virtualization of physical 
memory.

Chapter 29 — VMX Instruction Reference. Describes the virtual-machine exten-
sions (VMX). VMX is intended for a system executive to support virtualization of 
processor hardware and a system software layer acting as a host to multiple guest 
software environments.

Chapter 30 — Virtual-Machine Monitoring Programming Considerations. 
Describes programming considerations for VMMs. VMMs manage virtual machines 
(VMs).

Chapter 31 — Virtualization of System Resources. Describes the virtualization 
of the system resources. These include: debugging facilities, address translation, 
physical memory, and microcode update facilities.

Chapter 32 — Handling Boundary Conditions in a Virtual Machine Monitor. 
Describes what a VMM must consider when handling exceptions, interrupts, error 
conditions, and transitions between activity states.

Chapter 33 — System Management Mode. Describes Intel 64 and IA-32 architec-
tures’ system management mode (SMM) facilities.

Chapter 34 — Model-Specific Registers (MSRs). Lists the MSRs available in the 
Pentium processors, the P6 family processors, the Pentium 4, Intel Xeon, Intel Core 
Solo, Intel Core Duo processors, and Intel Core 2 processor family and describes 
their functions.

Appendix A — VMX Capability Reporting Facility. Describes the VMX capability 
MSRs. Support for specific VMX features is determined by reading capability MSRs.

Appendix B — Field Encoding in VMCS. Enumerates all fields in the VMCS and 
their encodings. Fields are grouped by width (16-bit, 32-bit, etc.) and type (guest-
state, host-state, etc.).

Appendix C — VM Basic Exit Reasons. Describes the 32-bit fields that encode 
reasons for a VM exit. Examples of exit reasons include, but are not limited to: soft-
ware interrupts, processor exceptions, software traps, NMIs, external interrupts, and 
triple faults.
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1.3 NOTATIONAL CONVENTIONS
This manual uses specific notation for data-structure formats, for symbolic represen-
tation of instructions, and for hexadecimal and binary numbers. A review of this 
notation makes the manual easier to read.

1.3.1 Bit and Byte Order
In illustrations of data structures in memory, smaller addresses appear toward the 
bottom of the figure; addresses increase toward the top. Bit positions are numbered 
from right to left. The numerical value of a set bit is equal to two raised to the power 
of the bit position. Intel 64 and IA-32 processors are “little endian” machines; this 
means the bytes of a word are numbered starting from the least significant byte. 
Figure 1-1 illustrates these conventions.

1.3.2 Reserved Bits and Software Compatibility
In many register and memory layout descriptions, certain bits are marked as 
reserved. When bits are marked as reserved, it is essential for compatibility with 
future processors that software treat these bits as having a future, though unknown, 
effect. The behavior of reserved bits should be regarded as not only undefined, but 
unpredictable. Software should follow these guidelines in dealing with reserved bits:
• Do not depend on the states of any reserved bits when testing the values of 

registers which contain such bits. Mask out the reserved bits before testing.
• Do not depend on the states of any reserved bits when storing to memory or to a 

register.
• Do not depend on the ability to retain information written into any reserved bits.
• When loading a register, always load the reserved bits with the values indicated 

in the documentation, if any, or reload them with values previously read from the 
same register.

NOTE
Avoid any software dependence upon the state of reserved bits in 
Intel 64 and IA-32 registers. Depending upon the values of reserved 
register bits will make software dependent upon the unspecified 
manner in which the processor handles these bits. Programs that 
depend upon reserved values risk incompatibility with future 
processors.
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1.3.3 Instruction Operands
When instructions are represented symbolically, a subset of assembly language is 
used. In this subset, an instruction has the following format:

label: mnemonic argument1, argument2, argument3

where:
• A label is an identifier which is followed by a colon.
• A mnemonic is a reserved name for a class of instruction opcodes which have 

the same function.
• The operands argument1, argument2, and argument3 are optional. There 

may be from zero to three operands, depending on the opcode. When present, 
they take the form of either literals or identifiers for data items. Operand 
identifiers are either reserved names of registers or are assumed to be assigned 
to data items declared in another part of the program (which may not be shown 
in the example).

When two operands are present in an arithmetic or logical instruction, the right 
operand is the source and the left operand is the destination. 

For example:

LOADREG: MOV EAX, SUBTOTAL

In this example LOADREG is a label, MOV is the mnemonic identifier of an opcode, 
EAX is the destination operand, and SUBTOTAL is the source operand. Some 
assembly languages put the source and destination in reverse order.

Figure 1-1.  Bit and Byte Order
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1.3.4 Hexadecimal and Binary Numbers
Base 16 (hexadecimal) numbers are represented by a string of hexadecimal digits 
followed by the character H (for example, F82EH). A hexadecimal digit is a character 
from the following set: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F.

Base 2 (binary) numbers are represented by a string of 1s and 0s, sometimes 
followed by the character B (for example, 1010B). The “B” designation is only used in 
situations where confusion as to the type of number might arise.

1.3.5 Segmented Addressing
The processor uses byte addressing. This means memory is organized and accessed 
as a sequence of bytes. Whether one or more bytes are being accessed, a byte 
address is used to locate the byte or bytes memory. The range of memory that can 
be addressed is called an address space.

The processor also supports segmented addressing. This is a form of addressing 
where a program may have many independent address spaces, called segments. 
For example, a program can keep its code (instructions) and stack in separate 
segments. Code addresses would always refer to the code space, and stack 
addresses would always refer to the stack space. The following notation is used to 
specify a byte address within a segment:

Segment-register:Byte-address

For example, the following segment address identifies the byte at address FF79H in 
the segment pointed by the DS register:

DS:FF79H

The following segment address identifies an instruction address in the code segment. 
The CS register points to the code segment and the EIP register contains the address 
of the instruction.

CS:EIP

1.3.6 Syntax for CPUID, CR, and MSR Values
Obtain feature flags, status, and system information by using the CPUID instruction, 
by checking control register bits, and by reading model-specific registers. We are 
moving toward a single syntax to represent this type of information. See Figure 1-2.
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1.3.7 Exceptions
An exception is an event that typically occurs when an instruction causes an error. 
For example, an attempt to divide by zero generates an exception. However, some 
exceptions, such as breakpoints, occur under other conditions. Some types of excep-
tions may provide error codes. An error code reports additional information about the 
error. An example of the notation used to show an exception and error code is shown 
below:

#PF(fault code)

Figure 1-2.  Syntax for CPUID, CR, and MSR Data Presentation
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This example refers to a page-fault exception under conditions where an error code 
naming a type of fault is reported. Under some conditions, exceptions which produce 
error codes may not be able to report an accurate code. In this case, the error code 
is zero, as shown below for a general-protection exception:

#GP(0)

1.4 RELATED LITERATURE
Literature related to Intel 64 and IA-32 processors is listed on-line at: 
http://www.intel.com/content/www/us/en/processors/architectures-software-
developer-manuals.html.html

Some of the documents listed at this web site can be viewed on-line; others can be 
ordered. The literature available is listed by Intel processor and then by the following 
literature types: applications notes, data sheets, manuals, papers, and specification 
updates. 

See also: 
• The data sheet for a particular Intel 64 or IA-32 processor
• The specification update for a particular Intel 64 or IA-32 processor
• Intel® C++ Compiler documentation and online help:

http://software.intel.com/en-us/articles/intel-compilers/
• Intel® Fortran Compiler documentation and online help:

http://software.intel.com/en-us/articles/intel-compilers/
• Intel® VTune™ Performance Analyzer documentation and online help:

http://www.intel.com/cd/software/products/asmo-na/eng/index.htm 
• Intel® 64 and IA-32 Architectures Software Developer’s Manual (in three or five 

volumes):
http://www.intel.com/content/www/us/en/processors/architectures-software-
developer-manuals.html.html

• Intel® 64 and IA-32 Architectures Optimization Reference Manual: 
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-
32-architectures-optimization-manual.html

• Intel® Processor Identification with the CPUID Instruction, AP-485:
http://www.intel.com/Assets/PDF/appnote/241618.pdf

• Intel 64 Architecture x2APIC Specification:
http://www.intel.com/content/www/us/en/architecture-and-technology/64-
architecture-x2apic-specification.html

• Intel 64 Architecture Processor Topology Enumeration:
http://softwarecommunity.intel.com/articles/eng/3887.htm

• Intel® Trusted Execution Technology Measured Launched Environment 
Programming Guide:
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http://developer.intel.com/products/processor/manuals/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://developer.intel.com/products/processor/manuals/index.htm

http://developer.intel.com/products/processor/manuals/index.htm
http://www.intel.com/support/processors/sb/cs-009861.htm
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http://www.intel.com/content/www/us/en/software-developers/intel-txt-
software-development-guide.html

• Intel® SSE4 Programming Reference: 
http://edc.intel.com/Link.aspx?id=1630&wapkw=intel® sse4 programming 
reference

• Developing Multi-threaded Applications: A Platform Consistent Approach:
http://cache-
www.intel.com/cd/00/00/05/15/51534_developing_multithreaded_applications.
pdf

• Using Spin-Loops on Intel® Pentium® 4 Processor and Intel® Xeon® Processor:
http://software.intel.com/en-us/articles/ap949-using-spin-loops-on-intel-
pentiumr-4-processor-and-intel-xeonr-processor/

• Performance Monitoring Unit Sharing Guide
http://software.intel.com/file/30388

More relevant links are:
• Software network link:

http://softwarecommunity.intel.com/isn/home/
• Developer centers:

http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/index.htm
• Processor support general link:

http://www.intel.com/support/processors/
• Software products and packages:

http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
• Intel 64 and IA-32 processor manuals (printed or PDF downloads):

http://www.intel.com/content/www/us/en/processors/architectures-software-
developer-manuals.html.html

• Intel® Multi-Core Technology:
http://software.intel.com/partner/multicore

• Intel® Hyper-Threading Technology (Intel® HT Technology):
http://www.intel.com/technology/platform-technology/hyper-
threading/index.htm
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CHAPTER 2
SYSTEM ARCHITECTURE OVERVIEW

IA-32 architecture (beginning with the Intel386 processor family) provides extensive 
support for operating-system and system-development software. This support offers 
multiple modes of operation, which include:
• Real mode, protected mode, virtual 8086 mode, and system management mode. 

These are sometimes referred to as legacy modes.

Intel 64 architecture supports almost all the system programming facilities available 
in IA-32 architecture and extends them to a new operating mode (IA-32e mode) that 
supports a 64-bit programming environment. IA-32e mode allows software to 
operate in one of two sub-modes: 
• 64-bit mode supports 64-bit OS and 64-bit applications
• Compatibility mode allows most legacy software to run; it co-exists with 64-bit 

applications under a 64-bit OS.

The IA-32 system-level architecture and includes features to assist in the following 
operations:
• Memory management
• Protection of software modules
• Multitasking
• Exception and interrupt handling
• Multiprocessing
• Cache management
• Hardware resource and power management
• Debugging and performance monitoring

This chapter provides a description of each part of this architecture. It also describes 
the system registers that are used to set up and control the processor at the system 
level and gives a brief overview of the processor’s system-level (operating system) 
instructions.

Many features of the system-level architectural are used only by system program-
mers. However, application programmers may need to read this chapter and the 
following chapters in order to create a reliable and secure environment for applica-
tion programs.

This overview and most subsequent chapters of this book focus on protected-mode 
operation of the IA-32 architecture. IA-32e mode operation of the Intel 64 architec-
ture, as it differs from protected mode operation, is also described. 

All Intel 64 and IA-32 processors enter real-address mode following a power-up or 
reset (see Chapter 9, “Processor Management and Initialization”). Software then 
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initiates the switch from real-address mode to protected mode. If IA-32e mode oper-
ation is desired, software also initiates a switch from protected mode to IA-32e 
mode.

2.1 OVERVIEW OF THE SYSTEM-LEVEL ARCHITECTURE
System-level architecture consists of a set of registers, data structures, and instruc-
tions designed to support basic system-level operations such as memory manage-
ment, interrupt and exception handling, task management, and control of multiple 
processors.

Figure 2-1 provides a summary of system registers and data structures that applies 
to 32-bit modes. System registers and data structures that apply to IA-32e mode are 
shown in Figure 2-2.
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Figure 2-1.  IA-32 System-Level Registers and Data Structures
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Figure 2-2.  System-Level Registers and Data Structures in IA-32e Mode
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2.1.1 Global and Local Descriptor Tables
When operating in protected mode, all memory accesses pass through either the 
global descriptor table (GDT) or an optional local descriptor table (LDT) as shown in 
Figure 2-1. These tables contain entries called segment descriptors. Segment 
descriptors provide the base address of segments well as access rights, type, and 
usage information.

Each segment descriptor has an associated segment selector. A segment selector 
provides the software that uses it with an index into the GDT or LDT (the offset of its 
associated segment descriptor), a global/local flag (determines whether the selector 
points to the GDT or the LDT), and access rights information. 

To access a byte in a segment, a segment selector and an offset must be supplied. 
The segment selector provides access to the segment descriptor for the segment (in 
the GDT or LDT). From the segment descriptor, the processor obtains the base 
address of the segment in the linear address space. The offset then provides the 
location of the byte relative to the base address. This mechanism can be used to 
access any valid code, data, or stack segment, provided the segment is accessible 
from the current privilege level (CPL) at which the processor is operating. The CPL is 
defined as the protection level of the currently executing code segment.

See Figure 2-1. The solid arrows in the figure indicate a linear address, dashed lines 
indicate a segment selector, and the dotted arrows indicate a physical address. For 
simplicity, many of the segment selectors are shown as direct pointers to a segment. 
However, the actual path from a segment selector to its associated segment is always 
through a GDT or LDT.

The linear address of the base of the GDT is contained in the GDT register (GDTR); 
the linear address of the LDT is contained in the LDT register (LDTR).

2.1.1.1  Global and Local Descriptor Tables in IA-32e Mode
GDTR and LDTR registers are expanded to 64-bits wide in both IA-32e sub-modes 
(64-bit mode and compatibility mode). For more information: see Section 3.5.2, 
“Segment Descriptor Tables in IA-32e Mode.”

Global and local descriptor tables are expanded in 64-bit mode to support 64-bit base 
addresses, (16-byte LDT descriptors hold a 64-bit base address and various 
attributes). In compatibility mode, descriptors are not expanded. 

2.1.2 System Segments, Segment Descriptors, and Gates
Besides code, data, and stack segments that make up the execution environment of 
a program or procedure, the architecture defines two system segments: the task-
state segment (TSS) and the LDT. The GDT is not considered a segment because it is 
not accessed by means of a segment selector and segment descriptor. TSSs and LDTs 
have segment descriptors defined for them.
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The architecture also defines a set of special descriptors called gates (call gates, 
interrupt gates, trap gates, and task gates). These provide protected gateways to 
system procedures and handlers that may operate at a different privilege level than 
application programs and most procedures. For example, a CALL to a call gate can 
provide access to a procedure in a code segment that is at the same or a numerically 
lower privilege level (more privileged) than the current code segment. To access a 
procedure through a call gate, the calling procedure1 supplies the selector for the call 
gate. The processor then performs an access rights check on the call gate, comparing 
the CPL with the privilege level of the call gate and the destination code segment 
pointed to by the call gate. 

If access to the destination code segment is allowed, the processor gets the segment 
selector for the destination code segment and an offset into that code segment from 
the call gate. If the call requires a change in privilege level, the processor also 
switches to the stack for the targeted privilege level. The segment selector for the 
new stack is obtained from the TSS for the currently running task. Gates also facili-
tate transitions between 16-bit and 32-bit code segments, and vice versa. 

2.1.2.1  Gates in IA-32e Mode
In IA-32e mode, the following descriptors are 16-byte descriptors (expanded to allow 
a 64-bit base): LDT descriptors, 64-bit TSSs, call gates, interrupt gates, and trap 
gates.

Call gates facilitate transitions between 64-bit mode and compatibility mode. Task 
gates are not supported in IA-32e mode. On privilege level changes, stack segment 
selectors are not read from the TSS. Instead, they are set to NULL.

2.1.3 Task-State Segments and Task Gates
The TSS (see Figure 2-1) defines the state of the execution environment for a task. 
It includes the state of general-purpose registers, segment registers, the EFLAGS 
register, the EIP register, and segment selectors with stack pointers for three stack 
segments (one stack for each privilege level). The TSS also includes the segment 
selector for the LDT associated with the task and the base address of the paging-
structure hierarchy. 

All program execution in protected mode happens within the context of a task (called 
the current task). The segment selector for the TSS for the current task is stored in 
the task register. The simplest method for switching to a task is to make a call or 
jump to the new task. Here, the segment selector for the TSS of the new task is given 
in the CALL or JMP instruction. In switching tasks, the processor performs the 
following actions:

1. Stores the state of the current task in the current TSS.

1. The word “procedure” is commonly used in this document as a general term for a logical unit or 
block of code (such as a program, procedure, function, or routine). 
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2. Loads the task register with the segment selector for the new task.

3. Accesses the new TSS through a segment descriptor in the GDT.

4. Loads the state of the new task from the new TSS into the general-purpose 
registers, the segment registers, the LDTR, control register CR3 (base address of 
the paging-structure hierarchy), the EFLAGS register, and the EIP register.

5. Begins execution of the new task.

A task can also be accessed through a task gate. A task gate is similar to a call gate, 
except that it provides access (through a segment selector) to a TSS rather than a 
code segment. 

2.1.3.1  Task-State Segments in IA-32e Mode
Hardware task switches are not supported in IA-32e mode. However, TSSs continue 
to exist. The base address of a TSS is specified by its descriptor. 

A 64-bit TSS holds the following information that is important to 64-bit operation: 
• Stack pointer addresses for each privilege level
• Pointer addresses for the interrupt stack table
• Offset address of the IO-permission bitmap (from the TSS base)

The task register is expanded to hold 64-bit base addresses in IA-32e mode. See 
also: Section 7.7, “Task Management in 64-bit Mode.”

2.1.4 Interrupt and Exception Handling
External interrupts, software interrupts and exceptions are handled through the 
interrupt descriptor table (IDT). The IDT stores a collection of gate descriptors that 
provide access to interrupt and exception handlers. Like the GDT, the IDT is not a 
segment. The linear address for the base of the IDT is contained in the IDT register 
(IDTR).

Gate descriptors in the IDT can be interrupt, trap, or task gate descriptors. To access 
an interrupt or exception handler, the processor first receives an interrupt vector 
(interrupt number) from internal hardware, an external interrupt controller, or from 
software by means of an INT, INTO, INT 3, or BOUND instruction. The interrupt 
vector provides an index into the IDT. If the selected gate descriptor is an interrupt 
gate or a trap gate, the associated handler procedure is accessed in a manner similar 
to calling a procedure through a call gate. If the descriptor is a task gate, the handler 
is accessed through a task switch.

2.1.4.1  Interrupt and Exception Handling IA-32e Mode
In IA-32e mode, interrupt descriptors are expanded to 16 bytes to support 64-bit 
base addresses. This is true for 64-bit mode and compatibility mode. 
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The IDTR register is expanded to hold a 64-bit base address. Task gates are not 
supported.

2.1.5 Memory Management
System architecture supports either direct physical addressing of memory or virtual 
memory (through paging). When physical addressing is used, a linear address is 
treated as a physical address. When paging is used: all code, data, stack, and system 
segments (including the GDT and IDT) can be paged with only the most recently 
accessed pages being held in physical memory.

The location of pages (sometimes called page frames) in physical memory is 
contained in the paging structures. These structures reside in physical memory (see 
Figure 2-1 for the case of 32-bit paging). 

The base physical address of the paging-structure hierarchy is contained in control 
register CR3. The entries in the paging structures determine the physical address of 
the base of a page frame, access rights and memory management information. 

To use this paging mechanism, a linear address is broken into parts. The parts 
provide separate offsets into the paging structures and the page frame. A system can 
have a single hierarchy of paging structures or several. For example, each task can 
have its own hierarchy.

2.1.5.1  Memory Management in IA-32e Mode 
In IA-32e mode, physical memory pages are managed by a set of system data struc-
tures. In compatibility mode and 64-bit mode, four levels of system data structures 
are used. These include: 
• The page map level 4 (PML4) — An entry in a PML4 table contains the physical 

address of the base of a page directory pointer table, access rights, and memory 
management information. The base physical address of the PML4 is stored in 
CR3.

• A set of page directory pointer tables — An entry in a page directory pointer 
table contains the physical address of the base of a page directory table, access 
rights, and memory management information.

• Sets of page directories — An entry in a page directory table contains the 
physical address of the base of a page table, access rights, and memory 
management information.

• Sets of page tables — An entry in a page table contains the physical address of 
a page frame, access rights, and memory management information.
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2.1.6 System Registers
To assist in initializing the processor and controlling system operations, the system 
architecture provides system flags in the EFLAGS register and several system 
registers:
• The system flags and IOPL field in the EFLAGS register control task and mode 

switching, interrupt handling, instruction tracing, and access rights. See also: 
Section 2.3, “System Flags and Fields in the EFLAGS Register.”

• The control registers (CR0, CR2, CR3, and CR4) contain a variety of flags and 
data fields for controlling system-level operations. Other flags in these registers 
are used to indicate support for specific processor capabilities within the 
operating system or executive. See also: Section 2.5, “Control Registers.”

• The debug registers (not shown in Figure 2-1) allow the setting of breakpoints for 
use in debugging programs and systems software. See also: Chapter 17, 
“Debugging, Branch Profiling, and Time-Stamp Counter.”

• The GDTR, LDTR, and IDTR registers contain the linear addresses and sizes 
(limits) of their respective tables. See also: Section 2.4, “Memory-Management 
Registers.”

• The task register contains the linear address and size of the TSS for the current 
task. See also: Section 2.4, “Memory-Management Registers.”

• Model-specific registers (not shown in Figure 2-1).

The model-specific registers (MSRs) are a group of registers available primarily to 
operating-system or executive procedures (that is, code running at privilege level 0). 
These registers control items such as the debug extensions, the performance-moni-
toring counters, the machine- check architecture, and the memory type ranges 
(MTRRs). 

The number and function of these registers varies among different members of the 
Intel 64 and IA-32 processor families. See also: Section 9.4, “Model-Specific Regis-
ters (MSRs),” and Chapter 34, “Model-Specific Registers (MSRs).”

Most systems restrict access to system registers (other than the EFLAGS register) by 
application programs. Systems can be designed, however, where all programs and 
procedures run at the most privileged level (privilege level 0). In such a case, appli-
cation programs would be allowed to modify the system registers.

2.1.6.1  System Registers in IA-32e Mode
In IA-32e mode, the four system-descriptor-table registers (GDTR, IDTR, LDTR, and 
TR) are expanded in hardware to hold 64-bit base addresses. EFLAGS becomes the 
64-bit RFLAGS register. CR0–CR4 are expanded to 64 bits. CR8 becomes available. 
CR8 provides read-write access to the task priority register (TPR) so that the oper-
ating system can control the priority classes of external interrupts. 

In 64-bit mode, debug registers DR0–DR7 are 64 bits. In compatibility mode, 
address-matching in DR0–DR3 is also done at 64-bit granularity.
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On systems that support IA-32e mode, the extended feature enable register 
(IA32_EFER) is available. This model-specific register controls activation of IA-32e 
mode and other IA-32e mode operations. In addition, there are several model-
specific registers that govern IA-32e mode instructions:
• IA32_KernelGSbase — Used by SWAPGS instruction.
• IA32_LSTAR — Used by SYSCALL instruction.
• IA32_SYSCALL_FLAG_MASK — Used by SYSCALL instruction.
• IA32_STAR_CS — Used by SYSCALL and SYSRET instruction.

2.1.7 Other System Resources
Besides the system registers and data structures described in the previous sections, 
system architecture provides the following additional resources:
• Operating system instructions (see also: Section 2.7, “System Instruction 

Summary”).
• Performance-monitoring counters (not shown in Figure 2-1).
• Internal caches and buffers (not shown in Figure 2-1).

Performance-monitoring counters are event counters that can be programmed to 
count processor events such as the number of instructions decoded, the number of 
interrupts received, or the number of cache loads. See also: Chapter 23, “Introduc-
tion to Virtual-Machine Extensions.”

The processor provides several internal caches and buffers. The caches are used to 
store both data and instructions. The buffers are used to store things like decoded 
addresses to system and application segments and write operations waiting to be 
performed. See also: Chapter 11, “Memory Cache Control.”

2.2 MODES OF OPERATION
The IA-32 supports three operating modes and one quasi-operating mode: 
• Protected mode — This is the native operating mode of the processor. It 

provides a rich set of architectural features, flexibility, high performance and 
backward compatibility to existing software base.

• Real-address mode — This operating mode provides the programming 
environment of the Intel 8086 processor, with a few extensions (such as the 
ability to switch to protected or system management mode).

• System management mode (SMM) — SMM is a standard architectural feature 
in all IA-32 processors, beginning with the Intel386 SL processor. This mode 
provides an operating system or executive with a transparent mechanism for 
implementing power management and OEM differentiation features. SMM is 
entered through activation of an external system interrupt pin (SMI#), which 
generates a system management interrupt (SMI). In SMM, the processor 
switches to a separate address space while saving the context of the currently 
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running program or task. SMM-specific code may then be executed transparently. 
Upon returning from SMM, the processor is placed back into its state prior to the 
SMI.

• Virtual-8086 mode — In protected mode, the processor supports a quasi-
operating mode known as virtual-8086 mode. This mode allows the processor 
execute 8086 software in a protected, multitasking environment.

Intel 64 architecture supports all operating modes of IA-32 architecture and IA-32e 
modes:
• IA-32e mode — In IA-32e mode, the processor supports two sub-modes: 

compatibility mode and 64-bit mode. 64-bit mode provides 64-bit linear 
addressing and support for physical address space larger than 64 GBytes. 
Compatibility mode allows most legacy protected-mode applications to run 
unchanged.

Figure 2-3 shows how the processor moves between operating modes.

The processor is placed in real-address mode following power-up or a reset. The PE 
flag in control register CR0 then controls whether the processor is operating in real-
address or protected mode. See also: Section 9.9, “Mode Switching.” and Section 
4.1.2, “Paging-Mode Enabling.”

Figure 2-3.  Transitions Among the Processor’s Operating Modes
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The VM flag in the EFLAGS register determines whether the processor is operating in 
protected mode or virtual-8086 mode. Transitions between protected mode and 
virtual-8086 mode are generally carried out as part of a task switch or a return from 
an interrupt or exception handler. See also: Section 20.2.5, “Entering Virtual-8086 
Mode.”

The LMA bit (IA32_EFER.LMA[bit 10]) determines whether the processor is operating 
in IA-32e mode. When running in IA-32e mode, 64-bit or compatibility sub-mode 
operation is determined by CS.L bit of the code segment. The processor enters into 
IA-32e mode from protected mode by enabling paging and setting the LME bit 
(IA32_EFER.LME[bit 8]). See also: Chapter 9, “Processor Management and Initializa-
tion.”

The processor switches to SMM whenever it receives an SMI while the processor is in 
real-address, protected, virtual-8086, or IA-32e modes. Upon execution of the RSM 
instruction, the processor always returns to the mode it was in when the SMI 
occurred.

2.3 SYSTEM FLAGS AND FIELDS IN THE EFLAGS 
REGISTER

The system flags and IOPL field of the EFLAGS register control I/O, maskable hard-
ware interrupts, debugging, task switching, and the virtual-8086 mode (see 
Figure 2-4). Only privileged code (typically operating system or executive code) 
should be allowed to modify these bits.

The system flags and IOPL are:

TF Trap (bit 8) — Set to enable single-step mode for debugging; clear to 
disable single-step mode. In single-step mode, the processor generates a 
debug exception after each instruction. This allows the execution state of a 
program to be inspected after each instruction. If an application program 
sets the TF flag using a POPF, POPFD, or IRET instruction, a debug exception 
is generated after the instruction that follows the POPF, POPFD, or IRET.
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IF Interrupt enable (bit 9) — Controls the response of the processor to 
maskable hardware interrupt requests (see also: Section 6.3.2, “Maskable 
Hardware Interrupts”). The flag is set to respond to maskable hardware 
interrupts; cleared to inhibit maskable hardware interrupts. The IF flag does 
not affect the generation of exceptions or nonmaskable interrupts (NMI 
interrupts). The CPL, IOPL, and the state of the VME flag in control register 
CR4 determine whether the IF flag can be modified by the CLI, STI, POPF, 
POPFD, and IRET.

IOPL I/O privilege level field (bits 12 and 13) — Indicates the I/O privilege 
level (IOPL) of the currently running program or task. The CPL of the 
currently running program or task must be less than or equal to the IOPL to 
access the I/O address space. This field can only be modified by the POPF 
and IRET instructions when operating at a CPL of 0. 

The IOPL is also one of the mechanisms that controls the modification of the 
IF flag and the handling of interrupts in virtual-8086 mode when virtual 
mode extensions are in effect (when CR4.VME = 1). See also: Chapter 13, 
“Input/Output,” in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 1.

NT Nested task (bit 14) — Controls the chaining of interrupted and called 
tasks. The processor sets this flag on calls to a task initiated with a CALL 
instruction, an interrupt, or an exception. It examines and modifies this flag 
on returns from a task initiated with the IRET instruction. The flag can be 
explicitly set or cleared with the POPF/POPFD instructions; however, 

Figure 2-4.  System Flags in the EFLAGS Register
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changing to the state of this flag can generate unexpected exceptions in 
application programs. 

See also: Section 7.4, “Task Linking.”

RF Resume (bit 16) — Controls the processor’s response to instruction-break-
point conditions. When set, this flag temporarily disables debug exceptions 
(#DB) from being generated for instruction breakpoints (although other 
exception conditions can cause an exception to be generated). When clear, 
instruction breakpoints will generate debug exceptions. 

The primary function of the RF flag is to allow the restarting of an instruction 
following a debug exception that was caused by an instruction breakpoint 
condition. Here, debug software must set this flag in the EFLAGS image on 
the stack just prior to returning to the interrupted program with IRETD (to 
prevent the instruction breakpoint from causing another debug exception). 
The processor then automatically clears this flag after the instruction 
returned to has been successfully executed, enabling instruction breakpoint 
faults again.

See also: Section 17.3.1.1, “Instruction-Breakpoint Exception Condition.”

VM Virtual-8086 mode (bit 17) — Set to enable virtual-8086 mode; clear to 
return to protected mode. 

See also: Section 20.2.1, “Enabling Virtual-8086 Mode.”

AC Alignment check (bit 18) — Set this flag and the AM flag in control register 
CR0 to enable alignment checking of memory references; clear the AC flag 
and/or the AM flag to disable alignment checking. An alignment-check 
exception is generated when reference is made to an unaligned operand, 
such as a word at an odd byte address or a doubleword at an address which 
is not an integral multiple of four. Alignment-check exceptions are generated 
only in user mode (privilege level 3). Memory references that default to priv-
ilege level 0, such as segment descriptor loads, do not generate this excep-
tion even when caused by instructions executed in user-mode.

The alignment-check exception can be used to check alignment of data. This 
is useful when exchanging data with processors which require all data to be 
aligned. The alignment-check exception can also be used by interpreters to 
flag some pointers as special by misaligning the pointer. This eliminates 
overhead of checking each pointer and only handles the special pointer when 
used.

VIF Virtual Interrupt (bit 19) — Contains a virtual image of the IF flag. This 
flag is used in conjunction with the VIP flag. The processor only recognizes 
the VIF flag when either the VME flag or the PVI flag in control register CR4 is 
set and the IOPL is less than 3. (The VME flag enables the virtual-8086 mode 
extensions; the PVI flag enables the protected-mode virtual interrupts.) 

See also: Section 20.3.3.5, “Method 6: Software Interrupt Handling,” and 
Section 20.4, “Protected-Mode Virtual Interrupts.”
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VIP Virtual interrupt pending (bit 20) — Set by software to indicate that an 
interrupt is pending; cleared to indicate that no interrupt is pending. This flag 
is used in conjunction with the VIF flag. The processor reads this flag but 
never modifies it. The processor only recognizes the VIP flag when either the 
VME flag or the PVI flag in control register CR4 is set and the IOPL is less than 
3. The VME flag enables the virtual-8086 mode extensions; the PVI flag 
enables the protected-mode virtual interrupts. 

See Section 20.3.3.5, “Method 6: Software Interrupt Handling,” and Section 
20.4, “Protected-Mode Virtual Interrupts.”

ID Identification (bit 21). — The ability of a program or procedure to set or 
clear this flag indicates support for the CPUID instruction.

2.3.1 System Flags and Fields in IA-32e Mode
In 64-bit mode, the RFLAGS register expands to 64 bits with the upper 32 bits 
reserved. System flags in RFLAGS (64-bit mode) or EFLAGS (compatibility mode) 
are shown in Figure 2-4.

In IA-32e mode, the processor does not allow the VM bit to be set because virtual-
8086 mode is not supported (attempts to set the bit are ignored). Also, the processor 
will not set the NT bit. The processor does, however, allow software to set the NT bit 
(note that an IRET causes a general protection fault in IA-32e mode if the NT bit is 
set).

In IA-32e mode, the SYSCALL/SYSRET instructions have a programmable method of 
specifying which bits are cleared in RFLAGS/EFLAGS. These instructions save/restore 
EFLAGS/RFLAGS.

2.4 MEMORY-MANAGEMENT REGISTERS
The processor provides four memory-management registers (GDTR, LDTR, IDTR, 
and TR) that specify the locations of the data structures which control segmented 
memory management (see Figure 2-5). Special instructions are provided for loading 
and storing these registers.
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2.4.1 Global Descriptor Table Register (GDTR)
The GDTR register holds the base address (32 bits in protected mode; 64 bits in 
IA-32e mode) and the 16-bit table limit for the GDT. The base address specifies the 
linear address of byte 0 of the GDT; the table limit specifies the number of bytes in 
the table. 

The LGDT and SGDT instructions load and store the GDTR register, respectively. On 
power up or reset of the processor, the base address is set to the default value of 0 
and the limit is set to 0FFFFH. A new base address must be loaded into the GDTR as 
part of the processor initialization process for protected-mode operation. 

See also: Section 3.5.1, “Segment Descriptor Tables.”

2.4.2 Local Descriptor Table Register (LDTR)
The LDTR register holds the 16-bit segment selector, base address (32 bits in 
protected mode; 64 bits in IA-32e mode), segment limit, and descriptor attributes 
for the LDT. The base address specifies the linear address of byte 0 of the LDT 
segment; the segment limit specifies the number of bytes in the segment. See also: 
Section 3.5.1, “Segment Descriptor Tables.”

The LLDT and SLDT instructions load and store the segment selector part of the LDTR 
register, respectively. The segment that contains the LDT must have a segment 
descriptor in the GDT. When the LLDT instruction loads a segment selector in the 
LDTR: the base address, limit, and descriptor attributes from the LDT descriptor are 
automatically loaded in the LDTR. 

When a task switch occurs, the LDTR is automatically loaded with the segment 
selector and descriptor for the LDT for the new task. The contents of the LDTR are not 
automatically saved prior to writing the new LDT information into the register.

On power up or reset of the processor, the segment selector and base address are set 
to the default value of 0 and the limit is set to 0FFFFH.

Figure 2-5.  Memory Management Registers
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2.4.3 IDTR Interrupt Descriptor Table Register
The IDTR register holds the base address (32 bits in protected mode; 64 bits in 
IA-32e mode) and 16-bit table limit for the IDT. The base address specifies the linear 
address of byte 0 of the IDT; the table limit specifies the number of bytes in the table. 
The LIDT and SIDT instructions load and store the IDTR register, respectively. On 
power up or reset of the processor, the base address is set to the default value of 0 
and the limit is set to 0FFFFH. The base address and limit in the register can then be 
changed as part of the processor initialization process. 

See also: Section 6.10, “Interrupt Descriptor Table (IDT).”

2.4.4 Task Register (TR)
The task register holds the 16-bit segment selector, base address (32 bits in 
protected mode; 64 bits in IA-32e mode), segment limit, and descriptor attributes 
for the TSS of the current task. The selector references the TSS descriptor in the GDT. 
The base address specifies the linear address of byte 0 of the TSS; the segment limit 
specifies the number of bytes in the TSS. See also: Section 7.2.4, “Task Register.”

The LTR and STR instructions load and store the segment selector part of the task 
register, respectively. When the LTR instruction loads a segment selector in the task 
register, the base address, limit, and descriptor attributes from the TSS descriptor 
are automatically loaded into the task register. On power up or reset of the processor, 
the base address is set to the default value of 0 and the limit is set to 0FFFFH.

When a task switch occurs, the task register is automatically loaded with the 
segment selector and descriptor for the TSS for the new task. The contents of the 
task register are not automatically saved prior to writing the new TSS information 
into the register.

2.5 CONTROL REGISTERS
Control registers (CR0, CR1, CR2, CR3, and CR4; see Figure 2-6) determine oper-
ating mode of the processor and the characteristics of the currently executing task. 
These registers are 32 bits in all 32-bit modes and compatibility mode. 

In 64-bit mode, control registers are expanded to 64 bits. The MOV CRn instructions 
are used to manipulate the register bits. Operand-size prefixes for these instructions 
are ignored. The following is also true:
• Bits 63:32 of CR0 and CR4 are reserved and must be written with zeros. Writing 

a nonzero value to any of the upper 32 bits results in a general-protection 
exception, #GP(0). 

• All 64 bits of CR2 are writable by software. 
• Bits 51:40 of CR3 are reserved and must be 0. 
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• The MOV CRn instructions do not check that addresses written to CR2 and CR3 
are within the linear-address or physical-address limitations of the implemen-
tation. 

• Register CR8 is available in 64-bit mode only. 

The control registers are summarized below, and each architecturally defined control 
field in these control registers are described individually. In Figure 2-6, the width of 
the register in 64-bit mode is indicated in parenthesis (except for CR0).
• CR0 — Contains system control flags that control operating mode and states of 

the processor. 
• CR1 — Reserved.
• CR2 — Contains the page-fault linear address (the linear address that caused a 

page fault).
• CR3 — Contains the physical address of the base of the paging-structure 

hierarchy and two flags (PCD and PWT). Only the most-significant bits (less the 
lower 12 bits) of the base address are specified; the lower 12 bits of the address 
are assumed to be 0. The first paging structure must thus be aligned to a page 
(4-KByte) boundary. The PCD and PWT flags control caching of that paging 
structure in the processor’s internal data caches (they do not control TLB caching 
of page-directory information).

When using the physical address extension, the CR3 register contains the base 
address of the page-directory-pointer table In IA-32e mode, the CR3 register 
contains the base address of the PML4 table.

See also: Chapter 4, “Paging.”
• CR4 — Contains a group of flags that enable several architectural extensions, 

and indicate operating system or executive support for specific processor capabil-
ities. The control registers can be read and loaded (or modified) using the move-
to-or-from-control-registers forms of the MOV instruction. In protected mode, 
the MOV instructions allow the control registers to be read or loaded (at privilege 
level 0 only). This restriction means that application programs or operating-
system procedures (running at privilege levels 1, 2, or 3) are prevented from 
reading or loading the control registers. 

• CR8 — Provides read and write access to the Task Priority Register (TPR). It 
specifies the priority threshold value that operating systems use to control the 
priority class of external interrupts allowed to interrupt the processor. This 
register is available only in 64-bit mode. However, interrupt filtering continues to 
apply in compatibility mode.
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When loading a control register, reserved bits should always be set to the values 
previously read. The flags in control registers are:

PG Paging (bit 31 of CR0) — Enables paging when set; disables paging when 
clear. When paging is disabled, all linear addresses are treated as physical 
addresses. The PG flag has no effect if the PE flag (bit 0 of register CR0) is 
not also set; setting the PG flag when the PE flag is clear causes a general-
protection exception (#GP). See also: Chapter 4, “Paging.”

On Intel 64 processors, enabling and disabling IA-32e mode operation also 
requires modifying CR0.PG.

CD Cache Disable (bit 30 of CR0) — When the CD and NW flags are clear, 
caching of memory locations for the whole of physical memory in the 
processor’s internal (and external) caches is enabled. When the CD flag is 
set, caching is restricted as described in Table 11-5. To prevent the processor 
from accessing and updating its caches, the CD flag must be set and the 
caches must be invalidated so that no cache hits can occur.

Figure 2-6.  Control Registers
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See also: Section 11.5.3, “Preventing Caching,” and Section 11.5, “Cache 
Control.”

NW Not Write-through (bit 29 of CR0) — When the NW and CD flags are 
clear, write-back (for Pentium 4, Intel Xeon, P6 family, and Pentium proces-
sors) or write-through (for Intel486 processors) is enabled for writes that hit 
the cache and invalidation cycles are enabled. See Table 11-5 for detailed 
information about the affect of the NW flag on caching for other settings of 
the CD and NW flags.

AM Alignment Mask (bit 18 of CR0) — Enables automatic alignment checking 
when set; disables alignment checking when clear. Alignment checking is 
performed only when the AM flag is set, the AC flag in the EFLAGS register is 
set, CPL is 3, and the processor is operating in either protected or virtual-
8086 mode.

WP Write Protect (bit 16 of CR0) — When set, inhibits supervisor-level proce-
dures from writing into read-only pages; when clear, allows supervisor-level 
procedures to write into read-only pages (regardless of the U/S bit setting; 
see Section 4.1.3 and Section 4.6). This flag facilitates implementation of the 
copy-on-write method of creating a new process (forking) used by operating 
systems such as UNIX.

NE Numeric Error (bit 5 of CR0) — Enables the native (internal) mechanism 
for reporting x87 FPU errors when set; enables the PC-style x87 FPU error 
reporting mechanism when clear. When the NE flag is clear and the IGNNE# 
input is asserted, x87 FPU errors are ignored. When the NE flag is clear and 
the IGNNE# input is deasserted, an unmasked x87 FPU error causes the 
processor to assert the FERR# pin to generate an external interrupt and to 
stop instruction execution immediately before executing the next waiting 
floating-point instruction or WAIT/FWAIT instruction. 

The FERR# pin is intended to drive an input to an external interrupt 
controller (the FERR# pin emulates the ERROR# pin of the Intel 287 and 
Intel 387 DX math coprocessors). The NE flag, IGNNE# pin, and FERR# pin 
are used with external logic to implement PC-style error reporting. Using 
FERR# and IGNNE# to handle floating-point exceptions is deprecated by 
modern operating systems; this non-native approach also limits newer 
processors to operate with one logical processor active.

See also: “Software Exception Handling” in Chapter 8, “Programming with 
the x87 FPU,” and Appendix A, “EFLAGS Cross-Reference,” in the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 1.

ET Extension Type (bit 4 of CR0) — Reserved in the Pentium 4, Intel Xeon, P6 
family, and Pentium processors. In the Pentium 4, Intel Xeon, and P6 family 
processors, this flag is hardcoded to 1. In the Intel386 and Intel486 proces-
sors, this flag indicates support of Intel 387 DX math coprocessor instruc-
tions when set.

TS Task Switched (bit 3 of CR0) — Allows the saving of the x87 
FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 context on a task switch to be 
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delayed until an x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction is 
actually executed by the new task. The processor sets this flag on every task 
switch and tests it when executing x87 
FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instructions.

• If the TS flag is set and the EM flag (bit 2 of CR0) is clear, a device-not-
available exception (#NM) is raised prior to the execution of any x87 
FPU/MMX/SSE/ SSE2/SSE3/SSSE3/SSE4 instruction; with the exception 
of PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE, MOVNTI, CLFLUSH, 
CRC32, and POPCNT. See the paragraph below for the special case of the 
WAIT/FWAIT instructions.

• If the TS flag is set and the MP flag (bit 1 of CR0) and EM flag are clear, an 
#NM exception is not raised prior to the execution of an x87 FPU 
WAIT/FWAIT instruction.

• If the EM flag is set, the setting of the TS flag has no affect on the 
execution of x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instructions.

Table 2-1 shows the actions taken when the processor encounters an x87 
FPU instruction based on the settings of the TS, EM, and MP flags. Table 12-1 
and 13-1 show the actions taken when the processor encounters an 
MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction.

The processor does not automatically save the context of the x87 FPU, XMM, 
and MXCSR registers on a task switch. Instead, it sets the TS flag, which 
causes the processor to raise an #NM exception whenever it encounters an 
x87 FPU/MMX/SSE /SSE2/SSE3/SSSE3/SSE4 instruction in the instruction 
stream for the new task (with the exception of the instructions listed above). 

The fault handler for the #NM exception can then be used to clear the TS flag (with 
the CLTS instruction) and save the context of the x87 FPU, XMM, and MXCSR regis-
ters. If the task never encounters an x87 FPU/MMX/SSE/SSE2/SSE3//SSSE3/SSE4 
instruction; the x87 FPU/MMX/SSE/SSE2/ SSE3/SSSE3/SSE4 context is never saved.

Table 2-1.  Action Taken By x87 FPU Instructions for Different 
Combinations of EM, MP, and TS

CR0 Flags x87 FPU Instruction Type

EM MP TS Floating-Point WAIT/FWAIT

0 0 0 Execute Execute.

0 0 1 #NM Exception Execute.

0 1 0 Execute Execute.

0 1 1 #NM Exception #NM exception.

1 0 0 #NM Exception Execute.

1 0 1 #NM Exception Execute.

1 1 0 #NM Exception Execute.
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EM Emulation (bit 2 of CR0) — Indicates that the processor does not have an 
internal or external x87 FPU when set; indicates an x87 FPU is present when 
clear. This flag also affects the execution of 
MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instructions.

When the EM flag is set, execution of an x87 FPU instruction generates a 
device-not-available exception (#NM). This flag must be set when the 
processor does not have an internal x87 FPU or is not connected to an 
external math coprocessor. Setting this flag forces all floating-point instruc-
tions to be handled by software emulation. Table 9-2 shows the recom-
mended setting of this flag, depending on the IA-32 processor and x87 FPU 
or math coprocessor present in the system. Table 2-1 shows the interaction 
of the EM, MP, and TS flags.

Also, when the EM flag is set, execution of an MMX instruction causes an 
invalid-opcode exception (#UD) to be generated (see Table 12-1). Thus, if an 
IA-32 or Intel 64 processor incorporates MMX technology, the EM flag must 
be set to 0 to enable execution of MMX instructions.

Similarly for SSE/SSE2/SSE3/SSSE3/SSE4 extensions, when the EM flag is 
set, execution of most SSE/SSE2/SSE3/SSSE3/SSE4 instructions causes an 
invalid opcode exception (#UD) to be generated (see Table 13-1). If an IA-32 
or Intel 64 processor incorporates the SSE/SSE2/SSE3/SSSE3/SSE4 exten-
sions, the EM flag must be set to 0 to enable execution of these extensions. 
SSE/SSE2/SSE3/SSSE3/SSE4 instructions not affected by the EM flag 
include: PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE, MOVNTI, CLFLUSH, 
CRC32, and POPCNT.

MP Monitor Coprocessor (bit 1 of CR0). — Controls the interaction of the 
WAIT (or FWAIT) instruction with the TS flag (bit 3 of CR0). If the MP flag is 
set, a WAIT instruction generates a device-not-available exception (#NM) if 
the TS flag is also set. If the MP flag is clear, the WAIT instruction ignores the 
setting of the TS flag. Table 9-2 shows the recommended setting of this flag, 
depending on the IA-32 processor and x87 FPU or math coprocessor present 
in the system. Table 2-1 shows the interaction of the MP, EM, and TS flags.

PE Protection Enable (bit 0 of CR0) — Enables protected mode when set; 
enables real-address mode when clear. This flag does not enable paging 
directly. It only enables segment-level protection. To enable paging, both the 
PE and PG flags must be set. 

See also: Section 9.9, “Mode Switching.”

PCD Page-level Cache Disable (bit 4 of CR3) — Controls the memory type 
used to access the first paging structure of the current paging-structure hier-

1 1 1 #NM Exception #NM exception.

Table 2-1.  Action Taken By x87 FPU Instructions for Different 
Combinations of EM, MP, and TS

CR0 Flags x87 FPU Instruction Type
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archy. See Section 4.9, “Paging and Memory Typing”. This bit is not used if 
paging is disabled, with PAE paging, or with IA-32e paging if CR4.PCIDE=1.

PWT Page-level Write-Through (bit 3 of CR3) — Controls the memory type 
used to access the first paging structure of the current paging-structure hier-
archy. See Section 4.9, “Paging and Memory Typing”. This bit is not used if 
paging is disabled, with PAE paging, or with IA-32e paging if CR4.PCIDE=1.

VME Virtual-8086 Mode Extensions (bit 0 of CR4) — Enables interrupt- and 
exception-handling extensions in virtual-8086 mode when set; disables the 
extensions when clear. Use of the virtual mode extensions can improve the 
performance of virtual-8086 applications by eliminating the overhead of 
calling the virtual-8086 monitor to handle interrupts and exceptions that 
occur while executing an 8086 program and, instead, redirecting the inter-
rupts and exceptions back to the 8086 program’s handlers. It also provides 
hardware support for a virtual interrupt flag (VIF) to improve reliability of 
running 8086 programs in multitasking and multiple-processor environ-
ments.

See also: Section 20.3, “Interrupt and Exception Handling in Virtual-8086 
Mode.”

PVI Protected-Mode Virtual Interrupts (bit 1 of CR4) — Enables hardware 
support for a virtual interrupt flag (VIF) in protected mode when set; disables 
the VIF flag in protected mode when clear. 

See also: Section 20.4, “Protected-Mode Virtual Interrupts.”

TSD Time Stamp Disable (bit 2 of CR4) — Restricts the execution of the 
RDTSC instruction to procedures running at privilege level 0 when set; allows 
RDTSC instruction to be executed at any privilege level when clear. This bit 
also applies to the RDTSCP instruction if supported (if 
CPUID.80000001H:EDX[27] = 1).

DE Debugging Extensions (bit 3 of CR4) — References to debug registers 
DR4 and DR5 cause an undefined opcode (#UD) exception to be generated 
when set; when clear, processor aliases references to registers DR4 and DR5 
for compatibility with software written to run on earlier IA-32 processors. 

See also: Section 17.2.2, “Debug Registers DR4 and DR5.”

PSE Page Size Extensions (bit 4 of CR4) — Enables 4-MByte pages with 32-bit 
paging when set; restricts 32-bit paging to pages to 4 KBytes when clear.

See also: Section 4.3, “32-Bit Paging.”

PAE Physical Address Extension (bit 5 of CR4) — When set, enables paging 
to produce physical addresses with more than 32 bits. When clear, restricts 
physical addresses to 32 bits. PAE must be set before entering IA-32e mode.

See also: Chapter 4, “Paging.”

MCE Machine-Check Enable (bit 6 of CR4) — Enables the machine-check 
exception when set; disables the machine-check exception when clear.
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See also: Chapter 15, “Machine-Check Architecture.”

PGE Page Global Enable (bit 7 of CR4) — (Introduced in the P6 family proces-
sors.) Enables the global page feature when set; disables the global page 
feature when clear. The global page feature allows frequently used or shared 
pages to be marked as global to all users (done with the global flag, bit 8, in 
a page-directory or page-table entry). Global pages are not flushed from the 
translation-lookaside buffer (TLB) on a task switch or a write to register CR3.

When enabling the global page feature, paging must be enabled (by setting 
the PG flag in control register CR0) before the PGE flag is set. Reversing this 
sequence may affect program correctness, and processor performance will 
be impacted. 

See also: Section 4.10, “Caching Translation Information.”

PCE Performance-Monitoring Counter Enable (bit 8 of CR4) — Enables 
execution of the RDPMC instruction for programs or procedures running at 
any protection level when set; RDPMC instruction can be executed only at 
protection level 0 when clear.

OSFXSR
Operating System Support for FXSAVE and FXRSTOR instructions 
(bit 9 of CR4) — When set, this flag: (1) indicates to software that the oper-
ating system supports the use of the FXSAVE and FXRSTOR instructions, (2) 
enables the FXSAVE and FXRSTOR instructions to save and restore the 
contents of the XMM and MXCSR registers along with the contents of the x87 
FPU and MMX registers, and (3) enables the processor to execute 
SSE/SSE2/SSE3/SSSE3/SSE4 instructions, with the exception of the PAUSE, 
PREFETCHh, SFENCE, LFENCE, MFENCE, MOVNTI, CLFLUSH, CRC32, and 
POPCNT. 

If this flag is clear, the FXSAVE and FXRSTOR instructions will save and 
restore the contents of the x87 FPU and MMX instructions, but they may not 
save and restore the contents of the XMM and MXCSR registers. Also, the 
processor will generate an invalid opcode exception (#UD) if it attempts to 
execute any SSE/SSE2/SSE3 instruction, with the exception of PAUSE, 
PREFETCHh, SFENCE, LFENCE, MFENCE, MOVNTI, CLFLUSH, CRC32, and 
POPCNT. The operating system or executive must explicitly set this flag.

NOTE
CPUID feature flags FXSR indicates availability of the 
FXSAVE/FXRSTOR instructions. The OSFXSR bit provides operating 
system software with a means of enabling FXSAVE/FXRSTOR to 
save/restore the contents of the X87 FPU, XMM and MXCSR registers. 
Consequently OSFXSR bit indicates that the operating system 
provides context switch support for SSE/SSE2/SSE3/SSSE3/SSE4.
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OSXMMEXCPT
Operating System Support for Unmasked SIMD Floating-Point Excep-
tions (bit 10 of CR4) — When set, indicates that the operating system 
supports the handling of unmasked SIMD floating-point exceptions through 
an exception handler that is invoked when a SIMD floating-point exception 
(#XF) is generated. SIMD floating-point exceptions are only generated by 
SSE/SSE2/SSE3/SSE4.1 SIMD floating-point instructions. 

The operating system or executive must explicitly set this flag. If this flag is 
not set, the processor will generate an invalid opcode exception (#UD) 
whenever it detects an unmasked SIMD floating-point exception.

VMXE
VMX-Enable Bit (bit 13 of CR4) — Enables VMX operation when set. See 
Chapter 23, “Introduction to Virtual-Machine Extensions.”

SMXE
SMX-Enable Bit (bit 14 of CR4) — Enables SMX operation when set. See 
Chapter 29, “VMX Instruction Reference” of Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3C.

FSGSBASE
FSGSBASE-Enable Bit (bit 16 of CR4) — Enables the instructions 
RDFSBASE, RDGSBASE, WRFSBASE, and WRGSBASE.

PCIDE
PCID-Enable Bit (bit 17 of CR4) — Enables process-context identifiers 
(PCIDs) when set. See Section 4.10.1, “Process-Context Identifiers 
(PCIDs)”. Can be set only in IA-32e mode (if IA32_EFER.LMA = 1).

OSXSAVE
XSAVE and Processor Extended States-Enable Bit (bit 18 of CR4) — 
When set, this flag: (1) indicates (via CPUID.01H:ECX.OSXSAVE[bit 27]) 
that the operating system supports the use of the XGETBV, XSAVE and 
XRSTOR instructions by general software; (2) enables the XSAVE and 
XRSTOR instructions to save and restore the x87 FPU state (including MMX 
registers), the SSE state (XMM registers and MXCSR), along with other 
processor extended states enabled in XCR0; (3) enables the processor to 
execute XGETBV and XSETBV instructions in order to read and write XCR0. 
See Section 2.6 and Chapter 13, “System Programming for Instruction Set 
Extensions and Processor Extended States”.

SMEP
SMEP-Enable Bit (bit 20 of CR4) — Enables supervisor-mode execution 
prevention (SMEP) when set. See Section 4.6, “Access Rights”.

TPL
Task Priority Level (bit 3:0 of CR8) — This sets the threshold value corre-
sponding to the highest-priority interrupt to be blocked. A value of 0 means 
all interrupts are enabled. This field is available in 64-bit mode. A value of 15 
means all interrupts will be disabled.
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2.5.1 CPUID Qualification of Control Register Flags
Not all flags in control register CR4 are implemented on all processors. With the 
exception of the PCE flag, they can be qualified with the CPUID instruction to deter-
mine if they are implemented on the processor before they are used. 

The CR8 register is available on processors that support Intel 64 architecture.

2.6 EXTENDED CONTROL REGISTERS (INCLUDING XCR0)
If CPUID.01H:ECX.XSAVE[bit 26] is 1, the processor supports one or more 
extended control registers (XCRs). Currently, the only such register defined is 
XCR0. This register specifies the set of processor states that the operating system 
enables on that processor, e.g. x87 FPU state, SSE state, AVX state, and other 
processor extended states that Intel 64 architecture may introduce in the future. The 
OS programs XCR0 to reflect the features it supports.

Software can access XCR0 only if CR4.OSXSAVE[bit 18] = 1. (This bit is also readable 
as CPUID.01H:ECX.OSXSAVE[bit 27].) The layout of XCR0 is architected to allow 
software to use CPUID leaf function 0DH to enumerate the set of bits that the 
processor supports in XCR0 (see CPUID instruction in Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 2A). Each processor state (X87 FPU 
state, SSE state, AVX state, or a future processor extended state) is represented by 
a bit in XCR0. The OS can enable future processor extended states in a forward 
manner by specifying the appropriate bit mask value using the XSETBV instruction 
according to the results of the CPUID leaf 0DH.
With the exception of bit 63, each bit in XCR0 corresponds to a subset of the 
processor states. XCR0 thus provides space for up to 63 sets of processor state 
extensions. Bit 63 of XCR0 is reserved for future expansion and will not represent a 
processor extended state.

Figure 2-7.  XCR0

63

Reserved for XCR0 bit vector expansion
Reserved / Future processor extended states

2 1 0

AVX state

1

Reserved (must be 0)

x87 FPU/MMX state (must be 1)
SSE state
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Currently, XCR0 has three processor states defined, with up to 61 bits reserved for 
future processor extended states:
• XCR0.X87 (bit 0): This bit 0 must be 1. An attempt to write 0 to this bit causes a 

#GP exception.
• XCR0.SSE (bit 1): If 1, XSAVE, XSAVEOPT, and XRSTOR can be used to manage 

MXCSR and XMM registers (XMM0-XMM15 in 64-bit mode; otherwise XMM0-
XMM7). 

• XCR0.AVX (bit 2): If 1, AVX instructions can be executed and XSAVE, XSAVEOPT, 
and XRSTOR can be used to manage the upper halves of the YMM registers 
(YMM0-YMM15 in 64-bit mode; otherwise YMM0-YMM7).

Any attempt to set a reserved bit (as determined by the contents of EAX and EDX 
after executing CPUID with EAX=0DH, ECX= 0H) in XCR0 for a given processor will 
result in a #GP exception. An attempt to write 0 to XCR0.x87 (bit 0) will result in a 
#GP exception. An attempt to write 0 to XCR0.SSE (bit 1) and 1 to XCR0.AVX (bit 2) 
also results in a #GP exception.

If a bit in XCR0 is 1, software can use the XSAVE instruction to save the corre-
sponding processor state to memory (see XSAVE instruction in Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2B).
After reset, all bits (except bit 0) in XCR0 are cleared to zero, XCR0[0] is set to 1.

2.7 SYSTEM INSTRUCTION SUMMARY
System instructions handle system-level functions such as loading system registers, 
managing the cache, managing interrupts, or setting up the debug registers. Many of 
these instructions can be executed only by operating-system or executive proce-
dures (that is, procedures running at privilege level 0). Others can be executed at 
any privilege level and are thus available to application programs. 

Table 2-2 lists the system instructions and indicates whether they are available and 
useful for application programs. These instructions are described in the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B & 2C.

Table 2-2.  Summary of System Instructions

Instruction Description
Useful to
Application?

Protected from
Application?

LLDT Load LDT Register No Yes

SLDT Store LDT Register No No

LGDT Load GDT Register No Yes

SGDT Store GDT Register No No

LTR Load Task Register No Yes

STR Store Task Register No No
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LIDT Load IDT Register No Yes

SIDT Store IDT Register No No

MOV CRn Load and store control registers No Yes

SMSW Store MSW Yes No

LMSW Load MSW No Yes

CLTS Clear TS flag in CR0 No Yes

ARPL Adjust RPL Yes1, 5 No

LAR Load Access Rights Yes No

LSL Load Segment Limit Yes No

VERR Verify for Reading Yes No

VERW Verify for Writing Yes No

MOV DRn Load and store debug registers No Yes

INVD Invalidate cache, no writeback No Yes

WBINVD Invalidate cache, with writeback No Yes

INVLPG Invalidate TLB entry No Yes

HLT Halt Processor No Yes

LOCK (Prefix) Bus Lock Yes No

RSM Return from system management 
mode

No Yes

RDMSR3 Read Model-Specific Registers No Yes

WRMSR3 Write Model-Specific Registers No Yes

RDPMC4 Read Performance-Monitoring 
Counter

Yes Yes2

RDTSC3 Read Time-Stamp Counter Yes Yes2

RDTSCP7 Read Serialized Time-Stamp Counter Yes Yes2

XGETBV Return the state of XCR0 Yes No

XSETBV Enable one or more processor 
extended states

No6 Yes

Table 2-2.  Summary of System Instructions (Contd.)

Instruction Description
Useful to
Application?

Protected from
Application?
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2.7.1 Loading and Storing System Registers
The GDTR, LDTR, IDTR, and TR registers each have a load and store instruction for 
loading data into and storing data from the register:
• LGDT (Load GDTR Register) — Loads the GDT base address and limit from 

memory into the GDTR register.
• SGDT (Store GDTR Register) — Stores the GDT base address and limit from 

the GDTR register into memory.
• LIDT (Load IDTR Register) — Loads the IDT base address and limit from 

memory into the IDTR register.
• SIDT (Load IDTR Register — Stores the IDT base address and limit from the 

IDTR register into memory.
• LLDT (Load LDT Register) — Loads the LDT segment selector and segment 

descriptor from memory into the LDTR. (The segment selector operand can also 
be located in a general-purpose register.)

• SLDT (Store LDT Register) — Stores the LDT segment selector from the LDTR 
register into memory or a general-purpose register.

• LTR (Load Task Register) — Loads segment selector and segment descriptor 
for a TSS from memory into the task register. (The segment selector operand can 
also be located in a general-purpose register.)

• STR (Store Task Register) — Stores the segment selector for the current task 
TSS from the task register into memory or a general-purpose register.

The LMSW (load machine status word) and SMSW (store machine status word) 
instructions operate on bits 0 through 15 of control register CR0. These instructions 
are provided for compatibility with the 16-bit Intel 286 processor. Programs written 
to run on 32-bit IA-32 processors should not use these instructions. Instead, they 
should access the control register CR0 using the MOV instruction.

NOTES:
1. Useful to application programs running at a CPL of 1 or 2.
2. The TSD and PCE flags in control register CR4 control access to these instructions by application 

programs running at a CPL of 3.
3. These instructions were introduced into the IA-32 Architecture with the Pentium processor.
4. This instruction was introduced into the IA-32 Architecture with the Pentium Pro processor and 

the Pentium processor with MMX technology.
5. This instruction is not supported in 64-bit mode.
6. Application uses XGETBV to query which set of processor extended states are enabled.
7. RDTSCP is introduced in Intel Core i7 processor.

Table 2-2.  Summary of System Instructions (Contd.)

Instruction Description
Useful to
Application?

Protected from
Application?
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The CLTS (clear TS flag in CR0) instruction is provided for use in handling a device-
not-available exception (#NM) that occurs when the processor attempts to execute a 
floating-point instruction when the TS flag is set. This instruction allows the TS flag to 
be cleared after the x87 FPU context has been saved, preventing further #NM excep-
tions. See Section 2.5, “Control Registers,” for more information on the TS flag.

The control registers (CR0, CR1, CR2, CR3, CR4, and CR8) are loaded using the MOV 
instruction. The instruction loads a control register from a general-purpose register 
or stores the content of a control register in a general-purpose register.

2.7.2 Verifying of Access Privileges
The processor provides several instructions for examining segment selectors and 
segment descriptors to determine if access to their associated segments is allowed. 
These instructions duplicate some of the automatic access rights and type checking 
done by the processor, thus allowing operating-system or executive software to 
prevent exceptions from being generated. 

The ARPL (adjust RPL) instruction adjusts the RPL (requestor privilege level) of a 
segment selector to match that of the program or procedure that supplied the 
segment selector. See Section 5.10.4, “Checking Caller Access Privileges (ARPL 
Instruction),” for a detailed explanation of the function and use of this instruction. 
Note that ARPL is not supported in 64-bit mode.

The LAR (load access rights) instruction verifies the accessibility of a specified 
segment and loads access rights information from the segment’s segment descriptor 
into a general-purpose register. Software can then examine the access rights to 
determine if the segment type is compatible with its intended use. See Section 
5.10.1, “Checking Access Rights (LAR Instruction),” for a detailed explanation of the 
function and use of this instruction.

The LSL (load segment limit) instruction verifies the accessibility of a specified 
segment and loads the segment limit from the segment’s segment descriptor into a 
general-purpose register. Software can then compare the segment limit with an 
offset into the segment to determine whether the offset lies within the segment. See 
Section 5.10.3, “Checking That the Pointer Offset Is Within Limits (LSL Instruction),” 
for a detailed explanation of the function and use of this instruction.

The VERR (verify for reading) and VERW (verify for writing) instructions verify if a 
selected segment is readable or writable, respectively, at a given CPL. See Section 
5.10.2, “Checking Read/Write Rights (VERR and VERW Instructions),” for a detailed 
explanation of the function and use of this instruction.

2.7.3 Loading and Storing Debug Registers
Internal debugging facilities in the processor are controlled by a set of 8 debug regis-
ters (DR0-DR7). The MOV instruction allows setup data to be loaded to and stored 
from these registers.
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On processors that support Intel 64 architecture, debug registers DR0-DR7 are 64 
bits. In 32-bit modes and compatibility mode, writes to a debug register fill the upper 
32 bits with zeros. Reads return the lower 32 bits. In 64-bit mode, the upper 32 bits 
of DR6-DR7 are reserved and must be written with zeros. Writing one to any of the 
upper 32 bits causes an exception, #GP(0).

In 64-bit mode, MOV DRn instructions read or write all 64 bits of a debug register 
(operand-size prefixes are ignored). All 64 bits of DR0-DR3 are writable by software. 
However, MOV DRn instructions do not check that addresses written to DR0-DR3 are 
in the limits of the implementation. Address matching is supported only on valid 
addresses generated by the processor implementation.

2.7.4 Invalidating Caches and TLBs
The processor provides several instructions for use in explicitly invalidating its caches 
and TLB entries. The INVD (invalidate cache with no writeback) instruction invali-
dates all data and instruction entries in the internal caches and sends a signal to the 
external caches indicating that they should be also be invalidated.

The WBINVD (invalidate cache with writeback) instruction performs the same func-
tion as the INVD instruction, except that it writes back modified lines in its internal 
caches to memory before it invalidates the caches. After invalidating the internal 
caches, WBINVD signals external caches to write back modified data and invalidate 
their contents.

The INVLPG (invalidate TLB entry) instruction invalidates (flushes) the TLB entry for 
a specified page.

2.7.5 Controlling the Processor

The HLT (halt processor) instruction stops the processor until an enabled interrupt 
(such as NMI or SMI, which are normally enabled), a debug exception, the BINIT# 
signal, the INIT# signal, or the RESET# signal is received. The processor generates a 
special bus cycle to indicate that the halt mode has been entered. 

Hardware may respond to this signal in a number of ways. An indicator light on the 
front panel may be turned on. An NMI interrupt for recording diagnostic information 
may be generated. Reset initialization may be invoked (note that the BINIT# pin was 
introduced with the Pentium Pro processor). If any non-wake events are pending 
during shutdown, they will be handled after the wake event from shutdown is 
processed (for example, A20M# interrupts).

The LOCK prefix invokes a locked (atomic) read-modify-write operation when modi-
fying a memory operand. This mechanism is used to allow reliable communications 
between processors in multiprocessor systems, as described below:
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• In the Pentium processor and earlier IA-32 processors, the LOCK prefix causes 
the processor to assert the LOCK# signal during the instruction. This always 
causes an explicit bus lock to occur. 

• In the Pentium 4, Intel Xeon, and P6 family processors, the locking operation is 
handled with either a cache lock or bus lock. If a memory access is cacheable and 
affects only a single cache line, a cache lock is invoked and the system bus and 
the actual memory location in system memory are not locked during the 
operation. Here, other Pentium 4, Intel Xeon, or P6 family processors on the bus 
write-back any modified data and invalidate their caches as necessary to 
maintain system memory coherency. If the memory access is not cacheable 
and/or it crosses a cache line boundary, the processor’s LOCK# signal is asserted 
and the processor does not respond to requests for bus control during the locked 
operation.

The RSM (return from SMM) instruction restores the processor (from a context 
dump) to the state it was in prior to an system management mode (SMM) interrupt.

2.7.6 Reading Performance-Monitoring and Time-Stamp Counters
The RDPMC (read performance-monitoring counter) and RDTSC (read time-stamp 
counter) instructions allow application programs to read the processor’s perfor-
mance-monitoring and time-stamp counters, respectively. Processors based on Intel 
NetBurst® microarchitecture have eighteen 40-bit performance-monitoring 
counters; P6 family processors have two 40-bit counters. Intel® Atom™ processors 
and most of the processors based on the Intel Core microarchitecture support two 
types of performance monitoring counters: two programmable performance 
counters similar to those available in the P6 family, and three fixed-function perfor-
mance monitoring counters.

The programmable performance counters can support counting either the occurrence 
or duration of events. Events that can be monitored on programmable counters 
generally are model specific (except for architectural performance events enumer-
ated by CPUID leaf 0AH); they may include the number of instructions decoded, 
interrupts received, or the number of cache loads. Individual counters can be set up 
to monitor different events. Use the system instruction WRMSR to set up values in 
IA32_PERFEVTSEL0/1 (for Intel Atom, Intel Core 2, Intel Core Duo, and Intel 
Pentium M processors), in one of the 45 ESCRs and one of the 18 CCCR MSRs (for 
Pentium 4 and Intel Xeon processors); or in the PerfEvtSel0 or the PerfEvtSel1 MSR 
(for the P6 family processors). The RDPMC instruction loads the current count from 
the selected counter into the EDX:EAX registers.

Fixed-function performance counters record only specific events that are defined in 
Chapter 23, “Introduction to Virtual-Machine Extensions”, and the width/number of 
fixed-function counters are enumerated by CPUID leaf 0AH.

The time-stamp counter is a model-specific 64-bit counter that is reset to zero each 
time the processor is reset. If not reset, the counter will increment ~9.5 x 1016 

times per year when the processor is operating at a clock rate of 3GHz. At this 
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clock frequency, it would take over 190 years for the counter to wrap around. The 
RDTSC instruction loads the current count of the time-stamp counter into the 
EDX:EAX registers.

See Section 18.1, “Performance Monitoring Overview,” and Section 17.12, “Time-
Stamp Counter,” for more information about the performance monitoring and time-
stamp counters.

The RDTSC instruction was introduced into the IA-32 architecture with the Pentium 
processor. The RDPMC instruction was introduced into the IA-32 architecture with the 
Pentium Pro processor and the Pentium processor with MMX technology. Earlier 
Pentium processors have two performance-monitoring counters, but they can be 
read only with the RDMSR instruction, and only at privilege level 0.

2.7.6.1  Reading Counters in 64-Bit Mode
In 64-bit mode, RDTSC operates the same as in protected mode. The count in the 
time-stamp counter is stored in EDX:EAX (or RDX[31:0]:RAX[31:0] with 
RDX[63:32]:RAX[63:32] cleared).

RDPMC requires an index to specify the offset of the performance-monitoring 
counter. In 64-bit mode for Pentium 4 or Intel Xeon processor families, the index is 
specified in ECX[30:0]. The current count of the performance-monitoring counter is 
stored in EDX:EAX (or RDX[31:0]:RAX[31:0] with RDX[63:32]:RAX[63:32] 
cleared).

2.7.7 Reading and Writing Model-Specific Registers
The RDMSR (read model-specific register) and WRMSR (write model-specific 
register) instructions allow a processor’s 64-bit model-specific registers (MSRs) to be 
read and written, respectively. The MSR to be read or written is specified by the value 
in the ECX register.

RDMSR reads the value from the specified MSR to the EDX:EAX registers; WRMSR 
writes the value in the EDX:EAX registers to the specified MSR. RDMSR and WRMSR 
were introduced into the IA-32 architecture with the Pentium processor.

See Section 9.4, “Model-Specific Registers (MSRs),” for more information.

2.7.7.1  Reading and Writing Model-Specific Registers in 64-Bit Mode
RDMSR and WRMSR require an index to specify the address of an MSR. In 64-bit 
mode, the index is 32 bits; it is specified using ECX.
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2.7.8 Enabling Processor Extended States
The XSETBV instruction is required to enable OS support of individual processor 
extended states in XCR0 (see Section 2.6).
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CHAPTER 3
PROTECTED-MODE MEMORY MANAGEMENT

This chapter describes the Intel 64 and IA-32 architecture’s protected-mode memory 
management facilities, including the physical memory requirements, segmentation 
mechanism, and paging mechanism.

See also: Chapter 5, “Protection” (for a description of the processor’s protection 
mechanism) and Chapter 20, “8086 Emulation” (for a description of memory 
addressing protection in real-address and virtual-8086 modes).

3.1 MEMORY MANAGEMENT OVERVIEW
The memory management facilities of the IA-32 architecture are divided into two 
parts: segmentation and paging. Segmentation provides a mechanism of isolating 
individual code, data, and stack modules so that multiple programs (or tasks) can 
run on the same processor without interfering with one another. Paging provides a 
mechanism for implementing a conventional demand-paged, virtual-memory system 
where sections of a program’s execution environment are mapped into physical 
memory as needed. Paging can also be used to provide isolation between multiple 
tasks. When operating in protected mode, some form of segmentation must be used. 
There is no mode bit to disable segmentation. The use of paging, however, is 
optional.

These two mechanisms (segmentation and paging) can be configured to support 
simple single-program (or single-task) systems, multitasking systems, or multiple-
processor systems that used shared memory.

As shown in Figure 3-1, segmentation provides a mechanism for dividing the 
processor’s addressable memory space (called the linear address space) into 
smaller protected address spaces called segments. Segments can be used to hold 
the code, data, and stack for a program or to hold system data structures (such as a 
TSS or LDT). If more than one program (or task) is running on a processor, each 
program can be assigned its own set of segments. The processor then enforces the 
boundaries between these segments and insures that one program does not interfere 
with the execution of another program by writing into the other program’s segments. 
The segmentation mechanism also allows typing of segments so that the operations 
that may be performed on a particular type of segment can be restricted.

All the segments in a system are contained in the processor’s linear address space. 
To locate a byte in a particular segment, a logical address (also called a far pointer) 
must be provided. A logical address consists of a segment selector and an offset. The 
segment selector is a unique identifier for a segment. Among other things it provides 
an offset into a descriptor table (such as the global descriptor table, GDT) to a data 
structure called a segment descriptor. Each segment has a segment descriptor, which 
specifies the size of the segment, the access rights and privilege level for the 
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segment, the segment type, and the location of the first byte of the segment in the 
linear address space (called the base address of the segment). The offset part of the 
logical address is added to the base address for the segment to locate a byte within 
the segment. The base address plus the offset thus forms a linear address in the 
processor’s linear address space.

If paging is not used, the linear address space of the processor is mapped directly 
into the physical address space of processor. The physical address space is defined as 
the range of addresses that the processor can generate on its address bus.

Because multitasking computing systems commonly define a linear address space 
much larger than it is economically feasible to contain all at once in physical memory, 
some method of “virtualizing” the linear address space is needed. This virtualization 
of the linear address space is handled through the processor’s paging mechanism.

Paging supports a “virtual memory” environment where a large linear address space 
is simulated with a small amount of physical memory (RAM and ROM) and some disk 

Figure 3-1.  Segmentation and Paging
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storage. When using paging, each segment is divided into pages (typically 4 KBytes 
each in size), which are stored either in physical memory or on the disk. The oper-
ating system or executive maintains a page directory and a set of page tables to keep 
track of the pages. When a program (or task) attempts to access an address location 
in the linear address space, the processor uses the page directory and page tables to 
translate the linear address into a physical address and then performs the requested 
operation (read or write) on the memory location. 

If the page being accessed is not currently in physical memory, the processor inter-
rupts execution of the program (by generating a page-fault exception). The oper-
ating system or executive then reads the page into physical memory from the disk 
and continues executing the program. 

When paging is implemented properly in the operating-system or executive, the 
swapping of pages between physical memory and the disk is transparent to the 
correct execution of a program. Even programs written for 16-bit IA-32 processors 
can be paged (transparently) when they are run in virtual-8086 mode.

3.2 USING SEGMENTS
The segmentation mechanism supported by the IA-32 architecture can be used to 
implement a wide variety of system designs. These designs range from flat models 
that make only minimal use of segmentation to protect programs to multi-
segmented models that employ segmentation to create a robust operating environ-
ment in which multiple programs and tasks can be executed reliably.

The following sections give several examples of how segmentation can be employed 
in a system to improve memory management performance and reliability.

3.2.1 Basic Flat Model
The simplest memory model for a system is the basic “flat model,” in which the oper-
ating system and application programs have access to a continuous, unsegmented 
address space. To the greatest extent possible, this basic flat model hides the 
segmentation mechanism of the architecture from both the system designer and the 
application programmer.

To implement a basic flat memory model with the IA-32 architecture, at least two 
segment descriptors must be created, one for referencing a code segment and one 
for referencing a data segment (see Figure 3-2). Both of these segments, however, 
are mapped to the entire linear address space: that is, both segment descriptors 
have the same base address value of 0 and the same segment limit of 4 GBytes. By 
setting the segment limit to 4 GBytes, the segmentation mechanism is kept from 
generating exceptions for out of limit memory references, even if no physical 
memory resides at a particular address. ROM (EPROM) is generally located at the top 
of the physical address space, because the processor begins execution at 
Vol. 3A 3-3



PROTECTED-MODE MEMORY MANAGEMENT
FFFF_FFF0H. RAM (DRAM) is placed at the bottom of the address space because the 
initial base address for the DS data segment after reset initialization is 0.

3.2.2 Protected Flat Model
The protected flat model is similar to the basic flat model, except the segment limits 
are set to include only the range of addresses for which physical memory actually 
exists (see Figure 3-3). A general-protection exception (#GP) is then generated on 
any attempt to access nonexistent memory. This model provides a minimum level of 
hardware protection against some kinds of program bugs.

Figure 3-2.  Flat Model

Figure 3-3.  Protected Flat Model
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More complexity can be added to this protected flat model to provide more protec-
tion. For example, for the paging mechanism to provide isolation between user and 
supervisor code and data, four segments need to be defined: code and data 
segments at privilege level 3 for the user, and code and data segments at privilege 
level 0 for the supervisor. Usually these segments all overlay each other and start at 
address 0 in the linear address space. This flat segmentation model along with a 
simple paging structure can protect the operating system from applications, and by 
adding a separate paging structure for each task or process, it can also protect appli-
cations from each other. Similar designs are used by several popular multitasking 
operating systems.

3.2.3 Multi-Segment Model
A multi-segment model (such as the one shown in Figure 3-4) uses the full capabili-
ties of the segmentation mechanism to provided hardware enforced protection of 
code, data structures, and programs and tasks. Here, each program (or task) is given 
its own table of segment descriptors and its own segments. The segments can be 
completely private to their assigned programs or shared among programs. Access to 
all segments and to the execution environments of individual programs running on 
the system is controlled by hardware.
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Access checks can be used to protect not only against referencing an address outside 
the limit of a segment, but also against performing disallowed operations in certain 
segments. For example, since code segments are designated as read-only segments, 
hardware can be used to prevent writes into code segments. The access rights infor-
mation created for segments can also be used to set up protection rings or levels. 
Protection levels can be used to protect operating-system procedures from unautho-
rized access by application programs.

3.2.4 Segmentation in IA-32e Mode
In IA-32e mode of Intel 64 architecture, the effects of segmentation depend on 
whether the processor is running in compatibility mode or 64-bit mode. In compati-
bility mode, segmentation functions just as it does using legacy 16-bit or 32-bit 
protected mode semantics.

Figure 3-4.  Multi-Segment Model
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In 64-bit mode, segmentation is generally (but not completely) disabled, creating a 
flat 64-bit linear-address space. The processor treats the segment base of CS, DS, 
ES, SS as zero, creating a linear address that is equal to the effective address. The FS 
and GS segments are exceptions. These segment registers (which hold the segment 
base) can be used as an additional base registers in linear address calculations. They 
facilitate addressing local data and certain operating system data structures. 

Note that the processor does not perform segment limit checks at runtime in 64-bit 
mode.

3.2.5 Paging and Segmentation
Paging can be used with any of the segmentation models described in Figures 3-2, 
3-3, and 3-4. The processor’s paging mechanism divides the linear address space 
(into which segments are mapped) into pages (as shown in Figure 3-1). These linear-
address-space pages are then mapped to pages in the physical address space. The 
paging mechanism offers several page-level protection facilities that can be used 
with or instead of the segment-protection facilities. For example, it lets read-write 
protection be enforced on a page-by-page basis. The paging mechanism also 
provides two-level user-supervisor protection that can also be specified on a page-
by-page basis.

3.3 PHYSICAL ADDRESS SPACE
In protected mode, the IA-32 architecture provides a normal physical address space 
of 4 GBytes (232

 bytes). This is the address space that the processor can address on 
its address bus. This address space is flat (unsegmented), with addresses ranging 
continuously from 0 to FFFFFFFFH. This physical address space can be mapped to 
read-write memory, read-only memory, and memory mapped I/O. The memory 
mapping facilities described in this chapter can be used to divide this physical 
memory up into segments and/or pages.

Starting with the Pentium Pro processor, the IA-32 architecture also supports an 
extension of the physical address space to 236 bytes (64 GBytes); with a maximum 
physical address of FFFFFFFFFH. This extension is invoked in either of two ways:
• Using the physical address extension (PAE) flag, located in bit 5 of control 

register CR4. 
• Using the 36-bit page size extension (PSE-36) feature (introduced in the Pentium 

III processors).

Physical address support has since been extended beyond 36 bits. See Chapter 4, 
“Paging” for more information about 36-bit physical addressing.
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3.3.1 Intel® 64 Processors and Physical Address Space
On processors that support Intel 64 architecture (CPUID.80000001:EDX[29] = 1), 
the size of the physical address range is implementation-specific and indicated by 
CPUID.80000008H:EAX[bits 7-0]. 

For the format of information returned in EAX, see “CPUID—CPU Identification” in 
Chapter 3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2A. See also: Chapter 4, “Paging.”

3.4 LOGICAL AND LINEAR ADDRESSES
At the system-architecture level in protected mode, the processor uses two stages of 
address translation to arrive at a physical address: logical-address translation and 
linear address space paging.

Even with the minimum use of segments, every byte in the processor’s address 
space is accessed with a logical address. A logical address consists of a 16-bit 
segment selector and a 32-bit offset (see Figure 3-5). The segment selector identi-
fies the segment the byte is located in and the offset specifies the location of the byte 
in the segment relative to the base address of the segment. 

The processor translates every logical address into a linear address. A linear address 
is a 32-bit address in the processor’s linear address space. Like the physical address 
space, the linear address space is a flat (unsegmented), 232-byte address space, 
with addresses ranging from 0 to FFFFFFFFH. The linear address space contains all 
the segments and system tables defined for a system. 

To translate a logical address into a linear address, the processor does the following:

1. Uses the offset in the segment selector to locate the segment descriptor for the 
segment in the GDT or LDT and reads it into the processor. (This step is needed 
only when a new segment selector is loaded into a segment register.)

2. Examines the segment descriptor to check the access rights and range of the 
segment to insure that the segment is accessible and that the offset is within the 
limits of the segment.

3. Adds the base address of the segment from the segment descriptor to the offset 
to form a linear address.
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If paging is not used, the processor maps the linear address directly to a physical 
address (that is, the linear address goes out on the processor’s address bus). If the 
linear address space is paged, a second level of address translation is used to trans-
late the linear address into a physical address. 

See also: Chapter 4, “Paging.”

3.4.1 Logical Address Translation in IA-32e Mode
In IA-32e mode, an Intel 64 processor uses the steps described above to translate a 
logical address to a linear address. In 64-bit mode, the offset and base address of the 
segment are 64-bits instead of 32 bits. The linear address format is also 64 bits wide 
and is subject to the canonical form requirement.

Each code segment descriptor provides an L bit. This bit allows a code segment to 
execute 64-bit code or legacy 32-bit code by code segment.

3.4.2 Segment Selectors
A segment selector is a 16-bit identifier for a segment (see Figure 3-6). It does not 
point directly to the segment, but instead points to the segment descriptor that 
defines the segment. A segment selector contains the following items:

Index (Bits 3 through 15) — Selects one of 8192 descriptors in the GDT or 
LDT. The processor multiplies the index value by 8 (the number of 
bytes in a segment descriptor) and adds the result to the base address 
of the GDT or LDT (from the GDTR or LDTR register, respectively).

Figure 3-5.  Logical Address to Linear Address Translation
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TI (table indicator) flag
(Bit 2) — Specifies the descriptor table to use: clearing this flag 
selects the GDT; setting this flag selects the current LDT.

Requested Privilege Level (RPL)
(Bits 0 and 1) — Specifies the privilege level of the selector. The priv-
ilege level can range from 0 to 3, with 0 being the most privileged 
level. See Section 5.5, “Privilege Levels”, for a description of the rela-
tionship of the RPL to the CPL of the executing program (or task) and 
the descriptor privilege level (DPL) of the descriptor the segment 
selector points to.

The first entry of the GDT is not used by the processor. A segment selector that points 
to this entry of the GDT (that is, a segment selector with an index of 0 and the TI flag 
set to 0) is used as a “null segment selector.” The processor does not generate an 
exception when a segment register (other than the CS or SS registers) is loaded with 
a null selector. It does, however, generate an exception when a segment register 
holding a null selector is used to access memory. A null selector can be used to 
initialize unused segment registers. Loading the CS or SS register with a null 
segment selector causes a general-protection exception (#GP) to be generated.

Segment selectors are visible to application programs as part of a pointer variable, 
but the values of selectors are usually assigned or modified by link editors or linking 
loaders, not application programs.

3.4.3 Segment Registers
To reduce address translation time and coding complexity, the processor provides 
registers for holding up to 6 segment selectors (see Figure 3-7). Each of these 
segment registers support a specific kind of memory reference (code, stack, or 
data). For virtually any kind of program execution to take place, at least the code-
segment (CS), data-segment (DS), and stack-segment (SS) registers must be 
loaded with valid segment selectors. The processor also provides three additional 
data-segment registers (ES, FS, and GS), which can be used to make additional data 
segments available to the currently executing program (or task).

Figure 3-6.  Segment Selector
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For a program to access a segment, the segment selector for the segment must have 
been loaded in one of the segment registers. So, although a system can define thou-
sands of segments, only 6 can be available for immediate use. Other segments can 
be made available by loading their segment selectors into these registers during 
program execution.

Every segment register has a “visible” part and a “hidden” part. (The hidden part is 
sometimes referred to as a “descriptor cache” or a “shadow register.”) When a 
segment selector is loaded into the visible part of a segment register, the processor 
also loads the hidden part of the segment register with the base address, segment 
limit, and access control information from the segment descriptor pointed to by the 
segment selector. The information cached in the segment register (visible and 
hidden) allows the processor to translate addresses without taking extra bus cycles 
to read the base address and limit from the segment descriptor. In systems in which 
multiple processors have access to the same descriptor tables, it is the responsibility 
of software to reload the segment registers when the descriptor tables are modified. 
If this is not done, an old segment descriptor cached in a segment register might be 
used after its memory-resident version has been modified.

Two kinds of load instructions are provided for loading the segment registers:

1. Direct load instructions such as the MOV, POP, LDS, LES, LSS, LGS, and LFS 
instructions. These instructions explicitly reference the segment registers.

2. Implied load instructions such as the far pointer versions of the CALL, JMP, and 
RET instructions, the SYSENTER and SYSEXIT instructions, and the IRET, INTn, 
INTO and INT3 instructions. These instructions change the contents of the CS 
register (and sometimes other segment registers) as an incidental part of their 
operation.

The MOV instruction can also be used to store visible part of a segment register in a 
general-purpose register.

Figure 3-7.  Segment Registers
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3.4.4 Segment Loading Instructions in IA-32e Mode
Because ES, DS, and SS segment registers are not used in 64-bit mode, their fields 
(base, limit, and attribute) in segment descriptor registers are ignored. Some forms 
of segment load instructions are also invalid (for example, LDS, POP ES). Address 
calculations that reference the ES, DS, or SS segments are treated as if the segment 
base is zero. 

The processor checks that all linear-address references are in canonical form instead 
of performing limit checks. Mode switching does not change the contents of the 
segment registers or the associated descriptor registers. These registers are also not 
changed during 64-bit mode execution, unless explicit segment loads are performed.

In order to set up compatibility mode for an application, segment-load instructions 
(MOV to Sreg, POP Sreg) work normally in 64-bit mode. An entry is read from the 
system descriptor table (GDT or LDT) and is loaded in the hidden portion of the 
segment descriptor register. The descriptor-register base, limit, and attribute fields 
are all loaded. However, the contents of the data and stack segment selector and the 
descriptor registers are ignored.

When FS and GS segment overrides are used in 64-bit mode, their respective base 
addresses are used in the linear address calculation: (FS or GS).base + index + 
displacement. FS.base and GS.base are then expanded to the full linear-address size 
supported by the implementation. The resulting effective address calculation can 
wrap across positive and negative addresses; the resulting linear address must be 
canonical.

In 64-bit mode, memory accesses using FS-segment and GS-segment overrides are 
not checked for a runtime limit nor subjected to attribute-checking. Normal segment 
loads (MOV to Sreg and POP Sreg) into FS and GS load a standard 32-bit base value 
in the hidden portion of the segment descriptor register. The base address bits above 
the standard 32 bits are cleared to 0 to allow consistency for implementations that 
use less than 64 bits. 

The hidden descriptor register fields for FS.base and GS.base are physically mapped 
to MSRs in order to load all address bits supported by a 64-bit implementation. Soft-
ware with CPL = 0 (privileged software) can load all supported linear-address bits 
into FS.base or GS.base using WRMSR. Addresses written into the 64-bit FS.base and 
GS.base registers must be in canonical form. A WRMSR instruction that attempts to 
write a non-canonical address to those registers causes a #GP fault. 

When in compatibility mode, FS and GS overrides operate as defined by 32-bit mode 
behavior regardless of the value loaded into the upper 32 linear-address bits of the 
hidden descriptor register base field. Compatibility mode ignores the upper 32 bits 
when calculating an effective address.

A new 64-bit mode instruction, SWAPGS, can be used to load GS base. SWAPGS 
exchanges the kernel data structure pointer from the IA32_KernelGSbase MSR with 
the GS base register. The kernel can then use the GS prefix on normal memory refer-
ences to access the kernel data structures. An attempt to write a non-canonical value 
(using WRMSR) to the IA32_KernelGSBase MSR causes a #GP fault.
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3.4.5 Segment Descriptors
A segment descriptor is a data structure in a GDT or LDT that provides the processor 
with the size and location of a segment, as well as access control and status informa-
tion. Segment descriptors are typically created by compilers, linkers, loaders, or the 
operating system or executive, but not application programs. Figure 3-8 illustrates 
the general descriptor format for all types of segment descriptors.

The flags and fields in a segment descriptor are as follows:

Segment limit field
Specifies the size of the segment. The processor puts together the 
two segment limit fields to form a 20-bit value. The processor inter-
prets the segment limit in one of two ways, depending on the setting 
of the G (granularity) flag:

• If the granularity flag is clear, the segment size can range from 
1 byte to 1 MByte, in byte increments.

• If the granularity flag is set, the segment size can range from 
4 KBytes to 4 GBytes, in 4-KByte increments.

The processor uses the segment limit in two different ways, 
depending on whether the segment is an expand-up or an expand-
down segment. See Section 3.4.5.1, “Code- and Data-Segment 
Descriptor Types”, for more information about segment types. For 
expand-up segments, the offset in a logical address can range from 0 

Figure 3-8.  Segment Descriptor
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to the segment limit. Offsets greater than the segment limit generate 
general-protection exceptions (#GP, for all segment other than SS) or 
stack-fault exceptions (#SS for the SS segment). For expand-down 
segments, the segment limit has the reverse function; the offset can 
range from the segment limit plus 1 to FFFFFFFFH or FFFFH, 
depending on the setting of the B flag. Offsets less than or equal to 
the segment limit generate general-protection exceptions or stack-
fault exceptions. Decreasing the value in the segment limit field for an 
expand-down segment allocates new memory at the bottom of the 
segment's address space, rather than at the top. IA-32 architecture 
stacks always grow downwards, making this mechanism convenient 
for expandable stacks.

Base address fields
Defines the location of byte 0 of the segment within the 4-GByte 
linear address space. The processor puts together the three base 
address fields to form a single 32-bit value. Segment base addresses 
should be aligned to 16-byte boundaries. Although 16-byte alignment 
is not required, this alignment allows programs to maximize perfor-
mance by aligning code and data on 16-byte boundaries.

Type field Indicates the segment or gate type and specifies the kinds of access 
that can be made to the segment and the direction of growth. The 
interpretation of this field depends on whether the descriptor type flag 
specifies an application (code or data) descriptor or a system 
descriptor. The encoding of the type field is different for code, data, 
and system descriptors (see Figure 5-1). See Section 3.4.5.1, “Code- 
and Data-Segment Descriptor Types”, for a description of how this 
field is used to specify code and data-segment types. 

S (descriptor type) flag
Specifies whether the segment descriptor is for a system segment 
(S flag is clear) or a code or data segment (S flag is set).

DPL (descriptor privilege level) field
Specifies the privilege level of the segment. The privilege level can 
range from 0 to 3, with 0 being the most privileged level. The DPL is 
used to control access to the segment. See Section 5.5, “Privilege 
Levels”, for a description of the relationship of the DPL to the CPL of 
the executing code segment and the RPL of a segment selector.

P (segment-present) flag
Indicates whether the segment is present in memory (set) or not 
present (clear). If this flag is clear, the processor generates a 
segment-not-present exception (#NP) when a segment selector that 
points to the segment descriptor is loaded into a segment register. 
Memory management software can use this flag to control which 
segments are actually loaded into physical memory at a given time. It 
offers a control in addition to paging for managing virtual memory.
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Figure 3-9 shows the format of a segment descriptor when the 
segment-present flag is clear. When this flag is clear, the operating 
system or executive is free to use the locations marked “Available” to 
store its own data, such as information regarding the whereabouts of 
the missing segment.

D/B (default operation size/default stack pointer size and/or upper bound) 
flag
Performs different functions depending on whether the segment 
descriptor is an executable code segment, an expand-down data 
segment, or a stack segment. (This flag should always be set to 1 for 
32-bit code and data segments and to 0 for 16-bit code and data 
segments.)

• Executable code segment. The flag is called the D flag and it 
indicates the default length for effective addresses and operands 
referenced by instructions in the segment. If the flag is set, 32-bit 
addresses and 32-bit or 8-bit operands are assumed; if it is clear, 
16-bit addresses and 16-bit or 8-bit operands are assumed. 
The instruction prefix 66H can be used to select an operand size 
other than the default, and the prefix 67H can be used select an 
address size other than the default.

• Stack segment (data segment pointed to by the SS 
register). The flag is called the B (big) flag and it specifies the 
size of the stack pointer used for implicit stack operations (such as 
pushes, pops, and calls). If the flag is set, a 32-bit stack pointer is 
used, which is stored in the 32-bit ESP register; if the flag is clear, 
a 16-bit stack pointer is used, which is stored in the 16-bit SP 
register. If the stack segment is set up to be an expand-down data 
segment (described in the next paragraph), the B flag also 
specifies the upper bound of the stack segment.

• Expand-down data segment. The flag is called the B flag and it 
specifies the upper bound of the segment. If the flag is set, the 
upper bound is FFFFFFFFH (4 GBytes); if the flag is clear, the 
upper bound is FFFFH (64 KBytes).

Figure 3-9.  Segment Descriptor When Segment-Present Flag Is Clear
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G (granularity) flag
Determines the scaling of the segment limit field. When the granu-
larity flag is clear, the segment limit is interpreted in byte units; when 
flag is set, the segment limit is interpreted in 4-KByte units. (This flag 
does not affect the granularity of the base address; it is always byte 
granular.) When the granularity flag is set, the twelve least significant 
bits of an offset are not tested when checking the offset against the 
segment limit. For example, when the granularity flag is set, a limit of 
0 results in valid offsets from 0 to 4095.

L (64-bit code segment) flag
In IA-32e mode, bit 21 of the second doubleword of the segment 
descriptor indicates whether a code segment contains native 64-bit 
code. A value of 1 indicates instructions in this code segment are 
executed in 64-bit mode. A value of 0 indicates the instructions in this 
code segment are executed in compatibility mode. If L-bit is set, then 
D-bit must be cleared. When not in IA-32e mode or for non-code 
segments, bit 21 is reserved and should always be set to 0.

Available and reserved bits
Bit 20 of the second doubleword of the segment descriptor is available 
for use by system software.

3.4.5.1  Code- and Data-Segment Descriptor Types
When the S (descriptor type) flag in a segment descriptor is set, the descriptor is for 
either a code or a data segment. The highest order bit of the type field (bit 11 of the 
second double word of the segment descriptor) then determines whether the 
descriptor is for a data segment (clear) or a code segment (set). 

For data segments, the three low-order bits of the type field (bits 8, 9, and 10) are 
interpreted as accessed (A), write-enable (W), and expansion-direction (E). See 
Table 3-1 for a description of the encoding of the bits in the type field for code and 
data segments. Data segments can be read-only or read/write segments, depending 
on the setting of the write-enable bit. 
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Stack segments are data segments which must be read/write segments. Loading the 
SS register with a segment selector for a nonwritable data segment generates a 
general-protection exception (#GP). If the size of a stack segment needs to be 
changed dynamically, the stack segment can be an expand-down data segment 
(expansion-direction flag set). Here, dynamically changing the segment limit causes 
stack space to be added to the bottom of the stack. If the size of a stack segment is 
intended to remain static, the stack segment may be either an expand-up or expand-
down type.

The accessed bit indicates whether the segment has been accessed since the last 
time the operating-system or executive cleared the bit. The processor sets this bit 
whenever it loads a segment selector for the segment into a segment register, 
assuming that the type of memory that contains the segment descriptor supports 
processor writes. The bit remains set until explicitly cleared. This bit can be used both 
for virtual memory management and for debugging. 

Table 3-1.  Code- and Data-Segment Types 

Type Field Descriptor
Type

Description

Decimal 11 10
E

9
W

8
A

0 0 0 0 0 Data Read-Only

1 0 0 0 1 Data Read-Only, accessed

2 0 0 1 0 Data Read/Write

3 0 0 1 1 Data Read/Write, accessed

4 0 1 0 0 Data Read-Only, expand-down

5 0 1 0 1 Data Read-Only, expand-down, accessed

6 0 1 1 0 Data Read/Write, expand-down

7 0 1 1 1 Data Read/Write, expand-down, accessed

C R A

8 1 0 0 0 Code Execute-Only

9 1 0 0 1 Code Execute-Only, accessed

10 1 0 1 0 Code Execute/Read

11 1 0 1 1 Code Execute/Read, accessed

12 1 1 0 0 Code Execute-Only, conforming

13 1 1 0 1 Code Execute-Only, conforming, accessed

14 1 1 1 0 Code Execute/Read, conforming

15 1 1 1 1 Code Execute/Read, conforming, accessed
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For code segments, the three low-order bits of the type field are interpreted as 
accessed (A), read enable (R), and conforming (C). Code segments can be execute-
only or execute/read, depending on the setting of the read-enable bit. An 
execute/read segment might be used when constants or other static data have been 
placed with instruction code in a ROM. Here, data can be read from the code segment 
either by using an instruction with a CS override prefix or by loading a segment 
selector for the code segment in a data-segment register (the DS, ES, FS, or GS 
registers). In protected mode, code segments are not writable.

Code segments can be either conforming or nonconforming. A transfer of execution 
into a more-privileged conforming segment allows execution to continue at the 
current privilege level. A transfer into a nonconforming segment at a different privi-
lege level results in a general-protection exception (#GP), unless a call gate or task 
gate is used (see Section 5.8.1, “Direct Calls or Jumps to Code Segments”, for more 
information on conforming and nonconforming code segments). System utilities that 
do not access protected facilities and handlers for some types of exceptions (such as, 
divide error or overflow) may be loaded in conforming code segments. Utilities that 
need to be protected from less privileged programs and procedures should be placed 
in nonconforming code segments. 

NOTE
Execution cannot be transferred by a call or a jump to a less-
privileged (numerically higher privilege level) code segment, 
regardless of whether the target segment is a conforming or noncon-
forming code segment. Attempting such an execution transfer will 
result in a general-protection exception.

All data segments are nonconforming, meaning that they cannot be accessed by less 
privileged programs or procedures (code executing at numerically high privilege 
levels). Unlike code segments, however, data segments can be accessed by more 
privileged programs or procedures (code executing at numerically lower privilege 
levels) without using a special access gate.

If the segment descriptors in the GDT or an LDT are placed in ROM, the processor can 
enter an indefinite loop if software or the processor attempts to update (write to) the 
ROM-based segment descriptors. To prevent this problem, set the accessed bits for 
all segment descriptors placed in a ROM. Also, remove operating-system or executive 
code that attempts to modify segment descriptors located in ROM.

3.5 SYSTEM DESCRIPTOR TYPES
When the S (descriptor type) flag in a segment descriptor is clear, the descriptor type 
is a system descriptor. The processor recognizes the following types of system 
descriptors:
• Local descriptor-table (LDT) segment descriptor.
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• Task-state segment (TSS) descriptor.
• Call-gate descriptor.
• Interrupt-gate descriptor.
• Trap-gate descriptor.
• Task-gate descriptor.

These descriptor types fall into two categories: system-segment descriptors and gate 
descriptors. System-segment descriptors point to system segments (LDT and TSS 
segments). Gate descriptors are in themselves “gates,” which hold pointers to proce-
dure entry points in code segments (call, interrupt, and trap gates) or which hold 
segment selectors for TSS’s (task gates). 

Table 3-2 shows the encoding of the type field for system-segment descriptors and 
gate descriptors. Note that system descriptors in IA-32e mode are 16 bytes instead 
of 8 bytes.

Table 3-2.  System-Segment and Gate-Descriptor Types

Type Field Description

Decimal 11 10 9 8 32-Bit Mode IA-32e Mode

0 0 0 0 0 Reserved Upper 8 byte of an 16-
byte descriptor

1 0 0 0 1 16-bit TSS (Available) Reserved

2 0 0 1 0 LDT LDT

3 0 0 1 1 16-bit TSS (Busy) Reserved

4 0 1 0 0 16-bit Call Gate Reserved

5 0 1 0 1 Task Gate Reserved

6 0 1 1 0 16-bit Interrupt Gate Reserved

7 0 1 1 1 16-bit Trap Gate Reserved

8 1 0 0 0 Reserved Reserved

9 1 0 0 1 32-bit TSS (Available) 64-bit TSS (Available)

10 1 0 1 0 Reserved Reserved

11 1 0 1 1 32-bit TSS (Busy) 64-bit TSS (Busy)

12 1 1 0 0 32-bit Call Gate 64-bit Call Gate

13 1 1 0 1 Reserved Reserved

14 1 1 1 0 32-bit Interrupt Gate 64-bit Interrupt Gate

15 1 1 1 1 32-bit Trap Gate 64-bit Trap Gate
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See also: Section 3.5.1, “Segment Descriptor Tables”, and Section 7.2.2, “TSS 
Descriptor” (for more information on the system-segment descriptors); see Section 
5.8.3, “Call Gates”, Section 6.11, “IDT Descriptors”, and Section 7.2.5, “Task-Gate 
Descriptor” (for more information on the gate descriptors).

3.5.1 Segment Descriptor Tables
A segment descriptor table is an array of segment descriptors (see Figure 3-10). A 
descriptor table is variable in length and can contain up to 8192 (213) 8-byte descrip-
tors. There are two kinds of descriptor tables:
• The global descriptor table (GDT)
• The local descriptor tables (LDT)

Figure 3-10.  Global and Local Descriptor Tables
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Each system must have one GDT defined, which may be used for all programs and 
tasks in the system. Optionally, one or more LDTs can be defined. For example, an 
LDT can be defined for each separate task being run, or some or all tasks can share 
the same LDT.

The GDT is not a segment itself; instead, it is a data structure in linear address space. 
The base linear address and limit of the GDT must be loaded into the GDTR register 
(see Section 2.4, “Memory-Management Registers”). The base addresses of the GDT 
should be aligned on an eight-byte boundary to yield the best processor perfor-
mance. The limit value for the GDT is expressed in bytes. As with segments, the limit 
value is added to the base address to get the address of the last valid byte. A limit 
value of 0 results in exactly one valid byte. Because segment descriptors are always 
8 bytes long, the GDT limit should always be one less than an integral multiple of 
eight (that is, 8N – 1).

The first descriptor in the GDT is not used by the processor. A segment selector to 
this “null descriptor” does not generate an exception when loaded into a data-
segment register (DS, ES, FS, or GS), but it always generates a general-protection 
exception (#GP) when an attempt is made to access memory using the descriptor. By 
initializing the segment registers with this segment selector, accidental reference to 
unused segment registers can be guaranteed to generate an exception.

The LDT is located in a system segment of the LDT type. The GDT must contain a 
segment descriptor for the LDT segment. If the system supports multiple LDTs, each 
must have a separate segment selector and segment descriptor in the GDT. The 
segment descriptor for an LDT can be located anywhere in the GDT. See Section 3.5, 
“System Descriptor Types”, information on the LDT segment-descriptor type.

An LDT is accessed with its segment selector. To eliminate address translations when 
accessing the LDT, the segment selector, base linear address, limit, and access rights 
of the LDT are stored in the LDTR register (see Section 2.4, “Memory-Management 
Registers”). 

When the GDTR register is stored (using the SGDT instruction), a 48-bit “pseudo-
descriptor” is stored in memory (see top diagram in Figure 3-11). To avoid alignment 
check faults in user mode (privilege level 3), the pseudo-descriptor should be located 
at an odd word address (that is, address MOD 4 is equal to 2). This causes the 
processor to store an aligned word, followed by an aligned doubleword. User-mode 
programs normally do not store pseudo-descriptors, but the possibility of generating 
an alignment check fault can be avoided by aligning pseudo-descriptors in this way. 
The same alignment should be used when storing the IDTR register using the SIDT 
instruction. When storing the LDTR or task register (using the SLDT or STR instruc-
tion, respectively), the pseudo-descriptor should be located at a doubleword address 
(that is, address MOD 4 is equal to 0).
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3.5.2 Segment Descriptor Tables in IA-32e Mode
In IA-32e mode, a segment descriptor table can contain up to 8192 (213) 8-byte 
descriptors. An entry in the segment descriptor table can be 8 bytes. System descrip-
tors are expanded to 16 bytes (occupying the space of two entries). 

GDTR and LDTR registers are expanded to hold 64-bit base address. The corre-
sponding pseudo-descriptor is 80 bits. (see the bottom diagram in Figure 3-11).

The following system descriptors expand to 16 bytes:

— Call gate descriptors (see Section 5.8.3.1, “IA-32e Mode Call Gates”)

— IDT gate descriptors (see Section 6.14.1, “64-Bit Mode IDT”)

— LDT and TSS descriptors (see Section 7.2.3, “TSS Descriptor in 64-bit 
mode”).

Figure 3-11.  Pseudo-Descriptor Formats
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CHAPTER 4
PAGING

Chapter 3 explains how segmentation converts logical addresses to linear addresses. 
Paging (or linear-address translation) is the process of translating linear addresses 
so that they can be used to access memory or I/O devices. Paging translates each 
linear address to a physical address and determines, for each translation, what 
accesses to the linear address are allowed (the address’s access rights) and the 
type of caching used for such accesses (the address’s memory type).

Intel-64 processors support three different paging modes. These modes are identi-
fied and defined in Section 4.1. Section 4.2 gives an overview of the translation 
mechanism that is used in all modes. Section 4.3, Section 4.4, and Section 4.5 
discuss the three paging modes in detail.

Section 4.6 details how paging determines and uses access rights. Section 4.7 
discusses exceptions that may be generated by paging (page-fault exceptions). 
Section 4.8 considers data which the processor writes in response to linear-address 
accesses (accessed and dirty flags).

Section 4.9 describes how paging determines the memory types used for accesses to 
linear addresses. Section 4.10 provides details of how a processor may cache infor-
mation about linear-address translation. Section 4.11 outlines interactions between 
paging and certain VMX features. Section 4.12 gives an overview of how paging can 
be used to implement virtual memory.

4.1 PAGING MODES AND CONTROL BITS
Paging behavior is controlled by the following control bits:
• The WP and PG flags in control register CR0 (bit 16 and bit 31, respectively).
• The PSE, PAE, PGE, PCIDE, and SMEP flags in control register CR4 (bit 4, bit 5, 

bit 7, bit 17, and bit 20 respectively).
• The LME and NXE flags in the IA32_EFER MSR (bit 8 and bit 11, respectively).

Software enables paging by using the MOV to CR0 instruction to set CR0.PG. Before 
doing so, software should ensure that control register CR3 contains the physical 
address of the first paging structure that the processor will use for linear-address 
translation (see Section 4.2) and that structure is initialized as desired. See 
Table 4-3, Table 4-7, and Table 4-12 for the use of CR3 in the different paging 
modes.

Section 4.1.1 describes how the values of CR0.PG, CR4.PAE, and IA32_EFER.LME 
determine whether paging is in use and, if so, which of three paging modes is in use. 
Section 4.1.2 explains how to manage these bits to establish or make changes in 
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paging modes. Section 4.1.3 discusses how CR0.WP, CR4.PSE, CR4.PGE, CR4.PCIDE, 
CR4.SMEP, and IA32_EFER.NXE modify the operation of the different paging modes.

4.1.1 Three Paging Modes
If CR0.PG = 0, paging is not used. The logical processor treats all linear addresses as 
if they were physical addresses. CR4.PAE and IA32_EFER.LME are ignored by the 
processor, as are CR0.WP, CR4.PSE, CR4.PGE, CR4.SMEP, and IA32_EFER.NXE.

Paging is enabled if CR0.PG = 1. Paging can be enabled only if protection is enabled 
(CR0.PE = 1). If paging is enabled, one of three paging modes is used. The values of 
CR4.PAE and IA32_EFER.LME determine which paging mode is used:
• If CR0.PG = 1 and CR4.PAE = 0, 32-bit paging is used. 32-bit paging is detailed 

in Section 4.3. 32-bit paging uses CR0.WP, CR4.PSE, CR4.PGE, and CR4.SMEP as 
described in Section 4.1.3.

• If CR0.PG = 1, CR4.PAE = 1, and IA32_EFER.LME = 0, PAE paging is used. PAE 
paging is detailed in Section 4.4. PAE paging uses CR0.WP, CR4.PGE, CR4.SMEP, 
and IA32_EFER.NXE as described in Section 4.1.3.

• If CR0.PG = 1, CR4.PAE = 1, and IA32_EFER.LME = 1, IA-32e paging is used.1 
IA-32e paging is detailed in Section 4.5. IA-32e paging uses CR0.WP, CR4.PGE, 
CR4.PCIDE, CR4.SMEP, and IA32_EFER.NXE as described in Section 4.1.3. 
IA-32e paging is available only on processors that support the Intel 64 archi-
tecture.

The three paging modes differ with regard to the following details:
• Linear-address width. The size of the linear addresses that can be translated.
• Physical-address width. The size of the physical addresses produced by paging.
• Page size. The granularity at which linear addresses are translated. Linear 

addresses on the same page are translated to corresponding physical addresses 
on the same page.

• Support for execute-disable access rights. In some paging modes, software can 
be prevented from fetching instructions from pages that are otherwise readable.

• Support for PCIDs. In some paging modes, software can enable a facility by 
which a logical processor caches information for multiple linear-address spaces. 

1. The LMA flag in the IA32_EFER MSR (bit 10) is a status bit that indicates whether the logical pro-
cessor is in IA-32e mode (and thus using IA-32e paging). The processor always sets 
IA32_EFER.LMA to CR0.PG & IA32_EFER.LME. Software cannot directly modify IA32_EFER.LMA; 
an execution of WRMSR to the IA32_EFER MSR ignores bit 10 of its source operand.
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The processor may retain cached information when software switches between 
different linear-address spaces.

Table 4-1 illustrates the key differences between the three paging modes.

Because they are used only if IA32_EFER.LME = 0, 32-bit paging and PAE paging is 
used only in legacy protected mode. Because legacy protected mode cannot produce 
linear addresses larger than 32 bits, 32-bit paging and PAE paging translate 32-bit 
linear addresses.

Because it is used only if IA32_EFER.LME = 1, IA-32e paging is used only in IA-32e 
mode. (In fact, it is the use of IA-32e paging that defines IA-32e mode.) IA-32e 
mode has two sub-modes:
• Compatibility mode. This mode uses only 32-bit linear addresses. IA-32e paging 

treats bits 47:32 of such an address as all 0.
• 64-bit mode. While this mode produces 64-bit linear addresses, the processor 

ensures that bits 63:47 of such an address are identical.1 IA-32e paging does not 
use bits 63:48 of such addresses.

Table 4-1.  Properties of Different Paging Modes

Paging
Mode

PG in
CR0

PAE in
CR4

LME in
IA32_EFER

Lin.-
Addr.
Width

Phys.-
Addr.
Width1

NOTES:
1. The physical-address width is always bounded by MAXPHYADDR; see Section 4.1.4.

Page
Sizes

Supports
Execute-
Disable?

Supports
PCIDs?

None 0 N/A N/A 32 32 N/A No No

32-bit 1 0 02

2. The processor ensures that IA32_EFER.LME must be 0 if CR0.PG = 1 and CR4.PAE = 0.

32
Up to
403

3. 32-bit paging supports physical-address widths of more than 32 bits only for 4-MByte pages and 
only if the PSE-36 mechanism is supported; see Section 4.1.4 and Section 4.3.

4 KB
4 MB4

4. 4-MByte pages are used with 32-bit paging only if CR4.PSE = 1; see Section 4.3.

No No

PAE 1 1 0 32
Up to
52

4 KB
2 MB

Yes5

5. Execute-disable access rights are applied only if IA32_EFER.NXE = 1; see Section 4.6.

No

IA-32e 1 1 2 48
Up to
52

4 KB
2 MB
1 GB6

6. Not all processors that support IA-32e paging support 1-GByte pages; see Section 4.1.4.

Yes5 Yes7

7. PCIDs are used only if CR4.PCIDE = 1; see Section 4.10.1.
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4.1.2 Paging-Mode Enabling
If CR0.PG = 1, a logical processor is in one of three paging modes, depending on the 
values of CR4.PAE and IA32_EFER.LME. Figure 4-1 illustrates how software can 
enable these modes and make transitions between them. The following items identify 
certain limitations and other details:

1. Such an address is called canonical. Use of a non-canonical linear address in 64-bit mode pro-
duces a general-protection exception (#GP(0)); the processor does not attempt to translate non-
canonical linear addresses using IA-32e paging.

Figure 4-1.  Enabling and Changing Paging Modes
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• IA32_EFER.LME cannot be modified while paging is enabled (CR0.PG = 1). 
Attempts to do so using WRMSR cause a general-protection exception (#GP(0)).

• Paging cannot be enabled (by setting CR0.PG to 1) while CR4.PAE = 0 and 
IA32_EFER.LME = 1. Attempts to do so using MOV to CR0 cause a general-
protection exception (#GP(0)).

• CR4.PAE cannot be cleared while IA-32e paging is active (CR0.PG = 1 and 
IA32_EFER.LME = 1). Attempts to do so using MOV to CR4 cause a general-
protection exception (#GP(0)).

• Regardless of the current paging mode, software can disable paging by clearing 
CR0.PG with MOV to CR0.1

• Software can make transitions between 32-bit paging and PAE paging by 
changing the value of CR4.PAE with MOV to CR4.

• Software cannot make transitions directly between IA-32e paging and either of 
the other two paging modes. It must first disable paging (by clearing CR0.PG with 
MOV to CR0), then set CR4.PAE and IA32_EFER.LME to the desired values (with 
MOV to CR4 and WRMSR), and then re-enable paging (by setting CR0.PG with 
MOV to CR0). As noted earlier, an attempt to clear either CR4.PAE or 
IA32_EFER.LME cause a general-protection exception (#GP(0)).

• VMX transitions allow transitions between paging modes that are not possible 
using MOV to CR or WRMSR. This is because VMX transitions can load CR0, CR4, 
and IA32_EFER in one operation. See Section 4.11.1.

4.1.3 Paging-Mode Modifiers
Details of how each paging mode operates are determined by the following control 
bits:
• The WP flag in CR0 (bit 16).
• The PSE, PGE, PCIDE, and SMEP flags in CR4 (bit 4, bit 7, bit 17, and bit 20, 

respectively).
• The NXE flag in the IA32_EFER MSR (bit 11).

CR0.WP allows pages to be protected from supervisor-mode writes. If CR0.WP = 0, 
software operating with CPL < 3 (supervisor mode) can write to linear addresses 
with read-only access rights; if CR0.WP = 1, it cannot. (Software operating with 
CPL = 3 — user mode — cannot write to linear addresses with read-only access 
rights, regardless of the value of CR0.WP.) Section 4.6 explains how access rights are 
determined.

CR4.PSE enables 4-MByte pages for 32-bit paging. If CR4.PSE = 0, 32-bit paging can 
use only 4-KByte pages; if CR4.PSE = 1, 32-bit paging can use both 4-KByte pages 

1. If CR4.PCIDE = 1, an attempt to clear CR0.PG causes a general-protection exception (#GP); soft-
ware should clear CR4.PCIDE before attempting to disable paging.
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and 4-MByte pages. See Section 4.3 for more information. (PAE paging and IA-32e 
paging can use multiple page sizes regardless of the value of CR4.PSE.)

CR4.PGE enables global pages. If CR4.PGE = 0, no translations are shared across 
address spaces; if CR4.PGE = 1, specified translations may be shared across address 
spaces. See Section 4.10.2.4 for more information.

CR4.PCIDE enables process-context identifiers (PCIDs) for IA-32e paging 
(CR4.PCIDE can be 1 only when IA-32e paging is in use). PCIDs allow a logical 
processor to cache information for multiple linear-address spaces. See Section 
4.10.1 for more information.

CR4.SMEP allows pages to be protected from supervisor-mode instruction fetches. If 
CR4.SMEP = 1, software operating with CPL < 3 (supervisor mode) cannot fetch 
instructions from linear addresses that are accessible in user mode (CPL = 3). 
Section 4.6 explains how access rights are determined.

IA32_EFER.NXE enables execute-disable access rights for PAE paging and IA-32e 
paging. If IA32_EFER.NXE = 1, instructions fetches can be prevented from specified 
linear addresses (even if data reads from the addresses are allowed). Section 4.6 
explains how access rights are determined. (IA32_EFER.NXE has no effect with 32-
bit paging. Software that wants to use this feature to limit instruction fetches from 
readable pages must use either PAE paging or IA-32e paging.)

4.1.4 Enumeration of Paging Features by CPUID
Software can discover support for different paging features using the CPUID instruc-
tion:
• PSE: page-size extensions for 32-bit paging.

If CPUID.01H:EDX.PSE [bit 3] = 1, CR4.PSE may be set to 1, enabling support 
for 4-MByte pages with 32-bit paging (see Section 4.3).

• PAE: physical-address extension.
If CPUID.01H:EDX.PAE [bit 6] = 1, CR4.PAE may be set to 1, enabling PAE 
paging (this setting is also required for IA-32e paging).

• PGE: global-page support.
If CPUID.01H:EDX.PGE [bit 13] = 1, CR4.PGE may be set to 1, enabling the 
global-page feature (see Section 4.10.2.4).

• PAT: page-attribute table.
If CPUID.01H:EDX.PAT [bit 16] = 1, the 8-entry page-attribute table (PAT) is 
supported. When the PAT is supported, three bits in certain paging-structure 
entries select a memory type (used to determine type of caching used) from the 
PAT (see Section 4.9.2).

• PSE-36: page-size extensions with 40-bit physical-address extension.
If CPUID.01H:EDX.PSE-36 [bit 17] = 1, the PSE-36 mechanism is supported, 
indicating that translations using 4-MByte pages with 32-bit paging may produce 
physical addresses with up to 40 bits (see Section 4.3).
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• PCID: process-context identifiers.
If CPUID.01H:ECX.PCID [bit 17] = 1, CR4.PCIDE may be set to 1, enabling 
process-context identifiers (see Section 4.10.1).

• SMEP: supervisor-mode execution prevention.
If CPUID.(EAX=07H,ECX=0H):EBX.SMEP [bit 7] = 1, CR4.SMEP may be set to 1, 
enabling supervisor-mode execution prevention (see Section 4.6).

• NX: execute disable.
If CPUID.80000001H:EDX.NX [bit 20] = 1, IA32_EFER.NXE may be set to 1, 
allowing PAE paging and IA-32e paging to disable execute access to selected 
pages (see Section 4.6). (Processors that do not support CPUID function 
80000001H do not allow IA32_EFER.NXE to be set to 1.)

• Page1GB: 1-GByte pages.
If CPUID.80000001H:EDX.Page1GB [bit 26] = 1, 1-GByte pages are supported 
with IA-32e paging (see Section 4.5).

• LM: IA-32e mode support.
If CPUID.80000001H:EDX.LM [bit 29] = 1, IA32_EFER.LME may be set to 1, 
enabling IA-32e paging. (Processors that do not support CPUID function 
80000001H do not allow IA32_EFER.LME to be set to 1.)

• CPUID.80000008H:EAX[7:0] reports the physical-address width supported by 
the processor. (For processors that do not support CPUID function 80000008H, 
the width is generally 36 if CPUID.01H:EDX.PAE [bit 6] = 1 and 32 otherwise.) 
This width is referred to as MAXPHYADDR. MAXPHYADDR is at most 52.

• CPUID.80000008H:EAX[15:8] reports the linear-address width supported by the 
processor. Generally, this value is 48 if CPUID.80000001H:EDX.LM [bit 29] = 1 
and 32 otherwise. (Processors that do not support CPUID function 80000008H, 
support a linear-address width of 32.)

4.2 HIERARCHICAL PAGING STRUCTURES: AN OVERVIEW
All three paging modes translate linear addresses use hierarchical paging struc-
tures. This section provides an overview of their operation. Section 4.3, Section 4.4, 
and Section 4.5 provide details for the three paging modes.

Every paging structure is 4096 Bytes in size and comprises a number of individual 
entries. With 32-bit paging, each entry is 32 bits (4 bytes); there are thus 1024 
entries in each structure. With PAE paging and IA-32e paging, each entry is 64 bits 
(8 bytes); there are thus 512 entries in each structure. (PAE paging includes one 
exception, a paging structure that is 32 bytes in size, containing 4 64-bit entries.)

The processor uses the upper portion of a linear address to identify a series of 
paging-structure entries. The last of these entries identifies the physical address of 
the region to which the linear address translates (called the page frame). The lower 
portion of the linear address (called the page offset) identifies the specific address 
within that region to which the linear address translates.
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Each paging-structure entry contains a physical address, which is either the address 
of another paging structure or the address of a page frame. In the first case, the 
entry is said to reference the other paging structure; in the latter, the entry is said 
to map a page.

The first paging structure used for any translation is located at the physical address 
in CR3. A linear address is translated using the following iterative procedure. A 
portion of the linear address (initially the uppermost bits) select an entry in a paging 
structure (initially the one located using CR3). If that entry references another 
paging structure, the process continues with that paging structure and with the 
portion of the linear address immediately below that just used. If instead the entry 
maps a page, the process completes: the physical address in the entry is that of the 
page frame and the remaining lower portion of the linear address is the page offset.

The following items give an example for each of the three paging modes (each 
example locates a 4-KByte page frame):
• With 32-bit paging, each paging structure comprises 1024 = 210 entries. For this 

reason, the translation process uses 10 bits at a time from a 32-bit linear 
address. Bits 31:22 identify the first paging-structure entry and bits 21:12 
identify a second. The latter identifies the page frame. Bits 11:0 of the linear 
address are the page offset within the 4-KByte page frame. (See Figure 4-2 for 
an illustration.)

• With PAE paging, the first paging structure comprises only 4 = 22 entries. 
Translation thus begins by using bits 31:30 from a 32-bit linear address to 
identify the first paging-structure entry. Other paging structures comprise 
512 =29 entries, so the process continues by using 9 bits at a time. Bits 29:21 
identify a second paging-structure entry and bits 20:12 identify a third. This last 
identifies the page frame. (See Figure 4-5 for an illustration.)

• With IA-32e paging, each paging structure comprises 512 = 29 entries and 
translation uses 9 bits at a time from a 48-bit linear address. Bits 47:39 identify 
the first paging-structure entry, bits 38:30 identify a second, bits 29:21 a third, 
and bits 20:12 identify a fourth. Again, the last identifies the page frame. (See 
Figure 4-8 for an illustration.)

The translation process in each of the examples above completes by identifying a 
page frame. However, the paging structures may be configured so that translation 
terminates before doing so. This occurs if process encounters a paging-structure 
entry that is marked “not present” (because its P flag — bit 0 — is clear) or in which 
a reserved bit is set. In this case, there is no translation for the linear address; an 
access to that address causes a page-fault exception (see Section 4.7).

In the examples above, a paging-structure entry maps a page with 4-KByte page 
frame when only 12 bits remain in the linear address; entries identified earlier always 
reference other paging structures. That may not apply in other cases. The following 
items identify when an entry maps a page and when it references another paging 
structure:
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• If more than 12 bits remain in the linear address, bit 7 (PS — page size) of the 
current paging-structure entry is consulted. If the bit is 0, the entry references 
another paging structure; if the bit is 1, the entry maps a page.

• If only 12 bits remain in the linear address, the current paging-structure entry 
always maps a page (bit 7 is used for other purposes).

If a paging-structure entry maps a page when more than 12 bits remain in the linear 
address, the entry identifies a page frame larger than 4 KBytes. For example, 32-bit 
paging uses the upper 10 bits of a linear address to locate the first paging-structure 
entry; 22 bits remain. If that entry maps a page, the page frame is 222 Bytes = 4 
MBytes. 32-bit paging supports 4-MByte pages if CR4.PSE = 1. PAE paging and 
IA-32e paging support 2-MByte pages (regardless of the value of CR4.PSE). IA-32e 
paging may support 1-GByte pages (see Section 4.1.4).

Paging structures are given different names based their uses in the translation 
process. Table 4-2 gives the names of the different paging structures. It also 
provides, for each structure, the source of the physical address used to locate it (CR3 
or a different paging-structure entry); the bits in the linear address used to select an 
entry from the structure; and details of about whether and how such an entry can 
map a page.

Table 4-2.   Paging Structures in the Different Paging Modes

Paging 
Structure

Entry 
Name Paging Mode

Physical 
Address of 
Structure

Bits 
Selecting 
Entry

Page Mapping

PML4 table PML4E
32-bit, PAE N/A

IA-32e CR3 47:39 N/A (PS must be 0)

Page-directory-
pointer table

PDPTE

32-bit N/A

PAE CR3 31:30 N/A (PS must be 0)

IA-32e PML4E 38:30 1-GByte page if PS=11

NOTES:
1. Not all processors allow the PS flag to be 1 in PDPTEs; see Section 4.1.4 for how to determine 

whether 1-GByte pages are supported.

Page directory PDE
32-bit CR3 31:22 4-MByte page if PS=12

PAE, IA-32e PDPTE 29:21 2-MByte page if PS=1

Page table PTE
32-bit

PDE
21:12 4-KByte page

PAE, IA-32e 20:12 4-KByte page
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4.3 32-BIT PAGING
A logical processor uses 32-bit paging if CR0.PG = 1 and CR4.PAE = 0. 32-bit paging 
translates 32-bit linear addresses to 40-bit physical addresses.1 Although 40 bits 
corresponds to 1 TByte, linear addresses are limited to 32 bits; at most 4 GBytes of 
linear-address space may be accessed at any given time.

32-bit paging uses a hierarchy of paging structures to produce a translation for a 
linear address. CR3 is used to locate the first paging-structure, the page directory. 
Table 4-3 illustrates how CR3 is used with 32-bit paging.

32-bit paging may map linear addresses to either 4-KByte pages or 4-MByte pages. 
Figure 4-2 illustrates the translation process when it uses a 4-KByte page; Figure 4-3 
covers the case of a 4-MByte page. The following items describe the 32-bit paging 
process in more detail as well has how the page size is determined:
• A 4-KByte naturally aligned page directory is located at the physical address 

specified in bits 31:12 of CR3 (see Table 4-3). A page directory comprises 1024 
32-bit entries (PDEs). A PDE is selected using the physical address defined as 
follows:

— Bits 39:32 are all 0.

— Bits 31:12 are from CR3.

— Bits 11:2 are bits 31:22 of the linear address.

— Bits 1:0 are 0.

Because a PDE is identified using bits 31:22 of the linear address, it controls access 
to a 4-Mbyte region of the linear-address space. Use of the PDE depends on CR.PSE 
and the PDE’s PS flag (bit 7):
• If CR4.PSE = 1 and the PDE’s PS flag is 1, the PDE maps a 4-MByte page (see 

Table 4-4). The final physical address is computed as follows:

— Bits 39:32 are bits 20:13 of the PDE.

2. 32-bit paging ignores the PS flag in a PDE (and uses the entry to reference a page table) unless 
CR4.PSE = 1. Not all processors allow CR4.PSE to be 1; see Section 4.1.4 for how to determine 
whether 4-MByte pages are supported with 32-bit paging.

1. Bits in the range 39:32 are 0 in any physical address used by 32-bit paging except those used to 
map 4-MByte pages. If the processor does not support the PSE-36 mechanism, this is true also 
for physical addresses used to map 4-MByte pages. If the processor does support the PSE-36 
mechanism and MAXPHYADDR < 40, bits in the range 39:MAXPHYADDR are 0 in any physical 
address used to map a 4-MByte page. (The corresponding bits are reserved in PDEs.) See Section 
4.1.4 for how to determine MAXPHYADDR and whether the PSE-36 mechanism is supported.
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— Bits 31:22 are bits 31:22 of the PDE.1

— Bits 21:0 are from the original linear address.
• If CR4.PSE = 0 or the PDE’s PS flag is 0, a 4-KByte naturally aligned page table is 

located at the physical address specified in bits 31:12 of the PDE (see Table 4-5). 
A page table comprises 1024 32-bit entries (PTEs). A PTE is selected using the 
physical address defined as follows:

— Bits 39:32 are all 0.

— Bits 31:12 are from the PDE.

— Bits 11:2 are bits 21:12 of the linear address.

— Bits 1:0 are 0.
• Because a PTE is identified using bits 31:12 of the linear address, every PTE 

maps a 4-KByte page (see Table 4-6). The final physical address is computed as 
follows:

— Bits 39:32 are all 0.

— Bits 31:12 are from the PTE.

— Bits 11:0 are from the original linear address.

If a paging-structure entry’s P flag (bit 0) is 0 or if the entry sets any reserved bit, the 
entry is used neither to reference another paging-structure entry nor to map a page. 
A reference using a linear address whose translation would use such a paging-struc-
ture entry causes a page-fault exception (see Section 4.7).

With 32-bit paging, there are reserved bits only if CR4.PSE = 1:
• If the P flag and the PS flag (bit 7) of a PDE are both 1, the bits reserved depend 

on MAXPHYADDR whether the PSE-36 mechanism is supported:2

— If the PSE-36 mechanism is not supported, bits 21:13 are reserved.

— If the PSE-36 mechanism is supported, bits 21:(M–19) are reserved, where 
M is the minimum of 40 and MAXPHYADDR.

• If the PAT is not supported:3

— If the P flag of a PTE is 1, bit 7 is reserved.

— If the P flag and the PS flag of a PDE are both 1, bit 12 is reserved.

(If CR4.PSE = 0, no bits are reserved with 32-bit paging.)

1. The upper bits in the final physical address do not all come from corresponding positions in the 
PDE; the physical-address bits in the PDE are not all contiguous.

2. See Section 4.1.4 for how to determine MAXPHYADDR and whether the PSE-36 mechanism is 
supported.

3. See Section 4.1.4 for how to determine whether the PAT is supported.
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A reference using a linear address that is successfully translated to a physical 
address is performed only if allowed by the access rights of the translation; see 
Section 4.6.

Figure 4-2.  Linear-Address Translation to a 4-KByte Page using 32-Bit Paging

Figure 4-3.  Linear-Address Translation to a 4-MByte Page using 32-Bit Paging
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Figure 4-4 gives a summary of the formats of CR3 and the paging-structure entries 
with 32-bit paging. For the paging structure entries, it identifies separately the 
format of entries that map pages, those that reference other paging structures, and 
those that do neither because they are “not present”; bit 0 (P) and bit 7 (PS) are 
highlighted because they determine how such an entry is used.

31302928272625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0

Address of page directory1

NOTES:
1. CR3 has 64 bits on processors supporting the Intel-64 architecture. These bits are ignored with 

32-bit paging.
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Figure 4-4.  Formats of CR3 and Paging-Structure Entries with 32-Bit Paging
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Table 4-3.  Use of CR3 with 32-Bit Paging

Bit 
Position(s)

Contents

2:0 Ignored

3 (PWT) Page-level write-through; indirectly determines the memory type used to access 
the page directory during linear-address translation (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access 
the page directory during linear-address translation (see Section 4.9)

11:5 Ignored

31:12 Physical address of the 4-KByte aligned page directory used for linear-address 
translation

63:32 Ignored (these bits exist only on processors supporting the Intel-64 architecture)

Table 4-4.  Format of a 32-Bit Page-Directory Entry that Maps a 4-MByte Page

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to map a 4-MByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 4-MByte page referenced by 
this entry (depends on CPL and CR0.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 4-MByte page 
referenced by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access 
the 4-MByte page referenced by this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access 
the 4-MByte page referenced by this entry (see Section 4.9)

5 (A) Accessed; indicates whether software has accessed the 4-MByte page referenced 
by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 4-MByte page referenced by 
this entry (see Section 4.8)

7 (PS) Page size; must be 1 (otherwise, this entry references a page table; see Table 4-5)
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8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 
4.10); ignored otherwise

11:9 Ignored

12 (PAT) If the PAT is supported, indirectly determines the memory type used to access the 
4-MByte page referenced by this entry (see Section 4.9.2); otherwise, reserved 
(must be 0)1

(M–20):13 Bits (M–1):32 of physical address of the 4-MByte page referenced by this entry2

21:(M–19) Reserved (must be 0)

31:22 Bits 31:22 of physical address of the 4-MByte page referenced by this entry

NOTES:
1. See Section 4.1.4 for how to determine whether the PAT is supported.
2. If the PSE-36 mechanism is not supported, M is 32, and this row does not apply. If the PSE-36 

mechanism is supported, M is the minimum of 40 and MAXPHYADDR (this row does not apply if 
MAXPHYADDR = 32). See Section 4.1.4 for how to determine MAXPHYADDR and whether the 
PSE-36 mechanism is supported.

Table 4-5.  Format of a 32-Bit Page-Directory Entry that References a Page Table

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to reference a page table

1 (R/W) Read/write; if 0, writes may not be allowed to the 4-MByte region controlled by 
this entry (depends on CPL and CR0.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 4-MByte region 
controlled by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access 
the page table referenced by this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access 
the page table referenced by this entry (see Section 4.9)

5 (A) Accessed; indicates whether this entry has been used for linear-address 
translation (see Section 4.8)

Table 4-4.  Format of a 32-Bit Page-Directory Entry that Maps a 4-MByte Page 

Bit 
Position(s)

Contents
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6 Ignored

7 (PS) If CR4.PSE = 1, must be 0 (otherwise, this entry maps a 4-MByte page; see 
Table 4-4); otherwise, ignored

11:8 Ignored

31:12 Physical address of 4-KByte aligned page table referenced by this entry

Table 4-6.  Format of a 32-Bit Page-Table Entry that Maps a 4-KByte Page

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to map a 4-KByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 4-KByte page referenced by 
this entry (depends on CPL and CR0.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 4-KByte page 
referenced by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access 
the 4-KByte page referenced by this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access 
the 4-KByte page referenced by this entry (see Section 4.9)

5 (A) Accessed; indicates whether software has accessed the 4-KByte page referenced 
by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 4-KByte page referenced by 
this entry (see Section 4.8)

7 (PAT) If the PAT is supported, indirectly determines the memory type used to access the 
4-KByte page referenced by this entry (see Section 4.9.2); otherwise, reserved 
(must be 0)1

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 
4.10); ignored otherwise

11:9 Ignored

31:12 Physical address of the 4-KByte page referenced by this entry

Table 4-5.  Format of a 32-Bit Page-Directory Entry that References a Page Table 

Bit 
Position(s)

Contents
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4.4 PAE PAGING
A logical processor uses PAE paging if CR0.PG = 1, CR4.PAE = 1, and 
IA32_EFER.LME = 0. PAE paging translates 32-bit linear addresses to 52-bit physical 
addresses.1 Although 52 bits corresponds to 4 PBytes, linear addresses are limited to 
32 bits; at most 4 GBytes of linear-address space may be accessed at any given 
time.

With PAE paging, a logical processor maintains a set of four (4) PDPTE registers, 
which are loaded from an address in CR3. Linear address are translated using 4 hier-
archies of in-memory paging structures, each located using one of the PDPTE regis-
ters. (This is different from the other paging modes, in which there is one hierarchy 
referenced by CR3.)

Section 4.4.1 discusses the PDPTE registers. Section 4.4.2 describes linear-address 
translation with PAE paging.

4.4.1 PDPTE Registers
When PAE paging is used, CR3 references the base of a 32-Byte page-directory-
pointer table. Table 4-7 illustrates how CR3 is used with PAE paging.

The page-directory-pointer-table comprises four (4) 64-bit entries called PDPTEs. 
Each PDPTE controls access to a 1-GByte region of the linear-address space. Corre-
sponding to the PDPTEs, the logical processor maintains a set of four (4) internal, 
non-architectural PDPTE registers, called PDPTE0, PDPTE1, PDPTE2, and PDPTE3. 

NOTES:
1. See Section 4.1.4 for how to determine whether the PAT is supported.

1. If MAXPHYADDR < 52, bits in the range 51:MAXPHYADDR will be 0 in any physical address used 
by PAE paging. (The corresponding bits are reserved in the paging-structure entries.) See Section 
4.1.4 for how to determine MAXPHYADDR.

Table 4-7.  Use of CR3 with PAE Paging

Bit 
Position(s)

Contents

4:0 Ignored

31:5 Physical address of the 32-Byte aligned page-directory-pointer table used for 
linear-address translation

63:32 Ignored (these bits exist only on processors supporting the Intel-64 architecture)
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The logical processor loads these registers from the PDPTEs in memory as part of 
certain operations:
• If PAE paging would be in use following an execution of MOV to CR0 or MOV to 

CR4 (see Section 4.1.1) and the instruction is modifying any of CR0.CD, CR0.NW, 
CR0.PG, CR4.PAE, CR4.PGE, CR4.PSE, or CR4.SMEP; then the PDPTEs are loaded 
from the address in CR3.

• If MOV to CR3 is executed while the logical processor is using PAE paging, the 
PDPTEs are loaded from the address being loaded into CR3.

• If PAE paging is in use and a task switch changes the value of CR3, the PDPTEs 
are loaded from the address in the new CR3 value.

• Certain VMX transitions load the PDPTE registers. See Section 4.11.1.

Table 4-8 gives the format of a PDPTE. If any of the PDPTEs sets both the P flag 
(bit 0) and any reserved bit, the MOV to CR instruction causes a general-protection 
exception (#GP(0)) and the PDPTEs are not loaded.1 As shown in Table 4-8, bits 2:1, 
8:5, and 63:MAXPHYADDR are reserved in the PDPTEs.

1. On some processors, reserved bits are checked even in PDPTEs in which the P flag (bit 0) is 0.

Table 4-8.  Format of a PAE Page-Directory-Pointer-Table Entry (PDPTE)

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to reference a page directory

2:1 Reserved (must be 0)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access 
the page directory referenced by this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access 
the page directory referenced by this entry (see Section 4.9)

8:5 Reserved (must be 0)

11:9 Ignored

(M–1):12 Physical address of 4-KByte aligned page directory referenced by this entry1

NOTES:
1. M is an abbreviation for MAXPHYADDR, which is at most 52; see Section 4.1.4.

63:M Reserved (must be 0)
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4.4.2 Linear-Address Translation with PAE Paging
PAE paging may map linear addresses to either 4-KByte pages or 2-MByte pages. 
Figure 4-5 illustrates the translation process when it produces a 4-KByte page; 
Figure 4-6 covers the case of a 2-MByte page. The following items describe the PAE 
paging process in more detail as well has how the page size is determined:
• Bits 31:30 of the linear address select a PDPTE register (see Section 4.4.1); this 

is PDPTEi, where i is the value of bits 31:30.1 Because a PDPTE register is 
identified using bits 31:30 of the linear address, it controls access to a 1-GByte 
region of the linear-address space. If the P flag (bit 0) of PDPTEi is 0, the 
processor ignores bits 63:1, and there is no mapping for the 1-GByte region 
controlled by PDPTEi. A reference using a linear address in this region causes a 
page-fault exception (see Section 4.7).

• If the P flag of PDPTEi is 1, 4-KByte naturally aligned page directory is located at 
the physical address specified in bits 51:12 of PDPTEi (see Table 4-8 in Section 
4.4.1) A page directory comprises 512 64-bit entries (PDEs). A PDE is selected 
using the physical address defined as follows:

— Bits 51:12 are from PDPTEi.

— Bits 11:3 are bits 29:21 of the linear address.

— Bits 2:0 are 0.

Because a PDE is identified using bits 31:21 of the linear address, it controls access 
to a 2-Mbyte region of the linear-address space. Use of the PDE depends on its PS 
flag (bit 7):
• If the PDE’s PS flag is 1, the PDE maps a 2-MByte page (see Table 4-9). The final 

physical address is computed as follows:

— Bits 51:21 are from the PDE.

— Bits 20:0 are from the original linear address.
• If the PDE’s PS flag is 0, a 4-KByte naturally aligned page table is located at the 

physical address specified in bits 51:12 of the PDE (see Table 4-10). A page 
directory comprises 512 64-bit entries (PTEs). A PTE is selected using the 
physical address defined as follows:

— Bits 51:12 are from the PDE.

— Bits 11:3 are bits 20:12 of the linear address.

— Bits 2:0 are 0.
• Because a PTE is identified using bits 31:12 of the linear address, every PTE maps 

a 4-KByte page (see Table 4-11). The final physical address is computed as 
follows:

1. With PAE paging, the processor does not use CR3 when translating a linear address (as it does 
the other paging modes). It does not access the PDPTEs in the page-directory-pointer table dur-
ing linear-address translation.
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— Bits 51:12 are from the PTE.

— Bits 11:0 are from the original linear address.

If the P flag (bit 0) of a PDE or a PTE is 0 or if a PDE or a PTE sets any reserved bit, 
the entry is used neither to reference another paging-structure entry nor to map a 
page. A reference using a linear address whose translation would use such a paging-
structure entry causes a page-fault exception (see Section 4.7).

The following bits are reserved with PAE paging:
• If the P flag (bit 0) of a PDE or a PTE is 1, bits 62:MAXPHYADDR are reserved.
• If the P flag and the PS flag (bit 7) of a PDE are both 1, bits 20:13 are reserved.
• If IA32_EFER.NXE = 0 and the P flag of a PDE or a PTE is 1, the XD flag (bit 63) 

is reserved.
• If the PAT is not supported:1

— If the P flag of a PTE is 1, bit 7 is reserved.

— If the P flag and the PS flag of a PDE are both 1, bit 12 is reserved.

A reference using a linear address that is successfully translated to a physical 
address is performed only if allowed by the access rights of the translation; see 
Section 4.6.

1. See Section 4.1.4 for how to determine whether the PAT is supported.

Figure 4-5.  Linear-Address Translation to a 4-KByte Page using PAE Paging
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Figure 4-6.  Linear-Address Translation to a 2-MByte Page using PAE Paging

Table 4-9.  Format of a PAE Page-Directory Entry that Maps a 2-MByte Page

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to map a 2-MByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 2-MByte page referenced by 
this entry (depends on CPL and CR0.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 2-MByte page 
referenced by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access 
the 2-MByte page referenced by this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access 
the 2-MByte page referenced by this entry (see Section 4.9)

5 (A) Accessed; indicates whether software has accessed the 2-MByte page referenced 
by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 2-MByte page referenced by 
this entry (see Section 4.8)

7 (PS) Page size; must be 1 (otherwise, this entry references a page table; see 
Table 4-10)
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8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 
4.10); ignored otherwise

11:9 Ignored

12 (PAT) If the PAT is supported, indirectly determines the memory type used to access the 
2-MByte page referenced by this entry (see Section 4.9.2); otherwise, reserved 
(must be 0)1

20:13 Reserved (must be 0)

(M–1):21 Physical address of the 2-MByte page referenced by this entry

62:M Reserved (must be 0)

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed 
from the 2-MByte page controlled by this entry; see Section 4.6); otherwise, 
reserved (must be 0)

NOTES:
1. See Section 4.1.4 for how to determine whether the PAT is supported.

Table 4-10.  Format of a PAE Page-Directory Entry that References a Page Table

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to reference a page table

1 (R/W) Read/write; if 0, writes may not be allowed to the 2-MByte region controlled by 
this entry (depends on CPL and CR0.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 2-MByte region 
controlled by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access 
the page table referenced by this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access 
the page table referenced by this entry (see Section 4.9)

5 (A) Accessed; indicates whether this entry has been used for linear-address 
translation (see Section 4.8)

Table 4-9.  Format of a PAE Page-Directory Entry that Maps a 2-MByte Page (Contd.)

Bit 
Position(s)

Contents
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6 Ignored

7 (PS) Page size; must be 0 (otherwise, this entry maps a 2-MByte page; see Table 4-9)

11:8 Ignored

(M–1):12 Physical address of 4-KByte aligned page table referenced by this entry

62:M Reserved (must be 0)

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed 
from the 2-MByte region controlled by this entry; see Section 4.6); otherwise, 
reserved (must be 0)

Table 4-11.  Format of a PAE Page-Table Entry that Maps a 4-KByte Page

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to map a 4-KByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 4-KByte page referenced by 
this entry (depends on CPL and CR0.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 4-KByte page 
referenced by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access 
the 4-KByte page referenced by this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access 
the 4-KByte page referenced by this entry (see Section 4.9)

5 (A) Accessed; indicates whether software has accessed the 4-KByte page referenced 
by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 4-KByte page referenced by 
this entry (see Section 4.8)

7 (PAT) If the PAT is supported, indirectly determines the memory type used to access the 
4-KByte page referenced by this entry (see Section 4.9.2); otherwise, reserved 
(must be 0)1

Table 4-10.  Format of a PAE Page-Directory Entry that References a Page Table 

Bit 
Position(s)

Contents
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Figure 4-7 gives a summary of the formats of CR3 and the paging-structure entries 
with PAE paging. For the paging structure entries, it identifies separately the format 
of entries that map pages, those that reference other paging structures, and those 
that do neither because they are “not present”; bit 0 (P) and bit 7 (PS) are high-
lighted because they determine how a paging-structure entry is used.

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 
4.10); ignored otherwise

11:9 Ignored

(M–1):12 Physical address of the 4-KByte page referenced by this entry

62:M Reserved (must be 0)

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed 
from the 4-KByte page controlled by this entry; see Section 4.6); otherwise, 
reserved (must be 0)

NOTES:
1. See Section 4.1.4 for how to determine whether the PAT is supported.
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Figure 4-7.  Formats of CR3 and Paging-Structure Entries with PAE Paging

Table 4-11.  Format of a PAE Page-Table Entry that Maps a 4-KByte Page (Contd.)

Bit 
Position(s)

Contents
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Ignored 0
PDE:
not

present

X
D

Reserved Address of 4KB page frame Ign. G
P
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D A
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D

P
W
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/
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1
PTE:
4KB
page

Ignored 0
PTE:
not

present

NOTES:
1. M is an abbreviation for MAXPHYADDR.
2. CR3 has 64 bits only on processors supporting the Intel-64 architecture. These bits are ignored with 

PAE paging.
3. Reserved fields must be 0.
4. If IA32_EFER.NXE = 0 and the P flag of a PDE or a PTE is 1, the XD flag (bit 63) is reserved.
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Figure 4-7.  Formats of CR3 and Paging-Structure Entries with PAE Paging (Contd.)
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4.5 IA-32E PAGING
A logical processor uses IA-32e paging if CR0.PG = 1, CR4.PAE = 1, and 
IA32_EFER.LME = 1. With IA-32e paging, linear address are translated using a hier-
archy of in-memory paging structures located using the contents of CR3. IA-32e 
paging translates 48-bit linear addresses to 52-bit physical addresses.1 Although 52 
bits corresponds to 4 PBytes, linear addresses are limited to 48 bits; at most 256 
TBytes of linear-address space may be accessed at any given time.

IA-32e paging uses a hierarchy of paging structures to produce a translation for a 
linear address. CR3 is used to locate the first paging-structure, the PML4 table. Use 
of CR3 with IA-32e paging depends on whether process-context identifiers (PCIDs) 
have been enabled by setting CR4.PCIDE:
• Table 4-12 illustrates how CR3 is used with IA-32e paging if CR4.PCIDE = 0.

1. If MAXPHYADDR < 52, bits in the range 51:MAXPHYADDR will be 0 in any physical address used 
by IA-32e paging. (The corresponding bits are reserved in the paging-structure entries.) See Sec-
tion 4.1.4 for how to determine MAXPHYADDR.

Table 4-12.  Use of CR3 with IA-32e Paging and CR4.PCIDE = 0

Bit 
Position(s)

Contents

2:0 Ignored

3 (PWT) Page-level write-through; indirectly determines the memory type used to access 
the PML4 table during linear-address translation (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access 
the PML4 table during linear-address translation (see Section 4.9.2)

11:5 Ignored

M–1:12 Physical address of the 4-KByte aligned PML4 table used for linear-address 
translation1

NOTES:
1. M is an abbreviation for MAXPHYADDR, which is at most 52; see Section 4.1.4.

63:M Reserved (must be 0)
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• Table 4-13 illustrates how CR3 is used with IA-32e paging if CR4.PCIDE = 1.

After software modifies the value of CR4.PCIDE, the logical processor immediately 
begins using CR3 as specified for the new value. For example, if software changes 
CR4.PCIDE from 1 to 0, the current PCID immediately changes from CR3[11:0] to 
000H (see also Section 4.10.4.1). In addition, the logical processor subsequently 
determines the memory type used to access the PML4 table using CR3.PWT and 
CR3.PCD, which had been bits 4:3 of the PCID.

IA-32e paging may map linear addresses to 4-KByte pages, 2-MByte pages, or 1-
GByte pages.1 Figure 4-8 illustrates the translation process when it produces a 4-
KByte page; Figure 4-9 covers the case of a 2-MByte page, and Figure 4-10 the case 
of a 1-GByte page.

Table 4-13.  Use of CR3 with IA-32e Paging and CR4.PCIDE = 1

Bit 
Position(s)

Contents

11:0 PCID (see Section 4.10.1)1

NOTES:
1. Section 4.9.2 explains how the processor determines the memory type used to access the PML4 

table during linear-address translation with CR4.PCIDE = 1.

M–1:12 Physical address of the 4-KByte aligned PML4 table used for linear-address 
translation2

2. M is an abbreviation for MAXPHYADDR, which is at most 52; see Section 4.1.4.

63:M Reserved (must be 0)3

3. See Section 4.10.4.1 for use of bit 63 of the source operand of the MOV to CR3 instruction.

1. Not all processors support 1-GByte pages; see Section 4.1.4.
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Figure 4-8.  Linear-Address Translation to a 4-KByte Page using IA-32e Paging
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Figure 4-9.  Linear-Address Translation to a 2-MByte Page using IA-32e Paging

Directory Ptr

Linear Address

PDPTE

CR3

39 38

Pointer Table

9
9

40

21

31

2-MByte Page

Offset

Physical Addr

PDE with PS=1

02021

Directory

30 29

Page-Directory-

Page-Directory

PML4

47

9

PML4E

40

40
Vol. 3A 4-29



PAGING
The following items describe the IA-32e paging process in more detail as well has 
how the page size is determined.
• A 4-KByte naturally aligned PML4 table is located at the physical address 

specified in bits 51:12 of CR3 (see Table 4-12). A PML4 table comprises 512 64-
bit entries (PML4Es). A PML4E is selected using the physical address defined as 
follows:

— Bits 51:12 are from CR3.

— Bits 11:3 are bits 47:39 of the linear address.

— Bits 2:0 are all 0.
Because a PML4E is identified using bits 47:39 of the linear address, it controls 
access to a 512-GByte region of the linear-address space.

• A 4-KByte naturally aligned page-directory-pointer table is located at the 
physical address specified in bits 51:12 of the PML4E (see Table 4-14). A page-
directory-pointer table comprises 512 64-bit entries (PDPTEs). A PDPTE is 
selected using the physical address defined as follows:

— Bits 51:12 are from the PML4E.

Figure 4-10.  Linear-Address Translation to a 1-GByte Page using IA-32e Paging
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— Bits 11:3 are bits 38:30 of the linear address.

— Bits 2:0 are all 0.

Because a PDPTE is identified using bits 47:30 of the linear address, it controls 
access to a 1-GByte region of the linear-address space. Use of the PDPTE depends on 
its PS flag (bit 7):1

• If the PDPTE’s PS flag is 1, the PDPTE maps a 1-GByte page (see Table 4-15). The 
final physical address is computed as follows:

— Bits 51:30 are from the PDPTE.

— Bits 29:0 are from the original linear address.
• If the PDE’s PS flag is 0, a 4-KByte naturally aligned page directory is located at 

the physical address specified in bits 51:12 of the PDPTE (see Table 4-16). A 
page directory comprises 512 64-bit entries (PDEs). A PDE is selected using the 
physical address defined as follows:

— Bits 51:12 are from the PDPTE.

— Bits 11:3 are bits 29:21 of the linear address.

— Bits 2:0 are all 0.

Because a PDE is identified using bits 47:21 of the linear address, it controls access 
to a 2-MByte region of the linear-address space. Use of the PDE depends on its PS 
flag:
• If the PDE’s PS flag is 1, the PDE maps a 2-MByte page. The final physical address 

is computed as shown in Table 4-17.

— Bits 51:21 are from the PDE.

— Bits 20:0 are from the original linear address.
• If the PDE’s PS flag is 0, a 4-KByte naturally aligned page table is located at the 

physical address specified in bits 51:12 of the PDE (see Table 4-18). A page table 
comprises 512 64-bit entries (PTEs). A PTE is selected using the physical address 
defined as follows:

— Bits 51:12 are from the PDE.

— Bits 11:3 are bits 20:12 of the linear address.

— Bits 2:0 are all 0.
• Because a PTE is identified using bits 47:12 of the linear address, every PTE 

maps a 4-KByte page (see Table 4-19). The final physical address is computed as 
follows:

— Bits 51:12 are from the PTE.

— Bits 11:0 are from the original linear address.

1. The PS flag of a PDPTE is reserved and must be 0 (if the P flag is 1) if 1-GByte pages are not sup-
ported. See Section 4.1.4 for how to determine whether 1-GByte pages are supported.
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If a paging-structure entry’s P flag (bit 0) is 0 or if the entry sets any reserved bit, the 
entry is used neither to reference another paging-structure entry nor to map a page. 
A reference using a linear address whose translation would use such a paging-struc-
ture entry causes a page-fault exception (see Section 4.7).

The following bits are reserved with IA-32e paging:
• If the P flag of a paging-structure entry is 1, bits 51:MAXPHYADDR are reserved.
• If the P flag of a PML4E is 1, the PS flag is reserved.
• If 1-GByte pages are not supported and the P flag of a PDPTE is 1, the PS flag is 

reserved.1

• If the P flag and the PS flag of a PDPTE are both 1, bits 29:13 are reserved.
• If the P flag and the PS flag of a PDE are both 1, bits 20:13 are reserved.
• If IA32_EFER.NXE = 0 and the P flag of a paging-structure entry is 1, the XD flag 

(bit 63) is reserved.

A reference using a linear address that is successfully translated to a physical 
address is performed only if allowed by the access rights of the translation; see 
Section 4.6.

Figure 4-11 gives a summary of the formats of CR3 and the IA-32e paging-structure 
entries. For the paging structure entries, it identifies separately the format of entries 
that map pages, those that reference other paging structures, and those that do 
neither because they are “not present”; bit 0 (P) and bit 7 (PS) are highlighted 
because they determine how a paging-structure entry is used.

1. See Section 4.1.4 for how to determine whether 1-GByte pages are supported.
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Table 4-14.  Format of an IA-32e PML4 Entry (PML4E) that References a Page-
Directory-Pointer Table

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to reference a page-directory-pointer table

1 (R/W) Read/write; if 0, writes may not be allowed to the 512-GByte region controlled by 
this entry (depends on CPL and CR0.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 512-GByte 
region controlled by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access 
the page-directory-pointer table referenced by this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access 
the page-directory-pointer table referenced by this entry (see Section 4.9.2)

5 (A) Accessed; indicates whether this entry has been used for linear-address 
translation (see Section 4.8)

6 Ignored

7 (PS) Reserved (must be 0)

11:8 Ignored

M–1:12 Physical address of 4-KByte aligned page-directory-pointer table referenced by 
this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed 
from the 512-GByte region controlled by this entry; see Section 4.6); otherwise, 
reserved (must be 0)
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Table 4-15.  Format of an IA-32e Page-Directory-Pointer-Table Entry (PDPTE) that 
Maps a 1-GByte Page

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to map a 1-GByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 1-GByte page referenced by 
this entry (depends on CPL and CR0.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 1-GByte page 
referenced by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access 
the 1-GByte page referenced by this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access 
the 1-GByte page referenced by this entry (see Section 4.9.2)

5 (A) Accessed; indicates whether software has accessed the 1-GByte page referenced 
by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 1-GByte page referenced by 
this entry (see Section 4.8)

7 (PS) Page size; must be 1 (otherwise, this entry references a page directory; see 
Table 4-16)

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 
4.10); ignored otherwise

11:9 Ignored

12 (PAT) Indirectly determines the memory type used to access the 1-GByte page 
referenced by this entry (see Section 4.9.2)1

29:13 Reserved (must be 0)

(M–1):30 Physical address of the 1-GByte page referenced by this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed 
from the 1-GByte page controlled by this entry; see Section 4.6); otherwise, 
reserved (must be 0)
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NOTES:
1. The PAT is supported on all processors that support IA-32e paging.

Table 4-16.  Format of an IA-32e Page-Directory-Pointer-Table Entry (PDPTE) that 
References a Page Directory

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to reference a page directory

1 (R/W) Read/write; if 0, writes may not be allowed to the 1-GByte region controlled by 
this entry (depends on CPL and CR0.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 1-GByte region 
controlled by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access 
the page directory referenced by this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access 
the page directory referenced by this entry (see Section 4.9.2)

5 (A) Accessed; indicates whether this entry has been used for linear-address 
translation (see Section 4.8)

6 Ignored

7 (PS) Page size; must be 0 (otherwise, this entry maps a 1-GByte page; see Table 4-15)

11:8 Ignored

(M–1):12 Physical address of 4-KByte aligned page directory referenced by this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed 
from the 1-GByte region controlled by this entry; see Section 4.6); otherwise, 
reserved (must be 0)
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Table 4-17.  Format of an IA-32e Page-Directory Entry that Maps a 2-MByte Page

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to map a 2-MByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 2-MByte page referenced by 
this entry (depends on CPL and CR0.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 2-MByte page 
referenced by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access 
the 2-MByte page referenced by this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access 
the 2-MByte page referenced by this entry (see Section 4.9.2)

5 (A) Accessed; indicates whether software has accessed the 2-MByte page referenced 
by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 2-MByte page referenced by 
this entry (see Section 4.8)

7 (PS) Page size; must be 1 (otherwise, this entry references a page table; see 
Table 4-18)

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 
4.10); ignored otherwise

11:9 Ignored

12 (PAT) Indirectly determines the memory type used to access the 2-MByte page 
referenced by this entry (see Section 4.9.2)

20:13 Reserved (must be 0)

(M–1):21 Physical address of the 2-MByte page referenced by this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed 
from the 2-MByte page controlled by this entry; see Section 4.6); otherwise, 
reserved (must be 0)
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Table 4-18.  Format of an IA-32e Page-Directory Entry that References a Page Table

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to reference a page table

1 (R/W) Read/write; if 0, writes may not be allowed to the 2-MByte region controlled by 
this entry (depends on CPL and CR0.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 2-MByte region 
controlled by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access 
the page table referenced by this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access 
the page table referenced by this entry (see Section 4.9.2)

5 (A) Accessed; indicates whether this entry has been used for linear-address 
translation (see Section 4.8)

6 Ignored

7 (PS) Page size; must be 0 (otherwise, this entry maps a 2-MByte page; see Table 4-17)

11:8 Ignored

(M–1):12 Physical address of 4-KByte aligned page table referenced by this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed 
from the 2-MByte region controlled by this entry; see Section 4.6); otherwise, 
reserved (must be 0)
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Table 4-19.  Format of an IA-32e Page-Table Entry that Maps a 4-KByte Page

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to map a 4-KByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 4-KByte page referenced by 
this entry (depends on CPL and CR0.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 4-KByte page 
referenced by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access 
the 4-KByte page referenced by this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access 
the 4-KByte page referenced by this entry (see Section 4.9.2)

5 (A) Accessed; indicates whether software has accessed the 4-KByte page referenced 
by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 4-KByte page referenced by 
this entry (see Section 4.8)

7 (PAT) Indirectly determines the memory type used to access the 4-KByte page 
referenced by this entry (see Section 4.9.2)

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 
4.10); ignored otherwise

11:9 Ignored

(M–1):12 Physical address of the 4-KByte page referenced by this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed 
from the 4-KByte page controlled by this entry; see Section 4.6); otherwise, 
reserved (must be 0)
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Figure 4-11.  Formats of CR3 and Paging-Structure Entries with IA-32e Paging
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4.6 ACCESS RIGHTS
There is a translation for a linear address if the processes described in Section 4.3, 
Section 4.4.2, and Section 4.5 (depending upon the paging mode) completes and 
produces a physical address. The accesses permitted by a translation is determined 
by the access rights specified by the paging-structure entries controlling the transla-
tion.1 The following items detail how paging determines access rights:
• For accesses in supervisor mode (CPL < 3):

— Data reads.
Data may be read from any linear address with a valid translation.

— Data writes.

• If CR0.WP = 0, data may be written to any linear address with a valid 
translation.

• If CR0.WP = 1, data may be written to any linear address with a valid 
translation for which the R/W flag (bit 1) is 1 in every paging-structure 
entry controlling the translation.

— Instruction fetches.

• For 32-bit paging or if IA32_EFER.NXE = 0, access rights depend on the 
value of CR4.SMEP:

— If CR4.SMEP = 0, instructions may be fetched from any linear 
address with a valid translation.

— If CR4.SMEP = 1, instructions may be fetched from any linear 
address with a valid translation for which the U/S flag (bit 2) is 0 in at 
least one of the paging-structure entries controlling the translation.

• For PAE paging or IA-32e paging with IA32_EFER.NXE = 1, access rights 
depend on the value of CR4.SMEP:

— If CR4.SMEP = 0, instructions may be fetched from any linear 
address with a valid translation for which the XD flag (bit 63) is 0 in 
every paging-structure entry controlling the translation.

— If CR4.SMEP = 1, instructions may be fetched from any linear 
address with a valid translation for which (1) the U/S flag is 0 in at 
least one of the paging-structure entries controlling the translation; 
and (2) the XD flag is 0 in every paging-structure entry controlling 
the translation.

• For accesses in user mode (CPL = 3):

— Data reads.
Data may be read from any linear address with a valid translation for which 
the U/S flag (bit 2) is 1 in every paging-structure entry controlling the trans-
lation.

1. With PAE paging, the PDPTEs do not determine access rights.
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— Data writes.
Data may be written to any linear address with a valid translation for which 
both the R/W flag and the U/S flag are 1 in every paging-structure entry 
controlling the translation.

— Instruction fetches.

• For 32-bit paging or if IA32_EFER.NXE = 0, instructions may be fetched 
from any linear address with a valid translation for which the U/S flag is 1 
in every paging-structure entry controlling the translation.

• For PAE paging or IA-32e paging with IA32_EFER.NXE = 1, instructions 
may be fetched from any linear address with a valid translation for which 
the U/S flag is 1 and the XD flag is 0 in every paging-structure entry 
controlling the translation.

A processor may cache information from the paging-structure entries in TLBs and 
paging-structure caches (see Section 4.10). These structures may include informa-
tion about access rights. The processor may enforce access rights based on the TLBs 
and paging-structure caches instead of on the paging structures in memory.

This fact implies that, if software modifies a paging-structure entry to change access 
rights, the processor might not use that change for a subsequent access to an 
affected linear address (see Section 4.10.4.3). See Section 4.10.4.2 for how soft-
ware can ensure that the processor uses the modified access rights.

4.7 PAGE-FAULT EXCEPTIONS
Accesses using linear addresses may cause page-fault exceptions (#PF; exception 
14). An access to a linear address may cause page-fault exception for either of two 
reasons: (1) there is no valid translation for the linear address; or (2) there is a valid 
translation for the linear address, but its access rights do not permit the access.

As noted in Section 4.3, Section 4.4.2, and Section 4.5, there is no valid translation 
for a linear address if the translation process for that address would use a paging-
structure entry in which the P flag (bit 0) is 0 or one that sets a reserved bit. If there 
is a valid translation for a linear address, its access rights are determined as specified 
in Section 4.6.

Figure 4-12 illustrates the error code that the processor provides on delivery of a 
page-fault exception. The following items explain how the bits in the error code 
describe the nature of the page-fault exception:
• P flag (bit 0).

This flag is 0 if there is no valid translation for the linear address because the P 
flag was 0 in one of the paging-structure entries used to translate that address.

• W/R (bit 1).
If the access causing the page-fault exception was a write, this flag is 1; 
otherwise, it is 0. This flag describes the access causing the page-fault exception, 
not the access rights specified by paging.
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• U/S (bit 2).
If a user-mode (CPL= 3) access caused the page-fault exception, this flag is 1; it 
is 0 if a supervisor-mode (CPL < 3) access did so. This flag describes the access 
causing the page-fault exception, not the access rights specified by paging.

• RSVD flag (bit 3).
This flag is 1 if there is no valid translation for the linear address because a 
reserved bit was set in one of the paging-structure entries used to translate that 
address. (Because reserved bits are not checked in a paging-structure entry 
whose P flag is 0, bit 3 of the error code can be set only if bit 0 is also set.)
Bits reserved in the paging-structure entries are reserved for future functionality. 
Software developers should be aware that such bits may be used in the future 
and that a paging-structure entry that causes a page-fault exception on one 
processor might not do so in the future.

• I/D flag (bit 4).
This flag is 1 if (1) the access causing the page-fault exception was an instruction 
fetch; and (2) either (a) CR4.SMEP = 1; or (b) both (i) CR4.PAE = 1 (either PAE 
paging or IA-32e paging is in use); and (ii) IA32_EFER.NXE = 1. Otherwise, the 
flag is 0. This flag describes the access causing the page-fault exception, not the 
access rights specified by paging.

Page-fault exceptions occur only due to an attempt to use a linear address. Failures 
to load the PDPTE registers with PAE paging (see Section 4.4.1) cause general-
protection exceptions (#GP(0)) and not page-fault exceptions.

 

Figure 4-12.  Page-Fault Error Code
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The fault was caused by a page-level protection violation.
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The access causing the fault was a write.
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4.8 ACCESSED AND DIRTY FLAGS
For any paging-structure entry that is used during linear-address translation, bit 5 is 
the accessed flag.1 For paging-structure entries that map a page (as opposed to 
referencing another paging structure), bit 6 is the dirty flag. These flags are 
provided for use by memory-management software to manage the transfer of pages 
and paging structures into and out of physical memory.

Whenever the processor uses a paging-structure entry as part of linear-address 
translation, it sets the accessed flag in that entry (if it is not already set).

Whenever there is a write to a linear address, the processor sets the dirty flag (if it is 
not already set) in the paging-structure entry that identifies the final physical 
address for the linear address (either a PTE or a paging-structure entry in which the 
PS flag is 1).

Memory-management software may clear these flags when a page or a paging struc-
ture is initially loaded into physical memory. These flags are “sticky,” meaning that, 
once set, the processor does not clear them; only software can clear them.

A processor may cache information from the paging-structure entries in TLBs and 
paging-structure caches (see Section 4.10). This fact implies that, if software 
changes an accessed flag or a dirty flag from 1 to 0, the processor might not set the 
corresponding bit in memory on a subsequent access using an affected linear 
address (see Section 4.10.4.3). See Section 4.10.4.2 for how software can ensure 
that these bits are updated as desired.

NOTE
The accesses used by the processor to set these flags may or may not 
be exposed to the processor’s self-modifying code detection logic. If 
the processor is executing code from the same memory area that is 
being used for the paging structures, the setting of these flags may 
or may not result in an immediate change to the executing code 
stream.

4.9 PAGING AND MEMORY TYPING
The memory type of a memory access refers to the type of caching used for that 
access. Chapter 11, “Memory Cache Control” provides many details regarding 
memory typing in the Intel-64 and IA-32 architectures. This section describes how 
paging contributes to the determination of memory typing.

The way in which paging contributes to memory typing depends on whether the 
processor supports the Page Attribute Table (PAT; see Section 11.12).2 Section 

1. With PAE paging, the PDPTEs are not used during linear-address translation but only to load the 
PDPTE registers for some executions of the MOV CR instruction (see Section 4.4.1). For this rea-
son, the PDPTEs do not contain accessed flags with PAE paging. 
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4.9.1 and Section 4.9.2 explain how paging contributes to memory typing depending 
on whether the PAT is supported.

4.9.1 Paging and Memory Typing When the PAT is Not Supported 
(Pentium Pro and Pentium II Processors)

NOTE
The PAT is supported on all processors that support IA-32e paging. 
Thus, this section applies only to 32-bit paging and PAE paging.

If the PAT is not supported, paging contributes to memory typing in conjunction with 
the memory-type range registers (MTRRs) as specified in Table 11-6 in Section 
11.5.2.1.

For any access to a physical address, the table combines the memory type specified 
for that physical address by the MTRRs with a PCD value and a PWT value. The latter 
two values are determined as follows:
• For an access to a PDE with 32-bit paging, the PCD and PWT values come from 

CR3.
• For an access to a PDE with PAE paging, the PCD and PWT values come from the 

relevant PDPTE register.
• For an access to a PTE, the PCD and PWT values come from the relevant PDE.
• For an access to the physical address that is the translation of a linear address, 

the PCD and PWT values come from the relevant PTE (if the translation uses a 4-
KByte page) or the relevant PDE (otherwise).

• With PAE paging, the UC memory type is used when loading the PDPTEs (see 
Section 4.4.1).

4.9.2 Paging and Memory Typing When the PAT is Supported 
(Pentium III and More Recent Processor Families)

If the PAT is supported, paging contributes to memory typing in conjunction with the 
PAT and the memory-type range registers (MTRRs) as specified in Table 11-7 in 
Section 11.5.2.2.

The PAT is a 64-bit MSR (IA32_PAT; MSR index 277H) comprising eight (8) 8-bit 
entries (entry i comprises bits 8i+7:8i of the MSR).

For any access to a physical address, the table combines the memory type specified 
for that physical address by the MTRRs with a memory type selected from the PAT. 

2. The PAT is supported on Pentium III and more recent processor families. See Section 4.1.4 for 
how to determine whether the PAT is supported.
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Table 11-11 in Section 11.12.3 specifies how a memory type is selected from the PAT. 
Specifically, it comes from entry i of the PAT, where i is defined as follows:
• For an access to an entry in a paging structure whose address is in CR3 (e.g., the 

PML4 table with IA-32e paging):

— For IA-32e paging with CR4.PCIDE = 1, i = 0.

— Otherwise, i = 2*PCD+PWT, where the PCD and PWT values come from CR3. 
• For an access to a PDE with PAE paging, i = 2*PCD+PWT, where the PCD and 

PWT values come from the relevant PDPTE register.
• For an access to a paging-structure entry X whose address is in another paging-

structure entry Y, i = 2*PCD+PWT, where the PCD and PWT values come from Y.
• For an access to the physical address that is the translation of a linear address, 

i = 4*PAT+2*PCD+PWT, where the PAT, PCD, and PWT values come from the 
relevant PTE (if the translation uses a 4-KByte page), the relevant PDE (if the 
translation uses a 2-MByte page or a 4-MByte page), or the relevant PDPTE (if 
the translation uses a 1-GByte page).

• With PAE paging, the WB memory type is used when loading the PDPTEs (see 
Section 4.4.1).1

4.9.3 Caching Paging-Related Information about Memory Typing
A processor may cache information from the paging-structure entries in TLBs and 
paging-structure caches (see Section 4.10). These structures may include informa-
tion about memory typing. The processor may use memory-typing information from 
the TLBs and paging-structure caches instead of from the paging structures in 
memory.

This fact implies that, if software modifies a paging-structure entry to change the 
memory-typing bits, the processor might not use that change for a subsequent 
translation using that entry or for access to an affected linear address. See Section 
4.10.4.2 for how software can ensure that the processor uses the modified memory 
typing.

4.10 CACHING TRANSLATION INFORMATION
The Intel-64 and IA-32 architectures may accelerate the address-translation process 
by caching data from the paging structures on the processor. Because the processor 
does not ensure that the data that it caches are always consistent with the structures 
in memory, it is important for software developers to understand how and when the 

1. Some older IA-32 processors used the UC memory type when loading the PDPTEs. Some proces-
sors may use the UC memory type if CR0.CD = 1 or if the MTRRs are disabled. These behaviors 
are model-specific and not architectural.
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processor may cache such data. They should also understand what actions software 
can take to remove cached data that may be inconsistent and when it should do so. 
This section provides software developers information about the relevant processor 
operation.

Section 4.10.1 introduces process-context identifiers (PCIDs), which a logical 
processor may use to distinguish information cached for different linear-address 
spaces. Section 4.10.2 and Section 4.10.3 describe how the processor may cache 
information in translation lookaside buffers (TLBs) and paging-structure caches, 
respectively. Section 4.10.4 explains how software can remove inconsistent cached 
information by invalidating portions of the TLBs and paging-structure caches. Section 
4.10.5 describes special considerations for multiprocessor systems.

4.10.1 Process-Context Identifiers (PCIDs)
Process-context identifiers (PCIDs) are a facility by which a logical processor may 
cache information for multiple linear-address spaces. The processor may retain 
cached information when software switches to a different linear-address space with a 
different PCID (e.g., by loading CR3; see Section 4.10.4.1 for details).

A PCID is a 12-bit identifier. Non-zero PCIDs are enabled by setting the PCIDE flag 
(bit 17) of CR4. If CR4.PCIDE = 0, the current PCID is always 000H; otherwise, the 
current PCID is the value of bits 11:0 of CR3. Not all processors allow CR4.PCIDE to 
be set to 1; see Section 4.1.4 for how to determine whether this is allowed.

The processor ensures that CR4.PCIDE can be 1 only in IA-32e mode (thus, 32-bit 
paging and PAE paging use only PCID 000H). In addition, software can change 
CR4.PCIDE from 0 to 1 only if CR3[11:0] = 000H. These requirements are enforced 
by the following limitations on the MOV CR instruction:
• MOV to CR4 causes a general-protection exception (#GP) if it would change 

CR4.PCIDE from 0 to 1 and either IA32_EFER.LMA = 0 or CR3[11:0] ≠ 000H.
• MOV to CR0 causes a general-protection exception if it would clear CR0.PG to 0 

while CR4.PCIDE = 1.

When a logical processor creates entries in the TLBs (Section 4.10.2) and paging-
structure caches (Section 4.10.3), it associates those entries with the current PCID. 
When using entries in the TLBs and paging-structure caches to translate a linear 
address, a logical processor uses only those entries associated with the current PCID 
(see Section 4.10.2.4 for an exception).

If CR4.PCIDE = 0, a logical processor does not cache information for any PCID other 
than 000H. This is because (1) if CR4.PCIDE = 0, the logical processor will associate 
any newly cached information with the current PCID, 000H; and (2) if MOV to CR4 
clears CR4.PCIDE, all cached information is invalidated (see Section 4.10.4.1).

NOTE
In revisions of this manual that were produced when no processors 
allowed CR4.PCIDE to be set to 1, Section 4.10 discussed the caching 
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of translation information without any reference to PCIDs. While the 
section now refers to PCIDs in its specification of this caching, this 
documentation change is not intended to imply any change to the 
behavior of processors that do not allow CR4.PCIDE to be set to 1.

4.10.2 Translation Lookaside Buffers (TLBs)
A processor may cache information about the translation of linear addresses in trans-
lation lookaside buffers (TLBs). In general, TLBs contain entries that map page 
numbers to page frames; these terms are defined in Section 4.10.2.1. Section 
4.10.2.2 describes how information may be cached in TLBs, and Section 4.10.2.3 
gives details of TLB usage. Section 4.10.2.4 explains the global-page feature, which 
allows software to indicate that certain translations should receive special treatment 
when cached in the TLBs.

4.10.2.1  Page Numbers, Page Frames, and Page Offsets
Section 4.3, Section 4.4.2, and Section 4.5 give details of how the different paging 
modes translate linear addresses to physical addresses. Specifically, the upper bits of 
a linear address (called the page number) determine the upper bits of the physical 
address (called the page frame); the lower bits of the linear address (called the 
page offset) determine the lower bits of the physical address. The boundary 
between the page number and the page offset is determined by the page size. 
Specifically:
• 32-bit paging:

— If the translation does not use a PTE (because CR4.PSE = 1 and the PS flag is 
1 in the PDE used), the page size is 4 MBytes and the page number comprises 
bits 31:22 of the linear address.

— If the translation does use a PTE, the page size is 4 KBytes and the page 
number comprises bits 31:12 of the linear address.

• PAE paging:

— If the translation does not use a PTE (because the PS flag is 1 in the PDE 
used), the page size is 2 MBytes and the page number comprises bits 31:21 
of the linear address.

— If the translation does uses a PTE, the page size is 4 KBytes and the page 
number comprises bits 31:12 of the linear address.

• IA-32e paging:

— If the translation does not use a PDE (because the PS flag is 1 in the PDPTE 
used), the page size is 1 GBytes and the page number comprises bits 47:30 
of the linear address.
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— If the translation does use a PDE but does not uses a PTE (because the PS flag 
is 1 in the PDE used), the page size is 2 MBytes and the page number 
comprises bits 47:21 of the linear address.

— If the translation does use a PTE, the page size is 4 KBytes and the page 
number comprises bits 47:12 of the linear address.

4.10.2.2  Caching Translations in TLBs
The processor may accelerate the paging process by caching individual translations 
in translation lookaside buffers (TLBs). Each entry in a TLB is an individual trans-
lation. Each translation is referenced by a page number. It contains the following 
information from the paging-structure entries used to translate linear addresses with 
the page number:
• The physical address corresponding to the page number (the page frame).
• The access rights from the paging-structure entries used to translate linear 

addresses with the page number (see Section 4.6):

— The logical-AND of the R/W flags.

— The logical-AND of the U/S flags.

— The logical-OR of the XD flags (necessary only if IA32_EFER.NXE = 1).
• Attributes from a paging-structure entry that identifies the final page frame for 

the page number (either a PTE or a paging-structure entry in which the PS flag is 
1):

— The dirty flag (see Section 4.8).

— The memory type (see Section 4.9).

(TLB entries may contain other information as well. A processor may implement 
multiple TLBs, and some of these may be for special purposes, e.g., only for instruc-
tion fetches. Such special-purpose TLBs may not contain some of this information if 
it is not necessary. For example, a TLB used only for instruction fetches need not 
contain information about the R/W and dirty flags.)

As noted in Section 4.10.1, any TLB entries created by a logical processor are associ-
ated with the current PCID.

Processors need not implement any TLBs. Processors that do implement TLBs may 
invalidate any TLB entry at any time. Software should not rely on the existence of 
TLBs or on the retention of TLB entries.

4.10.2.3  Details of TLB Use
Because the TLBs cache only valid translations, there can be a TLB entry for a page 
number only if the P flag is 1 and the reserved bits are 0 in each of the paging-struc-
ture entries used to translate that page number. In addition, the processor does not 
cache a translation for a page number unless the accessed flag is 1 in each of the 
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paging-structure entries used during translation; before caching a translation, the 
processor sets any of these accessed flags that is not already 1.

The processor may cache translations required for prefetches and for accesses that 
are a result of speculative execution that would never actually occur in the executed 
code path.

If the page number of a linear address corresponds to a TLB entry associated with the 
current PCID, the processor may use that TLB entry to determine the page frame, 
access rights, and other attributes for accesses to that linear address. In this case, 
the processor may not actually consult the paging structures in memory. The 
processor may retain a TLB entry unmodified even if software subsequently modifies 
the relevant paging-structure entries in memory. See Section 4.10.4.2 for how soft-
ware can ensure that the processor uses the modified paging-structure entries.

If the paging structures specify a translation using a page larger than 4 KBytes, some 
processors may choose to cache multiple smaller-page TLB entries for that transla-
tion. Each such TLB entry would be associated with a page number corresponding to 
the smaller page size (e.g., bits 47:12 of a linear address with IA-32e paging), even 
though part of that page number (e.g., bits 20:12) are part of the offset with respect 
to the page specified by the paging structures. The upper bits of the physical address 
in such a TLB entry are derived from the physical address in the PDE used to create 
the translation, while the lower bits come from the linear address of the access for 
which the translation is created. There is no way for software to be aware that 
multiple translations for smaller pages have been used for a large page.

If software modifies the paging structures so that the page size used for a 4-KByte 
range of linear addresses changes, the TLBs may subsequently contain multiple 
translations for the address range (one for each page size). A reference to a linear 
address in the address range may use any of these translations. Which translation is 
used may vary from one execution to another, and the choice may be implementa-
tion-specific.

4.10.2.4  Global Pages
The Intel-64 and IA-32 architectures also allow for global pages when the PGE flag 
(bit 7) is 1 in CR4. If the G flag (bit 8) is 1 in a paging-structure entry that maps a 
page (either a PTE or a paging-structure entry in which the PS flag is 1), any TLB 
entry cached for a linear address using that paging-structure entry is considered to 
be global. Because the G flag is used only in paging-structure entries that map a 
page, and because information from such entries are not cached in the paging-struc-
ture caches, the global-page feature does not affect the behavior of the paging-
structure caches.

A logical processor may use a global TLB entry to translate a linear address, even if 
the TLB entry is associated with a PCID different from the current PCID.
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4.10.3 Paging-Structure Caches
In addition to the TLBs, a processor may cache other information about the paging 
structures in memory.

4.10.3.1  Caches for Paging Structures
A processor may support any or of all the following paging-structure caches:
• PML4 cache (IA-32e paging only). Each PML4-cache entry is referenced by a 9-

bit value and is used for linear addresses for which bits 47:39 have that value. 
The entry contains information from the PML4E used to translate such linear 
addresses:

— The physical address from the PML4E (the address of the page-directory-
pointer table).

— The value of the R/W flag of the PML4E.

— The value of the U/S flag of the PML4E.

— The value of the XD flag of the PML4E.

— The values of the PCD and PWT flags of the PML4E.
The following items detail how a processor may use the PML4 cache:

— If the processor has a PML4-cache entry for a linear address, it may use that 
entry when translating the linear address (instead of the PML4E in memory).

— The processor does not create a PML4-cache entry unless the P flag is 1 and 
all reserved bits are 0 in the PML4E in memory.

— The processor does not create a PML4-cache entry unless the accessed flag is 
1 in the PML4E in memory; before caching a translation, the processor sets 
the accessed flag if it is not already 1.

— The processor may create a PML4-cache entry even if there are no transla-
tions for any linear address that might use that entry (e.g., because the P 
flags are 0 in all entries in the referenced page-directory-pointer table).

— If the processor creates a PML4-cache entry, the processor may retain it 
unmodified even if software subsequently modifies the corresponding PML4E 
in memory.

• PDPTE cache (IA-32e paging only).1 Each PDPTE-cache entry is referenced by 
an 18-bit value and is used for linear addresses for which bits 47:30 have that 
value. The entry contains information from the PML4E and PDPTE used to 
translate such linear addresses:

— The physical address from the PDPTE (the address of the page directory). (No 
PDPTE-cache entry is created for a PDPTE that maps a 1-GByte page.)

1. With PAE paging, the PDPTEs are stored in internal, non-architectural registers. The operation of 
these registers is described in Section 4.4.1 and differs from that described here.
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— The logical-AND of the R/W flags in the PML4E and the PDPTE.

— The logical-AND of the U/S flags in the PML4E and the PDPTE.

— The logical-OR of the XD flags in the PML4E and the PDPTE.

— The values of the PCD and PWT flags of the PDPTE.
The following items detail how a processor may use the PDPTE cache:

— If the processor has a PDPTE-cache entry for a linear address, it may use that 
entry when translating the linear address (instead of the PML4E and the 
PDPTE in memory).

— The processor does not create a PDPTE-cache entry unless the P flag is 1, the 
PS flag is 0, and the reserved bits are 0 in the PML4E and the PDPTE in 
memory.

— The processor does not create a PDPTE-cache entry unless the accessed flags 
are 1 in the PML4E and the PDPTE in memory; before caching a translation, 
the processor sets any accessed flags that are not already 1.

— The processor may create a PDPTE-cache entry even if there are no transla-
tions for any linear address that might use that entry.

— If the processor creates a PDPTE-cache entry, the processor may retain it 
unmodified even if software subsequently modifies the corresponding PML4E 
or PDPTE in memory.

• PDE cache. The use of the PDE cache depends on the paging mode:

— For 32-bit paging, each PDE-cache entry is referenced by a 10-bit value and 
is used for linear addresses for which bits 31:22 have that value.

— For PAE paging, each PDE-cache entry is referenced by an 11-bit value and is 
used for linear addresses for which bits 31:21 have that value.

— For IA-32e paging, each PDE-cache entry is referenced by a 27-bit value and 
is used for linear addresses for which bits 47:21 have that value.

A PDE-cache entry contains information from the PML4E, PDPTE, and PDE used to 
translate the relevant linear addresses (for 32-bit paging and PAE paging, only 
the PDE applies):

— The physical address from the PDE (the address of the page table). (No PDE-
cache entry is created for a PDE that maps a page.)

— The logical-AND of the R/W flags in the PML4E, PDPTE, and PDE.

— The logical-AND of the U/S flags in the PML4E, PDPTE, and PDE.

— The logical-OR of the XD flags in the PML4E, PDPTE, and PDE.

— The values of the PCD and PWT flags of the PDE.
The following items detail how a processor may use the PDE cache (references 
below to PML4Es and PDPTEs apply on to IA-32e paging):
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— If the processor has a PDE-cache entry for a linear address, it may use that 
entry when translating the linear address (instead of the PML4E, the PDPTE, 
and the PDE in memory).

— The processor does not create a PDE-cache entry unless the P flag is 1, the PS 
flag is 0, and the reserved bits are 0 in the PML4E, the PDPTE, and the PDE in 
memory.

— The processor does not create a PDE-cache entry unless the accessed flag is 
1 in the PML4E, the PDPTE, and the PDE in memory; before caching a trans-
lation, the processor sets any accessed flags that are not already 1.

— The processor may create a PDE-cache entry even if there are no translations 
for any linear address that might use that entry.

— If the processor creates a PDE-cache entry, the processor may retain it 
unmodified even if software subsequently modifies the corresponding PML4E, 
the PDPTE, or the PDE in memory.

Information from a paging-structure entry can be included in entries in the paging-
structure caches for other paging-structure entries referenced by the original entry. 
For example, if the R/W flag is 0 in a PML4E, then the R/W flag will be 0 in any PDPTE-
cache entry for a PDPTE from the page-directory-pointer table referenced by that 
PML4E. This is because the R/W flag of each such PDPTE-cache entry is the logical-
AND of the R/W flags in the appropriate PML4E and PDPTE.

The paging-structure caches contain information only from paging-structure entries 
that reference other paging structures (and not those that map pages). Because the 
G flag is not used in such paging-structure entries, the global-page feature does not 
affect the behavior of the paging-structure caches.

The processor may create entries in paging-structure caches for translations 
required for prefetches and for accesses that are a result of speculative execution 
that would never actually occur in the executed code path.

As noted in Section 4.10.1, any entries created in paging-structure caches by a 
logical processor are associated with the current PCID.

A processor may or may not implement any of the paging-structure caches. Software 
should rely on neither their presence nor their absence. The processor may invalidate 
entries in these caches at any time. Because the processor may create the cache 
entries at the time of translation and not update them following subsequent modifi-
cations to the paging structures in memory, software should take care to invalidate 
the cache entries appropriately when causing such modifications. The invalidation of 
TLBs and the paging-structure caches is described in Section 4.10.4.

4.10.3.2  Using the Paging-Structure Caches to Translate Linear Addresses
When a linear address is accessed, the processor uses a procedure such as the 
following to determine the physical address to which it translates and whether the 
access should be allowed:
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• If the processor finds a TLB entry that is for the page number of the linear 
address and that is associated with the current PCID (or which is global), it may 
use the physical address, access rights, and other attributes from that entry.

• If the processor does not find a relevant TLB entry, it may use the upper bits of 
the linear address to select an entry from the PDE cache that is associated with 
the current PCID (Section 4.10.3.1 indicates which bits are used in each paging 
mode). It can then use that entry to complete the translation process (locating a 
PTE, etc.) as if it had traversed the PDE (and, for IA-32e paging, the PDPTE and 
PML4) corresponding to the PDE-cache entry.

• The following items apply when IA-32e paging is used:

— If the processor does not find a relevant TLB entry or a relevant PDE-cache 
entry, it may use bits 47:30 of the linear address to select an entry from the 
PDPTE cache that is associated with the current PCID. It can then use that 
entry to complete the translation process (locating a PDE, etc.) as if it had 
traversed the PDPTE and the PML4 corresponding to the PDPTE-cache entry.

— If the processor does not find a relevant TLB entry, a relevant PDE-cache 
entry, or a relevant PDPTE-cache entry, it may use bits 47:39 of the linear 
address to select an entry from the PML4 cache that is associated with the 
current PCID. It can then use that entry to complete the translation process 
(locating a PDPTE, etc.) as if it had traversed the corresponding PML4.

(Any of the above steps would be skipped if the processor does not support the cache 
in question.)

If the processor does not find a TLB or paging-structure-cache entry for the linear 
address, it uses the linear address to traverse the entire paging-structure hierarchy, 
as described in Section 4.3, Section 4.4.2, and Section 4.5.

4.10.3.3  Multiple Cached Entries for a Single Paging-Structure Entry
The paging-structure caches and TLBs and paging-structure caches may contain 
multiple entries associated with a single PCID and with information derived from a 
single paging-structure entry. The following items give some examples for IA-32e 
paging:
• Suppose that two PML4Es contain the same physical address and thus reference 

the same page-directory-pointer table. Any PDPTE in that table may result in two 
PDPTE-cache entries, each associated with a different set of linear addresses. 
Specifically, suppose that the n1

th and n2
th entries in the PML4 table contain the 

same physical address. This implies that the physical address in the mth PDPTE in 
the page-directory-pointer table would appear in the PDPTE-cache entries 
associated with both p1 and p2, where (p1 » 9) = n1, (p2 » 9) = n2, and (p1 & 
1FFH) = (p2 & 1FFH) = m. This is because both PDPTE-cache entries use the 
same PDPTE, one resulting from a reference from the n1

th PML4E and one from 
the n2

th PML4E.
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• Suppose that the first PML4E (i.e., the one in position 0) contains the physical 
address X in CR3 (the physical address of the PML4 table). This implies the 
following:

— Any PML4-cache entry associated with linear addresses with 0 in bits 47:39 
contains address X.

— Any PDPTE-cache entry associated with linear addresses with 0 in bits 47:30 
contains address X. This is because the translation for a linear address for 
which the value of bits 47:30 is 0 uses the value of bits 47:39 (0) to locate a 
page-directory-pointer table at address X (the address of the PML4 table). It 
then uses the value of bits 38:30 (also 0) to find address X again and to store 
that address in the PDPTE-cache entry.

— Any PDE-cache entry associated with linear addresses with 0 in bits 47:21 
contains address X for similar reasons.

— Any TLB entry for page number 0 (associated with linear addresses with 0 in 
bits 47:12) translates to page frame X » 12 for similar reasons.

The same PML4E contributes its address X to all these cache entries because the 
self-referencing nature of the entry causes it to be used as a PML4E, a PDPTE, a 
PDE, and a PTE.

4.10.4 Invalidation of TLBs and Paging-Structure Caches
As noted in Section 4.10.2 and Section 4.10.3, the processor may create entries in 
the TLBs and the paging-structure caches when linear addresses are translated, and 
it may retain these entries even after the paging structures used to create them have 
been modified. To ensure that linear-address translation uses the modified paging 
structures, software should take action to invalidate any cached entries that may 
contain information that has since been modified.

4.10.4.1  Operations that Invalidate TLBs and Paging-Structure Caches
The following instructions invalidate entries in the TLBs and the paging-structure 
caches:
• INVLPG. This instruction takes a single operand, which is a linear address. The 

instruction invalidates any TLB entries that are for a page number corresponding 
to the linear address and that are associated with the current PCID. It also 
invalidates any global TLB entries with that page number, regardless of PCID 
(see Section 4.10.2.4).1 INVLPG also invalidates all entries in all paging-structure 
caches associated with the current PCID, regardless of the linear addresses to 
which they correspond.

1. If the paging structures map the linear address using a page larger than 4 KBytes and there are 
multiple TLB entries for that page (see Section 4.10.2.3), the instruction invalidates all of them.
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• INVPCID. The operation of this instruction is based on instruction operands, 
called the INVPCID type and the INVPCID descriptor. Four INVPCID types are 
currently defined:

— Individual-address. If the INVPCID type is 0, the logical processor invalidates 
mappings—except global translations—associated with the PCID specified in 
the INVPCID descriptor and that would be used to translate the linear address 
specified in the INVPCID descriptor. (The instruction may also invalidate 
global translations, as well as mappings associated with other PCIDs and for 
other linear addresses.)

— Single-context. If the INVPCID type is 1, the logical processor invalidates all 
mappings—except global translations—associated with the PCID specified in 
the INVPCID descriptor. (The instruction may also invalidate global transla-
tions, as well as mappings associated with other PCIDs.)

— All-context, including globals. If the INVPCID type is 2, the logical processor 
invalidates mappings—including global translations—associated with all 
PCIDs.

— All-context. If the INVPCID type is 3, the logical processor invalidates 
mappings—except global translations—associated with all PCIDs. (The 
instruction may also invalidate global translations.)

See Chapter 3 of the Intel 64 and IA-32 Architecture Software Developer’s 
Manual, Volume 2A for details of the INVPCID instruction.

• MOV to CR0. The instruction invalidates all TLB entries (including global entries) 
and all entries in all paging-structure caches (for all PCIDs) if it changes the 
value of CR0.PG from 1 to 0.

• MOV to CR3. The behavior of the instruction depends on the value of CR4.PCIDE:

— If CR4.PCIDE = 0, the instruction invalidates all TLB entries associated with 
PCID 000H except those for global pages. It also invalidates all entries in all 
paging-structure caches associated with PCID 000H.

— If CR4.PCIDE = 1 and bit 63 of the instruction’s source operand is 0, the 
instruction invalidates all TLB entries associated with the PCID specified in 
bits 11:0 of the instruction’s source operand except those for global pages. It 
also invalidates all entries in all paging-structure caches associated with that 
PCID. It is not required to invalidate entries in the TLBs and paging-structure 
caches that are associated with other PCIDs.

— If CR4.PCIDE = 1 and bit 63 of the instruction’s source operand is 1, the 
instruction is not required to invalidate any TLB entries or entries in paging-
structure caches.

• MOV to CR4. The behavior of the instruction depends on the bits being modified:

— The instruction invalidates all TLB entries (including global entries) and all 
entries in all paging-structure caches (for all PCIDs) if (1) it changes the 
value of CR4.PGE;1 or (2) it changes the value of the CR4.PCIDE from 1 to 0.
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— The instruction invalidates all TLB entries and all entries in all paging-
structure caches for the current PCID if (1) it changes the value of CR4.PAE; 
or (2) it changes the value of CR4.SMEP from 0 to 1.

• Task switch. If a task switch changes the value of CR3, it invalidates all TLB 
entries associated with PCID 000H except those for global pages. It also 
invalidates all entries in all paging-structure caches for associated with PCID 
000H.1

• VMX transitions. See Section 4.11.1.

The processor is always free to invalidate additional entries in the TLBs and paging-
structure caches. The following are some examples:
• INVLPG may invalidate TLB entries for pages other than the one corresponding to 

its linear-address operand. It may invalidate TLB entries and paging-structure-
cache entries associated with PCIDs other than the current PCID.

• INVPCID may invalidate TLB entries for pages other than the one corresponding 
to the specified linear address. It may invalidate TLB entries and paging-
structure-cache entries associated with PCIDs other than the specified PCID.

• MOV to CR0 may invalidate TLB entries even if CR0.PG is not changing. For 
example, this may occur if either CR0.CD or CR0.NW is modified.

• MOV to CR3 may invalidate TLB entries for global pages. If CR4.PCIDE = 1 and 
bit 63 of the instruction’s source operand is 0, it may invalidate TLB entries and 
entries in the paging-structure caches associated with PCIDs other than the 
current PCID. It may invalidate entries if CR4.PCIDE = 1 and bit 63 of the 
instruction’s source operand is 1. 

• MOV to CR4 may invalidate TLB entries when changing CR4.PSE or when 
changing CR4.SMEP from 1 to 0.

• On a processor supporting Hyper-Threading Technology, invalidations performed 
on one logical processor may invalidate entries in the TLBs and paging-structure 
caches used by other logical processors.

(Other instructions and operations may invalidate entries in the TLBs and the paging-
structure caches, but the instructions identified above are recommended.)

In addition to the instructions identified above, page faults invalidate entries in the 
TLBs and paging-structure caches. In particular, a page-fault exception resulting 
from an attempt to use a linear address will invalidate any TLB entries that are for a 
page number corresponding to that linear address and that are associated with the 
current PCID. it also invalidates all entries in the paging-structure caches that would 
be used for that linear address and that are associated with the current PCID.2 These 
invalidations ensure that the page-fault exception will not recur (if the faulting 

1. If CR4.PGE is changing from 0 to 1, there were no global TLB entries before the execution; if 
CR4.PGE is changing from 1 to 0, there will be no global TLB entries after the execution.

1. Task switches do not occur in IA-32e mode and thus cannot occur with IA-32e paging. Since 
CR4.PCIDE can be set only with IA-32e paging, task switches occur only with CR4.PCIDE = 0.
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instruction is re-executed) if it would not be caused by the contents of the paging 
structures in memory (and if, therefore, it resulted from cached entries that were not 
invalidated after the paging structures were modified in memory).

As noted in Section 4.10.2, some processors may choose to cache multiple smaller-
page TLB entries for a translation specified by the paging structures to use a page 
larger than 4 KBytes. There is no way for software to be aware that multiple transla-
tions for smaller pages have been used for a large page. The INVLPG instruction and 
page faults provide the same assurances that they provide when a single TLB entry 
is used: they invalidate all TLB entries corresponding to the translation specified by 
the paging structures.

4.10.4.2  Recommended Invalidation
The following items provide some recommendations regarding when software should 
perform invalidations:
• If software modifies a paging-structure entry that identifies the final page frame 

for a page number (either a PTE or a paging-structure entry in which the PS flag 
is 1), it should execute INVLPG for any linear address with a page number whose 
translation uses that PTE.1

(If the paging-structure entry may be used in the translation of different page 
numbers — see Section 4.10.3.3 — software should execute INVLPG for linear 
addresses with each of those page numbers; alternatively, it could use MOV to 
CR3 or MOV to CR4.)

• If software modifies a paging-structure entry that references another paging 
structure, it may use one of the following approaches depending upon the types 
and number of translations controlled by the modified entry:

— Execute INVLPG for linear addresses with each of the page numbers with 
translations that would use the entry. However, if no page numbers that 
would use the entry have translations (e.g., because the P flags are 0 in all 
entries in the paging structure referenced by the modified entry), it remains 
necessary to execute INVLPG at least once.

— Execute MOV to CR3 if the modified entry controls no global pages.

— Execute MOV to CR4 to modify CR4.PGE.
• If CR4.PCIDE = 1 and software modifies a paging-structure entry that does not 

map a page or in which the G flag (bit 8) is 0, additional steps are required if the 
entry may be used for PCIDs other than the current one. Any one of the following 
suffices:

2. Unlike INVLPG, page faults need not invalidate all entries in the paging-structure caches, only 
those that would be used to translate the faulting linear address.

1. One execution of INVLPG is sufficient even for a page with size greater than 4 KBytes.
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— Execute MOV to CR4 to modify CR4.PGE, either immediately or before again 
using any of the affected PCIDs. For example, software could use different 
(previously unused) PCIDs for the processes that used the affected PCIDs.

— For each affected PCID, execute MOV to CR3 to make that PCID current (and 
to load the address of the appropriate PML4 table). If the modified entry 
controls no global pages and bit 63 of the source operand to MOV to CR3 was 
0, no further steps are required. Otherwise, execute INVLPG for linear 
addresses with each of the page numbers with translations that would use 
the entry; if no page numbers that would use the entry have translations, 
execute INVLPG at least once.

• If software using PAE paging modifies a PDPTE, it should reload CR3 with the 
register’s current value to ensure that the modified PDPTE is loaded into the 
corresponding PDPTE register (see Section 4.4.1).

• If the nature of the paging structures is such that a single entry may be used for 
multiple purposes (see Section 4.10.3.3), software should perform invalidations 
for all of these purposes. For example, if a single entry might serve as both a PDE 
and PTE, it may be necessary to execute INVLPG with two (or more) linear 
addresses, one that uses the entry as a PDE and one that uses it as a PTE. (Alter-
natively, software could use MOV to CR3 or MOV to CR4.)

• As noted in Section 4.10.2, the TLBs may subsequently contain multiple transla-
tions for the address range if software modifies the paging structures so that the 
page size used for a 4-KByte range of linear addresses changes. A reference to a 
linear address in the address range may use any of these translations.
Software wishing to prevent this uncertainty should not write to a paging-
structure entry in a way that would change, for any linear address, both the page 
size and either the page frame, access rights, or other attributes. It can instead 
use the following algorithm: first clear the P flag in the relevant paging-structure 
entry (e.g., PDE); then invalidate any translations for the affected linear 
addresses (see above); and then modify the relevant paging-structure entry to 
set the P flag and establish modified translation(s) for the new page size.

• Software should clear bit 63 of the source operand to a MOV to CR3 instruction 
that establishes a PCID that had been used earlier for a different linear-address 
space (e.g., with a different value in bits 51:12 of CR3). This ensures invalidation 
of any information that may have been cached for the previous linear-address 
space.
This assumes that both linear-address spaces use the same global pages and 
that it is thus not necessary to invalidate any global TLB entries. If that is not the 
case, software should invalidate those entries by executing MOV to CR4 to modify 
CR4.PGE.

4.10.4.3  Optional Invalidation
The following items describe cases in which software may choose not to invalidate 
and the potential consequences of that choice:
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• If a paging-structure entry is modified to change the P flag from 0 to 1, no inval-
idation is necessary. This is because no TLB entry or paging-structure cache 
entry is created with information from a paging-structure entry in which the P 
flag is 0.1

• If a paging-structure entry is modified to change the accessed flag from 0 to 1, 
no invalidation is necessary (assuming that an invalidation was performed the 
last time the accessed flag was changed from 1 to 0). This is because no TLB 
entry or paging-structure cache entry is created with information from a paging-
structure entry in which the accessed flag is 0.

• If a paging-structure entry is modified to change the R/W flag from 0 to 1, failure 
to perform an invalidation may result in a “spurious” page-fault exception (e.g., 
in response to an attempted write access) but no other adverse behavior. Such 
an exception will occur at most once for each affected linear address (see Section 
4.10.4.1).

• If CR4.SMEP = 0 and a paging-structure entry is modified to change the U/S flag 
from 0 to 1, failure to perform an invalidation may result in a “spurious” page-
fault exception (e.g., in response to an attempted user-mode access) but no 
other adverse behavior. Such an exception will occur at most once for each 
affected linear address (see Section 4.10.4.1).

• If a paging-structure entry is modified to change the XD flag from 1 to 0, failure 
to perform an invalidation may result in a “spurious” page-fault exception (e.g., 
in response to an attempted instruction fetch) but no other adverse behavior. 
Such an exception will occur at most once for each affected linear address (see 
Section 4.10.4.1).

• If a paging-structure entry is modified to change the accessed flag from 1 to 0, 
failure to perform an invalidation may result in the processor not setting that bit 
in response to a subsequent access to a linear address whose translation uses the 
entry. Software cannot interpret the bit being clear as an indication that such an 
access has not occurred.

• If software modifies a paging-structure entry that identifies the final physical 
address for a linear address (either a PTE or a paging-structure entry in which the 
PS flag is 1) to change the dirty flag from 1 to 0, failure to perform an invalidation 
may result in the processor not setting that bit in response to a subsequent write 
to a linear address whose translation uses the entry. Software cannot interpret 
the bit being clear as an indication that such a write has not occurred.

• The read of a paging-structure entry in translating an address being used to fetch 
an instruction may appear to execute before an earlier write to that paging-
structure entry if there is no serializing instruction between the write and the 
instruction fetch. Note that the invalidating instructions identified in Section 
4.10.4.1 are all serializing instructions.

1. If it is also the case that no invalidation was performed the last time the P flag was changed 
from 1 to 0, the processor may use a TLB entry or paging-structure cache entry that was cre-
ated when the P flag had earlier been 1.
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• Section 4.10.3.3 describes situations in which a single paging-structure entry 
may contain information cached in multiple entries in the paging-structure 
caches. Because all entries in these caches are invalidated by any execution of 
INVLPG, it is not necessary to follow the modification of such a paging-structure 
entry by executing INVLPG multiple times solely for the purpose of invalidating 
these multiple cached entries. (It may be necessary to do so to invalidate 
multiple TLB entries.)

4.10.4.4  Delayed Invalidation
Required invalidations may be delayed under some circumstances. Software devel-
opers should understand that, between the modification of a paging-structure entry 
and execution of the invalidation instruction recommended in Section 4.10.4.2, the 
processor may use translations based on either the old value or the new value of the 
paging-structure entry. The following items describe some of the potential conse-
quences of delayed invalidation:
• If a paging-structure entry is modified to change from 1 to 0 the P flag from 1 to 

0, an access to a linear address whose translation is controlled by this entry may 
or may not cause a page-fault exception.

• If a paging-structure entry is modified to change the R/W flag from 0 to 1, write 
accesses to linear addresses whose translation is controlled by this entry may or 
may not cause a page-fault exception.

• If a paging-structure entry is modified to change the U/S flag from 0 to 1, user-
mode accesses to linear addresses whose translation is controlled by this entry 
may or may not cause a page-fault exception.

• If a paging-structure entry is modified to change the XD flag from 1 to 0, 
instruction fetches from linear addresses whose translation is controlled by this 
entry may or may not cause a page-fault exception.

As noted in Section 8.1.1, an x87 instruction or an SSE instruction that accesses data 
larger than a quadword may be implemented using multiple memory accesses. If 
such an instruction stores to memory and invalidation has been delayed, some of the 
accesses may complete (writing to memory) while another causes a page-fault 
exception.1 In this case, the effects of the completed accesses may be visible to soft-
ware even though the overall instruction caused a fault.

In some cases, the consequences of delayed invalidation may not affect software 
adversely. For example, when freeing a portion of the linear-address space (by 
marking paging-structure entries “not present”), invalidation using INVLPG may be 
delayed if software does not re-allocate that portion of the linear-address space or 
the memory that had been associated with it. However, because of speculative 
execution (or errant software), there may be accesses to the freed portion of the 
linear-address space before the invalidations occur. In this case, the following can 
happen:

1. If the accesses are to different pages, this may occur even if invalidation has not been delayed.
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• Reads can occur to the freed portion of the linear-address space. Therefore, 
invalidation should not be delayed for an address range that has read side 
effects.

• The processor may retain entries in the TLBs and paging-structure caches for an 
extended period of time. Software should not assume that the processor will not 
use entries associated with a linear address simply because time has passed.

• As noted in Section 4.10.3.1, the processor may create an entry in a paging-
structure cache even if there are no translations for any linear address that might 
use that entry. Thus, if software has marked “not present” all entries in page 
table, the processor may subsequently create a PDE-cache entry for the PDE that 
references that page table (assuming that the PDE itself is marked “present”).

• If software attempts to write to the freed portion of the linear-address space, the 
processor might not generate a page fault. (Such an attempt would likely be the 
result of a software error.) For that reason, the page frames previously 
associated with the freed portion of the linear-address space should not be 
reallocated for another purpose until the appropriate invalidations have been 
performed.

4.10.5 Propagation of Paging-Structure Changes to Multiple 
Processors

As noted in Section 4.10.4, software that modifies a paging-structure entry may 
need to invalidate entries in the TLBs and paging-structure caches that were derived 
from the modified entry before it was modified. In a system containing more than 
one logical processor, software must account for the fact that there may be entries in 
the TLBs and paging-structure caches of logical processors other than the one used 
to modify the paging-structure entry. The process of propagating the changes to a 
paging-structure entry is commonly referred to as “TLB shootdown.”

TLB shootdown can be done using memory-based semaphores and/or interprocessor 
interrupts (IPI). The following items describe a simple but inefficient example of a 
TLB shootdown algorithm for processors supporting the Intel-64 and IA-32 architec-
tures:

1. Begin barrier: Stop all but one logical processor; that is, cause all but one to 
execute the HLT instruction or to enter a spin loop.

2. Allow the active logical processor to change the necessary paging-structure 
entries.

3. Allow all logical processors to perform invalidations appropriate to the modifica-
tions to the paging-structure entries.

4. Allow all logical processors to resume normal operation.

Alternative, performance-optimized, TLB shootdown algorithms may be developed; 
however, software developers must take care to ensure that the following conditions 
are met:
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• All logical processors that are using the paging structures that are being modified 
must participate and perform appropriate invalidations after the modifications 
are made.

• If the modifications to the paging-structure entries are made before the barrier 
or if there is no barrier, the operating system must ensure one of the following: 
(1) that the affected linear-address range is not used between the time of modifi-
cation and the time of invalidation; or (2) that it is prepared to deal with the 
consequences of the affected linear-address range being used during that period. 
For example, if the operating system does not allow pages being freed to be 
reallocated for another purpose until after the required invalidations, writes to 
those pages by errant software will not unexpectedly modify memory that is in 
use.

• Software must be prepared to deal with reads, instruction fetches, and prefetch 
requests to the affected linear-address range that are a result of speculative 
execution that would never actually occur in the executed code path.

When multiple logical processors are using the same linear-address space at the 
same time, they must coordinate before any request to modify the paging-structure 
entries that control that linear-address space. In these cases, the barrier in the TLB 
shootdown routine may not be required. For example, when freeing a range of linear 
addresses, some other mechanism can assure no logical processor is using that 
range before the request to free it is made. In this case, a logical processor freeing 
the range can clear the P flags in the PTEs associated with the range, free the phys-
ical page frames associated with the range, and then signal the other logical proces-
sors using that linear-address space to perform the necessary invalidations. All the 
affected logical processors must complete their invalidations before the linear-
address range and the physical page frames previously associated with that range 
can be reallocated.

4.11 INTERACTIONS WITH VIRTUAL-MACHINE 
EXTENSIONS (VMX)

The architecture for virtual-machine extensions (VMX) includes features that interact 
with paging. Section 4.11.1 discusses ways in which VMX-specific control transfers, 
called VMX transitions specially affect paging. Section 4.11.2 gives an overview of 
VMX features specifically designed to support address translation.

4.11.1 VMX Transitions
The VMX architecture defines two control transfers called VM entries and VM exits; 
collectively, these are called VMX transitions. VM entries and VM exits are 
described in detail in Chapter 26 and Chapter 27, respectively, in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3C. The following items 
identify paging-related details:
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• VMX transitions modify the CR0 and CR4 registers and the IA32_EFER MSR 
concurrently. For this reason, they allow transitions between paging modes that 
would not otherwise be possible:

— VM entries allow transitions from IA-32e paging directly to either 32-bit 
paging or PAE paging.

— VM exits allow transitions from either 32-bit paging or PAE paging directly to 
IA-32e paging.

• VMX transitions that result in PAE paging load the PDPTE registers (see Section 
4.4.1) as follows:

— VM entries load the PDPTE registers either from the physical address being 
loaded into CR3 or from the virtual-machine control structure (VMCS); see 
Section 26.3.2.4.

— VM exits load the PDPTE registers from the physical address being loaded into 
CR3; see Section 27.5.4.

• VMX transitions invalidate the TLBs and paging-structure caches based on certain 
control settings. See Section 26.3.2.5 and Section 27.5.5 in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3C.

4.11.2 VMX Support for Address Translation
Chapter 28, “VMX Support for Address Translation,” in the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3C describe two features of the 
virtual-machine extensions (VMX) that interact directly with paging. These are 
virtual-processor identifiers (VPIDs) and the extended page table mechanism 
(EPT).

VPIDs provide a way for software to identify to the processor the address spaces for 
different “virtual processors.” The processor may use this identification to maintain 
concurrently information for multiple address spaces in its TLBs and paging-structure 
caches, even when non-zero PCIDs are not being used. See Section 28.1 for details.

When EPT is in use, the addresses in the paging-structures are not used as physical 
addresses to access memory and memory-mapped I/O. Instead, they are treated as 
guest-physical addresses and are translated through a set of EPT paging structures 
to produce physical addresses. EPT can also specify its own access rights and 
memory typing; these are used on conjunction with those specified in this chapter. 
See Section 28.2 for more information.

Both VPIDs and EPT may change the way that a processor maintains information in 
TLBs and paging structure caches and the ways in which software can manage that 
information. Some of the behaviors documented in Section 4.10 may change. See 
Section 28.3 for details.
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4.12 USING PAGING FOR VIRTUAL MEMORY
With paging, portions of the linear-address space need not be mapped to the phys-
ical-address space; data for the unmapped addresses can be stored externally (e.g., 
on disk). This method of mapping the linear-address space is referred to as virtual 
memory or demand-paged virtual memory.

Paging divides the linear address space into fixed-size pages that can be mapped into 
the physical-address space and/or external storage. When a program (or task) refer-
ences a linear address, the processor uses paging to translate the linear address into 
a corresponding physical address if such an address is defined.

If the page containing the linear address is not currently mapped into the physical-
address space, the processor generates a page-fault exception as described in 
Section 4.7. The handler for page-fault exceptions typically directs the operating 
system or executive to load data for the unmapped page from external storage into 
physical memory (perhaps writing a different page from physical memory out to 
external storage in the process) and to map it using paging (by updating the paging 
structures). When the page has been loaded into physical memory, a return from the 
exception handler causes the instruction that generated the exception to be 
restarted.

Paging differs from segmentation through its use of fixed-size pages. Unlike 
segments, which usually are the same size as the code or data structures they hold, 
pages have a fixed size. If segmentation is the only form of address translation used, 
a data structure present in physical memory will have all of its parts in memory. If 
paging is used, a data structure can be partly in memory and partly in disk storage.

4.13 MAPPING SEGMENTS TO PAGES
The segmentation and paging mechanisms provide in the support a wide variety of 
approaches to memory management. When segmentation and paging are combined, 
segments can be mapped to pages in several ways. To implement a flat (unseg-
mented) addressing environment, for example, all the code, data, and stack modules 
can be mapped to one or more large segments (up to 4-GBytes) that share same 
range of linear addresses (see Figure 3-2 in Section 3.2.2). Here, segments are 
essentially invisible to applications and the operating-system or executive. If paging 
is used, the paging mechanism can map a single linear-address space (contained in 
a single segment) into virtual memory. Alternatively, each program (or task) can 
have its own large linear-address space (contained in its own segment), which is 
mapped into virtual memory through its own paging structures.

Segments can be smaller than the size of a page. If one of these segments is placed 
in a page which is not shared with another segment, the extra memory is wasted. For 
example, a small data structure, such as a 1-Byte semaphore, occupies 4 KBytes if it 
is placed in a page by itself. If many semaphores are used, it is more efficient to pack 
them into a single page.
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The Intel-64 and IA-32 architectures do not enforce correspondence between the 
boundaries of pages and segments. A page can contain the end of one segment and 
the beginning of another. Similarly, a segment can contain the end of one page and 
the beginning of another.

Memory-management software may be simpler and more efficient if it enforces some 
alignment between page and segment boundaries. For example, if a segment which 
can fit in one page is placed in two pages, there may be twice as much paging over-
head to support access to that segment.

One approach to combining paging and segmentation that simplifies memory-
management software is to give each segment its own page table, as shown in 
Figure 4-13. This convention gives the segment a single entry in the page directory, 
and this entry provides the access control information for paging the entire segment.

Figure 4-13.  Memory Management Convention That Assigns a Page Table
to Each Segment
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CHAPTER 5
PROTECTION

In protected mode, the Intel 64 and IA-32 architectures provide a protection mecha-
nism that operates at both the segment level and the page level. This protection 
mechanism provides the ability to limit access to certain segments or pages based on 
privilege levels (four privilege levels for segments and two privilege levels for pages). 
For example, critical operating-system code and data can be protected by placing 
them in more privileged segments than those that contain applications code. The 
processor’s protection mechanism will then prevent application code from accessing 
the operating-system code and data in any but a controlled, defined manner.

Segment and page protection can be used at all stages of software development to 
assist in localizing and detecting design problems and bugs. It can also be incorpo-
rated into end-products to offer added robustness to operating systems, utilities soft-
ware, and applications software.

When the protection mechanism is used, each memory reference is checked to verify 
that it satisfies various protection checks. All checks are made before the memory 
cycle is started; any violation results in an exception. Because checks are performed 
in parallel with address translation, there is no performance penalty. The protection 
checks that are performed fall into the following categories:
• Limit checks.
• Type checks.
• Privilege level checks.
• Restriction of addressable domain.
• Restriction of procedure entry-points.
• Restriction of instruction set.

All protection violation results in an exception being generated. See Chapter 6, 
“Interrupt and Exception Handling,” for an explanation of the exception mechanism. 
This chapter describes the protection mechanism and the violations which lead to 
exceptions.

The following sections describe the protection mechanism available in protected 
mode. See Chapter 20, “8086 Emulation,” for information on protection in real-
address and virtual-8086 mode.

5.1 ENABLING AND DISABLING SEGMENT AND PAGE 
PROTECTION

Setting the PE flag in register CR0 causes the processor to switch to protected mode, 
which in turn enables the segment-protection mechanism. Once in protected mode, 
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there is no control bit for turning the protection mechanism on or off. The part of the 
segment-protection mechanism that is based on privilege levels can essentially be 
disabled while still in protected mode by assigning a privilege level of 0 (most privi-
leged) to all segment selectors and segment descriptors. This action disables the 
privilege level protection barriers between segments, but other protection checks 
such as limit checking and type checking are still carried out.

Page-level protection is automatically enabled when paging is enabled (by setting the 
PG flag in register CR0). Here again there is no mode bit for turning off page-level 
protection once paging is enabled. However, page-level protection can be disabled by 
performing the following operations:
• Clear the WP flag in control register CR0.
• Set the read/write (R/W) and user/supervisor (U/S) flags for each page-directory 

and page-table entry. 

This action makes each page a writable, user page, which in effect disables page-
level protection.

5.2 FIELDS AND FLAGS USED FOR SEGMENT-LEVEL AND 
PAGE-LEVEL PROTECTION

The processor’s protection mechanism uses the following fields and flags in the 
system data structures to control access to segments and pages:
• Descriptor type (S) flag — (Bit 12 in the second doubleword of a segment 

descriptor.) Determines if the segment descriptor is for a system segment or a 
code or data segment.

• Type field — (Bits 8 through 11 in the second doubleword of a segment 
descriptor.) Determines the type of code, data, or system segment.

• Limit field — (Bits 0 through 15 of the first doubleword and bits 16 through 19 
of the second doubleword of a segment descriptor.) Determines the size of the 
segment, along with the G flag and E flag (for data segments).

• G flag — (Bit 23 in the second doubleword of a segment descriptor.) Determines 
the size of the segment, along with the limit field and E flag (for data segments).

• E flag — (Bit 10 in the second doubleword of a data-segment descriptor.) 
Determines the size of the segment, along with the limit field and G flag.

• Descriptor privilege level (DPL) field — (Bits 13 and 14 in the second 
doubleword of a segment descriptor.) Determines the privilege level of the 
segment.

• Requested privilege level (RPL) field — (Bits 0 and 1 of any segment 
selector.) Specifies the requested privilege level of a segment selector. 

• Current privilege level (CPL) field — (Bits 0 and 1 of the CS segment 
register.) Indicates the privilege level of the currently executing program or 
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procedure. The term current privilege level (CPL) refers to the setting of this 
field.

• User/supervisor (U/S) flag — (Bit 2 of paging-structure entries.) Determines 
the type of page: user or supervisor.

• Read/write (R/W) flag — (Bit 1 of paging-structure entries.) Determines the 
type of access allowed to a page: read-only or read/write.

• Execute-disable (XD) flag — (Bit 63 of certain paging-structure entries.) 
Determines the type of access allowed to a page: executable or not-executable.

Figure 5-1 shows the location of the various fields and flags in the data, code, and 
system- segment descriptors; Figure 3-6 shows the location of the RPL (or CPL) field 
in a segment selector (or the CS register); and Chapter 4 identifies the locations of 
the U/S, R/W, and XD flags in the paging-structure entries.
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Many different styles of protection schemes can be implemented with these fields 
and flags. When the operating system creates a descriptor, it places values in these 
fields and flags in keeping with the particular protection style chosen for an operating 
system or executive. Application program do not generally access or modify these 
fields and flags. 

Figure 5-1.  Descriptor Fields Used for Protection
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The following sections describe how the processor uses these fields and flags to 
perform the various categories of checks described in the introduction to this chapter.

5.2.1 Code Segment Descriptor in 64-bit Mode
Code segments continue to exist in 64-bit mode even though, for address calcula-
tions, the segment base is treated as zero. Some code-segment (CS) descriptor 
content (the base address and limit fields) is ignored; the remaining fields function 
normally (except for the readable bit in the type field). 

Code segment descriptors and selectors are needed in IA-32e mode to establish the 
processor’s operating mode and execution privilege-level. The usage is as follows:
• IA-32e mode uses a previously unused bit in the CS descriptor. Bit 53 is defined 

as the 64-bit (L) flag and is used to select between 64-bit mode and compatibility 
mode when IA-32e mode is active (IA32_EFER.LMA = 1). See Figure 5-2.

— If CS.L = 0 and IA-32e mode is active, the processor is running in compati-
bility mode. In this case, CS.D selects the default size for data and addresses. 
If CS.D = 0, the default data and address size is 16 bits. If CS.D = 1, the 
default data and address size is 32 bits.

— If CS.L = 1 and IA-32e mode is active, the only valid setting is CS.D = 0. This 
setting indicates a default operand size of 32 bits and a default address size 
of 64 bits. The CS.L = 1 and CS.D = 1 bit combination is reserved for future 
use and a #GP fault will be generated on an attempt to use a code segment 
with these bits set in IA-32e mode.

• In IA-32e mode, the CS descriptor’s DPL is used for execution privilege checks 
(as in legacy 32-bit mode).
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5.3 LIMIT CHECKING
The limit field of a segment descriptor prevents programs or procedures from 
addressing memory locations outside the segment. The effective value of the limit 
depends on the setting of the G (granularity) flag (see Figure 5-1). For data 
segments, the limit also depends on the E (expansion direction) flag and the B 
(default stack pointer size and/or upper bound) flag. The E flag is one of the bits in 
the type field when the segment descriptor is for a data-segment type.

When the G flag is clear (byte granularity), the effective limit is the value of the 
20-bit limit field in the segment descriptor. Here, the limit ranges from 0 to FFFFFH 
(1 MByte). When the G flag is set (4-KByte page granularity), the processor scales 
the value in the limit field by a factor of 212 (4 KBytes). In this case, the effective 
limit ranges from FFFH (4 KBytes) to FFFFFFFFH (4 GBytes). Note that when scaling 
is used (G flag is set), the lower 12 bits of a segment offset (address) are not checked 
against the limit; for example, note that if the segment limit is 0, offsets 0 through 
FFFH are still valid.

For all types of segments except expand-down data segments, the effective limit is 
the last address that is allowed to be accessed in the segment, which is one less than 
the size, in bytes, of the segment. The processor causes a general-protection excep-
tion (or, if the segment is SS, a stack-fault exception) any time an attempt is made to 
access the following addresses in a segment:
• A byte at an offset greater than the effective limit
• A word at an offset greater than the (effective-limit – 1)

Figure 5-2.  Descriptor Fields with Flags used in IA-32e Mode

31 24 23 22 21 20 19 16 15 1314 12 11 8 7 0

PG
D
P
L

Type

1
L 4

0

0

A
V
L

D
ARC1

Code-Segment Descriptor

31

A

C
D
DPL

Accessed

Conforming
Default
Descriptor Privilege Level

G
R

Granularity
Readable

AVL Available to Sys. Programmer’s

L 64-Bit Flag

P Present
5-6 Vol. 3A



PROTECTION
• A doubleword at an offset greater than the (effective-limit – 3)
• A quadword at an offset greater than the (effective-limit – 7)
• A double quadword at an offset greater than the (effective limit – 15)

When the effective limit is FFFFFFFFH (4 GBytes), these accesses may or may not 
cause the indicated exceptions. Behavior is implementation-specific and may vary 
from one execution to another.

For expand-down data segments, the segment limit has the same function but is 
interpreted differently. Here, the effective limit specifies the last address that is not 
allowed to be accessed within the segment; the range of valid offsets is from (effec-
tive-limit + 1) to FFFFFFFFH if the B flag is set and from (effective-limit + 1) to FFFFH 
if the B flag is clear. An expand-down segment has maximum size when the segment 
limit is 0.

Limit checking catches programming errors such as runaway code, runaway 
subscripts, and invalid pointer calculations. These errors are detected when they 
occur, so identification of the cause is easier. Without limit checking, these errors 
could overwrite code or data in another segment.

In addition to checking segment limits, the processor also checks descriptor table 
limits. The GDTR and IDTR registers contain 16-bit limit values that the processor 
uses to prevent programs from selecting a segment descriptors outside the respec-
tive descriptor tables. The LDTR and task registers contain 32-bit segment limit value 
(read from the segment descriptors for the current LDT and TSS, respectively). The 
processor uses these segment limits to prevent accesses beyond the bounds of the 
current LDT and TSS. See Section 3.5.1, “Segment Descriptor Tables,” for more infor-
mation on the GDT and LDT limit fields; see Section 6.10, “Interrupt Descriptor Table 
(IDT),” for more information on the IDT limit field; and see Section 7.2.4, “Task 
Register,” for more information on the TSS segment limit field.

5.3.1 Limit Checking in 64-bit Mode
In 64-bit mode, the processor does not perform runtime limit checking on code or 
data segments. However, the processor does check descriptor-table limits.

5.4 TYPE CHECKING
Segment descriptors contain type information in two places:
• The S (descriptor type) flag.
• The type field.

The processor uses this information to detect programming errors that result in an 
attempt to use a segment or gate in an incorrect or unintended manner.

The S flag indicates whether a descriptor is a system type or a code or data type. The 
type field provides 4 additional bits for use in defining various types of code, data, 
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and system descriptors. Table 3-1 shows the encoding of the type field for code and 
data descriptors; Table 3-2 shows the encoding of the field for system descriptors.

The processor examines type information at various times while operating on 
segment selectors and segment descriptors. The following list gives examples of 
typical operations where type checking is performed (this list is not exhaustive):
• When a segment selector is loaded into a segment register — Certain 

segment registers can contain only certain descriptor types, for example:

— The CS register only can be loaded with a selector for a code segment.

— Segment selectors for code segments that are not readable or for system 
segments cannot be loaded into data-segment registers (DS, ES, FS, and 
GS).

— Only segment selectors of writable data segments can be loaded into the SS 
register.

• When a segment selector is loaded into the LDTR or task register — For example:

— The LDTR can only be loaded with a selector for an LDT.

— The task register can only be loaded with a segment selector for a TSS.
• When instructions access segments whose descriptors are already 

loaded into segment registers — Certain segments can be used by instruc-
tions only in certain predefined ways, for example:

— No instruction may write into an executable segment.

— No instruction may write into a data segment if it is not writable.

— No instruction may read an executable segment unless the readable flag is 
set.

• When an instruction operand contains a segment selector — Certain 
instructions can access segments or gates of only a particular type, for example:

— A far CALL or far JMP instruction can only access a segment descriptor for a 
conforming code segment, nonconforming code segment, call gate, task 
gate, or TSS.

— The LLDT instruction must reference a segment descriptor for an LDT.

— The LTR instruction must reference a segment descriptor for a TSS.

— The LAR instruction must reference a segment or gate descriptor for an LDT, 
TSS, call gate, task gate, code segment, or data segment.

— The LSL instruction must reference a segment descriptor for a LDT, TSS, code 
segment, or data segment.

— IDT entries must be interrupt, trap, or task gates.
• During certain internal operations — For example:

— On a far call or far jump (executed with a far CALL or far JMP instruction), the 
processor determines the type of control transfer to be carried out (call or 
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jump to another code segment, a call or jump through a gate, or a task 
switch) by checking the type field in the segment (or gate) descriptor pointed 
to by the segment (or gate) selector given as an operand in the CALL or JMP 
instruction. If the descriptor type is for a code segment or call gate, a call or 
jump to another code segment is indicated; if the descriptor type is for a TSS 
or task gate, a task switch is indicated.

— On a call or jump through a call gate (or on an interrupt- or exception-handler 
call through a trap or interrupt gate), the processor automatically checks that 
the segment descriptor being pointed to by the gate is for a code segment.

— On a call or jump to a new task through a task gate (or on an interrupt- or 
exception-handler call to a new task through a task gate), the processor 
automatically checks that the segment descriptor being pointed to by the 
task gate is for a TSS.

— On a call or jump to a new task by a direct reference to a TSS, the processor 
automatically checks that the segment descriptor being pointed to by the 
CALL or JMP instruction is for a TSS.

— On return from a nested task (initiated by an IRET instruction), the processor 
checks that the previous task link field in the current TSS points to a TSS.

5.4.1 Null Segment Selector Checking
Attempting to load a null segment selector (see Section 3.4.2, “Segment Selectors”) 
into the CS or SS segment register generates a general-protection exception (#GP). 
A null segment selector can be loaded into the DS, ES, FS, or GS register, but any 
attempt to access a segment through one of these registers when it is loaded with a 
null segment selector results in a #GP exception being generated. Loading unused 
data-segment registers with a null segment selector is a useful method of detecting 
accesses to unused segment registers and/or preventing unwanted accesses to data 
segments.

5.4.1.1  NULL Segment Checking in 64-bit Mode
In 64-bit mode, the processor does not perform runtime checking on NULL segment 
selectors. The processor does not cause a #GP fault when an attempt is made to 
access memory where the referenced segment register has a NULL segment selector. 

5.5 PRIVILEGE LEVELS
The processor’s segment-protection mechanism recognizes 4 privilege levels, 
numbered from 0 to 3. The greater numbers mean lesser privileges. Figure 5-3 
shows how these levels of privilege can be interpreted as rings of protection. 
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The center (reserved for the most privileged code, data, and stacks) is used for the 
segments containing the critical software, usually the kernel of an operating system. 
Outer rings are used for less critical software. (Systems that use only 2 of the 4 
possible privilege levels should use levels 0 and 3.) 

The processor uses privilege levels to prevent a program or task operating at a lesser 
privilege level from accessing a segment with a greater privilege, except under 
controlled situations. When the processor detects a privilege level violation, it gener-
ates a general-protection exception (#GP).

To carry out privilege-level checks between code segments and data segments, the 
processor recognizes the following three types of privilege levels: 
• Current privilege level (CPL) — The CPL is the privilege level of the currently 

executing program or task. It is stored in bits 0 and 1 of the CS and SS segment 
registers. Normally, the CPL is equal to the privilege level of the code segment 
from which instructions are being fetched. The processor changes the CPL when 
program control is transferred to a code segment with a different privilege level. 
The CPL is treated slightly differently when accessing conforming code segments. 
Conforming code segments can be accessed from any privilege level that is equal 
to or numerically greater (less privileged) than the DPL of the conforming code 
segment. Also, the CPL is not changed when the processor accesses a conforming 
code segment that has a different privilege level than the CPL.

• Descriptor privilege level (DPL) — The DPL is the privilege level of a segment 
or gate. It is stored in the DPL field of the segment or gate descriptor for the 
segment or gate. When the currently executing code segment attempts to access 
a segment or gate, the DPL of the segment or gate is compared to the CPL and 
RPL of the segment or gate selector (as described later in this section). The DPL 

Figure 5-3.  Protection Rings
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is interpreted differently, depending on the type of segment or gate being 
accessed:

— Data segment — The DPL indicates the numerically highest privilege level 
that a program or task can have to be allowed to access the segment. For 
example, if the DPL of a data segment is 1, only programs running at a CPL of 
0 or 1 can access the segment. 

— Nonconforming code segment (without using a call gate) — The DPL 
indicates the privilege level that a program or task must be at to access the 
segment. For example, if the DPL of a nonconforming code segment is 0, only 
programs running at a CPL of 0 can access the segment. 

— Call gate — The DPL indicates the numerically highest privilege level that the 
currently executing program or task can be at and still be able to access the 
call gate. (This is the same access rule as for a data segment.)

— Conforming code segment and nonconforming code segment 
accessed through a call gate — The DPL indicates the numerically lowest 
privilege level that a program or task can have to be allowed to access the 
segment. For example, if the DPL of a conforming code segment is 2, 
programs running at a CPL of 0 or 1 cannot access the segment. 

— TSS — The DPL indicates the numerically highest privilege level that the 
currently executing program or task can be at and still be able to access the 
TSS. (This is the same access rule as for a data segment.)

• Requested privilege level (RPL) — The RPL is an override privilege level that 
is assigned to segment selectors. It is stored in bits 0 and 1 of the segment 
selector. The processor checks the RPL along with the CPL to determine if access 
to a segment is allowed. Even if the program or task requesting access to a 
segment has sufficient privilege to access the segment, access is denied if the 
RPL is not of sufficient privilege level. That is, if the RPL of a segment selector is 
numerically greater than the CPL, the RPL overrides the CPL, and vice versa. The 
RPL can be used to insure that privileged code does not access a segment on 
behalf of an application program unless the program itself has access privileges 
for that segment. See Section 5.10.4, “Checking Caller Access Privileges (ARPL 
Instruction),” for a detailed description of the purpose and typical use of the RPL.

Privilege levels are checked when the segment selector of a segment descriptor is 
loaded into a segment register. The checks used for data access differ from those 
used for transfers of program control among code segments; therefore, the two 
kinds of accesses are considered separately in the following sections.

5.6 PRIVILEGE LEVEL CHECKING WHEN ACCESSING DATA 
SEGMENTS

To access operands in a data segment, the segment selector for the data segment 
must be loaded into the data-segment registers (DS, ES, FS, or GS) or into the stack-
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segment register (SS). (Segment registers can be loaded with the MOV, POP, LDS, 
LES, LFS, LGS, and LSS instructions.) Before the processor loads a segment selector 
into a segment register, it performs a privilege check (see Figure 5-4) by comparing 
the privilege levels of the currently running program or task (the CPL), the RPL of the 
segment selector, and the DPL of the segment’s segment descriptor. The processor 
loads the segment selector into the segment register if the DPL is numerically greater 
than or equal to both the CPL and the RPL. Otherwise, a general-protection fault is 
generated and the segment register is not loaded.

Figure 5-5 shows four procedures (located in codes segments A, B, C, and D), each 
running at different privilege levels and each attempting to access the same data 
segment. 

1. The procedure in code segment A is able to access data segment E using segment 
selector E1, because the CPL of code segment A and the RPL of segment selector 
E1 are equal to the DPL of data segment E.

2. The procedure in code segment B is able to access data segment E using segment 
selector E2, because the CPL of code segment B and the RPL of segment selector 
E2 are both numerically lower than (more privileged) than the DPL of data 
segment E. A code segment B procedure can also access data segment E using 
segment selector E1.

3. The procedure in code segment C is not able to access data segment E using 
segment selector E3 (dotted line), because the CPL of code segment C and the 
RPL of segment selector E3 are both numerically greater than (less privileged) 
than the DPL of data segment E. Even if a code segment C procedure were to use 
segment selector E1 or E2, such that the RPL would be acceptable, it still could 
not access data segment E because its CPL is not privileged enough.

4. The procedure in code segment D should be able to access data segment E 
because code segment D’s CPL is numerically less than the DPL of data segment 

Figure 5-4.  Privilege Check for Data Access
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E. However, the RPL of segment selector E3 (which the code segment D 
procedure is using to access data segment E) is numerically greater than the DPL 
of data segment E, so access is not allowed. If the code segment D procedure 
were to use segment selector E1 or E2 to access the data segment, access would 
be allowed.

As demonstrated in the previous examples, the addressable domain of a program or 
task varies as its CPL changes. When the CPL is 0, data segments at all privilege 
levels are accessible; when the CPL is 1, only data segments at privilege levels 1 
through 3 are accessible; when the CPL is 3, only data segments at privilege level 3 
are accessible. 

The RPL of a segment selector can always override the addressable domain of a 
program or task. When properly used, RPLs can prevent problems caused by acci-
dental (or intensional) use of segment selectors for privileged data segments by less 
privileged programs or procedures.

It is important to note that the RPL of a segment selector for a data segment is under 
software control. For example, an application program running at a CPL of 3 can set 
the RPL for a data- segment selector to 0. With the RPL set to 0, only the CPL checks, 
not the RPL checks, will provide protection against deliberate, direct attempts to 
violate privilege-level security for the data segment. To prevent these types of privi-
lege-level-check violations, a program or procedure can check access privileges 
whenever it receives a data-segment selector from another procedure (see Section 
5.10.4, “Checking Caller Access Privileges (ARPL Instruction)”).

Figure 5-5.  Examples of Accessing Data Segments From Various Privilege Levels
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5.6.1 Accessing Data in Code Segments
In some instances it may be desirable to access data structures that are contained in 
a code segment. The following methods of accessing data in code segments are 
possible:
• Load a data-segment register with a segment selector for a nonconforming, 

readable, code segment.
• Load a data-segment register with a segment selector for a conforming, 

readable, code segment.
• Use a code-segment override prefix (CS) to read a readable, code segment 

whose selector is already loaded in the CS register.

The same rules for accessing data segments apply to method 1. Method 2 is always 
valid because the privilege level of a conforming code segment is effectively the 
same as the CPL, regardless of its DPL. Method 3 is always valid because the DPL of 
the code segment selected by the CS register is the same as the CPL.

5.7 PRIVILEGE LEVEL CHECKING WHEN LOADING THE SS 
REGISTER

Privilege level checking also occurs when the SS register is loaded with the segment 
selector for a stack segment. Here all privilege levels related to the stack segment 
must match the CPL; that is, the CPL, the RPL of the stack-segment selector, and the 
DPL of the stack-segment descriptor must be the same. If the RPL and DPL are not 
equal to the CPL, a general-protection exception (#GP) is generated.

5.8 PRIVILEGE LEVEL CHECKING WHEN TRANSFERRING 
PROGRAM CONTROL BETWEEN CODE SEGMENTS

To transfer program control from one code segment to another, the segment selector 
for the destination code segment must be loaded into the code-segment register 
(CS). As part of this loading process, the processor examines the segment descriptor 
for the destination code segment and performs various limit, type, and privilege 
checks. If these checks are successful, the CS register is loaded, program control is 
transferred to the new code segment, and program execution begins at the instruc-
tion pointed to by the EIP register. 

Program control transfers are carried out with the JMP, CALL, RET, SYSENTER, 
SYSEXIT, INT n, and IRET instructions, as well as by the exception and interrupt 
mechanisms. Exceptions, interrupts, and the IRET instruction are special cases 
discussed in Chapter 6, “Interrupt and Exception Handling.” This chapter discusses 
only the JMP, CALL, RET, SYSENTER, and SYSEXIT instructions.

A JMP or CALL instruction can reference another code segment in any of four ways:
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• The target operand contains the segment selector for the target code segment.
• The target operand points to a call-gate descriptor, which contains the segment 

selector for the target code segment.
• The target operand points to a TSS, which contains the segment selector for the 

target code segment. 
• The target operand points to a task gate, which points to a TSS, which in turn 

contains the segment selector for the target code segment. 

The following sections describe first two types of references. See Section 7.3, “Task 
Switching,” for information on transferring program control through a task gate 
and/or TSS.

The SYSENTER and SYSEXIT instructions are special instructions for making fast calls 
to and returns from operating system or executive procedures. These instructions 
are discussed briefly in Section 5.8.7, “Performing Fast Calls to System Procedures 
with the SYSENTER and SYSEXIT Instructions.”

5.8.1 Direct Calls or Jumps to Code Segments
The near forms of the JMP, CALL, and RET instructions transfer program control 
within the current code segment, so privilege-level checks are not performed. The far 
forms of the JMP, CALL, and RET instructions transfer control to other code segments, 
so the processor does perform privilege-level checks. 

When transferring program control to another code segment without going through a 
call gate, the processor examines four kinds of privilege level and type information 
(see Figure 5-6):
• The CPL. (Here, the CPL is the privilege level of the calling code segment; that is, 

the code segment that contains the procedure that is making the call or jump.)

Figure 5-6.  Privilege Check for Control Transfer Without Using a Gate
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• The DPL of the segment descriptor for the destination code segment that 
contains the called procedure. 

• The RPL of the segment selector of the destination code segment.
• The conforming (C) flag in the segment descriptor for the destination code 

segment, which determines whether the segment is a conforming (C flag is set) 
or nonconforming (C flag is clear) code segment. See Section 3.4.5.1, “Code- 
and Data-Segment Descriptor Types,” for more information about this flag.

The rules that the processor uses to check the CPL, RPL, and DPL depends on the 
setting of the C flag, as described in the following sections.

5.8.1.1  Accessing Nonconforming Code Segments
When accessing nonconforming code segments, the CPL of the calling procedure 
must be equal to the DPL of the destination code segment; otherwise, the processor 
generates a general-protection exception (#GP). For example in Figure 5-7:
• Code segment C is a nonconforming code segment. A procedure in code segment 

A can call a procedure in code segment C (using segment selector C1) because 
they are at the same privilege level (CPL of code segment A is equal to the DPL of 
code segment C). 

• A procedure in code segment B cannot call a procedure in code segment C (using 
segment selector C2 or C1) because the two code segments are at different 
privilege levels.
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The RPL of the segment selector that points to a nonconforming code segment has a 
limited effect on the privilege check. The RPL must be numerically less than or equal 
to the CPL of the calling procedure for a successful control transfer to occur. So, in the 
example in Figure 5-7, the RPLs of segment selectors C1 and C2 could legally be set 
to 0, 1, or 2, but not to 3.

When the segment selector of a nonconforming code segment is loaded into the CS 
register, the privilege level field is not changed; that is, it remains at the CPL (which 
is the privilege level of the calling procedure). This is true, even if the RPL of the 
segment selector is different from the CPL.

5.8.1.2  Accessing Conforming Code Segments
When accessing conforming code segments, the CPL of the calling procedure may be 
numerically equal to or greater than (less privileged) the DPL of the destination code 
segment; the processor generates a general-protection exception (#GP) only if the 
CPL is less than the DPL. (The segment selector RPL for the destination code segment 
is not checked if the segment is a conforming code segment.)

Figure 5-7.  Examples of Accessing Conforming and Nonconforming Code Segments 
From Various Privilege Levels
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In the example in Figure 5-7, code segment D is a conforming code segment. There-
fore, calling procedures in both code segment A and B can access code segment D 
(using either segment selector D1 or D2, respectively), because they both have CPLs 
that are greater than or equal to the DPL of the conforming code segment. For 
conforming code segments, the DPL represents the numerically lowest priv-
ilege level that a calling procedure may be at to successfully make a call to 
the code segment.

(Note that segments selectors D1 and D2 are identical except for their respective 
RPLs. But since RPLs are not checked when accessing conforming code segments, 
the two segment selectors are essentially interchangeable.)

When program control is transferred to a conforming code segment, the CPL does not 
change, even if the DPL of the destination code segment is less than the CPL. This 
situation is the only one where the CPL may be different from the DPL of the current 
code segment. Also, since the CPL does not change, no stack switch occurs.

Conforming segments are used for code modules such as math libraries and excep-
tion handlers, which support applications but do not require access to protected 
system facilities. These modules are part of the operating system or executive soft-
ware, but they can be executed at numerically higher privilege levels (less privileged 
levels). Keeping the CPL at the level of a calling code segment when switching to a 
conforming code segment prevents an application program from accessing noncon-
forming code segments while at the privilege level (DPL) of a conforming code 
segment and thus prevents it from accessing more privileged data.

Most code segments are nonconforming. For these segments, program control can 
be transferred only to code segments at the same level of privilege, unless the 
transfer is carried out through a call gate, as described in the following sections.

5.8.2 Gate Descriptors
To provide controlled access to code segments with different privilege levels, the 
processor provides special set of descriptors called gate descriptors. There are four 
kinds of gate descriptors:
• Call gates
• Trap gates
• Interrupt gates
• Task gates

Task gates are used for task switching and are discussed in Chapter 7, “Task Manage-
ment”. Trap and interrupt gates are special kinds of call gates used for calling excep-
tion and interrupt handlers. The are described in Chapter 6, “Interrupt and Exception 
Handling.” This chapter is concerned only with call gates. 
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5.8.3 Call Gates
Call gates facilitate controlled transfers of program control between different privi-
lege levels. They are typically used only in operating systems or executives that use 
the privilege-level protection mechanism. Call gates are also useful for transferring 
program control between 16-bit and 32-bit code segments, as described in Section 
21.4, “Transferring Control Among Mixed-Size Code Segments.”

Figure 5-8 shows the format of a call-gate descriptor. A call-gate descriptor may 
reside in the GDT or in an LDT, but not in the interrupt descriptor table (IDT). It 
performs six functions:
• It specifies the code segment to be accessed.
• It defines an entry point for a procedure in the specified code segment.
• It specifies the privilege level required for a caller trying to access the procedure.

• If a stack switch occurs, it specifies the number of optional parameters to be 
copied between stacks.

• It defines the size of values to be pushed onto the target stack: 16-bit gates force 
16-bit pushes and 32-bit gates force 32-bit pushes.

• It specifies whether the call-gate descriptor is valid. 

The segment selector field in a call gate specifies the code segment to be accessed. 
The offset field specifies the entry point in the code segment. This entry point is 
generally to the first instruction of a specific procedure. The DPL field indicates the 
privilege level of the call gate, which in turn is the privilege level required to access 
the selected procedure through the gate. The P flag indicates whether the call-gate 
descriptor is valid. (The presence of the code segment to which the gate points is 
indicated by the P flag in the code segment’s descriptor.) The parameter count field 
indicates the number of parameters to copy from the calling procedures stack to the 
new stack if a stack switch occurs (see Section 5.8.5, “Stack Switching”). The param-
eter count specifies the number of words for 16-bit call gates and doublewords for 
32-bit call gates.

Figure 5-8.  Call-Gate Descriptor
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Note that the P flag in a gate descriptor is normally always set to 1. If it is set to 0, a 
not present (#NP) exception is generated when a program attempts to access the 
descriptor. The operating system can use the P flag for special purposes. For 
example, it could be used to track the number of times the gate is used. Here, the P 
flag is initially set to 0 causing a trap to the not-present exception handler. The 
exception handler then increments a counter and sets the P flag to 1, so that on 
returning from the handler, the gate descriptor will be valid.

5.8.3.1  IA-32e Mode Call Gates
Call-gate descriptors in 32-bit mode provide a 32-bit offset for the instruction pointer 
(EIP); 64-bit extensions double the size of 32-bit mode call gates in order to store 
64-bit instruction pointers (RIP). See Figure 5-9:
• The first eight bytes (bytes 7:0) of a 64-bit mode call gate are similar but not 

identical to legacy 32-bit mode call gates. The parameter-copy-count field has 
been removed. 

• Bytes 11:8 hold the upper 32 bits of the target-segment offset in canonical form. 
A general-protection exception (#GP) is generated if software attempts to use a 
call gate with a target offset that is not in canonical form.

• 16-byte descriptors may reside in the same descriptor table with 16-bit and 
32-bit descriptors. A type field, used for consistency checking, is defined in bits 
12:8 of the 64-bit descriptor’s highest dword (cleared to zero). A general-
protection exception (#GP) results if an attempt is made to access the upper half 
of a 64-bit mode descriptor as a 32-bit mode descriptor.
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• Target code segments referenced by a 64-bit call gate must be 64-bit code 
segments (CS.L = 1, CS.D = 0). If not, the reference generates a general-
protection exception, #GP (CS selector). 

• Only 64-bit mode call gates can be referenced in IA-32e mode (64-bit mode and 
compatibility mode). The legacy 32-bit mode call gate type (0CH) is redefined in 
IA-32e mode as a 64-bit call-gate type; no 32-bit call-gate type exists in IA-32e 
mode. 

• If a far call references a 16-bit call gate type (04H) in IA-32e mode, a general-
protection exception (#GP) is generated.

When a call references a 64-bit mode call gate, actions taken are identical to those 
taken in 32-bit mode, with the following exceptions:
• Stack pushes are made in eight-byte increments.
• A 64-bit RIP is pushed onto the stack.
• Parameter copying is not performed.

Use a matching far-return instruction size for correct operation (returns from 64-bit 
calls must be performed with a 64-bit operand-size return to process the stack 
correctly).

Figure 5-9.  Call-Gate Descriptor in IA-32e Mode
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5.8.4 Accessing a Code Segment Through a Call Gate
To access a call gate, a far pointer to the gate is provided as a target operand in a 
CALL or JMP instruction. The segment selector from this pointer identifies the call 
gate (see Figure 5-10); the offset from the pointer is required, but not used or 
checked by the processor. (The offset can be set to any value.) 

When the processor has accessed the call gate, it uses the segment selector from the 
call gate to locate the segment descriptor for the destination code segment. (This 
segment descriptor can be in the GDT or the LDT.) It then combines the base address 
from the code-segment descriptor with the offset from the call gate to form the linear 
address of the procedure entry point in the code segment.

As shown in Figure 5-11, four different privilege levels are used to check the validity 
of a program control transfer through a call gate:
• The CPL (current privilege level).
• The RPL (requestor's privilege level) of the call gate’s selector.
• The DPL (descriptor privilege level) of the call gate descriptor.
• The DPL of the segment descriptor of the destination code segment.

The C flag (conforming) in the segment descriptor for the destination code segment 
is also checked.

Figure 5-10.  Call-Gate Mechanism
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The privilege checking rules are different depending on whether the control transfer 
was initiated with a CALL or a JMP instruction, as shown in Table 5-1.

The DPL field of the call-gate descriptor specifies the numerically highest privilege 
level from which a calling procedure can access the call gate; that is, to access a call 
gate, the CPL of a calling procedure must be equal to or less than the DPL of the call 
gate. For example, in Figure 5-15, call gate A has a DPL of 3. So calling procedures at 
all CPLs (0 through 3) can access this call gate, which includes calling procedures in 
code segments A, B, and C. Call gate B has a DPL of 2, so only calling procedures at 
a CPL or 0, 1, or 2 can access call gate B, which includes calling procedures in code 

Figure 5-11.  Privilege Check for Control Transfer with Call Gate
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segments B and C. The dotted line shows that a calling procedure in code segment A 
cannot access call gate B.

The RPL of the segment selector to a call gate must satisfy the same test as the CPL 
of the calling procedure; that is, the RPL must be less than or equal to the DPL of the 
call gate. In the example in Figure 5-15, a calling procedure in code segment C can 
access call gate B using gate selector B2 or B1, but it could not use gate selector B3 
to access call gate B.

If the privilege checks between the calling procedure and call gate are successful, the 
processor then checks the DPL of the code-segment descriptor against the CPL of the 
calling procedure. Here, the privilege check rules vary between CALL and JMP 
instructions. Only CALL instructions can use call gates to transfer program control to 
more privileged (numerically lower privilege level) nonconforming code segments; 
that is, to nonconforming code segments with a DPL less than the CPL. A JMP instruc-
tion can use a call gate only to transfer program control to a nonconforming code 
segment with a DPL equal to the CPL. CALL and JMP instruction can both transfer 
program control to a more privileged conforming code segment; that is, to a 
conforming code segment with a DPL less than or equal to the CPL.

If a call is made to a more privileged (numerically lower privilege level) noncon-
forming destination code segment, the CPL is lowered to the DPL of the destination 
code segment and a stack switch occurs (see Section 5.8.5, “Stack Switching”). If a 
call or jump is made to a more privileged conforming destination code segment, the 
CPL is not changed and no stack switch occurs. 
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Call gates allow a single code segment to have procedures that can be accessed at 
different privilege levels. For example, an operating system located in a code 
segment may have some services which are intended to be used by both the oper-
ating system and application software (such as procedures for handling character 
I/O). Call gates for these procedures can be set up that allow access at all privilege 
levels (0 through 3). More privileged call gates (with DPLs of 0 or 1) can then be set 
up for other operating system services that are intended to be used only by the oper-
ating system (such as procedures that initialize device drivers).

5.8.5 Stack Switching
Whenever a call gate is used to transfer program control to a more privileged 
nonconforming code segment (that is, when the DPL of the nonconforming destina-
tion code segment is less than the CPL), the processor automatically switches to the 
stack for the destination code segment’s privilege level. This stack switching is 
carried out to prevent more privileged procedures from crashing due to insufficient 
stack space. It also prevents less privileged procedures from interfering (by accident 
or intent) with more privileged procedures through a shared stack.

Figure 5-12.  Example of Accessing Call Gates At Various Privilege Levels
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Each task must define up to 4 stacks: one for applications code (running at privilege 
level 3) and one for each of the privilege levels 2, 1, and 0 that are used. (If only two 
privilege levels are used [3 and 0], then only two stacks must be defined.) Each of 
these stacks is located in a separate segment and is identified with a segment 
selector and an offset into the stack segment (a stack pointer).

The segment selector and stack pointer for the privilege level 3 stack is located in the 
SS and ESP registers, respectively, when privilege-level-3 code is being executed and 
is automatically stored on the called procedure’s stack when a stack switch occurs. 

Pointers to the privilege level 0, 1, and 2 stacks are stored in the TSS for the currently 
running task (see Figure 7-2). Each of these pointers consists of a segment selector 
and a stack pointer (loaded into the ESP register). These initial pointers are strictly 
read-only values. The processor does not change them while the task is running. 
They are used only to create new stacks when calls are made to more privileged 
levels (numerically lower privilege levels). These stacks are disposed of when a 
return is made from the called procedure. The next time the procedure is called, a 
new stack is created using the initial stack pointer. (The TSS does not specify a stack 
for privilege level 3 because the processor does not allow a transfer of program 
control from a procedure running at a CPL of 0, 1, or 2 to a procedure running at a 
CPL of 3, except on a return.)

The operating system is responsible for creating stacks and stack-segment descrip-
tors for all the privilege levels to be used and for loading initial pointers for these 
stacks into the TSS. Each stack must be read/write accessible (as specified in the 
type field of its segment descriptor) and must contain enough space (as specified in 
the limit field) to hold the following items:
• The contents of the SS, ESP, CS, and EIP registers for the calling procedure.
• The parameters and temporary variables required by the called procedure.
• The EFLAGS register and error code, when implicit calls are made to an exception 

or interrupt handler.

The stack will need to require enough space to contain many frames of these items, 
because procedures often call other procedures, and an operating system may 
support nesting of multiple interrupts. Each stack should be large enough to allow for 
the worst case nesting scenario at its privilege level.

(If the operating system does not use the processor’s multitasking mechanism, it still 
must create at least one TSS for this stack-related purpose.) 

When a procedure call through a call gate results in a change in privilege level, the 
processor performs the following steps to switch stacks and begin execution of the 
called procedure at a new privilege level:

1. Uses the DPL of the destination code segment (the new CPL) to select a pointer
to the new stack (segment selector and stack pointer) from the TSS. 

2. Reads the segment selector and stack pointer for the stack to be switched to from 
the current TSS. Any limit violations detected while reading the stack-segment 
selector, stack pointer, or stack-segment descriptor cause an invalid TSS (#TS) 
exception to be generated.
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3. Checks the stack-segment descriptor for the proper privileges and type and 
generates an invalid TSS (#TS) exception if violations are detected.

4. Temporarily saves the current values of the SS and ESP registers.

5. Loads the segment selector and stack pointer for the new stack in the SS and ESP 
registers.

6. Pushes the temporarily saved values for the SS and ESP registers (for the calling 
procedure) onto the new stack (see Figure 5-13).

7. Copies the number of parameter specified in the parameter count field of the call 
gate from the calling procedure’s stack to the new stack. If the count is 0, no 
parameters are copied.

8. Pushes the return instruction pointer (the current contents of the CS and EIP 
registers) onto the new stack.

9. Loads the segment selector for the new code segment and the new instruction 
pointer from the call gate into the CS and EIP registers, respectively, and begins 
execution of the called procedure.

See the description of the CALL instruction in Chapter 3, Instruction Set Reference, in 
the IA-32 Intel Architecture Software Developer’s Manual, Volume 2, for a detailed 
description of the privilege level checks and other protection checks that the 
processor performs on a far call through a call gate.

The parameter count field in a call gate specifies the number of data items (up to 31) 
that the processor should copy from the calling procedure’s stack to the stack of the 
called procedure. If more than 31 data items need to be passed to the called proce-

Figure 5-13.  Stack Switching During an Interprivilege-Level Call
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dure, one of the parameters can be a pointer to a data structure, or the saved 
contents of the SS and ESP registers may be used to access parameters in the old 
stack space. The size of the data items passed to the called procedure depends on 
the call gate size, as described in Section 5.8.3, “Call Gates.”

5.8.5.1  Stack Switching in 64-bit Mode
Although protection-check rules for call gates are unchanged from 32-bit mode, 
stack-switch changes in 64-bit mode are different.

When stacks are switched as part of a 64-bit mode privilege-level change through a 
call gate, a new SS (stack segment) descriptor is not loaded; 64-bit mode only loads 
an inner-level RSP from the TSS. The new SS is forced to NULL and the SS selector’s 
RPL field is forced to the new CPL. The new SS is set to NULL in order to handle 
nested far transfers (CALLF, INTn, interrupts and exceptions). The old SS and RSP 
are saved on the new stack. 

On a subsequent RETF, the old SS is popped from the stack and loaded into the SS 
register. See Table 5-2.

In 64-bit mode, stack operations resulting from a privilege-level-changing far call or 
far return are eight-bytes wide and change the RSP by eight. The mode does not 
support the automatic parameter-copy feature found in 32-bit mode. The call-gate 
count field is ignored. Software can access the old stack, if necessary, by referencing 
the old stack-segment selector and stack pointer saved on the new process stack. 

In 64-bit mode, RETF is allowed to load a NULL SS under certain conditions. If the 
target mode is 64-bit mode and the target CPL< >3, IRET allows SS to be loaded with 
a NULL selector. If the called procedure itself is interrupted, the NULL SS is pushed on 
the stack frame. On the subsequent RETF, the NULL SS on the stack acts as a flag to 
tell the processor not to load a new SS descriptor.

5.8.6 Returning from a Called Procedure
The RET instruction can be used to perform a near return, a far return at the same 
privilege level, and a far return to a different privilege level. This instruction is 

Table 5-2.  64-Bit-Mode Stack Layout After CALLF with CPL Change
32-bit Mode IA-32e mode

Old SS Selector +12 +24 Old SS Selector

Old ESP +8 +16 Old RSP

CS Selector +4 +8 Old CS Selector

EIP 0 ESP  RSP 0 RIP

< 4 Bytes  > < 8 Bytes >
5-28 Vol. 3A



PROTECTION
intended to execute returns from procedures that were called with a CALL instruc-
tion. It does not support returns from a JMP instruction, because the JMP instruction 
does not save a return instruction pointer on the stack.

A near return only transfers program control within the current code segment; there-
fore, the processor performs only a limit check. When the processor pops the return 
instruction pointer from the stack into the EIP register, it checks that the pointer does 
not exceed the limit of the current code segment.

On a far return at the same privilege level, the processor pops both a segment 
selector for the code segment being returned to and a return instruction pointer from 
the stack. Under normal conditions, these pointers should be valid, because they 
were pushed on the stack by the CALL instruction. However, the processor performs 
privilege checks to detect situations where the current procedure might have altered 
the pointer or failed to maintain the stack properly.

A far return that requires a privilege-level change is only allowed when returning to a 
less privileged level (that is, the DPL of the return code segment is numerically 
greater than the CPL). The processor uses the RPL field from the CS register value 
saved for the calling procedure (see Figure 5-13) to determine if a return to a numer-
ically higher privilege level is required. If the RPL is numerically greater (less privi-
leged) than the CPL, a return across privilege levels occurs. 

The processor performs the following steps when performing a far return to a calling 
procedure (see Figures 6-2 and 6-4 in the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1, for an illustration of the stack contents prior to 
and after a return):

1. Checks the RPL field of the saved CS register value to determine if a privilege
level change is required on the return.

2. Loads the CS and EIP registers with the values on the called procedure’s stack. 
(Type and privilege level checks are performed on the code-segment descriptor 
and RPL of the code- segment selector.)

3. (If the RET instruction includes a parameter count operand and the return 
requires a privilege level change.) Adds the parameter count (in bytes obtained 
from the RET instruction) to the current ESP register value (after popping the CS 
and EIP values), to step past the parameters on the called procedure’s stack. The 
resulting value in the ESP register points to the saved SS and ESP values for the 
calling procedure’s stack. (Note that the byte count in the RET instruction must 
be chosen to match the parameter count in the call gate that the calling 
procedure referenced when it made the original call multiplied by the size of the 
parameters.)

4. (If the return requires a privilege level change.) Loads the SS and ESP registers 
with the saved SS and ESP values and switches back to the calling procedure’s 
stack. The SS and ESP values for the called procedure’s stack are discarded. Any 
limit violations detected while loading the stack-segment selector or stack 
pointer cause a general-protection exception (#GP) to be generated. The new 
stack-segment descriptor is also checked for type and privilege violations.
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5. (If the RET instruction includes a parameter count operand.) Adds the parameter 
count (in bytes obtained from the RET instruction) to the current ESP register 
value, to step past the parameters on the calling procedure’s stack. The resulting 
ESP value is not checked against the limit of the stack segment. If the ESP value 
is beyond the limit, that fact is not recognized until the next stack operation.

6. (If the return requires a privilege level change.) Checks the contents of the DS, 
ES, FS, and GS segment registers. If any of these registers refer to segments 
whose DPL is less than the new CPL (excluding conforming code segments), the 
segment register is loaded with a null segment selector.

See the description of the RET instruction in Chapter 4 of the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2B, for a detailed description of 
the privilege level checks and other protection checks that the processor performs on 
a far return.

5.8.7 Performing Fast Calls to System Procedures with the
SYSENTER and SYSEXIT Instructions

The SYSENTER and SYSEXIT instructions were introduced into the IA-32 architecture 
in the Pentium II processors for the purpose of providing a fast (low overhead) mech-
anism for calling operating system or executive procedures. SYSENTER is intended 
for use by user code running at privilege level 3 to access operating system or exec-
utive procedures running at privilege level 0. SYSEXIT is intended for use by privilege 
level 0 operating system or executive procedures for fast returns to privilege level 3 
user code. SYSENTER can be executed from privilege levels 3, 2, 1, or 0; SYSEXIT 
can only be executed from privilege level 0.

The SYSENTER and SYSEXIT instructions are companion instructions, but they do not 
constitute a call/return pair. This is because SYSENTER does not save any state infor-
mation for use by SYSEXIT on a return.

The target instruction and stack pointer for these instructions are not specified 
through instruction operands. Instead, they are specified through parameters 
entered in MSRs and general-purpose registers. 

For SYSENTER, target fields are generated using the following sources:
• Target code segment — Reads this from IA32_SYSENTER_CS.
• Target instruction — Reads this from IA32_SYSENTER_EIP.
• Stack segment — Computed by adding 8 to the value in IA32_SYSENTER_CS.
• Stack pointer — Reads this from the IA32_SYSENTER_ESP.

For SYSEXIT, target fields are generated using the following sources:
• Target code segment — Computed by adding 16 to the value in the 

IA32_SYSENTER_CS.
• Target instruction — Reads this from EDX.
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• Stack segment — Computed by adding 24 to the value in IA32_SYSENTER_CS.
• Stack pointer — Reads this from ECX.

The SYSENTER and SYSEXIT instructions preform “fast” calls and returns because 
they force the processor into a predefined privilege level 0 state when SYSENTER is 
executed and into a predefined privilege level 3 state when SYSEXIT is executed. By 
forcing predefined and consistent processor states, the number of privilege checks 
ordinarily required to perform a far call to another privilege levels are greatly 
reduced. Also, by predefining the target context state in MSRs and general-purpose 
registers eliminates all memory accesses except when fetching the target code.

Any additional state that needs to be saved to allow a return to the calling procedure 
must be saved explicitly by the calling procedure or be predefined through program-
ming conventions.

5.8.7.1  SYSENTER and SYSEXIT Instructions in IA-32e Mode
For Intel 64 processors, the SYSENTER and SYSEXIT instructions are enhanced to 
allow fast system calls from user code running at privilege level 3 (in compatibility 
mode or 64-bit mode) to 64-bit executive procedures running at privilege level 0. 
IA32_SYSENTER_EIP MSR and IA32_SYSENTER_ESP MSR are expanded to hold 
64-bit addresses. If IA-32e mode is inactive, only the lower 32-bit addresses stored 
in these MSRs are used. If 64-bit mode is active, addresses stored in 
IA32_SYSENTER_EIP and IA32_SYSENTER_ESP must be canonical. Note that, in 
64-bit mode, IA32_SYSENTER_CS must not contain a NULL selector. 

When SYSENTER transfers control, the following fields are generated and bits set:
• Target code segment — Reads non-NULL selector from IA32_SYSENTER_CS.
• New CS attributes — CS base = 0, CS limit = FFFFFFFFH.
• Target instruction — Reads 64-bit canonical address from 

IA32_SYSENTER_EIP.
• Stack segment — Computed by adding 8 to the value from 

IA32_SYSENTER_CS.
• Stack pointer — Reads 64-bit canonical address from IA32_SYSENTER_ESP.
• New SS attributes — SS base = 0, SS limit = FFFFFFFFH.

When the SYSEXIT instruction transfers control to 64-bit mode user code using 
REX.W, the following fields are generated and bits set:
• Target code segment — Computed by adding 32 to the value in 

IA32_SYSENTER_CS.
• New CS attributes — L-bit = 1 (go to 64-bit mode).
• Target instruction — Reads 64-bit canonical address in RDX.
• Stack segment — Computed by adding 40 to the value of IA32_SYSENTER_CS.
• Stack pointer — Update RSP using 64-bit canonical address in RCX.
Vol. 3A 5-31



PROTECTION
When SYSEXIT transfers control to compatibility mode user code when the operand 
size attribute is 32 bits, the following fields are generated and bits set:
• Target code segment — Computed by adding 16 to the value in 

IA32_SYSENTER_CS.
• New CS attributes — L-bit = 0 (go to compatibility mode).
• Target instruction — Fetch the target instruction from 32-bit address in EDX.
• Stack segment — Computed by adding 24 to the value in IA32_SYSENTER_CS.
• Stack pointer — Update ESP from 32-bit address in ECX.

5.8.8 Fast System Calls in 64-bit Mode
The SYSCALL and SYSRET instructions are designed for operating systems that use a 
flat memory model (segmentation is not used). The instructions, along with 
SYSENTER and SYSEXIT, are suited for IA-32e mode operation. SYSCALL and 
SYSRET, however, are not supported in compatibility mode. Use CPUID to check if 
SYSCALL and SYSRET are available (CPUID.80000001H.EDX[bit 11] = 1). 

SYSCALL is intended for use by user code running at privilege level 3 to access oper-
ating system or executive procedures running at privilege level 0. SYSRET is 
intended for use by privilege level 0 operating system or executive procedures for 
fast returns to privilege level 3 user code. 

Stack pointers for SYSCALL/SYSRET are not specified through model specific regis-
ters. The clearing of bits in RFLAGS is programmable rather than fixed. 
SYSCALL/SYSRET save and restore the RFLAGS register. 

For SYSCALL, the processor saves RFLAGS into R11 and the RIP of the next instruc-
tion into RCX; it then gets the privilege-level 0 target instruction and stack pointer 
from:
• Target code segment — Reads a non-NULL selector from IA32_STAR[47:32].
• Target instruction — Reads a 64-bit canonical address from IA32_LSTAR.
• Stack segment — Computed by adding 8 to the value in IA32_STAR[47:32].
• System flags — The processor sets RFLAGS to the logical-AND of its current 

value with the complement of the value in the IA32_FMASK MSR.

When SYSRET transfers control to 64-bit mode user code using REX.W, the processor 
gets the privilege level 3 target instruction and stack pointer from:
• Target code segment — Reads a non-NULL selector from IA32_STAR[63:48] + 

16.
• Target instruction — Copies the value in RCX into RIP.
• Stack segment — IA32_STAR[63:48] + 8.
• EFLAGS — Loaded from R11.
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When SYSRET transfers control to 32-bit mode user code using a 32-bit operand size, 
the processor gets the privilege level 3 target instruction and stack pointer from:
• Target code segment — Reads a non-NULL selector from IA32_STAR[63:48].
• Target instruction — Copies the value in ECX into EIP.
• Stack segment — IA32_STAR[63:48] + 8.
• EFLAGS — Loaded from R11.

It is the responsibility of the OS to ensure the descriptors in the GDT/LDT correspond 
to the selectors loaded by SYSCALL/SYSRET (consistent with the base, limit, and 
attribute values forced by the instructions). 

Any address written to IA32_LSTAR is first checked by WRMSR to ensure canonical 
form. If an address is not canonical, an exception is generated (#GP). 

See Figure 5-14 for the layout of IA32_STAR, IA32_LSTAR and IA32_FMASK.

5.9 PRIVILEGED INSTRUCTIONS
Some of the system instructions (called “privileged instructions”) are protected from 
use by application programs. The privileged instructions control system functions 
(such as the loading of system registers). They can be executed only when the CPL is 
0 (most privileged). If one of these instructions is executed when the CPL is not 0, a 

Figure 5-14.  MSRs Used by SYSCALL and SYSRET
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general-protection exception (#GP) is generated. The following system instructions 
are privileged instructions:
• LGDT — Load GDT register.
• LLDT — Load LDT register.
• LTR — Load task register.
• LIDT — Load IDT register.
• MOV (control registers) — Load and store control registers.
• LMSW — Load machine status word.
• CLTS — Clear task-switched flag in register CR0.
• MOV (debug registers) — Load and store debug registers.
• INVD — Invalidate cache, without writeback.
• WBINVD — Invalidate cache, with writeback.
• INVLPG —Invalidate TLB entry.
• HLT— Halt processor.
• RDMSR — Read Model-Specific Registers.
• WRMSR —Write Model-Specific Registers.
• RDPMC — Read Performance-Monitoring Counter.
• RDTSC — Read Time-Stamp Counter.

Some of the privileged instructions are available only in the more recent families of 
Intel 64 and IA-32 processors (see Section 22.13, “New Instructions In the Pentium 
and Later IA-32 Processors”).

The PCE and TSD flags in register CR4 (bits 4 and 2, respectively) enable the RDPMC 
and RDTSC instructions, respectively, to be executed at any CPL.

5.10 POINTER VALIDATION
When operating in protected mode, the processor validates all pointers to enforce 
protection between segments and maintain isolation between privilege levels. 
Pointer validation consists of the following checks:

1. Checking access rights to determine if the segment type is compatible with its
use.

2. Checking read/write rights.

3. Checking if the pointer offset exceeds the segment limit.

4. Checking if the supplier of the pointer is allowed to access the segment.

5. Checking the offset alignment.
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The processor automatically performs first, second, and third checks during instruc-
tion execution. Software must explicitly request the fourth check by issuing an ARPL 
instruction. The fifth check (offset alignment) is performed automatically at privilege 
level 3 if alignment checking is turned on. Offset alignment does not affect isolation 
of privilege levels.

5.10.1 Checking Access Rights (LAR Instruction)
When the processor accesses a segment using a far pointer, it performs an access 
rights check on the segment descriptor pointed to by the far pointer. This check is 
performed to determine if type and privilege level (DPL) of the segment descriptor 
are compatible with the operation to be performed. For example, when making a far 
call in protected mode, the segment-descriptor type must be for a conforming or 
nonconforming code segment, a call gate, a task gate, or a TSS. Then, if the call is to 
a nonconforming code segment, the DPL of the code segment must be equal to the 
CPL, and the RPL of the code segment’s segment selector must be less than or equal 
to the DPL. If type or privilege level are found to be incompatible, the appropriate 
exception is generated.

To prevent type incompatibility exceptions from being generated, software can check 
the access rights of a segment descriptor using the LAR (load access rights) instruc-
tion. The LAR instruction specifies the segment selector for the segment descriptor 
whose access rights are to be checked and a destination register. The instruction then 
performs the following operations:

1. Check that the segment selector is not null.

2. Checks that the segment selector points to a segment descriptor that is within 
the descriptor table limit (GDT or LDT).

3. Checks that the segment descriptor is a code, data, LDT, call gate, task gate, or 
TSS segment-descriptor type.

4. If the segment is not a conforming code segment, checks if the segment 
descriptor is visible at the CPL (that is, if the CPL and the RPL of the segment 
selector are less than or equal to the DPL).

5. If the privilege level and type checks pass, loads the second doubleword of the 
segment descriptor into the destination register (masked by the value 
00FXFF00H, where X indicates that the corresponding 4 bits are undefined) and 
sets the ZF flag in the EFLAGS register. If the segment selector is not visible at 
the current privilege level or is an invalid type for the LAR instruction, the 
instruction does not modify the destination register and clears the ZF flag.

Once loaded in the destination register, software can preform additional checks on 
the access rights information.
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5.10.2 Checking Read/Write Rights (VERR and VERW Instructions)
When the processor accesses any code or data segment it checks the read/write priv-
ileges assigned to the segment to verify that the intended read or write operation is 
allowed. Software can check read/write rights using the VERR (verify for reading) 
and VERW (verify for writing) instructions. Both these instructions specify the 
segment selector for the segment being checked. The instructions then perform the 
following operations:

1. Check that the segment selector is not null.

2. Checks that the segment selector points to a segment descriptor that is within 
the descriptor table limit (GDT or LDT).

3. Checks that the segment descriptor is a code or data-segment descriptor type.

4. If the segment is not a conforming code segment, checks if the segment 
descriptor is visible at the CPL (that is, if the CPL and the RPL of the segment 
selector are less than or equal to the DPL).

5. Checks that the segment is readable (for the VERR instruction) or writable (for 
the VERW) instruction.

The VERR instruction sets the ZF flag in the EFLAGS register if the segment is visible 
at the CPL and readable; the VERW sets the ZF flag if the segment is visible and writ-
able. (Code segments are never writable.) The ZF flag is cleared if any of these 
checks fail.

5.10.3 Checking That the Pointer Offset Is Within Limits (LSL 
Instruction)

When the processor accesses any segment it performs a limit check to insure that the 
offset is within the limit of the segment. Software can perform this limit check using 
the LSL (load segment limit) instruction. Like the LAR instruction, the LSL instruction 
specifies the segment selector for the segment descriptor whose limit is to be 
checked and a destination register. The instruction then performs the following oper-
ations:

1. Check that the segment selector is not null.

2. Checks that the segment selector points to a segment descriptor that is within 
the descriptor table limit (GDT or LDT).

3. Checks that the segment descriptor is a code, data, LDT, or TSS segment-
descriptor type.

4. If the segment is not a conforming code segment, checks if the segment 
descriptor is visible at the CPL (that is, if the CPL and the RPL of the segment 
selector less than or equal to the DPL).

5. If the privilege level and type checks pass, loads the unscrambled limit (the limit 
scaled according to the setting of the G flag in the segment descriptor) into the 
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destination register and sets the ZF flag in the EFLAGS register. If the segment 
selector is not visible at the current privilege level or is an invalid type for the LSL 
instruction, the instruction does not modify the destination register and clears 
the ZF flag.

Once loaded in the destination register, software can compare the segment limit with 
the offset of a pointer. 

5.10.4 Checking Caller Access Privileges (ARPL Instruction)
The requestor’s privilege level (RPL) field of a segment selector is intended to carry 
the privilege level of a calling procedure (the calling procedure’s CPL) to a called 
procedure. The called procedure then uses the RPL to determine if access to a 
segment is allowed. The RPL is said to “weaken” the privilege level of the called 
procedure to that of the RPL. 

Operating-system procedures typically use the RPL to prevent less privileged appli-
cation programs from accessing data located in more privileged segments. When an 
operating-system procedure (the called procedure) receives a segment selector from 
an application program (the calling procedure), it sets the segment selector’s RPL to 
the privilege level of the calling procedure. Then, when the operating system uses 
the segment selector to access its associated segment, the processor performs priv-
ilege checks using the calling procedure’s privilege level (stored in the RPL) rather 
than the numerically lower privilege level (the CPL) of the operating-system proce-
dure. The RPL thus insures that the operating system does not access a segment on 
behalf of an application program unless that program itself has access to the 
segment.

Figure 5-15 shows an example of how the processor uses the RPL field. In this 
example, an application program (located in code segment A) possesses a segment 
selector (segment selector D1) that points to a privileged data structure (that is, a 
data structure located in a data segment D at privilege level 0). 

The application program cannot access data segment D, because it does not have 
sufficient privilege, but the operating system (located in code segment C) can. So, in 
an attempt to access data segment D, the application program executes a call to the 
operating system and passes segment selector D1 to the operating system as a 
parameter on the stack. Before passing the segment selector, the (well behaved) 
application program sets the RPL of the segment selector to its current privilege level 
(which in this example is 3). If the operating system attempts to access data 
segment D using segment selector D1, the processor compares the CPL (which is 
now 0 following the call), the RPL of segment selector D1, and the DPL of data 
segment D (which is 0). Since the RPL is greater than the DPL, access to data 
segment D is denied. The processor’s protection mechanism thus protects data 
segment D from access by the operating system, because application program’s priv-
ilege level (represented by the RPL of segment selector B) is greater than the DPL of 
data segment D.
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Now assume that instead of setting the RPL of the segment selector to 3, the appli-
cation program sets the RPL to 0 (segment selector D2). The operating system can 
now access data segment D, because its CPL and the RPL of segment selector D2 are 
both equal to the DPL of data segment D. 

Because the application program is able to change the RPL of a segment selector to 
any value, it can potentially use a procedure operating at a numerically lower privi-
lege level to access a protected data structure. This ability to lower the RPL of a 
segment selector breaches the processor’s protection mechanism.

Because a called procedure cannot rely on the calling procedure to set the RPL 
correctly, operating-system procedures (executing at numerically lower privilege-
levels) that receive segment selectors from numerically higher privilege-level proce-
dures need to test the RPL of the segment selector to determine if it is at the appro-
priate level. The ARPL (adjust requested privilege level) instruction is provided for 
this purpose. This instruction adjusts the RPL of one segment selector to match that 
of another segment selector.

Figure 5-15.  Use of RPL to Weaken Privilege Level of Called Procedure
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The example in Figure 5-15 demonstrates how the ARPL instruction is intended to be 
used. When the operating-system receives segment selector D2 from the application 
program, it uses the ARPL instruction to compare the RPL of the segment selector 
with the privilege level of the application program (represented by the code-segment 
selector pushed onto the stack). If the RPL is less than application program’s privi-
lege level, the ARPL instruction changes the RPL of the segment selector to match the 
privilege level of the application program (segment selector D1). Using this instruc-
tion thus prevents a procedure running at a numerically higher privilege level from 
accessing numerically lower privilege-level (more privileged) segments by lowering 
the RPL of a segment selector.

Note that the privilege level of the application program can be determined by reading 
the RPL field of the segment selector for the application-program’s code segment. 
This segment selector is stored on the stack as part of the call to the operating 
system. The operating system can copy the segment selector from the stack into a 
register for use as an operand for the ARPL instruction.

5.10.5 Checking Alignment
When the CPL is 3, alignment of memory references can be checked by setting the 
AM flag in the CR0 register and the AC flag in the EFLAGS register. Unaligned memory 
references generate alignment exceptions (#AC). The processor does not generate 
alignment exceptions when operating at privilege level 0, 1, or 2. See Table 6-7 for a 
description of the alignment requirements when alignment checking is enabled.

5.11 PAGE-LEVEL PROTECTION
Page-level protection can be used alone or applied to segments. When page-level 
protection is used with the flat memory model, it allows supervisor code and data 
(the operating system or executive) to be protected from user code and data (appli-
cation programs). It also allows pages containing code to be write protected. When 
the segment- and page-level protection are combined, page-level read/write protec-
tion allows more protection granularity within segments.

With page-level protection (as with segment-level protection) each memory refer-
ence is checked to verify that protection checks are satisfied. All checks are made 
before the memory cycle is started, and any violation prevents the cycle from 
starting and results in a page-fault exception being generated. Because checks are 
performed in parallel with address translation, there is no performance penalty.

The processor performs two page-level protection checks:
• Restriction of addressable domain (supervisor and user modes).
• Page type (read only or read/write).

Violations of either of these checks results in a page-fault exception being generated. 
See Chapter 6, “Interrupt 14—Page-Fault Exception (#PF),” for an explanation of the 
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page-fault exception mechanism. This chapter describes the protection violations 
which lead to page-fault exceptions.

5.11.1 Page-Protection Flags
Protection information for pages is contained in two flags in a paging-structure entry 
(see Chapter 4): the read/write flag (bit 1) and the user/supervisor flag (bit 2). The 
protection checks use the flags in all paging structures. 

5.11.2 Restricting Addressable Domain
The page-level protection mechanism allows restricting access to pages based on 
two privilege levels:
• Supervisor mode (U/S flag is 0)—(Most privileged) For the operating system or 

executive, other system software (such as device drivers), and protected system 
data (such as page tables).

• User mode (U/S flag is 1)—(Least privileged) For application code and data.

The segment privilege levels map to the page privilege levels as follows. If the 
processor is currently operating at a CPL of 0, 1, or 2, it is in supervisor mode; if it is 
operating at a CPL of 3, it is in user mode. When the processor is in supervisor mode, 
it can access all pages; when in user mode, it can access only user-level pages. (Note 
that the WP flag in control register CR0 modifies the supervisor permissions, as 
described in Section 5.11.3, “Page Type.”)

Note that to use the page-level protection mechanism, code and data segments must 
be set up for at least two segment-based privilege levels: level 0 for supervisor code 
and data segments and level 3 for user code and data segments. (In this model, the 
stacks are placed in the data segments.) To minimize the use of segments, a flat 
memory model can be used (see Section 3.2.1, “Basic Flat Model”). 

Here, the user and supervisor code and data segments all begin at address zero in 
the linear address space and overlay each other. With this arrangement, operating-
system code (running at the supervisor level) and application code (running at the 
user level) can execute as if there are no segments. Protection between operating-
system and application code and data is provided by the processor’s page-level 
protection mechanism. 

5.11.3 Page Type
The page-level protection mechanism recognizes two page types:
• Read-only access (R/W flag is 0).
• Read/write access (R/W flag is 1).
5-40 Vol. 3A



PROTECTION
When the processor is in supervisor mode and the WP flag in register CR0 is clear (its 
state following reset initialization), all pages are both readable and writable (write-
protection is ignored). When the processor is in user mode, it can write only to user-
mode pages that are read/write accessible. User-mode pages which are read/write or 
read-only are readable; supervisor-mode pages are neither readable nor writable 
from user mode. A page-fault exception is generated on any attempt to violate the 
protection rules.

Starting with the P6 family, Intel processors allow user-mode pages to be write-
protected against supervisor-mode access. Setting CR0.WP = 1 enables supervisor-
mode sensitivity to write protected pages. If CR0.WP = 1, read-only pages are not 
writable from any privilege level. This supervisor write-protect feature is useful for 
implementing a “copy-on-write” strategy used by some operating systems, such as 
UNIX*, for task creation (also called forking or spawning). When a new task is 
created, it is possible to copy the entire address space of the parent task. This gives 
the child task a complete, duplicate set of the parent's segments and pages. An alter-
native copy-on-write strategy saves memory space and time by mapping the child's 
segments and pages to the same segments and pages used by the parent task. A 
private copy of a page gets created only when one of the tasks writes to the page. By 
using the WP flag and marking the shared pages as read-only, the supervisor can 
detect an attempt to write to a page, and can copy the page at that time.

5.11.4 Combining Protection of Both Levels of Page Tables
For any one page, the protection attributes of its page-directory entry (first-level 
page table) may differ from those of its page-table entry (second-level page table). 
The processor checks the protection for a page in both its page-directory and the 
page-table entries. Table 5-3 shows the protection provided by the possible combina-
tions of protection attributes when the WP flag is clear.

5.11.5 Overrides to Page Protection
The following types of memory accesses are checked as if they are privilege-level 0 
accesses, regardless of the CPL at which the processor is currently operating:
• Access to segment descriptors in the GDT, LDT, or IDT.
• Access to an inner-privilege-level stack during an inter-privilege-level call or a 

call to in exception or interrupt handler, when a change of privilege level occurs.

5.12 COMBINING PAGE AND SEGMENT PROTECTION
When paging is enabled, the processor evaluates segment protection first, then 
evaluates page protection. If the processor detects a protection violation at either 
the segment level or the page level, the memory access is not carried out and an 
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exception is generated. If an exception is generated by segmentation, no paging 
exception is generated.

Page-level protections cannot be used to override segment-level protection. For 
example, a code segment is by definition not writable. If a code segment is paged, 
setting the R/W flag for the pages to read-write does not make the pages writable. 
Attempts to write into the pages will be blocked by segment-level protection checks.

Page-level protection can be used to enhance segment-level protection. For 
example, if a large read-write data segment is paged, the page-protection mecha-
nism can be used to write-protect individual pages.

Table 5-3.  Combined Page-Directory and Page-Table Protection

Page-Directory Entry Page-Table Entry Combined Effect

Privilege Access Type Privilege Access Type Privilege Access Type

User Read-Only User Read-Only User Read-Only

User Read-Only User Read-Write User Read-Only

User Read-Write User Read-Only User Read-Only 

User Read-Write User Read-Write User Read/Write

User Read-Only Supervisor Read-Only Supervisor Read/Write*

User Read-Only Supervisor Read-Write Supervisor Read/Write*

User Read-Write Supervisor Read-Only Supervisor Read/Write*

User Read-Write Supervisor Read-Write Supervisor Read/Write

Supervisor Read-Only User Read-Only Supervisor Read/Write*

Supervisor Read-Only User Read-Write Supervisor Read/Write*

Supervisor Read-Write User Read-Only Supervisor Read/Write*

Supervisor Read-Write User Read-Write Supervisor Read/Write

Supervisor Read-Only Supervisor Read-Only Supervisor Read/Write*

Supervisor Read-Only Supervisor Read-Write Supervisor Read/Write*

Supervisor Read-Write Supervisor Read-Only Supervisor Read/Write*

Supervisor Read-Write Supervisor Read-Write Supervisor Read/Write

NOTE:
* If CR0.WP = 1, access type is determined by the R/W flags of the page-directory and page-table 

entries. IF CR0.WP = 0, supervisor privilege permits read-write access.
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5.13 PAGE-LEVEL PROTECTION AND EXECUTE-DISABLE 
BIT

In addition to page-level protection offered by the U/S and R/W flags, paging struc-
tures used with PAE paging and IA-32e paging (see Chapter 4) provide the execute-
disable bit. This bit offers additional protection for data pages. 

An Intel 64 or IA-32 processor with the execute-disable bit capability can prevent 
data pages from being used by malicious software to execute code. This capability is 
provided in:
• 32-bit protected mode with PAE enabled.
• IA-32e mode.

While the execute-disable bit capability does not introduce new instructions, it does 
require operating systems to use a PAE-enabled environment and establish a page-
granular protection policy for memory pages. 

If the execute-disable bit of a memory page is set, that page can be used only as 
data. An attempt to execute code from a memory page with the execute-disable bit 
set causes a page-fault exception. 

The execute-disable capability is supported only with PAE paging and IA-32e paging. 
It is not supported with 32-bit paging. Existing page-level protection mechanisms 
(see Section 5.11, “Page-Level Protection”) continue to apply to memory pages inde-
pendent of the execute-disable setting.

5.13.1 Detecting and Enabling the Execute-Disable Capability
Software can detect the presence of the execute-disable capability using the CPUID 
instruction. CPUID.80000001H:EDX.NX [bit 20] = 1 indicates the capability is avail-
able.

If the capability is available, software can enable it by setting IA32_EFER.NXE[bit 11] 
to 1. IA32_EFER is available if CPUID.80000001H.EDX[bit 20 or 29] = 1. 

If the execute-disable capability is not available, a write to set IA32_EFER.NXE 
produces a #GP exception. See Table 5-4.

Table 5-4.  Extended Feature Enable MSR (IA32_EFER)
63:12 11 10 9 8 7:1 0

Reserved Execute-
disable bit 
enable (NXE)

IA-32e mode 
active (LMA)

Reserve
d

IA-32e mode 
enable (LME)

Reserve
d

SysCall enable 
(SCE)
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5.13.2 Execute-Disable Page Protection
The execute-disable bit in the paging structures enhances page protection for data 
pages. Instructions cannot be fetched from a memory page if IA32_EFER.NXE =1 
and the execute-disable bit is set in any of the paging-structure entries used to map 
the page. Table 5-5 lists the valid usage of a page in relation to the value of execute-
disable bit (bit 63) of the corresponding entry in each level of the paging structures. 
Execute-disable protection can be activated using the execute-disable bit at any level 
of the paging structure, irrespective of the corresponding entry in other levels. When 
execute-disable protection is not activated, the page can be used as code or data.

In legacy PAE-enabled mode, Table 5-6 and Table 5-7 show the effect of setting the 
execute-disable bit for code and data pages.
 

Table 5-5.  IA-32e Mode Page Level Protection Matrix 
with Execute-Disable Bit Capability

Execute Disable Bit Value (Bit 63) Valid Usage

PML4 PDP PDE PTE

Bit 63 = 1 * * * Data

* Bit 63 = 1 * * Data

* * Bit 63 = 1 * Data

* * * Bit 63 = 1 Data

Bit 63 = 0 Bit 63 = 0 Bit 63 = 0 Bit 63 = 0 Data/Code

NOTES:
* Value not checked.
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5.13.3 Reserved Bit Checking
The processor enforces reserved bit checking in paging data structure entries. The 
bits being checked varies with paging mode and may vary with the size of physical 
address space. 

Table 5-8 shows the reserved bits that are checked when the execute disable bit 
capability is enabled (CR4.PAE = 1 and IA32_EFER.NXE = 1). Table 5-8 and Table  
show the following paging modes:
• Non-PAE 4-KByte paging: 4-KByte-page only paging (CR4.PAE = 0, 

CR4.PSE = 0).
• PSE36: 4-KByte and 4-MByte pages (CR4.PAE = 0, CR4.PSE = 1).
• PAE: 4-KByte and 2-MByte pages (CR4.PAE = 1, CR4.PSE = X).

The reserved bit checking depends on the physical address size supported by the 
implementation, which is reported in CPUID.80000008H. See the table note.

Table 5-6.  Legacy PAE-Enabled 4-KByte Page Level Protection Matrix 
with Execute-Disable Bit Capability

Execute Disable Bit Value (Bit 63) Valid Usage

PDE PTE

Bit 63 = 1 * Data

* Bit 63 = 1 Data

Bit 63 = 0 Bit 63 = 0 Data/Code

NOTE:
*  Value not checked.

Table 5-7.  Legacy PAE-Enabled 2-MByte Page Level Protection 
with Execute-Disable Bit Capability

Execute Disable Bit Value (Bit 63) Valid Usage

PDE

Bit 63 = 1 Data

Bit 63 = 0 Data/Code
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If execute disable bit capability is not enabled or not available, reserved bit checking 
in 64-bit mode includes bit 63 and additional bits. This and reserved bit checking for 
legacy 32-bit paging modes are shown in Table 5-10.

 

Table 5-8.  IA-32e Mode Page Level Protection Matrix with Execute-Disable Bit 
Capability Enabled

Mode Paging Mode Check Bits

32-bit 4-KByte paging (non-PAE) No reserved bits checked

PSE36 - PDE, 4-MByte page Bit [21] 

PSE36 - PDE, 4-KByte page No reserved bits checked

PSE36 - PTE No reserved bits checked

PAE - PDP table entry Bits [63:MAXPHYADDR] & [8:5] & [2:1] *

PAE - PDE, 2-MByte page Bits [62:MAXPHYADDR] & [20:13] *

PAE - PDE, 4-KByte page Bits [62:MAXPHYADDR] *

PAE - PTE Bits [62:MAXPHYADDR] *

64-bit PML4E Bits [51:MAXPHYADDR] *

PDPTE Bits [51:MAXPHYADDR] *

PDE, 2-MByte page Bits [51:MAXPHYADDR] & [20:13] *

PDE, 4-KByte page Bits [51:MAXPHYADDR] *

PTE Bits [51:MAXPHYADDR] *

NOTES:
* MAXPHYADDR is the maximum physical address size and is indicated by 

CPUID.80000008H:EAX[bits 7-0].
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5.13.4 Exception Handling
When execute disable bit capability is enabled (IA32_EFER.NXE = 1), conditions for 
a page fault to occur include the same conditions that apply to an Intel 64 or IA-32 
processor without execute disable bit capability plus the following new condition: an 
instruction fetch to a linear address that translates to physical address in a memory 
page that has the execute-disable bit set.

An Execute Disable Bit page fault can occur at all privilege levels. It can occur on any 
instruction fetch, including (but not limited to): near branches, far branches, 
CALL/RET/INT/IRET execution, sequential instruction fetches, and task switches. The 
execute-disable bit in the page translation mechanism is checked only when:
• IA32_EFER.NXE = 1.
• The instruction translation look-aside buffer (ITLB) is loaded with a page that is 

not already present in the ITLB.

Table 5-9.  Reserved Bit Checking WIth Execute-Disable Bit Capability Not Enabled
Mode Paging Mode Check Bits

32-bit KByte paging (non-PAE)  No reserved bits checked

PSE36 - PDE, 4-MByte page  Bit [21] 

PSE36 - PDE, 4-KByte page  No reserved bits checked

PSE36 - PTE  No reserved bits checked

PAE - PDP table entry  Bits [63:MAXPHYADDR] & [8:5] & [2:1]*

PAE - PDE, 2-MByte page  Bits [63:MAXPHYADDR] & [20:13]*

PAE - PDE, 4-KByte page  Bits [63:MAXPHYADDR]*

PAE - PTE  Bits [63:MAXPHYADDR]*

64-bit PML4E  Bit [63], bits [51:MAXPHYADDR]* 

PDPTE  Bit [63], bits [51:MAXPHYADDR]* 

PDE, 2-MByte page  Bit [63], bits [51:MAXPHYADDR] & [20:13]* 

PDE, 4-KByte page  Bit [63], bits [51:MAXPHYADDR]* 

PTE  Bit [63], bits [51:MAXPHYADDR]* 

NOTES:
* MAXPHYADDR is the maximum physical address size and is indicated by 

CPUID.80000008H:EAX[bits 7-0].
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CHAPTER 6
INTERRUPT AND EXCEPTION HANDLING

This chapter describes the interrupt and exception-handling mechanism when oper-
ating in protected mode on an Intel 64 or IA-32 processor. Most of the information 
provided here also applies to interrupt and exception mechanisms used in real-
address, virtual-8086 mode, and 64-bit mode. 

Chapter 20, “8086 Emulation,” describes information specific to interrupt and excep-
tion mechanisms in real-address and virtual-8086 mode. Section 6.14, “Exception 
and Interrupt Handling in 64-bit Mode,” describes information specific to interrupt 
and exception mechanisms in IA-32e mode and 64-bit sub-mode.

6.1 INTERRUPT AND EXCEPTION OVERVIEW
Interrupts and exceptions are events that indicate that a condition exists somewhere 
in the system, the processor, or within the currently executing program or task that 
requires the attention of a processor. They typically result in a forced transfer of 
execution from the currently running program or task to a special software routine or 
task called an interrupt handler or an exception handler. The action taken by a 
processor in response to an interrupt or exception is referred to as servicing or 
handling the interrupt or exception.

Interrupts occur at random times during the execution of a program, in response to 
signals from hardware. System hardware uses interrupts to handle events external 
to the processor, such as requests to service peripheral devices. Software can also 
generate interrupts by executing the INT n instruction. 

Exceptions occur when the processor detects an error condition while executing an 
instruction, such as division by zero. The processor detects a variety of error condi-
tions including protection violations, page faults, and internal machine faults. The 
machine-check architecture of the Pentium 4, Intel Xeon, P6 family, and Pentium 
processors also permits a machine-check exception to be generated when internal 
hardware errors and bus errors are detected.

When an interrupt is received or an exception is detected, the currently running 
procedure or task is suspended while the processor executes an interrupt or excep-
tion handler. When execution of the handler is complete, the processor resumes 
execution of the interrupted procedure or task. The resumption of the interrupted 
procedure or task happens without loss of program continuity, unless recovery from 
an exception was not possible or an interrupt caused the currently running program 
to be terminated.

This chapter describes the processor’s interrupt and exception-handling mechanism, 
when operating in protected mode. A description of the exceptions and the conditions 
that cause them to be generated is given at the end of this chapter.
Vol. 3A 6-1



INTERRUPT AND EXCEPTION HANDLING
6.2 EXCEPTION AND INTERRUPT VECTORS
To aid in handling exceptions and interrupts, each architecturally defined exception 
and each interrupt condition requiring special handling by the processor is assigned 
a unique identification number, called a vector number. The processor uses the vector 
number assigned to an exception or interrupt as an index into the interrupt 
descriptor table (IDT). The table provides the entry point to an exception or interrupt 
handler (see Section 6.10, “Interrupt Descriptor Table (IDT)”).

The allowable range for vector numbers is 0 to 255. Vector numbers in the range 0 
through 31 are reserved by the Intel 64 and IA-32 architectures for architecture-
defined exceptions and interrupts. Not all of the vector numbers in this range have a 
currently defined function. The unassigned vector numbers in this range are 
reserved. Do not use the reserved vector numbers. 

Vector numbers in the range 32 to 255 are designated as user-defined interrupts and 
are not reserved by the Intel 64 and IA-32 architecture. These interrupts are gener-
ally assigned to external I/O devices to enable those devices to send interrupts to the 
processor through one of the external hardware interrupt mechanisms (see Section 
6.3, “Sources of Interrupts”).

Table 6-1 shows vector number assignments for architecturally defined exceptions 
and for the NMI interrupt. This table gives the exception type (see Section 6.5, 
“Exception Classifications”) and indicates whether an error code is saved on the stack 
for the exception. The source of each predefined exception and the NMI interrupt is 
also given.

6.3 SOURCES OF INTERRUPTS
The processor receives interrupts from two sources:
• External (hardware generated) interrupts.
• Software-generated interrupts.

6.3.1 External Interrupts
External interrupts are received through pins on the processor or through the local 
APIC. The primary interrupt pins on Pentium 4, Intel Xeon, P6 family, and Pentium 
processors are the LINT[1:0] pins, which are connected to the local APIC (see 
Chapter 10, “Advanced Programmable Interrupt Controller (APIC)”). When the local 
APIC is enabled, the LINT[1:0] pins can be programmed through the APIC’s local 
vector table (LVT) to be associated with any of the processor’s exception or interrupt 
vectors.

When the local APIC is global/hardware disabled, these pins are configured as INTR 
and NMI pins, respectively. Asserting the INTR pin signals the processor that an 
external interrupt has occurred. The processor reads from the system bus the inter-
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rupt vector number provided by an external interrupt controller, such as an 8259A 
(see Section 6.2, “Exception and Interrupt Vectors”). Asserting the NMI pin signals a 
non-maskable interrupt (NMI), which is assigned to interrupt vector 2.

Table 6-1.  Protected-Mode Exceptions and Interrupts 

Vector 
No.

Mne-
monic

Description Type Error 
Code

Source

 0 #DE Divide Error Fault No DIV and IDIV instructions.

 1 #DB RESERVED Fault/ 
Trap

No For Intel use only.

 2 — NMI Interrupt Interrupt No Nonmaskable external 
interrupt.

 3 #BP Breakpoint Trap No INT 3 instruction.

 4 #OF Overflow Trap No INTO instruction.

 5 #BR BOUND Range Exceeded Fault No BOUND instruction.

 6 #UD Invalid Opcode (Undefined 
Opcode)

Fault No UD2 instruction or reserved 
opcode.1

 7 #NM Device Not Available (No 
Math Coprocessor)

Fault No Floating-point or WAIT/FWAIT 
instruction.

 8 #DF Double Fault Abort Yes 
(zero)

Any instruction that can 
generate an exception, an NMI, 
or an INTR.

 9 Coprocessor Segment 
Overrun (reserved)

Fault No Floating-point instruction.2

10 #TS Invalid TSS Fault Yes Task switch or TSS access.

11 #NP Segment Not Present Fault Yes Loading segment registers or 
accessing system segments.

12 #SS Stack-Segment Fault Fault Yes Stack operations and SS 
register loads.

13 #GP General Protection Fault Yes Any memory reference and 
other protection checks.

14 #PF Page Fault Fault Yes Any memory reference.

15 — (Intel reserved. Do not 
use.)

No

16 #MF x87 FPU Floating-Point 
Error (Math Fault)

Fault No x87 FPU floating-point or 
WAIT/FWAIT instruction.
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The processor’s local APIC is normally connected to a system-based I/O APIC. Here, 
external interrupts received at the I/O APIC’s pins can be directed to the local APIC 
through the system bus (Pentium 4, Intel Core Duo, Intel Core 2, Intel® Atom™, and 
Intel Xeon processors) or the APIC serial bus (P6 family and Pentium processors). 
The I/O APIC determines the vector number of the interrupt and sends this number 
to the local APIC. When a system contains multiple processors, processors can also 
send interrupts to one another by means of the system bus (Pentium 4, Intel Core 
Duo, Intel Core 2, Intel Atom, and Intel Xeon processors) or the APIC serial bus (P6 
family and Pentium processors). 

The LINT[1:0] pins are not available on the Intel486 processor and earlier Pentium 
processors that do not contain an on-chip local APIC. These processors have dedi-
cated NMI and INTR pins. With these processors, external interrupts are typically 
generated by a system-based interrupt controller (8259A), with the interrupts being 
signaled through the INTR pin.

Note that several other pins on the processor can cause a processor interrupt to 
occur. However, these interrupts are not handled by the interrupt and exception 
mechanism described in this chapter. These pins include the RESET#, FLUSH#, 
STPCLK#, SMI#, R/S#, and INIT# pins. Whether they are included on a particular 
processor is implementation dependent. Pin functions are described in the data 
books for the individual processors. The SMI# pin is described in Chapter 33, 
“System Management Mode.”

17 #AC Alignment Check Fault Yes 
(Zero
)

Any data reference in 
memory.3

18 #MC Machine Check Abort No Error codes (if any) and source 
are model dependent.4

19 #XM SIMD Floating-Point 
Exception

Fault No SSE/SSE2/SSE3 floating-point 
instructions5

20-31 — Intel reserved. Do not use.

32-
255

— User Defined (Non-
reserved) Interrupts

Interrupt External interrupt or INT n 
instruction.

NOTES:
1. The UD2 instruction was introduced in the Pentium Pro processor.
2. Processors after the Intel386 processor do not generate this exception.
3. This exception was introduced in the Intel486 processor.
4. This exception was introduced in the Pentium processor and enhanced in the P6 family proces-

sors.
5. This exception was introduced in the Pentium III processor.

Table 6-1.  Protected-Mode Exceptions and Interrupts  (Contd.)
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6.3.2 Maskable Hardware Interrupts
Any external interrupt that is delivered to the processor by means of the INTR pin or 
through the local APIC is called a maskable hardware interrupt. Maskable hardware 
interrupts that can be delivered through the INTR pin include all IA-32 architecture 
defined interrupt vectors from 0 through 255; those that can be delivered through 
the local APIC include interrupt vectors 16 through 255. 

The IF flag in the EFLAGS register permits all maskable hardware interrupts to be 
masked as a group (see Section 6.8.1, “Masking Maskable Hardware Interrupts”). 
Note that when interrupts 0 through 15 are delivered through the local APIC, the 
APIC indicates the receipt of an illegal vector. 

6.3.3 Software-Generated Interrupts
The INT n instruction permits interrupts to be generated from within software by 
supplying an interrupt vector number as an operand. For example, the INT 35 
instruction forces an implicit call to the interrupt handler for interrupt 35. 

Any of the interrupt vectors from 0 to 255 can be used as a parameter in this instruc-
tion. If the processor’s predefined NMI vector is used, however, the response of the 
processor will not be the same as it would be from an NMI interrupt generated in the 
normal manner. If vector number 2 (the NMI vector) is used in this instruction, the 
NMI interrupt handler is called, but the processor’s NMI-handling hardware is not 
activated. 

Interrupts generated in software with the INT n instruction cannot be masked by the 
IF flag in the EFLAGS register.

6.4 SOURCES OF EXCEPTIONS
The processor receives exceptions from three sources:
• Processor-detected program-error exceptions.
• Software-generated exceptions.
• Machine-check exceptions.

6.4.1 Program-Error Exceptions
The processor generates one or more exceptions when it detects program errors 
during the execution in an application program or the operating system or executive. 
Intel 64 and IA-32 architectures define a vector number for each processor-detect-
able exception. Exceptions are classified as faults, traps, and aborts (see Section 
6.5, “Exception Classifications”).
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6.4.2 Software-Generated Exceptions
The INTO, INT 3, and BOUND instructions permit exceptions to be generated in soft-
ware. These instructions allow checks for exception conditions to be performed at 
points in the instruction stream. For example, INT 3 causes a breakpoint exception to 
be generated.

The INT n instruction can be used to emulate exceptions in software; but there is a 
limitation. If INT n provides a vector for one of the architecturally-defined excep-
tions, the processor generates an interrupt to the correct vector (to access the 
exception handler) but does not push an error code on the stack. This is true even if 
the associated hardware-generated exception normally produces an error code. The 
exception handler will still attempt to pop an error code from the stack while handling 
the exception. Because no error code was pushed, the handler will pop off and 
discard the EIP instead (in place of the missing error code). This sends the return to 
the wrong location.

6.4.3 Machine-Check Exceptions
The P6 family and Pentium processors provide both internal and external machine-
check mechanisms for checking the operation of the internal chip hardware and bus 
transactions. These mechanisms are implementation dependent. When a machine-
check error is detected, the processor signals a machine-check exception (vector 18) 
and returns an error code. 

See Chapter 6, “Interrupt 18—Machine-Check Exception (#MC)” and Chapter 15, 
“Machine-Check Architecture,” for more information about the machine-check 
mechanism.

6.5 EXCEPTION CLASSIFICATIONS
Exceptions are classified as faults, traps, or aborts depending on the way they are 
reported and whether the instruction that caused the exception can be restarted 
without loss of program or task continuity.
• Faults — A fault is an exception that can generally be corrected and that, once 

corrected, allows the program to be restarted with no loss of continuity. When a 
fault is reported, the processor restores the machine state to the state prior to 
the beginning of execution of the faulting instruction. The return address (saved 
contents of the CS and EIP registers) for the fault handler points to the faulting 
instruction, rather than to the instruction following the faulting instruction.

• Traps — A trap is an exception that is reported immediately following the 
execution of the trapping instruction. Traps allow execution of a program or task 
to be continued without loss of program continuity. The return address for the 
trap handler points to the instruction to be executed after the trapping 
instruction.
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• Aborts — An abort is an exception that does not always report the precise 
location of the instruction causing the exception and does not allow a restart of 
the program or task that caused the exception. Aborts are used to report severe 
errors, such as hardware errors and inconsistent or illegal values in system 
tables.

NOTE
One exception subset normally reported as a fault is not restartable. 
Such exceptions result in loss of some processor state. For example, 
executing a POPAD instruction where the stack frame crosses over 
the end of the stack segment causes a fault to be reported. In this 
situation, the exception handler sees that the instruction pointer 
(CS:EIP) has been restored as if the POPAD instruction had not been 
executed. However, internal processor state (the general-purpose 
registers) will have been modified. Such cases are considered 
programming errors. An application causing this class of exceptions 
should be terminated by the operating system.

6.6 PROGRAM OR TASK RESTART
To allow the restarting of program or task following the handling of an exception or 
an interrupt, all exceptions (except aborts) are guaranteed to report exceptions on 
an instruction boundary. All interrupts are guaranteed to be taken on an instruction 
boundary.

For fault-class exceptions, the return instruction pointer (saved when the processor 
generates an exception) points to the faulting instruction. So, when a program or task 
is restarted following the handling of a fault, the faulting instruction is restarted (re-
executed). Restarting the faulting instruction is commonly used to handle exceptions 
that are generated when access to an operand is blocked. The most common example 
of this type of fault is a page-fault exception (#PF) that occurs when a program or 
task references an operand located on a page that is not in memory. When a page-
fault exception occurs, the exception handler can load the page into memory and 
resume execution of the program or task by restarting the faulting instruction. To 
insure that the restart is handled transparently to the currently executing program or 
task, the processor saves the necessary registers and stack pointers to allow a restart 
to the state prior to the execution of the faulting instruction.

For trap-class exceptions, the return instruction pointer points to the instruction 
following the trapping instruction. If a trap is detected during an instruction which 
transfers execution, the return instruction pointer reflects the transfer. For example, 
if a trap is detected while executing a JMP instruction, the return instruction pointer 
points to the destination of the JMP instruction, not to the next address past the JMP 
instruction. All trap exceptions allow program or task restart with no loss of conti-
nuity. For example, the overflow exception is a trap exception. Here, the return 
instruction pointer points to the instruction following the INTO instruction that tested 
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EFLAGS.OF (overflow) flag. The trap handler for this exception resolves the overflow 
condition. Upon return from the trap handler, program or task execution continues at 
the instruction following the INTO instruction.

The abort-class exceptions do not support reliable restarting of the program or task. 
Abort handlers are designed to collect diagnostic information about the state of the 
processor when the abort exception occurred and then shut down the application and 
system as gracefully as possible.

Interrupts rigorously support restarting of interrupted programs and tasks without 
loss of continuity. The return instruction pointer saved for an interrupt points to the 
next instruction to be executed at the instruction boundary where the processor took 
the interrupt. If the instruction just executed has a repeat prefix, the interrupt is 
taken at the end of the current iteration with the registers set to execute the next 
iteration. 

The ability of a P6 family processor to speculatively execute instructions does not 
affect the taking of interrupts by the processor. Interrupts are taken at instruction 
boundaries located during the retirement phase of instruction execution; so they are 
always taken in the “in-order” instruction stream. See Chapter 2, “Intel® 64 and IA-
32 Architectures,” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 1, for more information about the P6 family processors’ microarchi-
tecture and its support for out-of-order instruction execution.

Note that the Pentium processor and earlier IA-32 processors also perform varying 
amounts of prefetching and preliminary decoding. With these processors as well, 
exceptions and interrupts are not signaled until actual “in-order” execution of the 
instructions. For a given code sample, the signaling of exceptions occurs uniformly 
when the code is executed on any family of IA-32 processors (except where new 
exceptions or new opcodes have been defined).

6.7 NONMASKABLE INTERRUPT (NMI)
The nonmaskable interrupt (NMI) can be generated in either of two ways:
• External hardware asserts the NMI pin.
• The processor receives a message on the system bus (Pentium 4, Intel Core Duo, 

Intel Core 2, Intel Atom, and Intel Xeon processors) or the APIC serial bus (P6 
family and Pentium processors) with a delivery mode NMI.

When the processor receives a NMI from either of these sources, the processor 
handles it immediately by calling the NMI handler pointed to by interrupt vector 
number 2. The processor also invokes certain hardware conditions to insure that no 
other interrupts, including NMI interrupts, are received until the NMI handler has 
completed executing (see Section 6.7.1, “Handling Multiple NMIs”).

Also, when an NMI is received from either of the above sources, it cannot be masked 
by the IF flag in the EFLAGS register.
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It is possible to issue a maskable hardware interrupt (through the INTR pin) to vector 
2 to invoke the NMI interrupt handler; however, this interrupt will not truly be an NMI 
interrupt. A true NMI interrupt that activates the processor’s NMI-handling hardware 
can only be delivered through one of the mechanisms listed above.

6.7.1 Handling Multiple NMIs
While an NMI interrupt handler is executing, the processor disables additional calls to 
the NMI handler until the next IRET instruction is executed. This blocking of subse-
quent NMIs prevents stacking up calls to the NMI handler. It is recommended that the 
NMI interrupt handler be accessed through an interrupt gate to disable maskable 
hardware interrupts (see Section 6.8.1, “Masking Maskable Hardware Interrupts”). If 
the NMI handler is a virtual-8086 task with an IOPL of less than 3, an IRET instruction 
issued from the handler generates a general-protection exception (see Section 
20.2.7, “Sensitive Instructions”). In this case, the NMI is unmasked before the 
general-protection exception handler is invoked.

6.8 ENABLING AND DISABLING INTERRUPTS
The processor inhibits the generation of some interrupts, depending on the state of 
the processor and of the IF and RF flags in the EFLAGS register, as described in the 
following sections.

6.8.1 Masking Maskable Hardware Interrupts
The IF flag can disable the servicing of maskable hardware interrupts received on the 
processor’s INTR pin or through the local APIC (see Section 6.3.2, “Maskable Hard-
ware Interrupts”). When the IF flag is clear, the processor inhibits interrupts deliv-
ered to the INTR pin or through the local APIC from generating an internal interrupt 
request; when the IF flag is set, interrupts delivered to the INTR or through the local 
APIC pin are processed as normal external interrupts. 

The IF flag does not affect non-maskable interrupts (NMIs) delivered to the NMI pin 
or delivery mode NMI messages delivered through the local APIC, nor does it affect 
processor generated exceptions. As with the other flags in the EFLAGS register, the 
processor clears the IF flag in response to a hardware reset.

The fact that the group of maskable hardware interrupts includes the reserved inter-
rupt and exception vectors 0 through 32 can potentially cause confusion. Architectur-
ally, when the IF flag is set, an interrupt for any of the vectors from 0 through 32 can 
be delivered to the processor through the INTR pin and any of the vectors from 16 
through 32 can be delivered through the local APIC. The processor will then generate 
an interrupt and call the interrupt or exception handler pointed to by the vector 
number. So for example, it is possible to invoke the page-fault handler through the 
INTR pin (by means of vector 14); however, this is not a true page-fault exception. It 
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is an interrupt. As with the INT n instruction (see Section 6.4.2, “Software-Generated 
Exceptions”), when an interrupt is generated through the INTR pin to an exception 
vector, the processor does not push an error code on the stack, so the exception 
handler may not operate correctly.

The IF flag can be set or cleared with the STI (set interrupt-enable flag) and CLI 
(clear interrupt-enable flag) instructions, respectively. These instructions may be 
executed only if the CPL is equal to or less than the IOPL. A general-protection excep-
tion (#GP) is generated if they are executed when the CPL is greater than the IOPL. 
(The effect of the IOPL on these instructions is modified slightly when the virtual 
mode extension is enabled by setting the VME flag in control register CR4: see 
Section 20.3, “Interrupt and Exception Handling in Virtual-8086 Mode.” Behavior is 
also impacted by the PVI flag: see Section 20.4, “Protected-Mode Virtual Interrupts.”

The IF flag is also affected by the following operations:
• The PUSHF instruction stores all flags on the stack, where they can be examined 

and modified. The POPF instruction can be used to load the modified flags back 
into the EFLAGS register.

• Task switches and the POPF and IRET instructions load the EFLAGS register; 
therefore, they can be used to modify the setting of the IF flag.

• When an interrupt is handled through an interrupt gate, the IF flag is automati-
cally cleared, which disables maskable hardware interrupts. (If an interrupt is 
handled through a trap gate, the IF flag is not cleared.)

See the descriptions of the CLI, STI, PUSHF, POPF, and IRET instructions in Chapter 
3, “Instruction Set Reference, A-L,” in the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2A, and Chapter 4, “Instruction Set Reference, M-
Z,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
2B, for a detailed description of the operations these instructions are allowed to 
perform on the IF flag.

6.8.2 Masking Instruction Breakpoints
The RF (resume) flag in the EFLAGS register controls the response of the processor 
to instruction-breakpoint conditions (see the description of the RF flag in Section 2.3, 
“System Flags and Fields in the EFLAGS Register”). 

When set, it prevents an instruction breakpoint from generating a debug exception 
(#DB); when clear, instruction breakpoints will generate debug exceptions. The 
primary function of the RF flag is to prevent the processor from going into a debug 
exception loop on an instruction-breakpoint. See Section 17.3.1.1, “Instruction-
Breakpoint Exception Condition,” for more information on the use of this flag.
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6.8.3 Masking Exceptions and Interrupts When Switching Stacks
To switch to a different stack segment, software often uses a pair of instructions, for 
example:

MOV SS, AX
MOV ESP, StackTop

If an interrupt or exception occurs after the segment selector has been loaded into 
the SS register but before the ESP register has been loaded, these two parts of the 
logical address into the stack space are inconsistent for the duration of the interrupt 
or exception handler.

To prevent this situation, the processor inhibits interrupts, debug exceptions, and 
single-step trap exceptions after either a MOV to SS instruction or a POP to SS 
instruction, until the instruction boundary following the next instruction is reached. 
All other faults may still be generated. If the LSS instruction is used to modify the 
contents of the SS register (which is the recommended method of modifying this 
register), this problem does not occur.

6.9 PRIORITY AMONG SIMULTANEOUS EXCEPTIONS AND 
INTERRUPTS 

If more than one exception or interrupt is pending at an instruction boundary, the 
processor services them in a predictable order. Table 6-2 shows the priority among 
classes of exception and interrupt sources. 

Table 6-2.  Priority Among Simultaneous Exceptions and Interrupts

Priority Description

1 (Highest) Hardware Reset and Machine Checks

- RESET

- Machine Check

2 Trap on Task Switch

- T flag in TSS is set

3 External Hardware Interventions

- FLUSH

- STOPCLK

- SMI

- INIT

4 Traps on the Previous Instruction

- Breakpoints

- Debug Trap Exceptions (TF flag set or data/I-O breakpoint)
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While priority among these classes listed in Table 6-2 is consistent throughout the 
architecture, exceptions within each class are implementation-dependent and may 
vary from processor to processor. The processor first services a pending exception or 
interrupt from the class which has the highest priority, transferring execution to the 
first instruction of the handler. Lower priority exceptions are discarded; lower priority 
interrupts are held pending. Discarded exceptions are re-generated when the inter-
rupt handler returns execution to the point in the program or task where the excep-
tions and/or interrupts occurred. 

6.10 INTERRUPT DESCRIPTOR TABLE (IDT)
The interrupt descriptor table (IDT) associates each exception or interrupt vector 
with a gate descriptor for the procedure or task used to service the associated excep-
tion or interrupt. Like the GDT and LDTs, the IDT is an array of 8-byte descriptors (in 

5 Nonmaskable Interrupts (NMI) 1

6 Maskable Hardware Interrupts 1

7 Code Breakpoint Fault

8 Faults from Fetching Next Instruction 

- Code-Segment Limit Violation

- Code Page Fault

9 Faults from Decoding the Next Instruction

- Instruction length > 15 bytes 

- Invalid Opcode 

- Coprocessor Not Available

10 (Lowest) Faults on Executing an Instruction

- Overflow

- Bound error

- Invalid TSS

- Segment Not Present

- Stack fault

- General Protection

- Data Page Fault

- Alignment Check

- x87 FPU Floating-point exception

- SIMD floating-point exception

NOTE:

1. The Intel486™ processor and earlier processors group nonmaskable and maskable interrupts in 
the same priority class.

Table 6-2.  Priority Among Simultaneous Exceptions and Interrupts (Contd.)
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protected mode). Unlike the GDT, the first entry of the IDT may contain a descriptor. 
To form an index into the IDT, the processor scales the exception or interrupt vector 
by eight (the number of bytes in a gate descriptor). Because there are only 256 inter-
rupt or exception vectors, the IDT need not contain more than 256 descriptors. It can 
contain fewer than 256 descriptors, because descriptors are required only for the 
interrupt and exception vectors that may occur. All empty descriptor slots in the IDT 
should have the present flag for the descriptor set to 0.

The base addresses of the IDT should be aligned on an 8-byte boundary to maximize 
performance of cache line fills. The limit value is expressed in bytes and is added to 
the base address to get the address of the last valid byte. A limit value of 0 results in 
exactly 1 valid byte. Because IDT entries are always eight bytes long, the limit should 
always be one less than an integral multiple of eight (that is, 8N – 1).

The IDT may reside anywhere in the linear address space. As shown in Figure 6-1, 
the processor locates the IDT using the IDTR register. This register holds both a 
32-bit base address and 16-bit limit for the IDT.

The LIDT (load IDT register) and SIDT (store IDT register) instructions load and store 
the contents of the IDTR register, respectively. The LIDT instruction loads the IDTR 
register with the base address and limit held in a memory operand. This instruction 
can be executed only when the CPL is 0. It normally is used by the initialization code 
of an operating system when creating an IDT. An operating system also may use it to 
change from one IDT to another. The SIDT instruction copies the base and limit value 
stored in IDTR to memory. This instruction can be executed at any privilege level. 

If a vector references a descriptor beyond the limit of the IDT, a general-protection 
exception (#GP) is generated.

NOTE
Because interrupts are delivered to the processor core only once, an 
incorrectly configured IDT could result in incomplete interrupt 
handling and/or the blocking of interrupt delivery. 
IA-32 architecture rules need to be followed for setting up IDTR 
base/limit/access fields and each field in the gate descriptors. The 
same apply for the Intel 64 architecture. This includes implicit 
referencing of the destination code segment through the GDT or LDT 
and accessing the stack.
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6.11 IDT DESCRIPTORS
The IDT may contain any of three kinds of gate descriptors:
• Task-gate descriptor
• Interrupt-gate descriptor
• Trap-gate descriptor

Figure 6-2 shows the formats for the task-gate, interrupt-gate, and trap-gate 
descriptors. The format of a task gate used in an IDT is the same as that of a task 
gate used in the GDT or an LDT (see Section 7.2.5, “Task-Gate Descriptor”). The task 
gate contains the segment selector for a TSS for an exception and/or interrupt 
handler task. 

Interrupt and trap gates are very similar to call gates (see Section 5.8.3, “Call 
Gates”). They contain a far pointer (segment selector and offset) that the processor 
uses to transfer program execution to a handler procedure in an exception- or inter-
rupt-handler code segment. These gates differ in the way the processor handles the 
IF flag in the EFLAGS register (see Section 6.12.1.2, “Flag Usage By Exception- or 
Interrupt-Handler Procedure”).

Figure 6-1.  Relationship of the IDTR and IDT
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6.12 EXCEPTION AND INTERRUPT HANDLING
The processor handles calls to exception- and interrupt-handlers similar to the way it 
handles calls with a CALL instruction to a procedure or a task. When responding to an 
exception or interrupt, the processor uses the exception or interrupt vector as an 
index to a descriptor in the IDT. If the index points to an interrupt gate or trap gate, 
the processor calls the exception or interrupt handler in a manner similar to a CALL 
to a call gate (see Section 5.8.2, “Gate Descriptors,” through Section 5.8.6, 

Figure 6-2.  IDT Gate Descriptors
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“Returning from a Called Procedure”). If index points to a task gate, the processor 
executes a task switch to the exception- or interrupt-handler task in a manner similar 
to a CALL to a task gate (see Section 7.3, “Task Switching”).

6.12.1 Exception- or Interrupt-Handler Procedures
An interrupt gate or trap gate references an exception- or interrupt-handler proce-
dure that runs in the context of the currently executing task (see Figure 6-3). The 
segment selector for the gate points to a segment descriptor for an executable code 
segment in either the GDT or the current LDT. The offset field of the gate descriptor 
points to the beginning of the exception- or interrupt-handling procedure.

Figure 6-3.  Interrupt Procedure Call
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When the processor performs a call to the exception- or interrupt-handler procedure:
• If the handler procedure is going to be executed at a numerically lower privilege 

level, a stack switch occurs. When the stack switch occurs: 

a. The segment selector and stack pointer for the stack to be used by the 
handler are obtained from the TSS for the currently executing task. On this 
new stack, the processor pushes the stack segment selector and stack 
pointer of the interrupted procedure. 

b. The processor then saves the current state of the EFLAGS, CS, and EIP 
registers on the new stack (see Figures 6-4). 

c. If an exception causes an error code to be saved, it is pushed on the new 
stack after the EIP value.

• If the handler procedure is going to be executed at the same privilege level as the 
interrupted procedure:

a. The processor saves the current state of the EFLAGS, CS, and EIP registers 
on the current stack (see Figures 6-4). 

b. If an exception causes an error code to be saved, it is pushed on the current 
stack after the EIP value.
Vol. 3A 6-17



INTERRUPT AND EXCEPTION HANDLING
To return from an exception- or interrupt-handler procedure, the handler must use 
the IRET (or IRETD) instruction. The IRET instruction is similar to the RET instruction 
except that it restores the saved flags into the EFLAGS register. The IOPL field of the 
EFLAGS register is restored only if the CPL is 0. The IF flag is changed only if the CPL 
is less than or equal to the IOPL. See Chapter 3, “Instruction Set Reference, A-L,” of 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A, for 
a description of the complete operation performed by the IRET instruction.

If a stack switch occurred when calling the handler procedure, the IRET instruction 
switches back to the interrupted procedure’s stack on the return.

6.12.1.1  Protection of Exception- and Interrupt-Handler Procedures
The privilege-level protection for exception- and interrupt-handler procedures is 
similar to that used for ordinary procedure calls when called through a call gate (see 
Section 5.8.4, “Accessing a Code Segment Through a Call Gate”). The processor does 

Figure 6-4.  Stack Usage on Transfers to Interrupt and Exception-Handling Routines
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not permit transfer of execution to an exception- or interrupt-handler procedure in a 
less privileged code segment (numerically greater privilege level) than the CPL. 

An attempt to violate this rule results in a general-protection exception (#GP). The 
protection mechanism for exception- and interrupt-handler procedures is different in 
the following ways:
• Because interrupt and exception vectors have no RPL, the RPL is not checked on 

implicit calls to exception and interrupt handlers.
• The processor checks the DPL of the interrupt or trap gate only if an exception or 

interrupt is generated with an INT n, INT 3, or INTO instruction. Here, the CPL 
must be less than or equal to the DPL of the gate. This restriction prevents 
application programs or procedures running at privilege level 3 from using a 
software interrupt to access critical exception handlers, such as the page-fault 
handler, providing that those handlers are placed in more privileged code 
segments (numerically lower privilege level). For hardware-generated interrupts 
and processor-detected exceptions, the processor ignores the DPL of interrupt 
and trap gates.

Because exceptions and interrupts generally do not occur at predictable times, these 
privilege rules effectively impose restrictions on the privilege levels at which excep-
tion and interrupt- handling procedures can run. Either of the following techniques 
can be used to avoid privilege-level violations.
• The exception or interrupt handler can be placed in a conforming code segment. 

This technique can be used for handlers that only need to access data available 
on the stack (for example, divide error exceptions). If the handler needs data 
from a data segment, the data segment needs to be accessible from privilege 
level 3, which would make it unprotected.

• The handler can be placed in a nonconforming code segment with privilege level 
0. This handler would always run, regardless of the CPL that the interrupted 
program or task is running at.

6.12.1.2  Flag Usage By Exception- or Interrupt-Handler Procedure
When accessing an exception or interrupt handler through either an interrupt gate or 
a trap gate, the processor clears the TF flag in the EFLAGS register after it saves the 
contents of the EFLAGS register on the stack. (On calls to exception and interrupt 
handlers, the processor also clears the VM, RF, and NT flags in the EFLAGS register, 
after they are saved on the stack.) Clearing the TF flag prevents instruction tracing 
from affecting interrupt response. A subsequent IRET instruction restores the TF 
(and VM, RF, and NT) flags to the values in the saved contents of the EFLAGS register 
on the stack.

The only difference between an interrupt gate and a trap gate is the way the 
processor handles the IF flag in the EFLAGS register. When accessing an exception- 
or interrupt-handling procedure through an interrupt gate, the processor clears the 
IF flag to prevent other interrupts from interfering with the current interrupt handler. 
A subsequent IRET instruction restores the IF flag to its value in the saved contents 
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of the EFLAGS register on the stack. Accessing a handler procedure through a trap 
gate does not affect the IF flag.

6.12.2 Interrupt Tasks
When an exception or interrupt handler is accessed through a task gate in the IDT, a 
task switch results. Handling an exception or interrupt with a separate task offers 
several advantages:
• The entire context of the interrupted program or task is saved automatically.
• A new TSS permits the handler to use a new privilege level 0 stack when handling 

the exception or interrupt. If an exception or interrupt occurs when the current 
privilege level 0 stack is corrupted, accessing the handler through a task gate can 
prevent a system crash by providing the handler with a new privilege level 0 
stack.

• The handler can be further isolated from other tasks by giving it a separate 
address space. This is done by giving it a separate LDT.

The disadvantage of handling an interrupt with a separate task is that the amount of 
machine state that must be saved on a task switch makes it slower than using an 
interrupt gate, resulting in increased interrupt latency.

A task gate in the IDT references a TSS descriptor in the GDT (see Figure 6-5). A 
switch to the handler task is handled in the same manner as an ordinary task switch 
(see Section 7.3, “Task Switching”). The link back to the interrupted task is stored in 
the previous task link field of the handler task’s TSS. If an exception caused an error 
code to be generated, this error code is copied to the stack of the new task.

When exception- or interrupt-handler tasks are used in an operating system, there 
are actually two mechanisms that can be used to dispatch tasks: the software sched-
uler (part of the operating system) and the hardware scheduler (part of the 
processor's interrupt mechanism). The software scheduler needs to accommodate 
interrupt tasks that may be dispatched when interrupts are enabled.

NOTE
Because IA-32 architecture tasks are not re-entrant, an interrupt-
handler task must disable interrupts between the time it completes 
handling the interrupt and the time it executes the IRET instruction. 
This action prevents another interrupt from occurring while the 
interrupt task’s TSS is still marked busy, which would cause a 
general-protection (#GP) exception.
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6.13 ERROR CODE
When an exception condition is related to a specific segment selector or IDT vector, 
the processor pushes an error code onto the stack of the exception handler (whether 
it is a procedure or task). The error code has the format shown in Figure 6-6. The 
error code resembles a segment selector; however, instead of a TI flag and RPL field, 
the error code contains 3 flags:

EXT External event (bit 0) — When set, indicates that the exception 
occurred during delivery of an event external to the program, such as 
an interrupt or an earlier exception.

IDT Descriptor location (bit 1) — When set, indicates that the index 
portion of the error code refers to a gate descriptor in the IDT; when 

Figure 6-5.  Interrupt Task Switch
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clear, indicates that the index refers to a descriptor in the GDT or the 
current LDT.

TI GDT/LDT (bit 2) — Only used when the IDT flag is clear. When set, 
the TI flag indicates that the index portion of the error code refers to 
a segment or gate descriptor in the LDT; when clear, it indicates that 
the index refers to a descriptor in the current GDT.

The segment selector index field provides an index into the IDT, GDT, or current LDT 
to the segment or gate selector being referenced by the error code. In some cases 
the error code is null (all bits are clear except possibly EXT). A null error code indi-
cates that the error was not caused by a reference to a specific segment or that a null 
segment descriptor was referenced in an operation.

The format of the error code is different for page-fault exceptions (#PF). See the 
“Interrupt 14—Page-Fault Exception (#PF)” section in this chapter.

The error code is pushed on the stack as a doubleword or word (depending on the 
default interrupt, trap, or task gate size). To keep the stack aligned for doubleword 
pushes, the upper half of the error code is reserved. Note that the error code is not 
popped when the IRET instruction is executed to return from an exception handler, so 
the handler must remove the error code before executing a return.

Error codes are not pushed on the stack for exceptions that are generated externally 
(with the INTR or LINT[1:0] pins) or the INT n instruction, even if an error code is 
normally produced for those exceptions.

6.14 EXCEPTION AND INTERRUPT HANDLING IN 64-BIT 
MODE

In 64-bit mode, interrupt and exception handling is similar to what has been 
described for non-64-bit modes. The following are the exceptions:
• All interrupt handlers pointed by the IDT are in 64-bit code (this does not apply to 

the SMI handler).
• The size of interrupt-stack pushes is fixed at 64 bits; and the processor uses 

8-byte, zero extended stores.

Figure 6-6.  Error Code
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• The stack pointer (SS:RSP) is pushed unconditionally on interrupts. In legacy 
modes, this push is conditional and based on a change in current privilege level 
(CPL).

• The new SS is set to NULL if there is a change in CPL.
• IRET behavior changes.
• There is a new interrupt stack-switch mechanism.
• The alignment of interrupt stack frame is different.

6.14.1 64-Bit Mode IDT
Interrupt and trap gates are 16 bytes in length to provide a 64-bit offset for the 
instruction pointer (RIP). The 64-bit RIP referenced by interrupt-gate descriptors 
allows an interrupt service routine to be located anywhere in the linear-address 
space. See Figure 6-7.

In 64-bit mode, the IDT index is formed by scaling the interrupt vector by 16. The 
first eight bytes (bytes 7:0) of a 64-bit mode interrupt gate are similar but not iden-
tical to legacy 32-bit interrupt gates. The type field (bits 11:8 in bytes 7:4) is 
described in Table 3-2. The Interrupt Stack Table (IST) field (bits 4:0 in bytes 7:4) is 
used by the stack switching mechanisms described in Section 6.14.5, “Interrupt 
Stack Table.” Bytes 11:8 hold the upper 32 bits of the target RIP (interrupt segment 
offset) in canonical form. A general-protection exception (#GP) is generated if soft-

Figure 6-7.  64-Bit IDT Gate Descriptors
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ware attempts to reference an interrupt gate with a target RIP that is not in canonical 
form.

The target code segment referenced by the interrupt gate must be a 64-bit code 
segment (CS.L = 1, CS.D = 0). If the target is not a 64-bit code segment, a general-
protection exception (#GP) is generated with the IDT vector number reported as the 
error code.

Only 64-bit interrupt and trap gates can be referenced in IA-32e mode (64-bit mode 
and compatibility mode). Legacy 32-bit interrupt or trap gate types (0EH or 0FH) are 
redefined in IA-32e mode as 64-bit interrupt and trap gate types. No 32-bit interrupt 
or trap gate type exists in IA-32e mode. If a reference is made to a 16-bit interrupt 
or trap gate (06H or 07H), a general-protection exception (#GP(0)) is generated.

6.14.2 64-Bit Mode Stack Frame
In legacy mode, the size of an IDT entry (16 bits or 32 bits) determines the size of 
interrupt-stack-frame pushes. SS:ESP is pushed only on a CPL change. In 64-bit 
mode, the size of interrupt stack-frame pushes is fixed at eight bytes. This is because 
only 64-bit mode gates can be referenced. 64-bit mode also pushes SS:RSP uncon-
ditionally, rather than only on a CPL change.

Aside from error codes, pushing SS:RSP unconditionally presents operating systems 
with a consistent interrupt-stackframe size across all interrupts. Interrupt service-
routine entry points that handle interrupts generated by the INTn instruction or 
external INTR# signal can push an additional error code place-holder to maintain 
consistency.

In legacy mode, the stack pointer may be at any alignment when an interrupt or 
exception causes a stack frame to be pushed. This causes the stack frame and 
succeeding pushes done by an interrupt handler to be at arbitrary alignments. In 
IA-32e mode, the RSP is aligned to a 16-byte boundary before pushing the stack 
frame. The stack frame itself is aligned on a 16-byte boundary when the interrupt 
handler is called. The processor can arbitrarily realign the new RSP on interrupts 
because the previous (possibly unaligned) RSP is unconditionally saved on the newly 
aligned stack. The previous RSP will be automatically restored by a subsequent IRET.

Aligning the stack permits exception and interrupt frames to be aligned on a 16-byte 
boundary before interrupts are re-enabled. This allows the stack to be formatted for 
optimal storage of 16-byte XMM registers, which enables the interrupt handler to use 
faster 16-byte aligned loads and stores (MOVAPS rather than MOVUPS) to save and 
restore XMM registers. 

Although the RSP alignment is always performed when LMA = 1, it is only of conse-
quence for the kernel-mode case where there is no stack switch or IST used. For a 
stack switch or IST, the OS would have presumably put suitably aligned RSP values in 
the TSS.
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6.14.3 IRET in IA-32e Mode 
In IA-32e mode, IRET executes with an 8-byte operand size. There is nothing that 
forces this requirement. The stack is formatted in such a way that for actions where 
IRET is required, the 8-byte IRET operand size works correctly. 

Because interrupt stack-frame pushes are always eight bytes in IA-32e mode, an 
IRET must pop eight byte items off the stack. This is accomplished by preceding the 
IRET with a 64-bit operand-size prefix. The size of the pop is determined by the 
address size of the instruction. The SS/ESP/RSP size adjustment is determined by 
the stack size.

IRET pops SS:RSP unconditionally off the interrupt stack frame only when it is 
executed in 64-bit mode. In compatibility mode, IRET pops SS:RSP off the stack only 
if there is a CPL change. This allows legacy applications to execute properly in 
compatibility mode when using the IRET instruction. 64-bit interrupt service routines 
that exit with an IRET unconditionally pop SS:RSP off of the interrupt stack frame, 
even if the target code segment is running in 64-bit mode or at CPL = 0. This is 
because the original interrupt always pushes SS:RSP.

In IA-32e mode, IRET is allowed to load a NULL SS under certain conditions. If the 
target mode is 64-bit mode and the target CPL <> 3, IRET allows SS to be loaded 
with a NULL selector. As part of the stack switch mechanism, an interrupt or excep-
tion sets the new SS to NULL, instead of fetching a new SS selector from the TSS and 
loading the corresponding descriptor from the GDT or LDT. The new SS selector is set 
to NULL in order to properly handle returns from subsequent nested far transfers. If 
the called procedure itself is interrupted, the NULL SS is pushed on the stack frame. 
On the subsequent IRET, the NULL SS on the stack acts as a flag to tell the processor 
not to load a new SS descriptor.

6.14.4 Stack Switching in IA-32e Mode 
The IA-32 architecture provides a mechanism to automatically switch stack frames in 
response to an interrupt. The 64-bit extensions of Intel 64 architecture implement a 
modified version of the legacy stack-switching mechanism and an alternative stack-
switching mechanism called the interrupt stack table (IST).

In IA-32 modes, the legacy IA-32 stack-switch mechanism is unchanged. In IA-32e 
mode, the legacy stack-switch mechanism is modified. When stacks are switched as 
part of a 64-bit mode privilege-level change (resulting from an interrupt), a new SS 
descriptor is not loaded. IA-32e mode loads only an inner-level RSP from the TSS. 
The new SS selector is forced to NULL and the SS selector’s RPL field is set to the new 
CPL. The new SS is set to NULL in order to handle nested far transfers (CALLF, INT, 
interrupts and exceptions). The old SS and RSP are saved on the new stack 
(Figure 6-8). On the subsequent IRET, the old SS is popped from the stack and 
loaded into the SS register.
Vol. 3A 6-25



INTERRUPT AND EXCEPTION HANDLING
In summary, a stack switch in IA-32e mode works like the legacy stack switch, 
except that a new SS selector is not loaded from the TSS. Instead, the new SS is 
forced to NULL.

6.14.5 Interrupt Stack Table 
In IA-32e mode, a new interrupt stack table (IST) mechanism is available as an alter-
native to the modified legacy stack-switching mechanism described above. This 
mechanism unconditionally switches stacks when it is enabled. It can be enabled on 
an individual interrupt-vector basis using a field in the IDT entry. This means that 
some interrupt vectors can use the modified legacy mechanism and others can use 
the IST mechanism. 

The IST mechanism is only available in IA-32e mode. It is part of the 64-bit mode 
TSS. The motivation for the IST mechanism is to provide a method for specific inter-
rupts (such as NMI, double-fault, and machine-check) to always execute on a known 
good stack. In legacy mode, interrupts can use the task-switch mechanism to set up 
a known-good stack by accessing the interrupt service routine through a task gate 
located in the IDT. However, the legacy task-switch mechanism is not supported in 
IA-32e mode. 

The IST mechanism provides up to seven IST pointers in the TSS. The pointers are 
referenced by an interrupt-gate descriptor in the interrupt-descriptor table (IDT); 
see Figure 6-7. The gate descriptor contains a 3-bit IST index field that provides an 
offset into the IST section of the TSS. Using the IST mechanism, the processor loads 
the value pointed by an IST pointer into the RSP.

When an interrupt occurs, the new SS selector is forced to NULL and the SS selector’s 
RPL field is set to the new CPL. The old SS, RSP, RFLAGS, CS, and RIP are pushed 
onto the new stack. Interrupt processing then proceeds as normal. If the IST index is 
zero, the modified legacy stack-switching mechanism described above is used.

Figure 6-8.  IA-32e Mode Stack Usage After Privilege Level Change
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6.15 EXCEPTION AND INTERRUPT REFERENCE
The following sections describe conditions which generate exceptions and interrupts. 
They are arranged in the order of vector numbers. The information contained in 
these sections are as follows:
• Exception Class — Indicates whether the exception class is a fault, trap, or 

abort type. Some exceptions can be either a fault or trap type, depending on 
when the error condition is detected. (This section is not applicable to interrupts.)

• Description — Gives a general description of the purpose of the exception or 
interrupt type. It also describes how the processor handles the exception or 
interrupt.

• Exception Error Code — Indicates whether an error code is saved for the 
exception. If one is saved, the contents of the error code are described. (This 
section is not applicable to interrupts.)

• Saved Instruction Pointer — Describes which instruction the saved (or return) 
instruction pointer points to. It also indicates whether the pointer can be used to 
restart a faulting instruction.

• Program State Change — Describes the effects of the exception or interrupt on 
the state of the currently running program or task and the possibilities of 
restarting the program or task without loss of continuity.
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Interrupt 0—Divide Error Exception (#DE)

Exception Class Fault.

Description

Indicates the divisor operand for a DIV or IDIV instruction is 0 or that the result 
cannot be represented in the number of bits specified for the destination operand.

Exception Error Code

None.

Saved Instruction Pointer

Saved contents of CS and EIP registers point to the instruction that generated the 
exception.

Program State Change

A program-state change does not accompany the divide error, because the exception 
occurs before the faulting instruction is executed.
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Interrupt 1—Debug Exception (#DB)

Exception Class Trap or Fault. The exception handler can distinguish 
between traps or faults by examining the contents of DR6 
and the other debug registers.

Description

Indicates that one or more of several debug-exception conditions has been detected. 
Whether the exception is a fault or a trap depends on the condition (see Table 6-3). 
See Chapter 17, “Debugging, Branch Profiling, and Time-Stamp Counter,” for 
detailed information about the debug exceptions.

Exception Error Code

None. An exception handler can examine the debug registers to determine which 
condition caused the exception.

Saved Instruction Pointer

Fault — Saved contents of CS and EIP registers point to the instruction that gener-
ated the exception.

Trap — Saved contents of CS and EIP registers point to the instruction following the 
instruction that generated the exception.

Program State Change

Fault — A program-state change does not accompany the debug exception, because 
the exception occurs before the faulting instruction is executed. The program can 
resume normal execution upon returning from the debug exception handler.

Trap — A program-state change does accompany the debug exception, because the 
instruction or task switch being executed is allowed to complete before the exception 
is generated. However, the new state of the program is not corrupted and execution 
of the program can continue reliably.

Table 6-3.  Debug Exception Conditions and Corresponding Exception Classes

Exception Condition Exception Class

Instruction fetch breakpoint Fault

Data read or write breakpoint Trap

I/O read or write breakpoint Trap

General detect condition (in conjunction with in-circuit emulation) Fault

Single-step Trap

Task-switch Trap
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Interrupt 2—NMI Interrupt

Exception Class Not applicable.

Description

The nonmaskable interrupt (NMI) is generated externally by asserting the 
processor’s NMI pin or through an NMI request set by the I/O APIC to the local APIC. 
This interrupt causes the NMI interrupt handler to be called.

Exception Error Code

Not applicable.

Saved Instruction Pointer

The processor always takes an NMI interrupt on an instruction boundary. The saved 
contents of CS and EIP registers point to the next instruction to be executed at the 
point the interrupt is taken. See Section 6.5, “Exception Classifications,” for more 
information about when the processor takes NMI interrupts.

Program State Change

The instruction executing when an NMI interrupt is received is completed before the 
NMI is generated. A program or task can thus be restarted upon returning from an 
interrupt handler without loss of continuity, provided the interrupt handler saves the 
state of the processor before handling the interrupt and restores the processor’s 
state prior to a return.
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Interrupt 3—Breakpoint Exception (#BP)

Exception Class Trap.

Description

Indicates that a breakpoint instruction (INT 3) was executed, causing a breakpoint 
trap to be generated. Typically, a debugger sets a breakpoint by replacing the first 
opcode byte of an instruction with the opcode for the INT 3 instruction. (The INT 3 
instruction is one byte long, which makes it easy to replace an opcode in a code 
segment in RAM with the breakpoint opcode.) The operating system or a debugging 
tool can use a data segment mapped to the same physical address space as the code 
segment to place an INT 3 instruction in places where it is desired to call the 
debugger.

With the P6 family, Pentium, Intel486, and Intel386 processors, it is more convenient 
to set breakpoints with the debug registers. (See Section 17.3.2, “Breakpoint Excep-
tion (#BP)—Interrupt Vector 3,” for information about the breakpoint exception.) If 
more breakpoints are needed beyond what the debug registers allow, the INT 3 
instruction can be used. 

The breakpoint (#BP) exception can also be generated by executing the INT n 
instruction with an operand of 3. The action of this instruction (INT 3) is slightly 
different than that of the INT 3 instruction (see “INTn/INTO/INT3—Call to Interrupt 
Procedure” in Chapter 3 of the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 2A).

Exception Error Code

None.

Saved Instruction Pointer

Saved contents of CS and EIP registers point to the instruction following the INT 3 
instruction.

Program State Change

Even though the EIP points to the instruction following the breakpoint instruction, the 
state of the program is essentially unchanged because the INT 3 instruction does not 
affect any register or memory locations. The debugger can thus resume the 
suspended program by replacing the INT 3 instruction that caused the breakpoint 
with the original opcode and decrementing the saved contents of the EIP register. 
Upon returning from the debugger, program execution resumes with the replaced 
instruction.
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Interrupt 4—Overflow Exception (#OF)

Exception Class Trap.

Description

Indicates that an overflow trap occurred when an INTO instruction was executed. The 
INTO instruction checks the state of the OF flag in the EFLAGS register. If the OF flag 
is set, an overflow trap is generated.

Some arithmetic instructions (such as the ADD and SUB) perform both signed and 
unsigned arithmetic. These instructions set the OF and CF flags in the EFLAGS 
register to indicate signed overflow and unsigned overflow, respectively. When 
performing arithmetic on signed operands, the OF flag can be tested directly or the 
INTO instruction can be used. The benefit of using the INTO instruction is that if the 
overflow exception is detected, an exception handler can be called automatically to 
handle the overflow condition.

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction following the INTO 
instruction.

Program State Change

Even though the EIP points to the instruction following the INTO instruction, the state 
of the program is essentially unchanged because the INTO instruction does not affect 
any register or memory locations. The program can thus resume normal execution 
upon returning from the overflow exception handler.
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Interrupt 5—BOUND Range Exceeded Exception (#BR)

Exception Class Fault.

Description

Indicates that a BOUND-range-exceeded fault occurred when a BOUND instruction 
was executed. The BOUND instruction checks that a signed array index is within the 
upper and lower bounds of an array located in memory. If the array index is not 
within the bounds of the array, a BOUND-range-exceeded fault is generated.

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the BOUND instruction that 
generated the exception.

Program State Change

A program-state change does not accompany the bounds-check fault, because the 
operands for the BOUND instruction are not modified. Returning from the BOUND-
range-exceeded exception handler causes the BOUND instruction to be restarted.
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Interrupt 6—Invalid Opcode Exception (#UD)

Exception Class Fault.

Description

Indicates that the processor did one of the following things:
• Attempted to execute an invalid or reserved opcode.
• Attempted to execute an instruction with an operand type that is invalid for its 

accompanying opcode; for example, the source operand for a LES instruction is 
not a memory location.

• Attempted to execute an MMX or SSE/SSE2/SSE3 instruction on an Intel 64 or 
IA-32 processor that does not support the MMX technology or 
SSE/SSE2/SSE3/SSSE3 extensions, respectively. CPUID feature flags MMX (bit 
23), SSE (bit 25), SSE2 (bit 26), SSE3 (ECX, bit 0), SSSE3 (ECX, bit 9) indicate 
support for these extensions.

• Attempted to execute an MMX instruction or SSE/SSE2/SSE3/SSSE3 SIMD 
instruction (with the exception of the MOVNTI, PAUSE, PREFETCHh, SFENCE, 
LFENCE, MFENCE, CLFLUSH, MONITOR, and MWAIT instructions) when the EM 
flag in control register CR0 is set (1).

• Attempted to execute an SSE/SE2/SSE3/SSSE3 instruction when the OSFXSR bit 
in control register CR4 is clear (0). Note this does not include the following 
SSE/SSE2/SSE3 instructions: MASKMOVQ, MOVNTQ, MOVNTI, PREFETCHh, 
SFENCE, LFENCE, MFENCE, and CLFLUSH; or the 64-bit versions of the PAVGB, 
PAVGW, PEXTRW, PINSRW, PMAXSW, PMAXUB, PMINSW, PMINUB, PMOVMSKB, 
PMULHUW, PSADBW, PSHUFW, PADDQ, PSUBQ, PALIGNR, PABSB, PABSD, 
PABSW, PHADDD, PHADDSW, PHADDW, PHSUBD, PHSUBSW, PHSUBW, 
PMADDUBSM, PMULHRSW, PSHUFB, PSIGNB, PSIGND, and PSIGNW.

• Attempted to execute an SSE/SSE2/SSE3/SSSE3 instruction on an Intel 64 or 
IA-32 processor that caused a SIMD floating-point exception when the 
OSXMMEXCPT bit in control register CR4 is clear (0).

• Executed a UD2 instruction. Note that even though it is the execution of the UD2 
instruction that causes the invalid opcode exception, the saved instruction 
pointer will still points at the UD2 instruction.

• Detected a LOCK prefix that precedes an instruction that may not be locked or 
one that may be locked but the destination operand is not a memory location.

• Attempted to execute an LLDT, SLDT, LTR, STR, LSL, LAR, VERR, VERW, or ARPL 
instruction while in real-address or virtual-8086 mode.

• Attempted to execute the RSM instruction when not in SMM mode.

In Intel 64 and IA-32 processors that implement out-of-order execution microarchi-
tectures, this exception is not generated until an attempt is made to retire the result 
of executing an invalid instruction; that is, decoding and speculatively attempting to 
execute an invalid opcode does not generate this exception. Likewise, in the Pentium 
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processor and earlier IA-32 processors, this exception is not generated as the result 
of prefetching and preliminary decoding of an invalid instruction. (See Section 6.5, 
“Exception Classifications,” for general rules for taking of interrupts and exceptions.)

The opcodes D6 and F1 are undefined opcodes reserved by the Intel 64 and IA-32 
architectures. These opcodes, even though undefined, do not generate an invalid 
opcode exception.

The UD2 instruction is guaranteed to generate an invalid opcode exception.

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the 
exception.

Program State Change

A program-state change does not accompany an invalid-opcode fault, because the 
invalid instruction is not executed.
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Interrupt 7—Device Not Available Exception (#NM)

Exception Class Fault.

Description

Indicates one of the following things:

The device-not-available exception is generated by either of three conditions:
• The processor executed an x87 FPU floating-point instruction while the EM flag in 

control register CR0 was set (1). See the paragraph below for the special case of 
the WAIT/FWAIT instruction.

• The processor executed a WAIT/FWAIT instruction while the MP and TS flags of 
register CR0 were set, regardless of the setting of the EM flag.

• The processor executed an x87 FPU, MMX, or SSE/SSE2/SSE3 instruction (with 
the exception of MOVNTI, PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE, and 
CLFLUSH) while the TS flag in control register CR0 was set and the EM flag is 
clear.

The EM flag is set when the processor does not have an internal x87 FPU floating-
point unit. A device-not-available exception is then generated each time an x87 FPU 
floating-point instruction is encountered, allowing an exception handler to call 
floating-point instruction emulation routines.

The TS flag indicates that a context switch (task switch) has occurred since the last 
time an x87 floating-point, MMX, or SSE/SSE2/SSE3 instruction was executed; but 
that the context of the x87 FPU, XMM, and MXCSR registers were not saved. When 
the TS flag is set and the EM flag is clear, the processor generates a device-not-avail-
able exception each time an x87 floating-point, MMX, or SSE/SSE2/SSE3 instruction 
is encountered (with the exception of the instructions listed above). The exception 
handler can then save the context of the x87 FPU, XMM, and MXCSR registers before 
it executes the instruction. See Section 2.5, “Control Registers,” for more information 
about the TS flag.

The MP flag in control register CR0 is used along with the TS flag to determine if WAIT 
or FWAIT instructions should generate a device-not-available exception. It extends 
the function of the TS flag to the WAIT and FWAIT instructions, giving the exception 
handler an opportunity to save the context of the x87 FPU before the WAIT or FWAIT 
instruction is executed. The MP flag is provided primarily for use with the Intel 286 
and Intel386 DX processors. For programs running on the Pentium 4, Intel Xeon, P6 
family, Pentium, or Intel486 DX processors, or the Intel 487 SX coprocessors, the MP 
flag should always be set; for programs running on the Intel486 SX processor, the MP 
flag should be clear. 

Exception Error Code

None.
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Saved Instruction Pointer

The saved contents of CS and EIP registers point to the floating-point instruction or 
the WAIT/FWAIT instruction that generated the exception.

Program State Change

A program-state change does not accompany a device-not-available fault, because 
the instruction that generated the exception is not executed.

If the EM flag is set, the exception handler can then read the floating-point instruc-
tion pointed to by the EIP and call the appropriate emulation routine.

If the MP and TS flags are set or the TS flag alone is set, the exception handler can 
save the context of the x87 FPU, clear the TS flag, and continue execution at the 
interrupted floating-point or WAIT/FWAIT instruction.
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Interrupt 8—Double Fault Exception (#DF)

Exception Class Abort.

Description

Indicates that the processor detected a second exception while calling an exception 
handler for a prior exception. Normally, when the processor detects another excep-
tion while trying to call an exception handler, the two exceptions can be handled seri-
ally. If, however, the processor cannot handle them serially, it signals the double-fault 
exception. To determine when two faults need to be signalled as a double fault, the 
processor divides the exceptions into three classes: benign exceptions, contributory 
exceptions, and page faults (see Table 6-4).

Table 6-5 shows the various combinations of exception classes that cause a double 
fault to be generated. A double-fault exception falls in the abort class of exceptions. 
The program or task cannot be restarted or resumed. The double-fault handler can 
be used to collect diagnostic information about the state of the machine and/or, when 
possible, to shut the application and/or system down gracefully or restart the 
system.

Table 6-4.  Interrupt and Exception Classes 

Class Vector Number Description

Benign Exceptions and 
Interrupts

 1
 2
 3
 4
 5
 6
 7
9
16
17
18

19
All
All

Debug
NMI Interrupt
Breakpoint
Overflow
BOUND Range Exceeded
Invalid Opcode
Device Not Available
Coprocessor Segment Overrun
Floating-Point Error
Alignment Check
Machine Check

SIMD floating-point
INT n
INTR

Contributory Exceptions  0
10
11
12
13

Divide Error
Invalid TSS
Segment Not Present
Stack Fault
General Protection

Page Faults 14 Page Fault
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A segment or page fault may be encountered while prefetching instructions; 
however, this behavior is outside the domain of Table 6-5. Any further faults gener-
ated while the processor is attempting to transfer control to the appropriate fault 
handler could still lead to a double-fault sequence.

If another exception occurs while attempting to call the double-fault handler, the 
processor enters shutdown mode. This mode is similar to the state following execu-
tion of an HLT instruction. In this mode, the processor stops executing instructions 
until an NMI interrupt, SMI interrupt, hardware reset, or INIT# is received. The 
processor generates a special bus cycle to indicate that it has entered shutdown 
mode. Software designers may need to be aware of the response of hardware when 
it goes into shutdown mode. For example, hardware may turn on an indicator light on 
the front panel, generate an NMI interrupt to record diagnostic information, invoke 
reset initialization, generate an INIT initialization, or generate an SMI. If any events 
are pending during shutdown, they will be handled after an wake event from shut-
down is processed (for example, A20M# interrupts).

If a shutdown occurs while the processor is executing an NMI interrupt handler, then 
only a hardware reset can restart the processor. Likewise, if the shutdown occurs 
while executing in SMM, a hardware reset must be used to restart the processor.

Exception Error Code

Zero. The processor always pushes an error code of 0 onto the stack of the double-
fault handler. 

Saved Instruction Pointer

The saved contents of CS and EIP registers are undefined.

Program State Change

A program-state following a double-fault exception is undefined. The program or task 
cannot be resumed or restarted. The only available action of the double-fault excep-
tion handler is to collect all possible context information for use in diagnostics and 
then close the application and/or shut down or reset the processor.

Table 6-5.  Conditions for Generating a Double Fault 

Second Exception

First Exception Benign Contributory Page Fault

Benign Handle Exceptions 
Serially

Handle Exceptions 
Serially

Handle Exceptions 
Serially

Contributory Handle Exceptions 
Serially

Generate a Double 
Fault

Handle Exceptions 
Serially

Page Fault Handle Exceptions 
Serially

Generate a Double 
Fault

Generate a Double 
Fault
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If the double fault occurs when any portion of the exception handling machine state 
is corrupted, the handler cannot be invoked and the processor must be reset.
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Interrupt 9—Coprocessor Segment Overrun

Exception Class Abort. (Intel reserved; do not use. Recent IA-32 processors 
do not generate this exception.)

Description

Indicates that an Intel386 CPU-based systems with an Intel 387 math coprocessor 
detected a page or segment violation while transferring the middle portion of an 
Intel 387 math coprocessor operand. The P6 family, Pentium, and Intel486 proces-
sors do not generate this exception; instead, this condition is detected with a general 
protection exception (#GP), interrupt 13.

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the 
exception.

Program State Change

A program-state following a coprocessor segment-overrun exception is unde-
fined. The program or task cannot be resumed or restarted. The only available action 
of the exception handler is to save the instruction pointer and reinitialize the x87 FPU 
using the FNINIT instruction.
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Interrupt 10—Invalid TSS Exception (#TS)

Exception Class Fault.

Description

Indicates that there was an error related to a TSS. Such an error might be detected 
during a task switch or during the execution of instructions that use information from 
a TSS. Table 6-6 shows the conditions that cause an invalid TSS exception to be 
generated.

Table 6-6.  Invalid TSS Conditions 
Error Code Index Invalid Condition

TSS segment selector index The TSS segment limit is less than 67H for 32-bit TSS or less than 
2CH for 16-bit TSS.

TSS segment selector index During an IRET task switch, the TI flag in the TSS segment selector 
indicates the LDT.

TSS segment selector index During an IRET task switch, the TSS segment selector exceeds 
descriptor table limit.

TSS segment selector index During an IRET task switch, the busy flag in the TSS descriptor 
indicates an inactive task.

TSS segment selector index During an IRET task switch, an attempt to load the backlink limit 
faults.

TSS segment selector index During an IRET task switch, the backlink is a NULL selector.

TSS segment selector index During an IRET task switch, the backlink points to a descriptor 
which is not a busy TSS.

TSS segment selector index The new TSS descriptor is beyond the GDT limit.

TSS segment selector index The new TSS descriptor is not writable.

TSS segment selector index Stores to the old TSS encounter a fault condition.

TSS segment selector index The old TSS descriptor is not writable for a jump or IRET task 
switch.

TSS segment selector index The new TSS backlink is not writable for a call or exception task 
switch.

TSS segment selector index The new TSS selector is null on an attempt to lock the new TSS.

TSS segment selector index The new TSS selector has the TI bit set on an attempt to lock the 
new TSS.

TSS segment selector index The new TSS descriptor is not an available TSS descriptor on an 
attempt to lock the new TSS.

LDT segment selector index LDT or LDT not present.
6-42 Vol. 3A



INTERRUPT AND EXCEPTION HANDLING
Stack segment selector 
index

The stack segment selector exceeds descriptor table limit.

Stack segment selector 
index

The stack segment selector is NULL.

Stack segment selector 
index

The stack segment descriptor is a non-data segment.

Stack segment selector 
index

The stack segment is not writable.

Stack segment selector 
index

The stack segment DPL != CPL.

Stack segment selector 
index

The stack segment selector RPL != CPL.

Code segment selector 
index

The code segment selector exceeds descriptor table limit.

Code segment selector 
index

The code segment selector is NULL.

Code segment selector 
index

The code segment descriptor is not a code segment type.

Code segment selector 
index

The nonconforming code segment DPL != CPL.

Code segment selector 
index

The conforming code segment DPL is greater than CPL.

Data segment selector index The data segment selector exceeds the descriptor table limit.

Data segment selector index The data segment descriptor is not a readable code or data type.

Data segment selector index The data segment descriptor is a nonconforming code type and 
RPL > DPL.

Data segment selector index The data segment descriptor is a nonconforming code type and CPL 
> DPL.

TSS segment selector index The TSS segment selector is NULL for LTR.

TSS segment selector index The TSS segment selector has the TI bit set for LTR.

TSS segment selector index The TSS segment descriptor/upper descriptor is beyond the GDT 
segment limit.

TSS segment selector index The TSS segment descriptor is not an available TSS type.

TSS segment selector index The TSS segment descriptor is an available 286 TSS type in IA-32e 
mode.

Table 6-6.  Invalid TSS Conditions  (Contd.)
Error Code Index Invalid Condition
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This exception can generated either in the context of the original task or in the 
context of the new task (see Section 7.3, “Task Switching”). Until the processor has 
completely verified the presence of the new TSS, the exception is generated in the 
context of the original task. Once the existence of the new TSS is verified, the task 
switch is considered complete. Any invalid-TSS conditions detected after this point 
are handled in the context of the new task. (A task switch is considered complete 
when the task register is loaded with the segment selector for the new TSS and, if the 
switch is due to a procedure call or interrupt, the previous task link field of the new 
TSS references the old TSS.)

The invalid-TSS handler must be a task called using a task gate. Handling this excep-
tion inside the faulting TSS context is not recommended because the processor state 
may not be consistent. 

Exception Error Code

An error code containing the segment selector index for the segment descriptor that 
caused the violation is pushed onto the stack of the exception handler. If the EXT flag 
is set, it indicates that the exception was caused by an event external to the currently 
running program (for example, if an external interrupt handler using a task gate 
attempted a task switch to an invalid TSS).

Saved Instruction Pointer

If the exception condition was detected before the task switch was carried out, the 
saved contents of CS and EIP registers point to the instruction that invoked the task 
switch. If the exception condition was detected after the task switch was carried out, 
the saved contents of CS and EIP registers point to the first instruction of the new 
task. 

Program State Change

The ability of the invalid-TSS handler to recover from the fault depends on the error 
condition than causes the fault. See Section 7.3, “Task Switching,” for more informa-
tion on the task switch process and the possible recovery actions that can be taken.

TSS segment selector index The TSS segment upper descriptor is not the correct type.

TSS segment selector index The TSS segment descriptor contains a non-canonical base.

TSS segment selector index There is a limit violation in attempting to load SS selector or ESP 
from a TSS on a call or exception which changes privilege levels in 
legacy mode.

TSS segment selector index There is a limit violation or canonical fault in attempting to load RSP 
or IST from a TSS on a call or exception which changes privilege 
levels in IA-32e mode.

Table 6-6.  Invalid TSS Conditions  (Contd.)
Error Code Index Invalid Condition
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If an invalid TSS exception occurs during a task switch, it can occur before or after 
the commit-to-new-task point. If it occurs before the commit point, no program state 
change occurs. If it occurs after the commit point (when the segment descriptor 
information for the new segment selectors have been loaded in the segment regis-
ters), the processor will load all the state information from the new TSS before it 
generates the exception. During a task switch, the processor first loads all the 
segment registers with segment selectors from the TSS, then checks their contents 
for validity. If an invalid TSS exception is discovered, the remaining segment regis-
ters are loaded but not checked for validity and therefore may not be usable for refer-
encing memory. The invalid TSS handler should not rely on being able to use the 
segment selectors found in the CS, SS, DS, ES, FS, and GS registers without causing 
another exception. The exception handler should load all segment registers before 
trying to resume the new task; otherwise, general-protection exceptions (#GP) may 
result later under conditions that make diagnosis more difficult. The Intel recom-
mended way of dealing situation is to use a task for the invalid TSS exception 
handler. The task switch back to the interrupted task from the invalid-TSS exception-
handler task will then cause the processor to check the registers as it loads them 
from the TSS.
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Interrupt 11—Segment Not Present (#NP)

Exception Class Fault.

Description

Indicates that the present flag of a segment or gate descriptor is clear. The processor 
can generate this exception during any of the following operations:
• While attempting to load CS, DS, ES, FS, or GS registers. [Detection of a not-

present segment while loading the SS register causes a stack fault exception 
(#SS) to be generated.] This situation can occur while performing a task switch.

• While attempting to load the LDTR using an LLDT instruction. Detection of a not-
present LDT while loading the LDTR during a task switch operation causes an 
invalid-TSS exception (#TS) to be generated.

• When executing the LTR instruction and the TSS is marked not present.
• While attempting to use a gate descriptor or TSS that is marked segment-not-

present, but is otherwise valid.

An operating system typically uses the segment-not-present exception to implement 
virtual memory at the segment level. If the exception handler loads the segment and 
returns, the interrupted program or task resumes execution.

A not-present indication in a gate descriptor, however, does not indicate that a 
segment is not present (because gates do not correspond to segments). The oper-
ating system may use the present flag for gate descriptors to trigger exceptions of 
special significance to the operating system.

A contributory exception or page fault that subsequently referenced a not-present 
segment would cause a double fault (#DF) to be generated instead of #NP.

Exception Error Code

An error code containing the segment selector index for the segment descriptor that 
caused the violation is pushed onto the stack of the exception handler. If the EXT flag 
is set, it indicates that the exception resulted from either:
• an external event (NMI or INTR) that caused an interrupt, which subsequently 

referenced a not-present segment
• a benign exception that subsequently referenced a not-present segment 

The IDT flag is set if the error code refers to an IDT entry. This occurs when the IDT 
entry for an interrupt being serviced references a not-present gate. Such an event 
could be generated by an INT instruction or a hardware interrupt.

Saved Instruction Pointer

The saved contents of CS and EIP registers normally point to the instruction that 
generated the exception. If the exception occurred while loading segment descrip-
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tors for the segment selectors in a new TSS, the CS and EIP registers point to the first 
instruction in the new task. If the exception occurred while accessing a gate 
descriptor, the CS and EIP registers point to the instruction that invoked the access 
(for example a CALL instruction that references a call gate).

Program State Change

If the segment-not-present exception occurs as the result of loading a register (CS, 
DS, SS, ES, FS, GS, or LDTR), a program-state change does accompany the excep-
tion because the register is not loaded. Recovery from this exception is possible by 
simply loading the missing segment into memory and setting the present flag in the 
segment descriptor.

If the segment-not-present exception occurs while accessing a gate descriptor, a 
program-state change does not accompany the exception. Recovery from this excep-
tion is possible merely by setting the present flag in the gate descriptor.

If a segment-not-present exception occurs during a task switch, it can occur before 
or after the commit-to-new-task point (see Section 7.3, “Task Switching”). If it 
occurs before the commit point, no program state change occurs. If it occurs after 
the commit point, the processor will load all the state information from the new TSS 
(without performing any additional limit, present, or type checks) before it generates 
the exception. The segment-not-present exception handler should not rely on being 
able to use the segment selectors found in the CS, SS, DS, ES, FS, and GS registers 
without causing another exception. (See the Program State Change description for 
“Interrupt 10—Invalid TSS Exception (#TS)” in this chapter for additional information 
on how to handle this situation.) 
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Interrupt 12—Stack Fault Exception (#SS)

Exception Class Fault.

Description

Indicates that one of the following stack related conditions was detected:
• A limit violation is detected during an operation that refers to the SS register. 

Operations that can cause a limit violation include stack-oriented instructions 
such as POP, PUSH, CALL, RET, IRET, ENTER, and LEAVE, as well as other memory 
references which implicitly or explicitly use the SS register (for example, MOV 
AX, [BP+6] or MOV AX, SS:[EAX+6]). The ENTER instruction generates this 
exception when there is not enough stack space for allocating local variables.

• A not-present stack segment is detected when attempting to load the SS register. 
This violation can occur during the execution of a task switch, a CALL instruction 
to a different privilege level, a return to a different privilege level, an LSS 
instruction, or a MOV or POP instruction to the SS register.

• A canonical violation is detected in 64-bit mode during an operation that 
reference memory using the stack pointer register containing a non-canonical 
memory address.

Recovery from this fault is possible by either extending the limit of the stack segment 
(in the case of a limit violation) or loading the missing stack segment into memory (in 
the case of a not-present violation. 

In the case of a canonical violation that was caused intentionally by software, 
recovery is possible by loading the correct canonical value into RSP. Otherwise, a 
canonical violation of the address in RSP likely reflects some register corruption in 
the software.

Exception Error Code

If the exception is caused by a not-present stack segment or by overflow of the new 
stack during an inter-privilege-level call, the error code contains a segment selector 
for the segment that caused the exception. Here, the exception handler can test the 
present flag in the segment descriptor pointed to by the segment selector to deter-
mine the cause of the exception. For a normal limit violation (on a stack segment 
already in use) the error code is set to 0.

Saved Instruction Pointer

The saved contents of CS and EIP registers generally point to the instruction that 
generated the exception. However, when the exception results from attempting to 
load a not-present stack segment during a task switch, the CS and EIP registers point 
to the first instruction of the new task.
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Program State Change

A program-state change does not generally accompany a stack-fault exception, 
because the instruction that generated the fault is not executed. Here, the instruction 
can be restarted after the exception handler has corrected the stack fault condition.

If a stack fault occurs during a task switch, it occurs after the commit-to-new-task 
point (see Section 7.3, “Task Switching”). Here, the processor loads all the state 
information from the new TSS (without performing any additional limit, present, or 
type checks) before it generates the exception. The stack fault handler should thus 
not rely on being able to use the segment selectors found in the CS, SS, DS, ES, FS, 
and GS registers without causing another exception. The exception handler should 
check all segment registers before trying to resume the new task; otherwise, general 
protection faults may result later under conditions that are more difficult to diagnose. 
(See the Program State Change description for “Interrupt 10—Invalid TSS Exception 
(#TS)” in this chapter for additional information on how to handle this situation.) 
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Interrupt 13—General Protection Exception (#GP)

Exception Class Fault.

Description

Indicates that the processor detected one of a class of protection violations called 
“general-protection violations.” The conditions that cause this exception to be gener-
ated comprise all the protection violations that do not cause other exceptions to be 
generated (such as, invalid-TSS, segment-not-present, stack-fault, or page-fault 
exceptions). The following conditions cause general-protection exceptions to be 
generated:
• Exceeding the segment limit when accessing the CS, DS, ES, FS, or GS 

segments.
• Exceeding the segment limit when referencing a descriptor table (except during a 

task switch or a stack switch).
• Transferring execution to a segment that is not executable.
• Writing to a code segment or a read-only data segment.
• Reading from an execute-only code segment.
• Loading the SS register with a segment selector for a read-only segment (unless 

the selector comes from a TSS during a task switch, in which case an invalid-TSS 
exception occurs).

• Loading the SS, DS, ES, FS, or GS register with a segment selector for a system 
segment.

• Loading the DS, ES, FS, or GS register with a segment selector for an execute-
only code segment.

• Loading the SS register with the segment selector of an executable segment or a 
null segment selector.

• Loading the CS register with a segment selector for a data segment or a null 
segment selector.

• Accessing memory using the DS, ES, FS, or GS register when it contains a null 
segment selector.

• Switching to a busy task during a call or jump to a TSS.
• Using a segment selector on a non-IRET task switch that points to a TSS 

descriptor in the current LDT. TSS descriptors can only reside in the GDT. This 
condition causes a #TS exception during an IRET task switch.

• Violating any of the privilege rules described in Chapter 5, “Protection.”
• Exceeding the instruction length limit of 15 bytes (this only can occur when 

redundant prefixes are placed before an instruction).
• Loading the CR0 register with a set PG flag (paging enabled) and a clear PE flag 

(protection disabled).
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• Loading the CR0 register with a set NW flag and a clear CD flag.
• Referencing an entry in the IDT (following an interrupt or exception) that is not 

an interrupt, trap, or task gate.
• Attempting to access an interrupt or exception handler through an interrupt or 

trap gate from virtual-8086 mode when the handler’s code segment DPL is 
greater than 0.

• Attempting to write a 1 into a reserved bit of CR4.
• Attempting to execute a privileged instruction when the CPL is not equal to 0 (see 

Section 5.9, “Privileged Instructions,” for a list of privileged instructions).
• Writing to a reserved bit in an MSR.
• Accessing a gate that contains a null segment selector.
• Executing the INT n instruction when the CPL is greater than the DPL of the 

referenced interrupt, trap, or task gate.
• The segment selector in a call, interrupt, or trap gate does not point to a code 

segment.
• The segment selector operand in the LLDT instruction is a local type (TI flag is 

set) or does not point to a segment descriptor of the LDT type.
• The segment selector operand in the LTR instruction is local or points to a TSS 

that is not available.
• The target code-segment selector for a call, jump, or return is null.
• If the PAE and/or PSE flag in control register CR4 is set and the processor detects 

any reserved bits in a page-directory-pointer-table entry set to 1. These bits are 
checked during a write to control registers CR0, CR3, or CR4 that causes a 
reloading of the page-directory-pointer-table entry.

• Attempting to write a non-zero value into the reserved bits of the MXCSR register.
• Executing an SSE/SSE2/SSE3 instruction that attempts to access a 128-bit 

memory location that is not aligned on a 16-byte boundary when the instruction 
requires 16-byte alignment. This condition also applies to the stack segment.

A program or task can be restarted following any general-protection exception. If the 
exception occurs while attempting to call an interrupt handler, the interrupted 
program can be restartable, but the interrupt may be lost.

Exception Error Code

The processor pushes an error code onto the exception handler's stack. If the fault 
condition was detected while loading a segment descriptor, the error code contains a 
segment selector to or IDT vector number for the descriptor; otherwise, the error 
code is 0. The source of the selector in an error code may be any of the following:
• An operand of the instruction.
• A selector from a gate which is the operand of the instruction.
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• A selector from a TSS involved in a task switch.
• IDT vector number.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the 
exception.

Program State Change

In general, a program-state change does not accompany a general-protection excep-
tion, because the invalid instruction or operation is not executed. An exception 
handler can be designed to correct all of the conditions that cause general-protection 
exceptions and restart the program or task without any loss of program continuity.

If a general-protection exception occurs during a task switch, it can occur before or 
after the commit-to-new-task point (see Section 7.3, “Task Switching”). If it occurs 
before the commit point, no program state change occurs. If it occurs after the 
commit point, the processor will load all the state information from the new TSS 
(without performing any additional limit, present, or type checks) before it generates 
the exception. The general-protection exception handler should thus not rely on 
being able to use the segment selectors found in the CS, SS, DS, ES, FS, and GS 
registers without causing another exception. (See the Program State Change 
description for “Interrupt 10—Invalid TSS Exception (#TS)” in this chapter for addi-
tional information on how to handle this situation.)

General Protection Exception in 64-bit Mode

The following conditions cause general-protection exceptions in 64-bit mode:
• If the memory address is in a non-canonical form.
• If a segment descriptor memory address is in non-canonical form.
• If the target offset in a destination operand of a call or jmp is in a non-canonical 

form.
• If a code segment or 64-bit call gate overlaps non-canonical space.
• If the code segment descriptor pointed to by the selector in the 64-bit gate 

doesn't have the L-bit set and the D-bit clear.
• If the EFLAGS.NT bit is set in IRET.
• If the stack segment selector of IRET is null when going back to compatibility 

mode.
• If the stack segment selector of IRET is null going back to CPL3 and 64-bit mode.
• If a null stack segment selector RPL of IRET is not equal to CPL going back to non-

CPL3 and 64-bit mode.
• If the proposed new code segment descriptor of IRET has both the D-bit and the 

L-bit set.
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• If the segment descriptor pointed to by the segment selector in the destination 
operand is a code segment and it has both the D-bit and the L-bit set.

• If the segment descriptor from a 64-bit call gate is in non-canonical space.
• If the DPL from a 64-bit call-gate is less than the CPL or than the RPL of the 64-bit 

call-gate.
• If the upper type field of a 64-bit call gate is not 0x0.
• If an attempt is made to load a null selector in the SS register in compatibility 

mode.
• If an attempt is made to load null selector in the SS register in CPL3 and 64-bit 

mode.
• If an attempt is made to load a null selector in the SS register in non-CPL3 and 

64-bit mode where RPL is not equal to CPL.
• If an attempt is made to clear CR0.PG while IA-32e mode is enabled.
• If an attempt is made to set a reserved bit in CR3, CR4 or CR8.
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Interrupt 14—Page-Fault Exception (#PF)

Exception Class Fault.

Description

Indicates that, with paging enabled (the PG flag in the CR0 register is set), the 
processor detected one of the following conditions while using the page-translation 
mechanism to translate a linear address to a physical address:
• The P (present) flag in a page-directory or page-table entry needed for the 

address translation is clear, indicating that a page table or the page containing 
the operand is not present in physical memory.

• The procedure does not have sufficient privilege to access the indicated page 
(that is, a procedure running in user mode attempts to access a supervisor-mode 
page).

• Code running in user mode attempts to write to a read-only page. In the Intel486 
and later processors, if the WP flag is set in CR0, the page fault will also be 
triggered by code running in supervisor mode that tries to write to a read-only 
page.

• An instruction fetch to a linear address that translates to a physical address in a 
memory page with the execute-disable bit set (for information about the 
execute-disable bit, see Chapter 4, “Paging”).

• One or more reserved bits in page directory entry are set to 1. See description 
below of RSVD error code flag.

The exception handler can recover from page-not-present conditions and restart the 
program or task without any loss of program continuity. It can also restart the 
program or task after a privilege violation, but the problem that caused the privilege 
violation may be uncorrectable.

See also: Section 4.7, “Page-Fault Exceptions.”

Exception Error Code

Yes (special format). The processor provides the page-fault handler with two items of 
information to aid in diagnosing the exception and recovering from it:
• An error code on the stack. The error code for a page fault has a format different 

from that for other exceptions (see Figure 6-9). The error code tells the 
exception handler four things:

— The P flag indicates whether the exception was due to a not-present page (0) 
or to either an access rights violation or the use of a reserved bit (1).

— The W/R flag indicates whether the memory access that caused the exception 
was a read (0) or write (1).
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— The U/S flag indicates whether the processor was executing at user mode (1) 
or supervisor mode (0) at the time of the exception.

— The RSVD flag indicates that the processor detected 1s in reserved bits of the 
page directory, when the PSE or PAE flags in control register CR4 are set to 1. 
Note: 

• The PSE flag is only available in recent Intel 64 and IA-32 processors 
including the Pentium 4, Intel Xeon, P6 family, and Pentium processors. 

• The PAE flag is only available on recent Intel 64 and IA-32 processors 
including the Pentium 4, Intel Xeon, and P6 family processors. 

• In earlier IA-32 processors, the bit position of the RSVD flag is reserved 
and is cleared to 0.

— The I/D flag indicates whether the exception was caused by an instruction 
fetch. This flag is reserved and cleared to 0 if CR4.SMEP = 0 (supervisor-
mode execution prevention is either unsupported or not enabled) and either 
CR4.PAE = 0 (32-bit paging is in use) or IA32_EFER.NXE= 0 (the execute-
disable feature is either unsupported or not enabled). See Section 4.7, “Page-
Fault Exceptions,” for details. 

• The contents of the CR2 register. The processor loads the CR2 register with the 
32-bit linear address that generated the exception. The page-fault handler can 
use this address to locate the corresponding page directory and page-table 
entries. Another page fault can potentially occur during execution of the page-

 

Figure 6-9.  Page-Fault Error Code

The fault was caused by a non-present page.
The fault was caused by a page-level protection violation.

The access causing the fault was a read.
The access causing the fault was a write.

The access causing the fault originated when the processor
was executing in supervisor mode.
The access causing the fault originated when the processor
was executing in user mode.   
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The fault was not caused by reserved bit violation.
The fault was caused by reserved bits set to 1 in a page directory.
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1 The fault was caused by an instruction fetch.
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fault handler; the handler should save the contents of the CR2 register before a 
second page fault can occur.1 If a page fault is caused by a page-level protection 
violation, the access flag in the page-directory entry is set when the fault occurs. 
The behavior of IA-32 processors regarding the access flag in the corresponding 
page-table entry is model specific and not architecturally defined.

Saved Instruction Pointer

The saved contents of CS and EIP registers generally point to the instruction that 
generated the exception. If the page-fault exception occurred during a task switch, 
the CS and EIP registers may point to the first instruction of the new task (as 
described in the following “Program State Change” section).

Program State Change

A program-state change does not normally accompany a page-fault exception, 
because the instruction that causes the exception to be generated is not executed. 
After the page-fault exception handler has corrected the violation (for example, 
loaded the missing page into memory), execution of the program or task can be 
resumed.

When a page-fault exception is generated during a task switch, the program-state 
may change, as follows. During a task switch, a page-fault exception can occur 
during any of following operations:
• While writing the state of the original task into the TSS of that task.
• While reading the GDT to locate the TSS descriptor of the new task.
• While reading the TSS of the new task.
• While reading segment descriptors associated with segment selectors from the 

new task.
• While reading the LDT of the new task to verify the segment registers stored in 

the new TSS.

In the last two cases the exception occurs in the context of the new task. The instruc-
tion pointer refers to the first instruction of the new task, not to the instruction which 
caused the task switch (or the last instruction to be executed, in the case of an inter-
rupt). If the design of the operating system permits page faults to occur during task-
switches, the page-fault handler should be called through a task gate.

If a page fault occurs during a task switch, the processor will load all the state infor-
mation from the new TSS (without performing any additional limit, present, or type 
checks) before it generates the exception. The page-fault handler should thus not 
rely on being able to use the segment selectors found in the CS, SS, DS, ES, FS, and 

1. Processors update CR2 whenever a page fault is detected. If a second page fault occurs while an 
earlier page fault is being delivered, the faulting linear address of the second fault will overwrite 
the contents of CR2 (replacing the previous address). These updates to CR2 occur even if the 
page fault results in a double fault or occurs during the delivery of a double fault.
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GS registers without causing another exception. (See the Program State Change 
description for “Interrupt 10—Invalid TSS Exception (#TS)” in this chapter for addi-
tional information on how to handle this situation.) 

Additional Exception-Handling Information

Special care should be taken to ensure that an exception that occurs during an 
explicit stack switch does not cause the processor to use an invalid stack pointer 
(SS:ESP). Software written for 16-bit IA-32 processors often use a pair of instruc-
tions to change to a new stack, for example:

MOV SS, AX
MOV SP, StackTop

When executing this code on one of the 32-bit IA-32 processors, it is possible to get 
a page fault, general-protection fault (#GP), or alignment check fault (#AC) after the 
segment selector has been loaded into the SS register but before the ESP register 
has been loaded. At this point, the two parts of the stack pointer (SS and ESP) are 
inconsistent. The new stack segment is being used with the old stack pointer.

The processor does not use the inconsistent stack pointer if the exception handler 
switches to a well defined stack (that is, the handler is a task or a more privileged 
procedure). However, if the exception handler is called at the same privilege level 
and from the same task, the processor will attempt to use the inconsistent stack 
pointer.

In systems that handle page-fault, general-protection, or alignment check excep-
tions within the faulting task (with trap or interrupt gates), software executing at the 
same privilege level as the exception handler should initialize a new stack by using 
the LSS instruction rather than a pair of MOV instructions, as described earlier in this 
note. When the exception handler is running at privilege level 0 (the normal case), 
the problem is limited to procedures or tasks that run at privilege level 0, typically 
the kernel of the operating system.
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Interrupt 16—x87 FPU Floating-Point Error (#MF)

Exception Class Fault.

Description

Indicates that the x87 FPU has detected a floating-point error. The NE flag in the 
register CR0 must be set for an interrupt 16 (floating-point error exception) to be 
generated. (See Section 2.5, “Control Registers,” for a detailed description of the NE 
flag.)

NOTE
SIMD floating-point exceptions (#XM) are signaled through interrupt 
19. 

While executing x87 FPU instructions, the x87 FPU detects and reports six types of 
floating-point error conditions:
• Invalid operation (#I)

— Stack overflow or underflow (#IS)

— Invalid arithmetic operation (#IA)
• Divide-by-zero (#Z)
• Denormalized operand (#D)
• Numeric overflow (#O)
• Numeric underflow (#U)
• Inexact result (precision) (#P)

Each of these error conditions represents an x87 FPU exception type, and for each of 
exception type, the x87 FPU provides a flag in the x87 FPU status register and a mask 
bit in the x87 FPU control register. If the x87 FPU detects a floating-point error and 
the mask bit for the exception type is set, the x87 FPU handles the exception auto-
matically by generating a predefined (default) response and continuing program 
execution. The default responses have been designed to provide a reasonable result 
for most floating-point applications.

If the mask for the exception is clear and the NE flag in register CR0 is set, the x87 
FPU does the following:

1. Sets the necessary flag in the FPU status register.

2. Waits until the next “waiting” x87 FPU instruction or WAIT/FWAIT instruction is 
encountered in the program’s instruction stream.

3. Generates an internal error signal that cause the processor to generate a 
floating-point exception (#MF).
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Prior to executing a waiting x87 FPU instruction or the WAIT/FWAIT instruction, the 
x87 FPU checks for pending x87 FPU floating-point exceptions (as described in step 2 
above). Pending x87 FPU floating-point exceptions are ignored for “non-waiting” x87 
FPU instructions, which include the FNINIT, FNCLEX, FNSTSW, FNSTSW AX, FNSTCW, 
FNSTENV, and FNSAVE instructions. Pending x87 FPU exceptions are also ignored 
when executing the state management instructions FXSAVE and FXRSTOR.

All of the x87 FPU floating-point error conditions can be recovered from. The x87 FPU 
floating-point-error exception handler can determine the error condition that caused 
the exception from the settings of the flags in the x87 FPU status word. See “Soft-
ware Exception Handling” in Chapter 8 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1, for more information on handling x87 FPU 
floating-point exceptions.

Exception Error Code

None. The x87 FPU provides its own error information.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the floating-point or WAIT/FWAIT 
instruction that was about to be executed when the floating-point-error exception 
was generated. This is not the faulting instruction in which the error condition was 
detected. The address of the faulting instruction is contained in the x87 FPU instruc-
tion pointer register. See “x87 FPU Instruction and Operand (Data) Pointers” in 
Chapter 8 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 1, for more information about information the FPU saves for use in handling 
floating-point-error exceptions.

Program State Change

A program-state change generally accompanies an x87 FPU floating-point exception 
because the handling of the exception is delayed until the next waiting x87 FPU 
floating-point or WAIT/FWAIT instruction following the faulting instruction. The x87 
FPU, however, saves sufficient information about the error condition to allow 
recovery from the error and re-execution of the faulting instruction if needed.

In situations where non- x87 FPU floating-point instructions depend on the results of 
an x87 FPU floating-point instruction, a WAIT or FWAIT instruction can be inserted in 
front of a dependent instruction to force a pending x87 FPU floating-point exception 
to be handled before the dependent instruction is executed. See “x87 FPU Exception 
Synchronization” in Chapter 8 of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1, for more information about synchronization of x87 
floating-point-error exceptions.
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Interrupt 17—Alignment Check Exception (#AC)

Exception Class Fault.

Description

Indicates that the processor detected an unaligned memory operand when alignment 
checking was enabled. Alignment checks are only carried out in data (or stack) 
accesses (not in code fetches or system segment accesses). An example of an align-
ment-check violation is a word stored at an odd byte address, or a doubleword stored 
at an address that is not an integer multiple of 4. Table 6-7 lists the alignment 
requirements various data types recognized by the processor.

Note that the alignment check exception (#AC) is generated only for data types that 
must be aligned on word, doubleword, and quadword boundaries. A general-protec-
tion exception (#GP) is generated 128-bit data types that are not aligned on a 
16-byte boundary.

To enable alignment checking, the following conditions must be true:
• AM flag in CR0 register is set.

Table 6-7.  Alignment Requirements by Data Type

Data Type Address Must Be Divisible By

Word 2

Doubleword 4

Single-precision floating-point (32-bits) 4

Double-precision floating-point (64-bits) 8

Double extended-precision floating-point (80-
bits)

8

Quadword 8

Double quadword 16

Segment Selector 2

32-bit Far Pointer 2

48-bit Far Pointer 4

32-bit Pointer 4

GDTR, IDTR, LDTR, or Task Register Contents 4

FSTENV/FLDENV Save Area 4 or 2, depending on operand size

FSAVE/FRSTOR Save Area 4 or 2, depending on operand size

Bit String 2 or 4 depending on the operand-size attribute.
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• AC flag in the EFLAGS register is set.
• The CPL is 3 (protected mode or virtual-8086 mode).

Alignment-check exceptions (#AC) are generated only when operating at privilege 
level 3 (user mode). Memory references that default to privilege level 0, such as 
segment descriptor loads, do not generate alignment-check exceptions, even when 
caused by a memory reference made from privilege level 3.

Storing the contents of the GDTR, IDTR, LDTR, or task register in memory while at 
privilege level 3 can generate an alignment-check exception. Although application 
programs do not normally store these registers, the fault can be avoided by aligning 
the information stored on an even word-address.

The FXSAVE/XSAVE and FXRSTOR/XRSTOR instructions save and restore a 512-byte 
data structure, the first byte of which must be aligned on a 16-byte boundary. If the 
alignment-check exception (#AC) is enabled when executing these instructions (and 
CPL is 3), a misaligned memory operand can cause either an alignment-check excep-
tion or a general-protection exception (#GP) depending on the processor implemen-
tation (see “FXSAVE-Save x87 FPU, MMX, SSE, and SSE2 State” and “FXRSTOR-
Restore x87 FPU, MMX, SSE, and SSE2 State” in Chapter 3 of the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 2A; see “XSAVE—Save 
Processor Extended States” and “XRSTOR—Restore Processor Extended States” in 
Chapter 4 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2B).

The MOVDQU, MOVUPS, and MOVUPD instructions perform 128-bit unaligned loads 
or stores. The LDDQU instructions loads 128-bit unaligned data.They do not generate 
general-protection exceptions (#GP) when operands are not aligned on a 16-byte 
boundary. If alignment checking is enabled, alignment-check exceptions (#AC) may 
or may not be generated depending on processor implementation when data 
addresses are not aligned on an 8-byte boundary.

FSAVE and FRSTOR instructions can generate unaligned references, which can cause 
alignment-check faults. These instructions are rarely needed by application 
programs. 

Exception Error Code

Yes. The error code is null; all bits are clear except possibly bit 0 — EXT; see Section 
6.13. EXT is set if the #AC is recognized during delivery of an event other than a soft-
ware interrupt (see “INT n/INTO/INT 3—Call to Interrupt Procedure” in Chapter 3 of 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A).

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the 
exception.
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Program State Change

A program-state change does not accompany an alignment-check fault, because the 
instruction is not executed.
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Interrupt 18—Machine-Check Exception (#MC)

Exception Class Abort.

Description

Indicates that the processor detected an internal machine error or a bus error, or that 
an external agent detected a bus error. The machine-check exception is model-
specific, available on the Pentium and later generations of processors. The imple-
mentation of the machine-check exception is different between different processor 
families, and these implementations may not be compatible with future Intel 64 or 
IA-32 processors. (Use the CPUID instruction to determine whether this feature is 
present.)

Bus errors detected by external agents are signaled to the processor on dedicated 
pins: the BINIT# and MCERR# pins on the Pentium 4, Intel Xeon, and P6 family 
processors and the BUSCHK# pin on the Pentium processor. When one of these pins 
is enabled, asserting the pin causes error information to be loaded into machine-
check registers and a machine-check exception is generated.

The machine-check exception and machine-check architecture are discussed in detail 
in Chapter 15, “Machine-Check Architecture.” Also, see the data books for the indi-
vidual processors for processor-specific hardware information. 

Exception Error Code

None. Error information is provide by machine-check MSRs.

Saved Instruction Pointer

For the Pentium 4 and Intel Xeon processors, the saved contents of extended 
machine-check state registers are directly associated with the error that caused the 
machine-check exception to be generated (see Section 15.3.1.2, 
“IA32_MCG_STATUS MSR,” and Section 15.3.2.6, “IA32_MCG Extended Machine 
Check State MSRs”).

For the P6 family processors, if the EIPV flag in the MCG_STATUS MSR is set, the 
saved contents of CS and EIP registers are directly associated with the error that 
caused the machine-check exception to be generated; if the flag is clear, the saved 
instruction pointer may not be associated with the error (see Section 15.3.1.2, 
“IA32_MCG_STATUS MSR”).

For the Pentium processor, contents of the CS and EIP registers may not be associ-
ated with the error.

Program State Change

The machine-check mechanism is enabled by setting the MCE flag in control register 
CR4. 
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For the Pentium 4, Intel Xeon, P6 family, and Pentium processors, a program-state 
change always accompanies a machine-check exception, and an abort class excep-
tion is generated. For abort exceptions, information about the exception can be 
collected from the machine-check MSRs, but the program cannot generally be 
restarted. 

If the machine-check mechanism is not enabled (the MCE flag in control register CR4 
is clear), a machine-check exception causes the processor to enter the shutdown 
state.
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Interrupt 19—SIMD Floating-Point Exception (#XM)

Exception Class Fault.

Description

Indicates the processor has detected an SSE/SSE2/SSE3 SIMD floating-point excep-
tion. The appropriate status flag in the MXCSR register must be set and the particular 
exception unmasked for this interrupt to be generated.

There are six classes of numeric exception conditions that can occur while executing 
an SSE/ SSE2/SSE3 SIMD floating-point instruction:
• Invalid operation (#I)
• Divide-by-zero (#Z)
• Denormal operand (#D)
• Numeric overflow (#O)
• Numeric underflow (#U)
• Inexact result (Precision) (#P)

The invalid operation, divide-by-zero, and denormal-operand exceptions are pre-
computation exceptions; that is, they are detected before any arithmetic operation 
occurs. The numeric underflow, numeric overflow, and inexact result exceptions are 
post-computational exceptions.

See "SIMD Floating-Point Exceptions" in Chapter 11 of the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 1, for additional information 
about the SIMD floating-point exception classes.

When a SIMD floating-point exception occurs, the processor does either of the 
following things:
• It handles the exception automatically by producing the most reasonable result 

and allowing program execution to continue undisturbed. This is the response to 
masked exceptions.

• It generates a SIMD floating-point exception, which in turn invokes a software 
exception handler. This is the response to unmasked exceptions.

Each of the six SIMD floating-point exception conditions has a corresponding flag bit 
and mask bit in the MXCSR register. If an exception is masked (the corresponding 
mask bit in the MXCSR register is set), the processor takes an appropriate automatic 
default action and continues with the computation. If the exception is unmasked (the 
corresponding mask bit is clear) and the operating system supports SIMD floating-
point exceptions (the OSXMMEXCPT flag in control register CR4 is set), a software 
exception handler is invoked through a SIMD floating-point exception. If the excep-
tion is unmasked and the OSXMMEXCPT bit is clear (indicating that the operating 
system does not support unmasked SIMD floating-point exceptions), an invalid 
opcode exception (#UD) is signaled instead of a SIMD floating-point exception.
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Note that because SIMD floating-point exceptions are precise and occur immediately, 
the situation does not arise where an x87 FPU instruction, a WAIT/FWAIT instruction, 
or another SSE/SSE2/SSE3 instruction will catch a pending unmasked SIMD floating-
point exception.

In situations where a SIMD floating-point exception occurred while the SIMD 
floating-point exceptions were masked (causing the corresponding exception flag to 
be set) and the SIMD floating-point exception was subsequently unmasked, then no 
exception is generated when the exception is unmasked.

When SSE/SSE2/SSE3 SIMD floating-point instructions operate on packed operands 
(made up of two or four sub-operands), multiple SIMD floating-point exception 
conditions may be detected. If no more than one exception condition is detected for 
one or more sets of sub-operands, the exception flags are set for each exception 
condition detected. For example, an invalid exception detected for one sub-operand 
will not prevent the reporting of a divide-by-zero exception for another sub-operand. 
However, when two or more exceptions conditions are generated for one sub-
operand, only one exception condition is reported, according to the precedences 
shown in Table 6-8. This exception precedence sometimes results in the higher 
priority exception condition being reported and the lower priority exception condi-
tions being ignored.

Exception Error Code

None.

Table 6-8.  SIMD Floating-Point Exceptions Priority

Priority Description

1 (Highest) Invalid operation exception due to SNaN operand (or any NaN operand for 
maximum, minimum, or certain compare and convert operations).

2 QNaN operand1.

3 Any other invalid operation exception not mentioned above or a divide-by-zero 
exception2.

4 Denormal operand exception2.

5 Numeric overflow and underflow exceptions possibly in conjunction with the 
inexact result exception2.

6 (Lowest) Inexact result exception.

NOTES:
1. Though a QNaN this is not an exception, the handling of a QNaN operand has precedence over 

lower priority exceptions. For example, a QNaN divided by zero results in a QNaN, not a divide-
by-zero- exception.

2. If masked, then instruction execution continues, and a lower priority exception can occur as 
well.
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Saved Instruction Pointer

The saved contents of CS and EIP registers point to the SSE/SSE2/SSE3 instruction 
that was executed when the SIMD floating-point exception was generated. This is the 
faulting instruction in which the error condition was detected.

Program State Change

A program-state change does not accompany a SIMD floating-point exception 
because the handling of the exception is immediate unless the particular exception is 
masked. The available state information is often sufficient to allow recovery from the 
error and re-execution of the faulting instruction if needed.
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Interrupts 32 to 255—User Defined Interrupts

Exception Class Not applicable.

Description

Indicates that the processor did one of the following things:
• Executed an INT n instruction where the instruction operand is one of the vector 

numbers from 32 through 255.
• Responded to an interrupt request at the INTR pin or from the local APIC when 

the interrupt vector number associated with the request is from 32 through 255.

Exception Error Code

Not applicable.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that follows the 
INT n instruction or instruction following the instruction on which the INTR signal 
occurred.

Program State Change

A program-state change does not accompany interrupts generated by the INT n 
instruction or the INTR signal. The INT n instruction generates the interrupt within 
the instruction stream. When the processor receives an INTR signal, it commits all 
state changes for all previous instructions before it responds to the interrupt; so, 
program execution can resume upon returning from the interrupt handler.
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CHAPTER 7
TASK MANAGEMENT

This chapter describes the IA-32 architecture’s task management facilities. These 
facilities are only available when the processor is running in protected mode.

This chapter focuses on 32-bit tasks and the 32-bit TSS structure. For information on 
16-bit tasks and the 16-bit TSS structure, see Section 7.6, “16-Bit Task-State 
Segment (TSS).” For information specific to task management in 64-bit mode, see 
Section 7.7, “Task Management in 64-bit Mode.”

7.1 TASK MANAGEMENT OVERVIEW
A task is a unit of work that a processor can dispatch, execute, and suspend. It can 
be used to execute a program, a task or process, an operating-system service utility, 
an interrupt or exception handler, or a kernel or executive utility.

The IA-32 architecture provides a mechanism for saving the state of a task, for 
dispatching tasks for execution, and for switching from one task to another. When 
operating in protected mode, all processor execution takes place from within a task. 
Even simple systems must define at least one task. More complex systems can use 
the processor’s task management facilities to support multitasking applications.

7.1.1 Task Structure
A task is made up of two parts: a task execution space and a task-state segment 
(TSS). The task execution space consists of a code segment, a stack segment, and 
one or more data segments (see Figure 7-1). If an operating system or executive 
uses the processor’s privilege-level protection mechanism, the task execution space 
also provides a separate stack for each privilege level.

The TSS specifies the segments that make up the task execution space and provides 
a storage place for task state information. In multitasking systems, the TSS also 
provides a mechanism for linking tasks.

A task is identified by the segment selector for its TSS. When a task is loaded into the 
processor for execution, the segment selector, base address, limit, and segment 
descriptor attributes for the TSS are loaded into the task register (see Section 2.4.4, 
“Task Register (TR)”).

If paging is implemented for the task, the base address of the page directory used by 
the task is loaded into control register CR3.
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7.1.2 Task State
The following items define the state of the currently executing task:
• The task’s current execution space, defined by the segment selectors in the 

segment registers (CS, DS, SS, ES, FS, and GS).
• The state of the general-purpose registers.
• The state of the EFLAGS register.
• The state of the EIP register.
• The state of control register CR3.
• The state of the task register.
• The state of the LDTR register.
• The I/O map base address and I/O map (contained in the TSS).
• Stack pointers to the privilege 0, 1, and 2 stacks (contained in the TSS).
• Link to previously executed task (contained in the TSS).

Prior to dispatching a task, all of these items are contained in the task’s TSS, except 
the state of the task register. Also, the complete contents of the LDTR register are not 
contained in the TSS, only the segment selector for the LDT.

Figure 7-1.  Structure of a Task
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7.1.3 Executing a Task
Software or the processor can dispatch a task for execution in one of the following 
ways:
• A explicit call to a task with the CALL instruction.
• A explicit jump to a task with the JMP instruction.
• An implicit call (by the processor) to an interrupt-handler task.
• An implicit call to an exception-handler task.
• A return (initiated with an IRET instruction) when the NT flag in the EFLAGS 

register is set.

All of these methods for dispatching a task identify the task to be dispatched with a 
segment selector that points to a task gate or the TSS for the task. When dispatching 
a task with a CALL or JMP instruction, the selector in the instruction may select the 
TSS directly or a task gate that holds the selector for the TSS. When dispatching a 
task to handle an interrupt or exception, the IDT entry for the interrupt or exception 
must contain a task gate that holds the selector for the interrupt- or exception-
handler TSS. 

When a task is dispatched for execution, a task switch occurs between the currently 
running task and the dispatched task. During a task switch, the execution environ-
ment of the currently executing task (called the task’s state or context) is saved in 
its TSS and execution of the task is suspended. The context for the dispatched task is 
then loaded into the processor and execution of that task begins with the instruction 
pointed to by the newly loaded EIP register. If the task has not been run since the 
system was last initialized, the EIP will point to the first instruction of the task’s code; 
otherwise, it will point to the next instruction after the last instruction that the task 
executed when it was last active.

If the currently executing task (the calling task) called the task being dispatched (the 
called task), the TSS segment selector for the calling task is stored in the TSS of the 
called task to provide a link back to the calling task.

For all IA-32 processors, tasks are not recursive. A task cannot call or jump to itself.

Interrupts and exceptions can be handled with a task switch to a handler task. Here, 
the processor performs a task switch to handle the interrupt or exception and auto-
matically switches back to the interrupted task upon returning from the interrupt-
handler task or exception-handler task. This mechanism can also handle interrupts 
that occur during interrupt tasks.

As part of a task switch, the processor can also switch to another LDT, allowing each 
task to have a different logical-to-physical address mapping for LDT-based segments. 
The page-directory base register (CR3) also is reloaded on a task switch, allowing 
each task to have its own set of page tables. These protection facilities help isolate 
tasks and prevent them from interfering with one another. 

If protection mechanisms are not used, the processor provides no protection 
between tasks. This is true even with operating systems that use multiple privilege 
levels for protection. A task running at privilege level 3 that uses the same LDT and 
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page tables as other privilege-level-3 tasks can access code and corrupt data and the 
stack of other tasks.

Use of task management facilities for handling multitasking applications is optional. 
Multitasking can be handled in software, with each software defined task executed in 
the context of a single IA-32 architecture task.

7.2 TASK MANAGEMENT DATA STRUCTURES
The processor defines five data structures for handling task-related activities:
• Task-state segment (TSS).
• Task-gate descriptor.
• TSS descriptor.
• Task register.
• NT flag in the EFLAGS register.

When operating in protected mode, a TSS and TSS descriptor must be created for at 
least one task, and the segment selector for the TSS must be loaded into the task 
register (using the LTR instruction).

7.2.1 Task-State Segment (TSS)
The processor state information needed to restore a task is saved in a system 
segment called the task-state segment (TSS). Figure 7-2 shows the format of a TSS 
for tasks designed for 32-bit CPUs. The fields of a TSS are divided into two main cate-
gories: dynamic fields and static fields.

For information about 16-bit Intel 286 processor task structures, see Section 7.6, 
“16-Bit Task-State Segment (TSS).” For information about 64-bit mode task struc-
tures, see Section 7.7, “Task Management in 64-bit Mode.”
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The processor updates dynamic fields when a task is suspended during a task switch. 
The following are dynamic fields:
• General-purpose register fields — State of the EAX, ECX, EDX, EBX, ESP, EBP, 

ESI, and EDI registers prior to the task switch.
• Segment selector fields — Segment selectors stored in the ES, CS, SS, DS, FS, 

and GS registers prior to the task switch.
• EFLAGS register field — State of the EFAGS register prior to the task switch.

Figure 7-2.  32-Bit Task-State Segment (TSS)
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• EIP (instruction pointer) field — State of the EIP register prior to the task 
switch.

• Previous task link field — Contains the segment selector for the TSS of the 
previous task (updated on a task switch that was initiated by a call, interrupt, or 
exception). This field (which is sometimes called the back link field) permits a 
task switch back to the previous task by using the IRET instruction.

The processor reads the static fields, but does not normally change them. These 
fields are set up when a task is created. The following are static fields:
• LDT segment selector field — Contains the segment selector for the task's 

LDT.
• CR3 control register field — Contains the base physical address of the page 

directory to be used by the task. Control register CR3 is also known as the page-
directory base register (PDBR).

• Privilege level-0, -1, and -2 stack pointer fields — These stack pointers 
consist of a logical address made up of the segment selector for the stack 
segment (SS0, SS1, and SS2) and an offset into the stack (ESP0, ESP1, and 
ESP2). Note that the values in these fields are static for a particular task; 
whereas, the SS and ESP values will change if stack switching occurs within the 
task.

• T (debug trap) flag (byte 100, bit 0) — When set, the T flag causes the 
processor to raise a debug exception when a task switch to this task occurs (see 
Section 17.3.1.5, “Task-Switch Exception Condition”).

• I/O map base address field — Contains a 16-bit offset from the base of the 
TSS to the I/O permission bit map and interrupt redirection bitmap. When 
present, these maps are stored in the TSS at higher addresses. The I/O map base 
address points to the beginning of the I/O permission bit map and the end of the 
interrupt redirection bit map. See Chapter 13, “Input/Output,” in the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 1, for more 
information about the I/O permission bit map. See Section 20.3, “Interrupt and 
Exception Handling in Virtual-8086 Mode,” for a detailed description of the 
interrupt redirection bit map.

If paging is used: 
• Avoid placing a page boundary in the part of the TSS that the processor reads 

during a task switch (the first 104 bytes). The processor may not correctly 
perform address translations if a boundary occurs in this area. During a task 
switch, the processor reads and writes into the first 104 bytes of each TSS (using 
contiguous physical addresses beginning with the physical address of the first 
byte of the TSS). So, after TSS access begins, if part of the 104 bytes is not 
physically contiguous, the processor will access incorrect information without 
generating a page-fault exception.

• Pages corresponding to the previous task’s TSS, the current task’s TSS, and the 
descriptor table entries for each all should be marked as read/write. 
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• Task switches are carried out faster if the pages containing these structures are 
present in memory before the task switch is initiated.

7.2.2 TSS Descriptor
The TSS, like all other segments, is defined by a segment descriptor. Figure 7-3 
shows the format of a TSS descriptor. TSS descriptors may only be placed in the GDT; 
they cannot be placed in an LDT or the IDT. 

An attempt to access a TSS using a segment selector with its TI flag set (which indi-
cates the current LDT) causes a general-protection exception (#GP) to be generated 
during CALLs and JMPs; it causes an invalid TSS exception (#TS) during IRETs. A 
general-protection exception is also generated if an attempt is made to load a 
segment selector for a TSS into a segment register.

The busy flag (B) in the type field indicates whether the task is busy. A busy task is 
currently running or suspended. A type field with a value of 1001B indicates an inac-
tive task; a value of 1011B indicates a busy task. Tasks are not recursive. The 
processor uses the busy flag to detect an attempt to call a task whose execution has 
been interrupted. To insure that there is only one busy flag is associated with a task, 
each TSS should have only one TSS descriptor that points to it.

The base, limit, and DPL fields and the granularity and present flags have functions 
similar to their use in data-segment descriptors (see Section 3.4.5, “Segment 
Descriptors”). When the G flag is 0 in a TSS descriptor for a 32-bit TSS, the limit field 
must have a value equal to or greater than 67H, one byte less than the minimum size 

Figure 7-3.  TSS Descriptor
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of a TSS. Attempting to switch to a task whose TSS descriptor has a limit less than 
67H generates an invalid-TSS exception (#TS). A larger limit is required if an I/O 
permission bit map is included or if the operating system stores additional data. The 
processor does not check for a limit greater than 67H on a task switch; however, it 
does check when accessing the I/O permission bit map or interrupt redirection bit 
map.

Any program or procedure with access to a TSS descriptor (that is, whose CPL is 
numerically equal to or less than the DPL of the TSS descriptor) can dispatch the task 
with a call or a jump. 

In most systems, the DPLs of TSS descriptors are set to values less than 3, so that 
only privileged software can perform task switching. However, in multitasking appli-
cations, DPLs for some TSS descriptors may be set to 3 to allow task switching at the 
application (or user) privilege level.

7.2.3 TSS Descriptor in 64-bit mode
In 64-bit mode, task switching is not supported, but TSS descriptors still exist. The 
format of a 64-bit TSS is described in Section 7.7. 

In 64-bit mode, the TSS descriptor is expanded to 16 bytes (see Figure 7-4). This 
expansion also applies to an LDT descriptor in 64-bit mode. Table 3-2 provides the 
encoding information for the segment type field.
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7.2.4 Task Register
The task register holds the 16-bit segment selector and the entire segment 
descriptor (32-bit base address (64 bits in IA-32e mode), 16-bit segment limit, and 
descriptor attributes) for the TSS of the current task (see Figure 2-5). This informa-
tion is copied from the TSS descriptor in the GDT for the current task. Figure 7-5 
shows the path the processor uses to access the TSS (using the information in the 
task register).

The task register has a visible part (that can be read and changed by software) and 
an invisible part (maintained by the processor and is inaccessible by software). The 
segment selector in the visible portion points to a TSS descriptor in the GDT. The 
processor uses the invisible portion of the task register to cache the segment 
descriptor for the TSS. Caching these values in a register makes execution of the task 
more efficient. The LTR (load task register) and STR (store task register) instructions 
load and read the visible portion of the task register: 

Figure 7-4.  Format of TSS and LDT Descriptors in 64-bit Mode

31 24 23 22 21 20 19 16 15 1314 12 11 8 7 0

PBase 31:24 G
D
P
L

Type

0
0

31 16 15 0

Base Address 15:00 Segment Limit 15:00

Base 23:16
A
V
L

Limit
19:16

0

TSS (or LDT) Descriptor

AVL
B
BASE
DPL
G

Available for use by system software
Busy flag
Segment Base Address
Descriptor Privilege Level
Granularity

LIMIT
P
TYPE

Segment Limit
Segment Present
Segment Type

0

4

31 13 12 8 7 0

Reserved

31 0

Base Address 63:32

Reserved0

8

12
Vol. 3A 7-9



TASK MANAGEMENT
The LTR instruction loads a segment selector (source operand) into the task register 
that points to a TSS descriptor in the GDT. It then loads the invisible portion of the 
task register with information from the TSS descriptor. LTR is a privileged instruction 
that may be executed only when the CPL is 0. It’s used during system initialization to 
put an initial value in the task register. Afterwards, the contents of the task register 
are changed implicitly when a task switch occurs.

The STR (store task register) instruction stores the visible portion of the task register 
in a general-purpose register or memory. This instruction can be executed by code 
running at any privilege level in order to identify the currently running task. However, 
it is normally used only by operating system software.

On power up or reset of the processor, segment selector and base address are set to 
the default value of 0; the limit is set to FFFFH.

Figure 7-5.  Task Register
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7.2.5 Task-Gate Descriptor
A task-gate descriptor provides an indirect, protected reference to a task (see 
Figure 7-6). It can be placed in the GDT, an LDT, or the IDT. The TSS segment 
selector field in a task-gate descriptor points to a TSS descriptor in the GDT. The RPL 
in this segment selector is not used.

The DPL of a task-gate descriptor controls access to the TSS descriptor during a task 
switch. When a program or procedure makes a call or jump to a task through a task 
gate, the CPL and the RPL field of the gate selector pointing to the task gate must be 
less than or equal to the DPL of the task-gate descriptor. Note that when a task gate 
is used, the DPL of the destination TSS descriptor is not used.

A task can be accessed either through a task-gate descriptor or a TSS descriptor. 
Both of these structures satisfy the following needs:
• Need for a task to have only one busy flag — Because the busy flag for a task 

is stored in the TSS descriptor, each task should have only one TSS descriptor. 
There may, however, be several task gates that reference the same TSS 
descriptor. 

• Need to provide selective access to tasks — Task gates fill this need, because 
they can reside in an LDT and can have a DPL that is different from the TSS 
descriptor's DPL. A program or procedure that does not have sufficient privilege 
to access the TSS descriptor for a task in the GDT (which usually has a DPL of 0) 
may be allowed access to the task through a task gate with a higher DPL. Task 
gates give the operating system greater latitude for limiting access to specific 
tasks.

• Need for an interrupt or exception to be handled by an independent task 
— Task gates may also reside in the IDT, which allows interrupts and exceptions 

Figure 7-6.  Task-Gate Descriptor
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to be handled by handler tasks. When an interrupt or exception vector points to 
a task gate, the processor switches to the specified task.

Figure 7-7 illustrates how a task gate in an LDT, a task gate in the GDT, and a task 
gate in the IDT can all point to the same task.

7.3 TASK SWITCHING
The processor transfers execution to another task in one of four cases:
• The current program, task, or procedure executes a JMP or CALL instruction to a 

TSS descriptor in the GDT.
• The current program, task, or procedure executes a JMP or CALL instruction to a 

task-gate descriptor in the GDT or the current LDT.

Figure 7-7.  Task Gates Referencing the Same Task
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• An interrupt or exception vector points to a task-gate descriptor in the IDT.
• The current task executes an IRET when the NT flag in the EFLAGS register is set. 

JMP, CALL, and IRET instructions, as well as interrupts and exceptions, are all mech-
anisms for redirecting a program. The referencing of a TSS descriptor or a task gate 
(when calling or jumping to a task) or the state of the NT flag (when executing an 
IRET instruction) determines whether a task switch occurs.

The processor performs the following operations when switching to a new task:

1. Obtains the TSS segment selector for the new task as the operand of the JMP or 
CALL instruction, from a task gate, or from the previous task link field (for a task 
switch initiated with an IRET instruction).

2. Checks that the current (old) task is allowed to switch to the new task. Data-
access privilege rules apply to JMP and CALL instructions. The CPL of the current 
(old) task and the RPL of the segment selector for the new task must be less than 
or equal to the DPL of the TSS descriptor or task gate being referenced. 
Exceptions, interrupts (except for interrupts generated by the INT n instruction), 
and the IRET instruction are permitted to switch tasks regardless of the DPL of 
the destination task-gate or TSS descriptor. For interrupts generated by the INT n 
instruction, the DPL is checked.

3. Checks that the TSS descriptor of the new task is marked present and has a valid 
limit (greater than or equal to 67H).

4. Checks that the new task is available (call, jump, exception, or interrupt) or busy 
(IRET return).

5. Checks that the current (old) TSS, new TSS, and all segment descriptors used in 
the task switch are paged into system memory.

6. If the task switch was initiated with a JMP or IRET instruction, the processor 
clears the busy (B) flag in the current (old) task’s TSS descriptor; if initiated with 
a CALL instruction, an exception, or an interrupt: the busy (B) flag is left set. 
(See Table 7-2.)

7. If the task switch was initiated with an IRET instruction, the processor clears the 
NT flag in a temporarily saved image of the EFLAGS register; if initiated with a 
CALL or JMP instruction, an exception, or an interrupt, the NT flag is left 
unchanged in the saved EFLAGS image.

8. Saves the state of the current (old) task in the current task’s TSS. The processor 
finds the base address of the current TSS in the task register and then copies the 
states of the following registers into the current TSS: all the general-purpose 
registers, segment selectors from the segment registers, the temporarily saved 
image of the EFLAGS register, and the instruction pointer register (EIP).

9. If the task switch was initiated with a CALL instruction, an exception, or an 
interrupt, the processor will set the NT flag in the EFLAGS loaded from the new 
task. If initiated with an IRET instruction or JMP instruction, the NT flag will reflect 
the state of NT in the EFLAGS loaded from the new task (see Table 7-2).
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10. If the task switch was initiated with a CALL instruction, JMP instruction, an 
exception, or an interrupt, the processor sets the busy (B) flag in the new task’s 
TSS descriptor; if initiated with an IRET instruction, the busy (B) flag is left set.

11. Loads the task register with the segment selector and descriptor for the new 
task's TSS.

12. The TSS state is loaded into the processor. This includes the LDTR register, the 
PDBR (control register CR3), the EFLAGS register, the EIP register, the general-
purpose registers, and the segment selectors. A fault during the load of this state 
may corrupt architectural state.

13. The descriptors associated with the segment selectors are loaded and qualified. 
Any errors associated with this loading and qualification occur in the context of 
the new task and may corrupt architectural state.

NOTES
If all checks and saves have been carried out successfully, the 
processor commits to the task switch. If an unrecoverable error 
occurs in steps 1 through 11, the processor does not complete the 
task switch and insures that the processor is returned to its state 
prior to the execution of the instruction that initiated the task switch.

If an unrecoverable error occurs in step 12, architectural state may 
be corrupted, but an attempt will be made to handle the error in the 
prior execution environment. If an unrecoverable error occurs after 
the commit point (in step 13), the processor completes the task 
switch (without performing additional access and segment avail-
ability checks) and generates the appropriate exception prior to 
beginning execution of the new task.

If exceptions occur after the commit point, the exception handler 
must finish the task switch itself before allowing the processor to 
begin executing the new task. See Chapter 6, “Interrupt 10—Invalid 
TSS Exception (#TS),” for more information about the affect of 
exceptions on a task when they occur after the commit point of a task 
switch.

14. Begins executing the new task. (To an exception handler, the first instruction of 
the new task appears not to have been executed.)

The state of the currently executing task is always saved when a successful task 
switch occurs. If the task is resumed, execution starts with the instruction pointed to 
by the saved EIP value, and the registers are restored to the values they held when 
the task was suspended.

When switching tasks, the privilege level of the new task does not inherit its privilege 
level from the suspended task. The new task begins executing at the privilege level 
specified in the CPL field of the CS register, which is loaded from the TSS. Because 
tasks are isolated by their separate address spaces and TSSs and because privilege 
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rules control access to a TSS, software does not need to perform explicit privilege 
checks on a task switch.

Table 7-1 shows the exception conditions that the processor checks for when 
switching tasks. It also shows the exception that is generated for each check if an 
error is detected and the segment that the error code references. (The order of the 
checks in the table is the order used in the P6 family processors. The exact order is 
model specific and may be different for other IA-32 processors.) Exception handlers 
designed to handle these exceptions may be subject to recursive calls if they attempt 
to reload the segment selector that generated the exception. The cause of the excep-
tion (or the first of multiple causes) should be fixed before reloading the selector.

Table 7-1.  Exception Conditions Checked During a Task Switch 
Condition Checked Exception1 Error Code 

Reference2

Segment selector for a TSS descriptor references 
the GDT and is within the limits of the table.

#GP

#TS (for IRET)

New Task’s TSS

TSS descriptor is present in memory. #NP New Task’s TSS

TSS descriptor is not busy (for task switch initiated 
by a call, interrupt, or exception).

#GP (for JMP, CALL, 
INT)

Task’s back-link TSS

TSS descriptor is not busy (for task switch initiated 
by an IRET instruction).

#TS (for IRET) New Task’s TSS

TSS segment limit greater than or equal to 108 (for 
32-bit TSS) or 44 (for 16-bit TSS).

#TS New Task’s TSS

Registers are loaded from the values in the TSS.

LDT segment selector of new task is valid 3. #TS New Task’s LDT

Code segment DPL matches segment selector RPL. #TS New Code Segment

SS segment selector is valid 2. #TS New Stack Segment

Stack segment is present in memory. #SS New Stack Segment

Stack segment DPL matches CPL. #TS New stack segment

LDT of new task is present in memory. #TS New Task’s LDT

CS segment selector is valid 3. #TS New Code Segment

Code segment is present in memory. #NP New Code Segment

Stack segment DPL matches selector RPL. #TS New Stack Segment

DS, ES, FS, and GS segment selectors are valid 3. #TS New Data Segment

DS, ES, FS, and GS segments are readable. #TS New Data Segment
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The TS (task switched) flag in the control register CR0 is set every time a task switch 
occurs. System software uses the TS flag to coordinate the actions of floating-point 
unit when generating floating-point exceptions with the rest of the processor. The TS 
flag indicates that the context of the floating-point unit may be different from that of 
the current task. See Section 2.5, “Control Registers”, for a detailed description of 
the function and use of the TS flag.

7.4 TASK LINKING
The previous task link field of the TSS (sometimes called the “backlink”) and the NT 
flag in the EFLAGS register are used to return execution to the previous task. 
EFLAGS.NT = 1 indicates that the currently executing task is nested within the 
execution of another task. 

When a CALL instruction, an interrupt, or an exception causes a task switch: the 
processor copies the segment selector for the current TSS to the previous task link 
field of the TSS for the new task; it then sets EFLAGS.NT = 1. If software uses an 
IRET instruction to suspend the new task, the processor checks for EFLAGS.NT = 1; 
it then uses the value in the previous task link field to return to the previous task. See 
Figures 7-8.

When a JMP instruction causes a task switch, the new task is not nested. The 
previous task link field is not used and EFLAGS.NT = 0. Use a JMP instruction to 
dispatch a new task when nesting is not desired.

DS, ES, FS, and GS segments are present in memory. #NP New Data Segment

DS, ES, FS, and GS segment DPL greater than or 
equal to CPL (unless these are 
conforming segments).

#TS New Data Segment

NOTES:
1. #NP is segment-not-present exception, #GP is general-protection exception, #TS is invalid-TSS 

exception, and #SS is stack-fault exception.
2. The error code contains an index to the segment descriptor referenced in this column.
3. A segment selector is valid if it is in a compatible type of table (GDT or LDT), occupies an address 

within the table's segment limit, and refers to a compatible type of descriptor (for example, a seg-
ment selector in the CS register only is valid when it points to a code-segment descriptor).

Table 7-1.  Exception Conditions Checked During a Task Switch  (Contd.)
Condition Checked Exception1 Error Code 

Reference2
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Table 7-2 shows the busy flag (in the TSS segment descriptor), the NT flag, the 
previous task link field, and TS flag (in control register CR0) during a task switch.

The NT flag may be modified by software executing at any privilege level. It is 
possible for a program to set the NT flag and execute an IRET instruction. This might 
randomly invoke the task specified in the previous link field of the current task's TSS. 
To keep such spurious task switches from succeeding, the operating system should 
initialize the previous task link field in every TSS that it creates to 0.

Figure 7-8.  Nested Tasks

Table 7-2.  Effect of a Task Switch on Busy Flag, NT Flag, 
Previous Task Link Field, and TS Flag

Flag or Field Effect of JMP 
instruction

Effect of CALL 
Instruction or 

Interrupt

Effect of IRET
Instruction

Busy (B) flag of new 
task.

Flag is set. Must have 
been clear before.

Flag is set. Must have 
been clear before.

No change. Must have 
been set.

Busy flag of old task. Flag is cleared. No change. Flag is 
currently set.

Flag is cleared.

NT flag of new task. Set to value from TSS 
of new task.

Flag is set. Set to value from TSS 
of new task.

NT flag of old task. No change. No change. Flag is cleared.

Previous task link field 
of new task.

No change. Loaded with selector 
for old task’s TSS.

No change.

Previous task link field 
of old task.

No change. No change. No change.

TS flag in control 
register CR0.

Flag is set. Flag is set. Flag is set.
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7.4.1 Use of Busy Flag To Prevent Recursive Task Switching
A TSS allows only one context to be saved for a task; therefore, once a task is called 
(dispatched), a recursive (or re-entrant) call to the task would cause the current 
state of the task to be lost. The busy flag in the TSS segment descriptor is provided 
to prevent re-entrant task switching and a subsequent loss of task state information. 
The processor manages the busy flag as follows:

1. When dispatching a task, the processor sets the busy flag of the new task.

2. If during a task switch, the current task is placed in a nested chain (the task 
switch is being generated by a CALL instruction, an interrupt, or an exception), 
the busy flag for the current task remains set. 

3. When switching to the new task (initiated by a CALL instruction, interrupt, or 
exception), the processor generates a general-protection exception (#GP) if the 
busy flag of the new task is already set. If the task switch is initiated with an IRET 
instruction, the exception is not raised because the processor expects the busy 
flag to be set.

4. When a task is terminated by a jump to a new task (initiated with a JMP 
instruction in the task code) or by an IRET instruction in the task code, the 
processor clears the busy flag, returning the task to the “not busy” state.

The processor prevents recursive task switching by preventing a task from switching 
to itself or to any task in a nested chain of tasks. The chain of nested suspended tasks 
may grow to any length, due to multiple calls, interrupts, or exceptions. The busy 
flag prevents a task from being invoked if it is in this chain.

The busy flag may be used in multiprocessor configurations, because the processor 
follows a LOCK protocol (on the bus or in the cache) when it sets or clears the busy 
flag. This lock keeps two processors from invoking the same task at the same time. 
See Section 8.1.2.1, “Automatic Locking,” for more information about setting the 
busy flag in a multiprocessor applications.

7.4.2 Modifying Task Linkages
In a uniprocessor system, in situations where it is necessary to remove a task from a 
chain of linked tasks, use the following procedure to remove the task:

1. Disable interrupts.

2. Change the previous task link field in the TSS of the pre-empting task (the task 
that suspended the task to be removed). It is assumed that the pre-empting task 
is the next task (newer task) in the chain from the task to be removed. Change 
the previous task link field to point to the TSS of the next oldest task in the chain 
or to an even older task in the chain.

3. Clear the busy (B) flag in the TSS segment descriptor for the task being removed 
from the chain. If more than one task is being removed from the chain, the busy 
flag for each task being remove must be cleared.

4. Enable interrupts.
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In a multiprocessing system, additional synchronization and serialization operations 
must be added to this procedure to insure that the TSS and its segment descriptor 
are both locked when the previous task link field is changed and the busy flag is 
cleared.

7.5 TASK ADDRESS SPACE
The address space for a task consists of the segments that the task can access. 
These segments include the code, data, stack, and system segments referenced in 
the TSS and any other segments accessed by the task code. The segments are 
mapped into the processor’s linear address space, which is in turn mapped into the 
processor’s physical address space (either directly or through paging).

The LDT segment field in the TSS can be used to give each task its own LDT. Giving a 
task its own LDT allows the task address space to be isolated from other tasks by 
placing the segment descriptors for all the segments associated with the task in the 
task’s LDT.

It also is possible for several tasks to use the same LDT. This is a memory-efficient 
way to allow specific tasks to communicate with or control each other, without drop-
ping the protection barriers for the entire system.

Because all tasks have access to the GDT, it also is possible to create shared 
segments accessed through segment descriptors in this table.

If paging is enabled, the CR3 register (PDBR) field in the TSS allows each task to 
have its own set of page tables for mapping linear addresses to physical addresses. 
Or, several tasks can share the same set of page tables.

7.5.1 Mapping Tasks to the Linear and Physical Address Spaces
Tasks can be mapped to the linear address space and physical address space in one 
of two ways:
• One linear-to-physical address space mapping is shared among all tasks. 

— When paging is not enabled, this is the only choice. Without paging, all linear 
addresses map to the same physical addresses. When paging is enabled, this 
form of linear-to-physical address space mapping is obtained by using one page 
directory for all tasks. The linear address space may exceed the available 
physical space if demand-paged virtual memory is supported.

• Each task has its own linear address space that is mapped to the physical 
address space. — This form of mapping is accomplished by using a different 
page directory for each task. Because the PDBR (control register CR3) is loaded 
on task switches, each task may have a different page directory.

The linear address spaces of different tasks may map to completely distinct physical 
addresses. If the entries of different page directories point to different page tables 
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and the page tables point to different pages of physical memory, then the tasks do 
not share physical addresses.

With either method of mapping task linear address spaces, the TSSs for all tasks 
must lie in a shared area of the physical space, which is accessible to all tasks. This 
mapping is required so that the mapping of TSS addresses does not change while the 
processor is reading and updating the TSSs during a task switch. The linear address 
space mapped by the GDT also should be mapped to a shared area of the physical 
space; otherwise, the purpose of the GDT is defeated. Figure 7-9 shows how the 
linear address spaces of two tasks can overlap in the physical space by sharing page 
tables. 

7.5.2 Task Logical Address Space
To allow the sharing of data among tasks, use the following techniques to create 
shared logical-to-physical address-space mappings for data segments:
• Through the segment descriptors in the GDT — All tasks must have access 

to the segment descriptors in the GDT. If some segment descriptors in the GDT 
point to segments in the linear-address space that are mapped into an area of the 
physical-address space common to all tasks, then all tasks can share the data 
and code in those segments.

• Through a shared LDT — Two or more tasks can use the same LDT if the LDT 
fields in their TSSs point to the same LDT. If some segment descriptors in a 

Figure 7-9.  Overlapping Linear-to-Physical Mappings
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shared LDT point to segments that are mapped to a common area of the physical 
address space, the data and code in those segments can be shared among the 
tasks that share the LDT. This method of sharing is more selective than sharing 
through the GDT, because the sharing can be limited to specific tasks. Other 
tasks in the system may have different LDTs that do not give them access to the 
shared segments.

• Through segment descriptors in distinct LDTs that are mapped to 
common addresses in linear address space — If this common area of the 
linear address space is mapped to the same area of the physical address space 
for each task, these segment descriptors permit the tasks to share segments. 
Such segment descriptors are commonly called aliases. This method of sharing is 
even more selective than those listed above, because, other segment descriptors 
in the LDTs may point to independent linear addresses which are not shared.

7.6 16-BIT TASK-STATE SEGMENT (TSS)
The 32-bit IA-32 processors also recognize a 16-bit TSS format like the one used in 
Intel 286 processors (see Figure 7-10). This format is supported for compatibility 
with software written to run on earlier IA-32 processors. 

The following information is important to know about the 16-bit TSS.
• Do not use a 16-bit TSS to implement a virtual-8086 task.
• The valid segment limit for a 16-bit TSS is 2CH.
• The 16-bit TSS does not contain a field for the base address of the page directory, 

which is loaded into control register CR3. A separate set of page tables for each 
task is not supported for 16-bit tasks. If a 16-bit task is dispatched, the page-
table structure for the previous task is used.

• The I/O base address is not included in the 16-bit TSS. None of the functions of 
the I/O map are supported.

• When task state is saved in a 16-bit TSS, the upper 16 bits of the EFLAGS register 
and the EIP register are lost.

• When the general-purpose registers are loaded or saved from a 16-bit TSS, the 
upper 16 bits of the registers are modified and not maintained.
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7.7 TASK MANAGEMENT IN 64-BIT MODE
In 64-bit mode, task structure and task state are similar to those in protected mode. 
However, the task switching mechanism available in protected mode is not supported 
in 64-bit mode. Task management and switching must be performed by software. 
The processor issues a general-protection exception (#GP) if the following is 
attempted in 64-bit mode:
• Control transfer to a TSS or a task gate using JMP, CALL, INTn, or interrupt.
• An IRET with EFLAGS.NT (nested task) set to 1.

Figure 7-10.  16-Bit TSS Format
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Although hardware task-switching is not supported in 64-bit mode, a 64-bit task 
state segment (TSS) must exist. Figure 7-11 shows the format of a 64-bit TSS. The 
TSS holds information important to 64-bit mode and that is not directly related to the 
task-switch mechanism. This information includes:
• RSPn — The full 64-bit canonical forms of the stack pointers (RSP) for privilege 

levels 0-2.
• ISTn — The full 64-bit canonical forms of the interrupt stack table (IST) pointers.
• I/O map base address — The 16-bit offset to the I/O permission bit map from 

the 64-bit TSS base.

The operating system must create at least one 64-bit TSS after activating IA-32e 
mode. It must execute the LTR instruction (in 64-bit mode) to load the TR register 
with a pointer to the 64-bit TSS responsible for both 64-bit-mode programs and 
compatibility-mode programs.
Vol. 3A 7-23



TASK MANAGEMENT
Figure 7-11.  64-Bit TSS Format
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CHAPTER 8
MULTIPLE-PROCESSOR MANAGEMENT

The Intel 64 and IA-32 architectures provide mechanisms for managing and 
improving the performance of multiple processors connected to the same system 
bus. These include:
• Bus locking and/or cache coherency management for performing atomic 

operations on system memory.
• Serializing instructions. These instructions apply only to the Pentium 4, Intel 

Xeon, P6 family, and Pentium processors.
• An advance programmable interrupt controller (APIC) located on the processor 

chip (see Chapter 10, “Advanced Programmable Interrupt Controller (APIC)”). 
This feature was introduced by the Pentium processor.

• A second-level cache (level 2, L2). For the Pentium 4, Intel Xeon, and P6 family 
processors, the L2 cache is included in the processor package and is tightly 
coupled to the processor. For the Pentium and Intel486 processors, pins are 
provided to support an external L2 cache.

• A third-level cache (level 3, L3). For Intel Xeon processors, the L3 cache is 
included in the processor package and is tightly coupled to the processor.

• Intel Hyper-Threading Technology. This extension to the Intel 64 and IA-32 archi-
tectures enables a single processor core to execute two or more threads concur-
rently (see Section 8.5, “Intel® Hyper-Threading Technology and Intel® Multi-
Core Technology”).

These mechanisms are particularly useful in symmetric-multiprocessing (SMP) 
systems. However, they can also be used when an Intel 64 or IA-32 processor and a 
special-purpose processor (such as a communications, graphics, or video processor) 
share the system bus.

These multiprocessing mechanisms have the following characteristics:
• To maintain system memory coherency — When two or more processors are 

attempting simultaneously to access the same address in system memory, some 
communication mechanism or memory access protocol must be available to 
promote data coherency and, in some instances, to allow one processor to 
temporarily lock a memory location.

• To maintain cache consistency — When one processor accesses data cached on 
another processor, it must not receive incorrect data. If it modifies data, all other 
processors that access that data must receive the modified data.

• To allow predictable ordering of writes to memory — In some circumstances, it is 
important that memory writes be observed externally in precisely the same order 
as programmed.
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• To distribute interrupt handling among a group of processors — When several 
processors are operating in a system in parallel, it is useful to have a centralized 
mechanism for receiving interrupts and distributing them to available processors 
for servicing.

• To increase system performance by exploiting the multi-threaded and multi-
process nature of contemporary operating systems and applications.

The caching mechanism and cache consistency of Intel 64 and IA-32 processors are 
discussed in Chapter 11. The APIC architecture is described in Chapter 10. Bus and 
memory locking, serializing instructions, memory ordering, and Intel Hyper-
Threading Technology are discussed in the following sections. 

8.1 LOCKED ATOMIC OPERATIONS
The 32-bit IA-32 processors support locked atomic operations on locations in system 
memory. These operations are typically used to manage shared data structures (such 
as semaphores, segment descriptors, system segments, or page tables) in which two 
or more processors may try simultaneously to modify the same field or flag. The 
processor uses three interdependent mechanisms for carrying out locked atomic 
operations:
• Guaranteed atomic operations
• Bus locking, using the LOCK# signal and the LOCK instruction prefix
• Cache coherency protocols that ensure that atomic operations can be carried out 

on cached data structures (cache lock); this mechanism is present in the 
Pentium 4, Intel Xeon, and P6 family processors

These mechanisms are interdependent in the following ways. Certain basic memory 
transactions (such as reading or writing a byte in system memory) are always guar-
anteed to be handled atomically. That is, once started, the processor guarantees that 
the operation will be completed before another processor or bus agent is allowed 
access to the memory location. The processor also supports bus locking for 
performing selected memory operations (such as a read-modify-write operation in a 
shared area of memory) that typically need to be handled atomically, but are not 
automatically handled this way. Because frequently used memory locations are often 
cached in a processor’s L1 or L2 caches, atomic operations can often be carried out 
inside a processor’s caches without asserting the bus lock. Here the processor’s 
cache coherency protocols ensure that other processors that are caching the same 
memory locations are managed properly while atomic operations are performed on 
cached memory locations.

NOTE
Where there are contested lock accesses, software may need to 
implement algorithms that ensure fair access to resources in order to 
prevent lock starvation. The hardware provides no resource that 
guarantees fairness to participating agents. It is the responsibility of 
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software to manage the fairness of semaphores and exclusive locking 
functions.

The mechanisms for handling locked atomic operations have evolved with the 
complexity of IA-32 processors. More recent IA-32 processors (such as the 
Pentium 4, Intel Xeon, and P6 family processors) and Intel 64 provide a more refined 
locking mechanism than earlier processors. These mechanisms are described in the 
following sections.

8.1.1 Guaranteed Atomic Operations
The Intel486 processor (and newer processors since) guarantees that the following 
basic memory operations will always be carried out atomically:
• Reading or writing a byte
• Reading or writing a word aligned on a 16-bit boundary
• Reading or writing a doubleword aligned on a 32-bit boundary

The Pentium processor (and newer processors since) guarantees that the following 
additional memory operations will always be carried out atomically:
• Reading or writing a quadword aligned on a 64-bit boundary
• 16-bit accesses to uncached memory locations that fit within a 32-bit data bus

The P6 family processors (and newer processors since) guarantee that the following 
additional memory operation will always be carried out atomically:
• Unaligned 16-, 32-, and 64-bit accesses to cached memory that fit within a cache 

line

Accesses to cacheable memory that are split across cache lines and page boundaries 
are not guaranteed to be atomic by the Intel Core 2 Duo, Intel® Atom™, Intel Core 
Duo, Pentium M, Pentium 4, Intel Xeon, P6 family, Pentium, and Intel486 processors. 
The Intel Core 2 Duo, Intel Atom, Intel Core Duo, Pentium M, Pentium 4, Intel Xeon, 
and P6 family processors provide bus control signals that permit external memory 
subsystems to make split accesses atomic; however, nonaligned data accesses will 
seriously impact the performance of the processor and should be avoided.

An x87 instruction or an SSE instructions that accesses data larger than a quadword 
may be implemented using multiple memory accesses. If such an instruction stores 
to memory, some of the accesses may complete (writing to memory) while another 
causes the operation to fault for architectural reasons (e.g. due an page-table entry 
that is marked “not present”). In this case, the effects of the completed accesses 
may be visible to software even though the overall instruction caused a fault. If TLB 
invalidation has been delayed (see Section 4.10.4.4), such page faults may occur 
even if all accesses are to the same page.
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8.1.2 Bus Locking
Intel 64 and IA-32 processors provide a LOCK# signal that is asserted automatically 
during certain critical memory operations to lock the system bus or equivalent link. 
While this output signal is asserted, requests from other processors or bus agents for 
control of the bus are blocked. Software can specify other occasions when the LOCK 
semantics are to be followed by prepending the LOCK prefix to an instruction.

In the case of the Intel386, Intel486, and Pentium processors, explicitly locked 
instructions will result in the assertion of the LOCK# signal. It is the responsibility of 
the hardware designer to make the LOCK# signal available in system hardware to 
control memory accesses among processors.

For the P6 and more recent processor families, if the memory area being accessed is 
cached internally in the processor, the LOCK# signal is generally not asserted; 
instead, locking is only applied to the processor’s caches (see Section 8.1.4, “Effects 
of a LOCK Operation on Internal Processor Caches”).

8.1.2.1  Automatic Locking
The operations on which the processor automatically follows the LOCK semantics are 
as follows:
• When executing an XCHG instruction that references memory.
• When setting the B (busy) flag of a TSS descriptor — The processor tests 

and sets the busy flag in the type field of the TSS descriptor when switching to a 
task. To ensure that two processors do not switch to the same task simulta-
neously, the processor follows the LOCK semantics while testing and setting this 
flag.

• When updating segment descriptors — When loading a segment descriptor, 
the processor will set the accessed flag in the segment descriptor if the flag is 
clear. During this operation, the processor follows the LOCK semantics so that the 
descriptor will not be modified by another processor while it is being updated. For 
this action to be effective, operating-system procedures that update descriptors 
should use the following steps:

— Use a locked operation to modify the access-rights byte to indicate that the 
segment descriptor is not-present, and specify a value for the type field that 
indicates that the descriptor is being updated.

— Update the fields of the segment descriptor. (This operation may require 
several memory accesses; therefore, locked operations cannot be used.)

— Use a locked operation to modify the access-rights byte to indicate that the 
segment descriptor is valid and present.

• The Intel386 processor always updates the accessed flag in the segment 
descriptor, whether it is clear or not. The Pentium 4, Intel Xeon, P6 family, 
Pentium, and Intel486 processors only update this flag if it is not already set.
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• When updating page-directory and page-table entries — When updating 
page-directory and page-table entries, the processor uses locked cycles to set 
the accessed and dirty flag in the page-directory and page-table entries.

• Acknowledging interrupts — After an interrupt request, an interrupt controller 
may use the data bus to send the interrupt vector for the interrupt to the 
processor. The processor follows the LOCK semantics during this time to ensure 
that no other data appears on the data bus when the interrupt vector is being 
transmitted.

8.1.2.2  Software Controlled Bus Locking
To explicitly force the LOCK semantics, software can use the LOCK prefix with the 
following instructions when they are used to modify a memory location. An invalid-
opcode exception (#UD) is generated when the LOCK prefix is used with any other 
instruction or when no write operation is made to memory (that is, when the destina-
tion operand is in a register).
• The bit test and modify instructions (BTS, BTR, and BTC).
• The exchange instructions (XADD, CMPXCHG, and CMPXCHG8B). 
• The LOCK prefix is automatically assumed for XCHG instruction.
• The following single-operand arithmetic and logical instructions: INC, DEC, NOT, 

and NEG.
• The following two-operand arithmetic and logical instructions: ADD, ADC, SUB, 

SBB, AND, OR, and XOR.

A locked instruction is guaranteed to lock only the area of memory defined by the 
destination operand, but may be interpreted by the system as a lock for a larger 
memory area.

Software should access semaphores (shared memory used for signalling between 
multiple processors) using identical addresses and operand lengths. For example, if 
one processor accesses a semaphore using a word access, other processors should 
not access the semaphore using a byte access. 

NOTE
Do not implement semaphores using the WC memory type. Do not 
perform non-temporal stores to a cache line containing a location 
used to implement a semaphore.

The integrity of a bus lock is not affected by the alignment of the memory field. The 
LOCK semantics are followed for as many bus cycles as necessary to update the 
entire operand. However, it is recommend that locked accesses be aligned on their 
natural boundaries for better system performance:
• Any boundary for an 8-bit access (locked or otherwise).
• 16-bit boundary for locked word accesses.
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• 32-bit boundary for locked doubleword accesses.
• 64-bit boundary for locked quadword accesses.

Locked operations are atomic with respect to all other memory operations and all 
externally visible events. Only instruction fetch and page table accesses can pass 
locked instructions. Locked instructions can be used to synchronize data written by 
one processor and read by another processor.

For the P6 family processors, locked operations serialize all outstanding load and 
store operations (that is, wait for them to complete). This rule is also true for the 
Pentium 4 and Intel Xeon processors, with one exception. Load operations that refer-
ence weakly ordered memory types (such as the WC memory type) may not be seri-
alized.

Locked instructions should not be used to ensure that data written can be fetched as 
instructions. 

NOTE
The locked instructions for the current versions of the Pentium 4, 
Intel Xeon, P6 family, Pentium, and Intel486 processors allow data 
written to be fetched as instructions. However, Intel recommends 
that developers who require the use of self-modifying code use a 
different synchronizing mechanism, described in the following 
sections.

8.1.3 Handling Self- and Cross-Modifying Code
The act of a processor writing data into a currently executing code segment with 
the intent of executing that data as code is called self-modifying code. IA-32 
processors exhibit model-specific behavior when executing self-modified code, 
depending upon how far ahead of the current execution pointer the code has been 
modified. 

As processor microarchitectures become more complex and start to speculatively 
execute code ahead of the retirement point (as in P6 and more recent processor 
families), the rules regarding which code should execute, pre- or post-modification, 
become blurred. To write self-modifying code and ensure that it is compliant with 
current and future versions of the IA-32 architectures, use one of the following 
coding options:

(* OPTION 1 *)
Store modified code (as data) into code segment; 
Jump to new code or an intermediate location;
Execute new code;

(* OPTION 2 *)
Store modified code (as data) into code segment;
Execute a serializing instruction; (* For example, CPUID instruction *)
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Execute new code;

The use of one of these options is not required for programs intended to run on the 
Pentium or Intel486 processors, but are recommended to ensure compatibility with 
the P6 and more recent processor families.

Self-modifying code will execute at a lower level of performance than non-self-modi-
fying or normal code. The degree of the performance deterioration will depend upon 
the frequency of modification and specific characteristics of the code.

The act of one processor writing data into the currently executing code segment of a 
second processor with the intent of having the second processor execute that data as 
code is called cross-modifying code. As with self-modifying code, IA-32 processors 
exhibit model-specific behavior when executing cross-modifying code, depending 
upon how far ahead of the executing processors current execution pointer the code 
has been modified. 

To write cross-modifying code and ensure that it is compliant with current and future 
versions of the IA-32 architecture, the following processor synchronization algorithm 
must be implemented:

(* Action of Modifying Processor *)
Memory_Flag ← 0; (* Set Memory_Flag to value other than 1 *)
Store modified code (as data) into code segment;
Memory_Flag ← 1;

(* Action of Executing Processor *)
WHILE (Memory_Flag ≠ 1)

Wait for code to update;
ELIHW;
Execute serializing instruction; (* For example, CPUID instruction *)
Begin executing modified code;

(The use of this option is not required for programs intended to run on the Intel486 
processor, but is recommended to ensure compatibility with the Pentium 4, Intel 
Xeon, P6 family, and Pentium processors.)

Like self-modifying code, cross-modifying code will execute at a lower level of perfor-
mance than non-cross-modifying (normal) code, depending upon the frequency of 
modification and specific characteristics of the code.

The restrictions on self-modifying code and cross-modifying code also apply to the 
Intel 64 architecture.

8.1.4 Effects of a LOCK Operation on Internal Processor Caches
For the Intel486 and Pentium processors, the LOCK# signal is always asserted on the 
bus during a LOCK operation, even if the area of memory being locked is cached in 
the processor.
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For the P6 and more recent processor families, if the area of memory being locked 
during a LOCK operation is cached in the processor that is performing the LOCK oper-
ation as write-back memory and is completely contained in a cache line, the 
processor may not assert the LOCK# signal on the bus. Instead, it will modify the 
memory location internally and allow it’s cache coherency mechanism to ensure that 
the operation is carried out atomically. This operation is called “cache locking.” The 
cache coherency mechanism automatically prevents two or more processors that 
have cached the same area of memory from simultaneously modifying data in that 
area.

8.2 MEMORY ORDERING
The term memory ordering refers to the order in which the processor issues reads 
(loads) and writes (stores) through the system bus to system memory. The Intel 64 
and IA-32 architectures support several memory-ordering models depending on the 
implementation of the architecture. For example, the Intel386 processor enforces 
program ordering (generally referred to as strong ordering), where reads and 
writes are issued on the system bus in the order they occur in the instruction stream 
under all circumstances. 

To allow performance optimization of instruction execution, the IA-32 architecture 
allows departures from strong-ordering model called processor ordering in 
Pentium 4, Intel Xeon, and P6 family processors. These processor-ordering varia-
tions (called here the memory-ordering model) allow performance enhancing 
operations such as allowing reads to go ahead of buffered writes. The goal of any of 
these variations is to increase instruction execution speeds, while maintaining 
memory coherency, even in multiple-processor systems.

Section 8.2.1 and Section 8.2.2 describe the memory-ordering implemented by 
Intel486, Pentium, Intel Core 2 Duo, Intel Atom, Intel Core Duo, Pentium 4, Intel 
Xeon, and P6 family processors. Section 8.2.3 gives examples illustrating the 
behavior of the memory-ordering model on IA-32 and Intel-64 processors. Section 
8.2.4 considers the special treatment of stores for string operations and Section 
8.2.5 discusses how memory-ordering behavior may be modified through the use of 
specific instructions.

8.2.1 Memory Ordering in the Intel® Pentium® and Intel486™ 
Processors

The Pentium and Intel486 processors follow the processor-ordered memory model; 
however, they operate as strongly-ordered processors under most circumstances. 
Reads and writes always appear in programmed order at the system bus—except for 
the following situation where processor ordering is exhibited. Read misses are 
permitted to go ahead of buffered writes on the system bus when all the buffered 
writes are cache hits and, therefore, are not directed to the same address being 
accessed by the read miss. 
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In the case of I/O operations, both reads and writes always appear in programmed 
order.

Software intended to operate correctly in processor-ordered processors (such as the 
Pentium 4, Intel Xeon, and P6 family processors) should not depend on the relatively 
strong ordering of the Pentium or Intel486 processors. Instead, it should ensure 
that accesses to shared variables that are intended to control concurrent execution 
among processors are explicitly required to obey program ordering through the use 
of appropriate locking or serializing operations (see Section 8.2.5, “Strengthening or 
Weakening the Memory-Ordering Model”).

8.2.2 Memory Ordering in P6 and More Recent Processor Families
The Intel Core 2 Duo, Intel Atom, Intel Core Duo, Pentium 4, and P6 family proces-
sors also use a processor-ordered memory-ordering model that can be further 
defined as “write ordered with store-buffer forwarding.” This model can be character-
ized as follows. 

In a single-processor system for memory regions defined as write-back cacheable, 
the memory-ordering model respects the following principles (Note the memory-
ordering principles for single-processor and multiple-processor systems are written 
from the perspective of software executing on the processor, where the term 
“processor” refers to a logical processor. For example, a physical processor 
supporting multiple cores and/or HyperThreading Technology is treated as a multi-
processor systems.):
• Reads are not reordered with other reads.
• Writes are not reordered with older reads.
• Writes to memory are not reordered with other writes, with the following 

exceptions:

— writes executed with the CLFLUSH instruction;

— streaming stores (writes) executed with the non-temporal move instructions 
(MOVNTI, MOVNTQ, MOVNTDQ, MOVNTPS, and MOVNTPD); and

— string operations (see Section 8.2.4.1).
• Reads may be reordered with older writes to different locations but not with older 

writes to the same location. 
• Reads or writes cannot be reordered with I/O instructions, locked instructions, or 

serializing instructions.
• Reads cannot pass earlier LFENCE and MFENCE instructions.
• Writes cannot pass earlier LFENCE, SFENCE, and MFENCE instructions.
• LFENCE instructions cannot pass earlier reads.
• SFENCE instructions cannot pass earlier writes.
• MFENCE instructions cannot pass earlier reads or writes.
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In a multiple-processor system, the following ordering principles apply:
• Individual processors use the same ordering principles as in a single-processor 

system.
• Writes by a single processor are observed in the same order by all processors.
• Writes from an individual processor are NOT ordered with respect to the writes 

from other processors.
• Memory ordering obeys causality (memory ordering respects transitive 

visibility).
• Any two stores are seen in a consistent order by processors other than those 

performing the stores
• Locked instructions have a total order.

See the example in Figure 8-1. Consider three processors in a system and each 
processor performs three writes, one to each of three defined locations (A, B, and C). 
Individually, the processors perform the writes in the same program order, but 
because of bus arbitration and other memory access mechanisms, the order that the 
three processors write the individual memory locations can differ each time the 
respective code sequences are executed on the processors. The final values in loca-
tion A, B, and C would possibly vary on each execution of the write sequence.

The processor-ordering model described in this section is virtually identical to that 
used by the Pentium and Intel486 processors. The only enhancements in the Pentium 
4, Intel Xeon, and P6 family processors are:
• Added support for speculative reads, while still adhering to the ordering 

principles above.
• Store-buffer forwarding, when a read passes a write to the same memory 

location.
• Out of order store from long string store and string move operations (see Section 

8.2.4, “Fast-String Operation and Out-of-Order Stores,” below).
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NOTE
In P6 processor family, store-buffer forwarding to reads of WC memory from 
streaming stores to the same address does not occur due to errata.

8.2.3 Examples Illustrating the Memory-Ordering Principles
This section provides a set of examples that illustrate the behavior of the memory-
ordering principles introduced in Section 8.2.2. They are designed to give software 
writers an understanding of how memory ordering may affect the results of different 
sequences of instructions.

These examples are limited to accesses to memory regions defined as write-back 
cacheable (WB). (Section 8.2.3.1 describes other limitations on the generality of the 
examples.) The reader should understand that they describe only software-visible 
behavior. A logical processor may reorder two accesses even if one of examples indi-
cates that they may not be reordered. Such an example states only that software 
cannot detect that such a reordering occurred. Similarly, a logical processor may 
execute a memory access more than once as long as the behavior visible to software 
is consistent with a single execution of the memory access.

Figure 8-1.  Example of Write Ordering in Multiple-Processor Systems

Processor #1 Processor #2 Processor #3

Write A.3
Write B.3
Write C.3

Write A.1
Write B.1
Write A.2
Write A.3
Write C.1
Write B.2
Write C.2
Write B.3
Write C.3

Order of Writes From Individual Processors

Write A.2
Write B.2
Write C.2

Write A.1
Write B.1
Write C.1

Writes from all
processors are
not guaranteed
to occur in a
particular order.

Each processor
is guaranteed to
perform writes in
program order.

Writes are in order
with respect to 
individual processes.

Example of order of actual writes
from all processors to memory
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8.2.3.1  Assumptions, Terminology, and Notation
As noted above, the examples in this section are limited to accesses to memory 
regions defined as write-back cacheable (WB). They apply only to ordinary loads 
stores and to locked read-modify-write instructions. They do not necessarily apply to 
any of the following: out-of-order stores for string instructions (see Section 8.2.4); 
accesses with a non-temporal hint; reads from memory by the processor as part of 
address translation (e.g., page walks); and updates to segmentation and paging 
structures by the processor (e.g., to update “accessed” bits).

The principles underlying the examples in this section apply to individual memory 
accesses and to locked read-modify-write instructions. The Intel-64 memory-
ordering model guarantees that, for each of the following memory-access instruc-
tions, the constituent memory operation appears to execute as a single memory 
access:
• Instructions that read or write a single byte.
• Instructions that read or write a word (2 bytes) whose address is aligned on a 2 

byte boundary.
• Instructions that read or write a doubleword (4 bytes) whose address is aligned 

on a 4 byte boundary.
• Instructions that read or write a quadword (8 bytes) whose address is aligned on 

an 8 byte boundary.

Any locked instruction (either the XCHG instruction or another read-modify-write 
instruction with a LOCK prefix) appears to execute as an indivisible and uninterrupt-
ible sequence of load(s) followed by store(s) regardless of alignment.

Other instructions may be implemented with multiple memory accesses. From a 
memory-ordering point of view, there are no guarantees regarding the relative order 
in which the constituent memory accesses are made. There is also no guarantee that 
the constituent operations of a store are executed in the same order as the constit-
uent operations of a load.

Section 8.2.3.2 through Section 8.2.3.7 give examples using the MOV instruction. 
The principles that underlie these examples apply to load and store accesses in 
general and to other instructions that load from or store to memory. Section 8.2.3.8 
and Section 8.2.3.9 give examples using the XCHG instruction. The principles that 
underlie these examples apply to other locked read-modify-write instructions.

This section uses the term “processor” is to refer to a logical processor. The examples 
are written using Intel-64 assembly-language syntax and use the following nota-
tional conventions:
• Arguments beginning with an “r”, such as r1 or r2 refer to registers (e.g., EAX) 

visible only to the processor being considered.
• Memory locations are denoted with x, y, z.
• Stores are written as mov [ _x], val, which implies that val is being stored into 

the memory location x.
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• Loads are written as mov r, [ _x], which implies that the contents of the memory 
location x are being loaded into the register r.

As noted earlier, the examples refer only to software visible behavior. When the 
succeeding sections make statement such as “the two stores are reordered,” the 
implication is only that “the two stores appear to be reordered from the point of view 
of software.”

8.2.3.2  Neither Loads Nor Stores Are Reordered with Like Operations
The Intel-64 memory-ordering model allows neither loads nor stores to be reordered 
with the same kind of operation. That is, it ensures that loads are seen in program 
order and that stores are seen in program order. This is illustrated by the following 
example:

The disallowed return values could be exhibited only if processor 0’s two stores are 
reordered (with the two loads occurring between them) or if processor 1’s two loads 
are reordered (with the two stores occurring between them).

If r1 = 1, the store to y occurs before the load from y. Because the Intel-64 memory-
ordering model does not allow stores to be reordered, the earlier store to x occurs 
before the load from y. Because the Intel-64 memory-ordering model does not allow 
loads to be reordered, the store to x also occurs before the later load from x. This 
r2 = 1.

8.2.3.3  Stores Are Not Reordered With Earlier Loads
The Intel-64 memory-ordering model ensures that a store by a processor may not 
occur before a previous load by the same processor. This is illustrated by the 
following example:

Example 8-1.  Stores Are Not Reordered with Other Stores
Processor 0 Processor 1

mov [ _x], 1 mov r1, [ _y]

mov [ _y], 1 mov r2, [ _x]

Initially x = y = 0

r1 = 1 and r2 = 0 is not allowed

Example 8-2.  Stores Are Not Reordered with Older Loads
Processor 0 Processor 1

mov r1, [ _x] mov r2, [ _y]

mov [ _y], 1 mov [ _x], 1

Initially x = y = 0

r1 = 1 and r2 = 1 is not allowed
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Assume r1 = 1.
• Because r1 = 1, processor 1’s store to x occurs before processor 0’s load from x.
• Because the Intel-64 memory-ordering model prevents each store from being 

reordered with the earlier load by the same processor, processor 1’s load from y 
occurs before its store to x.

• Similarly, processor 0’s load from x occurs before its store to y.
• Thus, processor 1’s load from y occurs before processor 0’s store to y, implying 

r2 = 0.

8.2.3.4  Loads May Be Reordered with Earlier Stores to Different 
Locations

The Intel-64 memory-ordering model allows a load to be reordered with an earlier 
store to a different location. However, loads are not reordered with stores to the 
same location.

The fact that a load may be reordered with an earlier store to a different location is 
illustrated by the following example:

At each processor, the load and the store are to different locations and hence may be 
reordered. Any interleaving of the operations is thus allowed. One such interleaving 
has the two loads occurring before the two stores. This would result in each load 
returning value 0.

The fact that a load may not be reordered with an earlier store to the same location 
is illustrated by the following example:

The Intel-64 memory-ordering model does not allow the load to be reordered with 
the earlier store because the accesses are to the same location. Therefore, r1 = 1 
must hold.

Example 8-3.  Loads May be Reordered with Older Stores
Processor 0 Processor 1

mov [ _x], 1 mov [ _y], 1

mov r1, [ _y] mov r2, [ _x]

Initially x = y = 0

r1 = 0 and r2 = 0 is allowed

Example 8-4.  Loads Are not Reordered with Older Stores to the Same Location
Processor 0

mov [ _x], 1

mov r1, [ _x]

Initially x = 0

r1 = 0 is not allowed
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8.2.3.5  Intra-Processor Forwarding Is Allowed
The memory-ordering model allows concurrent stores by two processors to be seen 
in different orders by those two processors; specifically, each processor may perceive 
its own store occurring before that of the other. This is illustrated by the following 
example:

The memory-ordering model imposes no constraints on the order in which the two 
stores appear to execute by the two processors. This fact allows processor 0 to see 
its store before seeing processor 1's, while processor 1 sees its store before seeing 
processor 0's. (Each processor is self consistent.) This allows r2 = 0 and r4 = 0.

In practice, the reordering in this example can arise as a result of store-buffer 
forwarding. While a store is temporarily held in a processor's store buffer, it can 
satisfy the processor's own loads but is not visible to (and cannot satisfy) loads by 
other processors.

8.2.3.6  Stores Are Transitively Visible
The memory-ordering model ensures transitive visibility of stores; stores that are 
causally related appear to all processors to occur in an order consistent with the 
causality relation. This is illustrated by the following example:

Assume that r1 = 1 and r2 = 1.
• Because r1 = 1, processor 0’s store occurs before processor 1’s load.
• Because the memory-ordering model prevents a store from being reordered with 

an earlier load (see Section 8.2.3.3), processor 1’s load occurs before its store. 
Thus, processor 0’s store causally precedes processor 1’s store.

Example 8-5.  Intra-Processor Forwarding is Allowed
Processor 0 Processor 1

mov [ _x], 1 mov [ _y], 1

mov r1, [ _x] mov r3, [ _y]

mov r2, [ _y] mov r4, [ _x]

Initially x = y = 0

r2 = 0 and r4 = 0 is allowed

Example 8-6.  Stores Are Transitively Visible
Processor 0 Processor 1 Processor 2

mov [ _x], 1 mov r1, [ _x]

mov [ _y], 1 mov r2, [ _y]

mov r3, [_x]

Initially x = y = 0

r1 = 1, r2 = 1, r3 = 0 is not allowed
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• Because processor 0’s store causally precedes processor 1’s store, the memory-
ordering model ensures that processor 0’s store appears to occur before 
processor 1’s store from the point of view of all processors.

• Because r2 = 1, processor 1’s store occurs before processor 2’s load.
• Because the Intel-64 memory-ordering model prevents loads from being 

reordered (see Section 8.2.3.2), processor 2’s load occur in order.
• The above items imply that processor 0’s store to x occurs before processor 2’s 

load from x. This implies that r3 = 1.

8.2.3.7  Stores Are Seen in a Consistent Order by Other Processors
As noted in Section 8.2.3.5, the memory-ordering model allows stores by two 
processors to be seen in different orders by those two processors.  However, any two 
stores must appear to execute in the same order to all processors other than those 
performing the stores. This is illustrated by the following example:

By the principles discussed in Section 8.2.3.2, 
• processor 2’s first and second load cannot be reordered,
• processor 3’s first and second load cannot be reordered. 
• If r1 = 1 and r2 = 0, processor 0’s store appears to precede processor 1’s store 

with respect to processor 2. 
• Similarly, r3 = 1 and r4 = 0 imply that processor 1’s store appears to precede 

processor 0’s store with respect to processor 1. 

Because the memory-ordering model ensures that any two stores appear to execute 
in the same order to all processors (other than those performing the stores), this set 
of return values is not allowed

Example 8-7.  Stores Are Seen in a Consistent Order by Other Processors
Processor 0 Processor 1 Processor 2 Processor 3

mov [ _x], 1 mov [ _y], 1 mov r1, [ _x] mov r3, [_y] 

mov r2, [ _y] mov r4, [_x] 

Initially x = y =0

r1 = 1, r2 = 0, r3 = 1, r4 = 0 is not allowed
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8.2.3.8  Locked Instructions Have a Total Order
The memory-ordering model ensures that all processors agree on a single execution 
order of all locked instructions, including those that are larger than 8 bytes or are not 
naturally aligned. This is illustrated by the following example:

Processor 2 and processor 3 must agree on the order of the two executions of XCHG. 
Without loss of generality, suppose that processor 0’s XCHG occurs first.
• If r5 = 1, processor 1’s XCHG into y occurs before processor 3’s load from y.
• Because the Intel-64 memory-ordering model prevents loads from being 

reordered (see Section 8.2.3.2), processor 3’s loads occur in order and, 
therefore, processor 1’s XCHG occurs before processor 3’s load from x.

• Since processor 0’s XCHG into x occurs before processor 1’s XCHG (by 
assumption), it occurs before processor 3’s load from x. Thus, r6 = 1.

A similar argument (referring instead to processor 2’s loads) applies if processor 1’s 
XCHG occurs before processor 0’s XCHG.

8.2.3.9  Loads and Stores Are Not Reordered with Locked Instructions
The memory-ordering model prevents loads and stores from being reordered with 
locked instructions that execute earlier or later. The examples in this section illustrate 
only cases in which a locked instruction is executed before a load or a store. The 
reader should note that reordering is prevented also if the locked instruction is 
executed after a load or a store.

The first example illustrates that loads may not be reordered with earlier locked 
instructions:

Example 8-8.  Locked Instructions Have a Total Order
Processor 0 Processor 1 Processor 2 Processor 3

xchg [ _x], r1 xchg [ _y], r2

mov r3, [ _x] mov r5, [_y]

mov r4, [ _y] mov r6, [_x]

Initially r1 = r2 = 1, x = y = 0

r3 = 1, r4 = 0, r5 = 1, r6 = 0 is not allowed

Example 8-9.  Loads Are not Reordered with Locks
Processor 0 Processor 1

xchg [ _x], r1 xchg [ _y], r3

mov r2, [ _y] mov r4, [ _x]

Initially x = y = 0, r1 = r3 = 1

r2 = 0 and r4 = 0 is not allowed
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As explained in Section 8.2.3.8, there is a total order of the executions of locked 
instructions. Without loss of generality, suppose that processor 0’s XCHG occurs first.

Because the Intel-64 memory-ordering model prevents processor 1’s load from 
being reordered with its earlier XCHG, processor 0’s XCHG occurs before 
processor 1’s load. This implies r4 = 1.

A similar argument (referring instead to processor 2’s accesses) applies if 
processor 1’s XCHG occurs before processor 0’s XCHG.

The second example illustrates that a store may not be reordered with an earlier 
locked instruction:

Assume r2 = 1.
• Because r2 = 1, processor 0’s store to y occurs before processor 1’s load from y.
• Because the memory-ordering model prevents a store from being reordered with 

an earlier locked instruction, processor 0’s XCHG into x occurs before its store to 
y. Thus, processor 0’s XCHG into x occurs before processor 1’s load from y.

• Because the memory-ordering model prevents loads from being reordered (see 
Section 8.2.3.2), processor 1’s loads occur in order and, therefore, processor 1’s 
XCHG into x occurs before processor 1’s load from x. Thus, r3 = 1.

8.2.4 Fast-String Operation and Out-of-Order Stores
Section 7.3.9.3 of Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 1 described an optimization of repeated string operations called fast-string 
operation.

As explained in that section, the stores produced by fast-string operation may appear 
to execute out of order. Software dependent upon sequential store ordering should 
not use string operations for the entire data structure to be stored. Data and sema-
phores should be separated. Order-dependent code should write to a discrete sema-
phore variable after any string operations to allow correctly ordered data to be seen 
by all processors. Atomicity of load and store operations is guaranteed only for native 
data elements of the string with native data size, and only if they are included in a 
single cache line.

Section 8.2.4.1 and Section 8.2.4.2 provide further explain and examples.

Example 8-10.  Stores Are not Reordered with Locks
Processor 0 Processor 1

xchg [ _x], r1 mov r2, [ _y]

mov [ _y], 1 mov r3, [ _x]

Initially x = y = 0, r1 = 1

r2 = 1 and r3 = 0 is not allowed
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8.2.4.1  Memory-Ordering Model for String Operations on Write-Back (WB) 
Memory

This section deals with the memory-ordering model for string operations on write-
back (WB) memory for the Intel 64 architecture. 

The memory-ordering model respects the follow principles:

1. Stores within a single string operation may be executed out of order.

2. Stores from separate string operations (for example, stores from consecutive 
string operations) do not execute out of order. All the stores from an earlier string 
operation will complete before any store from a later string operation. 

3. String operations are not reordered with other store operations.

Fast string operations (e.g. string operations initiated with the MOVS/STOS instruc-
tions and the REP prefix) may be interrupted by exceptions or interrupts. The inter-
rupts are precise but may be delayed - for example, the interruptions may be taken 
at cache line boundaries, after every few iterations of the loop, or after operating on 
every few bytes. Different implementations may choose different options, or may 
even choose not to delay interrupt handling, so software should not rely on the delay. 
When the interrupt/trap handler is reached, the source/destination registers point to 
the next string element to be operated on, while the EIP stored in the stack points to 
the string instruction, and the ECX register has the value it held following the last 
successful iteration. The return from that trap/interrupt handler should cause the 
string instruction to be resumed from the point where it was interrupted.

The string operation memory-ordering principles, (item 2 and 3 above) should be 
interpreted by taking the incorruptibility of fast string operations into account. For 
example, if a fast string operation gets interrupted after k iterations, then stores 
performed by the interrupt handler will become visible after the fast string stores 
from iteration 0 to k, and before the fast string stores from the (k+1)th iteration 
onward. 

Stores within a single string operation may execute out of order (item 1 above) only 
if fast string operation is enabled. Fast string operations are enabled/disabled 
through the IA32_MISC_ENABLE model specific register. 

8.2.4.2  Examples Illustrating Memory-Ordering Principles for String 
Operations

The following examples uses the same notation and convention as described in 
Section 8.2.3.1.

In Example 8-11, processor 0 does one round of (128 iterations) doubleword string 
store operation via rep:stosd, writing the value 1 (value in EAX) into a block of 512 
bytes from location _x (kept in ES:EDI) in ascending order. Since each operation 
stores a doubleword (4 bytes), the operation is repeated 128 times (value in ECX). 
The block of memory initially contained 0. Processor 1 is reading two memory loca-
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tions that are part of the memory block being updated by processor 0, i.e, reading 
locations in the range _x to (_x+511).

It is possible for processor 1 to perceive that the repeated string stores in processor 
0 are happening out of order. Assume that fast string operations are enabled on 
processor 0.

In Example 8-12, processor 0 does two separate rounds of rep stosd operation of 128 
doubleword stores, writing the value 1 (value in EAX) into the first block of 512 bytes 
from location _x (kept in ES:EDI) in ascending order. It then writes 1 into a second 
block of memory from (_x+512) to (_x+1023). All of the memory locations initially 
contain 0. The block of memory initially contained 0. Processor 1 performs two load 
operations from the two blocks of memory.

It is not possible in the above example for processor 1 to perceive any of the stores 
from the later string operation (to the second 512 block) in processor 0 before seeing 
the stores from the earlier string operation to the first 512 block. 

The above example assumes that writes to the second block (_x+512 to _x+1023) 
does not get executed while processor 0’s string operation to the first block has been 
interrupted. If the string operation to the first block by processor 0 is interrupted, 
and a write to the second memory block is executed by the interrupt handler, then 

Example 8-11.  Stores Within a String Operation May be Reordered
Processor 0 Processor 1

rep:stosd [ _x] mov r1, [ _z]

mov r2, [ _y]

Initially on processor 0: EAX = 1, ECX=128, ES:EDI =_x 

Initially [_x] to 511[_x]= 0, _x <= _y < _z < _x+512

r1 = 1 and r2 = 0 is allowed

Example 8-12.  Stores Across String Operations Are not Reordered
Processor 0 Processor 1

rep:stosd [ _x]

mov r1, [ _z]

mov ecx, $128

mov r2, [ _y]

rep:stosd 512[ _x]

Initially on processor 0: EAX = 1, ECX=128, ES:EDI =_x 

Initially [_x] to 1023[_x]= 0, _x <= _y < _x+512 < _z < _x+1024

r1 = 1 and r2 = 0 is not allowed
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that change in the second memory block will be visible before the string operation to 
the first memory block resumes.

In Example 8-13, processor 0 does one round of (128 iterations) doubleword string 
store operation via rep:stosd, writing the value 1 (value in EAX) into a block of 512 
bytes from location _x (kept in ES:EDI) in ascending order. It then writes to a second 
memory location outside the memory block of the previous string operation. 
Processor 1 performs two read operations, the first read is from an address outside 
the 512-byte block but to be updated by processor 0, the second ready is from inside 
the block of memory of string operation.

Processor 1 cannot perceive the later store by processor 0 until it sees all the stores 
from the string operation. Example 8-13 assumes that processor 0’s store to [_z] is 
not executed while the string operation has been interrupted. If the string operation 
is interrupted and the store to [_z] by processor 0 is executed by the interrupt 
handler, then changes to [_z] will become visible before the string operation 
resumes. 

Example 8-14 illustrates the visibility principle when a string operation is interrupted. 

In Example 8-14, processor 0 started a string operation to write to a memory block 
of 512 bytes starting at address _x. Processor 0 got interrupted after k iterations of 
store operations. The address _y has not yet been updated by processor 0 when 
processor 0 got interrupted. The interrupt handler that took control on processor 0 
writes to the address _z. Processor 1 may see the store to _z from the interrupt 

Example 8-13.  String Operations Are not Reordered with later Stores
Processor 0 Processor 1

rep:stosd [ _x] mov r1, [ _z]

mov [_z], $1 mov r2, [ _y]

Initially on processor 0: EAX = 1, ECX=128, ES:EDI =_x 

Initially [_y] = [_z] = 0, [_x] to 511[_x]= 0, _x <= _y < _x+512, _z is a separate memory location

r1 = 1 and r2 = 0 is not allowed

Example 8-14.  Interrupted String Operation
Processor 0 Processor 1

rep:stosd [ _x] // interrupted before es:edi reach 
_y

mov r1, [ _z]

mov [_z], $1 // interrupt handler mov r2, [ _y]

Initially on processor 0: EAX = 1, ECX=128, ES:EDI =_x 

Initially [_y] = [_z] = 0, [_x] to 511[_x]= 0, _x <= _y < _x+512, _z is a separate memory location

r1 = 1 and r2 = 0 is allowed
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handler, before seeing the remaining stores to the 512-byte memory block that are 
executed when the string operation resumes.

Example 8-15 illustrates the ordering of string operations with earlier stores. No 
store from a string operation can be visible before all prior stores are visible.

8.2.5 Strengthening or Weakening the Memory-Ordering Model
The Intel 64 and IA-32 architectures provide several mechanisms for strengthening 
or weakening the memory-ordering model to handle special programming situations. 
These mechanisms include:
• The I/O instructions, locking instructions, the LOCK prefix, and serializing 

instructions force stronger ordering on the processor.
• The SFENCE instruction (introduced to the IA-32 architecture in the Pentium III 

processor) and the LFENCE and MFENCE instructions (introduced in the Pentium 
4 processor) provide memory-ordering and serialization capabilities for specific 
types of memory operations.

• The memory type range registers (MTRRs) can be used to strengthen or weaken 
memory ordering for specific area of physical memory (see Section 11.11, 
“Memory Type Range Registers (MTRRs)”). MTRRs are available only in the 
Pentium 4, Intel Xeon, and P6 family processors. 

• The page attribute table (PAT) can be used to strengthen memory ordering for a 
specific page or group of pages (see Section 11.12, “Page Attribute Table (PAT)”). 
The PAT is available only in the Pentium 4, Intel Xeon, and Pentium III processors. 

These mechanisms can be used as follows:

Memory mapped devices and other I/O devices on the bus are often sensitive to the 
order of writes to their I/O buffers. I/O instructions can be used to (the IN and OUT 
instructions) impose strong write ordering on such accesses as follows. Prior to 
executing an I/O instruction, the processor waits for all previous instructions in the 
program to complete and for all buffered writes to drain to memory. Only instruction 
fetch and page tables walks can pass I/O instructions. Execution of subsequent 

Example 8-15.  String Operations Are not Reordered with Earlier Stores
Processor 0 Processor 1

mov [_z], $1 mov r1, [ _y]

rep:stosd [ _x] mov r2, [ _z]

Initially on processor 0: EAX = 1, ECX=128, ES:EDI =_x 

Initially [_y] = [_z] = 0, [_x] to 511[_x]= 0, _x <= _y < _x+512, _z is a separate memory location

r1 = 1 and r2 = 0 is not allowed
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instructions do not begin until the processor determines that the I/O instruction has 
been completed.

Synchronization mechanisms in multiple-processor systems may depend upon a 
strong memory-ordering model. Here, a program can use a locking instruction such 
as the XCHG instruction or the LOCK prefix to ensure that a read-modify-write oper-
ation on memory is carried out atomically. Locking operations typically operate like 
I/O operations in that they wait for all previous instructions to complete and for all 
buffered writes to drain to memory (see Section 8.1.2, “Bus Locking”).

Program synchronization can also be carried out with serializing instructions (see 
Section 8.3). These instructions are typically used at critical procedure or task 
boundaries to force completion of all previous instructions before a jump to a new 
section of code or a context switch occurs. Like the I/O and locking instructions, the 
processor waits until all previous instructions have been completed and all buffered 
writes have been drained to memory before executing the serializing instruction.

The SFENCE, LFENCE, and MFENCE instructions provide a performance-efficient way 
of ensuring load and store memory ordering between routines that produce weakly-
ordered results and routines that consume that data. The functions of these instruc-
tions are as follows:
• SFENCE — Serializes all store (write) operations that occurred prior to the 

SFENCE instruction in the program instruction stream, but does not affect load 
operations.

• LFENCE — Serializes all load (read) operations that occurred prior to the LFENCE 
instruction in the program instruction stream, but does not affect store 
operations.1

• MFENCE — Serializes all store and load operations that occurred prior to the 
MFENCE instruction in the program instruction stream.

Note that the SFENCE, LFENCE, and MFENCE instructions provide a more efficient 
method of controlling memory ordering than the CPUID instruction.

The MTRRs were introduced in the P6 family processors to define the cache charac-
teristics for specified areas of physical memory. The following are two examples of 
how memory types set up with MTRRs can be used strengthen or weaken memory 
ordering for the Pentium 4, Intel Xeon, and P6 family processors:
• The strong uncached (UC) memory type forces a strong-ordering model on 

memory accesses. Here, all reads and writes to the UC memory region appear on 
the bus and out-of-order or speculative accesses are not performed. This 

1. Specifically, LFENCE does not execute until all prior instructions have completed locally, and no 
later instruction begins execution until LFENCE completes. As a result, an instruction that loads 
from memory and that precedes an LFENCE receives data from memory prior to completion of 
the LFENCE. An LFENCE that follows an instruction that stores to memory might complete before 
the data being stored have become globally visible. Instructions following an LFENCE may be 
fetched from memory before the LFENCE, but they will not execute until the LFENCE completes.
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memory type can be applied to an address range dedicated to memory mapped 
I/O devices to force strong memory ordering.

• For areas of memory where weak ordering is acceptable, the write back (WB) 
memory type can be chosen. Here, reads can be performed speculatively and 
writes can be buffered and combined. For this type of memory, cache locking is 
performed on atomic (locked) operations that do not split across cache lines, 
which helps to reduce the performance penalty associated with the use of the 
typical synchronization instructions, such as XCHG, that lock the bus during the 
entire read-modify-write operation. With the WB memory type, the XCHG 
instruction locks the cache instead of the bus if the memory access is contained 
within a cache line.

The PAT was introduced in the Pentium III processor to enhance the caching charac-
teristics that can be assigned to pages or groups of pages. The PAT mechanism typi-
cally used to strengthen caching characteristics at the page level with respect to the 
caching characteristics established by the MTRRs. Table 11-7 shows the interaction of 
the PAT with the MTRRs.

Intel recommends that software written to run on Intel Core 2 Duo, Intel Atom, Intel 
Core Duo, Pentium 4, Intel Xeon, and P6 family processors assume the processor-
ordering model or a weaker memory-ordering model. The Intel Core 2 Duo, Intel 
Atom, Intel Core Duo, Pentium 4, Intel Xeon, and P6 family processors do not imple-
ment a strong memory-ordering model, except when using the UC memory type. 
Despite the fact that Pentium 4, Intel Xeon, and P6 family processors support 
processor ordering, Intel does not guarantee that future processors will support this 
model. To make software portable to future processors, it is recommended that oper-
ating systems provide critical region and resource control constructs and API’s (appli-
cation program interfaces) based on I/O, locking, and/or serializing instructions be 
used to synchronize access to shared areas of memory in multiple-processor 
systems. Also, software should not depend on processor ordering in situations where 
the system hardware does not support this memory-ordering model.

8.3 SERIALIZING INSTRUCTIONS
The Intel 64 and IA-32 architectures define several serializing instructions. These 
instructions force the processor to complete all modifications to flags, registers, and 
memory by previous instructions and to drain all buffered writes to memory before 
the next instruction is fetched and executed. For example, when a MOV to control 
register instruction is used to load a new value into control register CR0 to enable 
protected mode, the processor must perform a serializing operation before it enters 
protected mode. This serializing operation ensures that all operations that were 
started while the processor was in real-address mode are completed before the 
switch to protected mode is made.

The concept of serializing instructions was introduced into the IA-32 architecture 
with the Pentium processor to support parallel instruction execution. Serializing 
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instructions have no meaning for the Intel486 and earlier processors that do not 
implement parallel instruction execution.

It is important to note that executing of serializing instructions on P6 and more 
recent processor families constrain speculative execution because the results of 
speculatively executed instructions are discarded. The following instructions are seri-
alizing instructions:
• Privileged serializing instructions — INVD, INVEPT, INVLPG, INVVPID, LGDT, 

LIDT, LLDT, LTR, MOV (to control register, with the exception of MOV CR82), MOV 
(to debug register), WBINVD, and WRMSR3.

• Non-privileged serializing instructions — CPUID, IRET, and RSM.

When the processor serializes instruction execution, it ensures that all pending 
memory transactions are completed (including writes stored in its store buffer) 
before it executes the next  instruction. Nothing can pass a serializing instruction and 
a serializing instruction cannot pass any other instruction (read, write, instruction 
fetch, or I/O). For example, CPUID can be executed at any privilege level to serialize 
instruction execution with no effect on program flow, except that the EAX, EBX, ECX, 
and EDX registers are modified.

The following instructions are memory-ordering instructions, not serializing instruc-
tions. These drain the data memory subsystem. They do not serialize the instruction 
execution stream:4

• Non-privileged memory-ordering instructions — SFENCE, LFENCE, and 
MFENCE.

The SFENCE, LFENCE, and MFENCE instructions provide more granularity in control-
ling the serialization of memory loads and stores (see Section 8.2.5, “Strengthening 
or Weakening the Memory-Ordering Model”).

The following additional information is worth noting regarding serializing instruc-
tions:
• The processor does not write back the contents of modified data in its data cache 

to external memory when it serializes instruction execution. Software can force 
modified data to be written back by executing the WBINVD instruction, which is a 
serializing instruction. The amount of time or cycles for WBINVD to complete will 
vary due to the size of different cache hierarchies and other factors. As a conse-
quence, the use of the WBINVD instruction can have an impact on 
interrupt/event response time.

2. MOV CR8 is not defined architecturally as a serializing instruction.

3. WRMSR to the IA32_TSC_DEADLINE MSR (MSR index 6E0H) and the X2APIC MSRs (MSR indices 
802H to 83FH) are not serializing.

4. LFENCE does provide some guarantees on instruction ordering. It does not execute until all prior 
instructions have completed locally, and no later instruction begins execution until LFENCE com-
pletes.
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• When an instruction is executed that enables or disables paging (that is, changes 
the PG flag in control register CR0), the instruction should be followed by a jump 
instruction. The target instruction of the jump instruction is fetched with the new 
setting of the PG flag (that is, paging is enabled or disabled), but the jump 
instruction itself is fetched with the previous setting. The Pentium 4, Intel Xeon, 
and P6 family processors do not require the jump operation following the move to 
register CR0 (because any use of the MOV instruction in a Pentium 4, Intel Xeon, 
or P6 family processor to write to CR0 is completely serializing). However, to 
maintain backwards and forward compatibility with code written to run on other 
IA-32 processors, it is recommended that the jump operation be performed.

• Whenever an instruction is executed to change the contents of CR3 while paging 
is enabled, the next instruction is fetched using the translation tables that 
correspond to the new value of CR3. Therefore the next instruction and the 
sequentially following instructions should have a mapping based upon the new 
value of CR3. (Global entries in the TLBs are not invalidated, see Section 4.10.4, 
“Invalidation of TLBs and Paging-Structure Caches.”)

• The Pentium processor and more recent processor families use branch-prediction 
techniques to improve performance by prefetching the destination of a branch 
instruction before the branch instruction is executed. Consequently, instruction 
execution is not deterministically serialized when a branch instruction is 
executed.

8.4 MULTIPLE-PROCESSOR (MP) INITIALIZATION
The IA-32 architecture (beginning with the P6 family processors) defines a multiple-
processor (MP) initialization protocol called the Multiprocessor Specification Version 
1.4. This specification defines the boot protocol to be used by IA-32 processors in 
multiple-processor systems. (Here, multiple processors is defined as two or more 
processors.) The MP initialization protocol has the following important features:
• It supports controlled booting of multiple processors without requiring dedicated 

system hardware.
• It allows hardware to initiate the booting of a system without the need for a 

dedicated signal or a predefined boot processor.
• It allows all IA-32 processors to be booted in the same manner, including those 

supporting Intel Hyper-Threading Technology.
• The MP initialization protocol also applies to MP systems using Intel 64 

processors.

The mechanism for carrying out the MP initialization protocol differs depending on 
the IA-32 processor family, as follows:
• For P6 family processors — The selection of the BSP and APs (see Section 

8.4.1, “BSP and AP Processors”) is handled through arbitration on the APIC bus, 
using BIPI and FIPI messages. See Section 8.11.1, “Overview of the MP Initial-
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ization Process For P6 Family Processors” for a complete discussion of MP initial-
ization for P6 family processors.

• Intel Xeon processors with family, model, and stepping IDs up to F09H — 
The selection of the BSP and APs (see Section 8.4.1, “BSP and AP Processors”) is 
handled through arbitration on the system bus, using BIPI and FIPI messages 
(see Section 8.4.3, “MP Initialization Protocol Algorithm for 
Intel Xeon Processors”).

• Intel Xeon processors with family, model, and stepping IDs of F0AH and 
beyond, 6E0H and beyond, 6F0H and beyond — The selection of the BSP and 
APs is handled through a special system bus cycle, without using BIPI and FIPI 
message arbitration (see Section 8.4.3, “MP Initialization Protocol Algorithm for 
Intel Xeon Processors”).

The family, model, and stepping ID for a processor is given in the EAX register when 
the CPUID instruction is executed with a value of 1 in the EAX register.

8.4.1 BSP and AP Processors
The MP initialization protocol defines two classes of processors: the bootstrap 
processor (BSP) and the application processors (APs). Following a power-up or 
RESET of an MP system, system hardware dynamically selects one of the processors 
on the system bus as the BSP. The remaining processors are designated as APs.

As part of the BSP selection mechanism, the BSP flag is set in the IA32_APIC_BASE 
MSR (see Figure 10-5) of the BSP, indicating that it is the BSP. This flag is cleared for 
all other processors. 

The BSP executes the BIOS’s boot-strap code to configure the APIC environment, 
sets up system-wide data structures, and starts and initializes the APs. When the BSP 
and APs are initialized, the BSP then begins executing the operating-system initial-
ization code.

Following a power-up or reset, the APs complete a minimal self-configuration, then 
wait for a startup signal (a SIPI message) from the BSP processor. Upon receiving a 
SIPI message, an AP executes the BIOS AP configuration code, which ends with the 
AP being placed in halt state.

For Intel 64 and IA-32 processors supporting Intel Hyper-Threading Technology, the 
MP initialization protocol treats each of the logical processors on the system bus or 
coherent link domain as a separate processor (with a unique APIC ID). During boot-
up, one of the logical processors is selected as the BSP and the remainder of the 
logical processors are designated as APs.

8.4.2 MP Initialization Protocol Requirements and Restrictions
The MP initialization protocol imposes the following requirements and restrictions on 
the system:
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• The MP protocol is executed only after a power-up or RESET. If the MP protocol 
has completed and a BSP is chosen, subsequent INITs (either to a specific 
processor or system wide) do not cause the MP protocol to be repeated. Instead, 
each logical processor examines its BSP flag (in the IA32_APIC_BASE MSR) to 
determine whether it should execute the BIOS boot-strap code (if it is the BSP) or 
enter a wait-for-SIPI state (if it is an AP).

• All devices in the system that are capable of delivering interrupts to the 
processors must be inhibited from doing so for the duration of the MP initial-
ization protocol. The time during which interrupts must be inhibited includes the 
window between when the BSP issues an INIT-SIPI-SIPI sequence to an AP and 
when the AP responds to the last SIPI in the sequence.

8.4.3 MP Initialization Protocol Algorithm for 
Intel Xeon Processors

Following a power-up or RESET of an MP system, the processors in the system 
execute the MP initialization protocol algorithm to initialize each of the logical proces-
sors on the system bus or coherent link domain. In the course of executing this algo-
rithm, the following boot-up and initialization operations are carried out:

1. Each logical processor is assigned a unique APIC ID, based on system topology. 
The unique ID is a 32-bit value if the processor supports CPUID leaf 0BH, 
otherwise the unique ID is an 8-bit value. (see Section 8.4.5, “Identifying Logical 
Processors in an MP System”). This ID is written into the local APIC ID register for 
each processor.

2. Each logical processor is assigned a unique arbitration priority based on its 
APIC ID.

3. Each logical processor executes its internal BIST simultaneously with the other 
logical processors on the system bus. 

4. Upon completion of the BIST, the logical processors use a hardware-defined 
selection mechanism to select the BSP and the APs from the available logical 
processors on the system bus. The BSP selection mechanism differs depending 
on the family, model, and stepping IDs of the processors, as follows: 

— Family, model, and stepping IDs of F0AH and onwards:

• The logical processors begin monitoring the BNR# signal, which is 
toggling. When the BNR# pin stops toggling, each processor attempts to 
issue a NOP special cycle on the system bus. 

• The logical processor with the highest arbitration priority succeeds in 
issuing a NOP special cycle and is nominated the BSP. This processor sets 
the BSP flag in its IA32_APIC_BASE MSR, then fetches and begins 
executing BIOS boot-strap code, beginning at the reset vector (physical 
address FFFF FFF0H).
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• The remaining logical processors (that failed in issuing a NOP special 
cycle) are designated as APs. They leave their BSP flags in the clear state 
and enter a “wait-for-SIPI state.”

— Family, model, and stepping IDs up to F09H:

• Each processor broadcasts a BIPI to “all including self.” The first processor 
that broadcasts a BIPI (and thus receives its own BIPI vector), selects 
itself as the BSP and sets the BSP flag in its IA32_APIC_BASE MSR. (See 
Section 8.11.1, “Overview of the MP Initialization Process For P6 Family 
Processors” for a description of the BIPI, FIPI, and SIPI messages.)

• The remainder of the processors (which were not selected as the BSP) are 
designated as APs. They leave their BSP flags in the clear state and enter 
a “wait-for-SIPI state.”

• The newly established BSP broadcasts an FIPI message to “all including 
self,” which the BSP and APs treat as an end of MP initialization signal. 
Only the processor with its BSP flag set responds to the FIPI message. It 
responds by fetching and executing the BIOS boot-strap code, beginning 
at the reset vector (physical address FFFF FFF0H).

5. As part of the boot-strap code, the BSP creates an ACPI table and an MP table and 
adds its initial APIC ID to these tables as appropriate. 

6. At the end of the boot-strap procedure, the BSP sets a processor counter to 1, 
then broadcasts a SIPI message to all the APs in the system. Here, the SIPI 
message contains a vector to the BIOS AP initialization code (at 000VV000H, 
where VV is the vector contained in the SIPI message).

7. The first action of the AP initialization code is to set up a race (among the APs) to 
a BIOS initialization semaphore. The first AP to the semaphore begins executing 
the initialization code. (See Section 8.4.4, “MP Initialization Example,” for 
semaphore implementation details.) As part of the AP initialization procedure, 
the AP adds its APIC ID number to the ACPI and MP tables as appropriate and 
increments the processor counter by 1. At the completion of the initialization 
procedure, the AP executes a CLI instruction and halts itself.

8. When each of the APs has gained access to the semaphore and executed the AP 
initialization code, the BSP establishes a count for the number of processors 
connected to the system bus, completes executing the BIOS boot-strap code, 
and then begins executing operating-system boot-strap and start-up code.

9. While the BSP is executing operating-system boot-strap and start-up code, the 
APs remain in the halted state. In this state they will respond only to INITs, NMIs, 
and SMIs. They will also respond to snoops and to assertions of the STPCLK# pin.

The following section gives an example (with code) of the MP initialization protocol 
for multiple Intel Xeon processors operating in an MP configuration.

Chapter 34, “Model-Specific Registers (MSRs),” describes how to program the 
LINT[0:1] pins of the processor’s local APICs after an MP configuration has been 
completed.
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8.4.4 MP Initialization Example
The following example illustrates the use of the MP initialization protocol used to 
initialize processors in an MP system after the BSP and APs have been established. 
The code runs on Intel 64 or IA-32 processors that use a protocol. This includes P6 
Family processors, Pentium 4 processors, Intel Core Duo, Intel Core 2 Duo and Intel 
Xeon processors.

The following constants and data definitions are used in the accompanying 
code examples. They are based on the addresses of the APIC registers defined in 
Table 10-1.

ICR_LOW EQU 0FEE00300H
SVR EQU 0FEE000F0H
APIC_ID EQU 0FEE00020H
LVT3 EQU 0FEE00370H
APIC_ENABLED EQU 0100H
BOOT_ID DD ?
COUNT EQU 00H
VACANT EQU 00H

8.4.4.1  Typical BSP Initialization Sequence
After the BSP and APs have been selected (by means of a hardware protocol, see 
Section 8.4.3, “MP Initialization Protocol Algorithm for Intel Xeon Processors”), the 
BSP begins executing BIOS boot-strap code (POST) at the normal IA-32 architecture 
starting address (FFFF FFF0H). The boot-strap code typically performs the following 
operations:

1. Initializes memory.

2. Loads the microcode update into the processor.

3. Initializes the MTRRs.

4. Enables the caches.

5. Executes the CPUID instruction with a value of 0H in the EAX register, then reads 
the EBX, ECX, and EDX registers to determine if the BSP is “GenuineIntel.”

6. Executes the CPUID instruction with a value of 1H in the EAX register, then saves 
the values in the EAX, ECX, and EDX registers in a system configuration space in 
RAM for use later.

7. Loads start-up code for the AP to execute into a 4-KByte page in the lower 1 
MByte of memory.

8. Switches to protected mode and ensures that the APIC address space is mapped 
to the strong uncacheable (UC) memory type.

9. Determine the BSP’s APIC ID from the local APIC ID register (default is 0), the 
code snippet below is an example that applies to logical processors in a system 
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whose local APIC units operate in xAPIC mode that APIC registers are accessed 
using memory mapped interface:

MOV ESI, APIC_ID; Address of local APIC ID register
MOV EAX, [ESI];
AND EAX, 0FF000000H; Zero out all other bits except APIC ID
MOV BOOT_ID, EAX; Save in memory

Saves the APIC ID in the ACPI and MP tables and optionally in the system config-
uration space in RAM.

10. Converts the base address of the 4-KByte page for the AP’s bootup code into 8-bit 
vector. The 8-bit vector defines the address of a 4-KByte page in the real-address 
mode address space (1-MByte space). For example, a vector of 0BDH specifies a 
start-up memory address of 000BD000H. 

11. Enables the local APIC by setting bit 8 of the APIC spurious vector register (SVR).

MOV ESI, SVR; Address of SVR
MOV EAX, [ESI];
OR  EAX, APIC_ENABLED; Set bit 8 to enable (0 on reset)
MOV [ESI], EAX;

12. Sets up the LVT error handling entry by establishing an 8-bit vector for the APIC 
error handler.

MOV ESI, LVT3;
MOV EAX, [ESI];
AND EAX, FFFFFF00H; Clear out previous vector.
OR EAX, 000000xxH; xx is the 8-bit vector the APIC error handler. 
MOV [ESI], EAX;

13. Initializes the Lock Semaphore variable VACANT to 00H. The APs use this 
semaphore to determine the order in which they execute BIOS AP initialization 
code.

14. Performs the following operation to set up the BSP to detect the presence of APs 
in the system and the number of processors:

— Sets the value of the COUNT variable to 1.

— Starts a timer (set for an approximate interval of 100 milliseconds). In the AP 
BIOS initialization code, the AP will increment the COUNT variable to indicate 
its presence. When the timer expires, the BSP checks the value of the COUNT 
variable. If the timer expires and the COUNT variable has not been incre-
mented, no APs are present or some error has occurred.

15. Broadcasts an INIT-SIPI-SIPI IPI sequence to the APs to wake them up and 
initialize them:

MOV ESI, ICR_LOW; Load address of ICR low dword into ESI.
MOV EAX, 000C4500H; Load ICR encoding for broadcast INIT IPI 
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; to all APs into EAX.
MOV [ESI], EAX; Broadcast INIT IPI to all APs
; 10-millisecond delay loop.
MOV EAX, 000C46XXH; Load ICR encoding for broadcast SIPI IP
; to all APs into EAX, where xx is the vector computed in step 10.
MOV [ESI], EAX; Broadcast SIPI IPI to all APs
; 200-microsecond delay loop
MOV [ESI], EAX; Broadcast second SIPI IPI to all APs
; 200-microsecond delay loop

Step 15:
MOV EAX, 000C46XXH; Load ICR encoding from broadcast SIPI IP
; to all APs into EAX where xx is the vector computed in step 8.

16. Waits for the timer interrupt.

17. Reads and evaluates the COUNT variable and establishes a processor count.

18. If necessary, reconfigures the APIC and continues with the remaining system 
diagnostics as appropriate.

8.4.4.2  Typical AP Initialization Sequence
When an AP receives the SIPI, it begins executing BIOS AP initialization code at the 
vector encoded in the SIPI. The AP initialization code typically performs the following 
operations:

1. Waits on the BIOS initialization Lock Semaphore. When control of the semaphore 
is attained, initialization continues.

2. Loads the microcode update into the processor.

3. Initializes the MTRRs (using the same mapping that was used for the BSP).

4. Enables the cache.

5. Executes the CPUID instruction with a value of 0H in the EAX register, then reads 
the EBX, ECX, and EDX registers to determine if the AP is “GenuineIntel.”

6. Executes the CPUID instruction with a value of 1H in the EAX register, then saves 
the values in the EAX, ECX, and EDX registers in a system configuration space in 
RAM for use later.

7. Switches to protected mode and ensures that the APIC address space is mapped 
to the strong uncacheable (UC) memory type.

8. Determines the AP’s APIC ID from the local APIC ID register, and adds it to the MP 
and ACPI tables and optionally to the system configuration space in RAM.

9. Initializes and configures the local APIC by setting bit 8 in the SVR register and 
setting up the LVT3 (error LVT) for error handling (as described in steps 9 and 10 
in Section 8.4.4.1, “Typical BSP Initialization Sequence”).
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10. Configures the APs SMI execution environment. (Each AP and the BSP must have 
a different SMBASE address.)

11. Increments the COUNT variable by 1.

12. Releases the semaphore.

13. Executes the CLI and HLT instructions.

14. Waits for an INIT IPI.

8.4.5 Identifying Logical Processors in an MP System
After the BIOS has completed the MP initialization protocol, each logical processor 
can be uniquely identified by its local APIC ID. Software can access these APIC IDs in 
either of the following ways:
• Read APIC ID for a local APIC — Code running on a logical processor can read 

APIC ID in one of two ways depending on the local APIC unit is operating in 
x2APIC mode (see Intel® 64 Architecture x2APIC Specification)or in xAPIC 
mode:

— If the local APIC unit supports x2APIC and is operating in x2APIC mode, 32-
bit APIC ID can be read by executing a RDMSR instruction to read the 
processor’s x2APIC ID register. This method is equivalent to executing CPUID 
leaf 0BH described below.

— If the local APIC unit is operating in xAPIC mode, 8-bit APIC ID can be read by 
executing a MOV instruction to read the processor’s local APIC ID register 
(see Section 10.4.6, “Local APIC ID”). This is the ID to use for directing 
physical destination mode interrupts to the processor.

• Read ACPI or MP table — As part of the MP initialization protocol, the BIOS 
creates an ACPI table and an MP table. These tables are defined in the Multipro-
cessor Specification Version 1.4 and provide software with a list of the processors 
in the system and their local APIC IDs. The format of the ACPI table is derived 
from the ACPI specification, which is an industry standard power management 
and platform configuration specification for MP systems.

• Read Initial APIC ID (If the process does not support CPUID leaf 0BH) — An 
APIC ID is assigned to a logical processor during power up. This is the initial APIC 
ID reported by CPUID.1:EBX[31:24] and may be different from the current value 
read from the local APIC. The initial APIC ID can be used to determine the 
topological relationship between logical processors for multi-processor systems 
that do not support CPUID leaf 0BH.
Bits in the 8-bit initial APIC ID can be interpreted using several bit masks. Each 
bit mask can be used to extract an identifier to represent a hierarchical level of 
the multi-threading resource topology in an MP system (See Section 8.9.1, 
“Hierarchical Mapping of Shared Resources”). The initial APIC ID may consist of 
up to four bit-fields. In a non-clustered MP system, the field consists of up to 
three bit fields. 
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• Read 32-bit APIC ID from CPUID leaf 0BH (If the processor supports CPUID 
leaf 0BH) — A unique APIC ID is assigned to a logical processor during power up. 
This APIC ID is reported by CPUID.0BH:EDX[31:0] as a 32-bit value. Use the 32-
bit APIC ID and CPUID leaf 0BH to determine the topological relationship between 
logical processors if the processor supports CPUID leaf 0BH.
Bits in the 32-bit x2APIC ID can be extracted into sub-fields using CPUID leaf 0BH 
parameters. (See Section 8.9.1, “Hierarchical Mapping of Shared Resources”). 

Figure 8-2 shows two examples of APIC ID bit fields in earlier single-core processors. 
In single-core Intel Xeon processors, the APIC ID assigned to a logical processor 
during power-up and initialization is 8 bits. Bits 2:1 form a 2-bit physical package 
identifier (which can also be thought of as a socket identifier). In systems that 
configure physical processors in clusters, bits 4:3 form a 2-bit cluster ID. Bit 0 is used 
in the Intel Xeon processor MP to identify the two logical processors within the 
package (see Section 8.9.3, “Hierarchical ID of Logical Processors in an MP System”). 
For Intel Xeon processors that do not support Intel Hyper-Threading Technology, bit 
0 is always set to 0; for Intel Xeon processors supporting Intel Hyper-Threading 
Technology, bit 0 performs the same function as it does for Intel Xeon processor MP. 

For more recent multi-core processors, see Section 8.9.1, “Hierarchical Mapping of 
Shared Resources” for a complete description of the topological relationships 
between logical processors and bit field locations within an initial APIC ID across Intel 
64 and IA-32 processor families.

Note the number of bit fields and the width of bit-fields are dependent on processor 
and platform hardware capabilities. Software should determine these at runtime. 
When initial APIC IDs are assigned to logical processors, the value of APIC ID 
assigned to a logical processor will respect the bit-field boundaries corresponding 
core, physical package, etc. Additional examples of the bit fields in the initial APIC ID 
of multi-threading capable systems are shown in Section 8.9.
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For P6 family processors, the APIC ID that is assigned to a processor during power-
up and initialization is 4 bits (see Figure 8-2). Here, bits 0 and 1 form a 2-bit 
processor (or socket) identifier and bits 2 and 3 form a 2-bit cluster ID. 

8.5 INTEL® HYPER-THREADING TECHNOLOGY AND 
INTEL® MULTI-CORE TECHNOLOGY

Intel Hyper-Threading Technology and Intel multi-core technology are extensions to 
Intel 64 and IA-32 architectures that enable a single physical processor to execute 
two or more separate code streams (called threads) concurrently. In Intel Hyper-
Threading Technology, a single processor core provides two logical processors that 
share execution resources (see Section 8.7, “Intel® Hyper-Threading Technology 
Architecture”). In Intel multi-core technology, a physical processor package provides 
two or more processor cores. Both configurations require chipsets and a BIOS that 
support the technologies.

Software should not rely on processor names to determine whether a processor 
supports Intel Hyper-Threading Technology or Intel multi-core technology. Use the 
CPUID instruction to determine processor capability (see Section 8.6.2, “Initializing 
Multi-Core Processors”). 

Figure 8-2.  Interpretation of APIC ID in Early MP Systems
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8.6 DETECTING HARDWARE MULTI-THREADING 
SUPPORT AND TOPOLOGY

Use the CPUID instruction to detect the presence of hardware multi-threading 
support in a physical processor. Hardware multi-threading can support several vari-
eties of multigrade and/or Intel Hyper-Threading Technology. CPUID instruction 
provides several sets of parameter information to aid software enumerating topology 
information. The relevant topology enumeration parameters provided by CPUID 
include:
• Hardware Multi-Threading feature flag (CPUID.1:EDX[28] = 1) — 

Indicates when set that the physical package is capable of supporting Intel 
Hyper-Threading Technology and/or multiple cores. 

• Processor topology enumeration parameters for 8-bit APIC ID:

— Addressable IDs for Logical processors in the same Package 
(CPUID.1:EBX[23:16]) — Indicates the maximum number of addressable 
ID for logical processors in a physical package. Within a physical package, 
there may be addressable IDs that are not occupied by any logical 
processors. This parameter does not represents the hardware capability of 
the physical processor.5

• Addressable IDs for processor cores in the same Package6 
(CPUID.(EAX=4, ECX=07):EAX[31:26] + 1 = Y) — Indicates the maximum 
number of addressable IDs attributable to processor cores (Y) in the physical 
package.

• Extended Processor Topology Enumeration parameters for 32-bit APIC 
ID: Intel 64 processors supporting CPUID leaf 0BH will assign unique APIC IDs to 
each logical processor in the system. CPUID leaf 0BH reports the 32-bit APIC ID 
and provide topology enumeration parameters. See CPUID instruction reference 
pages in Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2A.

The CPUID feature flag may indicate support for hardware multi-threading when only 
one logical processor available in the package. In this case, the decimal value repre-
sented by bits 16 through 23 in the EBX register will have a value of 1.

Software should note that the number of logical processors enabled by system soft-
ware may be less than the value of “Addressable IDs for Logical processors”. Simi-

5. Operating system and BIOS may implement features that reduce the number of logical proces-
sors available in a platform to applications at runtime to less than the number of physical pack-
ages times the number of hardware-capable logical processors per package.

6. Software must check CPUID for its support of leaf 4 when implementing support for multi-core. If 
CPUID leaf 4 is not available at runtime, software should handle the situation as if there is only 
one core per package.

7. Maximum number of cores in the physical package must be queried by executing CPUID with 
EAX=4 and a valid ECX input value. Valid ECX input values start from 0.
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larly, the number of cores enabled by system software may be less than the value of 
“Addressable IDs for processor cores”.

Software can detect the availability of the CPUID extended topology enumeration leaf 
(0BH) by performing two steps:
• Check maximum input value for basic CPUID information by executing CPUID 

with EAX= 0. If CPUID.0H:EAX is greater than or equal or 11 (0BH), then proceed 
to next step,

• Check CPUID.EAX=0BH, ECX=0H:EBX is non-zero.

If both of the above conditions are true, extended topology enumeration leaf is avail-
able. Note the presence of CPUID leaf 0BH in a processor does not guarantee support 
that the local APIC supports x2APIC. If CPUID.(EAX=0BH, ECX=0H):EBX returns 
zero and maximum input value for basic CPUID information is greater than 0BH, then 
CPUID.0BH leaf is not supported on that processor.

8.6.1 Initializing Processors 
Supporting Hyper-Threading Technology

The initialization process for an MP system that contains processors supporting Intel 
Hyper-Threading Technology is the same as for conventional MP systems (see 
Section 8.4, “Multiple-Processor (MP) Initialization”). One logical processor in the 
system is selected as the BSP and other processors (or logical processors) are desig-
nated as APs. The initialization process is identical to that described in Section 8.4.3, 
“MP Initialization Protocol Algorithm for Intel Xeon Processors,” and Section 8.4.4, 
“MP Initialization Example.”

During initialization, each logical processor is assigned an APIC ID that is stored in 
the local APIC ID register for each logical processor. If two or more processors 
supporting Intel Hyper-Threading Technology are present, each logical processor on 
the system bus is assigned a unique ID (see Section 8.9.3, “Hierarchical ID of Logical 
Processors in an MP System”). Once logical processors have APIC IDs, software 
communicates with them by sending APIC IPI messages.

8.6.2 Initializing Multi-Core Processors
The initialization process for an MP system that contains multi-core Intel 64 or IA-32 
processors is the same as for conventional MP systems (see Section 8.4, “Multiple-
Processor (MP) Initialization”). A logical processor in one core is selected as the BSP; 
other logical processors are designated as APs. 

During initialization, each logical processor is assigned an APIC ID. Once logical 
processors have APIC IDs, software may communicate with them by sending APIC 
IPI messages.
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8.6.3 Executing Multiple Threads on an Intel® 64 or IA-32 
Processor Supporting Hardware Multi-Threading

Upon completing the operating system boot-up procedure, the bootstrap processor 
(BSP) executes operating system code. Other logical processors are placed in the 
halt state. To execute a code stream (thread) on a halted logical processor, the oper-
ating system issues an interprocessor interrupt (IPI) addressed to the halted logical 
processor. In response to the IPI, the processor wakes up and begins executing the 
thread identified by the interrupt vector received as part of the IPI. 

To manage execution of multiple threads on logical processors, an operating system 
can use conventional symmetric multiprocessing (SMP) techniques. For example, the 
operating-system can use a time-slice or load balancing mechanism to periodically 
interrupt each of the active logical processors. Upon interrupting a logical processor, 
the operating system checks its run queue for a thread waiting to be executed and 
dispatches the thread to the interrupted logical processor.

8.6.4 Handling Interrupts on an IA-32 Processor Supporting 
Hardware Multi-Threading

Interrupts are handled on processors supporting Intel Hyper-Threading Technology 
as they are on conventional MP systems. External interrupts are received by the I/O 
APIC, which distributes them as interrupt messages to specific logical processors 
(see Figure 8-3). 

Logical processors can also send IPIs to other logical processors by writing to the ICR 
register of its local APIC (see Section 10.6, “Issuing Interprocessor Interrupts”). This 
also applies to dual-core processors.
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8.7 INTEL® HYPER-THREADING TECHNOLOGY 
ARCHITECTURE

Figure 8-4 shows a generalized view of an Intel processor supporting Intel Hyper-
Threading Technology, using the original Intel Xeon processor MP as an example. 
This implementation of the Intel Hyper-Threading Technology consists of two logical 
processors (each represented by a separate architectural state) which share the 
processor’s execution engine and the bus interface. Each logical processor also has 
its own advanced programmable interrupt controller (APIC).

 

Figure 8-3.  Local APICs and I/O APIC in MP System Supporting Intel HT Technology

I/O APIC External
Interrupts

System Chip Set

Bridge

PCI

Interrupt Messages

Local APIC

Logical 
Processor 0

Local APIC

Logical 
Processor 1

Hyper-Threading Technology
Intel Processor with Intel

Bus Interface

Processor Core

IPIs
Interrupt
Messages

Local APIC

Logical 
Processor 0

Local APIC

Logical 
Processor 1

Hyper-Threading Technology
Intel Processor with Intel

Bus Interface

Processor Core

IPIs
Interrupt
Messages
Vol. 3A 8-39



MULTIPLE-PROCESSOR MANAGEMENT
8.7.1 State of the Logical Processors
The following features are part of the architectural state of logical processors within 
Intel 64 or IA-32 processors supporting Intel Hyper-Threading Technology. The 
features can be subdivided into three groups: 
• Duplicated for each logical processor
• Shared by logical processors in a physical processor
• Shared or duplicated, depending on the implementation

The following features are duplicated for each logical processor:
• General purpose registers (EAX, EBX, ECX, EDX, ESI, EDI, ESP, and EBP)
• Segment registers (CS, DS, SS, ES, FS, and GS)
• EFLAGS and EIP registers. Note that the CS and EIP/RIP registers for each logical 

processor point to the instruction stream for the thread being executed by the 
logical processor.

• x87 FPU registers (ST0 through ST7, status word, control word, tag word, data 
operand pointer, and instruction pointer)

• MMX registers (MM0 through MM7)
• XMM registers (XMM0 through XMM7) and the MXCSR register
• Control registers and system table pointer registers (GDTR, LDTR, IDTR, task 

register)

Figure 8-4.  IA-32 Processor with Two Logical Processors Supporting Intel HT 
Technology
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• Debug registers (DR0, DR1, DR2, DR3, DR6, DR7) and the debug control MSRs
• Machine check global status (IA32_MCG_STATUS) and machine check capability 

(IA32_MCG_CAP) MSRs
• Thermal clock modulation and ACPI Power management control MSRs
• Time stamp counter MSRs
• Most of the other MSR registers, including the page attribute table (PAT). See the 

exceptions below.
• Local APIC registers.
• Additional general purpose registers (R8-R15), XMM registers (XMM8-XMM15), 

control register, IA32_EFER on Intel 64 processors.

The following features are shared by logical processors:
• Memory type range registers (MTRRs)

Whether the following features are shared or duplicated is implementation-specific:
• IA32_MISC_ENABLE MSR (MSR address 1A0H)
• Machine check architecture (MCA) MSRs (except for the IA32_MCG_STATUS and 

IA32_MCG_CAP MSRs)
• Performance monitoring control and counter MSRs

8.7.2 APIC Functionality
When a processor supporting Intel Hyper-Threading Technology support is initialized, 
each logical processor is assigned a local APIC ID (see Table 10-1). The local APIC ID 
serves as an ID for the logical processor and is stored in the logical processor’s APIC 
ID register. If two or more processors supporting Intel Hyper-Threading Technology 
are present in a dual processor (DP) or MP system, each logical processor on the 
system bus is assigned a unique local APIC ID (see Section 8.9.3, “Hierarchical ID of 
Logical Processors in an MP System”).

Software communicates with local processors using the APIC’s interprocessor inter-
rupt (IPI) messaging facility. Setup and programming for APICs is identical in proces-
sors that support and do not support Intel Hyper-Threading Technology. See Chapter 
10, “Advanced Programmable Interrupt Controller (APIC),” for a detailed discussion.

8.7.3 Memory Type Range Registers (MTRR)
MTRRs in a processor supporting Intel Hyper-Threading Technology are shared by 
logical processors. When one logical processor updates the setting of the MTRRs, 
settings are automatically shared with the other logical processors in the same phys-
ical package. 

The architectures require that all MP systems based on Intel 64 and IA-32 processors 
(this includes logical processors) must use an identical MTRR memory map. This 
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gives software a consistent view of memory, independent of the processor on which 
it is running. See Section 11.11, “Memory Type Range Registers (MTRRs),” for infor-
mation on setting up MTRRs.

8.7.4 Page Attribute Table (PAT)
Each logical processor has its own PAT MSR (IA32_PAT). However, as described in 
Section 11.12, “Page Attribute Table (PAT),” the PAT MSR settings must be the same 
for all processors in a system, including the logical processors.

8.7.5 Machine Check Architecture
In the Intel HT Technology context as implemented by processors based on Intel 
NetBurst® microarchitecture, all of the machine check architecture (MCA) MSRs 
(except for the IA32_MCG_STATUS and IA32_MCG_CAP MSRs) are duplicated for 
each logical processor. This permits logical processors to initialize, configure, query, 
and handle machine-check exceptions simultaneously within the same physical 
processor. The design is compatible with machine check exception handlers that 
follow the guidelines given in Chapter 15, “Machine-Check Architecture.”

The IA32_MCG_STATUS MSR is duplicated for each logical processor so that its 
machine check in progress bit field (MCIP) can be used to detect recursion on the 
part of MCA handlers. In addition, the MSR allows each logical processor to deter-
mine that a machine-check exception is in progress independent of the actions of 
another logical processor in the same physical package.

Because the logical processors within a physical package are tightly coupled with 
respect to shared hardware resources, both logical processors are notified of 
machine check errors that occur within a given physical processor. If machine-check 
exceptions are enabled when a fatal error is reported, all the logical processors within 
a physical package are dispatched to the machine-check exception handler. If 
machine-check exceptions are disabled, the logical processors enter the shutdown 
state and assert the IERR# signal.

When enabling machine-check exceptions, the MCE flag in control register CR4 
should be set for each logical processor.

On Intel Atom family processors that support Intel Hyper-Threading Technology, the 
MCA facilities are shared between all logical processors on the same processor core.

8.7.6 Debug Registers and Extensions
Each logical processor has its own set of debug registers (DR0, DR1, DR2, DR3, DR6, 
DR7) and its own debug control MSR. These can be set to control and record debug 
information for each logical processor independently. Each logical processor also has 
its own last branch records (LBR) stack.
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8.7.7 Performance Monitoring Counters
Performance counters and their companion control MSRs are shared between the 
logical processors within a processor core for processors based on Intel NetBurst 
microarchitecture. As a result, software must manage the use of these resources. 
The performance counter interrupts, events, and precise event monitoring support 
can be set up and allocated on a per thread (per logical processor) basis. 

See Section 18.11, “Performance Monitoring and Intel Hyper-Threading Technology 
in Processors Based on Intel NetBurst® Microarchitecture,” for a discussion of perfor-
mance monitoring in the Intel Xeon processor MP. 

In Intel Atom processor family that support Intel Hyper-Threading Technology, the 
performance counters (general-purpose and fixed-function counters) and their 
companion control MSRs are duplicated for each logical processor.

8.7.8 IA32_MISC_ENABLE MSR
The IA32_MISC_ENABLE MSR (MSR address 1A0H) is generally shared between the 
logical processors in a processor core supporting Intel Hyper-Threading Technology. 
However, some bit fields within IA32_MISC_ENABLE MSR may be duplicated per 
logical processor. The partition of shared or duplicated bit fields within 
IA32_MISC_ENABLE is implementation dependent. Software should program dupli-
cated fields carefully on all logical processors in the system to ensure consistent 
behavior.

8.7.9 Memory Ordering
The logical processors in an Intel 64 or IA-32 processor supporting Intel Hyper-
Threading Technology obey the same rules for memory ordering as Intel 64 or IA-32 
processors without Intel HT Technology (see Section 8.2, “Memory Ordering”). Each 
logical processor uses a processor-ordered memory model that can be further 
defined as “write-ordered with store buffer forwarding.” All mechanisms for strength-
ening or weakening the memory-ordering model to handle special programming situ-
ations apply to each logical processor.

8.7.10 Serializing Instructions
As a general rule, when a logical processor in a processor supporting Intel Hyper-
Threading Technology executes a serializing instruction, only that logical processor is 
affected by the operation. An exception to this rule is the execution of the WBINVD, 
INVD, and WRMSR instructions; and the MOV CR instruction when the state of the CD 
flag in control register CR0 is modified. Here, both logical processors are serialized.
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8.7.11 Microcode Update Resources
In an Intel processor supporting Intel Hyper-Threading Technology, the microcode 
update facilities are shared between the logical processors; either logical processor 
can initiate an update. Each logical processor has its own BIOS signature MSR 
(IA32_BIOS_SIGN_ID at MSR address 8BH). When a logical processor performs an 
update for the physical processor, the IA32_BIOS_SIGN_ID MSRs for resident logical 
processors are updated with identical information. If logical processors initiate an 
update simultaneously, the processor core provides the necessary synchronization 
needed to ensure that only one update is performed at a time. 

NOTE
Some processors (prior to the introduction of Intel 64 Architecture 
and based on Intel NetBurst microarchitecture) do not support simul-
taneous loading of microcode update to the sibling logical processors 
in the same core. All other processors support logical processors 
initiating an update simultaneously. Intel recommends a common 
approach that the microcode loader use the sequential technique 
described in Section 9.11.6.3.

8.7.12 Self Modifying Code
Intel processors supporting Intel Hyper-Threading Technology support self-modifying 
code, where data writes modify instructions cached or currently in flight. They also 
support cross-modifying code, where on an MP system writes generated by one 
processor modify instructions cached or currently in flight on another. See Section 
8.1.3, “Handling Self- and Cross-Modifying Code,” for a description of the require-
ments for self- and cross-modifying code in an IA-32 processor.

8.7.13 Implementation-Specific Intel HT Technology Facilities
The following non-architectural facilities are implementation-specific in IA-32 proces-
sors supporting Intel Hyper-Threading Technology:
• Caches
• Translation lookaside buffers (TLBs)
• Thermal monitoring facilities

The Intel Xeon processor MP implementation is described in the following sections.

8.7.13.1  Processor Caches
For processors supporting Intel Hyper-Threading Technology, the caches are shared. 
Any cache manipulation instruction that is executed on one logical processor has a 
global effect on the cache hierarchy of the physical processor. Note the following:
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• WBINVD instruction — The entire cache hierarchy is invalidated after modified 
data is written back to memory. All logical processors are stopped from executing 
until after the write-back and invalidate operation is completed. A special bus 
cycle is sent to all caching agents. The amount of time or cycles for WBINVD to 
complete will vary due to the size of different cache hierarchies and other factors. 
As a consequence, the use of the WBINVD instruction can have an impact on 
interrupt/event response time.

• INVD instruction — The entire cache hierarchy is invalidated without writing 
back modified data to memory. All logical processors are stopped from executing 
until after the invalidate operation is completed. A special bus cycle is sent to all 
caching agents.

• CLFLUSH instruction — The specified cache line is invalidated from the cache 
hierarchy after any modified data is written back to memory and a bus cycle is 
sent to all caching agents, regardless of which logical processor caused the cache 
line to be filled.

• CD flag in control register CR0 — Each logical processor has its own CR0 
control register, and thus its own CD flag in CR0. The CD flags for the two logical 
processors are ORed together, such that when any logical processor sets its CD 
flag, the entire cache is nominally disabled. 

8.7.13.2  Processor Translation Lookaside Buffers (TLBs)
In processors supporting Intel Hyper-Threading Technology, data cache TLBs are 
shared. The instruction cache TLB may be duplicated or shared in each logical 
processor, depending on implementation specifics of different processor families.

Entries in the TLBs are tagged with an ID that indicates the logical processor that 
initiated the translation. This tag applies even for translations that are marked global 
using the page-global feature for memory paging. See Section 4.10, “Caching Trans-
lation Information,” for information about global translations.

When a logical processor performs a TLB invalidation operation, only the TLB entries 
that are tagged for that logical processor are guaranteed to be flushed. This protocol 
applies to all TLB invalidation operations, including writes to control registers CR3 
and CR4 and uses of the INVLPG instruction.

8.7.13.3  Thermal Monitor
In a processor that supports Intel Hyper-Threading Technology, logical processors 
share the catastrophic shutdown detector and the automatic thermal monitoring 
mechanism (see Section 14.5, “Thermal Monitoring and Protection”). Sharing results 
in the following behavior:
• If the processor’s core temperature rises above the preset catastrophic shutdown 

temperature, the processor core halts execution, which causes both logical 
processors to stop execution.
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• When the processor’s core temperature rises above the preset automatic thermal 
monitor trip temperature, the clock speed of the processor core is automatically 
modulated, which effects the execution speed of both logical processors.

For software controlled clock modulation, each logical processor has its own 
IA32_CLOCK_MODULATION MSR, allowing clock modulation to be enabled or 
disabled on a logical processor basis. Typically, if software controlled clock modula-
tion is going to be used, the feature must be enabled for all the logical processors 
within a physical processor and the modulation duty cycle must be set to the same 
value for each logical processor. If the duty cycle values differ between the logical 
processors, the processor clock will be modulated at the highest duty cycle selected.

8.7.13.4  External Signal Compatibility
This section describes the constraints on external signals received through the pins 
of a processor supporting Intel Hyper-Threading Technology and how these signals 
are shared between its logical processors.
• STPCLK# — A single STPCLK# pin is provided on the physical package of the 

Intel Xeon processor MP. External control logic uses this pin for power 
management within the system. When the STPCLK# signal is asserted, the 
processor core transitions to the stop-grant state, where instruction execution is 
halted but the processor core continues to respond to snoop transactions. 
Regardless of whether the logical processors are active or halted when the 
STPCLK# signal is asserted, execution is stopped on both logical processors and 
neither will respond to interrupts.

In MP systems, the STPCLK# pins on all physical processors are generally tied 
together. As a result this signal affects all the logical processors within the system 
simultaneously.

• LINT0 and LINT1 pins — A processor supporting Intel Hyper-Threading 
Technology has only one set of LINT0 and LINT1 pins, which are shared between 
the logical processors. When one of these pins is asserted, both logical 
processors respond unless the pin has been masked in the APIC local vector 
tables for one or both of the logical processors.

Typically in MP systems, the LINT0 and LINT1 pins are not used to deliver 
interrupts to the logical processors. Instead all interrupts are delivered to the 
local processors through the I/O APIC.

• A20M# pin — On an IA-32 processor, the A20M# pin is typically provided for 
compatibility with the Intel 286 processor. Asserting this pin causes bit 20 of the 
physical address to be masked (forced to zero) for all external bus memory 
accesses. Processors supporting Intel Hyper-Threading Technology provide one 
A20M# pin, which affects the operation of both logical processors within the 
physical processor. 
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The functionality of A20M# is used primarily by older operating systems and not 
used by modern operating systems. On newer Intel 64 processors, A20M# may 
be absent. 

8.8 MULTI-CORE ARCHITECTURE
This section describes the architecture of Intel 64 and IA-32 processors supporting 
dual-core and quad-core technology. The discussion is applicable to the Intel Pentium 
processor Extreme Edition, Pentium D, Intel Core Duo, Intel Core 2 Duo, Dual-core 
Intel Xeon processor, Intel Core 2 Quad processors, and quad-core Intel Xeon 
processors. Features vary across different microarchitectures and are detectable 
using CPUID.

In general, each processor core has dedicated microarchitectural resources identical 
to a single-processor implementation of the underlying microarchitecture without 
hardware multi-threading capability. Each logical processor in a dual-core processor 
(whether supporting Intel Hyper-Threading Technology or not) has its own APIC 
functionality, PAT, machine check architecture, debug registers and extensions. Each 
logical processor handles serialization instructions or self-modifying code on its own. 
Memory order is handled the same way as in Intel Hyper-Threading Technology.

The topology of the cache hierarchy (with respect to whether a given cache level is 
shared by one or more processor cores or by all logical processors in the physical 
package) depends on the processor implementation. Software must use the deter-
ministic cache parameter leaf of CPUID instruction to discover the cache-sharing 
topology between the logical processors in a multi-threading environment.

8.8.1 Logical Processor Support
The topological composition of processor cores and logical processors in a multi-core 
processor can be discovered using CPUID. Within each processor core, one or more 
logical processors may be available. 

System software must follow the requirement MP initialization sequences (see 
Section 8.4, “Multiple-Processor (MP) Initialization”) to recognize and enable logical 
processors. At runtime, software can enumerate those logical processors enabled by 
system software to identify the topological relationships between these logical 
processors. (See Section 8.9.5, “Identifying Topological Relationships in a MP 
System”). 

8.8.2 Memory Type Range Registers (MTRR)
MTRR is shared between two logical processors sharing a processor core if the phys-
ical processor supports Intel Hyper-Threading Technology. MTRR is not shared 
between logical processors located in different cores or different physical packages. 
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The Intel 64 and IA-32 architectures require that all logical processors in an MP 
system use an identical MTRR memory map. This gives software a consistent view of 
memory, independent of the processor on which it is running. 

See Section 11.11, “Memory Type Range Registers (MTRRs).”

8.8.3 Performance Monitoring Counters
Performance counters and their companion control MSRs are shared between two 
logical processors sharing a processor core if the processor core supports Intel 
Hyper-Threading Technology and is based on Intel NetBurst microarchitecture. They 
are not shared between logical processors in different cores or different physical 
packages. As a result, software must manage the use of these resources, based on 
the topology of performance monitoring resources. Performance counter interrupts, 
events, and precise event monitoring support can be set up and allocated on a per 
thread (per logical processor) basis. 

See Section 18.11, “Performance Monitoring and Intel Hyper-Threading Technology 
in Processors Based on Intel NetBurst® Microarchitecture.”

8.8.4 IA32_MISC_ENABLE MSR
Some bit fields in IA32_MISC_ENABLE MSR (MSR address 1A0H) may be shared 
between two logical processors sharing a processor core, or may be shared between 
different cores in a physical processor. See Chapter 34, “Model-Specific Registers 
(MSRs),”.

8.8.5 Microcode Update Resources
Microcode update facilities are shared between two logical processors sharing a 
processor core if the physical package supports Intel Hyper-Threading Technology. 
They are not shared between logical processors in different cores or different phys-
ical packages. Either logical processor that has access to the microcode update 
facility can initiate an update. 

Each logical processor has its own BIOS signature MSR (IA32_BIOS_SIGN_ID at MSR 
address 8BH). When a logical processor performs an update for the physical 
processor, the IA32_BIOS_SIGN_ID MSRs for resident logical processors are 
updated with identical information. 

NOTE
Some processors (prior to the introduction of Intel 64 Architecture 
and based on Intel NetBurst microarchitecture) do not support simul-
taneous loading of microcode update to the sibling logical processors 
in the same core. All other processors support logical processors 
initiating an update simultaneously. Intel recommends a common 
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approach that the microcode loader use the sequential technique 
described in Section 9.11.6.3.

8.9 PROGRAMMING CONSIDERATIONS FOR HARDWARE 
MULTI-THREADING CAPABLE PROCESSORS

In a multi-threading environment, there may be certain hardware resources that are 
physically shared at some level of the hardware topology. In the multi-processor 
systems, typically bus and memory sub-systems are physically shared between 
multiple sockets. Within a hardware multi-threading capable processors, certain 
resources are provided for each processor core, while other resources may be 
provided for each logical processors (see Section 8.7, “Intel® Hyper-Threading Tech-
nology Architecture,” and Section 8.8, “Multi-Core Architecture”). 

From a software programming perspective, control transfer of processor operation is 
managed at the granularity of logical processor (operating systems dispatch a 
runnable task by allocating an available logical processor on the platform). To 
manage the topology of shared resources in a multi-threading environment, it may 
be useful for software to understand and manage resources that are shared by more 
than one logical processors.

8.9.1 Hierarchical Mapping of Shared Resources
The APIC_ID value associated with each logical processor in a multi-processor 
system is unique (see Section 8.6, “Detecting Hardware Multi-Threading Support and 
Topology”). This 8-bit or 32-bit value can be decomposed into sub-fields, where each 
sub-field corresponds a hierarchical level of the topological mapping of hardware 
resources. 

The decomposition of an APIC_ID may consist of several sub fields representing the 
topology within a physical processor package, the higher-order bits of an APIC ID 
may also be used by cluster vendors to represent the topology of cluster nodes of 
each coherent multiprocessor systems. If the processor does not support CPUID leaf 
0BH, the 8-bit initial APIC ID can represent 4 levels of hierarchy:
• Cluster — Some multi-threading environments consists of multiple clusters of 

multi-processor systems. The CLUSTER_ID sub-field is usually supported by 
vendor firmware to distinguish different clusters. For non-clustered systems, 
CLUSTER_ID is usually 0 and system topology is reduced to three levels of 
hierarchy.

• Package — A multi-processor system consists of two or more sockets, each 
mates with a physical processor package. The PACKAGE_ID sub-field distin-
guishes different physical packages within a cluster.
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• Core — A physical processor package consists of one or more processor cores. 
The CORE_ID sub-field distinguishes processor cores in a package. For a single-
core processor, the width of this bit field is 0.

• SMT — A processor core provides one or more logical processors sharing 
execution resources. The SMT_ID sub-field distinguishes logical processors in a 
core. The width of this bit field is non-zero if a processor core provides more than 
one logical processors.

SMT and CORE sub-fields are bit-wise contiguous in the APIC_ID field (see 
Figure 8-5). 

If the processor supports CPUID leaf 0BH, the 32-bit APIC ID can represent cluster 
plus several levels of topology within the physical processor package. The exact 
number of hierarchical levels within a physical processor package must be enumer-
ated through CPUID leaf 0BH. Common processor families may employ topology 
similar to that represented by 8-bit Initial APIC ID. In general, CPUID leaf 0BH can 
support topology enumeration algorithm that decompose a 32-bit APIC ID into more 
than four sub-fields (see Figure 8-6). 

The width of each sub-field depends on hardware and software configurations. Field 
widths can be determined at runtime using the algorithm discussed below (Example 
8-16 through Example 8-20). 

Figure 7-6 depicts the relationships of three of the hierarchical sub-fields in a hypo-
thetical MP system. The value of valid APIC_IDs need not be contiguous across 
package boundary or core boundaries.

Figure 8-5.  Generalized Four level Interpretation of the APIC ID
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8.9.2 Hierarchical Mapping of CPUID Extended Topology Leaf 
CPUID leaf 0BH provides enumeration parameters for software to identify each hier-
archy of the processor topology in a deterministic manner. Each hierarchical level of 
the topology starting from the SMT level is represented numerically by a sub-leaf 
index within the CPUID 0BH leaf. Each level of the topology is mapped to a sub-field 
in the APIC ID, following the general relationship depicted in Figure 8-6. This mech-
anism allows software to query the exact number of levels within a physical 
processor package and the bit-width of each sub-field of x2APIC ID directly. For 
example,
• Starting from sub-leaf index 0 and incrementing ECX until CPUID.(EAX=0BH, 

ECX=N):ECX[15:8] returns an invalid “level type“ encoding. The number of 
levels within the physical processor package is “N“ (excluding PACKAGE). Using 
Figure 8-6 as an example, CPUID.(EAX=0BH, ECX=3):ECX[15:8] will report 
00H, indicating sub leaf 03H is invalid. This is also depicted by a pseudo code 
example:

Example 8-16.  Number of Levels Below the Physical Processor Package

Byte type = 1;
s = 0;
While ( type ) {

EAX = 0BH; // query each sub leaf of CPUID leaf 0BH
ECX = s;
CPUID; 
type = ECX[15:8]; // examine level type encoding
s ++;

Figure 8-6.  Conceptual Five-level Topology and 32-bit APIC ID Composition
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}
N = ECX[7:0];

• Sub-leaf index 0 (ECX= 0 as input) provides enumeration parameters to extract 
the SMT sub-field of x2APIC ID. If EAX = 0BH, and ECX =0 is specified as input 
when executing CPUID, CPUID.(EAX=0BH, ECX=0):EAX[4:0] reports a value (a 
right-shift count) that allow software to extract part of x2APIC ID to distinguish 
the next higher topological entities above the SMT level. This value also 
corresponds to the bit-width of the sub-field of x2APIC ID corresponding the 
hierarchical level with sub-leaf index 0. 

• For each subsequent higher sub-leaf index m, CPUID.(EAX=0BH, 
ECX=m):EAX[4:0] reports the right-shift count that will allow software to extract 
part of x2APIC ID to distinguish higher-level topological entities. This means the 
right-shift value at of sub-leaf m, corresponds to the least significant (m+1) 
subfields of the 32-bit x2APIC ID. 

Example 8-17.  BitWidth Determination of x2APIC ID Subfields

For m = 0, m < N, m ++;
{ cumulative_width[m] = CPUID.(EAX=0BH, ECX= m): EAX[4:0]; }
BitWidth[0] = cumulative_width[0];
For m = 1, m < N, m ++;

BitWidth[m] = cumulative_width[m] - cumulative_width[m-1];

Currently, only the following encoding of hierarchical level type are defined: 0 
(invalid), 1 (SMT), and 2 (core). Software must not assume any “level type“ encoding 
value to be related to any sub-leaf index, except sub-leaf 0.

Example 8-16 and Example 8-17 represent the general technique for using CPUID 
leaf 0BH to enumerate processor topology of more than two levels of hierarchy inside 
a physical package. Most processor families to date requires only “SMT” and “CORE” 
levels within a physical package. The examples in later sections will focus on these 
three-level topology only.

8.9.3 Hierarchical ID of Logical Processors in an MP System
For Intel 64 and IA-32 processors, system hardware establishes an 8-bit initial APIC 
ID (or 32-bit APIC ID if the processor supports CPUID leaf 0BH) that is unique for 
each logical processor following power-up or RESET (see Section 8.6.1). Each logical 
processor on the system is allocated an initial APIC ID. BIOS may implement features 
that tell the OS to support less than the total number of logical processors on the 
system bus. Those logical processors that are not available to applications at runtime 
are halted during the OS boot process. As a result, the number valid local APIC_IDs 
that can be queried by affinitizing-current-thread-context (See Example 8-22) is 
limited to the number of logical processors enabled at runtime by the OS boot 
process.
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Table 8-1 shows an example of the 8-bit APIC IDs that are initially reported for logical 
processors in a system with four Intel Xeon MP processors that support Intel Hyper-
Threading Technology (a total of 8 logical processors, each physical package has two 
processor cores and supports Intel Hyper-Threading Technology). Of the two logical 
processors within a Intel Xeon processor MP, logical processor 0 is designated the 
primary logical processor and logical processor 1 as the secondary logical processor.

Figure 8-7.  Topological Relationships between Hierarchical IDs in a Hypothetical MP 
Platform

Table 8-1.  Initial APIC IDs for the Logical Processors in a System that has Four Intel 
Xeon MP Processors Supporting Intel Hyper-Threading Technology1 

Initial APIC ID Package ID Core ID SMT ID

0H 0H 0H 0H

1H 0H 0H 1H

2H 1H 0H 0H

3H 1H 0H 1H

4H 2H 0H 0H

5H 2H 0H 1H

6H 3H 0H 0H

7H 3H 0H 1H

NOTE:
1. Because information on the number of processor cores in a physical package was not available 

in early single-core processors supporting Intel Hyper-Threading Technology, the core ID can be 
treated as 0.

Package 0

Core 0

T0 T1

Core1

T0 T1

Package 1

Core 0

T0 T1

Core1

T0 T1 SMT_ID

Core ID

Package ID
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Table 8-2 shows the initial APIC IDs for a hypothetical situation with a dual processor 
system. Each physical package providing two processor cores, and each processor 
core also supporting Intel Hyper-Threading Technology.

8.9.3.1  Hierarchical ID of Logical Processors with x2APIC ID
Table 8-3 shows an example of possible x2APIC ID assignments for a dual processor 
system that support x2APIC. Each physical package providing four processor cores, 
and each processor core also supporting Intel Hyper-Threading Technology. Note that 
the x2APIC ID need not be contiguous in the system.

Table 8-2.  Initial APIC IDs for the Logical Processors in a System that has Two 
Physical Processors Supporting Dual-Core and Intel Hyper-Threading Technology 

Initial APIC ID Package ID Core ID SMT ID

0H 0H 0H 0H

1H 0H 0H 1H

2H 0H 1H 0H

3H 0H 1H 1H

4H 1H 0H 0H

5H 1H 0H 1H

6H 1H 1H 0H

7H 1H 1H 1H

Table 8-3.  Example of Possible x2APIC ID Assignment in a System that has Two 
Physical Processors Supporting x2APIC and Intel Hyper-Threading Technology 

x2APIC ID Package ID Core ID SMT ID

0H 0H 0H 0H

1H 0H 0H 1H

2H 0H 1H 0H

3H 0H 1H 1H

4H 0H 2H 0H

5H 0H 2H 1H

6H 0H 3H 0H

7H 0H 3H 1H

10H 1H 0H 0H

11H 1H 0H 1H

12H 1H 1H 0H
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8.9.4 Algorithm for Three-Level Mappings of APIC_ID
Software can gather the initial APIC_IDs for each logical processor supported by the 
operating system at runtime8 and extract identifiers corresponding to the three 
levels of sharing topology (package, core, and SMT). The three-level algorithms 
below focus on a non-clustered MP system for simplicity. They do not assume APIC 
IDs are contiguous or that all logical processors on the platform are enabled.

Intel supports multi-threading systems where all physical processors report identical 
values in CPUID leaf 0BH, CPUID.1:EBX[23:16]), CPUID.49:EAX[31:26], and 
CPUID.410:EAX[25:14]. The algorithms below assume the target system has 
symmetry across physical package boundaries with respect to the number of logical 
processors per package, number of cores per package, and cache topology within a 
package.

The extraction algorithm (for three-level mappings from an APIC ID) uses the 
general procedure depicted in Example 8-18, and is supplemented by more detailed 
descriptions on the derivation of topology enumeration parameters for extraction bit 
masks:

1. Detect hardware multi-threading support in the processor.

2. Derive a set of bit masks that can extract the sub ID of each hierarchical level of 
the topology. The algorithm to derive extraction bit masks for 
SMT_ID/CORE_ID/PACKAGE_ID differs based on APIC ID is 32-bit (see step 3 
below) or 8-bit (see step 4 below):

13H 1H 1H 1H

14H 1H 2H 0H

15H 1H 2H 1H

16H 1H 3H 0H

17H 1H 3H 1H

8. As noted in Section 8.6 and Section 8.9.3, the number of logical processors supported by the OS 
at runtime may be less than the total number logical processors available in the platform hard-
ware.

9. Maximum number of addressable ID for processor cores in a physical processor is obtained by 
executing CPUID with EAX=4 and a valid ECX index, The ECX index start at 0.

10. Maximum number addressable ID for processor cores sharing the target cache level is obtained 
by executing CPUID with EAX = 4 and the ECX index corresponding to the target cache level.

Table 8-3.  Example of Possible x2APIC ID Assignment in a System that has Two 
Physical Processors Supporting x2APIC and Intel Hyper-Threading Technology 

x2APIC ID Package ID Core ID SMT ID
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3. If the processor supports CPUID leaf 0BH, each APIC ID contains a 32-bit value, 
the topology enumeration parameters needed to derive three-level extraction bit 
masks are:

a. Query the right-shift value for the SMT level of the topology using CPUID leaf 
0BH with ECX =0H as input. The number of bits to shift-right on x2APIC ID 
(EAX[4:0]) can distinguish different higher-level entities above SMT (e.g. 
processor cores) in the same physical package. This is also the width of the 
bit mask to extract the SMT_ID. 

b. Query CPUID leaf 0BH for the amount of bit shift to distinguish next higher-
level entities (e.g. physical processor packages) in the system. This describes 
an explicit three-level-topology situation for commonly available processors. 
Consult Example 8-17 to adapt to situations beyond three-level topology of a 
physical processor. The width of the extraction bit mask can be used to derive 
the cumulative extraction bitmask to extract the sub IDs of logical processors 
(including different processor cores) in the same physical package. The 
extraction bit mask to distinguish merely different processor cores can be 
derived by xor’ing the SMT extraction bit mask from the cumulative 
extraction bit mask.

c. Query the 32-bit x2APIC ID for the logical processor where the current thread 
is executing.

d. Derive the extraction bit masks corresponding to SMT_ID, CORE_ID, and 
PACKAGE_ID, starting from SMT_ID.

e. Apply each extraction bit mask to the 32-bit x2APIC ID to extract sub-field 
IDs.

4. If the processor does not support CPUID leaf 0BH, each initial APIC ID contains 
an 8-bit value, the topology enumeration parameters needed to derive extraction 
bit masks are:

a. Query the size of address space for sub IDs that can accommodate logical 
processors in a physical processor package. This size parameters 
(CPUID.1:EBX[23:16]) can be used to derive the width of an extraction 
bitmask to enumerate the sub IDs of different logical processors in the same 
physical package.

b. Query the size of address space for sub IDs that can accommodate processor 
cores in a physical processor package. This size parameters can be used to 
derive the width of an extraction bitmask to enumerate the sub IDs of 
processor cores in the same physical package.

c. Query the 8-bit initial APIC ID for the logical processor where the current 
thread is executing.

d. Derive the extraction bit masks using respective address sizes corresponding 
to SMT_ID, CORE_ID, and PACKAGE_ID, starting from SMT_ID.

e. Apply each extraction bit mask to the 8-bit initial APIC ID to extract sub-field 
IDs.
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Example 8-18.  Support Routines for Detecting Hardware Multi-Threading and Identifying the 
Relationships Between Package, Core and Logical Processors

1. Detect support for Hardware Multi-Threading Support in a processor.

// Returns a non-zero value if CPUID reports the presence of hardware multi-threading 
// support in the physical package where the current logical processor is located. 
// This does not guarantee BIOS or OS will enable all logical processors in the physical 
// package and make them available to applications. 
// Returns zero if hardware multi-threading is not present. 

#define HWMT_BIT 0x10000000

unsigned int HWMTSupported(void)
{

 // ensure cpuid instruction is supported
execute cpuid with eax = 0 to get vendor string
execute cpuid with eax = 1 to get feature flag and signature

// Check to see if this a Genuine Intel Processor 

if (vendor string EQ GenuineIntel) {
return (feature_flag_edx & HWMT_BIT); // bit 28

}
return 0;

}

Example 8-19.  Support Routines for Identifying Package, Core and Logical Processors from 
32-bit x2APIC ID

a. Derive the extraction bitmask for logical processors in a processor core and
associated mask offset for different cores.

int DeriveSMT_Mask_Offsets (void)
{

if (!HWMTSupported()) return -1;
execute cpuid with eax = 11, ECX = 0;
If (returned level type encoding in ECX[15:8] does not match SMT) return -1;
Mask_SMT_shift = EAX[4:0]; // # bits shift right of APIC ID to distinguish different cores
SMT_MASK = ~( (-1) << Mask_SMT_shift); // shift left to derive extraction bitmask for SMT_ID
return 0;

}

b. Derive the extraction bitmask for processor cores in a physical processor package
and associated mask offset for different packages.
Vol. 3A 8-57



MULTIPLE-PROCESSOR MANAGEMENT
int DeriveCore_Mask_Offsets (void)
{

if (!HWMTSupported()) return -1;
execute cpuid with eax = 11, ECX = 0;

while( ECX[15:8] ) { // level type encoding is valid
If (returned level type encoding in ECX[15:8] matches CORE) {

Mask_Core_shift = EAX[4:0]; // needed to distinguish different physical packages
COREPlusSMT_MASK = ~( (-1) << Mask_Core_shift);
CORE_MASK = COREPlusSMT_MASK ^ SMT_MASK;
PACKAGE_MASK = (-1) << Mask_Core_shift;
return 0

}
ECX ++;
execute cpuid with eax = 11;

}
return -1;

}

c. Query the x2APIC ID of a logical processor.

APIC_IDs for each logical processor.

unsigned char Getx2APIC_ID (void)
{

unsigned reg_edx = 0;
execute cpuid with eax = 11, ECX = 0
store returned value of edx
return (unsigned) (reg_edx) ;

}

Example 8-20.  Support Routines for Identifying Package, Core and Logical Processors from 8-
bit Initial APIC ID

a. Find the size of address space for logical processors in a physical processor
package.

#define NUM_LOGICAL_BITS 0x00FF0000 
// Use the mask above and CPUID.1.EBX[23:16] to obtain the max number of addressable IDs
// for logical processors in a physical package, 

//Returns the size of address space of logical processors in a physical processor package;
// Software should not assume the value to be a power of 2.
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unsigned char MaxLPIDsPerPackage(void)
{

if (!HWMTSupported()) return 1;
execute cpuid with eax = 1

store returned value of ebx
return (unsigned char) ((reg_ebx & NUM_LOGICAL_BITS) >> 16);

}

b. Find the size of address space for processor cores in a physical processor package.

// Returns the max number of addressable IDs for processor cores in a physical processor package;
// Software should not assume cpuid reports this value to be a power of 2.

unsigned MaxCoreIDsPerPackage(void)
{

if (!HWMTSupported()) return (unsigned char) 1;
if cpuid supports leaf number 4 
{ // we can retrieve multi-core topology info using leaf 4

execute cpuid with eax = 4, ecx = 0
store returned value of eax
return (unsigned) ((reg_eax >> 26) +1);

}
else // must be a single-core processor
return 1;

}

c. Query the initial APIC ID of a logical processor.

#define INITIAL_APIC_ID_BITS 0xFF000000 // CPUID.1.EBX[31:24] initial APIC ID

// Returns the 8-bit unique initial APIC ID for the processor running the code. 
// Software can use OS services to affinitize the current thread to each logical processor 
// available under the OS to gather the initial APIC_IDs for each logical processor.

unsigned GetInitAPIC_ID (void)
{

unsigned int reg_ebx = 0;
execute cpuid with eax = 1
store returned value of ebx
return (unsigned) ((reg_ebx & INITIAL_APIC_ID_BITS) >> 24;

}

d. Find the width of an extraction bitmask from the maximum count of the bit-field
(address size).
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// Returns the mask bit width of a bit field from the maximum count that bit field can represent.
// This algorithm does not assume ‘address size’ to have a value equal to power of 2.
// Address size for SMT_ID can be calculated from MaxLPIDsPerPackage()/MaxCoreIDsPerPackage()
// Then use the routine below to derive the corresponding width of SMT extraction bitmask
// Address size for CORE_ID is MaxCoreIDsPerPackage(), 
// Derive the bitwidth for CORE extraction mask similarly

unsigned FindMaskWidth(Unsigned Max_Count)
{unsigned int mask_width, cnt = Max_Count;

__asm {
mov eax, cnt
mov ecx, 0
mov mask_width, ecx
dec eax
bsr cx, ax
jz next
inc cx
mov  mask_width, ecx
next:  
mov eax, mask_width

}
return mask_width;

}

e. Extract a sub ID from an 8-bit full ID, using address size of the sub ID and shift
count.

// The routine below can extract SMT_ID, CORE_ID, and PACKAGE_ID respectively from the init 
APIC_ID
// To extract SMT_ID, MaxSubIDvalue is set to the address size of SMT_ID, Shift_Count = 0
// To extract CORE_ID, MaxSubIDvalue is the address size of CORE_ID, Shift_Count is width of SMT 
extraction bitmask.
// Returns the value of the sub ID, this is not a zero-based value 

Unsigned char GetSubID(unsigned char Full_ID, unsigned char MaxSubIDvalue, unsigned char 
Shift_Count)
{

MaskWidth = FindMaskWidth(MaxSubIDValue);
MaskBits = ((uchar) (0xff << Shift_Count)) ^ ((uchar) (0xff << Shift_Count + MaskWidth)) ;
SubID = Full_ID & MaskBits;
Return SubID;

}
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Software must not assume local APIC_ID values in an MP system are consecutive. 
Non-consecutive local APIC_IDs may be the result of hardware configurations or 
debug features implemented in the BIOS or OS.

An identifier for each hierarchical level can be extracted from an 8-bit APIC_ID using 
the support routines illustrated in Example 8-20. The appropriate bit mask and shift 
value to construct the appropriate bit mask for each level must be determined 
dynamically at runtime. 

8.9.5 Identifying Topological Relationships in a MP System
To detect the number of physical packages, processor cores, or other topological 
relationships in a MP system, the following procedures are recommended:
• Extract the three-level identifiers from the APIC ID of each logical processor 

enabled by system software. The sequence is as follows (See the pseudo code 
shown in Example 8-21 and support routines shown in Example 8-18):

• The extraction start from the right-most bit field, corresponding to 
SMT_ID, the innermost hierarchy in a three-level topology (See Figure 
8-7). For the right-most bit field, the shift value of the working mask is 
zero. The width of the bit field is determined dynamically using the 
maximum number of logical processor per core, which can be derived 
from information provided from CPUID.

• To extract the next bit-field, the shift value of the working mask is 
determined from the width of the bit mask of the previous step. The width 
of the bit field is determined dynamically using the maximum number of 
cores per package.

• To extract the remaining bit-field, the shift value of the working mask is 
determined from the maximum number of logical processor per package. 
So the remaining bits in the APIC ID (excluding those bits already 
extracted in the two previous steps) are extracted as the third identifier. 
This applies to a non-clustered MP system, or if there is no need to 
distinguish between PACKAGE_ID and CLUSTER_ID.

If there is need to distinguish between PACKAGE_ID and CLUSTER_ID, 
PACKAGE_ID can be extracted using an algorithm similar to the 
extraction of CORE_ID, assuming the number of physical packages in 
each node of a clustered system is symmetric.

• Assemble the three-level identifiers of SMT_ID, CORE_ID, PACKAGE_IDs into 
arrays for each enabled logical processor. This is shown in Example 8-22a.

• To detect the number of physical packages: use PACKAGE_ID to identify those 
logical processors that reside in the same physical package. This is shown in 
Example 8-22b. This example also depicts a technique to construct a mask to 
represent the logical processors that reside in the same package.

• To detect the number of processor cores: use CORE_ID to identify those logical 
processors that reside in the same core. This is shown in Example 8-22. This 
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example also depicts a technique to construct a mask to represent the logical 
processors that reside in the same core.

In Example 8-21, the numerical ID value can be obtained from the value extracted 
with the mask by shifting it right by shift count. Algorithms below do not shift the 
value. The assumption is that the SubID values can be compared for equivalence 
without the need to shift. 

Example 8-21.  Pseudo Code Depicting Three-level Extraction Algorithm

For Each local_APIC_ID{
// Calculate SMT_MASK, the bit mask pattern to extract SMT_ID, 
// SMT_MASK is determined using topology enumertaion parameters
// from CPUID leaf 0BH (Example 8-19);
// otherwise, SMT_MASK is determined using CPUID leaf 01H and leaf 04H (Example 8-20).
// This algorithm assumes there is symmetry across core boundary, i.e. each core within a
// package has the same number of logical processors
// SMT_ID always starts from bit 0, corresponding to the right-most bit-field
SMT_ID = APIC_ID & SMT_MASK;

// Extract CORE_ID:
// CORE_MASK is determined in Example 8-19 or Example 8-20
CORE_ID = (APIC_ID & CORE_MASK) ;

// Extract PACKAGE_ID:
// Assume single cluster. 
// Shift out the mask width for maximum logical processors per package
// PACKAGE_MASK is determined in Example 8-19 or Example 8-20
PACKAGE_ID = (APIC_ID & PACKAGE_MASK) ;

}

Example 8-22.  Compute the Number of Packages, Cores, and Processor Relationships in a MP 
System

a) Assemble lists of PACKAGE_ID, CORE_ID, and SMT_ID of each enabled logical processors

//The BIOS and/or OS may limit the number of logical processors available to applications 
// after system boot. The below algorithm will compute topology for the processors visible 
// to the thread that is computing it.

// Extract the 3-levels of IDs on every processor
// SystemAffinity is a bitmask of all the processors started by the OS. Use OS specific APIs to
// obtain it.
// ThreadAffinityMask is used to affinitize the topology enumeration thread to each processor
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using OS specific APIs.
// Allocate per processor arrays to store the Package_ID, Core_ID and SMT_ID for every started
// processor.
 

ThreadAffinityMask = 1;
     ProcessorNum = 0;

while (ThreadAffinityMask != 0 && ThreadAffinityMask <= SystemAffinity) {
// Check to make sure we can utilize this processor first.
if (ThreadAffinityMask & SystemAffinity){

Set thread to run on the processor specified in ThreadAffinityMask
Wait if necessary and ensure thread is running on specified processor

APIC_ID = GetAPIC_ID(); // 32 bit ID in Example 8-19 or 8-bit ID in Example 
8-20

Extract the Package_ID, Core_ID and SMT_ID as explained in three level extraction 
algorithm of Example 8-21

PackageID[ProcessorNUM] = PACKAGE_ID;
CoreID[ProcessorNum] = CORE_ID;
SmtID[ProcessorNum] = SMT_ID;
ProcessorNum++;

}
ThreadAffinityMask <<= 1;

}
NumStartedLPs = ProcessorNum;

b) Using the list of PACKAGE_ID to count the number of physical packages in a MP system and 
construct, for each package, a multi-bit mask corresponding to those logical processors residing in 
the same package.

// Compute the number of packages by counting the number of processors 
// with unique PACKAGE_IDs in the PackageID array. 
// Compute the mask of processors in each package.

PackageIDBucket is an array of unique PACKAGE_ID values. Allocate an array of
NumStartedLPs count of entries in this array.
PackageProcessorMask is a corresponding array of the bit mask of processors belonging to
the same package, these are processors with the same PACKAGE_ID 
The algorithm below assumes there is symmetry across package boundary if more than 
one socket is populated in an MP system.
// Bucket Package IDs and compute processor mask for every package.

PackageNum = 1;
PackageIDBucket[0] = PackageID[0];
ProcessorMask = 1;
Vol. 3A 8-63



MULTIPLE-PROCESSOR MANAGEMENT
PackageProcessorMask[0] = ProcessorMask;
For (ProcessorNum = 1; ProcessorNum < NumStartedLPs; ProcessorNum++) { 

ProcessorMask << = 1; 
For (i=0; i < PackageNum; i++) {

// we may be comparing bit-fields of logical processors residing in different
// packages, the code below assume package symmetry
If (PackageID[ProcessorNum] = PackageIDBucket[i]) {

PackageProcessorMask[i] |= ProcessorMask;
Break; // found in existing bucket, skip to next iteration

}
}
if (i =PackageNum) {

//PACKAGE_ID did not match any bucket, start new bucket
PackageIDBucket[i] = PackageID[ProcessorNum];
PackageProcessorMask[i] = ProcessorMask;
PackageNum++;

}
}
// PackageNum has the number of Packages started in OS
// PackageProcessorMask[] array has the processor set of each package

c) Using the list of CORE_ID to count the number of cores in a MP system and construct, for each 
core, a multi-bit mask corresponding to those logical processors residing in the same core. 

Processors in the same core can be determined by bucketing the processors with the same 
PACKAGE_ID and CORE_ID. Note that code below can BIT OR the values of PACKGE and CORE ID 
because they have not been shifted right.
The algorithm below assumes there is symmetry across package boundary if more than one socket 
is populated in an MP system.

//Bucketing PACKAGE and CORE IDs and computing processor mask for every core
CoreNum = 1;
CoreIDBucket[0] = PackageID[0] | CoreID[0];
ProcessorMask = 1;
CoreProcessorMask[0] = ProcessorMask;
For (ProcessorNum = 1; ProcessorNum < NumStartedLPs; ProcessorNum++) { 

ProcessorMask << = 1; 
For (i=0; i < CoreNum; i++) {

// we may be comparing bit-fields of logical processors residing in different
// packages, the code below assume package symmetry
If ((PackageID[ProcessorNum] | CoreID[ProcessorNum]) = CoreIDBucket[i]) {

CoreProcessorMask[i] |= ProcessorMask;
Break; // found in existing bucket, skip to next iteration

}
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}
if (i = CoreNum) {

//Did not match any bucket, start new bucket
CoreIDBucket[i] = PackageID[ProcessorNum] | CoreID[ProcessorNum];
CoreProcessorMask[i] = ProcessorMask;
CoreNum++;

}
}
// CoreNum has the number of cores started in the OS
// CoreProcessorMask[] array has the processor set of each core

Other processor relationships such as processor mask of sibling cores can be 
computed from set operations of the PackageProcessorMask[] and CoreProcessor-
Mask[]. 

The algorithm shown above can be adapted to work with earlier generations of 
single-core IA-32 processors that support Intel Hyper-Threading Technology and in 
situations that the deterministic cache parameter leaf is not supported (provided 
CPUID supports initial APIC ID). A reference code example is available (see Intel® 64 
Architecture Processor Topology Enumeration).

8.10 MANAGEMENT OF IDLE AND BLOCKED CONDITIONS
When a logical processor in an MP system (including multi-core processor or proces-
sors supporting Intel Hyper-Threading Technology) is idle (no work to do) or blocked 
(on a lock or semaphore), additional management of the core execution engine 
resource can be accomplished by using the HLT (halt), PAUSE, or the 
MONITOR/MWAIT instructions.

8.10.1 HLT Instruction
The HLT instruction stops the execution of the logical processor on which it is 
executed and places it in a halted state until further notice (see the description of the 
HLT instruction in Chapter 3 of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 2A). When a logical processor is halted, active logical 
processors continue to have full access to the shared resources within the physical 
package. Here shared resources that were being used by the halted logical processor 
become available to active logical processors, allowing them to execute at greater 
efficiency. When the halted logical processor resumes execution, shared resources 
are again shared among all active logical processors. (See Section 8.10.6.3, “Halt 
Idle Logical Processors,” for more information about using the HLT instruction with 
processors supporting Intel Hyper-Threading Technology.)
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8.10.2 PAUSE Instruction
The PAUSE instruction can improves the performance of processors supporting Intel 
Hyper-Threading Technology when executing “spin-wait loops” and other routines 
where one thread is accessing a shared lock or semaphore in a tight polling loop. 
When executing a spin-wait loop, the processor can suffer a severe performance 
penalty when exiting the loop because it detects a possible memory order violation 
and flushes the core processor’s pipeline. The PAUSE instruction provides a hint to 
the processor that the code sequence is a spin-wait loop. The processor uses this hint 
to avoid the memory order violation and prevent the pipeline flush. In addition, the 
PAUSE instruction de-pipelines the spin-wait loop to prevent it from consuming 
execution resources excessively and consume power needlessly. (See Section 
8.10.6.1, “Use the PAUSE Instruction in Spin-Wait Loops,” for more information 
about using the PAUSE instruction with IA-32 processors supporting Intel Hyper-
Threading Technology.)

8.10.3 Detecting Support MONITOR/MWAIT Instruction
Streaming SIMD Extensions 3 introduced two instructions (MONITOR and MWAIT) to 
help multithreaded software improve thread synchronization. In the initial imple-
mentation, MONITOR and MWAIT are available to software at ring 0. The instructions 
are conditionally available at levels greater than 0. Use the following steps to detect 
the availability of MONITOR and MWAIT:
• Use CPUID to query the MONITOR bit (CPUID.1.ECX[3] = 1).
• If CPUID indicates support, execute MONITOR inside a TRY/EXCEPT exception 

handler and trap for an exception. If an exception occurs, MONITOR and MWAIT 
are not supported at a privilege level greater than 0. See Example 8-23.

Example 8-23.  Verifying MONITOR/MWAIT Support

boolean MONITOR_MWAIT_works = TRUE;
try {

_asm {
xor ecx, ecx
xor edx, edx
mov eax, MemArea
monitor 
}

        // Use monitor
} except (UNWIND) {
        // if we get here, MONITOR/MWAIT is not supported

MONITOR_MWAIT_works = FALSE;
}
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8.10.4 MONITOR/MWAIT Instruction
Operating systems usually implement idle loops to handle thread synchronization. In 
a typical idle-loop scenario, there could be several “busy loops” and they would use a 
set of memory locations. An impacted processor waits in a loop and poll a memory 
location to determine if there is available work to execute. The posting of work is 
typically a write to memory (the work-queue of the waiting processor). The time for 
initiating a work request and getting it scheduled is on the order of a few bus cycles. 

From a resource sharing perspective (logical processors sharing execution 
resources), use of the HLT instruction in an OS idle loop is desirable but has implica-
tions. Executing the HLT instruction on a idle logical processor puts the targeted 
processor in a non-execution state. This requires another processor (when posting 
work for the halted logical processor) to wake up the halted processor using an inter-
processor interrupt. The posting and servicing of such an interrupt introduces a delay 
in the servicing of new work requests. 

In a shared memory configuration, exits from busy loops usually occur because of a 
state change applicable to a specific memory location; such a change tends to be 
triggered by writes to the memory location by another agent (typically a processor). 

MONITOR/MWAIT complement the use of HLT and PAUSE to allow for efficient parti-
tioning and un-partitioning of shared resources among logical processors sharing 
physical resources. MONITOR sets up an effective address range that is monitored for 
write-to-memory activities; MWAIT places the processor in an optimized state (this 
may vary between different implementations) until a write to the monitored address 
range occurs. 

In the initial implementation of MONITOR and MWAIT, they are available at CPL = 0 
only.

Both instructions rely on the state of the processor’s monitor hardware. The monitor 
hardware can be either armed (by executing the MONITOR instruction) or triggered 
(due to a variety of events, including a store to the monitored memory region). If 
upon execution of MWAIT, monitor hardware is in a triggered state: MWAIT behaves 
as a NOP and execution continues at the next instruction in the execution stream. 
The state of monitor hardware is not architecturally visible except through the 
behavior of MWAIT.

Multiple events other than a write to the triggering address range can cause a 
processor that executed MWAIT to wake up. These include events that would lead to 
voluntary or involuntary context switches, such as:
• External interrupts, including NMI, SMI, INIT, BINIT, MCERR, A20M#
• Faults, Aborts (including Machine Check)
• Architectural TLB invalidations including writes to CR0, CR3, CR4 and certain MSR 

writes; execution of LMSW (occurring prior to issuing MWAIT but after setting the 
monitor)

• Voluntary transitions due to fast system call and far calls (occurring prior to 
issuing MWAIT but after setting the monitor)
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Power management related events (such as Thermal Monitor 2 or chipset driven 
STPCLK# assertion) will not cause the monitor event pending flag to be cleared. 
Faults will not cause the monitor event pending flag to be cleared.

Software should not allow for voluntary context switches in between 
MONITOR/MWAIT in the instruction flow. Note that execution of MWAIT does not re-
arm the monitor hardware. This means that MONITOR/MWAIT need to be executed in 
a loop. Also note that exits from the MWAIT state could be due to a condition other 
than a write to the triggering address; software should explicitly check the triggering 
data location to determine if the write occurred. Software should also check the value 
of the triggering address following the execution of the monitor instruction (and prior 
to the execution of the MWAIT instruction). This check is to identify any writes to the 
triggering address that occurred during the course of MONITOR execution. 

The address range provided to the MONITOR instruction must be of write-back 
caching type. Only write-back memory type stores to the monitored address range 
will trigger the monitor hardware. If the address range is not in memory of write-
back type, the address monitor hardware may not be set up properly or the monitor 
hardware may not be armed. Software is also responsible for ensuring that
• Writes that are not intended to cause the exit of a busy loop do not write to a 

location within the address region being monitored by the monitor hardware,
• Writes intended to cause the exit of a busy loop are written to locations within the 

monitored address region.

Not doing so will lead to more false wakeups (an exit from the MWAIT state not due 
to a write to the intended data location). These have negative performance implica-
tions. It might be necessary for software to use padding to prevent false wakeups. 
CPUID provides a mechanism for determining the size data locations for monitoring 
as well as a mechanism for determining the size of a the pad.

8.10.5 Monitor/Mwait Address Range Determination
To use the MONITOR/MWAIT instructions, software should know the length of the 
region monitored by the MONITOR/MWAIT instructions and the size of the coherence 
line size for cache-snoop traffic in a multiprocessor system. This information can be 
queried using the CPUID monitor leaf function (EAX = 05H). You will need the 
smallest and largest monitor line size:
• To avoid missed wake-ups: make sure that the data structure used to monitor 

writes fits within the smallest monitor line-size. Otherwise, the processor may 
not wake up after a write intended to trigger an exit from MWAIT. 

• To avoid false wake-ups; use the largest monitor line size to pad the data 
structure used to monitor writes. Software must make sure that beyond the data 
structure, no unrelated data variable exists in the triggering area for MWAIT. A 
pad may be needed to avoid this situation.

These above two values bear no relationship to cache line size in the system and soft-
ware should not make any assumptions to that effect. Within a single-cluster system, 
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the two parameters should default to be the same (the size of the monitor triggering 
area is the same as the system coherence line size).

Based on the monitor line sizes returned by the CPUID, the OS should dynamically 
allocate structures with appropriate padding. If static data structures must be used 
by an OS, attempt to adapt the data structure and use a dynamically allocated data 
buffer for thread synchronization. When the latter technique is not possible, consider 
not using MONITOR/MWAIT when using static data structures.

To set up the data structure correctly for MONITOR/MWAIT on multi-clustered 
systems: interaction between processors, chipsets, and the BIOS is required (system 
coherence line size may depend on the chipset used in the system; the size could be 
different from the processor’s monitor triggering area). The BIOS is responsible to 
set the correct value for system coherence line size using the 
IA32_MONITOR_FILTER_LINE_SIZE MSR. Depending on the relative magnitude of 
the size of the monitor triggering area versus the value written into the 
IA32_MONITOR_FILTER_LINE_SIZE MSR, the smaller of the parameters will be 
reported as the Smallest Monitor Line Size. The larger of the parameters will be 
reported as the Largest Monitor Line Size.

8.10.6 Required Operating System Support
This section describes changes that must be made to an operating system to run on 
processors supporting Intel Hyper-Threading Technology. It also describes optimiza-
tions that can help an operating system make more efficient use of the logical 
processors sharing execution resources. The required changes and suggested opti-
mizations are representative of the types of modifications that appear in Windows* 
XP and Linux* kernel 2.4.0 operating systems for Intel processors supporting Intel 
Hyper-Threading Technology. Additional optimizations for processors supporting 
Intel Hyper-Threading Technology are described in the Intel® 64 and IA-32 Architec-
tures Optimization Reference Manual.

8.10.6.1  Use the PAUSE Instruction in Spin-Wait Loops
Intel recommends that a PAUSE instruction be placed in all spin-wait loops that run 
on Intel processors supporting Intel Hyper-Threading Technology and multi-core 
processors. 

Software routines that use spin-wait loops include multiprocessor synchronization 
primitives (spin-locks, semaphores, and mutex variables) and idle loops. Such 
routines keep the processor core busy executing a load-compare-branch loop while a 
thread waits for a resource to become available. Including a PAUSE instruction in such 
a loop greatly improves efficiency (see Section 8.10.2, “PAUSE Instruction”). The 
following routine gives an example of a spin-wait loop that uses a PAUSE instruction:

Spin_Lock:
CMP lockvar, 0 ;Check if lock is free
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JE Get_Lock
PAUSE ;Short delay
JMP Spin_Lock

Get_Lock:
MOV EAX, 1
XCHG EAX, lockvar ;Try to get lock
CMP EAX, 0 ;Test if successful
JNE Spin_Lock

Critical_Section:
<critical section code>
MOV lockvar, 0
...

Continue:

The spin-wait loop above uses a “test, test-and-set” technique for determining the 
availability of the synchronization variable. This technique is recommended when 
writing spin-wait loops.

In IA-32 processor generations earlier than the Pentium 4 processor, the PAUSE 
instruction is treated as a NOP instruction.

8.10.6.2  Potential Usage of MONITOR/MWAIT in C0 Idle Loops
An operating system may implement different handlers for different idle states. A 
typical OS idle loop on an ACPI-compatible OS is shown in Example 8-24: 

Example 8-24.  A Typical OS Idle Loop

// WorkQueue is a memory location indicating there is a thread 
// ready to run.  A non-zero value for WorkQueue is assumed to
// indicate the presence of work to be scheduled on the processor.
// The idle loop is entered with interrupts disabled.

WHILE (1) {
IF (WorkQueue) THEN {

// Schedule work at WorkQueue.
} 

ELSE {
// No work to do - wait in appropriate C-state handler depending 
// on Idle time accumulated
IF (IdleTime >= IdleTimeThreshhold) THEN {

// Call appropriate C1, C2, C3 state handler, C1 handler 
// shown below
}

}
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}
// C1 handler uses a Halt instruction
VOID C1Handler() 
{ STI

HLT
}

The MONITOR and MWAIT instructions may be considered for use in the C0 idle state loops, if 
MONITOR and MWAIT are supported. 

Example 8-25.  An OS Idle Loop with MONITOR/MWAIT in the C0 Idle Loop

// WorkQueue is a memory location indicating there is a thread 
// ready to run.  A non-zero value for WorkQueue is assumed to
// indicate the presence of work to be scheduled on the processor.
// The following example assumes that the necessary padding has been 
// added surrounding WorkQueue to eliminate false wakeups
// The idle loop is entered with interrupts disabled.

WHILE (1) {
IF (WorkQueue) THEN {

// Schedule work at WorkQueue.
} 

ELSE {
// No work to do - wait in appropriate C-state handler depending 
// on Idle time accumulated.
IF (IdleTime >= IdleTimeThreshhold) THEN {

// Call appropriate C1, C2, C3 state handler, C1 
// handler shown below
MONITOR WorkQueue // Setup of eax with WorkQueue

// LinearAddress, 
// ECX, EDX = 0

IF (WorkQueue != 0) THEN {
MWAIT
}

}
}

}
// C1 handler uses a Halt instruction.
VOID C1Handler() 
{ STI

HLT
}
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8.10.6.3  Halt Idle Logical Processors
If one of two logical processors is idle or in a spin-wait loop of long duration, explicitly 
halt that processor by means of a HLT instruction. 

In an MP system, operating systems can place idle processors into a loop that contin-
uously checks the run queue for runnable software tasks. Logical processors that 
execute idle loops consume a significant amount of core’s execution resources that 
might otherwise be used by the other logical processors in the physical package. For 
this reason, halting idle logical processors optimizes the performance.11 If all logical 
processors within a physical package are halted, the processor will enter a power-
saving state.

8.10.6.4  Potential Usage of MONITOR/MWAIT in C1 Idle Loops
An operating system may also consider replacing HLT with MONITOR/MWAIT in its C1 
idle loop. An example is shown in Example 8-26: 

Example 8-26.  An OS Idle Loop with MONITOR/MWAIT in the C1 Idle Loop

// WorkQueue is a memory location indicating there is a thread 
// ready to run.  A non-zero value for WorkQueue is assumed to
// indicate the presence of work to be scheduled on the processor.
// The following example assumes that the necessary padding has been 
// added surrounding WorkQueue to eliminate false wakeups
// The idle loop is entered with interrupts disabled.

WHILE (1) {
IF (WorkQueue) THEN {

// Schedule work at WorkQueue
} 

ELSE {
// No work to do - wait in appropriate C-state handler depending 
// on Idle time accumulated
IF (IdleTime >= IdleTimeThreshhold) THEN {
// Call appropriate C1, C2, C3 state handler, C1 
// handler shown below
}

}
}

VOID C1Handler() 

11. Excessive transitions into and out of the HALT state could also incur performance penalties. 
Operating systems should evaluate the performance trade-offs for their operating system.
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{ MONITOR WorkQueue // Setup of eax with WorkQueue LinearAddress, 
// ECX, EDX = 0

IF (WorkQueue != 0) THEN {
STI
MWAIT // EAX, ECX = 0
}

}

8.10.6.5  Guidelines for Scheduling Threads on Logical Processors Sharing 
Execution Resources

Because the logical processors, the order in which threads are dispatched to logical 
processors for execution can affect the overall efficiency of a system. The following 
guidelines are recommended for scheduling threads for execution.
• Dispatch threads to one logical processor per processor core before dispatching 

threads to the other logical processor sharing execution resources in the same 
processor core. 

• In an MP system with two or more physical packages, distribute threads out over 
all the physical processors, rather than concentrate them in one or two physical 
processors.

• Use processor affinity to assign a thread to a specific processor core or package, 
depending on the cache-sharing topology. The practice increases the chance that 
the processor’s caches will contain some of the thread’s code and data when it is 
dispatched for execution after being suspended. 

8.10.6.6  Eliminate Execution-Based Timing Loops
Intel discourages the use of timing loops that depend on a processor’s execution 
speed to measure time. There are several reasons:
• Timing loops cause problems when they are calibrated on a IA-32 processor 

running at one clock speed and then executed on a processor running at another 
clock speed. 

• Routines for calibrating execution-based timing loops produce unpredictable 
results when run on an IA-32 processor supporting Intel Hyper-Threading 
Technology. This is due to the sharing of execution resources between the logical 
processors within a physical package. 

To avoid the problems described, timing loop routines must use a timing mechanism 
for the loop that does not depend on the execution speed of the logical processors in 
the system. The following sources are generally available:
• A high resolution system timer (for example, an Intel 8254).
• A high resolution timer within the processor (such as, the local APIC timer or the 

time-stamp counter).
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For additional information, see the Intel® 64 and IA-32 Architectures Optimization 
Reference Manual.

8.10.6.7  Place Locks and Semaphores in Aligned, 128-Byte Blocks of 
Memory

When software uses locks or semaphores to synchronize processes, threads, or other 
code sections; Intel recommends that only one lock or semaphore be present within 
a cache line (or 128 byte sector, if 128-byte sector is supported). In processors based 
on Intel NetBurst microarchitecture (which support 128-byte sector consisting of two 
cache lines), following this recommendation means that each lock or semaphore 
should be contained in a 128-byte block of memory that begins on a 128-byte 
boundary. The practice minimizes the bus traffic required to service locks.

8.11 MP INITIALIZATION FOR P6 FAMILY PROCESSORS
This section describes the MP initialization process for systems that use multiple P6 
family processors. This process uses the MP initialization protocol that was intro-
duced with the Pentium Pro processor (see Section 8.4, “Multiple-Processor (MP) 
Initialization”). For P6 family processors, this protocol is typically used to boot 2 or 4 
processors that reside on single system bus; however, it can support from 2 to 15 
processors in a multi-clustered system when the APIC busses are tied together. 
Larger systems are not supported.

8.11.1 Overview of the MP Initialization Process For P6 Family 
Processors

During the execution of the MP initialization protocol, one processor is selected as the 
bootstrap processor (BSP) and the remaining processors are designated as applica-
tion processors (APs), see Section 8.4.1, “BSP and AP Processors.” Thereafter, the 
BSP manages the initialization of itself and the APs. This initialization includes 
executing BIOS initialization code and operating-system initialization code.

The MP protocol imposes the following requirements and restrictions on the system:
• An APIC clock (APICLK) must be provided.
• The MP protocol will be executed only after a power-up or RESET. If the MP 

protocol has been completed and a BSP has been chosen, subsequent INITs 
(either to a specific processor or system wide) do not cause the MP protocol to be 
repeated. Instead, each processor examines its BSP flag (in the APIC_BASE MSR) 
to determine whether it should execute the BIOS boot-strap code (if it is the BSP) 
or enter a wait-for-SIPI state (if it is an AP).

• All devices in the system that are capable of delivering interrupts to the 
processors must be inhibited from doing so for the duration of the MP initial-
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ization protocol. The time during which interrupts must be inhibited includes the 
window between when the BSP issues an INIT-SIPI-SIPI sequence to an AP and 
when the AP responds to the last SIPI in the sequence.

The following special-purpose interprocessor interrupts (IPIs) are used during the 
boot phase of the MP initialization protocol. These IPIs are broadcast on the APIC 
bus.
• Boot IPI (BIPI)—Initiates the arbitration mechanism that selects a BSP from the 

group of processors on the system bus and designates the remainder of the 
processors as APs. Each processor on the system bus broadcasts a BIPI to all the 
processors following a power-up or RESET. 

• Final Boot IPI (FIPI)—Initiates the BIOS initialization procedure for the BSP. This 
IPI is broadcast to all the processors on the system bus, but only the BSP 
responds to it. The BSP responds by beginning execution of the BIOS initialization 
code at the reset vector.

• Startup IPI (SIPI)—Initiates the initialization procedure for an AP. The SIPI 
message contains a vector to the AP initialization code in the BIOS.

Table 8-4 describes the various fields of the boot phase IPIs.

For BIPI messages, the lower 4 bits of the vector field contain the APIC ID of the 
processor issuing the message and the upper 4 bits contain the “generation ID” of 
the message. All P6 family processor will have a generation ID of 4H. BIPIs will there-
fore use vector values ranging from 40H to 4EH (4FH can not be used because FH is 
not a valid APIC ID). 

8.11.2 MP Initialization Protocol Algorithm
Following a power-up or RESET of a system, the P6 family processors in the system 
execute the MP initialization protocol algorithm to initialize each of the processors on 
the system bus. In the course of executing this algorithm, the following boot-up and 
initialization operations are carried out:

Table 8-4.  Boot Phase IPI Message Format

Type
Destination
Field

Destination
Shorthand

Trigger
Mode Level

Destination
Mode

Delivery
Mode

Vector
(Hex)

BIPI Not used All including 
self

Edge Deassert Don’t Care Fixed
(000)

40 to 4E*

FIPI Not used All including 
self

Edge Deassert Don’t Care Fixed
(000)

10

SIPI Used All excluding 
self

Edge Assert Physical StartUp
(110)

00 to FF

NOTE:
* For all P6 family processors.
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1. Each processor on the system bus is assigned a unique APIC ID, based on system 
topology (see Section 8.4.5, “Identifying Logical Processors in an MP System”). 
This ID is written into the local APIC ID register for each processor.

2. Each processor executes its internal BIST simultaneously with the other 
processors on the system bus. Upon completion of the BIST (at T0), each 
processor broadcasts a BIPI to “all including self” (see Figure 8-1). 

3. APIC arbitration hardware causes all the APICs to respond to the BIPIs one at a 
time (at T1, T2, T3, and T4). 

4. When the first BIPI is received (at time T1), each APIC compares the four least 
significant bits of the BIPI’s vector field with its APIC ID. If the vector and APIC ID 
match, the processor selects itself as the BSP by setting the BSP flag in its 
IA32_APIC_BASE MSR. If the vector and APIC ID do not match, the processor 
selects itself as an AP by entering the “wait for SIPI” state. (Note that in 
Figure 8-1, the BIPI from processor 1 is the first BIPI to be handled, so processor 
1 becomes the BSP.)

5. The newly established BSP broadcasts an FIPI message to “all including self.” The 
FIPI is guaranteed to be handled only after the completion of the BIPIs that were 
issued by the non-BSP processors.

6. After the BSP has been established, the outstanding BIPIs are received one at a 
time (at T2, T3, and T4) and ignored by all processors.

 

Figure 8-1.  MP System With Multiple Pentium III Processors
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7. When the FIPI is finally received (at T5), only the BSP responds to it. It responds 
by fetching and executing BIOS boot-strap code, beginning at the reset vector 
(physical address FFFF FFF0H).

8. As part of the boot-strap code, the BSP creates an ACPI table and an MP table and 
adds its initial APIC ID to these tables as appropriate. 

9. At the end of the boot-strap procedure, the BSP broadcasts a SIPI message to all 
the APs in the system. Here, the SIPI message contains a vector to the BIOS AP 
initialization code (at 000V V000H, where VV is the vector contained in the SIPI 
message).

10. All APs respond to the SIPI message by racing to a BIOS initialization semaphore. 
The first one to the semaphore begins executing the initialization code. (See MP 
init code for semaphore implementation details.) As part of the AP initialization 
procedure, the AP adds its APIC ID number to the ACPI and MP tables as appro-
priate. At the completion of the initialization procedure, the AP executes a CLI 
instruction (to clear the IF flag in the EFLAGS register) and halts itself.

11. When each of the APs has gained access to the semaphore and executed the AP 
initialization code and all written their APIC IDs into the appropriate places in the 
ACPI and MP tables, the BSP establishes a count for the number of processors 
connected to the system bus, completes executing the BIOS boot-strap code, 
and then begins executing operating-system boot-strap and start-up code.

12. While the BSP is executing operating-system boot-strap and start-up code, the 
APs remain in the halted state. In this state they will respond only to INITs, NMIs, 
and SMIs. They will also respond to snoops and to assertions of the STPCLK# pin.

See Section 8.4.4, “MP Initialization Example,” for an annotated example the use of 
the MP protocol to boot IA-32 processors in an MP. This code should run on any IA-32 
processor that used the MP protocol.

8.11.2.1  Error Detection and Handling During the MP Initialization Protocol
Errors may occur on the APIC bus during the MP initialization phase. These errors 
may be transient or permanent and can be caused by a variety of failure mechanisms 
(for example, broken traces, soft errors during bus usage, etc.). All serial bus related 
errors will result in an APIC checksum or acceptance error. 

The MP initialization protocol makes the following assumptions regarding errors that 
occur during initialization:
• If errors are detected on the APIC bus during execution of the MP initialization 

protocol, the processors that detect the errors are shut down. 
• The MP initialization protocol will be executed by processors even if they fail their 

BIST sequences.
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CHAPTER 9
PROCESSOR MANAGEMENT AND INITIALIZATION

This chapter describes the facilities provided for managing processor wide functions 
and for initializing the processor. The subjects covered include: processor initializa-
tion, x87 FPU initialization, processor configuration, feature determination, mode 
switching, the MSRs (in the Pentium, P6 family, Pentium 4, and Intel Xeon proces-
sors), and the MTRRs (in the P6 family, Pentium 4, and Intel Xeon processors).

9.1 INITIALIZATION OVERVIEW
Following power-up or an assertion of the RESET# pin, each processor on the system 
bus performs a hardware initialization of the processor (known as a hardware reset) 
and an optional built-in self-test (BIST). A hardware reset sets each processor’s 
registers to a known state and places the processor in real-address mode. It also 
invalidates the internal caches, translation lookaside buffers (TLBs) and the branch 
target buffer (BTB). At this point, the action taken depends on the processor family:
• Pentium 4 and Intel Xeon processors — All the processors on the system bus 

(including a single processor in a uniprocessor system) execute the multiple 
processor (MP) initialization protocol. The processor that is selected through this 
protocol as the bootstrap processor (BSP) then immediately starts executing 
software-initialization code in the current code segment beginning at the offset in 
the EIP register. The application (non-BSP) processors (APs) go into a Wait For 
Startup IPI (SIPI) state while the BSP is executing initialization code. See Section 
8.4, “Multiple-Processor (MP) Initialization,” for more details. Note that in a 
uniprocessor system, the single Pentium 4 or Intel Xeon processor automatically 
becomes the BSP.

• P6 family processors — The action taken is the same as for the Pentium 4 and 
Intel Xeon processors (as described in the previous paragraph).

• Pentium processors — In either a single- or dual- processor system, a single 
Pentium processor is always pre-designated as the primary processor. Following 
a reset, the primary processor behaves as follows in both single- and dual-
processor systems. Using the dual-processor (DP) ready initialization protocol, 
the primary processor immediately starts executing software-initialization code 
in the current code segment beginning at the offset in the EIP register. The 
secondary processor (if there is one) goes into a halt state.

• Intel486 processor — The primary processor (or single processor in a unipro-
cessor system) immediately starts executing software-initialization code in the 
current code segment beginning at the offset in the EIP register. (The Intel486 
does not automatically execute a DP or MP initialization protocol to determine 
which processor is the primary processor.)
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The software-initialization code performs all system-specific initialization of the BSP 
or primary processor and the system logic.

At this point, for MP (or DP) systems, the BSP (or primary) processor wakes up each 
AP (or secondary) processor to enable those processors to execute self-configuration 
code.

When all processors are initialized, configured, and synchronized, the BSP or primary 
processor begins executing an initial operating-system or executive task.

The x87 FPU is also initialized to a known state during hardware reset. x87 FPU soft-
ware initialization code can then be executed to perform operations such as setting 
the precision of the x87 FPU and the exception masks. No special initialization of the 
x87 FPU is required to switch operating modes. 

Asserting the INIT# pin on the processor invokes a similar response to a hardware 
reset. The major difference is that during an INIT, the internal caches, MSRs, MTRRs, 
and x87 FPU state are left unchanged (although, the TLBs and BTB are invalidated as 
with a hardware reset). An INIT provides a method for switching from protected to 
real-address mode while maintaining the contents of the internal caches.

9.1.1 Processor State After Reset
Table 9-1 shows the state of the flags and other registers following power-up for the 
Pentium 4, Intel Xeon, P6 family, and Pentium processors. The state of control 
register CR0 is 60000010H (see Figure 9-1). This places the processor is in real-
address mode with paging disabled. 

9.1.2 Processor Built-In Self-Test (BIST)
Hardware may request that the BIST be performed at power-up. The EAX register is 
cleared (0H) if the processor passes the BIST. A nonzero value in the EAX register 
after the BIST indicates that a processor fault was detected. If the BIST is not 
requested, the contents of the EAX register after a hardware reset is 0H. 

The overhead for performing a BIST varies between processor families. For example, 
the BIST takes approximately 30 million processor clock periods to execute on the 
Pentium 4 processor. This clock count is model-specific; Intel reserves the right to 
change the number of periods for any Intel 64 or IA-32 processor, without notification.

Table 9-1.  IA-32 Processor States Following Power-up, Reset, or INIT 

Register Pentium 4 and Intel 
Xeon Processor

P6 Family Processor Pentium Processor

EFLAGS1 00000002H 00000002H 00000002H

EIP 0000FFF0H 0000FFF0H 0000FFF0H

CR0 60000010H2 60000010H2 60000010H2
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CR2, CR3, CR4 00000000H 00000000H 00000000H

CS Selector = F000H
Base = FFFF0000H
Limit = FFFFH
AR = Present, R/W, 
Accessed

Selector = F000H
Base = FFFF0000H
Limit = FFFFH
AR = Present, R/W, 
Accessed

Selector = F000H
Base = FFFF0000H
Limit = FFFFH
AR = Present, R/W, 
Accessed

SS, DS, ES, FS, GS Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W, 
Accessed

Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W, 
Accessed

Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W, 
Accessed

EDX 00000FxxH  000n06xxH3 000005xxH 

EAX 04 04 04

EBX, ECX, ESI, EDI, 
EBP, ESP

00000000H 00000000H 00000000H

ST0 through ST75 Pwr up or Reset: +0.0
FINIT/FNINIT: Unchanged

Pwr up or Reset: +0.0
FINIT/FNINIT: Unchanged

Pwr up or Reset: +0.0
FINIT/FNINIT: Unchanged

x87 FPU Control 
Word5

Pwr up or Reset: 0040H
FINIT/FNINIT: 037FH

Pwr up or Reset: 0040H
FINIT/FNINIT: 037FH

Pwr up or Reset: 0040H
FINIT/FNINIT: 037FH

x87 FPU Status 
Word5

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

x87 FPU Tag 
Word5

Pwr up or Reset: 5555H
FINIT/FNINIT: FFFFH

Pwr up or Reset: 5555H
FINIT/FNINIT: FFFFH

Pwr up or Reset: 5555H
FINIT/FNINIT: FFFFH

x87 FPU Data 
Operand and CS 
Seg. Selectors5

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

x87 FPU Data 
Operand and Inst. 
Pointers5

Pwr up or Reset: 
   00000000H
FINIT/FNINIT: 00000000H

Pwr up or Reset: 
   00000000H
FINIT/FNINIT: 00000000H

Pwr up or Reset: 
   00000000H
FINIT/FNINIT: 00000000H

MM0 through 
MM75

Pwr up or Reset:
   0000000000000000H
INIT or FINIT/FNINIT:
   Unchanged

Pentium II and Pentium III 
Processors Only—
Pwr up or Reset:
   0000000000000000H
INIT or FINIT/FNINIT:
   Unchanged

Pentium with MMX 
Technology Only—
Pwr up or Reset:
   0000000000000000H
INIT or FINIT/FNINIT:
   Unchanged

XMM0 through 
XMM7

Pwr up or Reset:
   0000000000000000H
INIT: Unchanged

Pentium III processor Only—
Pwr up or Reset:
   0000000000000000H
INIT: Unchanged

NA

MXCSR Pwr up or Reset: 1F80H
INIT: Unchanged

Pentium III processor only-
Pwr up or Reset: 1F80H
INIT: Unchanged

NA

GDTR, IDTR Base = 00000000H
Limit = FFFFH
AR = Present, R/W

Base = 00000000H
Limit = FFFFH
AR = Present, R/W

Base = 00000000H
Limit = FFFFH
AR = Present, R/W

Table 9-1.  IA-32 Processor States Following Power-up, Reset, or INIT  (Contd.)

Register Pentium 4 and Intel 
Xeon Processor

P6 Family Processor Pentium Processor
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LDTR, Task 
Register

Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W

Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W

Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W

DR0, DR1, DR2, 
DR3

00000000H 00000000H 00000000H

DR6 FFFF0FF0H FFFF0FF0H FFFF0FF0H

DR7 00000400H 00000400H 00000400H

Time-Stamp 
Counter

Power up or Reset: 0H
INIT: Unchanged

Power up or Reset: 0H
INIT: Unchanged

Power up or Reset: 0H
INIT: Unchanged

Perf. Counters and 
Event Select

Power up or Reset: 0H
INIT: Unchanged

Power up or Reset: 0H
INIT: Unchanged

Power up or Reset: 0H
INIT: Unchanged

All Other MSRs Pwr up or Reset:
   Undefined
INIT: Unchanged

Pwr up or Reset:
   Undefined
INIT: Unchanged

Pwr up or Reset:
   Undefined
INIT: Unchanged

Data and Code 
Cache, TLBs

Invalid6 Invalid6 Invalid6

Fixed MTRRs Pwr up or Reset: Disabled
INIT: Unchanged

Pwr up or Reset: Disabled
INIT: Unchanged

Not Implemented

Variable MTRRs Pwr up or Reset: Disabled
INIT: Unchanged

Pwr up or Reset: Disabled
INIT: Unchanged

Not Implemented

Machine-Check 
Architecture

Pwr up or Reset:
    Undefined
INIT: Unchanged

Pwr up or Reset:
    Undefined
INIT: Unchanged

Not Implemented

APIC Pwr up or Reset: Enabled
INIT: Unchanged

Pwr up or Reset: Enabled
INIT: Unchanged

Pwr up or Reset: Enabled
INIT: Unchanged

NOTES: 
1. The 10 most-significant bits of the EFLAGS register are undefined following a reset. Software 

should not depend on the states of any of these bits.
2. The CD and NW flags are unchanged, bit 4 is set to 1, all other bits are cleared.
3. Where “n” is the Extended Model Value for the respective processor.
4. If Built-In Self-Test (BIST) is invoked on power up or reset, EAX is 0 only if all tests passed. (BIST 

cannot be invoked during an INIT.)
5. The state of the x87 FPU and MMX registers is not changed by the execution of an INIT.
6. Internal caches are invalid after power-up and RESET, but left unchanged with an INIT.

Table 9-1.  IA-32 Processor States Following Power-up, Reset, or INIT  (Contd.)

Register Pentium 4 and Intel 
Xeon Processor

P6 Family Processor Pentium Processor
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9.1.3 Model and Stepping Information
Following a hardware reset, the EDX register contains component identification and 
revision information (see Figure 9-2). For example, the model, family, and processor 
type returned for the first processor in the Intel Pentium 4 family is as follows: model 
(0000B), family (1111B), and processor type (00B). 

The stepping ID field contains a unique identifier for the processor’s stepping ID or 
revision level. The extended family and extended model fields were added to the 
IA-32 architecture in the Pentium 4 processors.

Figure 9-1.  Contents of CR0 Register after Reset

Figure 9-2.  Version Information in the EDX Register after Reset

External x87 FPU error reporting: 0
(Not used): 1
No task switch: 0
x87 FPU instructions not trapped: 0
WAIT/FWAIT instructions not trapped: 0
Real-address mode: 0
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9.1.4 First Instruction Executed
The first instruction that is fetched and executed following a hardware reset is 
located at physical address FFFFFFF0H. This address is 16 bytes below the 
processor’s uppermost physical address. The EPROM containing the software-
initialization code must be located at this address. 

The address FFFFFFF0H is beyond the 1-MByte addressable range of the processor 
while in real-address mode. The processor is initialized to this starting address as 
follows. The CS register has two parts: the visible segment selector part and the 
hidden base address part. In real-address mode, the base address is normally 
formed by shifting the 16-bit segment selector value 4 bits to the left to produce a 
20-bit base address. However, during a hardware reset, the segment selector in the 
CS register is loaded with F000H and the base address is loaded with FFFF0000H. The 
starting address is thus formed by adding the base address to the value in the EIP 
register (that is, FFFF0000 + FFF0H = FFFFFFF0H).

The first time the CS register is loaded with a new value after a hardware reset, the 
processor will follow the normal rule for address translation in real-address mode 
(that is, [CS base address = CS segment selector * 16]). To insure that the base 
address in the CS register remains unchanged until the EPROM based software-
initialization code is completed, the code must not contain a far jump or far call or 
allow an interrupt to occur (which would cause the CS selector value to be changed).

9.2 X87 FPU INITIALIZATION
Software-initialization code can determine the whether the processor contains an 
x87 FPU by using the CPUID instruction. The code must then initialize the x87 FPU 
and set flags in control register CR0 to reflect the state of the x87 FPU environment.

A hardware reset places the x87 FPU in the state shown in Table 9-1. This state is 
different from the state the x87 FPU is placed in following the execution of an FINIT 
or FNINIT instruction (also shown in Table 9-1). If the x87 FPU is to be used, the soft-
ware-initialization code should execute an FINIT/FNINIT instruction following a hard-
ware reset. These instructions, tag all data registers as empty, clear all the exception 
masks, set the TOP-of-stack value to 0, and select the default rounding and precision 
controls setting (round to nearest and 64-bit precision).

If the processor is reset by asserting the INIT# pin, the x87 FPU state is not changed.

9.2.1 Configuring the x87 FPU Environment
Initialization code must load the appropriate values into the MP, EM, and NE flags of 
control register CR0. These bits are cleared on hardware reset of the processor. 
Figure 9-2 shows the suggested settings for these flags, depending on the IA-32 
processor being initialized. Initialization code can test for the type of processor 
present before setting or clearing these flags.
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The EM flag determines whether floating-point instructions are executed by the x87 
FPU (EM is cleared) or a device-not-available exception (#NM) is generated for all 
floating-point instructions so that an exception handler can emulate the floating-
point operation (EM = 1). Ordinarily, the EM flag is cleared when an x87 FPU or math 
coprocessor is present and set if they are not present. If the EM flag is set and no x87 
FPU, math coprocessor, or floating-point emulator is present, the processor will hang 
when a floating-point instruction is executed.

The MP flag determines whether WAIT/FWAIT instructions react to the setting of the 
TS flag. If the MP flag is clear, WAIT/FWAIT instructions ignore the setting of the TS 
flag; if the MP flag is set, they will generate a device-not-available exception (#NM) 
if the TS flag is set. Generally, the MP flag should be set for processors with an inte-
grated x87 FPU and clear for processors without an integrated x87 FPU and without a 
math coprocessor present. However, an operating system can choose to save the 
floating-point context at every context switch, in which case there would be no need 
to set the MP bit. 

Table 2-1 shows the actions taken for floating-point and WAIT/FWAIT instructions 
based on the settings of the EM, MP, and TS flags.

The NE flag determines whether unmasked floating-point exceptions are handled by 
generating a floating-point error exception internally (NE is set, native mode) or 
through an external interrupt (NE is cleared). In systems where an external interrupt 
controller is used to invoke numeric exception handlers (such as MS-DOS-based 
systems), the NE bit should be cleared.

9.2.2 Setting the Processor for x87 FPU Software Emulation
Setting the EM flag causes the processor to generate a device-not-available excep-
tion (#NM) and trap to a software exception handler whenever it encounters a 
floating-point instruction. (Table 9-2 shows when it is appropriate to use this flag.) 
Setting this flag has two functions:

Table 9-2.  Recommended Settings of EM and MP Flags on IA-32 Processors

EM MP NE IA-32 processor

1 0 1 Intel486™ SX, Intel386™ DX, and Intel386™ SX processors 
only, without the presence of a math coprocessor.

0 1 1 or 0* Pentium 4, Intel Xeon, P6 family, Pentium, Intel486™ DX, and 
Intel 487 SX processors, and Intel386 DX and Intel386 SX 
processors when a companion math coprocessor is present.

0 1 1 or 0* More recent Intel 64 or IA-32 processors

NOTE:
* The setting of the NE flag depends on the operating system being used.
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• It allows x87 FPU code to run on an IA-32 processor that has neither an 
integrated x87 FPU nor is connected to an external math coprocessor, by using a 
floating-point emulator. 

• It allows floating-point code to be executed using a special or nonstandard 
floating-point emulator, selected for a particular application, regardless of 
whether an x87 FPU or math coprocessor is present. 

To emulate floating-point instructions, the EM, MP, and NE flag in control register CR0 
should be set as shown in Table 9-3.

Regardless of the value of the EM bit, the Intel486 SX processor generates a device-
not-available exception (#NM) upon encountering any floating-point instruction.

9.3 CACHE ENABLING
IA-32 processors (beginning with the Intel486 processor) and Intel 64 processors 
contain internal instruction and data caches. These caches are enabled by clearing 
the CD and NW flags in control register CR0. (They are set during a hardware reset.) 
Because all internal cache lines are invalid following reset initialization, it is not 
necessary to invalidate the cache before enabling caching. Any external caches may 
require initialization and invalidation using a system-specific initialization and invali-
dation code sequence.

Depending on the hardware and operating system or executive requirements, addi-
tional configuration of the processor’s caching facilities will probably be required. 
Beginning with the Intel486 processor, page-level caching can be controlled with the 
PCD and PWT flags in page-directory and page-table entries. Beginning with the P6 
family processors, the memory type range registers (MTRRs) control the caching 
characteristics of the regions of physical memory. (For the Intel486 and Pentium 
processors, external hardware can be used to control the caching characteristics of 
regions of physical memory.) See Chapter 11, “Memory Cache Control,” for detailed 
information on configuration of the caching facilities in the Pentium 4, Intel Xeon, and 
P6 family processors and system memory.

Table 9-3.  Software Emulation Settings of EM, MP, and NE Flags

CR0 Bit Value

EM 1

MP 0

NE 1
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9.4 MODEL-SPECIFIC REGISTERS (MSRS)
Most IA-32 processors (starting from Pentium processors) and Intel 64 processors 
contain a model-specific registers (MSRs). A given MSR may not be supported across 
all families and models for Intel 64 and IA-32 processors. Some MSRs are designated 
as architectural to simplify software programming; a feature introduced by an archi-
tectural MSR is expected to be supported in future processors. Non-architectural 
MSRs are not guaranteed to be supported or to have the same functions on future 
processors.   

MSRs that provide control for a number of hardware and software-related features, 
include:
• Performance-monitoring counters (see Chapter 23, “Introduction to Virtual-

Machine Extensions”).
• Debug extensions (see Chapter 23, “Introduction to Virtual-Machine Exten-

sions.”).
• Machine-check exception capability and its accompanying machine-check archi-

tecture (see Chapter 15, “Machine-Check Architecture”).
• MTRRs (see Section 11.11, “Memory Type Range Registers (MTRRs)”).
• Thermal and power management.
• Instruction-specific support (for example: SYSENTER, SYSEXIT, SWAPGS, etc.).
• Processor feature/mode support (for example: IA32_EFER, 

IA32_FEATURE_CONTROL).

The MSRs can be read and written to using the RDMSR and WRMSR instructions, 
respectively.

When performing software initialization of an IA-32 or Intel 64 processor, many of 
the MSRs will need to be initialized to set up things like performance-monitoring 
events, run-time machine checks, and memory types for physical memory.

Lists of available performance-monitoring events are given in Chapter 19, “Perfor-
mance Monitoring Events”, and lists of available MSRs are given in Chapter 34, 
“Model-Specific Registers (MSRs)” The references earlier in this section show where 
the functions of the various groups of MSRs are described in this manual.

9.5 MEMORY TYPE RANGE REGISTERS (MTRRS)
Memory type range registers (MTRRs) were introduced into the IA-32 architecture 
with the Pentium Pro processor. They allow the type of caching (or no caching) to be 
specified in system memory for selected physical address ranges. They allow 
memory accesses to be optimized for various types of memory such as RAM, ROM, 
frame buffer memory, and memory-mapped I/O devices.

In general, initializing the MTRRs is normally handled by the software initialization 
code or BIOS and is not an operating system or executive function. At the very least, 
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all the MTRRs must be cleared to 0, which selects the uncached (UC) memory type. 
See Section 11.11, “Memory Type Range Registers (MTRRs),” for detailed informa-
tion on the MTRRs.

9.6 INITIALIZING SSE/SSE2/SSE3/SSSE3 EXTENSIONS
For processors that contain SSE/SSE2/SSE3/SSSE3 extensions, steps must be taken 
when initializing the processor to allow execution of these instructions.

1. Check the CPUID feature flags for the presence of the SSE/SSE2/SSE3/SSSE3 
extensions (respectively: EDX bits 25 and 26, ECX bit 0 and 9) and support for 
the FXSAVE and FXRSTOR instructions (EDX bit 24). Also check for support for 
the CLFLUSH instruction (EDX bit 19). The CPUID feature flags are loaded in the 
EDX and ECX registers when the CPUID instruction is executed with a 1 in the 
EAX register.

2. Set the OSFXSR flag (bit 9 in control register CR4) to indicate that the operating 
system supports saving and restoring the SSE/SSE2/SSE3/SSSE3 execution 
environment (XXM and MXCSR registers) with the FXSAVE and FXRSTOR instruc-
tions, respectively. See Section 2.5, “Control Registers,” for a description of the 
OSFXSR flag.

3. Set the OSXMMEXCPT flag (bit 10 in control register CR4) to indicate that the 
operating system supports the handling of SSE/SSE2/SSE3 SIMD floating-point 
exceptions (#XF). See Section 2.5, “Control Registers,” for a description of the 
OSXMMEXCPT flag.

4. Set the mask bits and flags in the MXCSR register according to the mode of 
operation desired for SSE/SSE2/SSE3 SIMD floating-point instructions. See 
“MXCSR Control and Status Register” in Chapter 10, “Programming with 
Streaming SIMD Extensions (SSE),” of the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 1, for a detailed description of the bits and 
flags in the MXCSR register.

9.7 SOFTWARE INITIALIZATION FOR REAL-ADDRESS 
MODE OPERATION

Following a hardware reset (either through a power-up or the assertion of the 
RESET# pin) the processor is placed in real-address mode and begins executing soft-
ware initialization code from physical address FFFFFFF0H. Software initialization code 
must first set up the necessary data structures for handling basic system functions, 
such as a real-mode IDT for handling interrupts and exceptions. If the processor is to 
remain in real-address mode, software must then load additional operating-system 
or executive code modules and data structures to allow reliable execution of applica-
tion programs in real-address mode.

If the processor is going to operate in protected mode, software must load the neces-
sary data structures to operate in protected mode and then switch to protected 
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mode. The protected-mode data structures that must be loaded are described in 
Section 9.8, “Software Initialization for Protected-Mode Operation.”

9.7.1 Real-Address Mode IDT
In real-address mode, the only system data structure that must be loaded into 
memory is the IDT (also called the “interrupt vector table”). By default, the address 
of the base of the IDT is physical address 0H. This address can be changed by using 
the LIDT instruction to change the base address value in the IDTR. Software initial-
ization code needs to load interrupt- and exception-handler pointers into the IDT 
before interrupts can be enabled. 

The actual interrupt- and exception-handler code can be contained either in EPROM 
or RAM; however, the code must be located within the 1-MByte addressable range of 
the processor in real-address mode. If the handler code is to be stored in RAM, it 
must be loaded along with the IDT.

9.7.2 NMI Interrupt Handling
The NMI interrupt is always enabled (except when multiple NMIs are nested). If the 
IDT and the NMI interrupt handler need to be loaded into RAM, there will be a period 
of time following hardware reset when an NMI interrupt cannot be handled. During 
this time, hardware must provide a mechanism to prevent an NMI interrupt from 
halting code execution until the IDT and the necessary NMI handler software is 
loaded. Here are two examples of how NMIs can be handled during the initial states 
of processor initialization:
• A simple IDT and NMI interrupt handler can be provided in EPROM. This allows an 

NMI interrupt to be handled immediately after reset initialization.
• The system hardware can provide a mechanism to enable and disable NMIs by 

passing the NMI# signal through an AND gate controlled by a flag in an I/O port. 
Hardware can clear the flag when the processor is reset, and software can set the 
flag when it is ready to handle NMI interrupts.

9.8 SOFTWARE INITIALIZATION FOR PROTECTED-MODE 
OPERATION

The processor is placed in real-address mode following a hardware reset. At this 
point in the initialization process, some basic data structures and code modules must 
be loaded into physical memory to support further initialization of the processor, as 
described in Section 9.7, “Software Initialization for Real-Address Mode Operation.” 
Before the processor can be switched to protected mode, the software initialization 
code must load a minimum number of protected mode data structures and code 
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modules into memory to support reliable operation of the processor in protected 
mode. These data structures include the following:
• A IDT.
• A GDT.
• A TSS.
• (Optional) An LDT.
• If paging is to be used, at least one page directory and one page table.
• A code segment that contains the code to be executed when the processor 

switches to protected mode.
• One or more code modules that contain the necessary interrupt and exception 

handlers.

Software initialization code must also initialize the following system registers before 
the processor can be switched to protected mode:
• The GDTR.
• (Optional.) The IDTR. This register can also be initialized immediately after 

switching to protected mode, prior to enabling interrupts.
• Control registers CR1 through CR4.
• (Pentium 4, Intel Xeon, and P6 family processors only.) The memory type range 

registers (MTRRs).

With these data structures, code modules, and system registers initialized, the 
processor can be switched to protected mode by loading control register CR0 with a 
value that sets the PE flag (bit 0).

9.8.1 Protected-Mode System Data Structures
The contents of the protected-mode system data structures loaded into memory 
during software initialization, depend largely on the type of memory management 
the protected-mode operating-system or executive is going to support: flat, flat with 
paging, segmented, or segmented with paging.

To implement a flat memory model without paging, software initialization code must 
at a minimum load a GDT with one code and one data-segment descriptor. A null 
descriptor in the first GDT entry is also required. The stack can be placed in a normal 
read/write data segment, so no dedicated descriptor for the stack is required. A flat 
memory model with paging also requires a page directory and at least one page table 
(unless all pages are 4 MBytes in which case only a page directory is required). See 
Section 9.8.3, “Initializing Paging.”

Before the GDT can be used, the base address and limit for the GDT must be loaded 
into the GDTR register using an LGDT instruction.

A multi-segmented model may require additional segments for the operating system, 
as well as segments and LDTs for each application program. LDTs require segment 
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descriptors in the GDT. Some operating systems allocate new segments and LDTs as 
they are needed. This provides maximum flexibility for handling a dynamic program-
ming environment. However, many operating systems use a single LDT for all tasks, 
allocating GDT entries in advance. An embedded system, such as a process 
controller, might pre-allocate a fixed number of segments and LDTs for a fixed 
number of application programs. This would be a simple and efficient way to struc-
ture the software environment of a real-time system.

9.8.2 Initializing Protected-Mode Exceptions and Interrupts
Software initialization code must at a minimum load a protected-mode IDT with gate 
descriptor for each exception vector that the processor can generate. If interrupt or 
trap gates are used, the gate descriptors can all point to the same code segment, 
which contains the necessary exception handlers. If task gates are used, one TSS 
and accompanying code, data, and task segments are required for each exception 
handler called with a task gate.

If hardware allows interrupts to be generated, gate descriptors must be provided in 
the IDT for one or more interrupt handlers.

Before the IDT can be used, the base address and limit for the IDT must be loaded 
into the IDTR register using an LIDT instruction. This operation is typically carried out 
immediately after switching to protected mode.

9.8.3 Initializing Paging
Paging is controlled by the PG flag in control register CR0. When this flag is clear (its 
state following a hardware reset), the paging mechanism is turned off; when it is set, 
paging is enabled. Before setting the PG flag, the following data structures and regis-
ters must be initialized:
• Software must load at least one page directory and one page table into physical 

memory. The page table can be eliminated if the page directory contains a 
directory entry pointing to itself (here, the page directory and page table reside 
in the same page), or if only 4-MByte pages are used.

• Control register CR3 (also called the PDBR register) is loaded with the physical 
base address of the page directory.

• (Optional) Software may provide one set of code and data descriptors in the GDT 
or in an LDT for supervisor mode and another set for user mode.

With this paging initialization complete, paging is enabled and the processor is 
switched to protected mode at the same time by loading control register CR0 with an 
image in which the PG and PE flags are set. (Paging cannot be enabled before the 
processor is switched to protected mode.)
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9.8.4 Initializing Multitasking
If the multitasking mechanism is not going to be used and changes between privilege 
levels are not allowed, it is not necessary load a TSS into memory or to initialize the 
task register.

If the multitasking mechanism is going to be used and/or changes between privilege 
levels are allowed, software initialization code must load at least one TSS and an 
accompanying TSS descriptor. (A TSS is required to change privilege levels because 
pointers to the privileged-level 0, 1, and 2 stack segments and the stack pointers for 
these stacks are obtained from the TSS.) TSS descriptors must not be marked as 
busy when they are created; they should be marked busy by the processor only as a 
side-effect of performing a task switch. As with descriptors for LDTs, TSS descriptors 
reside in the GDT.

After the processor has switched to protected mode, the LTR instruction can be used 
to load a segment selector for a TSS descriptor into the task register. This instruction 
marks the TSS descriptor as busy, but does not perform a task switch. The processor 
can, however, use the TSS to locate pointers to privilege-level 0, 1, and 2 stacks. The 
segment selector for the TSS must be loaded before software performs its first task 
switch in protected mode, because a task switch copies the current task state into 
the TSS.

After the LTR instruction has been executed, further operations on the task register 
are performed by task switching. As with other segments and LDTs, TSSs and TSS 
descriptors can be either pre-allocated or allocated as needed.

9.8.5 Initializing IA-32e Mode
On Intel 64 processors, the IA32_EFER MSR is cleared on system reset. The oper-
ating system must be in protected mode with paging enabled before attempting to 
initialize IA-32e mode. IA-32e mode operation also requires physical-address exten-
sions with four levels of enhanced paging structures (see Section 4.5, “IA-32e 
Paging”).

Operating systems should follow this sequence to initialize IA-32e mode:

1. Starting from protected mode, disable paging by setting CR0.PG = 0. Use the 
MOV CR0 instruction to disable paging (the instruction must be located in an 
identity-mapped page).

2. Enable physical-address extensions (PAE) by setting CR4.PAE = 1. Failure to 
enable PAE will result in a #GP fault when an attempt is made to initialize IA-32e 
mode.

3. Load CR3 with the physical base address of the Level 4 page map table (PML4).

4. Enable IA-32e mode by setting IA32_EFER.LME = 1.

5. Enable paging by setting CR0.PG = 1. This causes the processor to set the 
IA32_EFER.LMA bit to 1. The MOV CR0 instruction that enables paging and the 
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following instructions must be located in an identity-mapped page (until such 
time that a branch to non-identity mapped pages can be effected).

64-bit mode paging tables must be located in the first 4 GBytes of physical-address 
space prior to activating IA-32e mode. This is necessary because the MOV CR3 
instruction used to initialize the page-directory base must be executed in legacy 
mode prior to activating IA-32e mode (setting CR0.PG = 1 to enable paging). 
Because MOV CR3 is executed in protected mode, only the lower 32 bits of the 
register are written, limiting the table location to the low 4 GBytes of memory. Soft-
ware can relocate the page tables anywhere in physical memory after IA-32e mode 
is activated.

The processor performs 64-bit mode consistency checks whenever software 
attempts to modify any of the enable bits directly involved in activating IA-32e mode 
(IA32_EFER.LME, CR0.PG, and CR4.PAE). It will generate a general protection fault 
(#GP) if consistency checks fail. 64-bit mode consistency checks ensure that the 
processor does not enter an undefined mode or state with unpredictable behavior.

64-bit mode consistency checks fail in the following circumstances:
• An attempt is made to enable or disable IA-32e mode while paging is enabled.
• IA-32e mode is enabled and an attempt is made to enable paging prior to 

enabling physical-address extensions (PAE).
• IA-32e mode is active and an attempt is made to disable physical-address 

extensions (PAE).
• If the current CS has the L-bit set on an attempt to activate IA-32e mode.
• If the TR contains a 16-bit TSS.

9.8.5.1  IA-32e Mode System Data Structures
After activating IA-32e mode, the system-descriptor-table registers (GDTR, LDTR, 
IDTR, TR) continue to reference legacy protected-mode descriptor tables. Tables 
referenced by the descriptors all reside in the lower 4 GBytes of linear-address space. 
After activating IA-32e mode, 64-bit operating-systems should use the LGDT, LLDT, 
LIDT, and LTR instructions to load the system-descriptor-table registers with refer-
ences to 64-bit descriptor tables.

9.8.5.2  IA-32e Mode Interrupts and Exceptions
Software must not allow exceptions or interrupts to occur between the time IA-32e 
mode is activated and the update of the interrupt-descriptor-table register (IDTR) 
that establishes references to a 64-bit interrupt-descriptor table (IDT). This is 
because the IDT remains in legacy form immediately after IA-32e mode is activated.

If an interrupt or exception occurs prior to updating the IDTR, a legacy 32-bit inter-
rupt gate will be referenced and interpreted as a 64-bit interrupt gate with unpredict-
able results. External interrupts can be disabled by using the CLI instruction.

Non-maskable interrupts (NMI) must be disabled using external hardware.
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9.8.5.3  64-bit Mode and Compatibility Mode Operation
IA-32e mode uses two code segment-descriptor bits (CS.L and CS.D, see Figure 3-8) 
to control the operating modes after IA-32e mode is initialized. If CS.L = 1 and CS.D = 
0, the processor is running in 64-bit mode. With this encoding, the default operand 
size is 32 bits and default address size is 64 bits. Using instruction prefixes, operand 
size can be changed to 64 bits or 16 bits; address size can be changed to 32 bits. 

When IA-32e mode is active and CS.L = 0, the processor operates in compatibility 
mode. In this mode, CS.D controls default operand and address sizes exactly as it 
does in the IA-32 architecture. Setting CS.D = 1 specifies default operand and 
address size as 32 bits. Clearing CS.D to 0 specifies default operand and address size 
as 16 bits (the CS.L = 1, CS.D = 1 bit combination is reserved).

Compatibility mode execution is selected on a code-segment basis. This mode allows 
legacy applications to coexist with 64-bit applications running in 64-bit mode. An 
operating system running in IA-32e mode can execute existing 16-bit and 32-bit 
applications by clearing their code-segment descriptor’s CS.L bit to 0.

In compatibility mode, the following system-level mechanisms continue to operate 
using the IA-32e-mode architectural semantics:
• Linear-to-physical address translation uses the 64-bit mode extended page-

translation mechanism.
• Interrupts and exceptions are handled using the 64-bit mode mechanisms.
• System calls (calls through call gates and SYSENTER/SYSEXIT) are handled using 

the IA-32e mode mechanisms.

9.8.5.4  Switching Out of IA-32e Mode Operation
To return from IA-32e mode to paged-protected mode operation. Operating systems 
must use the following sequence:

1. Switch to compatibility mode.

2. Deactivate IA-32e mode by clearing CR0.PG = 0. This causes the processor to set 
IA32_EFER.LMA = 0. The MOV CR0 instruction used to disable paging and 
subsequent instructions must be located in an identity-mapped page.

3. Load CR3 with the physical base address of the legacy page-table-directory base 
address.

4. Disable IA-32e mode by setting IA32_EFER.LME = 0.

5. Enable legacy paged-protected mode by setting CR0.PG = 1

6. A branch instruction must follow the MOV CR0 that enables paging. Both the MOV 
CR0 and the branch instruction must be located in an identity-mapped page.

Registers only available in 64-bit mode (R8-R15 and XMM8-XMM15) are preserved 
across transitions from 64-bit mode into compatibility mode then back into 64-bit 
mode. However, values of R8-R15 and XMM8-XMM15 are undefined after transitions 
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from 64-bit mode through compatibility mode to legacy or real mode and then back 
through compatibility mode to 64-bit mode.

9.9 MODE SWITCHING
To use the processor in protected mode after hardware or software reset, a mode 
switch must be performed from real-address mode. Once in protected mode, soft-
ware generally does not need to return to real-address mode. To run software written 
to run in real-address mode (8086 mode), it is generally more convenient to run the 
software in virtual-8086 mode, than to switch back to real-address mode.

9.9.1 Switching to Protected Mode
Before switching to protected mode from real mode, a minimum set of system data 
structures and code modules must be loaded into memory, as described in Section 
9.8, “Software Initialization for Protected-Mode Operation.” Once these tables are 
created, software initialization code can switch into protected mode.

Protected mode is entered by executing a MOV CR0 instruction that sets the PE flag 
in the CR0 register. (In the same instruction, the PG flag in register CR0 can be set to 
enable paging.) Execution in protected mode begins with a CPL of 0.

Intel 64 and IA-32 processors have slightly different requirements for switching to 
protected mode. To insure upwards and downwards code compatibility with Intel 64 
and IA-32 processors, we recommend that you follow these steps:

1. Disable interrupts. A CLI instruction disables maskable hardware interrupts. NMI 
interrupts can be disabled with external circuitry. (Software must guarantee that 
no exceptions or interrupts are generated during the mode switching operation.)

2. Execute the LGDT instruction to load the GDTR register with the base address of 
the GDT.

3. Execute a MOV CR0 instruction that sets the PE flag (and optionally the PG flag) 
in control register CR0.

4. Immediately following the MOV CR0 instruction, execute a far JMP or far CALL 
instruction. (This operation is typically a far jump or call to the next instruction in 
the instruction stream.)

5. The JMP or CALL instruction immediately after the MOV CR0 instruction changes 
the flow of execution and serializes the processor.

6. If paging is enabled, the code for the MOV CR0 instruction and the JMP or CALL 
instruction must come from a page that is identity mapped (that is, the linear 
address before the jump is the same as the physical address after paging and 
protected mode is enabled). The target instruction for the JMP or CALL instruction 
does not need to be identity mapped.
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7. If a local descriptor table is going to be used, execute the LLDT instruction to load 
the segment selector for the LDT in the LDTR register.

8. Execute the LTR instruction to load the task register with a segment selector to 
the initial protected-mode task or to a writable area of memory that can be used 
to store TSS information on a task switch.

9. After entering protected mode, the segment registers continue to hold the 
contents they had in real-address mode. The JMP or CALL instruction in step 4 
resets the CS register. Perform one of the following operations to update the 
contents of the remaining segment registers.

— Reload segment registers DS, SS, ES, FS, and GS. If the ES, FS, and/or GS 
registers are not going to be used, load them with a null selector.

— Perform a JMP or CALL instruction to a new task, which automatically resets 
the values of the segment registers and branches to a new code segment.

10. Execute the LIDT instruction to load the IDTR register with the address and limit 
of the protected-mode IDT.

11. Execute the STI instruction to enable maskable hardware interrupts and perform 
the necessary hardware operation to enable NMI interrupts.

Random failures can occur if other instructions exist between steps 3 and 4 above. 
Failures will be readily seen in some situations, such as when instructions that refer-
ence memory are inserted between steps 3 and 4 while in system management 
mode.

9.9.2 Switching Back to Real-Address Mode
The processor switches from protected mode back to real-address mode if software 
clears the PE bit in the CR0 register with a MOV CR0 instruction. A procedure that re-
enters real-address mode should perform the following steps:

1. Disable interrupts. A CLI instruction disables maskable hardware interrupts. NMI 
interrupts can be disabled with external circuitry.

2. If paging is enabled, perform the following operations:

— Transfer program control to linear addresses that are identity mapped to 
physical addresses (that is, linear addresses equal physical addresses).

— Insure that the GDT and IDT are in identity mapped pages.

— Clear the PG bit in the CR0 register.

— Move 0H into the CR3 register to flush the TLB.

3. Transfer program control to a readable segment that has a limit of 64 KBytes 
(FFFFH). This operation loads the CS register with the segment limit required in 
real-address mode.
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4. Load segment registers SS, DS, ES, FS, and GS with a selector for a descriptor 
containing the following values, which are appropriate for real-address mode:

— Limit = 64 KBytes (0FFFFH)

— Byte granular (G = 0)

— Expand up (E = 0)

— Writable (W = 1)

— Present (P = 1)

— Base = any value
The segment registers must be loaded with non-null segment selectors or the 
segment registers will be unusable in real-address mode. Note that if the 
segment registers are not reloaded, execution continues using the descriptor 
attributes loaded during protected mode.

5. Execute an LIDT instruction to point to a real-address mode interrupt table that is 
within the 1-MByte real-address mode address range.

6. Clear the PE flag in the CR0 register to switch to real-address mode.

7. Execute a far JMP instruction to jump to a real-address mode program. This 
operation flushes the instruction queue and loads the appropriate base-address 
value in the CS register.

8. Load the SS, DS, ES, FS, and GS registers as needed by the real-address mode 
code. If any of the registers are not going to be used in real-address mode, write 
0s to them.

9. Execute the STI instruction to enable maskable hardware interrupts and perform 
the necessary hardware operation to enable NMI interrupts.

NOTE
All the code that is executed in steps 1 through 9 must be in a single 
page and the linear addresses in that page must be identity mapped 
to physical addresses.

9.10 INITIALIZATION AND MODE SWITCHING EXAMPLE
This section provides an initialization and mode switching example that can be incor-
porated into an application. This code was originally written to initialize the Intel386 
processor, but it will execute successfully on the Pentium 4, Intel Xeon, P6 family, 
Pentium, and Intel486 processors. The code in this example is intended to reside in 
EPROM and to run following a hardware reset of the processor. The function of the 
code is to do the following:
• Establish a basic real-address mode operating environment.
• Load the necessary protected-mode system data structures into RAM.
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• Load the system registers with the necessary pointers to the data structures and 
the appropriate flag settings for protected-mode operation.

• Switch the processor to protected mode.

Figure 9-3 shows the physical memory layout for the processor following a hardware 
reset and the starting point of this example. The EPROM that contains the initializa-
tion code resides at the upper end of the processor’s physical memory address range, 
starting at address FFFFFFFFH and going down from there. The address of the first 
instruction to be executed is at FFFFFFF0H, the default starting address for the 
processor following a hardware reset.

The main steps carried out in this example are summarized in Table 9-4. The source 
listing for the example (with the filename STARTUP.ASM) is given in Example 9-1. 
The line numbers given in Table 9-4 refer to the source listing.

The following are some additional notes concerning this example:
• When the processor is switched into protected mode, the original code segment 

base-address value of FFFF0000H (located in the hidden part of the CS register) 
is retained and execution continues from the current offset in the EIP register. 
The processor will thus continue to execute code in the EPROM until a far jump or 
call is made to a new code segment, at which time, the base address in the CS 
register will be changed.

• Maskable hardware interrupts are disabled after a hardware reset and should 
remain disabled until the necessary interrupt handlers have been installed. The 
NMI interrupt is not disabled following a reset. The NMI# pin must thus be 
inhibited from being asserted until an NMI handler has been loaded and made 
available to the processor.

• The use of a temporary GDT allows simple transfer of tables from the EPROM to 
anywhere in the RAM area. A GDT entry is constructed with its base pointing to 
address 0 and a limit of 4 GBytes. When the DS and ES registers are loaded with 
this descriptor, the temporary GDT is no longer needed and can be replaced by 
the application GDT.

• This code loads one TSS and no LDTs. If more TSSs exist in the application, they 
must be loaded into RAM. If there are LDTs they may be loaded as well.
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Figure 9-3.  Processor State After Reset

Table 9-4.  Main Initialization Steps in STARTUP.ASM Source Listing

STARTUP.ASM Line 
Numbers

Description

From To

157 157 Jump (short) to the entry code in the EPROM

162 169 Construct a temporary GDT in RAM with one entry:
0 - null
1 - R/W data segment, base = 0, limit = 4 GBytes

171 172 Load the GDTR to point to the temporary GDT

174 177 Load CR0 with PE flag set to switch to protected mode

179 181 Jump near to clear real mode instruction queue

184 186 Load DS, ES registers with GDT[1] descriptor, so both point to the 
entire physical memory space

0

FFFF FFFFH
After Reset

[CS.BASE+EIP] FFFF FFF0H

EIP = 0000 FFF0H

[SP, DS, SS, ES]

FFFF 0000H

64K EPROM

CS.BASE = FFFF 0000H
DS.BASE = 0H
ES.BASE = 0H
SS.BASE = 0H
ESP = 0H
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9.10.1 Assembler Usage
In this example, the Intel assembler ASM386 and build tools BLD386 are used to 
assemble and build the initialization code module. The following assumptions are 
used when using the Intel ASM386 and BLD386 tools.
• The ASM386 will generate the right operand size opcodes according to the code-

segment attribute. The attribute is assigned either by the ASM386 invocation 
controls or in the code-segment definition.

• If a code segment that is going to run in real-address mode is defined, it must be 
set to a USE 16 attribute. If a 32-bit operand is used in an instruction in this code 
segment (for example, MOV EAX, EBX), the assembler automatically generates 
an operand prefix for the instruction that forces the processor to execute a 32-bit 
operation, even though its default code-segment attribute is 16-bit.

• Intel's ASM386 assembler allows specific use of the 16- or 32-bit instructions, for 
example, LGDTW, LGDTD, IRETD. If the generic instruction LGDT is used, the 
default- segment attribute will be used to generate the right opcode.

188 195 Perform specific board initialization that is imposed by the new 
protected mode

196 218 Copy the application's GDT from ROM into RAM

220 238 Copy the application's IDT from ROM into RAM

241 243 Load application's GDTR

244 245 Load application's IDTR

247 261 Copy the application's TSS from ROM into RAM

263 267 Update TSS descriptor and other aliases in GDT (GDT alias or IDT 
alias) 

277 277 Load the task register (without task switch) using LTR instruction

282 286 Load SS, ESP with the value found in the application's TSS

287 287 Push EFLAGS value found in the application's TSS

288 288 Push CS value found in the application's TSS

289 289 Push EIP value found in the application's TSS

290 293 Load DS, ES with the value found in the application's TSS

296 296 Perform IRET; pop the above values and enter the application code

Table 9-4.  Main Initialization Steps in STARTUP.ASM Source Listing (Contd.)

STARTUP.ASM Line 
Numbers

Description

From To
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9.10.2 STARTUP.ASM Listing
Example 9-1 provides high-level sample code designed to move the processor into 
protected mode. This listing does not include any opcode and offset information.

Example 9-1.  STARTUP.ASM

MS-DOS* 5.0(045-N) 386(TM) MACRO ASSEMBLER STARTUP  09:44:51 08/19/92 
PAGE 1

MS-DOS 5.0(045-N) 386(TM) MACRO ASSEMBLER V4.0, ASSEMBLY OF MODULE 
STARTUP

OBJECT MODULE PLACED IN startup.obj

ASSEMBLER INVOKED BY: f:\386tools\ASM386.EXE startup.a58 pw (132 )

LINE     SOURCE

   1      NAME    STARTUP

   2  

   3  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

   4  ;

   5  ;   ASSUMPTIONS:

   6  ;

   7  ;     1.  The bottom 64K of memory is ram, and can be used for

   8  ;         scratch space by this module.

   9  ;

  10  ;     2.  The system has sufficient free usable ram to copy the

  11  ;         initial GDT, IDT, and TSS

  12  ;

  13  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

  14  

  15  ; configuration data - must match with build definition

  16  

  17  CS_BASE       EQU     0FFFF0000H

  18  

  19   ; CS_BASE is the linear address of the segment STARTUP_CODE

  20   ; - this is specified in the build language file

  21  

  22  RAM_START     EQU     400H

  23  

  24  ; RAM_START  is the start of free, usable ram in the linear

  25  ; memory  space.   The GDT,  IDT, and  initial TSS  will be

  26  ; copied above this space, and a small data segment will be

  27  ; discarded at  this linear  address.   The 32-bit  word at
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  28  ; RAM_START will contain  the linear  address of  the first

  29  ; free byte above the copied tables - this may be useful if

  30  ; a memory manager is used.

  31  

  32  TSS_INDEX    EQU     10

  33  

  34  ; TSS_INDEX is the  index of the  TSS of the  first task to

  35  ; run after startup

  36  

  37  

  38   ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

  39  

  40  ; ------------------------- STRUCTURES and EQU ---------------

  41  ; structures for system data

  42  

  43  ; TSS structure

  44  TASK_STATE  STRUC

  45      link DW ?

  46      link_h DW ?

  47      ESP0 DD ?

  48      SS0 DW ?

  49      SS0_h DW ?

  50      ESP1 DD ?

  51      SS1 DW ?

  52      SS1_h DW ?

  53      ESP2 DD ?

  54      SS2 DW ?

  55      SS2_h DW ?

  56      CR3_reg DD ?

  57      EIP_reg DD ?

  58      EFLAGS_regDD ?

  59      EAX_reg DD ?

  60      ECX_reg DD ?

  61      EDX_reg DD ?

  62      EBX_reg DD ?

  63      ESP_reg DD ?

  64      EBP_reg DD ?

  65      ESI_reg DD ?

  66      EDI_reg DD ?

  67      ES_reg DW ?

  68      ES_h DW ?

  69      CS_reg DW ?

  70      CS_h DW ?
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  71      SS_reg DW ?

  72      SS_h   DW ?

  73      DS_reg DW ?

  74      DS_h DW ?

  75      FS_reg DW ?

  76      FS_h DW ?

  77      GS_reg DW ?

  78      GS_h DW ?

  79      LDT_reg DW ?

  80      LDT_h DW ?

  81      TRAP_reg DW ?

  82      IO_map_baseDW ?

  83  TASK_STATE  ENDS

  84  

  85  ; basic structure of a descriptor

  86  DESC    STRUC

  87      lim_0_15 DW ?

  88      bas_0_15 DW ?

  89      bas_16_23DB ?

  90      access DB ?

  91      gran DB ?

  92      bas_24_31DB ?

  93  DESC    ENDS

  94  

  95  ; structure for use with LGDT and LIDT instructions

  96  TABLE_REG   STRUC

  97      table_limDW ?

  98      table_linearDD ?

  99  TABLE_REG   ENDS

 100  

 101  ; offset of GDT and IDT descriptors in builder generated GDT

 102  GDT_DESC_OFF    EQU 1*SIZE(DESC)

 103  IDT_DESC_OFF    EQU 2*SIZE(DESC)

 104  

 105  ; equates for building temporary GDT in RAM

 106  LINEAR_SEL          EQU     1*SIZE (DESC)

 107  LINEAR_PROTO_LO     EQU     00000FFFFH  ; LINEAR_ALIAS

 108  LINEAR_PROTO_HI     EQU     000CF9200H

 109  

 110  ; Protection Enable Bit in CR0

 111  PE_BIT  EQU 1B

 112  

 113  ; ------------------------------------------------------------
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 114  

 115  ; ------------------------- DATA SEGMENT----------------------

 116  

 117  ; Initially, this  data segment starts at linear 0, according

 118  ; to the processor’s power-up state.

 119  

 120  STARTUP_DATA    SEGMENT RW

 121  

 122  free_mem_linear_base    LABEL   DWORD

 123  TEMP_GDT                LABEL   BYTE  ; must be first in segment

 124  TEMP_GDT_NULL_DESC   DESC    <>

 125  TEMP_GDT_LINEAR_DESC DESC    <>

 126  

 127  ; scratch areas for LGDT and LIDT instructions

 128  TEMP_GDT_SCRATCH TABLE_REG   <>

 129  APP_GDT_RAM     TABLE_REG    <>

 130  APP_IDT_RAM     TABLE_REG    <>

 131          ; align end_data

 132  fill    DW      ?

 133   

 134  ; last thing in this segment - should be on a dword boundary

 135  end_data    LABEL   BYTE

 136  

 137  STARTUP_DATA    ENDS

 138  ; ------------------------------------------------------------

 139  

 140  

 141  ; ------------------------- CODE SEGMENT----------------------

 142  STARTUP_CODE SEGMENT ER PUBLIC USE16

 143  

 144  ; filled in by builder

 145      PUBLIC  GDT_EPROM

 146  GDT_EPROM   TABLE_REG   <>

 147  

 148  ; filled in by builder

 149      PUBLIC  IDT_EPROM

 150  IDT_EPROM   TABLE_REG   <>

 151  

 152  ; entry point into startup code - the bootstrap will vector

 153  ; here  with a  near JMP  generated by  the builder.   This

 154  ; label must be in the top 64K of linear memory.

 155  

 156      PUBLIC  STARTUP

 157  STARTUP:

 158  
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 159  ; DS,ES address the bottom 64K of flat linear memory

 160      ASSUME  DS:STARTUP_DATA, ES:STARTUP_DATA

 161  ; See Figure 9-4

 162  ; load GDTR with temporary GDT

 163          LEA     EBX,TEMP_GDT  ; build the TEMP_GDT in low ram,

 164          MOV     DWORD PTR [EBX],0   ; where we can address

 165          MOV     DWORD PTR [EBX]+4,0

 166          MOV     DWORD PTR [EBX]+8, LINEAR_PROTO_LO

 167          MOV     DWORD PTR [EBX]+12, LINEAR_PROTO_HI

 168          MOV     TEMP_GDT_scratch.table_linear,EBX

 169          MOV     TEMP_GDT_scratch.table_lim,15

 170  

 171 DB 66H; execute a 32 bit LGDT

 172          LGDT    TEMP_GDT_scratch

 173  

 174  ; enter protected mode

 175          MOV     EBX,CR0

 176          OR      EBX,PE_BIT

 177          MOV     CR0,EBX

 178  

 179   ; clear prefetch queue

 180          JMP     CLEAR_LABEL

 181  CLEAR_LABEL:

 182  

 183   ; make DS and ES address 4G of linear memory

 184          MOV     CX,LINEAR_SEL

 185          MOV     DS,CX

 186          MOV     ES,CX

 187  

 188    ; do board specific initialization 

 189    ;

 190                  ; 

 191                  ; ......

 192                  ; 

 193  

 194  

 195          ; See Figure 9-5

 196          ; copy EPROM GDT to ram at:

 197          ;                RAM_START + size (STARTUP_DATA)

 198          MOV     EAX,RAM_START

 199          ADD     EAX,OFFSET (end_data)   

 200          MOV     EBX,RAM_START
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 201          MOV     ECX, CS_BASE

 202          ADD     ECX, OFFSET (GDT_EPROM) 

 203          MOV     ESI, [ECX].table_linear

 204          MOV     EDI,EAX

 205          MOVZX   ECX, [ECX].table_lim

 206          MOV     APP_GDT_ram[EBX].table_lim,CX

 207          INC     ECX

 208          MOV     EDX,EAX

 209          MOV     APP_GDT_ram[EBX].table_linear,EAX

 210          ADD     EAX,ECX

 211      REP MOVS    BYTE PTR ES:[EDI],BYTE PTR DS:[ESI]

 212  

 213          ; fixup GDT base in descriptor

 214          MOV     ECX,EDX

 215          MOV     [EDX].bas_0_15+GDT_DESC_OFF,CX

 216          ROR     ECX,16

 217          MOV     [EDX].bas_16_23+GDT_DESC_OFF,CL

 218          MOV     [EDX].bas_24_31+GDT_DESC_OFF,CH

 219  

 220          ; copy EPROM IDT to ram at:

 221          ; RAM_START+size(STARTUP_DATA)+SIZE (EPROM GDT)

 222          MOV     ECX, CS_BASE

 223          ADD     ECX, OFFSET (IDT_EPROM)     

 224          MOV     ESI, [ECX].table_linear

 225          MOV     EDI,EAX

 226          MOVZX   ECX, [ECX].table_lim

 227          MOV     APP_IDT_ram[EBX].table_lim,CX

 228          INC     ECX

 229          MOV     APP_IDT_ram[EBX].table_linear,EAX

 230          MOV     EBX,EAX

 231          ADD     EAX,ECX

 232      REP MOVS    BYTE PTR ES:[EDI],BYTE PTR DS:[ESI]

 233  

 234                  ; fixup IDT pointer in GDT

 235          MOV     [EDX].bas_0_15+IDT_DESC_OFF,BX

 236          ROR     EBX,16

 237          MOV     [EDX].bas_16_23+IDT_DESC_OFF,BL

 238          MOV     [EDX].bas_24_31+IDT_DESC_OFF,BH

 239  

 240                  ; load GDTR and IDTR

 241          MOV     EBX,RAM_START

 242                  DB      66H         ; execute a 32 bit LGDT

 243          LGDT    APP_GDT_ram[EBX]    

 244                  DB      66H         ; execute a 32 bit LIDT

 245          LIDT    APP_IDT_ram[EBX]    
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 246  

 247                  ; move the TSS

 248          MOV     EDI,EAX

 249          MOV     EBX,TSS_INDEX*SIZE(DESC)

 250          MOV     ECX,GDT_DESC_OFF ;build linear address for TSS

 251          MOV     GS,CX

 252          MOV     DH,GS:[EBX].bas_24_31

 253          MOV     DL,GS:[EBX].bas_16_23

 254          ROL     EDX,16

 255          MOV     DX,GS:[EBX].bas_0_15

 256          MOV     ESI,EDX

 257          LSL     ECX,EBX

 258          INC     ECX

 259          MOV     EDX,EAX

 260          ADD     EAX,ECX

 261      REP MOVS    BYTE PTR ES:[EDI],BYTE PTR DS:[ESI]

 262

 263                  ; fixup TSS pointer

 264          MOV     GS:[EBX].bas_0_15,DX

 265          ROL     EDX,16

 266          MOV     GS:[EBX].bas_24_31,DH

 267          MOV     GS:[EBX].bas_16_23,DL

 268          ROL     EDX,16

 269      ;save start of free ram at linear location RAMSTART

 270          MOV     free_mem_linear_base+RAM_START,EAX

 271

 272      ;assume no  LDT used in  the initial task  - if necessary,

 273      ;code  to move the LDT could be added, and should resemble

 274      ;that used to move the TSS

 275

 276      ; load task register

 277          LTR     BX   ; No task switch, only descriptor loading

 278      ; See Figure 9-6

 279      ; load minimal set of registers necessary to simulate task

 280      ; switch

 281  

 282

 283          MOV     AX,[EDX].SS_reg     ; start loading registers

 284          MOV     EDI,[EDX].ESP_reg

 285          MOV     SS,AX

 286          MOV     ESP,EDI             ; stack now valid

 287          PUSH    DWORD PTR [EDX].EFLAGS_reg

 288          PUSH    DWORD PTR [EDX].CS_reg
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 289          PUSH    DWORD PTR [EDX].EIP_reg

 290          MOV     AX,[EDX].DS_reg

 291          MOV     BX,[EDX].ES_reg

 292          MOV     DS,AX     ; DS and ES no longer linear memory

 293          MOV     ES,BX

294

 295          ; simulate far jump to initial task

 296          IRETD

 297

 298  STARTUP_CODE  ENDS

*** WARNING #377 IN 298, (PASS 2) SEGMENT CONTAINS PRIVILEGED 
INSTRUCTION(S)

 299

 300  END STARTUP, DS:STARTUP_DATA, SS:STARTUP_DATA

 301

 302

ASSEMBLY COMPLETE,   1 WARNING,   NO ERRORS.
9-30 Vol. 3A



PROCESSOR MANAGEMENT AND INITIALIZATION
Figure 9-4.  Constructing Temporary GDT and Switching to Protected Mode (Lines 
162-172 of List File)
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Figure 9-5.  Moving the GDT, IDT, and TSS from ROM to RAM (Lines 196-261 of List 
File)
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9.10.3 MAIN.ASM Source Code
The file MAIN.ASM shown in Example 9-2 defines the data and stack segments for 
this application and can be substituted with the main module task written in a high-
level language that is invoked by the IRET instruction executed by STARTUP.ASM. 

Example 9-2.  MAIN.ASM

NAME    main_module
data    SEGMENT RW

dw 1000 dup(?)
DATA    ENDS

stack stackseg 800

Figure 9-6.  Task Switching (Lines 282-296 of List File)
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DS = TSS.DS
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CODE SEGMENT ER  use32 PUBLIC
main_start:

nop
nop
nop

CODE  ENDS

END main_start, ds:data, ss:stack

9.10.4 Supporting Files
The batch file shown in Example 9-3 can be used to assemble the source code files 
STARTUP.ASM and MAIN.ASM and build the final application.

Example 9-3.  Batch File to Assemble and Build the Application

ASM386 STARTUP.ASM

ASM386 MAIN.ASM

BLD386 STARTUP.OBJ, MAIN.OBJ buildfile(EPROM.BLD) bootstrap(STARTUP) 
Bootload

BLD386 performs several operations in this example:

It allocates physical memory location to segments and tables.

It generates tables using the build file and the input files.

It links object files and resolves references.

It generates a boot-loadable file to be programmed into the EPROM.

Example 9-4 shows the build file used as an input to BLD386 to perform the above 
functions.

Example 9-4.  Build File

INIT_BLD_EXAMPLE;

SEGMENT

        *SEGMENTS(DPL = 0)

    ,   startup.startup_code(BASE = 0FFFF0000H)

    ;

TASK

        BOOT_TASK(OBJECT = startup, INITIAL,DPL = 0, 

NOT INTENABLED)

,       PROTECTED_MODE_TASK(OBJECT = main_module,DPL = 0, 

NOT INTENABLED)

    ;
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TABLE

    GDT (

        LOCATION = GDT_EPROM

    ,   ENTRY = (

            10:   PROTECTED_MODE_TASK

    , startup.startup_code

    ,       startup.startup_data

    ,       main_module.data

    ,       main_module.code

    ,       main_module.stack

          )

        ),

    IDT (

        LOCATION = IDT_EPROM

        );

MEMORY

    (

        RESERVE = (0..3FFFH 

-- Area for the GDT, IDT, TSS copied from ROM

    ,              60000H..0FFFEFFFFH)

    ,   RANGE = (ROM_AREA = ROM (0FFFF0000H..0FFFFFFFFH)) 

-- Eprom size 64K

    ,   RANGE = (RAM_AREA = RAM (4000H..05FFFFH))

    );

END

Table 9-5 shows the relationship of each build item with an ASM source file.

Table 9-5.  Relationship Between BLD Item and ASM Source File 

Item ASM386 and 
Startup.A58

BLD386 Controls 
and BLD file

Effect

Bootstrap public startup
startup:

bootstrap
start(startup)

Near jump at 0FFFFFFF0H 
to start.

GDT location public GDT_EPROM
GDT_EPROM TABLE_REG  <>

TABLE
GDT(location = GDT_EPROM)

The location of the GDT 
will be programmed into 
the GDT_EPROM location.

IDT location public IDT_EPROM
IDT_EPROM TABLE_REG  <>

TABLE
IDT(location = IDT_EPROM

The location of the IDT 
will be programmed into 
the IDT_EPROM location.
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9.11 MICROCODE UPDATE FACILITIES
The Pentium 4, Intel Xeon, and P6 family processors have the capability to correct 
errata by loading an Intel-supplied data block into the processor. The data block is 
called a microcode update. This section describes the mechanisms the BIOS needs to 
provide in order to use this feature during system initialization. It also describes a 
specification that permits the incorporation of future updates into a system BIOS.

Intel considers the release of a microcode update for a silicon revision to be the 
equivalent of a processor stepping and completes a full-stepping level validation for 
releases of microcode updates.

A microcode update is used to correct errata in the processor. The BIOS, which has 
an update loader, is responsible for loading the update on processors during system 
initialization (Figure 9-7). There are two steps to this process: the first is to incorpo-
rate the necessary update data blocks into the BIOS; the second is to load update 
data blocks into the processor.

RAM start RAM_START equ 400H memory (reserve = (0..3FFFH)) RAM_START is used as 
the ram destination for 
moving the tables. It must 
be excluded from the 
application's segment 
area.

Location of the 
application TSS 
in the GDT

TSS_INDEX EQU 10 TABLE GDT(
ENTRY = (10: 
PROTECTED_MODE_
TASK))

Put the descriptor of the 
application TSS in GDT 
entry 10.

EPROM size 
and location

size and location of the 
initialization code

SEGMENT startup.code (base = 
0FFFF0000H) ...memory 
(RANGE(
ROM_AREA = ROM(x..y)) 

Initialization code size 
must be less than 64K 
and resides at upper most 
64K of the 4-GByte 
memory space.

Table 9-5.  Relationship Between BLD Item and ASM Source File  (Contd.)

Item ASM386 and 
Startup.A58

BLD386 Controls 
and BLD file

Effect
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9.11.1 Microcode Update
A microcode update consists of an Intel-supplied binary that contains a descriptive 
header and data. No executable code resides within the update. Each microcode 
update is tailored for a specific list of processor signatures. A mismatch of the 
processor’s signature with the signature contained in the update will result in a 
failure to load. A processor signature includes the extended family, extended model, 
type, family, model, and stepping of the processor (starting with processor family 
0fH, model 03H, a given microcode update may be associated with one of multiple 
processor signatures; see Section 9.11.2 for detail).

Microcode updates are composed of a multi-byte header, followed by encrypted data 
and then by an optional extended signature table. Table 9-6 provides a definition of 
the fields; Table 9-7 shows the format of an update. 

The header is 48 bytes. The first 4 bytes of the header contain the header version. 
The update header and its reserved fields are interpreted by software based upon the 
header version. An encoding scheme guards against tampering and provides a 
means for determining the authenticity of any given update. For microcode updates 
with a data size field equal to 00000000H, the size of the microcode update is 2048 
bytes. The first 48 bytes contain the microcode update header. The remaining 2000 
bytes contain encrypted data. 

For microcode updates with a data size not equal to 00000000H, the total size field 
specifies the size of the microcode update. The first 48 bytes contain the microcode 
update header. The second part of the microcode update is the encrypted data.  The 
data size field of the microcode update header specifies the encrypted data size, its 
value must be a multiple of the size of DWORD. The total size field of the microcode 
update header specifies the encrypted data size plus the header size; its value must 
be in multiples of 1024 bytes (1 KBytes). The optional extended signature table if 
implemented follows the encrypted data, and its size is calculated by (Total Size – 
(Data Size + 48)). 

Figure 9-7.  Applying Microcode Updates

CPU

BIOS

Update
BlocksNew Update

Update
Loader
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NOTE
The optional extended signature table is supported starting with 
processor family 0FH, model 03H.

. 
Table 9-6.  Microcode Update Field Definitions

Field Name Offset 
(bytes)

Length 
(bytes)

Description

Header Version 0 4 Version number of the update header.

Update Revision 4 4 Unique version number for the update, the basis for the 
update signature provided by the processor to indicate 
the current update functioning within the processor.  
Used by the BIOS to authenticate the update and verify 
that the processor loads successfully.  The value in this 
field cannot be used for processor stepping identification 
alone.  This is a signed 32-bit number.

Date 8 4 Date of the update creation in binary format: mmddyyyy 
(e.g. 07/18/98 is 07181998H).

Processor 
Signature

12 4 Extended family, extended model, type, family, model, 
and stepping of processor that requires this particular 
update revision (e.g., 00000650H). Each microcode 
update is designed specifically for a given extended 
family, extended model, type, family, model, and stepping 
of the processor. 

The BIOS uses the processor signature field in 
conjunction with the CPUID instruction to determine 
whether or not an update is appropriate to load on a 
processor. The information encoded within this field 
exactly corresponds to the bit representations returned 
by the CPUID instruction.

Checksum 16 4 Checksum of Update Data and Header. Used to verify the 
integrity of the update header and data. Checksum is 
correct when the summation of all the DWORDs (including 
the extended Processor Signature Table) that comprise 
the microcode update result in 00000000H.

Loader Revision 20 4 Version number of the loader program needed to 
correctly load this update. The initial version is 
00000001H.

Processor Flags 24 4 Platform type information is encoded in the lower 8 bits 
of this 4-byte field.  Each bit represents a particular 
platform type for a given CPUID.  The BIOS uses the 
processor flags field in conjunction with the platform Id 
bits in MSR (17H) to determine whether or not an update 
is appropriate to load on a processor.  Multiple bits may be 
set representing support for multiple platform IDs.

Data Size 28 4 Specifies the size of the encrypted data in bytes, and 
must be a multiple of DWORDs.  If this value is 
00000000H, then the microcode update encrypted data 
is 2000 bytes (or 500 DWORDs).

Total Size 32 4 Specifies the total size of the microcode update in bytes.  
It is the summation of the header size, the encrypted 
data size and the size of the optional extended signature 
table. This value is always a multiple of 1024.
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Reserved 36 12 Reserved fields for future expansion

Update Data 48 Data Size or 
2000

Update data

Extended Signature 
Count

Data Size + 
48 

4 Specifies the number of extended signature structures 
(Processor Signature[n], processor flags[n] and 
checksum[n]) that exist in this microcode update.

Extended 
Checksum

Data Size + 
52

4 Checksum of update extended processor signature table.  
Used to verify the integrity of the extended processor 
signature table.  Checksum is correct when the 
summation of the DWORDs that comprise the extended 
processor signature table results in 00000000H.

Reserved Data Size + 
56

12 Reserved fields

Processor 
Signature[n]

Data Size + 
68 + (n * 12)

4 Extended family, extended model, type, family, model, 
and stepping of processor that requires this particular 
update revision (e.g., 00000650H). Each microcode 
update is designed specifically for a given extended 
family, extended model, type, family, model, and stepping 
of the processor. 

The BIOS uses the processor signature field in 
conjunction with the CPUID instruction to determine 
whether or not an update is appropriate to load on a 
processor. The information encoded within this field 
exactly corresponds to the bit representations returned 
by the CPUID instruction.

Processor Flags[n] Data Size + 
72 + (n * 12)

4 Platform type information is encoded in the lower 8 bits 
of this 4-byte field.  Each bit represents a particular 
platform type for a given CPUID.  The BIOS uses the 
processor flags field in conjunction with the platform Id 
bits in MSR (17H) to determine whether or not an update 
is appropriate to load on a processor.  Multiple bits may be 
set representing support for multiple platform IDs.

Checksum[n] Data Size + 
76 + (n * 12)

4 Used by utility software to decompose a microcode 
update into multiple microcode updates where each of 
the new updates is constructed without the optional 
Extended Processor Signature Table.

To calculate the Checksum, substitute the Primary 
Processor Signature entry and the Processor Flags entry 
with the corresponding Extended Patch entry. Delete the 
Extended Processor Signature Table entries. The 
Checksum is correct when the summation of all DWORDs 
that comprise the created Extended Processor Patch 
results in 00000000H.

Table 9-6.  Microcode Update Field Definitions (Contd.)

Field Name Offset 
(bytes)

Length 
(bytes)

Description
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Table 9-7.  Microcode Update Format
31 24 16 8 0 Bytes

Header Version 0

Update Revision 4

Month: 8 Day: 8 Year: 16 8

Processor Signature (CPUID) 12

Res: 4

Extended

Fam
ily: 8

Extended 
M

ode: 4

Reserved: 2

Type: 2

Fam
ily: 4

M
odel: 4

Stepping: 4

Checksum 16

Loader Revision 20

Processor Flags 24

Reserved (24 bits)

P7 P6 P5 P4 P3 P2 P1 P0

Data Size 28

Total Size 32

Reserved (12 Bytes) 36

Update Data (Data Size bytes, or 2000 Bytes if Data Size = 00000000H) 48

Extended Signature Count ‘n’ Data Size 
+ 48

Extended Processor Signature Table Checksum Data Size 
+ 52

Reserved (12 Bytes) Data Size 
+ 56

Processor Signature[n] Data Size 
+ 68 + 
(n * 12)

Processor Flags[n] Data Size 
+ 72 + 
(n * 12)

Checksum[n] Data Size 
+ 76 + 
(n * 12)
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9.11.2 Optional Extended Signature Table
The extended signature table is a structure that may be appended to the end of the 
encrypted data when the encrypted data only supports a single processor signature 
(optional case). The extended signature table will always be present when the 
encrypted data supports multiple processor steppings and/or models (required 
case). 

The extended signature table consists of a 20-byte extended signature header struc-
ture, which contains the extended signature count, the extended processor signature 
table checksum, and 12 reserved bytes (Table 9-8). Following the extended signa-
ture header structure, the extended signature table contains 0-to-n extended 
processor signature structures.

Each processor signature structure consist of the processor signature, processor 
flags, and a checksum (Table 9-9). 

The extended signature count in the extended signature header structure indicates 
the number of processor signature structures that exist in the extended signature 
table.  

The extended processor signature table checksum is a checksum of all DWORDs that 
comprise the extended signature table. That includes the extended signature count, 
extended processor signature table checksum, 12 reserved bytes and the n 
processor signature structures. A valid extended signature table exists when the 
result of a DWORD checksum is 00000000H.

9.11.3 Processor Identification
Each microcode update is designed to for a specific processor or set of processors. To 
determine the correct microcode update to load, software must ensure that one of 
the processor signatures embedded in the microcode update matches the 32-bit 
processor signature returned by the CPUID instruction when executed by the target 
processor with EAX = 1.  Attempting to load a microcode update that does not match 

Table 9-8.  Extended Processor Signature Table Header Structure

Extended Signature Count ‘n’ Data Size + 48
Extended Processor Signature Table Checksum Data Size + 52
Reserved (12 Bytes) Data Size + 56

Table 9-9.  Processor Signature Structure 

Processor Signature[n] Data Size + 68 + (n * 12)
Processor Flags[n] Data Size + 72 + (n * 12)
Checksum[n] Data Size + 76 + (n * 12)
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a processor signature embedded in the microcode update with the processor signa-
ture returned by CPUID will cause the BIOS to reject the update.

Example 9-5 shows how to check for a valid processor signature match between the 
processor and microcode update.

Example 9-5.  Pseudo Code to Validate the Processor Signature

ProcessorSignature ← CPUID(1):EAX

If (Update.HeaderVersion = 00000001h)
{

// first check the ProcessorSignature field
If (ProcessorSignature = Update.ProcessorSignature)

Success

// if extended signature is present
Else If (Update.TotalSize > (Update.DataSize + 48))
{

//
// Assume the Data Size has been used to calculate the 
// location of Update.ProcessorSignature[0].
//

For (N ← 0; ((N < Update.ExtendedSignatureCount) AND 
 (ProcessorSignature != Update.ProcessorSignature[N])); N++);

// if the loops ended when the iteration count is
// less than the number of processor signatures in
// the table, we have a match

If (N < Update.ExtendedSignatureCount)
Success

Else
Fail

}
Else

Fail
Else

Fail 

9.11.4 Platform Identification
In addition to verifying the processor signature, the intended processor platform type 
must be determined to properly target the microcode update. The intended 
processor platform type is determined by reading the IA32_PLATFORM_ID register, 
(MSR 17H).  This 64-bit register must be read using the RDMSR instruction. 
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The three platform ID bits, when read as a binary coded decimal (BCD) number, indi-
cate the bit position in the microcode update header’s processor flags field associated 
with the installed processor.  The processor flags in the 48-byte header and the 
processor flags field associated with the extended processor signature structures 
may have multiple bits set. Each set bit represents a different platform ID that the 
update supports.

Register Name: IA32_PLATFORM_ID
MSR Address: 017H
Access: Read Only

IA32_PLATFORM_ID is a 64-bit register accessed only when referenced as a Qword through a 
RDMSR instruction.

To validate the platform information, software may implement an algorithm similar to 
the algorithms in Example 9-6.

Example 9-6.  Pseudo Code Example of Processor Flags Test

Flag ← 1 << IA32_PLATFORM_ID[52:50]

If (Update.HeaderVersion = 00000001h)
{

If (Update.ProcessorFlags & Flag)
{

Load Update

Table 9-10.  Processor Flags

Bit Descriptions
63:53 Reserved
52:50 Platform Id Bits (RO). The field gives information concerning the intended platform for 

the processor. See also Table 9-7.

52 51 50
0 0 0 Processor Flag 0
0 0 1 Processor Flag 1
0 1 0 Processor Flag 2
0 1 1 Processor Flag 3
1 0 0 Processor Flag 4
1 0 1 Processor Flag 5
1 1 0 Processor Flag 6
1 1 1 Processor Flag 7

49:0 Reserved
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}
Else
{

//
// Assume the Data Size has been used to calculate the 
// location of Update.ProcessorSignature[N] and a match
// on Update.ProcessorSignature[N] has already succeeded
//

If (Update.ProcessorFlags[n] & Flag)
{

Load Update
}

}
}

9.11.5 Microcode Update Checksum
Each microcode update contains a DWORD checksum located in the update header. It 
is software’s responsibility to ensure that a microcode update is not corrupt. To check 
for a corrupt microcode update, software must perform a unsigned DWORD (32-bit) 
checksum of the microcode update. Even though some fields are signed, the 
checksum procedure treats all DWORDs as unsigned. Microcode updates with a 
header version equal to 00000001H must sum all DWORDs that comprise the micro-
code update. A valid checksum check will yield a value of 00000000H. Any other 
value indicates the microcode update is corrupt and should not be loaded.

The checksum algorithm shown by the pseudo code in Example 9-7 treats the micro-
code update as an array of unsigned DWORDs. If the data size DWORD field at byte 
offset 32 equals 00000000H, the size of the encrypted data is 2000 bytes, resulting 
in 500 DWORDs. Otherwise the microcode update size in DWORDs = (Total Size / 4), 
where the total size is a multiple of 1024 bytes (1 KBytes).

Example 9-7.  Pseudo Code Example of Checksum Test

N ← 512

If (Update.DataSize != 00000000H)
N ← Update.TotalSize / 4

ChkSum ← 0
For (I ← 0; I < N; I++)
{

ChkSum ← ChkSum + MicrocodeUpdate[I]
}
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If (ChkSum = 00000000H)
Success

Else
Fail

9.11.6 Microcode Update Loader
This section describes an update loader used to load an update into a Pentium 4, Intel 
Xeon, or P6 family processor. It also discusses the requirements placed on the BIOS 
to ensure proper loading. The update loader described contains the minimal instruc-
tions needed to load an update. The specific instruction sequence that is required to 
load an update is dependent upon the loader revision field contained within the 
update header. This revision is expected to change infrequently (potentially, only 
when new processor models are introduced).

Example 9-8 below represents the update loader with a loader revision of 
00000001H. Note that the microcode update must be aligned on a 16-byte boundary 
and the size of the microcode update must be 1-KByte granular.

Example 9-8.  Assembly Code Example of Simple Microcode Update Loader

mov ecx,79h ; MSR to read in ECX

xor eax,eax ; clear EAX

xor ebx,ebx ; clear EBX

mov ax,cs ; Segment of microcode update

shl eax,4

mov bx,offset Update ; Offset of microcode update

add eax,ebx ; Linear Address of Update in EAX

add eax,48d ; Offset of the Update Data within the Update

xor edx,edx ; Zero in EDX

WRMSR ; microcode update trigger

The loader shown in Example 9-8 assumes that update is the address of a microcode 
update (header and data) embedded within the code segment of the BIOS. It also 
assumes that the processor is operating in real mode. The data may reside anywhere 
in memory, aligned on a 16-byte boundary, that is accessible by the processor within 
its current operating mode.

Before the BIOS executes the microcode update trigger (WRMSR) instruction, the 
following must be true:
• In 64-bit mode, EAX contains the lower 32-bits of the microcode update linear 

address. In protected mode, EAX contains the full 32-bit linear address of the 
microcode update.

• In 64-bit mode, EDX contains the upper 32-bits of the microcode update linear 
address. In protected mode, EDX equals zero.
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• ECX contains 79H (address of IA32_BIOS_UPDT_TRIG).

Other requirements are:
• If the update is loaded while the processor is in real mode, then the update data 

may not cross a segment boundary.
• If the update is loaded while the processor is in real mode, then the update data 

may not exceed a segment limit.
• If paging is enabled, pages that are currently present must map the update data.
• The microcode update data requires a 16-byte boundary alignment.

9.11.6.1  Hard Resets in Update Loading
The effects of a loaded update are cleared from the processor upon a hard reset. 
Therefore, each time a hard reset is asserted during the BIOS POST, the update must 
be reloaded on all processors that observed the reset. The effects of a loaded update 
are, however, maintained across a processor INIT. There are no side effects caused 
by loading an update into a processor multiple times.

9.11.6.2  Update in a Multiprocessor System
A multiprocessor (MP) system requires loading each processor with update data 
appropriate for its CPUID and platform ID bits. The BIOS is responsible for ensuring 
that this requirement is met and that the loader is located in a module executed by 
all processors in the system. If a system design permits multiple steppings of 
Pentium 4, Intel Xeon, and P6 family processors to exist concurrently; then the BIOS 
must verify individual processors against the update header information to ensure 
appropriate loading. Given these considerations, it is most practical to load the 
update during MP initialization.

9.11.6.3  Update in a System Supporting Intel Hyper-Threading Technology 
Intel Hyper-Threading Technology has implications on the loading of the microcode 
update. The update must be loaded for each core in a physical processor. Thus, for a 
processor supporting Intel Hyper-Threading Technology, only one logical processor 
per core is required to load the microcode update. Each individual logical processor 
can independently load the update. However, MP initialization must provide some 
mechanism (e.g. a software semaphore) to force serialization of microcode update 
loads and to prevent simultaneous load attempts to the same core.

9.11.6.4  Update in a System Supporting Dual-Core Technology 
Dual-core technology has implications on the loading of the microcode update. The 
microcode update facility is not shared between processor cores in the same physical 
package. The update must be loaded for each core in a physical processor. 
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If processor core supports Intel Hyper-Threading Technology, the guideline described 
in Section 9.11.6.3 also applies.

9.11.6.5  Update Loader Enhancements
The update loader presented in Section 9.11.6, “Microcode Update Loader,” is a 
minimal implementation that can be enhanced to provide additional functionality. 
Potential enhancements are described below:
• BIOS can incorporate multiple updates to support multiple steppings of the 

Pentium 4, Intel Xeon, and P6 family processors. This feature provides for 
operating in a mixed stepping environment on an MP system and enables a user 
to upgrade to a later version of the processor. In this case, modify the loader to 
check the CPUID and platform ID bits of the processor that it is running on 
against the available headers before loading a particular update. The number of 
updates is only limited by available BIOS space.

• A loader can load the update and test the processor to determine if the update 
was loaded correctly. See Section 9.11.7, “Update Signature and Verification.”

• A loader can verify the integrity of the update data by performing a checksum on 
the double words of the update summing to zero. See Section 9.11.5, “Microcode 
Update Checksum.”

• A loader can provide power-on messages indicating successful loading of an 
update.

9.11.7 Update Signature and Verification
The Pentium 4, Intel Xeon, and P6 family processors provide capabilities to verify the 
authenticity of a particular update and to identify the current update revision. This 
section describes the model-specific extensions of processors that support this 
feature. The update verification method below assumes that the BIOS will only verify 
an update that is more recent than the revision currently loaded in the processor.

CPUID returns a value in a model specific register in addition to its usual register 
return values. The semantics of CPUID cause it to deposit an update ID value in the 
64-bit model-specific register at address 08BH (IA32_BIOS_SIGN_ID). If no update 
is present in the processor, the value in the MSR remains unmodified. The BIOS must 
pre-load a zero into the MSR before executing CPUID. If a read of the MSR at 8BH still 
returns zero after executing CPUID, this indicates that no update is present.

The update ID value returned in the EDX register after RDMSR executes indicates the 
revision of the update loaded in the processor. This value, in combination with the 
CPUID value returned in the EAX register, uniquely identifies a particular update. The 
signature ID can be directly compared with the update revision field in a microcode 
update header for verification of a correct load. No consecutive updates released for 
a given stepping of a processor may share the same signature. The processor signa-
ture returned by CPUID differentiates updates for different steppings.
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9.11.7.1  Determining the Signature
An update that is successfully loaded into the processor provides a signature that 
matches the update revision of the currently functioning revision. This signature is 
available any time after the actual update has been loaded. Requesting the signature 
does not have a negative impact upon a loaded update.  

The procedure for determining this signature shown in Example 9-9.

Example 9-9.  Assembly Code to Retrieve the Update Revision

MOV ECX, 08BH ;IA32_BIOS_SIGN_ID

XOR EAX, EAX ;clear EAX

XOR EDX, EDX ;clear EDX

WRMSR ;Load 0 to MSR at 8BH

MOV EAX, 1

cpuid

MOV ECX, 08BH ;IA32_BIOS_SIGN_ID

rdmsr ;Read Model Specific Register

If there is an update active in the processor, its revision is returned in the EDX 
register after the RDMSR instruction executes.

IA32_BIOS_SIGN_ID Microcode Update Signature Register 
MSR Address: 08BH Accessed as a Qword
Default Value: XXXX XXXX XXXX XXXXh
Access: Read/Write

The IA32_BIOS_SIGN_ID register is used to report the microcode update signature 
when CPUID executes. The signature is returned in the upper DWORD (Table 9-11).

9.11.7.2  Authenticating the Update
An update may be authenticated by the BIOS using the signature primitive, 
described above, and the algorithm in Example 9-10.

Table 9-11.  Microcode Update Signature 
Bit Description

63:32 Microcode update signature. This field contains the signature of the currently loaded 
microcode update when read following the execution of the CPUID instruction, function 
1. It is required that this register field be pre-loaded with zero prior to executing the 
CPUID, function 1. If the field remains equal to zero, then there is no microcode update 
loaded. Another non-zero value will be the signature.

31:0 Reserved.
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Example 9-10.  Pseudo Code to Authenticate the Update

Z ← Obtain Update Revision from the Update Header to be authenticated;
X ← Obtain Current Update Signature from MSR 8BH;

If (Z > X)
{

Load Update that is to be authenticated;
Y ← Obtain New Signature from MSR 8BH;

If (Z = Y)
Success

Else
Fail

}
Else

Fail

Example 9-10 requires that the BIOS only authenticate updates that contain a 
numerically larger revision than the currently loaded revision, where Current Signa-
ture (X) < New Update Revision (Z). A processor with no loaded update is considered 
to have a revision equal to zero.

This authentication procedure relies upon the decoding provided by the processor to 
verify an update from a potentially hostile source.  As an example, this mechanism in 
conjunction with other safeguards provides security for dynamically incorporating 
field updates into the BIOS.

9.11.8 Pentium 4, Intel Xeon, and P6 Family Processor
Microcode Update Specifications

This section describes the interface that an application can use to dynamically inte-
grate processor-specific updates into the system BIOS. In this discussion, the appli-
cation is referred to as the calling program or caller.

The real mode INT15 call specification described here is an Intel extension to an OEM 
BIOS. This extension allows an application to read and modify the contents of the 
microcode update data in NVRAM. The update loader, which is part of the system 
BIOS, cannot be updated by the interface. All of the functions defined in the specifi-
cation must be implemented for a system to be considered compliant with the speci-
fication. The INT15 functions are accessible only from real mode.

9.11.8.1  Responsibilities of the BIOS
If a BIOS passes the presence test (INT 15H, AX = 0D042H, BL = 0H), it must imple-
ment all of the sub-functions defined in the INT 15H, AX = 0D042H specification. 
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There are no optional functions. BIOS must load the appropriate update for each 
processor during system initialization.

A Header Version of an update block containing the value 0FFFFFFFFH indicates that 
the update block is unused and available for storing a new update.

The BIOS is responsible for providing a region of non-volatile storage (NVRAM) for 
each potential processor stepping within a system. This storage unit consists of one 
or more update blocks. An update block is a contiguous 2048-byte block of memory. 
The BIOS for a single processor system need only provide update blocks to store one 
microcode update. If the BIOS for a multiple processor system is intended to support 
mixed processor steppings, then the BIOS needs to provide enough update blocks to 
store each unique microcode update or for each processor socket on the OEM’s 
system board. 

The BIOS is responsible for managing the NVRAM update blocks. This includes 
garbage collection, such as removing microcode updates that exist in NVRAM for 
which a corresponding processor does not exist in the system. This specification only 
provides the mechanism for ensuring security, the uniqueness of an entry, and that 
stale entries are not loaded. The actual update block management is implementation 
specific on a per-BIOS basis. 

As an example, the BIOS may use update blocks sequentially in ascending order with 
CPU signatures sorted versus the first available block. In addition, garbage collection 
may be implemented as a setup option to clear all NVRAM slots or as BIOS code that 
searches and eliminates unused entries during boot.

NOTES
For IA-32 processors starting with family 0FH and model 03H and 
Intel 64 processors, the microcode update may be as large as 16 
KBytes. Thus, BIOS must allocate 8 update blocks for each microcode 
update. In a MP system, a common microcode update may be 
sufficient for each socket in the system. 
For IA-32 processors earlier than family 0FH and model 03H, the 
microcode update is 2 KBytes. An MP-capable BIOS that supports 
multiple steppings must allocate a block for each socket in the system.
A single-processor BIOS that supports variable-sized microcode 
update and fixed-sized microcode update must allocate one 16-KByte 
region and a second region of at least 2 KBytes.

The following algorithm (Example 9-11) describes the steps performed during BIOS 
initialization used to load the updates into the processor(s). The algorithm assumes:
• The BIOS ensures that no update contained within NVRAM has a header version 

or loader version that does not match one currently supported by the BIOS.
• The update contains a correct checksum.
• The BIOS ensures that (at most) one update exists for each processor stepping.
• Older update revisions are not allowed to overwrite more recent ones.
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These requirements are checked by the BIOS during the execution of the write 
update function of this interface. The BIOS sequentially scans through all of the 
update blocks in NVRAM starting with index 0. The BIOS scans until it finds an update 
where the processor fields in the header match the processor signature (extended 
family, extended model, type, family, model, and stepping) as well as the platform 
bits of the current processor.

Example 9-11.  Pseudo Code, Checks Required Prior to Loading an Update

For each processor in the system
{

Determine the Processor Signature via CPUID function 1;
Determine the Platform Bits ← 1 << IA32_PLATFORM_ID[52:50];

For (I ← UpdateBlock 0, I < NumOfBlocks; I++)
{

If (Update.Header_Version = 0x00000001)
{

If ((Update.ProcessorSignature = Processor Signature) &&
 (Update.ProcessorFlags & Platform Bits))

{
Load Update.UpdateData into the Processor;
Verify update was correctly loaded into the processor 
Go on to next processor

Break;
}
Else If (Update.TotalSize > (Update.DataSize + 48))
{

N ← 0
While (N < Update.ExtendedSignatureCount)
{

If ((Update.ProcessorSignature[N] = 
 Processor Signature) &&
 (Update.ProcessorFlags[N] & Platform Bits))

{
Load Update.UpdateData into the Processor;
Verify update correctly loaded into the processor
Go on to next processor

Break;
}
N ← N + 1

}
I ← I + (Update.TotalSize / 2048)
If ((Update.TotalSize MOD 2048) = 0)

I ← I + 1
}

}
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}
}

NOTES
The platform Id bits in IA32_PLATFORM_ID are encoded as a three-
bit binary coded decimal field. The platform bits in the microcode 
update header are individually bit encoded. The algorithm must do a 
translation from one format to the other prior to doing a check.

When performing the INT 15H, 0D042H functions, the BIOS must assume that the 
caller has no knowledge of platform specific requirements. It is the responsibility of 
BIOS calls to manage all chipset and platform specific prerequisites for managing the 
NVRAM device. When writing the update data using the Write Update sub-function, 
the BIOS must maintain implementation specific data requirements (such as the 
update of NVRAM checksum). The BIOS should also attempt to verify the success of 
write operations on the storage device used to record the update.

9.11.8.2  Responsibilities of the Calling Program
This section of the document lists the responsibilities of a calling program using the 
interface specifications to load microcode update(s) into BIOS NVRAM.
• The calling program should call the INT 15H, 0D042H functions from a pure real 

mode program and should be executing on a system that is running in pure real 
mode. 

• The caller should issue the presence test function (sub function 0) and verify the 
signature and return codes of that function. 

• It is important that the calling program provides the required scratch RAM buffers 
for the BIOS and the proper stack size as specified in the interface definition.

• The calling program should read any update data that already exists in the BIOS 
in order to make decisions about the appropriateness of loading the update. The 
BIOS must refuse to overwrite a newer update with an older version. The update 
header contains information about version and processor specifics for the calling 
program to make an intelligent decision about loading.

• There can be no ambiguous updates. The BIOS must refuse to allow multiple 
updates for the same CPU to exist at the same time; it also must refuse to load 
updates for processors that don’t exist on the system.

• The calling application should implement a verify function that is run after the 
update write function successfully completes. This function reads back the 
update and verifies that the BIOS returned an image identical to the one that was 
written. 

Example 9-12 represents a calling program.
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Example 9-12.  INT 15 DO42 Calling Program Pseudo-code

//
// We must be in real mode
//
If the system is not in Real mode exit
//
// Detect presence of Genuine Intel processor(s) that can be updated 
// using(CPUID)
//
If no Intel processors exist that can be updated exit
//
// Detect the presence of the Intel microcode update extensions
//
If the BIOS fails the PresenceTestexit
//
// If the APIC is enabled, see if any other processors are out there
//
Read IA32_APICBASE
If APIC enabled
{

Send Broadcast Message to all processors except self via APIC
Have all processors execute CPUID, record the Processor Signature 
(i.e.,Extended Family, Extended Model, Type, Family, Model, 

Stepping)
Have all processors read IA32_PLATFORM_ID[52:50], record Platform
 Id Bits

If current processor cannot be updated
exit

}
//
// Determine the number of unique update blocks needed for this system
//
NumBlocks = 0
For each processor
{

If ((this is a unique processor stepping) AND
(we have a unique update in the database for this processor))

{
Checksum the update from the database;
If Checksum fails

exit
NumBlocks ← NumBlocks + size of microcode update / 2048

}
}

//
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// Do we have enough update slots for all CPUs?
//
If there are more blocks required to support the unique processor 
steppings than update blocks provided by the BIOS exit
//
// Do we need any update blocks at all?  If not, we are done
//
If (NumBlocks = 0)

exit
//
// Record updates for processors in NVRAM.
//
For (I=0; I<NumBlocks; I++)
{

//
// Load each Update
//
Issue the WriteUpdate function

If (STORAGE_FULL) returned
{

Display Error -- BIOS is not managing NVRAM appropriately
exit

}

If (INVALID_REVISION) returned
{

Display Message: More recent update already loaded in NVRAM for
 this stepping
continue

}

If any other error returned
{

Display Diagnostic
exit

}

//
// Verify the update was loaded correctly
//
Issue the ReadUpdate function

If an error occurred
{

Display Diagnostic
exit
9-54 Vol. 3A



PROCESSOR MANAGEMENT AND INITIALIZATION
}
//
// Compare the Update read to that written
//
If (Update read != Update written)
{

Display Diagnostic
exit

}

I ← I + (size of microcode update / 2048)
}
//
// Enable Update Loading, and inform user
//
Issue the Update Control function with Task = Enable.

9.11.8.3  Microcode Update Functions
Table 9-12 defines current Pentium 4, Intel Xeon, and P6 family processor microcode 
update functions.

9.11.8.4  INT 15H-based Interface
Intel recommends that a BIOS interface be provided that allows additional microcode 
updates to be added to system flash. The INT15H interface is the Intel-defined 
method for doing this.

The program that calls this interface is responsible for providing three 64-kilobyte 
RAM areas for BIOS use during calls to the read and write functions. These RAM 
scratch pads can be used by the BIOS for any purpose, but only for the duration of 
the function call. The calling routine places real mode segments pointing to the RAM 
blocks in the CX, DX and SI registers. Calls to functions in this interface must be 
made with a minimum of 32 kilobytes of stack available to the BIOS.

Table 9-12.  Microcode Update Functions 
Microcode Update 
Function

Function 
Number

Description Required/Optional

Presence test 00H Returns information about the 
supported functions.

Required

Write update data 01H Writes one of the update data areas 
(slots).

Required

Update control 02H Globally controls the loading of updates. Required

Read update data 03H Reads one of the update data areas 
(slots).

Required
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In general, each function returns with CF cleared and AH contains the returned 
status. The general return codes and other constant definitions are listed in Section 
9.11.8.9, “Return Codes.”

The OEM error field (AL) is provided for the OEM to return additional error informa-
tion specific to the platform. If the BIOS provides no additional information about the 
error, OEM error must be set to SUCCESS. The OEM error field is undefined if AH 
contains either SUCCESS (00H) or NOT_IMPLEMENTED (86H). In all other cases, it 
must be set with either SUCCESS or a value meaningful to the OEM.

The following sections describe functions provided by the INT15H-based interface.

9.11.8.5  Function 00H—Presence Test
This function verifies that the BIOS has implemented required microcode update 
functions. Table 9-13 lists the parameters and return codes for the function.

In order to assure that the BIOS function is present, the caller must verify the carry 
flag, the return code, and the 64-bit signature. The update count reflects the number 
of 2048-byte blocks available for storage within one non-volatile RAM.

The loader version number refers to the revision of the update loader program that is 
included in the system BIOS image.

Table 9-13.  Parameters for the Presence Test 

Input

AX Function Code 0D042H

BL Sub-function 00H - Presence test

Output

CF Carry Flag Carry Set - Failure - AH contains status

Carry Clear - All return values valid

AH Return Code  

AL OEM Error Additional OEM information.

EBX Signature Part 1 'INTE' - Part one of the signature 

ECX Signature Part 2 'LPEP'- Part two of the signature

EDX Loader Version Version number of the microcode update loader

SI Update Count Number of 2048 update blocks in NVRAM the BIOS 
allocated to storing microcode updates 

Return Codes (see Table 9-18 for code definitions

SUCCESS The function completed successfully.

NOT_IMPLEMENTED The function is not implemented. 
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9.11.8.6  Function 01H—Write Microcode Update Data
This function integrates a new microcode update into the BIOS storage device. Table 
9-14 lists the parameters and return codes for the function.

Table 9-14.  Parameters for the Write Update Data Function

Input

AX Function Code 0D042H

BL Sub-function 01H - Write update

ES:DI Update Address Real Mode pointer to the Intel Update structure. This 
buffer is 2048 bytes in length if the processor supports 
only fixed-size microcode update or...

Real Mode pointer to the Intel Update structure. This 
buffer is 64 KBytes in length if the processor supports a 
variable-size microcode update.

CX Scratch Pad1 Real mode segment address of 64 KBytes of RAM block

DX Scratch Pad2 Real mode segment address of 64 KBytes of RAM block

SI Scratch Pad3 Real mode segment address of 64 KBytes of RAM block

SS:SP Stack pointer 32 KBytes of stack minimum

Output

CF Carry Flag Carry Set - Failure - AH Contains status

Carry Clear - All return values valid

AH Return Code Status of the call

AL OEM Error Additional OEM information

Return Codes (see Table 9-18 for code definitions

SUCCESS The function completed successfully.

NOT_IMPLEMENTED The function is not implemented. 

WRITE_FAILURE A failure occurred because of the inability to write the 
storage device.

ERASE_FAILURE A failure occurred because of the inability to erase the 
storage device.

READ_FAILURE A failure occurred because of the inability to read the 
storage device.

STORAGE_FULL The BIOS non-volatile storage area is unable to 
accommodate the update because all available update 
blocks are filled with updates that are needed for 
processors in the system.
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Description

The BIOS is responsible for selecting an appropriate update block in the non-volatile 
storage for storing the new update. This BIOS is also responsible for ensuring the 
integrity of the information provided by the caller, including authenticating the 
proposed update before incorporating it into storage.

Before writing the update block into NVRAM, the BIOS should ensure that the update 
structure meets the following criteria in the following order:

1. The update header version should be equal to an update header version 
recognized by the BIOS.

2. The update loader version in the update header should be equal to the update 
loader version contained within the BIOS image.

3. The update block must checksum. This checksum is computed as a 32-bit 
summation of all double words in the structure, including the header, data, and 
processor signature table.

The BIOS selects update block(s) in non-volatile storage for storing the candidate 
update. The BIOS can select any available update block as long as it guarantees that 
only a single update exists for any given processor stepping in non-volatile storage. 
If the update block selected already contains an update, the following additional 
criteria apply to overwrite it:
• The processor signature in the proposed update must be equal to the processor 

signature in the header of the current update in NVRAM (Processor Signature + 
platform ID bits).

• The update revision in the proposed update should be greater than the update 
revision in the header of the current update in NVRAM.

If no unused update blocks are available and the above criteria are not met, the BIOS 
can overwrite update block(s) for a processor stepping that is no longer present in 
the system. This can be done by scanning the update blocks and comparing the 
processor steppings, identified in the MP Specification table, to the processor step-
pings that currently exist in the system.

CPU_NOT_PRESENT The processor stepping does not currently exist in the 
system.

INVALID_HEADER The update header contains a header or loader version 
that is not recognized by the BIOS.

INVALID_HEADER_CS The update does not checksum correctly.

SECURITY_FAILURE The processor rejected the update.

INVALID_REVISION The same or more recent revision of the update exists in 
the storage device. 

Table 9-14.  Parameters for the Write Update Data Function (Contd.)

Input
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Finally, before storing the proposed update in NVRAM, the BIOS must verify the 
authenticity of the update via the mechanism described in Section 9.11.6, “Micro-
code Update Loader.” This includes loading the update into the current processor, 
executing the CPUID instruction, reading MSR 08Bh, and comparing a calculated 
value with the update revision in the proposed update header for equality.

When performing the write update function, the BIOS must record the entire update, 
including the header, the update data, and the extended processor signature table (if 
applicable). When writing an update, the original contents may be overwritten, 
assuming the above criteria have been met. It is the responsibility of the BIOS to 
ensure that more recent updates are not overwritten through the use of this BIOS 
call, and that only a single update exists within the NVRAM for any processor step-
ping and platform ID.

Figure 9-8 and Figure 9-9 show the process the BIOS follows to choose an update 
block and ensure the integrity of the data when it stores the new microcode update. 
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Figure 9-8.  Microcode Update Write Operation Flow [1]
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Figure 9-9.  Microcode Update Write Operation Flow [2]
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9.11.8.7  Function 02H—Microcode Update Control
This function enables loading of binary updates into the processor. Table 9-15 lists 
the parameters and return codes for the function.

This control is provided on a global basis for all updates and processors. The caller 
can determine the current status of update loading (enabled or disabled) without 
changing the state. The function does not allow the caller to disable loading of binary 
updates, as this poses a security risk.

The caller specifies the requested operation by placing one of the values from Table 
9-16 in the BH register. After successfully completing this function, the BL register 
contains either the enable or the disable designator. Note that if the function fails, the 
update status return value is undefined.

Table 9-15.  Parameters for the Control Update Sub-function

Input

AX Function Code 0D042H

BL Sub-function 02H - Control update

BH Task See the description below.

CX Scratch Pad1 Real mode segment of 64 KBytes of RAM block

DX Scratch Pad2 Real mode segment of 64 KBytes of RAM block

SI Scratch Pad3 Real mode segment of 64 KBytes of RAM block

SS:SP Stack pointer 32 kilobytes of stack minimum

Output

CF Carry Flag Carry Set - Failure - AH contains status

Carry Clear - All return values valid.

AH Return Code Status of the call

AL OEM Error Additional OEM Information. 

BL Update Status Either enable or disable indicator

Return Codes (see Table 9-18 for code definitions)

SUCCESS Function completed successfully.

READ_FAILURE A failure occurred because of the inability to read the 
storage device. 
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The READ_FAILURE error code returned by this function has meaning only if the 
control function is implemented in the BIOS NVRAM. The state of this feature 
(enabled/disabled) can also be implemented using CMOS RAM bits where READ 
failure errors cannot occur. 

9.11.8.8  Function 03H—Read Microcode Update Data
This function reads a currently installed microcode update from the BIOS storage into 
a caller-provided RAM buffer. Table 9-17 lists the parameters and return codes. 

Table 9-16.  Mnemonic Values
Mnemonic Value Meaning

Enable 1 Enable the Update loading at initialization time.

Query 2 Determine the current state of the update control without 
changing its status.

Table 9-17.  Parameters for the Read Microcode Update Data Function
Input

AX Function Code 0D042H

BL Sub-function 03H - Read Update

ES:DI Buffer Address Real Mode pointer to the Intel Update 
structure that will be written with the 
binary data

ECX Scratch Pad1 Real Mode Segment address of 64 
KBytes of RAM Block (lower 16 bits)

ECX Scratch Pad2 Real Mode Segment address of 64 
KBytes of RAM Block (upper 16 bits)

DX Scratch Pad3 Real Mode Segment address of 64 
KBytes of RAM Block

SS:SP Stack pointer 32 KBytes of Stack Minimum

SI Update Number This is the index number of the update 
block to be read. This value is zero based 
and must be less than the update count 
returned from the presence test 
function.

Output

CF Carry Flag Carry Set     - Failure - AH contains Status

Carry Clear - All return 
values are valid.

AH Return Code Status of the Call
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The read function enables the caller to read any microcode update data that already 
exists in a BIOS and make decisions about the addition of new updates.  As a result 
of a successful call, the BIOS copies the microcode update into the location pointed 
to by ES:DI, with the contents of all Update block(s) that are used to store the spec-
ified microcode update.

If the specified block is not a header block, but does contain valid data from a micro-
code update that spans multiple update blocks, then the BIOS must return Failure 
with the NOT_EMPTY error code in AH.

An update block is considered unused and available for storing a new update if its 
Header Version contains the value 0FFFFFFFFH after return from this function call.  
The actual implementation of NVRAM storage management is not specified here and 
is BIOS dependent.  As an example, the actual data value used to represent an 
empty block by the BIOS may be zero, rather than 0FFFFFFFFH. The BIOS is respon-
sible for translating this information into the header provided by this function.

9.11.8.9  Return Codes
After the call has been made, the return codes listed in Table 9-18 are available in the 
AH register.

AL OEM Error Additional OEM Information

Return Codes (see Table 9-18 for code definitions)

SUCCESS The function completed successfully.

READ_FAILURE There was a failure because of the 
inability to read the storage device.

UPDATE_NUM_INVALID Update number exceeds the maximum 
number of update blocks implemented 
by the BIOS.

NOT_EMPTY The specified update block is a 
subsequent block in use to store a valid 
microcode update that spans multiple 
blocks. 

The specified block is not a header block 
and is not empty. 

Table 9-17.  Parameters for the Read Microcode Update Data Function (Contd.)
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Table 9-18.  Return Code Definitions

Return Code Value Description

SUCCESS 00H The function completed successfully.

NOT_IMPLEMENTED 86H The function is not implemented.

ERASE_FAILURE 90H A failure because of the inability to erase the storage 
device.

WRITE_FAILURE 91H A failure because of the inability to write the storage 
device.

READ_FAILURE 92H A failure because of the inability to read the storage 
device.

STORAGE_FULL 93H The BIOS non-volatile storage area is unable to 
accommodate the update because all available update 
blocks are filled with updates that are needed for 
processors in the system.

CPU_NOT_PRESENT 94H The processor stepping does not currently exist in the 
system.

INVALID_HEADER 95H The update header contains a header or loader version 
that is not recognized by the BIOS.

INVALID_HEADER_CS 96H The update does not checksum correctly.

SECURITY_FAILURE 97H The update was rejected by the processor.

INVALID_REVISION 98H The same or more recent revision of the update exists 
in the storage device.

UPDATE_NUM_INVALID 99H The update number exceeds the maximum number of 
update blocks implemented by the BIOS.

NOT_EMPTY 9AH The specified update block is a subsequent block in use 
to store a valid microcode update that spans multiple 
blocks. 

The specified block is not a header block and is not 
empty.
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CHAPTER 10
ADVANCED PROGRAMMABLE

INTERRUPT CONTROLLER (APIC)

The Advanced Programmable Interrupt Controller (APIC), referred to in the following 
sections as the local APIC, was introduced into the IA-32 processors with the Pentium 
processor (see Section 22.27, “Advanced Programmable Interrupt Controller 
(APIC)”) and is included in the P6 family, Pentium 4, Intel Xeon processors, and other 
more recent Intel 64 and IA-32 processor families (see Section 10.4.2, “Presence of 
the Local APIC”). The local APIC performs two primary functions for the processor:
• It receives interrupts from the processor’s interrupt pins, from internal sources 

and from an external I/O APIC (or other external interrupt controller). It sends 
these to the processor core for handling.

• In multiple processor (MP) systems, it sends and receives interprocessor 
interrupt (IPI) messages to and from other logical processors on the system bus. 
IPI messages can be used to distribute interrupts among the processors in the 
system or to execute system wide functions (such as, booting up processors or 
distributing work among a group of processors).

The external I/O APIC is part of Intel’s system chip set. Its primary function is to 
receive external interrupt events from the system and its associated I/O devices and 
relay them to the local APIC as interrupt messages. In MP systems, the I/O APIC also 
provides a mechanism for distributing external interrupts to the local APICs of 
selected processors or groups of processors on the system bus. 

This chapter provides a description of the local APIC and its programming interface. 
It also provides an overview of the interface between the local APIC and the I/O 
APIC. Contact Intel for detailed information about the I/O APIC.

When a local APIC has sent an interrupt to its processor core for handling, the 
processor uses the interrupt and exception handling mechanism described in Chapter 
6, “Interrupt and Exception Handling.” See Section 6.1, “Interrupt and Exception 
Overview,” for an introduction to interrupt and exception handling.

10.1 LOCAL AND I/O APIC OVERVIEW
Each local APIC consists of a set of APIC registers (see Table 10-1) and associated 
hardware that control the delivery of interrupts to the processor core and the gener-
ation of IPI messages. The APIC registers are memory mapped and can be read and 
written to using the MOV instruction.

Local APICs can receive interrupts from the following sources:
• Locally connected I/O devices — These interrupts originate as an edge or 

level asserted by an I/O device that is connected directly to the processor’s local 
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interrupt pins (LINT0 and LINT1). The I/O devices may also be connected to an 
8259-type interrupt controller that is in turn connected to the processor through 
one of the local interrupt pins.

• Externally connected I/O devices — These interrupts originate as an edge or 
level asserted by an I/O device that is connected to the interrupt input pins of an 
I/O APIC. Interrupts are sent as I/O interrupt messages from the I/O APIC to one 
or more of the processors in the system.

• Inter-processor interrupts (IPIs) — An Intel 64 or IA-32 processor can use 
the IPI mechanism to interrupt another processor or group of processors on the 
system bus. IPIs are used for software self-interrupts, interrupt forwarding, or 
preemptive scheduling.

• APIC timer generated interrupts — The local APIC timer can be programmed 
to send a local interrupt to its associated processor when a programmed count is 
reached (see Section 10.5.4, “APIC Timer”).

• Performance monitoring counter interrupts — P6 family, Pentium 4, and 
Intel Xeon processors provide the ability to send an interrupt to its associated 
processor when a performance-monitoring counter overflows (see Section 
18.10.5.8, “Generating an Interrupt on Overflow”).

• Thermal Sensor interrupts — Pentium 4 and Intel Xeon processors provide the 
ability to send an interrupt to themselves when the internal thermal sensor has 
been tripped (see Section 14.5.2, “Thermal Monitor”).

• APIC internal error interrupts — When an error condition is recognized within 
the local APIC (such as an attempt to access an unimplemented register), the 
APIC can be programmed to send an interrupt to its associated processor (see 
Section 10.5.3, “Error Handling”).

Of these interrupt sources: the processor’s LINT0 and LINT1 pins, the APIC timer, the 
performance-monitoring counters, the thermal sensor, and the internal APIC error 
detector are referred to as local interrupt sources. Upon receiving a signal from a 
local interrupt source, the local APIC delivers the interrupt to the processor core 
using an interrupt delivery protocol that has been set up through a group of APIC 
registers called the local vector table or LVT (see Section 10.5.1, “Local Vector 
Table”). A separate entry is provided in the local vector table for each local interrupt 
source, which allows a specific interrupt delivery protocol to be set up for each 
source. For example, if the LINT1 pin is going to be used as an NMI pin, the LINT1 
entry in the local vector table can be set up to deliver an interrupt with vector number 
2 (NMI interrupt) to the processor core.

The local APIC handles interrupts from the other two interrupt sources (externally 
connected I/O devices and IPIs) through its IPI message handling facilities. 

A processor can generate IPIs by programming the interrupt command register (ICR) 
in its local APIC (see Section 10.6.1, “Interrupt Command Register (ICR)”). The act 
of writing to the ICR causes an IPI message to be generated and issued on the 
system bus (for Pentium 4 and Intel Xeon processors) or on the APIC bus (for 
Pentium and P6 family processors). See Section 10.2, “System Bus Vs. APIC Bus.”
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IPIs can be sent to other processors in the system or to the originating processor 
(self-interrupts). When the target processor receives an IPI message, its local APIC 
handles the message automatically (using information included in the message such 
as vector number and trigger mode). See Section 10.6, “Issuing Interprocessor 
Interrupts,” for a detailed explanation of the local APIC’s IPI message delivery and 
acceptance mechanism.

The local APIC can also receive interrupts from externally connected devices through 
the I/O APIC (see Figure 10-1). The I/O APIC is responsible for receiving interrupts 
generated by system hardware and I/O devices and forwarding them to the local 
APIC as interrupt messages.

Individual pins on the I/O APIC can be programmed to generate a specific interrupt 
vector when asserted. The I/O APIC also has a “virtual wire mode” that allows it to 
communicate with a standard 8259A-style external interrupt controller. Note that the 
local APIC can be disabled (see Section 10.4.3, “Enabling or Disabling the Local 
APIC”). This allows an associated processor core to receive interrupts directly from 
an 8259A interrupt controller.

Both the local APIC and the I/O APIC are designed to operate in MP systems (see 
Figures 10-2 and 10-3). Each local APIC handles interrupts from the I/O APIC, IPIs 
from processors on the system bus, and self-generated interrupts. Interrupts can 

 

Figure 10-1.  Relationship of Local APIC and I/O APIC In Single-Processor Systems
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also be delivered to the individual processors through the local interrupt pins; 
however, this mechanism is commonly not used in MP systems.

 

Figure 10-2.  Local APICs and I/O APIC When Intel Xeon Processors Are Used in 
Multiple-Processor Systems

 

Figure 10-3.  Local APICs and I/O APIC When P6 Family Processors Are Used in 
Multiple-Processor Systems
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The IPI mechanism is typically used in MP systems to send fixed interrupts (inter-
rupts for a specific vector number) and special-purpose interrupts to processors on 
the system bus. For example, a local APIC can use an IPI to forward a fixed interrupt 
to another processor for servicing. Special-purpose IPIs (including NMI, INIT, SMI 
and SIPI IPIs) allow one or more processors on the system bus to perform system-
wide boot-up and control functions.

The following sections focus on the local APIC and its implementation in the 
Pentium 4, Intel Xeon, and P6 family processors. In these sections, the terms “local 
APIC” and “I/O APIC” refer to local and I/O APICs used with the P6 family processors 
and to local and I/O xAPICs used with the Pentium 4 and Intel Xeon processors (see 
Section 10.3, “The Intel® 82489DX External APIC, the APIC, the xAPIC, and the 
X2APIC”). 

10.2 SYSTEM BUS VS. APIC BUS
For the P6 family and Pentium processors, the I/O APIC and local APICs communicate 
through the 3-wire inter-APIC bus (see Figure 10-3). Local APICs also use the APIC 
bus to send and receive IPIs. The APIC bus and its messages are invisible to software 
and are not classed as architectural.

Beginning with the Pentium 4 and Intel Xeon processors, the I/O APIC and local 
APICs (using the xAPIC architecture) communicate through the system bus (see 
Figure 10-2). The I/O APIC sends interrupt requests to the processors on the system 
bus through bridge hardware that is part of the Intel chip set. The bridge hardware 
generates the interrupt messages that go to the local APICs. IPIs between local 
APICs are transmitted directly on the system bus.

10.3 THE INTEL® 82489DX EXTERNAL APIC, 
THE APIC, THE XAPIC, AND THE X2APIC

The local APIC in the P6 family and Pentium processors is an architectural subset of 
the Intel® 82489DX external APIC. See Section 22.27.1, “Software Visible Differ-
ences Between the Local APIC and the 82489DX.”
The APIC architecture used in the Pentium 4 and Intel Xeon processors (called the 
xAPIC architecture) is an extension of the APIC architecture found in the P6 family 
processors. The primary difference between the APIC and xAPIC architectures is that 
with the xAPIC architecture, the local APICs and the I/O APIC communicate through 
the system bus. With the APIC architecture, they communication through the APIC 
bus (see Section 10.2, “System Bus Vs. APIC Bus”). Also, some APIC architectural 
features have been extended and/or modified in the xAPIC architecture. These 
extensions and modifications are described in Section 10.4 through Section 10.10.

The basic operating mode of the xAPIC is xAPIC mode. The x2APIC architecture is 
an extension of the xAPIC architecture, primarily to increase processor address-
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ability. The x2APIC architecture provides backward compatibility to the xAPIC archi-
tecture and forward extendability for future Intel platform innovations. These 
extensions and modifications are supported by a new mode of execution (x2APIC 
mode) are detailed in Section 10.12.

10.4 LOCAL APIC
The following sections describe the architecture of the local APIC and how to detect 
it, identify it, and determine its status. Descriptions of how to program the local APIC 
are given in Section 10.5.1, “Local Vector Table,” and Section 10.6.1, “Interrupt 
Command Register (ICR).”

10.4.1 The Local APIC Block Diagram
Figure 10-4 gives a functional block diagram for the local APIC. Software interacts 
with the local APIC by reading and writing its registers. APIC registers are memory-
mapped to a 4-KByte region of the processor’s physical address space with an initial 
starting address of FEE00000H. For correct APIC operation, this address space must 
be mapped to an area of memory that has been designated as strong uncacheable 
(UC). See Section 11.3, “Methods of Caching Available.”

In MP system configurations, the APIC registers for Intel 64 or IA-32 processors on 
the system bus are initially mapped to the same 4-KByte region of the physical 
address space. Software has the option of changing initial mapping to a different 
4-KByte region for all the local APICs or of mapping the APIC registers for each local 
APIC to its own 4-KByte region. Section 10.4.5, “Relocating the Local APIC Regis-
ters,” describes how to relocate the base address for APIC registers.

On processors supporting x2APIC architecture (indicated by CPUID.01H:ECX[21] = 
1), the local APIC supports operation both in xAPIC mode and (if enabled by soft-
ware) in x2APIC mode. x2APIC mode provides extended processor addressability 
(see Section 10.12).

NOTE
For P6 family, Pentium 4, and Intel Xeon processors, the APIC 
handles all memory accesses to addresses within the 4-KByte APIC 
register space internally and no external bus cycles are produced. For 
the Pentium processors with an on-chip APIC, bus cycles are 
produced for accesses to the APIC register space. Thus, for software 
intended to run on Pentium processors, system software should 
explicitly not map the APIC register space to regular system memory. 
Doing so can result in an invalid opcode exception (#UD) being 
generated or unpredictable execution.
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Figure 10-4.  Local APIC Structure
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Table 10-1 shows how the APIC registers are mapped into the 4-KByte APIC register 
space. Registers are 32 bits, 64 bits, or 256 bits in width; all are aligned on 128-bit 
boundaries. All 32-bit registers should be accessed using 128-bit aligned 32-bit loads 
or stores. Some processors may support loads and stores of less than 32 bits to some 
of the APIC registers. This is model specific behavior and is not guaranteed to work 
on all processors. Any FP/MMX/SSE access to an APIC register, or any access that 
touches bytes 4 through 15 of an APIC register may cause undefined behavior and 
must not be executed. This undefined behavior could include hangs, incorrect results 
or unexpected exceptions, including machine checks, and may vary between imple-
mentations. Wider registers (64-bit or 256-bit) must be accessed using multiple 32-
bit loads or stores, with all accesses being 128-bit aligned. 

The local APIC registers listed in Table 10-1 are not MSRs. The only MSR associated 
with the programming of the local APIC is the IA32_APIC_BASE MSR (see Section 
10.4.3, “Enabling or Disabling the Local APIC”).

NOTE
In processors based on Intel microarchitecture code name Nehalem 
the Local APIC ID Register is no longer Read/Write; it is Read Only.

Table 10-1 Local APIC Register Address Map 

Address Register Name Software 
Read/Write

FEE0 0000H Reserved

FEE0 0010H Reserved

FEE0 0020H Local APIC ID Register Read/Write.

FEE0 0030H Local APIC Version Register Read Only.

FEE0 0040H Reserved

FEE0 0050H Reserved

FEE0 0060H Reserved

FEE0 0070H Reserved

FEE0 0080H Task Priority Register (TPR) Read/Write.

FEE0 0090H Arbitration Priority Register1 (APR) Read Only.

FEE0 00A0H Processor Priority Register (PPR) Read Only.

FEE0 00B0H EOI Register Write Only.

FEE0 00C0H Remote Read Register1 (RRD) Read Only

FEE0 00D0H Logical Destination Register Read/Write.

FEE0 00E0H Destination Format Register Read/Write (see 
Section 10.6.2.2).
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FEE0 00F0H Spurious Interrupt Vector Register Read/Write (see 
Section 10.9.

FEE0 0100H In-Service Register (ISR); bits 31:0 Read Only.

FEE0 0110H In-Service Register (ISR); bits 63:32 Read Only.

FEE0 0120H In-Service Register (ISR); bits 95:64 Read Only.

FEE0 0130H In-Service Register (ISR); bits 127:96 Read Only.

FEE0 0140H In-Service Register (ISR); bits 159:128 Read Only.

FEE0 0150H In-Service Register (ISR); bits 191:160 Read Only.

FEE0 0160H In-Service Register (ISR); bits 223:192 Read Only.

FEE0 0170H In-Service Register (ISR); bits 255:224 Read Only.

FEE0 0180H Trigger Mode Register (TMR); bits 31:0 Read Only.

FEE0 0190H Trigger Mode Register (TMR); bits 63:32 Read Only.

FEE0 01A0H Trigger Mode Register (TMR); bits 95:64 Read Only.

FEE0 01B0H Trigger Mode Register (TMR); bits 127:96 Read Only.

FEE0 01C0H Trigger Mode Register (TMR); bits 159:128  Read Only.

FEE0 01D0H Trigger Mode Register (TMR); bits 191:160 Read Only.

FEE0 01E0H Trigger Mode Register (TMR); bits 223:192 Read Only.

FEE0 01F0H Trigger Mode Register (TMR); bits 255:224 Read Only.

FEE0 0200H Interrupt Request Register (IRR); bits 31:0 Read Only.

FEE0 0210H Interrupt Request Register (IRR); bits 63:32 Read Only.

FEE0 0220H Interrupt Request Register (IRR); bits 95:64 Read Only.

FEE0 0230H Interrupt Request Register (IRR); bits 127:96 Read Only.

FEE0 0240H Interrupt Request Register (IRR); bits 159:128 Read Only.

FEE0 0250H Interrupt Request Register (IRR); bits 191:160 Read Only.

FEE0 0260H Interrupt Request Register (IRR); bits 223:192 Read Only.

FEE0 0270H Interrupt Request Register (IRR); bits 255:224 Read Only.

FEE0 0280H Error Status Register Read Only.

FEE0 0290H through
FEE0 02E0H

Reserved

FEE0 02F0H LVT CMCI Register Read/Write.

FEE0 0300H Interrupt Command Register (ICR); bits 0-31 Read/Write.

Table 10-1 Local APIC Register Address Map  (Contd.)

Address Register Name Software 
Read/Write
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10.4.2 Presence of the Local APIC
Beginning with the P6 family processors, the presence or absence of an on-chip local 
APIC can be detected using the CPUID instruction. When the CPUID instruction is 
executed with a source operand of 1 in the EAX register, bit 9 of the CPUID feature 
flags returned in the EDX register indicates the presence (set) or absence (clear) of a 
local APIC.

10.4.3 Enabling or Disabling the Local APIC
The local APIC can be enabled or disabled in either of two ways:

FEE0 0310H Interrupt Command Register (ICR); bits 32-63 Read/Write.

FEE0 0320H LVT Timer Register Read/Write.

FEE0 0330H LVT Thermal Sensor Register2 Read/Write.

FEE0 0340H LVT Performance Monitoring Counters 
Register3

Read/Write.

FEE0 0350H LVT LINT0 Register Read/Write.

FEE0 0360H LVT LINT1 Register Read/Write.

FEE0 0370H LVT Error Register Read/Write.

FEE0 0380H Initial Count Register (for Timer) Read/Write.

FEE0 0390H Current Count Register (for Timer) Read Only.

FEE0 03A0H through 
FEE0 03D0H

Reserved

FEE0 03E0H Divide Configuration Register (for Timer) Read/Write.

FEE0 03F0H Reserved

NOTES:
1. Not supported in the Pentium 4 and Intel Xeon processors. The Illegal Register Access bit (7) of 

the ESR will not be set when writing to these registers.
2. Introduced in the Pentium 4 and Intel Xeon processors. This APIC register and its associated 

function are implementation dependent and may not be present in future IA-32 or Intel 64 pro-
cessors.

3. Introduced in the Pentium Pro processor. This APIC register and its associated function are 
implementation dependent and may not be present in future IA-32 or Intel 64 processors.

Table 10-1 Local APIC Register Address Map  (Contd.)

Address Register Name Software 
Read/Write
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1. Using the APIC global enable/disable flag in the IA32_APIC_BASE MSR (MSR 
address 1BH; see Figure 10-5):

— When IA32_APIC_BASE[11] is 0, the processor is functionally equivalent to 
an IA-32 processor without an on-chip APIC. The CPUID feature flag for the 
APIC (see Section 10.4.2, “Presence of the Local APIC”) is also set to 0.

— When IA32_APIC_BASE[11] is set to 0, processor APICs based on the 3-wire 
APIC bus cannot be generally re-enabled until a system hardware reset. The 
3-wire bus loses track of arbitration that would be necessary for complete re-
enabling. Certain APIC functionality can be enabled (for example: 
performance and thermal monitoring interrupt generation).

— For processors that use Front Side Bus (FSB) delivery of interrupts, software 
may disable or enable the APIC by setting and resetting 
IA32_APIC_BASE[11]. A hardware reset is not required to re-start APIC 
functionality, if software guarantees no interrupt will be sent to the APIC as 
IA32_APIC_BASE[11] is cleared.

— When IA32_APIC_BASE[11] is set to 0, prior initialization to the APIC may be 
lost and the APIC may return to the state described in Section 10.4.7.1, 
“Local APIC State After Power-Up or Reset.”

2. Using the APIC software enable/disable flag in the spurious-interrupt vector 
register (see Figure 10-23):

— If IA32_APIC_BASE[11] is 1, software can temporarily disable a local APIC at 
any time by clearing the APIC software enable/disable flag in the spurious-
interrupt vector register (see Figure 10-23). The state of the local APIC when 
in this software-disabled state is described in Section 10.4.7.2, “Local APIC 
State After It Has Been Software Disabled.” 

— When the local APIC is in the software-disabled state, it can be re-enabled at 
any time by setting the APIC software enable/disable flag to 1.

For the Pentium processor, the APICEN pin (which is shared with the PICD1 pin) is 
used during power-up or reset to disable the local APIC.

Note that each entry in the LVT has a mask bit that can be used to inhibit interrupts 
from being delivered to the processor from selected local interrupt sources (the 
LINT0 and LINT1 pins, the APIC timer, the performance-monitoring counters, the 
thermal sensor, and/or the internal APIC error detector).

10.4.4 Local APIC Status and Location
The status and location of the local APIC are contained in the IA32_APIC_BASE MSR 
(see Figure 10-5). MSR bit functions are described below:
• BSP flag, bit 8 ⎯ Indicates if the processor is the bootstrap processor (BSP). 

See Section 8.4, “Multiple-Processor (MP) Initialization.” Following a power-up or 
reset, this flag is set to 1 for the processor selected as the BSP and set to 0 for the 
remaining processors (APs).
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• APIC Global Enable flag, bit 11 ⎯ Enables or disables the local APIC (see 
Section 10.4.3, “Enabling or Disabling the Local APIC”). This flag is available in 
the Pentium 4, Intel Xeon, and P6 family processors. It is not guaranteed to be 
available or available at the same location in future Intel 64 or IA-32 processors.

• APIC Base field, bits 12 through 35 ⎯ Specifies the base address of the APIC 
registers. This 24-bit value is extended by 12 bits at the low end to form the base 
address. This automatically aligns the address on a 4-KByte boundary. Following 
a power-up or reset, the field is set to FEE0 0000H.

• Bits 0 through 7, bits 9 and 10, and bits MAXPHYADDR1 through 63 in the 
IA32_APIC_BASE MSR are reserved.

10.4.5 Relocating the Local APIC Registers
The Pentium 4, Intel Xeon, and P6 family processors permit the starting address of 
the APIC registers to be relocated from FEE00000H to another physical address by 
modifying the value in the 24-bit base address field of the IA32_APIC_BASE MSR. 
This extension of the APIC architecture is provided to help resolve conflicts with 
memory maps of existing systems and to allow individual processors in an MP system 
to map their APIC registers to different locations in physical memory.

10.4.6 Local APIC ID
At power up, system hardware assigns a unique APIC ID to each local APIC on the 
system bus (for Pentium 4 and Intel Xeon processors) or on the APIC bus (for P6 
family and Pentium processors). The hardware assigned APIC ID is based on system 
topology and includes encoding for socket position and cluster information (see 
Figure 8-2).

In MP systems, the local APIC ID is also used as a processor ID by the BIOS and the 
operating system. Some processors permit software to modify the APIC ID. However, 
the ability of software to modify the APIC ID is processor model specific. Because of 

1. The MAXPHYADDR is 36 bits for processors that do not support CPUID leaf 80000008H, or indi-
cated by CPUID.80000008H:EAX[bits 7:0] for processors that support CPUID leaf 80000008H.

Figure 10-5.  IA32_APIC_BASE MSR (APIC_BASE_MSR in P6 Family)

BSP—Processor is BSP

APIC global enable/disable
APIC Base—Base physical address

63 071011 8912

Reserved

MAXPHYADDR

APIC BaseReserved
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this, operating system software should avoid writing to the local APIC ID register. The 
value returned by bits 31-24 of the EBX register (when the CPUID instruction is 
executed with a source operand value of 1 in the EAX register) is always the Initial 
APIC ID (determined by the platform initialization). This is true even if software has 
changed the value in the Local APIC ID register.

The processor receives the hardware assigned APIC ID (or Initial APIC ID) by 
sampling pins A11# and A12# and pins BR0# through BR3# (for the Pentium 4, Intel 
Xeon, and P6 family processors) and pins BE0# through BE3# (for the Pentium 
processor). The APIC ID latched from these pins is stored in the APIC ID field of the 
local APIC ID register (see Figure 10-6), and is used as the Initial APIC ID for the 
processor. 

For the P6 family and Pentium processors, the local APIC ID field in the local APIC ID 
register is 4 bits. Encodings 0H through EH can be used to uniquely identify 15 
different processors connected to the APIC bus. For the Pentium 4 and Intel Xeon 
processors, the xAPIC specification extends the local APIC ID field to 8 bits. These 
can be used to identify up to 255 processors in the system.

10.4.7 Local APIC State
The following sections describe the state of the local APIC and its registers following 
a power-up or reset, after the local APIC has been software disabled, following an 
INIT reset, and following an INIT-deassert message.

Figure 10-6.  Local APIC ID Register

31 27 24 0

ReservedAPIC ID

Address: 0FEE0 0020H
Value after reset: 0000 0000H

P6 family and Pentium processors 

Pentium 4 processors, Xeon processors, and later processors
31 24 0

ReservedAPIC ID

MSR Address: 802H

31     0

x2APIC ID

x2APIC Mode
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x2APIC will introduce 32-bit ID; see Section 10.12.

10.4.7.1  Local APIC State After Power-Up or Reset
Following a power-up or reset of the processor, the state of local APIC and its regis-
ters are as follows:
• The following registers are reset to all 0s: 

• IRR, ISR, TMR, ICR, LDR, and TPR

• Timer initial count and timer current count registers

• Divide configuration register
• The DFR register is reset to all 1s.
• The LVT register is reset to 0s except for the mask bits; these are set to 1s.
• The local APIC version register is not affected.
• The local APIC ID register is set to a unique APIC ID. (Pentium and P6 family 

processors only). The Arb ID register is set to the value in the APIC ID register.
• The spurious-interrupt vector register is initialized to 000000FFH. By setting bit 8 

to 0, software disables the local APIC.
• If the processor is the only processor in the system or it is the BSP in an MP 

system (see Section 8.4.1, “BSP and AP Processors”); the local APIC will respond 
normally to INIT and NMI messages, to INIT# signals and to STPCLK# signals. If 
the processor is in an MP system and has been designated as an AP; the local 
APIC will respond the same as for the BSP. In addition, it will respond to SIPI 
messages. For P6 family processors only, an AP will not respond to a STPCLK# 
signal.

10.4.7.2  Local APIC State After It Has Been Software Disabled 
When the APIC software enable/disable flag in the spurious interrupt vector register 
has been explicitly cleared (as opposed to being cleared during a power up or reset), 
the local APIC is temporarily disabled (see Section 10.4.3, “Enabling or Disabling the 
Local APIC”). The operation and response of a local APIC while in this software-
disabled state is as follows:
• The local APIC will respond normally to INIT, NMI, SMI, and SIPI messages.
• Pending interrupts in the IRR and ISR registers are held and require masking or 

handling by the CPU.
• The local APIC can still issue IPIs. It is software’s responsibility to avoid issuing 

IPIs through the IPI mechanism and the ICR register if sending interrupts 
through this mechanism is not desired.

• The reception or transmission of any IPIs that are in progress when the local APIC 
is disabled are completed before the local APIC enters the software-disabled 
state.
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• The mask bits for all the LVT entries are set. Attempts to reset these bits will be 
ignored.

• (For Pentium and P6 family processors) The local APIC continues to listen to all 
bus messages in order to keep its arbitration ID synchronized with the rest of the 
system.

10.4.7.3  Local APIC State After an INIT Reset (“Wait-for-SIPI” State)
An INIT reset of the processor can be initiated in either of two ways:
• By asserting the processor’s INIT# pin.
• By sending the processor an INIT IPI (an IPI with the delivery mode set to INIT).

Upon receiving an INIT through either of these mechanisms, the processor responds 
by beginning the initialization process of the processor core and the local APIC. The 
state of the local APIC following an INIT reset is the same as it is after a power-up or 
hardware reset, except that the APIC ID and arbitration ID registers are not affected. 
This state is also referred to at the “wait-for-SIPI” state (see also: Section 8.4.2, “MP 
Initialization Protocol Requirements and Restrictions”).

10.4.7.4  Local APIC State After It Receives an INIT-Deassert IPI
Only the Pentium and P6 family processors support the INIT-deassert IPI. An INIT-
disassert IPI has no affect on the state of the APIC, other than to reload the arbitra-
tion ID register with the value in the APIC ID register. 

10.4.8 Local APIC Version Register
The local APIC contains a hardwired version register. Software can use this register to 
identify the APIC version (see Figure 10-7). In addition, the register specifies the 
number of entries in the local vector table (LVT) for a specific implementation. 

The fields in the local APIC version register are as follows:
Version The version numbers of the local APIC:

0XH 82489DX discrete APIC.

10H - 15H Integrated APIC.

Other values reserved.
Max LVT Entry Shows the number of LVT entries minus 1. For the Pentium 4 and 

Intel Xeon processors (which have 6 LVT entries), the value 
returned in the Max LVT field is 5; for the P6 family processors 
(which have 5 LVT entries), the value returned is 4; for the 
Pentium processor (which has 4 LVT entries), the value returned 
is 3. For processors based on the Intel microarchitecture code 
name Nehalem (which has 7 LVT entries) and onward, the value 
returned is 6.
Vol. 3A 10-15



1

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
Suppress EOI-broadcasts
Indicates whether software can inhibit the broadcast of EOI 
message by setting bit 12 of the Spurious Interrupt Vector 
Register; see Section 10.8.5 and Section 10.9.

10.5 HANDLING LOCAL INTERRUPTS
The following sections describe facilities that are provided in the local APIC for 
handling local interrupts. These include: the processor’s LINT0 and LINT1 pins, the 
APIC timer, the performance-monitoring counters, the thermal sensor, and the 
internal APIC error detector. Local interrupt handling facilities include: the LVT, the 
error status register (ESR), the divide configuration register (DCR), and the initial 
count and current count registers.

10.5.1 Local Vector Table
The local vector table (LVT) allows software to specify the manner in which the local 
interrupts are delivered to the processor core. It consists of the following 32-bit APIC 
registers (see Figure 10-8), one for each local interrupt:
• LVT CMCI Register (FEE0 02F0H) — Specifies interrupt delivery when an 

overflow condition of corrected machine check error count reaching a threshold 
value occurred in a machine check bank supporting CMCI (see Section 15.5.1, 
“CMCI Local APIC Interface”).

• LVT Timer Register (FEE0 0320H) — Specifies interrupt delivery when the 
APIC timer signals an interrupt (see Section 10.5.4, “APIC Timer”).

• LVT Thermal Monitor Register (FEE0 0330H) — Specifies interrupt delivery 
when the thermal sensor generates an interrupt (see Section 14.5.2, “Thermal 
Monitor”). This LVT entry is implementation specific, not architectural. If imple-
mented, it will always be at base address FEE0 0330H.

Figure 10-7.  Local APIC Version Register

31 0

Reserved

7823 15

Support for EOI-broadcast suppression

16

Reserved

25 24

VersionMax LVT Entry

Value after reset: 00BN 00VVH
V = Version, N = # of LVT entries minus 1,

Address: FEE0 0030H
B = 1 if EOI-broadcast suppression supported
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• LVT Performance Counter Register (FEE0 0340H) — Specifies interrupt 
delivery when a performance counter generates an interrupt on overflow (see 
Section 18.10.5.8, “Generating an Interrupt on Overflow”). This LVT entry is 
implementation specific, not architectural. If implemented, it is not guaranteed 
to be at base address FEE0 0340H.

• LVT LINT0 Register (FEE0 0350H) — Specifies interrupt delivery when an 
interrupt is signaled at the LINT0 pin.

• LVT LINT1 Register (FEE0 0360H) — Specifies interrupt delivery when an 
interrupt is signaled at the LINT1 pin.

• LVT Error Register (FEE0 0370H) — Specifies interrupt delivery when the 
APIC detects an internal error (see Section 10.5.3, “Error Handling”).

The LVT performance counter register and its associated interrupt were introduced in 
the P6 processors and are also present in the Pentium 4 and Intel Xeon processors. 
The LVT thermal monitor register and its associated interrupt were introduced in the 
Pentium 4 and Intel Xeon processors. The LVT CMCI register and its associated inter-
rupt were introduced in the Intel Xeon 5500 processors.

As shown in Figures 10-8, some of these fields and flags are not available (and 
reserved) for some entries.

The setup information that can be specified in the registers of the LVT table is as 
follows:
Vector Interrupt vector number.
Delivery Mode Specifies the type of interrupt to be sent to the processor. Some 

delivery modes will only operate as intended when used in 
conjunction with a specific trigger mode. The allowable delivery 
modes are as follows:

000 (Fixed) Delivers the interrupt specified in the vector 
field.

010 (SMI) Delivers an SMI interrupt to the processor 
core through the processor’s local SMI signal 
path. When using this delivery mode, the 
vector field should be set to 00H for future 
compatibility.

100 (NMI) Delivers an NMI interrupt to the processor. 
The vector information is ignored. 

101 (INIT) Delivers an INIT request to the processor 
core, which causes the processor to perform 
an INIT. When using this delivery mode, the 
vector field should be set to 00H for future 
compatibility. Not supported for the LVT 
CMCI register, the LVT thermal monitor reg-
ister, or the LVT performance counter regis-
ter.
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Figure 10-8.  Local Vector Table (LVT)

31 07

Vector

Timer Mode
00: One-shot
01: Periodic

1215161718

Delivery Mode
000: Fixed

100: NMI

Mask†

0: Not Masked
1: Masked

Address: FEE0 0350H

Value After Reset: 0001 0000H

Reserved
12131516

Vector

31 07810

Address: FEE0 0360H
Address: FEE0 0370H

Vector

Vector

Error

LINT1

LINT0

Value after Reset: 0001 0000H
Address: FEE0 0320H

111: ExtlNT

All other combinations
are reserved

Interrupt Input
Pin Polarity

Trigger Mode
0: Edge
1: Level

Remote
IRR

Delivery Status
0: Idle
1: Send Pending

Timer

13 11 8

11

14

17

Address: FEE0 0340H

Performance
Vector

Thermal
Vector

Mon. Counters

Sensor

Address: FEE0 0330H
† (Pentium 4 and Intel Xeon processors.) When a 

performance monitoring counters interrupt is generated, 
the mask bit for its associated LVT entry is set.

010: SMI

101: INIT

19

10: TSC-Deadline

VectorCMCI

Address: FEE0 02F0H
10-18 Vol. 3A



ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
110 Reserved; not supported for any LVT regis-
ter.

111 (ExtINT) Causes the processor to respond to the in-
terrupt as if the interrupt originated in an 
externally connected (8259A-compatible) 
interrupt controller. A special INTA bus cycle 
corresponding to ExtINT, is routed to the ex-
ternal controller. The external controller is 
expected to supply the vector information. 
The APIC architecture supports only one 
ExtINT source in a system, usually con-
tained in the compatibility bridge. Only one 
processor in the system should have an LVT 
entry configured to use the ExtINT delivery 
mode. Not supported for the LVT CMCI reg-
ister, the LVT thermal monitor register, or 
the LVT performance counter register.

Delivery Status (Read Only)
Indicates the interrupt delivery status, as follows:

0 (Idle) There is currently no activity for this inter-
rupt source, or the previous interrupt from 
this source was delivered to the processor 
core and accepted.

1 (Send Pending)
Indicates that an interrupt from this source 
has been delivered to the processor core but 
has not yet been accepted (see Section 
10.5.5, “Local Interrupt Acceptance”).

Interrupt Input Pin Polarity
Specifies the polarity of the corresponding interrupt pin: (0) 
active high or (1) active low. 

Remote IRR Flag (Read Only)
For fixed mode, level-triggered interrupts; this flag is set when 
the local APIC accepts the interrupt for servicing and is reset 
when an EOI command is received from the processor. The 
meaning of this flag is undefined for edge-triggered interrupts 
and other delivery modes. 

Trigger Mode Selects the trigger mode for the local LINT0 and LINT1 pins: (0) 
edge sensitive and (1) level sensitive. This flag is only used 
when the delivery mode is Fixed. When the delivery mode is 
NMI, SMI, or INIT, the trigger mode is always edge sensitive. 
When the delivery mode is ExtINT, the trigger mode is always 
level sensitive. The timer and error interrupts are always treated 
as edge sensitive. 
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If the local APIC is not used in conjunction with an I/O APIC and 
fixed delivery mode is selected; the Pentium 4, Intel Xeon, and 
P6 family processors will always use level-sensitive triggering, 
regardless if edge-sensitive triggering is selected.

Mask Interrupt mask: (0) enables reception of the interrupt and (1) 
inhibits reception of the interrupt. When the local APIC handles 
a performance-monitoring counters interrupt, it automatically 
sets the mask flag in the LVT performance counter register. This 
flag is set to 1 on reset. It can be cleared only by software.

Timer Mode Bits 18:17 selects the timer mode (see Section 10.5.4): 
(00b) one-shot mode using a count-down value,
(01b) periodic mode reloading a count-down value,
(10b) TSC-Deadline mode using absolute target value in 
IA32_TSC_DEADLINE MSR (see Section 10.5.4.1),
(11b) is reserved.

10.5.2 Valid Interrupt Vectors
The Intel 64 and IA-32 architectures define 256 vector numbers, ranging from 0 
through 255 (see Section 6.2, “Exception and Interrupt Vectors”). Local and I/O 
APICs support 240 of these vectors (in the range of 16 to 255) as valid interrupts.

When an interrupt vector in the range of 0 to 15 is sent or received through the local 
APIC, the APIC indicates an illegal vector in its Error Status Register (see Section 
10.5.3, “Error Handling”). The Intel 64 and IA-32 architectures reserve vectors 16 
through 31 for predefined interrupts, exceptions, and Intel-reserved encodings (see 
Table 6-1). However, the local APIC does not treat vectors in this range as illegal.

When an illegal vector value (0 to 15) is written to an LVT entry and the delivery 
mode is Fixed (bits 8-11 equal 0), the APIC may signal an illegal vector error, without 
regard to whether the mask bit is set or whether an interrupt is actually seen on the 
input.

10.5.3 Error Handling
The local APIC records errors detected during interrupt handling in the error status 
register (ESR). The format of the ESR is given in Figure 10-9; it contains the 
following flags:
• Bit 0: Send Checksum Error.

Set when the local APIC detects a checksum error for a message that it sent on 
the APIC bus. Used only on P6 family and Pentium processors.

• Bit 1: Receive Checksum Error.
Set when the local APIC detects a checksum error for a message that it received 
on the APIC bus. Used only on P6 family and Pentium processors.
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• Bit 2: Send Accept Error.
Set when the local APIC detects that a message it sent was not accepted by any 
APIC on the APIC bus. Used only on P6 family and Pentium processors.

• Bit 3: Receive Accept Error.
Set when the local APIC detects that the message it received was not accepted by 
any APIC on the APIC bus, including itself. Used only on P6 family and Pentium 
processors.

• Bit 4: Redirectable IPI.
Set when the local APIC detects an attempt to send an IPI with the lowest-priority 
delivery mode and the local APIC does not support the sending of such IPIs. This 
bit is used on some Intel Core and Intel Xeon processors. As noted in Section 
10.6.2, the ability of a processor to send a lowest-priority IPI is model-specific 
and should be avoided.

• Bit 5: Send Illegal Vector.
Set when the local APIC detects an illegal vector (one in the range 0 to 15) in the 
message that it is sending. This occurs as the result of a write to the ICR (in both 
xAPIC and x2APIC modes) or to SELF IPI register (x2APIC mode only) with an 
illegal vector.
If the local APIC does not support the sending of lowest-priority IPIs and software 
writes the ICR to send a lowest-priority IPI with an illegal vector, the local APIC 

Figure 10-9.  Error Status Register (ESR)

Address: FEE0 0280H
Value after reset: 0H

31 0

Reserved

78 123456

Illegal Register Address1

Received Illegal Vector
Send Illegal Vector
Redirectable IPI2

Receive Accept Error3

Send Accept Error3

Receive Checksum Error3

Send Checksum Error3

2. Used only by some Intel Core and Intel Xeon processors;
reserved on other processors.

1. Used only by Intel Core, Pentium 4, Intel Xeon, and P6 family
processors; reserved on the Pentium processor.

NOTES:

3. Used only by the P6 family and Pentium processors;
reserved on Intel Core, Pentium 4 and Intel Xeon processors.
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sets only the “redirectible IPI” error bit. The interrupt is not processed and hence 
the “Send Illegal Vector” bit is not set in the ESR.

• Bit 6: Receive Illegal Vector.
Set when the local APIC detects an illegal vector (one in the range 0 to 15) in an 
interrupt message it receives or in an interrupt generated locally from the local 
vector table or via a self IPI. Such interrupts are not be delivered to the 
processor; the local APIC will never set an IRR bit in the range 0 to 15.

• Bit 7: Illegal Register Address
Set when the local APIC is in xAPIC mode and software attempts to access a 
register that is reserved in the processor's local-APIC register-address space; see 
Table 10-1. (The local-APIC register-address space comprises the 4 KBytes at the 
physical address specified in the IA32_APIC_BASE MSR.) Used only on Intel 
Core, Intel Atom™, Pentium 4, Intel Xeon, and P6 family processors.
In x2APIC mode, software accesses the APIC registers using the RDMSR and 
WRMSR instructions. Use of one of these instructions to access a reserved 
register cause a general-protection exception (see Section 10.12.1.3). They do 
not set the “Illegal Register Access” bit in the ESR.

The ESR is a write/read register. Before attempt to read from the ESR, software 
should first write to it. (The value written does not affect the values read subse-
quently; only zero may be written in x2APIC mode.) This write clears any previously 
logged errors and updates the ESR with any errors detected since the last write to the 
ESR.

The LVT Error Register (see Section 10.5.1) allows specification of the vector of the 
interrupt to be delivered to the processor core when APIC error is detected. The 
register also provides a means of masking an APIC-error interrupt. This masking only 
prevents delivery of APIC-error interrupts; the APIC continues to record errors in the 
ESR.

10.5.4 APIC Timer
The local APIC unit contains a 32-bit programmable timer that is available to soft-
ware to time events or operations. This timer is set up by programming four regis-
ters: the divide configuration register (see Figure 10-10), the initial-count and 
current-count registers (see Figure 10-11), and the LVT timer register (see 
Figure 10-8). 

If CPUID.06H:EAX.ARAT[bit 2] = 1, the processor’s APIC timer runs at a constant 
rate regardless of P-state transitions and it continues to run at the same rate in deep 
C-states.

If CPUID.06H:EAX.ARAT[bit 2] = 0 or if CPUID 06H is not supported, the APIC timer 
may temporarily stop while the processor is in deep C-states or during transitions 
caused by Enhanced Intel SpeedStep® Technology.

The time base for the timer is derived from the processor’s bus clock, divided by the 
value specified in the divide configuration register.
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The timer can be configured through the timer LVT entry for one-shot or periodic 
operation. In one-shot mode, the timer is started by programming its initial-count 
register. The initial count value is then copied into the current-count register and 
count-down begins. After the timer reaches zero, an timer interrupt is generated and 
the timer remains at its 0 value until reprogrammed. 

In periodic mode, the current-count register is automatically reloaded from the 
initial-count register when the count reaches 0 and a timer interrupt is generated, 
and the count-down is repeated. If during the count-down process the initial-count 
register is set, counting will restart, using the new initial-count value. The initial-
count register is a read-write register; the current-count register is read only.

A write of 0 to the initial-count register effectively stops the local APIC timer, in both 
one-shot and periodic mode.

The LVT timer register determines the vector number that is delivered to the 
processor with the timer interrupt that is generated when the timer count reaches 
zero. The mask flag in the LVT timer register can be used to mask the timer interrupt.

Figure 10-10.  Divide Configuration Register

 

Figure 10-11.  Initial Count and Current Count Registers

Address: FEE0 03E0H
Value after reset: 0H

0

Divide Value (bits 0, 1 and 3)
000: Divide by 2
001: Divide by 4
010: Divide by 8
011: Divide by 16
100: Divide by 32
101: Divide by 64
110: Divide by 128
111: Divide by 1

31 0

Reserved

1234

31 0

Initial Count

Address: Initial Count

Value after reset: 0H

Current Count

Current Count FEE0 0390H
FEE0 0380H
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10.5.4.1  TSC-Deadline Mode
The mode of operation of the local-APIC timer is determined by the LVT Timer 
Register. Specifically, if CPUID.01H:ECX.TSC_Deadline[bit 24] = 0, the mode is 
determined by bit 17 of the register; if CPUID.01H:ECX.TSC_Deadline[bit 24] = 1, 
the mode is determined by bits 18:17. See Figure 10-8. (If 
CPUID.01H:ECX.TSC_Deadline[bit 24] = 0, bit 18 of the register is reserved.) A write 
to the LVT Timer Register that changes the timer mode disarms the local APIC timer. 
The supported timer modes are given in Table 10-2. The three modes of the local 
APIC timer are mutually exclusive.

The TSC-deadline mode allows software to use local APIC timer to single interrupt at 
an absolute time. In TSC-deadline mode, writes to the initial-count register are 
ignored; and current-count register always reads 0. Instead, timer behavior is 
controlled using the IA32_TSC_DEADLINE MSR.

The IA32_TSC_DEADLINE MSR (MSR address 6E0H) is a per-logical processor MSR 
that specifies the time at which a timer interrupt should occur. Writing a non-zero 64-
bit value into IA32_TSC_DEADLINE arms the timer. An interrupt is generated when 
the logical processor’s time-stamp counter equals or exceeds the target value in the 
IA32_TSC_DEADLINE MSR.2 When the timer generates an interrupt, it disarms itself 
and clears the IA32_TSC_DEADLINE MSR. Thus, each write to the 
IA32_TSC_DEADLINE MSR generates at most one timer interrupt.

In TSC-deadline mode, writing 0 to the IA32_TSC_DEADLINE MSR disarms the local-
APIC timer. Transitioning between TSC-deadline mode and other timer modes also 
disarms the timer.

The hardware reset value of the IA32_TSC_DEADLINE MSR is 0. In other timer 
modes (LVT bit 18 = 0), the IA32_TSC_DEADLINE MSR reads zero and writes are 
ignored.

Table 10-2. Local APIC Timer Modes

LVT Bits [18:17] Timer Mode

00b One-shot mode, program count-down value in an initial-count 
register. See Section 10.5.4

01b Periodic mode, program interval value in an initial-count register. See 
Section 10.5.4

10b TSC-Deadline mode, program target value in IA32_TSC_DEADLINE 
MSR.

11b Reserved

2. If the logical processor is in VMX non-root operation, a read of the time-stamp counter (using 
either RDMSR, RDTSC, or RDTSCP) may not return the actual value of the time-stamp counter; 
see Chapter 25 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
3C. It is the responsibility of software operating in VMX root operation to coordinate the virtual-
ization of the time-stamp counter and the IA32_TSC_DEADLINE MSR.
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Software can configure the TSC-deadline timer to deliver a single interrupt using the 
following algorithm:

1. Detect support for TSC-deadline mode by verifying CPUID.1:ECX.24 = 1.

2. Select the TSC-deadline mode by programming bits 18:17 of the LVT Timer 
register with 10b.

3. Program the IA32_TSC_DEADLINE MSR with the target TSC value at which the 
timer interrupt is desired. This causes the processor to arm the timer.

4. The processor generates a timer interrupt when the value of time-stamp counter 
is greater than or equal to that of IA32_TSC_DEADLINE. It then disarms the 
timer and clear the IA32_TSC_DEADLINE MSR. (Both the time-stamp counter 
and the IA32_TSC_DEADLINE MSR are 64-bit unsigned integers.)

5. Software can re-arm the timer by repeating step 3.

The following are usage guidelines for TSC-deadline mode:
• Writes to the IA32_TSC_DEADLINE MSR are not serialized. Therefore, system 

software should not use WRMSR to the IA32_TSC_DEADLINE MSR as a serializing 
instruction. Read and write accesses to the IA32_TSC_DEADLINE and other MSR 
registers will occur in program order. 

• Software can disarm the timer at any time by writing 0 to the 
IA32_TSC_DEADLINE MSR. 

• If timer is armed, software can change the deadline (forward or backward) by 
writing a new value to the IA32_TSC_DEADLINE MSR.

• If software disarms the timer or postpones the deadline, race conditions may 
result in the delivery of a spurious timer interrupt. Software is expected to detect 
such spurious interrupts by checking the current value of the time-stamp counter 
to confirm that the interrupt was desired.3

• In xAPIC mode (in which the local-APIC registers are memory-mapped), software 
must serialize between the memory-mapped write to the LVT entry and the 
WRMSR to IA32_TSC_DEADLINE. In x2APIC mode, no serialization is required 
between the two writes (by WRMSR) to the LVT and IA32_TSC_DEADLINE MSRs.

The following is a sample algorithm for serializing writes in xAPIC mode:

1. Memory-mapped write to LVT Timer Register, setting bits 18:17 to 10b.

2. WRMSR to the IA32_TSC_DEADLINE MSR a value much larger than current time-
stamp counter.

3. If RDMSR of the IA32_TSC_DEADLINE MSR returns zero, go to step 2.

3. If the logical processor is in VMX non-root operation, a read of the time-stamp counter (using 
either RDMSR, RDTSC, or RDTSCP) may not return the actual value of the time-stamp counter; 
see Chapter 25 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
3C. It is the responsibility of software operating in VMX root operation to coordinate the virtual-
ization of the time-stamp counter and the IA32_TSC_DEADLINE MSR.
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4. WRMSR to the IA32_TSC_DEADLINE MSR the desired deadline. 

10.5.5 Local Interrupt Acceptance
When a local interrupt is sent to the processor core, it is subject to the acceptance 
criteria specified in the interrupt acceptance flow chart in Figure 10-17. If the inter-
rupt is accepted, it is logged into the IRR register and handled by the processor 
according to its priority (see Section 10.8.4, “Interrupt Acceptance for Fixed Inter-
rupts”). If the interrupt is not accepted, it is sent back to the local APIC and retried.

10.6 ISSUING INTERPROCESSOR INTERRUPTS
The following sections describe the local APIC facilities that are provided for issuing 
interprocessor interrupts (IPIs) from software. The primary local APIC facility for 
issuing IPIs is the interrupt command register (ICR). The ICR can be used for the 
following functions:
• To send an interrupt to another processor.
• To allow a processor to forward an interrupt that it received but did not service to 

another processor for servicing.
• To direct the processor to interrupt itself (perform a self interrupt).
• To deliver special IPIs, such as the start-up IPI (SIPI) message, to other 

processors. 

Interrupts generated with this facility are delivered to the other processors in the 
system through the system bus (for Pentium 4 and Intel Xeon processors) or the 
APIC bus (for P6 family and Pentium processors). The ability for a processor to send 
a lowest priority IPI is model specific and should be avoided by BIOS and operating 
system software.

10.6.1 Interrupt Command Register (ICR)
The interrupt command register (ICR) is a 64-bit4 local APIC register (see 
Figure 10-12) that allows software running on the processor to specify and send 
interprocessor interrupts (IPIs) to other processors in the system.

To send an IPI, software must set up the ICR to indicate the type of IPI message to 
be sent and the destination processor or processors. (All fields of the ICR are read-
write by software with the exception of the delivery status field, which is read-only.) 
The act of writing to the low doubleword of the ICR causes the IPI to be sent.

4. In XAPIC mode the ICR is addressed as two 32-bit registers, ICR_LOW (FFE0 0300H) and 
ICR_HIGH (FFE0 0310H).
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The ICR consists of the following fields. 
Vector The vector number of the interrupt being sent.
Delivery Mode Specifies the type of IPI to be sent. This field is also know as the 

IPI message type field.

000 (Fixed) Delivers the interrupt specified in the vector 
field to the target processor or processors.

001 (Lowest Priority)
Same as fixed mode, except that the inter-
rupt is delivered to the processor executing 
at the lowest priority among the set of pro-
cessors specified in the destination field. The 

Figure 10-12.  Interrupt Command Register (ICR)
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 NOTE:
1. The ability of a processor to send Lowest Priority IPI is model specific.
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ability for a processor to send a lowest prior-
ity IPI is model specific and should be avoid-
ed by BIOS and operating system software.

010 (SMI) Delivers an SMI interrupt to the target pro-
cessor or processors. The vector field must 
be programmed to 00H for future compati-
bility.

011 (Reserved)

100 (NMI) Delivers an NMI interrupt to the target pro-
cessor or processors. The vector information 
is ignored. 

101 (INIT) Delivers an INIT request to the target pro-
cessor or processors, which causes them to 
perform an INIT. As a result of this IPI mes-
sage, all the target processors perform an 
INIT. The vector field must be programmed 
to 00H for future compatibility.

101 (INIT Level De-assert)
(Not supported in the Pentium 4 and Intel 
Xeon processors.) Sends a synchronization 
message to all the local APICs in the system 
to set their arbitration IDs (stored in their 
Arb ID registers) to the values of their APIC 
IDs (see Section 10.7, “System and APIC 
Bus Arbitration”). For this delivery mode, 
the level flag must be set to 0 and trigger 
mode flag to 1. This IPI is sent to all proces-
sors, regardless of the value in the destina-
tion field or the destination shorthand field; 
however, software should specify the “all in-
cluding self” shorthand. 

110 (Start-Up)
Sends a special “start-up” IPI (called a SIPI) 
to the target processor or processors. The 
vector typically points to a start-up routine 
that is part of the BIOS boot-strap code (see 
Section 8.4, “Multiple-Processor (MP) Initial-
ization”). IPIs sent with this delivery mode 
are not automatically retried if the source 
APIC is unable to deliver it. It is up to the 
software to determine if the SIPI was not 
successfully delivered and to reissue the 
SIPI if necessary.
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Destination Mode Selects either physical (0) or logical (1) destination mode (see 
Section 10.6.2, “Determining IPI Destination”).

Delivery Status (Read Only)
Indicates the IPI delivery status, as follows:

0 (Idle) Indicates that this local APIC has completed 
sending any previous IPIs.

1 (Send Pending)
Indicates that this local APIC has not com-
pleted sending the last IPI.

Level For the INIT level de-assert delivery mode this flag must be set 
to 0; for all other delivery modes it must be set to 1. (This flag 
has no meaning in Pentium 4 and Intel Xeon processors, and will 
always be issued as a 1.)

Trigger Mode Selects the trigger mode when using the INIT level de-assert 
delivery mode: edge (0) or level (1). It is ignored for all other 
delivery modes. (This flag has no meaning in Pentium 4 and 
Intel Xeon processors, and will always be issued as a 0.) 

Destination Shorthand
Indicates whether a shorthand notation is used to specify the 
destination of the interrupt and, if so, which shorthand is used. 
Destination shorthands are used in place of the 8-bit destination 
field, and can be sent by software using a single write to the low 
doubleword of the ICR. Shorthands are defined for the following 
cases: software self interrupt, IPIs to all processors in the 
system including the sender, IPIs to all processors in the system 
excluding the sender.

00: (No Shorthand)
The destination is specified in the destination 
field.

01: (Self) The issuing APIC is the one and only destina-
tion of the IPI. This destination shorthand al-
lows software to interrupt the processor on 
which it is executing. An APIC implementa-
tion is free to deliver the self-interrupt mes-
sage internally or to issue the message to 
the bus and “snoop” it as with any other IPI 
message.

10: (All Including Self)
The IPI is sent to all processors in the system 
including the processor sending the IPI. The 
APIC will broadcast an IPI message with the 
destination field set to FH for Pentium and P6 
family processors and to FFH for Pentium 4 
and Intel Xeon processors.
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11: (All Excluding Self)
The IPI is sent to all processors in a system 
with the exception of the processor sending 
the IPI. The APIC broadcasts a message with 
the physical destination mode and destina-
tion field set to 0xFH for Pentium and P6 
family processors and to 0xFFH for Pentium 
4 and Intel Xeon processors. Support for this 
destination shorthand in conjunction with 
the lowest-priority delivery mode is model 
specific. For Pentium 4 and Intel Xeon pro-
cessors, when this shorthand is used togeth-
er with lowest priority delivery mode, the IPI 
may be redirected back to the issuing pro-
cessor.

Destination Specifies the target processor or processors. This field is only 
used when the destination shorthand field is set to 00B. If the 
destination mode is set to physical, then bits 56 through 59 
contain the APIC ID of the target processor for Pentium and P6 
family processors and bits 56 through 63 contain the APIC ID of 
the target processor the for Pentium 4 and Intel Xeon proces-
sors. If the destination mode is set to logical, the interpretation 
of the 8-bit destination field depends on the settings of the DFR 
and LDR registers of the local APICs in all the processors in the 
system (see Section 10.6.2, “Determining IPI Destination”).

Not all combinations of options for the ICR are valid. Table 10-3 shows the valid 
combinations for the fields in the ICR for the Pentium 4 and Intel Xeon processors; 
Table 10-4 shows the valid combinations for the fields in the ICR for the P6 family 
processors. Also note that the lower half of the ICR may not be preserved over tran-
sitions to the deepest C-States.

ICR operation in x2APIC mode is discussed in Section 10.12.9.

Table 10-3 Valid Combinations for the Pentium 4 and Intel Xeon Processors’ 
Local xAPIC Interrupt Command Register

Destination 
Shorthand

Valid/
Invalid

Trigger 
Mode Delivery Mode

Destination 
Mode

No Shorthand Valid Edge All Modes1 Physical or Logical

No Shorthand Invalid2 Level All Modes Physical or Logical

Self Valid Edge Fixed X3

Self Invalid2 Level Fixed X

Self Invalid X Lowest Priority, NMI, INIT, SMI, Start-
Up

X

All Including Self Valid Edge Fixed X
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All Including Self Invalid2 Level Fixed X

All Including Self Invalid X Lowest Priority, NMI, INIT, SMI, Start-
Up

X

All Excluding 
Self

Valid Edge Fixed, Lowest Priority1,4, NMI, INIT, 
SMI, Start-Up

X

All Excluding 
Self

Invalid2 Level FIxed, Lowest Priority4, NMI, INIT, 
SMI, Start-Up

X

NOTES:
1. The ability of a processor to send a lowest priority IPI is model specific.
2. For these interrupts, if the trigger mode bit is 1 (Level), the local xAPIC will override the bit set-

ting and issue the interrupt as an edge triggered interrupt.
3. X means the setting is ignored.
4. When using the “lowest priority” delivery mode and the “all excluding self” destination, the IPI 

can be redirected back to the issuing APIC, which is essentially the same as the “all including 
self” destination mode.

Table 10-4 Valid Combinations for the P6 Family Processors’
Local APIC Interrupt Command Register

Destination 
Shorthand

Valid/
Invalid

Trigger 
Mode Delivery Mode Destination Mode

No Shorthand Valid Edge All Modes1 Physical or Logical

No Shorthand Valid2 Level Fixed, Lowest Priority1, NMI Physical or Logical

No Shorthand Valid3 Level INIT Physical or Logical

Self Valid Edge Fixed X4

Self 1 Level Fixed X

Self Invalid5 X Lowest Priority, NMI, INIT, 
SMI, Start-Up

X

All including Self Valid Edge Fixed X

All including Self Valid2 Level Fixed X

All including Self Invalid5 X Lowest Priority, NMI, INIT, 
SMI, Start-Up

X

All excluding Self Valid Edge All Modes1 X

All excluding Self Valid2 Level Fixed, Lowest Priority1, NMI X

All excluding Self Invalid5 Level SMI, Start-Up X

Table 10-3 Valid Combinations for the Pentium 4 and Intel Xeon Processors’ 
Local xAPIC Interrupt Command Register (Contd.)

Destination 
Shorthand

Valid/
Invalid

Trigger 
Mode Delivery Mode

Destination 
Mode
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10.6.2 Determining IPI Destination
The destination of an IPI can be one, all, or a subset (group) of the processors on the 
system bus. The sender of the IPI specifies the destination of an IPI with the 
following APIC registers and fields within the registers:
• ICR Register — The following fields in the ICR register are used to specify the 

destination of an IPI:

— Destination Mode — Selects one of two destination modes (physical or 
logical).

— Destination Field — In physical destination mode, used to specify the APIC 
ID of the destination processor; in logical destination mode, used to specify a 
message destination address (MDA) that can be used to select specific 
processors in clusters.

— Destination Shorthand — A quick method of specifying all processors, all 
excluding self, or self as the destination.

— Delivery mode, Lowest Priority — Architecturally specifies that a lowest-
priority arbitration mechanism be used to select a destination processor from 
a specified group of processors. The ability of a processor to send a lowest 
priority IPI is model specific and should be avoided by BIOS and operating 
system software.

• Local destination register (LDR) — Used in conjunction with the logical 
destination mode and MDAs to select the destination processors.

• Destination format register (DFR) — Used in conjunction with the logical 
destination mode and MDAs to select the destination processors.

All excluding Self Valid3 Level INIT X

X Invalid5 Level SMI, Start-Up X

NOTES:
1. The ability of a processor to send a lowest priority IPI is model specific.
2. Treated as edge triggered if level bit is set to 1, otherwise ignored.
3. Treated as edge triggered when Level bit is set to 1; treated as “INIT Level Deassert” message 

when level bit is set to 0 (deassert). Only INIT level deassert messages are allowed to have the 
level bit set to 0. For all other messages the level bit must be set to 1.

4. X means the setting is ignored.
5. The behavior of the APIC is undefined.

Table 10-4 Valid Combinations for the P6 Family Processors’
Local APIC Interrupt Command Register (Contd.)

Destination 
Shorthand

Valid/
Invalid

Trigger 
Mode Delivery Mode Destination Mode
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How the ICR, LDR, and DFR are used to select an IPI destination depends on the 
destination mode used: physical, logical, broadcast/self, or lowest-priority delivery 
mode. These destination modes are described in the following sections.

Determination of IPI destinations in x2APIC mode is discussed in Section 10.12.10.

10.6.2.1  Physical Destination Mode
In physical destination mode, the destination processor is specified by its local APIC 
ID (see Section 10.4.6, “Local APIC ID”). For Pentium 4 and Intel Xeon processors, 
either a single destination (local APIC IDs 00H through FEH) or a broadcast to all 
APICs (the APIC ID is FFH) may be specified in physical destination mode. 

A broadcast IPI (bits 28-31 of the MDA are 1's) or I/O subsystem initiated interrupt 
with lowest priority delivery mode is not supported in physical destination mode and 
must not be configured by software. Also, for any non-broadcast IPI or I/O 
subsystem initiated interrupt with lowest priority delivery mode, software must 
ensure that APICs defined in the interrupt address are present and enabled to receive 
interrupts. 

For the P6 family and Pentium processors, a single destination is specified in physical 
destination mode with a local APIC ID of 0H through 0EH, allowing up to 15 local 
APICs to be addressed on the APIC bus. A broadcast to all local APICs is specified with 
0FH.

NOTE
The number of local APICs that can be addressed on the system bus 
may be restricted by hardware.

10.6.2.2  Logical Destination Mode
In logical destination mode, IPI destination is specified using an 8-bit message desti-
nation address (MDA), which is entered in the destination field of the ICR. Upon 
receiving an IPI message that was sent using logical destination mode, a local APIC 
compares the MDA in the message with the values in its LDR and DFR to determine if 
it should accept and handle the IPI. For both configurations of logical destination 
mode, when combined with lowest priority delivery mode, software is responsible for 
ensuring that all of the local APICs included in or addressed by the IPI or I/O 
subsystem interrupt are present and enabled to receive the interrupt.

Figure 10-13 shows the layout of the logical destination register (LDR). The 8-bit 
logical APIC ID field in this register is used to create an identifier that can be 
compared with the MDA.

NOTE
The logical APIC ID should not be confused with the local APIC ID that 
is contained in the local APIC ID register.
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Figure 10-14 shows the layout of the destination format register (DFR). The 4-bit 
model field in this register selects one of two models (flat or cluster) that can be used 
to interpret the MDA when using logical destination mode.

The interpretation of MDA for the two models is described in the following para-
graphs.

1. Flat Model — This model is selected by programming DFR bits 28 through 31 to 
1111. Here, a unique logical APIC ID can be established for up to 8 local APICs by 
setting a different bit in the logical APIC ID field of the LDR for each local APIC. A 
group of local APICs can then be selected by setting one or more bits in the MDA. 
Each local APIC performs a bit-wise AND of the MDA and its logical APIC ID. If a 
true condition is detected, the local APIC accepts the IPI message. A broadcast to 
all APICs is achieved by setting the MDA to 1s.

2. Cluster Model — This model is selected by programming DFR bits 28 through 31 
to 0000. This model supports two basic destination schemes: flat cluster and 
hierarchical cluster.
The flat cluster destination model is only supported for P6 family and Pentium 
processors. Using this model, all APICs are assumed to be connected through the 
APIC bus. Bits 60 through 63 of the MDA contains the encoded address of the 
destination cluster and bits 56 through 59 identify up to four local APICs within 
the cluster (each bit is assigned to one local APIC in the cluster, as in the flat 
connection model). To identify one or more local APICs, bits 60 through 63 of the 

Figure 10-13.  Logical Destination Register (LDR)

Figure 10-14.  Destination Format Register (DFR)

31 02324
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Address: 0FEE0 00D0H
Value after reset: 0000 0000H

31 0

Model

28

Reserved (All 1s)

Address: 0FEE0 00E0H
Value after reset: FFFF FFFFH

Flat model: 1111B
Cluster model: 0000B
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MDA are compared with bits 28 through 31 of the LDR to determine if a local APIC 
is part of the cluster. Bits 56 through 59 of the MDA are compared with Bits 24 
through 27 of the LDR to identify a local APICs within the cluster. 
Sets of processors within a cluster can be specified by writing the target cluster 
address in bits 60 through 63 of the MDA and setting selected bits in bits 56 
through 59 of the MDA, corresponding to the chosen members of the cluster. In 
this mode, 15 clusters (with cluster addresses of 0 through 14) each having 4 
local APICs can be specified in the message. For the P6 and Pentium processor’s 
local APICs, however, the APIC arbitration ID supports only 15 APIC agents. 
Therefore, the total number of processors and their local APICs supported in 
this mode is limited to 15. Broadcast to all local APICs is achieved by setting all 
destination bits to one. This guarantees a match on all clusters and selects all 
APICs in each cluster. A broadcast IPI or I/O subsystem broadcast interrupt with 
lowest priority delivery mode is not supported in cluster mode and must not be 
configured by software.
The hierarchical cluster destination model can be used with Pentium 4, Intel 
Xeon, P6 family, or Pentium processors. With this model, a hierarchical network 
can be created by connecting different flat clusters via independent system or 
APIC buses. This scheme requires a cluster manager within each cluster, which is 
responsible for handling message passing between system or APIC buses. One 
cluster contains up to 4 agents. Thus 15 cluster managers, each with 4 agents, 
can form a network of up to 60 APIC agents. Note that hierarchical APIC networks 
requires a special cluster manager device, which is not part of the local or the I/O 
APIC units.

NOTES
All processors that have their APIC software enabled (using the 
spurious vector enable/disable bit) must have their DFRs (Desti-
nation Format Registers) programmed identically.
The default mode for DFR is flat mode. If you are using cluster mode, 
DFRs must be programmed before the APIC is software enabled. 
Since some chipsets do not accurately track a system view of the 
logical mode, program DFRs as soon as possible after starting the 
processor.

10.6.2.3  Broadcast/Self Delivery Mode
The destination shorthand field of the ICR allows the delivery mode to be by-passed 
in favor of broadcasting the IPI to all the processors on the system bus and/or back 
to itself (see Section 10.6.1, “Interrupt Command Register (ICR)”). Three destina-
tion shorthands are supported: self, all excluding self, and all including self. The 
destination mode is ignored when a destination shorthand is used.
Vol. 3A 10-35



ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
10.6.2.4  Lowest Priority Delivery Mode
With lowest priority delivery mode, the ICR is programmed to send an IPI to several 
processors on the system bus, using the logical or shorthand destination mechanism 
for selecting the processor. The selected processors then arbitrate with one another 
over the system bus or the APIC bus, with the lowest-priority processor accepting the 
IPI. 

For systems based on the Intel Xeon processor, the chipset bus controller accepts 
messages from the I/O APIC agents in the system and directs interrupts to the 
processors on the system bus. When using the lowest priority delivery mode, the 
chipset chooses a target processor to receive the interrupt out of the set of possible 
targets. The Pentium 4 processor provides a special bus cycle on the system bus that 
informs the chipset of the current task priority for each logical processor in the 
system. The chipset saves this information and uses it to choose the lowest priority 
processor when an interrupt is received.

For systems based on P6 family processors, the processor priority used in lowest-
priority arbitration is contained in the arbitration priority register (APR) in each local 
APIC. Figure 10-15 shows the layout of the APR. 

The APR value is computed as follows:

IF (TPR[7:4] ≥ IRRV[7:4]) AND (TPR[7:4] > ISRV[7:4]) 
THEN 

APR[7:0] ← TPR[7:0]
ELSE 

APR[7:4] ← max(TPR[7:4] AND ISRV[7:4], IRRV[7:4])
APR[3:0] ← 0.

Here, the TPR value is the task priority value in the TPR (see Figure 10-18), the IRRV 
value is the vector number for the highest priority bit that is set in the IRR (see 
Figure 10-20) or 00H (if no IRR bit is set), and the ISRV value is the vector number 
for the highest priority bit that is set in the ISR (see Figure 10-20). Following arbitra-
tion among the destination processors, the processor with the lowest value in its APR 
handles the IPI and the other processors ignore it.

 

Figure 10-15.  Arbitration Priority Register (APR)
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(P6 family and Pentium processors.) For these processors, if a focus processor 
exists, it may accept the interrupt, regardless of its priority. A processor is said to be 
the focus of an interrupt if it is currently servicing that interrupt or if it has a pending 
request for that interrupt. For Intel Xeon processors, the concept of a focus processor 
is not supported.

In operating systems that use the lowest priority delivery mode but do not update 
the TPR, the TPR information saved in the chipset will potentially cause the interrupt 
to be always delivered to the same processor from the logical set. This behavior is 
functionally backward compatible with the P6 family processor but may result in 
unexpected performance implications.

10.6.3 IPI Delivery and Acceptance
When the low double-word of the ICR is written to, the local APIC creates an IPI 
message from the information contained in the ICR and sends the message out on 
the system bus (Pentium 4 and Intel Xeon processors) or the APIC bus (P6 family and 
Pentium processors). The manner in which these IPIs are handled after being issues 
in described in Section 10.8, “Handling Interrupts.”

10.7 SYSTEM AND APIC BUS ARBITRATION
When several local APICs and the I/O APIC are sending IPI and interrupt messages 
on the system bus (or APIC bus), the order in which the messages are sent and 
handled is determined through bus arbitration. 

For the Pentium 4 and Intel Xeon processors, the local and I/O APICs use the arbitra-
tion mechanism defined for the system bus to determine the order in which IPIs are 
handled. This mechanism is non-architectural and cannot be controlled by software.

For the P6 family and Pentium processors, the local and I/O APICs use an APIC-based 
arbitration mechanism to determine the order in which IPIs are handled. Here, each 
local APIC is given an arbitration priority of from 0 to 15, which the I/O APIC uses 
during arbitration to determine which local APIC should be given access to the APIC 
bus. The local APIC with the highest arbitration priority always wins bus access. Upon 
completion of an arbitration round, the winning local APIC lowers its arbitration 
priority to 0 and the losing local APICs each raise theirs by 1.

The current arbitration priority for a local APIC is stored in a 4-bit, software-trans-
parent arbitration ID (Arb ID) register. During reset, this register is initialized to the 
APIC ID number (stored in the local APIC ID register). The INIT level-deassert IPI, 
which is issued with and ICR command, can be used to resynchronize the arbitration 
priorities of the local APICs by resetting Arb ID register of each agent to its current 
APIC ID value. (The Pentium 4 and Intel Xeon processors do not implement the Arb 
ID register.)

Section 10.10, “APIC Bus Message Passing Mechanism and Protocol (P6 Family, 
Pentium Processors),” describes the APIC bus arbitration protocols and bus message 
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formats, while Section 10.6.1, “Interrupt Command Register (ICR),” describes the 
INIT level de-assert IPI message. 

Note that except for the SIPI IPI (see Section 10.6.1, “Interrupt Command Register 
(ICR)”), all bus messages that fail to be delivered to their specified destination or 
destinations are automatically retried. Software should avoid situations in which IPIs 
are sent to disabled or nonexistent local APICs, causing the messages to be resent 
repeatedly.

10.8 HANDLING INTERRUPTS
When a local APIC receives an interrupt from a local source, an interrupt message 
from an I/O APIC, or and IPI, the manner in which it handles the message depends 
on processor implementation, as described in the following sections.

10.8.1 Interrupt Handling with the Pentium 4 and Intel Xeon 
Processors

With the Pentium 4 and Intel Xeon processors, the local APIC handles the local inter-
rupts, interrupt messages, and IPIs it receives as follows: 

1. It determines if it is the specified destination or not (see Figure 10-16). If it is the 
specified destination, it accepts the message; if it is not, it discards the message.

2. If the local APIC determines that it is the designated destination for the interrupt 
and if the interrupt request is an NMI, SMI, INIT, ExtINT, or SIPI, the interrupt is 
sent directly to the processor core for handling.

3. If the local APIC determines that it is the designated destination for the interrupt 
but the interrupt request is not one of the interrupts given in step 2, the local 
APIC sets the appropriate bit in the IRR. 

4. When interrupts are pending in the IRR register, the local APIC dispatches them 
to the processor one at a time, based on their priority and the current processor 
priority in the PPR (see Section 10.8.3.1, “Task and Processor Priorities”).

Figure 10-16.  Interrupt Acceptance Flow Chart for the Local APIC (Pentium 4 and 
Intel Xeon Processors)

Wait to Receive 
Bus Message

Belong to 
Destination?Discard 

Message

No Accept 
Message

Yes
10-38 Vol. 3A



ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
5. When a fixed interrupt has been dispatched to the processor core for handling, 
the completion of the handler routine is indicated with an instruction in the 
instruction handler code that writes to the end-of-interrupt (EOI) register in the 
local APIC (see Section 10.8.5, “Signaling Interrupt Servicing Completion”). The 
act of writing to the EOI register causes the local APIC to delete the interrupt 
from its ISR queue and (for level-triggered interrupts) send a message on the 
bus indicating that the interrupt handling has been completed. (A write to the EOI 
register must not be included in the handler routine for an NMI, SMI, INIT, 
ExtINT, or SIPI.)

10.8.2 Interrupt Handling with the P6 Family and Pentium 
Processors

With the P6 family and Pentium processors, the local APIC handles the local inter-
rupts, interrupt messages, and IPIs it receives as follows (see Figure 10-17).

1. (IPIs only) It examines the IPI message to determines if it is the specified 
destination for the IPI as described in Section 10.6.2, “Determining IPI Desti-
nation.” If it is the specified destination, it continues its acceptance procedure; if 
it is not the destination, it discards the IPI message. When the message specifies 
lowest-priority delivery mode, the local APIC will arbitrate with the other 
processors that were designated on recipients of the IPI message (see Section 
10.6.2.4, “Lowest Priority Delivery Mode”).

2. If the local APIC determines that it is the designated destination for the interrupt 
and if the interrupt request is an NMI, SMI, INIT, ExtINT, or INIT-deassert 
interrupt, or one of the MP protocol IPI messages (BIPI, FIPI, and SIPI), the 
interrupt is sent directly to the processor core for handling.

3. If the local APIC determines that it is the designated destination for the interrupt 
but the interrupt request is not one of the interrupts given in step 2, the local 
APIC looks for an open slot in one of its two pending interrupt queues contained 
in the IRR and ISR registers (see Figure 10-20). If a slot is available (see Section 
10.8.4, “Interrupt Acceptance for Fixed Interrupts”), places the interrupt in the 
slot. If a slot is not available, it rejects the interrupt request and sends it back to 
the sender with a retry message.

4. When interrupts are pending in the IRR register, the local APIC dispatches them 
to the processor one at a time, based on their priority and the current processor 
priority in the PPR (see Section 10.8.3.1, “Task and Processor Priorities”).

5. When a fixed interrupt has been dispatched to the processor core for handling, 
the completion of the handler routine is indicated with an instruction in the 
instruction handler code that writes to the end-of-interrupt (EOI) register in the 
local APIC (see Section 10.8.5, “Signaling Interrupt Servicing Completion”). The 
act of writing to the EOI register causes the local APIC to delete the interrupt 
from its queue and (for level-triggered interrupts) send a message on the bus 
indicating that the interrupt handling has been completed. (A write to the EOI 
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register must not be included in the handler routine for an NMI, SMI, INIT, 
ExtINT, or SIPI.)

The following sections describe the acceptance of interrupts and their handling by the 
local APIC and processor in greater detail. 

10.8.3 Interrupt, Task, and Processor Priority
Each interrupt delivered to the processor through the local APIC has a priority based 
on its vector number. The local APIC uses this priority to determine when to service 

Figure 10-17.  Interrupt Acceptance Flow Chart for the Local APIC (P6 Family and 
Pentium Processors)
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the interrupt relative to the other activities of the processor, including the servicing of 
other interrupts. 

Each interrupt vector is an 8-bit value. The interrupt-priority class is the value of 
bits 7:4 of the interrupt vector. The lowest interrupt-priority class is 1 and the highest 
is 15; interrupts with vectors in the range 0–15 (with interrupt-priority class 0) are 
illegal and are never delivered. Because vectors 0–31 are reserved for dedicated 
uses by the Intel 64 and IA-32 architectures, software should configure interrupt 
vectors to use interrupt-priority classes in the range 2–15.

Each interrupt-priority class encompasses 16 vectors. The relative priority of inter-
rupts within an interrupt-priority class is determined by the value of bits 3:0 of the 
vector number. The higher the value of those bits, the higher the priority within that 
interrupt-priority class. Thus, each interrupt vector comprises two parts, with the 
high 4 bits indicating its interrupt-priority class and the low 4 bits indicating its 
ranking within the interrupt-priority class.

10.8.3.1  Task and Processor Priorities
The local APIC also defines a task priority and a processor priority that determine 
the order in which interrupts are handled. The task-priority class is the value of 
bits 7:4 of the task-priority register (TPR), which can be written by software (TPR is 
a read/write register); see Figure 10-18. 

NOTE
In this discussion, the term “task” refers to a software defined task, 
process, thread, program, or routine that is dispatched to run on the 
processor by the operating system. It does not refer to an IA-32 
architecture defined task as described in Chapter 7, “Task 
Management.”

The task priority allows software to set a priority threshold for interrupting the 
processor. This mechanism enables the operating system to temporarily block low 
priority interrupts from disturbing high-priority work that the processor is doing. The 
ability to block such interrupts using task priority results from the way that the TPR 
controls the value of the processor-priority register (PPR).5

 

Figure 10-18.  Task-Priority Register (TPR)
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The processor-priority class is a value in the range 0–15 that is maintained in 
bits 7:4 of the processor-priority register (PPR); see Figure 10-19. The PPR is a read-
only register. The processor-priority class represents the current priority at which the 
processor is executing.

The value of the PPR is based on the value of TPR and the value ISRV; ISRV is the 
vector number of the highest priority bit that is set in the ISR or 00H if no bit is set in 
the ISR. (See Section 10.8.4 for more details on the ISR.) The value of PPR is deter-
mined as follows:
• PPR[7:4] (the processor-priority class) the maximum of TPR[7:4] (the task- 

priority class) and ISRV[7:4] (the priority of the highest priority interrupt in 
service).

• PPR[3:0] (the processor-priority sub-class) is determined as follows:

— If TPR[7:4] > ISRV[7:4], PPR[3:0] is TPR[3:0] (the task-priority sub-class).

— If TPR[7:4] < ISRV[7:4], PPR[3:0] is 0.

— If TPR[7:4] = ISRV[7:4], PPR[3:0] may be either TPR[3:0] or 0. The actual 
behavior is model-specific.

The processor-priority class determines the priority threshold for interrupting the 
processor. The processor will deliver only those interrupts that have an interrupt-
priority class higher than the processor-priority class in the PPR. If the processor-
priority class is 0, the PPR does not inhibit the delivery any interrupt; if it is 15, the 
processor inhibits the delivery of all interrupts. (The processor-priority mechanism 
does not affect the delivery of interrupts with the NMI, SMI, INIT, ExtINT, INIT-deas-
sert, and start-up delivery modes.)

The processor does not use the processor-priority sub-class to determine which 
interrupts to delivery and which to inhibit. (The processor uses the processor-priority 
sub-class only to satisfy reads of the PPR.)

5. The TPR also determines the arbitration priority of the local processor; see Section 10.6.2.4, 
“Lowest Priority Delivery Mode.”

 

Figure 10-19.  Processor-Priority Register (PPR)
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10.8.4 Interrupt Acceptance for Fixed Interrupts
The local APIC queues the fixed interrupts that it accepts in one of two interrupt 
pending registers: the interrupt request register (IRR) or in-service register (ISR). 
These two 256-bit read-only registers are shown in Figure 10-20. The 256 bits in 
these registers represent the 256 possible vectors; vectors 0 through 15 are 
reserved by the APIC (see also: Section 10.5.2, “Valid Interrupt Vectors”).

NOTE
All interrupts with an NMI, SMI, INIT, ExtINT, start-up, or INIT-
deassert delivery mode bypass the IRR and ISR registers and are 
sent directly to the processor core for servicing.

The IRR contains the active interrupt requests that have been accepted, but not yet 
dispatched to the processor for servicing. When the local APIC accepts an interrupt, 
it sets the bit in the IRR that corresponds the vector of the accepted interrupt. When 
the processor core is ready to handle the next interrupt, the local APIC clears the 
highest priority IRR bit that is set and sets the corresponding ISR bit. The vector for 
the highest priority bit set in the ISR is then dispatched to the processor core for 
servicing. 

While the processor is servicing the highest priority interrupt, the local APIC can send 
additional fixed interrupts by setting bits in the IRR. When the interrupt service 
routine issues a write to the EOI register (see Section 10.8.5, “Signaling Interrupt 
Servicing Completion”), the local APIC responds by clearing the highest priority ISR 
bit that is set. It then repeats the process of clearing the highest priority bit in the IRR 
and setting the corresponding bit in the ISR. The processor core then begins 
executing the service routing for the highest priority bit set in the ISR.

If more than one interrupt is generated with the same vector number, the local APIC 
can set the bit for the vector both in the IRR and the ISR. This means that for the 
Pentium 4 and Intel Xeon processors, the IRR and ISR can queue two interrupts for 
each interrupt vector: one in the IRR and one in the ISR. Any additional interrupts 
issued for the same interrupt vector are collapsed into the single bit in the IRR.

 

Figure 10-20.  IRR, ISR and TMR Registers
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For the P6 family and Pentium processors, the IRR and ISR registers can queue no 
more than two interrupts per interrupt vector and will reject other interrupts that are 
received within the same vector. 

If the local APIC receives an interrupt with an interrupt-priority class higher than that 
of the interrupt currently in service, and interrupts are enabled in the processor core, 
the local APIC dispatches the higher priority interrupt to the processor immediately 
(without waiting for a write to the EOI register). The currently executing interrupt 
handler is then interrupted so the higher-priority interrupt can be handled. When the 
handling of the higher-priority interrupt has been completed, the servicing of the 
interrupted interrupt is resumed.

The trigger mode register (TMR) indicates the trigger mode of the interrupt (see 
Figure 10-20). Upon acceptance of an interrupt into the IRR, the corresponding TMR 
bit is cleared for edge-triggered interrupts and set for level-triggered interrupts. If a 
TMR bit is set when an EOI cycle for its corresponding interrupt vector is generated, 
an EOI message is sent to all I/O APICs.

10.8.5 Signaling Interrupt Servicing Completion
For all interrupts except those delivered with the NMI, SMI, INIT, ExtINT, the start-
up, or INIT-Deassert delivery mode, the interrupt handler must include a write to the 
end-of-interrupt (EOI) register (see Figure 10-21). This write must occur at the end 
of the handler routine, sometime before the IRET instruction. This action indicates 
that the servicing of the current interrupt is complete and the local APIC can issue the 
next interrupt from the ISR. 

Upon receiving an EOI, the APIC clears the highest priority bit in the ISR and 
dispatches the next highest priority interrupt to the processor. If the terminated 
interrupt was a level-triggered interrupt, the local APIC also sends an end-of-inter-
rupt message to all I/O APICs. 
System software may prefer to direct EOIs to specific I/O APICs rather than having 
the local APIC send end-of-interrupt messages to all I/O APICs.

Software can inhibit the broadcast of EOI message by setting bit 12 of the Spurious 
Interrupt Vector Register (see Section 10.9). If this bit is set, a broadcast EOI is not 
generated on an EOI cycle even if the associated TMR bit indicates that the current 

Figure 10-21.  EOI Register
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interrupt was level-triggered. The default value for the bit is 0, indicating that EOI 
broadcasts are performed.

Bit 12 of the Spurious Interrupt Vector Register is reserved to 0 if the processor does 
not support suppression of EOI broadcasts. Support for EOI-broadcast suppression is 
reported in bit 24 in the Local APIC Version Register (see Section 10.4.8); the feature 
is supported if that bit is set to 1. When supported, the feature is available in both 
xAPIC mode and x2APIC mode.

System software desiring to perform directed EOIs for level-triggered interrupts 
should set bit 12 of the Spurious Interrupt Vector Register and follow each the EOI to 
the local xAPIC for a level triggered interrupt with a directed EOI to the I/O APIC 
generating the interrupt (this is done by writing to the I/O APIC’s EOI register). 
System software performing directed EOIs must retain a mapping associating level-
triggered interrupts with the I/O APICs in the system.

10.8.6 Task Priority in IA-32e Mode
In IA-32e mode, operating systems can manage the 16 interrupt-priority classes 
(see Section 10.8.3, “Interrupt, Task, and Processor Priority”) explicitly using the 
task priority register (TPR). Operating systems can use the TPR to temporarily block 
specific (low-priority) interrupts from interrupting a high-priority task. This is done 
by loading TPR with a value in which the task-priority class corresponds to the 
highest interrupt-priority class that is to be blocked. For example: 
• Loading the TPR with a task-priority class of 8 (01000B) blocks all interrupts with 

an interrupt-priority class of 8 or less while allowing all interrupts with an 
interrupt-priority class of 9 or more to be recognized.

• Loading the TPR with a task-priority class of 0 enables all external interrupts. 
• Loading the TPR with a task-priority class of 0FH (01111B) disables all external 

interrupts. 

The TPR (shown in Figure 10-18) is cleared to 0 on reset. In 64-bit mode, software 
can read and write the TPR using an alternate interface, MOV CR8 instruction. The 
new task-priority class is established when the MOV CR8 instruction completes 
execution. Software does not need to force serialization after loading the TPR using 
MOV CR8. 

Use of the MOV CRn instruction requires a privilege level of 0. Programs running at 
privilege level greater than 0 cannot read or write the TPR. An attempt to do so 
causes a general-protection exception. The TPR is abstracted from the interrupt 
controller (IC), which prioritizes and manages external interrupt delivery to the 
processor. The IC can be an external device, such as an APIC or 8259. Typically, the 
IC provides a priority mechanism similar or identical to the TPR. The IC, however, is 
considered implementation-dependent with the under-lying priority mechanisms 
subject to change. CR8, by contrast, is part of the Intel 64 architecture. Software can 
depend on this definition remaining unchanged. 
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Figure 10-22 shows the layout of CR8; only the low four bits are used. The remaining 
60 bits are reserved and must be written with zeros. Failure to do this causes a 
general-protection exception.

10.8.6.1  Interaction of Task Priorities between CR8 and APIC
The first implementation of Intel 64 architecture includes a local advanced program-
mable interrupt controller (APIC) that is similar to the APIC used with previous IA-32 
processors. Some aspects of the local APIC affect the operation of the architecturally 
defined task priority register and the programming interface using CR8.

Notable CR8 and APIC interactions are:
• The processor powers up with the local APIC enabled.
• The APIC must be enabled for CR8 to function as the TPR. Writes to CR8 are 

reflected into the APIC Task Priority Register.
• APIC.TPR[bits 7:4] = CR8[bits 3:0], APIC.TPR[bits 3:0] = 0. A read of CR8 

returns a 64-bit value which is the value of TPR[bits 7:4], zero extended to 64 
bits.

There are no ordering mechanisms between direct updates of the APIC.TPR and CR8. 
Operating software should implement either direct APIC TPR updates or CR8 style 
TPR updates but not mix them. Software can use a serializing instruction (for 
example, CPUID) to serialize updates between MOV CR8 and stores to the APIC.

10.9 SPURIOUS INTERRUPT
A special situation may occur when a processor raises its task priority to be greater 
than or equal to the level of the interrupt for which the processor INTR signal is 
currently being asserted. If at the time the INTA cycle is issued, the interrupt that 
was to be dispensed has become masked (programmed by software), the local APIC 
will deliver a spurious-interrupt vector. Dispensing the spurious-interrupt vector does 
not affect the ISR, so the handler for this vector should return without an EOI.

The vector number for the spurious-interrupt vector is specified in the spurious-inter-
rupt vector register (see Figure 10-23). The functions of the fields in this register are 
as follows:

Figure 10-22.  CR8 Register
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Spurious Vector Determines the vector number to be delivered to the processor 
when the local APIC generates a spurious vector. 
(Pentium 4 and Intel Xeon processors.) Bits 0 through 7 of the 
this field are programmable by software. 
(P6 family and Pentium processors). Bits 4 through 7 of the this 
field are programmable by software, and bits 0 through 3 are 
hardwired to logical ones. Software writes to bits 0 through 3 
have no effect.

APIC Software Enable/Disable
Allows software to temporarily enable (1) or disable (0) the local 
APIC (see Section 10.4.3, “Enabling or Disabling the Local 
APIC”).

Focus Processor Checking
Determines if focus processor checking is enabled (0) or 
disabled (1) when using the lowest-priority delivery mode. In 
Pentium 4 and Intel Xeon processors, this bit is reserved and 
should be cleared to 0.

Suppress EOI Broadcasts
Determines whether an EOI for a level-triggered interrupt 
causes EOI messages to be broadcast to the I/O APICs (0) or not 
(1). See Section 10.8.5. The default value for this bit is 0, indi-
cating that EOI broadcasts are performed. This bit is reserved to 
0 if the processor does not support EOI-broadcast suppression.

NOTE
Do not program an LVT or IOAPIC RTE with a spurious vector even if 
you set the mask bit. A spurious vector ISR does not do an EOI. If for 
some reason an interrupt is generated by an LVT or RTE entry, the bit 
in the in-service register will be left set for the spurious vector. This 
will mask all interrupts at the same or lower priority

10.10 APIC BUS MESSAGE PASSING MECHANISM AND
PROTOCOL (P6 FAMILY, PENTIUM PROCESSORS)

The Pentium 4 and Intel Xeon processors pass messages among the local and I/O 
APICs on the system bus, using the system bus message passing mechanism and 
protocol.

The P6 family and Pentium processors, pass messages among the local and I/O 
APICs on the serial APIC bus, as follows. Because only one message can be sent at a 
time on the APIC bus, the I/O APIC and local APICs employ a “rotating priority” arbi-
tration protocol to gain permission to send a message on the APIC bus. One or more 
APICs may start sending their messages simultaneously. At the beginning of every 
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message, each APIC presents the type of the message it is sending and its current 
arbitration priority on the APIC bus. This information is used for arbitration. After 
each arbitration cycle (within an arbitration round), only the potential winners keep 
driving the bus. By the time all arbitration cycles are completed, there will be only 
one APIC left driving the bus. Once a winner is selected, it is granted exclusive use of 
the bus, and will continue driving the bus to send its actual message.

After each successfully transmitted message, all APICs increase their arbitration 
priority by 1. The previous winner (that is, the one that has just successfully trans-
mitted its message) assumes a priority of 0 (lowest). An agent whose arbitration 
priority was 15 (highest) during arbitration, but did not send a message, adopts the 
previous winner’s arbitration priority, increments by 1. 

Note that the arbitration protocol described above is slightly different if one of the 
APICs issues a special End-Of-Interrupt (EOI). This high-priority message is granted 
the bus regardless of its sender’s arbitration priority, unless more than one APIC 
issues an EOI message simultaneously. In the latter case, the APICs sending the EOI 
messages arbitrate using their arbitration priorities.

If the APICs are set up to use “lowest priority” arbitration (see Section 10.6.2.4, 
“Lowest Priority Delivery Mode”) and multiple APICs are currently executing at the 
lowest priority (the value in the APR register), the arbitration priorities (unique 

Figure 10-23.  Spurious-Interrupt Vector Register (SVR)
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values in the Arb ID register) are used to break ties. All 8 bits of the APR are used for 
the lowest priority arbitration.

10.10.1 Bus Message Formats
See Section 10.13, “APIC Bus Message Formats,” for a description of bus message 
formats used to transmit messages on the serial APIC bus.

10.11 MESSAGE SIGNALLED INTERRUPTS
The PCI Local Bus Specification, Rev 2.2 (www.pcisig.com) introduces the concept of 
message signalled interrupts. As the specification indicates:

“Message signalled interrupts (MSI) is an optional feature that 
enables PCI devices to request service by writing a system-specified 
message to a system-specified address (PCI DWORD memory write 
transaction). The transaction address specifies the message 
destination while the transaction data specifies the message. System 
software is expected to initialize the message destination and 
message during device configuration, allocating one or more non-
shared messages to each MSI capable function.” 

The capabilities mechanism provided by the PCI Local Bus Specification is used to 
identify and configure MSI capable PCI devices. Among other fields, this structure 
contains a Message Data Register and a Message Address Register. To request 
service, the PCI device function writes the contents of the Message Data Register to 
the address contained in the Message Address Register (and the Message Upper 
Address register for 64-bit message addresses). 

Section 10.11.1 and Section 10.11.2 provide layout details for the Message Address 
Register and the Message Data Register. The operation issued by the device is a PCI 
write command to the Message Address Register with the Message Data Register 
contents. The operation follows semantic rules as defined for PCI write operations 
and is a DWORD operation.

10.11.1 Message Address Register Format
The format of the Message Address Register (lower 32-bits) is shown in 
Figure 10-24.
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Fields in the Message Address Register are as follows:

1. Bits 31-20 — These bits contain a fixed value for interrupt messages (0FEEH). 
This value locates interrupts at the 1-MByte area with a base address of 4G – 
18M. All accesses to this region are directed as interrupt messages. Care must to 
be taken to ensure that no other device claims the region as I/O space.

2. Destination ID — This field contains an 8-bit destination ID. It identifies the 
message’s target processor(s). The destination ID corresponds to bits 63:56 of 
the I/O APIC Redirection Table Entry if the IOAPIC is used to dispatch the 
interrupt to the processor(s).

3. Redirection hint indication (RH) — This bit indicates whether the message 
should be directed to the processor with the lowest interrupt priority among 
processors that can receive the interrupt. 

• When RH is 0, the interrupt is directed to the processor listed in the 
Destination ID field. 

• When RH is 1 and the physical destination mode is used, the Destination 
ID field must not be set to 0xFF; it must point to a processor that is 
present and enabled to receive the interrupt.

• When RH is 1 and the logical destination mode is active in a system using 
a flat addressing model, the Destination ID field must be set so that bits 
set to 1 identify processors that are present and enabled to receive the 
interrupt.

• If RH is set to 1 and the logical destination mode is active in a system 
using cluster addressing model, then Destination ID field must not be set 
to 0xFF; the processors identified with this field must be present and 
enabled to receive the interrupt.

4. Destination mode (DM) — This bit indicates whether the Destination ID field 
should be interpreted as logical or physical APIC ID for delivery of the lowest 
priority interrupt. If RH is 1 and DM is 0, the Destination ID field is in physical 
destination mode and only the processor in the system that has the matching 
APIC ID is considered for delivery of that interrupt (this means no re-direction). 
If RH is 1 and DM is 1, the Destination ID Field is interpreted as in logical 
destination mode and the redirection is limited to only those processors that are 
part of the logical group of processors based on the processor’s logical APIC ID 

Figure 10-24.  Layout of the MSI Message Address Register
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and the Destination ID field in the message. The logical group of processors 
consists of those identified by matching the 8-bit Destination ID with the logical 
destination identified by the Destination Format Register and the Logical 
Destination Register in each local APIC. The details are similar to those described 
in Section 10.6.2, “Determining IPI Destination.” If RH is 0, then the DM bit is 
ignored and the message is sent ahead independent of whether the physical or 
logical destination mode is used.

10.11.2 Message Data Register Format
The layout of the Message Data Register is shown in Figure 10-25.

Reserved fields are not assumed to be any value. Software must preserve their 
contents on writes. Other fields in the Message Data Register are described below.

1. Vector — This 8-bit field contains the interrupt vector associated with the 
message. Values range from 010H to 0FEH. Software must guarantee that the 
field is not programmed with vector 00H to 0FH.

Figure 10-25.  Layout of the MSI Message Data Register

Reserved

Reserved Reserved Vector

Delivery Mode

001 - Lowest Priority
010 - SMI
011 - Reserved

101 - INIT
110 - Reserved
111 - ExtINT

Trigger Mode
0 - Edge
1 - Level

Level for Trigger Mode = 0
X - Don’t care

Level for Trigger Mode = 1
0 - Deassert
1 - Assert

000 - Fixed

100 - NMI

31 16  15 14 13 11 10 8 7 0

63 32
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2. Delivery Mode — This 3-bit field specifies how the interrupt receipt is handled. 
Delivery Modes operate only in conjunction with specified Trigger Modes. Correct 
Trigger Modes must be guaranteed by software. Restrictions are indicated below:

a. 000B (Fixed Mode) — Deliver the signal to all the agents listed in the
destination. The Trigger Mode for fixed delivery mode can be edge or level.

b. 001B (Lowest Priority) — Deliver the signal to the agent that is executing 
at the lowest priority of all agents listed in the destination field. The trigger 
mode can be edge or level.

c. 010B (System Management Interrupt or SMI) — The delivery mode is 
edge only. For systems that rely on SMI semantics, the vector field is ignored 
but must be programmed to all zeroes for future compatibility. 

d. 100B (NMI) — Deliver the signal to all the agents listed in the destination 
field. The vector information is ignored. NMI is an edge triggered interrupt 
regardless of the Trigger Mode Setting.

e. 101B (INIT) — Deliver this signal to all the agents listed in the destination 
field. The vector information is ignored. INIT is an edge triggered interrupt 
regardless of the Trigger Mode Setting.

f. 111B (ExtINT) — Deliver the signal to the INTR signal of all agents in the 
destination field (as an interrupt that originated from an 8259A compatible 
interrupt controller). The vector is supplied by the INTA cycle issued by the 
activation of the ExtINT. ExtINT is an edge triggered interrupt.

3. Level — Edge triggered interrupt messages are always interpreted as assert 
messages. For edge triggered interrupts this field is not used. For level triggered 
interrupts, this bit reflects the state of the interrupt input.

4. Trigger Mode — This field indicates the signal type that will trigger a message. 

a. 0 — Indicates edge sensitive.

b. 1 — Indicates level sensitive.

10.12 EXTENDED XAPIC (X2APIC)
The x2APIC architecture extends the xAPIC architecture (described in Section 9.4) in 
a backward compatible manner and provides forward extendability for future Intel 
platform innovations. Specifically, the x2APIC architecture does the following:
• Retains all key elements of compatibility to the xAPIC architecture:

— delivery modes,

— interrupt and processor priorities,

— interrupt sources,

— interrupt destination types;
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• Provides extensions to scale processor addressability for both the logical and 
physical destination modes;

• Adds new features to enhance performance of interrupt delivery;
• Reduces complexity of logical destination mode interrupt delivery on link based 

platform architectures.
• Uses MSR programming interface to access APIC registers in x2APIC mode 

instead of memory-mapped interfaces. Memory-mapped interface is supported 
when operating in xAPIC mode.

10.12.1 Detecting and Enabling x2APIC Mode
Processor support for x2APIC mode can be detected by executing CPUID with EAX=1 
and then checking ECX, bit 21 ECX. If CPUID.(EAX=1):ECX.21 is set , the processor 
supports the x2APIC capability and can be placed into the x2APIC mode. 

System software can place the local APIC in the x2APIC mode by setting the x2APIC 
mode enable bit (bit 10) in the IA32_APIC_BASE MSR at MSR address 01BH. The 
layout for the IA32_APIC_BASE MSR is shown in Figure 10-26.

Table 10-5, “x2APIC operating mode configurations” describe the possible combina-
tions of the enable bit (EN - bit 11) and the extended mode bit (EXTD - bit 10) in the 
IA32_APIC_BASE MSR.

Figure 10-26.  IA32_APIC_BASE MSR Supporting x2APIC

Table 10-5. x2APIC Operating Mode Configurations 

xAPIC global enable 
(IA32_APIC_BASE[11])

x2APIC enable 
(IA32_APIC_BASE[10]) Description

0 0 local APIC is disabled

0 1 Invalid

1 0 local APIC is enabled in xAPIC mode

1 1 local APIC is enabled in x2APIC mode

BSP—Processor is BSP

EN—xAPIC global enable/disable
APIC Base—Base physical address

63 071011 8912

Reserved

36 35

APIC BaseReserved

EXTD—Enable x2APIC mode
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Once the local APIC has been switched to x2APIC mode (EN = 1, EXTD = 1), 
switching back to xAPIC mode would require system software to disable the local 
APIC unit. Specifically, attempting to write a value to the IA32_APIC_BASE MSR that 
has (EN= 1, EXTD = 0) when the local APIC is enabled and in x2APIC mode causes a 
general-protection exception. Once bit 10 in IA32_APIC_BASE MSR is set, the only 
way to leave x2APIC mode using IA32_APIC_BASE would require a WRMSR to set 
both bit 11 and bit 10 to zero. Section 10.12.5, “x2APIC State Transitions” provides a 
detailed state diagram for the state transitions allowed for the local APIC.

10.12.1.1  Instructions to Access APIC Registers
In x2APIC mode, system software uses RDMSR and WRMSR to access the APIC regis-
ters. The MSR addresses for accessing the x2APIC registers are architecturally 
defined and specified in Section 10.12.1.2, “x2APIC Register Address Space”. 
Executing the RDMSR instruction with APIC register address specified in ECX returns 
the content of bits 0 through 31 of the APIC registers in EAX. Bits 32 through 63 are 
returned in register EDX - these bits are reserved if the APIC register being read is a 
32-bit register. Similarly executing the WRMSR instruction with the APIC register 
address in ECX, writes bits 0 to 31 of register EAX to bits 0 to 31 of the specified APIC 
register. If the register is a 64-bit register then bits 0 to 31 of register EDX are written 
to bits 32 to 63 of the APIC register. The Interrupt Command Register is the only APIC 
register that is implemented as a 64-bit MSR. The semantics of handling reserved 
bits are defined in Section 10.12.1.3, “Reserved Bit Checking”.

10.12.1.2  x2APIC Register Address Space
The MSR address range 800H through BFFH is architecturally reserved and dedicated 
for accessing APIC registers in x2APIC mode. Table 10-6 lists the APIC registers that 
are available in x2APIC mode. When appropriate, the table also gives the offset at 
which each register is available on the page referenced by IA32_APIC_BASE[35:12] 
in xAPIC mode. 
There is a one-to-one mapping between the x2APIC MSRs and the legacy xAPIC 
register offsets with the following exceptions:
• The Destination Format Register (DFR): The DFR, supported at offset 0E0H in 

xAPIC mode, is not supported in x2APIC mode. There is no MSR with address 
80EH.

• The Interrupt Command Register (ICR): The two 32-bit registers in xAPIC mode 
(at offsets 300H and 310H) are merged into a single 64-bit MSR in x2APIC mode 
(with MSR address 830H). There is no MSR with address 831H.

• The SELF IPI register. This register is available only in x2APIC mode at address 
83FH. In xAPIC mode, there is no register defined at offset 3F0H.

Addresses in the range 800H–BFFH that are not listed in Table 10-6 (including 80EH 
and 831H) are reserved. Executions of RDMSR and WRMSR that attempt to access 
such addresses cause general-protection exceptions.
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The MSR address space is compressed to allow for future growth. Every 32 bit 
register on a 128-bit boundary in the legacy MMIO space is mapped to a single MSR 
in the local x2APIC MSR address space. The upper 32-bits of all x2APIC MSRs (except 
for the ICR) are reserved. 

Table 10-6. Local APIC Register Address Map Supported by x2APIC

MSR Address 
(x2APIC mode)

MMIO Offset 
(xAPIC mode)

Register Name MSR R/W 
Semantics

Comments

 802H 020H Local APIC ID register Read-only1 See Section 10.12.5.1 for 
initial values.

803H 030H Local APIC Version 
register

Read-only Same version used in 
xAPIC mode and x2APIC 
mode.

808H 080H Task Priority Register 
(TPR)

Read/write Bits 31:8 are reserved.2

80AH 0A0H Processor Priority 
Register (PPR)

Read-only

80BH 0B0H EOI register Write-
only3

WRMSR of a non-zero 
value causes #GP(0).

80DH 0D0H Logical Destination 
Register (LDR)

Read-only Read/write in xAPIC 
mode.

80FH 0F0H Spurious Interrupt 
Vector Register (SVR)

Read/write See Section 10.9 for 
reserved bits.

810H 100H In-Service Register 
(ISR); bits 31:0

Read-only

811H 110H ISR bits 63:32 Read-only

812H 120H ISR bits 95:64 Read-only

813H 130H ISR bits 127:96 Read-only

814H 140H ISR bits 159:128 Read-only

815H 150H ISR bits 191:160 Read-only

816H 160H ISR bits 223:192 Read-only

817H 170H ISR bits 255:224 Read-only

818H 180H Trigger Mode Register 
(TMR); bits 31:0 

Read-only

819H 190H TMR bits 63:32 Read-only

81AH 1A0H TMR bits 95:64 Read-only

81BH 1B0H TMR bits 127:96 Read-only
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81CH 1C0H TMR bits 159:128 Read-only

81DH 1D0H TMR bits 191:160 Read-only

81EH 1E0H TMR bits 223:192 Read-only

81FH 1F0H TMR bits 255:224 Read-only

820H 200H Interrupt Request 
Register (IRR); bits 
31:0

Read-only

821H 210H IRR bits 63:32 Read-only

822H 220H IRR bits 95:64 Read-only

823H 230H IRR bits 127:96 Read-only

824H 240H IRR bits 159:128 Read-only

825H 250H IRR bits 191:160 Read-only

826H 260H IRR bits 223:192 Read-only

827H 270H IRR bits 255:224 Read-only

828H 280H Error Status Register 
(ESR)

Read/write WRMSR of a non-zero 
value causes #GP(0). See 
Section 10.5.3.

82FH 2F0H LVT CMCI register Read/write See Figure 10-8 for 
reserved bits.

830H4 300H and 
310H

Interrupt Command 
Register (ICR)

Read/write See Figure 10-28 for 
reserved bits

832H 320H LVT Timer register Read/write See Figure 10-8 for 
reserved bits.

833H 330H LVT Thermal Sensor 
register

Read/write See Figure 10-8 for 
reserved bits.

834H 340H LVT Performance 
Monitoring register

Read/write See Figure 10-8 for 
reserved bits.

835H 350H LVT LINT0 register Read/write See Figure 10-8 for 
reserved bits.

836H 360H LVT LINT1 register Read/write See Figure 10-8 for 
reserved bits.

837H 370H LVT Error register Read/write See Figure 10-8 for 
reserved bits.

Table 10-6. Local APIC Register Address Map Supported by x2APIC (Contd.)

MSR Address 
(x2APIC mode)

MMIO Offset 
(xAPIC mode)

Register Name
MSR R/W 
Semantics

Comments
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10.12.1.3  Reserved Bit Checking
Section 10.12.1.2 and Table 10-6 specifies the reserved bit definitions for the APIC 
registers in x2APIC mode. Non-zero writes (by WRMSR instruction) to reserved bits 
to these registers will raise a general protection fault exception while reads return 
zeros (RsvdZ semantics).
In x2APIC mode, the local APIC ID register is increased to 32 bits wide. This enables 
232–1 processors to be addressable in physical destination mode. This 32-bit value is 
referred to as “x2APIC ID”. A processor implementation may choose to support less 
than 32 bits in its hardware. System software should be agnostic to the actual 
number of bits that are implemented. All non-implemented bits will return zeros on 
reads by software. 
The APIC ID value of FFFF_FFFFH and the highest value corresponding to the imple-
mented bit-width of the local APIC ID register in the system are reserved and cannot 
be assigned to any logical processor. 

In x2APIC mode, the local APIC ID register is a read-only register to system software 
and will be initialized by hardware. It is accessed via the RDMSR instruction reading 
the MSR at address 0802H. 

838H 380H Initial Count register 
(for Timer)

Read/write

839H 390H Current Count 
register (for Timer)

Read-only

83EH 3E0H Divide Configuration 
Register (DCR; for 
Timer)

Read/write See Figure 10-10 for 
reserved bits.

83FH Not available SELF IPI5 Write-only Available only in x2APIC 
mode.

NOTES:
1. WRMSR causes #GP(0) for read-only registers.
2. WRMSR causes #GP(0) for attempts to set a reserved bit to 1 in a read/write register (including 

bits 63:32 of each register).
3. RDMSR causes #GP(0) for write-only registers.
4. MSR 831H is reserved; read/write operations cause general-protection exceptions. The contents 

of the APIC register at MMIO offset 310H are accessible in x2APIC mode through the MSR at 
address 830H.

5. SELF IPI register is supported only in x2APIC mode.

Table 10-6. Local APIC Register Address Map Supported by x2APIC (Contd.)

MSR Address 
(x2APIC mode)

MMIO Offset 
(xAPIC mode)

Register Name
MSR R/W 
Semantics

Comments
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Each logical processor in the system (including clusters with a communication fabric) 
must be configured with an unique x2APIC ID to avoid collisions of x2APIC IDs. On 
DP and high-end MP processors targeted to specific market segments and depending 
on the system configuration, it is possible that logical processors in different and “un-
connected” clusters power up initialized with overlapping x2APIC IDs. In these 
configurations, a model-specific means may be provided in those product segments 
to enable BIOS and/or platform firmware to re-configure the x2APIC IDs in some 
clusters to provide for unique and non-overlapping system wide IDs before config-
uring the disconnected components into a single system. 

10.12.2 x2APIC Register Availability
The local APIC registers can be accessed via the MSR interface only when the local 
APIC has been switched to the x2APIC mode as described in Section 10.12.1. 
Accessing any APIC register in the MSR address range 0800H through 0BFFH via 
RDMSR or WRMSR when the local APIC is not in x2APIC mode causes a general-
protection exception. In x2APIC mode, the memory mapped interface is not available 
and any access to the MMIO interface will behave similar to that of a legacy xAPIC in 
globally disabled state. Table 10-7 provides the interactions between the legacy & 
extended modes and the legacy and register interfaces.

10.12.3 MSR Access in x2APIC Mode
To allow for efficient access to the APIC registers in x2APIC mode, the serializing 
semantics of WRMSR are relaxed when writing to the APIC registers. Thus, system 
software should not use “WRMSR to APIC registers in x2APIC mode” as a serializing 
instruction. Read and write accesses to the APIC registers will occur in program 
order. A WRMSR to an APIC register may complete before all preceding stores are 
globally visible; software can prevent this by inserting a serializing instruction, an 
SFENCE, or an MFENCE before the WRMSR.

The RDMSR instruction is not serializing and this behavior is unchanged when 
reading APIC registers in x2APIC mode. System software accessing the APIC regis-
ters using the RDMSR instruction should not expect a serializing behavior. (Note: The 
MMIO-based xAPIC interface is mapped by system software as an un-cached region. 
Consequently, read/writes to the xAPIC-MMIO interface have serializing semantics in 
the xAPIC mode.)

Table 10-7. MSR/MMIO Interface of a Local x2APIC in Different Modes of Operation

MMIO Interface MSR Interface

xAPIC mode Available General-protection 
exception

x2APIC mode Behavior identical to xAPIC in globally 
disabled state

Available
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10.12.4 VM-Exit Controls for MSRs and x2APIC Registers
The VMX architecture allows a VMM to specify lists of MSRs to be loaded or stored on 
VMX transitions using the VMX-transition MSR areas (see VM-exit MSR-store address 
field, VM-exit MSR-load address field, and VM-entry MSR-load address field in Intel® 
64 and IA-32 Architectures Software Developer’s Manual, Volume 3C).
The X2APIC MSRs cannot to be loaded and stored on VMX transitions. A VMX transi-
tion fails if the VMM has specified that the transition should access any MSRs in the 
address range from 0000_0800H to 0000_08FFH (the range used for accessing the 
X2APIC registers). Specifically, processing of an 128-bit entry in any of the VMX-
transition MSR areas fails if bits 31:0 of that entry (represented as ENTRY_LOW_DW) 
satisfies the expression: “ENTRY_LOW_DW & FFFFF800H = 00000800H”. Such a 
failure causes an associated VM entry to fail (by reloading host state) and causes an 
associated VM exit to lead to VMX abort.

10.12.5 x2APIC State Transitions
This section provides a detailed description of the x2APIC states of a local x2APIC 
unit, transitions between these states as well as interactions of these states with INIT 
and reset. 

10.12.5.1  x2APIC States
The valid states for a local x2APIC unit is listed in Table 10-5:
• APIC disabled: IA32_APIC_BASE[EN]=0 and IA32_APIC_BASE[EXTD]=0
• xAPIC mode: IA32_APIC_BASE[EN]=1 and IA32_APIC_BASE[EXTD]=0
• x2APIC mode: IA32_APIC_BASE[EN]=1 and IA32_APIC_BASE[EXTD]=1
• Invalid: IA32_APIC_BASE[EN]=0 and IA32_APIC_BASE[EXTD]=1
The state corresponding to EXTD=1 and EN=0 is not valid and it is not possible to get 
into this state. An execution of WRMSR to the IA32_APIC_BASE_MSR that attempts 
a transition from a valid state to this invalid state causes a general-protection excep-
tion. Figure 10-27 shows the comprehensive state transition diagram for a local 
x2APIC unit. 
On coming out of reset, the local APIC unit is enabled and is in the xAPIC mode: 
IA32_APIC_BASE[EN]=1 and IA32_APIC_BASE[EXTD]=0. The APIC registers are 
initialized as:
• The local APIC ID is initialized by hardware with a 32 bit ID (x2APIC ID). The 

lowest 8 bits of the x2APIC ID is the legacy local xAPIC ID, and is stored in the 
upper 8 bits of the APIC register for access in xAPIC mode.

• The following APIC registers are reset to all zeros for those fields that are defined 
in the xAPIC mode:
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— IRR, ISR, TMR, ICR, LDR, TPR, Divide Configuration Register (See Chapter 8 
of “Intel® 64 and IA-32 Architectures Software Developer’s Manual“, Vol. 3B 
for details of individual APIC registers),

— Timer initial count and timer current count registers,
• The LVT registers are reset to 0s except for the mask bits; these are set to 1s.
• The local APIC version register is not affected.
• The Spurious Interrupt Vector Register is initialized to 000000FFH. 
• The DFR (available only in xAPIC mode) is reset to all 1s. 
• SELF IPI register is reset to zero.

x2APIC After Reset
The valid transitions from the xAPIC mode state are:
• to the x2APIC mode by setting EXT to 1 (resulting EN=1, EXTD= 1). The physical 

x2APIC ID (see Figure 10-6) is preserved across this transition and the logical 
x2APIC ID (see Figure 10-29) is initialized by hardware during this transition as 
documented in Section 10.12.10.2. The state of the extended fields in other APIC 

Figure 10-27.  Local x2APIC State Transitions with IA32_APIC_BASE, INIT, and Reset
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registers, which was not initialized at reset, is not architecturally defined across 
this transition and system software should explicitly initialize those program-
mable APIC registers. 

• to the disabled state by setting EN to 0 (resulting EN=0, EXTD= 0).
The result of an INIT in the xAPIC state places the APIC in the state with EN= 1, 
EXTD= 0. The state of the local APIC ID register is preserved (the 8-bit xAPIC ID is in 
the upper 8 bits of the APIC ID register). All the other APIC registers are initialized as 
a result of INIT. 
A reset in this state places the APIC in the state with EN= 1, EXTD= 0. The state of 
the local APIC ID register is initialized as described in Section 10.12.5.1. All the other 
APIC registers are initialized described in Section 10.12.5.1. 

x2APIC Transitions From x2APIC Mode
From the x2APIC mode, the only valid x2APIC transition using IA32_APIC_BASE is to 
the state where the x2APIC is disabled by setting EN to 0 and EXTD to 0. The x2APIC 
ID (32 bits) and the legacy local xAPIC ID (8 bits) are preserved across this transi-
tion. A transition from the x2APIC mode to xAPIC mode is not valid, and the corre-
sponding WRMSR to the IA32_APIC_BASE MSR causes a general-protection 
exception. 
A reset in this state places the x2APIC in xAPIC mode. All APIC registers (including 
the local APIC ID register) are initialized as described in Section 10.12.5.1. 
An INIT in this state keeps the x2APIC in the x2APIC mode. The state of the local 
APIC ID register is preserved (all 32 bits). However, all the other APIC registers are 
initialized as a result of the INIT transition.

x2APIC Transitions From Disabled Mode
From the disabled state, the only valid x2APIC transition using IA32_APIC_BASE is to 
the xAPIC mode (EN= 1, EXTD = 0). Thus the only means to transition from x2APIC 
mode to xAPIC mode is a two-step process: 
• first transition from x2APIC mode to local APIC disabled mode (EN= 0, EXTD = 

0),
• followed by another transition from disabled mode to xAPIC mode (EN= 1, 

EXTD= 0).
Consequently, all the APIC register states in the x2APIC, except for the x2APIC ID 
(32 bits), are not preserved across mode transitions. 
A reset in the disabled state places the x2APIC in the xAPIC mode. All APIC registers 
(including the local APIC ID register) are initialized as described in Section 10.12.5.1. 
An INIT in the disabled state keeps the x2APIC in the disabled state.
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State Changes From xAPIC Mode to x2APIC Mode
After APIC register states have been initialized by software in xAPIC mode, a transi-
tion from xAPIC mode to x2APIC mode does not affect most of the APIC register 
states, except the following:
• The Logical Destination Register is not preserved.
• Any APIC ID value written to the memory-mapped local APIC ID register is not 

preserved.
• The high half of the Interrupt Command Register is not preserved. 

10.12.6 Routing of Device Interrupts in x2APIC Mode
The x2APIC architecture is intended to work with all existing IOxAPIC units as well as 
all PCI and PCI Express (PCIe) devices that support the capability for message-
signaled interrupts (MSI). Support for x2APIC modifies only the following:
• the local APIC units;
• the interconnects joining IOxAPIC units to the local APIC units; and
• the interconnects joining MSI-capable PCI and PCIe devices to the local APIC 

units.

No modifications are required to MSI-capable PCI and PCIe devices. Similarly, no 
modifications are required to IOxAPIC units. This made possible through use of the 
interrupt-remapping architecture specified in the Intel® Virtualization Technology for 
Directed I/O, Revision 1.3 for the routing of interrupts from MSI-capable devices to 
local APIC units operating in x2APIC mode.

10.12.7 Initialization by System Software
Routing of device interrupts to local APIC units operating in x2APIC mode requires 
use of the interrupt-remapping architecture specified in the Intel® Virtualization 
Technology for Directed I/O, Revision 1.3. Because of this, BIOS must enumerate 
support for and software must enable this interrupt remapping with Extended Inter-
rupt Mode Enabled before it enabling x2APIC mode in the local APIC units.

The ACPI interfaces for the x2APIC are described in Section 5.2, “ACPI System 
Description Tables,” of the Advanced Configuration and Power Interface Specifica-
tion, Revision 4.0a (http://www.acpi.info/spec.htm). The default behavior for BIOS 
is to pass the control to the operating system with the local x2APICs in xAPIC mode 
if all APIC IDs reported by CPUID.0BH:EDX are less than 255, and in x2APIC mode if 
there are any logical processor reporting an APIC ID of 255 or greater.
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10.12.8 CPUID Extensions And Topology Enumeration
For Intel 64 and IA-32 processors that support x2APIC, a value of 1 reported by 
CPUID.01H:ECX[21] indicates that the processor supports x2APIC and the extended 
topology enumeration leaf (CPUID.0BH). 
The extended topology enumeration leaf can be accessed by executing CPUID with 
EAX = 0BH. Processors that do not support x2APIC may support CPUID leaf 0BH. 
Software can detect the availability of the extended topology enumeration leaf (0BH) 
by performing two steps:
• Check maximum input value for basic CPUID information by executing CPUID 

with EAX= 0. If CPUID.0H:EAX is greater than or equal or 11 (0BH), then proceed 
to next step

• Check CPUID.EAX=0BH, ECX=0H:EBX is non-zero. 
If both of the above conditions are true, extended topology enumeration leaf is avail-
able. If available, the extended topology enumeration leaf is the preferred mecha-
nism for enumerating topology. The presence of CPUID leaf 0BH in a processor does 
not guarantee support for x2APIC. If CPUID.EAX=0BH, ECX=0H:EBX returns zero 
and maximum input value for basic CPUID information is greater than 0BH, then 
CPUID.0BH leaf is not supported on that processor.
The extended topology enumeration leaf is intended to assist software with enumer-
ating processor topology on systems that requires 32-bit x2APIC IDs to address indi-
vidual logical processors. Details of CPUID leaf 0BH can be found in the reference 
pages of CPUID in Chapter 3 of Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 2A.
Processor topology enumeration algorithm for processors supporting the extended 
topology enumeration leaf of CPUID and processors that do not support CPUID leaf 
0BH are treated in Section 8.9.4, “Algorithm for Three-Level Mappings of APIC_ID”.

10.12.8.1  Consistency of APIC IDs and CPUID
The consistency of physical x2APIC ID in MSR 802H in x2APIC mode and the 32-bit 
value returned in CPUID.0BH:EDX is facilitated by processor hardware. 
CPUID.0BH:EDX will report the full 32 bit ID, in xAPIC and x2APIC mode. This allows 
BIOS to determine if a system has processors with IDs exceeding the 8-bit initial 
APIC ID limit (CPUID.01H:EBX[31:24]). Initial APIC ID (CPUID.01H:EBX[31:24]) is 
always equal to CPUID.0BH:EDX[7:0]. 
If the values of CPUID.0BH:EDX reported by all logical processors in a system are 
less than 255, BIOS can transfer control to OS in xAPIC mode.
If the values of CPUID.0BH:EDX reported by some logical processors in a system are 
greater or equal than 255, BIOS must support two options to hand off to OS:
• If BIOS enables logical processors with x2APIC IDs greater than 255, then it 

should enable X2APIC in Boot Strap Processor (BSP) and all Application 
Processors (AP) before passing control to the OS. Application requiring processor 
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topology information must use OS provided services based on x2APIC IDs or 
CPUID.0BH leaf.

• If a BIOS transfers control to OS in xAPIC mode, then the BIOS must ensure that 
only logical processors with CPUID.0BH.EDX value less than 255 are enabled. 
BIOS initialization on all logical processors with CPUID.0B.EDX values greater 
than or equal to 255 must (a) disable APIC and execute CLI in each logical 
processor, and (b) leave these logical processor in the lowest power state so that 
these processors do not respond to INIT IPI during OS boot. The BSP and all the 
enabled logical processor operate in xAPIC mode after BIOS passed control to 
OS. Application requiring processor topology information can use OS provided 
legacy services based on 8-bit initial APIC IDs or legacy topology information 
from CPUID.01H and CPUID 04H leaves. Even if the BIOS passes control in xAPIC 
mode, an OS can switch the processors to x2APIC mode later. BIOS SMM handler 
should always read the APIC_BASE_MSR, determine the APIC mode and use the 
corresponding access method.

10.12.9 ICR Operation in x2APIC Mode
In x2APIC mode, the layout of the Interrupt Command Register is shown in Figure 
10-12. The lower 32 bits of ICR in x2APIC mode is identical to the lower half of the 
ICR in xAPIC mode, except the Delivery Status bit is removed since it is not needed 
in x2APIC mode. The destination ID field is expanded to 32 bits in x2APIC mode. 
To send an IPI using the ICR, software must set up the ICR to indicate the type of IPI 
message to be sent and the destination processor or processors. Self IPIs can also be 
sent using the SELF IPI register (see Section 10.12.11). 

A single MSR write to the Interrupt Command Register is required for dispatching an 
interrupt in x2APIC mode. With the removal of the Delivery Status bit, system soft-
ware no longer has a reason to read the ICR. It remains readable only to aid in 
debugging; however, software should not assume the value returned by reading the 
ICR is the last written value.
A destination ID value of FFFF_FFFFH is used for broadcast of interrupts in both 
logical destination and physical destination modes.

10.12.10 Determining IPI Destination in x2APIC Mode

10.12.10.1  Logical Destination Mode in x2APIC Mode
In x2APIC mode, the Logical Destination Register (LDR) is increased to 32 bits wide. 
It is a read-only register to system software. This 32-bit value is referred to as 
“logical x2APIC ID”. System software accesses this register via the RDMSR instruc-
tion reading the MSR at address 80DH. Figure 10-29 provides the layout of the 
Logical Destination Register in x2APIC mode. 
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Figure 10-28.  Interrupt Command Register (ICR) in x2APIC Mode

Figure 10-29.  Logical Destination Register in x2APIC Mode
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In the xAPIC mode, the Destination Format Register (DFR) through MMIO interface 
determines the choice of a flat logical mode or a clustered logical mode. Flat logical 
mode is not supported in the x2APIC mode. Hence the Destination Format Register 
(DFR) is eliminated in x2APIC mode. 
The 32-bit logical x2APIC ID field of LDR is partitioned into two sub-fields:
• Cluster ID (LDR[31:16]): is the address of the destination cluster
• Logical ID (LDR[15:0]): defines a logical ID of the individual local x2APIC within 

the cluster specified by LDR[31:16]. 
This layout enables 2^16-1 clusters each with up to 16 unique logical IDs - effec-
tively providing an addressability of ((2^20) - 16) processors in logical destination 
mode. 
It is likely that processor implementations may choose to support less than 16 bits of 
the cluster ID or less than 16-bits of the Logical ID in the Logical Destination Register. 
However system software should be agnostic to the number of bits implemented in 
the cluster ID and logical ID sub-fields. The x2APIC hardware initialization will ensure 
that the appropriately initialized logical x2APIC IDs are available to system software 
and reads of non-implemented bits return zero. This is a read-only register that soft-
ware must read to determine the logical x2APIC ID of the processor. Specifically, 
software can apply a 16-bit mask to the lowest 16 bits of the logical x2APIC ID to 
identify the logical address of a processor within a cluster without needing to know 
the number of implemented bits in cluster ID and Logical ID sub-fields. Similarly, 
software can create a message destination address for cluster model, by bit-Oring 
the Logical X2APIC ID (31:0) of processors that have matching Cluster ID(31:16).
To enable cluster ID assignment in a fashion that matches the system topology char-
acteristics and to enable efficient routing of logical mode lowest priority device inter-
rupts in link based platform interconnects, the LDR are initialized by hardware based 
on the value of x2APIC ID upon x2APIC state transitions. Details of this initialization 
are provided in Section 10.12.10.2. 

10.12.10.2  Deriving Logical x2APIC ID from the Local x2APIC ID
In x2APIC mode, the 32-bit logical x2APIC ID, which can be read from LDR, is derived 
from the 32-bit local x2APIC ID. Specifically, the 16-bit logical ID sub-field is derived 
by shifting 1 by the lowest 4 bits of the x2APIC ID, i.e. Logical ID = 1 « 
x2APIC ID[3:0]. The remaining bits of the x2APIC ID then form the cluster ID portion 
of the logical x2APIC ID: 

Logical x2APIC ID = [(x2APIC ID[19:4] « 16) | (1 « x2APIC ID[3:0])]

The use of the lowest 4 bits in the x2APIC ID implies that at least 16 APIC IDs are 
reserved for logical processors within a socket in multi-socket configurations. If more 
than 16 APIC IDS are reserved for logical processors in a socket/package then 
multiple cluster IDs can exist within the package. 
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The LDR initialization occurs whenever the x2APIC mode is enabled (see Section 
10.12.5).

10.12.11 SELF IPI Register
SELF IPIs are used extensively by some system software. The x2APIC architecture 
introduces a new register interface. This new register is dedicated to the purpose of 
sending self-IPIs with the intent of enabling a highly optimized path for sending self-
IPIs. 

Figure 10-30 provides the layout of the SELF IPI register. System software only spec-
ifies the vector associated with the interrupt to be sent. The semantics of sending a 
self-IPI via the SELF IPI register are identical to sending a self targeted edge trig-
gered fixed interrupt with the specified vector. Specifically the semantics are identical 
to the following settings for an inter-processor interrupt sent via the ICR - Destina-
tion Shorthand (ICR[19:18] = 01 (Self)), Trigger Mode (ICR[15] = 0 (Edge)), 
Delivery Mode (ICR[10:8] = 000 (Fixed)), Vector (ICR[7:0] = Vector).

The SELF IPI register is a write-only register. A RDMSR instruction with address of the 
SELF IPI register causes a general-protection exception. 
The handling and prioritization of a self-IPI sent via the SELF IPI register is architec-
turally identical to that for an IPI sent via the ICR from a legacy xAPIC unit. Specifi-
cally the state of the interrupt would be tracked via the Interrupt Request Register 
(IRR) and In Service Register (ISR) and Trigger Mode Register (TMR) as if it were 
received from the system bus. Also sending the IPI via the Self Interrupt Register 
ensures that interrupt is delivered to the processor core. Specifically completion of 
the WRMSR instruction to the SELF IPI register implies that the interrupt has been 
logged into the IRR. As expected for edge triggered interrupts, depending on the 
processor priority and readiness to accept interrupts, it is possible that interrupts 
sent via the SELF IPI register or via the ICR with identical vectors can be combined.

Figure 10-30.  SELF IPI register
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10.13 APIC BUS MESSAGE FORMATS
This section describes the message formats used when transmitting messages on the 
serial APIC bus. The information described here pertains only to the Pentium and P6 
family processors.

10.13.1 Bus Message Formats
The local and I/O APICs transmit three types of messages on the serial APIC bus: EOI 
message, short message, and non-focused lowest priority message. The purpose of 
each type of message and its format are described below.

10.13.2 EOI Message
Local APICs send 14-cycle EOI messages to the I/O APIC to indicate that a level trig-
gered interrupt has been accepted by the processor. This interrupt, in turn, is a result 
of software writing into the EOI register of the local APIC. Table 10-1 shows the 
cycles in an EOI message.

The checksum is computed for cycles 6 through 9. It is a cumulative sum of the 2-bit 
(Bit1:Bit0) logical data values. The carry out of all but the last addition is added to 
the sum. If any APIC computes a different checksum than the one appearing on the 

Table 10-1.  EOI Message (14 Cycles)

Cycle Bit1 Bit0

1 1 1 11 = EOI

2 ArbID3 0 Arbitration ID bits 3 through 0

3 ArbID2 0

4 ArbID1 0

5 ArbID0 0

6 V7 V6 Interrupt vector V7 - V0

7 V5 V4

8 V3 V2

9 V1 V0

10 C C Checksum for cycles 6 - 9

11 0 0

12 A A Status Cycle 0

13 A1 A1 Status Cycle 1

14 0 0 Idle
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bus in cycle 10, it signals an error, driving 11 on the APIC bus during cycle 12. In this 
case, the APICs disregard the message. The sending APIC will receive an appropriate 
error indication (see Section 10.5.3, “Error Handling”) and resend the message. The 
status cycles are defined in Table 10-4.

10.13.2.1  Short Message
Short messages (21-cycles) are used for sending fixed, NMI, SMI, INIT, start-up, 
ExtINT and lowest-priority-with-focus interrupts. Table 10-2 shows the cycles in a 
short message.

If the physical delivery mode is being used, then cycles 15 and 16 represent the APIC 
ID and cycles 13 and 14 are considered don't care by the receiver. If the logical 

Table 10-2.  Short Message (21 Cycles)

Cycle Bit1 Bit0

1 0 1 0 1 = normal

2 ArbID3 0 Arbitration ID bits 3 through 0

3 ArbID2 0

4 ArbID1 0

5 ArbID0 0

6 DM M2 DM = Destination Mode 

7 M1 M0 M2-M0 = Delivery mode

8 L TM L = Level, TM = Trigger Mode

9 V7 V6 V7-V0 = Interrupt Vector

10 V5 V4

11 V3 V2

12 V1 V0

13 D7 D6 D7-D0 = Destination

14 D5 D4

15 D3 D2

16 D1 D0

17 C C Checksum for cycles 6-16

18 0 0

19 A A Status cycle 0

20 A1 A1 Status cycle 1

21 0 0 Idle
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delivery mode is being used, then cycles 13 through 16 are the 8-bit logical destina-
tion field. 

For shorthands of “all-incl-self” and “all-excl-self,” the physical delivery mode and an 
arbitration priority of 15 (D0:D3 = 1111) are used. The agent sending the message 
is the only one required to distinguish between the two cases. It does so using 
internal information.

When using lowest priority delivery with an existing focus processor, the focus 
processor identifies itself by driving 10 during cycle 19 and accepts the interrupt. 
This is an indication to other APICs to terminate arbitration. If the focus processor 
has not been found, the short message is extended on-the-fly to the non-focused 
lowest-priority message. Note that except for the EOI message, messages gener-
ating a checksum or an acceptance error (see Section 10.5.3, “Error Handling”) 
terminate after cycle 21.

10.13.2.2  Non-focused Lowest Priority Message
These 34-cycle messages (see Table 10-3) are used in the lowest priority delivery 
mode when a focus processor is not present. Cycles 1 through 20 are same as for the 
short message. If during the status cycle (cycle 19) the state of the (A:A) flags is 
10B, a focus processor has been identified, and the short message format is used 
(see Table 10-2). If the (A:A) flags are set to 00B, lowest priority arbitration is 
started and the 34-cycles of the non-focused lowest priority message are competed. 
For other combinations of status flags, refer to Section 10.13.2.3, “APIC Bus Status 
Cycles.”

Table 10-3.  Non-Focused Lowest Priority Message (34 Cycles)

Cycle Bit0 Bit1

1 0 1 0 1 = normal

2 ArbID3 0 Arbitration ID bits 3 through 0

3 ArbID2 0

4 ArbID1 0

5 ArbID0 0

6 DM M2 DM = Destination mode 

7 M1 M0 M2-M0 = Delivery mode

8 L TM L = Level, TM = Trigger Mode

9 V7 V6 V7-V0 = Interrupt Vector

10 V5 V4

11 V3 V2

12 V1 V0

13 D7 D6 D7-D0 = Destination
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Cycles 21 through 28 are used to arbitrate for the lowest priority processor. The 
processors participating in the arbitration drive their inverted processor priority on 
the bus. Only the local APICs having free interrupt slots participate in the lowest 
priority arbitration. If no such APIC exists, the message will be rejected, requiring it 
to be tried at a later time.

Cycles 29 through 32 are also used for arbitration in case two or more processors 
have the same lowest priority. In the lowest priority delivery mode, all combinations 
of errors in cycle 33 (A2 A2) will set the “accept error” bit in the error status register 
(see Figure 10-9). Arbitration priority update is performed in cycle 20, and is not 
affected by errors detected in cycle 33. Only the local APIC that wins in the lowest 
priority arbitration, drives cycle 33. An error in cycle 33 will force the sender to 
resend the message.

14 D5 D4

15 D3 D2

16 D1 D0

17 C C Checksum for cycles 6-16

18 0 0

19 A A Status cycle 0

20 A1 A1 Status cycle 1

21 P7 0 P7 - P0 = Inverted Processor Priority

22 P6 0

23 P5 0

24 P4 0

25 P3 0

26 P2 0

27 P1 0

28 P0 0

29 ArbID3 0 Arbitration ID 3 -0 

30 ArbID2 0

31 ArbID1 0

32 ArbID0 0

33 A2 A2 Status Cycle

34 0 0 Idle

Table 10-3.  Non-Focused Lowest Priority Message (34 Cycles) (Contd.)

Cycle Bit0 Bit1
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10.13.2.3  APIC Bus Status Cycles
Certain cycles within an APIC bus message are status cycles. During these cycles the 
status flags (A:A) and (A1:A1) are examined. Table 10-4 shows how these status 
flags are interpreted, depending on the current delivery mode and existence of a 
focus processor.

Table 10-4.  APIC Bus Status Cycles Interpretation
Delivery
Mode

A Status A1 Status A2 Status Update 
ArbID and 
Cycle#

Message 
Length

Retry

EOI 00: CS_OK 10: Accept XX: Yes, 13 14 Cycle No

00: CS_OK 11: Retry XX: Yes, 13 14 Cycle Yes

00: CS_OK 0X: Accept 
Error

XX: No 14 Cycle Yes

11: CS_Error XX: XX: No 14 Cycle Yes

10: Error XX: XX: No 14 Cycle Yes

01: Error XX: XX: No 14 Cycle Yes

Fixed 00: CS_OK 10: Accept XX: Yes, 20 21 Cycle No

00: CS_OK 11: Retry XX: Yes, 20 21 Cycle Yes

00: CS_OK 0X: Accept 
Error

XX: No 21 Cycle Yes

11: CS_Error XX: XX: No 21 Cycle Yes

10: Error XX: XX: No 21 Cycle Yes

01: Error XX: XX: No 21 Cycle Yes

NMI, SMI, INIT, 
ExtINT,
Start-Up

00: CS_OK 10: Accept XX: Yes, 20 21 Cycle No

00: CS_OK 11: Retry XX: Yes, 20 21 Cycle Yes

00: CS_OK 0X: Accept 
Error

XX: No 21 Cycle Yes

11: CS_Error XX: XX: No 21 Cycle Yes

10: Error XX: XX: No 21 Cycle Yes

01: Error XX: XX: No 21 Cycle Yes
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Lowest 00: CS_OK, 
NoFocus

11: Do Lowest 10: Accept Yes, 20 34 Cycle No

00: CS_OK, 
NoFocus

11: Do Lowest 11: Error Yes, 20 34 Cycle Yes

00: CS_OK, 
NoFocus

11: Do Lowest 0X: Error Yes, 20 34 Cycle Yes

00: CS_OK, 
NoFocus

10: End and 
Retry

XX: Yes, 20 34 Cycle Yes

00: CS_OK, 
NoFocus

0X: Error XX: No 34 Cycle Yes

10: CS_OK, 
Focus

XX: XX: Yes, 20 34 Cycle No

11: CS_Error XX: XX: No 21 Cycle Yes

01: Error XX: XX: No 21 Cycle Yes

Table 10-4.  APIC Bus Status Cycles Interpretation (Contd.)
Delivery
Mode

A Status A1 Status A2 Status Update 
ArbID and 
Cycle#

Message 
Length

Retry
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CHAPTER 11
MEMORY CACHE CONTROL

This chapter describes the memory cache and cache control mechanisms, the TLBs, 
and the store buffer in Intel 64 and IA-32 processors. It also describes the memory 
type range registers (MTRRs) introduced in the P6 family processors and how they 
are used to control caching of physical memory locations.

11.1 INTERNAL CACHES, TLBS, AND BUFFERS
The Intel 64 and IA-32 architectures support cache, translation look aside buffers 
(TLBs), and a store buffer for temporary on-chip (and external) storage of instruc-
tions and data. (Figure 11-1 shows the arrangement of caches, TLBs, and the store 
buffer for the Pentium 4 and Intel Xeon processors.) Table 11-1 shows the character-
istics of these caches and buffers for the Pentium 4, Intel Xeon, P6 family, and 
Pentium processors. The sizes and characteristics of these units are machine 
specific and may change in future versions of the processor. The CPUID 
instruction returns the sizes and characteristics of the caches and buffers for the 
processor on which the instruction is executed. See “CPUID—CPU Identification” in 
Chapter 3, “Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 2A.

Figure 11-1.  Cache Structure of the Pentium 4 and Intel Xeon Processors
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Figure 11-2 shows the cache arrangement of Intel Core i7 processor.

Figure 11-2.  Cache Structure of the Intel Core i7 Processors

Table 11-1.  Characteristics of the Caches, TLBs, Store Buffer, and 
Write Combining Buffer in Intel 64 and IA-32 Processors

Cache or Buffer Characteristics

Trace Cache1 • Pentium 4 and Intel Xeon processors (Based on Intel NetBurst® 
microarchitecture): 12 Kμops, 8-way set associative.

• Intel Core i7, Intel Core 2 Duo, Intel® Atom™, Intel Core Duo, Intel Core 
Solo, Pentium M processor: not implemented.

• P6 family and Pentium processors: not implemented.

L1 Instruction Cache • Pentium 4 and Intel Xeon processors (Based on Intel NetBurst 
microarchitecture): not implemented.

• Intel Core i7 processor: 32-KByte, 4-way set associative.
• Intel Core 2 Duo, Intel Atom, Intel Core Duo, Intel Core Solo, Pentium M 

processor: 32-KByte, 8-way set associative.
• P6 family and Pentium processors: 8- or 16-KByte, 4-way set associative, 

32-byte cache line size; 2-way set associative for earlier Pentium 
processors.
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L1 Data Cache • Pentium 4 and Intel Xeon processors (Based on Intel NetBurst 
microarchitecture): 8-KByte, 4-way set associative, 64-byte cache line 
size.

• Pentium 4 and Intel Xeon processors (Based on Intel NetBurst 
microarchitecture): 16-KByte, 8-way set associative, 64-byte cache line 
size.

• Intel Atom processors: 24-KByte, 6-way set associative, 64-byte cache 
line size.

• Intel Core i7, Intel Core 2 Duo, Intel Core Duo, Intel Core Solo, Pentium M 
and Intel Xeon processors: 32-KByte, 8-way set associative, 64-byte 
cache line size.

• P6 family processors: 16-KByte, 4-way set associative, 32-byte cache 
line size; 8-KBytes, 2-way set associative for earlier P6 family 
processors.

• Pentium processors: 16-KByte, 4-way set associative, 32-byte cache line 
size; 8-KByte, 2-way set associative for earlier Pentium processors.

L2 Unified Cache • Intel Core 2 Duo and Intel Xeon processors: up to 4-MByte (or 4MBx2 in 
quadcore processors), 16-way set associative, 64-byte cache line size.

• Intel Core 2 Duo and Intel Xeon processors: up to 6-MByte (or 6MBx2 in 
quadcore processors), 24-way set associative, 64-byte cache line size.

• Intel Core i7, i5, i3 processors: 256KBbyte, 8-way set associative, 
64-byte cache line size.

• Intel Atom processors: 512-KByte, 8-way set associative, 64-byte cache 
line size.

• Intel Core Duo, Intel Core Solo processors: 2-MByte, 8-way set 
associative, 64-byte cache line size 

• Pentium 4 and Intel Xeon processors: 256, 512, 1024, or 2048-KByte, 8-
way set associative, 64-byte cache line size, 128-byte sector size.

• Pentium M processor: 1 or 2-MByte, 8-way set associative, 64-byte 
cache line size.

• P6 family processors: 128-KByte, 256-KByte, 512-KByte, 1-MByte, or 2-
MByte, 4-way set associative, 32-byte cache line size.

• Pentium processor (external optional): System specific, typically 256- or 
512-KByte, 4-way set associative, 32-byte cache line size.

L3 Unified Cache • Intel Xeon processors: 512-KByte, 1-MByte, 2-MByte, or 4-MByte, 8-way 
set associative, 64-byte cache line size, 128-byte sector size.

• Intel Core i7 processor, Intel Xeon processor 5500: Up to 8MByte, 16-
way set associative, 64-byte cache line size.

• Intel Xeon processor 5600: Up to 12MByte, 64-byte cache line size.
• Intel Xeon processor 7500: Up to 24MByte, 64-byte cache line size.

Table 11-1.  Characteristics of the Caches, TLBs, Store Buffer, and 
Write Combining Buffer in Intel 64 and IA-32 Processors (Contd.)

Cache or Buffer Characteristics
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Instruction TLB
(4-KByte Pages)

• Pentium 4 and Intel Xeon processors (Based on Intel NetBurst 
microarchitecture): 128 entries, 4-way set associative.

• Intel Atom processors: 32-entries, fully associative.
• Intel Core i7, i5, i3 processors: 64-entries per thread (128-entries per 

core), 4-way set associative.
• Intel Core 2 Duo, Intel Core Duo, Intel Core Solo processors, Pentium M 

processor: 128 entries, 4-way set associative.
• P6 family processors: 32 entries, 4-way set associative.
• Pentium processor: 32 entries, 4-way set associative; fully set 

associative for Pentium processors with MMX technology.

Data TLB (4-KByte 
Pages)

• Intel Core i7, i5, i3 processors, DTLB0: 64-entries, 4-way set associative.
• Intel Core 2 Duo processors: DTLB0, 16 entries, DTLB1, 256 entries, 4 

ways.
• Intel Atom processors: 16-entry-per-thread micro-TLB, fully associative; 

64-entry DTLB, 4-way set associative; 16-entry PDE cache, fully 
associative.

• Pentium 4 and Intel Xeon processors (Based on Intel NetBurst 
microarchitecture): 64 entry, fully set associative, shared with large page 
DTLB.

• Intel Core Duo, Intel Core Solo processors, Pentium M processor: 128 
entries, 4-way set associative.

• Pentium and P6 family processors: 64 entries, 4-way set associative; 
fully set, associative for Pentium processors with MMX technology.

Instruction TLB 
(Large Pages)

• Intel Core i7, i5, i3 processors: 7-entries per thread, fully associative.
• Intel Core 2 Duo processors: 4 entries, 4 ways.
• Pentium 4 and Intel Xeon processors: large pages are fragmented.
• Intel Core Duo, Intel Core Solo, Pentium M processor: 2 entries, fully 

associative.
• P6 family processors: 2 entries, fully associative.
• Pentium processor: Uses same TLB as used for 4-KByte pages.

Data TLB (Large 
Pages)

• Intel Core i7, i5, i3 processors, DTLB0: 32-entries, 4-way set associative.
• Intel Core 2 Duo processors: DTLB0, 16 entries, DTLB1, 32 entries, 4 

ways.
• Intel Atom processors: 8 entries, 4-way set associative.
• Pentium 4 and Intel Xeon processors: 64 entries, fully set associative; 

shared with small page data TLBs.
• Intel Core Duo, Intel Core Solo, Pentium M processor: 8 entries, fully 

associative.
• P6 family processors: 8 entries, 4-way set associative.
• Pentium processor: 8 entries, 4-way set associative; uses same TLB as 

used for 4-KByte pages in Pentium processors with MMX technology.

Second-level Unified 
TLB (4-KByte 
Pages)

• Intel Core i7, i5, i3 processor, STLB: 512-entries, 4-way set associative.

Table 11-1.  Characteristics of the Caches, TLBs, Store Buffer, and 
Write Combining Buffer in Intel 64 and IA-32 Processors (Contd.)

Cache or Buffer Characteristics
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Intel 64 and IA-32 processors may implement four types of caches: the trace cache, 
the level 1 (L1) cache, the level 2 (L2) cache, and the level 3 (L3) cache. See 
Figure 11-1. Cache availability is described below:
• Intel Core i7, i5, i3 processor Family and Intel Xeon processor Family 

based on Intel® microarchitecture code name Nehalem and Intel® 
microarchitecture code name Westmere — The L1 cache is divided into two 
sections: one section is dedicated to caching instructions (pre-decoded instruc-
tions) and the other caches data. The L2 cache is a unified data and instruction 
cache. Each processor core has its own L1 and L2. The L3 cache is an inclusive, 
unified data and instruction cache, shared by all processor cores inside a physical 
package. No trace cache is implemented.

• Intel® Core™ 2 processor family and Intel® Xeon® processor family 
based on Intel® Core™ microarchitecture — The L1 cache is divided into two 
sections: one section is dedicated to caching instructions (pre-decoded instruc-
tions) and the other caches data. The L2 cache is a unified data and instruction 
cache located on the processor chip; it is shared between two processor cores in 
a dual-core processor implementation. Quad-core processors have two L2, each 
shared by two processor cores. No trace cache is implemented.

• Intel® Atom™ processor — The L1 cache is divided into two sections: one 
section is dedicated to caching instructions (pre-decoded instructions) and the 
other caches data. The L2 cache is a unified data and instruction cache is located 
on the processor chip. No trace cache is implemented.

• Intel® Core™ Solo and Intel® Core™ Duo processors — The L1 cache is 
divided into two sections: one section is dedicated to caching instructions (pre-
decoded instructions) and the other caches data. The L2 cache is a unified data 
and instruction cache located on the processor chip. It is shared between two 

Store Buffer • Intel Core i7, i5, i3 processors: 32entries.
• Intel Core 2 Duo processors: 20 entries.
• Intel Atom processors: 8 entries, used for both WC and store buffers.
• Pentium 4 and Intel Xeon processors: 24 entries.
• Pentium M processor: 16 entries.
• P6 family processors: 12 entries.
• Pentium processor: 2 buffers, 1 entry each (Pentium processors with 

MMX technology have 4 buffers for 4 entries).

Write Combining 
(WC) Buffer

• Intel Core 2 Duo processors: 8 entries.
• Intel Atom processors: 8 entries, used for both WC and store buffers.
• Pentium 4 and Intel Xeon processors: 6 or 8 entries.
• Intel Core Duo, Intel Core Solo, Pentium M processors: 6 entries.
• P6 family processors: 4 entries.

NOTES:
1 Introduced to the IA-32 architecture in the Pentium 4 and Intel Xeon processors.

Table 11-1.  Characteristics of the Caches, TLBs, Store Buffer, and 
Write Combining Buffer in Intel 64 and IA-32 Processors (Contd.)

Cache or Buffer Characteristics
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processor cores in a dual-core processor implementation. No trace cache is 
implemented.

• Pentium® 4 and Intel® Xeon® processors Based on Intel NetBurst® 
microarchitecture — The trace cache caches decoded instructions (μops) from 
the instruction decoder and the L1 cache contains data. The L2 and L3 caches are 
unified data and instruction caches located on the processor chip. Dualcore 
processors have two L2, one in each processor core. Note that the L3 cache is 
only implemented on some Intel Xeon processors.

• P6 family processors — The L1 cache is divided into two sections: one 
dedicated to caching instructions (pre-decoded instructions) and the other to 
caching data. The L2 cache is a unified data and instruction cache located on the 
processor chip. P6 family processors do not implement a trace cache.

• Pentium® processors — The L1 cache has the same structure as on P6 family 
processors. There is no trace cache. The L2 cache is a unified data and instruction 
cache external to the processor chip on earlier Pentium processors and 
implemented on the processor chip in later Pentium processors. For Pentium 
processors where the L2 cache is external to the processor, access to the cache is 
through the system bus.

For Intel Core i7 processors and processors based on Intel Core, Intel Atom, and Intel 
NetBurst microarchitectures, Intel Core Duo, Intel Core Solo and Pentium M proces-
sors, the cache lines for the L1 and L2 caches (and L3 caches if supported) are 64 
bytes wide. The processor always reads a cache line from system memory beginning 
on a 64-byte boundary. (A 64-byte aligned cache line begins at an address with its 6 
least-significant bits clear.) A cache line can be filled from memory with a 8-transfer 
burst transaction. The caches do not support partially-filled cache lines, so caching 
even a single doubleword requires caching an entire line.

The L1 and L2 cache lines in the P6 family and Pentium processors are 32 bytes wide, 
with cache line reads from system memory beginning on a 32-byte boundary (5 
least-significant bits of a memory address clear.) A cache line can be filled from 
memory with a 4-transfer burst transaction. Partially-filled cache lines are not 
supported.

The trace cache in processors based on Intel NetBurst microarchitecture is available 
in all execution modes: protected mode, system management mode (SMM), and 
real-address mode. The L1,L2, and L3 caches are also available in all execution 
modes; however, use of them must be handled carefully in SMM (see Section 33.4.2, 
“SMRAM Caching”).

The TLBs store the most recently used page-directory and page-table entries. They 
speed up memory accesses when paging is enabled by reducing the number of 
memory accesses that are required to read the page tables stored in system 
memory. The TLBs are divided into four groups: instruction TLBs for 4-KByte pages, 
data TLBs for 4-KByte pages; instruction TLBs for large pages (2-MByte, 4-MByte or 
1-GByte pages), and data TLBs for large pages. The TLBs are normally active only in 
protected mode with paging enabled. When paging is disabled or the processor is in 
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real-address mode, the TLBs maintain their contents until explicitly or implicitly 
flushed (see Section 11.9, “Invalidating the Translation Lookaside Buffers (TLBs)”).

Processors based on Intel Core microarchitectures implement one level of instruction 
TLB and two levels of data TLB. Intel Core i7 processor provides a second-level 
unified TLB. 

The store buffer is associated with the processors instruction execution units. It 
allows writes to system memory and/or the internal caches to be saved and in some 
cases combined to optimize the processor’s bus accesses. The store buffer is always 
enabled in all execution modes.

The processor’s caches are for the most part transparent to software. When enabled, 
instructions and data flow through these caches without the need for explicit soft-
ware control. However, knowledge of the behavior of these caches may be useful in 
optimizing software performance. For example, knowledge of cache dimensions and 
replacement algorithms gives an indication of how large of a data structure can be 
operated on at once without causing cache thrashing.

In multiprocessor systems, maintenance of cache consistency may, in rare circum-
stances, require intervention by system software. For these rare cases, the processor 
provides privileged cache control instructions for use in flushing caches and forcing 
memory ordering.

The Pentium III, Pentium 4, and Intel Xeon processors introduced several instructions 
that software can use to improve the performance of the L1, L2, and L3 caches, 
including the PREFETCHh and CLFLUSH instructions and the non-temporal move 
instructions (MOVNTI, MOVNTQ, MOVNTDQ, MOVNTPS, and MOVNTPD). The use of 
these instructions are discussed in Section 11.5.5, “Cache Management Instruc-
tions.”

11.2 CACHING TERMINOLOGY
IA-32 processors (beginning with the Pentium processor) and Intel 64 processors use 
the MESI (modified, exclusive, shared, invalid) cache protocol to maintain consis-
tency with internal caches and caches in other processors (see Section 11.4, “Cache 
Control Protocol”).

When the processor recognizes that an operand being read from memory is cache-
able, the processor reads an entire cache line into the appropriate cache (L1, L2, L3, 
or all). This operation is called a cache line fill. If the memory location containing 
that operand is still cached the next time the processor attempts to access the 
operand, the processor can read the operand from the cache instead of going back to 
memory. This operation is called a cache hit. 

When the processor attempts to write an operand to a cacheable area of memory, it 
first checks if a cache line for that memory location exists in the cache. If a valid 
cache line does exist, the processor (depending on the write policy currently in force) 
can write the operand into the cache instead of writing it out to system memory. This 
operation is called a write hit. If a write misses the cache (that is, a valid cache line 
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is not present for area of memory being written to), the processor performs a cache 
line fill, write allocation. Then it writes the operand into the cache line and 
(depending on the write policy currently in force) can also write it out to memory. If 
the operand is to be written out to memory, it is written first into the store buffer, and 
then written from the store buffer to memory when the system bus is available. 
(Note that for the Pentium processor, write misses do not result in a cache line fill; 
they always result in a write to memory. For this processor, only read misses result in 
cache line fills.)

When operating in an MP system, IA-32 processors (beginning with the Intel486 
processor) and Intel 64 processors have the ability to snoop other processor’s 
accesses to system memory and to their internal caches. They use this snooping 
ability to keep their internal caches consistent both with system memory and with 
the caches in other processors on the bus. For example, in the Pentium and P6 family 
processors, if through snooping one processor detects that another processor 
intends to write to a memory location that it currently has cached in shared state, 
the snooping processor will invalidate its cache line forcing it to perform a cache line 
fill the next time it accesses the same memory location. 

Beginning with the P6 family processors, if a processor detects (through snooping) 
that another processor is trying to access a memory location that it has modified in 
its cache, but has not yet written back to system memory, the snooping processor 
will signal the other processor (by means of the HITM# signal) that the cache line is 
held in modified state and will preform an implicit write-back of the modified data. 
The implicit write-back is transferred directly to the initial requesting processor and 
snooped by the memory controller to assure that system memory has been updated. 
Here, the processor with the valid data may pass the data to the other processors 
without actually writing it to system memory; however, it is the responsibility of the 
memory controller to snoop this operation and update memory.

11.3 METHODS OF CACHING AVAILABLE
The processor allows any area of system memory to be cached in the L1, L2, and L3 
caches. In individual pages or regions of system memory, it allows the type of 
caching (also called memory type) to be specified (see Section 11.5). Memory types 
currently defined for the Intel 64 and IA-32 architectures are (see Table 11-2):
• Strong Uncacheable (UC) —System memory locations are not cached. All 

reads and writes appear on the system bus and are executed in program order 
without reordering. No speculative memory accesses, page-table walks, or 
prefetches of speculated branch targets are made. This type of cache-control is 
useful for memory-mapped I/O devices. When used with normal RAM, it greatly 
reduces processor performance.

NOTE
The behavior of FP and SSE/SSE2 operations on operands in UC 
memory is implementation dependent. In some implementations, 
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accesses to UC memory may occur more than once. To ensure 
predictable behavior, use loads and stores of general purpose 
registers to access UC memory that may have read or write side 
effects.

• Uncacheable (UC-) — Has same characteristics as the strong uncacheable (UC) 
memory type, except that this memory type can be overridden by programming 
the MTRRs for the WC memory type. This memory type is available in processor 
families starting from the Pentium III processors and can only be selected through 
the PAT.

• Write Combining (WC) — System memory locations are not cached (as with 
uncacheable memory) and coherency is not enforced by the processor’s bus 
coherency protocol. Speculative reads are allowed. Writes may be delayed and 
combined in the write combining buffer (WC buffer) to reduce memory accesses. 
If the WC buffer is partially filled, the writes may be delayed until the next 
occurrence of a serializing event; such as, an SFENCE or MFENCE instruction, 
CPUID execution, a read or write to uncached memory, an interrupt occurrence, 
or a LOCK instruction execution. This type of cache-control is appropriate for 
video frame buffers, where the order of writes is unimportant as long as the 
writes update memory so they can be seen on the graphics display. See Section 
11.3.1, “Buffering of Write Combining Memory Locations,” for more information 
about caching the WC memory type. This memory type is available in the 
Pentium Pro and Pentium II processors by programming the MTRRs; or in 
processor families starting from the Pentium III processors by programming the 
MTRRs or by selecting it through the PAT.

Table 11-2.  Memory Types and Their Properties

Memory Type and 
Mnemonic

Cacheable Writeback 
Cacheable

Allows
Speculative 
Reads

Memory Ordering Model

Strong Uncacheable 
(UC)

No No No Strong Ordering

Uncacheable (UC-) No No No Strong Ordering. Can only be 
selected through the PAT. Can 
be overridden by WC in MTRRs.

Write Combining (WC) No No Yes Weak Ordering. Available by 
programming MTRRs or by 
selecting it through the PAT.

Write Through (WT) Yes No Yes Speculative Processor Ordering.

Write Back (WB) Yes Yes Yes Speculative Processor Ordering.

Write Protected (WP) Yes for 
reads; no for 
writes

No Yes Speculative Processor Ordering. 
Available by programming 
MTRRs.
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• Write-through (WT) — Writes and reads to and from system memory are 
cached. Reads come from cache lines on cache hits; read misses cause cache 
fills. Speculative reads are allowed. All writes are written to a cache line (when 
possible) and through to system memory. When writing through to memory, 
invalid cache lines are never filled, and valid cache lines are either filled or inval-
idated. Write combining is allowed. This type of cache-control is appropriate for 
frame buffers or when there are devices on the system bus that access system 
memory, but do not perform snooping of memory accesses. It enforces 
coherency between caches in the processors and system memory.

• Write-back (WB) — Writes and reads to and from system memory are cached. 
Reads come from cache lines on cache hits; read misses cause cache fills. 
Speculative reads are allowed. Write misses cause cache line fills (in processor 
families starting with the P6 family processors), and writes are performed 
entirely in the cache, when possible. Write combining is allowed. The write-back 
memory type reduces bus traffic by eliminating many unnecessary writes to 
system memory. Writes to a cache line are not immediately forwarded to system 
memory; instead, they are accumulated in the cache. The modified cache lines 
are written to system memory later, when a write-back operation is performed. 
Write-back operations are triggered when cache lines need to be deallocated, 
such as when new cache lines are being allocated in a cache that is already full. 
They also are triggered by the mechanisms used to maintain cache consistency. 
This type of cache-control provides the best performance, but it requires that all 
devices that access system memory on the system bus be able to snoop memory 
accesses to insure system memory and cache coherency.

• Write protected (WP) — Reads come from cache lines when possible, and read 
misses cause cache fills. Writes are propagated to the system bus and cause 
corresponding cache lines on all processors on the bus to be invalidated. 
Speculative reads are allowed. This memory type is available in processor 
families starting from the P6 family processors by programming the MTRRs (see 
Table 11-6).

Table 11-3 shows which of these caching methods are available in the Pentium, P6 
Family, Pentium 4, and Intel Xeon processors.

Table 11-3.  Methods of Caching Available in Intel Core 2 Duo, Intel Atom, Intel Core 
Duo, Pentium M, Pentium 4, Intel Xeon, P6 Family, and Pentium Processors

Memory Type Intel Core 2 Duo, Intel Atom, Intel 
Core Duo, Pentium M, Pentium 4 
and Intel Xeon Processors

P6 Family 
Processors

Pentium 
Processor

Strong Uncacheable (UC) Yes Yes Yes

Uncacheable (UC-) Yes Yes* No

Write Combining (WC) Yes Yes No

Write Through (WT) Yes Yes Yes

Write Back (WB) Yes Yes Yes
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11.3.1 Buffering of Write Combining Memory Locations
Writes to the WC memory type are not cached in the typical sense of the word 
cached. They are retained in an internal write combining buffer (WC buffer) that is 
separate from the internal L1, L2, and L3 caches and the store buffer. The WC buffer 
is not snooped and thus does not provide data coherency. Buffering of writes to WC 
memory is done to allow software a small window of time to supply more modified 
data to the WC buffer while remaining as non-intrusive to software as possible. The 
buffering of writes to WC memory also causes data to be collapsed; that is, multiple 
writes to the same memory location will leave the last data written in the location and 
the other writes will be lost.

The size and structure of the WC buffer is not architecturally defined. For the Intel 
Core 2 Duo, Intel Atom, Intel Core Duo, Pentium M, Pentium 4 and Intel Xeon proces-
sors; the WC buffer is made up of several 64-byte WC buffers. For the P6 family 
processors, the WC buffer is made up of several 32-byte WC buffers. 

When software begins writing to WC memory, the processor begins filling the WC 
buffers one at a time. When one or more WC buffers has been filled, the processor 
has the option of evicting the buffers to system memory. The protocol for evicting the 
WC buffers is implementation dependent and should not be relied on by software for 
system memory coherency. When using the WC memory type, software must be 
sensitive to the fact that the writing of data to system memory is being delayed and 
must deliberately empty the WC buffers when system memory coherency is 
required.

Once the processor has started to evict data from the WC buffer into system 
memory, it will make a bus-transaction style decision based on how much of the 
buffer contains valid data. If the buffer is full (for example, all bytes are valid), the 
processor will execute a burst-write transaction on the bus. This results in all 32 
bytes (P6 family processors) or 64 bytes (Pentium 4 and more recent processor) 
being transmitted on the data bus in a single burst transaction. If one or more of the 
WC buffer’s bytes are invalid (for example, have not been written by software), the 
processor will transmit the data to memory using “partial write” transactions (one 
chunk at a time, where a “chunk” is 8 bytes). 

Write Protected (WP) Yes Yes No

NOTE:
* Introduced in the Pentium III processor; not available in the Pentium Pro or Pentium II processors

Table 11-3.  Methods of Caching Available in Intel Core 2 Duo, Intel Atom, Intel Core 
Duo, Pentium M, Pentium 4, Intel Xeon, P6 Family, and Pentium Processors (Contd.)

Memory Type Intel Core 2 Duo, Intel Atom, Intel 
Core Duo, Pentium M, Pentium 4 
and Intel Xeon Processors

P6 Family 
Processors

Pentium 
Processor
Vol. 3A 11-11



MEMORY CACHE CONTROL
This will result in a maximum of 4 partial write transactions (for P6 family processors) 
or 8 partial write transactions (for the Pentium 4 and more recent processors) for one 
WC buffer of data sent to memory. 

The WC memory type is weakly ordered by definition. Once the eviction of a WC 
buffer has started, the data is subject to the weak ordering semantics of its defini-
tion. Ordering is not maintained between the successive allocation/deallocation of 
WC buffers (for example, writes to WC buffer 1 followed by writes to WC buffer 2 may 
appear as buffer 2 followed by buffer 1 on the system bus). When a WC buffer is 
evicted to memory as partial writes there is no guaranteed ordering between succes-
sive partial writes (for example, a partial write for chunk 2 may appear on the bus 
before the partial write for chunk 1 or vice versa). 

The only elements of WC propagation to the system bus that are guaranteed are 
those provided by transaction atomicity. For example, with a P6 family processor, a 
completely full WC buffer will always be propagated as a single 32-bit burst transac-
tion using any chunk order. In a WC buffer eviction where data will be evicted as 
partials, all data contained in the same chunk (0 mod 8 aligned) will be propagated 
simultaneously. Likewise, for more recent processors starting with those based on 
Intel NetBurst microarchitectures, a full WC buffer will always be propagated as a 
single burst transactions, using any chunk order within a transaction. For partial 
buffer propagations, all data contained in the same chunk will be propagated simul-
taneously.

11.3.2 Choosing a Memory Type
The simplest system memory model does not use memory-mapped I/O with read or 
write side effects, does not include a frame buffer, and uses the write-back memory 
type for all memory. An I/O agent can perform direct memory access (DMA) to write-
back memory and the cache protocol maintains cache coherency.

A system can use strong uncacheable memory for other memory-mapped I/O, and 
should always use strong uncacheable memory for memory-mapped I/O with read 
side effects.

Dual-ported memory can be considered a write side effect, making relatively prompt 
writes desirable, because those writes cannot be observed at the other port until they 
reach the memory agent. A system can use strong uncacheable, uncacheable, write-
through, or write-combining memory for frame buffers or dual-ported memory that 
contains pixel values displayed on a screen. Frame buffer memory is typically large (a 
few megabytes) and is usually written more than it is read by the processor. Using 
strong uncacheable memory for a frame buffer generates very large amounts of bus 
traffic, because operations on the entire buffer are implemented using partial writes 
rather than line writes. Using write-through memory for a frame buffer can displace 
almost all other useful cached lines in the processor's L2 and L3 caches and L1 data 
cache. Therefore, systems should use write-combining memory for frame buffers 
whenever possible.
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Software can use page-level cache control, to assign appropriate effective memory 
types when software will not access data structures in ways that benefit from write-
back caching. For example, software may read a large data structure once and not 
access the structure again until the structure is rewritten by another agent. Such a 
large data structure should be marked as uncacheable, or reading it will evict cached 
lines that the processor will be referencing again. 

A similar example would be a write-only data structure that is written to (to export 
the data to another agent), but never read by software. Such a structure can be 
marked as uncacheable, because software never reads the values that it writes 
(though as uncacheable memory, it will be written using partial writes, while as 
write-back memory, it will be written using line writes, which may not occur until the 
other agent reads the structure and triggers implicit write-backs).

On the Pentium III, Pentium 4, and more recent processors, new instructions are 
provided that give software greater control over the caching, prefetching, and the 
write-back characteristics of data. These instructions allow software to use weakly 
ordered or processor ordered memory types to improve processor performance, but 
when necessary to force strong ordering on memory reads and/or writes. They also 
allow software greater control over the caching of data. For a description of these 
instructions and there intended use, see Section 11.5.5, “Cache Management 
Instructions.”

11.3.3 Code Fetches in Uncacheable Memory
Programs may execute code from uncacheable (UC) memory, but the implications 
are different from accessing data in UC memory. When doing code fetches, the 
processor never transitions from cacheable code to UC code speculatively. It also 
never speculatively fetches branch targets that result in UC code.

The processor may fetch the same UC cache line multiple times in order to decode an 
instruction once. It may decode consecutive UC instructions in a cacheline without 
fetching between each instruction. It may also fetch additional cachelines from the 
same or a consecutive 4-KByte page in order to decode one non-speculative UC 
instruction (this can be true even when the instruction is contained fully in one line).  

Because of the above and because cacheline sizes may change in future processors, 
software should avoid placing memory-mapped I/O with read side effects in the 
same page or in a subsequent page used to execute UC code.

11.4 CACHE CONTROL PROTOCOL
The following section describes the cache control protocol currently defined for the 
Intel 64 and IA-32 architectures. 

In the L1 data cache and in the L2/L3 unified caches, the MESI (modified, exclusive, 
shared, invalid) cache protocol maintains consistency with caches of other proces-
sors. The L1 data cache and the L2/L3 unified caches have two MESI status flags per 
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cache line. Each line can be marked as being in one of the states defined in Table 
11-4. In general, the operation of the MESI protocol is transparent to programs.

The L1 instruction cache in P6 family processors implements only the “SI” part of the 
MESI protocol, because the instruction cache is not writable. The instruction cache 
monitors changes in the data cache to maintain consistency between the caches 
when instructions are modified. See Section 11.6, “Self-Modifying Code,” for more 
information on the implications of caching instructions.

11.5 CACHE CONTROL
The Intel 64 and IA-32 architectures provide a variety of mechanisms for controlling 
the caching of data and instructions and for controlling the ordering of reads and 
writes between the processor, the caches, and memory. These mechanisms can be 
divided into two groups:
• Cache control registers and bits — The Intel 64 and IA-32 architectures 

define several dedicated registers and various bits within control registers and 
page- and directory-table entries that control the caching system memory 
locations in the L1, L2, and L3 caches. These mechanisms control the caching of 
virtual memory pages and of regions of physical memory.

• Cache control and memory ordering instructions — The Intel 64 and IA-32 
architectures provide several instructions that control the caching of data, the 
ordering of memory reads and writes, and the prefetching of data. These instruc-
tions allow software to control the caching of specific data structures, to control 
memory coherency for specific locations in memory, and to force strong memory 
ordering at specific locations in a program.

The following sections describe these two groups of cache control mechanisms.

Table 11-4.  MESI Cache Line States

Cache Line State M (Modified) E (Exclusive) S (Shared) I (Invalid)

This cache line is valid? Yes Yes Yes No

The memory copy is… Out of date Valid Valid —

Copies exist in caches 
of other processors?

No No Maybe Maybe

A write to this line … Does not go to 
the system bus.

Does not go to 
the system bus.

Causes the 
processor to gain 
exclusive 
ownership of the 
line.

Goes directly to 
the system bus.
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11.5.1 Cache Control Registers and Bits
Figure 11-3 depicts cache-control mechanisms in IA-32 processors. Other than for 
the matter of memory address space, these work the same in Intel 64 processors.

The Intel 64 and IA-32 architectures provide the following cache-control registers 
and bits for use in enabling or restricting caching to various pages or regions in 
memory:
• CD flag, bit 30 of control register CR0 — Controls caching of system memory 

locations (see Section 2.5, “Control Registers”). If the CD flag is clear, caching is 
enabled for the whole of system memory, but may be restricted for individual 
pages or regions of memory by other cache-control mechanisms. When the CD 
flag is set, caching is restricted in the processor’s caches (cache hierarchy) for 
the P6 and more recent processor families and prevented for the Pentium 
processor (see note below). With the CD flag set, however, the caches will still 
respond to snoop traffic. Caches should be explicitly flushed to insure memory 
coherency. For highest processor performance, both the CD and the NW flags in 
control register CR0 should be cleared. Table 11-5 shows the interaction of the 
CD and NW flags.
The effect of setting the CD flag is somewhat different for processor families 
starting with P6 family than the Pentium processor (see Table 11-5). To insure 
memory coherency after the CD flag is set, the caches should be explicitly 
flushed (see Section 11.5.3, “Preventing Caching”). Setting the CD flag for the 
P6 and more recent processor families modify cache line fill and update 
behaviour. Also, setting the CD flag on these processors do not force strict 
ordering of memory accesses unless the MTRRs are disabled and/or all memory 
is referenced as uncached (see Section 8.2.5, “Strengthening or Weakening the 
Memory-Ordering Model”).
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Figure 11-3.  Cache-Control Registers and Bits Available in Intel 64 and IA-32 
Processors
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3. MTRRs available only in P6 and later processor families;
 similar control available in Pentium processor with the KEN#
 and WB/WT# pins.

2. The maximum physical address size is reported by CPUID leaf
function 80000008H. The maximum physical address size of

PAT4

PAT controls caching
of virtual memory
pages

4. PAT available only in Pentium III and later processor families.

P4

A
T

FFFFFFFFFH applies only If 36-bit physical addressing is used.

5. L3 in processors based on Intel NetBurst microarchitecture can
be disabled using IA32_MISC_ENABLE MSR.
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Table 11-5.  Cache Operating Modes 

CD NW Caching and Read/Write Policy L1 L2/L31

0 0 Normal Cache Mode. Highest performance cache operation.

• Read hits access the cache; read misses may cause replacement.
• Write hits update the cache.
• Only writes to shared lines and write misses update system 

memory.

Yes
Yes
Yes

Yes
Yes
Yes

• Write misses cause cache line fills.
• Write hits can change shared lines to modified under control of 

the MTRRs and with associated read invalidation cycle.
• (Pentium processor only.) Write misses do not cause cache line 

fills.

Yes
Yes

Yes

Yes

• (Pentium processor only.) Write hits can change shared lines to 
exclusive under control of WB/WT#.

• Invalidation is allowed.
• External snoop traffic is supported.

Yes

Yes
Yes

Yes
Yes

0 1 Invalid setting.

Generates a general-protection exception (#GP) with an error code 
of 0.

NA NA

1 0 No-fill Cache Mode. Memory coherency is maintained.3

• (Pentium 4 and later processor families.) State of processor after 
a power up or reset.

• Read hits access the cache; read misses do not cause 
replacement (see Pentium 4 and Intel Xeon processors reference 
below).

• Write hits update the cache. 
• Only writes to shared lines and write misses update system 

memory.

Yes

Yes

Yes
Yes

Yes

Yes

Yes
Yes

• Write misses access memory.
• Write hits can change shared lines to exclusive under control of 

the MTRRs and with associated read invalidation cycle.
• (Pentium processor only.) Write hits can change shared lines to 

exclusive under control of the WB/WT#.

Yes
Yes

Yes

Yes
Yes

1 0 • (P6 and later processor families only.) Strict memory ordering is 
not enforced unless the MTRRs are disabled and/or all memory is 
referenced as uncached (see Section 7.2.4., “Strengthening or 
Weakening the Memory Ordering Model”).

• Invalidation is allowed.
• External snoop traffic is supported.

Yes

Yes
Yes

Yes

Yes
Yes
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• NW flag, bit 29 of control register CR0 — Controls the write policy for system 
memory locations (see Section 2.5, “Control Registers”). If the NW and CD flags 
are clear, write-back is enabled for the whole of system memory, but may be 
restricted for individual pages or regions of memory by other cache-control 
mechanisms. Table 11-5 shows how the other combinations of CD and NW flags 
affects caching.

NOTES
For the Pentium 4 and Intel Xeon processors, the NW flag is a don’t 
care flag; that is, when the CD flag is set, the processor uses the no-
fill cache mode, regardless of the setting of the NW flag.
For Intel Atom processors, the NW flag is a don’t care flag; that is, 
when the CD flag is set, the processor disables caching, regardless of 
the setting of the NW flag.
For the Pentium processor, when the L1 cache is disabled (the CD and 
NW flags in control register CR0 are set), external snoops are 
accepted in DP (dual-processor) systems and inhibited in unipro-
cessor systems. 
When snoops are inhibited, address parity is not checked and 
APCHK# is not asserted for a corrupt address; however, when snoops 
are accepted, address parity is checked and APCHK# is asserted for 

1 1 Memory coherency is not maintained.2, 3

• (P6 family and Pentium processors.) State of the processor after 
a power up or reset.

• Read hits access the cache; read misses do not cause 
replacement.

• Write hits update the cache and change exclusive lines to 
modified.

Yes

Yes

Yes

Yes

Yes

Yes

• Shared lines remain shared after write hit.
• Write misses access memory.
• Invalidation is inhibited when snooping; but is allowed with INVD 

and WBINVD instructions.
• External snoop traffic is supported.

Yes
Yes
Yes

No

Yes
Yes
Yes

Yes

NOTES:
1. The L2/L3 column in this table is definitive for the Pentium 4, Intel Xeon, and P6 family proces-

sors. It is intended to represent what could be implemented in a system based on a Pentium pro-
cessor with an external, platform specific, write-back L2 cache.

2. The Pentium 4 and more recent processor families do not support this mode; setting the CD and 
NW bits to 1 selects the no-fill cache mode.

3. Not supported In Intel Atom processors. If CD = 1 in an Intel Atom processor, caching is disabled.

Table 11-5.  Cache Operating Modes 

CD NW Caching and Read/Write Policy L1 L2/L31
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corrupt addresses.

• PCD and PWT flags in paging-structure entries — Control the memory type 
used to access paging structures and pages (see Section 4.9, “Paging and 
Memory Typing”).

• PCD and PWT flags in control register CR3 — Control the memory type used 
to access the first paging structure of the current paging-structure hierarchy (see 
Section 4.9, “Paging and Memory Typing”).

• G (global) flag in the page-directory and page-table entries (introduced 
to the IA-32 architecture in the P6 family processors) — Controls the 
flushing of TLB entries for individual pages. See Section 4.10, “Caching 
Translation Information,” for more information about this flag.

• PGE (page global enable) flag in control register CR4 — Enables the estab-
lishment of global pages with the G flag. See Section 4.10, “Caching Translation 
Information,” for more information about this flag.

• Memory type range registers (MTRRs) (introduced in P6 family 
processors) — Control the type of caching used in specific regions of physical 
memory. Any of the caching types described in Section 11.3, “Methods of Caching 
Available,” can be selected. See Section 11.11, “Memory Type Range Registers 
(MTRRs),” for a detailed description of the MTRRs.

• Page Attribute Table (PAT) MSR (introduced in the Pentium III processor) 
— Extends the memory typing capabilities of the processor to permit memory 
types to be assigned on a page-by-page basis (see Section 11.12, “Page Attribute 
Table (PAT)”).

• Third-Level Cache Disable flag, bit 6 of the IA32_MISC_ENABLE MSR 
(Available only in processors based on Intel NetBurst microarchitecture) 
— Allows the L3 cache to be disabled and enabled, independently of the L1 and 
L2 caches. 

• KEN# and WB/WT# pins (Pentium processor) — Allow external hardware to 
control the caching method used for specific areas of memory. They perform 
similar (but not identical) functions to the MTRRs in the P6 family processors.

• PCD and PWT pins (Pentium processor) — These pins (which are associated 
with the PCD and PWT flags in control register CR3 and in the page-directory and 
page-table entries) permit caching in an external L2 cache to be controlled on a 
page-by-page basis, consistent with the control exercised on the L1 cache of 
these processors. The P6 and more recent processor families do not provide 
these pins because the L2 cache in internal to the chip package.

11.5.2 Precedence of Cache Controls
The cache control flags and MTRRs operate hierarchically for restricting caching. That 
is, if the CD flag is set, caching is prevented globally (see Table 11-5). If the CD flag 
is clear, the page-level cache control flags and/or the MTRRs can be used to restrict 
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caching. If there is an overlap of page-level and MTRR caching controls, the mecha-
nism that prevents caching has precedence. For example, if an MTRR makes a region 
of system memory uncacheable, a page-level caching control cannot be used to 
enable caching for a page in that region. The converse is also true; that is, if a page-
level caching control designates a page as uncacheable, an MTRR cannot be used to 
make the page cacheable.

In cases where there is a overlap in the assignment of the write-back and write-
through caching policies to a page and a region of memory, the write-through policy 
takes precedence. The write-combining policy (which can only be assigned through 
an MTRR or the PAT) takes precedence over either write-through or write-back.

The selection of memory types at the page level varies depending on whether PAT is 
being used to select memory types for pages, as described in the following sections.

On processors based on Intel NetBurst microarchitecture, the third-level cache can 
be disabled by bit 6 of the IA32_MISC_ENABLE MSR. Using IA32_MISC_ENABLE[bit 
6] takes precedence over the CD flag, MTRRs, and PAT for the L3 cache in those 
processors. That is, when the third-level cache disable flag is set (cache disabled), 
the other cache controls have no affect on the L3 cache; when the flag is clear 
(enabled), the cache controls have the same affect on the L3 cache as they have on 
the L1 and L2 caches.

IA32_MISC_ENABLE[bit 6] is not supported in Intel Core i7 processors, nor proces-
sors based on Intel Core, and Intel Atom microarchitectures.

11.5.2.1  Selecting Memory Types for Pentium Pro and Pentium II 
Processors

The Pentium Pro and Pentium II processors do not support the PAT. Here, the effec-
tive memory type for a page is selected with the MTRRs and the PCD and PWT bits in 
the page-table or page-directory entry for the page. Table 11-6 describes the 
mapping of MTRR memory types and page-level caching attributes to effective 
memory types, when normal caching is in effect (the CD and NW flags in control 
register CR0 are clear). Combinations that appear in gray are implementation-
defined for the Pentium Pro and Pentium II processors. System designers are encour-
aged to avoid these implementation-defined combinations.

Table 11-6.  Effective Page-Level Memory Type for Pentium Pro and 
Pentium II Processors 

MTRR Memory Type1 PCD Value PWT Value Effective Memory Type

UC X X UC

WC 0 0 WC

0 1 WC

1 0 WC

1 1 UC
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When normal caching is in effect, the effective memory type shown in Table 11-6 is 
determined using the following rules:

1. If the PCD and PWT attributes for the page are both 0, then the effective
memory type is identical to the MTRR-defined memory type.

2. If the PCD flag is set, then the effective memory type is UC.

3. If the PCD flag is clear and the PWT flag is set, the effective memory type is WT 
for the WB memory type and the MTRR-defined memory type for all other 
memory types. 

4. Setting the PCD and PWT flags to opposite values is considered model-specific for 
the WP and WC memory types and architecturally-defined for the WB, WT, and 
UC memory types.

11.5.2.2  Selecting Memory Types for Pentium III and More Recent 
Processor Families

The Intel Core 2 Duo, Intel Atom, Intel Core Duo, Intel Core Solo, Pentium M, 
Pentium 4, Intel Xeon, and Pentium III processors use the PAT to select effective 
page-level memory types. Here, a memory type for a page is selected by the MTRRs 
and the value in a PAT entry that is selected with the PAT, PCD and PWT bits in a 
page-table or page-directory entry (see Section 11.12.3, “Selecting a Memory Type 
from the PAT”). Table 11-7 describes the mapping of MTRR memory types and PAT 
entry types to effective memory types, when normal caching is in effect (the CD and 

WT 0 X WT

1 X UC

WP 0 0 WP

0 1 WP

1 0 WC

1 1 UC

WB 0 0 WB

0 1 WT

1 X UC

NOTE:

1. These effective memory types also apply to the Pentium 4, Intel Xeon, and Pentium III proces-
sors when the PAT bit is not used (set to 0) in page-table and page-directory entries.

Table 11-6.  Effective Page-Level Memory Type for Pentium Pro and 
Pentium II Processors  (Contd.)
Vol. 3A 11-21



MEMORY CACHE CONTROL
NW flags in control register CR0 are clear).

Table 11-7.  Effective Page-Level Memory Types for Pentium III and More Recent 
Processor Families 

MTRR Memory Type PAT Entry Value Effective Memory Type

UC UC UC1

UC- UC1

WC WC

WT UC1

WB UC1

WP UC1

WC UC UC2

UC- WC

WC WC

WT UC2,3

WB WC

WP UC2,3

WT UC UC2

UC- UC2

WC WC

WT WT

WB WT

WP WP3
11-22 Vol. 3A



MEMORY CACHE CONTROL
11.5.2.3  Writing Values Across Pages with Different Memory Types
If two adjoining pages in memory have different memory types, and a word or longer 
operand is written to a memory location that crosses the page boundary between 
those two pages, the operand might be written to memory twice. This action does not 
present a problem for writes to actual memory; however, if a device is mapped the 
memory space assigned to the pages, the device might malfunction.

WB UC UC2

UC- UC2

WC WC

WT WT

WB WB

WP WP

WP UC UC2

UC- WC3

WC WC

WT WT3

WB WP

WP WP

NOTES: 
1. The UC attribute comes from the MTRRs and the processors are not required to snoop their 

caches since the data could never have been cached. This attribute is preferred for performance 
reasons.

2. The UC attribute came from the page-table or page-directory entry and processors are required 
to check their caches because the data may be cached due to page aliasing, which is not recom-
mended.

3. These combinations were specified as “undefined” in previous editions of the Intel® 64 and IA-32 
Architectures Software Developer’s Manual. However, all processors that support both the PAT 
and the MTRRs determine the effective page-level memory types for these combinations as 
given.

Table 11-7.  Effective Page-Level Memory Types for Pentium III and More Recent 
Processor Families  (Contd.)

MTRR Memory Type PAT Entry Value Effective Memory Type
Vol. 3A 11-23



MEMORY CACHE CONTROL
11.5.3 Preventing Caching
To disable the L1, L2, and L3 caches after they have been enabled and have received 
cache fills, perform the following steps:

1. Enter the no-fill cache mode. (Set the CD flag in control register CR0 to 1 and
the NW flag to 0.

2. Flush all caches using the WBINVD instruction.

3. Disable the MTRRs and set the default memory type to uncached or set all MTRRs 
for the uncached memory type (see the discussion of the discussion of the TYPE 
field and the E flag in Section 11.11.2.1, “IA32_MTRR_DEF_TYPE MSR”).

The caches must be flushed (step 2) after the CD flag is set to insure system memory 
coherency. If the caches are not flushed, cache hits on reads will still occur and data 
will be read from valid cache lines.

The intent of the three separate steps listed above address three distinct require-
ments: (i) discontinue new data replacing existing data in the cache (ii) ensure data 
already in the cache are evicted to memory, (iii) ensure subsequent memory refer-
ences observe UC memory type semantics. Different processor implementation of 
caching control hardware may allow some variation of software implementation of 
these three requirements. See note below.

NOTES
Setting the CD flag in control register CR0 modifies the processor’s 
caching behaviour as indicated in Table 11-5, but setting the CD flag 
alone may not be sufficient across all processor families to force the 
effective memory type for all physical memory to be UC nor does it 
force strict memory ordering, due to hardware implementation 
variations across different processor families. To force the UC 
memory type and strict memory ordering on all of physical memory, 
it is sufficient to either program the MTRRs for all physical memory to 
be UC memory type or disable all MTRRs.
For the Pentium 4 and Intel Xeon processors, after the sequence of 
steps given above has been executed, the cache lines containing the 
code between the end of the WBINVD instruction and before the 
MTRRS have actually been disabled may be retained in the cache 
hierarchy. Here, to remove code from the cache completely, a second 
WBINVD instruction must be executed after the MTRRs have been 
disabled.
For Intel Atom processors, setting the CD flag forces all physical 
memory to observe UC semantics (without requiring memory type of 
physical memory to be set explicitly). Consequently, software does 
not need to issue a second WBINVD as some other processor 
generations might require. 
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11.5.4 Disabling and Enabling the L3 Cache
On processors based on Intel NetBurst microarchitecture, the third-level cache can 
be disabled by bit 6 of the IA32_MISC_ENABLE MSR. The third-level cache disable 
flag (bit 6 of the IA32_MISC_ENABLE MSR) allows the L3 cache to be disabled and 
enabled, independently of the L1 and L2 caches. Prior to using this control to disable 
or enable the L3 cache, software should disable and flush all the processor caches, as 
described earlier in Section 11.5.3, “Preventing Caching,” to prevent of loss of infor-
mation stored in the L3 cache. After the L3 cache has been disabled or enabled, 
caching for the whole processor can be restored.

Newer Intel 64 processor with L3 do not support IA32_MISC_ENABLE[bit 6], the 
procedure described in Section 11.5.3, “Preventing Caching,” apply to the entire 
cache hierarchy.

11.5.5 Cache Management Instructions
The Intel 64 and IA-32 architectures provide several instructions for managing the 
L1, L2, and L3 caches. The INVD, WBINVD, and WBINVD instructions are system 
instructions that operate on the L1, L2, and L3 caches as a whole. The PREFETCHh 
and CLFLUSH instructions and the non-temporal move instructions (MOVNTI, 
MOVNTQ, MOVNTDQ, MOVNTPS, and MOVNTPD), which were introduced in 
SSE/SSE2 extensions, offer more granular control over caching.

The INVD and WBINVD instructions are used to invalidate the contents of the L1, L2, 
and L3 caches. The INVD instruction invalidates all internal cache entries, then 
generates a special-function bus cycle that indicates that external caches also should 
be invalidated. The INVD instruction should be used with care. It does not force a 
write-back of modified cache lines; therefore, data stored in the caches and not 
written back to system memory will be lost. Unless there is a specific requirement or 
benefit to invalidating the caches without writing back the modified lines (such as, 
during testing or fault recovery where cache coherency with main memory is not a 
concern), software should use the WBINVD instruction. 

The WBINVD instruction first writes back any modified lines in all the internal caches, 
then invalidates the contents of both the L1, L2, and L3 caches. It ensures that cache 
coherency with main memory is maintained regardless of the write policy in effect 
(that is, write-through or write-back). Following this operation, the WBINVD instruc-
tion generates one (P6 family processors) or two (Pentium and Intel486 processors) 
special-function bus cycles to indicate to external cache controllers that write-back of 
modified data followed by invalidation of external caches should occur. The amount of 
time or cycles for WBINVD to complete will vary due to the size of different cache 
hierarchies and other factors. As a consequence, the use of the WBINVD instruction 
can have an impact on interrupt/event response time.

The PREFETCHh instructions allow a program to suggest to the processor that a 
cache line from a specified location in system memory be prefetched into the cache 
hierarchy (see Section 11.8, “Explicit Caching”).
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The CLFLUSH instruction allow selected cache lines to be flushed from memory. This 
instruction give a program the ability to explicitly free up cache space, when it is 
known that cached section of system memory will not be accessed in the near future.

The non-temporal move instructions (MOVNTI, MOVNTQ, MOVNTDQ, MOVNTPS, and 
MOVNTPD) allow data to be moved from the processor’s registers directly into 
system memory without being also written into the L1, L2, and/or L3 caches. These 
instructions can be used to prevent cache pollution when operating on data that is 
going to be modified only once before being stored back into system memory. These 
instructions operate on data in the general-purpose, MMX, and XMM registers.

11.5.6 L1 Data Cache Context Mode
L1 data cache context mode is a feature of processors based on the Intel NetBurst 
microarchitecture that support Intel Hyper-Threading Technology. When 
CPUID.1:ECX[bit 10] = 1, the processor supports setting L1 data cache context 
mode using the L1 data cache context mode flag ( IA32_MISC_ENABLE[bit 24] ). 
Selectable modes are adaptive mode (default) and shared mode.

The BIOS is responsible for configuring the L1 data cache context mode.

11.5.6.1  Adaptive Mode
Adaptive mode facilitates L1 data cache sharing between logical processors. When 
running in adaptive mode, the L1 data cache is shared across logical processors in 
the same core if:
• CR3 control registers for logical processors sharing the cache are identical.
• The same paging mode is used by logical processors sharing the cache.

In this situation, the entire L1 data cache is available to each logical processor 
(instead of being competitively shared).

If CR3 values are different for the logical processors sharing an L1 data cache or the 
logical processors use different paging modes, processors compete for cache 
resources. This reduces the effective size of the cache for each logical processor. 
Aliasing of the cache is not allowed (which prevents data thrashing).

11.5.6.2  Shared Mode
In shared mode, the L1 data cache is competitively shared between logical proces-
sors. This is true even if the logical processors use identical CR3 registers and paging 
modes.

In shared mode, linear addresses in the L1 data cache can be aliased, meaning that 
one linear address in the cache can point to different physical locations. The mecha-
nism for resolving aliasing can lead to thrashing. For this reason, 
IA32_MISC_ENABLE[bit 24] = 0 is the preferred configuration for processors based 
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on the Intel NetBurst microarchitecture that support Intel Hyper-Threading Tech-
nology.

11.6 SELF-MODIFYING CODE
A write to a memory location in a code segment that is currently cached in the 
processor causes the associated cache line (or lines) to be invalidated. This check is 
based on the physical address of the instruction. In addition, the P6 family and 
Pentium processors check whether a write to a code segment may modify an instruc-
tion that has been prefetched for execution. If the write affects a prefetched instruc-
tion, the prefetch queue is invalidated. This latter check is based on the linear 
address of the instruction. For the Pentium 4 and Intel Xeon processors, a write or a 
snoop of an instruction in a code segment, where the target instruction is already 
decoded and resident in the trace cache, invalidates the entire trace cache. The latter 
behavior means that programs that self-modify code can cause severe degradation 
of performance when run on the Pentium 4 and Intel Xeon processors.

In practice, the check on linear addresses should not create compatibility problems 
among IA-32 processors. Applications that include self-modifying code use the same 
linear address for modifying and fetching the instruction. Systems software, such as 
a debugger, that might possibly modify an instruction using a different linear address 
than that used to fetch the instruction, will execute a serializing operation, such as a 
CPUID instruction, before the modified instruction is executed, which will automati-
cally resynchronize the instruction cache and prefetch queue. (See Section 8.1.3, 
“Handling Self- and Cross-Modifying Code,” for more information about the use of 
self-modifying code.)

For Intel486 processors, a write to an instruction in the cache will modify it in both 
the cache and memory, but if the instruction was prefetched before the write, the old 
version of the instruction could be the one executed. To prevent the old instruction 
from being executed, flush the instruction prefetch unit by coding a jump instruction 
immediately after any write that modifies an instruction.

11.7 IMPLICIT CACHING (PENTIUM 4, INTEL XEON, 
AND P6 FAMILY PROCESSORS)

Implicit caching occurs when a memory element is made potentially cacheable, 
although the element may never have been accessed in the normal von Neumann 
sequence. Implicit caching occurs on the P6 and more recent processor families due 
to aggressive prefetching, branch prediction, and TLB miss handling. Implicit caching 
is an extension of the behavior of existing Intel386, Intel486, and Pentium processor 
systems, since software running on these processor families also has not been able 
to deterministically predict the behavior of instruction prefetch.
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To avoid problems related to implicit caching, the operating system must explicitly 
invalidate the cache when changes are made to cacheable data that the cache coher-
ency mechanism does not automatically handle. This includes writes to dual-ported 
or physically aliased memory boards that are not detected by the snooping mecha-
nisms of the processor, and changes to page- table entries in memory.

The code in Example 11-1 shows the effect of implicit caching on page-table entries. 
The linear address F000H points to physical location B000H (the page-table entry for 
F000H contains the value B000H), and the page-table entry for linear address F000 
is PTE_F000.

Example 11-1.  Effect of Implicit Caching on Page-Table Entries

mov EAX, CR3; Invalidate the TLB
mov CR3, EAX; by copying CR3 to itself
mov PTE_F000, A000H; Change F000H to point to A000H
mov EBX, [F000H];

Because of speculative execution in the P6 and more recent processor families, the 
last MOV instruction performed would place the value at physical location B000H into 
EBX, rather than the value at the new physical address A000H. This situation is 
remedied by placing a TLB invalidation between the load and the store.

11.8 EXPLICIT CACHING
The Pentium III processor introduced four new instructions, the PREFETCHh instruc-
tions, that provide software with explicit control over the caching of data. These 
instructions provide “hints” to the processor that the data requested by a PREFETCHh 
instruction should be read into cache hierarchy now or as soon as possible, in antici-
pation of its use. The instructions provide different variations of the hint that allow 
selection of the cache level into which data will be read.

The PREFETCHh instructions can help reduce the long latency typically associated 
with reading data from memory and thus help prevent processor “stalls.” However, 
these instructions should be used judiciously. Overuse can lead to resource conflicts 
and hence reduce the performance of an application. Also, these instructions should 
only be used to prefetch data from memory; they should not be used to prefetch 
instructions. For more detailed information on the proper use of the prefetch instruc-
tion, refer to Chapter 7, “Optimizing Cache Usage,” in the Intel® 64 and IA-32 Archi-
tectures Optimization Reference Manual.
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11.9 INVALIDATING THE TRANSLATION LOOKASIDE 
BUFFERS (TLBS)

The processor updates its address translation caches (TLBs) transparently to soft-
ware. Several mechanisms are available, however, that allow software and hardware 
to invalidate the TLBs either explicitly or as a side effect of another operation. Most 
details are given in Section 4.10.4, “Invalidation of TLBs and Paging-Structure 
Caches.” In addition, the following operations invalidate all TLB entries, irrespective 
of the setting of the G flag:
• Asserting or de-asserting the FLUSH# pin.
• (Pentium 4, Intel Xeon, and later processors only.) Writing to an MTRR (with a 

WRMSR instruction).
• Writing to control register CR0 to modify the PG or PE flag.
• (Pentium 4, Intel Xeon, and later processors only.) Writing to control register CR4 

to modify the PSE, PGE, or PAE flag.
• Writing to control register CR4 to change the PCIDE flag from 1 to 0.

See Section 4.10, “Caching Translation Information,” for additional information about 
the TLBs.

11.10 STORE BUFFER
Intel 64 and IA-32 processors temporarily store each write (store) to memory in a 
store buffer. The store buffer improves processor performance by allowing the 
processor to continue executing instructions without having to wait until a write to 
memory and/or to a cache is complete. It also allows writes to be delayed for more 
efficient use of memory-access bus cycles.

In general, the existence of the store buffer is transparent to software, even in 
systems that use multiple processors. The processor ensures that write operations 
are always carried out in program order. It also insures that the contents of the store 
buffer are always drained to memory in the following situations:
• When an exception or interrupt is generated.
• (P6 and more recent processor families only) When a serializing instruction is 

executed.
• When an I/O instruction is executed.
• When a LOCK operation is performed.
• (P6 and more recent processor families only) When a BINIT operation is 

performed.
• (Pentium III, and more recent processor families only) When using an SFENCE 

instruction to order stores.
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• (Pentium 4 and more recent processor families only) When using an MFENCE 
instruction to order stores.

The discussion of write ordering in Section 8.2, “Memory Ordering,” gives a detailed 
description of the operation of the store buffer.

11.11 MEMORY TYPE RANGE REGISTERS (MTRRS)
The following section pertains only to the P6 and more recent processor families.

The memory type range registers (MTRRs) provide a mechanism for associating the 
memory types (see Section 11.3, “Methods of Caching Available”) with physical-
address ranges in system memory. They allow the processor to optimize operations 
for different types of memory such as RAM, ROM, frame-buffer memory, and 
memory-mapped I/O devices. They also simplify system hardware design by elimi-
nating the memory control pins used for this function on earlier IA-32 processors and 
the external logic needed to drive them.

The MTRR mechanism allows up to 96 memory ranges to be defined in physical 
memory, and it defines a set of model-specific registers (MSRs) for specifying the 
type of memory that is contained in each range. Table 11-8 shows the memory types 
that can be specified and their properties; Figure 11-4 shows the mapping of physical 
memory with MTRRs. See Section 11.3, “Methods of Caching Available,” for a more 
detailed description of each memory type.

Following a hardware reset, the P6 and more recent processor families disable all the 
fixed and variable MTRRs, which in effect makes all of physical memory uncacheable. 
Initialization software should then set the MTRRs to a specific, system-defined 
memory map. Typically, the BIOS (basic input/output system) software configures 
the MTRRs. The operating system or executive is then free to modify the memory 
map using the normal page-level cacheability attributes.

In a multiprocessor system using a processor in the P6 family or a more recent 
family, each processor MUST use the identical MTRR memory map so that software 
will have a consistent view of memory.

NOTE
In multiple processor systems, the operating system must maintain 
MTRR consistency between all the processors in the system (that is, 
all processors must use the same MTRR values). The P6 and more 
recent processor families provide no hardware support for 
maintaining this consistency.

Table 11-8.  Memory Types That Can Be Encoded in MTRRs 

Memory Type and Mnemonic Encoding in MTRR

Uncacheable (UC) 00H
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Write Combining (WC) 01H

Reserved* 02H

Reserved* 03H

Write-through (WT) 04H

Write-protected (WP) 05H

Writeback (WB) 06H

Reserved* 7H through FFH

NOTE:

* Use of these encodings results in a general-protection exception (#GP).

Figure 11-4.  Mapping Physical Memory With MTRRs

Table 11-8.  Memory Types That Can Be Encoded in MTRRs  (Contd.)

0

FFFFFFFFH

80000H

BFFFFH
C0000H

FFFFFH
100000H

7FFFFH

512 KBytes

256 KBytes

256 KBytes

8 fixed ranges

16 fixed ranges

64 fixed ranges

Variable ranges

(64-KBytes each)

(16 KBytes each)

(4 KBytes each)

(from 4 KBytes to
maximum size of

Address ranges not

Physical Memory

mapped by an MTRR
are set to a default type

physical memory)
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11.11.1 MTRR Feature Identification
The availability of the MTRR feature is model-specific. Software can determine if 
MTRRs are supported on a processor by executing the CPUID instruction and reading 
the state of the MTRR flag (bit 12) in the feature information register (EDX).

If the MTRR flag is set (indicating that the processor implements MTRRs), additional 
information about MTRRs can be obtained from the 64-bit IA32_MTRRCAP MSR 
(named MTRRcap MSR for the P6 family processors). The IA32_MTRRCAP MSR is a 
read-only MSR that can be read with the RDMSR instruction. Figure 11-5 shows the 
contents of the IA32_MTRRCAP MSR. The functions of the flags and field in this 
register are as follows:
• VCNT (variable range registers count) field, bits 0 through 7 — Indicates 

the number of variable ranges implemented on the processor.
• FIX (fixed range registers supported) flag, bit 8 — Fixed range MTRRs 

(IA32_MTRR_FIX64K_00000 through IA32_MTRR_FIX4K_0F8000) are 
supported when set; no fixed range registers are supported when clear.

• WC (write combining) flag, bit 10 — The write-combining (WC) memory type 
is supported when set; the WC type is not supported when clear.

• SMRR (System-Management Range Register) flag, bit 11 — The system-
management range register (SMRR) interface is supported when bit 11 is set; the 
SMRR interface is not supported when clear.

Bit 9 and bits 12 through 63 in the IA32_MTRRCAP MSR are reserved. If software 
attempts to write to the IA32_MTRRCAP MSR, a general-protection exception (#GP) 
is generated. 

Software must read IA32_MTRRCAP VCNT field to determine the number of variable 
MTRRs and query other feature bits in IA32_MTRRCAP to determine additional capa-
bilities that are supported in a processor. For example, some processors may report 
a value of ‘8’ in the VCNT field, other processors may report VCNT with different 
values. 

Figure 11-5.  IA32_MTRRCAP Register

VCNT — Number of variable range registers
FIX — Fixed range registers supported
WC — Write-combining memory type supported

63 0

Reserved W
C

71011

VCNT
F
I
X

89

Reserved

SMRR — SMRR interface supported
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11.11.2 Setting Memory Ranges with MTRRs
The memory ranges and the types of memory specified in each range are set by three 
groups of registers: the IA32_MTRR_DEF_TYPE MSR, the fixed-range MTRRs, and 
the variable range MTRRs. These registers can be read and written to using the 
RDMSR and WRMSR instructions, respectively. The IA32_MTRRCAP MSR indicates 
the availability of these registers on the processor (see Section 11.11.1, “MTRR 
Feature Identification”).

11.11.2.1  IA32_MTRR_DEF_TYPE MSR
The IA32_MTRR_DEF_TYPE MSR (named MTRRdefType MSR for the P6 family 
processors) sets the default properties of the regions of physical memory that are not 
encompassed by MTRRs. The functions of the flags and field in this register are as 
follows:
• Type field, bits 0 through 7 — Indicates the default memory type used for 

those physical memory address ranges that do not have a memory type specified 
for them by an MTRR (see Table 11-8 for the encoding of this field). The legal 
values for this field are 0, 1, 4, 5, and 6. All other values result in a general-
protection exception (#GP) being generated. 
Intel recommends the use of the UC (uncached) memory type for all physical 
memory addresses where memory does not exist. To assign the UC type to 
nonexistent memory locations, it can either be specified as the default type in the 
Type field or be explicitly assigned with the fixed and variable MTRRs.

• FE (fixed MTRRs enabled) flag, bit 10 — Fixed-range MTRRs are enabled 
when set; fixed-range MTRRs are disabled when clear. When the fixed-range 
MTRRs are enabled, they take priority over the variable-range MTRRs when 
overlaps in ranges occur. If the fixed-range MTRRs are disabled, the variable-
range MTRRs can still be used and can map the range ordinarily covered by the 
fixed-range MTRRs.

• E (MTRRs enabled) flag, bit 11 — MTRRs are enabled when set; all MTRRs are 
disabled when clear, and the UC memory type is applied to all of physical 

Figure 11-6.  IA32_MTRR_DEF_TYPE MSR

Type — Default memory type

FE — Fixed-range MTRRs enable/disable
E — MTRR enable/disable

63 0

Reserved F
E

71011

Type

8912

E

Reserved
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memory. When this flag is set, the FE flag can disable the fixed-range MTRRs; 
when the flag is clear, the FE flag has no affect. When the E flag is set, the type 
specified in the default memory type field is used for areas of memory not 
already mapped by either a fixed or variable MTRR.

Bits 8 and 9, and bits 12 through 63, in the IA32_MTRR_DEF_TYPE MSR are 
reserved; the processor generates a general-protection exception (#GP) if software 
attempts to write nonzero values to them.

11.11.2.2  Fixed Range MTRRs
The fixed memory ranges are mapped with 11 fixed-range registers of 64 bits each. 
Each of these registers is divided into 8-bit fields that are used to specify the memory 
type for each of the sub-ranges the register controls:
• Register IA32_MTRR_FIX64K_00000 — Maps the 512-KByte address range 

from 0H to 7FFFFH. This range is divided into eight 64-KByte sub-ranges.
• Registers IA32_MTRR_FIX16K_80000 and IA32_MTRR_FIX16K_A0000 

— Maps the two 128-KByte address ranges from 80000H to BFFFFH. This range 
is divided into sixteen 16-KByte sub-ranges, 8 ranges per register.

• Registers IA32_MTRR_FIX4K_C0000 through 
IA32_MTRR_FIX4K_F8000 — Maps eight 32-KByte address ranges from 
C0000H to FFFFFH. This range is divided into sixty-four 4-KByte sub-ranges, 8 
ranges per register.

Table 11-9 shows the relationship between the fixed physical-address ranges and the 
corresponding fields of the fixed-range MTRRs; Table 11-8 shows memory type 
encoding for MTRRs.

For the P6 family processors, the prefix for the fixed range MTRRs is MTRRfix.

11.11.2.3  Variable Range MTRRs
The Pentium 4, Intel Xeon, and P6 family processors permit software to specify the 
memory type for m variable-size address ranges, using a pair of MTRRs for each 
range. The number m of ranges supported is given in bits 7:0 of the IA32_MTRRCAP 
MSR (see Figure 11-5 in Section 11.11.1).

The first entry in each pair (IA32_MTRR_PHYSBASEn) defines the base address and 
memory type for the range; the second entry (IA32_MTRR_PHYSMASKn) contains a 
mask used to determine the address range. The “n” suffix is in the range 0 through 
m–1 and identifies a specific register pair.

For P6 family processors, the prefixes for these variable range MTRRs are MTRRphys-
Base and MTRRphysMask.
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Figure 11-7 shows flags and fields in these registers. The functions of these flags and 
fields are:
• Type field, bits 0 through 7 — Specifies the memory type for the range (see 

Table 11-8 for the encoding of this field).
• PhysBase field, bits 12 through (MAXPHYADDR-1) — Specifies the base 

address of the address range. This 24-bit value, in the case where MAXPHYADDR 
is 36 bits, is extended by 12 bits at the low end to form the base address (this 
automatically aligns the address on a 4-KByte boundary).

• PhysMask field, bits 12 through (MAXPHYADDR-1) — Specifies a mask (24 
bits if the maximum physical address size is 36 bits, 28 bits if the maximum 
physical address size is 40 bits). The mask determines the range of the region 
being mapped, according to the following relationships:

— Address_Within_Range AND PhysMask = PhysBase AND PhysMask

— This value is extended by 12 bits at the low end to form the mask value. For 
more information: see Section 11.11.3, “Example Base and Mask Calcula-
tions.”

Table 11-9.  Address Mapping for Fixed-Range MTRRs
Address Range (hexadecimal) MTRR

63   56 55    48 47    40 39    32 31     24 23     16 15     8 7      0

70000-
7FFFF

60000-
6FFFF

50000-
5FFFF

40000-
4FFFF

30000-
3FFFF

20000-
2FFFF

10000-
1FFFF

00000-
0FFFF

IA32_MTRR_
FIX64K_00000

9C000
9FFFF

98000-
98FFF

94000-
97FFF

90000-
93FFF

8C000-
8FFFF

88000-
8BFFF

84000-
87FFF

80000-
83FFF

IA32_MTRR_
FIX16K_80000

BC000
BFFFF

B8000-
BBFFF

B4000-
B7FFF

B0000-
B3FFF

AC000-
AFFFF

A8000-
ABFFF

A4000-
A7FFF

A0000-
A3FFF

IA32_MTRR_
FIX16K_A0000

C7000
C7FFF

C6000-
C6FFF

C5000-
C5FFF

C4000-
C4FFF

C3000-
C3FFF

C2000-
C2FFF

C1000-
C1FFF

C0000-
C0FFF

IA32_MTRR_
FIX4K_C0000

CF000
CFFFF

CE000-
CEFFF

CD000-
CDFFF

CC000-
CCFFF

CB000-
CBFFF

CA000-
CAFFF

C9000-
C9FFF

C8000-
C8FFF

IA32_MTRR_
FIX4K_C8000

D7000
D7FFF

D6000-
D6FFF

D5000-
D5FFF

D4000-
D4FFF

D3000-
D3FFF

D2000-
D2FFF

D1000-
D1FFF

D0000-
D0FFF

IA32_MTRR_
FIX4K_D0000

DF000
DFFFF

DE000-
DEFFF

DD000-
DDFFF

DC000-
DCFFF

DB000-
DBFFF

DA000-
DAFFF

D9000-
D9FFF

D8000-
D8FFF

IA32_MTRR_
FIX4K_D8000

E7000
E7FFF

E6000-
E6FFF

E5000-
E5FFF

E4000-
E4FFF

E3000-
E3FFF

E2000-
E2FFF

E1000-
E1FFF

E0000-
E0FFF

IA32_MTRR_
FIX4K_E0000

EF000
EFFFF

EE000-
EEFFF

ED000-
EDFFF

EC000-
ECFFF

EB000-
EBFFF

EA000-
EAFFF

E9000-
E9FFF

E8000-
E8FFF

IA32_MTRR_
FIX4K_E8000

F7000
F7FFF

F6000-
F6FFF

F5000-
F5FFF

F4000-
F4FFF

F3000-
F3FFF

F2000-
F2FFF

F1000-
F1FFF

F0000-
F0FFF

IA32_MTRR_
FIX4K_F0000

FF000
FFFFF

FE000-
FEFFF

FD000-
FDFFF

FC000-
FCFFF

FB000-
FBFFF

FA000-
FAFFF

F9000-
F9FFF

F8000-
F8FFF

IA32_MTRR_
FIX4K_F8000
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— The width of the PhysMask field depends on the maximum physical address 
size supported by the processor. 

CPUID.80000008H reports the maximum physical address size supported by 
the processor. If CPUID.80000008H is not available, software may assume 
that the processor supports a 36-bit physical address size (then PhysMask is 
24 bits wide and the upper 28 bits of IA32_MTRR_PHYSMASKn are reserved). 
See the Note below.

• V (valid) flag, bit 11 — Enables the register pair when set; disables register 
pair when clear.

All other bits in the IA32_MTRR_PHYSBASEn and IA32_MTRR_PHYSMASKn registers 
are reserved; the processor generates a general-protection exception (#GP) if soft-
ware attempts to write to them.

Some mask values can result in ranges that are not continuous. In such ranges, the 
area not mapped by the mask value is set to the default memory type, unless some 
other MTRR specifies a type for that range. Intel does not encourage the use of 
"discontinuous" ranges.

Figure 11-7.  IA32_MTRR_PHYSBASEn and IA32_MTRR_PHYSMASKn Variable-Range 
Register Pair

V — Valid
PhysMask — Sets range mask

IA32_MTRR_PHYSMASKn Register

63 0

Reserved

101112

V Reserved

MAXPHYADDR

PhysMask

Type — Memory type for range
PhysBase — Base address of range

IA32_MTRR_PHYSBASEn Register

63 0

Reserved

1112

Type

MAXPHYADDR

PhysBase

78

Reserved

MAXPHYADDR: The bit position indicated by MAXPHYADDR depends on the maximum
physical address range supported by the processor. It is reported by CPUID leaf
function 80000008H. If CPUID does not support leaf 80000008H, the processor
supports 36-bit physical address size, then bit PhysMask consists of bits 35:12, and
bits 63:36 are reserved.
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NOTE
It is possible for software to parse the memory descriptions that 
BIOS provides by using the ACPI/INT15 e820 interface mechanism. 
This information then can be used to determine how MTRRs are 
initialized (for example: allowing the BIOS to define valid memory 
ranges and the maximum memory range supported by the platform, 
including the processor).

See Section 11.11.4.1, “MTRR Precedences,” for information on overlapping variable 
MTRR ranges.

11.11.2.4  System-Management Range Register Interface 
If IA32_MTRRCAP[bit 11] is set, the processor supports the SMRR interface to 
restrict access to a specified memory address range used by system-management 
mode (SMM) software (see Section 33.4.2.1). If the SMRR interface is supported, 
SMM software is strongly encouraged to use it to protect the SMI code and data 
stored by SMI handler in the SMRAM region.

The system-management range registers consist of a pair of MSRs (see Figure 11-8). 
The IA32_SMRR_PHYSBASE MSR defines the base address for the SMRAM memory 
range and the memory type used to access it in SMM. The IA32_SMRR_PHYSMASK 
MSR contains a valid bit and a mask that determines the SMRAM address range 
protected by the SMRR interface. These MSRs may be written only in SMM; an 
attempt to write them outside of SMM causes a general-protection exception.1

Figure 11-8 shows flags and fields in these registers. The functions of these flags and 
fields are the following:
• Type field, bits 0 through 7 — Specifies the memory type for the range (see 

Table 11-8 for the encoding of this field).
• PhysBase field, bits 12 through 31 — Specifies the base address of the 

address range. The address must be less than 4 GBytes and is automatically 
aligned on a 4-KByte boundary.

• PhysMask field, bits 12 through 31 — Specifies a mask that determines the 
range of the region being mapped, according to the following relationships:

— Address_Within_Range AND PhysMask = PhysBase AND PhysMask

— This value is extended by 12 bits at the low end to form the mask value. For 
more information: see Section 11.11.3, “Example Base and Mask Calcula-
tions.”

• V (valid) flag, bit 11 — Enables the register pair when set; disables register 
pair when clear.

1. For some processor models, these MSRs can be accessed by RDMSR and WRMSR only if the 
SMRR interface has been enabled in the IA32_FEATURE_CONTROL MSR. See Chapter 34.
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Before attempting to access these SMRR registers, software must test bit 11 in the 
IA32_MTRRCAP register. If SMRR is not supported, reads from or writes to registers 
cause general-protection exceptions.

When the valid flag in the IA32_SMRR_PHYSMASK MSR is 1, accesses to the specified 
address range are treated as follows:
• If the logical processor is in SMM, accesses uses the memory type in the 

IA32_SMRR_PHYSBASE MSR.
• If the logical processor is not in SMM, write accesses are ignored and read 

accesses return a fixed value for each byte. The uncacheable memory type (UC) 
is used in this case.

The above items apply even if the address range specified overlaps with a range 
specified by the MTRRs.

11.11.3 Example Base and Mask Calculations
The examples in this section apply to processors that support a maximum physical 
address size of 36 bits. The base and mask values entered in variable-range MTRR 
pairs are 24-bit values that the processor extends to 36-bits. 

For example, to enter a base address of 2 MBytes (200000H) in the 
IA32_MTRR_PHYSBASE3 register, the 12 least-significant bits are truncated and the 
value 000200H is entered in the PhysBase field. The same operation must be 
performed on mask values. For example, to map the address range from 200000H to 

Figure 11-8.  IA32_SMRR_PHYSBASE and IA32_SMRR_PHYSMASK SMRR Pair

V — Valid
PhysMask — Sets range mask

IA32_SMRR_PHYSMASK Register

63 0

Reserved

101112

V Reserved

31

PhysMask

Type — Memory type for range
PhysBase — Base address of range

IA32_SMRR_PHYSBASE Register

63 0

Reserved

1112

Type

31

PhysBase

78

Reserved
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3FFFFFH (2 MBytes to 4 MBytes), a mask value of FFFE00000H is required. Again, the 
12 least-significant bits of this mask value are truncated, so that the value entered in 
the PhysMask field of IA32_MTRR_PHYSMASK3 is FFFE00H. This mask is chosen so 
that when any address in the 200000H to 3FFFFFH range is AND’d with the mask 
value, it will return the same value as when the base address is AND’d with the mask 
value (which is 200000H).

To map the address range from 400000H to 7FFFFFH (4 MBytes to 8 MBytes), a base 
value of 000400H is entered in the PhysBase field and a mask value of FFFC00H is 
entered in the PhysMask field.

Example 11-2.  Setting-Up Memory for a System

Here is an example of setting up the MTRRs for an system. Assume that the system 
has the following characteristics:
• 96 MBytes of system memory is mapped as write-back memory (WB) for highest 

system performance.
• A custom 4-MByte I/O card is mapped to uncached memory (UC) at a base 

address of 64 MBytes. This restriction forces the 96 MBytes of system memory to 
be addressed from 0 to 64 MBytes and from 68 MBytes to 100 MBytes, leaving a 
4-MByte hole for the I/O card. 

• An 8-MByte graphics card is mapped to write-combining memory (WC) beginning 
at address A0000000H. 

• The BIOS area from 15 MBytes to 16 MBytes is mapped to UC memory.

The following settings for the MTRRs will yield the proper mapping of the physical 
address space for this system configuration.

IA32_MTRR_PHYSBASE0 =  0000 0000 0000 0006H
IA32_MTRR_PHYSMASK0 =  0000 000F FC00 0800H  
Caches 0-64 MByte as WB cache type.

IA32_MTRR_PHYSBASE1 =  0000 0000 0400 0006H
IA32_MTRR_PHYSMASK1 =  0000 000F FE00 0800H  
Caches 64-96 MByte as WB cache type.

IA32_MTRR_PHYSBASE2 =  0000 0000 0600 0006H
IA32_MTRR_PHYSMASK2 =  0000 000F FFC0 0800H  
Caches 96-100 MByte as WB cache type.

IA32_MTRR_PHYSBASE3 =  0000 0000 0400 0000H
IA32_MTRR_PHYSMASK3 =  0000 000F FFC0 0800H  
Caches 64-68 MByte as UC cache type.

IA32_MTRR_PHYSBASE4 =  0000 0000 00F0 0000H
IA32_MTRR_PHYSMASK4 =  0000 000F FFF0 0800H  
Caches 15-16 MByte as UC cache type.
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IA32_MTRR_PHYSBASE5 =  0000 0000 A000 0001H
IA32_MTRR_PHYSMASK5 =  0000 000F FF80 0800H  
Caches A0000000-A0800000 as WC type.

This MTRR setup uses the ability to overlap any two memory ranges (as long as the 
ranges are mapped to WB and UC memory types) to minimize the number of MTRR 
registers that are required to configure the memory environment. This setup also 
fulfills the requirement that two register pairs are left for operating system usage.

11.11.3.1  Base and Mask Calculations for Greater-Than 36-bit Physical 
Address Support

For Intel 64 and IA-32 processors that support greater than 36 bits of physical 
address size, software should query CPUID.80000008H to determine the maximum 
physical address. See the example.

Example 11-3.  Setting-Up Memory for a System with a 40-Bit Address Size

If a processor supports 40-bits of physical address size, then the PhysMask field (in 
IA32_MTRR_PHYSMASKn registers) is 28 bits instead of 24 bits. For this situation, 
Example 11-2 should be modified as follows:

IA32_MTRR_PHYSBASE0 =  0000 0000 0000 0006H
IA32_MTRR_PHYSMASK0 =  0000 00FF FC00 0800H  
Caches 0-64 MByte as WB cache type.

IA32_MTRR_PHYSBASE1 =  0000 0000 0400 0006H
IA32_MTRR_PHYSMASK1 =  0000 00FF FE00 0800H  
Caches 64-96 MByte as WB cache type.

IA32_MTRR_PHYSBASE2 =  0000 0000 0600 0006H
IA32_MTRR_PHYSMASK2 =  0000 00FF FFC0 0800H  
Caches 96-100 MByte as WB cache type.

IA32_MTRR_PHYSBASE3 =  0000 0000 0400 0000H
IA32_MTRR_PHYSMASK3 =  0000 00FF FFC0 0800H  
Caches 64-68 MByte as UC cache type.

IA32_MTRR_PHYSBASE4 =  0000 0000 00F0 0000H
IA32_MTRR_PHYSMASK4 =  0000 00FF FFF0 0800H  
Caches 15-16 MByte as UC cache type.

IA32_MTRR_PHYSBASE5 =  0000 0000 A000 0001H
IA32_MTRR_PHYSMASK5 =  0000 00FF FF80 0800H  
Caches A0000000-A0800000 as WC type.
11-40 Vol. 3A



MEMORY CACHE CONTROL
11.11.4 Range Size and Alignment Requirement
A range that is to be mapped to a variable-range MTRR must meet the following 
“power of 2” size and alignment rules:

1. The minimum range size is 4 KBytes and the base address of the range must be
on at least a 4-KByte boundary.

2. For ranges greater than 4 KBytes, each range must be of length 2n and its base 
address must be aligned on a 2n boundary, where n is a value equal to or greater 
than 12. The base-address alignment value cannot be less than its length. For 
example, an 8-KByte range cannot be aligned on a 4-KByte boundary. It must be 
aligned on at least an 8-KByte boundary.

11.11.4.1  MTRR Precedences
If the MTRRs are not enabled (by setting the E flag in the IA32_MTRR_DEF_TYPE 
MSR), then all memory accesses are of the UC memory type. If the MTRRs are 
enabled, then the memory type used for a memory access is determined as follows:

1. If the physical address falls within the first 1 MByte of physical memory and
fixed MTRRs are enabled, the processor uses the memory type stored for the
appropriate fixed-range MTRR.

2. Otherwise, the processor attempts to match the physical address with a memory 
type set by the variable-range MTRRs:

— If one variable memory range matches, the processor uses the memory type 
stored in the IA32_MTRR_PHYSBASEn register for that range.

— If two or more variable memory ranges match and the memory types are 
identical, then that memory type is used.

— If two or more variable memory ranges match and one of the memory types 
is UC, the UC memory type used.

— If two or more variable memory ranges match and the memory types are WT 
and WB, the WT memory type is used.

— For overlaps not defined by the above rules, processor behavior is undefined.

3. If no fixed or variable memory range matches, the processor uses the default 
memory type.

11.11.5 MTRR Initialization
On a hardware reset, the P6 and more recent processors clear the valid flags in vari-
able-range MTRRs and clear the E flag in the IA32_MTRR_DEF_TYPE MSR to disable 
all MTRRs. All other bits in the MTRRs are undefined. 

Prior to initializing the MTRRs, software (normally the system BIOS) must initialize all 
fixed-range and variable-range MTRR register fields to 0. Software can then initialize 
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the MTRRs according to known types of memory, including memory on devices that it 
auto-configures. Initialization is expected to occur prior to booting the operating 
system.

See Section 11.11.8, “MTRR Considerations in MP Systems,” for information on 
initializing MTRRs in MP (multiple-processor) systems.

11.11.6 Remapping Memory Types
A system designer may re-map memory types to tune performance or because a 
future processor may not implement all memory types supported by the Pentium 4, 
Intel Xeon, and P6 family processors. The following rules support coherent memory-
type re-mappings:

1. A memory type should not be mapped into another memory type that has a
weaker memory ordering model. For example, the uncacheable type cannot be
mapped into any other type, and the write-back, write-through, and write-
protected types cannot be mapped into the weakly ordered write-combining
type.

2. A memory type that does not delay writes should not be mapped into a memory 
type that does delay writes, because applications of such a memory type may 
rely on its write-through behavior. Accordingly, the write-back type cannot be 
mapped into the write-through type.

3. A memory type that views write data as not necessarily stored and read back by 
a subsequent read, such as the write-protected type, can only be mapped to 
another type with the same behaviour (and there are no others for the 
Pentium 4, Intel Xeon, and P6 family processors) or to the uncacheable type.

In many specific cases, a system designer can have additional information about how 
a memory type is used, allowing additional mappings. For example, write-through 
memory with no associated write side effects can be mapped into write-back 
memory.

11.11.7 MTRR Maintenance Programming Interface
The operating system maintains the MTRRs after booting and sets up or changes the 
memory types for memory-mapped devices. The operating system should provide a 
driver and application programming interface (API) to access and set the MTRRs. The 
function calls MemTypeGet() and MemTypeSet() define this interface.

11.11.7.1  MemTypeGet() Function
The MemTypeGet() function returns the memory type of the physical memory range 
specified by the parameters base and size. The base address is the starting physical 
address and the size is the number of bytes for the memory range. The function 
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automatically aligns the base address and size to 4-KByte boundaries. Pseudocode 
for the MemTypeGet() function is given in Example 11-4.

Example 11-4.  MemTypeGet() Pseudocode

#define MIXED_TYPES -1     /* 0 < MIXED_TYPES || MIXED_TYPES > 256 */

IF CPU_FEATURES.MTRR /* processor supports MTRRs */
THEN

Align BASE and SIZE to 4-KByte boundary;
IF (BASE + SIZE) wrap 4-GByte address space 

THEN return INVALID;
FI;
IF MTRRdefType.E = 0

THEN return UC;
FI;
FirstType ¨ Get4KMemType (BASE);
/* Obtains memory type for first 4-KByte range. */
/* See Get4KMemType (4KByteRange) in Example 11-5. */
FOR each additional 4-KByte range specified in SIZE

NextType ¨ Get4KMemType (4KByteRange);
IF NextType ¼ FirstType

THEN return MixedTypes;
FI;

ROF;
return FirstType;

ELSE return UNSUPPORTED;
FI;

If the processor does not support MTRRs, the function returns UNSUPPORTED. If the 
MTRRs are not enabled, then the UC memory type is returned. If more than one 
memory type corresponds to the specified range, a status of MIXED_TYPES is 
returned. Otherwise, the memory type defined for the range (UC, WC, WT, WB, or 
WP) is returned.

The pseudocode for the Get4KMemType() function in Example 11-5 obtains the 
memory type for a single 4-KByte range at a given physical address. The sample 
code determines whether an PHY_ADDRESS falls within a fixed range by comparing 
the address with the known fixed ranges: 0 to 7FFFFH (64-KByte regions), 80000H to 
BFFFFH (16-KByte regions), and C0000H to FFFFFH (4-KByte regions). If an address 
falls within one of these ranges, the appropriate bits within one of its MTRRs deter-
mine the memory type.
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Example 11-5.  Get4KMemType() Pseudocode

IF IA32_MTRRCAP.FIX AND MTRRdefType.FE /* fixed registers enabled */

THEN IF PHY_ADDRESS is within a fixed range

return IA32_MTRR_FIX.Type;
FI;
FOR each variable-range MTRR in IA32_MTRRCAP.VCNT

IF IA32_MTRR_PHYSMASK.V = 0
THEN continue;

FI;
IF (PHY_ADDRESS AND IA32_MTRR_PHYSMASK.Mask) =

(IA32_MTRR_PHYSBASE.Base 
AND IA32_MTRR_PHYSMASK.Mask)

THEN
return IA32_MTRR_PHYSBASE.Type;

FI;
ROF;
return MTRRdefType.Type;

11.11.7.2  MemTypeSet() Function
The MemTypeSet() function in Example 11-6 sets a MTRR for the physical memory 
range specified by the parameters base and size to the type specified by type. The 
base address and size are multiples of 4 KBytes and the size is not 0.

Example 11-6.  MemTypeSet Pseudocode

IF CPU_FEATURES.MTRR (* processor supports MTRRs *)

THEN

IF BASE and SIZE are not 4-KByte aligned or size is 0

THEN return INVALID; 

FI;

IF (BASE + SIZE) wrap 4-GByte address space

THEN return INVALID; 

FI;

IF TYPE is invalid for Pentium 4, Intel Xeon, and P6 family
processors

THEN return UNSUPPORTED; 

FI;

IF TYPE is WC and not supported

THEN return UNSUPPORTED; 

FI;

IF IA32_MTRRCAP.FIX is set AND range can be mapped using a

fixed-range MTRR
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THEN

pre_mtrr_change();

update affected MTRR;

post_mtrr_change();

FI;

ELSE (* try to map using a variable MTRR pair *)

IF IA32_MTRRCAP.VCNT = 0

THEN return UNSUPPORTED; 

FI;

IF conflicts with current variable ranges 

THEN return RANGE_OVERLAP;

FI;

IF no MTRRs available

THEN return VAR_NOT_AVAILABLE; 

FI;

IF BASE and SIZE do not meet the power of 2 requirements for

variable MTRRs

THEN return INVALID_VAR_REQUEST; 

FI;

pre_mtrr_change();

Update affected MTRRs;

post_mtrr_change();

FI;

pre_mtrr_change()

BEGIN

disable interrupts;

Save current value of CR4;

disable and flush caches;

flush TLBs;

disable MTRRs;

IF multiprocessing

THEN maintain consistency through IPIs;

FI;

END

post_mtrr_change()

BEGIN

flush caches and TLBs;

enable MTRRs;

enable caches;

restore value of CR4;

enable interrupts;
Vol. 3A 11-45



MEMORY CACHE CONTROL
END

The physical address to variable range mapping algorithm in the MemTypeSet func-
tion detects conflicts with current variable range registers by cycling through them 
and determining whether the physical address in question matches any of the current 
ranges. During this scan, the algorithm can detect whether any current variable 
ranges overlap and can be concatenated into a single range.

The pre_mtrr_change() function disables interrupts prior to changing the MTRRs, to 
avoid executing code with a partially valid MTRR setup. The algorithm disables 
caching by setting the CD flag and clearing the NW flag in control register CR0. The 
caches are invalidated using the WBINVD instruction. The algorithm flushes all TLB 
entries either by clearing the page-global enable (PGE) flag in control register CR4 (if 
PGE was already set) or by updating control register CR3 (if PGE was already clear). 
Finally, it disables MTRRs by clearing the E flag in the IA32_MTRR_DEF_TYPE MSR.

After the memory type is updated, the post_mtrr_change() function re-enables the 
MTRRs and again invalidates the caches and TLBs. This second invalidation is 
required because of the processor's aggressive prefetch of both instructions and 
data. The algorithm restores interrupts and re-enables caching by setting the CD 
flag.

An operating system can batch multiple MTRR updates so that only a single pair of 
cache invalidations occur.

11.11.8 MTRR Considerations in MP Systems
In MP (multiple-processor) systems, the operating systems must maintain MTRR 
consistency between all the processors in the system. The Pentium 4, Intel Xeon, and 
P6 family processors provide no hardware support to maintain this consistency. In 
general, all processors must have the same MTRR values.

This requirement implies that when the operating system initializes an MP system, it 
must load the MTRRs of the boot processor while the E flag in register MTRRdefType 
is 0. The operating system then directs other processors to load their MTRRs with the 
same memory map. After all the processors have loaded their MTRRs, the operating 
system signals them to enable their MTRRs. Barrier synchronization is used to 
prevent further memory accesses until all processors indicate that the MTRRs are 
enabled. This synchronization is likely to be a shoot-down style algorithm, with 
shared variables and interprocessor interrupts.

Any change to the value of the MTRRs in an MP system requires the operating system 
to repeat the loading and enabling process to maintain consistency, using the 
following procedure:

1. Broadcast to all processors to execute the following code sequence.

2. Disable interrupts.

3. Wait for all processors to reach this point.
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4. Enter the no-fill cache mode. (Set the CD flag in control register CR0 to 1 and the 
NW flag to 0.)

5. Flush all caches using the WBINVD instructions. Note on a processor that 
supports self-snooping, CPUID feature flag bit 27, this step is unnecessary.

6. If the PGE flag is set in control register CR4, flush all TLBs by clearing that flag.

7. If the PGE flag is clear in control register CR4, flush all TLBs by executing a MOV 
from control register CR3 to another register and then a MOV from that register 
back to CR3.

8. Disable all range registers (by clearing the E flag in register MTRRdefType). If 
only variable ranges are being modified, software may clear the valid bits for the 
affected register pairs instead.

9. Update the MTRRs.

10. Enable all range registers (by setting the E flag in register MTRRdefType). If only 
variable-range registers were modified and their individual valid bits were 
cleared, then set the valid bits for the affected ranges instead.

11. Flush all caches and all TLBs a second time. (The TLB flush is required for 
Pentium 4, Intel Xeon, and P6 family processors. Executing the WBINVD 
instruction is not needed when using Pentium 4, Intel Xeon, and P6 family 
processors, but it may be needed in future systems.)

12. Enter the normal cache mode to re-enable caching. (Set the CD and NW flags in 
control register CR0 to 0.)

13. Set PGE flag in control register CR4, if cleared in Step 6 (above).

14. Wait for all processors to reach this point.

15. Enable interrupts.

11.11.9 Large Page Size Considerations
The MTRRs provide memory typing for a limited number of regions that have a 
4 KByte granularity (the same granularity as 4-KByte pages). The memory type for a 
given page is cached in the processor’s TLBs. When using large pages (2 MBytes, 
4 MBytes, or 1 GBytes), a single page-table entry covers multiple 4-KByte granules, 
each with a single memory type. Because the memory type for a large page is cached 
in the TLB, the processor can behave in an undefined manner if a large page is 
mapped to a region of memory that MTRRs have mapped with multiple memory 
types. 

Undefined behavior can be avoided by insuring that all MTRR memory-type ranges 
within a large page are of the same type. If a large page maps to a region of memory 
containing different MTRR-defined memory types, the PCD and PWT flags in the 
page-table entry should be set for the most conservative memory type for that 
range. For example, a large page used for memory mapped I/O and regular memory 
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is mapped as UC memory. Alternatively, the operating system can map the region 
using multiple 4-KByte pages each with its own memory type. 

The requirement that all 4-KByte ranges in a large page are of the same memory 
type implies that large pages with different memory types may suffer a performance 
penalty, since they must be marked with the lowest common denominator memory 
type. The same consideration apply to 1 GByte pages, each of which may consist of 
multiple 2-Mbyte ranges. 

The Pentium 4, Intel Xeon, and P6 family processors provide special support for the 
physical memory range from 0 to 4 MBytes, which is potentially mapped by both the 
fixed and variable MTRRs. This support is invoked when a Pentium 4, Intel Xeon, or 
P6 family processor detects a large page overlapping the first 1 MByte of this 
memory range with a memory type that conflicts with the fixed MTRRs. Here, the 
processor maps the memory range as multiple 4-KByte pages within the TLB. This 
operation insures correct behavior at the cost of performance. To avoid this perfor-
mance penalty, operating-system software should reserve the large page option for 
regions of memory at addresses greater than or equal to 4 MBytes.

11.12 PAGE ATTRIBUTE TABLE (PAT)
The Page Attribute Table (PAT) extends the IA-32 architecture’s page-table format to 
allow memory types to be assigned to regions of physical memory based on linear 
address mappings. The PAT is a companion feature to the MTRRs; that is, the MTRRs 
allow mapping of memory types to regions of the physical address space, where the 
PAT allows mapping of memory types to pages within the linear address space. The 
MTRRs are useful for statically describing memory types for physical ranges, and are 
typically set up by the system BIOS. The PAT extends the functions of the PCD and 
PWT bits in page tables to allow all five of the memory types that can be assigned 
with the MTRRs (plus one additional memory type) to also be assigned dynamically 
to pages of the linear address space.

The PAT was introduced to IA-32 architecture on the Pentium III processor. It is also 
available in the Pentium 4 and Intel Xeon processors.

11.12.1 Detecting Support for the PAT Feature
An operating system or executive can detect the availability of the PAT by executing 
the CPUID instruction with a value of 1 in the EAX register. Support for the PAT is indi-
cated by the PAT flag (bit 16 of the values returned to EDX register). If the PAT is 
supported, the operating system or executive can use the IA32_PAT MSR to program 
the PAT. When memory types have been assigned to entries in the PAT, software can 
then use of the PAT-index bit (PAT) in the page-table and page-directory entries 
along with the PCD and PWT bits to assign memory types from the PAT to individual 
pages.
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Note that there is no separate flag or control bit in any of the control registers that 
enables the PAT. The PAT is always enabled on all processors that support it, and the 
table lookup always occurs whenever paging is enabled, in all paging modes.

11.12.2 IA32_PAT MSR
The IA32_PAT MSR is located at MSR address 277H (see Chapter 34, “Model-Specific 
Registers (MSRs)”). Figure 11-9. shows the format of the 64-bit IA32_PAT MSR.

The IA32_PAT MSR contains eight page attribute fields: PA0 through PA7. The three 
low-order bits of each field are used to specify a memory type. The five high-order 
bits of each field are reserved, and must be set to all 0s. Each of the eight page 
attribute fields can contain any of the memory type encodings specified in Table 
11-10.

Note that for the P6 family processors, the IA32_PAT MSR is named the PAT MSR.

31 27 26 24 23 19 18 16 15 11 10 8 7 3 2 0

Reserved PA3 Reserved PA2 Reserved PA1 Reserved PA0

63 59 58 56 55 51 50 48 47 43 42 40 39 35 34 32

Reserved PA7 Reserved PA6 Reserved PA5 Reserved PA4

Figure 11-9.  IA32_PAT MSR

Table 11-10.  Memory Types That Can Be Encoded With PAT

Encoding Mnemonic

00H Uncacheable (UC)

01H Write Combining (WC)

02H Reserved*

03H Reserved*

04H Write Through (WT)

05H Write Protected (WP)

06H Write Back (WB)

07H Uncached (UC-)

08H - FFH Reserved*

NOTE:
* Using these encodings will result in a general-protection exception (#GP).
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11.12.3 Selecting a Memory Type from the PAT
To select a memory type for a page from the PAT, a 3-bit index made up of the PAT, 
PCD, and PWT bits must be encoded in the page-table or page-directory entry for the 
page. Table 11-11 shows the possible encodings of the PAT, PCD, and PWT bits and 
the PAT entry selected with each encoding. The PAT bit is bit 7 in page-table entries 
that point to 4-KByte pages and bit 12 in paging-structure entries that point to larger 
pages. The PCD and PWT bits are bits 4 and 3, respectively, in paging-structure 
entries that point to pages of any size.

The PAT entry selected for a page is used in conjunction with the MTRR setting for the 
region of physical memory in which the page is mapped to determine the effective 
memory type for the page, as shown in Table 11-7.

11.12.4 Programming the PAT
Table 11-12 shows the default setting for each PAT entry following a power up or 
reset of the processor. The setting remain unchanged following a soft reset (INIT 
reset). 

Table 11-11.  Selection of PAT Entries with PAT, PCD, and PWT Flags
PAT PCD PWT PAT Entry

0 0 0 PAT0

0 0 1 PAT1

0 1 0 PAT2

0 1 1 PAT3

1 0 0 PAT4

1 0 1 PAT5

1 1 0 PAT6

1 1 1 PAT7

Table 11-12.  Memory Type Setting of PAT Entries Following a Power-up or Reset 

PAT Entry Memory Type Following Power-up or Reset

PAT0 WB

PAT1 WT

PAT2 UC-

PAT3 UC

PAT4 WB

PAT5 WT

PAT6 UC-

PAT7 UC
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The values in all the entries of the PAT can be changed by writing to the IA32_PAT 
MSR using the WRMSR instruction. The IA32_PAT MSR is read and write accessible 
(use of the RDMSR and WRMSR instructions, respectively) to software operating at a 
CPL of 0. Table 11-10 shows the allowable encoding of the entries in the PAT. 
Attempting to write an undefined memory type encoding into the PAT causes a 
general-protection (#GP) exception to be generated.

The operating system is responsible for insuring that changes to a PAT entry occur in 
a manner that maintains the consistency of the processor caches and translation 
lookaside buffers (TLB). This is accomplished by following the procedure as specified 
in Section 11.11.8, “MTRR Considerations in MP Systems,” for changing the value of 
an MTRR in a multiple processor system. It requires a specific sequence of operations 
that includes flushing the processors caches and TLBs.

The PAT allows any memory type to be specified in the page tables, and therefore it 
is possible to have a single physical page mapped to two or more different linear 
addresses, each with different memory types. Intel does not support this practice 
because it may lead to undefined operations that can result in a system failure. In 
particular, a WC page must never be aliased to a cacheable page because WC writes 
may not check the processor caches.

When remapping a page that was previously mapped as a cacheable memory type to 
a WC page, an operating system can avoid this type of aliasing by doing the 
following:

1. Remove the previous mapping to a cacheable memory type in the page tables;
that is, make them not present.

2. Flush the TLBs of processors that may have used the mapping, even specula-
tively.

3. Create a new mapping to the same physical address with a new memory type, for 
instance, WC.

4. Flush the caches on all processors that may have used the mapping previously. 
Note on processors that support self-snooping, CPUID feature flag bit 27, this 
step is unnecessary.

Operating systems that use a page directory as a page table (to map large pages) 
and enable page size extensions must carefully scrutinize the use of the PAT index bit 
for the 4-KByte page-table entries. The PAT index bit for a page-table entry (bit 7) 
corresponds to the page size bit in a page-directory entry. Therefore, the operating 
system can only use PAT entries PA0 through PA3 when setting the caching type for 
a page table that is also used as a page directory. If the operating system attempts 
to use PAT entries PA4 through PA7 when using this memory as a page table, it effec-
tively sets the PS bit for the access to this memory as a page directory.

For compatibility with earlier IA-32 processors that do not support the PAT, care 
should be taken in selecting the encodings for entries in the PAT (see Section 
11.12.5, “PAT Compatibility with Earlier IA-32 Processors”).
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11.12.5 PAT Compatibility with Earlier IA-32 Processors
For IA-32 processors that support the PAT, the IA32_PAT MSR is always active. That 
is, the PCD and PWT bits in page-table entries and in page-directory entries (that 
point to pages) are always select a memory type for a page indirectly by selecting an 
entry in the PAT. They never select the memory type for a page directly as they do in 
earlier IA-32 processors that do not implement the PAT (see Table 11-6).

To allow compatibility for code written to run on earlier IA-32 processor that do not 
support the PAT, the PAT mechanism has been designed to allow backward compati-
bility to earlier processors. This compatibility is provided through the ordering of the 
PAT, PCD, and PWT bits in the 3-bit PAT entry index. For processors that do not imple-
ment the PAT, the PAT index bit (bit 7 in the page-table entries and bit 12 in the page-
directory entries) is reserved and set to 0. With the PAT bit reserved, only the first 
four entries of the PAT can be selected with the PCD and PWT bits. At power-up or 
reset (see Table 11-12), these first four entries are encoded to select the same 
memory types as the PCD and PWT bits would normally select directly in an IA-32 
processor that does not implement the PAT. So, if encodings of the first four entries 
in the PAT are left unchanged following a power-up or reset, code written to run on 
earlier IA-32 processors that do not implement the PAT will run correctly on IA-32 
processors that do implement the PAT.
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CHAPTER 12
INTEL® MMX™ TECHNOLOGY SYSTEM

PROGRAMMING

This chapter describes those features of the Intel® MMX™ technology that must be 
considered when designing or enhancing an operating system to support MMX tech-
nology. It covers MMX instruction set emulation, the MMX state, aliasing of MMX 
registers, saving MMX state, task and context switching considerations, exception 
handling, and debugging.

12.1 EMULATION OF THE MMX INSTRUCTION SET
The IA-32 or Intel 64 architecture does not support emulation of the MMX instruc-
tions, as it does for x87 FPU instructions. The EM flag in control register CR0 
(provided to invoke emulation of x87 FPU instructions) cannot be used for MMX 
instruction emulation. If an MMX instruction is executed when the EM flag is set, an 
invalid opcode exception (UD#) is generated. Table 12-1 shows the interaction of the 
EM, MP, and TS flags in control register CR0 when executing MMX instructions.

12.2 THE MMX STATE AND MMX REGISTER ALIASING
The MMX state consists of eight 64-bit registers (MM0 through MM7). These registers 
are aliased to the low 64-bits (bits 0 through 63) of floating-point registers R0 
through R7 (see Figure 12-1). Note that the MMX registers are mapped to the phys-
ical locations of the floating-point registers (R0 through R7), not to the relative loca-
tions of the registers in the floating-point register stack (ST0 through ST7). As a 

Table 12-1.  Action Taken By MMX Instructions 
for Different Combinations of EM, MP and TS

CR0 Flags

EM MP* TS Action

0 1 0 Execute.

0 1 1 #NM exception.

1 1 0 #UD exception.

1 1 1 #UD exception.

NOTE:
* For processors that support the MMX instructions, the MP flag should be set.
Vol. 3A 12-1



INTEL® MMX™ TECHNOLOGY SYSTEM PROGRAMMING
result, the MMX register mapping is fixed and is not affected by value in the Top Of 
Stack (TOS) field in the floating-point status word (bits 11 through 13).

When a value is written into an MMX register using an MMX instruction, the value also 
appears in the corresponding floating-point register in bits 0 through 63. Likewise, 
when a floating-point value written into a floating-point register by a x87 FPU, the 
low 64 bits of that value also appears in a the corresponding MMX register.

The execution of MMX instructions have several side effects on the x87 FPU state 
contained in the floating-point registers, the x87 FPU tag word, and the x87 FPU 
status word. These side effects are as follows:
• When an MMX instruction writes a value into an MMX register, at the same time, 

bits 64 through 79 of the corresponding floating-point register are set to all 1s.
• When an MMX instruction (other than the EMMS instruction) is executed, each of 

the tag fields in the x87 FPU tag word is set to 00B (valid). (See also Section 
12.2.1, “Effect of MMX, x87 FPU, FXSAVE, and FXRSTOR Instructions on the x87 
FPU Tag Word.”)

Figure 12-1.  Mapping of MMX Registers to Floating-Point Registers
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• When the EMMS instruction is executed, each tag field in the x87 FPU tag word is 
set to 11B (empty).

• Each time an MMX instruction is executed, the TOS value is set to 000B.

Execution of MMX instructions does not affect the other bits in the x87 FPU status 
word (bits 0 through 10 and bits 14 and 15) or the contents of the other x87 FPU 
registers that comprise the x87 FPU state (the x87 FPU control word, instruction 
pointer, data pointer, or opcode registers). 

Table 12-2 summarizes the effects of the MMX instructions on the x87 FPU state.

12.2.1 Effect of MMX, x87 FPU, FXSAVE, and FXRSTOR
Instructions on the x87 FPU Tag Word

Table 12-3 summarizes the effect of MMX and x87 FPU instructions and the FXSAVE 
and FXRSTOR instructions on the tags in the x87 FPU tag word and the corresponding 
tags in an image of the tag word stored in memory.

The values in the fields of the x87 FPU tag word do not affect the contents of the MMX 
registers or the execution of MMX instructions. However, the MMX instructions do 
modify the contents of the x87 FPU tag word, as is described in Section 12.2, “The 
MMX State and MMX Register Aliasing.” These modifications may affect the operation 
of the x87 FPU when executing x87 FPU instructions, if the x87 FPU state is not 
initialized or restored prior to beginning x87 FPU instruction execution.

Note that the FSAVE, FXSAVE, and FSTENV instructions (which save x87 FPU state 
information) read the x87 FPU tag register and contents of each of the floating-point 
registers, determine the actual tag values for each register (empty, nonzero, zero, or 
special), and store the updated tag word in memory. After executing these instruc-
tions, all the tags in the x87 FPU tag word are set to empty (11B). Likewise, the 
EMMS instruction clears MMX state from the MMX/floating-point registers by setting 
all the tags in the x87 FPU tag word to 11B.

Table 12-2.  Effects of MMX Instructions on x87 FPU State

MMX 
Instruction 
Type

x87 FPU Tag 
Word

TOS Field of 
x87 FPU 
Status 
Word

Other x87 
FPU Registers

Bits 64 
Through 79 of 
x87 FPU Data 
Registers

Bits 0 
Through 63 of 
x87 FPU Data 
Registers

Read from 
MMX register

All tags set 
to 00B (Valid)

000B Unchanged Unchanged Unchanged

Write to MMX 
register

All tags set 
to 00B (Valid)

000B Unchanged Set to all 1s Overwritten 
with MMX data

EMMS All fields set 
to 11B 
(Empty)

000B Unchanged Unchanged Unchanged
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12.3 SAVING AND RESTORING THE MMX STATE AND 
REGISTERS

Because the MMX registers are aliased to the x87 FPU data registers, the MMX state 
can be saved to memory and restored from memory as follows:
• Execute an FSAVE, FNSAVE, or FXSAVE instruction to save the MMX state to 

memory. (The FXSAVE instruction also saves the state of the XMM and MXCSR 
registers.)

• Execute an FRSTOR or FXRSTOR instruction to restore the MMX state from 
memory. (The FXRSTOR instruction also restores the state of the XMM and 
MXCSR registers.)

The save and restore methods described above are required for operating systems 
(see Section 12.4, “Saving MMX State on Task or Context Switches”). Applications 
can in some cases save and restore only the MMX registers in the following way:

Table 12-3.  Effect of the MMX, x87 FPU, and FXSAVE/FXRSTOR Instructions on the
x87 FPU Tag Word

Instruction
Type

Instruction x87 FPU Tag Word Image of x87 FPU Tag Word 
Stored in Memory

MMX All (except EMMS) All tags are set to 00B (valid). Not affected.

MMX EMMS All tags are set to 11B 
(empty).

Not affected.

x87 FPU All (except FSAVE, 
FSTENV, FRSTOR, 
FLDENV)

Tag for modified floating-
point register is set to 00B or 
11B.

Not affected.

x87 FPU and 
FXSAVE

FSAVE, FSTENV, 
FXSAVE

Tags and register values are 
read and interpreted; then all 
tags are set to 11B.

Tags are set according to the 
actual values in the floating-
point registers; that is, empty 
registers are marked 11B and 
valid registers are marked 
00B (nonzero), 01B (zero), or 
10B (special).

x87 FPU and 
FXRSTOR

FRSTOR, FLDENV, 
FXRSTOR

All tags marked 11B in 
memory are set to 11B; all 
other tags are set according 
to the value in the 
corresponding floating-point 
register: 00B (nonzero), 01B 
(zero), or 10B (special).

Tags are read and 
interpreted, but not modified.
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• Execute eight MOVQ instructions to save the contents of the MMX0 through 
MMX7 registers to memory. An EMMS instruction may then (optionally) be 
executed to clear the MMX state in the x87 FPU.

• Execute eight MOVQ instructions to read the saved contents of MMX registers 
from memory into the MMX0 through MMX7 registers.

NOTE
The IA-32 architecture does not support scanning the x87 FPU tag 
word and then only saving valid entries.

12.4 SAVING MMX STATE ON TASK OR CONTEXT 
SWITCHES

When switching from one task or context to another, it is often necessary to save the 
MMX state. As a general rule, if the existing task switching code for an operating 
system includes facilities for saving the state of the x87 FPU, these facilities can also 
be relied upon to save the MMX state, without rewriting the task switch code. This 
reliance is possible because the MMX state is aliased to the x87 FPU state (see 
Section 12.2, “The MMX State and MMX Register Aliasing”).

With the introduction of the FXSAVE and FXRSTOR instructions and of 
SSE/SSE2/SSE3/SSSE3 extensions, it is possible (and more efficient) to create state 
saving facilities in the operating system or executive that save the x87 
FPU/MMX/SSE/SSE2/SSE3/SSSE3 state in one operation. Section 13.5, “Designing 
OS Facilities for AUTOMATICALLY Saving x87 FPU, MMX, and 
SSE/SSE2/SSE3/SSSE3/SSE4 state on Task or Context Switches,” describes how to 
design such facilities. The techniques describes in this section can be adapted to 
saving only the MMX and x87 FPU state if needed.

12.5 EXCEPTIONS THAT CAN OCCUR WHEN EXECUTING 
MMX INSTRUCTIONS

MMX instructions do not generate x87 FPU floating-point exceptions, nor do they 
affect the processor’s status flags in the EFLAGS register or the x87 FPU status word. 
The following exceptions can be generated during the execution of an MMX instruc-
tion:
• Exceptions during memory accesses:

— Stack-segment fault (#SS).

— General protection (#GP).

— Page fault (#PF).

— Alignment check (#AC), if alignment checking is enabled.
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• System exceptions:

— Invalid Opcode (#UD), if the EM flag in control register CR0 is set when an 
MMX instruction is executed (see Section 12.1, “Emulation of the MMX 
Instruction Set”).

— Device not available (#NM), if an MMX instruction is executed when the TS 
flag in control register CR0 is set. (See Section 13.5.1, “Using the TS Flag to 
Control the Saving of the x87 FPU, MMX, SSE, SSE2, SSE3 SSSE3 and SSE4 
State.”)

• Floating-point error (#MF). (See Section 12.5.1, “Effect of MMX Instructions on 
Pending x87 Floating-Point Exceptions.”)

• Other exceptions can occur indirectly due to the faulty execution of the exception 
handlers for the above exceptions.

12.5.1 Effect of MMX Instructions on Pending x87 Floating-Point 
Exceptions

If an x87 FPU floating-point exception is pending and the processor encounters an 
MMX instruction, the processor generates a x87 FPU floating-point error (#MF) prior 
to executing the MMX instruction, to allow the pending exception to be handled by 
the x87 FPU floating-point error exception handler. While this exception handler is 
executing, the x87 FPU state is maintained and is visible to the handler. Upon 
returning from the exception handler, the MMX instruction is executed, which will 
alter the x87 FPU state, as described in Section 12.2, “The MMX State and MMX 
Register Aliasing.” 

12.6 DEBUGGING MMX CODE
The debug facilities operate in the same manner when executing MMX instructions as 
when executing other IA-32 or Intel 64 architecture instructions.

To correctly interpret the contents of the MMX or x87 FPU registers from the 
FSAVE/FNSAVE or FXSAVE image in memory, a debugger needs to take account of 
the relationship between the x87 FPU register’s logical locations relative to TOS and 
the MMX register’s physical locations.

In the x87 FPU context, STn refers to an x87 FPU register at location n relative to the 
TOS. However, the tags in the x87 FPU tag word are associated with the physical 
locations of the x87 FPU registers (R0 through R7). The MMX registers always refer 
to the physical locations of the registers (with MM0 through MM7 being mapped to R0 
through R7). Figure 12-2 shows this relationship. Here, the inner circle refers to the 
physical location of the x87 FPU and MMX registers. The outer circle refers to the x87 
FPU registers’s relative location to the current TOS.

When the TOS equals 0 (case A in Figure 12-2), ST0 points to the physical location 
R0 on the floating-point stack. MM0 maps to ST0, MM1 maps to ST1, and so on.
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When the TOS equals 2 (case B in Figure 12-2), ST0 points to the physical location 
R2. MM0 maps to ST6, MM1 maps to ST7, MM2 maps to ST0, and so on.

Figure 12-2.  Mapping of MMX Registers to x87 FPU Data Register Stack
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CHAPTER 13
SYSTEM PROGRAMMING FOR INSTRUCTION SET

EXTENSIONS AND PROCESSOR EXTENDED STATES

This chapter describes system programming features for instruction set extensions 
operating on the processor state extension known as the SSE state (XMM registers, 
MXCSR) and for processor extended states. Instruction set extensions operating on 
the SSE state include the streaming SIMD extensions (SSE), streaming SIMD exten-
sions 2 (SSE2), streaming SIMD extensions 3 (SSE3), Supplemental SSE3 (SSSE3), 
and SSE4. 

Sections 13.1 through 13.5 cover system programming requirements to enable 
SSE/SSE2/SSE3/SSSE3/SSE4 extensions, providing operating system or executive 
support for the SSE/SSE2/SSE3/SSSE3/SSE4 extensions, SIMD floating-point 
exceptions, exception handling, and task (context) switching.

Operating system support for SSE state, once implemented using FXSAVE/FXRSTOR, 
provides a limited degree of forward support for subsequent instruction set exten-
sions operating on the same known set of processor state. Processor extended states 
refer to an extension in Intel 64 architecture that will allow system executives to 
implement support for multiple processor state extensions that may be introduced 
over time without requiring the system executive to be modified each time a new 
processor state extension is introduced. 

Managing processor extended states requires the following aspects:
• using instructions like XSAVE, XRSTOR, to save/restore state information to a 

memory region consistent with the processor state extensions supported in 
hardware, 

• using CPUID enumeration features to query the set of extended processor states 
supported by the processor, 

• using XSETBV instruction to enable individual processor state extensions, 
• maintaining various system programming resources.

System programming for managing processor extended states is described in the 
sections starting 13.6.

13.1 PROVIDING OPERATING SYSTEM SUPPORT FOR
SSE/SSE2/SSE3/SSSE3/SSE4 EXTENSIONS

To use SSE/SSE2/SSE3/SSSE3/SSE4 extensions, the operating system or executive 
must provide support for initializing the processor to use these extensions, for 
handling the FXSAVE and FXRSTOR state saving instructions, and for handling SIMD 
floating-point exceptions. The following sections provide system programming 
Vol. 3A 13-1



SYSTEM PROGRAMMING FOR INSTRUCTION SET EXTENSIONS AND PROCESSOR 
guidelines for this support. Because SSE/SSE2/SSE3/SSSE3/SSE4 extensions share 
the same state, experience the same sets of non-numerical and numerical exception 
behavior, these guidelines that apply to SSE also apply to other sets of SIMD exten-
sions that operate on the same processor state and subject to the same sets of of 
non-numerical and numerical exception behavior. 

Chapter 11, “Programming with Streaming SIMD Extensions 2 (SSE2),” and Chapter 
12, “Programming with SSE3, SSSE3 and SSE4,” in the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 1, discuss support for 
SSE/SSE2/SSE3/SSSE3/SSE4 from an applications point of view program.

13.1.1 Adding Support to an Operating System for 
SSE/SSE2/SSE3/SSSE3/SSE4 Extensions

The following guidelines describe functions that an operating system or executive 
must perform to support SSE/SSE2/SSE3/SSSE3/SSE4 extensions:

1. Check that the processor supports the SSE/SSE2/SSE3/SSSE3/SSE4 extensions.

2. Check that the processor supports the FXSAVE and FXRSTOR instructions.

3. Provide an initialization for the SSE, SSE2 SSE3, SSSE3 and SSE4 states.

4. Provide support for the FXSAVE and FXRSTOR instructions.

5. Provide support (if necessary) in non-numeric exception handlers for exceptions 
generated by the SSE, SSE2, SSE3 and SSE4 instructions.

6. Provide an exception handler for the SIMD floating-point exception (#XM).

The following sections describe how to implement each of these guidelines.

13.1.2 Checking for SSE/SSE2/SSE3/SSSE3/SSE4 Extension 
Support

If the processor attempts to execute an unsupported SSE/SSE2/SSE3/SSSE3/SSE4 
instruction, the processor generates an invalid-opcode exception (#UD).

Before an operating system or executive attempts to use 
SSE/SSE2/SSE3/SSSE3/SSE4 extensions, it should check that support is present. 
Make sure:
• CPUID.1:EDX.SSE[bit 25] = 1
• CPUID.1:EDX.SSE2[bit 26] = 1
• CPUID.1:ECX.SSE3[bit 0] = 1
• CPUID.1:ECX.SSSE3[bit 9] = 1
• CPUID.1:ECX.SSE4_1[bit 19] = 1
• CPUID.1:ECX.SSE4_2[bit 20] = 1
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To use POPCNT instruction, software must check CPUID.1:ECX.POPCNT[bit 23] = 1

13.1.3 Checking for Support for the FXSAVE and FXRSTOR 
Instructions

A separate check must be made to insure that the processor supports FXSAVE and 
FXRSTOR. Make sure:
• CPUID.1:EDX.FXSR[bit 24] = 1 

13.1.4 Initialization of the SSE/SSE2/SSE3/SSSE3/SSE4 Extensions
The operating system or executive should carry out the following steps to set up 
SSE/SSE2/SSE3/SSSE3/SSE4 extensions for use by application programs:

1. Set CR4.OSFXSR[bit 9] = 1. Setting this flag assumes that the operating system 
provides facilities for saving and restoring SSE/SSE2/SSE3/SSSE3/SSE4 states 
using FXSAVE and FXRSTOR instructions. These instructions are commonly used 
to save the SSE/SSE2/SSE3/SSSE3/SSE4 state during task switches and when 
invoking the SIMD floating-point exception (#XM) handler (see Section 13.4, 
“Saving the SSE/SSE2/SSE3/SSSE3/SSE4 State on Task or Context Switches,” 
and Section 13.1.6, “Providing an Handler for the SIMD Floating-Point Exception 
(#XM),” respectively). 

If the processor does not support the FXSAVE and FXRSTOR instructions, 
attempting to set the OSFXSR flag will cause an exception (#GP) to be 
generated.

2. Set CR4.OSXMMEXCPT[bit 10] = 1. Setting this flag assumes that the operating 
system provides an SIMD floating-point exception (#XM) handler (see Section 
13.1.6, “Providing an Handler for the SIMD Floating-Point Exception (#XM)”). 

NOTE
The OSFXSR and OSXMMEXCPT bits in control register CR4 must be 
set by the operating system. The processor has no other way of 
detecting operating-system support for the FXSAVE and FXRSTOR 
instructions or for handling SIMD floating-point exceptions.

3. Clear CR0.EM[bit 2] = 0. This action disables emulation of the x87 FPU, which is 
required when executing SSE/SSE2/SSE3/SSSE3/SSE4 instructions (see Section 
2.5, “Control Registers”).

4. Set CR0.MP[bit 1] = 1. This setting is the required setting for Intel 64 and IA-32 
processors that support the SSE/SSE2/SSE3/SSSE3/SSE4 extensions (see 
Section 9.2.1, “Configuring the x87 FPU Environment”).

Table 13-1 and Table 13-2 show the actions of the processor when an 
SSE/SSE2/SSE3/SSSE3/SSE4 instruction is executed, depending on the: 
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• OSFXSR and OSXMMEXCPT flags in control register CR4
• SSE/SSE2/SSE3/SSSE3/SSE4 feature flags returned by CPUID
• EM, MP, and TS flags in control register CR0

Table 13-1.  Action Taken for Combinations of OSFXSR, OSXMMEXCPT, SSE, SSE2, 
SSE3, EM, MP, and TS1

CR4 CPUID CR0 Flags

OSFXSR OSXMMEXCPT SSE, 
SSE2, 
SSE32

SSE4_13

EM MP 4 TS Action

0 X5 X X 1 X #UD exception.

1 X 0 X 1 X #UD exception.

1 X 1 1 1 X #UD exception.

1 0 1 0 1 0 Execute instruction; #UD exception 
if unmasked SIMD floating-point 
exception is detected.

1 1 1 0 1 0 Execute instruction; #XM exception 
if unmasked SIMD floating-point 
exception is detected.

1 X 1 0 1 1 #NM exception.

NOTES:
1. For execution of any SSE/SSE2/SSE3 instruction except the PAUSE, PREFETCHh, SFENCE, 

LFENCE, MFENCE, MOVNTI, and CLFLUSH instructions.
2. Exception conditions due to CR4.OSFXSR or CR4.OSXMMEXCPT do not apply to FISTTP.
3. Only applies to DPPS, DPPD, ROUNDPS, ROUNDPD, ROUNDSS, ROUNDSD.
4. For processors that support the MMX instructions, the MP flag should be set.
5. X — Don’t care.
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The SIMD floating-point exception mask bits (bits 7 through 12), the flush-to-zero 
flag (bit 15), the denormals-are-zero flag (bit 6), and the rounding control field (bits 
13 and 14) in the MXCSR register should be left in their default values of 0. This 
permits the application to determine how these features are to be used.

13.1.5 Providing Non-Numeric Exception Handlers for Exceptions 
Generated by the SSE/SSE2/SSE3/SSSE3/SSE4 Instructions

SSE/SSE2/SSE3/SSSE3/SSE4 instructions can generate the same type of memory 
access exceptions (such as, page fault, segment not present, and limit violations) 
and other non-numeric exceptions as other Intel 64 and IA-32 architecture instruc-
tions generate. 

Ordinarily, existing exception handlers can handle these and other non-numeric 
exceptions without code modification. However, depending on the mechanisms used 
in existing exception handlers, some modifications might need to be made.

The SSE/SSE2/SSE3/SSSE3/SSE4 extensions can generate the non-numeric excep-
tions listed below:
• Memory Access Exceptions:

— Invalid opcode (#UD).

— Stack-segment fault (#SS).

— General protection (#GP). Executing most SSE/SSE2/SSE3 instructions with 
an unaligned 128-bit memory reference generates a general-protection 
exception. (The MOVUPS and MOVUPD instructions allow unaligned a loads or 
stores of 128-bit memory locations, without generating a general-protection 
exception.) A 128-bit reference within the stack segment that is not aligned 

Table 13-2.  Action Taken for Combinations of OSFXSR, SSSE3, SSE4, EM, and TS 

CR4 CPUID CR0 Flags

OSFXSR SSSE3
SSE4_1*
SSE4_2**

EM TS Action

0 X*** X X #UD exception.

1 0 X X #UD exception.

1 1 1 X #UD exception.

1 1 0 1 #NM exception.

NOTES:
* Applies to SSE4_1 instructions except DPPS, DPPD, ROUNDPS, ROUNDPD, ROUNDSS, ROUNDSD.
** Applies to SSE4_2 instructions except CRC32 and POPCNT.
***X — Don’t care.
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to a 16-byte boundary will also generate a general-protection exception, 
instead a stack-segment fault exception (#SS).

— Page fault (#PF).

— Alignment check (#AC). When enabled, this type of alignment check 
operates on operands that are less than 128-bits in size: 16-bit, 32-bit, and 
64-bit. To enable the generation of alignment check exceptions, do the 
following:

• Set the AM flag (bit 18 of control register CR0)

• Set the AC flag (bit 18 of the EFLAGS register)

• CPL must be 3

If alignment check exceptions are enabled, 16-bit, 32-bit, and 64-bit 
misalignment will be detected for the MOVUPD and MOVUPS instructions; 
detection of 128-bit misalignment is not guaranteed and may vary with 
implementation.

• System Exceptions:

— Invalid-opcode exception (#UD). This exception is generated when executing 
SSE/SSE2/SSE3/SSSE3 instructions under the following conditions:

• SSE/SSE2/SSE3/SSSE3/SSE4_1/SSE4_2 feature flags returned by 
CPUID are set to 0. This condition does not affect the CLFLUSH 
instruction, nor POPCNT.

• The CLFSH feature flag returned by the CPUID instruction is set to 0. This 
exception condition only pertains to the execution of the CLFLUSH 
instruction. 

• The POPCNT feature flag returned by the CPUID instruction is set to 0. 
This exception condition only pertains to the execution of the POPCNT 
instruction. 

• The EM flag (bit 2) in control register CR0 is set to 1, regardless of the 
value of TS flag (bit 3) of CR0. This condition does not affect the PAUSE, 
PREFETCHh, MOVNTI, SFENCE, LFENCE, MFENCE, CLFLUSH, CRC32 and 
POPCNT instructions.

• The OSFXSR flag (bit 9) in control register CR4 is set to 0. This condition 
does not affect the PSHUFW, MOVNTQ, MOVNTI, PAUSE, PREFETCHh, 
SFENCE, LFENCE, MFENCE, CLFLUSH, CRC32 and POPCNT instructions.

• Executing a instruction that causes a SIMD floating-point exception when 
the OSXMMEXCPT flag (bit 10) in control register CR4 is set to 0. See 
Section 13.5.1, “Using the TS Flag to Control the Saving of the x87 FPU, 
MMX, SSE, SSE2, SSE3 SSSE3 and SSE4 State.”

— Device not available (#NM). This exception is generated by executing a 
SSE/SSE2/SSE3/SSSE3/SSE4 instruction when the TS flag (bit 3) of CR0 is 
set to 1.
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Other exceptions can occur indirectly due to faulty execution of the above 
exceptions.

13.1.6 Providing an Handler for the SIMD Floating-Point Exception 
(#XM)

SSE/SSE2/SSE3/SSSE3/SSE4 instructions do not generate numeric exceptions on 
packed integer operations. They can generate the following numeric (SIMD floating-
point) exceptions on packed and scalar single-precision and double-precision 
floating-point operations. 
• Invalid operation (#I)
• Divide-by-zero (#Z)
• Denormal operand (#D)
• Numeric overflow (#O)
• Numeric underflow (#U)
• Inexact result (Precision) (#P)

These SIMD floating-point exceptions (with the exception of the denormal operand 
exception) are defined in the IEEE Standard 754 for Binary Floating-Point Arithmetic 
and represent the same conditions that cause x87 FPU floating-point error excep-
tions (#MF) to be generated for x87 FPU instructions.

Each of these exceptions can be masked, in which case the processor returns a 
reasonable result to the destination operand without invoking an exception handler. 
However, if any of these exceptions are left unmasked, detection of the exception 
condition results in a SIMD floating-point exception (#XM) being generated. See 
Chapter 6, “Interrupt 19—SIMD Floating-Point Exception (#XM).”

To handle unmasked SIMD floating-point exceptions, the operating system or execu-
tive must provide an exception handler. The section titled “SSE and SSE2 SIMD 
Floating-Point Exceptions” in Chapter 11, “Programming with Streaming SIMD 
Extensions 2 (SSE2),” of the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 1, describes the SIMD floating-point exception classes and gives 
suggestions for writing an exception handler to handle them.

To indicate that the operating system provides a handler for SIMD floating-point 
exceptions (#XM), the OSXMMEXCPT flag (bit 10) must be set in control register 
CR0.

13.1.6.1  Numeric Error flag and IGNNE#
SSE/SSE2/SSE3/SSE4 extensions ignore the NE flag in control register CR0 (that is, 
treats it as if it were always set) and the IGNNE# pin. When an unmasked SIMD 
floating-point exception is detected, it is always reported by generating a SIMD 
floating-point exception (#XM).
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13.2 EMULATION OF SSE/SSE2/SSE3/SSSE3/SSE4 
EXTENSIONS 

The Intel 64 and IA-32 architecture does not support emulation of the 
SSE/SSE2/SSE3/SSSE3/SSE4 instructions, as they do for x87 FPU instructions.

The EM flag in control register CR0 (provided to invoke emulation of x87 FPU instruc-
tions) cannot be used to invoke emulation of SSE/SSE2/SSE3/SSSE3/SSE4 instruc-
tions. If an SSE/SSE2/SSE3/SSSE3/SSE4 instruction is executed when CR0.EM = 1, 
an invalid opcode exception (#UD) is generated. See Table 13-1.

13.3 SAVING AND RESTORING THE 
SSE/SSE2/SSE3/SSSE3/SSE4 STATE

The SSE/SSE2/SSE3/SSSE3/SSE4 state consists of the state of the XMM and MXCSR 
registers. The recommended method for saving and restoring this state follows:
• Execute an FXSAVE instruction to save the state of the XMM and MXCSR registers 

to memory.
• Execute an FXRSTOR instruction to restore the state of the XMM and MXCSR 

registers from the image saved in memory by the FXSAVE instruction.

This save and restore method is required for all operating systems. See Section 13.5, 
“Designing OS Facilities for AUTOMATICALLY Saving x87 FPU, MMX, and 
SSE/SSE2/SSE3/SSSE3/SSE4 state on Task or Context Switches.”

In some cases, applications can only save the XMM and MXCSR registers in the 
following way:
• Execute MOVDQ instructions to save the contents of each XMM registers to 

memory. 
• Execute a STMXCSR instruction to save the state of the MXCSR register to 

memory.

In some cases, applications can only restore the XMM and MXCSR registers in the 
following way:
• Execute MOVDQ instructions to read the saved contents of each XMM registers 

from memory to XMM registers.
• Execute a LDMXCSR instruction to restore the state of the MXCSR register from 

memory.
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13.4 SAVING THE SSE/SSE2/SSE3/SSSE3/SSE4 STATE ON 
TASK OR CONTEXT SWITCHES

When switching from one task or context to another, it is often necessary to save the 
SSE/SSE2/SSE3/SSSE3/SSE4 state. FXSAVE and FXRSTOR instructions provide a 
simple method for saving and restoring this state. See Section 13.3, “Saving and 
Restoring the SSE/SSE2/SSE3/SSSE3/SSE4 State.” These instructions offer the 
added benefit of saving x87 FPU and MMX state as well. 

Guidelines for writing such procedures are in Section 13.5, “Designing OS Facilities 
for AUTOMATICALLY Saving x87 FPU, MMX, and SSE/SSE2/SSE3/SSSE3/SSE4 state 
on Task or Context Switches.”

13.5 DESIGNING OS FACILITIES FOR AUTOMATICALLY 
SAVING X87 FPU, MMX, AND 
SSE/SSE2/SSE3/SSSE3/SSE4 STATE ON TASK OR 
CONTEXT SWITCHES

The x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 state consist of the state of the x87 
FPU, MMX, XMM, and MXCSR registers. The FXSAVE and FXRSTOR instructions 
provide a fast method for saving ad restoring this state. If task or context switching 
facilities are already implemented in an operating system or executive and they use 
FSAVE/FNSAVE and FRSTOR to save the x87 FPU and MMX state, these facilities can 
be extended to save and restore SSE/SSE2/SSE3/SSSE3/SSE4 state by substituting 
FXSAVE/FXRSTOR for FSAVE/FNSAVE and FRSTOR. 

Where task or content switching facilities must be written from scratch, several 
approaches can be taken for using the FXSAVE and FXRSTOR instructions to save and 
restore x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 state:
• The operating system can require applications that are intended be run as tasks 

take responsibility for saving the state of the x87 FPU, MMX, XMM, and MXCSR 
registers prior to a task suspension during a task switch and for restoring the 
registers when the task is resumed. This approach is appropriate for cooperative 
multitasking operating systems, where the application has control over (or is able 
to determine) when a task switch is about to occur and can save state prior to the 
task switch.

• The operating system can take the responsibility for automatically saving the x87 
FPU, MMX, XMM, and MXCSR registers as part of the task switch process (using 
an FXSAVE instruction) and automatically restoring the state of the registers 
when a suspended task is resumed (using an FXRSTOR instruction). Here, the 
x87 FPU/MMX/SSE/SSE2/SSE3/SSE4 state must be saved as part of the task 
state. This approach is appropriate for preemptive multitasking operating 
systems, where the application cannot know when it is going to be preempted 
and cannot prepare in advance for task switching. Here, the operating system is 
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responsible for saving and restoring the task and the x87 
FPU/MMX/SSE/SSE2/SSE3 state when necessary.

• The operating system can take the responsibility for saving the x87 FPU, MMX, 
XMM, and MXCSR registers as part of the task switch process, but delay the 
saving of the MMX and x87 FPU state until an x87 FPU, MMX, or 
SSE/SSE2/SSE3/SSSE3/SSE4 instruction is actually executed by the new task. 
Using this approach, the x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 state is 
saved only if an x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction needs 
to be executed in the new task. (See Section 13.5.1, “Using the TS Flag to 
Control the Saving of the x87 FPU, MMX, SSE, SSE2, SSE3 SSSE3 and SSE4 
State,” for more information.)

13.5.1 Using the TS Flag to Control the Saving of the
x87 FPU, MMX, SSE, SSE2, SSE3 SSSE3 and SSE4 State

Saving the x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 state using FXSAVE requires 
processor overhead. If the new task does not access x87 FPU, MMX, XMM, and 
MXCSR registers, avoid overhead by not automatically saving the state on a task 
switch.

The TS flag in control register CR0 is provided to allow the operating system to delay 
saving the x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 state until an instruction 
that actually accesses this state is encountered in a new task. When the TS flag is 
set, the processor monitors the instruction stream for an x87 
FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction. When the processor detects 
one of these instructions, it raises a device-not-available exception (#NM) prior to 
executing the instruction. The device-not-available exception handler can then be 
used to save the x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 state for the previous 
task (using an FXSAVE instruction) and load the x87 
FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 state for the current task (using an 
FXRSTOR instruction). If the task never encounters an x87 
FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction, the device-not-available excep-
tion will not be raised and a task state will not be saved unnecessarily.

NOTE
The CRC32 and POPCNT instructions do not operate on the x87 
FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 state. They operate on the 
general-purpose registers and are not involved in the OS’s lazy 
FXSAVE/FXRSTOR technique. 

The TS flag can be set either explicitly (by executing a MOV instruction to control 
register CR0) or implicitly (using the IA-32 architecture’s native task switching mech-
anism). When the native task switching mechanism is used, the processor automati-
cally sets the TS flag on a task switch. After the device-not-available handler has 
saved the x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 state, it should execute the 
CLTS instruction to clear the TS flag.
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Figure 13-1 gives an example of an operating system that implements x87 
FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 state saving using the TS flag. In this 
example, task A is the currently running task and task B is the new task. The oper-
ating system maintains a save area for the x87 
FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 state for each task and defines a variable 
(x87_MMX_SSE_SSE2_SSE3_StateOwner) that indicates the task that “owns” the 
state. In this example, task A is the current owner.

On a task switch, the operating system task switching code must execute the 
following pseudo-code to set the TS flag according to the current owner of the x87 
FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 state. If the new task (task B in this 
example) is not the current owner of this state, the TS flag is set to 1; otherwise, it is 
set to 0.

IF Task_Being_Switched_To ≠ x87FPU_MMX_XMM_MXCSR_StateOwner
    THEN 
        CR0.TS ← 1;
    ELSE
        CR0.TS ← 0;
FI;

If a new task attempts to access an x87 FPU, MMX, XMM, or MXCSR register while the 
TS flag is set to 1, a device-not-available exception (#NM) is generated. The device-
not-available exception handler executes the following pseudo-code.

FXSAVE “To x87FPU/MMX/XMM/MXCSR State Save Area for Current
x87FPU_MMX_XMM_MXCSR_StateOwner”;

Figure 13-1.  Example of Saving the x87 FPU, MMX, SSE, SSE2, SSE3, and SSSE3 
State During an Operating-System Controlled Task Switch
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FXRSTOR “x87FPU/MMX/XMM/MXCSR State From Current Task’s
x87FPU/MMX/XMM/MXCSR State Save Area”;

x87FPU_MMX_XMM_MXCSR_StateOwner ← Current_Task;
CR0.TS ← 0;

This exception handler code performs the following tasks:
• Saves the x87 FPU, MMX, XMM, or MXCSR registers in the state save area for the 

current owner of the x87 FPU/MMX/XMM/MXCSR state.
• Restores the x87 FPU, MMX, XMM, or MXCSR registers from the new task’s save 

area for the x87 FPU/MMX/XMM/MXCSR state.
• Updates the current x87 FPU/MMX/XMM/MXCSR state owner to be the current 

task.
• Clears the TS flag. 

13.6 XSAVE/XRSTOR AND PROCESSOR EXTENDED STATE 
MANAGEMENT 

The features associated with managing processor extended states include 
• An extensible data layout for existing and future processor state extensions. The 

layout of the XSAVE/XRSTOR area extends from the 512-byte FXSAVE/FXRSTOR 
layout to provide compatibility and migration path from managing the legacy 
FXSAVE/FXRSTOR area. Specifically, the XSAVE/XRSTOR area layout consists of:

— The FXSAVE/FXRSTOR area (512 bytes, the layout is identical to the 
FXSAVE/FXRSTOR area),

— The XSAVE header area (64 bytes),

— A finite set of save areas, each corresponding to a processor extended state 
(see Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2B, XSAVE instruction). The number of save areas, the offset and the 
size of each save area is enumerated by CPUID leaf function 0DH.

• CPUID Enhancement: CPUID instruction provides information on 

— CPUID.01H.ECX.XSAVE[bit 26]. A feature flag indicating the processor’s 
support of XSAVE/XRSTOR architecture extensions

— CPUID.01H.ECX.OSXSAVE[bit 27]. A feature flag indicating whether OS has 
enabled extensible state management and communicating that the OS 
supports processor extended state management.

— CPUID leaf function 0DH enumerates the list of processor states (including 
legacy x87 FPU, SSE states and processor extended states), the offset and 
size of individual save area for each processor extended state.

• Control register enhancement and dedicated register for enabling each processor 
extended state: CR4. OSXSAVE[bit 18] and XCR0 are described in Chapter 2, 
13-12 Vol. 3A



SYSTEM PROGRAMMING FOR INSTRUCTION SET EXTENSIONS AND
“System Architecture Overview”. XCR0 can be read at all privilege levels but 
written only at ring 0. 

• Instructions to manage XCR0 and the XSAVE/XRSTOR area (see Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 2B):

— XGETBV: reads XCR0.

— XSETBV: writes to XCR0, ring 0 only.

— XRSTOR: restores from memory the processor states specified by a bit vector 
mask specified in EDX:EAX.

— XSAVE: saves the current processor states to memory according to a bit 
vector mask in EDX:EAX.

13.6.1 XSAVE Header 
The header section includes a “XSTATE_BV“ bit vector field. If the value of a bit in 
HEADER.XSTATE_BV is 1, it indicates that the corresponding processor extended 
state was written to the respective save area in memory by the XSAVE instruction.

If software modifies the save area image of a particular processor state component 
directly, it is responsible to update the corresponding bit in HEADER.XSTATE_BV to 1. 
Otherwise, directly modified state information in a save area image may be ignored 
by XRSTOR. 

The order of bit vectors in XSTATE_BV matches those of XCR0. Although XCR0 has 
only two bits initially defined for state management, the general relationship 
between the value of XSTATE_BV and the corresponding processor state in the 
XSAVE/XRSTOR layout is depicted in Figure 13-2. 
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The XSAVE header is 64 bytes in length and must be aligned on 64 byte boundary. 
Therefore, the XSAVE/XRSTOR region must be aligned on 64-byte boundary. The 
format of the header is as follows (see Table 13-3):

The value of each bit in HEADER.XSTATE_BV may affect the action performed by 
XRSTOR, depending on the logical value of the respective bits in XCR0, the restore bit 
mask (EDX:EAX input to XRSTOR), and HEADER.XSTATE_BV. When an XRSTOR 
instruction is executed with a restore bit mask selecting the i’th bit vector (and the 
corresponding XCR0 bit is enabled), a value of "1" in the corresponding bit of 

Figure 13-2.  Future Layout of XSAVE/XRSTOR Area and XSTATE_BV with Five Sets 
of Processor State Extensions

Table 13-3.  XSAVE Header Format

15:8 7:0 Byte Offset

Reserved (Must be zero) XSTATE_BV 0

Reserved Reserved (Must be zero) 16

Reserved Reserved 32

Reserved Reserved 48
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HEADER.XSTATE_BV causes the processor state to be updated with contents of the 
save area read from the memory image. A value of "0" in HEADER.XSTATE_BV 
causes the processor state to be initialized by hardware supplied values instead of 
from memory (See the operation detail of XRSTOR in Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 2B). 

The save area image corresponding to a bit with "0" value in HEADER.XSTATE_BV 
may or may not contain the correct state information. XRSTOR will ensure the 
register state for a component is properly initialized  regardless of the value of the 
save area when the component header bit is zero.

13.7 INTEROPERABILITY OF XSAVE/XRSTOR AND 
FXSAVE/FXRSTOR

FXSAVE instruction writes x87 FPU and SSE state information to a 512-byte FXSAVE, 
FXRSTOR save area. FXRSTOR restores the processor’s x87 FPU and SSE states from 
FXSAVE/FXRSTOR save area image. XSAVE/XRSTOR instructions support x87 FPU 
and SSE states using the same layout as the FXSAVE/FXRSTOR area to provide 
interoperability of FXSAVE versus XSAVE, and FXRSTOR versus XRSTOR. 
XSAVE/XRSTOR provides the additional flexibility for system software to manage SSE 
state independent of x87 FPU states. Thus system software that had been using 
FXSAVE/FXRSTOR to manage x87 FPU and SSE states can transition to 
XSAVE/XRSTOR to manage x87 FPU, SSE and other processor extended states in a 
systematic and forward-looking manner. 

It is also possible for system software to adopt an alternate approach of using 
FXSAVE/FXRSTOR for x87 and SSE state management, and implementing forward 
processor extended state management using XSAVE/XRSTOR. In this case, system 
software must specify the bit vector mask in EDX:EAX appropriately when executing 
XSAVE/XRSTOR instructions. 

For instance, when using the XSAVE instruction, the OS can supply a bit vector in 
EDX:EAX with the two least significant bits corresponding to x87 FPU and SSE state 
equal to 0.  Then, the XSAVE instruction will not write the processor’s x87 FPU and 
SSE state into memory.  Similarly for the XRSTOR instruction a bit vector mask in 
EDX:EAX with the least two significant bit equal to 0 will cause the XRSTOR instruc-
tion to not restore nor initialize the processor’s x87 FPU and SSE state.

The processor’s action as a result of executing XRSTOR, on the x87 FPU state, 
MXCSR, and XMM registers, are listed in Table 13-4 (Both bit 1 and bit 0 of XCR0 are 
presumed to be 1). The x87 FPU or XMM registers may be initialized by the processor 
(See XRSTOR operation in Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 2B). When the MXCSR register is updated from memory, reserved 
bit checking is enforced. The saving/restoring of MXCSR is bound to the SSE state, 
independent of the x87 FPU state. The action of XSAVE is listed in Table 13-5.
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XSAVE, XRSTOR instructions operating on FP or SSE state will cause a #NM Device 
Not Available) exception, if CR0.TS is set.  Using this feature, system software can 
implement the “lazy restore” technique of managing x87 FPU/SSE state using either 
FXSAVE/FXRSTOR or XSAVE/XRSTOR. It can be accomplished even with the inter-
mixing of FXSAVE and XSAVE instructions.

Table 13-4.  XRSTOR Action on MXCSR, x87 FPU, XMM Register 

EDX:EAX XSTATE_BV MXCSR XMM Registers x87 FPU State

Bit 1 Bit 0 Bit 1 Bit 0

0 0 X X None None None

0 1 X 0 None None Init by processor

0 1 X 1 None None Load 

1 0 0 X Load/Check Init by processor None

1 0 1 X Load/Check Load None

1 1 0 0 Load/Check Init by processor Init by processor

1 1 0 1 Load/Check Init by processor Load

1 1 1 0 Load/Check Load Init by processor

1 1 1 1 Load/Check Load Load

Table 13-5.  XSAVE Action on MXCSR, x87 FPU, XMM Register 

EDX:EAX XCR01

NOTES:
1.  Attempts to set XCR0[0] to 0 cause #GP.

MXCSR XMM Registers x87 FPU State

Bit 1 Bit 0 Bit 1 Bit 0

0 0 X 1 None None None

0 1 X 1 None None Store 

1 0 0 1 None None None

1 0 1 1 Store Store None

1 1 0 1 None None Store

1 1 1 1 Store Store Store
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13.8 DETECTION, ENUMERATION, ENABLING PROCESSOR 
EXTENDED STATE SUPPORT

An OS can determine if the XSAVE/XRSTOR/XGETBV/XSETBV instructions and XCR0 
are available in the processor by checking the value of CPUID.1.ECX.XSAVE to be 1. 
The OS must set CR4.OSXSAVE to 1 to enable the new instructions. The OS uses 
XSETBV to enable the processor state component (setting the corresponding bit in 
XCR0 to 1) that it will manage using XSAVE/XRSTOR. Bit 0 of XCR0 must be set to 1. 
The value of CR4.OSXSAVE is reflected in CPUID.01H:ECX.OSXSAVE (bit 27) to 
communicate the setting to non-privileged software.

The bits that must be enabled in XCR0 and the size of the memory region needed to 
save processor extended state information must be enumerated by CPUID leaf 0DH 
with ECX = 0 as input. However, the recommended usage by system software to use 
XSAVE/XSAVEOPT/XRSTOR is to:
• Use mask (EDX:EAX) with all bits set to 1.
• Alternately use the master bit vector mask EDX:EAX reported by 

CPUID.(EAX=0D, ECX=0H). This provides a more constrained list of features 
than using all 1's in the mask.

In either case, system software is required to allocate a memory buffer according to 
the size reported by CPUID.(EAX=0DH, ECX=0H):ECX. The value reported by 
CPUID.(EAX=0DH, ECX=0H):ECX always includes the size of the header. Clear the 
entire buffer prior to being used by XSAVE.

Figure 13-3.  OS Enabling of Processor Extended State Support
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HW support XSAVE, XRSTOR, XSETBV, XFEM

CPUID.1H:ECX.XSAVE? 
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Extended state features 
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Clear buffer to 0
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The advantage of using a mask value of all-bits-set-to-1 for XSAVE/XRSTOR is that it 
can simplify system software’s support for processor extended state management, 
when multiple generations of hardware may support different number of processor 
extended states as reported by CPUID. However, there may be additional implemen-
tation requirement of software modification that may arise due to a particular system 
software or specific details introduced by a new processor extended state. 

13.8.1 Application Programming Model and Processor Extended 
States

New instruction set extensions may be introduced over time and operating on a 
processor extended state that must be enabled in XCR0. The general application 
programming model for using such instruction set extensions are:
• Check if OS has enabled processor extended state management. If 

CPUID.01H:ECX.OSXSAVE is 1, the OS has enabled the 
XSAVE/XRSTOR/XSETBV/XGETBV instructions and XCR0, and it has indicated 
support for the processor extended state management.
Applications do not need to check the value of CPUID.01H:ECX.XSAVE because 
“CPUID.01H:ECX.OSXSAVE = 1” implies OS has successfully verified 
CPUID.01H:ECX.XSAVE = 1. CPUID.01H:ECX.OSXSAVE reflects the value of 
CR4.OSXSAVE, and this bit cannot be set to 1 unless CPUID.01H:ECX.XSAVE = 1.

• Check whether the processor extended state component associated with a given 
instruction set extension is enabled by the OS. The bits of EDX:EAX returned by 
XGETBV as 1 indicate which processor extended state components have been 
enabled by OS. Note, the CR4.OSFXSR is not used by OS to enable instruction 
extensions requiring processor extended state support.

• Check the target instruction set extension is supported in the processor. Each 
new instruction set extension is expected to provide a feature flag in CPUID when 
it is introduced. 
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If all three requirements are met, applications can use the target new instruction set 
extensions. If any of the above requirements are not met, an attempt to execute an 
instruction operating on a processor extended state corresponding to bit offset 
higher than 1 in XCR0 will cause a #UD exception. 

Newer instruction extensions operating on SSE state, but not on any processor 
extended states corresponding bits in XCR0 with an offset higher than 1, follow the 
programming model described by Section 13.1 through Section 13.5. XCR0 is not 
required to enable OS support for SSE state management, but CR4.OSFXSR is 
required. 

13.9 INTEL ADVANCED VECTOR EXTENSIONS (INTEL AVX) 
AND YMM STATE

Intel AVX instructions comprises of 256-bit and 128-bit instructions that operates on 
YMM states. The following sections describes system software support requirements 
for 256-bit YMM states.

For processors that support YMM states, the YMM state exists in all operating modes. 
However, the available instruction interfaces to access YMM states may vary in 
different modes. XSAVE/XRSTOR and XSAVEOPT instructions can operate in all oper-
ating modes. 

Figure 13-4.  Application Detection of New Instruction Extensions and Processor 
Extended State
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13.10 YMM STATE MANAGEMENT
Operating systems must use the XSAVE/XRSTOR (and optionally XSAVEOPT) instruc-
tions for YMM state management. The XSAVE/XRSTOR/XSAVEOPT instructions also 
provide flexible and efficient interface to manage XMM/MXCSR states and x87 FPU 
states in conjunction with newer processor extended states like YMM states. 
An OS must enable its YMM state management to support AVX and any 256-bit 
extensions that operate on YMM registers. Otherwise, an attempt to execute an 
instruction in AVX extensions (including an enhanced 128-bit SIMD instructions using 
VEX encoding) will cause a #UD exception.

13.10.1 Detection of YMM State Support
Detection of hardware support for new processor extended state is provided by the 
main CPUID leaf function 0DH with index ECX = 0. Specifically, the return value in 
EDX:EAX of CPUID.(EAX=0DH, ECX=0) provides a 64-bit wide bit vector of hardware 
support of processor state components, beginning with bit 0 of EAX corresponding to 
x87 FPU state, CPUID.(EAX=0DH, ECX=0):EAX[1] corresponding to SSE state (XMM 
registers and MXCSR), CPUID.(EAX=0DH, ECX=0):EAX[2] corresponding to YMM 
states.

13.10.2 Enabling of YMM State 
An OS can enable YMM state support with the following steps:

• Verify the processor supports XSAVE/XRSTOR/XSETBV/XGETBV instructions and 
XCR0 by checking CPUID.1.ECX.XSAVE[bit 26]=1. 

• Verify the processor supports YMM state (i.e. bit 2 of XCR0 is valid) by checking 
CPUID.(EAX=0DH, ECX=0):EAX.YMM[2]. The OS should also verify 
CPUID.(EAX=0DH, ECX=0):EAX.SSE[bit 1]=1, because the lower 128-bits of an 
YMM register are aliased to an XMM register. 

The OS must determine the buffer size requirement for the XSAVE area that will 
be used by XSAVE/XRSTOR (see CPUID instruction in Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2A).

• Set CR4.OSXSAVE[bit 18]=1 to enable the use of XSETBV/XGETBV instructions 
to write/read XCR0.

• Supply an appropriate mask via EDX:EAX to execute XSETBV to enable the 
processor state components that the OS wishes to manage using XSAVE/XRSTOR 
instruction. To enable x87 FPU, SSE and YMM state management using 
XSAVE/XRSTOR, the enable mask is EDX=0H, EAX=7H (The individual bits of 
XCR0 is listed in Table 13-6).
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To enable YMM state, the OS must use EDX:EAX[2:1] = 11B when executing
XSETBV. An attempt to execute XSETBV with EDX:EAX[2:1] = 10B causes a
#GP(0) exception. 

13.10.3 Enabling of SIMD Floating-Exception Support
AVX instructions may generate SIMD floating-point exceptions. An OS must enable 
SIMD floating-point exception support by setting CR4.OSXMMEXCPT[bit 10]=1.
The effect of CR4 setting that affects AVX enabling is listed in Table 13-7.

13.10.4 The Layout of XSAVE Area
The OS must determine the buffer size requirement by querying CPUID with 
EAX=0DH, ECX=0. If the OS wishes to enable all processor extended state compo-

Table 13-6.   XCR0 and Processor State Components

Bit Meaning

0 - x87
If set, the processor supports x87 FPU state management 
via XSAVE/XRSTOR. This bit must be 1 if 
CPUID.01H:ECX.XSAVE[26] = 1. 

1 - SSE
If set, the processor supports SSE state (XMM and MXCSR) 
management via XSAVE/XRSTOR. This bit must be set to 
‘1’ to enable AVX.

2 - YMM
If set, the processor supports YMM state (upper 128 bits 
of YMM registers) management via XSAVE. This bit must 
be set to ‘1’ to enable AVX.

63:3 Reserved; must be 0.

Table 13-7.   CR4 bits for AVX New Instructions technology support

Bit Meaning

CR4.OSXSAVE[bit 18] If set, the OS supports use of XSETBV/XGETBV instruc-
tion to access XCR0, XSAVE/XRSTOR to manage proces-
sor extended state. Must be set to ‘1’ to enable AVX.

CR4.OSXMMEXCPT[bit 10] Must be set to 1 to enable SIMD floating-point exceptions. 
This applies to AVX operating on YMM states, and legacy 
128-bit SIMD floating-point instructions operating on 
XMM states. 

CR4.OSFXSR[bit 9] Ignored by AVX instructions operating on YMM states. 
Must be set to 1 to enable SIMD instructions operating on 
XMM state. 
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nents in XCR0, it can allocate the buffer size according to CPUID.(EAX=0DH, 
ECX=0):ECX. 
After the memory buffer for XSAVE is allocated, the entire buffer must to cleared to 
zero prior to use by XSAVE. 
For processors that support SSE and YMM states, the XSAVE area layout is listed in 
Table 13-8. The register fields of the first 512 byte of the XSAVE area are identical to 
those of the FXSAVE/FXRSTOR area. 

The format of the header is as follows (see Table 13-9):

The layout of the Ext_Save_Area[YMM] contains 16 of the upper 128-bits of the YMM 
registers, it is shown in Table 13-10. 

Table 13-8.   Layout of XSAVE Area For Processor Supporting YMM State

Save Areas Offset (Byte) Size (Bytes)

FPU/SSE SaveArea 0 512

Header 512 64

Ext_Save_Area_2 
(YMM)

CPUID.(EAX=0DH, ECX=2):EBX CPUID.(EAX=0DH, ECX=2):EAX 

Table 13-9.  XSAVE Header Format

15:8 7:0 Byte Offset 
from Header

Byte Offset 
from XSAVE 

Area

Reserved (Must be zero) XSTATE_BV 0 512

Reserved Reserved (Must be zero) 16 528

Reserved Reserved 32 544

Reserved Reserved 48 560
13-22 Vol. 3A



SYSTEM PROGRAMMING FOR INSTRUCTION SET EXTENSIONS AND
13.10.5 XSAVE/XRSTOR Interaction with YMM State and MXCSR
The processor’s action as a result of executing XRSTOR, on the MXCSR, XMM and 
YMM registers, are listed in Table 13-4 (Both bit 1 and bit 2 of XCR0 are presumed to 
be 1). The XMM registers may be initialized by the processor (See XRSTOR operation 
in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B). 
When the MXCSR register is updated from memory, reserved bit checking is 
enforced. The saving/restoring of MXCSR is bound to both the SSE state and YMM 
state. MXCSR save/restore will not be bound to any future states.

Table 13-10.  XSAVE Save Area Layout  for YMM State (Ext_Save_Area_2)

31 16 15 0

Byte Offset 
from 

YMM_Save_Are
a

Byte Offset from 
XSAVE Area

YMM1[255:128] YMM0[255:128] 0 576

YMM3[255:128] YMM2[255:128] 32 608

YMM5[255:128] YMM4[255:128] 64 640

YMM7[255:128] YMM6[255:128] 96 672

YMM9[255:128] YMM8[255:128] 128 704

YMM11[255:128] YMM10[255:128] 160 736

YMM13[255:128] YMM12[255:128] 192 768

YMM15[255:128] YMM14[255:128] 224 800

Table 13-11.  XRSTOR Action on MXCSR, XMM Registers, YMM Registers

EDX:EAX XSATE_BV
MXCSR

YMM_H 
Registers

XMM Registers
Bit 2 Bit 1 Bit 2 Bit 1

0 0 X X None None None

0 1 X 0 Load/Check None Init by processor

0 1 X 1 Load/Check None Load 

1 0 0 X Load/Check Init by processor None

1 0 1 X Load/Check Load None

1 1 0 0 Load/Check Init by processor Init by processor

1 1 0 1 Load/Check Init by processor Load

1 1 1 0 Load/Check Load Init by processor

1 1 1 1 Load/Check Load Load
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The processor supplied init values for each processor state component used by 
XRSTOR is listed in Table 13-12.

The action of XSAVE is listed in Table 13-13.

13.10.6 Processor Extended State Save Optimization and XSAVEOPT
The XSAVEOPT instruction paired with XRSTOR is designed to provide a high perfor-
mance method for system software to perform state save and restore.
A processor may indicate its support for the XSAVEOPT instruction if 
CPUID.(EAX=0DH, ECX=1):EAX.XSAVEOPT[Bit 0] = 1. The functionality of 

Table 13-12.   Processor Supplied Init Values XRSTOR May Use

Processor State Component Processor Supplied Register Values

x87 FPU State
FCW ← 037FH; FTW ← 0FFFFH; FSW ← 0H; FPU CS ← 0H; 
FPU DS ← 0H; FPU IP ← 0H; FPU DP ← 0; ST0-ST7 ← 0;

SSE State1

NOTES:
1. MXCSR state is not updated by processor supplied values. MXCSR state can only

be updated by XRSTOR from state information stored in XSAVE/XRSTOR area.

If 64-bit Mode: XMM0-XMM15 ← 0H;
Else XMM0-XMM7 ← 0H

YMM State1 If 64-bit Mode: YMM0_H-YMM15_H ← 0H;
Else YMM0_H-YMM7_H ← 0H

Table 13-13.  XSAVE Action on MXCSR, XMM, YMM Register 

EDX:EAX XCR0
MXCSR

YMM_H 
Registers XMM Registers

Bit 2 Bit 1 Bit 2 Bit 1

0 0 X X None None None

0 1 X 1 Store None Store 

0 1 X 0 None None None

1 0 0 X None None None

1 0 1 1 Store Store None

1 1 0 0 None None None

1 1 0 1 Store None Store

1 1 1 1 Store Store Store
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XSAVEOPT is similar to XSAVE. Software can use XSAVEOPT/XRSTOR in a pair-wise 
manner similar to XSAVE/XRSTOR to save and restore processor extended states.
The syntax and operands for XSAVEOPT instructions are identical to XSAVE, i.e. the 
mask operand in EDX:EAX specifies the subset of enabled features to be saved. 
Note that software using XSAVEOPT must observe the same restrictions as XSAVE 
while allocating  a new save area. i.e., the header area must be initialized to zeroes. 
The first 64-bits in the save image header starting at offset 512 are referred to as 
XHEADER.BV. However, the instruction differs from XSAVE in several important 
aspects:

1. If a component state in the processor specified by the save mask corresponds to 
an INIT state, the instruction may clear the corresponding bit in XHEADER.BV, 
but may not write out the state (unlike the XSAVE instruction, which always 
writes out the state). 

2. If the processor determines that the component state specified by the save mask 
hasn't been modified since the last XRSTOR, the instruction may not write out the 
state to the save area.

3. A implication of this optimization is that software which needs to examine the 
saved image must first check the XHEADER.BV to see if any bits are clear. If the 
header bit is clear, it means that the state is INIT and the saved memory image 
may not correspond to the actual processor state.

4. The performance of XSAVEOPT will always be better than or at least equal to that 
of XSAVE.

13.10.6.1  XSAVEOPT Usage Guidelines
When using the XSAVEOPT facility, software must be aware of the guidelines outlined 
in Chapter , “XSAVEOPT—Save Processor Extended States Optimized” in Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 2B.
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CHAPTER 14
POWER AND THERMAL MANAGEMENT

This chapter describes facilities of Intel 64 and IA-32 architecture used for power 
management and thermal monitoring.

14.1 ENHANCED INTEL SPEEDSTEP® TECHNOLOGY
Enhanced Intel SpeedStep® Technology was introduced in the Pentium M processor; 
it is available in Pentium 4, Intel Xeon, Intel® Core™ Solo, Intel® Core™ Duo, Intel® 
Atom™ and Intel® Core™2 Duo processors. The technology manages processor 
power consumption using performance state transitions. These states are defined as 
discrete operating points associated with different frequencies. 

Enhanced Intel SpeedStep Technology differs from previous generations of Intel 
SpeedStep Technology in two ways:
• Centralization of the control mechanism and software interface in the processor 

by using model-specific registers.
• Reduced hardware overhead; this permits more frequent performance state 

transitions.

Previous generations of the Intel SpeedStep Technology require processors to be a 
deep sleep state, holding off bus master transfers for the duration of a performance 
state transition. Performance state transitions under the Enhanced Intel SpeedStep 
Technology are discrete transitions to a new target frequency.

Support is indicated by CPUID, using ECX feature bit 07. Enhanced Intel SpeedStep 
Technology is enabled by setting IA32_MISC_ENABLE MSR, bit 16. On reset, bit 16 of 
IA32_MISC_ENABLE MSR is cleared. 

14.1.1 Software Interface For Initiating Performance State 
Transitions

State transitions are initiated by writing a 16-bit value to the IA32_PERF_CTL 
register, see Figure 14-2. If a transition is already in progress, transition to a new 
value will subsequently take effect. 

Reads of IA32_PERF_CTL determine the last targeted operating point. The current 
operating point can be read from IA32_PERF_STATUS. IA32_PERF_STATUS is 
updated dynamically.

The 16-bit encoding that defines valid operating points is model-specific. Applications 
and performance tools are not expected to use either IA32_PERF_CTL or 
IA32_PERF_STATUS and should treat both as reserved. Performance monitoring 
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tools can access model-specific events and report the occurrences of state 
transitions.

14.2 P-STATE HARDWARE COORDINATION
The Advanced Configuration and Power Interface (ACPI) defines performance states 
(P-state) that are used facilitate system software’s ability to manage processor 
power consumption. Different P-state correspond to different performance levels 
that are applied while the processor is actively executing instructions. Enhanced Intel 
SpeedStep Technology supports P-state by providing software interfaces that control 
the operating frequency and voltage of a processor. 

With multiple processor cores residing in the same physical package, hardware 
dependencies may exist for a subset of logical processors on a platform. These 
dependencies may impose requirements that impact coordination of P-state transi-
tions. As a result, multi-core processors may require an OS to provide additional soft-
ware support for coordinating P-state transitions for those subsets of logical 
processors.

A BIOS (following ACPI 3.0 specification) can choose to expose P-state as dependent 
and hardware-coordinated to OS power management (OSPM) policy. To support 
OSPMs, multi-core processors must have additional built-in support for P-state hard-
ware coordination and feedback.

Intel 64 and IA-32 processors with dependent P-state amongst a subset of logical 
processors permit hardware coordination of P-state and provide a hardware-coordi-
nation feedback mechanism using IA32_MPERF MSR and IA32_APERF MSR. See 
Figure 14-1 for an overview of the two 64-bit MSRs and the bullets below for a 
detailed description:

• Use CPUID to check the P-State hardware coordination feedback capability bit. 
CPUID.06H.ECX[Bit 0] = 1 indicates IA32_MPERF MSR and IA32_APERF MSR are 
present.

• IA32_MPERF MSR (0xE7) increments in proportion to a fixed frequency, which is 
configured when the processor is booted.

Figure 14-1.  IA32_MPERF MSR and IA32_APERF MSR for P-state Coordination

63 0

IA32_MPERF (Addr: E7H)
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IA32_APERF (Addr: E8H)
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• IA32_APERF MSR (0xE8) increments in proportion to actual performance, while 
accounting for hardware coordination of P-state and TM1/TM2; or software 
initiated throttling.

• The MSRs are per logical processor; they measure performance only when the 
targeted processor is in the C0 state.

• Only the IA32_APERF/IA32_MPERF ratio is architecturally defined; software 
should not attach meaning to the content of the individual of IA32_APERF or 
IA32_MPERF MSRs.

• When either MSR overflows, both MSRs are reset to zero and continue to 
increment.

• Both MSRs are full 64-bits counters. Each MSR can be written to independently. 
However, software should follow the guidelines illustrated in Example 14-1.

If P-states are exposed by the BIOS as hardware coordinated, software is expected 
to confirm processor support for P-state hardware coordination feedback and use the 
feedback mechanism to make P-state decisions. The OSPM is expected to either save 
away the current MSR values (for determination of the delta of the counter ratio at a 
later time) or reset both MSRs (execute WRMSR with 0 to these MSRs individually) at 
the start of the time window used for making the P-state decision. When not reset-
ting the values, overflow of the MSRs can be detected by checking whether the new 
values read are less than the previously saved values. 

Example 14-1 demonstrates steps for using the hardware feedback mechanism 
provided by IA32_APERF MSR and IA32_MPERF MSR to determine a target P-state.

Example 14-1.  Determine Target P-state From Hardware Coordinated Feedback

DWORD PercentBusy; // Percentage of processor time not idle.
// Measure “PercentBusy“ during previous sampling window.
// Typically, “PercentBusy“ is measure over a time scale suitable for
// power management decisions
// 
// RDMSR of MCNT and ACNT should be performed without delay.
// Software needs to exercise care to avoid delays between 
// the two RDMSRs (for example, interrupts).
MCNT = RDMSR(IA32_MPERF);
ACNT = RDMSR(IA32_APERF);

// PercentPerformance indicates the percentage of the processor
// that is in use. The calculation is based on the PercentBusy, 
// that is the percentage of processor time not idle and the P-state
// hardware coordinated feedback using the ACNT/MCNT ratio.
// Note that both values need to be calculated over the same 
// time window. 

PercentPerformance = PercentBusy * (ACNT/MCNT);
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// This example does not cover the additional logic or algorithms
// necessary to coordinate multiple logical processors to a target P-state.

TargetPstate = FindPstate(PercentPerformance);

if (TargetPstate != currentPstate) {
SetPState(TargetPstate);

} 
// WRMSR of MCNT and ACNT should be performed without delay.

  // Software needs to exercise care to avoid delays between 
  // the two WRMSRs (for example, interrupts).
  WRMSR(IA32_MPERF, 0);
  WRMSR(IA32_APERF, 0);

14.3 SYSTEM SOFTWARE CONSIDERATIONS AND 
OPPORTUNISTIC PROCESSOR PERFORMANCE 
OPERATION

An Intel 64 processor may support a form of processor operation that takes advan-
tage of design headroom to opportunistically increase performance. In Intel Core i7 
processors, Intel Turbo Boost Technology can convert thermal headroom into higher 
performance across multi-threaded and single-threaded workloads. In Intel Core 2 
processors, Intel Dynamic Acceleration can convert thermal headroom into higher 
performance if only one thread is active.

14.3.1 Intel Dynamic Acceleration
Intel Core 2 Duo processor T 7700 introduces Intel Dynamic Acceleration (IDA). IDA 
takes advantage of thermal design headroom and opportunistically allows a single 
core to operate at a higher performance level when the operating system requests 
increased performance. 

14.3.2 System Software Interfaces for Opportunistic Processor 
Performance Operation

Opportunistic processor operation, applicable to Intel Dynamic Acceleration and Intel 
Turbo Boost Technology, has the following characteristics:
• A transition from a normal state of operation (e.g. IDA/Turbo mode disengaged) 

to a target state is not guaranteed, but may occur opportunistically after the 
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corresponding enable mechanism is activated, the headroom is available and 
certain criteria are met.

• The opportunistic processor performance operation is generally transparent to 
most application software.

• System software (BIOS and Operating system) must be aware of hardware 
support for opportunistic processor performance operation and may need to 
temporarily disengage opportunistic processor performance operation when it 
requires more predictable processor operation. 

• When opportunistic processor performance operation is engaged, the OS should 
use hardware coordination feedback mechanisms to prevent un-intended policy 
effects if it is activated during inappropriate situations.

14.3.2.1  Discover Hardware Support and Enabling of Opportunistic 
Processor Operation

If an Intel 64 processor has hardware support for opportunistic processor perfor-
mance operation, the power-on default state of IA32_MISC_ENABLE[38] indicates 
the presence of such hardware support. For Intel 64 processors that support oppor-
tunistic processor performance operation, the default value is 1, indicating its pres-
ence. For processors that do not support opportunistic processor performance 
operation, the default value is 0. The power-on default value of 
IA32_MISC_ENABLE[38] allows BIOS to detect the presence of hardware support of 
opportunistic processor performance operation. 

IA32_MISC_ENABLE[38] is shared across all logical processors in a physical 
package. It is written by BIOS during platform initiation to enable/disable opportu-
nistic processor operation in conjunction of OS power management capabilities, see 
Section 14.3.2.2. BIOS can set IA32_MISC_ENABLE[38] with 1 to disable opportu-
nistic processor performance operation; it must clear the default value of 
IA32_MISC_ENABLE[38] to 0 to enable opportunistic processor performance opera-
tion. OS and applications must use CPUID leaf 06H if it needs to detect processors 
that has opportunistic processor operation enabled.

When CPUID is executed with EAX = 06H on input, Bit 1 of EAX in Leaf 06H (i.e. 
CPUID.06H:EAX[1]) indicates opportunistic processor performance operation, such 
as IDA, has been enabled by BIOS. 

Opportunistic processor performance operation can be disabled by setting bit 38 of 
IA32_MISC_ENABLE. This mechanism is intended for BIOS only. If 
IA32_MISC_ENABLE[38] is set, CPUID.06H:EAX[1] will return 0. 

14.3.2.2  OS Control of Opportunistic Processor Performance Operation
There may be phases of software execution in which system software cannot tolerate 
the non-deterministic aspects of opportunistic processor performance operation. For 
example, when calibrating a real-time workload to make a CPU reservation request 
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to the OS, it may be undesirable to allow the possibility of the processor delivering 
increased performance that cannot be sustained after the calibration phase. 

System software can temporarily disengage opportunistic processor performance 
operation by setting bit 32 of the IA32_PERF_CTL MSR (0199H), using a read-
modify-write sequence on the MSR. The opportunistic processor performance opera-
tion can be re-engaged by clearing bit 32 in IA32_PERF_CTL MSR, using a read-
modify-write sequence. The DISENAGE bit in IA32_PERF_CTL is not reflected in bit 
32 of the IA32_PERF_STATUS MSR (0198H), and it is not shared between logical 
processors in a physical package. In order for OS to engage IDA/Turbo mode, the 
BIOS must 
• enable opportunistic processor performance operation, as described in Section 

14.3.2.1,
• expose the operating points associated with IDA/Turbo mode to the OS.

14.3.2.3  Required Changes to OS Power Management P-state Policy
Intel Dynamic Acceleration (IDA) and Intel Turbo Boost Technology can provide 
opportunistic performance greater than the performance level corresponding to the 
maximum qualified frequency of the processor (see CPUID’s brand string informa-
tion). System software can use a pair of MSRs to observe performance feedback. 
Software must query for the presence of IA32_APERF and IA32_MPERF (see Section 
14.2). The ratio between IA32_APERF and IA32_MPERF is architecturally defined and 
a value greater than unity indicates performance increase occurred during the obser-
vation period due to IDA. Without incorporating such performance feedback, the 
target P-state evaluation algorithm can result in a non-optimal P-state target. 

There are other scenarios under which OS power management may want to disable 
IDA, some of these are listed below:
• When engaging ACPI defined passive thermal management, it may be more 

effective to disable IDA for the duration of passive thermal management.
• When the user has indicated a policy preference of power savings over perfor-

mance, OS power management may want to disable IDA while that policy is in 
effect.

Figure 14-2.  IA32_PERF_CTL Register
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14.3.2.4  Application Awareness of Opportunistic Processor Operation 
(Optional)

There may be situations that an end user or application software wishes to be aware 
of turbo mode activity. It is possible for an application-level utility to periodically 
check the occurrences of opportunistic processor operation. The basic elements of an 
algorithm is described below, using the characteristics of Intel Turbo Boost Tech-
nology as example.

Using an OS-provided timer service, application software can periodically calculate 
the ratio between unhalted-core-clockticks (UCC) relative to the unhalted-reference-
clockticks (URC) on each logical processor to determine if that logical processor had 
been requested by OS to run at some frequency higher than the invariant TSC 
frequency, or the OS has determined system-level demand has reduced sufficiently 
to put that logical processor into a lower-performance p-state or even lower-activity 
state. 

If an application software have access to information of the base operating ratio 
between the invariant TSC frequency and the base clock (133.33 MHz), it can convert 
the sampled ratio into a dynamic frequency estimate for each prior sampling period. 
The base operating ratio can be read from MSR_PLATFORM_INFO[15:8].

The periodic sampling technique is depicted in Figure 14-3 and described below:

• The sampling period chosen by the application (to program an OS timer service) 
should be sufficiently large to avoid excessive polling overhead to other applica-
tions or tasks managed by the OS. 

Figure 14-3.  Periodic Query of Activity Ratio of Opportunistic Processor Operation
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• When the OS timer service transfers control, the application can use RDPMC 
(with ECX = 4000_0001H) to read IA32_PERF_FIXED_CTR1 (MSR address 30AH) 
to record the unhalted core clocktick (UCC) value; followed by RDPMC 
(ECX=4000_0002H) to read IA32_PERF_FIXED_CTR2 (MSR address 30BH) to 
record the unhalted reference clocktick (URC) value. This pair of values is needed 
for each logical processor for each sampling period. 

• The application can calculate the Turbo activity ratio based on the difference of 
UCC between each sample period, over the difference of URC difference. The 
effective frequency of each sample period of the logical processor, i, can be 
estimated by:
(UCCn+1, i - UCC n, i)/(URCn+1, i - URC n, i)* Base_operating_ratio* 133.33MHz

It is possible that the OS had requested a lower-performance P-state during a 
sampling period. Thus the ratio (UCCn+1, i - UCC n, i)/(URCn+1, i - URC n, i) can reflect 
the average of Turbo activity (driving the ratio above unity) and some lower P-state 
transitions (causing the ratio to be < 1). 

It is also possible that the OS might requested C-state transitions when the demand 
is low. The above ratio generally does not account for cycles any logical processor 
was idle. On Intel Core i7 processors, an application can make use of the time stamp 
counter (IA-32_TSC) running at a constant frequency (i.e. Base_operating_ratio* 
133.33MHz) during C-states. Thus software can calculate ratios that can indicate 
fractions of sample period spent in the C0 state, using the unhalted reference clock-
ticks and the invariant TSC. Note the estimate of fraction spent in C0 may be affected 
by SMM handler if the system software makes use of the “FREEZE_WHILE_SMM_EN“ 
capability to freeze performance counter values while the SMM handler is servicing 
an SMI (see Chapter 23, “Introduction to Virtual-Machine Extensions”).

14.3.3 Intel Turbo Boost Technology
Intel Turbo Boost Technology is supported in Intel Core i7 processors and Intel Xeon 
processors based on Intel® microarchitecture code name Nehalem. It uses the same 
principle of leveraging thermal headroom to dynamically increase processor perfor-
mance for single-threaded and multi-threaded/multi-tasking environment. The 
programming interface described in Section 14.3.2 also applies to Intel Turbo Boost 
Technology.

14.3.4 Performance and Energy Bias Hint support
Intel 64 processors may support additional software hint to guide the hardware 
heuristic of power management features to favor increasing dynamic performance or 
conserve energy consumption. 

Software can detect processor's capability to support performance-energy bias pref-
erence hint by examining bit 3 of ECX in CPUID leaf 6. The processor supports this 
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capability if CPUID.06H:ECX.SETBH[bit 3] is set and it also implies the presence of a 
new architectural MSR called IA32_ENERGY_PERF_BIAS (1B0H).

Software can program the lowest four bits of IA32_ENERGY_PERF_BIAS MSR with a 
value from 0 - 15. The values represent a sliding scale, where a value of 0 (the 
default reset value) corresponds to a hint preference for highest performance and a 
value of 15 corresponds to the maximum energy savings. A value of 7 roughly trans-
lates into a hint to balance performance with energy consumption

The layout of IA32_ENERGY_PERF_BIAS is shown in Figure 14-4. The scope of 
IA32_ENERGY_PERF_BIAS is per logical processor, which means that each of the 
logical processors in the package can be programmed with a different value. This 
may be especially important in virtualization scenarios, where the performance / 
energy requirements of one logical processor may differ from the other. Conflicting 
"hints" from various logical processors at higher hierarchy level will be resolved in 
favor of performance over energy savings. 

Software can use whatever criteria it sees fit to program the MSR with the appro-
priate value. However, the value only serves as a hint to the hardware and the actual 
impact on performance and energy savings is model specific.

14.4 MWAIT EXTENSIONS FOR ADVANCED POWER 
MANAGEMENT

IA-32 processors may support a number of C-states1 that reduce power consumption 
for inactive states. Intel Core Solo and Intel Core Duo processors support both 
deeper C-state and MWAIT extensions that can be used by OS to implement power 
management policy.

Figure 14-4.  IA32_ENERGY_PERF_BIAS Register

1. The processor-specific C-states defined in MWAIT extensions can map to ACPI defined C-state 
types (C0, C1, C2, C3). The mapping relationship depends on the definition of a C-state by proces-
sor implementation and is exposed to OSPM by the BIOS using the ACPI defined _CST table.

63 0

Reserved

Energy Policy Preference Hint

4 3
Vol. 3B 14-9



POWER AND THERMAL MANAGEMENT
Software should use CPUID to discover if a target processor supports the enumera-
tion of MWAIT extensions. If CPUID.05H.ECX[Bit 0] = 1, the target processor 
supports MWAIT extensions and their enumeration (see Chapter 3, “Instruction Set 
Reference, A-L,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2A).

If CPUID.05H.ECX[Bit 1] = 1, the target processor supports using interrupts as 
break-events for MWAIT, even when interrupts are disabled. Use this feature to 
measure C-state residency as follows:
• Software can write to bit 0 in the MWAIT Extensions register (ECX) when issuing 

an MWAIT to enter into a processor-specific C-state or sub C-state.
• When a processor comes out of an inactive C-state or sub C-state, software can 

read a timestamp before an interrupt service routine (ISR) is potentially 
executed. 

CPUID.05H.EDX allows software to enumerate processor-specific C-states and sub 
C-states available for use with MWAIT extensions. IA-32 processors may support 
more than one C-state of a given C-state type. These are called sub C-states. Numer-
ically higher C-state have higher power savings and latency (upon entering and 
exiting) than lower-numbered C-state. 

At CPL = 0, system software can specify desired C-state and sub C-state by using the 
MWAIT hints register (EAX). Processors will not go to C-state and sub C-state deeper 
than what is specified by the hint register. If CPL > 0 and if MONITOR/MWAIT is 
supported at CPL > 0, the processor will only enter C1-state (regardless of the 
C-state request in the hints register). 

Executing MWAIT generates an exception on processors operating at a privilege level 
where MONITOR/MWAIT are not supported.

NOTE
If MWAIT is used to enter a C-state (including sub C-state) that is 
numerically higher than C1, a store to the address range armed by 
MONITOR instruction will cause the processor to exit MWAIT if the 
store was originated by other processor agents. A store from non-
processor agent may not cause the processor to exit MWAIT. 

14.5 THERMAL MONITORING AND PROTECTION
The IA-32 architecture provides the following mechanisms for monitoring tempera-
ture and controlling thermal power:

1. The catastrophic shutdown detector forces processor execution to stop if the 
processor’s core temperature rises above a preset limit.

2. Automatic and adaptive thermal monitoring mechanisms force the 
processor to reduce it’s power consumption in order to operate within predeter-
mined temperature limits.
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3. The software controlled clock modulation mechanism permits operating 
systems to implement power management policies that reduce power 
consumption; this is in addition to the reduction offered by automatic thermal 
monitoring mechanisms.

4. On-die digital thermal sensor and interrupt mechanisms permit the OS to 
manage thermal conditions natively without relying on BIOS or other system 
board components.

The first mechanism is not visible to software. The other three mechanisms are 
visible to software using processor feature information returned by executing CPUID 
with EAX = 1.

The second mechanism includes: 
• Automatic thermal monitoring provides two modes of operation. One mode 

modulates the clock duty cycle; the second mode changes the processor’s 
frequency. Both modes are used to control the core temperature of the processor.

• Adaptive thermal monitoring can provide flexible thermal management on 
processors made of multiple cores.

The third mechanism modulates the clock duty cycle of the processor. As shown in 
Figure 14-5, the phrase ‘duty cycle’ does not refer to the actual duty cycle of the 
clock signal. Instead it refers to the time period during which the clock signal is 
allowed to drive the processor chip. By using the stop clock mechanism to control 
how often the processor is clocked, processor power consumption can be modulated. 

For previous automatic thermal monitoring mechanisms, software controlled mecha-
nisms that changed processor operating parameters to impact changes in thermal 
conditions. Software did not have native access to the native thermal condition of the 
processor; nor could software alter the trigger condition that initiated software 
program control. 

The fourth mechanism (listed above) provides access to an on-die digital thermal 
sensor using a model-specific register and uses an interrupt mechanism to alert soft-
ware to initiate digital thermal monitoring. 

Figure 14-5.  Processor Modulation Through Stop-Clock Mechanism

Clock Applied to Processor

Stop-Clock Duty Cycle

25% Duty Cycle (example only)
Vol. 3B 14-11



POWER AND THERMAL MANAGEMENT
14.5.1 Catastrophic Shutdown Detector
P6 family processors introduced a thermal sensor that acts as a catastrophic shut-
down detector. This catastrophic shutdown detector was also implemented in 
Pentium 4, Intel Xeon and Pentium M processors. It is always enabled. When 
processor core temperature reaches a factory preset level, the sensor trips and 
processor execution is halted until after the next reset cycle.

14.5.2 Thermal Monitor
Pentium 4, Intel Xeon and Pentium M processors introduced a second temperature 
sensor that is factory-calibrated to trip when the processor’s core temperature 
crosses a level corresponding to the recommended thermal design envelop. The trip-
temperature of the second sensor is calibrated below the temperature assigned to 
the catastrophic shutdown detector. 

14.5.2.1  Thermal Monitor 1
The Pentium 4 processor uses the second temperature sensor in conjunction with a 
mechanism called Thermal Monitor 1 (TM1) to control the core temperature of the 
processor. TM1 controls the processor’s temperature by modulating the duty cycle of 
the processor clock. Modulation of duty cycles is processor model specific. Note that 
the processors STPCLK# pin is not used here; the stop-clock circuitry is controlled 
internally.

Support for TM1 is indicated by CPUID.1:EDX.TM[bit 29] = 1.

TM1 is enabled by setting the thermal-monitor enable flag (bit 3) in 
IA32_MISC_ENABLE [see Chapter 34, “Model-Specific Registers (MSRs),”]. Following 
a power-up or reset, the flag is cleared, disabling TM1. BIOS is required to enable 
only one automatic thermal monitoring modes. Operating systems and applications 
must not disable the operation of these mechanisms.

14.5.2.2  Thermal Monitor 2
An additional automatic thermal protection mechanism, called Thermal Monitor 2 
(TM2), was introduced in the Intel Pentium M processor and also incorporated in 
newer models of the Pentium 4 processor family. Intel Core Duo and Solo processors, 
and Intel Core 2 Duo processor family all support TM1 and TM2. TM2 controls the 
core temperature of the processor by reducing the operating frequency and voltage 
of the processor and offers a higher performance level for a given level of power 
reduction than TM1.

TM2 is triggered by the same temperature sensor as TM1. The mechanism to enable 
TM2 may be implemented differently across various IA-32 processor families with 
different CPUID signatures in the family encoding value, but will be uniform within an 
IA-32 processor family. 
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Support for TM2 is indicated by CPUID.1:ECX.TM2[bit 8] = 1.

14.5.2.3  Two Methods for Enabling TM2
On processors with CPUID family/model/stepping signature encoded as 0x69n or 
0x6Dn (early Pentium M processors), TM2 is enabled if the TM_SELECT flag (bit 16) 
of the MSR_THERM2_CTL register is set to 1 (Figure 14-6) and bit 3 of the 
IA32_MISC_ENABLE register is set to 1. 

Following a power-up or reset, the TM_SELECT flag may be cleared. BIOS is required 
to enable either TM1 or TM2. Operating systems and applications must not disable 
mechanisms that enable TM1 or TM2. If bit 3 of the IA32_MISC_ENABLE register is 
set and TM_SELECT flag of the MSR_THERM2_CTL register is cleared, TM1 is 
enabled.

On processors introduced after the Pentium 4 processor (this includes most Pentium 
M processors), the method used to enable TM2 is different. TM2 is enable by setting 
bit 13 of IA32_MISC_ENABLE register to 1. This applies to Intel Core Duo, Core Solo, 
and Intel Core 2 processor family.

The target operating frequency and voltage for the TM2 transition after TM2 is trig-
gered is specified by the value written to MSR_THERM2_CTL, bits 15:0 (Figure 14-7). 
Following a power-up or reset, BIOS is required to enable at least one of these two 
thermal monitoring mechanisms. If both TM1 and TM2 are supported, BIOS may 
choose to enable TM2 instead of TM1. Operating systems and applications must not 
disable the mechanisms that enable TM1or TM2; and they must not alter the value in 
bits 15:0 of the MSR_THERM2_CTL register.

Figure 14-6.  MSR_THERM2_CTL Register On Processors with CPUID 
Family/Model/Stepping Signature Encoded as 0x69n or 0x6Dn
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14.5.2.4  Performance State Transitions and Thermal Monitoring
If the thermal control circuitry (TCC) for thermal monitor (TM1/TM2) is active, writes 
to the IA32_PERF_CTL will effect a new target operating point as follows:
• If TM1 is enabled and the TCC is engaged, the performance state transition can 

commence before the TCC is disengaged. 
• If TM2 is enabled and the TCC is engaged, the performance state transition 

specified by a write to the IA32_PERF_CTL will commence after the TCC has 
disengaged. 

14.5.2.5  Thermal Status Information
The status of the temperature sensor that triggers the thermal monitor (TM1/TM2) is 
indicated through the thermal status flag and thermal status log flag in the 
IA32_THERM_STATUS MSR (see Figure 14-8). 

The functions of these flags are:
• Thermal Status flag, bit 0 — When set, indicates that the processor core 

temperature is currently at the trip temperature of the thermal monitor and that 
the processor power consumption is being reduced via either TM1 or TM2, 
depending on which is enabled. When clear, the flag indicates that the core 
temperature is below the thermal monitor trip temperature. This flag is read only. 

• Thermal Status Log flag, bit 1 — When set, indicates that the thermal sensor 
has tripped since the last power-up or reset or since the last time that software 
cleared this flag. This flag is a sticky bit; once set it remains set until cleared by 
software or until a power-up or reset of the processor. The default state is clear.

Figure 14-7.  MSR_THERM2_CTL Register for Supporting TM2
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After the second temperature sensor has been tripped, the thermal monitor 
(TM1/TM2) will remain engaged for a minimum time period (on the order of 1 ms). 
The thermal monitor will remain engaged until the processor core temperature drops 
below the preset trip temperature of the temperature sensor, taking hysteresis into 
account.

While the processor is in a stop-clock state, interrupts will be blocked from inter-
rupting the processor. This holding off of interrupts increases the interrupt latency, 
but does not cause interrupts to be lost. Outstanding interrupts remain pending until 
clock modulation is complete. 

The thermal monitor can be programmed to generate an interrupt to the processor 
when the thermal sensor is tripped. The delivery mode, mask and vector for this 
interrupt can be programmed through the thermal entry in the local APIC’s LVT (see 
Section 10.5.1, “Local Vector Table”). The low-temperature interrupt enable and 
high-temperature interrupt enable flags in the IA32_THERM_INTERRUPT MSR (see 
Figure 14-9) control when the interrupt is generated; that is, on a transition from a 
temperature below the trip point to above and/or vice-versa.

• High-Temperature Interrupt Enable flag, bit 0 — Enables an interrupt to be 
generated on the transition from a low-temperature to a high-temperature when 
set; disables the interrupt when clear.(R/W).

• Low-Temperature Interrupt Enable flag, bit 1 — Enables an interrupt to be 
generated on the transition from a high-temperature to a low-temperature when 
set; disables the interrupt when clear.

The thermal monitor interrupt can be masked by the thermal LVT entry. After a 
power-up or reset, the low-temperature interrupt enable and high-temperature 

Figure 14-8.  IA32_THERM_STATUS MSR

Figure 14-9.  IA32_THERM_INTERRUPT MSR
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interrupt enable flags in the IA32_THERM_INTERRUPT MSR are cleared (interrupts 
are disabled) and the thermal LVT entry is set to mask interrupts. This interrupt 
should be handled either by the operating system or system management mode 
(SMM) code.

Note that the operation of the thermal monitoring mechanism has no effect upon the 
clock rate of the processor's internal high-resolution timer (time stamp counter). 

14.5.2.6  Adaptive Thermal Monitor 
The Intel Core 2 Duo processor family supports enhanced thermal management 
mechanism, referred to as Adaptive Thermal Monitor (Adaptive TM). 

Unlike TM2, Adaptive TM is not limited to one TM2 transition target. During a thermal 
trip event, Adaptive TM (if enabled) selects an optimal target operating point based 
on whether or not the current operating point has effectively cooled the processor.

Similar to TM2, Adaptive TM is enable by BIOS. The BIOS is required to test the TM1 
and TM2 feature flags and enable all available thermal control mechanisms (including 
Adaptive TM) at platform initiation. 

Adaptive TM is available only to a subset of processors that support TM2.

In each chip-multiprocessing (CMP) silicon die, each core has a unique thermal 
sensor that triggers independently. These thermal sensor can trigger TM1 or TM2 
transitions in the same manner as described in Section 14.5.2.1 and Section 
14.5.2.2. The trip point of the thermal sensor is not programmable by software since 
it is set during the fabrication of the processor. 

Each thermal sensor in a processor core may be triggered independently to engage 
thermal management features. In Adaptive TM, both cores will transition to a lower 
frequency and/or lower voltage level if one sensor is triggered.

Triggering of this sensor is visible to software via the thermal interrupt LVT entry in 
the local APIC of a given core. 

14.5.3 Software Controlled Clock Modulation
Pentium 4, Intel Xeon and Pentium M processors also support software-controlled 
clock modulation. This provides a means for operating systems to implement a power 
management policy to reduce the power consumption of the processor. Here, the 
stop-clock duty cycle is controlled by software through the 
IA32_CLOCK_MODULATION MSR (see Figure 14-10). 
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The IA32_CLOCK_MODULATION MSR contains the following flag and field used to 
enable software-controlled clock modulation and to select the clock modulation duty 
cycle:
• On-Demand Clock Modulation Enable, bit 4 — Enables on-demand software 

controlled clock modulation when set; disables software-controlled clock 
modulation when clear.

• On-Demand Clock Modulation Duty Cycle, bits 1 through 3 — Selects the 
on-demand clock modulation duty cycle (see Table 14-1). This field is only active 
when the on-demand clock modulation enable flag is set.

Note that the on-demand clock modulation mechanism (like the thermal monitor) 
controls the processor’s stop-clock circuitry internally to modulate the clock signal. 
The STPCLK# pin is not used in this mechanism.

The on-demand clock modulation mechanism can be used to control processor power 
consumption. Power management software can write to the 
IA32_CLOCK_MODULATION MSR to enable clock modulation and to select a modula-
tion duty cycle. If on-demand clock modulation and TM1 are both enabled and the 
thermal status of the processor is hot (bit 0 of the IA32_THERM_STATUS MSR is set), 

Figure 14-10.  IA32_CLOCK_MODULATION MSR

Table 14-1.  On-Demand Clock Modulation Duty Cycle Field Encoding

Duty Cycle Field Encoding Duty Cycle

000B Reserved

001B 12.5% (Default)

010B 25.0%

011B 37.5%

100B 50.0%
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111B 87.5%
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clock modulation at the duty cycle specified by TM1 takes precedence, regardless of 
the setting of the on-demand clock modulation duty cycle.

For Hyper-Threading Technology enabled processors, the 
IA32_CLOCK_MODULATION register is duplicated for each logical processor. In order 
for the On-demand clock modulation feature to work properly, the feature must be 
enabled on all the logical processors within a physical processor. If the programmed 
duty cycle is not identical for all the logical processors, the processor clock will modu-
late to the highest duty cycle programmed. 

For the P6 family processors, on-demand clock modulation was implemented 
through the chipset, which controlled clock modulation through the processor’s 
STPCLK# pin.

14.5.3.1  Extension of Software Controlled Clock Modulation
Extension of the software controlled clock modulation facility supports on-demand 
clock modulation duty cycle with 4-bit dynamic range (increased from 3-bit range). 
Granularity of clock modulation duty cycle is increased to 6.25% (compared to 
12.5%).

Four bit dynamic range control is provided by using bit 0 in conjunction with bits 3:1 
of the IA32_CLOCK_MODULATION MSR (see Figure 14-11).

Extension to software controlled clock modulation is supported only if 
CPUID.06H:EAX[Bit 5] = 1. If CPUID.06H:EAX[Bit 5] = 0, then bit 0 of 
IA32_CLOCK_MODULATION is reserved.

14.5.4 Detection of Thermal Monitor and Software Controlled
Clock Modulation Facilities

The ACPI flag (bit 22) of the CPUID feature flags indicates the presence of the 
IA32_THERM_STATUS, IA32_THERM_INTERRUPT, IA32_CLOCK_MODULATION 
MSRs, and the xAPIC thermal LVT entry. 

The TM1 flag (bit 29) of the CPUID feature flags indicates the presence of the auto-
matic thermal monitoring facilities that modulate clock duty cycles.

Figure 14-11.  IA32_CLOCK_MODULATION MSR with Clock Modulation Extension
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14.5.4.1  Detection of Software Controlled Clock Modulation Extension
Processor’s support of software controlled clock modulation extension is indicated by 
CPUID.06H:EAX[Bit 5] = 1. 

14.5.5 On Die Digital Thermal Sensors
On die digital thermal sensor can be read using an MSR (no I/O interface). In Intel 
Core Duo processors, each core has a unique digital sensor whose temperature is 
accessible using an MSR. The digital thermal sensor is the preferred method for 
reading the die temperature because (a) it is located closer to the hottest portions of 
the die, (b) it enables software to accurately track the die temperature and the 
potential activation of thermal throttling.

14.5.5.1  Digital Thermal Sensor Enumeration
The processor supports a digital thermal sensor if CPUID.06H.EAX[0] = 1. If the 
processor supports digital thermal sensor, EBX[bits 3:0] determine the number of 
thermal thresholds that are available for use. 

Software sets thermal thresholds by using the IA32_THERM_INTERRUPT MSR. Soft-
ware reads output of the digital thermal sensor using the IA32_THERM_STATUS 
MSR.

14.5.5.2  Reading the Digital Sensor
Unlike traditional analog thermal devices, the output of the digital thermal sensor is 
a temperature relative to the maximum supported operating temperature of the 
processor.

Temperature measurements returned by digital thermal sensors are always at or 
below TCC activation temperature. Critical temperature conditions are detected 
using the “Critical Temperature Status” bit. When this bit is set, the processor is 
operating at a critical temperature and immediate shutdown of the system should 
occur. Once the “Critical Temperature Status” bit is set, reliable operation is not guar-
anteed. 

See Figure 14-12 for the layout of IA32_THERM_STATUS MSR. Bit fields include:
• Thermal Status (bit 0, RO) — This bit indicates whether the digital thermal 

sensor high-temperature output signal (PROCHOT#) is currently active. Bit 0 = 1 
indicates the feature is active. This bit may not be written by software; it reflects 
the state of the digital thermal sensor.

• Thermal Status Log (bit 1, R/WC0) — This is a sticky bit that indicates the 
history of the thermal sensor high temperature output signal (PROCHOT#). 
Bit 1 = 1 if PROCHOT# has been asserted since a previous RESET or the last time 
software cleared the bit. Software may clear this bit by writing a zero.
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• PROCHOT# or FORCEPR# Event (bit 2, RO) — Indicates whether PROCHOT# 
or FORCEPR# is being asserted by another agent on the platform. 

• PROCHOT# or FORCEPR# Log (bit 3, R/WC0) — Sticky bit that indicates 
whether PROCHOT# or FORCEPR# has been asserted by another agent on the 
platform since the last clearing of this bit or a reset. If bit 3 = 1, PROCHOT# or 
FORCEPR# has been externally asserted. Software may clear this bit by writing a 
zero. External PROCHOT# assertions are only acknowledged if the Bidirectional 
Prochot feature is enabled.

• Critical Temperature Status (bit 4, RO) — Indicates whether the critical 
temperature detector output signal is currently active. If bit 4 = 1, the critical 
temperature detector output signal is currently active.

• Critical Temperature Log (bit 5, R/WC0) — Sticky bit that indicates whether 
the critical temperature detector output signal has been asserted since the last 
clearing of this bit or reset. If bit 5 = 1, the output signal has been asserted. 
Software may clear this bit by writing a zero.

• Thermal Threshold #1 Status (bit 6, RO) — Indicates whether the actual 
temperature is currently higher than or equal to the value set in Thermal 
Threshold #1. If bit 6 = 0, the actual temperature is lower. If bit 6 = 1, the 
actual temperature is greater than or equal to TT#1. Quantitative information of 
actual temperature can be inferred from Digital Readout, bits 22:16.

• Thermal Threshold #1 Log (bit 7, R/WC0) — Sticky bit that indicates 
whether the Thermal Threshold #1 has been reached since the last clearing of 

Figure 14-12.  IA32_THERM_STATUS Register 
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this bit or a reset. If bit 7 = 1, the Threshold #1 has been reached. Software may 
clear this bit by writing a zero.

• Thermal Threshold #2 Status (bit 8, RO) — Indicates whether actual 
temperature is currently higher than or equal to the value set in Thermal 
Threshold #2. If bit 8 = 0, the actual temperature is lower. If bit 8 = 1, the 
actual temperature is greater than or equal to TT#2. Quantitative information of 
actual temperature can be inferred from Digital Readout, bits 22:16.

• Thermal Threshold #2 Log (bit 9, R/WC0) — Sticky bit that indicates 
whether the Thermal Threshold #2 has been reached since the last clearing of 
this bit or a reset. If bit 9 = 1, the Thermal Threshold #2 has been reached. 
Software may clear this bit by writing a zero.

• Power Limitation Status (bit 10, RO) — Indicates whether the processor is 
currently operating below OS-requested P-state (specified in IA32_PERF_CTL) or 
OS-requested clock modulation duty cycle (specified in 
IA32_CLOCK_MODULATION). This field is supported only if CPUID.06H:EAX[bit 
4] = 1. Package level power limit notification can be delivered independently to 
IA32_PACKAGE_THERM_STATUS MSR.

• Power Notification Log (bit 11, R/WCO) — Sticky bit that indicates the 
processor went below OS-requested P-state or OS-requested clock modulation 
duty cycle since the last clearing of this or RESET. This field is supported only if 
CPUID.06H:EAX[bit 4] = 1. Package level power limit notification is indicated 
independently in IA32_PACKAGE_THERM_STATUS MSR.

• Digital Readout (bits 22:16, RO) — Digital temperature reading in 1 degree 
Celsius relative to the TCC activation temperature. 
0: TCC Activation temperature, 
1: (TCC Activation - 1) , etc. See the processor’s data sheet for details regarding 
TCC activation.
A lower reading in the Digital Readout field (bits 22:16) indicates a higher actual 
temperature.

• Resolution in Degrees Celsius (bits 30:27, RO) — Specifies the resolution 
(or tolerance) of the digital thermal sensor. The value is in degrees Celsius. It is 
recommended that new threshold values be offset from the current temperature 
by at least the resolution + 1 in order to avoid hysteresis of interrupt generation.

• Reading Valid (bit 31, RO) — Indicates if the digital readout in bits 22:16 is 
valid. The readout is valid if bit 31 = 1.

Changes to temperature can be detected using two thresholds (see Figure 14-13); 
one is set above and the other below the current temperature. These thresholds have 
the capability of generating interrupts using the core's local APIC which software 
must then service. Note that the local APIC entries used by these thresholds are also 
used by the Intel® Thermal Monitor; it is up to software to determine the source of a 
specific interrupt.
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See Figure 14-13 for the layout of IA32_THERM_INTERRUPT MSR. Bit fields include:
• High-Temperature Interrupt Enable (bit 0, R/W) — This bit allows the BIOS 

to enable the generation of an interrupt on the transition from low-temperature 
to a high-temperature threshold.  Bit 0 = 0 (default) disables interrupts; 
bit 0 = 1 enables interrupts.

• Low-Temperature Interrupt Enable (bit 1, R/W) — This bit allows the BIOS 
to enable the generation of an interrupt on the transition from high-temperature 
to a low-temperature (TCC de-activation). Bit 1 = 0 (default) disables interrupts; 
bit 1 = 1 enables interrupts.

• PROCHOT# Interrupt Enable (bit 2, R/W) — This bit allows the BIOS or OS 
to enable the generation of an interrupt when PROCHOT# has been asserted by 
another agent on the platform and the Bidirectional Prochot feature is enabled. 
Bit 2 = 0 disables the interrupt; bit 2 = 1 enables the interrupt.

• FORCEPR# Interrupt Enable (bit 3, R/W) — This bit allows the BIOS or OS to 
enable the generation of an interrupt when FORCEPR# has been asserted by 
another agent on the platform. Bit 3 = 0 disables the interrupt; bit 3 = 1 enables 
the interrupt.

• Critical Temperature Interrupt Enable (bit 4, R/W) — Enables the 
generation of an interrupt when the Critical Temperature Detector has detected a 
critical thermal condition. The recommended response to this condition is a 
system shutdown. Bit 4 = 0 disables the interrupt; bit 4 = 1 enables the 
interrupt.

• Threshold #1 Value (bits 14:8, R/W) — A temperature threshold, encoded 
relative to the TCC Activation temperature (using the same format as the Digital 
Readout). This threshold is compared against the Digital Readout and is used to 

Figure 14-13.  IA32_THERM_INTERRUPT Register 
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generate the Thermal Threshold #1 Status and Log bits as well as the Threshold 
#1 thermal interrupt delivery.

• Threshold #1 Interrupt Enable (bit 15, R/W) — Enables the generation of 
an interrupt when the actual temperature crosses the Threshold #1 setting in any 
direction.  Bit 15 = 0 enables the interrupt; bit 15 = 1 disables the interrupt.

• Threshold #2 Value (bits 22:16, R/W) —A temperature threshold, encoded 
relative to the TCC Activation temperature (using the same format as the Digital 
Readout). This threshold is compared against the Digital Readout and is used to 
generate the Thermal Threshold #2 Status and Log bits as well as the Threshold 
#2 thermal interrupt delivery.

• Threshold #2 Interrupt Enable (bit 23, R/W) — Enables the generation of 
an interrupt when the actual temperature crosses the Threshold #2 setting in any 
direction.  Bit 23 = 0 enables the interrupt; bit 23 = 1 disables the interrupt.

• Power Limit Notification Enable (bit 24, R/W) — Enables the generation of 
power notification events when the processor went below OS-requested P-state 
or OS-requested clock modulation duty cycle. This field is supported only if 
CPUID.06H:EAX[bit 4] = 1. Package level power limit notification can be enabled 
independently by IA32_PACKAGE_THERM_INTERRUPT MSR.

14.5.6 Power Limit Notification
Platform firmware may be capable of specifying a power limit to restrict power deliv-
ered to a platform component, such as a physical processor package. This constraint 
imposed by platform firmware may occasionally cause the processor to operate 
below OS-requested P or T-state. A power limit notification event can be delivered 
using the existing thermal LVT entry in the local APIC. 

Software can enumerate the presence of the processor’s support for power limit noti-
fication by verifying CPUID.06H:EAX[bit 4] = 1.

If CPUID.06H:EAX[bit 4] = 1, then IA32_THERM_INTERRUPT and 
IA32_THERM_STATUS provides the following facility to manage power limit notifica-
tion:
• Bits 10 and 11 in IA32_THERM_STATUS informs software of the occurrence of 

processor operating below OS-requested P-state or clock modulation duty cycle 
setting (see Figure 14-12).

• Bit 24 in IA32_THERM_INTERRUPT enables the local APIC to deliver a thermal 
event when the processor went below OS-requested P-state or clock modulation 
duty cycle setting (see Figure 14-13).

14.6 PACKAGE LEVEL THERMAL MANAGEMENT
The thermal management facilities like IA32_THERM_INTERRUPT and 
IA32_THERM_STATUS are often implemented with a processor core granularity. To 
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facilitate software manage thermal events from a package level granularity, two 
architectural MSR is provided for package level thermal management. The 
IA32_PACKAGE_THERM_STATUS and IA32_PACKAGE_THERM_INTERRUPT MSRs 
use similar interfaces as IA32_THERM_STATUS and IA32_THERM_INTERRUPT, but 
are shared in each physical processor package.

Software can enumerate the presence of the processor’s support for package level 
thermal management facility (IA32_PACKAGE_THERM_STATUS and 
IA32_PACKAGE_THERM_INTERRUPT) by verifying CPUID.06H:EAX[bit 6] = 1.

The layout of IA32_PACKAGE_THERM_STATUS MSR is shown in Figure 14-14.

• Package Thermal Status (bit 0, RO) — This bit indicates whether the digital 
thermal sensor high-temperature output signal (PROCHOT#) for the package is 
currently active. Bit 0 = 1 indicates the feature is active. This bit may not be 
written by software; it reflects the state of the digital thermal sensor.

• Package Thermal Status Log (bit 1, R/WC0) — This is a sticky bit that 
indicates the history of the thermal sensor high temperature output signal 
(PROCHOT#) of the package. Bit 1 = 1 if package PROCHOT# has been asserted 
since a previous RESET or the last time software cleared the bit. Software may 
clear this bit by writing a zero.

• Package PROCHOT# Event (bit 2, RO) — Indicates whether package 
PROCHOT# is being asserted by another agent on the platform. 

Figure 14-14.  IA32_PACKAGE_THERM_STATUS Register 
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• Package PROCHOT# Log (bit 3, R/WC0) — Sticky bit that indicates whether 
package PROCHOT# has been asserted by another agent on the platform since 
the last clearing of this bit or a reset. If bit 3 = 1, package PROCHOT# has been 
externally asserted. Software may clear this bit by writing a zero. 

• Package Critical Temperature Status (bit 4, RO) — Indicates whether the 
package critical temperature detector output signal is currently active. If 
bit 4 = 1, the package critical temperature detector output signal is currently 
active.

• Package Critical Temperature Log (bit 5, R/WC0) — Sticky bit that indicates 
whether the package critical temperature detector output signal has been 
asserted since the last clearing of this bit or reset. If bit 5 = 1, the output signal 
has been asserted. Software may clear this bit by writing a zero.

• Package Thermal Threshold #1 Status (bit 6, RO) — Indicates whether the 
actual package temperature is currently higher than or equal to the value set in 
Package Thermal Threshold #1. If bit 6 = 0, the actual temperature is lower. If 
bit 6 = 1, the actual temperature is greater than or equal to PTT#1. Quantitative 
information of actual package temperature can be inferred from Package Digital 
Readout, bits 22:16.

• Package Thermal Threshold #1 Log (bit 7, R/WC0) — Sticky bit that 
indicates whether the Package Thermal Threshold #1 has been reached since the 
last clearing of this bit or a reset. If bit 7 = 1, the Package Threshold #1 has been 
reached. Software may clear this bit by writing a zero.

• Package Thermal Threshold #2 Status (bit 8, RO) — Indicates whether 
actual package temperature is currently higher than or equal to the value set in 
Package Thermal Threshold #2. If bit 8 = 0, the actual temperature is lower. If 
bit 8 = 1, the actual temperature is greater than or equal to PTT#2. Quantitative 
information of actual temperature can be inferred from Package Digital Readout, 
bits 22:16.

• Package Thermal Threshold #2 Log (bit 9, R/WC0) — Sticky bit that 
indicates whether the Package Thermal Threshold #2 has been reached since the 
last clearing of this bit or a reset. If bit 9 = 1, the Package Thermal Threshold #2 
has been reached. Software may clear this bit by writing a zero.

• Package Power Limitation Status (bit 10, RO) — Indicates package power 
limit is forcing one ore more processors to operate below OS-requested P-state. 
Note that package power limit violation may be caused by processor cores or by 
devices residing in the uncore. Software can examine IA32_THERM_STATUS to 
determine if the cause originates from a processor core (see Figure 14-12).

• Package Power Notification Log (bit 11, R/WCO) — Sticky bit that indicates 
any processor in the package went below OS-requested P-state or OS-requested 
clock modulation duty cycle since the last clearing of this or RESET. 

• Package Digital Readout (bits 22:16, RO) — Package digital temperature 
reading in 1 degree Celsius relative to the package TCC activation temperature. 
0: Package TCC Activation temperature, 
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1: (PTCC Activation - 1) , etc. See the processor’s data sheet for details regarding 
PTCC activation.
A lower reading in the Package Digital Readout field (bits 22:16) indicates a 
higher actual temperature.

The layout of IA32_PACKAGE_THERM_INTERRUPT MSR is shown in Figure 14-15.

• Package High-Temperature Interrupt Enable (bit 0, R/W) — This bit 
allows the BIOS to enable the generation of an interrupt on the transition from 
low-temperature to a package high-temperature threshold.  Bit 0 = 0 (default) 
disables interrupts; bit 0 = 1 enables interrupts.

• Package Low-Temperature Interrupt Enable (bit 1, R/W) — This bit allows 
the BIOS to enable the generation of an interrupt on the transition from high-
temperature to a low-temperature (TCC de-activation). Bit 1 = 0 (default) 
disables interrupts; bit 1 = 1 enables interrupts.

• Package PROCHOT# Interrupt Enable (bit 2, R/W) — This bit allows the 
BIOS or OS to enable the generation of an interrupt when Package PROCHOT# 
has been asserted by another agent on the platform and the Bidirectional Prochot 
feature is enabled. Bit 2 = 0 disables the interrupt; bit 2 = 1 enables the 
interrupt.

• Package Critical Temperature Interrupt Enable (bit 4, R/W) — Enables the 
generation of an interrupt when the Package Critical Temperature Detector has 
detected a critical thermal condition. The recommended response to this 
condition is a system shutdown. Bit 4 = 0 disables the interrupt; bit 4 = 1 
enables the interrupt.

• Package Threshold #1 Value (bits 14:8, R/W) — A temperature threshold, 
encoded relative to the Package TCC Activation temperature (using the same 
format as the Digital Readout). This threshold is compared against the Package 

Figure 14-15.  IA32_PACKAGE_THERM_INTERRUPT Register 
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Digital Readout and is used to generate the Package Thermal Threshold #1 
Status and Log bits as well as the Package Threshold #1 thermal interrupt 
delivery.

• Package Threshold #1 Interrupt Enable (bit 15, R/W) — Enables the 
generation of an interrupt when the actual temperature crosses the Package 
Threshold #1 setting in any direction.  Bit 15 = 0 enables the interrupt; bit 15 = 
1 disables the interrupt.

• Package Threshold #2 Value (bits 22:16, R/W) —A temperature threshold, 
encoded relative to the PTCC Activation temperature (using the same format as 
the Package Digital Readout). This threshold is compared against the Package 
Digital Readout and is used to generate the Package Thermal Threshold #2 
Status and Log bits as well as the Package Threshold #2 thermal interrupt 
delivery.

• Package Threshold #2 Interrupt Enable (bit 23, R/W) — Enables the 
generation of an interrupt when the actual temperature crosses the Package 
Threshold #2 setting in any direction.  Bit 23 = 0 enables the interrupt; bit 23 = 
1 disables the interrupt.

• Package Power Limit Notification Enable (bit 24, R/W) — Enables the 
generation of package power notification events.

14.6.1 Support for Passive and Active cooling
Passive and active cooling may be controlled by the OS power management agent 
through ACPI control methods. On platforms providing package level thermal 
management facility described in the previous section, it is recommended that active 
cooling (FAN control) should be driven by measuring the package temperature using 
the IA32_PACKAGE_THERM_INTERRUPT MSR. 

Passive cooling (frequency throttling) should be driven by measuring (a) the core 
and package temperatures, or (b) only the package temperature. If measured 
package temperature led the power management agent to choose which core to 
execute passive cooling, then all cores need to execute passive cooling. Core temper-
ature is measured using the IA32_THERMAL_STATUS and 
IA32_THERMAL_INTERRUPT MSRs. The exact implementation details depend on the 
platform firmware and possible solutions include defining two different thermal zones 
(one for core temperature and passive cooling and the other for package tempera-
ture and active cooling).

14.7 PLATFORM SPECIFIC POWER MANAGEMENT 
SUPPORT

This section covers power management interfaces that are not architectural but 
addresses the power management needs of several platform specific components. 
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Specifically, RAPL (Running Average Power Limit) interfaces provide mechanisms to 
enforce power consumption limit. Power limiting usages have specific usages in client 
and server platforms. 

For client platform power limit control and for server platforms used in a data center, 
the following power and thermal related usages are desirable:
• Platform Thermal Management: Robust mechanisms to manage component, 

platform, and group-level thermals, either proactively or reactively (e.g., in 
response to a platform-level thermal trip point).

• Platform Power Limiting: More deterministic control over the system's power 
consumption, for example to meet battery life targets on rack- or container-level 
power consumption goals within a datacenter. 

• Power/Performance Budgeting: Efficient means to control the power consumed 
(and therefore the sustained performance delivered) within and across 
platforms.

The server and client usage models are addressed by RAPL interfaces, which exposes 
multiple domains of power rationing within each processor socket. Generally, these 
RAPL domains may be viewed to include hierarchically:
• Package domain is the processor die. 
• Memory domain include the directly-attached DRAM; additional power plane may 

constitutes a separate domain. 

In order to manage the power consumed across multiple sockets via RAPL, individual 
limits must be programmed for each processor complex. Programming specific RAPL 
domain across multiple sockets is not supported.

14.7.1 RAPL Interfaces
RAPL interfaces consist of non-architectural MSRs. Each RAPL domain supports the 
following set of capabilities, some of which are optional as stated below.
• Power limit - MSR interfaces to specify power limit, time window; lock bit, clamp 

bit etc.
• Energy Status - Power metering interface providing energy consumption infor-

mation.
• Perf Status (Optional) - Interface providing information on the performance 

effects (regression) due to power limits. It is defined as a duration metric that 
measures the power limit effect in the respective domain. The meaning of 
duration is domain specific.

• Power Info (Optional) - Interface providing information on the range of 
parameters for a given domain, minimum power, maximum power etc.

• Policy (Optional) - 4-bit priority information which is a hint to hardware for 
dividing budget between sub-domains in a parent domain.
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Each of the above capabilities requires specific units in order to describe them. Power 
is expressed in Watts, Time is expressed in Seconds and Energy is expressed in 
Joules. Scaling factors are supplied to each unit to make the information presented 
meaningful in a finite number of bits. Units for power, energy and time are exposed 
in the read-only MSR_RAPL_POWER_UNIT MSR. 

MSR_RAPL_POWER_UNIT (Figure 14-16) provides the following information across 
all RAPL domains:
• Power Units (bits 3:0): Power related information (in Watts) is based on the 

multiplier, 1/ 2^PU; where PU is an unsigned integer represented by bits 3:0. 
Default value is 0011b, indicating power unit is in 1/8 Watts increment.

• Energy Status Units (bits 12:8): Energy related information (in Joules) is based 
on the multiplier, 1/2^ESU; where ESU is an unsigned integer represented by 
bits 12:8. Default value is 10000b, indicating energy status unit is in 15.3 micro-
Joules increment.

• Time Units (bits 19:16): Time related information (in Seconds) is based on the 
multiplier, 1/ 2^TU; where TU is an unsigned integer represented by bits 19:16. 
Default value is 1010b, indicating time unit is in 976 micro-seconds increment.

14.7.2 RAPL Domains and Platform Specificity
The specific RAPL domains available in a platform varies across product segments. 
Platforms targeting client segment support the following RAPL domain hierarchy:
• Package
• Two power planes: PP0 and PP1 (PP1 may reflect to uncore devices)

Platforms targeting server segment support the following RAPL domain hierarchy:
• Package
• Power plane: PP0
• DRAM

Figure 14-16.  MSR_RAPL_POWER_UNIT Register 
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Each level of the RAPL hierarchy provides respective set of RAPL interface MSRs. 
Table 14-2 lists the RAPL MSR interfaces available for each RAPL domain. The power 
limit MSR of each RAPL domain is located at offset 0 relative to an MSR base address 
which is non-architectural (see Chapter 34). The energy status MSR of each domain 
is located at offset 1 relative to the MSR base address of respective domain.

The presence of the optional MSR interfaces (the three right-most columns of Table 
14-2) may be model-specific. See Chapter 34 for detail.

14.7.3 Package RAPL Domain
The MSR interfaces defined for the package RAPL domain are:
• MSR_PKG_POWER_LIMIT allows software to set power limits for the package and 

measurement attributes associated with each limit,
• MSR_PKG_ENERGY_STATUS reports measured actual energy usage,
• MSR_PKG_POWER_INFO reports the package power range information for RAPL 

usage.

MSR_PKG_RAPL_PERF_STATUS can report the performance impact of power 
limiting, but its availability may be model-specific.

Table 14-2.  RAPL MSR Interfaces and RAPL Domains

 Domain  Power Limit
(Offset 0)

 Energy Status 
(Offset 1)

 Policy
(Offset 2)

 Perf Status
(Offset 3)

 Power Info
(Offset 4)

PKG MSR_PKG_PO
WER_LIMIT

MSR_PKG_ENER
GY_STATUS

RESERVED MSR_PKG_RAPL_
PERF_STATUS

MSR_PKG_PO
WER_INFO

DRAM MSR_DRAM_
POWER_LIMIT

MSR_DRAM_EN
ERGY_STATUS

RESERVED MSR_DRAM_RAPL
_PERF_STATUS

MSR_DRAM_P
OWER_INFO

PP0 MSR_PP0_PO
WER_LIMIT

MSR_PP0_ENER
GY_STATUS

MSR_PP0_P
OLICY

RESERVED RESERVED

PP1 MSR_PP1_PO
WER_LIMIT

MSR_PP1_ENER
GY_STATUS

MSR_PP1_P
OLICY

RESERVED RESERVED
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MSR_PKG_POWER_LIMIT allows a software agent to define power limitation for the 
package domain. Power limitation is defined in terms of average power usage 
(Watts) over a time window specified in MSR_PKG_POWER_LIMIT. Two power limits 
can be specified, corresponding to time windows of different sizes. Each power limit 
provides independent clamping control that would permit the processor cores to go 
below OS-requested state to meet the power limits. A lock mechanism allow the soft-
ware agent to enforce power limit settings. Once the lock bit is set, the power limit 
settings are static and un-modifiable until next RESET. 

The bit fields of MSR_PKG_POWER_LIMIT (Figure 14-17) are:
• Package Power Limit #1(bits 14:0): Sets the average power usage limit of the 

package domain corresponding to time window # 1. The unit of this field is 
specified by the “Power Units” field of MSR_RAPL_POWER_UNIT.

• Enable Power Limit #1(bit 15): 0 = disabled; 1 = enabled.
• Package Clamping Limitation #1 (bit 16): Allow going below OS-requested 

P/T state setting during time window specified by bits 23:17.
• Time Window for Power Limit #1 (bits 23:17): Indicates the length of time 

window over which the power limit #1 The numeric value encoded by bits 23:17 
is represented by the product of 2^Y *F; where F is a single-digit decimal 
floating-point value between 1.0 and 1.3 with the fraction digit represented by 
bits 23:22, Y is an unsigned integer represented by bits 21:17. The unit of this 
field is specified by the “Time Units” field of MSR_RAPL_POWER_UNIT.

• Package Power Limit #2(bits 46:32): Sets the average power usage limit of 
the package domain corresponding to time window # 2. The unit of this field is 
specified by the “Power Units” field of MSR_RAPL_POWER_UNIT.

• Enable Power Limit #2(bit 47): 0 = disabled; 1 = enabled.
• Package Clamping Limitation #2 (bit 48): Allow going below OS-requested 

P/T state setting during time window specified by bits 23:17.

Figure 14-17.  MSR_PKG_POWER_LIMIT Register
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• Time Window for Power Limit #2 (bits 55:49): Indicates the length of time 
window over which the power limit #2 The numeric value encoded by bits 55:49 
is represented by the product of 2^Y *F; where F is a single-digit decimal 
floating-point value between 1.0 and 1.3 with the fraction digit represented by 
bits 55:54, Y is an unsigned integer represented by bits 53:49. The unit of this 
field is specified by the “Time Units” field of MSR_RAPL_POWER_UNIT. This field 
may have a hard-coded value in hardware and ignores values written by 
software.

• Lock (bit 63): If set, all write attempts to this MSR are ignored until next RESET.

MSR_PKG_ENERGY_STATUS is a read-only MSR. It reports the actual energy use for 
the package domain. This MSR is updated every ~1msec. It has a wraparound time 
of around 60 secs when power consumption is high, and may be longer otherwise.

• Total Energy Consumed (bits 31:0): The unsigned integer value represents 
the total amount of energy consumed since that last time this register is cleared. 
The unit of this field is specified by the “Energy Status Units” field of 
MSR_RAPL_POWER_UNIT. 

MSR_PKG_POWER_INFO is a read-only MSR. It reports the package power range 
information for RAPL usage. This MSR provides maximum/minimum values (derived 
from electrical specification), thermal specification power of the package domain. It 
also provides the largest possible time window for software to program the RAPL 
interface.

Figure 14-18.  MSR_PKG_ENERGY_STATUS MSR

Figure 14-19.  MSR_PKG_POWER_INFO Register
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• Thermal Spec Power (bits 14:0): The unsigned integer value is the equivalent 
of thermal specification power of the package domain. The unit of this field is 
specified by the “Power Units” field of MSR_RAPL_POWER_UNIT. 

• Minimum Power (bits 30:16): The unsigned integer value is the equivalent of 
minimum power derived from electrical spec of the package domain. The unit of 
this field is specified by the “Power Units” field of MSR_RAPL_POWER_UNIT. 

• Maximum Power (bits 46:32): The unsigned integer value is the equivalent of 
maximum power derived from the electrical spec of the package domain. The unit 
of this field is specified by the “Power Units” field of MSR_RAPL_POWER_UNIT. 

• Maximum Time Window (bits 53:48): The unsigned integer value is the 
equivalent of largest acceptable value to program the time window of 
MSR_PKG_POWER_LIMIT. The unit of this field is specified by the “Time Units” 
field of MSR_RAPL_POWER_UNIT. 

MSR_PKG_PERF_STATUS is a read-only MSR. It reports the total time for which the 
package was throttled due to the RAPL power limits. Throttling in this context is 
defined as going below the OS-requested P-state or T-state. It has a wrap-around 
time of many hours. The availability of this MSR is platform specific (see Chapter 34).

• Accumulated Package Throttled Time (bits 31:0): The unsigned integer 
value represents the cumulative time (since the last time this register is cleared) 
that the package has throttled. The unit of this field is specified by the “Time 
Units” field of MSR_RAPL_POWER_UNIT. 

14.7.4 PP0/PP1 RAPL Domains
The MSR interfaces defined for the PP0 and PP1 domains are identical in layout. 
Generally, PP0 refers to the processor cores. The availability of PP1 RAPL domain 
interface is platform-specific. For a client platform, PP1 domain refers to the power 
plane of a specific device in the uncore. For server platforms, PP1 domain is not 
supported, but its PP0 domain supports the MSR_PP0_PERF_STATUS interface.
• MSR_PP0_POWER_LIMIT/MSR_PP1_POWER_LIMIT allow software to set power 

limits for the respective power plane domain.

Figure 14-20.  MSR_PKG_PERF_STATUS MSR
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• MSR_PP0_ENERGY_STATUS/MSR_PP1_ENERGY_STATUS report actual energy 
usage on a power plane.

• MSR_PP0_POLICY/MSR_PP1_POLICY allow software to adjust balance for 
respective power plane.

MSR_PP0_PERF_STATUS can report the performance impact of power limiting, but it 
is not available in client platform.

MSR_PP0_POWER_LIMIT/MSR_PP1_POWER_LIMIT allows a software agent to define 
power limitation for the respective power plane domain. A lock mechanism in each 
power plane domain allow the software agent to enforce power limit settings inde-
pendently. Once a lock bit is set, the power limit settings in that power plane are 
static and un-modifiable until next RESET. 

The bit fields of MSR_PP0_POWER_LIMIT/MSR_PP1_POWER_LIMIT (Figure 14-21) 
are:
• Power Limit (bits 14:0): Sets the average power usage limit of the respective 

power plane domain. The unit of this field is specified by the “Power Units” field of 
MSR_RAPL_POWER_UNIT.

• Enable Power Limit (bit 15): 0 = disabled; 1 = enabled.
• Clamping Limitation (bit 16): Allow going below OS-requested P/T state 

setting during time window specified by bits 23:17.
• Time Window for Power Limit (bits 23:17): Indicates the length of time 

window over which the power limit #1 The numeric value encoded by bits 23:17 
is represented by the product of 2^Y *F; where F is a single-digit decimal 
floating-point value between 1.0 and 1.3 with the fraction digit represented by 
bits 23:22, Y is an unsigned integer represented by bits 21:17. The unit of this 
field is specified by the “Time Units” field of MSR_RAPL_POWER_UNIT.

• Lock (bit 31): If set, all write attempts to the MSR and corresponding policy 
MSR_PP0_POLICY/MSR_PP1_POLICY are ignored until next RESET.

Figure 14-21.  MSR_PP0_POWER_LIMIT/MSR_PP1_POWER_LIMIT Register
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MSR_PP0_ENERGY_STATUS/MSR_PP1_ENERGY_STATUS is a read-only MSR. It 
reports the actual energy use for the respective power plane domain. This MSR is 
updated every ~1msec. 

• Total Energy Consumed (bits 31:0): The unsigned integer value represents 
the total amount of energy consumed since that last time this register is cleared. 
The unit of this field is specified by the “Energy Status Units” field of 
MSR_RAPL_POWER_UNIT. 

MSR_PP0_POLICY/MSR_PP1_POLICY provide balance power policy control for each 
power plane by providing inputs to the power budgeting management algorithm. On 
the platform that supports PP0 (IA cores) and PP1 (uncore graphic device), the 
default value give priority to the non-IA power plane. These MSRs enable the PCU to 
balance power consumption between the IA cores and uncore graphic device. 

• Priority Level (bits 4:0): Priority level input to the PCU for respective power 
plane. PP0 covers the IA processor cores, PP1 covers the uncore graphic device. 
The value 31 is considered highest priority.

MSR_PP0_PERF_STATUS is a read-only MSR. It reports the total time for which the 
PP0 domain was throttled due to the power limits. This MSR is supported only in 
server platform. Throttling in this context is defined as going below the OS-requested 
P-state or T-state. 

Figure 14-22.  MSR_PP0_ENERGY_STATUS/MSR_PP1_ENERGY_STATUS MSR

Figure 14-23.  MSR_PP0_POLICY/MSR_PP1_POLICY Register
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• Accumulated PP0 Throttled Time (bits 31:0): The unsigned integer value 
represents the cumulative time (since the last time this register is cleared) that 
the PP0 domain has throttled. The unit of this field is specified by the “Time Units” 
field of MSR_RAPL_POWER_UNIT. 

14.7.5 DRAM RAPL Domain
The MSR interfaces defined for the DRAM domain is supported only in the server plat-
form. The MSR interfaces are:
• MSR_DRAM_POWER_LIMIT allows software to set power limits for the DRAM 

domain and measurement attributes associated with each limit,
• MSR_DRAM_ENERGY_STATUS reports measured actual energy usage,
• MSR_DRAM_POWER_INFO reports the DRAM domain power range information 

for RAPL usage.
• MSR_DRAM_RAPL_PERF_STATUS can report the performance impact of power 

limiting.

Figure 14-24.  MSR_PP0_PERF_STATUS MSR

Figure 14-25.  MSR_DRAM_POWER_LIMIT Register
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MSR_DRAM_POWER_LIMIT allows a software agent to define power limitation for the 
DRAM domain. Power limitation is defined in terms of average power usage (Watts) 
over a time window specified in MSR_DRAM_POWER_LIMIT. A power limit can be 
specified along with a time window. A lock mechanism allow the software agent to 
enforce power limit settings. Once the lock bit is set, the power limit settings are 
static and un-modifiable until next RESET. 

The bit fields of MSR_DRAM_POWER_LIMIT (Figure 14-25) are:
• DRAM Power Limit #1(bits 14:0): Sets the average power usage limit of the 

DRAM domain corresponding to time window # 1. The unit of this field is specified 
by the “Power Units” field of MSR_RAPL_POWER_UNIT.

• Enable Power Limit #1(bit 15): 0 = disabled; 1 = enabled.
• Time Window for Power Limit (bits 23:17): Indicates the length of time 

window over which the power limit The numeric value encoded by bits 23:17 is 
represented by the product of 2^Y *F; where F is a single-digit decimal floating-
point value between 1.0 and 1.3 with the fraction digit represented by bits 23:22, 
Y is an unsigned integer represented by bits 21:17. The unit of this field is 
specified by the “Time Units” field of MSR_RAPL_POWER_UNIT.

• Lock (bit 31): If set, all write attempts to this MSR are ignored until next RESET.

MSR_DRAM_ENERGY_STATUS is a read-only MSR. It reports the actual energy use 
for the DRAM domain. This MSR is updated every ~1msec. 

• Total Energy Consumed (bits 31:0): The unsigned integer value represents 
the total amount of energy consumed since that last time this register is cleared. 
The unit of this field is specified by the “Energy Status Units” field of 
MSR_RAPL_POWER_UNIT. 

MSR_DRAM_POWER_INFO is a read-only MSR. It reports the DRAM power range 
information for RAPL usage. This MSR provides maximum/minimum values (derived 
from electrical specification), thermal specification power of the DRAM domain. It 

Figure 14-26.  MSR_DRAM_ENERGY_STATUS MSR
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also provides the largest possible time window for software to program the RAPL 
interface.

• Thermal Spec Power (bits 14:0): The unsigned integer value is the equivalent 
of thermal specification power of the DRAM domain. The unit of this field is 
specified by the “Power Units” field of MSR_RAPL_POWER_UNIT. 

• Minimum Power (bits 30:16): The unsigned integer value is the equivalent of 
minimum power derived from electrical spec of the DRAM domain. The unit of this 
field is specified by the “Power Units” field of MSR_RAPL_POWER_UNIT. 

• Maximum Power (bits 46:32): The unsigned integer value is the equivalent of 
maximum power derived from the electrical spec of the DRAM domain. The unit 
of this field is specified by the “Power Units” field of MSR_RAPL_POWER_UNIT. 

• Maximum Time Window (bits 53:48): The unsigned integer value is the 
equivalent of largest acceptable value to program the time window of 
MSR_DRAM_POWER_LIMIT. The unit of this field is specified by the “Time Units” 
field of MSR_RAPL_POWER_UNIT. 

MSR_DRAM_PERF_STATUS is a read-only MSR. It reports the total time for which the 
package was throttled due to the RAPL power limits. Throttling in this context is 
defined as going below the OS-requested P-state or T-state. It has a wrap-around 
time of many hours. The availability of this MSR is platform specific (see Chapter 34).

• Accumulated Package Throttled Time (bits 31:0): The unsigned integer 
value represents the cumulative time (since the last time this register is cleared) 

Figure 14-27.  MSR_DRAM_POWER_INFO Register

Figure 14-28.  MSR_DRAM_PERF_STATUS MSR
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that the DRAM domain has throttled. The unit of this field is specified by the 
“Time Units” field of MSR_RAPL_POWER_UNIT. 
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CHAPTER 15
MACHINE-CHECK ARCHITECTURE

This chapter describes the machine-check architecture and machine-check exception 
mechanism found in the Pentium 4, Intel Xeon, and P6 family processors. See 
Chapter 6, “Interrupt 18—Machine-Check Exception (#MC),” for more information on 
machine-check exceptions. A brief description of the Pentium processor’s machine 
check capability is also given.
Additionally, a signaling mechanism for software to respond to hardware corrected 
machine check error is covered.

15.1 MACHINE-CHECK ARCHITECTURE
The Pentium 4, Intel Xeon, and P6 family processors implement a machine-check 
architecture that provides a mechanism for detecting and reporting hardware 
(machine) errors, such as: system bus errors, ECC errors, parity errors, cache 
errors, and TLB errors. It consists of a set of model-specific registers (MSRs) that are 
used to set up machine checking and additional banks of MSRs used for recording 
errors that are detected. 
The processor signals the detection of an uncorrected machine-check error by gener-
ating a machine-check exception (#MC), which is an abort class exception. The 
implementation of the machine-check architecture does not ordinarily permit the 
processor to be restarted reliably after generating a machine-check exception. 
However, the machine-check-exception handler can collect information about the 
machine-check error from the machine-check MSRs.
Starting with 45nm Intel 64 processor on which CPUID reports 
DisplayFamily_DisplayModel as 06H_1AH (see CPUID instruction in Chapter 3, 
“Instruction Set Reference, A-L” in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 2A), the processor can report information on corrected 
machine-check errors and deliver a programmable interrupt for software to respond 
to MC errors, referred to as corrected machine-check error interrupt (CMCI). See 
Section 15.5 for detail. 
Intel 64 processors supporting machine-check architecture and CMCI may also 
support an additional enhancement, namely, support for software recovery from 
certain uncorrected recoverable machine check errors. See Section 15.6 for detail. 

15.2 COMPATIBILITY WITH PENTIUM PROCESSOR
The Pentium 4, Intel Xeon, and P6 family processors support and extend the 
machine-check exception mechanism introduced in the Pentium processor. The 
Pentium processor reports the following machine-check errors:
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• data parity errors during read cycles
• unsuccessful completion of a bus cycle
The above errors are reported using the P5_MC_TYPE and P5_MC_ADDR MSRs 
(implementation specific for the Pentium processor). Use the RDMSR instruction to 
read these MSRs. See Chapter 34, “Model-Specific Registers (MSRs),” for the 
addresses.
The machine-check error reporting mechanism that Pentium processors use is 
similar to that used in Pentium 4, Intel Xeon, and P6 family processors. When an 
error is detected, it is recorded in P5_MC_TYPE and P5_MC_ADDR; the processor 
then generates a machine-check exception (#MC).
See Section 15.3.3, “Mapping of the Pentium Processor Machine-Check Errors to the 
Machine-Check Architecture,” and Section 15.10.2, “Pentium Processor Machine-
Check Exception Handling,” for information on compatibility between machine-check 
code written to run on the Pentium processors and code written to run on P6 family 
processors.

15.3 MACHINE-CHECK MSRS
Machine check MSRs in the Pentium 4, Intel Xeon, and P6 family processors consist 
of a set of global control and status registers and several error-reporting register 
banks. See Figure 15-1.

Figure 15-1.  Machine-Check MSRs
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Each error-reporting bank is associated with a specific hardware unit (or group of 
hardware units) in the processor. Use RDMSR and WRMSR to read and to write these 
registers. 

15.3.1 Machine-Check Global Control MSRs
The machine-check global control MSRs include the IA32_MCG_CAP, 
IA32_MCG_STATUS, and IA32_MCG_CTL. See Chapter 34, “Model-Specific Registers 
(MSRs),” for the addresses of these registers. 

15.3.1.1  IA32_MCG_CAP MSR
The IA32_MCG_CAP MSR is a read-only register that provides information about the 
machine-check architecture of the processor. Figure 15-2 shows the structure of the 
register in Pentium 4, Intel Xeon, and P6 family processors.

Where:
• Count field, bits 7:0 — Indicates the number of hardware unit error-reporting 

banks available in a particular processor implementation.
• MCG_CTL_P (control MSR present) flag, bit 8 — Indicates that the processor 

implements the IA32_MCG_CTL MSR when set; this register is absent when clear.
• MCG_EXT_P (extended MSRs present) flag, bit 9 — Indicates that the 

processor implements the extended machine-check state registers found starting 
at MSR address 180H; these registers are absent when clear.

• MCG_CMCI_P (Corrected MC error counting/signaling extension 
present) flag, bit 10 — Indicates (when set) that extended state and 
associated MSRs necessary to support the reporting of an interrupt on a 

Figure 15-2.  IA32_MCG_CAP Register
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corrected MC error event and/or count threshold of corrected MC errors, is 
present. When this bit is set, it does not imply this feature is supported across all 
banks. Software should check the availability of the necessary logic on a bank by 
bank basis when using this signaling capability (i.e. bit 30 settable in individual 
IA32_MCi_CTL2 register). 

• MCG_TES_P (threshold-based error status present) flag, bit 11 — 
Indicates (when set) that bits 56:53 of the IA32_MCi_STATUS MSR are part of 
the architectural space. Bits 56:55 are reserved, and bits 54:53 are used to 
report threshold-based error status. Note that when MCG_TES_P is not set, bits 
56:53 of the IA32_MCi_STATUS MSR are model-specific.

• MCG_EXT_CNT, bits 23:16 — Indicates the number of extended machine-
check state registers present. This field is meaningful only when the MCG_EXT_P 
flag is set.

• MCG_SER_P (software error recovery support present) flag, bit 24— 
Indicates (when set) that the processor supports software error recovery (see 
Section 15.6), and IA32_MCi_STATUS MSR bits 56:55 are used to report the 
signaling of uncorrected recoverable errors and whether software must take 
recovery actions for uncorrected errors. Note that when MCG_TES_P is not set, 
bits 56:53 of the IA32_MCi_STATUS MSR are model-specific. If MCG_TES_P is set 
but MCG_SER_P is not set, bits 56:55 are reserved.

The effect of writing to the IA32_MCG_CAP MSR is undefined. 

15.3.1.2  IA32_MCG_STATUS MSR
The IA32_MCG_STATUS MSR describes the current state of the processor after a 
machine-check exception has occurred (see Figure 15-3).

Where:
• RIPV (restart IP valid) flag, bit 0 — Indicates (when set) that program 

execution can be restarted reliably at the instruction pointed to by the instruction 
pointer pushed on the stack when the machine-check exception is generated. 

Figure 15-3.  IA32_MCG_STATUS Register
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When clear, the program cannot be reliably restarted at the pushed instruction 
pointer.

• EIPV (error IP valid) flag, bit 1 — Indicates (when set) that the instruction 
pointed to by the instruction pointer pushed onto the stack when the machine-
check exception is generated is directly associated with the error. When this flag 
is cleared, the instruction pointed to may not be associated with the error.

• MCIP (machine check in progress) flag, bit 2 — Indicates (when set) that a 
machine-check exception was generated. Software can set or clear this flag. The 
occurrence of a second Machine-Check Event while MCIP is set will cause the 
processor to enter a shutdown state. For information on processor behavior in 
the shutdown state, please refer to the description in Chapter 6, “Interrupt and 
Exception Handling”: “Interrupt 8—Double Fault Exception (#DF)”.

Bits 63:03 in IA32_MCG_STATUS are reserved. 

15.3.1.3  IA32_MCG_CTL MSR
The IA32_MCG_CTL MSR is present if the capability flag MCG_CTL_P is set in the 
IA32_MCG_CAP MSR. 
IA32_MCG_CTL controls the reporting of machine-check exceptions. If present, 
writing 1s to this register enables machine-check features and writing all 0s disables 
machine-check features. All other values are undefined and/or implementation 
specific.

15.3.2 Error-Reporting Register Banks
Each error-reporting register bank can contain the IA32_MCi_CTL, 
IA32_MCi_STATUS, IA32_MCi_ADDR, and IA32_MCi_MISC MSRs. The number of 
reporting banks is indicated by bits [7:0] of IA32_MCG_CAP MSR (address 0179H). 
The first error-reporting register (IA32_MC0_CTL) always starts at address 400H. 
See Chapter 34, “Model-Specific Registers (MSRs),” for addresses of the error-
reporting registers in the Pentium 4 and Intel Xeon processors; and for addresses of 
the error-reporting registers P6 family processors. 

15.3.2.1  IA32_MCi_CTL MSRs
The IA32_MCi_CTL MSR controls error reporting for errors produced by a particular 
hardware unit (or group of hardware units). Each of the 64 flags (EEj) represents a 
potential error. Setting an EEj flag enables reporting of the associated error and 
clearing it disables reporting of the error. The processor does not write changes to 
bits that are not implemented. Figure 15-4 shows the bit fields of IA32_MCi_CTL.
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NOTE
For P6 family processors, processors based on Intel Core microarchi-
tecture (excluding those on which on which CPUID reports 
DisplayFamily_DisplayModel as 06H_1AH and onward): the operating 
system or executive software must not modify the contents of the 
IA32_MC0_CTL MSR. This MSR is internally aliased to the 
EBL_CR_POWERON MSR and controls platform-specific error 
handling features. System specific firmware (the BIOS) is responsible 
for the appropriate initialization of the IA32_MC0_CTL MSR. P6 family 
processors only allow the writing of all 1s or all 0s to the 
IA32_MCi_CTL MSR.

15.3.2.2  IA32_MCi_STATUS MSRS
Each IA32_MCi_STATUS MSR contains information related to a machine-check error 
if its VAL (valid) flag is set (see Figure 15-5). Software is responsible for clearing 
IA32_MCi_STATUS MSRs by explicitly writing 0s to them; writing 1s to them causes 
a general-protection exception.

NOTE
Figure 15-5 depicts the IA32_MCi_STATUS MSR when 
IA32_MCG_CAP[24] = 1, IA32_MCG_CAP[11] = 1 and 
IA32_MCG_CAP[10] = 1. When IA32_MCG_CAP[24] = 0 and 
IA32_MCG_CAP[11] = 1, bits 56:55 is reserved and bits 54:53 for 
threshold-based error reporting. When IA32_MCG_CAP[11] = 0, bits 
56:53 are part of the “Other Information” field. The use of bits 54:53 
for threshold-based error reporting began with Intel Core Duo 
processors, and is currently used for cache memory. See Section 
15.4, “Enhanced Cache Error reporting,” for more information. When 
IA32_MCG_CAP[10] = 0, bits 52:38 are part of the “Other Infor-
mation” field. The use of bits 52:38 for corrected MC error count is 
introduced with Intel 64 processor on which CPUID reports 
DisplayFamily_DisplayModel as 06H_1AH. 

Where:

Figure 15-4.  IA32_MCi_CTL Register
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         (where j is 00 through 63)
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• MCA (machine-check architecture) error code field, bits 15:0 — Specifies 
the machine-check architecture-defined error code for the machine-check error 
condition detected. The machine-check architecture-defined error codes are 
guaranteed to be the same for all IA-32 processors that implement the machine-
check architecture. See Section 15.9, “Interpreting the MCA Error Codes,” and 
Chapter 16, “Interpreting Machine-Check Error Codes”, for information on 
machine-check error codes. 

• Model-specific error code field, bits 31:16 — Specifies the model-specific 
error code that uniquely identifies the machine-check error condition detected. 
The model-specific error codes may differ among IA-32 processors for the same 
machine-check error condition. See Chapter 16, “Interpreting Machine-Check 
Error Codes”for information on model-specific error codes.

• Reserved, Error Status, and Other Information fields, bits 56:32 — 

• Bits 37:32 always contain “Other Information” that is implementation-
specific and is not part of the machine-check architecture. Software that 
is intended to be portable among IA-32 processors should not rely on 
these values. 

• If IA32_MCG_CAP[10] is 0, bits 52:38 also contain “Other Information” 
(in the same sense as bits 37:32).

• If IA32_MCG_CAP[10] is 1, bits 52:38 are architectural (not model-
specific). In this case, bits 52:38 reports the value of a 15 bit counter that 
increments each time a corrected error is observed by the MCA recording 

Figure 15-5.  IA32_MCi_STATUS Register
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 model-specific (part of “Other Information”).
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bank. This count value will continue to increment until cleared by 
software. The most significant bit, 52, is a sticky count overflow bit. 

• If IA32_MCG_CAP[11] is 0, bits 56:53 also contain “Other Information” 
(in the same sense).

• If IA32_MCG_CAP[11] is 1, bits 56:53 are architectural (not model-
specific). In this case, bits 56:53 have the following functionality:

• If IA32_MCG_CAP[24] is 0, bits 56:55 are reserved.

• If IA32_MCG_CAP[24] is 1, bits 56:55 are defined as follows: 

• S (Signaling) flag, bit 56 - Signals the reporting of UCR errors in this 
MC bank. See Section 15.6.2 for additional detail. 

• AR (Action Required) flag, bit 55 - Indicates (when set) that MCA 
error code specific recovery action must be performed by system 
software at the time this error was signaled. See Section 15.6.2 for 
additional detail.

• If the UC bit (Figure 15-5) is 1, bits 54:53 are undefined. 

• If the UC bit (Figure 15-5) is 0, bits 54:53 indicate the status of the 
hardware structure that reported the threshold-based error. See 
Table 15-1.

• PCC (processor context corrupt) flag, bit 57 — Indicates (when set) that the 
state of the processor might have been corrupted by the error condition detected 
and that reliable restarting of the processor may not be possible. When clear, this 
flag indicates that the error did not affect the processor’s state. Software 
restarting might be possible.

• ADDRV (IA32_MCi_ADDR register valid) flag, bit 58 — Indicates (when set) 
that the IA32_MCi_ADDR register contains the address where the error occurred 
(see Section 15.3.2.3, “IA32_MCi_ADDR MSRs”). When clear, this flag indicates 
that the IA32_MCi_ADDR register is either not implemented or does not contain 

Table 15-1.  Bits 54:53 in IA32_MCi_STATUS MSRs 
when IA32_MCG_CAP[11] = 1 and UC = 0

Bits 54:53 Meaning

00 No tracking - No hardware status tracking is provided for the structure reporting this 
event. 

01 Green - Status tracking is provided for the structure posting the event; the current 
status is green (below threshold). For more information, see Section 15.4, “Enhanced 
Cache Error reporting”. 

10 Yellow - Status tracking is provided for the structure posting the event; the current 
status is yellow (above threshold). For more information, see Section 15.4, “Enhanced 
Cache Error reporting”. 

11 Reserved
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the address where the error occurred. Do not read these registers if they are not 
implemented in the processor.

• MISCV (IA32_MCi_MISC register valid) flag, bit 59 — Indicates (when set) 
that the IA32_MCi_MISC register contains additional information regarding the 
error. When clear, this flag indicates that the IA32_MCi_MISC register is either 
not implemented or does not contain additional information regarding the error. 
Do not read these registers if they are not implemented in the processor.

• EN (error enabled) flag, bit 60 — Indicates (when set) that the error was 
enabled by the associated EEj bit of the IA32_MCi_CTL register.

• UC (error uncorrected) flag, bit 61 — Indicates (when set) that the processor 
did not or was not able to correct the error condition. When clear, this flag 
indicates that the processor was able to correct the error condition.

• OVER (machine check overflow) flag, bit 62 — Indicates (when set) that a 
machine-check error occurred while the results of a previous error were still in 
the error-reporting register bank (that is, the VAL bit was already set in the 
IA32_MCi_STATUS register). The processor sets the OVER flag and software is 
responsible for clearing it. In general, enabled errors are written over disabled 
errors, and uncorrected errors are written over corrected errors. Uncorrected 
errors are not written over previous valid uncorrected errors. For more infor-
mation, see Section 15.3.2.2.1, “Overwrite Rules for Machine Check Overflow”.

• VAL (IA32_MCi_STATUS register valid) flag, bit 63 — Indicates (when set) 
that the information within the IA32_MCi_STATUS register is valid. When this flag 
is set, the processor follows the rules given for the OVER flag in the 
IA32_MCi_STATUS register when overwriting previously valid entries. The 
processor sets the VAL flag and software is responsible for clearing it.

15.3.2.2.1  Overwrite Rules for Machine Check Overflow

Table 15-2 shows the overwrite rules for how to treat a second event if the cache has 
already posted an event to the MC bank – that is, what to do if the valid bit for an MC 
bank already is set to 1. When more than one structure posts events in a given bank, 
these rules specify whether a new event will overwrite a previous posting or not. 
These rules define a priority for uncorrected (highest priority), yellow, and 
green/unmonitored (lowest priority) status.
In Table 15-2, the values in the two left-most columns are 
IA32_MCi_STATUS[54:53]. 

Table 15-2.  Overwrite Rules for Enabled Errors
First Event Second Event UC bit Color MCA Info

00/green 00/green 0 00/green second

00/green yellow 0 yellow second error

yellow 00/green 0 yellow first error 

yellow yellow 0 yellow either
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If a second event overwrites a previously posted event, the information (as guarded 
by individual valid bits) in the MCi bank is entirely from the second event. Similarly, 
if a first event is retained, all of the information previously posted for that event is 
retained. In either case, the OVER bit (MCi_Status[62]) will be set to indicate an 
overflow. 
After software polls a posting and clears the register, the valid bit is no longer set and 
therefore the meaning of the rest of the bits, including the yellow/green/00 status 
field in bits 54:53, is undefined. The yellow/green indication will only be posted for 
events associated with monitored structures – otherwise the unmonitored (00) code 
will be posted in MCi_Status[54:53].

15.3.2.3  IA32_MCi_ADDR MSRs
The IA32_MCi_ADDR MSR contains the address of the code or data memory location 
that produced the machine-check error if the ADDRV flag in the IA32_MCi_STATUS 
register is set (see Section 15-6, “IA32_MCi_ADDR MSR”). The IA32_MCi_ADDR 
register is either not implemented or contains no address if the ADDRV flag in the 
IA32_MCi_STATUS register is clear. When not implemented in the processor, all reads 
and writes to this MSR will cause a general protection exception. 
The address returned is an offset into a segment, linear address, or physical address. 
This depends on the error encountered. When these registers are implemented, 
these registers can be cleared by explicitly writing 0s to these registers. Writing 1s to 
these registers will cause a general-protection exception. See Figure 15-6.

00/green/yellow UC 1 undefined second

UC 00/green/yellow 1 undefined first 

Figure 15-6.  IA32_MCi_ADDR MSR

Table 15-2.  Overwrite Rules for Enabled Errors
First Event Second Event UC bit Color MCA Info

Address

63 0

Reserved

3536

Address*

63 0

Processor Without Support For Intel 64 Architecture

Processor With Support for Intel 64 Architecture

* Useful bits in this field depend on the address methodology in use when the 

the register state is saved.
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15.3.2.4  IA32_MCi_MISC MSRs
The IA32_MCi_MISC MSR contains additional information describing the machine-
check error if the MISCV flag in the IA32_MCi_STATUS register is set. The 
IA32_MCi_MISC_MSR is either not implemented or does not contain additional infor-
mation if the MISCV flag in the IA32_MCi_STATUS register is clear. 
When not implemented in the processor, all reads and writes to this MSR will cause a 
general protection exception. When implemented in a processor, these registers can 
be cleared by explicitly writing all 0s to them; writing 1s to them causes a general-
protection exception to be generated. This register is not implemented in any of the 
error-reporting register banks for the P6 family processors. 
If both MISCV and IA32_MCG_CAP[24] are set, the IA32_MCi_MISC_MSR is defined 
according to Figure 15-7 to support software recovery of uncorrected errors (see 
Section 15.6):

• Recoverable Address LSB (bits 5:0): The lowest valid recoverable address bit. 
Indicates the position of the least significant bit (LSB) of the recoverable error 
address. For example, if the processor logs bits [43:9] of the address, the LSB 
sub-field in IA32_MCi_MISC is 01001b (9 decimal). For this example, bits [8:0] 
of the recoverable error address in IA32_MCi_ADDR should be ignored. 

• Address Mode (bits 8:6): Address mode for the address logged in 
IA32_MCi_ADDR. The supported address modes are given in Table 15-3.

Figure 15-7.  UCR Support in IA32_MCi_MISC Register

Table 15-3.  Address Mode in IA32_MCi_MISC[8:6] 
IA32_MCi_MISC[8:6] Encoding Definition

000 Segment Offset

001 Linear Address

010 Physical Address

011 Memory Address

Address Mode

63 0

Model Specific Information

6 5

Recoverable Address LSB

89
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• Model Specific Information (bits 63:9): Not architecturally defined.

15.3.2.5  IA32_MCi_CTL2 MSRs
The IA32_MCi_CTL2 MSR provides the programming interface to use corrected MC 
error signaling capability that is indicated by IA32_MCG_CAP[10] = 1. Software must 
check for the presence of IA32_MCi_CTL2 on a per-bank basis. 
When IA32_MCG_CAP[10] = 1, the IA32_MCi_CTL2 MSR for each bank exists, i.e. 
reads and writes to these MSR are supported. However, signaling interface for 
corrected MC errors may not be supported in all banks. 
The layout of IA32_MCi_CTL2 is shown in Figure 15-8:

• Corrected error count threshold, bits 14:0 — Software must initialize this 
field. The value is compared with the corrected error count field in 
IA32_MCi_STATUS, bits 38 through 52. An overflow event is signaled to the CMCI 
LVT entry (see Table 10-1) in the APIC when the count value equals the threshold 
value. The new LVT entry in the APIC is at 02F0H offset from the APIC_BASE. If 
CMCI interface is not supported for a particular bank (but IA32_MCG_CAP[10] = 
1), this field will always read 0.

• CMCI_EN-Corrected error interrupt enable/disable/indicator, bits 30 — 
Software sets this bit to enable the generation of corrected machine-check error 
interrupt (CMCI). If CMCI interface is not supported for a particular bank (but 
IA32_MCG_CAP[10] = 1), this bit is writeable but will always return 0 for that 
bank. This bit also indicates CMCI is supported or not supported in the corre-
sponding bank. See Section 15.5 for details of software detection of CMCI facility.

100 to 110 Reserved

111 Generic

Figure 15-8.  IA32_MCi_CTL2 Register

Table 15-3.  Address Mode in IA32_MCi_MISC[8:6] 
IA32_MCi_MISC[8:6] Encoding Definition

CMCI_EN—Enable/disable CMCI

63 15

Reserved

29

Corrected error count threshold

01431 30

Reserved
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Some microarchitectural sub-systems that are the source of corrected MC errors may 
be shared by more than one logical processors. Consequently, the facilities for 
reporting MC errors and controlling mechanisms may be shared by more than one 
logical processors. For example, the IA32_MCi_CTL2 MSR is shared between logical 
processors sharing a processor core. Software is responsible to program 
IA32_MCi_CTL2 MSR in a consistent manner with CMCI delivery and usage. 
After processor reset, IA32_MCi_CTL2 MSRs are zero’ed.

15.3.2.6  IA32_MCG Extended Machine Check State MSRs
The Pentium 4 and Intel Xeon processors implement a variable number of extended 
machine-check state MSRs. The MCG_EXT_P flag in the IA32_MCG_CAP MSR indi-
cates the presence of these extended registers, and the MCG_EXT_CNT field indi-
cates the number of these registers actually implemented. See Section 15.3.1.1, 
“IA32_MCG_CAP MSR.” Also see Table 15-4.

Table 15-4.  Extended Machine Check State MSRs
in Processors Without Support for Intel 64 Architecture

MSR Address Description

IA32_MCG_EAX 180H Contains state of the EAX register at the time of the machine-
check error.

IA32_MCG_EBX 181H Contains state of the EBX register at the time of the machine-
check error.

IA32_MCG_ECX 182H Contains state of the ECX register at the time of the machine-
check error.

IA32_MCG_EDX 183H Contains state of the EDX register at the time of the machine-
check error.

IA32_MCG_ESI 184H Contains state of the ESI register at the time of the machine-
check error.

IA32_MCG_EDI 185H Contains state of the EDI register at the time of the machine-
check error.

IA32_MCG_EBP 186H Contains state of the EBP register at the time of the machine-
check error.

IA32_MCG_ESP 187H Contains state of the ESP register at the time of the machine-
check error.

IA32_MCG_EFLAGS 188H Contains state of the EFLAGS register at the time of the 
machine-check error.

IA32_MCG_EIP 189H Contains state of the EIP register at the time of the machine-
check error.

IA32_MCG_MISC 18AH When set, indicates that a page assist or page fault occurred 
during DS normal operation.
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In processors with support for Intel 64 architecture, 64-bit machine check state 
MSRs are aliased to the legacy MSRs. In addition, there may be registers beyond 
IA32_MCG_MISC. These may include up to five reserved MSRs 
(IA32_MCG_RESERVED[1:5]) and save-state MSRs for registers introduced in 64-bit 
mode. See Table 15-5. 

Table 15-5.  Extended Machine Check State MSRs 
In Processors With Support For Intel 64 Architecture

MSR Address Description

IA32_MCG_RAX 180H Contains state of the RAX register at the time of the machine-
check error.

IA32_MCG_RBX 181H Contains state of the RBX register at the time of the machine-
check error.

IA32_MCG_RCX 182H Contains state of the RCX register at the time of the machine-
check error.

IA32_MCG_RDX 183H Contains state of the RDX register at the time of the machine-
check error.

IA32_MCG_RSI 184H Contains state of the RSI register at the time of the machine-
check error.

IA32_MCG_RDI 185H Contains state of the RDI register at the time of the machine-
check error.

IA32_MCG_RBP 186H Contains state of the RBP register at the time of the machine-
check error.

IA32_MCG_RSP 187H Contains state of the RSP register at the time of the machine-
check error.

IA32_MCG_RFLAGS 188H Contains state of the RFLAGS register at the time of the 
machine-check error.

IA32_MCG_RIP 189H Contains state of the RIP register at the time of the machine-
check error.

IA32_MCG_MISC 18AH When set, indicates that a page assist or page fault occurred 
during DS normal operation.

IA32_MCG_
RSERVED[1:5]

18BH-
18FH

These registers, if present, are reserved.

IA32_MCG_R8 190H Contains state of the R8 register at the time of the machine-
check error.

IA32_MCG_R9 191H Contains state of the R9 register at the time of the machine-
check error.

IA32_MCG_R10 192H Contains state of the R10 register at the time of the machine-
check error.
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When a machine-check error is detected on a Pentium 4 or Intel Xeon processor, the 
processor saves the state of the general-purpose registers, the R/EFLAGS register, 
and the R/EIP in these extended machine-check state MSRs. This information can be 
used by a debugger to analyze the error.
These registers are read/write to zero registers. This means software can read them; 
but if software writes to them, only all zeros is allowed. If software attempts to write 
a non-zero value into one of these registers, a general-protection (#GP) exception is 
generated. These registers are cleared on a hardware reset (power-up or RESET), 
but maintain their contents following a soft reset (INIT reset).

15.3.3 Mapping of the Pentium Processor Machine-Check Errors
to the Machine-Check Architecture

The Pentium processor reports machine-check errors using two registers: 
P5_MC_TYPE and P5_MC_ADDR. The Pentium 4, Intel Xeon, and P6 family proces-
sors map these registers to the IA32_MCi_STATUS and IA32_MCi_ADDR in the error-
reporting register bank. This bank reports on the same type of external bus errors 
reported in P5_MC_TYPE and P5_MC_ADDR. 
The information in these registers can then be accessed in two ways:
• By reading the IA32_MCi_STATUS and IA32_MCi_ADDR registers as part of a 

general machine-check exception handler written for Pentium 4 and P6 family 
processors.

• By reading the P5_MC_TYPE and P5_MC_ADDR registers using the RDMSR 
instruction.

The second capability permits a machine-check exception handler written to run on a 
Pentium processor to be run on a Pentium 4, Intel Xeon, or P6 family processor. There 
is a limitation in that information returned by the Pentium 4, Intel Xeon, and P6 
family processors is encoded differently than information returned by the Pentium 

IA32_MCG_R11 193H Contains state of the R11 register at the time of the machine-
check error.

IA32_MCG_R12 194H Contains state of the R12 register at the time of the machine-
check error.

IA32_MCG_R13 195H Contains state of the R13 register at the time of the machine-
check error.

IA32_MCG_R14 196H Contains state of the R14 register at the time of the machine-
check error.

IA32_MCG_R15 197H Contains state of the R15 register at the time of the machine-
check error.

Table 15-5.  Extended Machine Check State MSRs 
In Processors With Support For Intel 64 Architecture (Contd.)

MSR Address Description
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processor. To run a Pentium processor machine-check exception handler on a 
Pentium 4, Intel Xeon, or P6 family processor; the handler must be written to inter-
pret P5_MC_TYPE encodings correctly.

15.4 ENHANCED CACHE ERROR REPORTING
Starting with Intel Core Duo processors, cache error reporting was enhanced. In 
earlier Intel processors, cache status was based on the number of correction events 
that occurred in a cache. In the new paradigm, called “threshold-based error status”, 
cache status is based on the number of lines (ECC blocks) in a cache that incur 
repeated corrections. The threshold is chosen by Intel, based on various factors. If a 
processor supports threshold-based error status, it sets IA32_MCG_CAP[11] 
(MCG_TES_P) to 1; if not, to 0. 
A processor that supports enhanced cache error reporting contains hardware that 
tracks the operating status of certain caches and provides an indicator of their 
“health”. The hardware reports a “green” status when the number of lines that incur 
repeated corrections is at or below a pre-defined threshold, and a “yellow” status 
when the number of affected lines exceeds the threshold. Yellow status means that 
the cache reporting the event is operating correctly, but you should schedule the 
system for servicing within a few weeks.
Intel recommends that you rely on this mechanism for structures supported by 
threshold-base error reporting. 
The CPU/system/platform response to a yellow event should be less severe than its 
response to an uncorrected error. An uncorrected error means that a serious error 
has actually occurred, whereas the yellow condition is a warning that the number of 
affected lines has exceeded the threshold but is not, in itself, a serious event: the 
error was corrected and system state was not compromised. 
The green/yellow status indicator is not a foolproof early warning for an uncorrected 
error resulting from the failure of two bits in the same ECC block. Such a failure can 
occur and cause an uncorrected error before the yellow threshold is reached. 
However, the chance of an uncorrected error increases as the number of affected 
lines increases. 

15.5 CORRECTED MACHINE CHECK ERROR INTERRUPT
Corrected machine-check error interrupt (CMCI) is an architectural enhancement to 
the machine-check architecture. It provides capabilities beyond those of threshold-
based error reporting (Section 15.4). With threshold-based error reporting, software 
is limited to use periodic polling to query the status of hardware corrected MC errors. 
CMCI provides a signaling mechanism to deliver a local interrupt based on threshold 
values that software can program using the IA32_MCi_CTL2 MSRs. 
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CMCI is disabled by default. System software is required to enable CMCI for each 
IA32_MCi bank that support the reporting of hardware corrected errors if 
IA32_MCG_CAP[10] = 1.
System software use IA32_MCi_CTL2 MSR to enable/disable the CMCI capability for 
each bank and program threshold values into IA32_MCi_CTL2 MSR. CMCI is not 
affected by the CR4.MCE bit, and it is not affected by the IA32_MCi_CTL MSR’s.
To detect the existence of thresholding for a given bank, software writes only bits 
14:0 with the threshold value. If the bits persist, then thresholding is available (and 
CMCI is available). If the bits are all 0's, then no thresholding exists. To detect that 
CMCI signaling exists, software writes a 1 to bit 30 of the MCi_CTL2 register. Upon 
subsequent read, If Bit 30 = 0, no CMCI is available for this bank. If Bit 30 = 1, then 
CMCI is available and enabled.

15.5.1 CMCI Local APIC Interface
The operation of CMCI is depicted in Figure 15-9. 

CMCI interrupt delivery is configured by writing to the LVT CMCI register entry in the 
local APIC register space at default address of APIC_BASE + 2F0H. A CMCI interrupt 
can be delivered to more than one logical processors if multiple logical processors are 
affected by the associated MC errors. For example, if a corrected bit error in a cache 
shared by two logical processors caused a CMCI, the interrupt will be delivered to 
both logical processors sharing that microarchitectural sub-system. Similarly, 
package level errors may cause CMCI to be delivered to all logical processors within 
the package. However, system level errors will not be handled by CMCI.
See Section 10.5.1, “Local Vector Table” for details regarding the LVT CMCI register.

Figure 15-9.  CMCI Behavior

Error threshold

63 0

MCi_CTL2

3031

Error count

53 0

Software write 1 to enable

Count overflow threshold -> CMCI LVT in local APIC

29 14

37

MCi_STATUS

3852

?=
APIC_BASE + 2F0H
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15.5.2 System Software Recommendation for Managing CMCI and 
Machine Check Resources

System software must enable and manage CMCI, set up interrupt handlers to service 
CMCI interrupts delivered to affected logical processors, program CMCI LVT entry, 
and query machine check banks that are shared by more than one logical processors. 
This section describes techniques system software can implement to manage CMCI 
initialization, service CMCI interrupts in a efficient manner to minimize contentions to 
access shared MSR resources.

15.5.2.1  CMCI Initialization
Although a CMCI interrupt may be delivered to more than one logical processors 
depending on the nature of the corrected MC error, only one instance of the interrupt 
service routine needs to perform the necessary service and make queries to the 
machine-check banks. The following steps describes a technique that limits the 
amount of work the system has to do in response to a CMCI.
• To provide maximum flexibility, system software should define per-thread data 

structure for each logical processor to allow equal-opportunity and efficient 
response to interrupt delivery. Specifically, the per-thread data structure should 
include a set of per-bank fields to track which machine check bank it needs to 
access in response to a delivered CMCI interrupt. The number of banks that 
needs to be tracked is determined by IA32_MCG_CAP[7:0].

• Initialization of per-thread data structure. The initialization of per-thread data 
structure must be done serially on each logical processor in the system. The 
sequencing order to start the per-thread initialization between different logical 
processor is arbitrary. But it must observe the following specific detail to satisfy 
the shared nature of specific MSR resources:

a. Each thread initializes its data structure to indicate that it does not own any 
MC bank registers.

b. Each thread examines IA32_MCi_CTL2[30] indicator for each bank to 
determine if another thread has already claimed ownership of that bank.

• If IA32_MCi_CTL2[30] had been set by another thread. This thread can 
not own bank i and should proceed to step b. and examine the next 
machine check bank until all of the machine check banks are exhausted. 

• If IA32_MCi_CTL2[30] = 0, proceed to step c.

c. Check whether writing a 1 into IA32_MCi_CTL2[30] can return with 1 on a 
subsequent read to determine this bank can support CMCI. 

• If IA32_MCi_CTL2[30] = 0, this bank does not support CMCI. This thread 
can not own bank i and should proceed to step b. and examine the next 
machine check bank until all of the machine check banks are exhausted.

• If IA32_MCi_CTL2[30] = 1, modify the per-thread data structure to 
indicate this thread claims ownership to the MC bank; proceed to initialize 
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the error threshold count (bits 15:0) of that bank as described in Chapter 
15, “CMCI Threshold Management”. Then proceed to step b. and examine 
the next machine check bank until all of the machine check banks are 
exhausted.

• After the thread has examined all of the machine check banks, it sees if it owns 
any MC banks to service CMCI. If any bank has been claimed by this thread:

— Ensure that the CMCI interrupt handler has been set up as described in 
Chapter 15, “CMCI Interrupt Handler”.

— Initialize the CMCI LVT entry, as described in Section 15.5.1, “CMCI Local 
APIC Interface”.

— Log and clear all of IA32_MCi_Status registers for the banks that this thread 
owns. This will allow new errors to be logged.

15.5.2.2  CMCI Threshold Management
The Corrected MC error threshold field, IA32_MCi_CTL2[15:0], is architecturally 
defined. Specifically, all these bits are writable by software, but different processor 
implementations may choose to implement less than 15 bits as threshold for the 
overflow comparison with IA32_MCi_STATUS[52:38]. The following describes tech-
niques that software can manage CMCI threshold to be compatible with changes in 
implementation characteristics:
• Software can set the initial threshold value to 1 by writing 1 to 

IA32_MCi_CTL2[15:0]. This will cause overflow condition on every corrected MC 
error and generates a CMCI interrupt.

• To increase the threshold and reduce the frequency of CMCI servicing:

a. Find the maximum threshold value a given processor implementation 
supports. The steps are:

• Write 7FFFH to IA32_MCi_CTL2[15:0],

• Read back IA32_MCi_CTL2[15:0], the lower 15 bits (14:0) is the 
maximum threshold supported by the processor.

b. Increase the threshold to a value below the maximum value discovered using 
step a.

15.5.2.3  CMCI Interrupt Handler
The following describes techniques system software may consider to implement a 
CMCI service routine:
• The service routine examines its private per-thread data structure to check which 

set of MC banks it has ownership. If the thread does not have ownership of a 
given MC bank, proceed to the next MC bank. Ownership is determined at initial-
ization time which is described in Section [Cross Reference to 14.5.2.1].

• If the thread had claimed ownership to an MC bank,
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— Check for valid MC errors by testing IA32_MCi_STATUS.VALID[63],

• Log MC errors,

• Clear the MSRs of this MC bank. 

— If no valid error, proceed to next MC bank.
• When all MC banks have been processed, exit service routine and return to 

original program execution.
This technique will allow each logical processors to handle corrected MC errors inde-
pendently and requires no synchronization to access shared MSR resources.

15.6 RECOVERY OF UNCORRECTED RECOVERABLE (UCR) 
ERRORS 

Recovery of uncorrected recoverable machine check errors is an enhancement in 
machine-check architecture. The first processor that supports this feature is 45nm 
Intel 64 processor on which CPUID reports DisplayFamily_DisplayModel as 06H_2EH 
(see CPUID instruction in Chapter 3, “Instruction Set Reference, A-L” in the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 2A). This allow 
system software to perform recovery action on certain class of uncorrected errors 
and continue execution.

15.6.1 Detection of Software Error Recovery Support
Software must use bit 24 of IA32_MCG_CAP (MCG_SER_P) to detect the presence of 
software error recovery support (see Figure 15-2). When IA32_MCG_CAP[24] is set, 
this indicates that the processor supports software error recovery. When this bit is 
clear, this indicates that there is no support for error recovery from the processor and 
the primary responsibility of the machine check handler is logging the machine check 
error information and shutting down the system. 
The new class of architectural MCA errors from which system software can attempt 
recovery is called Uncorrected Recoverable (UCR) Errors. UCR errors are uncorrected 
errors that have been detected and signaled but have not corrupted the processor 
context. For certain UCR errors, this means that once system software has 
performed a certain recovery action, it is possible to continue execution on this 
processor. UCR error reporting provides an error containment mechanism for data 
poisoning. The machine check handler will use the error log information from the 
error reporting registers to analyze and implement specific error recovery actions for 
UCR errors. 
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15.6.2 UCR Error Reporting and Logging
IA32_MCi_STATUS MSR is used for reporting UCR errors and existing corrected or 
uncorrected errors. The definitions of IA32_MCi_STATUS, including bit fields to iden-
tify UCR errors, is shown in Figure 15-5. UCR errors can be signaled through either 
the corrected machine check interrupt (CMCI) or machine check exception (MCE) 
path depending on the type of the UCR error. 
When IA32_MCG_CAP[24] is set, a UCR error is indicated by the following bit settings 
in the IA32_MCi_STATUS register: 
• Valid (bit 63) = 1
• UC (bit 61) = 1
• PCC (bit 57) = 0
Additional information from the IA32_MCi_MISC and the IA32_MCi_ADDR registers 
for the UCR error are available when the ADDRV and the MISCV flags in the 
IA32_MCi_STATUS register are set (see Section 15.3.2.4). The MCA error code field 
of the IA32_MCi_STATUS register indicates the type of UCR error. System software 
can interpret the MCA error code field to analyze and identify the necessary recovery 
action for the given UCR error.
In addition, the IA32_MCi_STATUS register bit fields, bits 56:55, are defined (see 
Figure 15-5) to provide additional information to help system software to properly 
identify the necessary recovery action for the UCR error:
• S (Signaling) flag, bit 56 - Indicates (when set) that a machine check exception 

was generated for the UCR error reported in this MC bank and system software 
needs to check the AR flag and the MCA error code fields in the 
IA32_MCi_STATUS register to identify the necessary recovery action for this 
error. When the S flag in the IA32_MCi_STATUS register is clear, this UCR error 
was not signaled via a machine check exception and instead was reported as a 
corrected machine check (CMC). System software is not required to take any 
recovery action when the S flag in the IA32_MCi_STATUS register is clear. 

• AR (Action Required) flag, bit 55 - Indicates (when set) that MCA error code 
specific recovery action must be performed by system software at the time this 
error was signaled. This recovery action must be completed successfully before 
any additional work is scheduled for this processor When the RIPV flag in the 
IA32_MCG_STATUS is clear, an alternative execution stream needs to be 
provided; when the MCA error code specific recovery specific recovery action 
cannot be successfully completed, system software must shut down the system. 
When the AR flag in the IA32_MCi_STATUS register is clear, system software may 
still take MCA error code specific recovery action but this is optional; system 
software can safely resume program execution at the instruction pointer saved 
on the stack from the machine check exception when the RIPV flag in the 
IA32_MCG_STATUS register is set. 

Both the S and the AR flags in the IA32_MCi_STATUS register are defined to be sticky 
bits, which mean that once set, the processor does not clear them. Only software and 
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good power-on reset can clear the S and the AR-flags. Both the S and the AR flags 
are only set when the processor reports the UCR errors (MCG_CAP[24] is set).

15.6.3 UCR Error Classification
With the S and AR flag encoding in the IA32_MCi_STATUS register, UCR errors can be 
classified as:
• Uncorrected no action required (UCNA) - is a UCR error that is not signaled via a 

machine check exception and, instead, is reported to system software as a 
corrected machine check error. UCNA errors indicate that some data in the 
system is corrupted, but the data has not been consumed and the processor 
state is valid and you may continue execution on this processor. UCNA errors 
require no action from system software to continue execution. A UNCA error is 
indicated with UC=1, PCC=0, S=0 and AR=0 in the IA32_MCi_STATUS register.

• Software recoverable action optional (SRAO) - a UCR error is signaled via a 
machine check exception and a system software recovery action is optional and 
not required to continue execution from this machine check exception. SRAO 
errors indicate that some data in the system is corrupt, but the data has not been 
consumed and the processor state is valid. SRAO errors provide the additional 
error information for system software to perform a recovery action. An SRAO 
error is indicated with UC=1, PCC=0, S=1, EN=1 and AR=0 in the 
IA32_MCi_STATUS register. Recovery actions for SRAO errors are MCA error code 
specific. The MISCV and the ADDRV flags in the IA32_MCi_STATUS register are 
set when the additional error information is available from the IA32_MCi_MISC 
and the IA32_MCi_ADDR registers. System software needs to inspect the MCA 
error code fields in the IA32_MCi_STATUS register to identify the specific 
recovery action for a given SRAO error. If MISCV and ADDRV are not set, it is 
recommended that no system software error recovery be performed however, 
you can resume execution.

• Software recoverable action required (SRAR) - a UCR error that requires system 
software to take a recovery action on this processor before scheduling another 
stream of execution on this processor. SRAR errors indicate that the error was 
detected and raised at the point of the consumption in the execution flow. An 
SRAR error is indicated with UC=1, PCC=0, S=1, EN=1 and AR=1 in the 
IA32_MCi_STATUS register. Recovery actions are MCA error code specific. The 
MISCV and the ADDRV flags in the IA32_MCi_STATUS register are set when the 
additional error information is available from the IA32_MCi_MISC and the 
IA32_MCi_ADDR registers. System software needs to inspect the MCA error code 
fields in the IA32_MCi_STATUS register to identify the specific recovery action for 
a given SRAR error. If MISCV and ADDRV are not set, it is recommended that 
system software shutdown the system.
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Table 15-6 summarizes UCR, corrected, and uncorrected errors. 

15.6.4 UCR Error Overwrite Rules
In general, the overwrite rules are as follows:
• UCR errors will overwrite corrected errors. 
• Uncorrected (PCC=1) errors overwrite UCR (PCC=0) errors.   
• UCR errors are not written over previous UCR errors. 
• Corrected errors do not write over previous UCR errors. 
Regardless of whether the 1st error is retained or the 2nd error is overwritten over 
the 1st error, the OVER flag in the IA32_MCi_STATUS register will be set to indicate 
an overflow condition. As the S flag and AR flag in the IA32_MCi_STATUS register are 
defined to be sticky flags, a second event cannot clear these 2 flags once set, 
however the MC bank information may be filled in for the 2nd error. The table below 
shows the overwrite rules and how to treat a second error if the first event is already 
logged in a MC bank along with the resulting bit setting of the UC, PCC, and AR flags 
in the IA32_MCi_STATUS register. As UCNA and SRA0 errors do not require recovery 
action from system software to continue program execution, a system reset by 

Table 15-6.  MC Error Classifications
Type of Error1

NOTES:
1. VAL=1, EN=1 for UC=1 errors; OVER=0 for UC=1 and PCC=0 errors SRAR, SRAO and UCNA errors 

are supported by the processor only when IA32_MCG_CAP[24] (MCG_SER_P) is set. 

UC PCC S AR Signaling Software Action Example

Uncorrected Error 
(UC)

1 1 x x MCE Reset the system

SRAR 1 0 1 1 MCE For known MCACOD, 
take specific recovery 
action;

For unknown MCACOD, 
must bugcheck

Cache to 
processor load 
error

SRAO 1 0 1 0 MCE For known MCACOD, 
take specific recovery 
action;

For unknown MCACOD, 
OK to keep the system 
running

Patrol scrub and 
explicit writeback 
poison errors

UCNA 1 0 0 0 CMC Log the error and Ok to 
keep the system running

Poison detection 
error

Corrected Error (CE) 0 0 x x CMC Log the error and no 
corrective action 
required

ECC in caches and 
memory
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system software is not required unless the AR flag or PCC flag is set for the UCR over-
flow case (OVER=1, VAL=1, UC=1, PCC=0). 
Table 15-7 lists overwrite rules for uncorrected errors, corrected errors, and uncor-
rected recoverable errors. 

15.7 MACHINE-CHECK AVAILABILITY
The machine-check architecture and machine-check exception (#MC) are model-
specific features. Software can execute the CPUID instruction to determine whether 
a processor implements these features. Following the execution of the CPUID 
instruction, the settings of the MCA flag (bit 14) and MCE flag (bit 7) in EDX indicate 
whether the processor implements the machine-check architecture and machine-
check exception.

15.8 MACHINE-CHECK INITIALIZATION
To use the processors machine-check architecture, software must initialize the 
processor to activate the machine-check exception and the error-reporting mecha-
nism. 
Example 15-1 gives pseudocode for performing this initialization. This pseudocode 
checks for the existence of the machine-check architecture and exception; it then 

Table 15-7.  Overwrite Rules for UC, CE, and UCR Errors
First Event Second Event UC PCC S AR MCA Bank Reset System

CE UCR 1 0 0 if UCNA, 
else 1

1 if SRAR, 
else 0

second yes, if AR=1

UCR CE 1 0 0 if UCNA, 
else 1

1 if SRAR, 
else 0

first  yes, if AR=1

UCNA UCNA 1 0 0 0 first no

UCNA SRAO 1 0 1 0 first no

UCNA SRAR 1 0 1 1 first yes

SRAO UCNA 1 0 1 0 first no

SRAO SRAO 1 0 1 0 first no

SRAO SRAR 1 0 1 1 first yes

SRAR UCNA 1 0 1 1 first yes

SRAR SRAO 1 0 1 1 first yes

SRAR SRAR 1 0 1 1 first yes

UCR UC 1 1 undefined undefined second yes

UC UCR 1 1 undefined undefined first yes 
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enables machine-check exception and the error-reporting register banks. The 
pseudocode shown is compatible with the Pentium 4, Intel Xeon, P6 family, and 
Pentium processors. 
Following power up or power cycling, IA32_MCi_STATUS registers are not guaran-
teed to have valid data until after they are initially cleared to zero by software (as 
shown in the initialization pseudocode in Example 15-1). In addition, when using P6 
family processors, software must set MCi_STATUS registers to zero when doing a 
soft-reset.

Example 15-1.  Machine-Check Initialization Pseudocode

Check CPUID Feature Flags for MCE and MCA support
IF CPU supports MCE
THEN

IF CPU supports MCA
THEN

IF (IA32_MCG_CAP.MCG_CTL_P = 1)
(* IA32_MCG_CTL register is present *)
THEN

IA32_MCG_CTL ← FFFFFFFFFFFFFFFFH;
(* enables all MCA features *)

FI

(* Determine number of error-reporting banks supported *)
COUNT← IA32_MCG_CAP.Count;
MAX_BANK_NUMBER ← COUNT - 1;

IF (Processor Family is 6H and Processor EXTMODEL:MODEL is less than 1AH)
THEN

(* Enable logging of all errors except for MC0_CTL register *)
FOR error-reporting banks (1 through MAX_BANK_NUMBER)
DO

IA32_MCi_CTL ← 0FFFFFFFFFFFFFFFFH;
OD

ELSE
(* Enable logging of all errors including MC0_CTL register *)
FOR error-reporting banks (0 through MAX_BANK_NUMBER)
DO

IA32_MCi_CTL ← 0FFFFFFFFFFFFFFFFH;
OD

FI

(* BIOS clears all errors only on power-on reset *)
IF (BIOS detects Power-on reset)
THEN 

FOR error-reporting banks (0 through MAX_BANK_NUMBER)
DO

IA32_MCi_STATUS ← 0;
OD

ELSE
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FOR error-reporting banks (0 through MAX_BANK_NUMBER)
DO

(Optional for BIOS and OS) Log valid errors
(OS only) IA32_MCi_STATUS ← 0;

OD

FI
FI

Setup the Machine Check Exception (#MC) handler for vector 18 in IDT

Set the MCE bit (bit 6) in CR4 register to enable Machine-Check Exceptions
FI

15.9 INTERPRETING THE MCA ERROR CODES
When the processor detects a machine-check error condition, it writes a 16-bit error 
code to the MCA error code field of one of the IA32_MCi_STATUS registers and sets 
the VAL (valid) flag in that register. The processor may also write a 16-bit model-
specific error code in the IA32_MCi_STATUS register depending on the implementa-
tion of the machine-check architecture of the processor.
The MCA error codes are architecturally defined for Intel 64 and IA-32 processors. To 
determine the cause of a machine-check exception, the machine-check exception 
handler must read the VAL flag for each IA32_MCi_STATUS register. If the flag is set, 
the machine check-exception handler must then read the MCA error code field of the 
register. It is the encoding of the MCA error code field [15:0] that determines the 
type of error being reported and not the register bank reporting it.
There are two types of MCA error codes: simple error codes and compound error 
codes. 

15.9.1 Simple Error Codes
Table 15-8 shows the simple error codes. These unique codes indicate global error 
information.

Table 15-8.  IA32_MCi_Status [15:0] Simple Error Code Encoding 
Error Code Binary Encoding Meaning

No Error 0000 0000 0000 0000 No error has been reported to this bank of 
error-reporting registers.

Unclassified 0000 0000 0000 0001 This error has not been classified into the 
MCA error classes.

Microcode ROM Parity 
Error

0000 0000 0000 0010 Parity error in internal microcode ROM
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15.9.2 Compound Error Codes
Compound error codes describe errors related to the TLBs, memory, caches, bus and 
interconnect logic, and internal timer. A set of sub-fields is common to all of 
compound errors. These sub-fields describe the type of access, level in the cache 
hierarchy, and type of request. Table 15-9 shows the general form of the compound 
error codes. 

The “Interpretation” column in the table indicates the name of a compound error. The 
name is constructed by substituting mnemonics for the sub-field names given within 
curly braces. For example, the error code ICACHEL1_RD_ERR is constructed from the 
form: 

{TT}CACHE{LL}_{RRRR}_ERR,
where {TT} is replaced by I, {LL} is replaced by L1, and {RRRR} is replaced by RD.

For more information on the “Form” and “Interpretation” columns, see Sections 
Section 15.9.2.1, “Correction Report Filtering (F) Bit” through Section 15.9.2.5, “Bus 
and Interconnect Errors”.

External Error 0000 0000 0000 0011 The BINIT# from another processor caused 
this processor to enter machine check.1

FRC Error 0000 0000 0000 0100 FRC (functional redundancy check) 
master/slave error

Internal Parity Error 0000 0000 0000 0101 Internal parity error.

Internal Timer Error 0000 0100 0000 0000 Internal timer error.

Internal Unclassified 0000 01xx xxxx xxxx Internal unclassified errors. 2

NOTES:
1. BINIT# assertion will cause a machine check exception if the processor (or any processor on the 

same external bus) has BINIT# observation enabled during power-on configuration (hardware 
strapping) and if machine check exceptions are enabled (by setting CR4.MCE = 1).

2. At least one X must equal one. Internal unclassified errors have not been classified. 

Table 15-9.  IA32_MCi_Status [15:0] Compound Error Code Encoding 
Type Form Interpretation

Generic Cache Hierarchy 000F 0000 0000 11LL Generic cache hierarchy error

TLB Errors 000F 0000 0001 TTLL {TT}TLB{LL}_ERR

Memory Controller Errors 000F 0000 1MMM CCCC {MMM}_CHANNEL{CCCC}_ERR

Cache Hierarchy Errors 000F 0001 RRRR TTLL {TT}CACHE{LL}_{RRRR}_ERR

Bus and Interconnect Errors 000F 1PPT RRRR IILL BUS{LL}_{PP}_{RRRR}_{II}_{T}_ERR

Table 15-8.  IA32_MCi_Status [15:0] Simple Error Code Encoding  (Contd.)
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15.9.2.1  Correction Report Filtering (F) Bit 
Starting with Intel Core Duo processors, bit 12 in the “Form” column in Table 15-9 is 
used to indicate that a particular posting to a log may be the last posting for correc-
tions in that line/entry, at least for some time:
• 0 in bit 12 indicates “normal” filtering (original P6/Pentium4/Xeon processor 

meaning).
• 1 in bit 12 indicates “corrected” filtering (filtering is activated for the line/entry in 

the posting). Filtering means that some or all of the subsequent corrections to 
this entry (in this structure) will not be posted. The enhanced error reporting 
introduced with the Intel Core Duo processors is based on tracking the lines 
affected by repeated corrections (see Section 15.4, “Enhanced Cache Error 
reporting”). This capability is indicated by IA32_MCG_CAP[11]. Only the first few 
correction events for a line are posted; subsequent redundant correction events 
to the same line are not posted. Uncorrected events are always posted. 

The behavior of error filtering after crossing the yellow threshold is model-specific.

15.9.2.2  Transaction Type (TT) Sub-Field
The 2-bit TT sub-field (Table 15-10) indicates the type of transaction (data, instruc-
tion, or generic). The sub-field applies to the TLB, cache, and interconnect error 
conditions. Note that interconnect error conditions are primarily associated with P6 
family and Pentium processors, which utilize an external APIC bus separate from the 
system bus. The generic type is reported when the processor cannot determine the 
transaction type.

15.9.2.3  Level (LL) Sub-Field
The 2-bit LL sub-field (see Table 15-11) indicates the level in the memory hierarchy 
where the error occurred (level 0, level 1, level 2, or generic). The LL sub-field also 
applies to the TLB, cache, and interconnect error conditions. The Pentium 4, Intel 
Xeon, and P6 family processors support two levels in the cache hierarchy and one 
level in the TLBs. Again, the generic type is reported when the processor cannot 
determine the hierarchy level.

Table 15-10.  Encoding for TT (Transaction Type) Sub-Field
Transaction Type Mnemonic Binary Encoding

Instruction I 00

Data D 01

Generic G 10

Table 15-11.  Level Encoding for LL (Memory Hierarchy Level) Sub-Field 
Hierarchy Level Mnemonic Binary Encoding

Level 0 L0 00
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15.9.2.4  Request (RRRR) Sub-Field
The 4-bit RRRR sub-field (see Table 15-12) indicates the type of action associated 
with the error. Actions include read and write operations, prefetches, cache evictions, 
and snoops. Generic error is returned when the type of error cannot be determined. 
Generic read and generic write are returned when the processor cannot determine 
the type of instruction or data request that caused the error. Eviction and snoop 
requests apply only to the caches. All of the other requests apply to TLBs, caches and 
interconnects.

15.9.2.5  Bus and Interconnect Errors
The bus and interconnect errors are defined with the 2-bit PP (participation), 1-bit T 
(time-out), and 2-bit II (memory or I/O) sub-fields, in addition to the LL and RRRR 
sub-fields (see Table 15-13). The bus error conditions are implementation dependent 
and related to the type of bus implemented by the processor. Likewise, the intercon-
nect error conditions are predicated on a specific implementation-dependent inter-
connect model that describes the connections between the different levels of the 
storage hierarchy. The type of bus is implementation dependent, and as such is not 
specified in this document. A bus or interconnect transaction consists of a request 
involving an address and a response.

Level 1 L1 01

Level 2 L2 10

Generic LG 11

Table 15-12.  Encoding of Request (RRRR) Sub-Field 
Request Type Mnemonic Binary Encoding

Generic Error ERR 0000

Generic Read RD 0001

Generic Write WR 0010

Data Read DRD 0011

Data Write DWR 0100

Instruction Fetch IRD 0101

Prefetch PREFETCH 0110

Eviction EVICT 0111

Snoop SNOOP 1000

Table 15-13.  Encodings of PP, T, and II Sub-Fields 
Sub-Field Transaction Mnemonic Binary Encoding

Table 15-11.  Level Encoding for LL (Memory Hierarchy Level) Sub-Field  (Contd.)
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15.9.2.6  Memory Controller Errors
The memory controller errors are defined with the 3-bit MMM (memory transaction 
type), and 4-bit CCCC (channel) sub-fields. The encodings for MMM and CCCC are 
defined in Table 15-14.

15.9.3 Architecturally Defined UCR Errors 
Software recoverable compound error code are defined in this section.

PP (Participation) Local processor* originated request SRC 00

Local processor* responded to request RES 01

Local processor* observed error as 
third party

OBS 10

Generic 11

T (Time-out) Request timed out TIMEOUT 1

Request did not time out NOTIMEOUT 0

II (Memory or I/O) Memory Access M 00

Reserved 01

I/O IO 10

Other transaction 11

NOTE:
* Local processor differentiates the processor reporting the error from other system compo-

nents (including the APIC, other processors, etc.).

Table 15-14.  Encodings of MMM and CCCC Sub-Fields 
Sub-Field Transaction Mnemonic Binary Encoding

MMM Generic undefined request GEN 000

Memory read error RD 001

Memory write error WR 010

Address/Command Error AC 011

Memory Scrubbing Error MS 100

Reserved 101-111

CCCC Channel number CHN 0000-1110

Channel not specified 1111

Table 15-13.  Encodings of PP, T, and II Sub-Fields  (Contd.)
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15.9.3.1  Architecturally Defined SRAO Errors
The following two SRAO errors are architecturally defined. 
• UCR Errors detected by memory controller scrubbing; and
• UCR Errors detected during L3 cache (L3) explicit writebacks.
The MCA error code encodings for these two architecturally-defined UCR errors 
corresponds to sub-classes of compound MCA error codes (see Table 15-9). Their 
values and compound encoding format are given in Table 15-15. 

Table 15-16 lists values of relevant bit fields of IA32_MCi_STATUS for architecturally 
defined SRAO errors. 

For both the memory scrubbing and L3 explicit writeback errors, the ADDRV and 
MISCV flags in the IA32_MCi_STATUS register are set to indicate that the offending 
physical address information is available from the IA32_MCi_MISC and the 
IA32_MCi_ADDR registers.  For the memory scrubbing and L3 explicit writeback 
errors, the address mode in the IA32_MCi_MISC register should be set as physical 
address mode (010b) and the address LSB information in the IA32_MCi_MISC 
register should indicate the lowest valid address bit in the address information 
provided from the IA32_MCi_ADDR register. 
An MCE signal is broadcast to all logical processors on the system on which the UCR 
errors are supported. MCi_STATUS banks can be shared by logical processors within 

Table 15-15.  MCA Compound Error Code Encoding for SRAO Errors
Type MCACOD Value MCA Error Code Encoding1

NOTES:
1. Note that for both of these errors the correction report filtering (F) bit (bit 12) of the MCA error is 

0, indicating "normal" filtering. 

Memory Scrubbing 0xC0 - 0xCF 0000_0000_1100_CCCC

000F 0000 1MMM CCCC (Memory Controller Error), where

Memory subfield MMM = 100B (memory scrubbing)

Channel subfield CCCC = channel # or generic

L3 Explicit Writeback 0x17A 0000_0001_0111_1010

000F 0001 RRRR TTLL (Cache Hierarchy Error) where

Request subfields RRRR = 0111B (Eviction)

Transaction Type subfields TT = 10B (Generic)

Level subfields LL = 10B 

Table 15-16.  IA32_MCi_STATUS Values for SRAO Errors
SRAO Error Valid OVER UC EN MISCV ADDRV PCC S AR MCACOD

Memory Scrubbing 1 0 1 1 1 1 0 1 0 0xC0-0xCF

L3 Explicit Writeback 1 0 1 1 1 1 0 1 0 0x17A
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a core or within the same package. So several logical processors may find an SRAO 
error in the shared IA32_MCi_STATUS bank but other processors do not find it in any 
of the IA32_MCi_STATUS banks. Table 15-17 shows the RIPV and EIPV flag indication 
in the IA32_MCG_STATUS register for the memory scrubbing and L3 explicit write-
back errors on both the reporting and non-reporting logical processors. 

15.9.3.2  Architecturally Defined SRAR Errors
The following two SRAR errors are architecturally defined. 
• UCR Errors detected on data load; and
• UCR Errors detected on instruction fetch.
The MCA error code encodings for these two architecturally-defined UCR errors 
corresponds to sub-classes of compound MCA error codes (see Table 15-9). Their 
values and compound encoding format are given in Table 15-18. 

Table 15-17.  IA32_MCG_STATUS Flag Indication for SRAO Errors
SRAO Type Reporting Logical Processors Non-reporting Logical Processors

RIPV EIPV RIPV EIPV

Memory Scrubbing 1 0 1 0

L3 Explicit Writeback 1 0 1 0

Table 15-18.  MCA Compound Error Code Encoding for SRAR Errors
Type MCACOD Value MCA Error Code Encoding1

NOTES:
1. Note that for both of these errors the correction report filtering (F) bit (bit 12) of the MCA error is 

0, indicating "normal" filtering. 

Data Load 0x134 0000_0001_0011_0100

000F 0001 RRRR TTLL (Cache Hierarchy Error), where

Request subfield RRRR = 0011B (Data Load)

Transaction Type subfield TT= 01B (Data)

Level subfield LL = 00B (Level 0)

Instruction Fetch 0x150 0000_0001_0101_0000

000F 0001 RRRR TTLL (Cache Hierarchy Error), where

Request subfield RRRR = 0101B (Instruction Fetch)

Transaction Type subfield TT= 00B (Instruction)

Level subfield LL = 00B (Level 0)
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Table 15-19 lists values of relevant bit fields of IA32_MCi_STATUS for architecturally 
defined SRAR errors. 

For both the data load and instruction fetch errors, the ADDRV and MISCV flags in the 
IA32_MCi_STATUS register are set to indicate that the offending physical address 
information is available from the IA32_MCi_MISC and the IA32_MCi_ADDR registers.  
For the memory scrubbing and L3 explicit writeback errors, the address mode in the 
IA32_MCi_MISC register should be set as physical address mode (010b) and the 
address LSB information in the IA32_MCi_MISC register should indicate the lowest 
valid address bit in the address information provided from the IA32_MCi_ADDR 
register. 
An MCE signal is broadcast to all logical processors on the system on which the UCR 
errors are supported. The IA32_MCG_STATUS MSR allows system software to distin-
guish the affected logical processor of an SRAR error amongst logical processors that 
observed SRAR via a shared MCi_STATUS bank.
Table 15-20 shows the RIPV and EIPV flag indication in the IA32_MCG_STATUS 
register for the data load and instruction fetch errors on both the reporting and non-
reporting logical processors. 

The affected logical processor is the one that has detected and raised an SRAR error 
at the point of the consumption in the execution flow. The affected logical processor 
should find the Data Load or the Instruction Fetch error information in the 
IA32_MCi_STATUS register that is reporting the SRAR error.  
For Data Load recoverable errors, the affected logical processor should find that the 
IA32_MCG_STATUS.RIPV flag is cleared and the IA32_MCG_STATUS.EIPV flag is set 
indicating that the error is detected at the instruction pointer saved on the stack for 
this machine check exception and restarting execution with the interrupted context is 
not possible.  
For Instruction Fetch recoverable error, the affected logical processor should find that 
the RIPV flag and the EIPV Flag in the IA32_MCG_STATUS register are cleared, indi-
cating that the error is detected at the instruction pointer saved on the stack may not 
be associated with this error and restarting the execution with the interrupted 
context is not possible. 

Table 15-19.  IA32_MCi_STATUS Values for SRAR Errors
SRAR Error Valid OVER UC EN MISCV ADDRV PCC S AR MCACOD

Data Load 1 0 1 1 1 1 0 1 1 0x134

Instruction Fetch 1 0 1 1 1 1 0 1 1 0x150

Table 15-20.  IA32_MCG_STATUS Flag Indication for SRAR Errors
SRAR Type Affected Logical Processors Non-Affected Logical Processors

RIPV EIPV RIPV EIPV

Data Load 0 1 1 0

instruction Fetch 0 0 1 0
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The logical processors that observed but not affected by an SRAR error should find 
that the RIPV flag in the IA32_MCG_STATUS register is set and the EIPV flag in the 
IA32_MCG_STATUS register is cleared, indicating that it is safe to restart the execu-
tion at the instruction saved on the stack for the machine check exception on these 
processors after the recovery action is successfully taken by system software. 
For the Data-Load and the Instruction-Fetch recoverable errors, system software 
may take the following recovery actions for the affected logical processor: 
• The current executing thread cannot be continued.  You must terminate the 

interrupted stream of execution and provide a new stream of execution on return 
from the machine check handler for the affected logical processor

In addition to taking the recovery action described above, system software may also 
need to disable the use of the affected page from the program. This recovery action 
by system software may prevent the occurrence of future consumption errors from 
that affected page.  

15.9.4 Multiple MCA Errors 
When multiple MCA errors are detected within a certain detection window, the 
processor may aggregate the reporting of these errors together as a single event, i.e. 
a single machine exception condition.  If this occurs, system software may find 
multiple MCA errors logged in different MC banks on one logical processor or find 
multiple MCA errors logged across different processors for a single machine check 
broadcast event.  In order to handle multiple UCR errors reported from a single 
machine check event and possibly recover from multiple errors, system software 
may consider the following: 
• Whether it can recover from multiple errors is determined by the most severe 

error reported on the system.  If the most severe error is found to be an unrecov-
erable error (VAL=1, UC=1, PCC=1 and EN=1) after system software examines 
the MC banks of all processors to which the MCA signal is broadcast, recovery 
from the multiple errors is not possible and system software needs to reset the 
system. 

• When multiple recoverable errors are reported and no other fatal condition (e.g.. 
overflowed condition for SRAR error) is found for the reported recoverable errors, 
it is possible for system software to recover from the multiple recoverable errors 
by taking necessary recovery action for each individual recoverable error.  
However, system software can no longer expect one to one relationship with the 
error information recorded in the IA32_MCi_STATUS register and the states of 
the RIPV and EIPV flags in the IA32_MCG_STATUS register as the states of the 
RIPV and the EIPV flags in the IA32_MCG_STATUS register may indicate the 
information for the most severe error recorded on the processor.  System 
software is required to use the RIPV flag indication in the IA32_MCG_STATUS 
register to make a final decision of recoverability of the errors and find the 
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restart-ability requirement after examining each IA32_MCi_STATUS register 
error information in the MC banks.  

15.9.5 Machine-Check Error Codes Interpretation
Chapter 16, “Interpreting Machine-Check Error Codes,” provides information on 
interpreting the MCA error code, model-specific error code, and other information 
error code fields. For P6 family processors, information has been included on 
decoding external bus errors. For Pentium 4 and Intel Xeon processors; information 
is included on external bus, internal timer and cache hierarchy errors.

15.10 GUIDELINES FOR WRITING MACHINE-CHECK 
SOFTWARE

The machine-check architecture and error logging can be used in three different 
ways:
• To detect machine errors during normal instruction execution, using the 

machine-check exception (#MC).
• To periodically check and log machine errors.
• To examine recoverable UCR errors, determine software recoverability and 

perform recovery actions via a machine-check exception handler or a corrected 
machine-check interrupt handler.

To use the machine-check exception, the operating system or executive software 
must provide a machine-check exception handler. This handler may need to be 
designed specifically for each family of processors.
A special program or utility is required to log machine errors.
Guidelines for writing a machine-check exception handler or a machine-error logging 
utility are given in the following sections.

15.10.1 Machine-Check Exception Handler
The machine-check exception (#MC) corresponds to vector 18. To service machine-
check exceptions, a trap gate must be added to the IDT. The pointer in the trap gate 
must point to a machine-check exception handler. Two approaches can be taken to 
designing the exception handler:

1. The handler can merely log all the machine status and error information, then call 
a debugger or shut down the system.

2. The handler can analyze the reported error information and, in some cases, 
attempt to correct the error and restart the processor.
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For Pentium 4, Intel Xeon, P6 family, and Pentium processors; virtually all machine-
check conditions cannot be corrected (they result in abort-type exceptions). The 
logging of status and error information is therefore a baseline implementation 
requirement.
When recovery from a machine-check error may be possible, consider the following 
when writing a machine-check exception handler:
• To determine the nature of the error, the handler must read each of the error-

reporting register banks. The count field in the IA32_MCG_CAP register gives 
number of register banks. The first register of register bank 0 is at address 400H.

• The VAL (valid) flag in each IA32_MCi_STATUS register indicates whether the 
error information in the register is valid. If this flag is clear, the registers in that 
bank do not contain valid error information and do not need to be checked.

• To write a portable exception handler, only the MCA error code field in the 
IA32_MCi_STATUS register should be checked. See Section 15.9, “Interpreting 
the MCA Error Codes,” for information that can be used to write an algorithm to 
interpret this field.

• The RIPV, PCC, and OVER flags in each IA32_MCi_STATUS register indicate 
whether recovery from the error is possible. If PCC or OVER are set, recovery is 
not possible. If RIPV is not set, program execution can not be restarted reliably. 
When recovery is not possible, the handler typically records the error information 
and signals an abort to the operating system.

• Correctable errors are corrected automatically by the processor. The UC flag in 
each IA32_MCi_STATUS register indicates whether the processor automatically 
corrected an error.

• The RIPV flag in the IA32_MCG_STATUS register indicates whether the program 
can be restarted at the instruction indicated by the instruction pointer (the 
address of the instruction pushed on the stack when the exception was 
generated). If this flag is clear, the processor may still be able to be restarted (for 
debugging purposes) but not without loss of program continuity.

• For unrecoverable errors, the EIPV flag in the IA32_MCG_STATUS register 
indicates whether the instruction indicated by the instruction pointer pushed on 
the stack (when the exception was generated) is related to the error. If the flag is 
clear, the pushed instruction may not be related to the error.

• The MCIP flag in the IA32_MCG_STATUS register indicates whether a machine-
check exception was generated. Before returning from the machine-check 
exception handler, software should clear this flag so that it can be used reliably by 
an error logging utility. The MCIP flag also detects recursion. The machine-check 
architecture does not support recursion. When the processor detects machine-
check recursion, it enters the shutdown state.

Example 15-2 gives typical steps carried out by a machine-check exception handler.

Example 15-2.  Machine-Check Exception Handler Pseudocode

IF CPU supports MCE
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THEN
IF CPU supports MCA

THEN
call errorlogging routine; (* returns restartability *)

FI;
ELSE (* Pentium(R) processor compatible *)

READ P5_MC_ADDR
READ P5_MC_TYPE;
report RESTARTABILITY to console;

FI;
IF error is not restartable

THEN
report RESTARTABILITY to console;
abort system;

FI;
CLEAR MCIP flag in IA32_MCG_STATUS;

15.10.2 Pentium Processor Machine-Check Exception Handling
Machine-check exception handler on P6 family and later processor families, should 
follow the guidelines described in Section 15.10.1 and Example 15-2 that check the 
processor’s support of MCA.

NOTE
On processors that support MCA (CPUID.1.EDX.MCA = 1) reading the 
P5_MC_TYPE and P5_MC_ADDR registers may produce invalid data.

When machine-check exceptions are enabled for the Pentium processor (MCE flag is 
set in control register CR4), the machine-check exception handler uses the RDMSR 
instruction to read the error type from the P5_MC_TYPE register and the machine 
check address from the P5_MC_ADDR register. The handler then normally reports 
these register values to the system console before aborting execution (see Example 
15-2).

15.10.3 Logging Correctable Machine-Check Errors
The error handling routine for servicing the machine-check exceptions is responsible 
for logging uncorrected errors.
If a machine-check error is correctable, the processor does not generate a machine-
check exception for it. To detect correctable machine-check errors, a utility program 
must be written that reads each of the machine-check error-reporting register banks 
and logs the results in an accounting file or data structure. This utility can be imple-
mented in either of the following ways.
• A system daemon that polls the register banks on an infrequent basis, such as 

hourly or daily.
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• A user-initiated application that polls the register banks and records the 
exceptions. Here, the actual polling service is provided by an operating-system 
driver or through the system call interface.

• An interrupt service routine servicing CMCI can read the MC banks and log the 
error. 

Example 15-3 gives pseudocode for an error logging utility.

Example 15-3.  Machine-Check Error Logging Pseudocode

Assume that execution is restartable;
IF the processor supports MCA

THEN
FOR each bank of machine-check registers 

DO
READ IA32_MCi_STATUS;
IF VAL flag in IA32_MCi_STATUS = 1

THEN
IF ADDRV flag in IA32_MCi_STATUS = 1

THEN READ IA32_MCi_ADDR; 
FI;
IF MISCV flag in IA32_MCi_STATUS = 1

THEN READ IA32_MCi_MISC;
FI;
IF MCIP flag in IA32_MCG_STATUS = 1

(* Machine-check exception is in progress *) 
AND PCC flag in IA32_MCi_STATUS = 1
OR RIPV flag in IA32_MCG_STATUS = 0
(* execution is not restartable *)

THEN 
RESTARTABILITY = FALSE;
return RESTARTABILITY to calling procedure;

FI;
Save time-stamp counter and processor ID;
Set IA32_MCi_STATUS to all 0s;
Execute serializing instruction (i.e., CPUID);

FI;
OD;

FI;

If the processor supports the machine-check architecture, the utility reads through 
the banks of error-reporting registers looking for valid register entries. It then saves 
the values of the IA32_MCi_STATUS, IA32_MCi_ADDR, IA32_MCi_MISC and 
IA32_MCG_STATUS registers for each bank that is valid. The routine minimizes 
processing time by recording the raw data into a system data structure or file, 
reducing the overhead associated with polling. User utilities analyze the collected 
data in an off-line environment.
When the MCIP flag is set in the IA32_MCG_STATUS register, a machine-check 
exception is in progress and the machine-check exception handler has called the 
exception logging routine. 
15-38 Vol. 3B



MACHINE-CHECK ARCHITECTURE
Once the logging process has been completed the exception-handling routine must 
determine whether execution can be restarted, which is usually possible when 
damage has not occurred (The PCC flag is clear, in the IA32_MCi_STATUS register) 
and when the processor can guarantee that execution is restartable (the RIPV flag is 
set in the IA32_MCG_STATUS register). If execution cannot be restarted, the system 
is not recoverable and the exception-handling routine should signal the console 
appropriately before returning the error status to the Operating System kernel for 
subsequent shutdown.
The machine-check architecture allows buffering of exceptions from a given error-
reporting bank although the Pentium 4, Intel Xeon, and P6 family processors do not 
implement this feature. The error logging routine should provide compatibility with 
future processors by reading each hardware error-reporting bank's 
IA32_MCi_STATUS register and then writing 0s to clear the OVER and VAL flags in 
this register. The error logging utility should re-read the IA32_MCi_STATUS register 
for the bank ensuring that the valid bit is clear. The processor will write the next error 
into the register bank and set the VAL flags. 
Additional information that should be stored by the exception-logging routine 
includes the processor’s time-stamp counter value, which provides a mechanism to 
indicate the frequency of exceptions. A multiprocessing operating system stores the 
identity of the processor node incurring the exception using a unique identifier, such 
as the processor’s APIC ID (see Section 10.8, “Handling Interrupts”). 
The basic algorithm given in Example 15-3 can be modified to provide more robust 
recovery techniques. For example, software has the flexibility to attempt recovery 
using information unavailable to the hardware. Specifically, the machine-check 
exception handler can, after logging carefully analyze the error-reporting registers 
when the error-logging routine reports an error that does not allow execution to be 
restarted. These recovery techniques can use external bus related model-specific 
information provided with the error report to localize the source of the error within 
the system and determine the appropriate recovery strategy. 

15.10.4 Machine-Check Software Handler Guidelines for Error 
Recovery

15.10.4.1  Machine-Check Exception Handler for Error Recovery
When writing a machine-check exception (MCE) handler to support software 
recovery from Uncorrected Recoverable (UCR) errors, consider the following: 
• When IA32_MCG_CAP [24] is zero, there are no recoverable errors supported 

and all machine-check are fatal exceptions. The logging of status and error 
information is therefore a baseline implementation requirement. 

• When IA32_MCG_CAP [24] is 1, certain uncorrected errors called uncorrected 
recoverable (UCR) errors may be software recoverable. The handler can analyze 
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the reported error information, and in some cases attempt to recover from the 
uncorrected error and continue execution.

• For processors on which CPUID reports DisplayFamily_DisplayModel as 06H_0EH 
and onward, an MCA signal is broadcast to all logical processors in the system 
(see CPUID instruction in Chapter 3, “Instruction Set Reference, A-L” in the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A).  
Due to the potentially shared machine check MSR resources among the logical 
processors on the same package/core, the MCE handler may be required to 
synchronize with the other processors that received a machine check error and 
serialize access to the machine check registers when analyzing, logging and 
clearing the information in the machine check registers.

• The VAL (valid) flag in each IA32_MCi_STATUS register indicates whether the 
error information in the register is valid. If this flag is clear, the registers in that 
bank do not contain valid error information and should not be checked.

• The MCE handler is primarily responsible for processing uncorrected errors. The 
UC flag in each IA32_MCi_Status register indicates whether the reported error 
was corrected (UC=0) or uncorrected (UC=1).  The MCE handler can optionally 
log and clear the corrected errors in the MC banks if it can implement software 
algorithm to avoid the undesired race conditions with the CMCI or CMC polling 
handler.

• For uncorrectable errors, the EIPV flag in the IA32_MCG_STATUS register 
indicates (when set) that the instruction pointed to by the instruction pointer 
pushed onto the stack when the machine-check exception is generated is directly 
associated with the error. When this flag is cleared, the instruction pointed to 
may not be associated with the error. 

• The MCIP flag in the IA32_MCG_STATUS register indicates whether a machine-
check exception was generated. When a machine check exception is generated, 
it is expected that the MCIP flag in the IA32_MCG_STATUS register is set to 1. If 
it is not set, this machine check was generated by either an INT 18 instruction or 
some piece of hardware signaling an interrupt with vector 18. 

When IA32_MCG_CAP [24] is 1, the following rules can apply when writing a machine 
check exception (MCE) handler to support software recovery: 
• The PCC flag in each IA32_MCi_STATUS register indicates whether recovery from 

the error is possible for uncorrected errors (UC=1).  If the PCC flag is set for 
uncorrected errors (UC=1), recovery is not possible.  When recovery is not 
possible, the MCE handler typically records the error information and signals the 
operating system to reset the system. 

• The RIPV flag in the IA32_MCG_STATUS register indicates whether restarting the 
program execution from the instruction pointer saved on the stack for the 
machine check exception is possible.  When the RIPV is set, program execution 
can be restarted reliably when recovery is possible.  If the RIPV flag is not set, 
program execution cannot be restarted reliably. In this case the recovery 
algorithm may involve terminating the current program execution and resuming 
an alternate thread of execution upon return from the machine check handler 
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when recovery is possible.  When recovery is not possible, the MCE handler 
signals the operating system to reset the system. 

• When the EN flag is zero but the VAL and UC flags are one in the 
IA32_MCi_STATUS register, the reported uncorrected error in this bank is not 
enabled.  As uncorrected errors with the EN flag = 0 are not the source of 
machine check exceptions, the MCE handler should log and clear non-enabled 
errors when the S bit is set and should continue searching for enabled errors from 
the other IA32_MCi_STATUS registers.  Note that when IA32_MCG_CAP [24] is 0, 
any uncorrected error condition (VAL =1 and UC=1) including the one with the 
EN flag cleared are fatal and the handler must signal the operating system to 
reset the system.  For the errors that do not generate machine check exceptions, 
the EN flag has no meaning.  See Chapter 19: Table 19-11 to find the errors that 
do not generate machine check exceptions. 

• When the VAL flag is one, the UC flag is one, the EN flag is one and the PCC flag 
is zero in the IA32_MCi_STATUS register, the error in this bank is an uncorrected 
recoverable (UCR) error. The MCE handler needs to examine the S flag and the 
AR flag to find the type of the UCR error for software recovery and determine if 
software error recovery is possible. 

• When both the S and the AR flags are clear in the IA32_MCi_STATUS register for 
the UCR error (VAL=1, UC=1, EN=x and PCC=0), the error in this bank is an 
uncorrected no-action required error (UCNA). UCNA errors are uncorrected but 
do not require any OS recovery action to continue execution.  These errors 
indicate that some data in the system is corrupt, but that data has not been 
consumed and may not be consumed.   If that data is consumed a non-UNCA 
machine check exception will be generated. UCNA errors are signaled in the same 
way as corrected machine check errors and the CMCI and CMC polling handler is 
primarily responsible for handling UCNA errors.  Like corrected errors, the MCA 
handler can optionally log and clear UCNA errors as long as it can avoid the 
undesired race condition with the CMCI or CMC polling handler.  As UCNA errors 
are not the source of machine check exceptions, the MCA handler should 
continue searching for uncorrected or software recoverable errors in all other MC 
banks. 

• When the S flag in the IA32_MCi_STATUS register is set for the UCR error 
((VAL=1, UC=1, EN=1 and PCC=0), the error in this bank is software recoverable 
and it was signaled through a machine-check exception.  The AR flag in the 
IA32_MCi_STATUS register further clarifies the type of the software recoverable 
errors. 

• When the AR flag in the IA32_MCi_STATUS register is clear for the software 
recoverable error (VAL=1, UC=1, EN=1, PCC=0 and S=1), the error in this bank 
is a software recoverable action optional (SRAO) error. The MCE handler and the 
operating system can analyze the IA32_MCi_STATUS [15:0] to implement MCA 
error code specific optional recovery action, but this recovery action is optional. 
System software can resume the program execution from the instruction pointer 
saved on the stack for the machine check exception when the RIPV flag in the 
IA32_MCG_STATUS register is set. 
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• When the OVER flag in the IA32_MCi_STATUS register is set for the SRAO error 
(VAL=1, UC=1, EN=1, PCC=0, S=1 and AR=0), the MCE handler cannot take 
recovery action as the information of the SRAO error in the IA32_MCi_STATUS 
register was potentially lost due to the overflow condition.  Since the recovery 
action for SRAO errors is optional, restarting the program execution from the 
instruction pointer saved on the stack for the machine check exception is still 
possible for the overflowed SRAO error if the RIPV flag in the IA32_MCG_STATUS 
is set. 

• When the AR flag in the IA32_MCi_STATUS register is set for the software 
recoverable error (VAL=1, UC=1, EN=1, PCC=0 and S=1), the error in this bank 
is a software recoverable action required (SRAR) error. The MCE handler and the 
operating system must take recovery action in order to continue execution after 
the machine-check exception. The MCA handler and the operating system need 
to analyze the IA32_MCi_STATUS [15:0] to determine the MCA error code 
specific recovery action.  If no recovery action can be performed, the operating 
system must reset the system. 

• When the OVER flag in the IA32_MCi_STATUS register is set for the SRAR error 
(VAL=1, UC=1, EN=1, PCC=0, S=1 and AR=1), the MCE handler cannot take 
recovery action as the information of the SRAR error in the IA32_MCi_STATUS 
register was potentially lost due to the overflow condition. Since the recovery 
action for SRAR errors must be taken, the MCE handler must signal the operating 
system to reset the system. 

• When the MCE handler cannot find any uncorrected (VAL=1, UC=1 and EN=1) or 
any software recoverable errors (VAL=1, UC=1, EN=1, PCC=0 and S=1) in any 
of the IA32_MCi banks of the processors, this is an unexpected condition for the 
MCE handler and the handler should signal the operating system to reset the 
system. 

• Before returning from the machine-check exception handler, software must clear 
the MCIP flag in the IA32_MCG_STATUS register. The MCIP flag is used to detect 
recursion. The machine-check architecture does not support recursion. When the 
processor receives a machine check when MCIP is set, it automatically enters the 
shutdown state.

Example 15-4 gives pseudocode for an MC exception handler that supports recovery 
of UCR.

Example 15-4.  Machine-Check Error Handler Pseudocode Supporting UCR

MACHINE CHECK HANDLER:  (* Called from INT 18 handler *)
NOERROR = TRUE;
ProcessorCount = 0;
IF CPU supports MCA

THEN
RESTARTABILITY = TRUE;
IF (Processor Family = 6 AND DisplayModel ≥ 0EH) OR (Processor Family > 6) 

THEN
MCA_BROADCAST = TRUE;
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Acquire SpinLock; 
ProcessorCount++;  (* Allowing one logical processor at a time to examine machine check 

registers *)
CALL MCA ERROR PROCESSING; (* returns RESTARTABILITY and NOERROR *)

ELSE 
MCA_BROADCAST = FALSE;
(* Implement a rendezvous mechanism with the other processors if necessary *)
CALL MCA ERROR PROCESSING;

FI;
ELSE (* Pentium(R) processor compatible *)

READ P5_MC_ADDR
READ P5_MC_TYPE;
RESTARTABILITY = FALSE;

FI;

IF NOERROR = TRUE
    THEN

IF NOT (MCG_RIPV = 1 AND MCG_EIPV = 0) 
THEN 

RESTARTABILITY = FALSE;
FI

FI;

IF RESTARTABILITY = FALSE
THEN 

Report RESTARTABILITY to console;
Reset system; 

FI;

IF MCA_BROADCAST = TRUE
THEN

IF ProcessorCount = MAX_PROCESSORS
    AND NOERROR = TRUE

THEN
Report RESTARTABILITY to console;
Reset system;

FI;
Release SpinLock; 
Wait till ProcessorCount = MAX_PROCESSRS on system; 
(* implement a timeout and abort function if necessary *)

FI;
CLEAR MCIP flag in IA32_MCG_STATUS;
RESUME Execution;
(* End of MACHINE CHECK HANDLER*)

MCA ERROR PROCESSING:    (* MCA Error Processing Routine called from MCA Handler *)
IF MCIP flag in IA32_MCG_STATUS = 0

THEN (* MCIP=0 upon MCA is unexpected *)
RESTARTABILITY = FALSE;

FI;
FOR each bank of machine-check registers 
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DO
CLEAR_MC_BANK = FALSE;
READ IA32_MCi_STATUS;
IF VAL Flag in IA32_MCi_STATUS = 1

THEN
IF UC Flag in IA32_MCi_STATUS = 1

THEN 
IF Bit 24 in IA32_MCG_CAP = 0

THEN (* the processor does not support software error recovery *)
RESTARTABILITY = FALSE;
NOERROR = FALSE;
GOTO LOG MCA REGISTER;

FI;
(* the processor supports software error recovery *)
IF EN Flag in IA32_MCi_STATUS = 0 AND OVER Flag in IA32_MCi_STATUS=0

THEN (* It is a spurious MCA Log. Log and clear the register *)
CLEAR_MC_BANK = TRUE;
GOTO LOG MCA REGISTER;

FI;
IF PCC Flag in IA32_MCi_STATUS = 1

THEN (* processor context might have been corrupted *)
RESTARTABILITY = FALSE; 

ELSE (* It is a uncorrected recoverable (UCR) error *)
IF S Flag in IA32_MCi_STATUS = 0

THEN 
IF AR Flag in IA32_MCi_STATUS = 0

THEN (* It is a uncorrected no action required (UCNA) error *)
GOTO CONTINUE; (* let CMCI and CMC polling handler to process *)

ELSE
FESTARTABILITY = FALSE; (* S=0, AR=1 is illegal *)

FI
FI; 
IF RESTARTABILITY = FALSE

THEN (* no need to take recovery action if RESTARTABILITY is already false *)
NOERROR = FALSE;
GOTO LOG MCA REGISTER;

FI;
(* S in IA32_MCi_STATUS = 1 *) 
IF AR Flag in IA32_MCi_STATUS = 1

THEN (* It is a software recoverable and action required (SRAR) error *)
IF OVER Flag in IA32_MCi_STATUS = 1

THEN
RESTARTABILITY = FALSE;
NOERROR = FALSE;
GOTO LOG MCA REGISTER;

FI
IF MCACOD Value in IA32_MCi_STATUS is recognized
    AND Current Processor is an Affected Processor 

THEN
Implement MCACOD specific recovery action;
CLEAR_MC_BANK = TURE;  

ELSE 
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RESTARTABILITY = FALSE;
FI;

ELSE (* It is a software recoverable and action optional (SRAO) error *)
IF OVER Flag in IA32_MCi_STATUS = 0 AND
 MCACOD in IA32_MCi_STATUS is recognized

THEN
Implement MCACOD specific recovery action;

FI;
CLEAR_MC_BANK = TRUE;

FI; AR 
FI; PCC
NOERROR = FALSE;
GOTO LOG MCA REGISTER;

ELSE  (* It is a corrected error; continue to the next IA32_MCi_STATUS *) 
GOTO CONTINUE;

FI; UC
FI; VAL 

LOG MCA REGISTER:
SAVE IA32_MCi_STATUS;
If MISCV in IA32_MCi_STATUS 

THEN
SAVE IA32_MCi_MISC;

FI;
IF ADDRV in IA32_MCi_STATUS

THEN
SAVE IA32_MCi_ADDR;

FI;
IF CLEAR_MC_BANK = TRUE

THEN
SET all 0 to IA32_MCi_STATUS;
If MISCV in IA32_MCi_STATUS 

THEN
SET all 0 to IA32_MCi_MISC;

FI;
IF ADDRV in IA32_MCi_STATUS

THEN
SET all 0 to IA32_MCi_ADDR;

FI;
FI;
CONTINUE:

OD;
( *END FOR *)
RETURN;
(* End of MCA ERROR PROCESSING*)

15.10.4.2  Corrected Machine-Check Handler for Error Recovery
When writing a corrected machine check handler, which is invoked as a result of CMCI 
or called from an OS CMC Polling dispatcher, consider the following: 
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• The VAL (valid) flag in each IA32_MCi_STATUS register indicates whether the 
error information in the register is valid. If this flag is clear, the registers in that 
bank does not contain valid error information and does not need to be checked.

• The CMCI or CMC polling handler is responsible for logging and clearing corrected 
errors. The UC flag in each IA32_MCi_Status register indicates whether the 
reported error was corrected (UC=0) or not (UC=1). 

• When IA32_MCG_CAP [24] is one, the CMC handler is also responsible for 
logging and clearing uncorrected no-action required (UCNA) errors.  When the 
UC flag is one but the PCC, S, and AR flags are zero in the IA32_MCi_STATUS 
register, the reported error in this bank is an uncorrected no-action required 
(UCNA) error. 

• In addition to corrected errors and UCNA errors, the CMC handler optionally logs 
uncorrected (UC=1 and PCC=1), software recoverable machine check errors 
(UC=1, PCC=0 and S=1), but should avoid clearing those errors from the MC 
banks. Clearing these errors may result in accidentally removing these errors 
before these errors are actually handled and processed by the MCE handler for 
attempted software error recovery.

Example 15-5 gives pseudocode for a CMCI handler with UCR support.

Example 15-5.  Corrected Error Handler Pseudocode with UCR Support

Corrected Error HANDLER:  (* Called from CMCI handler or OS CMC Polling Dispatcher*)
IF CPU supports MCA

THEN
FOR each bank of machine-check registers 

DO
READ IA32_MCi_STATUS;
IF VAL flag in IA32_MCi_STATUS = 1

THEN
IF UC Flag in IA32_MCi_STATUS = 0 (* It is a corrected error *)

THEN 
GOTO LOG CMC ERROR;

ELSE 
IF Bit 24 in IA32_MCG_CAP = 0

THEN
GOTO CONTINUE;

FI;
IF S Flag in IA32_MCi_STATUS = 0 AND AR Flag in IA32_MCi_STATUS = 0

THEN (* It is a uncorrected no action required error *)
GOTO LOG CMC ERROR

FI
IF EN Flag in IA32_MCi_STATUS = 0

THEN (* It is a spurious MCA error *)
GOTO LOG CMC ERROR

FI;
FI;

FI;
GOTO CONTINUE;
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LOG CMC ERROR: 
SAVE IA32_MCi_STATUS;
If MISCV Flag in IA32_MCi_STATUS 

THEN
SAVE IA32_MCi_MISC;
SET all 0 to IA32_MCi_MISC;

FI;
IF ADDRV Flag in IA32_MCi_STATUS

THEN
SAVE IA32_MCi_ADDR;
SET all 0 to IA32_MCi_ADDR

FI;
SET all 0 to IA32_MCi_STATUS;
CONTINUE:

OD;
( *END FOR *)

FI;
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CHAPTER 16
INTERPRETING MACHINE-CHECK

ERROR CODES

Encoding of the model-specific and other information fields is different across 
processor families. The differences are documented in the following sections.

16.1 INCREMENTAL DECODING INFORMATION: 
PROCESSOR FAMILY 06H MACHINE ERROR CODES 
FOR MACHINE CHECK

Section 16.1 provides information for interpreting additional model-specific fields for 
external bus errors relating to processor family 06H. The references to processor 
family 06H refers to only IA-32 processors with CPUID signatures listed in Table 
16-1. 

These errors are reported in the IA32_MCi_STATUS MSRs. They are reported archi-
tecturally) as compound errors with a general form of 0000 1PPT RRRR IILL in the 
MCA error code field. See Chapter 15 for information on the interpretation of 
compound error codes. Incremental decoding information is listed in Table 16-2.

Table 16-1.   CPUID DisplayFamily_DisplayModel Signatures for Processor Family 06H
DisplayFamily_DisplayModel Processor Families/Processor Number Series

06_0EH Intel Core Duo, Intel Core Solo processors

06_0DH Intel Pentium M processor

06_09H Intel Pentium M processor

06_7H, 06_08H, 06_0AH, 
06_0BH

Intel Pentium III Xeon Processor, Intel Pentium III Processor

06_03H, 06_05H Intel Pentium II Xeon Processor, Intel Pentium II Processor 

06_01H Intel Pentium Pro Processor 
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Table 16-2.  Incremental Decoding Information: Processor Family 06H 
Machine Error Codes For Machine Check 

Type Bit No. Bit Function Bit Description

MCA error 
codes1 

0-15

Model specific 
errors

16-18 Reserved Reserved

Model specific 
errors

19-24 Bus queue request 
type

000000 for BQ_DCU_READ_TYPE error

000010 for BQ_IFU_DEMAND_TYPE error

000011 for BQ_IFU_DEMAND_NC_TYPE error

000100 for BQ_DCU_RFO_TYPE error

000101 for BQ_DCU_RFO_LOCK_TYPE error

000110 for BQ_DCU_ITOM_TYPE error

001000 for BQ_DCU_WB_TYPE error

001010 for BQ_DCU_WCEVICT_TYPE error

001011 for BQ_DCU_WCLINE_TYPE error

001100 for BQ_DCU_BTM_TYPE error

001101 for BQ_DCU_INTACK_TYPE error

001110 for BQ_DCU_INVALL2_TYPE error

001111 for BQ_DCU_FLUSHL2_TYPE error

010000 for BQ_DCU_PART_RD_TYPE error

010010 for BQ_DCU_PART_WR_TYPE error

010100 for BQ_DCU_SPEC_CYC_TYPE error

011000 for BQ_DCU_IO_RD_TYPE error

011001 for BQ_DCU_IO_WR_TYPE error

011100 for BQ_DCU_LOCK_RD_TYPE error

011110 for BQ_DCU_SPLOCK_RD_TYPE error

011101 for BQ_DCU_LOCK_WR_TYPE error
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Model specific 
errors

27-25 Bus queue error type 000 for BQ_ERR_HARD_TYPE error

001 for BQ_ERR_DOUBLE_TYPE error

010 for BQ_ERR_AERR2_TYPE error

100 for BQ_ERR_SINGLE_TYPE error

101 for BQ_ERR_AERR1_TYPE error

Model specific 
errors

28 FRC error 1 if FRC error active

29 BERR 1 if BERR is driven

30 Internal BINIT 1 if BINIT driven for this processor

31 Reserved Reserved

Other 
information

32-34 Reserved Reserved

35 External BINIT 1 if BINIT is received from external bus.

36 Response parity error This bit is asserted in IA32_MCi_STATUS if this 
component has received a parity error on the 
RS[2:0]# pins for a response transaction. The 
RS signals are checked by the RSP# external 
pin.

37 Bus BINIT This bit is asserted in IA32_MCi_STATUS if this 
component has received a hard error response 
on a split transaction one access that has 
needed to be split across the 64-bit external 
bus interface into two accesses).

38 Timeout BINIT This bit is asserted in IA32_MCi_STATUS if this 
component has experienced a ROB time-out, 
which indicates that no micro-instruction has 
been retired for a predetermined period of 
time.

A ROB time-out occurs when the 15-bit ROB 
time-out counter carries a 1 out of its high 
order bit. 2 The timer is cleared when a micro-
instruction retires, an exception is detected by 
the core processor, RESET is asserted, or when 
a ROB BINIT occurs.

Table 16-2.  Incremental Decoding Information: Processor Family 06H 
Machine Error Codes For Machine Check  (Contd.)

Type Bit No. Bit Function Bit Description
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The ROB time-out counter is prescaled by the 
8-bit PIC timer which is a divide by 128 of the 
bus clock the bus clock is 1:2, 1:3, 1:4 of the 
core clock). When a carry out of the 8-bit PIC 
timer occurs, the ROB counter counts up by 
one. While this bit is asserted, it cannot be 
overwritten by another error.

39-41 Reserved Reserved

42 Hard error This bit is asserted in IA32_MCi_STATUS if this 
component has initiated a bus transactions 
which has received a hard error response. While 
this bit is asserted, it cannot be overwritten.

43 IERR This bit is asserted in IA32_MCi_STATUS if this 
component has experienced a failure that 
causes the IERR pin to be asserted. While this 
bit is asserted, it cannot be overwritten.

44 AERR This bit is asserted in IA32_MCi_STATUS if this 
component has initiated 2 failing bus 
transactions which have failed due to Address 
Parity Errors AERR asserted). While this bit is 
asserted, it cannot be overwritten.

45 UECC The Uncorrectable ECC error bit is asserted in 
IA32_MCi_STATUS for uncorrected ECC errors. 
While this bit is asserted, the ECC syndrome 
field will not be overwritten.

46 CECC The correctable ECC error bit is asserted in 
IA32_MCi_STATUS for corrected ECC errors.

47-54 ECC syndrome The ECC syndrome field in IA32_MCi_STATUS 
contains the 8-bit ECC syndrome only if the 
error was a correctable/uncorrectable ECC error 
and there wasn't a previous valid ECC error 
syndrome logged in IA32_MCi_STATUS. 

A previous valid ECC error in IA32_MCi_STATUS 
is indicated by IA32_MCi_STATUS.bit45 
uncorrectable error occurred) being asserted. 
After processing an ECC error, machine-check 
handling software should clear 
IA32_MCi_STATUS.bit45 so that future ECC 
error syndromes can be logged.

Table 16-2.  Incremental Decoding Information: Processor Family 06H 
Machine Error Codes For Machine Check  (Contd.)

Type Bit No. Bit Function Bit Description
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16.2 INCREMENTAL DECODING INFORMATION: INTEL 
CORE 2 PROCESSOR FAMILY MACHINE ERROR CODES 
FOR MACHINE CHECK

Table 16-4 provides information for interpreting additional model-specific fields for 
external bus errors relating to processor based on Intel Core microarchitecture, 
which implements the P4 bus specification. Table 16-3 lists the CPUID signatures for 
Intel 64 processors that are covered by Table 16-4. These errors are reported in the 
IA32_MCi_STATUS MSRs. They are reported architecturally) as compound errors 
with a general form of 0000 1PPT RRRR IILL in the MCA error code field. See Chapter 
15 for information on the interpretation of compound error codes.

55-56 Reserved Reserved.

Status register 
validity  
indicators1 

57-63

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” 

for more information.
2. For processors with a CPUID signature of 06_0EH, a ROB time-out occurs when the 23-bit ROB 

time-out counter carries a 1 out of its high order bit.

Table 16-3.   CPUID DisplayFamily_DisplayModel Signatures for Processors Based on 
Intel Core Microarchitecture

DisplayFamily_DisplayModel Processor Families/Processor Number Series

06_1DH Intel Xeon Processor 7400 series.

06_17H Intel Xeon Processor 5200, 5400 series, Intel Core 2 Quad 
processor Q9650.

06_0FH Intel Xeon Processor 3000, 3200, 5100, 5300, 7300 series, Intel 
Core 2 Quad, Intel Core 2 Extreme, Intel Core 2 Duo processors, 
Intel Pentium dual-core processors

Table 16-2.  Incremental Decoding Information: Processor Family 06H 
Machine Error Codes For Machine Check  (Contd.)

Type Bit No. Bit Function Bit Description
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Table 16-4.  Incremental Bus Error Codes of Machine Check for Processors Based on 
Intel Core Microarchitecture

Type Bit No. Bit Function Bit Description

MCA error 
codes1 

0-15

Model specific 
errors

16-18 Reserved Reserved

Model specific 
errors

19-24 Bus queue request 
type

‘000001 for BQ_PREF_READ_TYPE error

000000 for BQ_DCU_READ_TYPE error

000010 for BQ_IFU_DEMAND_TYPE error

000011 for BQ_IFU_DEMAND_NC_TYPE error

000100 for BQ_DCU_RFO_TYPE error

000101 for BQ_DCU_RFO_LOCK_TYPE error

000110 for BQ_DCU_ITOM_TYPE error

001000 for BQ_DCU_WB_TYPE error

001010 for BQ_DCU_WCEVICT_TYPE error

001011 for BQ_DCU_WCLINE_TYPE error

001100 for BQ_DCU_BTM_TYPE error

001101 for BQ_DCU_INTACK_TYPE error

001110 for BQ_DCU_INVALL2_TYPE error

001111 for BQ_DCU_FLUSHL2_TYPE error

010000 for BQ_DCU_PART_RD_TYPE error

010010 for BQ_DCU_PART_WR_TYPE error

010100 for BQ_DCU_SPEC_CYC_TYPE error

011000 for BQ_DCU_IO_RD_TYPE error

011001 for BQ_DCU_IO_WR_TYPE error

011100 for BQ_DCU_LOCK_RD_TYPE error

011110 for BQ_DCU_SPLOCK_RD_TYPE error

011101 for BQ_DCU_LOCK_WR_TYPE error

100100 for BQ_L2_WI_RFO_TYPE error

100110 for BQ_L2_WI_ITOM_TYPE error
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Model specific 
errors

27-25 Bus queue error type ‘001 for Address Parity Error

‘010 for Response Hard Error

‘011 for Response Parity Error

Model specific 
errors

28 MCE Driven 1 if MCE is driven

29 MCE Observed 1 if MCE is observed

30 Internal BINIT 1 if BINIT driven for this processor

31 BINIT Observed 1 if BINIT is observed for this processor

Other 
information

32-33 Reserved Reserved

34 PIC and FSB data 
parity

Data Parity detected on either PIC or FSB 
access

35 Reserved Reserved

36 Response parity error This bit is asserted in IA32_MCi_STATUS if this 
component has received a parity error on the 
RS[2:0]# pins for a response transaction. The 
RS signals are checked by the RSP# external 
pin.

37 FSB address parity Address parity error detected:

1 = Address parity error detected
0 = No address parity error

38 Timeout BINIT This bit is asserted in IA32_MCi_STATUS if this 
component has experienced a ROB time-out, 
which indicates that no micro-instruction has 
been retired for a predetermined period of 
time.

A ROB time-out occurs when the 23-bit ROB 
time-out counter carries a 1 out of its high 
order bit. The timer is cleared when a micro-
instruction retires, an exception is detected by 
the core processor, RESET is asserted, or when 
a ROB BINIT occurs.

Table 16-4.  Incremental Bus Error Codes of Machine Check for Processors Based on 
Intel Core Microarchitecture

Type Bit No. Bit Function Bit Description
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The ROB time-out counter is prescaled by the 
8-bit PIC timer which is a divide by 128 of the 
bus clock the bus clock is 1:2, 1:3, 1:4 of the 
core clock). When a carry out of the 8-bit PIC 
timer occurs, the ROB counter counts up by 
one. While this bit is asserted, it cannot be 
overwritten by another error.

39-41 Reserved Reserved

42 Hard error This bit is asserted in IA32_MCi_STATUS if this 
component has initiated a bus transactions 
which has received a hard error response. While 
this bit is asserted, it cannot be overwritten.

43 IERR This bit is asserted in IA32_MCi_STATUS if this 
component has experienced a failure that 
causes the IERR pin to be asserted. While this 
bit is asserted, it cannot be overwritten.

44 Reserved Reserved

45 Reserved Reserved

46 Reserved Reserved

47-54 Reserved Reserved

55-56 Reserved Reserved.

Status register 
validity  
indicators1 

57-63

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” 

for more information.

Table 16-4.  Incremental Bus Error Codes of Machine Check for Processors Based on 
Intel Core Microarchitecture

Type Bit No. Bit Function Bit Description
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INTERPRETING MACHINE-CHECK ERROR CODES
16.2.1  Model-Specific Machine Check Error Codes for Intel Xeon 
Processor 7400 Series

Intel Xeon processor 7400 series has machine check register banks that generally 
follows the description of Chapter 15 and Section 16.2. Additional error codes specific 
to Intel Xeon processor 7400 series is describe in this section.

MC4_STATUS[63:0] is the main error logging for the processor’s L3 and front side 
bus errors for Intel Xeon processor 7400 series. It supports the L3 Errors, Bus and 
Interconnect Errors Compound Error Codes in the MCA Error Code Field.

16.2.1.1  Processor Machine Check Status Register 
Incremental MCA Error Code Definition

Intel Xeon processor 7400 series use compound MCA Error Codes for logging its Bus 
internal machine check errors, L3 Errors, and Bus/Interconnect Errors. It defines 
incremental Machine Check error types (IA32_MC6_STATUS[15:0]) beyond those 
defined in Chapter 15. Table 16-5 lists these incremental MCA error code types that 
apply to IA32_MC6_STATUS. Error code details are specified in MC6_STATUS 
[31:16] (see Section 16.2.2), the "Model Specific Error Code" field. The information 
in the "Other_Info" field (MC4_STATUS[56:32]) is common to the three processor 
error types and contains a correctable event count and specifies the MC6_MISC 
register format.

Table 16-5.  Incremental MCA Error Code Types for Intel Xeon Processor 7400 

Processor MCA_Error_Code (MC6_STATUS[15:0])

Type Error Code Binary Encoding Meaning

C Internal Error 0000 0100 0000 0000 Internal Error Type Code

B Bus and 
Interconnect

Error

0000 100x 0000 1111 Not used but this encoding is reserved for 
compatibility with other MCA 
implementations

0000 101x 0000 1111 Not used but this encoding is reserved for 
compatibility with other MCA 
implementations

0000 110x 0000 1111 Not used but this encoding is reserved for 
compatibility with other MCA 
implementations

0000 1110 0000 1111 Bus and Interconnection Error Type Code

0000 1111 0000 1111 Not used but this encoding is reserved for 
compatibility with other MCA 
implementations
Vol. 3B 16-9



INTERPRETING MACHINE-CHECK ERROR CODES
The Bold faced binary encodings are the only encodings used by the processor for 
MC4_STATUS[15:0].

16.2.2  Intel Xeon Processor 7400 Model Specific Error Code Field

16.2.2.1  Processor Model Specific Error Code Field
Type B:  Bus and Interconnect Error

Note: The Model Specific Error Code field in MC6_STATUS (bits 31:16)

16.2.2.2  Processor Model Specific Error Code Field
Type C:  Cache Bus Controller Error

Table 16-6.  Type B Bus and Interconnect Error Codes

Bit Num Sub-Field Name Description

16 FSB Request 
Parity

Parity error detected during FSB request phase

19:17 Reserved

20 FSB Hard Fail 
Response

“Hard Failure“ response received for a local transaction

21 FSB Response 
Parity

Parity error on FSB response field detected

22 FSB Data Parity FSB data parity error on inbound data detected

31:23 --- Reserved

Table 16-7.  Type C Cache Bus Controller Error Codes

MC4_STATUS[31:16] (MSCE) Value Error Description

0000_0000_0000_0001   0x0001 Inclusion Error from Core 0

0000_0000_0000_0010   0x0002 Inclusion Error from Core 1

0000_0000_0000_0011   0x0003 Write Exclusive Error from Core 0

0000_0000_0000_0100   0x0004 Write Exclusive Error from Core 1

0000_0000_0000_0101   0x0005 Inclusion Error from FSB

0000_0000_0000_0110   0x0006 SNP Stall Error from FSB

0000_0000_0000_0111   0x0007 Write Stall Error from FSB
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INTERPRETING MACHINE-CHECK ERROR CODES
16.3 INCREMENTAL DECODING INFORMATION: 
PROCESSOR FAMILY WITH CPUID 
DISPLAYFAMILY_DISPLAYMODEL SIGNATURE 
06_1AH, MACHINE ERROR CODES FOR MACHINE 
CHECK

Table 16-8 through Table 16-12 provide information for interpreting additional 
model-specific fields for memory controller errors relating to the processor family 
with CPUID DisplayFamily_DisplaySignature 06_1AH, which supports Intel QuickPath 
Interconnect links. Incremental MC error codes related to the Intel QPI links are 
reported in the register banks IA32_MC0 and IA32_MC1, incremental error codes for 
internal machine check is reported in the register bank IA32_MC7, and incremental 
error codes for the memory controller unit is reported in the register banks 
IA32_MC8.

0000_0000_0000_1000   0x0008 FSB Arb Timeout Error

0000_0000_0000_1010   0x000A Inclusion Error from Core 2

0000_0000_0000_1011   0x000B Write Exclusive Error from Core 2

0000_0010_0000_0000   0x0200 Internal Timeout error

0000_0011_0000_0000   0x0300 Internal Timeout Error

0000_0100_0000_0000   0x0400 Intel® Cache Safe Technology Queue Full Error or Disabled-
ways-in-a-set overflow

0000_0101_0000_0000   0x0500 Quiet cycle Timeout Error (correctable)

1100_0000_0000_0010   0xC002 Correctable ECC event on outgoing Core 0 data

1100_0000_0000_0100   0xC004 Correctable ECC event on outgoing Core 1 data

1100_0000_0000_1000   0xC008 Correctable ECC event on outgoing Core 2 data

1110_0000_0000_0010   0xE002 Uncorrectable ECC error on outgoing Core 0 data

1110_0000_0000_0100   0xE004 Uncorrectable ECC error on outgoing Core 1 data

1110_0000_0000_1000   0xE008 Uncorrectable ECC error on outgoing Core 2 data

 — all other encodings — Reserved

Table 16-7.  Type C Cache Bus Controller Error Codes

MC4_STATUS[31:16] (MSCE) Value Error Description
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INTERPRETING MACHINE-CHECK ERROR CODES
16.3.1  Intel QPI Machine Check Errors

Table 16-8.  Intel QPI Machine Check Error Codes for IA32_MC0_STATUS and 
IA32_MC1_STATUS

Type Bit No. Bit Function Bit Description

MCA error 
codes1 

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” 

for more information.

0-15 MCACOD Bus error format: 1PPTRRRRIILL

Model specific 
errors

16 Header Parity if 1, QPI Header had bad parity

17 Data Parity If 1, QPI Data packet had bad parity

18 Retries Exceeded If 1, number of QPI retries was exceeded

19 Received Poison if 1, Received a data packet that was marked as 
poisoned by the sender

21-20 Reserved Reserved

22 Unsupported 
Message

If 1, QPI received a message encoding it does 
not support

23 Unsupported Credit If 1, QPI credit type is not supported.

24 Receive Flit Overrun If 1, Sender sent too many QPI flits to the 
receiver.

25 Received Failed 
Response

If 1, Indicates that sender sent a failed 
response to receiver.

26 Receiver Clock Jitter If 1, clock jitter detected in the internal QPI 
clocking

56-27 Reserved Reserved

Status register 
validity  
indicators1 

57-63
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INTERPRETING MACHINE-CHECK ERROR CODES
Table 16-9.  Intel QPI Machine Check Error Codes for IA32_MC0_MISC and 
IA32_MC1_MISC

16.3.2  Internal Machine Check Errors

Table 16-10.  Machine Check Error Codes for IA32_MC7_STATUS

Type Bit No. Bit Function Bit Description

Model specific 
errors1

NOTES:
1. Which of these fields are valid depends on the error type.

7-0 QPI Opcode Message class and opcode from the packet with 
the error

13-8 RTId QPI Request Transaction ID

15-14 Reserved Reserved

18-16 RHNID QPI Requestor/Home Node ID

23-19 Reserved Reserved

24 IIB QPI Interleave/Head Indication Bit

Type Bit No. Bit Function Bit Description

MCA error 
codes1 

0-15 MCACOD

Model specific 
errors

23-16 Reserved Reserved

31-24 Reserved except for 
the following

00h - No Error

03h - Reset firmware did not complete

08h - Received an invalid CMPD

0Ah - Invalid Power Management Request

0Dh - Invalid S-state transition

11h - VID controller does not match POC 
controller selected

1Ah - MSID from POC does not match CPU MSID

56-32 Reserved Reserved

Status register 
validity  
indicators1 

57-63
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INTERPRETING MACHINE-CHECK ERROR CODES
16.3.3  Memory Controller Errors

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” 

for more information.

Table 16-11.  Incremental Memory Controller Error Codes of Machine Check for 
IA32_MC8_STATUS

Type Bit No. Bit Function Bit Description

MCA error 
codes1 

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” 

for more information.

0-15 MCACOD Memory error format: 1MMMCCCC

Model specific 
errors

16 Read ECC error if 1, ECC occurred on a read

17 RAS ECC error If 1, ECC occurred on a scrub

18 Write parity error If 1, bad parity on a write

19 Redundancy loss if 1, Error in half of redundant memory

20 Reserved Reserved

21 Memory range error If 1, Memory access out of range

22 RTID out of range If 1, Internal ID invalid

23 Address parity error If 1, bad address parity 

24 Byte enable parity 
error

If 1, bad enable parity 

Other 
information

37-25 Reserved Reserved

52:38 CORE_ERR_CNT Corrected error count

56-53 Reserved Reserved

Status register 
validity  
indicators1 

57-63
16-14 Vol. 3B



INTERPRETING MACHINE-CHECK ERROR CODES
Table 16-12.  Incremental Memory Controller Error Codes of Machine Check for 
IA32_MC8_MISC

16.4 INCREMENTAL DECODING INFORMATION: 
PROCESSOR FAMILY WITH CPUID 
DISPLAYFAMILY_DISPLAYMODEL SIGNATURE 
06_2DH, MACHINE ERROR CODES FOR MACHINE 
CHECK

Table 16-8 through Table 16-12 provide information for interpreting additional 
model-specific fields for memory controller errors relating to the processor family 
with CPUID DisplayFamily_DisplaySignature 06_2DH, which supports Intel Quick-
Path Interconnect links. Incremental MC error codes related to the Intel QPI links are 
reported in the register banks IA32_MC6 and IA32_MC7, incremental error codes for 
internal machine check error from PCU controller is reported in the register bank 
IA32_MC4, and incremental error codes for the memory controller unit is reported in 
the register banks IA32_MC8-IA32_MC11.

Type Bit No. Bit Function Bit Description

Model specific 
errors1

NOTES:
1. Which of these fields are valid depends on the error type.

7-0 RTId Transaction Tracker ID

15-8 Reserved Reserved

17-16 DIMM DIMM ID which got the error

19-18 Channel Channel ID which got the error

31-20 Reserved Reserved

63-32 Syndrome ECC Syndrome
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INTERPRETING MACHINE-CHECK ERROR CODES
16.4.1  Internal Machine Check Errors

Table 16-13.  Machine Check Error Codes for IA32_MC4_STATUS
Type Bit No. Bit Function Bit Description

MCA error 
codes1 

0-15 MCACOD

Model specific 
errors

19:16 Reserved except for 
the following

0000b - No Error

0001b - Non_IMem_Sel

0010b - I_Parity_Error

0011b - Bad_OpCode

0100b - I_Stack_Underflow

0101b - I_Stack_Overflow

0110b - D_Stack_Underflow

0111b - D_Stack_Overflow

1000b - Non-DMem_Sel

1001b - D_Parity_Error

23-20 Reserved Reserved

31-24 Reserved except for 
the following

00h - No Error

0Dh - MC_IMC_FORCE_SR_S3_TIMEOUT

0Eh - MC_CPD_UNCPD_ST_TIMOUT

0Fh - MC_PKGS_SAFE_WP_TIMEOUT

43h - MC_PECI_MAILBOX_QUIESCE_TIMEOUT

5Ch - MC_MORE_THAN_ONE_LT_AGENT

60h - MC_INVALID_PKGS_REQ_PCH

61h - MC_INVALID_PKGS_REQ_QPI

62h - MC_INVALID_PKGS_RES_QPI

63h - MC_INVALID_PKGC_RES_PCH

64h - MC_INVALID_PKG_STATE_CONFIG

70h - MC_WATCHDG_TIMEOUT_PKGC_SLAVE

71h - MC_WATCHDG_TIMEOUT_PKGC_MASTER

70h - MC_WATCHDG_TIMEOUT_PKGS_MASTER

7ah - MC_HA_FAILSTS_CHANGE_DETECTED

81h - 
MC_RECOVERABLE_DIE_THERMAL_TOO_HOT
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INTERPRETING MACHINE-CHECK ERROR CODES
56-32 Reserved Reserved

Status register 
validity  
indicators1 

57-63

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” 

for more information.

Type Bit No. Bit Function Bit Description
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INTERPRETING MACHINE-CHECK ERROR CODES
16.4.2  Intel QPI Machine Check Errors

Table 16-14.  Intel QPI MC Error Codes for IA32_MC6_STATUS and IA32_MC7_STATUS

16.4.3  Integrated Memory Controller Machine Check Errors
MC error codes associated with integrated memory controllers are reported in the 
MSRs IA32_MC8_STATUS-IA32_MC11_STATUS. The supported error codes are 
follows the architectural MCACOD definition type 1MMMCCCC (see Chapter 15, “Machine-
Check Architecture,”).

16.5 INCREMENTAL DECODING INFORMATION: 
PROCESSOR FAMILY 0FH MACHINE ERROR CODES 
FOR MACHINE CHECK

Table 16-15 provides information for interpreting additional family 0FH model-
specific fields for external bus errors. These errors are reported in the 
IA32_MCi_STATUS MSRs. They are reported architecturally) as compound errors 
with a general form of 0000 1PPT RRRR IILL in the MCA error code field. See Chapter 
15 for information on the interpretation of compound error codes.

Type Bit No. Bit Function Bit Description

MCA error 
codes1 

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” 

for more information.

0-15 MCACOD Bus error format: 1PPTRRRRIILL

Model specific 
errors

56-16 Reserved Reserved

Status register 
validity  
indicators1 

57-63
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INTERPRETING MACHINE-CHECK ERROR CODES
Table 16-10 provides information on interpreting additional family 0FH, model 
specific fields for cache hierarchy errors. These errors are reported in one of the 

Table 16-15.  Incremental Decoding Information: Processor Family 0FH 
Machine Error Codes For Machine Check 

Type Bit No. Bit Function Bit Description

MCA error 
codes1 

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” 

for more information.

0-15

Model-specific 
error codes

16 FSB address parity Address parity error detected:

1 = Address parity error detected

0 = No address parity error

17 Response hard fail Hardware failure detected on response

18 Response parity Parity error detected on response

19 PIC and FSB data parity Data Parity detected on either PIC or FSB 
access

20 Processor Signature = 
00000F04H: Invalid PIC 
request

All other processors:

Reserved

Processor Signature = 00000F04H. 
Indicates error due to an invalid PIC request 
access was made to PIC space with WB 
memory):

1 = Invalid PIC request error

0 = No Invalid PIC request error

Reserved

21 Pad state machine The state machine that tracks P and N 
data-strobe relative timing has become 
unsynchronized or a glitch has been 
detected.

22 Pad strobe glitch Data strobe glitch

Type Bit No. Bit Function Bit Description

23 Pad address glitch Address strobe glitch

Other 
Information

24-56 Reserved Reserved

Status register 
validity  
indicators1 

57-63
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INTERPRETING MACHINE-CHECK ERROR CODES
IA32_MCi_STATUS MSRs. These errors are reported, architecturally, as compound 
errors with a general form of 0000 0001 RRRR TTLL in the MCA error code field. See 
Chapter 15 for how to interpret the compound error code. 

16.5.1  Model-Specific Machine Check Error Codes for Intel Xeon 
Processor MP 7100 Series

Intel Xeon processor MP 7100 series has 5 register banks which contains information 
related to Machine Check Errors. MCi_STATUS[63:0] refers to all 5 register banks. 
MC0_STATUS[63:0] through MC3_STATUS[63:0] is the same as on previous genera-
tion of Intel Xeon processors within Family 0FH. MC4_STATUS[63:0] is the main error 
logging for the processor’s L3 and front side bus errors. It supports the L3 Errors, Bus 
and Interconnect Errors Compound Error Codes in the MCA Error Code Field.

Table 16-16.  MCi_STATUS Register Bit Definition 

Bit Field Name Bits Description

MCA_Error_Code 15:0 Specifies the machine check architecture defined error code for the 
machine check error condition detected. The machine check 
architecture defined error codes are guaranteed to be the same for 
all Intel Architecture processors that implement the machine check 
architecture. See tables below 

Model_Specific_E
rror_Code

31:16 Specifies the model specific error code that uniquely identifies the 
machine check error condition detected. The model specific error 
codes may differ among Intel Architecture processors for the same 
Machine Check Error condition. See tables below

Other_Info 56:32 The functions of the bits in this field are implementation specific 
and are not part of the machine check architecture. Software that is 
intended to be portable among Intel Architecture processors should 
not rely on the values in this field.

PCC 57 Processor Context Corrupt flag indicates that the state of 
the processor might have been corrupted by the error 
condition detected and that reliable restarting of the processor may 
not be possible. When clear, this flag indicates that the error did not 
affect the processor's state. This bit will always be set for MC errors 
which are not corrected.

ADDRV 58 MC_ADDR register valid flag indicates that the MC_ADDR register 
contains the address where the error occurred. When clear, this flag 
indicates that the MC_ADDR register does not contain the address 
where the error occurred. The MC_ADDR register should not be 
read if the ADDRV bit is clear.
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INTERPRETING MACHINE-CHECK ERROR CODES
16.5.1.1  Processor Machine Check Status Register 
MCA Error Code Definition

Intel Xeon processor MP 7100 series use compound MCA Error Codes for logging its 
CBC internal machine check errors, L3 Errors, and Bus/Interconnect Errors. It 
defines additional Machine Check error types (IA32_MC4_STATUS[15:0]) beyond 
those defined in Chapter 15. Table 16-17 lists these model-specific MCA error 
codes. Error code details are specified in MC4_STATUS [31:16] (see Section 
16.5.3), the "Model Specific Error Code" field. The information in the "Other_Info" 
field (MC4_STATUS[56:32]) is common to the three processor error types and 
contains a correctable event count and specifies the MC4_MISC register format.

MISCV 59 MC_MISC register valid flag indicates that the MC_MISC register 
contains additional information regarding the error. When clear, this 
flag indicates that the MC_MISC register does not contain additional 
information regarding the error. MC_MISC should not be read if the 
MISCV bit is not set.  

EN 60 Error enabled flag indicates that reporting of the machine check 
exception for this error was enabled by the associated flag bit of 
the MC_CTL register. Note that correctable errors do not have 
associated enable bits in the MC_CTL register so the EN bit should 
be clear when a correctable error is logged.

UC 61 Error uncorrected flag indicates that the processor did not correct 
the error condition. When clear, this flag indicates that the 
processor was able to correct the event condition.

OVER 62 Machine check overflow flag indicates that a machine check error 
occurred while the results of a previous error were still in the 
register bank (i.e., the VAL bit was already set in the 
MC_STATUS register). The processor sets the OVER flag and 
software is responsible for clearing it.  Enabled errors are written 
over disabled errors, and uncorrected errors are written over 
corrected events. Uncorrected errors are not written over previous 
valid uncorrected errors. 

VAL 63 MC_STATUS register valid flag indicates that the information within 
the MC_STATUS register is valid. When this flag is set, the processor 
follows the rules given for the OVER flag in the MC_STATUS register 
when overwriting previously valid entries. The processor sets the 
VAL flag and software is responsible for clearing it.

Table 16-16.  MCi_STATUS Register Bit Definition  (Contd.)

Bit Field Name Bits Description
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INTERPRETING MACHINE-CHECK ERROR CODES
The Bold faced binary encodings are the only encodings used by the processor for 
MC4_STATUS[15:0].

16.5.2  Other_Info Field (all MCA Error Types)

The MC4_STATUS[56:32] field is common to the processor's three MCA error types 
(A, B & C):

Table 16-17.  Incremental MCA Error Code for Intel Xeon Processor MP 7100 

Processor MCA_Error_Code (MC4_STATUS[15:0])

Type Error Code Binary Encoding Meaning

C Internal Error 0000 0100 0000 0000 Internal Error Type Code

A L3 Tag Error 0000 0001 0000 1011 L3 Tag Error Type Code

B Bus and 
Interconnect

Error

0000 100x 0000 1111 Not used but this encoding is reserved for 
compatibility with other MCA 
implementations

0000 101x 0000 1111 Not used but this encoding is reserved for 
compatibility with other MCA 
implementations

0000 110x 0000 1111 Not used but this encoding is reserved for 
compatibility with other MCA 
implementations

0000 1110 0000 1111 Bus and Interconnection Error Type Code

0000 1111 0000 1111 Not used but this encoding is reserved for 
compatibility with other MCA 
implementations
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INTERPRETING MACHINE-CHECK ERROR CODES
Table 16-18.  Other Information Field Bit Definition 

Bit Field Name Bits Description

39:32 8-bit 
Correct
able 
Event 
Count

Holds a count of the number of correctable events since cold reset.  
This is a saturating counter; the counter begins at 1 (with the first 
error) and saturates at a count of 255.

41:40 MC4_MI
SC 
format 
type

The value in this field specifies the format of information in the 
MC4_MISC register.  Currently, only two values are defined.  Valid 
only when MISCV is asserted.

43:42 – Reserved

51:44 ECC 
syndro
me

ECC syndrome value for a correctable ECC event when the “Valid 
ECC syndrome” bit is asserted

52 Valid 
ECC 
syndro
me

Set when correctable ECC event supplies the ECC syndrome

54:53 Thresh
old-
Based 
Error 
Status

00: No tracking - No hardware status tracking is provided for the 
structure reporting this event.

01: Green - Status tracking is provided for the structure posting the 
event; the current status is green (below threshold).

10: Yellow - Status tracking is provided for the structure posting the 
event; the current status is yellow (above threshold).

11: Reserved for future use

Valid only if Valid bit (bit 63) is set

Undefined if the UC bit (bit 61) is set

56:55 – Reserved
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16.5.3  Processor Model Specific Error Code Field

16.5.3.1  MCA Error Type A:  L3 Error

Note: The Model Specific Error Code field in MC4_STATUS (bits 31:16)

16.5.3.2  Processor Model Specific Error Code Field
Type B:  Bus and Interconnect Error

Note: The Model Specific Error Code field in MC4_STATUS (bits 31:16)

Table 16-19.  Type A: L3 Error Codes

Bit 
Num

Sub-Field 
Name

Description Legal Value(s)

18:16 L3 Error 
Code

Describes the L3 
error 
encountered

000 - No error

001 - More than one way reporting a correctable 
event

010 - More than one way reporting an uncorrectable 
error

011 - More than one way reporting a tag hit

100 - No error

101 - One way reporting a correctable event 

110 - One way reporting an uncorrectable error

111 - One or more ways reporting a correctable event 
while one or more ways are reporting an 
uncorrectable error 

20:19 – Reserved 00 

31:21 – Fixed pattern 0010_0000_000
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Exactly one of the bits defined in the preceding table will be set for a Bus and Inter-
connect Error.  The Data ECC can be correctable or uncorrectable (the 
MC4_STATUS.UC bit, of course, distinguishes between correctable and uncorrectable 
cases with the Other_Info field possibly providing the ECC Syndrome for correctable 
errors).  All other errors for this processor MCA Error Type are uncorrectable.

Table 16-20.  Type B Bus and Interconnect Error Codes

Bit Num Sub-Field Name Description

16 FSB Request 
Parity

Parity error detected during FSB request phase

17 Core0 Addr Parity Parity error detected on Core 0 request’s address field

18 Core1 Addr Parity Parity error detected on Core 1 request’s address field

19 Reserved

20 FSB Response 
Parity

Parity error on FSB response field detected

21 FSB Data Parity FSB data parity error on inbound data detected

22 Core0 Data Parity Data parity error on data received from Core 0 detected

23 Core1 Data Parity Data parity error on data received from Core 1 detected

24 IDS Parity Detected an Enhanced Defer parity error (phase A or phase B)

25 FSB Inbound Data 
ECC

Data ECC event to error on inbound data (correctable or 
uncorrectable)

26 FSB Data Glitch Pad logic detected a data strobe ‘glitch’ (or sequencing error)

27 FSB Address Glitch Pad logic detected a request strobe ‘glitch’ (or sequencing 
error)

31:28 --- Reserved
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INTERPRETING MACHINE-CHECK ERROR CODES
16.5.3.3  Processor Model Specific Error Code Field
Type C:  Cache Bus Controller Error

Table 16-21.  Type C Cache Bus Controller Error Codes 

MC4_STATUS[31:16] (MSCE) Value Error Description

0000_0000_0000_0001   0x0001 Inclusion Error from Core 0

0000_0000_0000_0010   0x0002 Inclusion Error from Core 1

0000_0000_0000_0011   0x0003 Write Exclusive Error from Core 0

0000_0000_0000_0100   0x0004 Write Exclusive Error from Core 1

0000_0000_0000_0101   0x0005 Inclusion Error from FSB

0000_0000_0000_0110   0x0006 SNP Stall Error from FSB

0000_0000_0000_0111   0x0007 Write Stall Error from FSB

0000_0000_0000_1000   0x0008 FSB Arb Timeout Error

0000_0000_0000_1001   0x0009 CBC OOD Queue Underflow/overflow

0000_0001_0000_0000   0x0100 Enhanced Intel SpeedStep Technology TM1-TM2 Error

0000_0010_0000_0000   0x0200 Internal Timeout error

0000_0011_0000_0000   0x0300 Internal Timeout Error

0000_0100_0000_0000   0x0400 Intel® Cache Safe Technology Queue Full Error or Disabled-
ways-in-a-set overflow

1100_0000_0000_0001   0xC001 Correctable ECC event on outgoing FSB data

1100_0000_0000_0010   0xC002 Correctable ECC event on outgoing Core 0 data

1100_0000_0000_0100   0xC004 Correctable ECC event on outgoing Core 1 data

1110_0000_0000_0001   0xE001 Uncorrectable ECC error on outgoing FSB data

1110_0000_0000_0010   0xE002 Uncorrectable ECC error on outgoing Core 0 data

1110_0000_0000_0100   0xE004 Uncorrectable ECC error on outgoing Core 1 data

 — all other encodings — Reserved
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All errors - except for the correctable ECC types - in this table are uncorrectable.  The 
correctable ECC events may supply the ECC syndrome in the Other_Info field of the 
MC4_STATUS MSR..

Table 16-22.  Decoding Family 0FH Machine Check Codes for Cache Hierarchy Errors

Type Bit No. Bit Function Bit Description

MCA error 
codes1

0-15

Model 
specific error 
codes

16-17 Tag Error Code Contains the tag error code for this machine check 
error:

00 = No error detected

01 = Parity error on tag miss with a clean line

10 = Parity error/multiple tag match on tag hit

11 = Parity error/multiple tag match on tag miss

18-19 Data Error Code Contains the data error code for this machine check 
error:

00 = No error detected

01 = Single bit error

10 = Double bit error on a clean line

11 = Double bit error on a modified line

20 L3 Error This bit is set if the machine check error originated 
in the L3 it can be ignored for invalid PIC request 
errors):

1 = L3 error

0 = L2 error

21 Invalid PIC Request Indicates error due to invalid PIC request access 
was made to PIC space with WB memory):

1 = Invalid PIC request error

0 = No invalid PIC request error

22-31 Reserved Reserved

Other 
Information

32-39 8-bit Error Count Holds a count of the number of errors since reset. 
The counter begins at 0 for the first error and 
saturates at a count of 255.

40-56 Reserved Reserved

Status 
register 
validity 
indicators1

57-63
Vol. 3B 16-27



INTERPRETING MACHINE-CHECK ERROR CODES
NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for 

more information.
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CHAPTER 17
DEBUGGING, BRANCH PROFILING, AND TIME-STAMP

COUNTER

Intel 64 and IA-32 architectures provide debug facilities for use in debugging code 
and monitoring performance. These facilities are valuable for debugging application 
software, system software, and multitasking operating systems. Debug support is 
accessed using debug registers (DR0 through DR7) and model-specific registers 
(MSRs): 
• Debug registers hold the addresses of memory and I/O locations called break-

points. Breakpoints are user-selected locations in a program, a data-storage area 
in memory, or specific I/O ports. They are set where a programmer or system 
designer wishes to halt execution of a program and examine the state of the 
processor by invoking debugger software. A debug exception (#DB) is generated 
when a memory or I/O access is made to a breakpoint address. 

• MSRs monitor branches, interrupts, and exceptions; they record addresses of the 
last branch, interrupt or exception taken and the last branch taken before an 
interrupt or exception.

17.1 OVERVIEW OF DEBUG SUPPORT FACILITIES
The following processor facilities support debugging and performance monitoring:
• Debug exception (#DB) — Transfers program control to a debug procedure or 

task when a debug event occurs.
• Breakpoint exception (#BP) — See breakpoint instruction (INT 3) below.
• Breakpoint-address registers (DR0 through DR3) — Specifies the 

addresses of up to 4 breakpoints.
• Debug status register (DR6) — Reports the conditions that were in effect 

when a debug or breakpoint exception was generated.
• Debug control register (DR7) — Specifies the forms of memory or I/O access 

that cause breakpoints to be generated.
• T (trap) flag, TSS — Generates a debug exception (#DB) when an attempt is 

made to switch to a task with the T flag set in its TSS.
• RF (resume) flag, EFLAGS register — Suppresses multiple exceptions to the 

same instruction.
• TF (trap) flag, EFLAGS register — Generates a debug exception (#DB) after 

every execution of an instruction.
• Breakpoint instruction (INT 3) — Generates a breakpoint exception (#BP) 

that transfers program control to the debugger procedure or task. This 
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instruction is an alternative way to set code breakpoints. It is especially useful 
when more than four breakpoints are desired, or when breakpoints are being 
placed in the source code.

• Last branch recording facilities — Store branch records in the last branch 
record (LBR) stack MSRs for the most recent taken branches, interrupts, and/or 
exceptions in MSRs. A branch record consist of a branch-from and a branch-to 
instruction address. Send branch records out on the system bus as branch trace 
messages (BTMs).

These facilities allow a debugger to be called as a separate task or as a procedure in 
the context of the current program or task. The following conditions can be used to 
invoke the debugger:
• Task switch to a specific task.
• Execution of the breakpoint instruction.
• Execution of any instruction.
• Execution of an instruction at a specified address.
• Read or write to a specified memory address/range.
• Write to a specified memory address/range.
• Input from a specified I/O address/range.
• Output to a specified I/O address/range.
• Attempt to change the contents of a debug register.

17.2 DEBUG REGISTERS
Eight debug registers (see Figure 17-1) control the debug operation of the processor. 
These registers can be written to and read using the move to/from debug register 
form of the MOV instruction. A debug register may be the source or destination 
operand for one of these instructions. 

Debug registers are privileged resources; a MOV instruction that accesses these 
registers can only be executed in real-address mode, in SMM or in protected mode at 
a CPL of 0. An attempt to read or write the debug registers from any other privilege 
level generates a general-protection exception (#GP).

The primary function of the debug registers is to set up and monitor from 1 to 4 
breakpoints, numbered 0 though 3. For each breakpoint, the following information 
can be specified:
• The linear address where the breakpoint is to occur.
• The length of the breakpoint location (1, 2, or 4 bytes).
• The operation that must be performed at the address for a debug exception to be 

generated.
• Whether the breakpoint is enabled.
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• Whether the breakpoint condition was present when the debug exception was 
generated.

The following paragraphs describe the functions of flags and fields in the debug 
registers.

Figure 17-1.  Debug Registers
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17.2.1 Debug Address Registers (DR0-DR3)
Each of the debug-address registers (DR0 through DR3) holds the 32-bit linear 
address of a breakpoint (see Figure 17-1). Breakpoint comparisons are made before 
physical address translation occurs. The contents of debug register DR7 further spec-
ifies breakpoint conditions. 

17.2.2 Debug Registers DR4 and DR5
Debug registers DR4 and DR5 are reserved when debug extensions are enabled 
(when the DE flag in control register CR4 is set) and attempts to reference the DR4 
and DR5 registers cause invalid-opcode exceptions (#UD). When debug extensions 
are not enabled (when the DE flag is clear), these registers are aliased to debug 
registers DR6 and DR7.

17.2.3 Debug Status Register (DR6)
The debug status register (DR6) reports debug conditions that were sampled at the 
time the last debug exception was generated (see Figure 17-1). Updates to this 
register only occur when an exception is generated. The flags in this register show 
the following information:
• B0 through B3 (breakpoint condition detected) flags (bits 0 through 3) 

— Indicates (when set) that its associated breakpoint condition was met when a 
debug exception was generated. These flags are set if the condition described for 
each breakpoint by the LENn, and R/Wn flags in debug control register DR7 is 
true. They may or may not be set if the breakpoint is not enabled by the Ln or the 
Gn flags in register DR7. Therefore on a #DB, a debug handler should check only 
those B0-B3 bits which correspond to an enabled breakpoint.

• BD (debug register access detected) flag (bit 13) — Indicates that the next 
instruction in the instruction stream accesses one of the debug registers (DR0 
through DR7). This flag is enabled when the GD (general detect) flag in debug 
control register DR7 is set. See Section 17.2.4, “Debug Control Register (DR7),” 
for further explanation of the purpose of this flag. 

• BS (single step) flag (bit 14) — Indicates (when set) that the debug exception 
was triggered by the single-step execution mode (enabled with the TF flag in the 
EFLAGS register). The single-step mode is the highest-priority debug exception. 
When the BS flag is set, any of the other debug status bits also may be set.

• BT (task switch) flag (bit 15) — Indicates (when set) that the debug 
exception resulted from a task switch where the T flag (debug trap flag) in the 
TSS of the target task was set. See Section 7.2.1, “Task-State Segment (TSS),” 
for the format of a TSS. There is no flag in debug control register DR7 to enable 
or disable this exception; the T flag of the TSS is the only enabling flag.

Certain debug exceptions may clear bits 0-3. The remaining contents of the DR6 
register are never cleared by the processor. To avoid confusion in identifying debug 
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exceptions, debug handlers should clear the register before returning to the inter-
rupted task.

17.2.4 Debug Control Register (DR7)
The debug control register (DR7) enables or disables breakpoints and sets break-
point conditions (see Figure 17-1). The flags and fields in this register control the 
following things:
• L0 through L3 (local breakpoint enable) flags (bits 0, 2, 4, and 6) — 

Enables (when set) the breakpoint condition for the associated breakpoint for the 
current task. When a breakpoint condition is detected and its associated Ln flag 
is set, a debug exception is generated. The processor automatically clears these 
flags on every task switch to avoid unwanted breakpoint conditions in the new 
task.

• G0 through G3 (global breakpoint enable) flags (bits 1, 3, 5, and 7) — 
Enables (when set) the breakpoint condition for the associated breakpoint for all 
tasks. When a breakpoint condition is detected and its associated Gn flag is set, 
a debug exception is generated. The processor does not clear these flags on a 
task switch, allowing a breakpoint to be enabled for all tasks.

• LE and GE (local and global exact breakpoint enable) flags (bits 8, 9) — 
This feature is not supported in the P6 family processors, later IA-32 processors, 
and Intel 64 processors. When set, these flags cause the processor to detect the 
exact instruction that caused a data breakpoint condition. For backward and 
forward compatibility with other Intel processors, we recommend that the LE and 
GE flags be set to 1 if exact breakpoints are required.

• GD (general detect enable) flag (bit 13) — Enables (when set) debug-
register protection, which causes a debug exception to be generated prior to any 
MOV instruction that accesses a debug register. When such a condition is 
detected, the BD flag in debug status register DR6 is set prior to generating the 
exception. This condition is provided to support in-circuit emulators. 
When the emulator needs to access the debug registers, emulator software can 
set the GD flag to prevent interference from the program currently executing on 
the processor.
The processor clears the GD flag upon entering to the debug exception handler, 
to allow the handler access to the debug registers.

• R/W0 through R/W3 (read/write) fields (bits 16, 17, 20, 21, 24, 25, 28, 
and 29) — Specifies the breakpoint condition for the corresponding breakpoint. 
The DE (debug extensions) flag in control register CR4 determines how the bits in 
the R/Wn fields are interpreted. When the DE flag is set, the processor interprets 
bits as follows:

00 — Break on instruction execution only. 
01 — Break on data writes only.
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10 — Break on I/O reads or writes.
11 — Break on data reads or writes but not instruction fetches.

When the DE flag is clear, the processor interprets the R/Wn bits the same as for 
the Intel386™ and Intel486™ processors, which is as follows:

00 — Break on instruction execution only.
01 — Break on data writes only.
10 — Undefined.
11 — Break on data reads or writes but not instruction fetches.

• LEN0 through LEN3 (Length) fields (bits 18, 19, 22, 23, 26, 27, 30, and 
31) — Specify the size of the memory location at the address specified in the 
corresponding breakpoint address register (DR0 through DR3). These fields are 
interpreted as follows:

00 — 1-byte length.
01 — 2-byte length.
10 — Undefined (or 8 byte length, see note below).
11 — 4-byte length.

If the corresponding RWn field in register DR7 is 00 (instruction execution), then the 
LENn field should also be 00. The effect of using other lengths is undefined. See 
Section 17.2.5, “Breakpoint Field Recognition,” below.

NOTES
For Pentium® 4 and Intel® Xeon® processors with a CPUID signature 
corresponding to family 15 (model 3, 4, and 6), break point 
conditions permit specifying 8-byte length on data read/write with an 
of encoding 10B in the LENn field. 
Encoding 10B is also supported in processors based on Intel Core 
microarchitecture or enhanced Intel Core microarchitecture, the 
respective CPUID signatures corresponding to family 6, model 15, 
and family 6, DisplayModel value 23 (see CPUID instruction in 
Chapter 3, “Instruction Set Reference, A-L” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 2A). The 
Encoding 10B is supported in processors based on Intel® Atom™ 
microarchitecture, with CPUID signature of family 6, DisplayModel 
value 28. The encoding 10B is undefined for other processors.

17.2.5 Breakpoint Field Recognition
Breakpoint address registers (debug registers DR0 through DR3) and the LENn fields 
for each breakpoint define a range of sequential byte addresses for a data or I/O 
breakpoint. The LENn fields permit specification of a 1-, 2-, 4-, or 8-byte range, 
beginning at the linear address specified in the corresponding debug register (DRn). 
Two-byte ranges must be aligned on word boundaries; 4-byte ranges must be 
aligned on doubleword boundaries. I/O addresses are zero-extended (from 16 to 32 
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bits, for comparison with the breakpoint address in the selected debug register). 
These requirements are enforced by the processor; it uses LENn field bits to mask 
the lower address bits in the debug registers. Unaligned data or I/O breakpoint 
addresses do not yield valid results.

A data breakpoint for reading or writing data is triggered if any of the bytes partici-
pating in an access is within the range defined by a breakpoint address register and 
its LENn field. Table 17-1 provides an example setup of debug registers and data 
accesses that would subsequently trap or not trap on the breakpoints.

A data breakpoint for an unaligned operand can be constructed using two break-
points, where each breakpoint is byte-aligned and the two breakpoints together 
cover the operand. The breakpoints generate exceptions only for the operand, not for 
neighboring bytes.

Instruction breakpoint addresses must have a length specification of 1 byte (the 
LENn field is set to 00). Code breakpoints for other operand sizes are undefined. The 
processor recognizes an instruction breakpoint address only when it points to the 
first byte of an instruction. If the instruction has prefixes, the breakpoint address 
must point to the first prefix.

Table 17-1.  Breakpoint Examples

Debug Register Setup

Debug Register R/Wn Breakpoint Address LENn

DR0
DR1
DR2
DR3

R/W0 = 11 (Read/Write)
R/W1 = 01 (Write)
R/W2 = 11 (Read/Write)
R/W3 = 01 (Write)

A0001H
A0002H
B0002H
C0000H

LEN0 = 00 (1 byte)
LEN1 = 00 (1 byte)
LEN2 = 01) (2 bytes)
LEN3 = 11 (4 bytes)

Data Accesses

Operation Address Access Length 
(In Bytes)

Data operations that trap
- Read or write
- Read or write
- Write
- Write
- Read or write
- Read or write
- Read or write
- Write
- Write
- Write

A0001H
A0001H
A0002H
A0002H
B0001H
B0002H
B0002H
C0000H
C0001H
C0003H

1
2
1
2
4
1
2
4
2
1
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17.2.6 Debug Registers and Intel® 64 Processors
For Intel 64 architecture processors, debug registers DR0–DR7 are 64 bits. In 16-bit 
or 32-bit modes (protected mode and compatibility mode), writes to a debug register 
fill the upper 32 bits with zeros. Reads from a debug register return the lower 32 bits. 
In 64-bit mode, MOV DRn instructions read or write all 64 bits. Operand-size prefixes 
are ignored. 

In 64-bit mode, the upper 32 bits of DR6 and DR7 are reserved and must be written 
with zeros. Writing 1 to any of the upper 32 bits results in a #GP(0) exception (see 
Figure 17-2). All 64 bits of DR0–DR3 are writable by software. However, MOV DRn 
instructions do not check that addresses written to DR0–DR3 are in the linear-
address limits of the processor implementation (address matching is supported only 
on valid addresses generated by the processor implementation). Break point condi-
tions for 8-byte memory read/writes are supported in all modes.

Data operations that do not trap
- Read or write
- Read
- Read or write
- Read or write
- Read
- Read or write

A0000H
A0002H
A0003H
B0000H
C0000H
C0004H

1
1
4
2
2
4

Table 17-1.  Breakpoint Examples (Contd.)

Debug Register Setup

Debug Register R/Wn Breakpoint Address LENn
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17.3 DEBUG EXCEPTIONS
The Intel 64 and IA-32 architectures dedicate two interrupt vectors to handling 
debug exceptions: vector 1 (debug exception, #DB) and vector 3 (breakpoint excep-
tion, #BP). The following sections describe how these exceptions are generated and 
typical exception handler operations.

17.3.1 Debug Exception (#DB)—Interrupt Vector 1
The debug-exception handler is usually a debugger program or part of a larger soft-
ware system. The processor generates a debug exception for any of several condi-
tions. The debugger checks flags in the DR6 and DR7 registers to determine which 
condition caused the exception and which other conditions might apply. Table 17-2 
shows the states of these flags following the generation of each kind of breakpoint 
condition.

Instruction-breakpoint and general-detect condition (see Section 17.3.1.3, “General-
Detect Exception Condition”) result in faults; other debug-exception conditions result 
in traps. The debug exception may report one or both at one time. The following 
sections describe each class of debug exception. 

Figure 17-2.  DR6/DR7 Layout on Processors Supporting Intel 64 Technology
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See also: Chapter 6, “Interrupt 1—Debug Exception (#DB),” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3A.

17.3.1.1  Instruction-Breakpoint Exception Condition
The processor reports an instruction breakpoint when it attempts to execute an 
instruction at an address specified in a breakpoint-address register (DR0 through 
DR3) that has been set up to detect instruction execution (R/W flag is set to 0). Upon 
reporting the instruction breakpoint, the processor generates a fault-class, debug 
exception (#DB) before it executes the target instruction for the breakpoint. 

Instruction breakpoints are the highest priority debug exceptions. They are serviced 
before any other exceptions detected during the decoding or execution of an instruc-
tion. However, if a code instruction breakpoint is placed on an instruction located 
immediately after a POP SS/MOV SS instruction, the breakpoint may not be trig-
gered. In most situations, POP SS/MOV SS will inhibit such interrupts (see 
“MOV—Move” and “POP—Pop a Value from the Stack” in Chapter 4 of the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 2B).

Because the debug exception for an instruction breakpoint is generated before the 
instruction is executed, if the instruction breakpoint is not removed by the exception 
handler; the processor will detect the instruction breakpoint again when the instruc-
tion is restarted and generate another debug exception. To prevent looping on an 
instruction breakpoint, the Intel 64 and IA-32 architectures provide the RF flag 
(resume flag) in the EFLAGS register (see Section 2.3, “System Flags and Fields in 

Table 17-2.  Debug Exception Conditions

Debug or Breakpoint Condition DR6 Flags 
Tested

DR7 Flags 
Tested

Exception Class

Single-step trap BS = 1 Trap

Instruction breakpoint, at addresses 
defined by DRn and LENn

Bn = 1 and 
(Gn or Ln = 1)

R/Wn = 0 Fault

Data write breakpoint, at addresses 
defined by DRn and LENn

Bn = 1 and 
(Gn or Ln = 1)

R/Wn = 1 Trap

I/O read or write breakpoint, at 
addresses defined by DRn and LENn

Bn = 1 and 
(Gn or Ln = 1)

R/Wn = 2 Trap

Data read or write (but not instruction 
fetches), at addresses defined by DRn 
and LENn

Bn = 1 and 
(Gn or Ln = 1)

R/Wn = 3 Trap

General detect fault, resulting from an 
attempt to modify debug registers 
(usually in conjunction with in-circuit 
emulation)

BD = 1 Fault

Task switch BT = 1 Trap
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the EFLAGS Register,” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3A). When the RF flag is set, the processor ignores instruction 
breakpoints.

All Intel 64 and IA-32 processors manage the RF flag as follows. The RF Flag is 
cleared at the start of the instruction after the check for code breakpoint, CS limit 
violation and FP exceptions. Task Switches and IRETD/IRETQ instructions transfer 
the RF image from the TSS/stack to the EFLAGS register.

When calling an event handler, Intel 64 and IA-32 processors establish the value of 
the RF flag in the EFLAGS image pushed on the stack:
• For any fault-class exception except a debug exception generated in response to 

an instruction breakpoint, the value pushed for RF is 1.
• For any interrupt arriving after any iteration of a repeated string instruction but 

the last iteration, the value pushed for RF is 1.
• For any trap-class exception generated by any iteration of a repeated string 

instruction but the last iteration, the value pushed for RF is 1.
• For other cases, the value pushed for RF is the value that was in EFLAG.RF at the 

time the event handler was called. This includes:

— Debug exceptions generated in response to instruction breakpoints

— Hardware-generated interrupts arriving between instructions (including 
those arriving after the last iteration of a repeated string instruction)

— Trap-class exceptions generated after an instruction completes (including 
those generated after the last iteration of a repeated string instruction)

— Software-generated interrupts (RF is pushed as 0, since it was cleared at the 
start of the software interrupt)

As noted above, the processor does not set the RF flag prior to calling the debug 
exception handler for debug exceptions resulting from instruction breakpoints. The 
debug exception handler can prevent recurrence of the instruction breakpoint by 
setting the RF flag in the EFLAGS image on the stack. If the RF flag in the EFLAGS 
image is set when the processor returns from the exception handler, it is copied into 
the RF flag in the EFLAGS register by IRETD/IRETQ or a task switch that causes the 
return. The processor then ignores instruction breakpoints for the duration of the 
next instruction. (Note that the POPF, POPFD, and IRET instructions do not transfer 
the RF image into the EFLAGS register.) Setting the RF flag does not prevent other 
types of debug-exception conditions (such as, I/O or data breakpoints) from being 
detected, nor does it prevent non-debug exceptions from being generated.

For the Pentium processor, when an instruction breakpoint coincides with another 
fault-type exception (such as a page fault), the processor may generate one spurious 
debug exception after the second exception has been handled, even though the 
debug exception handler set the RF flag in the EFLAGS image. To prevent a spurious 
exception with Pentium processors, all fault-class exception handlers should set the 
RF flag in the EFLAGS image.
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17.3.1.2  Data Memory and I/O Breakpoint Exception Conditions
Data memory and I/O breakpoints are reported when the processor attempts to 
access a memory or I/O address specified in a breakpoint-address register (DR0 
through DR3) that has been set up to detect data or I/O accesses (R/W flag is set to 
1, 2, or 3). The processor generates the exception after it executes the instruction 
that made the access, so these breakpoint condition causes a trap-class exception to 
be generated. 

Because data breakpoints are traps, an instruction that writes memory overwrites 
the original data before the debug exception generated by a data breakpoint is 
generated. If a debugger needs to save the contents of a write breakpoint location, it 
should save the original contents before setting the breakpoint. The handler can 
report the saved value after the breakpoint is triggered. The address in the debug 
registers can be used to locate the new value stored by the instruction that triggered 
the breakpoint.

If a data breakpoint is detected during an iteration of a string instruction executed 
with fast-string operation (see Section 7.3.9.3 of Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 1), delivery of the resulting debug exception 
may be delayed until completion of the corresponding group of iterations.

Intel486 and later processors ignore the GE and LE flags in DR7. In Intel386 proces-
sors, exact data breakpoint matching does not occur unless it is enabled by setting 
the LE and/or the GE flags. 

For repeated INS and OUTS instructions that generate an I/O-breakpoint debug 
exception, the processor generates the exception after the completion of the first 
iteration. Repeated INS and OUTS instructions generate a data-breakpoint debug 
exception after the iteration in which the memory address breakpoint location is 
accessed.

17.3.1.3  General-Detect Exception Condition
When the GD flag in DR7 is set, the general-detect debug exception occurs when a 
program attempts to access any of the debug registers (DR0 through DR7) at the 
same time they are being used by another application, such as an emulator or 
debugger. This protection feature guarantees full control over the debug registers 
when required. The debug exception handler can detect this condition by checking 
the state of the BD flag in the DR6 register. The processor generates the exception 
before it executes the MOV instruction that accesses a debug register, which causes 
a fault-class exception to be generated. 

17.3.1.4  Single-Step Exception Condition
The processor generates a single-step debug exception if (while an instruction is 
being executed) it detects that the TF flag in the EFLAGS register is set. The excep-
tion is a trap-class exception, because the exception is generated after the instruc-
tion is executed. The processor will not generate this exception after the instruction 
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that sets the TF flag. For example, if the POPF instruction is used to set the TF flag, a 
single-step trap does not occur until after the instruction that follows the POPF 
instruction.

The processor clears the TF flag before calling the exception handler. If the TF flag 
was set in a TSS at the time of a task switch, the exception occurs after the first 
instruction is executed in the new task.

The TF flag normally is not cleared by privilege changes inside a task. The INT n and 
INTO instructions, however, do clear this flag. Therefore, software debuggers that 
single-step code must recognize and emulate INT n or INTO instructions rather than 
executing them directly. To maintain protection, the operating system should check 
the CPL after any single-step trap to see if single stepping should continue at the 
current privilege level.

The interrupt priorities guarantee that, if an external interrupt occurs, single step-
ping stops. When both an external interrupt and a single-step interrupt occur 
together, the single-step interrupt is processed first. This operation clears the TF flag. 
After saving the return address or switching tasks, the external interrupt input is 
examined before the first instruction of the single-step handler executes. If the 
external interrupt is still pending, then it is serviced. The external interrupt handler 
does not run in single-step mode. To single step an interrupt handler, single step an 
INT n instruction that calls the interrupt handler.

17.3.1.5  Task-Switch Exception Condition
The processor generates a debug exception after a task switch if the T flag of the new 
task's TSS is set. This exception is generated after program control has passed to the 
new task, and prior to the execution of the first instruction of that task. The exception 
handler can detect this condition by examining the BT flag of the DR6 register.

If entry 1 (#DB) in the IDT is a task gate, the T bit of the corresponding TSS should 
not be set. Failure to observe this rule will put the processor in a loop.

17.3.2 Breakpoint Exception (#BP)—Interrupt Vector 3
The breakpoint exception (interrupt 3) is caused by execution of an INT 3 instruction. 
See Chapter 6, “Interrupt 3—Breakpoint Exception (#BP).” Debuggers use break 
exceptions in the same way that they use the breakpoint registers; that is, as a 
mechanism for suspending program execution to examine registers and memory 
locations. With earlier IA-32 processors, breakpoint exceptions are used extensively 
for setting instruction breakpoints.

With the Intel386 and later IA-32 processors, it is more convenient to set break-
points with the breakpoint-address registers (DR0 through DR3). However, the 
breakpoint exception still is useful for breakpointing debuggers, because a break-
point exception can call a separate exception handler. The breakpoint exception is 
also useful when it is necessary to set more breakpoints than there are debug regis-
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ters or when breakpoints are being placed in the source code of a program under 
development.

17.4 LAST BRANCH, INTERRUPT, AND EXCEPTION 
RECORDING OVERVIEW

P6 family processors introduced the ability to set breakpoints on taken branches, 
interrupts, and exceptions, and to single-step from one branch to the next. This 
capability has been modified and extended in the Pentium 4, Intel Xeon, Pentium M, 
Intel® Core™ Solo, Intel® Core™ Duo, Intel® Core™2 Duo, Intel® Core™ i7 and 
Intel® Atom™ processors to allow logging of branch trace messages in a branch trace 
store (BTS) buffer in memory. 

See the following sections for processor specific implementation of last branch, inter-
rupt and exception recording:

— Section 17.5, “Last Branch, Interrupt, and Exception Recording (Intel® 
Core™2 Duo and Intel® Atom™ Processor Family)”

— Section 17.6, “Last Branch, Interrupt, and Exception Recording for 
Processors based on Intel® Microarchitecture code name Nehalem”

— Section 17.8, “Last Branch, Interrupt, and Exception Recording (Processors 
based on Intel NetBurst® Microarchitecture)”

— Section 17.9, “Last Branch, Interrupt, and Exception Recording (Intel® Core™ 
Solo and Intel® Core™ Duo Processors)”

— Section 17.10, “Last Branch, Interrupt, and Exception Recording (Pentium M 
Processors)”

— Section 17.11, “Last Branch, Interrupt, and Exception Recording (P6 Family 
Processors)”

The following subsections of Section 17.4 describe common features of profiling 
branches. These features are generally enabled using the IA32_DEBUGCTL MSR 
(older processor may have implemented a subset or model-specific features, see 
definitions of MSR_DEBUGCTLA, MSR_DEBUGCTLB, MSR_DEBUGCTL).

17.4.1 IA32_DEBUGCTL MSR
The IA32_DEBUGCTL MSR provides bit field controls to enable debug trace inter-
rupts, debug trace stores, trace messages enable, single stepping on branches, last 
branch record recording, and to control freezing of LBR stack or performance 
counters on a PMI request. IA32_DEBUGCTL MSR is located at register address 
01D9H. 

See Figure 17-3 for the MSR layout and the bullets below for a description of the 
flags:
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• LBR (last branch/interrupt/exception) flag (bit 0) — When set, the 
processor records a running trace of the most recent branches, interrupts, and/or 
exceptions taken by the processor (prior to a debug exception being generated) 
in the last branch record (LBR) stack. For more information, see the Section 
17.5.1, “LBR Stack” (Intel® Core™2 Duo and Intel® Atom™ Processor Family) 
and Section 17.6.1, “LBR Stack” (processors based on Intel® Microarchitecture 
code name Nehalem).

• BTF (single-step on branches) flag (bit 1) — When set, the processor treats 
the TF flag in the EFLAGS register as a “single-step on branches” flag rather than 
a “single-step on instructions” flag. This mechanism allows single-stepping the 
processor on taken branches. See Section 17.4.3, “Single-Stepping on 
Branches,” for more information about the BTF flag.

• TR (trace message enable) flag (bit 6) — When set, branch trace messages 
are enabled. When the processor detects a taken branch, interrupt, or exception; 
it sends the branch record out on the system bus as a branch trace message 
(BTM). See Section 17.4.4, “Branch Trace Messages,” for more information about 
the TR flag.

• BTS (branch trace store) flag (bit 7) — When set, the flag enables BTS 
facilities to log BTMs to a memory-resident BTS buffer that is part of the DS save 
area. See Section 17.4.9, “BTS and DS Save Area.”

• BTINT (branch trace interrupt) flag (bit 8) — When set, the BTS facilities 
generate an interrupt when the BTS buffer is full. When clear, BTMs are logged to 
the BTS buffer in a circular fashion. See Section 17.4.5, “Branch Trace Store (BTS),” 
for a description of this mechanism.

Figure 17-3.  IA32_DEBUGCTL MSR for Processors based 
on Intel Core microarchitecture

31

TR — Trace messages enable

BTINT — Branch trace interrupt

BTF — Single-step on branches
LBR — Last branch/interrupt/exception

Reserved

8 7 6 5 4 3 2 1  0

BTS — Branch trace store

Reserved

910

BTS_OFF_OS — BTS off in OS
BTS_OFF_USR — BTS off in user code
FREEZE_LBRS_ON_PMI
FREEZE_PERFMON_ON_PMI

111214

FREEZE_WHILE_SMM_EN
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• BTS_OFF_OS (branch trace off in privileged code) flag (bit 9) — When set, 
BTS or BTM is skipped if CPL is 0. See Section 17.8.2.

• BTS_OFF_USR (branch trace off in user code) flag (bit 10) — When set, 
BTS or BTM is skipped if CPL is greater than 0. See Section 17.8.2.

• FREEZE_LBRS_ON_PMI flag (bit 11) — When set, the LBR stack is frozen on a 
hardware PMI request (e.g. when a counter overflows and is configured to trigger 
PMI). 

• FREEZE_PERFMON_ON_PMI flag (bit 12) — When set, a PMI request clears 
each of the “ENABLE” field of MSR_PERF_GLOBAL_CTRL MSR (see Figure 18-3) to 
disable all the counters. 

• FREEZE_WHILE_SMM_EN (bit 14) — If this bit is set, upon the delivery of an 
SMI, the processor will clear all the enable bits of IA32_PERF_GLOBAL_CTRL, 
save a copy of the content of IA32_DEBUGCTL and disable LBR, BTF, TR, and BTS 
fields of IA32_DEBUGCTL before transferring control to the SMI handler. Subse-
quently, the enable bits of IA32_PERF_GLOBAL_CTRL will be set to 1, the saved 
copy of IA32_DEBUGCTL prior to SMI delivery will be restored, after the SMI 
handler issues RSM to complete its service. Note that system software must 
check IA32_DEBUGCTL. to determine if the processor supports the 
FREEZE_WHILE_SMM_EN control bit. FREEZE_WHILE_SMM_EN is supported if 
IA32_PERF_CAPABILITIES.FREEZE_WHILE_SMM[Bit 12] is reporting 1. See 
Section 18.13 for details of detecting the presence of IA32_PERF_CAPABILITIES 
MSR.

17.4.2 Monitoring Branches, Exceptions, and Interrupts
When the LBR flag (bit 0) in the IA32_DEBUGCTL MSR is set, the processor automat-
ically begins recording branch records for taken branches, interrupts, and exceptions 
(except for debug exceptions) in the LBR stack MSRs.

When the processor generates a a debug exception (#DB), it automatically clears the 
LBR flag before executing the exception handler. This action does not clear previously 
stored LBR stack MSRs. The branch record for the last four taken branches, interrupts 
and/or exceptions are retained for analysis.

A debugger can use the linear addresses in the LBR stack to re-set breakpoints in the 
breakpoint address registers (DR0 through DR3). This allows a backward trace from 
the manifestation of a particular bug toward its source.

If the LBR flag is cleared and TR flag in the IA32_DEBUGCTL MSR remains set, the 
processor will continue to update LBR stack MSRs. This is because BTM information 
must be generated from entries in the LBR stack. A #DB does not automatically clear 
the TR flag.
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17.4.3 Single-Stepping on Branches
When software sets both the BTF flag (bit 1) in the IA32_DEBUGCTL MSR and the TF 
flag in the EFLAGS register, the processor generates a single-step debug exception 
only after instructions that cause a branch.1 This mechanism allows a debugger to 
single-step on control transfers caused by branches. This “branch single stepping” 
helps isolate a bug to a particular block of code before instruction single-stepping 
further narrows the search. The processor clears the BTF flag when it generates a 
debug exception. The debugger must set the BTF flag before resuming program 
execution to continue single-stepping on branches.

17.4.4 Branch Trace Messages
Setting the TR flag (bit 6) in the IA32_DEBUGCTL MSR enables branch trace 
messages (BTMs). Thereafter, when the processor detects a branch, exception, or 
interrupt, it sends a branch record out on the system bus as a BTM. A debugging 
device that is monitoring the system bus can read these messages and synchronize 
operations with taken branch, interrupt, and exception events. 

When interrupts or exceptions occur in conjunction with a taken branch, additional 
BTMs are sent out on the bus, as described in Section 17.4.2, “Monitoring Branches, 
Exceptions, and Interrupts.”

For P6 processor family, Pentium M processor family, processors based on Intel Core 
microarchitecture, TR and LBR bits can not be set at the same time due to hardware 
limitation. The content of LBR stack is undefined when TR is set. 

For IA processor families based on Intel NetBurst microarchitecture, Intel microarchi-
tecture code name Nehalem and Intel Atom processor family, the processor can 
collect branch records in the LBR stack and at the same time send/store BTMs when 
both the TR and LBR flags are set in the IA32_DEBUGCTL MSR (or the equivalent 
MSR_DEBUGCTLA, MSR_DEBUGCTLB).

The following exception applies:
• BTM may not be observable on Intel Atom processor family processors that do 

not provide an externally visible system bus.

17.4.4.1  Branch Trace Message Visibility
Branch trace message (BTM) visibility is implementation specific and limited to  
systems with a front side bus (FSB). BTMs may not be visible to newer system link 
interfaces or a system bus that deviates from a traditional FSB.

1. Executions of CALL, IRET, and JMP that cause task switches never cause single-step debug 
exceptions (regardless of the value of the BTF flag). A debugger desiring debug exceptions on 
switches to a task should set the T flag (debug trap flag) in the TSS of that task. See Section 
7.2.1, “Task-State Segment (TSS).”
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17.4.5 Branch Trace Store (BTS)
A trace of taken branches, interrupts, and exceptions is useful for debugging code by 
providing a method of determining the decision path taken to reach a particular code 
location. The LBR flag (bit 0) of IA32_DEBUGCTL provides a mechanism for capturing 
records of taken branches, interrupts, and exceptions and saving them in the last 
branch record (LBR) stack MSRs, setting the TR flag for sending them out onto the 
system bus as BTMs. The branch trace store (BTS) mechanism provides the addi-
tional capability of saving the branch records in a memory-resident BTS buffer, which 
is part of the DS save area. The BTS buffer can be configured to be circular so that 
the most recent branch records are always available or it can be configured to 
generate an interrupt when the buffer is nearly full so that all the branch records can 
be saved. The BTINT flag (bit 8) can be used to enable the generation of interrupt 
when the BTS buffer is full. See Section 17.4.9.2, “Setting Up the DS Save Area.” for 
additional details.

Setting this flag (BTS) alone can greatly reduce the performance of the processor. 
CPL-qualified branch trace storing mechanism can help mitigate the performance 
impact of sending/logging branch trace messages.

17.4.6 CPL-Qualified Branch Trace Mechanism
CPL-qualified branch trace mechanism is available to a subset of Intel 64 and IA-32 
processors that support the branch trace storing mechanism. The processor supports 
the CPL-qualified branch trace mechanism if CPUID.01H:ECX[bit 4] = 1.

The CPL-qualified branch trace mechanism is described in Section 17.4.9.4. System 
software can selectively specify CPL qualification to not send/store Branch Trace 
Messages associated with a specified privilege level. Two bit fields, BTS_OFF_USR 
(bit 10) and BTS_OFF_OS (bit 9), are provided in the debug control register to 
specify the CPL of BTMs that will not be logged in the BTS buffer or sent on the bus.

17.4.7 Freezing LBR and Performance Counters on PMI 
Many issues may generate a performance monitoring interrupt (PMI); a PMI service 
handler will need to determine cause to handle the situation. Two capabilities that 
allow a PMI service routine to improve branch tracing and performance monitoring 
are:
• Freezing LBRs on PMI (bit 11)— The processor freezes LBRs on a PMI request 

by clearing the LBR bit (bit 0) in IA32_DEBUGCTL. Software must then re-enable 
IA32_DEBUGCTL.[0] to continue monitoring branches. When using this feature, 
software should be careful about writes to IA32_DEBUGCTL to avoid re-enabling 
LBRs by accident if they were just disabled.

• Freezing PMCs on PMI (bit 12) — The processor freezes the performance 
counters on a PMI request by clearing the MSR_PERF_GLOBAL_CTRL MSR (see 
Figure 18-3). The PMCs affected include both general-purpose counters and 
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fixed-function counters (see Section 18.4.1, “Fixed-function Performance 
Counters”). Software must re-enable counts by writing 1s to the corresponding 
enable bits in MSR_PERF_GLOBAL_CTRL before leaving a PMI service routine to 
continue counter operation.

Freezing LBRs and PMCs on PMIs occur when:
• A performance counter had an overflow and was programmed to signal a PMI in 

case of an overflow.

— For the general-purpose counters; this is done by setting bit 20 of the 
IA32_PERFEVTSELx register.

— For the fixed-function counters; this is done by setting the 3rd bit in the 
corresponding 4-bit control field of the MSR_PERF_FIXED_CTR_CTRL register 
(see Figure 18-1) or IA32_FIXED_CTR_CTRL MSR (see Figure 18-2).

• The PEBS buffer is almost full and reaches the interrupt threshold.
• The BTS buffer is almost full and reaches the interrupt threshold.

17.4.8 LBR Stack 
The last branch record stack and top-of-stack (TOS) pointer MSRs are supported 
across Intel 64 and IA-32 processor families. However, the number of MSRs in the 
LBR stack and the valid range of TOS pointer value can vary between different 
processor families. Table 17-3 lists the LBR stack size and TOS pointer range for 
several processor families according to the CPUID signatures of 
DisplayFamily_DisplayModel encoding (see CPUID instruction in Chapter 3 of Intel® 
64 and IA-32 Architectures Software Developer’s Manual, Volume 2A). 

The last branch recording mechanism tracks not only branch instructions (like JMP, 
Jcc, LOOP and CALL instructions), but also other operations that cause a change in 
the instruction pointer (like external interrupts, traps and faults). The branch 
recording mechanisms generally employs a set of MSRs, referred to as last branch 
record (LBR) stack. The size and exact locations of the LBR stack are generally 

Table 17-3.   LBR Stack Size and TOS Pointer Range 
DisplayFamily_DisplayModel Size of LBR Stack Range of TOS Pointer

06_2AH 16 0 to 15

06_1AH, 06_1EH, 06_1FH, 
06_2EH, 06_25H, 06_2CH

16 0 to 15

06_17H, 06_1DH 4 0 to 3

06_0FH 4 0 to 3

06_1CH 8 0 to 7
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model-specific (see Chapter 34, “Model-Specific Registers (MSRs)” of Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3C for model-specific MSR 
addresses). 
• Last Branch Record (LBR) Stack — The LBR consists of N pairs of MSRs (N is 

listed in the LBR stack size column of Table 17-3) that store source and 
destination address of recent branches (see Figure 17-3): 

— MSR_LASTBRANCH_0_FROM_IP (address is model specific) through the next 
consecutive (N-1) MSR address store source addresses

— MSR_LASTBRANCH_0_TO_IP (address is model specific ) through the next 
consecutive (N-1) MSR address store destination addresses.

• Last Branch Record Top-of-Stack (TOS) Pointer — The lowest significant M 
bits of the TOS Pointer MSR (MSR_LASTBRANCH_TOS, address is model specific) 
contains an M-bit pointer to the MSR in the LBR stack that contains the most 
recent branch, interrupt, or exception recorded. The valid range of the M-bit POS 
pointer is given in Table 17-3.

17.4.8.1  LBR Stack and Intel® 64 Processors 
LBR MSRs are 64-bits. If IA-32e mode is disabled, only the lower 32-bits of the 
address is recorded. If IA-32e mode is enabled, the processor writes 64-bit values 
into the MSR. 

In 64-bit mode, last branch records store 64-bit addresses; in compatibility mode, 
the upper 32-bits of last branch records are cleared.

Software should query an architectural MSR IA32_PERF_CAPABILITIES[5:0] 
about the format of the address that is stored in the LBR stack. Four formats are 
defined by the following encoding:

— 000000B (32-bit record format) — Stores 32-bit offset in current CS of 
respective source/destination,

Figure 17-4.  64-bit Address Layout of LBR MSR 

63

Source Address

0

063

Destination Address

MSR_LASTBRANCH_0_FROM_IP through MSR_LASTBRANCH_(N-1)_FROM_IP

MSR_LASTBRANCH_0_TO_IP through MSR_LASTBRANCH_(N-1)_TO_IP
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— 000001B (64-bit LIP record format) — Stores 64-bit linear address of 
respective source/destination,

— 000010B (64-bit EIP record format) — Stores 64-bit offset (effective 
address) of respective source/destination.

— 000011B (64-bit EIP record format) and Flags — Stores 64-bit offset 
(effective address) of respective source/destination. LBR flags are supported 
in the upper bits of ‘FROM’ register in the LBR stack. See LBR stack details 
below for flag support and definition.

Processor’s support for the architectural MSR IA32_PERF_CAPABILITIES is 
provided by CPUID.01H:ECX[PERF_CAPAB_MSR] (bit 15).

17.4.8.2  LBR Stack and IA-32 Processors 
The LBR MSRs in IA-32 processors introduced prior to Intel 64 architecture store the 
32-bit “To Linear Address” and “From Linear Address“ using the high and low half of 
each 64-bit MSR. 

17.4.8.3  Last Exception Records and Intel 64 Architecture
Intel 64 and IA-32 processors also provide MSRs that store the branch record for the 
last branch taken prior to an exception or an interrupt. The location of the last excep-
tion record (LER) MSRs are model specific. The MSRs that store last exception 
records are 64-bits. If IA-32e mode is disabled, only the lower 32-bits of the address 
is recorded. If IA-32e mode is enabled, the processor writes 64-bit values into the 
MSR. In 64-bit mode, last exception records store 64-bit addresses; in compatibility 
mode, the upper 32-bits of last exception records are cleared.

17.4.9 BTS and DS Save Area
The Debug store (DS) feature flag (bit 21), returned by CPUID.1:EDX[21] Indicates 
that the processor provides the debug store (DS) mechanism. This mechanism 
allows BTMs to be stored in a memory-resident BTS buffer. See Section 17.4.5, 
“Branch Trace Store (BTS).” Precise event-based sampling (PEBS, see Section 
18.4.4, “Precise Event Based Sampling (PEBS),”) also uses the DS save area 
provided by debug store mechanism. When CPUID.1:EDX[21] is set, the following 
BTS facilities are available:
• The BTS_UNAVAILABLE flag in the IA32_MISC_ENABLE MSR indicates (when 

clear) the availability of the BTS facilities, including the ability to set the BTS and 
BTINT bits in the MSR_DEBUGCTLA MSR.

• The IA32_DS_AREA MSR can be programmed to point to the DS save area. 

The debug store (DS) save area is a software-designated area of memory that is 
used to collect the following two types of information:
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• Branch records — When the BTS flag in the IA32_DEBUGCTL MSR is set, a 
branch record is stored in the BTS buffer in the DS save area whenever a taken 
branch, interrupt, or exception is detected. 

• PEBS records — When a performance counter is configured for PEBS, a PEBS 
record is stored in the PEBS buffer in the DS save area after the counter overflow 
occurs. This record contains the architectural state of the processor (state of the 
8 general purpose registers, EIP register, and EFLAGS register) at the next 
occurrence of the PEBS event that caused the counter to overflow. When the 
state information has been logged, the counter is automatically reset to a 
preselected value, and event counting begins again. 

NOTE
On processors based on Intel Core microarchitecture and for Intel 
Atom processor family, PEBS is supported only for a subset of the 
performance events. 

NOTES
DS save area and recording mechanism is not available in the SMM. 
The feature is disabled on transition to the SMM mode. Similarly DS 
recording is disabled on the generation of a machine check exception 
and is cleared on processor RESET and INIT. DS recording is available 
in real address mode.
The BTS and PEBS facilities may not be available on all processors. 
The availability of these facilities is indicated by the 
BTS_UNAVAILABLE and PEBS_UNAVAILABLE flags, respectively, in 
the IA32_MISC_ENABLE MSR (see Chapter 34).

The DS save area is divided into three parts (see Figure 17-5): buffer management 
area, branch trace store (BTS) buffer, and PEBS buffer. The buffer management area 
is used to define the location and size of the BTS and PEBS buffers. The processor 
then uses the buffer management area to keep track of the branch and/or PEBS 
records in their respective buffers and to record the performance counter reset value. 
The linear address of the first byte of the DS buffer management area is specified 
with the IA32_DS_AREA MSR.

The fields in the buffer management area are as follows: 
• BTS buffer base — Linear address of the first byte of the BTS buffer. This 

address should point to a natural doubleword boundary.
• BTS index — Linear address of the first byte of the next BTS record to be written 

to. Initially, this address should be the same as the address in the BTS buffer 
base field.

• BTS absolute maximum — Linear address of the next byte past the end of the 
BTS buffer. This address should be a multiple of the BTS record size (12 bytes) 
plus 1.
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• BTS interrupt threshold — Linear address of the BTS record on which an 
interrupt is to be generated. This address must point to an offset from the BTS 
buffer base that is a multiple of the BTS record size. Also, it must be several 
records short of the BTS absolute maximum address to allow a pending interrupt 
to be handled prior to processor writing the BTS absolute maximum record.

• PEBS buffer base — Linear address of the first byte of the PEBS buffer. This 
address should point to a natural doubleword boundary.

• PEBS index — Linear address of the first byte of the next PEBS record to be 
written to. Initially, this address should be the same as the address in the PEBS 
buffer base field.

Figure 17-5.  DS Save Area
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• PEBS absolute maximum — Linear address of the next byte past the end of the 
PEBS buffer. This address should be a multiple of the PEBS record size (40 bytes) 
plus 1.

• PEBS interrupt threshold — Linear address of the PEBS record on which an 
interrupt is to be generated. This address must point to an offset from the PEBS 
buffer base that is a multiple of the PEBS record size. Also, it must be several 
records short of the PEBS absolute maximum address to allow a pending 
interrupt to be handled prior to processor writing the PEBS absolute maximum 
record.

• PEBS counter reset value — A 40-bit value that the counter is to be reset to 
after state information has collected following counter overflow. This value allows 
state information to be collected after a preset number of events have been 
counted. 

Figures 17-6 shows the structure of a 12-byte branch record in the BTS buffer. The 
fields in each record are as follows:
• Last branch from — Linear address of the instruction from which the branch, 

interrupt, or exception was taken.
• Last branch to — Linear address of the branch target or the first instruction in 

the interrupt or exception service routine.
• Branch predicted — Bit 4 of field indicates whether the branch that was taken 

was predicted (set) or not predicted (clear).

Figures 17-7 shows the structure of the 40-byte PEBS records. Nominally the register 
values are those at the beginning of the instruction that caused the event. However, 
there are cases where the registers may be logged in a partially modified state. The 
linear IP field shows the value in the EIP register translated from an offset into the 
current code segment to a linear address.

Figure 17-6.  32-bit Branch Trace Record Format
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17.4.9.1  DS Save Area and IA-32e Mode Operation
When IA-32e mode is active (IA32_EFER.LMA = 1), the structure of the DS save area 
is shown in Figure 17-8. The organization of each field in IA-32e mode operation is 
similar to that of non-IA-32e mode operation. However, each field now stores a 
64-bit address. The IA32_DS_AREA MSR holds the 64-bit linear address of the first 
byte of the DS buffer management area. 

Figure 17-7.  PEBS Record Format
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When IA-32e mode is active, the structure of a branch trace record is similar to that 
shown in Figure 17-6, but each field is 8 bytes in length. This makes each BTS record 
24 bytes (see Figure 17-9). The structure of a PEBS record is similar to that shown in 
Figure 17-7, but each field is 8 bytes in length and architectural states include 
register R8 through R15. This makes the size of a PEBS record in 64-bit mode 144 
bytes (see Figure 17-10).

Figure 17-8.  IA-32e Mode DS Save Area
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Fields in the buffer management area of a DS save area are described in Section 
17.4.9. 

The format of a branch trace record and a PEBS record are the same as the 64-bit 
record formats shown in Figures 17-9 and Figures 17-10, with the exception that the 
branch predicted bit is not supported by Intel Core microarchitecture or Intel Atom 
microarchitecture. The 64-bit record formats for BTS and PEBS apply to DS save area 
for all operating modes. 

Figure 17-9.  64-bit Branch Trace Record Format

Figure 17-10.  64-bit PEBS Record Format
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The procedures used to program IA32_DEBUG_CTRL MSR to set up a BTS buffer or a 
CPL-qualified BTS are described in Section 17.4.9.3 and Section 17.4.9.4.

Required elements for writing a DS interrupt service routine are largely the same on 
processors that support using DS Save area for BTS or PEBS records. However, on 
processors based on Intel NetBurst® microarchitecture, re-enabling counting 
requires writing to CCCRs. But a DS interrupt service routine on processors based on 
Intel Core or Intel Atom microarchitecture should:
• Re-enable the enable bits in IA32_PERF_GLOBAL_CTRL MSR if it is servicing an 

overflow PMI due to PEBS.
• Clear overflow indications by writing to IA32_PERF_GLOBAL_OVF_CTRL when a 

counting configuration is changed. This includes bit 62 (ClrOvfBuffer) and the 
overflow indication of counters used in either PEBS or general-purpose counting 
(specifically: bits 0 or 1; see Figures 18-3).

17.4.9.2  Setting Up the DS Save Area
To save branch records with the BTS buffer, the DS save area must first be set up in 
memory as described in the following procedure (See Section 18.4.4.1, “Setting up 
the PEBS Buffer,” for instructions for setting up a PEBS buffer, respectively, in the DS 
save area):

1. Create the DS buffer management information area in memory (see Section 
17.4.9, “BTS and DS Save Area,” and Section 17.4.9.1, “DS Save Area and IA-
32e Mode Operation”). Also see the additional notes in this section.

2. Write the base linear address of the DS buffer management area into the 
IA32_DS_AREA MSR. 

3. Set up the performance counter entry in the xAPIC LVT for fixed delivery and 
edge sensitive. See Section 10.5.1, “Local Vector Table.”

4. Establish an interrupt handler in the IDT for the vector associated with the 
performance counter entry in the xAPIC LVT.

5. Write an interrupt service routine to handle the interrupt. See Section 17.4.9.5, 
“Writing the DS Interrupt Service Routine.”

The following restrictions should be applied to the DS save area.
• The three DS save area sections should be allocated from a non-paged pool, and 

marked accessed and dirty. It is the responsibility of the operating system to 
keep the pages that contain the buffer present and to mark them accessed and 
dirty. The implication is that the operating system cannot do “lazy” page-table 
entry propagation for these pages.

• The DS save area can be larger than a page, but the pages must be mapped to 
contiguous linear addresses. The buffer may share a page, so it need not be 
aligned on a 4-KByte boundary. For performance reasons, the base of the buffer 
must be aligned on a doubleword boundary and should be aligned on a cache line 
boundary. 
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• It is recommended that the buffer size for the BTS buffer and the PEBS buffer be 
an integer multiple of the corresponding record sizes.

• The precise event records buffer should be large enough to hold the number of 
precise event records that can occur while waiting for the interrupt to be 
serviced.

• The DS save area should be in kernel space. It must not be on the same page as 
code, to avoid triggering self-modifying code actions.

• There are no memory type restrictions on the buffers, although it is 
recommended that the buffers be designated as WB memory type for 
performance considerations.

• Either the system must be prevented from entering A20M mode while DS save 
area is active, or bit 20 of all addresses within buffer bounds must be 0.

• Pages that contain buffers must be mapped to the same physical addresses for all 
processes, such that any change to control register CR3 will not change the DS 
addresses. 

• The DS save area is expected to used only on systems with an enabled APIC. The 
LVT Performance Counter entry in the APCI must be initialized to use an interrupt 
gate instead of the trap gate.

17.4.9.3  Setting Up the BTS Buffer
Three flags in the MSR_DEBUGCTLA MSR (see Table 17-4), IA32_DEBUGCTL (see 
Figure 17-3), or MSR_DEBUGCTLB (see Figure 17-16) control the generation of 
branch records and storing of them in the BTS buffer; these are TR, BTS, and BTINT. 
The TR flag enables the generation of BTMs. The BTS flag determines whether the 
BTMs are sent out on the system bus (clear) or stored in the BTS buffer (set). BTMs 
cannot be simultaneously sent to the system bus and logged in the BTS buffer. The 
BTINT flag enables the generation of an interrupt when the BTS buffer is full. When 
this flag is clear, the BTS buffer is a circular buffer.

The following procedure describes how to set up a DS Save area to collect branch 
records in the BTS buffer:

1. Place values in the BTS buffer base, BTS index, BTS absolute maximum, and BTS 
interrupt threshold fields of the DS buffer management area to set up the BTS 
buffer in memory.

Table 17-4.   IA32_DEBUGCTL Flag Encodings 
TR BTS BTINT Description

0 X X Branch trace messages (BTMs) off

1 0 X Generate BTMs

1 1 0 Store BTMs in the BTS buffer, used here as a circular buffer

1 1 1 Store BTMs in the BTS buffer, and generate an interrupt when 
the buffer is nearly full
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2. Set the TR and BTS flags in the IA32_DEBUGCTL for Intel Core Solo and Intel 
Core Duo processors or later processors (or MSR_DEBUGCTLA MSR for 
processors based on Intel NetBurst Microarchitecture; or MSR_DEBUGCTLB for 
Pentium M processors).

3. Clear the BTINT flag in the corresponding IA32_DEBUGCTL (or MSR_DEBUGCTLA 
MSR; or MSR_DEBUGCTLB) if a circular BTS buffer is desired.

NOTES
If the buffer size is set to less than the minimum allowable value (i.e. 
BTS absolute maximum < 1 + size of BTS record), the results of BTS 
is undefined.
In order to prevent generating an interrupt, when working with 
circular BTS buffer, SW need to set BTS interrupt threshold to a value 
greater than BTS absolute maximum (fields of the DS buffer 
management area). It's not enough to clear the BTINT flag itself only. 

17.4.9.4  Setting Up CPL-Qualified BTS 
If the processor supports CPL-qualified last branch recording mechanism, the gener-
ation of branch records and storing of them in the BTS buffer are determined by: TR, 
BTS, BTS_OFF_OS, BTS_OFF_USR, and BTINT. The encoding of these five bits are 
shown in Table 17-5.

Table 17-5.  CPL-Qualified Branch Trace Store Encodings 
TR BTS BTS_OFF_OS BTS_OFF_USR BTINT Description

0 X X X X Branch trace messages (BTMs) 
off

1 0 X X X Generates BTMs but do not 
store BTMs

1 1 0 0 0 Store all BTMs in the BTS buffer, 
used here as a circular buffer

1 1 1 0 0 Store BTMs with CPL > 0 in the 
BTS buffer

1 1 0 1 0 Store BTMs with CPL = 0 in the 
BTS buffer

1 1 1 1 X Generate BTMs but do not store 
BTMs

1 1 0 0 1 Store all BTMs in the BTS buffer; 
generate an interrupt when the 
buffer is nearly full
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17.4.9.5  Writing the DS Interrupt Service Routine
The BTS, non-precise event-based sampling, and PEBS facilities share the same 
interrupt vector and interrupt service routine (called the debug store interrupt 
service routine or DS ISR). To handle BTS, non-precise event-based sampling, and 
PEBS interrupts: separate handler routines must be included in the DS ISR. Use the 
following guidelines when writing a DS ISR to handle BTS, non-precise event-based 
sampling, and/or PEBS interrupts.
• The DS interrupt service routine (ISR) must be part of a kernel driver and operate 

at a current privilege level of 0 to secure the buffer storage area.
• Because the BTS, non-precise event-based sampling, and PEBS facilities share 

the same interrupt vector, the DS ISR must check for all the possible causes of 
interrupts from these facilities and pass control on to the appropriate handler. 

BTS and PEBS buffer overflow would be the sources of the interrupt if the buffer 
index matches/exceeds the interrupt threshold specified. Detection of non-
precise event-based sampling as the source of the interrupt is accomplished by 
checking for counter overflow.

• There must be separate save areas, buffers, and state for each processor in an 
MP system.

• Upon entering the ISR, branch trace messages and PEBS should be disabled to 
prevent race conditions during access to the DS save area. This is done by 
clearing TR flag in the IA32_DEBUGCTL (or MSR_DEBUGCTLA MSR) and by 
clearing the precise event enable flag in the MSR_PEBS_ENABLE MSR. These 
settings should be restored to their original values when exiting the ISR. 

• The processor will not disable the DS save area when the buffer is full and the 
circular mode has not been selected. The current DS setting must be retained 
and restored by the ISR on exit.

• After reading the data in the appropriate buffer, up to but not including the 
current index into the buffer, the ISR must reset the buffer index to the beginning 
of the buffer. Otherwise, everything up to the index will look like new entries upon 
the next invocation of the ISR.

1 1 1 0 1 Store BTMs with CPL > 0 in the 
BTS buffer; generate an 
interrupt when the buffer is 
nearly full

1 1 0 1 1 Store BTMs with CPL = 0 in the 
BTS buffer; generate an 
interrupt when the buffer is 
nearly full

Table 17-5.  CPL-Qualified Branch Trace Store Encodings  (Contd.)
TR BTS BTS_OFF_OS BTS_OFF_USR BTINT Description
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• The ISR must clear the mask bit in the performance counter LVT entry.
• The ISR must re-enable the counters to count via 

IA32_PERF_GLOBAL_CTRL/IA32_PERF_GLOBAL_OVF_CTRL if it is servicing an 
overflow PMI due to PEBS (or via CCCR's ENABLE bit on processor based on Intel 
NetBurst microarchitecture).

• The Pentium 4 Processor and Intel Xeon Processor mask PMIs upon receiving an 
interrupt. Clear this condition before leaving the interrupt handler.

17.5 LAST BRANCH, INTERRUPT, AND EXCEPTION 
RECORDING (INTEL® CORE™2 DUO AND INTEL® 
ATOM™ PROCESSOR FAMILY)

The Intel Core 2 Duo processor family and Intel Xeon processors based on Intel Core 
microarchitecture or enhanced Intel Core microarchitecture provide last branch 
interrupt and exception recording. The facilities described in this section also apply to 
Intel Atom processor family. These capabilities are similar to those found in Pentium 
4 processors, including support for the following facilities:
• Debug Trace and Branch Recording Control — The IA32_DEBUGCTL MSR 

provide bit fields for software to configure mechanisms related to debug trace, 
branch recording, branch trace store, and performance counter operations. See 
Section 17.4.1 for a description of the flags. See Figure 17-3 for the MSR layout.

• Last branch record (LBR) stack — There are a collection of MSR pairs that 
store the source and destination addresses related to recently executed 
branches. See Section 17.5.1. 

• Monitoring and single-stepping of branches, exceptions, and interrupts

— See Section 17.4.2 and Section 17.4.3. In addition, the ability to freeze the 
LBR stack on a PMI request is available.

— The Intel Atom processor family clears the TR flag when the 
FREEZE_LBRS_ON_PMI flag is set.

• Branch trace messages — See Section 17.4.4. 
• Last exception records — See Section 17.8.3. 
• Branch trace store and CPL-qualified BTS — See Section 17.4.5.
• FREEZE_LBRS_ON_PMI flag (bit 11) — see Section 17.4.7. 
• FREEZE_PERFMON_ON_PMI flag (bit 12) — see Section 17.4.7. 
• FREEZE_WHILE_SMM_EN (bit 14) — FREEZE_WHILE_SMM_EN is supported 

if IA32_PERF_CAPABILITIES.FREEZE_WHILE_SMM[Bit 12] is reporting 1. See 
Section 17.4.1.
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17.5.1 LBR Stack 
The last branch record stack and top-of-stack (TOS) pointer MSRs are supported 
across Intel Core 2, Intel Xeon and Intel Atom processor families. 

Four pairs of MSRs are supported in the LBR stack for Intel Core 2 and Intel Xeon 
processor families:
• Last Branch Record (LBR) Stack 

— MSR_LASTBRANCH_0_FROM_IP (address 40H) through 
MSR_LASTBRANCH_3_FROM_IP (address 43H) store source addresses

— MSR_LASTBRANCH_0_TO_IP (address 60H) through 
MSR_LASTBRANCH_3_TO_IP (address 63H) store destination addresses

• Last Branch Record Top-of-Stack (TOS) Pointer — The lowest significant 2 
bits of the TOS Pointer MSR (MSR_LASTBRANCH_TOS, address 1C9H) contains a 
pointer to the MSR in the LBR stack that contains the most recent branch, 
interrupt, or exception recorded.

Eight pairs of MSRs are supported in the LBR stack for Intel Atom processors:
• Last Branch Record (LBR) Stack 

— MSR_LASTBRANCH_0_FROM_IP (address 40H) through 
MSR_LASTBRANCH_7_FROM_IP (address 47H) store source addresses

— MSR_LASTBRANCH_0_TO_IP (address 60H) through 
MSR_LASTBRANCH_7_TO_IP (address 67H) store destination addresses

• Last Branch Record Top-of-Stack (TOS) Pointer — The lowest significant 3 
bits of the TOS Pointer MSR (MSR_LASTBRANCH_TOS, address 1C9H) contains a 
pointer to the MSR in the LBR stack that contains the most recent branch, 
interrupt, or exception recorded.

For compatibility, the MSR_LER_TO_LIP and the MSR_LER_FROM_LIP MSRs) dupli-
cate functions of the LastExceptionToIP and LastExceptionFromIP MSRs found in P6 
family processors.

17.6 LAST BRANCH, INTERRUPT, AND EXCEPTION 
RECORDING FOR PROCESSORS BASED ON INTEL® 
MICROARCHITECTURE CODE NAME NEHALEM

The processors based on Intel® microarchitecture code name Nehalem and Intel® 
microarchitecture code name Westmere support last branch interrupt and exception 
recording. These capabilities are similar to those found in Intel Core 2 processors and 
adds additional capabilities:
• Debug Trace and Branch Recording Control — The IA32_DEBUGCTL MSR 

provides bit fields for software to configure mechanisms related to debug trace, 
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branch recording, branch trace store, and performance counter operations. See 
Section 17.4.1 for a description of the flags. See Figure 17-11 for the MSR layout. 

• Last branch record (LBR) stack — There are 16 MSR pairs that store the 
source and destination addresses related to recently executed branches. See 
Section 17.6.1.

• Monitoring and single-stepping of branches, exceptions, and interrupts 
— See Section 17.4.2 and Section 17.4.3. In addition, the ability to freeze the 
LBR stack on a PMI request is available.

• Branch trace messages — The IA32_DEBUGCTL MSR provides bit fields for 
software to enable each logical processor to generate branch trace messages. 
See Section 17.4.4. However, not all BTM messages are observable using the 
Intel® QPI link.

• Last exception records — See Section 17.8.3. 
• Branch trace store and CPL-qualified BTS — See Section 17.4.6 and Section 

17.4.5.
• FREEZE_LBRS_ON_PMI flag (bit 11) — see Section 17.4.7. 
• FREEZE_PERFMON_ON_PMI flag (bit 12) — see Section 17.4.7. 
• UNCORE_PMI_EN (bit 13) — When set. this logical processor is enabled to 

receive an counter overflow interrupt form the uncore.
• FREEZE_WHILE_SMM_EN (bit 14) — FREEZE_WHILE_SMM_EN is supported 

if IA32_PERF_CAPABILITIES.FREEZE_WHILE_SMM[Bit 12] is reporting 1. See 
Section 17.4.1.

Processors based on Intel microarchitecture code name Nehalem provide additional 
capabilities:
• Independent control of uncore PMI — The IA32_DEBUGCTL MSR provides a 

bit field (see Figure 17-11) for software to enable each logical processor to 
receive an uncore counter overflow interrupt.

• LBR filtering — Processors based on Intel microarchitecture code name 
Nehalem support filtering of LBR based on combination of CPL and branch type 
conditions. When LBR filtering is enabled, the LBR stack only captures the subset 
of branches that are specified by MSR_LBR_SELECT.
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17.6.1 LBR Stack
Processors based on Intel microarchitecture code name Nehalem provide 16 pairs of 
MSR to record last branch record information. The layout of each MSR pair is shown 
in Table 17-6 and Table 17-7.

Figure 17-11.  IA32_DEBUGCTL MSR for Processors based 
on Intel microarchitecture code name Nehalem

Table 17-6.   IA32_LASTBRANCH_x_FROM_IP 
Bit Field Bit Offset Access Description

Data 47:0 R/O The linear address of the branch instruction itself, 
this is the “branch from“ address.

SIGN_EXt 62:48 R/0 Signed extension of bit 47 of this register.

MISPRED 63 R/O When set, indicates either the target of the branch 
was mispredicted and/or the direction (taken/non-
taken) was mispredicted; otherwise, the target 
branch was predicted.

Table 17-7.   IA32_LASTBRANCH_x_TO_IP 
Bit Field Bit Offset Access Description

Data 47:0 R/O The linear address of the target of the branch 
instruction itself, this is the “branch to“ address.
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BTINT — Branch trace interrupt
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Vol. 3B 17-35



DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER
Processors based on Intel microarchitecture code name Nehalem have an LBR MSR 
Stack as shown in Table 17-8.

Table 17-8.  LBR Stack Size and TOS Pointer Range

17.6.2 Filtering of Last Branch Records
MSR_LBR_SELECT is cleared to zero at RESET, and LBR filtering is disabled, i.e. all 
branches will be captured. MSR_LBR_SELECT provides bit fields to specify the condi-
tions of subsets of branches that will not be captured in the LBR. The layout of 
MSR_LBR_SELECT is shown in Table 17-9.

SIGN_EXt 63:48 R/0 Signed extension of bit 47 of this register.

DisplayFamily_DisplayModel Size of LBR Stack Range of TOS Pointer

06_1AH 16 0 to 15

Table 17-9.   MSR_LBR_SELECT for Intel microarchitecture code name Nehalem
Bit Field Bit Offset Access Description

CPL_EQ_0 0 R/W When set, do not capture branches occurring in ring 0

CPL_NEQ_0 1 R/W When set, do not capture branches occurring in ring 
>0

JCC 2 R/W When set, do not capture conditional branches

NEAR_REL_CALL 3 R/W When set, do not capture near relative calls

NEAR_IND_CALL 4 R/W When set, do not capture near indirect calls

NEAR_RET 5 R/W When set, do not capture near returns

NEAR_IND_JMP 6 R/W When set, do not capture near indirect jumps

NEAR_REL_JMP 7 R/W When set, do not capture near relative jumps 

FAR_BRANCH 8 R/W When set, do not capture far branches

Reserved 63:9 Must be zero

Table 17-7.   IA32_LASTBRANCH_x_TO_IP  (Contd.)
Bit Field Bit Offset Access Description
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17.7 LAST BRANCH, INTERRUPT, AND EXCEPTION 
RECORDING FOR PROCESSORS BASED ON INTEL® 
MICROARCHITECTURE CODE NAME SANDY BRIDGE

Generally, all of the last branch record, interrupt and exception recording facility 
described in Section 17.6, “Last Branch, Interrupt, and Exception Recording for 
Processors based on Intel® Microarchitecture code name Nehalem”, apply to proces-
sors based on Intel® microarchitecture code name Sandy Bridge.

One difference of note is that MSR_LBR_SELECT is shared between two logical 
processors in the same core. In Intel microarchitecture code name Sandy Bridge, 
each logical processor has its own MSR_LBR_SELECT. The filtering semantics for 
“Near_ind_jmp“ and “Near_rel_jmp“ has been enhanced, see Table 17-10.

17.8 LAST BRANCH, INTERRUPT, AND EXCEPTION 
RECORDING (PROCESSORS BASED ON INTEL 
NETBURST® MICROARCHITECTURE)

Pentium 4 and Intel Xeon processors based on Intel NetBurst microarchitecture 
provide the following methods for recording taken branches, interrupts and excep-
tions:

Table 17-10.   MSR_LBR_SELECT for Intel microarchitecture code name Sandy Bridge
Bit Field Bit Offset Access Description

CPL_EQ_0 0 R/W When set, do not capture branches occurring in ring 0

CPL_NEQ_0 1 R/W When set, do not capture branches occurring in ring 
>0

JCC 2 R/W When set, do not capture conditional branches

NEAR_REL_CALL 3 R/W When set, do not capture near relative calls

NEAR_IND_CALL 4 R/W When set, do not capture near indirect calls

NEAR_RET 5 R/W When set, do not capture near returns

NEAR_IND_JMP 6 R/W When set, do not capture near indirect jumps except 
near indirect calls and near returns

NEAR_REL_JMP 7 R/W When set, do not capture near relative jumps except 
near relative calls.

FAR_BRANCH 8 R/W When set, do not capture far branches

Reserved 63:9 Must be zero
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• Store branch records in the last branch record (LBR) stack MSRs for the most 
recent taken branches, interrupts, and/or exceptions in MSRs. A branch record 
consist of a branch-from and a branch-to instruction address. 

• Send the branch records out on the system bus as branch trace messages 
(BTMs).

• Log BTMs in a memory-resident branch trace store (BTS) buffer.

To support these functions, the processor provides the following MSRs and related 
facilities:
• MSR_DEBUGCTLA MSR — Enables last branch, interrupt, and exception 

recording; single-stepping on taken branches; branch trace messages (BTMs); 
and branch trace store (BTS). This register is named DebugCtlMSR in the P6 
family processors.

• Debug store (DS) feature flag (CPUID.1:EDX.DS[bit 21]) — Indicates that 
the processor provides the debug store (DS) mechanism, which allows BTMs to 
be stored in a memory-resident BTS buffer.

• CPL-qualified debug store (DS) feature flag (CPUID.1:ECX.DS-CPL[bit 
4]) — Indicates that the processor provides a CPL-qualified debug store (DS) 
mechanism, which allows software to selectively skip sending and storing BTMs, 
according to specified current privilege level settings, into a memory-resident 
BTS buffer.

• IA32_MISC_ENABLE MSR — Indicates that the processor provides the BTS 
facilities.

• Last branch record (LBR) stack — The LBR stack is a circular stack that 
consists of four MSRs (MSR_LASTBRANCH_0 through MSR_LASTBRANCH_3) for 
the Pentium 4 and Intel Xeon processor family [CPUID family 0FH, models 0H-
02H]. The LBR stack consists of 16 MSR pairs (MSR_LASTBRANCH_0_FROM_LIP 
through MSR_LASTBRANCH_15_FROM_LIP and MSR_LASTBRANCH_0_TO_LIP 
through MSR_LASTBRANCH_15_TO_LIP) for the Pentium 4 and Intel Xeon 
processor family [CPUID family 0FH, model 03H].

• Last branch record top-of-stack (TOS) pointer — The TOS Pointer MSR 
contains a 2-bit pointer (0-3) to the MSR in the LBR stack that contains the most 
recent branch, interrupt, or exception recorded for the Pentium 4 and Intel Xeon 
processor family [CPUID family 0FH, models 0H-02H]. This pointer becomes a 
4-bit pointer (0-15) for the Pentium 4 and Intel Xeon processor family [CPUID 
family 0FH, model 03H]. See also: Table 17-11, Figure 17-12, and Section 
17.8.2, “LBR Stack for Processors Based on Intel NetBurst® Microarchitecture.”

• Last exception record — See Section 17.8.3, “Last Exception Records.”

17.8.1 MSR_DEBUGCTLA MSR 
The MSR_DEBUGCTLA MSR enables and disables the various last branch recording 
mechanisms described in the previous section. This register can be written to using 
the WRMSR instruction, when operating at privilege level 0 or when in real-address 
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mode. A protected-mode operating system procedure is required to provide user 
access to this register. Figure 17-12 shows the flags in the MSR_DEBUGCTLA MSR. 
The functions of these flags are as follows:
• LBR (last branch/interrupt/exception) flag (bit 0) — When set, the 

processor records a running trace of the most recent branches, interrupts, and/or 
exceptions taken by the processor (prior to a debug exception being generated) 
in the last branch record (LBR) stack. Each branch, interrupt, or exception is 
recorded as a 64-bit branch record. The processor clears this flag whenever a 
debug exception is generated (for example, when an instruction or data 
breakpoint or a single-step trap occurs). See Section 17.8.2, “LBR Stack for 
Processors Based on Intel NetBurst® Microarchitecture.”

• BTF (single-step on branches) flag (bit 1) — When set, the processor treats 
the TF flag in the EFLAGS register as a “single-step on branches” flag rather than 
a “single-step on instructions” flag. This mechanism allows single-stepping the 
processor on taken branches. See Section 17.4.3, “Single-Stepping on 
Branches.”

• TR (trace message enable) flag (bit 2) — When set, branch trace messages 
are enabled. Thereafter, when the processor detects a taken branch, interrupt, or 
exception, it sends the branch record out on the system bus as a branch trace 
message (BTM). See Section 17.4.4, “Branch Trace Messages.”

• BTS (branch trace store) flag (bit 3) — When set, enables the BTS facilities to 
log BTMs to a memory-resident BTS buffer that is part of the DS save area. See 
Section 17.4.9, “BTS and DS Save Area.”

• BTINT (branch trace interrupt) flag (bits 4) — When set, the BTS facilities 
generate an interrupt when the BTS buffer is full. When clear, BTMs are logged to 
the BTS buffer in a circular fashion. See Section 17.4.5, “Branch Trace Store (BTS).”

• BTS_OFF_OS (disable ring 0 branch trace store) flag (bit 5) — When set, 
enables the BTS facilities to skip sending/logging CPL_0 BTMs to the memory-

Figure 17-12.  MSR_DEBUGCTLA MSR for Pentium 4 and Intel Xeon Processors

31

TR — Trace messages enable

BTINT — Branch trace interrupt

BTF — Single-step on branches
LBR — Last branch/interrupt/exception

5 4 3 2 1 0

BTS — Branch trace store

Reserved
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BTS_OFF_OS — Disable storing CPL_0 BTS
BTS_OFF_USR — Disable storing non-CPL_0 BTS
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resident BTS buffer. See Section 17.8.2, “LBR Stack for Processors Based on Intel 
NetBurst® Microarchitecture.”

• BTS_OFF_USR (disable ring 0 branch trace store) flag (bit 6) — When set, 
enables the BTS facilities to skip sending/logging non-CPL_0 BTMs to the 
memory-resident BTS buffer. See Section 17.8.2, “LBR Stack for Processors 
Based on Intel NetBurst® Microarchitecture.”

The initial implementation of BTS_OFF_USR and BTS_OFF_OS in 
MSR_DEBUGCTLA is shown in Figure 17-12. The BTS_OFF_USR and 
BTS_OFF_OS fields may be implemented on other model-specific 
debug control register at different locations.

See Chapter 34, “Model-Specific Registers (MSRs),” for a detailed description of each 
of the last branch recording MSRs.

17.8.2 LBR Stack for Processors Based on Intel NetBurst® 
Microarchitecture

The LBR stack is made up of LBR MSRs that are treated by the processor as a circular 
stack. The TOS pointer (MSR_LASTBRANCH_TOS MSR) points to the LBR MSR (or 
LBR MSR pair) that contains the most recent (last) branch record placed on the stack. 
Prior to placing a new branch record on the stack, the TOS is incremented by 1. When 
the TOS pointer reaches it maximum value, it wraps around to 0. See Table 17-11 
and Figure 17-12.

Table 17-11.  LBR MSR Stack Size and TOS Pointer Range for the Pentium® 4 and the 
Intel® Xeon® Processor Family

The registers in the LBR MSR stack and the MSR_LASTBRANCH_TOS MSR are read-
only and can be read using the RDMSR instruction.

DisplayFamily_DisplayModel Size of LBR Stack Range of TOS Pointer

Family 0FH, Models 0H-02H; 
MSRs at locations 1DBH-
1DEH.

4 0 to 3

Family 0FH, Models; MSRs at 
locations 680H-68FH.

16 0 to 15

Family 0FH, Model 03H; 
MSRs at locations 6C0H-
6CFH.

16 0 to 15
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Figure 17-13 shows the layout of a branch record in an LBR MSR (or MSR pair). Each 
branch record consists of two linear addresses, which represent the “from” and “to” 
instruction pointers for a branch, interrupt, or exception. The contents of the from 
and to addresses differ, depending on the source of the branch:
• Taken branch — If the record is for a taken branch, the “from” address is the 

address of the branch instruction and the “to” address is the target instruction of 
the branch. 

• Interrupt — If the record is for an interrupt, the “from” address the return 
instruction pointer (RIP) saved for the interrupt and the “to” address is the 
address of the first instruction in the interrupt handler routine. The RIP is the 
linear address of the next instruction to be executed upon returning from the 
interrupt handler.

• Exception — If the record is for an exception, the “from” address is the linear 
address of the instruction that caused the exception to be generated and the “to” 
address is the address of the first instruction in the exception handler routine.

Additional information is saved if an exception or interrupt occurs in conjunction with 
a branch instruction. If a branch instruction generates a trap type exception, two 
branch records are stored in the LBR stack: a branch record for the branch instruction 
followed by a branch record for the exception.

If a branch instruction is immediately followed by an interrupt, a branch record is 
stored in the LBR stack for the branch instruction followed by a record for the 
interrupt. 

Figure 17-13.  LBR MSR Branch Record Layout for the Pentium 4 
and Intel Xeon Processor Family
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17.8.3 Last Exception Records
The Pentium 4, Intel Xeon, Pentium M, Intel® Core™ Solo, Intel® Core™ Duo, Intel® 
Core™2 Duo, Intel® Core™ i7 and Intel® Atom™ processors provide two MSRs (the 
MSR_LER_TO_LIP and the MSR_LER_FROM_LIP MSRs) that duplicate the functions 
of the LastExceptionToIP and LastExceptionFromIP MSRs found in the P6 family 
processors. The MSR_LER_TO_LIP and MSR_LER_FROM_LIP MSRs contain a branch 
record for the last branch that the processor took prior to an exception or interrupt 
being generated.

17.9 LAST BRANCH, INTERRUPT, AND EXCEPTION 
RECORDING (INTEL® CORE™ SOLO AND INTEL® 
CORE™ DUO PROCESSORS)

Intel Core Solo and Intel Core Duo processors provide last branch interrupt and 
exception recording. This capability is almost identical to that found in Pentium 4 and 
Intel Xeon processors. There are differences in the stack and in some MSR names 
and locations. 

Note the following:
• IA32_DEBUGCTL MSR — Enables debug trace interrupt, debug trace store, 

trace messages enable, performance monitoring breakpoint flags, single 
stepping on branches, and last branch. IA32_DEBUGCTL MSR is located at 
register address 01D9H. 
See Figure 17-14 for the layout and the entries below for a description of the 
flags:

— LBR (last branch/interrupt/exception) flag (bit 0) — When set, the 
processor records a running trace of the most recent branches, interrupts, 
and/or exceptions taken by the processor (prior to a debug exception being 
generated) in the last branch record (LBR) stack. For more information, see 
the “Last Branch Record (LBR) Stack” below.

— BTF (single-step on branches) flag (bit 1) — When set, the processor 
treats the TF flag in the EFLAGS register as a “single-step on branches” flag 
rather than a “single-step on instructions” flag. This mechanism allows 
single-stepping the processor on taken branches. See Section 17.4.3, 
“Single-Stepping on Branches,” for more information about the BTF flag.

— TR (trace message enable) flag (bit 6) — When set, branch trace 
messages are enabled. When the processor detects a taken branch, 
interrupt, or exception; it sends the branch record out on the system bus as 
a branch trace message (BTM). See Section 17.4.4, “Branch Trace Messages,” 
for more information about the TR flag.
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— BTS (branch trace store) flag (bit 7) — When set, the flag enables BTS 
facilities to log BTMs to a memory-resident BTS buffer that is part of the DS 
save area. See Section 17.4.9, “BTS and DS Save Area.”

— BTINT (branch trace interrupt) flag (bits 8) — When set, the BTS 
facilities generate an interrupt when the BTS buffer is full. When clear, BTMs are 
logged to the BTS buffer in a circular fashion. See Section 17.4.5, “Branch Trace 
Store (BTS),” for a description of this mechanism.

• Debug store (DS) feature flag (bit 21), returned by the CPUID 
instruction — Indicates that the processor provides the debug store (DS) 
mechanism, which allows BTMs to be stored in a memory-resident BTS buffer. 
See Section 17.4.5, “Branch Trace Store (BTS).”

• Last Branch Record (LBR) Stack — The LBR stack consists of 8 MSRs 
(MSR_LASTBRANCH_0 through MSR_LASTBRANCH_7); bits 31-0 hold the ‘from’ 
address, bits 63-32 hold the ‘to’ address (MSR addresses start at 40H). See 
Figure 17-15.

• Last Branch Record Top-of-Stack (TOS) Pointer — The TOS Pointer MSR 
contains a 3-bit pointer (bits 2-0) to the MSR in the LBR stack that contains the 
most recent branch, interrupt, or exception recorded. For Intel Core Solo and 
Intel Core Duo processors, this MSR is located at register address 01C9H.

For compatibility, the Intel Core Solo and Intel Core Duo processors provide two 32-
bit MSRs (the MSR_LER_TO_LIP and the MSR_LER_FROM_LIP MSRs) that duplicate 
functions of the LastExceptionToIP and LastExceptionFromIP MSRs found in P6 family 
processors.

For details, see Section 17.8, “Last Branch, Interrupt, and Exception Recording 
(Processors based on Intel NetBurst® Microarchitecture),” and Section 34.10, “MSRs 
In Intel® Core™ Solo and Intel® Core™ Duo Processors”

Figure 17-14.  IA32_DEBUGCTL MSR for Intel Core Solo 
and Intel Core Duo Processors
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17.10 LAST BRANCH, INTERRUPT, AND EXCEPTION
RECORDING (PENTIUM M PROCESSORS)

Like the Pentium 4 and Intel Xeon processor family, Pentium M processors provide 
last branch interrupt and exception recording. The capability operates almost identi-
cally to that found in Pentium 4 and Intel Xeon processors. There are differences in 
the shape of the stack and in some MSR names and locations. Note the following:
• MSR_DEBUGCTLB MSR — Enables debug trace interrupt, debug trace store, 

trace messages enable, performance monitoring breakpoint flags, single 
stepping on branches, and last branch. For Pentium M processors, this MSR is 
located at register address 01D9H. See Figure 17-16 and the entries below for a 
description of the flags.

— LBR (last branch/interrupt/exception) flag (bit 0) — When set, the 
processor records a running trace of the most recent branches, interrupts, 
and/or exceptions taken by the processor (prior to a debug exception being 
generated) in the last branch record (LBR) stack. For more information, see 
the “Last Branch Record (LBR) Stack” bullet below.

— BTF (single-step on branches) flag (bit 1) — When set, the processor 
treats the TF flag in the EFLAGS register as a “single-step on branches” flag 
rather than a “single-step on instructions” flag. This mechanism allows 
single-stepping the processor on taken branches. See Section 17.4.3, 
“Single-Stepping on Branches,” for more information about the BTF flag.

— PBi (performance monitoring/breakpoint pins) flags (bits 5-2) — 
When these flags are set, the performance monitoring/breakpoint pins on the 
processor (BP0#, BP1#, BP2#, and BP3#) report breakpoint matches in the 
corresponding breakpoint-address registers (DR0 through DR3). The 
processor asserts then deasserts the corresponding BPi# pin when a 
breakpoint match occurs. When a PBi flag is clear, the performance 
monitoring/breakpoint pins report performance events. Processor execution 
is not affected by reporting performance events.

Figure 17-15.  LBR Branch Record Layout for the Intel Core Solo 
and Intel Core Duo Processor
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— TR (trace message enable) flag (bit 6) — When set, branch trace 
messages are enabled. When the processor detects a taken branch, 
interrupt, or exception, it sends the branch record out on the system bus as a 
branch trace message (BTM). See Section 17.4.4, “Branch Trace Messages,” 
for more information about the TR flag.

— BTS (branch trace store) flag (bit 7) — When set, enables the BTS 
facilities to log BTMs to a memory-resident BTS buffer that is part of the DS 
save area. See Section 17.4.9, “BTS and DS Save Area.”

— BTINT (branch trace interrupt) flag (bits 8) — When set, the BTS 
facilities generate an interrupt when the BTS buffer is full. When clear, BTMs are 
logged to the BTS buffer in a circular fashion. See Section 17.4.5, “Branch Trace 
Store (BTS),” for a description of this mechanism.

• Debug store (DS) feature flag (bit 21), returned by the CPUID 
instruction — Indicates that the processor provides the debug store (DS) 
mechanism, which allows BTMs to be stored in a memory-resident BTS buffer. 
See Section 17.4.5, “Branch Trace Store (BTS).”

• Last Branch Record (LBR) Stack — The LBR stack consists of 8 MSRs 
(MSR_LASTBRANCH_0 through MSR_LASTBRANCH_7); bits 31-0 hold the ‘from’ 
address, bits 63-32 hold the ‘to’ address. For Pentium M Processors, these pairs 
are located at register addresses 040H-047H. See Figure 17-17.

• Last Branch Record Top-of-Stack (TOS) Pointer — The TOS Pointer MSR 
contains a 3-bit pointer (bits 2-0) to the MSR in the LBR stack that contains the 
most recent branch, interrupt, or exception recorded. For Pentium M Processors, 
this MSR is located at register address 01C9H.

Figure 17-16.  MSR_DEBUGCTLB MSR for Pentium M Processors
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For more detail on these capabilities, see Section 17.8.3, “Last Exception Records,” 
and Section 34.11, “MSRs In the Pentium M Processor.”

17.11 LAST BRANCH, INTERRUPT, AND EXCEPTION
RECORDING (P6 FAMILY PROCESSORS)

The P6 family processors provide five MSRs for recording the last branch, interrupt, 
or exception taken by the processor: DEBUGCTLMSR, LastBranchToIP, LastBranch-
FromIP, LastExceptionToIP, and LastExceptionFromIP. These registers can be used to 
collect last branch records, to set breakpoints on branches, interrupts, and excep-
tions, and to single-step from one branch to the next.

See Chapter 34, “Model-Specific Registers (MSRs),” for a detailed description of each 
of the last branch recording MSRs.

17.11.1 DEBUGCTLMSR Register
The version of the DEBUGCTLMSR register found in the P6 family processors enables 
last branch, interrupt, and exception recording; taken branch breakpoints; the 
breakpoint reporting pins; and trace messages. This register can be written to using 
the WRMSR instruction, when operating at privilege level 0 or when in real-address 
mode. A protected-mode operating system procedure is required to provide user 
access to this register. Figure 17-18 shows the flags in the DEBUGCTLMSR register 
for the P6 family processors. The functions of these flags are as follows:
• LBR (last branch/interrupt/exception) flag (bit 0) — When set, the 

processor records the source and target addresses (in the LastBranchToIP, 
LastBranchFromIP, LastExceptionToIP, and LastExceptionFromIP MSRs) for the 
last branch and the last exception or interrupt taken by the processor prior to a 
debug exception being generated. The processor clears this flag whenever a 
debug exception, such as an instruction or data breakpoint or single-step trap 
occurs.

Figure 17-17.  LBR Branch Record Layout for the Pentium M Processor
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• BTF (single-step on branches) flag (bit 1) — When set, the processor treats 
the TF flag in the EFLAGS register as a “single-step on branches” flag. See 
Section 17.4.3, “Single-Stepping on Branches.”

• PBi (performance monitoring/breakpoint pins) flags (bits 2 through 5) 
— When these flags are set, the performance monitoring/breakpoint pins on the 
processor (BP0#, BP1#, BP2#, and BP3#) report breakpoint matches in the 
corresponding breakpoint-address registers (DR0 through DR3). The processor 
asserts then deasserts the corresponding BPi# pin when a breakpoint match 
occurs. When a PBi flag is clear, the performance monitoring/breakpoint pins 
report performance events. Processor execution is not affected by reporting 
performance events.

• TR (trace message enable) flag (bit 6) — When set, trace messages are 
enabled as described in Section 17.4.4, “Branch Trace Messages.” Setting this 
flag greatly reduces the performance of the processor. When trace messages are 
enabled, the values stored in the LastBranchToIP, LastBranchFromIP, LastExcep-
tionToIP, and LastExceptionFromIP MSRs are undefined.

17.11.2 Last Branch and Last Exception MSRs
The LastBranchToIP and LastBranchFromIP MSRs are 32-bit registers for recording 
the instruction pointers for the last branch, interrupt, or exception that the processor 
took prior to a debug exception being generated. When a branch occurs, the 
processor loads the address of the branch instruction into the LastBranchFromIP MSR 
and loads the target address for the branch into the LastBranchToIP MSR. 

When an interrupt or exception occurs (other than a debug exception), the address 
of the instruction that was interrupted by the exception or interrupt is loaded into the 
LastBranchFromIP MSR and the address of the exception or interrupt handler that is 
called is loaded into the LastBranchToIP MSR.

The LastExceptionToIP and LastExceptionFromIP MSRs (also 32-bit registers) record 
the instruction pointers for the last branch that the processor took prior to an excep-

Figure 17-18.  DEBUGCTLMSR Register (P6 Family Processors)
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tion or interrupt being generated. When an exception or interrupt occurs, the 
contents of the LastBranchToIP and LastBranchFromIP MSRs are copied into these 
registers before the to and from addresses of the exception or interrupt are recorded 
in the LastBranchToIP and LastBranchFromIP MSRs.

These registers can be read using the RDMSR instruction.

Note that the values stored in the LastBranchToIP, LastBranchFromIP, LastException-
ToIP, and LastExceptionFromIP MSRs are offsets into the current code segment, as 
opposed to linear addresses, which are saved in last branch records for the Pentium 
4 and Intel Xeon processors.

17.11.3 Monitoring Branches, Exceptions, and Interrupts
When the LBR flag in the DEBUGCTLMSR register is set, the processor automatically 
begins recording branches that it takes, exceptions that are generated (except for 
debug exceptions), and interrupts that are serviced. Each time a branch, exception, 
or interrupt occurs, the processor records the to and from instruction pointers in the 
LastBranchToIP and LastBranchFromIP MSRs. In addition, for interrupts and excep-
tions, the processor copies the contents of the LastBranchToIP and LastBranch-
FromIP MSRs into the LastExceptionToIP and LastExceptionFromIP MSRs prior to 
recording the to and from addresses of the interrupt or exception.

When the processor generates a debug exception (#DB), it automatically clears the 
LBR flag before executing the exception handler, but does not touch the last branch 
and last exception MSRs. The addresses for the last branch, interrupt, or exception 
taken are thus retained in the LastBranchToIP and LastBranchFromIP MSRs and the 
addresses of the last branch prior to an interrupt or exception are retained in the 
LastExceptionToIP, and LastExceptionFromIP MSRs.

The debugger can use the last branch, interrupt, and/or exception addresses in 
combination with code-segment selectors retrieved from the stack to reset break-
points in the breakpoint-address registers (DR0 through DR3), allowing a backward 
trace from the manifestation of a particular bug toward its source. Because the 
instruction pointers recorded in the LastBranchToIP, LastBranchFromIP, LastExcepti-
onToIP, and LastExceptionFromIP MSRs are offsets into a code segment, software 
must determine the segment base address of the code segment associated with the 
control transfer to calculate the linear address to be placed in the breakpoint-address 
registers. The segment base address can be determined by reading the segment 
selector for the code segment from the stack and using it to locate the segment 
descriptor for the segment in the GDT or LDT. The segment base address can then be 
read from the segment descriptor.

Before resuming program execution from a debug-exception handler, the handler 
must set the LBR flag again to re-enable last branch and last exception/interrupt 
recording.
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17.12 TIME-STAMP COUNTER
The Intel 64 and IA-32 architectures (beginning with the Pentium processor) define a 
time-stamp counter mechanism that can be used to monitor and identify the relative 
time occurrence of processor events. The counter’s architecture includes the 
following components:
• TSC flag — A feature bit that indicates the availability of the time-stamp counter. 

The counter is available in an if the function CPUID.1:EDX.TSC[bit 4] = 1.
• IA32_TIME_STAMP_COUNTER MSR (called TSC MSR in P6 family and 

Pentium processors) — The MSR used as the counter.
• RDTSC instruction — An instruction used to read the time-stamp counter.
• TSD flag — A control register flag is used to enable or disable the time-stamp 

counter (enabled if CR4.TSD[bit 2] = 1).

The time-stamp counter (as implemented in the P6 family, Pentium, Pentium M, 
Pentium 4, Intel Xeon, Intel Core Solo and Intel Core Duo processors and later 
processors) is a 64-bit counter that is set to 0 following a RESET of the processor. 
Following a RESET, the counter increments even when the processor is halted by the 
HLT instruction or the external STPCLK# pin. Note that the assertion of the external 
DPSLP# pin may cause the time-stamp counter to stop.

Processor families increment the time-stamp counter differently:
• For Pentium M processors (family [06H], models [09H, 0DH]); for Pentium 4 

processors, Intel Xeon processors (family [0FH], models [00H, 01H, or 02H]); 
and for P6 family processors: the time-stamp counter increments with every 
internal processor clock cycle. 
The internal processor clock cycle is determined by the current core-clock to bus-
clock ratio. Intel® SpeedStep® technology transitions may also impact the 
processor clock.

• For Pentium 4 processors, Intel Xeon processors (family [0FH], models [03H and 
higher]); for Intel Core Solo and Intel Core Duo processors (family [06H], model 
[0EH]); for the Intel Xeon processor 5100 series and Intel Core 2 Duo processors 
(family [06H], model [0FH]); for Intel Core 2 and Intel Xeon processors (family 
[06H], DisplayModel [17H]); for Intel Atom processors (family [06H], 
DisplayModel [1CH]): the time-stamp counter increments at a constant rate. 
That rate may be set by the maximum core-clock to bus-clock ratio of the 
processor or may be set by the maximum resolved frequency at which the 
processor is booted. The maximum resolved frequency may differ from the 
maximum qualified frequency of the processor, see Section 18.12.5 for more 
detail.
The specific processor configuration determines the behavior. Constant TSC 
behavior ensures that the duration of each clock tick is uniform and supports the 
use of the TSC as a wall clock timer even if the processor core changes frequency. 
This is the architectural behavior moving forward.
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NOTE
To determine average processor clock frequency, Intel recommends 
the use of EMON logic to count processor core clocks over the period 
of time for which the average is required. See Section 18.12, 
“Counting Clocks,” and Chapter 19, “Performance-
Monitoring Events,” for more information.

The RDTSC instruction reads the time-stamp counter and is guaranteed to return a 
monotonically increasing unique value whenever executed, except for a 64-bit 
counter wraparound. Intel guarantees that the time-stamp counter will not wrap-
around within 10 years after being reset. The period for counter wrap is longer for 
Pentium 4, Intel Xeon, P6 family, and Pentium processors.

Normally, the RDTSC instruction can be executed by programs and procedures 
running at any privilege level and in virtual-8086 mode. The TSD flag allows use of 
this instruction to be restricted to programs and procedures running at privilege level 
0. A secure operating system would set the TSD flag during system initialization to 
disable user access to the time-stamp counter. An operating system that disables 
user access to the time-stamp counter should emulate the instruction through a 
user-accessible programming interface.

The RDTSC instruction is not serializing or ordered with other instructions. It does not 
necessarily wait until all previous instructions have been executed before reading the 
counter. Similarly, subsequent instructions may begin execution before the RDTSC 
instruction operation is performed.

The RDMSR and WRMSR instructions read and write the time-stamp counter, treating 
the time-stamp counter as an ordinary MSR (address 10H). In the Pentium 4, Intel 
Xeon, and P6 family processors, all 64-bits of the time-stamp counter are read using 
RDMSR (just as with RDTSC). When WRMSR is used to write the time-stamp counter 
on processors before family [0FH], models [03H, 04H]: only the low-order 32-bits of 
the time-stamp counter can be written (the high-order 32 bits are cleared to 0). For 
family [0FH], models [03H, 04H, 06H]; for family [06H]], model [0EH, 0FH]; for 
family [06H]], DisplayModel [17H, 1AH, 1CH, 1DH]: all 64 bits are writable.

17.12.1 Invariant TSC
The time stamp counter in newer processors may support an enhancement, referred 
to as invariant TSC. Processor’s support for invariant TSC is indicated by 
CPUID.80000007H:EDX[8]. 

The invariant TSC will run at a constant rate in all ACPI P-, C-. and T-states. This is 
the architectural behavior moving forward. On processors with invariant TSC 
support, the OS may use the TSC for wall clock timer services (instead of ACPI or 
HPET timers). TSC reads are much more efficient and do not incur the overhead 
associated with a ring transition or access to a platform resource.
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17.12.2 IA32_TSC_AUX Register and RDTSCP Support
Processors based on Intel microarchitecture code name Nehalem provide an auxiliary 
TSC register, IA32_TSC_AUX that is designed to be used in conjunction with 
IA32_TSC. IA32_TSC_AUX provides a 32-bit field that is initialized by privileged soft-
ware with a signature value (for example, a logical processor ID). 

The primary usage of IA32_TSC_AUX in conjunction with IA32_TSC is to allow soft-
ware to read the 64-bit time stamp in IA32_TSC and signature value in 
IA32_TSC_AUX with the instruction RDTSCP in an atomic operation. RDTSCP returns 
the 64-bit time stamp in EDX:EAX and the 32-bit TSC_AUX signature value in ECX. 
The atomicity of RDTSCP ensures that no context switch can occur between the reads 
of the TSC and TSC_AUX values.

Support for RDTSCP is indicated by CPUID.80000001H:EDX[27]. As with RDTSC 
instruction, non-ring 0 access is controlled by CR4.TSD (Time Stamp Disable flag).

User mode software can use RDTSCP to detect if CPU migration has occurred 
between successive reads of the TSC. It can also be used to adjust for per-CPU differ-
ences in TSC values in a NUMA system.
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CHAPTER 18
PERFORMANCE MONITORING

Intel 64 and IA-32 architectures provide facilities for monitoring performance.

18.1 PERFORMANCE MONITORING OVERVIEW
Performance monitoring was introduced in the Pentium processor with a set of 
model-specific performance-monitoring counter MSRs. These counters permit selec-
tion of processor performance parameters to be monitored and measured. The infor-
mation obtained from these counters can be used for tuning system and compiler 
performance. 

In Intel P6 family of processors, the performance monitoring mechanism was 
enhanced to permit a wider selection of events to be monitored and to allow greater 
control events to be monitored. Next, Pentium 4 and Intel Xeon processors intro-
duced a new performance monitoring mechanism and new set of performance 
events.

The performance monitoring mechanisms and performance events defined for the 
Pentium, P6 family, Pentium 4, and Intel Xeon processors are not architectural. They 
are all model specific (not compatible among processor families). Intel Core Solo and 
Intel Core Duo processors support a set of architectural performance events and a 
set of non-architectural performance events. Processors based on Intel Core 
microarchitecture and Intel® Atom™ microarchitecture support enhanced architec-
tural performance events and non-architectural performance events.

Starting with Intel Core Solo and Intel Core Duo processors, there are two classes of 
performance monitoring capabilities. The first class supports events for monitoring 
performance using counting or sampling usage. These events are non-architectural 
and vary from one processor model to another. They are similar to those available in 
Pentium M processors. These non-architectural performance monitoring events are 
specific to the microarchitecture and may change with enhancements. They are 
discussed in Section 18.3, “Performance Monitoring (Intel® Core™ Solo and Intel® 

Core™ Duo Processors).” Non-architectural events for a given microarchitecture can 
not be enumerated using CPUID; and they are listed in Chapter 19, “Performance-
Monitoring Events.”

The second class of performance monitoring capabilities is referred to as architec-
tural performance monitoring. This class supports the same counting and sampling 
usages, with a smaller set of available events. The visible behavior of architectural 
performance events is consistent across processor implementations. Availability of 
architectural performance monitoring capabilities is enumerated using the 
CPUID.0AH. These events are discussed in Section 18.2.

See also:
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— Section 18.2, “Architectural Performance Monitoring”

— Section 18.3, “Performance Monitoring (Intel® Core™ Solo and Intel® Core™ 

Duo Processors)”

— Section 18.4, “Performance Monitoring (Processors Based on Intel® Core™ 
Microarchitecture)”

— Section 18.5, “Performance Monitoring (Processors Based on Intel® Atom™ 
Microarchitecture)”

— Section 18.6, “Performance Monitoring for Processors Based on Intel® 

Microarchitecture Code Name Nehalem”

— Section 18.7, “Performance Monitoring for Processors Based on Intel® 

Microarchitecture Code Name Westmere”

— Section 18.8, “Performance Monitoring for Processors Based on Intel® 

Microarchitecture Code Name Sandy Bridge”

— Section 18.8.8, “Intel® Xeon® Processor E5 Family Uncore Performance 
Monitoring Facility”

— Section 18.10, “Performance Monitoring (Processors Based on Intel 
NetBurst® Microarchitecture)”

— Section 18.11, “Performance Monitoring and Intel Hyper-Threading 
Technology in Processors Based on Intel NetBurst® Microarchitecture”

— Section 18.14, “Performance Monitoring and Dual-Core Technology”

— Section 18.15, “Performance Monitoring on 64-bit Intel Xeon Processor MP 
with Up to 8-MByte L3 Cache”

— Section 18.17, “Performance Monitoring (P6 Family Processor)”

— Section 18.18, “Performance Monitoring (Pentium Processors)”

18.2 ARCHITECTURAL PERFORMANCE MONITORING
Performance monitoring events are architectural when they behave consistently 
across microarchitectures. Intel Core Solo and Intel Core Duo processors introduced 
architectural performance monitoring. The feature provides a mechanism for soft-
ware to enumerate performance events and provides configuration and counting 
facilities for events.

Architectural performance monitoring does allow for enhancement across processor 
implementations. The CPUID.0AH leaf provides version ID for each enhancement. 
Intel Core Solo and Intel Core Duo processors support base level functionality identi-
fied by version ID of 1. Processors based on Intel Core microarchitecture support, at 
a minimum, the base level functionality of architectural performance monitoring. 
Intel Core 2 Duo processor T 7700 and newer processors based on Intel Core 
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microarchitecture support both the base level functionality and enhanced architec-
tural performance monitoring identified by version ID of 2.

Intel Atom processor family supports the base level functionality, enhanced architec-
tural performance monitoring identified by version ID of 2 and version ID of 3 
(including two general-purpose performance counters, IA32_PMC0, IA32_PMC1). 
Intel Core i7 processor family supports the base level functionality, enhanced archi-
tectural performance monitoring identified by version ID of 2 and version ID of 3, 
(including four general-purpose performance counters, IA32_PMC0-IA32_PMC3). 

18.2.1 Architectural Performance Monitoring Version 1
Configuring an architectural performance monitoring event involves programming 
performance event select registers. There are a finite number of performance event 
select MSRs (IA32_PERFEVTSELx MSRs). The result of a performance monitoring 
event is reported in a performance monitoring counter (IA32_PMCx MSR). Perfor-
mance monitoring counters are paired with performance monitoring select registers.

Performance monitoring select registers and counters are architectural in the 
following respects:
• Bit field layout of IA32_PERFEVTSELx is consistent across microarchitectures.
• Addresses of IA32_PERFEVTSELx MSRs remain the same across microarchitec-

tures.
• Addresses of IA32_PMC MSRs remain the same across microarchitectures.
• Each logical processor has its own set of IA32_PERFEVTSELx and IA32_PMCx 

MSRs. Configuration facilities and counters are not shared between logical 
processors sharing a processor core.

Architectural performance monitoring provides a CPUID mechanism for enumerating 
the following information:
• Number of performance monitoring counters available in a logical processor 

(each IA32_PERFEVTSELx MSR is paired to the corresponding IA32_PMCx MSR)
• Number of bits supported in each IA32_PMCx 
• Number of architectural performance monitoring events supported in a logical 

processor

Software can use CPUID to discover architectural performance monitoring availability 
(CPUID.0AH). The architectural performance monitoring leaf provides an identifier 
corresponding to the version number of architectural performance monitoring avail-
able in the processor.

The version identifier is retrieved by querying CPUID.0AH:EAX[bits 7:0] (see 
Chapter 3, “Instruction Set Reference, A-L,” in the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 2A). If the version identifier is greater than 
zero, architectural performance monitoring capability is supported. Software queries 
the CPUID.0AH for the version identifier first; it then analyzes the value returned in 
CPUID.0AH.EAX, CPUID.0AH.EBX to determine the facilities available.
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In the initial implementation of architectural performance monitoring; software can 
determine how many IA32_PERFEVTSELx/ IA32_PMCx MSR pairs are supported per 
core, the bit-width of PMC, and the number of architectural performance monitoring 
events available.

18.2.1.1  Architectural Performance Monitoring Version 1 Facilities
Architectural performance monitoring facilities include a set of performance moni-
toring counters and performance event select registers. These MSRs have the 
following properties:
• IA32_PMCx MSRs start at address 0C1H and occupy a contiguous block of MSR 

address space; the number of MSRs per logical processor is reported using 
CPUID.0AH:EAX[15:8].

• IA32_PERFEVTSELx MSRs start at address 186H and occupy a contiguous block 
of MSR address space. Each performance event select register is paired with a 
corresponding performance counter in the 0C1H address block.

• The bit width of an IA32_PMCx MSR is reported using the 
CPUID.0AH:EAX[23:16]. This the number of valid bits for read operation. On 
write operations, the lower-order 32 bits of the MSR may be written with any 
value, and the high-order bits are sign-extended from the value of bit 31. 

• Bit field layout of IA32_PERFEVTSELx MSRs is defined architecturally.

See Figure 18-1 for the bit field layout of IA32_PERFEVTSELx MSRs. The bit fields 
are:
• Event select field (bits 0 through 7) — Selects the event logic unit used to 

detect microarchitectural conditions (see Table 18-1, for a list of architectural 
events and their 8-bit codes). The set of values for this field is defined architec-
turally; each value corresponds to an event logic unit for use with an architectural 
performance event. The number of architectural events is queried using 
CPUID.0AH:EAX. A processor may support only a subset of pre-defined values.
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• Unit mask (UMASK) field (bits 8 through 15) — These bits qualify the 
condition that the selected event logic unit detects. Valid UMASK values for each 
event logic unit are specific to the unit. For each architectural performance event, 
its corresponding UMASK value defines a specific microarchitectural condition. 
A pre-defined microarchitectural condition associated with an architectural event 
may not be applicable to a given processor. The processor then reports only a 
subset of pre-defined architectural events. Pre-defined architectural events are 
listed in Table 18-1; support for pre-defined architectural events is enumerated 
using CPUID.0AH:EBX. Architectural performance events available in the initial 
implementation are listed in Table 19-1.

• USR (user mode) flag (bit 16) — Specifies that the selected microarchitectural 
condition is counted only when the logical processor is operating at privilege 
levels 1, 2 or 3. This flag can be used with the OS flag.

• OS (operating system mode) flag (bit 17) — Specifies that the selected 
microarchitectural condition is counted only when the logical processor is 
operating at privilege level 0. This flag can be used with the USR flag.

• E (edge detect) flag (bit 18) — Enables (when set) edge detection of the 
selected microarchitectural condition. The logical processor counts the number of 
deasserted to asserted transitions for any condition that can be expressed by the 
other fields. The mechanism does not permit back-to-back assertions to be 
distinguished. 
This mechanism allows software to measure not only the fraction of time spent in 
a particular state, but also the average length of time spent in such a state (for 
example, the time spent waiting for an interrupt to be serviced).

Figure 18-1.  Layout of IA32_PERFEVTSELx MSRs
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• PC (pin control) flag (bit 19) — When set, the logical processor toggles the 
PMi pins and increments the counter when performance-monitoring events 
occur; when clear, the processor toggles the PMi pins when the counter 
overflows. The toggling of a pin is defined as assertion of the pin for a single bus 
clock followed by deassertion.

• INT (APIC interrupt enable) flag (bit 20) — When set, the logical processor 
generates an exception through its local APIC on counter overflow.

• EN (Enable Counters) Flag (bit 22) — When set, performance counting is 
enabled in the corresponding performance-monitoring counter; when clear, the 
corresponding counter is disabled. The event logic unit for a UMASK must be 
disabled by setting IA32_PERFEVTSELx[bit 22] = 0, before writing to 
IA32_PMCx.

• INV (invert) flag (bit 23) — Inverts the result of the counter-mask comparison 
when set, so that both greater than and less than comparisons can be made.

• Counter mask (CMASK) field (bits 24 through 31) — When this field is not 
zero, a logical processor compares this mask to the events count of the detected 
microarchitectural condition during a single cycle. If the event count is greater 
than or equal to this mask, the counter is incremented by one. Otherwise the 
counter is not incremented. 
This mask is intended for software to characterize microarchitectural conditions 
that can count multiple occurrences per cycle (for example, two or more instruc-
tions retired per clock; or bus queue occupations). If the counter-mask field is 0, 
then the counter is incremented each cycle by the event count associated with 
multiple occurrences.

18.2.2 Additional Architectural Performance Monitoring Extensions
The enhanced features provided by architectural performance monitoring version 2 
include the following:
• Fixed-function performance counter register and associated control 

register — Three of the architectural performance events are counted using 
three fixed-function MSRs (IA32_FIXED_CTR0 through IA32_FIXED_CTR2). Each 
of the fixed-function PMC can count only one architectural performance event. 
Configuring the fixed-function PMCs is done by writing to bit fields in the MSR 
(IA32_FIXED_CTR_CTRL) located at address 38DH. Unlike configuring 
performance events for general-purpose PMCs (IA32_PMCx) via UMASK field in 
(IA32_PERFEVTSELx), configuring, programming IA32_FIXED_CTR_CTRL for 
fixed-function PMCs do not require any UMASK.

• Simplified event programming — Most frequent operation in programming 
performance events are enabling/disabling event counting and checking the 
status of counter overflows. Architectural performance event version 2 provides 
three architectural MSRs:
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— IA32_PERF_GLOBAL_CTRL allows software to enable/disable event counting 
of all or any combination of fixed-function PMCs (IA32_FIXED_CTRx) or any 
general-purpose PMCs via a single WRMSR.

— IA32_PERF_GLOBAL_STATUS allows software to query counter overflow 
conditions on any combination of fixed-function PMCs or general-purpose 
PMCs via a single RDMSR.

— IA32_PERF_GLOBAL_OVF_CTRL allows software to clear counter overflow 
conditions on any combination of fixed-function PMCs or general-purpose 
PMCs via a single WRMSR.

18.2.2.1  Architectural Performance Monitoring Version 2 Facilities
The facilities provided by architectural performance monitoring version 2 can be 
queried from CPUID leaf 0AH by examining the content of register EDX:
• Bits 0 through 4 of CPUID.0AH.EDX indicates the number of fixed-function 

performance counters available per core,
• Bits 5 through 12 of CPUID.0AH.EDX indicates the bit-width of fixed-function 

performance counters. Bits beyond the width of the fixed-function counter are 
reserved and must be written as zeros.

NOTE
Early generation of processors based on Intel Core microarchitecture 
may report in CPUID.0AH:EDX of support for version 2 but indicating 
incorrect information of version 2 facilities.

The IA32_FIXED_CTR_CTRL MSR include multiple sets of 4-bit field, each 4 bit 
field controls the operation of a fixed-function performance counter. Figure 18-2 
shows the layout of 4-bit controls for each fixed-function PMC. Two sub-fields are 
currently defined within each control. The definitions of the bit fields are:

Figure 18-2.  Layout of IA32_FIXED_CTR_CTRL MSR
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• Enable field (lowest 2 bits within each 4-bit control) — When bit 0 is set, 
performance counting is enabled in the corresponding fixed-function 
performance counter to increment while the target condition associated with the 
architecture performance event occurred at ring 0. When bit 1 is set, 
performance counting is enabled in the corresponding fixed-function 
performance counter to increment while the target condition associated with the 
architecture performance event occurred at ring greater than 0. Writing 0 to both 
bits stops the performance counter. Writing a value of 11B enables the counter to 
increment irrespective of privilege levels.

• PMI field (the fourth bit within each 4-bit control) — When set, the logical 
processor generates an exception through its local APIC on overflow condition of 
the respective fixed-function counter.

IA32_PERF_GLOBAL_CTRL MSR provides single-bit controls to enable counting of 
each performance counter. Figure 18-3 shows the layout of 
IA32_PERF_GLOBAL_CTRL. Each enable bit in IA32_PERF_GLOBAL_CTRL is AND’ed 
with the enable bits for all privilege levels in the respective IA32_PERFEVTSELx or 
IA32_PERF_FIXED_CTR_CTRL MSRs to start/stop the counting of respective 
counters. Counting is enabled if the AND’ed results is true; counting is disabled when 
the result is false.

The fixed-function performance counters supported by architectural performance 
version 2 is listed in Table 18-8, the pairing between each fixed-function perfor-
mance counter to an architectural performance event is also shown.

IA32_PERF_GLOBAL_STATUS MSR provides single-bit status for software to query 
the overflow condition of each performance counter. The MSR also provides addi-
tional status bit to indicate overflow conditions when counters are programmed for 
precise-event-based sampling (PEBS). IA32_PERF_GLOBAL_STATUS MSR also 
provides a sticky bit to indicate changes to the state of performance monitoring hard-

Figure 18-3.  Layout of IA32_PERF_GLOBAL_CTRL MSR
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ware. Figure 18-4 shows the layout of IA32_PERF_GLOBAL_STATUS. A value of 1 in 
bits 0, 1, 32 through 34 indicates a counter overflow condition has occurred in the 
associated counter.

When a performance counter is configured for PEBS, overflow condition in the 
counter generates a performance-monitoring interrupt signaling a PEBS event. On a 
PEBS event, the processor stores data records into the buffer area (see Section 
18.15.5), clears the counter overflow status., and sets the “OvfBuffer” bit in 
IA32_PERF_GLOBAL_STATUS. 

IA32_PERF_GLOBAL_OVF_CTL MSR allows software to clear overflow indicator(s) of 
any general-purpose or fixed-function counters via a single WRMSR. Software should 
clear overflow indications when
• Setting up new values in the event select and/or UMASK field for counting or 

sampling
• Reloading counter values to continue sampling
• Disabling event counting or sampling.

The layout of IA32_PERF_GLOBAL_OVF_CTL is shown in Figure 18-5.

Figure 18-4.  Layout of IA32_PERF_GLOBAL_STATUS MSR
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18.2.2.2  Architectural Performance Monitoring Version 3 Facilities
The facilities provided by architectural performance monitoring version 1 and 2 are 
also supported by architectural performance monitoring version 3. Additionally 
version 3 provides enhancements to support a processor core comprising of more 
than one logical processor, i.e. a processor core supporting Intel Hyper-Threading 
Technology or simultaneous multi-threading capability. Specifically,
• CPUID leaf 0AH provides enumeration mechanisms to query:

— The number of general-purpose performance counters (IA32_PMCx) is 
reported in CPUID.0AH:EAX[15:8], the bit width of general-purpose 
performance counters (see also Section 18.2.1.1) is reported in 
CPUID.0AH:EAX[23:16].

— The bit vector representing the set of architectural performance monitoring 
events supported (see Section 18.2.3)

— The number of fixed-function performance counters, the bit width of fixed-
function performance counters (see also Section 18.2.2.1).

• Each general-purpose performance counter IA32_PMCx (starting at MSR address 
0C1H) is associated with a corresponding IA32_PERFEVTSELx MSR (starting at 
MSR address 186H). The Bit field layout of IA32_PERFEVTSELx MSRs is defined 
architecturally in Figure 18-6.

Figure 18-5.  Layout of IA32_PERF_GLOBAL_OVF_CTRL MSR

62

IA32_FIXED_CTR2 ClrOverflow
IA32_FIXED_CTR1 ClrOverflow
IA32_FIXED_CTR0 ClrOverflow
IA32_PMC1 ClrOverflow

2 1 0

IA32_PMC0 ClrOverflow

3132333435

Reserved

63

ClrCondChgd
ClrOvfBuffer
18-10 Vol. 3B



PERFORMANCE MONITORING
Bit 21 (AnyThread) of IA32_PERFEVTSELx is supported in architectural 
performance monitoring version 3. When set to 1, it enables counting the 
associated event conditions (including matching the thread’s CPL with the 
OS/USR setting of IA32_PERFEVTSELx) occurring across all logical processors 
sharing a processor core. When bit 21 is 0, the counter only increments the 
associated event conditions (including matching the thread’s CPL with the 
OS/USR setting of IA32_PERFEVTSELx) occurring in the logical processor which 
programmed the IA32_PERFEVTSELx MSR.

• Each fixed-function performance counter IA32_FIXED_CTRx (starting at MSR 
address 309H) is configured by a 4-bit control block in the 
IA32_PERF_FIXED_CTR_CTRL MSR. The control block also allow thread-
specificity configuration using an AnyThread bit. The layout of 
IA32_PERF_FIXED_CTR_CTRL MSR is shown. 

Figure 18-6.  Layout of IA32_PERFEVTSELx MSRs Supporting Architectural 
Performance Monitoring Version 3
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Each control block for a fixed-function performance counter provides a 
AnyThread (bit position 2 + 4*N, N= 0, 1, etc.) bit. When set to 1, it enables 
counting the associated event conditions (including matching the thread’s CPL 
with the ENABLE setting of the corresponding control block of 
IA32_PERF_FIXED_CTR_CTRL) occurring across all logical processors sharing a 
processor core. When an AnyThread bit is 0 in IA32_PERF_FIXED_CTR_CTRL, 
the corresponding fixed counter only increments the associated event conditions 
occurring in the logical processor which programmed the 
IA32_PERF_FIXED_CTR_CTRL MSR.

• The IA32_PERF_GLOBAL_CTRL, IA32_PERF_GLOBAL_STATUS, 
IA32_PERF_GLOBAL_OVF_CTRL MSRs provide single-bit controls/status for each 
general-purpose and fixed-function performance counter. Figure 18-8 shows the 
layout of these MSR for N general-purpose performance counters (where N is 
reported by CPUID.0AH:EAX[15:8] ) and three fixed-function counters.
Note: Intel Atom processor family supports two general-purpose performance 
monitoring counters (i.e. N =2 in Figure 18-8), other processor families in Intel 
64 architecture may support a different value of N in Figure 18-8. The number N 
is reported by CPUID.0AH:EAX[15:8]. Intel Core i7 processor family supports 
four general-purpose performance monitoring counters (i.e. N =4 in Figure 18-8)

Figure 18-7.  Layout of IA32_FIXED_CTR_CTRL MSR Supporting Architectural 
Performance Monitoring Version 3
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18.2.2.3  Full-Width Writes to Performance Counter Registers
The general-purpose performance counter registers IA32_PMCx are writable via 
WRMSR instruction. However, the value written into IA32_PMCx by WRMSR is the 
signed extended 64-bit value of the EAX[31:0] input of WRMSR.

A processor that supports full-width writes to the general-purpose performance 
counters enumerated by CPUID.0AH:EAX[15:8] will set 

Figure 18-8.  Layout of Global Performance Monitoring Control MSR
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IA32_PERF_CAPABILITIES[13] to enumerate its full-width-write capability See 
Figure 18-39. 

If IA32_PERF_CAPABILITIES.FW_WRITE[bit 13] =1, each IA32_PMCi is accompa-
nied by a corresponding alias address starting at 4C1H for IA32_A_PMC0. 

If IA32_A_PMCi is present, the 64-bit input value (EDX:EAX) of WRMSR to 
IA32_A_PMCi will cause IA32_PMCi to be updated by:

IA32_PMCi[63:32] ← SignExtend(EDX[N-32:0]);

IA32_PMCi[31:0] ← EAX[31:0];

18.2.3 Pre-defined Architectural Performance Events
Table 18-1 lists architecturally defined events.

A processor that supports architectural performance monitoring may not support all 
the predefined architectural performance events (Table 18-1). The non-zero bits in 
CPUID.0AH:EBX indicate the events that are not available. 

The behavior of each architectural performance event is expected to be consistent on 
all processors that support that event. Minor variations between microarchitectures 
are noted below:
• UnHalted Core Cycles — Event select 3CH, Umask 00H 

This event counts core clock cycles when the clock signal on a specific core is 
running (not halted). The counter does not advance in the following conditions: 

— an ACPI C-state other than C0 for normal operation

— HLT

— STPCLK# pin asserted 

— being throttled by TM1

Table 18-1.  UMask and Event Select Encodings for Pre-Defined 
Architectural Performance Events

Bit Position 
CPUID.AH.EBX

Event Name UMask Event Select

0 UnHalted Core Cycles 00H 3CH

1 Instruction Retired 00H C0H

2 UnHalted Reference Cycles 01H 3CH

3 LLC Reference 4FH 2EH

4 LLC Misses 41H 2EH

5 Branch Instruction Retired 00H C4H

6 Branch Misses Retired 00H C5H
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— during the frequency switching phase of a performance state transition (see 
Chapter 14, “Power and Thermal Management”)

The performance counter for this event counts across performance state 
transitions using different core clock frequencies

• Instructions Retired — Event select C0H, Umask 00H 
This event counts the number of instructions at retirement. For instructions that 
consist of multiple micro-ops, this event counts the retirement of the last micro-
op of the instruction. An instruction with a REP prefix counts as one instruction 
(not per iteration). Faults before the retirement of the last micro-op of a multi-
ops instruction are not counted.
This event does not increment under VM-exit conditions. Counters continue 
counting during hardware interrupts, traps, and inside interrupt handlers. 

• UnHalted Reference Cycles — Event select 3CH, Umask 01H 
This event counts reference clock cycles while the clock signal on the core is 
running. The reference clock operates at a fixed frequency, irrespective of core 
frequency changes due to performance state transitions. Processors may 
implement this behavior differently. See Table 19-13 and Table 19-15 in Chapter 
19, “Performance-Monitoring Events.”

• Last Level Cache References — Event select 2EH, Umask 4FH 
This event counts requests originating from the core that reference a cache line 
in the last level cache. The event count includes speculation and cache line fills 
due to the first-level cache hardware prefetcher, but may exclude cache line fills 
due to other hardware-prefetchers. 
Because cache hierarchy, cache sizes and other implementation-specific charac-
teristics; value comparison to estimate performance differences is not recom-
mended. 

• Last Level Cache Misses — Event select 2EH, Umask 41H
This event counts each cache miss condition for references to the last level cache. 
The event count may include speculation and cache line fills due to the first-level 
cache hardware prefetcher, but may exclude cache line fills due to other 
hardware-prefetchers. 
Because cache hierarchy, cache sizes and other implementation-specific charac-
teristics; value comparison to estimate performance differences is not recom-
mended. 

• Branch Instructions Retired — Event select C4H, Umask 00H
This event counts branch instructions at retirement. It counts the retirement of 
the last micro-op of a branch instruction. 

• All Branch Mispredict Retired — Event select C5H, Umask 00H
This event counts mispredicted branch instructions at retirement. It counts the 
retirement of the last micro-op of a branch instruction in the architectural path of 
execution and experienced misprediction in the branch prediction hardware. 
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Branch prediction hardware is implementation-specific across microarchitec-
tures; value comparison to estimate performance differences is not recom-
mended. 

NOTE
Programming decisions or software precisians on functionality should 
not be based on the event values or dependent on the existence of 
performance monitoring events.

18.3 PERFORMANCE MONITORING (INTEL® CORE™ SOLO 
AND INTEL® CORE™ DUO PROCESSORS)

In Intel Core Solo and Intel Core Duo processors, non-architectural performance 
monitoring events are programmed using the same facilities (see Figure 18-1) used 
for architectural performance events.

Non-architectural performance events use event select values that are model-
specific. Event mask (Umask) values are also specific to event logic units. Some 
microarchitectural conditions detectable by a Umask value may have specificity 
related to processor topology (see Section 8.6, “Detecting Hardware Multi-Threading 
Support and Topology,” in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3A). As a result, the unit mask field (for example, 
IA32_PERFEVTSELx[bits 15:8]) may contain sub-fields that specify topology infor-
mation of processor cores.

The sub-field layout within the Umask field may support two-bit encoding that quali-
fies the relationship between a microarchitectural condition and the originating core. 
This data is shown in Table 18-2. The two-bit encoding for core-specificity is only 
supported for a subset of Umask values (see Chapter 19, “Performance Monitoring 
Events”) and for Intel Core Duo processors. Such events are referred to as core-
specific events.

Some microarchitectural conditions allow detection specificity only at the boundary 
of physical processors. Some bus events belong to this category, providing specificity 
between the originating physical processor (a bus agent) versus other agents on the 
bus. Sub-field encoding for agent specificity is shown in Table 18-3.

Table 18-2.  Core Specificity Encoding within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit 15:14 Encoding Description

11B All cores

10B Reserved

01B This core

00B Reserved
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Some microarchitectural conditions are detectable only from the originating core. In 
such cases, unit mask does not support core-specificity or agent-specificity encod-
ings. These are referred to as core-only conditions.

Some microarchitectural conditions allow detection specificity that includes or 
excludes the action of hardware prefetches. A two-bit encoding may be supported to 
qualify hardware prefetch actions. Typically, this applies only to some L2 or bus 
events. The sub-field encoding for hardware prefetch qualification is shown in 
Table 18-4.

Some performance events may (a) support none of the three event-specific qualifica-
tion encodings (b) may support core-specificity and agent specificity simultaneously 
(c) or may support core-specificity and hardware prefetch qualification simulta-
neously. Agent-specificity and hardware prefetch qualification are mutually exclu-
sive.

In addition, some L2 events permit qualifications that distinguish cache coherent 
states. The sub-field definition for cache coherency state qualification is shown in 
Table 18-5. If no bits in the MESI qualification sub-field are set for an event that 
requires setting MESI qualification bits, the event count will not increment.

Table 18-3.  Agent Specificity Encoding within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit 13 Encoding Description

0 This agent

1 Include all agents

Table 18-4.  HW Prefetch Qualification Encoding within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit 13:12 Encoding Description

11B All inclusive

10B Reserved

01B Hardware prefetch only 

00B Exclude hardware prefetch

Table 18-5.  MESI Qualification Definitions within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit Position 11:8 Description

Bit 11 Counts modified state

Bit 10 Counts exclusive state
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18.4 PERFORMANCE MONITORING (PROCESSORS BASED 
ON INTEL® CORE™ MICROARCHITECTURE)

In addition to architectural performance monitoring, processors based on the Intel 
Core microarchitecture support non-architectural performance monitoring events.

Architectural performance events can be collected using general-purpose perfor-
mance counters. Non-architectural performance events can be collected using 
general-purpose performance counters (coupled with two IA32_PERFEVTSELx MSRs 
for detailed event configurations), or fixed-function performance counters (see 
Section 18.4.1). IA32_PERFEVTSELx MSRs are architectural; their layout is shown in 
Figure 18-1. Starting with Intel Core 2 processor T 7700, fixed-function performance 
counters and associated counter control and status MSR becomes part of architec-
tural performance monitoring version 2 facilities (see also Section 18.2.2). 

Non-architectural performance events in processors based on Intel Core microarchi-
tecture use event select values that are model-specific. Valid event mask (Umask) 
bits are listed in Chapter 19. The UMASK field may contain sub-fields identical to 
those listed in Table 18-2, Table 18-3, Table 18-4, and Table 18-5. One or more of 
these sub-fields may apply to specific events on an event-by-event basis. Details are 
listed in Table 19-13 in Chapter 19, “Performance-Monitoring Events.”

In addition, the UMASK filed may also contain a sub-field that allows detection spec-
ificity related to snoop responses. Bits of the snoop response qualification sub-field 
are defined in Table 18-6.

Bit 9 Counts shared state

Bit 8 Counts Invalid state

Table 18-6.  Bus Snoop Qualification Definitions within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit Position 11:8 Description

Bit 11 HITM response

Bit 10 Reserved 

Bit 9 HIT response

Bit 8 CLEAN response

Table 18-5.  MESI Qualification Definitions within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit Position 11:8 Description
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There are also non-architectural events that support qualification of different types of 
snoop operation. The corresponding bit field for snoop type qualification are listed in 
Table 18-7.

No more than one sub-field of MESI, snoop response, and snoop type qualification 
sub-fields can be supported in a performance event.

NOTE
Software must write known values to the performance counters prior 
to enabling the counters. The content of general-purpose counters 
and fixed-function counters are undefined after INIT or RESET.

18.4.1 Fixed-function Performance Counters
Processors based on Intel Core microarchitecture provide three fixed-function perfor-
mance counters. Bits beyond the width of the fixed counter are reserved and must be 
written as zeros. Model-specific fixed-function performance counters on processors 
that support Architectural Perfmon version 1 are 40 bits wide.

Each of the fixed-function counter is dedicated to count a pre-defined performance 
monitoring events. The performance monitoring events associated with fixed-func-
tion counters and the addresses of these counters are listed in Table 18-8. 

Programming the fixed-function performance counters does not involve any of the 

Table 18-7.  Snoop Type Qualification Definitions within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit Position 9:8 Description

Bit 9 CMP2I snoops

Bit 8 CMP2S snoops

Table 18-8.  Association of Fixed-Function Performance Counters with 
Architectural Performance Events

Event Name Fixed-Function PMC PMC Address

INST_RETIRED.ANY MSR_PERF_FIXED_CTR0/I
A32_FIXED_CTR0

309H

CPU_CLK_UNHALTED.CORE MSR_PERF_FIXED_CTR1//
IA32_FIXED_CTR1

30AH

CPU_CLK_UNHALTED.REF MSR_PERF_FIXED_CTR2//
IA32_FIXED_CTR2

30BH
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IA32_PERFEVTSELx MSRs, and does not require specifying any event masks. 
Instead, the MSR MSR_PERF_FIXED_CTR_CTRL provides multiple sets of 4-bit fields; 
each 4-bit field controls the operation of a fixed-function performance counter (PMC). 
See Figures 18-9. Two sub-fields are defined for each control. See Figure 18-9; bit 
fields are:
• Enable field (low 2 bits in each 4-bit control) — When bit 0 is set, 

performance counting is enabled in the corresponding fixed-function 
performance counter to increment when the target condition associated with the 
architecture performance event occurs at ring 0. 
When bit 1 is set, performance counting is enabled in the corresponding fixed-
function performance counter to increment when the target condition associated 
with the architecture performance event occurs at ring greater than 0. 
Writing 0 to both bits stops the performance counter. Writing 11B causes the 
counter to increment irrespective of privilege levels.

• PMI field (fourth bit in each 4-bit control) — When set, the logical processor 
generates an exception through its local APIC on overflow condition of the 
respective fixed-function counter.

18.4.2 Global Counter Control Facilities
Processors based on Intel Core microarchitecture provides simplified performance 
counter control that simplifies the most frequent operations in programming perfor-
mance events, i.e. enabling/disabling event counting and checking the status of 
counter overflows. This is done by the following three MSRs:
• MSR_PERF_GLOBAL_CTRL enables/disables event counting for all or any 

combination of fixed-function PMCs (MSR_PERF_FIXED_CTRx) or general-
purpose PMCs via a single WRMSR.

Figure 18-9.  Layout of MSR_PERF_FIXED_CTR_CTRL MSR

Cntr2 — Controls for MSR_PERF_FIXED_CTR2
Cntr1 — Controls for MSR_PERF_FIXED_CTR1
PMI — Enable PMI on overflow
Cntr0 — Controls for MSR_PERF_FIXED_CTR0

8 7 0

ENABLE — 0: disable; 1: OS; 2: User; 3: All ring levels
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• MSR_PERF_GLOBAL_STATUS allows software to query counter overflow 
conditions on any combination of fixed-function PMCs (MSR_PERF_FIXED_CTRx) 
or general-purpose PMCs via a single RDMSR.

• MSR_PERF_GLOBAL_OVF_CTRL allows software to clear counter overflow 
conditions on any combination of fixed-function PMCs (MSR_PERF_FIXED_CTRx) 
or general-purpose PMCs via a single WRMSR.

MSR_PERF_GLOBAL_CTRL MSR provides single-bit controls to enable counting in 
each performance counter (see Figure 18-10). Each enable bit in 
MSR_PERF_GLOBAL_CTRL is AND’ed with the enable bits for all privilege levels in the 
respective IA32_PERFEVTSELx or MSR_PERF_FIXED_CTR_CTRL MSRs to start/stop 
the counting of respective counters. Counting is enabled if the AND’ed results is true; 
counting is disabled when the result is false.

MSR_PERF_GLOBAL_STATUS MSR provides single-bit status used by software to 
query the overflow condition of each performance counter. The MSR also provides 
additional status bit to indicate overflow conditions when counters are programmed 
for precise-event-based sampling (PEBS). The MSR_PERF_GLOBAL_STATUS MSR 
also provides a ‘sticky bit’ to indicate changes to the state of performance monitoring 
hardware (see Figure 18-11). A value of 1 in bits 34:32, 1, 0 indicates an overflow 
condition has occurred in the associated counter. 

Figure 18-10.  Layout of MSR_PERF_GLOBAL_CTRL MSR

FIXED_CTR2 enable
FIXED_CTR1 enable
FIXED_CTR0 enable
PMC1 enable

2 1 0

PMC0 enable

3132333435

Reserved

63
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When a performance counter is configured for PEBS, an overflow condition in the 
counter generates a performance-monitoring interrupt this signals a PEBS event. On 
a PEBS event, the processor stores data records in the buffer area (see Section 
17.4.9), clears the counter overflow status, and sets the OvfBuffer bit in 
MSR_PERF_GLOBAL_STATUS.

MSR_PERF_GLOBAL_OVF_CTL MSR allows software to clear overflow the indicators 
for general-purpose or fixed-function counters via a single WRMSR (see 
Figure 18-12). Clear overflow indications when:
• Setting up new values in the event select and/or UMASK field for counting or 

sampling
• Reloading counter values to continue sampling
• Disabling event counting or sampling

Figure 18-11.  Layout of MSR_PERF_GLOBAL_STATUS MSR

Figure 18-12.  Layout of MSR_PERF_GLOBAL_OVF_CTRL MSR

62

FIXED_CTR2 Overflow
FIXED_CTR1 Overflow
FIXED_CTR0 Overflow
PMC1 Overflow

2 1 0

PMC0 Overflow

3132333435

Reserved

63

CondChgd
OvfBuffer

62

FIXED_CTR2 ClrOverflow
FIXED_CTR1 ClrOverflow
FIXED_CTR0 ClrOverflow
PMC1 ClrOverflow

2 1 0

PMC0 ClrOverflow

3132333435

Reserved

63

ClrCondChgd
ClrOvfBuffer
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18.4.3 At-Retirement Events
Many non-architectural performance events are impacted by the speculative nature 
of out-of-order execution. A subset of non-architectural performance events on 
processors based on Intel Core microarchitecture are enhanced with a tagging mech-
anism (similar to that found in Intel NetBurst® microarchitecture) that exclude 
contributions that arise from speculative execution. The at-retirement events avail-
able in processors based on Intel Core microarchitecture does not require special 
MSR programming control (see Section 18.10.6, “At-Retirement Counting”), but is 
limited to IA32_PMC0. See Table 18-9 for a list of events available to processors 
based on Intel Core microarchitecture.

18.4.4 Precise Event Based Sampling (PEBS)
Processors based on Intel Core microarchitecture also support precise event based 
sampling (PEBS). This feature was introduced by processors based on Intel NetBurst 
microarchitecture.

PEBS uses a debug store mechanism and a performance monitoring interrupt to 
store a set of architectural state information for the processor. The information 
provides architectural state of the instruction executed after the instruction that 
caused the event (See Section 18.4.4.2). 

In cases where the same instruction causes BTS and PEBS to be activated, PEBS is 
processed before BTS are processed. The PMI request is held until the processor 
completes processing of PEBS and BTS.

For processors based on Intel Core microarchitecture, events that support precise 
sampling are listed in Table 18-10. The procedure for detecting availability of PEBS is 
the same as described in Section 18.10.7.1.

Table 18-9.  At-Retirement Performance Events for Intel Core Microarchitecture

Event Name UMask Event Select

ITLB_MISS_RETIRED 00H C9H

MEM_LOAD_RETIRED.L1D_MISS 01H CBH

MEM_LOAD_RETIRED.L1D_LINE_MISS 02H CBH

MEM_LOAD_RETIRED.L2_MISS 04H CBH

MEM_LOAD_RETIRED.L2_LINE_MISS 08H CBH

MEM_LOAD_RETIRED.DTLB_MISS 10H CBH

Table 18-10.  PEBS Performance Events for Intel Core Microarchitecture
Event Name UMask Event Select

INSTR_RETIRED.ANY_P 00H C0H

X87_OPS_RETIRED.ANY FEH C1H
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18.4.4.1  Setting up the PEBS Buffer
For processors based on Intel Core microarchitecture, PEBS is available using 
IA32_PMC0 only. Use the following procedure to set up the processor and 
IA32_PMC0 counter for PEBS: 

1. Set up the precise event buffering facilities. Place values in the precise event 
buffer base, precise event index, precise event absolute maximum, precise event 
interrupt threshold, and precise event counter reset fields of the DS buffer 
management area. In processors based on Intel Core microarchitecture, PEBS 
records consist of 64-bit address entries. See Figure 17-8 to set up the precise 
event records buffer in memory.

2. Enable PEBS. Set the Enable PEBS on PMC0 flag (bit 0) in IA32_PEBS_ENABLE 
MSR.

3. Set up the IA32_PMC0 performance counter and IA32_PERFEVTSEL0 for an 
event listed in Table 18-10.

18.4.4.2  PEBS Record Format
The PEBS record format may be extended across different processor implementa-
tions. The IA32_PERF_CAPABILITES MSR defines a mechanism for software to 
handle the evolution of PEBS record format in processors that support architectural 
performance monitoring with version id equals 2 or higher. The bit fields of 
IA32_PERF_CAPABILITES are defined in Table 34-2 of Chapter 34, “Model-Specific 
Registers (MSRs)”. The relevant bit fields that governs PEBS are:
• PEBSTrap [bit 6]: When set, PEBS recording is trap-like. After the PEBS-enabled 

counter has overflowed, PEBS record is recorded for the next PEBS-able event at 
the completion of the sampled instruction causing the PEBS event. When clear, 
PEBS recording is fault-like. The PEBS record is recorded before the sampled 
instruction causing the PEBS event.

• PEBSSaveArchRegs [bit 7]: When set, PEBS will save architectural register and 
state information according to the encoded value of the PEBSRecordFormat field. 
On processors based on Intel Core microarchitecture, this bit is always 1

BR_INST_RETIRED.MISPRED 00H C5H

SIMD_INST_RETIRED.ANY 1FH C7H

MEM_LOAD_RETIRED.L1D_MISS 01H CBH

MEM_LOAD_RETIRED.L1D_LINE_MISS 02H CBH

MEM_LOAD_RETIRED.L2_MISS 04H CBH

MEM_LOAD_RETIRED.L2_LINE_MISS 08H CBH

MEM_LOAD_RETIRED.DTLB_MISS 10H CBH

Table 18-10.  PEBS Performance Events for Intel Core Microarchitecture (Contd.)
Event Name UMask Event Select
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• PEBSRecordFormat [bits 11:8]: Valid encodings are:

— 0000B: Only general-purpose registers, instruction pointer and RFLAGS 
registers are saved in each PEBS record (seeSection 18.10.7). 

18.4.4.3  Writing a PEBS Interrupt Service Routine
The PEBS facilities share the same interrupt vector and interrupt service routine 
(called the DS ISR) with the non-precise event-based sampling and BTS facilities. To 
handle PEBS interrupts, PEBS handler code must be included in the DS ISR. See 
Section 17.4.9.1, “DS Save Area and IA-32e Mode Operation,” for guidelines when 
writing the DS ISR.

The service routine can query MSR_PERF_GLOBAL_STATUS to determine which 
counter(s) caused of overflow condition. The service routine should clear overflow 
indicator by writing to MSR_PERF_GLOBAL_OVF_CTL. 

A comparison of the sequence of requirements to program PEBS for processors based 
on Intel Core and Intel NetBurst microarchitectures is listed in Table 18-11.

Table 18-11.  Requirements to Program PEBS

For Processors based on Intel 
Core microarchitecture

For Processors based on Intel 
NetBurst microarchitecture

Verify PEBS support of 
processor/OS 

• IA32_MISC_ENABLE.EMON_AVAILABE (bit 7) is set.
• IA32_MISC_ENABLE.PEBS_UNAVAILABE (bit 12) is clear.

Ensure counters are in 
disabled

On initial set up or changing event 
configurations, write 
MSR_PERF_GLOBAL_CTRL MSR 
(0x38F) with 0. 

On subsequent entries:

• Clear all counters if “Counter 
Freeze on PMI“ is not enabled.

• If IA32_DebugCTL.Freeze is 
enabled, counters are 
automatically disabled.

Counters MUST be stopped before 
writing.1

Optional

Disable PEBS. Clear ENABLE PMC0 bit in 
IA32_PEBS_ENABLE MSR 
(0x3F1).

Optional

Check overflow 
conditions.

Check 
MSR_PERF_GLOBAL_STATUS MSR 
(0x 38E) handle any overflow 
conditions.

Check OVF flag of each CCCR for 
overflow condition
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18.4.4.4  Re-configuring PEBS Facilities
When software needs to reconfigure PEBS facilities, it should allow a quiescent period 
between stopping the prior event counting and setting up a new PEBS event. The 
quiescent period is to allow any latent residual PEBS records to complete its capture 
at their previously specified buffer address (provided by IA32_DS_AREA).

Clear overflow status. Clear 
MSR_PERF_GLOBAL_STATUS MSR 
(0x 38E) using 
IA32_PERF_GLOBAL_OVF_CTRL 
MSR (0x390).

Clear OVF flag of each CCCR.

Write “sample-after“ 
values.

Configure the counter(s) with the sample after value.

Configure specific counter 
configuration MSR.

• Set local enable bit 22 - 1.
• Do NOT set local counter 

PMI/INT bit, bit 20 - 0.
• Event programmed must be 

PEBS capable. 

• Set appropriate OVF_PMI bits - 
1.

• Only CCCR for 
MSR_IQ_COUNTER4 support 
PEBS.

Allocate buffer for PEBS 
states.

Allocate a buffer in memory for the precise information.

Program the 
IA32_DS_AREA MSR.

Program the IA32_DS_AREA MSR.

Configure the PEBS buffer 
management records.

Configure the PEBS buffer management records in the DS buffer 
management area.

Configure/Enable PEBS. Set Enable PMC0 bit in 
IA32_PEBS_ENABLE MSR 
(0x3F1).

Configure MSR_PEBS_ENABLE, 
MSR_PEBS_MATRIX_VERT and 
MSR_PEBS_MATRIX_HORZ as 
needed.

Enable counters. Set Enable bits in 
MSR_PERF_GLOBAL_CTRL MSR 
(0x38F).

Set each CCCR enable bit 12 - 1.

NOTES:
1. Counters read while enabled are not guaranteed to be precise with event counts that occur in tim-

ing proximity to the RDMSR.

Table 18-11.  Requirements to Program PEBS (Contd.)

For Processors based on Intel 
Core microarchitecture

For Processors based on Intel 
NetBurst microarchitecture
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18.5 PERFORMANCE MONITORING (PROCESSORS BASED 
ON INTEL® ATOM™ MICROARCHITECTURE)

Intel Atom processor family supports architectural performance monitoring capa-
bility with version ID 3 (see Section 18.2.2.2) and a host of non-architectural moni-
toring capabilities. The initial implementation of Intel Atom processor family provides 
two general-purpose performance counters (IA32_PMC0, IA32_PMC1) and three 
fixed-function performance counters (IA32_FIXED_CTR0, IA32_FIXED_CTR1, 
IA32_FIXED_CTR2). 

Non-architectural performance monitoring in Intel Atom processor family uses the 
IA32_PERFEVTSELx MSR to configure a set of non-architecture performance moni-
toring events to be counted by the corresponding general-purpose performance 
counter. The list of non-architectural performance monitoring events is listed in Table 
19-14.

Architectural and non-architectural performance monitoring events in Intel Atom 
processor family support thread qualification using bit 21 of IA32_PERFEVTSELx 
MSR. 

The bit fields within each IA32_PERFEVTSELx MSR are defined in Figure 18-6 and 
described in Section 18.2.1.1 and Section 18.2.2.2. 

Valid event mask (Umask) bits are listed in Chapter 19. The UMASK field may contain 
sub-fields that provide the same qualifying actions like those listed in Table 18-2, 
Table 18-3, Table 18-4, and Table 18-5. One or more of these sub-fields may apply to 
specific events on an event-by-event basis. Details are listed in Table 19-14 in 
Chapter 19, “Performance-Monitoring Events.” Precise Event Based Monitoring is 
supported using IA32_PMC0 (see also Section 17.4.9, “BTS and DS Save Area”).

18.6 PERFORMANCE MONITORING FOR PROCESSORS 
BASED ON INTEL® MICROARCHITECTURE CODE 
NAME NEHALEM

Intel Core i7 processor family1 supports architectural performance monitoring capa-
bility with version ID 3 (see Section 18.2.2.2) and a host of non-architectural moni-
toring capabilities. The Intel Core i7 processor family is based on Intel® 
microarchitecture code name Nehalem, and provides four general-purpose perfor-
mance counters (IA32_PMC0, IA32_PMC1, IA32_PMC2, IA32_PMC3) and three 
fixed-function performance counters (IA32_FIXED_CTR0, IA32_FIXED_CTR1, 
IA32_FIXED_CTR2) in the processor core. 

1. Intel Xeon processor 5500 series and 3400 series are also based on Intel microarchitecture code 
name Nehalem, so the performance monitoring facilities described in this section generally also 
apply.
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Non-architectural performance monitoring in Intel Core i7 processor family uses the 
IA32_PERFEVTSELx MSR to configure a set of non-architecture performance moni-
toring events to be counted by the corresponding general-purpose performance 
counter. The list of non-architectural performance monitoring events is listed in Table 
19-14. Non-architectural performance monitoring events fall into two broad catego-
ries:
• Performance monitoring events in the processor core: These include many 

events that are similar to performance monitoring events available to processor 
based on Intel Core microarchitecture. Additionally, there are several enhance-
ments in the performance monitoring capability for detecting microarchitectural 
conditions in the processor core or in the interaction of the processor core to the 
off-core sub-systems in the physical processor package. The off-core sub-
systems in the physical processor package is loosely referred to as “uncore“.

• Performance monitoring events in the uncore: The uncore sub-system is shared 
by more than one processor cores in the physical processor package. It provides 
additional performance monitoring facility outside of IA32_PMCx and 
performance monitoring events that are specific to the uncore sub-system.

Architectural and non-architectural performance monitoring events in Intel Core i7 
processor family support thread qualification using bit 21 of IA32_PERFEVTSELx 
MSR. 

The bit fields within each IA32_PERFEVTSELx MSR are defined in Figure 18-6 and 
described in Section 18.2.1.1 and Section 18.2.2.2. 

Figure 18-13.  IA32_PERF_GLOBAL_STATUS MSR 

CHG (R/W)
OVF_PMI (R/W)

8 7 032 3 1

Reserved

63 2431 5662 6061

OVF_PC7 (R/O), if CCNT>7
OVF_PC6 (R/O), if CCNT>6
OVF_PC5 (R/O), if CCNT>5
OVF_PC4 (R/O), if CCNT>4
OVF_PC3 (R/O)
OVF_PC2 (R/O)
OVF_PC1 (R/O)
OVF_PC0 (R/O)

RESET Value — 0x00000000_00000000

OVF_FC2 (R/O)
OVF_FC1 (R/O)

353433

OVF_FC0 (R/O)

CCNT: CPUID.AH:EAX[15:8]
18-28 Vol. 3B



PERFORMANCE MONITORING
18.6.1 Enhancements of Performance Monitoring in the Processor 
Core

The notable enhancements in the monitoring of performance events in the processor 
core include:
• Four general purpose performance counters, IA32_PMCx, associated counter 

configuration MSRs, IA32_PERFEVTSELx, and global counter control MSR 
supporting simplified control of four counters. Each of the four performance 
counter can support precise event based sampling (PEBS) and thread-qualifi-
cation of architectural and non-architectural performance events. Width of 
IA32_PMCx supported by hardware has been increased. The width of counter 
reported by CPUID.0AH:EAX[23:16] is 48 bits. The PEBS facility in Intel microar-
chitecture code name Nehalem has been enhanced to include new data format to 
capture additional information, such as load latency.

• Load latency sampling facility. Average latency of memory load operation can be 
sampled using load-latency facility in processors based on Intel microarchi-
tecture code name Nehalem. The facility can measure average latency of load 
micro-operations from dispatch to when data is globally observable (GO). This 
facility is used in conjunction with the PEBS facility.

• Off-core response counting facility. This facility in the processor core allows 
software to count certain transaction responses between the processor core to 
sub-systems outside the processor core (uncore). Counting off-core response 
requires additional event qualification configuration facility in conjunction with 
IA32_PERFEVTSELx. Two off-core response MSRs are provided to use in 
conjunction with specific event codes that must be specified with 
IA32_PERFEVTSELx.

18.6.1.1  Precise Event Based Sampling (PEBS)
All four general-purpose performance counters, IA32_PMCx, can be used for PEBS if 
the performance event supports PEBS. Software uses IA32_MISC_ENABLE[7] and 
IA32_MISC_ENABLE[12] to detect whether the performance monitoring facility and 
PEBS functionality are supported in the processor. The MSR IA32_PEBS_ENABLE 
provides 4 bits that software must use to enable which IA32_PMCx overflow condi-
tion will cause the PEBS record to be captured. 

Additionally, the PEBS record is expanded to allow latency information to be 
captured. The MSR IA32_PEBS_ENABLE provides 4 additional bits that software must 
use to enable latency data recording in the PEBS record upon the respective 
IA32_PMCx overflow condition. The layout of IA32_PEBS_ENABLE for processors 
based on Intel microarchitecture code name Nehalem is shown in Figure 18-14.

When a counter is enabled to capture machine state (PEBS_EN_PMCx = 1), the 
processor will write machine state information to a memory buffer specified by soft-
ware as detailed below. When the counter IA32_PMCx overflows from maximum 
count to zero, the PEBS hardware is armed. 
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Upon occurrence of the next PEBS event, the PEBS hardware triggers an assist and 
causes a PEBS record to be written. The format of the PEBS record is indicated by the 
bit field IA32_PERF_CAPABILITIES[11:8] (see Figure 18-39).

The behavior of PEBS assists is reported by IA32_PERF_CAPABILITIES[6] (see 
Figure 18-39). The return instruction pointer (RIP) reported in the PEBS record will 
point to the instruction after (+1) the instruction that causes the PEBS assist. The 
machine state reported in the PEBS record is the machine state after the instruction 
that causes the PEBS assist is retired. For instance, if the instructions:

mov eax, [eax] ; causes PEBS assist

nop

are executed, the PEBS record will report the address of the nop, and the value of 
EAX in the PEBS record will show the value read from memory, not the target address 
of the read operation.

The PEBS record format is shown in Table 18-12, and each field in the PEBS record is 
64 bits long. The PEBS record format, along with debug/store area storage format, 
does not change regardless of IA-32e mode is active or not. 
CPUID.01H:ECX.DTES64[bit 2] reports the processor’s support for 64-bit 
debug/store area storage format is invariant to IA-32e mode.

Figure 18-14.  Layout of IA32_PEBS_ENABLE MSR 

Table 18-12.  PEBS Record Format for Intel Core i7 Processor Family

Byte Offset Field Byte Offset Field

0x0 R/EFLAGS 0x58 R9

LL_EN_PMC3 (R/W)
LL_EN_PMC2 (R/W)

8 7 0

LL_EN_PMC1 (R/W)

32 333 1

Reserved

63 2431 56343536

PEBS_EN_PMC3 (R/W)
PEBS_EN_PMC2 (R/W)
PEBS_EN_PMC1 (R/W)
PEBS_EN_PMC0 (R/W)

LL_EN_PMC0 (R/W)

RESET Value — 0x00000000_00000000
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In IA-32e mode, the full 64-bit value is written to the register. If the processor is not 
operating in IA-32e mode, 32-bit value is written to registers with bits 63:32 zeroed.  
Registers not defined when the processor is not in IA-32e mode are written to zero. 

Bytes 0xAF:0x90 are enhancement to the PEBS record format. Support for this 
enhanced PEBS record format is indicated by IA32_PERF_CAPABILITIES[11:8] 
encoding of 0001B.

The value written to bytes 0x97:0x90 is the state of the 
IA32_PERF_GLOBAL_STATUS register before the PEBS assist occurred. This value is 
written so software can determine which counters overflowed when this PEBS record 
was written. Note that this field indicates the overflow status for all counters, regard-
less of whether they were programmed for PEBS or not.

Programming PEBS Facility

Only a subset of non-architectural performance events in the processor support 
PEBS. The subset of precise events are listed in Table 18-10. In addition to using 
IA32_PERFEVTSELx to specify event unit/mask settings and setting the EN_PMCx bit 
in the IA32_PEBS_ENABLE register for the respective counter, the software must also 
initialize the DS_BUFFER_MANAGEMENT_AREA data structure in memory to support 
capturing PEBS records for precise events. 

NOTE
PEBS events are only valid when the following fields of 
IA32_PERFEVTSELx are all zero: AnyThread, Edge, Invert, CMask.

The beginning linear address of the DS_BUFFER_MANAGEMENT_AREA data structure 
must be programmed into the IA32_DS_AREA register. The layout of the 
DS_BUFFER_MANAGEMENT_AREA is shown in Figure 18-15.

0x8 R/EIP 0x60 R10

0x10 R/EAX 0x68 R11

0x18 R/EBX 0x70 R12

0x20 R/ECX 0x78 R13

0x28 R/EDX 0x80 R14

0x30 R/ESI 0x88 R15

0x38 R/EDI 0x90 IA32_PERF_GLOBAL_STATUS

0x40 R/EBP 0x98 Data Linear Address

0x48 R/ESP 0xA0 Data Source Encoding

0x50 R8 0xA8 Latency value (core cycles)

Table 18-12.  PEBS Record Format for Intel Core i7 Processor Family

Byte Offset Field Byte Offset Field
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• PEBS Buffer Base: This field is programmed with the linear address of the first 
byte of the PEBS buffer allocated by software. The processor reads this field to 
determine the base address of the PEBS buffer. Software should allocate this 
memory from the non-paged pool.

• PEBS Index: This field is initially programmed with the same value as the PEBS 
Buffer Base field, or the beginning linear address of the PEBS buffer. The 
processor reads this field to determine the location of the next PEBS record to 
write to. After a PEBS record has been written, the processor also updates this 
field with the address of the next PEBS record to be written. The figure above 
illustrates the state of PEBS Index after the first PEBS record is written.

Figure 18-15.  PEBS Programming Environment
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• PEBS Absolute Maximum: This field represents the absolute address of the 
maximum length of the allocated PEBS buffer plus the starting address of the 
PEBS buffer. The processor will not write any PEBS record beyond the end of 
PEBS buffer, when PEBS Index equals PEBS Absolute Maximum. No signaling 
is generated when PEBS buffer is full. Software must reset the PEBS Index field 
to the beginning of the PEBS buffer address to continue capturing PEBS records.

• PEBS Interrupt Threshold: This field specifies the threshold value to trigger a 
performance interrupt and notify software that the PEBS buffer is nearly full. This 
field is programmed with the linear address of the first byte of the PEBS record 
within the PEBS buffer that represents the threshold record. After the processor 
writes a PEBS record and updates PEBS Index, if the PEBS Index reaches the 
threshold value of this field, the processor will generate a performance interrupt. 
This is the same interrupt that is generated by a performance counter overflow, 
as programmed in the Performance Monitoring Counters vector in the Local 
Vector Table of the Local APIC. When a performance interrupt due to PEBS buffer 
full is generated, the IA32_PERF_GLOBAL_STATUS.PEBS_Ovf bit will be set.

• PEBS CounterX Reset: This field allows software to set up PEBS counter 
overflow condition to occur at a rate useful for profiling workload, thereby 
generating multiple PEBS records to facilitate characterizing the profile the 
execution of test code. After each PEBS record is written, the processor checks 
each counter to see if it overflowed and was enabled for PEBS (the corresponding 
bit in IA32_PEBS_ENABLED was set). If these conditions are met, then the reset 
value for each overflowed counter is loaded from the DS Buffer Management 
Area. For example, if counter IA32_PMC0 caused a PEBS record to be written, 
then the value of “PEBS Counter 0 Reset” would be written to counter 
IA32_PMC0. If a counter is not enabled for PEBS, its value will not be modified by 
the PEBS assist.

Performance Counter Prioritization

Performance monitoring interrupts are triggered by a counter transitioning from 
maximum count to zero (assuming IA32_PerfEvtSelX.INT is set). This same transi-
tion will cause PEBS hardware to arm, but not trigger. PEBS hardware triggers upon 
detection of the first PEBS event after the PEBS hardware has been armed (a 0 to 1 
transition of the counter). At this point, a PEBS assist will be undertaken by the 
processor.

Performance counters (fixed and general-purpose) are prioritized in index order. That 
is, counter IA32_PMC0 takes precedence over all other counters. Counter 
IA32_PMC1 takes precedence over counters IA32_PMC2 and IA32_PMC3, and so on. 
This means that if simultaneous overflows or PEBS assists occur, the appropriate 
action will be taken for the highest priority performance counter. For example, if 
IA32_PMC1 cause an overflow interrupt and IA32_PMC2 causes an PEBS assist 
simultaneously, then the overflow interrupt will be serviced first. 

The PEBS threshold interrupt is triggered by the PEBS assist, and is by definition 
prioritized lower than the PEBS assist. Hardware will not generate separate interrupts 
for each counter that simultaneously overflows. General-purpose performance 
counters are prioritized over fixed counters.
Vol. 3B 18-33



PERFORMANCE MONITORING
If a counter is programmed with a precise (PEBS-enabled) event and programmed to 
generate a counter overflow interrupt, the PEBS assist is serviced before the counter 
overflow interrupt is serviced. If in addition the PEBS interrupt threshold is met, the

threshold interrupt is generated after the PEBS assist completes, followed by the 
counter overflow interrupt (two separate interrupts are generated).

Uncore counters may be programmed to interrupt one or more processor cores (see 
Section 18.6.2). It is possible for interrupts posted from the uncore facility to occur 
coincident with counter overflow interrupts from the processor core. Software must 
check core and uncore status registers to determine the exact origin of counter over-
flow interrupts.

18.6.1.2  Load Latency Performance Monitoring Facility
The load latency facility provides software a means to characterize the average load 
latency to different levels of cache/memory hierarchy. This facility requires processor 
supporting enhanced PEBS record format in the PEBS buffer, see Table 18-12. The 
facility measures latency from micro-operation (uop) dispatch to when data is 
globally observable (GO).

To use this feature software must assure:
• One of the IA32_PERFEVTSELx MSR is programmed to specify the event unit 

MEM_INST_RETIRED, and the LATENCY_ABOVE_THRESHOLD event mask must 
be specified (IA32_PerfEvtSelX[15:0] = 0x100H). The corresponding counter 
IA32_PMCx will accumulate event counts for architecturally visible loads which 
exceed the programmed latency threshold specified separately in a MSR. Stores 
are ignored when this event is programmed. The CMASK or INV fields of the 
IA32_PerfEvtSelX register used for counting load latency must be 0. Writing 
other values will result in undefined behavior. 

• The MSR_PEBS_LD_LAT_THRESHOLD MSR is programmed with the desired 
latency threshold in core clock cycles. Loads with latencies greater than this 
value are eligible for counting and latency data reporting. The minimum value 
that may be programmed in this register is 3 (the minimum detectable load 
latency is 4 core clock cycles).

• The PEBS enable bit in the IA32_PEBS_ENABLE register is set for the corre-
sponding IA32_PMCx counter register. This means that both the PEBS_EN_CTRX 
and LL_EN_CTRX bits must be set for the counter(s) of interest. For example, to 
enable load latency on counter IA32_PMC0, the IA32_PEBS_ENABLE register 
must be programmed with the 64-bit value 0x00000001.00000001.

When the load-latency facility is enabled, load operations are randomly selected by 
hardware and tagged to carry information related to data source locality and latency. 
Latency and data source information of tagged loads are updated internally. 

When a PEBS assist occurs, the last update of latency and data source information 
are captured by the assist and written as part of the PEBS record. The PEBS sample 
after value (SAV), specified in PEBS CounterX Reset, operates orthogonally to the 
tagging mechanism. Loads are randomly tagged to collect latency data. The SAV 
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controls the number of tagged loads with latency information that will be written into 
the PEBS record field by the PEBS assists. The load latency data written to the PEBS 
record will be for the last tagged load operation which retired just before the PEBS 
assist was invoked.

The load-latency information written into a PEBS record (see Table 18-12, bytes 
AFH:98H) consists of:
• Data Linear Address: This is the linear address of the target of the load 

operation.
• Latency Value: This is the elapsed cycles of the tagged load operation between 

dispatch to GO, measured in processor core clock domain.
• Data Source : The encoded value indicates the origin of the data obtained by the 

load instruction. The encoding is shown in Table 18-13. In the descriptions local 
memory refers to system memory physically attached to a processor package, 
and remote memory referrals to system memory physically attached to another 
processor package. 

Table 18-13.  Data Source Encoding for Load Latency Record

Encoding Description

0x0 Unknown L3 cache miss

0x1 Minimal latency core cache hit. This request was satisfied by the L1 data cache.

0x2 Pending core cache HIT. Outstanding core cache miss to same cache-line address 
was already underway.

0x3 This data request was satisfied by the L2.

0x4 L3 HIT. Local or Remote home requests that hit L3 cache in the uncore with no 
coherency actions required (snooping).

0x5 L3 HIT. Local or Remote home requests that hit the L3 cache and was serviced by 
another processor core with a cross core snoop where no modified copies were 
found. (clean).

0x6 L3 HIT. Local or Remote home requests that hit the L3 cache and was serviced by 
another processor core with a cross core snoop where modified copies were found. 
(HITM).

0x7 Reserved

0x8 L3 MISS. Local homed requests that missed the L3 cache and was serviced by 
forwarded data following a cross package snoop where no modified copies found. 
(Remote home requests are not counted).

0x9 Reserved

0xA L3 MISS. Local home requests that missed the L3 cache and was serviced by local 
DRAM (go to shared state).
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The layout of MSR_PEBS_LD_LAT_THRESHOLD is shown in Figure 18-16.

Bits 15:0 specifies the threshold load latency in core clock cycles. Performance 
events with latencies greater than this value are counted in IA32_PMCx and their 
latency information is reported in the PEBS record. Otherwise, they are ignored. The 
minimum value that may be programmed in this field is 3.

18.6.1.3  Off-core Response Performance Monitoring in the Processor Core
Performance an event using off-core response facility can program any of the four 
IA32_PERFEVTSELx MSR with specific event codes and predefine mask bit value. 
Each event code for off-core response monitoring requires programming an associ-
ated configuration MSR, MSR_OFFCORE_RSP_0. There is only one off-core response 
configuration MSR. Table 18-14 lists the event code, mask value and additional off-
core configuration MSR that must be programmed to count off-core response events 
using IA32_PMCx. 

0xB L3 MISS. Remote home requests that missed the L3 cache and was serviced by 
remote DRAM (go to shared state).

0xC L3 MISS. Local home requests that missed the L3 cache and was serviced by local 
DRAM (go to exclusive state).

0xD L3 MISS. Remote home requests that missed the L3 cache and was serviced by 
remote DRAM (go to exclusive state).

0xE I/O, Request of input/output operation

0xF The request was to un-cacheable memory.

Figure 18-16.  Layout of MSR_PEBS_LD_LAT MSR 

Table 18-13.  Data Source Encoding for Load Latency Record (Contd.)

Encoding Description

1615 0

Reserved

63

THRHLD - Load latency threshold

RESET Value — 0x00000000_00000000
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The layout of MSR_OFFCORE_RSP_0 is shown in Figure 18-17. Bits 7:0 specifies the 
request type of a transaction request to the uncore. Bits 15:8 specifies the response 
of the uncore subsystem.

Table 18-14.  Off-Core Response Event Encoding

Event code in 
IA32_PERFEVTSELx

Mask Value in 
IA32_PERFEVTSELx Required Off-core Response MSR

0xB7 0x01 MSR_OFFCORE_RSP_0 (address 0x1A6)

Figure 18-17.  Layout of MSR_OFFCORE_RSP_0 and MSR_OFFCORE_RSP_1 to 
Configure Off-core Response Events

Table 18-15.  MSR_OFFCORE_RSP_0 and MSR_OFFCORE_RSP_1 Bit Field Definition

Bit Name Offset Description

DMND_DATA_RD 0 (R/W). Counts the number of demand and DCU prefetch data reads 
of full and partial cachelines as well as demand data page table 
entry cacheline reads. Does not count L2 data read prefetches or 
instruction fetches.

RESPONSE TYPE — NON_DRAM (R/W)
RESPONSE TYPE — LOCAL_DRAM (R/W)
RESPONSE TYPE — REMOTE_DRAM (R/W)
RESPONSE TYPE — REMOTE_CACHE_FWD (R/W)

8 7 0

RESPONSE TYPE — RESERVED

11 312 1

Reserved

63 249 5610131415

RESPONSE TYPE — OTHER_CORE_HITM (R/W)
RESPONSE TYPE — OTHER_CORE_HIT_SNP (R/W)
RESPONSE TYPE — UNCORE_HIT (R/W)
REQUEST TYPE — OTHER (R/W)
REQUEST TYPE — PF_IFETCH (R/W)
REQUEST TYPE — PF_RFO (R/W)
REQUEST TYPE — PF_DATA_RD (R/W)
REQUEST TYPE — WB (R/W)
REQUEST TYPE — DMND_IFETCH (R/W)
REQUEST TYPE — DMND_RFO (R/W)
REQUEST TYPE — DMND_DATA_RD (R/W)

RESET Value — 0x00000000_00000000
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DMND_RFO 1 (R/W). Counts the number of demand and DCU prefetch reads for 
ownership (RFO) requests generated by a write to data cacheline. 
Does not count L2 RFO.

DMND_IFETCH 2 (R/W). Counts the number of demand and DCU prefetch instruction 
cacheline reads. Does not count L2 code read prefetches.

WB 3 (R/W). Counts the number of writeback (modified to exclusive) 
transactions.

PF_DATA_RD 4 (R/W). Counts the number of data cacheline reads generated by L2 
prefetchers.

PF_RFO 5 (R/W). Counts the number of RFO requests generated by L2 
prefetchers.

PF_IFETCH 6 (R/W). Counts the number of code reads generated by L2 
prefetchers.

OTHER 7 (R/W). Counts one of the following transaction types, including L3 
invalidate, I/O, full or partial writes, WC or non-temporal stores, 
CLFLUSH, Fences, lock, unlock, split lock.

UNCORE_HIT 8 (R/W). L3 Hit: local or remote home requests that hit L3 cache in the 
uncore with no coherency actions required (snooping).

OTHER_CORE_HI
T_SNP

9 (R/W). L3 Hit: local or remote home requests that hit L3 cache in the 
uncore and was serviced by another core with a cross core snoop 
where no modified copies were found (clean).

OTHER_CORE_HI
TM

10 (R/W). L3 Hit: local or remote home requests that hit L3 cache in the 
uncore and was serviced by another core with a cross core snoop 
where modified copies were found (HITM).

Reserved 11 Reserved

REMOTE_CACHE_
FWD

12 (R/W). L3 Miss: local homed requests that missed the L3 cache and 
was serviced by forwarded data following a cross package snoop 
where no modified copies found. (Remote home requests are not 
counted)

REMOTE_DRAM 13 (R/W). L3 Miss: remote home requests that missed the L3 cache and 
were serviced by remote DRAM.

LOCAL_DRAM 14 (R/W). L3 Miss: local home requests that missed the L3 cache and 
were serviced by local DRAM.

NON_DRAM 15 (R/W). Non-DRAM requests that were serviced by IOH.

Table 18-15.  MSR_OFFCORE_RSP_0 and MSR_OFFCORE_RSP_1 Bit Field Definition 

Bit Name Offset Description
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18.6.2 Performance Monitoring Facility in the Uncore
The “uncore” in Intel microarchitecture code name Nehalem refers to subsystems in 
the physical processor package that are shared by multiple processor cores. Some of 
the sub-systems in the uncore include the L3 cache, Intel QuickPath Interconnect link 
logic, and integrated memory controller. The performance monitoring facilities inside 
the uncore operates in the same clock domain as the uncore (U-clock domain), which 
is usually different from the processor core clock domain. The uncore performance 
monitoring facilities described in this section apply to Intel Xeon processor 5500 
series and processors with the following CPUID signatures: 06_1AH, 06_1EH, 
06_1FH (see Chapter 34). An overview of the uncore performance monitoring facili-
ties is described separately. 

The performance monitoring facilities available in the U-clock domain consist of:
• Eight General-purpose counters (MSR_UNCORE_PerfCntr0 through 

MSR_UNCORE_PerfCntr7). The counters are 48 bits wide. Each counter is 
associated with a configuration MSR, MSR_UNCORE_PerfEvtSelx, to specify 
event code, event mask and other event qualification fields. A set of global 
uncore performance counter enabling/overflow/status control MSRs are also 
provided for software.

• Performance monitoring in the uncore provides an address/opcode match MSR 
that provides event qualification control based on address value or QPI command 
opcode.

• One fixed-function counter, MSR_UNCORE_FixedCntr0. The fixed-function 
uncore counter increments at the rate of the U-clock when enabled.
The frequency of the uncore clock domain can be determined from the uncore 
clock ratio which is available in the PCI configuration space register at offset C0H 
under device number 0 and Function 0. 

18.6.2.1  Uncore Performance Monitoring Management Facility
MSR_UNCORE_PERF_GLOBAL_CTRL provides bit fields to enable/disable general-
purpose and fixed-function counters in the uncore. Figure 18-18 shows the layout of 
MSR_UNCORE_PERF_GLOBAL_CTRL for an uncore that is shared by four processor 
cores in a physical package. 
• EN_PCn (bit n, n = 0, 7): When set, enables counting for the general-purpose 

uncore counter MSR_UNCORE_PerfCntr n.
• EN_FC0 (bit 32): When set, enables counting for the fixed-function uncore 

counter MSR_UNCORE_FixedCntr0.
• EN_PMI_COREn (bit n, n = 0, 3 if four cores are present): When set, processor 

core n is programmed to receive an interrupt signal from any interrupt enabled 
uncore counter. PMI delivery due to an uncore counter overflow is enabled by 
setting IA32_DEBUG_CTL.Offcore_PMI_EN to 1.

• PMI_FRZ (bit 63): When set, all U-clock uncore counters are disabled when any 
one of them signals a performance interrupt. Software must explicitly re-enable 
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the counter by setting the enable bits in MSR_UNCORE_PERF_GLOBAL_CTRL 
upon exit from the ISR.

MSR_UNCORE_PERF_GLOBAL_STATUS provides overflow status of the U-clock 
performance counters in the uncore. This is a read-only register. If an overflow status 
bit is set the corresponding counter has overflowed. The register provides a condition 
change bit (bit 63) which can be quickly checked by software to determine if a signif-
icant change has occurred since the last time the condition change status was 
cleared. Figure 18-19 shows the layout of MSR_UNCORE_PERF_GLOBAL_STATUS.
• OVF_PCn (bit n, n = 0, 7): When set, indicates general-purpose uncore counter 

MSR_UNCORE_PerfCntr n has overflowed.
• OVF_FC0 (bit 32): When set, indicates the fixed-function uncore counter 

MSR_UNCORE_FixedCntr0 has overflowed.
• OVF_PMI (bit 61): When set indicates that an uncore counter overflowed and 

generated an interrupt request. 
• CHG (bit 63): When set indicates that at least one status bit in 

MSR_UNCORE_PERF_GLOBAL_STATUS register has changed state.

MSR_UNCORE_PERF_GLOBAL_OVF_CTRL allows software to clear the status bits in 
the UNCORE_PERF_GLOBAL_STATUS register. This is a write-only register, and indi-
vidual status bits in the global status register are cleared by writing a binary one to 
the corresponding bit in this register. Writing zero to any bit position in this register 
has no effect on the uncore PMU hardware. 

Figure 18-18.  Layout of MSR_UNCORE_PERF_GLOBAL_CTRL MSR 

PMI_FRZ (R/W)
EN_PMI_CORE3 (R/W)
EN_PMI_CORE2 (R/W)
EN_PMI_CORE1 (R/W)

8 7 0

EN_PMI_CORE0 (R/W)

32 348 1

Reserved

63 2431 5662 495051

EN_PC7 (R/W)
EN_PC6 (R/W)
EN_PC5 (R/W)
EN_PC4 (R/W)
EN_PC3 (R/W)
EN_PC2 (R/W)
EN_PC1 (R/W)
EN_PC0 (R/W)

EN_FC0 (R/W)

RESET Value — 0x00000000_00000000
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Figure 18-20 shows the layout of MSR_UNCORE_PERF_GLOBAL_OVF_CTRL.

Figure 18-19.  Layout of MSR_UNCORE_PERF_GLOBAL_STATUS MSR 

Figure 18-20.  Layout of MSR_UNCORE_PERF_GLOBAL_OVF_CTRL MSR 

CHG (R/W)
OVF_PMI (R/W)

8 7 032 3 1

Reserved

63 2431 5662 6061

OVF_PC7 (R/O)
OVF_PC6 (R/O)
OVF_PC5 (R/O)
OVF_PC4 (R/O)
OVF_PC3 (R/O)

OVF_PC2 (R/O)
OVF_PC1 (R/O)
OVF_PC0 (R/O)

OVF_FC0 (R/O)

RESET Value — 0x00000000_00000000

CLR_CHG (WO1)
CLR_OVF_PMI (WO1)

8 7 032 3 1

Reserved

63 2431 5662 6061

CLR_OVF_PC7 (WO1)
CLR_OVF_PC6 (WO1)
CLR_OVF_PC5 (WO1)
CLR_OVF_PC4 (WO1)
CLR_OVF_PC3 (WO1)

CLR_OVF_PC2 (WO1)
CLR_OVF_PC1 (WO1)
CLR_OVF_PC0 (WO1)

CLR_OVF_FC0 (WO1)

RESET Value — 0x00000000_00000000
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• CLR_OVF_PCn (bit n, n = 0, 7): Set this bit to clear the overflow status for 
general-purpose uncore counter MSR_UNCORE_PerfCntr n. Writing a value other 
than 1 is ignored.

• CLR_OVF_FC0 (bit 32): Set this bit to clear the overflow status for the fixed-
function uncore counter MSR_UNCORE_FixedCntr0. Writing a value other than 1 
is ignored.

• CLR_OVF_PMI (bit 61): Set this bit to clear the OVF_PMI flag in 
MSR_UNCORE_PERF_GLOBAL_STATUS. Writing a value other than 1 is ignored.

• CLR_CHG (bit 63): Set this bit to clear the CHG flag in 
MSR_UNCORE_PERF_GLOBAL_STATUS register. Writing a value other than 1 is 
ignored.

18.6.2.2  Uncore Performance Event Configuration Facility
MSR_UNCORE_PerfEvtSel0 through MSR_UNCORE_PerfEvtSel7 are used to select 
performance event and configure the counting behavior of the respective uncore 
performance counter. Each uncore PerfEvtSel MSR is paired with an uncore perfor-
mance counter. Each uncore counter must be locally configured using the corre-
sponding MSR_UNCORE_PerfEvtSelx and counting must be enabled using the 
respective EN_PCx bit in MSR_UNCORE_PERF_GLOBAL_CTRL. Figure 18-21 shows 
the layout of MSR_UNCORE_PERFEVTSELx.

• Event Select (bits 7:0): Selects the event logic unit used to detect uncore events.
• Unit Mask (bits 15:8) : Condition qualifiers for the event selection logic specified 

in the Event Select field.
• OCC_CTR_RST (bit17): When set causes the queue occupancy counter 

associated with this event to be cleared (zeroed). Writing a zero to this bit will be 
ignored. It will always read as a zero. 

Figure 18-21.  Layout of MSR_UNCORE_PERFEVTSELx MSRs 

31

INV—Invert counter mask
EN—Enable counters

E—Edge detect
OCC_CTR_RST—Rest Queue Occ

8 7 0

Event Select
Counter Mask 

19 1618 15172021222324

Reserved

Unit Mask (UMASK)(CMASK)

63

PMI—Enable PMI on overflow

RESET Value — 0x00000000_00000000
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• Edge Detect (bit 18): When set causes the counter to increment when a 
deasserted to asserted transition occurs for the conditions that can be expressed 
by any of the fields in this register.

• PMI (bit 20): When set, the uncore will generate an interrupt request when this 
counter overflowed. This request will be routed to the logical processors as 
enabled in the PMI enable bits (EN_PMI_COREx) in the register 
MSR_UNCORE_PERF_GLOBAL_CTRL.

• EN (bit 22): When clear, this counter is locally disabled. When set, this counter is 
locally enabled and counting starts when the corresponding EN_PCx bit in 
MSR_UNCORE_PERF_GLOBAL_CTRL is set.

• INV (bit 23): When clear, the Counter Mask field is interpreted as greater than or 
equal to. When set, the Counter Mask field is interpreted as less than.

• Counter Mask (bits 31:24): When this field is clear, it has no effect on counting. 
When set to a value other than zero, the logical processor compares this field to 
the event counts on each core clock cycle. If INV is clear and the event counts are 
greater than or equal to this field, the counter is incremented by one. If INV is set 
and the event counts are less than this field, the counter is incremented by one. 
Otherwise the counter is not incremented.

Figure 18-22 shows the layout of MSR_UNCORE_FIXED_CTR_CTRL.

• EN (bit 0): When clear, the uncore fixed-function counter is locally disabled. 
When set, it is locally enabled and counting starts when the EN_FC0 bit in 
MSR_UNCORE_PERF_GLOBAL_CTRL is set.

• PMI (bit 2): When set, the uncore will generate an interrupt request when the 
uncore fixed-function counter overflowed. This request will be routed to the 
logical processors as enabled in the PMI enable bits (EN_PMI_COREx) in the 
register MSR_UNCORE_PERF_GLOBAL_CTRL.

Both the general-purpose counters (MSR_UNCORE_PerfCntr) and the fixed-function 
counter (MSR_UNCORE_FixedCntr0) are 48 bits wide. They support both counting 

Figure 18-22.  Layout of MSR_UNCORE_FIXED_CTR_CTRL MSR 

8 7 03 1

Reserved

63 2456

PMI - Generate PMI on overflow
EN - Enable

RESET Value — 0x00000000_00000000
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and sampling usages. The event logic unit can filter event counts to specific regions 
of code or transaction types incoming to the home node logic.

18.6.2.3  Uncore Address/Opcode Match MSR
The Event Select field [7:0] of MSR_UNCORE_PERFEVTSELx is used to select 
different uncore event logic unit. When the event “ADDR_OPCODE_MATCH“ is 
selected in the Event Select field, software can filter uncore performance events 
according to transaction address and certain transaction responses. The address 
filter and transaction response filtering requires the use of 
MSR_UNCORE_ADDR_OPCODE_MATCH register. The layout is shown in 
Figure 18-23. 

• Addr (bits 39:3): The physical address to match if “MatchSel“ field is set to select 
address match. The uncore performance counter will increment if the lowest 40-
bit incoming physical address (excluding bits 2:0) for a transaction request 
matches bits 39:3.

• Opcode (bits 47:40) : Bits 47:40 allow software to filter uncore transactions 
based on QPI link message class/packed header opcode. These bits are consists 
two sub-fields:

— Bits 43:40 specify the QPI packet header opcode,

— Bits 47:44 specify the QPI message classes.
Table 18-16 lists the encodings supported in the opcode field.

Figure 18-23.  Layout of MSR_UNCORE_ADDR_OPCODE_MATCH MSR 

Table 18-16.  Opcode Field Encoding for MSR_UNCORE_ADDR_OPCODE_MATCH 

Opcode [43:40] QPI Message Class

Home Request

[47:44] = 0000B

Snoop Response

[47:44] = 0001B

Data Response

[47:44] = 1110B

60

MatchSel—Select addr/Opcode
Opcode—Opcode and Message

3 2 040 394748

Reserved

ADDR

63

ADDR—Bits 39:4 of physical address

RESET Value — 0x00000000_00000000

Opcode
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• MatchSel (bits 63:61): Software specifies the match criteria according to the 
following encoding:

— 000B: Disable addr_opcode match hardware

— 100B: Count if only the address field matches,

— 010B: Count if only the opcode field matches

— 110B: Count if either opcode field matches or the address field matches

— 001B: Count only if both opcode and address field match

— Other encoding are reserved

18.6.3 Intel® Xeon® Processor 7500 Series Performance 
Monitoring Facility

The performance monitoring facility in the processor core of Intel® Xeon® processor 
7500 series are the same as those supported in Intel Xeon processor 5500 series. 
The uncore subsystem in Intel Xeon processor 7500 series are significantly different 
The uncore performance monitoring facility consist of many distributed units associ-
ated with individual logic control units (referred to as boxes) within the uncore 
subsystem. A high level block diagram of the various box units of the uncore is shown 
in Figure 18-24.

Uncore PMUs are programmed via MSR interfaces. Each of the distributed uncore 
PMU units have several general-purpose counters. Each counter requires an associ-
ated event select MSR, and may require additional MSRs to configure sub-event 
conditions. The uncore PMU MSRs associated with each box can be categorized based 
on its functional scope: per-counter, per-box, or global across the uncore. The 
number counters available in each box type are different. Each box generally 
provides a set of MSRs to enable/disable, check status/overflow of multiple counters 
within each box. 

1

DMND_IFETCH 2 2

WB 3 3

PF_DATA_RD 4 4

PF_RFO 5 5

PF_IFETCH 6 6

OTHER 7 7

NON_DRAM 15 15

Table 18-16.  Opcode Field Encoding for MSR_UNCORE_ADDR_OPCODE_MATCH  

Opcode [43:40] QPI Message Class
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Table 18-17 summarizes the number MSRs for uncore PMU for each box.

Figure 18-24.  Distributed Units of the Uncore of Intel® Xeon® Processor 7500 Series

Table 18-17.  Uncore PMU MSR Summary

Box
# of 
Boxes Counters per Box

Counter 
Width

General 
Purpose

Global 
Enable Sub-control MSRs

C-Box 8 6 48 Yes per-box None

S-Box 2 4 48 Yes per-box Match/Mask

B-Box 2 4 48 Yes per-box Match/Mask

M-Box 2 6 48 Yes per-box Yes

R-Box 1 16 ( 2 port, 8 per 
port)

48 Yes per-box Yes

W-Box 1 4 48 Yes per-box None

1 48 No per-box None

U-Box 1 1 48 Yes uncore None

PBox

L3 Cache

PBoxPBox PBox UBoxWBox

RBox BBoxBBoxMBox MBox PBoxPBox

SBox SBox

CBox CBoxCBoxCBox CBoxCBox CBoxCBox

4 Intel QPI Links

SMI Channels

SMI Channels
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The W-Box provides 4 general-purpose counters, each requiring an event select 
configuration MSR, similar to the general-purpose counters in other boxes. There is 
also a fixed-function counter that increments clockticks in the uncore clock domain. 

For C,S,B,M,R, and W boxes, each box provides an MSR to enable/disable counting, 
configuring PMI of multiple counters within the same box, this is somewhat similar 
the “global control“ programming interface, IA32_PERF_GLOBAL_CTRL, offered in 
the core PMU. Similarly status information and counter overflow control for multiple 
counters within the same box are also provided in C,S,B,M,R, and W boxes.

In the U-Box, MSR_U_PMON_GLOBAL_CTL provides overall uncore PMU 
enable/disable and PMI configuration control. The scope of status information in the 
U-box is at per-box granularity, in contrast to the per-box status information MSR (in 
the C,S,B,M,R, and W boxes) providing status information of individual counter over-
flow. The difference in scope also apply to the overflow control MSR in the U-Box 
versus those in the other Boxes.

The individual MSRs that provide uncore PMU interfaces are listed in Chapter 34, 
Table 34-7 under the general naming style of 
MSR_%box#%_PMON_%scope_function%, where %box#% designates the type of 
box and zero-based index if there are more the one box of the same type, 
%scope_function% follows the examples below:
• Multi-counter enabling MSRs: MSR_U_PMON_GLOBAL_CTL, 

MSR_S0_PMON_BOX_CTL, MSR_C7_PMON_BOX_CTL, etc.
• Multi-counter status MSRs: MSR_U_PMON_GLOBAL_STATUS, 

MSR_S0_PMON_BOX_STATUS, MSR_C7_PMON_BOX_STATUS, etc.
• Multi-counter overflow control MSRs: MSR_U_PMON_GLOBAL_OVF_CTL, 

MSR_S0_PMON_BOX_OVF_CTL, MSR_C7_PMON_BOX_OVF_CTL, etc.
• Performance counters MSRs: the scope is implicitly per counter, e.g. 

MSR_U_PMON_CTR, MSR_S0_PMON_CTR0, MSR_C7_PMON_CTR5, etc
• Event select MSRs: the scope is implicitly per counter, e.g. 

MSR_U_PMON_EVNT_SEL, MSR_S0_PMON_EVNT_SEL0, 
MSR_C7_PMON_EVNT_SEL5, etc

• Sub-control MSRs: the scope is implicitly per-box granularity, e.g. 
MSR_M0_PMON_TIMESTAMP, MSR_R0_PMON_IPERF0_P1, MSR_S1_PMON_MATCH.

Details of uncore PMU MSR bit field definitions can be found in a separate document 
“Intel Xeon Processor 7500 Series Uncore Performance Monitoring Guide“.
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18.7 PERFORMANCE MONITORING FOR PROCESSORS 
BASED ON INTEL® MICROARCHITECTURE CODE 
NAME WESTMERE

All of the performance monitoring programming interfaces (architectural and non-
architectural core PMU facilities, and uncore PMU) described in Section 18.6 also 
apply to processors based on Intel® microarchitecture code name Westmere. 

Table 18-14 describes a non-architectural performance monitoring event (event code 
0B7H) and associated MSR_OFFCORE_RSP_0 (address 1A6H) in the core PMU. This 
event and a second functionally equivalent offcore response event using event code 
0BBH and MSR_OFFCORE_RSP_1 (address 1A7H) are supported in processors based 
on Intel microarchitecture code name Westmere. The event code and event mask 
definitions of Non-architectural performance monitoring events are listed in Table 
19-14. 

The load latency facility is the same as described in Section 18.6.1.2, but added 
enhancement to provide more information in the data source encoding field of each 
load latency record. The additional information relates to STLB_MISS and LOCK, see 
Table 18-22.

18.7.1 Intel® Xeon® Processor E7 Family Performance Monitoring 
Facility

The performance monitoring facility in the processor core of the Intel® Xeon® 
processor E7 family is the same as those supported in the Intel Xeon processor 5600 
series2. The uncore subsystem in the Intel Xeon processor E7 family is similar to 
those of the Intel Xeon processor 7500 series. The high level construction of the 
uncore sub-system is similar to that shown in Figure 18-24, with the additional capa-
bility that up to 10 C-Box units are supported. 

Table 18-18 summarizes the number MSRs for uncore PMU for each box.

2. Exceptions are indicated for event code 0FH in .Table 19-9; and valid bits of data source 
encoding field of each load latency record is limited to bits 5:4 of Table 18-22.

Table 18-18.  Uncore PMU MSR Summary for Intel® Xeon® Processor E7 Family

Box
# of 
Boxes Counters per Box

Counter 
Width

General 
Purpose

Global 
Enable Sub-control MSRs

C-Box 10 6 48 Yes per-box None

S-Box 2 4 48 Yes per-box Match/Mask

B-Box 2 4 48 Yes per-box Match/Mask

M-Box 2 6 48 Yes per-box Yes
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18.8 PERFORMANCE MONITORING FOR PROCESSORS 
BASED ON INTEL® MICROARCHITECTURE CODE 
NAME SANDY BRIDGE

Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series 
are based on Intel microarchitecture code name Sandy Bridge; this section describes 
the performance monitoring facilities provided in the processor core. The core PMU 
supports architectural performance monitoring capability with version ID 3 (see 
Section 18.2.2.2) and a host of non-architectural monitoring capabilities. 

Architectural performance monitoring events and non-architectural monitoring 
events are programmed using fixed counters and programmable counters/event 
select MSRS described in Section 18.2.2.2. 

The core PMU’s capability is similar to those described in Section 18.6.1 and Section 
18.7, with some differences and enhancements relative to Intel microarchitecture 
code name Westmere summarized in Table 18-19.

R-Box 1 16 ( 2 port, 8 per 
port)

48 Yes per-box Yes

W-Box 1 4 48 Yes per-box None

1 48 No per-box None

U-Box 1 1 48 Yes uncore None

Table 18-19.  Core PMU Comparison

Box Sandy Bridge Westmere Comment

# of Fixed counters 
per thread

3 3 Use CPUID to enumerate 
# of counters.

# of general-purpose 
counters per core

8 8

Counter width (R,W) R:48 , W: 32/48 R:48, W:32 See Section 18.2.2.3.

# of programmable 
counters per thread

4 or (8 if a core not shared 
by two threads)

4 Use CPUID to enumerate 
# of counters.

Precise Event Based 
Sampling (PEBS) 
Events

See Table 18-21 See Table 18-10 IA32_PMC4-IA32_PMC7 
do not support PEBS.

Table 18-18.  Uncore PMU MSR Summary for Intel® Xeon® Processor E7 Family

Box
# of 
Boxes Counters per Box

Counter 
Width

General 
Purpose

Global 
Enable Sub-control MSRs
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18.8.1 Global Counter Control Facilities In Intel® Microarchitecture 
Code Name Sandy Bridge

The number of general-purpose performance counters visible to a logical processor 
can vary across Processors based on Intel microarchitecture code name Sandy 
Bridge. Software must use CPUID to determine the number performance 
counters/event select registers (See Section 18.2.1.1). 

PEBS-Load Latency See Section 18.8.4.2;
Data source encoding,

STLB miss encoding,

Lock transaction encoding

Data source 
encoding 

PEBS-Precise Store Section 18.8.4.3 No

PEBS-PDIR yes (using precise 
INST_RETIRED.ALL)

No

Off-core Response 
Event

MSR 1A6H and 1A7H; 
Extended request and 
response types

MSR 1A6H and 
1A7H, limited 
response types

Nehalem supports 1A6H 
only.

Figure 18-25.  IA32_PERF_GLOBAL_CTRL MSR in Intel® Microarchitecture Code Name 
Sandy Bridge

Table 18-19.  Core PMU Comparison

Box Sandy Bridge Westmere Comment

FIXED_CTR2 enable
FIXED_CTR1 enable
FIXED_CTR0 enable

PMC7_EN (if PMC7 present)

2 1 0

PMC6_EN (if PMC6 present)

3132333435

Reserved

63

PMC5_EN (if PMC5 present)
PMC4_EN (if PMC4 present)
PMC3_EN
PMC2_EN
PMC1_EN

Valid if CPUID.0AH:EAX[15:8] = 8, else reserved.

PMC0_EN

8 7 6 5 4 3
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Figure 18-10 depicts the layout of IA32_PERF_GLOBAL_CTRL MSR. The enable bits 
(PMC4_EN, PMC5_EN, PMC6_EN, PMC7_EN) corresponding to IA32_PMC4-
IA32_PMC7 are valid only if CPUID.0AH:EAX[15:8] reports a value of ‘8’. If 
CPUID.0AH:EAX[15:8] = 4, attempts to set the invalid bits will cause #GP. 

Each enable bit in IA32_PERF_GLOBAL_CTRL is AND’ed with the enable bits for all 
privilege levels in the respective IA32_PERFEVTSELx or 
IA32_PERF_FIXED_CTR_CTRL MSRs to start/stop the counting of respective 
counters. Counting is enabled if the AND’ed results is true; counting is disabled when 
the result is false.
IA32_PERF_GLOBAL_STATUS MSR provides single-bit status used by software to 
query the overflow condition of each performance counter. The MSR also provides 
additional status bit to indicate overflow conditions when counters are programmed 
for precise-event-based sampling (PEBS). The IA32_PERF_GLOBAL_STATUS MSR 
also provides a ‘sticky bit’ to indicate changes to the state of performance monitoring 
hardware (see Figure 18-26). A value of 1 in each bit of the PMCx_OVF field indicates 
an overflow condition has occurred in the associated counter. 

When a performance counter is configured for PEBS, an overflow condition in the 
counter generates a performance-monitoring interrupt this signals a PEBS event. On 
a PEBS event, the processor stores data records in the buffer area (see Section 
17.4.9), clears the counter overflow status, and sets the OvfBuffer bit in 
IA32_PERF_GLOBAL_STATUS.

Figure 18-26.  IA32_PERF_GLOBAL_STATUS MSR in Intel® Microarchitecture Code 
Name Sandy Bridge

62

FIXED_CTR2 Overflow (RO)
FIXED_CTR1 Overflow (RO)
FIXED_CTR0 Overflow (RO)
PMC7_OVF (RO, If PMC7 present)

2 1 0

PMC6_OVF (RO, If PMC6 present)

3132333435

Reserved

63

CondChgd
OvfBuffer

8 7 6 5 4 3

PMC5_OVF (R), If PMC5 present)
PMC4_OVF (RO, If PMC4 present)
PMC3_OVF (RO)
PMC2_OVF (RO)
PMC1_OVF (RO)
PMC0_OVF (RO)

Valid if CPUID.0AH:EAX[15:8] = 8; else reserved
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IA32_PERF_GLOBAL_OVF_CTL MSR allows software to clear overflow the indicators 
for general-purpose or fixed-function counters via a single WRMSR (see 
Figure 18-27). Clear overflow indications when:
• Setting up new values in the event select and/or UMASK field for counting or 

sampling
• Reloading counter values to continue sampling
• Disabling event counting or sampling

18.8.2 Counter Coalescence
In processors based on Intel microarchitecture code name Sandy Bridge, each 
processor core implements eight general-purpose counters. CPUID.0AH:EAX[15:8] 
will report either 4 or 8 depending specific processor’s product features. 

If a processor core is shared by two logical processors, each logical processors can 
access 4 counters (IA32_PMC0-IA32_PMC3). This is the same as in the prior genera-
tion for processors based on Intel microarchitecture code name Nehalem.

If a processor core is not shared by two logical processors, all eight general-purpose 
counters are visible, and CPUID.0AH:EAX[15:8] reports 8. IA32_PMC4-IA32_PMC7 
occupy MSR addresses 0C5H through 0C8H. Each counter is accompanied by an 
event select MSR (IA32_PERFEVTSEL4-IA32_PERFEVTSEL7).

Figure 18-27.  IA32_PERF_GLOBAL_OVF_CTRL MSR in Intel microarchitecture code 
name Sandy Bridge

62

FIXED_CTR2 ClrOverflow
FIXED_CTR1 ClrOverflow
FIXED_CTR0 ClrOverflow
PMC7_ClrOvf (if PMC7 present)

2 1 0

PMC6_ClrOvf (if PMC6 present)

3132333435

Reserved

63

ClrCondChgd
ClrOvfBuffer

8 7 6 5 4 3

PMC5_ClrOvf (if PMC5 present)
PMC4_ClrOvf (if PMC4 present)
PMC3_ClrOvf
PMC2_ClrOvf
PMC1_ClrOvf
PMC0_ClrOvf

Valid if CPUID.0AH:EAX[15:8] = 8; else reserved
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If CPUID.0AH:EAX[15:8] report 4, access to IA32_PMC4-IA32_PMC7, IA32_PMC4-
IA32_PMC7 will cause #GP. Writing 1’s to bit position 7:4 of 
IA32_PERF_GLOBAL_CTRL, IA32_PERF_GLOBAL_STATUS, or 
IA32_PERF_GLOBAL_OVF_CTL will also cause #GP.

18.8.3 Full Width Writes to Performance Counters
Processors based on Intel microarchitecture code name Sandy Bridge support full-
width writes to the general-purpose counters, IA32_PMCx. Support of full-width 
writes are enumerated by IA32_PERF_CAPABILITIES.FW_WRITES[13] (see Section 
18.2.2.3).

The default behavior of IA32_PMCx is unchanged, i.e. WRMSR to IA32_PMCx results 
in a sign-extended 32-bit value of the input EAX written into IA32_PMCx. Full-width 
writes must issue WRMSR to a dedicated alias MSR address for each IA32_PMCx.

Software must check the presence of full-width write capability and the presence of 
the alias address IA32_A_PMCx by testing IA32_PERF_CAPABILITIES[13].

18.8.4 PEBS Support in Intel® Microarchitecture Code Name Sandy 
Bridge

Processors based on Intel microarchitecture code name Sandy Bridge support PEBS, 
similar to those offered in prior generation, with several enhanced features. The key 
components and differences of PEBS facility relative to Intel microarchitecture code 
name Westmere is summarized in Table 18-20.

Table 18-20.  PEBS Facility Comparison

Box Sandy Bridge Westmere Comment

Valid IA32_PMCx PMC0-PMC3 PMC0-PMC3 No PEBS on PMC4-PMC7 

PEBS Buffer 
Programming

 Section 18.6.1.1 Section 18.6.1.1 Unchanged

IA32_PEBS_ENABLE 
Layout

 Figure 18-28 Figure 18-14

PEBS record layout Physical Layout same 
as Table 18-12

Table 18-12 Enhanced fields at 
offsets 98H, A0H, A8H

PEBS Events See Table 18-21 See Table 18-10 IA32_PMC4-IA32_PMC7 
do not support PEBS.

PEBS-Load Latency See Table 18-22 Table 18-13

PEBS-Precise Store yes; see Section 
18.8.4.3

No IA32_PMC3 only

PEBS-PDIR yes No IA32_PMC1 only
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Only IA32_PMC0 through IA32_PMC3 support PEBS. 

NOTE
PEBS events are only valid when the following fields of 
IA32_PERFEVTSELx are all zero: AnyThread, Edge, Invert, CMask.

In IA32_PEBS_ENABLE MSR, bit 63 is defined as PS_ENABLE: When set, this enables 
IA32_PMC3 to capture precise store information. Only IA32_PMC3 supports the 
precise store facility. In typical usage of PEBS, the bit fields in IA32_PEBS_ENABLE 
are written to when the agent software starts PEBS operation; the enabled bit fields 
should be modified only when re-programming another PEBS event or cleared when 
the agent uses the performance counters for non-PEBS operations. 

18.8.4.1  PEBS Record Format
The layout of PEBS records physically identical to those shown in Table 18-12, but the 
fields at offset 98H, A0H and A8H have been enhanced to support additional PEBS 
capabilities.
• Load/Store Data Linear Address (Offset 98H): This field will contain the linear 

address of the source of the load, or linear address of the destination of the store.

SAMPLING 
Restriction

Small SAV(CountDown) value incur higher 
overhead than prior generation.

Figure 18-28.  Layout of IA32_PEBS_ENABLE MSR 

Table 18-20.  PEBS Facility Comparison

Box Sandy Bridge Westmere Comment

LL_EN_PMC3 (R/W)
LL_EN_PMC2 (R/W)

8 7 0

LL_EN_PMC1 (R/W)

32 333 1

Reserved

63 2431 56343536

PEBS_EN_PMC3 (R/W)
PEBS_EN_PMC2 (R/W)
PEBS_EN_PMC1 (R/W)
PEBS_EN_PMC0 (R/W)

LL_EN_PMC0 (R/W)

RESET Value — 0x00000000_00000000

62

PS_EN (R/W)
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• Data Source /Store Status (Offset A0H):When load latency is enabled, this field 
will contain three piece of information (including an encoded value indicating the 
source which satisfied the load operation). The source field encodings are 
detailed in Table 18-13. When precise store is enabled, this field will contain 
information indicating the status of the store, as detailed in Table 19.

• Latency Value/0 (Offset A8H): When load latency is enabled, this field contains 
the latency in cycles to service the load. This field is not meaningful when precise 
store is enabled and will be written to zero in that case. Upon writing the PEBS 
record, microcode clears the overflow status bits in the 
IA32_PERF_GLOBAL_STATUS corresponding to those counters that both 
overflowed and were enabled in the IA32_PEBS_ENABLE register. The status bits 
of other counters remain unaffected.

The number PEBS events has expanded. The list of PEBS events supported in Intel 
microarchitecture code name Sandy Bridge is shown in Table 18-21.

Table 18-21.  PEBS Performance Events for Intel® Microarchitecture Code Name Sandy 
Bridge

Event Name Event Select Sub-event UMask

INST_RETIRED C0H PREC_DIST 01H1

UOPS_RETIRED C2H All 01H

Retire_Slots 02H

BR_INST_RETIRED C4H Conditional 01H

Near_Call 02H

All_branches 04H

Near_Return 08H

Not_Taken 10H

Near_Taken 20H

Far_Branches 40H

BR_MISP_RETIRED C5H Conditional 01H

Near_Call 02H

All_branches 04H

Not_Taken 10H

Taken 20H

MEM_TRANS_RETIRED CDH Load_Latency 01H

Precise_Store 02H
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18.8.4.2  Load Latency Performance Monitoring Facility
The load latency facility in Intel microarchitecture code name Sandy Bridge is similar 
to that in prior microarchitecture. It provides software a means to characterize the 
average load latency to different levels of cache/memory hierarchy. This facility 
requires processor supporting enhanced PEBS record format in the PEBS buffer, see 
Table 18-12 and Section 18.8.4.1. The facility measures latency from micro-opera-
tion (uop) dispatch to when data is globally observable (GO).

To use this feature software must assure:
• One of the IA32_PERFEVTSELx MSR is programmed to specify the event unit 

MEM_TRANS_RETIRED, and the LATENCY_ABOVE_THRESHOLD event mask must be 
specified (IA32_PerfEvtSelX[15:0] = 0x1CDH). The corresponding counter 
IA32_PMCx will accumulate event counts for architecturally visible loads which 
exceed the programmed latency threshold specified separately in a MSR. Stores 
are ignored when this event is programmed. The CMASK or INV fields of the 
IA32_PerfEvtSelX register used for counting load latency must be 0. Writing 
other values will result in undefined behavior. 

MEM_UOP_RETIRED D0H Load 01H

Store 02H

STLB_Miss 10H

Lock 20H

SPLIT 40H

ALL 80H

MEM_LOAD_UOPS_RETIRED D1H L1_Hit 01H

L2_Hit 02H

L3_Hit 04H

Hit_LFB 40H

MEM_LOAD_UOPS_LLC_HIT_RETIRED D2H XSNP_Miss 01H

XSNP_Hit 02H

XSNP_Hitm 04H

XSNP_None 08H

MEM_LOAD_UOPS_MISC_RETIRED D4H LLC_Miss 02H

NOTES:
1. Only available on IA32_PMC1.

Table 18-21.  PEBS Performance Events for Intel® Microarchitecture Code Name Sandy 
Bridge (Contd.)

Event Name Event Select Sub-event UMask
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• The MSR_PEBS_LD_LAT_THRESHOLD MSR is programmed with the desired 
latency threshold in core clock cycles. Loads with latencies greater than this 
value are eligible for counting and latency data reporting. The minimum value 
that may be programmed in this register is 3 (the minimum detectable load 
latency is 4 core clock cycles).

• The PEBS enable bit in the IA32_PEBS_ENABLE register is set for the corre-
sponding IA32_PMCx counter register. This means that both the PEBS_EN_CTRX 
and LL_EN_CTRX bits must be set for the counter(s) of interest. For example, to 
enable load latency on counter IA32_PMC0, the IA32_PEBS_ENABLE register 
must be programmed with the 64-bit value 0x00000001.00000001.

• When Load latency event is enabled, no other PEBS event can be configured with 
other counters.

When the load-latency facility is enabled, load operations are randomly selected by 
hardware and tagged to carry information related to data source locality and latency. 
Latency and data source information of tagged loads are updated internally. The 
MEM_TRANS_RETIRED event for load latency counts only tagged retired loads. If a 
load is cancelled it will not be counted and the internal state of the load latency 
facility will not be updated. In this case the hardware will tag the next available load.

When a PEBS assist occurs, the last update of latency and data source information 
are captured by the assist and written as part of the PEBS record. The PEBS sample 
after value (SAV), specified in PEBS CounterX Reset, operates orthogonally to the 
tagging mechanism. Loads are randomly tagged to collect latency data. The SAV 
controls the number of tagged loads with latency information that will be written into 
the PEBS record field by the PEBS assists. The load latency data written to the PEBS 
record will be for the last tagged load operation which retired just before the PEBS 
assist was invoked.

The physical layout of the PEBS records is the same as shown in Table 18-12. The 
specificity of Data Source entry at offset A0H has been enhanced to report three 
piece of information. 

The layout of MSR_PEBS_LD_LAT_THRESHOLD is the same as shown in 
Figure 18-16.

Table 18-22.  Layout of Data Source Field of Load Latency Record

Field Position Description

Source 3:0 See Table 18-13

STLB_MISS 4 0: The load did not miss the STLB (hit the DTLB or STLB).

1: The load missed the STLB.

Lock 5 0: The load was not part of a locked transaction.

1: The load was part of a locked transaction.

Reserved 63:6
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18.8.4.3  Precise Store Facility
Processors based on Intel microarchitecture code name Sandy Bridge offer a precise 
store capability that complements the load latency facility. It provides a means to 
profile store memory references in the system.

Precise stores leverage the PEBS facility and provide additional information about 
sampled stores. Having precise memory reference events with linear address infor-
mation for both loads and stores can help programmers improve data structure 
layout, eliminate remote node references, and identify cache-line conflicts in NUMA 
systems.

Only IA32_PMC3 can be used to capture precise store information. After enabling this 
facility, counter overflows will initiate the generation of PEBS records as previously 
described in PEBS. Upon counter overflow hardware captures the linear address and 
other status information of the next store that retires. This information is then 
written to the PEBS record.

To enable the precise store facility, software must complete the following steps. 
Please note that the precise store facility relies on the PEBS facility, so the PEBS 
configuration requirements must be completed before attempting to capture precise 
store information.
• Complete the PEBS configuration steps.
• Program the MEM_TRANS_RETIRED.PRECISE_STORE event in 

IA32_PERFEVTSEL3. Only counter 3 (IA32_PMC3) supports collection of precise 
store information. 

• Set IA32_PEBS_ENABLE[3] and IA32_PEBS_ENABLE[63]. This enables 
IA32_PMC3 as a PEBS counter and enables the precise store facility, respectively.

The precise store information written into a PEBS record affects entries at offset 98H, 
A0H and A8H of Table 18-12. The specificity of Data Source entry at offset A0H has 
been enhanced to report three piece of information. 

Table 18-23.  Layout of Precise Store Information In PEBS Record

Field Offset Description

Store Data 
Linear Address

98H The linear address of the destination of the store.

Store Status A0H DCU Hit (Bit 0): The store hit the data cache closest to the core (lowest 
latency cache) if this bit is set, otherwise the store missed the data 
cache.

STLB Miss (bit 4): The store missed the STLB if set, otherwise the store 
hit the STLB

Locked Access (bit 5): The store was part of a locked access if set, 
otherwise the store was not part of a locked access.

Reserved A8H Reserved
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18.8.4.4  Precise Distribution of Instructions Retired (PDIR) 
Upon triggering a PEBS assist, there will be a finite delay between the time the 
counter overflows and when the microcode starts to carry out its data collection obli-
gations. INST_RETIRED is a very common event that is used to sample where perfor-
mance bottleneck happened and to help identify its location in instruction address 
space. Even if the delay is constant in core clock space, it invariably manifest as vari-
able “skids” in instruction address space. This creates a challenge for programmers 
to profile a workload and pinpoint the location of bottlenecks.

The core PMU in processors based on Intel microarchitecture code name Sandy 
Bridge include a facility referred to as precise distribution of Instruction Retired 
(PDIR). 

The PDIR facility mitigates the “skid“ problem by providing an early indication of 
when the INST_RETIRED counter is about to overflow, allowing the machine to more 
precisely trap on the instruction that actually caused the counter overflow thus elim-
inating skid.

PDIR applies only to the INST_RETIRED.PREC_DIST precise event, and must use 
IA32_PMC1 with PerfEvtSel1 property configured and bit 1 in the 
IA32_PEBS_ENABLE set to 1. INST_RETIRED.PREC_DIST is a non-architectural 
performance event, it is not supported in prior generation microarchitectures. Addi-
tionally, current implementation of PDIR limits tool to quiesce the rest of the 
programmable counters in the core when PDIR is active. 

18.8.5 Off-core Response Performance Monitoring 
The core PMU in processors based on Intel microarchitecture code name Sandy 
Bridge provides off-core response facility similar to prior generation. Off-core 
response can be programmed only with a specific pair of event select and counter 
MSR, and with specific event codes and predefine mask bit value in a dedicated MSR 
to specify attributes of the off-core transaction. Two event codes are dedicated for 
off-core response event programming. Each event code for off-core response moni-
toring requires programming an associated configuration MSR, 
MSR_OFFCORE_RSP_x. Table 18-24 lists the event code, mask value and additional 
off-core configuration MSR that must be programmed to count off-core response 
events using IA32_PMCx. 

The layout of MSR_OFFCORE_RSP_0 and MSR_OFFCORE_RSP_1 are shown in 
Figure 18-29 and Figure 18-30. Bits 15:0 specifies the request type of a transaction 

Table 18-24.  Off-Core Response Event Encoding

Counter Event code UMask Required Off-core Response MSR

PMC0 0xB7 0x01 MSR_OFFCORE_RSP_0 (address 0x1A6)

PMC3 0xBB 0x01 MSR_OFFCORE_RSP_1 (address 0x1A7)
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request to the uncore. Bits 30:16 specifies supplier information, bits 37:31 specifies 
snoop response information.

Figure 18-29.  Request_Type Fields for MSR_OFFCORE_RSP_x 

Table 18-25.  MSR_OFFCORE_RSP_x Request_Type Field Definition

Bit Name Offset Description

DMND_DATA_RD 0 (R/W). Counts the number of demand and DCU prefetch data reads of 
full and partial cachelines as well as demand data page table entry 
cacheline reads. Does not count L2 data read prefetches or 
instruction fetches.

DMND_RFO 1 (R/W). Counts the number of demand and DCU prefetch reads for 
ownership (RFO) requests generated by a write to data cacheline. 
Does not count L2 RFO prefetches.

DMND_IFETCH 2 (R/W). Counts the number of demand and DCU prefetch instruction 
cacheline reads. Does not count L2 code read prefetches.

WB 3 (R/W). Counts the number of writeback (modified to exclusive) 
transactions.

PF_DATA_RD 4 (R/W). Counts the number of data cacheline reads generated by L2 
prefetchers.

PF_RFO 5 (R/W). Counts the number of RFO requests generated by L2 
prefetchers.

RESPONSE TYPE — Other (R/W)
RESERVED 

8 7 0

REQUEST TYPE — STRM_ST (R/W)

11 312 1

Reserved

63 249 5610131415

REQUEST TYPE — BUS_LOCKS (R/W)
REQUEST TYPE — PF_LLC_IFETCH (R/W)
REQUEST TYPE — PF_LLC_RFO (R/W)
REQUEST TYPE — PF_LLC_DATA_RD (R/W)
REQUEST TYPE — PF_IFETCH (R/W)
REQUEST TYPE — PF_RFO (R/W)
REQUEST TYPE — PF_DATA_RD (R/W)
REQUEST TYPE — WB (R/W)
REQUEST TYPE — DMND_IFETCH (R/W)
REQUEST TYPE — DMND_RFO (R/W)
REQUEST TYPE — DMND_DATA_RD (R/W)

RESET Value — 0x00000000_00000000

37

See Figure 18-30
18-60 Vol. 3B



PERFORMANCE MONITORING
To properly program this extra register, software must set at least one request type 
bit and a valid response type pattern.  Otherwise, the event count reported will be 
zero.  It is permissible and useful to set multiple request and response type bits in 
order to obtain various classes of off-core response events. Although 
MSR_OFFCORE_RSP_x allow an agent software to program numerous combinations 
that meet the above guideline, not all combinations produce meaningful data.

PF_IFETCH 6 (R/W). Counts the number of code reads generated by L2 prefetchers.

PF_LLC_DATA_RD 7 (R/W). L2 prefetcher to L3 for loads.

PF_LLC_RFO 8 (R/W). RFO requests generated by L2 prefetcher 

PF_LLC_IFETCH 9 (R/W). L2 prefetcher to L3 for instruction fetches.

BUS_LOCKS 10 (R/W). Bus lock and split lock requests

STRM_ST 11 (R/W). Streaming store requests

OTHER 15 (R/W). Any other request that crosses IDI, including I/O.

Figure 18-30.  Response_Supplier and Snoop Info Fields for MSR_OFFCORE_RSP_x 

Table 18-25.  MSR_OFFCORE_RSP_x Request_Type Field Definition (Contd.)

Bit Name Offset Description

RESPONSE TYPE — NON_DRAM (R/W)
RSPNS_SNOOP — HITM (R/W)

16

RSPNS_SNOOP — HIT_FWD

33 1934 17

Reserved

63 182031 212232353637

RSPNS_SNOOP — HIT_NO_FWD (R/W)
RSPNS_SNOOP — SNP_MISS (R/W)
RSPNS_SNOOP — SNP_NOT_NEEDED (R/W)
RSPNS_SNOOP — SNPl_NONE (R/W)
RSPNS_SUPPLIER — RESERVED

RSPNS_SUPPLIER — LLC_HITF (R/W)
RSPNS_SUPPLIER — LLC_HITS (R/W)
RSPNS_SUPPLIER — LLC_HITE (R/W)
RSPNS_SUPPLIER — LLC_HITM (R/W)
RSPNS_SUPPLIER — No_SUPP (R/W)
RSPNS_SUPPLIER — ANY (R/W)

RESET Value — 0x00000000_00000000

RSPNS_SUPPLIER — Local
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To specify a complete offcore response filter, software must properly program bits in 
the request and response type fields. A valid request type must have at least one bit 
set in the non-reserved bits of 15:0. A valid response type must be a non-zero value 
of the following expression:

ANY | [(‘OR’ of Supplier Info Bits) & (‘OR’ of Snoop Info Bits)]

If “ANY“ bit is set, the supplier and snoop info bits are ignored.

Table 18-26.  MSR_OFFCORE_RSP_x Response Supplier Info Field Definition

Subtype Bit Name Offset Description

Common Any 16 (R/W). Catch all value for any response types.

Supplier 
Info

NO_SUPP 17 (R/W). No Supplier Information available

LLC_HITM 18 (R/W). M-state initial lookup stat in L3.

LLC_HITE 19 (R/W). E-state

LLC_HITS 20 (R/W). S-state

LLC_HITF 21 (R/W). F-state

LOCAL 22 (R/W). Local DRAM Controller

Reserved 30:23 Reserved

Table 18-27.  MSR_OFFCORE_RSP_x Snoop Info Field Definition

Subtype Bit Name Offset Description

Snoop 
Info

SNP_NONE 31 (R/W). No details on snoop-related information

SNP_NOT_NEEDED 32 (R/W). No snoop was needed to satisfy the request.

SNP_MISS 33 (R/W). A snoop was needed and it missed all snooped 
caches:

-For LLC Hit, ReslHitl was returned by all cores

-For LLC Miss, Rspl was returned by all sockets and data 
was returned from DRAM.
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18.8.6 Uncore Performance Monitoring Facilities In Intel® Core™ i7-
2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor 
Series

The uncore sub-system in Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® 
Core™ i3-2xxx processor series provides a unified L3 that can support up to four 
processor cores. The L3 cache consists multiple slices, each slice interface with a 
processor via a coherence engine, referred to as a C-Box. Each C-Box provides dedi-
cated facility of MSRs to select uncore performance monitoring events and each C-
Box event select MSR is paired with a counter register, similar in style as those 
described in Section 18.6.2.2. The layout of the event select MSRs in the C-Boxes are 
shown in Figure 18-31.

SNP_NO_FWD 34 (R/W). A snoop was needed and it hits in at least one 
snooped cache. Hit denotes a cache-line was valid before 
snoop effect. This includes:

-Snoop Hit w/ Invalidation (LLC Hit, RFO)

-Snoop Hit, Left Shared (LLC Hit/Miss, IFetch/Data_RD)

-Snoop Hit w/ Invalidation and No Forward (LLC Miss, RFO 
Hit S)

In the LLC Miss case, data is returned from DRAM.

SNP_FWD 35 (R/W). A snoop was needed and data was forwarded 
from a remote socket. This includes:

-Snoop Forward Clean, Left Shared (LLC Hit/Miss, 
IFetch/Data_RD/RFT).

HITM 36 (R/W). A snoop was needed and it HitM-ed in local or 
remote cache. HitM denotes a cache-line was in modified 
state before effect as a results of snoop. This includes:

-Snoop HitM w/ WB (LLC miss, IFetch/Data_RD)

-Snoop Forward Modified w/ Invalidation (LLC Hit/Miss, 
RFO)

-Snoop MtoS (LLC Hit, IFetch/Data_RD).

NON_DRAM 37 (R/W). Target was non-DRAM system address. This 
includes MMIO transactions.

Table 18-27.  MSR_OFFCORE_RSP_x Snoop Info Field Definition (Contd.)

Subtype Bit Name Offset Description
Vol. 3B 18-63



PERFORMANCE MONITORING
At the uncore domain level, there is a master set of control MSRs that centrally 
manages all the performance monitoring facility of uncore units. Figure 18-32 shows 
the layout of the uncore domain global control 

MSR bit 31 of MSR_UNC_PERF_GLOBAL_CTRL provides the capability to freeze all 
uncore counters when an overflow condition in a unit counter. When set and upon a 
counter overflow, the uncore PMU logic will clear the global enable bit, bit 29.

Additionally, there is also a fixed counter, counting uncore clockticks, for the uncore 
domain. Table 18-28 summarizes the number MSRs for uncore PMU for each box.

Figure 18-31.  Layout of MSR_UNC_CBO_N_PERFEVTSELx MSR for C-Box N

Figure 18-32.  Layout of MSR_UNC_PERF_GLOBAL_CTRL MSR for Uncore

28

INV—Invert counter mask
EN—Enable counters

E—Edge detect

8 7 0

Event Select
Counter Mask 

19 1618 15172021222324

Reserved

Unit Mask (UMASK)(CMASK)

63

PMI—Enable PMI on overflow

RESET Value — 0x00000000_00000000

FREEZE—Freeze counters

EN—Enable all uncore counters

02829303132

Reserved

63

PMI—Wake cores on PMI

RESET Value — 0x00000000_00000000

4 3 2 1

Core Select — core 3 select
Core Select — core 2 select
Core Select — core 1select
Core Select — core 0 select
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18.8.6.1  Uncore Performance Monitoring Events
There are certain restrictions on the uncore performance counters in each C-Box. 
Specifically,
• Occupancy events are supported only with counter 0 but not counter 1.

Other uncore C-Box events can be programmed with either counter 0 or 1.

The C-Box uncore performance events described in Table 19-6 can collect perfor-
mance characteristics of transactions initiated by processor core. In that respect, 
they are similar to various sub-events in the OFFCORE_RESPONSE family of perfor-
mance events in the core PMU. Information such as data supplier locality (LLC 
HIT/MISS) and snoop responses can be collected via OFFCORE_RESPONSE and qual-
ified on a per-thread basis. 

On the other hand, uncore performance event logic can not associate its counts with 
the same level of per-thread qualification attributes as the core PMU events can. 
Therefore, whenever similar event programming capabilities are available from both 
core PMU and uncore PMU, the recommendation is that utilizing the core PMU events 
may be less affected by artifacts, complex interactions and other factors.

18.8.7 Intel® Xeon® Processor E5 Family Performance Monitoring 
Facility

The Intel® Xeon® Processor E5 Family (and Intel® Core™ i7-3930K Processor) are 
based on Intel microarchitecture code name Sandy Bridge. While the processor cores 
share the same microarchitecture as those of the Intel® Xeon® Processor E3 Family 
and second generation Intel Core i7-2xxx, Intel Core i5-2xxx, Intel Core i3-2xxx 
processor series, the uncore subsystems are different. An overview of the uncore 
performance monitoring facilities of the Intel Xeon processor E5 family (and Intel 
Core i7-3930K processor) is described in Section 18.8.8.

Thus, the performance monitoring facilities in the processor core generally are the 
same as those described in Section 18.8 through Section 18.8.5. However, the 
MSR_OFFCORE_RSP_0/MSR_OFFCORE_RSP_1 Response Supplier Info field shown in 
Table 18-26 applies to Intel Core Processors with CPUID signature of 
DisplayFamily_DisplayModel encoding of 06_2AH; next generation Intel Xeon 
processor with CPUID signature of DisplayFamily_DisplayModel encoding of 06_2DH 
supports an additional field for remote DRAM controller shown in Table 18-29. Addi-

Table 18-28.  Uncore PMU MSR Summary

Box
# of 
Boxes Counters per Box

Counter 
Width

General 
Purpose

Global 
Enable Comment

C-Box Up to 4 2 44 Yes Per-box

NCU 1 48 No Uncore
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tionally, the are some small differences in the non-architectural performance moni-
toring events (see Table 19-4).

18.8.8 Intel® Xeon® Processor E5 Family Uncore Performance 
Monitoring Facility

The uncore subsystem in the Intel Xeon processor E5 family based on Intel microar-
chitecture Sandy Bridge has some similarities with those of the Intel Xeon processor 
E7 family based on Intel microarchitecture Sandy Bridge. Within the uncore 
subsystem, localized performance counter sets are provided at logic control unit 
scope. For example, each Cbox caching agent has a set of local performance 
counters, and the power controller unit (PCU) has its own local performance 
counters. Up to 8 C-Box units are supported in the uncore sub-system. 

Table 18-30 summarizes the uncore PMU facilities providing MSR interfaces.

Table 18-29.  MSR_OFFCORE_RSP_x Supplier Info Field Definition for Next Generation 
Intel Xeon Processor

Subtype Bit Name Offset Description

Common Any 16 (R/W). Catch all value for any response types.

Supplier 
Info

NO_SUPP 17 (R/W). No Supplier Information available

LLC_HITM 18 (R/W). M-state initial lookup stat in L3.

LLC_HITE 19 (R/W). E-state

LLC_HITS 20 (R/W). S-state

LLC_HITF 21 (R/W). F-state

LOCAL 22 (R/W). Local DRAM Controller

Remote 30:23 (R/W): Remote DRAM Controller (either all 0s or all 1s)

Table 18-30.  Uncore PMU MSR Summary for Intel® Xeon® Processor E5 Family

Box
# of 
Boxes Counters per Box

Counter 
Width

General 
Purpose

Global 
Enable Sub-control MSRs

C-Box 8 4 44 Yes per-box None

PCU 1 4 48 Yes per-box Match/Mask

U-Box 1 2 44 Yes uncore None
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18.9 NEXT GENERATION INTEL CORE PROCESSOR 
PERFORMANCE MONITORING FACILITY

The Next Generation Intel Core processor is based on Intel® microarchitecture code 
name Ivy Bridge. The performance monitoring facilities in the processor core gener-
ally are the same as those described in Section 18.8 through Section 18.8.5. The 
non-architectural performance monitoring events supported by the processor core 
are listed in Table 19-4.

18.10 PERFORMANCE MONITORING (PROCESSORS 
BASED ON INTEL NETBURST® 
MICROARCHITECTURE)

The performance monitoring mechanism provided in Pentium 4 and Intel Xeon 
processors is different from that provided in the P6 family and Pentium processors. 
While the general concept of selecting, filtering, counting, and reading performance 
events through the WRMSR, RDMSR, and RDPMC instructions is unchanged, the 
setup mechanism and MSR layouts are incompatible with the P6 family and Pentium 
processor mechanisms. Also, the RDPMC instruction has been enhanced to read the 
the additional performance counters provided in the Pentium 4 and Intel Xeon 
processors and to allow faster reading of counters.

The event monitoring mechanism provided with the Pentium 4 and Intel Xeon 
processors (based on Intel NetBurst microarchitecture) consists of the following facil-
ities:
• The IA32_MISC_ENABLE MSR, which indicates the availability in an Intel 64 or 

IA-32 processor of the performance monitoring and precise event-based 
sampling (PEBS) facilities.

• Event selection control (ESCR) MSRs for selecting events to be monitored with 
specific performance counters. The number available differs by family and model 
(43 to 45).

• 18 performance counter MSRs for counting events.
• 18 counter configuration control (CCCR) MSRs, with one CCCR associated with 

each performance counter. CCCRs sets up an associated performance counter for 
a specific method of counting.

• A debug store (DS) save area in memory for storing PEBS records.
• The IA32_DS_AREA MSR, which establishes the location of the DS save area.
• The debug store (DS) feature flag (bit 21) returned by the CPUID instruction, 

which indicates the availability of the DS mechanism.
• The MSR_PEBS_ENABLE MSR, which enables the PEBS facilities and replay 

tagging used in at-retirement event counting.
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• A set of predefined events and event metrics that simplify the setting up of the 
performance counters to count specific events.

Table 18-31 lists the performance counters and their associated CCCRs, along with 
the ESCRs that select events to be counted for each performance counter. Predefined 
event metrics and events are listed in Chapter 19, “Performance-Monitoring Events.”

Table 18-31.  Performance Counter MSRs and Associated CCCR and 
ESCR MSRs (Pentium 4 and Intel Xeon Processors)

Counter CCCR ESCR

Name No. Addr Name Addr Name No. Addr

MSR_BPU_COUNTER0 0 300H MSR_BPU_CCCR0 360H MSR_BSU_ESCR0
MSR_FSB_ESCR0
MSR_MOB_ESCR0
MSR_PMH_ESCR0
MSR_BPU_ESCR0
MSR_IS_ESCR0
MSR_ITLB_ESCR0
MSR_IX_ESCR0

7
6
2
4
0
1
3
5

3A0H
3A2H
3AAH
3ACH
3B2H
3B4H
3B6H
3C8H

MSR_BPU_COUNTER1 1 301H MSR_BPU_CCCR1 361H MSR_BSU_ESCR0
MSR_FSB_ESCR0
MSR_MOB_ESCR0
MSR_PMH_ESCR0
MSR_BPU_ESCR0
MSR_IS_ESCR0
MSR_ITLB_ESCR0
MSR_IX_ESCR0

7
6
2
4
0
1
3
5

3A0H
3A2H
3AAH
3ACH
3B2H
3B4H
3B6H
3C8H

MSR_BPU_COUNTER2 2 302H MSR_BPU_CCCR2 362H MSR_BSU_ESCR1
MSR_FSB_ESCR1
MSR_MOB_ESCR1
MSR_PMH_ESCR1
MSR_BPU_ESCR1
MSR_IS_ESCR1
MSR_ITLB_ESCR1
MSR_IX_ESCR1

7
6
2
4
0
1
3
5

3A1H
3A3H
3ABH
3ADH
3B3H
3B5H
3B7H
3C9H

MSR_BPU_COUNTER3 3 303H MSR_BPU_CCCR3 363H MSR_BSU_ESCR1
MSR_FSB_ESCR1
MSR_MOB_ESCR1
MSR_PMH_ESCR1
MSR_BPU_ESCR1
MSR_IS_ESCR1
MSR_ITLB_ESCR1
MSR_IX_ESCR1

7
6
2
4
0
1
3
5

3A1H
3A3H
3ABH
3ADH
3B3H
3B5H
3B7H
3C9H

MSR_MS_COUNTER0 4 304H MSR_MS_CCCR0 364H MSR_MS_ESCR0
MSR_TBPU_ESCR0
MSR_TC_ESCR0

0
2
1

3C0H
3C2H
3C4H

MSR_MS_COUNTER1 5 305H MSR_MS_CCCR1 365H MSR_MS_ESCR0
MSR_TBPU_ESCR0
MSR_TC_ESCR0

0
2
1

3C0H
3C2H
3C4H
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MSR_MS_COUNTER2 6 306H MSR_MS_CCCR2 366H MSR_MS_ESCR1
MSR_TBPU_ESCR1
MSR_TC_ESCR1

0
2
1

3C1H
3C3H
3C5H

MSR_MS_COUNTER3 7 307H MSR_MS_CCCR3 367H MSR_MS_ESCR1
MSR_TBPU_ESCR1
MSR_TC_ESCR1

0
2
1

3C1H
3C3H
3C5H

MSR_FLAME_
COUNTER0

8 308H MSR_FLAME_CCCR0 368H MSR_FIRM_ESCR0
MSR_FLAME_ESCR0
MSR_DAC_ESCR0
MSR_SAAT_ESCR0
MSR_U2L_ESCR0

1
0
5
2
3

3A4H
3A6H
3A8H
3AEH
3B0H

MSR_FLAME_
COUNTER1

9 309H MSR_FLAME_CCCR1 369H MSR_FIRM_ESCR0
MSR_FLAME_ESCR0
MSR_DAC_ESCR0
MSR_SAAT_ESCR0
MSR_U2L_ESCR0

1
0
5
2
3

3A4H
3A6H
3A8H
3AEH
3B0H

MSR_FLAME_
COUNTER2

10 30AH MSR_FLAME_CCCR2 36AH MSR_FIRM_ESCR1
MSR_FLAME_ESCR1
MSR_DAC_ESCR1
MSR_SAAT_ESCR1
MSR_U2L_ESCR1

1
0
5
2
3

3A5H
3A7H
3A9H
3AFH
3B1H

MSR_FLAME_
COUNTER3

11 30BH MSR_FLAME_CCCR3 36BH MSR_FIRM_ESCR1
MSR_FLAME_ESCR1
MSR_DAC_ESCR1
MSR_SAAT_ESCR1
MSR_U2L_ESCR1

1
0
5
2
3

3A5H
3A7H
3A9H
3AFH
3B1H

MSR_IQ_COUNTER0 12 30CH MSR_IQ_CCCR0 36CH MSR_CRU_ESCR0
MSR_CRU_ESCR2
MSR_CRU_ESCR4
MSR_IQ_ESCR01

MSR_RAT_ESCR0
MSR_SSU_ESCR0
MSR_ALF_ESCR0

4
5
6
0
2
3
1

3B8H
3CCH
3E0H
3BAH
3BCH
3BEH
3CAH

MSR_IQ_COUNTER1 13 30DH MSR_IQ_CCCR1 36DH MSR_CRU_ESCR0
MSR_CRU_ESCR2
MSR_CRU_ESCR4
MSR_IQ_ESCR01

MSR_RAT_ESCR0
MSR_SSU_ESCR0
MSR_ALF_ESCR0

4
5
6
0
2
3
1

3B8H
3CCH
3E0H
3BAH
3BCH
3BEH
3CAH

MSR_IQ_COUNTER2 14 30EH MSR_IQ_CCCR2 36EH MSR_CRU_ESCR1
MSR_CRU_ESCR3
MSR_CRU_ESCR5
MSR_IQ_ESCR11

MSR_RAT_ESCR1
MSR_ALF_ESCR1

4
5
6
0
2
1

3B9H
3CDH
3E1H
3BBH
3BDH
3CBH

Table 18-31.  Performance Counter MSRs and Associated CCCR and 
ESCR MSRs (Pentium 4 and Intel Xeon Processors) (Contd.)

Counter CCCR ESCR

Name No. Addr Name Addr Name No. Addr
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The types of events that can be counted with these performance monitoring facilities 
are divided into two classes: non-retirement events and at-retirement events.
• Non-retirement events (see Table 19-16) are events that occur any time during 

instruction execution (such as bus transactions or cache transactions).
• At-retirement events (see Table 19-17) are events that are counted at the 

retirement stage of instruction execution, which allows finer granularity in 
counting events and capturing machine state. 
The at-retirement counting mechanism includes facilities for tagging μops that 
have encountered a particular performance event during instruction execution. 
Tagging allows events to be sorted between those that occurred on an execution 
path that resulted in architectural state being committed at retirement as well as 
events that occurred on an execution path where the results were eventually 
cancelled and never committed to architectural state (such as, the execution of a 
mispredicted branch).

The Pentium 4 and Intel Xeon processor performance monitoring facilities support 
the three usage models described below. The first two models can be used to count 
both non-retirement and at-retirement events; the third model is used to count a 
subset of at-retirement events:
• Event counting — A performance counter is configured to count one or more 

types of events. While the counter is counting, software reads the counter at 

MSR_IQ_COUNTER3 15 30FH MSR_IQ_CCCR3 36FH MSR_CRU_ESCR1
MSR_CRU_ESCR3
MSR_CRU_ESCR5
MSR_IQ_ESCR11

MSR_RAT_ESCR1
MSR_ALF_ESCR1

4
5
6
 0

2
1

3B9H
3CDH
3E1H

3BBH
3BDH
3CBH

MSR_IQ_COUNTER4 16 310H MSR_IQ_CCCR4 370H MSR_CRU_ESCR0
MSR_CRU_ESCR2
MSR_CRU_ESCR4
MSR_IQ_ESCR01

MSR_RAT_ESCR0
MSR_SSU_ESCR0
MSR_ALF_ESCR0

4
5
6
0
2
3
1

3B8H
3CCH
3E0H
3BAH
3BCH
3BEH
3CAH

MSR_IQ_COUNTER5 17 311H MSR_IQ_CCCR5 371H MSR_CRU_ESCR1
MSR_CRU_ESCR3
MSR_CRU_ESCR5
MSR_IQ_ESCR11

MSR_RAT_ESCR1
MSR_ALF_ESCR1

4
5
6
0
2
1

3B9H
3CDH
3E1H
3BBH
3BDH
3CBH

NOTES:
1. MSR_IQ_ESCR0 and MSR_IQ_ESCR1 are available only on early processor builds (family 0FH, mod-

els 01H-02H). These MSRs are not available on later versions.

Table 18-31.  Performance Counter MSRs and Associated CCCR and 
ESCR MSRs (Pentium 4 and Intel Xeon Processors) (Contd.)

Counter CCCR ESCR

Name No. Addr Name Addr Name No. Addr
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selected intervals to determine the number of events that have been counted 
between the intervals.

• Non-precise event-based sampling — A performance counter is configured to 
count one or more types of events and to generate an interrupt when it 
overflows. To trigger an overflow, the counter is preset to a modulus value that 
will cause the counter to overflow after a specific number of events have been 
counted. 
When the counter overflows, the processor generates a performance monitoring 
interrupt (PMI). The interrupt service routine for the PMI then records the return 
instruction pointer (RIP), resets the modulus, and restarts the counter. Code 
performance can be analyzed by examining the distribution of RIPs with a tool 
like the VTune™ Performance Analyzer.

• Precise event-based sampling (PEBS) — This type of performance 
monitoring is similar to non-precise event-based sampling, except that a 
memory buffer is used to save a record of the architectural state of the processor 
whenever the counter overflows. The records of architectural state provide 
additional information for use in performance tuning. Precise event-based 
sampling can be used to count only a subset of at-retirement events.

The following sections describe the MSRs and data structures used for performance 
monitoring in the Pentium 4 and Intel Xeon processors.

18.10.1 ESCR MSRs
The 45 ESCR MSRs (see Table 18-31) allow software to select specific events to be 
countered. Each ESCR is usually associated with a pair of performance counters (see 
Table 18-31) and each performance counter has several ESCRs associated with it 
(allowing the events counted to be selected from a variety of events).

Figure 18-33 shows the layout of an ESCR MSR. The functions of the flags and fields 
are:
• USR flag, bit 2 — When set, events are counted when the processor is operating 

at a current privilege level (CPL) of 1, 2, or 3. These privilege levels are generally 
used by application code and unprotected operating system code.

• OS flag, bit 3 — When set, events are counted when the processor is operating 
at CPL of 0. This privilege level is generally reserved for protected operating 
system code. (When both the OS and USR flags are set, events are counted at all 
privilege levels.)
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• Tag enable, bit 4 — When set, enables tagging of μops to assist in at-retirement 
event counting; when clear, disables tagging. See Section 18.10.6, “At-
Retirement Counting.”

• Tag value field, bits 5 through 8 — Selects a tag value to associate with a μop 
to assist in at-retirement event counting.

• Event mask field, bits 9 through 24 — Selects events to be counted from the 
event class selected with the event select field.

• Event select field, bits 25 through 30) — Selects a class of events to be 
counted. The events within this class that are counted are selected with the event 
mask field.

When setting up an ESCR, the event select field is used to select a specific class of 
events to count, such as retired branches. The event mask field is then used to select 
one or more of the specific events within the class to be counted. For example, when 
counting retired branches, four different events can be counted: branch not taken 
predicted, branch not taken mispredicted, branch taken predicted, and branch taken 
mispredicted. The OS and USR flags allow counts to be enabled for events that occur 
when operating system code and/or application code are being executed. If neither 
the OS nor USR flag is set, no events will be counted.

The ESCRs are initialized to all 0s on reset. The flags and fields of an ESCR are config-
ured by writing to the ESCR using the WRMSR instruction. Table 18-31 gives the 
addresses of the ESCR MSRs. 

Writing to an ESCR MSR does not enable counting with its associated performance 
counter; it only selects the event or events to be counted. The CCCR for the selected 
performance counter must also be configured. Configuration of the CCCR includes 
selecting the ESCR and enabling the counter.

Figure 18-33.  Event Selection Control Register (ESCR) for Pentium 4 
and Intel Xeon Processors without Intel HT Technology Support
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18.10.2 Performance Counters
The performance counters in conjunction with the counter configuration control 
registers (CCCRs) are used for filtering and counting the events selected by the 
ESCRs. The Pentium 4 and Intel Xeon processors provide 18 performance counters 
organized into 9 pairs. A pair of performance counters is associated with a particular 
subset of events and ESCR’s (see Table 18-31). The counter pairs are partitioned into 
four groups:
• The BPU group, includes two performance counter pairs:

— MSR_BPU_COUNTER0 and MSR_BPU_COUNTER1.

— MSR_BPU_COUNTER2 and MSR_BPU_COUNTER3.
• The MS group, includes two performance counter pairs:

— MSR_MS_COUNTER0 and MSR_MS_COUNTER1.

— MSR_MS_COUNTER2 and MSR_MS_COUNTER3.
• The FLAME group, includes two performance counter pairs:

— MSR_FLAME_COUNTER0 and MSR_FLAME_COUNTER1.

— MSR_FLAME_COUNTER2 and MSR_FLAME_COUNTER3.
• The IQ group, includes three performance counter pairs:

— MSR_IQ_COUNTER0 and MSR_IQ_COUNTER1.

— MSR_IQ_COUNTER2 and MSR_IQ_COUNTER3.

— MSR_IQ_COUNTER4 and MSR_IQ_COUNTER5.

The MSR_IQ_COUNTER4 counter in the IQ group provides support for the PEBS. 

Alternate counters in each group can be cascaded: the first counter in one pair can 
start the first counter in the second pair and vice versa. A similar cascading is 
possible for the second counters in each pair. For example, within the BPU group of 
counters, MSR_BPU_COUNTER0 can start MSR_BPU_COUNTER2 and vice versa, and 
MSR_BPU_COUNTER1 can start MSR_BPU_COUNTER3 and vice versa (see Section 
18.10.5.6, “Cascading Counters”). The cascade flag in the CCCR register for the 
performance counter enables the cascading of counters.

Each performance counter is 40-bits wide (see Figure 18-34). The RDPMC instruction 
has been enhanced in the Pentium 4 and Intel Xeon processors to allow reading of 
either the full counter-width (40-bits) or the low 32-bits of the counter. Reading the 
low 32-bits is faster than reading the full counter width and is appropriate in situa-
tions where the count is small enough to be contained in 32 bits.

The RDPMC instruction can be used by programs or procedures running at any privi-
lege level and in virtual-8086 mode to read these counters. The PCE flag in control 
register CR4 (bit 8) allows the use of this instruction to be restricted to only programs 
and procedures running at privilege level 0.
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The RDPMC instruction is not serializing or ordered with other instructions. Thus, it 
does not necessarily wait until all previous instructions have been executed before 
reading the counter. Similarly, subsequent instructions may begin execution before 
the RDPMC instruction operation is performed.

Only the operating system, executing at privilege level 0, can directly manipulate the 
performance counters, using the RDMSR and WRMSR instructions. A secure oper-
ating system would clear the PCE flag during system initialization to disable direct 
user access to the performance-monitoring counters, but provide a user-accessible 
programming interface that emulates the RDPMC instruction.

Some uses of the performance counters require the counters to be preset before 
counting begins (that is, before the counter is enabled). This can be accomplished by 
writing to the counter using the WRMSR instruction. To set a counter to a specified 
number of counts before overflow, enter a 2s complement negative integer in the 
counter. The counter will then count from the preset value up to -1 and overflow. 
Writing to a performance counter in a Pentium 4 or Intel Xeon processor with the 
WRMSR instruction causes all 40 bits of the counter to be written.

18.10.3 CCCR MSRs
Each of the 18 performance counters in a Pentium 4 or Intel Xeon processor has one 
CCCR MSR associated with it (see Table 18-31). The CCCRs control the filtering and 
counting of events as well as interrupt generation. Figure 18-35 shows the layout of 
an CCCR MSR. The functions of the flags and fields are as follows:
• Enable flag, bit 12 — When set, enables counting; when clear, the counter is 

disabled. This flag is cleared on reset.
• ESCR select field, bits 13 through 15 — Identifies the ESCR to be used to 

select events to be counted with the counter associated with the CCCR.
• Compare flag, bit 18 — When set, enables filtering of the event count; when 

clear, disables filtering. The filtering method is selected with the threshold, 
complement, and edge flags.

• Complement flag, bit 19 — Selects how the incoming event count is compared 
with the threshold value. When set, event counts that are less than or equal to 
the threshold value result in a single count being delivered to the performance 

Figure 18-34.  Performance Counter (Pentium 4 and Intel Xeon Processors)
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counter; when clear, counts greater than the threshold value result in a count 
being delivered to the performance counter (see Section 18.10.5.2, “Filtering 
Events”). The complement flag is not active unless the compare flag is set.

• Threshold field, bits 20 through 23 — Selects the threshold value to be used 
for comparisons. The processor examines this field only when the compare flag is 
set, and uses the complement flag setting to determine the type of threshold 
comparison to be made. The useful range of values that can be entered in this 
field depend on the type of event being counted (see Section 18.10.5.2, “Filtering 
Events”).

• Edge flag, bit 24 — When set, enables rising edge (false-to-true) edge 
detection of the threshold comparison output for filtering event counts; when 
clear, rising edge detection is disabled. This flag is active only when the compare 
flag is set.

• FORCE_OVF flag, bit 25 — When set, forces a counter overflow on every 
counter increment; when clear, overflow only occurs when the counter actually 
overflows.

• OVF_PMI flag, bit 26 — When set, causes a performance monitor interrupt 
(PMI) to be generated when the counter overflows occurs; when clear, disables 
PMI generation. Note that the PMI is generated on the next event count after the 
counter has overflowed.

Figure 18-35.  Counter Configuration Control Register (CCCR)
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• Cascade flag, bit 30 — When set, enables counting on one counter of a counter 
pair when its alternate counter in the other the counter pair in the same counter 
group overflows (see Section 18.10.2, “Performance Counters,” for further 
details); when clear, disables cascading of counters.

• OVF flag, bit 31 — Indicates that the counter has overflowed when set. This flag 
is a sticky flag that must be explicitly cleared by software.

The CCCRs are initialized to all 0s on reset. 

The events that an enabled performance counter actually counts are selected and 
filtered by the following flags and fields in the ESCR and CCCR registers and in the 
qualification order given:

1. The event select and event mask fields in the ESCR select a class of events to be 
counted and one or more event types within the class, respectively.

2. The OS and USR flags in the ESCR selected the privilege levels at which events 
will be counted.

3. The ESCR select field of the CCCR selects the ESCR. Since each counter has 
several ESCRs associated with it, one ESCR must be chosen to select the classes 
of events that may be counted.

4. The compare and complement flags and the threshold field of the CCCR select an 
optional threshold to be used in qualifying an event count.

5. The edge flag in the CCCR allows events to be counted only on rising-edge transi-
tions.

The qualification order in the above list implies that the filtered output of one “stage” 
forms the input for the next. For instance, events filtered using the privilege level 
flags can be further qualified by the compare and complement flags and the 
threshold field, and an event that matched the threshold criteria, can be further qual-
ified by edge detection.

The uses of the flags and fields in the CCCRs are discussed in greater detail in Section 
18.10.5, “Programming the Performance Counters for Non-Retirement Events.”

18.10.4 Debug Store (DS) Mechanism
The debug store (DS) mechanism was introduced in the Pentium 4 and Intel Xeon 
processors to allow various types of information to be collected in memory-resident 
buffers for use in debugging and tuning programs. For the Pentium 4 and Intel Xeon 
processors, the DS mechanism is used to collect two types of information: branch 
records and precise event-based sampling (PEBS) records. The availability of the DS 
mechanism in a processor is indicated with the DS feature flag (bit 21) returned by 
the CPUID instruction. 

See Section 17.4.5, “Branch Trace Store (BTS),” and Section 18.10.7, “Precise Event-
Based Sampling (PEBS),” for a description of these facilities. Records collected with 
the DS mechanism are saved in the DS save area. See Section 17.4.9, “BTS and DS 
Save Area.”
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18.10.5 Programming the Performance Counters 
for Non-Retirement Events

The basic steps to program a performance counter and to count events include the 
following:

1. Select the event or events to be counted.

2. For each event, select an ESCR that supports the event using the values in the 
ESCR restrictions row in Table 19-16, Chapter 19.

3. Match the CCCR Select value and ESCR name in Table 19-16 to a value listed in 
Table 18-31; select a CCCR and performance counter.

4. Set up an ESCR for the specific event or events to be counted and the privilege 
levels at which the are to be counted.

5. Set up the CCCR for the performance counter by selecting the ESCR and the 
desired event filters.

6. Set up the CCCR for optional cascading of event counts, so that when the 
selected counter overflows its alternate counter starts.

7. Set up the CCCR to generate an optional performance monitor interrupt (PMI) 
when the counter overflows. If PMI generation is enabled, the local APIC must be 
set up to deliver the interrupt to the processor and a handler for the interrupt 
must be in place.

8. Enable the counter to begin counting.

18.10.5.1  Selecting Events to Count
Table 19-17 in Chapter 19 lists a set of at-retirement events for the Pentium 4 and 
Intel Xeon processors. For each event listed in Table 19-17, setup information is 
provided. Table 18-32 gives an example of one of the events.

Table 18-32.  Event Example 
Event Name Event Parameters  Parameter Value Description

branch_retired Counts the retirement of a branch. 
Specify one or more mask bits to 
select any combination of branch 
taken, not-taken, predicted and 
mispredicted. 

ESCR restrictions MSR_CRU_ESCR2
MSR_CRU_ESCR3

See Table 15-3 for the addresses of 
the ESCR MSRs

Counter numbers 
per ESCR

ESCR2: 12, 13, 16

ESCR3: 14, 15, 17

The counter numbers associated 
with each ESCR are provided. The 
performance counters and 
corresponding CCCRs can be obtained 
from Table 15-3.
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For Table 19-16 and Table 19-17, Chapter 19, the name of the event is listed in the 
Event Name column and parameters that define the event and other information are 
listed in the Event Parameters column. The Parameter Value and Description columns 
give specific parameters for the event and additional description information. Entries 
in the Event Parameters column are described below.
• ESCR restrictions — Lists the ESCRs that can be used to program the event. 

Typically only one ESCR is needed to count an event. 
• Counter numbers per ESCR — Lists which performance counters are 

associated with each ESCR. Table 18-31 gives the name of the counter and CCCR 
for each counter number. Typically only one counter is needed to count the event.

• ESCR event select — Gives the value to be placed in the event select field of the 
ESCR to select the event.

• ESCR event mask — Gives the value to be placed in the Event Mask field of the 
ESCR to select sub-events to be counted. The parameter value column defines 
the documented bits with relative bit position offset starting from 0, where the 
absolute bit position of relative offset 0 is bit 9 of the ESCR. All undocumented 
bits are reserved and should be set to 0.

• CCCR select — Gives the value to be placed in the ESCR select field of the CCCR 
associated with the counter to select the ESCR to be used to define the event. 
This value is not the address of the ESCR; it is the number of the ESCR from the 
Number column in Table 18-31.

• Event specific notes — Gives additional information about the event, such as 
the name of the same or a similar event defined for the P6 family processors.

• Can support PEBS — Indicates if PEBS is supported for the event (only supplied 
for at-retirement events listed in Table 19-17.)

ESCR Event Select 06H ESCR[31:25]

ESCR Event Mask

Bit 0: MMNP

     1: MMNM

     2: MMTP

     3: MMTM

ESCR[24:9],

Branch Not-taken Predicted, 

Branch Not-taken Mispredicted,

Branch Taken Predicted,

Branch Taken Mispredicted.

CCCR Select 05H CCCR[15:13]

Event Specific 
Notes

P6: EMON_BR_INST_RETIRED

Can Support PEBS No

Requires Additional 
MSRs for Tagging

No

Table 18-32.  Event Example  (Contd.)
Event Name Event Parameters  Parameter Value Description
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• Requires additional MSR for tagging — Indicates which if any additional 
MSRs must be programmed to count the events (only supplied for the at-
retirement events listed in Table 19-17.)

NOTE
The performance-monitoring events listed in Chapter 19, “Perfor-
mance-Monitoring Events,” are intended to be used as guides for 
performance tuning. The counter values reported are not guaranteed 
to be absolutely accurate and should be used as a relative guide for 
tuning. Known discrepancies are documented where applicable.

The following procedure shows how to set up a performance counter for basic 
counting; that is, the counter is set up to count a specified event indefinitely, wrap-
ping around whenever it reaches its maximum count. This procedure is continued 
through the following four sections.

Using information in Table 19-16, Chapter 19, an event to be counted can be selected 
as follows:

1. Select the event to be counted.

2. Select the ESCR to be used to select events to be counted from the ESCRs field.

3. Select the number of the counter to be used to count the event from the Counter 
Numbers Per ESCR field.

4. Determine the name of the counter and the CCCR associated with the counter, 
and determine the MSR addresses of the counter, CCCR, and ESCR from Table 
18-31.

5. Use the WRMSR instruction to write the ESCR Event Select and ESCR Event Mask 
values into the appropriate fields in the ESCR. At the same time set or clear the 
USR and OS flags in the ESCR as desired.

6. Use the WRMSR instruction to write the CCCR Select value into the appropriate 
field in the CCCR.

NOTE
Typically all the fields and flags of the CCCR will be written with one 
WRMSR instruction; however, in this procedure, several WRMSR 
writes are used to more clearly demonstrate the uses of the various 
CCCR fields and flags.

This setup procedure is continued in the next section, Section 18.10.5.2, “Filtering 
Events.”

18.10.5.2  Filtering Events
Each counter receives up to 4 input lines from the processor hardware from which it 
is counting events. The counter treats these inputs as binary inputs (input 0 has a 
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value of 1, input 1 has a value of 2, input 3 has a value of 4, and input 3 has a value 
of 8). When a counter is enabled, it adds this binary input value to the counter value 
on each clock cycle. For each clock cycle, the value added to the counter can then 
range from 0 (no event) to 15. 

For many events, only the 0 input line is active, so the counter is merely counting the 
clock cycles during which the 0 input is asserted. However, for some events two or 
more input lines are used. Here, the counters threshold setting can be used to filter 
events. The compare, complement, threshold, and edge fields control the filtering of 
counter increments by input value.

If the compare flag is set, then a “greater than” or a “less than or equal to” compar-
ison of the input value vs. a threshold value can be made. The complement flag 
selects “less than or equal to” (flag set) or “greater than” (flag clear). The threshold 
field selects a threshold value of from 0 to 15. For example, if the complement flag is 
cleared and the threshold field is set to 6, than any input value of 7 or greater on the 
4 inputs to the counter will cause the counter to be incremented by 1, and any value 
less than 7 will cause an increment of 0 (or no increment) of the counter. Conversely, 
if the complement flag is set, any value from 0 to 6 will increment the counter and 
any value from 7 to 15 will not increment the counter. Note that when a threshold 
condition has been satisfied, the input to the counter is always 1, not the input value 
that is presented to the threshold filter. 

The edge flag provides further filtering of the counter inputs when a threshold 
comparison is being made. The edge flag is only active when the compare flag is set. 
When the edge flag is set, the resulting output from the threshold filter (a value of 0 
or 1) is used as an input to the edge filter. Each clock cycle, the edge filter examines 
the last and current input values and sends a count to the counter only when it 
detects a “rising edge” event; that is, a false-to-true transition. Figure 18-36 illus-
trates rising edge filtering.

The following procedure shows how to configure a CCCR to filter events using the 
threshold filter and the edge filter. This procedure is a continuation of the setup 
procedure introduced in Section 18.10.5.1, “Selecting Events to Count.”

7. (Optional) To set up the counter for threshold filtering, use the WRMSR 
instruction to write values in the CCCR compare and complement flags and the 
threshold field:

— Set the compare flag.

— Set or clear the complement flag for less than or equal to or greater than 
comparisons, respectively.

— Enter a value from 0 to 15 in the threshold field.

8. (Optional) Select rising edge filtering by setting the CCCR edge flag.

This setup procedure is continued in the next section, Section 18.10.5.3, “Starting 
Event Counting.”
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18.10.5.3  Starting Event Counting
Event counting by a performance counter can be initiated in either of two ways. The 
typical way is to set the enable flag in the counter’s CCCR. Following the instruction 
to set the enable flag, event counting begins and continues until it is stopped (see 
Section 18.10.5.5, “Halting Event Counting”). 

The following procedural step shows how to start event counting. This step is a 
continuation of the setup procedure introduced in Section 18.10.5.2, “Filtering 
Events.”

9. To start event counting, use the WRMSR instruction to set the CCCR enable flag 
for the performance counter.

This setup procedure is continued in the next section, Section 18.10.5.4, “Reading a 
Performance Counter’s Count.”

The second way that a counter can be started by using the cascade feature. Here, the 
overflow of one counter automatically starts its alternate counter (see Section 
18.10.5.6, “Cascading Counters”).

18.10.5.4  Reading a Performance Counter’s Count
The Pentium 4 and Intel Xeon processors’ performance counters can be read using 
either the RDPMC or RDMSR instructions. The enhanced functions of the RDPMC 
instruction (including fast read) are described in Section 18.10.2, “Performance 
Counters.” These instructions can be used to read a performance counter while it is 
counting or when it is stopped.

The following procedural step shows how to read the event counter. This step is a 
continuation of the setup procedure introduced in Section 18.10.5.3, “Starting Event 
Counting.”

10. To read a performance counters current event count, execute the RDPMC 
instruction with the counter number obtained from Table 18-31 used as an 
operand.

Figure 18-36.  Effects of Edge Filtering

Output from
Threshold Filter
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This setup procedure is continued in the next section, Section 18.10.5.5, “Halting 
Event Counting.”

18.10.5.5  Halting Event Counting
After a performance counter has been started (enabled), it continues counting indef-
initely. If the counter overflows (goes one count past its maximum count), it wraps 
around and continues counting. When the counter wraps around, it sets its OVF flag 
to indicate that the counter has overflowed. The OVF flag is a sticky flag that indi-
cates that the counter has overflowed at least once since the OVF bit was last 
cleared. 

To halt counting, the CCCR enable flag for the counter must be cleared.

The following procedural step shows how to stop event counting. This step is a 
continuation of the setup procedure introduced in Section 18.10.5.4, “Reading a 
Performance Counter’s Count.”

11. To stop event counting, execute a WRMSR instruction to clear the CCCR enable 
flag for the performance counter.

To halt a cascaded counter (a counter that was started when its alternate counter 
overflowed), either clear the Cascade flag in the cascaded counter’s CCCR MSR or 
clear the OVF flag in the alternate counter’s CCCR MSR.

18.10.5.6  Cascading Counters
As described in Section 18.10.2, “Performance Counters,” eighteen performance 
counters are implemented in pairs. Nine pairs of counters and associated CCCRs are 
further organized as four blocks: BPU, MS, FLAME, and IQ (see Table 18-31). The first 
three blocks contain two pairs each. The IQ block contains three pairs of counters (12 
through 17) with associated CCCRs (MSR_IQ_CCCR0 through MSR_IQ_CCCR5).

The first 8 counter pairs (0 through 15) can be programmed using ESCRs to detect 
performance monitoring events. Pairs of ESCRs in each of the four blocks allow many 
different types of events to be counted. The cascade flag in the CCCR MSR allows 
nested monitoring of events to be performed by cascading one counter to a second 
counter located in another pair in the same block (see Figure 18-35 for the location 
of the flag).

Counters 0 and 1 form the first pair in the BPU block. Either counter 0 or 1 can be 
programmed to detect an event via MSR_MO B_ESCR0. Counters 0 and 2 can be 
cascaded in any order, as can counters 1 and 3. It’s possible to set up 4 counters in 
the same block to cascade on two pairs of independent events. The pairing described 
also applies to subsequent blocks. Since the IQ PUB has two extra counters, 
cascading operates somewhat differently if 16 and 17 are involved. In the IQ block, 
counter 16 can only be cascaded from counter 14 (not from 12); counter 14 cannot 
be cascaded from counter 16 using the CCCR cascade bit mechanism. Similar restric-
tions apply to counter 17.
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Example 18-1.  Counting Events

Assume a scenario where counter X is set up to count 200 occurrences of event A; 
then counter Y is set up to count 400 occurrences of event B. Each counter is set up 
to count a specific event and overflow to the next counter. In the above example, 
counter X is preset for a count of -200 and counter Y for a count of -400; this setup 
causes the counters to overflow on the 200th and 400th counts respectively.

Continuing this scenario, counter X is set up to count indefinitely and wraparound on 
overflow. This is described in the basic performance counter setup procedure that 
begins in Section 18.10.5.1, “Selecting Events to Count.” Counter Y is set up with the 
cascade flag in its associated CCCR MSR set to 1 and its enable flag set to 0.

To begin the nested counting, the enable bit for the counter X is set. Once enabled, 
counter X counts until it overflows. At this point, counter Y is automatically enabled 
and begins counting. Thus counter X overflows after 200 occurrences of event A. 
Counter Y then starts, counting 400 occurrences of event B before overflowing. When 
performance counters are cascaded, the counter Y would typically be set up to 
generate an interrupt on overflow. This is described in Section 18.10.5.8, “Gener-
ating an Interrupt on Overflow.” 

The cascading counters mechanism can be used to count a single event. The 
counting begins on one counter then continues on the second counter after the first 
counter overflows. This technique doubles the number of event counts that can be 
recorded, since the contents of the two counters can be added together.

18.10.5.7  EXTENDED CASCADING 
Extended cascading is a model-specific feature in the Intel NetBurst microarchitec-
ture. The feature is available to Pentium 4 and Xeon processor family with family 
encoding of 15 and model encoding greater than or equal to 2. This feature uses bit 
11 in CCCRs associated with the IQ block. See Table 18-33. 

Table 18-33.  CCR Names and Bit Positions 

CCCR Name:Bit Position Bit Name Description

MSR_IQ_CCCR1|2:11 Reserved

MSR_IQ_CCCR0:11 CASCNT4INTO0 Allow counter 4 to cascade into 
counter 0

MSR_IQ_CCCR3:11 CASCNT5INTO3 Allow counter 5 to cascade into 
counter 3

MSR_IQ_CCCR4:11 CASCNT5INTO4 Allow counter 5 to cascade into 
counter 4

MSR_IQ_CCCR5:11 CASCNT4INTO5 Allow counter 4 to cascade into 
counter 5
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The extended cascading feature can be adapted to the sampling usage model for 
performance monitoring. However, it is known that performance counters do not 
generate PMI in cascade mode or extended cascade mode due to an erratum. This 
erratum applies to Pentium 4 and Intel Xeon processors with model encoding of 2. 
For Pentium 4 and Intel Xeon processors with model encoding of 0 and 1, the erratum 
applies to processors with stepping encoding greater than 09H. 

Counters 16 and 17 in the IQ block are frequently used in precise event-based 
sampling or at-retirement counting of events indicating a stalled condition in the 
pipeline. Neither counter 16 or 17 can initiate the cascading of counter pairs using 
the cascade bit in a CCCR.

Extended cascading permits performance monitoring tools to use counters 16 and 17 
to initiate cascading of two counters in the IQ block. Extended cascading from 
counter 16 and 17 is conceptually similar to cascading other counters, but instead of 
using CASCADE bit of a CCCR, one of the four CASCNTxINTOy bits is used. 

Example 18-2.  Scenario for Extended Cascading

A usage scenario for extended cascading is to sample instructions retired on logical 
processor 1 after the first 4096 instructions retired on logical processor 0. A proce-
dure to program extended cascading in this scenario is outlined below:

1. Write the value 0 to counter 12. 

2. Write the value 04000603H to MSR_CRU_ESCR0 (corresponding to selecting the 
NBOGNTAG and NBOGTAG event masks with qualification restricted to logical 
processor 1).

3. Write the value 04038800H to MSR_IQ_CCCR0. This enables CASCNT4INTO0 
and OVF_PMI. An ISR can sample on instruction addresses in this case (do not 
set ENABLE, or CASCADE).

4. Write the value FFFFF000H into counter 16.1.

5. Write the value 0400060CH to MSR_CRU_ESCR2 (corresponding to selecting the 
NBOGNTAG and NBOGTAG event masks with qualification restricted to logical 
processor 0).

6. Write the value 00039000H to MSR_IQ_CCCR4 (set ENABLE bit, but not 
OVF_PMI).

Another use for cascading is to locate stalled execution in a multithreaded applica-
tion. Assume MOB replays in thread B cause thread A to stall. Getting a sample of the 
stalled execution in this scenario could be accomplished by:

1. Set up counter B to count MOB replays on thread B.

2. Set up counter A to count resource stalls on thread A; set its force overflow bit 
and the appropriate CASCNTxINTOy bit.

3. Use the performance monitoring interrupt to capture the program execution data 
of the stalled thread.
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18.10.5.8  Generating an Interrupt on Overflow
Any performance counter can be configured to generate a performance monitor 
interrupt (PMI) if the counter overflows. The PMI interrupt service routine can then 
collect information about the state of the processor or program when overflow 
occurred. This information can then be used with a tool like the Intel® VTune™ 
Performance Analyzer to analyze and tune program performance.

To enable an interrupt on counter overflow, the OVR_PMI flag in the counter’s associ-
ated CCCR MSR must be set. When overflow occurs, a PMI is generated through the 
local APIC. (Here, the performance counter entry in the local vector table [LVT] is set 
up to deliver the interrupt generated by the PMI to the processor.)

The PMI service routine can use the OVF flag to determine which counter overflowed 
when multiple counters have been configured to generate PMIs. Also, note that these 
processors mask PMIs upon receiving an interrupt. Clear this condition before leaving 
the interrupt handler.

When generating interrupts on overflow, the performance counter being used should 
be preset to value that will cause an overflow after a specified number of events are 
counted plus 1. The simplest way to select the preset value is to write a negative 
number into the counter, as described in Section 18.10.5.6, “Cascading Counters.” 
Here, however, if an interrupt is to be generated after 100 event counts, the counter 
should be preset to minus 100 plus 1 (-100 + 1), or -99. The counter will then over-
flow after it counts 99 events and generate an interrupt on the next (100th) event 
counted. The difference of 1 for this count enables the interrupt to be generated 
immediately after the selected event count has been reached, instead of waiting for 
the overflow to be propagation through the counter.

Because of latency in the microarchitecture between the generation of events and 
the generation of interrupts on overflow, it is sometimes difficult to generate an 
interrupt close to an event that caused it. In these situations, the FORCE_OVF flag in 
the CCCR can be used to improve reporting. Setting this flag causes the counter to 
overflow on every counter increment, which in turn triggers an interrupt after every 
counter increment.

18.10.5.9  Counter Usage Guideline
There are some instances where the user must take care to configure counting logic 
properly, so that it is not powered down. To use any ESCR, even when it is being used 
just for tagging, (any) one of the counters that the particular ESCR (or its paired 
ESCR) can be connected to should be enabled. If this is not done, 0 counts may 
result. Likewise, to use any counter, there must be some event selected in a corre-
sponding ESCR (other than no_event, which generally has a select value of 0). 
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18.10.6 At-Retirement Counting
At-retirement counting provides a means counting only events that represent work 
committed to architectural state and ignoring work that was performed speculatively 
and later discarded.

The Intel NetBurst microarchitecture used in the Pentium 4 and Intel Xeon proces-
sors performs many speculative activities in an attempt to increase effective 
processing speeds. One example of this speculative activity is branch prediction. The 
Pentium 4 and Intel Xeon processors typically predict the direction of branches and 
then decode and execute instructions down the predicted path in anticipation of the 
actual branch decision. When a branch misprediction occurs, the results of instruc-
tions that were decoded and executed down the mispredicted path are canceled. If a 
performance counter was set up to count all executed instructions, the count would 
include instructions whose results were canceled as well as those whose results 
committed to architectural state.

To provide finer granularity in event counting in these situations, the performance 
monitoring facilities provided in the Pentium 4 and Intel Xeon processors provide a 
mechanism for tagging events and then counting only those tagged events that 
represent committed results. This mechanism is called “at-retirement counting.” 

Tables 19-17 through 19-21 list predefined at-retirement events and event metrics 
that can be used to for tagging events when using at retirement counting. The 
following terminology is used in describing at-retirement counting:
• Bogus, non-bogus, retire — In at-retirement event descriptions, the term 

“bogus” refers to instructions or μops that must be canceled because they are on 
a path taken from a mispredicted branch. The terms “retired” and “non-bogus” 
refer to instructions or μops along the path that results in committed architec-
tural state changes as required by the program being executed. Thus instructions 
and μops are either bogus or non-bogus, but not both. Several of the Pentium 4 
and Intel Xeon processors’ performance monitoring events (such as, 
Instruction_Retired and Uops_Retired in Table 19-17) can count instructions or 
μops that are retired based on the characterization of bogus” versus non-bogus.

• Tagging — Tagging is a means of marking μops that have encountered a 
particular performance event so they can be counted at retirement. During the 
course of execution, the same event can happen more than once per μop and a 
direct count of the event would not provide an indication of how many μops 
encountered that event. 
The tagging mechanisms allow a μop to be tagged once during its lifetime and 
thus counted once at retirement. The retired suffix is used for performance 
metrics that increment a count once per μop, rather than once per event. For 
example, a μop may encounter a cache miss more than once during its life time, 
but a “Miss Retired” metric (that counts the number of retired μops that 
encountered a cache miss) will increment only once for that μop. A “Miss Retired” 
metric would be useful for characterizing the performance of the cache hierarchy 
for a particular instruction sequence. Details of various performance metrics and 
how these can be constructed using the Pentium 4 and Intel Xeon processors 
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performance events are provided in the Intel Pentium 4 Processor Optimization 
Reference Manual (see Section 1.4, “Related Literature”). 

• Replay — To maximize performance for the common case, the Intel NetBurst 
microarchitecture aggressively schedules μops for execution before all the 
conditions for correct execution are guaranteed to be satisfied. In the event that 
all of these conditions are not satisfied, μops must be reissued. The mechanism 
that the Pentium 4 and Intel Xeon processors use for this reissuing of μops is 
called replay. Some examples of replay causes are cache misses, dependence 
violations, and unforeseen resource constraints. In normal operation, some 
number of replays is common and unavoidable. An excessive number of replays 
is an indication of a performance problem.

• Assist — When the hardware needs the assistance of microcode to deal with 
some event, the machine takes an assist. One example of this is an underflow 
condition in the input operands of a floating-point operation. The hardware must 
internally modify the format of the operands in order to perform the computation. 
Assists clear the entire machine of μops before they begin and are costly.

18.10.6.1  Using At-Retirement Counting
The Pentium 4 and Intel Xeon processors allow counting both events and μops that 
encountered a specified event. For a subset of the at-retirement events listed in Table 
19-17, a μop may be tagged when it encounters that event. The tagging mechanisms 
can be used in non-precise event-based sampling, and a subset of these mechanisms 
can be used in PEBS. There are four independent tagging mechanisms, and each 
mechanism uses a different event to count μops tagged with that mechanism: 
• Front-end tagging — This mechanism pertains to the tagging of μops that 

encountered front-end events (for example, trace cache and instruction counts) 
and are counted with the Front_end_event event

• Execution tagging — This mechanism pertains to the tagging of μops that 
encountered execution events (for example, instruction types) and are counted 
with the Execution_Event event.

• Replay tagging — This mechanism pertains to tagging of μops whose 
retirement is replayed (for example, a cache miss) and are counted with the 
Replay_event event. Branch mispredictions are also tagged with this mechanism.

• No tags — This mechanism does not use tags. It uses the Instr_retired and the 
Uops_ retired events.

Each tagging mechanism is independent from all others; that is, a μop that has been 
tagged using one mechanism will not be detected with another mechanism’s tagged-
μop detector. For example, if μops are tagged using the front-end tagging mecha-
nisms, the Replay_event will not count those as tagged μops unless they are also 
tagged using the replay tagging mechanism. However, execution tags allow up to 
four different types of μops to be counted at retirement through execution tagging.

The independence of tagging mechanisms does not hold when using PEBS. When 
using PEBS, only one tagging mechanism should be used at a time. 
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Certain kinds of μops that cannot be tagged, including I/O, uncacheable and locked 
accesses, returns, and far transfers.

Table 19-17 lists the performance monitoring events that support at-retirement 
counting: specifically the Front_end_event, Execution_event, Replay_event, 
Inst_retired and Uops_retired events. The following sections describe the tagging 
mechanisms for using these events to tag μop and count tagged μops.

18.10.6.2  Tagging Mechanism for Front_end_event
The Front_end_event counts μops that have been tagged as encountering any of the 
following events:
• μop decode events — Tagging μops for μop decode events requires specifying 

bits in the ESCR associated with the performance-monitoring event, Uop_type. 
• Trace cache events — Tagging μops for trace cache events may require 

specifying certain bits in the MSR_TC_PRECISE_EVENT MSR (see Table 19-19).

Table 19-17 describes the Front_end_event and Table 19-19 describes metrics that 
are used to set up a Front_end_event count.

The MSRs specified in the Table 19-17 that are supported by the front-end tagging 
mechanism must be set and one or both of the NBOGUS and BOGUS bits in the 
Front_end_event event mask must be set to count events. None of the events 
currently supported requires the use of the MSR_TC_PRECISE_EVENT MSR. 

18.10.6.3  Tagging Mechanism For Execution_event
Table 19-17 describes the Execution_event and Table 19-20 describes metrics that 
are used to set up an Execution_event count.

The execution tagging mechanism differs from other tagging mechanisms in how it 
causes tagging. One upstream ESCR is used to specify an event to detect and to 
specify a tag value (bits 5 through 8) to identify that event. A second downstream 
ESCR is used to detect μops that have been tagged with that tag value identifier using 
Execution_event for the event selection. 

The upstream ESCR that counts the event must have its tag enable flag (bit 4) set 
and must have an appropriate tag value mask entered in its tag value field. The 4-bit 
tag value mask specifies which of tag bits should be set for a particular μop. The 
value selected for the tag value should coincide with the event mask selected in the 
downstream ESCR. For example, if a tag value of 1 is set, then the event mask of 
NBOGUS0 should be enabled, correspondingly in the downstream ESCR. The down-
stream ESCR detects and counts tagged μops. The normal (not tag value) mask bits 
in the downstream ESCR specify which tag bits to count. If any one of the tag bits 
selected by the mask is set, the related counter is incremented by one. This mecha-
nism is summarized in the Table 19-20 metrics that are supported by the execution 
tagging mechanism. The tag enable and tag value bits are irrelevant for the down-
stream ESCR used to select the Execution_event.
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The four separate tag bits allow the user to simultaneously but distinctly count up to 
four execution events at retirement. (This applies for non-precise event-based 
sampling. There are additional restrictions for PEBS as noted in Section 18.10.7.3, 
“Setting Up the PEBS Buffer.”) It is also possible to detect or count combinations of 
events by setting multiple tag value bits in the upstream ESCR or multiple mask bits 
in the downstream ESCR. For example, use a tag value of 3H in the upstream ESCR 
and use NBOGUS0/NBOGUS1 in the downstream ESCR event mask.

18.10.6.4  Tagging Mechanism for Replay_event
Table 19-17 describes the Replay_event and Table 19-21 describes metrics that are 
used to set up an Replay_event count.

The replay mechanism enables tagging of μops for a subset of all replays before 
retirement. Use of the replay mechanism requires selecting the type of μop that may 
experience the replay in the MSR_PEBS_MATRIX_VERT MSR and selecting the type of 
event in the MSR_PEBS_ENABLE MSR. Replay tagging must also be enabled with the 
UOP_Tag flag (bit 24) in the MSR_PEBS_ENABLE MSR. 

The Table 19-21 lists the metrics that are support the replay tagging mechanism and 
the at-retirement events that use the replay tagging mechanism, and specifies how 
the appropriate MSRs need to be configured. The replay tags defined in Table A-5 
also enable Precise Event-Based Sampling (PEBS, see Section 15.9.8). Each of these 
replay tags can also be used in normal sampling by not setting Bit 24 nor Bit 25 in 
IA_32_PEBS_ENABLE_MSR. Each of these metrics requires that the Replay_Event 
(see Table 19-17) be used to count the tagged μops.

18.10.7 Precise Event-Based Sampling (PEBS)
The debug store (DS) mechanism in processors based on Intel NetBurst microarchi-
tecture allow two types of information to be collected for use in debugging and tuning 
programs: PEBS records and BTS records. See Section 17.4.5, “Branch Trace Store 
(BTS),” for a description of the BTS mechanism.

PEBS permits the saving of precise architectural information associated with one or 
more performance events in the precise event records buffer, which is part of the DS 
save area (see Section 17.4.9, “BTS and DS Save Area”). To use this mechanism, a 
counter is configured to overflow after it has counted a preset number of events. 
After the counter overflows, the processor copies the current state of the general-
purpose and EFLAGS registers and instruction pointer into a record in the precise 
event records buffer. The processor then resets the count in the performance counter 
and restarts the counter. When the precise event records buffer is nearly full, an 
interrupt is generated, allowing the precise event records to be saved. A circular 
buffer is not supported for precise event records.

PEBS is supported only for a subset of the at-retirement events: Execution_event, 
Front_end_event, and Replay_event. Also, PEBS can only be carried out using the 
one performance counter, the MSR_IQ_COUNTER4 MSR.
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In processors based on Intel Core microarchitecture, a similar PEBS mechanism is 
also supported using IA32_PMC0 and IA32_PERFEVTSEL0 MSRs (See Section 
18.4.4).

18.10.7.1  Detection of the Availability of the PEBS Facilities
The DS feature flag (bit 21) returned by the CPUID instruction indicates (when set) 
the availability of the DS mechanism in the processor, which supports the PEBS (and 
BTS) facilities. When this bit is set, the following PEBS facilities are available:
• The PEBS_UNAVAILABLE flag in the IA32_MISC_ENABLE MSR indicates (when 

clear) the availability of the PEBS facilities, including the MSR_PEBS_ENABLE 
MSR. 

• The enable PEBS flag (bit 24) in the MSR_PEBS_ENABLE MSR allows PEBS to be 
enabled (set) or disabled (clear).

• The IA32_DS_AREA MSR can be programmed to point to the DS save area. 

18.10.7.2  Setting Up the DS Save Area
Section 17.4.9.2, “Setting Up the DS Save Area,” describes how to set up and enable 
the DS save area. This procedure is common for PEBS and BTS.

18.10.7.3  Setting Up the PEBS Buffer
Only the MSR_IQ_COUNTER4 performance counter can be used for PEBS. Use the 
following procedure to set up the processor and this counter for PEBS: 

1. Set up the precise event buffering facilities. Place values in the precise event 
buffer base, precise event index, precise event absolute maximum, and precise 
event interrupt threshold, and precise event counter reset fields of the DS buffer 
management area (see Figure 17-5) to set up the precise event records buffer in 
memory.

2. Enable PEBS. Set the Enable PEBS flag (bit 24) in MSR_PEBS_ENABLE MSR.

3. Set up the MSR_IQ_COUNTER4 performance counter and its associated CCCR 
and one or more ESCRs for PEBS as described in Tables 19-17 through 19-21.

18.10.7.4  Writing a PEBS Interrupt Service Routine 
The PEBS facilities share the same interrupt vector and interrupt service routine 
(called the DS ISR) with the non-precise event-based sampling and BTS facilities. To 
handle PEBS interrupts, PEBS handler code must be included in the DS ISR. See 
Section 17.4.9.5, “Writing the DS Interrupt Service Routine,” for guidelines for 
writing the DS ISR.
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18.10.7.5  Other DS Mechanism Implications
The DS mechanism is not available in the SMM. It is disabled on transition to the SMM 
mode. Similarly the DS mechanism is disabled on the generation of a machine check 
exception and is cleared on processor RESET and INIT. 

The DS mechanism is available in real address mode.

18.10.8 Operating System Implications
The DS mechanism can be used by the operating system as a debugging extension to 
facilitate failure analysis. When using this facility, a 25 to 30 times slowdown can be 
expected due to the effects of the trace store occurring on every taken branch. 

Depending upon intended usage, the instruction pointers that are part of the branch 
records or the PEBS records need to have an association with the corresponding 
process. One solution requires the ability for the DS specific operating system 
module to be chained to the context switch. A separate buffer can then be main-
tained for each process of interest and the MSR pointing to the configuration area 
saved and setup appropriately on each context switch. 

If the BTS facility has been enabled, then it must be disabled and state stored on 
transition of the system to a sleep state in which processor context is lost. The state 
must be restored on return from the sleep state.

It is required that an interrupt gate be used for the DS interrupt as opposed to a trap 
gate to prevent the generation of an endless interrupt loop.

Pages that contain buffers must have mappings to the same physical address for all 
processes/logical processors, such that any change to CR3 will not change DS 
addresses. If this requirement cannot be satisfied (that is, the feature is enabled on 
a per thread/process basis), then the operating system must ensure that the feature 
is enabled/disabled appropriately in the context switch code.

18.11 PERFORMANCE MONITORING AND INTEL HYPER-
THREADING TECHNOLOGY IN PROCESSORS BASED 
ON INTEL NETBURST® MICROARCHITECTURE

The performance monitoring capability of processors based on Intel NetBurst 
microarchitecture and supporting Intel Hyper-Threading Technology is similar to that 
described in Section 18.10. However, the capability is extended so that:
• Performance counters can be programmed to select events qualified by logical 

processor IDs. 
• Performance monitoring interrupts can be directed to a specific logical processor 

within the physical processor. 
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The sections below describe performance counters, event qualification by logical 
processor ID, and special purpose bits in ESCRs/CCCRs. They also describe 
MSR_PEBS_ENABLE, MSR_PEBS_MATRIX_VERT, and MSR_TC_PRECISE_EVENT. 

18.11.1 ESCR MSRs 
Figure 18-37 shows the layout of an ESCR MSR in processors supporting Intel Hyper-
Threading Technology. 

The functions of the flags and fields are as follows:
• T1_USR flag, bit 0 — When set, events are counted when thread 1 (logical 

processor 1) is executing at a current privilege level (CPL) of 1, 2, or 3. These 
privilege levels are generally used by application code and unprotected operating 
system code.

• T1_OS flag, bit 1 — When set, events are counted when thread 1 (logical 
processor 1) is executing at CPL of 0. This privilege level is generally reserved for 
protected operating system code. (When both the T1_OS and T1_USR flags are 
set, thread 1 events are counted at all privilege levels.)

• T0_USR flag, bit 2 — When set, events are counted when thread 0 (logical 
processor 0) is executing at a CPL of 1, 2, or 3. 

• T0_OS flag, bit 3 — When set, events are counted when thread 0 (logical 
processor 0) is executing at CPL of 0. (When both the T0_OS and T0_USR flags 
are set, thread 0 events are counted at all privilege levels.)

Figure 18-37.  Event Selection Control Register (ESCR) for the Pentium 4 Processor, 
Intel Xeon Processor and Intel Xeon Processor MP Supporting Hyper-Threading 
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• Tag enable, bit 4 — When set, enables tagging of μops to assist in at-retirement 
event counting; when clear, disables tagging. See Section 18.10.6, “At-
Retirement Counting.”

• Tag value field, bits 5 through 8 — Selects a tag value to associate with a μop 
to assist in at-retirement event counting.

• Event mask field, bits 9 through 24 — Selects events to be counted from the 
event class selected with the event select field.

• Event select field, bits 25 through 30) — Selects a class of events to be 
counted. The events within this class that are counted are selected with the event 
mask field.

The T0_OS and T0_USR flags and the T1_OS and T1_USR flags allow event counting 
and sampling to be specified for a specific logical processor (0 or 1) within an Intel 
Xeon processor MP (See also: Section 8.4.5, “Identifying Logical Processors in an MP 
System,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3A).

Not all performance monitoring events can be detected within an Intel Xeon 
processor MP on a per logical processor basis (see Section 18.11.4, “Performance 
Monitoring Events”). Some sub-events (specified by an event mask bits) are counted 
or sampled without regard to which logical processor is associated with the detected 
event. 

18.11.2 CCCR MSRs
Figure 18-38 shows the layout of a CCCR MSR in processors supporting Intel Hyper-
Threading Technology. The functions of the flags and fields are as follows:
• Enable flag, bit 12 — When set, enables counting; when clear, the counter is 

disabled. This flag is cleared on reset
• ESCR select field, bits 13 through 15 — Identifies the ESCR to be used to 

select events to be counted with the counter associated with the CCCR.
• Active thread field, bits 16 and 17 — Enables counting depending on which 

logical processors are active (executing a thread). This field enables filtering of 
events based on the state (active or inactive) of the logical processors. The 
encodings of this field are as follows:
00 — None. Count only when neither logical processor is active.
01 — Single. Count only when one logical processor is active (either 0 or 1).
10 — Both. Count only when both logical processors are active.
11 — Any. Count when either logical processor is active.
A halted logical processor or a logical processor in the “wait for SIPI” state is 
considered inactive. 
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• Compare flag, bit 18 — When set, enables filtering of the event count; when 
clear, disables filtering. The filtering method is selected with the threshold, 
complement, and edge flags.

• Complement flag, bit 19 — Selects how the incoming event count is compared 
with the threshold value. When set, event counts that are less than or equal to 
the threshold value result in a single count being delivered to the performance 
counter; when clear, counts greater than the threshold value result in a count 
being delivered to the performance counter (see Section 18.10.5.2, “Filtering 
Events”). The compare flag is not active unless the compare flag is set.

• Threshold field, bits 20 through 23 — Selects the threshold value to be used 
for comparisons. The processor examines this field only when the compare flag is 
set, and uses the complement flag setting to determine the type of threshold 
comparison to be made. The useful range of values that can be entered in this 
field depend on the type of event being counted (see Section 18.10.5.2, “Filtering 
Events”).

• Edge flag, bit 24 — When set, enables rising edge (false-to-true) edge 
detection of the threshold comparison output for filtering event counts; when 
clear, rising edge detection is disabled. This flag is active only when the compare 
flag is set.

Figure 18-38.  Counter Configuration Control Register (CCCR)
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• FORCE_OVF flag, bit 25 — When set, forces a counter overflow on every 
counter increment; when clear, overflow only occurs when the counter actually 
overflows.

• OVF_PMI_T0 flag, bit 26 — When set, causes a performance monitor interrupt 
(PMI) to be sent to logical processor 0 when the counter overflows occurs; when 
clear, disables PMI generation for logical processor 0. Note that the PMI is 
generate on the next event count after the counter has overflowed.

• OVF_PMI_T1 flag, bit 27 — When set, causes a performance monitor interrupt 
(PMI) to be sent to logical processor 1 when the counter overflows occurs; when 
clear, disables PMI generation for logical processor 1. Note that the PMI is 
generate on the next event count after the counter has overflowed.

• Cascade flag, bit 30 — When set, enables counting on one counter of a counter 
pair when its alternate counter in the other the counter pair in the same counter 
group overflows (see Section 18.10.2, “Performance Counters,” for further 
details); when clear, disables cascading of counters.

• OVF flag, bit 31 — Indicates that the counter has overflowed when set. This flag 
is a sticky flag that must be explicitly cleared by software.

18.11.3 IA32_PEBS_ENABLE MSR
In a processor supporting Intel Hyper-Threading Technology and based on the Intel 
NetBurst microarchitecture, PEBS is enabled and qualified with two bits in the 
MSR_PEBS_ENABLE MSR: bit 25 (ENABLE_PEBS_MY_THR) and 26 
(ENABLE_PEBS_OTH_THR) respectively. These bits do not explicitly identify a 
specific logical processor by logic processor ID(T0 or T1); instead, they allow a soft-
ware agent to enable PEBS for subsequent threads of execution on the same logical 
processor on which the agent is running (“my thread”) or for the other logical 
processor in the physical package on which the agent is not running (“other thread”).

PEBS is supported for only a subset of the at-retirement events: Execution_event, 
Front_end_event, and Replay_event. Also, PEBS can be carried out only with two 
performance counters: MSR_IQ_CCCR4 (MSR address 370H) for logical processor 0 
and MSR_IQ_CCCR5 (MSR address 371H) for logical processor 1.

Performance monitoring tools should use a processor affinity mask to bind the kernel 
mode components that need to modify the ENABLE_PEBS_MY_THR and 
ENABLE_PEBS_OTH_THR bits in the MSR_PEBS_ENABLE MSR to a specific logical 
processor. This is to prevent these kernel mode components from migrating between 
different logical processors due to OS scheduling.   

18.11.4 Performance Monitoring Events
All of the events listed in Table 19-16 and 19-17 are available in an Intel Xeon 
processor MP. When Intel Hyper-Threading Technology is active, many performance 
monitoring events can be can be qualified by the logical processor ID, which corre-
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sponds to bit 0 of the initial APIC ID. This allows for counting an event in any or all of 
the logical processors. However, not all the events have this logic processor speci-
ficity, or thread specificity. 

Here, each event falls into one of two categories: 
• Thread specific (TS) — The event can be qualified as occurring on a specific 

logical processor.
• Thread independent (TI) — The event cannot be qualified as being associated 

with a specific logical processor. 

Table 19-22 gives logical processor specific information (TS or TI) for each of the 
events described in Tables 19-16 and 19-17. If for example, a TS event occurred in 
logical processor T0, the counting of the event (as shown in Table 18-34) depends 
only on the setting of the T0_USR and T0_OS flags in the ESCR being used to set up 
the event counter. The T1_USR and T1_OS flags have no effect on the count.

When a bit in the event mask field is TI, the effect of specifying bit-0-3 of the associ-
ated ESCR are described in Table 15-6. For events that are marked as TI in Chapter 
19, the effect of selectively specifying T0_USR, T0_OS, T1_USR, T1_OS bits is shown 
in Table 18-35. 

Table 18-34.  Effect of Logical Processor and CPL Qualification 
for Logical-Processor-Specific (TS) Events

T1_OS/T1_USR = 
00

T1_OS/T1_USR = 
01

T1_OS/T1_USR = 
11

T1_OS/T1_USR = 
10

T0_OS/T0_USR 
= 00

Zero count Counts while T1 
in USR

Counts while T1 
in OS or USR

Counts while T1 
in OS

T0_OS/T0_USR 
= 01

Counts while T0 
in USR

Counts while T0 
in USR or T1 in 
USR

Counts while (a) 
T0 in USR or (b) 
T1 in OS or (c) T1 
in USR

Counts while (a) 
T0 in OS or (b) T1 
in OS

T0_OS/T0_USR 
= 11

Counts while T0 
in OS or USR

Counts while (a) 
T0 in OS or (b) T0 
in USR or (c) T1 in 
USR

Counts 
irrespective of 
CPL, T0, T1

Counts while (a) 
T0 in OS or (b) or 
T0 in USR or (c) 
T1 in OS

T0_OS/T0_USR 
= 10

Counts T0 in OS Counts T0 in OS 
or T1 in USR

Counts while 
(a)T0 in Os or (b) 
T1 in OS or (c) T1 
in USR

Counts while (a) 
T0 in OS or (b) T1 
in OS
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18.12 COUNTING CLOCKS
The count of cycles, also known as clockticks, forms a the basis for measuring how 
long a program takes to execute. Clockticks are also used as part of efficiency ratios 
like cycles per instruction (CPI). Processor clocks may stop ticking under circum-
stances like the following:
• The processor is halted when there is nothing for the CPU to do. For example, the 

processor may halt to save power while the computer is servicing an I/O request. 
When Intel Hyper-Threading Technology is enabled, both logical processors must 
be halted for performance-monitoring counters to be powered down.

• The processor is asleep as a result of being halted or because of a power-
management scheme. There are different levels of sleep. In the some deep sleep 
levels, the time-stamp counter stops counting.

In addition, processor core clocks may undergo transitions at different ratios relative 
to the processor’s bus clock frequency. Some of the situations that can cause 
processor core clock to undergo frequency transitions include:
• TM2 transitions
• Enhanced Intel SpeedStep Technology transitions (P-state transitions)

For Intel processors that support Intel Dynamic Acceleration or XE operation, the 
processor core clocks may operate at a frequency that differs from the maximum 
qualified frequency (as indicated by brand string information reported by CPUID 
instruction). See Section 18.12.5 for more detail.

Table 18-35.  Effect of Logical Processor and CPL Qualification 
for Non-logical-Processor-specific (TI) Events

T1_OS/T1_USR = 
00

T1_OS/T1_USR = 
01

T1_OS/T1_USR = 
11

T1_OS/T1_USR = 
10 

T0_OS/T0_USR = 
00

Zero count Counts while (a) 
T0 in USR or (b) 
T1 in USR

Counts 
irrespective of 
CPL, T0, T1

Counts while (a) 
T0 in OS or (b) T1 
in OS 

T0_OS/T0_USR = 
01

Counts while (a) 
T0 in USR or (b) 
T1 in USR

Counts while (a) 
T0 in USR or (b) 
T1 in USR

Counts 
irrespective of 
CPL, T0, T1

Counts 
irrespective of 
CPL, T0, T1 

T0_OS/T0_USR = 
11

Counts 
irrespective of 
CPL, T0, T1

Counts 
irrespective of 
CPL, T0, T1

Counts 
irrespective of 
CPL, T0, T1

Counts 
irrespective of 
CPL, T0, T1 

T0_OS/T0_USR = 
0

Counts while (a) 
T0 in OS or (b) T1 
in OS

Counts 
irrespective of 
CPL, T0, T1

Counts 
irrespective of 
CPL, T0, T1

Counts while (a) 
T0 in OS or (b) T1 
in OS
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There are several ways to count processor clock cycles to monitor performance. 
These are:
• Non-halted clockticks — Measures clock cycles in which the specified logical 

processor is not halted and is not in any power-saving state. When Intel Hyper-
Threading Technology is enabled, ticks can be measured on a per-logical-
processor basis. There are also performance events on dual-core processors that 
measure clockticks per logical processor when the processor is not halted.

• Non-sleep clockticks — Measures clock cycles in which the specified physical 
processor is not in a sleep mode or in a power-saving state. These ticks cannot be 
measured on a logical-processor basis.

• Time-stamp counter — Measures clock cycles in which the physical processor is 
not in deep sleep. These ticks cannot be measured on a logical-processor basis.

• Reference clockticks — TM2 or Enhanced Intel SpeedStep technology are two 
examples of processor features that can cause processor core clockticks to 
represent non-uniform tick intervals due to change of bus ratios. Performance 
events that counts clockticks of a constant reference frequency was introduced 
Intel Core Duo and Intel Core Solo processors. The mechanism is further 
enhanced on processors based on Intel Core microarchitecture.

Some processor models permit clock cycles to be measured when the physical 
processor is not in deep sleep (by using the time-stamp counter and the RDTSC 
instruction). Note that such ticks cannot be measured on a per-logical-processor 
basis. See Section 17.12, “Time-Stamp Counter,” for detail on processor capabilities.

The first two methods use performance counters and can be set up to cause an inter-
rupt upon overflow (for sampling). They may also be useful where it is easier for a 
tool to read a performance counter than to use a time stamp counter (the timestamp 
counter is accessed using the RDTSC instruction). 

For applications with a significant amount of I/O, there are two ratios of interest:
• Non-halted CPI — Non-halted clockticks/instructions retired measures the CPI 

for phases where the CPU was being used. This ratio can be measured on a 
logical-processor basis when Intel Hyper-Threading Technology is enabled.

• Nominal CPI — Time-stamp counter ticks/instructions retired measures the CPI 
over the duration of a program, including those periods when the machine halts 
while waiting for I/O.

18.12.1 Non-Halted Clockticks
Use the following procedure to program ESCRs and CCCRs to obtain non-halted 
clockticks on processors based on Intel NetBurst microarchitecture: 

1. Select an ESCR for the global_power_events and specify the RUNNING sub-event 
mask and the desired T0_OS/T0_USR/T1_OS/T1_USR bits for the targeted 
processor.
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2. Select an appropriate counter.

3. Enable counting in the CCCR for that counter by setting the enable bit.

18.12.2 Non-Sleep Clockticks
Performance monitoring counters can be configured to count clockticks whenever the 
performance monitoring hardware is not powered-down. To count Non-sleep Clock-
ticks with a performance-monitoring counter, do the following:

1. Select one of the 18 counters.

2. Select any of the ESCRs whose events the selected counter can count. Set its 
event select to anything other than no_event. This may not seem necessary, but 
the counter may be disabled if this is not done.

3. Turn threshold comparison on in the CCCR by setting the compare bit to 1.

4. Set the threshold to 15 and the complement to 1 in the CCCR. Since no event can 
exceed this threshold, the threshold condition is met every cycle and the counter 
counts every cycle. Note that this overrides any qualification (e.g. by CPL) 
specified in the ESCR.

5. Enable counting in the CCCR for the counter by setting the enable bit.

In most cases, the counts produced by the non-halted and non-sleep metrics are 
equivalent if the physical package supports one logical processor and is not placed in 
a power-saving state. Operating systems may execute an HLT instruction and place a 
physical processor in a power-saving state.

On processors that support Intel Hyper-Threading Technology (Intel HT Technology), 
each physical package can support two or more logical processors. Current imple-
mentation of Intel HT Technology provides two logical processors for each physical 
processor. While both logical processors can execute two threads simultaneously, 
one logical processor may halt to allow the other logical processor to execute without 
sharing execution resources between two logical processors. 

Non-halted Clockticks can be set up to count the number of processor clock cycles for 
each logical processor whenever the logical processor is not halted (the count may 
include some portion of the clock cycles for that logical processor to complete a tran-
sition to a halted state). Physical processors that support Intel HT Technology enter 
into a power-saving state if all logical processors halt.

The Non-sleep Clockticks mechanism uses a filtering mechanism in CCCRs. The 
mechanism will continue to increment as long as one logical processor is not halted 
or in a power-saving state. Applications may cause a processor to enter into a power-
saving state by using an OS service that transfers control to an OS’s idle loop. The 
idle loop then may place the processor into a power-saving state after an implemen-
tation-dependent period if there is no work for the processor.
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18.12.3 Incrementing the Time-Stamp Counter
The time-stamp counter increments when the clock signal on the system bus is 
active and when the sleep pin is not asserted. The counter value can be read with the 
RDTSC instruction.

The time-stamp counter and the non-sleep clockticks count may not agree in all 
cases and for all processors. See Section 17.12, “Time-Stamp Counter,” for more 
information on counter operation.

18.12.4 Non-Halted Reference Clockticks
Software can use either processor-specific performance monitor events (for 
example: CPU_CLK_UNHALTED.BUS on processors based on the Intel Core microar-
chitecture, and equivalent event specifications on the Intel Core Duo and Intel Core 
Solo processors) to count non-halted reference clockticks.

These events count reference clock cycles whenever the specified processor is not 
halted. The counter counts reference cycles associated with a fixed-frequency clock 
source irrespective of P-state, TM2, or frequency transitions that may occur to the 
processor.

18.12.5 Cycle Counting and Opportunistic Processor Operation
As a result of the state transitions due to opportunistic processor performance oper-
ation (see Chapter 14, “Power and Thermal Management”), a logical processor or a 
processor core can operate at frequency different from that indicated by the 
processor’s maximum qualified frequency. 

The following items are expected to hold true irrespective of when opportunistic 
processor operation causes state transitions:
• The time stamp counter operates at a fixed-rate frequency of the processor.
• The IA32_MPERF counter increments at the same TSC frequency irrespective of 

any transitions caused by opportunistic processor operation.
• The IA32_FIXED_CTR2 counter increments at the same TSC frequency 

irrespective of any transitions caused by opportunistic processor operation.
• The Local APIC timer operation is unaffected by opportunistic processor 

operation.
• The TSC, IA32_MPERF, and IA32_FIXED_CTR2 operate at the same, maximum-

resolved frequency of the platform, which is equal to the product of scalable bus 
frequency and maximum resolved bus ratio. 

For processors based on Intel Core microarchitecture, the scalable bus frequency is 
encoded in the bit field MSR_FSB_FREQ[2:0] at (0CDH), see Chapter 34, “Model-
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Specific Registers (MSRs)”. The maximum resolved bus ratio can be read from the 
following bit field:
• If XE operation is disabled, the maximum resolved bus ratio can be read in 

MSR_PLATFORM_ID[12:8]. It corresponds to the maximum qualified frequency.
• IF XE operation is enabled, the maximum resolved bus ratio is given in 

MSR_PERF_STAT[44:40], it corresponds to the maximum XE operation 
frequency configured by BIOS.

XE operation of an Intel 64 processor is implementation specific. XE operation can be 
enabled only by BIOS. If MSR_PERF_STAT[31] is set, XE operation is enabled. The 
MSR_PERF_STAT[31] field is read-only.

18.13 PERFORMANCE MONITORING, BRANCH PROFILING 
AND SYSTEM EVENTS

When performance monitoring facilities and/or branch profiling facilities (see Section 
17.5, “Last Branch, Interrupt, and Exception Recording (Intel® Core™2 Duo and 
Intel® Atom™ Processor Family)”) are enabled, these facilities capture event counts, 
branch records and branch trace messages occurring in a logical processor. The 
occurrence of interrupts, instruction streams due to various interrupt handlers all 
contribute to the results recorded by these facilities.

If CPUID.01H:ECX.PDCM[bit 15] is 1, the processor supports the 
IA32_PERF_CAPABILITIES MSR. If 
IA32_PERF_CAPABILITIES.FREEZE_WHILE_SMM[Bit 12] is 1, the processor supports 
the ability for system software using performance monitoring and/or branch profiling 
facilities to filter out the effects of servicing system management interrupts. 

If the FREEZE_WHILE_SMM capability is enabled on a logical processor and after an 
SMI is delivered, the processor will clear all the enable bits of 
IA32_PERF_GLOBAL_CTRL, save a copy of the content of IA32_DEBUGCTL and 
disable LBR, BTF, TR, and BTS fields of IA32_DEBUGCTL before transferring control to 
the SMI handler. 

The enable bits of IA32_PERF_GLOBAL_CTRL will be set to 1, the saved copy of 
IA32_DEBUGCTL prior to SMI delivery will be restored , after the SMI handler issues 
RSM to complete its servicing. 

It is the responsibility of the SMM code to ensure the state of the performance moni-
toring and branch profiling facilities are preserved upon entry or until prior to exiting 
the SMM. If any of this state is modified due to actions by the SMM code, the SMM 
code is required to restore such state to the values present at entry to the SMM 
handler.

System software is allowed to set IA32_DEBUGCTL.FREEZE_WHILE_SMM_EN[bit 14] 
to 1 only supported as indicated by 
IA32_PERF_CAPABILITIES.FREEZE_WHILE_SMM[Bit 12] reporting 1.
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18.14 PERFORMANCE MONITORING AND DUAL-CORE 
TECHNOLOGY

The performance monitoring capability of dual-core processors duplicates the 
microarchitectural resources of a single-core processor implementation. Each 
processor core has dedicated performance monitoring resources.

In the case of Pentium D processor, each logical processor is associated with dedi-
cated resources for performance monitoring. In the case of Pentium processor 
Extreme edition, each processor core has dedicated resources, but two logical 
processors in the same core share performance monitoring resources (see Section 
18.11, “Performance Monitoring and Intel Hyper-Threading Technology in Processors 
Based on Intel NetBurst® Microarchitecture”). 

18.15 PERFORMANCE MONITORING ON 64-BIT INTEL XEON 
PROCESSOR MP WITH UP TO 8-MBYTE L3 CACHE

The 64-bit Intel Xeon processor MP with up to 8-MByte L3 cache has a CPUID signa-
ture of family [0FH], model [03H or 04H]. Performance monitoring capabilities avail-
able to Pentium 4 and Intel Xeon processors with the same values (see Section 18.1 
and Section 18.11) apply to the 64-bit Intel Xeon processor MP with an L3 cache. 

The level 3 cache is connected between the system bus and IOQ through additional 
control logic. See Figure 18-40.

Figure 18-39.  Layout of IA32_PERF_CAPABILITIES MSR 
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Additional performance monitoring capabilities and facilities unique to 64-bit Intel 
Xeon processor MP with an L3 cache are described in this section. The facility for 
monitoring events consists of a set of dedicated model-specific registers (MSRs), 
each dedicated to a specific event. Programming of these MSRs requires using 
RDMSR/WRMSR instructions with 64-bit values.

The lower 32-bits of the MSRs at addresses 107CC through 107D3 are treated as 32 
bit performance counter registers. These performance counters can be accessed 
using RDPMC instruction with the index starting from 18 through 25. The EDX 
register returns zero when reading these 8 PMCs.

The performance monitoring capabilities consist of four events. These are:
• IBUSQ event — This event detects the occurrence of micro-architectural 

conditions related to the iBUSQ unit. It provides two MSRs: MSR_IFSB_IBUSQ0 
and MSR_IFSB_IBUSQ1. Configure sub-event qualification and enable/disable 
functions using the high 32 bits of these MSRs. The low 32 bits act as a 32-bit 
event counter. Counting starts after software writes a non-zero value to one or 
more of the upper 32 bits. See Figure 18-41.

Figure 18-40.  Block Diagram of 64-bit Intel Xeon Processor MP with 8-MByte L3
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• ISNPQ event — This event detects the occurrence of microarchitectural 
conditions related to the iSNPQ unit. It provides two MSRs: MSR_IFSB_ISNPQ0 
and MSR_IFSB_ISNPQ1. Configure sub-event qualifications and enable/disable 
functions using the high 32 bits of the MSRs. The low 32-bits act as a 32-bit event 
counter. Counting starts after software writes a non-zero value to one or more of 
the upper 32-bits. See Figure 18-42.

Figure 18-41.  MSR_IFSB_IBUSQx, Addresses: 107CCH and 107CDH
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• EFSB event — This event can detect the occurrence of micro-architectural 
conditions related to the iFSB unit or system bus. It provides two MSRs: 
MSR_EFSB_DRDY0 and MSR_EFSB_DRDY1. Configure sub-event qualifications 
and enable/disable functions using the high 32 bits of the 64-bit MSR. The low 
32-bit act as a 32-bit event counter. Counting starts after software writes a non-
zero value to one or more of the qualification bits in the upper 32-bits of the MSR. 
See Figure 18-43.

Figure 18-42.  MSR_IFSB_ISNPQx, Addresses: 107CEH and 107CFH
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• IBUSQ Latency event — This event accumulates weighted cycle counts for 
latency measurement of transactions in the iBUSQ unit. The count is enabled by 
setting MSR_IFSB_CTRL6[bit 26] to 1; the count freezes after software sets 
MSR_IFSB_CTRL6[bit 26] to 0. MSR_IFSB_CNTR7 acts as a 64-bit event 
counter for this event. See Figure 18-44.

Figure 18-43.  MSR_EFSB_DRDYx, Addresses: 107D0H and 107D1H
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18.16 PERFORMANCE MONITORING ON L3 AND CACHING 
BUS CONTROLLER SUB-SYSTEMS

The Intel Xeon processor 7400 series and Dual-Core Intel Xeon processor 7100 
series employ a distinct L3/caching bus controller sub-system. These sub-system 
have a unique set of performance monitoring capability and programming interfaces 
that are largely common between these two processor families. 

Intel Xeon processor 7400 series are based on 45nm enhanced Intel Core microar-
chitecture. The CPUID signature is indicated by DisplayFamily_DisplayModel value of 
06_1DH (see CPUID instruction in Chapter 3, “Instruction Set Reference, A-L” in the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A). Intel 
Xeon processor 7400 series have six processor cores that share an L3 cache. 

Dual-Core Intel Xeon processor 7100 series are based on Intel NetBurst microarchi-
tecture, have a CPUID signature of family [0FH], model [06H] and a unified L3 cache 
shared between two cores. Each core in an Intel Xeon processor 7100 series supports 
Intel Hyper-Threading Technology, providing two logical processors per core. 

Both Intel Xeon processor 7400 series and Intel Xeon processor 7100 series support 
multi-processor configurations using system bus interfaces. In Intel Xeon processor 
7400 series, the L3/caching bus controller sub-system provides three Simple Direct 
Interface (SDI) to service transactions originated the XQ-replacement SDI logic in 
each dual-core modules. In Intel Xeon processor 7100 series, the IOQ logic in each 
processor core is replaced with a Simple Direct Interface (SDI) logic. The L3 cache is 

Figure 18-44.  MSR_IFSB_CTL6, Address: 107D2H; 
MSR_IFSB_CNTR7, Address: 107D3H
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connected between the system bus and the SDI through additional control logic. See 
Figure 18-45 for the block configuration of six processor cores and the L3/Caching 
bus controller sub-system in Intel Xeon processor 7400 series. Figure 18-45 shows 
the block configuration of two processor cores (four logical processors) and the 
L3/Caching bus controller sub-system in Intel Xeon processor 7100 series.

Almost all of the performance monitoring capabilities available to processor cores 
with the same CPUID signatures (see Section 18.1 and Section 18.11) apply to Intel 
Xeon processor 7100 series. The MSRs used by performance monitoring interface are 
shared between two logical processors in the same processor core.

The performance monitoring capabilities available to processor with 
DisplayFamily_DisplayModel signature 06_17H also apply to Intel Xeon processor 
7400 series. Each processor core provides its own set of MSRs for performance moni-
toring interface.

The IOQ_allocation and IOQ_active_entries events are not supported in Intel Xeon 
processor 7100 series and 7400 series. Additional performance monitoring capabili-
ties applicable to the L3/caching bus controller sub-system are described in this 
section. 

Figure 18-45.  Block Diagram of Intel Xeon Processor 7400 Series

SDI interface

L2

SDI interface

L2

L3
GBSQ, GSNPQ,
GINTQ, ...

FSB

SDI

SDI interface

L2

Core Core Core Core Core Core
18-108 Vol. 3B



PERFORMANCE MONITORING
18.16.1 Overview of Performance Monitoring with L3/Caching Bus 
Controller 

The facility for monitoring events consists of a set of dedicated model-specific 
registers (MSRs). There are eight event select/counting MSRs that are dedicated to 
counting events associated with specified microarchitectural conditions. Program-
ming of these MSRs requires using RDMSR/WRMSR instructions with 64-bit values. 
In addition, an MSR MSR_EMON_L3_GL_CTL provides simplified interface to control 
freezing, resetting, re-enabling operation of any combination of these event 
select/counting MSRs. 

The eight MSRs dedicated to count occurrences of specific conditions are further 
divided to count three sub-classes of microarchitectural conditions:
• Two MSRs (MSR_EMON_L3_CTR_CTL0 and MSR_EMON_L3_CTR_CTL1) are 

dedicated to counting GBSQ events. Up to two GBSQ events can be programmed 
and counted simultaneously. 

• Two MSRs (MSR_EMON_L3_CTR_CTL2 and MSR_EMON_L3_CTR_CTL3) are 
dedicated to counting GSNPQ events. Up to two GBSQ events can be 
programmed and counted simultaneously. 

Figure 18-46.  Block Diagram of Intel Xeon Processor 7100 Series
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• Four MSRs (MSR_EMON_L3_CTR_CTL4, MSR_EMON_L3_CTR_CTL5, 
MSR_EMON_L3_CTR_CTL6, and MSR_EMON_L3_CTR_CTL7) are dedicated to 
counting external bus operations.

The bit fields in each of eight MSRs share the following common characteristics:
• Bits 63:32 is the event control field that includes an event mask and other bit 

fields that control counter operation. The event mask field specifies details of the 
microarchitectural condition, and its definition differs across GBSQ, GSNPQ, FSB. 

• Bits 31:0 is the event count field. If the specified condition is met during each 
relevant clock domain of the event logic, the matched condition signals the 
counter logic to increment the associated event count field. The lower 32-bits of 
these 8 MSRs at addresses 107CC through 107D3 are treated as 32 bit 
performance counter registers. 

In Dual-Core Intel Xeon processor 7100 series, the uncore performance counters can 
be accessed using RDPMC instruction with the index starting from 18 through 25. The 
EDX register returns zero when reading these 8 PMCs. 

In Intel Xeon processor 7400 series, RDPMC with ECX between 2 and 9 can be used 
to access the eight uncore performance counter/control registers. 

18.16.2 GBSQ Event Interface
The layout of MSR_EMON_L3_CTR_CTL0 and MSR_EMON_L3_CTR_CTL1 is given in 
Figure 18-47. Counting starts after software writes a non-zero value to one or more 
of the upper 32 bits. 

The event mask field (bits 58:32) consists of the following eight attributes:
• Agent_Select (bits 35:32): The definition of this field differs slightly between 

Intel Xeon processor 7100 and 7400. 
For Intel Xeon processor 7100 series, each bit specifies a logical processor in the 
physical package. The lower two bits corresponds to two logical processors in the 
first processor core, the upper two bits corresponds to two logical processors in 
the second processor core. 0FH encoding matches transactions from any logical 
processor.
For Intel Xeon processor 7400 series, each bit of [34:32] specifies the SDI logic 
of a dual-core module as the originator of the transaction. A value of 0111B in 
bits [35:32] specifies transaction from any processor core.
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• Data_Flow (bits 37:36): Bit 36 specifies demand transactions, bit 37 specifies 
prefetch transactions.

• Type_Match (bits 43:38): Specifies transaction types. If all six bits are set, event 
count will include all transaction types.

• Snoop_Match: (bits 46:44): The three bits specify (in ascending bit position) 
clean snoop result, HIT snoop result, and HITM snoop results respectively.

• L3_State (bits 53:47): Each bit specifies an L2 coherency state. 
• Core_Module_Select (bits 55:54): The valid encodings for L3 lookup differ 

slightly between Intel Xeon processor 7100 and 7400. 
For Intel Xeon processor 7100 series, 

— 00B: Match transactions from any core in the physical package

— 01B: Match transactions from this core only

— 10B: Match transactions from the other core in the physical package

— 11B: Match transaction from both cores in the physical package
For Intel Xeon processor 7400 series, 

— 00B: Match transactions from any dual-core module in the physical package

Figure 18-47.  MSR_EMON_L3_CTR_CTL0/1, Addresses: 107CCH/107CDH
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Vol. 3B 18-111



PERFORMANCE MONITORING
— 01B: Match transactions from this dual-core module only

— 10B: Match transactions from either one of the other two dual-core modules 
in the physical package

— 11B: Match transaction from more than one dual-core modules in the 
physical package

• Fill_Eviction (bits 57:56): The valid encodings are

— 00B: Match any transactions 

— 01B: Match transactions that fill L3

— 10B: Match transactions that fill L3 without an eviction

— 11B: Match transaction fill L3 with an eviction
• Cross_Snoop (bit 58): The encodings are \

— 0B: Match any transactions 

— 1B: Match cross snoop transactions

For each counting clock domain, if all eight attributes match, event logic signals to 
increment the event count field.

18.16.3 GSNPQ Event Interface
The layout of MSR_EMON_L3_CTR_CTL2 and MSR_EMON_L3_CTR_CTL3 is given in 
Figure 18-48. Counting starts after software writes a non-zero value to one or more 
of the upper 32 bits. 

The event mask field (bits 58:32) consists of the following six attributes:
• Agent_Select (bits 37:32): The definition of this field differs slightly between 

Intel Xeon processor 7100 and 7400. 
• For Intel Xeon processor 7100 series, each of the lowest 4 bits specifies a logical 

processor in the physical package. The lowest two bits corresponds to two logical 
processors in the first processor core, the next two bits corresponds to two logical 
processors in the second processor core. Bit 36 specifies other symmetric agent 
transactions. Bit 37 specifies central agent transactions. 3FH encoding matches 
transactions from any logical processor.
For Intel Xeon processor 7400 series, each of the lowest 3 bits specifies a dual-
core module in the physical package. Bit 37 specifies central agent transactions. 

• Type_Match (bits 43:38): Specifies transaction types. If all six bits are set, event 
count will include any transaction types.

• Snoop_Match: (bits 46:44): The three bits specify (in ascending bit position) 
clean snoop result, HIT snoop result, and HITM snoop results respectively.

• L2_State (bits 53:47): Each bit specifies an L3 coherency state. 
• Core_Module_Select (bits 56:54): Bit 56 enables Core_Module_Select matching. 

If bit 56 is clear, Core_Module_Select encoding is ignored. The valid encodings for 
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the lower two bits (bit 55, 54) differ slightly between Intel Xeon processor 7100 
and 7400.
For Intel Xeon processor 7100 series, if bit 56 is set, the valid encodings for the 
lower two bits (bit 55, 54) are

— 00B: Match transactions from only one core (irrespective which core) in the 
physical package

— 01B: Match transactions from this core and not the other core

— 10B: Match transactions from the other core in the physical package, but not 
this core

— 11B: Match transaction from both cores in the physical package
For Intel Xeon processor 7400 series, if bit 56 is set, the valid encodings for the 
lower two bits (bit 55, 54) are

— 00B: Match transactions from only one dual-core module (irrespective which 
module) in the physical package

— 01B: Match transactions from one or more dual-core modules.

— 10B: Match transactions from two or more dual-core modules.

— 11B: Match transaction from all three dual-core modules in the physical 
package

• Block_Snoop (bit 57): specifies blocked snoop.

For each counting clock domain, if all six attributes match, event logic signals to 
increment the event count field.
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18.16.4 FSB Event Interface
The layout of MSR_EMON_L3_CTR_CTL4 through MSR_EMON_L3_CTR_CTL7 is given 
in Figure 18-49. Counting starts after software writes a non-zero value to one or 
more of the upper 32 bits. 

The event mask field (bits 58:32) is organized as follows:
• Bit 58: must set to 1.
• FSB_Submask (bits 57:32): Specifies FSB-specific sub-event mask.

The FSB sub-event mask defines a set of independent attributes. The event logic 
signals to increment the associated event count field if one of the attribute matches. 
Some of the sub-event mask bit counts durations. A duration event increments at 
most once per cycle.

Figure 18-48.  MSR_EMON_L3_CTR_CTL2/3, Addresses: 107CEH/107CFH
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18.16.4.1  FSB Sub-Event Mask Interface
• FSB_type (bit 37:32): Specifies different FSB transaction types originated from 

this physical package
• FSB_L_clear (bit 38): Count clean snoop results from any source for transaction 

originated from this physical package
• FSB_L_hit (bit 39): Count HIT snoop results from any source for transaction 

originated from this physical package
• FSB_L_hitm (bit 40): Count HITM snoop results from any source for transaction 

originated from this physical package
• FSB_L_defer (bit 41): Count DEFER responses to this processor’s transactions
• FSB_L_retry (bit 42): Count RETRY responses to this processor’s transactions
• FSB_L_snoop_stall (bit 43): Count snoop stalls to this processor’s transactions
• FSB_DBSY (bit 44): Count DBSY assertions by this processor (without a 

concurrent DRDY)
• FSB_DRDY (bit 45): Count DRDY assertions by this processor
• FSB_BNR (bit 46): Count BNR assertions by this processor
• FSB_IOQ_empty (bit 47): Counts each bus clocks when the IOQ is empty
• FSB_IOQ_full (bit 48): Counts each bus clocks when the IOQ is full
• FSB_IOQ_active (bit 49): Counts each bus clocks when there is at least one entry 

in the IOQ

Figure 18-49.  MSR_EMON_L3_CTR_CTL4/5/6/7, Addresses: 107D0H-107D3H
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• FSB_WW_data (bit 50): Counts back-to-back write transaction’s data phase.
• FSB_WW_issue (bit 51): Counts back-to-back write transaction request pairs 

issued by this processor.
• FSB_WR_issue (bit 52): Counts back-to-back write-read transaction request 

pairs issued by this processor.
• FSB_RW_issue (bit 53): Counts back-to-back read-write transaction request 

pairs issued by this processor.
• FSB_other_DBSY (bit 54): Count DBSY assertions by another agent (without a 

concurrent DRDY)
• FSB_other_DRDY (bit 55): Count DRDY assertions by another agent
• FSB_other_snoop_stall (bit 56): Count snoop stalls on the FSB due to another 

agent
• FSB_other_BNR (bit 57): Count BNR assertions from another agent

18.16.5 Common Event Control Interface
The MSR_EMON_L3_GL_CTL MSR provides simplified access to query overflow status 
of the GBSQ, GSNPQ, FSB event counters. It also provides control bit fields to freeze, 
unfreeze, or reset those counters. The following bit fields are supported:
• GL_freeze_cmd (bit 0): Freeze the event counters specified by the 

GL_event_select field.
• GL_unfreeze_cmd (bit 1): Unfreeze the event counters specified by the 

GL_event_select field.
• GL_reset_cmd (bit 2): Clear the event count field of the event counters specified 

by the GL_event_select field. The event select field is not affected.
• GL_event_select (bit 23:16): Selects one or more event counters to subject to 

specified command operations indicated by bits 2:0. Bit 16 corresponds to 
MSR_EMON_L3_CTR_CTL0, bit 23 corresponds to MSR_EMON_L3_CTR_CTL7.

• GL_event_status (bit 55:48): Indicates the overflow status of each event 
counters. Bit 48 corresponds to MSR_EMON_L3_CTR_CTL0, bit 55 corresponds 
to MSR_EMON_L3_CTR_CTL7.

In the event control field (bits 63:32) of each MSR, if the saturate control (bit 59, see 
Figure 18-47 for example) is set, the event logic forces the value FFFF_FFFFH into 
the event count field instead of incrementing it. 

18.17 PERFORMANCE MONITORING (P6 FAMILY 
PROCESSOR)

The P6 family processors provide two 40-bit performance counters, allowing two 
types of events to be monitored simultaneously. These can either count events or 
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measure duration. When counting events, a counter increments each time a speci-
fied event takes place or a specified number of events takes place. When measuring 
duration, it counts the number of processor clocks that occur while a specified condi-
tion is true. The counters can count events or measure durations that occur at any 
privilege level. 

Table 19-25, Chapter 19, lists the events that can be counted with the P6 family 
performance monitoring counters.

NOTE
The performance-monitoring events listed in Chapter 19 are intended 
to be used as guides for performance tuning. Counter values reported 
are not guaranteed to be accurate and should be used as a relative 
guide for tuning. Known discrepancies are documented where 
applicable.

The performance-monitoring counters are supported by four MSRs: the performance 
event select MSRs (PerfEvtSel0 and PerfEvtSel1) and the performance counter MSRs 
(PerfCtr0 and PerfCtr1). These registers can be read from and written to using the 
RDMSR and WRMSR instructions, respectively. They can be accessed using these 
instructions only when operating at privilege level 0. The PerfCtr0 and PerfCtr1 MSRs 
can be read from any privilege level using the RDPMC (read performance-monitoring 
counters) instruction.

NOTE
The PerfEvtSel0, PerfEvtSel1, PerfCtr0, and PerfCtr1 MSRs and the 
events listed in Table 19-25 are model-specific for P6 family 
processors. They are not guaranteed to be available in other IA-32 
processors.

18.17.1 PerfEvtSel0 and PerfEvtSel1 MSRs
The PerfEvtSel0 and PerfEvtSel1 MSRs control the operation of the performance-
monitoring counters, with one register used to set up each counter. They specify the 
events to be counted, how they should be counted, and the privilege levels at which 
counting should take place. Figure 18-50 shows the flags and fields in these MSRs.

The functions of the flags and fields in the PerfEvtSel0 and PerfEvtSel1 MSRs are as 
follows:
• Event select field (bits 0 through 7) — Selects the event logic unit to detect 

certain microarchitectural conditions (see Table 19-25, for a list of events and 
their 8-bit codes).

• Unit mask (UMASK) field (bits 8 through 15) — Further qualifies the event 
logic unit selected in the event select field to detect a specific microarchitectural 
condition. For example, for some cache events, the mask is used as a MESI-
protocol qualifier of cache states (see Table 19-25).
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• USR (user mode) flag (bit 16) — Specifies that events are counted only when 
the processor is operating at privilege levels 1, 2 or 3. This flag can be used in 
conjunction with the OS flag.

• OS (operating system mode) flag (bit 17) — Specifies that events are 
counted only when the processor is operating at privilege level 0. This flag can be 
used in conjunction with the USR flag.

• E (edge detect) flag (bit 18) — Enables (when set) edge detection of events. 
The processor counts the number of deasserted to asserted transitions of any 
condition that can be expressed by the other fields. The mechanism is limited in 
that it does not permit back-to-back assertions to be distinguished. This 
mechanism allows software to measure not only the fraction of time spent in a 
particular state, but also the average length of time spent in such a state (for 
example, the time spent waiting for an interrupt to be serviced).

• PC (pin control) flag (bit 19) — When set, the processor toggles the PMi pins 
and increments the counter when performance-monitoring events occur; when 
clear, the processor toggles the PMi pins when the counter overflows. The 
toggling of a pin is defined as assertion of the pin for a single bus clock followed 
by deassertion.

• INT (APIC interrupt enable) flag (bit 20) — When set, the processor 
generates an exception through its local APIC on counter overflow.

• EN (Enable Counters) Flag (bit 22) — This flag is only present in the 
PerfEvtSel0 MSR. When set, performance counting is enabled in both 
performance-monitoring counters; when clear, both counters are disabled.

• INV (invert) flag (bit 23) — Inverts the result of the counter-mask comparison 
when set, so that both greater than and less than comparisons can be made.

Figure 18-50.  PerfEvtSel0 and PerfEvtSel1 MSRs
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• Counter mask (CMASK) field (bits 24 through 31) — When nonzero, the 
processor compares this mask to the number of events counted during a single 
cycle. If the event count is greater than or equal to this mask, the counter is 
incremented by one. Otherwise the counter is not incremented. This mask can be 
used to count events only if multiple occurrences happen per clock (for example, 
two or more instructions retired per clock). If the counter-mask field is 0, then 
the counter is incremented each cycle by the number of events that occurred that 
cycle.

18.17.2 PerfCtr0 and PerfCtr1 MSRs
The performance-counter MSRs (PerfCtr0 and PerfCtr1) contain the event or duration 
counts for the selected events being counted. The RDPMC instruction can be used by 
programs or procedures running at any privilege level and in virtual-8086 mode to 
read these counters. The PCE flag in control register CR4 (bit 8) allows the use of this 
instruction to be restricted to only programs and procedures running at privilege 
level 0.

The RDPMC instruction is not serializing or ordered with other instructions. Thus, it 
does not necessarily wait until all previous instructions have been executed before 
reading the counter. Similarly, subsequent instructions may begin execution before 
the RDPMC instruction operation is performed.

Only the operating system, executing at privilege level 0, can directly manipulate the 
performance counters, using the RDMSR and WRMSR instructions. A secure oper-
ating system would clear the PCE flag during system initialization to disable direct 
user access to the performance-monitoring counters, but provide a user-accessible 
programming interface that emulates the RDPMC instruction.

The WRMSR instruction cannot arbitrarily write to the performance-monitoring 
counter MSRs (PerfCtr0 and PerfCtr1). Instead, the lower-order 32 bits of each MSR 
may be written with any value, and the high-order 8 bits are sign-extended according 
to the value of bit 31. This operation allows writing both positive and negative values 
to the performance counters.

18.17.3 Starting and Stopping the Performance-Monitoring Counters
The performance-monitoring counters are started by writing valid setup information 
in the PerfEvtSel0 and/or PerfEvtSel1 MSRs and setting the enable counters flag in 
the PerfEvtSel0 MSR. If the setup is valid, the counters begin counting following the 
execution of a WRMSR instruction that sets the enable counter flag. The counters can 
be stopped by clearing the enable counters flag or by clearing all the bits in the 
PerfEvtSel0 and PerfEvtSel1 MSRs. Counter 1 alone can be stopped by clearing the 
PerfEvtSel1 MSR.
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18.17.4 Event and Time-Stamp Monitoring Software
To use the performance-monitoring counters and time-stamp counter, the operating 
system needs to provide an event-monitoring device driver. This driver should 
include procedures for handling the following operations:
• Feature checking
• Initialize and start counters
• Stop counters
• Read the event counters
• Read the time-stamp counter

The event monitor feature determination procedure must check whether the current 
processor supports the performance-monitoring counters and time-stamp counter. 
This procedure compares the family and model of the processor returned by the 
CPUID instruction with those of processors known to support performance moni-
toring. (The Pentium and P6 family processors support performance counters.) The 
procedure also checks the MSR and TSC flags returned to register EDX by the CPUID 
instruction to determine if the MSRs and the RDTSC instruction are supported.

The initialize and start counters procedure sets the PerfEvtSel0 and/or PerfEvtSel1 
MSRs for the events to be counted and the method used to count them and initializes 
the counter MSRs (PerfCtr0 and PerfCtr1) to starting counts. The stop counters 
procedure stops the performance counters (see Section 18.17.3, “Starting and Stop-
ping the Performance-Monitoring Counters”).

The read counters procedure reads the values in the PerfCtr0 and PerfCtr1 MSRs, and 
a read time-stamp counter procedure reads the time-stamp counter. These proce-
dures would be provided in lieu of enabling the RDTSC and RDPMC instructions that 
allow application code to read the counters. 

18.17.5 Monitoring Counter Overflow
The P6 family processors provide the option of generating a local APIC interrupt when 
a performance-monitoring counter overflows. This mechanism is enabled by setting 
the interrupt enable flag in either the PerfEvtSel0 or the PerfEvtSel1 MSR. The 
primary use of this option is for statistical performance sampling. 

To use this option, the operating system should do the following things on the 
processor for which performance events are required to be monitored:
• Provide an interrupt vector for handling the counter-overflow interrupt.
• Initialize the APIC PERF local vector entry to enable handling of performance-

monitor counter overflow events.
• Provide an entry in the IDT that points to a stub exception handler that returns 

without executing any instructions.
• Provide an event monitor driver that provides the actual interrupt handler and 

modifies the reserved IDT entry to point to its interrupt routine.
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When interrupted by a counter overflow, the interrupt handler needs to perform the 
following actions:
• Save the instruction pointer (EIP register), code-segment selector, TSS segment 

selector, counter values and other relevant information at the time of the 
interrupt.

• Reset the counter to its initial setting and return from the interrupt.

An event monitor application utility or another application program can read the 
information collected for analysis of the performance of the profiled application.

18.18 PERFORMANCE MONITORING (PENTIUM 
PROCESSORS)

The Pentium processor provides two 40-bit performance counters, which can be used 
to count events or measure duration. The counters are supported by three MSRs: the 
control and event select MSR (CESR) and the performance counter MSRs (CTR0 and 
CTR1). These can be read from and written to using the RDMSR and WRMSR instruc-
tions, respectively. They can be accessed using these instructions only when oper-
ating at privilege level 0. 

Each counter has an associated external pin (PM0/BP0 and PM1/BP1), which can be 
used to indicate the state of the counter to external hardware.

NOTES
The CESR, CTR0, and CTR1 MSRs and the events listed in Table 19-26 
are model-specific for the Pentium processor.
The performance-monitoring events listed in Chapter 19 are intended 
to be used as guides for performance tuning. Counter values reported 
are not guaranteed to be accurate and should be used as a relative 
guide for tuning. Known discrepancies are documented where 
applicable.

18.18.1 Control and Event Select Register (CESR)
The 32-bit control and event select MSR (CESR) controls the operation of perfor-
mance-monitoring counters CTR0 and CTR1 and the associated pins (see 
Figure 18-51). To control each counter, the CESR register contains a 6-bit event 
select field (ES0 and ES1), a pin control flag (PC0 and PC1), and a 3-bit counter 
control field (CC0 and CC1). The functions of these fields are as follows:
• ES0 and ES1 (event select) fields (bits 0-5, bits 16-21) — Selects (by 

entering an event code in the field) up to two events to be monitored. See Table 
19-26 for a list of available event codes.
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• CC0 and CC1 (counter control) fields (bits 6-8, bits 22-24) — Controls the 
operation of the counter. Control codes are as follows:

000 — Count nothing (counter disabled)

001 — Count the selected event while CPL is 0, 1, or 2

010 — Count the selected event while CPL is 3

011 — Count the selected event regardless of CPL

100 — Count nothing (counter disabled)

101 — Count clocks (duration) while CPL is 0, 1, or 2

110 — Count clocks (duration) while CPL is 3

111 — Count clocks (duration) regardless of CPL
The highest order bit selects between counting events and counting clocks 
(duration); the middle bit enables counting when the CPL is 3; and the low-order 
bit enables counting when the CPL is 0, 1, or 2.

• PC0 and PC1 (pin control) flags (bits 9, 25) — Selects the function of the 
external performance-monitoring counter pin (PM0/BP0 and PM1/BP1). Setting 
one of these flags to 1 causes the processor to assert its associated pin when the 
counter has overflowed; setting the flag to 0 causes the pin to be asserted when 
the counter has been incremented. These flags permit the pins to be individually 
programmed to indicate the overflow or incremented condition. The external 
signalling of the event on the pins will lag the internal event by a few clocks as the 
signals are latched and buffered.

While a counter need not be stopped to sample its contents, it must be stopped and 
cleared or preset before switching to a new event. It is not possible to set one 
counter separately. If only one event needs to be changed, the CESR register must 

Figure 18-51.  CESR MSR (Pentium Processor Only)

31

PC1—Pin control 1
CC1—Counter control 1
ES1—Event select 1
PC0—Pin control 0

8 0

CC0—Counter control 0
ES0—Event select 0

16 15212224

Reserved

9 56

ESOCC0
P
C
0

ES1CC1
P
C
1

2526 10
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be read, the appropriate bits modified, and all bits must then be written back to 
CESR. At reset, all bits in the CESR register are cleared.

18.18.2 Use of the Performance-Monitoring Pins
When performance-monitor pins PM0/BP0 and/or PM1/BP1 are configured to indicate 
when the performance-monitor counter has incremented and an “occurrence event” 
is being counted, the associated pin is asserted (high) each time the event occurs. 
When a “duration event” is being counted, the associated PM pin is asserted for the 
entire duration of the event. When the performance-monitor pins are configured to 
indicate when the counter has overflowed, the associated PM pin is asserted when 
the counter has overflowed.

When the PM0/BP0 and/or PM1/BP1 pins are configured to signal that a counter has 
incremented, it should be noted that although the counters may increment by 1 or 2 
in a single clock, the pins can only indicate that the event occurred. Moreover, since 
the internal clock frequency may be higher than the external clock frequency, a 
single external clock may correspond to multiple internal clocks.

A “count up to” function may be provided when the event pin is programmed to 
signal an overflow of the counter. Because the counters are 40 bits, a carry out of bit 
39 indicates an overflow. A counter may be preset to a specific value less then 240 − 
1. After the counter has been enabled and the prescribed number of events has tran-
spired, the counter will overflow. 

Approximately 5 clocks later, the overflow is indicated externally and appropriate 
action, such as signaling an interrupt, may then be taken.

The PM0/BP0 and PM1/BP1 pins also serve to indicate breakpoint matches during in-
circuit emulation, during which time the counter increment or overflow function of 
these pins is not available. After RESET, the PM0/BP0 and PM1/BP1 pins are config-
ured for performance monitoring, however a hardware debugger may reconfigure 
these pins to indicate breakpoint matches.

18.18.3 Events Counted
Events that performance-monitoring counters can be set to count and record (using 
CTR0 and CTR1) are divided in two categories: occurrence and duration:
• Occurrence events — Counts are incremented each time an event takes place. 

If PM0/BP0 or PM1/BP1 pins are used to indicate when a counter increments, the 
pins are asserted each clock counters increment. But if an event happens twice in 
one clock, the counter increments by 2 (the pins are asserted only once).

• Duration events — Counters increment the total number of clocks that the 
condition is true. When used to indicate when counters increment, PM0/BP0 
and/or PM1/BP1 pins are asserted for the duration.
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CHAPTER 19
PERFORMANCE-MONITORING EVENTS

This chapter lists the performance-monitoring events that can be monitored with the 
Intel 64 or IA-32 processors. The ability to monitor performance events and the 
events that can be monitored in these processors are mostly model-specific, except 
for architectural performance events, described in Section 19.1. 

Non-architectural performance events (i.e. model-specific events) are listed for each 
generation of microarchitecture:
• Section 19.2 - Processors based on Intel® microarchitecture code name Ivy 

Bridge
• Section 19.3 - Processors based on Intel® microarchitecture code name Sandy 

Bridge
• Section 19.4 - Processors based on Intel® microarchitecture code name Nehalem
• Section 19.5 - Processors based on Intel® microarchitecture code name 

Westmere
• Section 19.6 - Processors based on Enhanced Intel® Core™ microarchitecture
• Section 19.7 - Processors based on Intel® Core™ microarchitecture
• Section 19.8 - Processors based on Intel® Atom™ microarchitecture
• Section 19.9 - Intel® Core™ Solo and Intel® Core™ Duo processors
• Section 19.10 - Processors based on Intel NetBurst® microarchitecture
• Section 19.11 - Pentium® M family processors
• Section 19.12 - P6 family processors
• Section 19.13 - Pentium® processors

NOTE
These performance-monitoring events are intended to be used as 
guides for performance tuning. The counter values reported by the 
performance-monitoring events are approximate and believed to be 
useful as relative guides for tuning software. Known discrepancies 
are documented where applicable.

19.1 ARCHITECTURAL PERFORMANCE-MONITORING 
EVENTS

Architectural performance events are introduced in Intel Core Solo and Intel Core 
Duo processors. They are also supported on processors based on Intel Core microar-
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chitecture. Table 19-1 lists pre-defined architectural performance events that can be 
configured using general-purpose performance counters and associated event-select 
registers.

19.2 PERFORMANCE MONITORING EVENTS FOR  NEXT 
GENERATION INTEL® CORE™ PROCESSORS 

Next generation Intel® Core™ Processors are based on the Intel microarchitecture 
code name Ivy Bridge. They support architectural performance-monitoring events 
listed in Table 19-1. Non-architectural performance-monitoring events in the 
processor core are listed in Table 19-2. The events in Table 19-2 apply to processors 
with CPUID signature of DisplayFamily_DisplayModel encoding with the following 
values: 06_3AH. 

Table 19-1.  Architectural Performance Events
Event
Num. Event Mask Mnemonic

Umask
Value Description Comment

3CH UnHalted Core Cycles 00H Unhalted core cycles

3CH UnHalted Reference 
Cycles

01H Unhalted reference cycles Measures 
bus cycle1

NOTES:
1. Implementation of this event in Intel Core 2 processor family, Intel Core Duo, and Intel Core Solo pro-

cessors measures bus clocks.

C0H Instruction Retired 00H Instruction retired

2EH LLC Reference 4FH Last level cache references

2EH LLC Misses 41H Last level cache misses

C4H Branch Instruction Retired 00H Branch instruction at retirement

C5H Branch Misses Retired 00H Mispredicted Branch Instruction at 
retirement

Table 19-2.  Non-Architectural Performance Events In the Processor Core of Next 
Generation Intel Core i7, i5, i3 Processors 

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment

03H 02H LD_BLOCKS.STORE_F
ORWARD

loads blocked by overlapping with 
store buffer that cannot be 
forwarded .

05H 01H MISALIGN_MEM_REF.
LOADS

Speculative cache-line split load 
uops dispatched to L1D.
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05H 02H MISALIGN_MEM_REF.
STORES

Speculative cache-line split Store-
address uops dispatched to L1D.

07H 01H LD_BLOCKS_PARTIA
L.ADDRESS_ALIAS

False dependencies in MOB due to 
partial compare on address.

08H 81H DTLB_LOAD_MISSES.
DEMAND_LD_MISS_C
AUSES_A_WALK

Misses in all TLB levels that cause a 
page walk of any page size from 
demand loads.

08H 82H DTLB_LOAD_MISSES.
DEMAND_LD_WALK_
COMPLETED

Misses in all TLB levels that caused 
page walk completed of any size by 
demand loads.

08H 84H DTLB_LOAD_MISSES.
DEMAND_LD_WALK_
DURATION

Cycle PMH is busy with a walk due 
to demand loads.

0EH 01H UOPS_ISSUED.ANY Increments each cycle the # of Uops 
issued by the RAT to RS. 

Set Cmask = 1, Inv = 1, Any= 1to 
count stalled cycles of this core.

Set Cmask = 1, 
Inv = 1to count 
stalled cycles

14H 01H ARITH.FPU_DIV_ACT
IVE

Cycles that the divider is active, 
includes INT and FP. Set 'edge =1, 
cmask=1' to count the number of 
divides.

24H 01H L2_RQSTS.DEMAND_
DATA_RD_HIT

Demand Data Read requests that 
hit L2 cache

24H 03H L2_RQSTS.ALL_DEM
AND_DATA_RD

Counts any demand and L1 HW 
prefetch data load requests to L2. 

24H 04H L2_RQSTS.RFO_HITS Counts the number of store RFO 
requests that hit the L2 cache. 

24H 08H L2_RQSTS.RFO_MISS Counts the number of store RFO 
requests that miss the L2 cache. 

24H 0CH L2_RQSTS.ALL_RFO Counts all L2 store RFO requests. 

24H 10H L2_RQSTS.CODE_RD
_HIT

Number of instruction fetches that 
hit the L2 cache. 

24H 20H L2_RQSTS.CODE_RD
_MISS

Number of instruction fetches that 
missed the L2 cache. 

24H 30H L2_RQSTS.ALL_COD
E_RD

Counts all L2 code requests.

Table 19-2.  Non-Architectural Performance Events In the Processor Core of Next 
Generation Intel Core i7, i5, i3 Processors 

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
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27H 01H L2_STORE_LOCK_RQ
STS.MISS

RFOs that miss cache lines 

27H 08H L2_STORE_LOCK_RQ
STS.HIT_M

RFOs that hit cache lines in M state

27H 0FH L2_STORE_LOCK_RQ
STS.ALL

RFOs that access cache lines in any 
state

28H 01H L2_L1D_WB_RQSTS.
MISS

Not rejected writebacks that missed 
LLC.

28H 04H L2_L1D_WB_RQSTS.
HIT_E

Not rejected writebacks from L1D 
to L2 cache lines in E state.

28H 08H L2_L1D_WB_RQSTS.
HIT_M

Not rejected writebacks from L1D 
to L2 cache lines in M state.

2EH 4FH LONGEST_LAT_CACH
E.REFERENCE

This event counts requests 
originating from the core that 
reference a cache line in the last 
level cache. 

see Table 19-1

2EH 41H LONGEST_LAT_CACH
E.MISS

This event counts each cache miss 
condition for references to the last 
level cache. 

see Table 19-1

3CH 00H CPU_CLK_UNHALTED
.THREAD_P

Counts the number of thread cycles 
while the thread is not in a halt 
state. The thread enters the halt 
state when it is running the HLT 
instruction. The core frequency may 
change from time to time due to 
power or thermal throttling. 

see Table 19-1

3CH 01H CPU_CLK_THREAD_
UNHALTED.REF_XCL
K

Increments at the frequency of 
XCLK (100 MHz) when not halted.

see Table 19-1

48H 01H L1D_PEND_MISS.PE
NDING

Increments the number of 
outstanding L1D misses every cycle. 
Set Cmaks = 1 and Edge =1 to count 
occurrences.

Counter 2 only;

Set Cmask = 1 to 
count cycles. 

49H 01H DTLB_STORE_MISSE
S.MISS_CAUSES_A_
WALK

Miss in all TLB levels causes an page 
walk of any page size 
(4K/2M/4M/1G).

Table 19-2.  Non-Architectural Performance Events In the Processor Core of Next 
Generation Intel Core i7, i5, i3 Processors 

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
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49H 02H DTLB_STORE_MISSE
S.WALK_COMPLETED

Miss in all TLB levels causes a page 
walk that completes of any page 
size (4K/2M/4M/1G).

49H 04H DTLB_STORE_MISSE
S.WALK_DURATION

Cycles PMH is busy with this walk.

49H 10H DTLB_STORE_MISSE
S.STLB_HIT

Store operations that miss the first 
TLB level but hit the second and do 
not cause page walks

4CH 01H LOAD_HIT_PRE.SW_
PF

Not SW-prefetch load dispatches 
that hit fill buffer allocated for S/W 
prefetch.

51H 01H L1D.REPLACEMENT Counts the number of lines brought 
into the L1 data cache.

58H 01H MOVE_ELIMINATION.I
NT_NOT_ELIMINATE
D

Number of integer Move Elimination 
candidate uops that were not 
eliminated.

58H 02H MOVE_ELIMINATION.
SIMD_NOT_ELIMINAT
ED

Number of SIMD Move Elimination 
candidate uops that were not 
eliminated.

5CH 01H CPL_CYCLES.RING0 Unhalted core cycles when the 
thread is in ring 0

Use Edge to 
count transition

5CH 02H CPL_CYCLES.RING12
3

Unhalted core cycles when the 
thread is not in ring 0

5EH 01H RS_EVENTS.EMPTY_
CYCLES

Cycles the RS is empty for the 
thread.

5FH 01H TLB_ACCESS.LOAD_S
TLB_HIT

Counts load operations that missed 
1st level DTLB but hit the 2nd level.

60H 01H OFFCORE_REQUEST
S_OUTSTANDING.DE
MAND_DATA_RD

Offcore outstanding Demand Data 
Read transactions in SQ to uncore. 
Set Cmask=1 to count cycles.

60H 04H OFFCORE_REQUEST
S_OUTSTANDING.DE
MAND_RFO

Offcore outstanding RFO store 
transactions in SQ to uncore. Set 
Cmask=1 to count cycles.

60H 08H OFFCORE_REQUEST
S_OUTSTANDING.AL
L_DATA_RD

Offcore outstanding cacheable data 
read transactions in SQ to uncore. 
Set Cmask=1 to count cycles.

Table 19-2.  Non-Architectural Performance Events In the Processor Core of Next 
Generation Intel Core i7, i5, i3 Processors 

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
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63H 01H LOCK_CYCLES.SPLIT_
LOCK_UC_LOCK_DUR
ATION

Cycles in which the L1D and L2  are 
locked, due to a UC lock or split lock.

63H 02H LOCK_CYCLES.CACHE
_LOCK_DURATION

Cycles in which the L1D is locked.

79H 02H IDQ.EMPTY Counts cycles the IDQ is empty.

79H 04H IDQ.MITE_UOPS Increment each cycle # of uops 
delivered to IDQ from MITE path. 

Set Cmask = 1 to count cycles.

Can combine 
Umask 04H and 
20H 

79H 08H IDQ.DSB_UOPS Increment each cycle. # of uops 
delivered to IDQ from DSB path. 

Set Cmask = 1 to count cycles.

Can combine 
Umask 08H and 
10H 

79H 30H IDQ.MS_UOPS Increment each cycle # of uops 
delivered to IDQ from MS by either 
DSB or MITE. Set Cmask = 1 to count 
cycles.

Can combine 
Umask 04H, 08H 
and 30H 

80H 02H ICACHE.MISSES Number of Instruction Cache, 
Streaming Buffer and Victim Cache 
Misses. Includes UC accesses.

85H 01H ITLB_MISSES.MISS_C
AUSES_A_WALK

Misses in all ITLB levels that cause 
page walks

85H 02H ITLB_MISSES.WALK_
COMPLETED

Misses in all ITLB levels that cause 
completed page walks

85H 04H ITLB_MISSES.WALK_
DURATION

Cycle PMH is busy with a walk.

85H 10H ITLB_MISSES.STLB_H
IT

Number of cache load STLB hits. No 
page walk.

87H 01H ILD_STALL.LCP Stalls caused by changing prefix 
length of the instruction.

87H 04H ILD_STALL.IQ_FULL Stall cycles due to IQ is full.

88H 01H BR_INST_EXEC.COND Qualify conditional near branch 
instructions executed, but not 
necessarily retired.

Must combine 
with umask 40H, 
80H

88H 02H BR_INST_EXEC.DIRE
CT_JMP

Qualify all unconditional near branch 
instructions excluding calls and 
indirect branches.

Must combine 
with umask 80H

Table 19-2.  Non-Architectural Performance Events In the Processor Core of Next 
Generation Intel Core i7, i5, i3 Processors 

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
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88H 04H BR_INST_EXEC.INDIR
ECT_JMP_NON_CALL
_RET

Qualify executed indirect near 
branch instructions that are not 
calls nor returns.

Must combine 
with umask 80H

88H 08H BR_INST_EXEC.RETU
RN_NEAR

Qualify indirect near branches that 
have a return mnemonic.

Must combine 
with umask 80H

88H 10H BR_INST_EXEC.DIRE
CT_NEAR_CALL

Qualify unconditional near call 
branch instructions, excluding non 
call branch, executed. 

Must combine 
with umask 80H

88H 20H BR_INST_EXEC.INDIR
ECT_NEAR_CALL

Qualify indirect near calls, including 
both register and memory indirect, 
executed.

Must combine 
with umask 80H

88H 40H BR_INST_EXEC.NON
TAKEN

Qualify non-taken near branches 
executed. 

Applicable to 
umask 01H only

88H 80H BR_INST_EXEC.TAKE
N

Qualify taken near branches 
executed. Must combine with 
01H,02H, 04H, 08H, 10H, 20H

88H FFH BR_INST_EXEC.ALL_
BRANCHES

Counts all near executed branches 
(not necessarily retired). 

89H 01H BR_MISP_EXEC.CON
D

Qualify conditional near branch 
instructions mispredicted.

Must combine 
with umask 40H, 
80H

89H 04H BR_MISP_EXEC.INDIR
ECT_JMP_NON_CALL
_RET

Qualify mispredicted indirect near 
branch instructions that are not 
calls nor returns.

Must combine 
with umask 80H

89H 08H BR_MISP_EXEC.RETU
RN_NEAR

Qualify mispredicted indirect near 
branches that have a return 
mnemonic.

Must combine 
with umask 80H

89H 10H BR_MISP_EXEC.DIRE
CT_NEAR_CALL

Qualify mispredicted unconditional 
near call branch instructions, 
excluding non call branch, executed. 

Must combine 
with umask 80H

89H 20H BR_MISP_EXEC.INDIR
ECT_NEAR_CALL

Qualify mispredicted indirect near 
calls, including both register and 
memory indirect, executed.

Must combine 
with umask 80H

89H 40H BR_MISP_EXEC.NON
TAKEN

Qualify mispredicted non-taken 
near branches executed,. 

Applicable to 
umask 01H only

89H 80H BR_MISP_EXEC.TAKE
N

Qualify mispredicted taken near 
branches executed. Must combine 
with 01H,02H, 04H, 08H, 10H, 20H

Table 19-2.  Non-Architectural Performance Events In the Processor Core of Next 
Generation Intel Core i7, i5, i3 Processors 

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
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89H FFH BR_MISP_EXEC.ALL_
BRANCHES

Counts all near executed branches 
(not necessarily retired). 

9CH 01H IDQ_UOPS_NOT_DEL
IVERED.CORE

Count number of non-delivered 
uops to RAT per thread. 

Use Cmask to 
qualify uop b/w

A1H 01H UOPS_DISPATCHED_
PORT.PORT_0

Cycles which a Uop is dispatched on 
port 0.

A1H 02H UOPS_DISPATCHED_
PORT.PORT_1

Cycles which a Uop is dispatched on 
port 1.

A1H 04H UOPS_DISPATCHED_
PORT.PORT_2_LD

Cycles which a load uop is 
dispatched on port 2.

A1H 08H UOPS_DISPATCHED_
PORT.PORT_2_STA

Cycles which a store address uop is 
dispatched on port 2.

A1H 0CH UOPS_DISPATCHED_
PORT.PORT_2

Cycles which a Uop is dispatched on 
port 2.

A1H 10H UOPS_DISPATCHED_
PORT.PORT_3_LD

Cycles which a load uop is 
dispatched on port 3.

A1H 20H UOPS_DISPATCHED_
PORT.PORT_3_STA

Cycles which a store address uop is 
dispatched on port 3.

A1H 30H UOPS_DISPATCHED_
PORT.PORT_3

Cycles which a Uop is dispatched on 
port 3.

A1H 40H UOPS_DISPATCHED_
PORT.PORT_4

Cycles which a Uop is dispatched on 
port 4.

A1H 80H UOPS_DISPATCHED_
PORT.PORT_5

Cycles which a Uop is dispatched on 
port 5.

A2H 01H RESOURCE_STALLS.
ANY

Cycles Allocation is stalled due to 
Resource Related reason. 

A2H 04H RESOURCE_STALLS.R
S

Cycles stalled due to no eligible RS 
entry available. 

A2H 08H RESOURCE_STALLS.S
B

Cycles stalled due to no store 
buffers available. (not including 
draining form sync).

A2H 10H RESOURCE_STALLS.R
OB

Cycles stalled due to re-order buffer 
full.

ABH 01H DSB2MITE_SWITCHE
S.COUNT

Number of DSB to MITE switches.

Table 19-2.  Non-Architectural Performance Events In the Processor Core of Next 
Generation Intel Core i7, i5, i3 Processors 
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Umask
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ABH 02H DSB2MITE_SWITCHE
S.PENALTY_CYCLES

Cycles DSB to MITE switches caused 
delay.

ACH 08H DSB_FILL.EXCEED_D
SB_LINES

DSB Fill encountered > 3 DSB lines.

AEH 01H ITLB.ITLB_FLUSH Counts the number of ITLB flushes, 
includes 4k/2M/4M pages.

B0H 01H OFFCORE_REQUEST
S.DEMAND_DATA_RD

Demand data read requests sent to 
uncore. 

B0H 02H OFFCORE_REQUEST
S.DEMAND_CODE_RD

Demand code read requests sent to 
uncore. 

B0H 04H OFFCORE_REQUEST
S.DEMAND_RFO

Demand RFO read requests sent to 
uncore., including regular RFOs, 
locks, ItoM

B0H 08H OFFCORE_REQUEST
S.ALL_DATA_RD

Data read requests sent to uncore 
(demand and prefetch).

B1H 01H UOPS_DISPATCHED.T
HREAD

Counts total number of uops to be 
dispatched per-thread each cycle. 
Set Cmask = 1, INV =1 to count stall 
cycles.

B1H 02H UOPS_DISPATCHED.C
ORE

Counts total number of uops to be 
dispatched per-core each cycle.

Do not need to 
set ANY

B7H 01H OFF_CORE_RESPONS
E_0

see Section 18.8.5, “Off-core 
Response Performance Monitoring”; 
PMC0 only.

Requires 
programming 
MSR 01A6H

BBH 01H OFF_CORE_RESPONS
E_1

See Section 18.8.5, “Off-core 
Response Performance Monitoring”. 
PMC3 only.

Requires 
programming 
MSR 01A7H

C0H 00H INST_RETIRED.ANY_
P

Number of instructions at 
retirement

See Table 19-1

C0H 01H INST_RETIRED.PREC
_DIST

Precise instruction retired event 
with HW to reduce effect of PEBS 
shadow in IP distribution

PMC1 only; Must 
quiesce other 
PMCs.

C1H 08H OTHER_ASSISTS.AVX
_STORE

Number of assists associated with 
256-bit AVX store operations.

C1H 10H OTHER_ASSISTS.AVX
_TO_SSE

Number of transitions from AVX-
256 to legacy SSE when penalty 
applicable.

Table 19-2.  Non-Architectural Performance Events In the Processor Core of Next 
Generation Intel Core i7, i5, i3 Processors 
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Num.
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C1H 20H OTHER_ASSISTS.SSE
_TO_AVX

Number of transitions from SSE to 
AVX-256 when penalty applicable.

C2H 01H UOPS_RETIRED.ALL Counts the number of micro-ops 
retired, Use cmask=1 and invert to 
count active cycles or stalled cycles.

Supports PEBS

C2H 02H UOPS_RETIRED.RETI
RE_SLOTS

Counts the number of retirement 
slots used each cycle.

C3H 02H MACHINE_CLEARS.M
EMORY_ORDERING

Counts the number of machine 
clears due to memory order 
conflicts.

C3H 20H MACHINE_CLEARS.M
ASKMOV

Counts the number of executed 
AVX masked load operations that 
refer to an illegal address range 
with the mask bits set to 0. 

C4H 00H BR_INST_RETIRED.A
LL_BRANCHES

Branch instructions at retirement See Table 19-1 

C4H 01H BR_INST_RETIRED.C
ONDITIONAL

Counts the number of conditional 
branch instructions retired. 

Supports PEBS

C4H 02H BR_INST_RETIRED.N
EAR_CALL

Direct and indirect near call 
instructions retired.

C4H 04H BR_INST_RETIRED.A
LL_BRANCHES

Counts the number of branch 
instructions retired.

C4H 08H BR_INST_RETIRED.N
EAR_RETURN

Counts the number of near return 
instructions retired.

C4H 10H BR_INST_RETIRED.N
OT_TAKEN

Counts the number of not taken 
branch instructions retired. 

C4H 20H BR_INST_RETIRED.N
EAR_TAKEN

Number of near taken branches 
retired.

C4H 40H BR_INST_RETIRED.F
AR_BRANCH

Number of far branches retired.

C5H 00H BR_MISP_RETIRED.A
LL_BRANCHES

Mispredicted branch instructions at 
retirement

See Table 19-1 

C5H 01H BR_MISP_RETIRED.C
ONDITIONAL

Mispredicted conditional branch 
instructions retired. 

Supports PEBS

C5H 02H BR_MISP_RETIRED.N
EAR_CALL

Direct and indirect mispredicted 
near call instructions retired. 

Table 19-2.  Non-Architectural Performance Events In the Processor Core of Next 
Generation Intel Core i7, i5, i3 Processors 
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C5H 04H BR_MISP_RETIRED.A
LL_BRANCHES

Mispredicted macro branch 
instructions retired.

C5H 10H BR_MISP_RETIRED.N
OT_TAKEN

Mispredicted not taken branch 
instructions retired.

C5H 20H BR_MISP_RETIRED.T
AKEN

Mispredicted taken branch 
instructions retired.

CAH 08H FP_ASSIST.SIMD_OU
TPUT

Number of SIMD FP assists due to 
Output values

CAH 10H FP_ASSIST.SIMD_INP
UT

Number of SIMD FP assists due to 
input values

CAH 1EH FP_ASSIST.ANY Cycles with any input/output SSE* 
or FP assists

CCH 20H ROB_MISC_EVENTS.L
BR_INSERTS

Count cases of saving new LBR 
records by hardware. 

CDH 01H MEM_TRANS_RETIR
ED.LOAD_LATENCY

Sample loads with specified latency 
threshold. PMC3 only.

Specify threshold 
in MSR 0x3F6

CDH 02H MEM_TRANS_RETIR
ED.PRECISE_STORE

Sample stores and collect precise 
store operation via PEBS record. 
PMC3 only.

See Section 
18.8.4.3

D0H 01H MEM_UOP_RETIRED.
LOADS

Qualify retired memory uops that 
are loads. Combine with umask 10H, 
20H, 40H, 80H.

Supports PEBS

D0H 02H MEM_UOP_RETIRED.
STORES

Qualify retired memory uops that 
are stores. Combine with umask 
10H, 20H, 40H, 80H.

D0H 10H MEM_UOP_RETIRED.
STLB_MISS

Qualify retired memory uops with 
STLB miss. Must combine with 
umask 01H, 02H, to produce counts.

D0H 20H MEM_UOP_RETIRED.
LOCK

Qualify retired memory uops with 
lock. Must combine with umask 01H, 
02H, to produce counts.

D0H 40H MEM_UOP_RETIRED.
SPLIT

Qualify retired memory uops with 
line split. Must combine with umask 
01H, 02H, to produce counts.

D0H 80H MEM_UOP_RETIRED.
ALL

Qualify any retired memory uops. 
Must combine with umask 01H, 
02H, to produce counts.

Table 19-2.  Non-Architectural Performance Events In the Processor Core of Next 
Generation Intel Core i7, i5, i3 Processors 

Event
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Umask
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Event Mask 
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D1H 01H MEM_LOAD_UOPS_R
ETIRED.L1_HIT

Retired load uops with L1 cache hits 
as data sources.

Supports PEBS

D1H 02H MEM_LOAD_UOPS_R
ETIRED.L2_HIT

Retired load uops with L2 cache hits 
as data sources.

D1H 04H MEM_LOAD_UOPS_R
ETIRED.LLC_HIT

Retired load uops with LLC cache 
hits as data sources.

D1H 40H MEM_LOAD_UOPS_R
ETIRED.HIT_LFB

Retired load uops which data 
sources were load uops missed L1 
but hit FB due to preceding miss to 
the same cache line with data not 
ready.

D2H 02H MEM_LOAD_UOPS_L
LC_HIT_RETIRED.XS
NP_HIT

Retired load uops which data 
sources were LLC and cross-core 
snoop hits in on-pkg core cache.

Supports PEBS

D2H 04H MEM_LOAD_UOPS_L
LC_HIT_RETIRED.XS
NP_HITM

Retired load uops which data 
sources were HitM responses from 
shared LLC.

D2H 08H MEM_LOAD_UOPS_L
LC_HIT_RETIRED.XS
NP_NONE

Retired load uops which data 
sources were hits in LLC without 
snoops required.

D3H 01H MEM_LOAD_UOPS_L
LC_MISS_RETIRED.LO
CAL_DRAM

Retired load uops which data 
sources missed LLC but serviced 
from local dram. 

Supports PEBS.

F0H 01H L2_TRANS.DEMAND_
DATA_RD

Demand Data Read requests that 
access L2 cache

F0H 02H L2_TRANS.RFO RFO requests that access L2 cache

F0H 04H L2_TRANS.CODE_RD L2 cache accesses when fetching 
instructions

F0H 10H L2_TRANS.L1D_WB L1D writebacks that access L2 
cache

F0H 20H L2_TRANS.L2_FILL L2 fill requests that access L2 cache

F0H 40H L2_TRANS.L2_WB L2 writebacks that access L2 cache

F0H 80H L2_TRANS.ALL_REQ
UESTS

Transactions accessing L2 pipe

F1H 01H L2_LINES_IN.I L2 cache lines in I state filling L2 Counting does 
not cover rejects.

Table 19-2.  Non-Architectural Performance Events In the Processor Core of Next 
Generation Intel Core i7, i5, i3 Processors 

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-12 Vol. 3B



PERFORMANCE-MONITORING EVENTS
19.3 PERFORMANCE MONITORING EVENTS FOR 2ND 
GENERATION  INTEL® CORE™ I7-2XXX, 
INTEL® CORE™ I5-2XXX, INTEL® CORE™ I3-2XXX 
PROCESSOR SERIES

Second generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-
2xxx processor series are based on the Intel microarchitecture code name Sandy 
Bridge. They support architectural performance-monitoring events listed in Table 
19-1. Non-architectural performance-monitoring events in the processor core are 
listed in Table 19-3, Table 19-4, and Table 19-5. The events in Table 19-3 apply to 
processors with CPUID signature of DisplayFamily_DisplayModel encoding with the 
following values: 06_2AH and 06_2DH. The events in Table 19-4 apply to processors 
with CPUID signature 06_2AH. The events in Table 19-5 apply to processors with 
CPUID signature 06_2DH.

F1H 02H L2_LINES_IN.S L2 cache lines in S state filling L2 Counting does 
not cover rejects.

F1H 04H L2_LINES_IN.E L2 cache lines in E state filling L2 Counting does 
not cover rejects.

F1H 07H L2_LINES_IN.ALL L2 cache lines filling L2 Counting does 
not cover rejects.

F2H 01H L2_LINES_OUT.DEMA
ND_CLEAN

Clean L2 cache lines evicted by 
demand

F2H 02H L2_LINES_OUT.DEMA
ND_DIRTY

Dirty L2 cache lines evicted by 
demand

F2H 0AH L2_LINES_OUT.DIRT
Y_ALL

Dirty L2 cache lines filling the L2 Counting does 
not cover rejects.

Table 19-2.  Non-Architectural Performance Events In the Processor Core of Next 
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Table 19-3.  Non-Architectural Performance Events In the Processor Core Common to 
2nd Generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx 

Processor Series and Intel® Xeon® Processors E5 Family
Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment

03H 01H LD_BLOCKS.DATA_U
NKNOWN

blocked loads due to store buffer 
blocks with unknown data. 

03H 02H LD_BLOCKS.STORE_F
ORWARD

loads blocked by overlapping with 
store buffer that cannot be 
forwarded .

03H 08H LD_BLOCKS.NO_SR # of Split loads blocked due to 
resource not available. 

03H 10H LD_BLOCKS.ALL_BLO
CK

Number of cases where any load is 
blocked but has no DCU miss.

05H 01H MISALIGN_MEM_REF.
LOADS

Speculative cache-line split load 
uops dispatched to L1D.

05H 02H MISALIGN_MEM_REF.
STORES

Speculative cache-line split Store-
address uops dispatched to L1D.

07H 01H LD_BLOCKS_PARTIA
L.ADDRESS_ALIAS

False dependencies in MOB due to 
partial compare on address.

07H 08H LD_BLOCKS_PARTIA
L.ALL_STA_BLOCK

The number of times that load 
operations are temporarily blocked 
because of older stores, with 
addresses that are not yet known. A 
load operation may incur more than 
one block of this type. 

08H 01H DTLB_LOAD_MISSES.
MISS_CAUSES_A_WA
LK

Misses in all TLB levels that cause a 
page walk of any page size.

08H 02H DTLB_LOAD_MISSES.
WALK_COMPLETED

Misses in all TLB levels that caused 
page walk completed of any size.

08H 04H DTLB_LOAD_MISSES.
WALK_DURATION

Cycle PMH is busy with a walk.

08H 10H DTLB_LOAD_MISSES.
STLB_HIT

Number of cache load STLB hits. No 
page walk.

0DH 03H INT_MISC.RECOVERY
_CYCLES

Cycles waiting to recover after 
Machine Clears or JEClear. Set 
Cmask= 1.

Set Edge to 
count 
occurrences

0DH 40H INT_MISC.RAT_STALL
_CYCLES

Cycles RAT external stall is sent to 
IDQ for this thread. 
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0EH 01H UOPS_ISSUED.ANY Increments each cycle the # of Uops 
issued by the RAT to RS. 

Set Cmask = 1, Inv = 1, Any= 1to 
count stalled cycles of this core.

Set Cmask = 1, 
Inv = 1to count 
stalled cycles

10H 01H FP_COMP_OPS_EXE.
X87

Counts number of X87 uops 
executed.

10H 10H FP_COMP_OPS_EXE.
SSE_FP_PACKED_DO
UBLE

Counts number of SSE* double 
precision FP packed uops executed.

10H 20H FP_COMP_OPS_EXE.
SSE_FP_SCALAR_SIN
GLE

Counts number of SSE* single 
precision FP scalar uops executed.

10H 40H FP_COMP_OPS_EXE.
SSE_PACKED SINGLE

Counts number of SSE* single 
precision FP packed uops executed.

10H 80H FP_COMP_OPS_EXE.
SSE_SCALAR_DOUBL
E

Counts number of SSE* double 
precision FP scalar uops executed.

11H 01H SIMD_FP_256.PACKE
D_SINGLE

Counts 256-bit packed single-
precision floating-point instructions

11H 02H SIMD_FP_256.PACKE
D_DOUBLE

Counts 256-bit packed double-
precision floating-point instructions

14H 01H ARITH.FPU_DIV_ACT
IVE

Cycles that the divider is active, 
includes INT and FP. Set 'edge =1, 
cmask=1' to count the number of 
divides.

17H 01H INSTS_WRITTEN_TO
_IQ.INSTS

Counts the number of instructions 
written into the IQ every cycle. 

24H 01H L2_RQSTS.DEMAND_
DATA_RD_HIT

Demand Data Read requests that 
hit L2 cache

24H 03H L2_RQSTS.ALL_DEM
AND_DATA_RD

Counts any demand and L1 HW 
prefetch data load requests to L2. 

24H 04H L2_RQSTS.RFO_HITS Counts the number of store RFO 
requests that hit the L2 cache. 

24H 08H L2_RQSTS.RFO_MISS Counts the number of store RFO 
requests that miss the L2 cache. 

24H 0CH L2_RQSTS.ALL_RFO Counts all L2 store RFO requests. 

Table 19-3.  Non-Architectural Performance Events In the Processor Core Common to 
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Processor Series and Intel® Xeon® Processors E5 Family
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Num.

Umask
Value
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24H 10H L2_RQSTS.CODE_RD
_HIT

Number of instruction fetches that 
hit the L2 cache. 

24H 20H L2_RQSTS.CODE_RD
_MISS

Number of instruction fetches that 
missed the L2 cache. 

24H 30H L2_RQSTS.ALL_COD
E_RD

Counts all L2 code requests.

24H 40H L2_RQSTS.PF_HIT Requests from L2 Hardware 
prefetcher that hit L2.

24H 80H L2_RQSTS.PF_MISS Requests from L2 Hardware 
prefetcher that missed L2.

24H C0H L2_RQSTS.ALL_PF Any requests from L2 Hardware 
prefetchers 

27H 01H L2_STORE_LOCK_RQ
STS.MISS

RFOs that miss cache lines 

27H 04H L2_STORE_LOCK_RQ
STS.HIT_E

RFOs that hit cache lines in E state

27H 08H L2_STORE_LOCK_RQ
STS.HIT_M

RFOs that hit cache lines in M state

27H 0FH L2_STORE_LOCK_RQ
STS.ALL

RFOs that access cache lines in any 
state

28H 04H L2_L1D_WB_RQSTS.
HIT_E

Not rejected writebacks from L1D 
to L2 cache lines in E state.

28H 08H L2_L1D_WB_RQSTS.
HIT_M

Not rejected writebacks from L1D 
to L2 cache lines in M state.

2EH 4FH LONGEST_LAT_CACH
E.REFERENCE

This event counts requests 
originating from the core that 
reference a cache line in the last 
level cache. 

see Table 19-1

2EH 41H LONGEST_LAT_CACH
E.MISS

This event counts each cache miss 
condition for references to the last 
level cache. 

see Table 19-1

Table 19-3.  Non-Architectural Performance Events In the Processor Core Common to 
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3CH 00H CPU_CLK_UNHALTED
.THREAD_P

Counts the number of thread cycles 
while the thread is not in a halt 
state. The thread enters the halt 
state when it is running the HLT 
instruction. The core frequency may 
change from time to time due to 
power or thermal throttling. 

see Table 19-1

3CH 01H CPU_CLK_THREAD_
UNHALTED.REF_XCL
K

Increments at the frequency of 
XCLK (100 MHz) when not halted.

see Table 19-1

48H 01H L1D_PEND_MISS.PE
NDING

Increments the number of 
outstanding L1D misses every cycle. 
Set Cmaks = 1 and Edge =1 to count 
occurrences.

Counter 2 only;

Set Cmask = 1 to 
count cycles. 

49H 01H DTLB_STORE_MISSE
S.MISS_CAUSES_A_
WALK

Miss in all TLB levels causes an page 
walk of any page size 
(4K/2M/4M/1G).

49H 02H DTLB_STORE_MISSE
S.WALK_COMPLETED

Miss in all TLB levels causes a page 
walk that completes of any page 
size (4K/2M/4M/1G).

49H 04H DTLB_STORE_MISSE
S.WALK_DURATION

Cycles PMH is busy with this walk.

49H 10H DTLB_STORE_MISSE
S.STLB_HIT

Store operations that miss the first 
TLB level but hit the second and do 
not cause page walks

4CH 01H LOAD_HIT_PRE.SW_
PF

Not SW-prefetch load dispatches 
that hit fill buffer allocated for S/W 
prefetch.

4CH 02H LOAD_HIT_PRE.HW_
PF

Not SW-prefetch load  dispatches 
that hit fill buffer allocated for H/W 
prefetch.

4EH 02H HW_PRE_REQ.DL1_
MISS

Hardware Prefetch requests that 
miss the L1D cache. A request is 
being counted each time it access 
the cache & miss it, including if a 
block is applicable or if hit the Fill 
Buffer for example.

This accounts for 
both L1 streamer 
and IP-based 
(IPP) HW 
prefetchers. 

51H 01H L1D.REPLACEMENT Counts the number of lines brought 
into the L1 data cache.
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51H 02H L1D.ALLOCATED_IN_
M

Counts the number of allocations of 
modified L1D cache lines. 

51H 04H L1D.EVICTION Counts the number of modified lines 
evicted from the L1 data cache  due 
to replacement. 

51H 08H L1D.ALL_M_REPLAC
EMENT

Cache lines in M state evicted out of 
L1D due to Snoop HitM or dirty line 
replacement

59H 20H PARTIAL_RAT_STALL
S.FLAGS_MERGE_UO
P

Increments the number of flags-
merge uops in flight each cycle.

Set Cmask = 1 to count cycles.

59H 40H PARTIAL_RAT_STALL
S.SLOW_LEA_WINDO
W

Cycles with at least one slow LEA 
uop allocated.

59H 80H PARTIAL_RAT_STALL
S.MUL_SINGLE_UOP

Number of Multiply packed/scalar 
single precision uops allocated.

5BH 0CH RESOURCE_STALLS2.
ALL_FL_EMPTY

Cycles stalled due to free list empty

5BH 0FH RESOURCE_STALLS2.
ALL_PRF_CONTROL

Cycles stalled due to control 
structures full for physical registers

5BH 40H RESOURCE_STALLS2.
BOB_FULL

Cycles Allocator is stalled due 
Branch Order Buffer. 

5BH 4FH RESOURCE_STALLS2.
OOO_RSRC

Cycles stalled due to out of order 
resources full

5CH 01H CPL_CYCLES.RING0 Unhalted core cycles when the 
thread is in ring 0

Use Edge to 
count transition

5CH 02H CPL_CYCLES.RING12
3

Unhalted core cycles when the 
thread is not in ring 0

5EH 01H RS_EVENTS.EMPTY_
CYCLES

Cycles the RS is empty for the 
thread.

60H 01H OFFCORE_REQUEST
S_OUTSTANDING.DE
MAND_DATA_RD

Offcore outstanding Demand Data 
Read transactions in SQ to uncore. 
Set Cmask=1 to count cycles.

60H 04H OFFCORE_REQUEST
S_OUTSTANDING.DE
MAND_RFO

Offcore outstanding RFO store 
transactions in SQ to uncore. Set 
Cmask=1 to count cycles.
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60H 08H OFFCORE_REQUEST
S_OUTSTANDING.AL
L_DATA_RD

Offcore outstanding cacheable data 
read transactions in SQ to uncore. 
Set Cmask=1 to count cycles.

63H 01H LOCK_CYCLES.SPLIT_
LOCK_UC_LOCK_DUR
ATION

Cycles in which the L1D and L2  are 
locked, due to a UC lock or split lock.

63H 02H LOCK_CYCLES.CACHE
_LOCK_DURATION

Cycles in which the L1D is locked.

79H 02H IDQ.EMPTY Counts cycles the IDQ is empty.

79H 04H IDQ.MITE_UOPS Increment each cycle # of uops 
delivered to IDQ from MITE path. 

Set Cmask = 1 to count cycles.

Can combine 
Umask 04H and 
20H 

79H 08H IDQ.DSB_UOPS Increment each cycle. # of uops 
delivered to IDQ from DSB path. 

Set Cmask = 1 to count cycles.

Can combine 
Umask 08H and 
10H 

79H 10H IDQ.MS_DSB_UOPS Increment each cycle # of uops 
delivered to IDQ when MS busy by 
DSB. Set Cmask = 1 to count cycles 
MS is busy. Set Cmask=1 and Edge 
=1 to count MS activations.

Can combine 
Umask 08H and 
10H 

79H 20H IDQ.MS_MITE_UOPS Increment each cycle # of uops 
delivered to IDQ when MS is busy by 
MITE. Set Cmask = 1 to count cycles.

Can combine 
Umask 04H and 
20H 

79H 30H IDQ.MS_UOPS Increment each cycle # of uops 
delivered to IDQ from MS by either 
DSB or MITE. Set Cmask = 1 to count 
cycles.

Can combine 
Umask 04H, 08H 
and 30H 

80H 02H ICACHE.MISSES Number of Instruction Cache, 
Streaming Buffer and Victim Cache 
Misses. Includes UC accesses.

85H 01H ITLB_MISSES.MISS_C
AUSES_A_WALK

Misses in all ITLB levels that cause 
page walks

85H 02H ITLB_MISSES.WALK_
COMPLETED

Misses in all ITLB levels that cause 
completed page walks

85H 04H ITLB_MISSES.WALK_
DURATION

Cycle PMH is busy with a walk.
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85H 10H ITLB_MISSES.STLB_H
IT

Number of cache load STLB hits. No 
page walk.

87H 01H ILD_STALL.LCP Stalls caused by changing prefix 
length of the instruction.

87H 04H ILD_STALL.IQ_FULL Stall cycles due to IQ is full.

88H 01H BR_INST_EXEC.COND Qualify conditional near branch 
instructions executed, but not 
necessarily retired.

Must combine 
with umask 40H, 
80H

88H 02H BR_INST_EXEC.DIRE
CT_JMP

Qualify all unconditional near branch 
instructions excluding calls and 
indirect branches.

Must combine 
with umask 80H

88H 04H BR_INST_EXEC.INDIR
ECT_JMP_NON_CALL
_RET

Qualify executed indirect near 
branch instructions that are not 
calls nor returns.

Must combine 
with umask 80H

88H 08H BR_INST_EXEC.RETU
RN_NEAR

Qualify indirect near branches that 
have a return mnemonic.

Must combine 
with umask 80H

88H 10H BR_INST_EXEC.DIRE
CT_NEAR_CALL

Qualify unconditional near call 
branch instructions, excluding non 
call branch, executed. 

Must combine 
with umask 80H

88H 20H BR_INST_EXEC.INDIR
ECT_NEAR_CALL

Qualify indirect near calls, including 
both register and memory indirect, 
executed.

Must combine 
with umask 80H

88H 40H BR_INST_EXEC.NON
TAKEN

Qualify non-taken near branches 
executed. 

Applicable to 
umask 01H only

88H 80H BR_INST_EXEC.TAKE
N

Qualify taken near branches 
executed. Must combine with 
01H,02H, 04H, 08H, 10H, 20H

88H FFH BR_INST_EXEC.ALL_
BRANCHES

Counts all near executed branches 
(not necessarily retired). 

89H 01H BR_MISP_EXEC.CON
D

Qualify conditional near branch 
instructions mispredicted.

Must combine 
with umask 40H, 
80H

89H 04H BR_MISP_EXEC.INDIR
ECT_JMP_NON_CALL
_RET

Qualify mispredicted indirect near 
branch instructions that are not 
calls nor returns.

Must combine 
with umask 80H
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89H 08H BR_MISP_EXEC.RETU
RN_NEAR

Qualify mispredicted indirect near 
branches that have a return 
mnemonic.

Must combine 
with umask 80H

89H 10H BR_MISP_EXEC.DIRE
CT_NEAR_CALL

Qualify mispredicted unconditional 
near call branch instructions, 
excluding non call branch, executed. 

Must combine 
with umask 80H

89H 20H BR_MISP_EXEC.INDIR
ECT_NEAR_CALL

Qualify mispredicted indirect near 
calls, including both register and 
memory indirect, executed.

Must combine 
with umask 80H

89H 40H BR_MISP_EXEC.NON
TAKEN

Qualify mispredicted non-taken 
near branches executed,. 

Applicable to 
umask 01H only

89H 80H BR_MISP_EXEC.TAKE
N

Qualify mispredicted taken near 
branches executed. Must combine 
with 01H,02H, 04H, 08H, 10H, 20H

89H FFH BR_MISP_EXEC.ALL_
BRANCHES

Counts all near executed branches 
(not necessarily retired). 

9CH 01H IDQ_UOPS_NOT_DEL
IVERED.CORE

Count number of non-delivered 
uops to RAT per thread. 

Use Cmask to 
qualify uop b/w

A1H 01H UOPS_DISPATCHED_
PORT.PORT_0

Cycles which a Uop is dispatched on 
port 0.

A1H 02H UOPS_DISPATCHED_
PORT.PORT_1

Cycles which a Uop is dispatched on 
port 1.

A1H 04H UOPS_DISPATCHED_
PORT.PORT_2_LD

Cycles which a load uop is 
dispatched on port 2.

A1H 08H UOPS_DISPATCHED_
PORT.PORT_2_STA

Cycles which a store address uop is 
dispatched on port 2.

A1H 0CH UOPS_DISPATCHED_
PORT.PORT_2

Cycles which a Uop is dispatched on 
port 2.

A1H 10H UOPS_DISPATCHED_
PORT.PORT_3_LD

Cycles which a load uop is 
dispatched on port 3.

A1H 20H UOPS_DISPATCHED_
PORT.PORT_3_STA

Cycles which a store address uop is 
dispatched on port 3.

A1H 30H UOPS_DISPATCHED_
PORT.PORT_3

Cycles which a Uop is dispatched on 
port 3.

A1H 40H UOPS_DISPATCHED_
PORT.PORT_4

Cycles which a Uop is dispatched on 
port 4.
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A1H 80H UOPS_DISPATCHED_
PORT.PORT_5

Cycles which a Uop is dispatched on 
port 5.

A2H 01H RESOURCE_STALLS.
ANY

Cycles Allocation is stalled due to 
Resource Related reason. 

A2H 02H RESOURCE_STALLS.L
B

Counts the cycles of stall due to lack 
of load buffers.

A2H 04H RESOURCE_STALLS.R
S

Cycles stalled due to no eligible RS 
entry available. 

A2H 08H RESOURCE_STALLS.S
B

Cycles stalled due to no store 
buffers available. (not including 
draining form sync).

A2H 10H RESOURCE_STALLS.R
OB

Cycles stalled due to re-order buffer 
full.

A2H 20H RESOURCE_STALLS.F
CSW

Cycles stalled due to writing the 
FPU control word.

A2H 40H RESOURCE_STALLS.
MXCSR

Cycles stalled due to the MXCSR 
register rename occurring to close 
to a previous MXCSR rename. 

A2H 80H RESOURCE_STALLS.
OTHER

Cycles stalled while execution was 
stalled due to other resource issues.

ABH 01H DSB2MITE_SWITCHE
S.COUNT

Number of DSB to MITE switches.

ABH 02H DSB2MITE_SWITCHE
S.PENALTY_CYCLES

Cycles DSB to MITE switches caused 
delay.

ACH 02H DSB_FILL.OTHER_CA
NCEL

Cases of cancelling valid DSB fill not 
because of exceeding way limit

ACH 08H DSB_FILL.EXCEED_D
SB_LINES

DSB Fill encountered > 3 DSB lines.

ACH 0AH DSB_FILL.ALL_CANC
EL

Cases of cancelling valid Decode 
Stream Buffer (DSB) fill not because 
of exceeding way limit

AEH 01H ITLB.ITLB_FLUSH Counts the number of ITLB flushes, 
includes 4k/2M/4M pages.

B0H 01H OFFCORE_REQUEST
S.DEMAND_DATA_RD

Demand data read requests sent to 
uncore. 

Table 19-3.  Non-Architectural Performance Events In the Processor Core Common to 
2nd Generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx 

Processor Series and Intel® Xeon® Processors E5 Family
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Num.

Umask
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Event Mask 
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B0H 04H OFFCORE_REQUEST
S.DEMAND_RFO

Demand RFO read requests sent to 
uncore., including regular RFOs, 
locks, ItoM

B0H 08H OFFCORE_REQUEST
S.ALL_DATA_RD

Data read requests sent to uncore 
(demand and prefetch).

B1H 01H UOPS_DISPATCHED.T
HREAD

Counts total number of uops to be 
dispatched per-thread each cycle. 
Set Cmask = 1, INV =1 to count stall 
cycles.

B1H 02H UOPS_DISPATCHED.C
ORE

Counts total number of uops to be 
dispatched per-core each cycle.

Do not need to 
set ANY

B2H 01H OFFCORE_REQUEST
S_BUFFER.SQ_FULL

Offcore requests buffer cannot take 
more entries for this thread core.

B6H 01H AGU_BYPASS_CANCE
L.COUNT

Counts executed load operations 
with all the following traits: 1. 
addressing of the format [base + 
offset], 2. the offset is between 1 
and 2047, 3. the address specified 
in the base register is in one page 
and the address [base+offset] is in 
another page.

B7H 01H OFF_CORE_RESPONS
E_0

see Section 18.8.5, “Off-core 
Response Performance Monitoring”; 
PMC0 only.

Requires 
programming 
MSR 01A6H

BBH 01H OFF_CORE_RESPONS
E_1

See Section 18.8.5, “Off-core 
Response Performance Monitoring”. 
PMC3 only.

Requires 
programming 
MSR 01A7H

BDH 01H TLB_FLUSH.DTLB_T
HREAD

DTLB flush attempts of the thread-
specific entries

BDH 20H TLB_FLUSH.STLB_A
NY

Count number of STLB flush 
attempts

BFH 05H L1D_BLOCKS.BANK_
CONFLICT_CYCLES

Cycles when dispatched loads are 
cancelled due to L1D bank conflicts 
with other load ports

cmask=1 

C0H 00H INST_RETIRED.ANY_
P

Number of instructions at 
retirement

See Table 19-1

Table 19-3.  Non-Architectural Performance Events In the Processor Core Common to 
2nd Generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx 

Processor Series and Intel® Xeon® Processors E5 Family
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Num.

Umask
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Event Mask 
Mnemonic Description Comment
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C0H 01H INST_RETIRED.PREC
_DIST

Precise instruction retired event 
with HW to reduce effect of PEBS 
shadow in IP distribution

PMC1 only; Must 
quiesce other 
PMCs.

C1H 02H OTHER_ASSISTS.ITL
B_MISS_RETIRED

Instructions that experienced an 
ITLB miss.

C1H 08H OTHER_ASSISTS.AVX
_STORE

Number of assists associated with 
256-bit AVX store operations.

C1H 10H OTHER_ASSISTS.AVX
_TO_SSE

Number of transitions from AVX-
256 to legacy SSE when penalty 
applicable.

C1H 20H OTHER_ASSISTS.SSE
_TO_AVX

Number of transitions from SSE to 
AVX-256 when penalty applicable.

C2H 01H UOPS_RETIRED.ALL Counts the number of micro-ops 
retired, Use cmask=1 and invert to 
count active cycles or stalled cycles.

Supports PEBS

C2H 02H UOPS_RETIRED.RETI
RE_SLOTS

Counts the number of retirement 
slots used each cycle.

C3H 02H MACHINE_CLEARS.M
EMORY_ORDERING

Counts the number of machine 
clears due to memory order 
conflicts.

C3H 04H MACHINE_CLEARS.S
MC

Counts the number of times that a 
program writes to a code section. 

C3H 20H MACHINE_CLEARS.M
ASKMOV

Counts the number of executed 
AVX masked load operations that 
refer to an illegal address range 
with the mask bits set to 0. 

C4H 00H BR_INST_RETIRED.A
LL_BRANCHES

Branch instructions at retirement See Table 19-1 

C4H 01H BR_INST_RETIRED.C
ONDITIONAL

Counts the number of conditional 
branch instructions retired. 

Supports PEBS

C4H 02H BR_INST_RETIRED.N
EAR_CALL

Direct and indirect near call 
instructions retired.

C4H 04H BR_INST_RETIRED.A
LL_BRANCHES

Counts the number of branch 
instructions retired.

C4H 08H BR_INST_RETIRED.N
EAR_RETURN

Counts the number of near return 
instructions retired.

Table 19-3.  Non-Architectural Performance Events In the Processor Core Common to 
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C4H 10H BR_INST_RETIRED.N
OT_TAKEN

Counts the number of not taken 
branch instructions retired. 

C4H 20H BR_INST_RETIRED.N
EAR_TAKEN

Number of near taken branches 
retired.

C4H 40H BR_INST_RETIRED.F
AR_BRANCH

Number of far branches retired.

C5H 00H BR_MISP_RETIRED.A
LL_BRANCHES

Mispredicted branch instructions at 
retirement

See Table 19-1 

C5H 01H BR_MISP_RETIRED.C
ONDITIONAL

Mispredicted conditional branch 
instructions retired. 

Supports PEBS

C5H 02H BR_MISP_RETIRED.N
EAR_CALL

Direct and indirect mispredicted 
near call instructions retired. 

C5H 04H BR_MISP_RETIRED.A
LL_BRANCHES

Mispredicted macro branch 
instructions retired.

C5H 10H BR_MISP_RETIRED.N
OT_TAKEN

Mispredicted not taken branch 
instructions retired.

C5H 20H BR_MISP_RETIRED.T
AKEN

Mispredicted taken branch 
instructions retired.

CAH 02H FP_ASSIST.X87_OUT
PUT

Number of X87 assists due to 
output value.

CAH 04H FP_ASSIST.X87_INP
UT

Number of X87 assists due to input 
value.

CAH 08H FP_ASSIST.SIMD_OU
TPUT

Number of SIMD FP assists due to 
Output values

CAH 10H FP_ASSIST.SIMD_INP
UT

Number of SIMD FP assists due to 
input values

CAH 1EH FP_ASSIST.ANY Cycles with any input/output SSE* 
or FP assists

CCH 20H ROB_MISC_EVENTS.L
BR_INSERTS

Count cases of saving new LBR 
records by hardware. 

CDH 01H MEM_TRANS_RETIR
ED.LOAD_LATENCY

Sample loads with specified latency 
threshold. PMC3 only.

Specify threshold 
in MSR 0x3F6

CDH 02H MEM_TRANS_RETIR
ED.PRECISE_STORE

Sample stores and collect precise 
store operation via PEBS record. 
PMC3 only.

See Section 
18.8.4.3

Table 19-3.  Non-Architectural Performance Events In the Processor Core Common to 
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D0H 01H MEM_UOP_RETIRED.
LOADS

Qualify retired memory uops that 
are loads. Combine with umask 10H, 
20H, 40H, 80H.

Supports PEBS

D0H 02H MEM_UOP_RETIRED.
STORES

Qualify retired memory uops that 
are stores. Combine with umask 
10H, 20H, 40H, 80H.

D0H 10H MEM_UOP_RETIRED.
STLB_MISS

Qualify retired memory uops with 
STLB miss. Must combine with 
umask 01H, 02H, to produce counts.

D0H 20H MEM_UOP_RETIRED.
LOCK

Qualify retired memory uops with 
lock. Must combine with umask 01H, 
02H, to produce counts.

D0H 40H MEM_UOP_RETIRED.
SPLIT

Qualify retired memory uops with 
line split. Must combine with umask 
01H, 02H, to produce counts.

D0H 80H MEM_UOP_RETIRED.
ALL

Qualify any retired memory uops. 
Must combine with umask 01H, 
02H, to produce counts.

D1H 01H MEM_LOAD_UOPS_R
ETIRED.L1_HIT

Retired load uops with L1 cache hits 
as data sources.

Supports PEBS

D1H 02H MEM_LOAD_UOPS_R
ETIRED.L2_HIT

Retired load uops with L2 cache hits 
as data sources.

D1H 40H MEM_LOAD_UOPS_R
ETIRED.HIT_LFB

Retired load uops which data 
sources were load uops missed L1 
but hit FB due to preceding miss to 
the same cache line with data not 
ready.

D2H 01H MEM_LOAD_UOPS_L
LC_HIT_RETIRED.XS
NP_MISS

Retired load uops which data 
sources were LLC hit and cross-core 
snoop missed in on-pkg core cache.

Supports PEBS

D2H 02H MEM_LOAD_UOPS_L
LC_HIT_RETIRED.XS
NP_HIT

Retired load uops which data 
sources were LLC and cross-core 
snoop hits in on-pkg core cache.

D2H 04H MEM_LOAD_UOPS_L
LC_HIT_RETIRED.XS
NP_HITM

Retired load uops which data 
sources were HitM responses from 
shared LLC.
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D2H 08H MEM_LOAD_UOPS_L
LC_HIT_RETIRED.XS
NP_NONE

Retired load uops which data 
sources were hits in LLC without 
snoops required.

D4H 02H MEM_LOAD_UOPS_M
ISC_RETIRED.LLC_MI
SS

Retired load uops with unknown 
information as data source in cache 
serviced the load. 

Supports PEBS.

F0H 01H L2_TRANS.DEMAND_
DATA_RD

Demand Data Read requests that 
access L2 cache

F0H 02H L2_TRANS.RFO RFO requests that access L2 cache

F0H 04H L2_TRANS.CODE_RD L2 cache accesses when fetching 
instructions

F0H 08H L2_TRANS.ALL_PF L2 or LLC HW prefetches that 
access L2 cache 

including rejects. 

F0H 10H L2_TRANS.L1D_WB L1D writebacks that access L2 
cache

F0H 20H L2_TRANS.L2_FILL L2 fill requests that access L2 cache

F0H 40H L2_TRANS.L2_WB L2 writebacks that access L2 cache

F0H 80H L2_TRANS.ALL_REQ
UESTS

Transactions accessing L2 pipe

F1H 01H L2_LINES_IN.I L2 cache lines in I state filling L2 Counting does 
not cover rejects.

F1H 02H L2_LINES_IN.S L2 cache lines in S state filling L2 Counting does 
not cover rejects.

F1H 04H L2_LINES_IN.E L2 cache lines in E state filling L2 Counting does 
not cover rejects.

F1H 07H L2_LINES_IN.ALL L2 cache lines filling L2 Counting does 
not cover rejects.

F2H 01H L2_LINES_OUT.DEMA
ND_CLEAN

Clean L2 cache lines evicted by 
demand

F2H 02H L2_LINES_OUT.DEMA
ND_DIRTY

Dirty L2 cache lines evicted by 
demand

F2H 04H L2_LINES_OUT.PF_C
LEAN

Clean L2 cache lines evicted by L2 
prefetch

F2H 08H L2_LINES_OUT.PF_DI
RTY

Dirty L2 cache lines evicted by L2 
prefetch
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Non-architecture performance monitoring events in the processor core that are 
applicable only to Intel processor with CPUID signature of 
DisplayFamily_DisplayModel 06_2AH are listed in Table 19-4.

F2H 0AH L2_LINES_OUT.DIRT
Y_ALL

Dirty L2 cache lines filling the L2 Counting does 
not cover rejects.

F4H 10H SQ_MISC.SPLIT_LOCK Split locks in SQ

Table 19-4.  Non-Architectural Performance Events applicable only to the Processor 
core for 2nd Generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx 

Processor Series
Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment

D1H 04H MEM_LOAD_UOPS_R
ETIRED.LLC_HIT

Retired load uops which data sources 
were data hits in LLC without snoops 
required.

Supports PEBS

B7H/BB
H

01H OFF_CORE_RESPONS
E_N

Sub-events of 
OFF_CORE_RESPONSE_N (suffix N = 
0, 1) programmed using MSR 
01A6H/01A7H with values shown in 
the comment column.

OFFCORE_RESPONSE.ALL_CODE_RD.LLC_HIT_N 0x10003C024
4

OFFCORE_RESPONSE.ALL_CODE_RD.LLC_HIT.NO_SNOOP_NE
EDED_N

0x1003C0244

OFFCORE_RESPONSE.ALL_CODE_RD.LLC_HIT.SNOOP_MISS_
N

0x2003C0244

OFFCORE_RESPONSE.ALL_CODE_RD.LLC_HIT.MISS_DRAM_N 0x300400244

OFFCORE_RESPONSE.ALL_DATA_RD.LLC_HIT.ANY_RESPONS
E_N

0x3F803C009
1

OFFCORE_RESPONSE.ALL_DATA_RD.LLC_MISS.DRAM_N 0x300400091

OFFCORE_RESPONSE.ALL_PF_CODE_RD.LLC_HIT.ANY_RESP
ONSE_N

0x3F803C024
0

OFFCORE_RESPONSE.ALL_PF_CODE_RD.LLC_HIT.HIT_OTHER
_CORE_NO_FWD_N

0x4003C0240
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OFFCORE_RESPONSE.ALL_PF_CODE_RD.LLC_HIT.HITM_OTH
ER_CORE_N

0x10003C024
0

OFFCORE_RESPONSE.ALL_PF_CODE_RD.LLC_HIT.NO_SNOOP
_NEEDED_N

0x1003C0240

OFFCORE_RESPONSE.ALL_PF_CODE_RD.LLC_HIT.SNOOP_MIS
S_N

0x2003C0240

OFFCORE_RESPONSE.ALL_PF_CODE_RD.LLC_MISS.DRAM_N 0x300400240

OFFCORE_RESPONSE.ALL_PF_DATA_RD.LLC_MISS.DRAM_N 0x300400090

OFFCORE_RESPONSE.ALL_PF_RFO.LLC_HIT.ANY_RESPONSE
_N

0x3F803C012
0

OFFCORE_RESPONSE.ALL_PF_RFO.LLC_HIT.HIT_OTHER_COR
E_NO_FWD_N

0x4003C0120

OFFCORE_RESPONSE.ALL_PF_RFO.LLC_HIT.HITM_OTHER_C
ORE_N

0x10003C012
0

OFFCORE_RESPONSE.ALL_PF_RfO.LLC_HIT.NO_SNOOP_NEE
DED_N

0x1003C0120

OFFCORE_RESPONSE.ALL_PF_RFO.LLC_HIT.SNOOP_MISS_N 0x2003C0120

OFFCORE_RESPONSE.ALL_PF_RFO.LLC_MISS.DRAM_N 0x300400120

OFFCORE_RESPONSE.ALL_READS.LLC_MISS.DRAM_N 0x3004003F7

OFFCORE_RESPONSE.ALL_RFO.LLC_HIT.ANY_RESPONSE_N 0x3F803C012
2

OFFCORE_RESPONSE.ALL_RFO.LLC_HIT.HIT_OTHER_CORE_N
O_FWD_N

0x4003C0122

OFFCORE_RESPONSE.ALL_RFO.LLC_HIT.HITM_OTHER_CORE
_N

0x10003C012
2

OFFCORE_RESPONSE.ALL_RFO.LLC_HIT.NO_SNOOP_NEEDED
_N

0x1003C0122

OFFCORE_RESPONSE.ALL_RFO.LLC_HIT.SNOOP_MISS_N 0x2003C0122

OFFCORE_RESPONSE.ALL_RFO.LLC_MISS.DRAM_N 0x300400122

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_HIT.HIT_OTHE
R_CORE_NO_FWD_N

0x4003C0004

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_HIT.HITM_OT
HER_CORE_N

0x10003C000
4
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OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_HIT.NO_SNOO
P_NEEDED_N

0x1003C0004

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_HIT.SNOOP_M
ISS_N

0x2003C0004

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.DRAM_N 0x300400004

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.DRAM_N 0x300400001

OFFCORE_RESPONSE.DEMAND_RFO.LLC_HIT.ANY_RESPONS
E_N

0x3F803C000
2

OFFCORE_RESPONSE.DEMAND_RFO.LLC_HIT.HIT_OTHER_CO
RE_NO_FWD_N

0x4003C0002

OFFCORE_RESPONSE.DEMAND_RFO.LLC_HIT.HITM_OTHER_C
ORE_N

0x10003C000
2

OFFCORE_RESPONSE.DEMAND_RFO.LLC_HIT.NO_SNOOP_NE
EDED_N

0x1003C0002

OFFCORE_RESPONSE.DEMAND_RFO.LLC_HIT.SNOOP_MISS_N 0x2003C0002

OFFCORE_RESPONSE.DEMAND_RFO.LLC_MISS.DRAM_N 0x300400002

OFFCORE_RESPONSE.OTHER.ANY_RESPONSE_N 0x18000

OFFCORE_RESPONSE.PF_L2_CODE_RD.LLC_HIT.HIT_OTHER_
CORE_NO_FWD_N

0x4003C0040

OFFCORE_RESPONSE.PF_L2_CODE_RD.LLC_HIT.HITM_OTHE
R_CORE_N

0x10003C004
0

OFFCORE_RESPONSE.PF_L2_CODE_RD.LLC_HIT.NO_SNOOP_
NEEDED_N

0x1003C0040

OFFCORE_RESPONSE.PF_L2_CODE_RD.LLC_HIT.SNOOP_MISS
_N

0x2003C0040

OFFCORE_RESPONSE.PF_L2_CODE_RD.LLC_MISS.DRAM_N 0x300400040

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.DRAM_N 0x300400010

OFFCORE_RESPONSE.PF_L2_RFO.LLC_HIT.ANY_RESPONSE_
N

0x3F803C002
0

OFFCORE_RESPONSE.PF_L2_RFO.LLC_HIT.HIT_OTHER_CORE
_NO_FWD_N

0x4003C0020

OFFCORE_RESPONSE.PF_L2_RFO.LLC_HIT.HITM_OTHER_CO
RE_N

0x10003C002
0
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Non-architecture performance monitoring events in the processor core that are 
applicable only to Intel Xeon processor E5 family (and Intel Core i7-3930 processor) 
based on Intel microarchitecture Sandy Bridge, with CPUID signature of 
DisplayFamily_DisplayModel 06_2DH, are listed in Table 19-5.

OFFCORE_RESPONSE.PF_L2_RFO.LLC_HIT.NO_SNOOP_NEED
ED_N

0x1003C0020

OFFCORE_RESPONSE.PF_L2_RFO.LLC_HIT.SNOOP_MISS_N 0x2003C0020

OFFCORE_RESPONSE.PF_L2_RFO.LLC_MISS.DRAM_N 0x300400020

OFFCORE_RESPONSE.PF_LLC_CODE_RD.LLC_HIT.HIT_OTHER
_CORE_NO_FWD_N

0x4003C0200

OFFCORE_RESPONSE.PF_LLC_CODE_RD.LLC_HIT.HITM_OTHE
R_CORE_N

0x10003C020
0

OFFCORE_RESPONSE.PF_LLC_CODE_RD.LLC_HIT.NO_SNOOP
_NEEDED_N

0x1003C0200

OFFCORE_RESPONSE.PF_LLC_CODE_RD.LLC_HIT.SNOOP_MIS
S_N

0x2003C0200

OFFCORE_RESPONSE.PF_LLC_CODE_RD.LLC_MISS.DRAM_N 0x300400200

OFFCORE_RESPONSE.PF_LLC_DATA_RD.LLC_MISS.DRAM_N 0x300400080

OFFCORE_RESPONSE.PF_LLC_RFO.LLC_HIT.ANY_RESPONSE
_N

0x3F803C010
0

OFFCORE_RESPONSE.PF_LLC_RFO.LLC_HIT.HIT_OTHER_COR
E_NO_FWD_N

0x4003C0100

OFFCORE_RESPONSE.PF_LLC_RFO.LLC_HIT.HITM_OTHER_CO
RE_N

0x10003C010
0

OFFCORE_RESPONSE.PF_LLC_RFO.LLC_HIT.NO_SNOOP_NEE
DED_N

0x1003C0100

OFFCORE_RESPONSE.PF_LLC_RFO.LLC_HIT.SNOOP_MISS_N 0x2003C0100

OFFCORE_RESPONSE.PF_LLC_RFO.LLC_MISS.DRAM_N 0x300400100
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Table 19-5.  Non-Architectural Performance Events Applicable only to the Processor 
Core of Intel® Xeon® Processor E5 Family

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment

B7H/BB
H

01H OFF_CORE_RESPONS
E_N

Sub-events of 
OFF_CORE_RESPONSE_N (suffix N = 
0, 1) programmed using MSR 
01A6H/01A7H with values shown in 
the comment column.

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.ANY_RE
SPONSE_N

0x3FFFC0000
4

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.LOCAL_D
RAM_N

0x600400004

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.REMOTE
_DRAM_N

0x67F800004

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.REMOTE
_HIT_FWD_N

0x87F800004

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.REMOTE
_HITM_N

0x107FC0000
4

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.ANY_DR
AM_N

0x67FC00001

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.ANY_RE
SPONSE_N

0x3F803C000
1

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.LOCAL_D
RAM_N

0x600400001

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.REMOTE
_DRAM_N

0x67F800001

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.REMOTE
_HIT_FWD_N

0x87F800001

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.REMOTE
_HITM_N

0x107FC0000
1

OFFCORE_RESPONSE.PF_L2_CODE_RD.LLC_MISS.ANY_RESP
ONSE_N

0x3F803C004
0

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.ANY_DRAM
_N

0x67FC00010

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.ANY_RESP
ONSE_N

0x3F803C001
0

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.LOCAL_DR
AM_N

0x600400010
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Non-architectural Performance monitoring events that are located in the uncore sub-
system are implementation specific between different platforms using processors 
based on Intel microarchitecture Sandy Bridge. Processors with CPUID signature of 
DisplayFamily_DisplayModel 06_2AH support performance events listed in Table 
19-6.

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.REMOTE_D
RAM_N

0x67F800010

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.REMOTE_HI
T_FWD_N

0x87F800010

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.REMOTE_HI
TM_N

0x107FC0001
0

OFFCORE_RESPONSE.PF_LLC_CODE_RD.LLC_MISS.ANY_RES
PONSE_N

0x3FFFC0020
0

OFFCORE_RESPONSE.PF_LLC_DATA_RD.LLC_MISS.ANY_RES
PONSE_N

0x3FFFC0008
0

Table 19-6.  Non-Architectural Performance Events In the Processor Uncore for 2nd 
Generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor 

Series
Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment

22H 01H UNC_CBO_XSNP_RE
SPONSE.RSPIHITI

Snoop responses received from 
processor cores to requests initiated 
by this Cbox.

Must combine 
with one of the 
umask values 
of 20H, 40H, 
80H

22H 02H UNC_CBO_XSNP_RE
SPONSE.RSPIHITFSE

22H 04H UNC_CBO_XSNP_RE
SPONSE.RSPSHITFSE

22H 08H UNC_CBO_XSNP_RE
SPONSE.RSPSFWDM

22H 01H UNC_CBO_XSNP_RE
SPONSE.RSPIFWDM

Table 19-5.  Non-Architectural Performance Events Applicable only to the Processor 
Core of Intel® Xeon® Processor E5 Family

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
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22H 20H UNC_CBO_XSNP_RE
SPONSE.AND_EXTER
NAL

Filter on cross-core snoops resulted in 
external snoop request. Must combine 
with at least one of 01H, 02H, 04H, 
08H, 10H

22H 40H UNC_CBO_XSNP_RE
SPONSE.AND_XCORE

Filter on cross-core snoops resulted in 
core request. Must combine with at 
least one of 01H, 02H, 04H, 08H, 10H

22H 80H UNC_CBO_XSNP_RE
SPONSE.AND_XCORE

Filter on cross-core snoops resulted in 
LLC evictions. Must combine with at 
least one of 01H, 02H, 04H, 08H, 10H

34H 01H UNC_CBO_CACHE_LO
OKUP.M

LLC lookup request that access cache 
and found line in M-state.

Must combine 
with one of the 
umask values 
of 10H, 20H, 
40H, 80H

34H 02H UNC_CBO_CACHE_LO
OKUP.E

LLC lookup request that access cache 
and found line in E-state.

34H 04H UNC_CBO_CACHE_LO
OKUP.S

LLC lookup request that access cache 
and found line in S-state.

34H 08H UNC_CBO_CACHE_LO
OKUP.I

LLC lookup request that access cache 
and found line in I-state.

34H 10H UNC_CBO_CACHE_LO
OKUP.AND_READ

Filter on processor core initiated 
cacheable read requests. Must 
combine with at least one of 01H, 
02H, 04H, 08H

34H 20H UNC_CBO_CACHE_LO
OKUP.AND_READ

Filter on processor core initiated 
cacheable write requests. Must 
combine with at least one of 01H, 
02H, 04H, 08H

34H 40H UNC_CBO_CACHE_LO
OKUP.AND_EXTSNP

Filter on external snoop requests. 
Must combine with at least one of 
01H, 02H, 04H, 08H

34H 80H UNC_CBO_CACHE_LO
OKUP.AND_ANY

Filter on any IRQ or IPQ initiated 
requests including uncacheable, non-
coherent requests. Must combine with 
at least one of 01H, 02H, 04H, 08H

Table 19-6.  Non-Architectural Performance Events In the Processor Uncore for 2nd 
Generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor 

Series
Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
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19.4 PERFORMANCE MONITORING EVENTS FOR  
INTEL® CORE™ I7 PROCESSOR FAMILY AND INTEL® 

XEON® PROCESSOR FAMILY
Processors based on the Intel microarchitecture code name Nehalem support the 
architectural and non-architectural performance-monitoring events listed in Table 
19-1 and Table 19-7. The events in Table 19-7 generally applies to processors with 
CPUID signature of DisplayFamily_DisplayModel encoding with the following values: 
06_1AH, 06_1EH, 06_1FH, and 06_2EH. However, Intel Xeon processors with CPUID 
signature of DisplayFamily_DisplayModel 06_2EH have a small number of events that 
are not supported in processors with CPUID signature 06_1AH, 06_1EH, and 
06_1FH. These events are noted in the comment column.

80H 01H UNC_IMPH_CBO_TRK
_OCCUPANCY.ALL

Counts cycles weighted by the 
number of core-outgoing valid entries. 
Valid entries are between allocation 
to the first of IDIO or DRSO messages. 
Accounts for coherent and in-
coherent traffic

Counter 0 only

81H 01H UNC_IMPH_CBO_TRK
_REQUEST.ALL

Counts the number of core-outgoing 
entries. Accounts for coherent and in-
coherent traffic

81H 20H UNC_IMPH_CBO_TRK
_REQUEST.WRITES

Counts the number of allocated write 
entries, include full, partial, and 
evictions. 

81H 80H UNC_IMPH_CBO_TRK
_REQUEST.EVICTION
S

Counts the number of evictions 
allocated. 

83H 01H UNC_IMPH_COH_TR
K_OCCUPANCY.ALL

Counts cycles weighted by the 
number of core-outgoing valid entries 
in the coherent tracker queue.

Counter 0 only

84H 01H UNC_IMPH_COH_TR
K_REQUEST.ALL

Counts the number of core-outgoing 
entries in the coherent tracker queue. 

Table 19-6.  Non-Architectural Performance Events In the Processor Uncore for 2nd 
Generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor 

Series
Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
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In addition, these processors (CPUID signature of DisplayFamily_DisplayModel 
06_1AH, 06_1EH, 06_1FH) also support the following non-architectural, product-
specific uncore performance-monitoring events listed in Table 19-8. 

Fixed counters in the core PMU support the architecture events defined in Table 
19-12.

Table 19-7.  Non-Architectural Performance Events In the Processor Core for Intel® 
Core™ i7 Processor and Intel® Xeon® Processor 5500 Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment

04H 07H SB_DRAIN.ANY Counts the number of store buffer 
drains.

06H 04H STORE_BLOCKS.AT_
RET

Counts number of loads delayed 
with at-Retirement block code. The 
following loads need to be executed 
at retirement and wait for all senior 
stores on the same thread to be 
drained: load splitting across 4K 
boundary (page split), load 
accessing uncacheable (UC or 
USWC) memory, load lock, and load 
with page table in UC or USWC 
memory region.

06H 08H STORE_BLOCKS.L1D
_BLOCK

Cacheable  loads delayed with L1D 
block code.

07H 01H PARTIAL_ADDRESS_
ALIAS

Counts false dependency due to 
partial address aliasing.

08H 01H DTLB_LOAD_MISSES.
ANY

Counts all load misses that cause a 
page walk.

08H 02H DTLB_LOAD_MISSES.
WALK_COMPLETED

Counts number of completed page 
walks due to load miss in the STLB.

08H 10H DTLB_LOAD_MISSES.
STLB_HIT

Number of cache load STLB hits.

08H 20H DTLB_LOAD_MISSES.
PDE_MISS

Number of DTLB cache load misses 
where the low part of the linear to 
physical address translation was 
missed.

08H 80H DTLB_LOAD_MISSES.
LARGE_WALK_COMP
LETED

Counts number of completed large 
page walks due to load miss in the 
STLB.

0BH 01H MEM_INST_RETIRED.
LOADS

Counts the number of instructions 
with an architecturally-visible load 
retired on the architected path.
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0BH 02H MEM_INST_RETIRED.
STORES

Counts the number of instructions 
with an architecturally-visible store 
retired on the architected path.

0BH 10H MEM_INST_RETIRED.
LATENCY_ABOVE_T
HRESHOLD

Counts the number of instructions 
exceeding the latency specified 
with ld_lat facility.

In conjunction 
with ld_lat 
facility

0CH 01H MEM_STORE_RETIRE
D.DTLB_MISS

The event counts the number of 
retired stores that missed the DTLB. 
The DTLB miss is not counted if the 
store operation causes a fault. Does 
not counter prefetches. Counts both 
primary and secondary misses to 
the TLB.

0EH 01H UOPS_ISSUED.ANY Counts the number of Uops issued 
by the Register Allocation Table to 
the Reservation Station, i.e. the 
UOPs issued from the front end to 
the back end. 

0EH 01H UOPS_ISSUED.STALL
ED_CYCLES

Counts the number of cycles no 
Uops issued by the Register 
Allocation Table to the Reservation 
Station, i.e. the UOPs issued from 
the front end to the back end. 

set “invert=1, 
cmask = 1“

0EH 02H UOPS_ISSUED.FUSED Counts the number of fused Uops 
that were issued from the Register 
Allocation Table to the Reservation 
Station.

0FH 01H MEM_UNCORE_RETI
RED.L3_DATA_MISS_
UNKNOWN

Counts number of memory load 
instructions retired where the 
memory reference missed L3 and 
data source is unknown. 

Available only for 
CPUID signature 
06_2EH

0FH 02H MEM_UNCORE_RETI
RED.OTHER_CORE_L
2_HITM

Counts number of memory load 
instructions retired where the 
memory reference hit modified data 
in a sibling core residing on the 
same socket. 

Table 19-7.  Non-Architectural Performance Events In the Processor Core for Intel® 
Core™ i7 Processor and Intel® Xeon® Processor 5500 Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
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0FH 08H MEM_UNCORE_RETI
RED.REMOTE_CACHE
_LOCAL_HOME_HIT

Counts number of memory load 
instructions retired where the 
memory reference missed the L1, 
L2 and L3 caches and HIT in a 
remote socket's cache. Only counts 
locally homed lines.

0FH 10H MEM_UNCORE_RETI
RED.REMOTE_DRAM

Counts number of memory load 
instructions retired where the 
memory reference missed the L1, 
L2 and L3 caches and was remotely 
homed. This includes both DRAM 
access and HITM in a remote 
socket's cache for remotely homed 
lines.

0FH 20H MEM_UNCORE_RETI
RED.LOCAL_DRAM

Counts number of memory load 
instructions retired where the 
memory reference missed the L1, 
L2 and L3 caches and required a 
local socket memory reference. This 
includes locally homed cachelines 
that were in a modified state in 
another socket.

0FH 80H MEM_UNCORE_RETI
RED.UNCACHEABLE

Counts number of memory load 
instructions retired where the 
memory reference missed the L1, 
L2 and L3 caches and to perform 
I/O. 

Available only for 
CPUID signature 
06_2EH

10H 01H FP_COMP_OPS_EXE.
X87

Counts the number of FP 
Computational Uops Executed. The 
number of FADD, FSUB, FCOM, 
FMULs, integer MULsand IMULs, 
FDIVs, FPREMs, FSQRTS, integer 
DIVs, and IDIVs. This event does not 
distinguish an FADD used in the 
middle of a transcendental flow 
from a separate FADD instruction.

10H 02H FP_COMP_OPS_EXE.
MMX

Counts number of MMX Uops 
executed.

10H 04H FP_COMP_OPS_EXE.
SSE_FP

Counts number of SSE and SSE2 FP 
uops executed.

Table 19-7.  Non-Architectural Performance Events In the Processor Core for Intel® 
Core™ i7 Processor and Intel® Xeon® Processor 5500 Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
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10H 08H FP_COMP_OPS_EXE.
SSE2_INTEGER

Counts number of SSE2 integer 
uops executed.

10H 10H FP_COMP_OPS_EXE.
SSE_FP_PACKED

Counts number of SSE FP packed 
uops executed.

10H 20H FP_COMP_OPS_EXE.
SSE_FP_SCALAR

Counts number of SSE FP scalar 
uops executed.

10H 40H FP_COMP_OPS_EXE.
SSE_SINGLE_PRECISI
ON

Counts number of SSE* FP single 
precision uops executed.

10H 80H FP_COMP_OPS_EXE.
SSE_DOUBLE_PRECI
SION

Counts number of SSE* FP double 
precision uops executed.

12H 01H SIMD_INT_128.PACK
ED_MPY

Counts number of 128 bit SIMD 
integer multiply operations.

12H 02H SIMD_INT_128.PACK
ED_SHIFT

Counts number of 128 bit SIMD 
integer shift operations.

12H 04H SIMD_INT_128.PACK Counts number of 128 bit SIMD 
integer pack operations.

12H 08H SIMD_INT_128.UNPA
CK

Counts number of 128 bit SIMD 
integer unpack operations.

12H 10H SIMD_INT_128.PACK
ED_LOGICAL

Counts number of 128 bit SIMD 
integer logical  operations.

12H 20H SIMD_INT_128.PACK
ED_ARITH

Counts number of 128 bit SIMD 
integer arithmetic operations.

12H 40H SIMD_INT_128.SHUF
FLE_MOVE

Counts number of 128 bit SIMD 
integer shuffle and move 
operations.

13H 01H LOAD_DISPATCH.RS Counts number of loads dispatched 
from the Reservation Station that 
bypass the Memory Order Buffer.

13H 02H LOAD_DISPATCH.RS_
DELAYED

Counts the number of delayed RS 
dispatches at the stage latch. If an 
RS dispatch can not bypass to LB, it 
has another chance to dispatch 
from the one-cycle delayed staging 
latch before it is written into the LB.

Table 19-7.  Non-Architectural Performance Events In the Processor Core for Intel® 
Core™ i7 Processor and Intel® Xeon® Processor 5500 Series

Event
Num.

Umask
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Event Mask 
Mnemonic Description Comment
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13H 04H LOAD_DISPATCH.MO
B

Counts the number of loads 
dispatched from the Reservation 
Station to the Memory Order Buffer.

13H 07H LOAD_DISPATCH.ANY Counts all loads dispatched from the 
Reservation Station.

14H 01H ARITH.CYCLES_DIV_
BUSY

Counts the number of cycles the 
divider is busy executing divide or 
square root operations. The divide 
can be integer, X87 or Streaming 
SIMD Extensions (SSE). The square 
root operation can be either X87 or 
SSE. 

Set 'edge =1, invert=1, cmask=1' to 
count the number of divides.

Count may be 
incorrect When 
SMT is on.

14H 02H ARITH.MUL Counts the number of multiply 
operations executed. This includes 
integer as well as floating point 
multiply operations but excludes 
DPPS mul and MPSAD.

Count may be 
incorrect When 
SMT is on

17H 01H INST_QUEUE_WRITE
S

Counts the number of instructions 
written into the instruction queue 
every cycle. 

18H 01H INST_DECODED.DEC0 Counts number of instructions that 
require  decoder 0 to be decoded.  
Usually, this means that the 
instruction maps to more than 1 
uop.

19H 01H TWO_UOP_INSTS_D
ECODED

An instruction that generates two 
uops was decoded.

Table 19-7.  Non-Architectural Performance Events In the Processor Core for Intel® 
Core™ i7 Processor and Intel® Xeon® Processor 5500 Series
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1EH 01H INST_QUEUE_WRITE
_CYCLES

This event counts the number of 
cycles during which instructions are 
written to the instruction queue.  
Dividing this counter by the number 
of instructions written to the 
instruction queue 
(INST_QUEUE_WRITES) yields the 
average number of instructions 
decoded each cycle. If this number is  
less than four and the pipe stalls, 
this indicates that the decoder is 
failing to decode enough 
instructions per cycle to sustain the 
4-wide pipeline. 

If SSE* 
instructions that 
are 6 bytes or 
longer arrive one 
after another, 
then front end 
throughput may 
limit execution 
speed.  In such 
case, 

20H 01H LSD_OVERFLOW Counts number of loops that can’t 
stream from the instruction queue.

24H 01H L2_RQSTS.LD_HIT Counts number of loads that hit the 
L2 cache. L2 loads include both L1D 
demand misses as well as L1D 
prefetches.  L2 loads can be 
rejected for various reasons.  Only 
non rejected loads are counted.

24H 02H L2_RQSTS.LD_MISS Counts the number of loads that 
miss the L2 cache. L2 loads include 
both L1D demand misses as well as 
L1D prefetches. 

24H 03H L2_RQSTS.LOADS Counts all L2 load requests. L2 loads 
include both L1D demand misses as 
well as L1D prefetches. 

24H 04H L2_RQSTS.RFO_HIT Counts the number of store RFO 
requests that hit the L2 cache. L2 
RFO requests include both L1D 
demand RFO misses as well as L1D 
RFO prefetches. Count includes WC 
memory requests, where the data is 
not fetched but the permission to 
write the line is required.

Table 19-7.  Non-Architectural Performance Events In the Processor Core for Intel® 
Core™ i7 Processor and Intel® Xeon® Processor 5500 Series
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24H 08H L2_RQSTS.RFO_MISS Counts the number of store RFO 
requests that miss the L2 cache. L2 
RFO requests include both L1D 
demand RFO misses as well as L1D 
RFO prefetches.

24H 0CH L2_RQSTS.RFOS Counts all L2 store RFO requests. L2 
RFO requests include both L1D 
demand RFO misses as well as L1D 
RFO prefetches.

24H 10H L2_RQSTS.IFETCH_H
IT

Counts number of instruction 
fetches that hit the L2 cache. L2 
instruction fetches include both L1I 
demand misses as well as L1I 
instruction prefetches.

24H 20H L2_RQSTS.IFETCH_M
ISS

Counts number of instruction 
fetches that miss the L2 cache. L2 
instruction fetches include both L1I 
demand misses as well as L1I 
instruction prefetches.

24H 30H L2_RQSTS.IFETCHES Counts all instruction fetches. L2 
instruction fetches include both L1I 
demand misses as well as L1I 
instruction prefetches.

24H 40H L2_RQSTS.PREFETC
H_HIT

Counts L2 prefetch hits for both 
code and data.

24H 80H L2_RQSTS.PREFETC
H_MISS

Counts L2 prefetch misses for both 
code and data.

24H C0H L2_RQSTS.PREFETC
HES

Counts all L2 prefetches for both 
code and data.

24H AAH L2_RQSTS.MISS Counts all L2 misses for both code 
and data.

24H FFH L2_RQSTS.REFEREN
CES

Counts all L2 requests for both code 
and data.

26H 01H L2_DATA_RQSTS.DE
MAND.I_STATE

Counts number of L2 data demand 
loads where the cache line to be 
loaded is in the I (invalid) state, i.e. a 
cache miss. L2 demand loads are 
both L1D demand misses and L1D 
prefetches.

Table 19-7.  Non-Architectural Performance Events In the Processor Core for Intel® 
Core™ i7 Processor and Intel® Xeon® Processor 5500 Series
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26H 02H L2_DATA_RQSTS.DE
MAND.S_STATE

Counts number of L2 data demand 
loads where the cache line to be 
loaded is in the S (shared) state. L2 
demand loads are both L1D demand 
misses and L1D prefetches.

26H 04H L2_DATA_RQSTS.DE
MAND.E_STATE

Counts number of L2 data demand 
loads where the cache line to be 
loaded is in the E (exclusive) state. 
L2 demand loads are both L1D 
demand misses and L1D prefetches.

26H 08H L2_DATA_RQSTS.DE
MAND.M_STATE

Counts number of L2 data demand 
loads where the cache line to be 
loaded is in the M (modified) state. 
L2 demand loads are both L1D 
demand misses and L1D prefetches.

26H 0FH L2_DATA_RQSTS.DE
MAND.MESI

Counts all L2 data demand requests. 
L2 demand loads are both L1D 
demand misses and L1D prefetches.

26H 10H L2_DATA_RQSTS.PR
EFETCH.I_STATE

Counts number of L2 prefetch data 
loads where the cache line to be 
loaded is in the I (invalid) state, i.e. a 
cache miss.

26H 20H L2_DATA_RQSTS.PR
EFETCH.S_STATE

Counts number of L2 prefetch data 
loads where the cache line to be 
loaded is in the S (shared) state. A 
prefetch RFO will miss on an S state 
line, while a prefetch read will hit on 
an S state line.

26H 40H L2_DATA_RQSTS.PR
EFETCH.E_STATE

Counts number of L2 prefetch data 
loads where the cache line to be 
loaded is in the E (exclusive) state.

26H 80H L2_DATA_RQSTS.PR
EFETCH.M_STATE

Counts number of L2 prefetch data 
loads where the cache line to be 
loaded is in the M (modified) state.

26H F0H L2_DATA_RQSTS.PR
EFETCH.MESI

Counts all L2 prefetch requests.

26H FFH L2_DATA_RQSTS.AN
Y

Counts all L2 data requests.

Table 19-7.  Non-Architectural Performance Events In the Processor Core for Intel® 
Core™ i7 Processor and Intel® Xeon® Processor 5500 Series
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27H 01H L2_WRITE.RFO.I_STA
TE

Counts number of L2 demand store 
RFO requests where the cache line 
to be loaded is in the I (invalid) state, 
i.e, a cache miss. The L1D prefetcher 
does not issue a RFO prefetch.

This is a demand 
RFO request

27H 02H L2_WRITE.RFO.S_ST
ATE

Counts number of L2 store RFO 
requests where the cache line to be 
loaded is in the S (shared) state. The 
L1D prefetcher does not issue a 
RFO prefetch,.

This is a demand 
RFO request

27H 08H L2_WRITE.RFO.M_ST
ATE

Counts number of L2 store RFO 
requests where the cache line to be 
loaded is in the M (modified) state. 
The L1D prefetcher does not issue a 
RFO prefetch.

This is a demand 
RFO request

27H 0EH L2_WRITE.RFO.HIT Counts number of L2 store RFO 
requests where the cache line to be 
loaded is in either the S, E or M 
states. The L1D prefetcher does not 
issue a RFO prefetch.

This is a demand 
RFO request

27H 0FH L2_WRITE.RFO.MESI Counts all L2 store RFO 
requests.The L1D prefetcher does 
not issue a RFO prefetch.

This is a demand 
RFO request

27H 10H L2_WRITE.LOCK.I_ST
ATE

Counts number of L2 demand lock 
RFO requests where the cache line 
to be loaded is in the I (invalid) state, 
i.e. a cache miss. 

27H 20H L2_WRITE.LOCK.S_S
TATE

Counts number of L2 lock RFO 
requests where the cache line to be 
loaded is in the S (shared) state.

27H 40H L2_WRITE.LOCK.E_S
TATE

Counts number of L2 demand lock 
RFO requests where the cache line 
to be loaded is in the E (exclusive) 
state.

27H 80H L2_WRITE.LOCK.M_S
TATE

Counts number of L2 demand lock 
RFO requests where the cache line 
to be loaded is in the M (modified) 
state.

Table 19-7.  Non-Architectural Performance Events In the Processor Core for Intel® 
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27H E0H L2_WRITE.LOCK.HIT Counts number of L2 demand lock 
RFO requests where the cache line 
to be loaded is in either the S, E, or 
M state.

27H F0H L2_WRITE.LOCK.MESI Counts all L2 demand lock RFO 
requests.

28H 01H L1D_WB_L2.I_STATE Counts number of L1 writebacks to 
the L2 where the cache line to be 
written is in the I (invalid) state, i.e. 
a cache miss.

28H 02H L1D_WB_L2.S_STAT
E

Counts number of L1 writebacks to 
the L2 where the cache line to be 
written is in the S state.

28H 04H L1D_WB_L2.E_STAT
E

Counts number of L1 writebacks to 
the L2 where the cache line to be 
written is in the E (exclusive) state.

28H 08H L1D_WB_L2.M_STAT
E

Counts number of L1 writebacks to 
the L2 where the cache line to be 
written is in the M (modified) state.

28H 0FH L1D_WB_L2.MESI Counts all L1 writebacks to the L2 .

2EH 4FH L3_LAT_CACHE.REFE
RENCE

This event counts requests 
originating from the core that 
reference a cache line in the last 
level cache. The event count 
includes speculative traffic but 
excludes cache line fills due to a L2 
hardware-prefetch. Because cache 
hierarchy, cache sizes and other 
implementation-specific 
characteristics; value comparison to 
estimate performance differences is 
not recommended. 

see Table 19-1
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2EH 41H L3_LAT_CACHE.MISS This event counts each cache miss 
condition for references to the last 
level cache. The event count may 
include speculative traffic but 
excludes cache line fills due to L2 
hardware-prefetches. Because 
cache hierarchy, cache sizes and 
other implementation-specific 
characteristics; value comparison to 
estimate performance differences is 
not recommended. 

see Table 19-1

3CH 00H CPU_CLK_UNHALTED
.THREAD_P

Counts the number of thread cycles 
while the thread is not in a halt 
state. The thread enters the halt 
state when it is running the HLT 
instruction. The core frequency may 
change from time to time due to 
power or thermal throttling. 

see Table 19-1

3CH 01H CPU_CLK_UNHALTED
.REF_P

Increments at the frequency of TSC 
when not halted.

see Table 19-1

40H 01H L1D_CACHE_LD.I_ST
ATE

Counts L1 data cache read requests 
where the cache line to be loaded is 
in the I (invalid) state, i.e. the read 
request missed the cache.

Counter 0, 1 only

40H 02H L1D_CACHE_LD.S_ST
ATE

Counts L1 data cache read requests 
where the cache line to be loaded is 
in the S (shared) state.

Counter 0, 1 only

40H 04H L1D_CACHE_LD.E_ST
ATE

Counts L1 data cache read requests 
where the cache line to be loaded is 
in the E (exclusive) state.

Counter 0, 1 only

40H 08H L1D_CACHE_LD.M_S
TATE

Counts L1 data cache read requests 
where the cache line to be loaded is 
in the M (modified) state.

Counter 0, 1 only

40H 0FH L1D_CACHE_LD.MESI Counts L1 data cache read requests. Counter 0, 1 only

41H 02H L1D_CACHE_ST.S_ST
ATE

Counts L1 data cache store RFO 
requests where the cache line to be 
loaded is in the S (shared) state.

Counter 0, 1 only
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41H 04H L1D_CACHE_ST.E_ST
ATE

Counts L1 data cache store RFO 
requests where the cache line to be 
loaded is in the E (exclusive) state.

Counter 0, 1 only

41H 08H L1D_CACHE_ST.M_S
TATE

Counts L1 data cache store RFO 
requests where cache line to be 
loaded is in the M (modified) state.

Counter 0, 1 only

42H 01H L1D_CACHE_LOCK.HI
T

Counts retired load locks that hit in 
the L1 data cache or hit in an 
already allocated fill buffer.   The 
lock portion of the load lock 
transaction must hit in the L1D. 

The initial load 
will pull the lock 
into the L1 data 
cache. Counter 0, 
1 only

42H 02H L1D_CACHE_LOCK.S_
STATE

Counts L1 data cache retired load 
locks that hit the target cache line in 
the shared state. 

Counter 0, 1 only

42H 04H L1D_CACHE_LOCK.E_
STATE

Counts L1 data cache retired load 
locks that hit the target cache line in 
the exclusive state. 

Counter 0, 1 only

42H 08H L1D_CACHE_LOCK.M
_STATE

Counts L1 data cache retired load 
locks that hit the target cache line in 
the modified state. 

Counter 0, 1 only

43H 01H L1D_ALL_REF.ANY Counts all references (uncached, 
speculated and retired) to the L1 
data cache, including all loads and 
stores with any memory types. The 
event counts memory accesses only 
when they are actually performed. 
For example, a load blocked by 
unknown store address and later 
performed is only counted once. 

The event does 
not include non-
memory 
accesses, such as 
I/O accesses. 
Counter 0, 1 only

43H 02H L1D_ALL_REF.CACHE
ABLE

Counts all data reads and writes 
(speculated and retired) from 
cacheable memory, including locked 
operations.

Counter 0, 1 only

49H 01H DTLB_MISSES.ANY Counts the number of misses in the 
STLB which causes a page walk.

49H 02H DTLB_MISSES.WALK_
COMPLETED

Counts number of misses in the 
STLB which resulted in a completed 
page walk.
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49H 10H DTLB_MISSES.STLB_
HIT

Counts the number of DTLB first 
level misses that hit in the second 
level TLB.  This event is only 
relevant if the core contains 
multiple DTLB levels.

49H 20H DTLB_MISSES.PDE_M
ISS

Number of DTLB misses caused by 
low part of address, includes 
references to 2M pages because 2M 
pages do not use the PDE. 

49H 80H DTLB_MISSES.LARGE
_WALK_COMPLETED

Counts number of misses in the 
STLB which resulted in a completed 
page walk for large pages.

4CH 01H LOAD_HIT_PRE Counts load operations sent to the 
L1 data cache while a previous SSE 
prefetch instruction to the same 
cache line has started prefetching 
but has not yet finished.

4EH 01H L1D_PREFETCH.REQ
UESTS

Counts number of hardware 
prefetch requests dispatched out of 
the prefetch FIFO.

4EH 02H L1D_PREFETCH.MISS Counts number of hardware 
prefetch requests that miss the 
L1D.  There are two prefetchers in 
the L1D.  A streamer, which predicts 
lines sequentially after this one 
should be fetched, and the IP 
prefetcher that remembers access 
patterns for the current instruction.  
The streamer prefetcher stops on 
an L1D hit,  while the IP prefetcher 
does not.

4EH 04H L1D_PREFETCH.TRIG
GERS

Counts number of prefetch requests 
triggered by the Finite State 
Machine and pushed into the 
prefetch FIFO. Some of the prefetch 
requests are dropped due to 
overwrites or competition between 
the IP index prefetcher and 
streamer prefetcher.  The prefetch 
FIFO contains 4 entries.
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51H 01H L1D.REPL Counts the number of lines brought 
into the L1 data cache.

Counter 0, 1 only

51H 02H L1D.M_REPL Counts the number of modified lines 
brought into the L1 data cache. 

Counter 0, 1 only

51H 04H L1D.M_EVICT Counts the number of modified lines 
evicted from the L1 data cache  due 
to replacement. 

Counter 0, 1 only

51H 08H L1D.M_SNOOP_EVIC
T

Counts the number of modified lines 
evicted from the L1 data cache due 
to snoop HITM intervention.

Counter 0, 1 only

52H 01H L1D_CACHE_PREFET
CH_LOCK_FB_HIT

Counts the number of cacheable 
load lock speculated instructions 
accepted into the fill buffer.

53H 01H L1D_CACHE_LOCK_F
B_HIT

Counts the number of cacheable 
load lock speculated or retired 
instructions accepted into the fill 
buffer.

63H 01H CACHE_LOCK_CYCLE
S.L1D_L2

Cycle count during which the L1D 
and L2 are locked.  A lock is 
asserted when there is a locked 
memory access, due to uncacheable 
memory, a locked operation that 
spans two cache lines, or a page 
walk from an uncacheable page 
table.

Counter 0, 1 only. 
L1D and L2 locks 
have a very high 
performance 
penalty and it is 
highly 
recommended to 
avoid such 
accesses.

63H 02H CACHE_LOCK_CYCLE
S.L1D

Counts the number of cycles that 
cacheline in the L1 data cache unit 
is locked.

Counter 0, 1 only.

6CH 01H IO_TRANSACTIONS Counts the number of completed I/O 
transactions.

80H 01H L1I.HITS Counts all instruction fetches that 
hit the L1 instruction cache.
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80H 02H L1I.MISSES Counts all instruction fetches that 
miss the L1I cache. This includes 
instruction cache misses,  streaming 
buffer misses, victim cache misses 
and uncacheable fetches.  An 
instruction fetch miss is counted 
only once and not once for every 
cycle it is outstanding.

80H 03H L1I.READS Counts all instruction fetches, 
including uncacheable fetches that 
bypass the L1I.

80H 04H L1I.CYCLES_STALLED Cycle counts for which an 
instruction fetch stalls due to a L1I 
cache miss, ITLB miss or ITLB fault.

82H 01H LARGE_ITLB.HIT Counts number of large ITLB hits.

85H 01H ITLB_MISSES.ANY Counts the number of misses in all 
levels of the ITLB which causes a 
page walk.

85H 02H ITLB_MISSES.WALK_
COMPLETED

Counts number of misses in all 
levels of the ITLB which resulted in 
a completed page walk.

87H 01H ILD_STALL.LCP Cycles Instruction Length Decoder 
stalls due to length changing 
prefixes: 66, 67 or REX.W (for 
EM64T) instructions which change 
the length of the decoded 
instruction.

87H 02H ILD_STALL.MRU Instruction Length Decoder stall 
cycles due to Brand Prediction Unit 
(PBU) Most Recently Used (MRU) 
bypass.

87H 04H ILD_STALL.IQ_FULL Stall cycles due to a full instruction 
queue.

87H 08H ILD_STALL.REGEN Counts the number of regen stalls.

87H 0FH ILD_STALL.ANY Counts any cycles the Instruction 
Length Decoder is stalled.
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88H 01H BR_INST_EXEC.COND Counts the number of conditional 
near branch instructions executed, 
but not necessarily retired.

88H 02H BR_INST_EXEC.DIRE
CT

Counts all unconditional near branch 
instructions excluding calls and 
indirect branches.

88H 04H BR_INST_EXEC.INDIR
ECT_NON_CALL

Counts the number of executed 
indirect near branch instructions 
that are not calls.

88H 07H BR_INST_EXEC.NON
_CALLS

Counts all non call near branch 
instructions executed, but not 
necessarily retired.

88H 08H BR_INST_EXEC.RETU
RN_NEAR

Counts indirect near branches that 
have a return mnemonic.

88H 10H BR_INST_EXEC.DIRE
CT_NEAR_CALL

Counts unconditional near call 
branch instructions, excluding non 
call branch, executed. 

88H 20H BR_INST_EXEC.INDIR
ECT_NEAR_CALL

Counts indirect near calls, including 
both register and memory indirect, 
executed.

88H 30H BR_INST_EXEC.NEAR
_CALLS

Counts all near call branches 
executed,  but not necessarily 
retired.

88H 40H BR_INST_EXEC.TAKE
N

Counts taken near branches 
executed, but not necessarily 
retired.

88H 7FH BR_INST_EXEC.ANY Counts all near executed branches 
(not necessarily retired). This 
includes only instructions and not 
micro-op branches. Frequent 
branching is not necessarily a major 
performance issue. However 
frequent branch mispredictions may 
be a problem.

89H 01H BR_MISP_EXEC.CON
D

Counts the number of mispredicted 
conditional near branch instructions 
executed, but not necessarily 
retired.
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89H 02H BR_MISP_EXEC.DIRE
CT

Counts mispredicted macro 
unconditional near branch 
instructions, excluding calls and 
indirect branches (should always be 
0).

89H 04H BR_MISP_EXEC.INDIR
ECT_NON_CALL

Counts the number of executed 
mispredicted indirect near branch 
instructions that are not calls.

89H 07H BR_MISP_EXEC.NON
_CALLS

Counts mispredicted non call near 
branches executed,  but not 
necessarily retired.

89H 08H BR_MISP_EXEC.RETU
RN_NEAR

Counts mispredicted indirect 
branches that have a rear return 
mnemonic.

89H 10H BR_MISP_EXEC.DIRE
CT_NEAR_CALL

Counts mispredicted non-indirect 
near calls executed, (should always 
be 0).

89H 20H BR_MISP_EXEC.INDIR
ECT_NEAR_CALL

Counts mispredicted indirect near 
calls exeucted, including both 
register and memory indirect.

89H 30H BR_MISP_EXEC.NEA
R_CALLS

Counts all mispredicted near call 
branches executed, but not 
necessarily retired.

89H 40H BR_MISP_EXEC.TAKE
N

Counts executed mispredicted near 
branches that are taken, but not 
necessarily retired.

89H 7FH BR_MISP_EXEC.ANY Counts the number of mispredicted 
near branch instructions that were 
executed, but not necessarily 
retired.
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A2H 01H RESOURCE_STALLS.
ANY

Counts the number of Allocator 
resource related stalls. Includes 
register renaming buffer entries, 
memory buffer entries. In addition 
to resource related stalls, this event 
counts some other events. Includes 
stalls arising during branch 
misprediction recovery, such as if 
retirement of the mispredicted 
branch is delayed and stalls arising 
while store buffer is draining from 
synchronizing operations.

Does not include 
stalls due to 
SuperQ (off core) 
queue full, too 
many cache 
misses, etc.

A2H 02H RESOURCE_STALLS.L
OAD

Counts the cycles of stall due to lack 
of load buffer for load operation.

A2H 04H RESOURCE_STALLS.R
S_FULL

This event counts the number of 
cycles when the number of 
instructions in the pipeline waiting 
for execution reaches the limit the 
processor can handle. A high count 
of this event indicates that there 
are long latency operations in the 
pipe (possibly load and store 
operations that miss the L2 cache, 
or instructions dependent upon 
instructions further down the 
pipeline that have yet to retire. 

When RS is full, 
new instructions 
can not enter the 
reservation 
station and start 
execution.

A2H 08H RESOURCE_STALLS.S
TORE

This event counts the number of 
cycles that a resource related stall 
will occur due to the number of 
store instructions reaching the limit 
of the pipeline, (i.e. all store buffers 
are used). The stall ends when a 
store instruction commits its data to 
the cache or memory.

A2H 10H RESOURCE_STALLS.R
OB_FULL

Counts the cycles of stall due to re-
order buffer full.

A2H 20H RESOURCE_STALLS.F
PCW

Counts the number of cycles while 
execution was stalled due to writing 
the floating-point unit (FPU) control 
word.
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A2H 40H RESOURCE_STALLS.
MXCSR

Stalls due to the MXCSR register 
rename occurring to close to a 
previous MXCSR rename.  The 
MXCSR provides control and status 
for the MMX registers.

A2H 80H RESOURCE_STALLS.
OTHER

Counts the number of cycles while 
execution was stalled due to other 
resource issues.

A6H 01H MACRO_INSTS.FUSIO
NS_DECODED

Counts the number of instructions 
decoded that are macro-fused but 
not necessarily executed or retired.

A7H 01H BACLEAR_FORCE_IQ Counts number of times a BACLEAR 
was forced by the Instruction 
Queue.  The IQ is also responsible 
for providing conditional branch 
prediciton direction based on a 
static scheme and dynamic data 
provided by the L2 Branch 
Prediction Unit. If the conditional 
branch target is not found in the 
Target Array and the IQ predicts 
that the branch is taken, then the IQ 
will force the Branch Address 
Calculator to issue a BACLEAR. Each 
BACLEAR asserted by the BAC 
generates approximately an 8 cycle 
bubble in the instruction fetch 
pipeline.

A8H 01H LSD.UOPS Counts the number of micro-ops 
delivered by loop stream detector.

Use cmask=1 and 
invert to count 
cycles

AEH 01H ITLB_FLUSH Counts the number of ITLB flushes.

B0H 40H OFFCORE_REQUEST
S.L1D_WRITEBACK

Counts number of L1D writebacks 
to the uncore. 

B1H 01H UOPS_EXECUTED.PO
RT0

Counts number of Uops executed 
that were issued on port 0.  Port 0 
handles integer arithmetic, SIMD 
and FP add Uops.
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B1H 02H UOPS_EXECUTED.PO
RT1

Counts number of Uops executed 
that were issued on port 1. Port 1 
handles integer arithmetic, SIMD, 
integer shift, FP multiply and FP 
divide Uops.

B1H 04H UOPS_EXECUTED.PO
RT2_CORE

Counts number of Uops executed 
that were issued on port 2.  Port 2 
handles the load Uops. This is a core 
count only and can not be collected 
per thread.

B1H 08H UOPS_EXECUTED.PO
RT3_CORE

Counts number of Uops executed 
that were issued on port 3. Port 3 
handles store Uops.  This is a core 
count only and can not be collected 
per thread.

B1H 10H UOPS_EXECUTED.PO
RT4_CORE

Counts number of Uops executed 
that where issued on port  4.  Port 4 
handles the value to be stored for 
the store Uops issued on port 3. 
This is a core count only and can not 
be collected per thread.

B1H 1FH UOPS_EXECUTED.CO
RE_ACTIVE_CYCLES_
NO_PORT5

Counts cycles when the Uops 
executed were issued from any 
ports except port 5. Use Cmask=1 
for active cycles; Cmask=0 for 
weighted cycles; Use CMask=1, 
Invert=1 to count P0-4 stalled 
cycles Use Cmask=1, Edge=1, 
Invert=1 to count P0-4 stalls.

B1H 20H UOPS_EXECUTED.PO
RT5

Counts number of Uops executed 
that where issued on port 5. 

B1H 3FH UOPS_EXECUTED.CO
RE_ACTIVE_CYCLES

Counts cycles when the Uops are 
executing . Use Cmask=1 for active 
cycles; Cmask=0 for weighted 
cycles; Use CMask=1, Invert=1 to 
count P0-4 stalled cycles Use 
Cmask=1, Edge=1, Invert=1 to 
count P0-4 stalls.
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B1H 40H UOPS_EXECUTED.PO
RT015

Counts number of Uops executed 
that where issued on port  0, 1, or 5.

use cmask=1, 
invert=1 to count 
stall cycles

B1H 80H UOPS_EXECUTED.PO
RT234

Counts number of Uops executed 
that where issued on port 2, 3, or 4.

B2H 01H OFFCORE_REQUEST
S_SQ_FULL

Counts number of cycles the SQ is 
full to handle off-core requests. 

B7H 01H OFF_CORE_RESPONS
E_0

see Section 18.6.1.3, “Off-core 
Response Performance Monitoring 
in the Processor Core”.

Requires 
programming 
MSR 01A6H

B8H 01H SNOOP_RESPONSE.H
IT

Counts HIT snoop response sent by 
this thread in response to a snoop 
request.

B8H 02H SNOOP_RESPONSE.H
ITE

Counts HIT E snoop response sent 
by this thread in response to a 
snoop request.

B8H 04H SNOOP_RESPONSE.H
ITM

Counts HIT M snoop response sent 
by this thread in response to a 
snoop request.

BBH 01H OFF_CORE_RESPONS
E_1

See Section 18.7, “Performance 
Monitoring for Processors Based on 
Intel® Microarchitecture Code 
Name Westmere”.

Requires 
programming 
MSR 01A7H

C0H 00H INST_RETIRED.ANY_
P

See Table 19-1
Notes: INST_RETIRED.ANY is 
counted by a designated fixed 
counter. INST_RETIRED.ANY_P is 
counted by a programmable counter 
and is an architectural performance 
event.  Event is supported if 
CPUID.A.EBX[1] = 0.

Counting: 
Faulting 
executions of 
GETSEC/VM 
entry/VM 
Exit/MWait will 
not count as 
retired 
instructions. 

C0H 02H INST_RETIRED.X87 Counts the number of MMX 
instructions retired.
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C0H 04H INST_RETIRED.MMX Counts the number of floating point 
computational operations retired: 
floating point computational 
operations executed by the assist 
handler and sub-operations of 
complex floating point instructions 
like transcendental instructions.

C2H 01H UOPS_RETIRED.ANY Counts the number of micro-ops 
retired, (macro-fused=1, micro-
fused=2, others=1; maximum count 
of 8 per cycle). Most instructions are 
composed of one or two micro-ops. 
Some instructions are decoded into 
longer sequences such as repeat 
instructions, floating point 
transcendental instructions, and 
assists.

Use cmask=1 and 
invert to count 
active cycles or 
stalled cycles

C2H 02H UOPS_RETIRED.RETI
RE_SLOTS

Counts the number of retirement 
slots used each cycle.

C2H 04H UOPS_RETIRED.MAC
RO_FUSED

Counts number of macro-fused uops 
retired.

C3H 01H MACHINE_CLEARS.CY
CLES

Counts the cycles machine clear is 
asserted.

C3H 02H MACHINE_CLEARS.M
EM_ORDER

Counts the number of machine 
clears due to memory order 
conflicts.

C3H 04H MACHINE_CLEARS.S
MC

Counts the number of times that a 
program writes to a code section. 
Self-modifying code causes a sever 
penalty in all Intel 64 and IA-32 
processors.  The modified cache line 
is written back to the L2 and 
L3caches.

C4H 00H BR_INST_RETIRED.A
LL_BRANCHES

 Branch instructions at retirement See Table 19-1 

C4H 01H BR_INST_RETIRED.C
ONDITIONAL

Counts the number of conditional 
branch instructions retired. 

Table 19-7.  Non-Architectural Performance Events In the Processor Core for Intel® 
Core™ i7 Processor and Intel® Xeon® Processor 5500 Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-57



PERFORMANCE-MONITORING EVENTS
C4H 02H BR_INST_RETIRED.N
EAR_CALL

Counts the number of direct & 
indirect near unconditional calls 
retired.

C5H 00H BR_MISP_RETIRED.A
LL_BRANCHES

Mispredicted branch instructions at 
retirement

See Table 19-1 

C5H 02H BR_MISP_RETIRED.N
EAR_CALL

Counts mispredicted direct & 
indirect near unconditional retired 
calls. 

C7H 01H SSEX_UOPS_RETIRE
D.PACKED_SINGLE

Counts SIMD packed single-precision 
floating point Uops retired.

C7H 02H SSEX_UOPS_RETIRE
D.SCALAR_SINGLE

Counts SIMD calar single-precision 
floating point Uops retired.

C7H 04H SSEX_UOPS_RETIRE
D.PACKED_DOUBLE

Counts SIMD packed double-
precision floating point Uops retired.

C7H 08H SSEX_UOPS_RETIRE
D.SCALAR_DOUBLE

Counts SIMD scalar double-precision 
floating point Uops retired.

C7H 10H SSEX_UOPS_RETIRE
D.VECTOR_INTEGER

Counts 128-bit SIMD vector integer 
Uops retired.

C8H 20H ITLB_MISS_RETIRED Counts the number of retired 
instructions that missed the ITLB 
when the instruction was fetched.

CBH 01H MEM_LOAD_RETIRED
.L1D_HIT

Counts number of retired loads that 
hit the L1 data cache. 

CBH 02H MEM_LOAD_RETIRED
.L2_HIT

Counts number of retired loads that 
hit the L2 data cache.

CBH 04H MEM_LOAD_RETIRED
.L3_UNSHARED_HIT

Counts number of retired loads that 
hit their own, unshared lines in the 
L3 cache.

CBH 08H MEM_LOAD_RETIRED
.OTHER_CORE_L2_HI
T_HITM

Counts number of retired loads that 
hit in a sibling core's L2 (on die core).  
Since the L3 is inclusive of all cores 
on the package, this is an L3 hit. 
This counts both clean or modified 
hits.

CBH 10H MEM_LOAD_RETIRED
.L3_MISS

Counts number of retired loads that 
miss the L3 cache.  The load was 
satisfied by a remote socket, local 
memory or an IOH.
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CBH 40H MEM_LOAD_RETIRED
.HIT_LFB

Counts number of retired loads that 
miss the L1D and the address is 
located in an allocated line fill buffer 
and will soon be committed to 
cache.  This is counting secondary 
L1D misses.

CBH 80H MEM_LOAD_RETIRED
.DTLB_MISS

Counts the number of retired loads 
that missed the DTLB. The DTLB 
miss is not counted if the load 
operation causes a fault.  This event 
counts loads from cacheable 
memory only. The event does not 
count loads by software prefetches. 
Counts both primary and secondary 
misses to the TLB.

CCH 01H FP_MMX_TRANS.TO
_FP

Counts the first floating-point 
instruction following any MMX 
instruction. You can use this event 
to estimate the penalties for the 
transitions between floating-point 
and MMX technology states.

CCH 02H FP_MMX_TRANS.TO
_MMX

Counts the first MMX instruction 
following a floating-point 
instruction. You can use this event 
to estimate the penalties for the 
transitions between floating-point 
and MMX technology states.

CCH 03H FP_MMX_TRANS.AN
Y

Counts all transitions from floating 
point to MMX instructions and from 
MMX instructions to floating point 
instructions.  You can use this event 
to estimate the penalties for the 
transitions between floating-point 
and MMX technology states.

D0H 01H MACRO_INSTS.DECO
DED

Counts the number of instructions 
decoded, (but not necessarily 
executed or retired).
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D1H 02H UOPS_DECODED.MS Counts the number of Uops decoded 
by the Microcode Sequencer, MS.  
The MS delivers uops when the 
instruction is more than 4 uops long 
or a microcode assist is occurring. 

D1H 04H UOPS_DECODED.ESP
_FOLDING

Counts number of stack pointer 
(ESP) instructions decoded: push , 
pop , call , ret, etc.  ESP instructions 
do not generate a Uop to increment 
or decrement ESP.  Instead, they 
update an ESP_Offset register that 
keeps track of the delta to the 
current value of the ESP register.

D1H 08H UOPS_DECODED.ESP
_SYNC

Counts number of stack pointer 
(ESP) sync operations where an ESP 
instruction is corrected  by adding 
the ESP offset register to the 
current value of the ESP register.

D2H 01H RAT_STALLS.FLAGS Counts the number of cycles during 
which execution stalled due to 
several reasons, one of which is a 
partial flag register stall. A partial 
register stall may occur when two 
conditions are met: 1) an instruction 
modifies some, but not all, of the 
flags in the flag register and 2) the 
next instruction, which depends on 
flags, depends on flags that were 
not modified by this instruction.

D2H 02H RAT_STALLS.REGIST
ERS

This event counts the number of 
cycles instruction execution latency 
became longer than the defined 
latency because the instruction 
used a register that was partially 
written by previous instruction.
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D2H 04H RAT_STALLS.ROB_RE
AD_PORT

Counts the number of cycles when 
ROB read port stalls occurred, which 
did not allow new micro-ops to 
enter the out-of-order pipeline. 
Note that, at this stage in the 
pipeline, additional stalls may occur 
at the same cycle and prevent the 
stalled micro-ops from entering the 
pipe. In such a case, micro-ops retry 
entering the execution pipe in the 
next cycle and the ROB-read port 
stall is counted again.

D2H 08H RAT_STALLS.SCOREB
OARD

Counts the cycles where we stall 
due to microarchitecturally required 
serialization. Microcode 
scoreboarding stalls.

D2H 0FH RAT_STALLS.ANY Counts all Register Allocation Table 
stall cycles due to:  Cycles when 
ROB read port stalls occurred, which 
did not allow new micro-ops to 
enter the execution pipe.  Cycles 
when partial register stalls occurred  
Cycles when flag stalls occurred  
Cycles floating-point unit (FPU) 
status word stalls occurred. To 
count each of these conditions 
separately use the events: 
RAT_STALLS.ROB_READ_PORT, 
RAT_STALLS.PARTIAL, 
RAT_STALLS.FLAGS, and 
RAT_STALLS.FPSW.

D4H 01H SEG_RENAME_STALL
S

Counts the number of stall cycles 
due to the lack of renaming 
resources for the ES, DS, FS, and GS 
segment registers. If a segment is 
renamed but not retired and a 
second update to the same 
segment occurs, a stall occurs in the 
front-end of the pipeline until the 
renamed segment retires.
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D5H 01H ES_REG_RENAMES Counts the number of times the ES 
segment register is renamed.

DBH 01H UOP_UNFUSION Counts unfusion events due to 
floating point exception to a fused 
uop.

E0H 01H BR_INST_DECODED Counts the number of branch 
instructions decoded. 

E5H 01H BPU_MISSED_CALL_
RET

Counts number of times the Branch 
Prediciton Unit missed predicting a 
call or return branch.

E6H 01H BACLEAR.CLEAR Counts the number of times the 
front end is resteered, mainly when 
the Branch Prediction Unit cannot 
provide a correct prediction and this 
is corrected by the Branch Address 
Calculator at the front end. This can 
occur if the code has many branches 
such that they cannot be consumed 
by the BPU. Each BACLEAR asserted 
by the BAC generates 
approximately an 8 cycle bubble in 
the instruction fetch pipeline. The 
effect on total execution time 
depends on the surrounding code.

E6H 02H BACLEAR.BAD_TARG
ET

Counts number of Branch Address 
Calculator clears (BACLEAR) 
asserted due to conditional branch 
instructions in which there was a 
target hit but the direction was 
wrong.  Each BACLEAR asserted by 
the BAC generates approximately 
an 8 cycle bubble in the instruction 
fetch pipeline.

E8H 01H BPU_CLEARS.EARLY Counts early (normal) Branch 
Prediction Unit clears: BPU 
predicted a taken branch after 
incorrectly assuming that it was not 
taken. 

The BPU clear 
leads to 2 cycle 
bubble in the 
Front End.
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E8H 02H BPU_CLEARS.LATE Counts late Branch Prediction Unit 
clears due to Most Recently Used 
conflicts.  The PBU clear leads to a 3 
cycle bubble in the Front End.

F0H 01H L2_TRANSACTIONS.L
OAD

Counts L2 load operations due to 
HW prefetch or demand loads.

F0H 02H L2_TRANSACTIONS.
RFO

Counts L2 RFO operations due to 
HW prefetch or demand RFOs.

F0H 04H L2_TRANSACTIONS.I
FETCH

Counts L2 instruction fetch 
operations due to HW prefetch or 
demand ifetch.

F0H 08H L2_TRANSACTIONS.
PREFETCH

Counts L2 prefetch operations.

F0H 10H L2_TRANSACTIONS.L
1D_WB

Counts L1D writeback operations to 
the L2.

F0H 20H L2_TRANSACTIONS.
FILL

Counts L2 cache line fill operations 
due to load, RFO, L1D writeback or 
prefetch.

F0H 40H L2_TRANSACTIONS.
WB

Counts L2 writeback operations to 
the L3.

F0H 80H L2_TRANSACTIONS.
ANY

Counts all L2 cache operations.

F1H 02H L2_LINES_IN.S_STAT
E

Counts the number of cache lines 
allocated in the L2 cache in the S 
(shared) state. 

F1H 04H L2_LINES_IN.E_STAT
E

Counts the number of cache lines 
allocated in the L2 cache in the E 
(exclusive) state. 

F1H 07H L2_LINES_IN.ANY Counts the number of cache lines 
allocated in the L2 cache. 

F2H 01H L2_LINES_OUT.DEMA
ND_CLEAN

Counts L2 clean cache lines evicted 
by a demand request.

F2H 02H L2_LINES_OUT.DEMA
ND_DIRTY

Counts L2 dirty (modified) cache 
lines evicted by a demand request.

F2H 04H L2_LINES_OUT.PREF
ETCH_CLEAN

Counts L2 clean cache line evicted 
by a prefetch request.
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F2H 08H L2_LINES_OUT.PREF
ETCH_DIRTY

Counts L2 modified cache line 
evicted by a prefetch request.

F2H 0FH L2_LINES_OUT.ANY Counts all L2 cache lines evicted for 
any reason.

F4H 10H SQ_MISC.SPLIT_LOCK Counts the number of SQ lock splits 
across a cache line.

F6H 01H SQ_FULL_STALL_CY
CLES

Counts cycles the Super Queue is 
full.  Neither of the threads on this 
core will be able to access the 
uncore.

F7H 01H FP_ASSIST.ALL Counts the number of floating point 
operations executed that required 
micro-code assist intervention. 
Assists are required in the following 
cases: SSE instructions, (Denormal 
input when the DAZ flag is off or 
Underflow result when the FTZ flag 
is off): x87 instructions, (NaN or 
denormal are loaded to a register or 
used as input from memory, Division 
by 0 or Underflow output).

F7H 02H FP_ASSIST.OUTPUT Counts number of floating point 
micro-code assist when the output 
value (destination register) is 
invalid.

F7H 04H FP_ASSIST.INPUT Counts number of floating point 
micro-code assist when the input 
value (one of the source operands 
to an FP instruction) is invalid.

FDH 01H SIMD_INT_64.PACKE
D_MPY

Counts number of SID integer 64 bit 
packed multiply operations.

FDH 02H SIMD_INT_64.PACKE
D_SHIFT

Counts number of SID integer 64 bit 
packed shift operations.

FDH 04H SIMD_INT_64.PACK Counts number of SID integer 64 bit 
pack operations.

FDH 08H SIMD_INT_64.UNPAC
K

Counts number of SID integer 64 bit 
unpack operations.
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Non-architectural Performance monitoring events that are located in the uncore sub-
system are implementation specific between different platforms using processors 
based on Intel microarchitecture code name Nehalem. Processors with CPUID signa-
ture of DisplayFamily_DisplayModel 06_1AH, 06_1EH, and 06_1FH support perfor-
mance events listed in Table 19-8.

FDH 10H SIMD_INT_64.PACKE
D_LOGICAL

Counts number of SID integer 64 bit 
logical operations.

FDH 20H SIMD_INT_64.PACKE
D_ARITH

Counts number of SID integer 64 bit 
arithmetic operations.

FDH 40H SIMD_INT_64.SHUFF
LE_MOVE

Counts number of SID integer 64 bit 
shift or move operations.
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00H 01H UNC_GQ_CYCLES_FU
LL.READ_TRACKER

Uncore cycles Global Queue read 
tracker is full.

00H 02H UNC_GQ_CYCLES_FU
LL.WRITE_TRACKER

Uncore cycles Global Queue write 
tracker is full.

00H 04H UNC_GQ_CYCLES_FU
LL.PEER_PROBE_TR
ACKER

Uncore cycles Global Queue peer 
probe tracker is full. The peer probe 
tracker queue tracks snoops from the 
IOH and remote sockets.

01H 01H UNC_GQ_CYCLES_NO
T_EMPTY.READ_TRA
CKER

Uncore cycles were Global Queue read 
tracker has at least one valid entry.

01H 02H UNC_GQ_CYCLES_NO
T_EMPTY.WRITE_TR
ACKER

Uncore cycles were Global Queue 
write tracker has at least one valid 
entry.

01H 04H UNC_GQ_CYCLES_NO
T_EMPTY.PEER_PRO
BE_TRACKER

Uncore cycles were Global Queue peer 
probe tracker has at least one valid 
entry. The peer probe tracker queue 
tracks IOH and remote socket snoops.
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03H 01H UNC_GQ_ALLOC.REA
D_TRACKER

Counts the number of tread tracker 
allocate to deallocate entries. The GQ 
read tracker allocate to deallocate 
occupancy count is divided by the 
count to obtain the average read 
tracker latency. 

03H 02H UNC_GQ_ALLOC.RT_
L3_MISS

Counts the number GQ read tracker 
entries for which a full cache line read 
has missed the L3. The GQ read 
tracker L3 miss to fill occupancy count 
is divided by this count to obtain the 
average cache line read L3 miss 
latency. The latency represents the 
time after which the L3 has 
determined that the cache line has 
missed.  The time between a GQ read 
tracker allocation and the L3 
determining that the cache line has 
missed is the average L3 hit latency. 
The total L3 cache line read miss 
latency is the hit latency + L3 miss 
latency.

03H 04H UNC_GQ_ALLOC.RT_
TO_L3_RESP

Counts the number of GQ read tracker 
entries that are allocated in the read 
tracker queue that hit or miss the L3.  
The GQ read tracker L3 hit occupancy 
count is divided by this count to 
obtain the average L3 hit latency. 

03H 08H UNC_GQ_ALLOC.RT_
TO_RTID_ACQUIRED

Counts the number of GQ read tracker 
entries that are allocated in the read 
tracker, have missed in the L3 and 
have not acquired a Request 
Transaction ID.   The GQ  read tracker 
L3 miss to RTID acquired occupancy 
count is divided by this count to 
obtain the average latency for a read 
L3 miss to acquire an RTID.
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03H 10H UNC_GQ_ALLOC.WT_
TO_RTID_ACQUIRED

Counts the number of GQ write 
tracker entries that are allocated in 
the write tracker, have missed in the 
L3 and have not acquired a Request 
Transaction ID.   The GQ write tracker 
L3 miss to RTID occupancy count is 
divided by this count to obtain the 
average latency for a write L3 miss to 
acquire an RTID.

03H 20H UNC_GQ_ALLOC.WRI
TE_TRACKER

Counts the number of GQ write 
tracker entries that are allocated in 
the write tracker queue that miss the 
L3.  The GQ write tracker occupancy 
count is divided by the this count to 
obtain the average L3 write miss 
latency. 

03H 40H UNC_GQ_ALLOC.PEE
R_PROBE_TRACKER

Counts the number of GQ peer probe 
tracker (snoop) entries that are 
allocated in the peer probe tracker 
queue that miss the L3.  The GQ peer 
probe occupancy count is divided by 
this count to obtain the average L3 
peer probe miss latency. 

04H 01H UNC_GQ_DATA.FROM
_QPI

Cycles Global Queue Quickpath 
Interface input data port is busy 
importing data from the Quickpath 
Interface.  Each cycle the input port 
can transfer 8  or 16 bytes of data.

04H 02H UNC_GQ_DATA.FROM
_QMC

Cycles Global Queue Quickpath 
Memory Interface input data port is 
busy importing data from the 
Quickpath Memory Interface. Each 
cycle the input port can transfer 8  or 
16 bytes of data.

04H 04H UNC_GQ_DATA.FROM
_L3

Cycles GQ L3 input data port is busy 
importing data from the Last Level 
Cache. Each cycle the input port can 
transfer 32 bytes of data.
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04H 08H UNC_GQ_DATA.FROM
_CORES_02

Cycles GQ Core 0 and 2 input data 
port is busy importing data from 
processor cores 0 and 2. Each cycle 
the input port can transfer 32 bytes 
of data.

04H 10H UNC_GQ_DATA.FROM
_CORES_13

Cycles GQ Core 1 and 3 input data 
port is busy importing data from 
processor cores 1 and 3. Each cycle 
the input port can transfer 32 bytes 
of data.

05H 01H UNC_GQ_DATA.TO_Q
PI_QMC

Cycles GQ QPI and QMC output data 
port is busy sending data to the 
Quickpath Interface or Quickpath 
Memory Interface. Each cycle the 
output port can transfer 32 bytes of 
data.

05H 02H UNC_GQ_DATA.TO_L
3

Cycles GQ L3 output data port is busy 
sending data to the Last Level Cache. 
Each cycle the output port can 
transfer 32 bytes of data.

05H 04H UNC_GQ_DATA.TO_C
ORES

Cycles GQ Core output data port is 
busy sending data to the Cores. Each 
cycle the output port can transfer 32 
bytes of data.

06H 01H UNC_SNP_RESP_TO_
LOCAL_HOME.I_STAT
E

Number of snoop responses to the 
local home that L3 does not have the 
referenced cache line. 

06H 02H UNC_SNP_RESP_TO_
LOCAL_HOME.S_STA
TE

Number of snoop responses to the 
local home that L3 has the referenced 
line cached in the S state.

06H 04H UNC_SNP_RESP_TO_
LOCAL_HOME.FWD_S
_STATE

Number of responses to code or data 
read snoops to the local home that 
the L3 has the referenced cache line 
in the E state. The L3 cache line state 
is changed to the S state and the line 
is forwarded to the local home in the 
S state.
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06H 08H UNC_SNP_RESP_TO_
LOCAL_HOME.FWD_I
_STATE

Number of responses to read 
invalidate snoops to the local home 
that the L3 has the referenced cache 
line in the M state. The L3 cache line 
state is invalidated and the line is 
forwarded to the local home in the M 
state.

06H 10H UNC_SNP_RESP_TO_
LOCAL_HOME.CONFLI
CT

Number of conflict snoop responses 
sent to the local home.

06H 20H UNC_SNP_RESP_TO_
LOCAL_HOME.WB

Number of responses to code or data 
read snoops to the local home that 
the L3 has the referenced line cached 
in the M state. 

07H 01H UNC_SNP_RESP_TO_
REMOTE_HOME.I_ST
ATE

Number of snoop responses to a 
remote home that L3 does not have 
the referenced cache line. 

07H 02H UNC_SNP_RESP_TO_
REMOTE_HOME.S_ST
ATE

Number of snoop responses to a 
remote home that L3 has the 
referenced line cached in the S state.

07H 04H UNC_SNP_RESP_TO_
REMOTE_HOME.FWD
_S_STATE

Number of responses to code or data 
read snoops to a remote home that 
the L3 has the referenced cache line 
in the E state. The L3 cache line state 
is changed to the S state and the line 
is forwarded to the remote home in 
the S state.

07H 08H UNC_SNP_RESP_TO_
REMOTE_HOME.FWD
_I_STATE

Number of responses to read 
invalidate snoops to a remote home 
that the L3 has the referenced cache 
line in the M state. The L3 cache line 
state is invalidated and the line is 
forwarded to the remote home in the 
M state.

07H 10H UNC_SNP_RESP_TO_
REMOTE_HOME.CON
FLICT

Number of conflict snoop responses 
sent to the local home.
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07H 20H UNC_SNP_RESP_TO_
REMOTE_HOME.WB

Number of responses to code or data 
read snoops to a remote home that 
the L3 has the referenced line cached 
in the M state. 

07H 24H UNC_SNP_RESP_TO_
REMOTE_HOME.HITM

Number of HITM snoop responses to a 
remote home

08H 01H UNC_L3_HITS.READ Number of code read, data read and 
RFO requests that hit in the L3

08H 02H UNC_L3_HITS.WRITE Number of writeback requests that 
hit in the L3. Writebacks from the 
cores will always result in L3 hits due 
to the inclusive property of the L3.

08H 04H UNC_L3_HITS.PROBE Number of snoops from IOH or remote 
sockets that hit in the L3.

08H 03H UNC_L3_HITS.ANY Number of reads and writes that hit 
the L3. 

09H 01H UNC_L3_MISS.READ Number of code read, data read and 
RFO requests that miss the L3.

09H 02H UNC_L3_MISS.WRITE Number of writeback requests that 
miss the L3. Should always be zero as 
writebacks from the cores will always 
result in L3 hits due to the inclusive 
property of the L3.

09H 04H UNC_L3_MISS.PROBE Number of snoops from IOH or remote 
sockets that miss the L3.

09H 03H UNC_L3_MISS.ANY Number of reads and writes that miss 
the L3. 

0AH 01H UNC_L3_LINES_IN.M
_STATE

Counts the number of L3 lines 
allocated in M state.  The only time a 
cache line is allocated in the M state is 
when the line was forwarded in M 
state is forwarded due to a Snoop 
Read Invalidate Own request.

0AH 02H UNC_L3_LINES_IN.E_
STATE

Counts the number of L3 lines 
allocated in E state.

0AH 04H UNC_L3_LINES_IN.S_
STATE

Counts the number of L3 lines 
allocated in S state.
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0AH 08H UNC_L3_LINES_IN.F_
STATE

Counts the number of L3 lines 
allocated in F state.

0AH 0FH UNC_L3_LINES_IN.A
NY

Counts the number of L3 lines 
allocated in any state. 

0BH 01H UNC_L3_LINES_OUT.
M_STATE

Counts the number of L3 lines 
victimized that were in the M state. 
When the victim cache line is in M 
state, the line is written to its home 
cache agent which can be either local 
or remote.

0BH 02H UNC_L3_LINES_OUT.
E_STATE

Counts the number of L3 lines 
victimized that were in the E state.

0BH 04H UNC_L3_LINES_OUT.
S_STATE

Counts the number of L3 lines 
victimized that were in the S state.

0BH 08H UNC_L3_LINES_OUT.
I_STATE

Counts the number of L3 lines 
victimized that were in the I state.

0BH 10H UNC_L3_LINES_OUT.
F_STATE

Counts the number of L3 lines 
victimized that were in the F state.

0BH 1FH UNC_L3_LINES_OUT.
ANY

Counts the number of L3 lines 
victimized in any state.

20H 01H UNC_QHL_REQUEST
S.IOH_READS

Counts number of Quickpath Home 
Logic read requests from the IOH.

20H 02H UNC_QHL_REQUEST
S.IOH_WRITES

Counts number of Quickpath Home 
Logic write requests from the IOH.

20H 04H UNC_QHL_REQUEST
S.REMOTE_READS

Counts number of Quickpath Home 
Logic read requests from  a remote 
socket.

20H 08H UNC_QHL_REQUEST
S.REMOTE_WRITES

Counts number of Quickpath Home 
Logic write requests from a remote 
socket.

20H 10H UNC_QHL_REQUEST
S.LOCAL_READS

Counts number of Quickpath Home 
Logic read requests from  the local 
socket.

20H 20H UNC_QHL_REQUEST
S.LOCAL_WRITES

Counts number of Quickpath Home 
Logic write requests from  the local 
socket.
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21H 01H UNC_QHL_CYCLES_F
ULL.IOH

Counts uclk cycles all entries in the 
Quickpath Home Logic IOH are full.

21H 02H UNC_QHL_CYCLES_F
ULL.REMOTE

Counts uclk cycles all entries in the 
Quickpath Home Logic remote tracker 
are full.

21H 04H UNC_QHL_CYCLES_F
ULL.LOCAL

Counts uclk cycles all entries in the 
Quickpath Home Logic local tracker 
are full.

22H 01H UNC_QHL_CYCLES_N
OT_EMPTY.IOH

Counts uclk cycles all entries in the 
Quickpath Home Logic IOH is busy.

22H 02H UNC_QHL_CYCLES_N
OT_EMPTY.REMOTE

Counts uclk cycles all entries in the 
Quickpath Home Logic remote tracker 
is busy.

22H 04H UNC_QHL_CYCLES_N
OT_EMPTY.LOCAL

Counts uclk cycles all entries in the 
Quickpath Home Logic local tracker is 
busy.

23H 01H UNC_QHL_OCCUPAN
CY.IOH

QHL IOH tracker allocate to deallocate 
read occupancy.

23H 02H UNC_QHL_OCCUPAN
CY.REMOTE

QHL remote tracker allocate to 
deallocate read occupancy.

23H 04H UNC_QHL_OCCUPAN
CY.LOCAL

QHL local tracker allocate to 
deallocate read occupancy.

24H 02H UNC_QHL_ADDRESS
_CONFLICTS.2WAY

Counts number of QHL Active Address 
Table (AAT) entries that saw a max of 
2 conflicts. The AAT is a structure that 
tracks requests that are in conflict. 
The requests themselves are in the 
home tracker entries. The count is 
reported when an AAT entry 
deallocates.

24H 04H UNC_QHL_ADDRESS
_CONFLICTS.3WAY

Counts number of QHL Active Address 
Table (AAT) entries that saw a max of 
3 conflicts. The AAT is a structure that 
tracks requests that are in conflict. 
The requests themselves are in the 
home tracker entries. The count is 
reported when an AAT entry 
deallocates.
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25H 01H UNC_QHL_CONFLICT
_CYCLES.IOH

Counts cycles the Quickpath Home 
Logic IOH Tracker contains two or 
more requests with an address 
conflict. A max of 3 requests can be in 
conflict.

25H 02H UNC_QHL_CONFLICT
_CYCLES.REMOTE

Counts cycles the Quickpath Home 
Logic Remote Tracker contains two or 
more requests with an address 
conflict. A max of 3 requests can be in 
conflict.

25H 04H UNC_QHL_CONFLICT
_CYCLES.LOCAL

Counts cycles the Quickpath Home 
Logic Local Tracker contains two or 
more requests with an address 
conflict.  A max of 3 requests can be 
in conflict.

26H 01H UNC_QHL_TO_QMC_
BYPASS

Counts number or requests to the 
Quickpath Memory Controller that 
bypass the Quickpath Home Logic. All 
local accesses can be bypassed. For 
remote requests, only read requests 
can be bypassed.

27H 01H UNC_QMC_NORMAL_
FULL.READ.CH0

Uncore cycles all the entries in the 
DRAM channel 0 medium or low 
priority queue are occupied with read 
requests.

27H 02H UNC_QMC_NORMAL_
FULL.READ.CH1

Uncore cycles all the entries in the 
DRAM channel 1 medium or low 
priority queue are occupied with read 
requests.

27H 04H UNC_QMC_NORMAL_
FULL.READ.CH2

Uncore cycles all the entries in the 
DRAM channel 2 medium or low 
priority queue are occupied with read 
requests.

27H 08H UNC_QMC_NORMAL_
FULL.WRITE.CH0

Uncore cycles all the entries in the 
DRAM channel 0 medium or low 
priority queue are occupied with write 
requests.
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27H 10H UNC_QMC_NORMAL_
FULL.WRITE.CH1

Counts cycles all the entries in the 
DRAM channel 1 medium or low 
priority queue are occupied with write 
requests.

27H 20H UNC_QMC_NORMAL_
FULL.WRITE.CH2

Uncore cycles all the entries in the 
DRAM channel 2 medium or low 
priority queue are occupied with write 
requests.

28H 01H UNC_QMC_ISOC_FUL
L.READ.CH0

Counts cycles all the entries in the 
DRAM channel 0 high priority queue 
are occupied with isochronous read 
requests.

28H 02H UNC_QMC_ISOC_FUL
L.READ.CH1

Counts cycles all the entries in the 
DRAM channel 1high priority queue 
are occupied with isochronous read 
requests.

28H 04H UNC_QMC_ISOC_FUL
L.READ.CH2

Counts cycles all the entries in the 
DRAM channel 2 high priority queue 
are occupied with isochronous read 
requests.

28H 08H UNC_QMC_ISOC_FUL
L.WRITE.CH0

Counts cycles all the entries in the 
DRAM channel 0 high priority queue 
are occupied with isochronous write 
requests.

28H 10H UNC_QMC_ISOC_FUL
L.WRITE.CH1

Counts cycles all the entries in the 
DRAM channel 1 high priority queue 
are occupied with isochronous write 
requests.

28H 20H UNC_QMC_ISOC_FUL
L.WRITE.CH2

Counts cycles all the entries in the 
DRAM channel 2 high priority queue 
are occupied with isochronous write 
requests.

29H 01H UNC_QMC_BUSY.REA
D.CH0

Counts cycles where Quickpath 
Memory Controller has at least 1 
outstanding read request to  DRAM 
channel 0.
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29H 02H UNC_QMC_BUSY.REA
D.CH1

Counts cycles where Quickpath 
Memory Controller has at least 1 
outstanding read request to  DRAM 
channel 1.

29H 04H UNC_QMC_BUSY.REA
D.CH2

Counts cycles where Quickpath 
Memory Controller has at least 1 
outstanding read request to  DRAM 
channel 2.

29H 08H UNC_QMC_BUSY.WRI
TE.CH0

Counts cycles where Quickpath 
Memory Controller has at least 1 
outstanding write request to  DRAM 
channel 0.

29H 10H UNC_QMC_BUSY.WRI
TE.CH1

Counts cycles where Quickpath 
Memory Controller has at least 1 
outstanding write request to  DRAM 
channel 1.

29H 20H UNC_QMC_BUSY.WRI
TE.CH2

Counts cycles where Quickpath 
Memory Controller has at least 1 
outstanding write request to  DRAM 
channel 2.

2AH 01H UNC_QMC_OCCUPAN
CY.CH0

IMC channel 0 normal read request 
occupancy.

2AH 02H UNC_QMC_OCCUPAN
CY.CH1

IMC channel 1 normal read request 
occupancy.

2AH 04H UNC_QMC_OCCUPAN
CY.CH2

IMC channel 2 normal read request 
occupancy.

2BH 01H UNC_QMC_ISSOC_OC
CUPANCY.CH0

IMC channel 0 issoc read request 
occupancy.

2BH 02H UNC_QMC_ISSOC_OC
CUPANCY.CH1

IMC channel 1 issoc read request 
occupancy.

2BH 04H UNC_QMC_ISSOC_OC
CUPANCY.CH2

IMC channel 2 issoc read request 
occupancy.

2BH 07H UNC_QMC_ISSOC_RE
ADS.ANY

IMC issoc read request occupancy.
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2CH 01H UNC_QMC_NORMAL_
READS.CH0

Counts the number of Quickpath 
Memory Controller channel 0 medium 
and low priority read requests. The 
QMC channel 0 normal read 
occupancy divided by this count 
provides the average QMC channel 0 
read latency. 

2CH 02H UNC_QMC_NORMAL_
READS.CH1

Counts the number of Quickpath 
Memory Controller channel 1 medium 
and low priority read requests. The 
QMC channel 1 normal read 
occupancy divided by this count 
provides the average QMC channel 1 
read latency. 

2CH 04H UNC_QMC_NORMAL_
READS.CH2

Counts the number of Quickpath 
Memory Controller channel 2 medium 
and low priority read requests. The 
QMC channel 2 normal read 
occupancy divided by this count 
provides the average QMC channel 2 
read latency. 

2CH 07H UNC_QMC_NORMAL_
READS.ANY

Counts the number of Quickpath 
Memory Controller medium and low 
priority read requests. The QMC 
normal read occupancy divided by this 
count provides the average QMC read 
latency. 

2DH 01H UNC_QMC_HIGH_PRI
ORITY_READS.CH0

Counts the number of Quickpath 
Memory Controller channel 0 high 
priority isochronous read requests. 

2DH 02H UNC_QMC_HIGH_PRI
ORITY_READS.CH1

Counts the number of Quickpath 
Memory Controller channel 1 high 
priority isochronous read requests. 

2DH 04H UNC_QMC_HIGH_PRI
ORITY_READS.CH2

Counts the number of Quickpath 
Memory Controller channel 2 high 
priority isochronous read requests. 

2DH 07H UNC_QMC_HIGH_PRI
ORITY_READS.ANY

Counts the number of Quickpath 
Memory Controller high priority 
isochronous read requests. 
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2EH 01H UNC_QMC_CRITICAL_
PRIORITY_READS.CH
0

Counts the number of Quickpath 
Memory Controller channel 0 critical 
priority isochronous read requests. 

2EH 02H UNC_QMC_CRITICAL_
PRIORITY_READS.CH
1

Counts the number of Quickpath 
Memory Controller channel 1 critical 
priority isochronous read requests. 

2EH 04H UNC_QMC_CRITICAL_
PRIORITY_READS.CH
2

Counts the number of Quickpath 
Memory Controller channel 2 critical 
priority isochronous read requests. 

2EH 07H UNC_QMC_CRITICAL_
PRIORITY_READS.AN
Y

Counts the number of Quickpath 
Memory Controller critical priority 
isochronous read requests. 

2FH 01H UNC_QMC_WRITES.F
ULL.CH0

Counts number of full cache line 
writes to DRAM channel 0.

2FH 02H UNC_QMC_WRITES.F
ULL.CH1

Counts number of full cache line 
writes to DRAM channel 1.

2FH 04H UNC_QMC_WRITES.F
ULL.CH2

Counts number of full cache line 
writes to DRAM channel 2.

2FH 07H UNC_QMC_WRITES.F
ULL.ANY

Counts number of full cache line 
writes to DRAM.

2FH 08H UNC_QMC_WRITES.P
ARTIAL.CH0

Counts number of partial cache line 
writes to DRAM channel 0.

2FH 10H UNC_QMC_WRITES.P
ARTIAL.CH1

Counts number of partial cache line 
writes to DRAM channel 1.

2FH 20H UNC_QMC_WRITES.P
ARTIAL.CH2

Counts number of partial cache line 
writes to DRAM channel 2.

2FH 38H UNC_QMC_WRITES.P
ARTIAL.ANY

Counts number of partial cache line 
writes to DRAM.

30H 01H UNC_QMC_CANCEL.C
H0

Counts number of DRAM channel 0 
cancel requests.

30H 02H UNC_QMC_CANCEL.C
H1

Counts number of DRAM channel 1 
cancel requests.

30H 04H UNC_QMC_CANCEL.C
H2

Counts number of DRAM channel 2 
cancel requests.

30H 07H UNC_QMC_CANCEL.A
NY

Counts number of DRAM cancel 
requests.
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31H 01H UNC_QMC_PRIORITY
_UPDATES.CH0

Counts number of DRAM channel 0 
priority updates. A priority update 
occurs when an ISOC high or critical 
request is received by the QHL and 
there is a matching request with 
normal priority that has already been 
issued to the QMC.  In this instance, 
the QHL will send a priority update to 
QMC to expedite the request.

31H 02H UNC_QMC_PRIORITY
_UPDATES.CH1

Counts number of DRAM channel 1 
priority updates. A priority update 
occurs when an ISOC high or critical 
request is received by the QHL and 
there is a matching request with 
normal priority that has already been 
issued to the QMC.  In this instance, 
the QHL will send a priority update to 
QMC to expedite the request.

31H 04H UNC_QMC_PRIORITY
_UPDATES.CH2

Counts number of DRAM channel 2 
priority updates. A priority update 
occurs when an ISOC high or critical 
request is received by the QHL and 
there is a matching request with 
normal priority that has already been 
issued to the QMC.  In this instance, 
the QHL will send a priority update to 
QMC to expedite the request.

31H 07H UNC_QMC_PRIORITY
_UPDATES.ANY

Counts number of DRAM priority 
updates. A priority update occurs 
when an ISOC high or critical request 
is received by the QHL and there is a 
matching request with normal priority 
that has already been issued to the 
QMC.  In this instance, the QHL will 
send a priority update to QMC to 
expedite the request.

33H 04H UNC_QHL_FRC_ACK_
CNFLTS.LOCAL

Counts number of Force Acknowledge 
Conflict messages sent by the 
Quickpath Home Logic to the local 
home.
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40H 01H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.HO
ME.LINK_0

Counts cycles the Quickpath outbound 
link 0 HOME virtual channel is stalled 
due to lack of a VNA and VN0 credit. 
Note that this event does not filter 
out when a flit would not have been 
selected for arbitration because 
another virtual channel is getting 
arbitrated.

40H 02H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.SNO
OP.LINK_0

Counts cycles the Quickpath outbound 
link 0 SNOOP virtual channel is stalled 
due to lack of a VNA and VN0 credit. 
Note that this event does not filter 
out when a flit would not have been 
selected for arbitration because 
another virtual channel is getting 
arbitrated.

40H 04H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.NDR
.LINK_0

Counts cycles the Quickpath outbound 
link 0 non-data response virtual 
channel is stalled due to lack of a VNA 
and VN0 credit. Note that this event 
does not filter out when a flit would 
not have been selected for arbitration 
because another virtual channel is 
getting arbitrated.

40H 08H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.HO
ME.LINK_1

Counts cycles the Quickpath outbound 
link 1 HOME virtual channel is stalled 
due to lack of a VNA and VN0 credit. 
Note that this event does not filter 
out when a flit would not have been 
selected for arbitration because 
another virtual channel is getting 
arbitrated.

40H 10H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.SNO
OP.LINK_1

Counts cycles the Quickpath outbound 
link 1 SNOOP virtual channel is stalled 
due to lack of a VNA and VN0 credit. 
Note that this event does not filter 
out when a flit would not have been 
selected for arbitration because 
another virtual channel is getting 
arbitrated.
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40H 20H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.NDR
.LINK_1

Counts cycles the Quickpath outbound 
link 1 non-data response virtual 
channel is stalled due to lack of a VNA 
and VN0 credit. Note that this event 
does not filter out when a flit would 
not have been selected for arbitration 
because another virtual channel is 
getting arbitrated.

40H 07H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.LIN
K_0

Counts cycles the Quickpath outbound 
link 0 virtual channels are stalled due 
to lack of a VNA and VN0 credit. Note 
that this event does not filter out 
when a flit would not have been 
selected for arbitration because 
another virtual channel is getting 
arbitrated.

40H 38H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.LIN
K_1

Counts cycles the Quickpath outbound 
link 1 virtual channels are stalled due 
to lack of a VNA and VN0 credit. Note 
that this event does not filter out 
when a flit would not have been 
selected for arbitration because 
another virtual channel is getting 
arbitrated.

41H 01H UNC_QPI_TX_STALL
ED_MULTI_FLIT.DRS.
LINK_0

Counts cycles the Quickpath outbound 
link 0 Data ResponSe virtual channel 
is stalled due to lack of VNA and VN0 
credits. Note that this event does not 
filter out when a flit would not have 
been selected for arbitration because 
another virtual channel is getting 
arbitrated.

41H 02H UNC_QPI_TX_STALL
ED_MULTI_FLIT.NCB.
LINK_0

Counts cycles the Quickpath outbound 
link 0 Non-Coherent Bypass virtual 
channel is stalled due to lack of VNA 
and VN0 credits. Note that this event 
does not filter out when a flit would 
not have been selected for arbitration 
because another virtual channel is 
getting arbitrated.

Table 19-8.  Non-Architectural Performance Events In the Processor Uncore for Intel® 
Core™ i7 Processor and Intel® Xeon® Processor 5500 Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-80 Vol. 3B



PERFORMANCE-MONITORING EVENTS
41H 04H UNC_QPI_TX_STALL
ED_MULTI_FLIT.NCS.
LINK_0

Counts cycles the Quickpath outbound 
link 0 Non-Coherent Standard virtual 
channel is stalled due to lack of VNA 
and VN0 credits. Note that this event 
does not filter out when a flit would 
not have been selected for arbitration 
because another virtual channel is 
getting arbitrated.

41H 08H UNC_QPI_TX_STALL
ED_MULTI_FLIT.DRS.
LINK_1

Counts cycles the Quickpath outbound 
link 1 Data ResponSe virtual channel 
is stalled due to lack of VNA and VN0 
credits. Note that this event does not 
filter out when a flit would not have 
been selected for arbitration because 
another virtual channel is getting 
arbitrated.

41H 10H UNC_QPI_TX_STALL
ED_MULTI_FLIT.NCB.
LINK_1

Counts cycles the Quickpath outbound 
link 1 Non-Coherent Bypass virtual 
channel is stalled due to lack of VNA 
and VN0 credits. Note that this event 
does not filter out when a flit would 
not have been selected for arbitration 
because another virtual channel is 
getting arbitrated.

41H 20H UNC_QPI_TX_STALL
ED_MULTI_FLIT.NCS.
LINK_1

Counts cycles the Quickpath outbound 
link 1 Non-Coherent Standard virtual 
channel is stalled due to lack of VNA 
and VN0 credits. Note that this event 
does not filter out when a flit would 
not have been selected for arbitration 
because another virtual channel is 
getting arbitrated.

41H 07H UNC_QPI_TX_STALL
ED_MULTI_FLIT.LINK
_0

Counts cycles the Quickpath outbound 
link 0 virtual channels are stalled due 
to lack of VNA and VN0 credits. Note 
that this event does not filter out 
when a flit would not have been 
selected for arbitration because 
another virtual channel is getting 
arbitrated.
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41H 38H UNC_QPI_TX_STALL
ED_MULTI_FLIT.LINK
_1

Counts cycles the Quickpath outbound 
link 1 virtual channels are stalled due 
to lack of VNA and VN0 credits. Note 
that this event does not filter out 
when a flit would not have been 
selected for arbitration because 
another virtual channel is getting 
arbitrated.

42H 02H UNC_QPI_TX_HEADE
R.BUSY.LINK_0

Number of cycles that the header 
buffer in the Quickpath Interface 
outbound link 0 is busy.

42H 08H UNC_QPI_TX_HEADE
R.BUSY.LINK_1

Number of cycles that the header 
buffer in the Quickpath Interface 
outbound link 1 is busy.

43H 01H UNC_QPI_RX_NO_PP
T_CREDIT.STALLS.LIN
K_0

Number of cycles that snoop packets 
incoming to the Quickpath Interface 
link 0 are stalled and not sent to the 
GQ because the GQ Peer Probe 
Tracker (PPT) does not have any 
available entries.

43H 02H UNC_QPI_RX_NO_PP
T_CREDIT.STALLS.LIN
K_1

Number of cycles that snoop packets 
incoming to the Quickpath Interface 
link 1 are stalled and not sent to the 
GQ because the GQ Peer Probe 
Tracker (PPT) does not have any 
available entries.

60H 01H UNC_DRAM_OPEN.C
H0

Counts number of DRAM Channel 0 
open commands issued either for read 
or write. To read or write data, the 
referenced DRAM page must first be 
opened.

60H 02H UNC_DRAM_OPEN.C
H1

Counts number of DRAM Channel 1 
open commands issued either for read 
or write. To read or write data, the 
referenced DRAM page must first be 
opened.
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60H 04H UNC_DRAM_OPEN.C
H2

Counts number of DRAM Channel 2 
open commands issued either for read 
or write. To read or write data, the 
referenced DRAM page must first be 
opened.

61H 01H UNC_DRAM_PAGE_C
LOSE.CH0

DRAM channel 0 command issued to 
CLOSE a page due to page idle timer 
expiration. Closing a page is done by 
issuing a precharge.

61H 02H UNC_DRAM_PAGE_C
LOSE.CH1

DRAM channel 1 command issued to 
CLOSE a page due to page idle timer 
expiration. Closing a page is done by 
issuing a precharge.

61H 04H UNC_DRAM_PAGE_C
LOSE.CH2

DRAM channel 2 command issued to 
CLOSE a page due to page idle timer 
expiration. Closing a page is done by 
issuing a precharge.

62H 01H UNC_DRAM_PAGE_M
ISS.CH0

Counts the number of precharges 
(PRE) that were issued to DRAM 
channel 0 because there was a page 
miss. A page miss refers to a situation 
in which a page is currently open and 
another page from the same bank 
needs to be opened. The new page 
experiences a page miss. Closing of 
the old page is done by issuing a 
precharge.

62H 02H UNC_DRAM_PAGE_M
ISS.CH1

Counts the number of precharges 
(PRE) that were issued to DRAM 
channel 1 because there was a page 
miss. A page miss refers to a situation 
in which a page is currently open and 
another page from the same bank 
needs to be opened. The new page 
experiences a page miss. Closing of 
the old page is done by issuing a 
precharge.

Table 19-8.  Non-Architectural Performance Events In the Processor Uncore for Intel® 
Core™ i7 Processor and Intel® Xeon® Processor 5500 Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-83



PERFORMANCE-MONITORING EVENTS
62H 04H UNC_DRAM_PAGE_M
ISS.CH2

Counts the number of precharges 
(PRE) that were issued to DRAM 
channel 2 because there was a page 
miss. A page miss refers to a situation 
in which a page is currently open and 
another page from the same bank 
needs to be opened. The new page 
experiences a page miss. Closing of 
the old page is done by issuing a 
precharge.

63H 01H UNC_DRAM_READ_C
AS.CH0

Counts the number of times a read 
CAS command was issued on DRAM 
channel 0.

63H 02H UNC_DRAM_READ_C
AS.AUTOPRE_CH0

Counts the number of times a read 
CAS command was issued on DRAM 
channel 0 where the command issued 
used the auto-precharge (auto page 
close) mode.

63H 04H UNC_DRAM_READ_C
AS.CH1

Counts the number of times a read 
CAS command was issued on DRAM 
channel 1.

63H 08H UNC_DRAM_READ_C
AS.AUTOPRE_CH1

Counts the number of times a read 
CAS command was issued on DRAM 
channel 1 where the command issued 
used the auto-precharge (auto page 
close) mode.

63H 10H UNC_DRAM_READ_C
AS.CH2

Counts the number of times a read 
CAS command was issued on DRAM 
channel 2.

63H 20H UNC_DRAM_READ_C
AS.AUTOPRE_CH2

Counts the number of times a read 
CAS command was issued on DRAM 
channel 2 where the command issued 
used the auto-precharge (auto page 
close) mode.

64H 01H UNC_DRAM_WRITE_
CAS.CH0

Counts the number of times a write 
CAS command was issued on DRAM 
channel 0.
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64H 02H UNC_DRAM_WRITE_
CAS.AUTOPRE_CH0

Counts the number of times a write 
CAS command was issued on DRAM 
channel 0 where the command issued 
used the auto-precharge (auto page 
close) mode.

64H 04H UNC_DRAM_WRITE_
CAS.CH1

Counts the number of times a write 
CAS command was issued on DRAM 
channel 1.

64H 08H UNC_DRAM_WRITE_
CAS.AUTOPRE_CH1

Counts the number of times a write 
CAS command was issued on DRAM 
channel 1 where the command issued 
used the auto-precharge (auto page 
close) mode.

64H 10H UNC_DRAM_WRITE_
CAS.CH2

Counts the number of times a write 
CAS command was issued on DRAM 
channel 2.

64H 20H UNC_DRAM_WRITE_
CAS.AUTOPRE_CH2

Counts the number of times a write 
CAS command was issued on DRAM 
channel 2 where the command issued 
used the auto-precharge (auto page 
close) mode.

65H 01H UNC_DRAM_REFRES
H.CH0

Counts number of DRAM channel 0 
refresh commands. DRAM loses data 
content over time. In order to keep 
correct data content, the data values 
have to be refreshed periodically.

65H 02H UNC_DRAM_REFRES
H.CH1

Counts number of DRAM channel 1 
refresh commands. DRAM loses data 
content over time. In order to keep 
correct data content, the data values 
have to be refreshed periodically.

65H 04H UNC_DRAM_REFRES
H.CH2

Counts number of DRAM channel 2 
refresh commands. DRAM loses data 
content over time. In order to keep 
correct data content, the data values 
have to be refreshed periodically.
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Intel Xeon processors with CPUID signature of DisplayFamily_DisplayModel 06_2EH 
have a distinct uncore sub-system that is significantly different from the uncore 
found in processors with CPUID signature 06_1AH, 06_1EH, and 06_1FH. Non-archi-
tectural Performance monitoring events for its uncore will be available in future docu-
mentation.

19.5 PERFORMANCE MONITORING EVENTS FOR 
PROCESSORS BASED ON 
INTEL® MICROARCHITECTURE CODE NAME 
WESTMERE

Intel 64 processors based on Intel® microarchitecture code name Westmere support 
the architectural and non-architectural performance-monitoring events listed in 
Table 19-1 and Table 19-9. Table 19-9 applies to processors with CPUID signature of 
DisplayFamily_DisplayModel encoding with the following values: 06_25H, 06_2CH. 
In addition, these processors (CPUID signature of DisplayFamily_DisplayModel 
06_25H, 06_2CH) also support the following non-architectural, product-specific 
uncore performance-monitoring events listed in Table 19-10. Fixed counters support 
the architecture events defined in Table 19-12.

66H 01H UNC_DRAM_PRE_AL
L.CH0

Counts number of DRAM Channel 0 
precharge-all (PREALL) commands 
that close all open pages in a rank. 
PREALL is issued when the DRAM 
needs to be refreshed or needs to go 
into a power down mode.

66H 02H UNC_DRAM_PRE_AL
L.CH1

Counts number of DRAM Channel 1 
precharge-all (PREALL) commands 
that close all open pages in a rank. 
PREALL is issued when the DRAM 
needs to be refreshed or needs to go 
into a power down mode.

66H 04H UNC_DRAM_PRE_AL
L.CH2

Counts number of DRAM Channel 2 
precharge-all (PREALL) commands 
that close all open pages in a rank. 
PREALL is issued when the DRAM 
needs to be refreshed or needs to go 
into a power down mode.
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Table 19-9.  Non-Architectural Performance Events In the Processor Core for 
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment

03H 02H LOAD_BLOCK.OVERL
AP_STORE

Loads that partially overlap an 
earlier store.

04H 07H SB_DRAIN.ANY All Store buffer stall cycles.

05H 02H MISALIGN_MEMORY.S
TORE

All store referenced with misaligned 
address.

06H 04H STORE_BLOCKS.AT_
RET

Counts number of loads delayed 
with at-Retirement block code. The 
following loads need to be executed 
at retirement and wait for all senior 
stores on the same thread to be 
drained: load splitting across 4K 
boundary (page split), load accessing 
uncacheable (UC or USWC) memory, 
load lock, and load with page table in 
UC or USWC memory region.

06H 08H STORE_BLOCKS.L1D
_BLOCK

Cacheable  loads delayed with L1D 
block code.

07H 01H PARTIAL_ADDRESS_
ALIAS

Counts false dependency due to 
partial address aliasing.

08H 01H DTLB_LOAD_MISSES.
ANY

Counts all load misses that cause a 
page walk.

08H 02H DTLB_LOAD_MISSES.
WALK_COMPLETED

Counts number of completed page 
walks due to load miss in the STLB.

08H 04H DTLB_LOAD_MISSES.
WALK_CYCLES

Cycles PMH is busy with a page walk 
due to a load miss in the STLB. 

08H 10H DTLB_LOAD_MISSES.
STLB_HIT

Number of cache load STLB hits.

08H 20H DTLB_LOAD_MISSES.
PDE_MISS

Number of DTLB cache load misses 
where the low part of the linear to 
physical address translation was 
missed.

0BH 01H MEM_INST_RETIRED.
LOADS

Counts the number of instructions 
with an architecturally-visible load 
retired on the architected path.

0BH 02H MEM_INST_RETIRED.
STORES

Counts the number of instructions 
with an architecturally-visible store 
retired on the architected path.
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0BH 10H MEM_INST_RETIRED.
LATENCY_ABOVE_T
HRESHOLD

Counts the number of instructions 
exceeding the latency specified with 
ld_lat facility.

In conjunction 
with ld_lat 
facility

0CH 01H MEM_STORE_RETIRE
D.DTLB_MISS

The event counts the number of 
retired stores that missed the DTLB. 
The DTLB miss is not counted if the 
store operation causes a fault. Does 
not counter prefetches. Counts both 
primary and secondary misses to 
the TLB.

0EH 01H UOPS_ISSUED.ANY Counts the number of Uops issued 
by the Register Allocation Table to 
the Reservation Station, i.e. the 
UOPs issued from the front end to 
the back end. 

0EH 01H UOPS_ISSUED.STALL
ED_CYCLES

Counts the number of cycles no 
Uops issued by the Register 
Allocation Table to the Reservation 
Station, i.e. the UOPs issued from 
the front end to the back end. 

set “invert=1, 
cmask = 1“

0EH 02H UOPS_ISSUED.FUSED Counts the number of fused Uops 
that were issued from the Register 
Allocation Table to the Reservation 
Station.

0FH 01H MEM_UNCORE_RETI
RED.UNKNOWN_SOU
RCE

Load instructions retired with 
unknown LLC miss (Precise Event).

Applicable to one 
and two sockets

0FH 02H MEM_UNCORE_RETI
RED.OHTER_CORE_L
2_HIT

Load instructions retired that HIT 
modified data in sibling core (Precise 
Event).

Applicable to one 
and two sockets

0FH 04H MEM_UNCORE_RETI
RED.REMOTE_HITM

Load instructions retired that HIT 
modified data in remote socket 
(Precise Event).

Applicable to two 
sockets only

0FH 08H MEM_UNCORE_RETI
RED.LOCAL_DRAM_A
ND_REMOTE_CACHE
_HIT

Load instructions retired local dram 
and remote cache HIT data sources 
(Precise Event).

Applicable to one 
and two sockets
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0FH 10H MEM_UNCORE_RETI
RED.REMOTE_DRAM

Load instructions retired remote 
DRAM and remote home-remote 
cache HITM (Precise Event).

Applicable to two 
sockets only

0FH 20H MEM_UNCORE_RETI
RED.OTHER_LLC_MIS
S

Load instructions retired other LLC 
miss (Precise Event).

Applicable to two 
sockets only

0FH 80H MEM_UNCORE_RETI
RED.UNCACHEABLE

Load instructions retired I/O (Precise 
Event).

Applicable to one 
and two sockets

10H 01H FP_COMP_OPS_EXE.
X87

Counts the number of FP 
Computational Uops Executed. The 
number of FADD, FSUB, FCOM, 
FMULs, integer MULsand IMULs, 
FDIVs, FPREMs, FSQRTS, integer 
DIVs, and IDIVs. This event does not 
distinguish an FADD used in the 
middle of a transcendental flow 
from a separate FADD instruction.

10H 02H FP_COMP_OPS_EXE.
MMX

Counts number of MMX Uops 
executed.

10H 04H FP_COMP_OPS_EXE.
SSE_FP

Counts number of SSE and SSE2 FP 
uops executed.

10H 08H FP_COMP_OPS_EXE.
SSE2_INTEGER

Counts number of SSE2 integer uops 
executed.

10H 10H FP_COMP_OPS_EXE.
SSE_FP_PACKED

Counts number of SSE FP packed 
uops executed.

10H 20H FP_COMP_OPS_EXE.
SSE_FP_SCALAR

Counts number of SSE FP scalar 
uops executed.

10H 40H FP_COMP_OPS_EXE.
SSE_SINGLE_PRECISI
ON

Counts number of SSE* FP single 
precision uops executed.

10H 80H FP_COMP_OPS_EXE.
SSE_DOUBLE_PRECI
SION

Counts number of SSE* FP double 
precision uops executed.

12H 01H SIMD_INT_128.PACK
ED_MPY

Counts number of 128 bit SIMD 
integer multiply operations.

12H 02H SIMD_INT_128.PACK
ED_SHIFT

Counts number of 128 bit SIMD 
integer shift operations.
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12H 04H SIMD_INT_128.PACK Counts number of 128 bit SIMD 
integer pack operations.

12H 08H SIMD_INT_128.UNPA
CK

Counts number of 128 bit SIMD 
integer unpack operations.

12H 10H SIMD_INT_128.PACK
ED_LOGICAL

Counts number of 128 bit SIMD 
integer logical  operations.

12H 20H SIMD_INT_128.PACK
ED_ARITH

Counts number of 128 bit SIMD 
integer arithmetic operations.

12H 40H SIMD_INT_128.SHUF
FLE_MOVE

Counts number of 128 bit SIMD 
integer shuffle and move 
operations.

13H 01H LOAD_DISPATCH.RS Counts number of loads dispatched 
from the Reservation Station that 
bypass the Memory Order Buffer.

13H 02H LOAD_DISPATCH.RS_
DELAYED

Counts the number of delayed RS 
dispatches at the stage latch. If an 
RS dispatch can not bypass to LB, it 
has another chance to dispatch from 
the one-cycle delayed staging latch 
before it is written into the LB.

13H 04H LOAD_DISPATCH.MO
B

Counts the number of loads 
dispatched from the Reservation 
Station to the Memory Order Buffer.

13H 07H LOAD_DISPATCH.ANY Counts all loads dispatched from the 
Reservation Station.

14H 01H ARITH.CYCLES_DIV_
BUSY

Counts the number of cycles the 
divider is busy executing divide or 
square root operations. The divide 
can be integer, X87 or Streaming 
SIMD Extensions (SSE). The square 
root operation can be either X87 or 
SSE. 

Set 'edge =1, invert=1, cmask=1' to 
count the number of divides.

Count may be 
incorrect When 
SMT is on
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14H 02H ARITH.MUL Counts the number of multiply 
operations executed. This includes 
integer as well as floating point 
multiply operations but excludes 
DPPS mul and MPSAD.

Count may be 
incorrect When 
SMT is on

17H 01H INST_QUEUE_WRITE
S

Counts the number of instructions 
written into the instruction queue 
every cycle. 

18H 01H INST_DECODED.DEC0 Counts number of instructions that 
require  decoder 0 to be decoded.  
Usually, this means that the 
instruction maps to more than 1 
uop.

19H 01H TWO_UOP_INSTS_D
ECODED

An instruction that generates two 
uops was decoded.

1EH 01H INST_QUEUE_WRITE
_CYCLES

This event counts the number of 
cycles during which instructions are 
written to the instruction queue.  
Dividing this counter by the number 
of instructions written to the 
instruction queue 
(INST_QUEUE_WRITES) yields the 
average number of instructions 
decoded each cycle. If this number is  
less than four and the pipe stalls, 
this indicates that the decoder is 
failing to decode enough 
instructions per cycle to sustain the 
4-wide pipeline. 

If SSE* 
instructions that 
are 6 bytes or 
longer arrive one 
after another, 
then front end 
throughput may 
limit execution 
speed. 

20H 01H LSD_OVERFLOW Number of loops that can not stream 
from the instruction queue.

24H 01H L2_RQSTS.LD_HIT Counts number of loads that hit the 
L2 cache. L2 loads include both L1D 
demand misses as well as L1D 
prefetches.  L2 loads can be rejected 
for various reasons.  Only non 
rejected loads are counted.
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24H 02H L2_RQSTS.LD_MISS Counts the number of loads that 
miss the L2 cache. L2 loads include 
both L1D demand misses as well as 
L1D prefetches. 

24H 03H L2_RQSTS.LOADS Counts all L2 load requests. L2 loads 
include both L1D demand misses as 
well as L1D prefetches. 

24H 04H L2_RQSTS.RFO_HIT Counts the number of store RFO 
requests that hit the L2 cache. L2 
RFO requests include both L1D 
demand RFO misses as well as L1D 
RFO prefetches. Count includes WC 
memory requests, where the data is 
not fetched but the permission to 
write the line is required.

24H 08H L2_RQSTS.RFO_MISS Counts the number of store RFO 
requests that miss the L2 cache. L2 
RFO requests include both L1D 
demand RFO misses as well as L1D 
RFO prefetches.

24H 0CH L2_RQSTS.RFOS Counts all L2 store RFO requests. L2 
RFO requests include both L1D 
demand RFO misses as well as L1D 
RFO prefetches..

24H 10H L2_RQSTS.IFETCH_H
IT

Counts number of instruction 
fetches that hit the L2 cache. L2 
instruction fetches include both L1I 
demand misses as well as L1I 
instruction prefetches.

24H 20H L2_RQSTS.IFETCH_M
ISS

Counts number of instruction 
fetches that miss the L2 cache. L2 
instruction fetches include both L1I 
demand misses as well as L1I 
instruction prefetches.

24H 30H L2_RQSTS.IFETCHES Counts all instruction fetches. L2 
instruction fetches include both L1I 
demand misses as well as L1I 
instruction prefetches.
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24H 40H L2_RQSTS.PREFETC
H_HIT

Counts L2 prefetch hits for both 
code and data.

24H 80H L2_RQSTS.PREFETC
H_MISS

Counts L2 prefetch misses for both 
code and data.

24H C0H L2_RQSTS.PREFETC
HES

Counts all L2 prefetches for both 
code and data.

24H AAH L2_RQSTS.MISS Counts all L2 misses for both code 
and data.

24H FFH L2_RQSTS.REFEREN
CES

Counts all L2 requests for both code 
and data.

26H 01H L2_DATA_RQSTS.DE
MAND.I_STATE

Counts number of L2 data demand 
loads where the cache line to be 
loaded is in the I (invalid) state, i.e. a 
cache miss. L2 demand loads are 
both L1D demand misses and L1D 
prefetches.

26H 02H L2_DATA_RQSTS.DE
MAND.S_STATE

Counts number of L2 data demand 
loads where the cache line to be 
loaded is in the S (shared) state. L2 
demand loads are both L1D demand 
misses and L1D prefetches.

26H 04H L2_DATA_RQSTS.DE
MAND.E_STATE

Counts number of L2 data demand 
loads where the cache line to be 
loaded is in the E (exclusive) state. 
L2 demand loads are both L1D 
demand misses and L1D prefetches.

26H 08H L2_DATA_RQSTS.DE
MAND.M_STATE

Counts number of L2 data demand 
loads where the cache line to be 
loaded is in the M (modified) state. 
L2 demand loads are both L1D 
demand misses and L1D prefetches.

26H 0FH L2_DATA_RQSTS.DE
MAND.MESI

Counts all L2 data demand requests. 
L2 demand loads are both L1D 
demand misses and L1D prefetches.

26H 10H L2_DATA_RQSTS.PR
EFETCH.I_STATE

Counts number of L2 prefetch data 
loads where the cache line to be 
loaded is in the I (invalid) state, i.e. a 
cache miss.
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26H 20H L2_DATA_RQSTS.PR
EFETCH.S_STATE

Counts number of L2 prefetch data 
loads where the cache line to be 
loaded is in the S (shared) state. A 
prefetch RFO will miss on an S state 
line, while a prefetch read will hit on 
an S state line.

26H 40H L2_DATA_RQSTS.PR
EFETCH.E_STATE

Counts number of L2 prefetch data 
loads where the cache line to be 
loaded is in the E (exclusive) state.

26H 80H L2_DATA_RQSTS.PR
EFETCH.M_STATE

Counts number of L2 prefetch data 
loads where the cache line to be 
loaded is in the M (modified) state.

26H F0H L2_DATA_RQSTS.PR
EFETCH.MESI

Counts all L2 prefetch requests.

26H FFH L2_DATA_RQSTS.AN
Y

Counts all L2 data requests.

27H 01H L2_WRITE.RFO.I_STA
TE

Counts number of L2 demand store 
RFO requests where the cache line 
to be loaded is in the I (invalid) state, 
i.e, a cache miss. The L1D prefetcher 
does not issue a RFO prefetch.

This is a demand 
RFO request

27H 02H L2_WRITE.RFO.S_ST
ATE

Counts number of L2 store RFO 
requests where the cache line to be 
loaded is in the S (shared) state. The 
L1D prefetcher does not issue a RFO 
prefetch,.

This is a demand 
RFO request

27H 08H L2_WRITE.RFO.M_ST
ATE

Counts number of L2 store RFO 
requests where the cache line to be 
loaded is in the M (modified) state. 
The L1D prefetcher does not issue a 
RFO prefetch.

This is a demand 
RFO request

27H 0EH L2_WRITE.RFO.HIT Counts number of L2 store RFO 
requests where the cache line to be 
loaded is in either the S, E or M 
states. The L1D prefetcher does not 
issue a RFO prefetch.

This is a demand 
RFO request

27H 0FH L2_WRITE.RFO.MESI Counts all L2 store RFO 
requests.The L1D prefetcher does 
not issue a RFO prefetch.

This is a demand 
RFO request
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27H 10H L2_WRITE.LOCK.I_ST
ATE

Counts number of L2 demand lock 
RFO requests where the cache line 
to be loaded is in the I (invalid) state, 
i.e. a cache miss. 

27H 20H L2_WRITE.LOCK.S_S
TATE

Counts number of L2 lock RFO 
requests where the cache line to be 
loaded is in the S (shared) state.

27H 40H L2_WRITE.LOCK.E_S
TATE

Counts number of L2 demand lock 
RFO requests where the cache line 
to be loaded is in the E (exclusive) 
state.

27H 80H L2_WRITE.LOCK.M_S
TATE

Counts number of L2 demand lock 
RFO requests where the cache line 
to be loaded is in the M (modified) 
state.

27H E0H L2_WRITE.LOCK.HIT Counts number of L2 demand lock 
RFO requests where the cache line 
to be loaded is in either the S, E, or 
M state.

27H F0H L2_WRITE.LOCK.MESI Counts all L2 demand lock RFO 
requests.

28H 01H L1D_WB_L2.I_STATE Counts number of L1 writebacks to 
the L2 where the cache line to be 
written is in the I (invalid) state, i.e. a 
cache miss.

28H 02H L1D_WB_L2.S_STAT
E

Counts number of L1 writebacks to 
the L2 where the cache line to be 
written is in the S state.

28H 04H L1D_WB_L2.E_STAT
E

Counts number of L1 writebacks to 
the L2 where the cache line to be 
written is in the E (exclusive) state.

28H 08H L1D_WB_L2.M_STAT
E

Counts number of L1 writebacks to 
the L2 where the cache line to be 
written is in the M (modified) state.

28H 0FH L1D_WB_L2.MESI Counts all L1 writebacks to the L2 .
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2EH 41H L3_LAT_CACHE.MISS Counts uncore Last Level Cache 
misses. Because cache hierarchy, 
cache sizes and other 
implementation-specific 
characteristics; value comparison to 
estimate performance differences is 
not recommended. 

see Table 19-1

2EH 4FH L3_LAT_CACHE.REFE
RENCE

Counts uncore Last Level Cache 
references. Because cache 
hierarchy, cache sizes and other 
implementation-specific 
characteristics; value comparison to 
estimate performance differences is 
not recommended. 

see Table 19-1

3CH 00H CPU_CLK_UNHALTED
.THREAD_P

Counts the number of thread cycles 
while the thread is not in a halt 
state. The thread enters the halt 
state when it is running the HLT 
instruction. The core frequency may 
change from time to time due to 
power or thermal throttling. 

see Table 19-1

3CH 01H CPU_CLK_UNHALTED
.REF_P

Increments at the frequency of TSC 
when not halted.

see Table 19-1

49H 01H DTLB_MISSES.ANY Counts the number of misses in the 
STLB which causes a page walk.

49H 02H DTLB_MISSES.WALK_
COMPLETED

Counts number of misses in the 
STLB which resulted in a completed 
page walk.

49H 04H DTLB_MISSES.WALK_
CYCLES

Counts cycles of page walk due to 
misses in the STLB.

49H 10H DTLB_MISSES.STLB_
HIT

Counts the number of DTLB first 
level misses that hit in the second 
level TLB.  This event is only 
relevant if the core contains multiple 
DTLB levels.

49H 20H DTLB_MISSES.PDE_M
ISS

Number of DTLB misses caused by 
low part of address, includes 
references to 2M pages because 2M 
pages do not use the PDE. 
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49H 80H DTLB_MISSES.LARGE
_WALK_COMPLETED

Counts number of completed large 
page walks due to misses in the 
STLB.

4CH 01H LOAD_HIT_PRE Counts load operations sent to the 
L1 data cache while a previous SSE 
prefetch instruction to the same 
cache line has started prefetching 
but has not yet finished.

Counter 0, 1 only

4EH 01H L1D_PREFETCH.REQ
UESTS

Counts number of hardware 
prefetch requests dispatched out of 
the prefetch FIFO.

Counter 0, 1 only

4EH 02H L1D_PREFETCH.MISS Counts number of hardware 
prefetch requests that miss the L1D.  
There are two prefetchers in the 
L1D.  A streamer, which predicts 
lines sequentially after this one 
should be fetched, and the IP 
prefetcher that remembers access 
patterns for the current instruction.  
The streamer prefetcher stops on an 
L1D hit,  while the IP prefetcher 
does not.

Counter 0, 1 only

4EH 04H L1D_PREFETCH.TRIG
GERS

Counts number of prefetch requests 
triggered by the Finite State 
Machine and pushed into the 
prefetch FIFO. Some of the prefetch 
requests are dropped due to 
overwrites or competition between 
the IP index prefetcher and 
streamer prefetcher.  The prefetch 
FIFO contains 4 entries.

Counter 0, 1 only

4FH 10H EPT.WALK_CYCLES Counts Extended Page walk cycles.

51H 01H L1D.REPL Counts the number of lines brought 
into the L1 data cache.

Counter 0, 1 only

51H 02H L1D.M_REPL Counts the number of modified lines 
brought into the L1 data cache. 

Counter 0, 1 only

51H 04H L1D.M_EVICT Counts the number of modified lines 
evicted from the L1 data cache  due 
to replacement. 

Counter 0, 1 only
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51H 08H L1D.M_SNOOP_EVIC
T

Counts the number of modified lines 
evicted from the L1 data cache due 
to snoop HITM intervention.

Counter 0, 1 only

52H 01H L1D_CACHE_PREFET
CH_LOCK_FB_HIT

Counts the number of cacheable 
load lock speculated instructions 
accepted into the fill buffer.

60H 01H OFFCORE_REQUEST
S_OUTSTANDING.DE
MAND.READ_DATA

Counts weighted cycles of offcore 
demand data read requests. Does 
not include L2 prefetch requests.

counter 0

60H 02H OFFCORE_REQUEST
S_OUTSTANDING.DE
MAND.READ_CODE

Counts weighted cycles of offcore 
demand code read requests. Does 
not include L2 prefetch requests.

counter 0

60H 04H OFFCORE_REQUEST
S_OUTSTANDING.DE
MAND.RFO

Counts weighted cycles of offcore 
demand RFO requests. Does not 
include L2 prefetch requests.

counter 0

60H 08H OFFCORE_REQUEST
S_OUTSTANDING.AN
Y.READ

Counts weighted cycles of offcore 
read requests of any kind. Include L2 
prefetch requests.

counter 0

63H 01H CACHE_LOCK_CYCLE
S.L1D_L2

Cycle count during which the L1D 
and L2 are locked.  A lock is asserted 
when there is a locked memory 
access, due to uncacheable memory, 
a locked operation that spans two 
cache lines, or a page walk from an 
uncacheable page table. This event 
does not cause locks, it merely 
detects them.

Counter 0, 1 only. 
L1D and L2 locks 
have a very high 
performance 
penalty and it is 
highly 
recommended to 
avoid such 
accesses.

63H 02H CACHE_LOCK_CYCLE
S.L1D

Counts the number of cycles that 
cacheline in the L1 data cache unit is 
locked.

Counter 0, 1 only.

6CH 01H IO_TRANSACTIONS Counts the number of completed I/O 
transactions.

80H 01H L1I.HITS Counts all instruction fetches that 
hit the L1 instruction cache.

Table 19-9.  Non-Architectural Performance Events In the Processor Core for 
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-98 Vol. 3B



PERFORMANCE-MONITORING EVENTS
80H 02H L1I.MISSES Counts all instruction fetches that 
miss the L1I cache. This includes 
instruction cache misses,  streaming 
buffer misses, victim cache misses 
and uncacheable fetches.  An 
instruction fetch miss is counted 
only once and not once for every 
cycle it is outstanding.

80H 03H L1I.READS Counts all instruction fetches, 
including uncacheable fetches that 
bypass the L1I.

80H 04H L1I.CYCLES_STALLED Cycle counts for which an instruction 
fetch stalls due to a L1I cache miss, 
ITLB miss or ITLB fault.

82H 01H LARGE_ITLB.HIT Counts number of large ITLB hits.

85H 01H ITLB_MISSES.ANY Counts the number of misses in all 
levels of the ITLB which causes a 
page walk.

85H 02H ITLB_MISSES.WALK_
COMPLETED

Counts number of misses in all levels 
of the ITLB which resulted in a 
completed page walk.

85H 04H ITLB_MISSES.WALK_
CYCLES

Counts ITLB miss page walk cycles.

85H 80H ITLB_MISSES.LARGE_
WALK_COMPLETED

Counts number of completed large 
page walks due to misses in the 
STLB.

87H 01H ILD_STALL.LCP Cycles Instruction Length Decoder 
stalls due to length changing 
prefixes: 66, 67 or REX.W (for 
EM64T) instructions which change 
the length of the decoded 
instruction.

87H 02H ILD_STALL.MRU Instruction Length Decoder stall 
cycles due to Brand Prediction Unit 
(PBU) Most Recently Used (MRU) 
bypass.

87H 04H ILD_STALL.IQ_FULL Stall cycles due to a full instruction 
queue.
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87H 08H ILD_STALL.REGEN Counts the number of regen stalls.

87H 0FH ILD_STALL.ANY Counts any cycles the Instruction 
Length Decoder is stalled.

88H 01H BR_INST_EXEC.COND Counts the number of conditional 
near branch instructions executed, 
but not necessarily retired.

88H 02H BR_INST_EXEC.DIRE
CT

Counts all unconditional near branch 
instructions excluding calls and 
indirect branches.

88H 04H BR_INST_EXEC.INDIR
ECT_NON_CALL

Counts the number of executed 
indirect near branch instructions 
that are not calls.

88H 07H BR_INST_EXEC.NON
_CALLS

Counts all non call near branch 
instructions executed, but not 
necessarily retired.

88H 08H BR_INST_EXEC.RETU
RN_NEAR

Counts indirect near branches that 
have a return mnemonic.

88H 10H BR_INST_EXEC.DIRE
CT_NEAR_CALL

Counts unconditional near call 
branch instructions, excluding non 
call branch, executed. 

88H 20H BR_INST_EXEC.INDIR
ECT_NEAR_CALL

Counts indirect near calls, including 
both register and memory indirect, 
executed.

88H 30H BR_INST_EXEC.NEAR
_CALLS

Counts all near call branches 
executed,  but not necessarily 
retired.

88H 40H BR_INST_EXEC.TAKE
N

Counts taken near branches 
executed, but not necessarily 
retired.

88H 7FH BR_INST_EXEC.ANY Counts all near executed branches 
(not necessarily retired). This 
includes only instructions and not 
micro-op branches. Frequent 
branching is not necessarily a major 
performance issue. However 
frequent branch mispredictions may 
be a problem.
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89H 01H BR_MISP_EXEC.CON
D

Counts the number of mispredicted 
conditional near branch instructions 
executed, but not necessarily 
retired.

89H 02H BR_MISP_EXEC.DIRE
CT

Counts mispredicted macro 
unconditional near branch 
instructions, excluding calls and 
indirect branches (should always be 
0).

89H 04H BR_MISP_EXEC.INDIR
ECT_NON_CALL

Counts the number of executed 
mispredicted indirect near branch 
instructions that are not calls.

89H 07H BR_MISP_EXEC.NON
_CALLS

Counts mispredicted non call near 
branches executed,  but not 
necessarily retired.

89H 08H BR_MISP_EXEC.RETU
RN_NEAR

Counts mispredicted indirect 
branches that have a rear return 
mnemonic.

89H 10H BR_MISP_EXEC.DIRE
CT_NEAR_CALL

Counts mispredicted non-indirect 
near calls executed, (should always 
be 0).

89H 20H BR_MISP_EXEC.INDIR
ECT_NEAR_CALL

Counts mispredicted indirect near 
calls exeucted, including both 
register and memory indirect.

89H 30H BR_MISP_EXEC.NEA
R_CALLS

Counts all mispredicted near call 
branches executed, but not 
necessarily retired.

89H 40H BR_MISP_EXEC.TAKE
N

Counts executed mispredicted near 
branches that are taken, but not 
necessarily retired.

89H 7FH BR_MISP_EXEC.ANY Counts the number of mispredicted 
near branch instructions that were 
executed, but not necessarily 
retired.
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A2H 01H RESOURCE_STALLS.
ANY

Counts the number of Allocator 
resource related stalls. Includes 
register renaming buffer entries, 
memory buffer entries. In addition 
to resource related stalls, this event 
counts some other events. Includes 
stalls arising during branch 
misprediction recovery, such as if 
retirement of the mispredicted 
branch is delayed and stalls arising 
while store buffer is draining from 
synchronizing operations.

Does not include 
stalls due to 
SuperQ (off core) 
queue full, too 
many cache 
misses, etc.

A2H 02H RESOURCE_STALLS.L
OAD

Counts the cycles of stall due to lack 
of load buffer for load operation.

A2H 04H RESOURCE_STALLS.R
S_FULL

This event counts the number of 
cycles when the number of 
instructions in the pipeline waiting 
for execution reaches the limit the 
processor can handle. A high count 
of this event indicates that there are 
long latency operations in the pipe 
(possibly load and store operations 
that miss the L2 cache, or 
instructions dependent upon 
instructions further down the 
pipeline that have yet to retire. 

When RS is full, 
new instructions 
can not enter the 
reservation 
station and start 
execution.

A2H 08H RESOURCE_STALLS.S
TORE

This event counts the number of 
cycles that a resource related stall 
will occur due to the number of 
store instructions reaching the limit 
of the pipeline, (i.e. all store buffers 
are used). The stall ends when a 
store instruction commits its data to 
the cache or memory.

A2H 10H RESOURCE_STALLS.R
OB_FULL

Counts the cycles of stall due to re-
order buffer full.

A2H 20H RESOURCE_STALLS.F
PCW

Counts the number of cycles while 
execution was stalled due to writing 
the floating-point unit (FPU) control 
word.
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A2H 40H RESOURCE_STALLS.
MXCSR

Stalls due to the MXCSR register 
rename occurring to close to a 
previous MXCSR rename.  The 
MXCSR provides control and status 
for the MMX registers.

A2H 80H RESOURCE_STALLS.
OTHER

Counts the number of cycles while 
execution was stalled due to other 
resource issues.

A6H 01H MACRO_INSTS.FUSIO
NS_DECODED

Counts the number of instructions 
decoded that are macro-fused but 
not necessarily executed or retired.

A7H 01H BACLEAR_FORCE_IQ Counts number of times a BACLEAR 
was forced by the Instruction 
Queue.  The IQ is also responsible 
for providing conditional branch 
prediciton direction based on a static 
scheme and dynamic data provided 
by the L2 Branch Prediction Unit. If 
the conditional branch target is not 
found in the Target Array and the IQ 
predicts that the branch is taken, 
then the IQ will force the Branch 
Address Calculator to issue a 
BACLEAR. Each BACLEAR asserted 
by the BAC generates approximately 
an 8 cycle bubble in the instruction 
fetch pipeline.

A8H 01H LSD.UOPS Counts the number of micro-ops 
delivered by loop stream detector.

Use cmask=1 and 
invert to count 
cycles

AEH 01H ITLB_FLUSH Counts the number of ITLB flushes.

B0H 01H OFFCORE_REQUEST
S.DEMAND.READ_DA
TA

Counts number of offcore demand 
data read requests.  Does not count 
L2 prefetch requests.

B0H 02H OFFCORE_REQUEST
S.DEMAND.READ_CO
DE

Counts number of offcore demand 
code read requests.  Does not count 
L2 prefetch requests.
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B0H 04H OFFCORE_REQUEST
S.DEMAND.RFO

Counts number of offcore demand 
RFO requests. Does not count L2 
prefetch requests.

B0H 08H OFFCORE_REQUEST
S.ANY.READ

Counts number of offcore read 
requests. Includes L2 prefetch 
requests.

B0H 10H OFFCORE_REQUEST
S.ANY.RFO

Counts number of offcore RFO 
requests. Includes L2 prefetch 
requests.

B0H 40H OFFCORE_REQUEST
S.L1D_WRITEBACK

Counts number of L1D writebacks to 
the uncore. 

B0H 80H OFFCORE_REQUEST
S.ANY

Counts all offcore requests.

B1H 01H UOPS_EXECUTED.PO
RT0

Counts number of Uops executed 
that were issued on port 0.  Port 0 
handles integer arithmetic, SIMD and 
FP add Uops.

B1H 02H UOPS_EXECUTED.PO
RT1

Counts number of Uops executed 
that were issued on port 1. Port 1 
handles integer arithmetic, SIMD, 
integer shift, FP multiply and FP 
divide Uops.

B1H 04H UOPS_EXECUTED.PO
RT2_CORE

Counts number of Uops executed 
that were issued on port 2.  Port 2 
handles the load Uops. This is a core 
count only and can not be collected 
per thread.

B1H 08H UOPS_EXECUTED.PO
RT3_CORE

Counts number of Uops executed 
that were issued on port 3. Port 3 
handles store Uops.  This is a core 
count only and can not be collected 
per thread.

B1H 10H UOPS_EXECUTED.PO
RT4_CORE

Counts number of Uops executed 
that where issued on port  4.  Port 4 
handles the value to be stored for 
the store Uops issued on port 3. This 
is a core count only and can not be 
collected per thread.
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B1H 1FH UOPS_EXECUTED.CO
RE_ACTIVE_CYCLES_
NO_PORT5

Counts number of cycles there are 
one or more uops being executed 
and were issued on ports 0-4. This is 
a core count only and can not be 
collected per thread.

B1H 20H UOPS_EXECUTED.PO
RT5

Counts number of Uops executed 
that where issued on port 5. 

B1H 3FH UOPS_EXECUTED.CO
RE_ACTIVE_CYCLES

Counts number of cycles there are 
one or more uops being executed on 
any ports. This is a core count only 
and can not be collected per thread.

B1H 40H UOPS_EXECUTED.PO
RT015

Counts number of Uops executed 
that where issued on port  0, 1, or 5.

use cmask=1, 
invert=1 to count 
stall cycles

B1H 80H UOPS_EXECUTED.PO
RT234

Counts number of Uops executed 
that where issued on port 2, 3, or 4.

B2H 01H OFFCORE_REQUEST
S_SQ_FULL

Counts number of cycles the SQ is 
full to handle off-core requests. 

B3H 01H SNOOPQ_REQUESTS
_OUTSTANDING.DAT
A

Counts weighted cycles of snoopq 
requests for data. Counter 0 only.

Use cmask=1 to 
count cycles not 
empty. 

B3H 02H SNOOPQ_REQUESTS
_OUTSTANDING.INVA
LIDATE

Counts weighted cycles of snoopq 
invalidate requests. Counter 0 only.

Use cmask=1 to 
count cycles not 
empty. 

B3H 04H SNOOPQ_REQUESTS
_OUTSTANDING.COD
E

Counts weighted cycles of snoopq 
requests for code. Counter 0 only.

Use cmask=1 to 
count cycles not 
empty. 

B4H 01H SNOOPQ_REQUESTS.
CODE

Counts the number of snoop code 
requests.

B4H 02H SNOOPQ_REQUESTS.
DATA

Counts the number of snoop data 
requests.

B4H 04H SNOOPQ_REQUESTS.
INVALIDATE

Counts the number of snoop 
invalidate requests.

B7H 01H OFF_CORE_RESPONS
E_0

see Section 18.6.1.3, “Off-core 
Response Performance Monitoring 
in the Processor Core”

Requires 
programming 
MSR 01A6H
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B8H 01H SNOOP_RESPONSE.H
IT

Counts HIT snoop response sent by 
this thread in response to a snoop 
request.

B8H 02H SNOOP_RESPONSE.H
ITE

Counts HIT E snoop response sent 
by this thread in response to a 
snoop request.

B8H 04H SNOOP_RESPONSE.H
ITM

Counts HIT M snoop response sent 
by this thread in response to a 
snoop request.

BBH 01H OFF_CORE_RESPONS
E_1

see Section 18.6.1.3, “Off-core 
Response Performance Monitoring 
in the Processor Core”

Use MSR 01A7H

C0H 00H INST_RETIRED.ANY_
P

See Table 19-1
Notes: INST_RETIRED.ANY is 
counted by a designated fixed 
counter. INST_RETIRED.ANY_P is 
counted by a programmable counter 
and is an architectural performance 
event.  Event is supported if 
CPUID.A.EBX[1] = 0.

Counting: 
Faulting 
executions of 
GETSEC/VM 
entry/VM 
Exit/MWait will 
not count as 
retired 
instructions. 

C0H 02H INST_RETIRED.X87 Counts the number of floating point 
computational operations retired: 
floating point computational 
operations executed by the assist 
handler and sub-operations of 
complex floating point instructions 
like transcendental instructions.

C0H 04H INST_RETIRED.MMX Counts the number of retired: MMX 
instructions.

C2H 01H UOPS_RETIRED.ANY Counts the number of micro-ops 
retired, (macro-fused=1, micro-
fused=2, others=1; maximum count 
of 8 per cycle). Most instructions are 
composed of one or two micro-ops. 
Some instructions are decoded into 
longer sequences such as repeat 
instructions, floating point 
transcendental instructions, and 
assists.

Use cmask=1 and 
invert to count 
active cycles or 
stalled cycles

Table 19-9.  Non-Architectural Performance Events In the Processor Core for 
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-106 Vol. 3B



PERFORMANCE-MONITORING EVENTS
C2H 02H UOPS_RETIRED.RETI
RE_SLOTS

Counts the number of retirement 
slots used each cycle

C2H 04H UOPS_RETIRED.MAC
RO_FUSED

Counts number of macro-fused uops 
retired.

C3H 01H MACHINE_CLEARS.CY
CLES

Counts the cycles machine clear is 
asserted.

C3H 02H MACHINE_CLEARS.M
EM_ORDER

Counts the number of machine 
clears due to memory order 
conflicts.

C3H 04H MACHINE_CLEARS.S
MC

Counts the number of times that a 
program writes to a code section. 
Self-modifying code causes a sever 
penalty in all Intel 64 and IA-32 
processors.  The modified cache line 
is written back to the L2 and 
L3caches.

C4H 00H BR_INST_RETIRED.A
LL_BRANCHES

Branch instructions at retirement See Table 19-1 

C4H 01H BR_INST_RETIRED.C
ONDITIONAL

Counts the number of conditional 
branch instructions retired. 

C4H 02H BR_INST_RETIRED.N
EAR_CALL

Counts the number of direct & 
indirect near unconditional calls 
retired.

C5H 00H BR_MISP_RETIRED.A
LL_BRANCHES

Mispredicted branch instructions at 
retirement

See Table 19-1 

C5H 01H BR_MISP_RETIRED.C
ONDITIONAL

Counts mispredicted conditional 
retired calls. 

C5H 02H BR_MISP_RETIRED.N
EAR_CALL

Counts mispredicted direct & 
indirect near unconditional retired 
calls. 

C5H 04H BR_MISP_RETIRED.A
LL_BRANCHES

Counts all mispredicted retired calls. 

C7H 01H SSEX_UOPS_RETIRE
D.PACKED_SINGLE

Counts SIMD packed single-precision 
floating point Uops retired.

C7H 02H SSEX_UOPS_RETIRE
D.SCALAR_SINGLE

Counts SIMD calar single-precision 
floating point Uops retired.
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C7H 04H SSEX_UOPS_RETIRE
D.PACKED_DOUBLE

Counts SIMD packed double-
precision floating point Uops retired.

C7H 08H SSEX_UOPS_RETIRE
D.SCALAR_DOUBLE

Counts SIMD scalar double-precision 
floating point Uops retired.

C7H 10H SSEX_UOPS_RETIRE
D.VECTOR_INTEGER

Counts 128-bit SIMD vector integer 
Uops retired.

C8H 20H ITLB_MISS_RETIRED Counts the number of retired 
instructions that missed the ITLB 
when the instruction was fetched.

CBH 01H MEM_LOAD_RETIRED
.L1D_HIT

Counts number of retired loads that 
hit the L1 data cache. 

CBH 02H MEM_LOAD_RETIRED
.L2_HIT

Counts number of retired loads that 
hit the L2 data cache.

CBH 04H MEM_LOAD_RETIRED
.L3_UNSHARED_HIT

Counts number of retired loads that 
hit their own, unshared lines in the 
L3 cache.

CBH 08H MEM_LOAD_RETIRED
.OTHER_CORE_L2_HI
T_HITM

Counts number of retired loads that 
hit in a sibling core's L2 (on die core).  
Since the L3 is inclusive of all cores 
on the package, this is an L3 hit. This 
counts both clean or modified hits.

CBH 10H MEM_LOAD_RETIRED
.L3_MISS

Counts number of retired loads that 
miss the L3 cache.  The load was 
satisfied by a remote socket, local 
memory or an IOH.

CBH 40H MEM_LOAD_RETIRED
.HIT_LFB

Counts number of retired loads that 
miss the L1D and the address is 
located in an allocated line fill buffer 
and will soon be committed to cache.  
This is counting secondary L1D 
misses.
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CBH 80H MEM_LOAD_RETIRED
.DTLB_MISS

Counts the number of retired loads 
that missed the DTLB. The DTLB 
miss is not counted if the load 
operation causes a fault.  This event 
counts loads from cacheable 
memory only. The event does not 
count loads by software prefetches. 
Counts both primary and secondary 
misses to the TLB.

CCH 01H FP_MMX_TRANS.TO
_FP

Counts the first floating-point 
instruction following any MMX 
instruction. You can use this event 
to estimate the penalties for the 
transitions between floating-point 
and MMX technology states.

CCH 02H FP_MMX_TRANS.TO
_MMX

Counts the first MMX instruction 
following a floating-point 
instruction. You can use this event 
to estimate the penalties for the 
transitions between floating-point 
and MMX technology states.

CCH 03H FP_MMX_TRANS.AN
Y

Counts all transitions from floating 
point to MMX instructions and from 
MMX instructions to floating point 
instructions.  You can use this event 
to estimate the penalties for the 
transitions between floating-point 
and MMX technology states.

D0H 01H MACRO_INSTS.DECO
DED

Counts the number of instructions 
decoded, (but not necessarily 
executed or retired).

D1H 01H UOPS_DECODED.STA
LL_CYCLES

Counts the cycles of decoder stalls. 
INV=1, Cmask= 1

D1H 02H UOPS_DECODED.MS Counts the number of Uops decoded 
by the Microcode Sequencer, MS.  
The MS delivers uops when the 
instruction is more than 4 uops long 
or a microcode assist is occurring. 

Table 19-9.  Non-Architectural Performance Events In the Processor Core for 
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B 19-109



PERFORMANCE-MONITORING EVENTS
D1H 04H UOPS_DECODED.ESP
_FOLDING

Counts number of stack pointer 
(ESP) instructions decoded: push , 
pop , call , ret, etc.  ESP instructions 
do not generate a Uop to increment 
or decrement ESP.  Instead, they 
update an ESP_Offset register that 
keeps track of the delta to the 
current value of the ESP register.

D1H 08H UOPS_DECODED.ESP
_SYNC

Counts number of stack pointer 
(ESP) sync operations where an ESP 
instruction is corrected  by adding 
the ESP offset register to the 
current value of the ESP register.

D2H 01H RAT_STALLS.FLAGS Counts the number of cycles during 
which execution stalled due to 
several reasons, one of which is a 
partial flag register stall. A partial 
register stall may occur when two 
conditions are met: 1) an instruction 
modifies some, but not all, of the 
flags in the flag register and 2) the 
next instruction, which depends on 
flags, depends on flags that were 
not modified by this instruction.

D2H 02H RAT_STALLS.REGIST
ERS

This event counts the number of 
cycles instruction execution latency 
became longer than the defined 
latency because the instruction 
used a register that was partially 
written by previous instruction.
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D2H 04H RAT_STALLS.ROB_RE
AD_PORT

Counts the number of cycles when 
ROB read port stalls occurred, which 
did not allow new micro-ops to enter 
the out-of-order pipeline. Note that, 
at this stage in the pipeline, 
additional stalls may occur at the 
same cycle and prevent the stalled 
micro-ops from entering the pipe. In 
such a case, micro-ops retry 
entering the execution pipe in the 
next cycle and the ROB-read port 
stall is counted again.

D2H 08H RAT_STALLS.SCOREB
OARD

Counts the cycles where we stall 
due to microarchitecturally required 
serialization. Microcode 
scoreboarding stalls.

D2H 0FH RAT_STALLS.ANY Counts all Register Allocation Table 
stall cycles due to:  Cycles when ROB 
read port stalls occurred, which did 
not allow new micro-ops to enter 
the execution pipe.  Cycles when 
partial register stalls occurred  
Cycles when flag stalls occurred  
Cycles floating-point unit (FPU) 
status word stalls occurred. To count 
each of these conditions separately 
use the events: 
RAT_STALLS.ROB_READ_PORT, 
RAT_STALLS.PARTIAL, 
RAT_STALLS.FLAGS, and 
RAT_STALLS.FPSW.

D4H 01H SEG_RENAME_STALL
S

Counts the number of stall cycles 
due to the lack of renaming 
resources for the ES, DS, FS, and GS 
segment registers. If a segment is 
renamed but not retired and a 
second update to the same segment 
occurs, a stall occurs in the front-
end of the pipeline until the 
renamed segment retires.
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D5H 01H ES_REG_RENAMES Counts the number of times the ES 
segment register is renamed.

DBH 01H UOP_UNFUSION Counts unfusion events due to 
floating point exception to a fused 
uop.

E0H 01H BR_INST_DECODED Counts the number of branch 
instructions decoded. 

E5H 01H BPU_MISSED_CALL_
RET

Counts number of times the Branch 
Prediciton Unit missed predicting a 
call or return branch.

E6H 01H BACLEAR.CLEAR Counts the number of times the 
front end is resteered, mainly when 
the Branch Prediction Unit cannot 
provide a correct prediction and this 
is corrected by the Branch Address 
Calculator at the front end. This can 
occur if the code has many branches 
such that they cannot be consumed 
by the BPU. Each BACLEAR asserted 
by the BAC generates approximately 
an 8 cycle bubble in the instruction 
fetch pipeline. The effect on total 
execution time depends on the 
surrounding code.

E6H 02H BACLEAR.BAD_TARG
ET

Counts number of Branch Address 
Calculator clears (BACLEAR) 
asserted due to conditional branch 
instructions in which there was a 
target hit but the direction was 
wrong.  Each BACLEAR asserted by 
the BAC generates approximately an 
8 cycle bubble in the instruction 
fetch pipeline.

E8H 01H BPU_CLEARS.EARLY Counts early (normal) Branch 
Prediction Unit clears: BPU predicted 
a taken branch after incorrectly 
assuming that it was not taken. 

The BPU clear 
leads to 2 cycle 
bubble in the 
Front End.
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E8H 02H BPU_CLEARS.LATE Counts late Branch Prediction Unit 
clears due to Most Recently Used 
conflicts.  The PBU clear leads to a 3 
cycle bubble in the Front End.

ECH 01H THREAD_ACTIVE Counts cycles threads are active.

F0H 01H L2_TRANSACTIONS.L
OAD

Counts L2 load operations due to 
HW prefetch or demand loads.

F0H 02H L2_TRANSACTIONS.
RFO

Counts L2 RFO operations due to 
HW prefetch or demand RFOs.

F0H 04H L2_TRANSACTIONS.I
FETCH

Counts L2 instruction fetch 
operations due to HW prefetch or 
demand ifetch.

F0H 08H L2_TRANSACTIONS.
PREFETCH

Counts L2 prefetch operations.

F0H 10H L2_TRANSACTIONS.L
1D_WB

Counts L1D writeback operations to 
the L2.

F0H 20H L2_TRANSACTIONS.
FILL

Counts L2 cache line fill operations 
due to load, RFO, L1D writeback or 
prefetch.

F0H 40H L2_TRANSACTIONS.
WB

Counts L2 writeback operations to 
the L3.

F0H 80H L2_TRANSACTIONS.
ANY

Counts all L2 cache operations.

F1H 02H L2_LINES_IN.S_STAT
E

Counts the number of cache lines 
allocated in the L2 cache in the S 
(shared) state. 

F1H 04H L2_LINES_IN.E_STAT
E

Counts the number of cache lines 
allocated in the L2 cache in the E 
(exclusive) state. 

F1H 07H L2_LINES_IN.ANY Counts the number of cache lines 
allocated in the L2 cache. 

F2H 01H L2_LINES_OUT.DEMA
ND_CLEAN

Counts L2 clean cache lines evicted 
by a demand request.

F2H 02H L2_LINES_OUT.DEMA
ND_DIRTY

Counts L2 dirty (modified) cache 
lines evicted by a demand request.

F2H 04H L2_LINES_OUT.PREF
ETCH_CLEAN

Counts L2 clean cache line evicted 
by a prefetch request.
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F2H 08H L2_LINES_OUT.PREF
ETCH_DIRTY

Counts L2 modified cache line 
evicted by a prefetch request.

F2H 0FH L2_LINES_OUT.ANY Counts all L2 cache lines evicted for 
any reason.

F4H 04H SQ_MISC.LRU_HINTS Counts number of Super Queue LRU 
hints sent to L3.

F4H 10H SQ_MISC.SPLIT_LOCK Counts the number of SQ lock splits 
across a cache line.

F6H 01H SQ_FULL_STALL_CY
CLES

Counts cycles the Super Queue is 
full.  Neither of the threads on this 
core will be able to access the 
uncore.

F7H 01H FP_ASSIST.ALL Counts the number of floating point 
operations executed that required 
micro-code assist intervention. 
Assists are required in the following 
cases: SSE instructions, (Denormal 
input when the DAZ flag is off or 
Underflow result when the FTZ flag 
is off): x87 instructions, (NaN or 
denormal are loaded to a register or 
used as input from memory, Division 
by 0 or Underflow output).

F7H 02H FP_ASSIST.OUTPUT Counts number of floating point 
micro-code assist when the output 
value (destination register) is invalid.

F7H 04H FP_ASSIST.INPUT Counts number of floating point 
micro-code assist when the input 
value (one of the source operands to 
an FP instruction) is invalid.

FDH 01H SIMD_INT_64.PACKE
D_MPY

Counts number of SID integer 64 bit 
packed multiply operations.

FDH 02H SIMD_INT_64.PACKE
D_SHIFT

Counts number of SID integer 64 bit 
packed shift operations.

FDH 04H SIMD_INT_64.PACK Counts number of SID integer 64 bit 
pack operations.

FDH 08H SIMD_INT_64.UNPAC
K

Counts number of SID integer 64 bit 
unpack operations.
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Non-architectural Performance monitoring events of the uncore sub-system for 
Processors with CPUID signature of DisplayFamily_DisplayModel 06_25H, 06_2CH, 
and 06_1FH support performance events listed in Table 19-10.

FDH 10H SIMD_INT_64.PACKE
D_LOGICAL

Counts number of SID integer 64 bit 
logical operations.

FDH 20H SIMD_INT_64.PACKE
D_ARITH

Counts number of SID integer 64 bit 
arithmetic operations.

FDH 40H SIMD_INT_64.SHUFF
LE_MOVE

Counts number of SID integer 64 bit 
shift or move operations.
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00H 01H UNC_GQ_CYCLES_FU
LL.READ_TRACKER

Uncore cycles Global Queue read 
tracker is full.

00H 02H UNC_GQ_CYCLES_FU
LL.WRITE_TRACKER

Uncore cycles Global Queue write 
tracker is full.

00H 04H UNC_GQ_CYCLES_FU
LL.PEER_PROBE_TR
ACKER

Uncore cycles Global Queue peer 
probe tracker is full. The peer probe 
tracker queue tracks snoops from the 
IOH and remote sockets.

01H 01H UNC_GQ_CYCLES_NO
T_EMPTY.READ_TRA
CKER

Uncore cycles were Global Queue read 
tracker has at least one valid entry.

01H 02H UNC_GQ_CYCLES_NO
T_EMPTY.WRITE_TR
ACKER

Uncore cycles were Global Queue 
write tracker has at least one valid 
entry.

01H 04H UNC_GQ_CYCLES_NO
T_EMPTY.PEER_PRO
BE_TRACKER

Uncore cycles were Global Queue peer 
probe tracker has at least one valid 
entry. The peer probe tracker queue 
tracks IOH and remote socket snoops.
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02H 01H UNC_GQ_OCCUPANC
Y.READ_TRACKER

Increments the number of queue 
entries (code read, data read, and 
RFOs) in the tread tracker. The GQ 
read tracker allocate to deallocate 
occupancy count is divided by the 
count to obtain the average read 
tracker latency. 

03H 01H UNC_GQ_ALLOC.REA
D_TRACKER

Counts the number of tread tracker 
allocate to deallocate entries. The GQ 
read tracker allocate to deallocate 
occupancy count is divided by the 
count to obtain the average read 
tracker latency. 

03H 02H UNC_GQ_ALLOC.RT_
L3_MISS

Counts the number GQ read tracker 
entries for which a full cache line read 
has missed the L3. The GQ read 
tracker L3 miss to fill occupancy count 
is divided by this count to obtain the 
average cache line read L3 miss 
latency. The latency represents the 
time after which the L3 has 
determined that the cache line has 
missed.  The time between a GQ read 
tracker allocation and the L3 
determining that the cache line has 
missed is the average L3 hit latency. 
The total L3 cache line read miss 
latency is the hit latency + L3 miss 
latency.

03H 04H UNC_GQ_ALLOC.RT_
TO_L3_RESP

Counts the number of GQ read tracker 
entries that are allocated in the read 
tracker queue that hit or miss the L3.  
The GQ read tracker L3 hit occupancy 
count is divided by this count to 
obtain the average L3 hit latency. 
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03H 08H UNC_GQ_ALLOC.RT_
TO_RTID_ACQUIRED

Counts the number of GQ read tracker 
entries that are allocated in the read 
tracker, have missed in the L3 and 
have not acquired a Request 
Transaction ID.   The GQ  read tracker 
L3 miss to RTID acquired occupancy 
count is divided by this count to 
obtain the average latency for a read 
L3 miss to acquire an RTID.

03H 10H UNC_GQ_ALLOC.WT_
TO_RTID_ACQUIRED

Counts the number of GQ write 
tracker entries that are allocated in 
the write tracker, have missed in the 
L3 and have not acquired a Request 
Transaction ID.   The GQ write tracker 
L3 miss to RTID occupancy count is 
divided by this count to obtain the 
average latency for a write L3 miss to 
acquire an RTID.

03H 20H UNC_GQ_ALLOC.WRI
TE_TRACKER

Counts the number of GQ write 
tracker entries that are allocated in 
the write tracker queue that miss the 
L3.  The GQ write tracker occupancy 
count is divided by the this count to 
obtain the average L3 write miss 
latency. 

03H 40H UNC_GQ_ALLOC.PEE
R_PROBE_TRACKER

Counts the number of GQ peer probe 
tracker (snoop) entries that are 
allocated in the peer probe tracker 
queue that miss the L3.  The GQ peer 
probe occupancy count is divided by 
this count to obtain the average L3 
peer probe miss latency. 

04H 01H UNC_GQ_DATA.FROM
_QPI

Cycles Global Queue Quickpath 
Interface input data port is busy 
importing data from the Quickpath 
Interface.  Each cycle the input port 
can transfer 8  or 16 bytes of data.
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04H 02H UNC_GQ_DATA.FROM
_QMC

Cycles Global Queue Quickpath 
Memory Interface input data port is 
busy importing data from the 
Quickpath Memory Interface. Each 
cycle the input port can transfer 8  or 
16 bytes of data.

04H 04H UNC_GQ_DATA.FROM
_L3

Cycles GQ L3 input data port is busy 
importing data from the Last Level 
Cache. Each cycle the input port can 
transfer 32 bytes of data.

04H 08H UNC_GQ_DATA.FROM
_CORES_02

Cycles GQ Core 0 and 2 input data 
port is busy importing data from 
processor cores 0 and 2. Each cycle 
the input port can transfer 32 bytes 
of data.

04H 10H UNC_GQ_DATA.FROM
_CORES_13

Cycles GQ Core 1 and 3 input data 
port is busy importing data from 
processor cores 1 and 3. Each cycle 
the input port can transfer 32 bytes 
of data.

05H 01H UNC_GQ_DATA.TO_Q
PI_QMC

Cycles GQ QPI and QMC output data 
port is busy sending data to the 
Quickpath Interface or Quickpath 
Memory Interface. Each cycle the 
output port can transfer 32 bytes of 
data.

05H 02H UNC_GQ_DATA.TO_L
3

Cycles GQ L3 output data port is busy 
sending data to the Last Level Cache. 
Each cycle the output port can 
transfer 32 bytes of data.

05H 04H UNC_GQ_DATA.TO_C
ORES

Cycles GQ Core output data port is 
busy sending data to the Cores. Each 
cycle the output port can transfer 32 
bytes of data.

06H 01H UNC_SNP_RESP_TO_
LOCAL_HOME.I_STAT
E

Number of snoop responses to the 
local home that L3 does not have the 
referenced cache line. 
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06H 02H UNC_SNP_RESP_TO_
LOCAL_HOME.S_STA
TE

Number of snoop responses to the 
local home that L3 has the referenced 
line cached in the S state.

06H 04H UNC_SNP_RESP_TO_
LOCAL_HOME.FWD_S
_STATE

Number of responses to code or data 
read snoops to the local home that 
the L3 has the referenced cache line 
in the E state. The L3 cache line state 
is changed to the S state and the line 
is forwarded to the local home in the 
S state.

06H 08H UNC_SNP_RESP_TO_
LOCAL_HOME.FWD_I
_STATE

Number of responses to read 
invalidate snoops to the local home 
that the L3 has the referenced cache 
line in the M state. The L3 cache line 
state is invalidated and the line is 
forwarded to the local home in the M 
state.

06H 10H UNC_SNP_RESP_TO_
LOCAL_HOME.CONFLI
CT

Number of conflict snoop responses 
sent to the local home.

06H 20H UNC_SNP_RESP_TO_
LOCAL_HOME.WB

Number of responses to code or data 
read snoops to the local home that 
the L3 has the referenced line cached 
in the M state. 

07H 01H UNC_SNP_RESP_TO_
REMOTE_HOME.I_ST
ATE

Number of snoop responses to a 
remote home that L3 does not have 
the referenced cache line. 

07H 02H UNC_SNP_RESP_TO_
REMOTE_HOME.S_ST
ATE

Number of snoop responses to a 
remote home that L3 has the 
referenced line cached in the S state.

07H 04H UNC_SNP_RESP_TO_
REMOTE_HOME.FWD
_S_STATE

Number of responses to code or data 
read snoops to a remote home that 
the L3 has the referenced cache line 
in the E state. The L3 cache line state 
is changed to the S state and the line 
is forwarded to the remote home in 
the S state.
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07H 08H UNC_SNP_RESP_TO_
REMOTE_HOME.FWD
_I_STATE

Number of responses to read 
invalidate snoops to a remote home 
that the L3 has the referenced cache 
line in the M state. The L3 cache line 
state is invalidated and the line is 
forwarded to the remote home in the 
M state.

07H 10H UNC_SNP_RESP_TO_
REMOTE_HOME.CON
FLICT

Number of conflict snoop responses 
sent to the local home.

07H 20H UNC_SNP_RESP_TO_
REMOTE_HOME.WB

Number of responses to code or data 
read snoops to a remote home that 
the L3 has the referenced line cached 
in the M state. 

07H 24H UNC_SNP_RESP_TO_
REMOTE_HOME.HITM

Number of HITM snoop responses to a 
remote home

08H 01H UNC_L3_HITS.READ Number of code read, data read and 
RFO requests that hit in the L3

08H 02H UNC_L3_HITS.WRITE Number of writeback requests that 
hit in the L3. Writebacks from the 
cores will always result in L3 hits due 
to the inclusive property of the L3.

08H 04H UNC_L3_HITS.PROBE Number of snoops from IOH or remote 
sockets that hit in the L3.

08H 03H UNC_L3_HITS.ANY Number of reads and writes that hit 
the L3. 

09H 01H UNC_L3_MISS.READ Number of code read, data read and 
RFO requests that miss the L3.

09H 02H UNC_L3_MISS.WRITE Number of writeback requests that 
miss the L3. Should always be zero as 
writebacks from the cores will always 
result in L3 hits due to the inclusive 
property of the L3.

09H 04H UNC_L3_MISS.PROBE Number of snoops from IOH or remote 
sockets that miss the L3.

09H 03H UNC_L3_MISS.ANY Number of reads and writes that miss 
the L3. 
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0AH 01H UNC_L3_LINES_IN.M
_STATE

Counts the number of L3 lines 
allocated in M state.  The only time a 
cache line is allocated in the M state is 
when the line was forwarded in M 
state is forwarded due to a Snoop 
Read Invalidate Own request.

0AH 02H UNC_L3_LINES_IN.E_
STATE

Counts the number of L3 lines 
allocated in E state.

0AH 04H UNC_L3_LINES_IN.S_
STATE

Counts the number of L3 lines 
allocated in S state.

0AH 08H UNC_L3_LINES_IN.F_
STATE

Counts the number of L3 lines 
allocated in F state.

0AH 0FH UNC_L3_LINES_IN.A
NY

Counts the number of L3 lines 
allocated in any state. 

0BH 01H UNC_L3_LINES_OUT.
M_STATE

Counts the number of L3 lines 
victimized that were in the M state. 
When the victim cache line is in M 
state, the line is written to its home 
cache agent which can be either local 
or remote.

0BH 02H UNC_L3_LINES_OUT.
E_STATE

Counts the number of L3 lines 
victimized that were in the E state.

0BH 04H UNC_L3_LINES_OUT.
S_STATE

Counts the number of L3 lines 
victimized that were in the S state.

0BH 08H UNC_L3_LINES_OUT.
I_STATE

Counts the number of L3 lines 
victimized that were in the I state.

0BH 10H UNC_L3_LINES_OUT.
F_STATE

Counts the number of L3 lines 
victimized that were in the F state.

0BH 1FH UNC_L3_LINES_OUT.
ANY

Counts the number of L3 lines 
victimized in any state.

0CH 01H UNC_GQ_SNOOP.GOT
O_S

Counts the number of remote snoops 
that have requested a cache line be 
set to the S state.

0CH 02H UNC_GQ_SNOOP.GOT
O_I

Counts the number of remote snoops 
that have requested a cache line be 
set to the I state.
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0CH 04H UNC_GQ_SNOOP.GOT
O_S_HIT_E

Counts the number of remote snoops 
that have requested a cache line be 
set to the S state from E state.

Requires 
writing MSR 
301H with 
mask = 2H

0CH 04H UNC_GQ_SNOOP.GOT
O_S_HIT_F

Counts the number of remote snoops 
that have requested a cache line be 
set to the S state from F (forward) 
state.

Requires 
writing MSR 
301H with 
mask = 8H

0CH 04H UNC_GQ_SNOOP.GOT
O_S_HIT_M

Counts the number of remote snoops 
that have requested a cache line be 
set to the S state from M state.

Requires 
writing MSR 
301H with 
mask = 1H

0CH 04H UNC_GQ_SNOOP.GOT
O_S_HIT_S

Counts the number of remote snoops 
that have requested a cache line be 
set to the S state from S state.

Requires 
writing MSR 
301H with 
mask = 4H

0CH 08H UNC_GQ_SNOOP.GOT
O_I_HIT_E

Counts the number of remote snoops 
that have requested a cache line be 
set to the I state from E state.

Requires 
writing MSR 
301H with 
mask = 2H

0CH 08H UNC_GQ_SNOOP.GOT
O_I_HIT_F

Counts the number of remote snoops 
that have requested a cache line be 
set to the I state from F (forward) 
state.

Requires 
writing MSR 
301H with 
mask = 8H

0CH 08H UNC_GQ_SNOOP.GOT
O_I_HIT_M

Counts the number of remote snoops 
that have requested a cache line be 
set to the I state from M state.

Requires 
writing MSR 
301H with 
mask = 1H

0CH 08H UNC_GQ_SNOOP.GOT
O_I_HIT_S

Counts the number of remote snoops 
that have requested a cache line be 
set to the I state from S state.

Requires 
writing MSR 
301H with 
mask = 4H

20H 01H UNC_QHL_REQUEST
S.IOH_READS

Counts number of Quickpath Home 
Logic read requests from the IOH.

20H 02H UNC_QHL_REQUEST
S.IOH_WRITES

Counts number of Quickpath Home 
Logic write requests from the IOH.

20H 04H UNC_QHL_REQUEST
S.REMOTE_READS

Counts number of Quickpath Home 
Logic read requests from  a remote 
socket.
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20H 08H UNC_QHL_REQUEST
S.REMOTE_WRITES

Counts number of Quickpath Home 
Logic write requests from a remote 
socket.

20H 10H UNC_QHL_REQUEST
S.LOCAL_READS

Counts number of Quickpath Home 
Logic read requests from  the local 
socket.

20H 20H UNC_QHL_REQUEST
S.LOCAL_WRITES

Counts number of Quickpath Home 
Logic write requests from  the local 
socket.

21H 01H UNC_QHL_CYCLES_F
ULL.IOH

Counts uclk cycles all entries in the 
Quickpath Home Logic IOH are full.

21H 02H UNC_QHL_CYCLES_F
ULL.REMOTE

Counts uclk cycles all entries in the 
Quickpath Home Logic remote tracker 
are full.

21H 04H UNC_QHL_CYCLES_F
ULL.LOCAL

Counts uclk cycles all entries in the 
Quickpath Home Logic local tracker 
are full.

22H 01H UNC_QHL_CYCLES_N
OT_EMPTY.IOH

Counts uclk cycles all entries in the 
Quickpath Home Logic IOH is busy.

22H 02H UNC_QHL_CYCLES_N
OT_EMPTY.REMOTE

Counts uclk cycles all entries in the 
Quickpath Home Logic remote tracker 
is busy.

22H 04H UNC_QHL_CYCLES_N
OT_EMPTY.LOCAL

Counts uclk cycles all entries in the 
Quickpath Home Logic local tracker is 
busy.

23H 01H UNC_QHL_OCCUPAN
CY.IOH

QHL IOH tracker allocate to deallocate 
read occupancy.

23H 02H UNC_QHL_OCCUPAN
CY.REMOTE

QHL remote tracker allocate to 
deallocate read occupancy.

23H 04H UNC_QHL_OCCUPAN
CY.LOCAL

QHL local tracker allocate to 
deallocate read occupancy.
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24H 02H UNC_QHL_ADDRESS
_CONFLICTS.2WAY

Counts number of QHL Active Address 
Table (AAT) entries that saw a max of 
2 conflicts. The AAT is a structure that 
tracks requests that are in conflict. 
The requests themselves are in the 
home tracker entries. The count is 
reported when an AAT entry 
deallocates.

24H 04H UNC_QHL_ADDRESS
_CONFLICTS.3WAY

Counts number of QHL Active Address 
Table (AAT) entries that saw a max of 
3 conflicts. The AAT is a structure that 
tracks requests that are in conflict. 
The requests themselves are in the 
home tracker entries. The count is 
reported when an AAT entry 
deallocates.

25H 01H UNC_QHL_CONFLICT
_CYCLES.IOH

Counts cycles the Quickpath Home 
Logic IOH Tracker contains two or 
more requests with an address 
conflict. A max of 3 requests can be in 
conflict.

25H 02H UNC_QHL_CONFLICT
_CYCLES.REMOTE

Counts cycles the Quickpath Home 
Logic Remote Tracker contains two or 
more requests with an address 
conflict. A max of 3 requests can be in 
conflict.

25H 04H UNC_QHL_CONFLICT
_CYCLES.LOCAL

Counts cycles the Quickpath Home 
Logic Local Tracker contains two or 
more requests with an address 
conflict.  A max of 3 requests can be 
in conflict.

26H 01H UNC_QHL_TO_QMC_
BYPASS

Counts number or requests to the 
Quickpath Memory Controller that 
bypass the Quickpath Home Logic. All 
local accesses can be bypassed. For 
remote requests, only read requests 
can be bypassed.
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28H 01H UNC_QMC_ISOC_FUL
L.READ.CH0

Counts cycles all the entries in the 
DRAM channel 0 high priority queue 
are occupied with isochronous read 
requests.

28H 02H UNC_QMC_ISOC_FUL
L.READ.CH1

Counts cycles all the entries in the 
DRAM channel 1high priority queue 
are occupied with isochronous read 
requests.

28H 04H UNC_QMC_ISOC_FUL
L.READ.CH2

Counts cycles all the entries in the 
DRAM channel 2 high priority queue 
are occupied with isochronous read 
requests.

28H 08H UNC_QMC_ISOC_FUL
L.WRITE.CH0

Counts cycles all the entries in the 
DRAM channel 0 high priority queue 
are occupied with isochronous write 
requests.

28H 10H UNC_QMC_ISOC_FUL
L.WRITE.CH1

Counts cycles all the entries in the 
DRAM channel 1 high priority queue 
are occupied with isochronous write 
requests.

28H 20H UNC_QMC_ISOC_FUL
L.WRITE.CH2

Counts cycles all the entries in the 
DRAM channel 2 high priority queue 
are occupied with isochronous write 
requests.

29H 01H UNC_QMC_BUSY.REA
D.CH0

Counts cycles where Quickpath 
Memory Controller has at least 1 
outstanding read request to  DRAM 
channel 0.

29H 02H UNC_QMC_BUSY.REA
D.CH1

Counts cycles where Quickpath 
Memory Controller has at least 1 
outstanding read request to  DRAM 
channel 1.

29H 04H UNC_QMC_BUSY.REA
D.CH2

Counts cycles where Quickpath 
Memory Controller has at least 1 
outstanding read request to  DRAM 
channel 2.
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29H 08H UNC_QMC_BUSY.WRI
TE.CH0

Counts cycles where Quickpath 
Memory Controller has at least 1 
outstanding write request to  DRAM 
channel 0.

29H 10H UNC_QMC_BUSY.WRI
TE.CH1

Counts cycles where Quickpath 
Memory Controller has at least 1 
outstanding write request to  DRAM 
channel 1.

29H 20H UNC_QMC_BUSY.WRI
TE.CH2

Counts cycles where Quickpath 
Memory Controller has at least 1 
outstanding write request to  DRAM 
channel 2.

2AH 01H UNC_QMC_OCCUPAN
CY.CH0

IMC channel 0 normal read request 
occupancy.

2AH 02H UNC_QMC_OCCUPAN
CY.CH1

IMC channel 1 normal read request 
occupancy.

2AH 04H UNC_QMC_OCCUPAN
CY.CH2

IMC channel 2 normal read request 
occupancy.

2AH 07H UNC_QMC_OCCUPAN
CY.ANY

Normal read request occupancy for 
any channel.

2BH 01H UNC_QMC_ISSOC_OC
CUPANCY.CH0

IMC channel 0 issoc read request 
occupancy.

2BH 02H UNC_QMC_ISSOC_OC
CUPANCY.CH1

IMC channel 1 issoc read request 
occupancy.

2BH 04H UNC_QMC_ISSOC_OC
CUPANCY.CH2

IMC channel 2 issoc read request 
occupancy.

2BH 07H UNC_QMC_ISSOC_RE
ADS.ANY

IMC issoc read request occupancy.

2CH 01H UNC_QMC_NORMAL_
READS.CH0

Counts the number of Quickpath 
Memory Controller channel 0 medium 
and low priority read requests. The 
QMC channel 0 normal read 
occupancy divided by this count 
provides the average QMC channel 0 
read latency. 

Table 19-10.  Non-Architectural Performance Events In the Processor Uncore for 
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
19-126 Vol. 3B



PERFORMANCE-MONITORING EVENTS
2CH 02H UNC_QMC_NORMAL_
READS.CH1

Counts the number of Quickpath 
Memory Controller channel 1 medium 
and low priority read requests. The 
QMC channel 1 normal read 
occupancy divided by this count 
provides the average QMC channel 1 
read latency. 

2CH 04H UNC_QMC_NORMAL_
READS.CH2

Counts the number of Quickpath 
Memory Controller channel 2 medium 
and low priority read requests. The 
QMC channel 2 normal read 
occupancy divided by this count 
provides the average QMC channel 2 
read latency. 

2CH 07H UNC_QMC_NORMAL_
READS.ANY

Counts the number of Quickpath 
Memory Controller medium and low 
priority read requests. The QMC 
normal read occupancy divided by this 
count provides the average QMC read 
latency. 

2DH 01H UNC_QMC_HIGH_PRI
ORITY_READS.CH0

Counts the number of Quickpath 
Memory Controller channel 0 high 
priority isochronous read requests. 

2DH 02H UNC_QMC_HIGH_PRI
ORITY_READS.CH1

Counts the number of Quickpath 
Memory Controller channel 1 high 
priority isochronous read requests. 

2DH 04H UNC_QMC_HIGH_PRI
ORITY_READS.CH2

Counts the number of Quickpath 
Memory Controller channel 2 high 
priority isochronous read requests. 

2DH 07H UNC_QMC_HIGH_PRI
ORITY_READS.ANY

Counts the number of Quickpath 
Memory Controller high priority 
isochronous read requests. 

2EH 01H UNC_QMC_CRITICAL_
PRIORITY_READS.CH
0

Counts the number of Quickpath 
Memory Controller channel 0 critical 
priority isochronous read requests. 

2EH 02H UNC_QMC_CRITICAL_
PRIORITY_READS.CH
1

Counts the number of Quickpath 
Memory Controller channel 1 critical 
priority isochronous read requests. 
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2EH 04H UNC_QMC_CRITICAL_
PRIORITY_READS.CH
2

Counts the number of Quickpath 
Memory Controller channel 2 critical 
priority isochronous read requests. 

2EH 07H UNC_QMC_CRITICAL_
PRIORITY_READS.AN
Y

Counts the number of Quickpath 
Memory Controller critical priority 
isochronous read requests. 

2FH 01H UNC_QMC_WRITES.F
ULL.CH0

Counts number of full cache line 
writes to DRAM channel 0.

2FH 02H UNC_QMC_WRITES.F
ULL.CH1

Counts number of full cache line 
writes to DRAM channel 1.

2FH 04H UNC_QMC_WRITES.F
ULL.CH2

Counts number of full cache line 
writes to DRAM channel 2.

2FH 07H UNC_QMC_WRITES.F
ULL.ANY

Counts number of full cache line 
writes to DRAM.

2FH 08H UNC_QMC_WRITES.P
ARTIAL.CH0

Counts number of partial cache line 
writes to DRAM channel 0.

2FH 10H UNC_QMC_WRITES.P
ARTIAL.CH1

Counts number of partial cache line 
writes to DRAM channel 1.

2FH 20H UNC_QMC_WRITES.P
ARTIAL.CH2

Counts number of partial cache line 
writes to DRAM channel 2.

2FH 38H UNC_QMC_WRITES.P
ARTIAL.ANY

Counts number of partial cache line 
writes to DRAM.

30H 01H UNC_QMC_CANCEL.C
H0

Counts number of DRAM channel 0 
cancel requests.

30H 02H UNC_QMC_CANCEL.C
H1

Counts number of DRAM channel 1 
cancel requests.

30H 04H UNC_QMC_CANCEL.C
H2

Counts number of DRAM channel 2 
cancel requests.

30H 07H UNC_QMC_CANCEL.A
NY

Counts number of DRAM cancel 
requests.
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31H 01H UNC_QMC_PRIORITY
_UPDATES.CH0

Counts number of DRAM channel 0 
priority updates. A priority update 
occurs when an ISOC high or critical 
request is received by the QHL and 
there is a matching request with 
normal priority that has already been 
issued to the QMC.  In this instance, 
the QHL will send a priority update to 
QMC to expedite the request.

31H 02H UNC_QMC_PRIORITY
_UPDATES.CH1

Counts number of DRAM channel 1 
priority updates. A priority update 
occurs when an ISOC high or critical 
request is received by the QHL and 
there is a matching request with 
normal priority that has already been 
issued to the QMC.  In this instance, 
the QHL will send a priority update to 
QMC to expedite the request.

31H 04H UNC_QMC_PRIORITY
_UPDATES.CH2

Counts number of DRAM channel 2 
priority updates. A priority update 
occurs when an ISOC high or critical 
request is received by the QHL and 
there is a matching request with 
normal priority that has already been 
issued to the QMC.  In this instance, 
the QHL will send a priority update to 
QMC to expedite the request.

31H 07H UNC_QMC_PRIORITY
_UPDATES.ANY

Counts number of DRAM priority 
updates. A priority update occurs 
when an ISOC high or critical request 
is received by the QHL and there is a 
matching request with normal priority 
that has already been issued to the 
QMC.  In this instance, the QHL will 
send a priority update to QMC to 
expedite the request.

32H 01H UNC_IMC_RETRY.CH
0

Counts number of IMC DRAM channel 
0 retries. DRAM retry only occurs 
when configured in RAS mode.
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32H 02H UNC_IMC_RETRY.CH
1

Counts number of IMC DRAM channel 
1 retries. DRAM retry only occurs 
when configured in RAS mode.

32H 04H UNC_IMC_RETRY.CH
2

Counts number of IMC DRAM channel 
2 retries. DRAM retry only occurs 
when configured in RAS mode.

32H 07H UNC_IMC_RETRY.AN
Y

Counts number of IMC DRAM retries 
from any channel. DRAM retry only 
occurs when configured in RAS mode.

33H 01H UNC_QHL_FRC_ACK_
CNFLTS.IOH

Counts number of Force Acknowledge 
Conflict messages sent by the 
Quickpath Home Logic to the IOH.

33H 02H UNC_QHL_FRC_ACK_
CNFLTS.REMOTE

Counts number of Force Acknowledge 
Conflict messages sent by the 
Quickpath Home Logic to the remote 
home.

33H 04H UNC_QHL_FRC_ACK_
CNFLTS.LOCAL

Counts number of Force Acknowledge 
Conflict messages sent by the 
Quickpath Home Logic to the local 
home.

33H 07H UNC_QHL_FRC_ACK_
CNFLTS.ANY

Counts number of Force Acknowledge 
Conflict messages sent by the 
Quickpath Home Logic.

34H 01H UNC_QHL_SLEEPS.IO
H_ORDER

Counts number of occurrences a 
request was put to sleep due to IOH 
ordering (write after read) conflicts. 
While in the sleep state, the request is 
not eligible to be scheduled to the 
QMC.

34H 02H UNC_QHL_SLEEPS.R
EMOTE_ORDER

Counts number of occurrences a 
request was put to sleep due to 
remote socket ordering (write after 
read) conflicts. While in the sleep 
state, the request is not eligible to be 
scheduled to the QMC.
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34H 04H UNC_QHL_SLEEPS.L
OCAL_ORDER

Counts number of occurrences a 
request was put to sleep due to local 
socket ordering (write after read) 
conflicts. While in the sleep state, the 
request is not eligible to be scheduled 
to the QMC.

34H 08H UNC_QHL_SLEEPS.IO
H_CONFLICT

Counts number of occurrences a 
request was put to sleep due to IOH 
address conflicts. While in the sleep 
state, the request is not eligible to be 
scheduled to the QMC.

34H 10H UNC_QHL_SLEEPS.R
EMOTE_CONFLICT

Counts number of occurrences a 
request was put to sleep due to 
remote socket address conflicts. While 
in the sleep state, the request is not 
eligible to be scheduled to the QMC.

34H 20H UNC_QHL_SLEEPS.L
OCAL_CONFLICT

Counts number of occurrences a 
request was put to sleep due to local 
socket address conflicts. While in the 
sleep state, the request is not eligible 
to be scheduled to the QMC.

35H 01H UNC_ADDR_OPCODE
_MATCH.IOH

Counts number of requests from the 
IOH, address/opcode of request is 
qualified by mask value written to 
MSR 396H. The following mask values 
are supported:

0: NONE

40000000_00000000H:RSPFWDI

40001A00_00000000H:RSPFWDS

40001D00_00000000H:RSPIWB

Match 
opcode/addres
s by writing 
MSR 396H 
with mask 
supported 
mask value
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35H 02H UNC_ADDR_OPCODE
_MATCH.REMOTE

Counts number of requests from the 
remote socket, address/opcode of 
request is qualified by mask value 
written to MSR 396H. The following 
mask values are supported:

0: NONE

40000000_00000000H:RSPFWDI

40001A00_00000000H:RSPFWDS

40001D00_00000000H:RSPIWB

Match 
opcode/addres
s by writing 
MSR 396H 
with mask 
supported 
mask value

35H 04H UNC_ADDR_OPCODE
_MATCH.LOCAL

Counts number of requests from the 
local socket, address/opcode of 
request is qualified by mask value 
written to MSR 396H. The following 
mask values are supported:

0: NONE

40000000_00000000H:RSPFWDI

40001A00_00000000H:RSPFWDS

40001D00_00000000H:RSPIWB

Match 
opcode/addres
s by writing 
MSR 396H 
with mask 
supported 
mask value

40H 01H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.HO
ME.LINK_0

Counts cycles the Quickpath outbound 
link 0 HOME virtual channel is stalled 
due to lack of a VNA and VN0 credit. 
Note that this event does not filter 
out when a flit would not have been 
selected for arbitration because 
another virtual channel is getting 
arbitrated.

40H 02H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.SNO
OP.LINK_0

Counts cycles the Quickpath outbound 
link 0 SNOOP virtual channel is stalled 
due to lack of a VNA and VN0 credit. 
Note that this event does not filter 
out when a flit would not have been 
selected for arbitration because 
another virtual channel is getting 
arbitrated.
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40H 04H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.NDR
.LINK_0

Counts cycles the Quickpath outbound 
link 0 non-data response virtual 
channel is stalled due to lack of a VNA 
and VN0 credit. Note that this event 
does not filter out when a flit would 
not have been selected for arbitration 
because another virtual channel is 
getting arbitrated.

40H 08H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.HO
ME.LINK_1

Counts cycles the Quickpath outbound 
link 1 HOME virtual channel is stalled 
due to lack of a VNA and VN0 credit. 
Note that this event does not filter 
out when a flit would not have been 
selected for arbitration because 
another virtual channel is getting 
arbitrated.

40H 10H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.SNO
OP.LINK_1

Counts cycles the Quickpath outbound 
link 1 SNOOP virtual channel is stalled 
due to lack of a VNA and VN0 credit. 
Note that this event does not filter 
out when a flit would not have been 
selected for arbitration because 
another virtual channel is getting 
arbitrated.

40H 20H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.NDR
.LINK_1

Counts cycles the Quickpath outbound 
link 1 non-data response virtual 
channel is stalled due to lack of a VNA 
and VN0 credit. Note that this event 
does not filter out when a flit would 
not have been selected for arbitration 
because another virtual channel is 
getting arbitrated.

40H 07H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.LIN
K_0

Counts cycles the Quickpath outbound 
link 0 virtual channels are stalled due 
to lack of a VNA and VN0 credit. Note 
that this event does not filter out 
when a flit would not have been 
selected for arbitration because 
another virtual channel is getting 
arbitrated.
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40H 38H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.LIN
K_1

Counts cycles the Quickpath outbound 
link 1 virtual channels are stalled due 
to lack of a VNA and VN0 credit. Note 
that this event does not filter out 
when a flit would not have been 
selected for arbitration because 
another virtual channel is getting 
arbitrated.

41H 01H UNC_QPI_TX_STALL
ED_MULTI_FLIT.DRS.
LINK_0

Counts cycles the Quickpath outbound 
link 0 Data ResponSe virtual channel 
is stalled due to lack of VNA and VN0 
credits. Note that this event does not 
filter out when a flit would not have 
been selected for arbitration because 
another virtual channel is getting 
arbitrated.

41H 02H UNC_QPI_TX_STALL
ED_MULTI_FLIT.NCB.
LINK_0

Counts cycles the Quickpath outbound 
link 0 Non-Coherent Bypass virtual 
channel is stalled due to lack of VNA 
and VN0 credits. Note that this event 
does not filter out when a flit would 
not have been selected for arbitration 
because another virtual channel is 
getting arbitrated.

41H 04H UNC_QPI_TX_STALL
ED_MULTI_FLIT.NCS.
LINK_0

Counts cycles the Quickpath outbound 
link 0 Non-Coherent Standard virtual 
channel is stalled due to lack of VNA 
and VN0 credits. Note that this event 
does not filter out when a flit would 
not have been selected for arbitration 
because another virtual channel is 
getting arbitrated.

41H 08H UNC_QPI_TX_STALL
ED_MULTI_FLIT.DRS.
LINK_1

Counts cycles the Quickpath outbound 
link 1 Data ResponSe virtual channel 
is stalled due to lack of VNA and VN0 
credits. Note that this event does not 
filter out when a flit would not have 
been selected for arbitration because 
another virtual channel is getting 
arbitrated.
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41H 10H UNC_QPI_TX_STALL
ED_MULTI_FLIT.NCB.
LINK_1

Counts cycles the Quickpath outbound 
link 1 Non-Coherent Bypass virtual 
channel is stalled due to lack of VNA 
and VN0 credits. Note that this event 
does not filter out when a flit would 
not have been selected for arbitration 
because another virtual channel is 
getting arbitrated.

41H 20H UNC_QPI_TX_STALL
ED_MULTI_FLIT.NCS.
LINK_1

Counts cycles the Quickpath outbound 
link 1 Non-Coherent Standard virtual 
channel is stalled due to lack of VNA 
and VN0 credits. Note that this event 
does not filter out when a flit would 
not have been selected for arbitration 
because another virtual channel is 
getting arbitrated.

41H 07H UNC_QPI_TX_STALL
ED_MULTI_FLIT.LINK
_0

Counts cycles the Quickpath outbound 
link 0 virtual channels are stalled due 
to lack of VNA and VN0 credits. Note 
that this event does not filter out 
when a flit would not have been 
selected for arbitration because 
another virtual channel is getting 
arbitrated.

41H 38H UNC_QPI_TX_STALL
ED_MULTI_FLIT.LINK
_1

Counts cycles the Quickpath outbound 
link 1 virtual channels are stalled due 
to lack of VNA and VN0 credits. Note 
that this event does not filter out 
when a flit would not have been 
selected for arbitration because 
another virtual channel is getting 
arbitrated.

42H 01H UNC_QPI_TX_HEADE
R.FULL.LINK_0

Number of cycles that the header 
buffer in the Quickpath Interface 
outbound link 0 is full.

42H 02H UNC_QPI_TX_HEADE
R.BUSY.LINK_0

Number of cycles that the header 
buffer in the Quickpath Interface 
outbound link 0 is busy.
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42H 04H UNC_QPI_TX_HEADE
R.FULL.LINK_1

Number of cycles that the header 
buffer in the Quickpath Interface 
outbound link 1 is full.

42H 08H UNC_QPI_TX_HEADE
R.BUSY.LINK_1

Number of cycles that the header 
buffer in the Quickpath Interface 
outbound link 1 is busy.

43H 01H UNC_QPI_RX_NO_PP
T_CREDIT.STALLS.LIN
K_0

Number of cycles that snoop packets 
incoming to the Quickpath Interface 
link 0 are stalled and not sent to the 
GQ because the GQ Peer Probe 
Tracker (PPT) does not have any 
available entries.

43H 02H UNC_QPI_RX_NO_PP
T_CREDIT.STALLS.LIN
K_1

Number of cycles that snoop packets 
incoming to the Quickpath Interface 
link 1 are stalled and not sent to the 
GQ because the GQ Peer Probe 
Tracker (PPT) does not have any 
available entries.

60H 01H UNC_DRAM_OPEN.C
H0

Counts number of DRAM Channel 0 
open commands issued either for read 
or write. To read or write data, the 
referenced DRAM page must first be 
opened.

60H 02H UNC_DRAM_OPEN.C
H1

Counts number of DRAM Channel 1 
open commands issued either for read 
or write. To read or write data, the 
referenced DRAM page must first be 
opened.

60H 04H UNC_DRAM_OPEN.C
H2

Counts number of DRAM Channel 2 
open commands issued either for read 
or write. To read or write data, the 
referenced DRAM page must first be 
opened.

61H 01H UNC_DRAM_PAGE_C
LOSE.CH0

DRAM channel 0 command issued to 
CLOSE a page due to page idle timer 
expiration. Closing a page is done by 
issuing a precharge.
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61H 02H UNC_DRAM_PAGE_C
LOSE.CH1

DRAM channel 1 command issued to 
CLOSE a page due to page idle timer 
expiration. Closing a page is done by 
issuing a precharge.

61H 04H UNC_DRAM_PAGE_C
LOSE.CH2

DRAM channel 2 command issued to 
CLOSE a page due to page idle timer 
expiration. Closing a page is done by 
issuing a precharge.

62H 01H UNC_DRAM_PAGE_M
ISS.CH0

Counts the number of precharges 
(PRE) that were issued to DRAM 
channel 0 because there was a page 
miss. A page miss refers to a situation 
in which a page is currently open and 
another page from the same bank 
needs to be opened. The new page 
experiences a page miss. Closing of 
the old page is done by issuing a 
precharge.

62H 02H UNC_DRAM_PAGE_M
ISS.CH1

Counts the number of precharges 
(PRE) that were issued to DRAM 
channel 1 because there was a page 
miss. A page miss refers to a situation 
in which a page is currently open and 
another page from the same bank 
needs to be opened. The new page 
experiences a page miss. Closing of 
the old page is done by issuing a 
precharge.

62H 04H UNC_DRAM_PAGE_M
ISS.CH2

Counts the number of precharges 
(PRE) that were issued to DRAM 
channel 2 because there was a page 
miss. A page miss refers to a situation 
in which a page is currently open and 
another page from the same bank 
needs to be opened. The new page 
experiences a page miss. Closing of 
the old page is done by issuing a 
precharge.

63H 01H UNC_DRAM_READ_C
AS.CH0

Counts the number of times a read 
CAS command was issued on DRAM 
channel 0.

Table 19-10.  Non-Architectural Performance Events In the Processor Uncore for 
Processors Based on Intel® Microarchitecture Code Name Westmere
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63H 02H UNC_DRAM_READ_C
AS.AUTOPRE_CH0

Counts the number of times a read 
CAS command was issued on DRAM 
channel 0 where the command issued 
used the auto-precharge (auto page 
close) mode.

63H 04H UNC_DRAM_READ_C
AS.CH1

Counts the number of times a read 
CAS command was issued on DRAM 
channel 1.

63H 08H UNC_DRAM_READ_C
AS.AUTOPRE_CH1

Counts the number of times a read 
CAS command was issued on DRAM 
channel 1 where the command issued 
used the auto-precharge (auto page 
close) mode.

63H 10H UNC_DRAM_READ_C
AS.CH2

Counts the number of times a read 
CAS command was issued on DRAM 
channel 2.

63H 20H UNC_DRAM_READ_C
AS.AUTOPRE_CH2

Counts the number of times a read 
CAS command was issued on DRAM 
channel 2 where the command issued 
used the auto-precharge (auto page 
close) mode.

64H 01H UNC_DRAM_WRITE_
CAS.CH0

Counts the number of times a write 
CAS command was issued on DRAM 
channel 0.

64H 02H UNC_DRAM_WRITE_
CAS.AUTOPRE_CH0

Counts the number of times a write 
CAS command was issued on DRAM 
channel 0 where the command issued 
used the auto-precharge (auto page 
close) mode.

64H 04H UNC_DRAM_WRITE_
CAS.CH1

Counts the number of times a write 
CAS command was issued on DRAM 
channel 1.

64H 08H UNC_DRAM_WRITE_
CAS.AUTOPRE_CH1

Counts the number of times a write 
CAS command was issued on DRAM 
channel 1 where the command issued 
used the auto-precharge (auto page 
close) mode.

Table 19-10.  Non-Architectural Performance Events In the Processor Uncore for 
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64H 10H UNC_DRAM_WRITE_
CAS.CH2

Counts the number of times a write 
CAS command was issued on DRAM 
channel 2.

64H 20H UNC_DRAM_WRITE_
CAS.AUTOPRE_CH2

Counts the number of times a write 
CAS command was issued on DRAM 
channel 2 where the command issued 
used the auto-precharge (auto page 
close) mode.

65H 01H UNC_DRAM_REFRES
H.CH0

Counts number of DRAM channel 0 
refresh commands. DRAM loses data 
content over time. In order to keep 
correct data content, the data values 
have to be refreshed periodically.

65H 02H UNC_DRAM_REFRES
H.CH1

Counts number of DRAM channel 1 
refresh commands. DRAM loses data 
content over time. In order to keep 
correct data content, the data values 
have to be refreshed periodically.

65H 04H UNC_DRAM_REFRES
H.CH2

Counts number of DRAM channel 2 
refresh commands. DRAM loses data 
content over time. In order to keep 
correct data content, the data values 
have to be refreshed periodically.

66H 01H UNC_DRAM_PRE_AL
L.CH0

Counts number of DRAM Channel 0 
precharge-all (PREALL) commands 
that close all open pages in a rank. 
PREALL is issued when the DRAM 
needs to be refreshed or needs to go 
into a power down mode.

66H 02H UNC_DRAM_PRE_AL
L.CH1

Counts number of DRAM Channel 1 
precharge-all (PREALL) commands 
that close all open pages in a rank. 
PREALL is issued when the DRAM 
needs to be refreshed or needs to go 
into a power down mode.

Table 19-10.  Non-Architectural Performance Events In the Processor Uncore for 
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66H 04H UNC_DRAM_PRE_AL
L.CH2

Counts number of DRAM Channel 2 
precharge-all (PREALL) commands 
that close all open pages in a rank. 
PREALL is issued when the DRAM 
needs to be refreshed or needs to go 
into a power down mode.

67H 01H UNC_DRAM_THERM
AL_THROTTLED

Uncore cycles DRAM was throttled 
due to its temperature being above 
the thermal throttling threshold.

80H 01H UNC_THERMAL_THR
OTTLING_TEMP.CORE
_0

Cycles that the PCU records that core 
0 is above the thermal throttling 
threshold temperature.

80H 02H UNC_THERMAL_THR
OTTLING_TEMP.CORE
_1

Cycles that the PCU records that core 
1 is above the thermal throttling 
threshold temperature.

80H 04H UNC_THERMAL_THR
OTTLING_TEMP.CORE
_2

Cycles that the PCU records that core 
2 is above the thermal throttling 
threshold temperature.

80H 08H UNC_THERMAL_THR
OTTLING_TEMP.CORE
_3

Cycles that the PCU records that core 
3 is above the thermal throttling 
threshold temperature.

81H 01H UNC_THERMAL_THR
OTTLED_TEMP.CORE
_0

Cycles that the PCU records that core 
0 is in the power throttled state due 
to core’s temperature being above the 
thermal throttling threshold.

81H 02H UNC_THERMAL_THR
OTTLED_TEMP.CORE
_1

Cycles that the PCU records that core 
1 is in the power throttled state due 
to core’s temperature being above the 
thermal throttling threshold.

81H 04H UNC_THERMAL_THR
OTTLED_TEMP.CORE
_2

Cycles that the PCU records that core 
2 is in the power throttled state due 
to core’s temperature being above the 
thermal throttling threshold.

81H 08H UNC_THERMAL_THR
OTTLED_TEMP.CORE
_3

Cycles that the PCU records that core 
3 is in the power throttled state due 
to core’s temperature being above the 
thermal throttling threshold.

Table 19-10.  Non-Architectural Performance Events In the Processor Uncore for 
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82H 01H UNC_PROCHOT_ASS
ERTION

Number of system assertions of 
PROCHOT indicating the entire 
processor has exceeded the thermal 
limit.

83H 01H UNC_THERMAL_THR
OTTLING_PROCHOT.C
ORE_0

Cycles that the PCU records that core 
0 is a low power state due to the 
system asserting PROCHOT the entire 
processor has exceeded the thermal 
limit.

83H 02H UNC_THERMAL_THR
OTTLING_PROCHOT.C
ORE_1

Cycles that the PCU records that core 
1 is a low power state due to the 
system asserting PROCHOT the entire 
processor has exceeded the thermal 
limit.

83H 04H UNC_THERMAL_THR
OTTLING_PROCHOT.C
ORE_2

Cycles that the PCU records that core 
2 is a low power state due to the 
system asserting PROCHOT the entire 
processor has exceeded the thermal 
limit.

83H 08H UNC_THERMAL_THR
OTTLING_PROCHOT.C
ORE_3

Cycles that the PCU records that core 
3 is a low power state due to the 
system asserting PROCHOT the entire 
processor has exceeded the thermal 
limit.

84H 01H UNC_TURBO_MODE.
CORE_0

Uncore cycles that core 0 is operating 
in turbo mode.

84H 02H UNC_TURBO_MODE.
CORE_1

Uncore cycles that core 1 is operating 
in turbo mode.

84H 04H UNC_TURBO_MODE.
CORE_2

Uncore cycles that core 2 is operating 
in turbo mode.

84H 08H UNC_TURBO_MODE.
CORE_3

Uncore cycles that core 3 is operating 
in turbo mode.

85H 02H UNC_CYCLES_UNHAL
TED_L3_FLL_ENABL
E

Uncore cycles that at least one core is 
unhalted and all L3 ways are enabled.

86H 01H UNC_CYCLES_UNHAL
TED_L3_FLL_DISABL
E

Uncore cycles that at least one core is 
unhalted and all L3 ways are disabled.
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19.6 PERFORMANCE MONITORING EVENTS FOR 
INTEL® XEON® PROCESSOR 5200, 5400 SERIES 
AND INTEL® CORE™2 EXTREME PROCESSORS QX 
9000 SERIES

Processors based on the Enhanced Intel Core microarchitecture support the architec-
tural and non-architectural performance-monitoring events listed in Table 19-1 and 
Table 19-13. In addition, they also support the following non-architectural perfor-
mance-monitoring events listed in Table 19-11. Fixed counters support the architec-
ture events defined in Table 19-12.

19.7 PERFORMANCE MONITORING EVENTS FOR 
INTEL® XEON® PROCESSOR 3000, 3200, 5100, 
5300 SERIES AND INTEL® CORE™2 DUO 
PROCESSORS

Processors based on the Intel Core microarchitecture support architectural and non-
architectural performance-monitoring events. 

Fixed-function performance counters are introduced first on processors based on 
Intel Core microarchitecture. Table 19-12 lists pre-defined performance events that 
can be counted using fixed-function performance counters.

Table 19-11.  Non-Architectural Performance Events for Processors Based on 
Enhanced Intel Core Microarchitecture

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment

C0H 08H INST_RETIRED.VM_H
OST

Instruction retired while in VMX 
root operations.

D2H 10H RAT_STAALS.OTHER
_SERIALIZATION_ST
ALLS

This events counts the number of 
stalls due to other RAT resource 
serialization not counted by Umask 
value 0FH. 
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Table 19-13 lists general-purpose non-architectural performance-monitoring events 
supported in processors based on Intel Core microarchitecture. For convenience, 

Table 19-12.  Fixed-Function Performance Counter
and Pre-defined Performance Events

Fixed-Function 
Performance 
Counter Address

Event Mask 
Mnemonic Description

MSR_PERF_FIXED_
CTR0/IA32_PERF_FIX
ED_CTR0

309H Inst_Retired.Any This event counts the number of 
instructions that retire execution. For 
instructions that consist of multiple micro-
ops, this event counts the retirement of 
the last micro-op of the instruction. The 
counter continue counting during 
hardware interrupts, traps, and inside 
interrupt handlers.

MSR_PERF_FIXED_
CTR1/IA32_PERF_FIX
ED_CTR1

30AH CPU_CLK_UNHALT
ED.CORE

This event counts the number of core 
cycles while the core is not in a halt state. 
The core enters the halt state when it is 
running the HLT instruction. This event is a 
component in many key event ratios. 

The core frequency may change from time 
to time due to transitions associated with 
Enhanced Intel SpeedStep Technology or 
TM2. For this reason this event may have 
a changing ratio with regards to time. 

When the core frequency is constant, this 
event can approximate elapsed time while 
the core was not in halt state. 

MSR_PERF_FIXED_
CTR2/IA32_PERF_FIX
ED_CTR2

30BH CPU_CLK_UNHALT
ED.REF

This event counts the number of 
reference cycles when the core is not in a 
halt state and not in a TM stop-clock state. 
The core enters the halt state when it is 
running the HLT instruction or the MWAIT 
instruction. 

This event is not affected by core 
frequency changes (e.g., P states) but 
counts at the same frequency as the time 
stamp counter. This event can 
approximate elapsed time while the core 
was not in halt state and not in a TM stop-
clock state. 

This event has a constant ratio with the 
CPU_CLK_UNHALTED.BUS event. 
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Table 19-13 also includes architectural events and describes minor model-specific 
behavior where applicable. Software must use a general-purpose performance 
counter to count events listed in Table 19-13.

Table 19-13.  Non-Architectural Performance Events 
in Processors Based on Intel Core Microarchitecture

Event 
Num

Umask
Value Event Name Definition

Description and
Comment

03H 02H LOAD_BLOCK.STA Loads blocked 
by a preceding 
store with 
unknown 
address 

This event indicates that loads are blocked 
by preceding stores. A load is blocked 
when there is a preceding store to an 
address that is not yet calculated. The 
number of events is greater or equal to 
the number of load operations that were 
blocked. 

If the load and the store are always to 
different addresses, check why the 
memory disambiguation mechanism is not 
working. To avoid such blocks, increase the 
distance between the store and the 
following load so that the store address is 
known at the time the load is dispatched.

03H 04H LOAD_BLOCK.STD Loads blocked 
by a preceding 
store with 
unknown data

This event indicates that loads are blocked 
by preceding stores. A load is blocked 
when there is a preceding store to the 
same address and the stored data value is 
not yet known. The number of events is 
greater or equal to the number of load 
operations that were blocked. 

To avoid such blocks, increase the distance 
between the store and the dependant 
load, so that the store data is known at 
the time the load is dispatched.

03H 08H LOAD_BLOCK.
OVERLAP_STORE

Loads that 
partially 
overlap an 
earlier store, or 
4-Kbyte aliased 
with a previous 
store

This event indicates that loads are blocked 
due to a variety of reasons. Some of the 
triggers for this event are when a load is 
blocked by a preceding store, in one of the 
following:  

• Some of the loaded byte locations are 
written by the preceding store and 
some are not.  

• The load is from bytes written by the 
preceding store, the store is aligned to 
its size and either:
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• The load’s data size is one or two bytes 
and it is not aligned to the store.  

• The load’s data size is of four or eight 
bytes and the load is misaligned. 

• The load is from bytes written by the 
preceding store, the store is misaligned 
and the load is not aligned on the 
beginning of the store.  

• The load is split over an eight byte 
boundary (excluding 16-byte loads). 

• The load and store have the same 
offset relative to the beginning of 
different 4-KByte pages. This case is 
also called 4-KByte aliasing. 

• In all these cases the load is blocked 
until after the blocking store retires and 
the stored data is committed to the 
cache hierarchy.

03H 10H LOAD_BLOCK.
UNTIL_RETIRE

Loads blocked 
until retirement

This event indicates that load operations 
were blocked until retirement. The number 
of events is greater or equal to the 
number of load operations that were 
blocked. 
This includes mainly uncacheable loads 
and split loads (loads that cross the cache 
line boundary) but may include other cases 
where loads are blocked until retirement.

Table 19-13.  Non-Architectural Performance Events 
in Processors Based on Intel Core Microarchitecture (Contd.)

Event 
Num

Umask
Value Event Name Definition

Description and
Comment
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03H 20H LOAD_BLOCK.L1D Loads blocked 
by the L1 data 
cache

This event indicates that loads are blocked 
due to one or more reasons.  Some 
triggers for this event are:  

• The number of L1 data cache misses 
exceeds the maximum number of 
outstanding misses supported by the 
processor. This includes misses 
generated as result of demand fetches, 
software prefetches or hardware 
prefetches.  

• Cache line split loads. 
• Partial reads, such as reads to un-

cacheable memory, I/O instructions and 
more. 

• A locked load operation is in progress. 
The number of events is greater or 
equal to the number of load operations 
that were blocked.

04H 01H SB_DRAIN_
CYCLES

Cycles while 
stores are 
blocked due to 
store buffer 
drain

This event counts every cycle during 
which the store buffer is draining. This 
includes: 

• Serializing operations such as CPUID 
• Synchronizing operations such as XCHG 
• Interrupt acknowledgment 
• Other conditions, such as cache flushing

04H 02H STORE_BLOCK.
ORDER

Cycles while 
store is waiting 
for a preceding 
store to be 
globally 
observed

This event counts the total duration, in 
number of cycles, which stores are waiting 
for a preceding stored cache line to be 
observed by other cores. 
This situation happens as a result of the 
strong store ordering behavior, as defined 
in “Memory Ordering,” Chapter 8, Intel® 64 
and IA-32 Architectures Software 
Developer’s Manual, Volume 3A. 

The stall may occur and be noticeable if 
there are many cases when a store either 
misses the L1 data cache or hits a cache 
line in the Shared state. If the store 
requires a bus transaction to read the 
cache line then the stall ends when snoop 
response for the bus transaction arrives.

Table 19-13.  Non-Architectural Performance Events 
in Processors Based on Intel Core Microarchitecture (Contd.)
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04H 08H STORE_BLOCK.
SNOOP

A store is 
blocked due to 
a conflict with 
an external or 
internal snoop.

This event counts the number of cycles 
the store port was used for snooping the 
L1 data cache and a store was stalled by 
the snoop. The store is typically 
resubmitted one cycle later.

06H 00H SEGMENT_REG_
LOADS

Number of 
segment 
register loads

This event counts the number of segment 
register load operations. Instructions that 
load new values into segment registers 
cause a penalty. 

This event indicates performance issues in 
16-bit code. If this event occurs 
frequently, it may be useful to calculate 
the number of instructions retired per 
segment register load. If the resulting 
calculation is low (on average a small 
number of instructions are executed 
between segment register loads), then the 
code’s segment register usage should be 
optimized. 

As a result of branch misprediction, this 
event is speculative and may include 
segment register loads that do not 
actually occur. However, most segment 
register loads are internally serialized and 
such speculative effects are minimized.

07H 00H SSE_PRE_EXEC.
NTA

Streaming SIMD 
Extensions 
(SSE) Prefetch 
NTA 
instructions 
executed

This event counts the number of times the 
SSE instruction prefetchNTA is executed. 

This instruction prefetches the data to the 
L1 data cache.

07H 01H SSE_PRE_EXEC.L1 Streaming SIMD 
Extensions 
(SSE) 
PrefetchT0 
instructions 
executed

This event counts the number of times the 
SSE instruction prefetchT0 is executed. 
This instruction prefetches the data to the 
L1 data cache and L2 cache.

Table 19-13.  Non-Architectural Performance Events 
in Processors Based on Intel Core Microarchitecture (Contd.)
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07H 02H SSE_PRE_EXEC.L2  Streaming 
SIMD 
Extensions 
(SSE) 
PrefetchT1 and 
PrefetchT2 
instructions 
executed

This event counts the number of times the 
SSE instructions prefetchT1 and 
prefetchT2 are executed. These 
instructions prefetch the data to the L2 
cache.

07H 03H SSE_PRE_
EXEC.STORES

Streaming SIMD 
Extensions 
(SSE) Weakly-
ordered store 
instructions 
executed

This event counts the number of times 
SSE non-temporal store instructions are 
executed.

08H 01H DTLB_MISSES.
ANY

Memory 
accesses that 
missed the 
DTLB

This event counts the number of Data 
Table Lookaside Buffer (DTLB) misses. The 
count includes misses detected as a result 
of speculative accesses. 

Typically a high count for this event 
indicates that the code accesses a large 
number of data pages.

08H 02H DTLB_MISSES
.MISS_LD

DTLB misses 
due to load 
operations

This event counts the number of Data 
Table Lookaside Buffer (DTLB) misses due 
to load operations. 

This count includes misses detected as a 
result of speculative accesses.

08H 04H DTLB_MISSES.L0_
MISS_LD

L0 DTLB misses 
due to load 
operations

This event counts the number of level 0 
Data Table Lookaside Buffer (DTLB0) 
misses due to load operations. 

This count includes misses detected as a 
result of speculative accesses. Loads that 
miss that DTLB0 and hit the DTLB1 can 
incur two-cycle penalty.

Table 19-13.  Non-Architectural Performance Events 
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08H 08H DTLB_MISSES.
MISS_ST

TLB misses due 
to store 
operations

This event counts the number of Data 
Table Lookaside Buffer (DTLB) misses due 
to store operations. 

This count includes misses detected as a 
result of speculative accesses. Address 
translation for store operations is 
performed in the DTLB1.

09H 01H MEMORY_
DISAMBIGUATION.
RESET

Memory 
disambiguation 
reset cycles

This event counts the number of cycles 
during which memory disambiguation 
misprediction occurs. As a result the 
execution pipeline is cleaned and 
execution of the mispredicted load 
instruction and all succeeding instructions 
restarts. 

This event occurs when the data address 
accessed by a load instruction, collides 
infrequently with preceding stores, but 
usually there is no collision. It happens 
rarely, and may have a penalty of about 20 
cycles.

09H 02H MEMORY_DISAMBI
GUATION.SUCCESS

Number of 
loads 
successfully 
disambiguated.

This event counts the number of load 
operations that were successfully 
disambiguated. Loads are preceded by a 
store with an unknown address, but they 
are not blocked.

0CH 01H PAGE_WALKS
.COUNT

Number of 
page-walks 
executed

This event counts the number of page-
walks executed due to either a DTLB or 
ITLB miss. 

The page walk duration, 
PAGE_WALKS.CYCLES, divided by number 
of page walks is the average duration of a 
page walk. The average can hint whether 
most of the page-walks are satisfied by 
the caches or cause an L2 cache miss.

Table 19-13.  Non-Architectural Performance Events 
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0CH 02H PAGE_WALKS.
CYCLES

Duration of 
page-walks in 
core cycles 

This event counts the duration of page-
walks in core cycles. The paging mode in 
use typically affects the duration of page 
walks. 

Page walk duration divided by number of 
page walks is the average duration of 
page-walks. The average can hint at 
whether most of the page-walks are 
satisfied by the caches or cause an L2 
cache miss.

10H 00H FP_COMP_OPS
_EXE

Floating point 
computational 
micro-ops 
executed

This event counts the number of floating 
point computational micro-ops executed.

Use IA32_PMC0 only.

11H 00H FP_ASSIST Floating point 
assists

This event counts the number of floating 
point operations executed that required 
micro-code assist intervention. Assists are 
required in the following cases:  

• Streaming SIMD Extensions (SSE) 
instructions: 

• Denormal input when the DAZ 
(Denormals Are Zeros) flag is off 

• Underflow result when the FTZ (Flush 
To Zero) flag is off 

• X87 instructions: 
• NaN or denormal are loaded to a 

register or used as input from memory 
• Division by 0  
• Underflow output
Use IA32_PMC1 only.

12H 00H MUL Multiply 
operations 
executed

This event counts the number of multiply 
operations executed. This includes integer 
as well as floating point multiply 
operations.

Use IA32_PMC1 only.

13H 00H DIV Divide 
operations 
executed

This event counts the number of divide 
operations executed. This includes integer 
divides, floating point divides and square-
root operations executed.

Use IA32_PMC1 only.

Table 19-13.  Non-Architectural Performance Events 
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14H 00H CYCLES_DIV
_BUSY

Cycles the 
divider busy

This event counts the number of cycles 
the divider is busy executing divide or 
square root operations. The divide can be 
integer, X87 or Streaming SIMD 
Extensions (SSE). The square root 
operation can be either X87 or SSE.

Use IA32_PMC0 only.

18H 00H IDLE_DURING
_DIV

Cycles the 
divider is busy 
and all other 
execution units 
are idle.

This event counts the number of cycles 
the divider is busy (with a divide or a 
square root operation) and no other 
execution unit or load operation is in 
progress. 

Load operations are assumed to hit the L1 
data cache. This event considers only 
micro-ops dispatched after the divider 
started operating.

Use IA32_PMC0 only.

19H 00H DELAYED_
BYPASS.FP

Delayed bypass 
to FP operation

This event counts the number of times 
floating point operations use data 
immediately after the data was generated 
by a non-floating point execution unit. 
Such cases result in one penalty cycle due 
to data bypass between the units.

Use IA32_PMC1 only.

19H 01H DELAYED_
BYPASS.SIMD

Delayed bypass 
to SIMD 
operation

This event counts the number of times 
SIMD operations use data immediately 
after the data was generated by a non-
SIMD execution unit. Such cases result in 
one penalty cycle due to data bypass 
between the units.

Use IA32_PMC1 only.
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19H 02H DELAYED_
BYPASS.LOAD

Delayed bypass 
to load 
operation

This event counts the number of delayed 
bypass penalty cycles that a load 
operation incurred. 

When load operations use data 
immediately after the data was generated 
by an integer execution unit, they may 
(pending on certain dynamic internal 
conditions) incur one penalty cycle due to 
delayed data bypass between the units.

Use IA32_PMC1 only.

21H See 
Table 
18-2

L2_ADS.(Core) Cycles L2 
address bus is 
in use

This event counts the number of cycles 
the L2 address bus is being used for 
accesses to the L2 cache or bus queue. It 
can count occurrences for this core or both 
cores.

23H See 
Table 
18-2

L2_DBUS_BUSY
_RD.(Core)

Cycles the L2 
transfers data 
to the core

This event counts the number of cycles 
during which the L2 data bus is busy 
transferring data from the L2 cache to the 
core. It counts for all L1 cache misses (data 
and instruction) that hit the L2 cache. 

This event can count occurrences for this 
core or both cores.

24H Com-
bined 
mask 
from 
Table 
18-2 
and 
Table 
18-4

L2_LINES_IN.
(Core, Prefetch)

L2 cache 
misses

This event counts the number of cache 
lines allocated in the L2 cache. Cache lines 
are allocated in the L2 cache as a result of 
requests from the L1 data and instruction 
caches and the L2 hardware prefetchers 
to cache lines that are missing in the L2 
cache. 

This event can count occurrences for this 
core or both cores. It can also count 
demand requests and L2 hardware 
prefetch requests together or separately.

25H See 
Table 
18-2

L2_M_LINES_IN.
(Core)

L2 cache line 
modifications

This event counts whenever a modified 
cache line is written back from the L1 data 
cache to the L2 cache. 

This event can count occurrences for this 
core or both cores.
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26H See 
Table 
18-2 
and 
Table 
18-4

L2_LINES_OUT.
(Core, Prefetch)

L2 cache lines 
evicted

This event counts the number of L2 cache 
lines evicted. 

This event can count occurrences for this 
core or both cores. It can also count 
evictions due to demand requests and L2 
hardware prefetch requests together or 
separately.

27H See 
Table 
18-2 
and 
Table 
18-4

L2_M_LINES_OUT.(
Core, Prefetch)

Modified lines 
evicted from 
the L2 cache

This event counts the number of L2 
modified cache lines evicted. These lines 
are written back to memory unless they 
also exist in a modified-state in one of the 
L1 data caches. 

This event can count occurrences for this 
core or both cores. It can also count 
evictions due to demand requests and L2 
hardware prefetch requests together or 
separately.

28H Com-
bined 
mask 
from 
Table 
18-2 
and 
Table 
18-5

L2_IFETCH.(Core, 
Cache Line State)

L2 cacheable 
instruction 
fetch requests

This event counts the number of 
instruction cache line requests from the 
IFU. It does not include fetch requests 
from uncacheable memory. It does not 
include ITLB miss accesses.  

This event can count occurrences for this 
core or both cores. It can also count 
accesses to cache lines at different MESI 
states.

29H Combin
ed mask 
from 
Table 
18-2, 
Table 
18-4, 
and 
Table 
18-5

L2_LD.(Core, 
Prefetch, Cache 
Line State)

L2 cache reads This event counts L2 cache read requests 
coming from the L1 data cache and L2 
prefetchers.  

The event can count occurrences:

• for this core or both cores
• due to demand requests and L2 

hardware prefetch requests together or 
separately

• of accesses to cache lines at different 
MESI states
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2AH See 
Table 
18-2 
and 
Table 
18-5

L2_ST.(Core, Cache 
Line State)

L2 store 
requests

This event counts all store operations that 
miss the L1 data cache and request the 
data from the L2 cache.  

The event can count occurrences for this 
core or both cores. It can also count 
accesses to cache lines at different MESI 
states.

2BH See 
Table 
18-2 
and 
Table 
18-5

L2_LOCK.(Core, 
Cache Line State)

L2 locked 
accesses

This event counts all locked accesses to 
cache lines that miss the L1 data cache. 

The event can count occurrences for this 
core or both cores. It can also count 
accesses to cache lines at different MESI 
states.

2EH See 
Table 
18-2, 
Table 
18-4, 
and 
Table 
18-5

L2_RQSTS.(Core, 
Prefetch, Cache 
Line State)

L2 cache 
requests

This event counts all completed L2 cache 
requests. This includes L1 data cache 
reads, writes, and locked accesses, L1 data 
prefetch requests, instruction fetches, and 
all L2 hardware prefetch requests.  

This event can count occurrences:

• for this core or both cores.
• due to demand requests and L2 

hardware prefetch requests together, 
or separately

• of accesses to cache lines at different 
MESI states

2EH 41H L2_RQSTS.SELF.
DEMAND.I_STATE

L2 cache 
demand 
requests from 
this core that 
missed the L2

This event counts all completed L2 cache 
demand requests from this core that miss 
the L2 cache. This includes L1 data cache 
reads, writes, and locked accesses, L1 data 
prefetch requests, and instruction fetches. 

This is an architectural performance event.

2EH 4FH L2_RQSTS.SELF.
DEMAND.MESI

L2 cache 
demand 
requests from 
this core

This event counts all completed L2 cache 
demand requests from this core. This 
includes L1 data cache reads, writes, and 
locked accesses, L1 data prefetch 
requests, and instruction fetches. 

This is an architectural performance event.

Table 19-13.  Non-Architectural Performance Events 
in Processors Based on Intel Core Microarchitecture (Contd.)

Event 
Num

Umask
Value Event Name Definition

Description and
Comment
19-154 Vol. 3B



PERFORMANCE-MONITORING EVENTS
30H See 
Table 
18-2, 
Table 
18-4, 
and 
Table 
18-5

L2_REJECT_BUSQ.(
Core, Prefetch, 
Cache Line State)

Rejected L2 
cache requests

This event indicates that a pending L2 
cache request that requires a bus 
transaction is delayed from moving to the 
bus queue. Some of the reasons for this 
event are: 

• The bus queue is full. 
• The bus queue already holds an entry 

for a cache line in the same set. 
The number of events is greater or equal 
to the number of requests that were 
rejected. 

• for this core or both cores. 
• due to demand requests and L2 

hardware prefetch requests together, 
or separately. 

• of accesses to cache lines at different 
MESI states.

32H See 
Table 
18-2

L2_NO_REQ.(Core) Cycles no L2 
cache requests 
are pending

This event counts the number of cycles 
that no L2 cache requests were pending 
from a core. When using the BOTH_CORE 
modifier, the event counts only if none of 
the cores have a pending request. The 
event counts also when one core is halted 
and the other is not halted. 

The event can count occurrences for this 
core or both cores.

3AH 00H EIST_TRANS Number of 
Enhanced Intel 
SpeedStep 
Technology 
(EIST) 
transitions

This event counts the number of 
transitions that include a frequency 
change, either with or without voltage 
change. This includes Enhanced Intel 
SpeedStep Technology (EIST) and TM2 
transitions.

The event is incremented only while the 
counting core is in C0 state. Since 
transitions to higher-numbered CxE states 
and TM2 transitions include a frequency 
change or voltage transition, the event is 
incremented accordingly. 
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3BH C0H THERMAL_TRIP Number of 
thermal trips

This event counts the number of thermal 
trips. A thermal trip occurs whenever the 
processor temperature exceeds the 
thermal trip threshold temperature.

Following a thermal trip, the processor 
automatically reduces frequency and 
voltage. The processor checks the 
temperature every millisecond and returns 
to normal when the temperature falls 
below the thermal trip threshold 
temperature. 

3CH 00H CPU_CLK_
UNHALTED.
CORE_P

Core cycles 
when core is 
not halted

This event counts the number of core 
cycles while the core is not in a halt state. 
The core enters the halt state when it is 
running the HLT instruction. This event is a 
component in many key event ratios.  

The core frequency may change due to 
transitions associated with Enhanced Intel 
SpeedStep Technology or TM2. For this 
reason, this event may have a changing 
ratio in regard to time. 

When the core frequency is constant, this 
event can give approximate elapsed time 
while the core not in halt state.

This is an architectural performance event. 

3CH 01H CPU_CLK_
UNHALTED.BUS

Bus cycles 
when core is 
not halted

This event counts the number of bus 
cycles while the core is not in the halt 
state. This event can give a measurement 
of the elapsed time while the core was not 
in the halt state. The core enters the halt 
state when it is running the HLT 
instruction. 

The event also has a constant ratio with 
CPU_CLK_UNHALTED.REF event, which is 
the maximum bus to processor frequency 
ratio.  

Non-halted bus cycles are a component in 
many key event ratios.
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3CH 02H CPU_CLK_
UNHALTED.NO
_OTHER

Bus cycles 
when core is 
active and the 
other is halted

This event counts the number of bus 
cycles during which the core remains non-
halted and the other core on the processor 
is halted. 

This event can be used to determine the 
amount of parallelism exploited by an 
application or a system. Divide this event 
count by the bus frequency to determine 
the amount of time that only one core was 
in use.

40H See 
Table 
18-5 

L1D_CACHE_LD.
(Cache Line State)

L1 cacheable 
data reads

This event counts the number of data 
reads from cacheable memory. Locked 
reads are not counted.

41H See 
Table 
18-5

L1D_CACHE_ST.
(Cache Line State)

L1 cacheable 
data writes

This event counts the number of data 
writes to cacheable memory. Locked 
writes are not counted.

42H See 
Table 
18-5

L1D_CACHE_
LOCK.(Cache Line 
State)

L1 data 
cacheable 
locked reads

This event counts the number of locked 
data reads from cacheable memory.

42H 10H L1D_CACHE_
LOCK_DURATION

Duration of L1 
data cacheable 
locked 
operation

This event counts the number of cycles 
during which any cache line is locked by 
any locking instruction. 

Locking happens at retirement and 
therefore the event does not occur for 
instructions that are speculatively 
executed. Locking duration is shorter than 
locked instruction execution duration.

43H 01H L1D_ALL_REF All references 
to the L1 data 
cache

This event counts all references to the L1 
data cache, including all loads and stores 
with any memory types. 

The event counts memory accesses only 
when they are actually performed. For 
example, a load blocked by unknown store 
address and later performed is only 
counted once. 

The event includes non-cacheable 
accesses, such as I/O accesses.
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43H 02H L1D_ALL_
CACHE_REF

L1 Data 
cacheable 
reads and 
writes

This event counts the number of data 
reads and writes from cacheable memory, 
including locked operations. 

This event is a sum of:

• L1D_CACHE_LD.MESI
• L1D_CACHE_ST.MESI
• L1D_CACHE_LOCK.MESI

45H 0FH L1D_REPL Cache lines 
allocated in the 
L1 data cache

This event counts the number of lines 
brought into the L1 data cache.

46H 00H L1D_M_REPL Modified cache 
lines allocated 
in the L1 data 
cache

This event counts the number of modified 
lines brought into the L1 data cache. 

47H 00H L1D_M_EVICT Modified cache 
lines evicted 
from the L1 
data cache

This event counts the number of modified 
lines evicted from the L1 data cache, 
whether due to replacement or by snoop 
HITM intervention.

48H 00H L1D_PEND_
MISS

Total number of 
outstanding L1 
data cache 
misses at any 
cycle

This event counts the number of 
outstanding L1 data cache misses at any 
cycle. An L1 data cache miss is 
outstanding from the cycle on which the 
miss is determined until the first chunk of 
data is available. This event counts: 

• all cacheable demand requests
• L1 data cache hardware prefetch 

requests
• requests to write through memory
• requests to write combine memory 
Uncacheable requests are not counted. 
The count of this event divided by the 
number of L1 data cache misses, 
L1D_REPL, is the average duration in core 
cycles of an L1 data cache miss.

49H 01H L1D_SPLIT.LOADS Cache line split 
loads from the 
L1 data cache

This event counts the number of load 
operations that span two cache lines. Such 
load operations are also called split loads. 
Split load operations are executed at 
retirement. 
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49H 02H L1D_SPLIT.
STORES

Cache line split 
stores to the 
L1 data cache

This event counts the number of store 
operations that span two cache lines.

4BH 00H SSE_PRE_
MISS.NTA

Streaming SIMD 
Extensions 
(SSE) Prefetch 
NTA 
instructions 
missing all 
cache levels

This event counts the number of times the 
SSE instructions prefetchNTA were 
executed and missed all cache levels. 

Due to speculation an executed instruction 
might not retire. This instruction 
prefetches the data to the L1 data cache.

4BH 01H SSE_PRE_
MISS.L1

Streaming SIMD 
Extensions 
(SSE) 
PrefetchT0 
instructions 
missing all 
cache levels

This event counts the number of times the 
SSE instructions prefetchT0 were 
executed and missed all cache levels. 

Due to speculation executed instruction 
might not retire. The prefetchT0 
instruction prefetches data to the L2 
cache and L1 data cache.

4BH 02H SSE_PRE_
MISS.L2

Streaming SIMD 
Extensions 
(SSE) 
PrefetchT1 and 
PrefetchT2 
instructions 
missing all 
cache levels

This event counts the number of times the 
SSE instructions prefetchT1 and 
prefetchT2 were executed and missed all 
cache levels. 

Due to speculation, an executed 
instruction might not retire. The 
prefetchT1 and PrefetchNT2 instructions 
prefetch data to the L2 cache.

4CH 00H LOAD_HIT_PRE Load 
operations 
conflicting with 
a software 
prefetch to the 
same address

This event counts load operations sent to 
the L1 data cache while a previous 
Streaming SIMD Extensions (SSE) prefetch 
instruction to the same cache line has 
started prefetching but has not yet 
finished.

4EH 10H L1D_PREFETCH.
REQUESTS

L1 data cache 
prefetch 
requests

This event counts the number of times the 
L1 data cache requested to prefetch a 
data cache line. Requests can be rejected 
when the L2 cache is busy and 
resubmitted later or lost. 

All requests are counted, including those 
that are rejected.
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60H See 
Table 
18-2 
and 
Table 
18-3

BUS_REQUEST_
OUTSTANDING.
(Core and Bus 
Agents)

Outstanding 
cacheable data 
read bus 
requests 
duration

This event counts the number of pending 
full cache line read transactions on the bus 
occurring in each cycle. A read transaction 
is pending from the cycle it is sent on the 
bus until the full cache line is received by 
the processor.

The event counts only full-line cacheable 
read requests from either the L1 data 
cache or the L2 prefetchers. It does not 
count Read for Ownership transactions, 
instruction byte fetch transactions, or any 
other bus transaction. 

61H See 
Table 
18-3.

BUS_BNR_DRV.
(Bus Agents)

Number of Bus 
Not Ready 
signals 
asserted

This event counts the number of Bus Not 
Ready (BNR) signals that the processor 
asserts on the bus to suspend additional 
bus requests by other bus agents. 

A bus agent asserts the BNR signal when 
the number of data and snoop 
transactions is close to the maximum that 
the bus can handle. To obtain the number 
of bus cycles during which the BNR signal 
is asserted, multiply the event count by 
two. 

While this signal is asserted, new 
transactions cannot be submitted on the 
bus. As a result, transaction latency may 
have higher impact on program 
performance.
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62H See 
Table 
18-3

BUS_DRDY_
CLOCKS.(Bus 
Agents)

Bus cycles 
when data is 
sent on the bus

This event counts the number of bus 
cycles during which the DRDY (Data 
Ready) signal is asserted on the bus. The 
DRDY signal is asserted when data is sent 
on the bus. With the 'THIS_AGENT' mask 
this event counts the number of bus 
cycles during which this agent (the 
processor) writes data on the bus back to 
memory or to other bus agents. This 
includes all explicit and implicit data 
writebacks, as well as partial writes. 

With the 'ALL_AGENTS' mask, this event 
counts the number of bus cycles during 
which any bus agent sends data on the 
bus. This includes all data reads and writes 
on the bus.

63H See 
Table 
18-2 
and 
Table 
18-3

BUS_LOCK_
CLOCKS.(Core and 
Bus Agents)

Bus cycles 
when a LOCK 
signal asserted

This event counts the number of bus 
cycles, during which the LOCK signal is 
asserted on the bus. A LOCK signal is 
asserted when there is a locked memory 
access, due to: 

• uncacheable memory 
• locked operation that spans two cache 

lines 
• page-walk from an uncacheable page 

table
Bus locks have a very high performance 
penalty and it is highly recommended to 
avoid such accesses.

64H See 
Table 
18-2

BUS_DATA_
RCV.(Core)

Bus cycles 
while processor 
receives data

This event counts the number of bus 
cycles during which the processor is busy 
receiving data. 

65H See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_BRD.(
Core and Bus 
Agents)

Burst read bus 
transactions

This event counts the number of burst 
read transactions including: 

• L1 data cache read misses (and L1 data 
cache hardware prefetches) 

• L2 hardware prefetches by the DPL and 
L2 streamer 

• IFU read misses of cacheable lines. 
It does not include RFO transactions.
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66H See 
Table 
18-2 
and 
Table 
18-3.

BUS_TRANS_RFO.(
Core and Bus 
Agents)

RFO bus 
transactions

This event counts the number of Read For 
Ownership (RFO) bus transactions, due to 
store operations that miss the L1 data 
cache and the L2 cache. It also counts RFO 
bus transactions due to locked operations.

67H See 
Table 
18-2 
and 
Table 
18-3.

BUS_TRANS_WB.
(Core and Bus 
Agents)

Explicit 
writeback bus 
transactions

This event counts all explicit writeback bus 
transactions due to dirty line evictions. It 
does not count implicit writebacks due to 
invalidation by a snoop request.

68H See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_
IFETCH.(Core and 
Bus Agents)

Instruction-
fetch bus 
transactions

This event counts all instruction fetch full 
cache line bus transactions.

69H See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_
INVAL.(Core and 
Bus Agents)

Invalidate bus 
transactions

This event counts all invalidate 
transactions. Invalidate transactions are 
generated when: 

• A store operation hits a shared line in 
the L2 cache. 

• A full cache line write misses the L2 
cache or hits a shared line in the L2 
cache.

6AH See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_
PWR.(Core and Bus 
Agents)

Partial write 
bus transaction

This event counts partial write bus 
transactions.

6BH See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS
_P.(Core and Bus 
Agents)

Partial bus 
transactions

This event counts all (read and write) 
partial bus transactions.
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6CH See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_IO.(C
ore and Bus 
Agents)

IO bus 
transactions

This event counts the number of 
completed I/O bus transactions as a result 
of IN and OUT instructions. The count does 
not include memory mapped IO.

6DH See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_
DEF.(Core and Bus 
Agents)

Deferred bus 
transactions

This event counts the number of deferred 
transactions. 

6EH See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_
BURST.(Core and 
Bus Agents)

Burst (full 
cache-line) bus 
transactions

This event counts burst (full cache line) 
transactions including: 

• Burst reads 
• RFOs 
• Explicit writebacks 
• Write combine lines

6FH See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_
MEM.(Core and Bus 
Agents)

Memory bus 
transactions

This event counts all memory bus 
transactions including: 

• Burst transactions
• Partial reads and writes - invalidate 

transactions 
The BUS_TRANS_MEM count is the sum of 
BUS_TRANS_BURST, BUS_TRANS_P and 
BUS_TRANS_IVAL.

70H See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_
ANY.(Core and Bus 
Agents)

All bus 
transactions

This event counts all bus transactions. This 
includes: 

• Memory transactions 
• IO transactions (non memory-mapped) 
• Deferred transaction completion 
• Other less frequent transactions, such 

as interrupts
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77H See 
Table 
18-2 
and 
Table 
18-6

EXT_SNOOP.
(Bus Agents, Snoop 
Response)

External 
snoops

This event counts the snoop responses to 
bus transactions. Responses can be 
counted separately by type and by bus 
agent. 

With the 'THIS_AGENT' mask, the event 
counts snoop responses from this 
processor to bus transactions sent by this 
processor. With the 'ALL_AGENTS' mask 
the event counts all snoop responses seen 
on the bus.

78H See 
Table 
18-2 
and 
Table 
18-7

CMP_SNOOP.(Core, 
Snoop Type)

L1 data cache 
snooped by 
other core

This event counts the number of times the 
L1 data cache is snooped for a cache line 
that is needed by the other core in the 
same processor. The cache line is either 
missing in the L1 instruction or data 
caches of the other core, or is available for 
reading only and the other core wishes to 
write the cache line. 

The snoop operation may change the 
cache line state. If the other core issued a 
read request that hit this core in E state, 
typically the state changes to S state in 
this core. If the other core issued a read 
for ownership request (due a write miss or 
hit to S state) that hits this core's cache 
line in E or S state, this typically results in 
invalidation of the cache line in this core.  If 
the snoop hits a line in M state, the state is 
changed at a later opportunity. 

These snoops are performed through the 
L1 data cache store port. Therefore, 
frequent snoops may conflict with 
extensive stores to the L1 data cache, 
which may increase store latency and 
impact performance.

7AH See 
Table 
18-3 

BUS_HIT_DRV.

(Bus Agents)

HIT signal 
asserted

This event counts the number of bus 
cycles during which the processor drives 
the HIT# pin to signal HIT snoop response. 
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7BH See 
Table 
18-3

BUS_HITM_DRV.

(Bus Agents)

HITM signal 
asserted

This event counts the number of bus 
cycles during which the processor drives 
the HITM# pin to signal HITM snoop 
response.

7DH See 
Table 
18-2

BUSQ_EMPTY.

(Core)

Bus queue 
empty

This event counts the number of cycles 
during which the core did not have any 
pending transactions in the bus queue. It 
also counts when the core is halted and 
the other core is not halted. 

This event can count occurrences for this 
core or both cores.

7EH See 
Table 
18-2 
and 
Table 
18-3

SNOOP_STALL_
DRV.(Core and Bus 
Agents)

Bus stalled for 
snoops

This event counts the number of times 
that the bus snoop stall signal is asserted. 
To obtain the number of bus cycles during 
which snoops on the bus are prohibited, 
multiply the event count by two. 

During the snoop stall cycles, no new bus 
transactions requiring a snoop response 
can be initiated on the bus. A bus agent 
asserts a snoop stall signal if it cannot 
response to a snoop request within three 
bus cycles.

7FH See 
Table 
18-2 

BUS_IO_WAIT.
(Core)

IO requests 
waiting in the 
bus queue

This event counts the number of core 
cycles during which IO requests wait in the 
bus queue. With the SELF modifier this 
event counts IO requests per core.

With the BOTH_CORE modifier, this event 
increments by one for any cycle for which 
there is a request from either core.

80H 00H L1I_READS Instruction 
fetches

This event counts all instruction fetches, 
including uncacheable fetches that bypass 
the Instruction Fetch Unit (IFU).

81H 00H L1I_MISSES Instruction 
Fetch Unit 
misses

This event counts all instruction fetches 
that miss the Instruction Fetch Unit (IFU) 
or produce memory requests. This 
includes uncacheable fetches. 

An instruction fetch miss is counted only 
once and not once for every cycle it is 
outstanding.
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82H 02H ITLB.SMALL_MISS ITLB small page 
misses

This event counts the number of 
instruction fetches from small pages that 
miss the ITLB.

82H 10H ITLB.LARGE_MISS ITLB large page 
misses

This event counts the number of 
instruction fetches from large pages that 
miss the ITLB.

82H 40H ITLB.FLUSH ITLB flushes This event counts the number of ITLB 
flushes. This usually happens upon CR3 or 
CR0 writes, which are executed by the 
operating system during process switches.

82H 12H ITLB.MISSES ITLB misses This event counts the number of 
instruction fetches from either small or 
large pages that miss the ITLB.

83H 02H INST_QUEUE.FULL Cycles during 
which the 
instruction 
queue is full

This event counts the number of cycles 
during which the instruction queue is full. 
In this situation, the core front-end stops 
fetching more instructions. This is an 
indication of very long stalls in the back-
end pipeline stages.

86H 00H CYCLES_L1I_
MEM_STALLED

Cycles during 
which 
instruction 
fetches stalled

This event counts the number of cycles for 
which an instruction fetch stalls, including 
stalls due to any of the following reasons: 

• instruction Fetch Unit cache misses 
• instruction TLB misses 
• instruction TLB faults

87H 00H ILD_STALL Instruction 
Length Decoder 
stall cycles due 
to a length 
changing prefix

This event counts the number of cycles 
during which the instruction length 
decoder uses the slow length decoder. 
Usually, instruction length decoding is 
done in one cycle. When the slow decoder 
is used, instruction decoding requires 6 
cycles. 
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The slow decoder is used in the following 
cases: 

• operand override prefix (66H) 
preceding an instruction with 
immediate data 

• address override prefix (67H) preceding 
an instruction with a modr/m in real, big 
real, 16-bit protected or 32-bit 
protected modes

To avoid instruction length decoding stalls, 
generate code using imm8 or imm32 
values instead of imm16 values. If you 
must use an imm16 value, store the value 
in a register using “mov reg, imm32” and 
use the register format of the instruction.

88H 00H BR_INST_EXEC Branch 
instructions 
executed

This event counts all executed branches 
(not necessarily retired). This includes only 
instructions and not micro-op branches. 

Frequent branching is not necessarily a 
major performance issue. However 
frequent branch mispredictions may be a 
problem.

89H 00H BR_MISSP_EXEC Mispredicted 
branch 
instructions 
executed

This event counts the number of 
mispredicted branch instructions that 
were executed.

8AH 00H BR_BAC_
MISSP_EXEC

Branch 
instructions 
mispredicted at 
decoding

This event counts the number of branch 
instructions that were mispredicted at 
decoding.

8BH 00H BR_CND_EXEC Conditional 
branch 
instructions 
executed.

This event counts the number of 
conditional branch instructions executed, 
but not necessarily retired. 

8CH 00H BR_CND_
MISSP_EXEC

Mispredicted 
conditional 
branch 
instructions 
executed

This event counts the number of 
mispredicted conditional branch 
instructions that were executed.
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8DH 00H BR_IND_EXEC Indirect branch 
instructions 
executed

This event counts the number of indirect 
branch instructions that were executed.

8EH 00H BR_IND_MISSP
_EXEC

Mispredicted 
indirect branch 
instructions 
executed

This event counts the number of 
mispredicted indirect branch instructions 
that were executed.

8FH 00H BR_RET_EXEC RET 
instructions 
executed

This event counts the number of RET 
instructions that were executed.

90H 00H BR_RET_
MISSP_EXEC

Mispredicted 
RET 
instructions 
executed

This event counts the number of 
mispredicted RET instructions that were 
executed.

91H 00H BR_RET_BAC_
MISSP_EXEC

RET 
instructions 
executed 
mispredicted at 
decoding

This event counts the number of RET 
instructions that were executed and were 
mispredicted at decoding.

92H 00H BR_CALL_EXEC CALL 
instructions 
executed

This event counts the number of CALL 
instructions executed.

93H 00H BR_CALL_
MISSP_EXEC

Mispredicted 
CALL 
instructions 
executed

This event counts the number of 
mispredicted CALL instructions that were 
executed.

94H 00H BR_IND_CALL_
EXEC

Indirect CALL 
instructions 
executed

This event counts the number of indirect 
CALL instructions that were executed.

97H 00H BR_TKN_
BUBBLE_1

Branch 
predicted taken 
with bubble 1

The events BR_TKN_BUBBLE_1 and 
BR_TKN_BUBBLE_2 together count the 
number of times a taken branch prediction 
incurred a one-cycle penalty. The penalty 
incurs when: 

• Too many taken branches are placed 
together. To avoid this, unroll loops and 
add a non-taken branch in the middle of 
the taken sequence. 

• The branch target is unaligned. To avoid 
this, align the branch target.
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98H 00H BR_TKN_
BUBBLE_2

Branch 
predicted taken 
with bubble 2

The events BR_TKN_BUBBLE_1 and 
BR_TKN_BUBBLE_2 together count the 
number of times a taken branch prediction 
incurred a one-cycle penalty. The penalty 
incurs when: 

• Too many taken branches are placed 
together. To avoid this, unroll loops and 
add a non-taken branch in the middle of 
the taken sequence. 

• The branch target is unaligned. To avoid 
this, align the branch target.

A0H 00H RS_UOPS_
DISPATCHED

Micro-ops 
dispatched for 
execution

This event counts the number of micro-
ops dispatched for execution. Up to six 
micro-ops can be dispatched in each cycle. 

A1H 01H RS_UOPS_
DISPATCHED.PORT
0

Cycles micro-
ops dispatched 
for execution 
on port 0

This event counts the number of cycles for 
which micro-ops dispatched for execution. 
Each cycle, at most one micro-op can be 
dispatched on the port. Issue Ports are 
described in Intel® 64 and IA-32 
Architectures Optimization Reference 
Manual. Use IA32_PMC0 only.

A1H 02H RS_UOPS_
DISPATCHED.PORT
1

Cycles micro-
ops dispatched 
for execution 
on port 1

This event counts the number of cycles for 
which micro-ops dispatched for execution. 
Each cycle, at most one micro-op can be 
dispatched on the port. Use IA32_PMC0 
only.

A1H 04H RS_UOPS_
DISPATCHED.PORT
2

Cycles micro-
ops dispatched 
for execution 
on port 2

This event counts the number of cycles for 
which micro-ops dispatched for execution. 
Each cycle, at most one micro-op can be 
dispatched on the port. Use IA32_PMC0 
only.

A1H 08H RS_UOPS_
DISPATCHED.PORT
3

Cycles micro-
ops dispatched 
for execution 
on port 3

This event counts the number of cycles for 
which micro-ops dispatched for execution. 
Each cycle, at most one micro-op can be 
dispatched on the port. Use IA32_PMC0 
only.
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A1H 10H RS_UOPS_
DISPATCHED.PORT
4

Cycles micro-
ops dispatched 
for execution 
on port 4

This event counts the number of cycles for 
which micro-ops dispatched for execution. 
Each cycle, at most one micro-op can be 
dispatched on the port. Use IA32_PMC0 
only.

A1H 20H RS_UOPS_
DISPATCHED.PORT
5

Cycles micro-
ops dispatched 
for execution 
on port 5

This event counts the number of cycles for 
which micro-ops dispatched for execution. 
Each cycle, at most one micro-op can be 
dispatched on the port. Use IA32_PMC0 
only.

AAH 01H MACRO_INSTS.
DECODED

Instructions 
decoded

This event counts the number of 
instructions decoded (but not necessarily 
executed or retired). 

AAH 08H MACRO_INSTS.
CISC_DECODED

CISC 
Instructions 
decoded

This event counts the number of complex 
instructions decoded. Complex instructions 
usually have more than four micro-ops. 
Only one complex instruction can be 
decoded at a time. 

ABH 01H ESP.SYNCH ESP register 
content 
synchron-
ization

This event counts the number of times 
that the ESP register is explicitly used in 
the address expression of a load or store 
operation, after it is implicitly used, for 
example by a push or a pop instruction.

ESP synch micro-op uses resources from 
the rename pipe-stage and up to 
retirement.  The expected ratio of this 
event divided by the number of ESP 
implicit changes is 0,2. If the ratio is 
higher, consider rearranging your code to 
avoid ESP synchronization events.
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ABH 02H ESP.ADDITIONS ESP register 
automatic 
additions

This event counts the number of ESP 
additions performed automatically by the 
decoder. A high count of this event is good, 
since each automatic addition performed 
by the decoder saves a micro-op from the 
execution units. 

To maximize the number of ESP additions 
performed automatically by the decoder, 
choose instructions that implicitly use the 
ESP, such as PUSH, POP, CALL, and RET 
instructions whenever possible.

B0H 00H SIMD_UOPS_EXEC SIMD micro-ops 
executed 
(excluding 
stores)

This event counts all the SIMD micro-ops 
executed. It does not count MOVQ and 
MOVD stores from register to memory.

B1H 00H SIMD_SAT_UOP_
EXEC

SIMD saturated 
arithmetic 
micro-ops 
executed

This event counts the number of SIMD 
saturated arithmetic micro-ops executed.

B3H 01H SIMD_UOP_
TYPE_EXEC.MUL

SIMD packed 
multiply micro-
ops executed

This event counts the number of SIMD 
packed multiply micro-ops executed.

B3H 02H SIMD_UOP_TYPE_
EXEC.SHIFT

SIMD packed 
shift micro-ops 
executed

This event counts the number of SIMD 
packed shift micro-ops executed.

B3H 04H SIMD_UOP_TYPE_
EXEC.PACK

SIMD pack 
micro-ops 
executed

This event counts the number of SIMD 
pack micro-ops executed.

B3H 08H SIMD_UOP_TYPE_
EXEC.UNPACK

SIMD unpack 
micro-ops 
executed

This event counts the number of SIMD 
unpack micro-ops executed.

B3H 10H SIMD_UOP_TYPE_
EXEC.LOGICAL

SIMD packed 
logical micro-
ops executed

This event counts the number of SIMD 
packed logical micro-ops executed.

B3H 20H SIMD_UOP_TYPE_
EXEC.ARITHMETIC

SIMD packed 
arithmetic 
micro-ops 
executed

This event counts the number of SIMD 
packed arithmetic micro-ops executed.
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C0H 00H INST_RETIRED.
ANY_P

Instructions 
retired

This event counts the number of 
instructions that retire execution. For 
instructions that consist of multiple micro-
ops, this event counts the retirement of 
the last micro-op of the instruction. The 
counter continue counting during 
hardware interrupts, traps, and inside 
interrupt handlers. 

INST_RETIRED.ANY_P is an architectural 
performance event. 

C0H 01H INST_RETIRED.
LOADS

Instructions 
retired, which 
contain a load

This event counts the number of 
instructions retired that contain a load 
operation.

C0H 02H INST_RETIRED.
STORES

Instructions 
retired, which 
contain a store

This event counts the number of 
instructions retired that contain a store 
operation.

C0H 04H INST_RETIRED.
OTHER

Instructions 
retired, with no 
load or store 
operation

This event counts the number of 
instructions retired that do not contain a 
load or a store operation.

C1H 01H X87_OPS_
RETIRED.FXCH

FXCH 
instructions 
retired

This event counts the number of FXCH 
instructions retired. Modern compilers 
generate more efficient code and are less 
likely to use this instruction. If you obtain a 
high count for this event consider 
recompiling the code.

C1H FEH X87_OPS_
RETIRED.ANY

Retired 
floating-point 
computational 
operations 
(precise event)

This event counts the number of floating-
point computational operations retired. It 
counts: 

• floating point computational operations 
executed by the assist handler 

• sub-operations of complex floating-
point instructions like transcendental 
instructions 
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This event does not count: 

• floating-point computational operations 
that cause traps or assists. 

• floating-point loads and stores. 
When this event is captured with the 
precise event mechanism, the collected 
samples contain the address of the 
instruction that was executed immediately 
after the instruction that caused the 
event.

C2H 01H UOPS_RETIRED.
LD_IND_BR

Fused load+op 
or load+indirect 
branch retired

This event counts the number of retired 
micro-ops that fused a load with another 
operation. This includes: 

• Fusion of a load and an arithmetic 
operation, such as with the following 
instruction: ADD EAX, [EBX] where the 
content of the memory location 
specified by EBX register is loaded, 
added to EXA register, and the result is 
stored in EAX.

• Fusion of a load and a branch in an 
indirect branch operation, such as with 
the following instructions:

• JMP [RDI+200] 
• RET 
• Fusion decreases the number of micro-

ops in the processor pipeline. A high 
value for this event count indicates that 
the code is using the processor 
resources effectively.

C2H 02H UOPS_RETIRED.
STD_STA

Fused store 
address + data 
retired

This event counts the number of store 
address calculations that are fused with 
store data emission into one micro-op. 
Traditionally, each store operation 
required two micro-ops. 

This event counts fusion of retired micro-
ops only. Fusion decreases the number of 
micro-ops in the processor pipeline. A high 
value for this event count indicates that 
the code is using the processor resources 
effectively.
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C2H 04H UOPS_RETIRED.
MACRO_FUSION

Retired 
instruction 
pairs fused into 
one micro-op

This event counts the number of times 
CMP or TEST instructions were fused with 
a conditional branch instruction into one 
micro-op. It counts fusion by retired micro-
ops only. 

Fusion decreases the number of micro-ops 
in the processor pipeline. A high value for 
this event count indicates that the code 
uses the processor resources more 
effectively.

C2H 07H UOPS_RETIRED.
FUSED

Fused micro-
ops retired

This event counts the total number of 
retired fused micro-ops. The counts 
include the following fusion types: 

• Fusion of load operation with an 
arithmetic operation or with an indirect 
branch (counted by event 
UOPS_RETIRED.LD_IND_BR) 

• Fusion of store address and data 
(counted by event 
UOPS_RETIRED.STD_STA) 

• Fusion of CMP or TEST instruction with 
a conditional branch instruction 
(counted by event 
UOPS_RETIRED.MACRO_FUSION) 

Fusion decreases the number of micro-ops 
in the processor pipeline. A high value for 
this event count indicates that the code is 
using the processor resources effectively.

C2H 08H UOPS_RETIRED.
NON_FUSED

Non-fused 
micro-ops 
retired

This event counts the number of micro-
ops retired that were not fused.

C2H 0FH UOPS_RETIRED.
ANY

Micro-ops 
retired

This event counts the number of micro-
ops retired. The processor decodes 
complex macro instructions into a 
sequence of simpler micro-ops. Most 
instructions are composed of one or two 
micro-ops. 
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Some instructions are decoded into longer 
sequences such as repeat instructions, 
floating point transcendental instructions, 
and assists. In some cases micro-op 
sequences are fused or whole instructions 
are fused into one micro-op.

See other UOPS_RETIRED events for 
differentiating retired fused and non-
fused micro-ops. 

C3H 01H MACHINE_
NUKES.SMC

Self-Modifying 
Code detected

This event counts the number of times 
that a program writes to a code section. 
Self-modifying code causes a sever 
penalty in all Intel 64 and IA-32 
processors.

C3H 04H MACHINE_NUKES.
MEM_ORDER

Execution 
pipeline restart 
due to memory 
ordering 
conflict or 
memory 
disambiguation 
misprediction

This event counts the number of times the 
pipeline is restarted due to either multi-
threaded memory ordering conflicts or 
memory disambiguation misprediction.

A multi-threaded memory ordering conflict 
occurs when a store, which is executed in 
another core, hits a load that is executed 
out of order in this core but not yet retired. 
As a result, the load needs to be restarted 
to satisfy the memory ordering model. 

See Chapter 8, “Multiple-Processor 
Management” in the Intel® 64 and IA-32 
Architectures Software Developer’s 
Manual, Volume 3A.

To count memory disambiguation 
mispredictions, use the event 
MEMORY_DISAMBIGUATION.RESET.

C4H 00H BR_INST_RETIRED.
ANY

Retired branch 
instructions

This event counts the number of branch 
instructions retired. This is an architectural 
performance event.

C4H 01H BR_INST_RETIRED.
PRED_NOT_
TAKEN

Retired branch 
instructions 
that were 
predicted not-
taken

This event counts the number of branch 
instructions retired that were correctly 
predicted to be not-taken.
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C4H 02H BR_INST_RETIRED.
MISPRED_NOT_
TAKEN

Retired branch 
instructions 
that were 
mispredicted 
not-taken

This event counts the number of branch 
instructions retired that were 
mispredicted and not-taken.

C4H 04H BR_INST_RETIRED.
PRED_TAKEN

Retired branch 
instructions 
that were 
predicted taken

This event counts the number of branch 
instructions retired that were correctly 
predicted to be taken.

C4H 08H BR_INST_RETIRED.
MISPRED_TAKEN

Retired branch 
instructions 
that were 
mispredicted 
taken

This event counts the number of branch 
instructions retired that were 
mispredicted and taken.

C4H 0CH BR_INST_RETIRED.
TAKEN

Retired taken 
branch 
instructions

This event counts the number of branches 
retired that were taken.

C5H 00H BR_INST_RETIRED.
MISPRED

Retired 
mispredicted 
branch 
instructions. 
(precise event)

This event counts the number of retired 
branch instructions that were 
mispredicted by the processor. A branch 
misprediction occurs when the processor 
predicts that the branch would be taken, 
but it is not, or vice-versa. 

This is an architectural performance event.

C6H 01H CYCLES_INT_
MASKED

Cycles during 
which 
interrupts are 
disabled

This event counts the number of cycles 
during which interrupts are disabled.

C6H 02H CYCLES_INT_
PENDING_AND
_MASKED

Cycles during 
which 
interrupts are 
pending and 
disabled

This event counts the number of cycles 
during which there are pending interrupts 
but interrupts are disabled.

C7H 01H SIMD_INST_
RETIRED.PACKED_
SINGLE

Retired SSE 
packed-single 
instructions

This event counts the number of SSE 
packed-single instructions retired.

C7H 02H SIMD_INST_
RETIRED.SCALAR_
SINGLE

Retired SSE 
scalar-single 
instructions

This event counts the number of SSE 
scalar-single instructions retired.
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C7H 04H SIMD_INST_
RETIRED.PACKED_
DOUBLE

Retired SSE2 
packed-double 
instructions

This event counts the number of SSE2 
packed-double instructions retired. 

C7H 08H SIMD_INST_
RETIRED.SCALAR_
DOUBLE

Retired SSE2 
scalar-double 
instructions

This event counts the number of SSE2 
scalar-double instructions retired.

C7H 10H SIMD_INST_
RETIRED.VECTOR

Retired SSE2 
vector integer 
instructions

This event counts the number of SSE2 
vector integer instructions retired.

C7H 1FH SIMD_INST_
RETIRED.ANY

Retired 
Streaming SIMD 
instructions  
(precise event)

This event counts the overall number of 
retired SIMD instructions that use XMM 
registers. To count each type of SIMD 
instruction separately, use the following 
events:

• SIMD_INST_RETIRED.PACKED_SINGLE
• SIMD_INST_RETIRED.SCALAR_SINGLE
• SIMD_INST_RETIRED.PACKED_DOUBLE
• SIMD_INST_RETIRED.SCALAR_DOUBLE
• and SIMD_INST_RETIRED.VECTOR
When this event is captured with the 
precise event mechanism, the collected 
samples contain the address of the 
instruction that was executed immediately 
after the instruction that caused the 
event.

C8H 00H HW_INT_RCV Hardware 
interrupts 
received

This event counts the number of hardware 
interrupts received by the processor.

C9H 00H ITLB_MISS_
RETIRED

Retired 
instructions 
that missed the 
ITLB

This event counts the number of retired 
instructions that missed the ITLB when 
they were fetched.
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CAH 01H SIMD_COMP_
INST_RETIRED.
PACKED_SINGLE

Retired 
computational 
SSE packed-
single 
instructions

This event counts the number of 
computational SSE packed-single 
instructions retired. Computational 
instructions perform arithmetic 
computations (for example: add, multiply 
and divide).

Instructions that perform load and store 
operations or logical operations, like XOR, 
OR, and AND are not counted by this 
event.

CAH 02H SIMD_COMP_
INST_RETIRED.
SCALAR_SINGLE

Retired 
computational 
SSE scalar-
single 
instructions

This event counts the number of 
computational SSE scalar-single 
instructions retired. Computational 
instructions perform arithmetic 
computations (for example: add, multiply 
and divide). 

Instructions that perform load and store 
operations or logical operations, like XOR, 
OR, and AND are not counted by this 
event.

CAH 04H SIMD_COMP_
INST_RETIRED.
PACKED_DOUBLE

Retired 
computational 
SSE2 packed-
double 
instructions

This event counts the number of 
computational SSE2 packed-double 
instructions retired. Computational 
instructions perform arithmetic 
computations (for example: add, multiply 
and divide). 

Instructions that perform load and store 
operations or logical operations, like XOR, 
OR, and AND are not counted by this 
event.

CAH 08H SIMD_COMP_INST_
RETIRED.SCALAR_
DOUBLE

Retired 
computational 
SSE2 scalar-
double 
instructions

This event counts the number of 
computational SSE2 scalar-double 
instructions retired. Computational 
instructions perform arithmetic 
computations (for example: add, multiply 
and divide). 

Instructions that perform load and store 
operations or logical operations, like XOR, 
OR, and AND are not counted by this 
event.

Table 19-13.  Non-Architectural Performance Events 
in Processors Based on Intel Core Microarchitecture (Contd.)

Event 
Num

Umask
Value Event Name Definition

Description and
Comment
19-178 Vol. 3B



PERFORMANCE-MONITORING EVENTS
CBH 01H MEM_LOAD_
RETIRED.L1D
_MISS

Retired loads 
that miss the 
L1 data cache 
(precise event)

This event counts the number of retired 
load operations that missed the L1 data 
cache. This includes loads from cache lines 
that are currently being fetched, due to a 
previous L1 data cache miss to the same 
cache line.  

This event counts loads from cacheable 
memory only. The event does not count 
loads by software prefetches. 

When this event is captured with the 
precise event mechanism, the collected 
samples contain the address of the 
instruction that was executed immediately 
after the instruction that caused the 
event.

Use IA32_PMC0 only.

CBH 02H MEM_LOAD_
RETIRED.L1D_
LINE_MISS

L1 data cache 
line missed by 
retired loads 
(precise event)

This event counts the number of load 
operations that miss the L1 data cache 
and send a request to the L2 cache to 
fetch the missing cache line. That is the 
missing cache line fetching has not yet 
started. 

The event count is equal to the number of 
cache lines fetched from the L2 cache by 
retired loads. 

This event counts loads from cacheable 
memory only. The event does not count 
loads by software prefetches. 

The event might not be counted if the load 
is blocked (see LOAD_BLOCK events).

When this event is captured with the 
precise event mechanism, the collected 
samples contain the address of the 
instruction that was executed immediately 
after the instruction that caused the 
event.

Use IA32_PMC0 only.

Table 19-13.  Non-Architectural Performance Events 
in Processors Based on Intel Core Microarchitecture (Contd.)

Event 
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3B 19-179



PERFORMANCE-MONITORING EVENTS
CBH 04H MEM_LOAD_
RETIRED.L2_MISS

Retired loads 
that miss the 
L2 cache 
(precise event)

This event counts the number of retired 
load operations that missed the L2 cache.   

This event counts loads from cacheable 
memory only. It does not count loads by 
software prefetches.

When this event is captured with the 
precise event mechanism, the collected 
samples contain the address of the 
instruction that was executed immediately 
after the instruction that caused the 
event.

Use IA32_PMC0 only.

CBH 08H MEM_LOAD_
RETIRED.L2_LINE_
MISS

L2 cache line 
missed by 
retired loads 
(precise event)

This event counts the number of load 
operations that miss the L2 cache and 
result in a bus request to fetch the missing 
cache line. That is the missing cache line 
fetching has not yet started.

This event count is equal to the number of 
cache lines fetched from memory by 
retired loads. 

This event counts loads from cacheable 
memory only. The event does not count 
loads by software prefetches. 

The event might not be counted if the load 
is blocked (see LOAD_BLOCK events).

When this event is captured with the 
precise event mechanism, the collected 
samples contain the address of the 
instruction that was executed immediately 
after the instruction that caused the 
event.

Use IA32_PMC0 only.
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CBH 10H MEM_LOAD_
RETIRED.DTLB_
MISS

Retired loads 
that miss the 
DTLB (precise 
event)

This event counts the number of retired 
loads that missed the DTLB. The DTLB 
miss is not counted if the load operation 
causes a fault.

This event counts loads from cacheable 
memory only. The event does not count 
loads by software prefetches. 

When this event is captured with the 
precise event mechanism, the collected 
samples contain the address of the 
instruction that was executed immediately 
after the instruction that caused the 
event. 

Use IA32_PMC0 only.

CCH 01H FP_MMX_TRANS_
TO_MMX

Transitions 
from Floating 
Point to MMX 
Instructions

This event counts the first MMX 
instructions following a floating-point 
instruction. Use this event to estimate the 
penalties for the transitions between 
floating-point and MMX states.

CCH 02H FP_MMX_TRANS_
TO_FP

Transitions 
from MMX 
Instructions to 
Floating Point 
Instructions

This event counts the first floating-point 
instructions following any MMX 
instruction. Use this event to estimate the 
penalties for the transitions between 
floating-point and MMX states.

CDH 00H SIMD_ASSIST SIMD assists 
invoked

This event counts the number of SIMD 
assists invoked. SIMD assists are invoked 
when an EMMS instruction is executed, 
changing the MMX state in the floating 
point stack.

CEH 00H SIMD_INSTR_
RETIRED

SIMD 
Instructions 
retired

This event counts the number of retired 
SIMD instructions that use MMX registers.

CFH 00H SIMD_SAT_INSTR_
RETIRED

Saturated 
arithmetic 
instructions 
retired

This event counts the number of saturated 
arithmetic SIMD instructions that retired.
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D2H 01H RAT_STALLS.
ROB_READ_PORT

ROB read port 
stalls cycles

This event counts the number of cycles 
when ROB read port stalls occurred, which 
did not allow new micro-ops to enter the 
out-of-order pipeline. 

Note that, at this stage in the pipeline, 
additional stalls may occur at the same 
cycle and prevent the stalled micro-ops 
from entering the pipe. In such a case, 
micro-ops retry entering the execution 
pipe in the next cycle and the ROB-read-
port stall is counted again.

D2H 02H RAT_STALLS.
PARTIAL_CYCLES

Partial register 
stall cycles

This event counts the number of cycles 
instruction execution latency became 
longer than the defined latency because 
the instruction uses a register that was 
partially written by previous instructions. 

D2H 04H RAT_STALLS.
FLAGS

Flag stall cycles This event counts the number of cycles 
during which execution stalled due to 
several reasons, one of which is a partial 
flag register stall. 

A partial register stall may occur when 
two conditions are met: 

• an instruction modifies some, but not 
all, of the flags in the flag register

• the next instruction, which depends on 
flags, depends on flags that were not 
modified by this instruction

D2H 08H RAT_STALLS.
FPSW

FPU status 
word stall

This event indicates that the FPU status 
word (FPSW) is written. To obtain the 
number of times the FPSW is written 
divide the event count by 2.

The FPSW is written by instructions with 
long latency; a small count may indicate a 
high penalty.

D2H 0FH RAT_STALLS.
ANY

All RAT stall 
cycles

This event counts the number of stall 
cycles due to conditions described by: 

• RAT_STALLS.ROB_READ_PORT
• RAT_STALLS.PARTIAL
• RAT_STALLS.FLAGS
• RAT_STALLS.FPSW.
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D4H 01H SEG_RENAME_
STALLS.ES

Segment 
rename stalls - 
ES

This event counts the number of stalls due 
to the lack of renaming resources for the 
ES segment register. If a segment is 
renamed, but not retired and a second 
update to the same segment occurs, a stall 
occurs in the front-end of the pipeline until 
the renamed segment retires. 

D4H 02H SEG_RENAME_
STALLS.DS

Segment 
rename stalls - 
DS

This event counts the number of stalls due 
to the lack of renaming resources for the 
DS segment register. If a segment is 
renamed, but not retired and a second 
update to the same segment occurs, a stall 
occurs in the front-end of the pipeline until 
the renamed segment retires. 

D4H 04H SEG_RENAME_
STALLS.FS

Segment 
rename stalls - 
FS

This event counts the number of stalls due 
to the lack of renaming resources for the 
FS segment register. 

If a segment is renamed, but not retired 
and a second update to the same segment 
occurs, a stall occurs in the front-end of 
the pipeline until the renamed segment 
retires. 

D4H 08H SEG_RENAME_
STALLS.GS

Segment 
rename stalls - 
GS

This event counts the number of stalls due 
to the lack of renaming resources for the 
GS segment register. 

If a segment is renamed, but not retired 
and a second update to the same segment 
occurs, a stall occurs in the front-end of 
the pipeline until the renamed segment 
retires. 

D4H 0FH SEG_RENAME_
STALLS.ANY

Any 
(ES/DS/FS/GS) 
segment 
rename stall

This event counts the number of stalls due 
to the lack of renaming resources for the 
ES, DS, FS, and GS segment registers.

If a segment is renamed but not retired 
and a second update to the same segment 
occurs, a stall occurs in the front-end of 
the pipeline until the renamed segment 
retires. 

D5H 01H SEG_REG_
RENAMES.ES

Segment 
renames - ES

This event counts the number of times the 
ES segment register is renamed.
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D5H 02H SEG_REG_
RENAMES.DS

Segment 
renames - DS

This event counts the number of times the 
DS segment register is renamed.

D5H 04H SEG_REG_
RENAMES.FS

Segment 
renames - FS

This event counts the number of times the 
FS segment register is renamed.

D5H 08H SEG_REG_
RENAMES.GS

Segment 
renames - GS

This event counts the number of times the 
GS segment register is renamed.

D5H 0FH SEG_REG_
RENAMES.ANY

Any 
(ES/DS/FS/GS) 
segment 
rename

This event counts the number of times 
any of the four segment registers 
(ES/DS/FS/GS) is renamed.

DCH 01H RESOURCE_
STALLS.ROB_FULL

Cycles during 
which the ROB 
full

This event counts the number of cycles 
when the number of instructions in the 
pipeline waiting for retirement reaches 
the limit the processor can handle. 

A high count for this event indicates that 
there are long latency operations in the 
pipe (possibly load and store operations 
that miss the L2 cache, and other 
instructions that depend on these cannot 
execute until the former instructions 
complete execution). In this situation new 
instructions can not enter the pipe and 
start execution.

DCH 02H RESOURCE_
STALLS.RS_FULL

Cycles during 
which the RS 
full

This event counts the number of cycles 
when the number of instructions in the 
pipeline waiting for execution reaches the 
limit the processor can handle. 

A high count of this event indicates that 
there are long latency operations in the 
pipe (possibly load and store operations 
that miss the L2 cache, and other 
instructions that depend on these cannot 
execute until the former instructions 
complete execution). In this situation new 
instructions can not enter the pipe and 
start execution.
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DCH 04 RESOURCE_
STALLS.LD_ST

Cycles during 
which the 
pipeline has 
exceeded load 
or store limit or 
waiting to 
commit all 
stores

This event counts the number of cycles 
while resource-related stalls occur due to:  

• The number of load instructions in the 
pipeline reached the limit the processor 
can handle. The stall ends when a 
loading instruction retires. 

• The number of store instructions in the 
pipeline reached the limit the processor 
can handle. The stall ends when a 
storing instruction commits its data to 
the cache or memory. 

• There is an instruction in the pipe that 
can be executed only when all previous 
stores complete and their data is 
committed in the caches or memory. 
For example, the SFENCE and MFENCE 
instructions require this behavior.

DCH 08H RESOURCE_
STALLS.FPCW

Cycles stalled 
due to FPU 
control word 
write

This event counts the number of cycles 
while execution was stalled due to writing 
the floating-point unit (FPU) control word.

DCH 10H RESOURCE_
STALLS.BR_MISS_C
LEAR

Cycles stalled 
due to branch 
misprediction

This event counts the number of cycles 
after a branch misprediction is detected at 
execution until the branch and all older 
micro-ops retire. During this time new 
micro-ops cannot enter the out-of-order 
pipeline.

DCH 1FH RESOURCE_
STALLS.ANY

Resource 
related stalls

This event counts the number of cycles 
while resource-related stalls occurs for 
any conditions described by the following 
events:

• RESOURCE_STALLS.ROB_FULL
• RESOURCE_STALLS.RS_FULL
• RESOURCE_STALLS.LD_ST
• RESOURCE_STALLS.FPCW
• RESOURCE_STALLS.BR_MISS_CLEAR

E0H 00H BR_INST_
DECODED

Branch 
instructions 
decoded

This event counts the number of branch 
instructions decoded.
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19.8 PERFORMANCE MONITORING EVENTS FOR 
INTEL® ATOM™ PROCESSORS

Processors based on the Intel Atom microarchitecture support the architectural 
performance-monitoring events listed in Table 19-1 and fixed-function performance 
events using fixed counter listed in Table 19-12. In addition, they also support the 
following non-architectural performance-monitoring events listed in Table 19-14. 

E4H 00H BOGUS_BR Bogus branches This event counts the number of byte 
sequences that were mistakenly detected 
as taken branch instructions.

This results in a BACLEAR event. This 
occurs mainly after task switches.

E6H 00H BACLEARS BACLEARS 
asserted

This event counts the number of times the 
front end is resteered, mainly when the 
BPU cannot provide a correct prediction 
and this is corrected by other branch 
handling mechanisms at the front and. 
This can occur if the code has many 
branches such that they cannot be 
consumed by the BPU. 

Each BACLEAR asserted costs 
approximately 7 cycles of instruction 
fetch. The effect on total execution time 
depends on the surrounding code.

F0 00H PREF_RQSTS_UP Upward 
prefetches 
issued from 
DPL

This event counts the number of upward 
prefetches issued from the Data Prefetch 
Logic (DPL) to the L2 cache. A prefetch 
request issued to the L2 cache cannot be 
cancelled and the requested cache line is 
fetched to the L2 cache. 

F8 00H PREF_RQSTS_DN Downward 
prefetches 
issued from 
DPL.

This event counts the number of 
downward prefetches issued from the 
Data Prefetch Logic (DPL) to the L2 cache. 
A prefetch request issued to the L2 cache 
cannot be cancelled and the requested 
cache line is fetched to the L2 cache.
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Table 19-14.  Non-Architectural Performance Events for Intel Atom Processors 
Event
Num.

Umask
Value Event Name Definition Description and Comment

02H 81H STORe_FORWA
RDS.GOOD

Good store 
forwards

This event counts the number of times store 
data was forwarded directly to a load.

06H 00H SEGMENT_REG_
LOADS.ANY

Number of 
segment 
register loads

This event counts the number of segment 
register load operations. Instructions that 
load new values into segment registers cause 
a penalty. This event indicates performance 
issues in 16-bit code. If this event occurs 
frequently, it may be useful to calculate the 
number of instructions retired per segment 
register load. If the resulting calculation is low 
(on average a small number of instructions 
are executed between segment register 
loads), then the code’s segment register 
usage should be optimized. 

As a result of branch misprediction, this event 
is speculative and may include segment 
register loads that do not actually occur. 
However, most segment register loads are 
internally serialized and such speculative 
effects are minimized. 

07H 01H PREFETCH.PREF
ETCHT0

Streaming SIMD 
Extensions 
(SSE) 
PrefetchT0 
instructions 
executed.

This event counts the number of times the 
SSE instruction prefetchT0 is executed. This 
instruction prefetches the data to the L1 
data cache and L2 cache.

07H 06H PREFETCH.SW_
L2

Streaming SIMD 
Extensions 
(SSE) 
PrefetchT1 and 
PrefetchT2 
instructions 
executed

This event counts the number of times the 
SSE instructions prefetchT1 and prefetchT2 
are executed. These instructions prefetch the 
data to the L2 cache.

07H 08H PREFETCH.PREF
ETCHNTA

Streaming SIMD 
Extensions 
(SSE) Prefetch 
NTA 
instructions 
executed

This event counts the number of times the 
SSE instruction prefetchNTA is executed. This 
instruction prefetches the data to the L1 
data cache. 
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08H 07H DATA_TLB_MIS
SES.DTLB_MISS

Memory 
accesses that 
missed the 
DTLB

This event counts the number of Data Table 
Lookaside Buffer (DTLB) misses. The count 
includes misses detected as a result of 
speculative accesses. Typically a high count 
for this event indicates that the code 
accesses a large number of data pages.

08H 05H DATA_TLB_MIS
SES.DTLB_MISS
_LD

DTLB misses 
due to load 
operations

This event counts the number of Data Table 
Lookaside Buffer (DTLB) misses due to load 
operations. This count includes misses 
detected as a result of speculative accesses.

08H 09H DATA_TLB_MIS
SES.L0_DTLB_M
ISS_LD

L0_DTLB misses 
due to load 
operations

This event counts the number of L0_DTLB 
misses due to load operations. This count 
includes misses detected as a result of 
speculative accesses.

08H 06H DATA_TLB_MIS
SES.DTLB_MISS
_ST

DTLB misses 
due to store 
operations

This event counts the number of Data Table 
Lookaside Buffer (DTLB) misses due to store 
operations. This count includes misses 
detected as a result of speculative accesses. 

0CH 03H PAGE_WALKS.W
ALKS

Number of 
page-walks 
executed

This event counts the number of page-walks 
executed due to either a DTLB or ITLB miss. 
The page walk duration, 
PAGE_WALKS.CYCLES, divided by number of 
page walks is the average duration of a page 
walk. This can hint to whether most of the 
page-walks are satisfied by the caches or 
cause an L2 cache miss.

Edge trigger bit must be set.

0CH 03H PAGE_WALKS.C
YCLES

Duration of 
page-walks in 
core cycles

This event counts the duration of page-walks 
in core cycles. The paging mode in use 
typically affects the duration of page walks. 
Page walk duration divided by number of 
page walks is the average duration of page-
walks. This can hint at whether most of the 
page-walks are satisfied by the caches or 
cause an L2 cache miss. 

Edge trigger bit must be cleared.

10H 01H X87_COMP_OP
S_EXE.ANY.S

Floating point 
computational 
micro-ops 
executed

This event counts the number of x87 floating 
point computational micro-ops executed.
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10H 81H X87_COMP_OP
S_EXE.ANY.AR

Floating point 
computational 
micro-ops 
retired

This event counts the number of x87 floating 
point computational micro-ops retired.

11H 01H FP_ASSIST Floating point 
assists

This event counts the number of floating 
point operations executed that required 
micro-code assist intervention. These assists 
are required in the following cases: 

X87 instructions:

1. NaN or denormal are loaded to a register or 
used as input from memory

2. Division by 0 

3. Underflow output

11H 81H FP_ASSIST.AR Floating point 
assists

This event counts the number of floating 
point operations executed that required 
micro-code assist intervention. These assists 
are required in the following cases: 

X87 instructions:

1. NaN or denormal are loaded to a register or 
used as input from memory

2. Division by 0 

3. Underflow output

12H 01H MUL.S Multiply 
operations 
executed

This event counts the number of multiply 
operations executed. This includes integer as 
well as floating point multiply operations.

12H 81H MUL.AR Multiply 
operations 
retired

This event counts the number of multiply 
operations retired. This includes integer as 
well as floating point multiply operations.

13H 01H DIV.S Divide 
operations 
executed

This event counts the number of divide 
operations executed. This includes integer 
divides, floating point divides and square-root 
operations executed.

13H 81H DIV.AR Divide 
operations 
retired

This event counts the number of divide 
operations retired. This includes integer 
divides, floating point divides and square-root 
operations executed.
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14H 01H CYCLES_DIV_BU
SY

Cycles the 
driver is busy

This event counts the number of cycles the 
divider is busy executing divide or square 
root operations. The divide can be integer, 
X87 or Streaming SIMD Extensions (SSE). The 
square root operation can be either X87 or 
SSE. 

21H See 
Table 
18-2

L2_ADS Cycles L2 
address bus is in 
use

This event counts the number of cycles the 
L2 address bus is being used for accesses to 
the L2 cache or bus queue. 

This event can count occurrences for this 
core or both cores. 

22H See 
Table 
18-2

L2_DBUS_BUSY Cycles the L2 
cache data bus 
is busy

This event counts core cycles during which 
the L2 cache data bus is busy transferring 
data from the L2 cache to the core.   It counts 
for all L1 cache misses (data and instruction) 
that hit the L2 cache.   The count will 
increment by two for a full cache-line 
request. 

24H See 
Table 
18-2 
and 
Table 
18-4

L2_LINES_IN L2 cache misses This event counts the number of cache lines 
allocated in the L2 cache. Cache lines are 
allocated in the L2 cache as a result of 
requests from the L1 data and instruction 
caches and the L2 hardware prefetchers to 
cache lines that are missing in the L2 cache.

This event can count occurrences for this 
core or both cores. This event can also count 
demand requests and L2 hardware prefetch 
requests together or separately.

25H See 
Table 
18-2

L2_M_LINES_IN L2 cache line 
modifications

This event counts whenever a modified 
cache line is written back from the L1 data 
cache to the L2 cache.

This event can count occurrences for this 
core or both cores.

26H See 
Table 
18-2 
and 
Table 
18-4

L2_LINES_OUT L2 cache lines 
evicted

This event counts the number of L2 cache 
lines evicted.

This event can count occurrences for this 
core or both cores. This event can also count 
evictions due to demand requests and L2 
hardware prefetch requests together or 
separately.
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27H See 
Table 
18-2 
and 
Table 
18-4

L2_M_LINES_O
UT

Modified lines 
evicted from 
the L2 cache

This event counts the number of L2 modified 
cache lines evicted. These lines are written 
back to memory unless they also exist in a 
shared-state in one of the L1 data caches.

This event can count occurrences for this 
core or both cores. This event can also count 
evictions due to demand requests and L2 
hardware prefetch requests together or 
separately.

28H See 
Table 
18-2 
and 
Table 
18-5

L2_IFETCH L2 cacheable 
instruction 
fetch requests

This event counts the number of instruction 
cache line requests from the ICache. It does 
not include fetch requests from uncacheable 
memory. It does not include ITLB miss 
accesses. 

This event can count occurrences for this 
core or both cores. This event can also count 
accesses to cache lines at different MESI 
states.

29H See 
Table 
18-2, 
Table 
18-4 
and 
Table 
18-5

L2_LD L2 cache reads This event counts L2 cache read requests 
coming from the L1 data cache and L2 
prefetchers. 

This event can count occurrences for this 
core or both cores. This event can count 
occurrences

- for this core or both cores.

- due to demand requests and L2 hardware 
prefetch requests together or separately.

- of accesses to cache lines at different MESI 
states.

2AH See 
Table 
18-2 
and 
Table 
18-5

L2_ST L2 store 
requests

This event counts all store operations that 
miss the L1 data cache and request the data 

from the L2 cache. 

This event can count occurrences for this 
core or both cores. This event can also count 
accesses to cache lines at different MESI 
states.
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2BH See 
Table 
18-2 
and 
Table 
18-5

L2_LOCK L2 locked 
accesses

This event counts all locked accesses to 
cache lines that miss the L1 data cache.

This event can count occurrences for this 
core or both cores. This event can also count 
accesses to cache lines at different MESI 
states.

2EH See 
Table 
18-2, 
Table 
18-4 
and 
Table 
18-5

L2_RQSTS L2 cache 
requests

This event counts all completed L2 cache 
requests. This includes L1 data cache reads, 
writes, and locked accesses, L1 data prefetch 
requests, instruction fetches, and all L2 
hardware prefetch requests. 

This event can count occurrences

- for this core or both cores.

- due to demand requests and L2 hardware 
prefetch requests together, or separately.

- of accesses to cache lines at different MESI 
states.

2EH 41H L2_RQSTS.SELF.
DEMAND.I_STAT
E

L2 cache 
demand 
requests from 
this core that 
missed the L2

This event counts all completed L2 cache 
demand requests from this core that miss the 
L2 cache. This includes L1 data cache reads, 
writes, and locked accesses, L1 data prefetch 
requests, and instruction fetches. 

This is an architectural performance event.

2EH 4FH L2_RQSTS.SELF.
DEMAND.MESI

L2 cache 
demand 
requests from 
this core

This event counts all completed L2 cache 
demand requests from this core. This includes 
L1 data cache reads, writes, and locked 
accesses, L1 data prefetch requests, and 
instruction fetches. 

This is an architectural performance event.
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30H See 
Table 
18-2, 
Table 
18-4 
and 
Table 
18-5

L2_REJECT_BUS
Q

Rejected L2 
cache requests

This event indicates that a pending L2 cache 
request that requires a bus transaction is 
delayed from moving to the bus queue. Some 
of the reasons for this event are:

- The bus queue is full.

- The bus queue already holds an entry for a 
cache line in the same set.

The number of events is greater or equal to 
the number of requests that were rejected.

- for this core or both cores.

- due to demand requests and L2 hardware 
prefetch requests together, or separately.

- of accesses to cache lines at different MESI 
states.

32H See 
Table 
18-2

L2_NO_REQ Cycles no L2 
cache requests 
are pending

This event counts the number of cycles that 
no L2 cache requests are pending.

3AH 00H EIST_TRANS Number of 
Enhanced Intel 
SpeedStep(R) 
Technology 
(EIST) 
transitions

This event counts the number of Enhanced 
Intel SpeedStep(R) Technology (EIST) 
transitions that include a frequency change, 
either with or without VID change. This event 
is incremented only while the counting core is 
in C0 state. Since the CxE states include an 
EIST transition, the event will be incremented 
accordingly.

EIST transitions are commonly initiated by 
OS, but can be initiated by HW internally. For 
example: CxE states are C-states (C1,C2,C3…) 
which not only place the CPU into a sleep 
state by turning off the clock and other 
components, but also lower the voltage 
(which reduces the leakage power 
consumption). The same is true for thermal 
throttling transition which uses EIST 
internally.
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3BH C0H THERMAL_TRIP Number of 
thermal trips

This event counts the number of thermal 
trips. A thermal trip occurs whenever the 
processor temperature exceeds the thermal 
trip threshold temperature. Following a 
thermal trip, the processor automatically 
reduces frequency and voltage. The 
processor checks the temperature every 
millisecond, and returns to normal when the 
temperature falls below the thermal trip 
threshold temperature.

3CH 00H CPU_CLK_UNH
ALTED.CORE_P

Core cycles 
when core is not 
halted

This event counts the number of core cycles 
while the core is not in a halt state. The core 
enters the halt state when it is running the 
HLT instruction. This event is a component in 
many key event ratios. 

In mobile systems the core frequency may 
change from time to time. For this reason this 
event may have a changing ratio with regards 
to time. In systems with a constant core 
frequency, this event can give you a 
measurement of the elapsed time while the 
core was not in halt state by dividing the 
event count by the core frequency.

-This is an architectural performance event.

- The event CPU_CLK_UNHALTED.CORE_P is 
counted by a programmable counter.

- The event CPU_CLK_UNHALTED.CORE is 
counted by a designated fixed counter, 
leaving the two programmable counters 
available for other events.
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3CH 01H CPU_CLK_UNH
ALTED.BUS

Bus cycles 
when core is not 
halted

This event counts the number of bus cycles 
while the core is not in the halt state. This 
event can give you a measurement of the 
elapsed time while the core was not in the 
halt state, by dividing the event count by the 
bus frequency. The core enters the halt state 
when it is running the HLT instruction.

The event also has a constant ratio with 
CPU_CLK_UNHALTED.REF event, which is the 
maximum bus to processor frequency ratio. 

Non-halted bus cycles are a component in 
many key event ratios. 

3CH 02H CPU_CLK_UNH
ALTED.NO_OTH
ER

Bus cycles 
when core is 
active and the 
other is halted

This event counts the number of bus cycles 
during which the core remains non-halted, 
and the other core on the processor is halted. 

This event can be used to determine the 
amount of parallelism exploited by an 
application or a system. Divide this event 
count by the bus frequency to determine the 
amount of time that only one core was in use.

40H 21H L1D_CACHE.LD L1 Cacheable 
Data Reads

This event counts the number of data reads 
from cacheable memory.

40H 22H L1D_CACHE.ST L1 Cacheable 
Data Writes

This event counts the number of data writes 
to cacheable memory.

60H See 
Table 
18-2 
and 
Table 
18-3

BUS_REQUEST_
OUTSTANDING

Outstanding 
cacheable data 
read bus 
requests 
duration

This event counts the number of pending full 
cache line read transactions on the bus 
occurring in each cycle. A read transaction is 
pending from the cycle it is sent on the bus 
until the full cache line is received by the 
processor. NOTE: This event is thread-
independent and will not provide a count per 
logical processor when AnyThr is disabled.
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61H See 
Table 
18-3

BUS_BNR_DRV Number of Bus 
Not Ready 
signals asserted

This event counts the number of Bus Not 
Ready (BNR) signals that the processor 
asserts on the bus to suspend additional bus 
requests by other bus agents. A bus agent 
asserts the BNR signal when the number of 
data and snoop transactions is close to the 
maximum that the bus can handle. 

While this signal is asserted, new 
transactions cannot be submitted on the bus. 
As a result, transaction latency may have 
higher impact on program performance. 
NOTE: This event is thread-independent and 
will not provide a count per logical processor 
when AnyThr is disabled.

62H See 
Table 
18-3

BUS_DRDY_CLO
CKS

Bus cycles 
when data is 
sent on the bus

This event counts the number of bus cycles 
during which the DRDY (Data Ready) signal is 
asserted on the bus. The DRDY signal is 
asserted when data is sent on the bus.

This event counts the number of bus cycles 
during which this agent (the processor) 
writes data on the bus back to memory or to 
other bus agents. This includes all explicit and 
implicit data writebacks, as well as partial 
writes.
NOTE: This event is thread-independent and 
will not provide a count per logical processor 
when AnyThr is disabled.

63H See 
Table 
18-2 
and 
Table 
18-3

BUS_LOCK_CLO
CKS

Bus cycles 
when a LOCK 
signal is 
asserted.

This event counts the number of bus cycles, 
during which the LOCK signal is asserted on 
the bus. A LOCK signal is asserted when 
there is a locked memory access, due to:

- Uncacheable memory

- Locked operation that spans two cache lines

- Page-walk from an uncacheable page table.

Bus locks have a very high performance 
penalty and it is highly recommended to avoid 
such accesses. NOTE: This event is thread-
independent and will not provide a count per 
logical processor when AnyThr is disabled.

Table 19-14.  Non-Architectural Performance Events for Intel Atom Processors 
Event
Num.

Umask
Value Event Name Definition Description and Comment
19-196 Vol. 3B



PERFORMANCE-MONITORING EVENTS
64H See 
Table 
18-2

BUS_DATA_RCV Bus cycles while 
processor 
receives data

This event counts the number of cycles 
during which the processor is busy receiving 
data. NOTE: This event is thread-independent 
and will not provide a count per logical 
processor when AnyThr is disabled.

65H See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_B
RD

Burst read bus 
transactions

This event counts the number of burst read 
transactions including:

- L1 data cache read misses (and L1 data 
cache hardware prefetches)

- L2 hardware prefetches by the DPL and L2 
streamer

- IFU read misses of cacheable lines.

It does not include RFO transactions.

66H See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_RF
O

RFO bus 
transactions

This event counts the number of Read For 
Ownership (RFO) bus transactions, due to 
store operations that miss the L1 data cache 
and the L2 cache. This event also counts RFO 
bus transactions due to locked operations.

67H See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_W
B

Explicit 
writeback bus 
transactions

This event counts all explicit writeback bus 
transactions due to dirty line evictions. It 
does not count implicit writebacks due to 
invalidation by a snoop request.

68H See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_IF
ETCH

Instruction-
fetch bus 
transactions.

This event counts all instruction fetch full 
cache line bus transactions.

69H See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_IN
VAL

Invalidate bus 
transactions

This event counts all invalidate transactions. 
Invalidate transactions are generated when:

- A store operation hits a shared line in the L2 
cache.

- A full cache line write misses the L2 cache 
or hits a shared line in the L2 cache.
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6AH See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_P
WR

Partial write bus 
transaction.

This event counts partial write bus 
transactions.

6BH See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_P Partial bus 
transactions

This event counts all (read and write) partial 
bus transactions.

6CH See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_IO IO bus 
transactions

This event counts the number of completed 
I/O bus transactions as a result of IN and OUT 
instructions. The count does not include 
memory mapped IO.

6DH See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_D
EF

Deferred bus 
transactions

This event counts the number of deferred 
transactions. 

6EH See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_B
URST

Burst (full 
cache-line) bus 
transactions.

This event counts burst (full cache line) 
transactions including:

- Burst reads

- RFOs

- Explicit writebacks

- Write combine lines

6FH See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_M
EM

Memory bus 
transactions

This event counts all memory bus 
transactions including:

- burst transactions

- partial reads and writes

- invalidate transactions

The BUS_TRANS_MEM count is the sum of 
BUS_TRANS_BURST, BUS_TRANS_P and 
BUS_TRANS_INVAL.
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70H See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_A
NY

All bus 
transactions

This event counts all bus transactions. This 
includes:

- Memory transactions

- IO transactions (non memory-mapped)

- Deferred transaction completion

- Other less frequent transactions, such as 
interrupts

77H See 
Table 
18-2 
and 
Table 
18-5

EXT_SNOOP External snoops This event counts the snoop responses to 
bus transactions. Responses can be counted 
separately by type and by bus agent. NOTE: 
This event is thread-independent and will not 
provide a count per logical processor when 
AnyThr is disabled.

7AH See 
Table 
18-3

BUS_HIT_DRV HIT signal 
asserted

This event counts the number of bus cycles 
during which the processor drives the HIT# 
pin to signal HIT snoop response. NOTE: This 
event is thread-independent and will not 
provide a count per logical processor when 
AnyThr is disabled.

7BH See 
Table 
18-3

BUS_HITM_DRV HITM signal 
asserted

This event counts the number of bus cycles 
during which the processor drives the HITM# 
pin to signal HITM snoop response. NOTE: 
This event is thread-independent and will not 
provide a count per logical processor when 
AnyThr is disabled.

7DH See 
Table 
18-2

BUSQ_EMPTY Bus queue is 
empty

This event counts the number of cycles 
during which the core did not have any 
pending transactions in the bus queue. 

NOTE: This event is thread-independent and 
will not provide a count per logical processor 
when AnyThr is disabled.

7EH See 
Table 
18-2 
and 
Table 
18-3

SNOOP_STALL_
DRV

Bus stalled for 
snoops

This event counts the number of times that 
the bus snoop stall signal is asserted. During 
the snoop stall cycles no new bus 
transactions requiring a snoop response can 
be initiated on the bus. NOTE: This event is 
thread-independent and will not provide a 
count per logical processor when AnyThr is 
disabled.
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7FH See 
Table 
18-2

BUS_IO_WAIT IO requests 
waiting in the 
bus queue

This event counts the number of core cycles 
during which IO requests wait in the bus 
queue. This event counts IO requests from 
the core.

80H 03H ICACHE.ACCESS
ES

Instruction 
fetches

This event counts all instruction fetches, 
including uncacheable fetches.

80H 02H ICACHE.MISSES Icache miss This event counts all instruction fetches that 
miss the Instruction cache or produce 
memory requests. This includes uncacheable 
fetches. An instruction fetch miss is counted 
only once and not once for every cycle it is 
outstanding.

82H 04H ITLB.FLUSH ITLB flushes This event counts the number of ITLB 
flushes.

82H 02H ITLB.MISSES ITLB misses This event counts the number of instruction 
fetches that miss the ITLB. 

AAH 02H MACRO_INSTS.C
ISC_DECODED

CISC macro 
instructions 
decoded

This event counts the number of complex 
instructions decoded, but not necessarily 
executed or retired. Only one complex 
instruction can be decoded at a time.

AAH 03H MACRO_INSTS.
ALL_DECODED

All Instructions 
decoded

This event counts the number of instructions 
decoded.

B0H 00H SIMD_UOPS_EX
EC.S

SIMD micro-ops 
executed 
(excluding 
stores)

This event counts all the SIMD micro-ops 
executed. This event does not count MOVQ 
and MOVD stores from register to memory.

B0H 80H SIMD_UOPS_EX
EC.AR

SIMD micro-ops 
retired 
(excluding 
stores)

This event counts the number of SIMD 
saturated arithmetic micro-ops executed.

B1H 00H SIMD_SAT_UOP
_EXEC.S

SIMD saturated 
arithmetic 
micro-ops 
executed

This event counts the number of SIMD 
saturated arithmetic micro-ops executed.

B1H 80H SIMD_SAT_UOP
_EXEC.AR

SIMD saturated 
arithmetic 
micro-ops 
retired

This event counts the number of SIMD 
saturated arithmetic micro-ops retired.
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B3H 01H SIMD_UOP_TYP
E_EXEC.MUL.S

SIMD packed 
multiply micro-
ops executed

This event counts the number of SIMD packed 
multiply micro-ops executed.

B3H 81H SIMD_UOP_TYP
E_EXEC.MUL.AR

SIMD packed 
multiply micro-
ops retired

This event counts the number of SIMD packed 
multiply micro-ops retired.

B3H 02H SIMD_UOP_TYP
E_EXEC.SHIFT.S

SIMD packed 
shift micro-ops 
executed

This event counts the number of SIMD packed 
shift micro-ops executed.

B3H 82H SIMD_UOP_TYP
E_EXEC.SHIFT.A
R

SIMD packed 
shift micro-ops 
retired

This event counts the number of SIMD packed 
shift micro-ops retired.

B3H 04H SIMD_UOP_TYP
E_EXEC.PACK.S

SIMD pack 
micro-ops 
executed

This event counts the number of SIMD pack 
micro-ops executed.

B3H 84H SIMD_UOP_TYP
E_EXEC.PACK.A
R

SIMD pack 
micro-ops 
retired

This event counts the number of SIMD pack 
micro-ops retired.

B3H 08H SIMD_UOP_TYP
E_EXEC.UNPAC
K.S

SIMD unpack 
micro-ops 
executed

This event counts the number of SIMD 
unpack micro-ops executed.

B3H 88H SIMD_UOP_TYP
E_EXEC.UNPAC
K.AR

SIMD unpack 
micro-ops 
retired

This event counts the number of SIMD 
unpack micro-ops retired.

B3H 10H SIMD_UOP_TYP
E_EXEC.LOGICA
L.S

SIMD packed 
logical micro-
ops executed

This event counts the number of SIMD packed 
logical micro-ops executed.

B3H 90H SIMD_UOP_TYP
E_EXEC.LOGICA
L.AR

SIMD packed 
logical micro-
ops retired

This event counts the number of SIMD packed 
logical micro-ops retired.

B3H 20H SIMD_UOP_TYP
E_EXEC.ARITHM
ETIC.S

SIMD packed 
arithmetic 
micro-ops 
executed

This event counts the number of SIMD packed 
arithmetic micro-ops executed.

B3H A0H SIMD_UOP_TYP
E_EXEC.ARITHM
ETIC.AR

SIMD packed 
arithmetic 
micro-ops 
retired

This event counts the number of SIMD packed 
arithmetic micro-ops retired.
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C0H 00H INST_RETIRED.
ANY_P

Instructions 
retired (precise 
event).

This event counts the number of instructions 
that retire execution. For instructions that 
consist of multiple micro-ops, this event 
counts the retirement of the last micro-op of 
the instruction. The counter continues 
counting during hardware interrupts, traps, 
and inside interrupt handlers.

N/A 00H INST_RETIRED.
ANY

Instructions 
retired

This event counts the number of instructions 
that retire execution. For instructions that 
consist of multiple micro-ops, this event 
counts the retirement of the last micro-op of 
the instruction. The counter continues 
counting during hardware interrupts, traps, 
and inside interrupt handlers.

C2H 10H UOPS_RETIRED.
ANY

Micro-ops 
retired

This event counts the number of micro-ops 
retired. The processor decodes complex 
macro instructions into a sequence of simpler 
micro-ops. Most instructions are composed of 
one or two micro-ops. Some instructions are 
decoded into longer sequences such as 
repeat instructions, floating point 
transcendental instructions, and assists. In 
some cases micro-op sequences are fused or 
whole instructions are fused into one micro-
op. See other UOPS_RETIRED events for 
differentiating retired fused and non-fused 
micro-ops.

C3H 01H MACHINE_CLEA
RS.SMC

Self-Modifying 
Code detected

This event counts the number of times that a 
program writes to a code section. Self-
modifying code causes a severe penalty in all 
Intel® architecture processors.

C4H 00H BR_INST_RETIR
ED.ANY

Retired branch 
instructions

This event counts the number of branch 
instructions retired. 

This is an architectural performance event. 

C4H 01H BR_INST_RETIR
ED.PRED_NOT_
TAKEN

Retired branch 
instructions 
that were 
predicted not-
taken

This event counts the number of branch 
instructions retired that were correctly 
predicted to be not-taken.
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C4H 02H BR_INST_RETIR
ED.MISPRED_N
OT_TAKEN

Retired branch 
instructions 
that were 
mispredicted 
not-taken

This event counts the number of branch 
instructions retired that were mispredicted 
and not-taken.

C4H 04H BR_INST_RETIR
ED.PRED_TAKE
N

Retired branch 
instructions 
that were 
predicted taken

This event counts the number of branch 
instructions retired that were correctly 
predicted to be taken.

C4H 08H BR_INST_RETIR
ED.MISPRED_TA
KEN

Retired branch 
instructions 
that were 
mispredicted 
taken

This event counts the number of branch 
instructions retired that were mispredicted 
and taken.

C4H 0AH BR_INST_RETIR
ED.MISPRED

Retired 
mispredicted 
branch 
instructions 
(precise event)

This event counts the number of retired 
branch instructions that were mispredicted 
by the processor. A branch misprediction 
occurs when the processor predicts that the 
branch would be taken, but it is not, or vice-
versa. Mispredicted branches degrade the 
performance because the processor starts 
executing instructions along a wrong path it 
predicts. When the misprediction is 
discovered, all the instructions executed in 
the wrong path must be discarded, and the 
processor must start again on the correct 
path. 

Using the Profile-Guided Optimization (PGO) 
features of the Intel® C++ compiler may help 
reduce branch mispredictions. See the 
compiler documentation for more information 
on this feature. 
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To determine the branch misprediction ratio, 
divide the BR_INST_RETIRED.MISPRED event 
count by the number of 
BR_INST_RETIRED.ANY event count. To 
determine the number of mispredicted 
branches per instruction, divide the number 
of mispredicted branches by the 
INST_RETIRED.ANY event count. To measure 
the impact of the branch mispredictions use 
the event 
RESOURCE_STALLS.BR_MISS_CLEAR. 

Tips

- See the optimization guide for tips on 
reducing branch mispredictions.

- PGO's purpose is to have straight line code 
for the most frequent execution paths, 
reducing branches taken and increasing the 
"basic block" size, possibly also reducing the 
code footprint or working-set.

C4H 0CH BR_INST_RETIR
ED.TAKEN

Retired taken 
branch 
instructions

This event counts the number of branches 
retired that were taken.

C4H 0FH BR_INST_RETIR
ED.ANY1

Retired branch 
instructions

This event counts the number of branch 
instructions retired that were mispredicted. 
This event is a duplicate of 
BR_INST_RETIRED.MISPRED.

C5H 00H BR_INST_RETIR
ED.MISPRED

Retired 
mispredicted 
branch 
instructions 
(precise event).

This event counts the number of retired 
branch instructions that were mispredicted 
by the processor. A branch misprediction 
occurs when the processor predicts that the 
branch would be taken, but it is not, or vice-
versa. Mispredicted branches degrade the 
performance because the processor starts 
executing instructions along a wrong path it 
predicts. When the misprediction is 
discovered, all the instructions executed in 
the wrong path must be discarded, and the 
processor must start again on the correct 
path. 
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Using the Profile-Guided Optimization (PGO) 
features of the Intel® C++ compiler may help 
reduce branch mispredictions. See the 
compiler documentation for more information 
on this feature. 

To determine the branch misprediction ratio, 
divide the BR_INST_RETIRED.MISPRED event 
count by the number of 
BR_INST_RETIRED.ANY event count. To 
determine the number of mispredicted 
branches per instruction, divide the number 
of mispredicted branches by the 
INST_RETIRED.ANY event count. To measure 
the impact of the branch mispredictions use 
the event 
RESOURCE_STALLS.BR_MISS_CLEAR. 

Tips

- See the optimization guide for tips on 
reducing branch mispredictions.

- PGO's purpose is to have straight line code 
for the most frequent execution paths, 
reducing branches taken and increasing the 
"basic block" size, possibly also reducing the 
code footprint or working-set.

C6H 01H CYCLES_INT_M
ASKED.CYCLES_I
NT_MASKED

Cycles during 
which interrupts 
are disabled

This event counts the number of cycles 
during which interrupts are disabled.

C6H 02H CYCLES_INT_M
ASKED.CYCLES_I
NT_PENDING_A
ND_MASKED

Cycles during 
which interrupts 
are pending and 
disabled

This event counts the number of cycles 
during which there are pending interrupts but 
interrupts are disabled.

C7H 01H SIMD_INST_RET
IRED.PACKED_SI
NGLE

Retired 
Streaming SIMD 
Extensions 
(SSE) packed-
single 
instructions

This event counts the number of SSE packed-
single instructions retired.
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C7H 02H SIMD_INST_RET
IRED.SCALAR_SI
NGLE

Retired 
Streaming SIMD 
Extensions 
(SSE) scalar-
single 
instructions

This event counts the number of SSE scalar-
single instructions retired.

C7H 04H SIMD_INST_RET
IRED.PACKED_D
OUBLE

Retired 
Streaming SIMD 
Extensions 2 
(SSE2) packed-
double 
instructions

This event counts the number of SSE2 
packed-double instructions retired.

C7H 08H SIMD_INST_RET
IRED.SCALAR_D
OUBLE

Retired 
Streaming SIMD 
Extensions 2 
(SSE2) scalar-
double 
instructions.

This event counts the number of SSE2 scalar-
double instructions retired.

C7H 10H SIMD_INST_RET
IRED.VECTOR

Retired 
Streaming SIMD 
Extensions 2 
(SSE2) vector 
instructions.

This event counts the number of SSE2 vector 
instructions retired.

C7H 1FH SIMD_INST_RET
IRED.ANY

Retired 
Streaming SIMD 
instructions

This event counts the overall number of SIMD 
instructions retired. To count each type of 
SIMD instruction separately, use the following 
events:

SIMD_INST_RETIRED.PACKED_SINGLE, 
SIMD_INST_RETIRED.SCALAR_SINGLE, 
SIMD_INST_RETIRED.PACKED_DOUBLE, 
SIMD_INST_RETIRED.SCALAR_DOUBLE, and 
SIMD_INST_RETIRED.VECTOR.

C8H 00H HW_INT_RCV Hardware 
interrupts 
received

This event counts the number of hardware 
interrupts received by the processor. This 
event will count twice for dual-pipe micro-
ops.

Table 19-14.  Non-Architectural Performance Events for Intel Atom Processors 
Event
Num.

Umask
Value Event Name Definition Description and Comment
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CAH 01H SIMD_COMP_IN
ST_RETIRED.PA
CKED_SINGLE

Retired 
computational 
Streaming SIMD 
Extensions 
(SSE) packed-
single 
instructions.

This event counts the number of 
computational SSE packed-single instructions 
retired. Computational instructions perform 
arithmetic computations, like add, multiply 
and divide. Instructions that perform load and 
store operations or logical operations, like 
XOR, OR, and AND are not counted by this 
event.

CAH 02H SIMD_COMP_IN
ST_RETIRED.SC
ALAR_SINGLE

Retired 
computational 
Streaming SIMD 
Extensions 
(SSE) scalar-
single 
instructions.

This event counts the number of 
computational SSE scalar-single instructions 
retired. Computational instructions perform 
arithmetic computations, like add, multiply 
and divide. Instructions that perform load and 
store operations or logical operations, like 
XOR, OR, and AND are not counted by this 
event.

CAH 04H SIMD_COMP_IN
ST_RETIRED.PA
CKED_DOUBLE

Retired 
computational 
Streaming SIMD 
Extensions 2 
(SSE2) packed-
double 
instructions.

This event counts the number of 
computational SSE2 packed-double 
instructions retired. Computational 
instructions perform arithmetic 
computations, like add, multiply and divide. 
Instructions that perform load and store 
operations or logical operations, like XOR, OR, 
and AND are not counted by this event.

CAH 08H SIMD_COMP_IN
ST_RETIRED.SC
ALAR_DOUBLE

Retired 
computational 
Streaming SIMD 
Extensions 2 
(SSE2) scalar-
double 
instructions

This event counts the number of 
computational SSE2 scalar-double 
instructions retired. Computational 
instructions perform arithmetic 
computations, like add, multiply and divide. 
Instructions that perform load and store 
operations or logical operations, like XOR, OR, 
and AND are not counted by this event.

CBH 01H MEM_LOAD_RE
TIRED.L2_HIT

Retired loads 
that hit the L2 
cache (precise 
event)

This event counts the number of retired load 
operations that missed the L1 data cache and 
hit the L2 cache.

CBH 02H MEM_LOAD_RE
TIRED.L2_MISS

Retired loads 
that miss the L2 
cache (precise 
event)

This event counts the number of retired load 
operations that missed the L2 cache.

Table 19-14.  Non-Architectural Performance Events for Intel Atom Processors 
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CBH 04H MEM_LOAD_RE
TIRED.DTLB_MI
SS

Retired loads 
that miss the 
DTLB (precise 
event)

This event counts the number of retired loads 
that missed the DTLB. The DTLB miss is not 
counted if the load operation causes a fault. 

CDH 00H SIMD_ASSIST SIMD assists 
invoked

This event counts the number of SIMD assists 
invoked. SIMD assists are invoked when an 
EMMS instruction is executed after MMX™ 
technology code has changed the MMX state 
in the floating point stack. For example, these 
assists are required in the following cases: 

Streaming SIMD Extensions (SSE) 
instructions: 

1. Denormal input when the DAZ (Denormals 
Are Zeros) flag is off 

2. Underflow result when the FTZ (Flush To 
Zero) flag is off 

CEH 00H SIMD_INSTR_RE
TIRED

SIMD 
Instructions 
retired

This event counts the number of SIMD 
instructions that retired.

CFH 00H SIMD_SAT_INST
R_RETIRED

Saturated 
arithmetic 
instructions 
retired

This event counts the number of saturated 
arithmetic SIMD instructions that retired.

E0H 01H BR_INST_DECO
DED

Branch 
instructions 
decoded

This event counts the number of branch 
instructions decoded.

Table 19-14.  Non-Architectural Performance Events for Intel Atom Processors 
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19.9 PERFORMANCE MONITORING EVENTS FOR INTEL® 
CORE™ SOLO AND INTEL® CORE™ DUO PROCESSORS

Table 19-15 lists non-architectural performance events for Intel Core Duo proces-
sors. If a non-architectural event requires qualification in core specificity, it is indi-
cated in the comment column. Table 19-15 also applies to Intel Core Solo processors; 
bits in the unit mask corresponding to core-specificity are reserved and should be 
00B.

E4H 01H BOGUS_BR Bogus branches This event counts the number of byte 
sequences that were mistakenly detected as 
taken branch instructions. This results in a 
BACLEAR event and the BTB is flushed. This 
occurs mainly after task switches.

E6H 01H BACLEARS.ANY BACLEARS 
asserted

This event counts the number of times the 
front end is redirected for a branch 
prediction, mainly when an early branch 
prediction is corrected by other branch 
handling mechanisms in the front-end. This 
can occur if the code has many branches such 
that they cannot be consumed by the branch 
predictor.   Each Baclear asserted costs 
approximately 7 cycles. The effect on total 
execution time depends on the surrounding 
code.

Table 19-15.  Non-Architectural Performance Events 
in Intel Core Solo and Intel Core Duo Processors

Event
Num.

Event Mask 
Mnemonic

Umask
Value Description Comment

03H LD_Blocks 00H Load operations delayed due to 
store buffer blocks. 

The preceding store may be 
blocked due to unknown address, 
unknown data, or conflict due to 
partial overlap between the load 
and store. 

04H SD_Drains 00H Cycles while draining store buffers.

Table 19-14.  Non-Architectural Performance Events for Intel Atom Processors 
Event
Num.

Umask
Value Event Name Definition Description and Comment
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05H Misalign_Mem_Ref 00H Misaligned data memory 
references (MOB splits of loads 
and stores).

06H Seg_Reg_Loads 00H Segment register loads.

07H SSE_PrefNta_Ret 00H SSE software prefetch instruction 
PREFETCHNTA retired.

07H SSE_PrefT1_Ret 01H SSE software prefetch instruction 
PREFETCHT1 retired.

07H SSE_PrefT2_Ret 02H SSE software prefetch instruction 
PREFETCHT2 retired.

07H SSE_NTStores_Ret 03H SSE streaming store instruction  
retired.

10H FP_Comps_Op_Exe 00H FP computational Instruction 
executed. FADD, FSUB, FCOM, 
FMULs, MUL, IMUL, FDIVs, DIV, IDIV, 
FPREMs, FSQRT are included; but 
exclude FADD or FMUL used in the 
middle of a transcendental 
instruction.

11H FP_Assist 00H FP exceptions experienced 
microcode assists.

IA32_PMC1 
only.

12H Mul 00H Multiply operations (a speculative 
count, including FP and integer 
multiplies).

IA32_PMC1 
only.

13H Div 00H Divide operations (a speculative 
count, including FP and integer 
divisions).

IA32_PMC1 
only.

14H Cycles_Div_Busy 00H Cycles the divider is busy. IA32_PMC0 
only.

21H L2_ADS 00H L2 Address strobes. Requires core-
specificity

22H Dbus_Busy 00H Core cycle during which data bus 
was busy (increments by 4).

Requires core-
specificity

23H Dbus_Busy_Rd 00H Cycles data bus is busy 
transferring data to a core 
(increments by 4).

Requires core-
specificity

Table 19-15.  Non-Architectural Performance Events 
in Intel Core Solo and Intel Core Duo Processors (Contd.)

Event
Num.

Event Mask 
Mnemonic

Umask
Value Description Comment
19-210 Vol. 3B



PERFORMANCE-MONITORING EVENTS
24H L2_Lines_In 00H L2 cache lines allocated. Requires core-
specificity and 
HW prefetch 
qualification

25H L2_M_Lines_In 00H L2 Modified-state cache lines 
allocated.

Requires core-
specificity

26H L2_Lines_Out 00H L2 cache lines evicted. Requires core-
specificity and 
HW prefetch 
qualification

27H L2_M_Lines_Out 00H L2 Modified-state cache lines 
evicted.

28H L2_IFetch Requires 
MESI 
qualification

L2 instruction fetches from 
instruction fetch unit (includes 
speculative fetches).

Requires core-
specificity

29H L2_LD Requires 
MESI 
qualification

L2 cache reads. Requires core-
specificity

2AH L2_ST Requires 
MESI 
qualification

L2 cache writes (includes 
speculation).

Requires core-
specificity

2EH L2_Rqsts Requires 
MESI 
qualification

L2 cache reference requests. Requires core-
specificity, HW 
prefetch 
qualification30H L2_Reject_Cycles Requires 

MESI 
qualification

Cycles L2 is busy and rejecting 
new requests.

32H L2_No_Request_
Cycles

Requires 
MESI 
qualification

Cycles there is no request to 
access L2.

3AH EST_Trans_All 00H Any Intel Enhanced SpeedStep(R) 
Technology transitions.

3AH EST_Trans_All 10H Intel Enhanced SpeedStep 
Technology frequency transitions.

3BH Thermal_Trip C0H Duration in a thermal trip based on 
the current core clock.

Use edge 
trigger to count 
occurrence

3CH NonHlt_Ref_Cycles 01H Non-halted bus cycles.

Table 19-15.  Non-Architectural Performance Events 
in Intel Core Solo and Intel Core Duo Processors (Contd.)

Event
Num.

Event Mask 
Mnemonic

Umask
Value Description Comment
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3CH Serial_Execution_
Cycles

02H Non-halted bus cycles of this core 
executing code while the other 
core is halted.

40H DCache_Cache_LD Requires 
MESI 
qualification

L1 cacheable data read operations.

41H DCache_Cache_ST Requires 
MESI 
qualification

L1 cacheable data write 
operations.

42H DCache_Cache_
Lock

Requires 
MESI 
qualification

L1 cacheable lock read operations 
to invalid state.

43H Data_Mem_Ref 01H L1 data read and writes of 
cacheable and non-cacheable 
types.

44H Data_Mem_Cache_
Ref

02H L1 data cacheable read and write 
operations.

45H DCache_Repl 0FH L1 data cache line replacements.

46H DCache_M_Repl 00H L1 data M-state cache line 
allocated.

47H DCache_M_Evict 00H L1 data M-state cache line evicted.

48H DCache_Pend_Miss 00H Weighted cycles of L1 miss 
outstanding.

Use Cmask =1 
to count 
duration.

49H Dtlb_Miss 00H Data references that missed TLB.

4BH SSE_PrefNta_Miss 00H PREFETCHNTA missed all caches.

4BH SSE_PrefT1_Miss 01H PREFETCHT1 missed all caches.

4BH SSE_PrefT2_Miss 02H PREFETCHT2 missed all caches.

4BH SSE_NTStores_
Miss

03H SSE streaming store instruction  
missed all caches.

4FH L1_Pref_Req 00H L1 prefetch requests due to DCU 
cache misses.

May overcount 
if request re-
submitted

Table 19-15.  Non-Architectural Performance Events 
in Intel Core Solo and Intel Core Duo Processors (Contd.)
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60H Bus_Req_
Outstanding

00; Requires 
core-
specificity, 
and agent 
specificity

Weighted cycles of cacheable bus 
data read requests. This event 
counts full-line read request from 
DCU or HW prefetcher, but not 
RFO, write, instruction fetches, or 
others.

Use Cmask =1 
to count 
duration.

Use Umask bit 
12 to include 
HWP or exclude 
HWP separately.

61H Bus_BNR_Clocks 00H External bus cycles while BNR 
asserted.

62H Bus_DRDY_Clocks 00H External bus cycles while DRDY 
asserted.

Requires agent 
specificity

63H Bus_Locks_Clocks 00H External bus cycles while bus lock 
signal asserted.

Requires core 
specificity 

64H Bus_Data_Rcv 40H Number of data chunks received 
by this processor.

65H Bus_Trans_Brd See comment. Burst read bus transactions (data 
or code).

Requires core 
specificity 

66H Bus_Trans_RFO See comment. Completed read for ownership 
(RFO) transactions.

Requires agent 
specificity

Requires core 
specificity

Each 
transaction 
counts its 
address strobe

Retried  
transaction may 
be counted 
more than once

68H Bus_Trans_Ifetch See comment. Completed instruction fetch 
transactions.

69H Bus_Trans_Inval See comment. Completed invalidate transactions.

6AH Bus_Trans_Pwr See comment. Completed partial write 
transactions.

6BH Bus_Trans_P See comment. Completed partial transactions 
(include partial read + partial write 
+ line write).

6CH Bus_Trans_IO See comment. Completed I/O transactions (read 
and write).

6DH Bus_Trans_Def 20H Completed defer transactions. Requires core 
specificity

Retried  
transaction may 
be counted 
more than once

Table 19-15.  Non-Architectural Performance Events 
in Intel Core Solo and Intel Core Duo Processors (Contd.)
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67H Bus_Trans_WB C0H Completed writeback transactions 
from DCU (does not include L2 
writebacks).

Requires agent 
specificity

Each 
transaction 
counts its 
address strobe

Retried  
transaction may 
be counted 
more than once

6EH Bus_Trans_Burst C0H Completed burst transactions (full 
line transactions include reads, 
write, RFO, and writebacks).

6FH Bus_Trans_Mem C0H Completed memory transactions. 
This includes Bus_Trans_Burst + 
Bus_Trans_P+Bus_Trans_Inval.

70H Bus_Trans_Any C0H Any completed bus transactions.

77H Bus_Snoops 00H Counts any snoop on the bus. Requires MESI 
qualification

Requires agent 
specificity

78H DCU_Snoop_To_
Share

01H DCU snoops to share-state L1 
cache line due to L1 misses.

Requires core 
specificity

7DH Bus_Not_In_Use 00H Number of cycles there is no 
transaction from the core.

Requires core 
specificity

7EH Bus_Snoop_Stall 00H Number of bus cycles while bus 
snoop is stalled.

80H ICache_Reads 00H Number of instruction fetches 
from ICache, streaming buffers 
(both cacheable and uncacheable 
fetches).

81H ICache_Misses 00H Number of instruction fetch misses 
from ICache, streaming buffers.

85H ITLB_Misses 00H Number of iITLB misses.

86H IFU_Mem_Stall 00H Cycles IFU is stalled while waiting 
for data from memory.

87H ILD_Stall 00H Number of instruction length 
decoder stalls (Counts number of 
LCP stalls).

88H Br_Inst_Exec 00H Branch instruction executed 
(includes speculation).

Table 19-15.  Non-Architectural Performance Events 
in Intel Core Solo and Intel Core Duo Processors (Contd.)
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89H Br_Missp_Exec 00H Branch instructions executed and 
mispredicted at execution  
(includes branches that do not 
have prediction or mispredicted).

8AH Br_BAC_Missp_
Exec

00H Branch instructions executed that 
were mispredicted at front end.

8BH Br_Cnd_Exec 00H Conditional branch instructions 
executed.

8CH Br_Cnd_Missp_
Exec

00H Conditional branch instructions 
executed that were mispredicted.

8DH Br_Ind_Exec 00H Indirect branch instructions 
executed.

8EH Br_Ind_Missp_Exec 00H Indirect branch instructions 
executed that were mispredicted.

8FH Br_Ret_Exec 00H Return branch instructions 
executed.

90H Br_Ret_Missp_Exec 00H Return branch instructions 
executed that were mispredicted.

91H Br_Ret_BAC_Missp_
Exec

00H Return branch instructions 
executed that were mispredicted 
at the front end.

92H Br_Call_Exec 00H Return call instructions executed.

93H Br_Call_Missp_Exec 00H Return call instructions executed 
that were mispredicted.

94H Br_Ind_Call_Exec 00H Indirect call branch instructions 
executed.

A2H Resource_Stall 00H Cycles while there is a resource 
related stall (renaming, buffer 
entries) as seen by allocator.

B0H MMX_Instr_Exec 00H Number of MMX instructions 
executed (does not include MOVQ 
and MOVD stores).

B1H SIMD_Int_Sat_Exec 00H Number of SIMD Integer saturating 
instructions executed.

B3H SIMD_Int_Pmul_
Exec

01H Number of SIMD Integer packed 
multiply instructions executed.

Table 19-15.  Non-Architectural Performance Events 
in Intel Core Solo and Intel Core Duo Processors (Contd.)
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B3H SIMD_Int_Psft_Exec 02H Number of SIMD Integer packed 
shift instructions executed.

B3H SIMD_Int_Pck_Exec 04H Number of SIMD Integer pack 
operations instruction executed.

B3H SIMD_Int_Upck_
Exec

08H Number of SIMD Integer unpack 
instructions executed.

B3H SIMD_Int_Plog_
Exec

10H Number of SIMD Integer packed 
logical instructions executed.

B3H SIMD_Int_Pari_Exec 20H Number of SIMD Integer packed 
arithmetic instructions executed.

C0H Instr_Ret 00H Number of instruction retired 
(Macro fused instruction count 
as 2).

C1H FP_Comp_Instr_Ret 00H Number of FP compute 
instructions retired (X87 
instruction or instruction that 
contain X87 operations).

Use IA32_PMC0 
only.

C2H Uops_Ret 00H Number of micro-ops retired 
(include fused uops).

C3H SMC_Detected 00H Number of times self-modifying 
code condition detected.

C4H Br_Instr_Ret 00H Number of branch instructions 
retired.

C5H Br_MisPred_Ret 00H Number of mispredicted branch 
instructions retired.

C6H Cycles_Int_Masked 00H Cycles while interrupt is disabled.

C7H Cycles_Int_Pedning_
Masked

00H Cycles while interrupt is disabled 
and interrupts are pending.

C8H HW_Int_Rx 00H Number of hardware interrupts 
received.

C9H Br_Taken_Ret 00H Number of taken branch 
instruction retired.

CAH Br_MisPred_Taken_
Ret

00H Number of taken and mispredicted 
branch instructions retired.

CCH MMX_FP_Trans 00H Number of transitions from MMX 
to X87.

Table 19-15.  Non-Architectural Performance Events 
in Intel Core Solo and Intel Core Duo Processors (Contd.)
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CCH FP_MMX_Trans 01H Number of transitions from X87 to 
MMX.

CDH MMX_Assist 00H Number of EMMS executed.

CEH MMX_Instr_Ret 00H Number of MMX instruction 
retired.

D0H Instr_Decoded 00H Number of instruction decoded.

D7H ESP_Uops 00H Number of ESP folding instruction 
decoded.

D8H SIMD_FP_SP_Ret 00H Number of SSE/SSE2 single 
precision instructions retired 
(packed and scalar).

D8H SIMD_FP_SP_S_
Ret

01H Number of SSE/SSE2 scalar single 
precision instructions retired.

D8H SIMD_FP_DP_P_
Ret

02H Number of SSE/SSE2 packed 
double precision instructions 
retired.

D8H SIMD_FP_DP_S_
Ret

03H Number of SSE/SSE2 scalar double 
precision instructions retired.

D8H SIMD_Int_128_Ret 04H Number of SSE2 128 bit integer  
instructions retired.

D9H SIMD_FP_SP_P_
Comp_Ret

00H Number of SSE/SSE2 packed single 
precision compute instructions 
retired (does not include AND, OR, 
XOR).

D9H SIMD_FP_SP_S_
Comp_Ret

01H Number of SSE/SSE2 scalar single 
precision compute instructions 
retired (does not include AND, OR, 
XOR).

D9H SIMD_FP_DP_P_
Comp_Ret

02H Number of SSE/SSE2 packed 
double precision compute 
instructions retired (does not 
include AND, OR, XOR).

D9H SIMD_FP_DP_S_
Comp_Ret

03H Number of SSE/SSE2 scalar double 
precision compute instructions 
retired (does not include AND, OR, 
XOR).

DAH Fused_Uops_Ret 00H All fused uops retired.

Table 19-15.  Non-Architectural Performance Events 
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19.10 PENTIUM 4 AND INTEL XEON PROCESSOR 
PERFORMANCE-MONITORING EVENTS

Tables 19-16, 19-17 and  list performance-monitoring events that can be counted or 
sampled on processors based on Intel NetBurst® microarchitecture. Table 19-16 lists 
the non-retirement events, and Table 19-17 lists the at-retirement events. Tables 
19-19, 19-20, and 19-21 describes three sets of parameters that are available for 
three of the at-retirement counting events defined in Table 19-17. Table 19-22 shows 
which of the non-retirement and at retirement events are logical processor specific 
(TS) (see Section 18.11.4, “Performance Monitoring Events”) and which are non-
logical processor specific (TI).

Some of the Pentium 4 and Intel Xeon processor performance-monitoring events 
may be available only to specific models. The performance-monitoring events listed 
in Tables 19-16 and 19-17 apply to processors with CPUID signature that matches 
family encoding 15, model encoding 0, 1, 2 3, 4, or 6. Table  applies to processors 
with a CPUID signature that matches family encoding 15, model encoding 3, 4 or 6.

The functionality of performance-monitoring events in Pentium 4 and Intel Xeon 
processors is also available when IA-32e mode is enabled. 

DAH Fused_Ld_Uops_
Ret

01H Fused load uops retired.

DAH Fused_St_Uops_Ret 02H Fused store uops retired.

DBH Unfusion 00H Number of unfusion events in the 
ROB (due to exception).

E0H Br_Instr_Decoded 00H Branch instructions decoded.

E2H BTB_Misses 00H Number of branches the BTB did 
not produce a prediction.

E4H Br_Bogus 00H Number of bogus branches.

E6H BAClears 00H Number of BAClears asserted.

F0H Pref_Rqsts_Up 00H Number of hardware prefetch 
requests issued in forward 
streams.

F8H Pref_Rqsts_Dn 00H Number of hardware prefetch 
requests issued in backward 
streams.

Table 19-15.  Non-Architectural Performance Events 
in Intel Core Solo and Intel Core Duo Processors (Contd.)
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Table 19-16.  Performance Monitoring Events Supported by Intel NetBurst 
Microarchitecture for Non-Retirement Counting

Event Name Event Parameters  Parameter Value Description

TC_deliver_mode This event counts the duration (in 
clock cycles) of the operating 
modes of the trace cache and 
decode engine in the processor 
package. The mode is specified by 
one or more of the event mask 
bits.

ESCR restrictions MSR_TC_ESCR0

MSR_TC_ESCR1

Counter numbers 
per ESCR

ESCR0: 4, 5

ESCR1: 6, 7

ESCR Event Select 01H ESCR[31:25]

ESCR Event Mask

Bit 

0: DD

1: DB

2: DI

ESCR[24:9]

Both logical processors are in 
deliver mode.

Logical processor 0 is in deliver 
mode and logical processor 1 is in 
build mode.

Logical processor 0 is in deliver 
mode and logical processor 1 is 
either halted, under a machine 
clear condition or transitioning to 
a long microcode flow. 

3: BD

4: BB

Logical processor 0 is in build 
mode and logical processor 1 is in 
deliver mode.

Both logical processors are in build 
mode. 

5: BI Logical processor 0 is in build 
mode and logical processor 1 is 
either halted, under a machine 
clear condition or transitioning to 
a long microcode flow.
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6: ID

7: IB

Logical processor 0 is either 
halted, under a machine clear 
condition or transitioning to a long 
microcode flow. Logical processor 
1 is in deliver mode.

Logical processor 0 is either 
halted, under a machine clear 
condition or transitioning to a long 
microcode flow. Logical processor 
1 is in build mode. 

CCCR Select 01H CCCR[15:13]

Event Specific 
Notes

If only one logical processor is 
available from a physical 
processor package, the event 
mask should be interpreted as 
logical processor 1 is halted. Event 
mask bit 2 was previously known 
as “DELIVER”, bit 5 was previously 
known as “BUILD”.

BPU_fetch_
request 

This event counts instruction 
fetch requests of specified 
request type by the Branch 
Prediction unit. Specify one or 
more mask bits to qualify the 
request type(s).

ESCR restrictions MSR_BPU_ESCR0
MSR_BPU_ESCR1

Counter numbers 
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 03H ESCR[31:25]

ESCR Event Mask

Bit 0: TCMISS

ESCR[24:9]

Trace cache lookup miss

CCCR Select 00H CCCR[15:13]

ITLB_reference This event counts translations 
using the Instruction Translation 
Look-aside Buffer (ITLB). 

Table 19-16.  Performance Monitoring Events Supported by Intel NetBurst 
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters  Parameter Value Description
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ESCR restrictions MSR_ITLB_ESCR0

MSR_ITLB_ESCR1

Counter numbers 
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 18H ESCR[31:25]

ESCR Event Mask

Bit 

0: HIT

1: MISS

2: HIT_UC 

ESCR[24:9]

ITLB hit

ITLB miss

Uncacheable ITLB hit

CCCR Select 03H CCCR[15:13]

Event Specific 
Notes

All page references regardless of 
the page size are looked up as 
actual 4-KByte pages. Use the 
page_walk_type event with the 
ITMISS mask for a more 
conservative count.

memory_cancel This event counts the canceling of 
various type of request in the 
Data cache Address Control unit 
(DAC). Specify one or more mask 
bits to select the type of requests 
that are canceled.

ESCR restrictions MSR_DAC_ESCR0

MSR_DAC_ESCR1

Counter numbers 
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 02H ESCR[31:25]

ESCR Event Mask

Bit 

2: ST_RB_FULL

3: 64K_CONF

ESCR[24:9]

Replayed because no store 
request buffer is available

Conflicts due to 64-KByte aliasing

CCCR Select 05H CCCR[15:13]
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Event Specific 
Notes

All_CACHE_MISS includes 
uncacheable memory in count.

memory_
complete 

This event counts the completion 
of a load split, store split, 
uncacheable (UC) split, or UC load. 
Specify one or more mask bits to 
select the operations to be 
counted.

ESCR restrictions MSR_SAAT_ESCR0

MSR_SAAT_ESCR1

Counter numbers 
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 08H ESCR[31:25]

ESCR Event Mask

Bit 

0: LSC

1: SSC

ESCR[24:9]

Load split completed, excluding 
UC/WC loads

Any split stores completed

CCCR Select 02H CCCR[15:13]

load_port_replay This event counts replayed events 
at the load port. Specify one or 
more mask bits to select the 
cause of the replay.

ESCR restrictions MSR_SAAT_ESCR0

MSR_SAAT_ESCR1

Counter numbers 
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 04H ESCR[31:25]

ESCR Event Mask

Bit 1: SPLIT_LD

ESCR[24:9]

Split load.

CCCR Select 02H CCCR[15:13]

Event Specific 
Notes

Must use ESCR1 for at-retirement 
counting.

Table 19-16.  Performance Monitoring Events Supported by Intel NetBurst 
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters  Parameter Value Description
19-222 Vol. 3B



PERFORMANCE-MONITORING EVENTS
store_port_replay This event counts replayed events 
at the store port. Specify one or 
more mask bits to select the 
cause of the replay.

ESCR restrictions MSR_SAAT_ESCR0

MSR_SAAT_ESCR1

Counter numbers 
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 05H ESCR[31:25]

ESCR Event Mask

Bit 1: SPLIT_ST

ESCR[24:9]

Split store

CCCR Select 02H CCCR[15:13]

Event Specific 
Notes

Must use ESCR1 for at-retirement 
counting.

MOB_load_replay This event triggers if the memory 
order buffer (MOB) caused a load 
operation to be replayed. Specify 
one or more mask bits to select 
the cause of the replay.

ESCR restrictions MSR_MOB_ESCR0

MSR_MOB_ESCR1

Counter numbers 
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 03H ESCR[31:25]

ESCR Event Mask

Bit 

1: NO_STA

3: NO_STD

ESCR[24:9]

Replayed because of unknown 
store address.

Replayed because of unknown 
store data.
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4: PARTIAL_DATA

5: UNALGN_ADDR 

Replayed because of partially 
overlapped data access between 
the load and store operations.

Replayed because the lower 4 bits 
of the linear address do not match 
between the load and store 
operations.

CCCR Select 02H CCCR[15:13]

page_walk_type This event counts various types 
of page walks that the page miss 
handler (PMH) performs.

ESCR restrictions MSR_PMH_
ESCR0

MSR_PMH_
ESCR1

Counter numbers 
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 01H ESCR[31:25]

ESCR Event Mask

Bit 

0: DTMISS

1: ITMISS

ESCR[24:9]

Page walk for a data TLB miss 
(either load or store).

Page walk for an instruction TLB 
miss.

CCCR Select 04H CCCR[15:13]

BSQ_cache
_reference 

This event counts cache 
references (2nd level cache or 3rd 
level cache) as seen by the bus 
unit. 

Specify one or more mask bit to 
select an access according to the 
access type (read type includes 
both load and RFO, write type 
includes writebacks and evictions) 
and the access result (hit, misses).
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ESCR restrictions MSR_BSU_
ESCR0

MSR_BSU_
ESCR1

Counter numbers 
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 0CH ESCR[31:25]

Bit

0: RD_2ndL_HITS 

1: RD_2ndL_HITE

2: RD_2ndL_HITM

3: RD_3rdL_HITS

ESCR[24:9]

Read 2nd level cache hit Shared 
(includes load and RFO)

Read 2nd level cache hit Exclusive 
(includes load and RFO)

Read 2nd level cache hit Modified 
(includes load and RFO)

Read 3rd level cache hit Shared 
(includes load and RFO)

4: RD_3rdL_HITE

5: RD_3rdL_HITM

Read 3rd level cache hit Exclusive 
(includes load and RFO)

Read 3rd level cache hit Modified 
(includes load and RFO)

ESCR Event Mask 8: RD_2ndL_MISS

9: RD_3rdL_MISS

10: WR_2ndL_MISS

Read 2nd level cache miss 
(includes load and RFO)

Read 3rd level cache miss 
(includes load and RFO)

A Writeback lookup from DAC 
misses the 2nd level cache 
(unlikely to happen)

CCCR Select 07H CCCR[15:13]

Event Specific 
Notes

1: The implementation of this 
event in current Pentium 4 and 
Xeon processors treats either 
a load operation or a request 
for ownership (RFO) request as 
a “read” type operation. 
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2: Currently this event causes 
both over and undercounting 
by as much as a factor of two 
due to an erratum.

3:  It is possible for a transaction 
that is started as a prefetch to 
change the transaction's 
internal status, making it no 
longer a prefetch. or change 
the access result status (hit, 
miss) as seen by this event. 

IOQ_allocation This event counts the various 
types of transactions on the bus. 
A count is generated each time a 
transaction is allocated into the 
IOQ that matches the specified 
mask bits. An allocated entry can 
be a sector (64 bytes) or a chunks 
of 8 bytes. 

Requests are counted once per 
retry. The event mask bits 
constitute 4 bit fields. A 
transaction type is specified by 
interpreting the values of each bit 
field. 

Specify one or more event mask 
bits in a bit field to select the 
value of the bit field.

Each field (bits 0-4 are one field) 
are independent of and can be 
ORed with the others. The 
request type field is further 
combined with bit 5 and 6 to form 
a binary expression. Bits 7 and 8 
form a bit field to specify the 
memory type of the target 
address. 
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Bits 13 and 14 form a bit field to 
specify the source agent of the 
request. Bit 15 affects read 
operation only. The event is 
triggered by evaluating the logical 
expression: (((Request type) OR 
Bit 5 OR Bit 6) OR (Memory type)) 
AND (Source agent).

ESCR restrictions MSR_FSB_ESCR0, 
MSR_FSB_ESCR1

Counter numbers 
per ESCR

ESCR0: 0, 1;

ESCR1: 2, 3

ESCR Event Select 03H ESCR[31:25]

ESCR Event Mask

Bits 

0-4 (single field)

 5:  ALL_READ

 6:  ALL_WRITE

 7:  MEM_UC

 8:  MEM_WC

ESCR[24:9]

Bus request type (use 00001 for 
invalid or default)

Count read entries

Count write entries

Count UC memory access entries

Count WC memory access entries

 9:  MEM_WT

10: MEM_WP

Count write-through (WT) 
memory access entries.

Count write-protected (WP) 
memory access entries 

11: MEM_WB 

13: OWN

Count WB memory access entries. 

Count all store requests driven by 
processor, as opposed to other 
processor or DMA.

14: OTHER

15: PREFETCH

Count all requests driven by other 
processors or DMA.

Include HW and SW prefetch 
requests in the count.

CCCR Select 06H CCCR[15:13]
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Event Specific 
Notes

1: If PREFETCH bit is cleared, 
sectors fetched using prefetch 
are excluded in the counts. If 
PREFETCH bit is set, all sectors 
or chunks read are counted. 

2: Specify the edge trigger in 
CCCR to avoid double counting.

3: The mapping of interpreted bit 
field values to transaction 
types may differ with different 
processor model 
implementations of the 
Pentium 4 processor family. 
Applications that program 
performance monitoring 
events should use CPUID to 
determine processor models 
when using this event. The 
logic equations that trigger the 
event are model-specific (see 
4a and 4b below).

4a:For Pentium 4 and Xeon 
Processors starting with CPUID 
Model field encoding equal to 2 
or greater, this event is 
triggered by evaluating the 
logical expression ((Request 
type) and (Bit 5 or Bit 6) and 
(Memory type) and (Source 
agent)).
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4b:For Pentium 4 and Xeon 
Processors with CPUID Model 
field encoding less than 2, this 
event is triggered by 
evaluating the logical 
expression [((Request type) or 
Bit 5 or Bit 6) or (Memory 
type)] and (Source agent). Note 
that event mask bits for 
memory type are ignored if 
either ALL_READ or 
ALL_WRITE is specified.

5: This event is known to ignore 
CPL in early implementations 
of Pentium 4 and Xeon 
Processors. Both user requests 
and OS requests are included in 
the count. This behavior is 
fixed starting with Pentium 4 
and Xeon Processors with 
CPUID signature 0xF27 (Family 
15, Model 2, Stepping 7). 

6: For write-through (WT) and 
write-protected (WP) memory 
types, this event counts reads 
as the number of 64-byte 
sectors. Writes are counted by 
individual chunks.

7: For uncacheable (UC) memory 
types, this events counts the 
number of 8-byte chunks 
allocated.

8: For Pentium 4 and Xeon 
Processors with CPUID 
Signature less than 0xf27, only 
MSR_FSB_ESCR0 is available.
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IOQ_active_
entries

This event counts the number of 
entries (clipped at 15) in the IOQ 
that are active. An allocated entry 
can be a sector (64 bytes) or a 
chunks of 8 bytes.

The event must be programmed in 
conjunction with IOQ_allocation. 
Specify one or more event mask 
bits to select the transactions 
that is counted. 

ESCR restrictions MSR_FSB_ESCR1

Counter numbers 
per ESCR

ESCR1: 2, 3 

ESCR Event Select 01AH ESCR[30:25]

ESCR Event Mask

Bits 

0-4 (single field)

5:  ALL_READ

6:  ALL_WRITE

7:  MEM_UC

8:  MEM_WC

ESCR[24:9]

Bus request type (use 00001 for 
invalid or default).

Count read entries.

Count write entries.

Count UC memory access entries.

Count WC memory access entries.

9:  MEM_WT

10: MEM_WP

Count write-through (WT) 
memory access entries.

Count write-protected (WP) 
memory access entries.

11: MEM_WB 

13: OWN

Count WB memory access entries. 

Count all store requests driven by 
processor, as opposed to other 
processor or DMA.

14: OTHER

15: PREFETCH

Count all requests driven by other 
processors or DMA.

Include HW and SW prefetch 
requests in the count.

CCCR Select 06H CCCR[15:13]
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Event Specific 
Notes

1: Specified desired mask bits in 
ESCR0 and ESCR1. 

2: See the ioq_allocation event 
for descriptions of the mask 
bits.

3: Edge triggering should not be 
used when counting cycles. 

4: The mapping of interpreted bit 
field values to transaction 
types may differ across 
different processor model 
implementations of the 
Pentium 4 processor family. 
Applications that programs 
performance monitoring 
events should use the CPUID 
instruction to detect processor 
models when using this event. 
The logical expression that 
triggers this event as describe 
below:

5a:For Pentium 4 and Xeon 
Processors starting with CPUID 
MODEL field encoding equal to 
2 or greater, this event is 
triggered by evaluating the 
logical expression ((Request 
type) and (Bit 5 or Bit 6) and 
(Memory type) and (Source 
agent)). 
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5b:For Pentium 4 and Xeon 
Processors starting with CPUID 
MODEL field encoding less than 
2, this event is triggered by 
evaluating the logical 
expression [((Request type) or 
Bit 5 or Bit 6) or (Memory 
type)] and (Source agent). 
Event mask bits for memory 
type are ignored if either 
ALL_READ or ALL_WRITE is 
specified. 

5c:This event is known to ignore 
CPL in the current 
implementations of Pentium 4 
and Xeon Processors Both user 
requests and OS requests are 
included in the count.

6: An allocated entry can be a full 
line (64 bytes) or in individual 
chunks of 8 bytes.

FSB_data_
activity 

This event increments once for 
each DRDY or DBSY event that 
occurs on the front side bus. The 
event allows selection of a 
specific DRDY or DBSY event.

ESCR restrictions MSR_FSB_ESCR0
MSR_FSB_ESCR1

Counter numbers 
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 17H ESCR[31:25]

ESCR Event Mask

Bit 0: 

ESCR[24:9]

DRDY_DRV Count when this processor drives 
data onto the bus - includes 
writes and implicit writebacks.

Table 19-16.  Performance Monitoring Events Supported by Intel NetBurst 
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters  Parameter Value Description
19-232 Vol. 3B



PERFORMANCE-MONITORING EVENTS
Asserted two processor clock 
cycles for partial writes and 4 
processor clocks (usually in 
consecutive bus clocks) for full 
line writes. 

1: DRDY_OWN Count when this processor reads 
data from the bus - includes loads 
and some PIC transactions. 
Asserted two processor clock 
cycles for partial reads and 4 
processor clocks (usually in 
consecutive bus clocks) for full 
line reads.

Count DRDY events that we drive.

Count DRDY events sampled that 
we own.

2: DRDY_OTHER Count when data is on the bus but 
not being sampled by the 
processor. It may or may not be 
being driven by this processor.

Asserted two processor clock 
cycles for partial transactions and 
4 processor clocks (usually in 
consecutive bus clocks) for full 
line transactions. 

3: DBSY_DRV Count when this processor 
reserves the bus for use in the 
next bus cycle in order to drive 
data. Asserted for two processor 
clock cycles for full line writes and 
not at all for partial line writes.

May be asserted multiple times (in 
consecutive bus clocks) if we stall 
the bus waiting for a cache lock to 
complete.
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4: DBSY_OWN Count when some agent reserves 
the bus for use in the next bus 
cycle to drive data that this 
processor will sample. 

Asserted for two processor clock 
cycles for full line writes and not 
at all for partial line writes. May be 
asserted multiple times (all one 
bus clock apart) if we stall the bus 
for some reason. 

5:DBSY_OTHER Count when some agent reserves 
the bus for use in the next bus 
cycle to drive data that this 
processor will NOT sample. It may 
or may not be being driven by this 
processor. 

Asserted two processor clock 
cycles for partial transactions and 
4 processor clocks (usually in 
consecutive bus clocks) for full 
line transactions. 

CCCR Select 06H CCCR[15:13]

Event Specific 
Notes

Specify edge trigger in the CCCR 
MSR to avoid double counting.

DRDY_OWN and DRDY_OTHER are 
mutually exclusive; similarly for 
DBSY_OWN and DBSY_OTHER.

BSQ_allocation This event counts allocations in 
the Bus Sequence Unit (BSQ) 
according to the specified mask 
bit encoding. The event mask bits 
consist of four sub-groups: 

• request type, 
• request length
• memory type
• and sub-group consisting 

mostly of independent bits 
(bits 5, 6, 7, 8, 9, and 10) 

Specify an encoding for each sub-
group.
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ESCR restrictions MSR_BSU_ESCR0 

Counter numbers 
per ESCR

ESCR0: 0, 1

ESCR Event Select 05H ESCR[31:25]

ESCR Event Mask Bit 

0: REQ_TYPE0
1: REQ_TYPE1

ESCR[24:9]

Request type encoding (bit 0 and 
1) are: 

0 – Read (excludes read 
invalidate)
1 – Read invalidate
2 – Write (other than 
writebacks)
3 – Writeback (evicted from 
cache). (public)

2: REQ_LEN0
3: REQ_LEN1

Request length encoding (bit 2, 3) 
are: 

0 – 0 chunks
1 – 1 chunks
3 – 8 chunks

5: REQ_IO_TYPE

6: REQ_LOCK_
     TYPE

7: REQ_CACHE_
     TYPE

Request type is input or output.

Request type is bus lock.

Request type is cacheable.

8: REQ_SPLIT_
    TYPE

9: REQ_DEM_TYPE

10: REQ_ORD_
       TYPE

Request type is a bus 8-byte 
chunk split across 8-byte 
boundary.

Request type is a demand if set. 
Request type is HW.SW prefetch 
if 0.

Request is an ordered type.
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11: MEM_TYPE0
12: MEM_TYPE1
13: MEM_TYPE2

Memory type encodings (bit 
11-13) are: 

0 – UC
1 – WC
4 – WT
5 – WP
6 – WB

CCCR Select 07H CCCR[15:13]

Event Specific 
Notes

1: Specify edge trigger in CCCR to 
avoid double counting.

2: A writebacks to 3rd level cache 
from 2nd level cache counts as 
a separate entry, this is in 
additional to the entry 
allocated for a request to the 
bus. 

3: A read request to WB memory 
type results in a request to the 
64-byte sector, containing the 
target address, followed by a 
prefetch request to an 
adjacent sector. 

4: For Pentium 4 and Xeon 
processors with CPUID model 
encoding value equals to 0 and 
1, an allocated BSQ entry 
includes both the demand 
sector and prefetched 2nd 
sector.

5: An allocated BSQ entry for a 
data chunk is any request less 
than 64 bytes. 

6a:This event may undercount for 
requests of split type 
transactions if the data 
address straddled across 
modulo-64 byte boundary.
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6b:This event may undercount for 
requests of read request of 
16-byte operands from WC or 
UC address.

6c: This event may undercount WC 
partial requests originated 
from store operands that are 
dwords. 

bsq_active_
entries 

This event represents the number 
of BSQ entries (clipped at 15) 
currently active (valid) which meet 
the subevent mask criteria during 
allocation in the BSQ. Active 
request entries are allocated on 
the BSQ until de-allocated. 

De-allocation of an entry does not 
necessarily imply the request is 
filled. This event must be 
programmed in conjunction with 
BSQ_allocation. Specify one or 
more event mask bits to select 
the transactions that is counted.

ESCR restrictions ESCR1

Counter numbers 
per ESCR

ESCR1: 2, 3 

ESCR Event Select 06H ESCR[30:25]

ESCR Event Mask ESCR[24:9]

CCCR Select 07H CCCR[15:13]

Event Specific 
Notes

1: Specified desired mask bits in 
ESCR0 and ESCR1. 

2: See the BSQ_allocation event 
for descriptions of the mask 
bits. 

3: Edge triggering should not be 
used when counting cycles.
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4: This event can be used to 
estimate the latency of a 
transaction from allocation to 
de-allocation in the BSQ. The 
latency observed by 
BSQ_allocation includes the 
latency of FSB, plus additional 
overhead. 

5: Additional overhead may 
include the time it takes to 
issue two requests (the sector 
by demand and the adjacent 
sector via prefetch). Since 
adjacent sector prefetches 
have lower priority that 
demand fetches, on a heavily 
used system there is a high 
probability that the adjacent 
sector prefetch will have to 
wait until the next bus 
arbitration.

6: For Pentium 4 and Xeon 
processors with CPUID model 
encoding value less than 3, this 
event is updated every clock. 

7: For Pentium 4 and Xeon 
processors with CPUID model 
encoding value equals to 3 or 4, 
this event is updated every 
other clock. 

SSE_input_assist This event counts the number of 
times an assist is requested to 
handle problems with input 
operands for SSE/SSE2/SSE3 
operations; most notably 
denormal source operands when 
the DAZ bit is not set. Set bit 15 
of the event mask to use this 
event.
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ESCR restrictions MSR_FIRM_ESCR0
MSR_FIRM_ESCR1

Counter numbers 
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 34H ESCR[31:25]

ESCR Event Mask

15: ALL 

ESCR[24:9]

Count assists for SSE/SSE2/SSE3 
μops.

CCCR Select 01H CCCR[15:13]

Event Specific 
Notes

1: Not all requests for assists are 
actually taken. This event is 
known to overcount in that it 
counts requests for assists 
from instructions on the non-
retired path that do not incur a 
performance penalty. An assist 
is actually taken only for non-
bogus μops. Any appreciable 
counts for this event are an 
indication that the DAZ or FTZ 
bit should be set and/or the 
source code should be changed 
to eliminate the condition.

2: Two common situations for an 
SSE/SSE2/SSE3 operation 
needing an assist are: (1) when 
a denormal constant is used as 
an input and the Denormals-
Are-Zero (DAZ) mode is not 
set, (2) when the input operand 
uses the underflowed result of 
a previous SSE/SSE2/SSE3 
operation and neither the DAZ 
nor Flush-To-Zero (FTZ) modes 
are set.
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3: Enabling the DAZ mode 
prevents SSE/SSE2/SSE3 
operations from needing 
assists in the first situation. 
Enabling the FTZ mode 
prevents SSE/SSE2/SSE3 
operations from needing 
assists in the second situation.

packed_SP_uop This event increments for each 
packed single-precision μop, 
specified through the event mask 
for detection. 

ESCR restrictions MSR_FIRM_ESCR0
MSR_FIRM_ESCR1

Counter numbers 
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 08H ESCR[31:25]

ESCR Event Mask

Bit 15: ALL 

ESCR[24:9]

Count all μops operating on 
packed single-precision operands.

CCCR Select 01H CCCR[15:13]

Event Specific 
Notes

1: If an instruction contains more 
than one packed SP μops, each 
packed SP μop that is specified 
by the event mask will be 
counted. 

2: This metric counts instances of 
packed memory μops in a 
repeat move string.

packed_DP_uop This event increments for each 
packed double-precision μop, 
specified through the event mask 
for detection.

ESCR restrictions MSR_FIRM_ESCR0

MSR_FIRM_ESCR1
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Counter numbers 
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 0CH ESCR[31:25]

ESCR Event Mask

Bit 15: ALL 

ESCR[24:9]

Count all μops operating on 
packed double-precision operands.

CCCR Select 01H CCCR[15:13]

Event Specific 
Notes

If an instruction contains more 
than one packed DP μops, each 
packed DP μop that is specified by 
the event mask will be counted.

scalar_SP_uop This event increments for each 
scalar single-precision μop, 
specified through the event mask 
for detection.

ESCR restrictions MSR_FIRM_ESCR0

MSR_FIRM_ESCR1

Counter numbers 
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 0AH ESCR[31:25]

ESCR Event Mask

Bit 15: ALL 

ESCR[24:9]

Count all μops operating on scalar 
single-precision operands.

CCCR Select 01H CCCR[15:13]

Event Specific 
Notes

If an instruction contains more 
than one scalar SP μops, each 
scalar SP μop that is specified by 
the event mask will be counted.

scalar_DP_uop This event increments for each 
scalar double-precision μop, 
specified through the event mask 
for detection.

ESCR restrictions MSR_FIRM_ESCR0

MSR_FIRM_ESCR1
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Counter numbers 
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 0EH ESCR[31:25]

ESCR Event Mask

Bit 15: ALL 

ESCR[24:9]

Count all μops operating on scalar 
double-precision operands.

CCCR Select 01H CCCR[15:13]

Event Specific 
Notes

If an instruction contains more 
than one scalar DP μops, each 
scalar DP μop that is specified by 
the event mask is counted.

64bit_MMX_uop This event increments for each 
MMX instruction, which operate 
on 64-bit SIMD operands. 

ESCR restrictions MSR_FIRM_ESCR0

MSR_FIRM_ESCR1

Counter numbers 
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 02H ESCR[31:25]

ESCR Event Mask

Bit 15: ALL 

ESCR[24:9]

Count all μops operating on 64- 
bit SIMD integer operands in 
memory or MMX registers.

CCCR Select 01H CCCR[15:13]

Event Specific 
Notes

If an instruction contains more 
than one 64-bit MMX μops, each 
64-bit MMX μop that is specified 
by the event mask will be 
counted.

128bit_MMX_uop This event increments for each 
integer SIMD SSE2 instruction, 
which operate on 128-bit SIMD 
operands. 
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ESCR restrictions MSR_FIRM_ESCR0

MSR_FIRM_ESCR1

Counter numbers 
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 1AH ESCR[31:25]

ESCR Event Mask

Bit 15: ALL 

ESCR[24:9]

Count all μops operating on 128-
bit SIMD integer operands in 
memory or XMM registers.

CCCR Select 01H CCCR[15:13]

Event Specific 
Notes

If an instruction contains more 
than one 128-bit MMX μops, each 
128-bit MMX μop that is specified 
by the event mask will be 
counted.

x87_FP_uop This event increments for each 
x87 floating-point μop, specified 
through the event mask for 
detection. 

ESCR restrictions MSR_FIRM_ESCR0
MSR_FIRM_ESCR1

Counter numbers 
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 04H ESCR[31:25]

ESCR Event Mask

Bit 15: ALL 

ESCR[24:9]

Count all x87 FP μops.

CCCR Select 01H CCCR[15:13]

Event Specific 
Notes

1: If an instruction contains more 
than one x87 FP μops, each 
x87 FP μop that is specified by 
the event mask will be counted. 

2: This event does not count x87 
FP μop for load, store, move 
between registers.
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TC_misc This event counts miscellaneous 
events detected by the TC. The 
counter will count twice for each 
occurrence. 

ESCR restrictions MSR_TC_ESCR0
MSR_TC_ESCR1

Counter numbers 
per ESCR

ESCR0: 4, 5

ESCR1: 6, 7

ESCR Event Select 06H ESCR[31:25]

CCCR Select 01H CCCR[15:13]

ESCR Event Mask

Bit 4: FLUSH

ESCR[24:9]

Number of flushes

global_power
_events 

This event accumulates the time 
during which a processor is not 
stopped.

ESCR restrictions MSR_FSB_ESCR0

MSR_FSB_ESCR1

Counter numbers 
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 013H ESCR[31:25]

ESCR Event Mask Bit 0: Running ESCR[24:9]

The processor is active (includes 
the handling of HLT STPCLK and 
throttling.

CCCR Select 06H CCCR[15:13]

tc_ms_xfer This event counts the number of 
times that uop delivery changed 
from TC to MS ROM.

ESCR restrictions MSR_MS_ESCR0

MSR_MS_ESCR1

Counter numbers 
per ESCR

ESCR0: 4, 5

ESCR1: 6, 7

ESCR Event Select 05H ESCR[31:25]
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ESCR Event Mask

Bit 0: CISC

ESCR[24:9]

A TC to MS transfer occurred.

CCCR Select 0H CCCR[15:13]

uop_queue_
writes 

This event counts the number of 
valid uops written to the uop 
queue. Specify one or more mask 
bits to select the source type of 
writes.

ESCR restrictions MSR_MS_ESCR0

MSR_MS_ESCR1

Counter numbers 
per ESCR

ESCR0: 4, 5

ESCR1: 6, 7

ESCR Event Select 09H ESCR[31:25]

ESCR Event Mask

Bit 

0: FROM_TC_
BUILD

ESCR[24:9]

The uops being written are from 
TC build mode.

1: FROM_TC_
DELIVER

2: FROM_ROM

The uops being written are from 
TC deliver mode.

The uops being written are from 
microcode ROM.

CCCR Select 0H CCCR[15:13]

retired_mispred

_branch_type

This event counts retiring 
mispredicted branches by type.

ESCR restrictions MSR_TBPU_ESCR0

MSR_TBPU_ESCR1 

Counter numbers 
per ESCR

ESCR0: 4, 5

ESCR1: 6, 7

ESCR Event Select 05H ESCR[30:25]

ESCR Event Mask

Bit

1: CONDITIONAL

2: CALL

ESCR[24:9]

Conditional jumps.

Indirect call branches.
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3: RETURN

4: INDIRECT

Return branches.

Returns, indirect calls, or indirect 
jumps.

CCCR Select 02H CCCR[15:13]

Event Specific 
Notes

This event may overcount 
conditional branches if:

• Mispredictions cause the trace 
cache and delivery engine to 
build new traces.

• When the processor's pipeline 
is being cleared. 

retired_branch

_type

This event counts retiring 
branches by type. Specify one or 
more mask bits to qualify the 
branch by its type.

ESCR restrictions MSR_TBPU_ESCR0

MSR_TBPU_ESCR1 

Counter numbers 
per ESCR

ESCR0: 4, 5

ESCR1: 6, 7

ESCR Event Select 04H ESCR[30:25]

ESCR Event Mask

Bit

1: CONDITIONAL

2: CALL

ESCR[24:9]

Conditional jumps.

Direct or indirect calls.

3: RETURN

4: INDIRECT

Return branches.

Returns, indirect calls, or indirect 
jumps.

CCCR Select 02H CCCR[15:13]

Event Specific 
Notes

This event may overcount 
conditional branches if :

• Mispredictions cause the trace 
cache and delivery engine to 
build new traces.

• When the processor's pipeline 
is being cleared. 
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resource_stall This event monitors the 
occurrence or latency of stalls in 
the Allocator.

ESCR restrictions MSR_ALF_ESCR0

MSR_ALF_ESCR1 

Counter numbers 
per ESCR

ESCR0: 12, 13, 16 
ESCR1: 14, 15, 17 

ESCR Event Select 01H ESCR[30:25]

Event Masks

Bit

ESCR[24:9]

5: SBFULL A Stall due to lack of store buffers.

CCCR Select 01H CCCR[15:13]

Event Specific 
Notes

This event may not be supported 
in all models of the processor 
family.

WC_Buffer This event counts Write 
Combining Buffer operations that 
are selected by the event mask.

ESCR restrictions MSR_DAC_ESCR0

MSR_DAC_ESCR1 

Counter numbers 
per ESCR

ESCR0: 8, 9 

ESCR1: 10, 11 

ESCR Event Select 05H ESCR[30:25]

Event Masks

Bit

ESCR[24:9]

0: WCB_EVICTS WC Buffer evictions of all causes.

1: WCB_FULL_
    EVICT

WC Buffer eviction: no WC buffer 
is available.

CCCR Select 05H CCCR[15:13]
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Event Specific 
Notes

This event is useful for detecting 
the subset of 64K aliasing cases 
that are more costly (i.e. 64K 
aliasing cases involving stores) as 
long as there are no significant 
contributions due to write 
combining buffer full or hit-
modified conditions.

b2b_cycles This event can be configured to 
count the number back-to-back 
bus cycles using sub-event mask 
bits 1 through 6.

ESCR restrictions MSR_FSB_ESCR0

MSR_FSB_ESCR1 

Counter numbers 
per ESCR

ESCR0: 0, 1 

ESCR1: 2, 3 

ESCR Event Select 016H ESCR[30:25]

Event Masks Bit ESCR[24:9]

CCCR Select 03H CCCR[15:13]

Event Specific 
Notes

This event may not be supported 
in all models of the processor 
family.

bnr This event can be configured to 
count bus not ready conditions 
using sub-event mask bits 0 
through 2.

ESCR restrictions MSR_FSB_ESCR0

MSR_FSB_ESCR1 

Counter numbers 
per ESCR

ESCR0: 0, 1 

ESCR1: 2, 3 

ESCR Event Select 08H ESCR[30:25]

Event Masks Bit ESCR[24:9]

CCCR Select 03H CCCR[15:13]

Event Specific 
Notes

This event may not be supported 
in all models of the processor 
family.
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snoop This event can be configured to 
count snoop hit modified bus 
traffic using sub-event mask bits 
2, 6 and 7.

ESCR restrictions MSR_FSB_ESCR0 
MSR_FSB_ESCR1 

Counter numbers 
per ESCR

ESCR0: 0, 1 

ESCR1: 2, 3 

ESCR Event Select 06H ESCR[30:25]

Event Masks Bit ESCR[24:9]

CCCR Select 03H CCCR[15:13]

Event Specific 
Notes

This event may not be supported 
in all models of the processor 
family.

Response This event can be configured to 
count different types of 
responses using sub-event mask 
bits 1,2, 8, and 9.

ESCR restrictions MSR_FSB_ESCR0

MSR_FSB_ESCR1 

Counter numbers 
per ESCR

ESCR0: 0, 1 

ESCR1: 2, 3 

ESCR Event Select 04H ESCR[30:25]

Event Masks Bit ESCR[24:9]

CCCR Select 03H CCCR[15:13]

Event Specific 
Notes

This event may not be supported 
in all models of the processor 
family.
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Table 19-17.  Performance Monitoring Events For Intel NetBurst 
Microarchitecture for At-Retirement Counting

Event Name Event Parameters  Parameter Value Description

front_end_event This event counts the retirement 
of tagged μops, which are 
specified through the front-end 
tagging mechanism. The event 
mask specifies bogus or non-bogus 
μops.

ESCR restrictions MSR_CRU_ESCR2

MSR_CRU_ESCR3

Counter numbers 
per ESCR

ESCR2: 12, 13, 16

ESCR3: 14, 15, 17

ESCR Event Select 08H ESCR[31:25]

ESCR Event Mask

Bit 

0: NBOGUS

1: BOGUS

ESCR[24:9]

The marked μops are not bogus.

The marked μops are bogus.

CCCR Select 05H CCCR[15:13]

Can Support PEBS Yes

Require Additional 
MSRs for tagging

Selected ESCRs 
and/or MSR_TC_
PRECISE_EVENT

See list of metrics supported by 
Front_end tagging in Table A-3

execution_event This event counts the retirement 
of tagged μops, which are 
specified through the execution 
tagging mechanism. 

The event mask allows from one 
to four types of μops to be 
specified as either bogus or non-
bogus μops to be tagged. 

ESCR restrictions MSR_CRU_ESCR2

MSR_CRU_ESCR3

Counter numbers 
per ESCR

ESCR2: 12, 13, 16

ESCR3: 14, 15, 17

ESCR Event Select 0CH ESCR[31:25]
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ESCR Event Mask

Bit 

0: NBOGUS0

1: NBOGUS1

2: NBOGUS2

3: NBOGUS3

4: BOGUS0

5: BOGUS1

6: BOGUS2

7: BOGUS3

ESCR[24:9]

The marked μops are not bogus.

The marked μops are not bogus.

The marked μops are not bogus.

The marked μops are not bogus.

The marked μops are bogus.

The marked μops are bogus.

The marked μops are bogus.

The marked μops are bogus.

CCCR Select 05H CCCR[15:13]

Event Specific 
Notes

Each of the 4 slots to specify the 
bogus/non-bogus μops must be 
coordinated with the 4 TagValue 
bits in the ESCR (for example, 
NBOGUS0 must accompany a ‘1’ in 
the lowest bit of the TagValue 
field in ESCR, NBOGUS1 must 
accompany a ‘1’ in the next but 
lowest bit of the TagValue field).

Can Support PEBS Yes

Require Additional 
MSRs for tagging

An ESCR for an 
upstream event

See list of metrics supported by 
execution tagging in Table A-4.

replay_event This event counts the retirement 
of tagged μops, which are 
specified through the replay 
tagging mechanism. The event 
mask specifies bogus or non-bogus 
μops.

ESCR restrictions MSR_CRU_ESCR2

MSR_CRU_ESCR3

Counter numbers 
per ESCR

ESCR2: 12, 13, 16

ESCR3: 14, 15, 17

ESCR Event Select 09H ESCR[31:25]
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ESCR Event Mask

Bit 

0: NBOGUS

1: BOGUS

ESCR[24:9]

The marked μops are not bogus.

The marked μops are bogus.

CCCR Select 05H CCCR[15:13]

Event Specific 
Notes

Supports counting tagged μops 
with additional MSRs.

Can Support PEBS Yes

Require Additional 
MSRs for tagging

IA32_PEBS_
ENABLE

MSR_PEBS_
MATRIX_VERT

Selected ESCR

See list of metrics supported by 
replay tagging in Table A-5.

instr_retired This event counts instructions that 
are retired during a clock cycle.

Mask bits specify bogus or non-
bogus (and whether they are 
tagged using the front-end 
tagging mechanism).

ESCR restrictions MSR_CRU_ESCR0

MSR_CRU_ESCR1

Counter numbers 
per ESCR

ESCR0: 12, 13, 16

ESCR1: 14, 15, 17

ESCR Event Select 02H ESCR[31:25]

ESCR Event Mask

Bit 

0: NBOGUSNTAG

1: NBOGUSTAG

ESCR[24:9]

Non-bogus instructions that are 
not tagged.

Non-bogus instructions that are 
tagged. 

2: BOGUSNTAG

3: BOGUSTAG

Bogus instructions that are not 
tagged.

Bogus instructions that are 
tagged.

CCCR Select 04H CCCR[15:13]
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Event Specific 
Notes

1: The event count may vary 
depending on the 
microarchitectural states of the 
processor when the event 
detection is enabled. 

2: The event may count more 
than once for some instructions 
with complex uop flows and 
were interrupted before 
retirement.

Can Support PEBS No

uops_retired This event counts μops that are 
retired during a clock cycle. Mask 
bits specify bogus or non-bogus.

ESCR restrictions MSR_CRU_ESCR0

MSR_CRU_ESCR1

Counter numbers 
per ESCR

ESCR0: 12, 13, 16

ESCR1: 14, 15, 17

ESCR Event Select 01H ESCR[31:25]

ESCR Event Mask

Bit 

0: NBOGUS

1: BOGUS

ESCR[24:9]

The marked μops are not bogus.

The marked μops are bogus.

CCCR Select 04H CCCR[15:13]

Event Specific 
Notes

P6: EMON_UOPS_RETIRED

Can Support PEBS No

uop_type This event is used in conjunction 
with the front-end at-retirement 
mechanism to tag load and store 
μops.

ESCR restrictions MSR_RAT_ESCR0

MSR_RAT_ESCR1

Counter numbers 
per ESCR

ESCR0: 12, 13, 16

ESCR1: 14, 15, 17
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ESCR Event Select 02H ESCR[31:25]

ESCR Event Mask

Bit 

1: TAGLOADS

2: TAGSTORES

ESCR[24:9]

The μop is a load operation.

The μop is a store operation.

CCCR Select 02H CCCR[15:13]

Event Specific 
Notes

Setting the TAGLOADS and 
TAGSTORES mask bits does not 
cause a counter to increment. 
They are only used to tag uops.

Can Support PEBS No

branch_retired This event counts the retirement 
of a branch. Specify one or more 
mask bits to select any 
combination of taken, not-taken, 
predicted and mispredicted. 

ESCR restrictions MSR_CRU_ESCR2
MSR_CRU_ESCR3

See Table 18-31 for the addresses 
of the ESCR MSRs

Counter numbers 
per ESCR

ESCR2: 12, 13, 16

ESCR3: 14, 15, 17

The counter numbers associated 
with each ESCR are provided. The 
performance counters and 
corresponding CCCRs can be 
obtained from Table 18-31.

ESCR Event Select 06H ESCR[31:25]

ESCR Event Mask

Bit 

0: MMNP

1: MMNM

2: MMTP

3: MMTM

ESCR[24:9]

Branch not-taken predicted

Branch not-taken mispredicted

Branch taken predicted

Branch taken mispredicted

CCCR Select 05H CCCR[15:13]

Event Specific 
Notes

P6: EMON_BR_INST_RETIRED

Can Support PEBS No
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mispred_branch_
retired 

This event represents the 
retirement of mispredicted branch 
instructions. 

ESCR restrictions MSR_CRU_ESCR0

MSR_CRU_ESCR1

Counter numbers 
per ESCR

ESCR0: 12, 13, 16

ESCR1: 14, 15, 17

ESCR Event Select 03H ESCR[31:25]

ESCR Event Mask

Bit 0: NBOGUS

ESCR[24:9]

The retired instruction is not 
bogus.

CCCR Select 04H CCCR[15:13]

Can Support PEBS No

x87_assist This event counts the retirement 
of x87 instructions that required 
special handling. 

Specifies one or more event mask 
bits to select the type of 
assistance.

ESCR restrictions MSR_CRU_ESCR2

MSR_CRU_ESCR3

Counter numbers 
per ESCR

ESCR2: 12, 13, 16

ESCR3: 14, 15, 17

ESCR Event Select 03H ESCR[31:25]

ESCR Event Mask

Bit 

0: FPSU

1: FPSO

ESCR[24:9]

Handle FP stack underflow

Handle FP stack overflow

2: POAO

3: POAU

4: PREA

Handle x87 output overflow

Handle x87 output underflow

Handle x87 input assist

CCCR Select 05H CCCR[15:13]

Can Support PEBS No
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machine_clear This event increments according to 
the mask bit specified while the 
entire pipeline of the machine is 
cleared. Specify one of the mask 
bit to select the cause.

ESCR restrictions MSR_CRU_ESCR2

MSR_CRU_ESCR3

Counter numbers 
per ESCR

ESCR2: 12, 13, 16

ESCR3: 14, 15, 17

ESCR Event Select 02H ESCR[31:25]

ESCR Event Mask

Bit 

0: CLEAR

ESCR[24:9]

Counts for a portion of the many 
cycles while the machine is cleared 
for any cause. Use Edge triggering 
for this bit only to get a count of 
occurrence versus a duration.

2:  MOCLEAR

6: SMCLEAR

Increments each time the machine 
is cleared due to memory ordering 
issues.

Increments each time the machine 
is cleared due to self-modifying 
code issues.

CCCR Select 05H CCCR[15:13]

Can Support PEBS No
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Table 19-18.  Intel NetBurst Microarchitecture Model-Specific Performance 
Monitoring Events (For Model Encoding 3, 4 or 6)

Event Name Event Parameters  Parameter Value Description

instr_completed This event counts instructions that 
have completed and retired during 
a clock cycle. Mask bits specify 
whether the instruction is bogus 
or non-bogus and whether they 
are:

ESCR restrictions MSR_CRU_ESCR0

MSR_CRU_ESCR1

Counter numbers 
per ESCR

ESCR0: 12, 13, 16

ESCR1: 14, 15, 17

ESCR Event Select 07H ESCR[31:25]

ESCR Event Mask

Bit 

0: NBOGUS

1: BOGUS

ESCR[24:9]

Non-bogus instructions

Bogus instructions

CCCR Select 04H CCCR[15:13]

Event Specific 
Notes

This metric differs from 
instr_retired, since it counts 
instructions completed, rather 
than the number of times that 
instructions started.

Can Support PEBS No
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Table 19-19.  List of Metrics Available for Front_end Tagging 
(For Front_end Event Only)

Front-end 
metric1

MSR_ 
TC_PRECISE_EVEN
T MSR Bit field

 Additional MSR Event mask value for 
Front_end_event

memory_loads None Set TAGLOADS bit 
in ESCR 
corresponding to 
event Uop_Type.

NBOGUS

memory_stores None Set TAGSTORES bit 
in the ESCR 
corresponding to 
event Uop_Type.

NBOGUS

NOTES:
1. There may be some undercounting of front end events when there is an overflow or underflow of 

the floating point stack.

Table 19-20.  List of Metrics Available for Execution Tagging 
(For Execution Event Only)

Execution metric Upstream ESCR TagValue in 
Upstream ESCR

Event mask value for 
execution_event 

packed_SP_retired Set ALL bit in event 
mask, TagUop bit in 
ESCR of 
packed_SP_uop.

1 NBOGUS0

packed_DP_retired Set ALL bit in event 
mask, TagUop bit in 
ESCR of 
packed_DP_uop.

1 NBOGUS0

scalar_SP_retired Set ALL bit in event 
mask, TagUop bit in 
ESCR of 
scalar_SP_uop.

1 NBOGUS0

scalar_DP_retired Set ALL bit in event 
mask, TagUop bit in 
ESCR of 
scalar_DP_uop.

1 NBOGUS0

128_bit_MMX_retired Set ALL bit in event 
mask, TagUop bit in 
ESCR of 
128_bit_MMX_uop.

1 NBOGUS0
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64_bit_MMX_retired Set ALL bit in event 
mask, TagUop bit in 
ESCR of 
64_bit_MMX_uop.

1 NBOGUS0

X87_FP_retired Set ALL bit in event 
mask, TagUop bit in 
ESCR of 
x87_FP_uop.

1 NBOGUS0

X87_SIMD_memory_m
oves_retired

Set ALLP0, ALLP2 
bits in event mask, 
TagUop bit in ESCR 
of X87_SIMD_ 
moves_uop. 

1 NBOGUS0

Table 19-21.  List of Metrics Available for Replay Tagging 
(For Replay Event Only)

Replay metric1

IA32_PEBS_
ENABLE Field 
to Set

MSR_PEBS_
MATRIX_VERT 
Bit Field to Set

Additional MSR/ 
Event 

Event Mask 
Value for 
Replay_event

1stL_cache_load
_miss_retired

Bit 0, Bit 24, 
Bit 25

Bit 0 None NBOGUS

2ndL_cache_load
_miss_retired2

Bit 1, Bit 24, 
Bit 25

Bit 0 None NBOGUS

DTLB_load_miss
_retired

Bit 2, Bit 24, 
Bit 25

Bit 0 None NBOGUS

DTLB_store_miss
_retired

Bit 2, Bit 24, 
Bit 25

Bit 1 None NBOGUS

DTLB_all_miss
_retired

Bit 2, Bit 24, 
Bit 25

Bit 0, Bit 1 None NBOGUS

Tagged_mispred_
branch

Bit 15, Bit 16, 
Bit 24, Bit 25

Bit 4 None NBOGUS

MOB_load
_replay_retired3

Bit 9, Bit 24, 
Bit 25

Bit 0 Select 
MOB_load_replay 
event and set 
PARTIAL_DATA and 
UNALGN_ADDR bit. 

NBOGUS

Table 19-20.  List of Metrics Available for Execution Tagging 
(For Execution Event Only) (Contd.)

Execution metric Upstream ESCR TagValue in 
Upstream ESCR

Event mask value for 
execution_event 
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split_load_retired Bit 10, Bit 24, 
Bit 25

Bit 0 Select 
load_port_replay 
event with the 
MSR_SAAT_ESCR1 
MSR and set the 
SPLIT_LD mask bit.

NBOGUS

split_store_retired Bit 10, Bit 24, 
Bit 25

Bit 1 Select 
store_port_replay 
event with the 
MSR_SAAT_ESCR0 
MSR and set the 
SPLIT_ST mask bit.

NBOGUS

NOTES:
1. Certain kinds of μops cannot be tagged. These include I/O operations, UC and locked accesses, 

returns, and far transfers.
2. 2nd-level misses retired does not count all 2nd-level misses. It only includes those references that 

are found to be misses by the fast detection logic and not those that are later found to be misses.
3. While there are several causes for a MOB replay, the event counted with this event mask setting is 

the case where the data from a load that would otherwise be forwarded is not an aligned subset of 
the data from a preceding store.

Table 19-21.  List of Metrics Available for Replay Tagging 
(For Replay Event Only) (Contd.)

Replay metric1

IA32_PEBS_
ENABLE Field 
to Set

MSR_PEBS_
MATRIX_VERT 
Bit Field to Set

Additional MSR/ 
Event 

Event Mask 
Value for 
Replay_event
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Table 19-22.  Event Mask Qualification for Logical Processors

Event Type Event Name Event Masks, ESCR[24:9] TS or TI

Non-Retirement BPU_fetch_request Bit 0: TCMISS TS

Non-Retirement BSQ_allocation Bit

0: REQ_TYPE0 TS

1: REQ_TYPE1 TS

2: REQ_LEN0 TS

3: REQ_LEN1 TS

5: REQ_IO_TYPE TS

6: REQ_LOCK_TYPE TS

7: REQ_CACHE_TYPE TS

8: REQ_SPLIT_TYPE TS

9: REQ_DEM_TYPE TS

10: REQ_ORD_TYPE TS

11: MEM_TYPE0 TS

12: MEM_TYPE1 TS

13: MEM_TYPE2 TS

Non-Retirement BSQ_cache_reference Bit

0: RD_2ndL_HITS TS

1: RD_2ndL_HITE TS

2: RD_2ndL_HITM TS

3: RD_3rdL_HITS TS

4: RD_3rdL_HITE TS

5: RD_3rdL_HITM TS

6: WR_2ndL_HIT TS

7: WR_3rdL_HIT TS

8: RD_2ndL_MISS TS

9: RD_3rdL_MISS TS

10: WR_2ndL_MISS TS

11: WR_3rdL_MISS TS
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Non-Retirement memory_cancel Bit

2: ST_RB_FULL TS

3: 64K_CONF TS

Non-Retirement SSE_input_assist Bit 15: ALL TI

Non-Retirement 64bit_MMX_uop Bit 15: ALL TI

Non-Retirement packed_DP_uop Bit 15: ALL TI

Non-Retirement packed_SP_uop Bit 15: ALL TI

Non-Retirement scalar_DP_uop Bit 15: ALL TI

Non-Retirement scalar_SP_uop Bit 15: ALL TI

Non-Retirement 128bit_MMX_uop Bit 15: ALL TI

Non-Retirement x87_FP_uop Bit 15: ALL TI

Non-Retirement x87_SIMD_moves_uop Bit

3: ALLP0 TI

4: ALLP2 TI

Non-Retirement FSB_data_activity Bit

0: DRDY_DRV TI

1: DRDY_OWN TI

2: DRDY_OTHER TI

3: DBSY_DRV TI

4: DBSY_OWN TI

5: DBSY_OTHER TI

Non-Retirement IOQ_allocation Bit

0: ReqA0 TS

1: ReqA1 TS

2: ReqA2 TS

3: ReqA3 TS

4: ReqA4 TS

5: ALL_READ TS

6: ALL_WRITE TS

7: MEM_UC TS

8: MEM_WC TS

Table 19-22.  Event Mask Qualification for Logical Processors (Contd.)

Event Type Event Name Event Masks, ESCR[24:9] TS or TI
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9: MEM_WT TS

10: MEM_WP TS

11: MEM_WB TS

13: OWN TS

14: OTHER TS

15: PREFETCH TS

Non-Retirement IOQ_active_entries Bit

0: ReqA0

TS

1:ReqA1 TS

2: ReqA2 TS

3: ReqA3 TS

4: ReqA4 TS

5: ALL_READ TS

6: ALL_WRITE TS

7: MEM_UC TS

8: MEM_WC TS

9: MEM_WT TS

10: MEM_WP TS

11: MEM_WB TS

13: OWN TS

14: OTHER TS

15: PREFETCH TS

Non-Retirement global_power_events Bit 0: RUNNING TS

Non-Retirement ITLB_reference Bit

0: HIT TS

1: MISS TS

2: HIT_UC TS

Table 19-22.  Event Mask Qualification for Logical Processors (Contd.)

Event Type Event Name Event Masks, ESCR[24:9] TS or TI
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Non-Retirement MOB_load_replay Bit

1: NO_STA TS

3: NO_STD TS

4: PARTIAL_DATA TS

5: UNALGN_ADDR TS

Non-Retirement page_walk_type Bit

0: DTMISS TI

1: ITMISS TI

Non-Retirement uop_type Bit

1: TAGLOADS TS

2: TAGSTORES TS

Non-Retirement load_port_replay Bit 1: SPLIT_LD TS

Non-Retirement store_port_replay Bit 1: SPLIT_ST TS

Non-Retirement memory_complete Bit

0: LSC TS

1: SSC TS

2: USC TS

3: ULC TS

Non-Retirement retired_mispred_branch_
type

Bit

0: UNCONDITIONAL TS

1: CONDITIONAL TS

2: CALL TS

3: RETURN TS

4: INDIRECT TS

Non-Retirement retired_branch_type Bit 

0: UNCONDITIONAL TS

1: CONDITIONAL TS

2: CALL TS

3: RETURN TS

4: INDIRECT TS

Table 19-22.  Event Mask Qualification for Logical Processors (Contd.)

Event Type Event Name Event Masks, ESCR[24:9] TS or TI
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Non-Retirement tc_ms_xfer Bit

0: CISC TS

Non-Retirement tc_misc Bit

4: FLUSH TS

Non-Retirement TC_deliver_mode Bit

0: DD TI

1: DB TI

2: DI TI

3: BD TI

4: BB TI

5: BI TI

6: ID TI

7: IB TI

Non-Retirement uop_queue_writes Bit

0: FROM_TC_BUILD TS

1: FROM_TC_DELIVER TS

2: FROM_ROM TS

Non-Retirement resource_stall Bit 5: SBFULL TS

Non-Retirement WC_Buffer Bit TI

0: WCB_EVICTS TI

1: WCB_FULL_EVICT TI

2: WCB_HITM_EVICT TI

At Retirement instr_retired Bit

0: NBOGUSNTAG TS

1: NBOGUSTAG TS

2: BOGUSNTAG TS

3: BOGUSTAG TS

Table 19-22.  Event Mask Qualification for Logical Processors (Contd.)

Event Type Event Name Event Masks, ESCR[24:9] TS or TI
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At Retirement machine_clear Bit

0: CLEAR TS

2: MOCLEAR TS

6: SMCCLEAR TS

At Retirement front_end_event Bit

0: NBOGUS TS

1: BOGUS TS

At Retirement replay_event Bit

0: NBOGUS TS

1: BOGUS TS

At Retirement execution_event Bit

0: NONBOGUS0 TS

1: NONBOGUS1 TS

2: NONBOGUS2 TS

3: NONBOGUS3 TS

4: BOGUS0 TS

5: BOGUS1 TS

6: BOGUS2 TS

7: BOGUS3 TS

At Retirement x87_assist Bit

0: FPSU TS

1: FPSO TS

2: POAO TS

3: POAU TS

4: PREA TS

At Retirement branch_retired Bit

0: MMNP TS

1: MMNM TS

2: MMTP TS

3: MMTM TS

At Retirement mispred_branch_retired Bit 0: NBOGUS TS

Table 19-22.  Event Mask Qualification for Logical Processors (Contd.)

Event Type Event Name Event Masks, ESCR[24:9] TS or TI
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19.11 PERFORMANCE MONITORING EVENTS FOR 
INTEL® PENTIUM® M PROCESSORS

The Pentium M processor’s performance-monitoring events are based on monitoring 
events for the P6 family of processors. All of these performance events are model 
specific for the Pentium M processor and are not available in this form in other 
processors. Table 19-23 lists the Performance-Monitoring events that were added in 
the Pentium M processor.

At Retirement uops_retired Bit

0: NBOGUS TS

1: BOGUS TS

At Retirement instr_completed Bit

0: NBOGUS TS

1: BOGUS TS

Table 19-23.  Performance Monitoring Events on Intel® Pentium® M
Processors

Name Hex Values Descriptions

Power Management

EMON_EST_TRANS 58H Number of Enhanced Intel SpeedStep 
technology transitions:

Mask = 00H - All transitions

Mask = 02H - Only Frequency 
transitions

EMON_THERMAL_TRIP 59H Duration/Occurrences in thermal trip; to 
count number of thermal trips: bit 22 in 
PerfEvtSel0/1 needs to be set to enable 
edge detect.

BPU

BR_INST_EXEC 88H Branch instructions that were executed 
(not necessarily retired).

BR_MISSP_EXEC 89H Branch instructions executed that were 
mispredicted at execution.

Table 19-22.  Event Mask Qualification for Logical Processors (Contd.)

Event Type Event Name Event Masks, ESCR[24:9] TS or TI
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BR_BAC_MISSP_EXEC 8AH Branch instructions executed that were 
mispredicted at front end (BAC).

BR_CND_EXEC 8BH Conditional branch instructions that 
were executed.

BR_CND_MISSP_EXEC 8CH Conditional branch instructions 
executed that were mispredicted.

BR_IND_EXEC 8DH Indirect branch instructions executed.

BR_IND_MISSP_EXEC 8EH Indirect branch instructions executed 
that were mispredicted.

BR_RET_EXEC 8FH Return branch instructions executed.

BR_RET_MISSP_EXEC 90H Return branch instructions executed 
that were mispredicted at execution.

BR_RET_BAC_MISSP_EXEC 91H Return branch instructions executed 
that were mispredicted at front end 
(BAC).

BR_CALL_EXEC 92H CALL instruction executed.

BR_CALL_MISSP_EXEC 93H CALL instruction executed and miss 
predicted.

BR_IND_CALL_EXEC 94H Indirect CALL instructions executed.

Decoder

EMON_SIMD_INSTR_RETIRED CEH Number of retired MMX instructions.

EMON_SYNCH_UOPS D3H Sync micro-ops

EMON_ESP_UOPS D7H Total number of micro-ops

EMON_FUSED_UOPS_RET DAH Number of retired fused micro-ops:

Mask = 0   - Fused micro-ops

Mask = 1   -  Only load+Op micro-ops

Mask = 2   -  Only std+sta micro-ops

EMON_UNFUSION DBH Number of unfusion events in the ROB, 
happened on a FP exception to a fused 
µop.

Table 19-23.  Performance Monitoring Events on Intel® Pentium® M
Processors (Contd.)

Name Hex Values Descriptions
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A number of P6 family processor performance monitoring events are modified for the 
Pentium M processor. Table 19-24 lists the performance monitoring events that were 
changed in the Pentium M processor, and differ from performance monitoring events 
for the P6 family of processors.

Prefetcher

EMON_PREF_RQSTS_UP F0H Number of upward prefetches issued

EMON_PREF_RQSTS_DN F8H Number of downward prefetches issued

Table 19-24.  Performance Monitoring Events Modified on Intel® Pentium® M 
Processors

Name Hex 
Values

Descriptions

CPU_CLK_UNHALTED 79H Number of cycles during which the processor is not 
halted, and not in a thermal trip.

EMON_SSE_SSE2_INST_
RETIRED

D8H Streaming SIMD Extensions Instructions Retired:

Mask = 0  –  SSE packed single and scalar single

Mask = 1  –  SSE scalar-single

Mask = 2  –  SSE2 packed-double

Mask = 3  –  SSE2 scalar-double

EMON_SSE_SSE2_COMP_INST_
RETIRED

D9H Computational SSE Instructions Retired:

Mask = 0 – SSE packed single

Mask = 1 – SSE Scalar-single

Mask = 2 – SSE2 packed-double

Mask = 3 – SSE2 scalar-double

Table 19-23.  Performance Monitoring Events on Intel® Pentium® M
Processors (Contd.)

Name Hex Values Descriptions
Vol. 3B 19-269



PERFORMANCE-MONITORING EVENTS
19.12 P6 FAMILY PROCESSOR PERFORMANCE-
MONITORING EVENTS

Table 19-25 lists the events that can be counted with the performance-monitoring 
counters and read with the RDPMC instruction for the P6 family processors. The unit 
column gives the microarchitecture or bus unit that produces the event; the event 
number column gives the hexadecimal number identifying the event; the mnemonic 
event name column gives the name of the event; the unit mask column gives the unit 
mask required (if any); the description column describes the event; and the 
comments column gives additional information about the event.

All of these performance events are model specific for the P6 family processors and 
are not available in this form in the Pentium 4 processors or the Pentium processors. 
Some events (such as those added in later generations of the P6 family processors) 
are only available in specific processors in the P6 family. All performance event 
encodings not listed in Table 19-25 are reserved and their use will result in undefined 
counter results.

See the end of the table for notes related to certain entries in the table.

L2_LD 29H L2 data loads Mask[0] = 1  –  count I state lines

Mask[1] = 1  –  count S state 
lines

Mask[2] = 1  –  count E state 
lines

Mask[3] = 1  –  count M state 
lines

Mask[5:4]:

00H – Excluding hardware-
prefetched lines

01H - Hardware-prefetched 
lines only

02H/03H – All (HW-prefetched 
lines and non HW --Prefetched 
lines)

L2_LINES_IN 24H L2 lines 
allocated

L2_LINES_OUT 26H L2 lines evicted

L2_M_LINES_OUT 27H Lw M-state lines 
evicted

Table 19-24.  Performance Monitoring Events Modified on Intel® Pentium® M 
Processors (Contd.)

Name Hex 
Values

Descriptions
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Table 19-25.  Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters

Unit
Event 
Num.

Mnemonic Event 
Name

Unit 
Mask Description Comments

Data Cache 
Unit (DCU)

43H DATA_MEM_REFS 00H All loads from any 
memory type. All stores 
to any memory type. 
Each part of a split is 
counted separately. The 
internal logic counts not 
only memory loads and 
stores, but also internal 
retries.

80-bit floating-point 
accesses are double 
counted, since they are 
decomposed into a 16-bit 
exponent load and a 
64-bit mantissa load. 
Memory accesses are 
only counted when they 
are actually performed 
(such as a load that gets 
squashed because a 
previous cache miss is 
outstanding to the same 
address, and which finally 
gets performed, is only 
counted once).

Does not include I/O 
accesses, or other 
nonmemory accesses.

45H DCU_LINES_IN 00H Total lines allocated in 
DCU.

46H DCU_M_LINES_IN 00H Number of M state lines 
allocated in DCU.

47H DCU_M_LINES_
OUT

00H Number of M state lines 
evicted from DCU.

This includes evictions 
via snoop HITM, 
intervention or 
replacement.
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48H DCU_MISS_
OUTSTANDING

00H Weighted number of 
cycles while a DCU miss is 
outstanding, incremented 
by the number of 
outstanding cache 
misses at any particular 
time.

Cacheable read requests 
only are considered.

Uncacheable requests 
are excluded.

Read-for-ownerships are 
counted, as well as line 
fills, invalidates, and 
stores.

An access that also 
misses the L2 is 
short-changed by 2 
cycles (i.e., if counts 
N cycles, should be 
N+2 cycles).

Subsequent loads 
to the same cache 
line will not result in 
any additional 
counts.

Count value not 
precise, but still 
useful.

Instruction 
Fetch Unit 
(IFU)

80H IFU_IFETCH 00H Number of instruction 
fetches, both cacheable 
and noncacheable, 
including UC fetches.

81H IFU_IFETCH_
MISS

00H Number of instruction 
fetch misses

All instruction fetches 
that do not hit the IFU 
(i.e., that produce 
memory requests). This 
includes UC accesses.

85H ITLB_MISS 00H Number of ITLB misses.

86H IFU_MEM_STALL 00H Number of cycles 
instruction fetch is 
stalled, for any reason.

Includes IFU cache 
misses, ITLB misses, ITLB 
faults, and other minor 
stalls.

87H ILD_STALL 00H Number of cycles that 
the instruction length 
decoder is stalled.

Table 19-25.  Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event 
Num.

Mnemonic Event 
Name

Unit 
Mask Description Comments
19-272 Vol. 3B



PERFORMANCE-MONITORING EVENTS
L2 Cache1 28H L2_IFETCH MESI
0FH

Number of L2 instruction 
fetches.

This event indicates that 
a normal instruction 
fetch was received by 
the L2.

The count includes only 
L2 cacheable instruction 
fetches; it does not 
include UC instruction 
fetches.

It does not include ITLB 
miss accesses.

29H L2_LD MESI
0FH

Number of L2 data loads.

This event indicates that 
a normal, unlocked, load 
memory access was 
received by the L2.

It includes only L2 
cacheable memory 
accesses; it does not 
include I/O accesses, 
other nonmemory 
accesses, or memory 
accesses such as UC/WT 
memory accesses.

It does include L2 
cacheable TLB miss 
memory accesses.

2AH L2_ST MESI
0FH

Number of L2 data 
stores.

This event indicates that 
a normal, unlocked, store 
memory access was 
received by the L2.

Table 19-25.  Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event 
Num.

Mnemonic Event 
Name

Unit 
Mask Description Comments
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it indicates that the DCU 
sent a read-for-
ownership request to the 
L2. It also includes Invalid 
to Modified requests sent 
by the DCU to the L2.

It includes only L2 
cacheable memory 
accesses; it does not 
include I/O accesses, 
other nonmemory 
accesses, or memory 
accesses such as UC/WT 
memory accesses.

It includes TLB miss 
memory accesses.

24H L2_LINES_IN 00H Number of lines allocated 
in the L2.

26H L2_LINES_OUT 00H Number of lines removed 
from the L2 for any 
reason.

25H L2_M_LINES_INM 00H Number of modified lines 
allocated in the L2.

27H L2_M_LINES_
OUTM

00H Number of modified lines 
removed from the L2 for 
any reason.

2EH L2_RQSTS MESI
0FH

Total number of L2 
requests.

21H L2_ADS 00H Number of L2 address 
strobes.

22H L2_DBUS_BUSY 00H Number of cycles during 
which the L2 cache data 
bus was busy.

23H L2_DBUS_BUSY_
RD

00H Number of cycles during 
which the data bus was 
busy transferring read 
data from L2 to the 
processor.

Table 19-25.  Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event 
Num.

Mnemonic Event 
Name

Unit 
Mask Description Comments
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External 
Bus Logic 
(EBL)2

62H BUS_DRDY_
CLOCKS

00H 
(Self)

20H 
(Any)

Number of clocks during 
which DRDY# is asserted.

Utilization of the external 
system data bus during 
data transfers.

Unit Mask = 00H 
counts bus clocks 
when the processor 
is driving DRDY#.

Unit Mask = 20H 
counts in processor 
clocks when any 
agent is driving 
DRDY#.

63H BUS_LOCK_
CLOCKS

00H 
(Self)

20H 
(Any)

Number of clocks during 
which LOCK# is asserted 
on the external system 
bus.3

Always counts in 
processor clocks.

60H BUS_REQ_
OUTSTANDING

00H 
(Self)

Number of bus requests 
outstanding.

This counter is 
incremented by the 
number of cacheable 
read bus requests 
outstanding in any given 
cycle.

Counts only DCU 
full-line cacheable 
reads, not RFOs, 
writes, instruction 
fetches, or anything 
else. Counts 
“waiting for bus to 
complete” (last data 
chunk received).

65H BUS_TRAN_BRD 00H 
(Self)

20H 
(Any)

Number of burst read 
transactions. 

66H BUS_TRAN_RFO 00H 
(Self)

20H 
(Any)

Number of completed 
read for ownership 
transactions.

67H BUS_TRANS_WB 00H 
(Self)

20H 
(Any)

Number of completed 
write back transactions.

Table 19-25.  Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event 
Num.

Mnemonic Event 
Name

Unit 
Mask Description Comments
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68H BUS_TRAN_
IFETCH

00H 
(Self)

20H 
(Any)

Number of completed 
instruction fetch 
transactions.

69H BUS_TRAN_INVA
L

00H 
(Self)

20H 
(Any)

Number of completed 
invalidate transactions.

6AH BUS_TRAN_PWR 00H 
(Self)

20H 
(Any)

Number of completed 
partial write 
transactions.

6BH BUS_TRANS_P 00H 
(Self)

20H 
(Any)

Number of completed 
partial transactions.

6CH BUS_TRANS_IO 00H 
(Self)

20H 
(Any)

Number of completed I/O 
transactions.

6DH BUS_TRAN_DEF 00H 
(Self)

20H 
(Any)

Number of completed 
deferred transactions.

6EH BUS_TRAN_
BURST

00H 
(Self)

20H 
(Any)

Number of completed 
burst transactions.

70H BUS_TRAN_ANY 00H 
(Self)

20H 
(Any)

Number of all completed 
bus transactions.

Address bus utilization 
can be calculated 
knowing the minimum 
address bus occupancy.

Includes special cycles, 
etc.

Table 19-25.  Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event 
Num.

Mnemonic Event 
Name

Unit 
Mask Description Comments
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6FH BUS_TRAN_MEM 00H 
(Self)

20H 
(Any)

Number of completed 
memory transactions.

64H BUS_DATA_RCV 00H 
(Self)

Number of bus clock 
cycles during which this 
processor is receiving 
data.

61H BUS_BNR_DRV 00H 
(Self)

Number of bus clock 
cycles during which this 
processor is driving the 
BNR# pin.

7AH BUS_HIT_DRV 00H 
(Self)

Number of bus clock 
cycles during which this 
processor is driving the 
HIT# pin.

Includes cycles due 
to snoop stalls.

The event counts 
correctly, but BPMi 
(breakpoint 
monitor) pins 
function as follows 
based on the 
setting of the PC 
bits (bit 19 in the 
PerfEvtSel0 and 
PerfEvtSel1 
registers):

• If the core-clock-
to- bus-clock 
ratio is 2:1 or 3:1, 
and a PC bit is 
set, the BPMi 
pins will be 
asserted for a 
single clock when 
the counters 
overflow.

Table 19-25.  Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event 
Num.

Mnemonic Event 
Name

Unit 
Mask Description Comments
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• If the PC bit is 
clear, the 
processor 
toggles the BPMi 
pins when the 
counter 
overflows.

• If the clock ratio 
is not 2:1 or 3:1, 
the BPMi pins 
will not function 
for these 
performance-
monitoring 
counter events.

7BH BUS_HITM_DRV 00H 
(Self)

Number of bus clock 
cycles during which this 
processor is driving the 
HITM# pin.

Includes cycles due 
to snoop stalls.

The event counts 
correctly, but BPMi 
(breakpoint 
monitor) pins 
function as follows 
based on the 
setting of the PC 
bits (bit 19 in the 
PerfEvtSel0 and 
PerfEvtSel1 
registers):

• If the core-clock-
to- bus-clock 
ratio is 2:1 or 3:1, 
and a PC bit is 
set, the BPMi 
pins will be 
asserted for a 
single clock when 
the counters 
overflow.

Table 19-25.  Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event 
Num.

Mnemonic Event 
Name

Unit 
Mask Description Comments
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• If the PC bit is 
clear, the 
processor 
toggles the 
BPMipins when 
the counter 
overflows.

• If the clock ratio 
is not 2:1 or 3:1, 
the BPMi pins 
will not function 
for these 
performance-
monitoring 
counter events.

7EH BUS_SNOOP_
STALL

00H 
(Self)

Number of clock cycles 
during which the bus is 
snoop stalled.

Floating- 
Point Unit

C1H FLOPS 00H Number of computational 
floating-point operations 
retired.

Excludes floating-point 
computational operations 
that cause traps or 
assists.

Includes floating-point 
computational operations 
executed by the assist 
handler.

Includes internal sub-
operations for complex 
floating-point 
instructions like 
transcendentals.

Excludes floating-point 
loads and stores.

Counter 0 only.

Table 19-25.  Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event 
Num.

Mnemonic Event 
Name

Unit 
Mask Description Comments
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10H FP_COMP_OPS_
EXE

00H Number of computational 
floating-point operations 
executed.

The number of FADD, 
FSUB, FCOM, FMULs, 
integer MULs and IMULs, 
FDIVs, FPREMs, FSQRTS, 
integer DIVs, and IDIVs.

This number does not 
include the number of 
cycles, but the number of 
operations.

This event does not 
distinguish an FADD used 
in the middle of a 
transcendental flow from 
a separate FADD 
instruction.

Counter 0 only.

11H FP_ASSIST 00H Number of floating-point 
exception cases handled 
by microcode.

Counter 1 only.

This event includes 
counts due to 
speculative 
execution.

12H MUL 00H Number of multiplies.

This count includes 
integer as well as FP 
multiplies and is 
speculative.

Counter 1 only.

13H DIV 00H Number of divides.

This count includes 
integer as well as FP 
divides and is 
speculative.

Counter 1 only.

Table 19-25.  Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event 
Num.

Mnemonic Event 
Name

Unit 
Mask Description Comments
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14H CYCLES_DIV_
BUSY

00H Number of cycles during 
which the divider is busy, 
and cannot accept new 
divides.

This includes integer and 
FP divides, FPREM, 
FPSQRT, etc. and is 
speculative.

Counter 0 only.

Memory 
Ordering

03H LD_BLOCKS 00H Number of load 
operations delayed due 
to store buffer blocks.

Includes counts caused 
by preceding stores 
whose addresses are 
unknown, preceding 
stores whose addresses 
are known but whose 
data is unknown, and 
preceding stores that 
conflicts with the load 
but which incompletely 
overlap the load.

04H SB_DRAINS 00H Number of store buffer 
drain cycles.

Incremented every cycle 
the store buffer is 
draining.

Draining is caused by 
serializing operations like 
CPUID, synchronizing 
operations like XCHG, 
interrupt 
acknowledgment, as well 
as other conditions (such 
as cache flushing).

Table 19-25.  Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event 
Num.

Mnemonic Event 
Name

Unit 
Mask Description Comments
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05H MISALIGN_
MEM_REF

00H Number of misaligned 
data memory references.

Incremented by 1 every 
cycle, during which either 
the processor’s load or 
store pipeline dispatches 
a misaligned μop.

Counting is performed if 
it is the first or second 
half, or if it is blocked, 
squashed, or missed.

In this context, 
misaligned means 
crossing a 64-bit 
boundary.

MISALIGN_MEM_
REF is only an 
approximation to 
the true number of 
misaligned memory 
references.

The value returned 
is roughly 
proportional to the 
number of 
misaligned memory 
accesses (the size 
of the problem).

07H EMON_KNI_PREF
_DISPATCHED

Number of Streaming 
SIMD extensions 
prefetch/weakly-ordered 
instructions dispatched 
(speculative prefetches 
are included in counting):

Counters 0 and 1. 
Pentium III 
processor only.

00H

01H

02H

03H

0: prefetch NTA

1: prefetch T1

2: prefetch T2

3: weakly ordered stores

4BH EMON_KNI_PREF
_MISS

Number of 
prefetch/weakly-ordered 
instructions that miss all 
caches:

Counters 0 and 1. 
Pentium III 
processor only.

00H

01H

02H

03H

0: prefetch NTA

1: prefetch T1

2: prefetch T2

3: weakly ordered stores

Table 19-25.  Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event 
Num.

Mnemonic Event 
Name

Unit 
Mask Description Comments
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Instruction 
Decoding 
and 
Retirement

C0H INST_RETIRED 00H Number of instructions 
retired.

A hardware 
interrupt received 
during/after the 
last iteration of the 
REP STOS flow 
causes the counter 
to undercount by 1 
instruction.

An SMI received 
while executing a 
HLT instruction will 
cause the 
performance 
counter to not 
count the RSM 
instruction and 
undercount by 1.

C2H UOPS_RETIRED 00H Number of μops retired.

D0H INST_DECODED 00H Number of instructions 
decoded.

D8H EMON_KNI_INST_
RETIRED

00H

01H

Number of Streaming 
SIMD extensions retired:

0: packed & scalar

1: scalar

Counters 0 and 1. 
Pentium III 
processor only.

D9H EMON_KNI_
COMP_
INST_RET

00H

01H

Number of Streaming 
SIMD extensions 
computation instructions 
retired:

0: packed and scalar

1: scalar

Counters 0 and 1. 
Pentium III 
processor only.

Table 19-25.  Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event 
Num.

Mnemonic Event 
Name

Unit 
Mask Description Comments
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Interrupts C8H HW_INT_RX 00H Number of hardware 
interrupts received.

C6H CYCLES_INT_
MASKED

00H Number of processor 
cycles for which 
interrupts are disabled.

C7H CYCLES_INT_
PENDING_
AND_MASKED

00H Number of processor 
cycles for which 
interrupts are disabled 
and interrupts are 
pending.

Branches C4H BR_INST_
RETIRED

00H Number of branch 
instructions retired.

C5H BR_MISS_PRED_
RETIRED

00H Number of mispredicted 
branches retired.

C9H BR_TAKEN_
RETIRED

00H Number of taken 
branches retired.

CAH BR_MISS_PRED_
TAKEN_RET

00H Number of taken 
mispredictions branches 
retired.

E0H BR_INST_
DECODED

00H Number of branch 
instructions decoded.

E2H BTB_MISSES 00H Number of branches for 
which the BTB did not 
produce a prediction.

E4H BR_BOGUS 00H Number of bogus 
branches. 

E6H BACLEARS 00H Number of times 
BACLEAR is asserted.

This is the number of 
times that a static branch 
prediction was made, in 
which the branch 
decoder decided to make 
a branch prediction 
because the BTB did not.

Table 19-25.  Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event 
Num.

Mnemonic Event 
Name

Unit 
Mask Description Comments
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Stalls A2H RESOURCE_
STALLS

00H Incremented by 1 during 
every cycle for which 
there is a resource 
related stall.

Includes register 
renaming buffer entries, 
memory buffer entries.

Does not include stalls 
due to bus queue full, too 
many cache misses, etc.

In addition to resource 
related stalls, this event 
counts some other 
events.

Includes stalls arising 
during branch 
misprediction recovery, 
such as if retirement of 
the mispredicted branch 
is delayed and stalls 
arising while store buffer 
is draining from 
synchronizing operations.

D2H PARTIAL_RAT_
STALLS

00H Number of cycles or 
events for partial stalls. 
This includes flag partial 
stalls.

Segment 
Register 
Loads

06H SEGMENT_REG_
LOADS

00H Number of segment 
register loads.

Clocks 79H CPU_CLK_
UNHALTED

00H Number of cycles during 
which the processor is 
not halted.

Table 19-25.  Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event 
Num.

Mnemonic Event 
Name

Unit 
Mask Description Comments
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MMX Unit B0H MMX_INSTR_
EXEC

00H Number of MMX 
Instructions Executed.

Available in Intel 
Celeron, Pentium II 
and Pentium II Xeon 
processors only.

Does not account 
for MOVQ and 
MOVD stores from 
register to memory.

B1H MMX_SAT_
INSTR_EXEC

00H Number of MMX 
Saturating Instructions 
Executed.

Available in Pentium 

II and Pentium III 
processors only.

B2H MMX_UOPS_
EXEC

0FH Number of MMX μops 
Executed.

Available in Pentium 

II and Pentium III 
processors only.

B3H MMX_INSTR_
TYPE_EXEC

01H

02H

04H

MMX packed multiply 
instructions executed.

MMX packed shift 
instructions executed.

MMX pack operation 
instructions executed.

Available in Pentium 

II and Pentium III 
processors only.

08H

10H

20H

MMX unpack operation 
instructions executed.

MMX packed logical 
instructions executed.

MMX packed arithmetic 
instructions executed.

CCH FP_MMX_TRANS 00H

01H

Transitions from MMX 
instruction to floating-
point instructions.

Transitions from floating-
point instructions to 
MMX instructions.

Available in Pentium 

II and Pentium III 
processors only.

CDH MMX_ASSIST 00H Number of MMX Assists 
(that is, the number of 
EMMS instructions 
executed).

Available in Pentium 

II and Pentium III 
processors only.

CEH MMX_INSTR_RET 00H Number of MMX 
Instructions Retired.

Available in Pentium 

II processors only.

Table 19-25.  Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event 
Num.

Mnemonic Event 
Name
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Segment 
Register 
Renaming

D4H SEG_RENAME_
STALLS

Number of Segment 
Register Renaming Stalls:

Available in Pentium 

II and Pentium III 
processors only.

02H

04H

08H

0FH

Segment register ES

Segment register DS

Segment register FS

Segment register FS

Segment registers 
ES + DS + FS + GS

D5H SEG_REG_
RENAMES

Number of Segment 
Register Renames:

Available in Pentium 

II and Pentium III 
processors only.

01H

02H

04H

08H

0FH

Segment register ES

Segment register DS

Segment register FS

Segment register FS

Segment registers 
ES + DS + FS + GS

D6H RET_SEG_
RENAMES

00H Number of segment 
register rename events 
retired.

Available in Pentium 

II and Pentium III 
processors only.

NOTES:
1. Several L2 cache events, where noted, can be further qualified using the Unit Mask (UMSK) field 

in the PerfEvtSel0 and PerfEvtSel1 registers. The lower 4 bits of the Unit Mask field are used in 
conjunction with L2 events to indicate the cache state or cache states involved. 
The P6 family processors identify cache states using the “MESI” protocol and consequently each 
bit in the Unit Mask field represents one of the four states: UMSK[3] = M (8H) state, UMSK[2] = E 
(4H) state, UMSK[1] = S (2H) state, and UMSK[0] = I (1H) state. UMSK[3:0] = MESI” (FH) should be 
used to collect data for all states; UMSK = 0H, for the applicable events, will result in nothing 
being counted.

2. All of the external bus logic (EBL) events, except where noted, can be further qualified using the 
Unit Mask (UMSK) field in the PerfEvtSel0 and PerfEvtSel1 registers. 
Bit 5 of the UMSK field is used in conjunction with the EBL events to indicate whether the pro-
cessor should count transactions that are self- generated (UMSK[5] = 0) or transactions that 
result from any processor on the bus (UMSK[5] = 1). 

3. L2 cache locks, so it is possible to have a zero count. 

Table 19-25.  Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event 
Num.

Mnemonic Event 
Name
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Mask Description Comments
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19.13 PENTIUM PROCESSOR PERFORMANCE-
MONITORING EVENTS

Table 19-26 lists the events that can be counted with the performance-monitoring 
counters for the Pentium processor. The Event Number column gives the hexadec-
imal code that identifies the event and that is entered in the ES0 or ES1 (event 
select) fields of the CESR MSR. The Mnemonic Event Name column gives the name of 
the event, and the Description and Comments columns give detailed descriptions of 
the events. Most events can be counted with either counter 0 or counter 1; however, 
some events can only be counted with only counter 0 or only counter 1 (as noted).

NOTE
The events in the table that are shaded are implemented only in the 
Pentium processor with MMX technology.

Table 19-26.  Events That Can Be Counted with Pentium Processor 
Performance-Monitoring Counters

Event
Num.

Mnemonic Event 
Name Description Comments

00H DATA_READ Number of memory data 
reads (internal data 
cache hit and miss 
combined).

Split cycle reads are counted 
individually. Data Memory Reads that 
are part of TLB miss processing are 
not included. These events may 
occur at a maximum of two per clock. 
I/O is not included.

01H DATA_WRITE Number of memory data 
writes (internal data 
cache hit and miss 
combined); I/O not 
included.

Split cycle writes are counted 
individually. These events may occur 
at a maximum of two per clock. I/O is 
not included.

0H2 DATA_TLB_MISS Number of misses to the 
data cache translation 
look-aside buffer.
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03H DATA_READ_MISS Number of memory read 
accesses that miss the 
internal data cache 
whether or not the 
access is cacheable or 
noncacheable.

Additional reads to the same cache 
line after the first BRDY# of the 
burst line fill is returned but before 
the final (fourth) BRDY# has been 
returned, will not cause the counter 
to be incremented additional times.

Data accesses that are part of TLB 
miss processing are not included. 
Accesses directed to I/O space are 
not included.

04H DATA WRITE MISS Number of memory 
write accesses that miss 
the internal data cache 
whether or not the 
access is cacheable or 
noncacheable.

Data accesses that are part of TLB 
miss processing are not included. 
Accesses directed to I/O space are 
not included.

05H WRITE_HIT_TO_
M-_OR_E-
STATE_LINES

Number of write hits to 
exclusive or modified 
lines in the data cache.

These are the writes that may be 
held up if EWBE# is inactive. These 
events may occur a maximum of two 
per clock.

06H DATA_CACHE_
LINES_ 
WRITTEN_BACK

Number of dirty lines 
(all) that are written 
back, regardless of the 
cause.

Replacements and internal and 
external snoops can all cause 
writeback and are counted.

07H EXTERNAL_ 
SNOOPS

Number of accepted 
external snoops 
whether they hit in the 
code cache or data 
cache or neither.

Assertions of EADS# outside of the 
sampling interval are not counted, 
and no internal snoops are counted.

08H EXTERNAL_DATA_
CACHE_SNOOP_
HITS

Number of external 
snoops to the data 
cache.

Snoop hits to a valid line in either the 
data cache, the data line fill buffer, or 
one of the write back buffers are all 
counted as hits.

09H MEMORY ACCESSES 
IN BOTH PIPES

Number of data memory 
reads or writes that are 
paired in both pipes of 
the pipeline.

These accesses are not necessarily 
run in parallel due to cache misses, 
bank conflicts, etc.

0AH BANK CONFLICTS Number of actual bank 
conflicts.

Table 19-26.  Events That Can Be Counted with Pentium Processor 
Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event 
Name Description Comments
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0BH MISALIGNED DATA 
MEMORY OR I/O 
REFERENCES

Number of memory or 
I/O reads or writes that 
are misaligned.

A 2- or 4-byte access is misaligned 
when it crosses a 4-byte boundary; 
an 8-byte access is misaligned when 
it crosses an 8-byte boundary. Ten 
byte accesses are treated as two 
separate accesses of 8 and 2 bytes 
each.

0CH CODE READ Number of instruction 
reads; whether the read 
is cacheable or 
noncacheable.

Individual 8-byte noncacheable 
instruction reads are counted.

0DH CODE TLB MISS Number of instruction 
reads that miss the code 
TLB whether the read is 
cacheable or 
noncacheable.

Individual 8-byte noncacheable 
instruction reads are counted.

0EH CODE CACHE MISS Number of instruction 
reads that miss the 
internal code cache; 
whether the read is 
cacheable or 
noncacheable.

Individual 8-byte noncacheable 
instruction reads are counted.

0FH ANY SEGMENT 
REGISTER LOADED

Number of writes into 
any segment register in 
real or protected mode 
including the LDTR, 
GDTR, IDTR, and TR.

Segment loads are caused by explicit 
segment register load instructions, 
far control transfers, and task 
switches. Far control transfers and 
task switches causing a privilege 
level change will signal this event 
twice. Interrupts and exceptions may 
initiate a far control transfer.

10H Reserved

11H Reserved

Table 19-26.  Events That Can Be Counted with Pentium Processor 
Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event 
Name Description Comments
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12H Branches Number of taken and 
not taken branches, 
including: conditional 
branches, jumps, calls, 
returns, software 
interrupts, and interrupt 
returns.

 Also counted as taken branches are 
serializing instructions, VERR and 
VERW instructions, some segment 
descriptor loads, hardware interrupts 
(including FLUSH#), and 
programmatic exceptions that invoke 
a trap or fault handler. The pipe is 
not necessarily flushed. 

The number of branches actually 
executed is measured, not the 
number of predicted branches.

13H BTB_HITS Number of BTB hits that 
occur.

Hits are counted only for those 
instructions that are actually 
executed.

14H TAKEN_BRANCH_
OR_BTB_HIT

Number of taken 
branches or BTB hits 
that occur.

This event type is a logical OR of 
taken branches and BTB hits. It 
represents an event that may cause 
a hit in the BTB. Specifically, it is 
either a candidate for a space in the 
BTB or it is already in the BTB.

15H PIPELINE FLUSHES Number of pipeline 
flushes that occur

Pipeline flushes are 
caused by BTB misses 
on taken branches, 
mispredictions, 
exceptions, interrupts, 
and some segment 
descriptor loads. 

The counter will not be incremented 
for serializing instructions (serializing 
instructions cause the prefetch 
queue to be flushed but will not 
trigger the Pipeline Flushed event 
counter) and software interrupts 
(software interrupts do not flush the 
pipeline).

Table 19-26.  Events That Can Be Counted with Pentium Processor 
Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event 
Name Description Comments
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16H INSTRUCTIONS_
EXECUTED

Number of instructions 
executed (up to two per 
clock).

Invocations of a fault handler are 
considered instructions. All hardware 
and software interrupts and 
exceptions will also cause the count 
to be incremented. Repeat prefixed 
string instructions will only 
increment this counter once despite 
the fact that the repeat loop 
executes the same instruction 
multiple times until the loop criteria 
is satisfied. 

This applies to all the Repeat string 
instruction prefixes (i.e., REP, REPE, 
REPZ, REPNE, and REPNZ). This 
counter will also only increment once 
per each HLT instruction executed 
regardless of how many cycles the 
processor remains in the HALT state.

17H INSTRUCTIONS_ 
EXECUTED_ V PIPE

Number of instructions 
executed in the V_pipe.

The event indicates the 
number of instructions 
that were paired.

This event is the same as the 16H 
event except it only counts the 
number of instructions actually 
executed in the V-pipe.

18H BUS_CYCLE_
DURATION

Number of clocks while 
a bus cycle is in 
progress.

This event measures 
bus use.

The count includes HLDA, AHOLD, 
and BOFF# clocks.

19H WRITE_BUFFER_
FULL_STALL_
DURATION

Number of clocks while 
the pipeline is stalled 
due to full write buffers.

Full write buffers stall data memory 
read misses, data memory write 
misses, and data memory write hits 
to S-state lines. Stalls on I/O 
accesses are not included.

1AH WAITING_FOR_
DATA_MEMORY_
READ_STALL_
DURATION

Number of clocks while 
the pipeline is stalled 
while waiting for data 
memory reads.

Data TLB Miss processing is also 
included in the count. The pipeline 
stalls while a data memory read is in 
progress including attempts to read 
that are not bypassed while a line is 
being filled.

Table 19-26.  Events That Can Be Counted with Pentium Processor 
Performance-Monitoring Counters (Contd.)
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Name Description Comments
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1BH STALL ON WRITE 
TO AN E- OR M-
STATE LINE

Number of stalls on 
writes to E- or M-state 
lines.

1CH LOCKED BUS CYCLE Number of locked bus 
cycles that occur as the 
result of the LOCK prefix 
or LOCK instruction, 
page-table updates, and 
descriptor table 
updates.

Only the read portion of the locked 
read-modify-write is counted. Split 
locked cycles (SCYC active) count as 
two separate accesses. Cycles 
restarted due to BOFF# are not re-
counted.

1DH I/O READ OR WRITE 
CYCLE 

Number of bus cycles 
directed to I/O space.

Misaligned I/O accesses will generate 
two bus cycles. Bus cycles restarted 
due to BOFF# are not re-counted.

1EH NONCACHEABLE_
MEMORY_READS

Number of 
noncacheable 
instruction or data 
memory read bus cycles.

The count includes read 
cycles caused by TLB 
misses, but does not 
include read cycles to 
I/O space. 

Cycles restarted due to BOFF# are 
not re-counted.

1FH PIPELINE_AGI_
STALLS

Number of address 
generation interlock 
(AGI) stalls.

An AGI occurring in both 
the U- and V- pipelines 
in the same clock signals 
this event twice.

An AGI occurs when the instruction 
in the execute stage of either of U- 
or V-pipelines is writing to either the 
index or base address register of an 
instruction in the D2 (address 
generation) stage of either the U- or 
V- pipelines.

20H Reserved

21H Reserved

Table 19-26.  Events That Can Be Counted with Pentium Processor 
Performance-Monitoring Counters (Contd.)
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Name Description Comments
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22H FLOPS Number of floating-
point operations that 
occur.

Number of floating-point adds, 
subtracts, multiplies, divides, 
remainders, and square roots are 
counted. The transcendental 
instructions consist of multiple adds 
and multiplies and will signal this 
event multiple times. Instructions 
generating the divide-by-zero, 
negative square root, special 
operand, or stack exceptions will not 
be counted.

Instructions generating all other 
floating-point exceptions will be 
counted. The integer multiply 
instructions and other instructions 
which use the x87 FPU will be 
counted.

23H BREAKPOINT 
MATCH ON DR0 
REGISTER

Number of matches on 
register DR0 breakpoint.

The counters is incremented 
regardless if the breakpoints are 
enabled or not. However, if 
breakpoints are not enabled, code 
breakpoint matches will not be 
checked for instructions executed in 
the V-pipe and will not cause this 
counter to be incremented. (They are 
checked on instruction executed in 
the U-pipe only when breakpoints 
are not enabled.) 

These events correspond to the 
signals driven on the BP[3:0] pins. 
Refer to Chapter 17, “Debugging, 
Branch Profiling, and Time-Stamp 
Counter” for more information.

24H BREAKPOINT 
MATCH ON DR1 
REGISTER

Number of matches on 
register DR1 breakpoint.

See comment for 23H event.

25H BREAKPOINT 
MATCH ON DR2 
REGISTER

Number of matches on 
register DR2 breakpoint.

See comment for 23H event.

Table 19-26.  Events That Can Be Counted with Pentium Processor 
Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event 
Name Description Comments
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26H BREAKPOINT 
MATCH ON DR3 
REGISTER

Number of matches on 
register DR3 breakpoint.

See comment for 23H event.

27H HARDWARE 
INTERRUPTS 

Number of taken INTR 
and NMI interrupts.

28H DATA_READ_OR_
WRITE

Number of memory data 
reads and/or writes 
(internal data cache hit 
and miss combined).

Split cycle reads and writes are 
counted individually. Data Memory 
Reads that are part of TLB miss 
processing are not included. These 
events may occur at a maximum of 
two per clock. I/O is not included.

29H DATA_READ_MISS 
OR_WRITE MISS

Number of memory read 
and/or write accesses 
that miss the internal 
data cache, whether or 
not the access is 
cacheable or 
noncacheable.

Additional reads to the same cache 
line after the first BRDY# of the 
burst line fill is returned but before 
the final (fourth) BRDY# has been 
returned, will not cause the counter 
to be incremented additional times.

Data accesses that are part of TLB 
miss processing are not included. 
Accesses directed to I/O space are 
not included.

2AH BUS_OWNERSHIP_
LATENCY 
(Counter 0)

The time from LRM bus 
ownership request to 
bus ownership granted 
(that is, the time from 
the earlier of a PBREQ 
(0), PHITM# or HITM# 
assertion to a PBGNT 
assertion)

The ratio of the 2AH events counted 
on counter 0 and counter 1 is the 
average stall time due to bus 
ownership conflict.

2AH BUS OWNERSHIP 
TRANSFERS 
(Counter 1)

The number of buss 
ownership transfers 
(that is, the number of 
PBREQ (0) assertions

The ratio of the 2AH events counted 
on counter 0 and counter 1 is the 
average stall time due to bus 
ownership conflict.

2BH MMX_
INSTRUCTIONS_
EXECUTED_
U-PIPE (Counter 0)

Number of MMX 
instructions executed in 
the U-pipe

Table 19-26.  Events That Can Be Counted with Pentium Processor 
Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event 
Name Description Comments
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2BH MMX_
INSTRUCTIONS_
EXECUTED_
V-PIPE (Counter 1)

Number of MMX 
instructions executed in 
the V-pipe

2CH CACHE_M-
STATE_LINE_
SHARING 
(Counter 0)

Number of times a 
processor identified a 
hit to a modified line due 
to a memory access in 
the other processor 
(PHITM (O))

If the average memory latencies of 
the system are known, this event 
enables the user to count the Write 
Backs on PHITM(O) penalty and the 
Latency on Hit Modified(I) penalty.

2CH CACHE_LINE_
SHARING 
(Counter 1)

Number of shared data 
lines in the L1 cache 
(PHIT (O))

2DH EMMS_
INSTRUCTIONS_
EXECUTED (Counter 
0)

Number of EMMS 
instructions executed

2DH TRANSITIONS_
BETWEEN_MMX_ 
AND_FP_
INSTRUCTIONS 
(Counter 1)

Number of transitions 
between MMX and 
floating-point 
instructions or vice 
versa

An even count indicates 
the processor is in MMX 
state. an odd count 
indicates it is in FP state.

This event counts the first floating-
point instruction following an MMX 
instruction or first MMX instruction 
following a floating-point instruction.

The count may be used to estimate 
the penalty in transitions between 
floating-point state and MMX state.

2EH BUS_UTILIZATION_ 
DUE_TO_ 
PROCESSOR_ 
ACTIVITY 
(Counter 0)

Number of clocks the 
bus is busy due to the 
processor’s own activity 
(the bus activity that is 
caused by the 
processor)

2EH WRITES_TO_
NONCACHEABLE_
MEMORY 
(Counter 1)

Number of write 
accesses to 
noncacheable memory

The count includes write cycles 
caused by TLB misses and I/O write 
cycles. 

Cycles restarted due to BOFF# are 
not re-counted.

Table 19-26.  Events That Can Be Counted with Pentium Processor 
Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event 
Name Description Comments
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2FH SATURATING_
MMX_
INSTRUCTIONS_
EXECUTED (Counter 
0)

Number of saturating 
MMX instructions 
executed, 
independently of 
whether they actually 
saturated.

2FH SATURATIONS_
PERFORMED 
(Counter 1)

Number of MMX 
instructions that used 
saturating arithmetic 
when at least one of its 
results actually 
saturated

If an MMX instruction operating on 4 
doublewords saturated in three out 
of the four results, the counter will 
be incremented by one only.

30H NUMBER_OF_
CYCLES_NOT_IN_ 
HALT_STATE 
(Counter 0)

Number of cycles the 
processor is not idle due 
to HLT instruction

This event will enable the user to 
calculate “net CPI”. Note that during 
the time that the processor is 
executing the HLT instruction, the 
Time-Stamp Counter is not disabled. 
Since this event is controlled by the 
Counter Controls CC0, CC1 it can be 
used to calculate the CPI at CPL=3, 
which the TSC cannot provide.

30H DATA_CACHE_
TLB_MISS_
STALL_DURATION
(Counter 1)

Number of clocks the 
pipeline is stalled due to 
a data cache translation 
look-aside buffer (TLB) 
miss

31H MMX_
INSTRUCTION_
DATA_READS
(Counter 0)

Number of MMX 
instruction data reads

31H MMX_
INSTRUCTION_
DATA_READ_
MISSES 
(Counter 1)

Number of MMX 
instruction data read 
misses

32H FLOATING_POINT_S
TALLS_DURATION
(Counter 0)

Number of clocks while 
pipe is stalled due to a 
floating-point freeze

Table 19-26.  Events That Can Be Counted with Pentium Processor 
Performance-Monitoring Counters (Contd.)
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32H TAKEN_BRANCHES 
(Counter 1)

Number of taken 
branches

33H D1_STARVATION_
AND_FIFO_IS_
EMPTY 
(Counter 0)

Number of times D1 
stage cannot issue ANY 
instructions since the 
FIFO buffer is empty

The D1 stage can issue 0, 1, or 2 
instructions per clock if those are 
available in an instructions FIFO 
buffer. 

33H D1_STARVATION_
AND_ONLY_ONE_
INSTRUCTION_IN_
FIFO
(Counter 1)

Number of times the D1 
stage issues a single 
instruction (since the 
FIFO buffer had just one 
instruction ready) 

The D1 stage can issue 0, 1, or 2 
instructions per clock if those are 
available in an instructions FIFO 
buffer. 

When combined with the previously 
defined events, Instruction Executed 
(16H) and Instruction Executed in 
the V-pipe (17H), this event enables 
the user to calculate the numbers of 
time pairing rules prevented issuing 
of two instructions.

34H MMX_
INSTRUCTION_
DATA_WRITES 
(Counter 0)

Number of data writes 
caused by MMX 
instructions

34H MMX_
INSTRUCTION_
DATA_WRITE_
MISSES 
(Counter 1)

Number of data write 
misses caused by MMX 
instructions

Table 19-26.  Events That Can Be Counted with Pentium Processor 
Performance-Monitoring Counters (Contd.)
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35H PIPELINE_ 
FLUSHES_DUE_
TO_WRONG_
BRANCH_
PREDICTIONS 
(Counter 0)

Number of pipeline 
flushes due to wrong 
branch predictions 
resolved in either the E-
stage or the WB-stage

The count includes any pipeline flush 
due to a branch that the pipeline did 
not follow correctly. It includes cases 
where a branch was not in the BTB, 
cases where a branch was in the BTB 
but was mispredicted, and cases 
where a branch was correctly 
predicted but to the wrong address.

Branches are resolved in either the 
Execute stage (E-stage) or the 
Writeback stage (WB-stage). In the 
later case, the misprediction penalty 
is larger by one clock. The difference 
between the 35H event count in 
counter 0 and counter 1 is the 
number of E-stage resolved 
branches.

35H PIPELINE_ 
FLUSHES_DUE_
TO_WRONG_
BRANCH_
PREDICTIONS_
RESOLVED_IN_
WB-STAGE 
(Counter 1)

Number of pipeline 
flushes due to wrong 
branch predictions 
resolved in the WB-
stage

See note for event 35H (Counter 0).

36H MISALIGNED_
DATA_MEMORY_
REFERENCE_ON_
MMX_
INSTRUCTIONS 
(Counter 0)

Number of misaligned 
data memory references 
when executing MMX 
instructions

36H PIPELINE_
ISTALL_FOR_MMX_
INSTRUCTION_
DATA_MEMORY_
READS
(Counter 1)

Number clocks during 
pipeline stalls caused by 
waits form MMX 
instruction data memory 
reads

T3:

Table 19-26.  Events That Can Be Counted with Pentium Processor 
Performance-Monitoring Counters (Contd.)
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37H MISPREDICTED_
OR_
UNPREDICTED_
RETURNS
(Counter 1)

Number of returns 
predicted incorrectly or 
not predicted at all

The count is the difference between 
the total number of executed returns 
and the number of returns that were 
correctly predicted. Only RET 
instructions are counted (for 
example, IRET instructions are not 
counted).

37H PREDICTED_
RETURNS
(Counter 1)

Number of predicted 
returns (whether they 
are predicted correctly 
and incorrectly

Only RET instructions are counted 
(for example, IRET instructions are 
not counted).

38H MMX_MULTIPLY_
UNIT_INTERLOCK 
(Counter 0)

Number of clocks the 
pipe is stalled since the 
destination of previous 
MMX multiply 
instruction is not ready 
yet

The counter will not be incremented 
if there is another cause for a stall. 
For each occurrence of a multiply 
interlock, this event will be counted 
twice (if the stalled instruction 
comes on the next clock after the 
multiply) or by once (if the stalled 
instruction comes two clocks after 
the multiply).

38H MOVD/MOVQ_
STORE_STALL_
DUE_TO_
PREVIOUS_MMX_
OPERATION 
(Counter 1)

Number of clocks a 
MOVD/MOVQ instruction 
store is stalled in D2 
stage due to a previous 
MMX operation with a 
destination to be used in 
the store instruction.

39H RETURNS 
(Counter 0)

Number or returns 
executed. 

Only RET instructions are counted; 
IRET instructions are not counted. 
Any exception taken on a RET 
instruction and any interrupt 
recognized by the processor on the 
instruction boundary prior to the 
execution of the RET instruction will 
also cause this counter to be 
incremented.

39H Reserved

Table 19-26.  Events That Can Be Counted with Pentium Processor 
Performance-Monitoring Counters (Contd.)
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3AH BTB_FALSE_
ENTRIES 
(Counter 0)

Number of false entries 
in the Branch Target 
Buffer

False entries are causes for 
misprediction other than a wrong 
prediction.

3AH BTB_MISS_
PREDICTION_ON_
NOT-TAKEN_
BRANCH 
(Counter 1)

Number of times the 
BTB predicted a not-
taken branch as taken

3BH FULL_WRITE_
BUFFER_STALL_
DURATION_
WHILE_
EXECUTING_MMX_I
NSTRUCTIONS 
(Counter 0)

Number of clocks while 
the pipeline is stalled 
due to full write buffers 
while executing MMX 
instructions

3BH STALL_ON_MMX_
INSTRUCTION_
WRITE_TO E-_OR_
M-STATE_LINE 
(Counter 1)

Number of clocks during 
stalls on MMX 
instructions writing to 
E- or M-state lines

Table 19-26.  Events That Can Be Counted with Pentium Processor 
Performance-Monitoring Counters (Contd.)

Event
Num.
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CHAPTER 20
8086 EMULATION

IA-32 processors (beginning with the Intel386 processor) provide two ways to 
execute new or legacy programs that are assembled and/or compiled to run on an 
Intel 8086 processor: 
• Real-address mode.
• Virtual-8086 mode.

Figure 2-3 shows the relationship of these operating modes to protected mode and 
system management mode (SMM). 

When the processor is powered up or reset, it is placed in the real-address mode. 
This operating mode almost exactly duplicates the execution environment of the 
Intel 8086 processor, with some extensions. Virtually any program assembled and/or 
compiled to run on an Intel 8086 processor will run on an IA-32 processor in this 
mode.

When running in protected mode, the processor can be switched to virtual-8086 
mode to run 8086 programs. This mode also duplicates the execution environment of 
the Intel 8086 processor, with extensions. In virtual-8086 mode, an 8086 program 
runs as a separate protected-mode task. Legacy 8086 programs are thus able to run 
under an operating system (such as Microsoft Windows*) that takes advantage of 
protected mode and to use protected-mode facilities, such as the protected-mode 
interrupt- and exception-handling facilities. Protected-mode multitasking permits 
multiple virtual-8086 mode tasks (with each task running a separate 8086 program) 
to be run on the processor along with other non-virtual-8086 mode tasks.

This section describes both the basic real-address mode execution environment and 
the virtual-8086-mode execution environment, available on the IA-32 processors 
beginning with the Intel386 processor. 

20.1 REAL-ADDRESS MODE
The IA-32 architecture’s real-address mode runs programs written for the Intel 8086, 
Intel 8088, Intel 80186, and Intel 80188 processors, or for the real-address mode of 
the Intel 286, Intel386, Intel486, Pentium, P6 family, Pentium 4, and Intel Xeon 
processors.

The execution environment of the processor in real-address mode is designed to 
duplicate the execution environment of the Intel 8086 processor. To an 8086 
program, a processor operating in real-address mode behaves like a high-speed 
8086 processor. The principal features of this architecture are defined in Chapter 3, 
“Basic Execution Environment”, of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1.
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The following is a summary of the core features of the real-address mode execution 
environment as would be seen by a program written for the 8086:
• The processor supports a nominal 1-MByte physical address space (see Section 

20.1.1, “Address Translation in Real-Address Mode”, for specific details). This 
address space is divided into segments, each of which can be up to 64 KBytes in 
length. The base of a segment is specified with a 16-bit segment selector, which 
is zero extended to form a 20-bit offset from address 0 in the address space. An 
operand within a segment is addressed with a 16-bit offset from the base of the 
segment. A physical address is thus formed by adding the offset to the 20-bit 
segment base (see Section 20.1.1, “Address Translation in Real-Address Mode”).

• All operands in “native 8086 code” are 8-bit or 16-bit values. (Operand size 
override prefixes can be used to access 32-bit operands.)

• Eight 16-bit general-purpose registers are provided: AX, BX, CX, DX, SP, BP, SI, 
and DI. The extended 32 bit registers (EAX, EBX, ECX, EDX, ESP, EBP, ESI, and 
EDI) are accessible to programs that explicitly perform a size override operation.

• Four segment registers are provided: CS, DS, SS, and ES. (The FS and GS 
registers are accessible to programs that explicitly access them.) The CS register 
contains the segment selector for the code segment; the DS and ES registers 
contain segment selectors for data segments; and the SS register contains the 
segment selector for the stack segment.

• The 8086 16-bit instruction pointer (IP) is mapped to the lower 16-bits of the EIP 
register. Note this register is a 32-bit register and unintentional address wrapping 
may occur.

• The 16-bit FLAGS register contains status and control flags. (This register is 
mapped to the 16 least significant bits of the 32-bit EFLAGS register.)

• All of the Intel 8086 instructions are supported (see Section 20.1.3, “Instructions 
Supported in Real-Address Mode”).

• A single, 16-bit-wide stack is provided for handling procedure calls and 
invocations of interrupt and exception handlers. This stack is contained in the 
stack segment identified with the SS register. The SP (stack pointer) register 
contains an offset into the stack segment. The stack grows down (toward lower 
segment offsets) from the stack pointer. The BP (base pointer) register also 
contains an offset into the stack segment that can be used as a pointer to a 
parameter list. When a CALL instruction is executed, the processor pushes the 
current instruction pointer (the 16 least-significant bits of the EIP register and, 
on far calls, the current value of the CS register) onto the stack. On a return, 
initiated with a RET instruction, the processor pops the saved instruction pointer 
from the stack into the EIP register (and CS register on far returns). When an 
implicit call to an interrupt or exception handler is executed, the processor 
pushes the EIP, CS, and EFLAGS (low-order 16-bits only) registers onto the 
stack. On a return from an interrupt or exception handler, initiated with an IRET 
instruction, the processor pops the saved instruction pointer and EFLAGS image 
from the stack into the EIP, CS, and EFLAGS registers.
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• A single interrupt table, called the “interrupt vector table” or “interrupt table,” is 
provided for handling interrupts and exceptions (see Figure 20-2). The interrupt 
table (which has 4-byte entries) takes the place of the interrupt descriptor table 
(IDT, with 8-byte entries) used when handling protected-mode interrupts and 
exceptions. Interrupt and exception vector numbers provide an index to entries 
in the interrupt table. Each entry provides a pointer (called a “vector”) to an 
interrupt- or exception-handling procedure. See Section 20.1.4, “Interrupt and 
Exception Handling”, for more details. It is possible for software to relocate the 
IDT by means of the LIDT instruction on IA-32 processors beginning with the 
Intel386 processor.

• The x87 FPU is active and available to execute x87 FPU instructions in real-
address mode. Programs written to run on the Intel 8087 and Intel 287 math 
coprocessors can be run in real-address mode without modification.

The following extensions to the Intel 8086 execution environment are available in the 
IA-32 architecture’s real-address mode. If backwards compatibility to Intel 286 and 
Intel 8086 processors is required, these features should not be used in new programs 
written to run in real-address mode.
• Two additional segment registers (FS and GS) are available.
• Many of the integer and system instructions that have been added to later IA-32 

processors can be executed in real-address mode (see Section 20.1.3, “Instruc-
tions Supported in Real-Address Mode”). 

• The 32-bit operand prefix can be used in real-address mode programs to execute 
the 32-bit forms of instructions. This prefix also allows real-address mode 
programs to use the processor’s 32-bit general-purpose registers.

• The 32-bit address prefix can be used in real-address mode programs, allowing 
32-bit offsets.

The following sections describe address formation, registers, available instructions, 
and interrupt and exception handling in real-address mode. For information on I/O in 
real-address mode, see Chapter 13, “Input/Output”, of the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 1. 

20.1.1 Address Translation in Real-Address Mode
In real-address mode, the processor does not interpret segment selectors as indexes 
into a descriptor table; instead, it uses them directly to form linear addresses as the 
8086 processor does. It shifts the segment selector left by 4 bits to form a 20-bit 
base address (see Figure 20-1). The offset into a segment is added to the base 
address to create a linear address that maps directly to the physical address space. 

When using 8086-style address translation, it is possible to specify addresses larger 
than 1 MByte. For example, with a segment selector value of FFFFH and an offset of 
FFFFH, the linear (and physical) address would be 10FFEFH (1 megabyte plus 64 
KBytes). The 8086 processor, which can form addresses only up to 20 bits long, trun-
cates the high-order bit, thereby “wrapping” this address to FFEFH. When operating 
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in real-address mode, however, the processor does not truncate such an address and 
uses it as a physical address. (Note, however, that for IA-32 processors beginning 
with the Intel486 processor, the A20M# signal can be used in real-address mode to 
mask address line A20, thereby mimicking the 20-bit wrap-around behavior of the 
8086 processor.) Care should be take to ensure that A20M# based address wrapping 
is handled correctly in multiprocessor based system.

The IA-32 processors beginning with the Intel386 processor can generate 32-bit 
offsets using an address override prefix; however, in real-address mode, the value of 
a 32-bit offset may not exceed FFFFH without causing an exception. 

For full compatibility with Intel 286 real-address mode, pseudo-protection faults 
(interrupt 12 or 13) occur if a 32-bit offset is generated outside the range 0 through 
FFFFH.

20.1.2 Registers Supported in Real-Address Mode
The register set available in real-address mode includes all the registers defined for 
the 8086 processor plus the new registers introduced in later IA-32 processors, such 
as the FS and GS segment registers, the debug registers, the control registers, and 
the floating-point unit registers. The 32-bit operand prefix allows a real-address 
mode program to use the 32-bit general-purpose registers (EAX, EBX, ECX, EDX, 
ESP, EBP, ESI, and EDI).

20.1.3 Instructions Supported in Real-Address Mode
The following instructions make up the core instruction set for the 8086 processor. If 
backwards compatibility to the Intel 286 and Intel 8086 processors is required, only 
these instructions should be used in a new program written to run in real-address 
mode.

Figure 20-1.  Real-Address Mode Address Translation
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• Move (MOV) instructions that move operands between general-purpose 
registers, segment registers, and between memory and general-purpose 
registers.

• The exchange (XCHG) instruction.
• Load segment register instructions LDS and LES.
• Arithmetic instructions ADD, ADC, SUB, SBB, MUL, IMUL, DIV, IDIV, INC, DEC, 

CMP, and NEG.
• Logical instructions AND, OR, XOR, and NOT.
• Decimal instructions DAA, DAS, AAA, AAS, AAM, and AAD.
• Stack instructions PUSH and POP (to general-purpose registers and segment 

registers).
• Type conversion instructions CWD, CDQ, CBW, and CWDE.
• Shift and rotate instructions SAL, SHL, SHR, SAR, ROL, ROR, RCL, and RCR.
• TEST instruction.
• Control instructions JMP, Jcc, CALL, RET, LOOP, LOOPE, and LOOPNE.
• Interrupt instructions INT n, INTO, and IRET.
• EFLAGS control instructions STC, CLC, CMC, CLD, STD, LAHF, SAHF, PUSHF, and 

POPF.
• I/O instructions IN, INS, OUT, and OUTS.
• Load effective address (LEA) instruction, and translate (XLATB) instruction.
• LOCK prefix.
• Repeat prefixes REP, REPE, REPZ, REPNE, and REPNZ.
• Processor halt (HLT) instruction.
• No operation (NOP) instruction.

The following instructions, added to later IA-32 processors (some in the Intel 286 
processor and the remainder in the Intel386 processor), can be executed in real-
address mode, if backwards compatibility to the Intel 8086 processor is not required.
• Move (MOV) instructions that operate on the control and debug registers.
• Load segment register instructions LSS, LFS, and LGS.
• Generalized multiply instructions and multiply immediate data.
• Shift and rotate by immediate counts.
• Stack instructions PUSHA, PUSHAD, POPA and POPAD, and PUSH immediate 

data.
• Move with sign extension instructions MOVSX and MOVZX.
• Long-displacement Jcc instructions.
• Exchange instructions CMPXCHG, CMPXCHG8B, and XADD. 
• String instructions MOVS, CMPS, SCAS, LODS, and STOS. 
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• Bit test and bit scan instructions BT, BTS, BTR, BTC, BSF, and BSR; the byte-set-
on condition instruction SETcc; and the byte swap (BSWAP) instruction.

• Double shift instructions SHLD and SHRD.
• EFLAGS control instructions PUSHF and POPF.
• ENTER and LEAVE control instructions.
• BOUND instruction.
• CPU identification (CPUID) instruction.
• System instructions CLTS, INVD, WINVD, INVLPG, LGDT, SGDT, LIDT, SIDT, 

LMSW, SMSW, RDMSR, WRMSR, RDTSC, and RDPMC.

Execution of any of the other IA-32 architecture instructions (not given in the 
previous two lists) in real-address mode result in an invalid-opcode exception (#UD) 
being generated.

20.1.4 Interrupt and Exception Handling
When operating in real-address mode, software must provide interrupt and excep-
tion-handling facilities that are separate from those provided in protected mode. 
Even during the early stages of processor initialization when the processor is still in 
real-address mode, elementary real-address mode interrupt and exception-handling 
facilities must be provided to insure reliable operation of the processor, or the initial-
ization code must insure that no interrupts or exceptions will occur.

The IA-32 processors handle interrupts and exceptions in real-address mode similar 
to the way they handle them in protected mode. When a processor receives an inter-
rupt or generates an exception, it uses the vector number of the interrupt or excep-
tion as an index into the interrupt table. (In protected mode, the interrupt table is 
called the interrupt descriptor table (IDT), but in real-address mode, the table is 
usually called the interrupt vector table, or simply the interrupt table.) The entry 
in the interrupt vector table provides a pointer to an interrupt- or exception-handler 
procedure. (The pointer consists of a segment selector for a code segment and a 16-
bit offset into the segment.) The processor performs the following actions to make an 
implicit call to the selected handler:

1. Pushes the current values of the CS and EIP registers onto the stack. (Only the 16 
least-significant bits of the EIP register are pushed.)

2. Pushes the low-order 16 bits of the EFLAGS register onto the stack.

3. Clears the IF flag in the EFLAGS register to disable interrupts.

4. Clears the TF, RC, and AC flags, in the EFLAGS register.

5. Transfers program control to the location specified in the interrupt vector table.

An IRET instruction at the end of the handler procedure reverses these steps to 
return program control to the interrupted program. Exceptions do not return error 
codes in real-address mode.
20-6 Vol. 3B



8086 EMULATION
The interrupt vector table is an array of 4-byte entries (see Figure 20-2). Each entry 
consists of a far pointer to a handler procedure, made up of a segment selector and 
an offset. The processor scales the interrupt or exception vector by 4 to obtain an 
offset into the interrupt table. Following reset, the base of the interrupt vector table 
is located at physical address 0 and its limit is set to 3FFH. In the Intel 8086 
processor, the base address and limit of the interrupt vector table cannot be 
changed. In the later IA-32 processors, the base address and limit of the interrupt 
vector table are contained in the IDTR register and can be changed using the LIDT 
instruction. 

(For backward compatibility to Intel 8086 processors, the default base address and 
limit of the interrupt vector table should not be changed.)

Table 20-1 shows the interrupt and exception vectors that can be generated in real-
address mode and virtual-8086 mode, and in the Intel 8086 processor. See Chapter 
6, “Interrupt and Exception Handling”, for a description of the exception conditions.

Figure 20-2.  Interrupt Vector Table in Real-Address Mode
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IDTR(called “interrupt vector 0”) in the interrupt
vector table. Interrupt vector 0 in turn
points to the start of the interrupt handler
for interrupt 0.
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20.2 VIRTUAL-8086 MODE
Virtual-8086 mode is actually a special type of a task that runs in protected mode. 
When the operating-system or executive switches to a virtual-8086-mode task, the 
processor emulates an Intel 8086 processor. The execution environment of the 
processor while in the 8086-emulation state is the same as is described in Section 
20.1, “Real-Address Mode” for real-address mode, including the extensions. The 
major difference between the two modes is that in virtual-8086 mode the 8086 
emulator uses some protected-mode services (such as the protected-mode interrupt 
and exception-handling and paging facilities).

As in real-address mode, any new or legacy program that has been assembled 
and/or compiled to run on an Intel 8086 processor will run in a virtual-8086-mode 
task. And several 8086 programs can be run as virtual-8086-mode tasks concur-
rently with normal protected-mode tasks, using the processor’s multitasking 
facilities.

Table 20-1.  Real-Address Mode Exceptions and Interrupts

Vector 
No.

Description Real-Address 
Mode

Virtual-8086 
Mode

Intel 8086 
Processor

 0 Divide Error (#DE) Yes Yes Yes

 1 Debug Exception (#DB) Yes Yes No

 2 NMI Interrupt Yes Yes Yes

 3 Breakpoint (#BP) Yes Yes Yes

 4 Overflow (#OF) Yes Yes Yes

 5 BOUND Range Exceeded (#BR) Yes Yes Reserved

 6 Invalid Opcode (#UD) Yes Yes Reserved

 7 Device Not Available (#NM) Yes Yes Reserved

 8 Double Fault (#DF) Yes Yes Reserved

 9 (Intel reserved. Do not use.) Reserved Reserved Reserved

10 Invalid TSS (#TS) Reserved Yes Reserved

11 Segment Not Present (#NP) Reserved Yes Reserved

12 Stack Fault (#SS) Yes Yes Reserved

13 General Protection (#GP)* Yes Yes Reserved

14 Page Fault (#PF) Reserved Yes Reserved

15 (Intel reserved. Do not use.) Reserved Reserved Reserved

16 Floating-Point Error (#MF) Yes Yes Reserved

17 Alignment Check (#AC) Reserved Yes Reserved

18 Machine Check (#MC) Yes Yes Reserved
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20.2.1 Enabling Virtual-8086 Mode
The processor runs in virtual-8086 mode when the VM (virtual machine) flag in the 
EFLAGS register is set. This flag can only be set when the processor switches to a 
new protected-mode task or resumes virtual-8086 mode via an IRET instruction.

System software cannot change the state of the VM flag directly in the EFLAGS 
register (for example, by using the POPFD instruction). Instead it changes the flag in 
the image of the EFLAGS register stored in the TSS or on the stack following a call to 
an interrupt- or exception-handler procedure. For example, software sets the VM flag 
in the EFLAGS image in the TSS when first creating a virtual-8086 task.

The processor tests the VM flag under three general conditions:
• When loading segment registers, to determine whether to use 8086-style 

address translation.
• When decoding instructions, to determine which instructions are not supported in 

virtual-8086 mode and which instructions are sensitive to IOPL.
• When checking privileged instructions, on page accesses, or when performing 

other permission checks. (Virtual-8086 mode always executes at CPL 3.)

20.2.2 Structure of a Virtual-8086 Task
A virtual-8086-mode task consists of the following items:
• A 32-bit TSS for the task.
• The 8086 program.
• A virtual-8086 monitor.
• 8086 operating-system services.

The TSS of the new task must be a 32-bit TSS, not a 16-bit TSS, because the 16-bit 
TSS does not load the most-significant word of the EFLAGS register, which contains 
the VM flag. All TSS’s, stacks, data, and code used to handle exceptions when in 
virtual-8086 mode must also be 32-bit segments.

19-31 (Intel reserved. Do not use.) Reserved Reserved Reserved

32-
255

User Defined Interrupts Yes Yes Yes

NOTE:
* In the real-address mode, vector 13 is the segment overrun exception. In protected and vir-

tual-8086 modes, this exception covers all general-protection error conditions, including traps 
to the virtual-8086 monitor from virtual-8086 mode.

Table 20-1.  Real-Address Mode Exceptions and Interrupts (Contd.)

Vector 
No.

Description Real-Address 
Mode

Virtual-8086 
Mode

Intel 8086 
Processor
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The processor enters virtual-8086 mode to run the 8086 program and returns to 
protected mode to run the virtual-8086 monitor.

The virtual-8086 monitor is a 32-bit protected-mode code module that runs at a CPL 
of 0. The monitor consists of initialization, interrupt- and exception-handling, and I/O 
emulation procedures that emulate a personal computer or other 8086-based plat-
form. Typically, the monitor is either part of or closely associated with the protected-
mode general-protection (#GP) exception handler, which also runs at a CPL of 0. As 
with any protected-mode code module, code-segment descriptors for the virtual-
8086 monitor must exist in the GDT or in the task’s LDT. The virtual-8086 monitor 
also may need data-segment descriptors so it can examine the IDT or other parts of 
the 8086 program in the first 1 MByte of the address space. The linear addresses 
above 10FFEFH are available for the monitor, the operating system, and other system 
software.

The 8086 operating-system services consists of a kernel and/or operating-system 
procedures that the 8086 program makes calls to. These services can be imple-
mented in either of the following two ways:
• They can be included in the 8086 program. This approach is desirable for either 

of the following reasons:

— The 8086 program code modifies the 8086 operating-system services.

— There is not sufficient development time to merge the 8086 operating-
system services into main operating system or executive.

• They can be implemented or emulated in the virtual-8086 monitor. This approach 
is desirable for any of the following reasons:

— The 8086 operating-system procedures can be more easily coordinated 
among several virtual-8086 tasks.

— Memory can be saved by not duplicating 8086 operating-system procedure 
code for several virtual-8086 tasks.

— The 8086 operating-system procedures can be easily emulated by calls to the 
main operating system or executive.

The approach chosen for implementing the 8086 operating-system services may 
result in different virtual-8086-mode tasks using different 8086 operating-system 
services.

20.2.3 Paging of Virtual-8086 Tasks
Even though a program running in virtual-8086 mode can use only 20-bit linear 
addresses, the processor converts these addresses into 32-bit linear addresses 
before mapping them to the physical address space. If paging is being used, the 
8086 address space for a program running in virtual-8086 mode can be paged and 
located in a set of pages in physical address space. If paging is used, it is transparent 
to the program running in virtual-8086 mode just as it is for any task running on the 
processor.
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Paging is not necessary for a single virtual-8086-mode task, but paging is useful or 
necessary in the following situations:
• When running multiple virtual-8086-mode tasks. Here, paging allows the lower 1 

MByte of the linear address space for each virtual-8086-mode task to be mapped 
to a different physical address location.

• When emulating the 8086 address-wraparound that occurs at 1 MByte. When 
using 8086-style address translation, it is possible to specify addresses larger 
than 1 MByte. These addresses automatically wraparound in the Intel 8086 
processor (see Section 20.1.1, “Address Translation in Real-Address Mode”). If 
any 8086 programs depend on address wraparound, the same effect can be 
achieved in a virtual-8086-mode task by mapping the linear addresses between 
100000H and 110000H and linear addresses between 0 and 10000H to the same 
physical addresses.

• When sharing the 8086 operating-system services or ROM code that is common 
to several 8086 programs running as different 8086-mode tasks.

• When redirecting or trapping references to memory-mapped I/O devices.

20.2.4 Protection within a Virtual-8086 Task
Protection is not enforced between the segments of an 8086 program. Either of the 
following techniques can be used to protect the system software running in a virtual-
8086-mode task from the 8086 program:
• Reserve the first 1 MByte plus 64 KBytes of each task’s linear address space for 

the 8086 program. An 8086 processor task cannot generate addresses outside 
this range.

• Use the U/S flag of page-table entries to protect the virtual-8086 monitor and 
other system software in the virtual-8086 mode task space. When the processor 
is in virtual-8086 mode, the CPL is 3. Therefore, an 8086 processor program has 
only user privileges. If the pages of the virtual-8086 monitor have supervisor 
privilege, they cannot be accessed by the 8086 program.

20.2.5 Entering Virtual-8086 Mode
Figure 20-3 summarizes the methods of entering and leaving virtual-8086 mode. 
The processor switches to virtual-8086 mode in either of the following situations:
• Task switch when the VM flag is set to 1 in the EFLAGS register image stored in 

the TSS for the task. Here the task switch can be initiated in either of two ways:

— A CALL or JMP instruction.

— An IRET instruction, where the NT flag in the EFLAGS image is set to 1.
• Return from a protected-mode interrupt or exception handler when the VM flag is 

set to 1 in the EFLAGS register image on the stack.
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When a task switch is used to enter virtual-8086 mode, the TSS for the virtual-8086-
mode task must be a 32-bit TSS. (If the new TSS is a 16-bit TSS, the upper word of 
the EFLAGS register is not in the TSS, causing the processor to clear the VM flag 
when it loads the EFLAGS register.) The processor updates the VM flag prior to 
loading the segment registers from their images in the new TSS. The new setting of 
the VM flag determines whether the processor interprets the contents of the segment 
registers as 8086-style segment selectors or protected-mode segment selectors. 
When the VM flag is set, the segment registers are loaded from the TSS, using 8086-
style address translation to form base addresses. 

See Section 20.3, “Interrupt and Exception Handling in Virtual-8086 Mode”, for infor-
mation on entering virtual-8086 mode on a return from an interrupt or exception 
handler.
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Figure 20-3.  Entering and Leaving Virtual-8086 Mode
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20.2.6 Leaving Virtual-8086 Mode
The processor can leave the virtual-8086 mode only through an interrupt or excep-
tion. The following are situations where an interrupt or exception will lead to the 
processor leaving virtual-8086 mode (see Figure 20-3):
• The processor services a hardware interrupt generated to signal the suspension 

of execution of the virtual-8086 application. This hardware interrupt may be 
generated by a timer or other external mechanism. Upon receiving the hardware 
interrupt, the processor enters protected mode and switches to a protected-
mode (or another virtual-8086 mode) task either through a task gate in the 
protected-mode IDT or through a trap or interrupt gate that points to a handler 
that initiates a task switch. A task switch from a virtual-8086 task to another task 
loads the EFLAGS register from the TSS of the new task. The value of the VM flag 
in the new EFLAGS determines if the new task executes in virtual-8086 mode or 
not.

• The processor services an exception caused by code executing the virtual-8086 
task or services a hardware interrupt that “belongs to” the virtual-8086 task. 
Here, the processor enters protected mode and services the exception or 
hardware interrupt through the protected-mode IDT (normally through an 
interrupt or trap gate) and the protected-mode exception- and interrupt-
handlers. The processor may handle the exception or interrupt within the context 
of the virtual 8086 task and return to virtual-8086 mode on a return from the 
handler procedure. The processor may also execute a task switch and handle the 
exception or interrupt in the context of another task.

• The processor services a software interrupt generated by code executing in the 
virtual-8086 task (such as a software interrupt to call a MS-DOS* operating 
system routine). The processor provides several methods of handling these 
software interrupts, which are discussed in detail in Section 20.3.3, “Class 
3—Software Interrupt Handling in Virtual-8086 Mode”. Most of them involve the 
processor entering protected mode, often by means of a general-protection 
(#GP) exception. In protected mode, the processor can send the interrupt to the 
virtual-8086 monitor for handling and/or redirect the interrupt back to the 
application program running in virtual-8086 mode task for handling.
IA-32 processors that incorporate the virtual mode extension (enabled with the 
VME flag in control register CR4) are capable of redirecting software-generated 
interrupts back to the program’s interrupt handlers without leaving virtual-8086 
mode. See Section 20.3.3.4, “Method 5: Software Interrupt Handling”, for more 
information on this mechanism.

• A hardware reset initiated by asserting the RESET or INIT pin is a special kind of 
interrupt. When a RESET or INIT is signaled while the processor is in virtual-8086 
mode, the processor leaves virtual-8086 mode and enters real-address mode.

• Execution of the HLT instruction in virtual-8086 mode will cause a general-
protection (GP#) fault, which the protected-mode handler generally sends to the 
virtual-8086 monitor. The virtual-8086 monitor then determines the correct 
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execution sequence after verifying that it was entered as a result of a HLT 
execution.

See Section 20.3, “Interrupt and Exception Handling in Virtual-8086 Mode”, for infor-
mation on leaving virtual-8086 mode to handle an interrupt or exception generated 
in virtual-8086 mode.

20.2.7 Sensitive Instructions
When an IA-32 processor is running in virtual-8086 mode, the CLI, STI, PUSHF, POPF, 
INT n, and IRET instructions are sensitive to IOPL. The IN, INS, OUT, and OUTS 
instructions, which are sensitive to IOPL in protected mode, are not sensitive in 
virtual-8086 mode.

The CPL is always 3 while running in virtual-8086 mode; if the IOPL is less than 3, an 
attempt to use the IOPL-sensitive instructions listed above triggers a general-protec-
tion exception (#GP). These instructions are sensitive to IOPL to give the virtual-
8086 monitor a chance to emulate the facilities they affect.

20.2.8 Virtual-8086 Mode I/O
Many 8086 programs written for non-multitasking systems directly access I/O ports. 
This practice may cause problems in a multitasking environment. If more than one 
program accesses the same port, they may interfere with each other. Most multi-
tasking systems require application programs to access I/O ports through the oper-
ating system. This results in simplified, centralized control.

The processor provides I/O protection for creating I/O that is compatible with the 
environment and transparent to 8086 programs. Designers may take any of several 
possible approaches to protecting I/O ports:
• Protect the I/O address space and generate exceptions for all attempts to 

perform I/O directly.
• Let the 8086 program perform I/O directly.
• Generate exceptions on attempts to access specific I/O ports.
• Generate exceptions on attempts to access specific memory-mapped I/O ports.

The method of controlling access to I/O ports depends upon whether they are 
I/O-port mapped or memory mapped.

20.2.8.1  I/O-Port-Mapped I/O
The I/O permission bit map in the TSS can be used to generate exceptions on 
attempts to access specific I/O port addresses. The I/O permission bit map of each 
virtual-8086-mode task determines which I/O addresses generate exceptions for 
that task. Because each task may have a different I/O permission bit map, the 
addresses that generate exceptions for one task may be different from the addresses 
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for another task. This differs from protected mode in which, if the CPL is less than or 
equal to the IOPL, I/O access is allowed without checking the I/O permission bit map. 
See Chapter 13, “Input/Output”, in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1, for more information about the I/O permission bit 
map.

20.2.8.2  Memory-Mapped I/O
In systems which use memory-mapped I/O, the paging facilities of the processor can 
be used to generate exceptions for attempts to access I/O ports. The virtual-8086 
monitor may use paging to control memory-mapped I/O in these ways:
• Map part of the linear address space of each task that needs to perform I/O to the 

physical address space where I/O ports are placed. By putting the I/O ports at 
different addresses (in different pages), the paging mechanism can enforce 
isolation between tasks.

• Map part of the linear address space to pages that are not-present. This 
generates an exception whenever a task attempts to perform I/O to those pages. 
System software then can interpret the I/O operation being attempted.

Software emulation of the I/O space may require too much operating system inter-
vention under some conditions. In these cases, it may be possible to generate an 
exception for only the first attempt to access I/O. The system software then may 
determine whether a program can be given exclusive control of I/O temporarily, the 
protection of the I/O space may be lifted, and the program allowed to run at full 
speed.

20.2.8.3  Special I/O Buffers
Buffers of intelligent controllers (for example, a bit-mapped frame buffer) also can be 
emulated using page mapping. The linear space for the buffer can be mapped to a 
different physical space for each virtual-8086-mode task. The virtual-8086 monitor 
then can control which virtual buffer to copy onto the real buffer in the physical 
address space.

20.3 INTERRUPT AND EXCEPTION HANDLING 
IN VIRTUAL-8086 MODE

When the processor receives an interrupt or detects an exception condition while in 
virtual-8086 mode, it invokes an interrupt or exception handler, just as it does in 
protected or real-address mode. The interrupt or exception handler that is invoked 
and the mechanism used to invoke it depends on the class of interrupt or exception 
that has been detected or generated and the state of various system flags and fields.
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In virtual-8086 mode, the interrupts and exceptions are divided into three classes for 
the purposes of handling:
• Class 1 — All processor-generated exceptions and all hardware interrupts, 

including the NMI interrupt and the hardware interrupts sent to the processor’s 
external interrupt delivery pins. All class 1 exceptions and interrupts are handled 
by the protected-mode exception and interrupt handlers.

• Class 2 — Special case for maskable hardware interrupts (Section 6.3.2, 
“Maskable Hardware Interrupts”) when the virtual mode extensions are enabled.

• Class 3 — All software-generated interrupts, that is interrupts generated with 
the INT n instruction1.

The method the processor uses to handle class 2 and 3 interrupts depends on the 
setting of the following flags and fields:
• IOPL field (bits 12 and 13 in the EFLAGS register) — Controls how class 3 

software interrupts are handled when the processor is in virtual-8086 mode (see 
Section 2.3, “System Flags and Fields in the EFLAGS Register”). This field also 
controls the enabling of the VIF and VIP flags in the EFLAGS register when the 
VME flag is set. The VIF and VIP flags are provided to assist in the handling of 
class 2 maskable hardware interrupts.

• VME flag (bit 0 in control register CR4) — Enables the virtual mode extension 
for the processor when set (see Section 2.5, “Control Registers”).

• Software interrupt redirection bit map (32 bytes in the TSS, see 
Figure 20-5) — Contains 256 flags that indicates how class 3 software 
interrupts should be handled when they occur in virtual-8086 mode. A software 
interrupt can be directed either to the interrupt and exception handlers in the 
currently running 8086 program or to the protected-mode interrupt and 
exception handlers.

• The virtual interrupt flag (VIF) and virtual interrupt pending flag (VIP) 
in the EFLAGS register — Provides virtual interrupt support for the handling 
of class 2 maskable hardware interrupts (see Section 20.3.2, “Class 2—Maskable 
Hardware Interrupt Handling in Virtual-8086 Mode Using the Virtual Interrupt 
Mechanism”). 

NOTE
The VME flag, software interrupt redirection bit map, and VIF and VIP 
flags are only available in IA-32 processors that support the virtual 
mode extensions. These extensions were introduced in the IA-32 
architecture with the Pentium processor.

The following sections describe the actions that processor takes and the possible 
actions of interrupt and exception handlers for the two classes of interrupts described 

1. The INT 3 instruction is a special case (see the description of the INT n instruction in Chapter 3, 
“Instruction Set Reference, A-L”, of the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 2A).
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in the previous paragraphs. These sections describe three possible types of interrupt 
and exception handlers:
• Protected-mode interrupt and exceptions handlers — These are the 

standard handlers that the processor calls through the protected-mode IDT.
• Virtual-8086 monitor interrupt and exception handlers — These handlers 

are resident in the virtual-8086 monitor, and they are commonly accessed 
through a general-protection exception (#GP, interrupt 13) that is directed to the 
protected-mode general-protection exception handler.

• 8086 program interrupt and exception handlers — These handlers are part 
of the 8086 program that is running in virtual-8086 mode.

The following sections describe how these handlers are used, depending on the 
selected class and method of interrupt and exception handling.

20.3.1 Class 1—Hardware Interrupt and Exception Handling in 
Virtual-8086 Mode

In virtual-8086 mode, the Pentium, P6 family, Pentium 4, and Intel Xeon processors 
handle hardware interrupts and exceptions in the same manner as they are handled 
by the Intel486 and Intel386 processors. They invoke the protected-mode interrupt 
or exception handler that the interrupt or exception vector points to in the IDT. Here, 
the IDT entry must contain either a 32-bit trap or interrupt gate or a task gate. The 
following sections describe various ways that a virtual-8086 mode interrupt or excep-
tion can be handled after the protected-mode handler has been invoked.

See Section 20.3.2, “Class 2—Maskable Hardware Interrupt Handling in Virtual-8086 
Mode Using the Virtual Interrupt Mechanism”, for a description of the virtual interrupt 
mechanism that is available for handling maskable hardware interrupts while in 
virtual-8086 mode. When this mechanism is either not available or not enabled, 
maskable hardware interrupts are handled in the same manner as exceptions, as 
described in the following sections.

20.3.1.1  Handling an Interrupt or Exception Through a Protected-Mode 
Trap or Interrupt Gate

When an interrupt or exception vector points to a 32-bit trap or interrupt gate in the 
IDT, the gate must in turn point to a nonconforming, privilege-level 0, code segment. 
When accessing this code segment, processor performs the following steps.

1. Switches to 32-bit protected mode and privilege level 0.

2. Saves the state of the processor on the privilege-level 0 stack. The states of the 
EIP, CS, EFLAGS, ESP, SS, ES, DS, FS, and GS registers are saved (see 
Figure 20-4).

3. Clears the segment registers. Saving the DS, ES, FS, and GS registers on the 
stack and then clearing the registers lets the interrupt or exception handler safely 
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save and restore these registers regardless of the type segment selectors they 
contain (protected-mode or 8086-style). The interrupt and exception handlers, 
which may be called in the context of either a protected-mode task or a virtual-
8086-mode task, can use the same code sequences for saving and restoring the 
registers for any task. Clearing these registers before execution of the IRET 
instruction does not cause a trap in the interrupt handler. Interrupt procedures 
that expect values in the segment registers or that return values in the segment 
registers must use the register images saved on the stack for privilege level 0.

4. Clears VM, NT, RF and TF flags (in the EFLAGS register). If the gate is an interrupt 
gate, clears the IF flag.

5. Begins executing the selected interrupt or exception handler.

If the trap or interrupt gate references a procedure in a conforming segment or in a 
segment at a privilege level other than 0, the processor generates a general-protec-
tion exception (#GP). Here, the error code is the segment selector of the code 
segment to which a call was attempted.

Figure 20-4.  Privilege Level 0 Stack After Interrupt or 
Exception in Virtual-8086 Mode
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Interrupt and exception handlers can examine the VM flag on the stack to determine 
if the interrupted procedure was running in virtual-8086 mode. If so, the interrupt or 
exception can be handled in one of three ways:
• The protected-mode interrupt or exception handler that was called can handle 

the interrupt or exception.
• The protected-mode interrupt or exception handler can call the virtual-8086 

monitor to handle the interrupt or exception.
• The virtual-8086 monitor (if called) can in turn pass control back to the 8086 

program’s interrupt and exception handler.

If the interrupt or exception is handled with a protected-mode handler, the handler 
can return to the interrupted program in virtual-8086 mode by executing an IRET 
instruction. This instruction loads the EFLAGS and segment registers from the 
images saved in the privilege level 0 stack (see Figure 20-4). A set VM flag in the 
EFLAGS image causes the processor to switch back to virtual-8086 mode. The CPL at 
the time the IRET instruction is executed must be 0, otherwise the processor does 
not change the state of the VM flag.

The virtual-8086 monitor runs at privilege level 0, like the protected-mode interrupt 
and exception handlers. It is commonly closely tied to the protected-mode general-
protection exception (#GP, vector 13) handler. If the protected-mode interrupt or 
exception handler calls the virtual-8086 monitor to handle the interrupt or exception, 
the return from the virtual-8086 monitor to the interrupted virtual-8086 mode 
program requires two return instructions: a RET instruction to return to the 
protected-mode handler and an IRET instruction to return to the interrupted 
program.

The virtual-8086 monitor has the option of directing the interrupt and exception back 
to an interrupt or exception handler that is part of the interrupted 8086 program, as 
described in Section 20.3.1.2, “Handling an Interrupt or Exception With an 8086 
Program Interrupt or Exception Handler”.

20.3.1.2  Handling an Interrupt or Exception With an 8086 Program 
Interrupt or Exception Handler

Because it was designed to run on an 8086 processor, an 8086 program running in a 
virtual-8086-mode task contains an 8086-style interrupt vector table, which starts at 
linear address 0. If the virtual-8086 monitor correctly directs an interrupt or excep-
tion vector back to the virtual-8086-mode task it came from, the handlers in the 
8086 program can handle the interrupt or exception. The virtual-8086 monitor must 
carry out the following steps to send an interrupt or exception back to the 8086 
program:

1. Use the 8086 interrupt vector to locate the appropriate handler procedure in the 
8086 program interrupt table.
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2. Store the EFLAGS (low-order 16 bits only), CS and EIP values of the 8086 
program on the privilege-level 3 stack. This is the stack that the virtual-8086-
mode task is using. (The 8086 handler may use or modify this information.)

3. Change the return link on the privilege-level 0 stack to point to the privilege-level 
3 handler procedure.

4. Execute an IRET instruction to pass control to the 8086 program handler.

5. When the IRET instruction from the privilege-level 3 handler triggers a general-
protection exception (#GP) and thus effectively again calls the virtual-8086 
monitor, restore the return link on the privilege-level 0 stack to point to the 
original, interrupted, privilege-level 3 procedure.

6. Copy the low order 16 bits of the EFLAGS image from the privilege-level 3 stack 
to the privilege-level 0 stack (because some 8086 handlers modify these flags to 
return information to the code that caused the interrupt). 

7. Execute an IRET instruction to pass control back to the interrupted 8086 
program.

Note that if an operating system intends to support all 8086 MS-DOS-based 
programs, it is necessary to use the actual 8086 interrupt and exception handlers 
supplied with the program. The reason for this is that some programs modify their 
own interrupt vector table to substitute (or hook in series) their own specialized 
interrupt and exception handlers.

20.3.1.3  Handling an Interrupt or Exception Through a Task Gate
When an interrupt or exception vector points to a task gate in the IDT, the processor 
performs a task switch to the selected interrupt- or exception-handling task. The 
following actions are carried out as part of this task switch:

1. The EFLAGS register with the VM flag set is saved in the current TSS.

2. The link field in the TSS of the called task is loaded with the segment selector of 
the TSS for the interrupted virtual-8086-mode task.

3. The EFLAGS register is loaded from the image in the new TSS, which clears the 
VM flag and causes the processor to switch to protected mode.

4. The NT flag in the EFLAGS register is set.

5. The processor begins executing the selected interrupt- or exception-handler 
task.

When an IRET instruction is executed in the handler task and the NT flag in the 
EFLAGS register is set, the processors switches from a protected-mode interrupt- or 
exception-handler task back to a virtual-8086-mode task. Here, the EFLAGS and 
segment registers are loaded from images saved in the TSS for the virtual-8086-
mode task. If the VM flag is set in the EFLAGS image, the processor switches back to 
virtual-8086 mode on the task switch. The CPL at the time the IRET instruction is 
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executed must be 0, otherwise the processor does not change the state of the VM 
flag. 

20.3.2 Class 2—Maskable Hardware Interrupt Handling in 
Virtual-8086 Mode Using the Virtual Interrupt Mechanism

Maskable hardware interrupts are those interrupts that are delivered through the 
INTR# pin or through an interrupt request to the local APIC (see Section 6.3.2, 
“Maskable Hardware Interrupts”). These interrupts can be inhibited (masked) from 
interrupting an executing program or task by clearing the IF flag in the EFLAGS 
register.

When the VME flag in control register CR4 is set and the IOPL field in the EFLAGS 
register is less than 3, two additional flags are activated in the EFLAGS register:
• VIF (virtual interrupt) flag, bit 19 of the EFLAGS register.
• VIP (virtual interrupt pending) flag, bit 20 of the EFLAGS register.

These flags provide the virtual-8086 monitor with more efficient control over 
handling maskable hardware interrupts that occur during virtual-8086 mode tasks. 
They also reduce interrupt-handling overhead, by eliminating the need for all IF 
related operations (such as PUSHF, POPF, CLI, and STI instructions) to trap to the 
virtual-8086 monitor. The purpose and use of these flags are as follows.

NOTE
The VIF and VIP flags are only available in IA-32 processors that 
support the virtual mode extensions. These extensions were 
introduced in the IA-32 architecture with the Pentium processor. 
When this mechanism is either not available or not enabled, 
maskable hardware interrupts are handled as class 1 interrupts. 
Here, if VIF and VIP flags are needed, the virtual-8086 monitor can 
implement them in software.

Existing 8086 programs commonly set and clear the IF flag in the EFLAGS register to 
enable and disable maskable hardware interrupts, respectively; for example, to 
disable interrupts while handling another interrupt or an exception. This practice 
works well in single task environments, but can cause problems in multitasking and 
multiple-processor environments, where it is often desirable to prevent an applica-
tion program from having direct control over the handling of hardware interrupts. 
When using earlier IA-32 processors, this problem was often solved by creating a 
virtual IF flag in software. The IA-32 processors (beginning with the Pentium 
processor) provide hardware support for this virtual IF flag through the VIF and VIP 
flags.

The VIF flag is a virtualized version of the IF flag, which an application program 
running from within a virtual-8086 task can used to control the handling of maskable 
hardware interrupts. When the VIF flag is enabled, the CLI and STI instructions 
operate on the VIF flag instead of the IF flag. When an 8086 program executes the 
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CLI instruction, the processor clears the VIF flag to request that the virtual-8086 
monitor inhibit maskable hardware interrupts from interrupting program execution; 
when it executes the STI instruction, the processor sets the VIF flag requesting that 
the virtual-8086 monitor enable maskable hardware interrupts for the 8086 
program. But actually the IF flag, managed by the operating system, always controls 
whether maskable hardware interrupts are enabled. Also, if under these circum-
stances an 8086 program tries to read or change the IF flag using the PUSHF or POPF 
instructions, the processor will change the VIF flag instead, leaving IF unchanged.

The VIP flag provides software a means of recording the existence of a deferred (or 
pending) maskable hardware interrupt. This flag is read by the processor but never 
explicitly written by the processor; it can only be written by software. 

If the IF flag is set and the VIF and VIP flags are enabled, and the processor receives 
a maskable hardware interrupt (interrupt vector 0 through 255), the processor 
performs and the interrupt handler software should perform the following 
operations:

1. The processor invokes the protected-mode interrupt handler for the interrupt 
received, as described in the following steps. These steps are almost identical to 
those described for method 1 interrupt and exception handling in Section 
20.3.1.1, “Handling an Interrupt or Exception Through a Protected-Mode Trap or 
Interrupt Gate”:

a. Switches to 32-bit protected mode and privilege level 0.

b. Saves the state of the processor on the privilege-level 0 stack. The states of 
the EIP, CS, EFLAGS, ESP, SS, ES, DS, FS, and GS registers are saved (see 
Figure 20-4).

c. Clears the segment registers.

d. Clears the VM flag in the EFLAGS register.

e. Begins executing the selected protected-mode interrupt handler.

2. The recommended action of the protected-mode interrupt handler is to read the 
VM flag from the EFLAGS image on the stack. If this flag is set, the handler makes 
a call to the virtual-8086 monitor.

3. The virtual-8086 monitor should read the VIF flag in the EFLAGS register. 

— If the VIF flag is clear, the virtual-8086 monitor sets the VIP flag in the 
EFLAGS image on the stack to indicate that there is a deferred interrupt 
pending and returns to the protected-mode handler.

— If the VIF flag is set, the virtual-8086 monitor can handle the interrupt if it 
“belongs” to the 8086 program running in the interrupted virtual-8086 task; 
otherwise, it can call the protected-mode interrupt handler to handle the 
interrupt.

4. The protected-mode handler executes a return to the program executing in 
virtual-8086 mode.
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5. Upon returning to virtual-8086 mode, the processor continues execution of the 
8086 program.

When the 8086 program is ready to receive maskable hardware interrupts, it 
executes the STI instruction to set the VIF flag (enabling maskable hardware 
interrupts). Prior to setting the VIF flag, the processor automatically checks the VIP 
flag and does one of the following, depending on the state of the flag:
• If the VIP flag is clear (indicating no pending interrupts), the processor sets the 

VIF flag. 
• If the VIP flag is set (indicating a pending interrupt), the processor generates a 

general-protection exception (#GP).

The recommended action of the protected-mode general-protection exception 
handler is to then call the virtual-8086 monitor and let it handle the pending inter-
rupt. After handling the pending interrupt, the typical action of the virtual-8086 
monitor is to clear the VIP flag and set the VIF flag in the EFLAGS image on the stack, 
and then execute a return to the virtual-8086 mode. The next time the processor 
receives a maskable hardware interrupt, it will then handle it as described in steps 1 
through 5 earlier in this section.

If the processor finds that both the VIF and VIP flags are set at the beginning of an 
instruction, it generates a general-protection exception. This action allows the 
virtual-8086 monitor to handle the pending interrupt for the virtual-8086 mode task 
for which the VIF flag is enabled. Note that this situation can only occur immediately 
following execution of a POPF or IRET instruction or upon entering a virtual-8086 
mode task through a task switch.

Note that the states of the VIF and VIP flags are not modified in real-address mode or 
during transitions between real-address and protected modes.

NOTE
The virtual interrupt mechanism described in this section is also 
available for use in protected mode, see Section 20.4, “Protected-
Mode Virtual Interrupts”.

20.3.3 Class 3—Software Interrupt Handling in Virtual-8086 Mode
When the processor receives a software interrupt (an interrupt generated with the 
INT n instruction) while in virtual-8086 mode, it can use any of six different methods 
to handle the interrupt. The method selected depends on the settings of the VME flag 
in control register CR4, the IOPL field in the EFLAGS register, and the software inter-
rupt redirection bit map in the TSS. Table 20-2 lists the six methods of handling soft-
ware interrupts in virtual-8086 mode and the respective settings of the VME flag, 
IOPL field, and the bits in the interrupt redirection bit map for each method. The table 
also summarizes the various actions the processor takes for each method. 

The VME flag enables the virtual mode extensions for the Pentium and later IA-32 
processors. When this flag is clear, the processor responds to interrupts and excep-
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tions in virtual-8086 mode in the same manner as an Intel386 or Intel486 processor 
does. When this flag is set, the virtual mode extension provides the following 
enhancements to virtual-8086 mode:
• Speeds up the handling of software-generated interrupts in virtual-8086 mode by 

allowing the processor to bypass the virtual-8086 monitor and redirect software 
interrupts back to the interrupt handlers that are part of the currently running 
8086 program.

• Supports virtual interrupts for software written to run on the 8086 processor.

The IOPL value interacts with the VME flag and the bits in the interrupt redirection bit 
map to determine how specific software interrupts should be handled.

The software interrupt redirection bit map (see Figure 20-5) is a 32-byte field in the 
TSS. This map is located directly below the I/O permission bit map in the TSS. Each 
bit in the interrupt redirection bit map is mapped to an interrupt vector. Bit 0 in the 
interrupt redirection bit map (which maps to vector zero in the interrupt table) is 
located at the I/O base map address in the TSS minus 32 bytes. When a bit in this bit 
map is set, it indicates that the associated software interrupt (interrupt generated 
with an INT n instruction) should be handled through the protected-mode IDT and 
interrupt and exception handlers. When a bit in this bit map is clear, the processor 
redirects the associated software interrupt back to the interrupt table in the 8086 
program (located at linear address 0 in the program’s address space). 

NOTE
The software interrupt redirection bit map does not affect hardware 
generated interrupts and exceptions. Hardware generated interrupts 
and exceptions are always handled by the protected-mode interrupt 
and exception handlers.
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Table 20-2.  Software Interrupt Handling Methods While in Virtual-8086 Mode

Method VME IOPL

Bit in 
Redir. 

Bitmap* Processor Action

1 0 3 X Interrupt directed to a protected-mode interrupt handler:

• Switches to privilege-level 0 stack
• Pushes GS, FS, DS and ES onto privilege-level 0 stack
• Pushes SS, ESP, EFLAGS, CS and EIP of interrupted task onto 

privilege-level 0 stack
• Clears VM, RF, NT, and TF flags
• If serviced through interrupt gate, clears IF flag
• Clears GS, FS, DS and ES to 0
• Sets CS and EIP from interrupt gate

2 0  < 3 X Interrupt directed to protected-mode general-protection 
exception (#GP) handler.

3 1 < 3 1 Interrupt directed to a protected-mode general-protection 
exception (#GP) handler; VIF and VIP flag support for handling 
class 2 maskable hardware interrupts.

4 1 3 1 Interrupt directed to protected-mode interrupt handler: (see 
method 1 processor action).

5 1 3 0 Interrupt redirected to 8086 program interrupt handler:

• Pushes EFLAGS 
• Pushes CS and EIP (lower 16 bits only)
• Clears IF flag
• Clears TF flag
• Loads CS and EIP (lower 16 bits only) from selected entry in 

the interrupt vector table of the current virtual-8086 task

6 1 < 3 0 Interrupt redirected to 8086 program interrupt handler; VIF and 
VIP flag support for handling class 2 maskable hardware 
interrupts:

• Pushes EFLAGS with IOPL set to 3 and VIF copied to IF
• Pushes CS and EIP (lower 16 bits only)
• Clears the VIF flag
• Clears TF flag
• Loads CS and EIP (lower 16 bits only) from selected entry in 

the interrupt vector table of the current virtual-8086 task

NOTE:
* When set to 0, software interrupt is redirected back to the 8086 program interrupt handler; 

when set to 1, interrupt is directed to protected-mode handler.
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Redirecting software interrupts back to the 8086 program potentially speeds up 
interrupt handling because a switch back and forth between virtual-8086 mode and 
protected mode is not required. This latter interrupt-handling technique is particu-
larly useful for 8086 operating systems (such as MS-DOS) that use the INT n instruc-
tion to call operating system procedures.

The CPUID instruction can be used to verify that the virtual mode extension is imple-
mented on the processor. Bit 1 of the feature flags register (EDX) indicates the avail-
ability of the virtual mode extension (see “CPUID—CPU Identification” in Chapter 3, 
“Instruction Set Reference, A-L”, of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 2A).

The following sections describe the six methods (or mechanisms) for handling soft-
ware interrupts in virtual-8086 mode. See Section 20.3.2, “Class 2—Maskable Hard-
ware Interrupt Handling in Virtual-8086 Mode Using the Virtual Interrupt 
Mechanism”, for a description of the use of the VIF and VIP flags in the EFLAGS 
register for handling maskable hardware interrupts.

20.3.3.1  Method 1: Software Interrupt Handling
When the VME flag in control register CR4 is clear and the IOPL field is 3, a Pentium 
or later IA-32 processor handles software interrupts in the same manner as they are 
handled by an Intel386 or Intel486 processor. It executes an implicit call to the inter-

Figure 20-5.  Software Interrupt Redirection Bit Map in TSS
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rupt handler in the protected-mode IDT pointed to by the interrupt vector. See 
Section 20.3.1, “Class 1—Hardware Interrupt and Exception Handling in Virtual-8086 
Mode”, for a complete description of this mechanism and its possible uses.

20.3.3.2  Methods 2 and 3: Software Interrupt Handling
When a software interrupt occurs in virtual-8086 mode and the method 2 or 3 condi-
tions are present, the processor generates a general-protection exception (#GP). 
Method 2 is enabled when the VME flag is set to 0 and the IOPL value is less than 3. 
Here the IOPL value is used to bypass the protected-mode interrupt handlers and 
cause any software interrupt that occurs in virtual-8086 mode to be treated as a 
protected-mode general-protection exception (#GP). The general-protection excep-
tion handler calls the virtual-8086 monitor, which can then emulate an 8086-
program interrupt handler or pass control back to the 8086 program’s handler, as 
described in Section 20.3.1.2, “Handling an Interrupt or Exception With an 8086 
Program Interrupt or Exception Handler”.

Method 3 is enabled when the VME flag is set to 1, the IOPL value is less than 3, and 
the corresponding bit for the software interrupt in the software interrupt redirection 
bit map is set to 1. Here, the processor performs the same operation as it does for 
method 2 software interrupt handling. If the corresponding bit for the software inter-
rupt in the software interrupt redirection bit map is set to 0, the interrupt is handled 
using method 6 (see Section 20.3.3.5, “Method 6: Software Interrupt Handling”).

20.3.3.3  Method 4: Software Interrupt Handling
Method 4 handling is enabled when the VME flag is set to 1, the IOPL value is 3, and 
the bit for the interrupt vector in the redirection bit map is set to 1. Method 4 soft-
ware interrupt handling allows method 1 style handling when the virtual mode exten-
sion is enabled; that is, the interrupt is directed to a protected-mode handler (see 
Section 20.3.3.1, “Method 1: Software Interrupt Handling”).

20.3.3.4  Method 5: Software Interrupt Handling
Method 5 software interrupt handling provides a streamlined method of redirecting 
software interrupts (invoked with the INT n instruction) that occur in virtual 8086 
mode back to the 8086 program’s interrupt vector table and its interrupt handlers. 
Method 5 handling is enabled when the VME flag is set to 1, the IOPL value is 3, and 
the bit for the interrupt vector in the redirection bit map is set to 0. The processor 
performs the following actions to make an implicit call to the selected 8086 program 
interrupt handler:

1. Pushes the low-order 16 bits of the EFLAGS register onto the stack.

2. Pushes the current values of the CS and EIP registers onto the current stack. 
(Only the 16 least-significant bits of the EIP register are pushed and no stack 
switch occurs.)
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3. Clears the IF flag in the EFLAGS register to disable interrupts.

4. Clears the TF flag, in the EFLAGS register.

5. Locates the 8086 program interrupt vector table at linear address 0 for the 8086-
mode task.

6. Loads the CS and EIP registers with values from the interrupt vector table entry 
pointed to by the interrupt vector number. Only the 16 low-order bits of the EIP 
are loaded and the 16 high-order bits are set to 0. The interrupt vector table is 
assumed to be at linear address 0 of the current virtual-8086 task.

7. Begins executing the selected interrupt handler.

An IRET instruction at the end of the handler procedure reverses these steps to 
return program control to the interrupted 8086 program.

Note that with method 5 handling, a mode switch from virtual-8086 mode to 
protected mode does not occur. The processor remains in virtual-8086 mode 
throughout the interrupt-handling operation.

The method 5 handling actions are virtually identical to the actions the processor 
takes when handling software interrupts in real-address mode. The benefit of using 
method 5 handling to access the 8086 program handlers is that it avoids the over-
head of methods 2 and 3 handling, which requires first going to the virtual-8086 
monitor, then to the 8086 program handler, then back again to the virtual-8086 
monitor, before returning to the interrupted 8086 program (see Section 20.3.1.2, 
“Handling an Interrupt or Exception With an 8086 Program Interrupt or Exception 
Handler”). 

NOTE
Methods 1 and 4 handling can handle a software interrupt in a virtual-
8086 task with a regular protected-mode handler, but this approach 
requires all virtual-8086 tasks to use the same software interrupt 
handlers, which generally does not give sufficient latitude to the 
programs running in the virtual-8086 tasks, particularly MS-DOS 
programs.

20.3.3.5  Method 6: Software Interrupt Handling
Method 6 handling is enabled when the VME flag is set to 1, the IOPL value is less 
than 3, and the bit for the interrupt or exception vector in the redirection bit map is 
set to 0. With method 6 interrupt handling, software interrupts are handled in the 
same manner as was described for method 5 handling (see Section 20.3.3.4, 
“Method 5: Software Interrupt Handling”).

Method 6 differs from method 5 in that with the IOPL value set to less than 3, the VIF 
and VIP flags in the EFLAGS register are enabled, providing virtual interrupt support 
for handling class 2 maskable hardware interrupts (see Section 20.3.2, “Class 
2—Maskable Hardware Interrupt Handling in Virtual-8086 Mode Using the Virtual 
Interrupt Mechanism”). These flags provide the virtual-8086 monitor with an effi-
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cient means of handling maskable hardware interrupts that occur during a virtual-
8086 mode task. Also, because the IOPL value is less than 3 and the VIF flag is 
enabled, the information pushed on the stack by the processor when invoking the 
interrupt handler is slightly different between methods 5 and 6 (see Table 20-2).

20.4 PROTECTED-MODE VIRTUAL INTERRUPTS
The IA-32 processors (beginning with the Pentium processor) also support the VIF 
and VIP flags in the EFLAGS register in protected mode by setting the PVI (protected-
mode virtual interrupt) flag in the CR4 register. Setting the PVI flag allows applica-
tions running at privilege level 3 to execute the CLI and STI instructions without 
causing a general-protection exception (#GP) or affecting hardware interrupts. 

When the PVI flag is set to 1, the CPL is 3, and the IOPL is less than 3, the STI and 
CLI instructions set and clear the VIF flag in the EFLAGS register, leaving IF unaf-
fected. In this mode of operation, an application running in protected mode and at a 
CPL of 3 can inhibit interrupts in the same manner as is described in Section 20.3.2, 
“Class 2—Maskable Hardware Interrupt Handling in Virtual-8086 Mode Using the 
Virtual Interrupt Mechanism”, for a virtual-8086 mode task. When the application 
executes the CLI instruction, the processor clears the VIF flag. If the processor 
receives a maskable hardware interrupt, the processor invokes the protected-mode 
interrupt handler. This handler checks the state of the VIF flag in the EFLAGS register. 
If the VIF flag is clear (indicating that the active task does not want to have interrupts 
handled now), the handler sets the VIP flag in the EFLAGS image on the stack and 
returns to the privilege-level 3 application, which continues program execution. 
When the application executes a STI instruction to set the VIF flag, the processor 
automatically invokes the general-protection exception handler, which can then 
handle the pending interrupt. After handing the pending interrupt, the handler typi-
cally sets the VIF flag and clears the VIP flag in the EFLAGS image on the stack and 
executes a return to the application program. The next time the processor receives a 
maskable hardware interrupt, the processor will handle it in the normal manner for 
interrupts received while the processor is operating at a CPL of 3.

As with the virtual mode extension (enabled with the VME flag in the CR4 register), 
the protected-mode virtual interrupt extension only affects maskable hardware 
interrupts (interrupt vectors 32 through 255). NMI interrupts and exceptions are 
handled in the normal manner.

When protected-mode virtual interrupts are disabled (that is, when the PVI flag in 
control register CR4 is set to 0, the CPL is less than 3, or the IOPL value is 3), then 
the CLI and STI instructions execute in a manner compatible with the Intel486 
processor. That is, if the CPL is greater (less privileged) than the I/O privilege level 
(IOPL), a general-protection exception occurs. If the IOPL value is 3, CLI and STI 
clear or set the IF flag, respectively.

PUSHF, POPF, IRET and INT are executed like in the Intel486 processor, regardless of 
whether protected-mode virtual interrupts are enabled.
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It is only possible to enter virtual-8086 mode through a task switch or the execution 
of an IRET instruction, and it is only possible to leave virtual-8086 mode by faulting 
to a protected-mode interrupt handler (typically the general-protection exception 
handler, which in turn calls the virtual 8086-mode monitor). In both cases, the 
EFLAGS register is saved and restored. This is not true, however, in protected mode 
when the PVI flag is set and the processor is not in virtual-8086 mode. Here, it is 
possible to call a procedure at a different privilege level, in which case the EFLAGS 
register is not saved or modified. However, the states of VIF and VIP flags are never 
examined by the processor when the CPL is not 3.
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CHAPTER 21
MIXING 16-BIT AND 32-BIT CODE

Program modules written to run on IA-32 processors can be either 16-bit modules or 
32-bit modules. Table 21-1 shows the characteristic of 16-bit and 32-bit modules.

The IA-32 processors function most efficiently when executing 32-bit program 
modules. They can, however, also execute 16-bit program modules, in any of the 
following ways:
• In real-address mode.
• In virtual-8086 mode.
• System management mode (SMM).
• As a protected-mode task, when the code, data, and stack segments for the task 

are all configured as a 16-bit segments.
• By integrating 16-bit and 32-bit segments into a single protected-mode task.
• By integrating 16-bit operations into 32-bit code segments.

Real-address mode, virtual-8086 mode, and SMM are native 16-bit modes. A legacy 
program assembled and/or compiled to run on an Intel 8086 or Intel 286 processor 
should run in real-address mode or virtual-8086 mode without modification. Sixteen-
bit program modules can also be written to run in real-address mode for handling 
system initialization or to run in SMM for handling system management functions. 
See Chapter 20, “8086 Emulation,” for detailed information on real-address mode 
and virtual-8086 mode; see Chapter 33, “System Management Mode,” for informa-
tion on SMM.

This chapter describes how to integrate 16-bit program modules with 32-bit program 
modules when operating in protected mode and how to mix 16-bit and 32-bit code 
within 32-bit code segments.

Table 21-1.  Characteristics of 16-Bit and 32-Bit Program Modules

Characteristic 16-Bit Program Modules 32-Bit Program Modules

Segment Size 0 to 64 KBytes 0 to 4 GBytes

Operand Sizes 8 bits and 16 bits 8 bits and 32 bits

Pointer Offset Size (Address 
Size)

16 bits 32 bits

Stack Pointer Size 16 Bits 32 Bits

Control Transfers Allowed to 
Code Segments of This Size

16 Bits 32 Bits
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21.1 DEFINING 16-BIT AND 32-BIT PROGRAM MODULES
The following IA-32 architecture mechanisms are used to distinguish between and 
support 16-bit and 32-bit segments and operations:
• The D (default operand and address size) flag in code-segment descriptors.
• The B (default stack size) flag in stack-segment descriptors.
• 16-bit and 32-bit call gates, interrupt gates, and trap gates.
• Operand-size and address-size instruction prefixes.
• 16-bit and 32-bit general-purpose registers.

The D flag in a code-segment descriptor determines the default operand-size and 
address-size for the instructions of a code segment. (In real-address mode and 
virtual-8086 mode, which do not use segment descriptors, the default is 16 bits.) A 
code segment with its D flag set is a 32-bit segment; a code segment with its D flag 
clear is a 16-bit segment.

The B flag in the stack-segment descriptor specifies the size of stack pointer (the 
32-bit ESP register or the 16-bit SP register) used by the processor for implicit stack 
references. The B flag for all data descriptors also controls upper address range for 
expand down segments.

When transferring program control to another code segment through a call gate, 
interrupt gate, or trap gate, the operand size used during the transfer is determined 
by the type of gate used (16-bit or 32-bit), (not by the D-flag or prefix of the transfer 
instruction). The gate type determines how return information is saved on the stack 
(or stacks).

For most efficient and trouble-free operation of the processor, 32-bit programs or 
tasks should have the D flag in the code-segment descriptor and the B flag in the 
stack-segment descriptor set, and 16-bit programs or tasks should have these flags 
clear. Program control transfers from 16-bit segments to 32-bit segments (and vice 
versa) are handled most efficiently through call, interrupt, or trap gates.

Instruction prefixes can be used to override the default operand size and address size 
of a code segment. These prefixes can be used in real-address mode as well as in 
protected mode and virtual-8086 mode. An operand-size or address-size prefix only 
changes the size for the duration of the instruction.

21.2 MIXING 16-BIT AND 32-BIT OPERATIONS WITHIN A 
CODE SEGMENT

The following two instruction prefixes allow mixing of 32-bit and 16-bit operations 
within one segment:
• The operand-size prefix (66H)
• The address-size prefix (67H)
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These prefixes reverse the default size selected by the D flag in the code-segment 
descriptor. For example, the processor can interpret the (MOV mem, reg) instruction 
in any of four ways:
• In a 32-bit code segment:

— Moves 32 bits from a 32-bit register to memory using a 32-bit effective 
address.

— If preceded by an operand-size prefix, moves 16 bits from a 16-bit register to 
memory using a 32-bit effective address.

— If preceded by an address-size prefix, moves 32 bits from a 32-bit register to 
memory using a 16-bit effective address.

— If preceded by both an address-size prefix and an operand-size prefix, moves 
16 bits from a 16-bit register to memory using a 16-bit effective address.

• In a 16-bit code segment:

— Moves 16 bits from a 16-bit register to memory using a 16-bit effective 
address.

— If preceded by an operand-size prefix, moves 32 bits from a 32-bit register to 
memory using a 16-bit effective address.

— If preceded by an address-size prefix, moves 16 bits from a 16-bit register to 
memory using a 32-bit effective address.

— If preceded by both an address-size prefix and an operand-size prefix, moves 
32 bits from a 32-bit register to memory using a 32-bit effective address.

The previous examples show that any instruction can generate any combination of 
operand size and address size regardless of whether the instruction is in a 16- or 
32-bit segment. The choice of the 16- or 32-bit default for a code segment is 
normally based on the following criteria:
• Performance — Always use 32-bit code segments when possible. They run 

much faster than 16-bit code segments on P6 family processors, and somewhat 
faster on earlier IA-32 processors.

• The operating system the code segment will be running on — If the 
operating system is a 16-bit operating system, it may not support 32-bit program 
modules.

• Mode of operation — If the code segment is being designed to run in real-
address mode, virtual-8086 mode, or SMM, it must be a 16-bit code segment.

• Backward compatibility to earlier IA-32 processors — If a code segment 
must be able to run on an Intel 8086 or Intel 286 processor, it must be a 16-bit 
code segment.
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21.3 SHARING DATA AMONG MIXED-SIZE CODE 
SEGMENTS

Data segments can be accessed from both 16-bit and 32-bit code segments. When a 
data segment that is larger than 64 KBytes is to be shared among 16- and 32-bit 
code segments, the data that is to be accessed from the 16-bit code segments must 
be located within the first 64 KBytes of the data segment. The reason for this is that 
16-bit pointers by definition can only point to the first 64 KBytes of a segment. 

A stack that spans less than 64 KBytes can be shared by both 16- and 32-bit code 
segments. This class of stacks includes:
• Stacks in expand-up segments with the G (granularity) and B (big) flags in the 

stack-segment descriptor clear.
• Stacks in expand-down segments with the G and B flags clear.
• Stacks in expand-up segments with the G flag set and the B flag clear and where 

the stack is contained completely within the lower 64 KBytes. (Offsets greater 
than FFFFH can be used for data, other than the stack, which is not shared.)

See Section 3.4.5, “Segment Descriptors,” for a description of the G and B flags and 
the expand-down stack type.

The B flag cannot, in general, be used to change the size of stack used by a 16-bit 
code segment. This flag controls the size of the stack pointer only for implicit stack 
references such as those caused by interrupts, exceptions, and the PUSH, POP, CALL, 
and RET instructions. It does not control explicit stack references, such as accesses 
to parameters or local variables. A 16-bit code segment can use a 32-bit stack only if 
the code is modified so that all explicit references to the stack are preceded by the 
32-bit address-size prefix, causing those references to use 32-bit addressing and 
explicit writes to the stack pointer are preceded by a 32-bit operand-size prefix.

In 32-bit, expand-down segments, all offsets may be greater than 64 KBytes; there-
fore, 16-bit code cannot use this kind of stack segment unless the code segment is 
modified to use 32-bit addressing.

21.4 TRANSFERRING CONTROL AMONG MIXED-SIZE CODE 
SEGMENTS

There are three ways for a procedure in a 16-bit code segment to safely make a call 
to a 32-bit code segment:
• Make the call through a 32-bit call gate.
• Make a 16-bit call to a 32-bit interface procedure. The interface procedure then 

makes a 32-bit call to the intended destination.
• Modify the 16-bit procedure, inserting an operand-size prefix before the call, to 

change it to a 32-bit call.
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Likewise, there are three ways for procedure in a 32-bit code segment to safely make 
a call to a 16-bit code segment:
• Make the call through a 16-bit call gate. Here, the EIP value at the CALL 

instruction cannot exceed FFFFH.
• Make a 32-bit call to a 16-bit interface procedure. The interface procedure then 

makes a 16-bit call to the intended destination.
• Modify the 32-bit procedure, inserting an operand-size prefix before the call, 

changing it to a 16-bit call. Be certain that the return offset does not exceed 
FFFFH.

These methods of transferring program control overcome the following architectural 
limitations imposed on calls between 16-bit and 32-bit code segments:
• Pointers from 16-bit code segments (which by default can only be 16 bits) cannot 

be used to address data or code located beyond FFFFH in a 32-bit segment.
• The operand-size attributes for a CALL and its companion RETURN instruction 

must be the same to maintain stack coherency. This is also true for implicit calls 
to interrupt and exception handlers and their companion IRET instructions.

• A 32-bit parameters (particularly a pointer parameter) greater than FFFFH 
cannot be squeezed into a 16-bit parameter location on a stack.

• The size of the stack pointer (SP or ESP) changes when switching between 16-bit 
and 32-bit code segments.

These limitations are discussed in greater detail in the following sections.

21.4.1 Code-Segment Pointer Size
For control-transfer instructions that use a pointer to identify the next instruction 
(that is, those that do not use gates), the operand-size attribute determines the size 
of the offset portion of the pointer. The implications of this rule are as follows:
• A JMP, CALL, or RET instruction from a 32-bit segment to a 16-bit segment is 

always possible using a 32-bit operand size, providing the 32-bit pointer does not 
exceed FFFFH.

• A JMP, CALL, or RET instruction from a 16-bit segment to a 32-bit segment 
cannot address a destination greater than FFFFH, unless the instruction is given 
an operand-size prefix.

See Section 21.4.5, “Writing Interface Procedures,” for an interface procedure that 
can transfer program control from 16-bit segments to destinations in 32-bit 
segments beyond FFFFH.

21.4.2 Stack Management for Control Transfer
Because the stack is managed differently for 16-bit procedure calls than for 32-bit 
calls, the operand-size attribute of the RET instruction must match that of the CALL 
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instruction (see Figure 21-1). On a 16-bit call, the processor pushes the contents of 
the 16-bit IP register and (for calls between privilege levels) the 16-bit SP register. 
The matching RET instruction must also use a 16-bit operand size to pop these 16-bit 
values from the stack into the 16-bit registers. 

A 32-bit CALL instruction pushes the contents of the 32-bit EIP register and (for 
inter-privilege-level calls) the 32-bit ESP register. Here, the matching RET instruction 
must use a 32-bit operand size to pop these 32-bit values from the stack into the 
32-bit registers. If the two parts of a CALL/RET instruction pair do not have matching 
operand sizes, the stack will not be managed correctly and the values of the instruc-
tion pointer and stack pointer will not be restored to correct values. 

Figure 21-1.  Stack after Far 16- and 32-Bit Calls
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While executing 32-bit code, if a call is made to a 16-bit code segment which is at the 
same or a more privileged level (that is, the DPL of the called code segment is less 
than or equal to the CPL of the calling code segment) through a 16-bit call gate, then 
the upper 16-bits of the ESP register may be unreliable upon returning to the 32-bit 
code segment (that is, after executing a RET in the 16-bit code segment).

When the CALL instruction and its matching RET instruction are in code segments 
that have D flags with the same values (that is, both are 32-bit code segments or 
both are 16-bit code segments), the default settings may be used. When the CALL 
instruction and its matching RET instruction are in segments which have different 
D-flag settings, an operand-size prefix must be used.

21.4.2.1  Controlling the Operand-Size Attribute For a Call
Three things can determine the operand-size of a call:
• The D flag in the segment descriptor for the calling code segment.
• An operand-size instruction prefix.
• The type of call gate (16-bit or 32-bit), if a call is made through a call gate.

When a call is made with a pointer (rather than a call gate), the D flag for the calling 
code segment determines the operand-size for the CALL instruction. This operand-
size attribute can be overridden by prepending an operand-size prefix to the CALL 
instruction. So, for example, if the D flag for a code segment is set for 16 bits and the 
operand-size prefix is used with a CALL instruction, the processor will cause the infor-
mation stored on the stack to be stored in 32-bit format. If the call is to a 32-bit code 
segment, the instructions in that code segment will be able to read the stack coher-
ently. Also, a RET instruction from the 32-bit code segment without an operand-size 
prefix will maintain stack coherency with the 16-bit code segment being returned to.

When a CALL instruction references a call-gate descriptor, the type of call is deter-
mined by the type of call gate (16-bit or 32-bit). The offset to the destination in the 
code segment being called is taken from the gate descriptor; therefore, if a 32-bit call 
gate is used, a procedure in a 16-bit code segment can call a procedure located more 
than 64 KBytes from the base of a 32-bit code segment, because a 32-bit call gate 
uses a 32-bit offset.

Note that regardless of the operand size of the call and how it is determined, the size 
of the stack pointer used (SP or ESP) is always controlled by the B flag in the stack-
segment descriptor currently in use (that is, when B is clear, SP is used, and when B 
is set, ESP is used).

An unmodified 16-bit code segment that has run successfully on an 8086 processor 
or in real-mode on a later IA-32 architecture processor will have its D flag clear and 
will not use operand-size override prefixes. As a result, all CALL instructions in this 
code segment will use the 16-bit operand-size attribute. Procedures in these code 
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segments can be modified to safely call procedures to 32-bit code segments in either 
of two ways:
• Relink the CALL instruction to point to 32-bit call gates (see Section 21.4.2.2, 

“Passing Parameters With a Gate”).
• Add a 32-bit operand-size prefix to each CALL instruction.

21.4.2.2  Passing Parameters With a Gate
When referencing 32-bit gates with 16-bit procedures, it is important to consider the 
number of parameters passed in each procedure call. The count field of the gate 
descriptor specifies the size of the parameter string to copy from the current stack to 
the stack of a more privileged (numerically lower privilege level) procedure. The 
count field of a 16-bit gate specifies the number of 16-bit words to be copied, 
whereas the count field of a 32-bit gate specifies the number of 32-bit doublewords 
to be copied. The count field for a 32-bit gate must thus be half the size of the 
number of words being placed on the stack by a 16-bit procedure. Also, the 16-bit 
procedure must use an even number of words as parameters.

21.4.3 Interrupt Control Transfers
A program-control transfer caused by an exception or interrupt is always carried out 
through an interrupt or trap gate (located in the IDT). Here, the type of the gate 
(16-bit or 32-bit) determines the operand-size attribute used in the implicit call to 
the exception or interrupt handler procedure in another code segment.

A 32-bit interrupt or trap gate provides a safe interface to a 32-bit exception or inter-
rupt handler when the exception or interrupt occurs in either a 32-bit or a 16-bit code 
segment. It is sometimes impractical, however, to place exception or interrupt 
handlers in 16-bit code segments, because only 16-bit return addresses are saved on 
the stack. If an exception or interrupt occurs in a 32-bit code segment when the EIP 
was greater than FFFFH, the 16-bit handler procedure cannot provide the correct 
return address.

21.4.4 Parameter Translation
When segment offsets or pointers (which contain segment offsets) are passed as 
parameters between 16-bit and 32-bit procedures, some translation is required. If a 
32-bit procedure passes a pointer to data located beyond 64 KBytes to a 16-bit 
procedure, the 16-bit procedure cannot use it. Except for this limitation, interface 
code can perform any format conversion between 32-bit and 16-bit pointers that 
may be needed.

Parameters passed by value between 32-bit and 16-bit code also may require trans-
lation between 32-bit and 16-bit formats. The form of the translation is application-
dependent.
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21.4.5 Writing Interface Procedures
Placing interface code between 32-bit and 16-bit procedures can be the solution to 
the following interface problems:
• Allowing procedures in 16-bit code segments to call procedures with offsets 

greater than FFFFH in 32-bit code segments.
• Matching operand-size attributes between companion CALL and RET instructions.
• Translating parameters (data), including managing parameter strings with a 

variable count or an odd number of 16-bit words.
• The possible invalidation of the upper bits of the ESP register.

The interface procedure is simplified where these rules are followed.

1. The interface procedure must reside in a 32-bit code segment (the D flag for the 
code-segment descriptor is set).

2. All procedures that may be called by 16-bit procedures must have offsets not 
greater than FFFFH.

3. All return addresses saved by 16-bit procedures must have offsets not greater 
than FFFFH.

The interface procedure becomes more complex if any of these rules are violated. For 
example, if a 16-bit procedure calls a 32-bit procedure with an entry point beyond 
FFFFH, the interface procedure will need to provide the offset to the entry point. The 
mapping between 16- and 32-bit addresses is only performed automatically when a 
call gate is used, because the gate descriptor for a call gate contains a 32-bit 
address. When a call gate is not used, the interface code must provide the 32-bit 
address.

The structure of the interface procedure depends on the types of calls it is going to 
support, as follows:
• Calls from 16-bit procedures to 32-bit procedures — Calls to the interface 

procedure from a 16-bit code segment are made with 16-bit CALL instructions 
(by default, because the D flag for the calling code-segment descriptor is clear), 
and 16-bit operand-size prefixes are used with RET instructions to return from 
the interface procedure to the calling procedure. Calls from the interface 
procedure to 32-bit procedures are performed with 32-bit CALL instructions (by 
default, because the D flag for the interface procedure’s code segment is set), 
and returns from the called procedures to the interface procedure are performed 
with 32-bit RET instructions (also by default).

• Calls from 32-bit procedures to 16-bit procedures — Calls to the interface 
procedure from a 32-bit code segment are made with 32-bit CALL instructions 
(by default), and returns to the calling procedure from the interface procedure 
are made with 32-bit RET instructions (also by default). Calls from the interface 
procedure to 16-bit procedures require the CALL instructions to have the 
operand-size prefixes, and returns from the called procedures to the interface 
procedure are performed with 16-bit RET instructions (by default).
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CHAPTER 22
ARCHITECTURE COMPATIBILITY

Intel 64 and IA-32 processors are binary compatible. Compatibility means that, 
within limited constraints, programs that execute on previous generations of proces-
sors will produce identical results when executed on later processors. The compati-
bility constraints and any implementation differences between the Intel 64 and IA-32 
processors are described in this chapter.

Each new processor has enhanced the software visible architecture from that found 
in earlier Intel 64 and IA-32 processors. Those enhancements have been defined 
with consideration for compatibility with previous and future processors. This chapter 
also summarizes the compatibility considerations for those extensions.

22.1 PROCESSOR FAMILIES AND CATEGORIES
IA-32 processors are referred to in several different ways in this chapter, depending 
on the type of compatibility information being related, as described in the following:
• IA-32 Processors — All the Intel processors based on the Intel IA-32 Archi-

tecture, which include the 8086/88, Intel 286, Intel386, Intel486, Pentium, 
Pentium Pro, Pentium II, Pentium III, Pentium 4, and Intel Xeon processors.

• 32-bit Processors — All the IA-32 processors that use a 32-bit architecture, 
which include the Intel386, Intel486, Pentium, Pentium Pro, Pentium II, 
Pentium III, Pentium 4, and Intel Xeon processors.

• 16-bit Processors — All the IA-32 processors that use a 16-bit architecture, 
which include the 8086/88 and Intel 286 processors.

• P6 Family Processors — All the IA-32 processors that are based on the P6 
microarchitecture, which include the Pentium Pro, Pentium II, and Pentium III 
processors.

• Pentium® 4 Processors — A family of IA-32 and Intel 64 processors that are 
based on the Intel NetBurst® microarchitecture.

• Intel® Pentium® M Processors — A family of IA-32 processors that are based 
on the Intel Pentium M processor microarchitecture.

• Intel® Core™ Duo and Solo Processors — Families of IA-32 processors that 
are based on an improved Intel Pentium M processor microarchitecture.

• Intel® Xeon® Processors — A family of IA-32 and Intel 64 processors that are 
based on the Intel NetBurst microarchitecture. This family includes the Intel Xeon 
processor and the Intel Xeon processor MP based on the Intel NetBurst microar-
chitecture. Intel Xeon processors 3000, 3100, 3200, 3300, 3200, 5100, 5200, 
5300, 5400, 7200, 7300 series are based on Intel Core microarchitectures and 
support Intel 64 architecture.
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• Pentium® D Processors — A family of dual-core Intel 64 processors that 
provides two processor cores in a physical package. Each core is based on the 
Intel NetBurst microarchitecture.

• Pentium® Processor Extreme Editions — A family of dual-core Intel 64 
processors that provides two processor cores in a physical package. Each core is 
based on the Intel NetBurst microarchitecture and supports Intel Hyper-
Threading Technology.

• Intel® Core™ 2 Processor family— A family of Intel 64 processors that are 
based on the Intel Core microarchitecture. Intel Pentium Dual-Core processors 
are also based on the Intel Core microarchitecture.

• Intel® Atom™ Processors — A family of IA-32 and Intel 64 processors that are 
based on the Intel Atom microarchitecture. 

22.2 RESERVED BITS
Throughout this manual, certain bits are marked as reserved in many register and 
memory layout descriptions. When bits are marked as undefined or reserved, it is 
essential for compatibility with future processors that software treat these bits as 
having a future, though unknown effect. Software should follow these guidelines in 
dealing with reserved bits:
• Do not depend on the states of any reserved bits when testing the values of 

registers or memory locations that contain such bits. Mask out the reserved bits 
before testing.

• Do not depend on the states of any reserved bits when storing them to memory 
or to a register.

• Do not depend on the ability to retain information written into any reserved bits.
• When loading a register, always load the reserved bits with the values indicated 

in the documentation, if any, or reload them with values previously read from the 
same register.

Software written for existing IA-32 processor that handles reserved bits correctly will 
port to future IA-32 processors without generating protection exceptions.

22.3 ENABLING NEW FUNCTIONS AND MODES
Most of the new control functions defined for the P6 family and Pentium processors 
are enabled by new mode flags in the control registers (primarily register CR4). This 
register is undefined for IA-32 processors earlier than the Pentium processor. 
Attempting to access this register with an Intel486 or earlier IA-32 processor results 
in an invalid-opcode exception (#UD). Consequently, programs that execute 
correctly on the Intel486 or earlier IA-32 processor cannot erroneously enable these 
functions. Attempting to set a reserved bit in register CR4 to a value other than its 
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original value results in a general-protection exception (#GP). So, programs that 
execute on the P6 family and Pentium processors cannot erroneously enable func-
tions that may be implemented in future IA-32 processors. 

The P6 family and Pentium processors do not check for attempts to set reserved bits 
in model-specific registers; however these bits may be checked on more recent 
processors. It is the obligation of the software writer to enforce this discipline. These 
reserved bits may be used in future Intel processors.

22.4 DETECTING THE PRESENCE OF NEW FEATURES 
THROUGH SOFTWARE

Software can check for the presence of new architectural features and extensions in 
either of two ways:

1. Test for the presence of the feature or extension. Software can test for the 
presence of new flags in the EFLAGS register and control registers. If these flags 
are reserved (meaning not present in the processor executing the test), an 
exception is generated. Likewise, software can attempt to execute a new 
instruction, which results in an invalid-opcode exception (#UD) being generated 
if it is not supported.

2. Execute the CPUID instruction. The CPUID instruction (added to the IA-32 in the 
Pentium processor) indicates the presence of new features directly.

See Chapter 14, “Processor Identification and Feature Determination,” in the Intel® 
64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for detailed 
information on detecting new processor features and extensions.

22.5 INTEL MMX TECHNOLOGY
The Pentium processor with MMX technology introduced the MMX technology and a 
set of MMX instructions to the IA-32. The MMX instructions are described in Chapter 
9, “Programming with Intel® MMX™ Technology,” in the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 1, and in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volumes 2A, 2B & 2C. The MMX tech-
nology and MMX instructions are also included in the Pentium II, Pentium III, Pentium 
4, and Intel Xeon processors.

22.6 STREAMING SIMD EXTENSIONS (SSE)
The Streaming SIMD Extensions (SSE) were introduced in the Pentium III processor. 
The SSE extensions consist of a new set of instructions and a new set of registers. 
The new registers include the eight 128-bit XMM registers and the 32-bit MXCSR 
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control and status register. These instructions and registers are designed to allow 
SIMD computations to be made on single-precision floating-point numbers. Several 
of these new instructions also operate in the MMX registers. SSE instructions and 
registers are described in Section 10, “Programming with Streaming SIMD Exten-
sions (SSE),” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 1, and in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volumes 2A, 2B & 2C. 

22.7 STREAMING SIMD EXTENSIONS 2 (SSE2)
The Streaming SIMD Extensions 2 (SSE2) were introduced in the Pentium 4 and Intel 
Xeon processors. They consist of a new set of instructions that operate on the XMM 
and MXCSR registers and perform SIMD operations on double-precision floating-
point values and on integer values. Several of these new instructions also operate in 
the MMX registers. SSE2 instructions and registers are described in Chapter 11, 
“Programming with Streaming SIMD Extensions 2 (SSE2),” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 1, and in the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B & 2C.

22.8 STREAMING SIMD EXTENSIONS 3 (SSE3)
The Streaming SIMD Extensions 3 (SSE3) were introduced in Pentium 4 processors 
supporting Intel Hyper-Threading Technology and Intel Xeon processors. SSE3 
extensions include 13 instructions. Ten of these 13 instructions support the single 
instruction multiple data (SIMD) execution model used with SSE/SSE2 extensions. 
One SSE3 instruction accelerates x87 style programming for conversion to integer. 
The remaining two instructions (MONITOR and MWAIT) accelerate synchronization 
of threads. SSE3 instructions are described in Chapter 12, “Programming with SSE3, 
SSSE3 and SSE4,” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 1, and in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volumes 2A, 2B & 2C.

22.9 ADDITIONAL STREAMING SIMD EXTENSIONS
The Supplemental Streaming SIMD Extensions 3 (SSSE3) were introduced in the 
Intel Core 2 processor and Intel Xeon processor 5100 series. Streaming SIMD Exten-
sions 4 provided 54 new instructions introduced in 45nm Intel Xeon processors and 
Intel Core 2 processors. SSSE3, SSE4.1 and SSE4.2 instructions are described in 
Chapter 12, “Programming with SSE3, SSSE3 and SSE4,” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 1, and in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B & 2C.
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22.10 INTEL HYPER-THREADING TECHNOLOGY
Intel Hyper-Threading Technology provides two logical processors that can execute 
two separate code streams (called threads) concurrently by using shared resources 
in a single processor core or in a physical package. 

This feature was introduced in the Intel Xeon processor MP and later steppings of the 
Intel Xeon processor, and Pentium 4 processors supporting Intel Hyper-Threading 
Technology. The feature is also found in the Pentium processor Extreme Edition. See 
also: Section 8.7, “Intel® Hyper-Threading Technology Architecture.”

Intel Atom processors also support Intel Hyper-Threading Technology.

22.11 MULTI-CORE TECHNOLOGY
The Pentium D processor and Pentium processor Extreme Edition provide two 
processor cores in each physical processor package. See also: Section 8.5, “Intel® 
Hyper-Threading Technology and Intel® Multi-Core Technology,” and Section 8.8, 
“Multi-Core Architecture.” Intel Core 2 Duo, Intel Pentium Dual-Core processors, 
Intel Xeon processors 3000, 3100, 5100, 5200 series provide two processor cores in 
each physical processor package. Intel Core 2 Extreme, Intel Core 2 Quad proces-
sors, Intel Xeon processors 3200, 3300, 5300, 5400, 7300 series provide two 
processor cores in each physical processor package.

22.12 SPECIFIC FEATURES OF DUAL-CORE PROCESSOR 
Dual-core processors may have some processor-specific features. Use CPUID feature 
flags to detect the availability features. Note the following:
• CPUID Brand String — On Pentium processor Extreme Edition, the process will 

report the correct brand string only after the correct microcode updates are 
loaded.

• Enhanced Intel SpeedStep Technology — This feature is supported in 
Pentium D processor but not in Pentium processor Extreme Edition. 

22.13 NEW INSTRUCTIONS IN THE PENTIUM AND LATER 
IA-32 PROCESSORS

Table 22-1 identifies the instructions introduced into the IA-32 in the Pentium 
processor and later IA-32 processors.
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22.13.1 Instructions Added Prior to the Pentium Processor
The following instructions were added in the Intel486 processor:
• BSWAP (byte swap) instruction.
• XADD (exchange and add) instruction.
• CMPXCHG (compare and exchange) instruction.
• ΙNVD (invalidate cache) instruction.
• WBINVD (write-back and invalidate cache) instruction.
• INVLPG (invalidate TLB entry) instruction.

The following instructions were added in the Intel386 processor:
• LSS, LFS, and LGS (load SS, FS, and GS registers).
• Long-displacement conditional jumps.

Table 22-1.  New Instruction in the Pentium Processor and 
Later IA-32 Processors

Instruction CPUID Identification Bits Introduced In

CMOVcc (conditional move) EDX, Bit 15 Pentium Pro processor

FCMOVcc (floating-point conditional 
move)

EDX, Bits 0 and 15

FCOMI (floating-point compare and set 
EFLAGS)

EDX, Bits 0 and 15

RDPMC (read performance monitoring 
counters)

EAX, Bits 8-11, set to 6H; 
see Note 1

UD2 (undefined) EAX, Bits 8-11, set to 6H

CMPXCHG8B (compare and exchange 8 
bytes)

EDX, Bit 8 Pentium processor

CPUID (CPU identification) None; see Note 2

RDTSC (read time-stamp counter) EDX, Bit 4

RDMSR (read model-specific register) EDX, Bit 5

WRMSR (write model-specific register) EDX, Bit 5

MMX Instructions EDX, Bit 23

NOTES:
1. The RDPMC instruction was introduced in the P6 family of processors and added to later model 

Pentium processors. This instruction is model specific in nature and not architectural.
2. The CPUID instruction is available in all Pentium and P6 family processors and in later models of 

the Intel486 processors. The ability to set and clear the ID flag (bit 21) in the EFLAGS register 
indicates the availability of the CPUID instruction.
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• Single-bit instructions.
• Bit scan instructions.
• Double-shift instructions.
• Byte set on condition instruction.
• Move with sign/zero extension.
• Generalized multiply instruction.
• MOV to and from control registers.
• MOV to and from test registers (now obsolete).
• MOV to and from debug registers.
• RSM (resume from SMM). This instruction was introduced in the Intel386 SL and 

Intel486 SL processors.

The following instructions were added in the Intel 387 math coprocessor:
• FPREM1.
• FUCOM, FUCOMP, and FUCOMPP.

22.14 OBSOLETE INSTRUCTIONS
The MOV to and from test registers instructions were removed from the Pentium 
processor and future IA-32 processors. Execution of these instructions generates an 
invalid-opcode exception (#UD).

22.15 UNDEFINED OPCODES
All new instructions defined for IA-32 processors use binary encodings that were 
reserved on earlier-generation processors. Attempting to execute a reserved opcode 
always results in an invalid-opcode (#UD) exception being generated. Consequently, 
programs that execute correctly on earlier-generation processors cannot erroneously 
execute these instructions and thereby produce unexpected results when executed 
on later IA-32 processors.

22.16 NEW FLAGS IN THE EFLAGS REGISTER
The section titled “EFLAGS Register” in Chapter 3, “Basic Execution Environment,” of 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, 
shows the configuration of flags in the EFLAGS register for the P6 family processors. 
No new flags have been added to this register in the P6 family processors. The flags 
added to this register in the Pentium and Intel486 processors are described in the 
following sections.
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The following flags were added to the EFLAGS register in the Pentium processor:
• VIF (virtual interrupt flag), bit 19.
• VIP (virtual interrupt pending), bit 20. 
• ID (identification flag), bit 21. 

The AC flag (bit 18) was added to the EFLAGS register in the Intel486 processor.

22.16.1 Using EFLAGS Flags to Distinguish Between 32-Bit IA-32 
Processors

The following bits in the EFLAGS register that can be used to differentiate between 
the 32-bit IA-32 processors:
• Bit 18 (the AC flag) can be used to distinguish an Intel386 processor from the P6 

family, Pentium, and Intel486 processors. Since it is not implemented on the 
Intel386 processor, it will always be clear.

• Bit 21 (the ID flag) indicates whether an application can execute the CPUID 
instruction. The ability to set and clear this bit indicates that the processor is a P6 
family or Pentium processor. The CPUID instruction can then be used to 
determine which processor. 

• Bits 19 (the VIF flag) and 20 (the VIP flag) will always be zero on processors that 
do not support virtual mode extensions, which includes all 32-bit processors prior 
to the Pentium processor.

See Chapter 14, “Processor Identification and Feature Determination,” in the Intel® 
64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for more infor-
mation on identifying processors.

22.17 STACK OPERATIONS
This section identifies the differences in stack implementation between the various 
IA-32 processors.

22.17.1 PUSH SP
The P6 family, Pentium, Intel486, Intel386, and Intel 286 processors push a different 
value on the stack for a PUSH SP instruction than the 8086 processor. The 32-bit 
processors push the value of the SP register before it is decremented as part of the 
push operation; the 8086 processor pushes the value of the SP register after it is 
decremented. If the value pushed is important, replace PUSH SP instructions with the 
following three instructions:

PUSH BP
MOV  BP, SP
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XCHG BP, [BP] 

This code functions as the 8086 processor PUSH SP instruction on the P6 family, 
Pentium, Intel486, Intel386, and Intel 286 processors.

22.17.2 EFLAGS Pushed on the Stack
The setting of the stored values of bits 12 through 15 (which includes the IOPL field 
and the NT flag) in the EFLAGS register by the PUSHF instruction, by interrupts, and 
by exceptions is different with the 32-bit IA-32 processors than with the 8086 and 
Intel 286 processors. The differences are as follows:
• 8086 processor—bits 12 through 15 are always set.
• Intel 286 processor—bits 12 through 15 are always cleared in real-address mode. 
• 32-bit processors in real-address mode—bit 15 (reserved) is always cleared, and 

bits 12 through 14 have the last value loaded into them.

22.18 X87 FPU
This section addresses the issues that must be faced when porting floating-point 
software designed to run on earlier IA-32 processors and math coprocessors to a 
Pentium 4, Intel Xeon, P6 family, or Pentium processor with integrated x87 FPU. To 
software, a Pentium 4, Intel Xeon, or P6 family processor looks very much like a 
Pentium processor. Floating-point software which runs on a Pentium or Intel486 DX 
processor, or on an Intel486 SX processor/Intel 487 SX math coprocessor system or 
an Intel386 processor/Intel 387 math coprocessor system, will run with at most 
minor modifications on a Pentium 4, Intel Xeon, or P6 family processor. To port code 
directly from an Intel 286 processor/Intel 287 math coprocessor system or an 
Intel 8086 processor/8087 math coprocessor system to a Pentium 4, Intel Xeon, P6 
family, or Pentium processor, certain additional issues must be addressed. 

In the following sections, the term “32-bit x87 FPUs” refers to the P6 family, Pentium, 
and Intel486 DX processors, and to the Intel 487 SX and Intel 387 math coproces-
sors; the term “16-bit IA-32 math coprocessors” refers to the Intel 287 and 8087 
math coprocessors.

22.18.1 Control Register CR0 Flags
The ET, NE, and MP flags in control register CR0 control the interface between the 
integer unit of an IA-32 processor and either its internal x87 FPU or an external math 
coprocessor. The effect of these flags in the various IA-32 processors are described in 
the following paragraphs.

The ET (extension type) flag (bit 4 of the CR0 register) is used in the Intel386 
processor to indicate whether the math coprocessor in the system is an Intel 287 
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math coprocessor (flag is clear) or an Intel 387 DX math coprocessor (flag is set). 
This bit is hardwired to 1 in the P6 family, Pentium, and Intel486 processors.

The NE (Numeric Exception) flag (bit 5 of the CR0 register) is used in the P6 family, 
Pentium, and Intel486 processors to determine whether unmasked floating-point 
exceptions are reported internally through interrupt vector 16 (flag is set) or exter-
nally through an external interrupt (flag is clear). On a hardware reset, the NE flag is 
initialized to 0, so software using the automatic internal error-reporting mechanism 
must set this flag to 1. This flag is nonexistent on the Intel386 processor.

As on the Intel 286 and Intel386 processors, the MP (monitor coprocessor) flag (bit 1 
of register CR0) determines whether the WAIT/FWAIT instructions or waiting-type 
floating-point instructions trap when the context of the x87 FPU is different from that 
of the currently-executing task. If the MP and TS flag are set, then a WAIT/FWAIT 
instruction and waiting instructions will cause a device-not-available exception 
(interrupt vector 7). The MP flag is used on the Intel 286 and Intel386 processors to 
support the use of a WAIT/FWAIT instruction to wait on a device other than a math 
coprocessor. The device reports its status through the BUSY# pin. Since the P6 
family, Pentium, and Intel486 processors do not have such a pin, the MP flag has no 
relevant use and should be set to 1 for normal operation.

22.18.2 x87 FPU Status Word
This section identifies differences to the x87 FPU status word for the different IA-32 
processors and math coprocessors, the reason for the differences, and their impact 
on software.

22.18.2.1  Condition Code Flags (C0 through C3)
The following information pertains to differences in the use of the condition code 
flags (C0 through C3) located in bits 8, 9, 10, and 14 of the x87 FPU status word.

After execution of an FINIT instruction or a hardware reset on a 32-bit x87 FPU, the 
condition code flags are set to 0. The same operations on a 16-bit IA-32 math copro-
cessor leave these flags intact (they contain their prior value). This difference in 
operation has no impact on software and provides a consistent state after reset.

Transcendental instruction results in the core range of the P6 family and Pentium 
processors may differ from the Intel486 DX processor and Intel 487 SX math copro-
cessor by 2 to 3 units in the last place (ulps)—(see “Transcendental Instruction Accu-
racy” in Chapter 8, “Programming with the x87 FPU,” of the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 1). As a result, the value saved 
in the C1 flag may also differ.

After an incomplete FPREM/FPREM1 instruction, the C0, C1, and C3 flags are set to 0 
on the 32-bit x87 FPUs. After the same operation on a 16-bit IA-32 math copro-
cessor, these flags are left intact. 
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On the 32-bit x87 FPUs, the C2 flag serves as an incomplete flag for the FTAN instruc-
tion. On the 16-bit IA-32 math coprocessors, the C2 flag is undefined for the FPTAN 
instruction. This difference has no impact on software, because Intel 287 or 8087 
programs do not check C2 after an FPTAN instruction. The use of this flag on later 
processors allows fast checking of operand range.

22.18.2.2  Stack Fault Flag
When unmasked stack overflow or underflow occurs on a 32-bit x87 FPU, the IE flag 
(bit 0) and the SF flag (bit 6) of the x87 FPU status word are set to indicate a stack 
fault and condition code flag C1 is set or cleared to indicate overflow or underflow, 
respectively. When unmasked stack overflow or underflow occurs on a 16-bit IA-32 
math coprocessor, only the IE flag is set. Bit 6 is reserved on these processors. The 
addition of the SF flag on a 32-bit x87 FPU has no impact on software. Existing excep-
tion handlers need not change, but may be upgraded to take advantage of the addi-
tional information.

22.18.3 x87 FPU Control Word
Only affine closure is supported for infinity control on a 32-bit x87 FPU. The infinity 
control flag (bit 12 of the x87 FPU control word) remains programmable on these 
processors, but has no effect. This change was made to conform to the IEEE Stan-
dard 754 for Binary Floating-Point Arithmetic. On a 16-bit IA-32 math coprocessor, 
both affine and projective closures are supported, as determined by the setting of bit 
12. After a hardware reset, the default value of bit 12 is projective. Software that 
requires projective infinity arithmetic may give different results.

22.18.4 x87 FPU Tag Word
When loading the tag word of a 32-bit x87 FPU, using an FLDENV, FRSTOR, or 
FXRSTOR (Pentium III processor only) instruction, the processor examines the 
incoming tag and classifies the location only as empty or non-empty. Thus, tag 
values of 00, 01, and 10 are interpreted by the processor to indicate a non-empty 
location. The tag value of 11 is interpreted by the processor to indicate an empty 
location. Subsequent operations on a non-empty register always examine the value 
in the register, not the value in its tag. The FSTENV, FSAVE, and FXSAVE (Pentium III 
processor only) instructions examine the non-empty registers and put the correct 
values in the tags before storing the tag word.

The corresponding tag for a 16-bit IA-32 math coprocessor is checked before each 
register access to determine the class of operand in the register; the tag is updated 
after every change to a register so that the tag always reflects the most recent status 
of the register. Software can load a tag with a value that disagrees with the contents 
of a register (for example, the register contains a valid value, but the tag says 
special). Here, the 16-bit IA-32 math coprocessors honor the tag and do not examine 
the register. 
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Software written to run on a 16-bit IA-32 math coprocessor may not operate 
correctly on a 16-bit x87 FPU, if it uses the FLDENV, FRSTOR, or FXRSTOR instruc-
tions to change tags to values (other than to empty) that are different from actual 
register contents.

The encoding in the tag word for the 32-bit x87 FPUs for unsupported data formats 
(including pseudo-zero and unnormal) is special (10B), to comply with IEEE Standard 
754. The encoding in the 16-bit IA-32 math coprocessors for pseudo-zero and 
unnormal is valid (00B) and the encoding for other unsupported data formats is 
special (10B). Code that recognizes the pseudo-zero or unnormal format as valid 
must therefore be changed if it is ported to a 32-bit x87 FPU.

22.18.5 Data Types
This section discusses the differences of data types for the various x87 FPUs and 
math coprocessors.

22.18.5.1  NaNs
The 32-bit x87 FPUs distinguish between signaling NaNs (SNaNs) and quiet NaNs 
(QNaNs). These x87 FPUs only generate QNaNs and normally do not generate an 
exception upon encountering a QNaN. An invalid-operation exception (#I) is gener-
ated only upon encountering a SNaN, except for the FCOM, FIST, and FBSTP instruc-
tions, which also generates an invalid-operation exceptions for a QNaNs. This 
behavior matches IEEE Standard 754.

The 16-bit IA-32 math coprocessors only generate one kind of NaN (the equivalent of 
a QNaN), but the raise an invalid-operation exception upon encountering any kind of 
NaN.

When porting software written to run on a 16-bit IA-32 math coprocessor to a 32-bit 
x87 FPU, uninitialized memory locations that contain QNaNs should be changed to 
SNaNs to cause the x87 FPU or math coprocessor to fault when uninitialized memory 
locations are referenced.

22.18.5.2  Pseudo-zero, Pseudo-NaN, Pseudo-infinity, and Unnormal 
Formats

The 32-bit x87 FPUs neither generate nor support the pseudo-zero, pseudo-NaN, 
pseudo-infinity, and unnormal formats. Whenever they encounter them in an arith-
metic operation, they raise an invalid-operation exception. The 16-bit IA-32 math 
coprocessors define and support special handling for these formats. Support for 
these formats was dropped to conform with IEEE Standard 754 for Binary Floating-
Point Arithmetic.

This change should not impact software ported from 16-bit IA-32 math coprocessors 
to 32-bit x87 FPUs. The 32-bit x87 FPUs do not generate these formats, and there-
fore will not encounter them unless software explicitly loads them in the data regis-
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ters. The only affect may be in how software handles the tags in the tag word (see 
also: Section 22.18.4, “x87 FPU Tag Word”).

22.18.6 Floating-Point Exceptions
This section identifies the implementation differences in exception handling for 
floating-point instructions in the various x87 FPUs and math coprocessors.

22.18.6.1  Denormal Operand Exception (#D)
When the denormal operand exception is masked, the 32-bit x87 FPUs automatically 
normalize denormalized numbers when possible; whereas, the 16-bit IA-32 math 
coprocessors return a denormal result. A program written to run on a 16-bit IA-32 
math coprocessor that uses the denormal exception solely to normalize denormal-
ized operands is redundant when run on the 32-bit x87 FPUs. If such a program is run 
on 32-bit x87 FPUs, performance can be improved by masking the denormal excep-
tion. Floating-point programs run faster when the FPU performs normalization of 
denormalized operands.

The denormal operand exception is not raised for transcendental instructions and the 
FXTRACT instruction on the 16-bit IA-32 math coprocessors. This exception is raised 
for these instructions on the 32-bit x87 FPUs. The exception handlers ported to these 
latter processors need to be changed only if the handlers gives special treatment to 
different opcodes.

22.18.6.2  Numeric Overflow Exception (#O)
On the 32-bit x87 FPUs, when the numeric overflow exception is masked and the 
rounding mode is set to chop (toward 0), the result is the largest positive or smallest 
negative number. The 16-bit IA-32 math coprocessors do not signal the overflow 
exception when the masked response is not ∞; that is, they signal overflow only 
when the rounding control is not set to round to 0. If rounding is set to chop (toward 
0), the result is positive or negative ∞. Under the most common rounding modes, this 
difference has no impact on existing software. 

If rounding is toward 0 (chop), a program on a 32-bit x87 FPU produces, under over-
flow conditions, a result that is different in the least significant bit of the significand, 
compared to the result on a 16-bit IA-32 math coprocessor. The reason for this differ-
ence is IEEE Standard 754 compatibility.

When the overflow exception is not masked, the precision exception is flagged on the 
32-bit x87 FPUs. When the result is stored in the stack, the significand is rounded 
according to the precision control (PC) field of the FPU control word or according to 
the opcode. On the 16-bit IA-32 math coprocessors, the precision exception is not 
flagged and the significand is not rounded. The impact on existing software is that if 
the result is stored on the stack, a program running on a 32-bit x87 FPU produces a 
different result under overflow conditions than on a 16-bit IA-32 math coprocessor. 
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The difference is apparent only to the exception handler. This difference is for IEEE 
Standard 754 compatibility.

22.18.6.3  Numeric Underflow Exception (#U)
When the underflow exception is masked on the 32-bit x87 FPUs, the underflow 
exception is signaled when both the result is tiny and denormalization results in a 
loss of accuracy. When the underflow exception is unmasked and the instruction is 
supposed to store the result on the stack, the significand is rounded to the appro-
priate precision (according to the PC flag in the FPU control word, for those instruc-
tions controlled by PC, otherwise to extended precision), after adjusting the 
exponent.

When the underflow exception is masked on the 16-bit IA-32 math coprocessors and 
rounding is toward 0, the underflow exception flag is raised on a tiny result, regard-
less of loss of accuracy. When the underflow exception is not masked and the desti-
nation is the stack, the significand is not rounded, but instead is left as is. 

When the underflow exception is masked, this difference has no impact on existing 
software. The underflow exception occurs less often when rounding is toward 0.

When the underflow exception not masked. A program running on a 32-bit x87 FPU 
produces a different result during underflow conditions than on a 16-bit IA-32 math 
coprocessor if the result is stored on the stack. The difference is only in the least 
significant bit of the significand and is apparent only to the exception handler.

22.18.6.4  Exception Precedence
There is no difference in the precedence of the denormal-operand exception on the 
32-bit x87 FPUs, whether it be masked or not. When the denormal-operand excep-
tion is not masked on the 16-bit IA-32 math coprocessors, it takes precedence over 
all other exceptions. This difference causes no impact on existing software, but some 
unneeded normalization of denormalized operands is prevented on the Intel486 
processor and Intel 387 math coprocessor.

22.18.6.5  CS and EIP For FPU Exceptions
On the Intel 32-bit x87 FPUs, the values from the CS and EIP registers saved for 
floating-point exceptions point to any prefixes that come before the floating-point 
instruction. On the 8087 math coprocessor, the saved CS and IP registers points to 
the floating-point instruction.

22.18.6.6  FPU Error Signals
The floating-point error signals to the P6 family, Pentium, and Intel486 processors do 
not pass through an interrupt controller; an INT# signal from an Intel 387, Intel 287 
or 8087 math coprocessors does. If an 8086 processor uses another exception for 
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the 8087 interrupt, both exception vectors should call the floating-point-error excep-
tion handler. Some instructions in a floating-point-error exception handler may need 
to be deleted if they use the interrupt controller. The P6 family, Pentium, and Intel486 
processors have signals that, with the addition of external logic, support reporting for 
emulation of the interrupt mechanism used in many personal computers.

On the P6 family, Pentium, and Intel486 processors, an undefined floating-point 
opcode will cause an invalid-opcode exception (#UD, interrupt vector 6). Undefined 
floating-point opcodes, like legal floating-point opcodes, cause a device not available 
exception (#NM, interrupt vector 7) when either the TS or EM flag in control register 
CR0 is set. The P6 family, Pentium, and Intel486 processors do not check for floating-
point error conditions on encountering an undefined floating-point opcode.

22.18.6.7  Assertion of the FERR# Pin
When using the MS-DOS compatibility mode for handing floating-point exceptions, 
the FERR# pin must be connected to an input to an external interrupt controller. An 
external interrupt is then generated when the FERR# output drives the input to the 
interrupt controller and the interrupt controller in turn drives the INTR pin on the 
processor. 

For the P6 family and Intel386 processors, an unmasked floating-point exception 
always causes the FERR# pin to be asserted upon completion of the instruction that 
caused the exception. For the Pentium and Intel486 processors, an unmasked 
floating-point exception may cause the FERR# pin to be asserted either at the end of 
the instruction causing the exception or immediately before execution of the next 
floating-point instruction. (Note that the next floating-point instruction would not be 
executed until the pending unmasked exception has been handled.) See Appendix D, 
“Guidelines for Writing x87 FPU Extension Handlers,” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 1, for a complete description of 
the required mechanism for handling floating-point exceptions using the MS-DOS 
compatibility mode.

Using FERR# and IGNNE# to handle floating-point exception is deprecated by 
modern operating systems; this approach also limits newer processors to operate 
with one logical processor active.

22.18.6.8  Invalid Operation Exception On Denormals 
An invalid-operation exception is not generated on the 32-bit x87 FPUs upon encoun-
tering a denormal value when executing a FSQRT, FDIV, or FPREM instruction or upon 
conversion to BCD or to integer. The operation proceeds by first normalizing the 
value. On the 16-bit IA-32 math coprocessors, upon encountering this situation, the 
invalid-operation exception is generated. This difference has no impact on existing 
software. Software running on the 32-bit x87 FPUs continues to execute in cases 
where the 16-bit IA-32 math coprocessors trap. The reason for this change was to 
eliminate an exception from being raised.
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22.18.6.9  Alignment Check Exceptions (#AC)
If alignment checking is enabled, a misaligned data operand on the P6 family, 
Pentium, and Intel486 processors causes an alignment check exception (#AC) when 
a program or procedure is running at privilege-level 3, except for the stack portion of 
the FSAVE/FNSAVE, FXSAVE, FRSTOR, and FXRSTOR instructions.

22.18.6.10  Segment Not Present Exception During FLDENV
On the Intel486 processor, when a segment not present exception (#NP) occurs in 
the middle of an FLDENV instruction, it can happen that part of the environment is 
loaded and part not. In such cases, the FPU control word is left with a value of 007FH. 
The P6 family and Pentium processors ensure the internal state is correct at all times 
by attempting to read the first and last bytes of the environment before updating the 
internal state.

22.18.6.11  Device Not Available Exception (#NM)
The device-not-available exception (#NM, interrupt 7) will occur in the P6 family, 
Pentium, and Intel486 processors as described in Section 2.5, “Control Registers,” 
Table 2-1, and Chapter 6, “Interrupt 7—Device Not Available Exception (#NM).”

22.18.6.12  Coprocessor Segment Overrun Exception
The coprocessor segment overrun exception (interrupt 9) does not occur in the P6 
family, Pentium, and Intel486 processors. In situations where the Intel 387 math 
coprocessor would cause an interrupt 9, the P6 family, Pentium, and Intel486 proces-
sors simply abort the instruction. To avoid undetected segment overruns, it is recom-
mended that the floating-point save area be placed in the same page as the TSS. This 
placement will prevent the FPU environment from being lost if a page fault occurs 
during the execution of an FLDENV, FRSTOR, or FXRSTOR instruction while the oper-
ating system is performing a task switch.

22.18.6.13  General Protection Exception (#GP)
A general-protection exception (#GP, interrupt 13) occurs if the starting address of a 
floating-point operand falls outside a segment’s size. An exception handler should be 
included to report these programming errors.

22.18.6.14  Floating-Point Error Exception (#MF)
In real mode and protected mode (not including virtual-8086 mode), interrupt vector 
16 must point to the floating-point exception handler. In virtual 8086 mode, the 
virtual-8086 monitor can be programmed to accommodate a different location of the 
interrupt vector for floating-point exceptions.
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22.18.7 Changes to Floating-Point Instructions
This section identifies the differences in floating-point instructions for the various 
Intel FPU and math coprocessor architectures, the reason for the differences, and 
their impact on software.

22.18.7.1  FDIV, FPREM, and FSQRT Instructions
The 32-bit x87 FPUs support operations on denormalized operands and, when 
detected, an underflow exception can occur, for compatibility with the IEEE Standard 
754. The 16-bit IA-32 math coprocessors do not operate on denormalized operands 
or return underflow results. Instead, they generate an invalid-operation exception 
when they detect an underflow condition. An existing underflow exception handler 
will require change only if it gives different treatment to different opcodes. Also, it is 
possible that fewer invalid-operation exceptions will occur.

22.18.7.2  FSCALE Instruction
With the 32-bit x87 FPUs, the range of the scaling operand is not restricted. If (0 < | 
ST(1) < 1), the scaling factor is 0; therefore, ST(0) remains unchanged. If the 
rounded result is not exact or if there was a loss of accuracy (masked underflow), the 
precision exception is signaled. With the 16-bit IA-32 math coprocessors, the range 
of the scaling operand is restricted. If (0 < | ST(1) | < 1), the result is undefined and 
no exception is signaled. The impact of this difference on exiting software is that 
different results are delivered on the 32-bit and 16-bit FPUs and math coprocessors 
when (0 < | ST(1) | < 1).

22.18.7.3  FPREM1 Instruction
The 32-bit x87 FPUs compute a partial remainder according to IEEE Standard 754. 
This instruction does not exist on the 16-bit IA-32 math coprocessors. The avail-
ability of the FPREM1 instruction has is no impact on existing software.

22.18.7.4  FPREM Instruction
On the 32-bit x87 FPUs, the condition code flags C0, C3, C1 in the status word 
correctly reflect the three low-order bits of the quotient following execution of the 
FPREM instruction. On the 16-bit IA-32 math coprocessors, the quotient bits are 
incorrect when performing a reduction of (64N + M) when (N ≥ 1) and M is 1 or 2. This 
difference does not affect existing software; software that works around the bug 
should not be affected.

22.18.7.5  FUCOM, FUCOMP, and FUCOMPP Instructions
When executing the FUCOM, FUCOMP, and FUCOMPP instructions, the 32-bit x87 
FPUs perform unordered compare according to IEEE Standard 754. These instruc-
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tions do not exist on the 16-bit IA-32 math coprocessors. The availability of these 
new instructions has no impact on existing software.

22.18.7.6  FPTAN Instruction
On the 32-bit x87 FPUs, the range of the operand for the FPTAN instruction is much 
less restricted (| ST(0) | < 263) than on earlier math coprocessors. The instruction 
reduces the operand internally using an internal π/4 constant that is more accurate. 
The range of the operand is restricted to (| ST(0) | < π/4) on the 16-bit IA-32 math 
coprocessors; the operand must be reduced to this range using FPREM. This change 
has no impact on existing software.

22.18.7.7  Stack Overflow
On the 32-bit x87 FPUs, if an FPU stack overflow occurs when the invalid-operation 
exception is masked, the FPU returns the real, integer, or BCD-integer indefinite 
value to the destination operand, depending on the instruction being executed. On 
the 16-bit IA-32 math coprocessors, the original operand remains unchanged 
following a stack overflow, but it is loaded into register ST(1). This difference has no 
impact on existing software.

22.18.7.8  FSIN, FCOS, and FSINCOS Instructions
On the 32-bit x87 FPUs, these instructions perform three common trigonometric 
functions. These instructions do not exist on the 16-bit IA-32 math coprocessors. The 
availability of these instructions has no impact on existing software, but using them 
provides a performance upgrade.

22.18.7.9  FPATAN Instruction
On the 32-bit x87 FPUs, the range of operands for the FPATAN instruction is unre-
stricted. On the 16-bit IA-32 math coprocessors, the absolute value of the operand in 
register ST(0) must be smaller than the absolute value of the operand in register 
ST(1). This difference has impact on existing software.

22.18.7.10  F2XM1 Instruction
The 32-bit x87 FPUs support a wider range of operands (–1 < ST (0) < + 1) for the 
F2XM1 instruction. The supported operand range for the 16-bit IA-32 math coproces-
sors is (0 ≤ ST(0) ≤ 0.5). This difference has no impact on existing software.

22.18.7.11  FLD Instruction
On the 32-bit x87 FPUs, when using the FLD instruction to load an extended-real 
value, a denormal-operand exception is not generated because the instruction is not 
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arithmetic. The 16-bit IA-32 math coprocessors do report a denormal-operand 
exception in this situation. This difference does not affect existing software.

On the 32-bit x87 FPUs, loading a denormal value that is in single- or double-real 
format causes the value to be converted to extended-real format. Loading a 
denormal value on the 16-bit IA-32 math coprocessors causes the value to be 
converted to an unnormal. If the next instruction is FXTRACT or FXAM, the 32-bit x87 
FPUs will give a different result than the 16-bit IA-32 math coprocessors. This change 
was made for IEEE Standard 754 compatibility.

On the 32-bit x87 FPUs, loading an SNaN that is in single- or double-real format 
causes the FPU to generate an invalid-operation exception. The 16-bit IA-32 math 
coprocessors do not raise an exception when loading a signaling NaN. The invalid-
operation exception handler for 16-bit math coprocessor software needs to be 
updated to handle this condition when porting software to 32-bit FPUs. This change 
was made for IEEE Standard 754 compatibility.

22.18.7.12  FXTRACT Instruction
On the 32-bit x87 FPUs, if the operand is 0 for the FXTRACT instruction, the divide-
by-zero exception is reported and –∞ is delivered to register ST(1). If the operand is 
+∞, no exception is reported. If the operand is 0 on the 16-bit IA-32 math coproces-
sors, 0 is delivered to register ST(1) and no exception is reported. If the operand is 
+∞, the invalid-operation exception is reported. These differences have no impact on 
existing software. Software usually bypasses 0 and ∞. This change is due to the IEEE 
Standard 754 recommendation to fully support the “logb” function.

22.18.7.13  Load Constant Instructions
On 32-bit x87 FPUs, rounding control is in effect for the load constant instructions. 
Rounding control is not in effect for the 16-bit IA-32 math coprocessors. Results for 
the FLDPI, FLDLN2, FLDLG2, and FLDL2E instructions are the same as for the 16-bit 
IA-32 math coprocessors when rounding control is set to round to nearest or round 
to +∞. They are the same for the FLDL2T instruction when rounding control is set to 
round to nearest, round to –∞, or round to zero. Results are different from the 16-bit 
IA-32 math coprocessors in the least significant bit of the mantissa if rounding 
control is set to round to –∞ or round to 0 for the FLDPI, FLDLN2, FLDLG2, and 
FLDL2E instructions; they are different for the FLDL2T instruction if round to +∞ is 
specified. These changes were implemented for compatibility with IEEE Standard 
754 for Floating-Point Arithmetic recommendations.

22.18.7.14  FSETPM Instruction
With the 32-bit x87 FPUs, the FSETPM instruction is treated as NOP (no operation). 
This instruction informs the Intel 287 math coprocessor that the processor is in 
protected mode. This change has no impact on existing software. The 32-bit x87 
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FPUs handle all addressing and exception-pointer information, whether in protected 
mode or not.

22.18.7.15  FXAM Instruction
With the 32-bit x87 FPUs, if the FPU encounters an empty register when executing 
the FXAM instruction, it not generate combinations of C0 through C3 equal to 1101 or 
1111. The 16-bit IA-32 math coprocessors may generate these combinations, among 
others. This difference has no impact on existing software; it provides a performance 
upgrade to provide repeatable results.

22.18.7.16  FSAVE and FSTENV Instructions
With the 32-bit x87 FPUs, the address of a memory operand pointer stored by FSAVE 
or FSTENV is undefined if the previous floating-point instruction did not refer to 
memory

22.18.8 Transcendental Instructions
The floating-point results of the P6 family and Pentium processors for transcendental 
instructions in the core range may differ from the Intel486 processors by about 2 or 
3 ulps (see “Transcendental Instruction Accuracy” in Chapter 8, “Programming with 
the x87 FPU,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 1). Condition code flag C1 of the status word may differ as a result. The exact 
threshold for underflow and overflow will vary by a few ulps. The P6 family and 
Pentium processors’ results will have a worst case error of less than 1 ulp when 
rounding to the nearest-even and less than 1.5 ulps when rounding in other modes. 
The transcendental instructions are guaranteed to be monotonic, with respect to the 
input operands, throughout the domain supported by the instruction.

Transcendental instructions may generate different results in the round-up flag (C1) 
on the 32-bit x87 FPUs. The round-up flag is undefined for these instructions on the 
16-bit IA-32 math coprocessors. This difference has no impact on existing software.

22.18.9 Obsolete Instructions
The 8087 math coprocessor instructions FENI and FDISI and the Intel 287 math 
coprocessor instruction FSETPM are treated as integer NOP instructions in the 32-bit 
x87 FPUs. If these opcodes are detected in the instruction stream, no specific opera-
tion is performed and no internal states are affected.
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22.18.10 WAIT/FWAIT Prefix Differences
On the Intel486 processor, when a WAIT/FWAIT instruction precedes a floating-point 
instruction (one which itself automatically synchronizes with the previous floating-
point instruction), the WAIT/FWAIT instruction is treated as a no-op. Pending 
floating-point exceptions from a previous floating-point instruction are processed not 
on the WAIT/FWAIT instruction but on the floating-point instruction following the 
WAIT/FWAIT instruction. In such a case, the report of a floating-point exception may 
appear one instruction later on the Intel486 processor than on a P6 family or Pentium 
FPU, or on Intel 387 math coprocessor.

22.18.11 Operands Split Across Segments and/or Pages
On the P6 family, Pentium, and Intel486 processor FPUs, when the first half of an 
operand to be written is inside a page or segment and the second half is outside, a 
memory fault can cause the first half to be stored but not the second half. In this situ-
ation, the Intel 387 math coprocessor stores nothing.

22.18.12 FPU Instruction Synchronization
On the 32-bit x87 FPUs, all floating-point instructions are automatically synchro-
nized; that is, the processor automatically waits until the previous floating-point 
instruction has completed before completing the next floating-point instruction. No 
explicit WAIT/FWAIT instructions are required to assure this synchronization. For the 
8087 math coprocessors, explicit waits are required before each floating-point 
instruction to ensure synchronization. Although 8087 programs having explicit WAIT 
instructions execute perfectly on the 32-bit IA-32 processors without reassembly, 
these WAIT instructions are unnecessary.

22.19 SERIALIZING INSTRUCTIONS
Certain instructions have been defined to serialize instruction execution to ensure 
that modifications to flags, registers and memory are completed before the next 
instruction is executed (or in P6 family processor terminology “committed to machine 
state”). Because the P6 family processors use branch-prediction and out-of-order 
execution techniques to improve performance, instruction execution is not generally 
serialized until the results of an executed instruction are committed to machine state 
(see Chapter 2, “Intel® 64 and IA-32 Architectures,” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 1). 

As a result, at places in a program or task where it is critical to have execution 
completed for all previous instructions before executing the next instruction (for 
example, at a branch, at the end of a procedure, or in multiprocessor dependent 
code), it is useful to add a serializing instruction. See Section 8.3, “Serializing 
Instructions,” for more information on serializing instructions.
Vol. 3B 22-21



ARCHITECTURE COMPATIBILITY
22.20 FPU AND MATH COPROCESSOR INITIALIZATION
Table 9-1 shows the states of the FPUs in the P6 family, Pentium, Intel486 processors 
and of the Intel 387 math coprocessor and Intel 287 coprocessor following a power-
up, reset, or INIT, or following the execution of an FINIT/FNINIT instruction. The 
following is some additional compatibility information concerning the initialization of 
x87 FPUs and math coprocessors.

22.20.1 Intel® 387 and Intel® 287 Math Coprocessor Initialization
Following an Intel386 processor reset, the processor identifies its coprocessor type 
(Intel® 287 or Intel® 387 DX math coprocessor) by sampling its ERROR# input some 
time after the falling edge of RESET# signal and before execution of the first floating-
point instruction. The Intel 287 coprocessor keeps its ERROR# output in inactive 
state after hardware reset; the Intel 387 coprocessor keeps its ERROR# output in 
active state after hardware reset. 

Upon hardware reset or execution of the FINIT/FNINIT instruction, the Intel 387 
math coprocessor signals an error condition. The P6 family, Pentium, and Intel486 
processors, like the Intel 287 coprocessor, do not.

22.20.2 Intel486 SX Processor and Intel 487 SX Math Coprocessor 
Initialization

When initializing an Intel486 SX processor and an Intel 487 SX math coprocessor, 
the initialization routine should check the presence of the math coprocessor and 
should set the FPU related flags (EM, MP, and NE) in control register CR0 accordingly 
(see Section 2.5, “Control Registers,” for a complete description of these flags). Table 
22-2 gives the recommended settings for these flags when the math coprocessor is 
present. The FSTCW instruction will give a value of FFFFH for the Intel486 SX micro-
processor and 037FH for the Intel 487 SX math coprocessor.

The EM and MP flags in register CR0 are interpreted as shown in Table 22-3. 

Table 22-2.  Recommended Values of the EM, MP, and NE Flags for Intel486 SX 
Microprocessor/Intel 487 SX Math Coprocessor System

CR0 Flags Intel486 SX Processor Only Intel 487 SX Math Coprocessor Present

EM 1 0

MP 0 1

NE 1 0, for MS-DOS* systems
1, for user-defined exception handler
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Following is an example code sequence to initialize the system and check for the 
presence of Intel486 SX processor/Intel 487 SX math coprocessor.

fninit
fstcw mem_loc
mov ax, mem_loc
cmp ax, 037fh
jz Intel487_SX_Math_CoProcessor_present ;ax=037fh
jmp Intel486_SX_microprocessor_present ;ax=ffffh

If the Intel 487 SX math coprocessor is not present, the following code can be run to 
set the CR0 register for the Intel486 SX processor.

mov eax, cr0
and eax, fffffffdh ;make MP=0
or eax, 0024h ;make EM=1, NE=1
mov cr0, eax

This initialization will cause any floating-point instruction to generate a device not 
available exception (#NH), interrupt 7. The software emulation will then take control 
to execute these instructions. This code is not required if an Intel 487 SX math 
coprocessor is present in the system. In that case, the typical initialization routine for 
the Intel486 SX microprocessor will be adequate.

Also, when designing an Intel486 SX processor based system with an Intel 487 SX 
math coprocessor, timing loops should be independent of clock speed and clocks per 
instruction. One way to attain this is to implement these loops in hardware and not in 
software (for example, BIOS).

Table 22-3.  EM and MP Flag Interpretation

EM MP Interpretation

0 0 Floating-point instructions are passed to FPU; WAIT/FWAIT 
and other waiting-type instructions ignore TS.

0 1 Floating-point instructions are passed to FPU; WAIT/FWAIT 
and other waiting-type instructions test TS.

1 0 Floating-point instructions trap to emulator; WAIT/FWAIT and 
other waiting-type instructions ignore TS.

1 1 Floating-point instructions trap to emulator; WAIT/FWAIT and 
other waiting-type instructions test TS.
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22.21 CONTROL REGISTERS
The following sections identify the new control registers and control register flags 
and fields that were introduced to the 32-bit IA-32 in various processor families. See 
Figure 2-6 for the location of these flags and fields in the control registers.

The Pentium III processor introduced one new control flag in control register CR4:
• OSXMMEXCPT (bit 10) — The OS will set this bit if it supports unmasked SIMD 

floating-point exceptions.

The Pentium II processor introduced one new control flag in control register CR4:
• OSFXSR (bit 9) — The OS supports saving and restoring the Pentium III processor 

state during context switches.

The Pentium Pro processor introduced three new control flags in control register CR4:
• PAE (bit 5) — Physical address extension. Enables paging mechanism to 

reference extended physical addresses when set; restricts physical addresses to 
32 bits when clear (see also: Section 22.22.1.1, “Physical Memory Addressing 
Extension”).

• PGE (bit 7) — Page global enable. Inhibits flushing of frequently-used or shared 
pages on CR3 writes (see also: Section 22.22.1.2, “Global Pages”). 

• PCE (bit 8) — Performance-monitoring counter enable. Enables execution of the 
RDPMC instruction at any protection level.

The content of CR4 is 0H following a hardware reset.

Control register CR4 was introduced in the Pentium processor. This register contains 
flags that enable certain new extensions provided in the Pentium processor:
• VME — Virtual-8086 mode extensions. Enables support for a virtual interrupt flag 

in virtual-8086 mode (see Section 20.3, “Interrupt and Exception Handling in 
Virtual-8086 Mode”).

• PVI — Protected-mode virtual interrupts. Enables support for a virtual interrupt 
flag in protected mode (see Section 20.4, “Protected-Mode Virtual Interrupts”).

• TSD — Time-stamp disable. Restricts the execution of the RDTSC instruction to 
procedures running at privileged level 0.

• DE — Debugging extensions. Causes an undefined opcode (#UD) exception to be 
generated when debug registers DR4 and DR5 are references for improved 
performance (see Section 22.23.3, “Debug Registers DR4 and DR5”).

• PSE — Page size extensions. Enables 4-MByte pages with 32-bit paging when set 
(see Section 4.3, “32-Bit Paging”).

• MCE — Machine-check enable. Enables the machine-check exception, allowing 
exception handling for certain hardware error conditions (see Chapter 15, 
“Machine-Check Architecture”). 

The Intel486 processor introduced five new flags in control register CR0:
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• NE — Numeric error. Enables the normal mechanism for reporting floating-point 
numeric errors.

• WP — Write protect. Write-protects read-only pages against supervisor-mode 
accesses.

• AM — Alignment mask. Controls whether alignment checking is performed. 
Operates in conjunction with the AC (Alignment Check) flag.

• NW — Not write-through. Enables write-throughs and cache invalidation cycles 
when clear and disables invalidation cycles and write-throughs that hit in the 
cache when set. 

• CD — Cache disable. Enables the internal cache when clear and disables the 
cache when set.

The Intel486 processor introduced two new flags in control register CR3:
• PCD — Page-level cache disable. The state of this flag is driven on the PCD# pin 

during bus cycles that are not paged, such as interrupt acknowledge cycles, when 
paging is enabled.   The PCD# pin is used to control caching in an external cache 
on a cycle-by-cycle basis.

• PWT — Page-level write-through. The state of this flag is driven on the PWT# pin 
during bus cycles that are not paged, such as interrupt acknowledge cycles, when 
paging is enabled. The PWT# pin is used to control write through in an external 
cache on a cycle-by-cycle basis. 

22.22 MEMORY MANAGEMENT FACILITIES
The following sections describe the new memory management facilities available in 
the various IA-32 processors and some compatibility differences.

22.22.1 New Memory Management Control Flags
The Pentium Pro processor introduced three new memory management features: 
physical memory addressing extension, the global bit in page-table entries, and 
general support for larger page sizes. These features are only available when oper-
ating in protected mode.

22.22.1.1  Physical Memory Addressing Extension
The new PAE (physical address extension) flag in control register CR4, bit 5, may 
enable additional address lines on the processor, allowing extended physical 
addresses. This option can only be used when paging is enabled, using a new page-
table mechanism provided to support the larger physical address range (see Section 
4.1, “Paging Modes and Control Bits”).
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22.22.1.2  Global Pages
The new PGE (page global enable) flag in control register CR4, bit 7, provides a 
mechanism for preventing frequently used pages from being flushed from the trans-
lation lookaside buffer (TLB). When this flag is set, frequently used pages (such as 
pages containing kernel procedures or common data tables) can be marked global by 
setting the global flag in a page-directory or page-table entry. 

On a task switch or a write to control register CR3 (which normally causes the TLBs 
to be flushed), the entries in the TLB marked global are not flushed. Marking pages 
global in this manner prevents unnecessary reloading of the TLB due to TLB misses 
on frequently used pages. See Section 4.10, “Caching Translation Information” for a 
detailed description of this mechanism.

22.22.1.3  Larger Page Sizes
The P6 family processors support large page sizes. For 32-bit paging, this facility is 
enabled with the PSE (page size extension) flag in control register CR4, bit 4. When 
this flag is set, the processor supports either 4-KByte or 4-MByte page sizes. PAE 
paging and IA-32e paging support 2-MByte pages regardless of the value of CR4.PSE 
(see Section 4.4, “PAE Paging” and Section 4.5, “IA-32e Paging”). See Chapter 4, 
“Paging,” for more information about large page sizes.

22.22.2 CD and NW Cache Control Flags
The CD and NW flags in control register CR0 were introduced in the Intel486 
processor. In the P6 family and Pentium processors, these flags are used to imple-
ment a writeback strategy for the data cache; in the Intel486 processor, they imple-
ment a write-through strategy. See Table 11-5 for a comparison of these bits on the 
P6 family, Pentium, and Intel486 processors. For complete information on caching, 
see Chapter 11, “Memory Cache Control.”

22.22.3 Descriptor Types and Contents
Operating-system code that manages space in descriptor tables often contains an 
invalid value in the access-rights field of descriptor-table entries to identify unused 
entries. Access rights values of 80H and 00H remain invalid for the P6 family, 
Pentium, Intel486, Intel386, and Intel 286 processors. Other values that were invalid 
on the Intel 286 processor may be valid on the 32-bit processors because uses for 
these bits have been defined.
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22.22.4 Changes in Segment Descriptor Loads
On the Intel386 processor, loading a segment descriptor always causes a locked read 
and write to set the accessed bit of the descriptor. On the P6 family, Pentium, and 
Intel486 processors, the locked read and write occur only if the bit is not already set.

22.23 DEBUG FACILITIES
The P6 family and Pentium processors include extensions to the Intel486 processor 
debugging support for breakpoints. To use the new breakpoint features, it is neces-
sary to set the DE flag in control register CR4.

22.23.1 Differences in Debug Register DR6
It is not possible to write a 1 to reserved bit 12 in debug status register DR6 on the 
P6 family and Pentium processors; however, it is possible to write a 1 in this bit on the 
Intel486 processor. See Table 9-1 for the different setting of this register following a 
power-up or hardware reset.

22.23.2 Differences in Debug Register DR7
The P6 family and Pentium processors determines the type of breakpoint access by 
the R/W0 through R/W3 fields in debug control register DR7 as follows: 

00 Break on instruction execution only.

01 Break on data writes only.

10 Undefined if the DE flag in control register CR4 is cleared; break on I/O reads 
or writes but not instruction fetches if the DE flag in control register CR4 is 
set.

11 Break on data reads or writes but not instruction fetches.

On the P6 family and Pentium processors, reserved bits 11, 12, 14 and 15 are hard-
wired to 0. On the Intel486 processor, however, bit 12 can be set. See Table 9-1 for 
the different settings of this register following a power-up or hardware reset.

22.23.3 Debug Registers DR4 and DR5
Although the DR4 and DR5 registers are documented as reserved, previous genera-
tions of processors aliased references to these registers to debug registers DR6 and 
DR7, respectively. When debug extensions are not enabled (the DE flag in control 
register CR4 is cleared), the P6 family and Pentium processors remain compatible 
with existing software by allowing these aliased references. When debug extensions 
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are enabled (the DE flag is set), attempts to reference registers DR4 or DR5 will 
result in an invalid-opcode exception (#UD).

22.24 RECOGNITION OF BREAKPOINTS
For the Pentium processor, it is recommended that debuggers execute the LGDT 
instruction before returning to the program being debugged to ensure that break-
points are detected. This operation does not need to be performed on the P6 family, 
Intel486, or Intel386 processors. 

The implementation of test registers on the Intel486 processor used for testing the 
cache and TLB has been redesigned using MSRs on the P6 family and Pentium 
processors. (Note that MSRs used for this function are different on the P6 family and 
Pentium processors.) The MOV to and from test register instructions generate 
invalid-opcode exceptions (#UD) on the P6 family processors.

22.25 EXCEPTIONS AND/OR EXCEPTION CONDITIONS
This section describes the new exceptions and exception conditions added to the 32-
bit IA-32 processors and implementation differences in existing exception handling. 
See Chapter 6, “Interrupt and Exception Handling,” for a detailed description of the 
IA-32 exceptions.

The Pentium III processor introduced new state with the XMM registers. Computations 
involving data in these registers can produce exceptions. A new MXCSR 
control/status register is used to determine which exception or exceptions have 
occurred. When an exception associated with the XMM registers occurs, an interrupt 
is generated.
• SIMD floating-point exception (#XF, interrupt 19) — New exceptions associated 

with the SIMD floating-point registers and resulting computations.

No new exceptions were added with the Pentium Pro and Pentium II processors. The 
set of available exceptions is the same as for the Pentium processor. However, the 
following exception condition was added to the IA-32 with the Pentium Pro 
processor:
• Machine-check exception (#MC, interrupt 18) — New exception conditions. Many 

exception conditions have been added to the machine-check exception and a new 
architecture has been added for handling and reporting on hardware errors. See 
Chapter 15, “Machine-Check Architecture,” for a detailed description of the new 
conditions.

The following exceptions and/or exception conditions were added to the IA-32 with 
the Pentium processor:
• Machine-check exception (#MC, interrupt 18) — New exception. This exception 

reports parity and other hardware errors. It is a model-specific exception and 
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may not be implemented or implemented differently in future processors. The 
MCE flag in control register CR4 enables the machine-check exception. When this 
bit is clear (which it is at reset), the processor inhibits generation of the machine-
check exception.

• General-protection exception (#GP, interrupt 13) — New exception condition 
added. An attempt to write a 1 to a reserved bit position of a special register 
causes a general-protection exception to be generated.

• Page-fault exception (#PF, interrupt 14) — New exception condition added. When 
a 1 is detected in any of the reserved bit positions of a page-table entry, page-
directory entry, or page-directory pointer during address translation, a page-fault 
exception is generated. 

The following exception was added to the Intel486 processor:
• Alignment-check exception (#AC, interrupt 17) — New exception. Reports 

unaligned memory references when alignment checking is being performed. 

The following exceptions and/or exception conditions were added to the Intel386 
processor:
• Divide-error exception (#DE, interrupt 0)

— Change in exception handling. Divide-error exceptions on the Intel386 
processors always leave the saved CS:IP value pointing to the instruction that 
failed. On the 8086 processor, the CS:IP value points to the next instruction.

— Change in exception handling. The Intel386 processors can generate the 
largest negative number as a quotient for the IDIV instruction (80H and 
8000H). The 8086 processor generates a divide-error exception instead.

• Invalid-opcode exception (#UD, interrupt 6) — New exception condition added. 
Improper use of the LOCK instruction prefix can generate an invalid-opcode 
exception.

• Page-fault exception (#PF, interrupt 14) — New exception condition added. If 
paging is enabled in a 16-bit program, a page-fault exception can be generated 
as follows. Paging can be used in a system with 16-bit tasks if all tasks use the 
same page directory. Because there is no place in a 16-bit TSS to store the PDBR 
register, switching to a 16-bit task does not change the value of the PDBR 
register. Tasks ported from the Intel 286 processor should be given 32-bit TSSs 
so they can make full use of paging.

• General-protection exception (#GP, interrupt 13) — New exception condition 
added. The Intel386 processor sets a limit of 15 bytes on instruction length. The 
only way to violate this limit is by putting redundant prefixes before an 
instruction. A general-protection exception is generated if the limit on instruction 
length is violated. The 8086 processor has no instruction length limit.
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22.25.1 Machine-Check Architecture
The Pentium Pro processor introduced a new architecture to the IA-32 for handling 
and reporting on machine-check exceptions. This machine-check architecture 
(described in detail in Chapter 15, “Machine-Check Architecture”) greatly expands 
the ability of the processor to report on internal hardware errors.

22.25.2 Priority of Exceptions
The priority of exceptions are broken down into several major categories:

1. Traps on the previous instruction

2. External interrupts

3. Faults on fetching the next instruction

4. Faults in decoding the next instruction

5. Faults on executing an instruction

There are no changes in the priority of these major categories between the different 
processors, however, exceptions within these categories are implementation depen-
dent and may change from processor to processor.

22.25.3 Exception Conditions of Legacy SIMD Instructions Operating 
on MMX Registers

MMX instructions and a subset of SSE, SSE2, SSSE3 instructions operate on MMX 
registers. The exception conditions of these instructions are described in the 
following tables.
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Table 22-4.  Exception Conditions for Legacy SIMD/MMX Instructions with FP 
Exception and 16-Byte Alignment
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Cause of Exception

Invalid Opcode, 
#UD

X X X X
If an unmasked SIMD floating-point exception and 
CR4.OSXMMEXCPT[bit 10] = 0. 

X X X X
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H)

X X X X If any corresponding CPUID feature flag is ‘0’

#MF X X X X If there is a pending X87 FPU exception

#NM X X X X If CR0.TS[bit 3]=1

Stack, SS(0)

X For an illegal address in the SS segment

X
If a memory address referencing the SS segment is 
in a non-canonical form

General Protec-
tion, #GP(0)

X X X X Legacy SSE: Memory operand is not 16-byte aligned

X
For an illegal memory operand effective address in 
the CS, DS, ES, FS or GS segments.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effective 
address space from 0 to FFFFH

#PF(fault-code) X X X For a page fault

#XM X X X X
If an unmasked SIMD floating-point exception and 
CR4.OSXMMEXCPT[bit 10] = 1

Applicable 
Instructions

CVTPD2PI, CVTTPD2PI
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Table 22-5.  Exception Conditions for Legacy SIMD/MMX Instructions with XMM and FP 
Exception
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Cause of Exception

Invalid Opcode, #UD

X X X X
If an unmasked SIMD floating-point exception 
and CR4.OSXMMEXCPT[bit 10] = 0. 

X X X X
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H)

X X X X If any corresponding CPUID feature flag is ‘0’

#MF X X X X If there is a pending X87 FPU exception

#NM X X X X If CR0.TS[bit 3]=1

Stack, SS(0)

X For an illegal address in the SS segment

X
If a memory address referencing the SS segment 
is in a non-canonical form

General Protection, 
#GP(0)

X
For an illegal memory operand effective address 
in the CS, DS, ES, FS or GS segments.

X
If the memory address is in a non-canonical 
form.

X X
If any part of the operand lies outside the effec-
tive address space from 0 to FFFFH

#PF(fault-code) X X X For a page fault

Alignment Check 
#AC(0)

X X X
If alignment checking is enabled and an 
unaligned memory reference is made while the 
current privilege level is 3.

SIMD Floating-point 
Exception, #XM

X X X X
If an unmasked SIMD floating-point exception 
and CR4.OSXMMEXCPT[bit 10] = 1

Applicable Instruc-
tions

CVTPI2PS, CVTPS2PI, CVTTPS2PI
22-32 Vol. 3B



ARCHITECTURE COMPATIBILITY
Table 22-6.  Exception Conditions for Legacy SIMD/MMX Instructions with XMM and 
without FP Exception
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Cause of Exception

Invalid Opcode, #UD

X X X X
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H)

X X X X If any corresponding CPUID feature flag is ‘0’

#MF1

NOTES:
1. Applies to “CVTPI2PD xmm, mm” but not “CVTPI2PD xmm, m64”.

X X X X If there is a pending X87 FPU exception

#NM X X X X If CR0.TS[bit 3]=1

Stack, SS(0)

X For an illegal address in the SS segment

X
If a memory address referencing the SS seg-
ment is in a non-canonical form

General Protection, 
#GP(0)

X
For an illegal memory operand effective 
address in the CS, DS, ES, FS or GS segments.

X
If the memory address is in a non-canonical 
form.

X X
If any part of the operand lies outside the 
effective address space from 0 to FFFFH

 #PF(fault-code) X X X For a page fault

Alignment Check 
#AC(0)

X X X
If alignment checking is enabled and an 
unaligned memory reference is made while the 
current privilege level is 3.

Applicable Instruc-
tions

CVTPI2PD
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Table 22-7.  Exception Conditions for SIMD/MMX Instructions with Memory Reference
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Cause of Exception

Invalid Opcode, #UD

X X X X If CR0.EM[bit 2] = 1.

X X X X If preceded by a LOCK prefix (F0H)

X X X X If any corresponding CPUID feature flag is ‘0’

#MF X X X X If there is a pending X87 FPU exception

#NM X X X X If CR0.TS[bit 3]=1

Stack, SS(0)

X For an illegal address in the SS segment

X
If a memory address referencing the SS seg-
ment is in a non-canonical form

General Protection, 
#GP(0)

X
For an illegal memory operand effective address 
in the CS, DS, ES, FS or GS segments.

X
If the memory address is in a non-canonical 
form.

X X
If any part of the operand lies outside the effec-
tive address space from 0 to FFFFH

 #PF(fault-code) X X X For a page fault

Alignment Check 
#AC(0)

X X X
If alignment checking is enabled and an 
unaligned memory reference is made while the 
current privilege level is 3.

Applicable Instruc-
tions

PABSB, PABSD, PABSW, PACKSSWB, PACKSSDW, PACKUSWB, 
PADDB, PADDD, PADDQ, PADDW, PADDSB, PADDSW, 
PADDUSB, PADDUSW, PALIGNR, PAND, PANDN, PAVGB, 
PAVGW, PCMPEQB, PCMPEQD, PCMPEQW, PCMPGTB, PCMPGTD, 
PCMPGTW, PHADDD, PHADDW, PHADDSW, PHSUBD, PHSUBW, 
PHSUBSW, PINSRW, PMADDUBSW, PMADDWD, PMAXSW, 
PMAXUB, PMINSW, PMINUB, PMULHRSW, PMULHUW, PMULHW, 
PMULLW, PMULUDQ, PSADBW, PSHUFB, PSHUFW, PSIGNB 
PSIGND PSIGNW, PSLLW, PSLLD, PSLLQ, PSRAD, PSRAW, 
PSRLW, PSRLD, PSRLQ, PSUBB, PSUBD, PSUBQ, PSUBW, 
PSUBSB, PSUBSW, PSUBUSB, PSUBUSW, PUNPCKHBW, 
PUNPCKHWD, PUNPCKHDQ, PUNPCKLBW, PUNPCKLWD, 
PUNPCKLDQ, PXOR
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Table 22-8.  Exception Conditions for Legacy SIMD/MMX Instructions without FP 
Exception
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Cause of Exception

Invalid Opcode, #UD

X X X X
If CR0.EM[bit 2] = 1.
If ModR/M.mod != 11b1

NOTES:
1. Applies to MASKMOVQ only.

X X X X If preceded by a LOCK prefix (F0H)

X X X X If any corresponding CPUID feature flag is ‘0’

#MF X X X X If there is a pending X87 FPU exception

#NM X X X X If CR0.TS[bit 3]=1

Stack, SS(0)

X For an illegal address in the SS segment

X
If a memory address referencing the SS segment 
is in a non-canonical form

#GP(0)

X

For an illegal memory operand effective address in 
the CS, DS, ES, FS or GS segments.
If the destination operand is in a non-writable seg-
ment.2

If the DS, ES, FS, or GS register contains a NULL 
segment selector.3

2. Applies to MASKMOVQ and MOVQ (mmreg) only.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effec-
tive address space from 0 to FFFFH

 #PF(fault-code) X X X For a page fault

#AC(0) X X X
If alignment checking is enabled and an unaligned 
memory reference is made while the current privi-
lege level is 3.

Applicable Instruc-
tions

MASKMOVQ, MOVNTQ, “MOVQ (mmreg)”
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22.26 INTERRUPTS
The following differences in handling interrupts are found among the IA-32 
processors.

22.26.1 Interrupt Propagation Delay
External hardware interrupts may be recognized on different instruction boundaries 
on the P6 family, Pentium, Intel486, and Intel386 processors, due to the superscaler 
designs of the P6 family and Pentium processors. Therefore, the EIP pushed onto the 
stack when servicing an interrupt may be different for the P6 family, Pentium, 
Intel486, and Intel386 processors.   

22.26.2 NMI Interrupts
After an NMI interrupt is recognized by the P6 family, Pentium, Intel486, Intel386, 
and Intel 286 processors, the NMI interrupt is masked until the first IRET instruction 
is executed, unlike the 8086 processor.

3. Applies to MASKMOVQ only.

Table 22-9.  Exception Conditions for Legacy SIMD/MMX Instructions without 
Memory Reference
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Cause of Exception

Invalid Opcode, #UD

X X X X If CR0.EM[bit 2] = 1.

X X X X If preceded by a LOCK prefix (F0H)

X X X X If any corresponding CPUID feature flag is ‘0’

#MF X X X X If there is a pending X87 FPU exception

#NM X X If CR0.TS[bit 3]=1

Applicable Instruc-
tions

PEXTRW, PMOVMSKB
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22.26.3 IDT Limit
The LIDT instruction can be used to set a limit on the size of the IDT. A double-fault 
exception (#DF) is generated if an interrupt or exception attempts to read a vector 
beyond the limit. Shutdown then occurs on the 32-bit IA-32 processors if the double-
fault handler vector is beyond the limit. (The 8086 processor does not have a shut-
down mode nor a limit.)

22.27 ADVANCED PROGRAMMABLE INTERRUPT 
CONTROLLER (APIC)

The Advanced Programmable Interrupt Controller (APIC), referred to in this book as 
the local APIC, was introduced into the IA-32 processors with the Pentium 
processor (beginning with the 735/90 and 815/100 models) and is included in the 
Pentium 4, Intel Xeon, and P6 family processors. The features and functions of the 
local APIC are derived from the Intel 82489DX external APIC, which was used with 
the Intel486 and early Pentium processors. Additional refinements of the local APIC 
architecture were incorporated in the Pentium 4 and Intel Xeon processors.

22.27.1 Software Visible Differences Between the Local APIC and 
the 82489DX

The following features in the local APIC features differ from those found in the 
82489DX external APIC:
• When the local APIC is disabled by clearing the APIC software enable/disable flag 

in the spurious-interrupt vector MSR, the state of its internal registers are 
unaffected, except that the mask bits in the LVT are all set to block local 
interrupts to the processor. Also, the local APIC ceases accepting IPIs except for 
INIT, SMI, NMI, and start-up IPIs. In the 82489DX, when the local unit is 
disabled, all the internal registers including the IRR, ISR and TMR are cleared and 
the mask bits in the LVT are set. In this state, the 82489DX local unit will accept 
only the reset deassert message.

• In the local APIC, NMI and INIT (except for INIT deassert) are always treated as 
edge triggered interrupts, even if programmed otherwise. In the 82489DX, these 
interrupts are always level triggered. 

• In the local APIC, IPIs generated through the ICR are always treated as edge 
triggered (except INIT Deassert). In the 82489DX, the ICR can be used to 
generate either edge or level triggered IPIs. 

• In the local APIC, the logical destination register supports 8 bits; in the 82489DX, 
it supports 32 bits. 

• In the local APIC, the APIC ID register is 4 bits wide; in the 82489DX, it is 8 bits 
wide.
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• The remote read delivery mode provided in the 82489DX and local APIC for 
Pentium processors is not supported in the local APIC in the Pentium 4, Intel 
Xeon, and P6 family processors.

• For the 82489DX, in the lowest priority delivery mode, all the target local APICs 
specified by the destination field participate in the lowest priority arbitration. For 
the local APIC, only those local APICs which have free interrupt slots will 
participate in the lowest priority arbitration.

22.27.2 New Features Incorporated in the Local APIC for the P6 
Family and Pentium Processors

The local APIC in the Pentium and P6 family processors have the following new 
features not found in the 82489DX external APIC.
• Cluster addressing is supported in logical destination mode.
• Focus processor checking can be enabled/disabled.
• Interrupt input signal polarity can be programmed for the LINT0 and LINT1 pins.
• An SMI IPI is supported through the ICR and I/O redirection table.
• An error status register is incorporated into the LVT to log and report APIC errors.

In the P6 family processors, the local APIC incorporates an additional LVT register to 
handle performance monitoring counter interrupts.

22.27.3 New Features Incorporated in the Local APIC of the Pentium 
4 and Intel Xeon Processors

The local APIC in the Pentium 4 and Intel Xeon processors has the following new 
features not found in the P6 family and Pentium processors and in the 82489DX.
• The local APIC ID is extended to 8 bits.
• An thermal sensor register is incorporated into the LVT to handle thermal sensor 

interrupts. 
• The the ability to deliver lowest-priority interrupts to a focus processor is no 

longer supported.
• The flat cluster logical destination mode is not supported.

22.28 TASK SWITCHING AND TSS
This section identifies the implementation differences of task switching, additions to 
the TSS and the handling of TSSs and TSS segment selectors.
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22.28.1 P6 Family and Pentium Processor TSS
When the virtual mode extensions are enabled (by setting the VME flag in control 
register CR4), the TSS in the P6 family and Pentium processors contain an interrupt 
redirection bit map, which is used in virtual-8086 mode to redirect interrupts back to 
an 8086 program.

22.28.2 TSS Selector Writes
During task state saves, the Intel486 processor writes 2-byte segment selectors into 
a 32-bit TSS, leaving the upper 16 bits undefined. For performance reasons, the P6 
family and Pentium processors write 4-byte segment selectors into the TSS, with the 
upper 2 bytes being 0. For compatibility reasons, code should not depend on the 
value of the upper 16 bits of the selector in the TSS.

22.28.3 Order of Reads/Writes to the TSS
The order of reads and writes into the TSS is processor dependent. The P6 family and 
Pentium processors may generate different page-fault addresses in control register 
CR2 in the same TSS area than the Intel486 and Intel386 processors, if a TSS 
crosses a page boundary (which is not recommended).

22.28.4 Using A 16-Bit TSS with 32-Bit Constructs
Task switches using 16-bit TSSs should be used only for pure 16-bit code. Any new 
code written using 32-bit constructs (operands, addressing, or the upper word of the 
EFLAGS register) should use only 32-bit TSSs. This is due to the fact that the 32-bit 
processors do not save the upper 16 bits of EFLAGS to a 16-bit TSS. A task switch 
back to a 16-bit task that was executing in virtual mode will never re-enable the 
virtual mode, as this flag was not saved in the upper half of the EFLAGS value in the 
TSS. Therefore, it is strongly recommended that any code using 32-bit constructs 
use a 32-bit TSS to ensure correct behavior in a multitasking environment.

22.28.5 Differences in I/O Map Base Addresses
The Intel486 processor considers the TSS segment to be a 16-bit segment and wraps 
around the 64K boundary. Any I/O accesses check for permission to access this I/O 
address at the I/O base address plus the I/O offset. If the I/O map base address 
exceeds the specified limit of 0DFFFH, an I/O access will wrap around and obtain the 
permission for the I/O address at an incorrect location within the TSS. A TSS limit 
violation does not occur in this situation on the Intel486 processor. However, the P6 
family and Pentium processors consider the TSS to be a 32-bit segment and a limit 
violation occurs when the I/O base address plus the I/O offset is greater than the TSS 
limit. By following the recommended specification for the I/O base address to be less 
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than 0DFFFH, the Intel486 processor will not wrap around and access incorrect loca-
tions within the TSS for I/O port validation and the P6 family and Pentium processors 
will not experience general-protection exceptions (#GP). Figure 22-1 demonstrates 
the different areas accessed by the Intel486 and the P6 family and Pentium 
processors. 

22.29 CACHE MANAGEMENT
The P6 family processors include two levels of internal caches: L1 (level 1) and L2 
(level 2). The L1 cache is divided into an instruction cache and a data cache; the L2 
cache is a general-purpose cache. See Section 11.1, “Internal Caches, TLBs, and 
Buffers,” for a description of these caches. (Note that although the Pentium II 
processor L2 cache is physically located on a separate chip in the cassette, it is 
considered an internal cache.)

The Pentium processor includes separate level 1 instruction and data caches. The 
data cache supports a writeback (or alternatively write-through, on a line by line 
basis) policy for memory updates.

The Intel486 processor includes a single level 1 cache for both instructions and data. 

The meaning of the CD and NW flags in control register CR0 have been redefined for 
the P6 family and Pentium processors. For these processors, the recommended value 
(00B) enables writeback for the data cache of the Pentium processor and for the L1 

Figure 22-1.  I/O Map Base Address Differences
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data cache and L2 cache of the P6 family processors. In the Intel486 processor, 
setting these flags to (00B) enables write-through for the cache.

External system hardware can force the Pentium processor to disable caching or to 
use the write-through cache policy should that be required. In the P6 family proces-
sors, the MTRRs can be used to override the CD and NW flags (see Table 11-6).

The P6 family and Pentium processors support page-level cache management in the 
same manner as the Intel486 processor by using the PCD and PWT flags in control 
register CR3, the page-directory entries, and the page-table entries. The Intel486 
processor, however, is not affected by the state of the PWT flag since the internal 
cache of the Intel486 processor is a write-through cache.

22.29.1 Self-Modifying Code with Cache Enabled
On the Intel486 processor, a write to an instruction in the cache will modify it in both 
the cache and memory. If the instruction was prefetched before the write, however, 
the old version of the instruction could be the one executed. To prevent this problem, 
it is necessary to flush the instruction prefetch unit of the Intel486 processor by 
coding a jump instruction immediately after any write that modifies an instruction. 
The P6 family and Pentium processors, however, check whether a write may modify 
an instruction that has been prefetched for execution. This check is based on the 
linear address of the instruction. If the linear address of an instruction is found to be 
present in the prefetch queue, the P6 family and Pentium processors flush the 
prefetch queue, eliminating the need to code a jump instruction after any writes that 
modify an instruction. 

Because the linear address of the write is checked against the linear address of the 
instructions that have been prefetched, special care must be taken for self-modifying 
code to work correctly when the physical addresses of the instruction and the written 
data are the same, but the linear addresses differ. In such cases, it is necessary to 
execute a serializing operation to flush the prefetch queue after the write and before 
executing the modified instruction. See Section 8.3, “Serializing Instructions,” for 
more information on serializing instructions.

NOTE
The check on linear addresses described above is not in practice a 
concern for compatibility. Applications that include self-modifying 
code use the same linear address for modifying and fetching the 
instruction. System software, such as a debugger, that might 
possibly modify an instruction using a different linear address than 
that used to fetch the instruction must execute a serializing 
operation, such as IRET, before the modified instruction is executed.
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22.29.2 Disabling the L3 Cache
A unified third-level (L3) cache in processors based on Intel NetBurst microarchitec-
ture (see Section 11.1, “Internal Caches, TLBs, and Buffers”) provides the third-level 
cache disable flag, bit 6 of the IA32_MISC_ENABLE MSR. The third-level cache 
disable flag allows the L3 cache to be disabled and enabled, independently of the L1 
and L2 caches (see Section 11.5.4, “Disabling and Enabling the L3 Cache”). The 
third-level cache disable flag applies only to processors based on Intel NetBurst 
microarchitecture. Processors with L3 and based on other microarchitectures do not 
support the third-level cache disable flag. 

22.30 PAGING
This section identifies enhancements made to the paging mechanism and implemen-
tation differences in the paging mechanism for various IA-32 processors.

22.30.1 Large Pages
The Pentium processor extended the memory management/paging facilities of the 
IA-32 to allow large (4 MBytes) pages sizes (see Section 4.3, “32-Bit Paging”). The 
first P6 family processor (the Pentium Pro processor) added a 2 MByte page size to 
the IA-32 in conjunction with the physical address extension (PAE) feature (see 
Section 4.4, “PAE Paging”). 

The availability of large pages with 32-bit paging on any IA-32 processor can be 
determined via feature bit 3 (PSE) of register EDX after the CPUID instruction has 
been execution with an argument of 1. (Large pages are always available with PAE 
paging and IA-32e paging.) Intel processors that do not support the CPUID instruc-
tion support only 32-bit paging and do not support page size enhancements. (See 
“CPUID—CPU Identification” in Chapter 3, “Instruction Set Reference, A-L,” in the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A, and AP-
485, Intel Processor Identification and the CPUID Instruction, for more information 
on the CPUID instruction.)

22.30.2 PCD and PWT Flags
The PCD and PWT flags were introduced to the IA-32 in the Intel486 processor to 
control the caching of pages:
• PCD (page-level cache disable) flag—Controls caching on a page-by-page basis.
• PWT (page-level write-through) flag—Controls the write-through/writeback 

caching policy on a page-by-page basis. Since the internal cache of the Intel486 
processor is a write-through cache, it is not affected by the state of the PWT flag.   
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22.30.3 Enabling and Disabling Paging
Paging is enabled and disabled by loading a value into control register CR0 that modi-
fies the PG flag. For backward and forward compatibility with all IA-32 processors, 
Intel recommends that the following operations be performed when enabling or 
disabling paging:

1. Execute a MOV CR0, REG instruction to either set (enable paging) or clear 
(disable paging) the PG flag. 

2. Execute a near JMP instruction.

The sequence bounded by the MOV and JMP instructions should be identity mapped 
(that is, the instructions should reside on a page whose linear and physical addresses 
are identical).

For the P6 family processors, the MOV CR0, REG instruction is serializing, so the 
jump operation is not required. However, for backwards compatibility, the JMP 
instruction should still be included.

22.31 STACK OPERATIONS
This section identifies the differences in the stack mechanism for the various IA-32 
processors.

22.31.1 Selector Pushes and Pops
When pushing a segment selector onto the stack, the Pentium 4, Intel Xeon, P6 
family, and Intel486 processors decrement the ESP register by the operand size and 
then write 2 bytes. If the operand size is 32-bits, the upper two bytes of the write are 
not modified. The Pentium processor decrements the ESP register by the operand 
size and determines the size of the write by the operand size. If the operand size is 
32-bits, the upper two bytes are written as 0s. 

When popping a segment selector from the stack, the Pentium 4, Intel Xeon, P6 
family, and Intel486 processors read 2 bytes and increment the ESP register by the 
operand size of the instruction. The Pentium processor determines the size of the 
read from the operand size and increments the ESP register by the operand size.

It is possible to align a 32-bit selector push or pop such that the operation generates 
an exception on a Pentium processor and not on an Pentium 4, Intel Xeon, P6 family, 
or Intel486 processor. This could occur if the third and/or fourth byte of the operation 
lies beyond the limit of the segment or if the third and/or fourth byte of the operation 
is locate on a non-present or inaccessible page.

For a POP-to-memory instruction that meets the following conditions:
• The stack segment size is 16-bit.
• Any 32-bit addressing form with the SIB byte specifying ESP as the base register.
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• The initial stack pointer is FFFCH (32-bit operand) or FFFEH (16-bit operand) and 
will wrap around to 0H as a result of the POP operation.

The result of the memory write is implementation-specific. For example, in P6 family 
processors, the result of the memory write is SS:0H plus any scaled index and 
displacement. In Pentium processors, the result of the memory write may be either a 
stack fault (real mode or protected mode with stack segment size of 64 KByte), or 
write to SS:10000H plus any scaled index and displacement (protected mode and 
stack segment size exceeds 64 KByte).

22.31.2 Error Code Pushes
The Intel486 processor implements the error code pushed on the stack as a 16-bit 
value. When pushed onto a 32-bit stack, the Intel486 processor only pushes 2 bytes 
and updates ESP by 4. The P6 family and Pentium processors’ error code is a full 32 
bits with the upper 16 bits set to zero. The P6 family and Pentium processors, there-
fore, push 4 bytes and update ESP by 4. Any code that relies on the state of the upper 
16 bits may produce inconsistent results.

22.31.3 Fault Handling Effects on the Stack 
During the handling of certain instructions, such as CALL and PUSHA, faults may 
occur in different sequences for the different processors. For example, during far 
calls, the Intel486 processor pushes the old CS and EIP before a possible branch fault 
is resolved. A branch fault is a fault from a branch instruction occurring from a 
segment limit or access rights violation. If a branch fault is taken, the Intel486 and 
P6 family processors will have corrupted memory below the stack pointer. However, 
the ESP register is backed up to make the instruction restartable. The P6 family 
processors issue the branch before the pushes. Therefore, if a branch fault does 
occur, these processors do not corrupt memory below the stack pointer. This imple-
mentation difference, however, does not constitute a compatibility problem, as only 
values at or above the stack pointer are considered to be valid. Other operations that 
encounter faults may also corrupt memory below the stack pointer and this behavior 
may vary on different implementations.

22.31.4 Interlevel RET/IRET From a 16-Bit Interrupt or Call Gate
If a call or interrupt is made from a 32-bit stack environment through a 16-bit gate, 
only 16 bits of the old ESP can be pushed onto the stack. On the subsequent 
RET/IRET, the 16-bit ESP is popped but the full 32-bit ESP is updated since control is 
being resumed in a 32-bit stack environment. The Intel486 processor writes the SS 
selector into the upper 16 bits of ESP. The P6 family and Pentium processors write 
zeros into the upper 16 bits.     
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22.32 MIXING 16- AND 32-BIT SEGMENTS
The features of the 16-bit Intel 286 processor are an object-code compatible subset 
of those of the 32-bit IA-32 processors. The D (default operation size) flag in 
segment descriptors indicates whether the processor treats a code or data segment 
as a 16-bit or 32-bit segment; the B (default stack size) flag in segment descriptors 
indicates whether the processor treats a stack segment as a 16-bit or 32-bit 
segment.

The segment descriptors used by the Intel 286 processor are supported by the 32-bit 
IA-32 processors if the Intel-reserved word (highest word) of the descriptor is clear. 
On the 32-bit IA-32 processors, this word includes the upper bits of the base address 
and the segment limit.

The segment descriptors for data segments, code segments, local descriptor tables 
(there are no descriptors for global descriptor tables), and task gates are the same 
for the 16- and 32-bit processors. Other 16-bit descriptors (TSS segment, call gate, 
interrupt gate, and trap gate) are supported by the 32-bit processors. 

The 32-bit processors also have descriptors for TSS segments, call gates, interrupt 
gates, and trap gates that support the 32-bit architecture. Both kinds of descriptors 
can be used in the same system.

For those segment descriptors common to both 16- and 32-bit processors, clear bits 
in the reserved word cause the 32-bit processors to interpret these descriptors 
exactly as an Intel 286 processor does, that is:
• Base Address — The upper 8 bits of the 32-bit base address are clear, which limits 

base addresses to 24 bits.
• Limit — The upper 4 bits of the limit field are clear, restricting the value of the 

limit field to 64 KBytes.
• Granularity bit — The G (granularity) flag is clear, indicating the value of the 

16-bit limit is interpreted in units of 1 byte.
• Big bit — In a data-segment descriptor, the B flag is clear in the segment 

descriptor used by the 32-bit processors, indicating the segment is no larger than 
64 KBytes.

• Default bit — In a code-segment descriptor, the D flag is clear, indicating 16-bit 
addressing and operands are the default. In a stack-segment descriptor, the D 
flag is clear, indicating use of the SP register (instead of the ESP register) and a 
64-KByte maximum segment limit.

For information on mixing 16- and 32-bit code in applications, see Chapter 21, 
“Mixing 16-Bit and 32-Bit Code.”

22.33 SEGMENT AND ADDRESS WRAPAROUND
This section discusses differences in segment and address wraparound between the 
P6 family, Pentium, Intel486, Intel386, Intel 286, and 8086 processors.
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22.33.1 Segment Wraparound
On the 8086 processor, an attempt to access a memory operand that crosses offset 
65,535 or 0FFFFH or offset 0 (for example, moving a word to offset 65,535 or 
pushing a word when the stack pointer is set to 1) causes the offset to wrap around 
modulo 65,536 or 010000H. With the Intel 286 processor, any base and offset combi-
nation that addresses beyond 16 MBytes wraps around to the 1 MByte of the address 
space. The P6 family, Pentium, Intel486, and Intel386 processors in real-address 
mode generate an exception in these cases: 
• A general-protection exception (#GP) if the segment is a data segment (that is, 

if the CS, DS, ES, FS, or GS register is being used to address the segment).
• A stack-fault exception (#SS) if the segment is a stack segment (that is, if the SS 

register is being used). 

An exception to this behavior occurs when a stack access is data aligned, and the 
stack pointer is pointing to the last aligned piece of data that size at the top of the 
stack (ESP is FFFFFFFCH). When this data is popped, no segment limit violation 
occurs and the stack pointer will wrap around to 0. 

The address space of the P6 family, Pentium, and Intel486 processors may wrap-
around at 1 MByte in real-address mode. An external A20M# pin forces wraparound 
if enabled. On Intel 8086 processors, it is possible to specify addresses greater than 
1 MByte. For example, with a selector value FFFFH and an offset of FFFFH, the effec-
tive address would be 10FFEFH (1 MByte plus 65519 bytes). The 8086 processor, 
which can form addresses up to 20 bits long, truncates the uppermost bit, which 
“wraps” this address to FFEFH. However, the P6 family, Pentium, and Intel486 
processors do not truncate this bit if A20M# is not enabled. 

If a stack operation wraps around the address limit, shutdown occurs. (The 8086 
processor does not have a shutdown mode or a limit.) 

The behavior when executing near the limit of a 4-GByte selector (limit=0xFFFFFFFF) 
is different between the Pentium Pro and the Pentium 4 family of processors. On the 
Pentium Pro, instructions which cross the limit -- for example, a two byte instruction 
such as INC EAX that is encoded as 0xFF 0xC0 starting exactly at the limit faults for 
a segment violation (a one byte instruction at 0xFFFFFFFF does not cause an excep-
tion). Using the Pentium 4 microprocessor family, neither of these situations causes 
a fault.

Segment wraparound and the functionality of A20M# is used primarily by older oper-
ating systems and not used by modern operating systems. On newer Intel 64 proces-
sors, A20M# may be absent. 

22.34 STORE BUFFERS AND MEMORY ORDERING
The Pentium 4, Intel Xeon, and P6 family processors provide a store buffer for 
temporary storage of writes (stores) to memory (see Section 11.10, “Store Buffer”). 
Writes stored in the store buffer(s) are always written to memory in program order, 
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with the exception of “fast string” store operations (see Section 8.2.4, “Fast-String 
Operation and Out-of-Order Stores”).

The Pentium processor has two store buffers, one corresponding to each of the pipe-
lines. Writes in these buffers are always written to memory in the order they were 
generated by the processor core.

It should be noted that only memory writes are buffered and I/O writes are not. The 
Pentium 4, Intel Xeon, P6 family, Pentium, and Intel486 processors do not synchro-
nize the completion of memory writes on the bus and instruction execution after a 
write. An I/O, locked, or serializing instruction needs to be executed to synchronize 
writes with the next instruction (see Section 8.3, “Serializing Instructions”).

The Pentium 4, Intel Xeon, and P6 family processors use processor ordering to main-
tain consistency in the order that data is read (loaded) and written (stored) in a 
program and the order the processor actually carries out the reads and writes. With 
this type of ordering, reads can be carried out speculatively and in any order, reads 
can pass buffered writes, and writes to memory are always carried out in program 
order. (See Section 8.2, “Memory Ordering,” for more information about processor 
ordering.) The Pentium III processor introduced a new instruction to serialize writes 
and make them globally visible. Memory ordering issues can arise between a 
producer and a consumer of data. The SFENCE instruction provides a performance-
efficient way of ensuring ordering between routines that produce weakly-ordered 
results and routines that consume this data.

No re-ordering of reads occurs on the Pentium processor, except under the condition 
noted in Section 8.2.1, “Memory Ordering in the Intel® Pentium® and Intel486™ 
Processors,” and in the following paragraph describing the Intel486 processor. 

Specifically, the store buffers are flushed before the IN instruction is executed. No 
reads (as a result of cache miss) are reordered around previously generated writes 
sitting in the store buffers. The implication of this is that the store buffers will be 
flushed or emptied before a subsequent bus cycle is run on the external bus.

On both the Intel486 and Pentium processors, under certain conditions, a memory 
read will go onto the external bus before the pending memory writes in the buffer 
even though the writes occurred earlier in the program execution. A memory read 
will only be reordered in front of all writes pending in the buffers if all writes pending 
in the buffers are cache hits and the read is a cache miss. Under these conditions, the 
Intel486 and Pentium processors will not read from an external memory location that 
needs to be updated by one of the pending writes. 

During a locked bus cycle, the Intel486 processor will always access external 
memory, it will never look for the location in the on-chip cache. All data pending in 
the Intel486 processor's store buffers will be written to memory before a locked cycle 
is allowed to proceed to the external bus. Thus, the locked bus cycle can be used for 
eliminating the possibility of reordering read cycles on the Intel486 processor. The 
Pentium processor does check its cache on a read-modify-write access and, if the 
cache line has been modified, writes the contents back to memory before locking the 
bus. The P6 family processors write to their cache on a read-modify-write operation 
(if the access does not split across a cache line) and does not write back to system 
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memory. If the access does split across a cache line, it locks the bus and accesses 
system memory.

I/O reads are never reordered in front of buffered memory writes on an IA-32 
processor. This ensures an update of all memory locations before reading the status 
from an I/O device.

22.35 BUS LOCKING
The Intel 286 processor performs the bus locking differently than the Intel P6 family, 
Pentium, Intel486, and Intel386 processors. Programs that use forms of memory 
locking specific to the Intel 286 processor may not run properly when run on later 
processors.

A locked instruction is guaranteed to lock only the area of memory defined by the 
destination operand, but may lock a larger memory area. For example, typical 8086 
and Intel 286 configurations lock the entire physical memory space. Programmers 
should not depend on this.

On the Intel 286 processor, the LOCK prefix is sensitive to IOPL. If the CPL is greater 
than the IOPL, a general-protection exception (#GP) is generated. On the Intel386 
DX, Intel486, and Pentium, and P6 family processors, no check against IOPL is 
performed.

The Pentium processor automatically asserts the LOCK# signal when acknowledging 
external interrupts. After signaling an interrupt request, an external interrupt 
controller may use the data bus to send the interrupt vector to the processor. After 
receiving the interrupt request signal, the processor asserts LOCK# to insure that no 
other data appears on the data bus until the interrupt vector is received. This bus 
locking does not occur on the P6 family processors.

22.36 BUS HOLD
Unlike the 8086 and Intel 286 processors, but like the Intel386 and Intel486 proces-
sors, the P6 family and Pentium processors respond to requests for control of the bus 
from other potential bus masters, such as DMA controllers, between transfers of 
parts of an unaligned operand, such as two words which form a doubleword. Unlike 
the Intel386 processor, the P6 family, Pentium and Intel486 processors respond to 
bus hold during reset initialization.

22.37 MODEL-SPECIFIC EXTENSIONS TO THE IA-32
Certain extensions to the IA-32 are specific to a processor or family of IA-32 proces-
sors and may not be implemented or implemented in the same way in future proces-
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sors. The following sections describe these model-specific extensions. The CPUID 
instruction indicates the availability of some of the model-specific features.

22.37.1 Model-Specific Registers
The Pentium processor introduced a set of model-specific registers (MSRs) for use in 
controlling hardware functions and performance monitoring. To access these MSRs, 
two new instructions were added to the IA-32 architecture: read MSR (RDMSR) and 
write MSR (WRMSR). The MSRs in the Pentium processor are not guaranteed to be 
duplicated or provided in the next generation IA-32 processors.

The P6 family processors greatly increased the number of MSRs available to soft-
ware. See Chapter 34, “Model-Specific Registers (MSRs),” for a complete list of the 
available MSRs. The new registers control the debug extensions, the performance 
counters, the machine-check exception capability, the machine-check architecture, 
and the MTRRs. These registers are accessible using the RDMSR and WRMSR instruc-
tions. Specific information on some of these new MSRs is provided in the following 
sections. As with the Pentium processor MSR, the P6 family processor MSRs are not 
guaranteed to be duplicated or provided in the next generation IA-32 processors.

22.37.2 RDMSR and WRMSR Instructions
The RDMSR (read model-specific register) and WRMSR (write model-specific 
register) instructions recognize a much larger number of model-specific registers in 
the P6 family processors. (See “RDMSR—Read from Model Specific Register” and 
“WRMSR—Write to Model Specific Register” in the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volumes 2A, 2B & 2C for more information.)

22.37.3 Memory Type Range Registers
Memory type range registers (MTRRs) are a new feature introduced into the IA-32 in 
the Pentium Pro processor. MTRRs allow the processor to optimize memory opera-
tions for different types of memory, such as RAM, ROM, frame buffer memory, and 
memory-mapped I/O.

MTRRs are MSRs that contain an internal map of how physical address ranges are 
mapped to various types of memory. The processor uses this internal memory map 
to determine the cacheability of various physical memory locations and the optimal 
method of accessing memory locations. For example, if a memory location is speci-
fied in an MTRR as write-through memory, the processor handles accesses to this 
location as follows. It reads data from that location in lines and caches the read data 
or maps all writes to that location to the bus and updates the cache to maintain cache 
coherency. In mapping the physical address space with MTRRs, the processor recog-
nizes five types of memory: uncacheable (UC), uncacheable, speculatable, write-
combining (WC), write-through (WT), write-protected (WP), and writeback (WB).
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Earlier IA-32 processors (such as the Intel486 and Pentium processors) used the 
KEN# (cache enable) pin and external logic to maintain an external memory map and 
signal cacheable accesses to the processor. The MTRR mechanism simplifies hard-
ware designs by eliminating the KEN# pin and the external logic required to drive it.

See Chapter 9, “Processor Management and Initialization,” and Chapter 34, “Model-
Specific Registers (MSRs),” for more information on the MTRRs.

22.37.4 Machine-Check Exception and Architecture
The Pentium processor introduced a new exception called the machine-check excep-
tion (#MC, interrupt 18). This exception is used to detect hardware-related errors, 
such as a parity error on a read cycle. 

The P6 family processors extend the types of errors that can be detected and that 
generate a machine-check exception. It also provides a new machine-check architec-
ture for recording information about a machine-check error and provides extended 
recovery capability.

The machine-check architecture provides several banks of reporting registers for 
recording machine-check errors. Each bank of registers is associated with a specific 
hardware unit in the processor. The primary focus of the machine checks is on bus 
and interconnect operations; however, checks are also made of translation lookaside 
buffer (TLB) and cache operations.

The machine-check architecture can correct some errors automatically and allow for 
reliable restart of instruction execution. It also collects sufficient information for soft-
ware to use in correcting other machine errors not corrected by hardware.

See Chapter 15, “Machine-Check Architecture,” for more information on the 
machine-check exception and the machine-check architecture.

22.37.5 Performance-Monitoring Counters
The P6 family and Pentium processors provide two performance-monitoring counters 
for use in monitoring internal hardware operations. The number of performance 
monitoring counters and associated programming interfaces may be implementation 
specific for Pentium 4 processors, Pentium M processors. Later processors may have 
implemented these as part of an architectural performance monitoring feature. The 
architectural and non-architectural performance monitoring interfaces for different 
processor families are described in Chapter 18, “Performance Monitoring,”. Chapter 
19, “Performance-Monitoring Events.” lists all the events that can be counted for 
architectural performance monitoring events and non-architectural events. The 
counters are set up, started, and stopped using two MSRs and the RDMSR and 
WRMSR instructions. For the P6 family processors, the current count for a particular 
counter can be read using the new RDPMC instruction.
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The performance-monitoring counters are useful for debugging programs, optimizing 
code, diagnosing system failures, or refining hardware designs. See Chapter 18, 
“Performance Monitoring,” for more information on these counters.

22.38 TWO WAYS TO RUN INTEL 286 PROCESSOR TASKS
When porting 16-bit programs to run on 32-bit IA-32 processors, there are two 
approaches to consider:
• Porting an entire 16-bit software system to a 32-bit processor, complete with the 

old operating system, loader, and system builder. Here, all tasks will have 16-bit 
TSSs. The 32-bit processor is being used as if it were a faster version of the 16-bit 
processor.

• Porting selected 16-bit applications to run in a 32-bit processor environment with 
a 32-bit operating system, loader, and system builder. Here, the TSSs used to 
represent 286 tasks should be changed to 32-bit TSSs. It is possible to mix 16 
and 32-bit TSSs, but the benefits are small and the problems are great. All tasks 
in a 32-bit software system should have 32-bit TSSs. It is not necessary to 
change the 16-bit object modules themselves; TSSs are usually constructed by 
the operating system, by the loader, or by the system builder. See Chapter 21, 
“Mixing 16-Bit and 32-Bit Code,” for more detailed information about mixing 
16-bit and 32-bit code.

Because the 32-bit processors use the contents of the reserved word of 16-bit 
segment descriptors, 16-bit programs that place values in this word may not run 
correctly on the 32-bit processors.
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CHAPTER 23
INTRODUCTION TO VIRTUAL-MACHINE EXTENSIONS

23.1 OVERVIEW
This chapter describes the basics of virtual machine architecture and an overview of 
the virtual-machine extensions (VMX) that support virtualization of processor hard-
ware for multiple software environments.

Information about VMX instructions is provided in Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 2B. Other aspects of VMX and system 
programming considerations are described in chapters of Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3B.

23.2 VIRTUAL MACHINE ARCHITECTURE
Virtual-machine extensions define processor-level support for virtual machines on 
IA-32 processors. Two principal classes of software are supported:
• Virtual-machine monitors (VMM) — A VMM acts as a host and has full control 

of the processor(s) and other platform hardware. A VMM presents guest software 
(see next paragraph) with an abstraction of a virtual processor and allows it to 
execute directly on a logical processor. A VMM is able to retain selective control of 
processor resources, physical memory, interrupt management, and I/O.

• Guest software — Each virtual machine (VM) is a guest software environment 
that supports a stack consisting of operating system (OS) and application 
software. Each operates independently of other virtual machines and uses on the 
same interface to processor(s), memory, storage, graphics, and I/O provided by 
a physical platform. The software stack acts as if it were running on a platform 
with no VMM. Software executing in a virtual machine must operate with reduced 
privilege so that the VMM can retain control of platform resources.

23.3 INTRODUCTION TO VMX OPERATION
Processor support for virtualization is provided by a form of processor operation 
called VMX operation. There are two kinds of VMX operation: VMX root operation and 
VMX non-root operation. In general, a VMM will run in VMX root operation and guest 
software will run in VMX non-root operation. Transitions between VMX root operation 
and VMX non-root operation are called VMX transitions. There are two kinds of VMX 
transitions. Transitions into VMX non-root operation are called VM entries. Transi-
tions from VMX non-root operation to VMX root operation are called VM exits.
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Processor behavior in VMX root operation is very much as it is outside VMX operation. 
The principal differences are that a set of new instructions (the VMX instructions) is 
available and that the values that can be loaded into certain control registers are 
limited (see Section 23.8). 

Processor behavior in VMX non-root operation is restricted and modified to facilitate 
virtualization. Instead of their ordinary operation, certain instructions (including the 
new VMCALL instruction) and events cause VM exits to the VMM. Because these 
VM exits replace ordinary behavior, the functionality of software in VMX non-root 
operation is limited. It is this limitation that allows the VMM to retain control of 
processor resources.

There is no software-visible bit whose setting indicates whether a logical processor is 
in VMX non-root operation. This fact may allow a VMM to prevent guest software from 
determining that it is running in a virtual machine. 

Because VMX operation places restrictions even on software running with current 
privilege level (CPL) 0, guest software can run at the privilege level for which it was 
originally designed. This capability may simplify the development of a VMM.

23.4 LIFE CYCLE OF VMM SOFTWARE
Figure 23-1 illustrates the life cycle of a VMM and its guest software as well as the 
interactions between them. The following items summarize that life cycle:
• Software enters VMX operation by executing a VMXON instruction.
• Using VM entries, a VMM can then enter guests into virtual machines (one at a 

time). The VMM effects a VM entry using instructions VMLAUNCH and 
VMRESUME; it regains control using VM exits. 

• VM exits transfer control to an entry point specified by the VMM. The VMM can 
take action appropriate to the cause of the VM exit and can then return to the 
virtual machine using a VM entry.

• Eventually, the VMM may decide to shut itself down and leave VMX operation. It 
does so by executing the VMXOFF instruction.
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23.5 VIRTUAL-MACHINE CONTROL STRUCTURE
VMX non-root operation and VMX transitions are controlled by a data structure called 
a virtual-machine control structure (VMCS).

Access to the VMCS is managed through a component of processor state called the 
VMCS pointer (one per logical processor). The value of the VMCS pointer is the 64-bit 
address of the VMCS. The VMCS pointer is read and written using the instructions 
VMPTRST and VMPTRLD. The VMM configures a VMCS using the VMREAD, VMWRITE, 
and VMCLEAR instructions.

A VMM could use a different VMCS for each virtual machine that it supports. For a 
virtual machine with multiple logical processors (virtual processors), the VMM could 
use a different VMCS for each virtual processor.

23.6 DISCOVERING SUPPORT FOR VMX
Before system software enters into VMX operation, it must discover the presence of 
VMX support in the processor. System software can determine whether a processor 
supports VMX operation using CPUID. If CPUID.1:ECX.VMX[bit 5] = 1, then VMX 
operation is supported. See Chapter 3, “Instruction Set Reference, A-L” of Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 2A.

The VMX architecture is designed to be extensible so that future processors in VMX 
operation can support additional features not present in first-generation implemen-
tations of the VMX architecture. The availability of extensible VMX features is 
reported to software using a set of VMX capability MSRs (see Appendix A, “VMX 
Capability Reporting Facility”).

Figure 23-1.  Interaction of a Virtual-Machine Monitor and Guests
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23.7 ENABLING AND ENTERING VMX OPERATION
Before system software can enter VMX operation, it enables VMX by setting 
CR4.VMXE[bit 13] = 1. VMX operation is then entered by executing the VMXON 
instruction. VMXON causes an invalid-opcode exception (#UD) if executed with 
CR4.VMXE = 0. Once in VMX operation, it is not possible to clear CR4.VMXE (see 
Section 23.8). System software leaves VMX operation by executing the VMXOFF 
instruction. CR4.VMXE can be cleared outside of VMX operation after executing of 
VMXOFF.

VMXON is also controlled by the IA32_FEATURE_CONTROL MSR (MSR address 3AH). 
This MSR is cleared to zero when a logical processor is reset. The relevant bits of the 
MSR are:
• Bit 0 is the lock bit. If this bit is clear, VMXON causes a general-protection 

exception. If the lock bit is set, WRMSR to this MSR causes a general-protection 
exception; the MSR cannot be modified until a power-up reset condition. System 
BIOS can use this bit to provide a setup option for BIOS to disable support for 
VMX. To enable VMX support in a platform, BIOS must set bit 1, bit 2, or both 
(see below), as well as the lock bit.

• Bit 1 enables VMXON in SMX operation. If this bit is clear, execution of 
VMXON in SMX operation causes a general-protection exception. Attempts to set 
this bit on logical processors that do not support both VMX operation (see Section 
23.6) and SMX operation (see Chapter 6, “Safer Mode Extensions Reference,” in 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B) 
cause general-protection exceptions.

• Bit 2 enables VMXON outside SMX operation. If this bit is clear, execution of 
VMXON outside SMX operation causes a general-protection exception. Attempts 
to set this bit on logical processors that do not support VMX operation (see 
Section 23.6) cause general-protection exceptions.

NOTE
A logical processor is in SMX operation if GETSEC[SEXIT] has not 
been executed since the last execution of GETSEC[SENTER]. A logical 
processor is outside SMX operation if GETSEC[SENTER] has not been 
executed or if GETSEC[SEXIT] was executed after the last execution 
of GETSEC[SENTER]. See Chapter 6, “Safer Mode Extensions 
Reference,” in Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 2B.

Before executing VMXON, software should allocate a naturally aligned 4-KByte region 
of memory that a logical processor may use to support VMX operation.1 This region 
is called the VMXON region. The address of the VMXON region (the VMXON pointer) 

1. Future processors may require that a different amount of memory be reserved. If so, this fact is 
reported to software using the VMX capability-reporting mechanism.
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is provided in an operand to VMXON. Section 24.10.5, “VMXON Region,” details how 
software should initialize and access the VMXON region.

23.8 RESTRICTIONS ON VMX OPERATION
VMX operation places restrictions on processor operation. These are detailed below:
• In VMX operation, processors may fix certain bits in CR0 and CR4 to specific 

values and not support other values. VMXON fails if any of these bits contains an 
unsupported value (see “VMXON—Enter VMX Operation” in Chapter 29 of the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C). 
Any attempt to set one of these bits to an unsupported value while in VMX 
operation (including VMX root operation) using any of the CLTS, LMSW, or MOV 
CR instructions causes a general-protection exception. VM entry or VM exit 
cannot set any of these bits to an unsupported value.1

NOTES
The first processors to support VMX operation require that the 
following bits be 1 in VMX operation: CR0.PE, CR0.NE, CR0.PG, and 
CR4.VMXE. The restrictions on CR0.PE and CR0.PG imply that VMX 
operation is supported only in paged protected mode (including 
IA-32e mode). Therefore, guest software cannot be run in unpaged 
protected mode or in real-address mode. See Section 30.2, 
“Supporting Processor Operating Modes in Guest Environments,” for 
a discussion of how a VMM might support guest software that expects 
to run in unpaged protected mode or in real-address mode.
Later processors support a VM-execution control called “unrestricted 
guest” (see Section 24.6.2). If this control is 1, CR0.PE and CR0.PG 
may be 0 in VMX non-root operation (even if the capability MSR 
IA32_VMX_CR0_FIXED0 reports otherwise).2 Such processors allow 
guest software to run in unpaged protected mode or in real-address 
mode.

• VMXON fails if a logical processor is in A20M mode (see “VMXON—Enter VMX 
Operation” in Chapter 29 of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3C). Once the processor is in VMX operation, A20M 

1. Software should consult the VMX capability MSRs IA32_VMX_CR0_FIXED0 and 
IA32_VMX_CR0_FIXED1 to determine how bits in CR0 are set. (see Appendix A.7). For CR4, soft-
ware should consult the VMX capability MSRs IA32_VMX_CR4_FIXED0 and 
IA32_VMX_CR4_FIXED1 (see Appendix A.8).

2. “Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the pri-
mary processor-based VM-execution controls is 0, VMX non-root operation functions as if the 
“unrestricted guest” VM-execution control were 0. See Section 24.6.2.
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interrupts are blocked. Thus, it is impossible to be in A20M mode in VMX 
operation.

• The INIT signal is blocked whenever a logical processor is in VMX root operation. 
It is not blocked in VMX non-root operation. Instead, INITs cause VM exits (see 
Section 25.3, “Other Causes of VM Exits”).
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CHAPTER 24
VIRTUAL-MACHINE CONTROL STRUCTURES

24.1 OVERVIEW
A logical processor uses virtual-machine control data structures (VMCSs) while 
it is in VMX operation. These manage transitions into and out of VMX non-root oper-
ation (VM entries and VM exits) as well as processor behavior in VMX non-root oper-
ation. This structure is manipulated by the new instructions VMCLEAR, VMPTRLD, 
VMREAD, and VMWRITE.

A VMM can use a different VMCS for each virtual machine that it supports. For a 
virtual machine with multiple logical processors (virtual processors), the VMM can 
use a different VMCS for each virtual processor.

A logical processor associates a region in memory with each VMCS. This region is 
called the VMCS region.1 Software references a specific VMCS using the 64-bit 
physical address of the region (a VMCS pointer). VMCS pointers must be aligned on 
a 4-KByte boundary (bits 11:0 must be zero). These pointers must not set bits 
beyond the processor’s physical-address width.2,3

A logical processor may maintain a number of VMCSs that are active. The processor 
may optimize VMX operation by maintaining the state of an active VMCS in memory, 
on the processor, or both. At any given time, at most one of the active VMCSs is the 
current VMCS. (This document frequently uses the term “the VMCS” to refer to the 
current VMCS.) The VMLAUNCH, VMREAD, VMRESUME, and VMWRITE instructions 
operate only on the current VMCS.

The following items describe how a logical processor determines which VMCSs are 
active and which is current:
• The memory operand of the VMPTRLD instruction is the address of a VMCS. After 

execution of the instruction, that VMCS is both active and current on the logical 
processor. Any other VMCS that had been active remains so, but no other VMCS 
is current.

• The memory operand of the VMCLEAR instruction is also the address of a VMCS. 
After execution of the instruction, that VMCS is neither active nor current on the 

1. The amount of memory required for a VMCS region is at most 4 KBytes. The exact size is imple-
mentation specific and can be determined by consulting the VMX capability MSR 
IA32_VMX_BASIC to determine the size of the VMCS region (see Appendix A.1).

2. Software can determine a processor’s physical-address width by executing CPUID with 
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

3. If IA32_VMX_BASIC[48] is read as 1, these pointers must not set any bits in the range 63:32; see 
Appendix A.1.
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logical processor. If the VMCS had been current on the logical processor, the 
logical processor no longer has a current VMCS.

The VMPTRST instruction stores the address of the logical processor’s current VMCS 
into a specified memory location (it stores the value FFFFFFFF_FFFFFFFFH if there is 
no current VMCS).

The launch state of a VMCS determines which VM-entry instruction should be used 
with that VMCS: the VMLAUNCH instruction requires a VMCS whose launch state is 
“clear”; the VMRESUME instruction requires a VMCS whose launch state is 
“launched”. A logical processor maintains a VMCS’s launch state in the corresponding 
VMCS region. The following items describe how a logical processor manages the 
launch state of a VMCS:
• If the launch state of the current VMCS is “clear”, successful execution of the 

VMLAUNCH instruction changes the launch state to “launched”.
• The memory operand of the VMCLEAR instruction is the address of a VMCS. After 

execution of the instruction, the launch state of that VMCS is “clear”.
• There are no other ways to modify the launch state of a VMCS (it cannot be 

modified using VMWRITE) and there is no direct way to discover it (it cannot be 
read using VMREAD).

Figure 24-1 illustrates the different states of a VMCS. It uses “X” to refer to the VMCS 
and “Y” to refer to any other VMCS. Thus: “VMPTRLD X” always makes X current and 
active; “VMPTRLD Y” always makes X not current (because it makes Y current); 
VMLAUNCH makes the launch state of X “launched” if X was current and its launch 
state was “clear”; and VMCLEAR X always makes X inactive and not current and 
makes its launch state “clear”.

The figure does not illustrate operations that do not modify the VMCS state relative 
to these parameters (e.g., execution of VMPTRLD X when X is already current). Note 
that VMCLEAR X makes X “inactive, not current, and clear,” even if X’s current state 
is not defined (e.g., even if X has not yet been initialized). See Section 24.10.3.
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24.2 FORMAT OF THE VMCS REGION
A VMCS region comprises up to 4-KBytes.1 The format of a VMCS region is given in 
Table 24-1.

The first 32 bits of the VMCS region contain the VMCS revision identifier. Proces-
sors that maintain VMCS data in different formats (see below) use different VMCS 

Figure 24-1.  States of VMCS X

1. The exact size is implementation specific and can be determined by consulting the VMX capabil-
ity MSR IA32_VMX_BASIC to determine the size of the VMCS region (see Appendix A.1).

Table 24-1.  Format of the VMCS Region

Byte Offset Contents

0 VMCS revision identifier

4 VMX-abort indicator

8 VMCS data (implementation-specific format)
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revision identifiers. These identifiers enable software to avoid using a VMCS region 
formatted for one processor on a processor that uses a different format.1

Software should write the VMCS revision identifier to the VMCS region before using 
that region for a VMCS. The VMCS revision identifier is never written by the 
processor; VMPTRLD may fail if its operand references a VMCS region whose VMCS 
revision identifier differs from that used by the processor. Software can discover the 
VMCS revision identifier that a processor uses by reading the VMX capability MSR 
IA32_VMX_BASIC (see Appendix A, “VMX Capability Reporting Facility”).

The next 32 bits of the VMCS region are used for the VMX-abort indicator. The 
contents of these bits do not control processor operation in any way. A logical 
processor writes a non-zero value into these bits if a VMX abort occurs (see Section 
27.7). Software may also write into this field.

The remainder of the VMCS region is used for VMCS data (those parts of the VMCS 
that control VMX non-root operation and the VMX transitions). The format of these 
data is implementation-specific. VMCS data are discussed in Section 24.3 through 
Section 24.9. To ensure proper behavior in VMX operation, software should maintain 
the VMCS region and related structures (enumerated in Section 24.10.4) in 
writeback cacheable memory. Future implementations may allow or require a 
different memory type2. Software should consult the VMX capability MSR 
IA32_VMX_BASIC (see Appendix A.1).

24.3 ORGANIZATION OF VMCS DATA
The VMCS data are organized into six logical groups:
• Guest-state area. Processor state is saved into the guest-state area on 

VM exits and loaded from there on VM entries.
• Host-state area. Processor state is loaded from the host-state area on VM exits.
• VM-execution control fields. These fields control processor behavior in VMX 

non-root operation. They determine in part the causes of VM exits.
• VM-exit control fields. These fields control VM exits.
• VM-entry control fields. These fields control VM entries.
• VM-exit information fields. These fields receive information on VM exits and 

describe the cause and the nature of VM exits. They are read-only.

1. Logical processors that use the same VMCS revision identifier use the same size for VMCS 
regions.

2. Alternatively, software may map any of these regions or structures with the UC memory type. 
Doing so is strongly discouraged unless necessary as it will cause the performance of transitions 
using those structures to suffer significantly. In addition, the processor will continue to use the 
memory type reported in the VMX capability MSR IA32_VMX_BASIC with exceptions noted in 
Appendix A.1.
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The VM-execution control fields, the VM-exit control fields, and the VM-entry control 
fields are sometimes referred to collectively as VMX controls.

24.4 GUEST-STATE AREA
This section describes fields contained in the guest-state area of the VMCS. As noted 
earlier, processor state is loaded from these fields on every VM entry (see Section 
26.3.2) and stored into these fields on every VM exit (see Section 27.3).

24.4.1 Guest Register State
The following fields in the guest-state area correspond to processor registers:
• Control registers CR0, CR3, and CR4 (64 bits each; 32 bits on processors that do 

not support Intel 64 architecture).
• Debug register DR7 (64 bits; 32 bits on processors that do not support Intel 64 

architecture).
• RSP, RIP, and RFLAGS (64 bits each; 32 bits on processors that do not support 

Intel 64 architecture).1

• The following fields for each of the registers CS, SS, DS, ES, FS, GS, LDTR, and 
TR:

— Selector (16 bits).

— Base address (64 bits; 32 bits on processors that do not support Intel 64 
architecture). The base-address fields for CS, SS, DS, and ES have only 32 
architecturally-defined bits; nevertheless, the corresponding VMCS fields 
have 64 bits on processors that support Intel 64 architecture.

— Segment limit (32 bits). The limit field is always a measure in bytes.

— Access rights (32 bits). The format of this field is given in Table 24-2 and 
detailed as follows:

• The low 16 bits correspond to bits 23:8 of the upper 32 bits of a 64-bit 
segment descriptor. While bits 19:16 of code-segment and data-segment 
descriptors correspond to the upper 4 bits of the segment limit, the corre-
sponding bits (bits 11:8) are reserved in this VMCS field.

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most 
processors that support VMX operation also support Intel 64 architecture. For processors that do 
not support Intel 64 architecture, this notation refers to the 32-bit forms of those registers 
(EAX, EIP, ESP, EFLAGS, etc.). In a few places, notation such as EAX is used to refer specifically to 
lower 32 bits of the indicated register.
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• Bit 16 indicates an unusable segment. Attempts to use such a segment 
fault except in 64-bit mode. In general, a segment register is unusable if 
it has been loaded with a null selector.1

• Bits 31:17 are reserved.

The base address, segment limit, and access rights compose the “hidden” part 
(or “descriptor cache”) of each segment register. These data are included in the 
VMCS because it is possible for a segment register’s descriptor cache to be incon-
sistent with the segment descriptor in memory (in the GDT or the LDT) 
referenced by the segment register’s selector.
The value of the DPL field for SS is always equal to the logical processor’s current 
privilege level (CPL).2

• The following fields for each of the registers GDTR and IDTR:

1. There are a few exceptions to this statement. For example, a segment with a non-null selector 
may be unusable following a task switch that fails after its commit point; see “Interrupt 
10—Invalid TSS Exception (#TS)” in Section 6.14, “Exception and Interrupt Handling in 64-bit 
Mode,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A. In 
contrast, the TR register is usable after processor reset despite having a null selector; see Table 
10-1 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

Table 24-2.  Format of Access Rights 

Bit Position(s) Field

3:0 Segment type

4 S — Descriptor type (0 = system; 1 = code or data)

6:5 DPL — Descriptor privilege level

7 P — Segment present

11:8 Reserved

12 AVL — Available for use by system software

13 Reserved (except for CS)
L — 64-bit mode active (for CS only)

14 D/B — Default operation size (0 = 16-bit segment; 1 = 32-bit segment)

15 G — Granularity

16 Segment unusable (0 = usable; 1 = unusable)

31:17 Reserved
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— Base address (64 bits; 32 bits on processors that do not support Intel 64 
architecture).

— Limit (32 bits). The limit fields contain 32 bits even though these fields are 
specified as only 16 bits in the architecture.

• The following MSRs:

— IA32_DEBUGCTL (64 bits)

— IA32_SYSENTER_CS (32 bits)

— IA32_SYSENTER_ESP and IA32_SYSENTER_EIP (64 bits; 32 bits on 
processors that do not support Intel 64 architecture)

— IA32_PERF_GLOBAL_CTRL (64 bits). This field is supported only on logical 
processors that support the 1-setting of the “load IA32_PERF_GLOBAL_CTRL” 
VM-entry control.

— IA32_PAT (64 bits). This field is supported only on logical processors that 
support either the 1-setting of the “load IA32_PAT” VM-entry control or that 
of the “save IA32_PAT” VM-exit control.

— IA32_EFER (64 bits). This field is supported only on logical processors that 
support either the 1-setting of the “load IA32_EFER” VM-entry control or that 
of the “save IA32_EFER” VM-exit control.

• The register SMBASE (32 bits). This register contains the base address of the 
logical processor’s SMRAM image.

24.4.2 Guest Non-Register State
In addition to the register state described in Section 24.4.1, the guest-state area 
includes the following fields that characterize guest state but which do not corre-
spond to processor registers:
• Activity state (32 bits). This field identifies the logical processor’s activity state. 

When a logical processor is executing instructions normally, it is in the active 
state. Execution of certain instructions and the occurrence of certain events may 
cause a logical processor to transition to an inactive state in which it ceases to 
execute instructions.
The following activity states are defined:1

— 0: Active. The logical processor is executing instructions normally.

— 1: HLT. The logical processor is inactive because it executed the HLT 
instruction.

2. In protected mode, CPL is also associated with the RPL field in the CS selector. However, the RPL 
fields are not meaningful in real-address mode or in virtual-8086 mode.

1. Execution of the MWAIT instruction may put a logical processor into an inactive state. However, 
this VMCS field never reflects this state. See Section 27.1.
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— 2: Shutdown. The logical processor is inactive because it incurred a triple 
fault1 or some other serious error.

— 3: Wait-for-SIPI. The logical processor is inactive because it is waiting for a 
startup-IPI (SIPI).

Future processors may include support for other activity states. Software should 
read the VMX capability MSR IA32_VMX_MISC (see Appendix A.6) to determine 
what activity states are supported.

• Interruptibility state (32 bits). The IA-32 architecture includes features that 
permit certain events to be blocked for a period of time. This field contains 
information about such blocking. Details and the format of this field are given in 
Table 24-3.

1. A triple fault occurs when a logical processor encounters an exception while attempting to 
deliver a double fault.

Table 24-3.  Format of Interruptibility State

Bit 
Position(s)

Bit Name Notes

0 Blocking by STI See the “STI—Set Interrupt Flag” section in Chapter 4 of the 
Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 2B.

Execution of STI with RFLAGS.IF = 0 blocks interrupts (and, 
optionally, other events) for one instruction after its 
execution. Setting this bit indicates that this blocking is in 
effect.

1 Blocking by 
MOV SS

See the “MOV—Move a Value from the Stack” and “POP—Pop 
a Value from the Stack” sections in Chapter 4 of the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, 
Volume 2B, and Section 6.8.3 in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A.

Execution of a MOV to SS or a POP to SS blocks interrupts for 
one instruction after its execution. In addition, certain debug 
exceptions are inhibited between a MOV to SS or a POP to SS 
and a subsequent instruction. Setting this bit indicates that 
the blocking of all these events is in effect. This document 
uses the term “blocking by MOV SS,” but it applies equally to 
POP SS.

2 Blocking by SMI See Section 33.2. System-management interrupts (SMIs) are 
disabled while the processor is in system-management mode 
(SMM). Setting this bit indicates that blocking of SMIs is in 
effect.
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• Pending debug exceptions (64 bits; 32 bits on processors that do not support 
Intel 64 architecture). IA-32 processors may recognize one or more debug 
exceptions without immediately delivering them.1 This field contains information 
about such exceptions. This field is described in Table 24-4.

3 Blocking by NMI See Section 6.7.1 in the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 3A and Section 33.8.

Delivery of a non-maskable interrupt (NMI) or a system-
management interrupt (SMI) blocks subsequent NMIs until the 
next execution of IRET. See Section 25.4 for how this 
behavior of IRET may change in VMX non-root operation. 
Setting this bit indicates that blocking of NMIs is in effect. 
Clearing this bit does not imply that NMIs are not 
(temporarily) blocked for other reasons.

If the “virtual NMIs” VM-execution control (see Section 
24.6.1) is 1, this bit does not control the blocking of NMIs. 
Instead, it refers to “virtual-NMI blocking” (the fact that guest 
software is not ready for an NMI).

31:4 Reserved VM entry will fail if these bits are not 0. See Section 26.3.1.5.

1. For example, execution of a MOV to SS or a POP to SS may inhibit some debug exceptions for one 
instruction. See Section 6.8.3 of Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3A. In addition, certain events incident to an instruction (for example, an INIT signal) may 
take priority over debug traps generated by that instruction. See Table 6-2 in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3A.

Table 24-4.  Format of Pending-Debug-Exceptions

Bit 
Position(s)

Bit Name Notes

3:0 B3 – B0 When set, each of these bits indicates that the corresponding 
breakpoint condition was met. Any of these bits may be set 
even if the corresponding enabling bit in DR7 is not set.

11:4 Reserved VM entry fails if these bits are not 0. See Section 26.3.1.5.

12 Enabled 
breakpoint

When set, this bit indicates that at least one data or I/O 
breakpoint was met and was enabled in DR7.

Table 24-3.  Format of Interruptibility State (Contd.)

Bit 
Position(s)

Bit Name Notes
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• VMCS link pointer (64 bits). This field is included for future expansion. Software 
should set this field to FFFFFFFF_FFFFFFFFH to avoid VM-entry failures (see 
Section 26.3.1.5).

• VMX-preemption timer value (32 bits). This field is supported only on logical 
processors that support the 1-setting of the “activate VMX-preemption timer” 
VM-execution control. This field contains the value that the VMX-preemption 
timer will use following the next VM entry with that setting. See Section 25.7.1 
and Section 26.6.4.

• Page-directory-pointer-table entries (PDPTEs; 64 bits each). These four (4) 
fields (PDPTE0, PDPTE1, PDPTE2, and PDPTE3) are supported only on logical 
processors that support the 1-setting of the “enable EPT” VM-execution control. 
They correspond to the PDPTEs referenced by CR3 when PAE paging is in use (see 
Section 4.4 in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3A). They are used only if the “enable EPT” VM-execution control 
is 1.

24.5 HOST-STATE AREA
This section describes fields contained in the host-state area of the VMCS. As noted 
earlier, processor state is loaded from these fields on every VM exit (see Section 
27.5).

All fields in the host-state area correspond to processor registers:
• CR0, CR3, and CR4 (64 bits each; 32 bits on processors that do not support Intel 

64 architecture).
• RSP and RIP (64 bits each; 32 bits on processors that do not support Intel 64 

architecture).
• Selector fields (16 bits each) for the segment registers CS, SS, DS, ES, FS, GS, 

and TR. There is no field in the host-state area for the LDTR selector.
• Base-address fields for FS, GS, TR, GDTR, and IDTR (64 bits each; 32 bits on 

processors that do not support Intel 64 architecture).

13 Reserved VM entry fails if this bit is not 0. See Section 26.3.1.5.

14 BS When set, this bit indicates that a debug exception would 
have been triggered by single-step execution mode.

63:15 Reserved VM entry fails if these bits are not 0. See Section 26.3.1.5. 
Bits 63:32 exist only on processors that support Intel 64 
architecture.

Table 24-4.  Format of Pending-Debug-Exceptions (Contd.)

Bit 
Position(s)

Bit Name Notes
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• The following MSRs:

— IA32_SYSENTER_CS (32 bits)

— IA32_SYSENTER_ESP and IA32_SYSENTER_EIP (64 bits; 32 bits on 
processors that do not support Intel 64 architecture).

— IA32_PERF_GLOBAL_CTRL (64 bits). This field is supported only on logical 
processors that support the 1-setting of the “load IA32_PERF_GLOBAL_CTRL” 
VM-exit control.

— IA32_PAT (64 bits). This field is supported only on logical processors that 
support either the 1-setting of the “load IA32_PAT” VM-exit control.

— IA32_EFER (64 bits). This field is supported only on logical processors that 
support either the 1-setting of the “load IA32_EFER” VM-exit control.

In addition to the state identified here, some processor state components are loaded 
with fixed values on every VM exit; there are no fields corresponding to these compo-
nents in the host-state area. See Section 27.5 for details of how state is loaded on 
VM exits.

24.6 VM-EXECUTION CONTROL FIELDS
The VM-execution control fields govern VMX non-root operation. These are described 
in Section 24.6.1 through Section 24.6.8.

24.6.1 Pin-Based VM-Execution Controls
The pin-based VM-execution controls constitute a 32-bit vector that governs the 
handling of asynchronous events (for example: interrupts).1 Table 24-5 lists the 
controls. See Chapter 25 for how these controls affect processor behavior in VMX 
non-root operation.

1. Some asynchronous events cause VM exits regardless of the settings of the pin-based VM-exe-
cution controls (see Section 25.3).
Vol. 3C 24-11



VIRTUAL-MACHINE CONTROL STRUCTURES
All other bits in this field are reserved, some to 0 and some to 1. Software should 
consult the VMX capability MSRs IA32_VMX_PINBASED_CTLS and 
IA32_VMX_TRUE_PINBASED_CTLS (see Appendix A.3.1) to determine how to set 
reserved bits. Failure to set reserved bits properly causes subsequent VM entries to 
fail (see Section 26.2.1.1).

The first processors to support the virtual-machine extensions supported only the 1-
settings of bits 1, 2, and 4. The VMX capability MSR IA32_VMX_PINBASED_CTLS will 
always report that these bits must be 1. Logical processors that support the 0-
settings of any of these bits will support the VMX capability MSR 
IA32_VMX_TRUE_PINBASED_CTLS MSR, and software should consult this MSR to 
discover support for the 0-settings of these bits. Software that is not aware of the 
functionality of any one of these bits should set that bit to 1.

24.6.2 Processor-Based VM-Execution Controls
The processor-based VM-execution controls constitute two 32-bit vectors that 
govern the handling of synchronous events, mainly those caused by the execution of 
specific instructions.1 These are the primary processor-based VM-execution 
controls and the secondary processor-based VM-execution controls.

Table 24-5.  Definitions of Pin-Based VM-Execution Controls
Bit Position(s) Name Description

0 External-interrupt 
exiting

If this control is 1, external interrupts cause VM exits. 
Otherwise, they are delivered normally through the guest 
interrupt-descriptor table (IDT). If this control is 1, the value 
of RFLAGS.IF does not affect interrupt blocking.

3 NMI exiting If this control is 1, non-maskable interrupts (NMIs) cause 
VM exits. Otherwise, they are delivered normally using 
descriptor 2 of the IDT. This control also determines 
interactions between IRET and blocking by NMI (see Section 
25.4).

5 Virtual NMIs If this control is 1, NMIs are never blocked and the “blocking 
by NMI” bit (bit 3) in the interruptibility-state field indicates 
“virtual-NMI blocking” (see Table 24-3). This control also 
interacts with the “NMI-window exiting” VM-execution 
control (see Section 24.6.2).

This control can be set only if the “NMI exiting” VM-execution 
control (above) is 1.

6 Activate VMX-
preemption timer

If this control is 1, the VMX-preemption timer counts down in 
VMX non-root operation; see Section 25.7.1. A VM exit occurs 
when the timer counts down to zero; see Section 25.3.
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Table 24-6 lists the primary processor-based VM-execution controls. See Chapter 25 
for more details of how these controls affect processor behavior in VMX non-root 
operation.

1. Some instructions cause VM exits regardless of the settings of the processor-based VM-execu-
tion controls (see Section 25.1.2), as do task switches (see Section 25.3).

Table 24-6.  Definitions of Primary Processor-Based VM-Execution Controls
Bit Position(s) Name Description

2 Interrupt-window 
exiting

If this control is 1, a VM exit occurs at the beginning of any 
instruction if RFLAGS.IF = 1 and there are no other blocking 
of interrupts (see Section 24.4.2).

3 Use TSC offsetting This control determines whether executions of RDTSC, 
executions of RDTSCP, and executions of RDMSR that read 
from the IA32_TIME_STAMP_COUNTER MSR return a value 
modified by the TSC offset field (see Section 24.6.5 and 
Section 25.4).

7 HLT exiting This control determines whether executions of HLT cause 
VM exits.

9 INVLPG exiting This determines whether executions of INVLPG cause 
VM exits.

10 MWAIT exiting This control determines whether executions of MWAIT cause 
VM exits.

11 RDPMC exiting This control determines whether executions of RDPMC cause 
VM exits.

12 RDTSC exiting This control determines whether executions of RDTSC and 
RDTSCP cause VM exits.

15 CR3-load exiting In conjunction with the CR3-target controls (see Section 
24.6.7), this control determines whether executions of MOV 
to CR3 cause VM exits. See Section 25.1.3.

The first processors to support the virtual-machine 
extensions supported only the 1-setting of this control.

16 CR3-store exiting This control determines whether executions of MOV from 
CR3 cause VM exits.

The first processors to support the virtual-machine 
extensions supported only the 1-setting of this control.

19 CR8-load exiting This control determines whether executions of MOV to CR8 
cause VM exits.

This control must be 0 on processors that do not support 
Intel 64 architecture.
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20 CR8-store exiting This control determines whether executions of MOV from 
CR8 cause VM exits.

This control must be 0 on processors that do not support 
Intel 64 architecture.

21 Use TPR shadow Setting this control to 1 activates the TPR shadow, which is 
maintained in a page of memory addressed by the virtual-
APIC address. See Section 25.4.

This control must be 0 on processors that do not support 
Intel 64 architecture.

22 NMI-window 
exiting

If this control is 1, a VM exit occurs at the beginning of any 
instruction if there is no virtual-NMI blocking (see Section 
24.4.2).

This control can be set only if the “virtual NMIs” VM-execution 
control (see Section 24.6.1) is 1.

23 MOV-DR exiting This control determines whether executions of MOV DR 
cause VM exits.

24 Unconditional I/O 
exiting

This control determines whether executions of I/O 
instructions (IN, INS/INSB/INSW/INSD, OUT, and 
OUTS/OUTSB/OUTSW/OUTSD) cause VM exits. 

This control is ignored if the “use I/O bitmaps” control is 1.

25 Use I/O bitmaps This control determines whether I/O bitmaps are used to 
restrict executions of I/O instructions (see Section 24.6.4 and 
Section 25.1.3).

For this control, “0” means “do not use I/O bitmaps” and “1” 
means “use I/O bitmaps.” If the I/O bitmaps are used, the 
setting of the “unconditional I/O exiting” control is ignored.

27 Monitor trap flag If this control is 1, the monitor trap flag debugging feature is 
enabled. See Section 25.7.2.

28 Use MSR bitmaps This control determines whether MSR bitmaps are used to 
control execution of the RDMSR and WRMSR instructions (see 
Section 24.6.9 and Section 25.1.3).

For this control, “0” means “do not use MSR bitmaps” and “1” 
means “use MSR bitmaps.” If the MSR bitmaps are not used, 
all executions of the RDMSR and WRMSR instructions cause 
VM exits.

29 MONITOR exiting This control determines whether executions of MONITOR 
cause VM exits.

Table 24-6.  Definitions of Primary Processor-Based VM-Execution Controls (Contd.)
Bit Position(s) Name Description
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All other bits in this field are reserved, some to 0 and some to 1. Software should 
consult the VMX capability MSRs IA32_VMX_PROCBASED_CTLS and 
IA32_VMX_TRUE_PROCBASED_CTLS (see Appendix A.3.2) to determine how to set 
reserved bits. Failure to set reserved bits properly causes subsequent VM entries to 
fail (see Section 26.2.1.1).

The first processors to support the virtual-machine extensions supported only the 1-
settings of bits 1, 4–6, 8, 13–16, and 26. The VMX capability MSR 
IA32_VMX_PROCBASED_CTLS will always report that these bits must be 1. Logical 
processors that support the 0-settings of any of these bits will support the VMX capa-
bility MSR IA32_VMX_TRUE_PROCBASED_CTLS MSR, and software should consult 
this MSR to discover support for the 0-settings of these bits. Software that is not 
aware of the functionality of any one of these bits should set that bit to 1.

Bit 31 of the primary processor-based VM-execution controls determines whether 
the secondary processor-based VM-execution controls are used. If that bit is 0, 
VM entry and VMX non-root operation function as if all the secondary processor-
based VM-execution controls were 0. Processors that support only the 0-setting of 
bit 31 of the primary processor-based VM-execution controls do not support the 
secondary processor-based VM-execution controls.

Table 24-7 lists the secondary processor-based VM-execution controls. See Chapter 
25 for more details of how these controls affect processor behavior in VMX non-root 
operation.

30 PAUSE exiting This control determines whether executions of PAUSE cause 
VM exits.

31 Activate secondary 
controls

This control determines whether the secondary processor-
based VM-execution controls are used. If this control is 0, the 
logical processor operates as if all the secondary processor-
based VM-execution controls were also 0.

Table 24-7.  Definitions of Secondary Processor-Based VM-Execution Controls
Bit Position(s) Name Description

0 Virtualize APIC 
accesses

If this control is 1, a VM exit occurs on any attempt to access 
data on the page with the APIC-access address. See Section 
25.2.

1 Enable EPT If this control is 1, extended page tables (EPT) are enabled. 
See Section 28.2.

2 Descriptor-table 
exiting

This control determines whether executions of LGDT, LIDT, 
LLDT, LTR, SGDT, SIDT, SLDT, and STR cause VM exits.

3 Enable RDTSCP If this control is 0, any execution of RDTSCP causes an invalid-
opcode exception (#UD).

Table 24-6.  Definitions of Primary Processor-Based VM-Execution Controls (Contd.)
Bit Position(s) Name Description
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All other bits in this field are reserved to 0. Software should consult the VMX capa-
bility MSR IA32_VMX_PROCBASED_CTLS2 (see Appendix A.3.3) to determine which 
bits may be set to 1. Failure to clear reserved bits causes subsequent VM entries to 
fail (see Section 26.2.1.1).

24.6.3 Exception Bitmap
The exception bitmap is a 32-bit field that contains one bit for each exception. 
When an exception occurs, its vector is used to select a bit in this field. If the bit is 1, 
the exception causes a VM exit. If the bit is 0, the exception is delivered normally 
through the IDT, using the descriptor corresponding to the exception’s vector.

Whether a page fault (exception with vector 14) causes a VM exit is determined by 
bit 14 in the exception bitmap as well as the error code produced by the page fault 
and two 32-bit fields in the VMCS (the page-fault error-code mask and page-
fault error-code match). See Section 25.3 for details.

24.6.4 I/O-Bitmap Addresses
The VM-execution control fields include the 64-bit physical addresses of I/O 
bitmaps A and B (each of which are 4 KBytes in size). I/O bitmap A contains one bit 

4 Virtualize x2APIC 
mode

Setting this control to 1 causes RDMSR and WRMSR to MSR 
808H to use the TPR shadow, which is maintained on the 
virtual-APIC page. See Section 25.4.

5 Enable VPID If this control is 1, cached translations of linear addresses are 
associated with a virtual-processor identifier (VPID). See 
Section 28.1.

6 WBINVD exiting This control determines whether executions of WBINVD 
cause VM exits.

7 Unrestricted guest This control determines whether guest software may run in 
unpaged protected mode or in real-address mode.

10 PAUSE-loop exiting This control determines whether a series of executions of 
PAUSE can cause a VM exit (see Section 24.6.13 and Section 
25.1.3).

11 RDRAND exiting This control determines whether executions of RDRAND 
cause VM exits.

12 Enable INVPCID If this control is 0, any execution of INVPCID causes an 
invalid-opcode exception (#UD).

13 Enable 
VM functions

Setting this control to 1 enables use of the VMFUNC 
instruction in VMX non-root operation. See Section 25.7.4.

Table 24-7.  Definitions of Secondary Processor-Based VM-Execution Controls (Contd.)
Bit Position(s) Name Description
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for each I/O port in the range 0000H through 7FFFH; I/O bitmap B contains bits for 
ports in the range 8000H through FFFFH.

A logical processor uses these bitmaps if and only if the “use I/O bitmaps” control is 
1. If the bitmaps are used, execution of an I/O instruction causes a VM exit if any bit 
in the I/O bitmaps corresponding to a port it accesses is 1. See Section 25.1.3 for 
details. If the bitmaps are used, their addresses must be 4-KByte aligned.

24.6.5 Time-Stamp Counter Offset
VM-execution control fields include a 64-bit TSC-offset field. If the “RDTSC exiting” 
control is 0 and the “use TSC offsetting” control is 1, this field controls executions of 
the RDTSC and RDTSCP instructions. It also controls executions of the RDMSR 
instruction that read from the IA32_TIME_STAMP_COUNTER MSR. For all of these, 
the signed value of the TSC offset is combined with the contents of the time-stamp 
counter (using signed addition) and the sum is reported to guest software in 
EDX:EAX. See Chapter 25 for a detailed treatment of the behavior of RDTSC, 
RDTSCP, and RDMSR in VMX non-root operation.

24.6.6 Guest/Host Masks and Read Shadows for CR0 and CR4
VM-execution control fields include guest/host masks and read shadows for the 
CR0 and CR4 registers. These fields control executions of instructions that access 
those registers (including CLTS, LMSW, MOV CR, and SMSW). They are 64 bits on 
processors that support Intel 64 architecture and 32 bits on processors that do not.

In general, bits set to 1 in a guest/host mask correspond to bits “owned” by the host:
• Guest attempts to set them (using CLTS, LMSW, or MOV to CR) to values differing 

from the corresponding bits in the corresponding read shadow cause VM exits.
• Guest reads (using MOV from CR or SMSW) return values for these bits from the 

corresponding read shadow.

Bits cleared to 0 correspond to bits “owned” by the guest; guest attempts to modify 
them succeed and guest reads return values for these bits from the control register 
itself.

See Chapter 25 for details regarding how these fields affect VMX non-root operation.

24.6.7 CR3-Target Controls
The VM-execution control fields include a set of 4 CR3-target values and a CR3-
target count. The CR3-target values each have 64 bits on processors that support 
Intel 64 architecture and 32 bits on processors that do not. The CR3-target count has 
32 bits on all processors.

An execution of MOV to CR3 in VMX non-root operation does not cause a VM exit if its 
source operand matches one of these values. If the CR3-target count is n, only the 
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first n CR3-target values are considered; if the CR3-target count is 0, MOV to CR3 
always causes a VM exit

There are no limitations on the values that can be written for the CR3-target values. 
VM entry fails (see Section 26.2) if the CR3-target count is greater than 4.

Future processors may support a different number of CR3-target values. Software 
should read the VMX capability MSR IA32_VMX_MISC (see Appendix A.6) to deter-
mine the number of values supported.

24.6.8 Controls for APIC Accesses
There are three mechanisms by which software accesses registers of the logical 
processor’s local APIC:
• If the local APIC is in xAPIC mode, it can perform memory-mapped accesses to 

addresses in the 4-KByte page referenced by the physical address in the 
IA32_APIC_BASE MSR (see Section 10.4.4, “Local APIC Status and Location” in 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A 
and Intel® 64 Architecture Processor Topology Enumeration).1

• If the local APIC is in x2APIC mode, it can accesses the local APIC’s registers 
using the RDMSR and WRMSR instructions (see Intel® 64 Architecture Processor 
Topology Enumeration).

• In 64-bit mode, it can access the local APIC’s task-priority register (TPR) using 
the MOV CR8 instruction.

There are three processor-based VM-execution controls (see Section 24.6.2) that 
control such accesses. There are “use TPR shadow”, “virtualize APIC accesses”, and 
“virtualize x2APIC mode”. These controls interact with the following fields:
• APIC-access address (64 bits). This field contains the physical address of the 

4-KByte APIC-access page. If the “virtualize APIC accesses” VM-execution 
control is 1, operations that access this page may cause VM exits. See Section 
25.2 and Section 25.5.
The APIC-access address exists only on processors that support the 1-setting of 
the “virtualize APIC accesses” VM-execution control.

• Virtual-APIC address (64 bits). This field contains the physical address of the 
4-KByte virtual-APIC page.
If the “use TPR shadow” VM-execution control is 1, the virtual-APIC address must 
be 4-KByte aligned. The virtual-APIC page is accessed by the following 
operations if the “use TPR shadow” VM-execution control is 1:

— The MOV CR8 instructions (see Section 25.1.3 and Section 25.4).

— Accesses to byte 80H on the APIC-access page if, in addition, the “virtualize 
APIC accesses” VM-execution control is 1 (see Section 25.5.3).

1. If the local APIC does not support x2APIC mode, it is always in xAPIC mode.
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— The RDMSR and WRMSR instructions if, in addition, the value of ECX is 808H 
(indicating the TPR MSR) and the “virtualize x2APIC mode” VM-execution 
control is 1 (see Section 25.4).

The virtual-APIC address exists only on processors that support the 1-setting of 
the “use TPR shadow” VM-execution control.

• TPR threshold (32 bits). Bits 3:0 of this field determine the threshold below 
which the TPR shadow (bits 7:4 of byte 80H of the virtual-APIC page) cannot fall. 
A VM exit occurs after an operation (e.g., an execution of MOV to CR8) that 
reduces the TPR shadow below this value. See Section 25.4 and Section 25.5.3.
The TPR threshold exists only on processors that support the 1-setting of the 
“use TPR shadow” VM-execution control.

24.6.9 MSR-Bitmap Address
On processors that support the 1-setting of the “use MSR bitmaps” VM-execution 
control, the VM-execution control fields include the 64-bit physical address of four 
contiguous MSR bitmaps, which are each 1-KByte in size. This field does not exist 
on processors that do not support the 1-setting of that control. The four bitmaps are:
• Read bitmap for low MSRs (located at the MSR-bitmap address). This contains 

one bit for each MSR address in the range 00000000H to 00001FFFH. The bit 
determines whether an execution of RDMSR applied to that MSR causes a 
VM exit.

• Read bitmap for high MSRs (located at the MSR-bitmap address plus 1024). 
This contains one bit for each MSR address in the range C0000000H 
toC0001FFFH. The bit determines whether an execution of RDMSR applied to that 
MSR causes a VM exit.

• Write bitmap for low MSRs (located at the MSR-bitmap address plus 2048). 
This contains one bit for each MSR address in the range 00000000H to 
00001FFFH. The bit determines whether an execution of WRMSR applied to that 
MSR causes a VM exit.

• Write bitmap for high MSRs (located at the MSR-bitmap address plus 3072). 
This contains one bit for each MSR address in the range C0000000H 
toC0001FFFH. The bit determines whether an execution of WRMSR applied to 
that MSR causes a VM exit.

A logical processor uses these bitmaps if and only if the “use MSR bitmaps” control 
is 1. If the bitmaps are used, an execution of RDMSR or WRMSR causes a VM exit if 
the value of RCX is in neither of the ranges covered by the bitmaps or if the appro-
priate bit in the MSR bitmaps (corresponding to the instruction and the RCX value) is 
1. See Section 25.1.3 for details. If the bitmaps are used, their address must be 4-
KByte aligned.
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24.6.10 Executive-VMCS Pointer
The executive-VMCS pointer is a 64-bit field used in the dual-monitor treatment of 
system-management interrupts (SMIs) and system-management mode (SMM). SMM 
VM exits save this field as described in Section 33.15.2. VM entries that return from 
SMM use this field as described in Section 33.15.4.

24.6.11 Extended-Page-Table Pointer (EPTP)
The extended-page-table pointer (EPTP) contains the address of the base of EPT 
PML4 table (see Section 28.2.2), as well as other EPT configuration information. The 
format of this field is shown in Table 24-8.

The EPTP exists only on processors that support the 1-setting of the “enable EPT” 
VM-execution control.

24.6.12 Virtual-Processor Identifier (VPID)
The virtual-processor identifier (VPID) is a 16-bit field. It exists only on proces-
sors that support the 1-setting of the “enable VPID” VM-execution control. See 
Section 28.1 for details regarding the use of this field.

Table 24-8.  Format of Extended-Page-Table Pointer 

Bit Position(s) Field

2:0 EPT paging-structure memory type (see Section 28.2.4):

0 = Uncacheable (UC)
6 = Write-back (WB)

Other values are reserved.1

NOTES:
1. Software should read the VMX capability MSR IA32_VMX_EPT_VPID_CAP (see Appendix A.10) to 

determine what EPT paging-structure memory types are supported.

5:3 This value is 1 less than the EPT page-walk length (see Section 28.2.2)

11:6 Reserved

N–1:12 Bits N–1:12 of the physical address of the 4-KByte aligned EPT PML4 table2

2. N is the physical-address width supported by the logical processor. Software can determine a pro-
cessor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-
address width is returned in bits 7:0 of EAX.

63:N Reserved
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24.6.13 Controls for PAUSE-Loop Exiting
On processors that support the 1-setting of the “PAUSE-loop exiting” VM-execution 
control, the VM-execution control fields include the following 32-bit fields:
• PLE_Gap. Software can configure this field as an upper bound on the amount of 

time between two successive executions of PAUSE in a loop.
• PLE_Window. Software can configure this field as an upper bound on the 

amount of time a guest is allowed to execute in a PAUSE loop.

These fields measure time based on a counter that runs at the same rate as the 
timestamp counter (TSC). See Section 25.1.3 for more details regarding PAUSE-loop 
exiting.

24.6.14 VM-Function Controls
The VM-function controls constitute a 64-bit vector that governs use of the 
VMFUNC instruction in VMX non-root operation. This field is supported only on 
processors that support the 1-settings of both the “activate secondary controls” 
primary processor-based VM-execution control and the “enable VM functions” 
secondary processor-based VM-execution control.

Table 24-9 lists the VM-function controls. See Section 25.7.4 for more details of how 
these controls affect processor behavior in VMX non-root operation.

All other bits in this field are reserved to 0. Software should consult the VMX capa-
bility MSR IA32_VMX_VMFUNC (see Appendix A.11) to determine which bits are 
reserved. Failure to clear reserved bits causes subsequent VM entries to fail (see 
Section 26.2.1.1).

Processors that support the 1-setting of the “EPTP switching” VM-function control 
also support a 64-bit field called the EPTP-list address. This field contains the phys-
ical address of the 4-KByte EPTP list. The EPTP list comprises 512 8-Byte entries 
(each an EPTP value) and is used by the EPTP-switching VM function (see Section 
25.7.4.3).

24.7 VM-EXIT CONTROL FIELDS
The VM-exit control fields govern the behavior of VM exits. They are discussed in 
Section 24.7.1 and Section 24.7.2.

Table 24-9.  Definitions of VM-Function Controls
Bit Position(s) Name Description

0 EPTP switching The EPTP-switching VM function changes the EPT pointer to 
a value chosen from the EPTP list. See Section 25.7.4.3.
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24.7.1 VM-Exit Controls
The VM-exit controls constitute a 32-bit vector that governs the basic operation of 
VM exits. Table 24-10 lists the controls supported. See Chapter 27 for complete 
details of how these controls affect VM exits. 

Table 24-10.  Definitions of VM-Exit Controls

Bit Position(s) Name Description

2 Save debug 
controls

This control determines whether DR7 and the 
IA32_DEBUGCTL MSR are saved on VM exit.

The first processors to support the virtual-machine 
extensions supported only the 1-setting of this control.

9 Host address-
space size

On processors that support Intel 64 architecture, this 
control determines whether a logical processor is in 64-bit 
mode after the next VM exit. Its value is loaded into CS.L, 
IA32_EFER.LME, and IA32_EFER.LMA on every VM exit.1

This control must be 0 on processors that do not support 
Intel 64 architecture.

12 Load 
IA32_PERF_GLOB
AL_CTRL

This control determines whether the 
IA32_PERF_GLOBAL_CTRL MSR is loaded on VM exit.

15 Acknowledge 
interrupt on exit

This control affects VM exits due to external interrupts:

• If such a VM exit occurs and this control is 1, the logical 
processor acknowledges the interrupt controller, 
acquiring the interrupt’s vector. The vector is stored in 
the VM-exit interruption-information field, which is 
marked valid.

• If such a VM exit occurs and this control is 0, the 
interrupt is not acknowledged and the VM-exit 
interruption-information field is marked invalid.

18 Save IA32_PAT This control determines whether the IA32_PAT MSR is 
saved on VM exit.

19 Load IA32_PAT This control determines whether the IA32_PAT MSR is 
loaded on VM exit.

20 Save IA32_EFER This control determines whether the IA32_EFER MSR is 
saved on VM exit.

21 Load IA32_EFER This control determines whether the IA32_EFER MSR is 
loaded on VM exit.

22 Save VMX-
preemption timer 
value

This control determines whether the value of the VMX-
preemption timer is saved on VM exit.
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All other bits in this field are reserved, some to 0 and some to 1. Software should 
consult the VMX capability MSRs IA32_VMX_EXIT_CTLS and 
IA32_VMX_TRUE_EXIT_CTLS (see Appendix A.4) to determine how it should set the 
reserved bits. Failure to set reserved bits properly causes subsequent VM entries to 
fail (see Section 26.2.1.2).

The first processors to support the virtual-machine extensions supported only the 1-
settings of bits 0–8, 10, 11, 13, 14, 16, and 17. The VMX capability MSR 
IA32_VMX_EXIT_CTLS always reports that these bits must be 1. Logical processors 
that support the 0-settings of any of these bits will support the VMX capability MSR 
IA32_VMX_TRUE_EXIT_CTLS MSR, and software should consult this MSR to discover 
support for the 0-settings of these bits. Software that is not aware of the functionality 
of any one of these bits should set that bit to 1.

24.7.2 VM-Exit Controls for MSRs
A VMM may specify lists of MSRs to be stored and loaded on VM exits. The following 
VM-exit control fields determine how MSRs are stored on VM exits:

• VM-exit MSR-store count (32 bits). This field specifies the number of MSRs to 
be stored on VM exit. It is recommended that this count not exceed 512 bytes.1 
Otherwise, unpredictable processor behavior (including a machine check) may 
result during VM exit.

• VM-exit MSR-store address (64 bits). This field contains the physical address 
of the VM-exit MSR-store area. The area is a table of entries, 16 bytes per entry, 
where the number of entries is given by the VM-exit MSR-store count. The format 
of each entry is given in Table 24-11. If the VM-exit MSR-store count is not zero, 
the address must be 16-byte aligned.

See Section 27.4 for how this area is used on VM exits.

NOTES:
1. Since Intel 64 architecture specifies that IA32_EFER.LMA is always set to the logical-AND of 

CR0.PG and IA32_EFER.LME, and since CR0.PG is always 1 in VMX operation, IA32_EFER.LMA is 
always identical to IA32_EFER.LME in VMX operation.

1. Future implementations may allow more MSRs to be stored reliably. Software should consult the 
VMX capability MSR IA32_VMX_MISC to determine the number supported (see Appendix A.6).

Table 24-11.  Format of an MSR Entry
Bit Position(s) Contents

31:0 MSR index

63:32 Reserved

127:64 MSR data
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The following VM-exit control fields determine how MSRs are loaded on VM exits:
• VM-exit MSR-load count (32 bits). This field contains the number of MSRs to 

be loaded on VM exit. It is recommended that this count not exceed 512 bytes. 
Otherwise, unpredictable processor behavior (including a machine check) may 
result during VM exit.1

• VM-exit MSR-load address (64 bits). This field contains the physical address of 
the VM-exit MSR-load area. The area is a table of entries, 16 bytes per entry, 
where the number of entries is given by the VM-exit MSR-load count (see 
Table 24-11). If the VM-exit MSR-load count is not zero, the address must be 
16-byte aligned.

See Section 27.6 for how this area is used on VM exits.

24.8 VM-ENTRY CONTROL FIELDS
The VM-entry control fields govern the behavior of VM entries. They are discussed in 
Sections 24.8.1 through 24.8.3.

24.8.1 VM-Entry Controls
The VM-entry controls constitute a 32-bit vector that governs the basic operation 
of VM entries. Table 24-12 lists the controls supported. See Chapter 26 for how these 
controls affect VM entries.

1. Future implementations may allow more MSRs to be loaded reliably. Software should consult the 
VMX capability MSR IA32_VMX_MISC to determine the number supported (see Appendix A.6).

Table 24-12.  Definitions of VM-Entry Controls
Bit Position(s) Name Description

2 Load debug 
controls

This control determines whether DR7 and the 
IA32_DEBUGCTL MSR are loaded on VM exit.

The first processors to support the virtual-machine 
extensions supported only the 1-setting of this control.

9 IA-32e mode guest On processors that support Intel 64 architecture, this control 
determines whether the logical processor is in IA-32e mode 
after VM entry. Its value is loaded into IA32_EFER.LMA as 
part of VM entry.1

This control must be 0 on processors that do not support 
Intel 64 architecture.

10 Entry to SMM This control determines whether the logical processor is in 
system-management mode (SMM) after VM entry. This 
control must be 0 for any VM entry from outside SMM.
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All other bits in this field are reserved, some to 0 and some to 1. Software should 
consult the VMX capability MSRs IA32_VMX_ENTRY_CTLS and 
IA32_VMX_TRUE_ENTRY_CTLS (see Appendix A.5) to determine how it should set 
the reserved bits. Failure to set reserved bits properly causes subsequent VM entries 
to fail (see Section 26.2.1.3).

The first processors to support the virtual-machine extensions supported only the 1-
settings of bits 0–8 and 12. The VMX capability MSR IA32_VMX_ENTRY_CTLS always 
reports that these bits must be 1. Logical processors that support the 0-settings of 
any of these bits will support the VMX capability MSR IA32_VMX_TRUE_ENTRY_CTLS 
MSR, and software should consult this MSR to discover support for the 0-settings of 
these bits. Software that is not aware of the functionality of any one of these bits 
should set that bit to 1.

24.8.2 VM-Entry Controls for MSRs
A VMM may specify a list of MSRs to be loaded on VM entries. The following VM-entry 
control fields manage this functionality:
• VM-entry MSR-load count (32 bits). This field contains the number of MSRs to 

be loaded on VM entry. It is recommended that this count not exceed 512 bytes. 
Otherwise, unpredictable processor behavior (including a machine check) may 
result during VM entry.1

11 Deactivate dual-
monitor treatment

If set to 1, the default treatment of SMIs and SMM is in effect 
after the VM entry (see Section 33.15.7). This control must 
be 0 for any VM entry from outside SMM.

13 Load 
IA32_PERF_GLOBA
L_CTRL

This control determines whether the 
IA32_PERF_GLOBAL_CTRL MSR is loaded on VM entry.

14 Load IA32_PAT This control determines whether the IA32_PAT MSR is loaded 
on VM entry.

15 Load IA32_EFER This control determines whether the IA32_EFER MSR is 
loaded on VM entry.

NOTES:
1. Bit 5 of the IA32_VMX_MISC MSR is read as 1 on any logical processor that supports the 1-setting 

of the “unrestricted guest” VM-execution control. If it is read as 1, every VM exit stores the value of 
IA32_EFER.LMA into the “IA-32e mode guest” VM-entry control (see Section 27.2).

1. Future implementations may allow more MSRs to be loaded reliably. Software should consult the 
VMX capability MSR IA32_VMX_MISC to determine the number supported (see Appendix A.6).

Table 24-12.  Definitions of VM-Entry Controls (Contd.)
Bit Position(s) Name Description
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• VM-entry MSR-load address (64 bits). This field contains the physical address 
of the VM-entry MSR-load area. The area is a table of entries, 16 bytes per entry, 
where the number of entries is given by the VM-entry MSR-load count. The 
format of entries is described in Table 24-11. If the VM-entry MSR-load count is 
not zero, the address must be 16-byte aligned.

See Section 26.4 for details of how this area is used on VM entries.

24.8.3 VM-Entry Controls for Event Injection
VM entry can be configured to conclude by delivering an event through the IDT (after 
all guest state and MSRs have been loaded). This process is called event injection 
and is controlled by the following three VM-entry control fields:
• VM-entry interruption-information field (32 bits). This field provides details 

about the event to be injected. Table 24-13 describes the field.

— The vector (bits 7:0) determines which entry in the IDT is used or which 
other event is injected.

— The interruption type (bits 10:8) determines details of how the injection is 
performed. In general, a VMM should use the type hardware exception for 
all exceptions other than breakpoint exceptions (#BP; generated by INT3) 
and overflow exceptions (#OF; generated by INTO); it should use the type 
software exception for #BP and #OF. The type other event is used for 
injection of events that are not delivered through the IDT.

— For exceptions, the deliver-error-code bit (bit 11) determines whether 
delivery pushes an error code on the guest stack.

Table 24-13.  Format of the VM-Entry Interruption-Information Field
Bit 
Position(s)

Content

7:0 Vector of interrupt or exception

10:8 Interruption type:

0: External interrupt
1: Reserved
2: Non-maskable interrupt (NMI)
3: Hardware exception
4: Software interrupt
5: Privileged software exception
6: Software exception
7: Other event

11 Deliver error code (0 = do not deliver; 1 = deliver)

30:12 Reserved

31 Valid
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— VM entry injects an event if and only if the valid bit (bit 31) is 1. The valid bit 
in this field is cleared on every VM exit (see Section 27.2).

• VM-entry exception error code (32 bits). This field is used if and only if the 
valid bit (bit 31) and the deliver-error-code bit (bit 11) are both set in the 
VM-entry interruption-information field.

• VM-entry instruction length (32 bits). For injection of events whose type is 
software interrupt, software exception, or privileged software exception, this 
field is used to determine the value of RIP that is pushed on the stack.

See Section 26.5 for details regarding the mechanics of event injection, including the 
use of the interruption type and the VM-entry instruction length.

VM exits clear the valid bit (bit 31) in the VM-entry interruption-information field.

24.9 VM-EXIT INFORMATION FIELDS
The VMCS contains a section of read-only fields that contain information about the 
most recent VM exit. Attempts to write to these fields with VMWRITE fail (see 
“VMWRITE—Write Field to Virtual-Machine Control Structure” in Chapter 29 of the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C).

24.9.1 Basic VM-Exit Information
The following VM-exit information fields provide basic information about a VM exit:
• Exit reason (32 bits). This field encodes the reason for the VM exit and has the 

structure given in Table 24-14.

Table 24-14.  Format of Exit Reason

Bit 
Position(s)

Contents

15:0 Basic exit reason

27:16 Reserved (cleared to 0)

28 Pending MTF VM exit

29 VM exit from VMX root operation

30 Reserved (cleared to 0)

31 VM-entry failure (0 = true VM exit; 1 = VM-entry failure)
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— Bits 15:0 provide basic information about the cause of the VM exit (if bit 31 is 
clear) or of the VM-entry failure (if bit 31 is set). Appendix C enumerates the 
basic exit reasons.

— Bit 28 is set only by an SMM VM exit (see Section 33.15.2) that took priority 
over an MTF VM exit (see Section 25.7.2) that would have occurred had the 
SMM VM exit not occurred. See Section 33.15.2.3.

— Bit 29 is set if and only if the processor was in VMX root operation at the time 
the VM exit occurred. This can happen only for SMM VM exits. See Section 
33.15.2.

— Because some VM-entry failures load processor state from the host-state 
area (see Section 26.7), software must be able to distinguish such cases from 
true VM exits. Bit 31 is used for that purpose.

• Exit qualification (64 bits; 32 bits on processors that do not support Intel 64 
architecture). This field contains additional information about the cause of 
VM exits due to the following: debug exceptions; page-fault exceptions; start-up 
IPIs (SIPIs); task switches; INVEPT; INVLPG;INVVPID; LGDT; LIDT; LLDT; LTR; 
SGDT; SIDT; SLDT; STR; VMCLEAR; VMPTRLD; VMPTRST; VMREAD; VMWRITE; 
VMXON; control-register accesses; MOV DR; I/O instructions; and MWAIT. The 
format of the field depends on the cause of the VM exit. See Section 27.2.1 for 
details.

• Guest-linear address (64 bits; 32 bits on processors that do not support 
Intel 64 architecture). This field is used in the following cases:

— VM exits due to attempts to execute LMSW with a memory operand.

— VM exits due to attempts to execute INS or OUTS.

— VM exits due to system-management interrupts (SMIs) that arrive 
immediately after retirement of I/O instructions.

— Certain VM exits due to EPT violations
See Section 27.2.1 and Section 33.15.2.3 for details of when and how this field is 
used.

• Guest-physical address (64 bits). This field is used VM exits due to EPT 
violations and EPT misconfigurations. See Section 27.2.1 for details of when and 
how this field is used.

24.9.2 Information for VM Exits Due to Vectored Events
Event-specific information is provided for VM exits due to the following vectored 
events: exceptions (including those generated by the instructions INT3, INTO, 
BOUND, and UD2); external interrupts that occur while the “acknowledge interrupt 
on exit” VM-exit control is 1; and non-maskable interrupts (NMIs). This information 
is provided in the following fields:
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• VM-exit interruption information (32 bits). This field receives basic 
information associated with the event causing the VM exit. Table 24-15 describes 
this field.

• VM-exit interruption error code (32 bits). For VM exits caused by hardware 
exceptions that would have delivered an error code on the stack, this field 
receives that error code.

Section 27.2.2 provides details of how these fields are saved on VM exits.

24.9.3 Information for VM Exits That Occur During Event Delivery
Additional information is provided for VM exits that occur during event delivery in 
VMX non-root operation.1 This information is provided in the following fields:
• IDT-vectoring information (32 bits). This field receives basic information 

associated with the event that was being delivered when the VM exit occurred. 
Table 24-16 describes this field.

Table 24-15.  Format of the VM-Exit Interruption-Information Field
Bit Position(s) Content

7:0 Vector of interrupt or exception

10:8 Interruption type:

0: External interrupt
1: Not used
2: Non-maskable interrupt (NMI)
3: Hardware exception
4 – 5: Not used
6: Software exception
7: Not used

11 Error code valid (0 = invalid; 1 = valid)

12 NMI unblocking due to IRET

30:13 Reserved (cleared to 0)

31 Valid

1. This includes cases in which the event delivery was caused by event injection as part of 
VM entry; see Section 26.5.1.2.

Table 24-16.  Format of the IDT-Vectoring Information Field
Bit 
Position(s)

Content

7:0 Vector of interrupt or exception
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• IDT-vectoring error code (32 bits). For VM exits the occur during delivery of 
hardware exceptions that would have delivered an error code on the stack, this 
field receives that error code.

See Section 27.2.3 provides details of how these fields are saved on VM exits.

24.9.4 Information for VM Exits Due to Instruction Execution
The following fields are used for VM exits caused by attempts to execute certain 
instructions in VMX non-root operation:
• VM-exit instruction length (32 bits). For VM exits resulting from instruction 

execution, this field receives the length in bytes of the instruction whose 
execution led to the VM exit.1 See Section 27.2.4 for details of when and how this 
field is used.

• VM-exit instruction information (32 bits). This field is used for VM exits due 
to attempts to execute INS, INVEPT, INVVPID, LIDT, LGDT, LLDT, LTR, OUTS, 
SIDT, SGDT, SLDT, STR, VMCLEAR, VMPTRLD, VMPTRST, VMREAD, VMWRITE, or 
VMXON.2 The format of the field depends on the cause of the VM exit. See 
Section 27.2.4 for details.

10:8 Interruption type:

0: External interrupt
1: Not used
2: Non-maskable interrupt (NMI)
3: Hardware exception
4: Software interrupt
5: Privileged software exception
6: Software exception
7: Not used

11 Error code valid (0 = invalid; 1 = valid)

12 Undefined

30:13 Reserved (cleared to 0)

31 Valid

1. This field is also used for VM exits that occur during the delivery of a software interrupt or soft-
ware exception.

2. Whether the processor provides this information on VM exits due to attempts to execute INS or 
OUTS can be determined by consulting the VMX capability MSR IA32_VMX_BASIC (see Appendix 
A.1).

Table 24-16.  Format of the IDT-Vectoring Information Field (Contd.)
Bit 
Position(s)

Content
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The following fields (64 bits each; 32 bits on processors that do not support Intel 64 
architecture) are used only for VM exits due to SMIs that arrive immediately after 
retirement of I/O instructions. They provide information about that I/O instruction:
• I/O RCX. The value of RCX before the I/O instruction started.
• I/O RSI. The value of RSI before the I/O instruction started.
• I/O RDI. The value of RDI before the I/O instruction started.
• I/O RIP. The value of RIP before the I/O instruction started (the RIP that 

addressed the I/O instruction).

24.9.5 VM-Instruction Error Field
The 32-bit VM-instruction error field does not provide information about the most 
recent VM exit. In fact, it is not modified on VM exits. Instead, it provides information 
about errors encountered by a non-faulting execution of one of the VMX instructions.

24.10 SOFTWARE USE OF THE VMCS AND RELATED 
STRUCTURES

This section details guidelines that software should observe when using a VMCS and 
related structures. It also provides descriptions of consequences for failing to follow 
guidelines.

24.10.1 Software Use of Virtual-Machine Control Structures
To ensure proper processor behavior, software should observe certain guidelines 
when using an active VMCS.

No VMCS should ever be active on more than one logical processor. If a VMCS is to be 
“migrated” from one logical processor to another, the first logical processor should 
execute VMCLEAR for the VMCS (to make it inactive on that logical processor and to 
ensure that all VMCS data are in memory) before the other logical processor 
executes VMPTRLD for the VMCS (to make it active on the second logical processor). 
A VMCS that is made active on more than one logical processor may become 
corrupted (see below).

Software should use the VMREAD and VMWRITE instructions to access the different 
fields in the current VMCS (see Section 24.10.2). Software should never access or 
modify the VMCS data of an active VMCS using ordinary memory operations, in part 
because the format used to store the VMCS data is implementation-specific and not 
architecturally defined, and also because a logical processor may maintain some 
VMCS data of an active VMCS on the processor and not in the VMCS region. The 
following items detail some of the hazards of accessing VMCS data using ordinary 
memory operations:
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• Any data read from a VMCS with an ordinary memory read does not reliably 
reflect the state of the VMCS. Results may vary from time to time or from logical 
processor to logical processor.

• Writing to a VMCS with an ordinary memory write is not guaranteed to have a 
deterministic effect on the VMCS. Doing so may cause the VMCS to become 
corrupted (see below).

(Software can avoid these hazards by removing any linear-address mappings to a 
VMCS region before executing a VMPTRLD for that region and by not remapping it 
until after executing VMCLEAR for that region.)

If a logical processor leaves VMX operation, any VMCSs active on that logical 
processor may be corrupted (see below). To prevent such corruption of a VMCS that 
may be used either after a return to VMX operation or on another logical processor, 
software should VMCLEAR that VMCS before executing the VMXOFF instruction or 
removing power from the processor (e.g., as part of a transition to the S3 and S4 
power states).

This section has identified operations that may cause a VMCS to become corrupted. 
These operations may cause the VMCS’s data to become undefined. Behavior may be 
unpredictable if that VMCS used subsequently on any logical processor. The following 
items detail some hazards of VMCS corruption:
• VM entries may fail for unexplained reasons or may load undesired processor 

state.
• The processor may not correctly support VMX non-root operation as documented 

in Chapter 25 and may generate unexpected VM exits.
• VM exits may load undesired processor state, save incorrect state into the VMCS, 

or cause the logical processor to transition to a shutdown state.

24.10.2 VMREAD, VMWRITE, and Encodings of VMCS Fields
Every field of the VMCS is associated with a 32-bit value that is its encoding. The 
encoding is provided in an operand to VMREAD and VMWRITE when software wishes 
to read or write that field. These instructions fail if given, in 64-bit mode, an operand 
that sets an encoding bit beyond bit 32. See Chapter 29 of the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3C, for a description of these 
instructions.

The structure of the 32-bit encodings of the VMCS components is determined princi-
pally by the width of the fields and their function in the VMCS. See Table 24-17.

Table 24-17.  Structure of VMCS Component Encoding

Bit Position(s) Contents

0 Access type (0 = full; 1 = high); must be full for 16-bit, 32-bit, and natural-
width fields
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The following items detail the meaning of the bits in each encoding:
• Field width. Bits 14:13 encode the width of the field.

— A value of 0 indicates a 16-bit field.

— A value of 1 indicates a 64-bit field.

— A value of 2 indicates a 32-bit field.

— A value of 3 indicates a natural-width field. Such fields have 64 bits on 
processors that support Intel 64 architecture and 32 bits on processors that 
do not.

Fields whose encodings use value 1 are specially treated to allow 32-bit software 
access to all 64 bits of the field. Such access is allowed by defining, for each such 
field, an encoding that allows direct access to the high 32 bits of the field. See 
below.

• Field type. Bits 11:10 encode the type of VMCS field: control, guest-state, host-
state, or read-only data. The last category includes the VM-exit information fields 
and the VM-instruction error field.

• Index. Bits 9:1 distinguish components with the same field width and type.
• Access type. Bit 0 must be 0 for all fields except for 64-bit fields (those with 

field-width 1; see above). A VMREAD or VMWRITE using an encoding with this bit 
cleared to 0 accesses the entire field. For a 64-bit field with field-width 1, a 
VMREAD or VMWRITE using an encoding with this bit set to 1 accesses only the 
high 32 bits of the field.

Appendix B gives the encodings of all fields in the VMCS.

9:1 Index

11:10 Type:

0: control
1: read-only data
2: guest state
3: host state

12 Reserved (must be 0)

14:13 Width:

0: 16-bit
1: 64-bit
2: 32-bit
3: natural-width

31:15 Reserved (must be 0)

Table 24-17.  Structure of VMCS Component Encoding (Contd.)

Bit Position(s) Contents
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The following describes the operation of VMREAD and VMWRITE based on processor 
mode, VMCS-field width, and access type:
• 16-bit fields:

— A VMREAD returns the value of the field in bits 15:0 of the destination 
operand; other bits of the destination operand are cleared to 0.

— A VMWRITE writes the value of bits 15:0 of the source operand into the VMCS 
field; other bits of the source operand are not used.

• 32-bit fields:

— A VMREAD returns the value of the field in bits 31:0 of the destination 
operand; in 64-bit mode, bits 63:32 of the destination operand are cleared to 
0.

— A VMWRITE writes the value of bits 31:0 of the source operand into the VMCS 
field; in 64-bit mode, bits 63:32 of the source operand are not used.

• 64-bit fields and natural-width fields using the full access type outside IA-32e 
mode.

— A VMREAD returns the value of bits 31:0 of the field in its destination 
operand; bits 63:32 of the field are ignored.

— A VMWRITE writes the value of its source operand to bits 31:0 of the field and 
clears bits 63:32 of the field.

• 64-bit fields and natural-width fields using the full access type in 64-bit mode 
(only on processors that support Intel 64 architecture).

— A VMREAD returns the value of the field in bits 63:0 of the destination 
operand

— A VMWRITE writes the value of bits 63:0 of the source operand into the VMCS 
field.

• 64-bit fields using the high access type.

— A VMREAD returns the value of bits 63:32 of the field in bits 31:0 of the 
destination operand; in 64-bit mode, bits 63:32 of the destination operand 
are cleared to 0.

— A VMWRITE writes the value of bits 31:0 of the source operand to bits 63:32 
of the field; in 64-bit mode, bits 63:32 of the source operand are not used.

Software seeking to read a 64-bit field outside IA-32e mode can use VMREAD with 
the full access type (reading bits 31:0 of the field) and VMREAD with the high access 
type (reading bits 63:32 of the field); the order of the two VMREAD executions is not 
important. Software seeking to modify a 64-bit field outside IA-32e mode should first 
use VMWRITE with the full access type (establishing bits 31:0 of the field while 
clearing bits 63:32) and then use VMWRITE with the high access type (establishing 
bits 63:32 of the field).
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24.10.3 Initializing a VMCS
Software should initialize fields in a VMCS (using VMWRITE) before using the VMCS 
for VM entry. Failure to do so may result in unpredictable behavior; for example, a 
VM entry may fail for unexplained reasons, or a successful transition (VM entry or 
VM exit) may load processor state with unexpected values.

It is not necessary to initialize fields that the logical processor will not use. (For 
example, it is not necessary to unitize the MSR-bitmap address if the “use MSR 
bitmaps” VM-execution control is 0.)

A processor maintains some VMCS information that cannot be modified with the 
VMWRITE instruction; this includes a VMCS’s launch state (see Section 24.1). Such 
information may be stored in the VMCS data portion of a VMCS region. Because the 
format of this information is implementation-specific, there is no way for software to 
know, when it first allocates a region of memory for use as a VMCS region, how the 
processor will determine this information from the contents of the memory region.

In addition to its other functions, the VMCLEAR instruction initializes any implemen-
tation-specific information in the VMCS region referenced by its operand. To avoid 
the uncertainties of implementation-specific behavior, software should execute 
VMCLEAR on a VMCS region before making the corresponding VMCS active with 
VMPTRLD for the first time. (Figure 24-1 illustrates how execution of VMCLEAR puts 
a VMCS into a well-defined state.)

The following software usage is consistent with these limitations:
• VMCLEAR should be executed for a VMCS before it is used for VM entry for the 

first time.
• VMLAUNCH should be used for the first VM entry using a VMCS after VMCLEAR 

has been executed for that VMCS.
• VMRESUME should be used for any subsequent VM entry using a VMCS (until the 

next execution of VMCLEAR for the VMCS).

It is expected that, in general, VMRESUME will have lower latency than VMLAUNCH. 
Since “migrating” a VMCS from one logical processor to another requires use of 
VMCLEAR (see Section 24.10.1), which sets the launch state of the VMCS to “clear”, 
such migration requires the next VM entry to be performed using VMLAUNCH. Soft-
ware developers can avoid the performance cost of increased VM-entry latency by 
avoiding unnecessary migration of a VMCS from one logical processor to another.

24.10.4 Software Access to Related Structures
In addition to data in the VMCS region itself, VMX non-root operation can be 
controlled by data structures that are referenced by pointers in a VMCS (for example, 
the I/O bitmaps). While the pointers to these data structures are parts of the VMCS, 
the data structures themselves are not. They are not accessible using VMREAD and 
VMWRITE but by ordinary memory writes.
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Software should ensure that each such data structure is modified only when no 
logical processor with a current VMCS that references it is in VMX non-root operation. 
Doing otherwise may lead to unpredictable behavior (including behaviors identified in 
Section 24.10.1).

24.10.5 VMXON Region
Before executing VMXON, software allocates a region of memory (called the VMXON 
region)1 that the logical processor uses to support VMX operation. The physical 
address of this region (the VMXON pointer) is provided in an operand to VMXON. The 
VMXON pointer is subject to the limitations that apply to VMCS pointers:
• The VMXON pointer must be 4-KByte aligned (bits 11:0 must be zero).
• The VMXON pointer must not set any bits beyond the processor’s physical-

address width.2,3

Before executing VMXON, software should write the VMCS revision identifier (see 
Section 24.2) to the VMXON region. It need not initialize the VMXON region in any 
other way. Software should use a separate region for each logical processor and 
should not access or modify the VMXON region of a logical processor between execu-
tion of VMXON and VMXOFF on that logical processor. Doing otherwise may lead to 
unpredictable behavior (including behaviors identified in Section 24.10.1).

1. The amount of memory required for the VMXON region is the same as that required for a VMCS 
region. This size is implementation specific and can be determined by consulting the VMX capa-
bility MSR IA32_VMX_BASIC (see Appendix A.1).

2. Software can determine a processor’s physical-address width by executing CPUID with 
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

3. If IA32_VMX_BASIC[48] is read as 1, the VMXON pointer must not set any bits in the range 
63:32; see Appendix A.1.
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CHAPTER 25
VMX NON-ROOT OPERATION

In a virtualized environment using VMX, the guest software stack typically runs on a 
logical processor in VMX non-root operation. This mode of operation is similar to that 
of ordinary processor operation outside of the virtualized environment. This chapter 
describes the differences between VMX non-root operation and ordinary processor 
operation with special attention to causes of VM exits (which bring a logical processor 
from VMX non-root operation to root operation). The differences between VMX non-
root operation and ordinary processor operation are described in the following 
sections:
• Section 25.1, “Instructions That Cause VM Exits”
• Section 25.2, “APIC-Access VM Exits”
• Section 25.3, “Other Causes of VM Exits”
• Section 25.4, “Changes to Instruction Behavior in VMX Non-Root Operation”
• Section 25.5, “APIC Accesses That Do Not Cause VM Exits”
• Section 25.6, “Other Changes in VMX Non-Root Operation” 
• Section 25.7, “Features Specific to VMX Non-Root Operation”

Chapter 24, “Virtual-Machine Control Structures,” describes the data control struc-
tures that govern VMX non-root operation. Chapter 26, “VM Entries,” describes the 
operation of VM entries by which the processor transitions from VMX root operation 
to VMX non-root operation. Chapter 27, “VM Exits,” describes the operation of 
VM exits by which the processor transitions from VMX non-root operation to VMX root 
operation.

25.1 INSTRUCTIONS THAT CAUSE VM EXITS
Certain instructions may cause VM exits if executed in VMX non-root operation. 
Unless otherwise specified, such VM exits are “fault-like,” meaning that the instruc-
tion causing the VM exit does not execute and no processor state is updated by the 
instruction. Section 27.1 details architectural state in the context of a VM exit.

Section 25.1.1 defines the prioritization between faults and VM exits for instructions 
subject to both. Section 25.1.2 identifies instructions that cause VM exits whenever 
they are executed in VMX non-root operation (and thus can never be executed in 
VMX non-root operation). Section 25.1.3 identifies instructions that cause VM exits 
depending on the settings of certain VM-execution control fields (see Section 24.6).
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25.1.1 Relative Priority of Faults and VM Exits
The following principles describe the ordering between existing faults and VM exits:
• Certain exceptions have priority over VM exits. These include invalid-opcode 

exceptions, faults based on privilege level,1 and general-protection exceptions 
that are based on checking I/O permission bits in the task-state segment (TSS). 
For example, execution of RDMSR with CPL = 3 generates a general-protection 
exception and not a VM exit.2

• Faults incurred while fetching instruction operands have priority over VM exits 
that are conditioned based on the contents of those operands (see LMSW in 
Section 25.1.3).

• VM exits caused by execution of the INS and OUTS instructions (resulting either 
because the “unconditional I/O exiting” VM-execution control is 1 or because the 
“use I/O bitmaps control is 1) have priority over the following faults: 

— A general-protection fault due to the relevant segment (ES for INS; DS for 
OUTS unless overridden by an instruction prefix) being unusable

— A general-protection fault due to an offset beyond the limit of the relevant 
segment

— An alignment-check exception
• Fault-like VM exits have priority over exceptions other than those mentioned 

above. For example, RDMSR of a non-existent MSR with CPL = 0 generates a 
VM exit and not a general-protection exception.

When Section 25.1.2 or Section 25.1.3 (below) identify an instruction execution that 
may lead to a VM exit, it is assumed that the instruction does not incur a fault that 
takes priority over a VM exit.

25.1.2 Instructions That Cause VM Exits Unconditionally
The following instructions cause VM exits when they are executed in VMX non-root 
operation: CPUID, GETSEC,3 INVD, and XSETBV.4 This is also true of instructions 
introduced with VMX, which include: INVEPT, INVVPID, VMCALL,5 VMCLEAR, 

1. These include faults generated by attempts to execute, in virtual-8086 mode, privileged instruc-
tions that are not recognized in that mode.

2. MOV DR is an exception to this rule; see Section 25.1.3.

3. An execution of GETSEC in VMX non-root operation causes a VM exit if CR4.SMXE[Bit 14] = 1 
regardless of the value of CPL or RAX. An execution of GETSEC causes an invalid-opcode excep-
tion (#UD) if CR4.SMXE[Bit 14] = 0.

4. An execution of XSETBV in VMX non-root operation causes a VM exit if CR4.OSXSAVE[Bit 18] = 
1 regardless of the value of CPL, RAX, RCX, or RDX. An execution of XSETBV causes an invalid-
opcode exception (#UD) if CR4.OSXSAVE[Bit 18] = 0.
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VMLAUNCH, VMPTRLD, VMPTRST, VMREAD, VMRESUME, VMWRITE, VMXOFF, and 
VMXON.

25.1.3 Instructions That Cause VM Exits Conditionally
Certain instructions cause VM exits in VMX non-root operation depending on the 
setting of the VM-execution controls. The following instructions can cause “fault-like” 
VM exits based on the conditions described:
• CLTS. The CLTS instruction causes a VM exit if the bits in position 3 (corre-

sponding to CR0.TS) are set in both the CR0 guest/host mask and the CR0 read 
shadow.

• HLT. The HLT instruction causes a VM exit if the “HLT exiting” VM-execution 
control is 1.

• IN, INS/INSB/INSW/INSD, OUT, OUTS/OUTSB/OUTSW/OUTSD. The 
behavior of each of these instructions is determined by the settings of the 
“unconditional I/O exiting” and “use I/O bitmaps” VM-execution controls:

— If both controls are 0, the instruction executes normally.

— If the “unconditional I/O exiting” VM-execution control is 1 and the “use I/O 
bitmaps” VM-execution control is 0, the instruction causes a VM exit.

— If the “use I/O bitmaps” VM-execution control is 1, the instruction causes a 
VM exit if it attempts to access an I/O port corresponding to a bit set to 1 in 
the appropriate I/O bitmap (see Section 24.6.4). If an I/O operation “wraps 
around” the 16-bit I/O-port space (accesses ports FFFFH and 0000H), the I/O 
instruction causes a VM exit (the “unconditional I/O exiting” VM-execution 
control is ignored if the “use I/O bitmaps” VM-execution control is 1).

See Section 25.1.1 for information regarding the priority of VM exits relative to 
faults that may be caused by the INS and OUTS instructions.

• INVLPG. The INVLPG instruction causes a VM exit if the “INVLPG exiting” 
VM-execution control is 1.

• INVPCID. The INVPCID instruction causes a VM exit if the “INVLPG exiting” and 
“enable INVPCID” VM-execution controls are both 1.1

• LGDT, LIDT, LLDT, LTR, SGDT, SIDT, SLDT, STR. These instructions cause 
VM exits if the “descriptor-table exiting” VM-execution control is 1.2

5. Under the dual-monitor treatment of SMIs and SMM, executions of VMCALL cause SMM VM exits 
in VMX root operation outside SMM. See Section 33.15.2.

1. “Enable INVPCID” is a secondary processor-based VM-execution control. If bit 31 of the primary 
processor-based VM-execution controls is 0, VMX non-root operation functions as if the “enable 
INVPCID” VM-execution control were 0. See Section 24.6.2.

2. “Descriptor-table exiting” is a secondary processor-based VM-execution control. If bit 31 of the 
primary processor-based VM-execution controls is 0, VMX non-root operation functions as if the 
“descriptor-table exiting” VM-execution control were 0. See Section 24.6.2.
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• LMSW. In general, the LMSW instruction causes a VM exit if it would write, for 
any bit set in the low 4 bits of the CR0 guest/host mask, a value different than the 
corresponding bit in the CR0 read shadow. LMSW never clears bit 0 of CR0 
(CR0.PE); thus, LMSW causes a VM exit if either of the following are true:

— The bits in position 0 (corresponding to CR0.PE) are set in both the CR0 
guest/mask and the source operand, and the bit in position 0 is clear in the 
CR0 read shadow.

— For any bit position in the range 3:1, the bit in that position is set in the CR0 
guest/mask and the values of the corresponding bits in the source operand 
and the CR0 read shadow differ.

• MONITOR. The MONITOR instruction causes a VM exit if the “MONITOR exiting” 
VM-execution control is 1.

• MOV from CR3. The MOV from CR3 instruction causes a VM exit if the “CR3-
store exiting” VM-execution control is 1. The first processors to support the 
virtual-machine extensions supported only the 1-setting of this control.

• MOV from CR8. The MOV from CR8 instruction (which can be executed only in 
64-bit mode) causes a VM exit if the “CR8-store exiting” VM-execution control is 
1. If this control is 0, the behavior of the MOV from CR8 instruction is modified if 
the “use TPR shadow” VM-execution control is 1 (see Section 25.4).

• MOV to CR0. The MOV to CR0 instruction causes a VM exit unless the value of its 
source operand matches, for the position of each bit set in the CR0 guest/host 
mask, the corresponding bit in the CR0 read shadow. (If every bit is clear in the 
CR0 guest/host mask, MOV to CR0 cannot cause a VM exit.)

• MOV to CR3. The MOV to CR3 instruction causes a VM exit unless the “CR3-load 
exiting” VM-execution control is 0 or the value of its source operand is equal to 
one of the CR3-target values specified in the VMCS. If the CR3-target count in n, 
only the first n CR3-target values are considered; if the CR3-target count is 0, 
MOV to CR3 always causes a VM exit.
The first processors to support the virtual-machine extensions supported only
the 1-setting of the “CR3-load exiting” VM-execution control. These processors
always consult the CR3-target controls to determine whether an execution of
MOV to CR3 causes a VM exit.

• MOV to CR4. The MOV to CR4 instruction causes a VM exit unless the value of its 
source operand matches, for the position of each bit set in the CR4 guest/host 
mask, the corresponding bit in the CR4 read shadow.

• MOV to CR8. The MOV to CR8 instruction (which can be executed only in 64-bit 
mode) causes a VM exit if the “CR8-load exiting” VM-execution control is 1. If this 
control is 0, the behavior of the MOV to CR8 instruction is modified if the “use TPR 
shadow” VM-execution control is 1 (see Section 25.4) and it may cause a trap-
like VM exit (see below).

• MOV DR. The MOV DR instruction causes a VM exit if the “MOV-DR exiting” 
VM-execution control is 1. Such VM exits represent an exception to the principles 
identified in Section 25.1.1 in that they take priority over the following: general-
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protection exceptions based on privilege level; and invalid-opcode exceptions 
that occur because CR4.DE=1 and the instruction specified access to DR4 or DR5.

• MWAIT. The MWAIT instruction causes a VM exit if the “MWAIT exiting” 
VM-execution control is 1. If this control is 0, the behavior of the MWAIT 
instruction may be modified (see Section 25.4).

• PAUSE.The behavior of each of this instruction depends on CPL and the settings 
of the “PAUSE exiting” and “PAUSE-loop exiting” VM-execution controls:1

— CPL = 0.

• If the “PAUSE exiting” and “PAUSE-loop exiting” VM-execution controls 
are both 0, the PAUSE instruction executes normally.

• If the “PAUSE exiting” VM-execution control is 1, the PAUSE instruction 
causes a VM exit (the “PAUSE-loop exiting” VM-execution control is 
ignored if CPL = 0 and the “PAUSE exiting” VM-execution control is 1).

• If the “PAUSE exiting” VM-execution control is 0 and the “PAUSE-loop 
exiting” VM-execution control is 1, the following treatment applies.

The logical processor determines the amount of time between this 
execution of PAUSE and the previous execution of PAUSE at CPL 0. If this 
amount of time exceeds the value of the VM-execution control field 
PLE_Gap, the processor considers this execution to be the first execution 
of PAUSE in a loop. (It also does so for the first execution of PAUSE at CPL 
0 after VM entry.)

Otherwise, the logical processor determines the amount of time since the 
most recent execution of PAUSE that was considered to be the first in a 
loop. If this amount of time exceeds the value of the VM-execution control 
field PLE_Window, a VM exit occurs.

For purposes of these computations, time is measured based on a counter 
that runs at the same rate as the timestamp counter (TSC).

— CPL > 0.

• If the “PAUSE exiting” VM-execution control is 0, the PAUSE instruction 
executes normally.

• If the “PAUSE exiting” VM-execution control is 1, the PAUSE instruction 
causes a VM exit.

The “PAUSE-loop exiting” VM-execution control is ignored if CPL > 0.
• RDMSR. The RDMSR instruction causes a VM exit if any of the following are true:

— The “use MSR bitmaps” VM-execution control is 0.

1. “PAUSE-loop exiting” is a secondary processor-based VM-execution control. If bit 31 of the pri-
mary processor-based VM-execution controls is 0, VMX non-root operation functions as if the 
“PAUSE-loop exiting” VM-execution control were 0. See Section 24.6.2.
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— The value of ECX is not in the range 00000000H – 00001FFFH or 
C0000000H – C0001FFFH.

— The value of ECX is in the range 00000000H – 00001FFFH and bit n in read 
bitmap for low MSRs is 1, where n is the value of ECX.

— The value of ECX is in the range C0000000H – C0001FFFH and bit n in read 
bitmap for high MSRs is 1, where n is the value of ECX & 00001FFFH.

See Section 24.6.9 for details regarding how these bitmaps are identified.
• RDPMC. The RDPMC instruction causes a VM exit if the “RDPMC exiting” 

VM-execution control is 1.
• RDRAND. The RDRAND instruction causes a VM exit if the “RDRAND exiting” 

VM-execution control is 1.1

• RDTSC. The RDTSC instruction causes a VM exit if the “RDTSC exiting” 
VM-execution control is 1.

• RDTSCP. The RDTSCP instruction causes a VM exit if the “RDTSC exiting” and 
“enable RDTSCP” VM-execution controls are both 1.2

• RSM. The RSM instruction causes a VM exit if executed in system-management 
mode (SMM).3

• WBINVD. The WBINVD instruction causes a VM exit if the “WBINVD exiting” 
VM-execution control is 1.4

• WRMSR. The WRMSR instruction causes a VM exit if any of the following are 
true:

— The “use MSR bitmaps” VM-execution control is 0.

— The value of ECX is not in the range 00000000H – 00001FFFH or 
C0000000H – C0001FFFH.

— The value of ECX is in the range 00000000H – 00001FFFH and bit n in write 
bitmap for low MSRs is 1, where n is the value of ECX.

— The value of ECX is in the range C0000000H – C0001FFFH and bit n in write 
bitmap for high MSRs is 1, where n is the value of ECX & 00001FFFH.

1. “RDRAND exiting” is a secondary processor-based VM-execution control. If bit 31 of the primary 
processor-based VM-execution controls is 0, VMX non-root operation functions as if the 
“RDRAND exiting” VM-execution control were 0. See Section 24.6.2.

2. “Enable RDTSCP” is a secondary processor-based VM-execution control. If bit 31 of the primary 
processor-based VM-execution controls is 0, VMX non-root operation functions as if the “enable 
RDTSCP” VM-execution control were 0. See Section 24.6.2.

3. Execution of the RSM instruction outside SMM causes an invalid-opcode exception regardless of 
whether the processor is in VMX operation. It also does so in VMX root operation in SMM; see 
Section 33.15.3.

4. “WBINVD exiting” is a secondary processor-based VM-execution control. If bit 31 of the primary 
processor-based VM-execution controls is 0, VMX non-root operation functions as if the 
“WBINVD exiting” VM-execution control were 0. See Section 24.6.2.
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See Section 24.6.9 for details regarding how these bitmaps are identified.
If an execution of WRMSR does not cause a VM exit as specified above and
ECX = 808H (indicating the TPR MSR), instruction behavior is modified if the
“virtualize x2APIC mode” VM-execution control is 1 (see Section 25.4) and it
may cause a trap-like VM exit (see below).1

The MOV to CR8 and WRMSR instructions may cause “trap-like” VM exits. In such a 
case, the instruction completes before the VM exit occurs and that processor state is 
updated by the instruction (for example, the value of CS:RIP saved in the guest-state 
area of the VMCS references the next instruction).

Specifically, a trap-like VM exit occurs following either instruction if the execution 
reduces the value of the TPR shadow below that of the TPR threshold VM-execution 
control field (see Section 24.6.8 and Section 25.4) and the following hold:
• For MOV to CR8:

— The “CR8-load exiting” VM-execution control is 0.

— The “use TPR shadow” VM-execution control is 1.
• For WRMSR:

— The “use MSR bitmaps” VM-execution control is 1, the value of ECX is 808H, 
and bit 808H in write bitmap for low MSRs is 0 (see above).

— The “virtualize x2APIC mode” VM-execution control is 1.

25.2 APIC-ACCESS VM EXITS
If the “virtualize APIC accesses” VM-execution control is 1, an attempt to access 
memory using a physical address on the APIC-access page (see Section 24.6.8) 
causes a VM exit.2,3 Such a VM exit is called an APIC-access VM exit.

Whether an operation that attempts to access memory with a physical address on the 
APIC-access page causes an APIC-access VM exit may be qualified based on the type 
of access. Section 25.2.1 describes the treatment of linear accesses, while Section 
25.2.3 describes that of physical accesses. Section 25.2.4 discusses accesses to the 
TPR field on the APIC-access page (called VTPR accesses), which do not, if the “use 
TPR shadow” VM-execution control is 1, cause APIC-access VM exits.

1. “Virtualize x2APIC mode” is a secondary processor-based VM-execution control. If bit 31 of the 
primary processor-based VM-execution controls is 0, VMX non-root operation functions as if the 
“virtualize x2APIC mode” VM-execution control were 0. See Section 24.6.2.

2. “Virtualize APIC accesses” is a secondary processor-based VM-execution control. If bit 31 of the 
primary processor-based VM-execution controls is 0, VMX non-root operation functions as if the 
“virtualize APIC accesses” VM-execution control were 0. See Section 24.6.2.

3. Even when addresses are translated using EPT (see Section 28.2), the determination of whether 
an APIC-access VM exit occurs depends on an access’s physical address, not its guest-physical 
address.
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25.2.1 Linear Accesses to the APIC-Access Page
An access to the APIC-access page is called a linear access if (1) it results from a 
memory access using a linear address; and (2) the access’s physical address is the 
translation of that linear address. Section 25.2.1.1 specifies which linear accesses to 
the APIC-access page cause APIC-access VM exits.

In general, the treatment of APIC-access VM exits caused by linear accesses is 
similar to that of page faults and EPT violations. Based upon this treatment, Section 
25.2.1.2 specifies the priority of such VM exits with respect to other events, while 
Section 25.2.1.3 discusses instructions that may cause page faults without accessing 
memory and the treatment when they access the APIC-access page.

25.2.1.1  Linear Accesses That Cause APIC-Access VM Exits
Whether a linear access to the APIC-access page causes an APIC-access VM exit 
depends in part of the nature of the translation used by the linear address:
• If the linear access uses a translation with a 4-KByte page, it causes an APIC-

access VM exit.
• If the linear access uses a translation with a large page (2-MByte, 4-MByte, or 

1-GByte), the access may or may not cause an APIC-access VM exit. Section 
25.5.1 describes the treatment of such accesses that do not cause an APIC-
access VM exits.
If CR0.PG = 1 and EPT is in use (the “enable EPT” VM-execution control is 1), a
linear access uses a translation with a large page only if a large page is specified
by both the guest paging structures and the EPT paging structures.1

It is recommended that software configure the paging structures so that any transla-
tion to the APIC-access page uses a 4-KByte page.

A linear access to the APIC-access page might not cause an APIC-access VM exit if 
the “enable EPT” VM-execution control is 1 and software has not properly invalidate 
information cached from the EPT paging structures:
• At time t1, EPT was in use, the EPTP value was X, and some guest-physical 

address Y translated to an address that was not on the APIC-access page at that 
time. (This might be because the “virtualize APIC accesses” VM-execution control 
was 0.)

• At later time t2, EPT is in use, the EPTP value is X, and a memory access uses a 
linear address that translates to Y, which now translates to an address on the 

1. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation, 
CR0.PG must be 1 unless the “unrestricted guest” VM-execution control and bit 31 of the primary 
processor-based VM-execution controls are both 1. “Enable EPT” is a secondary processor-based 
VM-execution control. If bit 31 of the primary processor-based VM-execution controls is 0, VMX 
non-root operation functions as if the “enable EPT” VM-execution control were 0. See Section 
24.6.2.
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APIC-access page. (This implies that the “virtualize APIC accesses” VM-execution 
control is 1 at this time.)

• Software did not execute the INVEPT instruction between times t1 and t2, either 
with the all-context INVEPT type or with the single-context INVEPT type and X as 
the INVEPT descriptor.

In this case, the linear access at time t2 might or might not cause an APIC-access 
VM exit. If it does not, the access operates on memory on the APIC-access page.

Software can avoid this situation through appropriate use of the INVEPT instruction; 
see Section 28.3.3.4.

A linear access to the APIC-access page might not cause an APIC-access VM exit if 
the “enable VPID” VM-execution control is 1 and software has not properly invali-
dated the TLBs and paging-structure caches:
• At time t1, the processor was in VMX non-root operation with non-zero VPID X, 

and some linear address Y translated to an address that was not on the APIC-
access page at that time. (This might be because the “virtualize APIC accesses” 
VM-execution control was 0.)

• At later time t2, the processor was again in VMX non-root operation with VPID X, 
and a memory access uses linear address, which now translates to an address on 
the APIC-access page. (This implies that the “virtualize APIC accesses” VM-
execution control is 1 at this time.)

• Software did not execute the INVVPID instruction in any of the following ways 
between times t1 and t2:

— With the individual-address INVVPID type and an INVVPID descriptor 
specifying VPID X and linear address Y.

— With the single-context INVVPID type and an INVVPID descriptor specifying 
VPID X.

— With the all-context INVEPT type.

— With the single-context-retaining-globals INVVPID type and an INVVPID 
descriptor specifying VPID X (assuming that, at time t1, the translation for Y 
was global; see Section 4.10, “Caching Translation Information” in Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 3A for details 
regarding global translations).

In this case, the linear access at time t2 might or might not cause an APIC-access 
VM exit. If it does not, the access operates on memory on the APIC-access page.

Software can avoid this situation through appropriate use of the INVVPID instruction; 
see Section 28.3.3.3.

25.2.1.2  Priority of APIC-Access VM Exits Caused by Linear Accesses
The following items specify the priority relative to other events of APIC-access 
VM exits caused by linear accesses.
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• The priority of an APIC-access VM exit on a linear access to memory is below that 
of any page fault or EPT violation that that access may incur. That is, a linear 
access does not cause an APIC-access VM exit if it would cause a page fault or an 
EPT violation.

• A linear access does not cause an APIC-access VM exit until after the accessed 
bits are set in the paging structures.

• A linear write access will not cause an APIC-access VM exit until after the dirty bit 
is set in the appropriate paging structure.

• With respect to all other events, any APIC-access VM exit due to a linear access 
has the same priority as any page fault or EPT violation that the linear access 
could cause. (This item applies to other events that the linear access may 
generate as well as events that may be generated by other accesses by the same 
instruction or operation.)

These principles imply among other things, that an APIC-access VM exit may occur 
during the execution of a repeated string instruction (including INS and OUTS). 
Suppose, for example, that the first n iterations (n may be 0) of such an instruction 
do not access the APIC-access page and that the next iteration does access that 
page. As a result, the first n iterations may complete and be followed by an APIC-
access VM exit. The instruction pointer saved in the VMCS references the repeated 
string instruction and the values of the general-purpose registers reflect the comple-
tion of n iterations.

25.2.1.3  Instructions That May Cause Page Faults or EPT Violations 
Without Accessing Memory

APIC-access VM exits may occur as a result of executing an instruction that can 
cause a page fault or an EPT violation even if that instruction would not access the 
APIC-access page. The following are some examples:
• The CLFLUSH instruction is considered to read from the linear address in its 

source operand. If that address translates to one on the APIC-access page, the 
instruction causes an APIC-access VM exit.

• The ENTER instruction causes a page fault if the byte referenced by the final 
value of the stack pointer is not writable (even though ENTER does not write to 
that byte if its size operand is non-zero). If that byte is writable but is on the 
APIC-access page, ENTER causes an APIC-access VM exit.1

• An execution of the MASKMOVQ or MASKMOVDQU instructions with a zero mask 
may or may not cause a page fault or an EPT violation if the destination page is 
unwritable (the behavior is implementation-specific). An execution with a zero 
mask causes an APIC-access VM exit only on processors for which it could cause 
a page fault or an EPT violation.

1. The ENTER instruction may also cause page faults due to the memory accesses that it actually 
does perform. With regard to APIC-access VM exits, these are treated just as accesses by any 
other instruction.
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• The MONITOR instruction is considered to read from the effective address in RAX. 
If the linear address corresponding to that address translates to one on the APIC-
access page, the instruction causes an APIC-access VM exit.1

• An execution of the PREFETCH instruction that would result in an access to the 
APIC-access page does not cause an APIC-access VM exit.

25.2.2 Guest-Physical Accesses to the APIC-Access Page
An access to the APIC-access page is called a guest-physical access if 
(1) CR0.PG = 1;2 (2) the “enable EPT” VM-execution control is 1;3 (3) the access’s 
physical address is the result of an EPT translation; and (4) either (a) the access was 
not generated by a linear address; or (b) the access’s guest-physical address is not 
the translation of the access’s linear address. Guest-physical accesses include the 
following when guest-physical addresses are being translated using EPT:
• Reads from the guest paging structures when translating a linear address (such 

an access uses a guest-physical address that is not the translation of that linear 
address).

• Loads of the page-directory-pointer-table entries by MOV to CR when the logical 
processor is using (or that causes the logical processor to use) PAE paging.4

• Updates to the accessed and dirty bits in the guest paging structures when using 
a linear address (such an access uses a guest-physical address that is not the 
translation of that linear address).

Section 25.2.2.1 specifies when guest-physical accesses to the APIC-access page 
might not cause APIC-access VM exits. In general, the treatment of APIC-access 
VM exits caused by guest-physical accesses is similar to that of EPT violations. Based 
upon this treatment, Section 25.2.2.2 specifies the priority of such VM exits with 
respect to other events.

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most 
processors that support VMX operation also support Intel 64 architecture. For IA-32 processors, 
this notation refers to the 32-bit forms of those registers (EAX, EIP, ESP, EFLAGS, etc.). In a few 
places, notation such as EAX is used to refer specifically to lower 32 bits of the indicated regis-
ter.

2. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation, 
CR0.PG must be 1 unless the “unrestricted guest” VM-execution control and bit 31 of the primary 
processor-based VM-execution controls are both 1.

3. “Enable EPT” is a secondary processor-based VM-execution control. If bit 31 of the primary pro-
cessor-based VM-execution controls is 0, VMX non-root operation functions as if the “enable 
EPT” VM-execution control were 0. See Section 24.6.2.

4. A logical processor uses PAE paging if CR0.PG = 1, CR4.PAE = 1 and IA32_EFER.LMA = 0. See 
Section 4.4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.
Vol. 3C 25-11



VMX NON-ROOT OPERATION
25.2.2.1  Guest-Physical Accesses That Might Not Cause APIC-Access 
VM Exits

Whether a guest-physical access to the APIC-access page causes an APIC-access 
VM exit depends on the nature of the EPT translation used by the guest-physical 
address and on how software is managing information cached from the EPT paging 
structures. The following items detail cases in which a guest-physical access to the 
APIC-access page might not cause an APIC-access VM exit:
• If the access uses a guest-physical address whose translation to the APIC-access 

page uses an EPT PDPTE that maps a 1-GByte page (because bit 7 of the EPT 
PDPTE is 1).

• If the access uses a guest-physical address whose translation to the APIC-access 
page uses an EPT PDE that maps a 2-MByte page (because bit 7 of the EPT PDE 
is 1).

• Software has not properly invalidated information cached from the EPT paging 
structures:

— At time t1, EPT was in use, the EPTP value was X, and some guest-physical 
address Y translated to an address that was not on the APIC-access page at 
that time. (This might be because the “virtualize APIC accesses” VM-
execution control was 0.)

— At later time t2, the EPTP value is X and a memory access uses guest-physical 
address Y, which now translates to an address on the APIC-access page. (This 
implies that the “virtualize APIC accesses” VM-execution control is 1 at this 
time.)

— Software did not execute the INVEPT instruction, either with the all-context 
INVEPT type or with the single-context INVEPT type and X as the INVEPT 
descriptor, between times t1 and t2.

In any of the above cases, the guest-physical access at time t2 might or might not an 
APIC-access VM exit. If it does not, the access operates on memory on the APIC-
access page.

Software can avoid this situation through appropriate use of the INVEPT instruction; 
see Section 28.3.3.4.

25.2.2.2  Priority of APIC-Access VM Exits Caused by Guest-Physical 
Accesses

The following items specify the priority relative to other events of APIC-access 
VM exits caused by guest-physical accesses.
• The priority of an APIC-access VM exit caused by a guest-physical access to 

memory is below that of any EPT violation that that access may incur. That is, a 
guest-physical access does not cause an APIC-access VM exit if it would cause an 
EPT violation.
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• With respect to all other events, any APIC-access VM exit caused by a guest-
physical access has the same priority as any EPT violation that the guest-physical 
access could cause.

25.2.3 Physical Accesses to the APIC-Access Page
An access to the APIC-access page is called a physical access if (1) either (a) the 
“enable EPT” VM-execution control is 0;1 or (b) the access’s physical address is not 
the result of a translation through the EPT paging structures; and (2) either (a) the 
access is not generated by a linear address; or (b) the access’s physical address is 
not the translation of its linear address.

Physical accesses include the following:
• If the “enable EPT” VM-execution control is 0:

— Reads from the paging structures when translating a linear address.

— Loads of the page-directory-pointer-table entries by MOV to CR when the 
logical processor is using (or that causes the logical processor to use) PAE 
paging.2

— Updates to the accessed and dirty bits in the paging structures.
• If the “enable EPT” VM-execution control is 1, accesses to the EPT paging 

structures.
• Any of the following accesses made by the processor to support VMX non-root 

operation:

— Accesses to the VMCS region.

— Accesses to data structures referenced (directly or indirectly) by physical 
addresses in VM-execution control fields in the VMCS. These include the I/O 
bitmaps, the MSR bitmaps, and the virtual-APIC page.

• Accesses that effect transitions into and out of SMM.3 These include the 
following:

— Accesses to SMRAM during SMI delivery and during execution of RSM.

— Accesses during SMM VM exits (including accesses to MSEG) and during 
VM entries that return from SMM.

1. “Enable EPT” is a secondary processor-based VM-execution control. If bit 31 of the primary pro-
cessor-based VM-execution controls is 0, VMX non-root operation functions as if the “enable 
EPT” VM-execution control were 0. See Section 24.6.2.

2. A logical processor uses PAE paging if CR0.PG = 1, CR4.PAE = 1 and IA32_EFER.LMA = 0. See 
Section 4.4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

3. Technically, these accesses do not occur in VMX non-root operation. They are included here for 
clarity.
Vol. 3C 25-13



VMX NON-ROOT OPERATION
A physical access to the APIC-access page may or may not cause an APIC-access 
VM exit. (A physical write to the APIC-access page may write to memory as specified 
in Section 25.5.2 before causing the APIC-access VM exit.) The priority of an APIC-
access VM exit caused by physical access is not defined relative to other events that 
the access may cause. Section 25.5.2 describes the treatment of physical accesses to 
the APIC-access page that do not cause APIC-access VM exits.

It is recommended that software not set the APIC-access address to any of those 
used by physical memory accesses (identified above). For example, it should not set 
the APIC-access address to the physical address of any of the active paging struc-
tures if the “enable EPT” VM-execution control is 0.

25.2.4 VTPR Accesses
A memory access is a VTPR access if all of the following hold: (1) the “use TPR 
shadow” VM-execution control is 1; (2) the access is not for an instruction fetch; 
(3) the access is at most 32 bits in width; and (4) the access is to offset 80H on the 
APIC-access page.

A memory access is not a VTPR access (even if it accesses only bytes in the range 
80H–83H on the APIC-access page) if any of the following hold: (1) the “use TPR 
shadow” VM-execution control is 0; (2) the access is for an instruction fetch; (3) the 
access is more than 32 bits in width; or (4) the access is to some offset is on the 
APIC-access page other than 80H. For example, a 16-bit access to offset 81H on the 
APIC-access page is not a VTPR access, even if the “use TPR shadow” VM-execution 
control is 1.

In general, VTPR accesses do not cause APIC-access VM exits. Instead, they are 
treated as described in Section 25.5.3. Physical VTPR accesses (see Section 25.2.3) 
may or may not cause APIC-access VM exits; see Section 25.5.2.

25.3 OTHER CAUSES OF VM EXITS
In addition to VM exits caused by instruction execution, the following events can 
cause VM exits:
• Exceptions. Exceptions (faults, traps, and aborts) cause VM exits based on the 

exception bitmap (see Section 24.6.3). If an exception occurs, its vector (in the 
range 0–31) is used to select a bit in the exception bitmap. If the bit is 1, a 
VM exit occurs; if the bit is 0, the exception is delivered normally through the 
guest IDT. This use of the exception bitmap applies also to exceptions generated 
by the instructions INT3, INTO, BOUND, and UD2.
Page faults (exceptions with vector 14) are specially treated. When a page fault 
occurs, a logical processor consults (1) bit 14 of the exception bitmap; (2) the 
error code produced with the page fault [PFEC]; (3) the page-fault error-code 
mask field [PFEC_MASK]; and (4) the page-fault error-code match field 
[PFEC_MATCH]. It checks if PFEC & PFEC_MASK = PFEC_MATCH. If there is 
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equality, the specification of bit 14 in the exception bitmap is followed (for 
example, a VM exit occurs if that bit is set). If there is inequality, the meaning of 
that bit is reversed (for example, a VM exit occurs if that bit is clear).
Thus, if software desires VM exits on all page faults, it can set bit 14 in the 
exception bitmap to 1 and set the page-fault error-code mask and match fields 
each to 00000000H. If software desires VM exits on no page faults, it can set bit 
14 in the exception bitmap to 1, the page-fault error-code mask field to 
00000000H, and the page-fault error-code match field to FFFFFFFFH.

• Triple fault. A VM exit occurs if the logical processor encounters an exception 
while attempting to call the double-fault handler and that exception itself does 
not cause a VM exit due to the exception bitmap. This applies to the case in which 
the double-fault exception was generated within VMX non-root operation, the 
case in which the double-fault exception was generated during event injection by 
VM entry, and to the case in which VM entry is injecting a double-fault exception.

• External interrupts. An external interrupt causes a VM exit if the “external-
interrupt exiting” VM-execution control is 1. Otherwise, the interrupt is delivered 
normally through the IDT. (If a logical processor is in the shutdown state or the 
wait-for-SIPI state, external interrupts are blocked. The interrupt is not delivered 
through the IDT and no VM exit occurs.)

• Non-maskable interrupts (NMIs). An NMI causes a VM exit if the “NMI 
exiting” VM-execution control is 1. Otherwise, it is delivered using descriptor 2 of 
the IDT. (If a logical processor is in the wait-for-SIPI state, NMIs are blocked. The 
NMI is not delivered through the IDT and no VM exit occurs.)

• INIT signals. INIT signals cause VM exits. A logical processor performs none of 
the operations normally associated with these events. Such exits do not modify 
register state or clear pending events as they would outside of VMX operation. (If 
a logical processor is in the wait-for-SIPI state, INIT signals are blocked. They do 
not cause VM exits in this case.)

• Start-up IPIs (SIPIs). SIPIs cause VM exits. If a logical processor is not in 
the wait-for-SIPI activity state when a SIPI arrives, no VM exit occurs and the 
SIPI is discarded. VM exits due to SIPIs do not perform any of the normal 
operations associated with those events: they do not modify register state as 
they would outside of VMX operation. (If a logical processor is not in the wait-for-
SIPI state, SIPIs are blocked. They do not cause VM exits in this case.)

• Task switches. Task switches are not allowed in VMX non-root operation. Any 
attempt to effect a task switch in VMX non-root operation causes a VM exit. See 
Section 25.6.2.

• System-management interrupts (SMIs). If the logical processor is using the 
dual-monitor treatment of SMIs and system-management mode (SMM), SMIs 
cause SMM VM exits. See Section 33.15.2.1

1. Under the dual-monitor treatment of SMIs and SMM, SMIs also cause SMM VM exits if they occur 
in VMX root operation outside SMM. If the processor is using the default treatment of SMIs and 
SMM, SMIs are delivered as described in Section 33.14.1.
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• VMX-preemption timer. A VM exit occurs when the timer counts down to zero. 
See Section 25.7.1 for details of operation of the VMX-preemption timer.
Debug-trap exceptions and higher priority events take priority over VM exits 
caused by the VMX-preemption timer. VM exits caused by the VMX-preemption 
timer take priority over VM exits caused by the “NMI-window exiting” 
VM-execution control and lower priority events. 
These VM exits wake a logical processor from the same inactive states as would 
a non-maskable interrupt. Specifically, they wake a logical processor from the 
shutdown state and from the states entered using the HLT and MWAIT instruc-
tions. These VM exits do not occur if the logical processor is in the wait-for-SIPI 
state.

In addition, there are controls that cause VM exits based on the readiness of guest 
software to receive interrupts:
• If the “interrupt-window exiting” VM-execution control is 1, a VM exit occurs 

before execution of any instruction if RFLAGS.IF = 1 and there is no blocking of 
events by STI or by MOV SS (see Table 24-3). Such a VM exit occurs immediately 
after VM entry if the above conditions are true (see Section 26.6.5).
Non-maskable interrupts (NMIs) and higher priority events take priority over 
VM exits caused by this control. VM exits caused by this control take priority over 
external interrupts and lower priority events. 
These VM exits wake a logical processor from the same inactive states as would 
an external interrupt. Specifically, they wake a logical processor from the states 
entered using the HLT and MWAIT instructions. These VM exits do not occur if the 
logical processor is in the shutdown state or the wait-for-SIPI state.

• If the “NMI-window exiting” VM-execution control is 1, a VM exit occurs before 
execution of any instruction if there is no virtual-NMI blocking and there is no 
blocking of events by MOV SS (see Table 24-3). (A logical processor may also 
prevent such a VM exit if there is blocking of events by STI.) Such a VM exit 
occurs immediately after VM entry if the above conditions are true (see Section 
26.6.6).
VM exits caused by the VMX-preemption timer and higher priority events take 
priority over VM exits caused by this control. VM exits caused by this control take 
priority over non-maskable interrupts (NMIs) and lower priority events. 
These VM exits wake a logical processor from the same inactive states as would 
an NMI. Specifically, they wake a logical processor from the shutdown state and 
from the states entered using the HLT and MWAIT instructions. These VM exits do 
not occur if the logical processor is in the wait-for-SIPI state.
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25.4 CHANGES TO INSTRUCTION BEHAVIOR IN VMX NON-
ROOT OPERATION

The behavior of some instructions is changed in VMX non-root operation. Some of 
these changes are determined by the settings of certain VM-execution control fields. 
The following items detail such changes:
• CLTS. Behavior of the CLTS instruction is determined by the bits in position 3 

(corresponding to CR0.TS) in the CR0 guest/host mask and the CR0 read 
shadow:

— If bit 3 in the CR0 guest/host mask is 0, CLTS clears CR0.TS normally (the 
value of bit 3 in the CR0 read shadow is irrelevant in this case), unless CR0.TS 
is fixed to 1 in VMX operation (see Section 23.8), in which case CLTS causes 
a general-protection exception.

— If bit 3 in the CR0 guest/host mask is 1 and bit 3 in the CR0 read shadow is 0, 
CLTS completes but does not change the contents of CR0.TS.

— If the bits in position 3 in the CR0 guest/host mask and the CR0 read shadow 
are both 1, CLTS causes a VM exit.

• INVPCID. Behavior of the INVPCID instruction is determined first by the setting 
of the “enable INVPCID” VM-execution control:1

— If the “enable INVPCID” VM-execution control is 0, INVPCID causes an 
invalid-opcode exception (#UD).

— If the “enable INVPCID” VM-execution control is 1, treatment is based on the 
setting of the “INVLPG exiting” VM-execution control:

• If the “INVLPG exiting” VM-execution control is 0, INVPCID operates 
normally.

• If the “INVLPG exiting” VM-execution control is 1, INVPCID causes a 
VM exit.

• IRET. Behavior of IRET with regard to NMI blocking (see Table 24-3) is 
determined by the settings of the “NMI exiting” and “virtual NMIs” VM-execution 
controls:

— If the “NMI exiting” VM-execution control is 0, IRET operates normally and 
unblocks NMIs. (If the “NMI exiting” VM-execution control is 0, the “virtual 
NMIs” control must be 0; see Section 26.2.1.1.)

— If the “NMI exiting” VM-execution control is 1, IRET does not affect blocking 
of NMIs. If, in addition, the “virtual NMIs” VM-execution control is 1, the 
logical processor tracks virtual-NMI blocking. In this case, IRET removes any 
virtual-NMI blocking.

1. “Enable INVPCID” is a secondary processor-based VM-execution control. If bit 31 of the primary 
processor-based VM-execution controls is 0, VMX non-root operation functions as if the “enable 
INVPCID” VM-execution control were 0. See Section 24.6.2.
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The unblocking of NMIs or virtual NMIs specified above occurs even if IRET 
causes a fault.

• LMSW. Outside of VMX non-root operation, LMSW loads its source operand into 
CR0[3:0], but it does not clear CR0.PE if that bit is set. In VMX non-root 
operation, an execution of LMSW that does not cause a VM exit (see Section 
25.1.3) leaves unmodified any bit in CR0[3:0] corresponding to a bit set in the 
CR0 guest/host mask. An attempt to set any other bit in CR0[3:0] to a value not 
supported in VMX operation (see Section 23.8) causes a general-protection 
exception. Attempts to clear CR0.PE are ignored without fault.

• MOV from CR0. The behavior of MOV from CR0 is determined by the CR0 
guest/host mask and the CR0 read shadow. For each position corresponding to a 
bit clear in the CR0 guest/host mask, the destination operand is loaded with the 
value of the corresponding bit in CR0. For each position corresponding to a bit set 
in the CR0 guest/host mask, the destination operand is loaded with the value of 
the corresponding bit in the CR0 read shadow. Thus, if every bit is cleared in the 
CR0 guest/host mask, MOV from CR0 reads normally from CR0; if every bit is set 
in the CR0 guest/host mask, MOV from CR0 returns the value of the CR0 read 
shadow.
Depending on the contents of the CR0 guest/host mask and the CR0 read 
shadow, bits may be set in the destination that would never be set when reading 
directly from CR0.

• MOV from CR3. If the “enable EPT” VM-execution control is 1 and an execution 
of MOV from CR3 does not cause a VM exit (see Section 25.1.3), the value loaded 
from CR3 is a guest-physical address; see Section 28.2.1.

• MOV from CR4. The behavior of MOV from CR4 is determined by the CR4 
guest/host mask and the CR4 read shadow. For each position corresponding to a 
bit clear in the CR4 guest/host mask, the destination operand is loaded with the 
value of the corresponding bit in CR4. For each position corresponding to a bit set 
in the CR4 guest/host mask, the destination operand is loaded with the value of 
the corresponding bit in the CR4 read shadow. Thus, if every bit is cleared in the 
CR4 guest/host mask, MOV from CR4 reads normally from CR4; if every bit is set 
in the CR4 guest/host mask, MOV from CR4 returns the value of the CR4 read 
shadow.
Depending on the contents of the CR4 guest/host mask and the CR4 read 
shadow, bits may be set in the destination that would never be set when reading 
directly from CR4.

• MOV from CR8. Behavior of the MOV from CR8 instruction (which can be 
executed only in 64-bit mode) is determined by the settings of the “CR8-store 
exiting” and “use TPR shadow” VM-execution controls:

— If both controls are 0, MOV from CR8 operates normally.

— If the “CR8-store exiting” VM-execution control is 0 and the “use TPR 
shadow” VM-execution control is 1, MOV from CR8 reads from the TPR 
shadow. Specifically, it loads bits 3:0 of its destination operand with the value 
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of bits 7:4 of byte 80H of the virtual-APIC page (see Section 24.6.8). Bits 
63:4 of the destination operand are cleared.

— If the “CR8-store exiting” VM-execution control is 1, MOV from CR8 causes a 
VM exit; the “use TPR shadow” VM-execution control is ignored in this case.

• MOV to CR0. An execution of MOV to CR0 that does not cause a VM exit (see 
Section 25.1.3) leaves unmodified any bit in CR0 corresponding to a bit set in the 
CR0 guest/host mask. Treatment of attempts to modify other bits in CR0 depends 
on the setting of the “unrestricted guest” VM-execution control:1

— If the control is 0, MOV to CR0 causes a general-protection exception if it 
attempts to set any bit in CR0 to a value not supported in VMX operation (see 
Section 23.8).

— If the control is 1, MOV to CR0 causes a general-protection exception if it 
attempts to set any bit in CR0 other than bit 0 (PE) or bit 31 (PG) to a value 
not supported in VMX operation. It remains the case, however, that MOV to 
CR0 causes a general-protection exception if it would result in CR0.PE = 0 
and CR0.PG = 1 or if it would result in CR0.PG = 1, CR4.PAE = 0, and 
IA32_EFER.LME = 1.

• MOV to CR3. If the “enable EPT” VM-execution control is 1 and an execution of 
MOV to CR3 does not cause a VM exit (see Section 25.1.3), the value loaded into 
CR3 is treated as a guest-physical address; see Section 28.2.1.

— If PAE paging is not being used, the instruction does not use the guest-
physical address to access memory and it does not cause it to be translated 
through EPT.2

— If PAE paging is being used, the instruction translates the guest-physical 
address through EPT and uses the result to load the four (4) page-directory-
pointer-table entries (PDPTEs). The instruction does not use the guest-
physical addresses the PDPTEs to access memory and it does not cause them 
to be translated through EPT.

• MOV to CR4. An execution of MOV to CR4 that does not cause a VM exit (see 
Section 25.1.3) leaves unmodified any bit in CR4 corresponding to a bit set in the 
CR4 guest/host mask. Such an execution causes a general-protection exception 
if it attempts to set any bit in CR4 (not corresponding to a bit set in the CR4 
guest/host mask) to a value not supported in VMX operation (see Section 23.8).

• MOV to CR8. Behavior of the MOV to CR8 instruction (which can be executed 
only in 64-bit mode) is determined by the settings of the “CR8-load exiting” and 
“use TPR shadow” VM-execution controls:

— If both controls are 0, MOV to CR8 operates normally.

1. “Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the pri-
mary processor-based VM-execution controls is 0, VMX non-root operation functions as if the 
“unrestricted guest” VM-execution control were 0. See Section 24.6.2.

2. A logical processor uses PAE paging if CR0.PG = 1, CR4.PAE = 1 and IA32_EFER.LMA = 0. See 
Section 4.4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.
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— If the “CR8-load exiting” VM-execution control is 0 and the “use TPR shadow” 
VM-execution control is 1, MOV to CR8 writes to the TPR shadow. Specifically, 
it stores bits 3:0 of its source operand into bits 7:4 of byte 80H of the virtual-
APIC page (see Section 24.6.8); bits 3:0 of that byte and bytes 129-131 of 
that page are cleared. Such a store may cause a VM exit to occur after it 
completes (see Section 25.1.3). 

— If the “CR8-load exiting” VM-execution control is 1, MOV to CR8 causes a 
VM exit; the “use TPR shadow” VM-execution control is ignored in this case.

• MWAIT.  Behavior of the MWAIT instruction (which always causes an invalid-
opcode exception—#UD—if CPL > 0) is determined by the setting of the “MWAIT 
exiting” VM-execution control:

— If the “MWAIT exiting” VM-execution control is 1, MWAIT causes a VM exit.

— If the “MWAIT exiting” VM-execution control is 0, MWAIT operates normally if 
any of the following is true: (1) the “interrupt-window exiting” VM-execution 
control is 0; (2) ECX[0] is 0; or (3) RFLAGS.IF = 1.

— If the “MWAIT exiting” VM-execution control is 0, the “interrupt-window 
exiting” VM-execution control is 1, ECX[0] = 1, and RFLAGS.IF = 0, MWAIT 
does not cause the processor to enter an implementation-dependent 
optimized state; instead, control passes to the instruction following the 
MWAIT instruction.

• RDMSR. Section 25.1.3 identifies when executions of the RDMSR instruction 
cause VM exits. If such an execution causes neither a fault due to CPL > 0 nor a 
VM exit, the instruction’s behavior may be modified for certain values of ECX:

— If ECX contains 10H (indicating the IA32_TIME_STAMP_COUNTER MSR), the 
value returned by the instruction is determined by the setting of the “use TSC 
offsetting” VM-execution control as well as the TSC offset:

• If the control is 0, the instruction operates normally, loading EAX:EDX 
with the value of the IA32_TIME_STAMP_COUNTER MSR.

• If the control is 1, the instruction loads EAX:EDX with the sum (using 
signed addition) of the value of the IA32_TIME_STAMP_COUNTER MSR 
and the value of the TSC offset (interpreted as a signed value).

The 1-setting of the “use TSC-offsetting” VM-execution control does not 
effect executions of RDMSR if ECX contains 6E0H (indicating the 
IA32_TSC_DEADLINE MSR). Such executions return the APIC-timer deadline 
relative to the actual timestamp counter without regard to the TSC offset.

— If ECX contains 808H (indicating the TPR MSR), instruction behavior is 
determined by the setting of the “virtualize x2APIC mode” VM-execution 
control:1

1. “Virtualize x2APIC mode” is a secondary processor-based VM-execution control. If bit 31 of the 
primary processor-based VM-execution controls is 0, VMX non-root operation functions as if the 
“virtualize x2APIC mode” VM-execution control were 0. See Section 24.6.2.
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• If the control is 0, the instruction operates normally. If the local APIC is in 
x2APIC mode, EAX[7:0] is loaded with the value of the APIC’s task-
priority register (EDX and EAX[31:8] are cleared to 0). If the local APIC is 
not in x2APIC mode, a general-protection fault occurs.

• If the control is 1, the instruction loads EAX:EDX with the value of 
bytes 87H:80H of the virtual-APIC page. This occurs even if the local APIC 
is not in x2APIC mode (no general-protection fault occurs because the 
local APIC is not x2APIC mode).

• RDTSC. Behavior of the RDTSC instruction is determined by the settings of the 
“RDTSC exiting” and “use TSC offsetting” VM-execution controls as well as the 
TSC offset:

— If both controls are 0, RDTSC operates normally.

— If the “RDTSC exiting” VM-execution control is 0 and the “use TSC offsetting” 
VM-execution control is 1, RDTSC loads EAX:EDX with the sum (using signed 
addition) of the value of the IA32_TIME_STAMP_COUNTER MSR and the 
value of the TSC offset (interpreted as a signed value).

— If the “RDTSC exiting” VM-execution control is 1, RDTSC causes a VM exit.
• RDTSCP. Behavior of the RDTSCP instruction is determined first by the setting of 

the “enable RDTSCP” VM-execution control:1

— If the “enable RDTSCP” VM-execution control is 0, RDTSCP causes an invalid-
opcode exception (#UD).

— If the “enable RDTSCP” VM-execution control is 1, treatment is based on the 
settings of the “RDTSC exiting” and “use TSC offsetting” VM-execution 
controls as well as the TSC offset:

• If both controls are 0, RDTSCP operates normally.

• If the “RDTSC exiting” VM-execution control is 0 and the “use TSC 
offsetting” VM-execution control is 1, RDTSCP loads EAX:EDX with the 
sum (using signed addition) of the value of the 
IA32_TIME_STAMP_COUNTER MSR and the value of the TSC offset (inter-
preted as a signed value); it also loads ECX with the value of bits 31:0 of 
the IA32_TSC_AUX MSR.

• If the “RDTSC exiting” VM-execution control is 1, RDTSCP causes a 
VM exit.

• SMSW. The behavior of SMSW is determined by the CR0 guest/host mask and 
the CR0 read shadow. For each position corresponding to a bit clear in the CR0 
guest/host mask, the destination operand is loaded with the value of the corre-
sponding bit in CR0. For each position corresponding to a bit set in the CR0 
guest/host mask, the destination operand is loaded with the value of the corre-

1. “Enable RDTSCP” is a secondary processor-based VM-execution control. If bit 31 of the primary 
processor-based VM-execution controls is 0, VMX non-root operation functions as if the “enable 
RDTSCP” VM-execution control were 0. See Section 24.6.2.
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sponding bit in the CR0 read shadow. Thus, if every bit is cleared in the CR0 
guest/host mask, MOV from CR0 reads normally from CR0; if every bit is set in 
the CR0 guest/host mask, MOV from CR0 returns the value of the CR0 read 
shadow.
Note the following: (1) for any memory destination or for a 16-bit register desti-
nation, only the low 16 bits of the CR0 guest/host mask and the CR0 read shadow 
are used (bits 63:16 of a register destination are left unchanged); (2) for a 32-bit 
register destination, only the low 32 bits of the CR0 guest/host mask and the CR0 
read shadow are used (bits 63:32 of the destination are cleared); and 
(3) depending on the contents of the CR0 guest/host mask and the CR0 read 
shadow, bits may be set in the destination that would never be set when reading 
directly from CR0.

• WRMSR. Section 25.1.3 identifies when executions of the WRMSR instruction 
cause VM exits. If such an execution neither a fault due to CPL > 0 nor a VM exit, 
the instruction’s behavior may be modified for certain values of ECX:

— If ECX contains 79H (indicating IA32_BIOS_UPDT_TRIG MSR), no microcode 
update is loaded, and control passes to the next instruction. This implies that 
microcode updates cannot be loaded in VMX non-root operation.

— If ECX contains 808H (indicating the TPR MSR) and either EDX or EAX[31:8] 
is non-zero, a general-protection fault occurs (this is true even if the logical 
processor is not in VMX non-root operation). Otherwise, instruction behavior 
is determined by the setting of the “virtualize x2APIC mode” VM-execution 
control and the value of the TPR-threshold VM-execution control field:

• If the control is 0, the instruction operates normally. If the local APIC is in 
x2APIC mode, the value of EAX[7:0] is written to the APIC’s task-priority 
register. If the local APIC is not in x2APIC mode, a general-protection 
fault occurs.

• If the control is 1, the instruction stores the value of EAX:EDX to 
bytes 87H:80H of the virtual-APIC page. This store occurs even if the 
local APIC is not in x2APIC mode (no general-protection fault occurs 
because the local APIC is not x2APIC mode). The store may cause a 
VM exit to occur after the instruction completes (see Section 25.1.3).

• The 1-setting of the “use TSC-offsetting” VM-execution control does not 
effect executions of WRMSR if ECX contains 10H (indicating the 
IA32_TIME_STAMP_COUNTER MSR). Such executions modify the actual 
timestamp counter without regard to the TSC offset.

• The 1-setting of the “use TSC-offsetting” VM-execution control does not 
effect executions of WRMSR if ECX contains 6E0H (indicating the 
IA32_TSC_DEADLINE MSR). Such executions modify the APIC-timer 
deadline relative to the actual timestamp counter without regard to the 
TSC offset.
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25.5 APIC ACCESSES THAT DO NOT CAUSE VM EXITS
As noted in Section 25.2, if the “virtualize APIC accesses” VM-execution control is 1, 
most memory accesses to the APIC-access page (see Section 24.6.2) cause APIC-
access VM exits.1 Section 25.2 identifies potential exceptions. These are covered in 
Section 25.5.1 through Section 25.5.3.

In some cases, an attempt to access memory on the APIC-access page is converted 
to an access to the virtual-APIC page (see Section 24.6.8). In these cases, the access 
uses the memory type reported in bit 53:50 of the IA32_VMX_BASIC MSR (see 
Appendix A.1).

25.5.1 Linear Accesses to the APIC-Access Page Using Large-Page 
Translations

As noted in Section 25.2.1, a linear access to the APIC-access page using translation 
with a large page (2-MByte, 4-MByte, or 1-GByte) may or may not cause an APIC-
access VM exit. If it does not and the access is not a VTPR access (see Section 
25.2.4), the access operates on memory on the APIC-access page. Section 25.5.3 
describes the treatment if there is no APIC-access VM exit and the access is a VTPR 
access.

25.5.2 Physical Accesses to the APIC-Access Page
A physical access to the APIC-access page may or may not cause an APIC-access 
VM exit. If it does not and the access is not a VTPR access (see Section 25.2.4), the 
access operates on memory on the APIC-access page (this may happen if the access 
causes an APIC-access VM exit). Section 25.5.3 describes the treatment if there is no 
APIC-access VM exit and the access is a VTPR access.

25.5.3 VTPR Accesses
As noted in Section 25.2.4, a memory access is a VTPR access if all of the following 
hold: (1) the “use TPR shadow” VM-execution control is 1; (2) the access is not for 
an instruction fetch; (3) the access is at most 32 bits in width; and (4) the access is 
to offset 80H on the APIC-access page.

The treatment of VTPR accesses depends on the nature of the access:
• A linear VTPR access using a translation with a 4-KByte page does not cause an 

APIC-access VM exit. Instead, it is converted so that, instead of accessing offset 

1. “Virtualize APIC accesses” is a secondary processor-based VM-execution control. If bit 31 of the 
primary processor-based VM-execution controls is 0, VMX non-root operation functions as if the 
“virtualize APIC accesses” VM-execution control were 0. See Section 24.6.2.
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80H on the APIC-access page, it accesses offset 80H on the virtual-APIC page. 
Further details are provided in Section 25.5.3.1 to Section 25.5.3.3.

• A linear VTPR access using a translation with a large page (2-MByte, 4-MByte, or 
1-GByte) may be treated in either of two ways:

— It may operate on memory on the APIC-access page. The details in Section 
25.5.3.1 to Section 25.5.3.3 do not apply.

— It may be converted so that, instead of accessing offset 80H on the APIC-
access page, it accesses offset 80H on the virtual-APIC page. Further details 
are provided in Section 25.5.3.1 to Section 25.5.3.3.

• A physical VTPR access may be treated in one of three ways:

— It may cause an APIC-access VM exit. The details in Section 25.5.3.1 to 
Section 25.5.3.3 do not apply.

— It may operate on memory on the APIC-access page (and possibly then cause 
an APIC-access VM exit). The details in Section 25.5.3.1 to Section 25.5.3.3 
do not apply.

— It may be converted so that, instead of accessing offset 80H on the APIC-
access page, it accesses offset 80H on the virtual-APIC page. Further details 
are provided in Section 25.5.3.1 to Section 25.5.3.3.

Linear VTPR accesses never cause APIC-access VM exits (recall that an access is a 
VTPR access only if the “use TPR shadow” VM-execution control is 1).

25.5.3.1  Treatment of Individual VTPR Accesses
The following items detail the treatment of VTPR accesses:
• VTPR read accesses. Such an access completes normally (reading data from the 

field at offset 80H on the virtual-APIC page).
The following items detail certain instructions that are considered to perform
read accesses and how they behavior when accessing the VTPR:

— A VTPR access using the CLFLUSH instruction flushes data for offset 80H on 
the virtual-APIC page.

— A VTPR access using the LMSW instruction may cause a VM exit due to the 
CR0 guest/host mask and the CR0 read shadow.

— A VTPR access using the MONITOR instruction causes the logical processor to 
monitor offset 80H on the virtual-APIC page.

— A VTPR access using the PREFETCH instruction may prefetch data; if so, it is 
from offset 80H on the virtual-APIC page.

• VTPR write accesses. Such an access completes normally (writing data to the 
field at offset 80H on the virtual-APIC page) and causes a TPR-shadow update 
(see Section 25.5.3.3).
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The following items detail certain instructions that are considered to perform
write accesses and how they behavior when accessing the VTPR:

— The ENTER instruction is considered to write to VTPR if the byte referenced by 
the final value of the stack pointer is at offset 80H on the APIC-access page 
(even though ENTER does not write to that byte if its size operand is non-
zero). The instruction is followed by a TPR-shadow update.

— A VTPR access using the SMSW instruction stores data determined by the 
current CR0 contents, the CR0 guest/host mask, and the CR0 read shadow. 
The instruction is followed by a TPR-shadow update.

25.5.3.2  Operations with Multiple Accesses
Some operations may access multiple addresses. These operations include the 
execution of some instructions and the delivery of events through the IDT (including 
those injected with VM entry). In some cases, the Intel® 64 architecture specifies the 
ordering of these memory accesses. The following items describe the treatment of 
VTPR accesses that are part of such multi-access operations:
• Read-modify-write instructions may first perform a VTPR read access and then a 

VTPR write access. Both accesses complete normally (as described in Section 
25.5.3.1). The instruction is followed by a TPR-shadow update (see Section 
25.5.3.3).

• Some operations may perform a VTPR write access and subsequently cause a 
fault. This situation is treated as follows:

— If the fault leads to a VM exit, no TPR-shadow update occurs.

— If the fault does not lead to a VM exit, a TPR-shadow update occurs after fault 
delivery completes and before execution of the fault handler.

• If an operation includes a VTPR access and an access to some other field on the 
APIC-access page, the latter access causes an APIC-access VM exit as described 
in Section 25.2.
If the operation performs a VTPR write access before the APIC-access VM exit,
there is no TPR-shadow update.

• Suppose that the first iteration of a repeated string instruction (including OUTS) 
that accesses the APIC-access page performs a VTPR read access and that the 
next iteration would read from the APIC-access page using an offset other than 
80H. The following items describe the behavior of the logical processor:

— The iteration that performs the VTPR read access completes successfully, 
reading data from offset 80H on the virtual-APIC page.

— The iteration that would read from the other offset causes an APIC-access 
VM exit. The instruction pointer saved in the VMCS references the repeated 
string instruction and the values of the general-purpose registers are such 
that iteration would be repeated if the instruction were restarted.
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• Suppose that the first iteration of a repeated string instruction (including INS) 
that accesses the APIC-access page performs a VTPR write access and that the 
next iteration would write to the APIC-access page using an offset other than 
80H. The following items describe the behavior of the logical processor:

— The iteration that performs the VTPR write access writes data to offset 80H on 
the virtual-APIC page. The write is followed by a TPR-shadow update, which 
may cause a VM exit (see Section 25.5.3.3).

— If the TPR-shadow update does cause a VM exit, the instruction pointer saved 
in the VMCS references the repeated string instruction and the values of the 
general-purpose registers are such that the next iteration would be 
performed if the instruction were restarted.

— If the TPR-shadow update does not cause a VM exit, the iteration that would 
write to the other offset causes an APIC-access VM exit. The instruction 
pointer saved in the VMCS references the repeated string instruction and the 
values of the general-purpose registers are such that that iteration would be 
repeated if the instruction were restarted.

• Suppose that the last iteration of a repeated string instruction (including INS) 
performs a VTPR write access. The iteration writes data to offset 80H on the 
virtual-APIC page. The write is followed by a TPR-shadow update, which may 
cause a VM exit (see Section 25.5.3.3). If it does, the instruction pointer saved in 
the VMCS references the instruction after the string instruction and the values of 
the general-purpose registers reflect completion of the string instruction.

25.5.3.3  TPR-Shadow Updates
If the “use TPR shadow” and “virtualize APIC accesses” VM-execution controls are 
both 1, a logical processor performs certain actions after any operation (or iteration 
of a repeated string instruction) with a VTPR write access. These actions are called a 
TPR-shadow update. (As noted in Section 25.5.3.2, a TPR-shadow update does not 
occur following an access that causes a VM exit.)

A TPR-shadow update includes the following actions:

1. Bits 31:8 at offset 80H on the virtual-APIC page are cleared.

2. If the value of bits 3:0 of the TPR threshold VM-execution control field is greater 
than the value of bits 7:4 at offset 80H on the virtual-APIC page, a VM exit will 
occur.

TPR-shadow updates take priority over system-management interrupts (SMIs), INIT 
signals, and lower priority events. A TPR-shadow update thus has priority over any 
debug exceptions that may have been triggered by the operation causing the TPR-
shadow update. TPR-shadow updates (and any VM exits they cause) are not blocked 
if RFLAGS.IF = 0 or by the MOV SS, POP SS, or STI instructions.
25-26 Vol. 3C



VMX NON-ROOT OPERATION
25.6 OTHER CHANGES IN VMX NON-ROOT OPERATION
Treatments of event blocking and of task switches differ in VMX non-root operation as 
described in the following sections.

25.6.1 Event Blocking
Event blocking is modified in VMX non-root operation as follows:
• If the “external-interrupt exiting” VM-execution control is 1, RFLAGS.IF does not 

control the blocking of external interrupts. In this case, an external interrupt that 
is not blocked for other reasons causes a VM exit (even if RFLAGS.IF = 0).

• If the “external-interrupt exiting” VM-execution control is 1, external interrupts 
may or may not be blocked by STI or by MOV SS (behavior is implementation-
specific).

• If the “NMI exiting” VM-execution control is 1, non-maskable interrupts (NMIs) 
may or may not be blocked by STI or by MOV SS (behavior is implementation-
specific).

25.6.2 Treatment of Task Switches
Task switches are not allowed in VMX non-root operation. Any attempt to effect a 
task switch in VMX non-root operation causes a VM exit. However, the following 
checks are performed (in the order indicated), possibly resulting in a fault, before 
there is any possibility of a VM exit due to task switch:

1. If a task gate is being used, appropriate checks are made on its P bit and on the 
proper values of the relevant privilege fields. The following cases detail the 
privilege checks performed:

a. If CALL, INT n, or JMP accesses a task gate in IA-32e mode, a general-
protection exception occurs.

b. If CALL, INT n, INT3, INTO, or JMP accesses a task gate outside IA-32e mode, 
privilege-levels checks are performed on the task gate but, if they pass, 
privilege levels are not checked on the referenced task-state segment (TSS) 
descriptor.

c. If CALL or JMP accesses a TSS descriptor directly in IA-32e mode, a general-
protection exception occurs.

d. If CALL or JMP accesses a TSS descriptor directly outside IA-32e mode, 
privilege levels are checked on the TSS descriptor.

e. If a non-maskable interrupt (NMI), an exception, or an external interrupt 
accesses a task gate in the IDT in IA-32e mode, a general-protection 
exception occurs.
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f. If a non-maskable interrupt (NMI), an exception other than breakpoint 
exceptions (#BP) and overflow exceptions (#OF), or an external interrupt 
accesses a task gate in the IDT outside IA-32e mode, no privilege checks are 
performed.

g. If IRET is executed with RFLAGS.NT = 1 in IA-32e mode, a general-
protection exception occurs.

h. If IRET is executed with RFLAGS.NT = 1 outside IA-32e mode, a TSS 
descriptor is accessed directly and no privilege checks are made.

2. Checks are made on the new TSS selector (for example, that is within GDT 
limits).

3. The new TSS descriptor is read. (A page fault results if a relevant GDT page is not 
present).

4. The TSS descriptor is checked for proper values of type (depends on type of task 
switch), P bit, S bit, and limit.

Only if checks 1–4 all pass (do not generate faults) might a VM exit occur. However, 
the ordering between a VM exit due to a task switch and a page fault resulting from 
accessing the old TSS or the new TSS is implementation-specific. Some logical 
processors may generate a page fault (instead of a VM exit due to a task switch) if 
accessing either TSS would cause a page fault. Other logical processors may 
generate a VM exit due to a task switch even if accessing either TSS would cause a 
page fault.

If an attempt at a task switch through a task gate in the IDT causes an exception 
(before generating a VM exit due to the task switch) and that exception causes a 
VM exit, information about the event whose delivery that accessed the task gate is 
recorded in the IDT-vectoring information fields and information about the exception 
that caused the VM exit is recorded in the VM-exit interruption-information fields. 
See Section 27.2. The fact that a task gate was being accessed is not recorded in the 
VMCS.

If an attempt at a task switch through a task gate in the IDT causes VM exit due to 
the task switch, information about the event whose delivery accessed the task gate 
is recorded in the IDT-vectoring fields of the VMCS. Since the cause of such a VM exit 
is a task switch and not an interruption, the valid bit for the VM-exit interruption 
information field is 0. See Section 27.2.

25.7 FEATURES SPECIFIC TO VMX NON-ROOT OPERATION
Some VM-execution controls support features that are specific to VMX non-root oper-
ation. These are the VMX-preemption timer (Section 25.7.1) and the monitor trap 
flag (Section 25.7.2), translation of guest-physical addresses (Section 25.7.3), and 
VM functions (Section 25.7.4).
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25.7.1 VMX-Preemption Timer
If the last VM entry was performed with the 1-setting of “activate VMX-preemption 
timer” VM-execution control, the VMX-preemption timer counts down (from the 
value loaded by VM entry; see Section 26.6.4) in VMX non-root operation. When the 
timer counts down to zero, it stops counting down and a VM exit occurs (see Section 
25.3).

The VMX-preemption timer counts down at rate proportional to that of the timestamp 
counter (TSC). Specifically, the timer counts down by 1 every time bit X in the TSC 
changes due to a TSC increment. The value of X is in the range 0–31 and can be 
determined by consulting the VMX capability MSR IA32_VMX_MISC (see Appendix 
A.6).

The VMX-preemption timer operates in the C-states C0, C1, and C2; it also operates 
in the shutdown and wait-for-SIPI states. If the timer counts down to zero in any 
state other than the wait-for SIPI state, the logical processor transitions to the C0 C-
state and causes a VM exit; the timer does not cause a VM exit if it counts down to 
zero in the wait-for-SIPI state. The timer is not decremented in C-states deeper than 
C2.

Treatment of the timer in the case of system management interrupts (SMIs) and 
system-management mode (SMM) depends on whether the treatment of SMIs and 
SMM:
• If the default treatment of SMIs and SMM (see Section 33.14) is active, the VMX-

preemption timer counts across an SMI to VMX non-root operation, subsequent 
execution in SMM, and the return from SMM via the RSM instruction. However, 
the timer can cause a VM exit only from VMX non-root operation. If the timer 
expires during SMI, in SMM, or during RSM, a timer-induced VM exit occurs 
immediately after RSM with its normal priority unless it is blocked based on 
activity state (Section 25.3).

• If the dual-monitor treatment of SMIs and SMM (see Section 33.15) is active, 
transitions into and out of SMM are VM exits and VM entries, respectively. The 
treatment of the VMX-preemption timer by those transitions is mostly the same 
as for ordinary VM exits and VM entries; Section 33.15.2 and Section 33.15.4 
detail some differences.

25.7.2 Monitor Trap Flag
The monitor trap flag is a debugging feature that causes VM exits to occur on 
certain instruction boundaries in VMX non-root operation. Such VM exits are called 
MTF VM exits. An MTF VM exit may occur on an instruction boundary in VMX non-
root operation as follows:
• If the “monitor trap flag” VM-execution control is 1 and VM entry is injecting a 

vectored event (see Section 26.5.1), an MTF VM exit is pending on the instruction 
boundary before the first instruction following the VM entry.
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• If VM entry is injecting a pending MTF VM exit (see Section 26.5.2), an MTF 
VM exit is pending on the instruction boundary before the first instruction 
following the VM entry. This is the case even if the “monitor trap flag” VM-
execution control is 0.

• If the “monitor trap flag” VM-execution control is 1, VM entry is not injecting an 
event, and a pending event (e.g., debug exception or interrupt) is delivered 
before an instruction can execute, an MTF VM exit is pending on the instruction 
boundary following delivery of the event (or any nested exception).

• Suppose that the “monitor trap flag” VM-execution control is 1, VM entry is not 
injecting an event, and the first instruction following VM entry is a REP-prefixed 
string instruction:

— If the first iteration of the instruction causes a fault, an MTF VM exit is 
pending on the instruction boundary following delivery of the fault (or any 
nested exception).

— If the first iteration of the instruction does not cause a fault, an MTF VM exit 
is pending on the instruction boundary after that iteration.

• Suppose that the “monitor trap flag” VM-execution control is 1, VM entry is not 
injecting an event, and the first instruction following VM entry is not a REP-
prefixed string instruction:

— If the instruction causes a fault, an MTF VM exit is pending on the instruction 
boundary following delivery of the fault (or any nested exception).1

— If the instruction does not cause a fault, an MTF VM exit is pending on the 
instruction boundary following execution of that instruction. If the instruction 
is INT3 or INTO, this boundary follows delivery of any software exception. If 
the instruction is INT n, this boundary follows delivery of a software interrupt. 
If the instruction is HLT, the MTF VM exit will be from the HLT activity state.

No MTF VM exit occurs if another VM exit occurs before reaching the instruction 
boundary on which an MTF VM exit would be pending (e.g., due to an exception or 
triple fault).

An MTF VM exit occurs on the instruction boundary on which it is pending unless a 
higher priority event takes precedence or the MTF VM exit is blocked due to the 
activity state:
• System-management interrupts (SMIs), INIT signals, and higher priority events 

take priority over MTF VM exits. MTF VM exits take priority over debug-trap 
exceptions and lower priority events.

• No MTF VM exit occurs if the processor is in either the shutdown activity state or 
wait-for-SIPI activity state. If a non-maskable interrupt subsequently takes the 

1. This item includes the cases of an invalid opcode exception—#UD— generated by the UD2 
instruction and a BOUND-range exceeded exception—#BR—generated by the BOUND instruc-
tion.
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logical processor out of the shutdown activity state without causing a VM exit, an 
MTF VM exit is pending after delivery of that interrupt.

25.7.3 Translation of Guest-Physical Addresses Using EPT
The extended page-table mechanism (EPT) is a feature that can be used to support 
the virtualization of physical memory. When EPT is in use, certain physical addresses 
are treated as guest-physical addresses and are not used to access memory directly. 
Instead, guest-physical addresses are translated by traversing a set of EPT paging 
structures to produce physical addresses that are used to access memory.

Details of the EPT are given in Section 28.2.

25.7.4 VM Functions
A VM function is an operation provided by the processor that can be invoked from 
VMX non-root operation without a VM exit. VM functions are enabled and configured 
by the settings of different fields in the VMCS. Software in VMX non-root operation 
invokes a VM function with the VMFUNC instruction; the value of EAX selects the 
specific VM function being invoked.

Section 25.7.4.1 explains how VM functions are enabled. Section 25.7.4.2 specifies 
the behavior of the VMFUNC instruction. Section 25.7.4.3 describes a specific 
VM function called EPTP switching.

25.7.4.1  Enabling VM Functions
Software enables VM functions generally by setting the “enable VM functions” VM-
execution control. A specific VM function is enabled by setting the corresponding VM-
function control.

Suppose, for example, that software wants to enable EPTP switching (VM function 0; 
see Section 24.6.14).To do so, it must set the “activate secondary controls” VM-
execution control (bit 31 of the primary processor-based VM-execution controls), the 
“enable VM functions” VM-execution control (bit 13 of the secondary processor-
based VM-execution controls) and the “EPTP switching” VM-function control (bit 0 of 
the VM-function controls).

25.7.4.2  General Operation of the VMFUNC Instruction
The VMFUNC instruction causes an invalid-opcode exception (#UD) if the “enable 
VM functions” VM-execution controls is 01 or the value of EAX is greater than 63 (only 

1. “Enable VM functions” is a secondary processor-based VM-execution control. If bit 31 of the pri-
mary processor-based VM-execution controls is 0, VMX non-root operation functions as if the 
“enable VM functions” VM-execution control were 0. See Section 24.6.2.
Vol. 3C 25-31



VMX NON-ROOT OPERATION
VM functions 0–63 can be enable). Otherwise, the instruction causes a VM exit if the 
bit at position EAX is 0 in the VM-function controls (the selected VM function is not 
enabled). If such a VM exit occurs, the basic exit reason used is 59 (3BH), indicating 
“VMFUNC”, and the length of the VMFUNC instruction is saved into the VM-exit 
instruction-length field. If the instruction causes neither an invalid-opcode exception 
nor a VM exit due to a disabled VM function, it performs the functionality of the 
VM function specified by the value in EAX.

Individual VM functions may perform additional fault checking (e.g., one might cause 
a general-protection exception if CPL > 0). In addition, specific VM functions may 
include checks that might result in a VM exit. If such a VM exit occurs, VM-exit infor-
mation is saved as described in the previous paragraph. The specification of a 
VM function may indicate that additional VM-exit information is provided.

The specific behavior of the EPTP-switching VM function (including checks that result 
in VM exits) is given in Section 25.7.4.3.

25.7.4.3  EPTP Switching
EPTP switching is VM function 0. This VM function allows software in VMX non-root 
operation to load a new value for the EPT pointer (EPTP), thereby establishing a 
different EPT paging-structure hierarchy (see Section 28.2 for details of the opera-
tion of EPT). Software is limited to selecting from a list of potential EPTP values 
configured in advance by software in VMX root operation.

Specifically, the value of ECX is used to select an entry from the EPTP list, the 4-
KByte structure referenced by the EPTP-list address (see Section 24.6.14; because 
this structure contains 512 8-Byte entries, VMFUNC causes a VM exit if ECX ≥ 512). 
If the selected entry is a valid EPTP value (it would not cause VM entry to fail; see 
Section 26.2.1.1), it is stored in the EPTP field of the current VMCS and is used for 
subsequent accesses using guest-physical addresses. The following pseudocode 
provides details:

IF ECX ≥ 512
THEN VM exit;
ELSE

tent_EPTP ← 8 bytes from EPTP-list address + 8 * ECX;
IF tent_EPTP is not a valid EPTP value (would cause VM entry to fail if in EPTP)

THEN VMexit;
ELSE

write tent_EPTP to the EPTP field in the current VMCS;
start using tent_EPTP as the new EPTP value for address translation;

FI;
FI;

Execution of the EPTP-switching VM function does not modify the state of any regis-
ters; no flags are modified.
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As noted in Section 25.7.4.2, an execution of the EPTP-switching VM function that 
causes a VM exit (as specified above), uses the basic exit reason 59, indicating 
“VMFUNC”. The length of the VMFUNC instruction is saved into the VM-exit instruc-
tion-length field. No additional VM-exit information is provided.

An execution of VMFUNC loads EPTP from the EPTP list (and thus does not cause a 
fault or VM exit) is called an EPTP-switching VMFUNC. After an EPTP-switching 
VMFUNC, control passes to the next instruction. The logical processor starts creating 
and using guest-physical and combined mappings associated with the new value of 
bits 51:12 of EPTP; the combined mappings created and used are associated with the 
current VPID and PCID (these are not changed by VMFUNC).1 If the “enable VPID” 
VM-execution control is 0, an EPTP-switching VMFUNC invalidates combined 
mappings associated with VPID 0000H (for all PCIDs and for all EP4TA values, where 
EP4TA is the value of bits 51:12 of EPTP).

Because an EPTP-switching VMFUNC may change the translation of guest-physical 
addresses, it may affect use of the guest-physical address in CR3. The EPTP-
switching VMFUNC cannot itself cause a VM exit due to an EPT violation or an EPT 
misconfiguration due to the translation of that guest-physical address through the 
new EPT paging structures. The following items provide details that apply if 
CR0.PG = 1:
• If 32-bit paging or IA-32e paging is in use (either CR4.PAE = 0 or 

IA32_EFER.LMA = 1), the next memory access with a linear address uses the 
translation of the guest-physical address in CR3 through the new EPT paging 
structures. As a result, this access may cause a VM exit due to an EPT violation or 
an EPT misconfiguration encountered during that translation.

• If PAE paging is in use (CR4.PAE = 1 and IA32_EFER.LMA = 0), an EPTP-
switching VMFUNC does not load the four page-directory-pointer-table entries 
(PDPTEs) from the guest-physical address in CR3. The logical processor 
continues to use the four guest-physical addresses already present in the 
PDPTEs. The guest-physical address in CR3 is not translated through the new EPT 
paging structures (until some operation that would load the PDPTEs).
The EPTP-switching VMFUNC cannot itself cause a VM exit due to an EPT
violation or an EPT misconfiguration encountered during the translation of a
guest-physical address in any of the PDPTEs. A subsequent memory access with
a linear address uses the translation of the guest-physical address in the
appropriate PDPTE through the new EPT paging structures. As a result, such an
access may cause a VM exit due to an EPT violation or an EPT misconfiguration
encountered during that translation.

1. If the “enable VPID” VM-execution control is 0, the current VPID is 0000H; if CR4.PCIDE = 0, the 
current PCID is 000H.
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25.8 UNRESTRICTED GUESTS
The first processors to support VMX operation require CR0.PE and CR0.PG to be 1 in 
VMX operation (see Section 23.8). This restriction implies that guest software cannot 
be run in unpaged protected mode or in real-address mode. Later processors support 
a VM-execution control called “unrestricted guest”.1 If this control is 1, CR0.PE and 
CR0.PG may be 0 in VMX non-root operation. Such processors allow guest software 
to run in unpaged protected mode or in real-address mode. The following items 
describe the behavior of such software:
• The MOV CR0 instructions does not cause a general-protection exception simply 

because it would set either CR0.PE and CR0.PG to 0. See Section 25.4 for details.
• A logical processor treats the values of CR0.PE and CR0.PG in VMX non-root 

operation just as it does outside VMX operation. Thus, if CR0.PE = 0, the 
processor operates as it does normally in real-address mode (for example, it uses 
the 16-bit interrupt table to deliver interrupts and exceptions). If CR0.PG = 0, 
the processor operates as it does normally when paging is disabled.

• Processor operation is modified by the fact that the processor is in VMX non-root 
operation and by the settings of the VM-execution controls just as it is in 
protected mode or when paging is enabled. Instructions, interrupts, and 
exceptions that cause VM exits in protected mode or when paging is enabled also 
do so in real-address mode or when paging is disabled. The following examples 
should be noted:

— If CR0.PG = 0, page faults do not occur and thus cannot cause VM exits.

— If CR0.PE = 0, invalid-TSS exceptions do not occur and thus cannot cause 
VM exits.

— If CR0.PE = 0, the following instructions cause invalid-opcode exceptions and 
do not cause VM exits: INVEPT, INVVPID, LLDT, LTR, SLDT, STR, VMCLEAR, 
VMLAUNCH, VMPTRLD, VMPTRST, VMREAD, VMRESUME, VMWRITE, VMXOFF, 
and VMXON.

• If CR0.PG = 0, each linear address is passed directly to the EPT mechanism for 
translation to a physical address.2 The guest memory type passed on to the EPT 
mechanism is WB (writeback).

1. “Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the pri-
mary processor-based VM-execution controls is 0, VMX non-root operation functions as if the 
“unrestricted guest” VM-execution control were 0. See Section 24.6.2.

2. As noted in Section 26.2.1.1, the “enable EPT” VM-execution control must be 1 if the “unre-
stricted guest” VM-execution control is 1.
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VM ENTRIES

Software can enter VMX non-root operation using either of the VM-entry instructions 
VMLAUNCH and VMRESUME. VMLAUNCH can be used only with a VMCS whose launch 
state is clear and VMRESUME can be used only with a VMCS whose the launch state 
is launched. VMLAUNCH should be used for the first VM entry after VMCLEAR; VMRE-
SUME should be used for subsequent VM entries with the same VMCS.

Each VM entry performs the following steps in the order indicated:

1. Basic checks are performed to ensure that VM entry can commence 
(Section 26.1).

2. The control and host-state areas of the VMCS are checked to ensure that they are 
proper for supporting VMX non-root operation and that the VMCS is correctly 
configured to support the next VM exit (Section 26.2).

3. The following may be performed in parallel or in any order (Section 26.3):

• The guest-state area of the VMCS is checked to ensure that, after the 
VM entry completes, the state of the logical processor is consistent with 
IA-32 and Intel 64 architectures.

• Processor state is loaded from the guest-state area and based on controls in 
the VMCS.

• Address-range monitoring is cleared.

4. MSRs are loaded from the VM-entry MSR-load area (Section 26.4).

5. If VMLAUNCH is being executed, the launch state of the VMCS is set to 
“launched.”

6. An event may be injected in the guest context (Section 26.5).

Steps 1–4 above perform checks that may cause VM entry to fail. Such failures occur 
in one of the following three ways:
• Some of the checks in Section 26.1 may generate ordinary faults (for example, 

an invalid-opcode exception). Such faults are delivered normally.
• Some of the checks in Section 26.1 and all the checks in Section 26.2 cause 

control to pass to the instruction following the VM-entry instruction. The failure is 
indicated by setting RFLAGS.ZF1 (if there is a current VMCS) or RFLAGS.CF (if 
there is no current VMCS). If there is a current VMCS, an error number indicating 
the cause of the failure is stored in the VM-instruction error field. See Chapter 29 

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most 
processors that support VMX operation also support Intel 64 architecture. For IA-32 processors, 
this notation refers to the 32-bit forms of those registers (EAX, EIP, ESP, EFLAGS, etc.). In a few 
places, notation such as EAX is used to refer specifically to lower 32 bits of the indicated register.
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of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
3C for the error numbers.

• The checks in Section 26.3 and Section 26.4 cause processor state to be loaded 
from the host-state area of the VMCS (as would be done on a VM exit). 
Information about the failure is stored in the VM-exit information fields. See 
Section 26.7 for details.

EFLAGS.TF = 1 causes a VM-entry instruction to generate a single-step debug excep-
tion only if failure of one of the checks in Section 26.1 and Section 26.2 causes 
control to pass to the following instruction. A VM-entry does not generate a single-
step debug exception in any of the following cases: (1) the instruction generates a 
fault; (2) failure of one of the checks in Section 26.3 or in loading MSRs causes 
processor state to be loaded from the host-state area of the VMCS; or (3) the instruc-
tion passes all checks in Section 26.1, Section 26.2, and Section 26.3 and there is no 
failure in loading MSRs.

Section 33.15 describes the dual-monitor treatment of system-management inter-
rupts (SMIs) and system-management mode (SMM). Under this treatment, code 
running in SMM returns using VM entries instead of the RSM instruction. A VM entry 
returns from SMM if it is executed in SMM and the “entry to SMM” VM-entry control 
is 0. VM entries that return from SMM differ from ordinary VM entries in ways that 
are detailed in Section 33.15.4.

26.1 BASIC VM-ENTRY CHECKS
Before a VM entry commences, the current state of the logical processor is checked 
in the following order:

1. If the logical processor is in virtual-8086 mode or compatibility mode, an
invalid-opcode exception is generated.

2. If the current privilege level (CPL) is not zero, a general-protection exception is 
generated.

3. If there is no current VMCS, RFLAGS.CF is set to 1 and control passes to the next 
instruction.

4. If there is a current VMCS, the following conditions are evaluated in order; any of 
these cause VM entry to fail:

a. if there is MOV-SS blocking (see Table 24-3)

b. if the VM entry is invoked by VMLAUNCH and the VMCS launch state is not 
clear

c. if the VM entry is invoked by VMRESUME and the VMCS launch state is not 
launched

If any of these checks fail, RFLAGS.ZF is set to 1 and control passes to the next 
instruction. An error number indicating the cause of the failure is stored in the 
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VM-instruction error field. See Chapter 29 of the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3C for the error numbers.

26.2 CHECKS ON VMX CONTROLS AND HOST-STATE AREA
If the checks in Section 26.1 do not cause VM entry to fail, the control and host-state 
areas of the VMCS are checked to ensure that they are proper for supporting VMX 
non-root operation, that the VMCS is correctly configured to support the next 
VM exit, and that, after the next VM exit, the processor’s state is consistent with the 
Intel 64 and IA-32 architectures.

VM entry fails if any of these checks fail. When such failures occur, control is passed 
to the next instruction, RFLAGS.ZF is set to 1 to indicate the failure, and the 
VM-instruction error field is loaded with an error number that indicates whether the 
failure was due to the controls or the host-state area (see Chapter 29 of the Intel® 
64 and IA-32 Architectures Software Developer’s Manual, Volume 3C).

These checks may be performed in any order. Thus, an indication by error number of 
one cause (for example, host state) does not imply that there are not also other 
errors. Different processors may thus give different error numbers for the same 
VMCS. Some checks prevent establishment of settings (or combinations of settings) 
that are currently reserved. Future processors may allow such settings (or combina-
tions) and may not perform the corresponding checks. The correctness of software 
should not rely on VM-entry failures resulting from the checks documented in this 
section.

The checks on the controls and the host-state area are presented in Section 26.2.1 
through Section 26.2.4. These sections reference VMCS fields that correspond to 
processor state. Unless otherwise stated, these references are to fields in the host-
state area.

26.2.1 Checks on VMX Controls
This section identifies VM-entry checks on the VMX control fields.

26.2.1.1  VM-Execution Control Fields
VM entries perform the following checks on the VM-execution control fields:1

• Reserved bits in the pin-based VM-execution controls must be set properly. 
Software may consult the VMX capability MSRs to determine the proper settings 
(see Appendix A.3.1).

1. If the “activate secondary controls” primary processor-based VM-execution control is 0, VM entry 
operates as if each secondary processor-based VM-execution control were 0.
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• Reserved bits in the primary processor-based VM-execution controls must be set 
properly. Software may consult the VMX capability MSRs to determine the proper 
settings (see Appendix A.3.2).

• If the “activate secondary controls” primary processor-based VM-execution 
control is 1, reserved bits in the secondary processor-based VM-execution 
controls must be cleared. Software may consult the VMX capability MSRs to 
determine which bits are reserved (see Appendix A.3.3).
If the “activate secondary controls” primary processor-based VM-execution
control is 0 (or if the processor does not support the 1-setting of that control),
no checks are performed on the secondary processor-based VM-execution
controls. The logical processor operates as if all the secondary processor-based
VM-execution controls were 0.

• The CR3-target count must not be greater than 4. Future processors may support 
a different number of CR3-target values. Software should read the VMX capability 
MSR IA32_VMX_MISC to determine the number of values supported (see 
Appendix A.6).

• If the “use I/O bitmaps” VM-execution control is 1, bits 11:0 of each I/O-bitmap 
address must be 0. Neither address should set any bits beyond the processor’s 
physical-address width.1,2

• If the “use MSR bitmaps” VM-execution control is 1, bits 11:0 of the MSR-bitmap 
address must be 0. The address should not set any bits beyond the processor’s 
physical-address width.3

• If the “use TPR shadow” VM-execution control is 1, the virtual-APIC address must 
satisfy the following checks:

— Bits 11:0 of the address must be 0.

— The address should not set any bits beyond the processor’s physical-address 
width.4

If all of the above checks are satisfied and the “use TPR shadow” VM-execution
control is 1, bytes 81H-83H on the virtual-APIC page (see Section 24.6.8) may
be cleared (behavior may be implementation-specific).
The clearing of these bytes may occur even if the VM entry fails. This is true
either if the failure causes control to pass to the instruction following the VM-

1. Software can determine a processor’s physical-address width by executing CPUID with 
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

2. If IA32_VMX_BASIC[48] is read as 1, these addresses must not set any bits in the range 63:32; 
see Appendix A.1.

3. If IA32_VMX_BASIC[48] is read as 1, this address must not set any bits in the range 63:32; see 
Appendix A.1.

4. If IA32_VMX_BASIC[48] is read as 1, this address must not set any bits in the range 63:32; see 
Appendix A.1.
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entry instruction or if it causes processor state to be loaded from the host-state
area of the VMCS.

• If the “use TPR shadow” VM-execution control is 1, bits 31:4 of the TPR threshold 
VM-execution control field must be 0.

• The following check is performed if the “use TPR shadow” VM-execution control is 
1 and the “virtualize APIC accesses” VM-execution control is 0: the value of 
bits 3:0 of the TPR threshold VM-execution control field should not be greater 
than the value of bits 7:4 in byte 80H on the virtual-APIC page (see Section 
24.6.8).

• If the “NMI exiting” VM-execution control is 0, the “virtual NMIs” VM-execution 
control must be 0.

• If the “virtual NMIs” VM-execution control is 0, the “NMI-window exiting” VM-
execution control must be 0.

• If the “virtualize APIC-accesses” VM-execution control is 1, the APIC-access 
address must satisfy the following checks:

— Bits 11:0 of the address must be 0.

— The address should not set any bits beyond the processor’s physical-address 
width.1

• If the “virtualize x2APIC mode” VM-execution control is 1, the “use TPR shadow” 
VM-execution control must be 1 and the “virtualize APIC accesses” VM-execution 
control must be 0.2

• If the “enable VPID” VM-execution control is 1, the value of the VPID VM-
execution control field must not be 0000H.3

• If the “enable EPT” VM-execution control is 1, the EPTP VM-execution control field 
(see Table 24-8 in Section 24.6.11) must satisfy the following checks:4

— The EPT memory type (bits 2:0) must be a value supported by the logical 
processor as indicated in the IA32_VMX_EPT_VPID_CAP MSR (see Appendix 
A.10).

1. If IA32_VMX_BASIC[48] is read as 1, this address must not set any bits in the range 63:32; see 
Appendix A.1.

2. “Virtualize x2APIC mode” is a secondary processor-based VM-execution control. If bit 31 of the 
primary processor-based VM-execution controls is 0, VM entry functions as if the “virtualize 
x2APIC mode” VM-execution control were 0. See Section 24.6.2.

3. “Enable VPID” is a secondary processor-based VM-execution control. If bit 31 of the primary pro-
cessor-based VM-execution controls is 0, VM entry functions as if the “enable VPID” VM-execu-
tion control were 0. See Section 24.6.2.

4. “Enable EPT” is a secondary processor-based VM-execution control. If bit 31 of the primary pro-
cessor-based VM-execution controls is 0, VM entry functions as if the “enable EPT” VM-execu-
tion control were 0. See Section 24.6.2.
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— Bits 5:3 (1 less than the EPT page-walk length) must be 3, indicating an EPT 
page-walk length of 4; see Section 28.2.2.

— Reserved bits 11:6 and 63:N (where N is the processor’s physical-address 
width) must all be 0.

— If the “unrestricted guest” VM-execution control is 1, the “enable EPT” VM-
execution control must also be 1.1

• If the “enable VM functions” processor-based VM-execution control is 1, reserved 
bits in the VM-function controls must be clear.2 Software may consult the VMX 
capability MSRs to determine which bits are reserved (see Appendix A.11). In 
addition, the following check is performed based on the setting of bits in the VM-
function controls (see Section 24.6.14):

— If “EPTP switching” VM-function control is 1, the “enable EPT” VM-execution 
control must also 1. In addition, the EPTP-list address must satisfy the 
following checks:

• Bits 11:0 of the address must be 0.

• The address must not set any bits beyond the processor’s physical-
address width.

If the “enable VM functions” processor-based VM-execution control is 0, no
checks are performed on the VM-function controls.

26.2.1.2  VM-Exit Control Fields
VM entries perform the following checks on the VM-exit control fields.
• Reserved bits in the VM-exit controls must be set properly. Software may consult 

the VMX capability MSRs to determine the proper settings (see Appendix A.4).
• If “activate VMX-preemption timer” VM-execution control is 0, the “save VMX-

preemption timer value” VM-exit control must also be 0.
• The following checks are performed for the VM-exit MSR-store address if the 

VM-exit MSR-store count field is non-zero:

— The lower 4 bits of the VM-exit MSR-store address must be 0. The address 
should not set any bits beyond the processor’s physical-address width.3

1. “Unrestricted guest” and “enable EPT” are both secondary processor-based VM-execution con-
trols. If bit 31 of the primary processor-based VM-execution controls is 0, VM entry functions as 
if both these controls were 0. See Section 24.6.2.

2. “Enable VM functions” is a secondary processor-based VM-execution control. If bit 31 of the pri-
mary processor-based VM-execution controls is 0, VM entry functions as if the “enable 
VM functions” VM-execution control were 0. See Section 24.6.2.

3. Software can determine a processor’s physical-address width by executing CPUID with 
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.
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— The address of the last byte in the VM-exit MSR-store area should not set any 
bits beyond the processor’s physical-address width. The address of this last 
byte is VM-exit MSR-store address + (MSR count * 16) – 1. (The arithmetic 
used for the computation uses more bits than the processor’s physical-
address width.)

If IA32_VMX_BASIC[48] is read as 1, neither address should set any bits in the
range 63:32; see Appendix A.1.

• The following checks are performed for the VM-exit MSR-load address if the 
VM-exit MSR-load count field is non-zero:

— The lower 4 bits of the VM-exit MSR-load address must be 0. The address 
should not set any bits beyond the processor’s physical-address width.

— The address of the last byte in the VM-exit MSR-load area should not set any 
bits beyond the processor’s physical-address width. The address of this last 
byte is VM-exit MSR-load address + (MSR count * 16) – 1. (The arithmetic 
used for the computation uses more bits than the processor’s physical-
address width.)

If IA32_VMX_BASIC[48] is read as 1, neither address should set any bits in the
range 63:32; see Appendix A.1.

26.2.1.3  VM-Entry Control Fields
VM entries perform the following checks on the VM-entry control fields.
• Reserved bits in the VM-entry controls must be set properly. Software may 

consult the VMX capability MSRs to determine the proper settings (see Appendix 
A.5).

• Fields relevant to VM-entry event injection must be set properly. These fields are 
the VM-entry interruption-information field (see Table 24-13 in Section 24.8.3), 
the VM-entry exception error code, and the VM-entry instruction length. If the 
valid bit (bit 31) in the VM-entry interruption-information field is 1, the following 
must hold:

— The field’s interruption type (bits 10:8) is not set to a reserved value. Value 1 
is reserved on all logical processors; value 7 (other event) is reserved on 
logical processors that do not support the 1-setting of the “monitor trap flag” 
VM-execution control.

— The field’s vector (bits 7:0) is consistent with the interruption type:

• If the interruption type is non-maskable interrupt (NMI), the vector is 2.

• If the interruption type is hardware exception, the vector is at most 31.

• If the interruption type is other event, the vector is 0 (pending MTF 
VM exit).

— The field's deliver-error-code bit (bit 11) is 1 if and only if (1) either (a) the 
"unrestricted guest" VM-execution control is 0; or (b) bit 0 (corresponding to 
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CR0.PE) is set in the CR0 field in the guest-state area; (2) the interruption 
type is hardware exception; and (3) the vector indicates an exception that 
would normally deliver an error code (8 = #DF; 10 = TS; 11 = #NP; 12 = 
#SS; 13 = #GP; 14 = #PF; or 17 = #AC).

— Reserved bits in the field (30:12) are 0.

— If the deliver-error-code bit (bit 11) is 1, bits 31:15 of the VM-entry 
exception error-code field are 0.

— If the interruption type is software interrupt, software exception, or 
privileged software exception, the VM-entry instruction-length field is in the 
range 1–15.

• The following checks are performed for the VM-entry MSR-load address if the 
VM-entry MSR-load count field is non-zero:

— The lower 4 bits of the VM-entry MSR-load address must be 0. The address 
should not set any bits beyond the processor’s physical-address width.1

— The address of the last byte in the VM-entry MSR-load area should not set any 
bits beyond the processor’s physical-address width. The address of this last 
byte is VM-entry MSR-load address + (MSR count * 16) – 1. (The arithmetic 
used for the computation uses more bits than the processor’s physical-
address width.)

If IA32_VMX_BASIC[48] is read as 1, neither address should set any bits in the
range 63:32; see Appendix A.1.

• If the processor is not in SMM, the “entry to SMM” and “deactivate dual-monitor 
treatment” VM-entry controls must be 0.

• The “entry to SMM” and “deactivate dual-monitor treatment” VM-entry controls 
cannot both be 1.

26.2.2 Checks on Host Control Registers and MSRs
The following checks are performed on fields in the host-state area that correspond 
to control registers and MSRs:
• The CR0 field must not set any bit to a value not supported in VMX operation (see 

Section 23.8).2

• The CR4 field must not set any bit to a value not supported in VMX operation (see 
Section 23.8).

1. Software can determine a processor’s physical-address width by executing CPUID with 
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

2. The bits corresponding to CR0.NW (bit 29) and CR0.CD (bit 30) are never checked because the 
values of these bits are not changed by VM exit; see Section 27.5.1.
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• On processors that support Intel 64 architecture, the CR3 field must be such that 
bits 63:52 and bits in the range 51:32 beyond the processor’s physical-address 
width must be 0.1,2

• On processors that support Intel 64 architecture, the IA32_SYSENTER_ESP field 
and the IA32_SYSENTER_EIP field must each contain a canonical address.

• If the “load IA32_PERF_GLOBAL_CTRL” VM-exit control is 1, bits reserved in the 
IA32_PERF_GLOBAL_CTRL MSR must be 0 in the field for that register (see 
Figure 18-3).

• If the “load IA32_PAT” VM-exit control is 1, the value of the field for the IA32_PAT 
MSR must be one that could be written by WRMSR without fault at CPL 0. Specif-
ically, each of the 8 bytes in the field must have one of the values 0 (UC), 1 (WC), 
4 (WT), 5 (WP), 6 (WB), or 7 (UC-).

• If the “load IA32_EFER” VM-exit control is 1, bits reserved in the IA32_EFER MSR 
must be 0 in the field for that register. In addition, the values of the LMA and LME 
bits in the field must each be that of the “host address-space size” VM-exit 
control.

26.2.3 Checks on Host Segment and Descriptor-Table Registers
The following checks are performed on fields in the host-state area that correspond 
to segment and descriptor-table registers:
• In the selector field for each of CS, SS, DS, ES, FS, GS and TR, the RPL (bits 1:0) 

and the TI flag (bit 2) must be 0.
• The selector fields for CS and TR cannot be 0000H.
• The selector field for SS cannot be 0000H if the “host address-space size” VM-exit 

control is 0.
• On processors that support Intel 64 architecture, the base-address fields for FS, 

GS, GDTR, IDTR, and TR must contain canonical addresses.

26.2.4 Checks Related to Address-Space Size
On processors that support Intel 64 architecture, the following checks related to 
address-space size are performed on VMX controls and fields in the host-state area:
• If the logical processor is outside IA-32e mode (if IA32_EFER.LMA = 0) at the 

time of VM entry, the following must hold:

1. Software can determine a processor’s physical-address width by executing CPUID with 
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

2. Bit 63 of the CR3 field in the host-state area must be 0. This is true even though, If CR4.PCIDE = 
1, bit 63 of the source operand to MOV to CR3 is used to determine whether cached translation 
information is invalidated.
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— The “IA-32e mode guest” VM-entry control is 0.

— The “host address-space size” VM-exit control is 0.
• If the logical processor is in IA-32e mode (if IA32_EFER.LMA = 1) at the time of 

VM entry, the “host address-space size” VM-exit control must be 1.
• If the “host address-space size” VM-exit control is 0, the following must hold:

— The “IA-32e mode guest” VM-entry control is 0.

— Bit 17 of the CR4 field (corresponding to CR4.PCIDE) is 0.

— Bits 63:32 in the RIP field is 0.
• If the “host address-space size” VM-exit control is 1, the following must hold:

— Bit 5 of the CR4 field (corresponding to CR4.PAE) is 1.

— The RIP field contains a canonical address.

On processors that do not support Intel 64 architecture, checks are performed to 
ensure that the “IA-32e mode guest” VM-entry control and the “host address-space 
size” VM-exit control are both 0.

26.3 CHECKING AND LOADING GUEST STATE
If all checks on the VMX controls and the host-state area pass (see Section 26.2), the 
following operations take place concurrently: (1) the guest-state area of the VMCS is 
checked to ensure that, after the VM entry completes, the state of the logical 
processor is consistent with IA-32 and Intel 64 architectures; (2) processor state is 
loaded from the guest-state area or as specified by the VM-entry control fields; and 
(3) address-range monitoring is cleared.

Because the checking and the loading occur concurrently, a failure may be discov-
ered only after some state has been loaded. For this reason, the logical processor 
responds to such failures by loading state from the host-state area, as it would for a 
VM exit. See Section 26.7.

26.3.1 Checks on the Guest State Area
This section describes checks performed on fields in the guest-state area. These 
checks may be performed in any order. Some checks prevent establishment of 
settings (or combinations of settings) that are currently reserved. Future processors 
may allow such settings (or combinations) and may not perform the corresponding 
checks. The correctness of software should not rely on VM-entry failures resulting 
from the checks documented in this section. 

The following subsections reference fields that correspond to processor state. Unless 
otherwise stated, these references are to fields in the guest-state area.
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26.3.1.1  Checks on Guest Control Registers, Debug Registers, and MSRs
The following checks are performed on fields in the guest-state area corresponding to 
control registers, debug registers, and MSRs:
• The CR0 field must not set any bit to a value not supported in VMX operation 

(see Section 23.8). The following are exceptions:

— Bit 0 (corresponding to CR0.PE) and bit 31 (PG) are not checked if the 
“unrestricted guest” VM-execution control is 1.1

— Bit 29 (corresponding to CR0.NW) and bit 30 (CD) are never checked 
because the values of these bits are not changed by VM entry; see Section 
26.3.2.1.

• If bit 31 in the CR0 field (corresponding to PG) is 1, bit 0 in that field (PE) must 
also be 1.2

• The CR4 field must not set any bit to a value not supported in VMX operation 
(see Section 23.8).

• If the “load debug controls” VM-entry control is 1, bits reserved in the 
IA32_DEBUGCTL MSR must be 0 in the field for that register. The first processors 
to support the virtual-machine extensions supported only the 1-setting of this 
control and thus performed this check unconditionally.

• The following checks are performed on processors that support Intel 64 archi-
tecture:

— If the “IA-32e mode guest” VM-entry control is 1, bit 31 in the CR0 field 
(corresponding to CR0.PG) and bit 5 in the CR4 field (corresponding to 
CR4.PAE) must each be 1.3

— If the “IA-32e mode guest” VM-entry control is 0, bit 17 in the CR4 field 
(corresponding to CR4.PCIDE) must each be 0.

— The CR3 field must be such that bits 63:52 and bits in the range 51:32 
beyond the processor’s physical-address width are 0.4,5

— If the “load debug controls” VM-entry control is 1, bits 63:32 in the DR7 field 
must be 0. The first processors to support the virtual-machine extensions 

1. “Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the pri-
mary processor-based VM-execution controls is 0, VM entry functions as if the “unrestricted 
guest” VM-execution control were 0. See Section 24.6.2.

2. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PE must be 1 in VMX operation, 
bit 0 in the CR0 field must be 1 unless the “unrestricted guest” VM-execution control and bit 31 
of the primary processor-based VM-execution controls are both 1.

3. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation, 
bit 31 in the CR0 field must be 1 unless the “unrestricted guest” VM-execution control and bit 31 
of the primary processor-based VM-execution controls are both 1.

4. Software can determine a processor’s physical-address width by executing CPUID with 
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.
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supported only the 1-setting of this control and thus performed this check 
unconditionally (if they supported Intel 64 architecture).

— The IA32_SYSENTER_ESP field and the IA32_SYSENTER_EIP field must each 
contain a canonical address.

• If the “load IA32_PERF_GLOBAL_CTRL” VM-entry control is 1, bits reserved in the 
IA32_PERF_GLOBAL_CTRL MSR must be 0 in the field for that register (see 
Figure 18-3).

• If the “load IA32_PAT” VM-entry control is 1, the value of the field for the 
IA32_PAT MSR must be one that could be written by WRMSR without fault at CPL 
0. Specifically, each of the 8 bytes in the field must have one of the values 0 (UC), 
1 (WC), 4 (WT), 5 (WP), 6 (WB), or 7 (UC-).

• If the “load IA32_EFER” VM-entry control is 1, the following checks are performed 
on the field for the IA32_EFER MSR :

— Bits reserved in the IA32_EFER MSR must be 0.

— Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of the 
“IA-32e mode guest” VM-exit control. It must also be identical to bit 8 (LME) 
if bit 31 in the CR0 field (corresponding to CR0.PG) is 1.1 

26.3.1.2  Checks on Guest Segment Registers
This section specifies the checks on the fields for CS, SS, DS, ES, FS, GS, TR, and 
LDTR. The following terms are used in defining these checks:
• The guest will be virtual-8086 if the VM flag (bit 17) is 1 in the RFLAGS field in 

the guest-state area.
• The guest will be IA-32e mode if the “IA-32e mode guest” VM-entry control is 1. 

(This is possible only on processors that support Intel 64 architecture.)
• Any one of these registers is said to be usable if the unusable bit (bit 16) is 0 in 

the access-rights field for that register.

The following are the checks on these fields: 
• Selector fields.

— TR. The TI flag (bit 2) must be 0.

— LDTR. If LDTR is usable, the TI flag (bit 2) must be 0.

5. Bit 63 of the CR3 field in the guest-state area must be 0. This is true even though, If 
CR4.PCIDE = 1, bit 63 of the source operand to MOV to CR3 is used to determine whether cached 
translation information is invalidated.

1. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation, 
bit 31 in the CR0 field must be 1 unless the “unrestricted guest” VM-execution control and bit 31 
of the primary processor-based VM-execution controls are both 1.
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— SS. If the guest will not be virtual-8086 and the “unrestricted guest” VM-
execution control is 0, the RPL (bits 1:0) must equal the RPL of the selector 
field for CS.1

• Base-address fields.

— CS, SS, DS, ES, FS, GS. If the guest will be virtual-8086, the address must be 
the selector field shifted left 4 bits (multiplied by 16).

— The following checks are performed on processors that support Intel 64 archi-
tecture:

• TR, FS, GS. The address must be canonical.

• LDTR. If LDTR is usable, the address must be canonical.

• CS. Bits 63:32 of the address must be zero.

• SS, DS, ES. If the register is usable, bits 63:32 of the address must be 
zero.

• Limit fields for CS, SS, DS, ES, FS, GS. If the guest will be virtual-8086, the field 
must be 0000FFFFH.

• Access-rights fields.

— CS, SS, DS, ES, FS, GS.

• If the guest will be virtual-8086, the field must be 000000F3H. This 
implies the following:

— Bits 3:0 (Type) must be 3, indicating an expand-up read/write
accessed data segment.

— Bit 4 (S) must be 1.

— Bits 6:5 (DPL) must be 3.

— Bit 7 (P) must be 1.

— Bits 11:8 (reserved), bit 12 (software available), bit 13 (reserved/L),
bit 14 (D/B), bit 15 (G), bit 16 (unusable), and bits 31:17 (reserved)
must all be 0.

• If the guest will not be virtual-8086, the different sub-fields are 
considered separately:

— Bits 3:0 (Type).

• CS. The values allowed depend on the setting of the
“unrestricted guest” VM-execution control:

— If the control is 0, the Type must be 9, 11, 13, or 15
(accessed code segment).

1. “Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the pri-
mary processor-based VM-execution controls is 0, VM entry functions as if the “unrestricted 
guest” VM-execution control were 0. See Section 24.6.2.
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— If the control is 1, the Type must be either 3 (read/write
accessed expand-up data segment) or one of 9, 11, 13, and
15 (accessed code segment).

• SS. If SS is usable, the Type must be 3 or 7 (read/write,
accessed data segment).

• DS, ES, FS, GS. The following checks apply if the register is
usable:

— Bit 0 of the Type must be 1 (accessed).

— If bit 3 of the Type is 1 (code segment), then bit 1 of the
Type must be 1 (readable).

— Bit 4 (S). If the register is CS or if the register is usable, S must
be 1.

— Bits 6:5 (DPL).

• CS.

— If the Type is 3 (read/write accessed expand-up data
segment), the DPL must be 0. The Type can be 3 only if the
“unrestricted guest” VM-execution control is 1.

— If the Type is 9 or 11 (non-conforming code segment), the
DPL must equal the DPL in the access-rights field for SS.

— If the Type is 13 or 15 (conforming code segment), the DPL
cannot be greater than the DPL in the access-rights field for
SS.

• SS.

— If the “unrestricted guest” VM-execution control is 0, the DPL
must equal the RPL from the selector field.

— The DPL must be 0 either if the Type in the access-rights field
for CS is 3 (read/write accessed expand-up data segment) or
if bit 0 in the CR0 field (corresponding to CR0.PE) is 0.1

• DS, ES, FS, GS. The DPL cannot be less than the RPL in the
selector field if (1) the “unrestricted guest” VM-execution control
is 0; (2) the register is usable; and (3) the Type in the access-
rights field is in the range 0 – 11 (data segment or non-
conforming code segment).

— Bit 7 (P). If the register is CS or if the register is usable, P must be 1.

1. The following apply if either the “unrestricted guest” VM-execution control or bit 31 of the pri-
mary processor-based VM-execution controls is 0:  (1) bit 0 in the CR0 field must be 1 if the capa-
bility MSR IA32_VMX_CR0_FIXED0 reports that CR0.PE must be 1 in VMX operation; and (2) the 
Type in the access-rights field for CS cannot be 3.
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— Bits 11:8 (reserved). If the register is CS or if the register is usable,
these bits must all be 0.

— Bit 14 (D/B). For CS, D/B must be 0 if the guest will be IA-32e mode
and the L bit (bit 13) in the access-rights field is 1.

— Bit 15 (G). The following checks apply if the register is CS or if the
register is usable:

• If any bit in the limit field in the range 11:0 is 0, G must be 0.

• If any bit in the limit field in the range 31:20 is 1, G must be 1.

— Bits 31:17 (reserved). If the register is CS or if the register is
usable, these bits must all be 0.

— TR. The different sub-fields are considered separately:

• Bits 3:0 (Type).

— If the guest will not be IA-32e mode, the Type must be 3 (16-bit
busy TSS) or 11 (32-bit busy TSS).

— If the guest will be IA-32e mode, the Type must be 11 (64-bit busy
TSS).

• Bit 4 (S). S must be 0.

• Bit 7 (P). P must be 1.

• Bits 11:8 (reserved). These bits must all be 0.

• Bit 15 (G).

— If any bit in the limit field in the range 11:0 is 0, G must be 0.

— If any bit in the limit field in the range 31:20 is 1, G must be 1.

• Bit 16 (Unusable). The unusable bit must be 0.

• Bits 31:17 (reserved). These bits must all be 0.

— LDTR. The following checks on the different sub-fields apply only if LDTR is 
usable:

• Bits 3:0 (Type). The Type must be 2 (LDT).

• Bit 4 (S). S must be 0.

• Bit 7 (P). P must be 1.

• Bits 11:8 (reserved). These bits must all be 0.

• Bit 15 (G).

— If any bit in the limit field in the range 11:0 is 0, G must be 0.

— If any bit in the limit field in the range 31:20 is 1, G must be 1.

• Bits 31:17 (reserved). These bits must all be 0.
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26.3.1.3  Checks on Guest Descriptor-Table Registers
The following checks are performed on the fields for GDTR and IDTR:
• On processors that support Intel 64 architecture, the base-address fields must 

contain canonical addresses.
• Bits 31:16 of each limit field must be 0.

26.3.1.4  Checks on Guest RIP and RFLAGS
The following checks are performed on fields in the guest-state area corresponding to 
RIP and RFLAGS:
• RIP. The following checks are performed on processors that support Intel 64 

architecture:

— Bits 63:32 must be 0 if the “IA-32e mode guest” VM-entry control is 0 or if 
the L bit (bit 13) in the access-rights field for CS is 0.

— If the processor supports N < 64 linear-address bits, bits 63:N must be 
identical if the “IA-32e mode guest” VM-entry control is 1 and the L bit in the 
access-rights field for CS is 1.1 (No check applies if the processor supports 64 
linear-address bits.)

• RFLAGS.

— Reserved bits 63:22 (bits 31:22 on processors that do not support Intel 64 
architecture), bit 15, bit 5 and bit 3 must be 0 in the field, and reserved bit 1 
must be 1.

— The VM flag (bit 17) must be 0 either if the “IA-32e mode guest” VM-entry 
control is 1 or if bit 0 in the CR0 field (corresponding to CR0.PE) is 0.2

— The IF flag (RFLAGS[bit 9]) must be 1 if the valid bit (bit 31) in the VM-entry 
interruption-information field is 1 and the interruption type (bits 10:8) is 
external interrupt.

26.3.1.5  Checks on Guest Non-Register State
The following checks are performed on fields in the guest-state area corresponding to 
non-register state:
• Activity state.

— The activity-state field must contain a value in the range 0 – 3, indicating an 
activity state supported by the implementation (see Section 24.4.2). Future 

1. Software can determine the number N by executing CPUID with 80000008H in EAX. The num-
ber of linear-address bits supported is returned in bits 15:8 of EAX.

2. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PE must be 1 in VMX operation, 
bit 0 in the CR0 field must be 1 unless the “unrestricted guest” VM-execution control and bit 31 
of the primary processor-based VM-execution controls are both 1.
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processors may include support for other activity states. Software should 
read the VMX capability MSR IA32_VMX_MISC (see Appendix A.6) to 
determine what activity states are supported.

— The activity-state field must not indicate the HLT state if the DPL (bits 6:5) in 
the access-rights field for SS is not 0.1

— The activity-state field must indicate the active state if the interruptibility-
state field indicates blocking by either MOV-SS or by STI (if either bit 0 or 
bit 1 in that field is 1).

— If the valid bit (bit 31) in the VM-entry interruption-information field is 1, the 
interruption to be delivered (as defined by interruption type and vector) must 
not be one that would normally be blocked while a logical processor is in the 
activity state corresponding to the contents of the activity-state field. The 
following items enumerate the interruptions (as specified in the VM-entry 
interruption-information field) whose injection is allowed for the different 
activity states:

• Active. Any interruption is allowed.

• HLT. The only events allowed are the following:

— Those with interruption type external interrupt or non-maskable
interrupt (NMI).

— Those with interruption type hardware exception and vector 1
(debug exception) or vector 18 (machine-check exception).

— Those with interruption type other event and vector 0 (pending MTF
VM exit).

See Table 24-13 in Section 24.8.3 for details regarding the format of the 
VM-entry interruption-information field.

• Shutdown. Only NMIs and machine-check exceptions are allowed.

• Wait-for-SIPI. No interruptions are allowed.

— The activity-state field must not indicate the wait-for-SIPI state if the “entry 
to SMM” VM-entry control is 1.

• Interruptibility state.

— The reserved bits (bits 31:4) must be 0.

— The field cannot indicate blocking by both STI and MOV SS (bits 0 and 1 
cannot both be 1).

— Bit 0 (blocking by STI) must be 0 if the IF flag (bit 9) is 0 in the RFLAGS field.

— Bit 0 (blocking by STI) and bit 1 (blocking by MOV-SS) must both be 0 if the 
valid bit (bit 31) in the VM-entry interruption-information field is 1 and the 

1. As noted in Section 24.4.1, SS.DPL corresponds to the logical processor’s current privilege level 
(CPL).
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interruption type (bits 10:8) in that field has value 0, indicating external 
interrupt.

— Bit 1 (blocking by MOV-SS) must be 0 if the valid bit (bit 31) in the VM-entry 
interruption-information field is 1 and the interruption type (bits 10:8) in that 
field has value 2, indicating non-maskable interrupt (NMI).

— Bit 2 (blocking by SMI) must be 0 if the processor is not in SMM.

— Bit 2 (blocking by SMI) must be 1 if the “entry to SMM” VM-entry control is 1.

— A processor may require bit 0 (blocking by STI) to be 0 if the valid bit (bit 31) 
in the VM-entry interruption-information field is 1 and the interruption type 
(bits 10:8) in that field has value 2, indicating NMI. Other processors may not 
make this requirement.

— Bit 3 (blocking by NMI) must be 0 if the “virtual NMIs” VM-execution control 
is 1, the valid bit (bit 31) in the VM-entry interruption-information field is 1, 
and the interruption type (bits 10:8) in that field has value 2 (indicating 
NMI).

NOTE
If the “virtual NMIs” VM-execution control is 0, there is no 
requirement that bit 3 be 0 if the valid bit in the VM-entry 
interruption-information field is 1 and the interruption type in that 
field has value 2.

• Pending debug exceptions.

— Bits 11:4, bit 13, and bits 63:15 (bits 31:15 on processors that do not 
support Intel 64 architecture) must be 0.

— The following checks are performed if any of the following holds: (1) the 
interruptibility-state field indicates blocking by STI (bit 0 in that field is 1); 
(2) the interruptibility-state field indicates blocking by MOV SS (bit 1 in that 
field is 1); or (3) the activity-state field indicates HLT:

• Bit 14 (BS) must be 1 if the TF flag (bit 8) in the RFLAGS field is 1 and the 
BTF flag (bit 1) in the IA32_DEBUGCTL field is 0.

• Bit 14 (BS) must be 0 if the TF flag (bit 8) in the RFLAGS field is 0 or the 
BTF flag (bit 1) in the IA32_DEBUGCTL field is 1.

• VMCS link pointer. The following checks apply if the field contains a value other 
than FFFFFFFF_FFFFFFFFH:

— Bits 11:0 must be 0.

— Bits beyond the processor’s physical-address width must be 0.1,2

1. Software can determine a processor’s physical-address width by executing CPUID with 
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.
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— The 32 bits located in memory referenced by the value of the field (as a 
physical address) must contain the processor’s VMCS revision identifier (see 
Section 24.2).

— If the processor is not in SMM or the “entry to SMM” VM-entry control is 1, the 
field must not contain the current VMCS pointer.

— If the processor is in SMM and the “entry to SMM” VM-entry control is 0, the 
field must not contain the VMXON pointer.

26.3.1.6 Checks on Guest Page-Directory-Pointer-Table Entries
If CR0.PG =1, CR4.PAE = 1, and IA32_EFER.LMA = 0, the logical processor also uses 
PAE paging (see Section 4.4 in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3A).1 When PAE paging is in use, the physical address in 
CR3 references a table of page-directory-pointer-table entries (PDPTEs). A MOV 
to CR3 when PAE paging is in use checks the validity of the PDPTEs.

A VM entry is to a guest that uses PAE paging if (1) bit 31 (corresponding to CR0.PG) 
is set in the CR0 field in the guest-state area; (2) bit 5 (corresponding to CR4.PAE) is 
set in the CR4 field; and (3) the “IA-32e mode guest” VM-entry control is 0. Such a 
VM entry checks the validity of the PDPTEs:
• If the “enable EPT” VM-execution control is 0, VM entry checks the validity of the 

PDPTEs referenced by the CR3 field in the guest-state area if either (1) PAE 
paging was not in use before the VM entry; or (2) the value of CR3 is changing as 
a result of the VM entry. VM entry may check their validity even if neither (1) nor 
(2) hold.2

• If the “enable EPT” VM-execution control is 1, VM entry checks the validity of the 
PDPTE fields in the guest-state area (see Section 24.4.2).

A VM entry to a guest that does not use PAE paging does not check the validity of any 
PDPTEs.

A VM entry that checks the validity of the PDPTEs uses the same checks that are used 
when CR3 is loaded with MOV to CR3 when PAE paging is in use.3 If MOV to CR3 

2. If IA32_VMX_BASIC[48] is read as 1, this field must not set any bits in the range 63:32; see 
Appendix A.1.

1. On processors that support Intel 64 architecture, the physical-address extension may support 
more than 36 physical-address bits. Software can determine the number physical-address bits 
supported by executing CPUID with 80000008H in EAX. The physical-address width is returned 
in bits 7:0 of EAX.

2. “Enable EPT” is a secondary processor-based VM-execution control. If bit 31 of the primary pro-
cessor-based VM-execution controls is 0, VM entry functions as if the “enable EPT” VM-execu-
tion control were 0. See Section 24.6.2.

3. This implies that (1) bits 11:9 in each PDPTE are ignored; and (2) if bit 0 (present) is clear in one 
of the PDPTEs, bits 63:1 of that PDPTE are ignored.
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would cause a general-protection exception due to the PDPTEs that would be loaded 
(e.g., because a reserved bit is set), the VM entry fails.

26.3.2 Loading Guest State
Processor state is updated on VM entries in the following ways:
• Some state is loaded from the guest-state area.
• Some state is determined by VM-entry controls.
• The page-directory pointers are loaded based on the values of certain control 

registers.

This loading may be performed in any order and in parallel with the checking of VMCS 
contents (see Section 26.3.1).

The loading of guest state is detailed in Section 26.3.2.1 to Section 26.3.2.4. These 
sections reference VMCS fields that correspond to processor state. Unless otherwise 
stated, these references are to fields in the guest-state area.

In addition to the state loading described in this section, VM entries may load MSRs 
from the VM-entry MSR-load area (see Section 26.4). This loading occurs only after 
the state loading described in this section and the checking of VMCS contents 
described in Section 26.3.1.

26.3.2.1  Loading Guest Control Registers, Debug Registers, and MSRs
The following items describe how guest control registers, debug registers, and MSRs 
are loaded on VM entry:
• CR0 is loaded from the CR0 field with the exception of the following bits, which 

are never modified on VM entry: ET (bit 4); reserved bits 15:6, 17, and 28:19; 
NW (bit 29) and CD (bit 30).1 The values of these bits in the CR0 field are 
ignored.

• CR3 and CR4 are loaded from the CR3 field and the CR4 field, respectively.
• If the “load debug controls” VM-execution control is 1, DR7 is loaded from the 

DR7 field with the exception that bit 12 and bits 15:14 are always 0 and bit 10 is 
always 1. The values of these bits in the DR7 field are ignored.
The first processors to support the virtual-machine extensions supported only
the 1-setting of the “load debug controls” VM-execution control and thus always
loaded DR7 from the DR7 field.

1. Bits 15:6, bit 17, and bit 28:19 of CR0 and CR0.ET are unchanged by executions of MOV to CR0. 
Bits 15:6, bit 17, and bit 28:19 of CR0 are always 0 and CR0.ET is always 1.
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• The following describes how some MSRs are loaded using fields in the guest-state 
area:

— If the “load debug controls” VM-execution control is 1, the IA32_DEBUGCTL 
MSR is loaded from the IA32_DEBUGCTL field. The first processors to support 
the virtual-machine extensions supported only the 1-setting of this control 
and thus always loaded the IA32_DEBUGCTL MSR from the IA32_DEBUGCTL 
field.

— The IA32_SYSENTER_CS MSR is loaded from the IA32_SYSENTER_CS field. 
Since this field has only 32 bits, bits 63:32 of the MSR are cleared to 0.

— The IA32_SYSENTER_ESP and IA32_SYSENTER_EIP MSRs are loaded from 
the IA32_SYSENTER_ESP field and the IA32_SYSENTER_EIP field, respec-
tively. On processors that do not support Intel 64 architecture, these fields 
have only 32 bits; bits 63:32 of the MSRs are cleared to 0.

— The following are performed on processors that support Intel 64 architecture:

• The MSRs FS.base and GS.base are loaded from the base-address fields 
for FS and GS, respectively (see Section 26.3.2.2).

• If the “load IA32_EFER” VM-entry control is 0, bits in the IA32_EFER MSR 
are modified as follows:

— IA32_EFER.LMA is loaded with the setting of the “IA-32e mode
guest” VM-entry control.

— If CR0 is being loaded so that CR0.PG = 1, IA32_EFER.LME is also
loaded with the setting of the “IA-32e mode guest” VM-entry
control.1 Otherwise, IA32_EFER.LME is unmodified.

See below for the case in which the “load IA32_EFER” VM-entry control is 
1

— If the “load IA32_PERF_GLOBAL_CTRL” VM-entry control is 1, the 
IA32_PERF_GLOBAL_CTRL MSR is loaded from the 
IA32_PERF_GLOBAL_CTRL field.

— If the “load IA32_PAT” VM-entry control is 1, the IA32_PAT MSR is loaded 
from the IA32_PAT field.

— If the “load IA32_EFER” VM-entry control is 1, the IA32_EFER MSR is loaded 
from the IA32_EFER field.

With the exception of FS.base and GS.base, any of these MSRs is subsequently
overwritten if it appears in the VM-entry MSR-load area. See Section 26.4.

• The SMBASE register is unmodified by all VM entries except those that return 
from SMM.

1. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation, 
VM entry must be loading CR0 so that CR0.PG = 1 unless the “unrestricted guest” VM-execution 
control and bit 31 of the primary processor-based VM-execution controls are both 1.
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26.3.2.2  Loading Guest Segment Registers and Descriptor-Table Registers
For each of CS, SS, DS, ES, FS, GS, TR, and LDTR, fields are loaded from the guest-
state area as follows:

• The unusable bit is loaded from the access-rights field. This bit can never be set 
for TR (see Section 26.3.1.2). If it is set for one of the other registers, the 
following apply:

— For each of CS, SS, DS, ES, FS, and GS, uses of the segment cause faults 
(general-protection exception or stack-fault exception) outside 64-bit mode, 
just as they would had the segment been loaded using a null selector. This bit 
does not cause accesses to fault in 64-bit mode.

— If this bit is set for LDTR, uses of LDTR cause general-protection exceptions in 
all modes, just as they would had LDTR been loaded using a null selector.

If this bit is clear for any of CS, SS, DS, ES, FS, GS, TR, and LDTR, a null
selector value does not cause a fault (general-protection exception or stack-
fault exception).

• TR. The selector, base, limit, and access-rights fields are loaded.
• CS.

— The following fields are always loaded: selector, base address, limit, and 
(from the access-rights field) the L, D, and G bits.

— For the other fields, the unusable bit of the access-rights field is consulted:

• If the unusable bit is 0, all of the access-rights field is loaded.
• If the unusable bit is 1, the remainder of CS access rights are undefined 

after VM entry.
• SS, DS, ES, FS, GS, and LDTR.

— The selector fields are loaded.
— For the other fields, the unusable bit of the corresponding access-rights field 

is consulted:

• If the unusable bit is 0, the base-address, limit, and access-rights fields 
are loaded.

• If the unusable bit is 1, the base address, the segment limit, and the 
remainder of the access rights are undefined after VM entry with the 
following exceptions:

— Bits 3:0 of the base address for SS are cleared to 0.

— SS.DPL is always loaded from the SS access-rights field. This will be
the current privilege level (CPL) after the VM entry completes.

— SS.B is always set to 1.

— The base addresses for FS and GS are loaded from the corre-
sponding fields in the VMCS. On processors that support Intel 64
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architecture, the values loaded for base addresses for FS and GS are
also manifest in the FS.base and GS.base MSRs.

— On processors that support Intel 64 architecture, the base address
for LDTR is set to an undefined but canonical value.

— On processors that support Intel 64 architecture, bits 63:32 of the
base addresses for SS, DS, and ES are cleared to 0.

GDTR and IDTR are loaded using the base and limit fields.

26.3.2.3  Loading Guest RIP, RSP, and RFLAGS
RSP, RIP, and RFLAGS are loaded from the RSP field, the RIP field, and the RFLAGS 
field, respectively. The following items regard the upper 32 bits of these fields on 
VM entries that are not to 64-bit mode:
• Bits 63:32 of RSP are undefined outside 64-bit mode. Thus, a logical processor 

may ignore the contents of bits 63:32 of the RSP field on VM entries that are not 
to 64-bit mode.

• As noted in Section 26.3.1.4, bits 63:32 of the RIP and RFLAGS fields must be 0 
on VM entries that are not to 64-bit mode.

26.3.2.4  Loading Page-Directory-Pointer-Table Entries
As noted in Section 26.3.1.6, the logical processor uses PAE paging if bit 5 in CR4 
(CR4.PAE) is 1 and IA32_EFER.LMA is 0. A VM entry to a guest that uses PAE paging 
loads the PDPTEs into internal, non-architectural registers based on the setting of the 
“enable EPT” VM-execution control:
• If the control is 0, the PDPTEs are loaded from the page-directory-pointer table 

referenced by the physical address in the value of CR3 being loaded by the 
VM entry (see Section 26.3.2.1). The values loaded are treated as physical 
addresses in VMX non-root operation.

• If the control is 1, the PDPTEs are loaded from corresponding fields in the guest-
state area (see Section 24.4.2). The values loaded are treated as guest-physical 
addresses in VMX non-root operation.

26.3.2.5  Updating Non-Register State
Section 28.3 describe how the VMX architecture controls how a logical processor 
manages information in the TLBs and paging-structure caches. The following items 
detail how VM entries invalidate cached mappings:
• If the “enable VPID” VM-execution control is 0, the logical processor invalidates 

linear mappings and combined mappings associated with VPID 0000H (for all 
PCIDs); combined mappings for VPID 0000H are invalidated for all EP4TA values 
(EP4TA is the value of bits 51:12 of EPTP).
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• VM entries are not required to invalidate any guest-physical mappings, nor are 
they required to invalidate any linear mappings or combined mappings if the 
“enable VPID” VM-execution control is 1. 

26.3.3 Clearing Address-Range Monitoring
The Intel 64 and IA-32 architectures allow software to monitor a specified address 
range using the MONITOR and MWAIT instructions. See Section 8.10.4 in the Intel® 
64 and IA-32 Architectures Software Developer’s Manual, Volume 3A. VM entries 
clear any address-range monitoring that may be in effect.

26.4 LOADING MSRS
VM entries may load MSRs from the VM-entry MSR-load area (see Section 24.8.2). 
Specifically each entry in that area (up to the number specified in the VM-entry MSR-
load count) is processed in order by loading the MSR indexed by bits 31:0 with the 
contents of bits 127:64 as they would be written by WRMSR.1 

Processing of an entry fails in any of the following cases:
• The value of bits 31:0 is either C0000100H (the IA32_FS_BASE MSR) or 

C0000101 (the IA32_GS_BASE MSR).
• The value of bits 31:8 is 000008H, meaning that the indexed MSR is one that 

allows access to an APIC register when the local APIC is in x2APIC mode. 
• The value of bits 31:0 indicates an MSR that can be written only in system-

management mode (SMM) and the VM entry did not commence in SMM. 
(IA32_SMM_MONITOR_CTL is an MSR that can be written only in SMM.)

• The value of bits 31:0 indicates an MSR that cannot be loaded on VM entries for 
model-specific reasons. A processor may prevent loading of certain MSRs even if 
they can normally be written by WRMSR. Such model-specific behavior is 
documented in Chapter 34.

• Bits 63:32 are not all 0.
• An attempt to write bits 127:64 to the MSR indexed by bits 31:0 of the entry 

would cause a general-protection exception if executed via WRMSR with 
CPL = 0.2

1. Because attempts to modify the value of IA32_EFER.LMA by WRMSR are ignored, attempts to 
modify it using the VM-entry MSR-load area are also ignored.

2. If CR0.PG = 1, WRMSR to the IA32_EFER MSR causes a general-protection exception if it would 
modify the LME bit. If VM entry has established CR0.PG = 1, the IA32_EFER MSR should not be 
included in the VM-entry MSR-load area for the purpose of modifying the LME bit.
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The VM entry fails if processing fails for any entry. The logical processor responds to 
such failures by loading state from the host-state area, as it would for a VM exit. See 
Section 26.7.

If any MSR is being loaded in such a way that would architecturally require a TLB 
flush, the TLBs are updated so that, after VM entry, the logical processor will not use 
any translations that were cached before the transition.

26.5 EVENT INJECTION
If the valid bit in the VM-entry interruption-information field (see Section 24.8.3) is 
1, VM entry causes an event to be delivered (or made pending) after all components 
of guest state have been loaded (including MSRs) and after the VM-execution control 
fields have been established.
• If the interruption type in the field is 0 (external interrupt), 2 (non-maskable 

interrupt); 3 (hardware exception), 4 (software interrupt), 5 (privileged software 
exception), or 6 (software exception), the event is delivered as described in 
Section 26.5.1.

• If the interruption type in the field is 7 (other event) and the vector field is 0, an 
MTF VM exit is pending after VM entry. See Section 26.5.2.

26.5.1 Vectored-Event Injection
VM entry delivers an injected vectored event within the guest context established by 
VM entry. This means that delivery occurs after all components of guest state have 
been loaded (including MSRs) and after the VM-execution control fields have been 
established.1 The event is delivered using the vector in that field to select a 
descriptor in the IDT. Since event injection occurs after loading IDTR from the guest-
state area, this is the guest IDT.

Section 26.5.1.1 provides details of vectored-event injection. In general, the event is 
delivered exactly as if it had been generated normally.

If event delivery encounters a nested exception (for example, a general-protection 
exception because the vector indicates a descriptor beyond the IDT limit), the excep-
tion bitmap is consulted using the vector of that exception. If the bit is 0, the excep-
tion is delivered through the IDT. If the bit is 1, a VM exit occurs. Section 26.5.1.2 
details cases in which event injection causes a VM exit.

1. This does not imply that injection of an exception or interrupt will cause a VM exit due to the set-
tings of VM-execution control fields (such as the exception bitmap) that would cause a VM exit if 
the event had occurred in VMX non-root operation. In contrast, a nested exception encountered 
during event delivery may cause a VM exit; see Section 26.5.1.1.
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26.5.1.1  Details of Vectored-Event Injection
The event-injection process is controlled by the contents of the VM-entry interruption 
information field (format given in Table 24-13), the VM-entry exception error-code 
field, and the VM-entry instruction-length field. The following items provide details of 
the process:
• The value pushed on the stack for RFLAGS is generally that which was loaded 

from the guest-state area. The value pushed for the RF flag is not modified based 
on the type of event being delivered. However, the pushed value of RFLAGS may 
be modified if a software interrupt is being injected into a guest that will be in 
virtual-8086 mode (see below). After RFLAGS is pushed on the stack, the value 
in the RFLAGS register is modified as is done normally when delivering an event 
through the IDT.

• The instruction pointer that is pushed on the stack depends on the type of event 
and whether nested exceptions occur during its delivery. The term current 
guest RIP refers to the value to be loaded from the guest-state area. The value 
pushed is determined as follows:1

— If VM entry successfully injects (with no nested exception) an event with 
interruption type external interrupt, NMI, or hardware exception, the current 
guest RIP is pushed on the stack.

— If VM entry successfully injects (with no nested exception) an event with 
interruption type software interrupt, privileged software exception, or 
software exception, the current guest RIP is incremented by the VM-entry 
instruction length before being pushed on the stack.

— If VM entry encounters an exception while injecting an event and that 
exception does not cause a VM exit, the current guest RIP is pushed on the 
stack regardless of event type or VM-entry instruction length. If the 
encountered exception does cause a VM exit that saves RIP, the saved RIP is 
current guest RIP.

• If the deliver-error-code bit (bit 11) is set in the VM-entry interruption-
information field, the contents of the VM-entry exception error-code field is 
pushed on the stack as an error code would be pushed during delivery of an 
exception.

• DR6, DR7, and the IA32_DEBUGCTL MSR are not modified by event injection, 
even if the event has vector 1 (normal deliveries of debug exceptions, which have 
vector 1, do update these registers).

• If VM entry is injecting a software interrupt and the guest will be in virtual-8086 
mode (RFLAGS.VM = 1), no general-protection exception can occur due to 
RFLAGS.IOPL < 3. A VM monitor should check RFLAGS.IOPL before injecting 
such an event and, if desired, inject a general-protection exception instead of a 
software interrupt.

1. While these items refer to RIP, the width of the value pushed (16 bits, 32 bits, or 64 bits) is 
determined normally.
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• If VM entry is injecting a software interrupt and the guest will be in virtual-8086 
mode with virtual-8086 mode extensions (RFLAGS.VM = CR4.VME = 1), event 
delivery is subject to VME-based interrupt redirection based on the software 
interrupt redirection bitmap in the task-state segment (TSS) as follows:

— If bit n in the bitmap is clear (where n is the number of the software 
interrupt), the interrupt is directed to an 8086 program interrupt handler: the 
processor uses a 16-bit interrupt-vector table (IVT) located at linear address 
zero. If the value of RFLAGS.IOPL is less than 3, the following modifications 
are made to the value of RFLAGS that is pushed on the stack: IOPL is set to 
3, and IF is set to the value of VIF.

— If bit n in the bitmap is set (where n is the number of the software interrupt), 
the interrupt is directed to a protected-mode interrupt handler. (In other 
words, the injection is treated as described in the next item.) In this case, the 
software interrupt does not invoke such a handler if RFLAGS.IOPL < 3 (a 
general-protection exception occurs instead). However, as noted above, 
RFLAGS.IOPL cannot cause an injected software interrupt to cause such a 
exception. Thus, in this case, the injection invokes a protected-mode 
interrupt handler independent of the value of RFLAGS.IOPL.

Injection of events of other types are not subject to this redirection.
• If VM entry is injecting a software interrupt (not redirected as described above) 

or software exception, privilege checking is performed on the IDT descriptor 
being accessed as would be the case for executions of INT n, INT3, or INTO (the 
descriptor’s DPL cannot be less than CPL). There is no checking of RFLAGS.IOPL, 
even if the guest will be in virtual-8086 mode. Failure of this check may lead to a 
nested exception. Injection of an event with interruption type external interrupt, 
NMI, hardware exception, and privileged software exception, or with interruption 
type software interrupt and being redirected as described above, do not perform 
these checks.

• If VM entry is injecting a non-maskable interrupt (NMI) and the “virtual NMIs” 
VM-execution control is 1, virtual-NMI blocking is in effect after VM entry.

• The transition causes a last-branch record to be logged if the LBR bit is set in the 
IA32_DEBUGCTL MSR. This is true even for events such as debug exceptions, 
which normally clear the LBR bit before delivery.

• The last-exception record MSRs (LERs) may be updated based on the setting of 
the LBR bit in the IA32_DEBUGCTL MSR. Events such as debug exceptions, which 
normally clear the LBR bit before they are delivered, and therefore do not 
normally update the LERs, may do so as part of VM-entry event injection.

• If injection of an event encounters a nested exception that does not itself cause a 
VM exit, the value of the EXT bit (bit 0) in any error code pushed on the stack is 
determined as follows:

— If event being injected has interruption type external interrupt, NMI, 
hardware exception, or privileged software exception and encounters a 
nested exception (but does not produce a double fault), the error code for the 
first such exception encountered sets the EXT bit.
Vol. 3C 26-27



VM ENTRIES
— If event being injected is a software interrupt or an software exception and 
encounters a nested exception (but does not produce a double fault), the 
error code for the first such exception encountered clears the EXT bit.

— If event delivery encounters a nested exception and delivery of that 
exception encounters another exception (but does not produce a double 
fault), the error code for that exception sets the EXT bit. If a double fault is 
produced, the error code for the double fault is 0000H (the EXT bit is clear).

26.5.1.2  VM Exits During Event Injection
An event being injected never causes a VM exit directly regardless of the settings of 
the VM-execution controls. For example, setting the “NMI exiting” VM-execution 
control to 1 does not cause a VM exit due to injection of an NMI.

However, the event-delivery process may lead to a VM exit:
• If the vector in the VM-entry interruption-information field identifies a task gate 

in the IDT, the attempted task switch may cause a VM exit just as it would had 
the injected event occurred during normal execution in VMX non-root operation 
(see Section 25.6.2).

• If event delivery encounters a nested exception, a VM exit may occur depending 
on the contents of the exception bitmap (see Section 25.3).

• If event delivery generates a double-fault exception (due to a nested exception); 
the logical processor encounters another nested exception while attempting to 
call the double-fault handler; and that exception does not cause a VM exit due to 
the exception bitmap; then a VM exit occurs due to triple fault (see Section 
25.3).

• If event delivery injects a double-fault exception and encounters a nested 
exception that does not cause a VM exit due to the exception bitmap, then a 
VM exit occurs due to triple fault (see Section 25.3).

• If the “virtualize APIC accesses” VM-execution control is 1 and event delivery 
generates an access to the APIC-access page, that access may cause an APIC-
access VM exit (see Section 25.2) or, if the access is a VTPR access, be treated as 
specified in Section 25.5.3.1

If the event-delivery process does cause a VM exit, the processor state before the 
VM exit is determined just as it would be had the injected event occurred during 
normal execution in VMX non-root operation. If the injected event directly accesses a 
task gate that cause a VM exit or if the first nested exception encountered causes a 
VM exit, information about the injected event is saved in the IDT-vectoring informa-
tion field (see Section 27.2.3).

1. “Virtualize APIC accesses” is a secondary processor-based VM-execution control. If bit 31 of the 
primary processor-based VM-execution controls is 0, VM entry functions as if the “virtualize APIC 
accesses” VM-execution control were 0. See Section 24.6.2.
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26.5.1.3  Event Injection for VM Entries to Real-Address Mode
If VM entry is loading CR0.PE with 0, any injected vectored event is delivered as 
would normally be done in real-address mode.1 Specifically, VM entry uses the vector 
provided in the VM-entry interruption-information field to select a 4-byte entry from 
an interrupt-vector table at the linear address in IDTR.base. Further details are 
provided in Section 15.1.4 in Volume 3A of the IA-32 Intel® Architecture Software 
Developer’s Manual.

Because bit 11 (deliver error code) in the VM-entry interruption-information field 
must be 0 if CR0.PE will be 0 after VM entry (see Section 26.2.1.3), vectored events 
injected with CR0.PE = 0 do not push an error code on the stack. This is consistent 
with event delivery in real-address mode.

If event delivery encounters a fault (due to a violation of IDTR.limit or of SS.limit), 
the fault is treated as if it had occurred during event delivery in VMX non-root opera-
tion. Such a fault may lead to a VM exit as discussed in Section 26.5.1.2.

26.5.2 Injection of Pending MTF VM Exits
If the interruption type in the VM-entry interruption-information field is 7 (other 
event) and the vector field is 0, VM entry causes an MTF VM exit to be pending on the 
instruction boundary following VM entry. This is the case even if the “monitor trap 
flag” VM-execution control is 0. See Section 25.7.2 for the treatment of pending MTF 
VM exits.

26.6 SPECIAL FEATURES OF VM ENTRY
This section details a variety of features of VM entry. It uses the following termi-
nology: a VM entry is vectoring if the valid bit (bit 31) of the VM-entry interruption 
information field is 1 and the interruption type in the field is 0 (external interrupt), 2 
(non-maskable interrupt); 3 (hardware exception), 4 (software interrupt), 5 (privi-
leged software exception), or 6 (software exception).

26.6.1 Interruptibility State
The interruptibility-state field in the guest-state area (see Table 24-3) contains bits 
that control blocking by STI, blocking by MOV SS, and blocking by NMI. This field 
impacts event blocking after VM entry as follows:
• If the VM entry is vectoring, there is no blocking by STI or by MOV SS following 

the VM entry, regardless of the contents of the interruptibility-state field.

1. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PE must be 1 in VMX operation, 
VM entry must be loading CR0.PE with 1 unless the “unrestricted guest” VM-execution control 
and bit 31 of the primary processor-based VM-execution controls are both 1.
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• If the VM entry is not vectoring, the following apply:

— Events are blocked by STI if and only if bit 0 in the interruptibility-state field 
is 1. This blocking is cleared after the guest executes one instruction or incurs 
an exception (including a debug exception made pending by VM entry; see 
Section 26.6.3).

— Events are blocked by MOV SS if and only if bit 1 in the interruptibility-state 
field is 1. This may affect the treatment of pending debug exceptions; see 
Section 26.6.3. This blocking is cleared after the guest executes one 
instruction or incurs an exception (including a debug exception made pending 
by VM entry).

• The blocking of non-maskable interrupts (NMIs) is determined as follows:

— If the “virtual NMIs” VM-execution control is 0, NMIs are blocked if and only if 
bit 3 (blocking by NMI) in the interruptibility-state field is 1. If the “NMI 
exiting” VM-execution control is 0, execution of the IRET instruction removes 
this blocking (even if the instruction generates a fault). If the “NMI exiting” 
control is 1, IRET does not affect this blocking.

— The following items describe the use of bit 3 (blocking by NMI) in the inter-
ruptibility-state field if the “virtual NMIs” VM-execution control is 1:

• The bit’s value does not affect the blocking of NMIs after VM entry. NMIs 
are not blocked in VMX non-root operation (except for ordinary blocking 
for other reasons, such as by the MOV SS instruction, the wait-for-SIPI 
state, etc.)

• The bit’s value determines whether there is virtual-NMI blocking after 
VM entry. If the bit is 1, virtual-NMI blocking is in effect after VM entry. If 
the bit is 0, there is no virtual-NMI blocking after VM entry unless the 
VM entry is injecting an NMI (see Section 26.5.1.1). Execution of IRET 
removes virtual-NMI blocking (even if the instruction generates a fault).

If the “NMI exiting” VM-execution control is 0, the “virtual NMIs” control must
be 0; see Section 26.2.1.1.

• Blocking of system-management interrupts (SMIs) is determined as follows:

— If the VM entry was not executed in system-management mode (SMM), SMI 
blocking is unchanged by VM entry.

— If the VM entry was executed in SMM, SMIs are blocked after VM entry if and 
only if the bit 2 in the interruptibility-state field is 1.

26.6.2 Activity State
The activity-state field in the guest-state area controls whether, after VM entry, the 
logical processor is active or in one of the inactive states identified in Section 24.4.2. 
The use of this field is determined as follows:
26-30 Vol. 3C



VM ENTRIES
• If the VM entry is vectoring, the logical processor is in the active state after 
VM entry. While the consistency checks described in Section 26.3.1.5 on the 
activity-state field do apply in this case, the contents of the activity-state field do 
not determine the activity state after VM entry.

• If the VM entry is not vectoring, the logical processor ends VM entry in the 
activity state specified in the guest-state area. If VM entry ends with the logical 
processor in an inactive activity state, the VM entry generates any special bus 
cycle that is normally generated when that activity state is entered from the 
active state. If VM entry would end with the logical processor in the shutdown 
state and the logical processor is in SMX operation,1 an Intel® TXT shutdown 
condition occurs. The error code used is 0000H, indicating “legacy shutdown.” 
See Intel® Trusted Execution Technology Preliminary Architecture Specification.

• Some activity states unconditionally block certain events. The following blocking 
is in effect after any VM entry that puts the processor in the indicated state:

— The active state blocks start-up IPIs (SIPIs). SIPIs that arrive while a logical 
processor is in the active state and in VMX non-root operation are discarded 
and do not cause VM exits.

— The HLT state blocks start-up IPIs (SIPIs). SIPIs that arrive while a logical 
processor is in the HLT state and in VMX non-root operation are discarded and 
do not cause VM exits.

— The shutdown state blocks external interrupts and SIPIs. External interrupts 
that arrive while a logical processor is in the shutdown state and in VMX non-
root operation do not cause VM exits even if the “external-interrupt exiting” 
VM-execution control is 1. SIPIs that arrive while a logical processor is in the 
shutdown state and in VMX non-root operation are discarded and do not 
cause VM exits.

— The wait-for-SIPI state blocks external interrupts, non-maskable interrupts 
(NMIs), INIT signals, and system-management interrupts (SMIs). Such 
events do not cause VM exits if they arrive while a logical processor is in the 
wait-for-SIPI state and in VMX non-root operation do not cause VM exits 
regardless of the settings of the pin-based VM-execution controls.

26.6.3 Delivery of Pending Debug Exceptions after VM Entry
The pending debug exceptions field in the guest-state area indicates whether there 
are debug exceptions that have not yet been delivered (see Section 24.4.2). This 
section describes how these are treated on VM entry.

There are no pending debug exceptions after VM entry if any of the following are 
true:

1. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last 
execution of GETSEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference,” in Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 2B.
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• The VM entry is vectoring with one of the following interruption types: external 
interrupt, non-maskable interrupt (NMI), hardware exception, or privileged 
software exception.

• The interruptibility-state field does not indicate blocking by MOV SS and the 
VM entry is vectoring with either of the following interruption type: software 
interrupt or software exception.

• The VM entry is not vectoring and the activity-state field indicates either 
shutdown or wait-for-SIPI.

If none of the above hold, the pending debug exceptions field specifies the debug 
exceptions that are pending for the guest. There are valid pending debug excep-
tions if either the BS bit (bit 14) or the enable-breakpoint bit (bit 12) is 1. If there 
are valid pending debug exceptions, they are handled as follows:
• If the VM entry is not vectoring, the pending debug exceptions are treated as 

they would had they been encountered normally in guest execution:

— If the logical processor is not blocking such exceptions (the interruptibility-
state field indicates no blocking by MOV SS), a debug exception is delivered 
after VM entry (see below). 

— If the logical processor is blocking such exceptions (due to blocking by 
MOV SS), the pending debug exceptions are held pending or lost as would 
normally be the case.

• If the VM entry is vectoring (with interruption type software interrupt or software 
exception and with blocking by MOV SS), the following items apply:

— For injection of a software interrupt or of a software exception with vector 3 
(#BP) or vector 4 (#OF), the pending debug exceptions are treated as they 
would had they been encountered normally in guest execution if the corre-
sponding instruction (INT3 or INTO) were executed after a MOV SS that 
encountered a debug trap.

— For injection of a software exception with a vector other than 3 and 4, the 
pending debug exceptions may be lost or they may be delivered after 
injection (see below).

If there are no valid pending debug exceptions (as defined above), no pending debug 
exceptions are delivered after VM entry.

If a pending debug exception is delivered after VM entry, it has the priority of “traps 
on the previous instruction” (see Section 6.9 in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3A). Thus, INIT signals and system-
management interrupts (SMIs) take priority of such an exception, as do VM exits 
induced by the TPR shadow (see Section 26.6.7) and pending MTF VM exits (see 
Section 26.6.8. The exception takes priority over any pending non-maskable inter-
rupt (NMI) or external interrupt and also over VM exits due to the 1-settings of the 
“interrupt-window exiting” and “NMI-window exiting” VM-execution controls.
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A pending debug exception delivered after VM entry causes a VM exit if the bit 1 
(#DB) is 1 in the exception bitmap. If it does not cause a VM exit, it updates DR6 
normally.

26.6.4 VMX-Preemption Timer
If the “activate VMX-preemption timer” VM-execution control is 1, VM entry starts 
the VMX-preemption timer with the unsigned value in the VMX-preemption timer-
value field.

It is possible for the VMX-preemption timer to expire during VM entry (e.g., if the 
value in the VMX-preemption timer-value field is zero). If this happens (and if the VM 
entry was not to the wait-for-SIPI state), a VM exit occurs with its normal priority 
after any event injection and before execution of any instruction following VM entry. 
For example, any pending debug exceptions established by VM entry (see Section 
26.6.3) take priority over a timer-induced VM exit. (The timer-induced VM exit will 
occur after delivery of the debug exception, unless that exception or its delivery 
causes a different VM exit.)

See Section 25.7.1 for details of the operation of the VMX-preemption timer in VMX 
non-root operation, including the blocking and priority of the VM exits that it causes.

26.6.5 Interrupt-Window Exiting
The “interrupt-window exiting” VM-execution control may cause a VM exit to occur 
immediately after VM entry (see Section 25.3 for details).

The following items detail the treatment of these VM exits:
• These VM exits follow event injection if such injection is specified for VM entry.
• Non-maskable interrupts (NMIs) and higher priority events take priority over 

VM exits caused by this control. VM exits caused by this control take priority over 
external interrupts and lower priority events. 

• VM exits caused by this control wake the logical processor if it just entered the 
HLT state because of a VM entry (see Section 26.6.2). They do not occur if the 
logical processor just entered the shutdown state or the wait-for-SIPI state.

26.6.6 NMI-Window Exiting
The “NMI-window exiting” VM-execution control may cause a VM exit to occur imme-
diately after VM entry (see Section 25.3 for details).

The following items detail the treatment of these VM exits:
• These VM exits follow event injection if such injection is specified for VM entry.
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• Debug-trap exceptions (see Section 26.6.3) and higher priority events take 
priority over VM exits caused by this control. VM exits caused by this control take 
priority over non-maskable interrupts (NMIs) and lower priority events. 

• VM exits caused by this control wake the logical processor if it just entered either 
the HLT state or the shutdown state because of a VM entry (see Section 26.6.2). 
They do not occur if the logical processor just entered the wait-for-SIPI state.

26.6.7 VM Exits Induced by the TPR Shadow
If the “use TPR shadow” and “virtualize APIC accesses” VM-execution controls are 
both 1, a VM exit occurs immediately after VM entry if the value of bits 3:0 of the TPR 
threshold VM-execution control field is greater than the value of bits 7:4 in byte 80H 
on the virtual-APIC page (see Section 24.6.8).1

The following items detail the treatment of these VM exits:
• The VM exits are not blocked if RFLAGS.IF = 0 or by the setting of bits in the 

interruptibility-state field in guest-state area.
• The VM exits follow event injection if such injection is specified for VM entry.
• VM exits caused by this control take priority over system-management interrupts 

(SMIs), INIT signals, and lower priority events. They thus have priority over the 
VM exits described in Section 26.6.5, Section 26.6.6, and Section 26.6.8, as well 
as any interrupts or debug exceptions that may be pending at the time of 
VM entry.

• These VM exits wake the logical processor if it just entered the HLT state as part 
of a VM entry (see Section 26.6.2). They do not occur if the logical processor just 
entered the shutdown state or the wait-for-SIPI state.
If such a VM exit is suppressed because the processor just entered the
shutdown state, it occurs after the delivery of any event that cause the logical
processor to leave the shutdown state while remaining in VMX non-root
operation (e.g., due to an NMI that occurs while the “NMI-exiting” VM-execution
control is 0).

• The basic exit reason is “TPR below threshold.”

26.6.8 Pending MTF VM Exits
As noted in Section 26.5.2, VM entry may cause an MTF VM exit to be pending imme-
diately after VM entry. The following items detail the treatment of these VM exits:

1. “Virtualize APIC accesses” is a secondary processor-based VM-execution control. If bit 31 of the 
primary processor-based VM-execution controls is 0, VM entry functions as if the “virtualize APIC 
accesses” VM-execution control were 0. See Section 24.6.2.
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• System-management interrupts (SMIs), INIT signals, and higher priority events 
take priority over these VM exits. These VM exits take priority over debug-trap 
exceptions and lower priority events. 

• These VM exits wake the logical processor if it just entered the HLT state because 
of a VM entry (see Section 26.6.2). They do not occur if the logical processor just 
entered the shutdown state or the wait-for-SIPI state.

26.6.9 VM Entries and Advanced Debugging Features
VM entries are not logged with last-branch records, do not produce branch-trace 
messages, and do not update the branch-trace store.

26.7 VM-ENTRY FAILURES DURING OR AFTER LOADING 
GUEST STATE

VM-entry failures due to the checks identified in Section 26.3.1 and failures during 
the MSR loading identified in Section 26.4 are treated differently from those that 
occur earlier in VM entry. In these cases, the following steps take place:

1. Information about the VM-entry failure is recorded in the VM-exit information
fields:

— Exit reason.

• Bits 15:0 of this field contain the basic exit reason. It is loaded with a 
number indicating the general cause of the VM-entry failure. The 
following numbers are used:

33. VM-entry failure due to invalid guest state. A VM entry failed one of 
the checks identified in Section 26.3.1.

34. VM-entry failure due to MSR loading. A VM entry failed in an attempt 
to load MSRs (see Section 26.4).

41. VM-entry failure due to machine-check event. A machine-check event 
occurred during VM entry (see Section 26.8).

• Bit 31 is set to 1 to indicate a VM-entry failure.

• The remainder of the field (bits 30:16) is cleared.

— Exit qualification. This field is set based on the exit reason.

• VM-entry failure due to invalid guest state. In most cases, the exit quali-
fication is cleared to 0. The following non-zero values are used in the 
cases indicated:

1. Not used.

2. Failure was due to a problem loading the PDPTEs (see Section 
26.3.1.6).
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3. Failure was due to an attempt to inject a non-maskable interrupt 
(NMI) into a guest that is blocking events through the STI blocking bit 
in the interruptibility-state field. Such failures are implementation-
specific (see Section 26.3.1.5). 

4. Failure was due to an invalid VMCS link pointer (see Section 
26.3.1.5).

VM-entry checks on guest-state fields may be performed in any order.
Thus, an indication by exit qualification of one cause does not imply that
there are not also other errors. Different processors may give different
exit qualifications for the same VMCS.

• VM-entry failure due to MSR loading. The exit qualification is loaded to 
indicate which entry in the VM-entry MSR-load area caused the problem 
(1 for the first entry, 2 for the second, etc.).

— All other VM-exit information fields are unmodified.

2. Processor state is loaded as would be done on a VM exit (see Section 27.5). If 
this results in [CR4.PAE & CR0.PG & ~IA32_EFER.LMA] = 1, page-directory-
pointer-table entries (PDPTEs) may be checked and loaded (see Section 27.5.4).

3. The state of blocking by NMI is what it was before VM entry.

4. MSRs are loaded as specified in the VM-exit MSR-load area (see Section 27.6).

Although this process resembles that of a VM exit, many steps taken during a VM exit 
do not occur for these VM-entry failures:
• Most VM-exit information fields are not updated (see step 1 above).
• The valid bit in the VM-entry interruption-information field is not cleared.
• The guest-state area is not modified.
• No MSRs are saved into the VM-exit MSR-store area.

26.8 MACHINE-CHECK EVENTS DURING VM ENTRY
If a machine-check event occurs during a VM entry, one of the following occurs:
• The machine-check event is handled as if it occurred before the VM entry:

— If CR4.MCE = 0, operation of the logical processor depends on whether the 
logical processor is in SMX operation:1

1. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last 
execution of GETSEC[SENTER]. A logical processor is outside SMX operation if GETSEC[SENTER] 
has not been executed or if GETSEC[SEXIT] was executed after the last execution of GET-
SEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference,” in Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2B.
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• If the logical processor is in SMX operation, an Intel® TXT shutdown 
condition occurs. The error code used is 000CH, indicating “unrecoverable 
machine-check condition.”

• If the logical processor is outside SMX operation, it goes to the shutdown 
state.

— If CR4.MCE = 1, a machine-check exception (#MC) is delivered through the 
IDT.

• The machine-check event is handled after VM entry completes:

— If the VM entry ends with CR4.MCE = 0, operation of the logical processor 
depends on whether the logical processor is in SMX operation:

• If the logical processor is in SMX operation, an Intel® TXT shutdown 
condition occurs with error code 000CH (unrecoverable machine-check 
condition).

• If the logical processor is outside SMX operation, it goes to the shutdown 
state.

— If the VM entry ends with CR4.MCE = 1, a machine-check exception (#MC) is 
generated:

• If bit 18 (#MC) of the exception bitmap is 0, the exception is delivered 
through the guest IDT.

• If bit 18 of the exception bitmap is 1, the exception causes a VM exit.
• A VM-entry failure occurs as described in Section 26.7. The basic exit reason is 

41, for “VM-entry failure due to machine-check event.”

The first option is not used if the machine-check event occurs after any guest state 
has been loaded. The second option is used only if VM entry is able to load all guest 
state.
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CHAPTER 27
VM EXITS

VM exits occur in response to certain instructions and events in VMX non-root opera-
tion as detailed in Section 25.1 through Section 25.3. VM exits perform the following 
operations:

1. Information about the cause of the VM exit is recorded in the VM-exit information 
fields and VM-entry control fields are modified as described in Section 27.2.

2. Processor state is saved in the guest-state area (Section 27.3).

3. MSRs may be saved in the VM-exit MSR-store area (Section 27.4).

4. The following may be performed in parallel and in any order (Section 27.5):

— Processor state is loaded based in part on the host-state area and some 
VM-exit controls. This step is not performed for SMM VM exits that activate 
the dual-monitor treatment of SMIs and SMM. See Section 33.15.6 for 
information on how processor state is loaded by such VM exits.

— Address-range monitoring is cleared.

5. MSRs may be loaded from the VM-exit MSR-load area (Section 27.6). This step is 
not performed for SMM VM exits that activate the dual-monitor treatment of 
SMIs and SMM.

VM exits are not logged with last-branch records, do not produce branch-trace 
messages, and do not update the branch-trace store.

Section 27.1 clarifies the nature of the architectural state before a VM exit begins. 
The steps described above are detailed in Section 27.2 through Section 27.6. 

Section 33.15 describes the dual-monitor treatment of system-management inter-
rupts (SMIs) and system-management mode (SMM). Under this treatment, ordinary 
transitions to SMM are replaced by VM exits to a separate SMM monitor. Called SMM 
VM exits, these are caused by the arrival of an SMI or the execution of VMCALL in 
VMX root operation. SMM VM exits differ from other VM exits in ways that are 
detailed in Section 33.15.2.

27.1 ARCHITECTURAL STATE BEFORE A VM EXIT
This section describes the architectural state that exists before a VM exit, especially 
for VM exits caused by events that would normally be delivered through the IDT. 
Note the following:
• An exception causes a VM exit directly if the bit corresponding to that exception 

is set in the exception bitmap. A non-maskable interrupt (NMI) causes a VM exit 
directly if the “NMI exiting” VM-execution control is 1. An external interrupt 
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causes a VM exit directly if the “external-interrupt exiting” VM-execution control 
is 1. A start-up IPI (SIPI) that arrives while a logical processor is in the wait-for-
SIPI activity state causes a VM exit directly. INIT signals that arrive while the 
processor is not in the wait-for-SIPI activity state cause VM exits directly.

• An exception, NMI, external interrupt, or software interrupt causes a VM exit 
indirectly if it does not do so directly but delivery of the event causes a nested 
exception, double fault, task switch, APIC access (see Section 25.2), EPT 
violation, or EPT misconfiguration that causes a VM exit.

• An event results in a VM exit if it causes a VM exit (directly or indirectly).

The following bullets detail when architectural state is and is not updated in response 
to VM exits:
• If an event causes a VM exit directly, it does not update architectural state as it 

would have if it had it not caused the VM exit:

— A debug exception does not update DR6, DR7.GD, or IA32_DEBUGCTL.LBR. 
(Information about the nature of the debug exception is saved in the exit 
qualification field.)

— A page fault does not update CR2. (The linear address causing the page fault 
is saved in the exit-qualification field.)

— An NMI causes subsequent NMIs to be blocked, but only after the VM exit 
completes.

— An external interrupt does not acknowledge the interrupt controller and the 
interrupt remains pending, unless the “acknowledge interrupt on exit” 
VM-exit control is 1. In such a case, the interrupt controller is acknowledged 
and the interrupt is no longer pending.

— The flags L0 – L3 in DR7 (bit 0, bit 2, bit 4, and bit 6) are not cleared when a 
task switch causes a VM exit.

— If a task switch causes a VM exit, none of the following are modified by the 
task switch: old task-state segment (TSS); new TSS; old TSS descriptor; new 
TSS descriptor; RFLAGS.NT1; or the TR register.

— No last-exception record is made if the event that would do so directly causes 
a VM exit. 

— If a machine-check exception causes a VM exit directly, this does not prevent 
machine-check MSRs from being updated. These are updated by the 
machine-check event itself and not the resulting machine-check exception.

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most 
processors that support VMX operation also support Intel 64 architecture. For processors that do 
not support Intel 64 architecture, this notation refers to the 32-bit forms of those registers 
(EAX, EIP, ESP, EFLAGS, etc.). In a few places, notation such as EAX is used to refer specifically to 
lower 32 bits of the indicated register.
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— If the logical processor is in an inactive state (see Section 24.4.2) and not 
executing instructions, some events may be blocked but others may return 
the logical processor to the active state. Unblocked events may cause 
VM exits.1 If an unblocked event causes a VM exit directly, a return to the 
active state occurs only after the VM exit completes.2 The VM exit generates 
any special bus cycle that is normally generated when the active state is 
entered from that activity state.

MTF VM exits (see Section 25.7.2 and Section 26.6.8) are not blocked in the 
HLT activity state. If an MTF VM exit occurs in the HLT activity state, the 
logical processor returns to the active state only after the VM exit completes. 
MTF VM exits are blocked the shutdown state and the wait-for-SIPI state.

• If an event causes a VM exit indirectly, the event does update architectural state:

— A debug exception updates DR6, DR7, and the IA32_DEBUGCTL MSR. No 
debug exceptions are considered pending.

— A page fault updates CR2.

— An NMI causes subsequent NMIs to be blocked before the VM exit 
commences.

— An external interrupt acknowledges the interrupt controller and the interrupt 
is no longer pending.

— If the logical processor had been in an inactive state, it enters the active state 
and, before the VM exit commences, generates any special bus cycle that is 
normally generated when the active state is entered from that activity state.

— There is no blocking by STI or by MOV SS when the VM exit commences.

— Processor state that is normally updated as part of delivery through the IDT 
(CS, RIP, SS, RSP, RFLAGS) is not modified. However, the incomplete delivery 
of the event may write to the stack.

— The treatment of last-exception records is implementation dependent:

• Some processors make a last-exception record when beginning the 
delivery of an event through the IDT (before it can encounter a nested 
exception). Such processors perform this update even if the event 
encounters a nested exception that causes a VM exit (including the case 
where nested exceptions lead to a triple fault).

• Other processors delay making a last-exception record until event 
delivery has reached some event handler successfully (perhaps after one 
or more nested exceptions). Such processors do not update the last-

1. If a VM exit takes the processor from an inactive state resulting from execution of a specific 
instruction (HLT or MWAIT), the value saved for RIP by that VM exit will reference the following 
instruction.

2. An exception is made if the logical processor had been inactive due to execution of MWAIT; in 
this case, it is considered to have become active before the VM exit.
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exception record if a VM exit or triple fault occurs before an event handler 
is reached.

• If the “virtual NMIs” VM-execution control is 1, VM entry injects an NMI, and 
delivery of the NMI causes a nested exception, double fault, task switch, or APIC 
access that causes a VM exit, virtual-NMI blocking is in effect before the VM exit 
commences.

• If a VM exit results from a fault, EPT violation, or EPT misconfiguration 
encountered during execution of IRET and the “NMI exiting” VM-execution 
control is 0, any blocking by NMI is cleared before the VM exit commences. 
However, the previous state of blocking by NMI may be recorded in the VM-exit 
interruption-information field; see Section 27.2.2.

• If a VM exit results from a fault, EPT violation, or EPT misconfiguration 
encountered during execution of IRET and the “virtual NMIs” VM-execution 
control is 1, virtual-NMI blocking is cleared before the VM exit commences. 
However, the previous state of virtual-NMI blocking may be recorded in the 
VM-exit interruption-information field; see Section 27.2.2.

• Suppose that a VM exit is caused directly by an x87 FPU Floating-Point Error 
(#MF) or by any of the following events if the event was unblocked due to (and 
given priority over) an x87 FPU Floating-Point Error: an INIT signal, an external 
interrupt, an NMI, an SMI; or a machine-check exception. In these cases, there 
is no blocking by STI or by MOV SS when the VM exit commences.

• Normally, a last-branch record may be made when an event is delivered through 
the IDT. However, if such an event results in a VM exit before delivery is 
complete, no last-branch record is made.

• If machine-check exception results in a VM exit, processor state is suspect and 
may result in suspect state being saved to the guest-state area. A VM monitor 
should consult the RIPV and EIPV bits in the IA32_MCG_STATUS MSR before 
resuming a guest that caused a VM exit resulting from a machine-check 
exception.

• If a VM exit results from a fault, APIC access (see Section 25.2), EPT violation, or 
EPT misconfiguration encountered while executing an instruction, data 
breakpoints due to that instruction may have been recognized and information 
about them may be saved in the pending debug exceptions field (see Section 
27.3.4).

• The following VM exits are considered to happen after an instruction is executed:

— VM exits resulting from debug traps (single-step, I/O breakpoints, and data 
breakpoints).

— VM exits resulting from debug exceptions whose recognition was delayed by 
blocking by MOV SS.

— VM exits resulting from some machine-check exceptions.

— Trap-like VM exits due to execution of MOV to CR8 when the “CR8-load 
exiting” VM-execution control is 0 and the “use TPR shadow” VM-execution 
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control is 1. (Such VM exits can occur only from 64-bit mode and thus only on 
processors that support Intel 64 architecture.)

— Trap-like VM exits due to execution of WRMSR when the “use MSR bitmaps” 
VM-execution control is 1, the value of ECX is 808H, bit 808H in write bitmap 
for low MSRs is 0, and the “virtualize x2APIC mode” VM-execution control is 
1. See Section 25.1.3.

— VM exits caused by TPR-shadow updates (see Section 25.5.3.3) that result 
from APIC accesses as part of instruction execution.

For these VM exits, the instruction’s modifications to architectural state complete 
before the VM exit occurs. Such modifications include those to the logical 
processor’s interruptibility state (see Table 24-3). If there had been blocking by 
MOV SS, POP SS, or STI before the instruction executed, such blocking is no 
longer in effect.

27.2 RECORDING VM-EXIT INFORMATION AND UPDATING 
VM-ENTRY CONTROL FIELDS

VM exits begin by recording information about the nature of and reason for the 
VM exit in the VM-exit information fields. Section 27.2.1 to Section 27.2.4 detail the 
use of these fields.

In addition to updating the VM-exit information fields, the valid bit (bit 31) is cleared 
in the VM-entry interruption-information field. If bit 5 of the IA32_VMX_MISC MSR 
(index 485H) is read as 1 (see Appendix A.6), the value of IA32_EFER.LMA is stored 
into the “IA-32e mode guest” VM-entry control.1

27.2.1 Basic VM-Exit Information
Section 24.9.1 defines the basic VM-exit information fields. The following items detail 
their use.
• Exit reason.

— Bits 15:0 of this field contain the basic exit reason. It is loaded with a number 
indicating the general cause of the VM exit. Appendix C lists the numbers 
used and their meaning.

— The remainder of the field (bits 31:16) is cleared to 0 (certain SMM VM exits 
may set some of these bits; see Section 33.15.2.3).2

1. Bit 5 of the IA32_VMX_MISC MSR is read as 1 on any logical processor that supports the 1-set-
ting of the “unrestricted guest” VM-execution control.

2. Bit 13 of this field is set on certain VM-entry failures; see Section 26.7.
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• Exit qualification. This field is saved for VM exits due to the following causes: 
debug exceptions; page-fault exceptions; start-up IPIs (SIPIs); system-
management interrupts (SMIs) that arrive immediately after the retirement of 
I/O instructions; task switches; INVEPT; INVLPG; INVPCID; INVVPID; LGDT; 
LIDT; LLDT; LTR; SGDT; SIDT; SLDT; STR; VMCLEAR; VMPTRLD; VMPTRST; 
VMREAD; VMWRITE; VMXON; control-register accesses; MOV DR; I/O instruc-
tions; MWAIT; accesses to the APIC-access page (see Section 25.2); and EPT 
violations. For all other VM exits, this field is cleared. The following items provide 
details:

— For a debug exception, the exit qualification contains information about the 
debug exception. The information has the format given in Table 27-1.

— For a page-fault exception, the exit qualification contains the linear address 
that caused the page fault. On processors that support Intel 64 architecture, 
bits 63:32 are cleared if the logical processor was not in 64-bit mode before 
the VM exit.

— For a start-up IPI (SIPI), the exit qualification contains the SIPI vector 
information in bits 7:0. Bits 63:8 of the exit qualification are cleared to 0.

Table 27-1.  Exit Qualification for Debug Exceptions

Bit Position(s) Contents

3:0 B3 – B0. When set, each of these bits indicates that the corresponding 
breakpoint condition was met. Any of these bits may be set even if its 
corresponding enabling bit in DR7 is not set.

12:4 Reserved (cleared to 0).

13 BD. When set, this bit indicates that the cause of the debug exception is 
“debug register access detected.”

14 BS. When set, this bit indicates that the cause of the debug exception is 
either the execution of a single instruction (if RFLAGS.TF = 1 and 
IA32_DEBUGCTL.BTF = 0) or a taken branch (if 
RFLAGS.TF = DEBUGCTL.BTF = 1).

63:15 Reserved (cleared to 0). Bits 63:32 exist only on processors that 
support Intel 64 architecture.
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— For a task switch, the exit qualification contains details about the task switch, 
encoded as shown in Table 27-2.

— For INVLPG, the exit qualification contains the linear-address operand of the 
instruction.

• On processors that support Intel 64 architecture, bits 63:32 are cleared if 
the logical processor was not in 64-bit mode before the VM exit.

• If the INVLPG source operand specifies an unusable segment, the linear 
address specified in the exit qualification will match the linear address 
that the INVLPG would have used if no VM exit occurred. This address is 
not architecturally defined and may be implementation-specific.

— For INVEPT, INVPCID, INVVPID, LGDT, LIDT, LLDT, LTR, SGDT, SIDT, SLDT, 
STR, VMCLEAR, VMPTRLD, VMPTRST, VMREAD, VMWRITE, and VMXON, the 
exit qualification receives the value of the instruction’s displacement field, 
which is sign-extended to 64 bits if necessary (32 bits on processors that do 
not support Intel 64 architecture). If the instruction has no displacement (for 
example, has a register operand), zero is stored into the exit qualification.

On processors that support Intel 64 architecture, an exception is made for 
RIP-relative addressing (used only in 64-bit mode). Such addressing causes 
an instruction to use an address that is the sum of the displacement field 
and the value of RIP that references the following instruction. In this case, 
the exit qualification is loaded with the sum of the displacement field and 
the appropriate RIP value.

In all cases, bits of this field beyond the instruction’s address size are 
undefined. For example, suppose that the address-size field in the VM-exit 
instruction-information field (see Section 24.9.4 and Section 27.2.4) reports 
an n-bit address size. Then bits 63:n (bits 31:n on processors that do not 
support Intel 64 architecture) of the instruction displacement are undefined.

Table 27-2.  Exit Qualification for Task Switch

Bit Position(s) Contents

15:0 Selector of task-state segment (TSS) to which the guest attempted to switch

29:16 Reserved (cleared to 0)

31:30 Source of task switch initiation:

0: CALL instruction
1: IRET instruction
2: JMP instruction
3: Task gate in IDT

63:32 Reserved (cleared to 0). These bits exist only on processors that support Intel 
64 architecture.
Vol. 3C 27-7



VM EXITS
— For a control-register access, the exit qualification contains information about 
the access and has the format given in Table 27-3.

Table 27-3.  Exit Qualification for Control-Register Accesses 

Bit Positions Contents

3:0 Number of control register (0 for CLTS and LMSW). Bit 3 is always 0 on 
processors that do not support Intel 64 architecture as they do not support CR8.

5:4 Access type:

0 = MOV to CR
1 = MOV from CR
2 = CLTS
3 = LMSW

6 LMSW operand type:

0 = register
1 = memory

For CLTS and MOV CR, cleared to 0

7 Reserved (cleared to 0)

11:8 For MOV CR, the general-purpose register:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support 
Intel 64 architecture)

For CLTS and LMSW, cleared to 0

15:12 Reserved (cleared to 0)

31:16 For LMSW, the LMSW source data

For CLTS and MOV CR, cleared to 0

63:32 Reserved (cleared to 0). These bits exist only on processors that support Intel 
64 architecture.
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— For MOV DR, the exit qualification contains information about the instruction 
and has the format given in Table 27-4.

— For an I/O instruction, the exit qualification contains information about the 
instruction and has the format given in Table 27-5.

Table 27-4.  Exit Qualification for MOV DR

Bit Position(s) Contents

2:0 Number of debug register

3 Reserved (cleared to 0)

4 Direction of access (0 = MOV to DR; 1 = MOV from DR)

7:5 Reserved (cleared to 0)

11:8 General-purpose register:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8 –15 = R8 – R15, respectively

63:12 Reserved (cleared to 0)

Table 27-5.  Exit Qualification for I/O Instructions

Bit Position(s) Contents

2:0 Size of access:

0 = 1-byte
1 = 2-byte
3 = 4-byte

Other values not used

3 Direction of the attempted access (0 = OUT, 1 = IN)

4 String instruction (0 = not string; 1 = string)
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— For MWAIT, the exit qualification contains a value that indicates whether 
address-range monitoring hardware was armed. The exit qualification is set 
either to 0 (if address-range monitoring hardware is not armed) or to 1 (if 
address-range monitoring hardware is armed).

— For an APIC-access VM exit resulting from a linear access or a guest-physical 
access to the APIC-access page (see Section 25.2.1 and Section 25.2.2), the 
exit qualification contains information about the access and has the format 
given in Table 27-6.1

5 REP prefixed (0 = not REP; 1 = REP)

6 Operand encoding (0 = DX, 1 = immediate)

15:7 Reserved (cleared to 0)

31:16 Port number (as specified in DX or in an immediate operand)

63:32 Reserved (cleared to 0). These bits exist only on processors that support Intel 
64 architecture.

Table 27-6.  Exit Qualification for APIC-Access VM Exits from Linear Accesses and 
Guest-Physical Accesses

Bit Position(s) Contents

11:0 • If the APIC-access VM exit is due to a linear access, the offset of access 
within the APIC page.

• Undefined if the APIC-access VM exit is due a guest-physical access

15:12 Access type:

0 = linear access for a data read during instruction execution
1 = linear access for a data write during instruction execution
2 = linear access for an instruction fetch
3 = linear access (read or write) during event delivery
10 = guest-physical access during event delivery
15 = guest-physical access for an instruction fetch or during instruction 
execution

Other values not used

63:16 Reserved (cleared to 0). Bits 63:32 exist only on processors that support 
Intel 64 architecture.

Table 27-5.  Exit Qualification for I/O Instructions (Contd.)

Bit Position(s) Contents
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Such a VM exit that set bits 15:12 of the exit qualification to 0000b (data 
read during instruction execution) or 0001b (data write during instruction 
execution) set bit 12—which distinguishes data read from data write—to that 
which would have been stored in bit 1—W/R—of the page-fault error code had 
the access caused a page fault instead of an APIC-access VM exit. This 
implies the following:

• For an APIC-access VM exit caused by the CLFLUSH instruction, the 
access type is “data read during instruction execution.”

• For an APIC-access VM exit caused by the ENTER instruction, the access 
type is “data write during instruction execution.”

• For an APIC-access VM exit caused by the MASKMOVQ instruction or the 
MASKMOVDQU instruction, the access type is “data write during 
instruction execution.”

• For an APIC-access VM exit caused by the MONITOR instruction, the 
access type is “data read during instruction execution.”

Such a VM exit stores 1 for bit 31 for IDT-vectoring information field (see 
Section 27.2.3) if and only if it sets bits 15:12 of the exit qualification to 
0011b (linear access during event delivery) or 1010b (guest-physical access 
during event delivery).

See Section 25.2.1.3 for further discussion of these instructions and APIC-
access VM exits.

For APIC-access VM exits resulting from physical accesses, the APIC-access 
page (see Section 25.2.3), the exit qualification is undefined.

— For an EPT violation, the exit qualification contains information about the 
access causing the EPT violation and has the format given in Table 27-5.

1. The exit qualification is undefined if the access was part of the logging of a branch record or a 
precise-event-based-sampling (PEBS) record to the DS save area. It is recommended that soft-
ware configure the paging structures so that no address in the DS save area translates to an 
address on the APIC-access page.

Table 27-7.  Exit Qualification for EPT Violations

Bit Position(s) Contents

0 Set if the access causing the EPT violation was a data read.

1 Set if the access causing the EPT violation was a data write.

2 Set if the access causing the EPT violation was an instruction fetch.
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An EPT violation that occurs during as a result of execution of a read-modify-
write operation sets bit 1 (data write).  Whether it also sets bit 0 (data read) 
is implementation-specific and, for a given implementation, may differ for 
different kinds of read-modify-write operations.

Bit 12 is undefined in any of the following cases:

• If the “NMI exiting” VM-execution control is 1 and the “virtual NMIs” 
VM-execution control is 0.

3 The logical-AND of bit 0 in the EPT paging-structures entries used to translate 
the guest-physical address of the access causing the EPT violation (indicates 
that the guest-physical address was readable).1

4 The logical-AND of bit 1 in the EPT paging-structures entries used to translate 
the guest-physical address of the access causing the EPT violation (indicates 
that the guest-physical address was writeable).

5 The logical-AND of bit 2 in the EPT paging-structures entries used to translate 
the guest-physical address of the access causing the EPT violation (indicates 
that the guest-physical address was executable).

6 Reserved (cleared to 0).

7 Set if the guest linear-address field is valid.

The guest linear-address field is valid for all EPT violations except those 
resulting from an attempt to load the guest PDPTEs as part of the execution of 
the MOV CR instruction.

8 If bit 7 is 1:

• Set if the access causing the EPT violation is to a guest-physical address 
that is the translation of a linear address.

• Clear if the access causing the EPT violation is to a paging-structure entry 
as part of a page walk or the update of an accessed or dirty bit.

Reserved if bit 7 is 0 (cleared to 0).

11:9 Reserved (cleared to 0).

12 NMI unblocking due to IRET

63:13 Reserved (cleared to 0).

NOTES:
1. Bits 5:3 are cleared to 0 if any of EPT paging-structures entries used to translate the guest-physi-

cal address of the access causing the EPT violation is not present (see Section 28.2.2).

Table 27-7.  Exit Qualification for EPT Violations (Contd.)

Bit Position(s) Contents
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• If the VM exit sets the valid bit in the IDT-vectoring information field (see 
Section 27.2.3).

Otherwise, bit 12 is defined as follows:

• If the “virtual NMIs” VM-execution control is 0, the EPT violation was 
caused by a memory access as part of execution of the IRET instruction, 
and blocking by NMI (see Table 24-3) was in effect before execution of 
IRET, bit 12 is set to 1.

• If the “virtual NMIs” VM-execution control is 1,the EPT violation was 
caused by a memory access as part of execution of the IRET instruction, 
and virtual-NMI blocking was in effect before execution of IRET, bit 12 is 
set to 1.

• For all other relevant VM exits, bit 12 is cleared to 0.
• Guest-linear address. For some VM exits, this field receives a linear address 

that pertains to the VM exit. The field is set for different VM exits as follows:

— VM exits due to attempts to execute LMSW with a memory operand. In these 
cases, this field receives the linear address of that operand. Bits 63:32 are 
cleared if the logical processor was not in 64-bit mode before the VM exit.

— VM exits due to attempts to execute INS or OUTS for which the relevant 
segment is usable (if the relevant segment is not usable, the value is 
undefined). (ES is always the relevant segment for INS; for OUTS, the 
relevant segment is DS unless overridden by an instruction prefix.) The linear 
address is the base address of relevant segment plus (E)DI (for INS) or (E)SI 
(for OUTS). Bits 63:32 are cleared if the logical processor was not in 64-bit 
mode before the VM exit.

— VM exits due to EPT violations that set bit 7 of the exit qualification (see 
Table 27-7; these are all EPT violations except those resulting from an 
attempt to load the PDPTEs as of execution of the MOV CR instruction). The 
linear address may translate to the guest-physical address whose access 
caused the EPT violation. Alternatively, translation of the linear address may 
reference a paging-structure entry whose access caused the EPT violation. 
Bits 63:32 are cleared if the logical processor was not in 64-bit mode before 
the VM exit.

— For all other VM exits, the field is undefined.
• Guest-physical address. For a VM exit due to an EPT violation or an EPT 

misconfiguration, this field receives the guest-physical address that caused the 
EPT violation or EPT misconfiguration. For all other VM exits, the field is 
undefined.

27.2.2 Information for VM Exits Due to Vectored Events
Section 24.9.2 defines fields containing information for VM exits due to the following 
events: exceptions (including those generated by the instructions INT3, INTO, 
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BOUND, and UD2); external interrupts that occur while the “acknowledge interrupt 
on exit” VM-exit control is 1; and non-maskable interrupts (NMIs). Such VM exits 
include those that occur on an attempt at a task switch that causes an exception 
before generating the VM exit due to the task switch that causes the VM exit.

The following items detail the use of these fields:
• VM-exit interruption information (format given in Table 24-15). The following 

items detail how this field is established for VM exits due to these events:

— For an exception, bits 7:0 receive the exception vector (at most 31). For an 
NMI, bits 7:0 are set to 2. For an external interrupt, bits 7:0 receive the 
interrupt number.

— Bits 10:8 are set to 0 (external interrupt), 2 (non-maskable interrupt), 3 
(hardware exception), or 6 (software exception). Hardware exceptions 
comprise all exceptions except breakpoint exceptions (#BP; generated by 
INT3) and overflow exceptions (#OF; generated by INTO); these are 
software exceptions. BOUND-range exceeded exceptions (#BR; generated by 
BOUND) and invalid opcode exceptions (#UD) generated by UD2 are 
hardware exceptions.

— Bit 11 is set to 1 if the VM exit is caused by a hardware exception that would 
have delivered an error code on the stack. This bit is always 0 if the VM exit 
occurred while the logical processor was in real-address mode (CR0.PE=0).1 
If bit 11 is set to 1, the error code is placed in the VM-exit interruption error 
code (see below).

— Bit 12 is undefined in any of the following cases:

• If the “NMI exiting” VM-execution control is 1 and the “virtual NMIs” 
VM-execution control is 0.

• If the VM exit sets the valid bit in the IDT-vectoring information field (see 
Section 27.2.3).

• If the VM exit is due to a double fault (the interruption type is hardware 
exception and the vector is 8).

Otherwise, bit 12 is defined as follows:

• If the “virtual NMIs” VM-execution control is 0, the VM exit is due to a 
fault on the IRET instruction (other than a debug exception for an 
instruction breakpoint), and blocking by NMI (see Table 24-3) was in 
effect before execution of IRET, bit 12 is set to 1.

• If the “virtual NMIs” VM-execution control is 1, the VM exit is due to a 
fault on the IRET instruction (other than a debug exception for an 

1. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PE must be 1 in VMX operation, a 
logical processor cannot be in real-address mode unless the “unrestricted guest” VM-execution 
control and bit 31 of the primary processor-based VM-execution controls are both 1.
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instruction breakpoint), and virtual-NMI blocking was in effect before 
execution of IRET, bit 12 is set to 1.

• For all other relevant VM exits, bit 12 is cleared to 0.1

— Bits 30:13 are always set to 0.

— Bit 31 is always set to 1.
For other VM exits (including those due to external interrupts when the 
“acknowledge interrupt on exit” VM-exit control is 0), the field is marked invalid 
(by clearing bit 31) and the remainder of the field is undefined.

• VM-exit interruption error code.

— For VM exits that set both bit 31 (valid) and bit 11 (error code valid) in the 
VM-exit interruption-information field, this field receives the error code that 
would have been pushed on the stack had the event causing the VM exit been 
delivered normally through the IDT. The EXT bit is set in this field exactly 
when it would be set normally. For exceptions that occur during the delivery 
of double fault (if the IDT-vectoring information field indicates a double fault), 
the EXT bit is set to 1, assuming that (1) that the exception would produce an 
error code normally (if not incident to double-fault delivery) and (2) that the 
error code uses the EXT bit (not for page faults, which use a different format).

— For other VM exits, the value of this field is undefined.

27.2.3 Information for VM Exits During Event Delivery
Section 24.9.3 defined fields containing information for VM exits that occur while 
delivering an event through the IDT and as a result of any of the following cases:2

• A fault occurs during event delivery and causes a VM exit (because the bit 
associated with the fault is set to 1 in the exception bitmap).

• A task switch is invoked through a task gate in the IDT. The VM exit occurs due to 
the task switch only after the initial checks of the task switch pass (see Section 
25.6.2).

• Event delivery causes an APIC-access VM exit (see Section 25.2).
• An EPT violation or EPT misconfiguration that occurs during event delivery.

These fields are used for VM exits that occur during delivery of events injected as 
part of VM entry (see Section 26.5.1.2).

1. The conditions imply that, if the “NMI exiting” VM-execution control is 0 or the “virtual NMIs” VM-
execution control is 1, bit 12 is always cleared to 0 by VM exits due to debug exceptions.

2. This includes the case in which a VM exit occurs while delivering a software interrupt (INT n) 
through the 16-bit IVT (interrupt vector table) that is used in virtual-8086 mode with virtual-
machine extensions (if RFLAGS.VM = CR4.VME = 1).
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A VM exit is not considered to occur during event delivery in any of the following 
circumstances:
• The original event causes the VM exit directly (for example, because the original 

event is a non-maskable interrupt (NMI) and the “NMI exiting” VM-execution 
control is 1).

• The original event results in a double-fault exception that causes the VM exit 
directly.

• The VM exit occurred as a result of fetching the first instruction of the handler 
invoked by the event delivery.

• The VM exit is caused by a triple fault.

The following items detail the use of these fields:
• IDT-vectoring information (format given in Table 24-16). The following items 

detail how this field is established for VM exits that occur during event delivery:

— If the VM exit occurred during delivery of an exception, bits 7:0 receive the 
exception vector (at most 31). If the VM exit occurred during delivery of an 
NMI, bits 7:0 are set to 2. If the VM exit occurred during delivery of an 
external interrupt, bits 7:0 receive the interrupt number.

— Bits 10:8 are set to indicate the type of event that was being delivered when 
the VM exit occurred: 0 (external interrupt), 2 (non-maskable interrupt), 3 
(hardware exception), 4 (software interrupt), 5 (privileged software 
interrupt), or 6 (software exception).

Hardware exceptions comprise all exceptions except breakpoint exceptions 
(#BP; generated by INT3) and overflow exceptions (#OF; generated by 
INTO); these are software exceptions. BOUND-range exceeded exceptions 
(#BR; generated by BOUND) and invalid opcode exceptions (#UD) generated 
by UD2 are hardware exceptions.

Bits 10:8 may indicate privileged software interrupt if such an event was 
injected as part of VM entry.

— Bit 11 is set to 1 if the VM exit occurred during delivery of a hardware 
exception that would have delivered an error code on the stack. This bit is 
always 0 if the VM exit occurred while the logical processor was in real-
address mode (CR0.PE=0).1 If bit 11 is set to 1, the error code is placed in 
the IDT-vectoring error code (see below).

— Bit 12 is undefined.

— Bits 30:13 are always set to 0.

— Bit 31 is always set to 1.

1. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PE must be 1 in VMX operation, a 
logical processor cannot be in real-address mode unless the “unrestricted guest” VM-execution 
control and bit 31 of the primary processor-based VM-execution controls are both 1.
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For other VM exits, the field is marked invalid (by clearing bit 31) and the 
remainder of the field is undefined.

• IDT-vectoring error code. 

— For VM exits that set both bit 31 (valid) and bit 11 (error code valid) in the 
IDT-vectoring information field, this field receives the error code that would 
have been pushed on the stack by the event that was being delivered through 
the IDT at the time of the VM exit. The EXT bit is set in this field when it would 
be set normally.

— For other VM exits, the value of this field is undefined.

27.2.4 Information for VM Exits Due to Instruction Execution
Section 24.9.4 defined fields containing information for VM exits that occur due to 
instruction execution. (The VM-exit instruction length is also used for VM exits that 
occur during the delivery of a software interrupt or software exception.) The 
following items detail their use.
• VM-exit instruction length. This field is used in the following cases:

— For fault-like VM exits due to attempts to execute one of the following 
instructions that cause VM exits unconditionally (see Section 25.1.2) or 
based on the settings of VM-execution controls (see Section 25.1.3): CLTS, 
CPUID, GETSEC, HLT, IN, INS, INVD, INVEPT, INVLPG, INVPCID, INVVPID, 
LGDT, LIDT, LLDT, LMSW, LTR, MONITOR, MOV CR, MOV DR, MWAIT, OUT, 
OUTS, PAUSE, RDMSR, RDPMC, RDRAND, RDTSC, RDTSCP, RSM, SGDT, SIDT, 
SLDT, STR, VMCALL, VMCLEAR, VMLAUNCH, VMPTRLD, VMPTRST, VMREAD, 
VMRESUME, VMWRITE, VMXOFF, VMXON, WBINVD, WRMSR, and XSETBV.1

— For VM exits due to software exceptions (those generated by executions of 
INT3 or INTO).

— For VM exits due to faults encountered during delivery of a software 
interrupt, privileged software exception, or software exception.

— For VM exits due to attempts to effect a task switch via instruction execution. 
These are VM exits that produce an exit reason indicating task switch and 
either of the following:

• An exit qualification indicating execution of CALL, IRET, or JMP 
instruction.

• An exit qualification indicating a task gate in the IDT and an IDT-vectoring 
information field indicating that the task gate was encountered during 

1. This item applies only to fault-like VM exits. It does not apply to trap-like VM exits following exe-
cutions of the MOV to CR8 instruction when the “use TPR shadow” VM-execution control is 1 or 
to those following executions of the WRMSR instruction when the “virtualize x2APIC mode” VM-
execution control is 1.
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delivery of a software interrupt, privileged software exception, or 
software exception.

— For APIC-access VM exits resulting from linear accesses (see Section 25.2.1) 
and encountered during delivery of a software interrupt, privileged software 
exception, or software exception.1

— For VM exits due executions of VMFUNC that fail because one of the following 
is true:

• EAX indicates a VM function that is not enabled (the bit at position EAX is 
0 in the VM-function controls; see Section 25.7.4.2).

• EAX = 0 and either ECX ≥ 512 or the value of ECX selects an invalid 
tentative EPTP value (see Section 25.7.4.3).

In all the above cases, this field receives the length in bytes (1–15) of the 
instruction (including any instruction prefixes) whose execution led to the 
VM exit (see the next paragraph for one exception).
The cases of VM exits encountered during delivery of a software interrupt, 
privileged software exception, or software exception include those encountered 
during delivery of events injected as part of VM entry (see Section 26.5.1.2). If 
the original event was injected as part of VM entry, this field receives the value of 
the VM-entry instruction length.
All VM exits other than those listed in the above items leave this field undefined.

• VM-exit instruction information. For VM exits due to attempts to execute 
INS, INVEPT, INVPCID, INVVPID, LIDT, LGDT, LLDT, LTR, OUTS, RDRAND, SIDT, 
SGDT, SLDT, STR, VMCLEAR, VMPTRLD, VMPTRST, VMREAD, VMWRITE, or 
VMXON, this field receives information about the instruction that caused the 
VM exit. The format of the field depends on the identity of the instruction causing 
the VM exit:

— For VM exits due to attempts to execute INS or OUTS, the field has the format 
is given in Table 27-8.2

1. The VM-exit instruction-length field is not defined following APIC-access VM exits resulting from 
physical accesses (see Section 25.2.3) even if encountered during delivery of a software inter-
rupt, privileged software exception, or software exception.

Table 27-8.  Format of the VM-Exit Instruction-Information Field as Used for INS and 
OUTS

Bit Position(s) Content

6:0 Undefined.

2. The format of the field was undefined for these VM exits on the first processors to support the 
virtual-machine extensions. Software can determine whether the format specified in Table 27-8 
is used by consulting the VMX capability MSR IA32_VMX_BASIC (see Appendix A.1).
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— For VM exits due to attempts to execute INVEPT, INVPCID, or INVVPID, the 
field has the format is given in Table 27-9.

9:7 Address size:

0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used.

14:10 Undefined.

17:15 Segment register:

0: ES
1: CS
2: SS
3: DS
4: FS
5: GS

Other values not used. Undefined for VM exits due to execution of INS.

31:18 Undefined.

Table 27-9.  Format of the VM-Exit Instruction-Information Field as Used for INVEPT, 
INVPCID, and INVVPID

Bit Position(s) Content

1:0 Scaling:

0: no scaling
1: scale by 2
2: scale by 4
3: scale by 8 (used only on processors that support Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

6:2 Undefined.

9:7 Address size:

0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used.

10 Cleared to 0.

14:11 Undefined.

Table 27-8.  Format of the VM-Exit Instruction-Information Field as Used for INS and 
OUTS (Contd.)

Bit Position(s) Content
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— For VM exits due to attempts to execute LIDT, LGDT, SIDT, or SGDT, the field 
has the format is given in Table 27-10.

17:15 Segment register:

0: ES
1: CS
2: SS
3: DS
4: FS
5: GS

Other values not used.

21:18 IndexReg:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support 
Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

22 IndexReg invalid (0 = valid; 1 = invalid)

26:23 BaseReg (encoded as IndexReg above)

Undefined for memory instructions with no base register (bit 27 is set).

27 BaseReg invalid (0 = valid; 1 = invalid)

31:28 Reg2 (same encoding as IndexReg above)

Table 27-10.  Format of the VM-Exit Instruction-Information Field as Used for LIDT, 
LGDT, SIDT, or SGDT

Bit Position(s) Content

1:0 Scaling:

0: no scaling
1: scale by 2
2: scale by 4
3: scale by 8 (used only on processors that support Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

Table 27-9.  Format of the VM-Exit Instruction-Information Field as Used for INVEPT, 
INVPCID, and INVVPID (Contd.)

Bit Position(s) Content
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6:2 Undefined.

9:7 Address size:

0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used.

10 Cleared to 0.

11 Operand size:

0: 16-bit
1: 32-bit

Undefined for VM exits from 64-bit mode.

14:12 Undefined.

17:15 Segment register:

0: ES
1: CS
2: SS
3: DS
4: FS
5: GS

Other values not used.

21:18 IndexReg:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support 
Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

22 IndexReg invalid (0 = valid; 1 = invalid)

26:23 BaseReg (encoded as IndexReg above)

Undefined for instructions with no base register (bit 27 is set).

27 BaseReg invalid (0 = valid; 1 = invalid)

Table 27-10.  Format of the VM-Exit Instruction-Information Field as Used for LIDT, 
LGDT, SIDT, or SGDT (Contd.)

Bit Position(s) Content
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— For VM exits due to attempts to execute LLDT, LTR, SLDT, or STR, the field has 
the format is given in Table 27-11.

29:28 Instruction identity:

0: SGDT
1: SIDT
2: LGDT
3: LIDT

31:30 Undefined.

Table 27-11.  Format of the VM-Exit Instruction-Information Field as Used for LLDT, 
LTR, SLDT, and STR

Bit Position(s) Content

1:0 Scaling:

0: no scaling
1: scale by 2
2: scale by 4
3: scale by 8 (used only on processors that support Intel 64 architecture)

Undefined for register instructions (bit 10 is set) and for memory instructions with 
no index register (bit 10 is clear and bit 22 is set).

2 Undefined.

6:3 Reg1:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support 
Intel 64 architecture)

Undefined for memory instructions (bit 10 is clear).

9:7 Address size:

0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used. Undefined for register instructions (bit 10 is set).

10 Mem/Reg (0 = memory; 1 = register).

Table 27-10.  Format of the VM-Exit Instruction-Information Field as Used for LIDT, 
LGDT, SIDT, or SGDT (Contd.)

Bit Position(s) Content
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— For VM exits due to attempts to execute RDRAND, the field has the format is 
given in Table 27-12.

14:11 Undefined.

17:15 Segment register:

0: ES
1: CS
2: SS
3: DS
4: FS
5: GS

Other values not used. Undefined for register instructions (bit 10 is set).

21:18 IndexReg (encoded as Reg1 above)

Undefined for register instructions (bit 10 is set) and for memory instructions with 
no index register (bit 10 is clear and bit 22 is set).

22 IndexReg invalid (0 = valid; 1 = invalid)

Undefined for register instructions (bit 10 is set).

26:23 BaseReg (encoded as Reg1 above)

Undefined for register instructions (bit 10 is set) and for memory instructions with 
no base register (bit 10 is clear and bit 27 is set).

27 BaseReg invalid (0 = valid; 1 = invalid)

Undefined for register instructions (bit 10 is set).

29:28 Instruction identity:

0: SLDT
1: STR
2: LLDT
3: LTR

31:30 Undefined.

Table 27-12.  Format of the VM-Exit Instruction-Information Field as Used for 
RDRAND

Bit Position(s) Content

2:0 Undefined.

Table 27-11.  Format of the VM-Exit Instruction-Information Field as Used for LLDT, 
LTR, SLDT, and STR (Contd.)

Bit Position(s) Content
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— For VM exits due to attempts to execute VMCLEAR, VMPTRLD, VMPTRST, or 
VMXON, the field has the format is given in Table 27-13.

6:3 Destination register:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support 
Intel 64 architecture)

10:7 Undefined.

12:11 Operand size:

0: 16-bit
1: 32-bit
2: 64-bit

The value 3 is not used.

31:13 Undefined.

Table 27-13.  Format of the VM-Exit Instruction-Information Field as Used for 
VMCLEAR, VMPTRLD, VMPTRST, and VMXON

Bit Position(s) Content

1:0 Scaling:

0: no scaling
1: scale by 2
2: scale by 4
3: scale by 8 (used only on processors that support Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

6:2 Undefined.

9:7 Address size:

0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used.

10 Cleared to 0.

Table 27-12.  Format of the VM-Exit Instruction-Information Field as Used for 
RDRAND (Contd.)

Bit Position(s) Content
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— For VM exits due to attempts to execute VMREAD or VMWRITE, the field has 
the format is given in Table 27-14.

14:11 Undefined.

17:15 Segment register:

0: ES
1: CS
2: SS
3: DS
4: FS
5: GS

Other values not used.

21:18 IndexReg:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support 
Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

22 IndexReg invalid (0 = valid; 1 = invalid)

26:23 BaseReg (encoded as IndexReg above)

Undefined for instructions with no base register (bit 27 is set).

27 BaseReg invalid (0 = valid; 1 = invalid)

31:28 Undefined.

Table 27-13.  Format of the VM-Exit Instruction-Information Field as Used for 
VMCLEAR, VMPTRLD, VMPTRST, and VMXON (Contd.)

Bit Position(s) Content
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Table 27-14.  Format of the VM-Exit Instruction-Information Field as Used for 
VMREAD and VMWRITE

Bit Position(s) Content

1:0 Scaling:

0: no scaling
1: scale by 2
2: scale by 4
3: scale by 8 (used only on processors that support Intel 64 architecture)

Undefined for register instructions (bit 10 is set) and for memory instructions with 
no index register (bit 10 is clear and bit 22 is set).

2 Undefined.

6:3 Reg1:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support 
Intel 64 architecture)

Undefined for memory instructions (bit 10 is clear).

9:7 Address size:

0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used. Undefined for register instructions (bit 10 is set).

10 Mem/Reg (0 = memory; 1 = register).

14:11 Undefined.

17:15 Segment register:

0: ES
1: CS
2: SS
3: DS
4: FS
5: GS

Other values not used. Undefined for register instructions (bit 10 is set).

21:18 IndexReg (encoded as Reg1 above)

Undefined for register instructions (bit 10 is set) and for memory instructions with 
no index register (bit 10 is clear and bit 22 is set).
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For all other VM exits, the field is undefined.
• I/O RCX, I/O RSI, I/O RDI, I/O RIP. These fields are undefined except for 

SMM VM exits due to system-management interrupts (SMIs) that arrive 
immediately after retirement of I/O instructions. See Section 33.15.2.3.

27.3 SAVING GUEST STATE
Each field in the guest-state area of the VMCS (see Section 24.4) is written with the 
corresponding component of processor state. On processors that support Intel 64 
architecture, the full values of each natural-width field (see Section 24.10.2) is saved 
regardless of the mode of the logical processor before and after the VM exit.

In general, the state saved is that which was in the logical processor at the time the 
VM exit commences. See Section 27.1 for a discussion of which architectural updates 
occur at that time.

Section 27.3.1 through Section 27.3.4 provide details for how certain components of 
processor state are saved. These sections reference VMCS fields that correspond to 
processor state. Unless otherwise stated, these references are to fields in the guest-
state area.

27.3.1 Saving Control Registers, Debug Registers, and MSRs
Contents of certain control registers, debug registers, and MSRs is saved as follows:
• The contents of CR0, CR3, CR4, and the IA32_SYSENTER_CS, 

IA32_SYSENTER_ESP, and IA32_SYSENTER_EIP MSRs are saved into the corre-
sponding fields. Bits 63:32 of the IA32_SYSENTER_CS MSR are not saved. On 
processors that do not support Intel 64 architecture, bits 63:32 of the 
IA32_SYSENTER_ESP and IA32_SYSENTER_EIP MSRs are not saved.

22 IndexReg invalid (0 = valid; 1 = invalid)

Undefined for register instructions (bit 10 is set).

26:23 BaseReg (encoded as Reg1 above)

Undefined for register instructions (bit 10 is set) and for memory instructions with 
no base register (bit 10 is clear and bit 27 is set).

27 BaseReg invalid (0 = valid; 1 = invalid)

Undefined for register instructions (bit 10 is set).

31:28 Reg2 (same encoding as Reg1 above)

Table 27-14.  Format of the VM-Exit Instruction-Information Field as Used for 
VMREAD and VMWRITE (Contd.)

Bit Position(s) Content
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• If the “save debug controls” VM-exit control is 1, the contents of DR7 and the 
IA32_DEBUGCTL MSR are saved into the corresponding fields. The first 
processors to support the virtual-machine extensions supported only the 1-
setting of this control and thus always saved data into these fields.

• If the “save IA32_PAT” VM-exit control is 1, the contents of the IA32_PAT MSR 
are saved into the corresponding field.

• If the “save IA32_EFER” VM-exit control is 1, the contents of the IA32_EFER MSR 
are saved into the corresponding field.

• The value of the SMBASE field is undefined after all VM exits except SMM 
VM exits. See Section 33.15.2.

27.3.2 Saving Segment Registers and Descriptor-Table Registers
For each segment register (CS, SS, DS, ES, FS, GS, LDTR, or TR), the values saved 
for the base-address, segment-limit, and access rights are based on whether the 
register was unusable (see Section 24.4.1) before the VM exit:
• If the register was unusable, the values saved into the following fields are 

undefined: (1) base address; (2) segment limit; and (3) bits 7:0 and bits 15:12 
in the access-rights field. The following exceptions apply:

— CS.

• The base-address and segment-limit fields are saved.

• The L, D, and G bits are saved in the access-rights field.

— SS.

• DPL is saved in the access-rights field.

• On processors that support Intel 64 architecture, bits 63:32 of the value 
saved for the base address are always zero.

— DS and ES. On processors that support Intel 64 architecture, bits 63:32 of 
the values saved for the base addresses are always zero.

— FS and GS. The base-address field is saved.

— LDTR. The value saved for the base address is always canonical.
• If the register was not unusable, the values saved into the following fields are 

those which were in the register before the VM exit: (1) base address; 
(2) segment limit; and (3) bits 7:0 and bits 15:12 in access rights.

• Bits 31:17 and 11:8 in the access-rights field are always cleared. Bit 16 is set to 
1 if and only if the segment is unusable.

The contents of the GDTR and IDTR registers are saved into the corresponding base-
address and limit fields.
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27.3.3 Saving RIP, RSP, and RFLAGS
The contents of the RIP, RSP, and RFLAGS registers are saved as follows:
• The value saved in the RIP field is determined by the nature and cause of the 

VM exit:

— If the VM exit occurs due to by an attempt to execute an instruction that 
causes VM exits unconditionally or that has been configured to cause a 
VM exit via the VM-execution controls, the value saved references that 
instruction.

— If the VM exit is caused by an occurrence of an INIT signal, a start-up IPI 
(SIPI), or system-management interrupt (SMI), the value saved is that which 
was in RIP before the event occurred.

— If the VM exit occurs due to the 1-setting of either the “interrupt-window 
exiting” VM-execution control or the “NMI-window exiting” VM-execution 
control, the value saved is that which would be in the register had the VM exit 
not occurred.

— If the VM exit is due to an external interrupt, non-maskable interrupt (NMI), 
or hardware exception (as defined in Section 27.2.2), the value saved is the 
return pointer that would have been saved (either on the stack had the event 
been delivered through a trap or interrupt gate,1 or into the old task-state 
segment had the event been delivered through a task gate).

— If the VM exit is due to a triple fault, the value saved is the return pointer that 
would have been saved (either on the stack had the event been delivered 
through a trap or interrupt gate, or into the old task-state segment had the 
event been delivered through a task gate) had delivery of the double fault not 
encountered the nested exception that caused the triple fault.

— If the VM exit is due to a software exception (due to an execution of INT3 or 
INTO), the value saved references the INT3 or INTO instruction that caused 
that exception.

— Suppose that the VM exit is due to a task switch that was caused by execution 
of CALL, IRET, or JMP or by execution of a software interrupt (INT n) or 
software exception (due to execution of INT3 or INTO) that encountered a 
task gate in the IDT. The value saved references the instruction that caused 
the task switch (CALL, IRET, JMP, INT n, INT3, or INTO).

— Suppose that the VM exit is due to a task switch that was caused by a task 
gate in the IDT that was encountered for any reason except the direct access 
by a software interrupt or software exception. The value saved is that which 
would have been saved in the old task-state segment had the task switch 
completed normally.

1. The reference here is to the full value of RIP before any truncation that would occur had the 
stack width been only 32 bits or 16 bits.
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— If the VM exit is due to an execution of MOV to CR8 or WRMSR that reduced 
the value of the TPR shadow1 below that of TPR threshold VM-execution 
control field, the value saved references the instruction following the MOV to 
CR8 or WRMSR.

— If the VM exit was caused by a TPR-shadow update (see Section 21.5.3.3) 
that results from an APIC access as part of instruction execution, the value 
saved references the instruction following the one whose execution caused 
the VTPR access.

• The contents of the RSP register are saved into the RSP field.
• With the exception of the resume flag (RF; bit 16), the contents of the RFLAGS 

register is saved into the RFLAGS field. RFLAGS.RF is saved as follows:

— If the VM exit is caused directly by an event that would normally be delivered 
through the IDT, the value saved is that which would appear in the saved 
RFLAGS image (either that which would be saved on the stack had the event 
been delivered through a trap or interrupt gate2 or into the old task-state 
segment had the event been delivered through a task gate) had the event 
been delivered through the IDT. See below for VM exits due to task switches 
caused by task gates in the IDT.

— If the VM exit is caused by a triple fault, the value saved is that which the 
logical processor would have in RF in the RFLAGS register had the triple fault 
taken the logical processor to the shutdown state.

— If the VM exit is caused by a task switch (including one caused by a task gate 
in the IDT), the value saved is that which would have been saved in the 
RFLAGS image in the old task-state segment (TSS) had the task switch 
completed normally without exception.

— If the VM exit is caused by an attempt to execute an instruction that uncondi-
tionally causes VM exits or one that was configured to do with a VM-execution 
control, the value saved is 0.3

— For APIC-access VM exits and for VM exits caused by EPT violations and EPT 
misconfigurations, the value saved depends on whether the VM exit occurred 
during delivery of an event through the IDT:

1. The TPR shadow is bits 7:4 of the byte at offset 80H of the virtual-APIC page (see Section 
24.6.8).

2. The reference here is to the full value of RFLAGS before any truncation that would occur had the 
stack width been only 32 bits or 16 bits.

3. This is true even if RFLAGS.RF was 1 before the instruction was executed. If, in response to such 
a VM exit, a VM monitor re-enters the guest to re-execute the instruction that caused the 
VM exit (for example, after clearing the VM-execution control that caused the VM exit), the 
instruction may encounter a code breakpoint that has already been processed. A VM monitor can 
avoid this by setting the guest value of RFLAGS.RF to 1 before resuming guest software.
27-30 Vol. 3C



VM EXITS
• If the VM exit stored 0 for bit 31 for IDT-vectoring information field 
(because the VM exit did not occur during delivery of an event through 
the IDT; see Section 27.2.3), the value saved is 1.

• If the VM exit stored 1 for bit 31 for IDT-vectoring information field 
(because the VM exit did occur during delivery of an event through the 
IDT), the value saved is the value that would have appeared in the saved 
RFLAGS image had the event been delivered through the IDT (see 
above).

— For all other VM exits, the value saved is the value RFLAGS.RF had before the 
VM exit occurred.

27.3.4 Saving Non-Register State
Information corresponding to guest non-register state is saved as follows:
• The activity-state field is saved with the logical processor’s activity state before 

the VM exit.1 See Section 27.1 for details of how events leading to a VM exit may 
affect the activity state.

• The interruptibility-state field is saved to reflect the logical processor’s interrupt-
ibility before the VM exit. See Section 27.1 for details of how events leading to a 
VM exit may affect this state. VM exits that end outside system-management 
mode (SMM) save bit 2 (blocking by SMI) as 0 regardless of the state of such 
blocking before the VM exit.
Bit 3 (blocking by NMI) is treated specially if the “virtual NMIs” VM-execution 
control is 1. In this case, the value saved for this field does not indicate the 
blocking of NMIs but rather the state of virtual-NMI blocking.

• The pending debug exceptions field is saved as clear for all VM exits except the 
following:

— A VM exit caused by an INIT signal, a machine-check exception, or a system-
management interrupt (SMI).

— A VM exit with basic exit reason either “TPR below threshold.”2

— A VM exit with basic exit reason “monitor trap flag.”

— VM exits that are not caused by debug exceptions and that occur while there 
is MOV-SS blocking of debug exceptions.

For VM exits that do not clear the field, the value saved is determined as follows:

— Each of bits 3:0 may be set if it corresponds to a matched breakpoint. This 
may be true even if the corresponding breakpoint is not enabled in DR7.

1. If this activity state was an inactive state resulting from execution of a specific instruction (HLT 
or MWAIT), the value saved for RIP by that VM exit will reference the following instruction.

2. This item includes VM exits that occur after executions of MOV to CR8 or WRMSR (Section 
25.1.3), TPR-shadow updates (Section 25.5.3.3), and certain VM entries (Section 26.6.7).
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— Suppose that a VM exit is due to an INIT signal, a machine-check exception, 
or an SMI; or that a VM exit has basic exit reason “TPR below threshold” or 
“monitor trap flag.” In this case, the value saved sets bits corresponding to 
the causes of any debug exceptions that were pending at the time of the 
VM exit.

If the VM exit occurs immediately after VM entry, the value saved may match 
that which was loaded on VM entry (see Section 26.6.3). Otherwise, the 
following items apply:

• Bit 12 (enabled breakpoint) is set to 1 if there was at least one matched 
data or I/O breakpoint that was enabled in DR7. Bit 12 is also set if it had 
been set on VM entry, causing there to be valid pending debug exceptions 
(see Section 26.6.3) and the VM exit occurred before those exceptions 
were either delivered or lost. In other cases, bit 12 is cleared to 0.

• Bit 14 (BS) is set if RFLAGS.TF = 1 in either of the following cases:

• IA32_DEBUGCTL.BTF = 0 and the cause of a pending debug 
exception was the execution of a single instruction.

• IA32_DEBUGCTL.BTF = 1 and the cause of a pending debug 
exception was a taken branch.

— Suppose that a VM exit is due to another reason (but not a debug exception) 
and occurs while there is MOV-SS blocking of debug exceptions. In this case, 
the value saved sets bits corresponding to the causes of any debug 
exceptions that were pending at the time of the VM exit. If the VM exit occurs 
immediately after VM entry (no instructions were executed in VMX non-root 
operation), the value saved may match that which was loaded on VM entry 
(see Section 26.6.3). Otherwise, the following items apply:

• Bit 12 (enabled breakpoint) is set to 1 if there was at least one matched 
data or I/O breakpoint that was enabled in DR7. Bit 12 is also set if it had 
been set on VM entry, causing there to be valid pending debug exceptions 
(see Section 26.6.3) and the VM exit occurred before those exceptions 
were either delivered or lost. In other cases, bit 12 is cleared to 0.

• The setting of bit 14 (BS) is implementation-specific. However, it is not 
set if RFLAGS.TF = 0 or IA32_DEBUGCTL.BTF = 1.

— The reserved bits in the field are cleared.
• If the “save VMX-preemption timer value” VM-exit control is 1, the value of timer 

is saved into the VMX-preemption timer-value field. This is the value loaded from 
this field on VM entry as subsequently decremented (see Section 25.7.1). VM 
exits due to timer expiration save the value 0. Other VM exits may also save the 
value 0 if the timer expired during VM exit. (If the “save VMX-preemption timer 
value” VM-exit control is 0, VM exit does not modify the value of the VMX-
preemption timer-value field.)

• If the logical processor supports the 1-setting of the “enable EPT” VM-execution 
control, values are saved into the four (4) PDPTE fields as follows:
27-32 Vol. 3C



VM EXITS
— If the “enable EPT” VM-execution control is 1 and the logical processor was 
using PAE paging at the time of the VM exit, the PDPTE values currently in use 
are saved:1

• The values saved into bits 11:9 of each of the fields is undefined.

• If the value saved into one of the fields has bit 0 (present) clear, the value 
saved into bits 63:1 of that field is undefined. That value need not 
correspond to the value that was loaded by VM entry or to any value that 
might have been loaded in VMX non-root operation.

• If the value saved into one of the fields has bit 0 (present) set, the value 
saved into bits 63:12 of the field is a guest-physical address.

— If the “enable EPT” VM-execution control is 0 or the logical processor was not 
using PAE paging at the time of the VM exit, the values saved are undefined.

27.4 SAVING MSRS
After processor state is saved to the guest-state area, values of MSRs may be stored 
into the VM-exit MSR-store area (see Section 24.7.2). Specifically each entry in that 
area (up to the number specified in the VM-exit MSR-store count) is processed in 
order by storing the value of the MSR indexed by bits 31:0 (as they would be read by 
RDMSR) into bits 127:64. Processing of an entry fails in either of the following cases:
• The value of bits 31:8 is 000008H, meaning that the indexed MSR is one that 

allows access to an APIC register when the local APIC is in x2APIC mode. 
• The value of bits 31:0 indicates an MSR that can be read only in system-

management mode (SMM) and the VM exit will not end in SMM.
• The value of bits 31:0 indicates an MSR that cannot be saved on VM exits for 

model-specific reasons. A processor may prevent certain MSRs (based on the 
value of bits 31:0) from being stored on VM exits, even if they can normally be 
read by RDMSR. Such model-specific behavior is documented in Chapter 34.

• Bits 63:32 of the entry are not all 0.
• An attempt to read the MSR indexed by bits 31:0 would cause a general-

protection exception if executed via RDMSR with CPL = 0.

A VMX abort occurs if processing fails for any entry. See Section 27.7.

1. A logical processor uses PAE paging if CR0.PG = 1, CR4.PAE = 1 and IA32_EFER.LMA = 0. See 
Section 4.4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A. 
“Enable EPT” is a secondary processor-based VM-execution control. If bit 31 of the primary pro-
cessor-based VM-execution controls is 0, VM exit functions as if the “enable EPT” VM-execution 
control were 0. See Section 24.6.2.
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27.5 LOADING HOST STATE
Processor state is updated on VM exits in the following ways:
• Some state is loaded from or otherwise determined by the contents of the host-

state area.
• Some state is determined by VM-exit controls.
• Some state is established in the same way on every VM exit.
• The page-directory pointers are loaded based on the values of certain control 

registers.

This loading may be performed in any order.

On processors that support Intel 64 architecture, the full values of each 64-bit field 
loaded (for example, the base address for GDTR) is loaded regardless of the mode of 
the logical processor before and after the VM exit.

The loading of host state is detailed in Section 27.5.1 to Section 27.5.5. These 
sections reference VMCS fields that correspond to processor state. Unless otherwise 
stated, these references are to fields in the host-state area.

A logical processor is in IA-32e mode after a VM exit only if the “host address-space 
size” VM-exit control is 1. If the logical processor was in IA-32e mode before the 
VM exit and this control is 0, a VMX abort occurs. See Section 27.7.

In addition to loading host state, VM exits clear address-range monitoring (Section 
27.5.6).

After the state loading described in this section, VM exits may load MSRs from the 
VM-exit MSR-load area (see Section 27.6). This loading occurs only after the state 
loading described in this section.

27.5.1 Loading Host Control Registers, Debug Registers, MSRs
VM exits load new values for controls registers, debug registers, and some MSRs:
• CR0, CR3, and CR4 are loaded from the CR0 field, the CR3 field, and the CR4 

field, respectively, with the following exceptions:

— The following bits are not modified:
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• For CR0, ET, CD, NW; bits 63:32 (on processors that support Intel 64 
architecture), 28:19, 17, and 15:6; and any bits that are fixed in VMX 
operation (see Section 23.8).1

• For CR3, bits 63:52 and bits in the range 51:32 beyond the processor’s 
physical-address width (they are cleared to 0).2 (This item applies only to 
processors that support Intel 64 architecture.)

• For CR4, any bits that are fixed in VMX operation (see Section 23.8).

— CR4.PAE is set to 1 if the “host address-space size” VM-exit control is 1.

— CR4.PCIDE is set to 0 if the “host address-space size” VM-exit control is 0.
• DR7 is set to 400H.
• The following MSRs are established as follows:

— The IA32_DEBUGCTL MSR is cleared to 00000000_00000000H.

— The IA32_SYSENTER_CS MSR is loaded from the IA32_SYSENTER_CS field. 
Since that field has only 32 bits, bits 63:32 of the MSR are cleared to 0. 

— IA32_SYSENTER_ESP MSR and IA32_SYSENTER_EIP MSR are loaded from 
the IA32_SYSENTER_ESP field and the IA32_SYSENTER_EIP field, respec-
tively.

If the processor does not support the Intel 64 architecture, these fields have 
only 32 bits; bits 63:32 of the MSRs are cleared to 0.

If the processor does support the Intel 64 architecture and the processor 
supports N < 64 linear-address bits, each of bits 63:N is set to the value of 
bit N–1.3

— The following steps are performed on processors that support Intel 64 archi-
tecture:

• The MSRs FS.base and GS.base are loaded from the base-address fields 
for FS and GS, respectively (see Section 27.5.2).

• The LMA and LME bits in the IA32_EFER MSR are each loaded with the 
setting of the “host address-space size” VM-exit control.

— If the “load IA32_PERF_GLOBAL_CTRL” VM-exit control is 1, the 
IA32_PERF_GLOBAL_CTRL MSR is loaded from the 
IA32_PERF_GLOBAL_CTRL field. Bits that are reserved in that MSR are 
maintained with their reserved values.

1. Bits 28:19, 17, and 15:6 of CR0 and CR0.ET are unchanged by executions of MOV to CR0. CR0.ET 
is always 1 and the other bits are always 0.

2. Software can determine a processor’s physical-address width by executing CPUID with 
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

3. Software can determine the number N by executing CPUID with 80000008H in EAX. The num-
ber of linear-address bits supported is returned in bits 15:8 of EAX.
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— If the “load IA32_PAT” VM-exit control is 1, the IA32_PAT MSR is loaded from 
the IA32_PAT field. Bits that are reserved in that MSR are maintained with 
their reserved values.

— If the “load IA32_EFER” VM-exit control is 1, the IA32_EFER MSR is loaded 
from the IA32_EFER field. Bits that are reserved in that MSR are maintained 
with their reserved values.

With the exception of FS.base and GS.base, any of these MSRs is subsequently 
overwritten if it appears in the VM-exit MSR-load area. See Section 27.6.

27.5.2 Loading Host Segment and Descriptor-Table Registers
Each of the registers CS, SS, DS, ES, FS, GS, and TR is loaded as follows (see below 
for the treatment of LDTR):
• The selector is loaded from the selector field. The segment is unusable if its 

selector is loaded with zero. The checks specified Section 26.3.1.2 limit the 
selector values that may be loaded. In particular, CS and TR are never loaded 
with zero and are thus never unusable. SS can be loaded with zero only on 
processors that support Intel 64 architecture and only if the VM exit is to 64-bit 
mode (64-bit mode allows use of segments marked unusable).

• The base address is set as follows:

— CS. Cleared to zero.

— SS, DS, and ES. Undefined if the segment is unusable; otherwise, cleared to 
zero.

— FS and GS. Undefined (but, on processors that support Intel 64 architecture, 
canonical) if the segment is unusable and the VM exit is not to 64-bit mode; 
otherwise, loaded from the base-address field.

If the processor supports the Intel 64 architecture and the processor 
supports N < 64 linear-address bits, each of bits 63:N is set to the value of 
bit N–1.1 The values loaded for base addresses for FS and GS are also 
manifest in the FS.base and GS.base MSRs.

— TR. Loaded from the host-state area. If the processor supports the Intel 64 
architecture and the processor supports N < 64 linear-address bits, each of 
bits 63:N is set to the value of bit N–1.

• The segment limit is set as follows:

— CS. Set to FFFFFFFFH (corresponding to a descriptor limit of FFFFFH and a G-
bit setting of 1).

— SS, DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set 
to FFFFFFFFH.

1. Software can determine the number N by executing CPUID with 80000008H in EAX. The num-
ber of linear-address bits supported is returned in bits 15:8 of EAX.
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— TR. Set to 00000067H.
• The type field and S bit are set as follows:

— CS. Type set to 11 and S set to 1 (execute/read, accessed, non-conforming 
code segment).

— SS, DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, 
type set to 3 and S set to 1 (read/write, accessed, expand-up data segment).

— TR. Type set to 11 and S set to 0 (busy 32-bit task-state segment).
• The DPL is set as follows:

— CS, SS, and TR. Set to 0. The current privilege level (CPL) will be 0 after the 
VM exit completes.

— DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set to 
0.

• The P bit is set as follows:

— CS, TR. Set to 1.

— SS, DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set 
to 1.

• On processors that support Intel 64 architecture, CS.L is loaded with the setting 
of the “host address-space size” VM-exit control. Because the value of this 
control is also loaded into IA32_EFER.LMA (see Section 27.5.1), no VM exit is 
ever to compatibility mode (which requires IA32_EFER.LMA = 1 and CS.L = 0).

• D/B.

— CS. Loaded with the inverse of the setting of the “host address-space size” 
VM-exit control. For example, if that control is 0, indicating a 32-bit guest, 
CS.D/B is set to 1.

— SS. Set to 1.

— DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set to 
1.

— TR. Set to 0.
• G.

— CS. Set to 1.

— SS, DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set 
to 1.

— TR. Set to 0.

The host-state area does not contain a selector field for LDTR. LDTR is established as 
follows on all VM exits: the selector is cleared to 0000H, the segment is marked 
unusable and is otherwise undefined (although the base address is always canon-
ical).
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The base addresses for GDTR and IDTR are loaded from the GDTR base-address field 
and the IDTR base-address field, respectively. If the processor supports the Intel 64 
architecture and the processor supports N < 64 linear-address bits, each of bits 63:N 
of each base address is set to the value of bit N–1 of that base address. The GDTR 
and IDTR limits are each set to FFFFH.

27.5.3 Loading Host RIP, RSP, and RFLAGS
RIP and RSP are loaded from the RIP field and the RSP field, respectively. RFLAGS is 
cleared, except bit 1, which is always set.

27.5.4 Checking and Loading Host Page-Directory-Pointer-Table 
Entries

If CR0.PG = 1, CR4.PAE = 1, and IA32_EFER.LMA = 0, the logical processor uses 
PAE paging. See Section 4.4 of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3A.1 When in PAE paging is in use, the physical address 
in CR3 references a table of page-directory-pointer-table entries (PDPTEs). A 
MOV to CR3 when PAE paging is in use checks the validity of the PDPTEs and, if they 
are valid, loads them into the processor (into internal, non-architectural registers).

A VM exit is to a VMM that uses PAE paging if (1) bit 5 (corresponding to CR4.PAE) is 
set in the CR4 field in the host-state area of the VMCS; and (2) the “host address-
space size” VM-exit control is 0. Such a VM exit may check the validity of the PDPTEs 
referenced by the CR3 field in the host-state area of the VMCS. Such a VM exit must 
check their validity if either (1) PAE paging was not in use before the VM exit; or 
(2) the value of CR3 is changing as a result of the VM exit. A VM exit to a VMM that 
does not use PAE paging must not check the validity of the PDPTEs.

A VM exit that checks the validity of the PDPTEs uses the same checks that are used 
when CR3 is loaded with MOV to CR3 when PAE paging is in use. If MOV to CR3 would 
cause a general-protection exception due to the PDPTEs that would be loaded (e.g., 
because a reserved bit is set), a VMX abort occurs (see Section 27.7). If a VM exit to 
a VMM that uses PAE does not cause a VMX abort, the PDPTEs are loaded into the 
processor as would MOV to CR3, using the value of CR3 being load by the VM exit.

27.5.5 Updating Non-Register State
VM exits affect the non-register state of a logical processor as follows:
• A logical processor is always in the active state after a VM exit.

1. On processors that support Intel 64 architecture, the physical-address extension may support 
more than 36 physical-address bits. Software can determine a processor’s physical-address 
width by executing CPUID with 80000008H in EAX. The physical-address width is returned in 
bits 7:0 of EAX.
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• Event blocking is affected as follows:

— There is no blocking by STI or by MOV SS after a VM exit.

— VM exits caused directly by non-maskable interrupts (NMIs) cause blocking 
by NMI (see Table 24-3). Other VM exits do not affect blocking by NMI. (See 
Section 27.1 for the case in which an NMI causes a VM exit indirectly.)

• There are no pending debug exceptions after a VM exit.

Section 28.3 describes how the VMX architecture controls how a logical processor 
manages information in the TLBs and paging-structure caches. The following items 
detail how VM exits invalidate cached mappings:
• If the “enable VPID” VM-execution control is 0, the logical processor invalidates 

linear mappings and combined mappings associated with VPID 0000H (for all 
PCIDs); combined mappings for VPID 0000H are invalidated for all EP4TA values 
(EP4TA is the value of bits 51:12 of EPTP).

• VM exits are not required to invalidate any guest-physical mappings, nor are they 
required to invalidate any linear mappings or combined mappings if the “enable 
VPID” VM-execution control is 1. 

27.5.6 Clearing Address-Range Monitoring
The Intel 64 and IA-32 architectures allow software to monitor a specified address 
range using the MONITOR and MWAIT instructions. See Section 8.10.4 in the Intel® 
64 and IA-32 Architectures Software Developer’s Manual, Volume 3A. VM exits clear 
any address-range monitoring that may be in effect.

27.6 LOADING MSRS
VM exits may load MSRs from the VM-exit MSR-load area (see Section 24.7.2). 
Specifically each entry in that area (up to the number specified in the VM-exit MSR-
load count) is processed in order by loading the MSR indexed by bits 31:0 with the 
contents of bits 127:64 as they would be written by WRMSR.

Processing of an entry fails in any of the following cases:
• The value of bits 31:0 is either C0000100H (the IA32_FS_BASE MSR) or 

C0000101H (the IA32_GS_BASE MSR).
• The value of bits 31:8 is 000008H, meaning that the indexed MSR is one that 

allows access to an APIC register when the local APIC is in x2APIC mode. 
• The value of bits 31:0 indicates an MSR that can be written only in system-

management mode (SMM) and the VM exit will not end in SMM. 
(IA32_SMM_MONITOR_CTL is an MSR that can be written only in SMM.)

• The value of bits 31:0 indicates an MSR that cannot be loaded on VM exits for 
model-specific reasons. A processor may prevent loading of certain MSRs even if 
Vol. 3C 27-39



VM EXITS
they can normally be written by WRMSR. Such model-specific behavior is 
documented in Chapter 34.

• Bits 63:32 are not all 0.
• An attempt to write bits 127:64 to the MSR indexed by bits 31:0 of the entry 

would cause a general-protection exception if executed via WRMSR with 
CPL = 0.1

If processing fails for any entry, a VMX abort occurs. See Section 27.7.

If any MSR is being loaded in such a way that would architecturally require a TLB 
flush, the TLBs are updated so that, after VM exit, the logical processor does not use 
any translations that were cached before the transition.

27.7 VMX ABORTS
A problem encountered during a VM exit leads to a VMX abort. A VMX abort takes a 
logical processor into a shutdown state as described below.

A VMX abort does not modify the VMCS data in the VMCS region of any active VMCS. 
The contents of these data are thus suspect after the VMX abort.

On a VMX abort, a logical processor saves a nonzero 32-bit VMX-abort indicator field 
at byte offset 4 in the VMCS region of the VMCS whose misconfiguration caused the 
failure (see Section 24.2). The following values are used:

1. There was a failure in saving guest MSRs (see Section 27.4).

2. Host checking of the page-directory-pointer-table entries (PDPTEs) failed (see 
Section 27.5.4).

3. The current VMCS has been corrupted (through writes to the corresponding 
VMCS region) in such a way that the logical processor cannot complete the 
VM exit properly.

4. There was a failure on loading host MSRs (see Section 27.6).

5. There was a machine-check event during VM exit (see Section 27.8).

6. The logical processor was in IA-32e mode before the VM exit and the “host 
address-space size” VM-entry control was 0 (see Section 27.5).

Some of these causes correspond to failures during the loading of state from the 
host-state area. Because the loading of such state may be done in any order (see 
Section 27.5) a VM exit that might lead to a VMX abort for multiple reasons (for 
example, the current VMCS may be corrupt and the host PDPTEs might not be prop-

1. Note the following about processors that support Intel 64 architecture. If CR0.PG = 1, WRMSR to 
the IA32_EFER MSR causes a general-protection exception if it would modify the LME bit. Since 
CR0.PG is always 1 in VMX operation, the IA32_EFER MSR should not be included in the VM-exit 
MSR-load area for the purpose of modifying the LME bit.
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erly configured). In such cases, the VMX-abort indicator could correspond to any one 
of those reasons.

A logical processor never reads the VMX-abort indicator in a VMCS region and writes 
it only with one of the non-zero values mentioned above. The VMX-abort indicator 
allows software on one logical processor to diagnose the VMX-abort on another. For 
this reason, it is recommended that software running in VMX root operation zero the 
VMX-abort indicator in the VMCS region of any VMCS that it uses.

After saving the VMX-abort indicator, operation of a logical processor experiencing a 
VMX abort depends on whether the logical processor is in SMX operation:1

• If the logical processor is in SMX operation, an Intel® TXT shutdown condition 
occurs. The error code used is 000DH, indicating “VMX abort.” See Intel® Trusted 
Execution Technology Measured Launched Environment Programming Guide.

• If the logical processor is outside SMX operation, it issues a special bus cycle (to 
notify the chipset) and enters the VMX-abort shutdown state. RESET is the 
only event that wakes a logical processor from the VMX-abort shutdown state. 
The following events do not affect a logical processor in this state: machine-
check events; INIT signals; external interrupts; non-maskable interrupts (NMIs); 
start-up IPIs (SIPIs); and system-management interrupts (SMIs).

27.8 MACHINE-CHECK EVENTS DURING VM EXIT
If a machine-check event occurs during VM exit, one of the following occurs:
• The machine-check event is handled as if it occurred before the VM exit:

— If CR4.MCE = 0, operation of the logical processor depends on whether the 
logical processor is in SMX operation:2

• If the logical processor is in SMX operation, an Intel® TXT shutdown 
condition occurs. The error code used is 000CH, indicating “unrecoverable 
machine-check condition.”

• If the logical processor is outside SMX operation, it goes to the shutdown 
state.

1. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last 
execution of GETSEC[SENTER]. A logical processor is outside SMX operation if GETSEC[SENTER] 
has not been executed or if GETSEC[SEXIT] was executed after the last execution of GET-
SEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference,” in Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2B.

2. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last 
execution of GETSEC[SENTER]. A logical processor is outside SMX operation if GETSEC[SENTER] 
has not been executed or if GETSEC[SEXIT] was executed after the last execution of GET-
SEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference,” in Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2B.
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— If CR4.MCE = 1, a machine-check exception (#MC) is generated:

• If bit 18 (#MC) of the exception bitmap is 0, the exception is delivered 
through the guest IDT.

• If bit 18 of the exception bitmap is 1, the exception causes a VM exit.
• The machine-check event is handled after VM exit completes:

— If the VM exit ends with CR4.MCE = 0, operation of the logical processor 
depends on whether the logical processor is in SMX operation:

• If the logical processor is in SMX operation, an Intel® TXT shutdown 
condition occurs with error code 000CH (unrecoverable machine-check 
condition).

• If the logical processor is outside SMX operation, it goes to the shutdown 
state.

— If the VM exit ends with CR4.MCE = 1, a machine-check exception (#MC) is 
delivered through the host IDT.

• A VMX abort is generated (see Section 27.7). The logical processor blocks events 
as done normally in VMX abort. The VMX abort indicator is 5, for “machine-check 
event during VM exit.”

The first option is not used if the machine-check event occurs after any host state has 
been loaded. The second option is used only if VM entry is able to load all host state.
27-42 Vol. 3C



CHAPTER 28
VMX SUPPORT FOR ADDRESS TRANSLATION

The architecture for VMX operation includes two features that support address trans-
lation: virtual-processor identifiers (VPIDs) and the extended page-table mechanism 
(EPT). VPIDs are a mechanism for managing translations of linear addresses. EPT 
defines a layer of address translation that augments the translation of linear 
addresses.

Section 28.1 details the architecture of VPIDs. Section 28.2 provides the details of 
EPT. Section 28.3 explains how a logical processor may cache information from the 
paging structures, how it may use that cached information, and how software can 
managed the cached information.

28.1 VIRTUAL PROCESSOR IDENTIFIERS (VPIDS)
The original architecture for VMX operation required VMX transitions to flush the TLBs 
and paging-structure caches. This ensured that translations cached for the old linear-
address space would not be used after the transition.

Virtual-processor identifiers (VPIDs) introduce to VMX operation a facility by which 
a logical processor may cache information for multiple linear-address spaces. When 
VPIDs are used, VMX transitions may retain cached information and the logical 
processor switches to a different linear-address space.

Section 28.3 details the mechanisms by which a logical processor manages informa-
tion cached for multiple address spaces. A logical processor may tag some cached 
information with a 16-bit VPID. This section specifies how the current VPID is deter-
mined at any point in time:
• The current VPID is 0000H in the following situations:

— Outside VMX operation. (This includes operation in system-management 
mode under the default treatment of SMIs and SMM with VMX operation; see 
Section 33.14.)

— In VMX root operation.

— In VMX non-root operation when the “enable VPID” VM-execution control is 0.
• If the logical processor is in VMX non-root operation and the “enable VPID” VM-

execution control is 1, the current VPID is the value of the VPID VM-execution 
control field in the VMCS. (VM entry ensures that this value is never 0000H; see 
Section 26.2.1.1.)

VPIDs and PCIDs (see Section 4.10.1) can be used concurrently. When this is done, 
the processor associates cached information with both a VPID and a PCID. Such 
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information is used only if the current VPID and PCID both match those associated 
with the cached information.

28.2 THE EXTENDED PAGE TABLE MECHANISM (EPT)
The extended page-table mechanism (EPT) is a feature that can be used to support 
the virtualization of physical memory. When EPT is in use, certain addresses that 
would normally be treated as physical addresses (and used to access memory) are 
instead treated as guest-physical addresses. Guest-physical addresses are trans-
lated by traversing a set of EPT paging structures to produce physical addresses 
that are used to access memory.
• Section 28.2.1 gives an overview of EPT.
• Section 28.2.2 describes operation of EPT-based address translation.
• Section 28.2.3 discusses VM exits that may be caused by EPT.
• Section 28.2.4 describes interactions between EPT and memory typing.

28.2.1 EPT Overview
EPT is used when the “enable EPT” VM-execution control is 1.1 It translates the 
guest-physical addresses used in VMX non-root operation and those used by 
VM entry for event injection.

The translation from guest-physical addresses to physical addresses is determined 
by a set of EPT paging structures. The EPT paging structures are similar to those 
used to translate linear addresses while the processor is in IA-32e mode. Section 
28.2.2 gives the details of the EPT paging structures.

If CR0.PG = 1, linear addresses are translated through paging structures referenced 
through control register CR3 . While the “enable EPT” VM-execution control is 1, 
these are called guest paging structures. There are no guest paging structures if 
CR0.PG = 0.2

1. “Enable EPT” is a secondary processor-based VM-execution control. If bit 31 of the primary pro-
cessor-based VM-execution controls is 0, the logical processor operates as if the “enable EPT” 
VM-execution control were 0. See Section 24.6.2.

2. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation, 
CR0.PG can be 0 in VMX non-root operation only if the “unrestricted guest” VM-execution control 
and bit 31 of the primary processor-based VM-execution controls are both 1.
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When the “enable EPT” VM-execution control is 1, the identity of guest-physical 
addresses depends on the value of CR0.PG:
• If CR0.PG = 0, each linear address is treated as a guest-physical address.
• If CR0.PG = 1, guest-physical addresses are those derived from the contents of 

control register CR3 and the guest paging structures. (This includes the values of 
the PDPTEs, which logical processors store in internal, non-architectural 
registers.) The latter includes (in page-table entries and in other paging-
structure entries for which bit 7—PS—is 1) the addresses to which linear 
addresses are translated by the guest paging structures.

If CR0.PG = 1, the translation of a linear address to a physical address requires 
multiple translations of guest-physical addresses using EPT. Assume, for example, 
that CR4.PAE = CR4.PSE = 0. The translation of a 32-bit linear address then oper-
ates as follows:
• Bits 31:22 of the linear address select an entry in the guest page directory 

located at the guest-physical address in CR3. The guest-physical address of the 
guest page-directory entry (PDE) is translated through EPT to determine the 
guest PDE’s physical address.

• Bits 21:12 of the linear address select an entry in the guest page table located at 
the guest-physical address in the guest PDE. The guest-physical address of the 
guest page-table entry (PTE) is translated through EPT to determine the guest 
PTE’s physical address.

• Bits 11:0 of the linear address is the offset in the page frame located at the 
guest-physical address in the guest PTE. The guest-physical address determined 
by this offset is translated through EPT to determine the physical address to 
which the original linear address translates.

In addition to translating a guest-physical address to a physical address, EPT speci-
fies the privileges that software is allowed when accessing the address. Attempts at 
disallowed accesses are called EPT violations and cause VM exits. See Section 
28.2.3.

A logical processor uses EPT to translate guest-physical addresses only when those 
addresses are used to access memory. This principle implies the following:
• The MOV to CR3 instruction loads CR3 with a guest-physical address. Whether 

that address is translated through EPT depends on whether PAE paging is being 
used.1

— If PAE paging is not being used, the instruction does not use that address to 
access memory and does not cause it to be translated through EPT. (If 
CR0.PG = 1, the address will be translated through EPT on the next memory 
accessing using a linear address.)

1. A logical processor uses PAE paging if CR0.PG = 1, CR4.PAE = 1 and IA32_EFER.LMA = 0. See 
Section 4.4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.
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— If PAE paging is being used, the instruction loads the four (4) page-directory-
pointer-table entries (PDPTEs) from that address and it does cause the 
address to be translated through EPT.

• Section 4.4.1 identifies executions of MOV to CR0 and MOV to CR4 that load the 
PDPTEs from the guest-physical address in CR3. Such executions cause that 
address to be translated through EPT.

• The PDPTEs contain guest-physical addresses. The instructions that load the 
PDPTEs (see above) do not use those addresses to access memory and do not 
cause them to be translated through EPT. The address in a PDPTE will be 
translated through EPT on the next memory accessing using a linear address that 
uses that PDPTE.

28.2.2 EPT Translation Mechanism
The EPT translation mechanism uses only bits 47:0 of each guest-physical address.1 
It uses a page-walk length of 4, meaning that at most 4 EPT paging-structure entries 
are accessed to translate a guest-physical address.2

These 48 bits are partitioned by the logical processor to traverse the EPT paging 
structures:
• A 4-KByte naturally aligned EPT PML4 table is located at the physical address 

specified in bits 51:12 of the extended-page-table pointer (EPTP), a VM-
execution control field (see Table 24-8 in Section 24.6.11). An EPT PML4 table 
comprises 512 64-bit entries (EPT PML4Es). An EPT PML4E is selected using the 
physical address defined as follows:

— Bits 63:52 are all 0.

— Bits 51:12 are from the EPTP.

— Bits 11:3 are bits 47:39 of the guest-physical address.

— Bits 2:0 are all 0.
Because an EPT PML4E is identified using bits 47:39 of the guest-physical 
address, it controls access to a 512-GByte region of the guest-physical-address 
space.

• A 4-KByte naturally aligned EPT page-directory-pointer table is located at the 
physical address specified in bits 51:12 of the EPT PML4E (see Table 28-1). An 

1. No processors supporting the Intel 64 architecture support more than 48 physical-address bits. 
Thus, no such processor can produce a guest-physical address with more than 48 bits. An 
attempt to use such an address causes a page fault. An attempt to load CR3 with such an 
address causes a general-protection fault. If PAE paging is being used, an attempt to load CR3 
that would load a PDPTE with such an address causes a general-protection fault.

2. Future processors may include support for other EPT page-walk lengths. Software should read 
the VMX capability MSR IA32_VMX_EPT_VPID_CAP (see Appendix A.10) to determine what EPT 
page-walk lengths are supported.
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EPT page-directory-pointer table comprises 512 64-bit entries (PDPTEs). An EPT 
PDPTE is selected using the physical address defined as follows:

— Bits 63:52 are all 0.

— Bits 51:12 are from the EPT PML4 entry.

— Bits 11:3 are bits 38:30 of the guest-physical address.

— Bits 2:0 are all 0.

Because a PDPTE is identified using bits 47:30 of the guest-physical address, it 
controls access to a 1-GByte region of the guest-physical-address space. Use of the 
PDPTE depends on the value of bit 7 in that entry:1

• If bit 7 of the EPT PDPTE is 1, the EPT PDPTE maps a 1-GByte page (see 
Table 28-2). The final physical address is computed as follows:

Table 28-1.  Format of an EPT PML4 Entry (PML4E)

Bit 
Position(s)

Contents

0 Read access; indicates whether reads are allowed from the 512-GByte region 
controlled by this entry

1 Write access; indicates whether writes are allowed to the 512-GByte region 
controlled by this entry

2 Execute access; indicates whether instruction fetches are allowed from the 512-
GByte region controlled by this entry

7:3 Reserved (must be 0)

11:8 Ignored

(N–1):12 Physical address of 4-KByte aligned EPT page-directory-pointer table referenced 
by this entry1

NOTES:
1. N is the physical-address width supported by the processor. Software can determine a processor’s 

physical-address width by executing CPUID with 80000008H in EAX. The physical-address width 
is returned in bits 7:0 of EAX.

51:N Reserved (must be 0)

63:52 Ignored

1. Not all processors allow bit 7 of an EPT PDPTE to be set to 1. Software should read the VMX 
capability MSR IA32_VMX_EPT_VPID_CAP (see Appendix A.10) to determine whether this is 
allowed.
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— Bits 63:52 are all 0.

— Bits 51:30 are from the EPT PDPTE.

— Bits 29:0 are from the original guest-physical address.
• If bit 7 of the EPT PDPTE is 0, a 4-KByte naturally aligned EPT page directory is 

located at the physical address specified in bits 51:12 of the EPT PDPTE (see 
Table 28-3). An EPT page-directory comprises 512 64-bit entries (PDEs). An EPT 
PDE is selected using the physical address defined as follows:

— Bits 63:52 are all 0.

— Bits 51:12 are from the EPT PDPTE.

— Bits 11:3 are bits 29:21 of the guest-physical address.

— Bits 2:0 are all 0.

Table 28-2.  Format of an EPT Page-Directory-Pointer-Table Entry (PDPTE) that Maps 
a 1-GByte Page

Bit 
Position(s)

Contents

0 Read access; indicates whether reads are allowed from the 1-GByte page 
referenced by this entry

1 Write access; indicates whether writes are allowed to the 1-GByte page 
referenced by this entry

2 Execute access; indicates whether instruction fetches are allowed from the 1-
GByte page referenced by this entry

5:3 EPT memory type for this 1-GByte page (see Section 28.2.4)

6 Ignore PAT memory type for this 1-GByte page (see Section 28.2.4)

7 Must be 1 (otherwise, this entry references an EPT page directory)

11:8 Ignored

29:12 Reserved (must be 0)

(N–1):30 Physical address of the 1-GByte page referenced by this entry1

51:N Reserved (must be 0)

63:52 Ignored

NOTES:
1. N is the physical-address width supported by the logical processor.
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Because an EPT PDE is identified using bits 47:21 of the guest-physical address, it 
controls access to a 2-MByte region of the guest-physical-address space. Use of the 
EPT PDE depends on the value of bit 7 in that entry:
• If bit 7 of the EPT PDE is 1, the EPT PDE maps a 2-MByte page (see Table 28-4). 

The final physical address is computed as follows:

— Bits 63:52 are all 0.

— Bits 51:21 are from the EPT PDE.

— Bits 20:0 are from the original guest-physical address.
• If bit 7 of the EPT PDE is 0, a 4-KByte naturally aligned EPT page table is located 

at the physical address specified in bits 51:12 of the EPT PDE (see Table 28-5). 
An EPT page table comprises 512 64-bit entries (PTEs). An EPT PTE is selected 
using a physical address defined as follows:

— Bits 63:52 are all 0.

— Bits 51:12 are from the EPT PDE.

— Bits 11:3 are bits 20:12 of the guest-physical address.

— Bits 2:0 are all 0.

Table 28-3.  Format of an EPT Page-Directory-Pointer-Table Entry (PDPTE) that 
References an EPT Page Directory

Bit 
Position(s)

Contents

0 Read access; indicates whether reads are allowed from the 1-GByte region 
controlled by this entry

1 Write access; indicates whether writes are allowed to the 1-GByte region 
controlled by this entry

2 Execute access; indicates whether instruction fetches are allowed from the 1-
GByte region controlled by this entry

7:3 Reserved (must be 0)

11:8 Ignored

(N–1):12 Physical address of 4-KByte aligned EPT page directory referenced by this entry1

51:N Reserved (must be 0)

63:52 Ignored

NOTES:
1. N is the physical-address width supported by the logical processor.
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• Because an EPT PTE is identified using bits 47:12 of the guest-physical address, 
every EPT PTE maps a 4-KByte page (see Table 28-6). The final physical address 
is computed as follows:

• Bits 63:52 are all 0.

• Bits 51:12 are from the EPT PTE.

• Bits 11:0 are from the original guest-physical address.

If bits 2:0 of an EPT paging-structure entry are all 0, the entry is not present. The 
processor ignores bits 63:3 and does uses the entry neither to reference another EPT 
paging-structure entry nor to produce a physical address. A reference using a guest-
physical address whose translation encounters an EPT paging-structure that is not 
present causes an EPT violation (see Section 28.2.3.2).

The discussion above describes how the EPT paging structures reference each other 
and how the logical processor traverses those structures when translating a guest-
physical address. It does not cover all details of the translation process. Additional 
details are provided as follows:

Table 28-4.  Format of an EPT Page-Directory Entry (PDE) that Maps a 2-MByte Page

Bit 
Position(s)

Contents

0 Read access; indicates whether reads are allowed from the 2-MByte page 
referenced by this entry

1 Write access; indicates whether writes are allowed to the 2-MByte page 
referenced by this entry

2 Execute access; indicates whether instruction fetches are allowed from the 2-
MByte page referenced by this entry

5:3 EPT memory type for this 2-MByte page (see Section 28.2.4)

6 Ignore PAT memory type for this 2-MByte page (see Section 28.2.4)

7 Must be 1 (otherwise, this entry references an EPT page table)

11:8 Ignored

20:12 Reserved (must be 0)

(N–1):21 Physical address of the 2-MByte page referenced by this entry1

51:N Reserved (must be 0)

63:52 Ignored

NOTES:
1. N is the physical-address width supported by the logical processor.
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• Situations in which the translation process may lead to VM exits (sometimes 
before the process completes) are described in Section 28.2.3.

• Interactions between the EPT translation mechanism and memory typing are 
described in Section 28.2.4.

Figure 28-1 gives a summary of the formats of the EPTP and the EPT paging-struc-
ture entries. For the EPT paging structure entries, it identifies separately the format 
of entries that map pages, those that reference other EPT paging structures, and 
those that do neither because they are “not present”; bits 2:0 and bit 7 are high-
lighted because they determine how a paging-structure entry is used.

28.2.3 EPT-Induced VM Exits
Accesses using guest-physical addresses may cause VM exits due to EPT miscon-
figurations and EPT violations. An EPT misconfiguration occurs when, in the 
course of translation a guest-physical address, the logical processor encounters an 
EPT paging-structure entry that contains an unsupported value. An EPT violation 
occurs when there is no EPT misconfiguration but the EPT paging-structure entries 
disallow an access using the guest-physical address.

Table 28-5.  Format of an EPT Page-Directory Entry (PDE) that References an EPT 
Page Table

Bit 
Position(s)

Contents

0 Read access; indicates whether reads are allowed from the 2-MByte region 
controlled by this entry

1 Write access; indicates whether writes are allowed to the 2-MByte region 
controlled by this entry

2 Execute access; indicates whether instruction fetches are allowed from the 2-
MByte region controlled by this entry

6:3 Reserved (must be 0)

7 Must be 0 (otherwise, this entry maps a 2-MByte page)

11:8 Ignored

(N–1):12 Physical address of 4-KByte aligned EPT page table referenced by this entry1

51:N Reserved (must be 0)

63:52 Ignored

NOTES:
1. N is the physical-address width supported by the logical processor.
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EPT misconfigurations and EPT violations occur only due to an attempt to access 
memory with a guest-physical address. Loading CR3 with a guest-physical address 
with the MOV to CR3 instruction can cause neither an EPT configuration nor an EPT 
violation until that address is used to access a paging structure.1

28.2.3.1  EPT Misconfigurations
AN EPT misconfiguration occurs if any of the following is identified while translating a 
guest-physical address:
• The value of bits 2:0 of an EPT paging-structure entry is either 010b (write-only) 

or 110b (write/execute).
• The value of bits 2:0 of an EPT paging-structure entry is 100b (execute-only) and 

this value is not supported by the logical processor. Software should read the 

Table 28-6.  Format of an EPT Page-Table Entry

Bit 
Position(s)

Contents

0 Read access; indicates whether reads are allowed from the 4-KByte page 
referenced by this entry

1 Write access; indicates whether writes are allowed to the 4-KByte page 
referenced by this entry

2 Execute access; indicates whether instruction fetches are allowed from the 4-
KByte page referenced by this entry

5:3 EPT memory type for this 4-KByte page (see Section 28.2.4)

6 Ignore PAT memory type for this 4-KByte page (see Section 28.2.4)

11:7 Ignored

(N–1):12 Physical address of the 4-KByte page referenced by this entry1

51:N Reserved (must be 0)

63:52 Ignored

NOTES:
1. N is the physical-address width supported by the logical processor.

1. If the logical processor is using PAE paging—because CR0.PG = CR4.PAE = 1 and 
IA32_EFER.LMA = 0—the MOV to CR3 instruction loads the PDPTEs from memory using the 
guest-physical address being loaded into CR3. In this case, therefore, the MOV to CR3 instruction 
may cause an EPT misconfiguration or an EPT violation.
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VMX capability MSR IA32_VMX_EPT_VPID_CAP to determine whether this value 
is supported (see Appendix A.10).
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Figure 28-1.  Formats of EPTP and EPT Paging-Structure Entries

NOTES:
1. M is an abbreviation for MAXPHYADDR.
2. See Section 24.6.11 for details of the EPTP.
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• The value of bits 2:0 of an EPT paging-structure entry is not 000b (the entry is 
present) and one of the following holds:

— A reserved bit is set. This includes the setting of a bit in the range 51:12 that 
is beyond the logical processor’s physical-address width.1 See Section 28.2.2 
for details of which bits are reserved in which EPT paging-structure entries.

— The entry is the last one used to translate a guest physical address (either an 
EPT PDE with bit 7 set to 1 or an EPT PTE) and the value of bits 5:3 (EPT 
memory type) is 2, 3, or 7 (these values are reserved).

EPT misconfigurations result when an EPT paging-structure entry is configured with 
settings reserved for future functionality. Software developers should be aware that 
such settings may be used in the future and that an EPT paging-structure entry that 
causes an EPT misconfiguration on one processor might not do so in the future.

28.2.3.2  EPT Violations
An EPT violation may occur during an access using a guest-physical address whose 
translation does not cause an EPT misconfiguration. An EPT violation occurs in any of 
the following situations:
• Translation of the guest-physical address encounters an EPT paging-structure 

entry that is not present (see Section 28.2.2).
• The access is a data read and bit 0 was clear in any of the EPT paging-structure 

entries used to translate the guest-physical address. Reads by the logical 
processor of guest paging structures to translate a linear address are considered 
to be data reads.

• The access is a data write and bit 1 was clear in any of the EPT paging-structure 
entries used to translate the guest-physical address. Writes by the logical 
processor to guest paging structures to update accessed and dirty flags are 
considered to be data writes.

• The access is an instruction fetch and bit 2 was clear in any of the EPT paging-
structure entries used to translate the guest-physical address.

28.2.3.3  Prioritization of EPT-Induced VM Exits
The translation of a linear address to a physical address requires one or more trans-
lations of guest-physical addresses using EPT (see Section 28.2.1). This section 
specifies the relative priority of EPT-induced VM exits with respect to each other and 
to other events that may be encountered when accessing memory using a linear 
address.

For an access to a guest-physical address, determination of whether an EPT miscon-
figuration or an EPT violation occurs is based on an iterative process:2

1. Software can determine a processor’s physical-address width by executing CPUID with 
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.
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1. An EPT paging-structure entry is read (initially, this is an EPT PML4 entry):

a. If the entry is not present (bits 2:0 are all 0), an EPT violation occurs.

b. If the entry is present but its contents are not configured properly (see 
Section 28.2.3.1), an EPT misconfiguration occurs.

c. If the entry is present and its contents are configured properly, operation 
depends on whether the entry references another EPT paging structure 
(whether it is an EPT PDE with bit 7 set to 1 or an EPT PTE):

i) If the entry does reference another EPT paging structure, an entry from 
that structure is accessed; step 1 is executed for that other entry.

ii) Otherwise, the entry is used to produce the ultimate physical address 
(the translation of the original guest-physical address); step 2 is 
executed.

2. Once the ultimate physical address is determined, the privileges determined by 
the EPT paging-structure entries are evaluated:

a. If the access to the guest-physical address is not allowed by these privileges 
(see Section 28.2.3.2), an EPT violation occurs.

b. If the access to the guest-physical address is allowed by these privileges, 
memory is accessed using the ultimate physical address.

If CR0.PG = 1, the translation of a linear address is also an iterative process, with the 
processor first accessing an entry in the guest paging structure referenced by the 
guest-physical address in CR3 (or, if PAE paging is in use, the guest-physical address 
in the appropriate PDPTE register), then accessing an entry in another guest paging 
structure referenced by the guest-physical address in the first guest paging-structure 
entry, etc. Each guest-physical address is itself translated using EPT and may cause 
an EPT-induced VM exit. The following items detail how page faults and EPT-induced 
VM exits are recognized during this iterative process:

1. An attempt is made to access a guest paging-structure entry with a guest-
physical address (initially, the address in CR3 or PDPTE register).

a. If the access fails because of an EPT misconfiguration or an EPT violation (see 
above), an EPT-induced VM exit occurs.

b. If the access does not cause an EPT-induced VM exit, bit 0 (the present flag) 
of the entry is consulted:

i) If the present flag is 0 or any reserved bit is set, a page fault occurs.

ii) If the present flag is 1, no reserved bit is set, operation depends on 
whether the entry references another guest paging structure (whether it 
is a guest PDE with PS = 1 or a guest PTE):

2. This is a simplification of the more detailed description given in Section 28.2.2.
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• If the entry does reference another guest paging structure, an entry 
from that structure is accessed; step 1 is executed for that other 
entry.

• Otherwise, the entry is used to produce the ultimate guest-physical 
address (the translation of the original linear address); step 2 is 
executed.

2. Once the ultimate guest-physical address is determined, the privileges 
determined by the guest paging-structure entries are evaluated:

a. If the access to the linear address is not allowed by these privileges (e.g., it 
was a write to a read-only page), a page fault occurs.

b. If the access to the linear address is allowed by these privileges, an attempt 
is made to access memory at the ultimate guest-physical address:

i) If the access fails because of an EPT misconfiguration or an EPT violation 
(see above), an EPT-induced VM exit occurs.

ii) If the access does not cause an EPT-induced VM exit, memory is accessed 
using the ultimate physical address (the translation, using EPT, of the 
ultimate guest-physical address).

If CR0.PG = 0, a linear address is treated as a guest-physical address and is trans-
lated using EPT (see above). This process, if it completes without an EPT violation or 
EPT misconfiguration, produces a physical address and determines the privileges 
allowed by the EPT paging-structure entries. If these privileges do not allow the 
access to the physical address (see Section 28.2.3.2), an EPT violation occurs. 
Otherwise, memory is accessed using the physical address.

28.2.4 EPT and Memory Typing
This section specifies how a logical processor determines the memory type use for a 
memory access while EPT is in use. (See Chapter 11, “Memory Cache Control” of 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A for 
details of memory typing in the Intel 64 architecture.) Section 28.2.4.1 explains how 
the memory type is determined for accesses to the EPT paging structures. Section 
28.2.4.2 explains how the memory type is determined for an access using a guest-
physical address that is translated using EPT.

28.2.4.1  Memory Type Used for Accessing EPT Paging Structures
This section explains how the memory type is determined for accesses to the EPT 
paging structures. The determination is based first on the value of bit 30 (cache 
disable—CD) in control register CR0:
• If CR0.CD = 0, the memory type used for any such reference is the EPT paging-

structure memory type, which is specified in bits 2:0 of the extended-page-table 
pointer (EPTP), a VM-execution control field (see Section 24.6.11). A value of 0 
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indicates the uncacheable type (UC), while a value of 6 indicates the write-back 
type (WB). Other values are reserved.

• If CR0.CD = 1, the memory type used for any such reference is uncacheable 
(UC).

The MTRRs have no effect on the memory type used for an access to an EPT paging 
structure.

28.2.4.2  Memory Type Used for Translated Guest-Physical Addresses
The effective memory type of a memory access using a guest-physical address (an 
access that is translated using EPT) is the memory type that is used to access 
memory. The effective memory type is based on the value of bit 30 (cache 
disable—CD) in control register CR0; the last EPT paging-structure entry used to 
translate the guest-physical address (either an EPT PDE with bit 7 set to 1 or an EPT 
PTE); and the PAT memory type (see below):
• The PAT memory type depends on the value of CR0.PG:

— If CR0.PG = 0, the PAT memory type is WB (writeback).1

— If CR0.PG = 1, the PAT memory type is the memory type selected from the 
IA32_PAT MSR as specified in Section 11.12.3, “Selecting a Memory Type 
from the PAT”.2

• The EPT memory type is specified in bits 5:3 of the last EPT paging-structure 
entry: 0 = UC; 1 = WC; 4 = WT; 5 = WP; and 6 = WB. Other values are reserved 
and cause EPT misconfigurations (see Section 28.2.3).

• If CR0.CD = 0, the effective memory type depends upon the value of bit 6 of the 
last EPT paging-structure entry:

— If the value is 0, the effective memory type is the combination of the EPT 
memory type and the PAT memory type specified in Table 11-7 in Section 
11.5.2.2, using the EPT memory type in place of the MTRR memory type.

— If the value is 1, the memory type used for the access is the EPT memory 
type. The PAT memory type is ignored.

• If CR0.CD = 1, the effective memory type is UC.

1. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation, 
CR0.PG can be 0 in VMX non-root operation only if the “unrestricted guest” VM-execution control 
and bit 31 of the primary processor-based VM-execution controls are both 1.

2. Table 11-11 in Section 11.12.3, “Selecting a Memory Type from the PAT” illustrates how the PAT 
memory type is selected based on the values of the PAT, PCD, and PWT bits in a page-table entry 
(or page-directory entry with PS = 1). For accesses to a guest paging-structure entry X, the PAT 
memory type is selected from the table by using a value of 0 for the PAT bit with the values of 
PCD and PWT from the paging-structure entry Y that references X (or from CR3 if X is in the root 
paging structure). With PAE paging, the PAT memory type for accesses to the PDPTEs is WB.
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The MTRRs have no effect on the memory type used for an access to a guest-physical 
address.

28.3 CACHING TRANSLATION INFORMATION
Processors supporting Intel® 64 and IA-32 architectures may accelerate the 
address-translation process by caching on the processor data from the structures in 
memory that control that process. Such caching is discussed in Section 4.10, 
“Caching Translation Information” in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3A. The current section describes how this caching 
interacts with the VMX architecture.

The VPID and EPT features of the architecture for VMX operation augment this 
caching architecture. EPT defines the guest-physical address space and defines 
translations to that address space (from the linear-address space) and from that 
address space (to the physical-address space). Both features control the ways in 
which a logical processor may create and use information cached from the paging 
structures.

Section 28.3.1 describes the different kinds of information that may be cached. 
Section 28.3.2 specifies when such information may be cached and how it may be 
used. Section 28.3.3 details how software can invalidate cached information.

28.3.1 Information That May Be Cached
Section 4.10, “Caching Translation Information” in Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 3A identifies two kinds of translation-related 
information that may be cached by a logical processor: translations, which are 
mappings from linear page numbers to physical page frames, and paging-structure 
caches, which map the upper bits of a linear page number to information from the 
paging-structure entries used to translate linear addresses matching those upper 
bits.

The same kinds of information may be cached when VPIDs and EPT are in use. A 
logical processor may cache and use such information based on its function. Informa-
tion with different functionality is identified as follows:
• Linear mappings.1 There are two kinds:

— Linear translations. Each of these is a mapping from a linear page number to 
the physical page frame to which it translates, along with information about 
access privileges and memory typing.

— Linear paging-structure-cache entries. Each of these is a mapping from the 
upper portion of a linear address to the physical address of the paging 
structure used to translate the corresponding region of the linear-address 

1. Earlier versions of this manual used the term “VPID-tagged” to identify linear mappings.
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space, along with information about access privileges. For example, 
bits 47:39 of a linear address would map to the address of the relevant page-
directory-pointer table.

Linear mappings do not contain information from any EPT paging structure.
• Guest-physical mappings.1 There are two kinds:

— Guest-physical translations. Each of these is a mapping from a guest-physical 
page number to the physical page frame to which it translates, along with 
information about access privileges and memory typing.

— Guest-physical paging-structure-cache entries. Each of these is a mapping 
from the upper portion of a guest-physical address to the physical address of 
the EPT paging structure used to translate the corresponding region of the 
guest-physical address space, along with information about access 
privileges.

The information in guest-physical mappings about access privileges and memory 
typing is derived from EPT paging structures.

• Combined mappings.2 There are two kinds:

— Combined translations. Each of these is a mapping from a linear page number 
to the physical page frame to which it translates, along with information 
about access privileges and memory typing.

— Combined paging-structure-cache entries. Each of these is a mapping from 
the upper portion of a linear address to the physical address of the paging 
structure used to translate the corresponding region of the linear-address 
space, along with information about access privileges.

The information in combined mappings about access privileges and memory 
typing is derived from both guest paging structures and EPT paging structures.

28.3.2 Creating and Using Cached Translation Information
The following items detail the creation of the mappings described in the previous 
section:3

• The following items describe the creation of mappings while EPT is not in use 
(including execution outside VMX non-root operation):

1. Earlier versions of this manual used the term “EPTP-tagged” to identify guest-physical mappings.

2. Earlier versions of this manual used the term “dual-tagged” to identify combined mappings.

3. This section associated cached information with the current VPID and PCID. If PCIDs are not sup-
ported or are not being used (e.g., because CR4.PCIDE = 0), all the information is implicitly associ-
ated with PCID 000H; see Section 4.10.1, “Process-Context Identifiers (PCIDs),” in Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3A.
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— Linear mappings may be created. They are derived from the paging 
structures referenced (directly or indirectly) by the current value of CR3 and 
are associated with the current VPID and the current PCID.

— No linear mappings are created with information derived from paging-
structure entries that are not present (bit 0 is 0) or that set reserved bits. For 
example, if a PTE is not present, no linear mapping are created for any linear 
page number whose translation would use that PTE.

— No guest-physical or combined mappings are created while EPT is not in use.
• The following items describe the creation of mappings while EPT is in use:

— Guest-physical mappings may be created. They are derived from the EPT 
paging structures referenced (directly or indirectly) by bits 51:12 of the 
current EPTP. These 40 bits contain the address of the EPT-PML4-table. (the 
notation EP4TA refers to those 40 bits). Newly created guest-physical 
mappings are associated with the current EP4TA.

— Combined mappings may be created. They are derived from the EPT paging 
structures referenced (directly or indirectly) by the current EP4TA. If 
CR0.PG = 1, they are also derived from the paging structures referenced 
(directly or indirectly) by the current value of CR3. They are associated with 
the current VPID, the current PCID, and the current EP4TA.1 No combined 
paging-structure-cache entries are created if CR0.PG = 0.2

— No guest-physical mappings or combined mappings are created with 
information derived from EPT paging-structure entries that are not present 
(bits 2:0 are all 0) or that are misconfigured (see Section 28.2.3.1).

— No combined mappings are created with information derived from guest 
paging-structure entries that are not present or that set reserved bits.

— No linear mappings are created while EPT is in use.

The following items detail the use of the various mappings:
• If EPT is not in use (e.g., when outside VMX non-root operation), a logical 

processor may use cached mappings as follows:

— For accesses using linear addresses, it may use linear mappings associated 
with the current VPID and the current PCID. It may also use global TLB 
entries (linear mappings) associated with the current VPID and any PCID.

— No guest-physical or combined mappings are used while EPT is not in use.
• If EPT is in use, a logical processor may use cached mappings as follows:

1. At any given time, a logical processor may be caching combined mappings for a VPID and a PCID 
that are associated with different EP4TAs. Similarly, it may be caching combined mappings for an 
EP4TA that are associated with different VPIDs and PCIDs.

2. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation, 
CR0.PG can be 0 in VMX non-root operation only if the “unrestricted guest” VM-execution control 
and bit 31 of the primary processor-based VM-execution controls are both 1.
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— For accesses using linear addresses, it may use combined mappings 
associated with the current VPID, the current PCID, and the current EP4TA. It 
may also use global TLB entries (combined mappings) associated with the 
current VPID, the current EP4TA, and any PCID.

— For accesses using guest-physical addresses, it may use guest-physical 
mappings associated with the current EP4TA.

— No linear mappings are used while EPT is in use.

28.3.3 Invalidating Cached Translation Information
Software modifications of paging structures (including EPT paging structures) may 
result in inconsistencies between those structures and the mappings cached by a 
logical processor. Certain operations invalidate information cached by a logical 
processor and can be used to eliminate such inconsistencies.

28.3.3.1  Operations that Invalidate Cached Mappings
The following operations invalidate cached mappings as indicated:
• Operations that architecturally invalidate entries in the TLBs or paging-structure 

caches independent of VMX operation (e.g., the INVLPG and INVPCID instruc-
tions) invalidate linear mappings and combined mappings.1 They are required to 
do so only for the current VPID (but, for combined mappings, all EP4TAs). Linear 
mappings for the current VPID are invalidated even if EPT is in use.2 Combined 
mappings for the current VPID are invalidated even if EPT is not in use.3

• An EPT violation invalidates any guest-physical mappings (associated with the 
current EP4TA) that would be used to translate the guest-physical address that 
caused the EPT violation. If that guest-physical address was the translation of a 
linear address, the EPT violation also invalidates any combined mappings for that 
linear address associated with the current PCID, the current VPID and the current 
EP4TA.

• If the “enable VPID” VM-execution control is 0, VM entries and VM exits 
invalidate linear mappings and combined mappings associated with VPID 0000H 

1. See Section 4.10.4, “Invalidation of TLBs and Paging-Structure Caches,” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A for an enumeration of operations that 
architecturally invalidate entries in the TLBs and paging-structure caches independent of VMX 
operation.

2. While no linear mappings are created while EPT is in use, a logical processor may retain, while 
EPT is in use, linear mappings (for the same VPID as the current one) there were created earlier, 
when EPT was not in use.

3. While no combined mappings are created while EPT is not in use, a logical processor may retain, 
while EPT is in not use, combined mappings (for the same VPID as the current one) there were 
created earlier, when EPT was in use.
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(for all PCIDs). Combined mappings for VPID 0000H are invalidated for all 
EP4TAs.

• Execution of the INVVPID instruction invalidates linear mappings and combined 
mappings. Invalidation is based on instruction operands, called the INVVPID type 
and the INVVPID descriptor. Four INVVPID types are currently defined:

— Individual-address. If the INVVPID type is 0, the logical processor 
invalidates linear mappings and combined mappings associated with the 
VPID specified in the INVVPID descriptor and that would be used to translate 
the linear address specified in of the INVVPID descriptor. Linear mappings 
and combined mappings for that VPID and linear address are invalidated for 
all PCIDs and, for combined mappings, all EP4TAs. (The instruction may also 
invalidate mappings associated with other VPIDs and for other linear 
addresses.)

— Single-context. If the INVVPID type is 1, the logical processor invalidates all 
linear mappings and combined mappings associated with the VPID specified 
in the INVVPID descriptor. Linear mappings and combined mappings for that 
VPID are invalidated for all PCIDs and, for combined mappings, all EP4TAs. 
(The instruction may also invalidate mappings associated with other VPIDs.)

— All-context. If the INVVPID type is 2, the logical processor invalidates linear 
mappings and combined mappings associated with all VPIDs except VPID 
0000H and with all PCIDs. (The instruction may also invalidate linear 
mappings with VPID 0000H.) Combined mappings are invalidated for all 
EP4TAs.

— Single-context-retaining-globals. If the INVVPID type is 3, the logical 
processor invalidates linear mappings and combined mappings associated 
with the VPID specified in the INVVPID descriptor. Linear mappings and 
combined mappings for that VPID are invalidated for all PCIDs and, for 
combined mappings, all EP4TAs. The logical processor is not required to 
invalidate information that was used for global translations (although it may 
do so). See Section 4.10, “Caching Translation Information” for details 
regarding global translations. (The instruction may also invalidate mappings 
associated with other VPIDs.)

See Chapter 29 of the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3C for details of the INVVPID instruction. See Section 28.3.3.3 
for guidelines regarding use of this instruction.

• Execution of the INVEPT instruction invalidates guest-physical mappings and 
combined mappings. Invalidation is based on instruction operands, called the 
INVEPT type and the INVEPT descriptor. Two INVEPT types are currently defined:

— Single-context. If the INVEPT type is 1, the logical processor invalidates all 
guest-physical mappings and combined mappings associated with the EP4TA 
specified in the INVEPT descriptor. Combined mappings for that EP4TA are 
invalidated for all VPIDs and all PCIDs. (The instruction may invalidate 
mappings associated with other EP4TAs.)
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— All-context. If the INVEPT type is 2, the logical processor invalidates guest-
physical mappings and combined mappings associated with all EP4TAs (and, 
for combined mappings, for all VPIDs and PCIDs).

See Chapter 29 of the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3C for details of the INVEPT instruction. See Section 28.3.3.4 for 
guidelines regarding use of this instruction.

• A power-up or a reset invalidates all linear mappings, guest-physical mappings, 
and combined mappings.

28.3.3.2  Operations that Need Not Invalidate Cached Mappings
The following items detail cases of operations that are not required to invalidate 
certain cached mappings:
• Operations that architecturally invalidate entries in the TLBs or paging-structure 

caches independent of VMX operation are not required to invalidate any guest-
physical mappings.

• The INVVPID instruction is not required to invalidate any guest-physical 
mappings.

• The INVEPT instruction is not required to invalidate any linear mappings.
• VMX transitions are not required to invalidate any guest-physical mappings. If 

the “enable VPID” VM-execution control is 1, VMX transitions are not required to 
invalidate any linear mappings or combined mappings. 

• The VMXOFF and VMXON instructions are not required to invalidate any linear 
mappings, guest-physical mappings, or combined mappings.

A logical processor may invalidate any cached mappings at any time. For this reason, 
the operations identified above may invalidate the indicated mappings despite the 
fact that doing so is not required.

28.3.3.3  Guidelines for Use of the INVVPID Instruction
The need for VMM software to use the INVVPID instruction depends on how that soft-
ware is virtualizing memory (e.g., see Section 31.3, “Memory Virtualization”). 

If EPT is not in use, it is likely that the VMM is virtualizing the guest paging structures. 
Such a VMM may configure the VMCS so that all or some of the operations that inval-
idate entries the TLBs and the paging-structure caches (e.g., the INVLPG instruction) 
cause VM exits. If VMM software is emulating these operations, it may be necessary 
to use the INVVPID instruction to ensure that the logical processor’s TLBs and the 
paging-structure caches are appropriately invalidated.

Requirements of when software should use the INVVPID instruction depend on the 
specific algorithm being used for page-table virtualization. The following items 
provide guidelines for software developers:
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• Emulation of the INVLPG instruction may require execution of the INVVPID 
instruction as follows:

— The INVVPID type is individual-address (0).

— The VPID in the INVVPID descriptor is the one assigned to the virtual 
processor whose execution is being emulated.

— The linear address in the INVVPID descriptor is that of the operand of the 
INVLPG instruction being emulated.

• Some instructions invalidate all entries in the TLBs and paging-structure 
caches—except for global translations. An example is the MOV to CR3 instruction. 
(See Section 4.10, “Caching Translation Information” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A for details regarding 
global translations.) Emulation of such an instruction may require execution of 
the INVVPID instruction as follows:

— The INVVPID type is single-context-retaining-globals (3).

— The VPID in the INVVPID descriptor is the one assigned to the virtual 
processor whose execution is being emulated.

• Some instructions invalidate all entries in the TLBs and paging-structure 
caches—including for global translations. An example is the MOV to CR4 
instruction if the value of value of bit 4 (page global enable—PGE) is changing. 
Emulation of such an instruction may require execution of the INVVPID 
instruction as follows:

— The INVVPID type is single-context (1).

— The VPID in the INVVPID descriptor is the one assigned to the virtual 
processor whose execution is being emulated.

If EPT is not in use, the logical processor associates all mappings it creates with the 
current VPID, and it will use such mappings to translate linear addresses. For that 
reason, a VMM should not use the same VPID for different non-EPT guests that use 
different page tables. Doing so may result in one guest using translations that pertain 
to the other.

If EPT is in use, the instructions enumerated above might not be configured to cause 
VM exits and the VMM might not be emulating them. In that case, executions of the 
instructions by guest software properly invalidate the required entries in the TLBs 
and paging-structure caches (see Section 28.3.3.1); execution of the INVVPID 
instruction is not required.

If EPT is in use, the logical processor associates all mappings it creates with the value 
of bits 51:12 of current EPTP. If a VMM uses different EPTP values for different guests, 
it may use the same VPID for those guests. Doing so cannot result in one guest using 
translations that pertain to the other.

The following guidelines apply more generally and are appropriate even if EPT is in 
use:
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• As detailed in Section 25.2.1.1, an access to the APIC-access page might not 
cause an APIC-access VM exit if software does not properly invalidate information 
that may be cached from the paging structures. If, at one time, the current VPID 
on a logical processor was a non-zero value X, it is recommended that software 
use the INVVPID instruction with the “single-context” INVVPID type and with 
VPID X in the INVVPID descriptor before a VM entry on the same logical 
processor that establishes VPID X and either (a) the “virtualize APIC accesses” 
VM-execution control was changed from 0 to 1; or (b) the value of the APIC-
access address was changed.

• Software can use the INVVPID instruction with the “all-context” INVVPID type 
immediately after execution of the VMXON instruction or immediately prior to 
execution of the VMXOFF instruction. Either prevents potentially undesired 
retention of information cached from paging structures between separate uses of 
VMX operation.

28.3.3.4  Guidelines for Use of the INVEPT Instruction
The following items provide guidelines for use of the INVEPT instruction to invalidate 
information cached from the EPT paging structures.
• Software should use the INVEPT instruction with the “single-context” INVEPT 

type after making any of the following changes to an EPT paging-structure entry 
(the INVEPT descriptor should contain an EPTP value that references — directly 
or indirectly — the modified EPT paging structure):

— Changing any of the privilege bits 2:0 from 1 to 0.

— Changing the physical address in bits 51:12.

— For an EPT PDPTE or an EPT PDE, changing bit 7 (which determines whether 
the entry maps a page).

— For the last EPT paging-structure entry used to translate a guest-physical 
address (either an EPT PDE with bit 7 set to 1 or an EPT PTE), changing either 
bits 5:3 or bit 6. (These bits determine the effective memory type of 
accesses using that EPT paging-structure entry; see Section 28.2.4.)

• Software may use the INVEPT instruction after modifying a present EPT paging-
structure entry to change any of the privilege bits 2:0 from 0 to 1. Failure to do 
so may cause an EPT violation that would not otherwise occur. Because an EPT 
violation invalidates any mappings that would be used by the access that caused 
the EPT violation (see Section 28.3.3.1), an EPT violation will not recur if the 
original access is performed again, even if the INVEPT instruction is not executed.

• Because a logical processor does not cache any information derived from EPT 
paging-structure entries that are not present or misconfigured (see Section 
28.2.3.1), it is not necessary to execute INVEPT following modification of an EPT 
paging-structure entry that had been not present or misconfigured.

• As detailed in Section 25.2.1.1 and Section 25.2.2.1, an access to the APIC-
access page might not cause an APIC-access VM exit if software does not 
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properly invalidate information that may be cached from the EPT paging 
structures. If EPT was in use on a logical processor at one time with EPTP X, it is 
recommended that software use the INVEPT instruction with the “single-context” 
INVEPT type and with EPTP X in the INVEPT descriptor before a VM entry on the 
same logical processor that enables EPT with EPTP X and either (a) the “virtualize 
APIC accesses” VM-execution control was changed from 0 to 1; or (b) the value 
of the APIC-access address was changed.

• Software can use the INVEPT instruction with the “all-context” INVEPT type 
immediately after execution of the VMXON instruction or immediately prior to 
execution of the VMXOFF instruction. Either prevents potentially undesired 
retention of information cached from EPT paging structures between separate 
uses of VMX operation.

In a system containing more than one logical processor, software must account for 
the fact that information from an EPT paging-structure entry may be cached on 
logical processors other than the one that modifies that entry. The process of propa-
gating the changes to a paging-structure entry is commonly referred to as “TLB 
shootdown.” A discussion of TLB shootdown appears in Section 4.10.5, “Propagation 
of Paging-Structure Changes to Multiple Processors,” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A.
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CHAPTER 29
VMX INSTRUCTION REFERENCE

NOTE
This chapter was previously located in the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2B as chapter 5. 

29.1 OVERVIEW
This chapter describes the virtual-machine extensions (VMX) for the Intel 64 and 
IA-32 architectures. VMX is intended to support virtualization of processor hardware 
and a system software layer acting as a host to multiple guest software environ-
ments. The virtual-machine extensions (VMX) includes five instructions that manage 
the virtual-machine control structure (VMCS), four instructions that manage VMX 
operation, two TLB-management instructions, and two instructions for use by guest 
software. Additional details of VMX are described in Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3C. 

The behavior of the VMCS-maintenance instructions is summarized below:
• VMPTRLD — This instruction takes a single 64-bit source operand that is in 

memory. It makes the referenced VMCS active and current, loading the current-
VMCS pointer with this operand and establishes the current VMCS based on the 
contents of VMCS-data area in the referenced VMCS region. Because this makes 
the referenced VMCS active, a logical processor may start maintaining on the 
processor some of the VMCS data for the VMCS.

• VMPTRST — This instruction takes a single 64-bit destination operand that is in 
memory. The current-VMCS pointer is stored into the destination operand.

• VMCLEAR — This instruction takes a single 64-bit operand that is in memory. 
The instruction sets the launch state of the VMCS referenced by the operand to 
“clear”, renders that VMCS inactive, and ensures that data for the VMCS have 
been written to the VMCS-data area in the referenced VMCS region. If the 
operand is the same as the current-VMCS pointer, that pointer is made invalid.

• VMREAD — This instruction reads a component from the VMCS (the encoding of 
that field is given in a register operand) and stores it into a destination operand 
that may be a register or in memory.

• VMWRITE — This instruction writes a component to the VMCS (the encoding of 
that field is given in a register operand) from a source operand that may be a 
register or in memory.

The behavior of the VMX management instructions is summarized below:
• VMLAUNCH — This instruction launches a virtual machine managed by the 

VMCS. A VM entry occurs, transferring control to the VM.
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• VMRESUME — This instruction resumes a virtual machine managed by the 
VMCS. A VM entry occurs, transferring control to the VM.

• VMXOFF — This instruction causes the processor to leave VMX operation.
• VMXON — This instruction takes a single 64-bit source operand that is in 

memory. It causes a logical processor to enter VMX root operation and to use the 
memory referenced by the operand to support VMX operation.

The behavior of the VMX-specific TLB-management instructions is summarized 
below:
• INVEPT — This instruction invalidates entries in the TLBs and paging-structure 

caches that were derived from extended page tables (EPT).
• INVVPID — This instruction invalidates entries in the TLBs and paging-structure 

caches based on a Virtual-Processor Identifier (VPID).

None of the instructions above can be executed in compatibility mode; they generate 
invalid-opcode exceptions if executed in compatibility mode.

The behavior of the guest-available instructions is summarized below:
• VMCALL — This instruction allows software in VMX non-root operation to call the 

VMM for service. A VM exit occurs, transferring control to the VMM.
• VMFUNC — This instruction allows software in VMX non-root operation to invoke 

a VM function (processor functionality enabled and configured by software in 
VMX root operation) without a VM exit.

29.2 CONVENTIONS
The operation sections for the VMX instructions in Section 29.3 use the pseudo-func-
tion VMexit, which indicates that the logical processor performs a VM exit.

The operation sections also use the pseudo-functions VMsucceed, VMfail, 
VMfailInvalid, and VMfailValid. These pseudo-functions signal instruction success or 
failure by setting or clearing bits in RFLAGS and, in some cases, by writing the 
VM-instruction error field. The following pseudocode fragments detail these func-
tions:

VMsucceed:
CF ← 0;
PF ← 0;
AF ← 0;
ZF ← 0;
SF ← 0;
OF ← 0;

VMfail(ErrorNumber):
IF VMCS pointer is valid
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THEN VMfailValid(ErrorNumber);
ELSE VMfailInvalid;

FI;

VMfailInvalid:
CF ← 1;
PF ← 0;
AF ← 0;
ZF ← 0;
SF ← 0;
OF ← 0;

VMfailValid(ErrorNumber):// executed only if there is a current VMCS
CF ← 0;
PF ← 0;
AF ← 0;
ZF ← 1;
SF ← 0;
OF ← 0;
Set the VM-instruction error field to ErrorNumber;

The different VM-instruction error numbers are enumerated in Section 29.4, “VM 
Instruction Error Numbers”.

29.3 VMX INSTRUCTIONS
This section provides detailed descriptions of the VMX instructions.
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INVEPT— Invalidate Translations Derived from EPT

Description

Invalidates mappings in the translation lookaside buffers (TLBs) and paging-struc-
ture caches that were derived from extended page tables (EPT). (See Chapter 28, 
“VMX Support for Address Translation” in the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3C.) Invalidation is based on the INVEPT type 
specified in the register operand and the INVEPT descriptor specified in the 
memory operand.

Outside IA-32e mode, the register operand is always 32 bits, regardless of the value 
of CS.D; in 64-bit mode, the register operand has 64 bits (the instruction cannot be 
executed in compatibility mode).

The INVEPT types supported by a logical processors are reported in the 
IA32_VMX_EPT_VPID_CAP MSR (see Appendix A, “VMX Capability Reporting Facility” 
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C). 
There are two INVEPT types currently defined:
• Single-context invalidation. If the INVEPT type is 1, the logical processor 

invalidates all mappings associated with bits 51:12 of the EPT pointer (EPTP) 
specified in the INVEPT descriptor. It may invalidate other mappings as well.

• Global invalidation: If the INVEPT type is 2, the logical processor invalidates 
mappings associated with all EPTPs.

If an unsupported INVEPT type is specified, the instruction fails.

INVEPT invalidates all the specified mappings for the indicated EPTP(s) regardless of 
the VPID and PCID values with which those mappings may be associated.

The INVEPT descriptor comprises 128 bits and contains a 64-bit EPTP value in 
bits 63:0 (see Figure 29-1).

Opcode Instruction Description

66 0F 38 80 INVEPT r64, m128 Invalidates EPT-derived entries in the TLBs and 
paging-structure caches (in 64-bit mode)

66 0F 38 80 INVEPT r32, m128 Invalidates EPT-derived entries in the TLBs and 
paging-structure caches (outside 64-bit mode)

Figure 29-1.  INVEPT Descriptor

127 64 63 0

Reserved (must be zero) EPT pointer (EPTP)
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Operation

IF (not in VMX operation) or (CR0.PE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;

ELSIF in VMX non-root operation
THEN VM exit;

ELSIF CPL > 0
THEN #GP(0);
ELSE

INVEPT_TYPE ← value of register operand;
IF IA32_VMX_EPT_VPID_CAP MSR indicates that processor does not support INVEPT_TYPE

THEN VMfail(Invalid operand to INVEPT/INVVPID);
ELSE // INVEPT_TYPE must be 1 or 2

INVEPT_DESC ← value of memory operand;
EPTP ← INVEPT_DESC[63:0];
CASE INVEPT_TYPE OF

1: // single-context invalidation
IF VM entry with the “enable EPT“ VM execution control set to 1
would fail due to the EPTP value

THEN VMfail(Invalid operand to INVEPT/INVVPID);
ELSE

Invalidate mappings associated with EPTP[51:12];
VMsucceed;

FI;
BREAK;

2: // global invalidation
Invalidate mappings associated with all EPTPs;
VMsucceed;
BREAK;

ESAC;
FI;

FI;

Flags Affected

See the operation section and Section 29.2.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory operand effective address is outside the CS, DS, 
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains an unusable segment.
If the source operand is located in an execute-only code 
segment.
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#PF(fault-code) If a page fault occurs in accessing the memory operand.
#SS(0) If the memory operand effective address is outside the SS 

segment limit.
If the SS register contains an unusable segment.

#UD If not in VMX operation.
If the logical processor does not support EPT 
(IA32_VMX_PROCBASED_CTLS2[33]=0).
If the logical processor supports EPT 
(IA32_VMX_PROCBASED_CTLS2[33]=1) but does not support 
the INVEPT instruction (IA32_VMX_EPT_VPID_CAP[20]=0).

Real-Address Mode Exceptions
#UD A logical processor cannot be in real-address mode while in VMX 

operation and the INVEPT instruction is not recognized outside 
VMX operation.

Virtual-8086 Mode Exceptions
#UD The INVEPT instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The INVEPT instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory operand is in the CS, DS, ES, FS, or GS segments 
and the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing the memory operand.
#SS(0) If the memory operand is in the SS segment and the memory 

address is in a non-canonical form.
#UD If not in VMX operation.

If the logical processor does not support EPT 
(IA32_VMX_PROCBASED_CTLS2[33]=0).
If the logical processor supports EPT 
(IA32_VMX_PROCBASED_CTLS2[33]=1) but does not support 
the INVEPT instruction (IA32_VMX_EPT_VPID_CAP[20]=0).
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INVVPID— Invalidate Translations Based on VPID

Description

Invalidates mappings in the translation lookaside buffers (TLBs) and paging-struc-
ture caches based on virtual-processor identifier (VPID). (See Chapter 28, “VMX 
Support for Address Translation” in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3C.) Invalidation is based on the INVVPID type speci-
fied in the register operand and the INVVPID descriptor specified in the memory 
operand.

Outside IA-32e mode, the register operand is always 32 bits, regardless of the value 
of CS.D; in 64-bit mode, the register operand has 64 bits (the instruction cannot be 
executed in compatibility mode).

The INVVPID types supported by a logical processors are reported in the 
IA32_VMX_EPT_VPID_CAP MSR (see Appendix A, “VMX Capability Reporting Facility” 
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C). 
There are four INVVPID types currently defined:
• Individual-address invalidation: If the INVVPID type is 0, the logical processor 

invalidates mappings for the linear address and VPID specified in the INVVPID 
descriptor. In some cases, it may invalidate mappings for other linear addresses 
(or other VPIDs) as well.

• Single-context invalidation: If the INVVPID type is 1, the logical processor 
invalidates all mappings tagged with the VPID specified in the INVVPID 
descriptor. In some cases, it may invalidate mappings for other VPIDs as well.

• All-contexts invalidation: If the INVVPID type is 2, the logical processor 
invalidates all mappings tagged with all VPIDs except VPID 0000H. In some 
cases, it may invalidate translations with VPID 0000H as well.

• Single-context invalidation, retaining global translations: If the INVVPID type is 
3, the logical processor invalidates all mappings tagged with the VPID specified in 
the INVVPID descriptor except global translations. In some cases, it may 
invalidate global translations (and mappings with other VPIDs) as well. See the 
“Caching Translation Information” section in Chapter 4 of the IA-32 Intel Archi-
tecture Software Developer’s Manual, Volumes 3A for information about global 
translations.

If an unsupported INVVPID type is specified, the instruction fails.

Opcode Instruction Description

66 0F 38 81 INVVPID r64, m128 Invalidates entries in the TLBs and paging-structure 
caches based on VPID (in 64-bit mode)

66 0F 38 81 INVVPID r32, m128 Invalidates entries in the TLBs and paging-structure 
caches based on VPID (outside 64-bit mode)
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INVVPID invalidates all the specified mappings for the indicated VPID(s) regardless 
of the EPTP and PCID values with which those mappings may be associated.

The INVVPID descriptor comprises 128 bits and consists of a VPID and a linear 
address as shown in Figure 29-2.

Operation

IF (not in VMX operation) or (CR0.PE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;

ELSIF in VMX non-root operation
THEN VM exit;

ELSIF CPL > 0
THEN #GP(0);
ELSE

INVVPID_TYPE ← value of register operand;
IF IA32_VMX_EPT_VPID_CAP MSR indicates that processor does not support
INVVPID_TYPE

THEN VMfail(Invalid operand to INVEPT/INVVPID);
ELSE // INVVPID_TYPE must be in the range 0–3

INVVPID_DESC ← value of memory operand;
IF INVVPID_DESC[63:16] ≠ 0

THEN VMfail(Invalid operand to INVEPT/INVVPID);
ELSE

CASE INVVPID_TYPE OF
0: // individual-address invalidation

VPID ← INVVPID_DESC[15:0];
IF VPID = 0

THEN VMfail(Invalid operand to INVEPT/INVVPID);
ELSE

GL_ADDR ← INVVPID_DESC[127:64];
IF (GL_ADDR is not in a canonical form)

THEN
VMfail(Invalid operand to INVEPT/INVVPID);

ELSE

Figure 29-2.  INVVPID Descriptor

127 64 63 01516

Reserved (must be zero)Linear Address VPID
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Invalidate mappings for GL_ADDR tagged 
with VPID;

VMsucceed;
FI;

FI;
BREAK;

1: // single-context invalidation
VPID ← INVVPID_DESC[15:0];
IF VPID = 0

THEN VMfail(Invalid operand to INVEPT/INVVPID);
ELSE

Invalidate all mappings tagged with VPID;
VMsucceed;

FI;
BREAK;

2: // all-context invalidation
Invalidate all mappings tagged with all non-zero VPIDs;
VMsucceed;
BREAK;

3: // single-context invalidation retaining globals
VPID ← INVVPID_DESC[15:0];
IF VPID = 0

THEN VMfail(Invalid operand to INVEPT/INVVPID);
ELSE

Invalidate all mappings tagged with VPID except 
global translations;

VMsucceed;
FI;
BREAK;

ESAC;
FI;

FI;
FI;

Flags Affected

See the operation section and Section 29.2.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory operand effective address is outside the CS, DS, 
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains an unusable segment.
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If the source operand is located in an execute-only code 
segment.

#PF(fault-code) If a page fault occurs in accessing the memory operand.
#SS(0) If the memory operand effective address is outside the SS 

segment limit.
If the SS register contains an unusable segment.

#UD If not in VMX operation.
If the logical processor does not support VPIDs 
(IA32_VMX_PROCBASED_CTLS2[37]=0).
If the logical processor supports VPIDs 
(IA32_VMX_PROCBASED_CTLS2[37]=1) but does not support 
the INVVPID instruction (IA32_VMX_EPT_VPID_CAP[32]=0).

Real-Address Mode Exceptions
#UD A logical processor cannot be in real-address mode while in VMX 

operation and the INVVPID instruction is not recognized outside 
VMX operation.

Virtual-8086 Mode Exceptions
#UD The INVVPID instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The INVVPID instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory operand is in the CS, DS, ES, FS, or GS segments 
and the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing the memory operand.
#SS(0) If the memory destination operand is in the SS segment and the 

memory address is in a non-canonical form.
#UD If not in VMX operation.

If the logical processor does not support VPIDs 
(IA32_VMX_PROCBASED_CTLS2[37]=0).
If the logical processor supports VPIDs 
(IA32_VMX_PROCBASED_CTLS2[37]=1) but does not support 
the INVVPID instruction (IA32_VMX_EPT_VPID_CAP[32]=0).
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VMCALL—Call to VM Monitor

Description

This instruction allows guest software can make a call for service into an underlying 
VM monitor. The details of the programming interface for such calls are VMM-specific; 
this instruction does nothing more than cause a VM exit, registering the appropriate 
exit reason.

Use of this instruction in VMX root operation invokes an SMM monitor (see Section 
33.15.2 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3C). This invocation will activate the dual-monitor treatment of system-
management interrupts (SMIs) and system-management mode (SMM) if it is not 
already active (see Section 33.15.6 in the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3C).

Operation

IF not in VMX operation
THEN #UD;

ELSIF in VMX non-root operation
THEN VM exit;

ELSIF (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;

ELSIF CPL > 0
THEN #GP(0);

ELSIF in SMM or the logical processor does not support the dual-monitor treatment of SMIs and 
SMM or the valid bit in the IA32_SMM_MONITOR_CTL MSR is clear

THEN VMfail (VMCALL executed in VMX root operation);
ELSIF dual-monitor treatment of SMIs and SMM is active

THEN perform an SMM VM exit (see Section 33.15.2 
 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C);

ELSIF current-VMCS pointer is not valid
THEN VMfailInvalid;

ELSIF launch state of current VMCS is not clear
THEN VMfailValid(VMCALL with non-clear VMCS);

ELSIF VM-exit control fields are not valid (see Section 33.15.6.1 of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3C)

THEN VMfailValid (VMCALL with invalid VM-exit control fields);
ELSE

enter SMM;

Opcode Instruction Description

0F 01 C1 VMCALL Call to VM monitor by causing VM exit.
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read revision identifier in MSEG;
IF revision identifier does not match that supported by processor

THEN
leave SMM;
VMfailValid(VMCALL with incorrect MSEG revision identifier);

ELSE
read SMM-monitor features field in MSEG (see Section 33.15.6.2, 
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C);
IF features field is invalid

THEN
leave SMM;
VMfailValid(VMCALL with invalid SMM-monitor features);

ELSE activate dual-monitor treatment of SMIs and SMM (see Section 33.15.6 
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
3C);

FI;
FI;

FI;

Flags Affected
See the operation section and Section 29.2.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0 and the logical processor is 

in VMX root operation. 
#UD If executed outside VMX operation.

Real-Address Mode Exceptions
#UD If executed outside VMX operation.

Virtual-8086 Mode Exceptions
#UD If executed outside VMX non-root operation.

Compatibility Mode Exceptions
#UD If executed outside VMX non-root operation.

64-Bit Mode Exceptions
#UD If executed outside VMX non-root operation.
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VMCLEAR—Clear Virtual-Machine Control Structure

Description

This instruction applies to the VMCS whose VMCS region resides at the physical 
address contained in the instruction operand. The instruction ensures that VMCS 
data for that VMCS (some of these data may be currently maintained on the 
processor) are copied to the VMCS region in memory. It also initializes parts of the 
VMCS region (for example, it sets the launch state of that VMCS to clear). See 
Chapter 24, “Virtual-Machine Control Structures,” in the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3C. 

The operand of this instruction is always 64 bits and is always in memory. If the 
operand is the current-VMCS pointer, then that pointer is made invalid (set to 
FFFFFFFF_FFFFFFFFH).

Note that the VMCLEAR instruction might not explicitly write any VMCS data to 
memory; the data may be already resident in memory before the VMCLEAR is 
executed.

Operation

IF (register operand) or (not in VMX operation) or (CR0.PE = 0) or (RFLAGS.VM = 1) or 
(IA32_EFER.LMA = 1 and CS.L = 0)

THEN #UD;
ELSIF in VMX non-root operation

THEN VM exit;
ELSIF CPL > 0

THEN #GP(0);
ELSE

addr ← contents of 64-bit in-memory operand;
IF addr is not 4KB-aligned OR 
addr sets any bits beyond the physical-address width1

THEN VMfail(VMCLEAR with invalid physical address);
ELSIF addr = VMXON pointer

THEN VMfail(VMCLEAR with VMXON pointer);
ELSE

ensure that data for VMCS referenced by the operand is in memory;
initialize implementation-specific data in VMCS region;

Opcode Instruction Description

66 0F C7 /6 VMCLEAR m64 Copy VMCS data to VMCS region in memory.

1. If IA32_VMX_BASIC[48] is read as 1, VMfail occurs if addr sets any bits in the range 63:32; see 
Appendix A.1.
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launch state of VMCS referenced by the operand ← “clear”
IF operand addr = current-VMCS pointer

THEN current-VMCS pointer ← FFFFFFFF_FFFFFFFFH;
FI;
VMsucceed;

FI;
FI;

Flags Affected
See the operation section and Section 29.2.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory operand effective address is outside the CS, DS, 
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains an unusable segment.
If the operand is located in an execute-only code segment.

#PF(fault-code) If a page fault occurs in accessing the memory operand.
#SS(0) If the memory operand effective address is outside the SS 

segment limit.
If the SS register contains an unusable segment.

#UD If operand is a register.
If not in VMX operation.

Real-Address Mode Exceptions
#UD A logical processor cannot be in real-address mode while in VMX 

operation and the VMCLEAR instruction is not recognized outside 
VMX operation.

Virtual-8086 Mode Exceptions
#UD The VMCLEAR instruction is not recognized in virtual-8086 

mode.

Compatibility Mode Exceptions
#UD The VMCLEAR instruction is not recognized in compatibility 

mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the source operand is in the CS, DS, ES, FS, or GS segments 
and the memory address is in a non-canonical form.
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#PF(fault-code) If a page fault occurs in accessing the memory operand.
#SS(0) If the source operand is in the SS segment and the memory 

address is in a non-canonical form.
#UD If operand is a register.

If not in VMX operation.
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VMFUNC—Invoke VM function

Description

This instruction allows software in VMX non-root operation to invoke a VM function, 
which is processor functionality enabled and configured by software in VMX root oper-
ation. The value of EAX selects the specific VM function being invoked.

The behavior of each VM function (including any additional fault checking) is specified 
in Section 25.7.4, “VM Functions,” in Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3C.

Operation

Perform functionality of the VM function specified in EAX;

Flags Affected
Depends on the VM function specified in EAX. See Section 25.7.4, “VM Functions,” in 
Intel 64 and IA-32 Architecture Software Developer’s Manual, Volume 3C.

Protected Mode Exceptions (not including those defined by specific VM functions)
#UD If executed outside VMX non-root operation.

If “enable VM functions” VM-execution control is 0.
If EAX ≥ 64.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

Opcode Instruction Description

0F 01 D4 VMFUNC Invoke VM function specified in EAX.
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VMLAUNCH/VMRESUME—Launch/Resume Virtual Machine

Description

Effects a VM entry managed by the current VMCS.
• VMLAUNCH fails if the launch state of current VMCS is not “clear”. If the 

instruction is successful, it sets the launch state to “launched.” 
• VMRESUME fails if the launch state of the current VMCS is not “launched.”

If VM entry is attempted, the logical processor performs a series of consistency 
checks as detailed in Chapter 26, “VM Entries,” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3C. Failure to pass checks on the VMX 
controls or on the host-state area passes control to the instruction following the 
VMLAUNCH or VMRESUME instruction. If these pass but checks on the guest-state 
area fail, the logical processor loads state from the host-state area of the VMCS, 
passing control to the instruction referenced by the RIP field in the host-state area.

VM entry is not allowed when events are blocked by MOV SS or POP SS. Neither 
VMLAUNCH nor VMRESUME should be used immediately after either MOV to SS or 
POP to SS.

Operation

IF (not in VMX operation) or (CR0.PE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;

ELSIF in VMX non-root operation
THEN VMexit;

ELSIF CPL > 0
THEN #GP(0);

ELSIF current-VMCS pointer is not valid
THEN VMfailInvalid;

ELSIF events are being blocked by MOV SS
THEN VMfailValid(VM entry with events blocked by MOV SS);

ELSIF (VMLAUNCH and launch state of current VMCS is not “clear”)
THEN VMfailValid(VMLAUNCH with non-clear VMCS);

ELSIF (VMRESUME and launch state of current VMCS is not “launched”)
THEN VMfailValid(VMRESUME with non-launched VMCS);
ELSE

Check settings of VMX controls and host-state area;
IF invalid settings

Opcode Instruction Description

0F 01 C2 VMLAUNCH Launch virtual machine managed by current VMCS.

0F 01 C3 VMRESUME Resume virtual machine managed by current VMCS.
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THEN VMfailValid(VM entry with invalid VMX-control field(s)) or
VMfailValid(VM entry with invalid host-state field(s)) or 
VMfailValid(VM entry with invalid executive-VMCS pointer)) or 
VMfailValid(VM entry with non-launched executive VMCS) or
VMfailValid(VM entry with executive-VMCS pointer not VMXON pointer) or
VMfailValid(VM entry with invalid VM-execution control fields in executive
VMCS)
as appropriate;

ELSE
Attempt to load guest state and PDPTRs as appropriate;
clear address-range monitoring;
IF failure in checking guest state or PDPTRs

THEN VM entry fails (see Section 26.7, in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C);
ELSE

Attempt to load MSRs from VM-entry MSR-load area;
IF failure

THEN VM entry fails (see Section 26.7, in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3C);

ELSE
IF VMLAUNCH

THEN launch state of VMCS ← “launched”;
FI;
IF in SMM and “entry to SMM” VM-entry control is 0

THEN
IF “deactivate dual-monitor treatment” VM-entry
control is 0

THEN SMM-transfer VMCS pointer ←
current-VMCS pointer;

FI;
IF executive-VMCS pointer is VMX pointer

THEN current-VMCS pointer ←
VMCS-link pointer;
ELSE current-VMCS pointer ←
executive-VMCS pointer;

FI;
leave SMM;

FI;
VM entry succeeds;

FI;
FI;

FI;
FI;
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Further details of the operation of the VM-entry appear in Chapter 26 of Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 3C.

Flags Affected

See the operation section and Section 29.2.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.
#UD If executed outside VMX operation.

Real-Address Mode Exceptions
#UD A logical processor cannot be in real-address mode while in VMX 

operation and the VMLAUNCH and VMRESUME instructions are 
not recognized outside VMX operation.

Virtual-8086 Mode Exceptions
#UD The VMLAUNCH and VMRESUME instructions are not recognized 

in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The VMLAUNCH and VMRESUME instructions are not recognized 

in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.
#UD If executed outside VMX operation.
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VMPTRLD—Load Pointer to Virtual-Machine Control Structure

Description

Marks the current-VMCS pointer valid and loads it with the physical address in the 
instruction operand. The instruction fails if its operand is not properly aligned, sets 
unsupported physical-address bits, or is equal to the VMXON pointer. In addition, the 
instruction fails if the 32 bits in memory referenced by the operand do not match the 
VMCS revision identifier supported by this processor.1

The operand of this instruction is always 64 bits and is always in memory.

Operation

IF (register operand) or (not in VMX operation) or (CR0.PE = 0) or (RFLAGS.VM = 1) or 
(IA32_EFER.LMA = 1 and CS.L = 0)

THEN #UD;
ELSIF in VMX non-root operation

THEN VMexit;
ELSIF CPL > 0

THEN #GP(0);
ELSE

addr ← contents of 64-bit in-memory source operand;
IF addr is not 4KB-aligned OR
addr sets any bits beyond the physical-address width2

THEN VMfail(VMPTRLD with invalid physical address);
ELSIF addr = VMXON pointer

THEN VMfail(VMPTRLD with VMXON pointer);
ELSE

rev ← 32 bits located at physical address addr;
IF rev ≠ VMCS revision identifier supported by processor

THEN VMfail(VMPTRLD with incorrect VMCS revision identifier);
ELSE

current-VMCS pointer ← addr;
VMsucceed;

Opcode Instruction Description

0F C7 /6 VMPTRLD m64 Loads the current VMCS pointer from memory.

1. Software should consult the VMX capability MSR VMX_BASIC to discover the VMCS revision iden-
tifier supported by this processor (see Appendix A, “VMX Capability Reporting Facility,” in the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C).

2. If IA32_VMX_BASIC[48] is read as 1, VMfail occurs if addr sets any bits in the range 63:32; see 
Appendix A.1.
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FI;
FI;

FI;

Flags Affected

See the operation section and Section 29.2.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory source operand effective address is outside the 
CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains an unusable segment.
If the source operand is located in an execute-only code 
segment.

#PF(fault-code) If a page fault occurs in accessing the memory source operand.
#SS(0) If the memory source operand effective address is outside the 

SS segment limit.
If the SS register contains an unusable segment.

#UD If operand is a register.
If not in VMX operation.

Real-Address Mode Exceptions
#UD A logical processor cannot be in real-address mode while in VMX 

operation and the VMPTRLD instruction is not recognized 
outside VMX operation.

Virtual-8086 Mode Exceptions
#UD The VMPTRLD instruction is not recognized in virtual-8086 

mode.

Compatibility Mode Exceptions
#UD The VMPTRLD instruction is not recognized in compatibility 

mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the source operand is in the CS, DS, ES, FS, or GS segments 
and the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing the memory source operand.
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#SS(0) If the source operand is in the SS segment and the memory 
address is in a non-canonical form.

#UD If operand is a register.
If not in VMX operation.
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VMPTRST—Store Pointer to Virtual-Machine Control Structure

Description

Stores the current-VMCS pointer into a specified memory address. The operand of 
this instruction is always 64 bits and is always in memory.

Operation

IF (register operand) or (not in VMX operation) or (CR0.PE = 0) or (RFLAGS.VM = 1) or 
(IA32_EFER.LMA = 1 and CS.L = 0)

THEN #UD;
ELSIF in VMX non-root operation

THEN VMexit;
ELSIF CPL > 0

THEN #GP(0);
ELSE 

64-bit in-memory destination operand ← current-VMCS pointer;
VMsucceed;

FI;

Flags Affected
See the operation section and Section 29.2.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory destination operand effective address is outside 
the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains an unusable segment.
If the destination operand is located in a read-only data 
segment or any code segment.

#PF(fault-code) If a page fault occurs in accessing the memory destination 
operand.

#SS(0) If the memory destination operand effective address is outside 
the SS segment limit.
If the SS register contains an unusable segment.

#UD If operand is a register.
If not in VMX operation.

Opcode Instruction Description

0F C7 /7 VMPTRST m64 Stores the current VMCS pointer into memory.
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Real-Address Mode Exceptions
#UD A logical processor cannot be in real-address mode while in VMX 

operation and the VMPTRST instruction is not recognized outside 
VMX operation.

Virtual-8086 Mode Exceptions
#UD The VMPTRST instruction is not recognized in virtual-8086 

mode.

Compatibility Mode Exceptions
#UD The VMPTRST instruction is not recognized in compatibility 

mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the destination operand is in the CS, DS, ES, FS, or GS 
segments and the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing the memory destination 
operand.

#SS(0) If the destination operand is in the SS segment and the memory 
address is in a non-canonical form.

#UD If operand is a register.
If not in VMX operation.
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VMREAD—Read Field from Virtual-Machine Control Structure

Description

Reads a specified field from the VMCS and stores it into a specified destination 
operand (register or memory). 

The specific VMCS field is identified by the VMCS-field encoding contained in the 
register source operand. Outside IA-32e mode, the source operand has 32 bits, 
regardless of the value of CS.D. In 64-bit mode, the source operand has 64 bits; 
however, if bits 63:32 of the source operand are not zero, VMREAD will fail due to an 
attempt to access an unsupported VMCS component (see operation section). 

The effective size of the destination operand, which may be a register or in memory, 
is always 32 bits outside IA-32e mode (the setting of CS.D is ignored with respect to 
operand size) and 64 bits in 64-bit mode. If the VMCS field specified by the source 
operand is shorter than this effective operand size, the high bits of the destination 
operand are cleared to 0. If the VMCS field is longer, then the high bits of the field are 
not read.

Note that any faults resulting from accessing a memory destination operand can 
occur only after determining, in the operation section below, that the VMCS pointer is 
valid and that the specified VMCS field is supported.

Operation

IF (not in VMX operation) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;

ELSIF in VMX non-root operation
THEN VMexit;

ELSIF CPL > 0
THEN #GP(0);

ELSIF current-VMCS pointer is not valid
THEN VMfailInvalid;

ELSIF register source operand does not correspond to any VMCS field
THEN VMfailValid(VMREAD/VMWRITE from/to unsupported VMCS component);
ELSE

DEST ← contents of VMCS field indexed by register source operand;
VMsucceed;

FI;

Opcode Instruction Description

0F 78 VMREAD r/m64, r64 Reads a specified VMCS field (in 64-bit mode).

0F 78 VMREAD r/m32, r32 Reads a specified VMCS field (outside 64-bit mode).
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Flags Affected

See the operation section and Section 29.2.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If a memory destination operand effective address is outside the 
CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains an unusable segment.
If the destination operand is located in a read-only data 
segment or any code segment.

#PF(fault-code) If a page fault occurs in accessing a memory destination 
operand.

#SS(0) If a memory destination operand effective address is outside the 
SS segment limit.
If the SS register contains an unusable segment.

#UD If not in VMX operation.

Real-Address Mode Exceptions
#UD A logical processor cannot be in real-address mode while in VMX 

operation and the VMREAD instruction is not recognized outside 
VMX operation.

Virtual-8086 Mode Exceptions
#UD The VMREAD instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The VMREAD instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory destination operand is in the CS, DS, ES, FS, or 
GS segments and the memory address is in a non-canonical 
form.

#PF(fault-code) If a page fault occurs in accessing a memory destination 
operand.

#SS(0) If the memory destination operand is in the SS segment and the 
memory address is in a non-canonical form.

#UD If not in VMX operation.
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VMRESUME—Resume Virtual Machine

See VMLAUNCH/VMRESUME—Launch/Resume Virtual Machine.
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VMWRITE—Write Field to Virtual-Machine Control Structure

Description

Writes to a specified field in the VMCS specified by a secondary source operand 
(register only) using the contents of a primary source operand (register or memory). 

The VMCS field is identified by the VMCS-field encoding contained in the register 
secondary source operand. Outside IA-32e mode, the secondary source operand is 
always 32 bits, regardless of the value of CS.D. In 64-bit mode, the secondary source 
operand has 64 bits; however, if bits 63:32 of the secondary source operand are not 
zero, VMWRITE will fail due to an attempt to access an unsupported VMCS compo-
nent (see operation section). 

The effective size of the primary source operand, which may be a register or in 
memory, is always 32 bits outside IA-32e mode (the setting of CS.D is ignored with 
respect to operand size) and 64 bits in 64-bit mode. If the VMCS field specified by the 
secondary source operand is shorter than this effective operand size, the high bits of 
the primary source operand are ignored. If the VMCS field is longer, then the high bits 
of the field are cleared to 0.

Note that any faults resulting from accessing a memory source operand occur after 
determining, in the operation section below, that the VMCS pointer is valid but before 
determining if the destination VMCS field is supported.

Operation

IF (not in VMX operation) or (CR0.PE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;

ELSIF in VMX non-root operation
THEN VMexit;

ELSIF CPL > 0
THEN #GP(0);

ELSIF current-VMCS pointer is not valid
THEN VMfailInvalid;

ELSIF register destination operand does not correspond to any VMCS field
THEN VMfailValid(VMREAD/VMWRITE from/to unsupported VMCS component);

ELSIF VMCS field indexed by register destination operand is read-only)
THEN VMfailValid(VMWRITE to read-only VMCS component);
ELSE

VMCS field indexed by register destination operand ← SRC;
VMsucceed;

Opcode Instruction Description

0F 79 VMWRITE r64, r/m64 Writes a specified VMCS field (in 64-bit mode)

0F 79 VMWRITE r32, r/m32 Writes a specified VMCS field (outside 64-bit mode)
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FI;

Flags Affected
See the operation section and Section 29.2.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If a memory source operand effective address is outside the CS, 
DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains an unusable segment.
If the source operand is located in an execute-only code 
segment.

#PF(fault-code) If a page fault occurs in accessing a memory source operand.
#SS(0) If a memory source operand effective address is outside the SS 

segment limit.
If the SS register contains an unusable segment.

#UD If not in VMX operation.

Real-Address Mode Exceptions
#UD A logical processor cannot be in real-address mode while in VMX 

operation and the VMWRITE instruction is not recognized 
outside VMX operation.

Virtual-8086 Mode Exceptions
#UD The VMWRITE instruction is not recognized in virtual-8086 

mode.

Compatibility Mode Exceptions
#UD The VMWRITE instruction is not recognized in compatibility 

mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory source operand is in the CS, DS, ES, FS, or GS 
segments and the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing a memory source operand.
#SS(0) If the memory source operand is in the SS segment and the 

memory address is in a non-canonical form.
#UD If not in VMX operation.
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VMXOFF—Leave VMX Operation

Description

Takes the logical processor out of VMX operation, unblocks INIT signals, conditionally 
re-enables A20M, and clears any address-range monitoring.1 

Operation

IF (not in VMX operation) or (CR0.PE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;

ELSIF in VMX non-root operation
THEN VMexit;

ELSIF CPL > 0
THEN #GP(0);

ELSIF dual-monitor treatment of SMIs and SMM is active
THEN VMfail(VMXOFF under dual-monitor treatment of SMIs and SMM);
ELSE

leave VMX operation;
unblock INIT;
IF IA32_SMM_MONITOR_CTL[2] = 02

THEN unblock SMIs;
IF outside SMX operation3

THEN unblock and enable A20M;
FI;
clear address-range monitoring;
VMsucceed;

FI;

Opcode Instruction Description

0F 01 C4 VMXOFF Leaves VMX operation.

1. See the information on MONITOR/MWAIT in Chapter 8, “Multiple-Processor Management,” of the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

2. Setting IA32_SMM_MONITOR_CTL[bit 2] to 1 prevents VMXOFF from unblocking SMIs regardless 
of the value of the register’s value bit (bit 0). Not all processors allow this bit to be set to 1. Soft-
ware should consult the VMX capability MSR IA32_VMX_MISC (see Appendix A.6) to determine 
whether this is allowed.

3. A logical processor is outside SMX operation if GETSEC[SENTER] has not been executed or if 
GETSEC[SEXIT] was executed after the last execution of GETSEC[SENTER]. See Chapter 6, “Safer 
Mode Extensions Reference.”
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Flags Affected

See the operation section and Section 29.2.

Protected Mode Exceptions
#GP(0) If executed in VMX root operation with CPL > 0.
#UD If executed outside VMX operation.

Real-Address Mode Exceptions
#UD A logical processor cannot be in real-address mode while in VMX 

operation and the VMXOFF instruction is not recognized outside 
VMX operation.

Virtual-8086 Mode Exceptions
#UD The VMXOFF instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The VMXOFF instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If executed in VMX root operation with CPL > 0.
#UD If executed outside VMX operation.
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VMXON—Enter VMX Operation

Description

Puts the logical processor in VMX operation with no current VMCS, blocks INIT 
signals, disables A20M, and clears any address-range monitoring established by the 
MONITOR instruction.1 

The operand of this instruction is a 4KB-aligned physical address (the VMXON 
pointer) that references the VMXON region, which the logical processor may use to 
support VMX operation. This operand is always 64 bits and is always in memory. 

Operation

IF (register operand) or (CR0.PE = 0) or (CR4.VMXE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 
and CS.L = 0)

THEN #UD;
ELSIF not in VMX operation

THEN
IF (CPL > 0) or (in A20M mode) or
(the values of CR0 and CR4 are not supported in VMX operation2) or
(bit 0 (lock bit) of IA32_FEATURE_CONTROL MSR is clear) or
(in SMX operation3 and bit 1 of IA32_FEATURE_CONTROL MSR is clear) or
(outside SMX operation and bit 2 of IA32_FEATURE_CONTROL MSR is clear)

THEN #GP(0);
ELSE

addr ← contents of 64-bit in-memory source operand;
IF addr is not 4KB-aligned or 
addr sets any bits beyond the physical-address width4

THEN VMfailInvalid;

Opcode Instruction Description

F3 0F C7 /6 VMXON m64 Enter VMX root operation.

1. See the information on MONITOR/MWAIT in Chapter 8, “Multiple-Processor Management,” of the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

2. See Section 19.8 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
3B.

3. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last 
execution of GETSEC[SENTER]. A logical processor is outside SMX operation if GETSEC[SENTER] 
has not been executed or if GETSEC[SEXIT] was executed after the last execution of GET-
SEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference.”

4. If IA32_VMX_BASIC[48] is read as 1, VMfailInvalid occurs if addr sets any bits in the range 63:32; 
see Appendix A.1.
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ELSE
rev ← 32 bits located at physical address addr;
IF rev ≠ VMCS revision identifier supported by processor

THEN VMfailInvalid;
ELSE

current-VMCS pointer ← FFFFFFFF_FFFFFFFFH;
enter VMX operation;
block INIT signals;
block and disable A20M;
clear address-range monitoring;
VMsucceed;

FI;
FI;

FI;
ELSIF in VMX non-root operation

THEN VMexit;
ELSIF CPL > 0

THEN #GP(0);
ELSE VMfail(“VMXON executed in VMX root operation”);

FI;

Flags Affected
See the operation section and Section 29.2.

Protected Mode Exceptions
#GP(0) If executed outside VMX operation with CPL>0 or with invalid 

CR0 or CR4 fixed bits.
If executed in A20M mode.
If the memory source operand effective address is outside the 
CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains an unusable segment.
If the source operand is located in an execute-only code 
segment.

#PF(fault-code) If a page fault occurs in accessing the memory source operand.
#SS(0) If the memory source operand effective address is outside the 

SS segment limit.
If the SS register contains an unusable segment.

#UD If operand is a register.
If executed with CR4.VMXE = 0.
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Real-Address Mode Exceptions
#UD The VMXON instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The VMXON instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The VMXON instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If executed outside VMX operation with CPL > 0 or with invalid 

CR0 or CR4 fixed bits.
If executed in A20M mode.
If the source operand is in the CS, DS, ES, FS, or GS segments 
and the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing the memory source operand.
#SS(0) If the source operand is in the SS segment and the memory 

address is in a non-canonical form.
#UD If operand is a register.

If executed with CR4.VMXE = 0.
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29.4 VM INSTRUCTION ERROR NUMBERS
For certain error conditions, the VM-instruction error field is loaded with an error 
number to indicate the source of the error. Table 29-1 lists VM-instruction error 
numbers.

Table 29-1.  VM-Instruction Error Numbers
Error
Number Description

1 VMCALL executed in VMX root operation

2 VMCLEAR with invalid physical address

3 VMCLEAR with VMXON pointer

4 VMLAUNCH with non-clear VMCS

5 VMRESUME with non-launched VMCS

6 VMRESUME after VMXOFF (VMXOFF and VMXON between VMLAUNCH and VMRESUME)1

7 VM entry with invalid control field(s)2,3

8 VM entry with invalid host-state field(s)2

9 VMPTRLD with invalid physical address

10 VMPTRLD with VMXON pointer

11 VMPTRLD with incorrect VMCS revision identifier

12 VMREAD/VMWRITE from/to unsupported VMCS component

13 VMWRITE to read-only VMCS component

15 VMXON executed in VMX root operation

16 VM entry with invalid executive-VMCS pointer2

17 VM entry with non-launched executive VMCS2

18 VM entry with executive-VMCS pointer not VMXON pointer (when attempting to 
deactivate the dual-monitor treatment of SMIs and SMM)2

19 VMCALL with non-clear VMCS (when attempting to activate the dual-monitor treatment 
of SMIs and SMM)

20 VMCALL with invalid VM-exit control fields

22 VMCALL with incorrect MSEG revision identifier (when attempting to activate the dual-
monitor treatment of SMIs and SMM)

23 VMXOFF under dual-monitor treatment of SMIs and SMM

24 VMCALL with invalid SMM-monitor features (when attempting to activate the dual-
monitor treatment of SMIs and SMM)
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25 VM entry with invalid VM-execution control fields in executive VMCS (when attempting to 
return from SMM)2,3

26 VM entry with events blocked by MOV SS.

28 Invalid operand to INVEPT/INVVPID.

NOTES:
1. Earlier versions of this manual described this error as “VMRESUME with a corrupted VMCS”.
2. VM-entry checks on control fields and host-state fields may be performed in any order. Thus, an 

indication by error number of one cause does not imply that there are not also other errors. Differ-
ent processors may give different error numbers for the same VMCS.

3. Error number 7 is not used for VM entries that return from SMM that fail due to invalid 
VM-execution control fields in the executive VMCS. Error number 25 is used for these cases.

Table 29-1.  VM-Instruction Error Numbers (Contd.)
Error
Number Description
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CHAPTER 30
VIRTUAL-MACHINE MONITOR PROGRAMMING

CONSIDERATIONS

30.1 VMX SYSTEM PROGRAMMING OVERVIEW
The Virtual Machine Monitor (VMM) is a software class used to manage virtual 
machines (VM). This chapter describes programming considerations for VMMs.

Each VM behaves like a complete physical machine and can run operating system 
(OS) and applications. The VMM software layer runs at the most privileged level and 
has complete ownership of the underlying system hardware. The VMM controls 
creation of a VM, transfers control to a VM, and manages situations that can cause 
transitions between the guest VMs and host VMM. The VMM allows the VMs to share 
the underlying hardware and yet provides isolation between the VMs. The guest soft-
ware executing in a VM is unaware of any transitions that might have occurred 
between the VM and its host. 

30.2 SUPPORTING PROCESSOR OPERATING MODES IN 
GUEST ENVIRONMENTS

Typically, VMMs transfer control to a VM using VMX transitions referred to as VM 
entries. The boundary conditions that define what a VM is allowed to execute in isola-
tion are specified in a virtual-machine control structure (VMCS). 

As noted in Section 23.8, processors may fix certain bits in CR0 and CR4 to specific 
values and not support other values. The first processors to support VMX operation 
require that CR0.PE and CR0.PG be 1 in VMX operation. Thus, a VM entry is allowed 
only to guests with paging enabled that are in protected mode or in virtual-8086 
mode. Guest execution in other processor operating modes need to be specially 
handled by the VMM.

One example of such a condition is guest execution in real-mode. A VMM could 
support guest real-mode execution using at least two approaches:
• By using a fast instruction set emulator in the VMM.
• By using the similarity between real-mode and virtual-8086 mode to support 

real-mode guest execution in a virtual-8086 container. The virtual-8086 
container may be implemented as a virtual-8086 container task within a monitor 
that emulates real-mode guest state and instructions, or by running the guest VM 
as the virtual-8086 container (by entering the guest with RFLAGS.VM1 set). 
Attempts by real-mode code to access privileged state outside the virtual-8086 
container would trap to the VMM and would also need to be emulated.
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Another example of such a condition is guest execution in protected mode with 
paging disabled. A VMM could support such guest execution by using “identity” page 
tables to emulate unpaged protected mode.

30.2.1 Using Unrestricted Guest Mode
Processors which support the “unrestricted guest” VM-execution control allow VM 
software to run in real-address mode and unpaged protected mode. Since these 
modes do not use paging, VMM software must virtualize guest memory using EPT.

Special notes for 64-bit VMM software using the 1-setting of the “unrestricted guest” 
VM-execution control:
• It is recommended that 64-bit VMM software use the 1-settings of the "load 

IA32_EFER" VM entry control and the "save IA32_EFER" VM-exit control. If VM 
entry is establishing CR0.PG=0 and if the "IA-32e mode guest" and "load 
IA32_EFER" VM entry controls are both 0, VM entry leaves IA32_EFER.LME 
unmodified (i.e., the host value will persist in the guest).

• It is not necessary for VMM software to track guest transitions into and out of IA-
32e mode for the purpose of maintaining the correct setting of the "IA-32e mode 
guest" VM entry control.  This is because VM exits on processors supporting the 
1-setting of the "unrestricted guest" VM-execution control save the (guest) value 
of IA32_EFER.LMA into the "IA-32e mode guest" VM entry control.

30.3 MANAGING VMCS REGIONS AND POINTERS
A VMM must observe necessary procedures when working with a VMCS, the associ-
ated VMCS pointer, and the VMCS region. It must also not assume the state of persis-
tency for VMCS regions in memory or cache. 

Before entering VMX operation, the host VMM allocates a VMXON region. A VMM can 
host several virtual machines and have many VMCSs active under its management. 
A unique VMCS region is required for each virtual machine; a VMXON region is 
required for the VMM itself. 

A VMM determines the VMCS region size by reading IA32_VMX_BASIC MSR; it 
creates VMCS regions of this size using a 4-KByte-aligned area of physical memory. 
Each VMCS region needs to be initialized with a VMCS revision identifier (at byte 
offset 0) identical to the revision reported by the processor in the VMX capability 
MSR.

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most 
processors that support VMX operation also support Intel 64 architecture. For processors that do 
not support Intel 64 architecture, this notation refers to the 32-bit forms of those registers 
(EAX, EIP, ESP, EFLAGS, etc.).
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NOTE
Software must not read or write directly to the VMCS data region as 
the format is not architecturally defined. Consequently, Intel 
recommends that the VMM remove any linear-address mappings to 
VMCS regions before loading. 

System software does not need to do special preparation to the VMXON region before 
entering into VMX operation. The address of the VMXON region for the VMM is 
provided as an operand to VMXON instruction. Once in VMX root operation, the VMM 
needs to prepare data fields in the VMCS that control the execution of a VM upon a 
VM entry. The VMM can make a VMCS the current VMCS by using the VMPTRLD 
instruction. VMCS data fields must be read or written only through VMREAD and 
VMWRITE commands respectively. 

Every component of the VMCS is identified by a 32-bit encoding that is provided as 
an operand to VMREAD and VMWRITE. Appendix B provides the encodings. A VMM 
must properly initialize all fields in a VMCS before using the current VMCS for VM 
entry. 

A VMCS is referred to as a controlling VMCS if it is the current VMCS on a logical 
processor in VMX non-root operation. A current VMCS for controlling a logical 
processor in VMX non-root operation may be referred to as a working VMCS if the 
logical processor is not in VMX non-root operation. The relationship of active, current 
(i.e. working) and controlling VMCS during VMX operation is shown in Figure 30-1.

NOTE
As noted in Section 24.1, the processor may optimize VMX operation 
by maintaining the state of an active VMCS (one for which VMPTRLD 
has been executed) on the processor. Before relinquishing control to 
other system software that may, without informing the VMM, remove 
power from the processor (e.g., for transitions to S3 or S4) or leave 
VMX operation, a VMM must VMCLEAR all active VMCSs. This ensures 
that all VMCS data cached by the processor are flushed to memory 
and that no other software can corrupt the current VMM’s VMCS data. 
It is also recommended that the VMM execute VMXOFF after such 
executions of VMCLEAR.

The VMX capability MSR IA32_VMX_BASIC reports the memory type used by the 
processor for accessing a VMCS or any data structures referenced through pointers in 
the VMCS. Software must maintain the VMCS structures in cache-coherent memory. 
Software must always map the regions hosting the I/O bitmaps, MSR bitmaps, VM-
exit MSR-store area, VM-exit MSR-load area, and VM-entry MSR-load area to the 
write-back (WB) memory type. Mapping these regions to uncacheable (UC) memory 
type is supported, but strongly discouraged due to negative impact on performance.
Vol. 3C 30-3



VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
30.4 USING VMX INSTRUCTIONS
VMX instructions are allowed only in VMX root operation. An attempt to execute a 
VMX instruction in VMX non-root operation causes a VM exit.

Figure 30-1.  VMX Transitions and States of VMCS in a Logical Processor

(a) VMX Operation and VMX Transitions

(b) State of VMCS and VMX Operation
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Processors perform various checks while executing any VMX instruction. They follow 
well-defined error handling on failures. VMX instruction execution failures detected 
before loading of a guest state are handled by the processor as follows: 
• If the working-VMCS pointer is not valid, the instruction fails by setting 

RFLAGS.CF to 1.
• If the working-VMCS pointer is valid, RFLAGS.ZF is set to 1 and the proper error-

code is saved in the VM-instruction error field of the working-VMCS.

Software is required to check RFLAGS.CF and RFLAGS.ZF to determine the success or 
failure of VMX instruction executions.

The following items provide details regarding use of the VM-entry instructions 
(VMLAUNCH and VMRESUME):
• If the working-VMCS pointer is valid, the state of the working VMCS may cause 

the VM-entry instruction to fail. RFLAGS.ZF is set to 1 and one of the following 
values is saved in the VM-instruction error field:

— 4: VMLAUNCH with non-clear VMCS.
If this error occurs, software can avoid the error by executing VMRESUME.

— 5: VMRESUME with non-launched VMCS.
If this error occurs, software can avoid the error by executing VMLAUNCH.

— 6: VMRESUME after VMXOFF.2
If this error occurs, software can avoid the error by executing the following 
sequence of instructions:

VMPTRST working-VMCS pointer
VMCLEAR working-VMCS pointer
VMPTRLD working-VMCS pointer
VMLAUNCH

(VMPTRST may not be necessary is software already knows the working-
VMCS pointer.)

• If none of the above errors occur, the processor checks on the VMX controls and 
host-state area. If any of these checks fail, the VM-entry instruction fails. 
RFLAGS.ZF is set to 1 and either 7 (VM entry with invalid control field(s)) or 8 
(VM entry with invalid host-state field(s)) is saved in the VM-instruction error 
field.

• After a VM-entry instruction (VMRESUME or VMLAUNCH) successfully completes 
the general checks and checks on VMX controls and the host-state area (see 
Section 26.2), any errors encountered while loading of guest-state (due to bad 
guest-state or bad MSR loading) causes the processor to load state from the 
host-state area of the working VMCS as if a VM exit had occurred (see Section 
30.7). 

2. Earlier versions of this manual described this error as “VMRESUME with a corrupted VMCS”.
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This failure behavior differs from that of VM exits in that no guest-state is saved 
to the guest-state area. A VMM can detect its VM-exit handler was invoked by 
such a failure by checking bit 31 (for 1) in the exit reason field of the working 
VMCS and further identify the failure by using the exit qualification field.

See Chapter 26 for more details about the VM-entry instructions.

30.5 VMM SETUP & TEAR DOWN
VMMs need to ensure that the processor is running in protected mode with paging 
before entering VMX operation. The following list describes the minimal steps 
required to enter VMX root operation with a VMM running at CPL = 0.
• Check VMX support in processor using CPUID. 
• Determine the VMX capabilities supported by the processor through the VMX 

capability MSRs. See Section 30.5.1 and Appendix A. 
• Create a VMXON region in non-pageable memory of a size specified by 

IA32_VMX_BASIC MSR and aligned to a 4-KByte boundary. Software should read 
the capability MSRs to determine width of the physical addresses that may be 
used for the VMXON region and ensure the entire VMXON region can be 
addressed by addresses with that width. Also, software must ensure that the 
VMXON region is hosted in cache-coherent memory.

• Initialize the version identifier in the VMXON region (the first 32 bits) with the 
VMCS revision identifier reported by capability MSRs. 

• Ensure the current processor operating mode meets the required CR0 fixed bits 
(CR0.PE = 1, CR0.PG = 1). Other required CR0 fixed bits can be detected 
through the IA32_VMX_CR0_FIXED0 and IA32_VMX_CR0_FIXED1 MSRs.

• Enable VMX operation by setting CR4.VMXE = 1. Ensure the resultant CR4 value 
supports all the CR4 fixed bits reported in the IA32_VMX_CR4_FIXED0 and 
IA32_VMX_CR4_FIXED1 MSRs.

• Ensure that the IA32_FEATURE_CONTROL MSR (MSR index 3AH) has been 
properly programmed and that its lock bit is set (Bit 0 = 1). This MSR is generally 
configured by the BIOS using WRMSR.

• Execute VMXON with the physical address of the VMXON region as the operand. 
Check successful execution of VMXON by checking if RFLAGS.CF = 0.

Upon successful execution of the steps above, the processor is in VMX root operation. 

A VMM executing in VMX root operation and CPL = 0 leaves VMX operation by 
executing VMXOFF and verifies successful execution by checking if RFLAGS.CF = 0 
and RFLAGS.ZF = 0. 

If an SMM monitor has been configured to service SMIs while in VMX operation (see 
Section 33.15), the SMM monitor needs to be torn down before the executive 
monitor can leave VMX operation (see Section 33.15.7). VMXOFF fails for the execu-
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tive monitor (a VMM that entered VMX operation by way of issuing VMXON) if SMM 
monitor is configured.

30.5.1 Algorithms for Determining VMX Capabilities
As noted earlier, a VMM should determine the VMX capabilities supported by the 
processor by reading the VMX capability MSRs. The architecture for these MSRs is 
detailed in Appendix A.

As noted in Chapter 24, “Virtual-Machine Control Structures”, certain VMX controls 
are reserved and must be set to a specific value (0 or 1) determined by the processor. 
The specific value to which a reserved control must be set is its default setting. 
Most controls have a default setting of 0; Appendix A.2 identifies those controls that 
have a default setting of 1. The term default1 describes the class of controls whose 
default setting is 1. The are controls in this class from the pin-based VM-execution 
controls, the primary processor-based VM-execution controls, the VM-exit controls, 
and the VM-entry controls. There are no secondary processor-based VM-execution 
controls in the default1 class.

Future processors may define new functionality for one or more reserved controls. 
Such processors would allow each newly defined control to be set either to 0 or to 1. 
Software that does not desire a control’s new functionality should set the control to 
its default setting.

The capability MSRs IA32_VMX_PINBASED_CTLS, IA32_VMX_PROCBASED_CTLS, 
IA32_VMX_EXIT_CTLS, and IA32_VMX_ENTRY_CTLS report, respectively, on the 
allowed settings of most of the pin-based VM-execution controls, the primary 
processor-based VM-execution controls, the VM-exit controls, and the VM-entry 
controls. However, they will always report that any control in the default1 class must 
be 1. If a logical processor allows any control in the default1 class to be 0, it indicates 
this fact by returning 1 for the value of bit 55 of the IA32_VMX_BASIC MSR. If this bit 
is 1, the logical processor supports the capability MSRs 
IA32_VMX_TRUE_PINBASED_CTLS, IA32_VMX_TRUE_PROCBASED_CTLS, 
IA32_VMX_TRUE_EXIT_CTLS, and IA32_VMX_TRUE_ENTRY_CTLS. These capability 
MSRs report, respectively, on the allowed settings of all of the pin-based VM-execu-
tion controls, the primary processor-based VM-execution controls, the VM-exit 
controls, and the VM-entry controls.

Software may use one of the following high-level algorithms to determine the correct 
default control settings:3

1. The following algorithm does not use the details given in Appendix A.2:

a. Ignore bit 55 of the IA32_VMX_BASIC MSR.

3. These algorithms apply only to the pin-based VM-execution controls, the primary processor-
based VM-execution controls, the VM-exit controls, and the VM-entry controls. Because there are 
no secondary processor-based VM-execution controls in the default1 class, a VMM can always 
set to 0 any such control whose meaning is unknown to it.
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b. Using RDMSR, read the VMX capability MSRs IA32_VMX_PINBASED_CTLS, 
IA32_VMX_PROCBASED_CTLS, IA32_VMX_EXIT_CTLS, and 
IA32_VMX_ENTRY_CTLS.

c. Set the VMX controls as follows:

i) If the relevant VMX capability MSR reports that a control has a single 
setting, use that setting.

ii) If (1) the relevant VMX capability MSR reports that a control can be set to 
0 or 1; and (2) the control’s meaning is known to the VMM; then set the 
control based on functionality desired.

iii) If (1) the relevant VMX capability MSR reports that a control can be set to 
0 or 1; and (2) the control’s meaning is not known to the VMM; then set 
the control to 0.

A VMM using this algorithm will set to 1 all controls in the default1 class (in
step (c)(i)). It will operate correctly even on processors that allow some
controls in the default1 class to be 0. However, such a VMM will not be able to
use the new features enabled by the 0-setting of such controls. For that reason,
this algorithm is not recommended.

2. The following algorithm uses the details given in Appendix A.2. This algorithm 
requires software to know the identity of the controls in the default1 class:

a. Using RDMSR, read the IA32_VMX_BASIC MSR.

b. Use bit 55 of that MSR as follows:

i) If bit 55 is 0, use RDMSR to read the VMX capability MSRs 
IA32_VMX_PINBASED_CTLS, IA32_VMX_PROCBASED_CTLS, 
IA32_VMX_EXIT_CTLS, and IA32_VMX_ENTRY_CTLS.

ii) If bit 55 is 1, use RDMSR to read the VMX capability MSRs 
IA32_VMX_TRUE_PINBASED_CTLS, 
IA32_VMX_TRUE_PROCBASED_CTLS, IA32_VMX_TRUE_EXIT_CTLS, and 
IA32_VMX_TRUE_ENTRY_CTLS.

c. Set the VMX controls as follows:

i) If the relevant VMX capability MSR reports that a control has a single 
setting, use that setting.

ii) If (1) the relevant VMX capability MSR reports that a control can be set to 
0 or 1; and (2) the control’s meaning is known to the VMM; then set the 
control based on functionality desired.

iii) If (1) the relevant VMX capability MSR reports that a control can be set to 
0 or 1; (2) the control’s meaning is not known to the VMM; and (3) the 
control is not in the default1 class; then set the control to 0.

iv) If (1) the relevant VMX capability MSR reports that a control can be set to 
0 or 1; (2) the control’s meaning is not known to the VMM; and (3) the 
control is in the default1 class; then set the control to 1.
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A VMM using this algorithm will set to 1 all controls in default1 class whose
meaning it does not know (either in step (c)(i) or step (c)(iv)). It will operate
correctly even on processors that allow some controls in the default1 class to be
0. Unlike a VMM using Algorithm 1, a VMM using Algorithm 2 will be able to use
the new features enabled by the 0-setting of such controls.

3. The following algorithm uses the details given in Appendix A.2. This algorithm 
does not require software to know the identity of the controls in the default1 
class:

a. Using RDMSR, read the VMX capability MSRs IA32_VMX_BASIC, 
IA32_VMX_PINBASED_CTLS, IA32_VMX_PROCBASED_CTLS, 
IA32_VMX_EXIT_CTLS, and IA32_VMX_ENTRY_CTLS.

b. If bit 55 of the IA32_VMX_BASIC MSR is 0, set the VMX controls as follows:

i) If the relevant VMX capability MSR reports that a control has a single 
setting, use that setting.

ii) If (1) the relevant VMX capability MSR reports that a control can be set to 
0 or 1; and (2) the control’s meaning is known to the VMM; then set the 
control based on functionality desired.

iii) If (1) the relevant VMX capability MSR reports that a control can be set to 
0 or 1; and (2) the control’s meaning is not known to the VMM; then set 
the control to 0.

c. If bit 55 of the IA32_VMX_BASIC MSR is 1, use RDMSR to read the VMX 
capability MSRs IA32_VMX_TRUE_PINBASED_CTLS, 
IA32_VMX_TRUE_PROCBASED_CTLS, IA32_VMX_TRUE_EXIT_CTLS, and 
IA32_VMX_TRUE_ENTRY_CTLS. Set the VMX controls as follows:

i) If the relevant VMX capability MSR just read reports that a control has a 
single setting, use that setting.

ii) If (1) the relevant VMX capability MSR just read reports that a control can 
be set to 0 or 1; and (2) the control’s meaning is known to the VMM; then 
set the control based on functionality desired.

iii) If (1) the relevant VMX capability MSR just read reports that a control can 
be set to 0 or 1; (2) the control’s meaning is not known to the VMM; and 
(3) the relevant VMX capability MSR as read in step (a) reports that a 
control can be set to 0; then set the control to 0.

iv) If (1) the relevant VMX capability MSR just read reports that a control can 
be set to 0 or 1; (2) the control’s meaning is not known to the VMM; and 
(3) the relevant VMX capability MSR as read in step (a) reports that a 
control must be 1; then set the control to 1.

A VMM using this algorithm will set to 1 all controls in the default1 class whose
meaning it does not know (in step (b)(i), step (c)(i), or step (c)(iv)). It will
operate correctly even on processors that allow some controls in the default1
class to be 0. Unlike a VMM using Algorithm 1, a VMM using Algorithm 3 will be
able to use the new features enabled by the 0-setting of such controls. Unlike a
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VMM using Algorithm 2, a VMM using Algorithm 3 need not know the identities
of the controls in the default1 class.

30.6 PREPARATION AND LAUNCHING A VIRTUAL 
MACHINE

The following list describes the minimal steps required by the VMM to set up and 
launch a guest VM.
• Create a VMCS region in non-pageable memory of size specified by the VMX 

capability MSR IA32_VMX_BASIC and aligned to 4-KBytes. Software should read 
the capability MSRs to determine width of the physical addresses that may be 
used for a VMCS region and ensure the entire VMCS region can be addressed by 
addresses with that width. The term “guest-VMCS address” refers to the physical 
address of the new VMCS region for the following steps.

• Initialize the version identifier in the VMCS (first 32 bits) with the VMCS revision 
identifier reported by the VMX capability MSR IA32_VMX_BASIC. 

• Execute the VMCLEAR instruction by supplying the guest-VMCS address. This will 
initialize the new VMCS region in memory and set the launch state of the VMCS 
to “clear”. This action also invalidates the working-VMCS pointer register to 
FFFFFFFF_FFFFFFFFH. Software should verify successful execution of VMCLEAR 
by checking if RFLAGS.CF = 0 and RFLAGS.ZF = 0.

• Execute the VMPTRLD instruction by supplying the guest-VMCS address. This 
initializes the working-VMCS pointer with the new VMCS region’s physical 
address.

• Issue a sequence of VMWRITEs to initialize various host-state area fields in the 
working VMCS. The initialization sets up the context and entry-points to the VMM 
upon subsequent VM exits from the guest. Host-state fields include control 
registers (CR0, CR3 and CR4), selector fields for the segment registers (CS, SS, 
DS, ES, FS, GS and TR), and base-address fields (for FS, GS, TR, GDTR and IDTR; 
RSP, RIP and the MSRs that control fast system calls). 
Chapter 25 describes the host-state consistency checking done by the processor 
for VM entries. The VMM is required to set up host-state that comply with these 
consistency checks. For example, VMX requires the host-area to have a task 
register (TR) selector with TI and RPL fields set to 0 and pointing to a valid TSS.

• Use VMWRITEs to set up the various VM-exit control fields, VM-entry control 
fields, and VM-execution control fields in the VMCS. Care should be taken to 
make sure the settings of individual fields match the allowed 0 and 1 settings for 
the respective controls as reported by the VMX capability MSRs (see Appendix A). 
Any settings inconsistent with the settings reported by the capability MSRs will 
cause VM entries to fail.

• Use VMWRITE to initialize various guest-state area fields in the working VMCS. 
This sets up the context and entry-point for guest execution upon VM entry. 
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Chapter 25 describes the guest-state loading and checking done by the processor 
for VM entries to protected and virtual-8086 guest execution. 

• The VMM is required to set up guest-state that complies with these consistency 
checks:

— If the VMM design requires the initial VM launch to cause guest software 
(typically the guest virtual BIOS) execution from the guest’s reset vector, it 
may need to initialize the guest execution state to reflect the state of a 
physical processor at power-on reset (described in Chapter 9, Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3A). 

— The VMM may need to initialize additional guest execution state that is not 
captured in the VMCS guest-state area by loading them directly on the 
respective processor registers. Examples include general purpose registers, 
the CR2 control register, debug registers, floating point registers and so forth. 
VMM may support lazy loading of FPU, MMX, SSE, and SSE2 states with 
CR0.TS = 1 (described in Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3A).

• Execute VMLAUNCH to launch the guest VM. If VMLAUNCH fails due to any 
consistency checks before guest-state loading, RFLAGS.CF or RFLAGS.ZF will be 
set and the VM-instruction error field (see Section 24.9.5) will contain the error-
code. If guest-state consistency checks fail upon guest-state loading, the 
processor loads state from the host-state area as if a VM exit had occurred (see 
Section 30.6).

VMLAUNCH updates the controlling-VMCS pointer with the working-VMCS pointer 
and saves the old value of controlling-VMCS as the parent pointer. In addition, the 
launch state of the guest VMCS is changed to “launched” from “clear”. Any 
programmed exit conditions will cause the guest to VM exit to the VMM. The VMM 
should execute VMRESUME instruction for subsequent VM entries to guests in a 
“launched” state.

30.7 HANDLING OF VM EXITS
This section provides examples of software steps involved in a VMM’s handling of VM-
exit conditions:
• Determine the exit reason through a VMREAD of the exit-reason field in the 

working-VMCS. Appendix C describes exit reasons and their encodings.
• VMREAD the exit-qualification from the VMCS if the exit-reason field provides a 

valid qualification. The exit-qualification field provides additional details on the 
VM-exit condition. For example, in case of page faults, the exit-qualification field 
provides the guest linear address that caused the page fault.

• Depending on the exit reason, fetch other relevant fields from the VMCS. 
Appendix C lists the various exit reasons.
Vol. 3C 30-11



VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
• Handle the VM-exit condition appropriately in the VMM. This may involve the 
VMM emulating one or more guest instructions, programming the underlying 
host hardware resources, and then re-entering the VM to continue execution. 

30.7.1 Handling VM Exits Due to Exceptions
As noted in Section 25.3, an exception causes a VM exit if the bit corresponding to 
the exception’s vector is set in the exception bitmap. (For page faults, the error code 
also determines whether a VM exit occurs.) This section provide some guidelines of 
how a VMM might handle such exceptions.

Exceptions result when a logical processor encounters an unusual condition that soft-
ware may not have expected. When guest software encounters an exception, it may 
be the case that the condition was caused by the guest software. For example, a 
guest application may attempt to access a page that is restricted to supervisor 
access. Alternatively, the condition causing the exception may have been established 
by the VMM. For example, a guest OS may attempt to access a page that the VMM 
has chosen to make not present.

When the condition causing an exception was established by guest software, the 
VMM may choose to reflect the exception to guest software. When the condition was 
established by the VMM itself, the VMM may choose to resume guest software after 
removing the condition.

30.7.1.1  Reflecting Exceptions to Guest Software
If the VMM determines that a VM exit was caused by an exception due to a condition 
established by guest software, it may reflect that exception to guest software. The 
VMM would cause the exception to be delivered to guest software, where it can be 
handled as it would be if the guest were running on a physical machine. This section 
describes how that may be done.

In general, the VMM can deliver the exception to guest software using VM-entry 
event injection as described in Section 26.5. The VMM can copy (using VMREAD and 
VMWRITE) the contents of the VM-exit interruption-information field (which is valid, 
since the VM exit was caused by an exception) to the VM-entry interruption-informa-
tion field (which, if valid, will cause the exception to be delivered as part of the next 
VM entry). The VMM would also copy the contents of the VM-exit interruption error-
code field to the VM-entry exception error-code field; this need not be done if bit 11 
(error code valid) is clear in the VM-exit interruption-information field. After this, the 
VMM can execute VMRESUME.

The following items provide details that may qualify the general approach:
• Care should be taken to ensure that reserved bits 30:12 in the VM-entry inter-

ruption-information field are 0. In particular, some VM exits may set bit 12 in the 
VM-exit interruption-information field to indicate NMI unblocking due to IRET. If 
this bit is copied as 1 into the VM-entry interruption-information field, the next 
VM entry will fail because that bit should be 0.
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• Bit 31 (valid) of the IDT-vectoring information field indicates, if set, that the 
exception causing the VM exit occurred while another event was being delivered 
to guest software. If this is the case, it may not be appropriate simply to reflect 
that exception to guest software. To provide proper virtualization of the exception 
architecture, a VMM should handle nested events as a physical processor would. 
Processor handling is described in Chapter 6, “Interrupt 8—Double Fault 
Exception (#DF)” in Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3A.

— The VMM should reflect the exception causing the VM exit to guest software 
in any of the following cases:

• The value of bits 10:8 (interruption type) of the IDT-vectoring 
information field is anything other than 3 (hardware exception).

• The value of bits 7:0 (vector) of the IDT-vectoring information field 
indicates a benign exception (1, 2, 3, 4, 5, 6, 7, 9, 16, 17, 18, or 19).

• The value of bits 7:0 (vector) of the VM-exit interruption-information field 
indicates a benign exception.

• The value of bits 7:0 of the IDT-vectoring information field indicates a 
contributory exception (0, 10, 11, 12, or 13) and the value of bits 7:0 of 
the VM-exit interruption-information field indicates a page fault (14).

— If the value of bits 10:8 of the IDT-vectoring information field is 3 (hardware 
exception), the VMM should reflect a double-fault exception to guest software 
in any of the following cases:

• The value of bits 7:0 of the IDT-vectoring information field and the value 
of bits 7:0 of the VM-exit interruption-information field each indicates a 
contributory exception.

• The value of bits 7:0 of the IDT-vectoring information field indicates a 
page fault and the value of bits 7:0 of the VM-exit interruption-
information field indicates either a contributory exception or a page fault.

A VMM can reflect a double-fault exception to guest software by setting the
VM-entry interruption-information and VM-entry exception error-code fields
as follows:

• Set bits 7:0 (vector) of the VM-entry interruption-information field to 8 
(#DF).

• Set bits 10:8 (interruption type) of the VM-entry interruption-information 
field to 3 (hardware exception).

• Set bit 11 (deliver error code) of the VM-entry interruption-information 
field to 1.

• Clear bits 30:12 (reserved) of VM-entry interruption-information field.

• Set bit 31 (valid) of VM-entry interruption-information field.

• Set the VM-entry exception error-code field to zero.
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— If the value of bits 10:8 of the IDT-vectoring information field is 3 (hardware 
exception) and the value of bits 7:0 is 8 (#DF), guest software would have 
encountered a triple fault. Event injection should not be used in this case. The 
VMM may choose to terminate the guest, or it might choose to enter the 
guest in the shutdown activity state.

30.7.1.2  Resuming Guest Software after Handling an Exception
If the VMM determines that a VM exit was caused by an exception due to a condition 
established by the VMM itself, it may choose to resume guest software after 
removing the condition. The approach for removing the condition may be specific to 
the VMM’s software architecture. and algorithms This section describes how guest 
software may be resumed after removing the condition.

In general, the VMM can resume guest software simply by executing VMRESUME. The 
following items provide details of cases that may require special handling:
• If the “NMI exiting” VM-execution control is 0, bit 12 of the VM-exit interruption-

information field indicates that the VM exit was due to a fault encountered during 
an execution of the IRET instruction that unblocked non-maskable interrupts 
(NMIs). In particular, it provides this indication if the following are both true:

— Bit 31 (valid) in the IDT-vectoring information field is 0.

— The value of bits 7:0 (vector) of the VM-exit interruption-information field is 
not 8 (the VM exit is not due to a double-fault exception).

If both are true and bit 12 of the VM-exit interruption-information field is 1, NMIs 
were blocked before guest software executed the IRET instruction that caused 
the fault that caused the VM exit. The VMM should set bit 3 (blocking by NMI) in 
the interruptibility-state field (using VMREAD and VMWRITE) before resuming 
guest software.

• If the “virtual NMIs” VM-execution control is 1, bit 12 of the VM-exit interruption-
information field indicates that the VM exit was due to a fault encountered during 
an execution of the IRET instruction that removed virtual-NMI blocking. In 
particular, it provides this indication if the following are both true:

— Bit 31 (valid) in the IDT-vectoring information field is 0.

— The value of bits 7:0 (vector) of the VM-exit interruption-information field is 
not 8 (the VM exit is not due to a double-fault exception).

If both are true and bit 12 of the VM-exit interruption-information field is 1, there 
was virtual-NMI blocking before guest software executed the IRET instruction 
that caused the fault that caused the VM exit. The VMM should set bit 3 (blocking 
by NMI) in the interruptibility-state field (using VMREAD and VMWRITE) before 
resuming guest software. 

• Bit 31 (valid) of the IDT-vectoring information field indicates, if set, that the 
exception causing the VM exit occurred while another event was being delivered 
to guest software. The VMM should ensure that the other event is delivered when 
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guest software is resumed. It can do so using the VM-entry event injection 
described in Section 26.5 and detailed in the following paragraphs:

— The VMM can copy (using VMREAD and VMWRITE) the contents of the IDT-
vectoring information field (which is presumed valid) to the VM-entry inter-
ruption-information field (which, if valid, will cause the exception to be 
delivered as part of the next VM entry).

• The VMM should ensure that reserved bits 30:12 in the VM-entry inter-
ruption-information field are 0. In particular, the value of bit 12 in the IDT-
vectoring information field is undefined after all VM exits. If this bit is 
copied as 1 into the VM-entry interruption-information field, the next 
VM entry will fail because the bit should be 0.

• If the “virtual NMIs” VM-execution control is 1 and the value of bits 10:8 
(interruption type) in the IDT-vectoring information field is 2 (indicating 
NMI), the VM exit occurred during delivery of an NMI that had been 
injected as part of the previous VM entry. In this case, bit 3 (blocking by 
NMI) will be 1 in the interruptibility-state field in the VMCS. The VMM 
should clear this bit; otherwise, the next VM entry will fail (see Section 
26.3.1.5).

— The VMM can also copy the contents of the IDT-vectoring error-code field to 
the VM-entry exception error-code field. This need not be done if bit 11 (error 
code valid) is clear in the IDT-vectoring information field.

— The VMM can also copy the contents of the VM-exit instruction-length field to 
the VM-entry instruction-length field. This need be done only if bits 10:8 
(interruption type) in the IDT-vectoring information field indicate either 
software interrupt, privileged software exception, or software exception.

30.8 MULTI-PROCESSOR CONSIDERATIONS
The most common VMM design will be the symmetric VMM. This type of VMM runs the 
same VMM binary on all logical processors. Like a symmetric operating system, the 
symmetric VMM is written to ensure all critical data is updated by only one processor 
at a time, IO devices are accessed sequentially, and so forth. Asymmetric VMM 
designs are possible. For example, an asymmetric VMM may run its scheduler on one 
processor and run just enough of the VMM on other processors to allow the correct 
execution of guest VMs. The remainder of this section focuses on the multi-processor 
considerations for a symmetric VMM.

A symmetric VMM design does not preclude asymmetry in its operations. For 
example, a symmetric VMM can support asymmetric allocation of logical processor 
resources to guests. Multiple logical processors can be brought into a single guest 
environment to support an MP-aware guest OS. Because an active VMCS can not 
control more than one logical processor simultaneously, a symmetric VMM must 
make copies of its VMCS to control the VM allocated to support an MP-aware guest 
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OS. Care must be taken when accessing data structures shared between these 
VMCSs. See Section 30.8.4.

Although it may be easier to develop a VMM that assumes a fully-symmetric view of 
hardware capabilities (with all processors supporting the same processor feature 
sets, including the same revision of VMX), there are advantages in developing a VMM 
that comprehends different levels of VMX capability (reported by VMX capability 
MSRs). One possible advantage of such an approach could be that an existing soft-
ware installation (VMM and guest software stack) could continue to run without 
requiring software upgrades to the VMM, when the software installation is upgraded 
to run on hardware with enhancements in the processor’s VMX capabilities. Another 
advantage could be that a single software installation image, consisting of a VMM and 
guests, could be deployed to multiple hardware platforms with varying VMX capabil-
ities. In such cases, the VMM could fall back to a common subset of VMX features 
supported by all VMX revisions, or choose to understand the asymmetry of the VMX 
capabilities and assign VMs accordingly. 

This section outlines some of the considerations to keep in mind when developing an 
MP-aware VMM.

30.8.1 Initialization
Before enabling VMX, an MP-aware VMM must check to make sure that all processors 
in the system are compatible and support features required. This can be done by:
• Checking the CPUID on each logical processor to ensure VMX is supported and 

that the overall feature set of each logical processor is compatible.
• Checking VMCS revision identifiers on each logical processor.
• Checking each of the “allowed-1” or “allowed-0” fields of the VMX capability 

MSR’s on each processor.

30.8.2 Moving a VMCS Between Processors
An MP-aware VMM is free to assign any logical processor to a VM. But for perfor-
mance considerations, moving a guest VMCS to another logical processor is slower 
than resuming that guest VMCS on the same logical processor. Certain VMX perfor-
mance features (such as caching of portions of the VMCS in the processor) are opti-
mized for a guest VMCS that runs on the same logical processor. 

The reasons are:
• To restart a guest on the same logical processor, a VMM can use VMRESUME. 

VMRESUME is expected to be faster than VMLAUNCH in general.
• To migrate a VMCS to another logical processor, a VMM must use the sequence of 

VMCLEAR, VMPTRLD and VMLAUNCH.
• Operations involving VMCLEAR can impact performance negatively. See

Section 24.10.3.
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A VMM scheduler should make an effort to schedule a guest VMCS to run on the 
logical processor where it last ran. Such a scheduler might also benefit from doing 
lazy VMCLEARs (that is: performing a VMCLEAR on a VMCS only when the scheduler 
knows the VMCS is being moved to a new logical processor). The remainder of this 
section describes the steps a VMM must take to move a VMCS from one processor to 
another.

A VMM must check the VMCS revision identifier in the VMX capability MSR 
IA32_VMX_BASIC to determine if the VMCS regions are identical between all logical 
processors. If the VMCS regions are identical (same revision ID) the following 
sequence can be used to move or copy the VMCS from one logical processor to 
another:
• Perform a VMCLEAR operation on the source logical processor. This ensures that 

all VMCS data that may be cached by the processor are flushed to memory.
• Copy the VMCS region from one memory location to another location. This is an 

optional step assuming the VMM wishes to relocate the VMCS or move the VMCS 
to another system.

• Perform a VMPTRLD of the physical address of VMCS region on the destination 
processor to establish its current VMCS pointer.

If the revision identifiers are different, each field must be copied to an intermediate 
structure using individual reads (VMREAD) from the source fields and writes 
(VMWRITE) to destination fields. Care must be taken on fields that are hard-wired to 
certain values on some processor implementations.

30.8.3 Paired Index-Data Registers
A VMM may need to virtualize hardware that is visible to software using paired index-
data registers. Paired index-data register interfaces, such as those used in PCI (CF8, 
CFC), require special treatment in cases where a VM performing writes to these pairs 
can be moved during execution. In this case, the index (e.g. CF8) should be part of 
the virtualized state. If the VM is moved during execution, writes to the index should 
be redone so subsequent data reads/writes go to the right location.

30.8.4 External Data Structures
Certain fields in the VMCS point to external data structures (for example: the MSR 
bitmap, the I/O bitmaps). If a logical processor is in VMX non-root operation, none of 
the external structures referenced by that logical processor's current VMCS should be 
modified by any logical processor or DMA. Before updating one of these structures, 
the VMM must ensure that no logical processor whose current VMCS references the 
structure is in VMX non-root operation. 

If a VMM uses multiple VMCS with each VMCS using separate external structures, 
and these structures must be kept synchronized, the VMM must apply the same care 
to updating these structures.
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30.8.5 CPUID Emulation
CPUID reports information that is used by OS and applications to detect hardware 
features. It also provides multi-threading/multi-core configuration information. For 
example, MP-aware OSs rely on data reported by CPUID to discover the topology of 
logical processors in a platform (see Section 8.9, “Programming Considerations for 
Hardware Multi-Threading Capable Processors,” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3A). 

If a VMM is to support asymmetric allocation of logical processor resources to guest 
OSs that are MP aware, then the VMM must emulate CPUID for its guests. The emula-
tion of CPUID by the VMM must ensure the guest’s view of CPUID leaves are consis-
tent with the logical processor allocation committed by the VMM to each guest OS.

30.9 32-BIT AND 64-BIT GUEST ENVIRONMENTS
For the most part, extensions provided by VMX to support virtualization are orthog-
onal to the extensions provided by Intel 64 architecture. There are considerations 
that impact VMM designs. These are described in the following subsections.

30.9.1 Operating Modes of Guest Environments
For Intel 64 processors, VMX operation supports host and guest environments that 
run in IA-32e mode or without IA-32e mode. VMX operation also supports host and 
guest environments on IA-32 processors. 

A VMM entering VMX operation while IA-32e mode is active is considered to be an 
IA-32e mode host. A VMM entering VMX operation while IA-32e mode is not activated 
or not available is referred to as a 32-bit VMM. The type of guest operations such 
VMMs support are summarized in Table 30-1.

A VM exit may occur to an IA-32e mode guest in either 64-bit sub-mode or compati-
bility sub-mode of IA-32e mode. VMMs may resume guests in either mode. The sub-
mode in which an IA-32e mode guest resumes VMX non-root operation is determined 
by the attributes of the code segment which experienced the VM exit. If CS.L = 1, 
the guest is executing in 64-bit mode; if CS.L = 0, the guest is executing in compat-
ibility mode (see Section 30.9.5).

Table 30-1.  Operating Modes for Host and Guest Environments
Capability Guest Operation 

in IA-32e mode
Guest Operation 
Not Requiring IA-32e Mode

IA-32e mode VMM Yes Yes

32-bit VMM Not supported Yes
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Not all of an IA-32e mode VMM must run in 64-bit mode. While some parts of an 
IA-32e mode VMM must run in 64-bit mode, there are only a few restrictions 
preventing a VMM from executing in compatibility mode. The most notable restriction 
is that most VMX instructions cause exceptions when executed in compatibility mode. 

30.9.2 Handling Widths of VMCS Fields
Individual VMCS control fields must be accessed using VMREAD or VMWRITE instruc-
tions. Outside of 64-Bit mode, VMREAD and VMWRITE operate on 32 bits of data. The 
widths of VMCS control fields may vary depending on whether a processor supports 
Intel 64 architecture.

Many VMCS fields are architected to extend transparently on processors supporting 
Intel 64 architecture (64 bits on processors that support Intel 64 architecture, 32 bits 
on processors that do not). Some VMCS fields are 64-bits wide regardless of whether 
the processor supports Intel 64 architecture or is in IA-32e mode.

30.9.2.1  Natural-Width VMCS Fields
Many VMCS fields operate using natural width. Such fields return (on reads) and set 
(on writes) 32-bits when operating in 32-bit mode and 64-bits when operating in 
64-bit mode. For the most part, these fields return the naturally expected data 
widths. The “Guest RIP” field in the VMCS guest-state area is an example of this type 
of field.

30.9.2.2  64-Bit VMCS Fields
Unlike natural width fields, these fields are fixed to 64-bit width on all processors. 
When in 64-bit mode, reads of these fields return 64-bit wide data and writes to 
these fields write 64-bits. When outside of 64-bit mode, reads of these fields return 
the low 32-bits and writes to these fields write the low 32-bits and zero the upper 
32-bits. Should a non-IA-32e mode host require access to the upper 32-bits of these 
fields, a separate VMCS encoding is used when issuing VMREAD/VMWRITE instruc-
tions.

The VMCS control field “MSR bitmap address” (which contains the physical address of 
a region of memory which specifies which MSR accesses should generate VM-exits) is 
an example of this type of field. Specifying encoding 00002004H to VMREAD returns 
the lower 32-bits to non-IA-32e mode hosts and returns 64-bits to 64-bit hosts. The 
separate encoding 00002005H returns only the upper 32-bits. 

30.9.3 IA-32e Mode Hosts
An IA-32e mode host is required to support 64-bit guest environments. Because acti-
vating IA-32e mode currently requires that paging be disabled temporarily and VMX 
entry requires paging to be enabled, IA-32e mode must be enabled before entering 
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VMX operation. For this reason, it is not possible to toggle in and out of IA-32e mode 
in a VMM.

Section 30.5 describes the steps required to launch a VMM. An IA-32e mode host is 
also required to set the “host address-space size” VMCS VM-exit control to 1. The 
value of this control is then loaded in the IA32_EFER.LME/LMA and CS.L bits on each 
VM exit. This establishes a 64-bit host environment as execution transfers to the 
VMM entry point. At a minimum, the entry point is required to be in a 64-bit code 
segment. Subsequently, the VMM can, if it chooses, switch to 32-bit compatibility 
mode on a code-segment basis (see Section 30.9.1). Note, however, that VMX 
instructions other than VMCALL are not supported in compatibility mode; they 
generate an invalid opcode exception if used. 

The following VMCS controls determine the value of IA32_EFER when a VM exit 
occurs: the “host address-space size” control (described above), the “load 
IA32_EFER” VM-exit control, the “VM-exit MSR-load count,” and the “VM-exit MSR-
load address” (see Section 27.3).

If the “load IA32_EFER” VM-exit control is 1, the value of the LME and LMA bits in the 
IA32_EFER field in the host-state area must be the value of the “host address-space 
size” VM-exit control.

The loading of IA32_EFER.LME/LMA and CS.L bits established by the “host address-
space size” control precede any loading of the IA32_EFER MSR due from the VM-exit 
MSR-load area. If IA32_EFER is specified in the VM-exit MSR-load area, the value of 
the LME bit in the load image of IA32_EFER should match the setting of the “host 
address-space size” control. Otherwise the attempt to modify the LME bit (while 
paging is enabled) will lead to a VMX-abort. However, IA32_EFER.LMA is always set 
by the processor to equal IA32_EFER.LME & CR0.PG; the value specified for LMA in 
the load image of the IA32_EFER MSR is ignored. For these and performance 
reasons, VMM writers may choose to not use the VM-exit/entry MSR-load/save areas 
for IA32_EFER.

On a VMM teardown, VMX operation should be exited before deactivating IA-32e 
mode if the latter is required.

30.9.4 IA-32e Mode Guests
A 32-bit guest can be launched by either IA-32e-mode hosts or non-IA-32e-mode 
hosts. A 64-bit guests can only be launched by a IA-32e-mode host.

In addition to the steps outlined in Section 30.6, VMM writers need to: 
• Set the “IA-32e-mode guest” VM-entry control to 1 in the VMCS to assure 

VM-entry (VMLAUNCH or VMRESUME) will establish a 64-bit (or 32-bit 
compatible) guest operating environment. 

• Enable paging (CR0.PG) and PAE mode (CR4.PAE) to assure VM-entry to a 64-bit 
guest will succeed. 
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• Ensure that the host to be in IA-32e mode (the IA32_EFER.LMA must be set to 1) 
and the setting of the VM-exit “host address-space size” control bit in the VMCS 
must also be set to 1. 

If each of the above conditions holds true, then VM-entry will copy the value of the 
VM-entry “IA-32e-mode guest” control bit into the guests IA32_EFER.LME bit, which 
will result in subsequent activation of IA-32e mode. If any of the above conditions is 
false, the VM-entry will fail and load state from the host-state area of the working 
VMCS as if a VM exit had occurred (see Section 26.7).

The following VMCS controls determine the value of IA32_EFER on a VM entry: the 
“IA-32e-mode guest” VM-entry control (described above), the “load IA32_EFER” VM-
entry control, the “VM-entry MSR-load count,” and the “VM-entry MSR-load address” 
(see Section 26.4).

If the “load IA32_EFER” VM-entry control is 1, the value of the LME and LMA bits in 
the IA32_EFER field in the guest-state area must be the value of the “IA-32e-mode 
guest” VM-exit control. Otherwise, the VM entry fails.

The loading of IA32_EFER.LME bit (described above) precedes any loading of the 
IA32_EFER MSR from the VM-entry MSR-load area of the VMCS. If loading of 
IA32_EFER is specified in the VM-entry MSR-load area, the value of the LME bit in the 
load image should be match the setting of the “IA-32e-mode guest” VM-entry 
control. Otherwise, the attempt to modify the LME bit (while paging is enabled) 
results in a failed VM entry. However, IA32_EFER.LMA is always set by the processor 
to equal IA32_EFER.LME & CR0.PG; the value specified for LMA in the load image of 
the IA32_EFER MSR is ignored. For these and performance reasons, VMM writers 
may choose to not use the VM-exit/entry MSR-load/save areas for IA32_EFER MSR.

Note that the VMM can control the processor’s architectural state when transferring 
control to a VM. VMM writers may choose to launch guests in protected mode and 
subsequently allow the guest to activate IA-32e mode or they may allow guests to 
toggle in and out of IA-32e mode. In this case, the VMM should require VM exit on 
accesses to the IA32_EFER MSR to detect changes in the operating mode and modify 
the VM-entry “IA-32e-mode guest” control accordingly.

A VMM should save/restore the extended (full 64-bit) contents of the guest general-
purpose registers, the new general-purpose registers (R8-R15) and the SIMD regis-
ters introduced in 64-bit mode should it need to modify these upon VM exit. 

30.9.5 32-Bit Guests
To launch or resume a 32-bit guest, VMM writers can follow the steps outlined in 
Section 30.6, making sure that the “IA-32e-mode guest” VM-entry control bit is set 
to 0. Then the “IA-32e-mode guest” control bit is copied into the guest 
IA32_EFER.LME bit, establishing IA32_EFER.LMA as 0. 
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30.10 HANDLING MODEL SPECIFIC REGISTERS
Model specific registers (MSR) provide a wide range of functionality. They affect 
processor features, control the programming interfaces, or are used in conjunction 
with specific instructions. As part of processor virtualization, a VMM may wish to 
protect some or all MSR resources from direct guest access. 

VMX operation provides the following features to virtualize processor MSRs.

30.10.1 Using VM-Execution Controls
Processor-based VM-execution controls provide two levels of support for handling 
guest access to processor MSRs using RDMSR and WRMSR:
• MSR bitmaps: In VMX implementations that support a 1-setting (see Appendix 

A) of the user-MSR-bitmaps execution control bit, MSR bitmaps can be used to 
provide flexibility in managing guest MSR accesses. The MSR-bitmap-address in 
the guest VMCS can be programmed by VMM to point to a bitmap region which 
specifies VM-exit behavior when reading and writing individual MSRs. 
MSR bitmaps form a 4-KByte region in physical memory and are required to be 
aligned to a 4-KByte boundary. The first 1-KByte region manages read control of 
MSRs in the range 00000000H-00001FFFH; the second 1-KByte region covers 
read control of MSR addresses in the range C0000000H-C0001FFFH. The bitmaps 
for write control of these MSRs are located in the 2-KByte region immediately 
following the read control bitmaps. While the MSR bitmap address is part of 
VMCS, the MSR bitmaps themselves are not. This implies MSR bitmaps are not 
accessible through VMREAD and VMWRITE instructions but rather by using 
ordinary memory writes. Also, they are not specially cached by the processor and 
may be placed in normal cache-coherent memory by the VMM. 
When MSR bitmap addresses are properly programmed and the use-MSR-bitmap 
control (see Section 24.6.2) is set, the processor consults the associated bit in 
the appropriate bitmap on guest MSR accesses to the corresponding MSR and 
causes a VM exit if the bit in the bitmap is set. Otherwise, the access is permitted 
to proceed. This level of protection may be utilized by VMMs to selectively allow 
guest access to some MSRs while virtualizing others. 

• Default MSR protection: If the use-MSR-bitmap control is not set, an attempt 
by a guest to access any MSR causes a VM exit. This also occurs for any attempt 
to access an MSR outside the ranges identified above (even if the use-MSR-
bitmap control is set).

VM exits due to guest MSR accesses may be identified by the VMM through VM-exit 
reason codes. The MSR-read exit reason implies guest software attempted to read an 
MSR protected either by default or through MSR bitmaps. The MSR-write exit reason 
implies guest software attempting to write a MSR protected through the VM-execu-
tion controls. Upon VM exits caused by MSR accesses, the VMM may virtualize the 
guest MSR access through emulation of RDMSR/WRMSR.
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30.10.2 Using VM-Exit Controls for MSRs
If a VMM allows its guest to access MSRs directly, the VMM may need to store guest 
MSR values and load host MSR values for these MSRs on VM exits. This is especially 
true if the VMM uses the same MSRs while in VMX root operation. 

A VMM can use the VM-exit MSR-store-address and the VM-exit MSR-store-count exit 
control fields (see Section 24.7.2) to manage how MSRs are stored on VM exits. The 
VM-exit MSR-store-address field contains the physical address (16-byte aligned) of 
the VM-exit MSR-store area (a table of entries with 16 bytes per entry). Each table 
entry specifies an MSR whose value needs to be stored on VM exits. The VM-exit 
MSR-store-count contains the number of entries in the table.

Similarly the VM-exit MSR-load-address and VM-exit MSR-load-count fields point to 
the location and size of the VM-exit MSR load area. The entries in the VM-exit MSR-
load area contain the host expected values of specific MSRs when a VM exit occurs. 

Upon VM-exit, bits 127:64 of each entry in the VM-exit MSR-store area is updated 
with the contents of the MSR indexed by bits 31:0. Also, bits 127:64 of each entry in 
the VM-exit MSR-load area is updated by loading with values from bits 127:64 the 
contents of the MSR indexed by bits 31:0. 

30.10.3 Using VM-Entry Controls for MSRs
A VMM may require specific MSRs to be loaded explicitly on VM entries while 
launching or resuming guest execution. The VM-entry MSR-load-address and 
VM-entry MSR-load-count entry control fields determine how MSRs are loaded on 
VM-entries. The VM-entry MSR-load-address and count fields are similar in structure 
and function to the VM-exit MSR-load address and count fields, except the MSR 
loading is done on VM-entries.

30.10.4 Handling Special-Case MSRs and Instructions
A number of instructions make use of designated MSRs in their operation. The VMM 
may need to consider saving the states of those MSRs. Instructions that merit such 
consideration include SYSENTER/SYSEXIT, SYSCALL/SYSRET, SWAPGS. 

30.10.4.1  Handling IA32_EFER MSR
The IA32_EFER MSR includes bit fields that allow system software to enable 
processor features. For example: the SCE bit enables SYSCALL/SYSRET and the NXE 
bit enables the execute-disable bits in the paging-structure entries. 

VMX provides hardware support to load the IA32_EFER MSR on VMX transitions and 
to save it on VM exits. Because of this, VMM software need not use the RDMSR and 
WRMSR instruction to give the register different values during host and guest execu-
tion. 
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30.10.4.2  Handling the SYSENTER and SYSEXIT Instructions
The SYSENTER and SYSEXIT instructions use three dedicated MSRs 
(IA32_SYSENTER_CS, IA32_SYSENTER_ESP and IA32_SYSENTER_EIP) to manage 
fast system calls. These MSRs may be utilized by both the VMM and the guest OS to 
manage system calls in VMX root operation and VMX non-root operation respectively. 

VM entries load these MSRs from fields in the guest-state area of the VMCS. VM exits 
save the values of these MSRs into those fields and loads the MSRs from fields in the 
host-state area.

30.10.4.3  Handling the SYSCALL and SYSRET Instructions
The SYSCALL/SYSRET instructions are similar to SYSENTER/SYSEXIT but are 
designed to operate within the context of a 64-bit flat code segment. They are avail-
able only in 64-bit mode and only when the SCE bit of the IA32_EFER MSR is set. 
SYSCALL/SYSRET invocations can occur from either 32-bit compatibility mode appli-
cation code or from 64-bit application code. Three related MSR registers 
(IA32_STAR, IA32_LSTAR, IA32_FMASK) are used in conjunction with fast system 
calls/returns that use these instructions.

64-Bit hosts which make use of these instructions in the VMM environment will need 
to save the guest state of the above registers on VM exit, load the host state, and 
restore the guest state on VM entry. One possible approach is to use the VM-exit 
MSR-save and MSR-load areas and the VM-entry MSR-load area defined by controls 
in the VMCS. A disadvantage to this approach, however, is that the approach results 
in the unconditional saving, loading, and restoring of MSR registers on each VM exit 
or VM entry.

Depending on the design of the VMM, it is likely that many VM-exits will require no 
fast system call support but the VMM will be burdened with the additional overhead 
of saving and restoring MSRs if the VMM chooses to support fast system call 
uniformly. Further, even if the host intends to support fast system calls during a 
VM-exit, some of the MSR values (such as the setting of the SCE bit in IA32_EFER) 
may not require modification as they may already be set to the appropriate value in 
the guest. 

For performance reasons, a VMM may perform lazy save, load, and restore of these 
MSR values on certain VM exits when it is determined that this is acceptable. The 
lazy-save-load-restore operation can be carried out “manually” using RDMSR and 
WRMSR.

30.10.4.4  Handling the SWAPGS Instruction
The SWAPGS instruction is available only in 64-bit mode. It swaps the contents of 
two specific MSRs (IA32_GSBASE and IA32_KERNEL_GSBASE). The IA32_GSBASE 
MSR shadows the base address portion of the GS descriptor register; the 
IA32_KERNEL_GSBASE MSR holds the base address of the GS segment used by the 
kernel (typically it houses kernel structures). SWAPGS is intended for use with fast 
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system calls when in 64-bit mode to allow immediate access to kernel structures on 
transition to kernel mode.

Similar to SYSCALL/SYSRET, IA-32e mode hosts which use fast system calls may 
need to save, load, and restore these MSR registers on VM exit and VM entry using 
the guidelines discussed in previous paragraphs.

30.10.4.5  Implementation Specific Behavior on Writing to Certain MSRs 
As noted in Section 26.4 and Section 27.4, a processor may prevent writing to 
certain MSRs when loading guest states on VM entries or storing guest states on VM 
exits. This is done to ensure consistent operation. The subset and number of MSRs 
subject to restrictions are implementation specific. For initial VMX implementations, 
there are two MSRs: IA32_BIOS_UPDT_TRIG and IA32_BIOS_SIGN_ID (see Chapter 
34).

30.10.5 Handling Accesses to Reserved MSR Addresses
Privileged software (either a VMM or a guest OS) can access a model specific register 
by specifying addresses in MSR address space. VMMs, however, must prevent a guest 
from accessing reserved MSR addresses in MSR address space. 

Consult Chapter 34 for lists of supported MSRs and their usage. Use the MSR bitmap 
control to cause a VM exit when a guest attempts to access a reserved MSR address. 
The response to such a VM exit should be to reflect #GP(0) back to the guest.

30.11 HANDLING ACCESSES TO CONTROL REGISTERS
Bit fields in control registers (CR0, CR4) control various aspects of processor opera-
tion. The VMM must prevent guests from modifying bits in CR0 or CR4 that are 
reserved at the time the VMM is written. 

Guest/host masks should be used by the VMM to cause VM exits when a guest 
attempts to modify reserved bits. Read shadows should be used to ensure that the 
guest always reads the reserved value (usually 0) for such bits. The VMM response to 
VM exits due to attempts from a guest to modify reserved bits should be to emulate 
the response which the processor would have normally produced (usually a #GP(0)).

30.12 PERFORMANCE CONSIDERATIONS
VMX provides hardware features that may be used for improving processor virtual-
ization performance. VMMs must be designed to use this support properly. The basic 
idea behind most of these performance optimizations of the VMM is to reduce the 
number of VM exits while executing a guest VM. 
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This section lists ways that VMMs can take advantage of the performance enhancing 
features in VMX.
• Read Access to Control Registers. Analysis of common client workloads with 

common PC operating systems in a virtual machine shows a large number of 
VM-exits are caused by control register read accesses (particularly CR0). Reads 
of CR0 and CR4 does not cause VM exits. Instead, they return values from the 
CR0/CR4 read-shadows configured by the VMM in the guest controlling-VMCS 
with the guest-expected values.

• Write Access to Control Registers. Most VMM designs require only certain bits 
of the control registers to be protected from direct guest access. Write access to 
CR0/CR4 registers can be reduced by defining the host-owned and guest-owned 
bits in them through the CR0/CR4 host/guest masks in the VMCS. CR0/CR4 write 
values by the guest are qualified with the mask bits. If they change only guest-
owned bits, they are allowed without causing VM exits. Any write that cause 
changes to host-owned bits cause VM exits and need to be handled by the VMM.

• Access Rights based Page Table protection. For VMM that implement 
access-rights-based page table protection, the VMCS provides a CR3 target value 
list that can be consulted by the processor to determine if a VM exit is required. 
Loading of CR3 with a value matching an entry in the CR3 target-list are allowed 
to proceed without VM exits. The VMM can utilize the CR3 target-list to save 
page-table hierarchies whose state is previously verified by the VMM.

• Page-fault handling. Another common cause for a VM exit is due to page-faults 
induced by guest address remapping done through virtual memory virtualization. 
VMX provides page-fault error-code mask and match fields in the VMCS to filter 
VM exits due to page-faults based on their cause (reflected in the error-code).

30.13 USE OF THE VMX-PREEMPTION TIMER
The VMX-preemption timer allows VMM software to preempt guest VM execution 
after a specified amount of time. Typical VMX-preemption timer usage is to program 
the initial VM quantum into the timer, save the timer value on each successive VM-
exit (using the VM-exit control “save preemption timer value”) and run the VM until 
the timer expires. 

In an alternative scenario, the VMM may use another timer (e.g. the TSC) to track 
the amount of time the VM has run while still using the VMX-preemption timer for VM 
preemption. In this scenario the VMM would not save the VMX-preemption timer on 
each VM-exit but instead would reload the VMX-preemption timer with initial VM 
quantum less the time the VM has already run. This scenario includes all the VM-
entry and VM-exit latencies in the VM run time. 

In both scenarios, on each successive VM-entry the VMX-preemption timer contains 
a smaller value until the VM quantum ends. If the VMX-preemption timer is loaded 
with a value smaller than the VM-entry latency then the VM will not execute any 
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instructions before the timer expires. The VMM must ensure the initial VM quantum is 
greater than the VM-entry latency; otherwise the VM will make no forward progress.
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CHAPTER 31
VIRTUALIZATION OF SYSTEM RESOURCES

31.1 OVERVIEW
When a VMM is hosting multiple guest environments (VMs), it must monitor potential 
interactions between software components using the same system resources. These 
interactions can require the virtualization of resources. This chapter describes the 
virtualization of system resources. These include: debugging facilities, address 
translation, physical memory, and microcode update facilities.

31.2 VIRTUALIZATION SUPPORT FOR DEBUGGING 
FACILITIES

The Intel 64 and IA-32 debugging facilities (see Chapter 17) provide breakpoint 
instructions, exception conditions, register flags, debug registers, control registers 
and storage buffers for functions related to debugging system and application soft-
ware. In VMX operation, a VMM can support debugging system and application soft-
ware from within virtual machines if the VMM properly virtualizes debugging 
facilities. The following list describes features relevant to virtualizing these facilities. 
• The VMM can program the exception-bitmap (see Section 24.6.3) to ensure it 

gets control on debug functions (like breakpoint exceptions occurring while 
executing guest code such as INT3 instructions). Normally, debug exceptions 
modify debug registers (such as DR6, DR7, IA32_DEBUGCTL). However, if debug 
exceptions cause VM exits, exiting occurs before register modification.

• The VMM may utilize the VM-entry event injection facilities described in Section 
26.5 to inject debug or breakpoint exceptions to the guest. See Section 31.2.1 
for a more detailed discussion.

• The MOV-DR exiting control bit in the processor-based VM-execution control field 
(see Section 24.6.2) can be enabled by the VMM to cause VM exits on explicit 
guest access of various processor debug registers (for example, MOV to/from 
DR0-DR7). These exits would always occur on guest access of DR0-DR7 registers 
regardless of the values in CPL, DR4.DE or DR7.GD. Since all guest task switches 
cause VM exits, a VMM can control any indirect guest access or modification of 
debug registers during guest task switches.

• Guest software access to debug-related model-specific registers (such as 
IA32_DEBUGCTL MSR) can be trapped by the VMM through MSR access control 
features (such as the MSR-bitmaps that are part of processor-based VM-
execution controls). See Section 30.10 for details on MSR virtualization.
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• Debug registers such as DR7 and the IA32_DEBUGCTL MSR may be explicitly 
modified by the guest (through MOV-DR or WRMSR instructions) or modified 
implicitly by the processor as part of generating debug exceptions. The current 
values of DR7 and the IA32_DEBUGCTL MSR are saved to guest-state area of 
VMCS on every VM exit. Pending debug exceptions are debug exceptions that are 
recognized by the processor but not yet delivered. See Section 26.6.3 for details 
on pending debug exceptions. 

• DR7 and the IA32-DEBUGCTL MSR are loaded from values in the guest-state area 
of the VMCS on every VM entry. This allows the VMM to properly virtualize debug 
registers when injecting debug exceptions to guest. Similarly, the RFLAGS1 
register is loaded on every VM entry (or pushed to stack if injecting a virtual 
event) from guest-state area of the VMCS. Pending debug exceptions are also 
loaded from guest-state area of VMCS so that they may be delivered after VM 
entry is completed.

31.2.1 Debug Exceptions
If a VMM emulates a guest instruction that would encounter a debug trap (single step 
or data or I/O breakpoint), it should cause that trap to be delivered. The VMM should 
not inject the debug exception using VM-entry event injection, but should set the 
appropriate bits in the pending debug exceptions field. This method will give the trap 
the right priority with respect to other events. (If the exception bitmap was 
programmed to cause VM exits on debug exceptions, the debug trap will cause a VM 
exit. At this point, the trap can be injected during VM entry with the proper priority.)

There is a valid pending debug exception if the BS bit (see Table 24-4) is set, regard-
less of the values of RFLAGS.TF or IA32_DEBUGCTL.BTF. The values of these bits do 
not impact the delivery of pending debug exceptions. 

VMMs should exercise care when emulating a guest write (attempted using WRMSR) 
to IA32_DEBUGCTL to modify BTF if this is occurring with RFLAGS.TF = 1 and after a 
MOV SS or POP SS instruction (for example: while debug exceptions are blocked). 
Note the following:
• Normally, if WRMSR clears BTF while RFLAGS.TF = 1 and with debug exceptions 

blocked, a single-step trap will occur after WRMSR. A VMM emulating such an 
instruction should set the BS bit (see Table 24-4) in the pending debug 
exceptions field before VM entry.

• Normally, if WRMSR sets BTF while RFLAGS.TF = 1 and with debug exceptions 
blocked, neither a single-step trap nor a taken-branch trap can occur after 
WRMSR. A VMM emulating such an instruction should clear the BS bit (see Table 
24-4) in the pending debug exceptions field before VM entry.

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most 
processors that support VMX operation also support Intel 64 architecture. For processors that do 
not support Intel 64 architecture, this notation refers to the 32-bit forms of those registers 
(EAX, EIP, ESP, EFLAGS, etc.).
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31.3 MEMORY VIRTUALIZATION
VMMs must control physical memory to ensure VM isolation and to remap guest 
physical addresses in host physical address space for virtualization. Memory virtual-
ization allows the VMM to enforce control of physical memory and yet support guest 
OSs’ expectation to manage memory address translation.

31.3.1 Processor Operating Modes & Memory Virtualization
Memory virtualization is required to support guest execution in various processor 
operating modes. This includes: protected mode with paging, protected mode with 
no paging, real-mode and any other transient execution modes. VMX allows guest 
operation in protected-mode with paging enabled and in virtual-8086 mode (with 
paging enabled) to support guest real-mode execution. Guest execution in transient 
operating modes (such as in real mode with one or more segment limits greater than 
64-KByte) must be emulated by the VMM. 

Since VMX operation requires processor execution in protected mode with paging 
(through CR0 and CR4 fixed bits), the VMM may utilize paging structures to support 
memory virtualization. To support guest real-mode execution, the VMM may estab-
lish a simple flat page table for guest linear to host physical address mapping. 
Memory virtualization algorithms may also need to capture other guest operating 
conditions (such as guest performing A20M# address masking) to map the resulting 
20-bit effective guest physical addresses. 

31.3.2 Guest & Host Physical Address Spaces
Memory virtualization provides guest software with contiguous guest physical 
address space starting zero and extending to the maximum address supported by 
the guest virtual processor’s physical address width. The VMM utilizes guest physical 
to host physical address mapping to locate all or portions of the guest physical 
address space in host memory. The VMM is responsible for the policies and algo-
rithms for this mapping which may take into account the host system physical 
memory map and the virtualized physical memory map exposed to a guest by the 
VMM. The memory virtualization algorithm needs to accommodate various guest 
memory uses (such as: accessing DRAM, accessing memory-mapped registers of 
virtual devices or core logic functions and so forth). For example:
• To support guest DRAM access, the VMM needs to map DRAM-backed guest 

physical addresses to host-DRAM regions. The VMM also requires the guest to 
host memory mapping to be at page granularity.

• Virtual devices (I/O devices or platform core logic) emulated by the VMM may 
claim specific regions in the guest physical address space to locate memory-
mapped registers. Guest access to these virtual registers may be configured to 
cause page-fault induced VM-exits by marking these regions as always not 
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present. The VMM may handle these VM exits by invoking appropriate virtual 
device emulation code.

31.3.3 Virtualizing Virtual Memory by Brute Force
VMX provides the hardware features required to fully virtualize guest virtual memory 
accesses. VMX allows the VMM to trap guest accesses to the PAT (Page Attribute 
Table) MSR and the MTRR (Memory Type Range Registers). This control allows the 
VMM to virtualize the specific memory type of a guest memory. The VMM may control 
caching by controlling the guest CR0.CRD and CR0.NW bits, as well as by trapping 
guest execution of the INVD instruction. The VMM can trap guest CR3 loads and 
stores, and it may trap guest execution of INVLPG.

Because a VMM must retain control of physical memory, it must also retain control 
over the processor’s address-translation mechanisms. Specifically, this means that 
only the VMM can access CR3 (which contains the base of the page directory) and can 
execute INVLPG (the only other instruction that directly manipulates the TLB). 

At the same time that the VMM controls address translation, a guest operating 
system will also expect to perform normal memory management functions. It will 
access CR3, execute INVLPG, and modify (what it believes to be) page directories 
and page tables. Virtualization of address translation must tolerate and support 
guest attempts to control address translation. 

A simple-minded way to do this would be to ensure that all guest attempts to access 
address-translation hardware trap to the VMM where such operations can be properly 
emulated. It must ensure that accesses to page directories and page tables also get 
trapped. This may be done by protecting these in-memory structures with conven-
tional page-based protection. The VMM can do this because it can locate the page 
directory because its base address is in CR3 and the VMM receives control on any 
change to CR3; it can locate the page tables because their base addresses are in the 
page directory.

Such a straightforward approach is not necessarily desirable. Protection of the in-
memory translation structures may be cumbersome. The VMM may maintain these 
structures with different values (e.g., different page base addresses) than guest soft-
ware. This means that there must be traps on guest attempt to read these structures 
and that the VMM must maintain, in auxiliary data structures, the values to return to 
these reads. There must also be traps on modifications to these structures even if the 
translations they effect are never used. All this implies considerable overhead that 
should be avoided.

31.3.4 Alternate Approach to Memory Virtualization
Guest software is allowed to freely modify the guest page-table hierarchy without 
causing traps to the VMM. Because of this, the active page-table hierarchy might not 
always be consistent with the guest hierarchy. Any potential problems arising from 
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inconsistencies can be solved using techniques analogous to those used by the 
processor and its TLB.

This section describes an alternative approach that allows guest software to freely 
access page directories and page tables. Traps occur on CR3 accesses and executions 
of INVLPG. They also occur when necessary to ensure that guest modifications to the 
translation structures actually take effect. The software mechanisms to support this 
approach are collectively called virtual TLB. This is because they emulate the func-
tionality of the processor’s physical translation look-aside buffer (TLB).

The basic idea behind the virtual TLB is similar to that behind the processor TLB. 
While the page-table hierarchy defines the relationship between physical to linear 
address, it does not directly control the address translation of each memory access. 
Instead, translation is controlled by the TLB, which is occasionally filled by the 
processor with translations derived from the page-table hierarchy. With a virtual TLB, 
the page-table hierarchy established by guest software (specifically, the guest oper-
ating system) does not control translation, either directly or indirectly. Instead, 
translation is controlled by the processor (through its TLB) and by the VMM (through 
a page-table hierarchy that it maintains).

Specifically, the VMM maintains an alternative page-table hierarchy that effectively 
caches translations derived from the hierarchy maintained by guest software. The 
remainder of this document refers to the former as the active page-table hierarchy 
(because it is referenced by CR3 and may be used by the processor to load its TLB) 
and the latter as the guest page-table hierarchy (because it is maintained by guest 
software). The entries in the active hierarchy may resemble the corresponding 
entries in the guest hierarchy in some ways and may differ in others.

Guest software is allowed to freely modify the guest page-table hierarchy without 
causing VM exits to the VMM. Because of this, the active page-table hierarchy might 
not always be consistent with the guest hierarchy. Any potential problems arising 
from any inconsistencies can be solved using techniques analogous to those used by 
the processor and its TLB. Note the following:
• Suppose the guest page-table hierarchy allows more access than active hierarchy 

(for example: there is a translation for a linear address in the guest hierarchy but 
not in the active hierarchy); this is analogous to a situation in which the TLB 
allows less access than the page-table hierarchy. If an access occurs that would 
be allowed by the guest hierarchy but not the active one, a page fault occurs; this 
is analogous to a TLB miss. The VMM gains control (as it handles all page faults) 
and can update the active page-table hierarchy appropriately; this corresponds 
to a TLB fill.

• Suppose the guest page-table hierarchy allows less access than the active 
hierarchy; this is analogous to a situation in which the TLB allows more access 
than the page-table hierarchy. This situation can occur only if the guest operating 
system has modified a page-table entry to reduce access (for example: by 
marking it not-present). Because the older, more permissive translation may 
have been cached in the TLB, the processor is architecturally permitted to use the 
older translation and allow more access. Thus, the VMM may (through the active 
page-table hierarchy) also allow greater access. For the new, less permissive 
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translation to take effect, guest software should flush any older translations from 
the TLB either by executing INVLPG or by loading CR3. Because both these 
operations will cause a trap to the VMM, the VMM will gain control and can 
remove from the active page-table hierarchy the translations indicated by guest 
software (the translation of a specific linear address for INVLPG or all translations 
for a load of CR3).

As noted previously, the processor reads the page-table hierarchy to cache transla-
tions in the TLB. It also writes to the hierarchy to main the accessed (A) and dirty (D) 
bits in the PDEs and PTEs. The virtual TLB emulates this behavior as follows:
• When a page is accessed by guest software, the A bit in the corresponding PTE 

(or PDE for a 4-MByte page) in the active page-table hierarchy will be set by the 
processor (the same is true for PDEs when active page tables are accessed by the 
processor). For guest software to operate properly, the VMM should update the A 
bit in the guest entry at this time. It can do this reliably if it keeps the active PTE 
(or PDE) marked not-present until it has set the A bit in the guest entry.

• When a page is written by guest software, the D bit in the corresponding PTE (or 
PDE for a 4-MByte page) in the active page-table hierarchy will be set by the 
processor. For guest software to operate properly, the VMM should update the D 
bit in the guest entry at this time. It can do this reliably if it keeps the active PTE 
(or PDE) marked read-only until it has set the D bit in the guest entry. This 
solution is valid for guest software running at privilege level 3; support for more 
privileged guest software is described in Section 31.3.5.

31.3.5 Details of Virtual TLB Operation
This section describes in more detail how a VMM could support a virtual TLB. It 
explains how an active page-table hierarchy is initialized and how it is maintained in 
response to page faults, uses of INVLPG, and accesses to CR3. The mechanisms 
described here are the minimum necessary. They may not result in the best perfor-
mance.
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As noted above, the VMM maintains an active page-table hierarchy for each virtual 
machine that it supports. It also maintains, for each machine, values that the 
machine expects for control registers CR0, CR2, CR3, and CR4 (they control address 
translation). These values are called the guest control registers.

In general, the VMM selects the physical-address space that is allocated to guest 
software. The term guest address refers to an address installed by guest software in 
the guest CR3, in a guest PDE (as a page table base address or a page base address), 
or in a guest PTE (as a page base address). While guest software considers these to 
be specific physical addresses, the VMM may map them differently.

31.3.5.1  Initialization of Virtual TLB
To enable the Virtual TLB scheme, the VMCS must be set up to trigger VM exits on:
• All writes to CR3 (the CR3-target count should be 0) or the paging-mode bits in 

CR0 and CR4 (using the CR0 and CR4 guest/host masks)
• Page-fault (#PF) exceptions
• Execution of INVLPG

Figure 31-1.  Virtual TLB Scheme
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When guest software first enables paging, the VMM creates an aligned 4-KByte active 
page directory that is invalid (all entries marked not-present). This invalid directory 
is analogous to an empty TLB. 

31.3.5.2  Response to Page Faults
Page faults can occur for a variety of reasons. In some cases, the page fault alerts the 
VMM to an inconsistency between the active and guest page-table hierarchy. In such 
cases, the VMM can update the former and re-execute the faulting instruction. In 
other cases, the hierarchies are already consistent and the fault should be handled 
by the guest operating system. The VMM can detect this and use an established 
mechanism for raising a page fault to guest software. 

The VMM can handle a page fault by following these steps (The steps below assume 
the guest is operating in a paging mode without PAE. Analogous steps to handle 
address translation using PAE or four-level paging mechanisms can be derived by 
VMM developers according to the paging behavior defined in Chapter 3 of the Intel® 
64 and IA-32 Architectures Software Developer’s Manual, Volume 3A):

1. First consult the active PDE, which can be located using the upper 10 bits of the 
faulting address and the current value of CR3. The active PDE is the source of the 
fault if it is marked not present or if its R/W bit and U/S bits are inconsistent with 
the attempted guest access (the guest privilege level and the values of CR0.WP 
and CR4.SMEP should also be taken into account).

2. If the active PDE is the source of the fault, consult the corresponding guest PDE 
using the same 10 bits from the faulting address and the physical address that 
corresponds to the guest address in the guest CR3. If the guest PDE would cause 
a page fault (for example: it is marked not present), then raise a page fault to the 
guest operating system. 
The following steps assume that the guest PDE would not have caused a page 
fault.

3. If the active PDE is the source of the fault and the guest PDE contains, as page-
table base address (if PS = 0) or page base address (PS = 1), a guest address 
that the VMM has chosen not to support; then raise a machine check (or some 
other abort) to the guest operating system. 
The following steps assume that the guest address in the guest PDE is supported 
for the virtual machine.

4. If the active PDE is marked not-present, then set the active PDE to correspond to 
guest PDE as follows:

a. If the active PDE contains a page-table base address (if PS = 0), then 
allocate an aligned 4-KByte active page table marked completely invalid and 
set the page-table base address in the active PDE to be the physical address 
of the newly allocated page table.
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b. If the active PDE contains a page base address (if PS = 1), then set the page 
base address in the active PDE to be the physical page base address that 
corresponds to the guest address in the guest PDE.

c. Set the P, U/S, and PS bits in the active PDE to be identical to those in the 
guest PDE.

d. Set the PWT, PCD, and G bits according to the policy of the VMM.

e. Set A = 1 in the guest PDE.

f. If D = 1 in the guest PDE or PS = 0 (meaning that this PDE refers to a page 
table), then set the R/W bit in the active PDE as in the guest PDE.

g. If D = 0 in the guest PDE, PS = 1 (this is a 4-MByte page), and the attempted 
access is a write; then set R/W in the active PDE as in the guest PDE and set 
D = 1 in the guest PDE.

h. If D = 0 in the guest PDE, PS = 1, and the attempted access is not a write; 
then set R/W = 0 in the active PDE.

i. After modifying the active PDE, re-execute the faulting instruction. 
The remaining steps assume that the active PDE is already marked present.

5. If the active PDE is the source of the fault, the active PDE refers to a 4-MByte 
page (PS = 1), the attempted access is a write; D = 0 in the guest PDE, and the 
active PDE has caused a fault solely because it has R/W = 0; then set R/W in the 
active PDE as in the guest PDE; set D = 1 in the guest PDE, and re-execute the 
faulting instruction.

6. If the active PDE is the source of the fault and none of the above cases apply, 
then raise a page fault of the guest operating system. 
The remaining steps assume that the source of the original page fault is not the 
active PDE.

NOTE
It is possible that the active PDE might be causing a fault even 
though the guest PDE would not. However, this can happen only if the 
guest operating system increased access in the guest PDE and did 
not take action to ensure that older translations were flushed from 
the TLB. Such translations might have caused a page fault if the 
guest software were running on bare hardware.

7. If the active PDE refers to a 4-MByte page (PS = 1) but is not the source of the 
fault, then the fault resulted from an inconsistency between the active page-table 
hierarchy and the processor’s TLB. Since the transition to the VMM caused an 
address-space change and flushed the processor’s TLB, the VMM can simply re-
execute the faulting instruction. 
The remaining steps assume that PS = 0 in the active and guest PDEs.
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8. Consult the active PTE, which can be located using the next 10 bits of the faulting 
address (bits 21–12) and the physical page-table base address in the active PDE. 
The active PTE is the source of the fault if it is marked not-present or if its R/W bit 
and U/S bits are inconsistent with the attempted guest access (the guest 
privilege level and the values of CR0.WP and CR4.SMEP should also be taken into 
account).

9. If the active PTE is not the source of the fault, then the fault has resulted from an 
inconsistency between the active page-table hierarchy and the processor’s TLB. 
Since the transition to the VMM caused an address-space change and flushed the 
processor’s TLB, the VMM simply re-executes the faulting instruction.
The remaining steps assume that the active PTE is the source of the fault.

10. Consult the corresponding guest PTE using the same 10 bits from the faulting 
address and the physical address that correspond to the guest page-table base 
address in the guest PDE. If the guest PTE would cause a page fault (it is marked 
not-present), the raise a page fault to the guest operating system. 
The following steps assume that the guest PTE would not have caused a page 
fault.

11. If the guest PTE contains, as page base address, a physical address that is not 
valid for the virtual machine being supported; then raise a machine check (or 
some other abort) to the guest operating system. 
The following steps assume that the address in the guest PTE is valid for the 
virtual machine.

12. If the active PTE is marked not-present, then set the active PTE to correspond to 
guest PTE:

a. Set the page base address in the active PTE to be the physical address that 
corresponds to the guest page base address in the guest PTE.

b. Set the P, U/S, and PS bits in the active PTE to be identical to those in the 
guest PTE.

c. Set the PWT, PCD, and G bits according to the policy of the VMM.

d. Set A = 1 in the guest PTE.

e. If D = 1 in the guest PTE, then set the R/W bit in the active PTE as in the 
guest PTE.

f. If D = 0 in the guest PTE and the attempted access is a write, then set R/W in 
the active PTE as in the guest PTE and set D = 1 in the guest PTE.

g. If D = 0 in the guest PTE and the attempted access is not a write, then set 
R/W = 0 in the active PTE.

h. After modifying the active PTE, re-execute the faulting instruction. 
The remaining steps assume that the active PTE is already marked present.

13. If the attempted access is a write, D = 0 (not dirty) in the guest PTE and the 
active PTE has caused a fault solely because it has R/W = 0 (read-only); then set 
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R/W in the active PTE as in the guest PTE, set D = 1 in the guest PTE and re-
execute the faulting instruction.

14. If none of the above cases apply, then raise a page fault of the guest operating 
system.

31.3.5.3  Response to Uses of INVLPG
Operating-systems can use INVLPG to flush entries from the TLB. This instruction 
takes a linear address as an operand and software expects any cached translations 
for the address to be flushed. A VMM should set the processor-based VM-execution 
control “INVLPG exiting” to 1 so that any attempts by a privileged guest to execute 
INVLPG will trap to the VMM. The VMM can then modify the active page-table hier-
archy to emulate the desired effect of the INVLPG. 

The following steps are performed. Note that these steps are performed only if the 
guest invocation of INVLPG would not fault and only if the guest software is running 
at privilege level 0:

1. Locate the relevant active PDE using the upper 10 bits of the operand address 
and the current value of CR3. If the PDE refers to a 4-MByte page (PS = 1), then 
set P = 0 in the PDE.

2. If the PDE is marked present and refers to a page table (PS = 0), locate the 
relevant active PTE using the next 10 bits of the operand address (bits 21–12) 
and the page-table base address in the PDE. Set P = 0 in the PTE. Examine all 
PTEs in the page table; if they are now all marked not-present, de-allocate the 
page table and set P = 0 in the PDE (this step may be optional).

31.3.5.4  Response to CR3 Writes
A guest operating system may attempt to write to CR3. Any write to CR3 implies a 
TLB flush and a possible page table change. The following steps are performed:

1. The VMM notes the new CR3 value (used later to walk guest page tables) and 
emulates the write.

2. The VMM allocates a new PD page, with all invalid entries.

3. The VMM sets actual processor CR3 register to point to the new PD page.

The VMM may, at this point, speculatively fill in VTLB mappings for performance 
reasons.

31.4 MICROCODE UPDATE FACILITY
The microcode code update facility may be invoked at various points during the oper-
ation of a platform. Typically, the BIOS invokes the facility on all processors during 
the BIOS boot process. This is sufficient to boot the BIOS and operating system. As a 
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microcode update more current than the system BIOS may be available, system soft-
ware should provide another mechanism for invoking the microcode update facility. 
The implications of the microcode update mechanism on the design of the VMM are 
described in this section.

NOTE
Microcode updates must not be performed during VMX non-root 
operation. Updates performed in VMX non-root operation may result 
in unpredictable system behavior.

31.4.1 Early Load of Microcode Updates
The microcode update facility may be invoked early in the VMM or guest OS boot 
process. Loading the microcode update early provides the opportunity to correct 
errata affecting the boot process but the technique generally requires a reboot of the 
software.

A microcode update may be loaded from the OS or VMM image loader. Typically, such 
image loaders do not run on every logical processor, so this method effects only one 
logical processor. Later in the VMM or OS boot process, after bringing all application 
processors on-line, the VMM or OS needs to invoke the microcode update facility for 
all application processors.

Depending on the order of the VMM and the guest OS boot, the microcode update 
facility may be invoked by the VMM or the guest OS. For example, if the guest OS 
boots first and then loads the VMM, the guest OS may invoke the microcode update 
facility on all the logical processors. If a VMM boots before its guests, then the VMM 
may invoke the microcode update facility during its boot process. In both cases, the 
VMM or OS should invoke the microcode update facilities soon after performing the 
multiprocessor startup.

In the early load scenario, microcode updates may be contained in the VMM or OS 
image or, the VMM or OS may manage a separate database or file of microcode 
updates. Maintaining a separate microcode update image database has the advan-
tage of reducing the number of required VMM or OS releases as a result of microcode 
update releases.

31.4.2 Late Load of Microcode Updates
A microcode update may be loaded during normal system operation. This allows 
system software to activate the microcode update at anytime without requiring a 
system reboot. This scenario does not allow the microcode update to correct errata 
which affect the processor’s boot process but does allow high-availability systems to 
activate microcode updates without interrupting the availability of the system. In this 
late load scenario, either the VMM or a designated guest may load the microcode 
update. If the guest is loading the microcode update, the VMM must make sure that 
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the entire guest memory buffer (which contains the microcode update image) will not 
cause a page fault when accessed.

If the VMM loads the microcode update, then the VMM must have access to the 
current set of microcode updates. These updates could be part of the VMM image or 
could be contained in a separate microcode update image database (for example: a 
database file on disk or in memory). Again, maintaining a separate microcode update 
image database has the advantage of reducing the number of required VMM or OS 
releases as a result of microcode update releases.

The VMM may wish to prevent a guest from loading a microcode update or may wish 
to support the microcode update requested by a guest using emulation (without 
actually loading the microcode update). To prevent microcode update loading, the 
VMM may return a microcode update signature value greater than the value of 
IA32_BIOS_SIGN_ID MSR. A well behaved guest will not attempt to load an older 
microcode update. The VMM may also drop the guest attempts to write to 
IA32_BIOS_UPDT_TRIG MSR, preventing the guest from loading any microcode 
updates. Later, when the guest queries IA32_BIOS_SIGN_ID MSR, the VMM could 
emulate the microcode update signature that the guest expects.

In general, loading a microcode update later will limit guest software’s visibility of 
features that may be enhanced by a microcode update.
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CHAPTER 32
HANDLING BOUNDARY CONDITIONS IN A VIRTUAL

MACHINE MONITOR

32.1 OVERVIEW
This chapter describes what a VMM must consider when handling exceptions, inter-
rupts, error conditions, and transitions between activity states.

32.2 INTERRUPT HANDLING IN VMX OPERATION 
The following bullets summarize VMX support for handling interrupts:
• Control of processor exceptions. The VMM can get control on specific guest 

exceptions through the exception-bitmap in the guest controlling VMCS. The 
exception bitmap is a 32-bit field that allows the VMM to specify processor 
behavior on specific exceptions (including traps, faults, and aborts). Setting a 
specific bit in the exception bitmap implies VM exits will be generated when the 
corresponding exception occurs. Any exceptions that are programmed not to 
cause VM exits are delivered directly to the guest through the guest IDT. The 
exception bitmap also controls execution of relevant instructions such as BOUND, 
INTO and INT3. VM exits on page-faults are treated in such a way the page-fault 
error code is qualified through the page-fault-error-code mask and match fields 
in the VMCS. 

• Control over triple faults. If a fault occurs while attempting to call a double-
fault handler in the guest and that fault is not configured to cause a VM exit in the 
exception bitmap, the resulting triple fault causes a VM exit. 

• Control of external interrupts. VMX allows both host and guest control of 
external interrupts through the “external-interrupt exiting” VM execution control. 
If the control is 0, external-interrupts do not cause VM exits and the interrupt 
delivery is masked by the guest programmed RFLAGS.IF value.1 If the control is 
1, external-interrupts causes VM exits and are not masked by RFLAGS.IF. The 
VMM can identify VM exits due to external interrupts by checking the exit reason 
for an “external interrupt” (value = 1).

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most 
processors that support VMX operation also support Intel 64 architecture. For processors that do 
not support Intel 64 architecture, this notation refers to the 32-bit forms of those registers 
(EAX, EIP, ESP, EFLAGS, etc.).
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• Control of other events. There is a pin-based VM-execution control that 
controls system behavior (exit or no-exit) for NMI events. Most VMM usages will 
need handling of NMI external events in the VMM and hence will specify host 
control of these events.
Some processors also support a pin-based VM-execution control called “virtual 
NMIs.” When this control is set, NMIs cause VM exits, but the processor tracks 
guest readiness for virtual NMIs. This control interacts with the “NMI-window 
exiting” VM-execution control (see below).
INIT and SIPI events always cause VM exits.

• Acknowledge interrupt on exit. The “acknowledge interrupt on exit” VM-exit 
control in the controlling VMCS controls processor behavior for external interrupt 
acknowledgement. If the control is 1, the processor acknowledges the interrupt 
controller to acquire the interrupt vector upon VM exit, and stores the vector in 
the VM-exit interruption-information field. If the control is 0, the external 
interrupt is not acknowledged during VM exit. Since RFLAGS.IF is automatically 
cleared on VM exits due to external interrupts, VMM re-enabling of interrupts 
(setting RFLAGS.IF = 1) initiates the external interrupt acknowledgement and 
vectoring of the external interrupt through the monitor/host IDT.

• Event-masking Support. VMX captures the masking conditions of specific 
events while in VMX non-root operation through the interruptibility-state field in 
the guest-state area of the VMCS.
This feature allows proper virtualization of various interrupt blocking states, such 
as: (a) blocking of external interrupts for the instruction following STI; (b) 
blocking of interrupts for the instruction following a MOV-SS or POP-SS 
instruction; (c) SMI blocking of subsequent SMIs until the next execution of RSM; 
and (d) NMI/SMI blocking of NMIs until the next execution of IRET or RSM.
INIT and SIPI events are treated specially. INIT assertions are always blocked in 
VMX root operation and while in SMM, and unblocked otherwise. SIPI events are 
always blocked in VMX root operation.
The interruptibility state is loaded from the VMCS guest-state area on every 
VM entry and saved into the VMCS on every VM exit.

• Event injection. VMX operation allows injecting interruptions to a guest virtual 
machine through the use of VM-entry interrupt-information field in VMCS. 
Injectable interruptions include external interrupts, NMI, processor exceptions, 
software generated interrupts, and software traps. If the interrupt-information 
field indicates a valid interrupt, exception or trap event upon the next VM entry; 
the processor will use the information in the field to vector a virtual interruption 
through the guest IDT after all guest state and MSRs are loaded. Delivery 
through the guest IDT emulates vectoring in non-VMX operation by doing the 
normal privilege checks and pushing appropriate entries to the guest stack 
(entries may include RFLAGS, EIP and exception error code). A VMM with host 
control of NMI and external interrupts can use the event-injection facility to 
forward virtual interruptions to various guest virtual machines.
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• Interrupt-window exiting. When set to 1, the “interrupt-window exiting” VM-
execution control (Section 24.6.2) causes VM exits when guest RFLAGS.IF is 1 
and no other conditions block external interrupts. A VM exit occurs at the 
beginning of any instruction at which RFLAGS.IF = 1 and on which the interrupt-
ibility state of the guest would allow delivery of an interrupt. For example: when 
the guest executes an STI instruction, RFLAGS = 1, and if at the completion of 
next instruction the interruptibility state masking due to STI is removed; a 
VM exit occurs if the “interrupt-window exiting” VM-execution control is 1. This 
feature allows a VMM to queue a virtual interrupt to the guest when the guest is 
not in an interruptible state. The VMM can set the “interrupt-window exiting” VM-
execution control for the guest and depend on a VM exit to know when the guest 
becomes interruptible (and, therefore, when it can inject a virtual interrupt). The 
VMM can detect such VM exits by checking for the basic exit reason “interrupt-
window” (value = 7). If this feature is not used, the VMM will need to poll and 
check the interruptibility state of the guest to deliver virtual interrupts. 

• NMI-window exiting. If the “virtual NMIs” VM-execution is set, the processor 
tracks virtual-NMI blocking. The “NMI-window exiting” VM-execution control 
(Section 24.6.2) causes VM exits when there is no virtual-NMI blocking. For 
example, after execution of the IRET instruction, a VM exit occurs if the “NMI-
window exiting” VM-execution control is 1. This feature allows a VMM to queue a 
virtual NMI to a guest when the guest is not ready to receive NMIs. The VMM can 
set the “NMI-window exiting” VM-execution control for the guest and depend on 
a VM exit to know when the guest becomes ready for NMIs (and, therefore, when 
it can inject a virtual NMI). The VMM can detect such VM exits by checking for the 
basic exit reason “NMI window” (value = 8). If this feature is not used, the VMM 
will need to poll and check the interruptibility state of the guest to deliver virtual 
NMIs. 

• VM-exit information. The VM-exit information fields provide details on VM exits 
due to exceptions and interrupts. This information is provided through the exit-
qualification, VM-exit-interruption-information, instruction-length and inter-
ruption-error-code fields. Also, for VM exits that occur in the course of vectoring 
through the guest IDT, information about the event that was being vectored 
through the guest IDT is provided in the IDT-vectoring-information and IDT-
vectoring-error-code fields. These information fields allow the VMM to identify 
the exception cause and to handle it properly.

32.3 EXTERNAL INTERRUPT VIRTUALIZATION
VMX operation allows both host and guest control of external interrupts. While guest 
control of external interrupts might be suitable for partitioned usages (different CPU 
cores/threads and I/O devices partitioned to independent virtual machines), most 
VMMs built upon VMX are expected to utilize host control of external interrupts. The 
rest of this section describes a general host-controlled interrupt virtualization archi-
tecture for standard PC platforms through the use of VMX supported features.
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With host control of external interrupts, the VMM (or the host OS in a hosted VMM 
model) manages the physical interrupt controllers in the platform and the interrupts 
generated through them. The VMM exposes software-emulated virtual interrupt 
controller devices (such as PIC and APIC) to each guest virtual machine instance.

32.3.1 Virtualization of Interrupt Vector Space
The Intel 64 and IA-32 architectures use 8-bit vectors of which 224 (20H – FFH) are 
available for external interrupts. Vectors are used to select the appropriate entry in 
the interrupt descriptor table (IDT). VMX operation allows each guest to control its 
own IDT. Host vectors refer to vectors delivered by the platform to the processor 
during the interrupt acknowledgement cycle. Guest vectors refer to vectors 
programmed by a guest to select an entry in its guest IDT. Depending on the I/O 
resource management models supported by the VMM design, the guest vector space 
may or may not overlap with the underlying host vector space. 
• Interrupts from virtual devices: Guest vector numbers for virtual interrupts 

delivered to guests on behalf of emulated virtual devices have no direct relation 
to the host vector numbers of interrupts from physical devices on which they are 
emulated. A guest-vector assigned for a virtual device by the guest operating 
environment is saved by the VMM and utilized when injecting virtual interrupts on 
behalf of the virtual device.

• Interrupts from assigned physical devices: Hardware support for I/O device 
assignment allows physical I/O devices in the host platform to be assigned 
(direct-mapped) to VMs. Guest vectors for interrupts from direct-mapped 
physical devices take up equivalent space from the host vector space, and 
require the VMM to perform host-vector to guest-vector mapping for interrupts. 

Figure 32-1 illustrates the functional relationship between host external interrupts 
and guest virtual external interrupts. Device A is owned by the host and generates 
external interrupts with host vector X. The host IDT is set up such that the interrupt 
service routine (ISR) for device driver A is hooked to host vector X as normal. VMM 
emulates (over device A) virtual device C in software which generates virtual inter-
rupts to the VM with guest expected vector P. Device B is assigned to a VM and gener-
ates external interrupts with host vector Y. The host IDT is programmed to hook the 
VMM interrupt service routine (ISR) for assigned devices for vector Y, and the VMM 
handler injects virtual interrupt with guest vector Q to the VM. The guest operating 
system programs the guest to hook appropriate guest driver’s ISR to vectors P 
and Q.
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32.3.2 Control of Platform Interrupts
To meet the interrupt virtualization requirements, the VMM needs to take ownership 
of the physical interrupts and the various interrupt controllers in the platform. VMM 
control of physical interrupts may be enabled through the host-control settings of the 
“external-interrupt exiting” VM-execution control. To take ownership of the platform 
interrupt controllers, the VMM needs to expose the virtual interrupt controller devices 
to the virtual machines and restrict guest access to the platform interrupt controllers. 

Intel 64 and IA-32 platforms can support three types of external interrupt control 
mechanisms: Programmable Interrupt Controllers (PIC), Advanced Programmable 

Figure 32-1.  Host External Interrupts and Guest Virtual Interrupts
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Interrupt Controllers (APIC), and Message Signaled Interrupts (MSI). The following 
sections provide information on the virtualization of each of these mechanisms.

32.3.2.1  PIC Virtualization
Typical PIC-enabled platform implementations support dual 8259 interrupt control-
lers cascaded as master and slave controllers. They supporting up to 15 possible 
interrupt inputs. The 8259 controllers are programmed through initialization 
command words (ICWx) and operation command words (OCWx) accessed through 
specific I/O ports. The various interrupt line states are captured in the PIC through 
interrupt requests, interrupt service routines and interrupt mask registers. 

Guest access to the PIC I/O ports can be restricted by activating I/O bitmaps in the 
guest controlling-VMCS (activate-I/O-bitmap bit in VM-execution control field set 
to 1) and pointing the I/O-bitmap physical addresses to valid bitmap regions. Bits 
corresponding to the PIC I/O ports can be cleared to cause a VM exit on guest access 
to these ports. 

If the VMM is not supporting direct access to any I/O ports from a guest, it can set the 
unconditional-I/O-exiting in the VM-execution control field instead of activating I/O 
bitmaps. The exit-reason field in VM-exit information allows identification of VM exits 
due to I/O access and can provide an exit-qualification to identify details about the 
guest I/O operation that caused the VM exit. 

The VMM PIC virtualization needs to emulate the platform PIC functionality including 
interrupt priority, mask, request and service states, and specific guest programmed 
modes of PIC operation.

32.3.2.2  xAPIC Virtualization
Most modern Intel 64 and IA-32 platforms include support for an APIC. While the 
standard PIC is intended for use on uniprocessor systems, APIC can be used in either 
uniprocessor or multi-processor systems.

APIC based interrupt control consists of two physical components: the interrupt 
acceptance unit (Local APIC) which is integrated with the processor, and the interrupt 
delivery unit (I/O APIC) which is part of the I/O subsystem. APIC virtualization 
involves protecting the platform’s local and I/O APICs and emulating them for the 
guest. 

32.3.2.3  Local APIC Virtualization
The local APIC is responsible for the local interrupt sources, interrupt acceptance, 
dispensing interrupts to the logical processor, and generating inter-processor inter-
rupts. Software interacts with the local APIC by reading and writing its memory-
mapped registers residing within a 4-KByte uncached memory region with base 
address stored in the IA32_APIC_BASE MSR. Since the local APIC registers are 
memory-mapped, the VMM can utilize memory virtualization techniques (such as 
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page-table virtualization) to trap guest accesses to the page frame hosting the 
virtual local APIC registers. 

Local APIC virtualization in the VMM needs to emulate the various local APIC opera-
tions and registers, such as: APIC identification/format registers, the local vector 
table (LVT), the interrupt command register (ICR), interrupt capture registers (TMR, 
IRR and ISR), task and processor priority registers (TPR, PPR), the EOI register and 
the APIC-timer register. Since local APICs are designed to operate with non-specific 
EOI, local APIC emulation also needs to emulate broadcast of EOI to the guest’s 
virtual I/O APICs for level triggered virtual interrupts. 

A local APIC allows interrupt masking at two levels: (1) mask bit in the local vector 
table entry for local interrupts and (2) raising processor priority through the TPR 
registers for masking lower priority external interrupts. The VMM needs to compre-
hend these virtual local APIC mask settings as programmed by the guest in addition 
to the guest virtual processor interruptibility state (when injecting APIC routed 
external virtual interrupts to a guest VM). 

VMX provides several features which help the VMM to virtualize the local APIC. These 
features allow many of guest TPR accesses (using CR8 only) to occur without VM 
exits to the VMM:
• The VMCS contains a “virtual-APIC address” field. This 64-bit field is the physical 

address of the 4-KByte virtual APIC page (4-KByte aligned). The virtual-APIC 
page contains a TPR shadow, which is accessed by the MOV CR8 instruction. The 
TPR shadow comprises bits 7:4 in byte 80H of the virtual-APIC page.

• The TPR threshold: bits 3:0 of this 32-bit field determine the threshold below 
which the TPR shadow cannot fall. A VM exit will occur after an execution of MOV 
CR8 that reduces the TPR shadow below this value.

• The processor-based VM-execution controls field contains a “use TPR shadow” bit 
and a “CR8-store exiting” bit. If the “use TPR shadow” VM-execution control is 1 
and the “CR8-store exiting” VM-execution control is 0, then a MOV from CR8 
reads from the TPR shadow. If the “CR8-store exiting” VM-execution control is 1, 
then MOV from CR8 causes a VM exit; the “use TPR shadow” VM-execution 
control is ignored in this case.

• The processor-based VM-execution controls field contains a “CR8-load exiting” 
bit. If the “use TPR shadow” VM-execution control is set and the “CR8-load 
exiting” VM-execution control is clear, then MOV to CR8 writes to the “TPR 
shadow”. A VM exit will occur after this write if the value written is below the TPR 
threshold. If the “CR8-load exiting” VM-execution control is set, then MOV to CR8 
causes a VM exit; the “use TPR shadow” VM-execution control is ignored in this 
case.

32.3.2.4  I/O APIC Virtualization
The I/O APIC registers are typically mapped to a 1 MByte region where each I/O APIC 
is allocated a 4K address window within this range. The VMM may utilize physical 
memory virtualization to trap guest accesses to the virtual I/O APIC memory-
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mapped registers. The I/O APIC virtualization needs to emulate the various I/O APIC 
operations and registers such as identification/version registers, indirect-I/O-access 
registers, EOI register, and the I/O redirection table. I/O APIC virtualization also 
need to emulate various redirection table entry settings such as delivery mode, 
destination mode, delivery status, polarity, masking, and trigger mode programmed 
by the guest and track remote-IRR state on guest EOI writes to various virtual local 
APICs.

32.3.2.5  Virtualization of Message Signaled Interrupts
The PCI Local Bus Specification (Rev. 2.2) introduces the concept of message 
signaled interrupts (MSI). MSI enable PCI devices to request service by writing a 
system-specified message to a system specified address. The transaction address 
specifies the message destination while the transaction data specifies the interrupt 
vector, trigger mode and delivery mode. System software is expected to configure 
the message data and address during MSI device configuration, allocating one or 
more no-shared messages to MSI capable devices. Chapter 10, “Advanced Program-
mable Interrupt Controller (APIC),” specifies the MSI message address and data 
register formats to be followed on Intel 64 and IA-32 platforms. While MSI is optional 
for conventional PCI devices, it is the preferred interrupt mechanism for PCI-Express 
devices. 

Since the MSI address and data are configured through PCI configuration space, to 
control these physical interrupts the VMM needs to assume ownership of PCI config-
uration space. This allows the VMM to capture the guest configuration of message 
address and data for MSI-capable virtual and assigned guest devices. PCI configura-
tion transactions on PC-compatible systems are generated by software through two 
different methods: 

1. The standard CONFIG_ADDRESS/CONFIG_DATA register mechanism 
(CFCH/CF8H ports) as defined in the PCI Local Bus Specification.

2. The enhanced flat memory-mapped (MEMCFG) configuration mechanism as 
defined in the PCI-Express Base Specification (Rev. 1.0a.). 

The CFCH/CF8H configuration access from guests can be trapped by the VMM 
through use of I/O-bitmap VM-execution controls. The memory-mapped PCI-Express 
MEMCFG guest configuration accesses can be trapped by VMM through physical 
memory virtualization.

32.3.3 Examples of Handling of External Interrupts
The following sections illustrate interrupt processing in a VMM (when used to support 
the external interrupt virtualization requirements). 
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32.3.3.1  Guest Setup
The VMM sets up the guest to cause a VM exit to the VMM on external interrupts. This 
is done by setting the “external-interrupt exiting” VM-execution control in the guest 
controlling-VMCS. 

32.3.3.2  Processor Treatment of External Interrupt
Interrupts are automatically masked by hardware in the processor on VM exit by 
clearing RFLAGS.IF. The exit-reason field in VMCS is set to 1 to indicate an external 
interrupt as the exit reason. 

If the VMM is utilizing the acknowledge-on-exit feature (by setting the “acknowledge 
interrupt on exit” VM-exit control), the processor acknowledges the interrupt, 
retrieves the host vector, and saves the interrupt in the VM-exit-interruption-infor-
mation field (in the VM-exit information region of the VMCS) before transitioning 
control to the VMM. 

32.3.3.3  Processing of External Interrupts by VMM
Upon VM exit, the VMM can determine the exit cause of an external interrupt by 
checking the exit-reason field (value = 1) in VMCS. If the acknowledge-interrupt-on-
exit control (see Section 24.7.1) is enabled, the VMM can use the saved host vector 
(in the exit-interruption-information field) to switch to the appropriate interrupt 
handler. If the “acknowledge interrupt on exit” VM-exit control is 0, the VMM may re-
enable interrupts (by setting RFLAGS.IF) to allow vectoring of external interrupts 
through the monitor/host IDT. 

The following steps may need to be performed by the VMM to process an external 
interrupt:
• Host Owned I/O Devices: For host-owned I/O devices, the interrupting device 

is owned by the VMM (or hosting OS in a hosted VMM). In this model, the 
interrupt service routine in the VMM/host driver is invoked and, upon ISR 
completion, the appropriate write sequences (TPR updates, EOI etc.) to 
respective interrupt controllers are performed as normal. If the work completion 
indicated by the driver implies virtual device activity, the VMM runs the virtual 
device emulation. Depending on the device class, physical device activity could 
imply activity by multiple virtual devices mapped over the device. For each 
affected virtual device, the VMM injects a virtual external interrupt event to 
respective guest virtual machines. The guest driver interacts with the emulated 
virtual device to process the virtual interrupt. The interrupt controller emulation 
in the VMM supports various guest accesses to the VMM’s virtual interrupt 
controller.

• Guest Assigned I/O Devices: For assigned I/O devices, either the VMM uses a 
software proxy or it can directly map the physical device to the assigned VM. In 
both cases, servicing of the interrupt condition on the physical device is initiated 
by the driver running inside the guest VM. With host control of external 
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interrupts, interrupts from assigned physical devices cause VM exits to the VMM 
and vectoring through the host IDT to the registered VMM interrupt handler. To 
unblock delivery of other low priority platform interrupts, the VMM interrupt 
handler must mask the interrupt source (for level triggered interrupts) and issue 
the appropriate EOI write sequences. 

Once the physical interrupt source is masked and the platform EOI generated, the 
VMM can map the host vector to its corresponding guest vector to inject the virtual 
interrupt into the assigned VM. The guest software does EOI write sequences to its 
virtual interrupt controller after completing interrupt processing. For level triggered 
interrupts, these EOI writes to the virtual interrupt controller may be trapped by the 
VMM which may in turn unmask the previously masked interrupt source.

32.3.3.4  Generation of Virtual Interrupt Events by VMM
The following provides some of the general steps that need to be taken by VMM 
designs when generating virtual interrupts:

1. Check virtual processor interruptibility state. The virtual processor interruptibility 
state is reflected in the guest RFLAGS.IF flag and the processor interruptibility-
state saved in the guest state area of the controlling-VMCS. If RFLAGS.IF is set 
and the interruptibility state indicates readiness to take external interrupts (STI-
masking and MOV-SS/POP-SS-masking bits are clear), the guest virtual 
processor is ready to take external interrupts. If the VMM design supports non-
active guest sleep states, the VMM needs to make sure the current guest sleep 
state allows injection of external interrupt events. 

2. If the guest virtual processor state is currently not interruptible, a VMM may 
utilize the “interrupt-window exiting” VM-execution to notify the VM (through a 
VM exit) when the virtual processor state changes to interruptible state. 

3. Check the virtual interrupt controller state. If the guest VM exposes a virtual local 
APIC, the current value of its processor priority register specifies if guest 
software allows dispensing an external virtual interrupt with a specific priority to 
the virtual processor. If the virtual interrupt is routed through the local vector 
table (LVT) entry of the local APIC, the mask bits in the corresponding LVT entry 
specifies if the interrupt is currently masked. Similarly, the virtual interrupt 
controller’s current mask (IO-APIC or PIC) and priority settings reflect guest 
state to accept specific external interrupts. The VMM needs to check both the 
virtual processor and interrupt controller states to verify its guest interruptibility 
state. If the guest is currently interruptible, the VMM can inject the virtual 
interrupt. If the current guest state does not allow injecting a virtual interrupt, 
the interrupt needs to be queued by the VMM until it can be delivered.

4. Prioritize the use of VM-entry event injection. A VMM may use VM-entry event 
injection to deliver various virtual events (such as external interrupts, 
exceptions, traps, and so forth). VMM designs may prioritize use of virtual-
interrupt injection between these event types. Since each VM entry allows 
injection of one event, depending on the VMM event priority policies, the VMM 
may need to queue the external virtual interrupt if a higher priority event is to be 
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delivered on the next VM entry. Since the VMM has masked this particular 
interrupt source (if it was level triggered) and done EOI to the platform interrupt 
controller, other platform interrupts can be serviced while this virtual interrupt 
event is queued for later delivery to the VM.

5. Update the virtual interrupt controller state. When the above checks have 
passed, before generating the virtual interrupt to the guest, the VMM updates the 
virtual interrupt controller state (Local-APIC, IO-APIC and/or PIC) to reflect 
assertion of the virtual interrupt. This involves updating the various interrupt 
capture registers, and priority registers as done by the respective hardware 
interrupt controllers. Updating the virtual interrupt controller state is required for 
proper interrupt event processing by guest software.

6. Inject the virtual interrupt on VM entry. To inject an external virtual interrupt to a 
guest VM, the VMM sets up the VM-entry interruption-information field in the 
guest controlling-VMCS before entry to guest using VMRESUME. Upon VM entry, 
the processor will use this vector to access the gate in guest’s IDT and the value 
of RFLAGS and EIP in guest-state area of controlling-VMCS is pushed on the 
guest stack. If the guest RFLAGS.IF is clear, the STI-masking bit is set, or the 
MOV- SS/POP-SS-masking bit is set, the VM entry will fail and the processor will 
load state from the host-state area of the working VMCS as if a VM exit had 
occurred (see Section 26.7).

32.4 ERROR HANDLING BY VMM
Error conditions may occur during VM entries and VM exits and a few other situa-
tions. This section describes how VMM should handle these error conditions, 
including triple faults and machine-check exceptions.

32.4.1 VM-Exit Failures
All VM exits load processor state from the host-state area of the VMCS that was the 
controlling VMCS before the VM exit. This state is checked for consistency while being 
loaded. Because the host-state is checked on VM entry, these checks will generally 
succeed. Failure is possible only if host software is incorrect or if VMCS data in the 
VMCS region in memory has been written by guest software (or by I/O DMA) since 
the last VM entry. VM exits may fail for the following reasons:
• There was a failure on storing guest MSRs.
• There was failure in loading a PDPTR.
• The controlling VMCS has been corrupted (through writes to the corresponding 

VMCS region) in such a way that the implementation cannot complete the VM 
exit.

• There was a failure on loading host MSRs.
• A machine-check event occurred.
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If one of these problems occurs on a VM exit, a VMX abort results. 

32.4.2 Machine-Check Considerations
The following sequence determine how machine-check events are handled during 
VMXON, VMXOFF, VM entries, and VM exits:
• VMXOFF and VMXON: 

If a machine-check event occurs during VMXOFF or VMXON and CR4.MCE = 1, a 
machine-check exception (#MC) is generated. If CR4.MCE = 0, the processor 
goes to shutdown state.

• VM entry: 
If a machine-check event occurs during VM entry, one of the following three 
treatments must occur:

a. Normal delivery before VM entry. If CR4.MCE = 1 before VM entry, delivery of 
a machine-check exception (#MC) through the host IDT occurs. If 
CR4.MCE = 0, the processor goes to shutdown state.

b. Normal delivery after VM entry. If CR4.MCE = 1 after VM entry, delivery of a 
machine-check exception (#MC) through the guest IDT occurs (alternatively, 
this exception may cause a VM exit). If CR4.MCE = 0, the processor goes to 
shutdown state.

c. Load state from the host-state area of the working VMCS as if a VM exit had 
occurred (see Section 26.7). The basic exit reason will be “VM-entry failure 
due to machine-check event.” 

If the machine-check event occurs after any guest state has been loaded, option 
a above will not be used; it may be used if the machine-check event occurs while 
checking host state and VMX controls (or while reporting a failure due to such 
checks). An implementation may use option b only if all guest state has been 
loaded properly.

• VM exit: 
If a machine-check event occurs during VM exit, one of the following three 
treatments must occur:

a. Normal delivery before VM exit. If CR4.MCE = 1 before the VM exit, delivery 
of a machine-check exception (#MC) through the guest IDT (alternatively, 
this may cause a VM exit). If CR4.MCE = 0, the processor goes to shutdown 
state.

b. Normal delivery after VM exit. If CR4.MCE = 1 after the VM exit, delivery of a 
machine-check exception (#MC) through the host IDT. If CR4.MCE = 0, the 
processor goes to shutdown state.

c. Fail the VM exit. If the VM exit is to VMX root operation, a VMX abort will 
result; it will block events as done normally in VMX abort. The VMX abort 
indicator will show that a machine-check event induced the abort operation.
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If a machine-check event is induced by an action in VMX non-root operation 
before any determination is made that the inducing action may cause a VM exit, 
that machine-check event should be considered as happening during guest 
execution in VMX non-root operation. This is the case even if the part of the 
action that caused the machine-check event was VMX-specific (for example, the 
processor’s consulting an I/O bitmap). If a machine-check exception occurs and 
if bit 12H of the exception bitmap is cleared to 0, the exception is delivered to the 
guest through gate 12H of its IDT; if the bit is set to 1, the machine-check 
exception causes a VM exit.

NOTE
The state saved in the guest-state area on VM exits due to machine-
check exceptions should be considered suspect. A VMM should 
consult the RIPV and EIPV bits in the IA32_MCG_STATUS MSR before 
resuming a guest that caused a VM exit due to a machine-check 
exception.

32.4.3 MCA Error Handling Guidelines for VMM
Section 32.4.2 covers general requirements for VMMs to handle machine-check 
exceptions, when normal operation of the guest machine and/or the VMM is no 
longer possible. enhancements of machine-check architecture in newer processors 
may support software recovery of uncorrected MC errors (UCR) signaled through 
either machine-check exceptions or corrected machine-check interrupt (CMCI). 
Section 15.5 and Section 15.6 describes details of these more recent enhancements 
of machine-check architecture.

In general, Virtual Machine Monitor (VMM) error handling should follow the recom-
mendations for OS error handling described in Section 15.3, Section 15.6, Section 
15.9, and Section 15.10. This section describes additional guidelines for hosted and 
native hypervisor-based VMM implementations to support corrected MC errors and 
recoverable uncorrected MC errors.

Because a hosted VMM provides virtualization services in the context of an existing 
standard host OS, the host OS controls platform hardware through the host OS 
services such as the standard OS device drivers. In hosted VMMs. MCA errors will be 
handled by the host OS error handling software.

In native VMMs, the hypervisor runs on the hardware directly, and may provide only 
a limited set of platform services for guest VMs. Most platform services may instead 
be provided by a “control OS”. In hypervisor-based VMMs, MCA errors will either be 
delivered directly to the VMM MCA handler (when the error is signaled while in the 
VMM context) or cause by a VM exit from a guest VM or be delivered to the MCA inter-
cept handler. There are two general approaches the hypervisor can use to handle the 
MCA error: either within the hypervisor itself or by forwarding the error to the control 
OS. 
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32.4.3.1  VMM Error Handling Strategies
Broadly speaking, there are two strategies that VMMs may take for error handling: 
• Basic error handling: in this approach the guest VM is treated as any other thread 

of execution. If the error recovery action does not support restarting the thread 
after handling the error, the guest VM should be terminated.

• MCA virtualization: in this approach, the VMM virtualizes the MCA events and 
hardware. This enables the VMM to intercept MCA events and inject an MCA into 
the guest VM. The guest VM then has the opportunity to attempt error recovery 
actions, rather than being terminated by the VMM.

Details of these approaches and implementation considerations for hosted and native 
VMMs are discussed below.

32.4.3.2  Basic VMM MCA error recovery handling
The simplest approach is for the VMM to treat the guest VM as any other thread of 
execution:
• MCE's that occur outside the stream of execution of a virtual machine guest will 

cause an MCE abort and may be handled by the MCA error handler following the 
recovery actions and guidelines described in Section 15.9, and Section 15.10. 
This includes logging the error and taking appropriate recovery actions when 
necessary. The VMM must not resume the interrupted thread of execution or 
another VM until it has taken the appropriate recovery action or, in the case of 
fatal MCAs, reset the system.

• MCE's that occur while executing in the context of a virtual machine will be 
intercepted by the VMM. The MCA intercept handler may follow the error handling 
guidelines listed in Section 15.9 and Section 15.10 for SRAO and SRAR errors. 
For SRAR errors, terminating the thread of execution will involve terminating the 
affected guest VM. For fatal errors the MCA handler should log the error and reset 
the system -- the VMM should not resume execution of the interrupted VM.

32.4.3.3  Implementation Considerations for the Basic Model
For hosted VMMs, the host OS MCA error handling code will perform error analysis 
and initiate the appropriate recovery actions. For the basic model this flow does not 
change when terminating a guest VM although the specific actions needed to termi-
nate a guest VM may be different than terminating an application or user process.

For native, hypervisor-based VMMs, MCA errors will either be delivered directly to the 
VMM MCA handler (when the error is signaled while in the VMM context) or cause a 
VM exit from a guest VM or be delivered to the MCA intercept handler. There are two 
general approaches the hypervisor can use to handle the MCA error: either by 
forwarding the error to the control OS or within the hypervisor itself. These 
approaches are described in the following paragraphs.
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The hypervisor may forward the error to the control OS for handling errors. This 
approach simplifies the hypervisor error handling since it relies on the control OS to 
implement the basic error handling model.  The control OS error handling code will be 
similar to the error handling code in the hosted VMM. Errors can be forwarded to the 
control OS via an OS callback or by injecting an MCE event into the control OS. 
Injecting an MCE will cause the control OS MCA error handler to be invoked. The 
control OS is responsible for terminating the affected guest VM, if necessary, which 
may require cooperation from the hypervisor.

Alternatively, the error may be handled completely in the hypervisor. The hypervisor 
error handler is enhanced to implement the basic error handling model and the 
hypervisor error handler has the capability to fully analyze the error information and 
take recovery actions based on the guidelines. In this case error handling steps in the 
hypervisor are similar to those for the hosted VMM described above (where the 
hypervisor replaces the host OS actions). The hypervisor is responsible for termi-
nating the affected guest VM, if necessary.

In all cases, if a fatal error is detected the VMM error handler should log the error and 
reset the system. The VMM error handler must ensure that guest VMs are not 
resumed after a fatal error is detected to ensure error containment is maintained.

32.4.3.4  MCA Virtualization
A more sophisticated approach for handling errors is to virtualize the MCA. This 
involves virtualizing the MCA hardware and intercepting the MCA event in the VMM 
when a guest VM is interrupted by an MCA. After analyzing the error, the VMM error 
handler may then decide to inject an MCE abort into the guest VM for attempted 
guest VM error recovery. This would enable the guest OS the opportunity to take 
recovery actions specific to that guest. 

For MCA virtualization, the VMM must provide the guest physical address for memory 
errors instead of the system physical address when reporting the errors to the guest 
VM. To compute the guest physical address, the VMM needs to maintain a reverse 
mapping of system physical page addresses to guest physical page addresses. 

When the MCE is injected into the guest VM, the guest OS MCA handler would be 
invoked. The guest OS implements the MCA handling guidelines and it could poten-
tially terminate the interrupted thread of execution within the guest instead of termi-
nating the VM. The guest OS may also disable use of the affected page by the guest. 
When disabling the page the VMM error handler may handle the case where a page is 
shared by the VMM and a guest or by two guests. In these cases the page use must 
be disabled in both contexts to ensure no subsequent consumption errors are gener-
ated.

32.4.3.5  Implementation Considerations for the MCA Virtualization Model
MCA virtualization may be done in either hosted VMMs or hypervisor-based VMMs.  
The error handling flow is similar to the flow described in the basic handling case. The 
major difference is that the recovery action includes injecting the MCE abort into the 
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guest VM to enable recovery by the guest OS when the MCA interrupts the execution 
of a guest VM.

32.5 HANDLING ACTIVITY STATES BY VMM
A VMM might place a logic processor in the wait-for-SIPI activity state if supporting 
certain guest operating system using the multi-processor (MP) start-up algorithm. A 
guest with direct access to the physical local APIC and using the MP start-up algo-
rithm sends an INIT-SIPI-SIPI IPI sequence to start the application processor. In 
order to trap the SIPIs, the VMM must start the logic processor which is the target of 
the SIPIs in wait-for-SIPI mode.
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CHAPTER 33
SYSTEM MANAGEMENT MODE

This chapter describes aspects of IA-64 and IA-32 architecture used in system 
management mode (SMM).

SMM provides an alternate operating environment that can be used to monitor and 
manage various system resources for more efficient energy usage, to control system 
hardware, and/or to run proprietary code. It was introduced into the IA-32 architec-
ture in the Intel386 SL processor (a mobile specialized version of the Intel386 
processor). It is also available in the Pentium M, Pentium 4, Intel Xeon, P6 family, and 
Pentium and Intel486 processors (beginning with the enhanced versions of the 
Intel486 SL and Intel486 processors). 

33.1 SYSTEM MANAGEMENT MODE OVERVIEW
SMM is a special-purpose operating mode provided for handling system-wide func-
tions like power management, system hardware control, or proprietary OEM-
designed code. It is intended for use only by system firmware, not by applications 
software or general-purpose systems software. The main benefit of SMM is that it 
offers a distinct and easily isolated processor environment that operates transpar-
ently to the operating system or executive and software applications. 

When SMM is invoked through a system management interrupt (SMI), the processor 
saves the current state of the processor (the processor’s context), then switches to a 
separate operating environment contained in system management RAM (SMRAM). 
While in SMM, the processor executes SMI handler code to perform operations such 
as powering down unused disk drives or monitors, executing proprietary code, or 
placing the whole system in a suspended state. When the SMI handler has completed 
its operations, it executes a resume (RSM) instruction. This instruction causes the 
processor to reload the saved context of the processor, switch back to protected or 
real mode, and resume executing the interrupted application or operating-system 
program or task.

The following SMM mechanisms make it transparent to applications programs and 
operating systems:
• The only way to enter SMM is by means of an SMI.
• The processor executes SMM code in a separate address space (SMRAM) that can 

be made inaccessible from the other operating modes.
• Upon entering SMM, the processor saves the context of the interrupted program 

or task.
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• All interrupts normally handled by the operating system are disabled upon entry 
into SMM.

• The RSM instruction can be executed only in SMM.

SMM is similar to real-address mode in that there are no privilege levels or address 
mapping. An SMM program can address up to 4 GBytes of memory and can execute 
all I/O and applicable system instructions. See Section 33.5 for more information 
about the SMM execution environment.

NOTES
Software developers should be aware that, even if a logical processor 
was using the physical-address extension (PAE) mechanism 
(introduced in the P6 family processors) or was in IA-32e mode 
before an SMI, this will not be the case after the SMI is delivered. This 
is because delivery of an SMI disables paging (see Table 33-4). (This 
does not apply if the dual-monitor treatment of SMIs and SMM is 
active; see Section 33.15.)

33.1.1 System Management Mode and VMX Operation
Traditionally, SMM services system management interrupts and then resumes 
program execution (back to the software stack consisting of executive and applica-
tion software; see Section 33.2 through Section 33.13). 

A virtual machine monitor (VMM) using VMX can act as a host to multiple virtual 
machines and each virtual machine can support its own software stack of executive 
and application software. On processors that support VMX, virtual-machine exten-
sions may use system-management interrupts (SMIs) and system-management 
mode (SMM) in one of two ways:
• Default treatment. System firmware handles SMIs. The processor saves archi-

tectural states and critical states relevant to VMX operation upon entering SMM. 
When the firmware completes servicing SMIs, it uses RSM to resume VMX 
operation.

• Dual-monitor treatment. Two VM monitors collaborate to control the servicing 
of SMIs: one VMM operates outside of SMM to provide basic virtualization in 
support for guests; the other VMM operates inside SMM (while in VMX operation) 
to support system-management functions. The former is referred to as 
executive monitor, the latter SMM-transfer monitor (STM).1

The default treatment is described in Section 33.14, “Default Treatment of SMIs and 
SMM with VMX Operation and SMX Operation”. Dual-monitor treatment of SMM is 
described in Section 33.15, “Dual-Monitor Treatment of SMIs and SMM”.

1. The dual-monitor treatment may not be supported by all processors. Software should consult the 
VMX capability MSR IA32_VMX_BASIC (see Appendix A.1) to determine whether it is supported.
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33.2 SYSTEM MANAGEMENT INTERRUPT (SMI)
The only way to enter SMM is by signaling an SMI through the SMI# pin on the 
processor or through an SMI message received through the APIC bus. The SMI is a 
nonmaskable external interrupt that operates independently from the processor’s 
interrupt- and exception-handling mechanism and the local APIC. The SMI takes 
precedence over an NMI and a maskable interrupt. SMM is non-reentrant; that is, the 
SMI is disabled while the processor is in SMM.

NOTES
In the Pentium 4, Intel Xeon, and P6 family processors, when a 
processor that is designated as an application processor during an MP 
initialization sequence is waiting for a startup IPI (SIPI), it is in a 
mode where SMIs are masked. However if a SMI is received while an 
application processor is in the wait for SIPI mode, the SMI will be 
pended. The processor then responds on receipt of a SIPI by 
immediately servicing the pended SMI and going into SMM before 
handling the SIPI.
An SMI may be blocked for one instruction following execution of STI, 
MOV to SS, or POP into SS.

33.3 SWITCHING BETWEEN SMM AND THE OTHER 
PROCESSOR OPERATING MODES

Figure 2-3 shows how the processor moves between SMM and the other processor 
operating modes (protected, real-address, and virtual-8086). Signaling an SMI while 
the processor is in real-address, protected, or virtual-8086 modes always causes the 
processor to switch to SMM. Upon execution of the RSM instruction, the processor 
always returns to the mode it was in when the SMI occurred. 

33.3.1 Entering SMM
The processor always handles an SMI on an architecturally defined “interruptible” 
point in program execution (which is commonly at an IA-32 architecture instruction 
boundary). When the processor receives an SMI, it waits for all instructions to retire 
and for all stores to complete. The processor then saves its current context in SMRAM 
(see Section 33.4), enters SMM, and begins to execute the SMI handler.

Upon entering SMM, the processor signals external hardware that SMM handling has 
begun. The signaling mechanism used is implementation dependent. For the P6 
family processors, an SMI acknowledge transaction is generated on the system bus 
and the multiplexed status signal EXF4 is asserted each time a bus transaction is 
generated while the processor is in SMM. For the Pentium and Intel486 processors, 
the SMIACT# pin is asserted.
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An SMI has a greater priority than debug exceptions and external interrupts. Thus, if 
an NMI, maskable hardware interrupt, or a debug exception occurs at an instruction 
boundary along with an SMI, only the SMI is handled. Subsequent SMI requests are 
not acknowledged while the processor is in SMM. The first SMI interrupt request that 
occurs while the processor is in SMM (that is, after SMM has been acknowledged to 
external hardware) is latched and serviced when the processor exits SMM with the 
RSM instruction. The processor will latch only one SMI while in SMM.

See Section 33.5 for a detailed description of the execution environment when in 
SMM.

33.3.2 Exiting From SMM
The only way to exit SMM is to execute the RSM instruction. The RSM instruction is 
only available to the SMI handler; if the processor is not in SMM, attempts to execute 
the RSM instruction result in an invalid-opcode exception (#UD) being generated.

The RSM instruction restores the processor’s context by loading the state save image 
from SMRAM back into the processor’s registers. The processor then returns an 
SMIACK transaction on the system bus and returns program control back to the 
interrupted program.

Upon successful completion of the RSM instruction, the processor signals external 
hardware that SMM has been exited. For the P6 family processors, an SMI acknowl-
edge transaction is generated on the system bus and the multiplexed status signal 
EXF4 is no longer generated on bus cycles. For the Pentium and Intel486 processors, 
the SMIACT# pin is deserted.

If the processor detects invalid state information saved in the SMRAM, it enters the 
shutdown state and generates a special bus cycle to indicate it has entered shutdown 
state. Shutdown happens only in the following situations:
• A reserved bit in control register CR4 is set to 1 on a write to CR4. This error 

should not happen unless SMI handler code modifies reserved areas of the 
SMRAM saved state map (see Section 33.4.1). CR4 is saved in the state map in a 
reserved location and cannot be read or modified in its saved state.

• An illegal combination of bits is written to control register CR0, in particular PG 
set to 1 and PE set to 0, or NW set to 1 and CD set to 0.

• CR4.PCIDE would be set to 1 and IA32_EFER.LMA to 0.
• (For the Pentium and Intel486 processors only.) If the address stored in the 

SMBASE register when an RSM instruction is executed is not aligned on a 
32-KByte boundary. This restriction does not apply to the P6 family processors.

In the shutdown state, Intel processors stop executing instructions until a RESET#, 
INIT# or NMI# is asserted. While Pentium family processors recognize the SMI# 
signal in shutdown state, P6 family and Intel486 processors do not. Intel does not 
support using SMI# to recover from shutdown states for any processor family; the 
response of processors in this circumstance is not well defined. On Pentium 4 and 
later processors, shutdown will inhibit INTR and A20M but will not change any of the 
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other inhibits. On these processors, NMIs will be inhibited if no action is taken in the 
SMM handler to uninhibit them (see Section 33.8).

If the processor is in the HALT state when the SMI is received, the processor handles 
the return from SMM slightly differently (see Section 33.10). Also, the SMBASE 
address can be changed on a return from SMM (see Section 33.11).

33.4 SMRAM
While in SMM, the processor executes code and stores data in the SMRAM space. The 
SMRAM space is mapped to the physical address space of the processor and can be 
up to 4 GBytes in size. The processor uses this space to save the context of the 
processor and to store the SMI handler code, data and stack. It can also be used to 
store system management information (such as the system configuration and 
specific information about powered-down devices) and OEM-specific information. 

The default SMRAM size is 64 KBytes beginning at a base physical address in physical 
memory called the SMBASE (see Figure 33-1). The SMBASE default value following a 
hardware reset is 30000H. The processor looks for the first instruction of the SMI 
handler at the address [SMBASE + 8000H]. It stores the processor’s state in the area 
from [SMBASE + FE00H] to [SMBASE + FFFFH]. See Section 33.4.1 for a description 
of the mapping of the state save area.

The system logic is minimally required to decode the physical address range for the 
SMRAM from [SMBASE + 8000H] to [SMBASE + FFFFH]. A larger area can be 
decoded if needed. The size of this SMRAM can be between 32 KBytes and 4 GBytes.

The location of the SMRAM can be changed by changing the SMBASE value (see 
Section 33.11). It should be noted that all processors in a multiple-processor system 
are initialized with the same SMBASE value (30000H). Initialization software must 
sequentially place each processor in SMM and change its SMBASE so that it does not 
overlap those of other processors.

The actual physical location of the SMRAM can be in system memory or in a separate 
RAM memory. The processor generates an SMI acknowledge transaction (P6 family 
processors) or asserts the SMIACT# pin (Pentium and Intel486 processors) when the 
processor receives an SMI (see Section 33.3.1). 

System logic can use the SMI acknowledge transaction or the assertion of the 
SMIACT# pin to decode accesses to the SMRAM and redirect them (if desired) to 
specific SMRAM memory. If a separate RAM memory is used for SMRAM, system logic 
should provide a programmable method of mapping the SMRAM into system memory 
space when the processor is not in SMM. This mechanism will enable start-up proce-
dures to initialize the SMRAM space (that is, load the SMI handler) before executing 
the SMI handler during SMM.
Vol. 3C 33-5



SYSTEM MANAGEMENT MODE
33.4.1 SMRAM State Save Map
When an IA-32 processor that does not support Intel 64 architecture initially enters 
SMM, it writes its state to the state save area of the SMRAM.   The state save area 
begins at [SMBASE + 8000H + 7FFFH] and extends down to [SMBASE + 8000H + 
7E00H]. Table 33-1 shows the state save map. The offset in column 1 is relative to 
the SMBASE value plus 8000H. Reserved spaces should not be used by software.

Some of the registers in the SMRAM state save area (marked YES in column 3) may 
be read and changed by the SMI handler, with the changed values restored to the 
processor registers by the RSM instruction. Some register images are read-only, and 
must not be modified (modifying these registers will result in unpredictable 
behavior). An SMI handler should not rely on any values stored in an area that is 
marked as reserved.

 

Figure 33-1.  SMRAM Usage

Table 33-1.  SMRAM State Save Map

Offset 
(Added to SMBASE + 

8000H)

Register Writable?

7FFCH CR0 No

7FF8H CR3 No

7FF4H EFLAGS Yes

7FF0H EIP Yes

7FECH EDI Yes

7FE8H ESI Yes

7FE4H EBP Yes

7FE0H ESP Yes

Start of State Save Area
SMBASE + FFFFH

SMBASE

SMBASE + 8000H

SMRAM

SMI Handler Entry Point
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The following registers are saved (but not readable) and restored upon exiting SMM:
• Control register CR4. (This register is cleared to all 0s when entering SMM).
• The hidden segment descriptor information stored in segment registers CS, DS, 

ES, FS, GS, and SS.

7FDCH EBX Yes

7FD8H EDX Yes

7FD4H ECX Yes

7FD0H EAX Yes

7FCCH DR6 No

7FC8H DR7 No

7FC4H TR1 No

7FC0H Reserved No

7FBCH GS1 No

7FB8H FS1 No

7FB4H DS1 No

7FB0H SS1 No

7FACH CS1 No

7FA8H ES1 No

7FA4H I/O State Field, see Section 33.7 No

7FA0H I/O Memory Address Field, see Section 33.7 No

7F9FH-7F03H Reserved No

7F02H Auto HALT Restart Field (Word) Yes

7F00H I/O Instruction Restart Field (Word) Yes

7EFCH SMM Revision Identifier Field (Doubleword) No

7EF8H SMBASE Field (Doubleword) Yes

7EF7H - 7E00H Reserved No

NOTE:
1. The two most significant bytes are reserved.

Table 33-1.  SMRAM State Save Map (Contd.)

Offset 
(Added to SMBASE + 

8000H)

Register Writable?
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If an SMI request is issued for the purpose of powering down the processor, the 
values of all reserved locations in the SMM state save must be saved to nonvolatile 
memory.

The following state is not automatically saved and restored following an SMI and the 
RSM instruction, respectively:
• Debug registers DR0 through DR3.
• The x87 FPU registers.
• The MTRRs.
• Control register CR2.
• The model-specific registers (for the P6 family and Pentium processors) or test 

registers TR3 through TR7 (for the Pentium and Intel486 processors).
• The state of the trap controller.
• The machine-check architecture registers.
• The APIC internal interrupt state (ISR, IRR, etc.).
• The microcode update state.

If an SMI is used to power down the processor, a power-on reset will be required 
before returning to SMM, which will reset much of this state back to its default 
values. So an SMI handler that is going to trigger power down should first read these 
registers listed above directly, and save them (along with the rest of RAM) to nonvol-
atile storage. After the power-on reset, the continuation of the SMI handler should 
restore these values, along with the rest of the system's state. Anytime the SMI 
handler changes these registers in the processor, it must also save and restore them.

NOTES
A small subset of the MSRs (such as, the time-stamp counter and 
performance-monitoring counters) are not arbitrarily writable and 
therefore cannot be saved and restored. SMM-based power-down 
and restoration should only be performed with operating systems 
that do not use or rely on the values of these registers. 
Operating system developers should be aware of this fact and insure 
that their operating-system assisted power-down and restoration 
software is immune to unexpected changes in these register values.

33.4.1.1  SMRAM State Save Map and Intel 64 Architecture
When the processor initially enters SMM, it writes its state to the state save area of 
the SMRAM. The state save area on an Intel 64 processor at [SMBASE + 8000H + 
7FFFH] and extends to [SMBASE + 8000H + 7C00H]. 

Support for Intel 64 architecture is reported by CPUID.80000001:EDX[29] = 1. The 
layout of the SMRAM state save map is shown in Table 33-3. 
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Additionally, the SMRAM state save map shown in Table 33-3 also applies to proces-
sors with the following CPUID signatures listed in Table 33-2, irrespective of the value 
in CPUID.80000001:EDX[29].

Table 33-2.   Processor Signatures and 64-bit SMRAM State Save Map Format
DisplayFamily_DisplayModel Processor Families/Processor Number Series

06_17H Intel Xeon Processor 5200, 5400 series, Intel Core 2 Quad 
processor Q9xxx, Intel Core 2 Duo processors E8000, T9000,

06_0FH Intel Xeon Processor 3000, 3200, 5100, 5300, 7300 series, Intel 
Core 2 Quad, Intel Core 2 Extreme, Intel Core 2 Duo processors, 
Intel Pentium dual-core processors

06_1CH Intel® Atom™ processors

Table 33-3.  SMRAM State Save Map for Intel 64 Architecture

Offset 
(Added to SMBASE + 

8000H)

Register Writable?

7FF8H CR0 No

7FF0H CR3 No

7FE8H RFLAGS Yes

7FE0H IA32_EFER Yes

7FD8H RIP Yes

7FD0H DR6 No

7FC8H DR7 No

7FC4H TR SEL1 No

7FC0H LDTR SEL1 No

7FBCH GS SEL1 No

7FB8H FS SEL1 No

7FB4H DS SEL1 No

7FB0H SS SEL1 No

7FACH CS SEL1 No

7FA8H ES SEL1 No

7FA4H IO_MISC No

7F9CH IO_MEM_ADDR No
Vol. 3C 33-9



SYSTEM MANAGEMENT MODE
7F94H RDI Yes

7F8CH RSI Yes

7F84H RBP Yes

7F7CH RSP Yes

7F74H RBX Yes

7F6CH RDX Yes

7F64H RCX Yes

7F5CH RAX Yes

7F54H R8 Yes

7F4CH R9 Yes

7F44H R10 Yes

7F3CH R11 Yes

7F34H R12 Yes

7F2CH R13 Yes

7F24H R14 Yes

7F1CH R15 Yes

7F1BH-7F04H Reserved No

7F02H Auto HALT Restart Field (Word) Yes

7F00H I/O Instruction Restart Field (Word) Yes

7EFCH SMM Revision Identifier Field (Doubleword) No

7EF8H SMBASE Field (Doubleword) Yes

7EF7H - 7EE4H Reserved No

7EE0H Setting of “enable EPT” VM-execution control No

7ED8H Value of EPTP VM-execution control field No

7ED7H - 7EA0H Reserved No

7E9CH LDT Base (lower 32 bits) No

7E98H Reserved No

7E94H IDT Base (lower 32 bits) No

7E90H Reserved No

Table 33-3.  SMRAM State Save Map for Intel 64 Architecture (Contd.)

Offset 
(Added to SMBASE + 

8000H)

Register Writable?
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33.4.2 SMRAM Caching
An IA-32 processor does not automatically write back and invalidate its caches before 
entering SMM or before exiting SMM. Because of this behavior, care must be taken in 
the placement of the SMRAM in system memory and in the caching of the SMRAM to 
prevent cache incoherence when switching back and forth between SMM and 
protected mode operation. Either of the following three methods of locating the 
SMRAM in system memory will guarantee cache coherency:
• Place the SRAM in a dedicated section of system memory that the operating 

system and applications are prevented from accessing. Here, the SRAM can be 
designated as cacheable (WB, WT, or WC) for optimum processor performance, 
without risking cache incoherence when entering or exiting SMM.

• Place the SRAM in a section of memory that overlaps an area used by the 
operating system (such as the video memory), but designate the SMRAM as 
uncacheable (UC). This method prevents cache access when in SMM to maintain 
cache coherency, but the use of uncacheable memory reduces the performance 
of SMM code.

• Place the SRAM in a section of system memory that overlaps an area used by the 
operating system and/or application code, but explicitly flush (write back and 
invalidate) the caches upon entering and exiting SMM mode. This method 
maintains cache coherency, but incurs the overhead of two complete cache 
flushes.

7E8CH GDT Base (lower 32 bits) No

7E8BH - 7E44H Reserved No

7E40H CR4 No

7E3FH - 7DF0H Reserved No

7DE8H IO_EIP Yes

7DE7H - 7DDCH Reserved No

7DD8H IDT Base (Upper 32 bits) No

7DD4H LDT Base (Upper 32 bits) No

7DD0H GDT Base (Upper 32 bits) No

7DCFH - 7C00H Reserved No

NOTE:
1. The two most significant bytes are reserved.

Table 33-3.  SMRAM State Save Map for Intel 64 Architecture (Contd.)

Offset 
(Added to SMBASE + 

8000H)

Register Writable?
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For Pentium 4, Intel Xeon, and P6 family processors, a combination of the first two 
methods of locating the SMRAM is recommended. Here the SMRAM is split between 
an overlapping and a dedicated region of memory. Upon entering SMM, the SMRAM 
space that is accessed overlaps video memory (typically located in low memory). 
This SMRAM section is designated as UC memory. The initial SMM code then jumps to 
a second SMRAM section that is located in a dedicated region of system memory 
(typically in high memory). This SMRAM section can be cached for optimum 
processor performance.

For systems that explicitly flush the caches upon entering SMM (the third method 
described above), the cache flush can be accomplished by asserting the FLUSH# pin 
at the same time as the request to enter SMM (generally initiated by asserting the 
SMI# pin). The priorities of the FLUSH# and SMI# pins are such that the FLUSH# is 
serviced first. To guarantee this behavior, the processor requires that the following 
constraints on the interaction of FLUSH# and SMI# be met. In a system where the 
FLUSH# and SMI# pins are synchronous and the set up and hold times are met, then 
the FLUSH# and SMI# pins may be asserted in the same clock. In asynchronous 
systems, the FLUSH# pin must be asserted at least one clock before the SMI# pin to 
guarantee that the FLUSH# pin is serviced first. 

Upon leaving SMM (for systems that explicitly flush the caches), the WBINVD instruc-
tion should be executed prior to leaving SMM to flush the caches.

NOTES
In systems based on the Pentium processor that use the FLUSH# pin 
to write back and invalidate cache contents before entering SMM, the 
processor will prefetch at least one cache line in between when the 
Flush Acknowledge cycle is run and the subsequent recognition of 
SMI# and the assertion of SMIACT#. 
It is the obligation of the system to ensure that these lines are not 
cached by returning KEN# inactive to the Pentium processor.

33.4.2.1  System Management Range Registers (SMRR)
SMI handler code and data stored by SMM code resides in SMRAM. The SMRR inter-
face is an enhancement in Intel 64 architecture to limit cacheable reference of 
addresses in SMRAM to code running in SMM. The SMRR interface can be configured 
only by code running in SMM. Details of SMRR is described in Section 11.11.2.4.

33.5 SMI HANDLER EXECUTION ENVIRONMENT
After saving the current context of the processor, the processor initializes its core 
registers to the values shown in Table 33-4. Upon entering SMM, the PE and PG flags 
in control register CR0 are cleared, which places the processor in an environment 
similar to real-address mode. The differences between the SMM execution environ-
ment and the real-address mode execution environment are as follows:
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• The addressable SMRAM address space ranges from 0 to FFFFFFFFH (4 GBytes). 
(The physical address extension — enabled with the PAE flag in control register 
CR4 — is not supported in SMM.)

• The normal 64-KByte segment limit for real-address mode is increased to 
4 GBytes.

• The default operand and address sizes are set to 16 bits, which restricts the 
addressable SMRAM address space to the 1-MByte real-address mode limit for 
native real-address-mode code. However, operand-size and address-size 
override prefixes can be used to access the address space beyond the 1-MByte.

• Near jumps and calls can be made to anywhere in the 4-GByte address space if a 
32-bit operand-size override prefix is used. Due to the real-address-mode style 
of base-address formation, a far call or jump cannot transfer control to a 
segment with a base address of more than 20 bits (1 MByte). However, since the 
segment limit in SMM is 4 GBytes, offsets into a segment that go beyond the 
1-MByte limit are allowed when using 32-bit operand-size override prefixes. Any 
program control transfer that does not have a 32-bit operand-size override prefix 
truncates the EIP value to the 16 low-order bits.

• Data and the stack can be located anywhere in the 4-GByte address space, but 
can be accessed only with a 32-bit address-size override if they are located above 
1 MByte. As with the code segment, the base address for a data or stack segment 
cannot be more than 20 bits.

The value in segment register CS is automatically set to the default of 30000H for the 
SMBASE shifted 4 bits to the right; that is, 3000H. The EIP register is set to 8000H. 
When the EIP value is added to shifted CS value (the SMBASE), the resulting linear 
address points to the first instruction of the SMI handler.

Table 33-4.  Processor Register Initialization in SMM

Register Contents

General-purpose registers Undefined

EFLAGS 00000002H

EIP 00008000H

CS selector SMM Base shifted right 4 bits (default 3000H)

CS base SMM Base (default 30000H)

DS, ES, FS, GS, SS Selectors 0000H

DS, ES, FS, GS, SS Bases 000000000H

DS, ES, FS, GS, SS Limits 0FFFFFFFFH

CR0 PE, EM, TS, and PG flags set to 0; others unmodified

CR4 Cleared to zero

DR6 Undefined

DR7 00000400H
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The other segment registers (DS, SS, ES, FS, and GS) are cleared to 0 and their 
segment limits are set to 4 GBytes. In this state, the SMRAM address space may be 
treated as a single flat 4-GByte linear address space. If a segment register is loaded 
with a 16-bit value, that value is then shifted left by 4 bits and loaded into the 
segment base (hidden part of the segment register). The limits and attributes are not 
modified.

Maskable hardware interrupts, exceptions, NMI interrupts, SMI interrupts, A20M 
interrupts, single-step traps, breakpoint traps, and INIT operations are inhibited 
when the processor enters SMM. Maskable hardware interrupts, exceptions, single-
step traps, and breakpoint traps can be enabled in SMM if the SMM execution envi-
ronment provides and initializes an interrupt table and the necessary interrupt and 
exception handlers (see Section 33.6).

33.6 EXCEPTIONS AND INTERRUPTS WITHIN SMM
When the processor enters SMM, all hardware interrupts are disabled in the following 
manner:
• The IF flag in the EFLAGS register is cleared, which inhibits maskable hardware 

interrupts from being generated.
• The TF flag in the EFLAGS register is cleared, which disables single-step traps.
• Debug register DR7 is cleared, which disables breakpoint traps. (This action 

prevents a debugger from accidentally breaking into an SMM handler if a debug 
breakpoint is set in normal address space that overlays code or data in SMRAM.)

• NMI, SMI, and A20M interrupts are blocked by internal SMM logic. (See Section 
33.8 for more information about how NMIs are handled in SMM.)

Software-invoked interrupts and exceptions can still occur, and maskable hardware 
interrupts can be enabled by setting the IF flag. Intel recommends that SMM code be 
written in so that it does not invoke software interrupts (with the INT n, INTO, INT 3, 
or BOUND instructions) or generate exceptions. 

If the SMM handler requires interrupt and exception handling, an SMM interrupt table 
and the necessary exception and interrupt handlers must be created and initialized 
from within SMM. Until the interrupt table is correctly initialized (using the LIDT 
instruction), exceptions and software interrupts will result in unpredictable processor 
behavior. 

The following restrictions apply when designing SMM interrupt and exception-
handling facilities:
• The interrupt table should be located at linear address 0 and must contain real-

address mode style interrupt vectors (4 bytes containing CS and IP).
• Due to the real-address mode style of base address formation, an interrupt or 

exception cannot transfer control to a segment with a base address of more that 
20 bits.
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• An interrupt or exception cannot transfer control to a segment offset of more 
than 16 bits (64 KBytes).

• When an exception or interrupt occurs, only the 16 least-significant bits of the 
return address (EIP) are pushed onto the stack. If the offset of the interrupted 
procedure is greater than 64 KBytes, it is not possible for the interrupt/exception 
handler to return control to that procedure. (One solution to this problem is for a 
handler to adjust the return address on the stack.)

• The SMBASE relocation feature affects the way the processor will return from an 
interrupt or exception generated while the SMI handler is executing. For 
example, if the SMBASE is relocated to above 1 MByte, but the exception 
handlers are below 1 MByte, a normal return to the SMI handler is not possible. 
One solution is to provide the exception handler with a mechanism for calculating 
a return address above 1 MByte from the 16-bit return address on the stack, then 
use a 32-bit far call to return to the interrupted procedure.

• If an SMI handler needs access to the debug trap facilities, it must insure that an 
SMM accessible debug handler is available and save the current contents of 
debug registers DR0 through DR3 (for later restoration). Debug registers DR0 
through DR3 and DR7 must then be initialized with the appropriate values.

• If an SMI handler needs access to the single-step mechanism, it must insure that 
an SMM accessible single-step handler is available, and then set the TF flag in the 
EFLAGS register.

• If the SMI design requires the processor to respond to maskable hardware 
interrupts or software-generated interrupts while in SMM, it must ensure that 
SMM accessible interrupt handlers are available and then set the IF flag in the 
EFLAGS register (using the STI instruction). Software interrupts are not blocked 
upon entry to SMM, so they do not need to be enabled.

33.7 MANAGING SYNCHRONOUS AND ASYNCHRONOUS
SYSTEM MANAGEMENT INTERRUPTS

When coding for a multiprocessor system or a system with Intel HT Technology, it 
was not always possible for an SMI handler to distinguish between a synchronous 
SMI (triggered during an I/O instruction) and an asynchronous SMI. To facilitate the 
discrimination of these two events, incremental state information has been added to 
the SMM state save map. 

Processors that have an SMM revision ID of 30004H or higher have the incremental 
state information described below.

33.7.1 I/O State Implementation
Within the extended SMM state save map, a bit (IO_SMI) is provided that is set only 
when an SMI is either taken immediately after a successful I/O instruction or is taken 
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after a successful iteration of a REP I/O instruction (the successful notion pertains to 
the processor point of view; not necessarily to the corresponding platform function). 
When set, the IO_SMI bit provides a strong indication that the corresponding SMI 
was synchronous. In this case, the SMM State Save Map also supplies the port 
address of the I/O operation. The IO_SMI bit and the I/O Port Address may be used 
in conjunction with the information logged by the platform to confirm that the SMI 
was indeed synchronous.

The IO_SMI bit by itself is a strong indication, not a guarantee, that the SMI is 
synchronous. This is because an asynchronous SMI might coincidentally be taken 
after an I/O instruction. In such a case, the IO_SMI bit would still be set in the SMM 
state save map.

Information characterizing the I/O instruction is saved in two locations in the SMM 
State Save Map (Table 33-5). The IO_SMI bit also serves as a valid bit for the rest of 
the I/O information fields. The contents of these I/O information fields are not 
defined when the IO_SMI bit is not set.

When IO_SMI is set, the other fields may be interpreted as follows:
• I/O length:

• 001 – Byte

• 010 – Word

• 100 – Dword
• I/O instruction type (Table 33-6)

Table 33-5.  I/O Instruction Information in the SMM State Save Map
State (SMM Rev. ID: 30004H or 
higher)

Format

31 16 15 8 7 4 3 1 0

I/0 State Field

SMRAM offset 7FA4

I/O
 Port

Reserved

I/O
 Type

I/O
 Length

IO
_SM

I

31 0

I/O Memory Address Field

SMRAM offset 7FA0

I/O Memory Address

Table 33-6.  I/O Instruction Type Encodings
Instruction Encoding

IN Immediate 1001

IN DX 0001

OUT Immediate 1000
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33.8 NMI HANDLING WHILE IN SMM
NMI interrupts are blocked upon entry to the SMI handler. If an NMI request occurs 
during the SMI handler, it is latched and serviced after the processor exits SMM. Only 
one NMI request will be latched during the SMI handler. If an NMI request is pending 
when the processor executes the RSM instruction, the NMI is serviced before the next 
instruction of the interrupted code sequence. This assumes that NMIs were not 
blocked before the SMI occurred. If NMIs were blocked before the SMI occurred, they 
are blocked after execution of RSM.

Although NMI requests are blocked when the processor enters SMM, they may be 
enabled through software by executing an IRET instruction. If the SMM handler 
requires the use of NMI interrupts, it should invoke a dummy interrupt service 
routine for the purpose of executing an IRET instruction. Once an IRET instruction is 
executed, NMI interrupt requests are serviced in the same “real mode” manner in 
which they are handled outside of SMM.

A special case can occur if an SMI handler nests inside an NMI handler and then 
another NMI occurs. During NMI interrupt handling, NMI interrupts are disabled, so 
normally NMI interrupts are serviced and completed with an IRET instruction one at 
a time. When the processor enters SMM while executing an NMI handler, the 
processor saves the SMRAM state save map but does not save the attribute to keep 
NMI interrupts disabled. Potentially, an NMI could be latched (while in SMM or upon 
exit) and serviced upon exit of SMM even though the previous NMI handler has still 
not completed. One or more NMIs could thus be nested inside the first NMI handler. 
The NMI interrupt handler should take this possibility into consideration.

Also, for the Pentium processor, exceptions that invoke a trap or fault handler will 
enable NMI interrupts from inside of SMM. This behavior is implementation specific 
for the Pentium processor and is not part of the IA-32 architecture.

33.9 SMM REVISION IDENTIFIER
The SMM revision identifier field is used to indicate the version of SMM and the SMM 
extensions that are supported by the processor (see Figure 33-2). The SMM revision 
identifier is written during SMM entry and can be examined in SMRAM space at offset 

OUT DX 0000

INS 0011

OUTS 0010

REP INS 0111

REP OUTS 0110

Table 33-6.  I/O Instruction Type Encodings (Contd.)
Instruction Encoding
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7EFCH. The lower word of the SMM revision identifier refers to the version of the base 
SMM architecture.

The upper word of the SMM revision identifier refers to the extensions available. If 
the I/O instruction restart flag (bit 16) is set, the processor supports the I/O instruc-
tion restart (see Section 33.12); if the SMBASE relocation flag (bit 17) is set, SMRAM 
base address relocation is supported (see Section 33.11).

33.10 AUTO HALT RESTART
If the processor is in a HALT state (due to the prior execution of a HLT instruction) 
when it receives an SMI, the processor records the fact in the auto HALT restart flag 
in the saved processor state (see Figure 33-3). (This flag is located at offset 7F02H 
and bit 0 in the state save area of the SMRAM.)

If the processor sets the auto HALT restart flag upon entering SMM (indicating that 
the SMI occurred when the processor was in the HALT state), the SMI handler has 
two options:
• It can leave the auto HALT restart flag set, which instructs the RSM instruction to 

return program control to the HLT instruction. This option in effect causes the 
processor to re-enter the HALT state after handling the SMI. (This is the default 
operation.)

• It can clear the auto HALT restart flag, with instructs the RSM instruction to 
return program control to the instruction following the HLT instruction. 

Figure 33-2.  SMM Revision Identifier

SMM Revision Identifier

I/O Instruction Restart
SMBASE Relocation

Register Offset
7EFCH

31 0

Reserved

18 17 16 15
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These options are summarized in Table 33-7. If the processor was not in a HALT state 
when the SMI was received (the auto HALT restart flag is cleared), setting the flag to 
1 will cause unpredictable behavior when the RSM instruction is executed.

If the HLT instruction is restarted, the processor will generate a memory access to 
fetch the HLT instruction (if it is not in the internal cache), and execute a HLT bus 
transaction. This behavior results in multiple HLT bus transactions for the same HLT 
instruction.

33.10.1 Executing the HLT Instruction in SMM
The HLT instruction should not be executed during SMM, unless interrupts have been 
enabled by setting the IF flag in the EFLAGS register. If the processor is halted in 
SMM, the only event that can remove the processor from this state is a maskable 
hardware interrupt or a hardware reset.

33.11 SMBASE RELOCATION
The default base address for the SMRAM is 30000H. This value is contained in an 
internal processor register called the SMBASE register. The operating system or 
executive can relocate the SMRAM by setting the SMBASE field in the saved state 
map (at offset 7EF8H) to a new value (see Figure 33-4). The RSM instruction reloads 
the internal SMBASE register with the value in the SMBASE field each time it exits 
SMM. All subsequent SMI requests will use the new SMBASE value to find the starting 

 

Figure 33-3.  Auto HALT Restart Field

Table 33-7.  Auto HALT Restart Flag Values

Value of Flag 
After Entry to 
SMM

Value of Flag 
When Exiting SMM

Action of Processor When Exiting SMM

0

0

1

1

0

1

0

1

Returns to next instruction in interrupted program or task.

Unpredictable.

Returns to next instruction after HLT instruction.

Returns to HALT state.

Auto HALT Restart

015

Reserved
Register Offset
7F02H

1
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address for the SMI handler (at SMBASE + 8000H) and the SMRAM state save area 
(from SMBASE + FE00H to SMBASE + FFFFH). (The processor resets the value in its 
internal SMBASE register to 30000H on a RESET, but does not change it on an INIT.) 

In multiple-processor systems, initialization software must adjust the SMBASE value 
for each processor so that the SMRAM state save areas for each processor do not 
overlap. (For Pentium and Intel486 processors, the SMBASE values must be aligned 
on a 32-KByte boundary or the processor will enter shutdown state during the execu-
tion of a RSM instruction.)

If the SMBASE relocation flag in the SMM revision identifier field is set, it indicates the 
ability to relocate the SMBASE (see Section 33.9).

33.11.1 Relocating SMRAM to an Address Above 1 MByte
In SMM, the segment base registers can only be updated by changing the value in the 
segment registers. The segment registers contain only 16 bits, which allows only 20 
bits to be used for a segment base address (the segment register is shifted left 4 bits 
to determine the segment base address). If SMRAM is relocated to an address above 
1 MByte, software operating in real-address mode can no longer initialize the 
segment registers to point to the SMRAM base address (SMBASE).

The SMRAM can still be accessed by using 32-bit address-size override prefixes to 
generate an offset to the correct address. For example, if the SMBASE has been relo-
cated to FFFFFFH (immediately below the 16-MByte boundary) and the DS, ES, FS, 
and GS registers are still initialized to 0H, data in SMRAM can be accessed by using 
32-bit displacement registers, as in the following example:

mov esi,00FFxxxxH; 64K segment immediately below 16M
mov ax,ds:[esi]

A stack located above the 1-MByte boundary can be accessed in the same manner.

33.12 I/O INSTRUCTION RESTART
If the I/O instruction restart flag in the SMM revision identifier field is set (see Section 
33.9), the I/O instruction restart mechanism is present on the processor. This mech-
anism allows an interrupted I/O instruction to be re-executed upon returning from 

 

Figure 33-4.  SMBASE Relocation Field
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SMM mode. For example, if an I/O instruction is used to access a powered-down I/O 
device, a chip set supporting this device can intercept the access and respond by 
asserting SMI#. This action invokes the SMI handler to power-up the device. Upon 
returning from the SMI handler, the I/O instruction restart mechanism can be used to 
re-execute the I/O instruction that caused the SMI.

The I/O instruction restart field (at offset 7F00H in the SMM state-save area, see 
Figure 33-5) controls I/O instruction restart. When an RSM instruction is executed, if 
this field contains the value FFH, then the EIP register is modified to point to the I/O 
instruction that received the SMI request. The processor will then automatically re-
execute the I/O instruction that the SMI trapped. (The processor saves the necessary 
machine state to insure that re-execution of the instruction is handled coherently.)

If the I/O instruction restart field contains the value 00H when the RSM instruction is 
executed, then the processor begins program execution with the instruction following 
the I/O instruction. (When a repeat prefix is being used, the next instruction may be 
the next I/O instruction in the repeat loop.) Not re-executing the interrupted I/O 
instruction is the default behavior; the processor automatically initializes the I/O 
instruction restart field to 00H upon entering SMM. Table 33-8 summarizes the states 
of the I/O instruction restart field.

The I/O instruction restart mechanism does not indicate the cause of the SMI. It is 
the responsibility of the SMI handler to examine the state of the processor to deter-
mine the cause of the SMI and to determine if an I/O instruction was interrupted and 
should be restarted upon exiting SMM. If an SMI interrupt is signaled on a non-I/O 
instruction boundary, setting the I/O instruction restart field to FFH prior to executing 
the RSM instruction will likely result in a program error.

 

Figure 33-5.  I/O Instruction Restart Field

Table 33-8.  I/O Instruction Restart Field Values

Value of Flag After 
Entry to SMM

Value of Flag When 
Exiting SMM

Action of Processor When Exiting SMM

00H

00H

00H

FFH

Does not re-execute trapped I/O instruction.

Re-executes trapped I/O instruction.

015

I/O Instruction Restart Field Register Offset
7F00H
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33.12.1 Back-to-Back SMI Interrupts When I/O Instruction Restart Is 
Being Used

If an SMI interrupt is signaled while the processor is servicing an SMI interrupt that 
occurred on an I/O instruction boundary, the processor will service the new SMI 
request before restarting the originally interrupted I/O instruction. If the I/O instruc-
tion restart field is set to FFH prior to returning from the second SMI handler, the EIP 
will point to an address different from the originally interrupted I/O instruction, which 
will likely lead to a program error. To avoid this situation, the SMI handler must be 
able to recognize the occurrence of back-to-back SMI interrupts when I/O instruction 
restart is being used and insure that the handler sets the I/O instruction restart field 
to 00H prior to returning from the second invocation of the SMI handler.

33.13 SMM MULTIPLE-PROCESSOR CONSIDERATIONS
The following should be noted when designing multiple-processor systems:
• Any processor in a multiprocessor system can respond to an SMM.
• Each processor needs its own SMRAM space. This space can be in system 

memory or in a separate RAM.
• The SMRAMs for different processors can be overlapped in the same memory 

space. The only stipulation is that each processor needs its own state save area 
and its own dynamic data storage area. (Also, for the Pentium and Intel486 
processors, the SMBASE address must be located on a 32-KByte boundary.) Code 
and static data can be shared among processors. Overlapping SMRAM spaces can 
be done more efficiently with the P6 family processors because they do not 
require that the SMBASE address be on a 32-KByte boundary. 

• The SMI handler will need to initialize the SMBASE for each processor.
• Processors can respond to local SMIs through their SMI# pins or to SMIs received 

through the APIC interface. The APIC interface can distribute SMIs to different 
processors.

• Two or more processors can be executing in SMM at the same time.
• When operating Pentium processors in dual processing (DP) mode, the SMIACT# 

pin is driven only by the MRM processor and should be sampled with ADS#. For 
additional details, see Chapter 14 of the Pentium Processor Family User’s Manual, 
Volume 1.

SMM is not re-entrant, because the SMRAM State Save Map is fixed relative to the 
SMBASE. If there is a need to support two or more processors in SMM mode at the 
same time then each processor should have dedicated SMRAM spaces. This can be 
done by using the SMBASE Relocation feature (see Section 33.11).
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33.14 DEFAULT TREATMENT OF SMIS AND SMM WITH VMX 
OPERATION AND SMX OPERATION

Under the default treatment, the interactions of SMIs and SMM with VMX operation 
are few. This section details those interactions. It also explains how this treatment 
affects SMX operation.

33.14.1 Default Treatment of SMI Delivery
Ordinary SMI delivery saves processor state into SMRAM and then loads state based 
on architectural definitions. Under the default treatment, processors that support 
VMX operation perform SMI delivery as follows:

enter SMM;
save the following internal to the processor:

CR4.VMXE
an indication of whether the logical processor was in VMX operation (root or non-root)

IF the logical processor is in VMX operation
THEN

save current VMCS pointer internal to the processor;
leave VMX operation;
save VMX-critical state defined below;

FI;
IF the logical processor supports SMX operation

THEN
save internal to the logical processor an indication of whether the Intel® TXT private space 

is locked;
IF the TXT private space is unlocked

THEN lock the TXT private space;
FI;

FI;
CR4.VMXE ← 0;
perform ordinary SMI delivery:

save processor state in SMRAM;
set processor state to standard SMM values;1

invalidate linear mappings and combined mappings associated with VPID 0000H (for all PCIDs); 
combined mappings for VPID 0000H are invalidated for all EP4TA values (EP4TA is the value of bits 
51:12 of EPTP; see Section 28.3);

The pseudocode above makes reference to the saving of VMX-critical state. This 
state consists of the following: (1) SS.DPL (the current privilege level); 
(2) RFLAGS.VM2; (3) the state of blocking by STI and by MOV SS (see Table 24-3 in 

1. This causes the logical processor to block INIT signals, NMIs, and SMIs.
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Section 24.4.2); (4) the state of virtual-NMI blocking (only if the processor is in VMX 
non-root operation and the “virtual NMIs” VM-execution control is 1); and (5) an 
indication of whether an MTF VM exit is pending (see Section 25.7.2). These data 
may be saved internal to the processor or in the VMCS region of the current VMCS. 
Processors that do not support SMI recognition while there is blocking by STI or by 
MOV SS need not save the state of such blocking.

If the logical processor supports the 1-setting of the “enable EPT” VM-execution 
control and the logical processor was in VMX non-root operation at the time of an 
SMI, it saves the value of that control into bit 0 of the 32-bit field at offset SMBASE + 
8000H + 7EE0H (SMBASE + FEE0H; see Table 33-3).1 If the logical processor was 
not in VMX non-root operation at the time of the SMI, it saves 0 into that bit. If the 
logical processor saves 1 into that bit (it was in VMX non-root operation and the 
“enable EPT” VM-execution control was 1), it saves the value of the EPT pointer 
(EPTP) into the 64-bit field at offset SMBASE + 8000H + 7ED8H (SMBASE + FED8H).

Because SMI delivery causes a logical processor to leave VMX operation, all the 
controls associated with VMX non-root operation are disabled in SMM and thus 
cannot cause VM exits while the logical processor in SMM.

33.14.2 Default Treatment of RSM
Ordinary execution of RSM restores processor state from SMRAM. Under the default 
treatment, processors that support VMX operation perform RSM as follows:

IF VMXE = 1 in CR4 image in SMRAM
THEN fail and enter shutdown state;
ELSE

restore state normally from SMRAM;
invalidate linear mappings and combined mappings associated with all VPIDs and all PCIDs; 

combined mappings are invalidated for all EP4TA values (EP4TA is the value of bits 51:12 of EPTP; 
see Section 28.3);

IF the logical processor supports SMX operation andthe Intel® TXT private space was 
unlocked at the time of the last SMI (as saved)

THEN unlock the TXT private space;
FI;
CR4.VMXE ← value stored internally;

2. Section 33.14 and Section 33.15 use the notation RAX, RIP, RSP, RFLAGS, etc. for processor reg-
isters because most processors that support VMX operation also support Intel 64 architecture. 
For processors that do not support Intel 64 architecture, this notation refers to the 32-bit forms 
of these registers (EAX, EIP, ESP, EFLAGS, etc.). In a few places, notation such as EAX is used to 
refer specifically to the lower 32 bits of the register.

1. “Enable EPT” is a secondary processor-based VM-execution control. If bit 31 of the primary pro-
cessor-based VM-execution controls is 0, SMI functions as the “enable EPT” VM-execution control 
were 0. See Section 24.6.2.
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IF internal storage indicates that the logical processor
had been in VMX operation (root or non-root)

THEN
enter VMX operation (root or non-root);
restore VMX-critical state as defined in Section 33.14.1;
set to their fixed values any bits in CR0 and CR4 whose values must be fixed in 

VMX operation (see Section 23.8);1

IF RFLAGS.VM = 0 AND (in VMX root operation OR the “unrestricted guest” VM-
execution control is 0)2

THEN
CS.RPL ← SS.DPL;
SS.RPL ← SS.DPL;

FI;
restore current VMCS pointer;

FI;
leave SMM;
IF logical processor will be in VMX operation or in SMX operation after RSM

THEN block A20M and leave A20M mode;
FI;

FI;

RSM unblocks SMIs. It restores the state of blocking by NMI (see Table 24-3 in 
Section 24.4.2) as follows:
• If the RSM is not to VMX non-root operation or if the “virtual NMIs” VM-execution 

control will be 0, the state of NMI blocking is restored normally.
• If the RSM is to VMX non-root operation and the “virtual NMIs” VM-execution 

control will be 1, NMIs are not blocked after RSM. The state of virtual-NMI 
blocking is restored as part of VMX-critical state.

INIT signals are blocked after RSM if and only if the logical processor will be in VMX 
root operation.

If RSM returns a logical processor to VMX non-root operation, it re-establishes the 
controls associated with the current VMCS. If the “interrupt-window exiting” 
VM-execution control is 1, a VM exit occurs immediately after RSM if the enabling 
conditions apply. The same is true for the “NMI-window exiting” VM-execution 
control. Such VM exits occur with their normal priority. See Section 25.3.

1. If the RSM is to VMX non-root operation and both the “unrestricted guest” VM-execution control 
and bit 31 of the primary processor-based VM-execution controls will be 1, CR0.PE and CR0.PG 
retain the values that were loaded from SMRAM regardless of what is reported in the capability 
MSR IA32_VMX_CR0_FIXED0.

2. “Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the pri-
mary processor-based VM-execution controls is 0, VM entry functions as if the “unrestricted 
guest” VM-execution control were 0. See Section 24.6.2.
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If an MTF VM exit was pending at the time of the previous SMI, an MTF VM exit is 
pending on the instruction boundary following execution of RSM. The following items 
detail the treatment of MTF VM exits that may be pending following RSM:
• System-management interrupts (SMIs), INIT signals, and higher priority events 

take priority over these MTF VM exits. These MTF VM exits take priority over 
debug-trap exceptions and lower priority events. 

• These MTF VM exits wake the logical processor if RSM caused the logical 
processor to enter the HLT state (see Section 33.10). They do not occur if the 
logical processor just entered the shutdown state.

33.14.3 Protection of CR4.VMXE in SMM
Under the default treatment, CR4.VMXE is treated as a reserved bit while a logical 
processor is in SMM. Any attempt by software running in SMM to set this bit causes a 
general-protection exception. In addition, software cannot use VMX instructions or 
enter VMX operation while in SMM.

33.14.4 VMXOFF and SMI Unblocking
The VMXOFF instruction can be executed only with the default treatment (see Section 
33.15.1) and only outside SMM. If SMIs are blocked when VMXOFF is executed, 
VMXOFF unblocks them unless IA32_SMM_MONITOR_CTL[bit 2] is 1 (see Section 
33.15.5 for details regarding this MSR).1 Section 33.15.7 identifies a case in which 
SMIs may be blocked when VMXOFF is executed.

Not all processors allow this bit to be set to 1. Software should consult the VMX capa-
bility MSR IA32_VMX_MISC (see Appendix A.6) to determine whether this is allowed.

33.15 DUAL-MONITOR TREATMENT OF SMIs AND SMM
Dual-monitor treatment is activated through the cooperation of the executive 
monitor (the VMM that operates outside of SMM to provide basic virtualization) and 
the SMM-transfer monitor (STM; the VMM that operates inside SMM—while in VMX 
operation—to support system-management functions). Control is transferred to the 
STM through VM exits; VM entries are used to return from SMM.

The dual-monitor treatment may not be supported by all processors. Software should 
consult the VMX capability MSR IA32_VMX_BASIC (see Appendix A.1) to determine 
whether it is supported.

1. Setting IA32_SMM_MONITOR_CTL[bit 2] to 1 prevents VMXOFF from unblocking SMIs regardless 
of the value of the register’s valid bit (bit 0).
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33.15.1 Dual-Monitor Treatment Overview
The dual-monitor treatment uses an executive monitor and an SMM-transfer monitor 
(STM). Transitions from the executive monitor or its guests to the STM are called 
SMM VM exits and are discussed in Section 33.15.2. SMM VM exits are caused by 
SMIs as well as executions of VMCALL in VMX root operation. The latter allow the 
executive monitor to call the STM for service.

The STM runs in VMX root operation and uses VMX instructions to establish a VMCS 
and perform VM entries to its own guests. This is done all inside SMM (see Section 
33.15.3). The STM returns from SMM, not by using the RSM instruction, but by using 
a VM entry that returns from SMM. Such VM entries are described in Section 33.15.4.

Initially, there is no STM and the default treatment (Section 33.14) is used. The dual-
monitor treatment is not used until it is enabled and activated. The steps to do this 
are described in Section 33.15.5 and Section 33.15.6.

It is not possible to leave VMX operation under the dual-monitor treatment; VMXOFF 
will fail if executed. The dual-monitor treatment must be deactivated first. The STM 
deactivates dual-monitor treatment using a VM entry that returns from SMM with the 
“deactivate dual-monitor treatment” VM-entry control set to 1 (see Section 33.15.7).

The executive monitor configures any VMCS that it uses for VM exits to the executive 
monitor. SMM VM exits, which transfer control to the STM, use a different VMCS. 
Under the dual-monitor treatment, each logical processor uses a separate VMCS 
called the SMM-transfer VMCS. When the dual-monitor treatment is active, the 
logical processor maintains another VMCS pointer called the SMM-transfer VMCS 
pointer. The SMM-transfer VMCS pointer is established when the dual-monitor treat-
ment is activated.

33.15.2 SMM VM Exits
An SMM VM exit is a VM exit that begins outside SMM and that ends in SMM.

Unlike other VM exits, SMM VM exits can begin in VMX root operation. SMM VM exits 
result from the arrival of an SMI outside SMM or from execution of VMCALL in VMX 
root operation outside SMM. Execution of VMCALL in VMX root operation causes an 
SMM VM exit only if the valid bit is set in the IA32_SMM_MONITOR_CTL MSR (see 
Section 33.15.5).

Execution of VMCALL in VMX root operation causes an SMM VM exit even under the 
default treatment. This SMM VM exit activates the dual-monitor treatment (see 
Section 33.15.6).

Differences between SMM VM exits and other VM exits are detailed in Sections 
33.15.2.1 through 33.15.2.5. Differences between SMM VM exits that activate the 
dual-monitor treatment and other SMM VM exits are described in Section 33.15.6.
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33.15.2.1  Architectural State Before a VM Exit
System-management interrupts (SMIs) that cause SMM VM exits always do so 
directly. They do not save state to SMRAM as they do under the default treatment.

33.15.2.2  Updating the Current-VMCS and Executive-VMCS Pointers
SMM VM exits begin by performing the following steps:

1. The executive-VMCS pointer field in the SMM-transfer VMCS is loaded as follows:

— If the SMM VM exit commenced in VMX non-root operation, it receives the 
current-VMCS pointer.

— If the SMM VM exit commenced in VMX root operation, it receives the VMXON 
pointer.

2. The current-VMCS pointer is loaded with the value of the SMM-transfer VMCS 
pointer.

The last step ensures that the current VMCS is the SMM-transfer VMCS. VM-exit 
information is recorded in that VMCS, and VM-entry control fields in that VMCS are 
updated. State is saved into the guest-state area of that VMCS. The VM-exit controls 
and host-state area of that VMCS determine how the VM exit operates.

33.15.2.3  Recording VM-Exit Information
SMM VM exits differ from other VM exit with regard to the way they record VM-exit 
information. The differences follow.
• Exit reason.

— Bits 15:0 of this field contain the basic exit reason. The field is loaded with 
the reason for the SMM VM exit: I/O SMI (an SMI arrived immediately after 
retirement of an I/O instruction), other SMI, or VMCALL. See Appendix C, 
“VMX Basic Exit Reasons”.

— SMM VM exits are the only VM exits that may occur in VMX root operation. 
Because the SMM-transfer monitor may need to know whether it was invoked 
from VMX root or VMX non-root operation, this information is stored in bit 29 
of the exit-reason field (see Table 24-14 in Section 24.9.1). The bit is set by 
SMM VM exits from VMX root operation.

— If the SMM VM exit occurred in VMX non-root operation and an MTF VM exit 
was pending, bit 28 of the exit-reason field is set; otherwise, it is cleared.

— Bits 27:16 and bits 31:30 are cleared.
• Exit qualification. For an SMM VM exit due an SMI that arrives immediately 

after the retirement of an I/O instruction, the exit qualification contains 
information about the I/O instruction that retired immediately before the SMI.It 
has the format given in Table 33-9.
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• Guest linear address. This field is used for VM exits due to SMIs that arrive 
immediately after the retirement of an INS or OUTS instruction for which the 
relevant segment (ES for INS; DS for OUTS unless overridden by an instruction 
prefix) is usable. The field receives the value of the linear address generated by 
ES:(E)DI (for INS) or segment:(E)SI (for OUTS; the default segment is DS but 
can be overridden by a segment override prefix) at the time the instruction 
started. If the relevant segment is not usable, the value is undefined. On 
processors that support Intel 64 architecture, bits 63:32 are clear if the logical 
processor was not in 64-bit mode before the VM exit.

• I/O RCX, I/O RSI, I/O RDI, and I/O RIP. For an SMM VM exit due an SMI 
that arrives immediately after the retirement of an I/O instruction, these fields 
receive the values that were in RCX, RSI, RDI, and RIP, respectively, before the 
I/O instruction executed. Thus, the value saved for I/O RIP addresses the I/O 
instruction.

33.15.2.4  Saving Guest State
SMM VM exits save the contents of the SMBASE register into the corresponding field 
in the guest-state area.

Table 33-9.  Exit Qualification for SMIs That Arrive Immediately 
After the Retirement of an I/O Instruction

Bit Position(s) Contents

2:0 Size of access:

0 = 1-byte
1 = 2-byte
3 = 4-byte

Other values not used.

3 Direction of the attempted access (0 = OUT, 1 = IN)

4 String instruction (0 = not string; 1 = string)

5 REP prefixed (0 = not REP; 1 = REP)

6 Operand encoding (0 = DX, 1 = immediate)

15:7 Reserved (cleared to 0)

31:16 Port number (as specified in the I/O instruction)

63:32 Reserved (cleared to 0). These bits exist only on processors 
that support Intel 64 architecture.
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The value of the VMX-preemption timer is saved into the corresponding field in the 
guest-state area if the “save VMX-preemption timer value” VM-exit control is 1. That 
field becomes undefined if, in addition, either the SMM VM exit is from VMX root 
operation or the SMM VM exit is from VMX non-root operation and the “activate VMX-
preemption timer” VM-execution control is 0.

33.15.2.5  Updating Non-Register State
SMM VM exits affect the non-register state of a logical processor as follows:
• SMM VM exits cause non-maskable interrupts (NMIs) to be blocked; they may be 

unblocked through execution of IRET or through a VM entry (depending on the 
value loaded for the interruptibility state and the setting of the “virtual NMIs” 
VM-execution control).

• SMM VM exits cause SMIs to be blocked; they may be unblocked by a VM entry 
that returns from SMM (see Section 33.15.4).

SMM VM exits invalidate linear mappings and combined mappings associated with 
VPID 0000H for all PCIDs. Combined mappings for VPID 0000H are invalidated for all 
EP4TA values (EP4TA is the value of bits 51:12 of EPTP; see Section 28.3). (Ordinary 
VM exits are not required to perform such invalidation if the “enable VPID” VM-
execution control is 1; see Section 27.5.5.)

33.15.3 Operation of the SMM-Transfer Monitor
Once invoked, the SMM-transfer monitor (STM) is in VMX root operation and can use 
VMX instructions to configure VMCSs and to cause VM entries to virtual machines 
supported by those structures. As noted in Section 33.15.1, the VMXOFF instruction 
cannot be used under the dual-monitor treatment and thus cannot be used by the 
STM.

The RSM instruction also cannot be used under the dual-monitor treatment. As noted 
in Section 25.1.3, it causes a VM exit if executed in SMM in VMX non-root operation. 
If executed in VMX root operation, it causes an invalid-opcode exception. The STM 
uses VM entries to return from SMM (see Section 33.15.4).

33.15.4 VM Entries that Return from SMM
The SMM-transfer monitor (STM) returns from SMM using a VM entry with the “entry 
to SMM” VM-entry control clear. VM entries that return from SMM reverse the effects 
of an SMM VM exit (see Section 33.15.2).

VM entries that return from SMM may differ from other VM entries in that they do not 
necessarily enter VMX non-root operation. If the executive-VMCS pointer field in the 
current VMCS contains the VMXON pointer, the logical processor remains in VMX root 
operation after VM entry.
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For differences between VM entries that return from SMM and other VM entries see 
Sections 33.15.4.1 through 33.15.4.10.

33.15.4.1  Checks on the Executive-VMCS Pointer Field
VM entries that return from SMM perform the following checks on the executive-
VMCS pointer field in the current VMCS:
• Bits 11:0 must be 0.
• The pointer must not set any bits beyond the processor’s physical-address 

width.1,2

• The 32 bits located in memory referenced by the physical address in the pointer 
must contain the processor’s VMCS revision identifier (see Section 24.2).

The checks above are performed before the checks described in Section 33.15.4.2 
and before any of the following checks:
• 'If the "deactivate dual-monitor treatment" VM-entry control is 0 and the 

executive-VMCS pointer field does not contain the VMXON pointer, the launch 
state of the executive VMCS (the VMCS referenced by the executive-VMCS 
pointer field) must be launched (see Section 24.10.3).

• If the “deactivate dual-monitor treatment” VM-entry control is 1, the executive-
VMCS pointer field must contain the VMXON pointer (see Section 33.15.7).3

33.15.4.2  Checks on VM-Execution Control Fields
VM entries that return from SMM differ from other VM entries with regard to the 
checks performed on the VM-execution control fields specified in Section 26.2.1.1. 
They do not apply the checks to the current VMCS. Instead, VM-entry behavior 
depends on whether the executive-VMCS pointer field contains the VMXON pointer:
• If the executive-VMCS pointer field contains the VMXON pointer (the VM entry 

remains in VMX root operation), the checks are not performed at all.
• If the executive-VMCS pointer field does not contain the VMXON pointer (the 

VM entry enters VMX non-root operation), the checks are performed on the 
VM-execution control fields in the executive VMCS (the VMCS referenced by the 
executive-VMCS pointer field in the current VMCS). These checks are performed 
after checking the executive-VMCS pointer field itself (for proper alignment).

1. Software can determine a processor’s physical-address width by executing CPUID with 
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

2. If IA32_VMX_BASIC[48] is read as 1, this pointer must not set any bits in the range 63:32; see 
Appendix A.1.

3. The STM can determine the VMXON pointer by reading the executive-VMCS pointer field in the 
current VMCS after the SMM VM exit that activates the dual-monitor treatment.
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Other VM entries ensure that, if “activate VMX-preemption timer” VM-execution 
control is 0, the “save VMX-preemption timer value” VM-exit control is also 0. This 
check is not performed by VM entries that return from SMM.

33.15.4.3  Checks on VM-Entry Control Fields
VM entries that return from SMM differ from other VM entries with regard to the 
checks performed on the VM-entry control fields specified in Section 26.2.1.3.

Specifically, if the executive-VMCS pointer field contains the VMXON pointer (the 
VM entry remains in VMX root operation), the following must not all hold for the 
VM-entry interruption-information field:
• the valid bit (bit 31) in the VM-entry interruption-information field is 1
• the interruption type (bits 10:8) is not 7 (other event); and
• the vector (bits 7:0) is not 0 (pending MTF VM exit).

33.15.4.4  Checks on the Guest State Area
Section 26.3.1 specifies checks performed on fields in the guest-state area of the 
VMCS. Some of these checks are conditioned on the settings of certain VM-execution 
controls (e.g., “virtual NMIs” or “unrestricted guest”). VM entries that return from 
SMM modify these checks based on whether the executive-VMCS pointer field 
contains the VMXON pointer:1

• If the executive-VMCS pointer field contains the VMXON pointer (the VM entry 
remains in VMX root operation), the checks are performed as all relevant VM-
execution controls were 0. (As a result, some checks may not be performed at 
all.)

• If the executive-VMCS pointer field does not contain the VMXON pointer (the 
VM entry enters VMX non-root operation), this check is performed based on the 
settings of the VM-execution controls in the executive VMCS (the VMCS 
referenced by the executive-VMCS pointer field in the current VMCS).

For VM entries that return from SMM, the activity-state field must not indicate the 
wait-for-SIPI state if the executive-VMCS pointer field contains the VMXON pointer 
(the VM entry is to VMX root operation).

33.15.4.5  Loading Guest State
VM entries that return from SMM load the SMBASE register from the SMBASE field.

VM entries that return from SMM invalidate linear mappings and combined mappings 
associated with all VPIDs. Combined mappings are invalidated for all EP4TA values 
(EP4TA is the value of bits 51:12 of EPTP; see Section 28.3). (Ordinary VM entries 

1. The STM can determine the VMXON pointer by reading the executive-VMCS pointer field in the 
current VMCS after the SMM VM exit that activates the dual-monitor treatment.
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are required to perform such invalidation only for VPID 0000H and are not required 
to do even that if the “enable VPID” VM-execution control is 1; see Section 26.3.2.5.)

33.15.4.6  VMX-Preemption Timer
A VM entry that returns from SMM activates the VMX-preemption timer only if the 
executive-VMCS pointer field does not contain the VMXON pointer (the VM entry 
enters VMX non-root operation) and the “activate VMX-preemption timer” VM-execu-
tion control is 1 in the executive VMCS (the VMCS referenced by the executive-VMCS 
pointer field). In this case, VM entry starts the VMX-preemption timer with the value 
in the VMX-preemption timer-value field in the current VMCS.

33.15.4.7  Updating the Current-VMCS and SMM-Transfer VMCS Pointers
Successful VM entries (returning from SMM) load the SMM-transfer VMCS pointer 
with the current-VMCS pointer. Following this, they load the current-VMCS pointer 
from a field in the current VMCS:
• If the executive-VMCS pointer field contains the VMXON pointer (the VM entry 

remains in VMX root operation), the current-VMCS pointer is loaded from the 
VMCS-link pointer field.

• If the executive-VMCS pointer field does not contain the VMXON pointer (the 
VM entry enters VMX non-root operation), the current-VMCS pointer is loaded 
with the value of the executive-VMCS pointer field.

If the VM entry successfully enters VMX non-root operation, the VM-execution 
controls in effect after the VM entry are those from the new current VMCS. This 
includes any structures external to the VMCS referenced by VM-execution control 
fields.

The updating of these VMCS pointers occurs before event injection. Event injection is 
determined, however, by the VM-entry control fields in the VMCS that was current 
when the VM entry commenced.

33.15.4.8  VM Exits Induced by VM Entry
Section 26.5.1.2 describes how the event-delivery process invoked by event injec-
tion may lead to a VM exit. Section 26.6.3 to Section 26.6.7 describe other situations 
that may cause a VM exit to occur immediately after a VM entry.

Whether these VM exits occur is determined by the VM-execution control fields in the 
current VMCS. For VM entries that return from SMM, they can occur only if the exec-
utive-VMCS pointer field does not contain the VMXON pointer (the VM entry enters 
VMX non-root operation).

In this case, determination is based on the VM-execution control fields in the VMCS 
that is current after the VM entry. This is the VMCS referenced by the value of the 
executive-VMCS pointer field at the time of the VM entry (see Section 33.15.4.7). 
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This VMCS also controls the delivery of such VM exits. Thus, VM exits induced by a 
VM entry returning from SMM are to the executive monitor and not to the STM.

33.15.4.9  SMI Blocking
VM entries that return from SMM determine the blocking of system-management 
interrupts (SMIs) as follows:
• If the “deactivate dual-monitor treatment” VM-entry control is 0, SMIs are 

blocked after VM entry if and only if the bit 2 in the interruptibility-state field is 1.
• If the “deactivate dual-monitor treatment” VM-entry control is 1, the blocking of 

SMIs depends on whether the logical processor is in SMX operation:1

— If the logical processor is in SMX operation, SMIs are blocked after VM entry.

— If the logical processor is outside SMX operation, SMIs are unblocked after 
VM entry.

VM entries that return from SMM and that do not deactivate the dual-monitor treat-
ment may leave SMIs blocked. This feature exists to allow the STM to invoke func-
tionality outside of SMM without unblocking SMIs.

33.15.4.10  Failures of VM Entries That Return from SMM
Section 26.7 describes the treatment of VM entries that fail during or after loading 
guest state. Such failures record information in the VM-exit information fields and 
load processor state as would be done on a VM exit. The VMCS used is the one that 
was current before the VM entry commenced. Control is thus transferred to the STM 
and the logical processor remains in SMM.

33.15.5 Enabling the Dual-Monitor Treatment
Code and data for the SMM-transfer monitor (STM) reside in a region of SMRAM 
called the monitor segment (MSEG). Code running in SMM determines the location 
of MSEG and establishes its content. This code is also responsible for enabling the 
dual-monitor treatment. 

SMM code enables the dual-monitor treatment and determines the location of MSEG 
by writing to IA32_SMM_MONITOR_CTL MSR (index 9BH). The MSR has the following 
format:

1. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last 
execution of GETSEC[SENTER]. A logical processor is outside SMX operation if GETSEC[SENTER] 
has not been executed or if GETSEC[SEXIT] was executed after the last execution of GET-
SEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference,” in Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2B.
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• Bit 0 is the register’s valid bit. The STM may be invoked using VMCALL only if this 
bit is 1. Because VMCALL is used to activate the dual-monitor treatment (see 
Section 33.15.6), the dual-monitor treatment cannot be activated if the bit is 0. 
This bit is cleared when the logical processor is reset.

• Bit 1 is reserved.
• Bit 2 determines whether executions of VMXOFF unblock SMIs under the default 

treatment of SMIs and SMM. Executions of VMXOFF unblock SMIs unless bit 2 is 
1 (the value of bit 0 is irrelevant). See Section 33.14.4.
Certain leaf functions of the GETSEC instruction clear this bit (see Chapter 5, 
“Safer Mode Extensions Reference,” in Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 2C)

• Bits 11:3 are reserved.
• Bits 31:12 contain a value that, when shifted right 12 bits, is the physical address 

of MSEG (the MSEG base address).
• Bits 63:32 are reserved.

The following items detail use of this MSR:
• The IA32_SMM_MONITOR_CTL MSR is supported only on processors that support 

the dual-monitor treatment.1 On other processors, accesses to the MSR using 
RDMSR or WRMSR generate a general-protection fault (#GP(0)).

• A write to the IA32_SMM_MONITOR_CTL MSR using WRMSR generates a 
general-protection fault (#GP(0)) if executed outside of SMM or if an attempt is 
made to set any reserved bit. An attempt to write to IA32_SMM_MONITOR_CTL 
MSR fails if made as part of a VM exit that does not end in SMM or part of a 
VM entry that does not begin in SMM.

• Reads from IA32_SMM_MONITOR_CTL MSR using RDMSR are allowed any time 
RDMSR is allowed. The MSR may be read as part of any VM exit.

• The dual-monitor treatment can be activated only if the valid bit in the MSR is set 
to 1.

The 32 bytes located at the MSEG base address are called the MSEG header. The 
format of the MSEG header is given in Table 33-10 (each field is 32 bits).

1. Software should consult the VMX capability MSR IA32_VMX_BASIC (see Appendix A.1) to deter-
mine whether the dual-monitor treatment is supported.

Table 33-10.  Format of MSEG Header

Byte Offset Field

0 MSEG-header revision identifier

4 SMM-transfer monitor features

8 GDTR limit
Vol. 3C 33-35



SYSTEM MANAGEMENT MODE
To ensure proper behavior in VMX operation, software should maintain the MSEG 
header in writeback cacheable memory. Future implementations may allow or 
require a different memory type.1 Software should consult the VMX capability MSR 
IA32_VMX_BASIC (see Appendix A.1).

SMM code should enable the dual-monitor treatment (by setting the valid bit in 
IA32_SMM_MONITOR_CTL MSR) only after establishing the content of the MSEG 
header as follows:
• Bytes 3:0 contain the MSEG revision identifier. Different processors may use 

different MSEG revision identifiers. These identifiers enable software to avoid 
using an MSEG header formatted for one processor on a processor that uses a 
different format. Software can discover the MSEG revision identifier that a 
processor uses by reading the VMX capability MSR IA32_VMX_MISC (see 
Appendix A.6).

• Bytes 7:4 contain the SMM-transfer monitor features field. Bits 31:1 of this 
field are reserved and must be zero. Bit 0 of the field is the IA-32e mode SMM 
feature bit. It indicates whether the logical processor will be in IA-32e mode 
after the STM is activated (see Section 33.15.6).

• Bytes 31:8 contain fields that determine how processor state is loaded when the 
STM is activated (see Section 33.15.6.4). SMM code should establish these fields 
so that activating of the STM invokes the STM’s initialization code. 

33.15.6 Activating the Dual-Monitor Treatment
The dual-monitor treatment may be enabled by SMM code as described in Section 
33.15.5. The dual-monitor treatment is activated only if it is enabled and only by the 

12 GDTR base offset

16 CS selector

20 EIP offset

24 ESP offset

28 CR3 offset

1. Alternatively, software may map the MSEG header with the UC memory type; this may be neces-
sary, depending on how memory is organized. Doing so is strongly discouraged unless necessary 
as it will cause the performance of transitions using those structures to suffer significantly. In 
addition, the processor will continue to use the memory type reported in the VMX capability MSR 
IA32_VMX_BASIC with exceptions noted in Appendix A.1.

Table 33-10.  Format of MSEG Header (Contd.)

Byte Offset Field
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executive monitor. The executive monitor activates the dual-monitor treatment by 
executing VMCALL in VMX root operation.

When VMCALL activates the dual-monitor treatment, it causes an SMM VM exit. 
Differences between this SMM VM exit and other SMM VM exits are discussed in 
Sections 33.15.6.1 through 33.15.6.5. See also “VMCALL—Call to VM Monitor” in 
Chapter 29 of Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3C.

33.15.6.1  Initial Checks
An execution of VMCALL attempts to activate the dual-monitor treatment if (1) the 
processor supports the dual-monitor treatment;1 (2) the logical processor is in VMX 
root operation; (3) the logical processor is outside SMM and the valid bit is set in the 
IA32_SMM_MONITOR_CTL MSR; (4) the logical processor is not in virtual-8086 
mode and not in compatibility mode; (5) CPL = 0; and (6) the dual-monitor treat-
ment is not active.

The VMCS that manages SMM VM exit caused by this VMCALL is the current VMCS 
established by the executive monitor. The VMCALL performs the following checks on 
the current VMCS in the order indicated:

1. There must be a current VMCS pointer.

2. The launch state of the current VMCS must be clear.

3. The VM-exit control fields must be valid:

— Reserved bits in the VM-exit controls must be set properly. Software may 
consult the VMX capability MSR IA32_VMX_EXIT_CTLS to determine the 
proper settings (see Appendix A.4).

— The following checks are performed for the VM-exit MSR-store address if the 
VM-exit MSR-store count field is non-zero:

• The lower 4 bits of the VM-exit MSR-store address must be 0. The address 
should not set any bits beyond the processor’s physical-address width.2

• The address of the last byte in the VM-exit MSR-store area should not set 
any bits beyond the processor’s physical-address width. The address of 
this last byte is VM-exit MSR-store address + (MSR count * 16) – 1. (The 
arithmetic used for the computation uses more bits than the processor’s 
physical-address width.)

If IA32_VMX_BASIC[48] is read as 1, neither address should set any bits in 
the range 63:32; see Appendix A.1.

1. Software should consult the VMX capability MSR IA32_VMX_BASIC (see Appendix A.1) to deter-
mine whether the dual-monitor treatment is supported.

2. Software can determine a processor’s physical-address width by executing CPUID with 
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.
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If any of these checks fail, subsequent checks are skipped and VMCALL fails. If all 
these checks succeed, the logical processor uses the IA32_SMM_MONITOR_CTL MSR 
to determine the base address of MSEG. The following checks are performed in the 
order indicated:

1. The logical processor reads the 32 bits at the base of MSEG and compares them 
to the processor’s MSEG revision identifier.

2. The logical processor reads the SMM-transfer monitor features field:

— Bit 0 of the field is the IA-32e mode SMM feature bit, and it indicates whether 
the logical processor will be in IA-32e mode after the SMM-transfer monitor 
(STM) is activated.

• If the VMCALL is executed on a processor that does not support Intel 64 
architecture, the IA-32e mode SMM feature bit must be 0.

• If the VMCALL is executed in 64-bit mode, the IA-32e mode SMM feature 
bit must be 1.

— Bits 31:1 of this field are currently reserved and must be zero.

If any of these checks fail, subsequent checks are skipped and the VMCALL fails.

33.15.6.2  MSEG Checking
SMM VM exits that activate the dual-monitor treatment check the following before 
updating the current-VMCS pointer and the executive-VMCS pointer field (see 
Section 33.15.2.2):
• The 32 bits at the MSEG base address (used as a physical address) must contain 

the processor’s MSEG revision identifier.
• Bits 31:1 of the SMM-transfer monitor features field in the MSEG header (see 

Table 33-10) must be 0. Bit 0 of the field (the IA-32e mode SMM feature bit) 
must be 0 if the processor does not support Intel 64 architecture.

If either of these checks fail, execution of VMCALL fails.

33.15.6.3  Updating the Current-VMCS and Executive-VMCS Pointers
Before performing the steps in Section 33.15.2.2, SMM VM exits that activate the 
dual-monitor treatment begin by loading the SMM-transfer VMCS pointer with the 
value of the current-VMCS pointer.

33.15.6.4  Loading Host State
The VMCS that is current during an SMM VM exit that activates the dual-monitor 
treatment was established by the executive monitor. It does not contain the VM-exit 
controls and host state required to initialize the STM. For this reason, such SMM 
VM exits do not load processor state as described in Section 27.5. Instead, state is 
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set to fixed values or loaded based on the content of the MSEG header (see 
Table 33-10):
• CR0 is set to as follows:

— PG, NE, ET, MP, and PE are all set to 1.

— CD and NW are left unchanged.

— All other bits are cleared to 0.
• CR3 is set as follows:

— Bits 63:32 are cleared on processors that supports IA-32e mode.

— Bits 31:12 are set to bits 31:12 of the sum of the MSEG base address and the 
CR3-offset field in the MSEG header.

— Bits 11:5 and bits 2:0 are cleared (the corresponding bits in the CR3-offset 
field in the MSEG header are ignored).

— Bits 4:3 are set to bits 4:3 of the CR3-offset field in the MSEG header.
• CR4 is set as follows:

— MCE and PGE are cleared.

— PAE is set to the value of the IA-32e mode SMM feature bit.

— If the IA-32e mode SMM feature bit is clear, PSE is set to 1 if supported by the 
processor; if the bit is set, PSE is cleared.

— All other bits are unchanged.
• DR7 is set to 400H.
• The IA32_DEBUGCTL MSR is cleared to 00000000_00000000H.
• The registers CS, SS, DS, ES, FS, and GS are loaded as follows:

— All registers are usable.

— CS.selector is loaded from the corresponding field in the MSEG header (the 
high 16 bits are ignored), with bits 2:0 cleared to 0. If the result is 0000H, 
CS.selector is set to 0008H.

— The selectors for SS, DS, ES, FS, and GS are set to CS.selector+0008H. If the 
result is 0000H (if the CS selector was 0xFFF8), these selectors are instead 
set to 0008H.

— The base addresses of all registers are cleared to zero.

— The segment limits for all registers are set to FFFFFFFFH.

— The AR bytes for the registers are set as follows:

• CS.Type is set to 11 (execute/read, accessed, non-conforming code 
segment).

• For SS, DS, FS, and GS, the Type is set to 3 (read/write, accessed, 
expand-up data segment).
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• The S bits for all registers are set to 1.

• The DPL for each register is set to 0.

• The P bits for all registers are set to 1.

• On processors that support Intel 64 architecture, CS.L is loaded with the 
value of the IA-32e mode SMM feature bit.

• CS.D is loaded with the inverse of the value of the IA-32e mode SMM 
feature bit.

• For each of SS, DS, FS, and GS, the D/B bit is set to 1.

• The G bits for all registers are set to 1.
• LDTR is unusable. The LDTR selector is cleared to 0000H, and the register is 

otherwise undefined (although the base address is always canonical)
• GDTR.base is set to the sum of the MSEG base address and the GDTR base-offset 

field in the MSEG header (bits 63:32 are always cleared on processors that 
supports IA-32e mode). GDTR.limit is set to the corresponding field in the MSEG 
header (the high 16 bits are ignored).

• IDTR.base is unchanged. IDTR.limit is cleared to 0000H.
• RIP is set to the sum of the MSEG base address and the value of the RIP-offset 

field in the MSEG header (bits 63:32 are always cleared on logical processors 
that support IA-32e mode).

• RSP is set to the sum of the MSEG base address and the value of the RSP-offset 
field in the MSEG header (bits 63:32 are always cleared on logical processor that 
supports IA-32e mode).

• RFLAGS is cleared, except bit 1, which is always set.
• The logical processor is left in the active state.
• Event blocking after the SMM VM exit is as follows:

— There is no blocking by STI or by MOV SS.

— There is blocking by non-maskable interrupts (NMIs) and by SMIs.
• There are no pending debug exceptions after the SMM VM exit.
• For processors that support IA-32e mode, the IA32_EFER MSR is modified so that 

LME and LMA both contain the value of the IA-32e mode SMM feature bit.

If any of CR3[63:5], CR4.PAE, CR4.PSE, or IA32_EFER.LMA is changing, the TLBs are 
updated so that, after VM exit, the logical processor does not use translations that 
were cached before the transition. This is not necessary for changes that would not 
affect paging due to the settings of other bits (for example, changes to CR4.PSE if 
IA32_EFER.LMA was 1 before and after the transition).
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33.15.6.5  Loading MSRs
The VM-exit MSR-load area is not used by SMM VM exits that activate the dual-
monitor treatment. No MSRs are loaded from that area.

33.15.7 Deactivating the Dual-Monitor Treatment
The SMM-transfer monitor may deactivate the dual-monitor treatment and return 
the processor to default treatment of SMIs and SMM (see Section 33.14). It does this 
by executing a VM entry with the “deactivate dual-monitor treatment” VM-entry 
control set to 1.

As noted in Section 26.2.1.3 and Section 33.15.4.1, an attempt to deactivate the 
dual-monitor treatment fails in the following situations: (1) the processor is not in 
SMM; (2) the “entry to SMM” VM-entry control is 1; or (3) the executive-VMCS 
pointer does not contain the VMXON pointer (the VM entry is to VMX non-root oper-
ation).

As noted in Section 33.15.4.9, VM entries that deactivate the dual-monitor treat-
ment ignore the SMI bit in the interruptibility-state field of the guest-state area. 
Instead, the blocking of SMIs following such a VM entry depends on whether the 
logical processor is in SMX operation:1

• If the logical processor is in SMX operation, SMIs are blocked after VM entry. 
SMIs may later be unblocked by the VMXOFF instruction (see Section 33.14.4) or 
by certain leaf functions of the GETSEC instruction (see Chapter 5, “Safer Mode 
Extensions Reference,” in Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 2C).

• If the logical processor is outside SMX operation, SMIs are unblocked after 
VM entry.

33.16 SMI AND PROCESSOR EXTENDED STATE 
MANAGEMENT

On processors that support processor extended states using XSAVE/XRSTOR (see 
Chapter 13, “System Programming for Instruction Set Extensions and Processor 
Extended States”), the processor does not save any XSAVE/XRSTOR related state on 
an SMI. It is the responsibility of the SMM handler code to properly preserve the state 
information (including CR4.OSXSAVE, XCR0, and possibly processor extended states 

1. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last 
execution of GETSEC[SENTER]. A logical processor is outside SMX operation if GETSEC[SENTER] 
has not been executed or if GETSEC[SEXIT] was executed after the last execution of GET-
SEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference,” in Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2B.
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using XSAVE/XRSTOR). Therefore, the SMM handler must follow the rules described 
in Chapter 13.
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CHAPTER 34
MODEL-SPECIFIC REGISTERS (MSRS)

This chapter lists MSRs provided in Intel® Core™ 2 processor family, Intel® Atom™, 
Intel® Core™ Duo, Intel® Core™ Solo, Pentium® 4 and Intel® Xeon® processors, P6 
family processors, and Pentium® processors in Tables 34-13, 34-18, and 34-19, 
respectively. All MSRs listed can be read with the RDMSR and written with the 
WRMSR instructions. 

Register addresses are given in both hexadecimal and decimal. The register name is 
the mnemonic register name and the bit description describes individual bits in 
registers.

Model specific registers and its bit-fields may be supported for a finite range of 
processor families/models. To distinguish between different processor family and/or 
models, software must use CPUID.01H leaf function to query the combination of 
DisplayFamily and DisplayModel to determine model-specific availability of MSRs 
(see CPUID instruction in Chapter 3, “Instruction Set Reference, A-L” in the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 2A). Table 34-1 lists 
the signature values of DisplayFamily and DisplayModel for various processor fami-
lies or processor number series.

Table 34-1.  CPUID Signature Values of DisplayFamily_DisplayModel 
DisplayFamily_DisplayModel Processor Families/Processor Number Series

06_3AH Next Generation Intel Core processor based on Intel 
microarchitecture Ivy Bridge

06_2DH Next Generation Intel Xeon processor

06_2FH Intel Xeon processor E7 family

06_2AH Intel Xeon processor E3 family; Second Generation Intel Core i7, i5, 
i3 Processors 2xxx Series

06_2EH Intel Xeon processor 7500, 6500 series

06_25H, 06_2CH Intel Xeon processors 3600, 5600 series, Intel Core i7, i5 and i3 
Processors

06_1EH, 06_1FH Intel Core i7 and i5 Processors

06_1AH Intel Core i7 Processor, Intel Xeon Processor 3400, 3500, 5500 
series

06_1DH Intel Xeon Processor MP 7400 series

06_17H Intel Xeon Processor 3100, 3300, 5200, 5400 series, Intel Core 2 
Quad processors 8000, 9000 series
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34.1 ARCHITECTURAL MSRS
Many MSRs have carried over from one generation of IA-32 processors to the next 
and to Intel 64 processors. A subset of MSRs and associated bit fields, which do not 
change on future processor generations, are now considered architectural MSRs. For 
historical reasons (beginning with the Pentium 4 processor), these “architectural 
MSRs” were given the prefix “IA32_”. Table 34-2 lists the architectural MSRs, their 
addresses, their current names, their names in previous IA-32 processors, and bit 
fields that are considered architectural. MSR addresses outside Table 34-2 and 
certain bitfields in an MSR address that may overlap with architectural MSR 
addresses are model-specific. Code that accesses a machine specified MSR and that 
is executed on a processor that does not support that MSR will generate an excep-
tion.

06_0FH Intel Xeon Processor 3000, 3200, 5100, 5300, 7300 series, Intel 
Core 2 Quad processor 6000 series, Intel Core 2 Extreme 6000 
series, Intel Core 2 Duo 4000, 5000, 6000, 7000 series processors, 
Intel Pentium dual-core processors

06_0EH Intel Core Duo, Intel Core Solo processors

06_0DH Intel Pentium M processor

06_1CH Intel Atom processor

0F_06H Intel Xeon processor 7100, 5000 Series, Intel Xeon Processor MP, 
Intel Pentium 4, Pentium D processors

0F_03H, 0F_04H Intel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4, 
Pentium D processors

06_09H Intel Pentium M processor

0F_02H Intel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4 
processors

0F_0H, 0F_01H Intel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4 
processors

06_7H, 06_08H, 06_0AH, 
06_0BH

Intel Pentium III Xeon Processor, Intel Pentium III Processor

06_03H, 06_05H Intel Pentium II Xeon Processor, Intel Pentium II Processor 

06_01H Intel Pentium Pro Processor 

05_01H, 05_02H, 05_04H Intel Pentium Processor, Intel Pentium Processor with MMX 
Technology

Table 34-1.  CPUID Signature (Contd.)Values of DisplayFamily_DisplayModel  (Contd.)
DisplayFamily_DisplayModel Processor Families/Processor Number Series
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Architectural MSR or individual bit fields in an architectural MSR may be introduced or 
transitioned at the granularity of certain processor family/model or the presence of 
certain CPUID feature flags. The right-most column of Table 34-2 provides informa-
tion on the introduction of each architectural MSR or its individual fields. This infor-
mation is expressed either as signature values of “DF_DM“ (see Table 34-1) or via 
CPUID flags.

Certain bit field position may be related to the maximum physical address width, the 
value of which is expressed as “MAXPHYWID“ in Table 34-2. “MAXPHYWID“ is reported by 
CPUID.8000_0008H leaf.

MSR address range between 40000000H - 400000FFH is marked as a specially 
reserved range. All existing and future processors will not implement any features 
using any MSR in this range.

Table 34-2.  IA-32 Architectural MSRs

Register 
Address

Architectural MSR Name 
and bit fields 

(Former MSR Name) MSR/Bit Description

Introduced as 
Architectural 

MSRHex Decimal

0H 0 IA32_P5_MC_ADDR 
(P5_MC_ADDR)

See Section 34.13, “MSRs in 
Pentium Processors.”

Pentium 
Processor 
(05_01H)

1H 1 IA32_P5_MC_TYPE 
(P5_MC_TYPE)

See Section 34.13, “MSRs in 
Pentium Processors.”

DF_DM = 05_01H

6H 6 IA32_MONITOR_FILTER_S
IZE

See Section 8.10.5, 
“Monitor/Mwait Address 
Range Determination.”

0F_03H

10H 16 IA32_TIME_STAMP_
COUNTER (TSC)

See Section 17.12, “Time-
Stamp Counter.”

05_01H

17H 23 IA32_PLATFORM_ID 
(MSR_PLATFORM_ID )

Platform ID. (RO) 
The operating system can use 
this MSR to determine “slot” 
information for the processor 
and the proper microcode 
update to load.

06_01H

49:0 Reserved.
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52:50 Platform Id. (RO) 

Contains information 
concerning the intended 
platform for the processor. 
52 51 50
0 0 0 Processor Flag 0
0 0 1 Processor Flag 1
0 1 0 Processor Flag 2
0 1 1 Processor Flag 3
1 0 0 Processor Flag 4 
1 0 1 Processor Flag 5
1 1 0 Processor Flag 6
1 1 1 Processor Flag 7

63:53 Reserved.

1BH 27 IA32_APIC_BASE 
(APIC_BASE)

06_01H

7:0 Reserved

8 BSP flag (R/W)

9 Reserved

10 Enable x2APIC mode 06_1AH

11 APIC Global Enable (R/W)

(MAXPHYWID - 1):12 APIC Base (R/W)

63: MAXPHYWID Reserved

3AH 58 IA32_FEATURE_CONTROL Control Features in Intel 64 
Processor. (R/W)

If CPUID.01H: 
ECX[bit 5 or bit 6] 
= 1

Table 34-2.  IA-32 Architectural MSRs (Contd.)

Register 
Address

Architectural MSR Name 
and bit fields 

(Former MSR Name) MSR/Bit Description

Introduced as 
Architectural 

MSRHex Decimal
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0 Lock bit (R/WO): (1 = locked). 
When set, locks this MSR from 
being written, writes to this 
bit will result in GP(0).

Note: Once the Lock bit is set, 
the contents of this register 
cannot be modified. 
Therefore the lock bit must 
be set after configuring 
support

for Intel Virtualization 
Technology and prior to 
transferring control to an 
option ROM or the OS. Hence, 
once the Lock bit is set, the 
entire

IA32_FEATURE_CONTROL_M
SR contents are preserved 
across RESET when 
PWRGOOD is not deasserted.

If 
CPUID.01H:ECX[bi
t 5 or bit 6] = 1

1 Enable VMX inside SMX 
operation (R/WL): This bit 
enables a system executive 
to use VMX in conjunction 
with SMX to support Intel® 
Trusted Execution 
Technology.

BIOS must set this bit only 
when the CPUID function 1 
returns VMX feature flag and 
SMX feature flag set (ECX bits 
5 and 6 respectively).

If 
CPUID.01H:ECX[bi
t 5 and bit 6] are 
set to 1

Table 34-2.  IA-32 Architectural MSRs (Contd.)

Register 
Address

Architectural MSR Name 
and bit fields 

(Former MSR Name) MSR/Bit Description

Introduced as 
Architectural 

MSRHex Decimal
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2 Enable VMX outside SMX 
operation (R/WL): This bit 
enables VMX for system 
executive that do not require 
SMX.

BIOS must set this bit only 
when the CPUID function 1 
returns VMX feature flag set 
(ECX bit 5).

If 
CPUID.01H:ECX[bi
t 5 or bit 6] = 1

7:3 Reserved

14:8 SENTER Local Function 
Enables (R/WL): When set, 
each bit in the field 
represents an enable control 
for a corresponding SENTER 
function. This bit is supported 
only if CPUID.1:ECX.[bit 6] is 
set

If 
CPUID.01H:ECX[bi
t 6] = 1

15 SENTER Global Enable (R/WL): 
This bit must be set to enable 
SENTER leaf functions. This 
bit is supported only if 
CPUID.1:ECX.[bit 6] is set

If 
CPUID.01H:ECX[bi
t 6] = 1

63:16 Reserved

79H 121 IA32_BIOS_UPDT_TRIG 
(BIOS_UPDT_TRIG)

BIOS Update Trigger (W)

Executing a WRMSR 
instruction to this MSR causes 
a microcode update to be 
loaded into the processor. See 
Section 9.11.6, “Microcode 
Update Loader.”

A processor may prevent 
writing to this MSR when 
loading guest states on VM 
entries or saving guest states 
on VM exits.

06_01H

Table 34-2.  IA-32 Architectural MSRs (Contd.)

Register 
Address

Architectural MSR Name 
and bit fields 

(Former MSR Name) MSR/Bit Description

Introduced as 
Architectural 

MSRHex Decimal
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8BH 139 IA32_BIOS_SIGN_ID 
(BIOS_SIGN/BBL_CR
_D3)

BIOS Update Signature (RO)

Returns the microcode update 
signature following the 
execution of CPUID.01H.

A processor may prevent 
writing to this MSR when 
loading guest states on VM 
entries or saving guest states 
on VM exits.

06_01H

31:0 Reserved

63:32 It is recommended that this 
field be pre-loaded with 0 
prior to executing CPUID. 

If the field remains 0 
following the execution of 
CPUID; this indicates that no 
microcode update is loaded. 
Any non-zero value is the 
microcode update signature.

9BH 155 IA32_SMM_MONITOR_CTL SMM Monitor Configuration 
(R/W)

If CPUID.01H: 
ECX[bit 5 or bit 6] 
= 1

0 Valid (R/W)

1 Reserved

2 Controls SMI unblocking by 
VMXOFF (see Section 
33.14.4)

If 
IA32_VMX_MISC[
bit 28])

11:3 Reserved

31:12 MSEG Base (R/W)

63:32 Reserved

C1H 193 IA32_PMC0 (PERFCTR0) General Performance Counter 
0 (R/W)

If CPUID.0AH: 
EAX[15:8] > 0

C2H 194 IA32_PMC1 (PERFCTR1) General Performance Counter 
1 (R/W)

If CPUID.0AH: 
EAX[15:8] > 1

C3H 195 IA32_PMC2 General Performance Counter 
2 (R/W)

If CPUID.0AH: 
EAX[15:8] > 2

Table 34-2.  IA-32 Architectural MSRs (Contd.)

Register 
Address

Architectural MSR Name 
and bit fields 

(Former MSR Name) MSR/Bit Description

Introduced as 
Architectural 

MSRHex Decimal
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C4H 196 IA32_PMC3 General Performance Counter 
3 (R/W)

If CPUID.0AH: 
EAX[15:8] > 3

C5H 197 IA32_PMC4 General Performance Counter 
4 (R/W)

If CPUID.0AH: 
EAX[15:8] > 4

C6H 198 IA32_PMC5 General Performance Counter 
5 (R/W)

If CPUID.0AH: 
EAX[15:8] > 5

C7H 199 IA32_PMC6 General Performance Counter 
6 (R/W)

If CPUID.0AH: 
EAX[15:8] > 6

C8H 200 IA32_PMC7 General Performance Counter 
7 (R/W)

If CPUID.0AH: 
EAX[15:8] > 7

E7H 231 IA32_MPERF Maximum Qualified 
Performance Clock Counter 
(R/Write to clear)

If CPUID.06H: 
ECX[0] = 1

63:0 C0_MCNT: C0 Maximum 
Frequency Clock Count. 

Increments at fixed interval 
(relative to TSC freq.) when 
the logical processor is in C0. 

Cleared upon overflow / 
wrap-around of IA32_APERF. 

E8H 232 IA32_APERF Actual Performance Clock 
Counter (R/Write to clear)

If CPUID.06H: 
ECX[0] = 1

63:0 C0_ACNT: C0 Actual 
Frequency Clock Count.

Accumulates core clock 
counts at the coordinated 
clock frequency, when the 
logical processor is in C0. 

Cleared upon overflow / 
wrap-around of IA32_MPERF.

FEH 254 IA32_MTRRCAP 
(MTRRcap)

MTRR Capability (RO) Section 
11.11.2.1, 
“IA32_MTRR_DEF_TYPE 
MSR.”

06_01H

Table 34-2.  IA-32 Architectural MSRs (Contd.)

Register 
Address

Architectural MSR Name 
and bit fields 

(Former MSR Name) MSR/Bit Description

Introduced as 
Architectural 

MSRHex Decimal
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7:0 VCNT: The number of variable 
memory type ranges in the 
processor.

8 Fixed range MTRRs are 
supported when set.

9 Reserved.

10 WC Supported when set.

11 SMRR Supported when set.

63:12 Reserved.

174H 372 IA32_SYSENTER_CS SYSENTER_CS_MSR (R/W) 06_01H

15:0 CS Selector

63:16 Reserved.

175H 373 IA32_SYSENTER_ESP SYSENTER_ESP_MSR (R/W) 06_01H

176H 374 IA32_SYSENTER_EIP SYSENTER_EIP_MSR (R/W) 06_01H

179H 377 IA32_MCG_CAP 
(MCG_CAP) 

Global Machine Check 
Capability (RO)

06_01H

7:0 Count: Number of reporting 
banks.

8 MCG_CTL_P: IA32_MCG_CTL 
is present if this bit is set

9 MCG_EXT_P: Extended 
machine check state registers 
are present if this bit is set

10 MCP_CMCI_P: Support for 
corrected MC error event is 
present.

06_1AH

11 MCG_TES_P: Threshold-based 
error status register are 
present if this bit is set.

15:12 Reserved

23:16 MCG_EXT_CNT: Number of 
extended machine check 
state registers present.

Table 34-2.  IA-32 Architectural MSRs (Contd.)

Register 
Address

Architectural MSR Name 
and bit fields 

(Former MSR Name) MSR/Bit Description

Introduced as 
Architectural 
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24 MCG_SER_P: The processor 
supports software error 
recovery if this bit is set.

63:25 Reserved.

17AH 378 IA32_MCG_STATUS 
(MCG_STATUS)

Global Machine Check Status 
(RO)

06_01H

17BH 379 IA32_MCG_CTL 
(MCG_CTL)

Global Machine Check Control 
(R/W)

06_01H

180H-
185H

384-
389

Reserved 06_0EH1

186H 390 IA32_PERFEVTSEL0 
(PERFEVTSEL0)

Performance Event Select 
Register 0 (R/W)

If CPUID.0AH: 
EAX[15:8] > 0

7:0 Event Select: Selects a 
performance event logic unit.

15:8 UMask: Qualifies the 
microarchitectural condition 
to detect on the selected 
event logic.

16 USR: Counts while in privilege 
level is not ring 0.

17 OS: Counts while in privilege 
level is ring 0.

18 Edge: Enables edge detection 
if set.

19 PC: enables pin control.

20 INT: enables interrupt on 
counter overflow.

Table 34-2.  IA-32 Architectural MSRs (Contd.)

Register 
Address

Architectural MSR Name 
and bit fields 

(Former MSR Name) MSR/Bit Description

Introduced as 
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21 AnyThread: When set to 1, it 
enables counting the 
associated event conditions 
occurring across all logical 
processors sharing a 
processor core. When set to 0, 
the counter only increments 
the associated event 
conditions occurring in the 
logical processor which 
programmed the MSR.

22 EN: enables the 
corresponding performance 
counter to commence 
counting when this bit is set.

23 INV: invert the CMASK.

31:24 CMASK: When CMASK is not 
zero, the corresponding 
performance counter 
increments each cycle if the 
event count is greater than or 
equal to the CMASK.

63:32 Reserved.

187H 391 IA32_PERFEVTSEL1 
(PERFEVTSEL1)

Performance Event Select 
Register 1 (R/W)

If CPUID.0AH: 
EAX[15:8] > 1

188H 392 IA32_PERFEVTSEL2 Performance Event Select 
Register 2 (R/W)

If CPUID.0AH: 
EAX[15:8] > 2

189H 393 IA32_PERFEVTSEL3 Performance Event Select 
Register 3 (R/W)

If CPUID.0AH: 
EAX[15:8] > 3

18AH-
197H

394-
407

Reserved 06_0EH2

198H 408 IA32_PERF_STATUS (RO) 0F_03H 

15:0 Current performance State 
Value

63:16 Reserved.

199H 409 IA32_PERF_CTL (R/W) 0F_03H 

Table 34-2.  IA-32 Architectural MSRs (Contd.)

Register 
Address

Architectural MSR Name 
and bit fields 

(Former MSR Name) MSR/Bit Description
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15:0 Target performance State 
Value

31:16 Reserved.

32 IDA Engage. (R/W)

When set to 1: disengages 
IDA

06_0FH (Mobile)

63:33 Reserved.

19AH 410 IA32_CLOCK_MODULATIO
N

Clock Modulation Control 
(R/W)

See Section 14.5.3, “Software 
Controlled Clock Modulation.”

0F_0H

0 Extended On-Demand Clock 
Modulation Duty Cycle:

If 
CPUID.06H:EAX[5] 
= 1

3:1 On-Demand Clock Modulation 
Duty Cycle: Specific encoded 
values for target duty cycle 
modulation.

4 On-Demand Clock Modulation 
Enable: Set 1 to enable 
modulation.

63:5 Reserved.

19BH 411 IA32_THERM_INTERRUPT Thermal Interrupt Control 
(R/W)

Enables and disables the 
generation of an interrupt on 
temperature transitions 
detected with the processor’s 
thermal sensors and thermal 
monitor. 

See Section 14.5.2, “Thermal 
Monitor.”

0F_0H

0 High-Temperature Interrupt 
Enable

1 Low-Temperature Interrupt 
Enable

Table 34-2.  IA-32 Architectural MSRs (Contd.)

Register 
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Architectural MSR Name 
and bit fields 

(Former MSR Name) MSR/Bit Description
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2 PROCHOT# Interrupt Enable

3 FORCEPR# Interrupt Enable

4 Critical Temperature Interrupt 
Enable

7:5 Reserved.

14:8 Threshold #1 Value

15 Threshold #1 Interrupt 
Enable

22:16 Threshold #2 Value

23 Threshold #2 Interrupt 
Enable

24 Power Limit Notification 
Enable

If 
CPUID.06H:EAX[4] 
= 1

63:25 Reserved.

19CH 412 IA32_THERM_STATUS Thermal Status Information 
(RO)

Contains status information 
about the processor’s thermal 
sensor and automatic thermal 
monitoring facilities. 

See Section 14.5.2, “Thermal 
Monitor”

0F_0H

0 Thermal Status (RO):

1 Thermal Status Log (R/W): 

2 PROCHOT # or FORCEPR# 
event (RO)

3 PROCHOT # or FORCEPR# log 
(R/WC0)

4 Critical Temperature Status 
(RO)

5 Critical Temperature Status 
log (R/WC0)

Table 34-2.  IA-32 Architectural MSRs (Contd.)

Register 
Address

Architectural MSR Name 
and bit fields 

(Former MSR Name) MSR/Bit Description
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6 Thermal Threshold #1 Status 
(RO)

If 
CPUID.01H:ECX[8] 
= 1

7 Thermal Threshold #1 log 
(R/WC0)

If 
CPUID.01H:ECX[8] 
= 1

8 Thermal Threshold #2 Status 
(RO)

If 
CPUID.01H:ECX[8] 
= 1

9 Thermal Threshold #1 log 
(R/WC0)

If 
CPUID.01H:ECX[8] 
= 1

10 Power Limitation Status (RO) If 
CPUID.06H:EAX[4] 
= 1

11 Power Limitation log (R/WC0) If 
CPUID.06H:EAX[4] 
= 1

15:12 Reserved.

22:16 Digital Readout (RO) If 
CPUID.06H:EAX[0] 
= 1

26:23 Reserved.

30:27 Resolution in Degrees Celsius 
(RO)

If 
CPUID.06H:EAX[0] 
= 1

31 Reading Valid (RO) If 
CPUID.06H:EAX[0] 
= 1

63:32 Reserved.

1A0H 416 IA32_MISC_ENABLE Enable Misc. Processor 
Features. (R/W) 

Allows a variety of processor 
functions to be enabled and 
disabled.

Table 34-2.  IA-32 Architectural MSRs (Contd.)
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0 Fast-Strings Enable. 

When set, the fast-strings 
feature (for REP MOVS and 
REP STORS) is enabled 
(default); when clear, fast-
strings are disabled.

0F_0H

2:1 Reserved.

3 Automatic Thermal Control 
Circuit Enable. (R/W) 

1 = Setting this bit enables 
the thermal control 
circuit (TCC) portion of 
the Intel Thermal 
Monitor feature. This 
allows the processor to 
automatically reduce 
power consumption in 
response to TCC 
activation.

0 = Disabled (default).
Note: In some products 
clearing this bit might be 
ignored in critical thermal 
conditions, and TM1, TM2 and 
adaptive thermal throttling 
will still be activated.

0F_0H

6:4 Reserved

7 Performance Monitoring 
Available. (R) 

1 = Performance monitoring 
enabled

0 = Performance monitoring 
disabled

0F_0H

10:8 Reserved.

Table 34-2.  IA-32 Architectural MSRs (Contd.)
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11 Branch Trace Storage 
Unavailable. (RO)

1 = Processor doesn’t 
support branch trace 
storage (BTS)

0 = BTS is supported

0F_0H

12 Precise Event Based 
Sampling (PEBS) 
Unavailable. (RO) 

1 = PEBS is not supported; 
0 = PEBS is supported. 

06_0FH

15:13 Reserved.

16 Enhanced Intel SpeedStep 
Technology Enable. (R/W)

0= Enhanced Intel 
SpeedStep Technology 
disabled

1 = Enhanced Intel 
SpeedStep Technology 
enabled

06_0DH

17 Reserved.

Table 34-2.  IA-32 Architectural MSRs (Contd.)
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18 ENABLE MONITOR FSM. (R/W)

When this bit is set to 0, the 
MONITOR feature flag is not 
set (CPUID.01H:ECX[bit 
3] = 0). This indicates that 
MONITOR/MWAIT are not 
supported. 

Software attempts to 
execute MONITOR/MWAIT will 
cause #UD when this bit is 0.

When this bit is set to 1 
(default), MONITOR/MWAIT 
are supported 
(CPUID.01H:ECX[bit 3] = 1).

If the SSE3 feature flag 
ECX[0] is not set 
(CPUID.01H:ECX[bit 0] = 0), 
the OS must not attempt to 
alter this bit. BIOS must leave 
it in the default state. Writing 
this bit when the SSE3 
feature flag is set to 0 may 
generate a #GP exception.

0F_03H

21:19 Reserved.

Table 34-2.  IA-32 Architectural MSRs (Contd.)
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22 Limit CPUID Maxval. (R/W)

When this bit is set to 1, 
CPUID.00H returns a 
maximum value in EAX[7:0] of 
3.

BIOS should contain a setup 
question that allows users to 
specify when the installed OS 
does not support CPUID 
functions greater than 3.

Before setting this bit, BIOS 
must execute the CPUID.0H 
and examine the maximum 
value returned in EAX[7:0]. If 
the maximum value is greater 
than 3, the bit is supported.

Otherwise, the bit is not 
supported.  Writing to this bit 
when the maximum value is 
greater than 3 may generate 
a #GP exception.

Setting this bit may cause 
unexpected behavior in 
software that depends on the 
availability of CPUID leaves 
greater than 3.

0F_03H

23 xTPR Message Disable. 
(R/W)

When set to 1, xTPR 
messages are disabled. xTPR 
messages are optional 
messages that allow the 
processor to inform the 
chipset of its priority.

if 
CPUID.01H:ECX[1
4] = 1

33:24 Reserved.

Table 34-2.  IA-32 Architectural MSRs (Contd.)
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34 XD Bit Disable. (R/W)

When set to 1, the Execute 
Disable Bit feature (XD Bit) is 
disabled and the XD Bit 
extended feature flag will be 
clear (CPUID.80000001H: 
EDX[20]=0).

When set to a 0 (default), the 
Execute Disable Bit feature (if 
available) allows the OS to 
enable PAE paging and take 
advantage of data only pages.

BIOS must not alter the 
contents of this bit location, if 
XD bit is not supported.. 
Writing this bit to 1 when the 
XD Bit extended feature flag 
is set to 0 may generate a 
#GP exception.

if 
CPUID.80000001
H:EDX[20] = 1

63:35 Reserved.

1B0H 432 IA32_ENERGY_PERF_BIA
S

Performance Energy Bias Hint 
(R/W)

if 
CPUID.6H:ECX[3] 
= 1

3:0 Power Policy Preference: 

0 indicates preference to 
highest performance.

15 indicates preference to 
maximize energy saving.

63:4 Reserved.

1B1H 433 IA32_PACKAGE_THERM_S
TATUS

Package Thermal Status 
Information (RO)

Contains status information 
about the package’s thermal 
sensor. 

See Section 14.6, “Package 
Level Thermal Management.”

06_2AH

Table 34-2.  IA-32 Architectural MSRs (Contd.)

Register 
Address

Architectural MSR Name 
and bit fields 

(Former MSR Name) MSR/Bit Description

Introduced as 
Architectural 

MSRHex Decimal
Vol. 3C 34-19



MODEL-SPECIFIC REGISTERS (MSRS)
0 Pkg Thermal Status (RO):

1 Pkg Thermal Status Log 
(R/W): 

2 Pkg PROCHOT # event (RO)

3 Pkg PROCHOT # log (R/WC0)

4 Pkg Critical Temperature 
Status (RO)

5 Pkg Critical Temperature 
Status log (R/WC0)

6 Pkg Thermal Threshold #1 
Status (RO)

7 Pkg Thermal Threshold #1 log 
(R/WC0)

8 Pkg Thermal Threshold #2 
Status (RO)

9 Pkg Thermal Threshold #1 log 
(R/WC0)

10 Pkg Power Limitation Status 
(RO)

11 Pkg Power Limitation log 
(R/WC0)

15:12 Reserved.

22:16 Pkg Digital Readout (RO)

63:23 Reserved.

1B2H 434 IA32_PACKAGE_THERM_I
NTERRUPT

Pkg Thermal Interrupt Control 
(R/W)

Enables and disables the 
generation of an interrupt on 
temperature transitions 
detected with the package’s 
thermal sensor. 

See Section 14.6, “Package 
Level Thermal Management.”

06_2AH
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MODEL-SPECIFIC REGISTERS (MSRS)
0 Pkg High-Temperature 
Interrupt Enable

1 Pkg Low-Temperature 
Interrupt Enable

2 Pkg PROCHOT# Interrupt 
Enable

3 Reserved.

4 Pkr Overheat Interrupt Enable

7:5 Reserved.

14:8 Pkg Threshold #1 Value

15 Pkg Threshold #1 Interrupt 
Enable

22:16 Pkg Threshold #2 Value

23 Pkg Threshold #2 Interrupt 
Enable

24 Pkg Power Limit Notification 
Enable

63:25 Reserved.

1D9H 473 IA32_DEBUGCTL 
(MSR_DEBUGCTLA, 
MSR_DEBUGCTLB)

Trace/Profile Resource 
Control (R/W)

06_0EH

0 LBR: Setting this bit to 1 
enables the processor to 
record a running trace of the 
most recent branches taken 
by the processor in the LBR 
stack.

06_01H

1 BTF: Setting this bit to 1 
enables the processor to 
treat EFLAGS.TF as single-
step on branches instead of 
single-step on instructions.

06_01H

5:2 Reserved.
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6 TR: Setting this bit to 1 
enables branch trace 
messages to be sent.

06_0EH

7 BTS: Setting this bit enables 
branch trace messages 
(BTMs) to be logged in a BTS 
buffer.

06_0EH

8 BTINT: When clear, BTMs are 
logged in a BTS buffer in 
circular fashion. When this bit 
is set, an interrupt is 
generated by the BTS facility 
when the BTS buffer is full.

06_0EH

9 1: BTS_OFF_OS: When set, 
BTS or BTM is skipped if 
CPL = 0.

06_0FH

10 BTS_OFF_USR: When set, BTS 
or BTM is skipped if CPL > 0.

06_0FH

11 FREEZE_LBRS_ON_PMI: When 
set, the LBR stack is frozen on 
a PMI request.

If CPUID.01H: 
ECX[15] = 1 and 
CPUID.0AH: 
EAX[7:0] > 1

12 FREEZE_PERFMON_ON_PMI: 
When set, each ENABLE bit of 
the global counter control 
MSR are frozen (address 
3BFH) on a PMI request

If CPUID.01H: 
ECX[15] = 1 and 
CPUID.0AH: 
EAX[7:0] > 1

13 ENABLE_UNCORE_PMI: When 
set, enables the logical 
processor to receive and 
generate PMI on behalf of the 
uncore.

06_1AH

14 FREEZE_WHILE_SMM: When 
set, freezes perfmon and 
trace messages while in SMM.

if  
IA32_PERF_CAPA
BILITIES[12] = '1

63:15 Reserved.
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1F2H 498 IA32_SMRR_PHYSBASE SMRR Base Address. 
(Writeable only in SMM) 

Base address of SMM memory 
range.

06_1AH

7:0 Type. Specifies memory type 
of the range.

11:8 Reserved.

31:12 PhysBase. 

SMRR physical Base Address.

63:32 Reserved.

1F3H 499 IA32_SMRR_PHYSMASK SMRR Range Mask. 
(Writeable only in SMM) 

Range Mask of SMM memory 
range.

06_1AH

10:0  Reserved.

11 Valid. 

Enable range mask

31:12 PhysMask. 

SMRR address range mask.

63:32 Reserved.

1F8H 504 IA32_PLATFORM_DCA_CA
P

DCA Capability (R) 06_0FH

1F9H 505 IA32_CPU_DCA_CAP If set, CPU supports Prefetch-
Hint type. 

1FAH 506 IA32_DCA_0_CAP DCA type 0 Status and 
Control register.

06_2EH

0 DCA_ACTIVE: Set by HW 
when DCA is fuse-enabled 
and no defeatures are set.

06_2EH

2:1 TRANSACTION 06_2EH

6:3 DCA_TYPE 06_2EH

10:7 DCA_QUEUE_SIZE 06_2EH

12:11 Reserved. 06_2EH
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16:13 DCA_DELAY: Writes will 
update the register but have 
no HW side-effect.

06_2EH

23:17 Reserved. 06_2EH

24 SW_BLOCK: SW can request 
DCA block by setting this bit.

06_2EH

25 Reserved. 06_2EH

26 HW_BLOCK: Set when DCA is 
blocked by HW (e.g. CR0.CD = 
1).

06_2EH

31:27 Reserved. 06_2EH

200H 512 IA32_MTRR_PHYSBASE0 
(MTRRphysBase0)

See Section 11.11.2.3, 
“Variable Range MTRRs.”

06_01H

201H 513 IA32_MTRR_PHYSMASK0 MTRRphysMask0 06_01H

202H 514 IA32_MTRR_PHYSBASE1  MTRRphysBase1 06_01H

203H 515 IA32_MTRR_PHYSMASK1  MTRRphysMask1 06_01H

204H 516 IA32_MTRR_PHYSBASE2  MTRRphysBase2 06_01H

205H 517 IA32_MTRR_PHYSMASK2  MTRRphysMask2 06_01H

206H 518 IA32_MTRR_PHYSBASE3 MTRRphysBase3 06_01H

207H 519 IA32_MTRR_PHYSMASK3 MTRRphysMask3 06_01H

208H 520 IA32_MTRR_PHYSBASE4 MTRRphysBase4 06_01H

209H 521 IA32_MTRR_PHYSMASK4 MTRRphysMask4 06_01H

20AH 522 IA32_MTRR_PHYSBASE5 MTRRphysBase5 06_01H

20BH 523 IA32_MTRR_PHYSMASK5 MTRRphysMask5 06_01H

20CH 524 IA32_MTRR_PHYSBASE6 MTRRphysBase6 06_01H

20DH 525 IA32_MTRR_PHYSMASK6 MTRRphysMask6 06_01H

20EH 526 IA32_MTRR_PHYSBASE7 MTRRphysBase7 06_01H

20FH 527 IA32_MTRR_PHYSMASK7 MTRRphysMask7 06_01H

210H 528 IA32_MTRR_PHYSBASE8 MTRRphysBase8 if 
IA32_MTRR_CAP[
7:0] > 8
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MODEL-SPECIFIC REGISTERS (MSRS)
211H 529 IA32_MTRR_PHYSMASK8 MTRRphysMask8 if 
IA32_MTRR_CAP[
7:0] > 8

212H 530 IA32_MTRR_PHYSBASE9 MTRRphysBase9 if 
IA32_MTRR_CAP[
7:0] > 9

213H 531 IA32_MTRR_PHYSMASK9 MTRRphysMask9 if 
IA32_MTRR_CAP[
7:0] > 9

250H 592 IA32_MTRR_FIX64K_000
00

MTRRfix64K_00000 06_01H

258H 600 IA32_MTRR_FIX16K_800
00

MTRRfix16K_80000 06_01H

259H 601 IA32_MTRR_FIX16K_A00
00

MTRRfix16K_A0000 06_01H

268H 616 IA32_MTRR_FIX4K_C000
0 (MTRRfix4K_C0000 )

See Section 11.11.2.2, “Fixed 
Range MTRRs.”

06_01H

269H 617 IA32_MTRR_FIX4K_C800
0

MTRRfix4K_C8000 06_01H

26AH 618 IA32_MTRR_FIX4K_D000
0

MTRRfix4K_D0000 06_01H

26BH 619 IA32_MTRR_FIX4K_D800
0

MTRRfix4K_D8000 06_01H

26CH 620 IA32_MTRR_FIX4K_E000
0

MTRRfix4K_E0000 06_01H

26DH 621 IA32_MTRR_FIX4K_E800
0

MTRRfix4K_E8000 06_01H

26EH 622 IA32_MTRR_FIX4K_F000
0

MTRRfix4K_F0000 06_01H

26FH 623 IA32_MTRR_FIX4K_F800
0

MTRRfix4K_F8000 06_01H

277H 631 IA32_PAT IA32_PAT (R/W) 06_05H

2:0 PA0

7:3 Reserved
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10:8 PA1

15:11 Reserved

18:16 PA2

23:19 Reserved

26:24 PA3

31:27 Reserved

34:32 PA4

39:35 Reserved

42:40 PA5

47:43 Reserved

50:48 PA6

55:51 Reserved

58:56 PA7

63:59 Reserved

280H 640 IA32_MC0_CTL2 (R/W) 06_1AH

14:0 Corrected error count 
threshold

29:15 Reserved

30 CMCI_EN

63:31 Reserved

281H 641 IA32_MC1_CTL2 (R/W) same fields as 
IA32_MC0_CTL2

06_1AH

282H 642 IA32_MC2_CTL2 (R/W) same fields as 
IA32_MC0_CTL2

06_1AH

283H 643 IA32_MC3_CTL2 (R/W) same fields as 
IA32_MC0_CTL2

06_1AH

284H 644 IA32_MC4_CTL2 (R/W) same fields as 
IA32_MC0_CTL2

06_1AH

285H 645 IA32_MC5_CTL2 (R/W) same fields as 
IA32_MC0_CTL2

06_1AH

Table 34-2.  IA-32 Architectural MSRs (Contd.)

Register 
Address

Architectural MSR Name 
and bit fields 

(Former MSR Name) MSR/Bit Description

Introduced as 
Architectural 

MSRHex Decimal
34-26 Vol. 3C



MODEL-SPECIFIC REGISTERS (MSRS)
286H 646 IA32_MC6_CTL2 (R/W) same fields as 
IA32_MC0_CTL2

06_1AH

287H 647 IA32_MC7_CTL2 (R/W) same fields as 
IA32_MC0_CTL2

06_1AH

288H 648 IA32_MC8_CTL2 (R/W) same fields as 
IA32_MC0_CTL2

06_1AH

289H 649 IA32_MC9_CTL2 (R/W) same fields as 
IA32_MC0_CTL2

06_2EH

28AH 650 IA32_MC10_CTL2 (R/W) same fields as 
IA32_MC0_CTL2

06_2EH

28BH 651 IA32_MC11_CTL2 (R/W) same fields as 
IA32_MC0_CTL2

06_2EH

28CH 652 IA32_MC12_CTL2 (R/W) same fields as 
IA32_MC0_CTL2

06_2EH

28DH 653 IA32_MC13_CTL2 (R/W) same fields as 
IA32_MC0_CTL2

06_2EH

28EH 654 IA32_MC14_CTL2 (R/W) same fields as 
IA32_MC0_CTL2

06_2EH

28FH 655 IA32_MC15_CTL2 (R/W) same fields as 
IA32_MC0_CTL2

06_2EH

290H 656 IA32_MC16_CTL2 (R/W) same fields as 
IA32_MC0_CTL2

06_2EH

291H 657 IA32_MC17_CTL2 (R/W) same fields as 
IA32_MC0_CTL2

06_2EH

292H 658 IA32_MC18_CTL2 (R/W) same fields as 
IA32_MC0_CTL2

06_2EH

293H 659 IA32_MC19_CTL2 (R/W) same fields as 
IA32_MC0_CTL2

06_2EH

294H 660 IA32_MC20_CTL2 (R/W) same fields as 
IA32_MC0_CTL2

06_2EH

295H 661 IA32_MC21_CTL2 (R/W) same fields as 
IA32_MC0_CTL2

06_2EH

2FFH 767 IA32_MTRR_DEF_TYPE MTRRdefType (R/W) 06_01H

2:0 Default Memory Type
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9:3 Reserved

10 Fixed Range MTRR Enable 

11 MTRR Enable 

63:12 Reserved

309H 777 IA32_FIXED_CTR0 
(MSR_PERF_FIXED_CTR0)

Fixed-Function Performance 
Counter 0 (R/W): Counts 
Instr_Retired.Any

If CPUID.0AH: 
EDX[4:0] > 0

30AH 778 IA32_FIXED_CTR1 
(MSR_PERF_FIXED_CTR1)

Fixed-Function Performance 
Counter 1 0 (R/W): Counts 
CPU_CLK_Unhalted.Core

If CPUID.0AH: 
EDX[4:0] > 1

30BH 779 IA32_FIXED_CTR2 
(MSR_PERF_FIXED_CTR2)

Fixed-Function Performance 
Counter 0 0 (R/W): Counts 
CPU_CLK_Unhalted.Ref

If CPUID.0AH: 
EDX[4:0] > 2

345H 837 IA32_PERF_CAPABILITIES RO If CPUID.01H: 
ECX[15] = 1

5:0 LBR format

6 PEBS Trap

7 PEBSSaveArchRegs

11:8 PEBS Record Format

12 1: Freeze while SMM is 
supported

13 1: Full width of counter 
writable via IA32_A_PMCx

63:14 Reserved

38DH 909 IA32_FIXED_CTR_CTRL 
(MSR_PERF_FIXED_CTR_C
TRL)

Fixed-Function Performance 
Counter Control (R/W)

Counter increments while the 
results of ANDing respective 
enable bit in 
IA32_PERF_GLOBAL_CTRL 
with the corresponding OS or 
USR bits in this MSR is true.

If CPUID.0AH: 
EAX[7:0] > 1
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0 EN0_OS: Enable Fixed 
Counter 0 to count while CPL 
= 0

1 EN0_Usr: Enable Fixed 
Counter 0 to count while CPL 
> 0

2 AnyThread: When set to 1, it 
enables counting the 
associated event conditions 
occurring across all logical 
processors sharing a 
processor core. When set to 0, 
the counter only increments 
the associated event 
conditions occurring in the 
logical processor which 
programmed the MSR.

If CPUID.0AH:

EAX[7:0] > 2

3 EN0_PMI: Enable PMI when 
fixed counter 0 overflows

4 EN1_OS: Enable Fixed 
Counter 1to count while CPL 
= 0

5 EN1_Usr: Enable Fixed 
Counter 1to count while CPL 
> 0

6 AnyThread: When set to 1, it 
enables counting the 
associated event conditions 
occurring across all logical 
processors sharing a 
processor core. When set to 0, 
the counter only increments 
the associated event 
conditions occurring in the 
logical processor which 
programmed the MSR.

If CPUID.0AH:

EAX[7:0] > 2

7 EN1_PMI: Enable PMI when 
fixed counter 1 overflows
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8 EN2_OS: Enable Fixed 
Counter 2 to count while CPL 
= 0

9 EN2_Usr: Enable Fixed 
Counter 2 to count while CPL 
> 0

10 AnyThread: When set to 1, it 
enables counting the 
associated event conditions 
occurring across all logical 
processors sharing a 
processor core. When set to 0, 
the counter only increments 
the associated event 
conditions occurring in the 
logical processor which 
programmed the MSR.

If CPUID.0AH:

EAX[7:0] > 2

11 EN2_PMI: Enable PMI when 
fixed counter 2 overflows

63:12 Reserved

38EH 910 IA32_PERF_GLOBAL_STA
TUS 
(MSR_PERF_GLOBAL_STA
TUS)

Global Performance Counter 
Status (RO)

If CPUID.0AH: 
EAX[7:0] > 0

0 Ovf_PMC0: Overflow status 
of IA32_PMC0

If CPUID.0AH: 
EAX[7:0] > 0

1 Ovf_PMC1: Overflow status 
of IA32_PMC1

If CPUID.0AH: 
EAX[7:0] > 0

2 Ovf_PMC2: Overflow status 
of IA32_PMC2

06_2EH

3 Ovf_PMC3: Overflow status 
of IA32_PMC3

06_2EH

31:4 Reserved

32 Ovf_FixedCtr0: Overflow 
status of IA32_FIXED_CTR0

If CPUID.0AH: 
EAX[7:0] > 1
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33 Ovf_FixedCtr1: Overflow 
status of IA32_FIXED_CTR1

If CPUID.0AH: 
EAX[7:0] > 1

34 Ovf_FixedCtr2: Overflow 
status of IA32_FIXED_CTR2

If CPUID.0AH: 
EAX[7:0] > 1

60:35 Reserved

61 Ovf_Uncore: Uncore counter 
overflow status

If CPUID.0AH: 
EAX[7:0] > 2

62 OvfBuf: DS SAVE area Buffer 
overflow status

If CPUID.0AH: 
EAX[7:0] > 0

63 CondChg: status bits of this 
register has changed

If CPUID.0AH: 
EAX[7:0] > 0

38FH 911 IA32_PERF_GLOBAL_CTR
L 
(MSR_PERF_GLOBAL_CTR
L)

Global Performance Counter 
Control (R/W)

Counter increments while the 
result of ANDing respective 
enable bit in this MSR with 
the corresponding OS or USR 
bits in the general-purpose or 
fixed counter control MSR is 
true.

If CPUID.0AH: 
EAX[7:0] > 0

0 EN_PMC0 If CPUID.0AH: 
EAX[7:0] > 0

1 EN_PMC1 If CPUID.0AH: 
EAX[7:0] > 0

31:2 Reserved

32 EN_FIXED_CTR0 If CPUID.0AH: 
EAX[7:0] > 1

33 EN_FIXED_CTR1 If CPUID.0AH: 
EAX[7:0] > 1

34 EN_FIXED_CTR2 If CPUID.0AH: 
EAX[7:0] > 1

63:35 Reserved
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390H 912 IA32_PERF_GLOBAL_OVF
_CTRL 
(MSR_PERF_GLOBAL_OVF
_CTRL)

Global Performance Counter 
Overflow Control (R/W)

If CPUID.0AH: 
EAX[7:0] > 0

0 Set 1 to Clear Ovf_PMC0 bit If CPUID.0AH: 
EAX[7:0] > 0

1 Set 1 to Clear Ovf_PMC1 bit If CPUID.0AH: 
EAX[7:0] > 0

31:2 Reserved

32 Set 1 to Clear 
Ovf_FIXED_CTR0 bit

If CPUID.0AH: 
EAX[7:0] > 1

33 Set 1 to Clear 
Ovf_FIXED_CTR1 bit

If CPUID.0AH: 
EAX[7:0] > 1

34 Set 1 to Clear 
Ovf_FIXED_CTR2 bit

If CPUID.0AH: 
EAX[7:0] > 1

60:35 Reserved

61 Set 1 to Clear Ovf_Uncore: bit 06_2EH

62 Set 1 to Clear OvfBuf: bit If CPUID.0AH: 
EAX[7:0] > 0

63 Set to 1to clear CondChg: bit If CPUID.0AH: 
EAX[7:0] > 0

3F1H 1009 IA32_PEBS_ENABLE PEBS Control (R/W)

0 Enable PEBS on IA32_PMC0 06_0FH

1-3 Reserved or Model specific 

31:4 Reserved

35-32 Reserved or Model specific 

63:36 Reserved

400H 1024 IA32_MC0_CTL MC0_CTL P6 Family 
Processors

401H 1025 IA32_MC0_STATUS MC0_STATUS P6 Family 
Processors

402H 1026 IA32_MC0_ADDR1 MC0_ADDR P6 Family 
Processors
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403H 1027 IA32_MC0_MISC MC0_MISC P6 Family 
Processors

404H 1028 IA32_MC1_CTL MC1_CTL P6 Family 
Processors

405H 1029 IA32_MC1_STATUS MC1_STATUS P6 Family 
Processors

406H 1030 IA32_MC1_ADDR2 MC1_ADDR P6 Family 
Processors

407H 1031 IA32_MC1_MISC MC1_MISC P6 Family 
Processors

408H 1032 IA32_MC2_CTL MC2_CTL P6 Family 
Processors

409H 1033 IA32_MC2_STATUS MC2_STATUS P6 Family 
Processors

40AH 1034 IA32_MC2_ADDR1 MC2_ADDR P6 Family 
Processors

40BH 1035 IA32_MC2_MISC MC2_MISC P6 Family 
Processors

40CH 1036 IA32_MC3_CTL MC3_CTL P6 Family 
Processors

40DH 1037 IA32_MC3_STATUS MC3_STATUS P6 Family 
Processors

40EH 1038 IA32_MC3_ADDR1 MC3_ADDR P6 Family 
Processors

40FH 1039 IA32_MC3_MISC MC3_MISC P6 Family 
Processors

410H 1040 IA32_MC4_CTL MC4_CTL P6 Family 
Processors

411H 1041 IA32_MC4_STATUS MC4_STATUS P6 Family 
Processors

412H 1042 IA32_MC4_ADDR1 MC4_ADDR P6 Family 
Processors

413H 1043 IA32_MC4_MISC MC4_MISC P6 Family 
Processors
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414H 1044 IA32_MC5_CTL MC5_CTL 06_0FH

415H 1045 IA32_MC5_STATUS MC5_STATUS 06_0FH

416H 1046 IA32_MC5_ADDR1 MC5_ADDR 06_0FH

417H 1047 IA32_MC5_MISC MC5_MISC 06_0FH

418H 1048 IA32_MC6_CTL MC6_CTL 06_1DH

419H 1049 IA32_MC6_STATUS MC6_STATUS 06_1DH

41AH 1050 IA32_MC6_ADDR1 MC6_ADDR 06_1DH

41BH 1051 IA32_MC6_MISC MC6_MISC 06_1DH

41CH 1052 IA32_MC7_CTL MC7_CTL 06_1AH

41DH 1053 IA32_MC7_STATUS MC7_STATUS 06_1AH

41EH 1054 IA32_MC7_ADDR1 MC7_ADDR 06_1AH

41FH 1055 IA32_MC7_MISC MC7_MISC 06_1AH

420H 1056 IA32_MC8_CTL MC8_CTL 06_1AH

421H 1057 IA32_MC8_STATUS MC8_STATUS 06_1AH

422H 1058 IA32_MC8_ADDR1 MC8_ADDR 06_1AH

423H 1059 IA32_MC8_MISC MC8_MISC 06_1AH

424H 1060 IA32_MC9_CTL MC9_CTL 06_2EH

425H 1061 IA32_MC9_STATUS MC9_STATUS 06_2EH

426H 1062 IA32_MC9_ADDR1 MC9_ADDR 06_2EH

427H 1063 IA32_MC9_MISC MC9_MISC 06_2EH

428H 1064 IA32_MC10_CTL MC10_CTL 06_2EH

429H 1065 IA32_MC10_STATUS MC10_STATUS 06_2EH

42AH 1066 IA32_MC10_ADDR1 MC10_ADDR 06_2EH

42BH 1067 IA32_MC10_MISC MC10_MISC 06_2EH

42CH 1068 IA32_MC11_CTL MC11_CTL 06_2EH

42DH 1069 IA32_MC11_STATUS MC11_STATUS 06_2EH

42EH 1070 IA32_MC11_ADDR1 MC11_ADDR 06_2EH

42FH 1071 IA32_MC11_MISC MC11_MISC 06_2EH

430H 1072 IA32_MC12_CTL MC12_CTL 06_2EH
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431H 1073 IA32_MC12_STATUS MC12_STATUS 06_2EH

432H 1074 IA32_MC12_ADDR1 MC12_ADDR 06_2EH

433H 1075 IA32_MC12_MISC MC12_MISC 06_2EH

434H 1076 IA32_MC13_CTL MC13_CTL 06_2EH

435H 1077 IA32_MC13_STATUS MC13_STATUS 06_2EH

436H 1078 IA32_MC13_ADDR1 MC13_ADDR 06_2EH

437H 1079 IA32_MC13_MISC MC13_MISC 06_2EH

438H 1080 IA32_MC14_CTL MC14_CTL 06_2EH

439H 1081 IA32_MC14_STATUS MC14_STATUS 06_2EH

43AH 1082 IA32_MC14_ADDR1 MC14_ADDR 06_2EH

43BH 1083 IA32_MC14_MISC MC14_MISC 06_2EH

43CH 1084 IA32_MC15_CTL MC15_CTL 06_2EH

43DH 1085 IA32_MC15_STATUS MC15_STATUS 06_2EH

43EH 1086 IA32_MC15_ADDR1 MC15_ADDR 06_2EH

43FH 1087 IA32_MC15_MISC MC15_MISC 06_2EH

440H 1088 IA32_MC16_CTL MC16_CTL 06_2EH

441H 1089 IA32_MC16_STATUS MC16_STATUS 06_2EH

442H 1090 IA32_MC16_ADDR1 MC16_ADDR 06_2EH

443H 1091 IA32_MC16_MISC MC16_MISC 06_2EH

444H 1092 IA32_MC17_CTL MC17_CTL 06_2EH

445H 1093 IA32_MC17_STATUS MC17_STATUS 06_2EH

446H 1094 IA32_MC17_ADDR1 MC17_ADDR 06_2EH

447H 1095 IA32_MC17_MISC MC17_MISC 06_2EH

448H 1096 IA32_MC18_CTL MC18_CTL 06_2EH

449H 1097 IA32_MC18_STATUS MC18_STATUS 06_2EH

44AH 1098 IA32_MC18_ADDR1 MC18_ADDR 06_2EH

44BH 1099 IA32_MC18_MISC MC18_MISC 06_2EH

44CH 1100 IA32_MC19_CTL MC19_CTL 06_2EH

44DH 1101 IA32_MC19_STATUS MC19_STATUS 06_2EH
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44EH 1102 IA32_MC19_ADDR1 MC19_ADDR 06_2EH

44FH 1103 IA32_MC19_MISC MC19_MISC 06_2EH

450H 1104 IA32_MC20_CTL MC20_CTL 06_2EH

451H 1105 IA32_MC20_STATUS MC20_STATUS 06_2EH

452H 1106 IA32_MC20_ADDR1 MC20_ADDR 06_2EH

453H 1107 IA32_MC20_MISC MC20_MISC 06_2EH

454H 1108 IA32_MC21_CTL MC21_CTL 06_2EH

455H 1109 IA32_MC21_STATUS MC21_STATUS 06_2EH

456H 1110 IA32_MC21_ADDR1 MC21_ADDR 06_2EH

457H 1111 IA32_MC21_MISC MC21_MISC 06_2EH

480H 1152 IA32_VMX_BASIC Reporting Register of Basic 
VMX Capabilities. (R/O)

See Appendix A.1, “Basic VMX 
Information.”

If 
CPUID.01H:ECX.[bi
t 5] = 1

481H 1153 IA32_VMX_PINBASED_CT
LS

Capability Reporting 
Register of Pin-based 
VM-execution Controls. 
(R/O)

See Appendix A.3.1, “Pin-
Based VM-Execution 
Controls.”

If 
CPUID.01H:ECX.[bi
t 5] = 1

482H 1154 IA32_VMX_PROCBASED_
CTLS

Capability Reporting 
Register of Primary 
Processor-based 
VM-execution Controls. 
(R/O)

See Appendix A.3.2, “Primary 
Processor-Based VM-
Execution Controls.”

If 
CPUID.01H:ECX.[bi
t 5] = 1

483H 1155 IA32_VMX_EXIT_CTLS Capability Reporting 
Register of VM-exit 
Controls. (R/O)

See Appendix A.4, “VM-Exit 
Controls.”

If 
CPUID.01H:ECX.[bi
t 5] = 1
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484H 1156 IA32_VMX_ENTRY_CTLS Capability Reporting 
Register of VM-entry 
Controls. (R/O)

See Appendix A.5, “VM-Entry 
Controls.”

If 
CPUID.01H:ECX.[bi
t 5] = 1

485H 1157 IA32_VMX_MISC Reporting Register of 
Miscellaneous VMX 
Capabilities. (R/O)

See Appendix A.6, 
“Miscellaneous Data.”

If 
CPUID.01H:ECX.[bi
t 5] = 1

486H 1158 IA32_VMX_CRO_FIXED0 Capability Reporting 
Register of CR0 Bits Fixed 
to 0. (R/O)

See Appendix A.7, “VMX-
Fixed Bits in CR0.”

If 
CPUID.01H:ECX.[bi
t 5] = 1

487H 1159 IA32_VMX_CRO_FIXED1 Capability Reporting 
Register of CR0 Bits Fixed 
to 1. (R/O)

See Appendix A.7, “VMX-
Fixed Bits in CR0.”

If 
CPUID.01H:ECX.[bi
t 5] = 1

488H 1160 IA32_VMX_CR4_FIXED0 Capability Reporting 
Register of CR4 Bits Fixed 
to 0. (R/O)

See Appendix A.8, “VMX-
Fixed Bits in CR4.”

If 
CPUID.01H:ECX.[bi
t 5] = 1

489H 1161 IA32_VMX_CR4_FIXED1 Capability Reporting 
Register of CR4 Bits Fixed 
to 1. (R/O)

See Appendix A.8, “VMX-
Fixed Bits in CR4.”

If 
CPUID.01H:ECX.[bi
t 5] = 1

48AH 1162 IA32_VMX_VMCS_ENUM Capability Reporting 
Register of VMCS Field 
Enumeration. (R/O).

See Appendix A.9, “VMCS 
Enumeration.”

If 
CPUID.01H:ECX.[bi
t 5] = 1
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48BH 1163 IA32_VMX_PROCBASED_
CTLS2

Capability Reporting 
Register of Secondary 
Processor-based 
VM-execution Controls. 
(R/O)

See Appendix A.3.3, 
“Secondary Processor-Based 
VM-Execution Controls.”

If ( 
CPUID.01H:ECX.[bi
t 5] and 
IA32_VMX_PROC
BASED_CTLS[bit 6
3])

48CH 1164 IA32_VMX_EPT_VPID_CA
P

Capability Reporting 
Register of EPT and VPID. 
(R/O)

See Appendix A.10, “VPID and 
EPT Capabilities.”

If ( 
CPUID.01H:ECX.[bi
t 5], 
IA32_VMX_PROC
BASED_CTLS[bit 6
3], and either 
IA32_VMX_PROC
BASED_CTLS2[bit
33] or 
IA32_VMX_PROC
BASED_CTLS2[bit 
37])

48DH 1165 IA32_VMX_TRUE_PINBAS
ED_CTLS

Capability Reporting 
Register of Pin-based 
VM-execution Flex Controls. 
(R/O)

See Appendix A.3.1, “Pin-
Based VM-Execution 
Controls.”

If ( 
CPUID.01H:ECX.[bi
t 5] = 1 and 
IA32_VMX_BASIC
[bit 55] )

48EH 1166 IA32_VMX_TRUE_PROCB
ASED_CTLS

Capability Reporting 
Register of Primary 
Processor-based 
VM-execution Flex Controls. 
(R/O)

See Appendix A.3.2, “Primary 
Processor-Based VM-
Execution Controls.”

If( 
CPUID.01H:ECX.[bi
t 5] = 1 and 
IA32_VMX_BASIC
[bit 55] )
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48FH 1167 IA32_VMX_TRUE_EXIT_C
TLS

Capability Reporting 
Register of VM-exit Flex 
Controls. (R/O)

See Appendix A.4, “VM-Exit 
Controls.”

If( 
CPUID.01H:ECX.[bi
t 5] = 1 and 
IA32_VMX_BASIC
[bit 55] )

490H 1168 IA32_VMX_TRUE_ENTRY
_CTLS

Capability Reporting 
Register of VM-entry Flex 
Controls. (R/O)

See Appendix A.5, “VM-Entry 
Controls.”

If( 
CPUID.01H:ECX.[bi
t 5] = 1 and 
IA32_VMX_BASIC
[bit 55] )

4C1H 1217 IA32_A_PMC0 Full Width Writable 
IA32_PMC0 Alias (R/W)

(If CPUID.0AH: 
EAX[15:8] > 0) &

IA32_PERF_CAPA
BILITIES[13] = 1

4C2H 1218 IA32_A_PMC1 Full Width Writable 
IA32_PMC1 Alias (R/W)

(If CPUID.0AH: 
EAX[15:8] > 1) &

IA32_PERF_CAPA
BILITIES[13] = 1

4C3H 1219 IA32_A_PMC2 Full Width Writable 
IA32_PMC2 Alias (R/W)

(If CPUID.0AH: 
EAX[15:8] > 2) &

IA32_PERF_CAPA
BILITIES[13] = 1

4C4H 1220 IA32_A_PMC3 Full Width Writable 
IA32_PMC3 Alias (R/W)

(If CPUID.0AH: 
EAX[15:8] > 3) &

IA32_PERF_CAPA
BILITIES[13] = 1

4C5H 1221 IA32_A_PMC4 Full Width Writable 
IA32_PMC4 Alias (R/W)

(If CPUID.0AH: 
EAX[15:8] > 4) &

IA32_PERF_CAPA
BILITIES[13] = 1

4C6H 1222 IA32_A_PMC5 Full Width Writable 
IA32_PMC5 Alias (R/W)

(If CPUID.0AH: 
EAX[15:8] > 5) &

IA32_PERF_CAPA
BILITIES[13] = 1
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4C7H 1223 IA32_A_PMC6 Full Width Writable 
IA32_PMC6 Alias (R/W)

(If CPUID.0AH: 
EAX[15:8] > 6) &

IA32_PERF_CAPA
BILITIES[13] = 1

4C8H 1224 IA32_A_PMC7 Full Width Writable 
IA32_PMC7 Alias (R/W)

(If CPUID.0AH: 
EAX[15:8] > 7) &

IA32_PERF_CAPA
BILITIES[13] = 1

600H 1536 IA32_DS_AREA DS Save Area. (R/W) 

Points to the linear address of 
the first byte of the DS buffer 
management area, which is 
used to manage the BTS and 
PEBS buffers.

See Section 18.10.4, “Debug 
Store (DS) Mechanism.”

0F_0H

63:0 The linear address of the first 
byte of the DS buffer 
management area, if IA-32e 
mode is active.

31:0 The linear address of the first 
byte of the DS buffer 
management area, if not in IA-
32e mode.

63:32 Reserved iff not in IA-32e 
mode.

6E0H 1760 IA32_TSC_DEADLINE TSC Target of Local APIC’s 
TSC Deadline Mode. (R/W)

If( 
CPUID.01H:ECX.[bi
t 25] = 1 

802H 2050 IA32_X2APIC_APICID x2APIC ID Register. (R/O)

See x2APIC Specification

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

803H 2051 IA32_X2APIC_VERSION x2APIC Version Register. 
(R/O)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )
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808H 2056 IA32_X2APIC_TPR x2APIC Task Priority 
Register. (R/W)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

80AH 2058 IA32_X2APIC_PPR x2APIC Processor Priority 
Register. (R/O)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

80BH 2059 IA32_X2APIC_EOI x2APIC EOI Register. (W/O) If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

80DH 2061 IA32_X2APIC_LDR x2APIC Logical Destination 
Register. (R/O)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

80FH 2063 IA32_X2APIC_SIVR x2APIC Spurious Interrupt 
Vector Register. (R/W)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

810H 2064 IA32_X2APIC_ISR0 x2APIC In-Service Register 
Bits 31:0. (R/O)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

811H 2065 IA32_X2APIC_ISR1 x2APIC In-Service Register 
Bits 63:32. (R/O)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

812H 2066 IA32_X2APIC_ISR2 x2APIC In-Service Register 
Bits 95:64. (R/O)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

813H 2067 IA32_X2APIC_ISR3 x2APIC In-Service Register 
Bits 127:96. (R/O)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

814H 2068 IA32_X2APIC_ISR4 x2APIC In-Service Register 
Bits 159:128. (R/O)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

815H 2069 IA32_X2APIC_ISR5 x2APIC In-Service Register 
Bits 191:160. (R/O)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

816H 2070 IA32_X2APIC_ISR6 x2APIC In-Service Register 
Bits 223:192. (R/O)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )
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817H 2071 IA32_X2APIC_ISR7 x2APIC In-Service Register 
Bits 255:224. (R/O)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

818H 2072 IA32_X2APIC_TMR0 x2APIC Trigger Mode 
Register Bits 31:0. (R/O)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

819H 2073 IA32_X2APIC_TMR1 x2APIC Trigger Mode 
Register Bits 63:32. (R/O)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

81AH 2074 IA32_X2APIC_TMR2 x2APIC Trigger Mode 
Register Bits 95:64. (R/O)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

81BH 2075 IA32_X2APIC_TMR3 x2APIC Trigger Mode 
Register Bits 127:96. (R/O)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

81CH 2076 IA32_X2APIC_TMR4 x2APIC Trigger Mode 
Register Bits 159:128 (R/O)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

81DH 2077 IA32_X2APIC_TMR5 x2APIC Trigger Mode 
Register Bits 191:160 (R/O)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

81EH 2078 IA32_X2APIC_TMR6 x2APIC Trigger Mode 
Register Bits 223:192 (R/O)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

81FH 2079 IA32_X2APIC_TMR7 x2APIC Trigger Mode 
Register Bits 255:224 (R/O)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

820H 2080 IA32_X2APIC_IRR0 x2APIC Interrupt Request 
Register Bits 31:0. (R/O)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

821H 2081 IA32_X2APIC_IRR1 x2APIC Interrupt Request 
Register Bits 63:32. (R/O)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

822H 2082 IA32_X2APIC_IRR2 x2APIC Interrupt Request 
Register Bits 95:64. (R/O)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )
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823H 2083 IA32_X2APIC_IRR3 x2APIC Interrupt Request 
Register Bits 127:96. (R/O)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

824H 2084 IA32_X2APIC_IRR4 x2APIC Interrupt Request 
Register Bits 159:128. 
(R/O)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

825H 2085 IA32_X2APIC_IRR5 x2APIC Interrupt Request 
Register Bits 191:160. 
(R/O)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

826H 2086 IA32_X2APIC_IRR6 x2APIC Interrupt Request 
Register Bits 223:192. 
(R/O)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

827H 2087 IA32_X2APIC_IRR7 x2APIC Interrupt Request 
Register Bits 255:224. 
(R/O)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

828H 2088 IA32_X2APIC_ESR x2APIC Error Status 
Register. (R/W)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

82FH 2095 IA32_X2APIC_LVT_CMCI x2APIC LVT Corrected 
Machine Check Interrupt 
Register. (R/W)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

830H 2096 IA32_X2APIC_ICR x2APIC Interrupt Command 
Register. (R/W)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

832H 2098 IA32_X2APIC_LVT_TIMER x2APIC LVT Timer Interrupt 
Register. (R/W)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

833H 2099 IA32_X2APIC_LVT_THER
MAL

x2APIC LVT Thermal Sensor 
Interrupt Register. (R/W)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

834H 2100 IA32_X2APIC_LVT_PMI x2APIC LVT Performance 
Monitor Interrupt Register. 
(R/W)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

835H 2101 IA32_X2APIC_LVT_LINT0 x2APIC LVT LINT0 Register. 
(R/W)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )
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836H 2102 IA32_X2APIC_LVT_LINT1 x2APIC LVT LINT1 Register. 
(R/W)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

837H 2103 IA32_X2APIC_LVT_ERRO
R

x2APIC LVT Error Register. 
(R/W)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

838H 2104 IA32_X2APIC_INIT_COUN
T

x2APIC Initial Count 
Register. (R/W)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

839H 2105 IA32_X2APIC_CUR_COUN
T

x2APIC Current Count 
Register. (R/O)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

83EH 2110 IA32_X2APIC_DIV_CONF x2APIC Divide Configuration 
Register. (R/W)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

83FH 2111 IA32_X2APIC_SELF_IPI x2APIC Self IPI Register. 
(W/O)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

4000_
0000H 
- 
4000_
00FFH

Reserved MSR Address 
Space

All existing and future 
processors will not 
implement MSR in this 
range.

C000_
0080H

IA32_EFER Extended Feature Enables. If ( 
CPUID.80000001.
EDX.[bit 20] or 
CPUID.80000001.
EDX.[bit29])

0 SYSCALL Enable. (R/W)

Enables SYSCALL/SYSRET 
instructions in 64-bit mode.

7:1 Reserved.

8 IA-32e Mode Enable. (R/W)

Enables IA-32e mode 
operation.

9 Reserved.
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10 IA-32e Mode Active. (R) 

Indicates IA-32e mode is 
active when set.

11 Execute Disable Bit Enable. 
(R)

63:12 Reserved.

C000_
0081H

IA32_STAR System Call Target Address. 
(R/W)

If 
CPUID.80000001.
EDX.[bit 29] = 1

C000_
0082H

IA32_LSTAR IA-32e Mode System Call 
Target Address. (R/W)

If 
CPUID.80000001.
EDX.[bit 29] = 1

C000_
0084H

IA32_FMASK System Call Flag Mask. 
(R/W)

If 
CPUID.80000001.
EDX.[bit 29] = 1

C000_
0100H

IA32_FS_BASE Map of BASE Address of FS. 
(R/W)

If 
CPUID.80000001.
EDX.[bit 29] = 1

C000_
0101H

IA32_GS_BASE Map of BASE Address of GS. 
(R/W)

If 
CPUID.80000001.
EDX.[bit 29] = 1

C000_
0102H

IA32_KERNEL_GS_BASE Swap Target of BASE 
Address of GS. (R/W)

If 
CPUID.80000001.
EDX.[bit 29] = 1

C000_
0103H

IA32_TSC_AUX Auxiliary TSC (RW) If 
CPUID.80000001
H: EDX[27] = 1

31:0 AUX: Auxiliary signature of 
TSC

63:32 Reserved.

NOTES:
1. In processors based on Intel NetBurst® microarchitecture, MSR addresses 180H-197H are sup-

ported, software must treat them as model-specific. Starting with Intel Core Duo processors, MSR 
addresses 180H-185H, 188H-197H are reserved.
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34.2 MSRS IN THE INTEL® CORE™ 2 PROCESSOR FAMILY
Table 34-3 lists model-specific registers (MSRs) for Intel Core 2 processor family and 
for Intel Xeon processors based on Intel Core microarchitecture, architectural MSR 
addresses are also included in Table 34-3. These processors have a CPUID signature 
with DisplayFamily_DisplayModel of 06_0FH, see Table 34-1. 

MSRs listed in Table 34-2 and Table 34-3 are also supported by processors based on 
the Enhanced Intel Core microarchitecture. Processors based on the Enhanced Intel 
Core microarchitecture have the CPUID signature DisplayFamily_DisplayModel of 
06_17H. 

The column “Shared/Unique” applies to multi-core processors based on Intel Core 
microarchitecture. “Unique” means each processor core has a separate MSR, or a bit 
field in an MSR governs only a core independently. “Shared” means the MSR or the 
bit field in an MSR address governs the operation of both processor cores. 

2. The *_ADDR MSRs may or may not be present; this depends on flag settings in IA32_MCi_STATUS. 
See Section 15.3.2.3 and Section 15.3.2.4 for more information.

Table 34-3.  MSRs in Processors Based on Intel Core Microarchitecture

Register 
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

0H 0 IA32_P5_MC_
ADDR

Unique See Section 34.13, “MSRs in Pentium 
Processors.”

1H 1 IA32_P5_MC_
TYPE

Unique See Section 34.13, “MSRs in Pentium 
Processors.”

6H 6 IA32_MONITOR_
FILTER_SIZE

Unique See Section 8.10.5, “Monitor/Mwait Address 
Range Determination.” andTable 34-2

10H 16 IA32_TIME_
STAMP_COUNTER

Unique See Section 17.12, “Time-Stamp Counter,” and 
see Table 34-2

17H 23 IA32_PLATFORM_I
D

Shared Platform ID. (R) 
See Table 34-2.

17H 23 MSR_PLATFORM_I
D

Shared Model Specific Platform ID. (R) 

7:0 Reserved.

12:8 Maximum Qualified Ratio. (R) 

The maximum allowed bus ratio.

49:13 Reserved.
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52:50 See Table 34-2.

63:53 Reserved.

1BH 27 IA32_APIC_BASE Unique See Section 10.4.4, “Local APIC Status and 
Location.” and Table 34-2

2AH 42 MSR_EBL_CR_
POWERON

Shared Processor Hard Power-On Configuration. 
(R/W)

Enables and disables processor features; (R) 
indicates current processor configuration.

0 Reserved

1 Data Error Checking Enable. (R/W)
1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W. 

2 Response Error Checking Enable. (R/W)
1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W. 

3 MCERR# Drive Enable. (R/W) 

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W. 

4 Address Parity Enable. (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W. 

5 Reserved

6 Reserved

7 BINIT# Driver Enable. (R/W)

1 = Enabled; 0 = Disabled 
Note: Not all processor implements R/W. 

8 Output Tri-state Enabled. (R/O)

1 = Enabled; 0 = Disabled 

9 Execute BIST. (R/O)

1 = Enabled; 0 = Disabled 

Table 34-3.  MSRs in Processors Based on Intel Core Microarchitecture (Contd.)
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10 MCERR# Observation Enabled. (R/O)

1 = Enabled; 0 = Disabled

11 Intel TXT Capable Chipset. (R/O)

1 = Present; 0 = Not Present

12 BINIT# Observation Enabled. (R/O)

1 = Enabled; 0 = Disabled 

13 Reserved

14 1 MByte Power on Reset Vector. (R/O)

1 = 1 MByte; 0 = 4 GBytes

15 Reserved.

17:16 APIC Cluster ID. (R/O)

18 N/2 Non-Integer Bus Ratio. (R/O)

0 = Integer ratio; 1 = Non-integer ratio

19 Reserved.

21: 20 Symmetric Arbitration ID. (R/O)

26:22 Integer Bus Frequency Ratio. (R/O)

3AH 58 IA32_FEATURE_
CONTROL

Unique Control Features in Intel 64Processor. 
(R/W).

See Table 34-2.

3 Unique SMRR Enable. (R/WL).

When this bit is set and the lock bit is set 
makes the SMRR_PHYS_BASE and 
SMRR_PHYS_MASK registers read visible and 
writeable while in SMM.

Table 34-3.  MSRs in Processors Based on Intel Core Microarchitecture (Contd.)
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40H 64 MSR_
LASTBRANCH_0_F
ROM_IP

Unique Last Branch Record 0 From IP. (R/W)

One of four pairs of last branch record 
registers on the last branch record stack. This 
part of the stack contains pointers to the 
source instruction for one of the last four 
branches, exceptions, or interrupts taken by 
the processor. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.10, “Last Branch, Interrupt, and 

Exception Recording (Pentium M 
Processors).”

41H 65 MSR_
LASTBRANCH_1_F
ROM_IP

Unique Last Branch Record 1 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.

42H 66 MSR_
LASTBRANCH_2_F
ROM_IP

Unique Last Branch Record 2 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP. 

43H 67 MSR_
LASTBRANCH_3_F
ROM_IP

Unique Last Branch Record 3 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.

60H 96 MSR_
LASTBRANCH_0_
TO_LIP

Unique Last Branch Record 0 To IP. (R/W)

One of four pairs of last branch record 
registers on the last branch record stack. This 
part of the stack contains pointers to the 
destination instruction for one of the last four 
branches, exceptions, or interrupts taken by 
the processor.

61H 97 MSR_
LASTBRANCH_1_
TO_LIP

Unique Last Branch Record 1 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

62H 98 MSR_
LASTBRANCH_2_
TO_LIP

Unique Last Branch Record 2 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

Table 34-3.  MSRs in Processors Based on Intel Core Microarchitecture (Contd.)
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63H 99 MSR_
LASTBRANCH_3_
TO_LIP

Unique Last Branch Record 3 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

79H 121 IA32_BIOS_
UPDT_TRIG

Unique BIOS Update Trigger Register. (W) 

See Table 34-2.

8BH 139 IA32_BIOS_
SIGN_ID

Unique BIOS Update Signature ID. (RO)

See Table 34-2.

A0H 160 MSR_SMRR_PHYS
BASE

Unique System Management Mode Base Address 
register. (WO in SMM)

Model-specific implementation of SMRR-like 
interface, read visible and write only in SMM.

11:0 Reserved.

31:12 PhysBase. SMRR physical Base Address.

63:32 Reserved.

A1H 161 MSR_SMRR_PHYS
MASK

Unique System Management Mode Physical 
Address Mask register. (WO in SMM)

Model-specific implementation of SMRR-like 
interface, read visible and write only in SMM..

10:0 Reserved.

11 Valid. Physical address base and range mask 
are valid.

31:12 PhysMask. SMRR physical address range mask.

63:32 Reserved.

C1H 193 IA32_PMC0 Unique Performance counter register. See 
Table 34-2.

C2H 194 IA32_PMC1 Unique Performance counter register. See 
Table 34-2.

CDH 205 MSR_FSB_FREQ Shared Scaleable Bus Speed(RO). 

This field indicates the intended scaleable bus 
clock speed for processors based on Intel Core 
microarchitecture:
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2:0 • 101B: 100 MHz (FSB 400)
• 001B: 133 MHz (FSB 533)
• 011B: 167 MHz (FSB 667)
• 010B: 200 MHz (FSB 800)
• 000B: 267 MHz (FSB 1067)
• 100B: 333 MHz (FSB 1333)

133.33 MHz should be utilized if performing 
calculation with System Bus Speed when 
encoding is 001B. 

166.67 MHz should be utilized if performing 
calculation with System Bus Speed when 
encoding is 011B.

266.67 MHz should be utilized if performing 
calculation with System Bus Speed when 
encoding is 000B.

333.33 MHz should be utilized if performing 
calculation with System Bus Speed when 
encoding is 100B.

63:3 Reserved.

CDH 205 MSR_FSB_FREQ Shared Scaleable Bus Speed(RO). 

This field indicates the intended scaleable bus 
clock speed for processors based on Enhanced 
Intel Core microarchitecture:

2:0 • 101B: 100 MHz (FSB 400)
• 001B: 133 MHz (FSB 533)
• 011B: 167 MHz (FSB 667)
• 010B: 200 MHz (FSB 800)
• 000B: 267 MHz (FSB 1067)
• 100B: 333 MHz (FSB 1333)
• 110B: 400 MHz (FSB 1600)

133.33 MHz should be utilized if performing 
calculation with System Bus Speed when 
encoding is 001B. 

166.67 MHz should be utilized if performing 
calculation with System Bus Speed when 
encoding is 011B.
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266.67 MHz should be utilized if performing 
calculation with System Bus Speed when 
encoding is 110B.

333.33 MHz should be utilized if performing 
calculation with System Bus Speed when 
encoding is 111B.

63:3 Reserved.

E7H 231 IA32_MPERF Unique Maximum Performance Frequency Clock 
Count. (RW) see Table 34-2

E8H 232 IA32_APERF Unique Actual Performance Frequency Clock Count. 
(RW) See Table 34-2.

FEH 254 IA32_MTRRCAP Unique See Table 34-2.

11 Unique SMRR Capability Using MSR 0A0H and 
0A1H. (R) 

11EH 281 MSR_BBL_CR_
CTL3

Shared

0 L2 Hardware Enabled. (RO)

1 = If the L2 is hardware-enabled
0 = Indicates if the L2 is hardware-disabled

7:1 Reserved.

8 L2 Enabled. (R/W) 

1 = L2 cache has been initialized 
0 = Disabled (default)
Until this bit is set the processor will not 
respond to the WBINVD instruction or the 
assertion of the FLUSH# input.

22:9 Reserved.

23 L2 Not Present. (RO) 

0 = L2 Present
1 = L2 Not Present

63:24 Reserved.

Table 34-3.  MSRs in Processors Based on Intel Core Microarchitecture (Contd.)
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174H 372 IA32_SYSENTER_C
S

Unique See Table 34-2.

175H 373 IA32_SYSENTER_E
SP

Unique See Table 34-2.

176H 374 IA32_SYSENTER_E
IP

Unique See Table 34-2.

179H 377 IA32_MCG_CAP Unique See Table 34-2.

17AH 378 IA32_MCG_
STATUS

Unique

0 RIPV. 

When set, bit indicates that the instruction 
addressed by the instruction pointer pushed 
on the stack (when the machine check was 
generated) can be used to restart the 
program. If cleared, the program cannot be 
reliably restarted.

1 EIPV. 

When set, bit indicates that the instruction 
addressed by the instruction pointer pushed 
on the stack (when the machine check was 
generated) is directly associated with the 
error.

2 MCIP. 

When set, bit indicates that a machine check 
has been generated. If a second machine 
check is detected while this bit is still set, the 
processor enters a shutdown state. Software 
should write this bit to 0 after processing a 
machine check exception.

63:3 Reserved.

186H 390 IA32_
PERFEVTSEL0

Unique See Table 34-2.

187H 391 IA32_
PERFEVTSEL1

Unique See Table 34-2.
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198H 408 IA32_PERF_STAT
US

Shared See Table 34-2.

198H 408 MSR_PERF_STATU
S

Shared

15:0 Current Performance State Value.

30:16 Reserved.

31 XE Operation (R/O).

If set, XE operation is enabled. Default is 
cleared.

39:32 Reserved.

44:40 Maximum Bus Ratio (R/O)

Indicates maximum bus ratio configured for 
the processor.

45 Reserved.

46 Non-Integer Bus Ratio (R/O)

Indicates non-integer bus ratio is enabled. 
Applies processors based on Enhanced Intel 
Core microarchitecture.

63:47 Reserved.

199H 409 IA32_PERF_CTL Unique See Table 34-2.

19AH 410 IA32_CLOCK_
MODULATION

Unique Clock Modulation. (R/W) 

See Table 34-2.

IA32_CLOCK_MODULATION MSR was 
originally named IA32_THERM_CONTROL 
MSR.

19BH 411 IA32_THERM_
INTERRUPT

Unique Thermal Interrupt Control. (R/W) 

See Table 34-2.

19CH 412 IA32_THERM_
STATUS

Unique Thermal Monitor Status. (R/W) 

See Table 34-2.

19DH 413 MSR_THERM2_
CTL

Unique
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15:0 Reserved.

16 TM_SELECT. (R/W) 

Mode of automatic thermal monitor:

0 = Thermal Monitor 1 (thermally-initiated 
on-die modulation of the stop-clock duty 
cycle)

1 = Thermal Monitor 2 (thermally-initiated 
frequency transitions)

If bit 3 of the IA32_MISC_ENABLE register is 
cleared, TM_SELECT has no effect. Neither 
TM1 nor TM2 are enabled.

63:16 Reserved.

1A0 416 IA32_MISC_
ENABLE

Enable Misc. Processor Features. (R/W) 

Allows a variety of processor functions to be 
enabled and disabled.

0 Fast-Strings Enable. See Table 34-2.

2:1 Reserved.

3 Unique Automatic Thermal Control Circuit Enable. 
(R/W) See Table 34-2.

6:4 Reserved.

7 Shared Performance Monitoring Available. (R) See 
Table 34-2.

8 Reserved.

9 Hardware Prefetcher Disable. (R/W)

When set, disables the hardware prefetcher 
operation on streams of data. When clear 
(default), enables the prefetch queue.

Disabling of the hardware prefetcher may 
impact processor performance.
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10 Shared FERR# Multiplexing Enable. (R/W)

1 = FERR# asserted by the processor to 
indicate a pending break event within 
the processor 

0 =  Indicates compatible FERR# signaling 
behavior

This bit must be set to 1 to support XAPIC 
interrupt model usage.

11 Shared Branch Trace Storage Unavailable. (RO) See 
Table 34-2.

12 Shared Precise Event Based Sampling Unavailable. 
(RO) See Table 34-2.

13 Shared TM2 Enable. (R/W)

When this bit is set (1) and the thermal sensor 
indicates that the die temperature is at the 
pre-determined threshold, the Thermal 
Monitor 2 mechanism is engaged. TM2 will 
reduce the bus to core ratio and voltage 
according to the value last written to 
MSR_THERM2_CTL bits 15:0.

When this bit is clear (0, default), the 
processor does not change the VID signals or 
the bus to core ratio when the processor 
enters a thermally managed state. 

The BIOS must enable this feature if the TM2 
feature flag (CPUID.1:ECX[8]) is set; if the TM2 
feature flag is not set, this feature is not 
supported and BIOS must not alter the 
contents of the TM2 bit location. 

The processor is operating out of specification 
if both this bit and the TM1 bit are set to 0.

15:14 Reserved.

16 Shared Enhanced Intel SpeedStep Technology 
Enable. (R/W) See Table 34-2.

18 Shared ENABLE MONITOR FSM. (R/W) See Table 34-2.
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19 Shared Adjacent Cache Line Prefetch Disable. 
(R/W) 

When set to 1, the processor fetches the 
cache line that contains data currently 
required by the processor. When set to 0, the 
processor fetches cache lines that comprise a 
cache line pair (128 bytes).

Single processor platforms should not set this 
bit. Server platforms should set or clear this 
bit based on platform performance observed 
in validation and testing. 

BIOS may contain a setup option that controls 
the setting of this bit.

20 Shared Enhanced Intel SpeedStep Technology 
Select Lock. (R/WO)

When set, this bit causes the following bits to 
become read-only:

• Enhanced Intel SpeedStep Technology 
Select Lock (this bit), 

• Enhanced Intel SpeedStep Technology 
Enable bit.

The bit must be set before an Enhanced Intel 
SpeedStep Technology transition is requested. 
This bit is cleared on reset.

21 Reserved.

22 Shared Limit CPUID Maxval. (R/W) See Table 34-2.

23 Shared xTPR Message Disable. (R/W) See 
Table 34-2.

33:24 Reserved.

34 Unique XD Bit Disable. (R/W) See Table 34-2.

36:35 Reserved.
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37 Unique DCU Prefetcher Disable. (R/W)

When set to 1, The DCU L1 data cache 
prefetcher is disabled. The default value after 
reset is 0. BIOS may write ‘1’ to disable this 
feature. 

The DCU prefetcher is an L1 data cache 
prefetcher.  When the DCU prefetcher detects 
multiple loads from the same line done within 
a time limit, the DCU prefetcher assumes the 
next line will be required. The next line is 
prefetched in to the L1 data cache from 
memory or L2.

38 Shared IDA Disable. (R/W)

When set to 1 on processors that support IDA, 
the Intel Dynamic Acceleration feature (IDA) is 
disabled and the IDA_Enable feature flag will 
be clear (CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support 
IDA, CPUID.06H: EAX[1] reports the 
processor’s support of IDA is enabled.

Note: the power-on default value is used by 
BIOS to detect hardware support of IDA. If 
power-on default value is 1, IDA is available in 
the processor. If power-on default value is 0, 
IDA is not available.

39 Unique IP Prefetcher Disable. (R/W)

When set to 1, The IP prefetcher is disabled. 
The default value after reset is 0. BIOS may 
write ‘1’ to disable this feature. 

The IP prefetcher is an L1 data cache 
prefetcher. The IP prefetcher looks for 
sequential load history to determine whether 
to prefetch the next expected data into the 
L1 cache from memory or L2.

63:40 Reserved.
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1C9H 457 MSR_
LASTBRANCH_
TOS

Unique Last Branch Record Stack TOS. (R) 

Contains an index (bits 0-3) that points to the 
MSR containing the most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 40H).

1D9H 473 IA32_DEBUGCTL Unique Debug Control. (R/W) see Table 34-2

1DDH 477 MSR_LER_FROM_
LIP 

Unique Last Exception Record From Linear IP. (R) 

Contains a pointer to the last branch 
instruction that the processor executed prior 
to the last exception that was generated or 
the last interrupt that was handled.

1DEH 478 MSR_LER_TO_
LIP

Unique Last Exception Record To Linear IP. (R) 

This area contains a pointer to the target of 
the last branch instruction that the processor 
executed prior to the last exception that was 
generated or the last interrupt that was 
handled. 

200H 512 IA32_MTRR_PHYS
BASE0

Unique See Table 34-2.

201H 513 IA32_MTRR_PHYS
MASK0

Unique See Table 34-2.

202H 514 IA32_MTRR_PHYS
BASE1

Unique See Table 34-2.

203H 515 IA32_MTRR_PHYS
MASK1

Unique See Table 34-2.

204H 516 IA32_MTRR_PHYS
BASE2

Unique See Table 34-2.

205H 517 IA32_MTRR_PHYS
MASK2

Unique See Table 34-2.

206H 518 IA32_MTRR_PHYS
BASE3

Unique See Table 34-2.

207H 519 IA32_MTRR_PHYS
MASK3

Unique See Table 34-2.

Table 34-3.  MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register 
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3C 34-59



MODEL-SPECIFIC REGISTERS (MSRS)
208H 520 IA32_MTRR_PHYS
BASE4

Unique See Table 34-2.

209H 521 IA32_MTRR_PHYS
MASK4

Unique See Table 34-2.

20AH 522 IA32_MTRR_PHYS
BASE5

Unique See Table 34-2.

20BH 523 IA32_MTRR_PHYS
MASK5

Unique See Table 34-2.

20CH 524 IA32_MTRR_PHYS
BASE6

Unique See Table 34-2.

20DH 525 IA32_MTRR_PHYS
MASK6

Unique See Table 34-2.

20EH 526 IA32_MTRR_PHYS
BASE7

Unique See Table 34-2.

20FH 527 IA32_MTRR_PHYS
MASK7

Unique See Table 34-2.

250H 592 IA32_MTRR_FIX6
4K_00000

Unique See Table 34-2.

258H 600 IA32_MTRR_FIX1
6K_80000

Unique See Table 34-2.

259H 601 IA32_MTRR_FIX1
6K_A0000

Unique See Table 34-2.

268H 616 IA32_MTRR_FIX4
K_C0000

Unique See Table 34-2.

269H 617 IA32_MTRR_FIX4
K_C8000

Unique See Table 34-2.

26AH 618 IA32_MTRR_FIX4
K_D0000

Unique See Table 34-2.

26BH 619 IA32_MTRR_FIX4
K_D8000

Unique See Table 34-2.

26CH 620 IA32_MTRR_FIX4
K_E0000

Unique See Table 34-2.
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26DH 621 IA32_MTRR_FIX4
K_E8000

Unique See Table 34-2.

26EH 622 IA32_MTRR_FIX4
K_F0000

Unique See Table 34-2.

26FH 623 IA32_MTRR_FIX4
K_F8000

Unique See Table 34-2.

277H 631 IA32_PAT Unique See Table 34-2.

2FFH 767 IA32_MTRR_DEF_
TYPE

Unique Default Memory Types. (R/W) See 
Table 34-2.

309H 777 IA32_FIXED_CTR0 Unique Fixed-Function Performance Counter 
Register 0. (R/W) See Table 34-2.

309H 777 MSR_PERF_FIXED
_CTR0

Unique Fixed-Function Performance Counter 
Register 0. (R/W) 

30AH 778 IA32_FIXED_CTR1 Unique Fixed-Function Performance Counter 
Register 1. (R/W) See Table 34-2.

30AH 778 MSR_PERF_FIXED
_CTR1

Unique Fixed-Function Performance Counter 
Register 1. (R/W) 

30BH 779 IA32_FIXED_CTR2 Unique Fixed-Function Performance Counter 
Register 2. (R/W) See Table 34-2.

30BH 779 MSR_PERF_FIXED
_CTR2

Unique Fixed-Function Performance Counter 
Register 2. (R/W) 

345H 837 IA32_PERF_CAPA
BILITIES

Unique See Table 34-2. See Section 17.4.1, 
“IA32_DEBUGCTL MSR.”

345H 837 MSR_PERF_CAPAB
ILITIES

Unique RO. This applies to processors that do not 
support architectural perfmon version 2.

5:0 LBR Format. See Table 34-2.

6 PEBS Record Format. 

7 PEBSSaveArchRegs. See Table 34-2.

63:8 Reserved.

38DH 909 IA32_FIXED_CTR_
CTRL

Unique Fixed-Function-Counter Control Register. 
(R/W) See Table 34-2.
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38DH 909 MSR_PERF_FIXED
_CTR_CTRL

Unique Fixed-Function-Counter Control Register. 
(R/W) 

38EH 910 IA32_PERF_
GLOBAL_STAUS

Unique See Table 34-2. See Section 18.4.2, “Global 
Counter Control Facilities.” 

38EH 910 MSR_PERF_
GLOBAL_STAUS

Unique See Section 18.4.2, “Global Counter Control 
Facilities.”

38FH 911 IA32_PERF_
GLOBAL_CTRL

Unique See Table 34-2. See Section 18.4.2, “Global 
Counter Control Facilities.”

38FH 911 MSR_PERF_
GLOBAL_CTRL

Unique See Section 18.4.2, “Global Counter Control 
Facilities.”

390H 912 IA32_PERF_
GLOBAL_OVF_
CTRL

Unique See Table 34-2. See Section 18.4.2, “Global 
Counter Control Facilities.”

390H 912 MSR_PERF_
GLOBAL_OVF_
CTRL

Unique See Section 18.4.2, “Global Counter Control 
Facilities.”

3F1H 1009 MSR_PEBS_
ENABLE

Unique See Table 34-2. See Section 18.4.4, “Precise 
Event Based Sampling (PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

400H 1024 IA32_MC0_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_
STATUS

Unique See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.”

402H 1026 IA32_MC0_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not 
implemented or contains no address if the 
ADDRV flag in the IA32_MC0_STATUS register 
is clear. 

When not implemented in the processor, all 
reads and writes to this MSR will cause a 
general-protection exception.

404H 1028 IA32_MC1_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_
STATUS

Unique See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.”
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406H 1030 IA32_MC1_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is either not 
implemented or contains no address if the 
ADDRV flag in the IA32_MC1_STATUS register 
is clear. 

When not implemented in the processor, all 
reads and writes to this MSR will cause a 
general-protection exception.

408H 1032 IA32_MC2_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_
STATUS

Unique See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.”

40AH 1034 IA32_MC2_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.” 

The IA32_MC2_ADDR register is either not 
implemented or contains no address if the 
ADDRV flag in the IA32_MC2_STATUS register 
is clear. 

When not implemented in the processor, all 
reads and writes to this MSR will cause a 
general-protection exception.

40CH 1036 MSR_MC4_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 MSR_MC4_
STATUS

Unique See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.”

40EH 1038 MSR_MC4_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not 
implemented or contains no address if the 
ADDRV flag in the MSR_MC4_STATUS register 
is clear. 

When not implemented in the processor, all 
reads and writes to this MSR will cause a 
general-protection exception.

410H 1040 MSR_MC3_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 MSR_MC3_
STATUS

See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.”
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412H 1042 MSR_MC3_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not 
implemented or contains no address if the 
ADDRV flag in the MSR_MC3_STATUS register 
is clear. 

When not implemented in the processor, all 
reads and writes to this MSR will cause a 
general-protection exception.

413H 1043 MSR_MC3_MISC Unique

414H 1044 MSR_MC5_CTL Unique

415H 1045 MSR_MC5_
STATUS

Unique

416H 1046 MSR_MC5_ADDR Unique

417H 1047 MSR_MC5_MISC Unique

419H 1045 MSR_MC6_
STATUS

Unique Apply to Intel Xeon processor 7400 series 
(processor signature 06_1D) only. See Section 
15.3.2.2, “IA32_MCi_STATUS MSRS.” and 
Chapter 23.

480H 1152 IA32_VMX_BASIC Unique Reporting Register of Basic VMX 
Capabilities. (R/O) See Table 34-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBA
SED_CTLS

Unique Capability Reporting Register of Pin-based 
VM-execution Controls. (R/O) See 
Table 34-2.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCB
ASED_CTLS

Unique Capability Reporting Register of Primary 
Processor-based VM-execution Controls. 
(R/O)

See Appendix A.3, “VM-Execution Controls.”

483H 1155 IA32_VMX_EXIT_
CTLS

Unique Capability Reporting Register of VM-exit 
Controls. (R/O) See Table 34-2.

See Appendix A.4, “VM-Exit Controls.”
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484H 1156 IA32_VMX_
ENTRY_CTLS

Unique Capability Reporting Register of VM-entry 
Controls. (R/O) See Table 34-2.

See Appendix A.5, “VM-Entry Controls.”

485H 1157 IA32_VMX_MISC Unique Reporting Register of Miscellaneous VMX 
Capabilities. (R/O) See Table 34-2.

See Appendix A.6, “Miscellaneous Data.”

486H 1158 IA32_VMX_CR0_
FIXED0

Unique Capability Reporting Register of CR0 Bits 
Fixed to 0. (R/O) See Table 34-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

487H 1159 IA32_VMX_CR0_
FIXED1

Unique Capability Reporting Register of CR0 Bits 
Fixed to 1. (R/O) See Table 34-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

488H 1160 IA32_VMX_CR4_FI
XED0

Unique Capability Reporting Register of CR4 Bits 
Fixed to 0. (R/O) See Table 34-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

489H 1161 IA32_VMX_CR4_FI
XED1

Unique Capability Reporting Register of CR4 Bits 
Fixed to 1. (R/O) See Table 34-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

48AH 1162 IA32_VMX_
VMCS_ENUM

Unique Capability Reporting Register of VMCS Field 
Enumeration. (R/O). See Table 34-2.

See Appendix A.9, “VMCS Enumeration.”

48BH 1163 IA32_VMX_PROCB
ASED_CTLS2

Unique Capability Reporting Register of Secondary 
Processor-based VM-execution Controls. 
(R/O)

See Appendix A.3, “VM-Execution Controls.”

600H 1536 IA32_DS_AREA Unique DS Save Area. (R/W). See Table 34-2.

See Section 18.10.4, “Debug Store (DS) 
Mechanism.”

107CC
H

MSR_EMON_L3_C
TR_CTL0

Unique GBUSQ Event Control/Counter Register. 
(R/W). 

Apply to Intel Xeon processor 7400 series 
(processor signature 06_1D) only. See Section 
17.2.2
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107CD
H

MSR_EMON_L3_C
TR_CTL1

Unique GBUSQ Event Control/Counter Register. 
(R/W). 

Apply to Intel Xeon processor 7400 series 
(processor signature 06_1D) only. See Section 
17.2.2

107CE
H

MSR_EMON_L3_C
TR_CTL2

Unique GSNPQ Event Control/Counter Register. 
(R/W). 

Apply to Intel Xeon processor 7400 series 
(processor signature 06_1D) only. See Section 
17.2.2

107CF
H

MSR_EMON_L3_C
TR_CTL3

Unique GSNPQ Event Control/Counter Register. 
(R/W). 

Apply to Intel Xeon processor 7400 series 
(processor signature 06_1D) only. See Section 
17.2.2

107D0
H

MSR_EMON_L3_C
TR_CTL4

Unique FSB Event Control/Counter Register. (R/W). 

Apply to Intel Xeon processor 7400 series 
(processor signature 06_1D) only. See Section 
17.2.2

107D1
H

MSR_EMON_L3_C
TR_CTL5

Unique FSB Event Control/Counter Register. (R/W). 

Apply to Intel Xeon processor 7400 series 
(processor signature 06_1D) only. See Section 
17.2.2

107D2
H

MSR_EMON_L3_C
TR_CTL6

Unique FSB Event Control/Counter Register. (R/W). 

Apply to Intel Xeon processor 7400 series 
(processor signature 06_1D) only. See Section 
17.2.2

107D3
H

MSR_EMON_L3_C
TR_CTL7

Unique FSB Event Control/Counter Register. (R/W). 

Apply to Intel Xeon processor 7400 series 
(processor signature 06_1D) only. See Section 
17.2.2

Table 34-3.  MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register 
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
34-66 Vol. 3C



MODEL-SPECIFIC REGISTERS (MSRS)
34.3 MSRS IN THE INTEL® ATOM™ PROCESSOR FAMILY
Table 34-4 lists model-specific registers (MSRs) for Intel Atom processor family, 
architectural MSR addresses are also included in Table 34-4. These processors have 
a CPUID signature with DisplayFamily_DisplayModel of 06_1CH, see Table 34-1. 

The column “Shared/Unique” applies to logical processors sharing the same core in 
processors based on the Intel Atom microarchitecture. “Unique” means each logical 
processor has a separate MSR, or a bit field in an MSR governs only a logical 
processor. “Shared” means the MSR or the bit field in an MSR address governs the 
operation of both logical processors in the same core.

107D8
H

MSR_EMON_L3
_GL_CTL

Unique L3/FSB Common Control Register. (R/W). 

Apply to Intel Xeon processor 7400 series 
(processor signature 06_1D) only. See Section 
17.2.2

C000_
0080H

IA32_EFER Unique Extended Feature Enables. See Table 34-2.

C000_
0081H

IA32_STAR Unique System Call Target Address. (R/W). See 
Table 34-2.

C000_
0082H

IA32_LSTAR Unique IA-32e Mode System Call Target Address. 
(R/W). See Table 34-2.

C000_
0084H

IA32_FMASK Unique System Call Flag Mask. (R/W). See 
Table 34-2.

C000_
0100H

IA32_FS_BASE Unique Map of BASE Address of FS. (R/W). See 
Table 34-2.

C000_
0101H

IA32_GS_BASE Unique Map of BASE Address of GS. (R/W). See 
Table 34-2.

C000_
0102H

IA32_KERNEL_GS
BASE

Unique Swap Target of BASE Address of GS. (R/W). 
See Table 34-2.
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Table 34-4.  MSRs in Intel Atom Processor Family

Register 
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

0H 0 IA32_P5_MC_
ADDR

Shared See Section 34.13, “MSRs in Pentium 
Processors.”

1H 1 IA32_P5_MC_
TYPE

Shared See Section 34.13, “MSRs in Pentium 
Processors.”

6H 6 IA32_MONITOR_
FILTER_SIZE

Unique See Section 8.10.5, “Monitor/Mwait Address 
Range Determination.” andTable 34-2

10H 16 IA32_TIME_
STAMP_COUNTER

Shared See Section 17.12, “Time-Stamp Counter,” and 
see Table 34-2.

17H 23 IA32_PLATFORM_I
D

Shared Platform ID. (R) 
See Table 34-2.

17H 23 MSR_PLATFORM_I
D

Shared Model Specific Platform ID. (R) 

7:0 Reserved.

12:8 Maximum Qualified Ratio. (R) 

The maximum allowed bus ratio.

63:13 Reserved.

1BH 27 IA32_APIC_BASE Unique See Section 10.4.4, “Local APIC Status and 
Location,” and Table 34-2.

2AH 42 MSR_EBL_CR_
POWERON

Shared Processor Hard Power-On Configuration. 
(R/W)

Enables and disables processor features; (R) 
indicates current processor configuration.

0 Reserved.

1 Data Error Checking Enable. (R/W)
1 = Enabled; 0 = Disabled
Always 0. 

2 Response Error Checking Enable. (R/W)
1 = Enabled; 0 = Disabled
Always 0.

3 AERR# Drive Enable. (R/W) 

1 = Enabled; 0 = Disabled
Always 0.
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4 BERR# Enable for initiator bus requests. 
(R/W)

1 = Enabled; 0 = Disabled
Always 0. 

5 Reserved.

6 Reserved.

7 BINIT# Driver Enable. (R/W)

1 = Enabled; 0 = Disabled 
Always 0.

8 Reserved.

9 Execute BIST. (R/O)

1 = Enabled; 0 = Disabled 

10 AERR# Observation Enabled. (R/O)

1 = Enabled; 0 = Disabled
Always 0.

11 Reserved.

12 BINIT# Observation Enabled. (R/O)

1 = Enabled; 0 = Disabled 
Always 0.

13 Reserved.

14 1 MByte Power on Reset Vector. (R/O)

1 = 1 MByte; 0 = 4 GBytes

15 Reserved

17:16 APIC Cluster ID. (R/O)

Always 00B.

19: 18 Reserved.

21: 20 Symmetric Arbitration ID. (R/O)

Always 00B.

26:22 Integer Bus Frequency Ratio. (R/O)
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3AH 58 IA32_FEATURE_
CONTROL

Unique Control Features in Intel 64Processor. 
(R/W).

See Table 34-2.

40H 64 MSR_
LASTBRANCH_0_F
ROM_IP

Unique Last Branch Record 0 From IP. (R/W)

One of eight pairs of last branch record 
registers on the last branch record stack. This 
part of the stack contains pointers to the 
source instruction for one of the last eight 
branches, exceptions, or interrupts taken by 
the processor. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.10, “Last Branch, Interrupt, and 

Exception Recording (Pentium M 
Processors).”

41H 65 MSR_
LASTBRANCH_1_F
ROM_IP

Unique Last Branch Record 1 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.

42H 66 MSR_
LASTBRANCH_2_F
ROM_IP

Unique Last Branch Record 2 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP. 

43H 67 MSR_
LASTBRANCH_3_F
ROM_IP

Unique Last Branch Record 3 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.

44H 68 MSR_
LASTBRANCH_4_F
ROM_IP

Unique Last Branch Record 4 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.

45H 69 MSR_
LASTBRANCH_5_F
ROM_IP

Unique Last Branch Record 5 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.

46H 70 MSR_
LASTBRANCH_6_F
ROM_IP

Unique Last Branch Record 6 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.

47H 71 MSR_
LASTBRANCH_7_F
ROM_IP

Unique Last Branch Record 7 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.
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60H 96 MSR_
LASTBRANCH_0_
TO_LIP

Unique Last Branch Record 0 To IP. (R/W)

One of eight pairs of last branch record 
registers on the last branch record stack. This 
part of the stack contains pointers to the 
destination instruction for one of the last 
eight branches, exceptions, or interrupts 
taken by the processor.

61H 97 MSR_
LASTBRANCH_1_
TO_LIP

Unique Last Branch Record 1 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

62H 98 MSR_
LASTBRANCH_2_
TO_LIP

Unique Last Branch Record 2 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

63H 99 MSR_
LASTBRANCH_3_
TO_LIP

Unique Last Branch Record 3 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

64H 100 MSR_
LASTBRANCH_4_
TO_LIP

Unique Last Branch Record 4 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

65H 101 MSR_
LASTBRANCH_5_
TO_LIP

Unique Last Branch Record 5 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

66H 102 MSR_
LASTBRANCH_6_
TO_LIP

Unique Last Branch Record 6 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

67H 103 MSR_
LASTBRANCH_7_
TO_LIP

Unique Last Branch Record 7 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

79H 121 IA32_BIOS_
UPDT_TRIG

Unique BIOS Update Trigger Register. (W) 

See Table 34-2.

8BH 139 IA32_BIOS_
SIGN_ID

Unique BIOS Update Signature ID. (RO)

See Table 34-2.

C1H 193 IA32_PMC0 Unique Performance counter register. See 
Table 34-2.
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C2H 194 IA32_PMC1 Unique Performance counter register. See 
Table 34-2.

CDH 205 MSR_FSB_FREQ Shared Scaleable Bus Speed(RO). 

This field indicates the intended scaleable bus 
clock speed for processors based on Intel 
Atom microarchitecture:

2:0 • 101B: 100 MHz (FSB 400)
• 001B: 133 MHz (FSB 533)
• 011B: 167 MHz (FSB 667)

133.33 MHz should be utilized if performing 
calculation with System Bus Speed when 
encoding is 001B. 

166.67 MHz should be utilized if performing 
calculation with System Bus Speed when 
encoding is 011B.

63:3 Reserved.

E7H 231 IA32_MPERF Unique Maximum Performance Frequency Clock 
Count. (RW) See Table 34-2.

E8H 232 IA32_APERF Unique Actual Performance Frequency Clock Count. 
(RW) See Table 34-2.

FEH 254 IA32_MTRRCAP Shared Memory Type Range Register. (R) See 
Table 34-2.

11EH 281 MSR_BBL_CR_
CTL3

Shared

0 L2 Hardware Enabled. (RO)

1 = If the L2 is hardware-enabled
0 = Indicates if the L2 is hardware-disabled

7:1 Reserved.

8 L2 Enabled. (R/W) 

1 = L2 cache has been initialized 
0 = Disabled (default)
Until this bit is set the processor will not 
respond to the WBINVD instruction or the 
assertion of the FLUSH# input.

22:9 Reserved.
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23 L2 Not Present. (RO) 

0 = L2 Present
1 = L2 Not Present

63:24 Reserved.

174H 372 IA32_SYSENTER_C
S

Unique See Table 34-2.

175H 373 IA32_SYSENTER_E
SP

Unique See Table 34-2.

176H 374 IA32_SYSENTER_E
IP

Unique See Table 34-2.

17AH 378 IA32_MCG_
STATUS

Unique

0 RIPV. 

When set, bit indicates that the instruction 
addressed by the instruction pointer pushed 
on the stack (when the machine check was 
generated) can be used to restart the 
program. If cleared, the program cannot be 
reliably restarted

1 EIPV. 

When set, bit indicates that the instruction 
addressed by the instruction pointer pushed 
on the stack (when the machine check was 
generated) is directly associated with the 
error.

2 MCIP. 

When set, bit indicates that a machine check 
has been generated. If a second machine 
check is detected while this bit is still set, the 
processor enters a shutdown state. Software 
should write this bit to 0 after processing a 
machine check exception.

63:3 Reserved.

186H 390 IA32_
PERFEVTSEL0

Unique See Table 34-2.
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187H 391 IA32_
PERFEVTSEL1

Unique See Table 34-2.

198H 408 IA32_PERF_STAT
US

Shared See Table 34-2.

198H 408 MSR_PERF_STATU
S

Shared

15:0 Current Performance State Value.

39:16 Reserved.

44:40 Maximum Bus Ratio (R/O)

Indicates maximum bus ratio configured for 
the processor.

63:45 Reserved.

199H 409 IA32_PERF_CTL Unique See Table 34-2.

19AH 410 IA32_CLOCK_
MODULATION

Unique Clock Modulation. (R/W) 

See Table 34-2.

IA32_CLOCK_MODULATION MSR was 
originally named IA32_THERM_CONTROL 
MSR.

19BH 411 IA32_THERM_
INTERRUPT

Unique Thermal Interrupt Control. (R/W) 

See Table 34-2.

19CH 412 IA32_THERM_
STATUS

Unique Thermal Monitor Status. (R/W) 

See Table 34-2.

19DH 413 MSR_THERM2_
CTL

Shared

15:0 Reserved.
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16 TM_SELECT. (R/W) 

Mode of automatic thermal monitor:

0 = Thermal Monitor 1 (thermally-initiated 
on-die modulation of the stop-clock duty 
cycle)

1 = Thermal Monitor 2 (thermally-initiated 
frequency transitions)

If bit 3 of the IA32_MISC_ENABLE register is 
cleared, TM_SELECT has no effect. Neither 
TM1 nor TM2 are enabled.

63:17 Reserved.

1A0 416 IA32_MISC_
ENABLE

Unique Enable Misc. Processor Features. (R/W) 

Allows a variety of processor functions to be 
enabled and disabled.

0 Fast-Strings Enable. See Table 34-2.

2:1 Reserved.

3 Unique Automatic Thermal Control Circuit Enable. 
(R/W) See Table 34-2.

6:4 Reserved.

7 Shared Performance Monitoring Available. (R) See 
Table 34-2.

8 Reserved.

9 Reserved.

10 Shared FERR# Multiplexing Enable. (R/W)

1 = FERR# asserted by the processor to 
indicate a pending break event within 
the processor 

0 =  Indicates compatible FERR# signaling 
behavior

This bit must be set to 1 to support XAPIC 
interrupt model usage.

11 Shared Branch Trace Storage Unavailable. (RO) See 
Table 34-2.

12 Shared Precise Event Based Sampling Unavailable. 
(RO) See Table 34-2.
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13 Shared TM2 Enable. (R/W)

When this bit is set (1) and the thermal sensor 
indicates that the die temperature is at the 
pre-determined threshold, the Thermal 
Monitor 2 mechanism is engaged. TM2 will 
reduce the bus to core ratio and voltage 
according to the value last written to 
MSR_THERM2_CTL bits 15:0.

When this bit is clear (0, default), the 
processor does not change the VID signals or 
the bus to core ratio when the processor 
enters a thermally managed state. 

The BIOS must enable this feature if the TM2 
feature flag (CPUID.1:ECX[8]) is set; if the TM2 
feature flag is not set, this feature is not 
supported and BIOS must not alter the 
contents of the TM2 bit location. 

The processor is operating out of specification 
if both this bit and the TM1 bit are set to 0.

15:14 Reserved.

16 Shared Enhanced Intel SpeedStep Technology 
Enable. (R/W) See Table 34-2.

18 Shared ENABLE MONITOR FSM. (R/W) See Table 34-2.

19 Reserved.

20 Shared Enhanced Intel SpeedStep Technology 
Select Lock. (R/WO)

When set, this bit causes the following bits to 
become read-only:

• Enhanced Intel SpeedStep Technology 
Select Lock (this bit), 

• Enhanced Intel SpeedStep Technology 
Enable bit.

The bit must be set before an Enhanced Intel 
SpeedStep Technology transition is requested. 
This bit is cleared on reset.

21 Reserved.
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22 Unique Limit CPUID Maxval. (R/W) See Table 34-2.

23 Shared xTPR Message Disable. (R/W) See 
Table 34-2.

33:24 Reserved.

34 Unique XD Bit Disable. (R/W) See Table 34-2.

63:35 Reserved.

1C9H 457 MSR_
LASTBRANCH_
TOS

Unique Last Branch Record Stack TOS. (R) 

Contains an index (bits 0-2) that points to the 
MSR containing the most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 40H).

1D9H 473 IA32_DEBUGCTL Unique Debug Control. (R/W) See Table 34-2.

1DDH 477 MSR_LER_FROM_
LIP 

Unique Last Exception Record From Linear IP. (R) 

Contains a pointer to the last branch 
instruction that the processor executed prior 
to the last exception that was generated or 
the last interrupt that was handled.

1DEH 478 MSR_LER_TO_
LIP

Unique Last Exception Record To Linear IP. (R) 

This area contains a pointer to the target of 
the last branch instruction that the processor 
executed prior to the last exception that was 
generated or the last interrupt that was 
handled. 

200H 512 IA32_MTRR_PHYS
BASE0

Shared See Table 34-2.

201H 513 IA32_MTRR_PHYS
MASK0

Shared See Table 34-2.

202H 514 IA32_MTRR_PHYS
BASE1

Shared See Table 34-2.

203H 515 IA32_MTRR_PHYS
MASK1

Shared See Table 34-2.

204H 516 IA32_MTRR_PHYS
BASE2

Shared See Table 34-2.

205H 517 IA32_MTRR_PHYS
MASK2

Shared See Table 34-2.
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206H 518 IA32_MTRR_PHYS
BASE3

Shared See Table 34-2.

207H 519 IA32_MTRR_PHYS
MASK3

Shared See Table 34-2.

208H 520 IA32_MTRR_PHYS
BASE4

Shared See Table 34-2.

209H 521 IA32_MTRR_PHYS
MASK4

Shared See Table 34-2.

20AH 522 IA32_MTRR_PHYS
BASE5

Shared See Table 34-2.

20BH 523 IA32_MTRR_PHYS
MASK5

Shared See Table 34-2.

20CH 524 IA32_MTRR_PHYS
BASE6

Shared See Table 34-2.

20DH 525 IA32_MTRR_PHYS
MASK6

Shared See Table 34-2.

20EH 526 IA32_MTRR_PHYS
BASE7

Shared See Table 34-2.

20FH 527 IA32_MTRR_PHYS
MASK7

Shared See Table 34-2.

250H 592 IA32_MTRR_FIX6
4K_00000

Shared See Table 34-2.

258H 600 IA32_MTRR_FIX1
6K_80000

Shared See Table 34-2.

259H 601 IA32_MTRR_FIX1
6K_A0000

Shared See Table 34-2.

268H 616 IA32_MTRR_FIX4
K_C0000

Shared See Table 34-2.

269H 617 IA32_MTRR_FIX4
K_C8000

Shared See Table 34-2.

26AH 618 IA32_MTRR_FIX4
K_D0000

Shared See Table 34-2.

26BH 619 IA32_MTRR_FIX4
K_D8000

Shared See Table 34-2.
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26CH 620 IA32_MTRR_FIX4
K_E0000

Shared See Table 34-2.

26DH 621 IA32_MTRR_FIX4
K_E8000

Shared See Table 34-2.

26EH 622 IA32_MTRR_FIX4
K_F0000

Shared See Table 34-2.

26FH 623 IA32_MTRR_FIX4
K_F8000

Shared See Table 34-2.

277H 631 IA32_PAT Unique See Table 34-2.

309H 777 IA32_FIXED_CTR0 Unique Fixed-Function Performance Counter 
Register 0. (R/W) See Table 34-2.

30AH 778 IA32_FIXED_CTR1 Unique Fixed-Function Performance Counter 
Register 1. (R/W) See Table 34-2.

30BH 779 IA32_FIXED_CTR2 Unique Fixed-Function Performance Counter 
Register 2. (R/W) See Table 34-2.

345H 837 IA32_PERF_CAPA
BILITIES

Shared See Table 34-2. See Section 17.4.1, 
“IA32_DEBUGCTL MSR.”

38DH 909 IA32_FIXED_CTR_
CTRL

Unique Fixed-Function-Counter Control Register. 
(R/W) See Table 34-2.

38EH 910 IA32_PERF_
GLOBAL_STAUS

Unique See Table 34-2. See Section 18.4.2, “Global 
Counter Control Facilities.” 

38FH 911 IA32_PERF_
GLOBAL_CTRL

Unique See Table 34-2. See Section 18.4.2, “Global 
Counter Control Facilities.”

390H 912 IA32_PERF_
GLOBAL_OVF_
CTRL

Unique See Table 34-2. See Section 18.4.2, “Global 
Counter Control Facilities.”

3F1H 1009 MSR_PEBS_
ENABLE

Unique See Table 34-2. See Section 18.4.4, “Precise 
Event Based Sampling (PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

400H 1024 IA32_MC0_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_
STATUS

Shared See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.”
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402H 1026 IA32_MC0_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not 
implemented or contains no address if the 
ADDRV flag in the IA32_MC0_STATUS register 
is clear. 

When not implemented in the processor, all 
reads and writes to this MSR will cause a 
general-protection exception.

404H 1028 IA32_MC1_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_
STATUS

Shared See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.”

408H 1032 IA32_MC2_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_
STATUS

Shared See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.”

40AH 1034 IA32_MC2_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.” 

The IA32_MC2_ADDR register is either not 
implemented or contains no address if the 
ADDRV flag in the IA32_MC2_STATUS register 
is clear. 

When not implemented in the processor, all 
reads and writes to this MSR will cause a 
general-protection exception.

40CH 1036 MSR_MC3_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 MSR_MC3_
STATUS

Shared See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.”

4OEH 1038 MSR_MC3_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not 
implemented or contains no address if the 
ADDRV flag in the MSR_MC3_STATUS register 
is clear. 

When not implemented in the processor, all 
reads and writes to this MSR will cause a 
general-protection exception.

410H 1040 MSR_MC4_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 MSR_MC4_
STATUS

Shared See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.”
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412H 1042 MSR_MC4_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not 
implemented or contains no address if the 
ADDRV flag in the MSR_MC4_STATUS register 
is clear. 

When not implemented in the processor, all 
reads and writes to this MSR will cause a 
general-protection exception.

480H 1152 IA32_VMX_BASIC Unique Reporting Register of Basic VMX 
Capabilities. (R/O) See Table 34-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBA
SED_CTLS

Unique Capability Reporting Register of Pin-based 
VM-execution Controls. (R/O) See 
Table 34-2.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCB
ASED_CTLS

Unique Capability Reporting Register of Primary 
Processor-based VM-execution Controls. 
(R/O)

See Appendix A.3, “VM-Execution Controls.”

483H 1155 IA32_VMX_EXIT_
CTLS

Unique Capability Reporting Register of VM-exit 
Controls. (R/O) See Table 34-2.

See Appendix A.4, “VM-Exit Controls.”

484H 1156 IA32_VMX_
ENTRY_CTLS

Unique Capability Reporting Register of VM-entry 
Controls. (R/O) See Table 34-2.

See Appendix A.5, “VM-Entry Controls.”

485H 1157 IA32_VMX_MISC Unique Reporting Register of Miscellaneous VMX 
Capabilities. (R/O) See Table 34-2.

See Appendix A.6, “Miscellaneous Data.”

486H 1158 IA32_VMX_CR0_
FIXED0

Unique Capability Reporting Register of CR0 Bits 
Fixed to 0. (R/O) See Table 34-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

487H 1159 IA32_VMX_CR0_
FIXED1

Unique Capability Reporting Register of CR0 Bits 
Fixed to 1. (R/O) See Table 34-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”
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488H 1160 IA32_VMX_CR4_FI
XED0

Unique Capability Reporting Register of CR4 Bits 
Fixed to 0. (R/O) See Table 34-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

489H 1161 IA32_VMX_CR4_FI
XED1

Unique Capability Reporting Register of CR4 Bits 
Fixed to 1. (R/O) See Table 34-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

48AH 1162 IA32_VMX_
VMCS_ENUM

Unique Capability Reporting Register of VMCS Field 
Enumeration. (R/O). See Table 34-2.

See Appendix A.9, “VMCS Enumeration.”

48BH 1163 IA32_VMX_PROCB
ASED_CTLS2

Unique Capability Reporting Register of Secondary 
Processor-based VM-execution Controls. 
(R/O)

See Appendix A.3, “VM-Execution Controls.”

600H 1536 IA32_DS_AREA Unique DS Save Area. (R/W). See Table 34-2.

See Section 18.10.4, “Debug Store (DS) 
Mechanism.”

C000_
0080H

IA32_EFER Unique Extended Feature Enables. See Table 34-2.

C000_
0081H

IA32_STAR Unique System Call Target Address. (R/W). See 
Table 34-2.

C000_
0082H

IA32_LSTAR Unique IA-32e Mode System Call Target Address. 
(R/W). See Table 34-2.

C000_
0084H

IA32_FMASK Unique System Call Flag Mask. (R/W). See 
Table 34-2.

C000_
0100H

IA32_FS_BASE Unique Map of BASE Address of FS. (R/W). See 
Table 34-2.

C000_
0101H

IA32_GS_BASE Unique Map of BASE Address of GS. (R/W). See 
Table 34-2.

C000_
0102H

IA32_KERNEL_GS
BASE

Unique Swap Target of BASE Address of GS. (R/W). 
See Table 34-2.
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34.4 MSRS IN THE INTEL® MICROARCHITECTURE CODE 
NAME NEHALEM

Table 34-5 lists model-specific registers (MSRs) that are common for Intel® microar-
chitecture code name Nehalem. These include Intel Core i7 and i5 processor family. 
Architectural MSR addresses are also included in Table 34-5. These processors have 
a CPUID signature with DisplayFamily_DisplayModel of 06_1AH, 06_1EH, 06_1FH, 
06_2EH, see Table 34-1. Additional MSRs specific to 06_1AH, 06_1EH, 06_1FH are 
listed in Table 34-6. Some MSRs listed in these tables are used by BIOS. More infor-
mation about these MSR can be found at http://biosbits.org.

The column “Scope” represents the package/core/thread scope of individual bit field 
of an MSR. “Thread” means this bit field must be programmed on each logical 
processor independently. “Core” means the bit field must be programmed on each 
processor core independently, logical processors in the same core will be affected by 
change of this bit on the other logical processor in the same core. “Package“ means 
the bit field must be programmed once for each physical package. Change of a bit 
filed with a package scope will affect all logical processors in that physical package.

Table 34-5.  MSRs in Processors Based on Intel Microarchitecture Code Name 
Nehalem

Register 
Address Register Name

Scope
Bit Description

 Hex Dec

0H 0 IA32_P5_MC_
ADDR

Thread See Section 34.13, “MSRs in Pentium 
Processors.”

1H 1 IA32_P5_MC_
TYPE

Thread See Section 34.13, “MSRs in Pentium 
Processors.”

6H 6 IA32_MONITOR_
FILTER_SIZE

Thread See Section 8.10.5, “Monitor/Mwait Address 
Range Determination,” and Table 34-2.

10H 16 IA32_TIME_
STAMP_COUNTER

Thread See Section 17.12, “Time-Stamp Counter,” and 
see Table 34-2.

17H 23 IA32_PLATFORM_I
D

Package Platform ID. (R) 
See Table 34-2.

17H 23 MSR_PLATFORM_I
D

Package Model Specific Platform ID. (R) 

49:0 Reserved.

52:50 See Table 34-2.

63:53 Reserved.
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1BH 27 IA32_APIC_BASE Thread See Section 10.4.4, “Local APIC Status and 
Location,” and Table 34-2.

34H 52 MSR_SMI_
COUNT

Thread SMI Counter. (R/O).

31:0 SMI Count. (R/O) 

Count SMIs

63:32 Reserved.

3AH 58 IA32_FEATURE_
CONTROL

Thread Control Features in Intel 64Processor. 
(R/W).

See Table 34-2.

79H 121 IA32_BIOS_
UPDT_TRIG

Core BIOS Update Trigger Register. (W) 

See Table 34-2.

8BH 139 IA32_BIOS_
SIGN_ID

Thread BIOS Update Signature ID. (RO)

See Table 34-2.

C1H 193 IA32_PMC0 Thread Performance counter register. See 
Table 34-2.

C2H 194 IA32_PMC1 Thread Performance counter register. See 
Table 34-2.

C3H 195 IA32_PMC2 Thread Performance counter register. See 
Table 34-2.

C4H 196 IA32_PMC3 Thread Performance counter register. See 
Table 34-2.

CEH 206 MSR_PLATFORM_I
NFO

Package see http://biosbits.org.

7:0 Reserved.

15:8 Package Maximum Non-Turbo Ratio. (R/O) 

The is the ratio of the frequency that invariant 
TSC runs at. The invariant TSC frequency can 
be computed by multiplying this ratio by 
133.33 MHz.

27:16 Reserved.
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28 Package Programmable Ratio Limit for Turbo Mode. 
(R/O) 

When set to 1, indicates that Programmable 
Ratio Limits for Turbo mode is enabled, and 
when set to 0, indicates Programmable Ratio 
Limits for Turbo mode is disabled.

29 Package Programmable TDC-TDP Limit for Turbo 
Mode. (R/O) 

When set to 1, indicates that TDC/TDP Limits 
for Turbo mode are programmable, and when 
set to 0, indicates TDC and TDP Limits for 
Turbo mode are not programmable.

39:30 Reserved.

47:40 Package Maximum Efficiency Ratio. (R/O) 

The is the minimum ratio (maximum 
efficiency) that the processor can operates, in 
units of 133.33MHz.

63:48 Reserved.

E2H 226 MSR_PKG_CST_CO
NFIG_CONTROL

Core C-State Configuration Control (R/W) 

Note: C-state values are processor specific C-
state code names, unrelated to MWAIT 
extension C-state parameters or ACPI C-
States. See http://biosbits.org.
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2:0 Package C-State limit. (R/W) 

Specifies the lowest processor-specific C-
state code name (consuming the least power). 
for the package. The default is set as factory-
configured package C-state limit.

The following C-state code name encodings 
are supported:

000b: C0 (no package C-sate support)

001b: C1 (Behavior is the same as 000b)

010b: C3

011b: C6

100b: C7

101b and 110b: Reserved

111: No package C-state limit.

Note: This field cannot be used to limit 
package C-state to C3.

9:3 Reserved. 

10 I/O MWAIT Redirection Enable. (R/W) 

When set, will map IO_read instructions sent 
to IO register specified by 
MSR_PMG_IO_CAPTURE_BASE to MWAIT 
instructions.

14:11 Reserved. 

15 CFG Lock. (R/WO) 

When set, lock bits 15:0 of this register until 
next reset.

23:16 Reserved. 

24 Interrupt filtering enable. (R/W) 

When set, processor cores in a deep C-State 
will wake only when the event message is 
destined for that core. When 0, all processor 
cores in a deep C-State will wake for an event 
message.
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25 C3 state auto demotion enable. (R/W) 

When set, the processor will conditionally 
demote C6/C7 requests to C3 based on uncore 
auto-demote information.

26 C1 state auto demotion enable. (R/W) 

When set, the processor will conditionally 
demote C3/C6/C7 requests to C1 based on 
uncore auto-demote information.

63:27 Reserved.

E4H 228 MSR_PMG_IO_CAP
TURE_BASE

Core Power Management IO Redirection in C-state 
(R/W) See http://biosbits.org.

15:0 LVL_2 Base Address. (R/W) 

Specifies the base address visible to software 
for IO redirection. If IO MWAIT Redirection is 
enabled, reads to this address will be 
consumed by the power management logic 
and decoded to MWAIT instructions. When IO 
port address redirection is enabled, this is the 
IO port address reported to the OS/software.

18:16 C-state Range. (R/W) 

Specifies the encoding value of the maximum 
C-State code name to be included when IO 
read to MWAIT redirection is enabled by 
MSR_PMG_CST_CONFIG_CONTROL[bit10]:

000b - C3 is the max C-State to include

001b - C6 is the max C-State to include

010b - C7 is the max C-State to include

63:19 Reserved.

E7H 231 IA32_MPERF Thread Maximum Performance Frequency Clock 
Count. (RW) See Table 34-2.

E8H 232 IA32_APERF Thread Actual Performance Frequency Clock Count. 
(RW) See Table 34-2.

FEH 254 IA32_MTRRCAP Thread See Table 34-2.
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174H 372 IA32_SYSENTER_C
S

Thread See Table 34-2.

175H 373 IA32_SYSENTER_E
SP

Thread See Table 34-2.

176H 374 IA32_SYSENTER_E
IP

Thread See Table 34-2.

179H 377 IA32_MCG_CAP Thread See Table 34-2.

17AH 378 IA32_MCG_
STATUS

Thread

0 RIPV. 

When set, bit indicates that the instruction 
addressed by the instruction pointer pushed 
on the stack (when the machine check was 
generated) can be used to restart the 
program. If cleared, the program cannot be 
reliably restarted.

1 EIPV. 

When set, bit indicates that the instruction 
addressed by the instruction pointer pushed 
on the stack (when the machine check was 
generated) is directly associated with the 
error.

2 MCIP. 

When set, bit indicates that a machine check 
has been generated. If a second machine 
check is detected while this bit is still set, the 
processor enters a shutdown state. Software 
should write this bit to 0 after processing a 
machine check exception.

63:3 Reserved.

186H 390 IA32_
PERFEVTSEL0

Thread See Table 34-2.

187H 391 IA32_
PERFEVTSEL1

Thread See Table 34-2.
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188H 392 IA32_
PERFEVTSEL2

Thread See Table 34-2.

189H 393 IA32_
PERFEVTSEL3

Thread See Table 34-2.

198H 408 IA32_PERF_STAT
US

Core See Table 34-2.

15:0 Current Performance State Value.

63:16 Reserved.

199H 409 IA32_PERF_CTL Thread See Table 34-2.

19AH 410 IA32_CLOCK_
MODULATION

Thread Clock Modulation. (R/W) 

See Table 34-2.

IA32_CLOCK_MODULATION MSR was 
originally named IA32_THERM_CONTROL 
MSR.

0 Reserved.

3:1 On demand Clock Modulation Duty Cycle (R/W).

4 On demand Clock Modulation Enable (R/W).

63:5 Reserved.

19BH 411 IA32_THERM_
INTERRUPT

Core Thermal Interrupt Control. (R/W) 

See Table 34-2.

19CH 412 IA32_THERM_
STATUS

Core Thermal Monitor Status. (R/W) 

See Table 34-2.

1A0 416 IA32_MISC_
ENABLE

Enable Misc. Processor Features. (R/W) 

Allows a variety of processor functions to be 
enabled and disabled.

0 Thread Fast-Strings Enable. See Table 34-2.

2:1 Reserved.

3 Thread Automatic Thermal Control Circuit Enable. 
(R/W) See Table 34-2.

6:4 Reserved.
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7 Thread Performance Monitoring Available. (R) See 
Table 34-2.

10:8 Reserved.

11 Thread Branch Trace Storage Unavailable. (RO) See 
Table 34-2.

12 Thread Precise Event Based Sampling Unavailable. 
(RO) See Table 34-2.

15:13 Reserved.

16 Package Enhanced Intel SpeedStep Technology 
Enable. (R/W) See Table 34-2.

18 Thread ENABLE MONITOR FSM. (R/W) See Table 34-2.

21:19 Reserved.

22 Thread Limit CPUID Maxval. (R/W) See Table 34-2.

23 Thread xTPR Message Disable. (R/W) See 
Table 34-2.

33:24 Reserved.

34 Thread XD Bit Disable. (R/W) See Table 34-2.

37:35 Reserved.

38 Package Turbo Mode Disable. (R/W)

When set to 1 on processors that support Intel 
Turbo Boost Technology, the turbo mode 
feature is disabled and the IDA_Enable feature 
flag will be clear (CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support 
IDA, CPUID.06H: EAX[1] reports the 
processor’s support of turbo mode is enabled.

Note: the power-on default value is used by 
BIOS to detect hardware support of turbo 
mode. If power-on default value is 1, turbo 
mode is available in the processor. If power-on 
default value is 0, turbo mode is not available.

63:39 Reserved.
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1A2H 418 MSR_
TEMPERATURE_TA
RGET

Thread

15:0 Reserved.

23:16 Temperature Target. (R) 

The minimum temperature at which 
PROCHOT# will be asserted. The value is 
degree C.

63:24 Reserved.

1A6H 422 MSR_OFFCORE_RS
P_0

Thread Offcore Response Event Select Register (R/W)

1AAH 426 MSR_MISC_PWR_
MGMT

See http://biosbits.org.

0 Package EIST Hardware Coordination Disable (R/W).

When 0, enables hardware coordination of 
EIST request from processor cores; When 1, 
disables hardware coordination of EIST 
requests.

1 Thread Energy/Performance Bias Enable. (R/W) 

This bit makes the IA32_ENERGY_PERF_BIAS 
register (MSR 1B0h) visible to software with 
Ring 0 privileges. This bit’s status (1 or 0) is 
also reflected by CPUID.(EAX=06h):ECX[3].

63:2 Reserved.

1ADH 428 MSR_TURBO_POW
ER_CURRENT_LIMI
T

See http://biosbits.org.

14:0 Package TDP Limit (R/W) 

TDP limit in 1/8 Watt granularity.

15 Package TDP Limit Override Enable (R/W) 

A value = 0 indicates override is not active, 
and a value = 1 indicates active.
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30:16 Package TDC Limit (R/W) 

TDC limit in 1/8 Amp granularity.

31 Package TDC Limit Override Enable (R/W) 

A value = 0 indicates override is not active, 
and a value = 1 indicates active.

63:32 Reserved.

1ADH 429 MSR_TURBO_RATI
O_LIMIT

Package Maximum Ratio Limit of Turbo Mode.

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C. 

Maximum turbo ratio limit of 1 core active. 

15:8 Package Maximum Ratio Limit for 2C. 

Maximum turbo ratio limit of 2 core active. 

23:16 Package Maximum Ratio Limit for 3C. 

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C. 

Maximum turbo ratio limit of 4 core active.

63:32 Reserved.

1C8H 456 MSR_LBR_SELECT Core Last Branch Record Filtering Select Register 
(R/W) see Section 17.6.2, “Filtering of Last 
Branch Records.”

1C9H 457 MSR_
LASTBRANCH_
TOS

Thread Last Branch Record Stack TOS. (R) 

Contains an index (bits 0-3) that points to the 
MSR containing the most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 
680H).

1D9H 473 IA32_DEBUGCTL Thread Debug Control. (R/W) See Table 34-2.
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1DDH 477 MSR_LER_FROM_
LIP 

Thread Last Exception Record From Linear IP. (R) 

Contains a pointer to the last branch 
instruction that the processor executed prior 
to the last exception that was generated or 
the last interrupt that was handled.

1DEH 478 MSR_LER_TO_
LIP

Thread Last Exception Record To Linear IP. (R) 

This area contains a pointer to the target of 
the last branch instruction that the processor 
executed prior to the last exception that was 
generated or the last interrupt that was 
handled. 

1F2H 498 IA32_SMRR_PHYS
BASE

Core See Table 34-2.

1F3H 499 IA32_SMRR_PHYS
MASK

Core See Table 34-2.

1FCH 508 MSR_POWER_CTL Core Power Control Register. See 
http://biosbits.org.

0 Reserved.

1 Package C1E Enable. (R/W) 

When set to ‘1’, will enable the CPU to switch 
to the Minimum Enhanced Intel SpeedStep 
Technology operating point when all 
execution cores enter MWAIT (C1).

63:2 Reserved.

200H 512 IA32_MTRR_PHYS
BASE0

Thread See Table 34-2.

201H 513 IA32_MTRR_PHYS
MASK0

Thread See Table 34-2.

202H 514 IA32_MTRR_PHYS
BASE1

Thread See Table 34-2.

203H 515 IA32_MTRR_PHYS
MASK1

Thread See Table 34-2.
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204H 516 IA32_MTRR_PHYS
BASE2

Thread See Table 34-2.

205H 517 IA32_MTRR_PHYS
MASK2

Thread See Table 34-2.

206H 518 IA32_MTRR_PHYS
BASE3

Thread See Table 34-2.

207H 519 IA32_MTRR_PHYS
MASK3

Thread See Table 34-2.

208H 520 IA32_MTRR_PHYS
BASE4

Thread See Table 34-2.

209H 521 IA32_MTRR_PHYS
MASK4

Thread See Table 34-2.

20AH 522 IA32_MTRR_PHYS
BASE5

Thread See Table 34-2.

20BH 523 IA32_MTRR_PHYS
MASK5

Thread See Table 34-2.

20CH 524 IA32_MTRR_PHYS
BASE6

Thread See Table 34-2.

20DH 525 IA32_MTRR_PHYS
MASK6

Thread See Table 34-2.

20EH 526 IA32_MTRR_PHYS
BASE7

Thread See Table 34-2.

20FH 527 IA32_MTRR_PHYS
MASK7

Thread See Table 34-2.

210H 528 IA32_MTRR_PHYS
BASE8

Thread See Table 34-2.

211H 529 IA32_MTRR_PHYS
MASK8

Thread See Table 34-2.

212H 530 IA32_MTRR_PHYS
BASE9

Thread See Table 34-2.

213H 531 IA32_MTRR_PHYS
MASK9

Thread See Table 34-2.
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250H 592 IA32_MTRR_FIX6
4K_00000

Thread See Table 34-2.

258H 600 IA32_MTRR_FIX1
6K_80000

Thread See Table 34-2.

259H 601 IA32_MTRR_FIX1
6K_A0000

Thread See Table 34-2.

268H 616 IA32_MTRR_FIX4
K_C0000

Thread See Table 34-2.

269H 617 IA32_MTRR_FIX4
K_C8000

Thread See Table 34-2.

26AH 618 IA32_MTRR_FIX4
K_D0000

Thread See Table 34-2.

26BH 619 IA32_MTRR_FIX4
K_D8000

Thread See Table 34-2.

26CH 620 IA32_MTRR_FIX4
K_E0000

Thread See Table 34-2.

26DH 621 IA32_MTRR_FIX4
K_E8000

Thread See Table 34-2.

26EH 622 IA32_MTRR_FIX4
K_F0000

Thread See Table 34-2.

26FH 623 IA32_MTRR_FIX4
K_F8000

Thread See Table 34-2.

277H 631 IA32_PAT Thread See Table 34-2.

280H 640 IA32_MC0_CTL2 Package See Table 34-2.

281H 641 IA32_MC1_CTL2 Package See Table 34-2.

282H 642 IA32_MC2_CTL2 Core See Table 34-2.

283H 643 IA32_MC3_CTL2 Core See Table 34-2.

284H 644 IA32_MC4_CTL2 Core See Table 34-2.

285H 645 IA32_MC5_CTL2 Core See Table 34-2.

286H 646 IA32_MC6_CTL2 Package See Table 34-2.

287H 647 IA32_MC7_CTL2 Package See Table 34-2.
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288H 648 IA32_MC8_CTL2 Package See Table 34-2.

2FFH 767 IA32_MTRR_DEF_
TYPE

Thread Default Memory Types. (R/W) See 
Table 34-2.

309H 777 IA32_FIXED_CTR0 Thread Fixed-Function Performance Counter 
Register 0. (R/W) See Table 34-2.

30AH 778 IA32_FIXED_CTR1 Thread Fixed-Function Performance Counter 
Register 1. (R/W) See Table 34-2.

30BH 779 IA32_FIXED_CTR2 Thread Fixed-Function Performance Counter 
Register 2. (R/W) See Table 34-2.

345H 837 IA32_PERF_CAPA
BILITIES

Thread See Table 34-2. See Section 17.4.1, 
“IA32_DEBUGCTL MSR.”

5:0 LBR Format. See Table 34-2.

6 PEBS Record Format. 

7 PEBSSaveArchRegs. See Table 34-2.

11:8 PEBS_REC_FORMAT. See Table 34-2.

12 SMM_FREEZE. See Table 34-2.

63:13 Reserved.

38DH 909 IA32_FIXED_CTR_
CTRL

Thread Fixed-Function-Counter Control Register. 
(R/W) See Table 34-2.

38EH 910 IA32_PERF_
GLOBAL_STAUS

Thread See Table 34-2. See Section 18.4.2, “Global 
Counter Control Facilities.” 

38EH 910 MSR_PERF_
GLOBAL_STAUS

Thread  (RO)

61 UNC_Ovf. Uncore overflowed if 1.

38FH 911 IA32_PERF_
GLOBAL_CTRL

Thread See Table 34-2. See Section 18.4.2, “Global 
Counter Control Facilities.”

390H 912 IA32_PERF_
GLOBAL_OVF_
CTRL

Thread See Table 34-2. See Section 18.4.2, “Global 
Counter Control Facilities.”
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390H 912 MSR_PERF_
GLOBAL_OVF_
CTRL

Thread  (R/W)

61 CLR_UNC_Ovf. Set 1 to clear UNC_Ovf.

3F1H 1009 MSR_PEBS_
ENABLE

Thread See Section 18.6.1.1, “Precise Event Based 
Sampling (PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

1 Enable PEBS on IA32_PMC1. (R/W)

2 Enable PEBS on IA32_PMC2. (R/W)

3 Enable PEBS on IA32_PMC3. (R/W)

31:4 Reserved.

32 Enable Load Latency on IA32_PMC0. (R/W)

33 Enable Load Latency on IA32_PMC1. (R/W)

34 Enable Load Latency on IA32_PMC2. (R/W)

35 Enable Load Latency on IA32_PMC3. (R/W)

63:36 Reserved.

3F6H 1014 MSR_PEBS_
LD_LAT

Thread See Section 18.6.1.2, “Load Latency 
Performance Monitoring Facility.”

15:0 Minimum threshold latency value of tagged 
load operation that will be counted. (R/W)

63:36 Reserved.

3F8H 1016 MSR_PKG_C3_RES
IDENCY

Package Note: C-state values are processor specific C-
state code names, unrelated to MWAIT 
extension C-state parameters or ACPI C-
States.

63:0 Package C3 Residency Counter. (R/O)

Value since last reset that this package is in 
processor-specific C3 states. Count at the 
same frequency as the TSC.
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3F9H 1017 MSR_PKG_C6_RES
IDENCY

Package Note: C-state values are processor specific C-
state code names, unrelated to MWAIT 
extension C-state parameters or ACPI C-
States.

63:0 Package C6 Residency Counter. (R/O)

Value since last reset that this package is in 
processor-specific C6 states. Count at the 
same frequency as the TSC.

3FAH 1018 MSR_PKG_C7_RES
IDENCY

Package Note: C-state values are processor specific C-
state code names, unrelated to MWAIT 
extension C-state parameters or ACPI C-
States.

63:0 Package C7 Residency Counter. (R/O)

Value since last reset that this package is in 
processor-specific C7 states. Count at the 
same frequency as the TSC.

3FCH 1020 MSR_CORE_C3_RE
SIDENCY

Core Note: C-state values are processor specific C-
state code names, unrelated to MWAIT 
extension C-state parameters or ACPI C-
States.

63:0 CORE C3 Residency Counter. (R/O)

Value since last reset that this core is in 
processor-specific C3 states. Count at the 
same frequency as the TSC.

3FDH 1021 MSR_CORE_C6_RE
SIDENCY

Core Note: C-state values are processor specific C-
state code names, unrelated to MWAIT 
extension C-state parameters or ACPI C-
States.

63:0 CORE C6 Residency Counter. (R/O)

Value since last reset that this core is in 
processor-specific C6 states. Count at the 
same frequency as the TSC.

400H 1024 IA32_MC0_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”
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401H 1025 IA32_MC0_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.”

402H 1026 IA32_MC0_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not 
implemented or contains no address if the 
ADDRV flag in the IA32_MC0_STATUS register 
is clear. 

When not implemented in the processor, all 
reads and writes to this MSR will cause a 
general-protection exception.

403H 1027 MSR_MC0_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

404H 1028 IA32_MC1_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.”

406H 1030 IA32_MC1_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is either not 
implemented or contains no address if the 
ADDRV flag in the IA32_MC1_STATUS register 
is clear. 

When not implemented in the processor, all 
reads and writes to this MSR will cause a 
general-protection exception.

407H 1031 MSR_MC1_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

408H 1032 IA32_MC2_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_
STATUS

Core See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.”

40AH 1034 IA32_MC2_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.” 

The IA32_MC2_ADDR register is either not 
implemented or contains no address if the 
ADDRV flag in the IA32_MC2_STATUS register 
is clear. 

When not implemented in the processor, all 
reads and writes to this MSR will cause a 
general-protection exception.
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40BH 1035 MSR_MC2_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

40CH 1036 MSR_MC3_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 MSR_MC3_
STATUS

Core See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.”

40EH 1038 MSR_MC3_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not 
implemented or contains no address if the 
ADDRV flag in the MSR_MC4_STATUS register 
is clear. 

When not implemented in the processor, all 
reads and writes to this MSR will cause a 
general-protection exception.

40FH 1039 MSR_MC3_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

410H 1040 MSR_MC4_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 MSR_MC4_
STATUS

Core See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.”

412H 1042 MSR_MC4_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not 
implemented or contains no address if the 
ADDRV flag in the MSR_MC3_STATUS register 
is clear. 

When not implemented in the processor, all 
reads and writes to this MSR will cause a 
general-protection exception.

413H 1043 MSR_MC4_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

414H 1044 MSR_MC5_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

415H 1045 MSR_MC5_
STATUS

Core See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.”

416H 1046 MSR_MC5_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

417H 1047 MSR_MC5_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

418H 1048 MSR_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”
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419H 1049 MSR_MC6_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS,” and Chapter 16.

41AH 1050 MSR_MC6_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41BH 1051 MSR_MC6_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

41CH 1052 MSR_MC7_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

41DH 1053 MSR_MC7_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS,” and Chapter 16.

41EH 1054 MSR_MC7_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41FH 1055 MSR_MC7_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

420H 1056 MSR_MC8_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

421H 1057 MSR_MC8_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS,” and Chapter 16.

422H 1058 MSR_MC8_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

423H 1059 MSR_MC8_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

480H 1152 IA32_VMX_BASIC Thread Reporting Register of Basic VMX 
Capabilities. (R/O) See Table 34-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBA
SED_CTLS

Thread Capability Reporting Register of Pin-based 
VM-execution Controls. (R/O) See 
Table 34-2.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCB
ASED_CTLS

Thread Capability Reporting Register of Primary 
Processor-based VM-execution Controls. 
(R/O)

See Appendix A.3, “VM-Execution Controls.”

483H 1155 IA32_VMX_EXIT_
CTLS

Thread Capability Reporting Register of VM-exit 
Controls. (R/O) See Table 34-2.

See Appendix A.4, “VM-Exit Controls.”

484H 1156 IA32_VMX_
ENTRY_CTLS

Thread Capability Reporting Register of VM-entry 
Controls. (R/O) See Table 34-2.

See Appendix A.5, “VM-Entry Controls.”
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485H 1157 IA32_VMX_MISC Thread Reporting Register of Miscellaneous VMX 
Capabilities. (R/O) See Table 34-2.

See Appendix A.6, “Miscellaneous Data.”

486H 1158 IA32_VMX_CR0_
FIXED0

Thread Capability Reporting Register of CR0 Bits 
Fixed to 0. (R/O) See Table 34-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

487H 1159 IA32_VMX_CR0_
FIXED1

Thread Capability Reporting Register of CR0 Bits 
Fixed to 1. (R/O) See Table 34-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

488H 1160 IA32_VMX_CR4_FI
XED0

Thread Capability Reporting Register of CR4 Bits 
Fixed to 0. (R/O) See Table 34-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

489H 1161 IA32_VMX_CR4_FI
XED1

Thread Capability Reporting Register of CR4 Bits 
Fixed to 1. (R/O) See Table 34-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

48AH 1162 IA32_VMX_
VMCS_ENUM

Thread Capability Reporting Register of VMCS Field 
Enumeration. (R/O). See Table 34-2.

See Appendix A.9, “VMCS Enumeration.”

48BH 1163 IA32_VMX_PROCB
ASED_CTLS2

Thread Capability Reporting Register of Secondary 
Processor-based VM-execution Controls. 
(R/O)

See Appendix A.3, “VM-Execution Controls.”

600H 1536 IA32_DS_AREA Thread DS Save Area. (R/W). See Table 34-2.

See Section 18.10.4, “Debug Store (DS) 
Mechanism.”
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680H 1664 MSR_
LASTBRANCH_0_F
ROM_IP

Thread Last Branch Record 0 From IP. (R/W)

One of sixteen pairs of last branch record 
registers on the last branch record stack. This 
part of the stack contains pointers to the 
source instruction for one of the last sixteen 
branches, exceptions, or interrupts taken by 
the processor. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.6.1, “LBR Stack.”

681H 1665 MSR_
LASTBRANCH_1_F
ROM_IP

Thread Last Branch Record 1 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.

682H 1666 MSR_
LASTBRANCH_2_F
ROM_IP

Thread Last Branch Record 2 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP. 

683H 1667 MSR_
LASTBRANCH_3_F
ROM_IP

Thread Last Branch Record 3 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.

684H 1668 MSR_
LASTBRANCH_4_F
ROM_IP

Thread Last Branch Record 4 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.

685H 1669 MSR_
LASTBRANCH_5_F
ROM_IP

Thread Last Branch Record 5 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.

686H 1670 MSR_
LASTBRANCH_6_F
ROM_IP

Thread Last Branch Record 6 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.

687H 1671 MSR_
LASTBRANCH_7_F
ROM_IP

Thread Last Branch Record 7 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.

688H 1672 MSR_
LASTBRANCH_8_F
ROM_IP

Thread Last Branch Record 8 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.
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689H 1673 MSR_
LASTBRANCH_9_F
ROM_IP

Thread Last Branch Record 9 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.

68AH 1674 MSR_
LASTBRANCH_10_
FROM_IP

Thread Last Branch Record 10 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.

68BH 1675 MSR_
LASTBRANCH_11_
FROM_IP

Thread Last Branch Record 11 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.

68CH 1676 MSR_
LASTBRANCH_12_
FROM_IP

Thread Last Branch Record 12 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.

68DH 1677 MSR_
LASTBRANCH_13_
FROM_IP

Thread Last Branch Record 13 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.

68EH 1678 MSR_
LASTBRANCH_14_
FROM_IP

Thread Last Branch Record 14 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.

68FH 1679 MSR_
LASTBRANCH_15_
FROM_IP

Thread Last Branch Record 15 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.

6C0H 1728 MSR_
LASTBRANCH_0_
TO_LIP

Thread Last Branch Record 0 To IP. (R/W)

One of sixteen pairs of last branch record 
registers on the last branch record stack. This 
part of the stack contains pointers to the 
destination instruction for one of the last 
sixteen branches, exceptions, or interrupts 
taken by the processor.

6C1H 1729 MSR_
LASTBRANCH_1_
TO_LIP

Thread Last Branch Record 1 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 
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6C2H 1730 MSR_
LASTBRANCH_2_
TO_LIP

Thread Last Branch Record 2 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

6C3H 1731 MSR_
LASTBRANCH_3_
TO_LIP

Thread Last Branch Record 3 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

6C4H 1732 MSR_
LASTBRANCH_4_
TO_LIP

Thread Last Branch Record 4 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

6C5H 1733 MSR_
LASTBRANCH_5_
TO_LIP

Thread Last Branch Record 5 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

6C6H 1734 MSR_
LASTBRANCH_6_
TO_LIP

Thread Last Branch Record 6 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

6C7H 1735 MSR_
LASTBRANCH_7_
TO_LIP

Thread Last Branch Record 7 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

6C8H 1736 MSR_
LASTBRANCH_8_
TO_LIP

Thread Last Branch Record 8 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

6C9H 1737 MSR_
LASTBRANCH_9_
TO_LIP

Thread Last Branch Record 9 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

6CAH 1738 MSR_
LASTBRANCH_10_
TO_LIP

Thread Last Branch Record 10 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

6CBH 1739 MSR_
LASTBRANCH_11_
TO_LIP

Thread Last Branch Record 11 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 
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6CCH 1740 MSR_
LASTBRANCH_12_
TO_LIP

Thread Last Branch Record 12 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

6CDH 1741 MSR_
LASTBRANCH_13_
TO_LIP

Thread Last Branch Record 13 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

6CEH 1742 MSR_
LASTBRANCH_14_
TO_LIP

Thread Last Branch Record 14 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

6CFH 1743 MSR_
LASTBRANCH_15_
TO_LIP

Thread Last Branch Record 15 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

802H 2050 IA32_X2APIC_API
CID

Thread x2APIC ID register (R/O) See x2APIC 
Specification.

803H 2051 IA32_X2APIC_VER
SION

Thread x2APIC Version register (R/O) 

808H 2056 IA32_X2APIC_TPR Thread x2APIC Task Priority register (R/W) 

80AH 2058 IA32_X2APIC_PPR Thread x2APIC Processor Priority register (R/O) 

80BH 2059 IA32_X2APIC_EOI Thread x2APIC EOI register (W/O) 

80DH 2061 IA32_X2APIC_LDR Thread x2APIC Logical Destination register (R/O) 

80FH 2063 IA32_X2APIC_SIV
R

Thread x2APIC Spurious Interrupt Vector register 
(R/W) 

810H 2064 IA32_X2APIC_ISR
0

Thread x2APIC In-Service register bits [31:0] (R/O) 

811H 2065 IA32_X2APIC_ISR
1

Thread x2APIC In-Service register bits [63:32] (R/O) 

812H 2066 IA32_X2APIC_ISR
2

Thread x2APIC In-Service register bits [95:64] (R/O) 

813H 2067 IA32_X2APIC_ISR
3

Thread x2APIC In-Service register bits [127:96] (R/O) 
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814H 2068 IA32_X2APIC_ISR
4

Thread x2APIC In-Service register bits [159:128] 
(R/O) 

815H 2069 IA32_X2APIC_ISR
5

Thread x2APIC In-Service register bits [191:160] 
(R/O) 

816H 2070 IA32_X2APIC_ISR
6

Thread x2APIC In-Service register bits [223:192] 
(R/O) 

817H 2071 IA32_X2APIC_ISR
7

Thread x2APIC In-Service register bits [255:224] 
(R/O) 

818H 2072 IA32_X2APIC_TM
R0

Thread x2APIC Trigger Mode register bits [31:0] (R/O) 

819H 2073 IA32_X2APIC_TM
R1

Thread x2APIC Trigger Mode register bits [63:32] 
(R/O) 

81AH 2074 IA32_X2APIC_TM
R2

Thread x2APIC Trigger Mode register bits [95:64] 
(R/O) 

81BH 2075 IA32_X2APIC_TM
R3

Thread x2APIC Trigger Mode register bits [127:96] 
(R/O) 

81CH 2076 IA32_X2APIC_TM
R4

Thread x2APIC Trigger Mode register bits [159:128] 
(R/O) 

81DH 2077 IA32_X2APIC_TM
R5

Thread x2APIC Trigger Mode register bits [191:160] 
(R/O) 

81EH 2078 IA32_X2APIC_TM
R6

Thread x2APIC Trigger Mode register bits [223:192] 
(R/O) 

81FH 2079 IA32_X2APIC_TM
R7

Thread x2APIC Trigger Mode register bits [255:224] 
(R/O) 

820H 2080 IA32_X2APIC_IRR
0

Thread x2APIC Interrupt Request register bits [31:0] 
(R/O) 

821H 2081 IA32_X2APIC_IRR
1

Thread x2APIC Interrupt Request register bits [63:32] 
(R/O) 

822H 2082 IA32_X2APIC_IRR
2

Thread x2APIC Interrupt Request register bits [95:64] 
(R/O) 

823H 2083 IA32_X2APIC_IRR
3

Thread x2APIC Interrupt Request register bits 
[127:96] (R/O) 
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824H 2084 IA32_X2APIC_IRR
4

Thread x2APIC Interrupt Request register bits 
[159:128] (R/O) 

825H 2085 IA32_X2APIC_IRR
5

Thread x2APIC Interrupt Request register bits 
[191:160] (R/O) 

826H 2086 IA32_X2APIC_IRR
6

Thread x2APIC Interrupt Request register bits 
[223:192] (R/O) 

827H 2087 IA32_X2APIC_IRR
7

Thread x2APIC Interrupt Request register bits 
[255:224] (R/O) 

828H 2088 IA32_X2APIC_ESR Thread x2APIC Error Status register (R/W) 

82FH 2095 IA32_X2APIC_LVT
_CMCI

Thread x2APIC LVT Corrected Machine Check 
Interrupt register (R/W) 

830H 2096 IA32_X2APIC_ICR Thread x2APIC Interrupt Command register (R/W) 

832H 2098 IA32_X2APIC_LVT
_TIMER

Thread x2APIC LVT Timer Interrupt register (R/W) 

833H 2099 IA32_X2APIC_LVT
_THERMAL

Thread x2APIC LVT Thermal Sensor Interrupt register 
(R/W) 

834H 2100 IA32_X2APIC_LVT
_PMI

Thread x2APIC LVT Performance Monitor register 
(R/W) 

835H 2101 IA32_X2APIC_LVT
_LINT0

Thread x2APIC LVT LINT0 register (R/W) 

836H 2102 IA32_X2APIC_LVT
_LINT1

Thread x2APIC LVT LINT1 register (R/W) 

837H 2103 IA32_X2APIC_LVT
_ERROR

Thread x2APIC LVT Error register (R/W) 

838H 2104 IA32_X2APIC_INIT
_COUNT

Thread x2APIC Initial Count register (R/W) 

839H 2105 IA32_X2APIC_CUR
_COUNT

Thread x2APIC Current Count register (R/O) 

83EH 2110 IA32_X2APIC_DIV
_CONF

Thread x2APIC Divide Configuration register (R/W) 

83FH 2111 IA32_X2APIC_SEL
F_IPI

Thread x2APIC Self IPI register (W/O) 
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34.4.1  Additional MSRs in the Intel® Xeon® Processor 5500 and 
3400 Series

Intel Xeon Processor 5500 and 3400 series support additional model-specific regis-
ters listed in Table 34-6. These MSRs also apply to Intel Core i7 and i5 processor 
family CPUID signature with DisplayFamily_DisplayModel of 06_1AH, 06_1EH and 
06_1FH, see Table 34-1. 

C000_
0080H

IA32_EFER Thread Extended Feature Enables. See Table 34-2.

C000_
0081H

IA32_STAR Thread System Call Target Address. (R/W). See 
Table 34-2.

C000_
0082H

IA32_LSTAR Thread IA-32e Mode System Call Target Address. 
(R/W). See Table 34-2.

C000_
0084H

IA32_FMASK Thread System Call Flag Mask. (R/W). See 
Table 34-2.

C000_
0100H

IA32_FS_BASE Thread Map of BASE Address of FS. (R/W). See 
Table 34-2.

C000_
0101H

IA32_GS_BASE Thread Map of BASE Address of GS. (R/W). See 
Table 34-2.

C000_
0102H

IA32_KERNEL_GS
BASE

Thread Swap Target of BASE Address of GS. (R/W). 
See Table 34-2.

C000_
0103H

IA32_TSC_AUX Thread AUXILIARY TSC Signature. (R/W). See 
Table 34-2 and Section 17.12.2, 
“IA32_TSC_AUX Register and RDTSCP 
Support.” 
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Table 34-6.  Additional MSRs in Intel Xeon Processor 5500 and 3400 Series

Register 
Address Register Name

Scope
Bit Description

 Hex Dec

1ADH 429 MSR_TURBO_RATI
O_LIMIT

Package Actual maximum turbo frequency is multiplied 
by 133.33MHz. (not available to model 
06_2EH)

7:0 Maximum Turbo Ratio Limit 1C. (R/O) 

maximum Turbo mode ratio limit with 1 core 
active. 

15:8 Maximum Turbo Ratio Limit 2C. (R/O) 

maximum Turbo mode ratio limit with 2cores 
active. 

23:16 Maximum Turbo Ratio Limit 3C. (R/O) 

maximum Turbo mode ratio limit with 3cores 
active. 

31:24 Maximum Turbo Ratio Limit 4C. (R/O) 

maximum Turbo mode ratio limit with 4 cores 
active. 

63:32 Reserved.

301H 769 MSR_GQ_SNOOP_
MESF

Package

0 From M to S (R/W).

1 From E to S (R/W).

2 From S to S (R/W).

3 From F to S (R/W).

4 From M to I (R/W).

5 From E to I (R/W).

6 From S to I (R/W).

7 From F to I (R/W).

63:8 Reserved.

391H 913 MSR_UNCORE_PE
RF_GLOBAL_CTRL

Package See Section 18.6.2.1, “Uncore Performance 
Monitoring Management Facility.”

392H 914 MSR_UNCORE_PE
RF_GLOBAL_STAT
US

Package See Section 18.6.2.1, “Uncore Performance 
Monitoring Management Facility.”
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393H 915 MSR_UNCORE_PE
RF_GLOBAL_OVF_
CTRL

Package See Section 18.6.2.1, “Uncore Performance 
Monitoring Management Facility.”

394H 916 MSR_UNCORE_FIX
ED_CTR0

Package See Section 18.6.2.1, “Uncore Performance 
Monitoring Management Facility.”

395H 917 MSR_UNCORE_FIX
ED_CTR_CTRL

Package See Section 18.6.2.1, “Uncore Performance 
Monitoring Management Facility.”

396H 918 MSR_UNCORE_AD
DR_OPCODE_MAT
CH

Package See Section 18.6.2.3, “Uncore Address/Opcode 
Match MSR.”

3B0H 960 MSR_UNCORE_PM
C0

Package See Section 18.6.2.2, “Uncore Performance 
Event Configuration Facility.”

3B1H 961 MSR_UNCORE_PM
C1

Package See Section 18.6.2.2, “Uncore Performance 
Event Configuration Facility.”

3B2H 962 MSR_UNCORE_PM
C2

Package See Section 18.6.2.2, “Uncore Performance 
Event Configuration Facility.”

3B3H 963 MSR_UNCORE_PM
C3

Package See Section 18.6.2.2, “Uncore Performance 
Event Configuration Facility.”

3B4H 964 MSR_UNCORE_PM
C4

Package See Section 18.6.2.2, “Uncore Performance 
Event Configuration Facility.”

3B5H 965 MSR_UNCORE_PM
C5

Package See Section 18.6.2.2, “Uncore Performance 
Event Configuration Facility.”

3B6H 966 MSR_UNCORE_PM
C6

Package See Section 18.6.2.2, “Uncore Performance 
Event Configuration Facility.”

3B7H 967 MSR_UNCORE_PM
C7

Package See Section 18.6.2.2, “Uncore Performance 
Event Configuration Facility.”

3C0H 944 MSR_UNCORE_PE
RFEVTSEL0

Package See Section 18.6.2.2, “Uncore Performance 
Event Configuration Facility.”

3C1H 945 MSR_UNCORE_PE
RFEVTSEL1

Package See Section 18.6.2.2, “Uncore Performance 
Event Configuration Facility.”

3C2H 946 MSR_UNCORE_PE
RFEVTSEL2

Package See Section 18.6.2.2, “Uncore Performance 
Event Configuration Facility.”

3C3H 947 MSR_UNCORE_PE
RFEVTSEL3

Package See Section 18.6.2.2, “Uncore Performance 
Event Configuration Facility.”

Table 34-6.  Additional MSRs in Intel Xeon Processor 5500 and 3400 Series (Contd.)
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34.4.2  Additional MSRs in the Intel® Xeon® Processor 7500 Series
Intel Xeon Processor 7500 series support MSRs listed in Table 34-5 (except MSR 
address 1ADH) and additional model-specific registers listed in Table 34-7. 

3C4H 948 MSR_UNCORE_PE
RFEVTSEL4

Package See Section 18.6.2.2, “Uncore Performance 
Event Configuration Facility.”

3C5H 949 MSR_UNCORE_PE
RFEVTSEL5

Package See Section 18.6.2.2, “Uncore Performance 
Event Configuration Facility.”

3C6H 950 MSR_UNCORE_PE
RFEVTSEL6

Package See Section 18.6.2.2, “Uncore Performance 
Event Configuration Facility.”

3C7H 951 MSR_UNCORE_PE
RFEVTSEL7

Package See Section 18.6.2.2, “Uncore Performance 
Event Configuration Facility.”

Table 34-7.  Additional MSRs in Intel Xeon Processor 7500 Series

Register 
Address Register Name

Scope
Bit Description

 Hex Dec

1ADH 429 MSR_TURBO_RATI
O_LIMIT

Package Reserved. 

Attempt to read/write will cause #UD

289H 649 IA32_MC9_CTL2 Package See Table 34-2.

28AH 650 IA32_MC10_CTL2 Package See Table 34-2.

28BH 651 IA32_MC11_CTL2 Package See Table 34-2.

28CH 652 IA32_MC12_CTL2 Package See Table 34-2.

28DH 653 IA32_MC13_CTL2 Package See Table 34-2.

28EH 654 IA32_MC14_CTL2 Package See Table 34-2.

28FH 655 IA32_MC15_CTL2 Package See Table 34-2.

290H 656 IA32_MC16_CTL2 Package See Table 34-2.

291H 657 IA32_MC17_CTL2 Package See Table 34-2.

292H 658 IA32_MC18_CTL2 Package See Table 34-2.

293H 659 IA32_MC19_CTL2 Package See Table 34-2.

294H 660 IA32_MC20_CTL2 Package See Table 34-2.
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295H 661 IA32_MC21_CTL2 Package See Table 34-2.

394H 816 MSR_W_PMON_FI
XED_CTR

Package Uncore W-box perfmon fixed counter 

395H 817 MSR_W_PMON_FI
XED_CTR_CTL

Package Uncore U-box perfmon fixed counter control 
MSR

424H 1060 MSR_MC9_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

425H 1061 MSR_MC9_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS,” and Chapter 16.

426H 1062 MSR_MC9_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

427H 1063 MSR_MC9_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

428H 1064 MSR_MC10_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

429H 1065 MSR_MC10_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS,” and Chapter 16.

42AH 1066 MSR_MC10_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

42BH 1067 MSR_MC10_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

42CH 1068 MSR_MC11_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

42DH 1069 MSR_MC11_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS,” and Chapter 16.

42EH 1070 MSR_MC11_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

42FH 1071 MSR_MC11_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

430H 1072 MSR_MC12_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

431H 1073 MSR_MC12_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS,” and Chapter 16.

432H 1074 MSR_MC12_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

433H 1075 MSR_MC12_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

434H 1076 MSR_MC13_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

435H 1077 MSR_MC13_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS,” and Chapter 16.

436H 1078 MSR_MC13_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

437H 1079 MSR_MC13_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

438H 1080 MSR_MC14_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”
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439H 1081 MSR_MC14_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS,” and Chapter 16.

43AH 1082 MSR_MC14_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

43BH 1083 MSR_MC14_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

43CH 1084 MSR_MC15_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

43DH 1085 MSR_MC15_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS,” and Chapter 16.

43EH 1086 MSR_MC15_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

43FH 1087 MSR_MC15_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

440H 1088 MSR_MC16_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

441H 1089 MSR_MC16_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS,” and Chapter 16.

442H 1090 MSR_MC16_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

443H 1091 MSR_MC16_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

444H 1092 MSR_MC17_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

445H 1093 MSR_MC17_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS,” and Chapter 16.

446H 1094 MSR_MC17_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

447H 1095 MSR_MC17_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

448H 1096 MSR_MC18_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

449H 1097 MSR_MC18_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS,” and Chapter 16.

44AH 1098 MSR_MC18_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

44BH 1099 MSR_MC18_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

44CH 1100 MSR_MC19_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

44DH 1101 MSR_MC19_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS,” and Chapter 16.

44EH 1102 MSR_MC19_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

44FH 1103 MSR_MC19_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

450H 1104 MSR_MC20_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”
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451H 1105 MSR_MC20_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS,” and Chapter 16.

452H 1106 MSR_MC20_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

453H 1107 MSR_MC20_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

454H 1108 MSR_MC21_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

455H 1109 MSR_MC21_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS,” and Chapter 16.

456H 1110 MSR_MC21_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

457H 1111 MSR_MC21_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

C00H 3072 MSR_U_PMON_GL
OBAL_CTRL

Package Uncore U-box perfmon global control MSR

C01H 3073 MSR_U_PMON_GL
OBAL_STATUS

Package Uncore U-box perfmon global status MSR

C02H 3074 MSR_U_PMON_GL
OBAL_OVF_CTRL

Package Uncore U-box perfmon global overflow control 
MSR

C10H 3088 MSR_U_PMON_EV
NT_SEL

Package Uncore U-box perfmon event select MSR

C11H 3089 MSR_U_PMON_CT
R

Package Uncore U-box perfmon counter MSR

C20H 3104 MSR_B0_PMON_B
OX_CTRL

Package Uncore B-box 0 perfmon local box control MSR

C21H 3105 MSR_B0_PMON_B
OX_STATUS

Package Uncore B-box 0 perfmon local box status MSR

C22H 3106 MSR_B0_PMON_B
OX_OVF_CTRL

Package Uncore B-box 0 perfmon local box overflow 
control MSR

C30H 3120 MSR_B0_PMON_E
VNT_SEL0

Package Uncore B-box 0 perfmon event select MSR

C31H 3121 MSR_B0_PMON_C
TR0

Package Uncore B-box 0 perfmon counter MSR

C32H 3122 MSR_B0_PMON_E
VNT_SEL1

Package Uncore B-box 0 perfmon event select MSR
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C33H 3123 MSR_B0_PMON_C
TR1

Package Uncore B-box 0 perfmon counter MSR

C34H 3124 MSR_B0_PMON_E
VNT_SEL2

Package Uncore B-box 0 perfmon event select MSR

C35H 3125 MSR_B0_PMON_C
TR2

Package Uncore B-box 0 perfmon counter MSR

C36H 3126 MSR_B0_PMON_E
VNT_SEL3

Package Uncore B-box 0 perfmon event select MSR

C37H 3127 MSR_B0_PMON_C
TR3

Package Uncore B-box 0 perfmon counter MSR

C40H 3136 MSR_S0_PMON_B
OX_CTRL

Package Uncore S-box 0 perfmon local box control MSR

C41H 3137 MSR_S0_PMON_B
OX_STATUS

Package Uncore S-box 0 perfmon local box status MSR

C42H 3138 MSR_S0_PMON_B
OX_OVF_CTRL

Package Uncore S-box 0 perfmon local box overflow 
control MSR

C50H 3152 MSR_S0_PMON_E
VNT_SEL0

Package Uncore S-box 0 perfmon event select MSR

C51H 3153 MSR_S0_PMON_C
TR0

Package Uncore S-box 0 perfmon counter MSR

C52H 3154 MSR_S0_PMON_E
VNT_SEL1

Package Uncore S-box 0 perfmon event select MSR

C53H 3155 MSR_S0_PMON_C
TR1

Package Uncore S-box 0 perfmon counter MSR

C54H 3156 MSR_S0_PMON_E
VNT_SEL2

Package Uncore S-box 0 perfmon event select MSR

C55H 3157 MSR_S0_PMON_C
TR2

Package Uncore S-box 0 perfmon counter MSR

C56H 3158 MSR_S0_PMON_E
VNT_SEL3

Package Uncore S-box 0 perfmon event select MSR

C57H 3159 MSR_S0_PMON_C
TR3

Package Uncore S-box 0 perfmon counter MSR
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C60H 3168 MSR_B1_PMON_B
OX_CTRL

Package Uncore B-box 1 perfmon local box control MSR

C61H 3169 MSR_B1_PMON_B
OX_STATUS

Package Uncore B-box 1 perfmon local box status MSR

C62H 3170 MSR_B1_PMON_B
OX_OVF_CTRL

Package Uncore B-box 1 perfmon local box overflow 
control MSR

C70H 3184 MSR_B1_PMON_E
VNT_SEL0

Package Uncore B-box 1 perfmon event select MSR

C71H 3185 MSR_B1_PMON_C
TR0

Package Uncore B-box 1 perfmon counter MSR

C72H 3186 MSR_B1_PMON_E
VNT_SEL1

Package Uncore B-box 1 perfmon event select MSR

C73H 3187 MSR_B1_PMON_C
TR1

Package Uncore B-box 1 perfmon counter MSR

C74H 3188 MSR_B1_PMON_E
VNT_SEL2

Package Uncore B-box 1 perfmon event select MSR

C75H 3189 MSR_B1_PMON_C
TR2

Package Uncore B-box 1 perfmon counter MSR

C76H 3190 MSR_B1_PMON_E
VNT_SEL3

Package Uncore B-box 1vperfmon event select MSR

C77H 3191 MSR_B1_PMON_C
TR3

Package Uncore B-box 1 perfmon counter MSR

C80H 3120 MSR_W_PMON_BO
X_CTRL

Package Uncore W-box perfmon local box control MSR

C81H 3121 MSR_W_PMON_BO
X_STATUS

Package Uncore W-box perfmon local box status MSR

C82H 3122 MSR_W_PMON_BO
X_OVF_CTRL

Package Uncore W-box perfmon local box overflow 
control MSR

C90H 3136 MSR_W_PMON_EV
NT_SEL0

Package Uncore W-box perfmon event select MSR

C91H 3137 MSR_W_PMON_CT
R0

Package Uncore W-box perfmon counter MSR

Table 34-7.  Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)
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C92H 3138 MSR_W_PMON_EV
NT_SEL1

Package Uncore W-box perfmon event select MSR

C93H 3139 MSR_W_PMON_CT
R1

Package Uncore W-box perfmon counter MSR

C94H 3140 MSR_W_PMON_EV
NT_SEL2

Package Uncore W-box perfmon event select MSR

C95H 3141 MSR_W_PMON_CT
R2

Package Uncore W-box perfmon counter MSR

C96H 3142 MSR_W_PMON_EV
NT_SEL3

Package Uncore W-box perfmon event select MSR

C97H 3143 MSR_W_PMON_CT
R3

Package Uncore W-box perfmon counter MSR

CA0H 3232 MSR_M0_PMON_B
OX_CTRL

Package Uncore M-box 0 perfmon local box control MSR

CA1H 3233 MSR_M0_PMON_B
OX_STATUS

Package Uncore M-box 0 perfmon local box status MSR

CA2H 3234 MSR_M0_PMON_B
OX_OVF_CTRL

Package Uncore M-box 0 perfmon local box overflow 
control MSR

CA4H 3236 MSR_M0_PMON_T
IMESTAMP

Package Uncore M-box 0 perfmon time stamp unit 
select MSR

CA5H 3237 MSR_M0_PMON_D
SP

Package Uncore M-box 0 perfmon DSP unit select MSR

CA6H 3238 MSR_M0_PMON_I
SS

Package Uncore M-box 0 perfmon ISS unit select MSR

CA7H 3239 MSR_M0_PMON_M
AP

Package Uncore M-box 0 perfmon MAP unit select MSR

CA8H 3240 MSR_M0_PMON_M
SC_THR

Package Uncore M-box 0 perfmon MIC THR select MSR

CA9H 3241 MSR_M0_PMON_P
GT

Package Uncore M-box 0 perfmon PGT unit select MSR

CAAH 3242 MSR_M0_PMON_P
LD

Package Uncore M-box 0 perfmon PLD unit select MSR

Table 34-7.  Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)
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CABH 3243 MSR_M0_PMON_Z
DP

Package Uncore M-box 0 perfmon ZDP unit select MSR

CB0H 3248 MSR_M0_PMON_E
VNT_SEL0

Package Uncore M-box 0 perfmon event select MSR

CB1H 3249 MSR_M0_PMON_C
TR0

Package Uncore M-box 0 perfmon counter MSR

CB2H 3250 MSR_M0_PMON_E
VNT_SEL1

Package Uncore M-box 0 perfmon event select MSR

CB3H 3251 MSR_M0_PMON_C
TR1

Package Uncore M-box 0 perfmon counter MSR

CB4H 3252 MSR_M0_PMON_E
VNT_SEL2

Package Uncore M-box 0 perfmon event select MSR

CB5H 3253 MSR_M0_PMON_C
TR2

Package Uncore M-box 0 perfmon counter MSR

CB6H 3254 MSR_M0_PMON_E
VNT_SEL3

Package Uncore M-box 0 perfmon event select MSR

CB7H 3255 MSR_M0_PMON_C
TR3

Package Uncore M-box 0 perfmon counter MSR

CB8H 3256 MSR_M0_PMON_E
VNT_SEL4

Package Uncore M-box 0 perfmon event select MSR

CB9H 3257 MSR_M0_PMON_C
TR4

Package Uncore M-box 0 perfmon counter MSR

CBAH 3258 MSR_M0_PMON_E
VNT_SEL5

Package Uncore M-box 0 perfmon event select MSR

CBBH 3259 MSR_M0_PMON_C
TR5

Package Uncore M-box 0 perfmon counter MSR

CC0H 3264 MSR_S1_PMON_B
OX_CTRL

Package Uncore S-box 1 perfmon local box control MSR

CC1H 3265 MSR_S1_PMON_B
OX_STATUS

Package Uncore S-box 1 perfmon local box status MSR

CC2H 3266 MSR_S1_PMON_B
OX_OVF_CTRL

Package Uncore S-box 1 perfmon local box overflow 
control MSR

Table 34-7.  Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)
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CD0H 3280 MSR_S1_PMON_E
VNT_SEL0

Package Uncore S-box 1 perfmon event select MSR

CD1H 3281 MSR_S1_PMON_C
TR0

Package Uncore S-box 1 perfmon counter MSR

CD2H 3282 MSR_S1_PMON_E
VNT_SEL1

Package Uncore S-box 1 perfmon event select MSR

CD3H 3283 MSR_S1_PMON_C
TR1

Package Uncore S-box 1 perfmon counter MSR

CD4H 3284 MSR_S1_PMON_E
VNT_SEL2

Package Uncore S-box 1 perfmon event select MSR

CD5H 3285 MSR_S1_PMON_C
TR2

Package Uncore S-box 1 perfmon counter MSR

CD6H 3286 MSR_S1_PMON_E
VNT_SEL3

Package Uncore S-box 1 perfmon event select MSR

CD7H 3287 MSR_S1_PMON_C
TR3

Package Uncore S-box 1 perfmon counter MSR

CE0H 3296 MSR_M1_PMON_B
OX_CTRL

Package Uncore M-box 1 perfmon local box control MSR

CE1H 3297 MSR_M1_PMON_B
OX_STATUS

Package Uncore M-box 1 perfmon local box status MSR

CE2H 3298 MSR_M1_PMON_B
OX_OVF_CTRL

Package Uncore M-box 1 perfmon local box overflow 
control MSR

CE4H 3300 MSR_M1_PMON_T
IMESTAMP

Package Uncore M-box 1 perfmon time stamp unit 
select MSR

CE5H 3301 MSR_M1_PMON_D
SP

Package Uncore M-box 1 perfmon DSP unit select MSR

CE6H 3302 MSR_M1_PMON_I
SS

Package Uncore M-box 1 perfmon ISS unit select MSR

CE7H 3303 MSR_M1_PMON_M
AP

Package Uncore M-box 1 perfmon MAP unit select MSR

CE8H 3304 MSR_M1_PMON_M
SC_THR

Package Uncore M-box 1 perfmon MIC THR select MSR

Table 34-7.  Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)
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CE9H 3305 MSR_M1_PMON_P
GT

Package Uncore M-box 1 perfmon PGT unit select MSR

CEAH 3306 MSR_M1_PMON_P
LD

Package Uncore M-box 1 perfmon PLD unit select MSR

CEBH 3307 MSR_M1_PMON_Z
DP

Package Uncore M-box 1 perfmon ZDP unit select MSR

CF0H 3312 MSR_M1_PMON_E
VNT_SEL0

Package Uncore M-box 1 perfmon event select MSR

CF1H 3313 MSR_M1_PMON_C
TR0

Package Uncore M-box 1 perfmon counter MSR

CF2H 3314 MSR_M1_PMON_E
VNT_SEL1

Package Uncore M-box 1 perfmon event select MSR

CF3H 3315 MSR_M1_PMON_C
TR1

Package Uncore M-box 1 perfmon counter MSR

CF4H 3316 MSR_M1_PMON_E
VNT_SEL2

Package Uncore M-box 1 perfmon event select MSR

CF5H 3317 MSR_M1_PMON_C
TR2

Package Uncore M-box 1 perfmon counter MSR

CF6H 3318 MSR_M1_PMON_E
VNT_SEL3

Package Uncore M-box 1 perfmon event select MSR

CF7H 3319 MSR_M1_PMON_C
TR3

Package Uncore M-box 1 perfmon counter MSR

CF8H 3320 MSR_M1_PMON_E
VNT_SEL4

Package Uncore M-box 1 perfmon event select MSR

CF9H 3321 MSR_M1_PMON_C
TR4

Package Uncore M-box 1 perfmon counter MSR

CFAH 3322 MSR_M1_PMON_E
VNT_SEL5

Package Uncore M-box 1 perfmon event select MSR

CFBH 3323 MSR_M1_PMON_C
TR5

Package Uncore M-box 1 perfmon counter MSR

D00H 3328 MSR_C0_PMON_B
OX_CTRL

Package Uncore C-box 0 perfmon local box control MSR

Table 34-7.  Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)
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D01H 3329 MSR_C0_PMON_B
OX_STATUS

Package Uncore C-box 0 perfmon local box status MSR

D02H 3330 MSR_C0_PMON_B
OX_OVF_CTRL

Package Uncore C-box 0 perfmon local box overflow 
control MSR

D10H 3344 MSR_C0_PMON_E
VNT_SEL0

Package Uncore C-box 0 perfmon event select MSR

D11H 3345 MSR_C0_PMON_C
TR0

Package Uncore C-box 0 perfmon counter MSR

D12H 3346 MSR_C0_PMON_E
VNT_SEL1

Package Uncore C-box 0 perfmon event select MSR

D13H 3347 MSR_C0_PMON_C
TR1

Package Uncore C-box 0 perfmon counter MSR

D14H 3348 MSR_C0_PMON_E
VNT_SEL2

Package Uncore C-box 0 perfmon event select MSR

D15H 3349 MSR_C0_PMON_C
TR2

Package Uncore C-box 0 perfmon counter MSR

D16H 3350 MSR_C0_PMON_E
VNT_SEL3

Package Uncore C-box 0 perfmon event select MSR

D17H 3351 MSR_C0_PMON_C
TR3

Package Uncore C-box 0 perfmon counter MSR

D18H 3352 MSR_C0_PMON_E
VNT_SEL4

Package Uncore C-box 0 perfmon event select MSR

D19H 3353 MSR_C0_PMON_C
TR4

Package Uncore C-box 0 perfmon counter MSR

D1AH 3354 MSR_C0_PMON_E
VNT_SEL5

Package Uncore C-box 0 perfmon event select MSR

D1BH 3355 MSR_C0_PMON_C
TR5

Package Uncore C-box 0 perfmon counter MSR

D20H 3360 MSR_C4_PMON_B
OX_CTRL

Package Uncore C-box 4 perfmon local box control MSR

D21H 3361 MSR_C4_PMON_B
OX_STATUS

Package Uncore C-box 4 perfmon local box status MSR
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Register 
Address Register Name

Scope
Bit Description

 Hex Dec
34-122 Vol. 3C



MODEL-SPECIFIC REGISTERS (MSRS)
D22H 3362 MSR_C4_PMON_B
OX_OVF_CTRL

Package Uncore C-box 4 perfmon local box overflow 
control MSR

D30H 3376 MSR_C4_PMON_E
VNT_SEL0

Package Uncore C-box 4 perfmon event select MSR

D31H 3377 MSR_C4_PMON_C
TR0

Package Uncore C-box 4 perfmon counter MSR

D32H 3378 MSR_C4_PMON_E
VNT_SEL1

Package Uncore C-box 4 perfmon event select MSR

D33H 3379 MSR_C4_PMON_C
TR1

Package Uncore C-box 4 perfmon counter MSR

D34H 3380 MSR_C4_PMON_E
VNT_SEL2

Package Uncore C-box 4 perfmon event select MSR

D35H 3381 MSR_C4_PMON_C
TR2

Package Uncore C-box 4 perfmon counter MSR

D36H 3382 MSR_C4_PMON_E
VNT_SEL3

Package Uncore C-box 4 perfmon event select MSR

D37H 3383 MSR_C4_PMON_C
TR3

Package Uncore C-box 4 perfmon counter MSR

D38H 3384 MSR_C4_PMON_E
VNT_SEL4

Package Uncore C-box 4 perfmon event select MSR

D39H 3385 MSR_C4_PMON_C
TR4

Package Uncore C-box 4 perfmon counter MSR

D3AH 3386 MSR_C4_PMON_E
VNT_SEL5

Package Uncore C-box 4 perfmon event select MSR

D3BH 3387 MSR_C4_PMON_C
TR5

Package Uncore C-box 4 perfmon counter MSR

D40H 3392 MSR_C2_PMON_B
OX_CTRL

Package Uncore C-box 2 perfmon local box control MSR

D41H 3393 MSR_C2_PMON_B
OX_STATUS

Package Uncore C-box 2 perfmon local box status MSR

D42H 3394 MSR_C2_PMON_B
OX_OVF_CTRL

Package Uncore C-box 2 perfmon local box overflow 
control MSR
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D50H 3408 MSR_C2_PMON_E
VNT_SEL0

Package Uncore C-box 2 perfmon event select MSR

D51H 3409 MSR_C2_PMON_C
TR0

Package Uncore C-box 2 perfmon counter MSR

D52H 3410 MSR_C2_PMON_E
VNT_SEL1

Package Uncore C-box 2 perfmon event select MSR

D53H 3411 MSR_C2_PMON_C
TR1

Package Uncore C-box 2 perfmon counter MSR

D54H 3412 MSR_C2_PMON_E
VNT_SEL2

Package Uncore C-box 2 perfmon event select MSR

D55H 3413 MSR_C2_PMON_C
TR2

Package Uncore C-box 2 perfmon counter MSR

D56H 3414 MSR_C2_PMON_E
VNT_SEL3

Package Uncore C-box 2 perfmon event select MSR

D57H 3415 MSR_C2_PMON_C
TR3

Package Uncore C-box 2 perfmon counter MSR

D58H 3416 MSR_C2_PMON_E
VNT_SEL4

Package Uncore C-box 2 perfmon event select MSR

D59H 3417 MSR_C2_PMON_C
TR4

Package Uncore C-box 2 perfmon counter MSR

D5AH 3418 MSR_C2_PMON_E
VNT_SEL5

Package Uncore C-box 2 perfmon event select MSR

D5BH 3419 MSR_C2_PMON_C
TR5

Package Uncore C-box 2 perfmon counter MSR

D60H 3424 MSR_C6_PMON_B
OX_CTRL

Package Uncore C-box 6 perfmon local box control MSR

D61H 3425 MSR_C6_PMON_B
OX_STATUS

Package Uncore C-box 6 perfmon local box status MSR

D62H 3426 MSR_C6_PMON_B
OX_OVF_CTRL

Package Uncore C-box 6 perfmon local box overflow 
control MSR

D70H 3440 MSR_C6_PMON_E
VNT_SEL0

Package Uncore C-box 6 perfmon event select MSR
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D71H 3441 MSR_C6_PMON_C
TR0

Package Uncore C-box 6 perfmon counter MSR

D72H 3442 MSR_C6_PMON_E
VNT_SEL1

Package Uncore C-box 6 perfmon event select MSR

D73H 3443 MSR_C6_PMON_C
TR1

Package Uncore C-box 6 perfmon counter MSR

D74H 3444 MSR_C6_PMON_E
VNT_SEL2

Package Uncore C-box 6 perfmon event select MSR

D75H 3445 MSR_C6_PMON_C
TR2

Package Uncore C-box 6 perfmon counter MSR

D76H 3446 MSR_C6_PMON_E
VNT_SEL3

Package Uncore C-box 6 perfmon event select MSR

D77H 3447 MSR_C6_PMON_C
TR3

Package Uncore C-box 6 perfmon counter MSR

D78H 3448 MSR_C6_PMON_E
VNT_SEL4

Package Uncore C-box 6 perfmon event select MSR

D79H 3449 MSR_C6_PMON_C
TR4

Package Uncore C-box 6 perfmon counter MSR

D7AH 3450 MSR_C6_PMON_E
VNT_SEL5

Package Uncore C-box 6 perfmon event select MSR

D7BH 3451 MSR_C6_PMON_C
TR5

Package Uncore C-box 6 perfmon counter MSR

D80H 3456 MSR_C1_PMON_B
OX_CTRL

Package Uncore C-box 1 perfmon local box control MSR

D81H 3457 MSR_C1_PMON_B
OX_STATUS

Package Uncore C-box 1 perfmon local box status MSR

D82H 3458 MSR_C1_PMON_B
OX_OVF_CTRL

Package Uncore C-box 1 perfmon local box overflow 
control MSR

D90H 3472 MSR_C1_PMON_E
VNT_SEL0

Package Uncore C-box 1 perfmon event select MSR

D91H 3473 MSR_C1_PMON_C
TR0

Package Uncore C-box 1 perfmon counter MSR
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D92H 3474 MSR_C1_PMON_E
VNT_SEL1

Package Uncore C-box 1 perfmon event select MSR

D93H 3475 MSR_C1_PMON_C
TR1

Package Uncore C-box 1 perfmon counter MSR

D94H 3476 MSR_C1_PMON_E
VNT_SEL2

Package Uncore C-box 1 perfmon event select MSR

D95H 3477 MSR_C1_PMON_C
TR2

Package Uncore C-box 1 perfmon counter MSR

D96H 3478 MSR_C1_PMON_E
VNT_SEL3

Package Uncore C-box 1 perfmon event select MSR

D97H 3479 MSR_C1_PMON_C
TR3

Package Uncore C-box 1 perfmon counter MSR

D98H 3480 MSR_C1_PMON_E
VNT_SEL4

Package Uncore C-box 1 perfmon event select MSR

D99H 3481 MSR_C1_PMON_C
TR4

Package Uncore C-box 1 perfmon counter MSR

D9AH 3482 MSR_C1_PMON_E
VNT_SEL5

Package Uncore C-box 1 perfmon event select MSR

D9BH 3483 MSR_C1_PMON_C
TR5

Package Uncore C-box 1 perfmon counter MSR

DA0H 3488 MSR_C5_PMON_B
OX_CTRL

Package Uncore C-box 5 perfmon local box control MSR

DA1H 3489 MSR_C5_PMON_B
OX_STATUS

Package Uncore C-box 5 perfmon local box status MSR

DA2H 3490 MSR_C5_PMON_B
OX_OVF_CTRL

Package Uncore C-box 5 perfmon local box overflow 
control MSR

DB0H 3504 MSR_C5_PMON_E
VNT_SEL0

Package Uncore C-box 5 perfmon event select MSR

DB1H 3505 MSR_C5_PMON_C
TR0

Package Uncore C-box 5 perfmon counter MSR

DB2H 3506 MSR_C5_PMON_E
VNT_SEL1

Package Uncore C-box 5 perfmon event select MSR
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DB3H 3507 MSR_C5_PMON_C
TR1

Package Uncore C-box 5 perfmon counter MSR

DB4H 3508 MSR_C5_PMON_E
VNT_SEL2

Package Uncore C-box 5 perfmon event select MSR

DB5H 3509 MSR_C5_PMON_C
TR2

Package Uncore C-box 5 perfmon counter MSR

DB6H 3510 MSR_C5_PMON_E
VNT_SEL3

Package Uncore C-box 5 perfmon event select MSR

DB7H 3511 MSR_C5_PMON_C
TR3

Package Uncore C-box 5 perfmon counter MSR

DB8H 3512 MSR_C5_PMON_E
VNT_SEL4

Package Uncore C-box 5 perfmon event select MSR

DB9H 3513 MSR_C5_PMON_C
TR4

Package Uncore C-box 5 perfmon counter MSR

DBAH 3514 MSR_C5_PMON_E
VNT_SEL5

Package Uncore C-box 5 perfmon event select MSR

DBBH 3515 MSR_C5_PMON_C
TR5

Package Uncore C-box 5 perfmon counter MSR

DC0H 3520 MSR_C3_PMON_B
OX_CTRL

Package Uncore C-box 3 perfmon local box control MSR

DC1H 3521 MSR_C3_PMON_B
OX_STATUS

Package Uncore C-box 3 perfmon local box status MSR

DC2H 3522 MSR_C3_PMON_B
OX_OVF_CTRL

Package Uncore C-box 3 perfmon local box overflow 
control MSR

DD0H 3536 MSR_C3_PMON_E
VNT_SEL0

Package Uncore C-box 3 perfmon event select MSR

DD1H 3537 MSR_C3_PMON_C
TR0

Package Uncore C-box 3 perfmon counter MSR

DD2H 3538 MSR_C3_PMON_E
VNT_SEL1

Package Uncore C-box 3 perfmon event select MSR

DD3H 3539 MSR_C3_PMON_C
TR1

Package Uncore C-box 3 perfmon counter MSR
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DD4H 3540 MSR_C3_PMON_E
VNT_SEL2

Package Uncore C-box 3 perfmon event select MSR

DD5H 3541 MSR_C3_PMON_C
TR2

Package Uncore C-box 3 perfmon counter MSR

DD6H 3542 MSR_C3_PMON_E
VNT_SEL3

Package Uncore C-box 3 perfmon event select MSR

DD7H 3543 MSR_C3_PMON_C
TR3

Package Uncore C-box 3 perfmon counter MSR

DD8H 3544 MSR_C3_PMON_E
VNT_SEL4

Package Uncore C-box 3 perfmon event select MSR

DD9H 3545 MSR_C3_PMON_C
TR4

Package Uncore C-box 3 perfmon counter MSR

DDAH 3546 MSR_C3_PMON_E
VNT_SEL5

Package Uncore C-box 3 perfmon event select MSR

DDBH 3547 MSR_C3_PMON_C
TR5

Package Uncore C-box 3 perfmon counter MSR

DE0H 3552 MSR_C7_PMON_B
OX_CTRL

Package Uncore C-box 7 perfmon local box control MSR

DE1H 3553 MSR_C7_PMON_B
OX_STATUS

Package Uncore C-box 7 perfmon local box status MSR

DE2H 3554 MSR_C7_PMON_B
OX_OVF_CTRL

Package Uncore C-box 7 perfmon local box overflow 
control MSR

DF0H 3568 MSR_C7_PMON_E
VNT_SEL0

Package Uncore C-box 7 perfmon event select MSR

DF1H 3569 MSR_C7_PMON_C
TR0

Package Uncore C-box 7 perfmon counter MSR

DF2H 3570 MSR_C7_PMON_E
VNT_SEL1

Package Uncore C-box 7 perfmon event select MSR

DF3H 3571 MSR_C7_PMON_C
TR1

Package Uncore C-box 7 perfmon counter MSR

DF4H 3572 MSR_C7_PMON_E
VNT_SEL2

Package Uncore C-box 7 perfmon event select MSR
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DF5H 3573 MSR_C7_PMON_C
TR2

Package Uncore C-box 7 perfmon counter MSR

DF6H 3574 MSR_C7_PMON_E
VNT_SEL3

Package Uncore C-box 7 perfmon event select MSR

DF7H 3575 MSR_C7_PMON_C
TR3

Package Uncore C-box 7 perfmon counter MSR

DF8H 3576 MSR_C7_PMON_E
VNT_SEL4

Package Uncore C-box 7 perfmon event select MSR

DF9H 3577 MSR_C7_PMON_C
TR4

Package Uncore C-box 7 perfmon counter MSR

DFAH 3578 MSR_C7_PMON_E
VNT_SEL5

Package Uncore C-box 7 perfmon event select MSR

DFBH 3579 MSR_C7_PMON_C
TR5

Package Uncore C-box 7 perfmon counter MSR

E00H 3584 MSR_R0_PMON_B
OX_CTRL

Package Uncore R-box 0 perfmon local box control MSR

E01H 3585 MSR_R0_PMON_B
OX_STATUS

Package Uncore R-box 0 perfmon local box status MSR

E02H 3586 MSR_R0_PMON_B
OX_OVF_CTRL

Package Uncore R-box 0 perfmon local box overflow 
control MSR

E04H 3588 MSR_R0_PMON_IP
ERF0_P0

Package Uncore R-box 0 perfmon IPERF0 unit Port 0 
select MSR

E05H 3589 MSR_R0_PMON_IP
ERF0_P1

Package Uncore R-box 0 perfmon IPERF0 unit Port 1 
select MSR

E06H 3590 MSR_R0_PMON_IP
ERF0_P2

Package Uncore R-box 0 perfmon IPERF0 unit Port 2 
select MSR

E07H 3591 MSR_R0_PMON_IP
ERF0_P3

Package Uncore R-box 0 perfmon IPERF0 unit Port 3 
select MSR

E08H 3592 MSR_R0_PMON_IP
ERF0_P4

Package Uncore R-box 0 perfmon IPERF0 unit Port 4 
select MSR

E09H 3593 MSR_R0_PMON_IP
ERF0_P5

Package Uncore R-box 0 perfmon IPERF0 unit Port 5 
select MSR
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E0AH 3594 MSR_R0_PMON_IP
ERF0_P6

Package Uncore R-box 0 perfmon IPERF0 unit Port 6 
select MSR

E0BH 3595 MSR_R0_PMON_IP
ERF0_P7

Package Uncore R-box 0 perfmon IPERF0 unit Port 7 
select MSR

E0CH 3596 MSR_R0_PMON_Q
LX_P0

Package Uncore R-box 0 perfmon QLX unit Port 0 
select MSR

E0DH 3597 MSR_R0_PMON_Q
LX_P1

Package Uncore R-box 0 perfmon QLX unit Port 1 
select MSR

E0EH 3598 MSR_R0_PMON_Q
LX_P2

Package Uncore R-box 0 perfmon QLX unit Port 2 
select MSR

E0FH 3599 MSR_R0_PMON_Q
LX_P3

Package Uncore R-box 0 perfmon QLX unit Port 3 
select MSR

E10H 3600 MSR_R0_PMON_E
VNT_SEL0

Package Uncore R-box 0 perfmon event select MSR

E11H 3601 MSR_R0_PMON_C
TR0

Package Uncore R-box 0 perfmon counter MSR

E12H 3602 MSR_R0_PMON_E
VNT_SEL1

Package Uncore R-box 0 perfmon event select MSR

E13H 3603 MSR_R0_PMON_C
TR1

Package Uncore R-box 0 perfmon counter MSR

E14H 3604 MSR_R0_PMON_E
VNT_SEL2

Package Uncore R-box 0 perfmon event select MSR

E15H 3605 MSR_R0_PMON_C
TR2

Package Uncore R-box 0 perfmon counter MSR

E16H 3606 MSR_R0_PMON_E
VNT_SEL3

Package Uncore R-box 0 perfmon event select MSR

E17H 3607 MSR_R0_PMON_C
TR3

Package Uncore R-box 0 perfmon counter MSR

E18H 3608 MSR_R0_PMON_E
VNT_SEL4

Package Uncore R-box 0 perfmon event select MSR

E19H 3609 MSR_R0_PMON_C
TR4

Package Uncore R-box 0 perfmon counter MSR
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E1AH 3610 MSR_R0_PMON_E
VNT_SEL5

Package Uncore R-box 0 perfmon event select MSR

E1BH 3611 MSR_R0_PMON_C
TR5

Package Uncore R-box 0 perfmon counter MSR

E1CH 3612 MSR_R0_PMON_E
VNT_SEL6

Package Uncore R-box 0 perfmon event select MSR

E1DH 3613 MSR_R0_PMON_C
TR6

Package Uncore R-box 0 perfmon counter MSR

E1EH 3614 MSR_R0_PMON_E
VNT_SEL7

Package Uncore R-box 0 perfmon event select MSR

E1FH 3615 MSR_R0_PMON_C
TR7

Package Uncore R-box 0 perfmon counter MSR

E20H 3616 MSR_R1_PMON_B
OX_CTRL

Package Uncore R-box 1 perfmon local box control MSR

E21H 3617 MSR_R1_PMON_B
OX_STATUS

Package Uncore R-box 1 perfmon local box status MSR

E22H 3618 MSR_R1_PMON_B
OX_OVF_CTRL

Package Uncore R-box 1 perfmon local box overflow 
control MSR

E24H 3620 MSR_R1_PMON_IP
ERF1_P8

Package Uncore R-box 1 perfmon IPERF1 unit Port 8 
select MSR

E25H 3621 MSR_R1_PMON_IP
ERF1_P9

Package Uncore R-box 1 perfmon IPERF1 unit Port 9 
select MSR

E26H 3622 MSR_R1_PMON_IP
ERF1_P10

Package Uncore R-box 1 perfmon IPERF1 unit Port 10 
select MSR

E27H 3623 MSR_R1_PMON_IP
ERF1_P11

Package Uncore R-box 1 perfmon IPERF1 unit Port 11 
select MSR

E28H 3624 MSR_R1_PMON_IP
ERF1_P12

Package Uncore R-box 1 perfmon IPERF1 unit Port 12 
select MSR

E29H 3625 MSR_R1_PMON_IP
ERF1_P13

Package Uncore R-box 1 perfmon IPERF1 unit Port 13 
select MSR

E2AH 3626 MSR_R1_PMON_IP
ERF1_P14

Package Uncore R-box 1 perfmon IPERF1 unit Port 14 
select MSR
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E2BH 3627 MSR_R1_PMON_IP
ERF1_P15

Package Uncore R-box 1 perfmon IPERF1 unit Port 15 
select MSR

E2CH 3628 MSR_R1_PMON_Q
LX_P4

Package Uncore R-box 1 perfmon QLX unit Port 4 
select MSR

E2DH 3629 MSR_R1_PMON_Q
LX_P5

Package Uncore R-box 1 perfmon QLX unit Port 5 
select MSR

E2EH 3630 MSR_R1_PMON_Q
LX_P6

Package Uncore R-box 1 perfmon QLX unit Port 6 
select MSR

E2FH 3631 MSR_R1_PMON_Q
LX_P7

Package Uncore R-box 1 perfmon QLX unit Port 7 
select MSR

E30H 3632 MSR_R1_PMON_E
VNT_SEL8

Package Uncore R-box 1 perfmon event select MSR

E31H 3633 MSR_R1_PMON_C
TR8

Package Uncore R-box 1 perfmon counter MSR

E32H 3634 MSR_R1_PMON_E
VNT_SEL9

Package Uncore R-box 1 perfmon event select MSR

E33H 3635 MSR_R1_PMON_C
TR9

Package Uncore R-box 1 perfmon counter MSR

E34H 3636 MSR_R1_PMON_E
VNT_SEL10

Package Uncore R-box 1 perfmon event select MSR

E35H 3637 MSR_R1_PMON_C
TR10

Package Uncore R-box 1 perfmon counter MSR

E36H 3638 MSR_R1_PMON_E
VNT_SEL11

Package Uncore R-box 1 perfmon event select MSR

E37H 3639 MSR_R1_PMON_C
TR11

Package Uncore R-box 1 perfmon counter MSR

E38H 3640 MSR_R1_PMON_E
VNT_SEL12

Package Uncore R-box 1 perfmon event select MSR

E39H 3641 MSR_R1_PMON_C
TR12

Package Uncore R-box 1 perfmon counter MSR

E3AH 3642 MSR_R1_PMON_E
VNT_SEL13

Package Uncore R-box 1 perfmon event select MSR
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E3BH 3643 MSR_R1_PMON_C
TR13

Package Uncore R-box 1perfmon counter MSR

E3CH 3644 MSR_R1_PMON_E
VNT_SEL14

Package Uncore R-box 1 perfmon event select MSR

E3DH 3645 MSR_R1_PMON_C
TR14

Package Uncore R-box 1 perfmon counter MSR

E3EH 3646 MSR_R1_PMON_E
VNT_SEL15

Package Uncore R-box 1 perfmon event select MSR

E3FH 3647 MSR_R1_PMON_C
TR15

Package Uncore R-box 1 perfmon counter MSR

E45H 3653 MSR_B0_PMON_M
ATCH

Package Uncore B-box 0 perfmon local box match MSR

E46H 3654 MSR_B0_PMON_M
ASK

Package Uncore B-box 0 perfmon local box mask MSR

E49H 3657 MSR_S0_PMON_M
ATCH

Package Uncore S-box 0 perfmon local box match MSR

E4AH 3658 MSR_S0_PMON_M
ASK

Package Uncore S-box 0 perfmon local box mask MSR

E4DH 3661 MSR_B1_PMON_M
ATCH

Package Uncore B-box 1 perfmon local box match MSR

E4EH 3662 MSR_B1_PMON_M
ASK

Package Uncore B-box 1 perfmon local box mask MSR

E54H 3668 MSR_M0_PMON_M
M_CONFIG

Package Uncore M-box 0 perfmon local box address 
match/mask config MSR

E55H 3669 MSR_M0_PMON_A
DDR_MATCH

Package Uncore M-box 0 perfmon local box address 
match MSR

E56H 3670 MSR_M0_PMON_A
DDR_MASK

Package Uncore M-box 0 perfmon local box address 
mask MSR

E59H 3673 MSR_S1_PMON_M
ATCH

Package Uncore S-box 1 perfmon local box match MSR

E5AH 3674 MSR_S1_PMON_M
ASK

Package Uncore S-box 1 perfmon local box mask MSR

E5CH 3676 MSR_M1_PMON_M
M_CONFIG

Package Uncore M-box 1 perfmon local box address 
match/mask config MSR
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34.5 MSRS IN THE INTEL XEON PROCESSOR 5600 SERIES 
(INTEL® MICROARCHITECTURE CODE NAME 
WESTMERE)

Intel Xeon processor 5600 series (Intel® microarchitecture code name Westmere) 
supports the MSR interfaces listed in Table 34-5, Table 34-6, plus additional MSR 
listed in Table 34-8. These MSRs also apply to Intel Core i7, i5 and i3 processor family 
with CPUID signature DisplayFamily_DisplayModel of 06_25H and 06_2CH, see Table 
34-1.

E5DH 3677 MSR_M1_PMON_A
DDR_MATCH

Package Uncore M-box 1 perfmon local box address 
match MSR

E5EH 3678 MSR_M1_PMON_A
DDR_MASK

Package Uncore M-box 1 perfmon local box address 
mask MSR

3B5H 965 MSR_UNCORE_PM
C5

Package See Section 18.6.2.2, “Uncore Performance 
Event Configuration Facility.”

Table 34-8.  Additional MSRs Supported by Intel Processors (Intel Microarchitecture 
Code Name Westmere)

Register 
Address Register Name

Scope
Bit Description

 Hex Dec

1A7H 423 MSR_OFFCORE_RS
P_1

Thread Offcore Response Event Select Register (R/W)

1ADH 429 MSR_TURBO_RATI
O_LIMIT

Package Maximum Ratio Limit of Turbo Mode.

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C. 

Maximum turbo ratio limit of 1 core active. 

15:8 Package Maximum Ratio Limit for 2C. 

Maximum turbo ratio limit of 2 core active. 

23:16 Package Maximum Ratio Limit for 3C. 

Maximum turbo ratio limit of 3 core active.
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34.6 MSRS IN THE INTEL XEON PROCESSOR E7 FAMILY 
(INTEL® MICROARCHITECTURE CODE NAME 
WESTMERE)

Intel Xeon processor E7 family (Intel® microarchitecture code name Westmere) 
supports the MSR interfaces listed in Table 34-5 (except MSR address 1ADH), Table 
34-6, plus additional MSR listed in Table 34-9. 

31:24 Package Maximum Ratio Limit for 4C. 

Maximum turbo ratio limit of 4 core active.

39:32 Package Maximum Ratio Limit for 5C. 

Maximum turbo ratio limit of 5 core active.

47:40 Package Maximum Ratio Limit for 6C. 

Maximum turbo ratio limit of 6 core active.

63:48 Reserved.

1B0H 432 IA32_ENERGY_PE
RF_BIAS

Package See Table 34-2.

Table 34-9.  Additional MSRs Supported by Intel Xeon Processor E7 Family

Register 
Address Register Name

Scope
Bit Description

 Hex Dec

1A7H 423 MSR_OFFCORE_RS
P_1

Thread Offcore Response Event Select Register (R/W)

1ADH 429 MSR_TURBO_RATI
O_LIMIT

Package Reserved. 

Attempt to read/write will cause #UD

1B0H 432 IA32_ENERGY_PE
RF_BIAS

Package See Table 34-2.

F40H 3904 MSR_C8_PMON_B
OX_CTRL

Package Uncore C-box 8 perfmon local box control MSR

Table 34-8.  Additional MSRs Supported by Intel Processors  (Contd.)(Intel 
Microarchitecture Code Name Westmere)
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F41H 3905 MSR_C8_PMON_B
OX_STATUS

Package Uncore C-box 8 perfmon local box status MSR

F42H 3906 MSR_C8_PMON_B
OX_OVF_CTRL

Package Uncore C-box 8 perfmon local box overflow 
control MSR

F50H 3920 MSR_C8_PMON_E
VNT_SEL0

Package Uncore C-box 8 perfmon event select MSR

F51H 3921 MSR_C8_PMON_C
TR0

Package Uncore C-box 8 perfmon counter MSR

F52H 3922 MSR_C8_PMON_E
VNT_SEL1

Package Uncore C-box 8 perfmon event select MSR

F53H 3923 MSR_C8_PMON_C
TR1

Package Uncore C-box 8 perfmon counter MSR

F54H 3924 MSR_C8_PMON_E
VNT_SEL2

Package Uncore C-box 8 perfmon event select MSR

F55H 3925 MSR_C8_PMON_C
TR2

Package Uncore C-box 8 perfmon counter MSR

F56H 3926 MSR_C8_PMON_E
VNT_SEL3

Package Uncore C-box 8 perfmon event select MSR

F57H 3927 MSR_C8_PMON_C
TR3

Package Uncore C-box 8 perfmon counter MSR

F58H 3928 MSR_C8_PMON_E
VNT_SEL4

Package Uncore C-box 8 perfmon event select MSR

F59H 3929 MSR_C8_PMON_C
TR4

Package Uncore C-box 8 perfmon counter MSR

F5AH 3930 MSR_C8_PMON_E
VNT_SEL5

Package Uncore C-box 8 perfmon event select MSR

F5BH 3931 MSR_C8_PMON_C
TR5

Package Uncore C-box 8 perfmon counter MSR

FC0H 4032 MSR_C9_PMON_B
OX_CTRL

Package Uncore C-box 9 perfmon local box control MSR

FC1H 4033 MSR_C9_PMON_B
OX_STATUS

Package Uncore C-box 9 perfmon local box status MSR
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34.7 MSRS IN INTEL® PROCESSOR FAMILY (INTEL® 
MICROARCHITECTURE CODE NAME SANDY BRIDGE)

Table 34-10 lists model-specific registers (MSRs) that are common to Intel® 
processor family based on Intel® microarchitecture (Sandy Bridge). All architectural 
MSRs listed in Table 34-2 are supported. These processors have a CPUID signature 

FC2H 4034 MSR_C9_PMON_B
OX_OVF_CTRL

Package Uncore C-box 9 perfmon local box overflow 
control MSR

FD0H 4048 MSR_C9_PMON_E
VNT_SEL0

Package Uncore C-box 9 perfmon event select MSR

FD1H 4049 MSR_C9_PMON_C
TR0

Package Uncore C-box 9 perfmon counter MSR

FD2H 4050 MSR_C9_PMON_E
VNT_SEL1

Package Uncore C-box 9 perfmon event select MSR

FD3H 4051 MSR_C9_PMON_C
TR1

Package Uncore C-box 9 perfmon counter MSR

FD4H 4052 MSR_C9_PMON_E
VNT_SEL2

Package Uncore C-box 9 perfmon event select MSR

FD5H 4053 MSR_C9_PMON_C
TR2

Package Uncore C-box 9 perfmon counter MSR

FD6H 4054 MSR_C9_PMON_E
VNT_SEL3

Package Uncore C-box 9 perfmon event select MSR

FD7H 4055 MSR_C9_PMON_C
TR3

Package Uncore C-box 9 perfmon counter MSR

FD8H 4056 MSR_C9_PMON_E
VNT_SEL4

Package Uncore C-box 9 perfmon event select MSR

FD9H 4057 MSR_C9_PMON_C
TR4

Package Uncore C-box 9 perfmon counter MSR

FDAH 4058 MSR_C9_PMON_E
VNT_SEL5

Package Uncore C-box 9 perfmon event select MSR

FDBH 4059 MSR_C9_PMON_C
TR5

Package Uncore C-box 9 perfmon counter MSR
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with DisplayFamily_DisplayModel of 06_2AH, 06_2DH, see Table 34-1. Additional 
MSRs specific to 06_2AH are listed in Table 34-11.

Table 34-10.  MSRs Supported by Intel Processors Based on Intel Microarchitecture 
Code Name Sandy Bridge

Register 
Address Register Name

Scope
Bit Description

 Hex Dec

0H 0 IA32_P5_MC_
ADDR

Thread See Section 34.13, “MSRs in Pentium 
Processors.”

1H 1 IA32_P5_MC_
TYPE

Thread See Section 34.13, “MSRs in Pentium 
Processors.”

6H 6 IA32_MONITOR_
FILTER_SIZE

Thread See Section 8.10.5, “Monitor/Mwait Address 
Range Determination,” and Table 34-2.

10H 16 IA32_TIME_
STAMP_COUNTER

Thread See Section 17.12, “Time-Stamp Counter,” and 
see Table 34-2.

17H 23 IA32_PLATFORM_I
D

Package Platform ID. (R) 
See Table 34-2.

1BH 27 IA32_APIC_BASE Thread See Section 10.4.4, “Local APIC Status and 
Location,” and Table 34-2.

34H 52 MSR_SMI_
COUNT

Thread SMI Counter. (R/O).

31:0 SMI Count. (R/O) 

Count SMIs

63:32 Reserved.

3AH 58 IA32_FEATURE_
CONTROL

Thread Control Features in Intel 64Processor. 
(R/W).

See Table 34-2.

79H 121 IA32_BIOS_
UPDT_TRIG

Core BIOS Update Trigger Register. (W) 

See Table 34-2.

8BH 139 IA32_BIOS_
SIGN_ID

Thread BIOS Update Signature ID. (RO)

See Table 34-2.

C1H 193 IA32_PMC0 Thread Performance counter register. See 
Table 34-2.

C2H 194 IA32_PMC1 Thread Performance counter register. See 
Table 34-2.
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C3H 195 IA32_PMC2 Thread Performance counter register. See 
Table 34-2.

C4H 196 IA32_PMC3 Thread Performance counter register. See 
Table 34-2.

C5H 197 IA32_PMC4 Core Performance counter register. See 
Table 34-2.

C6H 198 IA32_PMC5 Core Performance counter register. See 
Table 34-2.

C7H 199 IA32_PMC6 Core Performance counter register. See 
Table 34-2.

C8H 200 IA32_PMC7 Core Performance counter register. See 
Table 34-2.

CEH 206 MSR_PLATFORM_I
NFO

Package See http://biosbits.org.

7:0 Reserved.

15:8 Package Maximum Non-Turbo Ratio. (R/O) 

The is the ratio of the frequency that invariant 
TSC runs at. Frequency = ratio * 100 MHz.

27:16 Reserved.

28 Package Programmable Ratio Limit for Turbo Mode. 
(R/O) 

When set to 1, indicates that Programmable 
Ratio Limits for Turbo mode is enabled, and 
when set to 0, indicates Programmable Ratio 
Limits for Turbo mode is disabled.

29 Package Programmable TDP Limit for Turbo Mode. 
(R/O) 

When set to 1, indicates that TDP Limits for 
Turbo mode are programmable, and when set 
to 0, indicates TDP Limit for Turbo mode is not 
programmable.

39:30 Reserved.
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47:40 Package Maximum Efficiency Ratio. (R/O) 

The is the minimum ratio (maximum 
efficiency) that the processor can operates, in 
units of 100MHz.

63:48 Reserved.

E2H 226 MSR_PKG_CST_CO
NFIG_CONTROL

Core C-State Configuration Control (R/W) 

Note: C-state values are processor specific C-
state code names, unrelated to MWAIT 
extension C-state parameters or ACPI C-
States.

See http://biosbits.org.

2:0 Package C-State limit. (R/W) 

Specifies the lowest processor-specific C-
state code name (consuming the least power). 
for the package. The default is set as factory-
configured package C-state limit.

The following C-state code name encodings 
are supported:

000b: C0/C1 (no package C-sate support)

001b: C2

010b: C6 no retention

011b: C6 retention

100b: C7

101b: C7s

111: No package C-state limit.

Note: This field cannot be used to limit 
package C-state to C3.

9:3 Reserved. 

10 I/O MWAIT Redirection Enable. (R/W) 

When set, will map IO_read instructions sent 
to IO register specified by 
MSR_PMG_IO_CAPTURE_BASE to MWAIT 
instructions

14:11 Reserved. 

Table 34-10.  MSRs Supported by Intel Processors Based on Intel Microarchitecture 
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15 CFG Lock. (R/WO) 

When set, lock bits 15:0 of this register until 
next reset.

24:16 Reserved. 

25 C3 state auto demotion enable. (R/W) 

When set, the processor will conditionally 
demote C6/C7 requests to C3 based on uncore 
auto-demote information.

26 C1 state auto demotion enable. (R/W) 

When set, the processor will conditionally 
demote C3/C6/C7 requests to C1 based on 
uncore auto-demote information.

27 Enable C3 undemotion (R/W) 

When set, enables undemotion from demoted 
C3.

28 Enable C1 undemotion (R/W) 

When set, enables undemotion from demoted 
C1.

63:29 Reserved.

E4H 228 MSR_PMG_IO_CAP
TURE_BASE

Core Power Management IO Redirection in C-state 
(R/W) See http://biosbits.org.

15:0 LVL_2 Base Address. (R/W) 

Specifies the base address visible to software 
for IO redirection. If IO MWAIT Redirection is 
enabled, reads to this address will be 
consumed by the power management logic 
and decoded to MWAIT instructions. When IO 
port address redirection is enabled, this is the 
IO port address reported to the OS/software.
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18:16 C-state Range. (R/W) 

Specifies the encoding value of the maximum 
C-State code name to be included when IO 
read to MWAIT redirection is enabled by 
MSR_PMG_CST_CONFIG_CONTROL[bit10]:

000b - C3 is the max C-State to include

001b - C6 is the max C-State to include

010b - C7 is the max C-State to include

63:19 Reserved.

E7H 231 IA32_MPERF Thread Maximum Performance Frequency Clock 
Count. (RW) See Table 34-2.

E8H 232 IA32_APERF Thread Actual Performance Frequency Clock Count. 
(RW) See Table 34-2.

FEH 254 IA32_MTRRCAP Thread See Table 34-2.

174H 372 IA32_SYSENTER_C
S

Thread See Table 34-2.

175H 373 IA32_SYSENTER_E
SP

Thread See Table 34-2.

176H 374 IA32_SYSENTER_E
IP

Thread See Table 34-2.

179H 377 IA32_MCG_CAP Thread See Table 34-2.

17AH 378 IA32_MCG_
STATUS

Thread

0 RIPV. 

When set, bit indicates that the instruction 
addressed by the instruction pointer pushed 
on the stack (when the machine check was 
generated) can be used to restart the 
program. If cleared, the program cannot be 
reliably restarted.
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1 EIPV. 

When set, bit indicates that the instruction 
addressed by the instruction pointer pushed 
on the stack (when the machine check was 
generated) is directly associated with the 
error.

2 MCIP. 

When set, bit indicates that a machine check 
has been generated. If a second machine 
check is detected while this bit is still set, the 
processor enters a shutdown state. Software 
should write this bit to 0 after processing a 
machine check exception.

63:3 Reserved.

186H 390 IA32_
PERFEVTSEL0

Thread See Table 34-2.

187H 391 IA32_
PERFEVTSEL1

Thread See Table 34-2.

188H 392 IA32_
PERFEVTSEL2

Thread See Table 34-2.

189H 393 IA32_
PERFEVTSEL3

Thread See Table 34-2.

18AH 394 IA32_
PERFEVTSEL4

Core See Table 34-2; If CPUID.0AH:EAX[15:8] = 8

18BH 395 IA32_
PERFEVTSEL5

Core See Table 34-2; If CPUID.0AH:EAX[15:8] = 8

18CH 396 IA32_
PERFEVTSEL6

Core See Table 34-2; If CPUID.0AH:EAX[15:8] = 8

18DH 397 IA32_
PERFEVTSEL7

Core See Table 34-2; If CPUID.0AH:EAX[15:8] = 8

198H 408 IA32_PERF_STAT
US

Package See Table 34-2.

15:0 Current Performance State Value.

63:16 Reserved.
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198H 408 MSR_PERF_STATU
S

Package

47:32 Core Voltage (R/O)

P-state core voltage can be computed by

MSR_PERF_STATUS[37:32] * (float) 1/(2^13).

199H 409 IA32_PERF_CTL Thread See Table 34-2.

19AH 410 IA32_CLOCK_
MODULATION

Thread Clock Modulation. (R/W) 

see Table 34-2

IA32_CLOCK_MODULATION MSR was 
originally named IA32_THERM_CONTROL 
MSR.

3:0 On demand Clock Modulation Duty Cycle (R/W).

In 6.25% increment

4 On demand Clock Modulation Enable (R/W).

63:5 Reserved.

19BH 411 IA32_THERM_
INTERRUPT

Core Thermal Interrupt Control. (R/W) 

See Table 34-2.

19CH 412 IA32_THERM_
STATUS

Core Thermal Monitor Status. (R/W) 

See Table 34-2.

1A0 416 IA32_MISC_
ENABLE

Enable Misc. Processor Features. (R/W) 

Allows a variety of processor functions to be 
enabled and disabled.

0 Thread Fast-Strings Enable. See Table 34-2

6:1 Reserved.

7 Thread Performance Monitoring Available. (R) See 
Table 34-2.

10:8 Reserved.

11 Thread Branch Trace Storage Unavailable. (RO) See 
Table 34-2.

12 Thread Precise Event Based Sampling Unavailable. 
(RO) See Table 34-2.
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15:13 Reserved.

16 Package Enhanced Intel SpeedStep Technology 
Enable. (R/W) See Table 34-2.

18 Thread ENABLE MONITOR FSM. (R/W) See Table 34-2.

21:19 Reserved.

22 Thread Limit CPUID Maxval. (R/W) See Table 34-2.

23 Thread xTPR Message Disable. (R/W) See 
Table 34-2.

33:24 Reserved.

34 Thread XD Bit Disable. (R/W) See Table 34-2.

37:35 Reserved.

38 Package Turbo Mode Disable. (R/W)

When set to 1 on processors that support Intel 
Turbo Boost Technology, the turbo mode 
feature is disabled and the IDA_Enable feature 
flag will be clear (CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support 
IDA, CPUID.06H: EAX[1] reports the 
processor’s support of turbo mode is enabled.

Note: the power-on default value is used by 
BIOS to detect hardware support of turbo 
mode. If power-on default value is 1, turbo 
mode is available in the processor. If power-on 
default value is 0, turbo mode is not available.

63:39 Reserved.

1A2H 418 MSR_
TEMPERATURE_TA
RGET

Unique

15:0 Reserved.

23:16 Temperature Target. (R) 

The minimum temperature at which 
PROCHOT# will be asserted. The value is 
degree C.
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63:24 Reserved.

1A6H 422 MSR_OFFCORE_RS
P_0

Thread Offcore Response Event Select Register (R/W)

1A7H 422 MSR_OFFCORE_RS
P_1

Thread Offcore Response Event Select Register (R/W)

1AAH 426 MSR_MISC_PWR_
MGMT

See http://biosbits.org.

1ADH 428 MSR_TURBO_PWR
_CURRENT_LIMIT

See http://biosbits.org.

1B0H 432 IA32_ENERGY_PE
RF_BIAS

Package See Table 34-2.

1B1H 433 IA32_PACKAGE_T
HERM_STATUS

Package See Table 34-2.

1B2H 434 IA32_PACKAGE_T
HERM_INTERRUPT

Package See Table 34-2.

1C8H 456 MSR_LBR_SELECT Thread Last Branch Record Filtering Select Register 
(R/W) See Section 17.6.2, “Filtering of Last 
Branch Records.”

1C9H 457 MSR_
LASTBRANCH_
TOS

Thread Last Branch Record Stack TOS. (R) 

Contains an index (bits 0-3) that points to the 
MSR containing the most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 
680H).

1D9H 473 IA32_DEBUGCTL Thread Debug Control. (R/W) See Table 34-2.

1DDH 477 MSR_LER_FROM_
LIP 

Thread Last Exception Record From Linear IP. (R) 

Contains a pointer to the last branch 
instruction that the processor executed prior 
to the last exception that was generated or 
the last interrupt that was handled.
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1DEH 478 MSR_LER_TO_
LIP

Thread Last Exception Record To Linear IP. (R) 

This area contains a pointer to the target of 
the last branch instruction that the processor 
executed prior to the last exception that was 
generated or the last interrupt that was 
handled. 

1F2H 498 IA32_SMRR_PHYS
BASE

Core See Table 34-2.

1F3H 499 IA32_SMRR_PHYS
MASK

Core See Table 34-2.

1FCH 508 MSR_POWER_CTL Core See http://biosbits.org.

200H 512 IA32_MTRR_PHYS
BASE0

Thread See Table 34-2.

201H 513 IA32_MTRR_PHYS
MASK0

Thread See Table 34-2.

202H 514 IA32_MTRR_PHYS
BASE1

Thread See Table 34-2.

203H 515 IA32_MTRR_PHYS
MASK1

Thread See Table 34-2.

204H 516 IA32_MTRR_PHYS
BASE2

Thread See Table 34-2.

205H 517 IA32_MTRR_PHYS
MASK2

Thread See Table 34-2.

206H 518 IA32_MTRR_PHYS
BASE3

Thread See Table 34-2.

207H 519 IA32_MTRR_PHYS
MASK3

Thread See Table 34-2.

208H 520 IA32_MTRR_PHYS
BASE4

Thread See Table 34-2.

209H 521 IA32_MTRR_PHYS
MASK4

Thread See Table 34-2.

20AH 522 IA32_MTRR_PHYS
BASE5

Thread See Table 34-2.
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20BH 523 IA32_MTRR_PHYS
MASK5

Thread See Table 34-2.

20CH 524 IA32_MTRR_PHYS
BASE6

Thread See Table 34-2.

20DH 525 IA32_MTRR_PHYS
MASK6

Thread See Table 34-2.

20EH 526 IA32_MTRR_PHYS
BASE7

Thread See Table 34-2.

20FH 527 IA32_MTRR_PHYS
MASK7

Thread See Table 34-2.

210H 528 IA32_MTRR_PHYS
BASE8

Thread See Table 34-2.

211H 529 IA32_MTRR_PHYS
MASK8

Thread See Table 34-2.

212H 530 IA32_MTRR_PHYS
BASE9

Thread See Table 34-2.

213H 531 IA32_MTRR_PHYS
MASK9

Thread See Table 34-2.

250H 592 IA32_MTRR_FIX6
4K_00000

Thread See Table 34-2.

258H 600 IA32_MTRR_FIX1
6K_80000

Thread See Table 34-2.

259H 601 IA32_MTRR_FIX1
6K_A0000

Thread See Table 34-2.

268H 616 IA32_MTRR_FIX4
K_C0000

Thread See Table 34-2.

269H 617 IA32_MTRR_FIX4
K_C8000

Thread See Table 34-2.

26AH 618 IA32_MTRR_FIX4
K_D0000

Thread See Table 34-2.

26BH 619 IA32_MTRR_FIX4
K_D8000

Thread See Table 34-2.
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26CH 620 IA32_MTRR_FIX4
K_E0000

Thread See Table 34-2.

26DH 621 IA32_MTRR_FIX4
K_E8000

Thread See Table 34-2.

26EH 622 IA32_MTRR_FIX4
K_F0000

Thread See Table 34-2.

26FH 623 IA32_MTRR_FIX4
K_F8000

Thread See Table 34-2.

277H 631 IA32_PAT Thread See Table 34-2.

280H 640 IA32_MC0_CTL2 Core See Table 34-2.

281H 641 IA32_MC1_CTL2 Core See Table 34-2.

282H 642 IA32_MC2_CTL2 Core See Table 34-2.

283H 643 IA32_MC3_CTL2 Core See Table 34-2.

284H 644 MSR_MC4_CTL2 Package Always 0 (CMCI not supported).

2FFH 767 IA32_MTRR_DEF_
TYPE

Thread Default Memory Types. (R/W) See 
Table 34-2.

309H 777 IA32_FIXED_CTR0 Thread Fixed-Function Performance Counter 
Register 0. (R/W) See Table 34-2.

30AH 778 IA32_FIXED_CTR1 Thread Fixed-Function Performance Counter 
Register 1. (R/W) See Table 34-2.

30BH 779 IA32_FIXED_CTR2 Thread Fixed-Function Performance Counter 
Register 2. (R/W) See Table 34-2.

345H 837 IA32_PERF_CAPA
BILITIES

Thread See Table 34-2. See Section 17.4.1, 
“IA32_DEBUGCTL MSR.”

5:0 LBR Format. See Table 34-2.

6 PEBS Record Format. 

7 PEBSSaveArchRegs. See Table 34-2.

11:8 PEBS_REC_FORMAT. See Table 34-2.

12 SMM_FREEZE. See Table 34-2.

63:13 Reserved.
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38DH 909 IA32_FIXED_CTR_
CTRL

Thread Fixed-Function-Counter Control Register. 
(R/W) See Table 34-2.

38EH 910 IA32_PERF_
GLOBAL_STAUS

Thread See Table 34-2. See Section 18.4.2, “Global 
Counter Control Facilities.” 

38FH 911 IA32_PERF_
GLOBAL_CTRL

Thread See Table 34-2. See Section 18.4.2, “Global 
Counter Control Facilities.”

390H 912 IA32_PERF_
GLOBAL_OVF_
CTRL

Thread See Table 34-2. See Section 18.4.2, “Global 
Counter Control Facilities.”

391H 913 MSR_UNC_PERF_
GLOBAL_CTRL

Package Uncore PMU global control

0 Core 0 select

1 Core 1 select

2 Core 2 select

3 Core 3 select

18:4 Reserved.

29 Enable all uncore counters

30 Enable PMI on overflow

31 Enable Freezing counter when overflow

63:32 Reserved.

392H 914 MSR_UNC_PERF_
GLOBAL_STATUS

Package Uncore PMU main status 

0 Fixed counter overflowed

1 CBox counter overflowed

63:2 Reserved.

394H 916 MSR_UNC_PERF_
FIXED_CTRL

Package Uncore fixed counter control (R/W)

19:0 Reserved

20 Enable overflow

21 Reserved

22 Enable counting
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63:23 Reserved.

395H 917 MSR_UNC_PERF_
FIXED_CTR

Package Uncore fixed counter

47:0 Current count

63:48 Reserved.

3F1H 1009 MSR_PEBS_
ENABLE

Thread See Section 18.6.1.1, “Precise Event Based 
Sampling (PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

1 Enable PEBS on IA32_PMC1. (R/W)

2 Enable PEBS on IA32_PMC2. (R/W)

3 Enable PEBS on IA32_PMC3. (R/W)

31:4 Reserved.

32 Enable Load Latency on IA32_PMC0. (R/W)

33 Enable Load Latency on IA32_PMC1. (R/W)

34 Enable Load Latency on IA32_PMC2. (R/W)

35 Enable Load Latency on IA32_PMC3. (R/W)

63:36 Reserved.

3F6H 1014 MSR_PEBS_
LD_LAT

Thread see See Section 18.6.1.2, “Load Latency 
Performance Monitoring Facility.”

15:0 Minimum threshold latency value of tagged 
load operation that will be counted. (R/W)

63:36 Reserved.

3F8H 1016 MSR_PKG_C3_RES
IDENCY

Package Note: C-state values are processor specific C-
state code names, unrelated to MWAIT 
extension C-state parameters or ACPI C-
States.

63:0 Package C3 Residency Counter. (R/O)

Value since last reset that this package is in 
processor-specific C3 states. Count at the 
same frequency as the TSC.
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3F9H 1017 MSR_PKG_C6_RES
IDENCY

Package Note: C-state values are processor specific C-
state code names, unrelated to MWAIT 
extension C-state parameters or ACPI C-
States.

63:0 Package C6 Residency Counter. (R/O)

Value since last reset that this package is in 
processor-specific C6 states. Count at the 
same frequency as the TSC.

3FAH 1018 MSR_PKG_C7_RES
IDENCY

Package Note: C-state values are processor specific C-
state code names, unrelated to MWAIT 
extension C-state parameters or ACPI C-
States.

63:0 Package C7 Residency Counter. (R/O)

Value since last reset that this package is in 
processor-specific C7 states. Count at the 
same frequency as the TSC.

3FCH 1020 MSR_CORE_C3_RE
SIDENCY

Core Note: C-state values are processor specific C-
state code names, unrelated to MWAIT 
extension C-state parameters or ACPI C-
States.

63:0 CORE C3 Residency Counter. (R/O)

Value since last reset that this core is in 
processor-specific C3 states. Count at the 
same frequency as the TSC.

3FDH 1021 MSR_CORE_C6_RE
SIDENCY

Core Note: C-state values are processor specific C-
state code names, unrelated to MWAIT 
extension C-state parameters or ACPI C-
States.

63:0 CORE C6 Residency Counter. (R/O)

Value since last reset that this core is in 
processor-specific C6 states. Count at the 
same frequency as the TSC.

3FEH 1022 MSR_CORE_C7_RE
SIDENCY

Core Note: C-state values are processor specific C-
state code names, unrelated to MWAIT 
extension C-state parameters or ACPI C-
States.
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63:0 CORE C7 Residency Counter. (R/O)

Value since last reset that this core is in 
processor-specific C7 states. Count at the 
same frequency as the TSC.

400H 1024 IA32_MC0_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_
STATUS

Core See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS,” and Chapter 16.

402H 1026 IA32_MC0_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

403H 1027 IA32_MC0_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

404H 1028 IA32_MC1_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_
STATUS

Core See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS,” and Chapter 16.

406H 1030 IA32_MC1_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

407H 1031 IA32_MC1_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

408H 1032 IA32_MC2_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_
STATUS

Core See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS,” and Chapter 16.

40AH 1034 IA32_MC2_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

40BH 1035 IA32_MC2_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

40CH 1036 IA32_MC3_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 IA32_MC3_
STATUS

Core See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS,” and Chapter 16.

40EH 1038 IA32_MC3_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

40FH 1039 IA32_MC3_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

410H 1040 MSR_MC4_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

0 PCU Hardware Error. (R/W) 

When set, enables signaling of PCU hardware 
detected errors. 

1 PCU Controller Error. (R/W) 

When set, enables signaling of PCU controller 
detected errors
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2 PCU Firmware Error. (R/W) 

When set, enables signaling of PCU firmware 
detected errors

63:2 Reserved.

411H 1041 IA32_MC4_
STATUS

Core See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS,” and Chapter 16.

480H 1152 IA32_VMX_BASIC Thread Reporting Register of Basic VMX 
Capabilities. (R/O) See Table 34-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBA
SED_CTLS

Thread Capability Reporting Register of Pin-based 
VM-execution Controls. (R/O) See 
Table 34-2.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCB
ASED_CTLS

Thread Capability Reporting Register of Primary 
Processor-based VM-execution Controls. 
(R/O)

See Appendix A.3, “VM-Execution Controls.”

483H 1155 IA32_VMX_EXIT_
CTLS

Thread Capability Reporting Register of VM-exit 
Controls. (R/O) See Table 34-2.

See Appendix A.4, “VM-Exit Controls.”

484H 1156 IA32_VMX_
ENTRY_CTLS

Thread Capability Reporting Register of VM-entry 
Controls. (R/O) See Table 34-2.

See Appendix A.5, “VM-Entry Controls.”

485H 1157 IA32_VMX_MISC Thread Reporting Register of Miscellaneous VMX 
Capabilities. (R/O) See Table 34-2.

See Appendix A.6, “Miscellaneous Data.”

486H 1158 IA32_VMX_CR0_
FIXED0

Thread Capability Reporting Register of CR0 Bits 
Fixed to 0. (R/O) See Table 34-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

487H 1159 IA32_VMX_CR0_
FIXED1

Thread Capability Reporting Register of CR0 Bits 
Fixed to 1. (R/O) See Table 34-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”
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488H 1160 IA32_VMX_CR4_FI
XED0

Thread Capability Reporting Register of CR4 Bits 
Fixed to 0. (R/O) See Table 34-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

489H 1161 IA32_VMX_CR4_FI
XED1

Thread Capability Reporting Register of CR4 Bits 
Fixed to 1. (R/O) See Table 34-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

48AH 1162 IA32_VMX_
VMCS_ENUM

Thread Capability Reporting Register of VMCS Field 
Enumeration. (R/O). See Table 34-2.

See Appendix A.9, “VMCS Enumeration.”

48BH 1163 IA32_VMX_PROCB
ASED_CTLS2

Thread Capability Reporting Register of Secondary 
Processor-based VM-execution Controls. 
(R/O)

See Appendix A.3, “VM-Execution Controls.”

4C1H 1217 IA32_A_PMC0 Thread See Table 34-2.

4C2H 1218 IA32_A_PMC1 Thread See Table 34-2.

4C3H 1219 IA32_A_PMC2 Thread See Table 34-2.

4C4H 1220 IA32_A_PMC3 Thread See Table 34-2.

4C5H 1221 IA32_A_PMC4 Core See Table 34-2.

4C6H 1222 IA32_A_PMC5 Core See Table 34-2.

4C7H 1223 IA32_A_PMC6 Core See Table 34-2.

C8H 200 IA32_A_PMC7 Core See Table 34-2.

600H 1536 IA32_DS_AREA Thread DS Save Area. (R/W). See Table 34-2.

See Section 18.10.4, “Debug Store (DS) 
Mechanism.”

606H 1542 MSR_RAPL_POWE
R_UNIT

Package Unit Multipliers used in RAPL Interfaces (R/O) 
See Section 14.7.1, “RAPL Interfaces.”

60AH 1546 MSR_PKGC3_IRTL Package Package C3 Interrupt Response Limit (R/W) 

Note: C-state values are processor specific C-
state code names, unrelated to MWAIT 
extension C-state parameters or ACPI C-
States.
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9:0 Interrupt response time limit. (R/W) 

Specifies the limit that should be used to 
decide if the package should be put into a 
package C3 state. 

12:10 Time Unit. (R/W) 

Specifies the encoding value of time unit of 
the interrupt response time limit. The 
following time unit encodings are supported:

000b: 1 ns

001b: 32 ns

010b: 1024 ns

011b: 32768 ns

100b: 1048576 ns

101b: 33554432 ns

14:13 Reserved. 

15 Valid. (R/W) 

Indicates whether the values in bits 12:0 are 
valid and can be used by the processor for 
package C-sate management. 

63:16 Reserved.

60BH 1547 MSR_PKGC6_IRTL Package Package C6 Interrupt Response Limit (R/W) 

This MSR defines the budget allocated for the 
package to exit from C6 to a C0 state, where 
interrupt request can be delivered to the core 
and serviced. Additional core-exit latency amy 
be applicable depending on the actual C-state 
the core is in. 

Note: C-state values are processor specific C-
state code names, unrelated to MWAIT 
extension C-state parameters or ACPI C-
States.

9:0 Interrupt response time limit. (R/W) 

Specifies the limit that should be used to 
decide if the package should be put into a 
package C6 state. 
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12:10 Time Unit. (R/W) 

Specifies the encoding value of time unit of 
the interrupt response time limit. The 
following time unit encodings are supported:

000b: 1 ns

001b: 32 ns

010b: 1024 ns

011b: 32768 ns

100b: 1048576 ns

101b: 33554432 ns

14:13 Reserved. 

15 Valid. (R/W) 

Indicates whether the values in bits 12:0 are 
valid and can be used by the processor for 
package C-sate management. 

63:16 Reserved.

60CH 1548 MSR_PKGC7_IRTL Package Package C7 Interrupt Response Limit (R/W) 

This MSR defines the budget allocated for the 
package to exit from C7 to a C0 state, where 
interrupt request can be delivered to the core 
and serviced. Additional core-exit latency amy 
be applicable depending on the actual C-state 
the core is in. 

Note: C-state values are processor specific C-
state code names, unrelated to MWAIT 
extension C-state parameters or ACPI C-
States.

9:0 Interrupt response time limit. (R/W) 

Specifies the limit that should be used to 
decide if the package should be put into a 
package C7 state. 
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12:10 Time Unit. (R/W) 

Specifies the encoding value of time unit of 
the interrupt response time limit. The 
following time unit encodings are supported:

000b: 1 ns

001b: 32 ns

010b: 1024 ns

011b: 32768 ns

100b: 1048576 ns

101b: 33554432 ns

14:13 Reserved. 

15 Valid. (R/W) 

Indicates whether the values in bits 12:0 are 
valid and can be used by the processor for 
package C-sate management. 

63:16 Reserved.

60DH 1549 MSR_PKG_C2_RES
IDENCY

Package Note: C-state values are processor specific C-
state code names, unrelated to MWAIT 
extension C-state parameters or ACPI C-
States.

63:0 Package C2 Residency Counter. (R/O)

Value since last reset that this package is in 
processor-specific C2 states. Count at the 
same frequency as the TSC.

610H 1552 MSR_PKG_RAPL_P
OWER_LIMIT

Package PKG RAPL Power Limit Control (R/W) See 
Section 14.7.3, “Package RAPL Domain.”

611H 1553 MSR_PKG_ENERY_
STATUS

Package PKG Energy Status (R/O) See Section 14.7.3, 
“Package RAPL Domain.”

614H 1556 MSR_PKG_POWER
_INFO

Package PKG RAPL Parameters (R/W) See Section 
14.7.3, “Package RAPL Domain.”

638H 1592 MSR_PP0_POWER
_LIMIT

Package PP0 RAPL Power Limit Control (R/W) See 
Section 14.7.4, “PP0/PP1 RAPL Domains.”

639H 1593 MSR_PP0_ENERY_
STATUS

Package PP0 Energy Status (R/O) See Section 14.7.4, 
“PP0/PP1 RAPL Domains.”
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63AH 1594 MSR_PP0_POLICY Package PP0 Balance Policy (R/W) See Section 14.7.4, 
“PP0/PP1 RAPL Domains.”

63BH 1595 MSR_PP0_PERF_S
TATUS

Package PP0 Performance Throttling Status (R/O) See 
Section 14.7.4, “PP0/PP1 RAPL Domains.”

680H 1664 MSR_
LASTBRANCH_0_F
ROM_IP

Thread Last Branch Record 0 From IP. (R/W)

One of sixteen pairs of last branch record 
registers on the last branch record stack. This 
part of the stack contains pointers to the 
source instruction for one of the last sixteen 
branches, exceptions, or interrupts taken by 
the processor. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.6.1, “LBR Stack.”

681H 1665 MSR_
LASTBRANCH_1_F
ROM_IP

Thread Last Branch Record 1 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.

682H 1666 MSR_
LASTBRANCH_2_F
ROM_IP

Thread Last Branch Record 2 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP. 

683H 1667 MSR_
LASTBRANCH_3_F
ROM_IP

Thread Last Branch Record 3 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.

684H 1668 MSR_
LASTBRANCH_4_F
ROM_IP

Thread Last Branch Record 4 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.

685H 1669 MSR_
LASTBRANCH_5_F
ROM_IP

Thread Last Branch Record 5 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.

686H 1670 MSR_
LASTBRANCH_6_F
ROM_IP

Thread Last Branch Record 6 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.

687H 1671 MSR_
LASTBRANCH_7_F
ROM_IP

Thread Last Branch Record 7 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.
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688H 1672 MSR_
LASTBRANCH_8_F
ROM_IP

Thread Last Branch Record 8 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.

689H 1673 MSR_
LASTBRANCH_9_F
ROM_IP

Thread Last Branch Record 9 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.

68AH 1674 MSR_
LASTBRANCH_10_
FROM_IP

Thread Last Branch Record 10 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.

68BH 1675 MSR_
LASTBRANCH_11_
FROM_IP

Thread Last Branch Record 11 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.

68CH 1676 MSR_
LASTBRANCH_12_
FROM_IP

Thread Last Branch Record 12 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.

68DH 1677 MSR_
LASTBRANCH_13_
FROM_IP

Thread Last Branch Record 13 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.

68EH 1678 MSR_
LASTBRANCH_14_
FROM_IP

Thread Last Branch Record 14 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.

68FH 1679 MSR_
LASTBRANCH_15_
FROM_IP

Thread Last Branch Record 15 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.

6C0H 1728 MSR_
LASTBRANCH_0_
TO_LIP

Thread Last Branch Record 0 To IP. (R/W)

One of sixteen pairs of last branch record 
registers on the last branch record stack. This 
part of the stack contains pointers to the 
destination instruction for one of the last 
sixteen branches, exceptions, or interrupts 
taken by the processor.

6C1H 1729 MSR_
LASTBRANCH_1_
TO_LIP

Thread Last Branch Record 1 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 
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6C2H 1730 MSR_
LASTBRANCH_2_
TO_LIP

Thread Last Branch Record 2 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

6C3H 1731 MSR_
LASTBRANCH_3_
TO_LIP

Thread Last Branch Record 3 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

6C4H 1732 MSR_
LASTBRANCH_4_
TO_LIP

Thread Last Branch Record 4 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

6C5H 1733 MSR_
LASTBRANCH_5_
TO_LIP

Thread Last Branch Record 5 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

6C6H 1734 MSR_
LASTBRANCH_6_
TO_LIP

Thread Last Branch Record 6 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

6C7H 1735 MSR_
LASTBRANCH_7_
TO_LIP

Thread Last Branch Record 7 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

6C8H 1736 MSR_
LASTBRANCH_8_
TO_LIP

Thread Last Branch Record 8 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

6C9H 1737 MSR_
LASTBRANCH_9_
TO_LIP

Thread Last Branch Record 9 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

6CAH 1738 MSR_
LASTBRANCH_10_
TO_LIP

Thread Last Branch Record 10 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

6CBH 1739 MSR_
LASTBRANCH_11_
TO_LIP

Thread Last Branch Record 11 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

6CCH 1740 MSR_
LASTBRANCH_12_
TO_LIP

Thread Last Branch Record 12 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 
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6CDH 1741 MSR_
LASTBRANCH_13_
TO_LIP

Thread Last Branch Record 13 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

6CEH 1742 MSR_
LASTBRANCH_14_
TO_LIP

Thread Last Branch Record 14 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

6CFH 1743 MSR_
LASTBRANCH_15_
TO_LIP

Thread Last Branch Record 15 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

6E0H 1760 IA32_TSC_DEADLI
NE

Thread See Table 34-2.

700H 1792 MSR_UNC_CBO_0_
PERFEVTSEL0

Package Uncore C-Box 0, counter 0 event select MSR

701H 1793 MSR_UNC_CBO_0_
PERFEVTSEL1

Package Uncore C-Box 0, counter 1 event select MSR

705H 1797 MSR_UNC_CBO_0_
UNIT_STATUS

Package Uncore C-Box 0, Overflow Status

706H 1798 MSR_UNC_CBO_0_
PER_CTR0

Package Uncore C-Box 0, performance counter 0 

707H 1799 MSR_UNC_CBO_0_
PER_CTR1

Package Uncore C-Box 0, performance counter 1

710H 1808 MSR_UNC_CBO_1_
PERFEVTSEL0

Package Uncore C-Box 1, counter 0 event select MSR

711H 1809 MSR_UNC_CBO_1_
PERFEVTSEL1

Package Uncore C-Box 1, counter 1 event select MSR

715H 1813 MSR_UNC_CBO_1_
UNIT_STATUS

Package Uncore C-Box 1, Overflow Status

716H 1814 MSR_UNC_CBO_1_
PER_CTR0

Package Uncore C-Box 1, performance counter 0 

717H 1815 MSR_UNC_CBO_1_
PER_CTR1

Package Uncore C-Box 1, performance counter 1

720H 1824 MSR_UNC_CBO_2_
PERFEVTSEL0

Package Uncore C-Box 2, counter 0 event select MSR
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721H 1824 MSR_UNC_CBO_2_
PERFEVTSEL1

Package Uncore C-Box 2, counter 1 event select MSR

725H 1829 MSR_UNC_CBO_2_
UNIT_STATUS

Package Uncore C-Box 2, Overflow Status

726H 1830 MSR_UNC_CBO_2_
PER_CTR0

Package Uncore C-Box 2, performance counter 0 

727H 1831 MSR_UNC_CBO_2_
PER_CTR1

Package Uncore C-Box 2, performance counter 1

730H 1840 MSR_UNC_CBO_3_
PERFEVTSEL0

Package Uncore C-Box 3, counter 0 event select MSR

731H 1841 MSR_UNC_CBO_3_
PERFEVTSEL1

Package Uncore C-Box 3, counter 1 event select MSR

725H 1845 MSR_UNC_CBO_3_
UNIT_STATUS

Package Uncore C-Box 3, Overflow Status

736H 1846 MSR_UNC_CBO_3_
PER_CTR0

Package Uncore C-Box 3, performance counter 0 

737H 1847 MSR_UNC_CBO_3_
PER_CTR1

Package Uncore C-Box 3, performance counter 1

C000_
0080H

IA32_EFER Thread Extended Feature Enables. See Table 34-2.

C000_
0081H

IA32_STAR Thread System Call Target Address. (R/W). See 
Table 34-2.

C000_
0082H

IA32_LSTAR Thread IA-32e Mode System Call Target Address. 
(R/W). See Table 34-2.

C000_
0084H

IA32_FMASK Thread System Call Flag Mask. (R/W). See 
Table 34-2.

C000_
0100H

IA32_FS_BASE Thread Map of BASE Address of FS. (R/W). See 
Table 34-2.

C000_
0101H

IA32_GS_BASE Thread Map of BASE Address of GS. (R/W). See 
Table 34-2.

C000_
0102H

IA32_KERNEL_GS
BASE

Thread Swap Target of BASE Address of GS. (R/W). 
See Table 34-2.
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34.7.1  MSRs In Second Generation Intel® Core Processor Family 
(Intel® Microarchitecture Code Name Sandy Bridge)

Table 34-11 lists model-specific registers (MSRs) that are specific to second genera-
tion for Intel® Core processor family (Intel® microarchitecture code name Sandy 
Bridge). These processors have a CPUID signature with DisplayFamily_DisplayModel 
of 06_2AH, see Table 34-1. 

C000_
0103H

IA32_TSC_AUX Thread AUXILIARY TSC Signature. (R/W). See 
Table 34-2 and Section 17.12.2, 
“IA32_TSC_AUX Register and RDTSCP 
Support.” 

Table 34-11.  MSRs Supported by Second Generation Intel Core Processors (Intel 
Microarchitecture Code Name Sandy Bridge)

Register 
Address Register Name

Scope
Bit Description

 Hex Dec

1ADH 429 MSR_TURBO_RATI
O_LIMIT

Package Maximum Ratio Limit of Turbo Mode.

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C. 

Maximum turbo ratio limit of 1 core active. 

15:8 Package Maximum Ratio Limit for 2C. 

Maximum turbo ratio limit of 2 core active. 

23:16 Package Maximum Ratio Limit for 3C. 

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C. 

Maximum turbo ratio limit of 4 core active.

63:32 Reserved.

640H 1600 MSR_PP1_POWER
_LIMIT

Package PP1 RAPL Power Limit Control (R/W) See 
Section 14.7.4, “PP0/PP1 RAPL Domains.”
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34.7.2  MSRs In Next Generation Intel® Xeon Processor Family 
(Intel® Microarchitecture Code Name Sandy Bridge)

Table 34-12 lists selected model-specific registers (MSRs) that are specific to the 
next generation Intel® Xeon processor family (Intel® microarchitecture code name 
Sandy Bridge). These processors have a CPUID signature with 
DisplayFamily_DisplayModel of 06_2DH, see Table 34-1. 

641H 1601 MSR_PP1_ENERY_
STATUS

Package PP1 Energy Status (R/O) See Section 14.7.4, 
“PP0/PP1 RAPL Domains.”

642H 1602 MSR_PP1_POLICY Package PP1 Balance Policy (R/W) See Section 14.7.4, 
“PP0/PP1 RAPL Domains.”

Table 34-12.  Selected MSRs Supported by Next Generation Intel Xeon Processors 
(Intel Microarchitecture Code Name Sandy Bridge)

Register 
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Scope
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285H 645 IA32_MC5_CTL2 Package See Table 34-2.

286H 646 IA32_MC6_CTL2 Package See Table 34-2.

287H 647 IA32_MC7_CTL2 Package See Table 34-2.

288H 648 IA32_MC8_CTL2 Package See Table 34-2.

289H 649 IA32_MC9_CTL2 Package See Table 34-2.

28AH 650 IA32_MC10_CTL2 Package See Table 34-2.

28BH 651 IA32_MC11_CTL2 Package See Table 34-2.

28CH 652 IA32_MC12_CTL2 Package See Table 34-2.

28DH 653 IA32_MC13_CTL2 Package See Table 34-2.

28EH 654 IA32_MC14_CTL2 Package See Table 34-2.

28FH 655 IA32_MC15_CTL2 Package See Table 34-2.

290H 656 IA32_MC16_CTL2 Package See Table 34-2.

291H 657 IA32_MC17_CTL2 Package See Table 34-2.
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292H 658 IA32_MC18_CTL2 Package See Table 34-2.

293H 659 IA32_MC19_CTL2 Package See Table 34-2.

414H 1044 MSR_MC5_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

415H 1045 MSR_MC5_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS,” and Chapter 16.

416H 1046 MSR_MC5_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

417H 1047 MSR_MC5_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

418H 1048 MSR_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

419H 1049 MSR_MC6_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS,” and Chapter 16.

41AH 1050 MSR_MC6_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41BH 1051 MSR_MC6_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

41CH 1052 MSR_MC7_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

41DH 1053 MSR_MC7_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS,” and Chapter 16.

41EH 1054 MSR_MC7_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41FH 1055 MSR_MC7_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

420H 1056 MSR_MC8_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

421H 1057 MSR_MC8_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS,” and Chapter 16.

422H 1058 MSR_MC8_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

423H 1059 MSR_MC8_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

424H 1060 MSR_MC9_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

425H 1061 MSR_MC9_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS,” and Chapter 16.

426H 1062 MSR_MC9_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

427H 1063 MSR_MC9_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

428H 1064 MSR_MC10_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

429H 1065 MSR_MC10_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS,” and Chapter 16.
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42AH 1066 MSR_MC10_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

42BH 1067 MSR_MC10_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

42CH 1068 MSR_MC11_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

42DH 1069 MSR_MC11_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS,” and Chapter 16.

42EH 1070 MSR_MC11_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

42FH 1071 MSR_MC11_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

430H 1072 MSR_MC12_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

431H 1073 MSR_MC12_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS,” and Chapter 16.

432H 1074 MSR_MC12_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

433H 1075 MSR_MC12_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

434H 1076 MSR_MC13_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

435H 1077 MSR_MC13_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS,” and Chapter 16.

436H 1078 MSR_MC13_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

437H 1079 MSR_MC13_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

438H 1080 MSR_MC14_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

439H 1081 MSR_MC14_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS,” and Chapter 16.

43AH 1082 MSR_MC14_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

43BH 1083 MSR_MC14_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

43CH 1084 MSR_MC15_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

43DH 1085 MSR_MC15_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS,” and Chapter 16.

43EH 1086 MSR_MC15_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

43FH 1087 MSR_MC15_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

440H 1088 MSR_MC16_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

441H 1089 MSR_MC16_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS,” and Chapter 16.
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442H 1090 MSR_MC16_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

443H 1091 MSR_MC16_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

444H 1092 MSR_MC17_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

445H 1093 MSR_MC17_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS,” and Chapter 16.

446H 1094 MSR_MC17_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

447H 1095 MSR_MC17_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

448H 1096 MSR_MC18_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

449H 1097 MSR_MC18_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS,” and Chapter 16.

44AH 1098 MSR_MC18_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

44BH 1099 MSR_MC18_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

44CH 1100 MSR_MC19_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

44DH 1101 MSR_MC19_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS,” and Chapter 16.

44EH 1102 MSR_MC19_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

44FH 1103 MSR_MC19_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

618H 1560 MSR_DRAM_POWE
R_LIMIT

Package DRAM RAPL Power Limit Control (R/W) See 
Section 14.7.5, “DRAM RAPL Domain.”

619H 1561 MSR_DRAM_ENER
Y_STATUS

Package DRAM Energy Status (R/O) See Section 14.7.5, 
“DRAM RAPL Domain.”

61BH 1563 MSR_DRAM_PERF
_STATUS

Package DRAM Performance Throttling Status (R/O) 
See Section 14.7.5, “DRAM RAPL Domain.”

61CH 1564 MSR_DRAM_POWE
R_INFO

Package DRAM RAPL Parameters (R/W) See Section 
14.7.5, “DRAM RAPL Domain.”
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34.8 MSRS IN THE NEXT GENERATION INTEL CORE 
PROCESSOR (INTEL® MICROARCHITECTURE CODE 
NAME IVY BRIDGE)

Next Generation Intel Core processor (Intel® microarchitecture code name Ivy 
Bridge) supports the MSR interfaces listed in Table 34-10 and Table 34-11. 

34.9 MSRS IN THE PENTIUM® 4 AND INTEL® XEON® 
PROCESSORS

Table 34-13 lists MSRs (architectural and model-specific) that are defined across 
processor generations based on Intel NetBurst microarchitecture. The processor can 
be identified by its CPUID signatures of DisplayFamily encoding of 0FH, see 
Table 34-1.
• MSRs with an “IA32_” prefix are designated as “architectural.” This means that 

the functions of these MSRs and their addresses remain the same for succeeding 
families of IA-32 processors.

• MSRs with an “MSR_” prefix are model specific with respect to address function-
alities. The column “Model Availability” lists the model encoding value(s) within 
the Pentium 4 and Intel Xeon processor family at the specified register address. 
The model encoding value of a processor can be queried using CPUID. See 
“CPUID—CPU Identification” in Chapter 3 of the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 2A.

Table 34-13.  MSRs in the Pentium 4 and Intel Xeon Processors 

Register 
Address

Register Name
Fields and Flags

Model 
Avail-
ability

Shared/
Unique1 Bit Description
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0H 0 IA32_P5_MC_ADDR 0, 1, 2, 
3, 4, 6

Shared See Section 34.13, “MSRs in 
Pentium Processors.”

1H 1 IA32_P5_MC_TYPE 0, 1, 2, 
3, 4, 6

Shared See Section 34.13, “MSRs in 
Pentium Processors.”

6H 6 IA32_MONITOR_
FILTER_LINE_SIZE

3, 4, 6 Shared See Section 8.10.5, 
“Monitor/Mwait Address Range 
Determination.”

10H 16 IA32_TIME_STAMP_
COUNTER

0, 1, 2, 
3, 4, 6

Unique Time Stamp Counter. 

See Table 34-2.
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On earlier processors, only the 
lower 32 bits are writable. On any 
write to the lower 32 bits, the 
upper 32 bits are cleared. For 
processor family 0FH, models 3 
and 4: all 64 bits are writable.

17H 23 IA32_PLATFORM_ID 0, 1, 2, 
3, 4, 6

Shared Platform ID. (R). See Table 34-2.

The operating system can use this 
MSR to determine “slot” 
information for the processor and 
the proper microcode update to 
load.

1BH 27 IA32_APIC_BASE 0, 1, 2, 
3, 4, 6

Unique APIC Location and Status. (R/W)

See Table 34-2. See Section 
10.4.4, “Local APIC Status and 
Location.”

2AH 42 MSR_EBC_HARD_
POWERON

0, 1, 2, 
3, 4, 6

Shared Processor Hard Power-On 
Configuration. 

(R/W) Enables and disables 
processor features; (R) indicates 
current processor configuration.

0 Output Tri-state Enabled. (R)

Indicates whether tri-state output 
is enabled (1) or disabled (0) as set 
by the strapping of SMI#. The 
value in this bit is written on the 
deassertion of RESET#; the bit is 
set to 1 when the address bus 
signal is asserted.

1 Execute BIST. (R) 

Indicates whether the execution 
of the BIST is enabled (1) or 
disabled (0) as set by the 
strapping of INIT#. The value in 
this bit is written on the 
deassertion of RESET#; the bit is 
set to 1 when the address bus 
signal is asserted.

Table 34-13.  MSRs in the Pentium 4 and Intel Xeon Processors  (Contd.)
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2 In Order Queue Depth. (R)

Indicates whether the in order 
queue depth for the system bus is 
1 (1) or up to 12 (0) as set by the 
strapping of A7#. The value in this 
bit is written on the deassertion of 
RESET#; the bit is set to 1 when 
the address bus signal is asserted.

3 MCERR# Observation Disabled. 
(R)

Indicates whether MCERR# 
observation is enabled (0) or 
disabled (1) as determined by the 
strapping of A9#. The value in this 
bit is written on the deassertion of 
RESET#; the bit is set to 1 when 
the address bus signal is asserted.

4 BINIT# Observation Enabled. (R)

Indicates whether BINIT# 
observation is enabled (0) or 
disabled (1) as determined by the 
strapping of A10#. The value in 
this bit is written on the 
deassertion of RESET#; the bit is 
set to 1 when the address bus 
signal is asserted.

6:5 APIC Cluster ID. (R) 

Contains the logical APIC cluster ID 
value as set by the strapping of 
A12# and A11#. The logical 
cluster ID value is written into the 
field on the deassertion of 
RESET#; the field is set to 1 when 
the address bus signal is asserted.

Table 34-13.  MSRs in the Pentium 4 and Intel Xeon Processors  (Contd.)
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7 Bus Park Disable. (R) 

Indicates whether bus park is 
enabled (0) or disabled (1) as set 
by the strapping of A15#. The 
value in this bit is written on the 
deassertion of RESET#; the bit is 
set to 1 when the address bus 
signal is asserted.

11:8 Reserved.

13:12 Agent ID. (R) 

Contains the logical agent ID value 
as set by the strapping of BR[3:0]. 
The logical ID value is written into 
the field on the deassertion of 
RESET#; the field is set to 1 when 
the address bus signal is asserted.

63:14 Reserved.

2BH 43 MSR_EBC_SOFT_
POWERON

0, 1, 2, 
3, 4, 6

Shared Processor Soft Power-On 
Configuration. (R/W) 

Enables and disables processor 
features.

0 RCNT/SCNT On Request 
Encoding Enable. (R/W) 

Controls the driving of RCNT/SCNT 
on the request encoding. Set to 
enable (1); clear to disabled (0, 
default).

1 Data Error Checking Disable. 
(R/W) 

Set to disable system data bus 
parity checking; clear to enable 
parity checking.

2 Response Error Checking 
Disable. (R/W) 

Set to disable (default); clear to 
enable. 
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3 Address/Request Error Checking 
Disable. (R/W) 

Set to disable (default); clear to 
enable.

4 Initiator MCERR# Disable. (R/W)

Set to disable MCERR# driving for 
initiator bus requests (default); 
clear to enable. 

5 Internal MCERR# Disable. (R/W)

Set to disable MCERR# driving for 
initiator internal errors (default); 
clear to enable. 

6 BINIT# Driver Disable. (R/W) 

Set to disable BINIT# driver 
(default); clear to enable driver.

63:7 Reserved.

2CH 44 MSR_EBC_
FREQUENCY_ID

2,3, 4, 
6

Shared Processor Frequency 
Configuration. 

The bit field layout of this MSR 
varies according to the MODEL 
value in the CPUID version 
information. The following bit field 
layout applies to Pentium 4 and 
Xeon Processors with MODEL 
encoding equal or greater than 2. 

(R) The field Indicates the current 
processor frequency configuration.

15:0 Reserved.
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18:16 Scalable Bus Speed. (R/W)

Indicates the intended scalable 
bus speed:
Encoding Scalable Bus Speed
000B 100 MHz (Model 2)
000B 266 MHz (Model 3 or 4)
001B 133 MHz
010B 200 MHz
011B 166 MHz
100B 333 MHz (Model 6)

133.33 MHz should be utilized if 
performing calculation with 
System Bus Speed when encoding 
is 001B. 

166.67 MHz should be utilized if 
performing calculation with 
System Bus Speed when encoding 
is 011B.

266.67 MHz should be utilized if 
performing calculation with 
System Bus Speed when encoding 
is 000B and model encoding = 3 
or 4.

333.33 MHz should be utilized if 
performing calculation with 
System Bus Speed when encoding 
is 100B and model encoding = 6.

All other values are reserved.

23:19 Reserved.

31:24 Core Clock Frequency to System 
Bus Frequency Ratio. (R)

The processor core clock 
frequency to system bus 
frequency ratio observed at the 
de-assertion of the reset pin.

63:25 Reserved.
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Register 
Address

Register Name
Fields and Flags

Model 
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
34-174 Vol. 3C



MODEL-SPECIFIC REGISTERS (MSRS)
2CH 44 MSR_EBC_
FREQUENCY_ID

0, 1 Shared Processor Frequency 
Configuration. (R) 

The bit field layout of this MSR 
varies according to the MODEL 
value of the CPUID version 
information. This bit field layout 
applies to Pentium 4 and Xeon 
Processors with MODEL encoding 
less than 2.

Indicates current processor 
frequency configuration.

20:0 Reserved.

23:21 Scalable Bus Speed. (R/W)

Indicates the intended scalable 
bus speed:
Encoding Scalable Bus Speed
000B 100 MHz

All others values reserved.

63:24 Reserved.

3AH 58 IA32_FEATURE_
CONTROL

3, 4, 6 Unique Control Features in IA-32 
Processor. (R/W). See Table 34-2

(If CPUID.01H:ECX.[bit 5])

79H 121 IA32_BIOS_UPDT_
TRIG

0, 1, 2, 
3, 4, 6

Shared BIOS Update Trigger Register. 
(W) See Table 34-2.

8BH 139 IA32_BIOS_SIGN_ID 0, 1, 2, 
3, 4, 6

Unique BIOS Update Signature ID. (R/W)

See Table 34-2.

9BH 155 IA32_SMM_MONITOR_
CTL

3, 4, 6 Unique SMM Monitor Configuration. 
(R/W). See Table 34-2.

FEH 254 IA32_MTRRCAP 0, 1, 2, 
3, 4, 6

Unique MTRR Information. 

See Section 11.11.1, “MTRR 
Feature Identification.”.
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174H 372 IA32_SYSENTER_CS 0, 1, 2, 
3, 4, 6

Unique CS register target for CPL 0 
code. (R/W). See Table 34-2.

See Section 5.8.7, “Performing 
Fast Calls to System Procedures 
with the SYSENTER and SYSEXIT 
Instructions.”

175H 373 IA32_SYSENTER_ESP 0, 1, 2, 
3, 4, 6

Unique Stack pointer for CPL 0 stack. 
(R/W). See Table 34-2.

See Section 5.8.7, “Performing 
Fast Calls to System Procedures 
with the SYSENTER and SYSEXIT 
Instructions.”

176H 374 IA32_SYSENTER_EIP 0, 1, 2, 
3, 4, 6

Unique CPL 0 code entry point. (R/W). 

See Table 34-2. See Section 5.8.7, 
“Performing Fast Calls to System 
Procedures with the SYSENTER 
and SYSEXIT Instructions.”

179H 377 IA32_MCG_CAP 0, 1, 2, 
3, 4, 6

Unique Machine Check Capabilities. (R)

See Table 34-2. See Section 
15.3.1.1, “IA32_MCG_CAP MSR.”

17AH 378 IA32_MCG_STATUS 0, 1, 2, 
3, 4, 6

Unique Machine Check Status. (R). See 
Table 34-2. See Section 15.3.1.2, 
“IA32_MCG_STATUS MSR.”

17BH 379 IA32_MCG_CTL Machine Check Feature Enable. 
(R/W). See Table 34-2.

See Section 15.3.1.3, 
“IA32_MCG_CTL MSR.”

180H 384 MSR_MCG_RAX 0, 1, 2, 
3, 4, 6

Unique Machine Check EAX/RAX Save 
State. 

See Section 15.3.2.6, “IA32_MCG 
Extended Machine Check State 
MSRs.”

63:0 Contains register state at time of 
machine check error. When in non-
64-bit modes at the time of the 
error, bits 63-32 do not contain 
valid data.
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181H 385 MSR_MCG_RBX 0, 1, 2, 
3, 4, 6

Unique Machine Check EBX/RBX Save 
State. 

See Section 15.3.2.6, “IA32_MCG 
Extended Machine Check State 
MSRs.”

63:0 Contains register state at time of 
machine check error. When in non-
64-bit modes at the time of the 
error, bits 63-32 do not contain 
valid data.

182H 386 MSR_MCG_RCX 0, 1, 2, 
3, 4, 6

Unique Machine Check ECX/RCX Save 
State. 

See Section 15.3.2.6, “IA32_MCG 
Extended Machine Check State 
MSRs.”

63:0 Contains register state at time of 
machine check error. When in non-
64-bit modes at the time of the 
error, bits 63-32 do not contain 
valid data.

183H 387 MSR_MCG_RDX 0, 1, 2, 
3, 4, 6

Unique Machine Check EDX/RDX Save 
State. 

See Section 15.3.2.6, “IA32_MCG 
Extended Machine Check State 
MSRs.”

63:0 Contains register state at time of 
machine check error. When in non-
64-bit modes at the time of the 
error, bits 63-32 do not contain 
valid data.

184H 388 MSR_MCG_RSI 0, 1, 2, 
3, 4, 6

Unique Machine Check ESI/RSI Save 
State.

See Section 15.3.2.6, “IA32_MCG 
Extended Machine Check State 
MSRs.”
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63:0 Contains register state at time of 
machine check error. When in non-
64-bit modes at the time of the 
error, bits 63-32 do not contain 
valid data.

185H 389 MSR_MCG_RDI 0, 1, 2, 
3, 4, 6

Unique Machine Check EDI/RDI Save 
State.

See Section 15.3.2.6, “IA32_MCG 
Extended Machine Check State 
MSRs.”

63:0 Contains register state at time of 
machine check error. When in non-
64-bit modes at the time of the 
error, bits 63-32 do not contain 
valid data.

186H 390 MSR_MCG_RBP 0, 1, 2, 
3, 4, 6

Unique Machine Check EBP/RBP Save 
State. 

See Section 15.3.2.6, “IA32_MCG 
Extended Machine Check State 
MSRs.”

63:0 Contains register state at time of 
machine check error. When in non-
64-bit modes at the time of the 
error, bits 63-32 do not contain 
valid data.

187H 391 MSR_MCG_RSP 0, 1, 2, 
3, 4, 6

Unique Machine Check ESP/RSP Save 
State. 

See Section 15.3.2.6, “IA32_MCG 
Extended Machine Check State 
MSRs.”

63:0 Contains register state at time of 
machine check error. When in non-
64-bit modes at the time of the 
error, bits 63-32 do not contain 
valid data.
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188H 392 MSR_MCG_RFLAGS 0, 1, 2, 
3, 4, 6

Unique Machine Check EFLAGS/RFLAG 
Save State. 

See Section 15.3.2.6, “IA32_MCG 
Extended Machine Check State 
MSRs.”

63:0 Contains register state at time of 
machine check error. When in non-
64-bit modes at the time of the 
error, bits 63-32 do not contain 
valid data.

189H 393 MSR_MCG_RIP 0, 1, 2, 
3, 4, 6

Unique Machine Check EIP/RIP Save 
State. 

See Section 15.3.2.6, “IA32_MCG 
Extended Machine Check State 
MSRs.”

63:0 Contains register state at time of 
machine check error. When in non-
64-bit modes at the time of the 
error, bits 63-32 do not contain 
valid data.

18AH 394 MSR_MCG_MISC 0, 1, 2, 
3, 4, 6

Unique Machine Check Miscellaneous. 

See Section 15.3.2.6, “IA32_MCG 
Extended Machine Check State 
MSRs.”

0 DS. 

When set, the bit indicates that a 
page assist or page fault occurred 
during DS normal operation. The 
processors response is to shut 
down. 

The bit is used as an aid for 
debugging DS handling code. It is 
the responsibility of the user (BIOS 
or operating system) to clear this 
bit for normal operation.

63:1 Reserved.
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18BH - 
18FH

395 MSR_MCG_
RESERVED1 - 
MSR_MCG_
RESERVED5

Reserved.

190H 400 MSR_MCG_R8 0, 1, 2, 
3, 4, 6

Unique Machine Check R8. 

See Section 15.3.2.6, “IA32_MCG 
Extended Machine Check State 
MSRs.”

63-0 Registers R8-15 (and the 
associated state-save MSRs) exist 
only in Intel 64 processors. These 
registers contain valid information 
only when the processor is 
operating in 64-bit mode at the 
time of the error.

191H 401 MSR_MCG_R9 0, 1, 2, 
3, 4, 6

Unique Machine Check R9D/R9. 

See Section 15.3.2.6, “IA32_MCG 
Extended Machine Check State 
MSRs.”

63-0 Registers R8-15 (and the 
associated state-save MSRs) exist 
only in Intel 64 processors. These 
registers contain valid information 
only when the processor is 
operating in 64-bit mode at the 
time of the error.

192H 402 MSR_MCG_R10 0, 1, 2, 
3, 4, 6

Unique Machine Check R10. 

See Section 15.3.2.6, “IA32_MCG 
Extended Machine Check State 
MSRs.”

63-0 Registers R8-15 (and the 
associated state-save MSRs) exist 
only in Intel 64 processors. These 
registers contain valid information 
only when the processor is 
operating in 64-bit mode at the 
time of the error.
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193H 403 MSR_MCG_R11 0, 1, 2, 
3, 4, 6

Unique Machine Check R11. 

See Section 15.3.2.6, “IA32_MCG 
Extended Machine Check State 
MSRs.”

63-0 Registers R8-15 (and the 
associated state-save MSRs) exist 
only in Intel 64 processors. These 
registers contain valid information 
only when the processor is 
operating in 64-bit mode at the 
time of the error.

194H 404 MSR_MCG_R12 0, 1, 2, 
3, 4, 6

Unique Machine Check R12. 

See Section 15.3.2.6, “IA32_MCG 
Extended Machine Check State 
MSRs.”

63-0 Registers R8-15 (and the 
associated state-save MSRs) exist 
only in Intel 64 processors. These 
registers contain valid information 
only when the processor is 
operating in 64-bit mode at the 
time of the error.

195H 405 MSR_MCG_R13 0, 1, 2, 
3, 4, 6

Unique Machine Check R13. 

See Section 15.3.2.6, “IA32_MCG 
Extended Machine Check State 
MSRs.”

63-0 Registers R8-15 (and the 
associated state-save MSRs) exist 
only in Intel 64 processors. These 
registers contain valid information 
only when the processor is 
operating in 64-bit mode at the 
time of the error.

196H 406 MSR_MCG_R14 0, 1, 2, 
3, 4, 6

Unique Machine Check R14. 

See Section 15.3.2.6, “IA32_MCG 
Extended Machine Check State 
MSRs.”
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63-0 Registers R8-15 (and the 
associated state-save MSRs) exist 
only in Intel 64 processors. These 
registers contain valid information 
only when the processor is 
operating in 64-bit mode at the 
time of the error.

197H 407 MSR_MCG_R15 0, 1, 2, 
3, 4, 6

Unique Machine Check R15. 

See Section 15.3.2.6, “IA32_MCG 
Extended Machine Check State 
MSRs.”

63-0 Registers R8-15 (and the 
associated state-save MSRs) exist 
only in Intel 64 processors. These 
registers contain valid information 
only when the processor is 
operating in 64-bit mode at the 
time of the error.

198H 408 IA32_PERF_STATUS 3, 4, 6 Unique See Table 34-2. See Section 14.1, 
“Enhanced Intel Speedstep® 
Technology.”

199H 409 IA32_PERF_CTL 3, 4, 6 Unique See Table 34-2. See Section 14.1, 
“Enhanced Intel Speedstep® 
Technology.”

19AH 410 IA32_CLOCK_
MODULATION 

0, 1, 2, 
3, 4, 6

Unique Thermal Monitor Control. (R/W)

See Table 34-2. 

See Section 14.5.3, “Software 
Controlled Clock Modulation.”

19BH 411 IA32_THERM_
INTERRUPT

0, 1, 2, 
3, 4, 6

Unique Thermal Interrupt Control. (R/W)

See Section 14.5.2, “Thermal 
Monitor,” and see Table 34-2.

19CH 412 IA32_THERM_STATUS 0, 1, 2, 
3, 4, 6

Shared Thermal Monitor Status. (R/W)

See Section 14.5.2, “Thermal 
Monitor,” and see Table 34-2.

19DH 413 MSR_THERM2_CTL Thermal Monitor 2 Control.
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3, Shared For Family F, Model 3 processors: 
When read, specifies the value of 
the target TM2 transition last 
written. When set, it sets the next 
target value for TM2 transition. 

4, 6 Shared For Family F, Model 4 and Model 6 
processors: When read, specifies 
the value of the target TM2 
transition last written. Writes may 
cause #GP exceptions.

1A0H 416 IA32_MISC_ENABLE 0, 1, 2, 
3, 4, 6

Shared Enable Miscellaneous Processor 
Features. (R/W) 

0 Fast-Strings Enable. See 
Table 34-2.

1 Reserved. 

2 x87 FPU Fopcode Compatibility 
Mode Enable. 

3 Thermal Monitor 1 Enable. 

See Section 14.5.2, “Thermal 
Monitor,” and see Table 34-2.

4 Split-Lock Disable. 

When set, the bit causes an #AC 
exception to be issued instead of a 
split-lock cycle. Operating systems 
that set this bit must align system 
structures to avoid split-lock 
scenarios. 

When the bit is clear (default), 
normal split-locks are issued to the 
bus.

This debug feature is specific to 
the Pentium 4 processor.

5 Reserved.
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6 Third-Level Cache Disable. (R/W)

When set, the third-level cache is 
disabled; when clear (default) the 
third-level cache is enabled. This 
flag is reserved for processors 
that do not have a third-level 
cache. 

Note that the bit controls only the 
third-level cache; and only if 
overall caching is enabled through 
the CD flag of control register CR0, 
the page-level cache controls, 
and/or the MTRRs.

See Section 11.5.4, “Disabling and 
Enabling the L3 Cache.”

7 Performance Monitoring 
Available. (R). See Table 34-2.

8 Suppress Lock Enable. 

When set, assertion of LOCK on 
the bus is suppressed during a 
Split Lock access. When clear 
(default), LOCK is not suppressed.

9 Prefetch Queue Disable. 

When set, disables the prefetch 
queue. When clear (default), 
enables the prefetch queue.

10 FERR# Interrupt Reporting 
Enable. (R/W) 

When set, interrupt reporting 
through the FERR# pin is enabled; 
when clear, this interrupt 
reporting function is disabled. 
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When this flag is set and the 
processor is in the stop-clock state 
(STPCLK# is asserted), asserting 
the FERR# pin signals to the 
processor that an interrupt (such 
as, INIT#, BINIT#, INTR, NMI, SMI#, 
or RESET#) is pending and that 
the processor should return to 
normal operation to handle the 
interrupt.

This flag does not affect the 
normal operation of the FERR# pin 
(to indicate an unmasked floating-
point error) when the STPCLK# 
pin is not asserted.

11 Branch Trace Storage 
Unavailable (BTS_UNAVILABLE). 
(R). See Table 34-2.

When set, the processor does not 
support branch trace storage 
(BTS); when clear, BTS is 
supported.

12 PEBS_UNAVILABLE: Precise 
Event Based Sampling 
Unavailable. (R). See Table 34-2.

When set, the processor does not 
support precise event-based 
sampling (PEBS); when clear, PEBS 
is supported.

13 3 TM2 Enable. (R/W)

When this bit is set (1) and the 
thermal sensor indicates that the 
die temperature is at the pre-
determined threshold, the 
Thermal Monitor 2 mechanism is 
engaged. TM2 will reduce the bus 
to core ratio and voltage according 
to the value last written to 
MSR_THERM2_CTL bits 15:0.
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When this bit is clear (0, default), 
the processor does not change the 
VID signals or the bus to core ratio 
when the processor enters a 
thermal managed state.

If the TM2 feature flag (ECX[8]) is 
not set to 1 after executing CPUID 
with EAX = 1, then this feature is 
not supported and BIOS must not 
alter the contents of this bit 
location. The processor is 
operating out of spec if both this 
bit and the TM1 bit are set to 
disabled states.

17:14 Reserved.

18 3, 4, 6 ENABLE MONITOR FSM. (R/W)

See Table 34-2.

19 Adjacent Cache Line Prefetch 
Disable. (R/W) 

When set to 1, the processor 
fetches the cache line of the 128-
byte sector containing currently 
required data. When set to 0, the 
processor fetches both cache lines 
in the sector.

Single processor platforms should 
not set this bit. Server platforms 
should set or clear this bit based 
on platform performance 
observed in validation and testing. 

BIOS may contain a setup option 
that controls the setting of this bit.

21:20 Reserved.

22 3, 4, 6 Limit CPUID MAXVAL. (R/W) 

See Table 34-2.
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Setting this can cause unexpected 
behavior to software that 
depends on the availability of 
CPUID leaves greater than 3.

23 Shared xTPR Message Disable. (R/W)

See Table 34-2.

24 L1 Data Cache Context Mode. 
(R/W) 

When set, the L1 data cache is 
placed in shared mode; when clear 
(default), the cache is placed in 
adaptive mode. This bit is only 
enabled for IA-32 processors that 
support Intel Hyper-Threading 
Technology. See Section 11.5.6, 
“L1 Data Cache Context Mode.”

When L1 is running in adaptive 
mode and CR3s are identical, data 
in L1 is shared across logical 
processors. Otherwise, L1 is not 
shared and cache use is 
competitive.

If the Context ID feature flag 
(ECX[10]) is set to 0 after 
executing CPUID with EAX = 1, the 
ability to switch modes is not 
supported. BIOS must not alter the 
contents of 
IA32_MISC_ENABLE[24].

33:25 Reserved.

34 Unique XD Bit Disable. (R/W)

See Table 34-2.

63:35 Reserved.

1A1H 417 MSR_PLATFORM_BRV 3, 4, 6 Shared Platform Feature Requirements. 
(R)

17:0 Reserved.
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18 PLATFORM Requirements.

When set to 1, indicates the 
processor has specific platform 
requirements. The details of the 
platform requirements are listed in 
the respective data sheets of the 
processor.

63:19 Reserved.

1D7H 471 MSR_LER_FROM_LIP 0, 1, 2, 
3, 4, 6

Unique Last Exception Record From 
Linear IP. (R) 

Contains a pointer to the last 
branch instruction that the 
processor executed prior to the 
last exception that was generated 
or the last interrupt that was 
handled.

See Section 17.8.3, “Last 
Exception Records.”

31:0 From Linear IP.

Linear address of the last branch 
instruction. 

63:32 Reserved.

1D7H 471 63:0 Unique From Linear IP.

Linear address of the last branch 
instruction (If IA-32e mode is 
active). 

1D8H 472 MSR_LER_TO_LIP 0, 1, 2, 
3, 4, 6

Unique Last Exception Record To Linear 
IP. (R) 

This area contains a pointer to the 
target of the last branch 
instruction that the processor 
executed prior to the last 
exception that was generated or 
the last interrupt that was 
handled.

See Section 17.8.3, “Last 
Exception Records.”
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31:0 From Linear IP.

Linear address of the target of the 
last branch instruction. 

63:32 Reserved.

1D8H 472 63:0 Unique From Linear IP.

Linear address of the target of the 
last branch instruction (If IA-32e 
mode is active).

1D9H 473 MSR_DEBUGCTLA 0, 1, 2, 
3, 4, 6

Unique Debug Control. (R/W) 

Controls how several debug 
features are used. Bit definitions 
are discussed in the referenced 
section.

See Section 17.8.1, 
“MSR_DEBUGCTLA MSR.”

1DAH 474 MSR_LASTBRANCH
_TOS

0, 1, 2, 
3, 4, 6

Unique Last Branch Record Stack TOS. 
(R) 

Contains an index (0-3 or 0-15) 
that points to the top of the last 
branch record stack (that is, that 
points the index of the MSR 
containing the most recent branch 
record).

See Section 17.8.2, “LBR Stack for 
Processors Based on Intel 
NetBurst® Microarchitecture”; and 
addresses 1DBH-1DEH and 680H-
68FH.
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1DBH 475 MSR_LASTBRANCH_0 0, 1, 2 Unique Last Branch Record 0. (R/W) 

One of four last branch record 
registers on the last branch record 
stack. It contains pointers to the 
source and destination instruction 
for one of the last four branches, 
exceptions, or interrupts that the 
processor took.

MSR_LASTBRANCH_0 through 
MSR_LASTBRANCH_3 at 1DBH-
1DEH are available only on family 
0FH, models 0H-02H. They have 
been replaced by the MSRs at 
680H-68FH and 6C0H-6CFH. 

See Section 17.8, “Last Branch, 
Interrupt, and Exception Recording 
(Processors based on Intel 
NetBurst® Microarchitecture).”

1DDH 477 MSR_LASTBRANCH_2 0, 1, 2 Unique Last Branch Record 2. 

See description of the 
MSR_LASTBRANCH_0 MSR at 
1DBH.

1DEH 478 MSR_LASTBRANCH_3 0, 1, 2 Unique Last Branch Record 3. 

See description of the 
MSR_LASTBRANCH_0 MSR at 
1DBH.

200H 512 IA32_MTRR_PHYS
BASE0

0, 1, 2, 
3, 4, 6

Shared Variable Range Base MTRR. 

See Section 11.11.2.3, “Variable 
Range MTRRs.”

201H 513 IA32_MTRR_
PHYSMASK0

0, 1, 2, 
3, 4, 6

Shared Variable Range Mask MTRR. 

See Section 11.11.2.3, “Variable 
Range MTRRs.”

202H 514 IA32_MTRR_
PHYSBASE1

0, 1, 2, 
3, 4, 6

Shared Variable Range Mask MTRR. 

See Section 11.11.2.3, “Variable 
Range MTRRs.”
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203H 515 IA32_MTRR_
PHYSMASK1

0, 1, 2, 
3, 4, 6

Shared Variable Range Mask MTRR. 

See Section 11.11.2.3, “Variable 
Range MTRRs.”

204H 516 IA32_MTRR_
PHYSBASE2

0, 1, 2, 
3, 4, 6

Shared Variable Range Mask MTRR. 

See Section 11.11.2.3, “Variable 
Range MTRRs.”

205H 517 IA32_MTRR_
PHYSMASK2

0, 1, 2, 
3, 4, 6

Shared Variable Range Mask MTRR. 

See Section 11.11.2.3, “Variable 
Range MTRRs”.

206H 518 IA32_MTRR_
PHYSBASE3

0, 1, 2, 
3, 4, 6

Shared Variable Range Mask MTRR. 

See Section 11.11.2.3, “Variable 
Range MTRRs.”

207H 519 IA32_MTRR_
PHYSMASK3

0, 1, 2, 
3, 4, 6

Shared Variable Range Mask MTRR. 

See Section 11.11.2.3, “Variable 
Range MTRRs.”

208H 520 IA32_MTRR_
PHYSBASE4

0, 1, 2, 
3, 4, 6

Shared Variable Range Mask MTRR. 

See Section 11.11.2.3, “Variable 
Range MTRRs.”

209H 521 IA32_MTRR_
PHYSMASK4

0, 1, 2, 
3, 4, 6

Shared Variable Range Mask MTRR. 

See Section 11.11.2.3, “Variable 
Range MTRRs.”

20AH 522 IA32_MTRR_
PHYSBASE5

0, 1, 2, 
3, 4, 6

Shared Variable Range Mask MTRR. 

See Section 11.11.2.3, “Variable 
Range MTRRs.”

20BH 523 IA32_MTRR_
PHYSMASK5

0, 1, 2, 
3, 4, 6

Shared Variable Range Mask MTRR. 

See Section 11.11.2.3, “Variable 
Range MTRRs.”

20CH 524 IA32_MTRR_
PHYSBASE6

0, 1, 2, 
3, 4, 6

Shared Variable Range Mask MTRR. 

See Section 11.11.2.3, “Variable 
Range MTRRs.”

20DH 525 IA32_MTRR_
PHYSMASK6

0, 1, 2, 
3, 4, 6

Shared Variable Range Mask MTRR. 

See Section 11.11.2.3, “Variable 
Range MTRRs.”
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20EH 526 IA32_MTRR_
PHYSBASE7

0, 1, 2, 
3, 4, 6

Shared Variable Range Mask MTRR. 

See Section 11.11.2.3, “Variable 
Range MTRRs.”

20FH 527 IA32_MTRR_
PHYSMASK7

0, 1, 2, 
3, 4, 6

Shared Variable Range Mask MTRR. 

See Section 11.11.2.3, “Variable 
Range MTRRs.”

250H 592 IA32_MTRR_FIX64K_
00000

0, 1, 2, 
3, 4, 6

Shared Fixed Range MTRR. 

See Section 11.11.2.2, “Fixed 
Range MTRRs.”

258H 600 IA32_MTRR_FIX16K_
80000

0, 1, 2, 
3, 4, 6

Shared Fixed Range MTRR. 

See Section 11.11.2.2, “Fixed 
Range MTRRs.”

259H 601 IA32_MTRR_FIX16K_
A0000

0, 1, 2, 
3, 4, 6

Shared Fixed Range MTRR. 

See Section 11.11.2.2, “Fixed 
Range MTRRs.”

268H 616 IA32_MTRR_FIX4K_
C0000

0, 1, 2, 
3, 4, 6

Shared Fixed Range MTRR. 

See Section 11.11.2.2, “Fixed 
Range MTRRs.”

269H 617 IA32_MTRR_FIX4K_
C8000

0, 1, 2, 
3, 4, 6

Shared Fixed Range MTRR. 

See Section 11.11.2.2, “Fixed 
Range MTRRs”.

26AH 618 IA32_MTRR_FIX4K_
D0000

0, 1, 2, 
3, 4, 6

Shared Fixed Range MTRR. 

See Section 11.11.2.2, “Fixed 
Range MTRRs”.

26BH 619 IA32_MTRR_FIX4K_
D8000

0, 1, 2, 
3, 4, 6

Shared Fixed Range MTRR. 

See Section 11.11.2.2, “Fixed 
Range MTRRs.”

26CH 620 IA32_MTRR_FIX4K_
E0000

0, 1, 2, 
3, 4, 6

Shared Fixed Range MTRR. 

See Section 11.11.2.2, “Fixed 
Range MTRRs.”

26DH 621 IA32_MTRR_FIX4K_
E8000

0, 1, 2, 
3, 4, 6

Shared Fixed Range MTRR. 

See Section 11.11.2.2, “Fixed 
Range MTRRs.”
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26EH 622 IA32_MTRR_FIX4K_
F0000

0, 1, 2, 
3, 4, 6

Shared Fixed Range MTRR. 

See Section 11.11.2.2, “Fixed 
Range MTRRs.”

26FH 623 IA32_MTRR_FIX4K_
F8000

0, 1, 2, 
3, 4, 6

Shared Fixed Range MTRR. 

See Section 11.11.2.2, “Fixed 
Range MTRRs.”

277H 631 IA32_PAT 0, 1, 2, 
3, 4, 6

Unique Page Attribute Table. 

See Section 11.11.2.2, “Fixed 
Range MTRRs.”

2FFH 767 IA32_MTRR_DEF_
TYPE

0, 1, 2, 
3, 4, 6

Shared Default Memory Types. (R/W) 

see Table 34-2 

See Section 11.11.2.1, 
“IA32_MTRR_DEF_TYPE MSR.”

300H 768 MSR_BPU_COUNTER0 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.2, 
“Performance Counters.”

301H 769 MSR_BPU_COUNTER1 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.2, 
“Performance Counters.”

302H 770 MSR_BPU_COUNTER2 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.2, 
“Performance Counters.”

303H 771 MSR_BPU_COUNTER3 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.2, 
“Performance Counters.”

304H 772 MSR_MS_COUNTER0 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.2, 
“Performance Counters.”

305H 773 MSR_MS_COUNTER1 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.2, 
“Performance Counters.”

306H 774 MSR_MS_COUNTER2 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.2, 
“Performance Counters.”

307H 775 MSR_MS_COUNTER3 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.2, 
“Performance Counters.”

308H 776 MSR_FLAME_
COUNTER0

0, 1, 2, 
3, 4, 6

Shared See Section 18.10.2, 
“Performance Counters.”

309H 777 MSR_FLAME_
COUNTER1

0, 1, 2, 
3, 4, 6

Shared See Section 18.10.2, 
“Performance Counters.”
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30AH 778 MSR_FLAME_
COUNTER2

0, 1, 2, 
3, 4, 6

Shared See Section 18.10.2, 
“Performance Counters.”

30BH 779 MSR_FLAME_
COUNTER3

0, 1, 2, 
3, 4, 6

Shared See Section 18.10.2, 
“Performance Counters.”

3OCH 780 MSR_IQ_COUNTER0 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.2, 
“Performance Counters.”

3ODH 781 MSR_IQ_COUNTER1 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.2, 
“Performance Counters.”

3OEH 782 MSR_IQ_COUNTER2 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.2, 
“Performance Counters.”

3OFH 783 MSR_IQ_COUNTER3 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.2, 
“Performance Counters.”

310H 784 MSR_IQ_COUNTER4 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.2, 
“Performance Counters.”

311H 785 MSR_IQ_COUNTER5 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.2, 
“Performance Counters.”

360H 864 MSR_BPU_CCCR0 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.3, “CCCR MSRs.”

361H 865 MSR_BPU_CCCR1 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.3, “CCCR MSRs.”

362H 866 MSR_BPU_CCCR2 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.3, “CCCR MSRs.”

363H 867 MSR_BPU_CCCR3 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.3, “CCCR MSRs.”

364H 868 MSR_MS_CCCR0 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.3, “CCCR MSRs.”

365H 869 MSR_MS_CCCR1 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.3, “CCCR MSRs.”

366H 870 MSR_MS_CCCR2 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.3, “CCCR MSRs.”

367H 871 MSR_MS_CCCR3 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.3, “CCCR MSRs.”

368H 872 MSR_FLAME_CCCR0 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.3, “CCCR MSRs.”
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369H 873 MSR_FLAME_CCCR1 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.3, “CCCR MSRs.”

36AH 874 MSR_FLAME_CCCR2 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.3, “CCCR MSRs.”

36BH 875 MSR_FLAME_CCCR3 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.3, “CCCR MSRs.”

36CH 876 MSR_IQ_CCCR0 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.3, “CCCR MSRs.”

36DH 877 MSR_IQ_CCCR1 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.3, “CCCR MSRs.”

36EH 878 MSR_IQ_CCCR2 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.3, “CCCR MSRs.”

36FH 879 MSR_IQ_CCCR3 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.3, “CCCR MSRs.”

370H 880 MSR_IQ_CCCR4 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.3, “CCCR MSRs.”

371H 881 MSR_IQ_CCCR5 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.3, “CCCR MSRs.”

3A0H 928 MSR_BSU_ESCR0 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3A1H 929 MSR_BSU_ESCR1 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3A2H 930 MSR_FSB_ESCR0 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3A3H 931 MSR_FSB_ESCR1 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3A4H 932 MSR_FIRM_ESCR0 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3A5H 933 MSR_FIRM_ESCR1 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3A6H 934 MSR_FLAME_ESCR0 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3A7H 935 MSR_FLAME_ESCR1 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”
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3A8H 936 MSR_DAC_ESCR0 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3A9H 937 MSR_DAC_ESCR1 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3AAH 938 MSR_MOB_ESCR0 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3ABH 939 MSR_MOB_ESCR1 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3ACH 940 MSR_PMH_ESCR0 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3ADH 941 MSR_PMH_ESCR1 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3AEH 942 MSR_SAAT_ESCR0 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3AFH 943 MSR_SAAT_ESCR1 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3B0H 944 MSR_U2L_ESCR0 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3B1H 945 MSR_U2L_ESCR1 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3B2H 946 MSR_BPU_ESCR0 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3B3H 947 MSR_BPU_ESCR1 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3B4H 948 MSR_IS_ESCR0 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3B5H 949 MSR_IS_ESCR1 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3B6H 950 MSR_ITLB_ESCR0 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3B7H 951 MSR_ITLB_ESCR1 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3B8H 952 MSR_CRU_ESCR0 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”
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3B9H 953 MSR_CRU_ESCR1 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3BAH 954 MSR_IQ_ESCR0 0, 1, 2 Shared See Section 18.10.1, “ESCR MSRs.”

This MSR is not available on later 
processors. It is only available on 
processor family 0FH, models 
01H-02H.

3BBH 955 MSR_IQ_ESCR1 0, 1, 2 Shared See Section 18.10.1, “ESCR MSRs.”

This MSR is not available on later 
processors. It is only available on 
processor family 0FH, models 
01H-02H.

3BCH 956 MSR_RAT_ESCR0 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3BDH 957 MSR_RAT_ESCR1 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3BEH 958 MSR_SSU_ESCR0 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3C0H 960 MSR_MS_ESCR0 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3C1H 961 MSR_MS_ESCR1 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3C2H 962 MSR_TBPU_ESCR0 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3C3H 963 MSR_TBPU_ESCR1 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3C4H 964 MSR_TC_ESCR0 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3C5H 965 MSR_TC_ESCR1 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3C8H 968 MSR_IX_ESCR0 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3C9H 969 MSR_IX_ESCR0 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”
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3CAH 970 MSR_ALF_ESCR0 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3CBH 971 MSR_ALF_ESCR1 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3CCH 972 MSR_CRU_ESCR2 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3CDH 973 MSR_CRU_ESCR3 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3E0H 992 MSR_CRU_ESCR4 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3E1H 993 MSR_CRU_ESCR5 0, 1, 2, 
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3FOH 1008 MSR_TC_PRECISE
_EVENT

0, 1, 2, 
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3F1H 1009 MSR_PEBS_ENABLE 0, 1, 2, 
3, 4, 6

Shared Precise Event-Based Sampling 
(PEBS). (R/W) 

Controls the enabling of precise 
event sampling and replay tagging. 

12:0 See Table 19-21.

23:13 Reserved.

24 UOP Tag. 

Enables replay tagging when set.

25 ENABLE_PEBS_MY_THR. (R/W)

Enables PEBS for the target logical 
processor when set; disables PEBS 
when clear (default). 

See Section 18.11.3, 
“IA32_PEBS_ENABLE MSR,” for an 
explanation of the target logical 
processor. 

This bit is called ENABLE_PEBS in 
IA-32 processors that do not 
support Intel Hyper-Threading 
Technology.
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26 ENABLE_PEBS_OTH_THR. (R/W)

Enables PEBS for the target logical 
processor when set; disables PEBS 
when clear (default).

See Section 18.11.3, 
“IA32_PEBS_ENABLE MSR,” for an 
explanation of the target logical 
processor. 

This bit is reserved for IA-32 
processors that do not support 
Intel Hyper-Threading Technology.

63:27 Reserved.

3F2H 1010 MSR_PEBS_MATRIX
_VERT

0, 1, 2, 
3, 4, 6

Shared See Table 19-21.

400H 1024 IA32_MC0_CTL 0, 1, 2, 
3, 4, 6

Shared See Section 15.3.2.1, 
“IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS 0, 1, 2, 
3, 4, 6

Shared See Section 15.3.2.2, 
“IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR 0, 1, 2, 
3, 4, 6

Shared See Section 15.3.2.3, 
“IA32_MCi_ADDR MSRs.” 

The IA32_MC0_ADDR register is 
either not implemented or 
contains no address if the ADDRV 
flag in the IA32_MC0_STATUS 
register is clear. 

When not implemented in the 
processor, all reads and writes to 
this MSR will cause a general-
protection exception.

403H 1027 IA32_MC0_MISC 0, 1, 2, 
3, 4, 6

Shared See Section 15.3.2.4, 
“IA32_MCi_MISC MSRs.”

The IA32_MC0_MISC MSR is either 
not implemented or does not 
contain additional information if 
the MISCV flag in the 
IA32_MC0_STATUS register is 
clear. 
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When not implemented in the 
processor, all reads and writes to 
this MSR will cause a general-
protection exception.

404H 1028 IA32_MC1_CTL 0, 1, 2, 
3, 4, 6

Shared See Section 15.3.2.1, 
“IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS 0, 1, 2, 
3, 4, 6

Shared See Section 15.3.2.2, 
“IA32_MCi_STATUS MSRS.”

406H 1030 IA32_MC1_ADDR 0, 1, 2, 
3, 4, 6

Shared See Section 15.3.2.3, 
“IA32_MCi_ADDR MSRs.” 

The IA32_MC1_ADDR register is 
either not implemented or 
contains no address if the ADDRV 
flag in the IA32_MC1_STATUS 
register is clear. 

When not implemented in the 
processor, all reads and writes to 
this MSR will cause a general-
protection exception.

407H 1031 IA32_MC1_MISC Shared See Section 15.3.2.4, 
“IA32_MCi_MISC MSRs.”

The IA32_MC1_MISC MSR is either 
not implemented or does not 
contain additional information if 
the MISCV flag in the 
IA32_MC1_STATUS register is 
clear. 

When not implemented in the 
processor, all reads and writes to 
this MSR will cause a general-
protection exception.

408H 1032 IA32_MC2_CTL 0, 1, 2, 
3, 4, 6

Shared See Section 15.3.2.1, 
“IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS 0, 1, 2, 
3, 4, 6

Shared See Section 15.3.2.2, 
“IA32_MCi_STATUS MSRS.”
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40AH 1034 IA32_MC2_ADDR See Section 15.3.2.3, 
“IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is 
either not implemented or 
contains no address if the ADDRV 
flag in the IA32_MC2_STATUS 
register is clear. When not 
implemented in the processor, all 
reads and writes to this MSR will 
cause a general-protection 
exception.

40BH 1035 IA32_MC2_MISC See Section 15.3.2.4, 
“IA32_MCi_MISC MSRs.”

The IA32_MC2_MISC MSR is either 
not implemented or does not 
contain additional information if 
the MISCV flag in the 
IA32_MC2_STATUS register is 
clear. 

When not implemented in the 
processor, all reads and writes to 
this MSR will cause a general-
protection exception.

40CH 1036 IA32_MC3_CTL 0, 1, 2, 
3, 4, 6

Shared See Section 15.3.2.1, 
“IA32_MCi_CTL MSRs.”

40DH 1037 IA32_MC3_STATUS 0, 1, 2, 
3, 4, 6

Shared See Section 15.3.2.2, 
“IA32_MCi_STATUS MSRS.”

40EH 1038 IA32_MC3_ADDR 0, 1, 2, 
3, 4, 6

Shared See Section 15.3.2.3, 
“IA32_MCi_ADDR MSRs.”

The IA32_MC3_ADDR register is 
either not implemented or 
contains no address if the ADDRV 
flag in the IA32_MC3_STATUS 
register is clear. 

When not implemented in the 
processor, all reads and writes to 
this MSR will cause a general-
protection exception.
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40FH 1039 IA32_MC3_MISC 0, 1, 2, 
3, 4, 6

Shared See Section 15.3.2.4, 
“IA32_MCi_MISC MSRs.”

The IA32_MC3_MISC MSR is either 
not implemented or does not 
contain additional information if 
the MISCV flag in the 
IA32_MC3_STATUS register is 
clear. 

When not implemented in the 
processor, all reads and writes to 
this MSR will cause a general-
protection exception.

410H 1040 IA32_MC4_CTL 0, 1, 2, 
3, 4, 6

Shared See Section 15.3.2.1, 
“IA32_MCi_CTL MSRs.”

411H 1041 IA32_MC4_STATUS 0, 1, 2, 
3, 4, 6

Shared See Section 15.3.2.2, 
“IA32_MCi_STATUS MSRS.”

412H 1042 IA32_MC4_ADDR See Section 15.3.2.3, 
“IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is 
either not implemented or 
contains no address if the ADDRV 
flag in the IA32_MC4_STATUS 
register is clear. 

When not implemented in the 
processor, all reads and writes to 
this MSR will cause a general-
protection exception.

413H 1043 IA32_MC4_MISC See Section 15.3.2.4, 
“IA32_MCi_MISC MSRs.” 

The IA32_MC2_MISC MSR is either 
not implemented or does not 
contain additional information if 
the MISCV flag in the 
IA32_MC4_STATUS register is 
clear. 

Table 34-13.  MSRs in the Pentium 4 and Intel Xeon Processors  (Contd.)

Register 
Address

Register Name
Fields and Flags

Model 
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
34-202 Vol. 3C



MODEL-SPECIFIC REGISTERS (MSRS)
When not implemented in the 
processor, all reads and writes to 
this MSR will cause a general-
protection exception.

480H 1152 IA32_VMX_BASIC 3, 4, 6 Unique Reporting Register of Basic VMX 
Capabilities. (R/O). See 
Table 34-2.

See Appendix A.1, “Basic VMX 
Information.”

481H 1153 IA32_VMX_PINBASED
_CTLS

3, 4, 6 Unique Capability Reporting Register of 
Pin-based VM-execution 
Controls. (R/O). See Table 34-2.

See Appendix A.3, “VM-Execution 
Controls.”

482H 1154 IA32_VMX_
PROCBASED_CTLS

3, 4, 6 Unique Capability Reporting Register of 
Primary Processor-based 
VM-execution Controls. (R/O)

See Appendix A.3, “VM-Execution 
Controls,” and see Table 34-2.

483H 1155 IA32_VMX_EXIT_CTLS 3, 4, 6 Unique Capability Reporting Register of 
VM-exit Controls. (R/O)

See Appendix A.4, “VM-Exit 
Controls,” and see Table 34-2.

484H 1156 IA32_VMX_ENTRY_
CTLS

3, 4, 6 Unique Capability Reporting Register of 
VM-entry Controls. (R/O)

See Appendix A.5, “VM-Entry 
Controls,” and see Table 34-2.

485H 1157 IA32_VMX_MISC 3, 4, 6 Unique Reporting Register of 
Miscellaneous VMX Capabilities. 
(R/O)

See Appendix A.6, “Miscellaneous 
Data,” and see Table 34-2.

486H 1158 IA32_VMX_CR0_
FIXED0

3, 4, 6 Unique Capability Reporting Register of 
CR0 Bits Fixed to 0. (R/O)

See Appendix A.7, “VMX-Fixed Bits 
in CR0,” and see Table 34-2.
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487H 1159 IA32_VMX_CR0_
FIXED1

3, 4, 6 Unique Capability Reporting Register of 
CR0 Bits Fixed to 1. (R/O)

See Appendix A.7, “VMX-Fixed Bits 
in CR0,” and see Table 34-2.

488H 1160 IA32_VMX_CR4_
FIXED0

3, 4, 6 Unique Capability Reporting Register of 
CR4 Bits Fixed to 0. (R/O)

See Appendix A.8, “VMX-Fixed Bits 
in CR4,” and see Table 34-2.

489H 1161 IA32_VMX_CR4_
FIXED1

3, 4, 6 Unique Capability Reporting Register of 
CR4 Bits Fixed to 1. (R/O)

See Appendix A.8, “VMX-Fixed Bits 
in CR4,” and see Table 34-2.

48AH 1162 IA32_VMX_VMCS_
ENUM

3, 4, 6 Unique Capability Reporting Register of 
VMCS Field Enumeration. (R/O).

See Appendix A.9, “VMCS 
Enumeration,” and see Table 34-2.

48BH 1163 IA32_VMX_
PROCBASED_CTLS2

3, 4, 6 Unique Capability Reporting Register of 
Secondary Processor-based 
VM-execution Controls. (R/O)

See Appendix A.3, “VM-Execution 
Controls,” and see Table 34-2.

600H 1536 IA32_DS_AREA 0, 1, 2, 
3, 4, 6

Unique DS Save Area. (R/W). See 
Table 34-2.

See Section 18.10.4, “Debug Store 
(DS) Mechanism.”

680H 1664 MSR_LASTBRANCH
_0_FROM_LIP

3, 4, 6 Unique Last Branch Record 0. (R/W) 

One of 16 pairs of last branch 
record registers on the last branch 
record stack (680H-68FH). This 
part of the stack contains pointers 
to the source instruction for one 
of the last 16 branches, 
exceptions, or interrupts taken by 
the processor.
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The MSRs at 680H-68FH, 6C0H-
6CfH are not available in processor 
releases before family 0FH, model 
03H. These MSRs replace MSRs 
previously located at 1DBH-
1DEH.which performed the same 
function for early releases. 

See Section 17.8, “Last Branch, 
Interrupt, and Exception Recording 
(Processors based on Intel 
NetBurst® Microarchitecture).”

681H 1665 MSR_LASTBRANCH
_1_FROM_LIP

3, 4, 6 Unique Last Branch Record 1. 

See description of 
MSR_LASTBRANCH_0 at 680H.

682H 1666 MSR_LASTBRANCH
_2_FROM_LIP

3, 4, 6 Unique Last Branch Record 2. 

See description of 
MSR_LASTBRANCH_0 at 680H.

683H 1667 MSR_LASTBRANCH
_3_FROM_LIP

3, 4, 6 Unique Last Branch Record 3. 

See description of 
MSR_LASTBRANCH_0 at 680H.

684H 1668 MSR_LASTBRANCH
_4_FROM_LIP

3, 4, 6 Unique Last Branch Record 4. 

See description of 
MSR_LASTBRANCH_0 at 680H.

685H 1669 MSR_LASTBRANCH
_5_FROM_LIP

3, 4, 6 Unique Last Branch Record 5. 

See description of 
MSR_LASTBRANCH_0 at 680H.

686H 1670 MSR_LASTBRANCH
_6_FROM_LIP

3, 4, 6 Unique Last Branch Record 6. 

See description of 
MSR_LASTBRANCH_0 at 680H.

687H 1671 MSR_LASTBRANCH
_7_FROM_LIP

3, 4, 6 Unique Last Branch Record 7. 

See description of 
MSR_LASTBRANCH_0 at 680H.

688H 1672 MSR_LASTBRANCH
_8_FROM_LIP

3, 4, 6 Unique Last Branch Record 8. 

See description of 
MSR_LASTBRANCH_0 at 680H.
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689H 1673 MSR_LASTBRANCH
_9_FROM_LIP

3, 4, 6 Unique Last Branch Record 9. 

See description of 
MSR_LASTBRANCH_0 at 680H.

68AH 1674 MSR_LASTBRANCH
_10_FROM_LIP

3, 4, 6 Unique Last Branch Record 10. 

See description of 
MSR_LASTBRANCH_0 at 680H.

68BH 1675 MSR_LASTBRANCH
_11_FROM_LIP

3, 4, 6 Unique Last Branch Record 11. 

See description of 
MSR_LASTBRANCH_0 at 680H.

68CH 1676 MSR_LASTBRANCH
_12_FROM_LIP

3, 4, 6 Unique Last Branch Record 12. 

See description of 
MSR_LASTBRANCH_0 at 680H.

68DH 1677 MSR_LASTBRANCH
_13_FROM_LIP

3, 4, 6 Unique Last Branch Record 13. 

See description of 
MSR_LASTBRANCH_0 at 680H.

68EH 1678 MSR_LASTBRANCH
_14_FROM_LIP

3, 4, 6 Unique Last Branch Record 14. 

See description of 
MSR_LASTBRANCH_0 at 680H.

68FH 1679 MSR_LASTBRANCH
_15_FROM_LIP

3, 4, 6 Unique Last Branch Record 15. 

See description of 
MSR_LASTBRANCH_0 at 680H.

6C0H 1728 MSR_LASTBRANCH
_0_TO_LIP

3, 4, 6 Unique Last Branch Record 0. (R/W) 

One of 16 pairs of last branch 
record registers on the last branch 
record stack (6C0H-6CFH). This 
part of the stack contains pointers 
to the destination instruction for 
one of the last 16 branches, 
exceptions, or interrupts that the 
processor took.

See Section 17.8, “Last Branch, 
Interrupt, and Exception Recording 
(Processors based on Intel 
NetBurst® Microarchitecture).”
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6C1H 1729 MSR_LASTBRANCH
_1_TO_LIP

3, 4, 6 Unique Last Branch Record 1. 

See description of 
MSR_LASTBRANCH_0 at 6C0H.

6C2H 1730 MSR_LASTBRANCH
_2_TO_LIP

3, 4, 6 Unique Last Branch Record 2. 

See description of 
MSR_LASTBRANCH_0 at 6C0H.

6C3H 1731 MSR_LASTBRANCH
_3_TO_LIP

3, 4, 6 Unique Last Branch Record 3. 

See description of 
MSR_LASTBRANCH_0 at 6C0H.

6C4H 1732 MSR_LASTBRANCH
_4_TO_LIP

3, 4, 6 Unique Last Branch Record 4. 

See description of 
MSR_LASTBRANCH_0 at 6C0H.

6C5H 1733 MSR_LASTBRANCH
_5_TO_LIP

3, 4, 6 Unique Last Branch Record 5. 

See description of 
MSR_LASTBRANCH_0 at 6C0H.

6C6H 1734 MSR_LASTBRANCH
_6_TO_LIP

3, 4, 6 Unique Last Branch Record 6. 

See description of 
MSR_LASTBRANCH_0 at 6C0H.

6C7H 1735 MSR_LASTBRANCH
_7_TO_LIP

3, 4, 6 Unique Last Branch Record 7. 

See description of 
MSR_LASTBRANCH_0 at 6C0H.

6C8H 1736 MSR_LASTBRANCH
_8_TO_LIP

3, 4, 6 Unique Last Branch Record 8. 

See description of 
MSR_LASTBRANCH_0 at 6C0H.

6C9H 1737 MSR_LASTBRANCH
_9_TO_LIP

3, 4, 6 Unique Last Branch Record 9. 

See description of 
MSR_LASTBRANCH_0 at 6C0H.

6CAH 1738 MSR_LASTBRANCH
_10_TO_LIP

3, 4, 6 Unique Last Branch Record 10. 

See description of 
MSR_LASTBRANCH_0 at 6C0H.

6CBH 1739 MSR_LASTBRANCH
_11_TO_LIP

3, 4, 6 Unique Last Branch Record 11. 

See description of 
MSR_LASTBRANCH_0 at 6C0H.
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6CCH 1740 MSR_LASTBRANCH
_12_TO_LIP

3, 4, 6 Unique Last Branch Record 12. 

See description of 
MSR_LASTBRANCH_0 at 6C0H.

6CDH 1741 MSR_LASTBRANCH
_13_TO_LIP

3, 4, 6 Unique Last Branch Record 13. 

See description of 
MSR_LASTBRANCH_0 at 6C0H.

6CEH 1742 MSR_LASTBRANCH
_14_TO_LIP

3, 4, 6 Unique Last Branch Record 14. 

See description of 
MSR_LASTBRANCH_0 at 6C0H.

6CFH 1743 MSR_LASTBRANCH
_15_TO_LIP

3, 4, 6 Unique Last Branch Record 15. 

See description of 
MSR_LASTBRANCH_0 at 6C0H.

C000_
0080H

IA32_EFER 3, 4, 6 Unique Extended Feature Enables. See 
Table 34-2.

C000_
0081H

IA32_STAR 3, 4, 6 Unique System Call Target Address. 
(R/W)

See Table 34-2.

C000_
0082H

IA32_LSTAR 3, 4, 6 Unique IA-32e Mode System Call Target 
Address. (R/W)

See Table 34-2.

C000_
0084H

IA32_FMASK 3, 4, 6 Unique System Call Flag Mask. (R/W) 

See Table 34-2.

C000_
0100H

IA32_FS_BASE 3, 4, 6 Unique Map of BASE Address of FS. 
(R/W)

See Table 34-2.

C000_
0101H

IA32_GS_BASE 3, 4, 6 Unique Map of BASE Address of GS. 
(R/W)

See Table 34-2.

C000_
0102H

IA32_KERNEL_
GSBASE

3, 4, 6 Unique Swap Target of BASE Address of 
GS. (R/W)

See Table 34-2.
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34.9.1  MSRs Unique to Intel Xeon Processor MP with L3 Cache
The MSRs listed in Table 34-14 apply to Intel Xeon Processor MP with up to 8MB level 
three cache. These processors can be detected by enumerating the deterministic 
cache parameter leaf of CPUID instruction (with EAX = 4 as input) to detect the pres-
ence of the third level cache, and with CPUID reporting family encoding 0FH, model 
encoding 3 or 4 (see CPUID instruction for more details).

NOTES
1. For HT-enabled processors, there may be more than one logical processors per physical unit. If 

an MSR is Shared, this means that one MSR is shared between logical processors. If an MSR is 
unique, this means that each logical processor has its own MSR.

Table 34-14.  MSRs Unique to 64-bit Intel Xeon Processor MP with 
Up to an 8 MB L3 Cache

Register Address

Register Name
Fields and Flags

Model 
Avail-
ability

Shared/
Unique Bit Description

107CCH MSR_IFSB_BUSQ0 3, 4 Shared IFSB BUSQ Event Control 
and Counter Register. 
(R/W)

See Section 18.15, 
“Performance Monitoring on 
64-bit Intel Xeon Processor 
MP with Up to 8-MByte L3 
Cache.”

107CDH MSR_IFSB_BUSQ1 3, 4 Shared IFSB BUSQ Event Control 
and Counter Register. 
(R/W) 

107CEH MSR_IFSB_SNPQ0 3, 4 Shared IFSB SNPQ Event Control 
and Counter Register. 
(R/W) 

See Section 18.15, 
“Performance Monitoring on 
64-bit Intel Xeon Processor 
MP with Up to 8-MByte L3 
Cache.”
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The MSRs listed in Table 34-15 apply to Intel Xeon Processor 7100 series. These 
processors can be detected by enumerating the deterministic cache parameter leaf of 
CPUID instruction (with EAX = 4 as input) to detect the presence of the third level 
cache, and with CPUID reporting family encoding 0FH, model encoding 6 (See CPUID 
instruction for more details.). The performance monitoring MSRs listed in 
Table 34-15 are shared between logical processors in the same core, but are repli-
cated for each core.

107CFH MSR_IFSB_SNPQ1 3, 4 Shared IFSB SNPQ Event Control 
and Counter Register. 
(R/W)

107D0H MSR_EFSB_DRDY0 3, 4 Shared EFSB DRDY Event Control 
and Counter Register. 
(R/W) 

See Section 18.15, 
“Performance Monitoring on 
64-bit Intel Xeon Processor 
MP with Up to 8-MByte L3 
Cache” for details.

107D1H MSR_EFSB_DRDY1 3, 4 Shared EFSB DRDY Event Control 
and Counter Register. 
(R/W)

107D2H MSR_IFSB_CTL6 3, 4 Shared IFSB Latency Event Control 
Register. (R/W)

See Section 18.15, 
“Performance Monitoring on 
64-bit Intel Xeon Processor 
MP with Up to 8-MByte L3 
Cache” for details.

107D3H MSR_IFSB_CNTR7 3, 4 Shared IFSB Latency Event 
Counter Register. (R/W) 

See Section 18.15, 
“Performance Monitoring on 
64-bit Intel Xeon Processor 
MP with Up to 8-MByte L3 
Cache.” 

Table 34-14.  MSRs Unique to 64-bit Intel Xeon Processor MP with 
Up to an 8 MB L3 Cache (Contd.)
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Table 34-15.  MSRs Unique to Intel Xeon Processor 7100 Series

Register Address

Register Name
Fields and Flags

Model 
Avail-
ability

Shared/
Unique Bit Description

107CCH MSR_EMON_L3_CTR_C
TL0

6 Shared GBUSQ Event Control and 
Counter Register. (R/W)

See Section 18.15, 
“Performance Monitoring on 
64-bit Intel Xeon Processor 
MP with Up to 8-MByte L3 
Cache.”

107CDH MSR_EMON_L3_CTR_C
TL1

6 Shared GBUSQ Event Control and 
Counter Register. (R/W) 

107CEH MSR_EMON_L3_CTR_C
TL2

6 Shared GSNPQ Event Control and 
Counter Register. (R/W) 

See Section 18.15, 
“Performance Monitoring on 
64-bit Intel Xeon Processor 
MP with Up to 8-MByte L3 
Cache.”

107CFH MSR_EMON_L3_CTR_C
TL3

6 Shared GSNPQ Event Control and 
Counter Register (R/W)

107D0H MSR_EMON_L3_CTR_C
TL4

6 Shared FSB Event Control and 
Counter Register. (R/W) 

See Section 18.15, 
“Performance Monitoring on 
64-bit Intel Xeon Processor 
MP with Up to 8-MByte L3 
Cache” for details.

107D1H MSR_EMON_L3_CTR_C
TL5

6 Shared FSB Event Control and 
Counter Register. (R/W)

107D2H MSR_EMON_L3_CTR_C
TL6

6 Shared FSB Event Control and 
Counter Register. (R/W)

107D3H MSR_EMON_L3_CTR_C
TL7

6 Shared FSB Event Control and 
Counter Register. (R/W)
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34.10 MSRS IN INTEL® CORE™ SOLO AND INTEL® CORE™ 

DUO PROCESSORS
Model-specific registers (MSRs) for Intel Core Solo, Intel Core Duo processors, and 
Dual-core Intel Xeon processor LV are listed in Table 34-16. The column 
“Shared/Unique” applies to Intel Core Duo processor. “Unique” means each 
processor core has a separate MSR, or a bit field in an MSR governs only a core inde-
pendently. “Shared” means the MSR or the bit field in an MSR address governs the 
operation of both processor cores.

Table 34-16.  MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel 
Xeon Processor LV

Register 
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

0H 0 P5_MC_ADDR Unique See Section 34.13, “MSRs in Pentium 
Processors,” and see Table 34-2.

1H 1 P5_MC_TYPE Unique See Section 34.13, “MSRs in Pentium 
Processors,” and see Table 34-2.

6H 6 IA32_MONITOR_
FILTER_SIZE

Unique See Section 8.10.5, “Monitor/Mwait Address 
Range Determination,” and see Table 34-2.

10H 16 IA32_TIME_
STAMP_COUNTER

Unique See Section 17.12, “Time-Stamp Counter,” and 
see Table 34-2.

17H 23 IA32_PLATFORM_
ID

Shared Platform ID. (R) See Table 34-2.

The operating system can use this MSR to 
determine “slot” information for the processor 
and the proper microcode update to load.

1BH 27 IA32_APIC_BASE Unique See Section 10.4.4, “Local APIC Status and 
Location,” and see Table 34-2.

2AH 42 MSR_EBL_CR_
POWERON

Shared Processor Hard Power-On Configuration. 
(R/W)

Enables and disables processor features; (R) 
indicates current processor configuration.

0 Reserved.

1 Data Error Checking Enable. (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

2 Response Error Checking Enable. (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.
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3 MCERR# Drive Enable. (R/W) 

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

4 Address Parity Enable. (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

6: 5 Reserved

7 BINIT# Driver Enable. (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

8 Output Tri-state Enabled. (R/O)

1 = Enabled; 0 = Disabled 

9 Execute BIST. (R/O)

1 = Enabled; 0 = Disabled 

10 MCERR# Observation Enabled. (R/O)

1 = Enabled; 0 = Disabled

11 Reserved

12 BINIT# Observation Enabled. (R/O)

1 = Enabled; 0 = Disabled 

13 Reserved

14 1 MByte Power on Reset Vector. (R/O)

1 = 1 MByte; 0 = 4 GBytes

15 Reserved

17:16 APIC Cluster ID. (R/O)

18 System Bus Frequency. (R/O)

0 = 100 MHz
1 = Reserved

19 Reserved.

21: 20 Symmetric Arbitration ID. (R/O)

26:22 Clock Frequency Ratio. (R/O)

Table 34-16.  MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel 
Xeon Processor LV (Contd.)

Register 
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
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3AH 58 IA32_FEATURE_
CONTROL

Unique Control Features in IA-32 Processor. (R/W) 

See Table 34-2.

40H 64 MSR_
LASTBRANCH_0

Unique Last Branch Record 0. (R/W)

One of 8 last branch record registers on the 
last branch record stack: bits 31-0 hold the 
‘from’ address and bits 63-32 hold the ‘to’ 
address. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.10, “Last Branch, Interrupt, and 

Exception Recording (Pentium M 
Processors).”

41H 65 MSR_
LASTBRANCH_1

Unique Last Branch Record 1. (R/W)

See description of MSR_LASTBRANCH_0.

42H 66 MSR_
LASTBRANCH_2

Unique Last Branch Record 2. (R/W)

See description of MSR_LASTBRANCH_0. 

43H 67 MSR_
LASTBRANCH_3

Unique Last Branch Record 3. (R/W)

See description of MSR_LASTBRANCH_0.

44H 68 MSR_
LASTBRANCH_4

Unique Last Branch Record 4. (R/W)

See description of MSR_LASTBRANCH_0.

45H 69 MSR_
LASTBRANCH_5

Unique Last Branch Record 5. (R/W)

See description of MSR_LASTBRANCH_0. 

46H 70 MSR_
LASTBRANCH_6

Unique Last Branch Record 6. (R/W)

See description of MSR_LASTBRANCH_0. 

47H 71 MSR_
LASTBRANCH_7

Unique Last Branch Record 7. (R/W)

See description of MSR_LASTBRANCH_0. 

79H 121 IA32_BIOS_
UPDT_TRIG

Unique BIOS Update Trigger Register (W). See 
Table 34-2.

8BH 139 IA32_BIOS_
SIGN_ID

Unique BIOS Update Signature ID (RO). See 
Table 34-2.

C1H 193 IA32_PMC0 Unique Performance counter register. See 
Table 34-2.

C2H 194 IA32_PMC1 Unique Performance counter register. See 
Table 34-2.

Table 34-16.  MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel 
Xeon Processor LV (Contd.)

Register 
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
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CDH 205 MSR_FSB_FREQ Shared Scaleable Bus Speed. (RO)

This field indicates the scaleable bus clock 
speed:

2:0 • 101B: 100 MHz (FSB 400)
• 001B: 133 MHz (FSB 533)
• 011B: 167 MHz (FSB 667)

133.33 MHz should be utilized if performing 
calculation with System Bus Speed when 
encoding is 101B. 

166.67 MHz should be utilized if performing 
calculation with System Bus Speed when 
encoding is 001B.

63:3 Reserved.

E7H 231 IA32_MPERF Unique Maximum Performance Frequency Clock 
Count. (RW). See Table 34-2.

E8H 232 IA32_APERF Unique Actual Performance Frequency Clock Count. 
(RW). See Table 34-2.

FEH 254 IA32_MTRRCAP Unique See Table 34-2.

11EH 281 MSR_BBL_CR_
CTL3

Shared

0 L2 Hardware Enabled. (RO)

1 = If the L2 is hardware-enabled
0 = Indicates if the L2 is hardware-disabled

7:1 Reserved.

8 L2 Enabled. (R/W) 

1 = L2 cache has been initialized 
0 = Disabled (default)
Until this bit is set the processor will not 
respond to the WBINVD instruction or the 
assertion of the FLUSH# input.

22:9 Reserved.

Table 34-16.  MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel 
Xeon Processor LV (Contd.)

Register 
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
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23 L2 Not Present. (RO) 

0 = L2 Present
1 = L2 Not Present

63:24 Reserved.

174H 372 IA32_SYSENTER
_CS

Unique See Table 34-2.

175H 373 IA32_SYSENTER
_ESP

Unique See Table 34-2.

176H 374 IA32_SYSENTER
_EIP

Unique See Table 34-2.

179H 377 IA32_MCG_CAP Unique See Table 34-2.

17AH 378 IA32_MCG_
STATUS

Unique

0 RIPV. 

When set, this bit indicates that the 
instruction addressed by the instruction 
pointer pushed on the stack (when the 
machine check was generated) can be used to 
restart the program. If this bit is cleared, the 
program cannot be reliably restarted.

1 EIPV. 

When set, this bit indicates that the 
instruction addressed by the instruction 
pointer pushed on the stack (when the 
machine check was generated) is directly 
associated with the error.

2 MCIP. 

When set, this bit indicates that a machine 
check has been generated. If a second 
machine check is detected while this bit is still 
set, the processor enters a shutdown state. 
Software should write this bit to 0 after 
processing a machine check exception.

Table 34-16.  MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel 
Xeon Processor LV (Contd.)

Register 
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
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63:3 Reserved.

186H 390 IA32_
PERFEVTSEL0

Unique See Table 34-2 .

187H 391 IA32_
PERFEVTSEL1

Unique See Table 34-2.

198H 408 IA32_PERF_STAT
US

Shared See Table 34-2.

199H 409 IA32_PERF_CTL Unique See Table 34-2.

19AH 410 IA32_CLOCK_
MODULATION

Unique Clock Modulation. (R/W) 

See Table 34-2.

19BH 411 IA32_THERM_
INTERRUPT

Unique Thermal Interrupt Control. (R/W) 

See Table 34-2 .

See Section 14.5.2, “Thermal Monitor.”

19CH 412 IA32_THERM_
STATUS

Unique Thermal Monitor Status. (R/W) 

See Table 34-2. 

See Section 14.5.2, “Thermal Monitor”.

19DH 413 MSR_THERM2_
CTL

Unique

15:0 Reserved.

16 TM_SELECT. (R/W) 

Mode of automatic thermal monitor:

0 = Thermal Monitor 1 (thermally-initiated 
on-die modulation of the stop-clock duty 
cycle)

1 = Thermal Monitor 2 (thermally-initiated 
frequency transitions)

If bit 3 of the IA32_MISC_ENABLE register is 
cleared, TM_SELECT has no effect. Neither 
TM1 nor TM2 will be enabled.

63:16 Reserved.

1A0 416 IA32_MISC_
ENABLE

Enable Miscellaneous Processor Features.

(R/W) Allows a variety of processor functions 
to be enabled and disabled.

Table 34-16.  MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel 
Xeon Processor LV (Contd.)

Register 
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
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2:0 Reserved.

3 Unique Automatic Thermal Control Circuit Enable. 
(R/W) 

See Table 34-2. 

6:4 Reserved.

7 Shared Performance Monitoring Available. (R). See 
Table 34-2.

9:8 Reserved.

10 Shared FERR# Multiplexing Enable. (R/W)

1 = FERR# asserted by the processor to 
indicate a pending break event within 
the processor 

0 =  Indicates compatible FERR# signaling 
behavior

This bit must be set to 1 to support XAPIC 
interrupt model usage.

11 Shared Branch Trace Storage Unavailable. (RO). See 
Table 34-2.

12 Reserved.

13 Shared TM2 Enable. (R/W)

When this bit is set (1) and the thermal sensor 
indicates that the die temperature is at the 
pre-determined threshold, the Thermal 
Monitor 2 mechanism is engaged. TM2 will 
reduce the bus to core ratio and voltage 
according to the value last written to 
MSR_THERM2_CTL bits 15:0.

Table 34-16.  MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel 
Xeon Processor LV (Contd.)

Register 
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
34-218 Vol. 3C



MODEL-SPECIFIC REGISTERS (MSRS)
When this bit is clear (0, default), the 
processor does not change the VID signals or 
the bus to core ratio when the processor 
enters a thermal managed state.

If the TM2 feature flag (ECX[8]) is not set to 1 
after executing CPUID with EAX = 1, then this 
feature is not supported and BIOS must not 
alter the contents of this bit location. The 
processor is operating out of spec if both this 
bit and the TM1 bit are set to disabled states.

15:14 Reserved.

16 Shared Enhanced Intel SpeedStep Technology 
Enable. (R/W)

1 = Enhanced Intel SpeedStep Technology 
enabled

18 Shared ENABLE MONITOR FSM. (R/W)

See Table 34-2.

19 Reserved. 

22 Shared Limit CPUID Maxval. (R/W) 

See Table 34-2. 

Setting this bit may cause behavior in 
software that depends on the availability of 
CPUID leaves greater than 3.

33:23 Reserved.

34 Shared XD Bit Disable. (R/W)

See Table 34-2.

63:35 Reserved.

1C9H 457 MSR_
LASTBRANCH_
TOS

Unique Last Branch Record Stack TOS. (R) 

Contains an index (bits 0-3) that points to the 
MSR containing the most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 40H).

Table 34-16.  MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel 
Xeon Processor LV (Contd.)

Register 
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
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1D9H 473 IA32_DEBUGCTL Unique Debug Control. (R/W) 

Controls how several debug features are used. 
Bit definitions are discussed in the referenced 
section.

1DDH 477 MSR_LER_FROM_
LIP 

Unique Last Exception Record From Linear IP. (R) 

Contains a pointer to the last branch 
instruction that the processor executed prior 
to the last exception that was generated or 
the last interrupt that was handled.

1DEH 478 MSR_LER_TO_LIP Unique Last Exception Record To Linear IP. (R) 

This area contains a pointer to the target of 
the last branch instruction that the processor 
executed prior to the last exception that was 
generated or the last interrupt that was 
handled. 

1E0H 480 ROB_CR_
BKUPTMPDR6

Unique

1:0 Reserved.

2 Fast String Enable bit. (Default, enabled)

200H 512 MTRRphysBase0 Unique

201H 513 MTRRphysMask0 Unique

202H 514 MTRRphysBase1 Unique

203H 515 MTRRphysMask1 Unique

204H 516 MTRRphysBase2 Unique

205H 517 MTRRphysMask2 Unique

206H 518 MTRRphysBase3 Unique

207H 519 MTRRphysMask3 Unique

208H 520 MTRRphysBase4 Unique

209H 521 MTRRphysMask4 Unique

20AH 522 MTRRphysBase5 Unique

20BH 523 MTRRphysMask5 Unique

Table 34-16.  MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel 
Xeon Processor LV (Contd.)

Register 
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
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20CH 524 MTRRphysBase6 Unique

20DH 525 MTRRphysMask6 Unique

20EH 526 MTRRphysBase7 Unique

20FH 527 MTRRphysMask7 Unique

250H 592 MTRRfix64K_
00000

Unique

258H 600 MTRRfix16K_
80000

Unique

259H 601 MTRRfix16K_
A0000

Unique

268H 616 MTRRfix4K_
C0000

Unique

269H 617 MTRRfix4K_
C8000

Unique

26AH 618 MTRRfix4K_
D0000

Unique

26BH 619 MTRRfix4K_
D8000

Unique

26CH 620 MTRRfix4K_
E0000

Unique

26DH 621 MTRRfix4K_
E8000

Unique

26EH 622 MTRRfix4K_
F0000

Unique

26FH 623 MTRRfix4K_
F8000

Unique

2FFH 767 IA32_MTRR_DEF_
TYPE

Unique Default Memory Types. (R/W). see 
Table 34-2. 

See Section 11.11.2.1, 
“IA32_MTRR_DEF_TYPE MSR.”

400H 1024 IA32_MC0_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

Table 34-16.  MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel 
Xeon Processor LV (Contd.)

Register 
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
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401H 1025 IA32_MC0_
STATUS

Unique See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.”

402H 1026 IA32_MC0_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not 
implemented or contains no address if the 
ADDRV flag in the IA32_MC0_STATUS register 
is clear. When not implemented in the 
processor, all reads and writes to this MSR will 
cause a general-protection exception.

404H 1028 IA32_MC1_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_
STATUS

Unique See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.”

406H 1030 IA32_MC1_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is either not 
implemented or contains no address if the 
ADDRV flag in the IA32_MC1_STATUS register 
is clear. When not implemented in the 
processor, all reads and writes to this MSR will 
cause a general-protection exception.

408H 1032 IA32_MC2_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_
STATUS

Unique See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.”

40AH 1034 IA32_MC2_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.” 

The IA32_MC2_ADDR register is either not 
implemented or contains no address if the 
ADDRV flag in the IA32_MC2_STATUS register 
is clear. When not implemented in the 
processor, all reads and writes to this MSR will 
cause a general-protection exception.

40CH 1036 MSR_MC4_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 MSR_MC4_
STATUS

Unique See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.”

Table 34-16.  MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel 
Xeon Processor LV (Contd.)

Register 
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
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40EH 1038 MSR_MC4_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not 
implemented or contains no address if the 
ADDRV flag in the MSR_MC4_STATUS register 
is clear. When not implemented in the 
processor, all reads and writes to this MSR will 
cause a general-protection exception.

410H 1040 MSR_MC3_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 MSR_MC3_
STATUS

See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.”

412H 1042 MSR_MC3_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not 
implemented or contains no address if the 
ADDRV flag in the MSR_MC3_STATUS register 
is clear. When not implemented in the 
processor, all reads and writes to this MSR will 
cause a general-protection exception.

413H 1043 MSR_MC3_MISC Unique

414H 1044 MSR_MC5_CTL Unique

415H 1045 MSR_MC5_
STATUS

Unique

416H 1046 MSR_MC5_ADDR Unique

417H 1047 MSR_MC5_MISC Unique

480H 1152 IA32_VMX_BASIC Unique Reporting Register of Basic VMX 
Capabilities. (R/O). See Table 34-2.

See Appendix A.1, “Basic VMX Information”

(If CPUID.01H:ECX.[bit 9])

481H 1153 IA32_VMX_PINBA
SED_CTLS

Unique Capability Reporting Register of Pin-based 
VM-execution Controls. (R/O)

See Appendix A.3, “VM-Execution Controls”

(If CPUID.01H:ECX.[bit 9])

Table 34-16.  MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel 
Xeon Processor LV (Contd.)
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Address Register Name

Shared/
Unique Bit Description
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482H 1154 IA32_VMX_PROCB
ASED_CTLS

Unique Capability Reporting Register of Primary 
Processor-based VM-execution Controls. 
(R/O)

See Appendix A.3, “VM-Execution Controls”

(If CPUID.01H:ECX.[bit 9])

483H 1155 IA32_VMX_EXIT_
CTLS

Unique Capability Reporting Register of VM-exit 
Controls. (R/O)

See Appendix A.4, “VM-Exit Controls”

(If CPUID.01H:ECX.[bit 9])

484H 1156 IA32_VMX_
ENTRY_CTLS

Unique Capability Reporting Register of VM-entry 
Controls. (R/O)

See Appendix A.5, “VM-Entry Controls”

(If CPUID.01H:ECX.[bit 9])

485H 1157 IA32_VMX_MISC Unique Reporting Register of Miscellaneous VMX 
Capabilities. (R/O)

See Appendix A.6, “Miscellaneous Data”

(If CPUID.01H:ECX.[bit 9])

486H 1158 IA32_VMX_CR0_
FIXED0

Unique Capability Reporting Register of CR0 Bits 
Fixed to 0. (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0”

(If CPUID.01H:ECX.[bit 9])

487H 1159 IA32_VMX_CR0_
FIXED1

Unique Capability Reporting Register of CR0 Bits 
Fixed to 1. (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0”

(If CPUID.01H:ECX.[bit 9])

488H 1160 IA32_VMX_CR4_FI
XED0

Unique Capability Reporting Register of CR4 Bits 
Fixed to 0. (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4”

(If CPUID.01H:ECX.[bit 9])

489H 1161 IA32_VMX_CR4_FI
XED1

Unique Capability Reporting Register of CR4 Bits 
Fixed to 1. (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4”

(If CPUID.01H:ECX.[bit 9])

Table 34-16.  MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel 
Xeon Processor LV (Contd.)
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Unique Bit Description

 Hex Dec
34-224 Vol. 3C



MODEL-SPECIFIC REGISTERS (MSRS)
34.11 MSRS IN THE PENTIUM M PROCESSOR
Model-specific registers (MSRs) for the Pentium M processor are similar to those 
described in Section 34.12 for P6 family processors. The following table describes 
new MSRs and MSRs whose behavior has changed on the Pentium M processor. 

48AH 1162 IA32_VMX_
VMCS_ENUM

Unique Capability Reporting Register of VMCS Field 
Enumeration. (R/O).

See Appendix A.9, “VMCS Enumeration”

(If CPUID.01H:ECX.[bit 9])

48BH 1163 IA32_VMX_PROCB
ASED_CTLS2

Unique Capability Reporting Register of Secondary 
Processor-based VM-execution Controls. 
(R/O)

See Appendix A.3, “VM-Execution Controls”

(If CPUID.01H:ECX.[bit 9] and 
IA32_VMX_PROCBASED_CTLS[bit 63])

600H 1536 IA32_DS_AREA Unique DS Save Area. (R/W) 

See Table 34-2.

See Section 18.10.4, “Debug Store (DS) 
Mechanism.”

31:0 DS Buffer Management Area. 

Linear address of the first byte of the DS 
buffer management area.

63:32 Reserved.

C000_
0080H

IA32_EFER Unique See Table 34-2.

10:0 Reserved.

11 Execute Disable Bit Enable.

63:12 Reserved

Table 34-16.  MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel 
Xeon Processor LV (Contd.)
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Table 34-17.  MSRs in Pentium M Processors

Register 
Address

Register Name Bit Description

 Hex Dec

0H 0 P5_MC_ADDR See Section 34.13, “MSRs in Pentium Processors.”

1H 1 P5_MC_TYPE See Section 34.13, “MSRs in Pentium Processors.”

10H 16 IA32_TIME_STAMP_
COUNTER

See Section 17.12, “Time-Stamp Counter,” and see 
Table 34-2.

17H 23 IA32_PLATFORM_ID Platform ID. (R). See Table 34-2.

The operating system can use this MSR to 
determine “slot” information for the processor and 
the proper microcode update to load.

2AH 42 MSR_EBL_CR_POWERON Processor Hard Power-On Configuration.

(R/W) Enables and disables processor features. (R) 
Indicates current processor configuration.

0 Reserved.

1 Data Error Checking Enable. (R)

0 = Disabled
Always 0 on the Pentium M processor.

2 Response Error Checking Enable. (R)

0 = Disabled
Always 0 on the Pentium M processor.

3 MCERR# Drive Enable. (R) 

0 = Disabled
Always 0 on the Pentium M processor.

4 Address Parity Enable. (R)

0 = Disabled
Always 0 on the Pentium M processor.

6:5 Reserved.

7 BINIT# Driver Enable. (R)

1 = Enabled; 0 = Disabled
Always 0 on the Pentium M processor.

8 Output Tri-state Enabled. (R/O)

1 = Enabled; 0 = Disabled 

9 Execute BIST. (R/O)

1 = Enabled; 0 = Disabled 
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10 MCERR# Observation Enabled. (R/O)

1 = Enabled; 0 = Disabled
Always 0 on the Pentium M processor.

11 Reserved.

12 BINIT# Observation Enabled. (R/O)

1 = Enabled; 0 = Disabled 
Always 0 on the Pentium M processor.

13 Reserved

14 1 MByte Power on Reset Vector. (R/O)

1 = 1 MByte; 0 = 4 GBytes
Always 0 on the Pentium M processor.

15 Reserved.

17:16 APIC Cluster ID. (R/O)

Always 00B on the Pentium M processor.

18 System Bus Frequency. (R/O)

0 = 100 MHz
1 = Reserved
Always 0 on the Pentium M processor.

19 Reserved.

21: 20 Symmetric Arbitration ID. (R/O)

Always 00B on the Pentium M processor.

26:22 Clock Frequency Ratio (R/O)

40H 64 MSR_LASTBRANCH_0 Last Branch Record 0. (R/W)

One of 8 last branch record registers on the last 
branch record stack: bits 31-0 hold the ‘from’ 
address and bits 63-32 hold the to address. 

See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.10, “Last Branch, Interrupt, and 

Exception Recording (Pentium M Processors)”

41H 65 MSR_LASTBRANCH_1 Last Branch Record 1. (R/W)

See description of MSR_LASTBRANCH_0.
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42H 66 MSR_LASTBRANCH_2 Last Branch Record 2. (R/W)

See description of MSR_LASTBRANCH_0. 

43H 67 MSR_LASTBRANCH_3 Last Branch Record 3. (R/W)

See description of MSR_LASTBRANCH_0.

44H 68 MSR_LASTBRANCH_4 Last Branch Record 4. (R/W)

See description of MSR_LASTBRANCH_0.

45H 69 MSR_LASTBRANCH_5 Last Branch Record 5. (R/W)

See description of MSR_LASTBRANCH_0. 

46H 70 MSR_LASTBRANCH_6 Last Branch Record 6. (R/W)

See description of MSR_LASTBRANCH_0. 

47H 71 MSR_LASTBRANCH_7 Last Branch Record 7. (R/W)

See description of MSR_LASTBRANCH_0. 

119H 281 MSR_BBL_CR_CTL

63:0 Reserved.

11EH 281 MSR_BBL_CR_CTL3

0 L2 Hardware Enabled. (RO)

1 = If the L2 is hardware-enabled
0 = Indicates if the L2 is hardware-disabled

4:1 Reserved.

5 ECC Check Enable. (RO)

This bit enables ECC checking on the cache data 
bus. ECC is always generated on write cycles. 

0 = Disabled (default)
1 = Enabled
For the Pentium M processor, ECC checking on the 
cache data bus is always enabled.

7:6 Reserved.
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8 L2 Enabled. (R/W) 

1 = L2 cache has been initialized 
0 = Disabled (default)
Until this bit is set the processor will not respond 
to the WBINVD instruction or the assertion of the 
FLUSH# input.

22:9 Reserved.

23 L2 Not Present. (RO) 

0 = L2 Present
1 = L2 Not Present

63:24 Reserved.

179H 377 IA32_MCG_CAP

7:0 Count. (RO)

Indicates the number of hardware unit error 
reporting banks available in the processor.

8 IA32_MCG_CTL Present. (RO)

1 = Indicates that the processor implements the 
MSR_MCG_CTL register found at MSR 17BH.

0 = Not supported.

63:9 Reserved.

17AH 378 IA32_MCG_STATUS

0 RIPV.

When set, this bit indicates that the instruction 
addressed by the instruction pointer pushed on 
the stack (when the machine check was 
generated) can be used to restart the program. If 
this bit is cleared, the program cannot be reliably 
restarted.

1 EIPV. 

When set, this bit indicates that the instruction 
addressed by the instruction pointer pushed on 
the stack (when the machine check was 
generated) is directly associated with the error.
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2 MCIP. 

When set, this bit indicates that a machine check 
has been generated. If a second machine check is 
detected while this bit is still set, the processor 
enters a shutdown state. Software should write 
this bit to 0 after processing a machine check 
exception.

63:3 Reserved.

198H 408 IA32_PERF_STATUS See Table 34-2.

199H 409 IA32_PERF_CTL See Table 34-2.

19AH 410 IA32_CLOCK_
MODULATION

Clock Modulation. (R/W). See Table 34-2. 

See Section 14.5.3, “Software Controlled Clock 
Modulation.”

19BH 411 IA32_THERM_
INTERRUPT

Thermal Interrupt Control. (R/W). See 
Table 34-2. 

See Section 14.5.2, “Thermal Monitor.”

19CH 412 IA32_THERM_
STATUS

Thermal Monitor Status. (R/W). See Table 34-2.

See Section 14.5.2, “Thermal Monitor.”

19DH 413 MSR_THERM2_CTL

15:0 Reserved.

16 TM_SELECT. (R/W) 

Mode of automatic thermal monitor:

0 = Thermal Monitor 1 (thermally-initiated on-die 
modulation of the stop-clock duty cycle)

1 = Thermal Monitor 2 (thermally-initiated 
frequency transitions)

If bit 3 of the IA32_MISC_ENABLE register is 
cleared, TM_SELECT has no effect. Neither TM1 
nor TM2 will be enabled.

63:16 Reserved.

1A0 416 IA32_MISC_ENABLE Enable Miscellaneous Processor Features. 
(R/W)

Allows a variety of processor functions to be 
enabled and disabled.
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2:0 Reserved.

3 Automatic Thermal Control Circuit Enable. (R/W) 

1 = Setting this bit enables the thermal control 
circuit (TCC) portion of the Intel Thermal 
Monitor feature. This allows processor clocks 
to be automatically modulated based on the 
processor's thermal sensor operation. 

0 = Disabled (default). 
The automatic thermal control circuit enable bit 
determines if the thermal control circuit (TCC) will 
be activated when the processor's internal 
thermal sensor determines the processor is about 
to exceed its maximum operating temperature.

When the TCC is activated and TM1 is enabled, the 
processors clocks will be forced to a 50% duty 
cycle. BIOS must enable this feature.

The bit should not be confused with the on-
demand thermal control circuit enable bit.

6:4 Reserved.

7 Performance Monitoring Available. (R) 

1 = Performance monitoring enabled
0 = Performance monitoring disabled

9:8 Reserved.

10 FERR# Multiplexing Enable. (R/W)

1 = FERR# asserted by the processor to indicate 
a pending break event within the processor 

0 =  Indicates compatible FERR# signaling 
behavior

This bit must be set to 1 to support XAPIC 
interrupt model usage.

Branch Trace Storage Unavailable. (RO)

1 = Processor doesn’t support branch trace 
storage (BTS)

0 = BTS is supported
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12 Precise Event Based Sampling Unavailable. (RO) 

1 = Processor does not support precise event-
based sampling (PEBS); 

0 = PEBS is supported. 
The Pentium M processor does not support PEBS.

15:13 Reserved.

16 Enhanced Intel SpeedStep Technology Enable. 
(R/W) 

1 = Enhanced Intel SpeedStep Technology 
enabled.

On the Pentium M processor, this bit may be 
configured to be read-only.

22:17 Reserved.

23 xTPR Message Disable. (R/W)

When set to 1, xTPR messages are disabled. xTPR 
messages are optional messages that allow the 
processor to inform the chipset of its priority. The 
default is processor specific.

63:24 Reserved.

1C9H 457 MSR_LASTBRANCH_TOS Last Branch Record Stack TOS. (R) 

Contains an index (bits 0-3) that points to the MSR 
containing the most recent branch record. See also:

• MSR_LASTBRANCH_0_FROM_IP (at 40H)
• Section 17.10, “Last Branch, Interrupt, and 

Exception Recording (Pentium M Processors)”

1D9H 473 MSR_DEBUGCTLB Debug Control. (R/W) 

Controls how several debug features are used. Bit 
definitions are discussed in the referenced section.

See Section 17.10, “Last Branch, Interrupt, and 
Exception Recording (Pentium M Processors).”
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1DDH 477 MSR_LER_TO_LIP Last Exception Record To Linear IP. (R) 

This area contains a pointer to the target of the 
last branch instruction that the processor 
executed prior to the last exception that was 
generated or the last interrupt that was handled.

See Section 17.10, “Last Branch, Interrupt, and 
Exception Recording (Pentium M Processors)” and 
Section 17.11.2, “Last Branch and Last Exception 
MSRs.”

1DEH 478 MSR_LER_FROM_LIP Last Exception Record From Linear IP. (R) 

Contains a pointer to the last branch instruction 
that the processor executed prior to the last 
exception that was generated or the last interrupt 
that was handled.

See Section 17.10, “Last Branch, Interrupt, and 
Exception Recording (Pentium M Processors)” and 
Section 17.11.2, “Last Branch and Last Exception 
MSRs.”

2FFH 767 IA32_MTRR_DEF_
TYPE

Default Memory Types. (R/W) 

Sets the memory type for the regions of physical 
memory that are not mapped by the MTRRs. 

See Section 11.11.2.1, “IA32_MTRR_DEF_TYPE 
MSR.”

400H 1024 IA32_MC0_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR See Section 14.3.2.3., “IA32_MCi_ADDR MSRs”. 

The IA32_MC0_ADDR register is either not 
implemented or contains no address if the ADDRV 
flag in the IA32_MC0_STATUS register is clear. 
When not implemented in the processor, all reads 
and writes to this MSR will cause a general-
protection exception.

404H 1028 IA32_MC1_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”
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406H 1030 IA32_MC1_ADDR See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is either not 
implemented or contains no address if the ADDRV 
flag in the IA32_MC1_STATUS register is clear. 
When not implemented in the processor, all reads 
and writes to this MSR will cause a general-
protection exception.

408H 1032 IA32_MC2_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS See Chapter 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40AH 1034 IA32_MC2_ADDR See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not 
implemented or contains no address if the ADDRV 
flag in the IA32_MC2_STATUS register is clear. 
When not implemented in the processor, all reads 
and writes to this MSR will cause a general-
protection exception.

40CH 1036 MSR_MC4_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 MSR_MC4_STATUS See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40EH 1038 MSR_MC4_ADDR See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not 
implemented or contains no address if the ADDRV 
flag in the MSR_MC4_STATUS register is clear. 
When not implemented in the processor, all reads 
and writes to this MSR will cause a general-
protection exception.

410H 1040 MSR_MC3_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 MSR_MC3_STATUS See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

412H 1042 MSR_MC3_ADDR See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.” 

The MSR_MC3_ADDR register is either not 
implemented or contains no address if the ADDRV 
flag in the MSR_MC3_STATUS register is clear. 
When not implemented in the processor, all reads 
and writes to this MSR will cause a general-
protection exception.
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34.12 MSRS IN THE P6 FAMILY PROCESSORS
The following MSRs are defined for the P6 family processors. The MSRs in this table 
that are shaded are available only in the Pentium II and Pentium III processors. 
Beginning with the Pentium 4 processor, some of the MSRs in this list have been 
designated as “architectural” and have had their names changed. See Table 34-2 for 
a list of the architectural MSRs.

600H 1536 IA32_DS_AREA DS Save Area. (R/W). See Table 34-2.

Points to the DS buffer management area, which is 
used to manage the BTS and PEBS buffers. See 
Section 18.10.4, “Debug Store (DS) Mechanism.”

31:0 DS Buffer Management Area. 

Linear address of the first byte of the DS buffer 
management area.

63:32 Reserved.

Table 34-18.  MSRs in the P6 Family Processors 
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0H 0 P5_MC_ADDR See Section 34.13, “MSRs in Pentium Processors.”

1H 1 P5_MC_TYPE See Section 34.13, “MSRs in Pentium Processors.”

10H 16 TSC See Section 17.12, “Time-Stamp Counter.”

17H 23 IA32_PLATFORM_ID Platform ID. (R) 

The operating system can use this MSR to 
determine “slot” information for the processor and 
the proper microcode update to load.

49:0 Reserved.
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52:50 Platform Id. (R)

Contains information concerning the intended 
platform for the processor. 
52 51 50
0 0 0 Processor Flag 0
0 0 1 Processor Flag 1
0 1 0 Processor Flag 2
0 1 1 Processor Flag 3
1 0 0 Processor Flag 4 
1 0 1 Processor Flag 5
1 1 0 Processor Flag 6
1 1 1 Processor Flag 7

56:53 L2 Cache Latency Read.

59:57 Reserved.

60 Clock Frequency Ratio Read.

63:61 Reserved.

1BH 27 APIC_BASE Section 10.4.4, “Local APIC Status and Location.”

7:0 Reserved.

8 Boot Strap Processor indicator Bit. 

1 = BSP

10:9 Reserved.

11 APIC Global Enable Bit - Permanent till reset.

1 = Enabled 
0 = Disabled 

31:12 APIC Base Address.

63:32 Reserved.

2AH 42 EBL_CR_POWERON Processor Hard Power-On Configuration. (R/W)

Enables and disables processor features; (R) 
indicates current processor configuration.

0 Reserved.1

1 Data Error Checking Enable. (R/W)

1 = Enabled
0 = Disabled 
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2 Response Error Checking Enable FRCERR 
Observation Enable. (R/W)

1 = Enabled 
0 = Disabled

3 AERR# Drive Enable. (R/W)

1 = Enabled
0 = Disabled 

4 BERR# Enable for Initiator Bus Requests. (R/W)

1 = Enabled
0 = Disabled 

5 Reserved.

6 BERR# Driver Enable for Initiator Internal Errors. 
(R/W)

1 = Enabled
0 = Disabled 

7 BINIT# Driver Enable. (R/W)

1 = Enabled
0 = Disabled 

8 Output Tri-state Enabled. (R)

1 = Enabled
0 = Disabled 

9 Execute BIST. (R)

1 = Enabled
0 = Disabled 

10 AERR# Observation Enabled. (R)

1 = Enabled
0 = Disabled 

11 Reserved.

12 BINIT# Observation Enabled. (R)

1 = Enabled
0 = Disabled 
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13 In Order Queue Depth. (R)

1 = 1
0 = 8

14 1-MByte Power on Reset Vector. (R)

1 = 1MByte
0 = 4GBytes

 15 FRC Mode Enable. (R)

1 = Enabled
0 = Disabled 

 17:16 APIC Cluster ID. (R)

19:18 System Bus Frequency. (R)

00 = 66MHz
10 = 100Mhz
01 = 133MHz
11 = Reserved

21: 20 Symmetric Arbitration ID. (R)

25:22 Clock Frequency Ratio. (R)

26 Low Power Mode Enable. (R/W)

27 Clock Frequency Ratio.

 63:28 Reserved.1

33H 51 TEST_CTL Test Control Register.

29:0 Reserved.

30 Streaming Buffer Disable.

31 Disable LOCK#. 

Assertion for split locked access.

79H 121 BIOS_UPDT_TRIG BIOS Update Trigger Register.

    88     136 BBL_CR_D0[63:0] Chunk 0 data register D[63:0]: used to write to and 
read from the L2

    89     137 BBL_CR_D1[63:0] Chunk 1 data register D[63:0]: used to write to and 
read from the L2

    8A     138 BBL_CR_D2[63:0] Chunk 2 data register D[63:0]: used to write to and 
read from the L2
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8BH 139 BIOS_SIGN/BBL_CR_D3[6
3:0]

BIOS Update Signature Register or Chunk 3 data 
register D[63:0]. 

Used to write to and read from the L2 depending 
on the usage model.

C1H 193 PerfCtr0 (PERFCTR0)

C2H 194 PerfCtr1 (PERFCTR1)

FEH 254 MTRRcap

   116 278 BBL_CR_ADDR [63:0]

BBL_CR_ADDR [63:32]

BBL_CR_ADDR [31:3]

BBL_CR_ADDR [2:0]

Address register: used to send specified address 
(A31-A3) to L2 during cache initialization accesses.

Reserved, 

Address bits [35:3]

Reserved Set to 0.

   118  280 BBL_CR_DECC[63:0] Data ECC register D[7:0]: used to write ECC and 
read ECC to/from L2

   119  281 BBL_CR_CTL 

BL_CR_CTL[63:22]

BBL_CR_CTL[21]

Control register: used to program L2 commands to 
be issued via cache configuration accesses 
mechanism. Also receives L2 lookup response

Reserved

Processor number2

Disable = 1
Enable = 0
Reserved

BBL_CR_CTL[20:19]

BBL_CR_CTL[18]

BBL_CR_CTL[17]

BBL_CR_CTL[16]

BBL_CR_CTL[15:14]

BBL_CR_CTL[13:12]

BBL_CR_CTL[11:10]

BBL_CR_CTL[9:8]

BBL_CR_CTL[7]

BBL_CR_CTL[6:5]

User supplied ECC

Reserved

L2 Hit

Reserved

State from L2 

Modified - 11,Exclusive - 10, Shared - 01, Invalid - 
00

Way from L2

Way 0 - 00, Way 1 - 01, Way 2 - 10, Way 3 - 11

Way to L2

Reserved

State to L2
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BBL_CR_CTL[4:0]

01100
01110
01111
00010
00011
010 + MESI encode
111 + MESI encode
100 + MESI encode

L2 Command

Data Read w/ LRU update (RLU)
Tag Read w/ Data Read (TRR)
Tag Inquire (TI)
L2 Control Register Read (CR)
L2 Control Register Write (CW)
Tag Write w/ Data Read (TWR)
Tag Write w/ Data Write (TWW)
Tag Write (TW)

   11A  282 BBL_CR_TRIG Trigger register: used to initiate a cache 
configuration accesses access, Write only with Data 
= 0.

   11B  283 BBL_CR_BUSY Busy register: indicates when a cache configuration 
accesses L2 command is in progress. D[0] = 1 = 
BUSY

11E  286 BBL_CR_CTL3

BBL_CR_CTL3[63:26]

BBL_CR_CTL3[25]

BBL_CR_CTL3[24]

BBL_CR_CTL3[23]

Control register 3: used to configure the L2 Cache

Reserved 

Cache bus fraction (read only)

Reserved

L2 Hardware Disable (read only)

BBL_CR_CTL3[22:20]

111
110 
101
100
011
010
001
000

BBL_CR_CTL3[19]

BBL_CR_CTL3[18]

L2 Physical Address Range support

64GBytes
32GBytes
16GBytes
8GBytes
4GBytes
2GBytes
1GBytes
512MBytes

Reserved

Cache State error checking enable (read/write)
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 BBL_CR_CTL3[17:13

00001
00010
00100
01000
10000

BBL_CR_CTL3[12:11]

BBL_CR_CTL3[10:9]

00
01
10
11

BBL_CR_CTL3[8]

BBL_CR_CTL3[7]

BBL_CR_CTL3[6]

BBL_CR_CTL3[5]

BBL_CR_CTL3[4:1]

BBL_CR_CTL3[0]

Cache size per bank (read/write)

256KBytes
512KBytes
1MByte
2MByte
4MBytes

Number of L2 banks (read only)

L2 Associativity (read only)

Direct Mapped
2 Way
4 Way
Reserved

L2 Enabled (read/write)

CRTN Parity Check Enable (read/write)

Address Parity Check Enable (read/write)

ECC Check Enable (read/write)

L2 Cache Latency (read/write)

L2 Configured (read/write

)

174H 372 SYSENTER_CS_MSR CS register target for CPL 0 code

175H 373 SYSENTER_ESP_MSR Stack pointer for CPL 0 stack

176H 374 SYSENTER_EIP_MSR CPL 0 code entry point

179H 377 MCG_CAP

17AH 378 MCG_STATUS

17BH 379 MCG_CTL

186H 390 PerfEvtSel0 (EVNTSEL0)

7:0 Event Select.

Refer to Performance Counter section for a list of 
event encodings.

15:8 UMASK (Unit Mask).

Unit mask register set to 0 to enable all count 
options.
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16 USER.

Controls the counting of events at Privilege levels 
of 1, 2, and 3.

17 OS.

Controls the counting of events at Privilege level 
of 0.

18 E.

Occurrence/Duration Mode Select

1 = Occurrence
0 = Duration

19 PC.

Enabled the signaling of performance counter 
overflow via BP0 pin

20 INT.

Enables the signaling of counter overflow via input 
to APIC

1 = Enable
0 = Disable

22 ENABLE.

Enables the counting of performance events in 
both counters

1 = Enable
0 = Disable

23 INV.

Inverts the result of the CMASK condition

1 = Inverted
0 = Non-Inverted

31:24 CMASK (Counter Mask).
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187H 391 PerfEvtSel1 (EVNTSEL1)

7:0 Event Select.

Refer to Performance Counter section for a list of 
event encodings.

15:8 UMASK (Unit Mask).

Unit mask register set to 0 to enable all count 
options.

16 USER.

Controls the counting of events at Privilege levels 
of 1, 2, and 3.

17 OS.

Controls the counting of events at Privilege level 
of 0

18 E.

Occurrence/Duration Mode Select

1 = Occurrence
0 = Duration

19 PC.

Enabled the signaling of performance counter 
overflow via BP0 pin.

20 INT.

Enables the signaling of counter overflow via input 
to APIC

1 = Enable
0 = Disable

23 INV.

Inverts the result of the CMASK condition

1 = Inverted
0 = Non-Inverted

31:24 CMASK (Counter Mask).

1D9H 473 DEBUGCTLMSR

0 Enable/Disable Last Branch Records

1 Branch Trap Flag
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2 Performance Monitoring/Break Point Pins

3 Performance Monitoring/Break Point Pins

4 Performance Monitoring/Break Point Pins

5 Performance Monitoring/Break Point Pins

6 Enable/Disable Execution Trace Messages

31:7 Reserved

1DBH 475 LASTBRANCHFROMIP

1DCH 476 LASTBRANCHTOIP

1DDH 477 LASTINTFROMIP

1DEH 478 LASTINTTOIP

1E0H 480 ROB_CR_BKUPTMPDR6

1:0 Reserved

2 Fast String Enable bit. Default is enabled

200H 512 MTRRphysBase0

201H 513 MTRRphysMask0

202H 514 MTRRphysBase1

203H 515 MTRRphysMask1

204H 516 MTRRphysBase2

205H 517 MTRRphysMask2

206H 518 MTRRphysBase3

207H 519 MTRRphysMask3

208H 520 MTRRphysBase4

209H 521 MTRRphysMask4

20AH 522 MTRRphysBase5

20BH 523 MTRRphysMask5

20CH 524 MTRRphysBase6

20DH 525 MTRRphysMask6

20EH 526 MTRRphysBase7

20FH 527 MTRRphysMask7
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250H 592 MTRRfix64K_00000

258H 600 MTRRfix16K_80000

259H 601 MTRRfix16K_A0000

268H 616 MTRRfix4K_C0000

269H 617 MTRRfix4K_C8000

26AH 618 MTRRfix4K_D0000

26BH 619 MTRRfix4K_D8000

26CH 620 MTRRfix4K_E0000

26DH 621 MTRRfix4K_E8000

26EH 622 MTRRfix4K_F0000

26FH 623 MTRRfix4K_F8000

2FFH 767 MTRRdefType

2:0 Default memory type

10 Fixed MTRR enable

11 MTRR Enable

400H 1024 MC0_CTL

401H 1025 MC0_STATUS

15:0 MC_STATUS_MCACOD 

31:16 MC_STATUS_MSCOD 

57 MC_STATUS_DAM

58 MC_STATUS_ADDRV 

59 MC_STATUS_MISCV 

60 MC_STATUS_EN. (Note: For MC0_STATUS only, this 
bit is hardcoded to 1.)

61 MC_STATUS_UC 

62 MC_STATUS_O

63 MC_STATUS_V

402H 1026 MC0_ADDR

403H 1027 MC0_MISC Defined in MCA architecture but not implemented 
in the P6 family processors.

Table 34-18.  MSRs in the P6 Family Processors  (Contd.)

Register 
Address

Register Name Bit Description

 Hex Dec
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404H 1028 MC1_CTL

405H 1029 MC1_STATUS Bit definitions same as MC0_STATUS.

406H 1030 MC1_ADDR

407H 1031 MC1_MISC Defined in MCA architecture but not implemented 
in the P6 family processors.

408H 1032 MC2_CTL

409H 1033 MC2_STATUS Bit definitions same as MC0_STATUS.

40AH 1034 MC2_ADDR

40BH 1035 MC2_MISC Defined in MCA architecture but not implemented 
in the P6 family processors.

40CH 1036 MC4_CTL

40DH 1037 MC4_STATUS Bit definitions same as MC0_STATUS, except bits 0, 
4, 57, and 61 are hardcoded to 1.

40EH 1038 MC4_ADDR Defined in MCA architecture but not implemented 
in P6 Family processors.

40FH 1039 MC4_MISC Defined in MCA architecture but not implemented 
in the P6 family processors.

410H 1040 MC3_CTL

411H 1041 MC3_STATUS Bit definitions same as MC0_STATUS.

412H 1042 MC3_ADDR

413H 1043 MC3_MISC Defined in MCA architecture but not implemented 
in the P6 family processors.

NOTES
1. Bit 0 of this register has been redefined several times, and is no longer used in P6 family 

processors.
2. The processor number feature may be disabled by setting bit 21 of the BBL_CR_CTL MSR 

(model-specific register address 119h) to “1”. Once set, bit 21 of the BBL_CR_CTL may not be 
cleared. This bit is write-once. The processor number feature will be disabled until the processor 
is reset.

3. The Pentium III processor will prevent FSB frequency overclocking with a new shutdown mecha-
nism. If the FSB frequency selected is greater than the internal FSB frequency the processor will 
shutdown. If the FSB selected is less than the internal FSB frequency the BIOS may choose to 
use bit 11 to implement its own shutdown policy.

Table 34-18.  MSRs in the P6 Family Processors  (Contd.)

Register 
Address

Register Name Bit Description

 Hex Dec
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34.13 MSRS IN PENTIUM PROCESSORS
The following MSRs are defined for the Pentium processors. The P5_MC_ADDR, 
P5_MC_TYPE, and TSC MSRs (named IA32_P5_MC_ADDR, IA32_P5_MC_TYPE, and 
IA32_TIME_STAMP_COUNTER in the Pentium 4 processor) are architectural; that is, 
code that accesses these registers will run on Pentium 4 and P6 family processors 
without generating exceptions (see Section 34.1, “Architectural MSRs”). The CESR, 
CTR0, and CTR1 MSRs are unique to Pentium processors; code that accesses these 
registers will generate exceptions on Pentium 4 and P6 family processors.

Table 34-19.  MSRs in the Pentium Processor

Register 
Address

 Hex Dec Register Name Bit Description

0H 0 P5_MC_ADDR See Section 15.10.2, “Pentium Processor Machine-Check 
Exception Handling.”

1H 1 P5_MC_TYPE See Section 15.10.2, “Pentium Processor Machine-Check 
Exception Handling.”

10H 16 TSC See Section 17.12, “Time-Stamp Counter.”

11H 17 CESR See Section 18.18.1, “Control and Event Select Register (CESR).”

12H 18 CTR0 Section 18.18.3, “Events Counted.”

13H 19 CTR1 Section 18.18.3, “Events Counted.”
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APPENDIX A
VMX CAPABILITY REPORTING FACILITY

The ability of a processor to support VMX operation and related instructions is indi-
cated by CPUID.1:ECX.VMX[bit 5] = 1. A value 1 in this bit indicates support for VMX 
features.

Support for specific features detailed in Chapter 24 and other VMX chapters is deter-
mined by reading values from a set of capability MSRs. These MSRs are indexed 
starting at MSR address 480H. VMX capability MSRs are read-only; an attempt to 
write them (with WRMSR) produces a general-protection exception (#GP(0)). They 
do not exist on processors that do not support VMX operation; an attempt to read 
them (with RDMSR) on such processors produces a general-protection exception 
(#GP(0)).

A.1 BASIC VMX INFORMATION
The IA32_VMX_BASIC MSR (index 480H) consists of the following fields:
• Bits 31:0 contain the 32-bit VMCS revision identifier used by the processor. 

Logical processors that use the same VMCS revision identifier use the same size 
for VMCS regions (see next item)

• Bits 44:32 report the number of bytes that software should allocate for the 
VMXON region and any VMCS region. It is a value greater than 0 and at most 
4096 (bit 44 is set if and only if bits 43:32 are clear).

• Bit 48 indicates the width of the physical addresses that may be used for the 
VMXON region, each VMCS, and data structures referenced by pointers in a VMCS 
(I/O bitmaps, virtual-APIC page, MSR areas for VMX transitions). If the bit is 0, 
these addresses are limited to the processor’s physical-address width.1 If the bit 
is 1, these addresses are limited to 32 bits. This bit is always 0 for processors that 
support Intel 64 architecture.

• If bit 49 is read as 1, the logical processor supports the dual-monitor treatment 
of system-management interrupts and system-management mode. See Section 
33.15 for details of this treatment.

• Bits 53:50 report the memory type that the logical processor uses to access the 
VMCS for VMREAD and VMWRITE and to access the VMCS, data structures 
referenced by pointers in the VMCS (I/O bitmaps, virtual-APIC page, MSR areas 
for VMX transitions), and the MSEG header during VM entries, VM exits, and in 
VMX non-root operation.2

1. On processors that support Intel 64 architecture, the pointer must not set bits beyond the pro-
cessor's physical address width.
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The first processors to support VMX operation use the write-back type. The 
values used are given in Table A-1.

If software needs to access these data structures (e.g., to modify the contents of 
the MSR bitmaps), it can configure the paging structures to map them into the 
linear-address space. If it does so, it should establish mappings that use the 
memory type reported in this MSR.1

• If bit 54 is read as 1, the logical processor reports information in the VM-exit 
instruction-information field on VM exits due to execution of the INS and OUTS 
instructions. This reporting is done only if this bit is read as 1.

• Bit 55 is read as 1 if any VMX controls that default to 1 may be cleared to 0. See 
Appendix A.2 for details. It also reports support for the VMX capability MSRs 
IA32_VMX_TRUE_PINBASED_CTLS, IA32_VMX_TRUE_PROCBASED_CTLS, 
IA32_VMX_TRUE_EXIT_CTLS, and IA32_VMX_TRUE_ENTRY_CTLS. See 
Appendix A.3.1, Appendix A.3.2, Appendix A.4, and Appendix A.5 for details.

• The values of bits 47:45 and bits 63:56 are reserved and are read as 0.

A.2 RESERVED CONTROLS AND DEFAULT SETTINGS
As noted in Chapter 24, “Virtual-Machine Control Structures”, certain VMX controls 
are reserved and must be set to a specific value (0 or 1) determined by the processor. 
The specific value to which a reserved control must be set is its default setting. 

2. If the MTRRs are disabled by clearing the E bit (bit 11) in the IA32_MTRR_DEF_TYPE MSR, the 
logical processor uses the UC memory type to access the indicated data structures, regardless of 
the value reported in bits 53:50 in the IA32_VMX_BASIC MSR. The processor will also use the UC 
memory type if the setting of CR0.CD on this logical processor (or another logical processor on 
the same physical processor) would cause it to do so for all memory accesses. The values of 
IA32_MTRR_DEF_TYPE.E and CR0.CD do not affect the value reported in 
IA32_VMX_BASIC[53:50].

Table A-1.  Memory Types Used For VMCS Access
Value(s) Field

0 Uncacheable (UC)

1–5 Not used

6 Write Back (WB)

7–15 Not used

1. Alternatively, software may map any of these regions or structures with the UC memory type. 
(This may be necessary for the MSEG header.) Doing so is discouraged unless necessary as it will 
cause the performance of software accesses to those structures to suffer. The processor will 
continue to use the memory type reported in the VMX capability MSR IA32_VMX_BASIC with the 
exceptions noted.
A-2 Vol. 3C



VMX CAPABILITY REPORTING FACILITY
Software can discover the default setting of a reserved control by consulting the 
appropriate VMX capability MSR (see Appendix A.3 through Appendix A.5).

Future processors may define new functionality for one or more reserved controls. 
Such processors would allow each newly defined control to be set either to 0 or to 1. 
Software that does not desire a control’s new functionality should set the control to 
its default setting. For that reason, it is useful for software to know the default 
settings of the reserved controls.

Default settings partition the various controls into the following classes:
• Always-flexible. These have never been reserved.
• Default0. These are (or have been) reserved with a default setting of 0.
• Default1. They are (or have been) reserved with a default setting of 1.

As noted in Appendix A.1, a logical processor uses bit 55 of the 
IA32_VMX_BASIC MSR to indicate whether any of the default1 controls may be 0:
• If bit 55 of the IA32_VMX_BASIC MSR is read as 0, all the default1 controls are 

reserved and must be 1. VM entry will fail if any of these controls are 1 (see 
Section 26.2.1).

• If bit 55 of the IA32_VMX_BASIC MSR is read as 1, not all the default1 controls 
are reserved, and some (but not necessarily all) may be 0. The CPU supports four 
(4) new VMX capability MSRs: IA32_VMX_TRUE_PINBASED_CTLS, 
IA32_VMX_TRUE_PROCBASED_CTLS, IA32_VMX_TRUE_EXIT_CTLS, and 
IA32_VMX_TRUE_ENTRY_CTLS. See Appendix A.3 through Appendix A.5 for 
details. (These MSRs are not supported if bit 55 of the IA32_VMX_BASIC MSR is 
read as 0.)

See Section 30.5.1 for recommended software algorithms for proper capability 
detection of the default1 controls.

A.3 VM-EXECUTION CONTROLS
There are separate capability MSRs for the pin-based VM-execution controls, the 
primary processor-based VM-execution controls, and the secondary processor-based 
VM-execution controls. These are described in Appendix A.3.1, Appendix A.3.2, and 
Appendix A.3.3, respectively.

A.3.1  Pin-Based VM-Execution Controls
The IA32_VMX_PINBASED_CTLS MSR (index 481H) reports on the allowed settings 
of most of the pin-based VM-execution controls (see Section 24.6.1):
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows 

control X (bit X of the pin-based VM-execution controls) to be 0 if bit X in the MSR 
is cleared to 0; if bit X in the MSR is set to 1, VM entry fails if control X is 0.
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Exceptions are made for the pin-based VM-execution controls in the default1 
class (see Appendix A.2). These are bits 1, 2, and 4; the corresponding bits of the 
IA32_VMX_PINBASED_CTLS MSR are always read as 1. The treatment of these 
controls by VM entry is determined by bit 55 in the IA32_VMX_BASIC MSR:

— If bit 55 in the IA32_VMX_BASIC MSR is read as 0, VM entry fails if any pin-
based VM-execution control in the default1 class is 0.

— If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the 
IA32_VMX_TRUE_PINBASED_CTLS MSR (see below) reports which of the 
pin-based VM-execution controls in the default1 class can be 0 on VM entry.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows 
control X to be 1 if bit 32+X in the MSR is set to 1; if bit 32+X in the MSR is 
cleared to 0, VM entry fails if control X is 1.

If bit 55 in the IA32_VMX_BASIC MSR is read as 1, 
the IA32_VMX_TRUE_PINBASED_CTLS MSR (index 48DH) reports on the allowed 
settings of all of the pin-based VM-execution controls:
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows 

control X to be 0 if bit X in the MSR is cleared to 0; if bit X in the MSR is set to 1, 
VM entry fails if control X is 0. There are no exceptions.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows 
control X to be 1 if bit 32+X in the MSR is set to 1; if bit 32+X in the MSR is 
cleared to 0, VM entry fails if control X is 1.

It is necessary for software to consult only one of the capability MSRs to determine 
the allowed settings of the pin-based VM-execution controls:
• If bit 55 in the IA32_VMX_BASIC MSR is read as 0, all information about the 

allowed settings of the pin-based VM-execution controls is contained in 
the IA32_VMX_PINBASED_CTLS MSR. (The IA32_VMX_TRUE_PINBASED_CTLS 
MSR is not supported.)

• If bit 55 in the IA32_VMX_BASIC MSR is read as 1, all information about the 
allowed settings of the pin-based VM-execution controls is contained in 
the IA32_VMX_TRUE_PINBASED_CTLS MSR. Assuming that software knows that 
the default1 class of pin-based VM-execution controls contains bits 1, 2, and 4, 
there is no need for software to consult the IA32_VMX_PINBASED_CTLS MSR.

A.3.2  Primary Processor-Based VM-Execution Controls
The IA32_VMX_PROCBASED_CTLS MSR (index 482H) reports on the allowed 
settings of most of the primary processor-based VM-execution controls (see Section 
24.6.2):
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows 

control X (bit X of the primary processor-based VM-execution controls) to be 0 if 
bit X in the MSR is cleared to 0; if bit X in the MSR is set to 1, VM entry fails if 
control X is 0.
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Exceptions are made for the primary processor-based VM-execution controls in 
the default1 class (see Appendix A.2). These are bits 1, 4–6, 8, 13–16, and 26; 
the corresponding bits of the IA32_VMX_PROCBASED_CTLS MSR are always read 
as 1. The treatment of these controls by VM entry is determined by bit 55 in the 
IA32_VMX_BASIC MSR:

— If bit 55 in the IA32_VMX_BASIC MSR is read as 0, VM entry fails if any of the 
primary processor-based VM-execution controls in the default1 class is 0.

— If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the 
IA32_VMX_TRUE_PROCBASED_CTLS MSR (see below) reports which of the 
primary processor-based VM-execution controls in the default1 class can be 0 
on VM entry.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows 
control X to be 1 if bit 32+X in the MSR is set to 1; if bit 32+X in the MSR is 
cleared to 0, VM entry fails if control X is 1.

If bit 55 in the IA32_VMX_BASIC MSR is read as 1, 
the IA32_VMX_TRUE_PROCBASED_CTLS MSR (index 48EH) reports on the allowed 
settings of all of the primary processor-based VM-execution controls:
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows 

control X to be 0 if bit X in the MSR is cleared to 0; if bit X in the MSR is set to 1, 
VM entry fails if control X is 0. There are no exceptions.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows 
control X to be 1 if bit 32+X in the MSR is set to 1; if bit 32+X in the MSR is 
cleared to 0, VM entry fails if control X is 1.

It is necessary for software to consult only one of the capability MSRs to determine 
the allowed settings of the primary processor-based VM-execution controls:
• If bit 55 in the IA32_VMX_BASIC MSR is read as 0, all information about the 

allowed settings of the primary processor-based VM-execution controls is 
contained in the IA32_VMX_PROCBASED_CTLS MSR. (The 
IA32_VMX_TRUE_PROCBASED_CTLS MSR is not supported.)

• If bit 55 in the IA32_VMX_BASIC MSR is read as 1, all information about the 
allowed settings of the processor-based VM-execution controls is contained in the 
IA32_VMX_TRUE_PROCBASED_CTLS MSR. Assuming that software knows that 
the default1 class of processor-based VM-execution controls contains bits 1, 4–6, 
8, 13–16, and 26, there is no need for software to consult the 
IA32_VMX_PROCBASED_CTLS MSR.

A.3.3  Secondary Processor-Based VM-Execution Controls
The IA32_VMX_PROCBASED_CTLS2 MSR (index 48BH) reports on the allowed 
settings of the secondary processor-based VM-execution controls (see Section 
24.6.2). VM entries perform the following checks:
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• Bits 31:0 indicate the allowed 0-settings of these controls. These bits are always 
0. This fact indicates that VM entry allows each bit of the secondary processor-
based VM-execution controls to be 0 (reserved bits must be 0)

• Bits 63:32 indicate the allowed 1-settings of these controls; the 1-setting is not 
allowed for any reserved bit. VM entry allows control X (bit X of the secondary 
processor-based VM-execution controls) to be 1 if bit 32+X in the MSR is set to 1; 
if bit 32+X in the MSR is cleared to 0, VM entry fails if control X and the “activate 
secondary controls” primary processor-based VM-execution control are both 1.

The IA32_VMX_PROCBASED_CTLS2 MSR exists only on processors that support the 
1-setting of the “activate secondary controls” VM-execution control (only if bit 63 of 
the IA32_VMX_PROCBASED_CTLS MSR is 1).

A.4 VM-EXIT CONTROLS
The IA32_VMX_EXIT_CTLS MSR (index 483H) reports on the allowed settings of 
most of the VM-exit controls (see Section 24.7.1):
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows 

control X (bit X of the VM-exit controls) to be 0 if bit X in the MSR is cleared to 0; 
if bit X in the MSR is set to 1, VM entry fails if control X is 0.
Exceptions are made for the VM-exit controls in the default1 class (see Appendix 
A.2). These are bits 0–8, 10, 11, 13, 14, 16, and 17; the corresponding bits of 
the IA32_VMX_EXIT_CTLS MSR are always read as 1. The treatment of these 
controls by VM entry is determined by bit 55 in the IA32_VMX_BASIC MSR:

— If bit 55 in the IA32_VMX_BASIC MSR is read as 0, VM entry fails if any 
VM-exit control in the default1 class is 0.

— If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the 
IA32_VMX_TRUE_EXIT_CTLS MSR (see below) reports which of the VM-exit 
controls in the default1 class can be 0 on VM entry.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows 
control 32+X to be 1 if bit X in the MSR is set to 1; if bit 32+X in the MSR is 
cleared to 0, VM entry fails if control X is 1.

If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the IA32_VMX_TRUE_EXIT_CTLS 
MSR (index 48FH) reports on the allowed settings of all of the VM-exit controls:
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows 

control X to be 0 if bit X in the MSR is cleared to 0; if bit X in the MSR is set to 1, 
VM entry fails if control X is 0. There are no exceptions.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows 
control X to be 1 if bit 32+X in the MSR is set to 1; if bit 32+X in the MSR is 
cleared to 0, VM entry fails if control X is 1.

It is necessary for software to consult only one of the capability MSRs to determine 
the allowed settings of the VM-exit controls:
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• If bit 55 in the IA32_VMX_BASIC MSR is read as 0, all information about the 
allowed settings of the VM-exit controls is contained in the 
IA32_VMX_EXIT_CTLS MSR. (The IA32_VMX_TRUE_EXIT_CTLS MSR is not 
supported.)

• If bit 55 in the IA32_VMX_BASIC MSR is read as 1, all information about the 
allowed settings of the VM-exit controls is contained in the 
IA32_VMX_TRUE_EXIT_CTLS MSR. Assuming that software knows that the 
default1 class of VM-exit controls contains bits 0–8, 10, 11, 13, 14, 16, and 17, 
there is no need for software to consult the IA32_VMX_EXIT_CTLS MSR.

A.5 VM-ENTRY CONTROLS
The IA32_VMX_ENTRY_CTLS MSR (index 484H) reports on the allowed settings of 
most of the VM-entry controls (see Section 24.8.1):
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows 

control X (bit X of the VM-entry controls) to be 0 if bit X in the MSR is cleared to 
0; if bit X in the MSR is set to 1, VM entry fails if control X is 0.
Exceptions are made for the VM-entry controls in the default1 class (see 
Appendix A.2). These are bits 0–8 and 12; the corresponding bits of the 
IA32_VMX_ENTRY_CTLS MSR are always read as 1. The treatment of these 
controls by VM entry is determined by bit 55 in the IA32_VMX_BASIC MSR:

— If bit 55 in the IA32_VMX_BASIC MSR is read as 0, VM entry fails if any 
VM-entry control in the default1 class is 0.

— If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the 
IA32_VMX_TRUE_ENTRY_CTLS MSR (see below) reports which of the 
VM-entry controls in the default1 class can be 0 on VM entry.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry fails if bit X 
is 1 in the VM-entry controls and bit 32+X is 0 in this MSR.

If bit 55 in the IA32_VMX_BASIC MSR is read as 1, 
the IA32_VMX_TRUE_ENTRY_CTLS MSR (index 490H) reports on the allowed 
settings of all of the VM-entry controls:
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows 

control X to be 0 if bit X in the MSR is cleared to 0; if bit X in the MSR is set to 1, 
VM entry fails if control X is 0. There are no exceptions.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows 
control 32+X to be 1 if bit X in the MSR is set to 1; if bit 32+X in the MSR is 
cleared to 0, VM entry fails if control X is 1.

It is necessary for software to consult only one of the capability MSRs to determine 
the allowed settings of the VM-entry controls:
• If bit 55 in the IA32_VMX_BASIC MSR is read as 0, all information about the 

allowed settings of the VM-entry controls is contained in the 
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IA32_VMX_ENTRY_CTLS MSR. (The IA32_VMX_TRUE_ENTRY_CTLS MSR is not 
supported.)

• If bit 55 in the IA32_VMX_BASIC MSR is read as 1, all information about the 
allowed settings of the VM-entry controls is contained in the 
IA32_VMX_TRUE_ENTRY_CTLS MSR. Assuming that software knows that the 
default1 class of VM-entry controls contains bits 0–8 and 12, there is no need for 
software to consult the IA32_VMX_ENTRY_CTLS MSR.

A.6 MISCELLANEOUS DATA
The IA32_VMX_MISC MSR (index 485H) consists of the following fields:
• Bits 4:0 report a value X that specifies the relationship between the rate of the 

VMX-preemption timer and that of the timestamp counter (TSC). Specifically, the 
VMX-preemption timer (if it is active) counts down by 1 every time bit X in the 
TSC changes due to a TSC increment.

• If bit 5 is read as 1, VM exits store the value of IA32_EFER.LMA into the “IA-32e 
mode guest” VM-entry control; see Section 27.2 for more details. This bit is read 
as 1 on any logical processor that supports the 1-setting of the “unrestricted 
guest” VM-execution control.

• Bits 8:6 report, as a bitmap, the activity states supported by the implemen-
tation:

— Bit 6 reports (if set) the support for activity state 1 (HLT).

— Bit 7 reports (if set) the support for activity state 2 (shutdown).

— Bit 8 reports (if set) the support for activity state 3 (wait-for-SIPI).
If an activity state is not supported, the implementation causes a VM entry to fail 
if it attempts to establish that activity state. All implementations support 
VM entry to activity state 0 (active).

• Bits 24:16 indicate the number of CR3-target values supported by the processor. 
This number is a value between 0 and 256, inclusive (bit 24 is set if and only if 
bits 23:16 are clear).

• Bits 27:25 is used to compute the recommended maximum number of MSRs that 
should appear in the VM-exit MSR-store list, the VM-exit MSR-load list, or the 
VM-entry MSR-load list. Specifically, if the value bits 27:25 of IA32_VMX_MISC is 
N, then 512 * (N + 1) is the recommended maximum number of MSRs to be 
included in each list. If the limit is exceeded, undefined processor behavior may 
result (including a machine check during the VMX transition).

• If bit 28 is read as 1, bit 2 of the IA32_SMM_MONITOR_CTL can be set to 1. 
VMXOFF unblocks SMIs unless IA32_SMM_MONITOR_CTL[bit 2] is 1 (see Section 
33.14.4).

• Bits 63:32 report the 32-bit MSEG revision identifier used by the processor.
• Bits 15:9 and bits 31:29 are reserved and are read as 0.
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A.7 VMX-FIXED BITS IN CR0
The IA32_VMX_CR0_FIXED0 MSR (index 486H) and IA32_VMX_CR0_FIXED1 MSR 
(index 487H) indicate how bits in CR0 may be set in VMX operation. They report on 
bits in CR0 that are allowed to be 0 and to be 1, respectively, in VMX operation. If 
bit X is 1 in IA32_VMX_CR0_FIXED0, then that bit of CR0 is fixed to 1 in VMX opera-
tion. Similarly, if bit X is 0 in IA32_VMX_CR0_FIXED1, then that bit of CR0 is fixed to 
0 in VMX operation. It is always the case that, if bit X is 1 in IA32_VMX_CR0_FIXED0, 
then that bit is also 1 in IA32_VMX_CR0_FIXED1; if bit X is 0 in 
IA32_VMX_CR0_FIXED1, then that bit is also 0 in IA32_VMX_CR0_FIXED0. Thus, 
each bit in CR0 is either fixed to 0 (with value 0 in both MSRs), fixed to 1 (1 in both 
MSRs), or flexible (0 in IA32_VMX_CR0_FIXED0 and 1 in IA32_VMX_CR0_FIXED1).

A.8 VMX-FIXED BITS IN CR4
The IA32_VMX_CR4_FIXED0 MSR (index 488H) and IA32_VMX_CR4_FIXED1 MSR 
(index 489H) indicate how bits in CR4 may be set in VMX operation. They report on 
bits in CR4 that are allowed to be 0 and 1, respectively, in VMX operation. If bit X is 1 
in IA32_VMX_CR4_FIXED0, then that bit of CR4 is fixed to 1 in VMX operation. Simi-
larly, if bit X is 0 in IA32_VMX_CR4_FIXED1, then that bit of CR4 is fixed to 0 in VMX 
operation. It is always the case that, if bit X is 1 in IA32_VMX_CR4_FIXED0, then 
that bit is also 1 in IA32_VMX_CR4_FIXED1; if bit X is 0 in IA32_VMX_CR4_FIXED1, 
then that bit is also 0 in IA32_VMX_CR4_FIXED0. Thus, each bit in CR4 is either fixed 
to 0 (with value 0 in both MSRs), fixed to 1 (1 in both MSRs), or flexible (0 in 
IA32_VMX_CR4_FIXED0 and 1 in IA32_VMX_CR4_FIXED1).

A.9 VMCS ENUMERATION
The IA32_VMX_VMCS_ENUM MSR (index 48AH) provides information to assist soft-
ware in enumerating fields in the VMCS.

As noted in Section 24.10.2, each field in the VMCS is associated with a 32-bit 
encoding which is structured as follows:
• Bits 31:15 are reserved (must be 0).
• Bits 14:13 indicate the field’s width.
• Bit 12 is reserved (must be 0).
• Bits 11:10 indicate the field’s type.
• Bits 9:1 is an index field that distinguishes different fields with the same width 

and type.
• Bit 0 indicates access type.

IA32_VMX_VMCS_ENUM indicates to software the highest index value used in the 
encoding of any field supported by the processor:
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• Bits 9:1 contain the highest index value used for any VMCS encoding.
• Bit 0 and bits 63:10 are reserved and are read as 0.

A.10 VPID AND EPT CAPABILITIES
The IA32_VMX_EPT_VPID_CAP MSR (index 48CH) reports information about the 
capabilities of the logical processor with regard to virtual-processor identifiers 
(VPIDs, Section 28.1) and extended page tables (EPT, Section 28.2):
• If bit 0 is read as 1, the logical processor allows software to configure EPT 

paging-structure entries in which bits 2:0 have value 100b (indicating an 
execute-only translation). 

• Bit 6 indicates support for a page-walk length of 4.
• If bit 8 is read as 1, the logical processor allows software to configure the EPT 

paging-structure memory type to be uncacheable (UC); see Section 24.6.11.
• If bit 14 is read as 1, the logical processor allows software to configure the EPT 

paging-structure memory type to be write-back (WB).
• If bit 16 is read as 1, the logical processor allows software to configure a EPT PDE 

to map a 2-Mbyte page (by setting bit 7 in the EPT PDE). 
• If bit 17 is read as 1, the logical processor allows software to configure a EPT 

PDPTE to map a 1-Gbyte page (by setting bit 7 in the EPT PDPTE). 
• Support for the INVEPT instruction (see Chapter 29 of the Intel® 64 and IA-32 

Architectures Software Developer’s Manual, Volume 3C and Section 28.3.3.1).

— If bit 20 is read as 1, the INVEPT instruction is supported.

— If bit 25 is read as 1, the single-context INVEPT type is supported.

— If bit 26 is read as 1, the all-context INVEPT type is supported.
• Support for the INVVPID instruction (see Chapter 29 of the Intel® 64 and IA-32 

Architectures Software Developer’s Manual, Volume 3C and Section 28.3.3.1).

— If bit 32 is read as 1, the INVVPID instruction is supported.

— If bit 40 is read as 1, the individual-address INVVPID type is supported.

— If bit 41 is read as 1, the single-context INVVPID type is supported.

— If bit 42 is read as 1, the all-context INVVPID type is supported.

— If bit 43 is read as 1, the single-context-retaining-globals INVVPID type is 
supported.

• Bits 5:1, bit 7, bits 13:9, bit 15, bits 19:17, bits 24:21, bits 31:27, bits 39:33, 
and bits 63:44 are reserved and are read as 0.

The IA32_VMX_EPT_VPID_CAP MSR exists only on processors that support the 1-
setting of the “activate secondary controls” VM-execution control (only if bit 63 of the 
IA32_VMX_PROCBASED_CTLS MSR is 1) and that support either the 1-setting of the 
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“enable EPT” VM-execution control (only if bit 33 of the 
IA32_VMX_PROCBASED_CTLS2 MSR is 1) or the 1-setting of the “enable VPID” VM-
execution control (only if bit 37 of the IA32_VMX_PROCBASED_CTLS2 MSR is 1).

A.11 VM FUNCTIONS
The IA32_VMX_VMFUNC MSR (index 491H) reports on the allowed settings of the 
VM-function controls (see Section 24.6.14). VM entry allows bit X of the VM-function 
controls to be 1 if bit X in the MSR is set to 1; if bit X in the MSR is cleared to 0, 
VM entry fails if bit X of the VM-function controls, the “activate secondary controls” 
primary processor-based VM-execution control, and the “enable VM functions” 
secondary processor-based VM-execution control are all 1.

The IA32_VMX_VMFUNC MSR exists only on processors that support the 1-setting of 
the “activate secondary controls” VM-execution control (only if bit 63 of the 
IA32_VMX_PROCBASED_CTLS MSR is 1) and the 1-setting of the “enable VM func-
tions” secondary processor-based VM-execution control (only if bit 45 of the 
IA32_VMX_PROCBASED_CTLS2 MSR is 1).
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APPENDIX B
FIELD ENCODING IN VMCS

Every component of the VMCS is encoded by a 32-bit field that can be used by 
VMREAD and VMWRITE. Section 24.10.2 describes the structure of the encoding 
space (the meanings of the bits in each 32-bit encoding). 

This appendix enumerates all fields in the VMCS and their encodings. Fields are 
grouped by width (16-bit, 32-bit, etc.) and type (guest-state, host-state, etc.)

B.1 16-BIT FIELDS
A value of 0 in bits 14:13 of an encoding indicates a 16-bit field. Only guest-state 
areas and the host-state area contain 16-bit fields. As noted in Section 24.10.2, each 
16-bit field allows only full access, meaning that bit 0 of its encoding is 0. Each such 
encoding is thus an even number.

B.1.1  16-Bit Control Field
A value of 0 in bits 11:10 of an encoding indicates a control field. These fields are 
distinguished by their index value in bits 9:1. There is only one such 16-bit field as 
given in Table B-1.

B.1.2  16-Bit Guest-State Fields
A value of 2 in bits 11:10 of an encoding indicates a field in the guest-state area. 
These fields are distinguished by their index value in bits 9:1. Table B-2 enumerates 
16-bit guest-state fields.

Table B-1.  Encoding for 16-Bit Control Fields (0000_00xx_xxxx_xxx0B)
Field Name Index Encoding

Virtual-processor identifier (VPID)1

NOTES:
1. This field exists only on processors that support the 1-setting of the “enable VPID” VM-execution 

control.

000000000B 00000000H

Table B-2.  Encodings for 16-Bit Guest-State Fields (0000_10xx_xxxx_xxx0B)
Field Name Index Encoding

Guest ES selector 000000000B 00000800H
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B.1.3  16-Bit Host-State Fields
A value of 3 in bits 11:10 of an encoding indicates a field in the host-state area. 
These fields are distinguished by their index value in bits 9:1. Table B-3 enumerates 
the 16-bit host-state fields.

B.2 64-BIT FIELDS
A value of 1 in bits 14:13 of an encoding indicates a 64-bit field. There are 64-bit 
fields only for controls and for guest state. As noted in Section 24.10.2, every 64-bit 
field has two encodings, which differ on bit 0, the access type. Thus, each such field 
has an even encoding for full access and an odd encoding for high access.

Guest CS selector 000000001B 00000802H

Guest SS selector 000000010B 00000804H

Guest DS selector 000000011B 00000806H

Guest FS selector 000000100B 00000808H

Guest GS selector 000000101B 0000080AH

Guest LDTR selector 000000110B 0000080CH

Guest TR selector 000000111B 0000080EH

Table B-3.  Encodings for 16-Bit Host-State Fields (0000_11xx_xxxx_xxx0B)
Field Name Index Encoding

Host ES selector 000000000B 00000C00H

Host CS selector 000000001B 00000C02H

Host SS selector 000000010B 00000C04H

Host DS selector 000000011B 00000C06H

Host FS selector 000000100B 00000C08H

Host GS selector 000000101B 00000C0AH

Host TR selector 000000110B 00000C0CH

Table B-2.  Encodings for 16-Bit Guest-State Fields (0000_10xx_xxxx_xxx0B) 
Field Name Index Encoding
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B.2.1  64-Bit Control Fields
A value of 0 in bits 11:10 of an encoding indicates a control field. These fields are 
distinguished by their index value in bits 9:1. Table B-4 enumerates the 64-bit 
control fields.

Table B-4.  Encodings for 64-Bit Control Fields (0010_00xx_xxxx_xxxAb)
Field Name Index Encoding

Address of I/O bitmap A (full) 000000000B 00002000H

Address of I/O bitmap A (high) 000000000B 00002001H

Address of I/O bitmap B (full) 000000001B 00002002H

Address of I/O bitmap B (high) 000000001B 00002003H

Address of MSR bitmaps (full)1 000000010B 00002004H

Address of MSR bitmaps (high)1 000000010B 00002005H

VM-exit MSR-store address (full) 000000011B 00002006H

VM-exit MSR-store address (high) 000000011B 00002007H

VM-exit MSR-load address (full) 000000100B 00002008H

VM-exit MSR-load address (high) 000000100B 00002009H

VM-entry MSR-load address (full) 000000101B 0000200AH

VM-entry MSR-load address (high) 000000101B 0000200BH

Executive-VMCS pointer (full) 000000110B 0000200CH

Executive-VMCS pointer (high) 000000110B 0000200DH

TSC offset (full) 000001000B 00002010H

TSC offset (high) 000001000B 00002011H

Virtual-APIC address (full)2 000001001B 00002012H

Virtual-APIC address (high)2 000001001B 00002013H

APIC-access address (full)3 000001010B 00002014H

APIC-access address (high)3 000001010B 00002015H

VM-function controls (full)4 000001100B 00002018H

VM-function controls (high)4 000001100B 00002019H

EPT pointer (EPTP; full)5 000001101B 0000201AH

EPT pointer (EPTP; high)5 000001101B 0000201BH

EPTP-list address (full)6 000010010B 00002024H

EPTP-list address (high)6 000010010B 00002025H
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B.2.2  64-Bit Read-Only Data Field
A value of 1 in bits 11:10 of an encoding indicates a read-only data field. These fields 
are distinguished by their index value in bits 9:1. There is only one such 64-bit field 
as given in Table B-5.(As with other 64-bit fields, this one has two encodings.)

B.2.3  64-Bit Guest-State Fields
A value of 2 in bits 11:10 of an encoding indicates a field in the guest-state area. 
These fields are distinguished by their index value in bits 9:1. Table B-6 enumerates 
the 64-bit guest-state fields.

NOTES:
1. This field exists only on processors that support the 1-setting of the “use MSR bitmaps” 

VM-execution control.
2. This field exists only on processors that support either the 1-setting of the “use TPR shadow” 

VM-execution control.
3. This field exists only on processors that support the 1-setting of the “virtualize APIC accesses” 

VM-execution control.
4. This field exists only on processors that support the 1-setting of the “enable VM functions” VM-

execution control.
5. This field exists only on processors that support the 1-setting of the “enable EPT” VM-execution 

control.
6. This field exists only on processors that support the 1-setting of the “EPTP switching” VM-func-

tion control.

Table B-5.  Encodings for 64-Bit Read-Only Data Field (0010_01xx_xxxx_xxxAb)
Field Name Index Encoding

Guest-physical address (full)1

NOTES:
1. This field exists only on processors that support the 1-setting of the "enable EPT” VM-execution 

control.

000000000B 00002400H

Guest-physical address (high)1 000000000B 00002401H

Table B-6.  Encodings for 64-Bit Guest-State Fields (0010_10xx_xxxx_xxxAb)
Field Name Index Encoding

VMCS link pointer (full) 000000000B 00002800H

VMCS link pointer (high) 000000000B 00002801H

Guest IA32_DEBUGCTL (full) 000000001B 00002802H
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B.2.4  64-Bit Host-State Fields
A value of 3 in bits 11:10 of an encoding indicates a field in the host-state area. 
These fields are distinguished by their index value in bits 9:1. Table B-7 enumerates 
the 64-bit control fields.

Guest IA32_DEBUGCTL (high) 000000001B 00002803H

Guest IA32_PAT (full)1 000000010B 00002804H

Guest IA32_PAT (high)1 000000010B 00002805H

Guest IA32_EFER (full)2 000000011B 00002806H

Guest IA32_EFER (high)2 000000011B 00002807H

Guest IA32_PERF_GLOBAL_CTRL (full)3 000000100B 00002808H

Guest IA32_PERF_GLOBAL_CTRL (high)3 000000100B 00002809H

Guest PDPTE0 (full)4 000000101B 0000280AH

Guest PDPTE0 (high)4 000000101B 0000280BH

Guest PDPTE1 (full)4 000000110B 0000280CH

Guest PDPTE1 (high)4 000000110B 0000280DH

Guest PDPTE2 (full)4 000000111B 0000280EH

Guest PDPTE2 (high)4 000000111B 0000280FH

Guest PDPTE3 (full)4 000001000B 00002810H

Guest PDPTE3 (high)4 000001000B 00002811H

NOTES:
1. This field exists only on processors that support either the 1-setting of the "load IA32_PAT" VM-

entry control or that of the "save IA32_PAT" VM-exit control.
2. This field exists only on processors that support either the 1-setting of the "load IA32_EFER" VM-

entry control or that of the "save IA32_EFER" VM-exit control.
3. This field exists only on processors that support the 1-setting of the "load 

IA32_PERF_GLOBAL_CTRL" VM-entry control.
4. This field exists only on processors that support the 1-setting of the "enable EPT" VM-execution 

control.

Table B-7.  Encodings for 64-Bit Host-State Fields (0010_11xx_xxxx_xxxAb)
Field Name Index Encoding

Host IA32_PAT (full)1 000000000B 00002C00H

Table B-6.  Encodings for 64-Bit Guest-State Fields (0010_10xx_xxxx_xxxAb) 
Field Name Index Encoding
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B.3 32-BIT FIELDS
A value of 2 in bits 14:13 of an encoding indicates a 32-bit field. As noted in Section 
24.10.2, each 32-bit field allows only full access, meaning that bit 0 of its encoding 
is 0. Each such encoding is thus an even number.

B.3.1  32-Bit Control Fields
A value of 0 in bits 11:10 of an encoding indicates a control field. These fields are 
distinguished by their index value in bits 9:1. Table B-8 enumerates the 32-bit 
control fields.

Host IA32_PAT (high)1 000000000B 00002C01H

Host IA32_EFER (full)2 000000001B 00002C02H

Host IA32_EFER (high)2 000000001B 00002C03H

Host IA32_PERF_GLOBAL_CTRL (full)3 000000010B 00002C04H

Host IA32_PERF_GLOBAL_CTRL (high)3 000000010B 00002C05H

NOTES:
1. This field exists only on processors that support the 1-setting of the "load IA32_PAT" VM-exit 

control.
2. This field exists only on processors that support the 1-setting of the "load IA32_EFER" VM-exit 

control.
3. This field exists only on processors that support the 1-setting of the "load 

IA32_PERF_GLOBAL_CTRL" VM-exit control.

Table B-8.  Encodings for 32-Bit Control Fields (0100_00xx_xxxx_xxx0B)
Field Name Index Encoding

Pin-based VM-execution controls 000000000B 00004000H

Primary processor-based VM-execution controls 000000001B 00004002H

Exception bitmap 000000010B 00004004H

Page-fault error-code mask 000000011B 00004006H

Page-fault error-code match 000000100B 00004008H

CR3-target count 000000101B 0000400AH

VM-exit controls 000000110B 0000400CH

VM-exit MSR-store count 000000111B 0000400EH

Table B-7.  Encodings for 64-Bit Host-State Fields (0010_11xx_xxxx_xxxAb) 
Field Name Index Encoding
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B.3.2  32-Bit Read-Only Data Fields
A value of 1 in bits 11:10 of an encoding indicates a read-only data field. These fields 
are distinguished by their index value in bits 9:1. Table B-9 enumerates the 32-bit 
read-only data fields.

VM-exit MSR-load count 000001000B 00004010H

VM-entry controls 000001001B 00004012H

VM-entry MSR-load count 000001010B 00004014H

VM-entry interruption-information field 000001011B 00004016H

VM-entry exception error code 000001100B 00004018H

VM-entry instruction length 000001101B 0000401AH

TPR threshold1 000001110B 0000401CH

Secondary processor-based VM-execution controls2 000001111b 0000401EH

PLE_Gap3 000010000b 00004020H

PLE_Window3 000010001b 00004022H

NOTES:
1. This field exists only on processors that support the 1-setting of the “use TPR shadow” VM-exe-

cution control.
2. This field exists only on processors that support the 1-setting of the “activate secondary controls” 

VM-execution control.
3. This field exists only on processors that support the 1-setting of the “PAUSE-loop exiting” 

VM-execution control.

Table B-9.  Encodings for 32-Bit Read-Only Data Fields (0100_01xx_xxxx_xxx0B)
Field Name Index Encoding

VM-instruction error 000000000B 00004400H

Exit reason 000000001B 00004402H

VM-exit interruption information 000000010B 00004404H

VM-exit interruption error code 000000011B 00004406H

IDT-vectoring information field 000000100B 00004408H

IDT-vectoring error code 000000101B 0000440AH

VM-exit instruction length 000000110B 0000440CH

VM-exit instruction information 000000111B 0000440EH

Table B-8.  Encodings for 32-Bit Control Fields (0100_00xx_xxxx_xxx0B) (Contd.)
Field Name Index Encoding
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B.3.3  32-Bit Guest-State Fields
A value of 2 in bits 11:10 of an encoding indicates a field in the guest-state area. 
These fields are distinguished by their index value in bits 9:1. Table B-10 enumerates 
the 32-bit guest-state fields.

Table B-10.  Encodings for 32-Bit Guest-State Fields 
(0100_10xx_xxxx_xxx0B)

Field Name Index Encoding

Guest ES limit 000000000B 00004800H

Guest CS limit 000000001B 00004802H

Guest SS limit 000000010B 00004804H

Guest DS limit 000000011B 00004806H

Guest FS limit 000000100B 00004808H

Guest GS limit 000000101B 0000480AH

Guest LDTR limit 000000110B 0000480CH

Guest TR limit 000000111B 0000480EH

Guest GDTR limit 000001000B 00004810H

Guest IDTR limit 000001001B 00004812H

Guest ES access rights 000001010B 00004814H

Guest CS access rights 000001011B 00004816H

Guest SS access rights 000001100B 00004818H

Guest DS access rights 000001101B 0000481AH

Guest FS access rights 000001110B 0000481CH

Guest GS access rights 000001111B 0000481EH

Guest LDTR access rights 000010000B 00004820H

Guest TR access rights 000010001B 00004822H

Guest interruptibility state 000010010B 00004824H

Guest activity state 000010011B 00004826H

Guest SMBASE 000010100B 00004828H

Guest IA32_SYSENTER_CS 000010101B 0000482AH

VMX-preemption timer value1

NOTES:
1. This field exists only on processors that support the 1-setting of the "activate VMX-preemption 

timer" VM-execution control.

000010111B 0000482EH
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The limit fields for GDTR and IDTR are defined to be 32 bits in width even though 
these fields are only 16-bits wide in the Intel 64 and IA-32 architectures. VM entry 
ensures that the high 16 bits of both these fields are cleared to 0.

B.3.4  32-Bit Host-State Field
A value of 3 in bits 11:10 of an encoding indicates a field in the host-state area. 
There is only one such 32-bit field as given in Table B-11.

B.4 NATURAL-WIDTH FIELDS
A value of 3 in bits 14:13 of an encoding indicates a natural-width field. As noted in 
Section 24.10.2, each of these fields allows only full access, meaning that bit 0 of its 
encoding is 0. Each such encoding is thus an even number.

B.4.1  Natural-Width Control Fields
A value of 0 in bits 11:10 of an encoding indicates a control field. These fields are 
distinguished by their index value in bits 9:1. Table B-12 enumerates the natural-
width control fields.

Table B-11.  Encoding for 32-Bit Host-State Field (0100_11xx_xxxx_xxx0B)
Field Name Index Encoding

Host IA32_SYSENTER_CS 000000000B 00004C00H

Table B-12.  Encodings for Natural-Width Control Fields (0110_00xx_xxxx_xxx0B)
Field Name Index Encoding

CR0 guest/host mask 000000000B 00006000H

CR4 guest/host mask 000000001B 00006002H

CR0 read shadow 000000010B 00006004H

CR4 read shadow 000000011B 00006006H

CR3-target value 0 000000100B 00006008H

CR3-target value 1 000000101B 0000600AH

CR3-target value 2 000000110B 0000600CH

CR3-target value 31 000000111B 0000600EH
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B.4.2  Natural-Width Read-Only Data Fields
A value of 1 in bits 11:10 of an encoding indicates a read-only data field. These fields 
are distinguished by their index value in bits 9:1. Table B-13 enumerates the natural-
width read-only data fields.

B.4.3  Natural-Width Guest-State Fields
A value of 2 in bits 11:10 of an encoding indicates a field in the guest-state area. 
These fields are distinguished by their index value in bits 9:1. Table B-14 enumerates 
the natural-width guest-state fields.

NOTES:
1. If a future implementation supports more than 4 CR3-target values, they will be encoded consec-

utively following the 4 encodings given here.

Table B-13.  Encodings for Natural-Width Read-Only Data Fields 
(0110_01xx_xxxx_xxx0B)

Field Name Index Encoding

Exit qualification 000000000B 00006400H

I/O RCX 000000001B 00006402H

I/O RSI 000000010B 00006404H

I/O RDI 000000011B 00006406H

I/O RIP 000000100B 00006408H

Guest-linear address 000000101B 0000640AH

Table B-14.  Encodings for Natural-Width Guest-State Fields 
(0110_10xx_xxxx_xxx0B) 

Field Name Index Encoding

Guest CR0 000000000B 00006800H

Guest CR3 000000001B 00006802H

Guest CR4 000000010B 00006804H

Guest ES base 000000011B 00006806H

Guest CS base 000000100B 00006808H

Guest SS base 000000101B 0000680AH

Guest DS base 000000110B 0000680CH
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The base-address fields for ES, CS, SS, and DS in the guest-state area are defined to 
be natural-width (with 64 bits on processors supporting Intel 64 architecture) even 
though these fields are only 32-bits wide in the Intel 64 architecture. VM entry 
ensures that the high 32 bits of these fields are cleared to 0.

B.4.4  Natural-Width Host-State Fields
A value of 3 in bits 11:10 of an encoding indicates a field in the host-state area. 
These fields are distinguished by their index value in bits 9:1. Table B-15 enumerates 
the natural-width host-state fields.

Guest FS base 000000111B 0000680EH

Guest GS base 000001000B 00006810H

Guest LDTR base 000001001B 00006812H

Guest TR base 000001010B 00006814H

Guest GDTR base 000001011B 00006816H

Guest IDTR base 000001100B 00006818H

Guest DR7 000001101B 0000681AH

Guest RSP 000001110B 0000681CH

Guest RIP 000001111B 0000681EH

Guest RFLAGS 000010000B 00006820H

Guest pending debug exceptions 000010001B 00006822H

Guest IA32_SYSENTER_ESP 000010010B 00006824H

Guest IA32_SYSENTER_EIP 000010011B 00006826H

Table B-15.  Encodings for Natural-Width Host-State Fields 
(0110_11xx_xxxx_xxx0B) 

Field Name Index Encoding

Host CR0 000000000B 00006C00H

Host CR3 000000001B 00006C02H

Host CR4 000000010B 00006C04H

Host FS base 000000011B 00006C06H

Host GS base 000000100B 00006C08H

Host TR base 000000101B 00006C0AH

Table B-14.  Encodings for Natural-Width Guest-State Fields 
(0110_10xx_xxxx_xxx0B)  (Contd.)

Field Name Index Encoding
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Host GDTR base 000000110B 00006C0CH

Host IDTR base 000000111B 00006C0EH

Host IA32_SYSENTER_ESP 000001000B 00006C10H

Host IA32_SYSENTER_EIP 000001001B 00006C12H

Host RSP 000001010B 00006C14H

Host RIP 000001011B 00006C16H

Table B-15.  Encodings for Natural-Width Host-State Fields 
(0110_11xx_xxxx_xxx0B)  (Contd.)

Field Name Index Encoding
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APPENDIX C
VMX BASIC EXIT REASONS

Every VM exit writes a 32-bit exit reason to the VMCS (see Section 24.9.1). Certain 
VM-entry failures also do this (see Section 26.7). The low 16 bits of the exit-reason 
field form the basic exit reason which provides basic information about the cause of 
the VM exit or VM-entry failure.

Table C-1 lists values for basic exit reasons and explains their meaning. Entries apply 
to VM exits, unless otherwise noted.

Table C-1.  Basic Exit Reasons 
Basic Exit 
Reason Description

0 Exception or non-maskable interrupt (NMI). Either:

1: Guest software caused an exception and the bit in the exception bitmap 
associated with exception’s vector was 1.

2: An NMI was delivered to the logical processor and the “NMI exiting” 
VM-execution control was 1. This case includes executions of BOUND that cause 
#BR, executions of INT3 (they cause #BP), executions of INTO that cause #OF, 
and executions of UD2 (they cause #UD).

1 External interrupt. An external interrupt arrived and the “external-interrupt 
exiting” VM-execution control was 1.

2 Triple fault. The logical processor encountered an exception while attempting to 
call the double-fault handler and that exception did not itself cause a VM exit due 
to the exception bitmap.

3 INIT signal. An INIT signal arrived

4 Start-up IPI (SIPI). A SIPI arrived while the logical processor was in the “wait-for-
SIPI” state.

5 I/O system-management interrupt (SMI). An SMI arrived immediately after 
retirement of an I/O instruction and caused an SMM VM exit (see Section 33.15.2).

6 Other SMI. An SMI arrived and caused an SMM VM exit (see Section 33.15.2) but 
not immediately after retirement of an I/O instruction.

7 Interrupt window. At the beginning of an instruction, RFLAGS.IF was 1; events 
were not blocked by STI or by MOV SS; and the “interrupt-window exiting” 
VM-execution control was 1.

8 NMI window. At the beginning of an instruction, there was no virtual-NMI blocking; 
events were not blocked by MOV SS; and the “NMI-window exiting” VM-execution 
control was 1.

9 Task switch. Guest software attempted a task switch.

10 CPUID. Guest software attempted to execute CPUID.
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11 GETSEC. Guest software attempted to execute GETSEC.

12 HLT. Guest software attempted to execute HLT and the “HLT exiting” 
VM-execution control was 1.

13 INVD. Guest software attempted to execute INVD.

14 INVLPG. Guest software attempted to execute INVLPG and the “INVLPG exiting” 
VM-execution control was 1.

15 RDPMC. Guest software attempted to execute RDPMC and the “RDPMC exiting” 
VM-execution control was 1.

16 RDTSC. Guest software attempted to execute RDTSC and the “RDTSC exiting” 
VM-execution control was 1.

17 RSM. Guest software attempted to execute RSM in SMM.

18 VMCALL. VMCALL was executed either by guest software (causing an 
ordinary VM exit) or by the executive monitor (causing an SMM VM exit; see 
Section 33.15.2).

19 VMCLEAR. Guest software attempted to execute VMCLEAR.

20 VMLAUNCH. Guest software attempted to execute VMLAUNCH.

21 VMPTRLD. Guest software attempted to execute VMPTRLD.

22 VMPTRST. Guest software attempted to execute VMPTRST.

23 VMREAD. Guest software attempted to execute VMREAD.

24 VMRESUME. Guest software attempted to execute VMRESUME.

25 VMWRITE. Guest software attempted to execute VMWRITE.

26 VMXOFF. Guest software attempted to execute VMXOFF.

27 VMXON. Guest software attempted to execute VMXON.

28 Control-register accesses. Guest software attempted to access CR0, CR3, CR4, or 
CR8 using CLTS, LMSW, or MOV CR and the VM-execution control fields indicate 
that a VM exit should occur (see Section 25.1 for details). This basic exit reason is 
not used for trap-like VM exits following executions of the MOV to CR8 instruction 
when the “use TPR shadow” VM-execution control is 1.

29 MOV DR. Guest software attempted a MOV to or from a debug register and the 
“MOV-DR exiting” VM-execution control was 1.

30 I/O instruction. Guest software attempted to execute an I/O instruction and either:

1: The “use I/O bitmaps” VM-execution control was 0 and the “unconditional I/O 
exiting” VM-execution control was 1.

2: The “use I/O bitmaps” VM-execution control was 1 and a bit in the I/O bitmap 
associated with one of the ports accessed by the I/O instruction was 1.

Table C-1.  Basic Exit Reasons  (Contd.)
Basic Exit 
Reason Description
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31 RDMSR. Guest software attempted to execute RDMSR and either:

1: The “use MSR bitmaps” VM-execution control was 0.
2: The value of RCX is neither in the range 00000000H – 00001FFFH nor in the 

range C0000000H – C0001FFFH.
3: The value of RCX was in the range 00000000H – 00001FFFH and the nth bit in 

read bitmap for low MSRs is 1, where n was the value of RCX.
4: The value of RCX is in the range C0000000H – C0001FFFH and the nth bit in 

read bitmap for high MSRs is 1, where n is the value of RCX & 00001FFFH.

32 WRMSR. Guest software attempted to execute WRMSR and either:

1: The “use MSR bitmaps” VM-execution control was 0.
2: The value of RCX is neither in the range 00000000H – 00001FFFH nor in the 

range C0000000H – C0001FFFH.
3: The value of RCX was in the range 00000000H – 00001FFFH and the nth bit in 

write bitmap for low MSRs is 1, where n was the value of RCX.
4: The value of RCX is in the range C0000000H – C0001FFFH and the nth bit in 

write bitmap for high MSRs is 1, where n is the value of RCX & 00001FFFH.

33 VM-entry failure due to invalid guest state. A VM entry failed one of the checks 
identified in Section 26.3.1.

34 VM-entry failure due to MSR loading. A VM entry failed in an attempt to load 
MSRs. See Section 26.4.

36 MWAIT. Guest software attempted to execute MWAIT and the “MWAIT exiting” 
VM-execution control was 1.

37 Monitor trap flag. A VM entry occurred due to the 1-setting of the “monitor trap 
flag” VM-execution control and injection of an MTF VM exit as part of VM entry. 
See Section 25.7.2.

39 MONITOR. Guest software attempted to execute MONITOR and the “MONITOR 
exiting” VM-execution control was 1.

40 PAUSE. Either guest software attempted to execute PAUSE and the “PAUSE 
exiting” VM-execution control was 1 or the “PAUSE-loop exiting” VM-execution 
control was 1 and guest software executed a PAUSE loop with execution time 
exceeding PLE_Window (see Section 25.1.3).

41 VM-entry failure due to machine-check event. A machine-check event occurred 
during VM entry (see Section 26.8).

43 TPR below threshold. The logical processor determined that the value of the TPR 
shadow was below that of the TPR threshold VM-execution control field while the 
“use TPR shadow” VM-execution control was 1 in one of the following cases:

• After guest software executed MOV to CR8 (see Section 25.1.3).
• As part of a TPR-shadow update (see Section 25.5.3.3).
• After VM entry with the 1-setting of the “virtualize APIC accesses” VM-

execution control (see Section 26.6.7).

Table C-1.  Basic Exit Reasons  (Contd.)
Basic Exit 
Reason Description
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44 APIC access. Guest software attempted to access memory at a physical address on 
the APIC-access page and the “virtualize APIC accesses” VM-execution control was 
1 (see Section 25.2).

46 Access to GDTR or IDTR. Guest software attempted to execute LGDT, LIDT, SGDT, 
or SIDT and the “descriptor-table exiting” VM-execution control was 1.

47 Access to LDTR or TR. Guest software attempted to execute LLDT, LTR, SLDT, or 
STR and the “descriptor-table exiting” VM-execution control was 1.

48 EPT violation. An attempt to access memory with a guest-physical address was 
disallowed by the configuration of the EPT paging structures.

49 EPT misconfiguration. An attempt to access memory with a guest-physical address 
encountered a misconfigured EPT paging-structure entry.

50 INVEPT. Guest software attempted to execute INVEPT.

51 RDTSCP. Guest software attempted to execute RDTSCP and the “enable RDTSCP” 
and “RDTSC exiting” VM-execution controls were both 1.

52 VMX-preemption timer expired. The preemption timer counted down to zero.

53 INVVPID. Guest software attempted to execute INVVPID.

54 WBINVD. Guest software attempted to execute WBINVD and the “WBINVD exiting” 
VM-execution control was 1.

55 XSETBV. Guest software attempted to execute XSETBV.

57 RDRAND. Guest software attempted to execute RDRAND and the “RDRAND 
exiting” VM-execution control was 1.

58 INVPCID. Guest software attempted to execute INVPCID and the “enable INVPCID” 
and “INVLPG exiting” VM-execution controls were both 1.

59 VMFUNC. Guest software invoked a VM function with the VMFUNC instruction and 
the VM function either was not enabled or generated a function-specific condition 
causing a VM exit.

Table C-1.  Basic Exit Reasons  (Contd.)
Basic Exit 
Reason Description
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Addressing, segments, Vol.2-1-6, Vol.3-1-9
ADDSD instruction, Vol.1-11-8, Vol.2-3-42
ADDSS instruction, Vol.1-10-12, Vol.2-3-44
ADDSUBPD instruction, Vol.1-5-26, Vol.1-12-5, 

Vol.2-3-46
ADDSUBPS instruction, Vol.1-5-26, Vol.1-12-5, 

Vol.2-3-49
Advanced media boost, Vol.1-2-15
Advanced power management

C-state and Sub C-state, Vol.3-14-9
MWAIT extensions, Vol.3-14-9
See also: thermal monitoring

Advanced programmable interrupt controller (see I/O 
APIC or Local APIC)

advanced smart cache, Vol.1-2-15
AESDEC/AESDECLAST- Perform One Round of an AES 

Decryption Flow, Vol.2-3-58
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Backlink (see Previous task link)
Base address fields, segment descriptor, Vol.3-3-14
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Biased exponent, Vol.1-4-18
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Binary-coded decimal (see BCD)
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Brand information, Vol.2-3-226
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data breakpoint exception conditions, 

Vol.3-17-12
description of, Vol.3-17-1
DR0-DR3 debug registers, Vol.3-17-4
example, Vol.3-17-7
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R/W0-R/W3 (read/write) fields

DR7 register, Vol.3-17-5
single-step exception condition, Vol.3-17-12
task-switch exception condition, Vol.3-17-13

BS (single step) flag, DR6 register, Vol.3-17-4
BSF instruction, Vol.1-7-20, Vol.2-3-92
BSP flag, IA32_APIC_BASE MSR, Vol.3-10-11
BSR instruction, Vol.1-7-20, Vol.2-3-95
BSWAP instruction, Vol.1-7-5, Vol.2-3-98, 

Vol.3-22-6
BT instruction, Vol.1-3-20, Vol.1-3-22, Vol.1-7-20, 

Vol.2-3-100
BT (task switch) flag, DR6 register, Vol.3-17-4, 

Vol.3-17-13
BTC instruction, Vol.1-3-20, Vol.1-3-22, Vol.1-7-20, 

Vol.2-3-103, Vol.2-3-598, Vol.3-8-5
BTF (single-step on branches) flag

DEBUGCTLMSR MSR, Vol.3-17-47
BTMs (branch trace messages)

description of, Vol.3-17-17
enabling, Vol.3-17-15, Vol.3-17-29, Vol.3-17-30, 

Vol.3-17-39, Vol.3-17-42, Vol.3-17-45
TR (trace message enable) flag

MSR_DEBUGCTLA MSR, Vol.3-17-39
MSR_DEBUGCTLB MSR, Vol.3-17-15, 

Vol.3-17-42, Vol.3-17-45
BTR instruction, Vol.1-3-20, Vol.1-3-22, Vol.1-7-20, 

Vol.2-3-106, Vol.2-3-598, Vol.3-8-5
BTS, Vol.3-17-22
BTS buffer

description of, Vol.3-17-22
introduction to, Vol.3-17-14, Vol.3-17-18
records in, Vol.3-17-24
setting up, Vol.3-17-29
structure of, Vol.3-17-23, Vol.3-17-26, 

Vol.3-18-32
BTS instruction, Vol.1-3-20, Vol.1-3-22, Vol.1-7-20, 

Vol.2-3-109, Vol.2-3-598, Vol.3-8-5
BTS (branch trace store) facilities

availability of, Vol.3-17-38
BTS_UNAVAILABLE flag,

IA32_MISC_ENABLE MSR, Vol.3-17-22, 
Vol.3-34-185

introduction to, Vol.3-17-14
setting up BTS buffer, Vol.3-17-29
writing an interrupt service routine for, 

Vol.3-17-31
Built-in self-test (BIST)

description of, Vol.3-9-1
performing, Vol.3-9-2

Bus
errors detected with MCA, Vol.3-15-35
hold, Vol.3-22-48
locking, Vol.3-8-4, Vol.3-22-48

BX register, Vol.1-3-16
Byte, Vol.1-4-1
Byte order, Vol.1-1-5, Vol.2-1-4, Vol.3-1-7
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C
C (conforming) flag, segment descriptor, Vol.3-5-16
C1 flag, x87 FPU status word, Vol.1-8-7, Vol.1-8-38, 

Vol.1-8-42, Vol.1-8-44, Vol.3-22-10, 
Vol.3-22-20

C2 flag, x87 FPU status word, Vol.1-8-7, Vol.3-22-11
Cache and TLB information, Vol.2-3-219
Cache control, Vol.3-11-30

adaptive mode, L1 Data Cache, Vol.3-11-26
cache management instructions, Vol.3-11-25, 

Vol.3-11-26
cache mechanisms in IA-32 processors, 

Vol.3-22-40
caching terminology, Vol.3-11-7
CD flag, CR0 control register, Vol.3-11-15, 

Vol.3-22-26
choosing a memory type, Vol.3-11-12
CPUID feature flag, Vol.3-11-26
flags and fields, Vol.3-11-14
flushing TLBs, Vol.3-11-29
G (global) flag

page-directory entries, Vol.3-11-19
page-table entries, Vol.3-11-19

internal caches, Vol.3-11-1
MemTypeGet() function, Vol.3-11-42
MemTypeSet() function, Vol.3-11-44
MESI protocol, Vol.3-11-7, Vol.3-11-13
methods of caching available, Vol.3-11-8
MTRR initialization, Vol.3-11-41
MTRR precedences, Vol.3-11-41
MTRRs, description of, Vol.3-11-30
multiple-processor considerations, Vol.3-11-46
NW flag, CR0 control register, Vol.3-11-18, 

Vol.3-22-26
operating modes, Vol.3-11-17
overview of, Vol.3-11-1
page attribute table (PAT), Vol.3-11-48
PCD flag

CR3 control register, Vol.3-11-19
page-directory entries, Vol.3-11-19, 

Vol.3-11-47
page-table entries, Vol.3-11-19, Vol.3-11-47

PGE (page global enable) flag, CR4 control register
, Vol.3-11-19

precedence of controls, Vol.3-11-19
preventing caching, Vol.3-11-24
protocol, Vol.3-11-13
PWT flag

CR3 control register, Vol.3-11-19
page-directory entries, Vol.3-11-47
page-table entries, Vol.3-11-47

remapping memory types, Vol.3-11-42
setting up memory ranges with MTRRs, 

Vol.3-11-33
shared mode, L1 Data Cache, Vol.3-11-26
variable-range MTRRs, Vol.3-11-34, Vol.3-11-37

Cache Inclusiveness, Vol.2-3-201
Caches, Vol.3-2-10

cache hit, Vol.3-11-7
cache line, Vol.3-11-7
cache line fill, Vol.3-11-7
cache write hit, Vol.3-11-7
description of, Vol.3-11-1
effects of a locked operation on internal processor 

caches, Vol.3-8-7
enabling, Vol.3-9-8
management, instructions, Vol.3-2-31, 

Vol.3-11-25
Caches, invalidating (flushing), Vol.2-3-529, 

Vol.2-4-662
cache, smart, Vol.1-2-6
Caching

cache control protocol, Vol.3-11-13
cache line, Vol.3-11-7
cache management instructions, Vol.3-11-25
cache mechanisms in IA-32 processors, 

Vol.3-22-40
caching terminology, Vol.3-11-7
choosing a memory type, Vol.3-11-12
flushing TLBs, Vol.3-11-29
implicit caching, Vol.3-11-27
internal caches, Vol.3-11-1
L1 (level 1) cache, Vol.3-11-5
L2 (level 2) cache, Vol.3-11-5
L3 (level 3) cache, Vol.3-11-5
methods of caching available, Vol.3-11-8
MTRRs, description of, Vol.3-11-30
operating modes, Vol.3-11-17
overview of, Vol.3-11-1
self-modifying code, effect on, Vol.3-11-27, 

Vol.3-22-41
snooping, Vol.3-11-8
store buffer, Vol.3-11-29
TLBs, Vol.3-11-6
UC (strong uncacheable) memory type, Vol.3-11-8
UC- (uncacheable) memory type, Vol.3-11-9
WB (write back) memory type, Vol.3-11-10
WC (write combining) memory type, Vol.3-11-9
WP (write protected) memory type, Vol.3-11-10
write-back caching, Vol.3-11-8
WT (write through) memory type, Vol.3-11-10

Call gate, Vol.1-6-9
Call gates

16-bit, interlevel return from, Vol.3-22-44
accessing a code segment through, Vol.3-5-22
description of, Vol.3-5-19
for 16-bit and 32-bit code modules, Vol.3-21-2
IA-32e mode, Vol.3-5-20
introduction to, Vol.3-2-5
mechanism, Vol.3-5-22
privilege level checking rules, Vol.3-5-23

CALL instruction, Vol.1-3-24, Vol.1-6-4, Vol.1-6-5, 
Vol.1-6-9, Vol.1-7-22, Vol.1-7-33, 
Vol.2-3-112, Vol.3-2-6, Vol.3-3-11, 
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Vol.3-5-15, Vol.3-5-22, Vol.3-5-29, 
Vol.3-7-3, Vol.3-7-12, Vol.3-7-13, 
Vol.3-21-7

Caller access privileges, checking, Vol.3-5-37
Calls

16 and 32-bit code segments, Vol.3-21-4
controlling operand-size attribute, Vol.3-21-7
returning from, Vol.3-5-28

Calls (see Procedure calls)
Canonical address, Vol.1-3-13
GETSEC, Vol.2-5-3
Capability MSRs

See VMX capability MSRs
Catastrophic shutdown detector

Thermal monitoring
catastrophic shutdown detector, Vol.3-14-12

catastrophic shutdown detector, Vol.3-14-10
CBW instruction, Vol.1-7-11, Vol.2-3-131
CC0 and CC1 (counter control) fields, CESR MSR 

(Pentium processor), Vol.3-18-122
CD (cache disable) flag, CR0 control register, 

Vol.3-2-19, Vol.3-9-8, Vol.3-11-15, 
Vol.3-11-17, Vol.3-11-19, Vol.3-11-24, 
Vol.3-11-46, Vol.3-11-47, Vol.3-22-25, 
Vol.3-22-26, Vol.3-22-40

CDQ instruction, Vol.1-7-11, Vol.2-3-290
CDQE instruction, Vol.2-3-131
Celeron processor

description of, Vol.1-2-3
CESR (control and event select) MSR (Pentium 

processor), Vol.3-18-121
CF (carry) flag, EFLAGS register, Vol.1-3-21, 

Vol.1-A-1, Vol.2-3-35, Vol.2-3-100, 
Vol.2-3-103, Vol.2-3-106, Vol.2-3-109, 
Vol.2-3-133, Vol.2-3-142, Vol.2-3-296, 
Vol.2-3-495, Vol.2-3-501, Vol.2-4-142, 
Vol.2-4-440, Vol.2-4-511, Vol.2-4-529, 
Vol.2-4-533, Vol.2-4-560, Vol.2-4-574

CH register, Vol.1-3-16
CL register, Vol.1-3-16
CLC instruction, Vol.1-3-22, Vol.1-7-31, Vol.2-3-133
CLD instruction, Vol.1-3-22, Vol.1-7-31, Vol.2-3-134
CLFLSH feature flag, CPUID instruction, Vol.3-9-10
CLFLUSH instruction, Vol.1-11-17, Vol.2-3-135, 

Vol.3-2-21, Vol.3-8-9, Vol.3-9-10, 
Vol.3-11-26

CPUID flag, Vol.2-3-218
CLI instruction, Vol.1-14-5, Vol.2-3-137, Vol.3-6-10
Clocks

counting processor clocks, Vol.3-18-97
Hyper-Threading Technology, Vol.3-18-97
nominal CPI, Vol.3-18-97
non-halted clockticks, Vol.3-18-97
non-halted CPI, Vol.3-18-97
non-sleep Clockticks, Vol.3-18-97
time stamp counter, Vol.3-18-97

CLTS instruction, Vol.2-3-140, Vol.3-2-29, 
Vol.3-5-34, Vol.3-25-3, Vol.3-25-17

Cluster model, local APIC, Vol.3-10-34
CMC instruction, Vol.1-3-22, Vol.1-7-31, Vol.2-3-142
CMOVcc flag, Vol.2-3-218
CMOVcc instructions, Vol.1-7-4, Vol.1-7-6, 

Vol.2-3-143, Vol.3-22-6
CPUID flag, Vol.2-3-218

CMP instruction, Vol.1-7-12, Vol.2-3-150
CMPPD instruction, Vol.1-11-10, Vol.2-3-153
CMPPS instruction, Vol.1-10-13, Vol.2-3-163
CMPS instruction, Vol.1-3-22, Vol.1-7-27, 

Vol.2-3-170, Vol.2-4-467
CMPSB instruction, Vol.2-3-170
CMPSD instruction, Vol.1-11-10, Vol.2-3-170, 

Vol.2-3-176
CMPSQ instruction, Vol.2-3-170
CMPSS instruction, Vol.1-10-14, Vol.2-3-182
CMPSW instruction, Vol.2-3-170
CMPXCHG instruction, Vol.1-7-6, Vol.2-3-188, 

Vol.2-3-598, Vol.3-8-5, Vol.3-22-6
CMPXCHG16B instruction, Vol.1-7-7, Vol.2-3-191

CPUID bit, Vol.2-3-214
CMPXCHG8B instruction, Vol.1-7-6, Vol.2-3-191, 

Vol.3-8-5, Vol.3-22-6
CPUID flag, Vol.2-3-217

Code modules
16 bit vs. 32 bit, Vol.3-21-2
mixing 16-bit and 32-bit code, Vol.3-21-1
sharing data, mixed-size code segs, Vol.3-21-4
transferring control, mixed-size code segs, 

Vol.3-21-4
Code segment, Vol.1-3-19
Code segments

accessing data in, Vol.3-5-14
accessing through a call gate, Vol.3-5-22
description of, Vol.3-3-16
descriptor format, Vol.3-5-3
descriptor layout, Vol.3-5-3
direct calls or jumps to, Vol.3-5-15
paging of, Vol.3-2-8
pointer size, Vol.3-21-5
privilege level checks

transferring control between code segs, 
Vol.3-5-14

COMISD instruction, Vol.1-11-10, Vol.2-3-194
COMISS instruction, Vol.1-10-14, Vol.2-3-196
Compare

compare and exchange, Vol.1-7-6
integers, Vol.1-7-12
real numbers, x87 FPU, Vol.1-8-28
strings, Vol.1-7-27

Compatibility
IA-32 architecture, Vol.3-22-1
software, Vol.3-1-7

Compatibility mode
address space, Vol.1-3-2
branch functions, Vol.1-6-12
call gate descriptors, Vol.1-6-12
code segment descriptor, Vol.3-5-5
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code segment descriptors, Vol.3-9-16
control registers, Vol.3-2-17
CS.L and CS.D, Vol.3-9-16
debug registers, Vol.3-2-31
EFLAGS register, Vol.3-2-15
exception handling, Vol.3-2-7
gates, Vol.3-2-6
GDTR register, Vol.3-2-16, Vol.3-2-17
global and local descriptor tables, Vol.3-2-5
IDTR register, Vol.3-2-17
interrupt handling, Vol.3-2-7
introduction, Vol.1-2-28, Vol.1-3-2, Vol.2-2-9
L flag, Vol.3-3-16, Vol.3-5-5
memory management, Vol.3-2-8
memory models, Vol.1-3-11
MMX technology, Vol.1-9-2
operation, Vol.3-9-16
see 64-bit mode
segment loading instructions, Vol.3-3-12
segmentation, Vol.1-3-30
segments, Vol.3-3-6
SSE extensions, Vol.1-10-4
SSE2 extensions, Vol.1-11-4
SSE3 extensions, Vol.1-12-1
SSSE3 extensions, Vol.1-12-1
summary table notation, Vol.2-3-11
switching to, Vol.3-9-16
SYSCALL and SYSRET, Vol.3-5-32
SYSENTER and SYSEXIT, Vol.3-5-31
system flags, Vol.3-2-15
system registers, Vol.3-2-9
task register, Vol.3-2-17
x87 FPU, Vol.1-8-2
See also: 64-bit mode, IA-32e mode
See also: IA-32e mode, 64-bit mode

Compatibility, software, Vol.1-1-6, Vol.2-1-5
Condition code flags, EFLAGS register, Vol.2-3-143
Condition code flags, x87 FPU status word

branching on, Vol.1-8-9
compatibility information, Vol.3-22-10
conditional moves on, Vol.1-8-9
description of, Vol.1-8-6
flags affected by instructions, Vol.2-3-18
interpretation of, Vol.1-8-8
setting, Vol.2-3-445, Vol.2-3-447, Vol.2-3-450
use of, Vol.1-8-28

Conditional jump, Vol.2-3-548
Conditional moves, x87 FPU condition codes, 

Vol.1-8-9
Conforming code segment, Vol.2-3-570
Conforming code segments

accessing, Vol.3-5-17
C (conforming) flag, Vol.3-5-16
description of, Vol.3-3-18

Constants (floating point), Vol.1-8-25
Constants (floating point), loading, Vol.2-3-383
Context, task (see Task state)
Control registers

64-bit mode, Vol.1-3-6, Vol.3-2-17
CR0, Vol.3-2-17
CR1 (reserved), Vol.3-2-17
CR2, Vol.3-2-17
CR3 (PDBR), Vol.3-2-8, Vol.3-2-17
CR4, Vol.3-2-17
description of, Vol.3-2-17
introduction to, Vol.3-2-9
overview of, Vol.1-3-5
VMX operation, Vol.3-30-25

Control registers, moving values to and from, 
Vol.2-4-45

Coprocessor segment
overrun exception, Vol.3-6-41, Vol.3-22-16

Core microarchitecture, Vol.1-2-14, Vol.1-2-17, 
Vol.1-2-18, Vol.1-2-19

core microarchitecture, Vol.1-2-14, Vol.1-2-17, 
Vol.1-2-18

Core Solo and Core Duo, Vol.1-2-5
Cosine, x87 FPU operation, Vol.1-8-30, Vol.2-3-351, 

Vol.2-3-420
Counter mask field

PerfEvtSel0 and PerfEvtSel1 MSRs (P6 family 
processors), Vol.3-18-6, Vol.3-18-119

CPL, Vol.2-3-137, Vol.2-4-630
description of, Vol.3-5-10
field, CS segment selector, Vol.3-5-2

CPUID instruction, Vol.2-3-198, Vol.2-3-218
36-bit page size extension, Vol.2-3-218
AP-485, Vol.1-1-10, Vol.2-1-9, Vol.3-1-11
APIC on-chip, Vol.2-3-217
availability, Vol.3-22-6
basic CPUID information, Vol.2-3-199
cache and TLB characteristics, Vol.2-3-200
CLFLUSH flag, Vol.1-11-17, Vol.2-3-218
CLFLUSH instruction cache line size, Vol.2-3-211
CMOVcc feature flag, Vol.1-7-5
CMPXCHG16B flag, Vol.2-3-214
CMPXCHG8B flag, Vol.2-3-217
control register flags, Vol.3-2-26
CPL qualified debug store, Vol.2-3-214
debug extensions, CR4.DE, Vol.2-3-217
debug store supported, Vol.2-3-218
detecting features, Vol.3-22-3
determine support for, Vol.1-3-23
deterministic cache parameters leaf, Vol.2-3-200, 

Vol.2-3-203, Vol.2-3-204, Vol.2-3-205, 
Vol.2-3-206

earlier processors, Vol.1-15-2
extended function information, Vol.2-3-206
feature information, Vol.2-3-216
FPU on-chip, Vol.2-3-217
FSAVE flag, Vol.2-3-218
FXRSTOR flag, Vol.2-3-218
FXSAVE-FXRSTOR flag, Vol.1-10-21
IA-32e mode available, Vol.2-3-207
input limits for EAX, Vol.2-3-208
L1 Context ID, Vol.2-3-214
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local APIC physical ID, Vol.2-3-212
machine check architecture, Vol.2-3-218
machine check exception, Vol.2-3-217
memory type range registers, Vol.2-3-217
MMX feature flag, Vol.1-9-11
MONITOR feature information, Vol.2-3-224
MONITOR/MWAIT flag, Vol.2-3-214
MONITOR/MWAIT leaf, Vol.2-3-201, Vol.2-3-202, 

Vol.2-3-203, Vol.2-3-204
MWAIT feature information, Vol.2-3-224
page attribute table, Vol.2-3-218
page size extension, Vol.2-3-217
performance monitoring features, Vol.2-3-225
physical address bits, Vol.2-3-208
physical address extension, Vol.2-3-217
power management, Vol.2-3-224, Vol.2-3-225
processor brand index, Vol.2-3-211, Vol.2-3-226
processor brand string, Vol.2-3-207, Vol.2-3-226
processor identification, Vol.1-15-1
processor serial number, Vol.2-3-200, 

Vol.2-3-218
processor type field, Vol.2-3-211
RDMSR flag, Vol.2-3-217
returned in EBX, Vol.2-3-211
returned in ECX & EDX, Vol.2-3-212
self snoop, Vol.2-3-219
serializing instructions, Vol.3-8-25
serializing use, Vol.1-14-7
SpeedStep technology, Vol.2-3-214
SS2 extensions flag, Vol.2-3-219
SSE extensions flag, Vol.2-3-219
SSE feature flag, Vol.1-10-1, Vol.1-10-9
SSE2 feature flag, Vol.1-11-1, Vol.1-12-7, 

Vol.1-12-8
SSE3 extensions flag, Vol.2-3-214
SSE3 feature flag, Vol.1-12-8
SSSE2 feature flag, Vol.1-12-13, Vol.1-12-28, 

Vol.1-12-29, Vol.1-12-37
SSSE3 extensions flag, Vol.2-3-214
summary of, Vol.1-7-34
syntax for data, Vol.3-1-9
SYSENTER flag, Vol.2-3-217
SYSEXIT flag, Vol.2-3-217
thermal management, Vol.2-3-224, Vol.2-3-225
thermal monitor, Vol.2-3-214, Vol.2-3-218, 

Vol.2-3-219
time stamp counter, Vol.2-3-217
using CPUID, Vol.2-3-198
vendor ID string, Vol.2-3-208
version information, Vol.2-3-199, Vol.2-3-224
virtual 8086 Mode flag, Vol.2-3-217
virtual address bits, Vol.2-3-208
WRMSR flag, Vol.2-3-217

CQO instruction, Vol.2-3-290
CR0 control register, Vol.2-4-548, Vol.3-22-9

description of, Vol.3-2-17
introduction to, Vol.3-2-9
state following processor reset, Vol.3-9-2

CR1 control register (reserved), Vol.3-2-17
CR2 control register

description of, Vol.3-2-17
introduction to, Vol.3-2-9

CR3 control register (PDBR)
associated with a task, Vol.3-7-1, Vol.3-7-3
description of, Vol.3-2-17
in TSS, Vol.3-7-5, Vol.3-7-19
introduction to, Vol.3-2-9
loading during initialization, Vol.3-9-13
memory management, Vol.3-2-8
page directory base address, Vol.3-2-8
page table base address, Vol.3-2-7

CR4 control register
description of, Vol.3-2-17
enabling control functions, Vol.3-22-2
inclusion in IA-32 architecture, Vol.3-22-24
introduction to, Vol.3-2-9
VMX usage of, Vol.3-23-4

CR8 register, Vol.3-2-9
64-bit mode, Vol.3-2-18
compatibility mode, Vol.3-2-18
description of, Vol.3-2-18
task priority level bits, Vol.3-2-25
when available, Vol.3-2-18

CS register, Vol.1-3-17, Vol.1-3-19, Vol.2-3-114, 
Vol.2-3-514, Vol.2-3-537, Vol.2-3-557, 
Vol.2-4-40, Vol.2-4-337, Vol.3-22-14

state following initialization, Vol.3-9-6
C-state, Vol.3-14-9
CTI instruction, Vol.1-7-32
CTR0 and CTR1 (performance counters) MSRs 

(Pentium processor), Vol.3-18-121, 
Vol.3-18-123

Current privilege level (see CPL)
Current stack, Vol.1-6-2, Vol.1-6-4
CVTDQ2PD instruction, Vol.1-11-14, Vol.2-3-236
CVTDQ2PS instruction, Vol.1-11-14, Vol.2-3-243
CVTPD2DQ instruction, Vol.1-11-14, Vol.2-3-245
CVTPD2PI instruction, Vol.1-11-13, Vol.2-3-248
CVTPD2PS instruction, Vol.1-11-12, Vol.2-3-250
CVTPI2PD instruction, Vol.1-11-13, Vol.2-3-253
CVTPI2PS instruction, Vol.1-10-16, Vol.2-3-255
CVTPS2DQ instruction, Vol.1-11-14, Vol.2-3-257, 

Vol.2-3-258
CVTPS2PD instruction, Vol.1-11-12, Vol.2-3-259
CVTPS2PI instruction, Vol.1-10-16, Vol.2-3-262
CVTSD2SI instruction, Vol.1-11-14, Vol.2-3-264
CVTSD2SS instruction, Vol.1-11-12, Vol.2-3-266
CVTSI2SD instruction, Vol.1-11-14, Vol.2-3-268
CVTSI2SS instruction, Vol.1-10-16, Vol.2-3-270
CVTSS2SD instruction, Vol.1-11-12, Vol.2-3-272
CVTSS2SI instruction, Vol.1-10-16, Vol.2-3-274
CVTTPD2DQ instruction, Vol.1-11-14, Vol.2-3-276
CVTTPD2PI instruction, Vol.1-11-13, Vol.2-3-276, 

Vol.2-3-279
CVTTPS2DQ instruction, Vol.1-11-14, Vol.2-3-281
CVTTPS2PI instruction, Vol.1-10-16, Vol.2-3-284
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CVTTSD2SI instruction, Vol.1-11-14, Vol.2-3-286
CVTTSS2SI instruction, Vol.1-10-16, Vol.2-3-288
CWD instruction, Vol.1-7-11, Vol.2-3-290
CWDE instruction, Vol.1-7-11, Vol.2-3-131
CX register, Vol.1-3-16
C/C++ compiler intrinsics

compiler functional equivalents, Vol.2-C-1
composite, Vol.2-C-17
description of, Vol.2-3-15
lists of, Vol.2-C-1
simple, Vol.2-C-2

D
D (default operation size) flag

segment descriptor, Vol.3-21-2, Vol.3-22-45
D (default operation size) flag, segment descriptor, 

Vol.2-4-342
D (default size) flag, segment descriptor, Vol.1-6-3
DAA instruction, Vol.1-7-14, Vol.2-3-292
DAS instruction, Vol.1-7-14, Vol.2-3-294
Data breakpoint exception conditions, Vol.3-17-12
Data movement instructions, Vol.1-7-3
Data pointer, x87 FPU, Vol.1-8-13
Data registers, x87 FPU, Vol.1-8-2
Data segment, Vol.1-3-19
Data segments

description of, Vol.3-3-16
descriptor layout, Vol.3-5-3
expand-down type, Vol.3-3-15
paging of, Vol.3-2-8
privilege level checking when accessing, 

Vol.3-5-12
Data types

128-bit packed SIMD, Vol.1-4-12
64-bit mode, Vol.1-7-2
64-bit packed SIMD, Vol.1-4-11
alignment, Vol.1-4-2
BCD integers, Vol.1-4-13, Vol.1-7-14
bit field, Vol.1-4-10
byte, Vol.1-4-1
doubleword, Vol.1-4-1
floating-point, Vol.1-4-6
fundamental, Vol.1-4-1
integers, Vol.1-4-4
numeric, Vol.1-4-3
operated on by GP instructions, Vol.1-7-1, 

Vol.1-7-2
operated on by MMX technology, Vol.1-9-3
operated on by SSE extensions, Vol.1-10-8
operated on by SSE2 extensions, Vol.1-11-5
operated on by x87 FPU, Vol.1-8-18
operated on in 64-bit mode, Vol.1-4-9
packed bytes, Vol.1-9-3
packed doublewords, Vol.1-9-3
packed SIMD, Vol.1-4-11
packed words, Vol.1-9-3
pointers, Vol.1-4-9

quadword, Vol.1-4-1, Vol.1-9-3
signed integers, Vol.1-4-5
strings, Vol.1-4-11
unsigned integers, Vol.1-4-5
word, Vol.1-4-1

DAZ (denormals-are-zeros) flag
MXCSR register, Vol.1-10-7

DE (debugging extensions) flag, CR4 control register, 
Vol.3-2-23, Vol.3-22-24, Vol.3-22-27, 
Vol.3-22-28

DE (denormal operand exception) flag
MXCSR register, Vol.1-11-21
x87 FPU status word, Vol.1-8-7, Vol.1-8-40

Debug exception (#DB), Vol.3-6-10, Vol.3-6-29, 
Vol.3-7-6, Vol.3-17-9, Vol.3-17-16, 
Vol.3-17-48

Debug registers
64-bit mode, Vol.1-3-6
legacy modes, Vol.1-3-5

Debug registers, moving value to and from, 
Vol.2-4-49

Debug store (see DS)
DEBUGCTLMSR MSR, Vol.3-17-46, Vol.3-17-48, 

Vol.3-34-243
Debugging facilities

breakpoint exception (#BP), Vol.3-17-1
debug exception (#DB), Vol.3-17-1
DR6 debug status register, Vol.3-17-1
DR7 debug control register, Vol.3-17-1
exceptions, Vol.3-17-9
INT3 instruction, Vol.3-17-1
last branch, interrupt, and exception recording, 

Vol.3-17-2, Vol.3-17-14
masking debug exceptions, Vol.3-6-10
overview of, Vol.3-17-1
performance-monitoring counters, Vol.3-18-1
registers

description of, Vol.3-17-2
introduction to, Vol.3-2-9
loading, Vol.3-2-30

RF (resume) flag, EFLAGS, Vol.3-17-1
see DS (debug store) mechanism
T (debug trap) flag, TSS, Vol.3-17-1
TF (trap) flag, EFLAGS, Vol.3-17-1
virtualization, Vol.3-31-1
VMX operation, Vol.3-31-2

DEC instruction, Vol.1-7-12, Vol.2-3-296, 
Vol.2-3-598, Vol.3-8-5

Decimal integers, x87 FPU, Vol.1-4-15
Deeper sleep, Vol.1-2-6
Denormal number (see Denormalized finite number)
Denormal operand exception (#D), Vol.3-22-13

overview of, Vol.1-4-28
SSE and SSE2 extensions, Vol.1-11-21
x87 FPU, Vol.1-8-39

Denormalization process, Vol.1-4-21
Denormalized finite number, Vol.1-4-7, Vol.1-4-20, 

Vol.2-3-450
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Denormalized operand, Vol.3-22-17
Denormals-are-zero

DAZ flag, MXCSR register, Vol.1-10-7, Vol.1-11-3, 
Vol.1-11-4, Vol.1-11-28

mode, Vol.1-10-7, Vol.1-11-28
Detecting and Enabling SMX

level 2, Vol.2-5-2
Device-not-available exception (#NM), Vol.3-2-21, 

Vol.3-2-30, Vol.3-6-36, Vol.3-9-8, 
Vol.3-22-15, Vol.3-22-16

DF (direction) flag, EFLAGS register, Vol.1-3-22, 
Vol.1-A-1, Vol.2-3-134, Vol.2-3-172, 
Vol.2-3-505, Vol.2-3-601, Vol.2-4-110, 
Vol.2-4-175, Vol.2-4-515, Vol.2-4-561

DFR
Destination Format Register, Vol.3-10-54, 

Vol.3-10-60, Vol.3-10-66
DH register, Vol.1-3-16
DI register, Vol.1-3-16
Digital media boost, Vol.1-2-6
Digital readout bits, Vol.3-14-21, Vol.3-14-25
Displacement (operand addressing), Vol.1-3-30, 

Vol.1-3-31, Vol.1-3-32, Vol.2-2-4
DIV instruction, Vol.1-7-13, Vol.2-3-299, Vol.3-6-28
Divide, Vol.1-4-29
Divide by zero exception (#Z)

SSE and SSE2 extensions, Vol.1-11-22
x87 FPU, Vol.1-8-41

Divide configuration register, local APIC, Vol.3-10-23
Divide error exception (#DE), Vol.2-3-299
Divide-error exception (#DE), Vol.3-6-28, 

Vol.3-22-29
DIVPD instruction, Vol.1-11-8, Vol.2-3-303
DIVPS instruction, Vol.1-10-12, Vol.2-3-305
DIVSD instruction, Vol.1-11-8, Vol.2-3-307
DIVSS instruction, Vol.1-10-12, Vol.2-3-309
DL register, Vol.1-3-16
DM (denormal operand exception) mask bit

MXCSR register, Vol.1-11-21
x87 FPU, Vol.1-8-40
x87 FPU control word, Vol.1-8-11

Double-extended-precision FP format, Vol.1-4-6
Double-fault exception (#DF), Vol.3-6-38, 

Vol.3-22-37
Double-precision floating-point format, Vol.1-4-6
Doubleword, Vol.1-4-1
DPL (descriptor privilege level) field, segment 

descriptor, Vol.3-3-14, Vol.3-5-2, 
Vol.3-5-5, Vol.3-5-10

DR0-DR3 breakpoint-address registers, Vol.3-17-1, 
Vol.3-17-4, Vol.3-17-44, Vol.3-17-47, 
Vol.3-17-48

DR4-DR5 debug registers, Vol.3-17-4, Vol.3-22-27
DR6 debug status register, Vol.3-17-4

B0-B3 (BP detected) flags, Vol.3-17-4
BD (debug register access detected) flag, 

Vol.3-17-4
BS (single step) flag, Vol.3-17-4

BT (task switch) flag, Vol.3-17-4
debug exception (#DB), Vol.3-6-29
reserved bits, Vol.3-22-27

DR7 debug control register, Vol.3-17-5
G0-G3 (global breakpoint enable) flags, Vol.3-17-5
GD (general detect enable) flag, Vol.3-17-5
GE (global exact breakpoint enable) flag, 

Vol.3-17-5
L0-L3 (local breakpoint enable) flags, Vol.3-17-5
LE local exact breakpoint enable) flag, Vol.3-17-5
LEN0-LEN3 (Length) fields, Vol.3-17-6
R/W0-R/W3 (read/write) fields, Vol.3-17-5, 

Vol.3-22-27
DS feature flag, CPUID instruction, Vol.3-17-21, 

Vol.3-17-38, Vol.3-17-43, Vol.3-17-45
DS register, Vol.1-3-17, Vol.1-3-19, Vol.2-3-171, 

Vol.2-3-578, Vol.2-3-601, Vol.2-4-110, 
Vol.2-4-174, Vol.2-4-175

DS save area, Vol.3-17-23, Vol.3-17-25, Vol.3-17-26
DS (debug store) mechanism

availability of, Vol.3-18-76
description of, Vol.3-18-76
DS feature flag, CPUID instruction, Vol.3-18-76
DS save area, Vol.3-17-21, Vol.3-17-25
IA-32e mode, Vol.3-17-25
interrupt service routine (DS ISR), Vol.3-17-31
setting up, Vol.3-17-28

Dual-core technology
architecture, Vol.3-8-47
introduction, Vol.1-2-24
logical processors supported, Vol.3-8-36
MTRR memory map, Vol.3-8-48
multi-threading feature flag, Vol.3-8-36
performance monitoring, Vol.3-18-102
specific features, Vol.3-22-5

Dual-monitor treatment, Vol.3-33-27
DX register, Vol.1-3-16
Dynamic data flow analysis, Vol.1-2-10
Dynamic execution, Vol.1-2-10, Vol.1-2-15, 

Vol.1-2-17, Vol.1-2-18
D/B (default operation size/default stack pointer size 

and/or upper bound) flag, segment 
descriptor, Vol.3-3-15, Vol.3-5-6

E
E (edge detect) flag

PerfEvtSel0 and PerfEvtSel1 MSRs (P6 family), 
Vol.3-18-5

E (edge detect) flag, PerfEvtSel0 and PerfEvtSel1 
MSRs (P6 family processors), Vol.3-18-118

E (expansion direction) flag
segment descriptor, Vol.3-5-2, Vol.3-5-6

E (MTRRs enabled) flag
IA32_MTRR_DEF_TYPE MSR, Vol.3-11-33

EAX register, Vol.1-3-14, Vol.1-3-16
EBP register, Vol.1-3-14, Vol.1-3-16, Vol.1-6-4, 

Vol.1-6-8
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EBX register, Vol.1-3-14, Vol.1-3-16
ECX register, Vol.1-3-14, Vol.1-3-16
EDI register, Vol.1-3-14, Vol.1-3-16, Vol.2-4-514, 

Vol.2-4-561, Vol.2-4-566
EDX register, Vol.1-3-14, Vol.1-3-16
Effective address, Vol.1-3-30, Vol.2-3-583
EFLAGS register

64-bit mode, Vol.1-7-2
condition codes, Vol.1-B-1, Vol.2-3-147, 

Vol.2-3-342, Vol.2-3-348
cross-reference with instructions, Vol.1-A-1
description of, Vol.1-3-20
flags affected by instructions, Vol.2-3-18
identifying 32-bit processors, Vol.3-22-8
instructions that operate on, Vol.1-7-30
introduction to, Vol.3-2-9
new flags, Vol.3-22-7
overview, Vol.1-3-14
part of basic programming environment, 

Vol.1-7-1
popping, Vol.2-4-348
popping on return from interrupt, Vol.2-3-537
pushing, Vol.2-4-431
pushing on interrupts, Vol.2-3-514
restoring from stack, Vol.1-6-8
saved in TSS, Vol.3-7-5
saving, Vol.2-4-500
saving on a procedure call, Vol.1-6-8
status flags, Vol.1-8-9, Vol.1-8-10, Vol.1-8-29, 

Vol.2-3-150, Vol.2-3-553, Vol.2-4-521, 
Vol.2-4-601

system flags, Vol.3-2-12
use with CMOVcc instructions, Vol.1-7-4
VMX operation, Vol.3-30-4

EIP register, Vol.2-3-113, Vol.2-3-514, Vol.2-3-537, 
Vol.2-3-557, Vol.3-22-14

description of, Vol.1-3-24
overview, Vol.1-3-14
part of basic programming environment, 

Vol.1-7-1
relationship to CS register, Vol.1-3-19
saved in TSS, Vol.3-7-6
state following initialization, Vol.3-9-6

EM (emulation) flag
CR0 control register, Vol.3-2-21, Vol.3-2-22, 

Vol.3-6-36, Vol.3-9-6, Vol.3-9-8, Vol.3-12-1, 
Vol.3-13-3

EMMS instruction, Vol.1-9-10, Vol.1-9-12, 
Vol.2-3-317, Vol.3-12-3

Encodings
See machine instructions, opcodes

Enhanced Intel Deeper Sleep, Vol.1-2-6
Enhanced Intel SpeedStep Technology

ACPI 3.0 specification, Vol.3-14-2
IA32_APERF MSR, Vol.3-14-2
IA32_MPERF MSR, Vol.3-14-2
IA32_PERF_CTL MSR, Vol.3-14-1
IA32_PERF_STATUS MSR, Vol.3-14-1

introduction, Vol.3-14-1
multiple processor cores, Vol.3-14-2
performance transitions, Vol.3-14-1
P-state coordination, Vol.3-14-2
See also: thermal monitoring

ENTER instruction, Vol.1-6-19, Vol.1-6-20, 
Vol.1-7-30, Vol.2-3-319

GETSEC, Vol.2-5-4, Vol.2-5-12, Vol.1-5-39
EOI

End Of Interrupt register, Vol.3-10-55
Error code, Vol.3-16-5, Vol.3-16-11, Vol.3-16-15, 

Vol.3-16-18
architectural MCA, Vol.3-16-1, Vol.3-16-5, 

Vol.3-16-11, Vol.3-16-15, Vol.3-16-18
decoding IA32_MCi_STATUS, Vol.3-16-1, 

Vol.3-16-5, Vol.3-16-11, Vol.3-16-15, 
Vol.3-16-18

exception, description of, Vol.3-6-20
external bus, Vol.3-16-1, Vol.3-16-5, 

Vol.3-16-11, Vol.3-16-15, Vol.3-16-18
memory hierarchy, Vol.3-16-5, Vol.3-16-11, 

Vol.3-16-15, Vol.3-16-18
pushing on stack, Vol.3-22-44
watchdog timer, Vol.3-16-1, Vol.3-16-5, 

Vol.3-16-11, Vol.3-16-15, Vol.3-16-18
Error numbers

VM-instruction error field, Vol.3-29-35
Error signals, Vol.3-22-14, Vol.3-22-15
Error-reporting bank registers, Vol.3-15-3
ERROR#

input, Vol.3-22-22
output, Vol.3-22-22

ES register, Vol.1-3-17, Vol.1-3-19, Vol.2-3-578, 
Vol.2-4-175, Vol.2-4-514, Vol.2-4-515, 
Vol.2-4-566, Vol.2-4-567

ES (exception summary) flag
x87 FPU status word, Vol.1-8-45

ES0 and ES1 (event select) fields, CESR MSR (Pentium 
processor), Vol.3-18-121

ESC instructions, x87 FPU, Vol.1-8-23
ESI register, Vol.1-3-14, Vol.1-3-16, Vol.2-3-171, 

Vol.2-3-601, Vol.2-4-110, Vol.2-4-174, 
Vol.2-4-561

ESP register, Vol.1-3-16, Vol.2-3-114, Vol.2-4-337
ESP register (stack pointer), Vol.1-3-14, Vol.1-6-3, 

Vol.1-6-4
ESR

Error Status Register, Vol.3-10-56
ET (extension type) flag, CR0 control register, 

Vol.3-2-20, Vol.3-22-9
Event select field, PerfEvtSel0 and PerfEvtSel1 MSRs 

(P6 family processors), Vol.3-18-4, 
Vol.3-18-20, Vol.3-18-117

Events
at-retirement, Vol.3-18-86
at-retirement (Pentium 4 processor), Vol.3-18-70
non-retirement (Pentium 4 processor), 

Vol.3-18-70, Vol.3-19-219
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P6 family processors, Vol.3-19-270
Pentium processor, Vol.3-19-288

Exception flags, x87 FPU status word, Vol.1-8-7
Exception handler

calling, Vol.3-6-15
defined, Vol.3-6-1
flag usage by handler procedure, Vol.3-6-19
machine-check exception handler, Vol.3-15-35
machine-check exceptions (#MC), Vol.3-15-35
machine-error logging utility, Vol.3-15-35
procedures, Vol.3-6-16
protection of handler procedures, Vol.3-6-18
task, Vol.3-6-20, Vol.3-7-3

Exception handlers
overview of, Vol.1-6-13
SIMD floating-point exceptions, Vol.1-E-1
SSE and SSE2 extensions, Vol.1-11-25, 

Vol.1-11-26
typical actions of a FP exception handler, 

Vol.1-4-33
x87 FPU, Vol.1-8-46

Exception priority, floating-point exceptions, 
Vol.1-4-32

Exception-flag masks, x87 FPU control word, 
Vol.1-8-11

Exceptions
64-bit mode, Vol.1-6-19
alignment check, Vol.3-22-16
BOUND range exceeded (#BR), Vol.2-3-89, 

Vol.2-4-620
classifications, Vol.3-6-6
compound error codes, Vol.3-15-27
conditions checked during a task switch, 

Vol.3-7-15
coprocessor segment overrun, Vol.3-22-16
description of, Vol.1-6-13, Vol.3-2-7, Vol.3-6-1
device not available, Vol.3-22-16
double fault, Vol.3-6-38
error code, Vol.3-6-20
exception bitmap, Vol.3-31-2
execute-disable bit, Vol.3-5-47
floating-point error, Vol.3-22-16
general protection, Vol.3-22-16
handler, Vol.1-6-13
handler mechanism, Vol.3-6-16
handler procedures, Vol.3-6-16
handling, Vol.3-6-15
handling in real-address mode, Vol.3-20-6
handling in SMM, Vol.3-33-14
handling in virtual-8086 mode, Vol.3-20-16
handling through a task gate in virtual-8086 mode

, Vol.3-20-21
handling through a trap or interrupt gate in 

virtual-8086 mode, Vol.3-20-18
IA-32e mode, Vol.3-2-7
IDT, Vol.3-6-12
implicit call to handler, Vol.1-6-1
in real-address mode, Vol.1-6-17

initializing for protected-mode operation, 
Vol.3-9-13

invalid-opcode, Vol.3-22-7
masking debug exceptions, Vol.3-6-10
masking when switching stack segments, 

Vol.3-6-11
MCA error codes, Vol.3-15-26
MMX instructions, Vol.3-12-1
notation, Vol.1-1-9, Vol.2-1-7, Vol.3-1-10
overflow exception (#OF), Vol.2-3-513
overview of, Vol.3-6-1
priorities among simultaneous exceptions and 

interrupts, Vol.3-6-11
priority of, Vol.3-22-30
priority of, x87 FPU exceptions, Vol.3-22-14
reference information on all exceptions, 

Vol.3-6-27
reference information, 64-bit mode, Vol.3-6-22
restarting a task or program, Vol.3-6-7
returning from, Vol.2-3-537
segment not present, Vol.3-22-16
simple error codes, Vol.3-15-26
sources of, Vol.3-6-5
summary of, Vol.3-6-3
vector, Vol.1-6-13
vectors, Vol.3-6-2

Executable, Vol.3-3-15
Execute-disable bit capability

conditions for, Vol.3-5-43
CPUID flag, Vol.3-5-43
detecting and enabling, Vol.3-5-43
exception handling, Vol.3-5-47
page-fault exceptions, Vol.3-6-54
paging data structures, Vol.3-13-14
protection matrix for IA-32e mode, Vol.3-5-44
protection matrix for legacy modes, Vol.3-5-45
reserved bit checking, Vol.3-5-45

Execution events, Vol.3-19-258
GETSEC, Vol.2-5-4, Vol.2-5-6
Exit-reason numbers

VM entries & exits, Vol.3-C-1
Expand-down data segment type, Vol.3-3-15
Exponent, extracting from floating-point number, 

Vol.2-3-468
Exponent, floating-point number, Vol.1-4-16
Extended signature table, Vol.3-9-41
extended signature table, Vol.3-9-41
External bus errors, detected with machine-check 

architecture, Vol.3-15-35
Extract exponent and significand, x87 FPU operation

, Vol.2-3-468

F
F2XM1 instruction, Vol.1-8-32, Vol.2-3-325, 

Vol.2-3-468, Vol.3-22-18
FABS instruction, Vol.1-8-26, Vol.2-3-327
FADD instruction, Vol.1-8-25, Vol.2-3-329
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FADDP instruction, Vol.1-8-25, Vol.2-3-329
Family 06H, Vol.3-16-1
Family 0FH, Vol.3-16-1

microcode update facilities, Vol.3-9-37
Far call

description of, Vol.1-6-5
operation, Vol.1-6-6

Far pointer
16-bit addressing, Vol.1-3-11
32-bit addressing, Vol.1-3-11
64-bit mode, Vol.1-4-9
description of, Vol.1-3-8, Vol.1-4-9
legacy modes, Vol.1-4-9

Far pointer, loading, Vol.2-3-577
Far return operation, Vol.1-6-6
Far return, RET instruction, Vol.2-4-470
Faults

description of, Vol.3-6-6
restarting a program or task after, Vol.3-6-7

FBLD instruction, Vol.1-8-24, Vol.2-3-333
FBSTP instruction, Vol.1-8-24, Vol.2-3-335
FCHS instruction, Vol.1-8-26, Vol.2-3-338
FCLEX instruction, Vol.2-3-340
FCLEX/FNCLEX instructions, Vol.1-8-7
FCMOVcc instructions, Vol.1-8-10, Vol.1-8-24, 

Vol.2-3-342, Vol.3-22-6
FCOM instruction, Vol.1-8-9, Vol.1-8-27, Vol.2-3-344
FCOMI instruction, Vol.1-8-10, Vol.1-8-27, 

Vol.2-3-348, Vol.3-22-6
FCOMIP instruction, Vol.1-8-10, Vol.1-8-27, 

Vol.2-3-348, Vol.3-22-6
FCOMP instruction, Vol.1-8-9, Vol.1-8-27, 

Vol.2-3-344
FCOMPP instruction, Vol.1-8-9, Vol.1-8-27, 

Vol.2-3-344
FCOS instruction, Vol.1-8-7, Vol.1-8-30, 

Vol.2-3-351, Vol.3-22-18
FDECSTP instruction, Vol.2-3-353
FDISI instruction (obsolete), Vol.3-22-20
FDIV instruction, Vol.1-8-26, Vol.2-3-355, 

Vol.3-22-15, Vol.3-22-17
FDIVP instruction, Vol.1-8-26, Vol.2-3-355
FDIVR instruction, Vol.1-8-26, Vol.2-3-359
FDIVRP instruction, Vol.1-8-26, Vol.2-3-359
FE (fixed MTRRs enabled) flag, 

IA32_MTRR_DEF_TYPE MSR, Vol.3-11-33
Feature

determination, of processor, Vol.3-22-3
information, processor, Vol.3-22-3

Feature determination, of processor, Vol.1-15-1
Feature information, processor, Vol.2-3-198
FENI instruction (obsolete), Vol.3-22-20
FFREE instruction, Vol.2-3-363
FIADD instruction, Vol.1-8-26, Vol.2-3-329
FICOM instruction, Vol.1-8-9, Vol.1-8-27, 

Vol.2-3-364
FICOMP instruction, Vol.1-8-9, Vol.1-8-27, 

Vol.2-3-364

FIDIV instruction, Vol.1-8-26, Vol.2-3-355
FIDIVR instruction, Vol.1-8-26, Vol.2-3-359
FILD instruction, Vol.1-8-24, Vol.2-3-367
FIMUL instruction, Vol.1-8-26, Vol.2-3-390
FINCSTP instruction, Vol.2-3-369
FINIT instruction, Vol.2-3-371
FINIT/FNINIT instructions, Vol.1-8-7, Vol.1-8-11, 

Vol.1-8-12, Vol.1-8-33, Vol.2-3-412, 
Vol.3-22-10, Vol.3-22-22

FIST instruction, Vol.1-8-24, Vol.2-3-373
FISTP instruction, Vol.1-8-24, Vol.2-3-373
FISTTP instruction, Vol.1-5-26, Vol.1-12-4, 

Vol.2-3-377
FISUB instruction, Vol.1-8-26, Vol.2-3-437
FISUBR instruction, Vol.1-8-26, Vol.2-3-441
FIX (fixed range registers supported) flag, 

IA32_MTRRCAPMSR, Vol.3-11-32
Fixed-range MTRRs

description of, Vol.3-11-34
Flags

cross-reference with instructions, Vol.1-A-1
Flat memory model, Vol.1-3-8, Vol.1-3-18
Flat segmentation model, Vol.3-3-3, Vol.3-3-4
FLD instruction, Vol.1-8-23, Vol.2-3-380, 

Vol.3-22-18
FLD1 instruction, Vol.1-8-25, Vol.2-3-383
FLDCW instruction, Vol.1-8-10, Vol.1-8-33, 

Vol.2-3-385
FLDENV instruction, Vol.1-8-7, Vol.1-8-13, 

Vol.1-8-16, Vol.1-8-34, Vol.2-3-387, 
Vol.3-22-16

FLDL2E instruction, Vol.1-8-25, Vol.2-3-383, 
Vol.3-22-19

FLDL2T instruction, Vol.1-8-25, Vol.2-3-383, 
Vol.3-22-19

FLDLG2 instruction, Vol.1-8-25, Vol.2-3-383, 
Vol.3-22-19

FLDLN2 instruction, Vol.1-8-25, Vol.2-3-383, 
Vol.3-22-19

FLDPI instruction, Vol.1-8-25, Vol.2-3-383, 
Vol.3-22-19

FLDSW instruction, Vol.1-8-33
FLDZ instruction, Vol.1-8-25, Vol.2-3-383
Floating point instructions

machine encodings, Vol.2-B-95
Floating-point data types

biasing constant, Vol.1-4-8
denormalized finite number, Vol.1-4-7
description of, Vol.1-4-6
double extended precision format, Vol.1-4-6, 

Vol.1-4-7
double precision format, Vol.1-4-6, Vol.1-4-7
infinites, Vol.1-4-7
normalized finite number, Vol.1-4-7
single precision format, Vol.1-4-6, Vol.1-4-7
SSE extensions, Vol.1-10-8
SSE2 extensions, Vol.1-11-5
storing in memory, Vol.1-4-9
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x87 FPU, Vol.1-8-18
zeros, Vol.1-4-7

Floating-point error exception (#MF), Vol.3-22-16
Floating-point exception handlers

SSE and SSE2 extensions, Vol.1-11-25, 
Vol.1-11-26

typical actions, Vol.1-4-33
x87 FPU, Vol.1-8-46

Floating-point exceptions
denormal operand exception (#D), Vol.1-4-28, 

Vol.1-8-40, Vol.1-11-21, Vol.1-C-1, 
Vol.3-22-13

divide by zero exception (#Z), Vol.1-4-29, 
Vol.1-8-41, Vol.1-11-22, Vol.1-C-1

exception conditions, Vol.1-4-28
exception priority, Vol.1-4-32
inexact result (precision) exception (#P), 

Vol.1-4-31, Vol.1-8-43, Vol.1-11-22, 
Vol.1-C-1

invalid operation exception (#I), Vol.1-4-28, 
Vol.1-8-37, Vol.1-11-20

invalid operation (#I), Vol.3-22-19
invalid-operation exception (#IA), Vol.1-C-1
invalid-operation exception (#IS), Vol.1-C-1
invalid-operation exception (#I), Vol.1-C-1
numeric overflow exception (#O), Vol.1-4-29, 

Vol.1-8-41, Vol.1-11-22, Vol.1-C-1
numeric overflow (#O), Vol.3-22-13
numeric underflow exception (#U), Vol.1-4-30, 

Vol.1-8-42, Vol.1-11-22, Vol.1-C-1
numeric underflow (#U), Vol.3-22-14
saved CS and EIP values, Vol.3-22-14
SSE and SSE2 SIMD, Vol.2-3-21
summary of, Vol.1-4-26, Vol.1-C-1
typical handler actions, Vol.1-4-33
x87 FPU, Vol.2-3-21

Floating-point format
biased exponent, Vol.1-4-18
description of, Vol.1-8-18
exponent, Vol.1-4-16
fraction, Vol.1-4-16
indefinite, Vol.1-4-8
QNaN floating-point indefinite, Vol.1-4-24
real number system, Vol.1-4-15
sign, Vol.1-4-16
significand, Vol.1-4-16

Floating-point numbers
defined, Vol.1-4-16
encoding, Vol.1-4-8

Flushing
caches, Vol.2-3-529, Vol.2-4-662
TLB entry, Vol.2-3-531

Flush-to-zero
FZ flag, MXCSR register, Vol.1-10-7, Vol.1-11-3
mode, Vol.1-10-7

FLUSH# pin, Vol.3-6-4
FMUL instruction, Vol.1-8-26, Vol.2-3-390
FMULP instruction, Vol.1-8-26, Vol.2-3-390

FNCLEX instruction, Vol.2-3-340
FNINIT instruction, Vol.2-3-371
FNOP instruction, Vol.1-8-33, Vol.2-3-394
FNSAVE instruction, Vol.2-3-412, Vol.3-12-4
FNSTCW instruction, Vol.2-3-428
FNSTENV instruction, Vol.2-3-387, Vol.2-3-431
FNSTSW instruction, Vol.2-3-434
Focus processor, local APIC, Vol.3-10-37
Fopcode compatibility mode, Vol.1-8-15
FORCEPR# log, Vol.3-14-20, Vol.3-14-25
FORCPR# interrupt enable bit, Vol.3-14-22
FPATAN instruction, Vol.1-8-30, Vol.2-3-395, 

Vol.3-22-18
FPREM instruction, Vol.1-8-7, Vol.1-8-26, 

Vol.1-8-31, Vol.2-3-398, Vol.3-22-10, 
Vol.3-22-15, Vol.3-22-17

FPREM1 instruction, Vol.1-8-7, Vol.1-8-26, 
Vol.1-8-31, Vol.2-3-401, Vol.3-22-10, 
Vol.3-22-17

FPTAN instruction, Vol.1-8-7, Vol.2-3-404, 
Vol.3-22-11, Vol.3-22-18

Fraction, floating-point number, Vol.1-4-16
FRNDINT instruction, Vol.1-8-26, Vol.2-3-407
Front_end events, Vol.3-19-258
FRSTOR instruction, Vol.1-8-7, Vol.1-8-13, 

Vol.1-8-16, Vol.1-8-34, Vol.2-3-409, 
Vol.3-12-4, Vol.3-22-16

FS register, Vol.1-3-17, Vol.1-3-19, Vol.2-3-578
FSAVE instruction, Vol.2-3-412, Vol.3-12-3, 

Vol.3-12-4
FSAVE/FNSAVE instructions, Vol.1-8-6, Vol.1-8-7, 

Vol.1-8-13, Vol.1-8-16, Vol.1-8-34, 
Vol.2-3-409, Vol.3-22-16, Vol.3-22-20

FSCALE instruction, Vol.1-8-32, Vol.2-3-416, 
Vol.3-22-17

FSIN instruction, Vol.1-8-7, Vol.1-8-30, Vol.2-3-418, 
Vol.3-22-18

FSINCOS instruction, Vol.1-8-7, Vol.1-8-30, 
Vol.2-3-420, Vol.3-22-18

FSQRT instruction, Vol.1-8-26, Vol.2-3-423, 
Vol.3-22-15, Vol.3-22-17

FST instruction, Vol.1-8-24, Vol.2-3-425
FSTCW instruction, Vol.2-3-428
FSTCW/FNSTCW instructions, Vol.1-8-10, Vol.1-8-33
FSTENV instruction, Vol.2-3-431, Vol.3-12-3
FSTENV/FNSTENV instructions, Vol.1-8-6, 

Vol.1-8-13, Vol.1-8-16, Vol.1-8-34, 
Vol.3-22-20

FSTP instruction, Vol.1-8-24, Vol.2-3-425
FSTSW instruction, Vol.2-3-434
FSTSW/FNSTSW instructions, Vol.1-8-6, Vol.1-8-33
FSUB instruction, Vol.1-8-26, Vol.2-3-437
FSUBP instruction, Vol.1-8-26, Vol.2-3-437
FSUBR instruction, Vol.1-8-26, Vol.2-3-441
FSUBRP instruction, Vol.1-8-26, Vol.2-3-441
FTAN instruction, Vol.3-22-11
FTST instruction, Vol.1-8-9, Vol.1-8-27, Vol.2-3-445
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FUCOM instruction, Vol.1-8-27, Vol.2-3-447, 
Vol.3-22-17

FUCOMI instruction, Vol.1-8-10, Vol.1-8-27, 
Vol.2-3-348, Vol.3-22-6

FUCOMIP instruction, Vol.1-8-10, Vol.1-8-27, 
Vol.2-3-348, Vol.3-22-6

FUCOMP instruction, Vol.1-8-27, Vol.2-3-447, 
Vol.3-22-17

FUCOMPP instruction, Vol.1-8-9, Vol.1-8-27, 
Vol.2-3-447, Vol.3-22-17

FWAIT instruction, Vol.3-6-36
FXAM instruction, Vol.1-8-7, Vol.1-8-27, 

Vol.2-3-450, Vol.3-22-19, Vol.3-22-20
FXCH instruction, Vol.1-8-24, Vol.2-3-452
FXRSTOR instruction, Vol.1-5-13, Vol.1-8-18, 

Vol.1-10-20, Vol.1-11-34, Vol.2-3-454, 
Vol.3-2-24, Vol.3-2-25, Vol.3-9-10, 
Vol.3-12-3, Vol.3-12-4, Vol.3-12-5, 
Vol.3-13-1, Vol.3-13-3, Vol.3-13-8

CPUID flag, Vol.2-3-218
FXSAVE instruction, Vol.1-5-13, Vol.1-8-18, 

Vol.1-10-20, Vol.1-11-34, Vol.2-3-458, 
Vol.2-4-656, Vol.2-4-658, Vol.2-4-674, 
Vol.2-4-686, Vol.2-4-693, Vol.2-4-697, 
Vol.2-4-702, Vol.3-2-24, Vol.3-2-25, 
Vol.3-9-10, Vol.3-12-3, Vol.3-12-4, 
Vol.3-12-5, Vol.3-13-1, Vol.3-13-3, 
Vol.3-13-8

CPUID flag, Vol.2-3-218
FXSR feature flag, CPUID instruction, Vol.3-9-10
FXTRACT instruction, Vol.1-8-26, Vol.2-3-416, 

Vol.2-3-468, Vol.3-22-13, Vol.3-22-19
FYL2X instruction, Vol.1-8-32, Vol.2-3-470
FYL2XP1 instruction, Vol.1-8-32, Vol.2-3-472

G
G (global) flag

page-directory entries, Vol.3-11-19
page-table entries, Vol.3-11-19

G (granularity) flag
segment descriptor, Vol.3-3-13, Vol.3-3-15, 

Vol.3-5-2, Vol.3-5-6
G0-G3 (global breakpoint enable) flags

DR7 register, Vol.3-17-5
Gate descriptors

call gates, Vol.3-5-19
description of, Vol.3-5-18
IA-32e mode, Vol.3-5-20

Gates, Vol.3-2-5
IA-32e mode, Vol.3-2-6

GD (general detect enable) flag
DR7 register, Vol.3-17-5, Vol.3-17-12

GDT
description of, Vol.3-2-5, Vol.3-3-21
IA-32e mode, Vol.3-2-5
index field of segment selector, Vol.3-3-9
initializing, Vol.3-9-12

paging of, Vol.3-2-8
pointers to exception/interrupt handlers, 

Vol.3-6-16
segment descriptors in, Vol.3-3-13
selecting with TI flag of segment selector, 

Vol.3-3-10
task switching, Vol.3-7-12
task-gate descriptor, Vol.3-7-11
TSS descriptors, Vol.3-7-7
use in address translation, Vol.3-3-8

GDT (global descriptor table), Vol.2-3-590, 
Vol.2-3-593

GDTR register, Vol.1-3-5, Vol.1-3-6
description of, Vol.3-2-5, Vol.3-2-9, Vol.3-2-16, 

Vol.3-3-21
IA-32e mode, Vol.3-2-5, Vol.3-2-16
limit, Vol.3-5-7
loading during initialization, Vol.3-9-12
storing, Vol.3-3-21

GDTR (global descriptor table register), Vol.2-3-590, 
Vol.2-4-525

GE (global exact breakpoint enable) flag
DR7 register, Vol.3-17-5, Vol.3-17-12

General purpose registers
64-bit mode, Vol.1-3-6, Vol.1-3-17
description of, Vol.1-3-13, Vol.1-3-14
overview of, Vol.1-3-3, Vol.1-3-6
parameter passing, Vol.1-6-7
part of basic programming environment, 

Vol.1-7-1, Vol.1-7-2
using REX prefix, Vol.1-3-17

General-detect exception condition, Vol.3-17-12
General-protection exception (#GP), Vol.3-3-17, 

Vol.3-5-9, Vol.3-5-10, Vol.3-5-16, 
Vol.3-5-17, Vol.3-6-13, Vol.3-6-19, 
Vol.3-6-50, Vol.3-7-7, Vol.3-17-2, 
Vol.3-22-16, Vol.3-22-29, Vol.3-22-46, 
Vol.3-22-48

General-purpose instructions
64-bit encodings, Vol.2-B-24
64-bit mode, Vol.1-7-2
basic programming environment, Vol.1-7-1
data types operated on, Vol.1-7-1, Vol.1-7-2
description of, Vol.1-7-1
non-64-bit encodings, Vol.2-B-9
origin of, Vol.1-7-1
programming with, Vol.1-7-1
summary of, Vol.1-5-3, Vol.1-7-3

General-purpose registers
moving value to and from, Vol.2-4-40
popping all, Vol.2-4-342
pushing all, Vol.2-4-428

General-purpose registers, saved in TSS, Vol.3-7-5
GETSEC, Vol.2-5-1, Vol.2-5-3, Vol.2-5-7
Global control MSRs, Vol.3-15-3
Global descriptor table register (see GDTR)
Global descriptor table (see GDT)
GS register, Vol.1-3-17, Vol.1-3-19, Vol.2-3-578
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H
HADDPD instruction, Vol.1-5-27, Vol.1-12-6, 

Vol.2-3-474, Vol.2-3-476
HADDPS instruction, Vol.1-5-26, Vol.1-12-5, 

Vol.2-3-477
HALT state

relationship to SMI interrupt, Vol.3-33-5, 
Vol.3-33-18

Hardware reset
description of, Vol.3-9-1
processor state after reset, Vol.3-9-2
state of MTRRs following, Vol.3-11-30
value of SMBASE following, Vol.3-33-5

Hexadecimal numbers, Vol.1-1-7, Vol.2-1-6, 
Vol.3-1-9

high-temperature interrupt enable bit, Vol.3-14-22, 
Vol.3-14-26

HITM# line, Vol.3-11-8
HLT instruction, Vol.2-3-481, Vol.3-2-31, 

Vol.3-5-34, Vol.3-6-39, Vol.3-25-3, 
Vol.3-33-18, Vol.3-33-19

Horizontal processing model, Vol.1-12-2
HSUBPD instruction, Vol.1-5-27, Vol.1-12-6, 

Vol.2-3-483
HSUBPS instruction, Vol.1-5-26, Vol.1-12-6, 

Vol.2-3-486
HT Technology

first processor, Vol.1-2-4
implementing, Vol.1-2-24
introduction, Vol.1-2-23

Hyper-Threading Technology
architectural state of a logical processor, 

Vol.3-8-47
architecture description, Vol.3-8-39
caches, Vol.3-8-44
counting clockticks, Vol.3-18-99
debug registers, Vol.3-8-42
description of, Vol.3-8-35, Vol.3-22-5
detecting, Vol.3-8-51, Vol.3-8-52, Vol.3-8-57, 

Vol.3-8-58
executing multiple threads, Vol.3-8-38
execution-based timing loops, Vol.3-8-73
external signal compatibility, Vol.3-8-46
halting logical processors, Vol.3-8-72
handling interrupts, Vol.3-8-38
HLT instruction, Vol.3-8-65
IA32_MISC_ENABLE MSR, Vol.3-8-43, Vol.3-8-48
initializing IA-32 processors with, Vol.3-8-37
introduction of into the IA-32 architecture, 

Vol.3-22-5
local a, Vol.3-8-40
local APIC

functionality in logical processor, Vol.3-8-41
logical processors, identifying, Vol.3-8-52
machine check architecture, Vol.3-8-42
managing idle and blocked conditions, Vol.3-8-65
mapping resources, Vol.3-8-49
memory ordering, Vol.3-8-43

microcode update resources, Vol.3-8-44, 
Vol.3-8-48, Vol.3-9-46

MP systems, Vol.3-8-39
MTRRs, Vol.3-8-41, Vol.3-8-47
multi-threading feature flag, Vol.3-8-36
multi-threading support, Vol.3-8-35
PAT, Vol.3-8-42
PAUSE instruction, Vol.3-8-66, Vol.3-8-67
performance monitoring, Vol.3-18-91, 

Vol.3-18-102
performance monitoring counters, Vol.3-8-43, 

Vol.3-8-48
placement of locks and semaphores, Vol.3-8-74
required operating system support, Vol.3-8-69
scheduling multiple threads, Vol.3-8-73
self modifying code, Vol.3-8-44
serializing instructions, Vol.3-8-43
spin-wait loops

PAUSE instructions in, Vol.3-8-69, Vol.3-8-70, 
Vol.3-8-72

thermal monitor, Vol.3-8-45
TLBs, Vol.3-8-45

I
IA32, Vol.3-15-5
IA-32 architecture

history of, Vol.1-2-1
introduction to, Vol.1-2-1

IA-32 Intel architecture
compatibility, Vol.3-22-1
processors, Vol.3-22-1

IA32e mode
registers and mode changes, Vol.3-9-16

IA-32e mode
call gates, Vol.3-5-20
code segment descriptor, Vol.3-5-5
CPUID flag, Vol.2-3-207
D flag, Vol.3-5-5
data structures and initialization, Vol.3-9-15
debug registers, Vol.3-2-9
debug store area, Vol.3-17-25
descriptors, Vol.3-2-6
DPL field, Vol.3-5-5
exceptions during initialization, Vol.3-9-15
feature-enable register, Vol.3-2-10
gates, Vol.3-2-6
global and local descriptor tables, Vol.3-2-5
IA32_EFER MSR, Vol.3-2-10, Vol.3-5-43
initialization process, Vol.3-9-14
interrupt stack table, Vol.3-6-26
interrupts and exceptions, Vol.3-2-7
introduction, Vol.1-2-28, Vol.2-2-9, Vol.2-2-16
IRET instruction, Vol.3-6-25
L flag, Vol.3-3-16, Vol.3-5-5
logical address, Vol.3-3-9
MOV CRn, Vol.3-9-14
MTRR calculations, Vol.3-11-40
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NXE bit, Vol.3-5-43
page level protection, Vol.3-5-43
paging, Vol.3-2-8
PDE tables, Vol.3-5-44
PDP tables, Vol.3-5-44
PML4 tables, Vol.3-5-44
PTE tables, Vol.3-5-44
registers and data structures, Vol.3-2-2
see 64-bit mode
see compatibility mode
segment descriptor tables, Vol.3-3-22, Vol.3-5-5
segment descriptors, Vol.3-3-13
segment loading instructions, Vol.3-3-12
segmentation, Vol.1-3-30, Vol.3-3-6
stack switching, Vol.3-5-28, Vol.3-6-25
SYSCALL and SYSRET, Vol.3-5-32
SYSENTER and SYSEXIT, Vol.3-5-31
system descriptors, Vol.3-3-19
system registers, Vol.3-2-9
task switching, Vol.3-7-22
task-state segments, Vol.3-2-7
terminating mode operation, Vol.3-9-16
See also: 64-bit mode, compatibility mode

IA32_APERF MSR, Vol.3-14-2
IA32_APIC_BASE MSR, Vol.3-8-27, Vol.3-8-29, 

Vol.3-10-8, Vol.3-10-11, Vol.3-34-170
IA32_BIOS_SIGN_ID MSR, Vol.3-34-175
IA32_BIOS_UPDT_TRIG MSR, Vol.3-31-13, 

Vol.3-34-175
IA32_BISO_SIGN_ID MSR, Vol.3-31-13
IA32_CLOCK_MODULATION MSR, Vol.3-8-46, 

Vol.3-14-16, Vol.3-14-17, Vol.3-14-18, 
Vol.3-14-21, Vol.3-14-32, Vol.3-14-33, 
Vol.3-14-35, Vol.3-14-36, Vol.3-14-37, 
Vol.3-14-38, Vol.3-34-54, Vol.3-34-74, 
Vol.3-34-89, Vol.3-34-144, Vol.3-34-182, 
Vol.3-34-217, Vol.3-34-230

IA32_CTL MSR, Vol.3-34-176
IA32_DEBUGCTL MSR, Vol.3-27-35, Vol.3-34-189
IA32_DS_AREA MSR, Vol.3-17-21, Vol.3-17-22, 

Vol.3-17-25, Vol.3-17-28, Vol.3-18-67, 
Vol.3-18-90, Vol.3-34-204

IA32_EFER MSR, Vol.3-2-10, Vol.3-2-12, Vol.3-5-43, 
Vol.3-27-35, Vol.3-30-23

IA32_FEATURE_CONTROL MSR, Vol.3-23-4
IA32_KernelGSbase MSR, Vol.3-2-10
IA32_LSTAR MSR, Vol.3-2-10, Vol.3-5-32
IA32_MCG_CAP MSR, Vol.3-15-3, Vol.3-15-36, 

Vol.3-34-176
IA32_MCG_CTL MSR, Vol.3-15-3, Vol.3-15-5
IA32_MCG_EAX MSR, Vol.3-15-13
IA32_MCG_EBP MSR, Vol.3-15-13
IA32_MCG_EBX MSR, Vol.3-15-13
IA32_MCG_ECX MSR, Vol.3-15-13
IA32_MCG_EDI MSR, Vol.3-15-13
IA32_MCG_EDX MSR, Vol.3-15-13
IA32_MCG_EFLAGS MSR, Vol.3-15-13
IA32_MCG_EIP MSR, Vol.3-15-13

IA32_MCG_ESI MSR, Vol.3-15-13
IA32_MCG_ESP MSR, Vol.3-15-13
IA32_MCG_MISC MSR, Vol.3-15-13, Vol.3-15-14, 

Vol.3-34-179
IA32_MCG_R10 MSR, Vol.3-15-14, Vol.3-34-180
IA32_MCG_R11 MSR, Vol.3-15-15, Vol.3-34-181
IA32_MCG_R12 MSR, Vol.3-15-15
IA32_MCG_R13 MSR, Vol.3-15-15
IA32_MCG_R14 MSR, Vol.3-15-15
IA32_MCG_R15 MSR, Vol.3-15-15, Vol.3-34-182
IA32_MCG_R8 MSR, Vol.3-15-14
IA32_MCG_R9 MSR, Vol.3-15-14
IA32_MCG_RAX MSR, Vol.3-15-14, Vol.3-34-176
IA32_MCG_RBP MSR, Vol.3-15-14
IA32_MCG_RBX MSR, Vol.3-15-14, Vol.3-34-177
IA32_MCG_RCX MSR, Vol.3-15-14
IA32_MCG_RDI MSR, Vol.3-15-14
IA32_MCG_RDX MSR, Vol.3-15-14
IA32_MCG_RESERVEDn, Vol.3-34-180
IA32_MCG_RESERVEDn MSR, Vol.3-15-14
IA32_MCG_RFLAGS MSR, Vol.3-15-14, Vol.3-34-179
IA32_MCG_RIP MSR, Vol.3-15-14, Vol.3-34-179
IA32_MCG_RSI MSR, Vol.3-15-14
IA32_MCG_RSP MSR, Vol.3-15-14
IA32_MCG_STATUS MSR, Vol.3-15-3, Vol.3-15-4, 

Vol.3-15-36, Vol.3-15-38, Vol.3-27-4
IA32_MCi_ADDR MSR, Vol.3-15-10, Vol.3-15-38, 

Vol.3-34-199
IA32_MCi_CTL MSR, Vol.3-15-5, Vol.3-34-199
IA32_MCi_MISC MSR, Vol.3-15-11, Vol.3-15-12, 

Vol.3-15-13, Vol.3-15-38, Vol.3-34-199
IA32_MCi_STATUS MSR, Vol.3-15-6, Vol.3-15-36, 

Vol.3-15-38, Vol.3-34-199
decoding for Family 06H, Vol.3-16-1
decoding for Family 0FH, Vol.3-16-1, Vol.3-16-5, 

Vol.3-16-11, Vol.3-16-15, Vol.3-16-18
IA32_MISC_ENABLE MSR, Vol.1-8-15, Vol.3-14-1, 

Vol.3-14-12, Vol.3-17-22, Vol.3-17-38, 
Vol.3-18-67, Vol.3-34-182, Vol.3-34-183

IA32_MPERF MSR, Vol.3-14-2
IA32_MTRRCAP MSR, Vol.3-11-32, Vol.3-11-33, 

Vol.3-34-175
IA32_MTRR_DEF_TYPE MSR, Vol.3-11-33
IA32_MTRR_FIXn, fixed ranger MTRRs, Vol.3-11-34
IA32_MTRR_PHYS BASEn MTRR, Vol.3-34-190
IA32_MTRR_PHYSBASEn MTRR, Vol.3-34-190
IA32_MTRR_PHYSMASKn MTRR, Vol.3-34-190
IA32_P5_MC_ADDR MSR, Vol.3-34-169
IA32_P5_MC_TYPE MSR, Vol.3-34-169
IA32_PAT_CR MSR, Vol.3-11-49
IA32_PEBS_ENABLE MSR, Vol.3-18-24, Vol.3-18-67, 

Vol.3-18-90, Vol.3-19-259, Vol.3-34-198
IA32_PERF_CTL MSR, Vol.3-14-1
IA32_PERF_STATUS MSR, Vol.3-14-1
IA32_PLATFORM_ID, Vol.3-34-46, Vol.3-34-68, 

Vol.3-34-83, Vol.3-34-138, Vol.3-34-170, 
Vol.3-34-212, Vol.3-34-226, 
Vol.3-34-235
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IA32_STAR MSR, Vol.3-5-32
IA32_STAR_CS MSR, Vol.3-2-10
IA32_STATUS MSR, Vol.3-34-176
IA32_SYSCALL_FLAG_MASK MSR, Vol.3-2-10
IA32_SYSENTER_CS MSR, Vol.2-4-592, Vol.2-4-597, 

Vol.3-5-31, Vol.3-5-32, Vol.3-27-27, 
Vol.3-34-176

IA32_SYSENTER_EIP MSR, Vol.2-4-592, Vol.3-5-31, 
Vol.3-27-35, Vol.3-34-176

IA32_SYSENTER_ESP MSR, Vol.2-4-592, Vol.3-5-31, 
Vol.3-27-35, Vol.3-34-176

IA32_TERM_CONTROL MSR, Vol.3-34-54, 
Vol.3-34-74, Vol.3-34-89, Vol.3-34-144

IA32_THERM_INTERRUPT MSR, Vol.3-14-15, 
Vol.3-14-18, Vol.3-14-19, Vol.3-14-22, 
Vol.3-34-182

FORCPR# interrupt enable bit, Vol.3-14-22
high-temperature interrupt enable bit, 

Vol.3-14-22, Vol.3-14-26
low-temperature interrupt enable bit, 

Vol.3-14-22, Vol.3-14-26
overheat interrupt enable bit, Vol.3-14-22, 

Vol.3-14-26
THERMTRIP# interrupt enable bit, Vol.3-14-22, 

Vol.3-14-26
threshold #1 interrupt enable bit, Vol.3-14-23, 

Vol.3-14-27
threshold #1 value, Vol.3-14-22, Vol.3-14-26
threshold #2 interrupt enable, Vol.3-14-23, 

Vol.3-14-27
threshold #2 value, Vol.3-14-23, Vol.3-14-27

IA32_THERM_STATUS MSR, Vol.3-14-18, 
Vol.3-14-19, Vol.3-34-182

digital readout bits, Vol.3-14-21, Vol.3-14-25
out-of-spec status bit, Vol.3-14-20, Vol.3-14-25
out-of-spec status log, Vol.3-14-20, Vol.3-14-25
PROCHOT# or FORCEPR# event bit, Vol.3-14-20, 

Vol.3-14-24, Vol.3-14-25
PROCHOT# or FORCEPR# log, Vol.3-14-20, 

Vol.3-14-25
resolution in degrees, Vol.3-14-21
thermal status bit, Vol.3-14-19, Vol.3-14-24
thermal status log, Vol.3-14-19, Vol.3-14-24
thermal threshold #1 log, Vol.3-14-20, 

Vol.3-14-25
thermal threshold #1 status, Vol.3-14-20, 

Vol.3-14-25
thermal threshold #2 log, Vol.3-14-21, 

Vol.3-14-25
thermal threshold #2 status, Vol.3-14-21, 

Vol.3-14-25
validation bit, Vol.3-14-21

IA32_TIME_STAMP_COUNTER MSR, Vol.3-34-169
IA32_VMX_BASIC MSR, Vol.3-24-4, Vol.3-30-2, 

Vol.3-30-7, Vol.3-30-8, Vol.3-30-9, 
Vol.3-30-17, Vol.3-34-64, Vol.3-34-81, 

Vol.3-34-101, Vol.3-34-154, 
Vol.3-34-203, Vol.3-34-223, Vol.3-A-1, 
Vol.3-A-3

IA32_VMX_CR0_FIXED0 MSR, Vol.3-23-5, 
Vol.3-30-6, Vol.3-34-65, Vol.3-34-81, 
Vol.3-34-102, Vol.3-34-154, 
Vol.3-34-203, Vol.3-34-224, Vol.3-A-9

IA32_VMX_CR0_FIXED1 MSR, Vol.3-23-5, 
Vol.3-30-6, Vol.3-34-65, Vol.3-34-81, 
Vol.3-34-102, Vol.3-34-154, 
Vol.3-34-204, Vol.3-34-224, Vol.3-A-9

IA32_VMX_CR4_FIXED0 MSR, Vol.3-23-5, 
Vol.3-30-6, Vol.3-34-65, Vol.3-34-82, 
Vol.3-34-102, Vol.3-34-155, 
Vol.3-34-204, Vol.3-34-224, Vol.3-A-9

IA32_VMX_CR4_FIXED1 MSR, Vol.3-23-5, 
Vol.3-30-6, Vol.3-34-65, Vol.3-34-82, 
Vol.3-34-102, Vol.3-34-155, 
Vol.3-34-204, Vol.3-34-224, 
Vol.3-34-225, Vol.3-A-9

IA32_VMX_ENTRY_CTLS MSR, Vol.3-30-7, 
Vol.3-30-8, Vol.3-30-9, Vol.3-34-65, 
Vol.3-34-81, Vol.3-34-101, Vol.3-34-154, 
Vol.3-34-203, Vol.3-34-224, Vol.3-A-3, 
Vol.3-A-7, Vol.3-A-8

IA32_VMX_EXIT_CTLS MSR, Vol.3-30-7, Vol.3-30-8, 
Vol.3-30-9, Vol.3-34-64, Vol.3-34-81, 
Vol.3-34-101, Vol.3-34-154, 
Vol.3-34-203, Vol.3-34-224, Vol.3-A-3, 
Vol.3-A-6, Vol.3-A-7

IA32_VMX_MISC MSR, Vol.3-24-8, Vol.3-26-4, 
Vol.3-26-17, Vol.3-33-36, Vol.3-34-65, 
Vol.3-34-81, Vol.3-34-102, Vol.3-34-154, 
Vol.3-34-203, Vol.3-34-224, Vol.3-A-8

IA32_VMX_PINBASED_CTLS MSR, Vol.3-30-7, 
Vol.3-30-8, Vol.3-30-9, Vol.3-34-64, 
Vol.3-34-81, Vol.3-34-101, Vol.3-34-154, 
Vol.3-34-203, Vol.3-34-223, Vol.3-A-3, 
Vol.3-A-4

IA32_VMX_PROCBASED_CTLS MSR, Vol.3-24-12, 
Vol.3-30-7, Vol.3-30-8, Vol.3-30-9, 
Vol.3-34-64, Vol.3-34-65, Vol.3-34-81, 
Vol.3-34-82, Vol.3-34-101, Vol.3-34-102, 
Vol.3-34-154, Vol.3-34-155, 
Vol.3-34-203, Vol.3-34-224, 
Vol.3-34-225, Vol.3-A-3, Vol.3-A-4, 
Vol.3-A-5, Vol.3-A-6, Vol.3-A-10, 
Vol.3-A-11

IA32_VMX_VMCS_ENUM MSR, Vol.3-34-204, 
Vol.3-A-9

ICR
Interrupt Command Register, Vol.3-10-54, 

Vol.3-10-60, Vol.3-10-67
ID (identification) flag

EFLAGS register, Vol.3-2-15, Vol.3-22-8
ID (identification) flag, EFLAGS register, Vol.1-3-23
IDIV instruction, Vol.1-7-13, Vol.2-3-490, 

Vol.3-6-28, Vol.3-22-29
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IDT
64-bit mode, Vol.3-6-23
call interrupt & exception-handlers from, 

Vol.3-6-15
change base & limit in real-address mode, 

Vol.3-20-7
description of, Vol.3-6-12
handling NMIs during initialization, Vol.3-9-11
initializing protected-mode operation, Vol.3-9-13
initializing real-address mode operation, 

Vol.3-9-11
introduction to, Vol.3-2-7
limit, Vol.3-22-37
paging of, Vol.3-2-8
structure in real-address mode, Vol.3-20-7
task switching, Vol.3-7-13
task-gate descriptor, Vol.3-7-11
types of descriptors allowed, Vol.3-6-14
use in real-address mode, Vol.3-20-6

IDT (interrupt descriptor table), Vol.2-3-514, 
Vol.2-3-590

IDTR register, Vol.1-3-5, Vol.1-3-6
description of, Vol.3-2-17, Vol.3-6-13
IA-32e mode, Vol.3-2-17
introduction to, Vol.3-2-7
limit, Vol.3-5-7
loading in real-address mode, Vol.3-20-7
storing, Vol.3-3-21

IDTR (interrupt descriptor table register), 
Vol.2-3-590, Vol.2-4-543

IE (invalid operation exception) flag
MXCSR register, Vol.1-11-20
x87 FPU status word, Vol.1-8-7, Vol.1-8-38, 

Vol.1-8-39, Vol.3-22-11
IEEE Standard 754, Vol.1-4-6, Vol.1-4-15, Vol.1-8-1
IEEE Standard 754 for Binary Floating-Point 

Arithmetic, Vol.3-22-11, Vol.3-22-12, 
Vol.3-22-13, Vol.3-22-14, Vol.3-22-17, 
Vol.3-22-19

IF (interrupt enable) flag
EFLAGS register, Vol.1-3-23, Vol.1-6-14, 

Vol.1-14-5, Vol.1-A-1, Vol.3-2-13, 
Vol.3-2-14, Vol.3-6-9, Vol.3-6-14, 
Vol.3-6-19, Vol.3-20-6, Vol.3-20-29, 
Vol.3-33-14

IF (interrupt enable) flag, EFLAGS register, 
Vol.2-3-137, Vol.2-4-562

IM (invalid operation exception) mask bit
MXCSR register, Vol.1-11-20
x87 FPU control word, Vol.1-8-11

Immediate operands, Vol.1-3-27, Vol.2-2-4
IMUL instruction, Vol.1-7-13, Vol.2-3-494
IN instruction, Vol.1-5-8, Vol.1-7-29, Vol.1-14-4, 

Vol.2-3-499, Vol.3-8-22, Vol.3-22-47, 
Vol.3-25-3

INC instruction, Vol.1-7-12, Vol.2-3-501, 
Vol.2-3-598, Vol.3-8-5

Indefinite

description of, Vol.1-4-24, Vol.1-13-26
floating-point format, Vol.1-4-8, Vol.1-4-19
integer, Vol.1-4-6, Vol.1-8-21
packed BCD integer, Vol.1-4-15
QNaN floating-point, Vol.1-4-22, Vol.1-4-24

Index field, segment selector, Vol.3-3-9
Index (operand addressing), Vol.1-3-30, Vol.1-3-32, 

Vol.2-2-4
Inexact result (precision)

exception (#P), overview, Vol.1-4-31
exception (#P), SSE-SSE2 extensions, 

Vol.1-11-23
exception (#P), x87 FPU, Vol.1-8-43
on floating-point operations, Vol.1-4-25

Infinity control flag, x87 FPU control word, 
Vol.1-8-12

Infinity, floating-point format, Vol.1-4-7, Vol.1-4-21
INIT interrupt, Vol.3-10-5
INIT pin, Vol.1-3-20
Initial-count register, local APIC, Vol.3-10-22, 

Vol.3-10-23
Initialization

built-in self-test (BIST), Vol.3-9-1, Vol.3-9-2
CS register state following, Vol.3-9-6
EIP register state following, Vol.3-9-6
example, Vol.3-9-19
first instruction executed, Vol.3-9-6
hardware reset, Vol.3-9-1
IA-32e mode, Vol.3-9-14
IDT, protected mode, Vol.3-9-13
IDT, real-address mode, Vol.3-9-11
Intel486 SX processor and Intel 487 SX math 

coprocessor, Vol.3-22-22
location of software-initialization code, Vol.3-9-6
machine-check initialization, Vol.3-15-24
model and stepping information, Vol.3-9-5
multitasking environment, Vol.3-9-14
overview, Vol.3-9-1
paging, Vol.3-9-13
processor state after reset, Vol.3-9-2
protected mode, Vol.3-9-11
real-address mode, Vol.3-9-10
RESET# pin, Vol.3-9-1
setting up exception- and interrupt-handling 

facilities, Vol.3-9-13
x87 FPU, Vol.3-9-6

Initialization x87 FPU, Vol.2-3-371
initiating logical processor, Vol.2-5-4, Vol.2-5-6, 

Vol.2-5-12, Vol.2-5-13, Vol.2-5-27, 
Vol.2-5-28

INIT# pin, Vol.3-6-4, Vol.3-9-2
INIT# signal, Vol.3-2-31, Vol.3-23-6
Input/output (see I/O)
INS instruction, Vol.1-5-8, Vol.1-7-29, Vol.1-14-4, 

Vol.2-3-504, Vol.2-4-467, Vol.3-17-12
INSB instruction, Vol.2-3-504
INSD instruction, Vol.2-3-504
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instruction encodings, Vol.2-B-89, Vol.2-B-98, 
Vol.2-B-108

Instruction format
base field, Vol.2-2-4
description of reference information, Vol.2-3-1
displacement, Vol.2-2-4
immediate, Vol.2-2-4
index field, Vol.2-2-4
Mod field, Vol.2-2-4
ModR/M byte, Vol.2-2-4
opcode, Vol.2-2-3
operands, Vol.2-1-6
prefixes, Vol.2-2-1
reg/opcode field, Vol.2-2-4
r/m field, Vol.2-2-4
scale field, Vol.2-2-4
SIB byte, Vol.2-2-4
See also: machine instructions, opcodes

Instruction operands, Vol.1-1-7, Vol.3-1-8
Instruction pointer

64-bit mode, Vol.1-7-2
EIP register, Vol.1-3-14, Vol.1-3-24
RIP register, Vol.1-3-24
RIP, EIP, IP compared, Vol.1-3-12
x87 FPU, Vol.1-8-13

Instruction prefixes
effect on SSE and SSE2 instructions, Vol.1-11-37
REX prefix, Vol.1-3-2, Vol.1-3-16

Instruction reference, nomenclature, Vol.2-3-1
Instruction set

binary arithmetic instructions, Vol.1-7-12
bit scan instructions, Vol.1-7-20
bit test and modify instructions, Vol.1-7-20
byte-set-on-condition instructions, Vol.1-7-20
cacheability control instructions, Vol.1-5-20, 

Vol.1-5-25
comparison and sign change instruction, 

Vol.1-7-12
control transfer instructions, Vol.1-7-21
data movement instructions, Vol.1-7-3
decimal arithmetic instructions, Vol.1-7-13
EFLAGS cross-reference, Vol.1-A-1
EFLAGS instructions, Vol.1-7-30
exchange instructions, Vol.1-7-5
FXSAVE and FXRSTOR instructions, Vol.1-5-13
general-purpose instructions, Vol.1-5-3
grouped by processor, Vol.1-5-1, Vol.1-5-2
increment and decrement instructions, 

Vol.1-7-12
instruction ordering instructions, Vol.1-5-20, 

Vol.1-5-25
I/O instructions, Vol.1-5-8, Vol.1-7-29
logical instructions, Vol.1-7-15
MMX instructions, Vol.1-5-14, Vol.1-9-6
multiply and divide instructions, Vol.1-7-13
processor identification instruction, Vol.1-7-34
repeating string operations, Vol.1-7-28
rotate instructions, Vol.1-7-18

segment register instructions, Vol.1-7-32
shift instructions, Vol.1-7-15
SIMD instructions, introduction to, Vol.1-2-20
software interrupt instructions, Vol.1-7-25
SSE instructions, Vol.1-5-16
SSE2 instructions, Vol.1-5-21
stack manipulation instructions, Vol.1-7-7
string operation instructions, Vol.1-7-26
summary, Vol.1-5-1
system instructions, Vol.1-5-37
test instruction, Vol.1-7-21
type conversion instructions, Vol.1-7-10
x87 FPU and SIMD state management instructions

, Vol.1-5-13
x87 FPU instructions, Vol.1-5-10

Instruction set, reference, Vol.2-3-1
Instruction-breakpoint exception condition, 

Vol.3-17-10
Instructions

new instructions, Vol.3-22-5
obsolete instructions, Vol.3-22-7
privileged, Vol.3-5-33
serializing, Vol.3-8-24, Vol.3-8-43, Vol.3-22-21
supported in real-address mode, Vol.3-20-4
system, Vol.3-2-10, Vol.3-2-27

INSW instruction, Vol.2-3-504
INS/INSB/INSW/INSD instruction, Vol.3-25-3
INT 3 instruction, Vol.2-3-513, Vol.3-2-7, Vol.3-6-31
INT instruction, Vol.1-6-18, Vol.1-7-33, Vol.3-2-7, 

Vol.3-5-15
INT n instruction, Vol.3-3-11, Vol.3-6-1, Vol.3-6-5, 

Vol.3-6-6, Vol.3-17-13
INT (APIC interrupt enable) flag, PerfEvtSel0 and 

PerfEvtSel1 MSRs (P6 family processors), 
Vol.3-18-6, Vol.3-18-118

INT15 and microcode updates, Vol.3-9-55
INT3 instruction, Vol.3-3-11, Vol.3-6-6
Integers

description of, Vol.1-4-4
indefinite, Vol.1-4-6, Vol.1-8-21
signed integer encodings, Vol.1-4-6
signed, description of, Vol.1-4-5
unsigned integer encodings, Vol.1-4-5
unsigned, description of, Vol.1-4-5

Integer, storing, x87 FPU data type, Vol.2-3-373
Intel 287 math coprocessor, Vol.3-22-9
Intel 387 math coprocessor system, Vol.3-22-9
Intel 487 SX math coprocessor, Vol.3-22-9, 

Vol.3-22-22
Intel 64 architecture

64-bit mode, Vol.1-3-2
64-bit mode instructions, Vol.1-5-38
address space, Vol.1-3-8
compatibility mode, Vol.1-3-2
data types, Vol.1-4-1
definition of, Vol.1-1-3, Vol.2-1-3, Vol.3-1-3
executing calls, Vol.1-6-1
general purpose instructions, Vol.1-7-1
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generations, Vol.1-2-29
history of, Vol.1-2-1
IA32e mode, Vol.1-3-2
instruction format, Vol.2-2-1
introduction, Vol.1-2-28
memory organization, Vol.1-3-8, Vol.1-3-10
relation to IA-32, Vol.1-1-3, Vol.2-1-3, Vol.3-1-3
See also: IA-32e mode

Intel 8086 processor, Vol.3-22-9
Intel Advanced Digital Media Boost, Vol.1-2-6, 

Vol.1-2-15
Intel Advanced Smart Cache, Vol.1-2-15
Intel Advanced Thermal Manager, Vol.1-2-6
Intel Core 2 Extreme processor family, Vol.1-2-6, 

Vol.1-2-26
Intel Core Duo processor, Vol.1-2-5, Vol.1-2-25
Intel Core microarchitecture, Vol.1-2-6, Vol.1-2-14, 

Vol.1-2-17, Vol.1-2-18, Vol.1-2-19, 
Vol.1-2-26

Intel Core Solo and Duo processors
model-specific registers, Vol.3-34-212

Intel Core Solo and Intel Core Duo processors
Enhanced Intel SpeedStep technology, Vol.3-14-1
event mask (Umask), Vol.3-18-16, Vol.3-18-18
last branch, interrupt, exception recording, 

Vol.3-17-42
notes on P-state transitions, Vol.3-14-2
performance monitoring, Vol.3-18-16, 

Vol.3-18-18
performance monitoring events, Vol.3-19-2, 

Vol.3-19-13, Vol.3-19-35, Vol.3-19-142, 
Vol.3-19-186

sub-fields layouts, Vol.3-18-16, Vol.3-18-18
time stamp counters, Vol.3-17-49

Intel Core Solo processor, Vol.1-2-5
Intel developer link, Vol.1-1-11, Vol.2-1-10, 

Vol.3-1-12
Intel Dynamic Power Coordination, Vol.1-2-6
Intel NetBurst microarchitecture, Vol.1-1-2, 

Vol.2-1-2, Vol.3-1-2
description of, Vol.1-2-11
introduction, Vol.1-2-11

Intel Pentium D processor, Vol.1-2-25
Intel Pentium processor Extreme Edition, Vol.1-2-24
Intel Smart Cache, Vol.1-2-6
Intel Smart Memory Access, Vol.1-2-6, Vol.1-2-15
Intel software network link, Vol.1-1-11, Vol.2-1-10, 

Vol.3-1-12
Intel SpeedStep Technology

See: Enhanced Intel SpeedStep Technology
Intel VTune Performance Analyzer

related information, Vol.1-1-10, Vol.2-1-9, 
Vol.3-1-11

Intel Wide Dynamic Execution, Vol.1-2-6, Vol.1-2-15, 
Vol.1-2-17, Vol.1-2-18

Intel Xeon processor, Vol.1-1-1, Vol.2-1-1, Vol.3-1-2
description of, Vol.1-2-4

last branch, interrupt, and exception recording, 
Vol.3-17-37

time-stamp counter, Vol.3-17-49
Intel Xeon processor 5100 series, Vol.1-2-6, 

Vol.1-2-26
Intel Xeon processor MP

with 8MB L3 cache, Vol.3-18-102, Vol.3-18-107
Intel286 processor, Vol.3-22-9
Intel386 DX processor, Vol.3-22-9
Intel386 processor, Vol.1-2-2
Intel386 SL processor, Vol.3-2-10
Intel486 DX processor, Vol.3-22-9
Intel486 processor

history of, Vol.1-2-2
Intel486 SX processor, Vol.3-22-9, Vol.3-22-22
Intel® Trusted Execution Technology, Vol.2-5-4
Inter-privilege level

call, CALL instruction, Vol.2-3-113
return, RET instruction, Vol.2-4-470

Inter-privilege level call
description of, Vol.1-6-8
operation, Vol.1-6-10

Interprivilege level calls
call mechanism, Vol.3-5-22
stack switching, Vol.3-5-25

Inter-privilege level return
description of, Vol.1-6-8
operation, Vol.1-6-10

Interprocessor interrupt (IPIs), Vol.3-10-2
Interprocessor interrupt (IPI)

in MP systems, Vol.3-10-1
interrupt, Vol.3-6-17
Interrupt Command Register, Vol.3-10-54
Interrupt command register (ICR), local APIC, 

Vol.3-10-26
Interrupt gate, Vol.1-6-14
Interrupt gates

16-bit, interlevel return from, Vol.3-22-44
clearing IF flag, Vol.3-6-10, Vol.3-6-19
difference between interrupt and trap gates, 

Vol.3-6-19
for 16-bit and 32-bit code modules, Vol.3-21-2
handling a virtual-8086 mode interrupt or 

exception through, Vol.3-20-18
in IDT, Vol.3-6-14
introduction to, Vol.3-2-5, Vol.3-2-7
layout of, Vol.3-6-14

Interrupt handler, Vol.1-6-13
calling, Vol.3-6-15
defined, Vol.3-6-1
flag usage by handler procedure, Vol.3-6-19
procedures, Vol.3-6-16
protection of handler procedures, Vol.3-6-18
task, Vol.3-6-20, Vol.3-7-3

Interrupt vector, Vol.1-6-13
Interrupts

64-bit mode, Vol.1-6-19
automatic bus locking, Vol.3-22-48
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control transfers between 16- and 32-bit code 
modules, Vol.3-21-8

description of, Vol.1-6-13, Vol.3-2-7, Vol.3-6-1
destination, Vol.3-10-38
distribution mechanism, local APIC, Vol.3-10-36
enabling and disabling, Vol.3-6-9
handler, Vol.1-6-13
handling, Vol.3-6-15
handling in real-address mode, Vol.3-20-6
handling in SMM, Vol.3-33-14
handling in virtual-8086 mode, Vol.3-20-16
handling multiple NMIs, Vol.3-6-9
handling through a task gate in virtual-8086 mode

, Vol.3-20-21
handling through a trap or interrupt gate in 

virtual-8086 mode, Vol.3-20-18
IA-32e mode, Vol.3-2-7, Vol.3-2-17
IDT, Vol.3-6-12
IDTR, Vol.3-2-17
implicit call to an interrupt handler

procedure, Vol.1-6-14
implicit call to an interrupt handler task, 

Vol.1-6-17
implicit call to interrupt handler procedure, 

Vol.1-6-14
implicit call to interrupt handler task, Vol.1-6-17
in real-address mode, Vol.1-6-17
initializing for protected-mode operation, 

Vol.3-9-13
interrupt descriptor table register (see IDTR)
interrupt descriptor table (see IDT)
interrupt vector 4, Vol.2-3-513
list of, Vol.3-6-3, Vol.3-20-8
local APIC, Vol.3-10-1
maskable, Vol.1-6-13
maskable hardware interrupts, Vol.3-2-13
masking maskable hardware interrupts, Vol.3-6-9
masking when switching stack segments, 

Vol.3-6-11
message signalled interrupts, Vol.3-10-49
on-die sensors for, Vol.3-14-11
overview of, Vol.3-6-1
priorities among simultaneous exceptions and 

interrupts, Vol.3-6-11
priority, Vol.3-10-40
propagation delay, Vol.3-22-36
real-address mode, Vol.3-20-8
restarting a task or program, Vol.3-6-7
returning from, Vol.2-3-537
software, Vol.2-3-513, Vol.3-6-68
sources of, Vol.3-10-1
summary of, Vol.3-6-3
thermal monitoring, Vol.3-14-11
user defined, Vol.3-6-2, Vol.3-6-68
user-defined, Vol.1-6-13
valid APIC interrupts, Vol.3-10-20
vector, Vol.1-6-13
vectors, Vol.3-6-2

virtual-8086 mode, Vol.3-20-8
INTn instruction, Vol.1-7-26, Vol.2-3-513
INTO instruction, Vol.1-6-18, Vol.1-7-26, Vol.1-7-33, 

Vol.2-3-513, Vol.3-2-7, Vol.3-3-11, 
Vol.3-6-6, Vol.3-6-32, Vol.3-17-13

Intrinsics
compiler functional equivalents, Vol.2-C-1
composite, Vol.2-C-17
description of, Vol.2-3-15
list of, Vol.2-C-1
simple, Vol.2-C-2

INTR# pin, Vol.3-6-2, Vol.3-6-9
Invalid arithmetic operand exception (#IA)

description of, Vol.1-8-39
masked response to, Vol.1-8-39

Invalid opcode exception (#UD), Vol.3-2-22, 
Vol.3-6-34, Vol.3-6-65, Vol.3-12-1, 
Vol.3-17-4, Vol.3-22-7, Vol.3-22-15, 
Vol.3-22-28, Vol.3-22-29, Vol.3-33-4

Invalid operation exception (#I)
overview, Vol.1-4-28
SSE and SSE2 extensions, Vol.1-11-20
x87 FPU, Vol.1-8-37

Invalid TSS exception (#TS), Vol.3-6-42, Vol.3-7-8
Invalid-operation exception, x87 FPU, Vol.3-22-15, 

Vol.3-22-19
INVD instruction, Vol.2-3-529, Vol.3-2-31, 

Vol.3-5-34, Vol.3-11-25, Vol.3-22-6
INVLPG instruction, Vol.2-3-531, Vol.3-2-31, 

Vol.3-5-34, Vol.3-22-6, Vol.3-25-3, 
Vol.3-31-5, Vol.3-31-6

IOPL (I/O privilege level) field
EFLAGS register, Vol.1-3-23, Vol.1-14-4

IOPL (I/O privilege level) field, EFLAGS register, 
Vol.2-3-137, Vol.2-4-431, Vol.2-4-562

description of, Vol.3-2-13
on return from exception, interrupt handler, 

Vol.3-6-18
sensitive instructions in virtual-8086 mode, 

Vol.3-20-15
virtual interrupt, Vol.3-2-14, Vol.3-2-15

IPI (see interprocessor interrupt)
IRET instruction, Vol.1-3-24, Vol.1-6-17, Vol.1-6-18, 

Vol.1-7-22, Vol.1-7-33, Vol.1-14-5, 
Vol.2-3-537, Vol.3-3-11, Vol.3-6-9, 
Vol.3-6-10, Vol.3-6-18, Vol.3-6-19, 
Vol.3-6-25, Vol.3-7-13, Vol.3-8-25, 
Vol.3-20-6, Vol.3-20-29, Vol.3-25-17

IRETD instruction, Vol.2-3-537, Vol.3-2-14, 
Vol.3-8-25

IRR
Interrupt Request Register, Vol.3-10-56, 

Vol.3-10-60, Vol.3-10-67
IRR (interrupt request register), local APIC, 

Vol.3-10-43
ISR

In Service Register, Vol.3-10-55, Vol.3-10-60, 
Vol.3-10-67
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I/O
address space, Vol.1-14-2
breakpoint exception conditions, Vol.3-17-12
in virtual-8086 mode, Vol.3-20-15
instruction restart flag

SMM revision identifier field, Vol.3-33-20
instruction restart flag, SMM revision identifier 

field, Vol.3-33-21
instruction serialization, Vol.1-14-7
instructions, Vol.1-5-8, Vol.1-7-29, Vol.1-14-3
IO_SMI bit, Vol.3-33-15
I/O permission bit map, TSS, Vol.3-7-6
I/O privilege level (see IOPL)
map base, Vol.1-14-5
map base address field, TSS, Vol.3-7-6
permission bit map, Vol.1-14-5
ports, Vol.1-3-5, Vol.1-14-1, Vol.1-14-2, 

Vol.1-14-4, Vol.1-14-7
restarting following SMI interrupt, Vol.3-33-20
saving I/O state, Vol.3-33-15
sensitive instructions, Vol.1-14-4
SMM state save map, Vol.3-33-15

I/O APIC, Vol.3-10-38
bus arbitration, Vol.3-10-37
description of, Vol.3-10-1
external interrupts, Vol.3-6-4
information about, Vol.3-10-1
interrupt sources, Vol.3-10-2
local APIC and I/O APIC, Vol.3-10-3, Vol.3-10-4
overview of, Vol.3-10-1
valid interrupts, Vol.3-10-20
See also: local APIC

J
J-bit, Vol.1-4-16
Jcc instructions, Vol.1-3-22, Vol.1-3-24, Vol.1-7-23, 

Vol.2-3-548
JMP instruction, Vol.1-3-24, Vol.1-7-21, Vol.1-7-33, 

Vol.2-3-556, Vol.3-2-6, Vol.3-3-11, 
Vol.3-5-15, Vol.3-5-22, Vol.3-7-3, 
Vol.3-7-12, Vol.3-7-13

Jump operation, Vol.2-3-556

K
KEN# pin, Vol.3-11-19, Vol.3-22-50

L
L0-L3 (local breakpoint enable) flags

DR7 register, Vol.3-17-5
L1 Context ID, Vol.2-3-214
L1 (level 1) cache, Vol.1-2-10, Vol.1-2-13

caching methods, Vol.3-11-8
CPUID feature flag, Vol.3-11-26
description of, Vol.3-11-5
effect of using write-through memory, 

Vol.3-11-12

introduction of, Vol.3-22-40
invalidating and flushing, Vol.3-11-25
MESI cache protocol, Vol.3-11-13
shared and adaptive mode, Vol.3-11-26

L2 (level 2) cache, Vol.1-2-10, Vol.1-2-13
caching methods, Vol.3-11-8
description of, Vol.3-11-5
disabling, Vol.3-11-25
effect of using write-through memory, 

Vol.3-11-12
introduction of, Vol.3-22-40
invalidating and flushing, Vol.3-11-25
MESI cache protocol, Vol.3-11-13

L3 (level 3) cache
caching methods, Vol.3-11-8
description of, Vol.3-11-5
disabling and enabling, Vol.3-11-19, Vol.3-11-25
effect of using write-through memory, 

Vol.3-11-12
introduction of, Vol.3-22-42
invalidating and flushing, Vol.3-11-25
MESI cache protocol, Vol.3-11-13

LAHF instruction, Vol.1-3-20, Vol.1-7-31, 
Vol.2-3-567

LAR instruction, Vol.2-3-569, Vol.3-2-30, Vol.3-5-35
Larger page sizes

introduction of, Vol.3-22-42
support for, Vol.3-22-26

Last branch
interrupt & exception recording

description of, Vol.2-4-484, Vol.3-17-14, 
Vol.3-17-32, Vol.3-17-33, Vol.3-17-37, 
Vol.3-17-39, Vol.3-17-42, Vol.3-17-44, 
Vol.3-17-46

record stack, Vol.3-17-20, Vol.3-17-21, 
Vol.3-17-33, Vol.3-17-38, Vol.3-17-40, 
Vol.3-17-43, Vol.3-17-45, Vol.3-34-189, 
Vol.3-34-190, Vol.3-34-204

record top-of-stack pointer, Vol.3-17-20, 
Vol.3-17-33, Vol.3-17-38, Vol.3-17-43, 
Vol.3-17-45

Last instruction opcode, x87 FPU, Vol.1-8-15
LastBranchFromIP MSR, Vol.3-17-47, Vol.3-17-48
LastBranchToIP MSR, Vol.3-17-47, Vol.3-17-48
LastExceptionFromIP MSR, Vol.3-17-33, 

Vol.3-17-42, Vol.3-17-43, Vol.3-17-47, 
Vol.3-17-48

LastExceptionToIP MSR, Vol.3-17-33, Vol.3-17-42, 
Vol.3-17-43, Vol.3-17-47, Vol.3-17-48

LBR (last branch/interrupt/exception) flag, 
DEBUGCTLMSR MSR, Vol.3-17-16, 
Vol.3-17-39, Vol.3-17-46, Vol.3-17-48

LDDQU instruction, Vol.1-5-26, Vol.1-12-4, 
Vol.2-3-573

LDMXCSR instruction, Vol.1-10-17, Vol.1-11-34, 
Vol.2-3-575, Vol.2-4-449, Vol.2-4-664
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Logical Destination Register, Vol.3-10-60, 
Vol.3-10-64, Vol.3-10-66

LDS instruction, Vol.1-7-33, Vol.2-3-577, Vol.3-3-11, 
Vol.3-5-12

LDT
associated with a task, Vol.3-7-3
description of, Vol.3-2-5, Vol.3-2-6, Vol.3-3-21
index into with index field of segment selector, 

Vol.3-3-9
pointer to in TSS, Vol.3-7-6
pointers to exception and interrupt handlers, 

Vol.3-6-16
segment descriptors in, Vol.3-3-13
segment selector field, TSS, Vol.3-7-19
selecting with TI (table indicator) flag of segment 

selector, Vol.3-3-10
setting up during initialization, Vol.3-9-12
task switching, Vol.3-7-12
task-gate descriptor, Vol.3-7-11
use in address translation, Vol.3-3-8

LDT (local descriptor table), Vol.2-3-593
LDTR register, Vol.1-3-5, Vol.1-3-6

description of, Vol.3-2-5, Vol.3-2-6, Vol.3-2-9, 
Vol.3-2-16, Vol.3-3-21

IA-32e mode, Vol.3-2-16
limit, Vol.3-5-7
storing, Vol.3-3-21

LDTR (local descriptor table register), Vol.2-3-593, 
Vol.2-4-546

LE (local exact breakpoint enable) flag, DR7 register, 
Vol.3-17-5, Vol.3-17-12

LEA instruction, Vol.1-7-34, Vol.2-3-583
LEAVE instruction, Vol.1-6-19, Vol.1-6-25, 

Vol.1-7-30, Vol.2-3-586
LEN0-LEN3 (Length) fields, DR7 register, Vol.3-17-6
LES instruction, Vol.1-7-33, Vol.2-3-577, Vol.3-3-11, 

Vol.3-5-12, Vol.3-6-34
LFENCE instruction, Vol.1-11-17, Vol.2-3-588, 

Vol.3-2-21, Vol.3-8-9, Vol.3-8-22, 
Vol.3-8-23, Vol.3-8-25

LFS instruction, Vol.2-3-577, Vol.3-3-11, Vol.3-5-12
LGDT instruction, Vol.2-3-590, Vol.3-2-29, 

Vol.3-5-34, Vol.3-8-25, Vol.3-9-12, 
Vol.3-22-28

LGS instruction, Vol.1-7-33, Vol.2-3-577, Vol.3-3-11, 
Vol.3-5-12

LIDT instruction, Vol.2-3-590, Vol.3-2-29, 
Vol.3-5-34, Vol.3-6-13, Vol.3-8-25, 
Vol.3-9-11, Vol.3-20-7, Vol.3-22-37

Limit checking
description of, Vol.3-5-6
pointer offsets are within limits, Vol.3-5-36

Limit field, segment descriptor, Vol.3-5-2, Vol.3-5-6
Linear address, Vol.1-3-8

description of, Vol.3-3-8
IA-32e mode, Vol.3-3-9
introduction to, Vol.3-2-8

Linear address space, Vol.3-3-8

defined, Vol.1-3-8, Vol.3-3-1
maximum size, Vol.1-3-8
of task, Vol.3-7-19

Link (to previous task) field, TSS, Vol.3-6-20
Linking tasks

mechanism, Vol.3-7-16
modifying task linkages, Vol.3-7-18

LINT pins
function of, Vol.3-6-2

LLDT instruction, Vol.2-3-593, Vol.3-2-29, 
Vol.3-5-34, Vol.3-8-25

LMSW instruction, Vol.2-3-596, Vol.3-2-29, 
Vol.3-5-34, Vol.3-25-4, Vol.3-25-18

Load effective address operation, Vol.2-3-583
Local APIC, Vol.3-10-55

64-bit mode, Vol.3-10-46
APIC_ID value, Vol.3-8-49
arbitration over the APIC bus, Vol.3-10-37
arbitration over the system bus, Vol.3-10-37
block diagram, Vol.3-10-6
cluster model, Vol.3-10-34
CR8 usage, Vol.3-10-46
current-count register, Vol.3-10-23
description of, Vol.3-10-1
detecting with CPUID, Vol.3-10-10
DFR (destination format register), Vol.3-10-34
divide configuration register, Vol.3-10-23
enabling and disabling, Vol.3-10-10
external interrupts, Vol.3-6-2
features

Pentium 4 and Intel Xeon, Vol.3-22-38
Pentium and P6, Vol.3-22-38

focus processor, Vol.3-10-37
global enable flag, Vol.3-10-12
IA32_APIC_BASE MSR, Vol.3-10-11
initial-count register, Vol.3-10-22, Vol.3-10-23
internal error interrupts, Vol.3-10-2
interrupt command register (ICR), Vol.3-10-26
interrupt destination, Vol.3-10-38
interrupt distribution mechanism, Vol.3-10-36
interrupt sources, Vol.3-10-2
IRR (interrupt request register), Vol.3-10-43
I/O APIC, Vol.3-10-1
local APIC and 82489DX, Vol.3-22-37
local APIC and I/O APIC, Vol.3-10-3, Vol.3-10-4
local vector table (LVT), Vol.3-10-16
logical destination mode, Vol.3-10-33
LVT (local-APIC version register), Vol.3-10-15
mapping of resources, Vol.3-8-49
MDA (message destination address), Vol.3-10-33
overview of, Vol.3-10-1
performance-monitoring counter, Vol.3-18-120
physical destination mode, Vol.3-10-33
receiving external interrupts, Vol.3-6-2
register address map, Vol.3-10-8, Vol.3-10-55
shared resources, Vol.3-8-49
SMI interrupt, Vol.3-33-3
spurious interrupt, Vol.3-10-46
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spurious-interrupt vector register, Vol.3-10-11
state after a software (INIT) reset, Vol.3-10-15
state after INIT-deassert message, Vol.3-10-15
state after power-up reset, Vol.3-10-14
state of, Vol.3-10-47
SVR (spurious-interrupt vector register), 

Vol.3-10-11
timer, Vol.3-10-22
timer generated interrupts, Vol.3-10-2
TMR (trigger mode register), Vol.3-10-43
valid interrupts, Vol.3-10-20
version register, Vol.3-10-15

Local descriptor table register (see LDTR)
Local descriptor table (see LDT)
Local vector table (LVT)

description of, Vol.3-10-16
thermal entry, Vol.3-14-15

Local x2APIC, Vol.3-10-45, Vol.3-10-59, Vol.3-10-66
Local xAPIC ID, Vol.3-10-59
LOCK prefix, Vol.2-3-32, Vol.2-3-36, Vol.2-3-65, 

Vol.2-3-104, Vol.2-3-107, Vol.2-3-110, 
Vol.2-3-189, Vol.2-3-296, Vol.2-3-501, 
Vol.2-3-598, Vol.2-4-157, Vol.2-4-162, 
Vol.2-4-165, Vol.2-4-512, Vol.2-4-574, 
Vol.2-4-668, Vol.2-4-672, Vol.2-4-680, 
Vol.3-2-31, Vol.3-2-32, Vol.3-6-34, 
Vol.3-8-2, Vol.3-8-4, Vol.3-8-5, 
Vol.3-8-22, Vol.3-22-48

LOCK signal, Vol.1-7-5
Locked (atomic) operations

automatic bus locking, Vol.3-8-4
bus locking, Vol.3-8-4
effects on caches, Vol.3-8-7
loading a segment descriptor, Vol.3-22-27
on IA-32 processors, Vol.3-22-48
overview of, Vol.3-8-2
software-controlled bus locking, Vol.3-8-5

Locking operation, Vol.2-3-598
LOCK# signal, Vol.3-2-32, Vol.3-8-2, Vol.3-8-4, 

Vol.3-8-5, Vol.3-8-8
LODS instruction, Vol.1-3-22, Vol.1-7-27, 

Vol.2-3-600, Vol.2-4-467
LODSB instruction, Vol.2-3-600
LODSD instruction, Vol.2-3-600
LODSQ instruction, Vol.2-3-600
LODSW instruction, Vol.2-3-600
Log epsilon, x87 FPU operation, Vol.1-8-32, 

Vol.2-3-470
Log (base 2), x87 FPU operation, Vol.2-3-472
Logical address, Vol.1-3-8

description of, Vol.3-3-8
IA-32e mode, Vol.3-3-9

Logical address space, of task, Vol.3-7-20
Logical destination mode, local APIC, Vol.3-10-33
Logical processors

per physical package, Vol.3-8-36
Logical x2APIC ID, Vol.3-10-66
LOOP instructions, Vol.1-7-24, Vol.2-3-604

LOOPcc instructions, Vol.1-3-22, Vol.1-7-24, 
Vol.2-3-604

low-temperature interrupt enable bit, Vol.3-14-22, 
Vol.3-14-26

LSL instruction, Vol.2-3-607, Vol.3-2-30, Vol.3-5-36
LSS instruction, Vol.1-7-33, Vol.2-3-577, Vol.3-3-11, 

Vol.3-5-12
LTR instruction, Vol.2-3-611, Vol.3-2-29, 

Vol.3-5-34, Vol.3-7-9, Vol.3-8-25, 
Vol.3-9-14

LVT (see Local vector table)

M
Machine check architecture

CPUID flag, Vol.2-3-218
description, Vol.2-3-218
VMX considerations, Vol.3-32-16

Machine check registers, Vol.1-3-5
Machine instructions

64-bit mode, Vol.2-B-1
condition test (tttn) field, Vol.2-B-7
direction bit (d) field, Vol.2-B-8
floating-point instruction encodings, Vol.2-B-95
general description, Vol.2-B-1
general-purpose encodings, Vol.2-B-9–

Vol.2-B-53
legacy prefixes, Vol.2-B-2
MMX encodings, Vol.2-B-55–Vol.2-B-59
opcode fields, Vol.2-B-2
operand size (w) bit, Vol.2-B-5
P6 family encodings, Vol.2-B-59
Pentium processor family encodings, Vol.2-B-54
reg (reg) field, Vol.2-B-3, Vol.2-B-4
REX prefixes, Vol.2-B-2
segment register (sreg) field, Vol.2-B-6
sign-extend (s) bit, Vol.2-B-5
SIMD 64-bit encodings, Vol.2-B-54
special 64-bit encodings, Vol.2-B-94
special fields, Vol.2-B-2
special-purpose register (eee) field, Vol.2-B-6
SSE encodings, Vol.2-B-60–Vol.2-B-69
SSE2 encodings, Vol.2-B-69–Vol.2-B-86
SSE3 encodings, Vol.2-B-87–Vol.2-B-89
SSSE3 encodings, Vol.2-B-89–Vol.2-B-93
VMX encodings, Vol.2-B-173–Vol.2-B-174, 

Vol.2-B-175–??
See also: opcodes

Machine specific registers (see MSRs)
Machine status word, CR0 register, Vol.2-3-596, 

Vol.2-4-548
Machine-check architecture

availability of MCA and exception, Vol.3-15-24
compatibility with Pentium processor, Vol.3-15-1
compound error codes, Vol.3-15-27
CPUID flags, Vol.3-15-24
error codes, Vol.3-15-26, Vol.3-15-27
error-reporting bank registers, Vol.3-15-2
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error-reporting MSRs, Vol.3-15-5
extended machine check state MSRs, Vol.3-15-13
external bus errors, Vol.3-15-35
first introduced, Vol.3-22-30
global MSRs, Vol.3-15-2, Vol.3-15-3
initialization of, Vol.3-15-24
introduction of in IA-32 processors, Vol.3-22-50
logging correctable errors, Vol.3-15-37, 

Vol.3-15-39, Vol.3-15-45
machine-check exception handler, Vol.3-15-35
machine-check exception (#MC), Vol.3-15-1
MSRs, Vol.3-15-2
overview of MCA, Vol.3-15-1
Pentium processor exception handling, 

Vol.3-15-37
Pentium processor style error reporting, 

Vol.3-15-15
simple error codes, Vol.3-15-26
VMX considerations, Vol.3-32-12, Vol.3-32-13
writing machine-check software, Vol.3-15-35

Machine-check exception (#MC), Vol.3-6-63, 
Vol.3-15-1, Vol.3-15-24, Vol.3-15-35, 
Vol.3-22-28, Vol.3-22-50

Mapping of shared resources, Vol.3-8-49
Maskable hardware interrupts

description of, Vol.3-6-5
handling with virtual interrupt mechanism, 

Vol.3-20-22
masking, Vol.3-2-13, Vol.3-6-9

Maskable interrupts, Vol.1-6-13
Masked responses

denormal operand exception (#D), Vol.1-4-28, 
Vol.1-8-40

divide by zero exception (#Z), Vol.1-4-29, 
Vol.1-8-41

inexact result (precision) exception (#P), 
Vol.1-4-32, Vol.1-8-44

invalid arithmetic operation (#IA), Vol.1-8-39
invalid operation exception (#I), Vol.1-4-28
numeric overflow exception (#O), Vol.1-4-30, 

Vol.1-8-41
numeric underflow exception (#U), Vol.1-4-31, 

Vol.1-8-43
stack overflow or underflow

exception (#IS), Vol.1-8-38
MASKMOVDQU instruction, Vol.1-11-17, 

Vol.1-11-36, Vol.2-4-49
MASKMOVQ instruction, Vol.1-10-18, Vol.1-11-36, 

Vol.2-4-637
Masks, exception-flags

MXCSR register, Vol.1-10-6
x87 FPU control word, Vol.1-8-11

MAXPD instruction, Vol.1-11-9, Vol.2-4-13
MAXPS instruction, Vol.1-10-12, Vol.2-4-16
MAXSD instruction, Vol.1-11-9, Vol.2-4-19
MAXSS instruction, Vol.1-10-13, Vol.2-4-21
MCA flag, CPUID instruction, Vol.3-15-24
MCE flag, CPUID instruction, Vol.3-15-24

MCE (machine-check enable) flag
CR4 control register, Vol.3-2-23, Vol.3-22-24

MDA (message destination address)
local APIC, Vol.3-10-33

measured environment, Vol.2-5-1
Measured Launched Environment, Vol.2-5-1, 

Vol.2-5-33
Memory, Vol.3-11-1

flat memory model, Vol.1-3-8
management registers, Vol.1-3-5
memory type range registers (MTRRs), Vol.1-3-5
modes of operation, Vol.1-3-10
organization, Vol.1-3-8
physical, Vol.1-3-8
real address mode memory model, Vol.1-3-9, 

Vol.1-3-10
segmented memory model, Vol.1-3-8
virtual-8086 mode memory model, Vol.1-3-9, 

Vol.1-3-10
Memory management

introduction to, Vol.3-2-8
overview, Vol.3-3-1
paging, Vol.3-3-1, Vol.3-3-2
registers, Vol.3-2-15
segments, Vol.3-3-1, Vol.3-3-2, Vol.3-3-3, 

Vol.3-3-9
virtualization of, Vol.3-31-3

Memory operands
64-bit mode, Vol.1-3-29
legacy modes, Vol.1-3-28

Memory ordering
in IA-32 processors, Vol.3-22-46
overview, Vol.3-8-8
processor ordering, Vol.3-8-8
strengthening or weakening, Vol.3-8-22
write ordering, Vol.3-8-8

Memory type range registers (see MTRRs)
Memory types

caching methods, defined, Vol.3-11-8
choosing, Vol.3-11-12
MTRR types, Vol.3-11-30
selecting for Pentium III and Pentium 4 processors

, Vol.3-11-21
selecting for Pentium Pro and Pentium II 

processors, Vol.3-11-20
UC (strong uncacheable), Vol.3-11-8
UC- (uncacheable), Vol.3-11-9
WB (write back), Vol.3-11-10
WC (write combining), Vol.3-11-9
WP (write protected), Vol.3-11-10
writing values across pages with different 

memory types, Vol.3-11-23
WT (write through), Vol.3-11-10

Memory-mapped I/O, Vol.1-14-2
MemTypeGet() function, Vol.3-11-42
MemTypeSet() function, Vol.3-11-44
MESI cache protocol, Vol.3-11-7, Vol.3-11-13
Message address register, Vol.3-10-49
Index-26 Combined Volumes 1, 2A, 2B, 2C, 3A, 3B and 3C



COMBINED INDEX
Message data register format, Vol.3-10-51
Message signalled interrupts

message address register, Vol.3-10-49
message data register format, Vol.3-10-49

MFENCE instruction, Vol.1-11-17, Vol.1-11-37, 
Vol.2-4-23, Vol.3-2-21, Vol.3-8-9, 
Vol.3-8-22, Vol.3-8-23, Vol.3-8-25

Microarchitecture
(see Intel NetBurst microarchitecture)
(see P6 family microarchitecture)

Microcode update facilities
authenticating an update, Vol.3-9-48
BIOS responsibilities, Vol.3-9-49
calling program responsibilities, Vol.3-9-52
checksum, Vol.3-9-44
extended signature table, Vol.3-9-41
family 0FH processors, Vol.3-9-37
field definitions, Vol.3-9-37
format of update, Vol.3-9-37
function 00H presence test, Vol.3-9-56
function 01H write microcode update data, 

Vol.3-9-57
function 02H microcode update control, 

Vol.3-9-62
function 03H read microcode update data, 

Vol.3-9-63
general description, Vol.3-9-37
HT Technology, Vol.3-9-46
INT 15H-based interface, Vol.3-9-55
overview, Vol.3-9-36
process description, Vol.3-9-37
processor identification, Vol.3-9-41
processor signature, Vol.3-9-41
return codes, Vol.3-9-64
update loader, Vol.3-9-45
update signature and verification, Vol.3-9-47
update specifications, Vol.3-9-49
VMX non-root operation, Vol.3-25-22, 

Vol.3-31-12
VMX support

early loading, Vol.3-31-12
late loading, Vol.3-31-12
virtualization issues, Vol.3-31-11

MINPD instruction, Vol.1-11-9, Vol.2-4-25
MINPS instruction, Vol.1-10-13, Vol.2-4-28
MINSD instruction, Vol.1-11-9, Vol.2-4-31
MINSS instruction, Vol.1-10-13, Vol.2-4-33
Mixing 16-bit and 32-bit code

in IA-32 processors, Vol.3-22-45
overview, Vol.3-21-1

MLE, Vol.2-5-1
MMX instruction set

arithmetic instructions, Vol.1-9-8
comparison instructions, Vol.1-9-9
conversion instructions, Vol.1-9-9
data transfer instructions, Vol.1-9-8
EMMS instruction, Vol.1-9-10
logical instructions, Vol.1-9-10

overview, Vol.1-9-6
shift instructions, Vol.1-9-10

MMX instructions
CPUID flag for technology, Vol.2-3-218
encodings, Vol.2-B-55

MMX registers
description of, Vol.1-9-3
overview of, Vol.1-3-3

MMX technology
64-bit mode, Vol.1-9-2
64-bit packed SIMD data types, Vol.1-4-11
compatibility mode, Vol.1-9-2
compatibility with FPU architecture, Vol.1-9-10
data types, Vol.1-9-3
debugging MMX code, Vol.3-12-6
detecting MMX technology with CPUID instruction

, Vol.1-9-11
effect of instruction prefixes on MMX instructions

, Vol.1-9-14
effect of MMX instructions on pending x87 

floating-point exceptions, Vol.3-12-6
emulation of the MMX instruction set, Vol.3-12-1
exception handling in MMX code, Vol.1-9-14
exceptions that can occur when executing MMX 

instructions, Vol.3-12-1
IA-32e mode, Vol.1-9-2
instruction set, Vol.1-5-14, Vol.1-9-6
interfacing with MMX code, Vol.1-9-13
introduction of into the IA-32 architecture, 

Vol.3-22-3
introduction to, Vol.1-9-1
memory data formats, Vol.1-9-4
mixing MMX and floating-point instructions, 

Vol.1-9-13
MMX registers, Vol.1-9-3
programming environment (overview), Vol.1-9-2
register aliasing, Vol.3-12-1
register mapping, Vol.1-9-14
saturation arithmetic, Vol.1-9-5
SIMD execution environment, Vol.1-9-4
state, Vol.3-12-1
state, saving and restoring, Vol.3-12-4
system programming, Vol.3-12-1
task or context switches, Vol.3-12-5
transitions between x87 FPU - MMX code, 

Vol.1-9-12
updating MMX technology routines using 128-bit 

SIMD integer instructions, Vol.1-11-35
using MMX code in a multitasking operating 

system environment, Vol.1-9-14
using the EMMS instruction, Vol.1-9-12
using TS flag to control saving of MMX state, 

Vol.3-13-10
wraparound mode, Vol.1-9-5

Mod field, instruction format, Vol.2-2-4
Mode switching

example, Vol.3-9-19
real-address and protected mode, Vol.3-9-17
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to SMM, Vol.3-33-3
Model and stepping information, following processor 

initialization or reset, Vol.3-9-5
Model & family information, Vol.2-3-224
Model-specific registers (see MSRs)
Modes of operation

64-bit mode, Vol.1-3-2
compatibility mode, Vol.1-3-2
memory models used with, Vol.1-3-10
overview, Vol.1-3-1, Vol.1-3-6
protected mode, Vol.1-3-1
real address mode, Vol.1-3-1
system management mode (SMM), Vol.1-3-1

Modes of operation (see Operating modes)
ModR/M byte, Vol.2-2-4

16-bit addressing forms, Vol.2-2-6
32-bit addressing forms of, Vol.2-2-7
description of, Vol.2-2-4

MONITOR instruction, Vol.1-5-27, Vol.1-12-7, 
Vol.2-4-35, Vol.3-25-4

CPUID flag, Vol.2-3-214
feature data, Vol.2-3-224

Moore’s law, Vol.1-2-29
MOV instruction, Vol.1-7-4, Vol.1-7-33, Vol.2-4-38, 

Vol.3-3-11, Vol.3-5-12
MOV instruction (control registers), Vol.2-4-45
MOV instruction (debug registers), Vol.2-4-49, 

Vol.2-4-58
MOV (control registers) instructions, Vol.3-2-29, 

Vol.3-2-30, Vol.3-5-34, Vol.3-8-25, 
Vol.3-9-17

MOV (debug registers) instructions, Vol.3-2-30, 
Vol.3-5-34, Vol.3-8-25, Vol.3-17-12

MOVAPD instruction, Vol.1-11-7, Vol.1-11-34, 
Vol.2-4-52

MOVAPS instruction, Vol.1-10-11, Vol.1-11-34, 
Vol.2-4-55

MOVD instruction, Vol.1-9-8, Vol.2-4-58
MOVDDUP instruction, Vol.1-5-27, Vol.1-12-5, 

Vol.2-4-64
MOVDQ2Q instruction, Vol.1-11-16, Vol.2-4-73
MOVDQA instruction, Vol.1-11-15, Vol.1-11-34, 

Vol.2-4-67
MOVDQU instruction, Vol.1-11-15, Vol.1-11-34, 

Vol.2-4-70
MOVHLPS instruction, Vol.1-10-11, Vol.2-4-75
MOVHPD instruction, Vol.1-11-8, Vol.2-4-77
MOVHPS instruction, Vol.1-10-11, Vol.2-4-79
MOVLHP instruction, Vol.2-4-81
MOVLHPS instruction, Vol.1-10-11, Vol.2-4-81
MOVLPD instruction, Vol.1-11-8, Vol.2-4-83
MOVLPS instruction, Vol.1-10-11, Vol.2-4-85
MOVMSKPD instruction, Vol.1-11-8, Vol.2-4-87
MOVMSKPS instruction, Vol.1-10-11, Vol.2-4-89
MOVNTDQ instruction, Vol.1-11-17, Vol.1-11-36, 

Vol.2-4-108, Vol.3-8-9, Vol.3-11-7, 
Vol.3-11-26

MOVNTI instruction, Vol.1-11-17, Vol.1-11-36, 
Vol.2-4-108, Vol.3-2-21, Vol.3-8-9, 
Vol.3-11-7, Vol.3-11-26

MOVNTPD instruction, Vol.1-11-17, Vol.1-11-36, 
Vol.2-4-99, Vol.3-8-9, Vol.3-11-7, 
Vol.3-11-26

MOVNTPS instruction, Vol.1-10-18, Vol.1-11-36, 
Vol.2-4-101, Vol.3-8-9, Vol.3-11-7, 
Vol.3-11-26

MOVNTQ instruction, Vol.1-10-18, Vol.1-11-36, 
Vol.2-4-103, Vol.3-8-9, Vol.3-11-7, 
Vol.3-11-26

MOVQ instruction, Vol.1-9-8, Vol.2-4-58, 
Vol.2-4-105

MOVQ2DQ instruction, Vol.1-11-16, Vol.2-4-107
MOVS instruction, Vol.1-3-22, Vol.1-7-27, 

Vol.2-4-109, Vol.2-4-467
MOVSB instruction, Vol.2-4-109
MOVSD instruction, Vol.1-11-7, Vol.1-11-34, 

Vol.2-4-109, Vol.2-4-114
MOVSHDUP instruction, Vol.1-5-27, Vol.1-12-4, 

Vol.2-4-117
MOVSLDUP instruction, Vol.1-5-27, Vol.1-12-4, 

Vol.2-4-120
MOVSQ instruction, Vol.2-4-109
MOVSS instruction, Vol.1-10-11, Vol.1-11-34, 

Vol.2-4-123
MOVSW instruction, Vol.2-4-109
MOVSX instruction, Vol.1-7-11, Vol.2-4-126
MOVSXD instruction, Vol.1-7-11, Vol.2-4-126
MOVUPD instruction, Vol.1-11-7, Vol.1-11-34, 

Vol.2-4-129
MOVUPS instruction, Vol.1-10-9, Vol.1-10-11, 

Vol.1-11-34, Vol.2-4-132
MOVZX instruction, Vol.1-7-11, Vol.2-4-135
MP (monitor coprocessor) flag

CR0 control register, Vol.3-2-21, Vol.3-2-22, 
Vol.3-6-36, Vol.3-9-6, Vol.3-9-8, Vol.3-12-1, 
Vol.3-22-10

MS-DOS compatibility mode, Vol.1-8-46, Vol.1-D-1
MSR, Vol.3-34-206

Model Specific Register, Vol.3-10-53, Vol.3-10-54
MSRs, Vol.1-3-5

architectural, Vol.3-34-2
description of, Vol.3-9-9
introduction of in IA-32 processors, Vol.3-22-49
introduction to, Vol.3-2-9
list of, Vol.3-34-1
machine-check architecture, Vol.3-15-3
P6 family processors, Vol.3-34-235
Pentium 4 processor, Vol.3-34-46, Vol.3-34-67, 

Vol.3-34-169, Vol.3-34-209
Pentium processors, Vol.3-34-247
reading and writing, Vol.3-2-26, Vol.3-2-33, 

Vol.3-2-34
reading & writing in 64-bit mode, Vol.3-2-33
virtualization support, Vol.3-30-22
VMX support, Vol.3-30-22
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MSRs (model specific registers)
reading, Vol.2-4-451

MSR_ TC_PRECISE_EVENT MSR, Vol.3-19-258
MSR_DEBUBCTLB MSR, Vol.3-17-15, Vol.3-17-35, 

Vol.3-17-43, Vol.3-17-45
MSR_DEBUGCTLA MSR, Vol.3-17-14, Vol.3-17-21, 

Vol.3-17-22, Vol.3-17-29, Vol.3-17-31, 
Vol.3-17-38, Vol.3-18-14, Vol.3-18-19, 
Vol.3-18-23, Vol.3-18-55, Vol.3-34-189

MSR_DEBUGCTLB MSR, Vol.3-17-14, Vol.3-17-42, 
Vol.3-17-44, Vol.3-34-59, Vol.3-34-77, 
Vol.3-34-92, Vol.3-34-146, Vol.3-34-220, 
Vol.3-34-232

MSR_EBC_FREQUENCY_ID MSR, Vol.3-34-173, 
Vol.3-34-175

MSR_EBC_HARD_POWERON MSR, Vol.3-34-170
MSR_EBC_SOFT_POWERON MSR, Vol.3-34-172
MSR_IFSB_CNTR7 MSR, Vol.3-18-106
MSR_IFSB_CTRL6 MSR, Vol.3-18-106
MSR_IFSB_DRDY0 MSR, Vol.3-18-105
MSR_IFSB_DRDY1 MSR, Vol.3-18-105
MSR_IFSB_IBUSQ0 MSR, Vol.3-18-103
MSR_IFSB_IBUSQ1 MSR, Vol.3-18-103
MSR_IFSB_ISNPQ0 MSR, Vol.3-18-104
MSR_IFSB_ISNPQ1 MSR, Vol.3-18-104
MSR_LASTBRANCH _TOS, Vol.3-34-189
MSR_LASTBRANCH_n MSR, Vol.3-17-20, 

Vol.3-17-21, Vol.3-17-40, Vol.3-17-41, 
Vol.3-34-190

MSR_LASTBRANCH_n_FROM_LIP MSR, Vol.3-17-20, 
Vol.3-17-21, Vol.3-17-40, Vol.3-17-41, 
Vol.3-34-204

MSR_LASTBRANCH_n_TO_LIP MSR, Vol.3-17-20, 
Vol.3-17-21, Vol.3-17-40, Vol.3-17-41, 
Vol.3-34-206

MSR_LASTBRANCH_TOS MSR, Vol.3-17-40
MSR_LER_FROM_LIP MSR, Vol.3-17-33, Vol.3-17-42, 

Vol.3-17-43, Vol.3-34-188
MSR_LER_TO_LIP MSR, Vol.3-17-33, Vol.3-17-42, 

Vol.3-17-43, Vol.3-34-188
MSR_PEBS_ MATRIX_VERT MSR, Vol.3-19-259
MSR_PEBS_MATRIX_VERT MSR, Vol.3-34-199
MSR_PLATFORM_BRV, Vol.3-34-187
MTRR feature flag, CPUID instruction, Vol.3-11-32
MTRRcap MSR, Vol.3-11-32
MTRRfix MSR, Vol.3-11-34
MTRRs, Vol.1-3-5, Vol.3-8-22

base & mask calculations, Vol.3-11-38, 
Vol.3-11-40

cache control, Vol.3-11-19
description of, Vol.3-9-9, Vol.3-11-30
dual-core processors, Vol.3-8-48
enabling caching, Vol.3-9-8
feature identification, Vol.3-11-32
fixed-range registers, Vol.3-11-34
IA32_MTRRCAP MSR, Vol.3-11-32
IA32_MTRR_DEF_TYPE MSR, Vol.3-11-33
initialization of, Vol.3-11-41

introduction of in IA-32 processors, Vol.3-22-49
introduction to, Vol.3-2-9
large page size considerations, Vol.3-11-47
logical processors, Vol.3-8-48
mapping physical memory with, Vol.3-11-31
memory types and their properties, Vol.3-11-30
MemTypeGet() function, Vol.3-11-42
MemTypeSet() function, Vol.3-11-44
multiple-processor considerations, Vol.3-11-46
precedence of cache controls, Vol.3-11-19
precedences, Vol.3-11-41
programming interface, Vol.3-11-42
remapping memory types, Vol.3-11-42
state of following a hardware reset, Vol.3-11-30
variable-range registers, Vol.3-11-34, 

Vol.3-11-37
MUL instruction, Vol.1-7-13, Vol.2-3-27, Vol.2-4-142
MULPD instruction, Vol.1-11-8, Vol.2-4-145
MULPS instruction, Vol.1-10-12, Vol.2-4-147
MULSD instruction, Vol.1-11-8, Vol.2-4-149
MULSS instruction, Vol.1-10-12, Vol.2-4-151
Multi-byte no operation, Vol.2-4-157, Vol.2-4-160, 

Vol.2-B-17
Multi-core technology, Vol.1-2-24

See multi-threading support
Multiple-processor management

bus locking, Vol.3-8-4
guaranteed atomic operations, Vol.3-8-3
initialization

MP protocol, Vol.3-8-26
procedure, Vol.3-8-75

local APIC, Vol.3-10-1
memory ordering, Vol.3-8-8
MP protocol, Vol.3-8-26
overview of, Vol.3-8-1
SMM considerations, Vol.3-33-22
VMM design, Vol.3-30-15

asymmetric, Vol.3-30-15
CPUID emulation, Vol.3-30-18
external data structures, Vol.3-30-17
index-data registers, Vol.3-30-17
initialization, Vol.3-30-16
moving between processors, Vol.3-30-16
symmetric, Vol.3-30-15

Multiple-processor system
local APIC and I/O APICs, Pentium 4, Vol.3-10-4
local APIC and I/O APIC, P6 family, Vol.3-10-4

Multisegment model, Vol.3-3-5
Multitasking

initialization for, Vol.3-9-14
initializing IA-32e mode, Vol.3-9-14
linking tasks, Vol.3-7-16
mechanism, description of, Vol.3-7-3
overview, Vol.3-7-1
setting up TSS, Vol.3-9-14
setting up TSS descriptor, Vol.3-9-14

Multi-threading capability, Vol.1-2-24
Multi-threading support
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executing multiple threads, Vol.3-8-38
handling interrupts, Vol.3-8-38
logical processors per package, Vol.3-8-36
mapping resources, Vol.3-8-49
microcode updates, Vol.3-8-48
performance monitoring counters, Vol.3-8-48
programming considerations, Vol.3-8-49
See also: Hyper-Threading Technology and 

dual-core technology
MVMM, Vol.2-5-1, Vol.2-5-6, Vol.2-5-7, Vol.2-5-49
MWAIT instruction, Vol.1-5-27, Vol.1-12-7, 

Vol.2-4-153, Vol.3-25-5
CPUID flag, Vol.2-3-214
feature data, Vol.2-3-224
power management extensions, Vol.3-14-9

MXCSR register, Vol.1-11-23, Vol.3-6-65, 
Vol.3-9-10, Vol.3-13-8

denormals-are-zero (DAZ) flag, Vol.1-10-7, 
Vol.1-11-3, Vol.1-11-4

description, Vol.1-10-5
flush-to-zero flag (FZ), Vol.1-10-7
FXSAVE and FXRSTOR instructions, Vol.1-11-34
LDMXCSR instruction, Vol.1-11-34
load and store instructions, Vol.1-10-17
RC field, Vol.1-4-26
saving on a procedure or function call, 

Vol.1-11-34
SIMD floating-point mask and flag bits, Vol.1-10-6
SIMD floating-point rounding control field, 

Vol.1-10-7
state management instructions, Vol.1-5-20, 

Vol.1-10-17
STMXCSR instruction, Vol.1-11-34
writing to while preventing general-protection 

exceptions (#GP), Vol.1-11-30

N
NaNs

description of, Vol.1-4-19, Vol.1-4-21
encoding of, Vol.1-4-7, Vol.1-4-8, Vol.1-4-19
SNaNs vs. QNaNs, Vol.1-4-21

NaN, compatibility, IA-32 processors, Vol.3-22-12
NaN. testing for, Vol.2-3-445
NE (numeric error) flag

CR0 control register, Vol.3-2-20, Vol.3-6-58, 
Vol.3-9-6, Vol.3-9-8, Vol.3-22-10, 
Vol.3-22-25

Near
return, RET instruction, Vol.2-4-470

Near call
description of, Vol.1-6-5
operation, Vol.1-6-5

Near pointer
64-bit mode, Vol.1-4-9
legacy modes, Vol.1-4-9

Near return operation, Vol.1-6-5

NEG instruction, Vol.1-7-12, Vol.2-3-598, 
Vol.2-4-157, Vol.3-8-5

NetBurst microarchitecture (see Intel NetBurst 
microarchitecture)

NMI interrupt, Vol.3-2-31, Vol.3-10-5
description of, Vol.3-6-2
handling during initialization, Vol.3-9-11
handling in SMM, Vol.3-33-14
handling multiple NMIs, Vol.3-6-9
masking, Vol.3-22-36
receiving when processor is shutdown, 

Vol.3-6-39
reference information, Vol.3-6-30
vector, Vol.3-6-2

NMI# pin, Vol.3-6-2, Vol.3-6-30
No operation, Vol.2-4-157, Vol.2-4-160, Vol.2-B-17
Nomenclature, used in instruction reference pages, 

Vol.2-3-1
Nominal CPI method, Vol.3-18-98
Non-arithmetic instructions, x87 FPU, Vol.1-8-36
Nonconforming code segments

accessing, Vol.3-5-16
C (conforming) flag, Vol.3-5-16
description of, Vol.3-3-18

Non-halted clockticks, Vol.3-18-98
setting up counters, Vol.3-18-98

Non-Halted CPI method, Vol.3-18-98
Nonmaskable interrupt (see NMI)
Non-number encodings, floating-point format, 

Vol.1-4-18
Non-precise event-based sampling

defined, Vol.3-18-71
used for at-retirement counting, Vol.3-18-87
writing an interrupt service routine for, 

Vol.3-17-31
Non-retirement events, Vol.3-18-70, Vol.3-19-219
Non-sleep clockticks, Vol.3-18-98

setting up counters, Vol.3-18-98
Non-temporal data

caching of, Vol.1-10-18
description, Vol.1-10-18
temporal vs. non-temporal data, Vol.1-10-18

Non-waiting instructions, x87 FPU, Vol.1-8-34, 
Vol.1-8-46

NOP instruction, Vol.1-7-34, Vol.2-4-160
Normalized finite number, Vol.1-4-7, Vol.1-4-18, 

Vol.1-4-20
NOT instruction, Vol.1-7-15, Vol.2-3-598, 

Vol.2-4-162, Vol.3-8-5
Notation

bit and byte order, Vol.1-1-5, Vol.2-1-4, 
Vol.3-1-7

conventions, Vol.3-1-7
exceptions, Vol.1-1-9, Vol.2-1-7, Vol.3-1-10
hexadecimal and binary numbers, Vol.1-1-7, 

Vol.2-1-6, Vol.3-1-9
instruction operands, Vol.1-1-7, Vol.2-1-6
Instructions
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operands, Vol.3-1-8
notational conventions, Vol.1-1-5
reserved bits, Vol.1-1-6, Vol.2-1-5, Vol.3-1-7
segmented addressing, Vol.1-1-7, Vol.2-1-6, 

Vol.3-1-9
Notational conventions, Vol.2-1-4
NT (nested task) flag

EFLAGS register, Vol.3-2-13, Vol.3-7-13, 
Vol.3-7-16

NT (nested task) flag, EFLAGS register, Vol.1-3-23, 
Vol.1-A-1, Vol.2-3-537

Null segment selector, checking for, Vol.3-5-9
Numeric overflow exception (#O), Vol.3-22-13

overview, Vol.1-4-29
SSE and SSE2 extensions, Vol.1-11-22
x87 FPU, Vol.1-8-7, Vol.1-8-41

Numeric underflow exception (#U), Vol.3-22-14
overview, Vol.1-4-30
SSE and SSE2 extensions, Vol.1-11-22
x87 FPU, Vol.1-8-7, Vol.1-8-42

NV (invert) flag, PerfEvtSel0 MSR
(P6 family processors), Vol.3-18-6, Vol.3-18-118

NW (not write-through) flag
CR0 control register, Vol.3-2-20, Vol.3-9-8, 

Vol.3-11-17, Vol.3-11-18, Vol.3-11-24, 
Vol.3-11-46, Vol.3-11-47, Vol.3-22-25, 
Vol.3-22-26, Vol.3-22-40

NXE bit, Vol.3-5-43

O
Obsolete instructions, Vol.3-22-7, Vol.3-22-20
OE (numeric overflow exception) flag

MXCSR register, Vol.1-11-22
x87 FPU status word, Vol.1-8-7, Vol.1-8-41

OF flag, EFLAGS register, Vol.3-6-32
OF (carry) flag, EFLAGS register, Vol.2-3-495
OF (overflow) flag

EFLAGS register, Vol.1-3-21, Vol.1-6-18
OF (overflow) flag, EFLAGS register, Vol.1-A-1, 

Vol.2-3-35, Vol.2-3-513, Vol.2-4-142, 
Vol.2-4-511, Vol.2-4-529, Vol.2-4-533, 
Vol.2-4-574

Offset (operand addressing), Vol.1-3-30
Offset (operand addressing, 64-bit mode), Vol.1-3-32
OM (numeric overflow exception) mask bit

MXCSR register, Vol.1-11-22
x87 FPU control word, Vol.1-8-11, Vol.1-8-41

On die digital thermal sensor, Vol.3-14-19
relevant MSRs, Vol.3-14-19
sensor enumeration, Vol.3-14-19

On-Demand
clock modulation enable bits, Vol.3-14-17

On-demand
clock modulation duty cycle bits, Vol.3-14-17

On-die sensors, Vol.3-14-11
Opcode format, Vol.2-2-3
Opcodes

addressing method codes for, Vol.2-A-2
extensions, Vol.2-A-20
extensions tables, Vol.2-A-21
group numbers, Vol.2-A-20
integers

one-byte opcodes, Vol.2-A-10
two-byte opcodes, Vol.2-A-12

key to abbreviations, Vol.2-A-2
look-up examples, Vol.2-A-5, Vol.2-A-20, 

Vol.2-A-23
ModR/M byte, Vol.2-A-20
one-byte opcodes, Vol.2-A-5, Vol.2-A-10
opcode maps, Vol.2-A-1
operand type codes for, Vol.2-A-3
register codes for, Vol.2-A-4
superscripts in tables, Vol.2-A-8
two-byte opcodes, Vol.2-A-6, Vol.2-A-7, 

Vol.2-A-12
undefined, Vol.3-22-7
VMX instructions, Vol.2-B-173, Vol.2-B-175
x87 ESC instruction opcodes, Vol.2-A-23

Operand
addressing, modes, Vol.1-3-26
instruction, Vol.1-1-7
size attribute, Vol.1-3-24
sizes, Vol.1-3-11, Vol.1-3-25
x87 FPU instructions, Vol.1-8-23

Operands, Vol.2-1-6
instruction, Vol.3-1-8
operand-size prefix, Vol.3-21-2

Operating modes
64-bit mode, Vol.3-2-10
compatibility mode, Vol.3-2-10
IA-32e mode, Vol.3-2-10, Vol.3-2-11
introduction to, Vol.3-2-10
protected mode, Vol.3-2-10
SMM (system management mode), Vol.3-2-10
transitions between, Vol.3-2-11, Vol.3-13-17
virtual-8086 mode, Vol.3-2-11
VMX operation

enabling and entering, Vol.3-23-4
guest environments, Vol.3-30-1

OR instruction, Vol.1-7-15, Vol.2-3-598, 
Vol.2-4-164, Vol.3-8-5

Ordering I/O, Vol.1-14-7
ORPD instruction, Vol.1-11-9, Vol.2-4-167
ORPS instruction, Vol.1-10-13, Vol.2-4-169
OS (operating system mode) flag

PerfEvtSel0 and PerfEvtSel1 MSRs (P6 only), 
Vol.3-18-5, Vol.3-18-118

OSFXSR (FXSAVE/FXRSTOR support) flag
CR4 control register, Vol.3-2-24, Vol.3-9-10, 

Vol.3-13-3
OSXMMEXCPT flag

control register CR4, Vol.1-11-25
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OSXMMEXCPT (SIMD floating-point exception 
support) flag, CR4 control register, 
Vol.3-2-25, Vol.3-6-65, Vol.3-9-10, 
Vol.3-13-3

OUT instruction, Vol.1-5-8, Vol.1-7-29, Vol.1-14-4, 
Vol.2-4-171, Vol.3-8-22, Vol.3-25-3

Out-of-spec status bit, Vol.3-14-20, Vol.3-14-25
Out-of-spec status log, Vol.3-14-20, Vol.3-14-25
OUTS instruction, Vol.1-5-8, Vol.1-7-29, Vol.1-14-4, 

Vol.2-4-174, Vol.2-4-467
OUTSB instruction, Vol.2-4-174
OUTSD instruction, Vol.2-4-174
OUTSW instruction, Vol.2-4-174
OUTS/OUTSB/OUTSW/OUTSD instruction, 

Vol.3-17-12, Vol.3-25-3
Overflow exception (#OF), Vol.1-6-18, Vol.2-3-513, 

Vol.3-6-32
Overflow, x87 FPU stack, Vol.1-8-37, Vol.1-8-38
Overheat interrupt enable bit, Vol.3-14-22, 

Vol.3-14-26

P
P (present) flag

page-directory entry, Vol.3-6-54
page-table entry, Vol.3-6-54
segment descriptor, Vol.3-3-14

P5_MC_ADDR MSR, Vol.3-15-15, Vol.3-15-37, 
Vol.3-34-46, Vol.3-34-68, Vol.3-34-83, 
Vol.3-34-138, Vol.3-34-212, 
Vol.3-34-226, Vol.3-34-235, 
Vol.3-34-247

P5_MC_TYPE MSR, Vol.3-15-15, Vol.3-15-37, 
Vol.3-34-46, Vol.3-34-68, Vol.3-34-83, 
Vol.3-34-138, Vol.3-34-212, 
Vol.3-34-226, Vol.3-34-235, 
Vol.3-34-247

P6 family microarchitecture
description of, Vol.1-2-9
history of, Vol.1-2-3

P6 family processors
compatibility with FP software, Vol.3-22-9
description of, Vol.1-1-1, Vol.2-1-1, Vol.3-1-1
history of, Vol.1-2-3
last branch, interrupt, and exception recording, 

Vol.3-17-46
list of performance-monitoring events, 

Vol.3-19-270
machine encodings, Vol.2-B-59
MSR supported by, Vol.3-34-235
P6 family microarchitecture, Vol.1-2-9

PABSB instruction, Vol.1-5-29, Vol.1-12-11, 
Vol.2-4-180

PABSD instruction, Vol.1-12-11, Vol.2-4-180
PABSW instruction, Vol.1-5-29, Vol.1-12-11, 

Vol.2-4-180
Packed

BCD integer indefinite, Vol.1-4-15

BCD integers, Vol.1-4-14
bytes, Vol.1-9-3
doublewords, Vol.1-9-3
SIMD data types, Vol.1-4-11
SIMD floating-point values, Vol.1-4-12
SIMD integers, Vol.1-4-11, Vol.1-4-12
words, Vol.1-9-3

PACKSSDW instruction, Vol.2-4-184
PACKSSWB instruction, Vol.1-9-9, Vol.2-4-184
PACKUSWB instruction, Vol.1-9-9, Vol.2-4-191
PADDB instruction, Vol.1-9-8, Vol.2-4-194
PADDD instruction, Vol.1-9-8, Vol.2-4-194
PADDQ instruction, Vol.1-11-15, Vol.2-4-198
PADDSB instruction, Vol.1-9-8, Vol.2-4-200
PADDSW instruction, Vol.1-9-8, Vol.2-4-200
PADDUSB instruction, Vol.1-9-8, Vol.2-4-203
PADDUSW instruction, Vol.1-9-8, Vol.2-4-203
PADDW instruction, Vol.1-9-8, Vol.2-4-194
PAE paging

feature flag, CR4 register, Vol.3-2-23
flag, CR4 control register, Vol.3-3-7, Vol.3-22-24, 

Vol.3-22-25
Page attribute table (PAT)

compatibility with earlier IA-32 processors, 
Vol.3-11-52

detecting support for, Vol.3-11-48
IA32_CR_PAT MSR, Vol.3-11-49
introduction to, Vol.3-11-48
memory types that can be encoded with, 

Vol.3-11-49
MSR, Vol.3-11-19
precedence of cache controls, Vol.3-11-20
programming, Vol.3-11-50
selecting a memory type with, Vol.3-11-50

Page directories, Vol.3-2-8
Page directory

base address (PDBR), Vol.3-7-6
introduction to, Vol.3-2-8
overview, Vol.3-3-2
setting up during initialization, Vol.3-9-13

Page directory pointers, Vol.3-2-8
Page frame (see Page)
Page tables, Vol.3-2-8

introduction to, Vol.3-2-8
overview, Vol.3-3-2
setting up during initialization, Vol.3-9-13

Page-directory entries, Vol.3-8-5, Vol.3-11-6
Page-fault exception (#PF), Vol.3-4-64, Vol.3-6-54, 

Vol.3-22-29
Pages

disabling protection of, Vol.3-5-1
enabling protection of, Vol.3-5-1
introduction to, Vol.3-2-8
overview, Vol.3-3-2
PG flag, CR0 control register, Vol.3-5-2
split, Vol.3-22-21

Page-table entries, Vol.3-8-5, Vol.3-11-6, 
Vol.3-11-27
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Paging
combining segment and page-level protection, 

Vol.3-5-41
combining with segmentation, Vol.3-3-7
defined, Vol.3-3-1
IA-32e mode, Vol.3-2-8
initializing, Vol.3-9-13
introduction to, Vol.3-2-8
large page size MTRR considerations, Vol.3-11-47
mapping segments to pages, Vol.3-4-64
page boundaries regarding TSS, Vol.3-7-6
page-fault exception, Vol.3-6-54
page-level protection, Vol.3-5-2, Vol.3-5-5, 

Vol.3-5-39
page-level protection flags, Vol.3-5-40
virtual-8086 tasks, Vol.3-20-10

PALIGNR instruction, Vol.1-5-30, Vol.1-12-12, 
Vol.2-4-206

PAND instruction, Vol.1-9-10, Vol.2-4-208
PANDN instruction, Vol.1-9-10, Vol.2-4-210
Parameter

passing, between 16- and 32-bit call gates, 
Vol.3-21-8

translation, between 16- and 32-bit code 
segments, Vol.3-21-8

Parameter passing
argument list, Vol.1-6-8
on stack, Vol.1-6-7
on the stack, Vol.1-6-7
through general-purpose registers, Vol.1-6-7
x87 FPU register stack, Vol.1-8-5
XMM registers, Vol.1-11-34

GETSEC, Vol.2-5-5
PAUSE instruction, Vol.1-11-18, Vol.2-4-212, 

Vol.3-2-21, Vol.3-25-5
PAVGB instruction, Vol.1-10-16, Vol.2-4-214
PAVGW instruction, Vol.2-4-214
PBi (performance monitoring/breakpoint pins) flags, 

DEBUGCTLMSR MSR, Vol.3-17-44, 
Vol.3-17-47

PC (pin control) flag, PerfEvtSel0 and PerfEvtSel1 
MSRs (P6 family processors), Vol.3-18-6, 
Vol.3-18-118

PC (precision) field, x87 FPU control word, Vol.1-8-11
PC0 and PC1 (pin control) fields, CESR MSR (Pentium 

processor), Vol.3-18-122
PCD pin (Pentium processor), Vol.3-11-19
PCD (page-level cache disable) flag

CR3 control register, Vol.3-2-22, Vol.3-11-19, 
Vol.3-22-25, Vol.3-22-41

page-directory entries, Vol.3-9-8, Vol.3-11-19, 
Vol.3-11-47

page-table entries, Vol.3-9-8, Vol.3-11-19, 
Vol.3-11-47, Vol.3-22-42

PCE flag, CR4 register, Vol.2-4-455
PCE (performance monitoring counter enable) flag, 

CR4 control register, Vol.3-2-24, 
Vol.3-5-34, Vol.3-18-74, Vol.3-18-119

PCE (performance-monitoring counter enable) flag, 
CR4 control register, Vol.3-22-24

PCMPEQB instruction, Vol.1-9-9, Vol.2-4-227
PCMPEQD instruction, Vol.1-9-9, Vol.2-4-227
PCMPEQW instruction, Vol.1-9-9, Vol.2-4-227
PCMPGTB instruction, Vol.1-9-9, Vol.2-4-237
PCMPGTD instruction, Vol.1-9-9, Vol.2-4-237
PCMPGTW instruction, Vol.1-9-9, Vol.2-4-237
PDBR (see CR3 control register)
PE (inexact result exception) flag, Vol.1-11-23

MXCSR register, Vol.1-4-25
x87 FPU status word, Vol.1-4-25, Vol.1-8-7, 

Vol.1-8-44
PE (protection enable) flag, CR0 control register, 

Vol.3-2-22, Vol.3-5-1, Vol.3-9-13, 
Vol.3-9-17, Vol.3-33-12

PE (protection enable) flag, CR0 register, Vol.2-3-596
PEBS records, Vol.3-17-26
PEBS (precise event-based sampling) facilities

availability of, Vol.3-18-90
description of, Vol.3-18-71, Vol.3-18-89
DS save area, Vol.3-17-22
IA-32e mode, Vol.3-17-26
PEBS buffer, Vol.3-17-22, Vol.3-18-90
PEBS records, Vol.3-17-22, Vol.3-17-24
writing a PEBS interrupt service routine, 

Vol.3-18-90
writing interrupt service routine, Vol.3-17-31

PEBS_UNAVAILABLE flag
IA32_MISC_ENABLE MSR, Vol.3-17-22, 

Vol.3-34-185
Pending break enable, Vol.2-3-219
Pentium 4 processor, Vol.1-1-1, Vol.2-1-1, Vol.3-1-2

compatibility with FP software, Vol.3-22-9
description of, Vol.1-2-4, Vol.1-2-5
last branch, interrupt, and exception recording, 

Vol.3-17-37
list of performance-monitoring events, 

Vol.3-19-1, Vol.3-19-218
MSRs supported, Vol.3-34-46, Vol.3-34-67, 

Vol.3-34-169, Vol.3-34-209
time-stamp counter, Vol.3-17-49

Pentium 4 processor supporting Hyper-Threading 
Technology

description of, Vol.1-2-4, Vol.1-2-5
Pentium II processor, Vol.1-1-2, Vol.2-1-2, Vol.3-1-2

description of, Vol.1-2-3
P6 family microarchitecture, Vol.1-2-9

Pentium II Xeon processor
description of, Vol.1-2-3

Pentium III processor, Vol.1-1-2, Vol.2-1-2, Vol.3-1-2
description of, Vol.1-2-4
P6 family microarchitecture, Vol.1-2-9

Pentium III Xeon processor
description of, Vol.1-2-4

Pentium M processor
description of, Vol.1-2-5
instructions supported, Vol.1-2-5
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last branch, interrupt, and exception recording, 
Vol.3-17-44

MSRs supported by, Vol.3-34-225
time-stamp counter, Vol.3-17-49

Pentium Pro processor, Vol.1-1-2, Vol.2-1-2, 
Vol.3-1-2

description of, Vol.1-2-3
P6 family microarchitecture, Vol.1-2-9

Pentium processor, Vol.1-1-1, Vol.2-1-1, Vol.3-1-1, 
Vol.3-22-9

compatibility with MCA, Vol.3-15-1
history of, Vol.1-2-2
list of performance-monitoring events, 

Vol.3-19-288
MSR supported by, Vol.3-34-247
performance-monitoring counters, Vol.3-18-121

Pentium processor Extreme Edition
introduction, Vol.1-2-5

Pentium processor family processors
machine encodings, Vol.2-B-54

Pentium processor with MMX technology, Vol.1-2-3
PerfCtr0 and PerfCtr1 MSRs

(P6 family processors), Vol.3-18-117, 
Vol.3-18-119

PerfEvtSel0 and PerfEvtSel1 MSRs
(P6 family processors), Vol.3-18-117

PerfEvtSel0 and PerfEvtSel1 MSRs (P6 family 
processors), Vol.3-18-117

Performance events
architectural, Vol.3-18-1
Intel Core Solo and Intel Core Duo processors, 

Vol.3-18-1
non-architectural, Vol.3-18-1
non-retirement events (Pentium 4 processor), 

Vol.3-19-219
P6 family processors, Vol.3-19-270
Pentium 4 and Intel Xeon processors, Vol.3-17-37
Pentium M processors, Vol.3-17-44
Pentium processor, Vol.3-19-288

Performance monitoring counters, Vol.1-3-5
Performance state, Vol.3-14-2
Performance-monitoring counters

counted events (P6 family processors), 
Vol.3-19-270

counted events (Pentium 4 processor), 
Vol.3-19-1, Vol.3-19-218

counted events (Pentium processors), 
Vol.3-18-123

CPUID inquiry for, Vol.2-3-225
description of, Vol.3-18-1, Vol.3-18-2
events that can be counted (Pentium processors), 

Vol.3-19-288
interrupt, Vol.3-10-2
introduction of in IA-32 processors, Vol.3-22-50
monitoring counter overflow (P6 family 

processors), Vol.3-18-120
overflow, monitoring (P6 family processors), 

Vol.3-18-120

overview of, Vol.3-2-10
P6 family processors, Vol.3-18-116
Pentium II processor, Vol.3-18-116
Pentium Pro processor, Vol.3-18-116
Pentium processor, Vol.3-18-121
reading, Vol.3-2-32, Vol.3-18-119
setting up (P6 family processors), Vol.3-18-117
software drivers for, Vol.3-18-120
starting and stopping, Vol.3-18-119

PEXTRW instruction, Vol.1-10-17, Vol.2-4-250
PF (parity) flag, EFLAGS register, Vol.1-3-21, 

Vol.1-A-1
PG (paging) flag

CR0 control register, Vol.3-2-19, Vol.3-5-2
PG (paging) flag, CR0 control register, Vol.3-9-13, 

Vol.3-9-17, Vol.3-22-43, Vol.3-33-12
PGE (page global enable) flag, CR4 control register, 

Vol.3-2-24, Vol.3-11-19, Vol.3-22-24, 
Vol.3-22-26

PHADDD instruction, Vol.1-5-28, Vol.1-12-10, 
Vol.2-4-253

PHADDSW instruction, Vol.1-5-28, Vol.1-12-10, 
Vol.2-4-256

PHADDW instruction, Vol.1-5-28, Vol.1-12-10, 
Vol.2-4-253

PHSUBD instruction, Vol.1-5-28, Vol.1-12-10, 
Vol.2-4-260

PHSUBSW instruction, Vol.1-5-28, Vol.1-12-10, 
Vol.2-4-263

PHSUBW instruction, Vol.1-5-28, Vol.1-12-10, 
Vol.2-4-260

PhysBase field, IA32_MTRR_PHYSBASEn MTRR, 
Vol.3-11-35, Vol.3-11-37

Physical
address space, Vol.1-3-8
memory, Vol.1-3-8

Physical address extension
introduction to, Vol.3-3-7

Physical address space
4 GBytes, Vol.3-3-7
64 GBytes, Vol.3-3-7
addressing, Vol.3-2-8
defined, Vol.3-3-1
description of, Vol.3-3-7
guest and host spaces, Vol.3-31-3
IA-32e mode, Vol.3-3-8
mapped to a task, Vol.3-7-19
mapping with variable-range MTRRs, Vol.3-11-34, 

Vol.3-11-37
memory virtualization, Vol.3-31-3
See also: VMM, VMX

Physical destination mode, local APIC, Vol.3-10-33
PhysMask

IA32_MTRR_PHYSMASKn MTRR, Vol.3-11-35, 
Vol.3-11-37

Pi, Vol.2-3-383
PINSRW instruction, Vol.1-10-17, Vol.2-4-268, 

Vol.2-4-371
Index-34 Combined Volumes 1, 2A, 2B, 2C, 3A, 3B and 3C



COMBINED INDEX
Pi, x87 FPU constant, Vol.1-8-31
PM (inexact result exception) mask bit

MXCSR register, Vol.1-11-23
x87 FPU control word, Vol.1-8-11, Vol.1-8-44

PM0/BP0 and PM1/BP1 (performance-monitor) pins 
(Pentium processor), Vol.3-18-121, 
Vol.3-18-123

PMADDUBSW instruction, Vol.1-5-29, Vol.1-12-11, 
Vol.2-4-271

PMADDUDSW instruction, Vol.2-4-271
PMADDWD instruction, Vol.1-9-9, Vol.2-4-273
PMAXSW instruction, Vol.1-10-17, Vol.2-4-281
PMAXUB instruction, Vol.1-10-17, Vol.2-4-284
PMINSW instruction, Vol.1-10-17, Vol.2-4-296
PMINUB instruction, Vol.1-10-17, Vol.2-4-299
PML4 tables, Vol.3-2-8
PMOVMSKB instruction, Vol.1-10-17, Vol.2-4-302
PMULHRSW instruction, Vol.1-5-29, Vol.1-12-11, 

Vol.2-4-318
PMULHUW instruction, Vol.1-10-17, Vol.2-4-321
PMULHW instruction, Vol.2-4-324
PMULLW instruction, Vol.2-4-329
PMULUDQ instruction, Vol.1-11-15, Vol.2-4-332
Pointer data types, Vol.1-4-9
Pointers

64-bit mode, Vol.1-4-9
code-segment pointer size, Vol.3-21-5
far pointer, Vol.1-4-9
limit checking, Vol.3-5-36
near pointer, Vol.1-4-9
validation, Vol.3-5-34

POP instruction, Vol.1-6-1, Vol.1-6-3, Vol.1-7-8, 
Vol.1-7-33, Vol.2-4-335, Vol.3-3-11

POPA instruction, Vol.1-6-8, Vol.1-7-9, Vol.2-4-342
POPAD instruction, Vol.2-4-342
POPF instruction, Vol.1-3-20, Vol.1-6-8, Vol.1-7-31, 

Vol.1-14-5, Vol.2-4-348, Vol.3-6-10, 
Vol.3-17-13

POPFD instruction, Vol.1-3-20, Vol.1-6-8, 
Vol.1-7-31, Vol.2-4-348

POPFQ instruction, Vol.2-4-348
POR instruction, Vol.1-9-10, Vol.2-4-352
Power consumption

software controlled clock, Vol.3-14-11, 
Vol.3-14-16

Power coordination, Vol.1-2-6
Precise event-based sampling (see PEBS)
PREFETCHh instruction, Vol.2-4-354, Vol.3-2-21, 

Vol.3-11-7, Vol.3-11-25
PREFETCHh instructions, Vol.1-10-19, Vol.1-11-36
Prefixes

Address-size override prefix, Vol.2-2-2
Branch hints, Vol.2-2-2
branch hints, Vol.2-2-2
instruction, description of, Vol.2-2-1
legacy prefix encodings, Vol.2-B-2
LOCK, Vol.2-2-2, Vol.2-3-598
Operand-size override prefix, Vol.2-2-2

REP or REPE/REPZ, Vol.2-2-2
REPNE/REPNZ, Vol.2-2-2
REP/REPE/REPZ/REPNE/REPNZ, Vol.2-4-465
REX prefix encodings, Vol.2-B-2
Segment override prefixes, Vol.2-2-2

Previous task link field, TSS, Vol.3-7-6, Vol.3-7-16, 
Vol.3-7-18

Privilege levels
checking when accessing data segments, 

Vol.3-5-12
checking, for call gates, Vol.3-5-22
checking, when transferring program control 

between code segments, Vol.3-5-14
description of, Vol.1-6-9, Vol.3-5-9
inter-privilege level calls, Vol.1-6-8
protection rings, Vol.1-6-9, Vol.3-5-11
stack switching, Vol.1-6-15

Privileged instructions, Vol.3-5-33
Procedure calls

description of, Vol.1-6-5
far call, Vol.1-6-5
for block-structured languages, Vol.1-6-19
inter-privilege level call, Vol.1-6-10
linking, Vol.1-6-4
near call, Vol.1-6-5
overview, Vol.1-6-1
return instruction pointer (EIP register), Vol.1-6-4
saving procedure state information, Vol.1-6-8
stack, Vol.1-6-1
stack switching, Vol.1-6-10
to exception handler procedure, Vol.1-6-14
to exception task, Vol.1-6-17
to interrupt handler procedure, Vol.1-6-14
to interrupt task, Vol.1-6-17
to other privilege levels, Vol.1-6-8
types of, Vol.1-6-1

Processor families
06H, Vol.3-16-1
0FH, Vol.3-16-1

Processor identification
earlier Intel architecture processors, Vol.1-15-2
early processors, Vol.1-15-2
notes on where to start, Vol.1-15-1
using CPUID, Vol.1-15-1
using CPUID instruction, Vol.1-15-1

Processor management
initialization, Vol.3-9-1
local APIC, Vol.3-10-1
microcode update facilities, Vol.3-9-36
overview of, Vol.3-8-1
See also: multiple-processor management

Processor ordering, description of, Vol.3-8-8
Processor state information, saving, Vol.1-6-8
PROCHOT# log, Vol.3-14-20, Vol.3-14-25
PROCHOT# or FORCEPR# event bit, Vol.3-14-20, 

Vol.3-14-24, Vol.3-14-25
Protected mode

IDT initialization, Vol.3-9-13
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initialization for, Vol.3-9-11
I/O, Vol.1-14-4
memory models used, Vol.1-3-10
mixing 16-bit and 32-bit code modules, 

Vol.3-21-2
mode switching, Vol.3-9-17
overview, Vol.1-3-1
PE flag, CR0 register, Vol.3-5-1
switching to, Vol.3-5-1, Vol.3-9-17
system data structures required during 

initialization, Vol.3-9-11, Vol.3-9-12
Protection

combining segment & page-level, Vol.3-5-41
disabling, Vol.3-5-1
enabling, Vol.3-5-1
flags used for page-level protection, Vol.3-5-2, 

Vol.3-5-5
flags used for segment-level protection, Vol.3-5-2
IA-32e mode, Vol.3-5-5
of exception, interrupt-handler procedures, 

Vol.3-6-18
overview of, Vol.3-5-1
page level, Vol.3-5-1, Vol.3-5-39, Vol.3-5-41, 

Vol.3-5-43
page level, overriding, Vol.3-5-41
page-level protection flags, Vol.3-5-40
read/write, page level, Vol.3-5-40
segment level, Vol.3-5-1
user/supervisor type, Vol.3-5-40

Protection rings, Vol.1-6-9, Vol.3-5-11
PSADBW instruction, Vol.1-10-17, Vol.2-4-357
PSE (page size extension) flag

CR4 control register, Vol.3-2-23, Vol.3-11-29, 
Vol.3-22-24, Vol.3-22-26

PSE-36 page size extension, Vol.3-3-7
Pseudo-functions

VMfail, Vol.3-29-2
VMfailInvalid, Vol.3-29-2
VMfailValid, Vol.3-29-2
VMsucceed, Vol.3-29-2

Pseudo-infinity, Vol.3-22-12
Pseudo-NaN, Vol.3-22-12
Pseudo-zero, Vol.3-22-12
PSHUFB instruction, Vol.1-5-29, Vol.1-12-12, 

Vol.2-4-360
PSHUFD instruction, Vol.1-11-16, Vol.2-4-363
PSHUFHW instruction, Vol.1-11-15, Vol.2-4-365
PSHUFLW instruction, Vol.1-11-15, Vol.2-4-367
PSHUFW instruction, Vol.1-10-17, Vol.1-11-16, 

Vol.2-4-369
PSIGNB instruction, Vol.2-4-371
PSIGNB/W/D instruction, Vol.1-5-29, Vol.1-12-12
PSIGND instruction, Vol.2-4-371
PSIGNW instruction, Vol.2-4-371
PSLLD instruction, Vol.1-9-10, Vol.2-4-378
PSLLDQ instruction, Vol.1-11-16, Vol.2-4-376
PSLLQ instruction, Vol.1-9-10, Vol.2-4-378
PSLLW instruction, Vol.1-9-10, Vol.2-4-378

PSRAD instruction, Vol.2-4-385
PSRAW instruction, Vol.2-4-385
PSRLD instruction, Vol.2-4-392
PSRLDQ instruction, Vol.1-11-16, Vol.2-4-390
PSRLQ instruction, Vol.2-4-392
PSRLW instruction, Vol.2-4-392
P-state, Vol.3-14-2
PSUBB instruction, Vol.1-9-8, Vol.2-4-398
PSUBD instruction, Vol.1-9-8, Vol.2-4-398
PSUBQ instruction, Vol.1-11-15, Vol.2-4-402
PSUBSB instruction, Vol.1-9-8, Vol.2-4-404
PSUBSW instruction, Vol.1-9-8, Vol.2-4-404
PSUBUSB instruction, Vol.1-9-8, Vol.2-4-407
PSUBUSW instruction, Vol.1-9-8, Vol.2-4-407
PSUBW instruction, Vol.1-9-8, Vol.2-4-398
PUNPCKHBW instruction, Vol.1-9-9, Vol.2-4-412
PUNPCKHDQ instruction, Vol.1-9-9, Vol.2-4-412
PUNPCKHQDQ instruction, Vol.1-11-16, Vol.2-4-412
PUNPCKHWD instruction, Vol.1-9-9, Vol.2-4-412
PUNPCKLBW instruction, Vol.1-9-9, Vol.2-4-418
PUNPCKLDQ instruction, Vol.1-9-9, Vol.2-4-418
PUNPCKLQDQ instruction, Vol.1-11-16, Vol.2-4-418
PUNPCKLWD instruction, Vol.1-9-9, Vol.2-4-418
PUSH instruction, Vol.1-6-1, Vol.1-6-3, Vol.1-7-7, 

Vol.1-7-33, Vol.2-4-423, Vol.3-22-8
PUSHA instruction, Vol.1-6-8, Vol.1-7-8, Vol.2-4-428
PUSHAD instruction, Vol.2-4-428
PUSHF instruction, Vol.1-3-20, Vol.1-6-8, 

Vol.1-7-31, Vol.2-4-431, Vol.3-6-10, 
Vol.3-22-9

PUSHFD instruction, Vol.1-3-20, Vol.1-6-8, 
Vol.1-7-31, Vol.2-4-431

PVI (protected-mode virtual interrupts) flag
CR4 control register, Vol.3-2-14, Vol.3-2-15, 

Vol.3-2-23, Vol.3-22-24
PWT pin (Pentium processor), Vol.3-11-19
PWT (page-level write-through) flag

CR3 control register, Vol.3-2-23, Vol.3-11-19, 
Vol.3-22-25, Vol.3-22-41

page-directory entries, Vol.3-9-8, Vol.3-11-19, 
Vol.3-11-47

page-table entries, Vol.3-9-8, Vol.3-11-47, 
Vol.3-22-42

PXOR instruction, Vol.1-9-10, Vol.2-4-434

Q
QNaN floating-point indefinite, Vol.1-4-7, Vol.1-4-22, 

Vol.1-4-24, Vol.1-8-21
QNaNs

description of, Vol.1-4-22
effect on COMISD and UCOMISD, Vol.1-11-10
encodings, Vol.1-4-7
operating on, Vol.1-4-22
rules for generating, Vol.1-4-23
using in applications, Vol.1-4-23

QNaN, compatibility, IA-32 processors, Vol.3-22-12
Quadword, Vol.1-4-1, Vol.1-9-3
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Quiet NaN (see QNaN)

R
R8D-R15D registers, Vol.1-3-16
R8-R15 registers, Vol.1-3-16
RAX register, Vol.1-3-16
RBP register, Vol.1-3-16, Vol.1-6-5
RBX register, Vol.1-3-16
RC (rounding control) field

MXCSR register, Vol.1-4-26, Vol.1-10-7
x87 FPU control word, Vol.1-4-26, Vol.1-8-12

RC (rounding control) field, x87 FPU control word, 
Vol.2-3-374, Vol.2-3-383, Vol.2-3-425

RCL instruction, Vol.1-7-19, Vol.2-4-436
RCPPS instruction, Vol.1-10-12, Vol.2-4-444
RCPSS instruction, Vol.1-10-12, Vol.2-4-447
RCR instruction, Vol.1-7-19, Vol.2-4-436
RCX register, Vol.1-3-16
RDI register, Vol.1-3-16
RDMSR instruction, Vol.2-4-451, Vol.2-4-455, 

Vol.2-4-461, Vol.3-2-26, Vol.3-2-33, 
Vol.3-2-34, Vol.3-5-34, Vol.3-17-40, 
Vol.3-17-48, Vol.3-17-50, Vol.3-18-74, 
Vol.3-18-117, Vol.3-18-119, 
Vol.3-18-121, Vol.3-22-6, Vol.3-22-49, 
Vol.3-25-5, Vol.3-25-20

CPUID flag, Vol.2-3-217
RDPMC instruction, Vol.2-4-453, Vol.3-2-32, 

Vol.3-5-34, Vol.3-18-73, Vol.3-18-117, 
Vol.3-18-119, Vol.3-22-6, Vol.3-22-24, 
Vol.3-22-50, Vol.3-25-6

in 64-bit mode, Vol.3-2-33
RDRAND, Vol.1-7-35
RDTSC instruction, Vol.2-4-459, Vol.2-4-461, 

Vol.2-4-463, Vol.3-2-32, Vol.3-5-34, 
Vol.3-17-50, Vol.3-22-6, Vol.3-25-6, 
Vol.3-25-21

in 64-bit mode, Vol.3-2-33
RDX register, Vol.1-3-16
reading sensors, Vol.3-14-19
Read/write

protection, page level, Vol.3-5-40
rights, checking, Vol.3-5-36

Real address mode
handling exceptions in, Vol.1-6-17
handling interrupts in, Vol.1-6-17
memory model, Vol.1-3-9, Vol.1-3-10
memory model used, Vol.1-3-11
not in 64-bit mode, Vol.1-3-11
overview, Vol.1-3-1

Real numbers
continuum, Vol.1-4-16
encoding, Vol.1-4-18, Vol.1-4-19
notation, Vol.1-4-18, Vol.1-13-27
system, Vol.1-4-15

Real-address mode
8086 emulation, Vol.3-20-1

address translation in, Vol.3-20-3
description of, Vol.3-20-1
exceptions and interrupts, Vol.3-20-8
IDT initialization, Vol.3-9-11
IDT, changing base and limit of, Vol.3-20-7
IDT, structure of, Vol.3-20-7
IDT, use of, Vol.3-20-6
initialization, Vol.3-9-10
instructions supported, Vol.3-20-4
interrupt and exception handling, Vol.3-20-6
interrupts, Vol.3-20-8
introduction to, Vol.3-2-10
mode switching, Vol.3-9-17
native 16-bit mode, Vol.3-21-1
overview of, Vol.3-20-1
registers supported, Vol.3-20-4
switching to, Vol.3-9-18

Recursive task switching, Vol.3-7-18
Register operands

64-bit mode, Vol.1-3-28
legacy modes, Vol.1-3-27

Register stack, x87 FPU, Vol.1-8-2
Registers

64-bit mode, Vol.1-3-16, Vol.1-3-20
control registers, Vol.1-3-5
CR in 64-bit mode, Vol.1-3-6
debug registers, Vol.1-3-5
EFLAGS register, Vol.1-3-14, Vol.1-3-20
EIP register, Vol.1-3-14, Vol.1-3-24
general purpose registers, Vol.1-3-13, Vol.1-3-14
instruction pointer, Vol.1-3-14
machine check registers, Vol.1-3-5
memory management registers, Vol.1-3-5
MMX registers, Vol.1-3-3, Vol.1-9-3
MSRs, Vol.1-3-5
MTRRs, Vol.1-3-5
MXCSR register, Vol.1-10-6
performance monitoring counters, Vol.1-3-5
REX prefix, Vol.1-3-16
segment registers, Vol.1-3-13, Vol.1-3-17
x87 FPU registers, Vol.1-8-1
XMM registers, Vol.1-3-3, Vol.1-10-4

Reg/opcode field, instruction format, Vol.2-2-4
Related literature, Vol.1-1-10, Vol.2-1-8, Vol.3-1-11
Remainder, x87 FPU operation, Vol.2-3-401
Replay events, Vol.3-19-259
REP/REPE/REPZ/REPNE/REPNZ

prefixes, Vol.1-7-28, Vol.1-14-4
REP/REPE/REPZ/REPNE/REPNZ prefixes, 

Vol.2-3-172, Vol.2-3-505, Vol.2-4-175, 
Vol.2-4-465

Requested privilege level (see RPL)
Reserved

use of reserved bits, Vol.2-1-5
Reserved bits, Vol.1-1-6, Vol.3-1-7, Vol.3-22-2
RESET pin, Vol.1-3-20
RESET# pin, Vol.3-6-4, Vol.3-22-22
RESET# signal, Vol.3-2-31
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Resolution in degrees, Vol.3-14-21
Responding logical processor, Vol.2-5-6
responding logical processor, Vol.2-5-4, Vol.2-5-5, 

Vol.2-5-6
Restarting program or task, following an exception or 

interrupt, Vol.3-6-7
Restricting addressable domain, Vol.3-5-40
RET instruction, Vol.1-3-24, Vol.1-6-4, Vol.1-6-5, 

Vol.1-7-22, Vol.1-7-33, Vol.2-4-470, 
Vol.3-5-15, Vol.3-5-28, Vol.3-21-7

Return instruction pointer, Vol.1-6-4
Returning

from a called procedure, Vol.3-5-28
from an interrupt or exception handler, 

Vol.3-6-18
Returns, from procedure calls

exception handler, return from, Vol.1-6-14
far return, Vol.1-6-6
inter-privilege level return, Vol.1-6-10
interrupt handler, return from, Vol.1-6-14
near return, Vol.1-6-5

REX prefixes, Vol.1-3-2, Vol.1-3-16, Vol.1-3-25
addressing modes, Vol.2-2-11
and INC/DEC, Vol.2-2-10
encodings, Vol.2-2-10, Vol.2-B-2
field names, Vol.2-2-11
ModR/M byte, Vol.2-2-10
overview, Vol.2-2-9
REX.B, Vol.2-2-10
REX.R, Vol.2-2-10
REX.W, Vol.2-2-10
special encodings, Vol.2-2-13

RF (resume) flag
EFLAGS register, Vol.3-2-14, Vol.3-6-10

RF (resume) flag, EFLAGS register, Vol.1-3-23, 
Vol.1-A-1

RFLAGS, Vol.1-3-24
RFLAGS register, Vol.1-7-32

See EFLAGS register
RIP register, Vol.1-6-5

64-bit mode, Vol.1-7-2
description of, Vol.1-3-24
relation to EIP, Vol.1-7-2

RIP-relative addressing, Vol.2-2-14
ROL instruction, Vol.1-7-19, Vol.2-4-436
ROR instruction, Vol.1-7-19, Vol.2-4-436
Rounding

modes, floating-point operations, Vol.1-4-25, 
Vol.1-4-26, Vol.2-4-484

modes, x87 FPU, Vol.1-8-12
toward zero (truncation), Vol.1-4-26

Rounding control (RC) field
MXCSR register, Vol.1-4-25, Vol.1-10-7, 

Vol.2-4-484
x87 FPU control word, Vol.1-4-25, Vol.1-8-12, 

Vol.2-4-484
Rounding, round to integer, x87 FPU operation, 

Vol.2-3-407

RPL
description of, Vol.3-3-10, Vol.3-5-11
field, segment selector, Vol.3-5-2

RPL field, Vol.2-3-75
RSI register, Vol.1-3-16
RSM instruction, Vol.2-4-493, Vol.3-2-31, 

Vol.3-8-25, Vol.3-22-7, Vol.3-25-6, 
Vol.3-33-1, Vol.3-33-3, Vol.3-33-4, 
Vol.3-33-17, Vol.3-33-21, Vol.3-33-25

RSP register, Vol.1-3-16, Vol.1-6-5
RSQRTPS instruction, Vol.1-10-12, Vol.2-4-495
RSQRTSS instruction, Vol.1-10-12, Vol.2-4-498
RsvdZ, Vol.3-10-57
R/m field, instruction format, Vol.2-2-4
R/S# pin, Vol.3-6-4
R/W (read/write) flag

page-directory entry, Vol.3-5-2, Vol.3-5-3, 
Vol.3-5-40

page-table entry, Vol.3-5-2, Vol.3-5-3, 
Vol.3-5-40

R/W0-R/W3 (read/write) fields
DR7 register, Vol.3-17-5, Vol.3-22-27

S
S (descriptor type) flag

segment descriptor, Vol.3-3-14, Vol.3-3-16, 
Vol.3-5-2, Vol.3-5-7

Safer Mode Extensions, Vol.2-5-1
SAHF instruction, Vol.1-3-20, Vol.1-7-31, 

Vol.2-4-500
SAL instruction, Vol.1-7-15, Vol.2-4-502
SAR instruction, Vol.1-7-17, Vol.2-4-502
Saturation arithmetic (MMX instructions), Vol.1-9-5
SBB instruction, Vol.1-7-12, Vol.2-3-598, 

Vol.2-4-510, Vol.3-8-5
Scalar operations

defined, Vol.1-10-10, Vol.1-11-7
scalar double-precision FP operands, Vol.1-11-7
scalar single-precision FP operands, Vol.1-10-10

Scale (operand addressing), Vol.1-3-30, Vol.1-3-32, 
Vol.2-2-4

Scale, x87 FPU operation, Vol.1-8-32, Vol.2-3-416
Scaling bias value, Vol.1-8-42, Vol.1-8-43
Scan string instructions, Vol.2-4-514
SCAS instruction, Vol.1-3-22, Vol.1-7-27, 

Vol.2-4-467, Vol.2-4-514
SCASB instruction, Vol.2-4-514
SCASD instruction, Vol.2-4-514
SCASW instruction, Vol.2-4-514
Segment

defined, Vol.1-3-8
descriptor, segment limit, Vol.2-3-607
limit, Vol.2-3-607
maximum number, Vol.1-3-8
registers, moving values to and from, Vol.2-4-40
selector, RPL field, Vol.2-3-75

Segment descriptors
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access rights, Vol.3-5-35
access rights, invalid values, Vol.3-22-26
automatic bus locking while updating, Vol.3-8-4
base address fields, Vol.3-3-14
code type, Vol.3-5-3
data type, Vol.3-5-3
description of, Vol.3-2-5, Vol.3-3-13
DPL (descriptor privilege level) field, Vol.3-3-14, 

Vol.3-5-2
D/B (default operation size/default stack pointer 

size and/or upper bound) flag, Vol.3-3-15, 
Vol.3-5-6

E (expansion direction) flag, Vol.3-5-2, Vol.3-5-6
G (granularity) flag, Vol.3-3-15, Vol.3-5-2, 

Vol.3-5-6
limit field, Vol.3-5-2, Vol.3-5-6
loading, Vol.3-22-27
P (segment-present) flag, Vol.3-3-14
S (descriptor type) flag, Vol.3-3-14, Vol.3-3-16, 

Vol.3-5-2, Vol.3-5-7
segment limit field, Vol.3-3-13
system type, Vol.3-5-3
tables, Vol.3-3-20
TSS descriptor, Vol.3-7-7, Vol.3-7-8
type field, Vol.3-3-14, Vol.3-3-16, Vol.3-5-2, 

Vol.3-5-7
type field, encoding, Vol.3-3-19
when P (segment-present) flag is clear, 

Vol.3-3-15
Segment limit

checking, Vol.3-2-30
field, segment descriptor, Vol.3-3-13

Segment not present exception (#NP), Vol.3-3-14
Segment override prefixes, Vol.1-3-29
Segment registers

64-bit mode, Vol.1-3-20, Vol.1-3-30, Vol.1-7-2
default usage rules, Vol.1-3-29
description of, Vol.1-3-13, Vol.1-3-17, 

Vol.3-3-10
IA-32e mode, Vol.3-3-12
part of basic programming environment, 

Vol.1-7-1
saved in TSS, Vol.3-7-5

Segment selector
description of, Vol.1-3-8, Vol.1-3-17
segment override prefixes, Vol.1-3-29
specifying, Vol.1-3-29

Segment selectors
description of, Vol.3-3-9
index field, Vol.3-3-9
null, Vol.3-5-9
null in 64-bit mode, Vol.3-5-9
RPL field, Vol.3-3-10, Vol.3-5-2
TI (table indicator) flag, Vol.3-3-10

Segmented addressing, Vol.2-1-6, Vol.3-1-9
Segmented memory model, Vol.1-1-7, Vol.1-3-8, 

Vol.1-3-18
Segment-not-present exception (#NP), Vol.3-6-46

Segments
64-bit mode, Vol.3-3-6
basic flat model, Vol.3-3-3
code type, Vol.3-3-16
combining segment, page-level protection, 

Vol.3-5-41
combining with paging, Vol.3-3-7
compatibility mode, Vol.3-3-6
data type, Vol.3-3-16
defined, Vol.3-3-1
disabling protection of, Vol.3-5-1
enabling protection of, Vol.3-5-1
mapping to pages, Vol.3-4-64
multisegment usage model, Vol.3-3-5
protected flat model, Vol.3-3-4
segment-level protection, Vol.3-5-2, Vol.3-5-5
segment-not-present exception, Vol.3-6-46
system, Vol.3-2-5
types, checking access rights, Vol.3-5-35
typing, Vol.3-5-7
using, Vol.3-3-3
wraparound, Vol.3-22-46

SELF IPI register, Vol.3-10-54
Self Snoop, Vol.2-3-219
Self-modifying code, effect on caches, Vol.3-11-27
GETSEC, Vol.2-5-2, Vol.2-5-4, Vol.2-5-6
SENTER sleep state, Vol.2-5-12
Serialization of I/O instructions, Vol.1-14-7
Serializing, Vol.3-8-24
Serializing instructions, Vol.1-14-7

CPUID, Vol.3-8-24
HT technology, Vol.3-8-43
non-privileged, Vol.3-8-24
privileged, Vol.3-8-24

SETcc instructions, Vol.1-3-22, Vol.1-7-20, 
Vol.2-4-519

GETSEC, Vol.2-5-5
SF (sign) flag, EFLAGS register, Vol.1-3-21, 

Vol.1-A-1, Vol.2-3-35
SF (stack fault) flag, x87 FPU status word, Vol.1-8-9, 

Vol.1-8-38, Vol.3-22-11
SFENCE instruction, Vol.1-10-20, Vol.1-11-17, 

Vol.1-11-37, Vol.2-4-524, Vol.3-2-21, 
Vol.3-8-9, Vol.3-8-22, Vol.3-8-23, 
Vol.3-8-25

SGDT instruction, Vol.2-4-525, Vol.3-2-29, 
Vol.3-3-21

SHAF instruction, Vol.2-4-500
Shared resources

mapping of, Vol.3-8-49
Shift instructions, Vol.2-4-502
SHL instruction, Vol.1-7-15, Vol.2-4-502
SHLD instruction, Vol.1-7-18, Vol.2-4-528
SHR instruction, Vol.1-7-16, Vol.2-4-502
SHRD instruction, Vol.1-7-18, Vol.2-4-532
Shuffle instructions

SSE extensions, Vol.1-10-14
SSE2 extensions, Vol.1-11-10
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SHUFPD instruction, Vol.1-11-10, Vol.2-4-536
SHUFPS instruction, Vol.2-4-539
Shutdown

resulting from double fault, Vol.3-6-39
resulting from out of IDT limit condition, 

Vol.3-6-39
SI register, Vol.1-3-16
SIB byte, Vol.2-2-4

32-bit addressing forms of, Vol.2-2-8
description of, Vol.2-2-4

SIDT instruction, Vol.2-4-525, Vol.2-4-543, 
Vol.3-2-29, Vol.3-3-21, Vol.3-6-13

Signaling NaN (see SNaN)
Signed

infinity, Vol.1-4-21
integers, description of, Vol.1-4-5
integers, encodings, Vol.1-4-6
zero, Vol.1-4-20

Significand, extracting from floating-point number, 
Vol.2-3-468

Significand, of floating-point number, Vol.1-4-16
Sign, floating-point number, Vol.1-4-16
SIMD floating-point exception (#XF), Vol.3-2-25, 

Vol.3-6-65, Vol.3-9-10
SIMD floating-point exception (#XM), Vol.1-11-25
SIMD floating-point exceptions

denormal operand exception (#D), Vol.1-11-21
description of, Vol.3-6-65, Vol.3-13-7
divide-by-zero (#Z), Vol.1-11-22
exception conditions, Vol.1-11-19
exception handlers, Vol.1-E-1
handler, Vol.3-13-3
inexact result exception (#P), Vol.1-11-23
invalid operation exception (#I), Vol.1-11-20
list of, Vol.1-11-19
numeric overflow exception (#O), Vol.1-11-22
numeric underflow exception (#U), Vol.1-11-22
precision exception (#P), Vol.1-11-23
software handling, Vol.1-11-26
summary of, Vol.1-C-1
support for, Vol.3-2-25
writing exception handlers for, Vol.1-E-1

SIMD floating-point exceptions, unmasking, effects of
, Vol.2-3-575, Vol.2-4-449, Vol.2-4-664

SIMD floating-point flag bits, Vol.1-10-6
SIMD floating-point mask bits, Vol.1-10-6
SIMD floating-point rounding control field, Vol.1-10-7
SIMD (single-instruction, multiple-data)

execution model, Vol.1-2-3, Vol.1-2-4, Vol.1-9-4
instructions, Vol.1-2-20, Vol.1-5-21, Vol.1-10-10
MMX instructions, Vol.1-5-14
operations, on packed double-precision 

floating-point operands, Vol.1-11-6
operations, on packed single-precision 

floating-point operands, Vol.1-10-9
packed data types, Vol.1-4-11
SSE instructions, Vol.1-5-16

SSE2 instructions, Vol.1-11-6, Vol.1-12-3, 
Vol.1-12-9

Sine, x87 FPU operation, Vol.1-8-30, Vol.2-3-418, 
Vol.2-3-420

Single-precision floating-point format, Vol.1-4-6
Single-stepping

breakpoint exception condition, Vol.3-17-12
on branches, Vol.3-17-17
on exceptions, Vol.3-17-17
on interrupts, Vol.3-17-17
TF (trap) flag, EFLAGS register, Vol.3-17-12

SINIT, Vol.2-5-5
SLDT instruction, Vol.2-4-546, Vol.3-2-29
Sleep, Vol.1-2-6
SLTR instruction, Vol.3-3-21
Smart cache, Vol.1-2-6
Smart memory access, Vol.1-2-15
smart memory access, Vol.1-2-6
SMBASE

default value, Vol.3-33-5
relocation of, Vol.3-33-19

GETSEC, Vol.2-5-5
SMI handler

description of, Vol.3-33-1
execution environment for, Vol.3-33-12
exiting from, Vol.3-33-4
location in SMRAM, Vol.3-33-5
VMX treatment of, Vol.3-33-23

SMI interrupt, Vol.3-2-31, Vol.3-10-5
description of, Vol.3-33-1, Vol.3-33-3
IO_SMI bit, Vol.3-33-15
priority, Vol.3-33-4
switching to SMM, Vol.3-33-3
synchronous and asynchronous, Vol.3-33-15
VMX treatment of, Vol.3-33-23

SMI# pin, Vol.3-6-4, Vol.3-33-3, Vol.3-33-21
SMM

asynchronous SMI, Vol.3-33-15
auto halt restart, Vol.3-33-18
executing the HLT instruction in, Vol.3-33-19
exiting from, Vol.3-33-4
handling exceptions and interrupts, Vol.3-33-14
introduction to, Vol.3-2-10
I/O instruction restart, Vol.3-33-20
I/O state implementation, Vol.3-33-15
memory model used, Vol.1-3-11
native 16-bit mode, Vol.3-21-1
overview, Vol.1-3-1
overview of, Vol.3-33-1
revision identifier, Vol.3-33-17
revision identifier field, Vol.3-33-17
switching to, Vol.3-33-3
switching to from other operating modes, 

Vol.3-33-3
synchronous SMI, Vol.3-33-15
VMX operation

default RSM treatment, Vol.3-33-24
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SQRTPD instruction, Vol.1-11-8, Vol.2-4-551
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Vol.3-13-3
comparison instructions, Vol.1-10-13
compatibility mode, Vol.1-10-4
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instruction encodings, Vol.2-B-60
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numeric underflow exception (#U), Vol.1-11-22
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packed 128-Bit SIMD data types, Vol.1-4-12
packed and scalar floating-point instructions, 

Vol.1-10-9
programming environment, Vol.1-10-3
providing exception handlers for, Vol.3-13-5, 

Vol.3-13-7
providing operating system support for, 
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QNaN floating-point indefinite, Vol.1-4-24
restoring SSE and SSE2 state, Vol.1-11-30
REX prefixes, Vol.1-10-4
saving and restoring state, Vol.3-13-8
saving SSE and SSE2 state, Vol.1-11-30
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saving XMM register state on a procedure or 

function call, Vol.1-11-34
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Vol.1-11-13
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numeric overflow exception (#O), Vol.1-11-22
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saving and restoring state, Vol.3-13-8
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system programming, Vol.3-13-1
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using TS flag to control saving state, Vol.3-13-10
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emulation, Vol.1-12-14
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Stack
64-bit mode, Vol.1-3-6, Vol.1-6-5
64-bit mode behavior, Vol.1-6-19
address-size attribute, Vol.1-6-3
alignment, Vol.1-6-3
alignment of stack pointer, Vol.1-6-3
current stack, Vol.1-6-2, Vol.1-6-4
description of, Vol.1-6-1
EIP register (return instruction pointer), Vol.1-6-4
maximum size, Vol.1-6-1
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overview of, Vol.1-3-5
passing parameters on, Vol.1-6-7
popping values from, Vol.1-6-1
procedure linking information, Vol.1-6-4
pushing values on, Vol.1-6-1
return instruction pointer, Vol.1-6-4
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stack segment, Vol.1-3-19, Vol.1-6-1
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Stack-fault exception (#SS), Vol.3-22-46
Stacks

error code pushes, Vol.3-22-44
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STOSB instruction, Vol.2-4-566
STOSD instruction, Vol.2-4-566
STOSQ instruction, Vol.2-4-566
STOSW instruction, Vol.2-4-566
STPCLK# pin, Vol.3-6-4
STR instruction, Vol.2-4-571, Vol.3-2-29, 
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Streaming SIMD extensions 2 (see SSE2 extensions)
Streaming SIMD extensions (see SSE extensions)
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Vol.2-4-514, Vol.2-4-566
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description of, Vol.3-11-8
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use of, Vol.3-9-10, Vol.3-11-12

ST(0), top-of-stack register, Vol.1-8-4
Sub C-state, Vol.3-14-9
SUB instruction, Vol.1-7-12, Vol.2-3-29, 

Vol.2-3-294, Vol.2-3-598, Vol.2-4-573, 
Vol.3-8-5

SUBPD instruction, Vol.2-4-576
SUBSS instruction, Vol.2-4-583

Superscalar microarchitecture
P6 family microarchitecture, Vol.1-2-3
P6 family processors, Vol.1-2-9
Pentium 4 processor, Vol.1-2-12
Pentium Pro processor, Vol.1-2-3
Pentium processor, Vol.1-2-2

Supervisor mode
description of, Vol.3-5-40
U/S (user/supervisor) flag, Vol.3-5-40

SVR (spurious-interrupt vector register), local APIC, 
Vol.3-10-11, Vol.3-22-37

SWAPGS instruction, Vol.2-4-585, Vol.3-2-10, 
Vol.3-30-23

SYSCALL instruction, Vol.2-4-587, Vol.3-2-10, 
Vol.3-5-32, Vol.3-30-23

SYSENTER instruction, Vol.2-4-589, Vol.3-3-11, 
Vol.3-5-15, Vol.3-5-30, Vol.3-5-31, 
Vol.3-30-23, Vol.3-30-24

CPUID flag, Vol.2-3-217
SYSENTER_CS_MSR, Vol.3-5-30
SYSENTER_EIP_MSR, Vol.3-5-30
SYSENTER_ESP_MSR, Vol.3-5-30
SYSEXIT instruction, Vol.2-4-594, Vol.3-3-11, 

Vol.3-5-15, Vol.3-5-30, Vol.3-5-31, 
Vol.3-30-23, Vol.3-30-24

CPUID flag, Vol.2-3-217
SYSRET instruction, Vol.2-4-598, Vol.3-2-10, 

Vol.3-5-32, Vol.3-30-23
System

architecture, Vol.3-2-2, Vol.3-2-3
data structures, Vol.3-2-3
instructions, Vol.3-2-10, Vol.3-2-27
registers in IA-32e mode, Vol.3-2-9
registers, introduction to, Vol.3-2-9
segment descriptor, layout of, Vol.3-5-3
segments, paging of, Vol.3-2-8

System management mode (see SMM)
System programming

MMX technology, Vol.3-12-1
SSE/SSE2/SSE3 extensions, Vol.3-13-1
virtualization of resources, Vol.3-31-1

System-management mode (see SMM)

T
T (debug trap) flag, TSS, Vol.3-7-6
Tangent, x87 FPU operation, Vol.1-8-30, 

Vol.2-3-404
Task gate, Vol.1-6-17
Task gates

descriptor, Vol.3-7-11
executing a task, Vol.3-7-3
handling a virtual-8086 mode interrupt or 

exception through, Vol.3-20-21
IA-32e mode, Vol.3-2-7
in IDT, Vol.3-6-14
introduction for IA-32e, Vol.3-2-6
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Task management, Vol.3-7-1
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mechanism, description of, Vol.3-7-3

Task register, Vol.1-3-5, Vol.3-3-21
description of, Vol.3-2-17, Vol.3-7-1, Vol.3-7-9
IA-32e mode, Vol.3-2-17
initializing, Vol.3-9-14
introduction to, Vol.3-2-9
loading, Vol.2-3-611
storing, Vol.2-4-571

Task state segment (see TSS)
Task switch

CALL instruction, Vol.2-3-113
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Vol.2-3-537
Task switching

description of, Vol.3-7-3
exception condition, Vol.3-17-13
operation, Vol.3-7-13
preventing recursive task switching, Vol.3-7-18
saving MMX state on, Vol.3-12-5
saving SSE/SSE2/SSE3 state
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T (debug trap) flag, Vol.3-7-6
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address space, Vol.3-7-19
description of, Vol.3-7-1
exception handler, Vol.1-6-17
exception-handler task, Vol.3-6-16
executing, Vol.3-7-3
Intel 286 processor tasks, Vol.3-22-51
interrupt handler, Vol.1-6-17
interrupt-handler task, Vol.3-6-16
interrupts and exceptions, Vol.3-6-20
linking, Vol.3-7-16
logical address space, Vol.3-7-20
management, Vol.3-7-1
mapping linear and physical address space, 

Vol.3-7-19
restart following an exception or interrupt, 

Vol.3-6-7
state (context), Vol.3-7-2, Vol.3-7-3
structure, Vol.3-7-1
switching, Vol.3-7-3
task management data structures, Vol.3-7-4

Temporal data, Vol.1-10-18
TEST instruction, Vol.1-7-21, Vol.2-4-600, 

Vol.2-4-652
TF (trap) flag, EFLAGS register, Vol.1-3-23, 

Vol.1-A-1, Vol.3-2-12, Vol.3-6-19, 
Vol.3-17-12, Vol.3-17-15, Vol.3-17-39, 
Vol.3-17-42, Vol.3-17-44, Vol.3-17-47, 
Vol.3-20-6, Vol.3-20-29, Vol.3-33-14

Thermal Monitor, Vol.1-2-6
CPUID flag, Vol.2-3-219

Thermal Monitor 2, Vol.2-3-214

CPUID flag, Vol.2-3-214
Thermal monitoring

advanced power management, Vol.3-14-9
automatic, Vol.3-14-12
automatic thermal monitoring, Vol.3-14-10
catastrophic shutdown detector, Vol.3-14-10, 

Vol.3-14-12
clock-modulation bits, Vol.3-14-17
C-state, Vol.3-14-9
detection of facilities, Vol.3-14-18
Enhanced Intel SpeedStep Technology, 

Vol.3-14-1
IA32_APERF MSR, Vol.3-14-2
IA32_MPERF MSR, Vol.3-14-2
IA32_THERM_INTERRUPT MSR, Vol.3-14-19
IA32_THERM_STATUS MSR, Vol.3-14-19
interrupt enable/disable flags, Vol.3-14-15
interrupt mechanisms, Vol.3-14-11
MWAIT extensions for, Vol.3-14-9
on die sensors, Vol.3-14-11, Vol.3-14-19
overview of, Vol.3-14-1, Vol.3-14-10
performance state transitions, Vol.3-14-14
sensor interrupt, Vol.3-10-2
setting thermal thresholds, Vol.3-14-19
software controlled clock modulation, 

Vol.3-14-11, Vol.3-14-16
status flags, Vol.3-14-14
status information, Vol.3-14-14, Vol.3-14-16
stop clock mechanism, Vol.3-14-11
thermal monitor 1 (TM1), Vol.3-14-12
thermal monitor 2 (TM2), Vol.3-14-12
TM flag, CPUID instruction, Vol.3-14-18

Thermal status bit, Vol.3-14-19, Vol.3-14-24
Thermal status log bit, Vol.3-14-19, Vol.3-14-24
Thermal threshold #1 log, Vol.3-14-20, Vol.3-14-25
Thermal threshold #1 status, Vol.3-14-20, 

Vol.3-14-25
Thermal threshold #2 log, Vol.3-14-21, Vol.3-14-25
Thermal threshold #2 status, Vol.3-14-21, 

Vol.3-14-25
THERMTRIP# interrupt enable bit, Vol.3-14-22, 

Vol.3-14-26
thread timeout indicator, Vol.3-16-5, Vol.3-16-11, 

Vol.3-16-15, Vol.3-16-18
Threshold #1 interrupt enable bit, Vol.3-14-23, 

Vol.3-14-27
Threshold #1 value, Vol.3-14-22, Vol.3-14-26
Threshold #2 interrupt enable, Vol.3-14-23, 

Vol.3-14-27
Threshold #2 value, Vol.3-14-23, Vol.3-14-27
TI (table indicator) flag, segment selector, Vol.3-3-10
Time Stamp Counter, Vol.2-3-217
Timer, local APIC, Vol.3-10-22
Time-stamp counter

counting clockticks, Vol.3-18-98
description of, Vol.3-17-49
IA32_TIME_STAMP_COUNTER MSR, Vol.3-17-49
RDTSC instruction, Vol.3-17-49
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reading, Vol.3-2-32
software drivers for, Vol.3-18-120
TSC flag, Vol.3-17-49
TSD flag, Vol.3-17-49

Time-stamp counter, reading, Vol.2-4-461, 
Vol.2-4-463

Tiny number, Vol.1-4-20
TLB entry, invalidating (flushing), Vol.2-3-531
TLBs

description of, Vol.3-11-1, Vol.3-11-6
flushing, Vol.3-11-29
invalidating (flushing), Vol.3-2-31
relationship to PGE flag, Vol.3-22-26
relationship to PSE flag, Vol.3-11-29
virtual TLBs, Vol.3-31-5

TM1 and TM2
See: thermal monitoring, Vol.3-14-12

TMR
Trigger Mode Register, Vol.3-10-44, Vol.3-10-55, 

Vol.3-10-60, Vol.3-10-67
TMR (Trigger Mode Register), local APIC, Vol.3-10-43
TOP (stack TOP) field

x87 FPU status word, Vol.1-8-3, Vol.1-9-12
TPR

Task Priority Register, Vol.3-10-55, Vol.3-10-60
TR register, Vol.1-3-6
TR (trace message enable) flag

DEBUGCTLMSR MSR, Vol.3-17-15, Vol.3-17-39, 
Vol.3-17-42, Vol.3-17-45, Vol.3-17-47

Trace cache, Vol.1-2-13, Vol.3-11-6
Transcendental instruction accuracy, Vol.1-8-32, 

Vol.3-22-10, Vol.3-22-20
Translation lookaside buffer (see TLB)
Trap gate, Vol.1-6-14
Trap gates

difference between interrupt and trap gates, 
Vol.3-6-19

for 16-bit and 32-bit code modules, Vol.3-21-2
handling a virtual-8086 mode interrupt or 

exception through, Vol.3-20-18
in IDT, Vol.3-6-14
introduction for IA-32e, Vol.3-2-6
introduction to, Vol.3-2-5, Vol.3-2-7
layout of, Vol.3-6-14

Traps
description of, Vol.3-6-6
restarting a program or task after, Vol.3-6-7

Truncation
description of, Vol.1-4-26
with SSE-SSE2 conversion instructions, 

Vol.1-4-26
Trusted Platform Module, Vol.2-5-6
TS (task switched) flag

CR0 control register, Vol.3-2-20, Vol.3-2-30, 
Vol.3-6-36, Vol.3-12-1, Vol.3-13-4, 
Vol.3-13-10

TS (task switched) flag, CR0 register, Vol.2-3-140
TSD flag, CR4 register, Vol.2-4-461, Vol.2-4-463

TSD (time-stamp counter disable) flag
CR4 control register, Vol.3-2-23, Vol.3-5-34, 

Vol.3-17-50, Vol.3-22-24
TSS

16-bit TSS, structure of, Vol.3-7-21
32-bit TSS, structure of, Vol.3-7-4
64-bit mode, Vol.3-7-22
CR3 control register (PDBR), Vol.3-7-5, 

Vol.3-7-19
description of, Vol.3-2-5, Vol.3-2-6, Vol.3-7-1, 

Vol.3-7-4
EFLAGS register, Vol.3-7-5
EFLAGS.NT, Vol.3-7-16
EIP, Vol.3-7-6
executing a task, Vol.3-7-3
floating-point save area, Vol.3-22-16
format in 64-bit mode, Vol.3-7-22
general-purpose registers, Vol.3-7-5
IA-32e mode, Vol.3-2-7
initialization for multitasking, Vol.3-9-14
interrupt stack table, Vol.3-7-23
invalid TSS exception, Vol.3-6-42
IRET instruction, Vol.3-7-16
I/O map base, Vol.1-14-5
I/O map base address field, Vol.3-7-6, 

Vol.3-22-39
I/O permission bit map, Vol.1-14-5, Vol.3-7-6, 

Vol.3-7-23
LDT segment selector field, Vol.3-7-6, Vol.3-7-19
link field, Vol.3-6-20
order of reads/writes to, Vol.3-22-39
pointed to by task-gate descriptor, Vol.3-7-11
previous task link field, Vol.3-7-6, Vol.3-7-16, 

Vol.3-7-18
privilege-level 0, 1, and 2 stacks, Vol.3-5-26
referenced by task gate, Vol.3-6-20
saving state of EFLAGS register, Vol.1-3-20
segment registers, Vol.3-7-5
T (debug trap) flag, Vol.3-7-6
task register, Vol.3-7-9
using 16-bit TSSs in a 32-bit environment, 

Vol.3-22-39
virtual-mode extensions, Vol.3-22-39

TSS descriptor
B (busy) flag, Vol.3-7-7
busy flag, Vol.3-7-18
initialization for multitasking, Vol.3-9-14
structure of, Vol.3-7-7, Vol.3-7-8

TSS segment selector
field, task-gate descriptor, Vol.3-7-11
writes, Vol.3-22-39

TSS, relationship to task register, Vol.2-4-571
Type

checking, Vol.3-5-7
field, IA32_MTRR_DEF_TYPE MSR, Vol.3-11-33
field, IA32_MTRR_PHYSBASEn MTRR, 

Vol.3-11-35, Vol.3-11-37
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field, segment descriptor, Vol.3-3-14, Vol.3-3-16, 
Vol.3-3-19, Vol.3-5-2, Vol.3-5-7

of segment, Vol.3-5-7

U
UC- (uncacheable) memory type, Vol.3-11-9
UCOMISD instruction, Vol.1-11-10, Vol.2-4-603
UCOMISS instruction, Vol.1-10-14, Vol.2-4-605
UD2 instruction, Vol.1-7-34, Vol.2-4-607, Vol.3-22-6
UE (numeric underflow exception) flag

MXCSR register, Vol.1-11-22
x87 FPU status word, Vol.1-8-7, Vol.1-8-43

UM (numeric underflow exception) mask bit
MXCSR register, Vol.1-11-22
x87 FPU control word, Vol.1-8-11, Vol.1-8-43

Uncached (UC-) memory type, Vol.3-11-12
Uncached (UC) memory type (see Strong uncached 

(UC) memory type)
Undefined opcodes, Vol.3-22-7
Undefined, format opcodes, Vol.2-3-445
Underflow

FPU exception
(see Numeric underflow exception)

numeric, floating-point, Vol.1-4-20
x87 FPU stack, Vol.1-8-37, Vol.1-8-38

Underflow, x87 FPU stack, Vol.1-8-38
Unit mask field, PerfEvtSel0 and PerfEvtSel1 MSRs 

(P6 family processors), Vol.3-18-5, 
Vol.3-18-7, Vol.3-18-8, Vol.3-18-9, 
Vol.3-18-10, Vol.3-18-11, Vol.3-18-12, 
Vol.3-18-13, Vol.3-18-20, Vol.3-18-21, 
Vol.3-18-22, Vol.3-18-37, Vol.3-18-40, 
Vol.3-18-50, Vol.3-18-51, Vol.3-18-52, 
Vol.3-18-118

Un-normal number, Vol.3-22-12
Unordered values, Vol.2-3-344, Vol.2-3-445, 

Vol.2-3-447
Unpack instructions

SSE extensions, Vol.1-10-14
SSE2 extensions, Vol.1-11-10

UNPCKHPD instruction, Vol.1-11-11, Vol.2-4-608
UNPCKHPS instruction, Vol.1-10-15, Vol.2-4-611
UNPCKLPD instruction, Vol.1-11-11, Vol.2-4-614
UNPCKLPS instruction, Vol.1-10-15, Vol.2-4-617
Unsigned integers

description of, Vol.1-4-5
range of, Vol.1-4-5
types, Vol.1-4-5

Unsupported, Vol.1-8-21
floating-point formats, x87 FPU, Vol.1-8-21
x87 FPU instructions, Vol.1-8-35

User mode
description of, Vol.3-5-40
U/S (user/supervisor) flag, Vol.3-5-40

User-defined interrupts, Vol.3-6-2, Vol.3-6-68

USR (user mode) flag, PerfEvtSel0 and PerfEvtSel1 
MSRs (P6 family processors), Vol.3-18-5, 
Vol.3-18-7, Vol.3-18-8, Vol.3-18-9, 
Vol.3-18-11, Vol.3-18-12, Vol.3-18-13, 
Vol.3-18-20, Vol.3-18-21, Vol.3-18-22, 
Vol.3-18-37, Vol.3-18-40, Vol.3-18-50, 
Vol.3-18-51, Vol.3-18-52, Vol.3-18-118

U/S (user/supervisor) flag
page-directory entry, Vol.3-5-2, Vol.3-5-3, 

Vol.3-5-40
page-table entries, Vol.3-20-11
page-table entry, Vol.3-5-2, Vol.3-5-3, 

Vol.3-5-40

V
V (valid) flag

IA32_MTRR_PHYSMASKn MTRR, Vol.3-11-36, 
Vol.3-11-37

Variable-range MTRRs, description of, Vol.3-11-34, 
Vol.3-11-37

VCNT (variable range registers count) field, 
IA32_MTRRCAP MSR, Vol.3-11-32

Vector (see Interrupt vector)
Vectors

exceptions, Vol.3-6-2
interrupts, Vol.3-6-2

VERR instruction, Vol.2-4-630, Vol.3-2-30, 
Vol.3-5-36

Version information, processor, Vol.2-3-198
VERW instruction, Vol.2-4-630, Vol.3-2-30, 

Vol.3-5-36
VEX, Vol.2-3-4
VEX.B, Vol.2-3-4
VEX.L, Vol.2-3-4
VEX.mmmmm, Vol.2-3-4
VEX.pp, Vol.2-3-5
VEX.R, Vol.2-3-6
VEX.vvvv, Vol.2-3-4
VEX.W, Vol.2-3-4
VEX.X, Vol.2-3-4
VFMADD132PD/VFMADD213PD/VFMADD231PD - 

Fused Multiply-Add of Packed 
Double-Precision Floating-Point Values, 
Vol.2-4-629

VIF (virtual interrupt) flag
EFLAGS register, Vol.3-2-14, Vol.3-2-15, 

Vol.3-22-8
VIF (virtual interrupt) flag, EFLAGS register, 

Vol.1-3-23
VIP (virtual interrupt pending) flag

EFLAGS register, Vol.1-3-23, Vol.3-2-14, 
Vol.3-2-15, Vol.3-22-8

Virtual 8086 mode
description of, Vol.1-3-23
memory model, Vol.1-3-9, Vol.1-3-10

Virtual Machine Monitor, Vol.2-5-1
Virtual memory, Vol.3-2-8, Vol.3-3-1, Vol.3-3-2
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Virtual-8086 mode
8086 emulation, Vol.3-20-1
description of, Vol.3-20-8
emulating 8086 operating system calls, 

Vol.3-20-27
enabling, Vol.3-20-9
entering, Vol.3-20-11
exception and interrupt handling overview, 

Vol.3-20-16
exceptions and interrupts, handling through a task 

gate, Vol.3-20-20
exceptions and interrupts, handling through a trap 

or interrupt gate, Vol.3-20-18
handling exceptions and interrupts through a task 

gate, Vol.3-20-21
interrupts, Vol.3-20-8
introduction to, Vol.3-2-11
IOPL sensitive instructions, Vol.3-20-15
I/O-port-mapped I/O, Vol.3-20-15
leaving, Vol.3-20-14
memory mapped I/O, Vol.3-20-16
native 16-bit mode, Vol.3-21-1
overview of, Vol.3-20-1
paging of virtual-8086 tasks, Vol.3-20-10
protection within a virtual-8086 task, 

Vol.3-20-11
special I/O buffers, Vol.3-20-16
structure of a virtual-8086 task, Vol.3-20-9
virtual I/O, Vol.3-20-15
VM flag, EFLAGS register, Vol.3-2-14

Virtual-8086 tasks
paging of, Vol.3-20-10
protection within, Vol.3-20-11
structure of, Vol.3-20-9

Virtualization
debugging facilities, Vol.3-31-1
interrupt vector space, Vol.3-32-4
memory, Vol.3-31-3
microcode update facilities, Vol.3-31-11
operating modes, Vol.3-31-3
page faults, Vol.3-31-8
system resources, Vol.3-31-1
TLBs, Vol.3-31-5

VM
OSs and application software, Vol.3-30-1
programming considerations, Vol.3-30-1

VM entries
basic VM-entry checks, Vol.3-26-2
checking guest state

control registers, Vol.3-26-11
debug registers, Vol.3-26-11
descriptor-table registers, Vol.3-26-16
MSRs, Vol.3-26-11
non-register state, Vol.3-26-16
RIP and RFLAGS, Vol.3-26-16
segment registers, Vol.3-26-12

checks on controls, host-state area, Vol.3-26-3
registers and MSRs, Vol.3-26-8

segment and descriptor-table registers, 
Vol.3-26-9

VMX control checks, Vol.3-26-3
exit-reason numbers, Vol.3-C-1
loading guest state, Vol.3-26-20

control and debug registers, MSRs, 
Vol.3-26-20

RIP, RSP, RFLAGS, Vol.3-26-23
segment & descriptor-table registers, 

Vol.3-26-22
loading MSRs, Vol.3-26-24

failure cases, Vol.3-26-24
VM-entry MSR-load area, Vol.3-26-24

overview of failure conditions, Vol.3-26-1
overview of steps, Vol.3-26-1
VMLAUNCH and VMRESUME, Vol.3-26-1
See also: VMCS, VMM, VM exits

VM exits
architectural state

existing before exit, Vol.3-27-1
updating state before exit, Vol.3-27-2

basic VM-exit information fields, Vol.3-27-5
basic exit reasons, Vol.3-27-5
exit qualification, Vol.3-27-6

exception bitmap, Vol.3-27-1
exceptions (faults, traps, and aborts), Vol.3-25-14
exit-reason numbers, Vol.3-C-1
external interrupts, Vol.3-25-15
handling of exits due to exceptions, Vol.3-30-12
IA-32 faults and VM exits, Vol.3-25-2
INITs, Vol.3-25-15
instructions that cause:

conditional exits, Vol.3-25-3
unconditional exits, Vol.3-25-2

interrupt-window exiting, Vol.3-25-16
non-maskable interrupts (NMIs), Vol.3-25-15
page faults, Vol.3-25-14
reflecting exceptions to guest, Vol.3-30-12
resuming guest after exception handling, 

Vol.3-30-14
start-up IPIs (SIPIs), Vol.3-25-15
task switches, Vol.3-25-15
See also: VMCS, VMM, VM entries

VM (virtual 8086 mode) flag, EFLAGS register, 
Vol.1-3-23, Vol.2-3-537

VM (virtual-8086 mode) flag
EFLAGS register, Vol.3-2-12, Vol.3-2-14

VMCALL instruction, Vol.1-5-39, Vol.1-5-40, 
Vol.3-29-2

VMCLEAR instruction, Vol.1-5-38, Vol.1-5-39, 
Vol.3-29-1, Vol.3-30-10

VMCS
error numbers, Vol.3-29-35
field encodings, Vol.3-1-6, Vol.3-B-1

16-bit guest-state fields, Vol.3-B-1
16-bit host-state fields, Vol.3-B-2
32-bit control fields, Vol.3-B-1, Vol.3-B-6
32-bit guest-state fields, Vol.3-B-8
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32-bit read-only data fields, Vol.3-B-7
64-bit control fields, Vol.3-B-3
64-bit guest-state fields, Vol.3-B-4, Vol.3-B-5
natural-width control fields, Vol.3-B-9
natural-width guest-state fields, Vol.3-B-10
natural-width host-state fields, Vol.3-B-11
natural-width read-only data fields, 

Vol.3-B-10
format of VMCS region, Vol.3-24-3
guest-state area, Vol.3-24-4, Vol.3-24-5

guest non-register state, Vol.3-24-7
guest register state, Vol.3-24-5

host-state area, Vol.3-24-4, Vol.3-24-10
introduction, Vol.3-24-1
migrating between processors, Vol.3-24-31
software access to, Vol.3-24-31
VMCS data, Vol.3-24-3
VMCS pointer, Vol.3-24-1, Vol.3-30-2
VMCS region, Vol.3-24-1, Vol.3-30-2
VMCS revision identifier, Vol.3-24-3
VM-entry control fields, Vol.3-24-4, Vol.3-24-24

entry controls, Vol.3-24-24
entry controls for event injection, Vol.3-24-26
entry controls for MSRs, Vol.3-24-25

VM-execution control fields, Vol.3-24-4, 
Vol.3-24-11
controls for CR8 accesses, Vol.3-24-18
CR3-target controls, Vol.3-24-17
exception bitmap, Vol.3-24-16
I/O bitmaps, Vol.3-24-16
masks & read shadows CR0 & CR4, 

Vol.3-24-17
pin-based controls, Vol.3-24-11
processor-based controls, Vol.3-24-12
time-stamp counter offset, Vol.3-24-17

VM-exit control fields, Vol.3-24-4, Vol.3-24-21
exit controls, Vol.3-24-22
exit controls for MSRs, Vol.3-24-23

VM-exit information fields, Vol.3-24-4, 
Vol.3-24-27
basic exit information, Vol.3-24-27, Vol.3-C-1
basic VM-exit information, Vol.3-24-27
exits due to instruction execution, 

Vol.3-24-30
exits due to vectored events, Vol.3-24-28
exits occurring during event delivery, 

Vol.3-24-29
VM-instruction error field, Vol.3-24-31

VM-instruction error field, Vol.3-26-1, 
Vol.3-29-35

VMREAD instruction, Vol.3-30-2
field encodings, Vol.3-1-6, Vol.3-B-1

VMWRITE instruction, Vol.3-30-2
field encodings, Vol.3-1-6, Vol.3-B-1

VMX-abort indicator, Vol.3-24-3
See also: VM entries, VM exits, VMM, VMX

VME (virtual-8086 mode extensions) flag, CR4 control 
register, Vol.3-2-14, Vol.3-2-15, 
Vol.3-2-23, Vol.3-22-24

VMLAUNCH instruction, Vol.1-5-39, Vol.1-5-40, 
Vol.3-29-1, Vol.3-30-11

VMM, Vol.2-5-1
asymmetric design, Vol.3-30-15
control registers, Vol.3-30-25
CPUID instruction emulation, Vol.3-30-18
debug exceptions, Vol.3-31-2
debugging facilities, Vol.3-31-1, Vol.3-31-2
entering VMX root operation, Vol.3-30-6
error handling, Vol.3-30-4
exception bitmap, Vol.3-31-2
external interrupts, Vol.3-32-1
fast instruction set emulator, Vol.3-30-1
index data pairs, usage of, Vol.3-30-17
interrupt handling, Vol.3-32-1
interrupt vectors, Vol.3-32-4
leaving VMX operation, Vol.3-30-6
machine checks, Vol.3-32-12, Vol.3-32-13, 

Vol.3-32-16
memory virtualization, Vol.3-31-3
microcode update facilities, Vol.3-31-11
multi-processor considerations, Vol.3-30-15
operating modes, Vol.3-30-18
programming considerations, Vol.3-30-1
response to page faults, Vol.3-31-8
root VMCS, Vol.3-30-2
SMI transfer monitor, Vol.3-30-6
steps for launching VMs, Vol.3-30-10
SWAPGS instruction, Vol.3-30-23
symmetric design, Vol.3-30-15
SYSCALL/SYSRET instructions, Vol.3-30-23
SYSENTER/SYSEXIT instructions, Vol.3-30-23
triple faults, Vol.3-32-1
virtual TLBs, Vol.3-31-5
virtual-8086 container, Vol.3-30-1
virtualization of system resources, Vol.3-31-1
VM exits, Vol.3-27-1
VM exits, handling of, Vol.3-30-11
VMCLEAR instruction, Vol.3-30-10
VMCS field width, Vol.3-30-19
VMCS pointer, Vol.3-30-2
VMCS region, Vol.3-30-2
VMCS revision identifier, Vol.3-30-2
VMCS, writing/reading fields, Vol.3-30-3
VM-exit failures, Vol.3-32-11
VMLAUNCH instruction, Vol.3-30-11
VMREAD instruction, Vol.3-30-3
VMRESUME instruction, Vol.3-30-11
VMWRITE instruction, Vol.3-30-3, Vol.3-30-10
VMXOFF instruction, Vol.3-30-6
See also: VMCS, VM entries, VM exits, VMX

VMM software interrupts, Vol.3-32-1
VMPTRLD instruction, Vol.1-5-38, Vol.1-5-39, 

Vol.3-29-1
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VMPTRST instruction, Vol.1-5-38, Vol.1-5-39, 
Vol.3-29-1

VMREAD instruction, Vol.1-5-39, Vol.1-5-40, 
Vol.3-29-1, Vol.3-30-2, Vol.3-30-3

field encodings, Vol.3-B-1
VMRESUME instruction, Vol.1-5-39, Vol.1-5-40, 

Vol.3-29-2, Vol.3-30-11
VMWRITE instruction, Vol.1-5-39, Vol.1-5-40, 

Vol.3-29-1, Vol.3-30-2, Vol.3-30-3, 
Vol.3-30-10
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